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Notations

ix

One-stage models: Joint chance constraints

A,B,C,- -
a,b,c,
T,Y,z,

(2, F,P)
N

(R, B")
E:Q—- R

T(£), h(€)

T(-): R — R™*™

h(-) : RT — R™

S
=

) ™)
>)

arrays (usually given real matrices)

arrays (usually given real vectors)

arrays (usually real or integer variable vectors)
probability space

set of natural numbers

IR" endowed with the Borel o-algebra B"

random vector, i.e. Borel measurable mapping
inducing the probability measure IP¢ on B”
according to P¢(M) = P(§"'[M]) VM € B"

random array and random vector, respectively,
defined as:

TE) =T+ TI¢&;T, TV € R™*™ fix
J=1

T
h(€)=h+Y hi&;h, b € R™ fix
j=1
expectation

/ £ (de) = /5

expectatlons E¢[T(§)] = T(€) and
E¢[h(£)] = h(£), respectively

realization of random £

realizations T(E ) h(g ), respectively

One-stage models: Separate chance constraints

ti(-)
hi(")

W(&), q(§)

i-th row of T'(-)
i-th component of A(-)

Two-stage recourse models

random array and random vector, respectively,
defined as:
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o) : R" — R™

B
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W(E) =W+ > Wig; W, wi e Rmaxn
j=1

&) =q+> ¢¢&;q ¢ eR™
j=1

expectations IE¢[W(§)] = W (€) and

Ee [q(&)] = q(&), respectively

Multi-stage recourse models

£: Q- RE

G 2 — R

Agr () s RE — RMeXno:

b() : Rft — R™

ce(r) RE: , R™

random vector £ = (£9,---,& ) with
T

&:Q—-R" t=2,---,Tand Y r =R
t=2

the state of the process at stage t, defined as

random vector (; = (£9,---,€¢), t > 2, or else
¢
¢ =(m, -,nr,) with Ry = ZT‘T, with the
T=2

corresponding marginal distribution of £

t Ry
AtT(Ct) :AtT'Jf‘Z Z Atrunm
k=2 v=R,-1+1
where A;,, A;7, € R™*" and R; = 0,
withl <r<tand2<t<T

t R,
bt(Ct) = by + E Z bty M,

k=2 v=Re_1+1
where by, by, e R™ and2 <t < T

t R
al@)=c+», D e,

k=2 v=R, 141
where ¢;, ¢ty E R and2 <t < T

Multi-stage recourse models: Discrete distribution

£:Q—RE

G 2 — RFE

random vector with discrete distribution
{(é-s? qs); s,\: 1, A ) S}9 Le

scenarios {° = (§5,---,&7) = (07, - -+, p)
withPe(§ =§°) = ¢, s € S:={1,--,5}

3
discrete set {(F = (€5, ,&8); s € S} of
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states defining k; > 1 different equivalence
classes UY C S, with s;,s; € UY & (% = (7
and an associated set of different states at
stage ¢ which may be defined by
S := {p | p minimal in one of the U}'}
as {¢f | p € St} with the distribution
PG =) =mp =) {a: ¢ =}
sES
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Multi-stage recourse models: The scenario tree

tree with nodes N’ C IN, where n = 1 is the

T
(unique) root and | V| = Z |Se| +1
t=2

the stage to which n € A belongs;
there is a bijection

T
(tgy,p0) + AN = {11} = (L&, 8}

t=2
such that n « (t,, p(n)), n > 2;
hence we assign with any node n > 2

(n = /;’:L(”) with {¢" ™ p(n) € Sy, } uniquely
determined by n € N (state in node n)

setof nodesin stage ¢, 1 <t < T

the parent node of node n € N/, n > 2
(immediate predecessor)

set of nodes in the path from n € A to the root,
ordered by stages, including n (history of n)
Sn)={seS| Ets" = E”}, i.e. the index set
of those scenarios, for which the scenario path
contains n € . §(n) and the related set of
scenarios are called the scenario bundle of

the corresponding node n

probability of S(n):

Pn = Pe(G, = (") = Ty, p(n)

set of children (immediate successors) of

future of node n along scenario s € S(n),
including n (and hence G4(n) = 0 if s & B(n))

G(n)= |J Gs(n), the future of n € N
seB(n)
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Preface

The beginning of stochastic programming, and in particular stochastic linear
programming (SLP), dates back to the 50’s and early 60’s of the last century.
Pioneers who—at that time—contributed to the field, either by identifying SLP
problems in particular applications, or by formulating various model types and
solution approaches for dealing adequately with linear programs containing
random variables in their right-hand-side, their technology matrix, and/or their
objective’s gradient, have been among others (in alphabetical order):

E.M.L. Beale [10], proposing a quadratic programming approach to solve spe-
cial simple recourse stochastic programs;

A. Charnes and W.W, Cooper [38], introducing a particular stochastic program
with chance constraints;

G.B. Dantzig [43], formulating the general problem of linear programming with
uncertain data and

G.B. Dantzig and A. Madansky [47], discussing at an early stage the possibility
to solve particular two-stage stochastic linear programs;

G. Tintner [287], considering stochastic linear programming as an appropriate
approach to model particular agricultural applications; and

C. van de Panne and W. Popp [293], considering a cattle feed problem modeled
with probabilistic constraints.

In addition we should mention just a few results and methods achieved before
1963, which were not developed in connection with stochastic programming,
but nevertheless turned out to play an essential role in various areas of our field.
One instance is the Brunn-Minkowski inequality based on the investigations
of H. Brunn [32] in 1887 and H. Minkowski [206] in 1897, which comes
up in connection with convexity statements for probabilistic constraints, as
mentioned e.g. in Prékopa [234]. Furthermore, this applies in particular to
the discussion about bounds on distribution functions, based on inequalities
published by G. Boole in 1854 and by C.E. Bonferroni in 1937 (for the references
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see Prékopa [234]), and on the other hand, about bounds on the expectation of a
convex function of a random variable, leading to a lower bound by the inequality
of J.L. Jensen [128], and to the Edmundson-Madansky upper bound due to
H.P. Edmundson [71] and A. Madansky [183].

Among the concepts of solution approaches, developed until 1963 for linear
or nonlinear programming problems, the following ones, in part after appropri-
ate modifications, still serve as basic tools for dealing with SLP problems:

Besides Dantzig’s simplex method and the Dantzig—-Wolfe decomposition, de-
scribed in detail in G.B. Dantzig [44], the dual decomposition proposed by
LF. Benders [12], cutting plane methods as introduced by J.E. Kelley [159],
and feasible direction methods proposed and discussed in detail by G. Zou-
tendijk [311], may be recognized even within today’s solution methods for
various SLP problems. Of course, these methods and in particular their im-
plementations have been revised and improved meanwhile, and in addition we
know of many new solution approaches, some of which will be dealt with in
this book.

The aim of this volume is to draw a bow from solution methods of (de-
terministic) mathematical programming, being of use in SLP as well, through
theoretical properties of various SLP problems which suggest in many cases the
design of particular solution approaches, to solvers, understood as implemented
algorithms for the solution of the corresponding SLP problems.

Obviously we are far from giving a complete picture on the present knowl-
edge and computational possibilities in SLP. First we had to omit the area
of stochastic integer programming (SILP), since following the above concept
would have implied to give first a survey on those integer programming meth-
ods used in SILP; this would go beyond the limits of this volume. However
the reader may get a first flavour of SILP by having a look for instance into
the articles of W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk [168],
W. Rémisch and R. Schultz [256], M.H. van der Vlerk [299], and the recent
survey of S. Sen [268].

And, as the second restriction, in presenting detailed descriptions we have
essentially confined ourselves to those computational methods for solving SLP
problems belonging to one of the following categories:

Either information on the numerical efficiency of a corresponding solver is
reported in the literature based on reasonable test sets (not just three examples
or less!) and the solver is publicly available;

or else, corresponding solvers have been attached to our model management
system SLP-IOR, either implemented by ourselves or else provided by their
authors, such that we were able to gain computational experience on the methods
presented, based on running the corresponding solvers on randomly generated
test batteries of SLP’s with various characteristics like problem size, matrix
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entries density, probability distribution, range and sign of problem data, and
some others.

Finally, we owe thanks to many colleagues for either providing us with
their solvers to link them to SLP-IOR, or for their support in implementing
their methods by ourselves. Further, we gratefully acknowledge the critical
comments of Simon Siegrist at our Institute. Obviously, the remaining errors
are the sole responsibility of the authors. Last but not least we are indebted
to the publisher for an excellent cooperation. This applies in particular to the
publisher’s representative, Gary Folven, to whom we are also greatly obliged
for his patience.

Ziirich, September 2004 Peter Kall and Janos Mayer



Chapter 1

BASICS

1. Introduction

Linear programs have been studied in many aspects during the last 50 years.
They have shown to be appropriate models for a wide variety of practical prob-
lems and, at the same time, they became numerically tractable even for very
large scale instances. As standard formulations of linear programs (LP) we find
problems like

minelz
subjectto Az o b (1.1)
<z £ u,

with the matrix A € IR™*", the objective’s gradient ¢ € R", the right—
hand-side b € IR™, and the lower and upper bounds [ € IR™ and u € IR",
respectively. If some z; is unbounded below and/or above, this corresponds to
l; = —oo and/or u; = oo. A,b,c,l,u are assumed to be known fixed data in
the above model. The relation ‘cx’ is to be replaced row-wise by one of the
relations ‘<’, ‘=", or ‘>". Then the task is obviously to find the—or at least
one—optimal feasible solution z € IR™. Alternatively, we often find also the
LP-formulation

T

minc
subjectto Ar o« b (1.2)
z > 0,

under the analogous assumptions as above. For these two LP types it holds
obviously that, given a problem of one type, it may be reformulated into an
equivalent problem of the other type. More precisely,
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— given the LP in the formulation (1.2), by introducing the lower bounds
I=(0,---,0)T and the upper bounds « = (0o, - - -, 00)T (in computa-
tions rather markers u = (M, - - -, M) T with a sufficiently large number
M, e.g. M = 10%, just to indicate unboundedness), the problem is triv-
ially of the type (1.1); and

— having the LP of type (1.1), introducing variables 2+ € R", 2~ ¢
RY, inserting z = * — 2™, z* > 0,z > 0, introducing the slack
variables y € R and z € IR, and restating the conditions [ < z < u
equivalently as

2t —z~ —y
zt —x~ +z
Yy

H
cog ~

VIV Il

z
the problem is transformed into the type (1.2).

In the same way it follows that every LP may be written as

minclz
subjectto Ax = b (1.3)
x 2> 0,

i.e. as a special variant of (1.2).

Numerical methods known to be efficient in solving LP’s belong essentially
to one of the following classes:

— Pivoting methods, in particular the simplex and/or the dual simplex
method;

— interior point methods for LP’s with very sparse matrices;

— decomposition, dual decomposition and regularized decomposition ap-
proaches for LP’s with special block structures of their coefficient ma-
trices A.

In real life problems the fundamental assumption for linear programming,
that the problem entries—except for the variables z—be known fixed data, does
often happen not to hold. It either may be the case that (some of) the entries
are constructed as statistical estimates from some observed real data, i.e. from
some samples, or else that we know from the model design that they are random
variables (like capacities, demands, productivities or prices). The standard ap-
proach to replace these random variables by their mean values—corresponding
to the choice of statistical estimates mentioned before—and afterwards to solve
the resulting LP may be justified only under special conditions; in general, it
can easily be demonstrated to be dramatically wrong.
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Assume, for instance, as a model for a diet problem the LP

H

mincx

s.t. Ax
Tx

T

(1.4)

VIV IV

b
h
0,
where x represents the quantities of various foodstuffs, and c is the correspond-
ing price vector. The constraints reflect chemical or physiological requirements
to be satisfied by the diet. Let us assume that the elements of A and b are fixed
known data, i.e. deterministic, whereas at least some of the elements of 7" and/or
h are random with a known joint probability distribution, which is not influ-
enced by the choice of the decision z. Further, assume that the realizations of
the random variables in 7" and h are not known before the decision on the diet

z is taken, i.e. before the consumption of the diet. Replacing the random T and
h by their expectations 7" and h and solving the resulting LP

=

minc
s.t. Az > b
Te > & (1.5)
x > 0

can result in a diet £ violating the constraints in (1.4) very likely and hence
with a probability much higher than feasible for the diet to serve successfully
its medical purpose. Therefore, the medical experts would rather require a
decision on the diet which satisfies all constraints jointly with a rather high
probability, as 95% say, such that the problem to solve were

T

minc' x
s. t. Az > b
P(Tz>h) > 095 (1.6)
z 2> 0,

a stochastic linear program (SLP) with joint probabilistic constraints. Here we
had at the starting point the LP (1.4) as model for our diet problem. However,
the (practical) requirement to satisfy—besides the deterministic constraints
Az > b—also the reliability constraint P(Tx > h) > 0.95, yields with (1.6) a
nonlinear program (NLP). This is due to the fact, that in general the probability
function G(z) := P(Tz > h) is clearly nonlinear.

As another example, let some production problem be formulated as
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—

minc-
s.t. Az = b
Te = B 1.7
r > 0,

where T' and h may contain random variables (productivities, demands, ca-
pacities, etc.) with a joint probability distribution (independent again of the
choice of z), and the decision on x has to be taken before the realization of
the random variables is known. Consequently, the decision x will satisfy the
constraints Ax = b, x > 0; but after the observation of the random variables’
realization it may turn out that T’z s h, i.e. that part of the target (like satisfying
the demand for some of the products, capacity constraints, etc.) is not prop-
erly met. However, it may be necessary—by a legal commitment, the strong
intention to maintain goodwill, or similar reasons—to compensate for the de-
ficiency, i.e. for h — T'z, after its observation. One possibility to cope with
this obligation may be the introduction of recourse by defining the constraints
Wy = h — Tz, y > 0, for instance as model of an emergency production
process or simply as the measurement of the absolute values of the deficiencies
(represented by W = (I, —1I), with I the identity matrix). Let us assume W to
be deterministic, and assume the recourse costs to be given as linear by qTy, say.
Obviously we want to achieve this compensation with minimal costs. Hence
we have the recourse problem

Q(%; T, h) := mingTy
s.t. Wy = h-Txz (1.8)
y > 0.

For any x, feasible to the first stage constraints Ax = b, x > 0, the recourse
function, i.e. the optimal value Q(x; T, h) of the second stage problem (1.8),
depends on 7" and h and is therefore a random variable. In many applications,
e.g. in cases where the production plan z has to be implemented periodically
(daily or weekly, for instance), it may be meaningful to choose z in such a
way that the average overall costs, i.e. the sum of the first stage costs ¢1« and
the expected recourse costs IE Q(x; T, h), are minimized. Hence we have the
problem

minc'z + B Q(z; T, h)
s.t. Az b ! (1.9)
T 0,

(AVAN!

a two-stage stochastic linear program (SLP) with fixed recourse.
Also in this case, although our starting point was the LP (1.7), the result-
ing problem (1.9) will be an NLP if the random variables in T" and A have a
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continuous-type joint distribution (i.e. a distribution defined by a density func-
tion).

If, however, the random variables in T"and h have a joint discrete distribution,
defined by the realizations (77, h’7) with the probabilities p;, j = 1, - -, S (with

S
pj > 0and Z p; = 1), problem (1.9) is easily seen to be equivalent to
Jj=1
S . )

mincTz + ijquJ

=1
s.t. Az = b (1.10)
zj +Wy.7 — h],jzl’...,S
T . > 0

y 2 0, )

such that under the discrete distribution assumption we get an LP again, with
the special data structure indicated in Fig. 1.1.

: [w ]
Figure 1.1. Dual decomposition structure.

In applications we observe an increasing need to deal with a generalization
of the two-stage SLP with recourse (1.9) and (1.10), respectively. At this point
we just give a short description as follows: In a first stage, a decision z; is
chosen to be feasible with respect to some deterministic first stage constraints.
Later on, after the realization of a random vector £2, a deficiency in some
second stage constraints has to be compensated for by an appropriate recourse
decision z9(£2). Then after the realization of a further random vector 3, the
former decisions z1 and z2(£2) may not be feasible with respect to some third
stage constraints, and a further recourse decision z3(£2,£3) is needed, and so
on, until a final stage T' is reached. Again, we assume that, besides the first
stage costs crlrxl, the recourse decisions x;((;), t > 2, imply additional linear
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costs ci z4((;), where (s = (£2,+++,&). Then the multi-stage SLP with fixed
recourse is formulated as

T Y
min {C?xl +E¢. [Z C::rxt(Ct)} }

t=2
subject to
Az — b, (1.11)
t
Aa(G)mr + ) Ar(G)r((r) =be(Gr), a8, t =2,+, T

T=2

z1 > 0, 2¢(¢) >0, as,t=2-..,T

L

where, in general, we shall assume A4 ((:), ¢ > 2, the matrices on the diag-
onal, to be deterministic, i.e. Ay(¢;) = Ag. It will turn out that, for general
probability distributions, this problem—an NLP again—is much more difficult
than the two-stage SLP (1.9), and methods to approximate a solution are just
at their beginning phase, at best. However, under the assumption of discrete
distributions of the random vectors (3, problem (1.11) can also be reformulated
into an equivalent LP, which in general is of (very) large scale, but again with
a special data structure to be of use for solution procedures.

From this short sketch of the subject called SLP, which is by far not complete
with respect to the various special problem formulations to be dealt with, we
may already conclude that a basic toolkit of linear and nonlinear programming
methods cannot be waived if we want to deal with the computational solution
of SLP problems. To secure the availability of these resources, in the following
sections of this chapter we shall remind to basic properties of and solution
methods for LP’s and NLP’s as they are used or referred to in the SLP context,
later on.

In Chapter 2, we present various Single-stage SLP models (like e.g. prob-
lem (1.6) on page 9) and discuss their theoretical properties, relevant for their
computational tractability, as convexity statements, for instance.

In Chapter 3 follows an anlogous discussion of Multi—stage SLP models (like
problem (1.9) in particular, and problem (1.11) in general), focussed among
others on properties allowing for the construction of particular approximation
methods for computing (approximate) solutions.

For some of the models discussed before, Chapter 4 will present solution
methods, which have shown to be efficient in extensive computational experi-
ments.
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2. Linear Programming Prerequisites

In this section we briefly present the basic concepts in linear programming
and, for various types of solution methods, the conceptual algorithms.

As mentioned on page 8 we may use the following standard formulation of
an LP:

mincTz
s.t. Az = b 2.1
x > 0.

With A being an (m X n)-matrix, and b and ¢ having corresponding dimensions,
we know from linear algebra that the system of equations

Az = b is solvable if and only if rank(A4, b) = rank(A).

Therefore, solvability of the system Az = b implies that
» either rank(A) = m,

w or the system contains redundant equations which may be omitted, such that
for the remaining system Az = b we have the same set of solutions as for
the original system, and that, for the (m; x n)-matrix A, m; < m, the

condition rank(A) = m; holds.

Observing this well known fact, we henceforth assume without loss of gener-
ality, that rank(A) = m (< n) for the (m X n)-matrix A.

2.1  Algebraic concepts and properties

Solving the LP (2.1) obviously requires to find an extreme (minimal in our
formulation) value of a linear function on a feasible set described as the in-
tersection of a linear manifold, {z | Az = b}, and finitely many halfspaces,
{z | z; >0}, j =1,---,n, suggesting that this problem may be discussed in
algebraic terms.

DEFINITION 2.1 Any feasible solution & of (2.1) is called a feasible basic
solution if, for I(Z) = {i | £ > 0}, the set {A;, i € I(Z)} of columns in A is
linearly independent.

According to this definition, for any feasible basic solution & of (2.1) holds

&; > 0fori € I(#), & =0forj ¢ I(£), and » A =b.
icl(#)

Furthermore, with |I(Z)| being the cardinality of this set (i.e. the number of
its elements), if |I(Z)| < m such that the basic solution Z contains less than
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m strictly positive components, then due to our rank assumption on A there
is a subset Ip(Z) with Ig(Z) D I(%) and |Ig(2)| = m such that the col-
umn set {A;, ¢ € Ig(&)} is linearly independent or equivalently, that the
(m x m)-matrix B = (4; | ¢ € Ip(&)) is nonsingular. Introducing, with
Ip(&) = {i1,: -+, im} and In(2) = {L,---,n}\ Ip(&) = {j1, ", Jn-m},
the vectors 1P} € R™—the basic variables—and z\V} € R*~™—the non-
basic variables—according to

x,{cB} =, i € Ip(&) fork=1,---,m;
xl{N} =xj,, 1 € In(@) forl=1,---,n—m,

then, with the (m x (n—m))-matrix N = (A; | j € In(£)) thesystem Az = b
is, up to a possible rearrangement of columns and variables, equivalent to the
system

BzBY 4 NotN} = p,

Therefore, up to the mentioned rearrangement of variables, the former feasible
basic solution & corresponds to (21} = B~1p > 0, 2{M} = 0), and the
submatrix B of A is called a feasible basis . With the same rearrangement of
the components of the vector ¢ into the two vectors ¢!B} and ¢V} we may
rewrite problem (2.1) as

min C{B}Ta:{B} + c{N}Ta:{N}

s.t. BzlBl 4+ NIV} = p
(B} > 0
NV} > 0.

Solving the system of equations for {8} we get 18} = B~1p — B~ 1NN}

such that—with vp := (B Y B=1p the objective value of the feasible basic

solution ({8} = B=1p > 0, 2V} = 0)—problem (2.1) is equivalent to
minvyp + (c{N}T - c{B}TB”lN) oV}

s.t. 2B} = B-1p— B-INzIN} > 0
N} > 0.

2.2)

For computational purposes (2.2) is usually represented by the simplex tableau

¢ (01 - dp_m

dr Br lanr - Qin—m
L . 23)

ﬁm am1 ' Omn-m

such that the objective and the equality constraints of (2.2) are rewritten as
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z = ( - dT N}
#B = g — DV 24

with{ = vg = c{B}TB‘lb, B=(B1,",Pm)T = B~1b, and furthermore

11t Qlp—m
D=|: : =B7IN
Gmi *** Qmpn-m

and
dT = (81, | 0nm) = (C{B}TB—lN _ C{N}T) _ (C{B}TD _ C{N}T)'
Although not written down explicitly, we assume that also for the reformulation
(2.3) and (2.4) the nonnegativity constraints {5} > 0, z{¥} > 0 have to hold.
To justify the simplex algorithm as a solution method for (2.1) the following
statements are essential.

PROPOSITION 2.1 Provided that the LP (2.1) is feasible, i.e. that the feasible
set B:= {z | Ax = b, x > 0} # 0, there exists at least one feasible basic
solution.

PROPOSITION 2.2 Ifthe LP (2.1) is solvable with the optimal value 4, then
. oy T 4
there exists at least one feasible basis B, yielding c{P}” B~1p = 4.

DEFINITION 2.2 Assume that rank(A) = m. If for a feasible basis B and
the corresponding feasible basic solution & with ({8} = B~1p, #{N} = 0) it
happens that |I(£)| < m, i.e. that less than m of the basic variables are strictly
positive, then the basic solution % is called degenerate.

Finally, if we have a feasible basis B such that dT < 0, than obviously
this basis is optimal, i.e. (#{8} = 8, £{M = 0) solves (2.1), since by (2.4)
z = ¢ —d"2™ > ¢ vz{M > 0. On the other hand, assume that (2.1)
is solvable, and that in addition all feasible basic solutions are nondegenerate.
Then for an optimal feasible basis B, existing due to Prop. 2.2, dT < 0 has to
hold due to the following argument:

If, for any feasible basis, d; > 0 would hold for some j € {1,---,n —m},
due to 8 > 0 by the assumed nondegeneracy, we could choose z{N} = Tej (e
the j-th unit vector in IR™™™) with some 7 > 0, such that according to (2.4)
would follow

Hence, the basis at hand would not be optimal.
Even without the nondegeneracy assumption the above optimality condition,
also known as the simplex criterion, can be shown to hold true.



16 STOCHASTIC LINEAR PROGRAMMING

PROPOSITION 2.3 The LP (2.1) is solvable if and only if there exists an op-
timal feasible basis B such that the condition

dT = (C{B}TB—lN - c{N}T> = (C{B}TD _ c{N}T) <0 @5
is satisfied.

The proof of the above statements may be found in the literature, e.g. in
Dantzig [44], Maros [191], or Vanderbei [295].

2.2  Geometric interpretation
Besides the algebraic formulation of LP’s, it is sometimes intuitively helpful

to have in mind their geometric interpretation. To this end we need the concepts
of a convex polyhedron and of a convex polyhedral cone.

DEFINITION 2.3 Given finitely many vectors £ . 2(") € R™, then their
convex hull

P =i conv {m(l), o ,x(r)}

r s
= {a:|x=z/\jac(j) with Z)\jzl, Aj > 0Vj}

J=1 J=1

is called a convex polyhedron, and their positive hull

C=pos{x(l), (’")} ={yly= Z”J wzthpJ >0Vj}
Jj=1

is called a convex polyhedral cone.
Finally, P+C ={z | z=xz+y: z € P, y € C}iscalled a convex polyhedral
set.

To generate the polyhedron P of Fig. 2.1, the elements 2®) and (") are obvi-
ously redundant, i.e. omitting these elements would result in the same polyhe-
dron P, whereas no one of the elements z(), - - .| () can be deleted without
changing the polyhedron essentially. The 31mple reason is that a polyhedron is
uniquely determined by its vertices.

DEFINITION 2.4 Given a convex polyhedron P, an element y € P is a vertex
if and only if there are no two further elements v, w € P such that v # y # w
andy = I+ (1 - Aw, A € (0,1).

Similarly, for a convex polyhedral cone not all of the generating elements
mentioned in Def, 2.3 might be really needed to represent the cone. More
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3 X2

x(

s X

5 x4
Figure 2.1.  Polyhedron P = conv {zV),...,z("}.

precisely, whenever one of the generating elements equals a nonnegative linear
combination of the other generating elements, it can be deleted without changing
the cone.

With the LP (2.1) the set C = {y | Ay = 0, y > 0} can be associated.

PROPOSITION 2.4 ThesetC = {y | Ay = 0, y > 0} is a convex polyhedral
cone,

generated either trivially by {0}, if C = {0},

or, if Iy € C: y # 0, generated for instance by {y™), - .-y, the set of
feasible basic solutions of the system

Ay = 0
eTy = 1, wheree™ =(1,---,1),
y =2 0

With these concepts we may describe the feasible set
B={z|Az =0, z >0} (2.6)
as follows:
PROPOSITION 2.5 For the feasible set B # () holds
B=P+C={z|z=x+ywithz € Pandy € C},

where C = {y | Ay = 0, y > 0} and P = conv {z() ... &}, with
{zW, ... 2"} being the set of feasible basic solutions of B.
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The set of feasible basic solutions of B can be shown to coincide with the set
of vertices of P (and B). The proofs of these statements may be found in the
standard LP literature, or else in Kall-Wallace [152].

DEFINITION 2.5 For any nonempty set M C IR"™ its polar cone is the set
MFP ={zeR"| 2Tz <0Vz e M}.
An obvious consequence of this definition is

PROPOSITION 2.6 Forany nonemptyset M C RR™ its polar cone MY C R™
is a closed convex cone, i.e. M # O is a closed set such that for any two
20 e MP,i=1,2, holds \1z(V + Xz € MP VX, > 0. In particular, for
any convex polyhedral cone C its polar cone CT is a convex polyhedral cone as
well,

Proof: Obviously, 0 € MP and hence MF # ( is a convex cone. For
{z) € MP v € IN} converging to 2 we have for any arbitrary # € M that

z(")T:i' < 0Vv € IN and hence 3T = lim z(")Tﬁv < 0, such that 3 € MP,
V—00
i.e. MF is closed.
IfC is a convex polyhedral cone generated by {d("), - - -, d(")}, with the matrix
D = (dM, ..., d™) the polar cone of C is given as C*' = {z | DTz < 0}
which, in analogy to Prop. 2.4, is a convex polyhedral cone. i

According to Proposition 2.5, using the set of feasible basic solutions
{z®, ..., z()}, ie. the vertices of P, and the generating set {y(1), -, y(*)}
of C as described in Prop. 2.4, the LP (2.1) can now be rewritten as

T 8
min Z Niclz® 4 Z i cTy(j)
i=1 j=1

\

st Y N o= 1 (2.7)
=1
A > 0Vi
pi = 0Vj. )

This representation implies the following extension of Prop. 2.2.

PROPOSITION 2.7 Provided that B # ), the LP (2.1) is solvable if and only
ifcTy > 0Vy € C, ie. —c € CF; in this case an eptimal solution can
be chosen as a vertex x'®) of B (a feasible basic solution of B) such that
Tzl = min Tz,

ie{l,,}
Proof: The assumption, that cTy > 0V y € C, is equivalent to the requirement
that Ty >0, j = 1,---, s. If this condition is violated for at least one y/)
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(e.g. for j1), then according to (2.7) for i;;, — oo follows for the objective
z — —00, such that the LP is unsolvable.

If, on the other hand, the condition is satisfied, then—to solve (2.7)—we would
choose p; = 0V j, which implies the assertion immediately. O

As a consequence we get

PROPOSITION 2.8 IfB # 0, and if T« > v Va € B for some v € R, then
the LP min{c 'z | z € B} is solvable.

Proof: For any fixed & € B and an arbitrary y € C it holds true that & + uy €
B ¥y > 0, and by assumption we have cT# + pucTy > v, which implies that
cTy > 0 s satisfied for each y € C; hence the assertion follows from Prop. 2.7.
O

2.3  Duality statements
To the primal LP in its standard formulation

2.1)

another LP, called its dual, is assigned as

max bTu } 2.8)

s.t. ATy < ¢

The technical rules according to which the dual LP (2.8) is constructed from the
primal LP (2.1) may roughly be stated as follows: To the equality constraints
Az = bin (2.1) correspond the free variables u € IR™ in (2.8); to the non-
negative variables x € IR} correspond the inequality contraints ATy < cwith
the transpose of A as the matrix of coefficients; the right-hand-side b of the
primal program yields the objective’s gradient of the dual program, whereas
the objective’s gradient ¢ of the primal LP turns into the right~hand-side of the
dual LP; finally, to the minimization in (2.1) corresponds the maximization in
(2.8).
Rewriting (2.8) into the standard form, we want to solve the problem

v := max{bTut — bTu~} = — min{~bTu* + bTu"}
st. ATt —ATu~ 40 = ¢
ut, uw, v > 0.
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To this LP we assign analogously the dual LP

—maxclz
S. t. Az < b
—-Az < b
z < 0
which, using x := —z, yields
—max—clz = mincTz
s.t. Az = b
z > 0

coinciding with (2.1) again. Hence, the dual ofthe dual LP is the primal program
again and we therefore can speak of a pair of dual LP’s.

There are further relations between the primal and the dual LP which are less
obvious. First, we have the weak duality theorem.

PROPOSITION 2.9 For any pair of feasible solutions & and G of (2.1) and
(2.8), respectively, it holds that bT 4 < cTz.

Proof: According to the assumed feasibilities Az = b, £ > 0, and ATg < cit
follows that
vTa = (Az)Ta = 7 (A%0) < #7Te.

Moreover, there is the following relation between pairs of dual LP’s.

PROPOSITION 2.10 Ifboth of the dual LP’s (2.1) and (2.8) are feasible, then
both of them are solvable.

Proof: Let @ be feasible for (2.8). Then, by the weak duality theorem, cTz >
bT4 Vz € B. Hence Prop. 2.8 yields the solvability of (2.1). The solvability of
(2.8) follows analogously. O

Finally, we have the strong duality theorem.

PROPOSITION 2.11 If the primal problem is solvable, then so is the dual
problem, and the optimal values of the two problems coincide.

Proof: According to Prop. 2.3 the LP (2.1) is solvable if and only if there exists
an optimal feasible basis B such that the simplex criterion (2.5)

dT = (c{B}TB—lN - c{N}T) - (C{B}TD - c{N}T) <0
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is satisfied. Since, up to a rearrangement of columns of A, we have that
(B, N) = A, it follows that for & = B~1T¢{B} it holds that

BT4 (B}

NTq IV},

IA I

Hence, 4 is feasible for the dual program, and its (dual) objective value is

pTa = bTB1T (B} = c{B}TB_lb,
thus coinciding with the primal optimal value. a
PROPOSITION 2.12 Both of the pair of dual LP’s (2.1) and (2.8) are solvable if

and only if there exist feasible solutions ©* and u* such that the complementarity
conditions

o T(ATw =) =0 (2.9)

hold. Then, «* and u* are primal and dual optimal solutions, respectively.

Proof: If both of the LP’s are solvable then there exist optimal feasible solutions
x* and u* such that, by feasibility and strong duality,

0= cTo* — bTu* = oTa* — T ATy = *Te — ATy,
On the other hand, from feasibility, complementarity and weak duality follows
0< e —bTu = T(c— ATu*) =0
and hence the optimality of * and u*. |

The strong duality theorem implies a necessary and sufficient condition for
the feasibility of a system of linear constraints, the Farkas lemma:

PROPOSITION 2.13 It holds
{x | Az =b, x>0} #0 ifand only if ATu < 0 implies bTu < 0.

Proof: Assume that AZ = b holds for some & > 0. Then for any @ with
AT# < 0 follows
bla = (A2)Ta = #TAD)a =27 (4Ta) <o.

On the other hand, assume that ATy < 0 always implies bTy < 0. For
an arbitrary 4 # 0 define ¢ := AT4. Then Prop. 2.7 implies that the LP
max{bTu | ATu < ¢} is solvable. By the strong duality theorem, Prop. 2.11,
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its dual, min{cTz | Az = b, = > 0}, is then solvable as well, and hence
feasible. =

Finally we mention, for later use, that the simplex criterion (2.5) is associated
with a dual feasible basic solution,

PROPOSITION 2.14 Assume that from the LP (2.1) with some (not necessarily
Jfeasible) basis B the simplex tableau (2.3) has been derived, which satisfies the

simplex criterion d¥ = ABYT 1N _ (T < 0. Then with the primal
basis B a dual feasible basis, i.e. a feasible basis of the dual program (2.8), is
associated.

Proof: Using the basis B, the matrix of the primal LP can be rewritten as
A = (B, N). Then the dual constraints read as

BTy < (B} BTy + Iy = B
{ NTy < oM } orelse { NTy + ILjpmw = iV}
- v, w > 0

with unit matrices I,,, and I,,_,, of the indicated order. With ¢ = BT 1.8}
it follows immediately, that, with ¢ = 0 and & = WV} — NT4 > 0 due to the
simplex criterion, BT4 = ¢{B} and NT4 + I,,_,,i0 = ¢!V}, Hence

BT ¢
NT I, .

is a dual feasible basis. O

Due to this relationship, any simplex tableau (2.3) for the primal LP (2.1),
whether feasible or not, is called dual feasible if the simplex criterion (2.5) is
satisfied.

2.4  The Simplex Method
With this background we formulate the

Simplex Algorithm

S1 [Initialization
Find a feasible basis B for the LP (2.1).

S2 Optimality Test
1fdT = (c{B}TB—lN - c{N}T) < 0, then stop (B is optimal). Oth-
erwise, continue.

§3 Choice of Pivot Column
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Choose p € {1,---,n — m} such that d, > 0, and let D, be the
corresponding column of D. If D, < 0, then stop (LP (2.1) is un-

solvable, since z{B} = B~1p — Dpx,{,N} >0 V:Jc,{,N} > 0 and hence
inf{cTz | x € B} = —00); otherwise continue.

S'4 Choice of Pivot Row

The maximal increase 7 > 0 for m,{,N} such that z{B} = B~D,r>0
remains satisfied implies choosing a row p such that

&zmin{ﬁ

Qup ip

ie{l,---,m}; aip>0}‘

S5 Pivot Step

Exchange the roles of ;' and x

{
p

{B} {N}
o p

such that :1:;{43} becomes nonbasic

and z5"} becomes basic, i.e. transform B and N into B and N according

to

B=(Ai, A

zu,..

'7Aim) —
B=(Ai1,---,Aj,,,--~,Aim)
N= (A, Ajpr s Aju) —

N = (Ajry s Aigy oy A

With B := Band N := N, and the implied adjustments of {5}, z{N},
¢, B, dand D, as well as of Ip(x) and Iy (x), return to step S 2.

REMARK 2.1 In case that—in step S3—D, < 0, we may compute a gen-
erating element of the cone C = {y | Ay = 0, y > 0} from the present
tableau as follows: Rearranging the components of y into (y1B}, y1V1), anal-
ogously to the corresponding rearrangement of the components of x, we get for
918t = —D, and 41Nt = 1. ¢, that (1B}, §1N}) > 0 and BgiP} + Ny} =
—~BD,+ N, =0dueto D, =B ~IN,. Hence, {) is a (nontrivial) generating
element of the cone C = {y | Ay = 0, y > 0} according to Prop. 2.4 (page
17). |

Denoting one sequence of the steps S2 — S5 as a cycle, or else as a pivot step,
we may easily prove

PROPOSITION 2.15 Provided that, after step S 1, we have a first feasible
basis, and that all feasible basic solutions of LP (2.1) are nondegenerate, the
simplex algorithm will terminate after finitely many cycles, either with an opti-
mal feasible basis or with the information that inf{c*z | z € B} = —cc.
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Proof: Aslongas D, £ 0instep S 3, we shall get in step S 4 that ﬂ—“ > 0 due
Qup
to the assumed nondegeneracy. Observing that

&=max{7|ﬂ—TDp20} =:7
Qpp

we see that the pivot step in S5 yields

2t = g —#D,, iV = #, and in particular z = ¢ — 7d, < ¢, (2.10)
according to the choice of p in step S 3. Finally, since D, = B~1N, is equiva-
lent with the solution of BD, = Z B;o;, = Np, where N, depends nontriv-

ially on the column B,, (it holds a,,,, > 0), it is well known from linear algebra
that replacing column B, by the column N, as in step S 5, yields again a basis
B which is feasible due to the rule for selecting the pivot row in step S'4. Hence,
after one cycle we get another feasible basic solution with a strictly decreased
objectiv value. Therefore, no feasible basis can show up more than once in this
procedure, and the number of feasible bases of an LP is obviously finite. O

The nondegeneracy assumption is crucial for this proof. If there exist degen-
erate feasible basic solutions, it can happen in some finite sequence of cycles,
that # = 0 for each cycle, and hence the objective is not decreased (in contrast
to (2.10)), and that at the end of this sequence we get the same basis with which
the sequence began. Obviously, this may be repeated infinitely often, without
any decrease of the objective and with nonoptimal bases. We then say that the
procedure is cycling. However, even if degenerate feasible basic solutions exist,
we can avoid cycling of the simplex algorithm by introducing additional rules
in S 3 and/or S 4, the choice of the pivot column and/or the pivot row. Common
approaches are lexicographic rules applied in every pivot step,

either to the choice of variables entering the basis (S 3) as well as of variables
leaving the basis (S 4), if they are not uniquely determined; the strategy to
choose in either case the variable with the smallest index, is called Bland'’s
rule,

or else to the choice of the variables leaving the basis (S 4) only, called the
lexicographic method.

PROPOSITION 2.16 Provided that, after step S 1, we have a first feasible
basis, and that either the lexicographic method or Bland’s rule is used if the
respective choice of variables in step S 3 and/or S 4 is not uniquely determined,
the simplex algorithm will terminate after finitely many cycles, either with an
optimal feasible basis or with the information that inf{c?a: | z € B} = —o0.
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For the proof of this statement see e.g. Vanderbei [295], Theorem 3.2 and
Theorem 3.3.

Obviously the pivot step S 5 implies an update of the simplex tableau (2.3)
which may be easily derived from the equivalent system (2.4) as follows: For
simplicity rewrite the tableau (2.3) as

¢ [0 - Opem agp |1 Qon—m
/61 Q11 . Olpn—m a1 |11 Olp—m
Bm|om1i ' Ompn-m Um0 | Ol " Omn—m
. B
and hence the system (2.4), with x({) b z, as
) ST
B N
IEO = Qo - E Oz()j.'l,'j
=1
} n—m
B N
mi = oy - aljxj{' }
oy 2.4
n-—m
B N
-Tin } = O0mo — Z O‘mjm} !
j=1

n—-m
In §5 the p-th equation (u > 1), x,{lB} = oyo — Z a“ja:yv}, is solved for
j=1
mf,N} (p > 1)—requiring that o, # 0 as given by S4—and the resulting
expression for x,{,N} is inserted into all other relations of (2.4). Under the
assumption that (2.3) is a primal feasible tableau (i.e. a;o > 0Vi > 1), pand p
are chosen in § 3 and § 4 in such a way, that og, > 0 and that with the increase

of a:,{,N} to 210 > 0 all basic variables stay nonnegative, and in particular
Qpp
:vl{,B} — 0. The exchange of :cf,N} and foB} yields a new tableau with the
elements a;‘j; i=0,---,m; j=0,---,n — m,to be computed as
( 1 .
— 1=, =P
RXpp
Quj . .
=g, jFp
oy = al;:,) . . 2.11)
—— iFp j=p
Cup
Qip Oy . .
oy — =2 it j#p.
\ Qup
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Instead of the primal pivot step, where with a primal feasible tableau we look
for a pivot column p violating the simplex criterion and then for a pivot row

such that the exchange of x,{,N} and x,{LB} yields again a primal feasible tableau,
we also may consider the reverse situation: Given a dual feasible tableau,
ie.ag; <0, 5 =1,---,n —m, we may look for a pivot row y violating
primal feasibility, i.e. a;p < 0, and then for a pivot column p such that after
the exchange of xiB} and x,{,N} we get again a dual feasible tableau. Since
the related transformation of the tableau is obviously given again by (2.11),
according to these formulae it is obvious that now necessarily o, < 0 has to
hold to maintain o o <0, and that furthermore, to ensure also agj < 0 for all
other j > 1, the pivot column p has to be chosen such that

Qe _ min { o]
Cp Opj
Transforming now the tableau according to (2.11) terminates a dual pivot step.

At this point we may present one method, out of several others described in
the literature, to realize S / of the simplex algorithm as follows:

jed{l,--,n—m} 0ém<0}-

a) Solve the system Az = b successively for m variables yielding, with
some basis B, the tableau

a1 | @11 0 Olp—m

Um0 [ Ol ' Ompn—m

corresponding to z{B} = B~1p — B-1Nz{N}. If B-1p > 0, this
tableau is primal feasible, and we just have to fill in its first row,
ABY B1p and ¢tBYT B-1N — ¢IM}T Otherwise:

b) Define the first row as (0, —eT) (with €T = (1,---,1)) corresponding
to the artificial objective z = eTz{M} =: RTz, for which we now have
a dual feasible tableau. As long as this tableau is primal infeasible,
continue with dual pivot steps (if necessary with one of the additional
lexicographic rules mentioned earlier).

¢) When a primal feasible tableau-—with the feasible basis B, the corre-
sponding nonbasic part N of A, and the artificial objective—has been

~ T A
found, then replace the first row of the tableau by ¢{#} B~1p and
AB) B - oY
If B={z| Az =b, z > 0} # 0 then, due to Prop. 2.7, our artificial problem
min{hTz | x € B} is solvable such that the above procedure will yield a

first primal feasible tableau for our original problem min{c Tz | = € B} after
finitely many dual pivot steps.
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2.5  The Dual Simplex Method

Asmentioned in Prop. 2.14, a primal simplex tableau, not necessarily feasible
for the primal LP, but satisfying the simplex criterion, is strongly related to a
feasible basic solution of the dual LP; therefore, such a primal simplex tableau
was called dual feasible. This relation is used in

The Dual Simplex Algorithm

S'1 [Initialization
Find a dual feasible primal tableau (with the primal basis B) for the LP
(2.1).

S2 Feasibility Test
If 3 = B~1b > 0, then stop (B is an optimal feasible basis). Otherwise,
continue.

S3 Choice of Pivot Row
Choose i € {1,---,m} such that 3, < 0 and the corresponding p-th
rowof D,i.e. . = (ap1, -+, Oun—m). If oy > 0, then stop (LP (2.1)
is unsolvable, since B = (J). Otherwise, continue.

S'4 Choice of Pivot Column

{B}

The maximal increase 7 > 0 for z;;’, such that dt — 1. ay <0
remains satisfied, implies choosing a column p such that
d ) d;
Cpup Qpj

je{l,---,n—n} am<0}.

S5 Pivot Step

Exchange the roles of mﬁB} and x

{N
p

EN} such that x,gB} becomes nonbasic

andx } becomes basic, i.e. transform B and N into Band N according

to
B=(Aiy, Ay Aiy) —
B=(A¢1,-~',Ajp,~-~,z4im)
N = (A, A, Aju) —
N = (Ajyy Ay oy A
With B := Band N := N, and the implied adjustments of z{B}, z{N},
¢, B, dand D, as well as of Ig(z) and Iy (z), return to step S 2.

PROPOSITION 2.17 Given a first dual feasible tableau after step S 1, the
dual simplex algorithm—if necessary with the dual version of one of the lex-
icographic rules mentioned above—yields after finitely many dual pivot steps
either the optimal primal solution or else the information, that B = .
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Proof: By Prop. 2.14 any dual feasible primal tableau—with A = (B, N)—
corresponds for the dual LP

min b7 u [ minbTu \

subject to subject to

B < oy [T Bu 4+ I = B

NTu < M NTy + Temw = M
g . 1), w Z 0 )

to the dual feasible basis

BT 0 . . BT ¢
with the inverse _ .
( NT Inm > ( ~NTBT I,

Hence we have for the dual constraints

u —

“) =
BT ! 0 c(B} BT~! 0 v
-NTBT' I, . <c{’”>_ ~NTBT' I, . (0)

or else, together with the objective = bTw and, as before, B~1b = § and
BN =D,

n = Tl - B

u BT 1B} - BTl

w = —DTAB LM — (DT > 0
v > 0.

From these formulae we see immediately that

— with dual feasibility after step S 1, i.e. —DTc{B} + N} > 0, from
8 > 0 follows dual optimality for v = 0 (S 2);

- with 8, < 0and D > 0, the dual nonbasic variable v, can grow
arbitrarily and hence the objective  — oo on the dual feasible set such
that according to the weak duality theorem Prop. 2.9 there cannot exist
any primal feasible solution (S 3);

— the requirement to maintain dual feasibility, i.e. w > 0 when increasing
the nonbasic v, results in the rule for choosing the pivot column (S 4).

Observing that now a,, < 0 implies again, as in the proof of Prop. 2.15, that
the exchange of the nonbasic column IV, with the basic column B, yields a
basis again, dual feasible by construction. O

Given the LP (2.1) with the (m X n)-matrix A, the question may arise why we
deal with the dual simplex method, carried out on the primal simplex tableau,
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instead of just applying the simplex method to the dual LP (2.8) and its asso-
ciated tableau. One rather heuistic argument is the size of the tableaus which
have to be updated in every pivot step: Whereas the primal tableau is of the
order m x (n — m), we obviously have for the dual tableau the order n x m,
exceeding the former number of elements to be transformed by m?, which can
be large for realistic problems. In addition, professional implementations of
the simplex method do not perform the pivot transformations on the respective
simplex tableaus but essentially just on the corresponding basis inverses (in
appropriate representations, e.g. in product form). But the basis inverses are of
order (m x m) for the primal basis and of (n x n) for the dual, the latter being
substantially greater if, as it is commonly the case in applications, n > m.
Although these considerations are not a strict argument for the advantage of
the dual simplex method, they may serve as a heuristic explanation why the
dual simplex method empirically in many cases is observed to be more efficient
than the primal method. For more details on the implementation of the simplex
method (and its different variants) we may refer for instance to Maros [191].

2.6  Dual Decomposition

As mentioned in the Introduction, in case of a discrete distribution we get for
the two-stage SLP with recourse the LP (1.10) with the special data structure
illustratedin Fig. 1.1 onpage 1 1. This structure may be used according to anidea
first presented in Benders [12], originally applied to mixed-integer NLP’s. For
simplicity we present the procedure for the special case of S = 1 realizations
in (1.10), i.e. for

min{cTz + q%y}
s.t. Az =
T +Wy

z

oo > o

2.12)

AV |

y =
The extension of the method for S > 1 realizations is then immediate, although
several variants and tricks can be involved.

We assume that the LP (2.12) is solvable and, in addition, that the first stage
feasible set {z | Az = b, z > 0} is bounded. According to Prop. 2.7 the
solvability of (2.12) implies that

{(z,9) | Az =b, Te + Wy=h, 2> 0,y >0} #0
and
e+ qTn>0V(¢n) € {(&n) | A6 =0, TE+Wn=0, >0, n> 0},
and therefore in particular, for £ = 0,

¢'n>0Yne{n|Wn=0,n20}
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such that the recourse function
f(z) := min{q"y | Wy = h— Tz, y > 0}

is finite if the recourse constraints are feasible. Otherwise, we define the re-
course function as f(z) = oo if {y | Wy = h — Tz, y > 0} = 0. Then we
have

PROPOSITION 2.18 The recourse function f(x), defined on the bounded set
{z| Az =b, Te+Wy=nh, >0,y >0} # 0, is piecewise linear, convex,
and bounded below.

Proof: By our assumptions, with By = {z | Az = b, z > 0} it follows
that B := BiN{x | 3y > 0: Wy = h— Tz} # 0 is bounded. Since
{z |3y >0: Wy =h— Tz} # 0 is the projection of the convex polyhedral
set {(z,y) | Tz + Wy = h, y > 0} in (z, y)-space into z-space, it is convex
polyhedral. Hence, B as the intersection of a convex polyhedron with a convex
polyhedral set is a convex polyhedron, and it holds for z € B

f@) = B BiMh—Tz) if Byl(h—Taz) >0,

where By (out of W) is an appropriate optimal basis, chosen from the finitely
many feasible bases of W. Hence, f(z) is piecewise linear and bounded below
in z € B. Finally, with 2! € B and 22 € B such that f(z%), i = 1,2, is finite,
and with corresponding recourse solutions y!, y? satisfying

f@) =g i=1,2, and Wyt =h -T2, o' >0,i=1,2,
for arbitrary A € (0,1) and Z = Az! + (1 — \)z? it follows that
M A1 -Ny? e{y|Wy=h-T%, y>0}
and hence that

f(&) min{qy | Wy = h — T, y > 0}

T (Wt 4 (1 =Ny = Af(h) + (1= M) f(#?),

IA

demonstrating the convexity of f(x) on its effective domaindom f = B. O

Obviously, with the recourse function f(z), the LP (2.12) can be rewritten
equivalently as the NLP

min{cTz + f(z)}
s.t. Az = b
T > 0,
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restricting « implicitly to the effective domain of f, or else as

min{cTz + 6}
s. t. Az = b
6-f(z) > 0 @13)
z > 0.

However, this may not yet help a lot since, in general, we do not know the

(convex polyhedral) recourse function f(z) explicitly. To say it in other terms:

f(z) being bounded below, piecewise linear and convex on B implies the ex-

istence of finitely many linear functions ¢, (z), v = 1,---, L, such that, on

dom f = B, it holds that f(z) = max (). Hence, to reduce the feasi-
v

ble set of (2.13) to the effective domain, B of f, it may be necessary to add some
further linear constraints ¢4 (), - - -, ¥k (z) (observe that the polyhedron B is
defined by finitely many linear constraints) to achieve feasibility of the recourse

problem, such that instead of (2.13) we get the equivalent LP

min{cTz + 6}
s. t Az = b
0—py(z) > 0 v=1,---,L (2.14)
¢u($) > 0 ,U':la’K
r > 0

Also in this case, we do not know in advance the linear constraints needed for the
complete coincidence of this problem with the original LP (2.12). Therefore,
the idea of the following procedure is to generate successively those additional
constraints needed to approximate (and finally to hit) the solution of the original
LP (2.12).

The Dual Decomposition Algorithm

S 1 Initialization
Find a lower bound 6, for

min{¢Ty | Az =b, Te+ Wy =h, >0, y > 0}
and solve the LP
min{c'z + 60| Az =b, >0, 4 > 6}
yielding the solution (, §). Define

By = {(z,0)| Az=b,2>0,0€c R} and
B = {R"x{0}|6>6p}
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§2

S3

S4

AN
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Evaluate the recourse function
To get f(#) = min{qTy | Wy = h — T, y > 0}, solve the dual LP

f(#) = max{(h — T2)Tu | WTu < ¢}.

If f(Z) = 400, then go to step S 3, else to S4.

The feasibility cut

Z is infeasible for (2.12). In this case by Prop. 2.7 (page 18) there
exists an unbounded growth direction @ (to be revealed in step S3 of
the simplex algorithm as one of the finitely many generating elements
of the cone {u | WTu < 0}; see Remark 2.1 on page 23) such that
W7 < 0and (h — T4)T4 > 0, whereas for any feasible z of (2.12)
there exists some y > 0 such that Wy = h — Tz. Multiplying this
equation by @ yields the inequality

@t (h—Tx)=a"Wy <0,

which has to hold for any feasible x but is violated by &. Therefore we
redefine By := B1N{(x,0) | 4T(h—Tx) < 0} such that the infeasible
& is cut off, and go on to step S'5.

The optimality cut

Since f(Z) is finite, by Prop. 2.3 there exists for the recourse problem
a dual optimal feasible basic solution 4, determined in step §2 above,
such that

f(@) = (h—T&)"q,
whereas for any arbitrary x we have

f(z) sup{(h — Tz)Tu | WTu < q}

> (h—Tz)4.
Therefore, the inequality § — f(z) > 0 in (2.13) implies the linear

constraint
0> 4T (h - Tx).

If this constraint is satisfied for (&, 6), i.e. if f () < 0, stop the proce-
dure, since * := £ is an optimal first stage solution; otherwise redefine
the set of constraints as By := By N {(z,0) | > 4T (h — Tx)}, thus
cutting off the nonoptimal (&, §), and go on to step S 5.

Solve the updated LP, called the master program,
min{c’z + 0 | (z,0) € By N By}

yielding the optimal solution (, §).
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With (£, 0) := (&, §) return to step S 2.

PROPOSITION 2.19 Given the above assumptions, the dual decomposition
algorithm yields an optimal first stage solution x* of (2.12) after finitely many
cycles.

Proof: According to Prop. 2.18 the lower bound 6 of S 1 exists (for instance,
by weak duality for any (w,u) € {(w,u) | ATw+T"u < 0, WTu < ¢}, the
value bTw + hTu could be chosen as 6p).

Due to the solvability of (2.12) the dual constraints WTu < g are feasible
and independent of . Hence the dual representation of f(Z) in §2 is always
feasible implying that f(£) is either finite or equal to 400, the latter indicating
primal infeasibility.

If f(£) = +o0, i.e. & is infeasible for (2.12), due to Prop. 2.7 there is a
@ : WTa < 0and (h — T#)Té4 > 0. We may assume that 4 is one of
finitely many generating elements of the cone {u | WTu < 0}, as we get it
in step §'3 of the simplex algorithm (see Remark 2.1 on page 23). Since the
cone {u | WTu < 0} is finitely generated, we shall add at most finitely many
constraints of the type @' (h — Tx) < 0 before we have finite recourse in all
further cycles.

If f(2) = (h — T4)T4 is finite, we assume 4 to be an optimal dual feasible
basic solution (as delivered by the simplex algorithm). Since there are only
finitely many dual feasible basic solutions and hence finitely many constraints
of the type § > 4T (h — Tx) to be added at most, after finitely many cycles,
with the solution of the updated LP in § 5, we must get in the subsequent step
S4that § > 4T (h —T%) = f(&). Due to the facts that

a) the feasible set of (2.13) is contained in the feasible set By N By of the
last master program in the previous step S 3, solved by (Z, 6), and that

b) this solution (, §) is obviously feasible for (2.13),

it follows for any solution (z*, 6*) of (2.13) that

cTa* 4+ 0 = cTa* 4 f(z*)
> cTe+46 due to a)
> o +0* due to b).
Hence, £ is a first stage solution of (2.12). o

Observe that whenever we have that & € dom f with the stopping criterion
not satisfied, we have to add in S4 a linear constraint of the type 6 > ¢(z) :=
4+§Tx, where 4 = 4Thand § = —TT4 € 8f(), the subdifferential of f in 4.
Hence ¢(z) is a linear lower bound of f in z € dom f such that ¢(Z) = f(£).
This is illustrated in Fig. 2.2.
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Y

Figure 2.2. Dual decomposition: Optimality cuts.

Let us consider now, instead of (2.12), the two-stage SLP (1.10) with § > 1
realizations, given as

S \
minclz + Zp]-quj
j=1
s.t. Az = b
Tir +Wyj = hj,jzl’...’s
T > 0
yj 2 0).7:1’,5 /

This is equivalent to the NLP

s
min{cTz + ijé)j}
J=1 ‘
s. t. Az = b 2.15)
Hj—fj(w) Z 0,j=1,"',5
r > 0

with the recourse functions

fi(z) =min{qTy! | Wyl = b/ =TIz, 7 >0}, j=1,---,8.
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Then we can modify the above dual decomposition algorithm as follows:

Dual Decomposition — Multicut Version

S1

S§2

S3

54

Initialization
Find, for j = 1,---, S, lower bounds 6; for

min{q"y’ | Az =b, T/z+ Wy/ =1, £ >0, ¢’ >0}

and,Withp = (plv' v ’pS)T7 0 = (01,' ' 'aHS)Tandé = (éla c '7éS)T
solve the LP

min{cTz +pT0 | Az =b, 2 >0,0> 5},
yielding the solution (&, §). Define

Bo={(z,0) | Ar=b, >0, 6 € R’} and
By ={R" x {6} | 6 > 6}.

Evaluate the recourse functions
To get f;(#) = min{qTy’ | Wy/ = h¥ —T7%, y/ > 0}, solve the dual
LP’s

fi(#) = max{(W — T98)Tv/ | WTw/ <¢q}, j=1,---,8.
J

If J:={j | f;(Z) = +o0} # 0, then go to step S 3, else to S4.
Feasibility cuts

We have f;(&) = +oo for j € J # 0 implying that & is infeasible
for (2.15). In this case by Prop. 2.7 there exist unbounded growth
directions @, j € J (to be revealed in step S 3 of the simplex algorithm;
see Remark 2.1 on page 23) such that V§ € J holds WT4%? < 0 and
(hi —Ti&)T4d > 0, whereas for any feasible z of (2.15) there exist
some 7 > 0 such that Wy7 = h? — T7z. Multiplying these equations
by %/ yields the inequalities

@WT(W —Tiz) = W TWy <0,

which have to hold for any feasible x but are violated by z for j € J.
Therefore we redefine B) := BiN{(x,0) | &/ T(h/ —-TIz) <0, j € J}
such that the infeasible & is cut off, and go on to step S 3.

Optimality cuts

Since f;(&) is finite forall j = 1, -, S, by Prop. 2.3 there exist for the
recourse problems dual optimal feasible basic solutions 7, determined
in step S 2 above, such that

fi(&) = (W = TI&)Tad,
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whereas for any arbitrary © we have

fitm) = sup{(W — Ta)"w’ | WT/ < g}
> (bW —Tiz)Td

Therefore, the inequalities 6; — f;(z) > 0 in (2.15) imply the linear
constraints _ ' ‘
0; > W (W — Tiz).
If these constraints are satisfied for (2, ), i.e. if f;(2) < 9} V74, stop the
procedure, since z* := Z is an optimal first stage solution; otherwise,
if f;(#) > 0;forj e J # (D, redefine the set of constraints as By :=
Bin{(z,0) | 6; > &/T(K — TIz) for j € J}, thus cutting off the
nonoptimal (Z, #), and go on to step S 5.
S5 Solve the updated master program

min{c’z + 0 | (z,0) € BoN By}

yielding the optimal solution (, §).
With (£, §) := (Z, §) return to step S 2.

This multicut version of the dual decomposition method for solving the two-
stage SLP (1.10) or its equivalent NLP (2.15) is due to Birge and Louveaux (see
Birge-Louveaux [22]). Similarly to Prop. 2.19, the multicut method can also
be shown to yield an optimal first stage solution after finitely many cycles.

Instead of introducing S variables 8; as in the multicut version, we may also
get along with just one additional variable §: Instead of (2.15) we deal, again
equivalently to the SLP (1.10), with the NLP

min{cz + 6}
s. t. Az = b
5 2.16)
6 — ijfj (LL') 2 0’ '
j=1
z > 0.

In step S 3 we add feasibility cuts to By as long as we find f;(&) = +oo for
at least one j. In step S4, where all recourse function values are finite with

Fi(@) = (W = T92) a9, we

S
either add the optimality cut § > Z P; AT (W — TIx) to By if
i=1
s
Z 4/ T(h? — T94), and then go on to solve the master program in
]:

step S'J5;



Basics 37

;! T(W —T7%), we stop with & as an optimal first stage

e

orelse, ifd >

J=1

solution.

This L-shaped method was introduced by Van Slyke—Wets [296]. Both variants
of Benders’ decomposition are described in detail in Birge-Louveaux [23].

2.7  Nested Decomposition

This section is devoted to an extension of the dual decomposition method to
multi—stage SLP problems. In (1.11) on page 12, we have introduced a general
multi-stage SLP with fixed recourse. In this section we will additionally allow
randomness in the recourse matrix and in the objective coefficients. We consider
the following problem:

T N
min {crlrml + E, [Z CE(Ct)CEt(Ct)} }
Wlil,‘l = = bl
To(¢2)x1 + Wa(@)aa(2) = ba(Ga)as. L5
T5(¢3)z2(C2) + Ws(Ca)zs(Gs) = bs(Cs), as.,
TT(§T)SL‘T—1(CT—1) + Wr(lr)zr(lr) = br((r), as,
Zy, xt(gt) > 0: as. Vt»
where &y, - - -, {7 and therefore also (; = (€o,- -+, &), t = 2,---, T, arerandom

vectors with given distributions. Furthermore, since in stage t with2 <t < T
the constraint

Ty (Gt )xe—1(Ce—1) + WilCe) s (Ct) = be(Gt)

his to llold a.s., it should be obvious that for Elmost every realization Et =
(Ct—1, &), with z;—1 () being the decision x;_1 ({;—1) taken for the correspond-
ing sub-path of Et, the decision mt(a) in stage ¢ has to satisfy the constraints
Wi(Ge)2e(Gt) = b:(Ce) — T(Ce)we—1(Ge—1), 2(Ce) > 0.

Ifin particular the random vector § := (&3, - - -, &) (and hence all the vectors
& and ;) has a finite discrete distribution, defined by realizations and corre-
sponding probabilities as {Es, Pe(€ = ES) =gqs s€8:={1,.---,5}}, we
can represent the process {(;; t = 2, -+, T} on a scenario tree as follows:
Node n = 1 in stage 1 corresponds to the assumed deterministic state at the
beginning of the process;
in stage 2 we have the nodes n = 2, - - -, K3, each one corresponding to one of
the different sub—paths (. ™) contained in the scenarios &1, - - -, €5, endowed
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with the probability p, = Y {qs | & = & };
SES
in stage 3 there are then the nodes n = Ky +1, - - -, K3 corresponding to one of

the different sub—paths 63’) ™) contained in {Es; s € S}, with the probabilities

P = Z {qs | Zg = /\3” () }; and so on. As an example of a scenario tree see

sES
the four-stage case in Fig. 2.3 with 10 scenarios.

Scenarios are the different realizations of (7, they correspond to the root—
to—leaf paths in the tree. The superscript p(n) denotes the first scenario which
passes through node 7, in a fixed ordering of scenarios. In Figure 2.3 we have,
e.g., p(2) = 1 and p(8) = 8. For further details on this notation see the section
about notations.

By construction, any node n in some stage t,, > 2 has exactly one predecessor
(node) h,, in stage ¢, — 1, whereas each node n in stage t,, < T has a nonempty
finite set C(n) of successors (nodes in stage t,, + 1), also called the children of

n. For any node n in stage t, > 2 (i.e. Kt,—1 < n < K, ) we shall use the
shorthand T5,, Wy, &, by, ¢, instead of Ty, ( t’;(")), W, ( tr:(")), xt"(ct/;(n))’
be,, (Et’;(n)), and ¢, (Zt’:l(")), respectively.

4 010

@)
11
2/5 o}
~ O —0 12

O_\

Figure 2.3.  Four-stage scenario tree.

For later use we introduce some further notations. A denotes the set of nodes
of the scenario tree and N, stands for the set of nodes in stage ¢, i.e., N7 = {1}
andV; = {K;-1+1,..., K} fort > 1. The set of nodes of the subtree rooted
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atn € N will be denoted by G(n). In our example in Figure 2.3 we have, e.g.,
Ns={4,...,9}and G(2) = {2;4,...,6;10,...,14}.

Now we can rewrite problem (2.17) as the following optimization problem
on the corresponding scenario tree:

Ky K3
min { cf 21 + anczmn + Z PrClzy 4 -

n=2 n=Ko+41
Kr
+ Z DnCp, Tn
n=Kp_1+1
Wiz = (2.18)
Tox1+ Wiy =b,, n=2,Ko

Tozh,+ Waay =by, n=Ko+1,-,Ks

Tnxhn+ Wanzn = by,
n=Kp1+1,-,Kr
Zp 20, n=1,---,Kr.

The above problem can compactly be written as follows:

Fi= min cfz;+ Z pelz,
veN\{1}

s.t. Wizy =b b (2.19)
Tyxp, + Wz, =b,, ve N\ {1}
z, >0, veEN.

/

For the ease of presentation we make the following assumption:

ASSUMPTION 2.1 The model involves individual upper bounds x, < U,,
U, > 0,Vn € N. We consider these upper bounds as being built into rows of
(Wh, bn), with the corresponding rows of Ty, consisting of zeros.

Note that U,, does also depend on n € N, i.e., multistage models involving
individual stochastic upper bounds are incorporated in the above formulation.

This assumption implies that (2.19) is either infeasible, or otherwise it has
an optimal solution. A further straightforward implication of the assumption
is that (2.19) is dual feasible. This can be seen as follows: considering the
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primal—dual pair of LP problems

min c¢Tz
s.t. Ax =b max bTu +dTv
Iz +y =d ,, st. ATy +v <c (2.20)
z >0 v <0,

y =0,

it is clear that, to an arbitrarily chosen u, there exists v such that (u,v) is a
feasible solution of the dual.

Problem (2.18) corresponds to the following sequence of programs: For node
n=1

K>
F = mincrfm1+2pnFn(a:1)
n=2 .21)
Wlwl = b1
1 2 0

then for each node in stage 2, i.e., forn € Ny = {2,---, K5}

Fo(z1) = minclz, + Z p-ﬂFm(mn)

meC(n) @ 22)
Wehtn = b nT1
T, =2 0

and in general for any node n € M; = {K;—1 + 1,..., K} in stage t, €

{3,...,T_.1}

Fo(zp,) = minclz, + Z Fm(mn)

meC(n)
(2.23)
Whxn, = bn_Tn-'L'hn
z, = 0.

Finally, for nodes n in stage t,, = T, i.e.,,n € Np = {KT 1+1,--,Kp},
we get

Fo(zp,) = minclz,
Wrer, = by —Thap, (2.24)
z, 2> 0.

For n with t,, = T' it is obvious from (2.24) that F,(zp,, ) is piecewise linear
and convex in z,, foralln € {Kr_1+1,---, K} (see Prop. 2.18, page 30).
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Then, going backwards through stages T — 1,7 — 2, - - -, 2, it follows imme-

diately from (2.23), that the additive terms Z &n—Fm(a;n) are piecewise
meC(n) Pn
linear and convex in x,, implying that also the functions F,(zp,, ) are piecewise
K>
linear and convex, such that by (2.22) also the additive term Z pnFn(z1) in

n=2
(2.21) is piecewise linear and convex in zy.

Note that for ¢, > 1 the NLP (2.23) can also be written in the following
equivalent LP form:

Fo(zp,) = min clz, + Z Eu—crfa:,, )
veg(m\{n} P"
s.t. Whzn, = bn - Tnxhn (225)

Tz, +Wox, =by,, ve g(n) \ {n}
:L'y Z 0) ve g(n)’

/

with the parameter vector zj, and optimal-value function F,,. As usual,
Fo(xp,,) := 400 is taken in the infeasible case. The LP problem (2.25) will be
called a descendant recourse problem and will be denoted by LPDesc(n, zp,,).
In this context, (2.23) is the recursive NLP formulation of LPDesc(n,zp,).
For the sake of uniform notation we introduce a virtual node, indexed by 0, as
the ancestor of the root node. Since the virtual node merely serves for simpli-
fying notation, it is not added to A/. We define a matrix T} as an (m; X 1) zero
matrix (a column vector), where m; is the number of rows of Wj. Interpreting
xp, as an arbitrary number, the original muitistage problem (2.19) is included
into this notation, resulting in a constant optimal-value function F (zj, ) = F1.

Assumption 2.1 implies that LPDesc (n, x3,,) is either infeasible, or other-
wise it has an optimal solution, furthermore, it is dual feasible for alln € N
and all zj, ..

For a fixed zp,, and t,, < T, (2.25) is the LP-equivalent of a (T' — ¢, + 1)
stage recourse problem, corresponding to the following scenario tree: take the
subtree of the original scenario tree, which is rooted at n € N/, and divide by
pn, all probabilities associated with the nodes of the subtree. In particular, for
tn = T — 1 the LP problems LPDesc(n, zp, ) are LP equivalents of two—stage
recourse problems. For n € Nr n is a leaf of the scenario tree and the LP
LPDesc(n,zp,) is an ordinary one-stage LP problem. Nevertheless, for the
sake of simplicity, we call also these LP’s descendant recourse problems.

Above we have derived the piecewise linearity of Fj,(x, ) using backward
induction. An alternative way of showing this consists of considering the LP
(2.25) for which Proposition 2.18 (on page 30) directly applies.
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Consider problem (2.23) for some n with ¢, < T. In analogy to (2.13)
on page 31, we introduce an upper bound &, to replace the additive term
Z Pm m(@r) in the objective function. Due to the piecewise linearity
meC(n)
of the latter term, the upper bound 6,, has to satisfy some additional linear
constraints

AL @y +0p > bppyk=1,---,5,.
In addition, some further linear constraints
api@n > omj, j=1,--+, Ry,
may be necessary to ensure the feasibility (i.e., the finiteness of F},,) of the LP’s

for the nodes m € C(n), such that (2.23) is now replaced by

Fu(zh,) = minclz, + 6,

a",ITLj:cn > o, j=1- R (2.26)
dnkxn +0n 2 6nka k = 17 ,Sn
Ty > 0.

As discussed in connection with (2.14) on page 31, the main idea in dual
decomposition is to solve a sequence of successively built relaxed master prob-
lems

ﬁ‘n(mhn) = minclz, + 0,

Watn = by —Thon,
G/Z'-Tn > Qnj, j=1, yTn (2.27)
dnkxn +0n > Onk, k=1, »Sn

In > 0,

with parameter vector xj,, and optimal-value function f’n Similarly as for
descendant recourse problems, for the root node holds Fy (zh,) = F1, witha
constant value Fj. .

The LP (2.27) will be denoted by LPMast (n,xp,) and will be called a
relaxed master problem. Constraints in the second and third group of constraints
will be called feasibility cuts and optimality cuts, respectively. These will be
added in a one-by—one manner to LPMast (n, x,,) by the ND algorithm, as it
will be discussed later. 7, = 0 or s,, = 0 means that the corresponding group
of constraints is missing. Furthermore, if 5, = 0, then we assume that the
variable 6, is fixed by an additional constraint 6,, = 0. Finally, we will use the
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above notation also for the leaves (¢, = T), by keeping r, = O and s, = 0
throughout.

Due to Assumption 2.1, LPMast (n, zp,,) is either infeasible, or otherwise it
has an optimal solution. It is also dual feasible, Vn € N, Vz,,.

Assume that s, > 0 holds. In this case the third group of inequalities in
the relaxed master problem (2.27) can equivalently be written as the following
single inequality constraint:

0, > max (6, —dL z,).
n = 1gk55n( nk nk n)

This can be put into the objective function thus leading to an equivalent formu-
lation of the relaxed master problem

. ) T
Fo(zp,) = min |clz, +  ax (Onk — dppn)

SKSSn

Wnzn = b, — Tnxhn (2.28)
agjl'n Z Unj, jzl,“',’f'n
xn Z 07

as an NLP problem with a piecewise linear convex objective function. Note
that for descendant recourse problems we had both an LP formulation (2.25)
and an NLP formulation (2.23). These have their counterparts (2.27) and (2.28)
concerning relaxed master problems.

In the multistage case with 7" > 2, for 1 < ¢, < T — 1 two new features
appear in comparison with the two—stage case, which have to be dealt with.
On the one hand, both the descendant recourse problem (2.23) and the relaxed
master problem (2.27) depend on a parameter vector . On the other hand,
the terms [}, in the objective function in (2.23) are defined by multistage (at
least two—stage) problems. We have to explain how in this situation valid cuts
can be constructed.

Let us consider a node n € N, t < T, and its child-nodes m € C(n). We
assume that the current relaxed master LPMast (n, 25, ) has a solution (&, én)
The problems LPMast (m, &), assigned to the child—nodes m € C(n), are ei-
ther infeasible or have an optimal solution.

Feasibility cuts

If LPMast (m, &,,) is infeasible for an m € C(n) then a feasibility cut will
be added to LPMast (n, x,,) . The infeasibility of (2.27) implies the objective
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of the corresponding dual

T™m Sm
4 \T
max (by, — Tindn) Um + Z OmjUmj + Z Ok Wik

Tm Sm
T
s.t.  Whum +Zamjvmj +dekwmk <ecp
=1 k=1

Sm
P =1
k=1
Umj >0,V
Wk ZO, vk )

S (2.29)

to be unbounded from above (note that (2.29) is feasible, due to Assumption 2.1).
Hence there exists a cone—generating vector (i, U, ) With 0, > 0 satisfying

™m
W, i, +Zamjﬁmj <0 and

7= (2.30)

m
(b = Tri&n) Tl + Y tmjlim; > 0.
j=1

In (2.30) Wy, is missing since any cone—generating (&, Um, W) of (2.29)

Sm
has to satisfy Y _ twmi = 0, Wi > 0VE, such that by, = 0Vk.
k=1
Thus, analogously to Benders’ algorithm, for cutting off &,, which has led
to the infeasible relaxed master LPMast (m, £,,), the following feasibility cut
is added to LPMast (n, zp,):

Tm
(b — Ton) Vi + Y OBy < 0, (2.31)
j=1
or equivalently
a%xn > O, ‘ (2.32)

Tm
where @, 1= TY iy, and a, 1= bk il + Z QmjDm; hold.
j=1
Notice that 2, is infeasible also for the descendant linear programming prob-
lem LPDesc (n,zp,, ) (see 2.25) in the following sense: it can not be extended
to a feasible solution of this problem. It makes sense therefore to cut off this
point.
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DEFINITION 2.6 4 feasibility cut aX.z, > O in LPMast (n, xp,, ) will be
called valid, if for any feasible solution (Z,, v € G(n)) of the descendant
recourse problem LPDesc (n, xp,, ), the inequality agjzﬁn > Oy holds.

Validity of a feasibility cut means that considering any feasible solution of
LPDesc(n, xp,,), that piece of this solution which corresponds to node n will
not be cut off. In context of the NLP formulation (2.23), the j** feasibility cut
in LPMast (n, xp,,) is valid, if and only if for any feasible solution Z,, of (2.23)
for which F),,(Z,,) < +oc holds for all m € C(n), the inequality aZja‘cn >
holds.

PROPOSITION 2.20 The following assertions hold:

(i) Letn € N be an arbitrary node. If in LPMast (n,zp,, ) either rp, = 0
holds or otherwise all feasibility cuts are valid then for any feasible
solution (Z,, v € G(n)) of LPDesc(n, xy, ), In is a feasible solution
of LPMast(n,z4,).

(i) Letn € N and m € C(n) be the nodes which have been considered for
generating the feasibility cut. Provided that in LPMast (m, Z,,) either
rm = 0 holds or otherwise all feasibility cuts are valid, the new cut is
a valid feasibility cut in LPMast (n, zp, ).

Proof:

(i): If r, = O then (i) is obviously true. Otherwise the assertion is an immediate
consequence of the definition of validity.

(ii): To see this, assume that (Z,, v € G(n)) is a feasible solution of the
descendant recourse problem LPDesc(n,xp,). In particular for node m €
C(n), from which the cut has been generated, we have:

ijm = bm — ImTn
T = R
amjxm > amj7.7—17"'7rm

where the second inequality holds for the following reason: (Z,,u € G(m))
is obviously a feasible solution of LPDesc(m,Z,) and then the inequality
follows from the assumption concerning feasibility cuts in LPMast (m, £,,).
Multiplying by @, Um, and summing up, we get

Tm Tm
(bm - min)Tﬁm + Z Cij'zv)mj < (Wgﬂm + Z amj{)mj)jm <0

where the last inequality follows from (2.30) and from the nonnegativity of Z,;,.
This shows (see (2.31)) that for Z,, the newly added inequality holds. 0
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Optimality cuts

If LPMast (m, £,,) has a solution for all m € C(n) then we consider append-
ing an optimality cut to LPMast (n, zp, ). Let (Zr,, 0,m) be an optimal solution
of LPMast (m, £,) and ({m, Om, Wy, ) be an optimal solution of its dual (2.29),
then we have

Fn(dn) = Xim+0m

T™m Sm
= (bm - mfin)T'am + Z amj@mj + Z OmkWmk ,
j=1 k=1

(2.33)

for all m € C(n). The key observation concerning optimality cuts is the
following: The feasible domain of the dual problem (2.29) does not depend on
Zn. Consequently, due to weak duality in LP, we have that

T™m Sm
Fm(xn) > (bm - mxn)T'am + Z amji)mj + Z OmkWmik (2.34)
j=1 k=1

holds for any x,,. Therefore we consider adding the following optimality cut to
LPMast (n,zp,):

T™m Sm
60> Y P (b — Tn) Pt > G+ > Stk | - (2.35)
mec(n) P" =1 k=1

If the above inequality holds for (&, én), which is the current solution of
LPMast (n, zp, ), then the new constraint would be redundant, otherwise the
optimality cut will be added to LPMast (n, zp, ).

The optimality cut can equivalently be written as

dhan +0n > 6ok, k=5, +1 (2.36)
with
p .
doie = Z p—’:T,};um and
meC(n)
D T™m S
O 1= Z = bg‘nﬁm + Z amj'{)mj + Z Ok Wrnk
meC(n) Pn j=1 k=1

With the notation just introduced, (2.34) implies that

Y P (@) 2 Sak — dlyen, Van, @37)
meC(n) "
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holds for k = s, + 1 and for arbitrary «,,. In deriving this inequality we have
also used the fact, that for the scenario tree Z DPm = Dp, holds.
meC(n)
The optimality cut clearly cuts off the current solution (&, 6,,).

DEFINITION 2.7 An optimality cut X, zn + 0n > 6 in LPMast (n,2p,)

will be called valid, if the inequality Spy — d¥\z, < Z m(xn) holds
mecl(n)
Jfor arbitrary x,,

Comparing the NLP formulations (2.28) and (2.23) of LPMast(n,xp, ) and
LPDesc(n, zp, ), respectively, we observe the reason for this requirement: We
wish to achieve that the objective function of the relaxed master problem yields
a lower bound to the objective function of the descendant recourse problem.

PROPOSITION 2.21 The following assertions hold:

(i) Let n € N be an arbitrary node and assume that all feasibility cuts
are valid in LPMast (n, z,, ). If either n € Ny, or in LPMast (n, zp, )
sn > 0 holds and all optimality cuts are valid then Fy(zy,) < Fyp(zp,)
holds for any .

(i) Letn € N bethe node considered in the discussion on optimality cuts. If
eithern € Nr_1, orforallm € C(n) sy, > 0 holds and all feasibility—
and optimality cuts are valid in LPMast (m, £,,), then the new cut is a
valid optimality cut in LPMast (n, zp, ).

Proof:

(i): In the case n € Nr the problems LPMast (n, 25,) and LPDesc(n, z4,,)
are identical and therefore we have Fy,(zp, ) = Fy(zy,) for all zp,, . Assume
n € My witht < T — 1. Our assumption implies the inequality

cn T n + n}cax (Onk nkxn) c xn—}— EXC%) Fo(zn) (2.38)

for arbitary x,,. We consider the NLP formulations (2.23) and (2.28) of
LPDesc(n,xp,) and LPMast(n,zp,), respectively. If (2.28)) is infeasible
(F(xp,,) = 4o00) then due to Proposition 2.20 (i), LPDesc (n, zp,) is also
infeasible and consequently £, (2, ) = 400 holds. Thus we have F (xh,) =
Fo(xp, ) = +00. Assume that (2.28) is feasible. For any feasible solution in
(2.23), which is infeasible in (2.28), at least one feasibility—cut constraint in
the latter is violated. The validity of this feasibility cut implies that the right—
hand-side in (2.38) is +o0. Thus taking minima on both sides of (2.38) over
the feasible domain of (2.28) results in our inequality.
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(ii): By part (i) of this proposition, our assumption implies that F,(x,) <
Fpn(zy) holds for all m € C(n) and arbitrary z,,. Utilizing (2.37) we get the
inequality

b —dSan < S Py < Y (e,
mec(n) Pn

which proves (ii). a

Now we are prepared to describe the nested decomposition (ND) algorithm.
This consists of carrying out the following three basic operations in an iterative
fashion.

Starting with stage ¢g, a forward pass consists of an attempt of solving all
relaxed master problems in stages ¢ > tg, in a stage-by—stage manner. The
solutions obtained in stage ¢ are used to set up the relaxed master problems
in stage ¢t + 1. A forward pass terminates either by encountering a node n
such that LPMast (n, Z5,) is infeasible, or by obtaining a solution &,, for all
nodes n with ¢, > tg. The solutions obtained this way are consistent in the
following sense: for any node n with ¢, > g, before setting up and solving
LPMast (n, &5, ) the relaxed master problem associated with the ancestor node
has been already solved and the solution of the ancestor problem is used to
set up LPMast (n, Z3,,). In particular, this implies that for any node n with
tn > to, (Z,,v € G(n)) is a feasible solution of the descendant recourse
problem LPDesc(n, &3,,).

Backtracking starts with a node n, for which LPMast (n, £, ) is infeasible.
The following steps are carried out along the unique path from n to the root.
First a feasibility cut is added to the ancestor’s relaxed master problem. The
relaxed master of the ancestor is solved next. If this turns out to be infeasible
then the procedure is repeated with the ancestor node being the current node.
Backtracking terminates either by finding a node along the path with a feasi-
ble relaxed master problem, or by reaching the root node with an infeasible
associated relaxed master problem. In the latter case the multistage problem is
infeasible, the overall procedure terminates.

A backward pass presupposes that LPMast (n, &, ) is feasible with an opti-
mal solution %, for all n € V. Starting with ¢ = T' — 1, an attempt is made to
add optimality cuts to all relaxed master problems in stage t. Relaxed master
problems with added optimality cuts are solved. Afterwards this is repeated
with stage ¢ = T — 2, and so on, in a backward stage—by—stage manner. Since
adding an optimality cut does not render a feasible relaxed master problem
infeasible, the backward pass terminates by reaching the root node. If during
a whole backward pass no optimality cuts have been added then the current
solution is optimal and the overall procedure terminates.
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Note that if for any node n with ¢, < 7 the solution &,, changes then the
current solutions (if any) associated with the nodes in G(n) \ {n} become invalid
in the overall procedure, in general. The reason is that changing %, implies
changing the parameter in LPMast (m, &,) for all m € C(n) which may result
in changing the solution &,,,. This in turn implies changes in the parametrization
of the relaxed master problems associated with the child-nodes of m € C(n),
and so on.

Next we formulate the nested decomposition (ND) algorithm.

Nested Decomposition Algorithm

S0 Initialization
Letr, =0, s, =0, v, = False
and add the constraint §,, = 0 to LPMast (n,zy,), Vn € N.
Set ¢ := 1 and for formal reasons set £, = 0.
The Boolean variable +,, will be used for the following purpose: v, =
True indicates that the current relaxed master LPMast (n, £5,) has a
solution and it is legitimate to use the current solution (%, én) when
node n is encountered during the subsequent iterations. ~y, = False
indicates that LPMast (n, £5,,) is to be solved whenever node n is en-
countered. (Observe that for n € N7 we’ll have r, = s, = 0 as well
as 6, = 0 throughout the procedure.)

S'1 Select Direction
If ¢t < T then go to S2 (forward pass), otherwise go to S3 (backward
pass).
S2 Forward Pass
For n € N; for which v, = False in turn do:
*  Solve LPMast(n,£p,). If infeasible then store (&, ,) which

fulfills (2.30) and continue with S 4 (backtracking). Otherwise con-
tinue this loop with the next step.

*  Store the solution (Z,, én), ift = T then store also the dual solution
('an, Un, 'UA)n);

*  set~y, = True and 7y, := False forall v € G(n) \ {n};
*  take the next node in MV;.
Ifthis loop goes through without jumping to S 4 then proceed as follows:
if t = T then go to S/, otherwise set ¢t := ¢t + 1 and repeat S 2.

S3 Backward pass
Set v := True. This Boolean variable is only used in the present back-
ward pass. v = T'rue indicates that no optimality cuts have been added
so far,
For n € N;_; in turn do:
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~

*  Check whether (2.35) holds for the current solution (Z,, 6,,);
% if yes, then take the next node in NV;_,, otherwise
* add an optimality cut:

— Set «y := False;

— if s,, = 0 then drop the constraint §,, = 0;

— add the optimality cut (2.36) to LPMast (n, 2, ) with k :=
Sn+1;
set 8y, 1= Sp, + 1;
— solve LPMast (n, &5, ) and temporarily store the dual solution
(ana i}n, 'Lbn)
Note that this loop always goes through: adding an optimality cut does
notrender a previously feasible relaxed master problem infeasible. After
this loop has gone through check for optimality: If ¢ = 1 and v = True
then no optimality cut has been added through a whole backward cycle.
In this case the current solution is optimal, Stop. Otherwise if £ > 1
then sett := ¢ — 1 and repeat S 3, else return to S'/.

S'4 Backtracking

* Ifn = 1 then the multistage problem is infeasible, Stop. Otherwise

* make the predecessor of n the current node, i.e., set m := n and
subsequently n := hp,.

*  Add a feasibility cut to LPMast (n, 5, ) according to (2.32);

x  set~y, := False forall v € G(n);

*  solve LPMast (n, &5, ). If infeasible then compute (%, ©,,) which
fulfills (2.30) and repeat S4. Otherwise set -y, := True, store a
solution (&, 6,) and return to S /.

PRrROPOSITION 2.22 The following assertions hold.:

(i) The feasibility cuts generated by the algorithm are valid.

(it) The optimality cuts generated by the algorithm are also valid. Further-
more, Fy(zp,, ) < Fp(zh,) holds for alln € N and all zy,,.

(iii) The algorithm terminates in a finite number of iterations.

(iv) Ifthe algorithm terminates in S 4 then the multistage problem is infeasi-
ble; if termination occurs in S 3 then the current solution (£, n € N)
is optimal.

Proof:
(i) Feasibility cuts are generated along backward chains in S4. If r, = 0
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holds for LPMast (n, &, ), belonging to the starting node n of the chain (the
node in the highest stage), then Proposition 2.20 implies that all feasibility cuts
added along the chain are valid. This is the case in the initial phase of the
method. If later on the starting node already has feasibility cuts, they are valid,
therefore again Proposition 2.20 applies thus ensuring the validity of the newly
generated cuts.

(i) The validity of the optimality cuts follows immediately from Proposi-
tion 2.21. For the inequality we observe that F'(xp,) = F(zp,) holds for
the leaves n € N, therefore our inequality follows from Proposition 2.21 by
backward induction.

(ii)  Due to the construction of the algorithm, none of the cone—generating
elements and dual feasible basic solutions of LPMast (m, Z,) (m € C(n)) is
used repeatedly for adding cuts to LPMast (n, zp, ). Consequently, for finite
termination it is sufficient to show that for any node n € N there exist finitely
many different cone—generating elements and dual feasible basic solutions of
relaxed master problems associated with the child-nodes. This is a consequence
of the fact that the dual feasible region of LPMast (+n, Z,,) does not depend on
Iy (see also the discussion on page 46).

For nodes n with ¢,, = T" (leaves), both the set of cone—generating elements
and the set of feasible basic dual solutions are obviously finite. Let us consider
anode n with £, = T — 1. Both types of cuts for this node are generated either
on the basis of cone—generating elements or on the basis of dual basic feasible
solutions of LPMast (m,2,) with m € C(n). Consequently, the number of
different feasibility— and optimality cuts in LPMast (n, £p, ) is finite and the
set of possible cuts is independent on the specific value of xp, . This implies
that for LPMast (n, zp,, ) the number of different dual feasible sets is also finite.
Consequently, for each node n with ¢, = T'— 1, the number of cone—generating
elements and dual basic feasible solutions is finite. These are used for generating
cuts fornodes n with ¢t,, = T'—2, Using backward induction according to stages,
it follows that, for any node n € N, there are finitely many different feasibility—
and optimality cuts. This proves (iii).

(iv) If the algorithm terminates in S4 then LPMast (1, &) is infeasible.
Then, due to assertion (i), LPDesc (1, £, ) is also infeasible. The latter being
the original multistage problem this proves the first statement.

For any node n € N, by successively applying (2.35) and (2.33) we get

ﬁ‘n(a:hn) = cT:f:n—i-é
> ¢, T+ Z aﬁ‘m-i-ém)
meC n)
Pm pu
> c:cn+ Z cccm+ Z ca:u+0)

mGC(n) uGC(m)
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= cii, + chxm+z Z”(c u)

meC( n) meC(n) /AEC(m)
(2.39)
> cT:%n-{— Z p—"cgaf:,,
veG(n)
2 Fn(whn)7

where the last inequality follows from the fact, that ((2,,8,)), v € G(n)) is
a feasible solution of LPDesc(n, Z5,,). The full proof follows by an obvious
induction. Applying this for n = 1, together with assertion (ii), the result fol-
lows. The above proof also shows that at optimality (2.35) is fulfilled as an
equality throughout. O

Regarding (2.26) and (2.27), we took the liberty of using in both problems
the same notation for the cuts. For T' > 2, however, the nested decomposition
method generates optimality cuts for LPMast (n, 25, ) which are not neces-
sarily among the optimality cuts of LPDesc(n,xp,), not even at points of
differentiability of the objective function in (2.23).

For the dual decomposition method, master problems can be considered as
relaxations of the full representation (2.14) and the algorithm can be inter-
preted as building the set of additional constraints in a step—by—step fashion
(see page 31). As indicated above, this interpretation is no more valid in the
multistage case. The reason is that, for T > 2andn € My with1 < ¢ < T -2,
optimality cuts are based on relaxed master problems which are themselves in
the process of being built up. Therefore, optimality cuts do not provide neces-
sarily supporting hyperplanes to the true optimal—value function. An example
for this behavior can be found in Birge-Louveaux [23], Section 7.1. For in-
dicating this distinctive feature, we used the term “relaxed master problem”
whereas in Section 2.6 on dual decomposition the term “master problem” has
been employed.

As in the dual decomposition method, after a backward pass the current
value of F clearly provides a lower bound on the optimal objective value of
the multistage problem. After a complete forward pass, i.e. if during a forward
pass all relaxed master problems turn out to be feasible, the current solution
(&n,n € N) is a feasible solution of the multistage problem (2.18). Thus,
computing the corresponding objective value results in an upper bound on the
optimal objective value of the multistage problem.

Finally let us remark that, based on Propositions 2.20 and 2.21, several dif-
ferent variants of ND can be built, which differ on the sequencing protocol, the
latter meaning the sequence in which nodes are processed (relaxed master prob-
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lems are considered) in the algorithm. The variant which has been discussed
in this section implements the FFFB (fast-forward—fast-backward) protocol,
which has been found in empirical studies by Gassmann [95] to be the best
variant.

Nested decomposition for deterministic LP’s with a staircase structure has
been studied by Abrahamson [1], Dantzig [45], and Wittrock [305], [306]. The
generalization of the dual decomposition to a nested decomposition scheme for
multistage problems is due to Birge [18], [20]. The method is also called nested
L—shaped method, see Birge—Louveaux [23].

Finally let us mention that multi—cut versions of the ND method can also be
built analogously as for two—stage problems, see Section 2.6.

2.8 Regularized Decomposition

To reduce the notation, we may write the k-th master problem for the multicut
method as

S
min{ Tz + Y p;6;|(z,61,---,605) € Di ¢, (2.40)
=1

where D;, is the feasible set associated with the set G, of constraints required
in this master program. Hence, instead of minimizing

S
®(z) =clz + ijfj(x)

=1
we minimize, with respect to x,

S
Qp(z) = Tz 4 mein lejﬁj (z,01,---,05) € Dy ¢,
]:

a piecewise linear function supporting from below the piecewise linear objective
function ® of our original NLP (2.15). In particular, in the early cycles of the
algorithm, this support function @ is likely not to represent very well the true
function ® in some neighborhood of the last iterate (%), This may imply, that
even for an #(*) close to the overall optimum of (2.15) we get from solving
(2.40) an £*+1) far away from the optimal point. Hence, it is no surprise that,
in real size problems, we often observe an “erratic jumping around” of the
subsequent iterates () without a substantial progress in the objective, even
when starting from an overall feasible iterate z(*) close to the solution of the
original NLP (2.15). This undesirable behaviour may be improved substantially
by regularizing the master program with an additive quadratic term which shall
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avoid too big steps away from an overall feasible approximate solution (¥
within one iteration. Hence, with some control parameter p > 0 and denoting

the Euclidean norm as || - ||, we deal with master programs of the form
1 S
min 2—p—||3: — 2|2 4 Tz + Zpﬂj (2,61, -+,0s) € Dy (2.41)
i=1

to find a next trial point (*), for which we have to decide by criteria to be
mentioned in the presentation of the algorithm, whether it is accepted as the
next approximate or whether we continue with the current approximate, z*).

We restrict ourselves to just giving a sketch of the modified algorithm. For
simplicity, degeneracy in the constraints Gy, of (2.40) is excluded by assumption,
such that every vertex of the feasible set D, C IR™*® is determined by exactly
n + S active constraints (including the first stage equations Az = b and active
nonnegativity conditions, i.e. 2; = 0 in case). Now we can present a sketch of
the

Regularized Decomposition Algorithm QDECOM

S1 Determine a first approximate z(1), overall feasible for (2.15); letk := 1,
and define D; as the feasible set determined by the constraint set

G1 := {Az = b} U {all optimality cuts at z(1)}.

S2 Solve(2.41)for z(*) as first stage trial pointand 6%) = (HYC) bt Hgk) )T
as recourse approximates.

S
If (2 = d(z®) (= T2k 4 ijﬂj(-k)), then stop; 2(¥) is an
Jj=1

optimal first stage solution for (2.15). Otherwise continue.

S§3 Delete from the constraint set G, of (2.41) constraints being inactive at
(z(®), 9()), such that no more than n + S constraints are left.

S4 If %) satisfies all first stage constraints (i.e. in particular (%) > 0),
then go to step S 5; otherwise add to G, no more than S violated first
stage constraints (nonnegativity conditions x; > 0), yielding G ; let

2kt .= 2() k.= k + 1, and go to step S 2.
S5 Determine fj(.’E(k)), j=1,---,8.
If £;(2*)) = 400 then add a feasibility cut to Gy,
else if f;(z(*¥)) > 6" then add an optimality cut to Gy.

S6 If f(x®) = +oo for at least one j then let 2(¥*+1) := 2(¥) and go to
step S 8; otherwise go to step S7.
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If &(z®) = & (),

or else if ®(z®) < p®(z®) + (1 — u)®(@®) for some parameter
p € (0,1) and exactly n + S constraints were active at (z*), §(%)),
then let z(k*1) .= z(k).

otherwise, let z(F*+1) ;= (k)

Let Gi41 be the constraint set resulting from Gy, after deleting and adding
constraints due to steps §3 and S 5, respectively. With Dy 1 the corre-
sponding feasible set and k := k + 1 return to step S 2.

The parameters p > 0 and u € (0, 1) can be chosen adaptively between fixed
bounds in order to improve the progress of the algorithm.

As we see immediately, during this algorithm all approximates z(*) are over-
all feasible since the change z(*+1) := (¥ only takes place in step S 7,

— either if ®(z )y = &(x®), which means that the piecewise linear

support & of & coincides with ® in (¥, as well as obviously in 2(¥),

such that, since (), %)) minimizes (2.41), we have the mequahty
&(z®) < &(2%)) implying ®(z*)) < +oco and hence the overall
feasibility of (%), and continuing with the unchanged approximate z(*)
would block the procedure;

or if (¥, 9(F)) is a vertex of Dy, (corresponding to & having a kink in
2 (%)) and the decrease of ® from 2 to z(¥)

(29) - 8 (=)

e(e®) - 2(zW) < (1-p)
= (z®) — d(z))) <0

(®
(1—p) (@
is substantial with respect to the corresponding decrease of & and im-
plies, due to ®(z*)) — ®(2()) < 0 and therefore ®(z*)) < +oo0,
again the overall feasibility of z(*). As an example see Fig. 2.2, with
the correspondences ® = f and & = ¢. Here, starting from z() = z(1)
with the related optimality cut, we find z(?) according to the feasibility
cut being active there. Then we add a new optimality cut in () due to
step S5, but keep 2 := z(1) since ®(x@) > &(2(V). Hence we get
next the trial point 2(3) which—depending on the choice of y—could
be a candidate for the next approximate z(3)).

The algorithm QDECOM was proposed by Ruszczynski [261], where the
details including the proof of its finiteness can be found. The same author also
provided an implementation of QDECOM which for a very large variety of test
problems has shown to be highly reliable as well as efficient.
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2.9 Interior Point Methods
For the primal LP (2.1) and its dual (2.8), introducing for the latter one the

slack variables s; > 0, i = 1,---,n, we know from Prop. 2.12 that for a
primal-dual pair of solutions the following system has to be satisfied:
Ax = b
ATy 45 = ¢
z > 0 (2.42)
s > 0
zTs = 0

Defining the diagonal matrices X := diag (x;) and S := diag (s;), the above

system requires to find a solution (with e = (1,---,1)T) of
ATu+TIs—c
F(z,u,s8) := Ax—b =0 (2.43)
XSe
such that
20,820 (2.44)
For the Jacobian of F' we have
0 AT T
J(z,u,s)=1 A 0 0
S 0 X

which, due to our general assumption that rank(A) = m (see page 13), is
nonsingular as long as z; > 0, s; > 0, ¢ = 1,---,n. Hence, having at hand a
primal-dual feasible pair (&, 4, §) satisfying the condition

Az =b, ATu+s=¢c, 2>0, s>0, (2.45)

called strict feasibility or else interior-point condition, we may uniquely deter-
mine the search direction of the Newton method for the solution of the system
(2.43) with the conditions (2.44) by solving the linear equations

Az 0
F(2,4,8) + J(2,4,8) | Au | =] 0 (2.46)
As 0

or equivalently

0 I 0
A 0 0 Au | = o . (2.47)
S 0 X X Se
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PROPOSITION 2.23 Given the strict feasibility condition (2.45), for any w €
R™ : w; > 0V, there are uniquely determined x, u, s satisfying

Ar=b2>0, ATu+s=¢, >0, and zisi=w;, i=1,---,n.

A proof of this statement may be found in S.J. Wright [308], for instance. Due
to this statement the concept of the central path, playing an important role in
the field of interior point methods, can be introduced.

DEFINITION 2.8 For p > 0, the primal-dual central path is defined as

0
C:={ (el ol ol paint oo b=t o |, @i, sth >0
pe
This definition suggests to drive {L — 0, due to the conjecture that the limit
(a*,u%,8%) = lim (1wl sludy (if it exists) yields a primal-dual pair of
n—

solutions according to (2.42). Now, starting again with a strictly feasible primal-

dual pair (&, 4, §), we could, instead of (2.46), design a Newton search direction
A T N
. . . '8
in order to drive the system towards the central path for i = —, such that we
n

had to deal with the system

Az 0
F(Z,4,8) +J(&,4,8) [ Au | = 0 1. (2.48)
As fe

Finally, the two approaches (2.46) and (2.48) may be mixed by choosing for the
latter one ofi instead of i with some o € [0, 1], where o = 0 corresponds to
(2.46), whereas o = 1 reflects fully the goal to move towards the central path.
Hence the Newton system becomes

Az 0
F(£,4,8)+ J(£,1,8) | Au | = 0 , (2.49)
As ope

and for the corresponding search direction we have to solve the linear equations

0 AT 7~ Az 0
A 0 0 Au | = 0 ) (2.50)
S 0 X As —XSe+ojie

Thus we have the following conceptual



58 STOCHASTIC LINEAR PROGRAMMING

Primal-Dual (Interior Point) Algorithm

S1 Find (20,40, %) satisfying the interior-point condition (2.45) and let

k:=0.
2T gk
S2 Forsome oy € [0,1] and pg = solve
0 AT I Azk 0
A 0 0 Auk | = 0
Sk0 Xk Ask —XkSke + opure

S§3 Let
($k+1,uk+l’8k+l) = (xk,uk,sk) +ak(A.’17k,Auk,A8k),

where oy, is chosen such that (z¥+1, s#+1) > 0, If X*+15%+1e < ge
for some small tolerance &, stop; else return to §2 with k := k + 1.

In practice, the requirement of a strictly feasible (z°, u°, s°) as a first iterate in
the above algorithm may involve severe difficulties. Instead, itis also possible—
and much easier—to start with an infeasible first iterate, more precisely with
some (&, 4, §) such that (Z, 8) > 0 is satisfied, but the equality constraints are
violated, i.e. W, := A% — b # 0 and/or Wy := ATd + I5 — ¢ # 0. Instead
of the system (2.50) for the search direction we then have to begin the above
algorithm in step S 2 with the system

0 AT T Az —g
A0 0 Au | = —dp . (2.51)
S 0 X As —XSe +ojie

As soon as the first iterate becomes strictly feasible (equivalently, as soon as
we can choose o = 1 in step S3), the subsequent iterates remain strictly
feasible, such that (2.51) coincides with the original search direction (2.50)
again. This modification of the above conceptual algorithm is referred to as
infeasible interior point method.

The linear system (2.51) (and (2.50) as well), due to the special structure
of its coefficient matrix, may be reformulated to more compact systems with
symmetric nonsingular coefficient matrices. First we eliminate As using the
last block of equations of (2.51),

SAz + XAs = —XSe+ ojie,

yielding R X o
As = -Se+opXte— X"1S5Ax, (2.52)
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such that for the two other blocks of equations of (2.51) we have
ATAu +As —Wyq
AAzx = —p
and hence due to (2.52)

0 A Au '\ _ —lp
( AT X118 ) ( Az > - ( —g + Se —opX e ) (2.53)

Hence, to determine the search direction with this so called augmented system,
we first solve (2.53) for Au and Az, and then insert Az in (2.52) to get As.

With the notation 5% := diag (/5:), X3 = diag (/7;), the system (2.53)
contains, with D := 53X %, the nonsingular diagonal matrix —D~2 such that
we can eliminate Az from

ATAu— D ?Az = —ig + Se — o i X " te

to get . .
Az = DX (ATAu+ 04 — Se + o X 1e) (2.54)

such that the first block of (2.53)) yields
AAx = AD*(AT Au + 1y — Se + o X ~te) = —aiyp,

leading, together with (2.54) and (2.52), to the normal equations system

AD2ATAu = —bp+ A(-87 1 Xy + Xe — oS te)
As = —ATAu -y (2.55)
Az = —S§1XAs—Xe+opSle.

There are many variants of primal-dual interior point methods, depending
on the adaptive choices of the parameter o and of the steplengths ag, and on
modifications of the right-hand-sides of (2.51) (or the augmented or normal
equations system derived thereoff), among others. For more details on this
variety of algorithms we refer to books especially devoted to this subject, for
instance the ones of den Hertog [114], Roos—Terlaky—Vial [258], Wright [308],
and Ye [309], just to mention a few. ‘

In order to get an efficient method in the frame of interior point algorihms,
it is important to determine efficiently the search directions, to be evaluated
in every iteration step. For this purpose it is certainly advantageous to have
the reformulation (2.55), which amounts essentially to solve a system of linear
equations

Mv=r,
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with M = AD? AT being a symmetric positive definite matrix. Therefore, M
allows for a Cholesky factorization M = L - LT with L being a nonsingular
lower triangular matrix, such that the above linear equations can easily be dealt
with by solving consecutively the two systems

Ly =r andthen LTv =1y.

In general, interior point methods are said to be efficient for large scale
LP’s, in particular for those with (very) sparse coefficient matrices. However,
this statement requires that with M being sparse also L will be sparse such
that solving the two last systems involving L and LT becomes very cheap.
Unfortunately, this consequence does not always hold. In particular, if M
is overall sparse, but nevertheless contains some dense columns, then very
likely an undesired fill in of nonzeros into L. may happen. Hence, several
heuristics have been designed to deal with the submatrices with dense columns
separately, in order to maintain efficiency first for the sparse part and finally
also for the rest of the system. The success of these attempts seems to depend
substantially on the data structure of the LP’s considered. For instance, for
two-stage SLP’s with discrete distributions (and S large) we have—according
to Fig. 1.1 on page 11 in the introduction—to expect dense columns in the
leading band matrix containing the submatrices T, - - -, TS, Based on many of
our computational experiments we have to say that various interior point solvers,
including those general purpose variants implemented in several commercial LP
software packages, either fail with this problem class or else are clearly ruled out
by some efficient implementations based on the simplex method, on Benders’
decomposition as the L-shaped method, or on regularized decomposition as
the algorithm QDECOM presented in Section 2.8. On the other hand, there
are interior point implementations designed especially with attention to the
data structure of two-stage SLP’s and behaving in many cases better than the
simplicial or decomposition type methods tested. To mention just one of these,
BPMPD implemented by Mészaros [204] behaves impressingly well. Not to be
misunderstood: This does not mean that this solver is always the most efficient.
It appears to be true with this class of problems that there are implemented
solvers of various types, designed regarding our data structure, each of which
may outperform the others on various subsets of problem instances.

3. Nonlinear Programming Prerequisites

Considering for instance the chance constrained problem (1.6) on page 9
(under some additional assumptions), or else the regularized master program
(2.41) on page 54, we shall encounter NLP’s of the general form
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min f(x) }

3.1
s.t. gi(z) < 0, 1=1,---,m, -1

where we henceforth assume the functions f : R™ — IR and ¢g; : R* — R to
be convex.

DEFINITION 3.1 A4 setC C R™ is convex if for arbitrary x,y € C and for any
A € [0,1] holds Ax + (1 — Ny € C. Then a function ¢ : C — R is convex if
Az + (1 = A)y) < Ap(z) + (1 = Nep(y) Vz,y € C, VA € [0, 1].

This definition implies further properties. First,
PRrROPOSITION 3.1 Ifp : IR™ — R is convex, then @ is continuous.

Furthermore, a convex function need not be differentiable everywhere, but it
is—under mild assumptions—subdifferentiable.

DEFINITION 3.2 A4 vector g € R" is a subgradient of a convex function ¢ at
a point x, if

9T (z—2) < 9(2) - plz) V2.
The set of all subgradients of p at x is the subdifferential of ¢ at x, denoted by
Op(x).
If 0p(x) # 0, then ¢ is called subdifferentiable at x.

A typical result for convex functions is referred to as

PROPOSITION 3.2 Given a convex function v : R™ — IR, then for any
x € R” the set Op(z) is nonempty, convex, closed, and bounded.

In addition, ¢ is differentiable in x with the gradient § = V() if and only if
Op(z) = {§}, i.e. Op(z) is a singleton.

Finally, given a convex function ¢ : R™ — IR and a linear affine mapping
y : R® — IR™ defined by y(z) := d + Dz with some d € R™ and
D € R™*", then f : R" — IR composed as f(x) := ¥(y(x)) is convex,
and for its subdifferential holds the chain rule 8f(x) = DT0y(y(z)), or
equivalently

h € 0f(x) <= 3g € M(y(x)) : h= DTyg.

For more detailed statements on subdifferentiability of convex functions we
refer to Rockafellar [249].

Continuing the discussion of problem (3.1), due to the convexity assumption
we have that the feasible set

B:={x|g(x)<0,i=1,---,m}

is convex, and that any local minimum & € B is at the same time a global
minimum, i.e. f(£) = mi[rsl f(z).
z€
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Henceforth, in addition to convexity, we assume the functions describing
problem (3.1), f : R® — R and g; : R™ — IR, to be continuously differen-
tiable.

The fact of some continuously differentiable function ¢ : R™ — IR to be
convex obviously implies the subgradient inequality of Def. 3.2 at any z € R"™
with g = V(x); but now also the reverse conclusion is valid.

PROPOSITION 3.3 ¢ is convex if and only if

(y—2)"Vo(z) < ¢(y) — ¢(z) Vz,y € R". (3.2)

Proof: Assume that (3.2) holds true. Then for arbitrary y, z € R"™, A € (0, 1),
and = Ay + (1 — )z follows

(v~ 2)"Ve@) < o(y) - o(z)
(2= 2)TVp(z) < o(2) — p(z),
implying
Ay + (1= Nz —2)'Vi(z) < deo(y) + (1 - Np(z) - p(a),

=0

i.e. the convexity of .
Assume now ¢ to be convex. Then, for any z,y € R" and A € (0,1),
together with the mean value theorem we get, with 8y € (0, 1),

o)~ o(z) 2 T lele+ (1= N -2) - pla)}

= T—%——X{(l - Ny —2)TVp(z +0\(1 - N (y — 2))}

= (y—2)"Ve(z+0,(1 - N)(y - 2))
yielding (3.2) for A — 1. )

To get optimality conditions for the NLP (3.1) assume that we have an optimal
solution & € B. Let I(£) := {i | gi(&) = 0}. For ¢ ¢ I(&), i.e. for g;(Z) < 0,
it follows that g;(Z + az) < 0 for any z € IR™ if we choose & > 0 small
enough. On the other hand, for Z € R™ with 2TV g;(i) < 0 Vi € I(&), there
isan @ > O such that fori = 1,---,m holds g;(Z + aZ) < 0Va € (0,&) and
hence & + aZ € BVa € (0, &). For & to be a minimal point of f in B it follows
that f(2 + aZ) — f(&) > 0 Va € (0,&). For & to be a solution of (3.1) we
have therefore the (necessary) condition

2TVgi(8) <0, i € I() implies that 2TV f(2) > 0.
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Hence we know the requirements for all directions z satisfying 2TV g;() <
0 Vi € I(%), but for z # 0 such that 2TVg;(2) = 0 for at least one i €
I(), it is not clear what we should expect. For technical reasons which will
be apparent below we strengthen the above condition slightly and state the
somewhat voluntary modification as regularity condition

RCO  Forany optimum Z of (3.1) holds that
2TVgi(&) < 0Vi € I(2) implies 2TV f(2) > 0.

REMARK 3.1 Observe that for linear constraints the regularity condition is
always satisfied: Having

gi(@) =b; — a2 = 0 Vi € I(2)
implies that for any z such that 2TV g,(%) = —a®Ty < 0 it follows that

gi(Z +az)=0b; — a(i)T(fc +az)=0b — a(i)T:f: - a(i)Tz < 0Va > 0.
=0

Hence, there is an & > 0 such that & + az € BVa € (0,&), and due to the
optimalty of & follows f(&+az)— f(&) > 0, inview of the mean value theorem
the last inequality implies for o | 0, that 2TV f(2) > 0, i.e. RC O is satisfied.

In the nonlinear case it may happen that the above regularity condition does
not hold. Take for example the elementary problem

min{z € R! | 2? < 0}.

Since there is only one feasible solution, & = 0, this is simultaneously the
optimal solution of the problem. Here 2TV g;(2) < 0 means that2 - z - & < 0,
which is true for all z € R since & = 0, but 2"V f(2) = z-1 < 0VYz <0,
such that RC 0 is violated. O

To check the condition RC 0 seems to be almost impossible, in general, since
it would require to know an optimal solution & € B in advance, which usually
is not the case. However, there are various other regularity conditions which
are easier to check and which imply the validity of RC 0. For convex problems
(3.1) a very popular assumption is the Slater condition:

RC1  For (3.1) there exists a feasible point & such that g;(Z) < 0 Vi.

Similarly to Remark 3.1 the Slater condition needs to be required for non-
linear constraints only, whereas for linear constraints it may be abandonned.
Without proof we mention that, for convex problems, RC 1 implies RC 0.
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3.1  Optimality Conditions

We just have seen a particular condition, RC 0, which obviously is sufficient
for the optimality of & in (3.1): For any direction z leading from £ into B,
i.e. for which & + az € B for sufficiently small « > 0, and therefore in
particular for which ¢;(& + az) < 0 = ¢;(&) Vi € I(Z), it follows that
2TV gi(#) < 0Vi € I(&), which by RC 0 implies 2TV (&) > 0. Hence, from
Proposition 3.3 we get f(£+az) — f(£) > azTV f(&) > 0fora > 0and such
the optimality of & for (3.1). However as discussed above, RC 0 is anything
but operational for finding optimal solutions. Nevertheless, it is useful for
deriving more tractable optimality conditions, called the Karush-Kuhn-Tucker
conditions (KKT):

PROPOSITION 3.4 Assume that for the convex program (3.1) the Slater con-
dition RC 1 is satisfied. Then an & € B solves (3.1) if and only if there exists
an 4 € IR™ such that the following conditions hold.:

i) V@) +> @VaE) = 0
i=1
i) (@) < oV (3
le) ’fLi . gz(a?) = 0Vi
) @ > 0.

Proof: To show that (3.3) is sufficient for £ to be a solution of (3.1), we observe
first that by (3.3) ¢) the point & is feasible. Further, for all ¢ € I(&) we have
9i(£) = 0 and hence for arbitrary y € B due to Proposition 3.3

0> gi(y) — 9:(8) 2 (y — )" V(&) Vi€ I(@).
Using again Proposiiton 3.3 as well as (3.3) ¢i¢) and iv), it follows from con-
dition 4) in (3.3) that
W) - @) 2 y-2)TVIE@) =— ) dly—2)TVe(@) >0 Yy e B,
ieI(@)
such that
f(@) < fly) vy € B.

To show the necessity of KKT assume that f(z) = melg f(z). Since with
xT

the assumed Slater condition RC 1 the regularity condition RC 0 holds as well
at &, we know that with the active set I(£) = {¢ | ;(Z) = 0}

2TVgi(#) < 0Vi e I(£) implies 2TV f(z) > 0.
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Then from the Farkas lemma (Proposition 2.13, page 21) it follows that

{ai, i€ 1(@) | Y @Vgi(d)=-Vf(@), & >0VieI(#)}#0,
i€l(@)

such that with @; = 0 Vi ¢ I(Z) the conditions (3.3) i)—iv) are satisfied. O

Since there are, in addition to (3.1), various other NLP formulations, the
KKT conditions have to be adapted correspondingly. If we have for instance
the NLP

min{f(z) | g(z) <0, = > 0} (34)

with the vector valued function g(z) = (g1(z), -, gm(z))T and all g; and f
being continuously differentiable and convex as before, we get immediately the
KKT conditions

D V@Y ava@ > 0

g=1

i) FVIE)+S aVad) —

|
)

1) g(2) < 0
iv) aTg(#) = 0

) z >0
vi) 4 > 0. )

To see this, deal with the additional constraints —z < 0 just as with g(z) < 0.
Introducing additional multipliers w € R} (for —~z < 0) and afterwards elimi-
nating them again leads to the inequalities 7) and the additional complementarity
conditions 73).

Coming back to the original NLP (3.1), the corresponding KKT conditions
(3.3) have an interpretation which may be of interest also with respect to solution
methods. Defining the Lagrange function to (3.1) as

L(z,u) = f(2z) + Y wigi(),
=1

it is obvious that for any fixed @ > 0 the function E(-,a) is convex in x.
Considering (3.3) i) we have, with V, being the gradient with respect to z,
Lz, @) — L(%,4) > (¢ — 2)TV,L(%,4) = 0Vz € R"
such that L(&,4) = minr{l L(z,4). On the other hand, for any fixed & the
z€R"

function L(Z, -) is linear affine and hence concave in , resulting in the inverse
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inequality to (3.2) and implying with 4T g(&
L(#,u) — L(,42) < (u—2a)7T

= (u-)7

such that L(Z, 4) = max L(%,u).

Hence, the KKT point (£, % > 0) of Proposition 3.4 is a saddle point of the
Lagrange function:

L(&,v) < L(£,4) < L(z,4) Yu >0, Yz € R™. (3.6)

From (3.6) we get the following saddle point theorem which may also be inter-
preted as a strong duality theorem for nonlinear programming.

PROPOSITION 3.5 Iffor the Lagrange function to (3.1) there exists a saddle
point (£,4 > 0), then

max inf L(x,u)= min sup L({z,u 3.7
u20 zcR" ( ) zelR" u>p ( ) ( )

and (&, 1) solves each of these two problems.

For a proof of this statement see e.g. Luenberger [182].
By definition of L(-, -) follows minsup L(z, u) = min{f(z) | g(z) < 0}.
T u>0
Therefore, min sup L(z, u) is considered as the primal problem, whereas, in
T u>0
contrast, max inf L(x, u) is its dual.
u>0 =

3.2 Solution methods

Several types of solution methods have been proposed for the numerical
approximation of solutions for nonlinear programs (3.1). Many of these ap-
proaches may be found in the books of Bazaraa—Shetty [9], Bertsekas [14, 15],
Geiger—Kanzow [103], and McCormick [203], just to mention a few. Most of
the methods dealt with in this literature belong to one of the following cate-
gories:

® cutting plane methods
(e.g. Elzinga—Moore [73], Kelley [159], Kleibohm [166], Veinott [297])

m feasible direction methods (e.g. Topkis—Veinott [290], Zoutendijk [311])
» penalty methods (e.g. Fiacco-McCormick [80])
m Lagrangian methods (e.g. Bertsekas [14]).
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In stochastic programming several variants of cutting plane methods have
mainly been used so far, The reason for this fact seems to be, that in all other
classes of NLP solution methods, within any iteration there are iterative subcy-
cles requiring the repeated evaluation of gradients of some modified objective
functions containing integral functions (expected value functions or probability
functions) which is expensive to perform. Moreover, using these gradients,
nonlinear equations then had to be solved.

Therefore, we restrict ourselves to sketch a few prototypes of cutting plane
methods, as they are used in stochastic programming. First, let us consider the
NLP (3.1)

zelR

where in addition to the assumptions on page 61 we require that
B={z|gx)<0,i=1,---,m}

be bounded and that 3% € int B, the latter condition being satisfied if there
exists a Slater point Z, for instance (see RC 1 on page 63). Then, problem (3.1)
is equivalent to

min 6
st gi(x) < 0,i=1,---,m, (3.3
fle) — 6 <0

Obviously the additional condition § < f(&) + ~ with some constant y >
0 does not change the solution set of (3.8). Hence, instead of this problem
we may consider the minimization of the linear function ¢(z,6) = 6 on the
bounded convex set B := {(z,0) | z € B, f(z) < 8 < f(&) + 7}, for which
obviously a point (&, é) € int B exists as well. Therefore, we may confine our
considerations on NLP’s of the type

min{cTz | z € B} (3.9)

with a bounded convex set B containing an interior point Z. In this situation
there exists a convex polyhedron P such that P O B. In other words, due to
Section 2.2 there are linear constraints defining the feasible set P, and it holds

minclz < min el
z€EP zeB

Now we may describe a first cutting plane method as proposed originally by
Veinott [297] and discussed later by Kleibohm [166]:

Cutting Planes: A First Outer Linearization

S 1 FindaZ € int B and a convex polyhedron Py D B; let k := 0.
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S2 Solve the LP min{c Tz | 2 € Py}, yielding the solution #(*).
If #% e B, stop; (*) solves (3.9).
Else, determine (%) € [£(®), #] N bd B (with [£(¥), 7] the straight line
between (%) and &, and bd B the boundary of B).

S'3 Determine a supporting hyperplane Hy, of Bin (¥, i.e. find a/¥) € IR™
and o = a(k)Tz(k) such that

Hy:={z]| a(k)Ta; = oy} and a(k)Ti(k) > oy > a(k)Ta: Ve B.

Define Pyy1 := P N{z | a® 'y < ag},letk ;= k + 1, and return to
step S 2.

In general we may not expect the iterates 2% e Bor &%) ¢ B to converge.
However the following statement is easy to prove.

PROPOSITION 3.6 Under the above assumptions, the accumulation points
of {&®} as well as of {2} solve (3.9). Furthermore, the objective values
{cTE®} and {cT2*)} converge to min{c 'z | = € B}. Finally, in every
iteration we have an error estimate with respect to the true optimal value 6 of
(3.9) as
A = min Lz — Tk,

For the proof of this statement we refer to the NLP literature mentioned on page
66.

REMARK 3.2 Observe that due to Piyy C Py Yk it follows cTa6+1) >
cT&®) whereas the sequence {c* 2%)} need not be monotone. However, since
2%) € Bk, we have cT2%) > § Vk, whereas cT&® < 6 as long as %) ¢ B.
Obviously, the above error estimate yields an additional stopping criterion in
step S 2 according to Ay, < €, with a predetermined tolerance € > 0.

As to the supporting hyperplane Hy: For the feasible set

B={z|g(z)<0,i=1,---,m}={z|G(z) <0}

with G(z) := ax gi(x) we determine in S 2 the (unique) boundary point
<i<m :

%) e [20), 2] N {z | G(z) = 0}, and afterwards we define the hyperplane
Hy :={z| a® Tz = o} with a® € dG(2*)), which may be chosen e.g. as
a®) = Vg;(z®) forany j : gj(z(kri‘) = G(2%)), and then let oy, :? a®T k),
Dueto (3.2), page 62, it follows a® "z < oy, Vo € B, whereas a® &) > o
Hence,with the inequality a® Ty < ay, added in step S 3 all feasible points of
B are maintained, and the outer approximate &*) is cut off (see Fig. 3.1).
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Figure 3.1. Three cycles of Veinott’s cutting plane method.

0

In stochastic programming several cutting plane methods are used, either im-
plicitly of the above Veinott type to solve recourse problems, or else explicitely
of an appropriate type for the solution of problems with probabilistic constraints
as (1.6), for instance. In the latter case, we usually have special NLP’s as

min Tz
st. a®Tz > b i=1,--,m, (3.10)
F(z) > «a,

where F'(z) = P(w | Tz > h(w)) with a given probability distribution P.
We shall briefly describe two further cutting plane approaches specialized to
the problem type (3.10) under the following assumptions:

» F'is a concave continuously differentiable function;

" By, = {z | a® Ty > b, i = 1,---,m} is bounded, and hence so is
B=Bu,N{z| F(z) > a}
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» 32° € By, being a Slater point for the nonlinear constraint, i.e. satisfying
F(z%) > a.

The following method was originally proposed by Zoutendijk and later on
specialized for chance constrained programs in Szantai [283]. Obviously it is
closely related to the above Veinott approach.

Cutting Planes: Outer Linearization with moving Slater Points

S1 Let y(l) = 2%, By := By, and k := 1.
S 2 Solve the LP min{c"z | z € By} yielding a solution z(¥},

S3 If F(m(k)) > «a — ¢ (for some predefined tolerance € > 0), then stop;
else add a feasibility cut according to the next step.

S 4 Determine (%) € [y*) z®)) N {z | F(z) = a};
Bis1 = BN {z | VEEE (2 — 2 > 0};
yt) = (k) 4 E—_ll-_-—l—(z(k) —y®)); k := k + 1; return to step S 2.

Under the above assumptions on problem (3.10) the same statements concerning
convergence and error estimates as in Prop. 3.6 hold true for this algorithm.

REMARK 3.3 Whereas in the previous method the interior point T was kept
fixed throughout the procedure, in this variant the interior point of the set
{z | F(z) > o} (originally y) = x5) is changed in each cycle as shown in
Fig. 3.2. Since for any convex set D with some y € intD and any z € bd D
it follows that Az + (1 — M)y € int D VA € (0, 1), we conclude that in step
S 4 with y® interior to {x | F(z) > o} and z* on its boundary, we get
y*+D) e {z | F(z) > a)} and hence again an interior point. However, these
changes of the interior (Slater) points may improve the convergence rate of the
algorithm.

O

Again for problems of the type (3.10) with the above assumptions modified
as

» 3z° € int By, being a Slater point for the nonlinear constraint, i.e. sat-
isfying F(2%) > a, let U be such that Tz < U Vz € B, and assume
(normalize) c to satisfy ||c|| = 1,

we present the following method adapted by Mayer [201] from the central
cutting plane method introduced by Elzinga—Moore [73] for general convex
nonlinear programs. Similar methods have been investigated by Bulatov [34]
as well as Zoutendijk [312] and Zukhovitskii—Primak [314].
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Figure 3.2.  Outer linearization with moving Slater points.

A Central Cutting Plane Method

S1 Lety® =25 k:=1, and
Py i={@T, )T | aD 2 — |aD| g > b Vi, Tz + 1 < U).

S2 Solve the LP max{n | (zT,n)T € P} yielding (x(k)T,n('“))T as a
solution.

83 Ifn® < e (e > 0aprescribed tolerance), then stop;
otherwise
— if F(z'®)) < q, then go to step S 4 to add a feasibility cut;
— else go to step S 5 to add a central (objective) cut.

S 4 Determine 2*) € [y*) z(®)] N {x | F(z) = o} and let
P = Pun{(@T,n)T | VE (M) (@—20) ~ | VF ()] 2 0},
y*+D) .= y*) k.= k41, and go to step S 2.

S5 Replace the last objective cut by Tz + 7 < ¢Tzld) = Pp,;.
If F(z*)) > q, then set y*+1) := (k)
else let ykt1) = (),
With k :=k + 1 goto step S 2.

An outer (feasibility) cut according to step S 4 is illustrated in Fig. 3.3 whereas
objective (central) cuts generated in step S 5 are demonstrated in Fig. 3.4,
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Feasibility cut

Figure 3.3. Central cutting plane method: Outer cut.

Figure 3.4. Central cutting plane method: Objective cuts.

REMARK 3.4 The basic ideas of this algorithm are obviously related to the
concept of Hesse’s normal form of a linear equation: The equation d*x = p
is said to be in normal form if ||d|| = 1. Then, as is well known, ¢ = d¥y — p
yields with | | the Euclidean distance of y to the hyperplane {z | d*z = p},
with o > 0 if and only if d*y > p. He{}ce , for an arbitrary equation ax = b

Tl ” ~ Tlall ||

with a # 0 the equivalent equation — is in normal form such that
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T
a
n<
Tall® || I
distance n of any y € {y | aTy > b} to the hyperplane {z | a*x = b}. Now it

is evident that solving an LP of the form max{n | 4Tz — 1dD)in > p;, i € I}
asinstep S 2 yields the center & and the radius 7 of the largest ball inscribed into

or equivalently ||a||n < aTy—byields an upper bound for the

the polyhedron {z | d Tz > pi, © € I}, as was pointed out in Nemhauser—
Widhelm [209].

0

Therefore, with

Jie = {Jj < k| iteration j generates a feasibility cut}
I, = {1, k}\J*
Up := min{U,minc z®},

i€ Iy,

in the k-th cycle of this algorithm we determine the center (%) and the radius
n®) of the largest hypersphere inscribed into the polyhedron Py defined by

a®e > b, i=1,---,m,
cTe < Uy (3.11)
VF(EN 2 > VFED)0, je g,

and, depending on z(® ¢ B or z(®) ¢ B, we add a feasibility cut or else a
central cut, respectively.

PROPOSITION 3.7 Under the above assumptions for the central cutting plane
method holds klim n(k) =0. IfU > melg ¢, then every convergent subse-
—00 T

quence of {x®) | k € IL.} converges to a solution of (3.10).

For the proof and for further details on the convergence behaviour of this
algorithm we refer to Elzinga—Moore [73].



Chapter 2

SINGLE-STAGE SLP MODELS

1. Introduction

In this chapter we consider stochastic programming problems which repre-
sent a single decision stage. The decision is to be made “here and now” and
the models do not account for any corrective (recourse) actions which might
be available after the realization of the random variables in the model becomes
known. Such type of models typically involve, either in the constraints or in the
objective function, or in both of them, random variables of the following form

((2,€) :=T(§)z — h(§) (1.1)

where § : 2 — IR" is a random vector on a probability space (2, F, P). T'(£)
denotes a random s x n matrix, h(§) € IR® stands for a random vector, both
depending on the random vector £. The support of £ is defined as the smallest
closed set = C IR" having the property IP(£ € ) = 1.

For being more specific, we assume that the dependence is defined in terms
of affine linear relations as follows: for all £ € = we have

TE) = T+) T

= (1.2)
hE) = h+) g,

j=1

where T', T; € IR°*™ are deterministic matrices and h, h; € IR? are determin-
istic vectors, j = 1,...,7.

In this chapter the particular form (1.2) will not be used explicitly. All we
need is the joint probability distribution of (T'(£), h(¢)) which will be presup-
posed as known throughout. As for stochastic programming in general, the
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basic assumption is that the probability distribution of (T°(€), h(£)) does not
depend on z. This means that our decision has no influence on the probability
distribution of the random entries in the model data.

If in the constraints, {(z,&) frequently plays the role of a random slack
variable in a random linear inequality. For instance, taking the inequality
T(&)x > h(£), this inequality can evidently also be written in the form

¢(z,€) = 0.
For later reference, we write (1.1) also in a row—wise form as
Gzi€) =1 Oz —hi(§), i=1,....5, (13)
where the components of the n—dimensional random vector ¢;(£) are the ele-
ments of the i*P row of T'(§),4 = 1,...,s. Alternatively, (1.1), may be written
in a column—wise fashion as
n
((2,8) =Y Tj(6)z; — h(E), (1.4)
j=1

where the s—dimensional random vector 7} (¢) denotes the j* column of T'(£),
j =1,...,n. Thus {(z,&) can be regarded as an affine linear combination
of random vectors. Our assumption is that the joint probability distribution of
these random vectors is known. The coefficients in the linear combination are
the decision variables z;, consequently the probability distribution of ¢{(z, &)
will depend on our decision. We control the probability distribution of {(z, £),
by controlling its realizations, according to (1.4).

The question arises, what can be stated about the probability distribution
of ¢(z,£)? In particular, assuming that the joint probability distribution of
(T3(€),5 = 1,...,n; h(£)) belongs to a given parametric family of distribu-
tions, for which families will the affine linear combination {(z, £) belong to
the same family? An example of a family, for which the answer is affirmative,
is the class of multivariate normal distributions. This question will be further
pursued in Section 2.3, in connection with separate probability constraints.

Note that a similar question also arises in mathematical statistics regarding
linear statistical models. In that case h(£) represents an error (noise) term,
which is usually assumed as being stochastically independent of the random
vectors T;(£). In mathematical statistics we are dealing with a random vector
¢ with unknown distribution and the goal is to choose = in such a way, that
the distribution of {(x, £) provides a good approximation in a statistical sense
to the distribution of {. For achieving this, the x;’s are considered as random
variables. The starting point is a joint sample according to the distribution of
(¢,T3(&);4 = 1,...,n) and assuming the linear model (1.4), the aim is to
construct unbiased estimators for the x;’s.

In stochastic programming we face a different situation. The primary entity
is the given joint distribution of (T;(§),7 = 1,...,n;h(§)) and the goal is
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to achieve a probability distribution of ((x, ) with advantageous properties,
whereby « is considered as being deterministic. To make this precise, we will
attach a quantitative meaning to the term “advantageous” and will arrive this
way at a classification scheme for the different classes of SLP models as follows:

» Firstwe definea functionp : ¥ — RR! for evaluating random vectors, where
T is some linear space of s—dimensional random vectors defined on a prob-
ability space (€2, F, P). For instance, Y will be frequently chosen as the
linear space of random vectors with finite expected value. For each random
vector ¥ € T, p(¥) is interpreted as a quality measure in the corresponding
modeling approach. Depending on the interpretation of g(¥) as either ex-
pressing opportunity or risk, “advantageous” will mean that higher or lower
values of g(¥#) are considered as preferable, respectively. In the latter case
o will be called a risk measure. The probability distribution function of ¥
will be denoted by Fy and © will denote the support of ¥J. In the special
case s = 1, T is some linear space of random variables. In the sequel, the
term random vector will always mean that s > 1 is permitted whereas the
term random variable will indicate that s = 1 is assumed.

= Based on the chosen function p for evaluating random variables, decision
vectors z will be evaluated as follows. We define the corresponding evalu-
ation function V : R™ — IR! by substituting ¢(z, £) into o

V(z) := o(¢(x,£)) (1.5)

provided that {(z,£) € T holds for all z. V(z) will be interpreted as a
quality measure for  and will be employed for building SLP models. For
indicating that the evaluation involves all components of the random vector
simultaneously, we will call V' a joint evaluation function.

= Alternatively, when dealing with constraints, it may make sense to as-
sign quality measures to the components of {(x, £) separately. If p is de-
fined for random variables and (;(z,£) € T holds for all = and all 7 then
Vi(z) := o(Ci(z, €)) serves for evaluating z for the i*! component of ¢ (z, £),
i =1,...,s. Concerning V;, the term separate evaluation function will be
employed, for pointing out the fact that the components of the random vector
¢(z, £) are evaluated separately. If s = 1 holds then ¢ (i, £) is a random vari-
able and both adjectives “separate” and “joint” apply. This ambiguity will
have no substantial influence on the discussions concerning SLP models.

Having chosen p, the evaluation function V' is uniquely defined. The different
SLP model classes will correspond to different choices of the quality measure
o for random vectors.
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T will be one of the following linear spaces of s—dimensional random vectors:

L2 := {the set of all random vectors on (2, F, P) },
Ly= LUNF,P) ={9]| [ |tlhdFs(t) < +oo},
R (1.6)

Il

L= LYQF,P) ={9]| [ |tI3dFs(t) < +o0},
Rs
L = L, F,P) ={9| 3C: P(|9)|>C)=0},

where /.’,i is the space of s—dimensional random vectors with finite expected
value, Ei stands for the space of random vectors with finite second moments, and
LY denotes the space of random vectors having a bounded support.

lltll2 = 4/ > i=; t2) is the Euclidean norm and ||¢||; = 3_;_; |t:| holds.

Note that up to this point we have viewed ((z,&) = T(£)z — h(€) as an
affine linear combination of random vectors. Alternatively, we can also consider
C(z,€) as a deviation between T(€)x and h(£). In mathematical statistics
an interpretation could be fitting 7'(€)x to h(€) in a least squares sense. In
this setting, ((x,{) would be an error term. Assuming some distributional
properties of the error term and having a sample for (T'(§), h(£)), the goal in
mathematical statistics is to find a good fit. In stochastic programming we
proceed analogously as before: quality measures for random variables will be
introduced and stochastic programming models will be built by employing the
corresponding evaluation function V. We interpret the quality measure in this
case as deviation measure,

As mentioned above, SLP models will be built by employing evaluation
functions V corresponding to some quality measure o. The different SLP model
classes will be discussed in a framework of prototype models. For employing
joint— and separate evaluation functions in the constraints, we consider the
models

max Tz max clz
st. V(z) >2«x st Vi(z) 2 K’L 1 (1.7
: €B e ;3— yeeer 8
where x and «; are prescribed, i = 1,...,s,and Bisa poiyhedral set
B={z|Azxb <z <u} (1.8)

with A being an m X n matrix and z, b, [, and u having corresponding di-
mensions. The symbol x means that any one of the relations <, =, and > is
permitted row—wise.
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For models with the evaluation function being in the objective, we consider
the prototype model

(1.9)

Alternatively, we will also employ prototype models with reversed direction
of the inequalities in the constraints of (1.7) and with minimization instead
of maximization in (1.9). To see the reason for this, let us assume first, that
for some model class the evaluation function V' is a concave function. In this
case, both (1.7) and (1.9) are convex programming problems. Assume next
that for some other SLP model class V' turns out to be a nonlinear convex
function. In this case our prototype models become non—convex optimization
problems, whereas their counterparts with reversed inequality constraints and
minimization in the objective will be convex programming problems. The
point is that the chances for finding efficient algorithms are much better for
convex optimization problems than for the non—convex case. This subject will
be further pursued in Section 6.

From the modeling viewpoint, stochastic programming models can have a
composite form, involving several different random vectors of the type (1.1). We
have chosen to work with the above prototype models because they serve well
for explaining the basic ideas which can then be applied to composite models in
a straightforward way. For some model classes ¢ = 0 will be required in (1.9).
The reason is that, for those model classes, V' has merely some generalized
concavity property which might be destroyed by adding a linear term.

The objective function of (1.9) consists of a sum of two terms whereas in
applications they are usually weighted with respect to each other. Weighting
can also be interpreted in terms of duality. We take as an example the following
weighted version of (1.9):

max clz+ V(x)
s.t. xr €B.

max clz+AV(zx
s.t. x GB( ) (1.10)
with a positive weight A. This can equivalently be written in the form
v(\) ;== max cTz+ ANV (z)— k)
s.t. x €8 (111

where —Ax is merely a shift in the optimal objective Vélue. This problem is
called a Lagrangian relaxation of the first optimization problem in (1.7). The
corresponding Lagrange—dual-problem is then

min{v(A) | A >0}. (1.12)

For the duality relationships between (1.7), (1.11), and (1.12) see Bazaraa and
Shetty [9].
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For the sake of simplicity of presentation, we assume in the sequel that
positive weighting factors (if any) are taken into account in the definition of c.

The simplest way for assigning a quality measure to {(x, ) is taking ex-
pectation. To see how this works, let us discuss the application of the idea
for including a system of random inequalities {(x, &) > 0 into an SLP model.
We choose separate evaluation for the components of {(z, £) and employ the
quality measure

0p(9) :=E[9], ¥ € L (1.13)

for the components. Assuming the existence of the expected values of T'(€)
and h(€) and setting x; = 0 for all 4, this leads to the following formulation of

(1.7):
T

max c° &% _
st. ffz >h;, i=1,...,n (1.14)
z €B

where £; := E¢[t;(€)] and h; := E¢[h;(£)] bold, with the components of ;(£)
being the elements of the i row of T(¢). The resulting deterministic LP
problem is called expected value problem. Unfortunately, the expected value
problem is frequently used as a substitute for the SLP problem. While in some
(rare) situations this might be appropriate, in general it is a very crude approach:
the whole probability distribution is collapsed into a one—point distribution.
It should by no means be used as the single way for representing ((x,¢) in
the model. However, accompanied by a constraint or objective part involving
some other quality measure, it can prove to be an important constituent of the
SLP model. For examples of this kind see Section 7.3. In financial portfolio
optimization, the most prominent and widely used model of the combined type
is the model of Markowitz [189], see also Elton et al. [72].

For discussing the next idea, our starting point is again the system of random
inequalities {(z, £) > 0. We interpret this as prescribing the sign of {(z, ) and
consider the inclusion of the system of random inequalities

T(€)z > h(§) (1.15)

into the stochastic programming model. The difficulty is that, besides the
decision vector x, the constraints also depend on the random vector £. One of
the earliest proposals for overcoming this difficulty is due to Madansky [185],
[186], who suggested a worst-case approach by prescribing the inequalities
(1.15) for all £ € =, with = denoting the support of the random vector £&. We
assume that = is a bounded set. This leads to the following formulation of (1.7):

max CT.'E

st. Tz >h(E), E€E (1.16)
z €B.
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Madansky termed the solution of this optimization problem as fat solution. The
approach corresponds to the following choice of the quality measure
0, T = L is the set of random vectors having a bounded support and

o . . "' o]

0 (0) := glelg Join, %, deLl,, (1.17)
where © is the support of ¥. The formulation (1.16) corresponds to the model
(1.7) with the inequality constraint chosen as V(z) = g, (¢(x,&)) > 0. The
feasible domain D of (1.16) is the intersection of convex sets and thus it is
obviously convex:

D=(){z| T()s > &), z € B}.

ge=

In the special case of a finite discrete distribution, = is a finite set and (1.16)
reduces to a linear programming problem. In general, (1.16) may turn out in
many cases as being infeasible, especially if = contains infinitely many points.

Recently, after the new optimization area of semidefinite programming has
emerged in the 1990s, it became numerically feasible to compute fat solutions
also for bounded domains Z containing infinitely many points. The idea is
that instead of considering = as an index set, £ € E is explicitly handled
as a constraint in (1.16) and £ is considered as a deterministic variable. For
instance, with ellipsoidal domains =, (1.16) can be reformulated as an equivalent
semidefinite programming problem, see Ben—Tal et al. [13] and the references
therein. The cited paper also presents an extension of this approach to the class
of semidefinite programming problems. Along with the extension, the approach
has also been renamed as robust optimization. There are important application
areas where working with fat solutions makes sense. As an example, let us
mention structural design for mechanical structures, see Ben—Tal et al. [13].
Note that the term “robust optimization” is also used for other model classes;
we will return to this point later.

Although in robust optimization, as defined above, = is called the domain
of uncertainty, the approach has nothing to do with stochastic programming or
with stochastic modeling in general. It can be considered as a kind of worst—
case parametric programming approach. If, as in our case, = is the support of a
random variable £, the probability distribution of £ does not play any role: the
models will deliver identical results for all random variables having the same
support. For these reasons, the topic of the above kind of robust optimization
will not be pursued further in this book.

A straightforward idea for generalizing (1.16) is to consider x as a feasible
solution, if it satisfies all random inequalities for restricted subsets of the sup-
port. A natural idea for imposing such a restriction is to consider subsets with
prescribed probability levels. SLP models of this class have been introduced
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and first studied by Charnes and Cooper [38], Miller and Wagner [205] and by
Prékopa [226].
The corresponding quality measure is

0,(9) ;=P (9 >0), 9e L

defined on the set of all random vectors on (€2, F, P). The evaluation function
V(z) (see (1.5)) will be denoted for this model class by G(z). This leads to
the concept of probability functions, defined as follows:

Glz) = Pe( T(€)z > h(2) ). (1.18)

Taking constraints of the form G(x) > «, with « being a high probability
level (for instance, o = 0.99), the prototype model (1.7) assumes the form

max CT.’IJ

st Pe(TE)e>h(E)) >a (1.19)
T € B.

By choosing o = 1 in this model, we obtain a generalization of the concept of a
fat solution, discussed on page 81. In this case x € B is considered as feasible,
if the random inequalities hold in an almost sure sense, meaning that they hold
except for a subset of () having probability measure zero.

Taking the quality measure separately for the components of ((z,£),
the constraints in (1.7) are G;(z) > oy, with the probability functions
Gi(z) = Pe( t](€)z > hi(€) ). The probability levels «; are specified
separately for the individual rows.

Being in the objective, the probability function will be maximized.

Alternatively, we might be interested in constraints of the form G(z) < 3,
with 8 being small (for instance, 5 = 0.01). In this context, 5 frequently
represents a ruin probability, meaning, for instance, the probability of financial
ruin of a company, death of a patient, or crashing of a bridge. In such modeling
situations, (1.9) would be formulated with minimizing G in the objective.

Constraints involving probability functions are called chance—constraints or
probabilistic constraints. Depending on whether G(z) or Gi(z), i =1,...,s,
is used, the constraints are called joint- or separate constraints, respectively.
From another point of view, a separate constraint is a special case of (1.18)
with T'(€) consisting of a single row (s = 1). Models based on probability
functions provide a natural way of building models in several application areas,
see Prékopa [234]. Here we just point out two fields, where probabilities play
an important part in planning anyhow: finance (ruin probability) and electrical
power systems engineering (loss—of-load probability (LOLP)). Stochastic op-
timization problems involving probability functions will be discussed in detail
in Section 2.
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Let us consider a model involving a probability constraint of the form
G(x) = Pe( T(¢)x > h(§) ) > «, with a high probability level a. For
each fixed = we interpret the event, that some of the random inequalities do
not hold, as loss. Such type of models have the following characteristic fea-
ture: On the one hand, they ensure that a loss may only occur with a small
probability (1 — «). On the other hand, losses may occur, and for the case
when they occur, the models provide no control for the modeler on the size of
the loss. In modeling situations, where considering the size of the loss makes
sense at all, the second characteristic might be considered as a drawback. To
distinguish between models based on probability constraints and models which
account for the loss size, Klein Haneveld [167] calls the quality measure based
on probability functions qualitative and quality measures accounting also for
the loss size quantitative.

Let us discuss shortly situations where the size of the loss does not matter.
As a hypothetical example let us imagine that a medical treatment is modeled
and the random inequalities in (1.18) express the survival of the patient. Loss
means in this case that the patient dies and the size of the loss is meaningless
in the modeling context. As a more practical example let us consider mechan-
ical truss optimization problems with a given topology. Such models contain
several groups of constraints modeling the laws of mechanics. Under random
loads these models may involve chance—constraints of the above type (see, for
instance, Marti [196] and the references therein). The random inequalities in
(1.18) express some mechanical requirements; if they do not hold, then the
system crashes. The point is that if the system crashes, then the topology obvi-
ously changes and the whole model becomes invalid (the model crashes too).
Therefore, it is pointless to include constraints accounting for the size of the
loss.

For the case when taking the loss—size into account makes sense, several
kinds of remedies have been suggested. It is usually assumed that penalty
costs are available for the losses. Prékopa [234] proposes a combined model,
involving both probabilistic constraints and recourse—constraints in a two stage
recourse problem, with the expected penalty costs for the losses included as
an additive term into the objective function. Dert [58] introduces besides the
probabilistic constraint binary variables for indicating the occurrence of losses
and uses a penalty term in the objective function for the expected penalty costs
of losses. ~

For introducing the next model class we assume that negative values of
¢(z, &) represent losses and positive values correspond to gains. For the sake
of simplicity of presentation we also assume that {(z, £) is a random variable
(s = 1 holds). The loss as a random variable can then be written as

¢ (@,6) = (tT(E)z ~ 1(€))~
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where ¢(£) denotes the single row of T'(¢), h(£) is a random variable, and
2~ = max{0, —z} denotes the negative part of z € R..

Using this, the probability constraint G(x) > « can be written in expected—
value terms as

Glz)2a = Ex((T(z,§)]<1-a (1.20)
with x denoting the indicator function
() = 0 ifz<0,
=101 ifz>o.
In (1.20) the function y enforces equality across different loss—sizes. Due to an
idea of Klein Haneveld [167], x is dropped and the following quality measure

is introduced:
0= (9) =[], 9eL].

sIC

This results in an evaluation function H (z) := IE¢[¢ ™ (z, £)] which is simply the
expected value of the random variable expressing losses. Inmodels based on this
evaluation function, constraints of the form H (z) < - will be employed, where
= is a prescribed maximal level of tolerable expected loss. Constraints based on
H(z) are called integrated chance constraints. If in the objective, H(z) will
be minimized. The prototype model with integrated chance constraint has the

form

min cTz

st Be[¢(2,6)] <7 (121)
T € B.

For the integrated chance constraints which we have considered so far, only
¢~ (z, &) plays arole. It might be desirable to take into account the entire distri-
bution of {(z, ). In fact, the following variant of integrated chance constraints
takes into account also the expected gain (*(x, £):

E¢[¢™ (2, 8)] < aBg[|¢(x, )]

which can be derived from the quality measure

0 _(9) = (1 - &)B[~] - B[], 9L (1.22)
and leads to a convex programming formulation for a < % Integrated chance
constraints, including joint constraints for the case when ((x, ) is a random
vector, will be presented in Section 4.1.

The remaining model types, which will be reviewed in the introduction, are
only applicable in the case when ((z, &) is a random variable. Thus we have
¢(z, &) = tT(&)x — h(€), where the components of the n—dimensional random
vector £(£) are the elements of the single row of T'(£).
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Motivated by reliability theory, Prékopa [228] has developed a model which
is built by utilizing the conditional expectation of the loss size. The quality
measure is chosen as

Ooep®) :=TB[—0 | 9 < 0], ¥ € L.

Consequently, g, (%) is the conditional expectation of the loss, given that a
loss occurs. With tﬁe corresponding evaluation function, constraints of the form

IE{[—C((U,&) I C(xaé-) < O] < Y

are included into the model, where the prescribed 7 is a maximal tolerable
conditional expected loss size. This model will be the subject of Section 4.2.

In the following discussion it will be convenient to consider positive values
of {(x, ) as losses and negative values as gains. A further idea to include the
loss size and simultaneously also provide control on the probability of loss is
utilizing quantiles. The first stochastic optimization model of this type has been
proposed by Kataoka [157]. For a given 0 < a < 1, we utilize the following
quality measure:

02 (9) = (0, e) == min{z | Fy(2) > o}, 9 € L], (1.23)

defined on the set of all random variables on (£2, F, P)), and with Fy standing
for the probability distribution function of ¥¥. In other words, for a given «,
0y, (¥) is the left endpoint of the closed interval of a—quantiles of . This
leads to the following evaluation function

v(z,a) :=min{z | ¥(z,2) > a}

where W(z, -) denotes the probability distribution function of {(z, £) for each
fixed z, and with « being a prescribed (high) probability level, for instance,
a = 0.95. This quality measure is widely used in the finance industry, it is called
Value at Risk (VaR) there. We will consider optimization problems involving
v(z, ) in Section 3. In general, it is quite difficult to build numerically tractable
optimization models which are based on VaR. The main difficulty is that v(z, a),
as a function of «, is not convex in general.

An interesting recent approach for building SLP models is due to Rockafellar
and Uryasev [250]. The idea is to combine VaR and the ¢onditional expectation
approach. The following quality measure is chosen:

(1 . : 1 1
Oovr () = min [z+ T_“EE[W —-2)%)], veLy.

The motivation for introducing this quality measure is twofold. On the one
hand, according to a well-known fact from probability theory, the solution set
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of the above minimization problem coincides with the set of a—quantiles of
the distribution of 9. On the other hand, under the assumption that ¥ has a
continuous distribution function, we have

) =E[9|9>v(d,a)], 9 L]

(¢4
QCVaR
where v/(?, o) is the value at risk (VaR) (see (1.23)). This means that o% (V)

is the conditional expectation of the loss given that the loss exceeds VaR. The
evaluation function
ve(x, @) := 03, (C(,€))

has nice convexity properties. Therefore, the prototype problems will involve
inequality constraints of the form v.(x, ) < < and being in the objective,
ve(z, @) will be minimized. A further attractive feature is that, for finite discrete
distributions, the optimization problems can be reduced to linear programming
problems. A detailed discussion of this model class will be the subject of
Section 4.3,

Finally we consider modeling approaches where ((z, ) is interpreted as a
deviation between tT (£)z and h(€), with the quality measures penalizing this
deviation. Admittedly, most quality measures which have been introduced so
far, can also be interpreted from the purely mathematical viewpoint as measur-
ing deviation. Nevertheless, we have chosen to discuss those quality measures
as a separate class, which correspond to the following modeling attitude: both
tT (&) and h(¢) represent important quantities in their own right, and the em-
phasis in modeling risk is on their deviation. Deviations are interpreted as risk
and therefore the quality measure will be called a risk measure in this context.
As a typical example let us mention portfolio optimization in finance, where
tT(&)z represents the random portfolio return and h(£) models some bench-
mark return. For this approach see, for instance, Elton et al. [72] and also
Section 7.3.

Our first example of a deviation measure is the risk measure

0(9) = VE[?, ¥ € L]

defined on the linear space of random variables with finite second moment. The
corresponding evaluation function is

Q) = \/Be[(7 () = h(&))2].

As a second example we take the mean absolute deviation, with risk measure

1
QA(ﬁ) = E{lﬂ ]’ vlS ‘Cl
and evaluation function

Az) = B[ |t" (€)z — h(E)]]-
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Stochastic programming models, based on risk measures of this type, will be
the subject of Section 5. Let us mention that stochastic optimization models in
this class are by some authors also termed as robust optimization problems.

The basic question concerning the various quality measures is, how the
stochastic optimization problems, based on these measures, behave from the
numerical point of view. This will be the main subject of the present chapter.

From the point of view of efficient numerical solution, the most desirable
property of a nonlinear optimization problem is that it should be a convex
programming problem. Regarding the above—formulated prototype problems
(1.7) and (1.9), in a strict sense these would count as convex programming
problems under the assumption that V' and V; are concave functions.

For the subsequent discussion we will assume that in the objective function
of (1.9) the additive linear term ¢Tz is missing, that is, we assume that ¢ = 0
holds. The reason for this assumption is that we will work with functions V'
having some generalized concavity properties. For such functions the addition
of a linear term may destroy the generalized concavity property. Examples for
this phenomenon will be presented later on in this section.

We will employ the following generalization of the notion of a convex pro-
gramming problem: we consider the above—mentioned problems as convex pro-
gramming problems, if the feasible domain is convex and if V() is a pseudo—
concave function in (1.9). For general properties of optimization problems of
this type see, for instance, Bazaraa and Shetty [9] and Avriel, Diewert, Schaible,
and Zang [7].

We proceed with a short discussion concerning some generalizations of con-
cave functions which will be utilized in this chapter.

DEFINITION 1.1 Let f : C' — IR be a function defined over the convex set C.

n fis called quasi—concave, if the inequality

fOz+ (1~ Ny) > min{f(z), f(y)}
holds, forallz € C, y € C, and A € [0,1].
» f is called quasi—convex, if — f is quasi—concave.

Functions which are both quasi—convex and quasi—concave will be called quasi—
linear. 1t is easy to see that f is quasi—concave if and only if the upper—level
sets

Uy = {z | fz) 27} (1.24)

are convex sets, for all v € R. Thus, for ensuring the convexity of the feasible
domain in (1.7), it will be sufficient to ensure that the function V is quasi—
concave.
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DEFINITION 1.2 Let f : C — IR be a continuously differentiable function
defined over an open convex set C.,

n f is called pseudo—concave, if the following implication
V@) (y-2)<0 = f(u)<f(@)
holds forall x € C andy € C.
s f is called pseudo—convex, if — f pseudo-concave.

The following facts are easy to check and are left as exercises for the reader: If
f is a concave function, then it is quasi—concave and in the differentiable case
it is also pseudo—concave. Pseudo—concave functions are also quasi—concave.

From our point of view, for maximization problems with quasi—concave re-
strictions (implying a convex feasible domain) and a pseudo—concave objective
function, the most important properties are the following, see [9]:

»  All local optimal solutions are global solutions.

» The Kuhn-Tucker optimality conditions are sufficient conditions of opti-
mality.

Thus, in (1.9), V should be a pseudo—concave function. Note that requir-
ing only quasi—concavity for V, results in general in non—convex optimization
problems. Such problems may have local maxima which are not global.

A further remark concerns the quasi—concavity requirement for the constraint
function V in (1.7). Although this way the convexity of the feasible domain is
ensured, quasi-concavity is a rather weak property from the algorithmic point
of view. One of the difficulties is that regularity conditions, which ensure
the necessity of the Kuhn—-Tucker conditions, are difficult to check in this case.
From the algorithmic point of view it is much better, when besides the objective
function, the constraint functions are pseudo—concave too. This implies, for
instance, that the Slater—regularity can be utilized for enforcing the necessity
of the Kuhn—Tucker conditions.

We will need the following fact concerning the pseudo—concavity of frac-
tional functions:

ProposITION 1.1 Let C be an open convex set and let f and g be two strictly
positive functions, defined on C. We assume that both functions are continu-

f=) .

ously differentiable. If f is concave and g is convex, then h(x) = m is
pseudo—concave on C.

Proof: Letxz € C,y € C, and assume that VT h(z)(y — ) < 0 holds. By
straightforward computation this implies

9(@)VT f(2)(y — z) - f(z)VTg(x)(y — z) 0.
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Utilizing the concavity of f, the convexity of g, and the positivity of f and
g, we get the inequality g(z)f(y) — f(z)g(y) < 0 which immediately yields
h(y) — h(z) <0. o

Concerning transformations of pseudo—concave functions, the following fact
will also be needed later on:

PROPOSITION 1.2 Let C be an open convex set and let g be a continuously
differentiable pseudo—concave or pseudo—convex function, defined on C. Let
[ : R+ R be a continuously differentiable, strictly monotonically increasing
function, with f'(z) # 0 for all x € R. Then h(z) := f(g(z)) is pseudo—
concave or pseudo—convex on C, respectively,

Proof: For the gradient of A the relation Vh(z) = f/'(g(z)) Vg(z) obviously
holds. We assume that g is pseudo—concave, the proof for the pseudo—convex
case runs analogously. Letz € C, y € C, and VT h(z)(y — ) < 0. Utilizing
our assumptions, from this we get VT g(x)(y — ) < 0. The pseudo-concavity
of g implies g(y) < g(z) and the monotonicity of f finally yields h(y) < h(z).

O

Unfortunately, the sum of a linear and a pseudo—concave function is not
necessarily pseudo—concave. As an example take fi(z) = —z and fo(z) =
x + z2. It is easy to see that both functions are pseudo—concave, whereas their
sum fi(z) + fo(z) = 23 is not pseudo—concave. As a multivariate example
let us take f(z1,72) = @1 + 23 + x2 + 23 which is the sum of two pseudo—
concave functions. The graph and the contour lines of this function are displayed
in Figure 1.1. The function is clearly not quasi—concave, therefore it is not
pseudo—concave, either.

Figure 1.1.  The sum of two pseudo—concave functions need not to be pseudo—concave. The
picture shows the graph and the contour lines of the function f(z1,z2) = 21 + 23 + 2 + 3.
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A further important class of generalized concave functions consists of loga-
rithmically concave (logconcave) functions.

DEeFINITION 1.3 Let f : C' — IR be a nonnegative function defined over the
convex set C.

n fis called log—concave, if the inequality

fOz+ (1= Ny) = [f(2)) )
holds, forallxz € C,y € C, and A € (0,1).
» fis called log—convex, if the reverse inequality holds above.

The definition immediately implies that for log—concave functions the set
Ct:={z | f(z) > 0,z € C} is convex. Observe, that the inequality in
Definition 1.3 holds trivially, if either x ¢ C* or y & CT. This leads to the
following simple alternative characterization of log—concave functions:

PROPOSITION 1.3 A nonnegative function f is log—concave over the convex
set C, ifand only if C* = {z | f(z) > 0, x € C } is a convex set and log f is
a concave function over C*,

The next property invoives products of logconcave functions. Let f;, ¢ =
1,...,r be logconcave functions on a convex set C' and as before let C{” =

r
{z | fi(z) > 0, z € C}, forall i. Then the product f(z) = [] fi(z) is also
i=1

logconcave on C. In fact, let us observe that

C+:={x]f(a:)>0,a:€C}=ﬁC;'

i=1

holds. Thus C'* is a convex set and the assertion follows by considering log f
on Ct,

A further fact concerning logconcave functions, which will be needed later
on, is the following. Let f be a logconcave function on R™. Then g(z) :=
f(z+7y)isalso logconcave on IR™ for any fixed y € IR™. Moreover, h(z,y) :=
f(z +y) is logconcave on R?", In fact, for arbitrary u,v € R™ and A € (0, 1)
we have g(Au+ (1 - A)v) = f(A(u+y)+ (1 —A)(v+7y)) from which the first
assertion follows immediately. The second assertion follows also easily from
the definition of logconcavity.

Considering logconvex functions, the definition implies that the set CY :=
{z| f(z) =0, z € C }isconvex. Let rint C stand for the relative interior of C
(see, for instance, Rockafellar [249]). It is easy to see, that
rint C N CY # @ implies that rint C C C° holds. Thus, a logconvex func-
tion f for which rint C N C% #  holds, can only have positive values at the
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(relative) boundary. Such functions are of no interest to us, therefore we will
only consider positive logconvex functions. If f(z) > 0 forall z € C, then f
is logconvex, if and only if log f is convex. Finally let us remark that logcon-
vex functions are also convex. This follows immediately from the inequality
between the geometric and arithmetic means, see, for instance, Hardy et al.
[112].

For further properties of logconcave and logconvex functions see, for in-
stance, Kallberg and Ziemba [153] and Prékopa [234].

In the differentiable case, the class of strictly positive logconcave functions
is a subset of the class of pseudo—concave functions:

PROPOSITION 1.4 Let f be a continuously differentiable, strictly positive,
logconcave function over the open convex set C. Then f is pseudo—concave
over C.

Proof: Letz € C,y € C, A € [0,1], and assume that V' f(z)(y —z) < 0
holds. This implies that VT log f(z)(y — z) = ﬂlavT f(z)(y —z) < 0also
holds. However, log f(z) being a concave function, it is also pseudo—concave,
and consequently we have log f(y) < log f(x), which implies the assertion
immediately. |

Let us remark, that the notion of pseudo—concave functions can be extended
to the non—differentiable case, see, for instance, [7]. We will not need this
generalization in this book.

0,57 10T 52

Figure 1.2. The graph of the function z - z* — z and the set {(z, 2) | z +z* — 2 > 0}.

Finally, let us discuss a popular trick for equivalently reformulating the op-
timization problem (1.9) as follows:

max clz +z
V(m) -z 20 (1.25)
s.t. €T € B.
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This reformulation is used, for example, if we wish to apply cutting plane
methods for solving (1.9). If V is a concave function, then (1.25) is obviously
a convex programming problem. If, however, V is merely pseudo—-concave,
then this is in general not true. An example involving the pseudo—concave
function z + 23 is displayed in Figure 1.2; = + 23 — 2 is not quasi—concave and
the feasible domain of the corresponding problem (1.25) is a non—convex set.
Thus, the reformulated problem (1.25) is in general much harder to solve than
the problem in the original formulation.

Requiring the stronger property of logconcavity (cf. Proposition 1.4) does
not help, either. Take ¢® as an example. This function is obviously logcon-
cave, whereas e — z is a nonlinear convex function and the upper level set
{(z,2) | €* — z > 0} is a non—convex set. Thus, e* — z is obviously not
logconcave, in fact, it is not quasi—concave.

As already mentioned above, we will call our optimization problems (1.7)
and (1.9) convex programming problems, if V' is pseudo—concave in (1.9) and
V' is quasi—concave in (1.7), respectively. Whether or not our optimization
problems are of the convex programming type, depends solely on (generalized)
concavity properties of the function V.

2. Models involving probability functions

This section is devoted to pursuing the idea of using probability as a quality
measure. We choose the following quality measure for evaluating random
vectors

0,(9) :=P(¥ >0), 9eLy, @.1)

which is defined on the set of all random vectors on (2, F, P). The decision
vector z will be evaluated by the corresponding evaluation function G(z) :=
0:(¢(x,€)) = P¢({(x,£) > 0). The function G will be called a probability
Sfunction. In a detailed form we have

G(x) = Pe( T(E)z — h(€) 2 0). @2)

Letz € R" be fixed arbitrarily and let S(z) := {z € R" | T(2)z—h(z) > 0}.
Due to our assumptions, T'(-) and h(-) are affine linear functions (see (1.2) on
page 75). Consequently, S(z) C IR" is a polyhedral set and

G(z) =P(§ € S(z)) ; (2.3)
holds.
The following prototype problems will be considered:
max CTCE
st. Pe(TExr—-h(§)>20) >a 2.4

T €B
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and

max Pg( T(€)z —h(€) 20) } 2.5)

s.t. r €B

where B is a polyhedral set given, for example, in the standard form
B={z|Az=b, 1<z <u}

In this section we will assume throughout that B # @ holds and that B is
bounded.

Both optimization problems (2.4) and (2.5) are non—convex optimization
problems in general. The emphasis in this section will be laid on identifying
those subclasses, for which (2.4) and (2.5) belong to the class of convex opti-
mization problems. We will throughout first consider the basic properties of
the models above and will subsequently discuss the analogous results for the
models with reversed direction of the inequality constraint and of optimization,
respectively.

Notice that (2.5) is formulated without an additive linear term in the objective
function. In the case, when the probability function is concave, the objective
function in (2.5) would obviously remain concave with an additive linear term.
However, in general, we will only be able to ensure some generalized concavity
properties of probability functions, which are usually lost when adding a linear
function to them.

As already mentioned above, the function G will be called a probability
function. The constraint involving a probability function in (2.4) is called
a chance—constraint or a probabilistic constraint. For constraints involving
probability functions the following terminology will be used. In the case of
s = 1 the constraint will be called separate, whereas in the case when s > 1 is
permitted, the term joint constraint will be used. In this sense, joint constraint
stands for the general case, which specializes to a separate constraint if s = 1
holds. The corresponding probability functions will be called joint and separate
probability functions, respectively. This terminology has its roots in modeling.
Let us consider a joint probability constraint

Pe(tF(€)a > hi(€),i=1,...,8) > a

where the components of ¢;(£) are the elements of the i*" row of 7'(¢) and let
us assume that s > 1 holds. In this constraint, the underlying event has the
following interpretation: a system of random inequalities holds, meaning that
all of the inequalities hold simultaneously (they hold jointly). Depending on
the modeling situation, we may wish to consider separately fori = 1,...,s
the events that the 4*" random inequality ¢} (€)z > h;(€) holds. In this case,
the joint constraint above is split into s separate probability constraints, where
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the probability levels on the right—hand-side can now be chosen differently for
different rows:

Let us make a further remark concerning terminology. In the literature,
model (2.4) is called either chance constrained or alternatively, probabilistic
constrained model. Both chance and probabilistic have a very general mean-
ing, including virtually all aspects of randomness. None of them describes with
sufficient accuracy the fact that we are dealing with constraints and objective
functions which are defined via probabilities. In order to contrast models in-
volving probability functions with other SLP models based on different quality
measures, we use a terminology, which explicitly refers to probability. For this
reason, we call GG a probability function. This terminology has been coined by
Uryasev, see, for instance, [292]. With our notations, a probability function in
[292] is defined as a function of the following type:

Pe(f(z,6) >0)

where f(z,-) is Borel-measurable for all z. Our case fits this scheme by
choosing f(z,&) = T(§)x — h(£). In accordance with this, models like (2.4)
and (2.5) will be generally called SLP models with probability functions.

Next we discuss the reformulation of the constraint G(z) > «, as an equiv-
alent constraint with reversed inequality. We have

Pe(((2,€) 20) 2 o <= Pe({ min G(2,6)] 20) 2 a
= Pe([min G(z,§)] <0)<l-a (¢

= lPe([lnslggs(Ci(m,O‘)} >0)<1l-a

where for any real number 2, 2~ := max{0, —z} denotes the negative part of
2. Note that, in comparison with the original probability function G(z), the
probability function on the left-hand-side of the equivalent reversed inequality
is much more difficult to handle numerically. On the one hand, the underlying
event in the probability function involves a strict inequality. On the other hand,
for computing this probability function for a fixed x, the probability measure of
the region IR"\ S(z) is to be computed, which is the complement of a polyhedral
set and thus it is non—convex in general (cf. (2.3)). In the special case s = 1 the
situation is much simpler: S(z) is a half-space and thus R" \ S(z) becomes
an open half-space. (2.6) reduces to

IP&(C(-’E,'S)ZO)ZCM < IP&(C(:L‘,&)_ >0)§1—0¢

= PO -hE)<0)<1-a O
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where the components of ¢(£) are the elements of the single row of T'(¢). This
is the straightforward way for reversing a separate probability constraint. We
still have a strict inequality which can be replaced by an inequality involving
“<”, if the probability distribution function of {(x, £) is continuous.

We will also need a reformulation of (2.6) in expectation terms:

Pe(((,6)20) 2 a < Blx(max 6@ )]<1-a @8)

where Y is the following indicator function
(2) = 0 ifz<0,
XET=101 ifz>o0.
For the set of vectors which are feasible with respect to the probability con-
straint, we introduce the notation
B(a)={z]|G(z) > a} 2.9)

and for the sake of easy reference we formulate our prototype problems (2.4)
and (2.5) also in terms of the probability function G as follows:

max clz
st. G) 2 a (2.10)
z € B
and o)
max T
s.t. z € B. } 2.11)

Remark. Let us consider the case, when one of the rows of the matrix
(T(£), h(€)) is constant almost surely, for instance, it is deterministic. Denot-
ing by ¢;(¢) the random vector with its components being the elements of the 4
row of T'(€), we assume without loss of generality that (¢ (€), h1(€)) = (tT, h)
a.s. holds, where t € IR™ and A € R are deterministic. In this case

B(o) ={z | Pe(t:()r 2 hi(€), i=2,...,8) 2 a}n{z|t'z>h}

holds. This implies, that B(a) N B remains unchanged if G and B are redefined
as follows:

Ole) =Pe(ti€)z> hi(€), i=2,...,5)
B =Bn{z|tTz >h}.

The meaning is the following: essentially deterministic inequalities within a
probability constraint can be removed from this constraint, by appending them
to the set of deterministic constraints.
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As already discussed in the introductory section 1, our optimization problems
will be considered as convex programming problems, if G is pseudo—concave
in (2.11), and if it is quasi—concave in (2.10). It may happen, however, that G is
not a quasi—concave function but nevertheless (2.10) is a convex programming
problem. The point is this. As we have discussed in the introduction to this
chapter on page 87, a function is quasi—concave if and only if all upper level
sets are convex. The feasible domain B(a) of (87) is clearly an upper level
set corresponding to level . The convexity of the feasible domain of (2.10)
just means that this specific level set is convex. It will turn out that, for some
model classes and probability distributions, B{«) becomes convex for « large
enough. In summary: whether or not (2.10) is a convex programming problem,
may also depend on the prescribed probability level a.

2.1 Basic properties

The purpose of this section is to present some general results which hold
without any assumptions concerning the probability distribution of &.
We consider the probability function

G(z) =Pe(T(E)x 2 h(£))
as well as the constraint involving this probability function

G(z) > . (2.12)

This constraint requires, that for a feasible z the event
S(x) :={ [Tz = h(§)} € B"
should belong to the set of events G, having probability measure at least
Go={A€B"|IP:(A) > a}.
For the feasible set, determined by (2.12) and denoted by
Bla)={z|G(z) 2 a}={z]|5(z) € Gu},
the following representation holds obviously: ‘
Bla) = U {z[S8()= 4}
A€eGq

= U {z|VE€A: T()z>h(E)} (2.13)

A€Gq

= U N{zTE)=z =&}

Aefaq E€A
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Both from the theoretical point of view concerning the existence of opti-
mal solutions and from the standpoint of numerical solution it is an important
question whether B(c) is a closed set. The answer is affirmative:

THEOREM 2.1 The set B(e) is closed.

Proof: For a proof see Kall and Wallace [152], Proposition 1.7. 0O

Without any assumptions on the probability distribution of £, the sole avail-
able result concerning the convexity of B(«) is the following:

THEOREM 2.2 Kall ([134]). B(«) is convex for « =0 and o = 1.

Proof: For o = 0 we clearly have G, = B" and consequently B(a) = R"
holds. For the case @ = 1 we first observe that A € G; and B € G; im-
ply AN B € G; (consider the complement of A N B). Now let z € B(1),
y € B(1), A € [0,1], and 2 = Az + (1 — A)y. Then we have S(z) € G, and
S(y) € Gi and consequently S(z) N S(y) € Gi. For any fixed ¢ € R, the
inequalities T'(§)x > h(§) and T(§)y > h(£) obviously imply the inequality
T(&)z > h(£). Thus S(z) N S(y) C S(z) holds, implying S(z) € G;. ]

In the case of o = ( the probability constraint is clearly redundant. If & = 1,
then the solution of (2.10) can be interpreted as a “fat solution”, in a probabilis-
tic sense.

Finally let us discuss the reverse inequality G(z) < 8. We consider now
Hg={AcB"|IP;(A) <G}
and denoting the feasible set in this case also by B(3) we have
B)={z|G@)<B}={x|S(x) eHg}.

Analogously as above, we get the following representation:

BB = U N{z|TEz=h&} 2.14)

A€Hp t€A

Considering the analogous assertion to Theorem 2.2, B(1) = R" is obvi-
ously convex and the probability constraint is redundant. B(0) is in general
not convex, though. To see this, let us consider the example with & € R,
G(z) =P(z > &, —x > &) where £ has the singular distribution £ = —1,
& = —1. We have B(0) = (—o0, —1)U(1, 0o) which is pbviously not convex.
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2.2  Finite discrete distribution
We consider the case, when £ has a finite discrete distribution, given by a

realization tableau
h ... DN
(30 %) @

N
withp; > 0Viand ) p; = 1.
=1
The discussion V\till be focused on the model (2.10), formulated as follows

max CTQ?
s.t. x € Bla)NB

with B(a) = {z | G(z) > a }.
In the discretely distributed case the representation (2.13) on page 97 spe-

(2.16)

cializes as follows. Let I = {1,..., N}, then we have
Bl@) = U N{z|TEe>nE))}.
21 jer 2.17)

For the separate realizations of £ let us introduce the notation
Kj={z|T@E)z>hE)}, j=1,...,N.

These sets are clearly convex polyhedral sets. Employing this notation, the
representation above can be written in the form

Blo) = U NK;
S ded (2.18)
JjEeJ

Figure 2.1 shows the following example from Kall [134]:

K ={xER2|x1—x22—2,x223},
Ky ={:17€1R2|£L‘1-—£L'220, 2.’171+3.’L‘2§25},
K3 ={xe€R?|z)+x9<8, —21+3x3 >0}

with corresponding probabilities of realizations p; = %, po = %, and p3 = %.
The probability level in the probability constraint is « = %. The feasible
domain is the shaded region in the figure, which is obviously non—convex. The
following representation holds: B(«a) = [K1 N Ka] U [K2 N K3).

A necessary condition for B(a)) N B # ( is the following. With the notation
In={i, 1<i< N | K;NnB =0}, B(a) N B # § obviously implies that

ZPiZa

iglo
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Y

Figure 2.1, Feasible domain of an SLP problem with joint probability constraint and finite
discrete distribution.

must hold, otherwise each of the intersections in (2.18) would involve at least
one j € Ip, which would lead after intersecting B(«) with B to a union of
empty sets.

From (2.18) it is immediately clear, that our optimization problem (2.16)
involves maximizing a linear function over a union of convex polyhedral sets.
Thus, in general, the optimization problems do not belong to the class of convex
optimization problems. This type of problems is called disjunctive program-
ming problem, see, for instance, Nemhauser and Wolsey [212].

Utilizing the usual transformation of disjunctive programming, an equivalent
mixed—integer formulation of (2.16) is the following (Raike [242]):

T ‘ )

min T

c i
st. T(E)z + M-(1-2) >hE), k=1,...,N
N
i=1

2% €{0,1}, k=1,...,N
T eB
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where binary variables z; have been introduced and M is a “big enough” con-
stant. M is chosen in such a way, that M > h(?“) — T(E’“):c holds, Yz € B,
k=1,...,N. Under our assumptions (B # (, B bounded), such an M can be

computed, for instance, by solving the following linear programming problems
for k & Iy:

My = max{y | v+ T(£¥)z > h(&F), z € B}

and setting M = max Mj.
k¢lo

For the case when only the right-hand—side is stochastic, further equivalent
formulations as mixed—integer linear programming problems can be found in
Prékopa [234].

There are some special cases, where the union in (2.17) amounts in a single
convex polyhedral set.

THEOREM 2.3 Marti 1971 [194]. Let p;, = min;ey p;. Then B(a) is convex
Jora>1-—p;.

Proof: For the proof see Kall [134]. O

Notice that o > 1 — p;, implies that B(«) = B(1) holds. Consequently, the
constraint involving a probability function (2.12) can be replaced by the system
of linear inequalities

T(E)z > h(€), i=1,...,N. (2.20)

Requiring that the inequalities should hold for all realizations, results in a “fat
solution”,
The result can be sharpened in a further special case:

THEOREM 2.4 Kall 1976 [134]. Let p;, = min;cy p; and assume that p;,
is uniquely determined. Let p;; = minep (4} pi- Then B(a) is convex for
a>1-—p,.

Proof: For the proof see Kall [134]. a

2.3  Separate probability functions

This section is devoted to discussing stochastic programming models which
involve separate probability functions. The general prototype formulation of
such problems has the same form as (2.4) and (2.5) with {(z, £) now being a
random variable (s = 1). To emphasize one of the typical sources of such prob-
lems, we give a formulation for a random vector {(x, £) where the evaluation
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function has been applied component-wise:

max CT.’E

st. Pe(tl(@)z>h(€)) > o, k=1,...,s (2.21)
z € B

and

max Pg(tT(€)z > h(E)) } (2.22)

s.t. r € B

where the components of the n—dimensional random vector tx(£) are the ele-
ments of the k*® row of T'(€), Vk; t(£) is an n-dimensional random vector and
hi(€), h(€) are random variables Vk. The term separate means, as we have
discussed previously, that each of the probability functions appearing in the
model formulations involves a single random inequality.

For the discussions regarding convexity of the feasible domain, it is clearly
sufficient to consider a single separate probability function:

G(z) = Pe(z | 1(€)"z 2 h(§)).

For the sake of simplicity we introduce the notation 7 := ¢(§) and replace
the right-hand-side h(£) by £, because only the probability distribution of
()T, h(£)) counts anyway. Thus the probability function has the following
form:

Gle) = Pe(a | 7'z ¢ > 0).

With our notation, the definition of {(x, £) on page 75 takes the form
C(z,m,€) =n"z— &

Note that {(z, 7, £) is now a random variable.

The goal of this section is to identify subclasses of SLP models with separate
probability functions, which lead to convex programming problems. We will
also give equivalent formulations for these models in algebraic terms, which
provide the basis for the numerical solution of the problems. It will turn out for
this class of models that both type of constraints G(z) > « and G(z) < S can
lead, under appropriate assumptions, to convex optimization problems.

We will proceed as follows. Next we will discuss the special case when
only the right-hand-side is stochastic. This will be followed by considering
the case when (7, £) has a multivariate normal distribution. Next the results
will be generalized to the class of stable distributions. Finally we discuss a
distribution—free approach.

Considering other distributions, we mention that in the case when the com-
ponents of (), £) are independent and have exponential distributions, Biswal et
al. [26] have presented an equivalent algebraic formulation as an NLP problem.
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2.3.1  Only the right-hand-side is stochastic

We assume that n = ¢ holds, with ¢ being deterministic. In this case the
probability function has the form

G(z) =Pe(z | tTz > €).

For the case of reverse random inequalities Tz < £ we just consider the proba-
bility function corresponding to (—¢, —¢). Denoting the probability distribution
function of the random variable § by F, we have

G(z) = Fe(tTx).

The probability distribution function of a random variable being monotonically
increasing, it is both quasi—convex and quasi—concave (it is quasi-linear). It is
easy to see that substituting a linear function into a quasi—convex function results
in a quasi—convex function, the same being true in the quasi—concave case.
Consequently, G (z) is both quasi—convex and quasi concave which immediately
implies that both {z | G(z) > a} and {z | G(z) < [} are convex sets. From
the algorithmic point of view, however, it is desirable to obtain an explicit
representation in terms of inequalities involving algebraic functions. This is
easy to achieve in our case.

Considering first the constraint G(z) > «, this is obviously equivalent to a
linear constraint:

Pe(z|tTz>¢)>a <= F{Tz)>a = tfa> Qg (@),

where Q) («) denotes the left end—point of the closed interval of a—quantiles
of F¢ (for properties of quantiles see, for instance, Cramér [41]).

Turning our attention to the reverse constraint G(x) < 5 we observe that this
can be written as Fg(tTm) < (. Assuming that F is continuous (for instance,
& has a continuous distribution), we obtain again an equivalent linear inequality

Pe(e|tTe2€)<p &= F(t's)<p <= tTz<Qf(B),

with Qgr (B) denoting the right end—point of the interval of f—quantiles of F¢.

For arbitrary distributions, the equivalent reformulation should be set up with
care. If F is continuous at the point Qg’ (8), then the above formulation holds.
If, however, F; is discontinuous at Qgr (B), then the equivalent formulation is
the following

Pe(e|tTe2€6)<f = Ft'e)<p <= t'e<Qf(B),

with a strict linear inequality implying the numerically unpleasant feature that
theset {z | G(x) < B}isanopenhalf-space. This aspectreflects an asymmetry
between the two setups G(x) > a and G(z) < § of the constraints.
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Having, for instance, a finite discrete distribution for &, the theoretically
correct reformulation may consist of the strict inequality above. From the
modeling point of view this is usually not a real problem: the unfavorable event
(loss) can mostly be formulated as a strict inequality IP¢( tTz < £ ) and thus
we get

Pe(tTz <€)< = 1-P(tTz>¢)<p
= F(tTe)21-p < tTz>Q7(1-p),

that means, we obtain an equivalent linear constraint.
For discussing the situation concerning the objective function, we consider
the problem (2.11) which in our case has the form

max Fe(tTz
e(t°e) } (2.23)
st. © €8,

This is a linearly constrained nonlinear programming problem. Let us associate
with (2.23) the following linear programming problem:

max tlz
(2.24)
s.t. r €B.

If F% is strictly monotone, then (2.23) and (2.24) are clearly equivalent. In the
general case, some care is needed. Provided that (2.24) has an optimal solution,
this will be an optimal solution also for (2.23). Under our assumptions (B # 0,
B bounded) this is always the case. For an unbounded polyhedral set B it may
happen, however, that (2.24) has an unbounded objective over 3, whereas (2.23)
has an optimal solution.

Analogous comments apply in the case when in (2.23) the objective is min-
imized.

2.3.2 Multivariate normal distribution

In this section we discuss the case, when (1T, £)T has a joint multivariate
normal distribution. For excluding the case already discussed in the previous
section, we assume that 7 is stochastic, that means, that Ad € R" : n = d a.s.

DEFINITION 2.1 See, for example, Tong [289]. The r—dimensional random
vector { has a multivariate normal distribution, if there exist an (r X 8) matrix
B and € R, such that

C=B+u (2.25)

holds, where C is an s—dimensional random vector with G being stochastically
independent and having a standard normal distribution, Vi.
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Note that this definition allows for deterministic components of ¢: if the i* row
of B is zero then we have (; = p;. From the definition immediately follows
that

» E[(] = pand
s ¥ = BBT, where ¥ denotes the covariance matrix of ¢

hold.

2] is clearly a symmetric positive semidefinite matrix. The multivariate nor-
mal distribution is called non—degenerate, if 3, is positive definite. This is the
case if and only if B has full row rank. Otherwise the distribution is called
degenerate or singular.

The multivariate normal distribution is uniquely determined by the expected—
value vector y and the covariance matrix X, see, for instance, Tong [289]. We
will use the notation { ~ AN (i, X), meaning that the random vector ¢ has a
normal distribution with expected value vector x4 and covariance matrix 3.

If the multivariate normal distribution is non—degenerate, then it is absolutely
continuous w.r. to the Lebesgue—measure on IR", having the probability density
function
_ 1

(2m)% |52

where |3| denotes the determinant of 3.
Let R be the correlation matrix of (, defined as

Zij

0’1'0']'

fy) e~ 3= TS y~) (2.26)

Ri, i ) V’L,J
where o; and o; denote the standard deviations of ¢; and (j, respectively. The
non—degenerate multivariate normal distribution is called standard multivariate
normal distribution, if the expected value vector is the zero—vector and the
standard deviation of the components of ( is 1. It is defined by the following
density function
1 -
P(y; R) = ——— ¢ 3 Y, (2.27)
(2m)z|R|2

The corresponding distribution function will be denoted by ®(y; R). In the
univariate case we drop R in the notation; ¢ stands for the density function of
the standard normal distribution, that means, we have

1 _s?
o(y) = worhl

and the corresponding distribution function will be denoted by ®.
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Figure 2.3.  The bivariate normal distribution function with correlation » = 0.9.

Figure 2.2 shows the density— and distribution functions of the bivariate
normal distribution with correlation » = 0. In Figure 2.3 these functions are
displayed for the case r = 0.9.

Having a symmetric positive semidefinite matrix ¥ and vector y as primary
data, a lower—triangular matrix B for relation (2.25) can be computed by the
Cholesky—factorization for symmetric positive semidefinite matrices, see, for
instance, Golub and Van Loan [107].

From the definition it follows immediately, that any affine linear transfor-
mation of a random vector with a multivariate normal distribution has again a
multivariate normal distribution.

Assume now, that the (n + 1)—dimensional random vector (T = (T, £)T
has a multivariate normal distribution:

(n\_{( D\ : 7
-(1)-(2)e(n) e
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where D is an (n X s) matrix, d € R®, p € IR". We get

{(x,n,€) = anc*§=(nT,§)( _ﬂf)

(2.29)
= ET (DTLL' — d) + uTx — [t
It follows that {(x, 7, £) is normally distributed with
El((z,n,)] = p"r— it
Varl((s,n,6)] = D%z - dJ? (2:30)
=xTDD%z — 2(Dd)Tz + ||d||?
where || - || denotes the Euclidean norm. The first term on the right-hand—side

is the variance of T2 with DDT being the covariance matrix of 7. In the
second term (Dd)Tx is the covariance between Tz and ¢ with Dd being the
cross—covariance vector between 7 and £. The third term is the variance of £.
If Var[((z,n,£)] = 0 then {(z,7n,&) = E[((z,n,&)], a.s., otherwise the
standardized ¢ (z, 7, &) has a standard normal distribution.
In the case || DTz — d|| > 0 we obtain via standardization

G(z) =P({(z,m,¢)20)=1-P({(z,n,£) <0)

= 1 — IP C(m7777§) — ]E[C(x’nvg)] < "NT:E + NTH-I
| DTz — d|| = | DTz —d]| 2.31)
=1=9 :@M_l - /‘T‘E_l/‘n-’rl
DTz — d|| DTz — d

where in the last step we utilized the symmetry of the standard normal distri-
bution, that means, we made use of the relation &(z) = 1 — &(—z), Vz € R.
Thus we get the following formula for G(x):

(1, if DTz —d =0
and pTx — ppyq >0,
0, if DTz —d=0

G(zr) = 9 (232)

and H’Tx — Unt1 < 0)

T
BT — Un+l e T
Q| ——F ), ifD'z—-d#0.
\ <llDTw—dl|> 20

Regarding the constraint G(z) > a, under the assumption DTz — d # 0 we
get

T
BT — Untl
> = —_— ) >
Glo) 2o ® ( lIDTw—dH) =

= o) |IDTz —dl| - pTz < —pns1.

(2.33)
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In the case when DTz — d = 0, the last inequality reduces to the first case in
(2.32), consequently the equivalence holds in all cases. Note that for o > % we
have ®~*(a) > 0. The Euclidean norm being convex, || DTz — dJ| is a convex
function of 2. Consequently, assuming that o > %— holds, the function on the
left-hand—side of the last inequality in (2.33) is a convex function. This implies
that the set of feasible solutions w.r. to this constraint is a convex set. We have
derived the following theorem:

THEOREM 2.5 Kataoka 1963 [157], Van de Panne and Popp 1963 [293]. Let
the (n + 1)~dimensional random vector (T = (nT,€)T have a multivariate
normal distribution and let o > §. Then the set B(a) = {z | G(z) > a }is
convex.

For the case, when o < % holds, we have the following assertion:

THEOREM 2.6 Kall 1976 [134]. Let n > 1 and assume that the (n + 1)-
dimensional random vector (T = (0T, &)Y has a non-degenerate multivariate
normal distribution. If o < % then either B(a)) = R™ holds or otherwise B(c)
is a non—convex set.

Proof: Let T € IR™ be such that T ¢ B(a) holds. We will show, that under our
assumptions, there exist () € B(a) and z® € B(a) such that 21 # 22
and ¥ = %(m(l) + 2(?)) holds. From this our assertion follows immediately.

n > 1 implies that there exists v € IR™ such that v # 0 and 4 Tv = 0 hold. Let
us consider the constraint (2.33) along the line z(A\) = Z + Av, A € R:

@) |1DTz(N) — d|| - p'Z < —pnia
where we used that uTz()\) = pT2, VA € R holds. We obviously have
| DTz(X) —d|| > [[DTz())|| — ||d], and an easy computation yields
|DTz(V)]|2 = A20TDDTv + 22T DDz + 2TDDTZ. Matrix D has full
row rank and v # 0, therefore

. DT . _

Jim_[DT2(x) = d = o0

holds. Taking into account ®~1(c) < 0, this implies that 3\ € IR, such that
both (o) € B(a) and z(—Ag) € B(a). Obviously z(Ag) # z(—XAo) and
T = L(z(Xo) + z(=X0)). m]

For the probability function with reversed random inequalities, that means,
for G(z) = P(nTz < €) = P(((z,n, ) < 0) we get

1, if DTz —d =0and pTx — gy <0
~ 0, if DT —d =0and pTz — >0
G(z) = Tt i T T

o ———r2 ) if DTz —d #£0.

(Tprasrt), rpte-azo

(2.34)
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This can either be derived by an analogous argumentation as above, or more
directly as follows. Observe that if {(z,7, £) has a normal distribution, then
—({(z,n,&) also has a normal distribution with the same variance and with
reversed sign of the expected value. Thus (2.32) can be directly applied for
~((z,1,£), by writing G as G(z) = P(~((z,7,€) 2 0).

Utilizing the formulas (2.32) and (2.34), we obtain the following equivalent
representations of probability constraints:

P(nTz>€)>a < Y )|IDTo—d|-plz < —pnp 46
P(riz<é)>a — o) DT —dl+pTe <pmy )
where for o > % the functions on the left-hand—side of the equivalent inequal-
ities are convex, therefore the feasible domain determined by these inequalities
is convex.

We turn our attention to the case with reverse inequalities in the constraints,
that means, we deal with G(z) < B and G(z) < B. In the case when the
probability distribution is degenerate, the previously used technique for deriving
the equivalent form leads to strict inequalities. Having DTz — d = 0, the
formulas (2.32) and (2.34) imply a strict inequality (the second cases in these
formulas apply). Assuming non—degeneracy of the probability distribution, we
obtain the following equivalent representations by reversing the inequalities in
(2.35):

P(nTz>£)<B <= 7 1B) DTz —d|| - uTz > —pni1;

2.36
P(1s <€) <8 = 0@ |Da—d|+uTe 2
where, provided that § < % holds, the functions on the left-hand—side of the
equivalent inequalities are concave, consequently the feasible domain deter-
mined by these inequalities is convex.

In the case, when the probability distribution is degenerate, we observe a
similar asymmetry as in the previous section on page 103 between the two
formulations differing in the direction of the inequality (G(xz) > « versus
G(z) < ). The remedy is analogous: In practical modeling this difficulty can
usually be overcome by working with strict inequalities in the model formu-
lation. For instance, taking the constraint IP¢(((z,§) < 0) < B, this can be
equivalently formulated as

Pe({(z,£)20)>1-7
which results according to (2.35) in the linear constraint
o7 (1-8) 1D —d|| - pTz < —pnpa

thus determining a convex feasible domain for 5 < %
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Next we turn our attention to models with probability functions in the ob-
jective and restrict our discussion to the case, when ¢(T = (n7,£)T has a
non—degenerate multivariate normal distribution. The distribution of ¢ is non—

degenerate, ifand only if the matrix ( dpr ) has full row rank, see Definition 2.1

and (2.28). Consequently, in the non—degenerate case D2 — d # 0 holds for
all z € R™. In particular, choosing x = 0 shows that d s 0 holds.
In the non-degenerate case we have, see (2.32):

prT — pmga n
In a maximization problem the desired property of G(z) would be pseudo—
concavity. Unfortunately, G(z) is not even quasi—concave. Quasi—concavity is
namely equivalent with the convexity of all of the upper level sets (see page 87).
This is implied by (2.35) for @ > . Forany 0 < o < %, however, the lower
level set is convex according to (2.36). The upper level sets corresponding
to the same o cannot be also convex, because this would mean that both the
upper— and the lower level sets are half—spaces. This is not possible due to our
non—degeneracy assumption | DTz — d|| # 0 for all z € R™. Consequently
G(z) is not quasi~concave. An analogous reasoning shows that G(z) is not
quasi—convex, either.
Introducing the notation

T
_ KT Hntl
4 = pme ]

we have G(z) = ®(g(x)). Fortunately, by restricting G(x) to certain open
half-spaces we have

PROPOSITION 2.1 If¢T = (n7T,€)T has a non—degenerate multivariate nor-
mal distribution, then both g(z) and G(x) are

a) pseudo—concave on the open half-space { z | uTz > pny1 } and
b) pseudo—convex on the open half-space { z | u* = < pn+1}-

Proof- Due to the non—degeneracy assumption ||[DTz — df| > 0 Vz € R"
holds. Due to Proposition 1.1 on page 88, the fractional function g(z) is
pseudo—concave on open convex sets where the numerator is positive, and
pseudo—convex on open convex sets where the numerator is negative. Taking
as open convex sets the open half-spaces in the proposition, the result regarding
g(z) follows. Utilizing the fact that @ is a strictly monotonically increasing, dif-
ferentiable function, with ®'(z) # 0 Vz € R, the assertion concerning G(z)
follows from the already proved assertion regarding g(x) and from Proposi-
tion 1.2 on page 89. o
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Let us consider (2.11) on page 95, which in our case has the form

T
BT = Untl
(I) -t
e (nmm—du)

s.t. x € B.

(2.38)

According to Proposition 2.1, the objective function of this linearly constrained
problem is pseudo—concave, if + € B implies u*& > j,41. Thus, in this
case, (2.38) is a convex programming problem. Taking into account the strict
monotonicity of ®, (2.38) is equivalent to the following linearly constrained
convex programming problem

T
WL — tntl
max =————a———————
DTz — d] (2.39)
s.t. z €B.

This problem belongs to the class of fractional programming problems, see, for
instance, Avriel, Diewert, Schaible, and Zang [7] and Schaible [265]. Propo-
sition 2.1 implies that the objective function in (2.39) is pseudo—concave in
the open half-space {z | uTo > pn+1} and it is pseudo—convex in the open
half-space {z | uTx < pn+1}.

Consequently, if Tz > pni1 Vo € B holds, then (2.39) is a convex pro-
gramming problem. This property can be enforced, for instance, by including
a linear inequality of the form pT2 > pne1 + €, € > 0 into the definition
of B. This might be well justified if a high probability is to be achieved by
maximizing IP(nTz > ¢). For achieving high probabilities it is necessary to
have IE[nTz] > IE[¢], which is just the required inequality.

If the reverse inequality {z | uT2 < in1} holds over B, then our objective
is pseudo—convex, (2.39) involves maximizing a pseudo—convex function, and
thus it becomes much more difficult to solve numerically. In the general case,
when none of the two inequalities involving expectations holds uniformly over
B, then (2.39) becomes a general non—convex optimization problem. In this
case efficient solution methods are only available for rather low dimensions of
.

In the case when (2.38) and (2.39) are formulated as minimization problems,
the above results can be adapted in a straightforward way. If we take G(z) =
IP(nTx < ¢)instead of G(z) then the above discussion applies with exchanged
roles of the inequalities 4Tz > pny1 and pTz < fng1.

Finally we discuss the special case when £ is deterministic. Note that the
non—degeneracy assumption above implies that all components of 1 as well as
£ have non—degenerate univariate marginal distributions, that means, both the
“technology matrix” and the right-hand-side are stochastic. We assume now
that £ = i1 := hholds with h € IR being deterministic. Considering (2.29),
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this means that d = 0 holds throughout. Non—degeneracy of the distribution in
this case means that D has full row rank.

The explicit form of G and the probability constraint can simply be obtained
by setting d = 0 in (2.34) and in (2.36), respectively. Considering the problem
of minimizing G(z) results in:

min —,uTm +h
| DTz|| (2.40)
s.t. r €B

which makes only sense under the assumption 0 ¢ B. We have seen that

problem (2.40) is a convex programming problem provided that uT2 < h Vz €

B holds, which is a natural assumption when working with small probabilities.
Figure 2.4 shows the graph and the contour lines of the function

Z1 — T2

f(xl)x2) = \/(xl + 1'2)2 -+ (ml - 372)2

which is the quotient of a linear and a convex function. In the contour plot
darker regions represent lower values. Let ¢ > 0; for the figure we have chosen
€ = 0.1. The function f is pseudo—concave for {x € R? | z; > 9 + ¢} and
pseudo—convex for {x € R? | 21 < x5 — €}

Figure 2.4. Quotient of a linear and a nonlinear convex function.

2.3.3  Stable distributions

In the previous section, in the derivation of the explicit formula (2.33), it
seems to be essential at a first glance, that both the expected value and the
variance exist for {(z,7n,£). A more careful analysis reveals, however, that
quite other properties of the normal distribution are those, which matter.
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Before carrying out this analysis, we discuss classifications of univariate
distributions, which will be needed later on. We define a relation ¢ between
univariate distribution functions, see Feller [79]. Let F' and H be two univariate
distribution functions, then

FoH <= 3a>0,b: H(z)=F(ax+b) Yz € R holds. (2.41)

or equivalently

z—b

FoH <= 3a>0,b: H( ) =F(z)VzeR'. (242
This relation is obviously reflexive, symmetric, and transitive. Consequently
we obtain a classification of all distribution functions. We may choose a repre-
sentative from each class, and consider it as a standard distribution for that class.
Let D be a class in this classification, and let Hy be the standard distribution
in D. Then for any F' € D we have: Ja > 0, b, such that F(z) = Ho(Z=2),
YV € IR! holds. a is called the scale— and b the location parameter of F (w.r.
to the standard distribution). The classes in this classification are also called
location—scale classes.

Let ¢ be arandom variable with i € D. This fact will be denoted as ¢ ~ D.
Then Ja,b € IR, a > 0 such that Fy(z) = Ho(%2) holds. This relation has

the following interpretation: Let y = g—;—b Then we have
P(x <z)=P(( <ax+b) = Fe(ax + b) = Ho(x),

that means, y has the standard distribution of D. The transformation above
is called standardization of . This can also be expressed as follows: for any
¢ ~D3a >0, b,suchthat { = ax + band F, = Hy holds. A final remark to
this concept: let ¢ be a random variable with F € D, and let p > 0, q be real
numbers. Then obviously p{ + ¢ ~ D holds.

We consider next the set of symmetric distributions. A distribution is called
symmetric if for the distribution function F' the following relation holds (see
Feller [79]): F(z) = 1— F_(—z) Vz € IR, where F_(—x) stands for the left—
sided limit of F' at —z. If the density function f exists then the condition for
symmetry can be written as f(z) = f(—xz) Yz € IR. Onthe set of symmetric
distributions the following equivalence relation establishes a classification:

FoH <= 3a>0: H(z)= F(ax)Vz e R

The classes in this classification will be called symmetric scale classes.
If the random variable ¢ has a symmetric distribution, this is clearly equiv-
alent with ¢ and —¢ having the same distribution function, that means, with
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F¢ = F_;. Let S be a class of symmetric distributions. Then ¢ ~ S implies
p¢ ~ SVp € R, p#0. For p > 0 this is clear from the definition. If p < 0
then we may write p{ = (—p)(—¢). Now we have F; = F_¢, and the assertion
follows immediately.

If a location—scale class D contains a single symmetric distribution, then it
obviously contains the whole symmetric scale class S of this distribution. In
this case the standard distribution can be selected as a symmetric distribution,
that means, Hy € S. Let { ~ D and p,q € R, p # 0. Then, for such classes,
p¢ + g ~ D holds. For p > 0 this is clear from the definition. Let us assume
that p < 0 holds. Standardization gives that 3o > 0, bsuch that { = ax +band
Fy, = Hpy. Substitution results in p{ + ¢ = apx + bp + ¢. From this follows
apx ~ S and consequently p( + g ~ D.

Let us introduce the notion of a stable distribution next. For this concept see,
for instance, Feller [79] and Uchaikin and Zolotarev [291].

A distribution function £, the corresponding probability distribution, and a
random variable having this distribution are called stable, if for any real numbers
s1 > 0, mq, s9 > 0, and my there exist real numbers s > 0 and m, such that

F(x_m1> *F(x‘m) =F<“’_m>, vreRL  (243)
51 89 s

holds, where * stands for the convolution operator. Let F' be a stable distribution
function and let D its class in the above classification. From (2.43) immediately
follows, that all H &€ D are stable, that means, we may use the term class of
stable distributions. In particular, the standard distribution Hy € D is also
stable. Another easy consequence of (2.43) is the following: if F € D, H € D,
and D is astable class, then F'x H € Dholds. Using the fact, that the distribution
function of the sum of two stochastically independent random variables is the
convolution of their distribution functions, we get the following: Let D be
a stable class, ; ~ D, i = 1,...,8, A; € R A, > 0Vi. Assume that
Giy i = 1,..., s are stochastically independent. Then the distribution function

of E A;G; also belongs to D. This property is, however, not sufficient for our
=1
purposes in (2.28) we deal with arbitrary linear combinations of independent

random variables.

A distribution function F', the corresponding probability distribution, and a
random variable having this distribution are called strictly stable, if for any real
numbers s; > 0 and so > 0 there exists a real number s > 0, such that

x T Y
P (S_1> « (g) —F (E) . VzeRL (2.44)

holds, where * stands as before for the convolution operator. In the following
we restrict our attention to symmetric distributions. Let F be a strictly stable



114 STOCHASTIC LINEAR PROGRAMMING

distribution function and let S be its class in the classification of symmetric dis-
tributions. The analogous results hold, as for stable distributions. In particular,
if F€ Sand H € S, then F x H € § follows. This implies for symmetric
distributions the following: Let S be a strictly stable class of symmetric distri-
butions, (; € S, i =1,...,8,A; € RVi,andnotall A\;’s are zero. Assume that
¢i, 1 = 1,..., s are stochastically independent. Then the distribution function
8
of Y \;(; also belongs to S.

i=1
s an example for a stable class of distributions let us shortly discuss the

univariate normal distribution. The univariate normal distribution functions
form a location—scale class, because they are of the form: F(z) = & (Z=2),
0 <ae€elR, be R, where ® is the distribution function of the standard
normal distribution. This is a stable class. To see this, it is sufficient to check
the stability of ®. Considering the convolution (2.43)

@(‘”'W)*@(i:—’@) :@(”’“m), Vz € R,
o1 02 s

where the left-hand—side is the distribution function of the sum of two inde-
pendent £ ~ N(my,0?) and n ~ N (mg,02) random variables. We know
that £ + 7 has a normal distribution. On the other hand, the expected value
is additive w.r. to summation, and the variance is also additive provided that
the random variables are stochastically independent. Therefore the above re-
lation holds for m = my + mg and o = \/012 + 027. This argumentation
also shows that the class of symmetric (centered) normal distribution func-
tions F(z) = @ (%) , 0 < a € R form a strictly stable class of symmetric
distributions.

Now we take the proposed second look at the derivation of the explicit form
for GG in Section 2.3.2.

1 The multivariate distribution of { was defined by the affine linear relations
(2.28) for the realizations, in terms of the i.i.d. (independent and identically
distributed) random variables (;, 2 = 1...s. In that particular case the dis-
tribution of {; was standard normal, Vi, which, as discussed above, belongs
to the strictly stable class of symmetric normal distributions.

2 Subsequently we have established in (2.29) an affine linear relation for
¢(z,n, &), in terms of ¢. j

3 Considering the linear part, this is a linear combination of random variables
with distributions from a strictly stable class, therefore the linear combi-
nation belongs also to that class. Due to the additive deterministic term,
¢(z,n, &) belongs to the stable class of normal distributions. In addition,
using the specific properties of the norma!l distribution, we were also able to
compute the parameters of {(z, 7, £), in terms of our decision variables x.
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4 Finally, in (2.29), we have standardized {(x, n, £) in order to derive a formula
for G(x), involving the distribution function of the standard distribution in
the location—scale class. Using this formula, the constraint G(z) > « has
been reformulated as (2.33). By good luck, this resulted in a constraint of
the convex programming type.

Another well—known stable univariate distribution is the Cauchy distribution,
see, for instance, Feller [79]. For this distribution the expected value and
consequently the variance do not exist. The density function of the Cauchy
distribution C(m, t) is the following:

F@) =~

m, -0 < T <00,

where m is a location parameter and ¢ > 0 is a scale parameter. Taking
m = 0 the resulting subclass of symmetric distributions is strictly stable. The
distribution function of the standard Cauchy distribution C(0, 1), defined by the
density function with ¢ = 1

11
T w1422

P(x) —00 < T < 00,
will be denoted by ¥. The following fact is also well-known, see, for instance,
Feller [79]: Let £ ~ C(my,t1) and n ~ C(my, t2), and assume that £ and 7 are
stochastically independent. Then £ + 1 ~ C(mq + mag, t1 + t2) holds.

We will carry out the above procedure for a multivariate Cauchy distribution,
see Marti [194].

DEFINITION 2.2 The r—dimensional random vector ¢ has a non—degenerate
multivariate Cauchy distribution, if there exist an (r X s) matrix B with full
row rank and having at least one nonzero in each of its columns and m € IR",
such that _

(=B(+m (2.45)

where C is an s—dimensional random vector with its components being stochas-
tically independent and (; having a standard Cauchy distribution, Vi.

Let us assume, that the (n 4 1)—dimensional random vector ¢T = (nT,£)T
has a non—degenerate multivariate Cauchy distribution. In the same way, as in
Section 2.3.2, we get:

C(wa ”7’5) = ET (DT-'E - d) + me — Mn41. (246)
Let us remark that |DTz — d|| # 0 holds for all z, due to the assumption

that the transformation matrix ) has full row rank (see also (2.28)). We

D
dT
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conclude that {(z, n, &) has a Cauchy distribution, and proceed by computing
its parameters. If (DTz — d); # 0 then G(D Tz — d); ~ C(0,|(DTz — d)i))
holds. Consequently we have (* (DTz — d) ~ C(0, | DTz — d||1), where for
y € R® ||y|l1 := >_;_; |vi|. Finally we get:

¢(e,n,€) ~ C(mTx — mpy1, | DT — d|1)).

Using standardization, as in (2.32) we get the following formula for G(z):

-mTz + Mpt+1 mTe — Mp+1

where we utilized the symmetry of the standard Cauchy distribution. Compar-
ing this with the analogous formula (2.32) for the non—degenerate multivariate
normal distribution, it can be observed that the sole difference is the different
norm in the denominator.

We proceed now analogously as in (2.33) to arrive at:

Glr)>a <= T Ya)| DTz —d||l; —mTz < —mpy1. (2.48)

The standard Cauchy distribution being symmetric, for o > %, T a) >0
holds. Because norms are convex functions, || DTz — d||; is a convex function
of z. As for the normal distribution, we conclude that the function on the left—
hand-side of the inequality is a concave function, and the set of & vectors, for
which this inequality holds, is convex. We have derived the following theorem:

THEOREM 2.7 Marti 1971 [194]. Let the (n+1)—dimensional random vector
(T = (77 LT have a non—degenerate multivariate Cauchy distribution and
leta > . Then the set B(a) = {z | G(z) > '} is convex.

The alternative formulations of the probability constraints are analogous to those
forthe normal distribution. The difference is that, instead of the Euclidean norm,
the || - ||;—norm is to be substituted throughout. This seems to introduce, how-
ever, an additional difficulty: the || - ||1—norm is a non—differentiable function
of its argument. Under the assumption > , a second look reveals, however,
that by introducing additional variables the constramt 2. 48) can be equivalently
formulated as a set of linear constraints. In this respect, probability constraints
are easier to deal with for the Cauchy distribution as for the normal distribution.
For discussing the transformation let us formulate (2.48) in a detailed form:

8
U Ha) Y |IDfw - di| - mTz < —mpya (2.49)
i=1
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where D; is the i*" column of D. This constraint is equivalent to the following
system of linear constraints:

8
-mTz + U Ya) Sy <M1
i=1

DIy — Y <di, k=1,...,8

)

D;Fa: -+ Yy >di, k=1,...,s,

(2.50)

in the following sense: Let Z be a feasible solution of (2.49). Choosing g, =
| DYz — dy,| Vk implies that (Z, §ix, k = 1,..., s) is a feasible solution of (2.49).
Vice versa, let (Z, Uk, k = 1,..., s) be feasible for (2.50). Then the inequality
|DIZ — di| < yx holds Vk, which implies that 7 is feasible for (2.49).

There is an important special case, as observed by Marti [194], in which
the problem transforms into a deterministic LP problem, without introduc-
ing additional variables and constraints. Let us assume that B C R holds
which is the case, for instance, if the system of linear inequalities defining B
includes z > 0. Assume further, that the components of (7, £) are stochasti-
cally independent and that they have Cauchy distributions 7; ~ C(m;,t;) i =

1,...,nand £ ~ C(Mp+1,tn+1). In this case the matrix is a diagonal

D

dT

((n+1) x (n+ 1)) matrix, with the ¢;’s on its diagonal, see (2.3). Conse-
n

quently we get |[DTz — d|l1 = 3. t;%; + tn41 and (2.48) becomes a linear

. =1
constraint.
2.3.4 A distribution—free approach

The sole assumption in this section is that the second moments of (T, ¢)
exist. Let (uT, ptnr1) = E[ (17, €) ] and X be the covariance matrix of (7, £).
We assume that 3 is positive definite and take the Cholesky factorization
Y = LLT with L being a lower triangular matrix (cf. the discussion on
page 105). We consider L in the partitioned form

v ()

where D is an (n x n) matrix and d € R™. For {(z,n,&) = nTx — £ we get
the same expression (2.30) as for the normal distribution

E[((z,n,8)] = NTx — Hn+1
Var(((z,n,¢)] =|DTz - d|*
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The idea is to employ upper bounds on the probability function G(z) =
P(nTz — £ > 0). Utilizing the Chebyshev—inequality we get
Glx) = P((n—m)"e— (€~ pns1) 2 =2 + pins1)
P(|n— )Tz — (€ = pnt1)| = =472 + pins1) 2.51)
Var(n'z—¢) _ |DTz—d|?
(=42 + pn1)? (—pTT + pnyr)?

INA

We consider the probability constraint G(z) < @ with § small, for instance,
B = 0.01. The idea is to require instead of this inequality the stronger inequality

|DT2 — dj?
(=uTz + pn1)? ~

(2.52)

For having a nonempty solution set of this inequality, for small § values we
may suppose that — Tz + 11,1 > 0 holds. This may be enforced by including
a constraint —u Tz 4 41 > €, with e > 0, into the set of linear constraints of
the problem. Assuming this, we can write (2.52) as follows

B73||D e — d|| + 1"z < pint1 (2.53)

which defines a convex set.

For the case when (7, &) has a multivariate normal distribution, we have
derived an equivalent formulation for G(x) < B (first line in (2.34)). Slightly
reformulated, this constraint is

~71(B) |IDTz — d|| + "% < prnta (2.54)

which is quite similar to (2.53). The sole difference is the different multiplier
for the term || DTx — d||. Taking B = 0.01, for example, we have B7% =10
and —®~1(3) = 2.32. Thus, in the normally distributed case, requiring (2.53)
instead of (2.54), a much stronger inequality results. Consequently, the feasible
domain becomes much smaller in general. A prototype substitute problem takes
the form

min cfz
1

st. B72|| DYz ~d|| +pTz < pnnr (2.55)
z € B.

If for a given distribution, like the multivariate normal or the Cauchy dis-
tribution, an algebraic equivalent formulation exists, it makes no sense to use
the stronger inequality (2.53). If, however, the distribution belongs to a class
of distributions for which no equivalent algebraic formulation is known, or we
have incomplete information regarding the distribution but have good estimates
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for the expected value and the covariance matrix, the substitute constraint (2.53)
may provide a valuable modeling alternative. Notice that for any distribution
with existing second moments, employing (2.53) in the model ensures that for
the solution z* the true inequality G(z*) < (3 holds also. In other words, em-
ploying (2.55) is a conservative approach, which might be quite acceptable if,
for instance, 3 represents the ruin probability of a company. Nevertheless, it
may happen that the optimal objective value in (2.55) becomes too high (too
high costs, for instance), due to the narrower feasible domain in comparison
with the feasible domain according to the true constraint G(z) < 3.
Analogously, if G(z) is to be minimized in an SLP model, one might consider
a substitute model with the upper bound from (2.51) in the objective. Thus,

instead of
min G(z)
s.t. r € B

we may consider the substitute problem

DTz dp?
(=uTz + png1)?
st. = € B.

Under the assumption that —u T2 4+ i, 41 > 0 holds for all z € B, we get the
equivalent formulation

T
N A !
mmn —-——m——
| DTz — d] (2.56)
st. =z € B

where equivalence means that the set of optimal solution of the two problems
coincide. According to Proposition 2.1, the objective function in (2.56) is
pseudo—convex over B, thus (2.56) is a convex programming problem. A com-
parison with (2.39) shows that the substitute problem and the original problem
are equivalent in the case of the non—degenerate multivariate normal distribu-
tion (notice that (2.39) corresponds to maximizing ). In the general case,
the optimal objective value of the substitute problem (2.56) provides an upper
bound on the optimal objective value of the original problem. Taking again
the interpretation of G(z) as ruin probability, for any optimal solution z* of
(2.56), the ruin probability G(z*) will not exceed the optimal objective value
of (2.56). Concerning applicability of this approach, similar comments apply
as for (2.55).

We would like to emphasize that, in general, both (2.55) and (2.56) are
substitutes for the corresponding original problems, in general they are not
equivalent to the true problems. Finally let us point out that this approach has
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first been suggested by Roy [260] and is utilized in the safety—first approaches
to portfolio optimization, see Elton et al. [72].

24  Theindependent case

In this section we consider the joint probability function
G(z) = Pe(T(€)x 2 h()) = Pe(t (€ 2 hi(€), i=1,...,5)

where the components of the n—dimensional random vector ¢;(§) are the ele-
ments of the i*® row of the (s x n) random matrix T'(¢). We will assume in
this section throughout that s > 1 holds.

Our basic assumption is that the random vectors

(t’zr(g)v hl(é))a i=1,...,8

are stochastically independent. Models of this type have first been formulated
and studied by Miller and Wagner [205].

The stochastic independence implies that the random vector ((z, £), with
Gz, &) = tT(&)z—hi(£),i = 1,..., s, has stochastically independent compo-
nents. Consequently, the probability function can be written in the independent
case as follows:

wn

G(z) =P({(z,§) 20) = 1IP(C¢($,§) >0)

-
Il

2.57)
P(tf(&)x > hi(§)).

I
(A

Il
o

We observe, that the probability function G(z) is the product of probabil-
ity functions of the type, which have been studied in Section 2.3 on separate
constraints; each term in the product involves a single random inequality.

Let us discuss the case first, when £;(£) = t; Vi holds, that means, we assume
that only the right-hand-side is stochastic. Setting h(§) := £, we have

Gz) =P(tfz>¢&,i=1,...,s)

=Fy,.¢,(tz,... . t]2)

S
= 1—‘[1F€i(t;r:1:),
=

(2.58)

Distribution functions being monotonously increasing, the terms of the product
are quasiconcave functions. This does not imply, however, the quasiconcavity
of the product. Assuming positivity of the distribution functions, a natural
idea is to transform the product into a sum, by a logarithmic transformation.
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The logarithm—function being strictly monotonically increasing, this would be
suitable also from the optimization point of view. This way we get:

log G(x) = Y log Fe,(tlz).
gz )
i=1

log G(x) will be concave, if the univariate distribution functions F¢, are logcon-
cave. As already noted by Miller and Wagner [205], logconcavity of univariate
distribution functions is a thoroughly studied subject in statistics, more closely
in reliability theory. It has been found that many important distributions, in-
cluding the normal distribution, have logconcave distribution functions. For a
recent summary see, for instance, Sengupta and Nanda [269] and the references
therein.

Let us assume that the distribution functions F; are logconcave Vi, in the
sense of the general Definition 1.3 on page 90. G(x), being the product of log-
concave functions, is logconcave (see page 90). Consequently, the probability
constraint

Gz) >«

defines a convex set, Va € [0, 1]. If the distribution functions are positive, the
constraint can also be written as

> log Fe,(t7z) > loga (2.59)

i=1

for all a € (0, 1].

If we drop the assumption of stochastic independence, but keep the supposi-
tion that only the right—hand—side is stochastic, then from (2.58) we see, that for
the logconcavity of G it is sufficient, that the joint distribution function Fy, ¢,
is logconcave. This is true for several important distributions, and will be the
subject of the subsequent Section 2.5.

Finally we discuss the situation under the stochastic independence assump-
tion and random coefficients in the inequalities, see (2.57). We assume that the
joint distributions of the rows are non—degenerate multivariate normal. For the
separate terms of the product we can use the explicit form (2.32), derived in the
section on separate probability constraints, thus resulting in:

s &T,. _ 8
B pOTg — i)
Gle) = 1:[1 ¢ (”D(i)x - d(i)“) (2.60)

where 1), D@, and d® are the parameters of the normal distribution corre-
sponding to the i*? row, Vi. According to Proposition 2.1 on page 109, the terms
of the product in (2.60) are pseudo—concave functions, at least on appropriate
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open half-spaces. Unfortunately, this does not even imply that G(z) is quasi~
concave. To ensure the convexity of { x | G(z) > « } quite strong additional
assumptions are needed. This topic will be further pursued in Section 2.6.

2.5 Joint constraints: random right-hand-side

In this section we consider a single probability constraint under the assump-
tion that T'(¢) = T holds, that means, we assume that the technology matrix
is deterministic. We also simplify the notation by setting h(¢) := £. Conse-
quently, the probability constraint has the following form:

G(z) :=Pe(Tz > £) > a 2.61)

where T is an (s x n) matrix and ¢ is an s—dimensional random vector. Em-
ploying the probability distribution function F¢, G(x) can be formulated as
G(z) = F¢(Tz). An alternative formulation for the probability constraint
above is the following:

Fe(y) >«

y _ e —o (2.62)

From these representations it is clear, that for the convexity of the feasible
domain

Bla) ={z|G(z) 2 a}

it is sufficient, that the probability distribution function F¢ is quasi—concave.

In the next subsection we will introduce the notion of generalized—concave
probability measures. Via generalized—concavity properties of density func-
tions this will lead to identifying several important classes of probability dis-
tributions for which Fy is quasi—concave. Subsequently we consider transfor-
mations which lead to generalized-concave probability functions. In the final
subsection we consider SLP problems with joint probability functions in the
objective.

2.5.1 Generalized—concave probability measures

We will assume in this section that the probability distribution P is absolutely
continuous (w.r. to the Lebesgue—measure), that means, we assume that the
probability measure is generated by a probability density function. We will
discuss various conditions concerning the probability measure Py induced by
&, under which the probability distribution function Fy is quasi~concave.

We begin by discussing generalized means, see Hardy, Littlewood, and Pdlya
[112].

Leta > 0,b > 0,and )\ € [0,1]. The generalized means M,);(a, b) are
defined as follows: forab = 0let M2 (a,b) = 0, forally € RU{—oco}U{oo}.
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Otherwise, that is, if ab > 0 holds, we define

((a¥+ (1= 0077, if —co<y <o
and v # 0
Mf}(a, b) =4 a7, if y=0 (2.63)
min{a, b}, if v=-00
| max{a, b}, if v=o0.

The following monotonicity property of these generalized means will be used,
see [112]:

n<vy = M) (ab) < M(ab), Ya,b>0

with the inequality being strict, unless @ = b or ab = 0. Based on these
generalized means we define:

DEFINITION 2.3 A nonnegative function f : R™ — Ry will be called v—
concave, if for any x, y € R™ and X € [0, 1] the following inequality holds:

FOz+ (1= Ny) = MA(f(z), f ().

Let us note that in the literature this kind of generalized concave functions,
as well as the generalized concave measures introduced later in this section, are
usually called a—concave, see for instance, Dancs and Uhrin [42] and Norkin
and Roenko [216]. Because « is used for probability levels in this chapter, we
use the term ~y—concave, instead.

Let f be a y—concave functionand C* := {z | f(x) > 0}. The y—concavity
immediately implies that C* is a convex set. As already discussed for the
logconcave case (c.f. Proposition 1.3 on page 90), this observation leads to
the following alternative characterization; the nonnegative function f is y—
concave, if and only if CT is a convex set and the inequality in Definition 2.3
holds for all z,y € C.

For various -y values, y—concavity can be interpreted over CT as follows (see
the definition of the generalized means):

m = 4o00: f is constant;

w ) < v < +4oo: f7is a concave function, note thatyv = 1 corresponds to
ordinary concavity;

m v =0: fislogconcave, that means, log f is concave;
¥ —oo <y < 0: f7isa convex function,;

s v = —o0: fis quasi-concave.
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Notice that we have stated the properties only over C*. To see the reason, let us
discuss the case v = 1. A nonnegative function f is 1-concave, if it is concave
over the convex set Ct, where it is positive. If f is defined over R", this does
not mean that f is a concave function there. The following nonnegative function
g R-R,

(z) = 1-2? ifze(-1,1]
=V 0 ifz € (—oo,—1) orz € (1,00)

is obviously l1-concave but it is not concave. Considering the well-known
properties of concave functions, some caution is needed when 1-concave func-
tions are dealt with. For instance, let g : IR — IR and h : IR — IR, be both
1-concave functions, with Cj := {z | g(z) > 0} and C;f := {z | h(z) > 0}.
Then for g + h we have C/,,, := {z | g(z) + h(z) > 0} = C UC}, which
is a non—convex set in general. Thus, the sum of 1-concave functions is not
necessarily 1-concave.

The monotonicity property of the generalized means implies: if f is yo—
concave, then it is y;—concave, for all v; < 7. In particular, if f is y—concave
for any v € [—00, 0] then f is quasi—concave. For the implications concerning
the various types of generalized concavity see Figure 2.6.

Although pseudo-—-concavity does not fit into the class of yv—concave func-
tions, logconcave functions, which are continuously differentiable over their
domain of positivity, are also pseudo-concave there, see Proposition 1.4 on
page 91. Consequently, for v > 0 the y—concave functions, having the above
smoothness property, are also pseudo—concave over their positivity domain.

We wish to extend the notion of y—concavity to probability measures. For
this we have to specify first, how a linear combination of sets should be defined.
Let A and B two subsets of R" and let A € IR. We employ the following
definitions:

A+ B = {z|3ye€ Aand3z € B, suchthatz =y + 2},

(2.64)
AA = {z |3y € Asuchthatz = Ay }.

Figure 2.5 shows the convex combination of two sets. For the properties of
these operations on sets see, for instance, Rockafellar [249].

We will confine ourselves to the case, when both sets are convex. Let A and
B be convex sets; A\, 4 € R. The following properties are important for the
future discussion:

w A+ B and \A are convex sets, see [249].

m Let A >0and p > 0. Then (A + p)A = AA + pA (without the convexity
of Aonly (A + u)A C A + pA holds). See [249].

= [feither A or B is open, then A + B is open.
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A AA+(1-A)B B

Figure 2.5. Convex combination of two sets with A = %

n Ifboth A and B are closed, and at least one of them is bounded, then A+ B is
closed. The sum of two unbounded closed convex sets need not to be closed,
see [249]. If both A and B are closed then A + B is Borel-measurable, see,
for instance, [74].

m If A is convex, then it is obviously Lebesgue—measurable, because the
boundary has Lebesgue—measure 0.

m If A is convex, then it is not necessarily Borel-measurable. To see this,
let us construct a convex set in IR? as follows: Let us take a non-Borel—
measurable set X on the interval [0, 27) (for the existence of such a set see,
for instance, Billingsley [17]) and let us map this set onto the boundary of
the open unit disc in IR? by the mapping ¥ : K — R?, z — (cosz,sinz).
The union of the open unit disk and the image of X under ¥ is obviously
convex, and, as a union of a Borel-measurable set (the open unit disc), and
a non—-Borel-measurable set, it cannot be Borel-measurable.

» The sum of two Borel-measurable sets is not necessarily Borel-measurable,
see Erdos and Stone [74].

As a next step, we will define generalized concavity properties of probability
measures, in analogy with Definition 2.3. Considering the list of properties
above, one must be careful in working with convex combinations of Borel-
sets. Therefore we formulate the definition as follows:

DEFINITION 2.4 The probability measure P on the Borel-sets BT is called
y—concave, if for any convex, measurable sets A and B and any X € [0, 1), for
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which AA + (1 — A) B is Borel-measurable, the following inequality holds:
P(AA + (1 - A)B) > M)(PP(A),P(B)).

A y—concave probability measure withy = —oo will be called a quasi—concave.
In this case the defining inequality takes the form

P(A + (1= A)B) > min{P(A4), P(B)}.

For v = 0 we have a logconcave probability measure, with the defining in-
equality
P(M+(1-MNB) > PAP(B)I.

Let £ be a random variable and IP, the induced measure on B”. We denote
by F¢ the probability distribution function of . For any convex, closed set A in
IR" let us introduce the function I'4(y) = IP¢(A + {y}). Then the following
proposition holds.

PROPOSITION 2.2 If IP¢ is a -y-concave measure, then I' 4 is a y—concave
Junction.

Proof: Letz, y € R", A € [0, 1]. Then we have

Taz+(1-N)y) = Pe(A+{Aa+(1-Ny})
Pe(A+(1-NA+{dz+(1-Ny})
Pe(AA+{z} + Q- N[A+{y}])
MY(P(A+{2}), P(A+ {y}])
M(Ta(2),Ta(y)).

AV |

a
Let us assume, that IP; is y—concave. Taking A = R’ we get from Proposi-
tion 2.2, that Fy is y—concave. Consequently, {z | P¢(Tz > §) > a}isa
convex set,Va € [0, 1] (see (2.61)).
Let us consider

H(y) =Pely|{zy}

Choosing now A = R, Proposition 2.2 implies, that H is also y—concave.
Consequently, { z | IP¢(Tz < &) > '} is also a convex set,Ya € [0, 1].

The above considerations imply, that for showing that the distribution func-
tion F' is y—concave, it is sufficient to prove the y—concavity of the probability
distribution IP¢.

The following fundamental theorem links, for continuous distributions, the
y—concavity of the probability density function with the y—concavity of IP.



Single—stage SLP models 127

THEOREM 2.8 Let f be ay—concave probability density function for the prob-
ability distribution of the r—dimensional random variable . Let «-% < v <o

Then IP¢ is an 1 _ery —concave probability measure.

Proof: Let A € [0, 1] and assume that the convex sets A, B, and
AA + (1 — X) B are Borel-measurable. The y-concavity of f implies:

P:(AA+(1-XNB) = y (1f . f(z)dz
+ —_

> I sup  MIf(),f))dz.
A+(1-0)B Ae+(1-My=2

Now we apply an integral-inequality, see Prékopa [234] ( for v = 0 it is called
Prékopa’s inequality):

Pe(AA+(1-A)B) = S ( sup MI(f(x), f(y)))dz
AA+(1-NB Az+(1-Ny==z

> My ([ fz)dz, [ f(y)dy)
Ly 4 B
= M?_;,;(ng(A),lpg(B) ).
which completes the proof. a

For some ranges of y—values we summarize the assertion of the theorem,
together with the implications from Theorem 2.2, see also see Figure 2.6. For
this let C' := {z | f(z) > 0} and let us assume that C is a convex set.

. i 1
= fisconstantover C = F'r and Hr are concave, consequently both F" and
H are logconcave and therefore also quasi—concave.

m fislogconcave == F and H are logconcave and therefore quasi—concave,
t00.

_1. .
m 77 is convex = F and H are quasi—concave.

Logconcave functions have several nice properties. We will need the follow-
ing fact: ‘

THEOREM 2.9 Prékopa [227] Let f : R™™ — IRy be a logconcave
function. Then

oe) = / f(,y)dy
i

is a logconcave function on R"™.
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implication
i
N r
f quasiconcave f " convex f logconcave f constanton C
1
—co TE 0 +oo
f —+ l — Y
1 i | T
r
1
X

F quasiconcave F logconcave  F* concave

Figure 2.6. ~y—concave density functions versus Tf;:y—concave distribution functions.

Proof: See Prékopa [234]. O
If f is a logconcave density function then this theorem implies that all marginal
density functions are logconcave, too.

If f and g are two logconcave density functions on R"™ then their convolution
is also logconcave. In fact, the logconcavity of f implies that h(z,y) :=
f(z—y) is logconcave in R?" (see the remark on page 90). Thus f(z —y)g(y)
is logconcave in IR?". Applying Theorem 2.9 yields the result.

For vy = 0 Theorem 2.8 has first been established by Prékopa in 1971 [226],
by Leindler 1972 [178], and in its final form by Prékopa 1973 [227]. Dinghas
1957 [60] proved the theorem for v > 0. Borell proved the theorem in full
generality in 1975 [27].

The breakthrough in the field of generalized concave measures and their
application in stochastic programming has been achieved by Prékopa, who
developed the theory of logarithmic concave probability measures. These fun-
damental results have inspired several authors: papers with alternative proofs
have appeared, the theory has been extended to quasi—concave measures, and
applications in stochastic programming, statistics, and economics have been
studied. For a comprehensive discussion of these results see Prékopa [234]
and the references therein. Here we confine ourselves to refer to Brascamp
and Lieb [29], Dancs and Uhrin [42], Das Gupta [48], Kallberg and Ziemba
[153], Norkin and Roenko [216], and Rinott [245]. Converse results have been
obtained, for instance, by Borell [27], Brascamp and Lieb [29], and Kall [134].

As applications of Theorem 2.8, below we give some examples for multi-
variate probability distributions, for which the probability distribution function
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is quasi—concave or even logconcave. The probability distribution— and density
functions will be denoted by F' and f, respectively. For a square matrix D, its
determinant will be denoted by |D|. For multivariate distributions and their
usage in statistics see, for instance, Johnson and Kotz [129] and Mardia, Kent,
and Bibby [188].

w Uniform distribution on a convex set. The density function is
L if C

oy Uz €

flz) =

0 otherwise,

where C' C IR® is a bounded convex set with a positive Lebesgue—measure
MC). f is obviously logconcave thus F' is logconcave, too.

» Norn-—degenerate normal distribution. The density function of this distribu-

tion is positive on IR"™ and is given in (2.26) on page 104. Taking logarithm
and neglecting the additive constant results in

~%(y — )5y — ).

This is a concave function, because with &, £71 is also positive definite,
see for instance, Horn and Johnson [121]. Thus f is logconcave implying
the logconcavity of F. Figure 2.7 shows the standard bivariate normal
distribution function and its logarithm.

Figure 2.7. The bivariate standard normal distribution function and its logarithm.

» Dirichlet distribution. This is the joint distribution of the random variables

-1
r
n; =§&; [Z 51-] ,j=1,...,7, where §;, 7 = 0,...,r are independent
i=0
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random variables, ; having x?~distribution with vj > 0degrees of freedom.
The density function of this distribution is

F( Zj:oej) S K] 0—1 r
_ (1= zj)%1 1=/ ife>0, 3 x; <1,
fl@=q ITe)  j=1 =1 =
=
0 otherwise,
where 0;, j = 0, ..., r are the parameters of the distribution; §; = %I/j vy

8
On the convex set C* := {z | z > 0, > z; < 1} the density function
=1
is positive and it is zero if x € CT. Therefore, see Proposition 1.3 on
page 90, for checking logconcavity, it is sufficient to consider log f(z) over
C™. Apart of an additive constant, we have forz € C*:

log f(z) = (6p — 1) log (1 — ij) + Z(Hj —1)log z;.

J=1 J=1

If§; > 1Vj then this is a linear combination, with nonnegative coefficients,
of concave functions, therefore log f(z) is concave on C*. Let us remark
that the concavity of the first term in the right-hand-side follows from the
fact, that substitution of an affine~linear function into a concave function
preserves concavity. We have got: provided that §; > 1for j = 0,...,s
holds, f is logarithmic concave implying the logconcavity of F'.

» Wishart distribution. This is the joint distribution of the elements of the
sample covariance matrix for a multivariate normal population. Let us con-
sider a sample with sample-size N > s from a population consisting of
s—dimensional random vectors having a multivariate normal distribution
with covariance matrix C. The density function for this distribution is the
following;

£0X) = { ¥ |X|EW=5-2) =3Tr(C71X) i X s positive definite
0

otherwise

where X is an (s X s) symmetric matrix and

S .

_N=y | (N=1)s  s(s=D) N —j

— 2 r{—<
=107 T ] ( 5 )

-1

j=1

8
holds. For an (s x s) matrix D, Tr D := )" D;; denotes the trace of D.
i=1

We wish to check whether f is logconcave. For this we observe that the
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set C* := { X | X is symmetric positive definite } is obviously a convex
subset of the linear space of symmetric (s x s) matrices. Therefore it is
sufficient to consider log f on C.

1
log f(X) = log~vy + %(N—_ s—2)log|X| - §’I‘rC_1X.

The third term is obviously linear in X. According to an inequality of Fan
(see, for instance, Beckenbach and Bellman [11]), the function |X]| is a
logconcave function of X. Therefore, if N > s — 2 then f is logconcave
and so F' is logconcave, too.

m r~distribution (Student-distribution) We consider the joint distribution of

n; =& (é;) ,j=1,...,r, where (&,...,&) has a joint standardized

non—degenerate multivariate normal distribution with correlation matrix R.
¢ has a y—distribution with v degrees of freedom. The density function for
this distribution is positive on IR® and has the analytical form

F(%(l/ + 8))

LWt g4 Lorpeigy-der
(m)ITIRE Y

f(z) =
where the parameters are R, a symmetric positive definite matrix, and the

e . L.
positive integer v, interpreted as degrees of freedom. f~5 is, apart of a
positive multiplicative constant, as follows:

glz):=(1+ ;lj-mTR_lx)%(H%)

which is a convex function on IR®. To see this, let us remark first that

o = e = (@ (5 0) (7))

is convex because the positive definite matrix above induces a norm in
Rt We have g = h't%, therefore the convexity of g follows from
the fact, that substituting a convex function into a monotonically increasing
convex function results in a convex composite function. Thus f -3 is convex,

implying that F' is quasi—concave.
w Univariate gamma distribution. The density function of this distribution is
AN 2 R U
fz)={ T® ¥ te ife > 0
0 otherwise

where A > 0 and 9 > 0 are parameters. This distribution will be denoted
by G(A, ). If A = 1, then the distribution is called a standard gamma



132 STOCHASTIC LINEAR PROGRAMMING

distribution. Assuming z > 0 and taking logarithm we observe that f is
logconcave, provided that ¢ > 1 holds. If an s—dimensional random vector
7 has stochastically independent components 7; ~ G(;,¥;) and ¢; > 1 Vi
holds, then 7 has a logconcave distribution. This follows by considering the
density function of 7, which is the product of the one—~dimensional density
functions of the components. The univariate densities being logconcave,
their product is logconcave, too.

2.5.2 Generalized—concave distribution functions

So far we have discussed one way for ensuring generalized concavity of the
distribution function F¢. The method, applicable for continuous distributions,
has been the following: the generalized concavity of the probability density
function has been studied, which implied via Theorem 2.8 the generalized con-
cavity of Fy. For several important multivariate distributions it turned out that
F is pseudo—concave, or that they even have the more important logconcavity
property.

Another possibility has been discussed in Section 2.4. Under the assumption
that the components of £ are stochastically independent, the joint distribution
function is the product of the one—dimensional marginal distribution functions,
that means,

Fe(y) = [ [ Pes ().
i=1

If the marginal distribution functions F, are log-concave then F¢ will be log—
concave, t0o.

In the sequel we explore further ways for ensuring generalized concavity
properties of the probability distribution function. The idea is to apply transfor-
mations to random vectors having generalized—concave distributions, in order
to obtain distributions for which the probability distribution function again has
some generalized concavity properties.

The subsequent theorems and the insight behind their application in stochas-
tic programming have been first found by Prékopa for the logconcave case.
Their extension to the y—concave case is straightforward.

The following general theorem gives a sufficient condition for generalized
concavity of composite functions. See, for instance, Prékopa [234] and for an
extension Tamm [286].

We consider the following probability function:

whereg; : R"xR” —» R,i=1,...,s; ¢7(z,£) = (¢{ (2,€), ..., 95 (z,€)).



Single—stage SLP models 133

THEOREM 2.10 Letg;, i = 1,..., mbequasi—concave functions, that means,
let gi(-, -) bejointly quasi—concave in both arguments. For the sake of simplicity
we also assume that g is continuous. Assume further, that £ has a y—concave
probability distribution. Then M (x) is a y—concave function.

Proof: Let H(zx) := {z | g(z,2) > 0} C IR®. Due to our assumptions these
sets are convex and closed Vr and we have M (x) = IP¢(H(x)). Let A € (0,1),
x,y € R™. The basic ingredient of the proof is the following inclusion, which
can be proved in a straightforward way:

H(Az + (1 - ANy) D AH(z) + (1 — M H(y).
Using this and the y—concavity of the probability measure, we immediately get:
M(Az+ (1-XNy) =P(HAz+(1-N)y))
2 Pe(AH(z) + (1 - MH(y))
> MY (Pe(H(z)), Pe(H(y)))
= M(M(z), M(y)).
|

As an application of this theorem we will show, how it can be applied to
prove logconcavity of the log—normal distribution function.

» Log—normal distribution. Let the random variables &1, .. ., & have a joint
non—degenerate multivariate normal distribution. The joint distribution of
the random variables 7; = €, i = 1,..., s is called a multivariate log—
normal distribution. The density function of this distribution is not logcon-
cave, see Prékopa [234]. For the joint distribution function £}, we have:

Fn(wlv"',ws) = IPn(’?l < Tiy.eey s < 2133)
=1P¢(x; —ef1>0,...,x,— €5 >0).
In the preceding section we have seen that the probability measure of a non—

degenerate multivariate normal distribution is logconcave. Theorem 2.10
can be applied with v = 0 thus showing that F;, is a logconcave function.

Let us consider next the effect of linear transformations of random variables
having y—concave distributions. The following theorem holds:

THEOREM 2.11 Let £ be an s—dimensional random vector, D an (r X s)
matrix, and { = DE+d. If€ has a y—concave distribution then the distribution
of ¢ is also y—concave.



134 STOCHASTIC LINEAR PROGRAMMING

Proof: Let A € (0,1) andlet A, B, C), := AA+ (1 — )\) B be Borel-measurable
convex sets in R™. Then their inverse images in IR® under the affine linear
transformation defined by D and d, that means,

A = {z|Dz+de A},
B := {z|Dz+de B}, and
Cy = {z|Dx+deC\}

are Borel-measurable convex sets in IR®, It is easy to see that
ChDM+(1-)B
holds. Using this we get
Pe(AM+(1-A)B) =P¢(Cy)
>Pe(A+(1-))B)
> Mj(P¢(4), Pe(B))
= M}(IP¢(4), P(B)).

O

This theorem can be utilized to study generalized concavity properties of
distributions, which are derived in a similar way, as the multivariate normal dis-
tribution. We take s stochastically independent continuous random variables,
each of them having a y—concave density function. The joint density function
is then the product of the density functions of the components. If this joint
density function is y—concave, then via Theorem 2.11, { = D¢ + d will have
a y—concave distribution. Especially, if the components of £ have logconcave
densities (y = 0), then the joint density function of £ will be logconcave (see
page 90).

n The multivariate normal distribution. We consider the multivariate nor-
mal distribution, see Definition 2.1 on Page 103. In Section 2.5.1 we have
proved, by applying Theorem 2.8, that the non—degenerate multivariate nor-
mal distribution is logconcave. Without the non—degeneracy assumption
we can proceed as follows. Recall (definition 2.1 on page 103) that the
r—dimensional random vector ¢ has a multivariate normal distribution, if
¢ = B¢ + p holds, where B is an (r x s) matrix, 4 € IR" holds, and the
components of £ are independent and have a standard normal distribution.
The joint probability distribution of £ is then obviously non—degenerate
multivariate normal. Thus, Theorem 2.8 implies that £ has a logconcave
probability distribution. Consequently, the application of Theorem 2.11
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yields the logconcavity of the probability distribution of ¢ and thus the log-
concavity of the multivariate normal distribution in the general case.

» A multivariate gamma distribution. Inthe preceding section on Page 131 we
have seen that the univariate gamma distribution has a logconcave density
function, therefore our technique can be used in this case, too. Prékopa and
Szantai [238] have defined a multivariate gamma distribution as follows. Let
Ebeas=2" — 1 dimensional random vector with stochastically indepen-
dent components. The components are assumed to have standard gamma
distributions, see Page 131. Let D be an (r x 2" — 1) matrix with nonzero
columns and components equal to 0 or 1. The distribution of { := D¢
is called a multivariate gamma distribution. If for the parameter 4 > 1
holds, then Theorem 2.11 implies that the distribution of  is logconcave. If
1 < 1 then the distribution of ( is not necessarily logconcave, but the joint
distribution function F¢ is still a logconcave function, see [238].

0.1
0.075
0. 05!
0.025] £2582% FITHE, 2
VT, Zi77 1
AL AR
el g Wty D 7 0
R R
Sy A
s -,‘?g* e 4

Figure 2.8. The graph of the bivariate standard Cauchy—distribution and the upper level set
corresponding to level 0.005.

In Section 2.3.3 we have considered a multivariate Cauchy distribution,
which is derived on the basis of an affine linear transformation as discussed
above, see definition 2.2 on page 115. A natural idea is trying to apply The-
orem 2.11 for deriving some y—concavity property of the multivariate Cauchy
distribution. Notice, however, that the density function of the univariate Cauchy
distribution is not logconcave. Moreover, as it can easily be seen, the product
of the density functions of standard univariate Cauchy distributions is not even
quasi—concave, see Figure 2.8. Therefore, see Figure 2.6, the joint density func-
tion of £ is not y—concave, for any . Consequently, our technique does not
go through in this case. Notice, however, that there are other generalizations
of the Cauchy distribution to the multivariate case, where the distribution is
quasi—concave, see Prékopa [236].
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Finally let us comment on the case when £ has a finite discrete distribution.
Prékopa [234] gave a definition of logconcavity of such distributions and studied
their properties. In Dentcheva et al. [57], the authors extend this notion to r—
concave discrete distributions, where r—concavity corresponds to y—concavity
(see Section 2.5.1) in the continuous case, and is appropriately modified for
the discretely distributed case. The authors also report on algorithmically rel-
evant applications by providing bounds on the optimal objective value of SLP
problems with probabilistic constraints.

2.5.3 Maximizing joint probability functions

For the case when the probability function is in the objective, we formulate
the prototype problem
max G(z)
st. xz€B

where G is the probability function G(z) = IP¢(T'z > &) and B is a polyhedral
set determined by linear inequalities and/or equalities, see (1.8) on page 78.

If G is log—concave and differentiable then it is also pseudo—concave, see
Proposition 1.4 on page 91. Thisis the case, for instance, for the non—degenerate
multivariate normal distribution or for the log—normal distribution (see pages
129 and 133). Consequently, for log—concave distributions, (2.66) is a linearly
constrained convex optimization problem. Some other distributions only have
the quasi—concavity property, like the multivariate t—distribution (see page 131).
In such cases (2.66) has a quasi—concave objective function and the problem
may have local maxima which are not global solutions; the problem becomes
much more difficult to solve numerically.

Note that (2.66) has been formulated as a maximization problem. Assuming
s > 1, thatis, assuming that £ is arandom vector, this is the only way for arriving
at convex programming problems. Reversing the random inequality does not
help in this respect: with G the function G : G(z) = P¢(Tx < £) is also log-
concave, see the discussion on page 126. For reversing the random inequality
in the multivariate case see also (2.6) on page 94. Thus, for £ having a log—
concave distributions and assuming s > 1, the counterpart of (2.66) involving
minimization is a much more difficult problem numerically than (2.66).

(2.66)

2.6  Joint constraints: random technology matrix
In this section we consider the probability function in full generality

G(z) =P¢( z | T(€)z 2 h(E))

where the (s X n) technology matrix T'(£) is also allowed to be stochastic. In
Section 2.3 on separate probability constraints we have assumed that s = 1
holds. We have seen that the feasible domain is convex under various further
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assumptions concerning the probability distribution and the probability level c.
If s > 1, then the convexity of the feasible domain can only be ensured under
quite strong assumptions. We will discuss the case, when the joint distribution
of the random entries is multivariate normal.

The matrix of random entries (T'(§), h(€)) will both be considered column—
wise and row—wise, therefore we introduce the notation:

(T
(T(€), h(©)) = (¢W,..., ¢, (D)) =

n(s)T
Here the s—dimensional random vector () denotes the j*" column of T'(¢ ) for
j < n, and the right-hand-side h(&) for j = n + 1.

Let ¢T = (¢WT ... ¢(+DT) be the random vector consisting of all ran-
dom entries in columns major order. The n -+ 1-dimensional random vector
n® stands for the i*" row, 1 < i < s, ie., AT = (T31(€), . .., Tin(€), hui(€)).
Let nT = (nMT, ..., n)T) be the random vector consisting of all random
entries in rows major order.

For any vector x € R™ let € R"*! be 2T = (21,...,2,,—1). For
simplicity of notation in this section we drop the explicit reference to £ in
¢(z, €). We have the following alternative representations

() = 3 (W — ()
i=1 (2.67)

= (WTZ,..., n(s)Tg)T

and
G(z) =P({(z) 2 0).

Please not that we distinguish between the random vector ¢ and {(z) defined
in (2.67).

We assume that ¢ has a multivariate normal distribution. This implies a mul-
tivariate normal distribution for 7, as well as for the marginal distributions of
¢ and n®, Vi, 7, and for the distribution of ¢ () (see Section 2.3.2 and [289]).

Let u(z) be the expected—value vector and X(z) be the covariance matrix of
¢(x). We proceed with computing these moments in terms of the moments of
¢ and 7). To this we introduce some further notation:

» M isthe (s x (n+ 1)) matrix of expected values of (T'(£), h(£));

e C(J) s the (s x s) covariance matrix of ({) if i = j, otherwise the cross—
covariance matrix ofg(’) and (m, i=1,...,n+L,j=1,...,n+1;
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s OGN isthe ((n+1)x(n+1)) covariance matrix of n® ifi = j, otherwise
the cross—covariance matrix ofn(’) and 77(3), i=1,...,87=1,...,s.

For the expected value of {(x) we immediately get

wz) = El(z)] = > BID]z; - BE™] = Mz.
j=1

For the covariance matrix of {(z) we obtain two alternative forms corre-
sponding to the column—wise and row—wise representations, respectively. We
proceed with the column—wise form. For computing the covariance matrix, we
note that {(z) is defined by an affine linear transformation:

0
I1 e Ip -1 C

z) = . .. . :

() C . o
r ... Tn -1 C(nH)

A straightforward computation gives for the covariance matrix of ((z):
%(z) Covl[((z),((z)]

= S xzxc(zﬂ)_}_ S xc(n+1»]) +C(n+1vn+1)
?21 ! El ! (2.68)

n+l .
= Z xiij(W).
=1

In the alternative representation we observe:
7T ?7(1)
() = :
z n®)
which immediately leads to

X(z) = Cov[((z),{(z)]

FrCchzg ... zTCOsz
(2.69)

gTetlz .. zTCE)z,

Next we observe that IP({(z) > 0) = IP(—((z) < 0), where —({(z) is
also normally distributed with the same covariance matrix as {(x) and expected
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value vector —u(z). We will consider the case when all covariance matrices
CJ) are multiples of a fixed symmetric positive semidefinite matrix. Therefore
it is sufficient to prove convexity for one of the sets

B(a) :={z|P({(x)20) 20},
Ale) ={z|P({(z) <0)=al,

the convexity of the other one follows immediately.

THEOREM 2.12 Preékopa [229]. Let us assume that  has a joint multivariate
normal distribution and that

1 either there exists an ((n+1) X (n + 1)) matrix S and a symmetric positive
semidefinite matrix C, such that C (9) = Si;C holds 1, 7,

2 or there exists an (s_x s) mazrix_S' and a symmetric positive semidefinite
matrix C, such that C(h3) = S;;C holds, Vi, j.

In both cases, if o > & then A(a) is a convex set.

Proof: We begin with proving the first assertion of the theorem. We will assume
that S is nonsingular; for the general case see Prékopa [234]. For the covariance
matrix of {(x) we have (cf. (2.68))

n+l1
Y(z) = Y £7;5:,C=C -3 5% (2.70)
t,y=1
In particular, for the variance we get _
Var[¢;(z)] = CuZ* Sz, Vi. (2.71)

We may assume that C;; > 0 holds Vi.

In fact, Cy; = 0 implies that Var[(;(z)] = 0, Vz. Consequently, the coeffi-
cients and right-hand—side in the i*? row of the system of random inequalities
are a.s. constant. Therefore (see the Remark on page 95) the i*? inequality can
be moved to the set of deterministic constraints in the corresponding optimiza-
tion problem.

From relation (2.71) immediately follows, that S is 'a symmetric positive
semidefinite matrix. We have assumed that S is nonsingular, therefore S is
positive definite.

Another implication of (2.70) is, that the correlation matrix R of {(x) does
not depend on z. In fact, R;; := Corr{(;(x), (j(z)] = —Zi__ holds.
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By standardizing {(x) (see page 104) we get:

o m@ (@)
P <00 (- el oF

where ZTSZ > 0 holds, due to our assumption concerning S and the fact that
T#0VreR"™

Let
hT(m‘) = (@ tni1(@)
Ci1’ ’ /Cntint1 )’
1
IZlls = (fz’T.S'?)2 , VZ € R™1
where || - || 5 is clearly a norm in IR™*1, With this notation we have

P(((a) <0) = & (Zh@) R)

®(z; R) is a multivariate distribution function, consequently it is monoton-
ically increasing in each of its variables. This implies that ®(z;) > ®(z; R)
V¢ holds. Under our assumption o > %, we deduce that h(z) > 0 holds
Ve € A(a).

Let x € A(a), y € A(a), A € (0,1) and let Z and ¥ be the correspond-
ing n + 1-dimensional vectors with their last coordinate being equal to -1, cf.

page 137.

With the notation x) = Az + (1 — A)y and T = AT + (1 — )7, using the
triangle inequality for norms we get:

P(¢(@x) <0) = @ (i h(ea)i B)

> @ (sparet=mer (Wh(@) + (1= N R).

We will make use of the following trivial fact: for A, B,C,D € R, C > 0,
and D > 0 we have

(2.72)

A+B A B
cyp rfotl-rp

with Kk = E‘%E; 0 < k < 1. Applying this componentwise in (2.72) with the
setting A = Ah(z), B = (1 — Ah(y), C = A||Z||s, and D = (1 — N)||7]|s,
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and utilizing the logconcavity of ®(z; R) we get:
P(¢(a2) <0) 2 ¢ (spph(e) + (1 - ©)phsh(); R)
K 1-x
1 . 1 .
(ﬂ?ﬁh(‘”)’ R) ® (ﬂmh(y)’ R) Q2.73)

o
P(({(z) <0)*P(¢(y) <0)=*

nal—-n

v

Vv

o = q.
The proof of the second assertion runs along analogous lines. For the co-
variance matrix of {(x) we now have (see (2.68))

Y(z) =5 -3TC37. (2.74)
For the variance we get
Var(¢(z)] = 52 CZ, Vi. (2.75)

Arguing similarly as for the first assertion, we conclude that S;; > 0Vimay be
assumed. If C is positive definite, then the rest of the proof runs analogously
to the proof of the first assertion. For the general case see Prékopa [234].

O

Let us remark, that the second assertion of the theorem has originally been
proved in [229] under the assumption of the stochastic independence of the
rows of (T'(£), h(§)); the general case has been proved by Burkauskas [35].

2.7 Summary on the convex programming subclasses

SLP models with probability functions are non—convex in general but in
the preceding sections we have found important subclasses consisting of con-
vex programming problems. From the practical modeling point of view it is
important to know, whether a particular model instance involving probability
functions is a convex programming problem. Having namely a convex program-
ming problem there are good chances for finding efficient solution algorithms,
or in many cases general-purpose software can be used for solving the problem.

Therefore, for the sake of easy reference, in this section we summarize those
model classes which consist of convex programming problems. For further
such model classes see Prékopa [234]. If a particular model instance does not
belong to any one of these model classes then most probably it is a non—convex
optimization problem. This is not certain in general, of course; further research
is needed which may lead to the discovery of new convex programming classes
of SLP problems with probability functions.
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For direct reference we repeat some of the notation and introduce some new
one.

G(z) = Pe(T(E)z > h(e))
G(z) = Pe(T(E)z <h(g))
Bo) = {z|G(@)>a)
Blo) = {z|G(x)>a}
D) = {z|G()<p}
D@) = {e| 8@ <p)

where T'(€) denotes a random s X n matrix, h(€) € IR® stands for a random
vector. The components of the n—dimensional random vector ¢;(§) are the
elements of the i*® row of T'(€), Vi and T;(€) stands for the 5** column of
T'(€), V4. If s = 1 (separate probability function) holds, we use the notation

t(§) = T(&); p = B()], pe41 = B[A(E)].

A. General cases: convex models are identified by choosing specific probability
levels. If a = 1 ora = 0 or B8 = 1 then B(«), B(a), D(B), and D(3) are
all convex sets. (Proposition 2.2 on page 97 and the discussion on page 97).

B. ¢ has a finite discrete distribution: convex models are identified by choosing
specific probability levels. If « is high enough (as precisely formulated in
the assumptions of Proposition 2.3 on page 100 and Proposition 2.4 on
page 100) then B(a) and B(a) are convex. In general, however, B(a),
B(a), D(B), and D(B) are non—convex sets. Equivalent linear mixed—
integer programming reformulations are available, see (2.19) on page 100,

C. Separate probability functions, s = 1: convex cases are identified by choos-
ing specific probability distributions and probability levels.

1. If only the right-hand—side is stochastic then B(c), B(c), D(B), and
’13( B3) are half-spaces, determined by linear inequalities (Section 2.3.1)
although for D(3), and D(8) some care is needed if £ does not have
a continuous distribution (page 103). (2.66) can be formulated as a
deterministic linear program if B is bounded, otherwise some caution is
needed, see (2.24) on page 103. These results hold for arbitrary values
O<a<land0< @ <1.

2. If (¢(€), h(€)) has a multivariate normal distribution and o > £ and 8 <
1 hold, then B(«), B(a), D(B), and D(B) are convex sets, determined
by convex nonlinear constraints, see Section 2.3.2, (2.35), and (2.36)
on page 108. Some care is needed concerning D(8), and D(B), see
(2.36) on page 108, in the case when the distribution is degenerate, see
page 108. If the distribution is non—degenerate then G(z) is pseudo—
concave on B, if yTx > pin+1 holds for all € B. It is pseudo—convex
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on B, if uTx < 1,41 holds for all z € B. Similar assertions hold for
G (z) with exchanged roles of the inequalities for the expected values
(Proposition 2.1) on page 109. Thus (2.66) is a convex programming
problem if for all z € B, uT2z > ppyq holds. The corresponding
minimization problem is a convex programming problem provided that
for all z € B the reverse strict inequalities 4Tz < p,41 hold.

3. If (t(€), h{€)) has a multivariate Cauchy distribution, similar remarks
apply as in the normally distributed case, see Section 2.3.3. This section
outlines also a technique for carrying out the analysis for distributions
belonging to the class of stable distributions.

D. Stochastically independent random variables, s > 1: convex cases are iden-
tified by choosing specific probability distributions. If only A(£) is stochas-
tic, (h1(§), ..., hs(&) are stochastically independent, and each h;(£) has a
log—normal distribution function, then G(z) is a log—concave function and
B(a) is convex (Section 2.4).

E. Only the right-hand-side is stochastic: convex cases are identified by choos-
ing specific probability distributions. In the case of s = 1 this has been
discussed above in item B.1 and under the assumption of stochastic inde-
pendence the discussion can be found under item D. In the general case G(x)
and G (z) are log—concave for the following multivariate distributions: uni-
form (page 129), non—degenerate normal (page 129), Dirichlet (page 129),
Wishart (page 130), log—normal (page 133), and gamma (page 135). The
probability functions G and G (z) are quasi—concave for the multivariate t—
distribution (page 131). Consequently, B(«a) and g(a) are convex. Having
G(z) or G(z) in the objective function, (2.66) is a convex programming
problem for the log—concave distributions listed above. Regarding the case
with reverse inequality constraints and the same distributions, D(83), and
’5( ) are non—convex sets in general and the minimization variant of (2.66)
is a non—convex optimization problem.

F. Random technology matrix: for the case s = 1 the discussion can be found

under items C.2 and C.3. For s > 1, B(c) and B(a) are convex under the
following assumptions: (T1(€),...,T1(€), h(€)) have a joint multivariate
normal distribution and the covariance matrices of the columns as well as
the cross—covariance matrices are constant multiples of a fixed covariance
matrix, then B(a) and B(«) are convex sets. This holds also under the anal-
ogous assumption concerning the rows. For both facts see Proposition 2.12
on page 139.
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3.  Quantile functions, Value at Risk

One way for including simultaneously the loss size and the probability of
loss into an SLP model leads via quantiles. Recall that for a random variable
¥ with distribution function Fyy and for 0 < o < 1, z € IR is an a—quantile, if
both inequalities

PW<z)>a and P@W>22)>1-a

hold. The set of ce—quantiles is a non—empty closed interval for 0 < o < 1,
see, for instance, Cramér [41]. We assume that 0 < « < 1 holds and assign
the following quality measure to random variables:

05 (9) :=v(¥,a) ==min{z | Fy(z) 2 a}, J€ [Z(l), 3.1
defined on the set of all random variables over {2. According to this definition,
for a given o, v(1J, @) is the left endpoint of the closed interval of a—quantiles
of 9.

Similarly as in Section 2.3 on separate probability functions, for the sake of
simplicity of notation, we consider the random variable

C(z,m, &) =n"x—¢ (3.2)

We interpret positive values of ((x,7,£) as loss and negative values as gain.
The evaluation function corresponding to the risk measure (3.1) will be the
following:

v(z, o) ;== min{z | ¥(z,2) > a} (3.3)

where W(z,-) denotes the probability distribution function of {(x,7,£). We
will call v(z, ) a quantile function. o will typically have a large value, for
instance, & = 0.95. The interpretation of v(z, ) is in this case a minimal loss
level, corresponding to the decision vector x, with the following property: the
probability of the event that the loss will not exceed v(z, @) is at least a. In
financial applications v(x, ) is called Value at Risk (VaR), see Elton et al. [72],
and the references therein. We will adopt this terminology for our more general
setting,

We consider minimizing the sum of a linear function and VaR, under linear

constraints.
min ¢’z + v(z, a) }

34
s.t. x € B. 34

By using the definition of v(z, &) and introducing an additional variable 2, the
following equivalent formulation results:

min ¢z +2
st. U(z,2) 2« 3.5)
z € B.
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The equivalence with (3.4) is immediate by noting that for each fixed x € B
in (3.5), it is sufficient to take into account the minimal z in the constraint, this
minimal z is however v(z, o). Substituting the definition of ¥ finally leads to
the formulation
min cTz 4+ 2
st. P(nTz—€6<2) >a (3.6)
x €B.

This model clearly belongs to the class of SLP models with separate probability
functions, see (2.21) with s = 1, in Section 2.3. The probability function in the
model above is a special case of the general form with the “technology vector”
containing a deterministic component

G’(m,z)=]P<(77T,—l)<z)——ﬁgo).

It is an interesting fact, that the first SLP model for minimizing VaR has been
formulated by Kataoka [157] in the form (3.6) already in 1963.

Being a special case of SLP models with separate probability functions, the
whole machinery developed in Section 2.3 applies. We will illustrate this by
discussing the case of the multivariate normal distribution. Let

§(~T»Z,77,f) = UTfU—f— z

and assume that (7, £) has a multivariate normal distribution (see page 105). For
a fixed (z, ), the z—term can be interpreted as merely modifying the expected
value of &, therefore for G (z, 2) the explicit form (2.34) on page 108 applies
with pin41 replaced by pn 41 + 2. Consequently, see (2.35) on page 108, (3.6)
can be written as

min ¢z + 2
st. @ Ha)|| DTz —d|+uTx~2 < fpinn (3.7
x €B.

At the optimal solution the nonlinear constraint is clearly active. This obser-
vation leads, by eliminating z, to the following linearly constrained alternative
formulation:

min Tz + & Ya)||D%z — d|| + pTz — pnat
. (3.8)

s.t. x

Assuming that o > % holds, due to the convexity of the Euclidean norm both
models (3.7) and (3.8) are convex programming problems.

Except of those cases, discussed in Section 2.3, which can be formulated
as convex programming problems, the model (3.6) is in general a non—convex
optimization problem.
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Turning now our attention to SLP problems with VaR—constraints, we con-
sider problems of the following form:

min Tz

.t min{z | ¥(z,2) > a} <k (3.9)
z €B.

Observe that the minimum in the minimization problem involved in the first
constraint is attained. Therefore, for a fixed x this constraint holds, if and only
if there exists a z € IR such that it holds for that z. Thus the optimization
problem (3.9) can be equivalently formulated as follows:

min 'z
T,z
s.t. \I’(.’B,Z) >« (310)
z <K
T € B.

Finally, substituting the definition of W results in

min Tz
z,z
s.t. IP('I]T.’E—ZS§) Z (3.11)
z <k
T € B.

Thus, also in this case, we have obtained an equivalent problem which belongs to
the class of SLP problems with separate probability functions, see Section 2.3.
Therefore, analogous comments and formulations apply, as for the SLP problem
in which VaR is minimized, see (3.6).

For further stochastic programming problems based on quantile functions
see Kibzun and Kan [161].

4. Models based on expectation

The simplest way of including expectations into an SLP model is based on
choosing the quality measure

0.(9) :=E[9], 9 €Ly,

defined on the linear space of random variables with finite expected value. We
consider the random variable

((z, &) = tT(&)z — h(E),

where £(£) is an n—dimensional random vector and h(€) is a random variable.
Under the assumption that the expected value of (T'(£), h(£)) exists, we obtain
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the following deterministic linear—affine evaluation function for x:

withf = E[t(¢)] and b = E[R(£)]. Inthe case when {(z, £) is a random vector,
this holds componentwise. Consequently, the prototype models (1.7) and (1.9)
become linear programming problems. These LP’s are called expected value
problems, corresponding to the SLP problem.

On the one hand, having an equivalent linear programming problem is an
attractive feature from the numerical point of view. On the other hand, however,
replacing the probability distribution by a one~point distribution leads to a very
crude approximation of the original distribution in general. In some modeling
situations it may happen that the solution Z of the expected value problem also
solves a corresponding SLP problem. However, this is usually an indication of a
modeling or data error: the corresponding SLP model is not “truly stochastic”.
Unfortunately, the expected value problem is frequently used by modelers as
a substitute for the SLP problem, without further considerations. When doing
this, extreme care is needed, since the solution obtained this way may tumn
out to be quite risky when evaluated by an alternative evaluation function.
Taking the expected value problem should by no means be used as the single
way representing ¢(z, £) in the model. Accompanied with other constraints or
objective functions, based on alternative quality measures, utilizing g (¥) may
lead to important and meaningful model formulations. As an example we refer
to the portfolio optimization model of Markowitz [189] which has been applied
with tremendous success in finance.

The picture radically changes if the expectation is taken separately for the
positive— or negative part of (z, £), or if conditional expectations are utilized.
In this section we will discuss several important model classes based on these
ideas.

We shall need some basic facts from probability theory concerning expecta-
tions. Let ¥ be a random variable and assume that IE[ ¢} ] exists. Recall from
probability theory, that this assumption means the finiteness of the integral

o0
/ |t|dFy(t) where Fy denotes the probability distribution of 9.

%ohe following well-known integral representations will be used in this sec-
tion, for which, for the sake of completeness, we also present a proof. Intro-
ducing the notation 4" := max{0,u} and v~ := max{0, —u} forallu € R,
we have
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PROPOSITION 4.1 Assume that B[0)| exists. Then for all z € R
both B[(Y9 — 2)*] and E[(Y — 2)~] exist and we have:

Bl0-27 = [(- R
‘. 4.1)
E[(9 - 2)-] = / Fo(t)dt.

Proof: The existence of IE[d] obviously implies the existence of the expected
values on the left-hand-side in (4.1). Using integration by parts we get for
z<y

Yy
/ (t—2)dFy(t) = (t—2)Fy()]! — | Fylt)dt

(g - 2)(1 = Fy(y) + [0 - Fy(e))dt

and consequently

o0

E[(9 - 2)t] = / (t - 2)dFy(t)

Yy oo
= ylirgo/(t—z)dFﬁ(t)=/(1—Fﬂ(t))dt

where we have used the fact that the existence of the expected value of 1 implies
that lim y(1 — Fy(y) = 0 holds. For the second relation we get similarly via
y—oo

integration by parts:

z

E((0-2)"] = / (2 — t)dFy(2)

= (= OF@OF .+ / Fo(t)dt = / Fo(t)dt

where we used that lim zFy(x) = 0 holds, due to the existence of the ex-
LT=—r—00

pected value of 4. O
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4.1 Integrated chance constraints

Similarly as in Section 2 concerning probability functions, also in this section
we will distinguish two cases: first we discuss the case when {(z, &) := T'(§)z—
h{(£) is a random variable (s = 1 holds, see (1.1) on page 75). Afterwards we
consider the general case when ((z,§) := T'(§)x — h(§) is a random vector,
that means, s > 1 holds. We will assume throughout that the expected values
of T'(£) and h(€) exist.

4.1.1  Separate integrated probability functions
We consider the random variable

(2, €) = t(&)Tx — h(§)

where ¢(¢) is an n—dimensional random vector and h(€) is a random variable.
Depending on whether positive or negative values of ((z, £) are considered as
losses, the loss as a random variable can be written as

¢, €)= [1(E) Tz — )Y
or

(" (@,€) = [t(&) Tz ~ h(E)],
respectively. Here we have made use of the notation 2™ = max{0, z} and
2z~ = max{0,—z}, z € R. z* will be called the positive part and 2~ the
negative part of the real number z.

Let us assume that losses are modeled as negative values of {(z, §). Using the
notation above, the probability constraint corresponding to the random linear
inequality ¢(z, &) > 0 can obviously be written in expectation terms (see (2.8)
on page 95) as follows

Pe(¢(2,8) > 0) > a <= Ee[x((T(z,¢)]<1-a 4.2)

with the indicator function

(2) = 0 ifz<0,
X\2)=0 1 ifz>o0.

In the second inequality in (4.2) the application of function  results in assigning
the constant value 1 to the loss irrespectively of its size. This can heuristically
be viewed as the source of the generally non—convex behavior of probability
functions, see the nice examples in Klein Haneveld [167] and Klein Haneveld
and Van der Vlerk [169]. This observation leads to integrated chance constraints
by dropping x in (4.2) and by prescribing an upper bound for IE¢[¢ ™ (x,£)].
More specifically, we choose two risk measures for random variables as
ot

sic(/ﬂ) = B[],

4.3
0, (0) = BB, deL @)
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defined on the linear space of random variables with finite expected value. The
corresponding evaluation functions K and H will be

K(z) = of (((z,€)) = Ee[(*(x,§)] and
H(:L‘) = Q;C(C(m7€)):IE§[C_(x7§)]a

respectively. The functions K (x) and H(x) will be called separate integrated
probability functions. Assuming, for instance, that losses correspond to nega-
tive values of ((x, &), a separate integrated chance constraint has the form

Ee[({(2,€))7 1< (4.4)

where 7 is a prescribed maximal tolerable expected loss. The following relation
provides an explanation of the term “integrated”: due to Proposition 4.1 on
page 147 we have

0 0
E((¢(2,6))"] = / P(((2,€) < 2)dz = / P(((z,€) < 2)dz.

The second equality holds because the set of jump-points of the distribution
function ¥(z, -) := P({(z, ) < z)is countable and therefore it has (Lebesgue)
measure 0.

Let us define the positive— and negative—part functions ¢+ and ¢~ according
to ot (z) = 2% and ¢~ (2) := z~ for z € IR, respectively. Both of these
functions are obviously convex. From the optimization point of view the most
attractive property of separate integrated probability functions is formulated in
the subsequent proposition:

PROPOSITION 4.2 Both H(x) and K (x), and consequently
E[|¢(x,&)]] = H(x) + K (x) are convex functions on R™.

Proof: The assertion follows easily from the convexity of the functions ¢t ()
and ¢~ (-). We prove the assertion for K (x); the proof for H(z) is analogous.
We have K (z) = E¢[ o7 ({(z,£) )] Because ((z,£) islinearin z and ot isa
convex function, o ({(z,&)) is convex for each fixed £. Taking the expected
value preserves convexity. For a formal prooflet z,y € R and 0 < A < 1.
We have

KOa+ (1= \y)

i

Ee[ot(¢((Az + (1= N)y,€))]
Ee[oT(X(2,8) + (1~ A){(y,€))]
Ee[Ap™ (C(2,€)) + (1 = N ({(,6))]
MK (2) + (1= NK(y).

IN

I
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O

This result implies that K () and H(z) are convex, in particular also for finite

discrete distributions. This is in sharp contrast with probability functions, where

(generalized) concavity holds only under various assumptions, excluding finite
discrete distributions in general.

With (T (x, £) representing losses, the following prototype models will be

considered:

min Tz

st. Ee(Hz,€)] <~ 4.5)
T eB

and

min Tz + Be[(H(z, )] } (4.6)

s.t. r €B

where vy > is a prescribed maximally tolerable loss level. Due to Proposi-
tion 4.2, both problems are convex programming problems. Convex functions
being continuous (see, for instance, Rockafellar [249]), the feasible set of (4.5)
is obviously closed.

Note that there is no way of building convex programming models of the
above type with reversed inequality constraints in (4.5) or with maximization
in (4.6) which are based on separate integrated probability functions. Because
both K () and H () are convex, it is immaterial whether the loss is represented
by ¢+ (x,€) or by (™ (2, €).

Next we assume that £ has a finite discrete distribution with N realizations
and corresponding probabilities given in the tableau

(8 18) “

N
with p; > 0Viand > p; = 1. We introduce the notation 7% = T(E%),
i=1
hF = h(g*),k=1,...,N,and N = {1,...,N}. The i*® row of T* will be
denoted by t¥ and if s = 1 then the single row of T* will be denoted by t*.
For notational convenience, both ¥ and ¢* will be considered as row-vectors
((1 x n) matrices).
Problems (4.5) and (4.6) can in this case be formulated as follows:

min c¢lz
N

s.t. Z pr(thz — BEYY <4y (4.8)
k=1

z eB
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and

N
min ¢Tz+ ) pi(tFaz — BF)T
,; (4.9)

s.t. x €B.

These nonlinear programming problems can be equivalently formulated as lin-
ear programming problems by introducing the auxiliary variables y*, k =
1,...,N:

min cTz )
N
st > pey® <7y
k=1 (4.10)
thy —ykF <Kk k=1,...,N
y* >0, k=1,...,N
x €B J
and
N
min ¢z + Zpkyk
k=1
st. thx —y* <Kk k=1,...,N (4.11)
v* >0 k=1,...,N
x B )
The equivalence of (4.8) and (4.10) as well as the equivalence of (4.9) and (4.11)
follows easily from the following fact: if 5,k = 1,...,N is a feasible

solution of either (4.10) or (4.11), then then the following inequality holds:

N N
> oz - 15T < gt
k=1 k=1

Let S(v) = {z | Be[¢M(x,£)]) < 7} be the set of feasible solutions cor-
responding to the integrated chance constraint. The following representation
holds, which plays an important role in the dual decomposition algorithm (see
Section 4.3).

THEOREM 4.1 Van der Vierk and Klein Haneveld [169] For v > 0, S(v) is
a polyhedral set. In fact the following representation holds:

{g| K@) <v}= ({z| D pe(t"z - h*) <~} (4.12)

KcN kex
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Proof: We have
N
K(z) = B¢t (z,8)] = Y pelt(a,8F)
E=1

- Z ka(.T, gk)
k: ¢(x,€¥)>0

= maxd  pi((x,8").

kek

Using this representation we get

S ={z| K@) <vt= ({z | D pl(,€) <~}

KcN kek

from which the result immediately follows. O

In (4.12), for K = ) C N the sum over the empty index set is interpreted as
having the value 0 thus the corresponding inequality holds for any x. Conse-
quently, S(v) is represented by a system of 2%V — 1 proper linear inequalities.

Models (4.5) and (4.6) deliver identical solutions for random variables for
which ¢*(z, &) is the same almost surely. This is not the case with the follow-
ing variant of integrated chance constraints:

E¢[(T(2,8)] < aBe[|¢(z, E)I] (4.13)

with o being prescribed. Because K(z) > 0 and K (z) < B¢[|((x,£)|] obvi-
ously hold for all z, it is sufficient to consider a—values with « € [0, 1]. Using
the relations z = 2+ — 27 and |z] = 2% + 27, 2z € R, the above inequality
can be equivalently written as

(1 = 20)Ee[¢* (2, )] + B [((2,€)] < 0 (4.14)
or as
(1= 2a)Ee[¢H(z,8)] + afz —h) <0 (4.15)

with £ = IE¢[t(¢)] and h = E¢[R(£)].
This motivates the choice of the following quality measure for evaluating
random variables in our framework for constructing SLP models:

0% (9) == (1 — 0)E] — oB[¥] = oB] + (1 — 20)E[$*], 9 € L].

sic
We obtain the evaluation function as usual by substituting ¢ = ((x, £):

Ko(2) = afte — h) + (1 - 20) B [¢ " (=, £))-
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Proposition 4.2 implies that K, (x) is convex for a < % and it is concave for
a > % For o = % the function is clearly linear—affine.

Choosing « such that « € [0, %] holds, the parameter « will be interpreted as
a risk—aversion parameter. Decreasing o means decreasing risk—aversion. The
prototype models will have the form

min cTz

st otz —h)+ (1 - 20)E(*(2,6)] <0 (4.16)
x €B

and , Fr — F
min Tz + a(t{]j - h,) + (1 - 20‘)]E§[<+(x’ 5)] } .17

s.t. r €B.

with o € [0, %] prescribed. Both problems are clearly convex programming
problems.

Interpreting ¢+ (z, £) as gain (and, consequently, { ~(, ) as loss), we choose
the parameter o such that o € {3, 1] holds. By utilizing K, witha € (1, 1], the
corresponding optimization problems are analogous to the two models above,
with reversed inequality constraint in (4.16) and with changing “min” to “max”
in (4.17).

If the probability distribution of £ is finite discrete, problems (4.16) and
(4.17) can be equivalently formulated as linear programming problems. This
can be done analogously as above for (4.5) and (4.6), we leave the details as an
exercise for the reader.

For the case of a finite discrete distribution the feasible set is polyhedral
an analogous representation holds as in Theorem 4.1. We formulate it for the
case o € [0, 3], the variant with & € [3,1] can be obtained from this in a
straightforward way. Let S(a) = {z | K4(z) < 0} be the set of feasible
solutions corresponding to this type of integrated chance constraint.

THEOREM 4.2 Van der Vlerk and Klein Haneveld [169] For v > 0, S(v) is

a polyhedral set and the following representation holds:

{z|Kox) <0} = () {z | 1-20)) pe(t'z—h*)+afz—h) <0},
KN ke

Proof: The proof runs along the same lines as the proof for Theorem 4.1. O

4.1.2  Joint integrated probability functions
Let s > 1 and with ((z, &) = T'(§)x — h(£). Analogously as before, define

¢H@,8) = [T(€)z = (&))"
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and
(2, 8) :=1{T(¢)z — h(£))]™,
where on the right-hand-side the positive— and negative parts of the vectors are
defined in a componentwise fashion. For a heuristic introduction of integrated
chance constraint we proceed analogously as in the case s == 1. We assume that
losses are represented by negative values of ((x, £). The probability constraint
in expected value terms looks as follows (see (2.8) on page 95):
Pe(((z,6)20)2a = Eex(max ¢ (z,§))]<1-a
Analogously to the special case s = 1, dropping x results in the joint integrated
chance constraint (cf. (4.4)):
= <
B[ max ¢ (2,6)] <7
with prescribed maximal tolerable loss v. We proceed by defining the quality
measures for random variables by

+ — +
0 (8) = ]E[fél% 97 ], veL.

This results in the evaluation functions
ot — +
Ki(z) = o (C(w,ﬁ))—]Es[lnslggsCi (z,€)] and

jic

Hy(z) = 0(¢(z,8)) = B[ max ¢7(,8)],
respectively. The functions K ;(z) and H ;(z) will be called joint integrated
probability functions.

The attractive property of convexity remains preserved by the generalization:

PROPOSITION 4.3 Both H;(x) and K j(x) are convex functions on R™.

Proof: The proof is similar to the proof for Proposition 4.2. For any fixed £,

Gi(+, €)™ is a convex function for the same reasons as in the case s = 1, see the

proof of Proposition 4.2. Tax ¢ (+,€) is the point-wise maximum of convex
<i<s

functions, consequently this function is also convex for each fixed £ (see, for
instance, Rockafellar [249]). Taking the expected value w.r. to € preserves con-
vexity, see the proof of Proposition 4.2, therefore Ky is a convex function. The
proof for H is analogous. O

Let us emphasize that the convexity property holds also for a random tech-
nology matrix and without any restriction on the probability distribution of £,
beyond the existence of the expected value.



156 STOCHASTIC LINEAR PROGRAMMING

The prototype SLP problems are formulated as follows:

min Tz

s.t. Eg[lrlgl?gsgj(myg)] <7 (4.18)

T eB

and

. T +
min ¢ x+]E5[1I2?§XsCi (z,8)] 4.19)
s.t. z €B

with the prescribed maximal loss level v > 0. Both of them are obviously
convex programming problems and due to the convexity of K ;, the feasible set
is closed also for (4.18).

Reversing the inequality in the integrated chance constraint in (4.18) and
changing min to max in (4.19) leads in general in both cases to non—convex
optimization problems.

There is no change in the behavior of the optimization problems if we utilize
H instead of K ; in the problem formulations.

Assume next that £ has a finite discrete distribution, specified in (4.7). Then
(4.18) and (4.19) take the form

min Tz
N
k o _ pkyv+ <«
s.t. I;pk max (tf @ —h*)* <y (4.20)
T eB
and
N
. T k kNt
min ¢ a:-}—Zpk gg;(tix—h ) @21)
k=1
s.t. x €B
We introduce auxiliary variables yz’c andzF i=1,...,s,k=1,..., Nandfor-

mulate equivalent linear programming problems to (4.20) and (4.21) as follows



Single—stage SLP models

(see Klein Haneveld and Van der Vlerk [169]):

min clz
N
s.t. Zpkzk
k=1
k k
tix -y
—yF 2P
k
Yi
e
T
and
N
min cT:c—I-Zpkzk
k=1
st thy —yf
—yf +2F
k
Y;
zk
x

<%
<hf, k=1,
L k=1,.
>0, k=1,.
>0, k=1,.
S
<hE k=1,..
>0, k=1,...
>0, k=1,...
>0, k=1,...
eB

LLNi=1,...
LNi=1,...
LNi=1,...
LN
LN, i=1,...
N, i=1,...
JN,i=1,...
N

157

(4.22)

\ (4.23)

The equivalence can readily be proved, based on the following fact: if Z, gjf,
zZ*,k=1,...,N,i=1,...,sis a feasible solution of either (4.22) or (4.23)
then the following inequality holds:

N N
3 bz — bRy <Y it
k—lpk fgzasxs(t,x h*) _k_lpkz.

Let S;(y) = {z| ]E£[1n<1a<x ¢ (%,€)]) < v} For € having a finite discrete
158

distribution, Theorem 4.1 has the following generalization:

THEOREM 4.3 Van der Vlerk and Klein Haneveld [169] For v > 0, S;(7) is
a polyhedral set and the following representation holds:

{zl|Ks@) <qy= ) (= | D mltha—hf) <)

KCN 1eZk

ke

(4.24)

where T = {1,...,s}, T .= {l:= (I, k € K) | I, € T forall k € K},

and t{“k is the L™ row of T*.
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Proof: We have

K(z) = B[ max (f(2,8)] = }jpknmxc+ &%)

1<i<s 1<i<s

= §:prmx@a@)

kEN+ 1<i<s
€

where Nt :={k e N | max ¢i(x, &%) > 0}. Thus we get for the constraint:
<i<s

&
Kjz) <y <= > max Gi(#,¢") <
keN+

= maxz;v &lggsczwﬁ) y

} : “k
? <
= ICInaNX Illelalcx & kalk (93 § ) =7

Substituting the definition of (;(z, g’“) and noting that the number of linear in-
equalities which determine S;(+y) is obviously finite yields the result. a

For counting the inequalities in (4.24) let us observe first that the number of
inequalities for a fixed index set K (the cardinality of Z!X!} is s/XI. Adding up
for all subsets of A (except of @) results in

i(g’)sk:(sﬂy\’—

k=1

The models in this section are due to Klein Haneveld [167] and have been
subsequently investigated by Klein Haneveld and Van der Vlerk [169]. For
further properties of integrated chance constraints see these references.

4.2 A model involving conditional expectation
We consider negative values of the random variable {(z, £) as losses and will
discuss constraints which are based on the conditional expectation of the loss

given that a loss occurs. This corresponds to the quality measure for random
variables

0o () = B[O [ 0 < 0], ¥ € L], (4.25)

if P(¥ < 0) > 0and g (9) := 0 otherwise. Assuming that ¢ has a contin-
uous distribution, we have the following close relation between Ocexp and the

quality measure - which lead to integrated chance constraints (see (4.3) on
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page 150): ¢_ (9) = gcexp(ﬂ)IP(ﬂ < 0). This follows immediately from

0
E[6] = - / tdFy(t) = Bl—d | 9 < 0] - P( < 0).

-0

Constraints of the form

Ee[—((2,€) | {(2,6) < 0] < v (4.26)

will be considered, with v being a prescribed upper bound for the conditional
loss size. In general, constraints of this type result in non—convex optimization
problems. In the special case when only the right-hand—side is stochastic, the
feasible set corresponding to the constraint (4.26) is convex for a broad class of
univariate distributions. We choose

((@,6) =tTe —¢

where t € IR” is a deterministic vector and £ is a random variable.
The following result will be utilized:

PROPOSITION 4.4 Assume that & has a continuous distribution with a logcon-
cave density function. Assume furthermore that the expected value of £ exists.
Then

() =B[—-t]|&{—-t>0]

is a monotonically decreasing function of t.

Proof: This is a well-known fact in reliability theory where [(¢) is called mean
residual life. For a proof see, for instance, Prékopa [234]. O

We assume that for £ the assumptions of the theorem hold. Then (4.26) takes
the form
1tT2) <y = Tz >17Yy)

where {71 is to be understood as a generalized inverse defined as 7*(z) :=
inf{z | {(z) < v}. Consequently, the constraint (4.26) can be reformulated as
a deterministic linear constraint.

4.3 Conditional Value at Risk

We assume that positive values of ((z, £) represent losses. For motivating
the quality (risk) measure which will be introduced, let us start with computing
a conditional expected value. Let ¥ be a random variable with finite expected
value, Fy its distribution function, 0 < a < 1, and v, an a—quantile of the
distribution of 4 (see Section 3 for the definition of quantiles). Note that due
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to o < 1, IP(¥ < 1) < 1 holds and consequently we have IP(¢ > v,) > 0.
Introducing the notation 7, = IP(J > v,) we get

(2.2

o0 o

= % /tng(t) —Va/ng(t)-}-l/oﬂra

We Va

[ oo
= % /(t — Vo) dFy(t) + vamy

Wo

} (4.27)

oo

— vt & [ (6= va) aFolt)
= Vg -+ mm[ ('19 - Va)+ ].

If Fy is continuous, we have Fyy(vo) = a and IP(J > v,) = 1 — a. Conse-
quently, in this case the above relation takes the form
1
]E[’L?I'l?ZVa]:I/a+1—_—Ol-IE[(19—I/a)+]. (4.28)

On the other hand, due to a well-known fact in probability theory, the following
optimization problem has a solution for any 0 < a; < 1 and the solution set is
the interval of a—quantiles:

min (aE[(W - 2)T]+ (1 - )E[(¥—2)7]). (4.29)
Using z = z+ — 27, we have
a® -2+ (1—a)d—2)" = (1—a) z-ﬁ+T-i—&(q9_z)+ .

Taking expectation, this leads to the equivalent formulation of the objective
function of the unconstrained minimization problem (4.29) as

1
(1—a)(z+ (1—_0511‘3[(19 =2)']) = (1 - 0)E[]

which results in the following equivalent formulation of (4.29):

min (z + ﬁm[(ﬂ - z)+]> . (4.30)
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Utilizing (4.1) and introducing the notation u.(z) for the objective function of
this unconstrained optimization problem, we have

o0
1
UC(Z) =z mm[(’ﬁ - Z)+] =2z+ (1i_04) /(1 - Fg(t))dt (431)
z
The function u,(+) is obviously convex. In fact, for each fixed 9, (9 — 2)* is
obtained from the convex function (-)* by substituting a linear function, there-
fore it is convex. Taking the expected value clearly preserves convexity, see, for
instance, the proof of Proposition 4.2 on page 150. Thus (4.30) is a convex pro-
gramming problem. As mentioned above, the set of solutions of (4.30) consists
of the set of a—quantiles of the distribution of 9. This is easy to see under the
assumption that Fy is continuous. In fact, due to the integral representation in
(4.31) it follows immediately that u.(z) is continuously differentiable. Taking
into account that (4.31) is a convex programming problem, the set of optimal

solutions is determined by the equation é—“é’éﬁ = ( which can be written as

- (—1{—0[—)(1 S Fy(2)) =0 > Fy(z)=a
which obviously has as solution set the interval of c—quantiles. Based on the
fact that for u.(z), being a convex function, the left— and right-sided derivatives
exist for all z € R, a proof for the general case can be found in Rockafellar
and Uryasev [251]. An elementary proof is given by Pflug [222].

The solution set of problem (4.30) being the interval of a—quantiles, it
follows that in particular the value-at-risk v, := v(d,a) (for the definition
see (3.1) on page 144) is an optimal solution of (4.29). Taking into account
(4.28) it follows that for continuous Fyy the optimal objective value in (4.30) is
E[9 |9 > v(d,a)]. Consequently, in this case, the optimal objective value of
(4.30) is the conditional expected value of the loss, given that the loss is greater
than or equal to VaR. This motivates introducing the following risk measure for
random variables:

Oy (P) 1= ve(¥, @) == min [z + ﬁIE[(ﬁ —2)t)), €Ly, (432

defined on the linear space of random variables with finite expected value. For
the case when Fy is continuous, we have

ve(d,0) = B[ | 9 > v(9,0)] 4.33)

where v(9, «) is the Value—at-Risk corresponding to ¥ and o, see (3.1) on
page 144.
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Because the value—at-risk (¥, a) is an optimal solution of (4.29), substitut-
ing it for z in (4.29) immediately leads to the inequality

ve(9, ) > v(¥, a).

The risk measure v,(¥, ) has been introduced by Rockafellar and Uryasev
[250] for a financial application where the authors call it Conditional Value—
at-Risk (CVaR). We will use this terminology also in our context. For the
corresponding evaluation function for  we consider the random variable

((,€) = t(&) Tz — h(8))
where ¢(€) is an n—dimensional random vector and h(§) is a random variable.
The evaluation function, denoted by v.(z, @), is
) 1
ve(z,0) i=min | 2+ ——E[(¢(z,) - 2)*] |

Introducing the notation

wi(2,2) = 2+ T B{(((,€) - 2)*]

we have the shorthand form
ve(x, @) = min wg(z, 2).
V4

Let ¥(x,-) denote the probability distribution function of {(x,&). For later
reference we formulate the specialization of the general findings above for the
case ¥ = ((z, &) as a separate proposition:

PROPOSITION 4.5 Let x € R™ be arbitrary and assume 0 < o < 1. For the
unconstrained optimization problem

min | 2+ ——B[(((z,) - 2)"]

the following assertions hold: this is a convex optimization problem, the optimal
solution exists and is attained, the set of optimal solutions coincides with the
set of a—quantiles of U(x, ).

Proof: The proof follows readily from the general case. o

Let us consider w&(x, z) as a function in the joint variables (z, z).

PROPOSITION 4.6 w is a convex function.
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Proof: ((z,€) — z being a linear—affine function of (z, z) and (-)* being a
convex function implies that the composite function (¢(z, &) — 2)* is jointly
convex in (x, z) for each fixed . Proceeding analogously as in the proof of
Proposition 4.2 on page 150 it is easy to see that taking the expected value
preserves convexity. O

Next we formulate the corresponding optimization problems. SLP models
involving CVaR in the objective can be formulated as follows.

min Tz +min | 2+ 1 BI(((x,€) - 2)*]

4.34)
s.t. x €B.
This can obviously be written in the equivalent form
min cTz+ 2z + 25 B(¢(z,€) — 2) 1]
(@2) (4.35)

s.t. T €B.

The equivalence is due to the fact, that for each fixed x € B in (4.35) it is
sufficient to take into account the corresponding 2z for which the sum of the
second and third terms in the objective is minimal with fixed z (this minimum
is attained for any z, see the discussion above).

Proposition 4.6 immediately implies that (4.35) is a convex programming
problem for arbitrary probability distribution of £. Let (z*, z*) be an optimal
solution of (4.35). Then z* is an a-quantile of ¥(z*, -) and we have

v(iz*,a) < 2*
ve(z*0) = 2*+ G E[(((e,€) — 2*)*]
where v(z*, @) is the Value—at—Risk corresponding to z* (for VaR see (3.3) on
page 144).
Let us turn our attention to the particular case when £ has a finite discrete
distribution with IV realizations and corresponding probabilities given as

P1 ... DN
( g} e > (4.36)
u o
with p; > 0 Vi and 3 p; = 1. Let us introduce the notation t* := ¢(&%),

i=1
Rk = h(?“), k =1,..., N. The optimization problemm (4.35) specializes as
follows:

(@,2)

N
min cTz+ 2+ £ ;pk(C(wa ") —2)* 4.37)

s.t. r €B.
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Using a well-known idea in optimization, this nonlinear programming prob-
lem can be transformed into a linear programming problem by introducing
additional variables yj, for representing ({(z, ?“) —z)T forallk=1,...,N.
The equivalent linear programming problem is the following:

N
min Tz +z+ 25> prwk
(=.2) et

s.t. C(:c,g“)—z -y <0, k=1,...,N (4.38)
ye >0, k=1,...,N
x €B.

J/

The equivalence can be seen as follows. If (Z, Z) is a feasible solution of (4.37)
then taking Jj, = ((, £¥)—2)* forall k, the resulting (Z, Z, Jx, k = 1, ..., N)
is obviously feasible in (4.38) with equal objective values. Vice versa, let
(Z,2,9%, k = 1,...,N) be a feasible solution of (4.38). Then (&, 2) is evi-
dently feasible in (4.37) and due to the first constraint in (4.38), the correspond-
ing objective value in (4.37) does not exceed the objective value in (4.38). This
proves the equivalence. Substituting for {(z, E’“) results in the final form of the
equivalent LP problem:

N
gcuzr; cT:v-l-z-i-lTla-kZ::lpkyk
st thr—z — Yk Shk,kzl,...,N (4.39)
w 20, k=1,...,N
x e B.

/

Let us turn our attention to the optimization problems with CVaR constraints.

min cTz
st. ve(z,a) <7« (4.40)
T eB

where -y is a prescribed threshold. Substituting for v.(x, &) results in
min cT
T
s.t. min wX(z,z) <7« (4.41)
z
x eB

X

Due to Proposition 4.5 the minimum in the first inequality is attained for any
x € B. Therefore, for any fixed x, the first inequality holds if and only if there



Single—stage SLP models 165

exists a z € IR for which wg(x,2) < -y holds. Substituting for w2 (z, z), the
following equivalent formulation results:

min ¢z

(z:2)
st 2+ 5 EBl(((z,6) - 2)T] <y (4.42)

T eB

This is a nonlinear optimization problem involving a nonlinear constraint. From
Proposition 4.6 immediately follows that this problem belongs to the class of
convex optimization problems, for an arbitrary probability distribution of &.

Let us consider the case of a finite discrete distribution of £, as specified in
(4.36). This leads to the specialized form

min Tz

(x,2)
N
+15 Z 2t <ny (4.43)

T eB

Using the same transformation as for deriving (4.38), we get the equivalent
formulation as

min ¢’z 3
(z,2)
N
s.t. .11_ Z Yk < 0%
k=t (4.44)
((z,&F) —z g <0, k=1,...,N
vw 20, k=1,...,N
z € B. J
The final equivalent form is obtained by substituting for (z, &k ):
min ¢’z )
(2.2)
N
k=t (4.45)
the —z —ye <hF k=1,...,N
y =20, k=1,...,N
r S
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Finally let us discuss the interpretation of v.(z,a), 0 < o < 1. From our
general discussions at the beginning of this section it follows readily, that under
the assumption that the probability distribution function ¥(z, -) of the random
variable ((z, £) is continuous, we have the relation

UC(.’E,OA) = E[C(l‘,g) | g(fl?,f) Z U(maa)]

where v(z, o) is the Value—at—Risk corresponding to {(z, &) and . If ¢ has for
example a finite discrete distribution then this relation does not hold anymore
in general.

For the following discussion let as consider again a random variable ¢ and
assume that the expected value exist. In this terms the above relation has been
formulated in (4.33) under the assumption that the distribution function Fy of
9 is continuous. It has the form

Oovr(®) = B[9 | F = v(d, )]
where v(¥, ) is the VaR corresponding to ¢ and a, see (3.1) on page 144.

For general distributions an interpretation has been given by Rockafellar and
Uryasev in [251]. The conditional expectation relation above holds in general,
if the original distribution function Fy is replaced by the upper—tail distribution
function F§ defined as follows:

o 0 if y<v(¥,a)
FW =1 Bw=e ig y > u(9,0)

1—-
Another interpretation, representing a—CVaR as a mean over « of a—VaR, has
been found by Acerbi [2]. For further properties of CVaR see Rockafellar and
Uryasev [251] and Acerbi and Tasche [3]. In the latter paper several related
risk measures and their interrelations are also presented.

5. Models built with deviation measures

In this section we deal exclusively with quality measures expressing risk.
Similarly as in Section 2.3, for the sake of simplicity we employ the notation
n := t(€) and replace the right-hand—side h(£) by £. Thus we consider the
random variable

C(xa 7775) = 77T1L' - §
where 77 denotes an n—dimensional random vector and £ is a random variable.
We will assume in this section that the expected value of (nT, £) exists and will
use the notation p := [E[n] € R" and pp+1 := E[¢] € R.

5.1 Quadratic deviation
The risk measure is chosen as

0o(¥) 1= VE[?] = /Var[] + (E[))?, € L],
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defined on the linear space of random variables with finite variance. We assume
that the second moments for the random vector (7T, £) exist and the distribution
is non—degenerate, meaning that the covariance matrix of this random vector
is positive definite. The corresponding evaluation function will be denoted by
Q(z) and has the form

Qz) = \/B((r"s — £ = \/Varly™s — € + (472 — pns1)?. (5.1)

It is interpreted as measuring the deviation between the random variables 7Tz
and &.

PROPOSITION 5.1 @ is a convex function.

Proof: An elegant proof of this assertion can be obtained by combining Propo-
sitions 7.2 and 7.5 in Section 7. Here we present a direct elementary proof.
Let us consider the functions ¢ : R™"! — R and ¢ : R"*! — IR defined
as q(m, -'L'n+1) = E[(WTm + fxn+1)2] and (j(l',ﬂ)n-ﬂ) =V Q(xa$n+1)’ re-
spectively. We will prove that § is a convex function. Due to the relation
Q(z) = §(z, —1), the assertion follows from this.
We consider ¢(x, 2,,+1) first. This function is obviously nonnegative,
q(x, Tpy1) > 0holds for all z € R™, 2,41 € IR. The function is quadratic

B | enn) (1) %0 (2]
T Elm'] Blén] | (@

@) () mieh ) (2. )
therefore, because of the nonnegativity of ¢, the symmetric matrix in the second
line in (5.2) is positive semidefinite. Thus ¢ is a convex function. In general,
the square root of a convex function need not to be convex (take z and /2
for z > 0). In our case §(z, zp+1) = 1/q(x,Zn+1) is the square root of a
positive semidefinite quadratic form, therefore it is convex. To see this let
D be an (n x n) symmetric positive semidefinite matrix, we shall prove that
d(z) := V2T Dz is a convex function. For this function d(Az) = Ad(z) holds
obviously for all A > 0 and x € R". Therefore, for proving the convexity of

d, it is sufficient to prove that d(z +y) < d(z) + d(y) (subadditivity) holds for
all x, y € R"™ (see Proposition 7.1 on page 181). We have

Ex+y)=(z+y)"De+y)=z"Dx+y)+y"D+y). (53)

E((n"z + £xni1)?]

(5.2)

By applying the Cauchy—Schwarz inequality to the first term on the right-hand—
side we get

#D(z +y) = [f"DH|[D} (z + )] < VaTDzy/(z +y)TD(x + ),
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where D/2 denotes the symmetric square root of the positive semidefinite
matrix D. The latter is defined as follows: take the spectral decomposition
D = TATT of D, where the columns of T consist of an orthonormal system
of eigenvectors of ) and the diagonal elements of the diagonal matrix A are
the corresponding eigenvalues. Taking D'/2 := T'AY/2TT we obviously have
D = D'Y2?D'/2, Performing analogously with the second term in (5.3) and
substituting into (5.3) yields the result. O

Applying (5.2) for 7 and f, definedas )y :=n—p andé =& — tn+1, and
setting 41 = —1 from (5.2) it follows that

Var(n e — ¢ = 2TVe — 2d"z + v

holds, where V := E[/)T] = Cowv[n, 7] is the covariance matrix of , d :=
IE[ﬁé] = Cowv|n,{] is the cross—ovariance vector between 7 and £, and v :=
IE[EQ] = WVar[¢] is the variance of £&. Note that V' is a positive semidefinite
matrix. Thus we have have derived the formula

Qz) = V2TVz ~ 2d% + v + (uT2 — pny1)?
We obtain the following convex optimization problems

T

min c
st. /2TVz —2dTz + v+ (uTz — pny1)? < VK (54
z €eB

and

min /zTVz —2d%z + v + (uTz — pint1)? }

s.t. z €B. (53)

Due to the definition of (), the expression under the square root is nonnegative
for all z € IR™, and the positive square root function is strictly monotonically
increasing, consequently we have the equivalent formulation

min Tz
st. Va4 (e — pny1)?—2dTs <k—w (5.6)
x eB

and

(5.7)

min 2TVz 4+ (uTz — pny1)? — 2d7z
st. z €B.

The matrix V is positive semidefinite, therefore both problems are convex opti-
mization problems. Note that (5.7) is a convex quadratic optimization problem.
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A widely used variant of the above risk measure for random variables is the
standard deviation:

04,,(9) = o(9) := VE[(® — B))7, 9 € L2

The evaluation function becomes

Qa(r) = VaTVz — 2dTz + v (5.8)

leading to the convex optimization problems

T

min c¢'x
st. 2Vz—2dTe <k-—v 5.9
z eB

and

(5.10)

min zTVz —2dTz
st. x €B.

An important special case is £ = 0. The evaluation function becomes

o(x) := \/IE[(nT:v —uTz)?] =vaTVz (5.11)

where V' is covariance matrix of 7. Because of their practical importance we
formulate also the resulting optimization problems. For obvious reasons, these
can equivalently be formulated in terms of o%(x) as follows:

min cTz
st. 2TVz <k (5.12)
z eB

and

(5.13)

min zTVz
s.t. =z eB

Optimization problems of this type are widely used in financial portfolio opti-
mization, see Markowitz [189] and Elton et al. [72].

5.2  Absolute deviation
Let the risk measure be

0, () :=E[|9]], 9L}, (5.14)

defined on the linear space of random variables with finite expected value.
Assuming that the expected value of (5T, €) exists we get the corresponding
evaluation function

Az) = B[In"z - ¢|] (5.15)
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which is interpreted as measuring deviation between the random variables Tz
and £. Let ((z,7,&) := nTz — £&. We have:

PROPOSITION 5.2 A(-) is a convex function.

Proof: The absolute-value function being convex and {(-, 7, £) being linear,
the composite function |{(-, 7, £)| is convex for any fixed realization of (7, £).
Taking expected value preserves convexity. The full proof runs analogously as
the proof of Proposition 4.2 on page 150. a

Thus the optimization problems

T

min c 'z
st. E[nTz-¢|] <k (5.16)
T eB
e (Ite ~¢l]
min IE[|n‘z—¢
s.t. T eB } G.17)

are convex optimization problems for arbitrary random variables with finite
expected value.

The model (5.17) is closely related to simple recourse problems. To see
this let n = t with ¢ being an n—dimensional deterministic vector and let us
formulate this problem equivalently as follows. We introduce the nonnegative
random variables y and z and make use of the relations |u| = u* + ™ and
u = ut — u~ which hold for any real number u. This results in the following
equivalent simple recourse formulation of (5.17)

min Ely+ z]
st. tTe—¢ -y +z =0
y >0 (5.18)
z 20
z € B.

where the constraints involving random variables are interpreted as usual: they
should hold in the almost sure sense. For proving the equivalence let Z, along
with the random variables ¢ and 2 be a feasible solution of (5.18). Then &
is obviously a feasible solution of (5.17) and for the corresponding objective
function values we have

E[§+2] 2 E(|j - 2] = B[tz - ¢]].

In the reverse direction, when Z is a feasible solution of (5.17) then setting
7= (tTz - €)% and z = (tT7 — £)~ we get a feasible solution to (5.18) and
the objective values are equal. This proves the equivalence.
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Let us consider the case of a finite discrete distribution next. Assume that
(nT, &) has N distinct realizations with corresponding probabilities given in the
table:

yan DN
't N (5.19)
2 gN

N

withp; > 0Viand 3 p; = 1. Lettk := ()T, % := &, k=1,...,N. In
i=1

this case our optimization problems have the form

T

min ¢
N
st Y plthz — bk <& (5.20)
k=1
x eB
and
N
: k. _ bk
min ; pi|t*z — h¥| 5.21)
s.t. T €B

Both of these problems are nonlinear programming problems. We utilize a
transformation, analogous to the transformation which lead to the formula-
tion (5.18). Introducing this time deterministic auxiliary variables y; and 2,

k=1,..., N, we obtain the equivalent deterministic linear programming for-
mulations
min c'z 3
N
8.t. Zpk( Yk +2x) <K
k=1
thz  —yp 4z =h* k=1,..,N (5.22)
Yk >0, k=1,...,N
g, 20, k=1,...,N
x IS )
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and
N 3\
min Y pr(uk + 2)
k=1
b thr — =hk k=1,...,N
S T Y 2k 5.23)
Yk >0, k=1,...,N
zk 20, k=1,...,N
x e B.

7
The proof of the equivalence of (5.21) and (5.23) runs along the same lines
as the proof for the equivalence of (5.17) and (5.18). For the equivalence
of (5.20) and (5.22) it is sufficient to remark, that for any feasible solution
(%, 0k, 2k, k= 1,...,N) of (5.22), % is feasible in (5.20), due to the following
inequality:

N N N
Y opelthz =B = prlye — 2l < prlyr +21) < k.
k=1 k=1 k=1

Analogously to the quadratic measure, we consider the variant which mea-
sures absolute deviations from the expected value and is called mean absolute
deviation (MAD):

1
ouap(®) = E[|9 - E[J]|], ¥ € L.
The evaluation function becomes

Ad(z) = (0~ )Tz — (€ ~ pnt1)|
leading to convex optimization problems, which are analogous to (5.16) and

(5.17). The linear programming formulations for the case of a finite discrete
distribution coincide with (5.22) and (5.23) when we set t* := (7% — u)T and

hk = gc ™ Hn+l-
An important special case in practice (for instance, in portfolio optimization
in finance) is the case £ = 0 thus leading to the deviation measure
Ag(@) = |(n = ) el = In"z — uTa| (5:24)
For the discretely distributed case we formulate the particular form of the opti-
mization problems explicitly. Let t* := n* (note that in (5.22) and (5.23) we
have had t* = (n*)T). (5.20) and (5.21) have the form now
T

min ¢z
N

s.t. Z pr|(tF — )Tz <k (5.25)
k=1

r €B
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and
N
: k _ T
min ; p|(t* — ) z| (5.26)
s.t. z €B,

respectively. The equivalent linear programming formulations can easily be
obtained from (5.22) and (5.23), by substituting t*z with (t* — )Tz there.

Models of this type have first been proposed in the framework of portfolio
optimization in finance by Konno and Yamazaki [172]. In this paper the authors
propose a variant for the equivalent linear program (5.23) (with the substitution
described above), by introducing fewer auxiliary variables on the cost of a larger
amount of constraints, as follows:

N 3\
min Zpkyk
s.t. (k Tz +yr >0, k=1,...,N (5.27)
(t*—wTz —y <0, k=1,...,N
T € B.

/

The equivalence with (5.23) can easily be seen, for instance, by considering
separately the cases (t* — )Tz > 0 and (t* — u)Tz < 0.

Let us assume next that 7 has a non—degenerate multivariate normal dis-
tribution and let z € IR™ be fixed. Then the random variable 5Tz, being
a linear transformation of a random vector with a non—degenerate normal
distribution, is normally distributed (see Section 2.3.2). We obviously have
i := E[nTz] = uTz and 6% := Var[nTz] = 2TVz. An easy computation
gives:

- /|z|e 2dz——\/' / e Tz
- 2=\ 2vaTe

This implies that for a non—degenerate normal distribution the the models with
absolute deviation and those with quadratic deviation are equivalent. Note,
however, that due to the scaling factor /27 above, in the model (5.12) with a
quadratic constraint, a scaling in the parameter « has to be accounted for.

n'z— Tz

Blly"e - el = &E[ -




174 STOCHASTIC LINEAR PROGRAMMING

From the statistical point of view the natural measure for absolute deviations
would be the absolute deviation from the median, instead of the expected value.

The difficulty is that we are dealing with linear combinations of random vari-
n

ables nTx = mez The median of nTx is in general by no means equal
i=1

to the linear combination of the medians of the components of 7. This makes

it extremely difficult to build numerically tractable median—based optimization

problems of the deviation type.

5.3 Quadratic semi—deviation

In both of the previous sections we employed risk measures which pe-
nalized deviations in both directions. The quadratic risk measure Q(z) =

E[(nTz — £)2] (5.1) evaluates upper— and lower deviations of nTx with re-
spect to the target random variable £ in the same manner. This observation
holds also for the standard deviation o(z) = /E[(nTz — uTz)?] (5.11) with
respect to the deterministic target 1~ z, and for the absolute—deviation counter-
parts A(z) (5.15), and A4(zx) (5.24). All of these risk measures model risk as
deviation from a target, irrespectively of the direction of this deviation.

In many modeling situations, however, the direction of deviation matters.
In such cases one of them is favorable (gain) and the other is disadvantageous
(loss).

We introduce the following risk measures for random variables:

ot (6) B[57)7),

6" = VE[@ ), veL]

both of them being defined on the linear space of random variables with fi-
nite variance and with z~ = max{0, —2}, 2 = max{0, z} standing for the
negative— and positive part for a real number z, respectively.

Let us assume that the second moments for (T, £) exist. The corresponding
evaluation functions, denoted by Q™ (z) and Q™ (), respectively, are defined
as

Q" (z)

Q——(:L.) \/IE[ ( ("7T37 — €)+ )2 ] (528)

VE[((nTz - €)7)?]

These measures are interpreted as measuring the upper/lower deviation between
nTx and &, Both Q1(x) and Q™ (z) are convex functions; this will be proved
in a general framework in Section 7.2, see Propositions 7.2 and 7.5 there.

Let us assume that negative values of the random variable {(z,n,&) =
nTz — & represent losses. Then the following prototype optimization problems
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result

min c¢Tz

st. VE[((nTz—€)")2] <k (5.29)
T eB

and

5.30
s.t. x €B ( )

min /E[((77% ~ &) ] }

both of which are convex optimization problems. They can be equivalently
written, due to the fact that the function 1/Z is strictly monotonically increasing,

as

min Tz

st. Bl((nTz—-€7)%] <=k (5.31)
T eB

and

min Ty —6)7)2
E[((n £7)°] } (5.32)

s.t. r €B

Let us discuss the case when (7, £) has a discrete distribution specified in
(5.19) on page 171. In this case our problems assume the form:

min cTz
N
st. Y p((tFz—h¥)7)? <k, k=1,...,N (5.33)
k=1
x €eB
and
N
: ko _ pky—32
min ; pk( (t z—h ) ) (5.34)
s.t. x € B.
By introducing auxiliary variables yi, £ = 1,..., N, these problems can be

written equivalently as follows:

min clz )
N
2
s.t. Zpkyk <k, k=1,...,N
k=1

(5.35)
the 4y, >hE k=1,...,N

y >0, k=1,...,N
x € B. )
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and
N
min Zpky,%
k=1
st. thx 4y >hF k=1,...,N

y >0, k=1,...,N
T € B.

(5.36)

7/

Problem (5.36) is a convex quadratic programming problem whereas (5.35) is
a quadratically constrained convex optimization problem.

For proving the equivalence of (5.33) and (5.35), as well as of (5.34) and
(5.36) let us make the following observation. If (£, 9%,k = 1,..., N) is a fea-
sible solution of either (5.35) or (5.36), then the constraints imply the inequality
((t*% — h*)~ <y, for all k. Consequently, in both cases

N N
D ook —p5)7) <> pkdi
k=1

k=1

holds. From this the equivalence follows in a straightforward way; the detailed
proof'is left as an easy exercise to the reader.

Analogously as in both previous sections we discuss the variants measuring
deviations from the expected value.

05, (9 =07(z) = VE[((J - E[)T
05y(®) =07(2) = VE[((J—B[J])"

These are called upper standard semi—deviation and lower standard semi—
deviation, respectively. The evaluation functions are obtained by substituting
(n — w)Tz — (& = pny1 for 9 which leads to convex optimization problems
analogous to (5.31) and (5.17). In the case of a finite discrete distribution, the
linear programming formulations coincide with (5.35) and (5.34) provided that
the definitions t* := (7% — 1)T and h* = &% — i, 1 are used.

We discuss the important special case where £ = 0 holds separately. The
valuation functions take the form:

oT(z) = E[((nTz - puTz)t)?]

o= (x) = VE[((nTx - pTz)~)?]
which are interpreted as measuring the upper/lower deviation between 7* x and
its expected value uTz. Because of its importance in practice we formulate

the optimization problems for the case when £ has a finite discrete distribution
explicitly. With t* now considered as a column vector, (5.33) and (5.34) have

)],
)2, ¥ e Ll

(5.37)
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the form:
min Tz
N
st. > pe((tF-wT2)7)? <k, k=1,...,N (5.38)
k=1
T €B
and

N
min Y pe( (¢ — p)Tz)" )2
k=1

(5.39)
s.t. z €B
whereas (5.35) and (5.36) assume the form
min 'z )
N
s.t. Zpky% <k, k=1,...,N
k=1 3 (5.40)
(tk — ) Tx +y, >0, k=1,...,N
ye 20, k=1,...,N
z €B. J
and
N
min Zpky%
k=1
> (5.41)

st. (t*—w)Tz 4y >0, k=1,...,N
ye >0, k=1,...,N
T € B. J

The importance of introducing this type of risk measures has first been recog-
nized by Markowitz [189] who also applied them in financial portfolio opti-
mization.

5.4  Absolute semi—deviation
Similarly to the way for constructing a semi—deviation variant for quadratic
deviation, we get the following semi—deviation measures:
o) = BUT],
05, (®) = B[], deL,

siC

defined on he space of random variables with finite expected value and with
2z~ = max{0, —z}, 2t = max{0, z} for any real number z. Note that we do
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not obtain new risk measures: These risk measures have been already discussed

in Section 4.1, in connection with integrated chance constraints, see (4.3) on

page 150. Now we consider them again, this time in relation with the absolute—

deviation risk measure g, defined in (5.14). Using the relations z = 2t — 2~
. 1 1

and |z| = 2% + 2z~ we obtain that 2~ = §(|z| —z)and 2t = §(|z] + 2) hold.

Thus we have

ot (9)
o= (9)

sic

(E[19]]+EW]) = 3 (o,(9) + E[])

1
: 5.42
L(B([9]) - B[9)) = } (2,(9) - Bl9]). (542)

The evaluation function A(z) (5.15) defined on page 170 has now the semi—
deviation counterparts:

K(z) =E[nTz - )] = 1 (B[InTz — &|] + (W7 — pins1) )
H(z)=B[n"z - &)T] = 5 (BllnTz — £|] - W'z — pns1) )

which are the separate integrated probability functions defined in Section 4.1
on page 155. The following relations hold:

K(@) =} (A@) + (1" — 1))
H(z) = } (Al@) — (4T — i) ).

According to Proposition 5.2 on page 170 A(-) is a convex function, conse-
quently both K (z) and H(x) are convex functions, too.

Turning our attention to the case when the lower/upper absolute deviation is
measured with respect to the expected value, we obviously have (see (5.42))

Oan(®) = E[(9 — B[] ] = j0u,p(9)

Oap(®) = E[(9 — E[]) 7] = joyup(9)-
This implies that the optimization model for minimizing the corresponding
evaluation function will deliver the same results as its mean—absolute—deviation
counterpart. With the valuation function in the constraint, the only difference

with respect to (5.25) will be the right-hand-side of this constraint: with the
semi—deviation measure this will be 2k.

(5.43)

(5.44)

6. Modeling risk and opportunity

The different SLP model classes in the previous sections have been identified
as follows: a quality measure p has been chosen first which characterizes the
model class. Based on the selected quality measure, the corresponding evalua-
tion function V() := o(¢(x, §) was utilized in building SLP models belonging
to the class of models.
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In this section we will take a look on some modeling issues concerning
SLP models. For the sake of simplicity we will consider the following pair of
prototype problems

{ min V(z) { max V(z)

s.t. r €B s.t. r €B 6.1)

with the evaluation functions V' in the objective. Analogous reasoning applies
for SLP models involving constraints with V.

Before proceeding let us emphasize that the two problems in (6.1) are by no
means equivalent from the numerical point of view. Assuming, for instance,
that V is a convex function, this implies that the minimization problem is in
general much more easier to solve numerically than its maximization counter-
part. Applying the usual trick for transforming the maximization problem into
a minimization problem involving —V in the objective, does not help in this
respect, of course.

Let us point out next that, from the modeling viewpoint, the mere definition
and mathematical properties of a quality measure ¢ do not a priori imply a
selection between the two possible models in (6.1). To see this, consider the
standard deviation gg,(¥) := o(9) := E[(¥ — IE[19])2]% as a quality measure,
discussed in Section 5.1. Notice that the implied evaluation function V is a con-
vex function. With this evaluation function, the SLP model (5.10) on page 169
corresponds to the minimization formulation in (6.1). The usage of this model
presupposes the following modeling attitude: the modeler interprets any de-
viation from the expected value as risk, quantifies the deviations by choosing
the standard deviation as quality measure, and seeks to minimize this quality
measure. In this modeling context, the quality measure g, can be interpreted
as a risk measure. Note that assuming a symmetric distribution, a large stan-
dard deviation indicates that ¥ exhibits large deviations both in the upward and
downward direction with respect to the expected value. Consider now a gam-
bler. For she/he the upward deviations represent an opportunity for winning,
therefore larger standard deviations will be preferred to smaller values. This
modeler would choose the maximization problem in (6.1). Consequently, for
such a modeler the interpretation of the same quality measure g, is clearly an
opportunity measure. The modeler faces a non—convex optimization problem.

In the previous example the same quality measure served simultaneously as
risk- and opportunity—measure, the sole difference was the way, how it has been
used for building SLP models. Both for the risk—averse modeler and for the
gambler the standard deviation is not the best way for building an SLP model.
To see this, and to further explore the ways for modeling risk and opportunity,
let us assume that

= negative values of {(z,¢) — IE[((z,£)| are interpreted as something un-
pleasant, like costs, loss in wealth, or loss in health;
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m positive values of ((z, &) — IE[((z, )] quantify something desirable, like
monetary gains or stability of an engineering structure;

n ((z,€&)—E[((z,&)] = 0expresses neutrality in the risk—opportunity aspect.

Instead of the standard deviation, in this situation it makes sense to choose
the lower— and upper standard semi—deviations (see Section 5.3) as quality
measures. The risk~laverse modeler would choose the lower semi—deviation
95(19) := IE[(97)?]2, interpreted as a risk measure. The corresponding opti-
mization problem is the minimization problem in (6.1). A modeler who does
not care for risk would choose the upper semi—deviation Qa“ (9) == E[(97)?]2
with the corresponding maximization problem in (6.1). The corresponding
evaluation functions are convex functions for both the lower— and for the up-
per semi—deviation, see the discussion on page 174. Therefore, again, the
risk—averse modeler faces a convex optimization problem whereas the modeler
neglecting risk has a non—convex optimization problem to solve. The idea of
combining the two quality measures, for instance as 0 ~ /\,1_)22L with A > 0,
and minimizing the resulting evaluation function, still results in a non—convex
optimization problem.

Another possibility for employing a suitable quality measure is to work
with separate integrated probability functions, see Section 4.1, The risk—averse
modeler would choose g_ (1) := IE[¢~] with the corresponding minimization
problem whereas her/his risk—seeking counterpart would employ g:w(ﬂ) =
IE[¢™] and the maximization problem. Both corresponding evaluation functions
are convex, see proposition 4.2, therefore analogous comments apply as for the
semi—deviations. There is, however, an essential difference: now it makes
sense to combine the two quality measures. This leads to the quality measure
oS discussed on page 153 with a € [0,1]. For a € [0, %) it serves as a
risk measure with a convex evaluation function whereas for a € (3, 0] it can be
interpreted as quantifying opportunity with a corresponding concave evaluation
function.

Finally let us discuss the usage of probability functions in modeling. Con-
cerning separate probability functions, we have seen in Section 2.3, that, for
certain special cases convex programming problems arise. This is true both
for the risk—averse and for the risk—secking attitude. For joint probability con-
straints the situation is different, see Section 2.5.3. Convex programming prob-
lems can only be obtained when interpreting the quality measure as a measure
of opportunity, that means, the evaluation function is to be maximized.

7. Risk measures
We consider random variables of the form

((z,n,6) =nTe—¢
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where (1, £) is an n + 1-dimensional random vector defined on a probability
space (Q, F, IP); n denotes an n—dimensional random vector and £ is a random
variable. Whenever the expected value of (T, &) exists we will employ the
notation y := E[n] € R" and p,41 := EE[¢] € R.

In the previous sections we used a two—step scheme in presenting the various
stochastic programming model classes. In a first step we have specified a
function ¢ : T — IR for evaluating random variables with Y being some linear
space of random variables, defined on a probability space (€2, F, P). We have
called ¢ a quality measure concerning random variables. In a second step,
provided that {(z,7n, &) € T holds for all z, we have substituted {(z, n, §) into
o thus getting the evaluation function V, V(z) := o({(z,n,£)). V has been
subsequently used for building SLP models. Assuming that ¢ quantifies risk,
V has been built into SLP models as follows: Ifin the objective, then V' (x) was
minimized and if in a constraint then constraints of the type V' (z) < x were
employed. This modeling attitude justifies the usage of the term “risk measure”
for p. For optimization models involving V' in the above outlined fashion, the
(generalized) convexity of V is clearly an advantageous property. It leads to
optimization problems for which we have good chances for finding an efficient
numerical solution procedure.

For fixed (n,£), ¢(-,n,§) is a linear—affine function, thus there is a close
relation between structural properties of p and (generalized) convexity proper-
ties of V. The purpose of this section is to discuss properties of various risk
measures and their impact on the evaluation function.

Let (Q, F, P) be a probability space and ¢ be a random variable on it. The
distribution function of ¥ will be denoted by Fy and © denotes the support of
9. Recall, that T has been chosen as one of the linear spaces listed in (1.6) on
page 78.

A function g : X — IR, defined on a linear space X, is called positive
homogeneous, if forany A > Oandz € X, therelation g(Az) = Ag(z) holds. g
is called subadditive, if for any z,y € X the inequality g(z+y) < g(z)+g(y)
holds. For later reference the following simple facts are formulated as an
assertion:

PROPOSITION 7.1 Let g : X — IR be a function defined on a linear space
X. Then

a) if g is both positive homogeneous and subadditive then it is convex.

b) Suppose that g is positive homogeneous and convex. This implies subaddi-
tivity.

Proof- In fact, let z,y € X and A € (0, 1) then we have

g(Az + (1= N)y) < g(Az) +g9((1 = Ny) = Ag(z) + (1 — N)g(y)
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where the inequality follows from subadditivity and the equality from positive
homogeneity. This proves a). Suppose that g is positive homogeneous and
convex and let x,y € X then

1 1 1 1
9(z +y) = 9(2[5z + 5u1) = 29(52+ 5y) < 9(2) + 9(v)
from which b) follows. a
The next proposition establishes a relation between properties of ¢ and prop-

erties of the corresponding evaluation function V.

PROPOSITION 7.2  Let Y be a linear space of random variables and
0: T — R areal-valued function on Y. Assume that "z — & € X holds for
all z and let V() := o(nTz — ). Then we have:

a) If p is convex then V is convex too.
b) If ¢ =0 and g is subadditive then V is also subadditive.

¢) If¢ = 0and pis positive homogeneous then V is also positive homogeneous.
Proof:
a) Letz,y € R™ and A € [0, 1] then we have
VOz+ (1 -XNy) = o™z +(1-Ny) —§)
oMz + &) + (1= ATy +¢))

< ez +€) + (1= NenTy +¢)
= AV(x)+ (1 -=-1)V(y).
Assertions b) and ¢) follow similarly. a

Notice that in the above assertions the stated properties of V" hold for any
probability distribution of ¢ € Y. Thus we obtain convex SLP problems under
the sole assumption ¥ € T. By proving the convexity of a specific risk measure
0, we obtain alternative proofs of convexity of the corresponding SLP problems
discussed in the previous sections.

7.1  Risk measures in finance

In financial theory and praxis, more closely in portfolio optimization, an
increasing effort in research is devoted to identify those properties of risk mea-
sures, which are distinguishing features. The general aim of the research is
twofold. On the one hand, the goal is to develop an axiomatically founded
risk theory in finance. On the other hand, the aim is to provide guidelines for
practitioners for choosing an appropriate risk measure in their daily work and
to support the construction of appropriate standards for risk management in
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the finance industry. Several different definitions and systems of axioms have
been proposed in the financial literature. Below we simply list some of the cur-
rent definitions without discussing their intuitive background and implications,
these being application—specific.

Kijima and Ohnisi [165] propose the following definition: gisarisk measure,
if the following properties hold for any ¥, ¥1,9%2 € Tand \,C € R, A > 0O:

(K1) o( +92) < o(¥1) + 0(92)  (subadditivity)

(K2) o(XI) = Ao(¥) (positive homogeneity) a1
(K3) o(d) 20 (nonnegativity) :
(K4) o(0+C) = o(¥) for C >0 (shift invariance)

The first paper addressing the important issue of axiomatic foundation is by
Artzner, Delbaen, Eber, and Heath [6]. The authors propose the axioms below
and explore their implications. We formulate the axioms for random variables
representing losses, whereas in the original paper the interpretation is future
value.

(A1) o(91 + 92) < o(91) + o(F2) (subadditivity)
(A2) o(A9) = Ap(9) (positive homogeneity)
(A3) If ¥ <9 then p(1) < o(¥2) (monotonicity)
(A4) o(¥9+C)=p(W)+C (translation invariance)

(7.2)

The authors call a function g for which the above axioms hold a coherent risk
measure. Concerning SLP models in general, in an intuitive sense the axiom A4
looks rather unusual. The reason for including it in this form is that the authors
consider capital requirement problems, see [6]. For distinguishing between
the different requirements concerning translation in (7.1) and (7.2), we use
the terms “shift invariance” and “translation invariance”, respectively. In the
system of axioms of Follmer and Schied [83], [84], subadditivity and positive
homogeneity is replaced by the weaker requirement of convexity

(F1) p(9) isaconvex function (convexity)
(F2) IfdY; <9y then p(¥1) < p(¥2) (monotonicity) (7.3)
(F3) o(W+C)=p(W)+C (translation invariance)

leading to convex risk measures. Coherent risk measures are obviously convex;
a convex risk measure is coherent, if it is positive homogeneous (see Proposi-
tion 7.1). Rockafellar, Uryasev, and Zabarankin [252] introduce the notion of
deviation measure for Y = L]. Their the axioms are

(D1) o(91 + 92) < o(91) + o(92) (subadditivity)

(D2)  o(A9) = (V) (positive homogeneity)
(D3) () > 0 for ¥ non—constant, (7.4)
o(9) = 0 otherwise (nonnegativity)

(D4) o(¥+ C) = o(9) (shift invariance)
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The authors also define an associated risk measure called expectation—bounded
risk measure, see [252], and explore the implications in portfolio theory. Notice
that for a deviation measure the axioms (7.1) hold; the axioms for a deviation
measure can be considered as a refinement (restriction) of (7.1).

Due to the different prescription for the case of a translation, the set of risk
measures obeying (7.1) or (7.4) and the risk measures for which either (7.2) or
(7.3) hold, are disjunct sets.

We feel that there is not much chance that a general definition of a risk mea-
sure can be given, which would be acceptable also beyond the field of finance.
From our general stochastic programming point of view, the convexity of a
risk—measure is surely a desirable property. Proposition 7.2 implies, namely,
that the SLP models, which are built on the basis of such a measure, are convex
optimization problems. From this viewpoint, a risk measure can be considered
as more valuable, when beyond serving as a diagnostic metric, it can also be
built into efficiently solvable optimization models which involve, for instance,
minimizing risk. Without exception, all of the above definitions correspond to
risk measures of this type.

7.2 Properties of risk measures

This section is devoted to discussing convexity properties of risk measures
which have been utilized for building stochastic programming models. Unless
explicitly referring to the axioms (7.3) of convex risk measures, under convexity
we will simply mean convexity of the risk-measure—function g. We will use
the following notation: the functions et : R — Ry ande™ : R — R, are
defined as e7(2) = 2T and e~ (2) = 2™, respectively, where 2™ = max{0, z}
and 2~ = max{0, —z} are the positive— and negative part of the real number
z. Let further € denote the absolute-value function e(z) = |z| for all z € IR.
The relation € = ™ + &~ obviously holds. Note that e+, ™, and ¢ are positive
homogeneous and subadditive functions, therefore they are convex.

PROPOSITION 7.3 The following risk measures are positive homogeneous
and subbadditive. Moreover, they are also monotonously increasing and trans-
lation invariant. Consequently, they are convex risk measures in the sense of
axioms (7.3) and being positively homogeneous they are also coherent accord-
ing to axioms (7.2).

(4) 0,(9) := B[], ¥ € Ly, (Section 4);
(B) 0, (¥) := Iéla(;( 9, e L3’ (Section 1, page 81); note that we have changed
€
minimum to maximum for getting a risk measure;
1 1
— = 1 +

©) Q@) =ve(¥,a) = min [z+ 1?.;IE[(ﬂ——z) Il, 9eLy,0<a<

1, (Section 4.3).
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Proof:
(4): | The assertion holds trivially because g, is a linear function.
(B): |Let A > 0 be a real number and ¥ € £5° with support ©. Then \O is a

closed set therefore it is the support of M. For the definition of the operation
AO see (2.64) on page 124. Thus we have

05, (A9) = max 9 = max A\ = Ao, (9)
PeXO CASS]

For proving subadditivity let 97, 92 € £7° with supports ©; and O, respec-
tively. Let © := ©1 + ©4 where the sum of the two sets is defined according
to (2.64) on page 124. From the discussion on that page it follows that © is a
closed set. Consequently, © contains the support of ¥ + 2. Thus we have

0 (V1 +¥2) = _  max (91 + 2]
Y1+ €supp{d1+92}

< max [¥ +92] < max 9; + max Dq.
91+92€0 91€60, Y2€09

For any real number C, the support of ¥ + C is © + {C}, from which the
translation invariance immediately follows. If ¢;(w) < ¥2(w) holds for all
w € Q2 then we obviously have g, (¥1) < g, (92).

Let A > 0and 9 € £y. If A = 0, then we have
. 1
Qv (M) = 05, (0) = mzln[z + EE[(‘“Z’)ﬂ =0,

where the last equality follows from

R er COUEE AU S

Assuming A > 0 we have

B M) = min[z+ [0~ 2)*]]

= min[ £+ B[ - £)7))

Amin [y + ——TB[(9 ~ 4)*]] = Adl (9)

For proving subadditivity we utilize the fact (see Section 4.3) that the minimum
in the definition is attained. Let 91,79 € Ly and z1, 25 corresponding solutions
of the minimization problem in the definition. For proving subadditivity it is
sufficient to prove convexity (see Proposition 7.1). Let 0 < A < 1, z) be the
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minimum for Ad; + (1 — A)¥s, and 2y = Az; + (1 — A)zp. Utilizing the
convexity of o we get

Il

. . 1
gCVaR(ﬁl + 192) mzln [Z + i—_—_—a]E[(p ()\191 + (1 — )\)’192 — Z))]]
2y + I—E-EIE[(,O"_()\Q% +(1- /\)192 - Z)\)]
2y + 2 Elet (M1 + (1 — M) — 2)]

QSVaR(ﬂl) + QgVaRw?)‘

IAN

IA

Due to the fact that ™ is a monotonically increasing function, the monotonicity
of o, follows immediately. Let C' € R then we have

(9+0) = min[z+ B[~ (= O)*]]

QgVaR
= Ctmin[z-C+ ii—am[w— (z = C)H]
= Q) +C

thus the translation invariance follows. a

For the next group of risk measures translation— or shift—invariance does not
hold, but we have:

PROPOSITION 7.4 The risk measures listed below are positive homogeneous
and subbadditive and they are also monotonous.

(D1) gt (9) :=E[9F], ¥ € L1, (Section 4.1);
(D2) o (¥9) = B[], ¥ € L], (Section 4.1);

(B) ¢%.(9) = alB[Y] + (1 - 20)E[I*) = agy(9) + (1 - 2a)¢ (9), ¥ € L],

s1C

0 < a <3, (Section4.1).
Proof:
(DI):| We have gt (9) = E[p*(9)]. The function ¢ being positively ho-
mogeneous and subadditive, as well as monotonously increasing, the assertion

follows immediately. In fact, for proving subadditivity let ©1, 92 € £, then we
have

o (91+92) = Blp* (91+92)] < Blp™ (91)+¢* (¥a)] = o (91)+0] (92).

The proof for positive homogeneity is analogous. Q:i'c turns out to be a mono-
tonically increasing function.
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(D2): |In this case o_ (¥) = E[p~ ()] holds. The positive homogeneity and
subadditivity of ¢~ implies these properties for o_ . ¢~ being monotonously
decreasing, ¢_ is monotonically decreasing, too.

This follows immediately from the linearity of the first term and from
DI). O

In the next group neither translation—invariance nor monotonicity holds.
Nevertheless, we have

PROPOSITION 7.5 The following risk measures are positive homogeneous
and subbadditive.

(F) 0o(9) == /E[$?], 9 € L2, (Section 5.1);
(G) 0,(9) :=E[|9]], 9 € L], (Section 5.2);
(H) o (¥) := VE[(¥+)] and
05 (9) := \/E[(9")7], ¥ € Ly, (Section 5.3).

Proof: The positive homogeneity is trivial for all cases therefore we confine
ourselves to proving subadditivity.
Let 91,99 € Ly then the Minkowski—inequality immediately yields

0o(01 +92) = (B[ +02)2])F = (B9, +0])?

(IE[|191|2])% + (]E[|192|2])% = 04(91) + 04(92).

AN

We have g, (9) = IE[(9) ] and the assertion follows from the subaddi-
tivity of ¢.
We prove the assertion for gg, the proof for % is analogous. We utilize

the subadditivity of ¢o* and again the Minkowski-inequality:

ol

oy (91 +92) = (E[((01+92)%)?])

IA

(B[} +03)°])*
(B97)2))% + (BL(95)2])F = () + gF (92).
O

IA

Finally we turn our attention to the deviation measures in Section 5.
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PROPOSITION 7.6 The following risk measures are deviation measures ac-
cording to the axioms (7.4).

(D) 044(9) = 0(8) := E[W - BT, 9 € L]

@) eup(®) :=E[18 —EW]|], 0 €Ly,

®) 0%,(0) i= o* (@) = /E[[@ = BE)T)] and
054(9) = 0™ (@) == VE[((9 —EP))~ 2], 9 €Ly

@ o, (9):=E[(¥-EWY)T]|= 20uap(V) and
ouap(®) = E[(9 —EW])"] = §QMAD(19), 9€ E}.

Proof: Note that each one of these risk measures results from an already consid-
ered risk measure by substituting 9 by ¥ — IE[1]. Therefore it is clear that each
one is positive homogeneous and subadditive. All of them are nonnegative and
can only be zero if 9 is constant. Finally the shift-property D4 holds trivially. O

Recall, that due to proposition Proposition 7.1, the positive homogeneity and
subadditivity of the risk functions considered so far implies that all of them are
convex.

The risk measures listed below have been used for building SLP models but
have not yet been considered:

M) g,(9) :=1P(9 > 0), ¥ €V, (Section 2);
(N) chxp(l(}) =E[-J|Jd<0], de L’i, (Section 4.2);

) ¢ (9) = v(¥,a) == min{z | Fy(z) =2 a}, 9 €V,0<a <],
(Section 3).

They are non—convex in general. Despite this fact, we have seen in the previous
sections that under some assumptions concerning the probability distribution
and parameter values, using these quality measures resulted in convex or in
generalized convex optimization problems. The point is the following: having
a convex risk measure p, this leads automatically to convex evaluation functions
(see Proposition 7.2) and thus to convex optimization problems. In other words,
the convexity of p is a sufficient condition for getting convex optimization
problems. The convexity of p is by no means also necessary for this, as the
convex optimization models, built on the basis of the aboye risk measures, and
presented in the previous sections demonstrate.
At last let us consider risk measures for random vectors, introduced in Sec-
tion 4.1 as
(P) o (¥) := [11151?_%(3 9] and gji‘c(ﬁ) =E[max 9] ], J¢€ E}

jic 1<i<s
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where 1 is now an s—dimensional random vector. These risk measures have the
properties:

PROPOSITION 7.7 Both gj‘c and o, are positive homogeneous and subaddi-
tive. Moreover, both of them are monotonous.

Proof: The positive homogeneity is obvious. We prove the subadditivity for
gﬁt, the proof for gj; is analogous. Let 19(1), 92 e E} then we have

ot (W +9®) = E[ max (0" +0{)*]

1<i<s

sIE[“mXu0$U++%ﬁf”+@

1<i<s

<E [ max[(ﬁgl))ﬂ] +E [ ma,<){s[(191(.2))+]]

1<i<s 1<i<

= gH(I) + g (9).

where for the first inequality we used the subadditivity of ¢+ and the second
inequality follows from the properties of the max operator. From the properties
of ot and ¢ it is also clear that jS+c is monotonically increasing whereas O
is monotonically decreasing. O

7.3  Portfolio optimization models

For illustrating the use of various risk measures in practice, we present some
portfolio optimization models. We consider a one—period financial portfolio

optimization problem with n risky assets. LetnT = (11, ...,7,) be the vector
of random returns of the assets and r; := IE[n;], i = 1,...,n be the expected
returns. The asset—weights in the portfolio will be denoted by 1, . . ., x,, thus

¢(x,n) := nTx represents the random portfolio return. With 4 standing for a
prescribed minimal expected return level, we consider optimization problems
of the following form:

P(p) = min o(nTz)

st. rlz > u
(7.5)

1Tz =1

x €8

where B is a polyhedral set determined by additional linear constraints, o is a
risk measure, and 17 = (1,...,1) holds. The interpretation is the following:
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we are looking for a portfolio with minimum risk, under prescribing a minimum
acceptable level i of expected return.

Some well-known particular cases, differing in the choice of the risk measure
are the following:

m o =gy, cotresponds to the classical minimum-variance model of
Markowitz [189];

m 9 = g, leads to the mean—semivariance model of Markowitz [189];

® 0 =0, gives the mean-absolute-deviation model of Konno and
Yamazaki [172];

" o= ng corresponds to the mean—CVaR model of Rockafellar and
Uryasev [250];

" = gﬁaR results in the mean—VaR model widely used in the finance industry,
see, for instance, Jorion [131].

Note that all of these risk measures belong to the class of deviation measures.
Although problem (7.5) is also useful in its own right, in finance this problem
is considered as a parametric optimization problem with parameter u. The
optimal objective value 1(u), as a function of u, plays an important role. Its
graph in R? is called the efficient frontier, corresponding to the risk o and
return p. Traditionally, the efficient frontier is represented graphically with
the horizontal axis corresponding to risk and the vertical one corresponding to
return.

The reason behind considering the efficiency curve is the following: we ac-
tually face a bi—objective optimization problem, where we would like to maxi-
mize the expected return and at the same time minimize risk. In all cases listed
above, 9(u) is strictly monotonically increasing in u, on the interval where
the constraint rTz > p is active at the optimal solution. Consequently, on
the y~interval corresponding to this interval, ¢)~! exists and is strictly mono-
tonically increasing. Thus it makes sense to consider the following alternative
representation of the efficiency curve:

p(¥) = max rlz

st o(nTz) <y

i (7.6)

z =1
z €B

where now 1 > 0 plays the role of a parameter. The interpretation of this
problem is the following: we maximize expected return under the condition
that the maximum acceptable risk is 1.
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Due to the multi~objective character of the problem setting, it is not surpris-
ing that a third characterization of the efficient frontier is via the optimization
problem

max 71z —vo(nTz)
st. 1Tz =1 (1.7)
xz €8

where in this case v > 0 is acting as a (risk—aversion) parameter for the effi-
ciency curve. The evaluation function for the risk is accounted for by an additive
term with a negative sign.

For details on the relationship between these three problems see, for instance,
Palmquist, Uryasev, and Krokhmal [218].

Let us finally remark that taking {(z, 7, £) := nTz — £ instead of {(z, ) :=
nT z also leads to an important class of portfolio optimization problems. In this
case £ may represent, for instance, the random return of a benchmark which
can be, for instance, an index like the Dow Jones Industrial Average.



Chapter 3

MULTI-STAGE SLP MODELS

For various SLP models with recourse, we present in this chapter properties
which are relevant for the particular solution methods developed for various
model types, to be discussed later on.

1.  The general SLP with recourse

As briefly sketched in Section 1, an SLP with recourse is a dynamic decision
model with T' > 2 stages, as illustrated in Fig. 1.1,

& & 84 &r

Figure 1.1. Dynamic decision structure.

where for stagewise emerging feasibility sets
Bt($17' o awt—-l;g% T 7§t)a t= 17 T 7T7
we take successively

— a first stage decision x; € By C IR™; then, after observing the realization
of a random variable (or vector) &o,

— asecond stage decision z5(z1; &2) € Ba(x1;&2) C IR™; then after observ-
ing the realization of a further random variable (or vector) £3,
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— athird stage decision z3(x1, z2; 2, &3) € Bs(z1, x2; &2,£3) C IR™3; and so
on until, after observing the realization of &r, finally

— aT-th stage decision
zp(T1, -, 271580, -, &r) € Br(zy, -, xpr_1;€2,- -+, ér) C R,

Here the feasibility set By(z1, - -+, x¢—1; &2, - - -, &) for ¢ is given by (random)
linear constraints, depending on the previous decisions x1,- - -, 2;—1 and the
observations of s, - - -, &;.

For each stage t the decision a4(z1,- -+, zt—1;&2, - - -, &) involves the ¢-th
stage objective value ¢ (&2, -, &) z¢(21, - - -, Te_1; &2, - - -, &), and the goal
is to minimize the expected value of the sum of these T" objectives.

More precisely, the general model may be stated as follows: Given a proba-
bility space (£2, G, P), random vectors & : 2 — IR, and the probability dis-
tribution P induced by ¢ = (¢],--+,é1)T : Q@ — RE, R=ry 4+ +rp,
on the Borel o-field of IR, with ¢; = (&T,---,&5)T being the state variable
at stage ¢, the multi-stage stochastic linear program (MSLP) reads as

T
min{cfz1 + B ¢f (¢)2:(C)}

t=2
A = b

1 ; ' (1.1
An(@ar +) An(@)e-(Gr) = bi(G) as,t=2,---,T,
T=2
3?120, xt(Ct) 2 0 a.s.,t=2,---,T, )

where z; : R™1 Tt — R™ is to be Borel measurable, implying that
2¢(Ge(+)) + @ — R™ is Fi-measurable, with F; = o({;) C G being the
o-algebra in §2 generated at stage ¢ by ;. With {; = & being constant and
therefore F; = {0, 2}, it follows that 7; C Fy4q fort = 1,---,7 — 1, such
that F = {F1, Fe, - - -, Fr} is afiltration. With z;((;(-)) being F;-measurable
fort =1,---,T, the policy {a(¢:(:)); t = 1,---,T} is said to be F-adapted
or else nonanticipative.

The & : £ — IR™ being random vectors defined on the probability space
{Q, G, P} implies that they are G-measurable. We say that & € L2(£2, R"™)

if, in addition, they are square integrable, i.e. if / 1€ (w)]|2P(dw) exists.
Q

ASSUMPTION 1.1 Let
- & € L2, R™) W,

— A (), be(0), ci() be linear affine in C; (i.e. Fy-measurable), where A (-)
is @ my X np-matrix.
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Due to this assumption, also the elements of A¢r(-),b(-), () are square-
integrable with respect to P. Hence, requiring that z; € L?(£2, R™) Vt
holds, Schwarz’s inequality (see e.g. Zaanen [310]) implies in particular that
E(cf (&)xe(¢)], t =2, -+, T, exist, such that problem (1.1) is well defined.

Sometimes the following reformulation of (1.1) may be convenient: Given
— aprobability space (2, G, P);

- F,t=1,---,T, being o-algebras such that 7; C G V¢ and F; C Fy14 for
t=1,---,T—1(e {F|t=1,---,T} being a filtration);

- F:={F, -, Fr}, where possibly, but not necessarily, Fr = G;

— X alinear subspace of L2(2, R™) (with respect to (€2, G, P)), including
the set of F;-simple functions;

— M; the set of F;-measurable functions € — IR™ and hence, X; N M;
being a closed linear subspace of X;

then problem (1.1) may be restated as
T
min IE {Z c;rxt }
t=1

t
ZAtrm'r = bt a.S. (12)
t=1,---,T,
xz > 0 as.

Ty € XiNM,; )
with Ay, by, ¢; assumed to be Fi-measurable for 1 < 7 < ¢, t=1,---,7,
and to have finite second moments, as implied by Assumption 1.1 (remember:
F1 = {0,Q}, such that A1, b1, ¢; are constant).

Following S.E. Wright [307] various aggregated problems may be derlved
from (1. 2) by usmg coarser 1nformat10n structures, i.e. subfiltrations F =
{.7-',5} 7 c ft+1, such that .7-"t C Fi, Vt, instead of the original filtration
F = {ft} Fe C Fopr, t=1,- T~ 1.

Denoting problem (1.2) as P(F, .7-" ), we then may consider

— the decision-aggregated problem P(F, F),
T
min IE {Z CtTt }
t=1

t
ZA“-{ET = bt a.s. (13)

Tt 0 as.
T & Xt ﬁ Mt )

v
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where Mt is the set of ft-measurable functions £2 — IR™, such that
¢ = (zF, -, 2)T is F-adapted;

— the constraint-aggregated problem P(F, F )s

min B {Z ctxt}
{Z At-,-.’bq- -7:t } = IE {bt ' f.t } a.s. (14)
t=1,---,T,
z > 0 a.s.
T € XiN M, )

i.e. x is F-adapted as in (1.2), and the constraints are stated in conditional
expectation given J;

—~ and the fully aggregated problem P j-: .7? defined as:

min IE {Z Elc, | Filz }
{ZAthT A } E {bt I ﬁt} a.s. Vi > (15)

Ty 0 a.s. Vi
T € X¢NM,; Vit. )

v

Observe that by Assumption 1.1 the expected values

¢
IE{ZAtTwT} and IE{b;}
T=1

exist and hence, the conditional expectations in (1.4) and (1.5),

E{Xt:AthT ft} and E{bt‘ﬁt;},
=1

are a.s. uniquely determined and Fi-measurable due to the Radon-Nikodym
theorem (see e.g. Halmos [111]). R R R
Denoting for the above problems P(F, F), P(F,F), P(F,F), P(F,F)

— their feasible sets by B(F, F), B(ﬁ, F), B(F, f) and B(j':, j':), and
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— their optimal values by inf(P(F, F)), inf(P(F,F)), inf(P(F,F)) and
inf(P(F,F)),

respectively, and following the usual convention in optimization theory that
inf{p(z) | z € B} = o if B =, S.E. Wright [307] mentioned the following
relations between the above problems:

PROPOSITION 1.1 For the feasible sets of the above problems hold the inclu-
sions

B(}' F) DB(]—' .7:) B(F, .7-') CB(.?-' f)
B(F,F)C B(F,F) B(F,F)2B(F,F),

implying for the corresponding optimal values the inequalities

inf(P(F, F))
inf(P(F, F))

inf(P(F,F)) < inf(P(F,F))

<
< inf(P(F, 7)) < inf(P(F,F)).

Proof: The above inclusions result from the following observations:

B(F,F) 2 B(F,F): Any {z;} € B(F, F) satisfies the constraints of (1.3)

and hence in particular the conditions z; € X; N J\//ft Vt. Since ft C F; Vi, we
then have z; € X; N M; Vt, such that {z,} € B(F,F).

B(F,F) C B(F,F): Any {z:} € B(F,F) is F-adapted and satisfies all
t
other constraints in (1.2), in particular the random vectors Z Agrzr and by,

=1
measurable w.r.t. F;, coincide almost surely, such that for any sub—o—algebras

t
]/-\'t C F; their conditional expectations IE {Z Az ft } and [E {bt ‘ ft },
T=1

being a.s. uniquely determined and Fi-measurable as mentioned above, coin-
cide a.s. as well. Hence we have {x:} € B(F,F).
The two remaining inclusions,

B(F,F) C B(F, F) and B(F,F) 2 B(F, F),

as well as the inequalities for the optimal values, are now obvious. O

REMARK 1.1 Concerning the fully aggregated problem (1.5) we have the fol-
lowing facts:

» Given that F is infinite, i.e. at least one of the g-algebras F; = o((:) ,t =
L,---,T,is not finitely generated (equivalently, at least one random vector
Ct has not a finite discrete distribution), and F is finite, then ’P(]—" F ) with
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[finitely many constraints and variables is clearly simpler to deal with than

P(F, F);

» for a sequence {.7? Y} of (finite) filtrations with successive refinements, i.e.
.7?;’ - .7?;’ +1t, under appropriate assumptions, e.g. for a corresponding se-
quence of measures P, on ﬁ} converging weakly to P (see Billingsley [16]),
we may expect convergence of the optimal values of (1.5) to that one of (1.2);

» according to Prop. 1.1, in general there is no definite relationship be-
tween the optimal values of (1.5) and of (1.2), as remarked for instance by
Wright [307] (p. 900); however there are special problem classes—in partic-
ular in the two-stage case—and particular assumptions for the multi-stage
case implying that inf(P(F,F)) yields a lower bound for inf(P(F, F)),
which can be used in designing solution methods, as we shall see later. O

First we shall deal with two-stage SLP’s. Under various assumptions on the
model structure and the underlying probability distributions, we shall reveal
properties of the recourse function and its expectation which turn out to be
useful when designing solution methods. Unfortunately, not all of these results
can be generalized to corresponding statements for multi-stage SLP’s in general.

2.  The two-stage SLP

In the previous section, for the T'-stage SLP we had the following gen-
eral probabilistic setup: On some probability space (2, G, P) a sequence of

random vectors & : 2 -— R™, ¢t = 2,...,T, was defined, such that
E=(&F,-- ,5%)T induced the probability distribution IP, on the Borel o-ficld
of R™%+"T Then the random vectors ¢ = (£7,---,68)T, t = 2,--- | T,

implied the filtration F = {Fy,---, Fr} with F; = o((;). Restricting our-
selves in this section to the case T = 2 allows for the following simplification
of this setup.

Assume some probability space (§2, F, P) together with a random vector & :
© — IR" to be given, such that 7 = ¢(£). Then ¢ induces the probability mea-
sure IP¢ on B, the Borel o-algebra in R", according to IP¢(B) = P(¢71[B])
VB e B'.

Besides deterministic arrays A € R™*™ b € R™, and ¢ € R™, for
the first stage, let the random arrays T'(¢) € R™*™, W(£) € R™2*"2,
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h(¢) € R™2, and g(§) € R™, be defined for the second stage as:

r 3
¢ = T+ ZTj &3 T, TV € R™*™ deterministic,
=
W) = W+ Z W2¢;; W, Wi e R™*™ deterministic,
= 2.1)
() = h+ Z K &5 h, K € R™ deterministic,
j:l .
9§ = g+ Z R TE ¢, ¢ € R™ deterministic.
j=1 y,

Then, with ¢ € L%(©2,IR") due to Assumption 1.1 and according to (1.2), the
general two-stage SLP with random recourse is formulated as

min B {2 + ¢%(&)y(€)} )
Az = b
Tz + Wy = () a.s. (2.2)
T > 0
y§ > 0 a.s.
y() € YﬂM,

J

where Y —corresponding to (1.2)—is a linear subspace of L%(£2, R"?) (with
respect to (€2, F, P)), including the set of F-simple functions; and M is the set
of F-measurable functions 2 — IR™2, To avoid unnecessary formalism, we
may just assume, that Y = L2(£2, R"2) which obviously contains the F-simple
functions and satisfies Y ¢ M.

Hence problem (2.2) is equivalent to

min B {cTz + ¢7(&)y ()}
Az =}
Tz + Wy = (f)b(é“) as. (2.3)
T 2
y& > 0 a.s.
y() € Y.

A brief sketch on modelling situations leading to variants of the general
two-stage SLP (2.3) is given in Chapter 1 on page 10.

REMARK 2.1 Instead of the constraints {Ax = b, © > 0} in (2.3) we also
could consider constraints of the form {Azxz < b, | < x < u} as in Chapter
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1, (1.1) on page 7, and the constraints {W (&)y(§) = h(§) — T()=, y(§) >
0 a.s.} of (2.3) could be replaced as well by {W (£)y(§) «x h(&) —T(&)z, | <
y(&) < @ a.s.}. However, in order to have a unified presentation, for two-stage
programs we stay with the formulation chosen in (2.3). O

Except for particular cases where it is stated explicitly otherwise, instead of
(2.1) we shall restrict ourselves to W(-) = W, i.e. to fixed recourse. In general,
problem (2.3) contains implicitly the recourse function

Qa3 T(§), h(§), W(£), ¢(£)) = inf a" )y &)

Tz + W) = h(&) as. (2.4)
y& > 0 a.s.
y() € Y.

To simplify the notation, we shall enter into the recourse function Q(z;-)
of (2.4), in addition to the first stage decision variable x, only those param-
eter arrays being random in the model under consideration. For instance,
Q(z; T'(€), h(€)) indicates that T°(-), h(-) are random arrays defined according
to (2.1) whereas W(-) = W, ¢(-) = ¢; and Q(z; h(€)) stands for h(-) being
a random vector due to (2.1) and T'(") = T, W() = W, ¢(-) = ¢ being
deterministic data.

Furthermore, in applications of this model, the selection of a decision &
feasible for the first stage constraints Ax = b, & > 0, appears to be mean-
ingful only if it allows almost surely to satisfy the second stage constraints
W(&)y(&) = h(&) — T(&)2, y(&) > 0 a.s., since otherwise, according to the
usual convention, we should get for the recourse function

Q(&;T(€), h(€),W(£),q(€)) =
= ;gg{qT(ﬁ)y(@ | W(&)y(€) = h() = T(€)%, y(§) = 0as} = +o0

with some positive probability. This implies

— either Q(2) := B¢ [Q(2; T(£), h(£), W(§), q(§))] = +o0,

— or else the expected recourse Q(%) to be undefined if with positive proba-
bility Q(Z; T'(€), h(§), W(€), ¢(§)) = —oo results simultaneously.

Clearly in anyone of these situations & is not to be chosen since neither an
infinite nor an undefined objective value corresponds to our aim to minimize
the objective of (2.3). Hence, in general we may be faced with so-called induced
constraints on x, meaning that we require

e K:={z|zeR™; Qz;T(§),h(§), W(£),q(§)) < +ooas.}.
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For £ = supp IP¢—the support of IP, i.e. the smallest closed set in IR" such
that IP¢(E) = 1—being an infinite set, K is described in general by an infinite
set of constraints, which is not easy to deal with. If however = is either finite, i.e.
= = {€1,. .., £P}, or else a convex polyhedron given by finitely many points as
Z = conv {€1, .-+, £P} (see Chapter 1, Def. 2.3 on page 16), then the induced
constraints imply z € K with

and, with By := {z | Az = b, z > 0} C R™, the first stage decisions have
to satisfy x € By N K. A more detailed discussion of induced constraints
may be found in Rockafellar—Wets [253] and in Walkup—Wets [300] (see also
Kall [134], Ch. III).

2.1  Complete fixed recourse

If for a particular application it does not seem appropriate, that the future
outcomes of £ affect the set of feasible first stage decisions, we might require
at least relatively complete recourse:

Ve e By = {y|W(y=h() -TEz, y 20} #0 as.. (2.5

Due to the Farkas lemma, Chapter 1, Prop. 2.13 on page 21, condition (2.5) is
equivalent to:

Vz € Bj holds : [WT(ﬁ)u < 0= (h(&) —T()z)'u <0 as. .

Hence the requirement of relatively complete recourse is a joint restriction on
B; and on the range of h(&), T'(£), W (£) for & € E, simultaneously, which may
be difficult to verify, in general.

Therefore, in applications it is often preferred to assume complete fixed re-
course, which requires for W(£) = W the following condition:

{z]2=Wy, y >0} =1R™. (2.6)

If this condition is satisfied, then for any & feasible according to an arbitrary set
of first stage constraints in (2.3), and for any realization £ of the random vector
&, the second stage constraints in (2.4) are feasible. Furthermore, complete
fixed recourse is a condition on the matrix W only, and may easily be checked
due to

LEMMA 2.1 Amatrix W € R™2*™ satisfies the complete recourse condition
(2.6) if and only if

— rank(W) = my, and
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~ foranarbitrary set {W;,, Wi, - -, Wi, } of linearly independent columns
of W, the linear constraints

Wy = 0
Yiy Z 1, k=1, ,a, (2.7)
y 2 0

are feasible.

Proof: Assume that W is a complete recourse matrix. Then from (2.6) follows
that rank (W) = mg necessarily holds.
Furthermore, for some selection {W;,, W;,, - -, W, } of linearly indepen-
dent columns of W, let
= Z Wi, .

By our assumption on W, we have {y | Wy = 2, y > 0} # 0. Hence, with
the index set {j1,- - -, fng—m, } Chosen such that

{i17i2a"'7im2}ﬂ{j1a""jn2——m2} - 0
and {ilai%' : 'aimz} U {jl;'” ajnz—mz} {1a an2}a

there exists a feasible solution § of

ng—ma

ZVVzkyzk + Z leyﬂl =
ma

= _Zwik
k=1

ISH

Hence, with

y - gl/+1, V:ilyiQ,"'7imza
v gl/a V:]1a]2a"'aj'n2—’m2,
the constraints (2.7) are necessarily satisfied.

Assume now that the conditions of this lemma hold. Choose an arbitrary
Z € IR™2. Then the linear equation

m2
Y Wiy, =2
k=1

has a unique solution {i,, ", Ji,n, }- I 7;, > O for k
have a feasible solution for the recourse equation Wy =

= 7 sy Mo, WE
Z. Otherw1se set
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7y i= min{Pi,, -+, i, } < 0. Let § be a feasible solution of (2.7). Then for

@ — {ﬂu—’ﬂju, V:ilai27"'7im2,
v —YYv V=j1aj2»"'7]n2—-m2,
follows
ma ng—msa
Wy = Z Wi 9iy, + Z Wi,
mao ng—msy
= Z Wi Ui — v8i) + Z Wi, (=7¥5)
k=1 ¢ =1 N
>0 >0
na
= Z—v Z Wrﬂr
r=1
=0
such that ) is a feasible solution of Wy = z, y > 0. m]

Hence, to verify complete fixed recourse, we only have to determine rank (W)
and—if rank(W) = my is satisfied—to check the feasibility of (2.7) by ap-
plying any algorithm for finding a feasible basic solution of this system, as e.g.
the method described in Section 2.4 on page 26. Throughout our discussion of
two-stage SLP’s we shall make the

ASSUMPTION 2.1 The recourse matrix W satisfies the complete fixed re-
course condition (2.6).

Even for the complete fixed recourse case if, with C* being the polar cone
of C = {y | Wy = 0, y > 0}, it happens that

En{¢|—q€) eCT} #E,

then, due to Prop. 2.6 in Chapter 1 (page 18) {¢ | —q(¢) € CT'} # 0 is closed,
such that the definition of the support = implies P¢ (EN{¢ | —¢(€) € CP}) < 1.

Hence, with Zg = Z\ {¢ | —q(¢) € CF}, by Prop. 2.7 in Chapter 1
(page 18) follows Q(x;T(£), h(€),q(§)) = —oo for £ € Ey with probability
P¢(Zq) > 0, yielding Q(z) = —oo Yz € By.

Therefore, for allowing the objective of (2.3) to discriminate among various
first stage feasible solutions, we need to assume that —q(¢) € CF V¢ € E,
i.e. using the Farkas lemma (Chapter 1, Prop. 2.13 on page 21) we add to
Assumption 2.1 the further

ASSUMPTION 2.2 The recourse matrix W together with q(-) satisfy

{ul Wiu <q(¢)} #0VE € E. 2.8
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Observe that due to (2.8) the requirement that —¢(¢) € C¥ V¢ € Zis equivalent
to dual feasibility of the recourse problem, a.s.

LEMMA 2.2 Given Assumptions 2.1 and 2.2, for any x € R™ there exists an
optimal recourse y(-) € Y such that Q(x; T(€), h(£),q(€)) = qT(€)y(¢).
Proof: Due to Assumptions 2.1 and 2.2 the LP
ming” (€)y
st. Wy
Y
is solvable for all ¢ € . Let B®), v = 1,..., K, denote all bases out of

W (i.e. all the regular mgo x mg-submatrices of W). Partitioning W into
the basic part B“) and the nonbasic part N*) and correspondingly restating

q(§) = (gpw (), gy (§)) and y = (ype), Yywy), we know from Prop. 2.3
in Chapter 1 (page 16) that with the convex polyhedral set

-1 v)~1 v
Ay = {6 B (h(€) ~T(€)z) 2 0, gy (6) BT N —qy,(€) < 0}

-1
y(©) = (ypr (&) = BY 7 (h(€) = T(§)2),yyw () = 0) solves (2.9) for
any £ € A,, Furthermore, due to (2.1) we have that y(-) € L%(A,, R"?) for
v = 1 -.K. Since—due to the solvability of (2 9) for all £ € E—we have

8(6) —T()= } 2.9)

vV I

that U Ay D E, this inclusion also holds for U A, with the sets A, defined
V-—l v=1
as A; = A and A, —Ay\Uu_lAu forv=2,---,K.
Therefore, {EN A, | v =1,---, K} is a (disjoint) partition of = with y(-)
according to

y(€) = (vp () = BY ™ (h() ~ T(©)), yyen (§) =0) forg € A,

a solution of (2.9), being piecewise linear in £ and hence belonging to Y, and

yielding Q(z; T(£), h(£), ¢(€)) = ¢T(£)y(£). 0

The above convex polyhedral sets A, depend, by definition, on , and so
do the pairwise disjoint sets A,,, which we may indicate by denoting them
as A,(z). Then for some given #® i = 1,2, and any £ € = there exist
v; € {1,---, K} such that ¢ € A,,(z®) and hence

Q@Y T (©),a(€) = dhun(©B™ H(h(g) — T()z)
= ,(6) + 7€)z,

where a, (€) = g5, () BX T h(g) € I}

and — d0)(€) = (¢, (OB T()T € L.

(2.10)
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14T
Since, due to the simplex criterion, u(*) = B®i) ' dpey(§), 1 =1,2, are
dual feasible with respect to (2.9), it follows for i # j

o (€) +d T ()2 = (h(€) — T(E)2)Tul)
< (h() = T()2l))Tul) @11
=, () +d®) T (£)2) :

Q(zW; T(€), h(£),4(8)).

Now we are ready to show that (2.3) under appropriate assumptions is a
meaningful optimization problem.

THEOREM 2.1 Letthe Assumptions 2.1 and 2.2 be satisfied. Then the recourse

function Q(z; T(€), h(€), a(€)) is
a) finitely valuedVz € By, € € E,

b) convexinxz V¢ € B, and

¢) Lipschitz continuous in x V€ € = with a Lipschitz constant D(€) € L.
Proof: a) The LP defining the recourse function Q(x; T'(€), h(£), ¢(§)) is given
by (2.9) as

min{g™ (€)y | Wy = h(€) - T(€)z, y > 0},

which due to Assumption 2.1 is primal feasible for arbitrary x € IR™ and
& € R", and according to Assumption 2.2 is also dual feasible V¢ &€ Z; therefore
it is solvable for all z € B; and for all £ € =, such that

Q(z;T(£),h(€),q(&)) is finitely valued Vz € By and V¢ € E.

b) Hence for an arbitrary é € = and some (1), 22 € B, there exist y(* for
i = 1, 2 such that

Q=D T(€), Mé),q()) = ¢ (E)y?, where
Wy® = h(€) - T(€)z®, y? > 0.

Then for & = Az() + (1 — X)z(? with some X € (0, 1) it follows that
7=y + (1= N)y® is feasible for Wy = h(§) - T()z, y > 0.
Hence

Q& T(€),h(&),9(6)) < ¢ ()i = A" )y + (1 - Ng" )y,
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showing the convexity of Q(x; T'(€), h(£), q(é)) in .
¢) For any two (1) £ 22 and any ¢ € =, according to (2.10) there exist
vie{l,---,K}, i =1,2,such that
1 )T %
QY T(€), h(€),a(€)) = au, (€) + d) (§)e,
and due to (2.11) holds

[ty (€) + A7 (€)2)] = [y, (€) +d) " (€) V)]
= d"7(6)(a® - &)
< QP T(€), h(g),q(8)) — Q=M T(€), h(€), a(€))
< [ (&) + 4 (€)2?)] = [, (€) + dOD 7 (¢)2 V)]
=" ()@ -2 M),
such that

1Q(=P; T(€), h(€),4(8)) — QzM; T(€), h(€), q(€))]
< max [d)7 (€)@® - o) < max [[d%)(©)]|]|(z® — 2D

i€{1,2} ie{1,2}

Hence, with D(¢) = max, |d®) ()| € L'—due to (2.10)—follows the
Z’e )ty

proposition. t

Due to Chapter 1, Def. 3.2 (page 61) a vector g € IR” is a subgradient of a
convex function ¢ : R® — IR at a point z if it satisfies

9" (z—z) < p(2) — p(a) Yz,

and the subdifferential 9 (x) is the set of all subgradients of @ at z. In particular
for linear programs we have

LEMMA 2.3 Assume that the LP
min{cTz | Az = b, z > 0}

is solvable Vb € IR™. Then its optimal value o(b) (obviously convex in
b) is subdifferentiable at any b, and the subdifferential is given as dp(b) =
argmax{bTu | ATu < c}, the set of optimal dual solutions at b.

Proof: Foragivenb leti, € arg max{bTu | ATy < c}, suchthatp(b) = bT4.
Hence 4 is also feasible for the LP o(b) = max{bTu | ATu < c} for an
arbitrary b such that 5T < ¢(b) holds. Hence

2T —b) < o) — o(b)
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showing that arg max{b Tu | ATu < ¢} C dp(b).
Assume now that g € dp(b) for some b. Therefore, for any b holds

gT(b—b) < () — o).

With & € argmin{cTz | Az = b,z > 0} and 2@ = & + ;(> 0), i =
1,---,n, (e; the i-th unit vector), by our assumption, for all b = Az the
LP’s o(b®) = min{cTz | Az = b, z > 0} are solvable. Obviously we
have p(b®) < ¢Tz® such that

gTAe; = gTA(z® — 2) gT (e — Z)A
p(b) — p(b)
Ta_

Tz — cTg

INIA

CTGi, t=1,--+,n,
implying ATg < ¢, the dual feasibility of g. Then, due to the weak duality
theorem (Chapter 1, Prop. 2.9, page 20) we have gTb —@(b) < 0. Assume
that with some o < 0 holds gTb — <p(b) < a. Forb =0 obviously follows
©(b) = 0 such that the subgradient inequality, valid for all b, yields
0=9g"b —p(b)<g"b —pb)<a<0.
This contradiction, implied by the assumption g Ty — go(b) < a < 0, shows
that gTb = (b) and hence p(b) C argmax{bTu | ATu < c}. 0
Now we get immediately

THEOREM 2.2 Given the Assumptions 2.1 and 2.2, the recourse function
Q(z; T(&), h(€), q(€)) is subdifferentiable in x for any ¢ € Z. For any &
holds (the subscript at 0 indicating the variable of subdifferentiation)

8:Q(&; T(€), h(£),4(8)) =
= {~TT(€)i | & € argmax{(h(§) - T(§)2)Tu | WTu < q()}} VE € E.

Proof: For an arbitrary £ € Z define b(x; €) := h(§) — T(§)z. Introducing
P(b(w; €); €) := Q(a; T(£), h(§), a(£))
= min{g" &)y | Wy = b(z;€), y > 0},
from Lemma 2.3 follows for the subdifferential of ¢)(-; &) at b(Z; &)
Oy (b(#;€);€) = argmax{b (#; E)u | Wu < q(€)}.
Then from Prop. 3.2 in Chapter 1 (page 61) we know that

Q& T (), h(£), 4(¢)) —TT(€)0p(b(;€); €)
~TT(¢) arg max{bT (2;&)u | WTu < q(€)}.

Il
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O

THEOREM 2.3 Since £ € L?(Q, R") (i.e. £ square-integrable with respect to
P¢), the expected recourse Q(x) is

a) finitely valuedVx € By, and
b) a convex and Lipschitz continuous function in .

Hence, (2.3) is a convex optimization problem with a Lipschitz continuous
objective function.

Proof: a) Let & € R™ be fixed. Due to Assumptions 2.1 and 2.2, for any
£ € & there exists an optimal feasible basic solution of the recourse program
(2.9), i.e. there is an (my x mg)-submatrix B of W such that

B~H(h(§) -T(§)& 2> 0 and } 2

QETE),hE),9€) = @B (hE-TE) |
where the components of the mq —subvector g(&) of (&) correspond to the
columns in B selected from W, as mentioned in Chapter 1, Prop. 2.2 (page
15). Together with the simplex criterion, Prop. 2.3 in Chapter 1 (page 16), such
a particular basis is feasible and optimal on a polyhedral subset = C =, a
so-called decision region (also: stability region).

According to (2.1) and (2.12), the recourse function Q(&; T'(£), h(€), q¢(£))
is, in general, a quadratic function in £ for £ € Zp, such that the integral

a Q(E;T (), h(€),q(§))IP¢(dE) exists due to the assumption that § € Lo.

Zp
By the Assumptions 2.1 and 2.2, the support = is contained in the union of
finitely many decision regions, which implies that also

/ QU T(€), h(E), 4(£))Pe(de) exists.

b) In Theorem 2.1, for any £ € E, the recourse function Q(z; T(€), h(£), q(£))
has been shown to be convex and Lipschitz continuous in z, with a Lipschitz
constant D(¢) € L.

Hence the convexity of Q(z) = LQ(:::; T(&),h(€),q(€))Pe(dE) is obvi-

ous.
And for any two (! and 2(2) we have

Q@) - o)
< ] / {Q;T(€), h(), 4(8)) — Q= T(€), h(€), a(€)) }Pe(d€)
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< [ |@@:7(€),16),a(6)) - QA T(€),18),a(6))| Petat)

| DElla - 2| Pe(de) = D]z — 2@

with the Lipschitz constant D = [_ D(€)IP¢(d¢). O

COROLLARY 2.1 Given that, instead of ¢ € L?(Q, R"), the random entries
q(€) and (h(£),T(€)) are stochastically independent and ¢ € L*(2,R") (i.e.
& is integrable with respect to 1P§), the conclusions of Th. 2.3 hold true, as well.

Proof: Only the existence of Q(x) = [ Q(z; T(€), h(€), ¢(£))P¢(d€) has to
be proved, which follows, with £ E L}(2, R"), from the independence of g(¢)
and (h(£),T(€)) according to

[ @@T©.me), ae)Peta) =
= \/_ (IB(g)TB_l(h(g) — T(é’)x)lpg(dé-)

=B

|

REMARK 2.2 In Theorem 2.2 the subdifferential of the recourse function at
any I under the Assumptions 2.1 and 2.2 was derived as

O Q(%;T(£), h(£),4(8)) =
= {~T7(§)a | & € argmax{(h(¢) — T(§)2)"u | WTu < q(§)}} VE€ E.

It can be shown, that then Q(-) is subdifferentiable at & and

B qB(s)IPg(do)T ([ ) - TEPe(ds)).

0

{1

9Q(%) = L 0. Q(#: T(€), h(€), a(€))Pe(de),

where this integral is understood as the set / G(&)P¢(dE) ¢ for all func-
tions G(-) being measurable selections from 87565(50; T(-),h(:),q(-)) such that
G Pe(de) exiss.

Finally, Q(-) is differentiable at & if and only if 3,Q(Z;T(-), h(-),q(:)) is a
singleton a.s. with respect to Pe.
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To prove statements of this type involves several technicalities, like the ex-
istence of measurable selections from subdifferentials or equivalently, from
solution sets of optimization problems, integrability statements like Lebesgue’s
bounded convergence theorem, and so on. Under specific assumptions, these
problems were considered for instance in Kall [132], Kall-Oettli [150], Rock-
afellar [248] (see also Kall [134]), and the general case is dealt with in Ch. 2
of Ruszczynski-Shapiro [263], where a sketch of a proof is presented.

Due to the fact that (sub)gradient methods will not be a central part of our
discussion of solution approaches for recourse problems later on, we omit a
proof of the above interchangeability of subdifferentiation and integration.

Finally, assume that ¢(§) = g, i.e. ¢(*) is deterministic. Then we have

PROPOSITION 2.1 Given the Assumptions 2.1 and 2.2 (the latter one now
reading as {u | WTu < ¢} # 0), Q(z; T ("), h(-)) is a convex function in £ for
any x € R™,

Proof: According to (2.1) for any fixed x € R™ the right-hand—side of the LP
Q(z; T(€), h(§)) := min{g"y | Wy = h(€) — T(&)z, y > 0}
is linear in &, which implies the asserted convexity. O

In this case we have a lower bound for Q(z), frequently used in solution
methods, which is based on Jensen's inequality [128]:

LEMMA 2.4 Let§ € R" be a random vector with probability distribution TP
such that B¢ (€] exists, and assume ¢ : R" — R fo be a convex function.
Then the following inequality holds true:

(B¢ [€]) < Eg [0(6)]- (2.13)

Proof: Due to Chapter 1, Prop. 3.2, at any f € IR" there exists a nonempty,
convex, compact subdifferential Op(£). Hence for any linear affine function
£(-) out of the family Ly for some & € R” with

Le:={I() | U(€) = p(€) + 97 (6 — €), gs € 00(é)}, € R,
the set of linear support functions to ¢(-) at é , we have the subgradient inequality

6e) =) +gf (€~ &) S p(§) VEER.
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By integration with respect to IP; follows

Ee [£(6)] = £(T¢ [€]) = w(é) + gf (B¢ [€] - &) < Be [0(6)]
such that £(IE¢ [£]) yields a lower bound for ¢ [p(£)].
Since B¢ [{] € IR", due to the subgradient inequality, at any ¢ € R" holds

OB [€]) = 0(€) + 9] (Be [€] - €) < p(Be [€]) VE() € £

Hence, in {ﬁé, e IR"}, the set of all possible linear support functions to ¢(+),
we get R
orgmax{{(B €] | ) € £, € € BT} =Bl

Therefore, among all linear support functions to ¢(-) we get the greatest lower

bound for IE¢ [p(€)] by choosing € = B¢ [€], i.e. £(¢) = (B¢ [g])+g£€ (€=
IE; [€]), yielding

U(Eg [€]) = (B¢ [§]) < Ee [0(8)].
O

Whereas under the assumptions of Lemma 2.4 we know for sure that the
integral [, p(€)IP¢(d€) is bounded below, it cannot be excluded in general
that IE¢ [©(£)] = o0 holds. In contrast, under our assumptions for Prop.
2.1 we know from Cor. 2.1 that Q(z) = E¢ [Q(xz; T(£), h(£))] is finite for all
z € R™. From Prop. 2.1 and Lemma 2.4 follows immediately the Jensen
lower bound for the expected recourse:

THEOREM 2.4 Given the Assumptions 2.1 and 2.2, with & = ¢ [€), the ex-
pected recourse Q(x) = IE¢ [Q(x; T'(€), h(§))] is bounded below due to

Q(z; T(€),h(€)) < Q). (2.14)

Observe that in this case the lower bound for the expected recourse is defined
by the one-point distribution IP,, with IP,,({n | n = £}) = 1, which does not
depend on the particular recourse function, since

/ Qs T(), h(n))Py(dn) = Q(z; T(E), h(E)) < Q)

holds true for any function Q(z; T'(+), h(-)) being convex in &.
Concerning upper bounds for the expected recourse, the situation is more dif-
ficult. The first attempts to derive upper bounds for the expectation of convex
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functions of random variables are assigned to Edmundson [71] and Madan-
sky [183]. Therefore, the basic relation is referred to as Edmundson—Madansky
inequality (E-M):

LEMMA 2.5 Let T be a random variable with supp P, C [a, 3] C IR such
that the expectation |y = IE. [T] € [a, (). Then, for any convex function
¥ [e, 8] — R holds

where T is the discrete random variable with the two-point distribution
o - . ~-«
Pa((¢ | P =ah) = 57E Pi@r =)= L2219

Proof: With \; = g_;; we have \ra + (1 — A\;)B = 7 V7 € [, (] and
Ar € [0,1]. Due to the convexity of ¢ follows
V(1) =yYp(Ara+ (1~ A7)B) < Arh(@) + (1 = A)(B) V7 € [e, ]
and therefore, integrating both sides of this inequality with respect to IP -,
B—u
f—a

(@) + 5= - 9(8) = B+ [u(?)].

E,[y(r)] < 5o

a

It is worthwhile to observe the following relation to the theory of moment
problems and semi-infinite programs. Under the assumptions of Lemma 2.5
consider, with P the set of probability measures on [c, (], as primal (P) the
problem

Sup {/ P(&)P(de) ]/ ¢P(dg) = / P (d¢) —1} 2.17)

a so-called moment problem, and as its dual problem (D)

inf {y1 + pya | y1 + Ey2 2 ¥(§) V€ € [, A}, (2.18)
yelR

the corresponding semi-infinite program.

Since, as required by the constraints of (D), a linear affine function majorizes
a convex function on an interval if and only if it does so on the endpoints, (D)
is equivalent to

min {y1 + py2 | y1 + ay2 2 ¥(a), y1 + By = P(B)} .
yeR
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Due to the fact that o < p < (3 this LP is solvable, and hence so is its dual (P),
which now reads as

I{gg{w(a)pa + Y (B)pg | P + 13 =1, apa + Bps = 1t; Pa,ps > 0}

and has, as the unique solution of its constraints, the distribution of 7 as given
in (2.16). It is worth mentioning that in this case the solution of the moment
problem (P), i.e. the E-M distribution yielding the upper bound, is independent
of the particular choice of the convex function 4.

Suppose now that we have a random vector £ € IR". Then, as mentioned in
Kall-Stoyan [151], Lemma 2.5 can immediately be generalized as follows:

LEMMA 2.6 LetsupplP; C E = X;Zl[ai,ﬂi] C IR" and assume the com-
ponents of § to be stochastically independent. With p = B¢ [£] € E let
P,,i=1,---,7, be the two-point distributions defined on [ai, Bi] as

Po((n |1 = o)) = 5=, Po(n | = BD) = 5o 219
Then for the random vector n € R” with the probability distribution given as
Py =Py x Py, x - x Py on E=_, [, 5] (2.20)

it follows for any convex function ¢ : = — IR that
E¢ [0(§)] < Eyle(n)]- (2.21)

Proof: With IP¢, the marginal distribution of IP¢ for &; € [, 5;], the assumed
stochastic independence of the components of £ implies that

IP§=IP§1XIP§2X~--X]P§T.

Hence the asserted inequality (2.21) follows immediately from Lemma 2.5 by
induction to 7, using the fact that the product measures IP; and P, allow for
iterated integration, as known from Fubini’s theorem (see Halmos [111]). O

Also in this case we may assign a moment problem, with P the set of all
product measures on = = X;_ =; = X[_, [ci, 8], stated as (P)

Jg, &P (d&) = i,
];217)3{/E¢(§)Psl(d€1)"'Pﬁr(dﬁr) f_' (d&) 1,

and its dual semi-infinite program (D)

Vi} . (2.22)

lInR,f {Z(yl + Uzy2) | yl + §zy2 > ¢i(&) V& € & Vl} (2.23)
ye
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where with E/2; ;=51 X -+ X Ej_1 X Zjp1 X -+ X 2y

¢i(&i) =

Lol 6Pe(d6r) - P, (d6i-1)Pes (d6isn) - P (d1)

is obviously a convex function in &;. Therefore again, the constraints of (D) are
satisfied if and only if they hold in the endpoints «; and 3; of all intervals =;.
Hence (D) is equivalent to

\
inf, {Z(yi + pivh) | i + cavh > Gilow), v + Bivh > Bi(Bs) w} ,
ye 7=1

which due to u; € [« 3;] is solvable again and hence so is its dual, the moment
problem

r
max {Z(@i(ai)p?xi + Sbi(ﬁi)ph-)}
=1
st ouph, + Bivly, = pi, Ph, + b = 1Vi.
Since the only feasible solution of its constraints coincides with the two-point
measures (2.19), the product measure (2.20) solving the moment problem (P)
is independent of the particular convex function ¢, again,

For later use we just mention the following fact, which due to the above
results is evident:

COROLLARY 2.2 LetsuppP¢ C E = X_,[c, B;] C R" with p = Eg¢ [¢]
and assume the function ¢ : E — R to be convex separable, i.e. p(§) =

T
Z i (&;). Then, with the distributions P, given in (2.19), it follows that

i=1

Ee [0(&)] = > B ps(&)] < Y By, [s(mi)] - (2.24)
=1 1=1

We shall refer to (2.15), (2.21) and (2.24 as the E-M inequality. For the
expected recourse we then get the E-M upper bound.

THEOREM 2.5 Assume that the components of € are stochastically indepen-
dent and that suppPe C Z = Xi_, [0, Bi] with p = E¢[§] € E. Given
the Assumptions 2.1 and 2.2, with the E-M distribution defined by (2.19) and
(2.20) the expected recourse Q(z) = B¢ [Q(x; T(£), h(£))] is bounded above
according to

Qz) < By[Q(z; T (n), h(n))]- (2.25)
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According to Lemma 2.6 and Cor. 2.2 we have the E-M inequality for multi-
dimensional distributions either for random vectors with independent compo-
nents or for convex integrands being separable. However this upper bound does
not remain valid for arbitrary integrands and dependent components, in general,
as shown by the following example:

EXAMPLE 2.1 Let ¢ be the discrete random vector in R? with the
distribution of €

realizations:  (0,0) (1,0) (0,1) (1,1)
probabilities: 0.1 0.2 0.1 0.6

and the expectation & = (0.8,0.7), yielding the

marginal distributions of €1 and &5

realizations: 0 1
probabilities P, : 0.2 0.8
probabilities P¢, : 0.3 0.7

being obviously stochastically dependent. Using these marginal distributions
to compute the E-M distribution according to Th. 2.5, we get the

E-M distribution of n:

realizations:  (0,0) (1,0) (0,1) (1,1)
probabilities:  0.06 0.24 0.14 0.56

and the expectation ij = (0.8,0.7). Then for any convex function ¢(-,-) such
that

©(0,0) = ©(1,0) = ©(0,1) = 0 and ¢(1,1) =1
we get B¢ [p(&)] = 0.6 and By [p(n)] = 0.56. Hence, in this case, with the

E-M distribution (2.20) as derived for the independent case, the E-M inequality
(2.21) does not hold. O

To generalize the E-M inequality for random vectors with dependent com-
ponents and suppIP¢ C E = X;=1 [e, Bi], and for arbitrary convex integrands,
according to Frauendorfer [85] we may proceed as follows:

Assume first that for some £ € = we have the random vector ( with the
one-point distribution IP¢({¢ | ¢ = £}) = 1. Obviously the components of ¢
are stochastically independent, and for 7;(£;) with the two-point distributions

Bi — &

Ipni(fi)({ni | =a}) = m

IPm(ii)({"h‘ ‘ 7 = 161}) - %z_(;%

(2.26)



216 STOCHASTIC LINEAR PROGRAMMING

holds
By 0] = & = Be, [G]- 2.27)
Hence for the probability measure

Poe) = Ppier) X Prayen) X - X Pp e,y on E=X{_,[0, 8], (2.28)

defined on the vertices v” of E, v = 1, - - - | 2", we have the probabilities
VY - fz fz — O
7)(5) )= zg H ,61 —

where I, = {i | v/ = a;} and J, = {1,--,7} \ I, (with [ [{-} = 1). Thus
ieh
we get immediately

LEMMA 2.7 For any convex function ¢ : = — R, Jensen's inequality im-
plies

o(B [(]) = 0(€) < / P(1(E))Pge) ()

or (2.29)

Hence, with the probability measure Q defined on the vertices v¥ of Z by

Q) = / P e (0")Pe(de)

Bi — & & — (2.30)
: P¢(dg),
/5}&1&-% igﬂi—ai
we get the generalized E-M inequality
gr
Ee [0(8)] < Y o(v*)Q"). (2.31)
v=1

REMARK 2.3 Observe that for stochastically independent components of €,
due to (2.30) we get for the generalized E~M distribution

oY /Lz. i — Qg
) H ,81—051

i€l ieJy

such that in this case Q coincides with the E-M distribution 1P, for the inde-
pendent case as derived in (2.19) and (2.20). O
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Hence Theorem 2.5 may be generalized as follows:

THEOREM 2.6 Assume that suppP; C & = X:=1[ai,ﬁi] such that also
p =1B¢ [§] € E. Under the Assumptions 2.1 and 2.2 and with the generalized
E-M distribution Q as defined in (2.30), according to (2.31) the expected
recourse Q(x) = B¢ (Q(x; T'(€), h(§))] is bounded above as

Q(z)

IA

[ @7, i) @)
2 (2.32)

> Q= T(w"), h(v") Q(v”).
v=1

For any A C {1,---,r} define hp(§) := H &) and denote the joint mo-
keA

ments forall A C {1,---,r}asmy := / ha(§)P¢(d€) (with mg = 1).

Then we have, for any vertex v” of Z, that hy (v") = H ay - H Ok,

keAnl, keAnd,
and from (2.27) and (2.28) follows

2"‘
L @) = ha(©) = 3 a(0) Py ), @39
= v=1

such that (2.30) and (2.33) imply

27 2"
S ha()QE) = / S ha(0¥)P ey (0) P (d€)
= Syt (2.34)

Il

A ha(§)Pe(dE) = pa -

Hence the upper bound distribution @ of Lemma 2.7 preserves all joint moments
of the original distribution IP,, suggesting to consider, for P being the set of
all probability measures on =, the moment problem (P)

Y(P) =

s { Lot | [ neps) = umva c {1,...,7«}}. 239)

For the dual of this problem we assign the variables yp to A = 0 (ug = 1)
and yp to any nonempty subset A C {1,---,r}. This yields the semi-infinite
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program (D)

8(D) i=inf { yo+ 3 payalyo + 3 ha(€un > w(§) VE € p . (2.36)
A0 A£D

Requiring the constraints of (D) to hold only at the vertices of E yields the
modified problem (D)

5([)) := inf Yo + Z ,UszAIyo + Z hA(’UV)yA > 90(1)”), v=1,--- ,27"
A£D AZD

and its dual (15), the moment problem searching for a measure IP in Py =, the
set of probability distributions on the vertices of =, becomes

2" 2"
¥(P) = sup {Z w(v")pu‘ D ha(W)py = pa VA C {1, >T}} :
v=1 v=1

ext =

Due to (2.34) the upper bound distribution @ of Lemma 2.7 is feasible for this
moment problem (P). Furthermore, since the matrix of the system of linear
constraints of (P), i.e.

= (hA(vV); V= 1,"'72Ta AC {1""7T})7

is regular, as shown in Kall [137], the generalized E-M distribution @ is the
unique solution of (P) and independent of . Finally, according to linear pro-
gramming duality and since Peyy= C P we have

(D) =~(P) < 7(P).
On the other hand for any £ € =, given the regularity of H, the linear system

ZhA )4 (€) = ha(€), AC {1,---,7} (2.37)

has the unique solution {g,(§) = Py (v"); v = 1,--+,27} due to (2.33),
being continuous in £. Then for any IP feasible in (P) follows

VAC{l,---,7}: pa = /:hA(f)IP(df)

.
- / 2 )an (O ()

Z hA QV with g, = / ql/(g)]}?(df) .

fl

ool
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Hence {§,; v = 1,---,2"} is a probability distribution on the vertices of
= which is feasible for the moment problem (P). Since (2.37) also includes
27‘

Z vYqu(€) = &, by the convexity of ¢ follows for the objective of (P)

v=1

=

27 r
> e = [ Y e )aOP(E) 2 L etoras).
v=1 =p=1

Therefore we have
v(P) > 4(P) = v(P) = v(P),

such that the generalized E-M distribution Q solves the moment problem (P),
and as shown in Kall [137], it is the unique solution of (P).

REMARK 2.4 In the above cases we could reduce particular moment prob-
lems (P), as e.g. (2.35), stated on ‘P, the set of all probability measures on
some support =, to moment problems (P) on Py, some sets of probability mea-
sures with finite discrete supports 2q C 5, such that a solution of (P) was
simultaneously a solution of (P).

This observation is not surprising in view of a very general result, mentioned
in Kemperman [160] and assigned to Richter [244] and Rogosinski [257],
stated as follows:

“Let f1,---, [N be integrable functions on the probability space (£, G, P).
Then there exists a probability measure P with finite support in § such that

/ fiw)P(dw) = / fi@)P(dw), i=1,--,N.
Q Q
Even card (supp P) < N + 1 may be achieved.”
Hence we can take advantage of the theory of semi-infinite programming.
With
S, an arbitrary (usually infinite) index set, and
a: S8 — R™ b:S — R, ce R"arbitrary

the problem

v(P) := inf{cTy | aT(s)y > b(s) Vs € S}
is called a (primal) semi-infinite program. Its dual program requires, for some
$i €S, i=1,--+,q > 1, todetermine a positive finite discrete measure \, with
u(8;) = x; as a solution of the generalized moment problem

i=1

g q
v(D) := sup {Z b(si)z; | Za(si)xi =c¢x 20,8 €S8, ¢2> 1} .
i=1
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Whereas weak duality, i.e. v(D) < v(P), is evident, a detailed discussion of
statements on (strong) duality as well as on existence of solutions for these two
problems under various regularity assumptions may be found in textbooks like
Glasshoff-Gustafson [106] and Goberna—Lépez [108] (or in reviews as e.g. in
Kall [138]).

Moment problems have been considered in detail in probability theory (see
e.g. Krein—Nudel’'man [173]) and in other areas of applied mathematics (like
e.g. Karlin—Studden [156]), and a profound geometric approach was presented
in Kemperman [160].

In connection with stochastic programs with recourse moment problems were
investigated to find upper bounds for the expected recourse, also under assump-
tions on the set = containing supp IP¢ and moment conditions being different
Jrom those mentioned above.

For instance, for a convex function @, Z being a (bounded) convex polyhe-
dron, and the feasible set of probability measures P given by the moment condi-

tion/ o(E)P(d€) = & (= ¢ [€]), the moment problem sup / e(&)P(d€)
= Pe =
turns out to be the linear program to determine an optimal dis"c)rete measure on
the vertices of Z where, in contrast to the above E-M measures, the solution
depends on @ in general (see e.g. Dupacova [62, 63]).

Furthermore, for a lower semi-continuous proper convex function p and =
being an arbitrary closed convex set, and again with

P {n»] / P(€)P(d€) =€} :

ounts to determine a ﬁn?t”eJ discrete probability measure IP on ext = and a finite
discrete nonnegative measure v on ext rc = (with rc Z the recession cone of =,
see Rockafellar [249]), which for infinite sets ext = and ext rc E appears to be
a difficult task, whereas it seems to become somewhat easier if = is assumed
to be a convex polyhedral set as discussed e.g. in Edirisinghe—Ziemba [69],
Gassmann—Ziemba [102], Huang—Ziemba—Ben-Tal [124]). Also in these cases,
the solutions of the moment problems, i.e. the optimal measures, depend on , in
general. For the special situation where @ is convex and = is a regular simplex,
ie

the moment problem sup / ©(&)IP(dE), considered by Birge—Wets [25], am-

0

Ezconv{vo,vl,--‘,v’"} CR7, rank(vl—vo,v2—v ,"',UT—UO) =T,

mentioned in Birge—Wets [24] and later investigated and used extensively by
Frauendorfer [86], the moment problem under the above first order moment
conditions has the unique solution of a regular system of linear equations,
independent of p again.
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Finally, for 2 = R" with /ﬁIPg(df) w and / €112 Pe(d€) =

(with || - || the Euclidean norm) moment problems with the nonlinear moment
conditions

Lept = ana [ P Pag) =

have been discussed, first for simplicial recourse functions ¢ by Duld [61],
and then for more general nonlinear recourse functions in Kall [139]. In these
cases, the solutions of the moment problems depend on (, in general. Under
appropriate assumptions on the recourse functions these moment problems turn
out to be nonsmooth optimization problems, solvable with bundle-trust methods
as described in Schramm—Zowe [266], for instance.

We have sketched possibilities to derive upper bounds for the expected re-
course using results from the theory on semi-infinite programming and moment
problems. Similarly, the theory on partial orderings of spaces of probability
measures, as described in Stoyan [277] and Miiller-Stoyan [208], could be
used. Attempts in this direction may be found e.g. in Frauendorfer [86] and in
Kall-Stoyan [151]. |

Assuming that, for the given random vector £, we have suppP; C = =
Xi—1lev, Bi], due to Jensen and Edmundson-Madansky there follow for any
convex function ¢ and £ = IE¢ [¢] the bounds

(&) < e [p(E)] < By [o(n)] = / omQdn),  (238)

where 7 has the discrete distribution @ on the vertices of = described in Lemma
2.7. Hence these bounds result from finitely many arithmetic operations pro-

vided the joint moments pp := /hA(S)IPg(dﬁ) = IE¢ [ha(§)] are known

forall A C {1,---,r}. The following observation is the basis of a method

of discrete approximations (of the distribution) to solve complete recourse

problems, as to be discussed later. Assume that we have a disjoint partition

X = {8 k=1, ---,K} of Z, where the Z; # 0 are half-open or closed
K

intervals, the cells, such that =, N =, = @ for k # £ and U =2, = E. Then
k=1
there follows
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LEMMA 2.8 Under the above assumptions holds, with my, = IP¢ (Eg), for the
lower bounds of IE¢ [p(§)]

K )
0 < ) mep(B (€] € € Ex))
k=1
K (2.39)
< Y mBe [p(€) | € € Ex)
k=1
= B [p(d)] )

whereas for the upper bounds we get the inequalities

Ee [p(¢)] = mes €) | € € By

< zm / (NQu(dn) [ (2.40)

< w(n)Q(dn) ,

m

where @, is the E-M distribution on Zy, yielding % := B¢ [ha(€) | € € Eg]
Jorall AC {1,---,r}andk = 1,---, K, and @ is the E-M distribution on =
as described in Lemma 2.7.

Proof: For any IP;-integrable function 4 : £ — IRP, p € IN, we have the
equality

Zwkmg €)1 € € 5] = Be [y(€)]. (2.41)

K
Hence, with ¢ the identity, we have ZﬂklEg €] €€ B = €. Then,

=1
the convexity of ¢ implies the first inécquality of (2.39), whereas the second
one follows from the fact that Jensen’s inequality holds true for conditional
expectations, as well (see Pfanzagl [221]).

The first equation in (2.40) follows from (2.41) with ¢y = ¢. The follow-
ing inequality holds true due to the fact, that the E-M inequality is valid for
conditional expectations, as well. For the probability measure Q, holds for all
Ac{L,---,r}

| ha(©Qu(d) = = Be ha(©) 1 € €24, k=1, K,
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such that with ¢ = hp due to (2.41)

K K
3 / Teha(E)Qi(d€) = Y meBe [ha(€) | € € Ex] = Be [a(€)] = pa -
k=1

k=1""k

K

Hence, the probability measure Z 7, Q) is feasible for the moment problem
k=1
(2.35) which is solved by Q, thus implying the last inequality of (2.40). O

Hence, with any arbitrary convex function ¢ : £ — IR on the interval
E C R', for any probability distribution IP¢ on Z and for each choice of a
partition X = {S; k =1,---, K} of Z, we have bounds on [E¢ [¢p(£)] by

— adiscrete random vector 1 with distribution IP,,,, yielding

[ enP(an) < Eeo(e)),

the Jensen lower bound due to (2.39), and

— adiscrete random vector 7 with distribution Q,,, yielding

E¢ [0(¢)] < / P(MQy (dn),

the (generalized) E-M upper bound according to (2.40) (with the measure
K

Q,. = Z 7, Q. in the above notation).
k=1

Let a further partition ) = {¥}; = 1,---, L} of E be a refinement of X, i.e.
each cell of X is the union of one or several cells of ), then as an immediate
consequence of Lemma 2.8 follows

COROLLARY 2.3 Under the above assumptions, the partition ) of & being a
refinement of the partition X implies

/: (P, (dn) < /_ e(mPyy (dn) < Eg [p(€)]

and

E¢ [(€)] < /

o) Q,, (d) < / oM@, (dn)

and hence an increasing lower and a decreasing upper bound.
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Proof: Since Y is a refinement of X', for ) # X there is at least one cell Z,
of X being partitioned into some cells Yy, 1, -+, Ty, 5, of ), such that s > 1

sk
and U Y1, = Eg. Observing that with p;,, = IP¢(Y;,,,) holds

v=1

e [¢ | € € 5] = Wikzplkumg €16€ ],
v=1

Sk
due to Z P, = Ty the convexity of ¢ implies

v=1

(e [€ | € € 5x]) < %mew(me €16 eT)).
v=1

Therefore, this increases in (2.39) the k-th term

mep(Be (€1 € € Bxl) to Y praup(Be ] € € Typ)).

v=1

In a similar way, the monotone decreasing of the upper bound may be shown,
following the arguments in the proof of Lemma 2.8. a

Hence, refining the partitions of = successively improves the approximation
of IE¢ [p(£)], by the Jensen bound from below and by the E-M bound from
above. Defining in some partition X’ = {Z; k = 1, -+, K} of E the diameter
of any cell Z;, € X as

diam By, := sup{||{ — 7| | §, 7 € Ex}
and then introducing the grid width of this partition X as

grid X .= Inax diam Z, ,
we may prove convergence of the above bounds to IE¢ [()] under appropriate
assumptions (see Kall [133}).

LEMMA 2.9 LetsupplP; CE = X:=1[O‘ia18i] and ¢ : 2 — R be continu-
ous. Assume a sequence { X"} of successively refined partitions of = to be given
such that lim grid X” = 0. Then, for {Py,,, } and {Q,,, } the corresponding

V=00
sequences of Jensen distributions and E-M distributions, respectively, follows

im [ (O () = Jim [ o€y = [ pOPe(ds).

V=00 [
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Proof: Due to our assumptions ¢ is uniformly continuous on = implying
Ve > 036, > Osuchthat (&) —p(n)| <eV&Ene=: ||€—nl < de.

According to the assumptions on {X"} there exists some v(J;) such that
grid X¥ < 6. Vv > v(d.) . Hence, for v > v(J.) and any cell =} € X* holds
lo(€) — p(n)| < e V€, m € =Y. The Jensen distribution IP,, , assigns the prob-

nxv

ability 7} = IP¢ (2)) = /H., P¢(d¢) to the realization & = E, [£ | € € EY].

“k
Hence we get

| Loy (@) = [ otoPe(ae)

»
=I5 [ (0@ - v@)Pe(ae)]
k

=1""=k

U »
<X [ Ie@) - OPe(de) < 3o ont =
k=1

k=1""%k
such that [ (€ (d) — [ GOPe(de).
The convergence of the E-M bound may be shown similarly. a
This result gives rise to introduce the following convergence concepts:

DEFINITION 2.1 A sequence of probability measures ¢ on B" (the Borel
o-algebra on IR") is said to converge weakly to the measure IP¢ if for the
corresponding distribution functions F,, and F, respectively, holds

lim F, (&) = F(&) for every continuity point § of F.

DEFINITION 2.2 Let {¢; ¢, v € IN} be a set of functions on R". The
sequence {1, v € N} is said to epi-converge to ) if for any £ € R"

— there exists a sequence {1, — &} such that limsup ¥, (n,) < ¥(£),
| Zande o]

~ for all sequences {n, — &} holds (&) < liminf ¢, (n,).
V=00

Lemma 2.9 ensures that the sequences of measures {IP,,, } and {Q,,, }
converge weakly to IP¢, as shown in Billingsley [16, 17]. Under the Assump-
tions 2.1 and 2.2, for the recourse function Q(z; T'(€), h(£)) (with § € Z, the
above interval) and for any sequence of probability measures IP{ on = con-
verging weakly to IP¢, it follows that the approximating expected recourse
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functions Q”(z) = /_ Q(z; T(§), h(£))IP¢(dE) epi-converge to the true ex-

pected recourse Q(z) = /HQ(:U; T(&), h(€))IP¢(d), as has been shown e.g.

in Wets [303]; related investigations are found in Robinson-Wets [247] and
Kall [136]. The epi-convergence of the Q" has the following desirable conse-
quence:

THEOREM 2.7 Assume that { Q" } epi-converges to Q. Then, with some con-
vex polyhedral set X C R", for the two-stage SLP with recourse we have

lim sup[igl(f{cT:E + Q" (z)}] < igl{f{CTZL‘ + Q(z)}.

V=00

i

¥ € arg n}}n{cT:c + Q% (z)} Ww e N,
then for any accumulation point & of {2V} it follows that
i+ Q) = rr}}n{ch + Q(z)};
and for any subsequence {Z"~} C {&"} with lim &'~ = & we have
K—00
i+ Q(E) = Jim (T + Q(&)}).

A proof of this statement may be found for instance in Wets [303] (see also
Kall [135]). Due to this result we may design approximation schemes for the
solution of two-stage SLP’s with recourse, as will be discussed later.

2.2  Simple recourse

For the special complete recourse case with T'(§) = T, q(§) = (q+T, q_T)T,
h(€¢) = & and W = (I, —I), we get the simple recourse function

. T _T _

Qz,6):= min ¢"yT + ¢y
Iyt — Iy~

yt, Y~

E—Tz (2.42)
0.

Vol

Given that £ is a random vector in IR™? such that [E¢ [{] exists, we have the
expected simple recourse

yielding the two-stage SLP with simple recourse
min{c'z + Q(z)}
Az b (2.44)

x > 0,
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which was first analyzed in detail by Wets [302].
Obviously, problem (2.42) is always feasible; and it is solvable iff its dual
program
max (¢ — Tz)Tu
v < gt (2.45)
u 2 —q
is feasible, which in turn is true iff g* + ¢~ > 0. Considering (2.45), we get
immediately the optimal recourse value as

m2

Q&) =Y [E-To)l* g + Y [(€—Ta)l gy (246)
=1

i=1

where, for p € R,

+_J p ifp>0 _ | —p ifp<0
(o] _{ 0 else and  [o]” = 0 else.

This optimal recourse value Q(z, ) is achieved in (2.42) by choosing
v =6 —Ta)" and gy = [ —Ta)|™, i=1,,ma. (247

Introducing x := Tz, we get from (2.47) the optimal value of (2.42) as

Q08 = > {a & —xl"+q7 & —x]"}

i=1 (2.48)

=: ZQi(Xi,&)
=1

with

Qi(xin&) =g [& — X" + a7 16— xal™
= min{g; v + ;v |67 — v =& —xis v,y 20} 249)
Hence the recourse function Q(z, £) of (2.42) may be rewritten as a separable
function in (x;, &), implying also the expected recourse Q(z) to be equivalent
to a separable function in y; (see Wets [302]) such that (2.44) may be rewritten
as

ma
min{cT:E + Z QI(XZ)}
i=1
Azx =} (2.50)
Tz -x = 0
T >0
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with

Qi(xi) = Ee [Qi(xi, &)] = Be, [Qi(xin &)], i =1,--+,ma. (251

In this case, as indicated by the operator IE¢,, to compute the expected simple
recourse we may restrict ourselves to the marginal distributions of the single
components &; instead of the joint distribution of £ = (£3,--+,&,,)T. From
(2.49) obviously follows that Q;(-, &;) is a convex function in x; (and hence in
x) for any fixed value of §;. Hence, the expected recourse Q;(-) is convex in x;
as well.

If P ¢ happens to be a finite discrete distribution with the marginal distribution
of any component given by p;; = Pe({¢ | & = &;}), 5 = 1,---, ki, then
(2.50) is equivalent to the linear program

mg ki
min{cTz + Z Zpij (&5 + 45 viz)}
i=1 j=1
Ax = b
fo = (2.52)
v —v = & —x Yiyg
Z, y;;» y';; 2 0 /

which due to its special data structure can easily be solved.

If, on the other hand, IP¢ or at least some of its marginal distributions IP¢; are
of the continuous type, the corresponding expected recourse Qz() and hence
the program (2.50) may be expected to be nonlinear. Nevertheless, the simple
recourse functions Q;(x;, &) and their expectations Qi(xz') have some special
properties, advantageous in solution procedures and not shared by complete re-
course functions in general. To discuss these particular properties we introduce
simple recourse type functions (referred to as SRT functions) and discuss some
of their properties advantageous for their approximation.

DEFINITION 2.3 For a real variable z, a random variable §~ with distribution
]PE’ and real constants o, 3, v with a + 3 > 0, the function (-, -) given by

p(2,8) = [E—2T+ B[~ 2 -~

is called a simple recourse type function (see Fig. 2.1).

Then, IE¢ [€] provided to exist,

8(2) = Blo(=, 8] = [ (a-le— 21+ [6 — AP (d8) -7
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o(z,€)

2=t

Figure 2.1.  SRT function.

is the expected SRT function (ESRT function).

Obviously, the functions Q;(xi, &) and Q;(x;) considered above are SRT
and expected SRT functions, respectively; however, SRT functions may also
appear in models different from (2.42)—(2.44), as we shall se later.

From Definition 2.3 follows immediately

LEMMA 2.10 Let ©(:,-) be a SRT function and ®(-) the corresponding ex-
pected SRT function. Then

® (z,-) is convex in & for any fixed z € R;
m (-, &) is convex in z for any fixed £ € R;

a ®(-)is convex in z.

Since (2.42)(2.44) describes a particular complete fixed recourse problem,
we know already from Section 2.1 that, given ¢ is integrable and ¢* + ¢~ > 0
(compare Assumption 2.2), the functions Q;(x;,&;) and Q;(x;) have these
properties. ~

Assuming p 1= IEE [€] to exist, Jensen’s inequality for SRT functions obvi-
ously holds:

oz 1) = (2 B [E]) < B (2, 6)] = 8(2).

Furthermore, from the integrability of £ follows immediately (with Fg being
the distribution function of £)
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LEMMA 2.11 For
B(z) = Bglp(zE)]

= [Clarle-ar 4= AR O -

la [Ce-starz@+6- [ -gar@} -
holds:

B(2) — p(z, 1) =®(2) = o (u—2) —9] — 0 as z > —o0
and analogously

P(2) —p(z,p) = ®(2) = [B- (z—p) =] — 0 as z — +oo.
In particular follows:

Pg({<a)=0 _Ja(w-—2)—v=9(zu)forz<a
If{ IP§~(§>b)=O then (I)(Z)”{ B-(z—p)—v=pz,p) forz>b.

Hence we have, as mentioned above,
o(z 1) < ®(2) V2
and, furthermore (see Fig. 2.2),
a:=infsupplP; > —00 = &(2) =¢(z,p)Vz<a
b:=supsupplP; <+oo == @(2) = p(z,4) V2 2 b.

Consider now an interval I = {£ | a < & < b} & supp IP ; —implying
at least one of the bounds a, b to be finite—with IP; (I) > 0. Then Jensen’s
inequality holds as well for the corresponding conditional expectations.

LEMMA 2.12 With 1y = B [€]€eI]and
O (2) = B [p(2,€) | € € I}, for all z € R holds

1 b
ol ) <0 (2) = 5y [ elaerar@.
As shown in Kall-Stoyan [151], in analogy to Lemma 2.11 follows also
LEMMA 2.13 For any finite a and/or b, for I = (a, b] holds

_ [ elepy) for z<a
Pule) = {wz,ulﬁ) for z2b.
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D(z)

\E\_/2=u

-
a /p(z,u) b z

Figure 2.2.  SRT and expected SRT function (supp IP¢ bounded).

Assume now that J := supp IP; = [a, b] is a finite interval. Then, by Lemma
2.11 we have

®(z) =p(z,u) forz<aorz>b, (2.53)

and for z € (a,b) Jensen’s inequality yields ¢(z, u) < ®(z). To get an upper
bound for z € (a,b) and hence an estimate for ®(z) we may use the E-M
inequality

p—a
< F £~
(D(Z) —_— b—a@(z’a)+ b_a (p(z7b)
to get, for z € (a, b),

b— —
o2, 1) < 8(2) < =L p(z,a) + E—p(z,b).. (2.54)

If ¢(z,-) happens to be linear on J, the lower and upper bounds of these
inequalities coincide such that ®(z) = (z, ) V2. If, on the other hand, ¢(z, -)
is nonlinear (convex) on J, the approximation of ®(2) for any 2 € (a,b) due
to (2.54) can be improved as follows: Partition J = [a, b] at a1 := 2 into the
two intervals I) := [ag, a1] and I := (a3, ag], where ap := a and ap := b.
Observing that, with p; := IP; (I;), i=1,2wehavepy - pu;, +p2 - i, = pt
as well as, for any IP -integrable function t(:), the relation

B [p(&)] =p1- B (@) | € € L] +p2- B (é) | €€ L], (259)
Lemma 2.12 implies

LEMMA 2.14 Due fo the convexity of ¢(z, ), we have
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a) for arbitrary z € (ag, az)

o(z,u) = @(2,p1- pyr, +p2 - 1)
< puoe(z ) +p2 (2 i)
< p1- @y, (2) +p2 P, (2)
= O(2);
b) fOV ax € {ao,alvaz}
(I)|I,,(an) = ‘P(am/ﬂl,,) Jorv=1,2

2 2
(I)(an) = ZPu‘I’u,(an) = ZPMP(%,H{I.,)'
v=1 v=1

Proof: The above relations are consequences of previously mentioned facts:

a) The two equations reflect (2.55), the first inequality follows from the con-
vexity of ¢(z, -), and the second inequality applies Lemma 2.12.

b) The first two equations apply Lemma 2.13, the last equation uses (2.55)
again. i

Hence, instead of the upper bound in (2.54), we get the exact value (%) =
®(a1) = prp(as, 1, ) + p2p(ar, 1)1,) as well as the increased lower bound

©* (2, 1, 1 11,) Of ©(2) (see Fig. 2.3) as

¢(z,p) forz € (oo, pu 1) U (141, 00)
(2 s n) = {(p1B — p2a)z — p1Bp L, + paopry, — Y} = (2, 1)
for z € [Mlh’/‘llz]

If, on the other hand, the partition J = [ag, a1] U (a1, ag) = I; U Iy is given,
we know from Lemma 2.13 and 2.14 together with (2.55) that

®(z) = p1o(2, py1,) + p2o(2, ) forz < ap orz > ag orz = as;

hence ®(z) > p1¢(z, p|1,)+p2¢(2, 1|1,) may occur only if z € int [; Uint I,
which implies that @ ;,(2) > (2, u7,) for z € int I, withv = 1 or v = 2.
Then we may derive the following rather rough error estimate:

LEMMA 2.15 For z € intl,, v = 1,2, we have the parameter-free error
estimate A, (z) satisfying

Qy — -1

0 < Ay(2) =Dy, — (2, py1,) < )

(a+P)

N =
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Figure 2.3.  Expected SRT function: Increasing lower bounds.

Proof: Using the relations ¢(z, 1|1,) = afu 1, — 2t + Bu 1, — 2]~ —~ from
Definition 2.3 as well as

@1, (av-1) = plav—1,41)1,) and @1 (@) = lav, 1),

due to Lemma 2.14 and the convexity of ® 7, according to Lemma 2.10, we
get for z = Aa,—1 + (1 — A)a, with A € (0,1)

Au(z) = @1,(2) —o(zp1,)
AP, (ay—1) + (1 = M@, (aw) — @(z,11,)
A®p, (ay-1) + (1 = A) @y, (an)
{ la(pr, —2) =9] ifz <uy,
Bz —p,) = ifz>p,
= AMa(pr, —av-1) =71+ 1 = N[B(ay — p)1,) — ]

{ lalp)r, —2) =] ifz<p,
Bz —py,) =] ifz>py,.

IA

i
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Assuming

Ay — — Qy-—
v = KL, and 1_/\Su|1,, v—1

2 < pyg, & A>
Qy — Gy—1 Gy — Qy—1

it follows that

Ay(z) < MNo(py, = av-1) =+ (1 = N)[Blay — py1,) — ]
—la(pr, = Aay—1 = (1= Aay) — 1]
(1= XN(a+pB)(av — 1)

Il

//f]I,, — Qy—1
< Q=L —
< e (at B)a - apn),
. . ay-1+ay
the maximum of the last term being assumed for |7, = ————— such that
1 Gy — Qp-—1
Ay(z) < 5 (a4 ) —.
2 2
For 2 > |z, the result follows analogously. |

Taking the probabilities p, associated with the partition intervals I, into
account yields an improved global error estimate:

LEMMA 2.16 Given the interval partition {I,; v = 1,2} of J = supp Pz
and z € I, then the global error estimate A\(z) satisfies

2
1 A, — Qo
0< AR) = 2(2) = Y poolznp,) < 5 (@t ) ==
v=1
Jor z € int I, whereas for z € {ag, a1, a2} we have A(z) = 0.

Proof: For z € I, Lemma 2.13 yields ® 5, (2) — @(2, p4)1,) = 0 for v # k;
hence from Lemmas 2.14 and 2.15 follows for z € int I,

2
A(z) = ®(2) = pvolz,u,)
v=1

2
= Y (@, (2) — oz, 1,))
v=1

= pe (P, (2) — (2, p1,)
Ok — Ar—1

1
< =
< 2pn(a+ﬁ) ) y
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and for z € {ap, a1, a2} Lemma 2.14 b) yields A(z) = 0. O

The simple recourse function (2.42) was extended by Klein Haneveld [167]
to the multiple simple recourse function. Here, instead of (2.49), for any single
recourse constraint the following value is to be determined:

K K
(2,€) = min {Z WYE Y G }
k=1 k=1
K K
DU D u = -z (2.56)
k=1 k=1
VP S ue e upe k=1, ,K—1
yk S lk_lk—l ) ’ ) )
viup = 0, k=1..-,K, |
where
ug = 0 < w1 < -+ < urg-—
h = 0 < b < -+ < Ig-1,

and
q]qu]j_.lv ql;-qu;—l’ k=2a”'aK7

with ¢ > —g; and q} + qx > 0 (to ensure convexity and prevent from
linearity of this modified recourse function).

According to these assumptions, for any value of 7 := £ — z it is obvious
to specify a feasible solution of (2.56), namely for any x € {1,---, K} (with
ur = oo and I = 00)

(ylj = Uk — Uk-1, 1SkSKZ—1
+
Yo = T Ug-1
Te )= yp = 0 Yk >k
ry: = 0 k;:l,’K
- - y/; = lk—lk—la 1Sk§ﬁ—1
Te( lg, ln——l] = v = o
¥ = 0 Vk> k.

Furthermore, this feasible solution is easily seen to be optimal along the fol-
lowing arguments:

— Due to the increasing marginal costs (for surplus as well as for shortage),
assuming 7 € [ux—1,ux) and y, = O Vk, it is certainly meaningful to
exhaust the available capacities for the variables yq,- -+, yx—1 first. The
same argument holds true if 7 € (—l,;, —l,x—1] and y,j = 0 Vk.
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— Assuming a feasible solution of (2.56) with some y,': as well as some y,
simultaneously being greater than some ¢ > 0, allows to reduce these vari-
ables to 3’],:; = y,‘:l —dandy, = Yi, — 0, yielding a new feasible solution
with the objective changed by (—4) - (q,j1 + g,) with (q,:‘f1 + q;,) = 0 due
to the assumptions. Therefore, the modified feasible solution is at least as
good as the original one as far as minimization of the objective is concerned.

Hence, for 7 = € — 2 € [ux—1,ux) Withk € {1,---, K} we get

K
Y(z,§) = {quyk +quyk}

1

X
|

fl
g

g (uk — wk—1) + g (7 — we—1)

k=1
k—1 K—2

= > gfuk— D qhuk+ a7 (7 — us1)
k=1 k=0
K—2

= Z(qu - qz+1)uk + q:_lun—l - QTUO + q:(T - un—l)
k=1
K—1

= (q,': —q,‘:ﬂ)uk-f-q:'r with up=0, gf =0.
k=0

Defining
Qo ::qr7 g ::‘I;q.l—q]—:a k;:]-»"',K'_]-a

it follows immediately that

k
q,‘: =Zoz,,_1 for k=1,---,K
v=1
such that
k—1 K—1 K—1 K-1
(2,6 == apuk+ D ok-T=D op(r—up) = Y oplr —ug]t.
k=0 k=0 k=0 k=0

Analogously, for 7 = ¢ — 2 € (—l, —lx—1] with k € {1,---, K} we get

P(z,8) = ZﬁkT-l-lk
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with B :=q; , Bk := Qge1 — 9 » k= 1,---, K — 1, such that in general

K-1 K-1
$(2,8) =Y omlr —upl T+ ) Belr + L]
k=0 k=0

Due to the assumptions on (2.56), we have ag + Gy > 0 as well as

K-1
>0, 8,20, vke{l,-- K1} and Y (ax+8) = qf + a5 > 0.
k=0

Hence, whereas the SRT function

o(z,8) i=a- -2t +8-[6—2 -7

according to Definition 2.3 represents the optimal objective value with a simple
recourse constraint and implies for some application constant marginal costs
for shortage and surplus, respectively, we now have the objective’s optimal
value for a so-called multiple simple recourse constraint, allowing to model
increasing marginal costs for shortage and surplus, respectively, which may be
more appropriate for particular real life problems.

To study properties of this model in more detail it is meaningful to introduce
multiple simple recourse type functions (referred to as MSRT functions) as
follows.

DEFINITION 2.4 For real constants {ay, Bk, uk, lk; k = 0,- -+, K — 1} and
v, such that ag + By 2 0 and

K-1
ap>0, B 20 fork=1,---,K—1 with Y (ax+B)>0,
k=0
u = 0 < wg < -+ < ug_1,
h =0 < 1 < -+ < g,
the function (-, -) given by
K-1
P(2,8) = {an-[E—z—up]t + B (€~ 2+ U7} -7
k=0

is called a multiple simple recourse type function (see Fig. 2.4).

U(z) = Bg[p(,9)]
o K-1

= [ Y el wd B - 2+ LY (O -

T k=0
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is the expected MSRT function.

REMARK 2.5 In this definition the number of “shortage pieces” and of “sur-
plus pieces” is assumed to coincide (with K). Obviously this is no restriction.
If, for instance, we had for the number L of “surplus pieces” that L < K, with
the trivial modification

be=1lp_1+1, Be=0 for k=L, K—1

we would have that

’(/)(Z, §) =

K-1 -1

Dok lE—z—w]T+ Y B € -2+ U]} -y
k=0 k=0

K-1

{or - [E—2z—ue)t+ B [E—2+ U] }—~.
0

>
i

Figure 2.4. MSRT function.
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For the expected MSRT function we have

U(z) +7v=
K-—1 00 0o

_ {ak 6~ = - wl*aFe (€ + 5 [ [5—z+zkrng<s>}
) —00 oo
K-1 o0 z—l

-> {oo[” —smwiar@+n [ C-t-9ar o)
K1 o K-1

= Ozk/ —z)dFE(n+uk +Z,@/ (z—()dF (€ —1)
k=0 k=0
K-1 0 K-1

=S [ (g9 dR (e w) +Zﬁ/ (€~ 2)" dF (€~ 1y),
k=0 Rt k=0

using the substitutions 7 = & —up and { = £ + [ (and £ = pand £ = ( in the
last expression).
The last one of the above relations for U(z) + v, i.e.

U()+vy = Zak/ —z+dF~(£+uk)
(2.57)

+Z_ﬁk/°°<s—z)—ng<é—lk),
k=0 o0

indicates a formal similarity with an expected SRT function using a positive
linear combination of the distribution functions Fj (§ + uk) and Fi (€ — I),
k=0,---,K -1,

K-1 K-1
o Fs (E+ur) + Y BeFz (6 — ).
k=0 k=0

Due to Definition 2.4, H(-) is monotonically increasing, right-continuous, and
satisfies

K-1
H(€) 2 0%, lim H()=0, and lim H(E) = _(ox+8) >0,
k=0
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K-1
such that standardizing H(-), i.e. dividing by W := Z (o + Br), yields a
k=0
new distribution function as the mixture
K-1 K-1
2 D aRFr(E+ur) + ) BeFe (€ —I)
k=0 k=0
— = . 258
G () =5 = 2.58)

Assuming now that W(-) may be represented as an expected SRT function
using the distribution function G (-) we get, with constants A, B and C to be
determined later, using the trivial relations p* = p+ p~ and p~ = —p + pt,
and writing | instead of ffooo for simplicity,

U(z)+C=A[(§~2)"dG(§)+ B [(§ —2)~dG (€)

K-1 K-1
= ‘1?/‘ {Zak/(ﬁ—zﬁng(HukH Zﬂk/(ﬁ—z)+dF£(§—lk)}
k=0 k=0
B (X! K-1
+77 {Zak/(£—z)—dF§-(§+uk)+ Zﬁk/(ﬁ—z)‘dFé(g—lk)}
k=0 k=0
K-l K-1
= % {Zak/(f—z)+ng(§+uk)+ Zﬁk/(g—z)dpé(g_lk)
k=0

£ K-1
+ ) B /(E —2)" dFg(€ - lk)}
k=0

K-1 K-1
+§ {Zak/(z—f)dF€(§+uk)+ Zﬁk/(f—z)"dFé(f—lk)
k=0 k=0
K—1
+ Z Oék/(§ - z)+dF5~(§+uk)}
k=0
A K-1 K-1
= W{ ak/(5-2)+ng(§+Uk)+ > Belp+ b —2)
k=0 k=0
K-1
3 6 /(s—zrng(s—zk)}
k=0

=

-1 K-1

on(z =it + 3 B [(€= ) dFE - 1)
k=0

K-1
+ zak/(f—z)+dFE(§+uk)} .
k=0

+B{
w
k

I
=]
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Hence we have

VU(z)+C =
K-1
A+ B ~
= k}: {ak/(ﬁ—z)+ng(§+u1c) +ﬂk/(§- z) dFé(.g—lk)}
=0
A K- B K-1
o 5k(u+lk—Z)+WZak(z—u+uk).
k=0 k=0
K-1
To get coincidence with equation (2.57) we ought to have, with W, = z oy
k=0
K-1
and Ws = ) B,
k=0
MTB =1 and
A K-1 B K-1
W (Wﬁ(ﬂ—z)+ Zﬁk%) +W (Wa(z—u)+ Z%%) = C.
k=0 k=0

To assure that the left-hand side of the last equation is constant (in z), we have
the condition
A-Wg—B-W,=0,

which together with A + B = W = W, 4+ Wj implies that
A=W, and B=Wp,

such that
K-1 K-1
Wa Y Bilk+Wp Y ajus
w

Hence, for the multiple simple recourse problem (with one recourse con-
straint)

min{cT:I: + U(2)}

Az = b

tTe —z = 0 (2.59)
T > 0

we have derived in an elementary way the following result, deduced first in
Van der Vlerk [298], based on a statement proved in Klein Haneveld—Stougie—
Van der Vlerk [168]:



242 STOCHASTIC LINEAR PROGRAMMING

THEOREM 2.8 The multiple simple recourse problem (2.59) with the expected
MSRT function

U(z) = (2.60)
-1 K-1

Y (SR TERNED S (EP R

k=0 k=0

I
"

is equivalent to the simple recourse problem with the expected SRT function

U(z) = (2.61)

(Zak>/(§—z+dG(§ (Zﬂk>/(§——z dG (6) - C

using the distribution function

K-1
o Fy (€ +ux) + Z BrFg (€ -
G (&) = =2 — (2.62)
(o + Br)
k=0

and the constant

K-1 \ k-1 1
(Z ak) Brelie + (Z ﬂk) Z O Uk
C— k=0

k=0
K-

(2.63)

,_a

(o + Br)
k=0

As shown in Van der Vlerk [298], if Frepresents a finite discrete distribution

N
{(&p); v=1,---,N} with p, >0, Y p,=1, (2.64)

v=1

then G corresponds to a finite discrete distribution with at most NV - (2K — 1)
pairwise different realizations (with positive probabilities). This distribution,
disregarding possible coincidences of some of its realizations, according to
(2.62) and (2.64) is given by the following set of realizations and their corre-
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sponding probabilities

)
s v0 = (060+,80)py’ =1,---,N; (KZ )>
Y
gl’—un’ ﬂ-ll—n_ a'jypy’yzla' ,N,I{,I ) ,K———].,
2.65
§V+lli, ﬂ-UK: /B'iypu;I/:l,...’N;n_—_l,...’K_l; ( )
K-1
with v = (og + Bk)
k=0 )

2.3 Some characteristic values for two-stage SLP’s

Due to (2.3) and (2.4), the optimal value RS of the general (two-stage)
stochastic program with recourse is given as

RS = nr;in {CTiE + IE§ [Q($7 T(£)7 h(é-), W(é-)? q(é.))]}

st. Az = b (2.66)
z > 0,
where
Q(z; T(€), h(€), W(£), 4(€)) := inf g7 (£)y(€)
st. W(§y() = h(ﬁ) Tz as.
y& > 0 a.s.
y() € Y

with Y = L2(©2,IR™). As in (2.1), we assume that the random parameters in
these problems are defined as linear affine mappings on = = R" by

,

TE¢) = T+ ZTj &; T, TV € R™*™ deterministic,
J'=7} |

W) = W+ Z W&, W, Wi € R™ deterministic,
/,: 3

h(€) = h+ D W& b, b € R™ deterministic,
= |

q&) = q+ Zq] & s g, ¢ € R™ deterministic.
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Following one common approach to deal with stochastic programs, the ran-
dom vector £ would be replaced by its expectation £ = IE¢ [£], yielding instead
of RS the optimal value EV of the expected value problem,

EV := min{cTz +¢T({)y}
z,y

s.t. 1_4113 ~ = b ~ (2.67)
Tz +W(y = h(¢)
x, y > 0.

Except for the first moment &, this model does not take at all into account
the distribution of £. Hence the solution will always be the same, no matter
of the distribution being discrete or continuous, skew or symmetric, flat or
concentrated, as long as the expectation remains the same. In other words, the
randomness of ¢ does not play an essential role in this model.

So far, in the recourse model (2.66) the decision on the first stage variable x
had to be taken before the realization of € was known. Assuming in contrast the
wait-and-see situation, where we have to decide on x only when the outcome
of £ is known, leads to the family of LP’s for £ € =

Y(§) = Igl,i?gl{cTw +q%(&)y}

s.t. Az = b
Tz +W(y = h(§)
z, y 2 0

for which the so-called wait-and-see value W S is associated with (2.66):

WS = E¢ [v(€)]. (2.68)

Finally, with the first stage solution fixed as any optimal first stage solution
Z of the E'V problem (2.67), we may ask for the objective’s value of (2.66),
the expected result of the EV solution

EEV =
= T4 + B¢ [miny {qT (&)y | W()y = h(€) — T(E)E, y > 0}]. (2.69)

Observe that, in contrast to the values RS, EV, and W' S, the value EEV
may not be uniquely determined by (2.69): If the expected value problem (2.67)
happens to have two different solutions & # &, this may lead to EEV (%) #
EEV(%).

For the above values assigned in various ways to the recourse model (2.66)
several relations are known which, essentially, can be traced back to Madan-

sky [184].
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PROPOSITION 2.2 For an arbitrary recourse problem (2.66) and the associ-
ated problems (2.68) and (2.69) the following inequalities hold:

WS <RS<EEV. (2.70)

Furthermore, with the recourse function Q(x; T(£), h(£)), allowing only for
the matrix T'(-) and the right—hand-side h(-) to contain random data, it follows
that

EV <RS<EEV. 2.7

Proof: Let x* be an optimal first stage solution of (2.66). Then obviously the
inequality

() < cFa* + Q(z*; T(€), h(€), W(§), (€)) VE € E

holds, and therefore

WS = Ee [7(6)] < {c"o* + B¢ [Q(z*; T(€), h(€), W(£),a(£))]} = RS .

The second inequality in (2.70) is obvious.

To show the second part, for any fixed & the recourse function

Q& T(€), h(€)) = min{g"y | Wy = h(§) - T(€)&, y > 0}

is convex in £. In particular, for the optimal first stage solution x* of (2.66)
follows with Jensen’s inequality and the definition (2.67) of EV/, that

RS = c'z* + B [Q(a* T(€), h(€))]
> cTa* + Q(z* T(6), h(€))
> EV
which implies (2.71). a

PROPOSITION 2.3 Given the recourse function Q(z; h(£)) (i.e. only the right—
hand-side h(-) is random) it follows that

EV <WS.
Proof: For the wait-and-see situation we have

v(€) = min{c"z+ ¢ y | Az =b, Tz + Wy = h(¢); 2,y > 0},
x,y

which is obviously convex in £. Then by Jensen’s inequality follows
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Y€)= EV <E[y(£)] = WS.

O

For more general recourse functions the inequality of Prop. 2.3 cannot be
expected to hold true; for a counterexample see Birge—Louveaux [23].

Furthermore, in Avriel-Williams [8] the expected value of perfect informa-
tion EV P1I was introduced as

EVPI:=RS-WS 2.72)

and may be understood in applications as the maximal amount a decision maker
would be willing to pay for the exact information on future outcomes of the
random vector £. Obviously due to Prop. 2.2 we have EV PI > (. However,
to compute this value exactly would require by (2.72) to solve the original
recourse problem (2.66) as well as the wait-and-see problem (2.68), both of
which may turn out to be hard tasks. Hence the question of easier computable
and still sufficiently tight bounds on the EV PI was widely discussed. As may
be expected, the results on bounding the expected recourse function mentioned
earlier are used for this purpose as well as approaches especially designed for
bounding the EV P1I as presented e.g. in Huang—Vertinsky-Ziemba [123] and
some of the references therein.

Finally, the value of the stochastic solution was introduced in Birge [19] as
the quantity

VSS:= EEV — RS, (2.73)

which in applications may be given the interpretation of the expected loss for
neglecting stochasticity in determining the first stage decision, as mentioned
with the E'V solution of (2.67). Obviously it measures the extra cost for using,
instead of the “true” first stage solution for the recourse problem (2.66), the first
stage solution of the expected value problem (2.67). Also in this case Prop. 2.2
implies V.§S > 0.

If in the problem at hand there is no randomness around, in other words if
with some fixed { € IR™ we have P, (§ = §) = 1, then obviously follows
EVPI = V5SS = 0. In turn, if one of these characteristic values is strictly
positive, it is often considered as a “measure of the degree of stochasticity” of
the recourse problem. However, one must be careful with this interpretation; it
should be observed that examples can be given for which either EV PI = 0
and VSS > 0 or, on the other side, EV PI > 0 and VS5 = 0 (see Birge—
Louveaux [23]). Hence, the impact of stochasticity to the EV PI and the
V §S may be rather different. Although these values are not comparable in
general, there are at least some joint bounds:
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PROPOSITION 2.4 Withthe recourse function Q(x; T(€), h(€)), allowing only
Jor the matrix T(-) and the right—-hand—side h(-) to contain random data, the
value of the stochastic solution has the upper bound

VSS < EEV —EV. (2.74)

With the recourse function Q(x; h(£)), i.e. with only the right-hand—side h(-)
being random, the expected value of perfect information is bounded above as

EVPI<EEV -EV. (2.75)

Proof: Due to (2.71) in Prop. 2.2, we have RS > EV and therefore
VSS=FEEV -RS<EEV —EV.

From Prop. 2.3 we know that with the recourse function Q(z; h(£)) holds
EV < W S. Hence, together with Prop. 2.2 we get

EVPI=RS-WS<EEV —-EV.
O

The above bounds are due to Avriel-Williams [8] for the EV PI and Birge
[19] for the V' SS.

In the literature, you may occasionally find statements claiming that the
bounds given in (2.74) and (2.75) hold true without the restrictions made in
Prop. 2.4, There are obvious reasons to doubt those claims. Concerning V' SS
the above argument for (2.71) using Jensen’s inequality fails as soon as we loose
the convexity of the recourse function in £ for any fixed . For the EV PI we
present again the following example (as mentioned in Kall [134]):

EXAMPLE 2.2 With X =Ry letc=2 W = (1,-1), ¢ = (1,0)T and
P (10, 1) = (1,2)) = Pe (T, = (3,12)} = 7.
Then we have T = 2, h = 7 and
EV =min{2zx +y |22 +y1 —y2 =T, 220,y >0} =7 withi = ;

With

Q@ TW, hV) = min{y; | g1 —y2 =2 -2,y >0} =0
Yy
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and
7@ @Y — _ ; _3
Q(Z; T, h )—mym{yl|y1—y2_12—3m,y20}—§
follows
1
FEV =2. z+§ 2—7.75

and hence EEV — EV = 0.75. On the other hand we get RS as optimal
value from

min{2-z +0.5- 3" + 05 yP}
Lot 1oy —1-4 2
3.2+ 1.4 — 1.4 12

s, <1) e 0,

Il

(AVARRT

yielding RS = T withz* = 2, y()—b‘. To get the W S we compute
vi=min{2-z+y |1l z+1-y1—1-y2=2; 2,y >0} =2
and
vor=min{2 -2+ |3-z+1-y1—1-y2=12; 2, ,y >0} =8
yielding WS = 0.5-2+ 0.5 8 = 5 such that
EVPI=RS-WS=2>FEEV - EV =0.75.

O
3.  The multi-stage SLP
According to (1.1) on page 194 the general MSLP may be stated as
T )
min{cfz1 + B ) | e (G)e(G)}
t=2
Anz = b G3.0)
An(G)z +2At7' Gzr(Gr) = bi(G) as,t=2,--,T,
T=2
£L'120, xt((t) > 0 a.s.,t=2,-~-,T, )

where on a given probability space (€2, G, P) random vectors &; : 2 — IR™
are defined, with € = (¢],---,&%)7 inducing the probability distribution IP,
on R™+¥7T and ¢, = (¢7,-++,&5)7T the state variable at stage .



Multi-stage SLP Models 249

REMARK 3.1 Not to overload the notation, for the remainder of this section,
instead of € = (&F,-++,&8)T and ¢ = (&5, -, &F)T, we shall write § =
(€2,---,6r) and G = (€3, -+, &), understanding that € = (€, -+ ,Er) €
RV and G = (€a,- -+, &) € R™2T1™, a5 before. 0

Furthermore, the (random) decisions x;(-) are required to be F;-measurable,
with 7 = o((;) € G. Since {F1,:--,Fr} is a filtration, this implies the
nonanticipativity of the feasible policies {z1(-), - - -, zr(-)}. Finally, Assump-
tion 1.1, page 194, prescribes the square-integrability of £;(-) w.r.t. P for
t = 1,---,T, and A¢r(+),be(:), c() are assumed to be linear affine in (;.
In addition, we have required the square-integrability of the decisions z(-).

Obviously, for £ having a non-discrete distribution, to solve problem (3.1)
means to determine decision functions z;(-) (instead of decision variables)
satisfying infinitely many constraints, which appears to be a very hard task
to achieve, in general. The problem becomes more tractable for the case of
¢ having a finite discrete distribution, a situation found or assumed in most
applications of this model.

3.1 MSLP with finite discrete distributions
T

Let{ : Q — RE R = Zrt, be a random vector with a finite dis-
t=2
crete distribution, having the realizations E 1 E 2. E S with the probabilities
q1,492, -+, gs, respectively.

Anyone of these realizations is also denoted as a scenario £ = (EZS, e Z;)
with the probability P¢{{ = £} =g, s€ 8= {1,---,5}. Then the time
discrete stochastic process {{;; t = 2, -, T’} with discretely distributed state
variables (; may be assigned to a scenario tree as follows:

— The (deterministic) state of the system at stage 1 is assigned to node 1, the
unique root of the tree.

— Among all scenarios 2 8, s=1,-.-,8, there are a finite number ky having
pairwise different realizations 628 of the stage 2 state variables, denoted as
62” ) — 82” ("), n =2, -+,1 + ko, and assigned to the nodes numbered as

n = 2,---,14 kg = Ky. Here p(n) refers to the first of the scenarios

Z §, s =1,---,.8, passing through the particular state 223 Node 1 is con-

nected by an arc to each of the ko nodes in stage 2 due to the fact, that the

corresponding states in stage 2 are realized by at least one scenario.

~ Having assigned, according to all scenarios, up and until stage ¢ < T the
nodes and arcs to all states and implied transitions between consecutive states



250 STOCHASTIC LINEAR PROGRAMMING

(i.e. given a scenario Es (52 R ,Et 1 é\t I ,E:,a), implies a transition
from state (* ; = (&5, ,{t 1) to (f = (52, ‘,ﬁts) at least once), we
consider for each scenario 53 the state Ct 1 = ({2, &8 1), Again,

in stage ¢t + 1 there is a finite number k4, of different states denoted as
Ct’ff ,n=Ki+1,--+  K; + k1 =: K11, and assigned to the nodes
Ki+ 1, Ky + kep1 =: Kpyq (with p(n) referring again to the first
scenario passing through this particular state). Finally, we insert the arcs
from stage t to stage ¢ + 1 according to the implied transitions.

With this scenario tree, representing graphically the possible developments of
the stochastic process {£2,- -, &r} over time, we may combine probabilistic
information to get a complete description of the process (see Fig. 3.1).

To this end, we may identify the leaf nodes of the tree (the stage T nodes)

Kp_1+1,--, K7 with the scenarios ES, s =1,---,5, and assign to these
nodes the probabilities g; of the respective scenario. Hence we have first the
probabilities to reach the leafnodesn = Kpr_1+1, -+, Krasp, = gn—kp_, -

For all other nodes, i.e. for n < Kp_1, we then compute the probabilities
Dr, to pass through these nodes: Given node n, by the above construction of
the scenario tree we know the stage t, of this node as well as its corresponding
state Eti(n); then with S(n) = {s | Cs = Cp(n)} we have {£° | s € S(n)}, the
set of scenarios passing through this state, called the scenario bundle of node n,
and we get p,,, the total probability of this scenario bundle, as p, = Z qs-

s€8(n)
After the above description of a scenario tree it seems to be meaningful to
introduce the following collection of specific variables and sets for discussing
various issues on scenario trees. These entities have shown to be useful when
dealing with rather complex problems defined on scenario trees, like e.g. multi-
stage SLP’s with finite discrete distributions, as to be discussed next. There we
shall make use of the following

Notation for scenario trees:

W, A) : rooted tree with nodes N' C IN (n = 1 the unique root),
and A the set of arcs.
The nodes n € N are assigned to stagest = 1,---, T,
with n = 1 in stage £ = 1, and with &y > 0 nodes for
T

=2, T,and |[N|=1+) Kk
=2
The arcs in A connect selected nodes of stage ¢ and
staget+ 1,t =1,---,T — 1, such that each node in
some stage ¢t < T has at least one immediate successor,
and each node in some stage ¢ > 1 has exactly one
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Four-stage scenario tree representing a stochastic process.

immediate predecessor.

Anypathng,---,np, withny =1, ¢, =t fort > 2,
and (n¢,ngy1) € Afort =1,---,T — 1, corresponds
one-to-one to the scenario £°, s € § = {1,---, S},
identified with the leaf node n .

=P {¢{ = E %1, the probability of scenario E 5, and
hence the probability to reach the leaf node identified
with this scenario;

the stage of node n € N

the smallest s € S such that scenario E (%) passes
through the state ¢;° assigned to node n;

251

(m = Z\t’; ™ the state in stage t,, uniquely assigned to n;

the set of nodes in stage ¢ with |D(t)| = ky;

parent node (immediate predecessor) of n € N, n > 2;

set of nodes in the unique path from n € N through the
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successive predecessors back to the root, ordered by
stages, the history of n (including n);

S(n) : S(n) ={s| Eti = Z;’; (n)}, the index set identifying the
scenario bundle of node n;

P, P = Z gs, the probability to pass node n;

se8(n)

C(n) C N :  the set of children (immediate successors) of node n;

Gs(n) CN . the future of node n along scenario £%: s e S(n),
including node i, i.e. the nodes ny, =n,---,ny
provided the path {nq,---,n;_,---,ny} corresponds to
scenario £ ° (hence Gs(n) = B if s € S(n));

G(n)CN : thefutureofn € N, G(n) = U Gs(n);

s€8S(n)
Qn—m Y Qnem = I;)—m Ym € G(n), the conditional probability to

n
reach node m given node n (provided that p, > 0).
To keep the following problem formulations simple, we introduce

ASSUMPTION 3.1 For any MSLP with a finite discrete distribution of the sce-
narios & holds N
gs=Pe{{=¢(°}>0VseS. (3.2)

By construction the following facts are obvious:
— Through each node passes at least one scenario, i.e. S(n) # 0 Vn € N;

— given any stage t, each scenario passes through exactly one node in stage ¢,
ie. U S(n)=Sand S(n) NS(m) =0Vn,m € D(t) : n # m.
neD(t)

Hence, it follows in general that

> pn=1,t=1,--,T, (33)
neD(t)

and due to Assumption 3.1 holds

Dn = Z gs >0 VneN. (3.4)

seS(n)
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For the general MSLP (3.1), the decisions z;((;) in stage ¢ are required to be
Fi-measurable with F; = ¢(({;) C G. For ¢ having a finite discrete distribution,
a(¢;) is generated by the k; atoms ({1{&:(")], n=Ki1+1, -, K, Then
x¢(-) has to be constant on each of these atoms or equivalently, to each node n
we have to determine the decision vector z,, := x4, (E ™). Observing that the ex-

K
pected values IE [c] (¢;)z({;)] may now be written as Z Pt (C™)zn,
n=K¢ 1+1
problem (3.1) for a discrete distribution reads as

Y Atn@zm = b,((Y) VneN (3.5)

Tm = 0 YmeN

withp; = 1and c}l (Zl) = ¢y, Atltl(El) = Ajy, by, (El) = by being constant,
With an obvious simplification of the notation problem (3.5) may be rewritten
equivalently as

min Z metTm (M),
meN
Y A (Man = by VneN (3.6)
meH(n)
0 VYmecWN.

Tm

v

As the dual LP of (3.6) we have
max Z blu,
neN

S AL, (Wun < Pmer(m) YmeN.
n€G(m)

(3.7)

REMARK 3.2 Ifin particular, Yn € N\ {1} and for each node m € H(n) :
tm < tn —1, wehave that Ay 1, (n) = Ay, (C™) = 0, then with Wy := Ay
and

T = At,t,-1(n) and Wy = Ay 1, (n) Vne N\ {1}
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problem (3.6) reads as

min Z Pmci, (M)Zm

meN
Wl.’L'l = b1 (3-8)
Toth, + Wntn = by VYneN\{1}
T, > 0 YnewN.

Hence we have the same problem structure as assumed when discussing the
nested decomposition in section 2.7 of Chapter 1, in particular the structure of
problem (2.19) on page 39.

The general MSLP problem (3.1) can always be transformed to an equivalent
problem where Ay = 0 holds for T < t — 1, thus assuming the following form

T
min{c{ z; + E Z cf (C)z(Ce)}
Wiz = = b -9

Ti(Ce)ze—1(Ge—1) +We(G)2e(Ge) = be(Ge) as, t=2,---, T,
120, 24(¢) > 0 as,t=2,--,T

r
Sormally corresponding to (3.8), where now z; is an ny + . . . + ny—dimensional
variable and Ty and Wy have my + ny + ... + ny rows. For specifying the
transformation which maps (3.1) into (3.9) we will employ double indices. The
transformation is as follows. Let

7 (¢) = (26,1(G) - 2e0-1(C), 26.4(C2))

with z; ; being an n.—dimensional variable, T = 1, ... t, and with zy corre-
sponding to xy in (3.1). The matrices are defined as follows. Let W1 = Aj 1.
For1 <t < T we define

A1(C) oo Are—1(G)
I

T(Gt) =
I
and
0 e 0 At,t(Ct)
I 0
Wi(G) = :
I 0

and for t =T let
Tr(¢r) = (Ar1(¢r), - - - Arr-1(¢T)) and Wr((r) = Arr(Cr).
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Loosely speaking, the auxiliary variables (2, . . ., 21t-1) serve for “forward-
ing” the solution to later stages. As an example let us consider an MSLP with
T = 4 and let us drop in the notation the dependency on (. The original
Structure is

A11:I}1 = bl
Az Ay = by
A1y +Azze +A33x3 = b

Agxr +Agpzs +Apzrs +Auzs =

which transforms into

b1
b2
0
b3
0
0
by

A1z
Az1z11 +Az2220
211 —221
Aszizo1  +Aszzz2 +Ass2a3
221 —2Z31
222 —232
A2z +As22z2 +Adazas | +Asazae

s P upu

In the literature, multi-stage SLP’s are often presented just in the so-called
staircase formulation (3.8). Although problems of this form, at the first glance,
look simpler than problems in the lower block triangular formulation like (3.6),
this does not imply a computational advantage in general. Indeed, if the stair-
case formulation results from the above transformation of (3.1) into (3.9), then
the numbers of variables and of constraints are increased. O

3.2 MSLP with non-discrete distributions

In Section 2.1 we have discussed two-stage SLP’s with complete fixed re-
course and with bounded distributions, i.e. with suppIP; C E = X|_, [, Bi]-
In particular, we considered the recourse function Q(z;7'(£), h(€)), which
according to our notation (see page 200) implies for the second stage prob-
lem (2.4) that only T'(-) and h(-) (or some elements of these arrays) are ran-
dom. In this case, we could apply Jensen’s inequality to get in Theorem 2.4 a

lower bound for the expected recourse Q(z) = /= Q(z; T(£), h(£))IP¢(dE) as

Q(z; T(€), h(§)) < Q(z), where £ := [E¢ [€]. In other words, introducing the
Jensen distribution IP,, as the one-point distribution with P, {n = IE¢ [{]} = 1,
the Jensen inequality can formally be written as

[ @z, oy an) < o(z).



256 STOCHASTIC LINEAR PROGRAMMING

On the other hand, we have derived particular discrete probability distri-
butions @Q,, on the vertices v” of E, the E-M distribution for stochastically
independent components of £ in Lemma 2.6 and the generalized E-M distribu-
tion for stochastically dependent components of £ in Lemma 2.7, respectively,
which were shown to solve two special types of moment problems. According
to Theorems 2.5 and 2.6, using these distributions the E-M inequality provides
an upper bound for the expected recourse as

o(z) < / Q(a; T(n), h(n)) Q, (dn)

or
= Z Q(z; T(v"), h(v")) Q,(v").
v=1

For any disjoint interval partition X = {E; k= 1,---, K} of E, we apply
Jensen’s inequality for the conditional expectations, meaning to introduce on the
conditional expectations &, := IE¢ [€ | £ € E¢], k = 1,- - -, K, the correspond-
ing discrete distribution IP,, ., defined by I, {&} = P¢{=}}, and to compute

/ Q(z;T(n), h(n))Py, (dn) to get a lower bound for Q(z). Similarly, we

apply the E-M inequality using the distribution Q, Z Pc{=k} - Qn_ ,

where er is either the E-M distribution or else the generahzed E-M distri-
bution solvmg the corresponding conditional moment problems, conditioned
with respect to the cell =, € A'. This way, according to Lemma 2.8 we get an
increased lower bound as well as a decreased upper bound.

For any sequence of appropriately refined interval partitions { X"} the cor-
responding sequences of discrete distributions {IP;),, } and {Q,,,, } of Jensen
distributions and E-M distributions, respectively, are shown in Lemma 2.9 to
converge weakly to the original distribution IP;. For the corresponding se-

quences {Q”} and {Q¥} of Jensen lower bounds and E-M upper bounds,
respectively, of the expected recourse function Q, this implies epi-convergence
of both sequences to Q. This convergence behaviour, however, provides due
to Theorem 2.7 promising conditions to design approximation schemes for the
solution of two-stage SLP’s with complete fixed recourse.

The question arises whether we may expect a similar approach to be appli-
cable for the solution of multi-stage SLP’s with more than two stages. To geta
first impression let us take a look at a rather simple three-stage example.
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EXAMPLE 3.1 Consider the complete fixed recourse problem

V* = min{2z + Ey1(&2) + 2y2(2)] + Elz1(62, &3) + 22(£2,€3)]}

stz + yi(ée)
r + yi(é2)

y2(&2)
y2(&2) +

= &
z1(62,&3) — 22(62,83) = &

T, Y1, Y2, 21y 22 > 0

with the joint probability distribution P¢ of ( = (&2,&3)T on its support
E = [0,1] x [0, 1], given by the density

f(&2,63) =

1+e for 0<&,86<05
14+¢e for 05<6,88<1
1l—¢ for 0<&<05<€<1
l—e for 0<E&<05<&<1
0 else

where € is some constant such that ¢ € (—1,+1).

1 /7
3 1+
fron) _ /
=7, 1-¢ ,
L7 1+e¢
7/
/]
/7
1+e 7
':3 7 1
h—41 // — €
1+¢
/7
0 =2 1

Figure 3.2. supp P, = 8% x 2% = 82 x (8% U 23) with density f(£2, £3).

For the marginal distribution of €2 we obviously get the marginal density as

1
falEr) = /0 P62, €3)des = {

1 for& €]0,1]
0 else,
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such that the corresponding distribution P, isU [0, 1], the uniform distribution
on the interval [0, 1]. According to the definition of f(&2,&3), for €3 follows the
same marginal distribution. _

Considering, for instance, the interval = := {[0,0.5] x [0,0.5]} C R?, we

get
P = [ F(0dc=7(1+2),

whereas for the marginal distributions in U [0, 1] follows
1
=7
Hence, for € # 0 the random variables &2 and &3 are dependent.

Due to the objective of our recourse problem, for any given first stage solution
x > 0 the second stage solution y;(£2),1 = 1,2, minimizing the second stage
objective y1(€2) + 2y2(&2), has to satisfy the rules

)b <z =y1(£) =0, y2(L) =2 - &

b)é >z = y1(&2) = &2 — =z, y2(&2) = 0.

Minimizing the third stage objective z1(€2,£3) + 2z2(&2, £3) then yields, for both
of the cases a) and b) above,

T+ y1(&2) —92(62) <& = 21(&,83) =& — &2, 22(€2,€3) =0
r+y1(&e) —y2(ée) > & = 21(£2,8) =0, 22(62,83) = &2~ &3
Observe that a first stage decision x < 0 is not feasible. On the other hand,
x > 1 cannot be optimal, since this would increase unnecessarily the overall
objective, more precisely the first stage cost 2x plus the expected second stage
cost B[y (€2)+2y2(&2)] dueto a) by at least 2(z— 1)+ 2B [(z — &2)] > 4(z—1).

Hence we compute the objective value, for 0 <z < 1, as

T 1
V(.'):) = 2z+ /5 2(37 — Eg)dﬁg + / (52 — x)d§2+

2=0 o=z

+/: €3 — &2|.f (€2, €8)dbads

3 1
= 22+ 5.@2 -zt s+ /:_ |3 — €| f (€2, &3)dEadEs -

For the last integral we get

IPEz ([07 0'5]) : IP§3([O, 0.5])

Il

1 1
/:153 — & f (€2, €3)dE2dEs /6—0/5 » (€3 — €2) (&2, &3)dEadEs

'

1 1
" ‘/£3=0 /§2=€3 (62 - §B)f(€2a g3)d§2d§3),

B
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where A = B for symmetry reasons (see Fig. 3.2). For A, the integral taken
over the triangle above the line £&3 = & in Fig. 3.2, we get by integration of

(€3 — &2) f(€2,83)

1 1 1 1 1 1 2—¢
A——2-(1+€)'2—4+—2‘(1—E)2+'2‘(1+€)ﬁ—— 12
2—¢
such that A+ B = and hence
V(w)_Qa: taotg+ 6 — g% tet—(—.

Obviously, m>ig V(z) is achieved at & = 0 such that the optimal value of our
Tz

problem turns out to be

5—¢
* . —
Vi=minVie) = ——.

Let us now discretize the distributions of £ in stage two and { = (£3,£3)7 in
stage three by choosing the partitions X? of 52 and X3 of E% x 23, respectively,

as follows:

Stage 2: X% = {22} yielding for &, the realization

b= B[] = 5 with pr = P({E2 € 0,1)}) = 1

1 1
Stage 3: X% = {52 X [O, —) B2 x [-2—, 1] } yielding for &3 the realiza-

)]-

sforscmnocfpo] - aferec 1]

tions

N

]= IE[§3|§3€[0,

[ ST
N—

&G1=E [53 & €[0,1],&3 € [0,

N N

with

3

[

—

Il

)
TN
—

o

w

m
—

N — =
[
N—
W—/

i
M= D=

Q

=

Q
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Then the discretized problem reads as

1 1
V= miﬂ{2!17+y1 + 22 + 5(211 +23) + E(Z% +Z§)}
st +yr — Y2 =
T +yi—ye 2l -z =

r +Y1 — Y2 +z%—z§ =

[ Y RN =

1 .1 .2 .2
T,Y1,Y2,%1, %5, 27, %3 >

- = 3 .
Also in this case the optimum is achieved for T = 0 with V = 1 Comparing

this value with the optimum V* = > g £ of the original problem, we see that
) 1
SV if e<;
2
v 1
> V* lf £ > —2' .

In conclusion, even for a rather simple situation like three stages, randomness
in the right—hand—sides only, and complete fixed recourse, we cannot expect in
general to get a lower bound of the optimum by discretization of the distributions
in an analogous manner as in the two-stage case. a

This example as well as the following considerations are essentially based on
discussions related to an idea, originally due to S. Sen, concerning refinements
of discretizations in order to improve discrete approximations for MSLP prob-
lems. The outcome of these endeavours was reported in Fusek—Kall-Mayer—
Sen—Siegrist [91].

Obviously, with appropriate successive refinements of partitions X of the
sets [Z2 x -+ x BY] D suppPq,, t = 2,--,t; v = 1,2, -, we may expect
weak convergence of the associated discrete distributions {IP,, x+ } and hence
epi-convergence of the related objective functions of the general MSLP (3.1),
as shown by Pennanen [220]. Thus Th. 2.7 (page 226) suggests that a solution
could be approximated by this kind of successive discretization of the distribu-
tions. However it seems difficult to control this procedure since, in difference
to the two-stage case, for the general MSLP we do not have error bounds on
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the optimal value. According to Ex. 3.1, even for the much simpler problem

T
min{cz; + B _ fz:(¢)}

=2
Anzy = b

Anzt + Awar(G) = b(G) as,t=2,--,T,
T=2

2120, 24(¢;) > 0O as,t=2,---,T, |

\ (3.10)

with complete fixed recourse and only the right-hand-sides being random, we
cannot expect to get at least lower bounds, in general.

Nevertheless, we shall discuss first, for the purpose of defining a fully aggre-
gated problem instead of the MSLP (3.1), how an arbitrary finite subfiltration
F and the corresponding scenario tree can be generated. Again, we assume
the supports of the stagewise distributions to be bounded. Hence there exist
intervals £ C IR™ such that supp IP¢, C Z*, ¢ = 2, ,T". Then we proceed
as follows:

Subfiltration and the corresponding scenario tree

— With Q) := Q and F| := {Q, 0} define A7 = {1}.

— Forthestagesv = 1,-.-,T — 1 repeat:

Let NV, v4l = 9.

Then for each node n in stage v (i.e. t, = v) and some r, > 1:

Define a finite set C,, of children of n such that |Cy,| = r,, and, for any m with
m#n, tm =t, =v,that C,, NC,, = Paswellas C, NN, =0 Vu <v
holds. Furthermore, let NV, 41 :— Ny+1 U C,, and associate individually

with the set Cp, := {kgn) krn } a partition of Z¥*! into subintervals as
Tn
grtl = Ezj;}. (3.11)
2

=1

— To generate the subfiltration, for ¢t = 2,- - -, T repeat:
For each n € MN; and h, € N;_1, its unique parent node, and =¢, the
subinterval corresponding to node n in the partition of =* associated with
Ch, et Q) 1= Qi) €128
Define the subfiltration F by Fp o= a{QM | n e M}, t=2,---,T, with
o{Q™ | n e N;} the o-algebra generated by the sets ("), n € Nt

— The defining elements of the discretely distributed stochastic process corre-
sponding to the above finite subfiltration, i.e. the realizations (" at node n
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and their probabilities p,, may be assigned to the nodes as follows:

Forany n € N\ {1} let H(n) = {41 = 1,---,4;,-1,%:, = n} be the
history of node n. By the above construction, each node ¢, € H(n) corre-
sponds uniquely to a particular subinterval Z; of =¥. Then for the discrete

process we choose the state E" at node n and the corresponding probability
Pn as

o~

on E [Ctn | ¢in € Xi’;zEz’t]
pn = Pq, ({Ctn € Xf,"zz%}) '

Using this discrete process we may then replace the general MSLP (3.1), defined
with respect to the filtration F, by the fully aggregated problem with respect to
the subfiltration F , as represented by the LP (3.5).

Whereas, according to Ex. 3.1, for problem (3.10) we cannot expect to
achieve lower bounds for the optimal value by discretization of the underly-
ing stochastic process in general, the situation will be better if Assumption 1.1
is modified as follows:

(3.12)

ASSUMPTION 3.2 Let
— only the right—hand—sides b; be random (and linear affine in (3);

— the distributions of & be bounded within some intervals =t C RR™, ie.
supp P¢, C E;

— the random vectors &g, - - -, & be stochastically independent;

— the Ay be complete fixed recourse matrices V.

With H(n) = {¢1 =1, -+, 4, -1, %, = n} the history of node n as before, the
assumed stochastic 1ndependence of &, -+ -, &7 implies the distribution (3.12)
to be modified to

= tn —
& = B[ | G € XiaEY ]
52 |§V€EZVaV=2,"'7tn

)

= E| : :
gtn |£V€EZuaV=2a"'7tn
]E[€2 | & €57 ) (3.13)

E[ﬁtn | &, € =5 ]

P, ({¢ € Xz, }) = ﬁ Pe, (25,) -
v=2

Pn
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Hence we replace problem (3.10) by the fully aggregated problem
min Z PmCi, Tm
meN
Y Appnzm = b, (") YneN (3.14)

meH(n)
Tm = 0 YmeN

using the distribution (3.13). Then we get

LEMMA 3.1 Let problem (3.10) satisfy Assumption 3.2. Then for any subfil-
tration F constructed as above, the optimal value of the aggregated problem
(3.14) is a lower bound of the optimum in (3.10).

Proof: 1t is well known that problem (3.10) can be formulated as a recursive se-
quence of optimization problems (see Olsen [217] and Rockafellar-Wets [254]).
For this purpose we use the following notation:

z = {x1, -, 2} for the sequence of decision vectors up to stage t;

Gt := (&2, -+, &) for the state variable at stage ¢, as before;

Zt for any realization of (;;
Et, C =t for node n in stage ¢ due to (3.11), and £ := B[&; | & € EL).
Now the above mentioned recursion may be formulated as follows:

Let &7 (zr; ZT) =0Vap, ZT. Determine iteratively fort =T, T —1,---, 2,
and for all nodes n in stage ¢, = ¢, using the assumed stagewise independence
by applying Fubini’s theorem (see Halmos [111]),

rt(zt—136t) = n;itn{c?mt + Bp1 (2 G)}
ol
st Apxe = by((z) — ZAtrwr, x>0
T=1

. - \ (3.15)
@i(24-15G—1) = Ery(2e-15G) | (=1 = Ge—1]

-~

= B [re(2i-1;Gt-1, )]
= 2 PaE)Belrarlonb) | & <)

llechn

which finally yields
r = n;iln{c’lrml + @2 (z1; El)}

st Az = bl(é\l) =by, 21 >0,
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the optimal value of (3.10), with 21 being the realization of £; = const due to
the fact that in the first stage there is only one (deterministic) state. The notation
“IE¢,” just indicates that the integral is taken with respect to IP¢, only.

If ®;.41(2;, G;) is jointly convex in (2¢, (z), as is trivially true for ®7.1, then
it follows immediately, that

re(z-15G) = I{}:itn{c;rﬂ?t + ®pp1(25G)}
=
st Apxy = b(() — ZAtT-Z'Ta Tt >0
T=1

is jointly convex in (z;—1; Ct) (recall that bt(Ct) is 11near affine in (t) Thus,
from (3.15) follows that

@y (2415 Com1) = B, [re(2z-1; G, )]
is jointly convex in (2z;_1; &_1) as well. Hence, by Jensen’s inequality holds

ro(2-15Ce1, Bl&)) < B, [re(2e-1; Go1, &)] = ®el2e-13 ). (3.16)

In analogy to (3.15), for the discretized problem (3.14) with Up 1 = 0 we

define fort =T,T—1,---,2, and for all nodes n in stage ¢,, = ¢, the recursion
(215 Goo1, EF) 1= H;itn{CtTirt + W (251, €M)} )
o t—1
st Apxy = bt(Ct_l,&n) - ZAtT-TTa zt 20 (3.17)
T=1
Uy(2-1;G-1) o= > P (EL)ar(z-1;G-1,8),
veCh, J
we’ll get
q = rr;iln{crfxl + Wa(z1;¢1)}

st. Auz = bl(El) =b, x>0

as the optimal value of (3.14).
Provided that Weyq(2; () < Pry1(2t;¢e), as it is obviously the case for
t = T, we conclude from (3.15) and (3.17), using Jensen’s inequality (3.16)
(for conditional expectations), that
@ (2t-1; Zt—l:gtn) re(2t-1; @-15?)

<
< Bglre(z-1;6-1,€) | & € E3)
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and hence
Uy(2-1;G-1) o= Z Pe,(E8)g1(2t-1; Go-1,EY)
VEChn
< Y Pe(ED)Eelra(z-15G1,6) | & € )
VEChn
= Oy(z-1;G-1),
such that finally

@1 = min{cT o) + Uo(z1;G)} < min{clzy + Pa(w1; 1)} =: 11
T1EB r1€EB

with B := {z1 | Aj121 = b1(C1) = by, z1 > 0} |

As seen above, with Assumption 3.2, and observing Assumption 3.1 when
generating a finite subfiltration F and the corresponding scenario tree for prob-
lem (3.10), as described on page 261, we get the fully aggregated problem (see
(3.14)

min Z pmctTmmm
meN
Z Atntmxm = bn Vn € N (318)
meH(n)
Tm = 0 VmeWN
with by, = by, (C™) and p, > 0Vn € .
As the dual LP of (3.18) we have
max Z bruy,
neN

Z A};tmun < Pmet, VmeN.
neG(m)

(3.19)

With the substitution u,, = p,7, (3.19) is equivalent to
max Z prbimy,
neN

Z ImonAf, T < e, YmEN
neG(m)

(3.20)

with ¢p,-.r, the conditional probability to reach node n given node m.
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For {Zm,#n} to be a primal-dual pair of optimal solutions, according to
Chapter 1, Prop. 2.12, the complementarity conditions

(Ctw— D GmonApy, fn)im =0 Yme N (3.21)
neg(m)
have to hold (with ¢,—m = 1).

Discretization under special assumptions

Under Assumption 3.2 on problem (3.10) and Assumption 3.1 on the discretized
distributions (implying positive probabilities for all scenarios generated) we
shall discuss now, how a successive refinement of the partitions and hence a
correspondingly growing scenario tree can be designed, such that the approxi-
mation of (3.10) by the generated problem (3.18) is 1mproved

To begin with, let F be the coarse subfiltration with each 7; being generated
by the elementary events {£;1[E7],0 | 7 = 1,---,t} ie. by {Q,0}. Then
for node n = t holds ¢, = n = t and % = Et, such that by (3.13) follows
Z" = E‘ = IE[(;], yielding the aggregated problem

T
min E CeTy
t=1

t
> Az, = b(C) Wt
=1

(3.22)

/

The corresponding basic scenario tree is shown in Fig. 3.3,

O0—O0=-~--0 O O O-=--=0
1 2 t-1 t t+1 t+2 T

Figure 3.3. Basic scenario tree.

In the coarse subfiltration, F; was generated by {€2,0} V¢ € {1,---,T}. Let
this subfiltration be refined into F by partitioning =t for a particular ¢ > 1
into two subintervals =%, =% (whereas in all other stages the trivial partitions

=S

ES, s # t}remain unchanged). Then it follows that

_ {Q,0} fors <t
Fs is generated by (9,67 :i] ~lEk], 0} fors=t
{267 Bl & B & 1B 0} fors >t

[ R Sl
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The modification of the scenario tree, corresponding to splitting node n = ¢, is
shown in Fig. 3.4.

t t+1 t+2 T
o 0] O—-—-—-0A

~

O0——O0---0
1 2 t-1\0—0 O---08
t t+1 t+2 T

Figure 3.4. Basic scenario tree: First split.

Obviously we have now two branches from stage ¢ onwards, corresponding
to the subintervals Ef and E} of the partition of Z¢. Denoting the nodes of the
two scenarios as (¢, A),t =1,---,T, and (¢, B),t = 1,---, T, the respective

components Aﬁs’A) of Z (54) g =2, ..., T, are, due to (3.13), determined as
o) E¢,] forT #1t
T IE[ft lthEtl] fOI‘TZt,

and analogously for Z(S’B), s=2,---,T, follows

deB E[¢,] forr # ¢
T a IE[&\&GEQ] forr=t.

The corresponding node probabilities are

e ifs<t . 1 ifs <t
Pled) = Pg,(B) ifs>t Ps:B) =\ Pg,(By) ifs>t.

Hence the new aggregated problem is

t—1 T \
min {Z CI%A) + Z cr [P(r,4)2(r,4) + P(r,B)Z(r,B))] }

T=1 T=t

D Aty = b((Y) Vs
=1 v (3.23)

> Aavm = (D) Vst
T=1

I(s,B) = T(s,A4) Vs < ¢

T(s,4),T(s,8) = 0 Vs. )
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Assume now that 7 = (N, A) is the scenario tree associated with problem
(3.18). To split in this tree some node ¢ > 1 into the nodes iy and ig, or
equivalently to subdivide the corresponding Eﬁ’ C =% into two subintervals

=iy

= and E:; (observing Assumption 3.1), we have to run the following node

splitting procedure:

Cut and paste

S1

S2

S3

tion St it =t =t .
Partition =;* into S and 2,5 compute
oy =t —
Di, = ]Pﬁzi (ui;), V= 1, 2,
i L =t
r, = Tf’—, v=1,2, withp; = IPE% (&),

Di
biu = IE&, [bz(gtl) l §ti € E:;]’ v= 17 23 Wlth bl(gtz) = bti (@17 gti)a
such that r{ +ro = 1 and r1b;, + rob;, = b;.
Let 77 = (M, A1) with A7 € NV, A; C A be the maximal subtree of
T = (N, A) rooted at node i € N.
Let T = (N2, Az) be a copy of T3, with its root denoted as j & A and
all other node labels modified such that N\o " AN =0, AN A=0.
Assign to the nodes of 7 the same quantities as associated with the
corresponding nodes of 7;.

With (i) the history of node i in 7', and H(n) the history within 7;,
forn € N,, v = 1,2 respectively, update the values of the subtrees 7
and 75 as follows:

Tp: Set bz(l) = b;,, and for n € G(3) \ {¢}, the future of 5 in 77, let
bl = btn(z ™), with Z" computed according to (3.13), with the
history of n being composed as {H(h;), i, H(n)};
multiply the node probabilities by 7.

To: Set b§2) = b;,, and for m € G(j) \ {7}, the future of j in T3, let
b2 = btm(fm), with ¢™ computed according to (3.13), with the
history of m being composed as {H(h;), j, H(m)}, implying that
bg,%) equals the right-hand-side for the corresponding node in N7;

multiply the node probabilities by 7.
(Observe that H(h;) = H(h;) will be enforced in step S4.)

S4 Introduce a new edge from the parent node h; of i to the node 7, the root

of 7, thus pasting 73 to 7 and yielding the new tree (see Fig. 3.5)

T+ — (N*,AY), with
Nt = NUNMN; and
At = AUAsU{(hi )}
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o o o o

~ .o o o o

O e oz~ ] \o o
1 2 hi\

o o o o

> \o .

Figure 3.5. Cut and paste.

It is easy to see that with the above procedure of cut and paste the optimal
values of the related primal LP’s are non-decreasing.

ProPOSITION 3.1 With V being the optimal value of the fully aggregated
problem (3.18) corresponding to the scenario tree T, and V' being the optimal
value for the corresponding LP on T as generated by cut and paste, it follows
that V't >V,

Proof: Let {uy, n € N'} be a solution of the dual program (3.19) associated
with 7. To each node n € N, assign the vector u,, as determined for the
corresponding node n € N .

Now define for n € N't, with r,, from step S1,

ri, ifn €M
Up = rou, ifn €Ny
Uu, else.

In order to show that {%,, n € A"} is a feasible solution to the dual program
(3.19) associated with 7, we have distinguish the following cases:

1) meN

o AL i o= r| > AL un
n€gG(m) neG(m)
< T1PmCt, = PmCt,

with p,,, as defined in step S3 for m € AN].
2) meN;

The analogous argument holds, with ro instead of 7, .

3) m€N+\(N1UN2) =: AN

T ~ __
E Ay y Up =

neG(m)
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= Z A;l;tmun + Z (r1 + rg)A;J;tmun
neG(m)NAN n€G(m)NN;
S pmctm N

Hence, {u,, n € N1} is feasible for the dual program (3.19) corresponding
to 77 and, with the right-hand-sides b,, updated according to step S3, yields
the objective value

> b 7 btun+ Y (ribl) + robP) T,
neEN+ neAN meN

= Z b, .
neN

This shows that the objective of the feasible solution {u@,,, n € N} for T+
coincides with the optimal value for 7, such that V+* > V obviously has to
hold. 0

COROLLARY 3.1 LetV be the optimal value of problem (3.10). If Assumption
3.2 is satisfied, then each method, splitting succesively any nodes (except the
root) in the scenario tree according to the cut and paste procedure, converges
toavalue V* <V.

Proof: Under the given assumptions, the optimal objective values of the aggre-
gated problems are

monotonically nondecreasing according to Prop. 3.1, and

they are lower bounds of the optimal value of (3.10) due to Lemma 3.1. O

Although this cut and paste procedure seems to have a promising behaviour,
we are still left with two open questions:

1) Is there any criterion (even a heuristic one, maybe) for deciding on the
next node to be split?

2) Given this criterion, may it happen that for the limit V* in Corollary 3.1
holds V* < V2

As to the first question, for a fixednode n > 1let {&,, | m € H(n)\ {n}} and
{#rm | m € G(n)} be parts of solutions of (3.18) and (3.20), respectively, and
consider the LP

¢n(bn) == min(ct, — Z QndmA;Iﬁmtnﬁ"m)T-’En
megG(n)
Atntnxn = by~ Z Atntm-’i'm (3-24)

meH(n)\{n}
z, = 0.
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Since {Zx; k € N} solves (3.18), in particular &, is feasible in (3.24). Fur-
thermore, the {74; £ € N'} being optimal in (3.20) and &,, > 0 due to (3.24),
we conclude, observing (3.21), that
0< (Ctn - Z Qn—emAtTmt"';rm)Tfi'n =0,
meg(n)

showing that £, with the optimal value @, (b,) = 0 solves the LP (3.24). Using
(3.13) we have that {* = (™ E[&tn | &, € Etn]). Replacing by, = by, (C)
by the random by (&, ) 1= by, (C™, &), it is obvious that the optimal value

on(bn(ée,)) == min(ce, = Y GnomArs, Fm) Tn

me%n)
Atntnxn = bn(ftn)-— Z Atntmi'm (325)
meH(n)\{n}
z, > 0.

is a convex function in &, such that due to Jensen

E[pn(bn(€s,)) | &, € Et] on(bn (E[ﬁtn | &, € Efp])
(Pn(btn(g\ »E[Stn Igtn € ‘—‘nn])
on(bt, (C"))

on(bn) =0,

and we have the lower bound I, = 0 for B[, (bn(&,)) | &, € Eir]. On the
other hand, according to Lemma 2.7 (on page 216), we can determine the E-M
upper bound u,, for Elpn(ba(&:.)) | &, € Sir]. If, with some prescribed
tolerance A > 0, the splitting criterion

Up = In > A (3.26)

is satisfied, we may decide to split node n as described in the cut and paste
procedure, in order to increase the lower bound and thereby to improve the
approximative solution. Observe however, that this criterion (u, — I, > A)
to increase the lower bound and thereby to improve the solution in a particular
node, is based on a heuristic argument. But it is one positive answer to the
first question, at least. Moreover, test runs with this criterion did work out
surprisingly well.
To come to the second question, consider the following example:

v

i

EXAMPLE 3.2 Assume the following problem to be given:

min{z1 + z2 + By, + y2 + 21 + 22]}
r1 — 9 =0
z1+2z2 + 3y1— 3y = &
1+ 322 + Y1 — Y2 + 4z —4z9 =

T4y Yiy 24 2 0 y
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where £y ~ U0, 6] and &3 ~ U[1,1.5], with U being the uniform distribution.
The fully aggregated problem with IE[&3] = 3 and IE[€3] = 1.25 as right-hand—
sides is easily seen to have the optimal solution

R, 1
($17x2ayl’y2azlaz2)2(0’0717071_6:0)

with the optimal value
_w
"~ 16

o (111

= <Z’ 4 Z) '
Considering problem (3.25) for n = 2, we find that wg(gg(ﬁtz)) = 0 for
& € [0,6], ie wy is linear on Z? implying that uy — ly = 0. Analogously
3 (53(@3)) = 0 for & € (1, 1.5] such that also 3 is linear on =2 and there-
fore us — I3 = 0. Hence the above splitting criterion (3.26) cannot be satisfied,
and the procedure would stop with the above solution, with V* = V.

However, subdividing Z2 = [0,6] into the intervals [0,3) and (3,6] and
solving the corresponding LP, would yield the optimal value
18

+ ==
|4 —16>V,

14

and the dual solution

and the same result would be achieved with splitting, instead of =2, the interval
23 = [1,1.5] into [1,1.25) and [1.25,1.5). o

Hence, in this example the procedure, using the above splitting criterion
(3.26), had to be finished with u, — I, = 0 for all nodes n > 1, although there
was a substantial difference V' — V* > 0. This fact could (and can in general)
only be discovered by analyzing (sub)sets of nodes simultaneously in detail. In
other words: For the approach using the splitting criterion (3.26) so far there is
not known any simple stopping rule stating the (near-)optimality of the present
iterative solution for problem (3.10).



Chapter 4

ALGORITHMS

1. Introduction

The discussion of algorithms in this chapter is organized according to the
framework of different SLP model classes, as presented in the previous chapters.
A computer implementation of an algorithm will be called a solver.

For the algorithms presented in detail in this chapter, sufficient and repro-
ducible empirical evidence is available concerning the numerical efficiency of a
corresponding solver. On the one hand, this means that results of computational
experiments with several test problems or test problem batteries are available in
the literature. On the other hand, reproducibility presupposes the public avail-
ability of the solver. With most of the algorithms, discussed in detail in this
chapter, we have our own computational experience; several solvers have been
implemented and tested by ourselves. These solvers, along with further solvers
provided by their authors, are publicly available as connected to our modeling
system SLP-IOR, see Section 9.2.

2.  Single-stage models with separate probability functions

In this section we discuss algorithms for SLP models with separate probabil-
ity functions, presented in Chapter 2, Section 2.3. If only the right-hand-side is
stochastic then the models can be transformed into deterministic LP models, as
discussed in Chapter 2, Section 2.3.1. In this section we have also pointed out
some pitfalls which have to be taken into account in this approach. The equiva-
lent LP models do not have any SLP-specific structure, thus the recommended
approach is to employ general-purpose LP solvers.

In the general case we will consider probability functions of the form
G(z) = P¢( z | nTz — € > 0) where 7 is an n—dimensional random vector
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and £ is a random variable. We concentrate on constraints
Pe(z|nTz—£6>0)>a

If the joint distribution of (7, £) is multivariate normal then the above con-
straint can be written in the following equivalent form, see ((Ch.2, 2.35) on
page 108

o N )||D e — dl| - pTE < —pnta @.1)

Assuming that o > % holds, we can write (2.1) as

1 P+l
DTz —d|| € —— pTe — 2 2.2
which is called a second—order cone constraint. Models involving this type
of constraints are called second—order cone programs (SOCP). Such models
have been first studied by Nesterov and Nemirovsky [213], who also proposed
interior—point methods for their solution.

Figure 2.1. The ice—cream cone, or Lorentz cone in R,

The terminology has its roots in the fact that SOCP is intimately related to
the second—order cone (also called ice—cream cone or Lorentz cone)

cm:={<§{> 1 ||y|ygt,yemm—1,tem}

where || - || stands for the Euclidean norm. See Figure 2.1 for a second—order
cone in IR3. A general SOCP—constraint has the form

| Az +b|| < dTx+ f

with A denoting an m X n matrix, x € R, the other arrays having compatible
dimensions. This constraint can equivalently be written as the following cone—

constraint A
b
(dT ).’L’+<f> € Cm+1.
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For an overview on SOCP see Lobo et al. [181] and the references therein.
The state—of-the—art solution methods are primal-dual interior point methods,
for a nice unified presentation see Peng, Roos, and Terlaky [219].

Assuming additionally to the normal distribution that the components of
(n, &) are stochastically independent, Seppild and Orpana, T. [270] propose
a successive linearization algorithm, which is also based on the second—order
cone structure as discussed above.

Weintraub and Vera [301] propose a different approach by applying the sup-
porting hyperplane method of Veinott (see Section 3.2 in Chapter 1) for the
general normally distributed case.

In the case when (7, £) has a multivariate Cauchy distribution and assuming
that o > % holds, the probabilistic constraint can be written in the following
equivalent form, see (2.48) on page 116

1 Mp41
DTz —djl; £ ——mTz — —4L_
W5 = < g ™ T i
which can be interpreted as a first—order cone constraint. This problem can be
formulated equivalently as an LP problem, see (2.49) on page 117, which can
then be solved by general-purpose LP solvers. Alternatively, special-purpose
interior point algorithms might be more efficient.

(2.3)

2.1 A guide to available software

The straightforward approach is to solve the deterministic equivalent prob-
lems by employing a general-purpose solvers. This is the only approach
presently available for the case of the Cauchy distribution.

For the case of the non—degenerate multivariate normal distribution, a much
better approach is to employ solvers for SOCP. There are several solvers avail-
able in the public domain;

s SOCP (C and Matlab), developed by Miguel S. Lobo, Lieven Vandenberghe,
and Stephen Boyd, [181]
http://www.stanford.eduw/~boyd/SOCP.html.

n SeDuMi (MatLab toolbox) Jos F. Sturm [279],
http://fewcal kub.nl/sturm/software/sedumi.html.

m SDPT3 version 3.02 (Matlab) Kim C. Toh, Reha Tiitiincli, and Michael J.
Todd [288],
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html.

For implementing your own solver see, for instance, Andersen et al. [5], Kuo
and Mittelmann [175], Lobo et al. [181], or Peng et al. [219].

Commercial solvers: MOSEK and LOQO, for further information see the
Decision Tree for Optimization Software at node
http://plato.la.asu.edu/topics/problems/nlores.html#semidef.
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For selecting an appropriate solver, see the benchmarks of Hans Mittelmann,
[207]; http://plato.asu.edu/bench.html.

If, additionally, the components of (7, £) are stochastically independent, the
solver CHAPS, developed by Seppild and Orpana, T. [270], could prove to be
an efficient alternative.

3. Single-stage models with joint probability functions

This section is devoted to algorithms for solving models which involve joint
probability functions, under the assumption that only the right-hand-—side is
stochastic.

The general case, where the technology matrix is also stochastic, has been
discussed in Chapter 2, Section 2.6. In this case the probability function G is
not quasi—concave in general, implying that the SLP problems are non—convex
optimization problems. This is in general so, even if £ has a multivariate nor-
mal distribution. However, under some assumptions concerning the structure
of the correlation matrices, convex optimization problems arise, as discussed
in Ch. 2, Section 2.6. According to our knowledge, there are no specialized al-
gorithms available for this type of problems. Consequently, the sole presently
available approach for such problems is to treat them as nonlinear optimization
problems and to try to apply general—purpose algorithms of nonlinear optimiza-
tion, or in the non—convex case techniques of non—convex programming,.

Under the assumption that only the right-hand-side is stochastic, the joint
probability function is defined as

G@)=Pe(Te>¢)=P(tiz>&,i=1,...,5) 3.1

where 7' is an (s x n) matrix, £ is an s—dimensional random vector, z € R",
and the components of t; are the elements of the i*® row of 7. For separate
probability functions (s = 1), the corresponding SLP-problems are equivalent
to LP—problems, see Section 2.3.1 in Chapter 2. Consequently, we assume that
5 > 1 holds.

Concerning the probability distribution of £, we will discuss algorithms for
two cases.

On the one hand, we will assume that £ has a continuous distribution, with
a logconcave probability distribution function F'. The presentation will mainly
be focused on the case when £ has a non—degenerate multivariate normal distri-
bution; possible extensions to other logconcave distributions will be indicated
via remarks. Algorithmic issues for this case are the subject of the subsequent
sections 3.1-3.5,

On the other hand, in Section 3.6 we assume that £ has a finite discrete
distribution, and discuss different algorithmic approaches for this case.
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The model formulations considered in this section are the following (see
Chapter 2, (2.4) and (2.5) on page 93 and (2.61) on page 122):

T

min c'z
st. F(Tz) > « (3.2)
x € B
where 0 < o < 1 is a probability level, and
max F(Tz)
s.t. x € B } (3.3)

In both cases F' denotes the joint probability distribution function of the random
right-hand-side £. It is sometimes advantageous to recast (3.2) as

min c¢Tz
s.t. Fly) 2 «
Tz —y > 0 (3.4)
T € B.

To see the equivalence of (3.2) and (3.4), let (Z, §) be a feasible solution of (3.4)
and let ¥ := T'Z. Due to the monotonicity properties of probability distribution
functions, (Z,7) is also a feasible solution of (3.4), with the same objective
value. From this the equivalence follows readily.

Taking the algorithmic point of view, let us consider, for instance, cutting
plane methods. When applying these methods, the matrix of cuts is usually
dense. Assuming that cuts are stored in the rows, in formulation (3.2) this matrix
would involve n columns whereas in formulation (3.4) the number of columns
is s, where s is the number of inequalities involved in the joint probability
function. The point is that usually s << m holds, therefore formulation (3.4)
is more suitable from the point of view of implementation, than (3.2).

3.1 Numerical considerations

In this section the general assumption will be that £ has a non—degenerate
multivariate normal distribution,
Notice, that we can assume that the distribution of £ is standardized.

is equivalent to the formulation (3.1), where u; and o; are the expected value
and the standard deviation of &;, respectively.

Notice, that both problems (3.2) and (3.3) are nonlinear programming prob-
lems. Although (3.3)is linearly constrained and (3.2) involves a linear objective
and a single nonlinear constraint, problems of the above type are hard to solve
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numerically in general. Next we summarize the main sources of difficulties,
see also Mayer [202].

Let us note, that the nonlinear function F, involved in the model formula-
tions, is in general not given via an algebraic formula. For computing function
values F'(x) and gradient values V F'(z), numerical integration is needed. For
higher dimensions of the random right-had—side &, for instance for s = 20, the
only way for computing F'(z) and V F'(z) is utilizing Monte Carlo integration
methods. This implies on the one hand, that computing these quantities is rel-
atively time—consuming compared to the evaluation of algebraic formulas. On
the other hand, the approximation error is relatively large. Consequently, for
higher values of s (for instance, s = 20), there is no chance to obtain a solution
of (3.2) or (3.3) with a high accuracy. Therefore, according to our opinion, the
main requirement which solution methods should fulfill, is robustness.

Considering our optimization problems from the purely nonlinear program-
ming point of view, these problems are convex programming problems for a
large class of probability distributions, including the non—degenerate multivari-
ate normal distribution, see Chapter 2 Section 2.5. We observe, however, some
quite unfavorable features. Figure 3.1 shows the graph of the bivariate standard
normal distribution function,

Figure 3.1. The probability distribution function of the bivariate standard normal distribution.

Notice the large flat regions in the figure. Assume that we have an iteration
point & somewhere in the flat region. For finding the next iteration point, the
vast majority of NLP algorithms utilizes local information, based on VF(%),
and perhaps also requires curvature information which originate in higher—
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order derivatives. The difficulty is that derivatives are very small in that region
and vary largely depending on the location of &. The latter property indicates
that this deficiency is difficult to overcome, if not impossible, by scaling the
problem. To illustrate, how derivatives behave, let us consider the standard n—
variate normal distribution with independent random variables, in which case
it is easy to compute derivatives. The order of magnitude of %%2 is displayed
in Table 4.1, where &; = X for all 4. The different A-values correspond to the
rows of the table. Let us take, for instance, the entry -3945, corresponding to
A = —30 and s = 20. The interpretation is that the magnitude of the partial
derivative in the 20-dimensional case, in the point with all coordinates being
equal to -30, is 1073943, This phenomenon can be interpreted as some kind of

s=2 s=10 s=20 =30
30 | -394 —1972 —3945 —5918
-10 —46 —231 —462 —693
0 -1 -3 -7 —10
10 -23 -23 —23 —23
30 [ —196 —196 —196 —196

Table 4.1.  Order of magnitude of derivatives of the multivariate normal distribution function

hidden non—convexity of the convex optimization problem. The region, where
the derivatives have reasonable magnitude and thus iteration points can be well
dealt with by algorithms, is non—convex as can be seen in Figure 3.1.

As noted in Mayer [202], an additional difficulty is that the steepness of the
function between the lower— and upper almost—horizontal parts becomes rather
high with increasing dimension s, as displayed in Figure 3.2. This implies that
the region, where the derivatives have manageable values, becomes narrower
for higher—dimensional random vectors &.

All algorithms for the solution of (3.2) and (3.3), discussed in this book, re-
quire the computation of the gradient VF'. Assuming a continuous distribution
and that the density function f is a positive and continuous function, we have
the following well-known expression (see, for instance, Cramér [41]):

T X2 s
F(ml,xz,...,xs) = / / / f(tz,...ts ' tl)fl(tl)dtldtz,...dts
—00 —00 —00

where f(ta,...ts | t1) is the conditional density function of (¢2, . .., &), given
&1 = t1, and f; is the marginal density function of ;. By differentiating both
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Figure 3.2.  The probability distribution function of the standard normal distribution along the
line y; = A V¢, for dimensions s = 2, 10, 30, and 50.

sides with respect to 1 we obtain

OF (x) %2 Zs
— = flxl) flta, ...t | x1)dts, ... dt
Bz @) J o ] ftal) X
= F(xg,...,xs | 21)f1(z1)
where F'(xg,...,2s | x1) stands for the conditional distribution function of

(£2a cee aés)a giVCl’l El = x1.

Analogous expressions hold for the partial derivatives with respect to the
variables x, . . ., z.

In the case of a non—degenerate multivariate normal distribution the above
formula takes an especially simple form. Onthe one hand, f1(z1) = ¢(z1) with
 denoting the density function of the standard univariate normal distribution.
On the other hand, it is well-known, see Mardia et al. [188], that the conditional
distribution of (&2, . . .,&s), given &1 = x1, is also non—degenerate multivariate
normal. Denoting the correlation matrix of § by R = (p;;), the parameters of
this normal distribution are

fli = pami, i=2,...,s
i = pij—pipi, 63 =2,...,8

where /1 € R is the expected value vector and the ((s — 1) x (s — 1)) co-
variance matrix is demoted by 3. The matrix 3 is in fact nonsingular, the proof
of this is left as an exercise for the reader. Thus, F(zg,...,zs | 1) in (3.5) is
the probability distribution function of a non—degenerate multivariate normal
distribution, specified by the above parameters [ and . Consequently, having
anumerical procedure for evaluating multivariate normal distribution functions,
the same procedure can also be used to compute the partial derivatives. This
procedure for computing the gradient vector of multivariate probability distri-
bution functions was proposed by Prékopa [225].
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Another case, where the above approach is especially well-suited is the case
of the Dirichlet distribution, for which the conditional distributions are also
Dirichlet distributions.

As pointed out above, our problems are nonlinear optimization problems.
Provided that for computing F'(z) and V F'(z) we have numerical procedures at
our disposal, implemented in the appropriate programming language, a possible
approach to solve these problems could be employing general-purpose NLP
solvers. In fact, Dupacova, Gaivoronski, Kos, and Szantai [65] report on a
successful application of the general—purpose solver Minos, for the solution of
a problem of our type. The point is, however, that the starting point for the
iterations has been quite close to the optimal solution (by far not somewhere in
the flat regions). According to our experience concerning the same numerical
problem, the solver Minos gets stuck in the starting point, as soon as the starting
point is not that close to the optimum. Nevertheless, in practical problems
there are frequently good starting points available, thus, for such problems, the
approach via a general-purpose NLP solver might work.

In general, however, special-purpose algorithms and their implementation
in solvers is needed. The usual way for developing such algorithms is adapting
general nonlinear programming algorithms to the special structure and proper-
ties of problems involving joint probability functions.

In the next section we present approaches based on cutting—plane algorithms
and will summarize the other approaches in Section 3.3.

3.2 Cutting plane methods

Cutting plane methods are discussed in detail in Ch. 1, Section 3.2. In this
section we restrict ourselves to pointing out those features, which are taken
into account in the development of methods, adapted to the special structure
and properties of (3.2). The problem will be considered in the equivalent form
3.4).

We begin by considering the classical outer approximation methods of Kelley
[159], Kleibohm [166], and Veinott [297]). These methods involve outer
polyhedral approximations By, of the feasible domain B of (3.2) and generate
a sequence £(¥) € By, as solutions of the LP min{cTz | € B;}. If &® ¢ B
then the algorithms stop, otherwise By is constructed by appending a cutting
plane to the set of constraints in By.

In the algorithm proposed by Kelley, the cutting plane, based on VF(Q(’“)
(with §*) = T3®)) is computed by linearizing F' at the infeasible point (¥,
Infeasible points correspond to the lower plateau in Figure 3.1 where the com-
ponents of VI are very small (see Table 4.1) and become practically zero not
too far away from the feasible domain.

In the algorithm of Kleibohm [166] and Veinott [297]) a Slater—point =5,
lying on the upper plateau in Figure 3.1, is utilized as a navigation point. The
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intersection 2(¥) of the line segment [y(*), 5] and the feasible domain’s bound-
ary is computed and the cut is constructed as a supporting hyperplane of the
feasible domain at z(*). This fits well the properties of F in our problem: at
the feasible point 2(¥), V F behaves well from the numerical point of view. On
the basis of this supporting hyperplane method, Szantai [283] developed an al-
gorithm for solving (3.4), with the additional feature of a moving Slater—point,
as described in Ch. 1, Section 3.2.

In the central cutting plane method of Elzinga and Moore [73], the sequence
of approximating polyhedra By, and iteration points 2(*) are computed differ-
ently: instead of solving the LP min{cTz | € By}, the center of the largest
inscribed sphere of By, is taken as the next iteration point 2(*). The cut is con-
structed as follows. If, with gj(k) = Tk, 3}(’“) < « holds, then a Kelley cut
is applied, otherwise a central (objective) cut cTz > ¢T#*) is utilized. For
the same reason, as discussed above concerning the cutting plane method of
Kelley, this algorithm is unsuitable for solving (3.4).

The remedy is obvious: in the case §*) < q, instead of the Kelley cut, a
supporting hyperplane should be applied. This presupposes again the availabil-
ity of a Slater point. A further idea concerns the moving of the Slater points.
In the case when a central cut is applied, and additionally §*) > « holds then
(&), §%)) can be employed as the next Slater point in the algorithm. This
leads to a central cutting plane method for solving (3.4), as proposed by Mayer
[201]. For the details of the algorithm see Ch. 1, Section 3.2.

For both algorithms we need the existence of a Slater point, thus we require:

ASSUMPTION 3.1 Problem (3.4) is Slater regular, that means that there exists
a feasible solution (x°,y°) of (3.4), for which F(y®) > o holds.

Notice that for starting up the algorithms an initial starting point is needed.
For computing this, we employ problem (3.3) which involves maximizing the
probability. The problem can equivalently written as

max T
s.t. logF(y) -7 > 0
T —y > 0 (3.6)
x € B

where the function in the nonlinear constraint is concave, due to our assump-
tions. Notice that for getting a convex optimization problem, we took log F(x)
in the constraint. This is necessary in general, see the discussion concerning
(1.25) in Chapter 2, Section 1. Problem (3.6) is obviously Slater regular and
for any x € B itis easy to construct a Slater point by appropriately choosing 7.
Thus, theoretically, both cutting—plane methods can be applied for the solution
of this problem. Considering our problem, we still have to overcome the diffi-
culty that, depending on the choice of , y = T'z may be in the domain where
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there VF is practically zero. This can be overcome by imposing individual
lower bounds on the components of y. In the case of a normal distribution
these can be, for instance, y; > u; — 3 * oy, with p; and o; being the expected
value and standard deviation of the i*® one—dimensional marginal distribution
of &, respectively. If the goal is just to find a Slater point for (3.4) then the
iterations can be stopped, when the current iterate is already a Slater point for

that problem.

Notice that the vehicle of imposing lower bounds on the components of y
can also be utilized when applying the algorithms for solving (3.4). Some care
is needed in this case, however. Applying too narrow lower bounds may result
in a largely increased number of iterations and possibly also in almost parallel
supporting hyperplanes. The reason is that in this case the iteration points may
lay in a narrow region along the boundary of the feasible domain.

An important ingredient of both algorithms is the line—search procedure, for
computing the intersection of the line segment [y(*), 5] and the boundary of
the feasible domain. Introducing the notation ¥(\) := F(y® + \(z® — y(¥)),
the problem is to find a A*, for which @ > ¥(\) > « — ¢ holds, for some
prescribed tolerance ¢ > 0. The line—search is an important part of many
nonlinear programming techniques and the overall performance of the algorithm
may critically depend on the proper choice of the line—search procedure. There
are several algorithms available for this purpose, see, for instance, Bazaraa and
Shetty [9]. In our case, computing F' and VF is relatively time—consuming
and can only be performed with a rather limited accuracy, in general. As we
will see later, for F' there are some easily computable lower— and upper bounds
available. The idea is to utilize these bounds in the line—search for reducing the
number of steps where the value of F has to be computed.

For illustrating, let us consider bisection search which would run as follows:
Initially we have ¥(0) < a—e and ¥(1) > a. We consider [0, 1] as our starting
interval. Compute ¥ at the midpoint of the current interval, that is, compute
¥(3). If ¥(3) < a— e choose [3, 1] as the next interval, otherwise take [0, 1].
Repeat the procedure till the length of the interval becomes small enough.

Let us assume now that we have bounds F,(z) < F(x) < Fy(z) available,
with ¥ and ¥y denoting the corresponding bounds on ¥, If in the above
procedure ¥y (3) < o — € holds, then we can safely choose (4, 1] as our next
interval. If this is not the case, then we check the inequality ¥ L(%) > o If
this holds then we can choose [0, %] as the successor interval in the search. If
none of these two inequalities hold then we are forced to compute \I/(%) and
to decide on that basis. For the details concerning implementation and further
computational issues see Kall and Mayer [146], Mayer [201], and Szantai [283].
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3.3  Other algorithms

Several authors have proposed further algorithms, based on some general
framework of nonlinear programming.

The first algorithm for joint probabilistic constraints is due to Prékopa and
Deak, see Prékopa et al. [237]. This method was based on a feasible direction
method of Zoutendijk.

In the case, when F is a logconcave function, a natural idea is to work with
logarithmic barrier functions by taking ¥(z, &) := cTz+xlog F(z) — aas the
objective function in the barrier subproblem. For fixed k, ¥(z, k) is a concave
function of z on the set {x | F((z) > a}. This fact is by no means obvious, for
a proof see Prékopa [234]. An algorithm based on this idea has been developed
by Rapcsak [243]. For variants and applications see Prékopa [234] and for
penalty and barrier methods in general see, for example, Bazaraa and Shetty
91

Komaromi [171] proposed a dual method, based on an appropriately con-
structed dual problem, for a detailed exposition see also Prékopa [234].

Mayer [199] constructed a reduced gradient type algorithm, with a suitably
chosen direction finding subproblem. For details see, for instance, Kall and
Wallace [152], Prékopa [234], and Mayer [201].

Growe [110] has developed algorithms for the case when the components of
§ are stochastically independent and the marginal distributions are logconcave.
The algorithms are sample based and use techniques of non—parametric statistics
for building LP-approximations to the problem.

Dedk [51] proposes a regression—based algorithm for the case when the
probability distribution has a logconcave density function; the basic idea is to
approximate the probability distribution function F'(x) via quadratic regression
and to work with a sequence of the corresponding approximating problems.

Gaivoronski [92] proposes quasigradient methods and reports on their im-
plementation. Prékopa [235] presents an approach for obtaining approximate
solutions by incorporating the bounds on the probability distribution function
into the model formulation.

For overviews on existing methods see Prékopa [231], [236] and Mayer
[200]; for detailed exposition of the methods see Kall and Wallace [152], Mayer
[201], and Prékopa [234].

3.4 Bounds for the probability distribution function

The bounds in this section are distribution—free, meaning that they are valid
irrespective of the probability distribution of the random vector £ :  — IR,
being a random vector on a probability space (2, F, P). Our goal is to find
lower— and upper bounds on the probability distribution function F' of £.
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We considera fixedz € IR" and will derive bounds on F'(z). We will proceed
as follows. In a step—by—step fashion we derive several alternative formulas and
methods for computing F(z). It will turn out that, in general, none of them
can be used in practice for computing F'(z) numerically. Nevertheless, finally
we arrive at a formulation which offers a natural framework for constructing
numerically computable bounds on F'(z).

We introduce the notation

Ai(z) = {w|&Ww) <=z}, i=1,...,r 3.7)
Bi(z) = AS(z)={w|&Ww) >z}, i=1,...,7 )
where superscript ¢ denotes the complement of a set. Notice that these sets
depend on z. Having a fixed z, for the ease of presentation we will suppress
this dependency in the notation, concerning also notions derived on the basis
of the above sets.

Using the newly introduced notation, for the probability distribution function
we get

F(z,...,05) = P(A1N...NA)=P((BiU...UB,)) =
= 1-P(B,U...UB,).

(3.8)
Let furthermore v : Q@ — {0,1,...,r} be a random variable which counts
the number of events which occur out of By, ..., B,. Formally, with I(w) =

{1 < i <r|we B;}, we have the definition v(w) = |I(w)|. Employ-
ing this random variable, we obtain for the distribution function the following
expression

F(z) =1-P({w | v(w) 2 1}). (3.9)

The question remains open, how to compute the probability on the right-hand—
side of the above expression. We introduce the notation

So:i=1, Sg:= > P(ByN...NB;) for 1<k<r (3.10)

1<i1 <. <ip <1

and will call Sy, the k* binomial moment of v, k = 0,1, ..., r. Notice that for
computing all binomial moments, we have to evaluate all probabilities in (3.10),
the number of which grows exponentially with r. Anyhow, presupposing that
all binomial moments are known, the probability in question can be computed
according to the inclusion—exclusion formula, see Feller [78], as follows.

P(v>1)=81 -8 +...+ (-1)""18,. (3.11)
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Using mathematical induction it is easy to prove that, for every even integer
0 < m < r, we have the inequalities

m m+1
17718, <P(v>1) 2(1115
j=l

For m = 0 we get the well-known inequality concerning probabilities
r
0<P(v>1)=P(BU...UB,)< Y P(By)

and for m = 2 we obtain the inequalities
Sl—SQSIP(V21) < 81— 83+ 5;.

We wish to derive sharp bounds of this type. Let us associate with » the random

variables ()1
14 viw).
( ! > ___k!(y(w)—k)!’ k=0,1,...,7

The following fact explains the term binomial moments concerning Sk

PROPOSITION 3.1 Fork =0,...,r holds

B[(1)]=s

Proof: Let x; : 2 — IR be indicator variables defined as

( )_ 1 if we B;
XiW) =91 0 otherwise.

Then we obviously have that v(w) = x1(w) + ... xr(w) holds, for all w € .
Consequently,

v(w 1+...+
( (]€)>=<X k XT‘>= Z Xi1Xi2"-Xik
1< <o g <
holds. Taking expectation

]E{(Z)] = Y ElXaXi-Xi

1<ir <. <ip <r

= > P[By,N..NB]=5

1<i1 <. <ip <
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yields the result. O
Utilizing that v has a finite discrete distribution, the above result can also be
written as

Sk=IE[< Z )} =Z( ]’c ) P(v(w)=1i), k=0,1,...r. (3.12)

i=k

Assuming that the binomial moments Sy are known, (3.12) can be viewed as
a system of linear equations for the unknown probabilities IP(v(w) = i), ¢ =
0,1,...,r. Let us consider this system with added nonnegativity requirements
concerning the unknowns:

vo +v1 ‘v + ... +v, = Sp
vi 2v9 + ... +rv, = S
v + ...+ < ; ) v = 89
(3.13)
v = Sp

v 2 0, i=0,...,7

The coefficient matrix of the equation part of the system has an upper—triangular
structure with non—zeros along the main diagonal. Consequently, this matrix
is nonsingular implying that the equation part has the unique solution v;* =
P(v(w)=1) >0,i=0,...,r(cf. (3.12)).

Thus we get

P(y>1)=) Pr=i)=) .
i=1 =1

Theoretically, this approach offers a possibility for computing IP(v > 1) as
follows. Compute all binomial moments S, & = 0,1,...,r. Subsequently
set up and solve (3.13) and compute IP(v > 1) according to the formula
above. Finally compute F(z) according to (3.9). From the numerical point
of view the difficulty is the very first step in this procedure: computing the bi-
nomial moments involves the computation of probabilities according to (3.10),
the number of which grows exponentially with r. On the other hand, having
computed the binomial moments, there is no need to take the roundabout way
via solving (3.13), because IP(v > 1) can be directly computed using the
exclusion—inclusion formula (3.11).

The formulation via (3.11) offers, however, an elegant way for constructing
bounds by employing relaxation as follows. The idea is keeping only the equa-
tions corresponding to the first few binomial moments. With the first and second
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binomial moments, the LP formulation for the lower bound is the following,

Vinin =
min v, +4vy +... +v,
st. vy 2ug +... +rv, = 5 (3.14)
v +... +<;)’UT = 5
Vi > O, i=1,...,7“.
Notice that the system of linear equations in (3.13) has a unique solution v* =
(v§, ..., v5)T. Therefore, when formulating it as an LP with the same objective

as in (3.14), the resulting LP has the optimal solution v*. Observing that (3.14)
is a relaxation of that LP, we immediately get that

T
meSZv;‘=IP(V2 1)
i=1

holds, showing that the optimal objective value of (3.14) in fact provides a lower
bound. Anupperbound V., can be obtained analogously, by simply changing
in (3.14) the direction of optimization to maximization.

Observe that both (3.14) and its counterpart for the upper bound are LP—
problems just having two equality constraints and for both problems the feasible
domain being non-empty and bounded, both problems have optimal solutions.
By taking into account the special structure, closed form solutions can be derived
for both LP problems as explained in detail in Kall and Wallace [152]. We get

_ 2 2 - — |z2s
Vimin = 7151 — k*(k*+1)82’ with % := {'S?ZJ +1,

(3.15)
Vmam = Sl_%SZa

where for any real number A, | A| denotes the floor of A, meaning the greatest
integer which is less than or equal to A. The bounds (3.15) are called Boole—
Bonferroni bounds,

The above way for deriving these bounds is due to Kwerel [176] and Prékopa
[230]. Bounds in explicit form, involving higher order binomial moments, have
been obtained by Kwerel [176] and Boros and Prékopa [28]. Algorithmically
computable bounds are presented in Prékopa [232]. For the details see Prékopa
[234] and for Boole-Bonferroni—type bounds in general see also Galambos and
Simonelli [94].

Taking into account (3.9) and (3.15), we get for the probability distribution
F(z) the following bounds

2
k*(z)(k*(z) +1)

l—Sl(x)-l—-f:Sz(x) < Fl@)<1- en S3()

2
k*(x) +
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where we now explicitly indicate the dependency of the binomial moments on
x (see the remarks concerning (3.7)) and k(x) is given as specified in (3.15).

The final step in presenting an algorithm for computing the bounds consists
of specifying how the binomial moments S;(z) and Sz(z) can be computed.
For S;(x) we have (cf. (3.10))

Sl (.’L‘)

Y P(Bix)) =r— ) P(Az))
g==1 i=1
= r=)Y Fi(z;)

i=1

where Fj(x;) is the distribution function of the i*® one dimensional marginal
distribution of £. Considering now Sa(x), for fixed ¢ and j we have

P(B;NB;j)=1-P(4)-P(A4;)+P(A;NA4;)
where IP( A; ) = F;(x;) holds for all ¢ and furthermore
P(AiNA;) =P(& < 2i,§ <z, ) = Fyj(mi, x5)

holds for all ¢ and j. Here Fj;(x;, ;) is the probability distribution function
corresponding to the two—dimensional marginal distribution of (&;,£;). Thus
we get for the binomial moment Sy(x) the expression

So(z) = ) P(ANA;)
1<i<j<r
T
= ( ; ) —(r— 1)23(% Z Fij(zi, x;).
i=1 1<i<y<r

If € has a non—degenerate multivariate normal distribution then all marginal
distributions are non—degenerate normal distributions, see, for instance, Mardia
et al. [188]. Similar results hold for the Dirichlet and gamma distributions, see
Prékopa [234], cf. also Theorem 2.9 on page 127. For computing the value of
univariate and bivariate normal distribution functions see the next section.

An alternative way for deriving bounds on F'(z) is based on graphs. Our
starting point is the formulation (3.8). According to this relation, for deriving
bounds on F'(x) it is sufficient to construct boundson P B; U...U B, ). We
will discuss an upper bound for this probability, due to Hunter [125], which
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results in a lower bound on F'(z). The following relations obviously hold.
T
P(ByU...UB,) = P(B;)+Y» P(B{n...Bj_;NB;)
s

< P(B1)+ Y P(BjNB) (3.16)
§=2
= Y P(B;)-> P(B;nB;)

where [j] isany indexin {1,...,7 — 1 }. Thus, depending on the choice of the
[7]’s, (3.16) provides altogether (r — 1)! upper bounds. We would be interested
in the best of these bounds. A convenient way for dealing with the upper bounds
in (3.16) is via the following construction:

Let G = (V, E) be an undirected complete weighted: graph with r nodes
(vertices). We associate the event B; with vertex 4 and the intersection B; N B;
with edge (i,7) € E, forall 1 <4,j <r,i # j. The weights are associated to
the edges via (4, j) — IP(B; N B; ) forall (4, j) € E. The idea is to represent
the second term on the right-hand—side of (3.16) as the weight of a spanning
tree in G. A spanning tree is a subgraph T of GG, which is a tree and has the
same set of vertices as G. Consequently, 7" has r — 1 edges, it is connected,
and it contains no cycles (see, for instance Ahuja et al. [4]). The weight of the
spanning tree, denoted by w(T"), is defined as the sum of weights over all edges
of T".

We observe that, for any fixed choice of [j] for all j, the second sum in the
right-hand-side of (3.16) is equal to the weight of the following spanning tree
of G. Choose all edges ([J], ) and consider the subtree 7" of G which has this
set of edges and the corresponding set of nodes. Notice that, for j = 2, [2] =1
is the only available choice. Consequently, all nodes of G appear also as nodes
of T'. Furthermore, due to its construction, T is obviously a tree with its weight
equal to the sum under consideration in (3.16).

Thus we have associated to each one of the (» — 1)! bounds in (3.16) a
spanning tree in G. However, the number of different spanning trees of G is
r"~2, see Knuth [170] Volume 1, which is in general much higher than the
number of possible bounds considered so far. Our next observation is the
following. While the left-hand—side and the first term in the right-hand-side
of the inequality (3.16) are both independent on the assignment of indices to the
events, the second term on the right-hand—side depends not only on the choice
of the [4]’s but also on the numbering of the events. Thus we can get further
bounds by renumbering these events.
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For accomplishing this let us now consider an arbitrary spanning tree T' of
G. We associate with this tree a reordering of the indices of the events by the
following r—step process. In step 1 choose any node ¢ and assign the index 1
to B;. In general, in step v (1 < v < r) proceed as follows. Select one of
the already renumbered nodes, which has a not yet renumbered neighbor By,.
Let k be the already assigned new index of this node. Assign the index v to
By, and set [v] := k. Due to the fact that T is a tree, it is easy to see that this
procedure can be carried out in 7 steps and that the weight of the tree is equal
to the corresponding sum in (3.16), according to the new indexing of events.

Consequently, the best upper bound can be obtained by solving the following
optimization problem:

max > IP(Bi(z) N Bj(x)) (3.17)
(ivj)EET

where 7 is the set of all spanning trees of G and Er is the set of edges of T'.

Let us denote by 7 () an optimal solution of (3.17). We obtain the following

lower bound for F(z) (see (3.8) and (3.16)):
1 - Si(z) + w(T*(z)) < F(z), Vz € R (3.18)

Problem (3.17) is a classical problem in combinatorial optimization, where it
is usually formulated as a minimization problem and is called the minimum
spanning tree problem. There are several thoroughly studied and well-tested
algorithms available, see Ahuja et al. [4]. It is easy to see that the direction of
optimization does not matter; the same algorithms can be used for both variants,
with obvious modifications. In our case we have a dense graph (G is a complete
graph), therefore Prim’s method is well—suited for the solution of the problem,
see Ahuja et al. [4]. The algorithm builds the minimum spanning tree in a
greedy manner in r — 1 iterations, by adding a new edge to the tree at each
of the iterations. Wee will keep two lists: at iteration v, V,, will be the list of
vertices and F,, will be the list of edges of the current subtree. The general
framework of this algorithm for solving (3.17) is the following:

Step 1. Initialization
Look for a longest edge (i,7) = argmax, yIP(Bx N By). Set
v=1FE ={(j)},and Vi = {i}.

Step 2. Choose the next edge
If v = r — 1 then stop, the current graph with set of edges E,
is a maximum weight spanning tree of G. Otherwise look for the

longest edge with one of its vertices in V), and the other one in
V\V.:

(p,q) = argmax n{P(BxNB;) | keV,, e V\V,}.
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Step 3. Add a new edge to the tree
Let BE,p1 =E,U{(p,q) }; Vo1 =V, U{g};setv:=v+1and
continue with Szep 2.

Let us point out, that the above scheme is just the framework of the method,;
the efficiency largely depends on the details of the implementation, especially
on the organization of the heap, see Ahuja et al. [4].

It is well-known that the Hunter bound is always at least as good, as the
Boole-Bonferroni bound, see Prékopa [234]. The bounds can be further im-
proved by employing hypergraphs and hypertrees, see Bukszar and Prékopa
[33], Szantai [284], Szantai and Bukszar [285], and the references therein.

3.5 Computing probability distribution functions

The main goal of this section is to discuss algorithms for computing the value
of the multivariate normal probability distribution function. Besides this, we
will also outline ideas for computing the probability distribution function of
some other multivariate distributions.

For computing the probability distribution function of the univariate normal
distribution, there are ready—made functions available in almost all comput-
ing environments. For computing the bivariate normal distribution function
Fij(z;, x;) several well-tested procedures are available. One of the simplest
tricks is based on the following reformulation:

zy mu"L'J / / fzg(x Yy dmd?/

= [ ol ohsteydsay = (3.19)

- [ # ( [ ot x)dy) da

where fi;(y | x) is the conditional density function of ;, given ¢; = . For the
normal distribution, the conditional distributions are also normal distributions,
see Mardia et al. [188]. We obtain that f;;(y | ) is the density function of a
univariate normal distribution V' (i1; + (pij %i—) (z — i), 02(1 — p3;)), where
u; denotes the expected value and o; stands for the standard deviation of &;,
and p;; denotes the correlation coefficient between &; and &;, for all ¢ and j.
Consequently the inner integrand in (3.19) is just a normal univariate proba-
bility distribution function. Thus, F;;(x;, z;) can be evaluated by employing a
univariate numerical quadrature for integration. For a state—of—the art review
for computing bivariate normal probabilities see Genz [104]. This paper also
presents methods for computing trivariate normal probabilities.
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Letus turn our attention to the multivariate case. Recall that the standard non—
degenerate multivariate normal distribution function has the following form (cf.
(Ch.2, 2.27)):

1 1, Tp-1
F(z) = ——— /e*ay B gy (3.20)
” (2m)3|RJz J,

where R is the nonsingular correlation matrix of {. From the numerical point
of view the problem is to evaluate the above multivariate integral. In principle,
this can be done by standard nested quadrature methods of numerical analysis.
For higher dimensions, however, the specialities of the problem are to be taken
into account. Algorithms of this kind have been developed by several authors,
mainly for the cases of multivariate normal- and ¢~distributions, see the review
papers of Genz and Bretz [105] and Gassmann, Deak, and Szantai [100], and
the references therein. '

In this book we will restrict ourselves to the Monte—Carlo approach and will
discuss two basic techniques for computing F'(x). The two algorithms can also
be combined; for the resulting hybrid method see Gassmann et al. [100]. This
paper also provides a review on methods for computing multivariate normal
probabilities.

3.5.1 A Monte-Carlo approach with antithetic variates

For the non—degenerate multivariate normal distribution, this method has
been developed by Deéak [49]. Recently, Genz and Bretz [105] extended the
method to multivariate ¢—distributions. We will discuss the multivariate normal
case.

The starting point is to transform the integral in (3.20) to a polar form. Let
R = L L" be the Cholesky—factorization of R with L being a lower—triangular
matrix (see Ch.2, Section 2.3). Applying the transformation y = Lz first

results in
1 1

F(z) = e 377 .
(2m

~—
wIs

{z: Lz<z}
For changing to polar coordinates apply the transformation z = ru with ||jul| =
1 which results in

1 p2(u) 1
F(z) = 5 / pr e P dpdu (3.21)
(2m)2 p1(u)
{u: lull=1}

where
pr(u) = min{p|p>0,plu<z}
pa(u) = max{p|p>0,pLlu<z}
Notice that, apart of a normalizing constant, the integrand in (3.21) is the
probability density function of the y—distribution with » degrees of freedom,
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see Johnson et al. [130]. In fact, the method can also be derived in a purely
probabilistic fashion, as it has been done in the original paper of Deak [49], see
also Deak {50] and Tong [289] Theorem 4.1.1.

Normalizing (3.21) leads to the equivalent form

1 p2(u)
F(a) =~ 9(p) dpdu (3.22)
v pr{u)
{ut{|ull=1}

where )

9(p) =rp'le72?
is the probability distribution function of the y—distribution with » degrees of
freedom and the normalizing constants -y and « are

1

r 22’
=250 (), v=2
S UV AR A V)

where 7 is the surface area of the r—dimensional unit sphere, see, for instance,
Price [240]. (3.22) can also be written as follows

p2(u)
Flz) =1 / h(u)du with h(u) = / a(p) dp.
v p1u)
fus =1

The idea is to evaluate the first (surface) integral by Monte—Carlo methods,
whereas for the second (univariate) integral numerical integration is used.
Choosing a sample-size IV, the framework of the method is the following:

Step 1. Generating points on the unit sphere
Generate N sample points 41, . . ., &y uniformly distributed on the
unit sphere in R,
Step 2. Compute h
For each of the sample points k = 1,..., N, in turn do:
- compute py (ux) and pa(us);
- evaluate hy, := h(uy) by numerical integration.
Step 3. Compute the Monte—Carlo estimator

1N
k=1
For computing uniformly distributed points on the r—dimensional unit sphere,

the standard method is the following:

Step 1. Generate r (i.i.d.) random numbers dy, ..., d, according to the
standard univariate normal distribution;
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Step 2. compute d = \/d2 + ... d2;

Step 3. deliver uT = (%4,..., %),

For this method and further methods for generating uniformly distributed points
on the r—dimensional unit sphere see Devroye [59]. The method discussed so
far would correspond to the “crude” Monte—Carlo method, with the estimator
having a variance proportional to % As in Monte—Carlo methods in general,
it is of vital importance to include some variance reduction techniques, see, for
instance, Ripley [246] or Ross [259]. Deak proposes the following variant of the
method of antithetic variates, with m < r being a parameter of the algorithm:

Step 1. Generate points on the unit sphere
Generate N - r sample points iy, k = 1,...,N,j = 1,...,r
uniformly distributed on the unit sphere in IR".

Step 2. Compute h
Foreachk =1,..., N, in turn do:

- Convert gy, ..., Uk into an orthonormal system vy, ..., Uy,
by employing, for instance, the standard Gram—Schmidt pro-
cedure. For a possible (but very unlikely) linear dependency
among the generated vectors, apply a heuristics based on drop-
ping and recomputing some of the vectors.

- Compute M := 2™ ( :;L ) vectors on the unit sphere accord-

ing to
1 m
w(svjla s ’Jm) = \/_ﬁl_ ZS[’U]'I
=1

with1l < j1 <... < jm < rand with
se€S,where S:={scR™|s;=1or s; =—1, Vi}.

- For each of these vectors compute p;(w(s, j1,...,Jm)) and
p?(w(sajlv e »]m)) and

- evaluate hy(s, j1,...,Jm) = Mw(s, j1,...,Jm)) by numeri-
cal integration.

- Compute

hk = % Z Z hk(sajla' X a]m)

s€S 1<h <. <m<r

Step 3. Compute the Monte—Carlo estimator

. 1 X
F=N2hk.
k=1
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Concerning the parameter m of the procedure, best results were reported for
the choices m = 1 and m = 3, see Gassmann, Deak, and Szantai [100]. For
the implementation of the algorithm and recent improvements see Deak [52].

3.5.2 A Monte-Carlo approach based on probability bounds

This approach has been developed by Szantai [280], [281]. We discuss the
technique for computing the probability

Py:=P({w|vw)>1})=P(B1U...UB,;)

where the random variable v counts the number of events which occur out of
By, ..., By, see page 285. Recall that according to Proposition 3.1 we have for

allk > 1 |
]E[(Z)]:Sk. (3.23)

The method will be based on the Boole—Bonferroni bounds

2 2 R 2
P = — <PLS — =85 = 24
L k*+1Sl k*(k*+1)Sz“P—Sl rsz Py, (3.24)

see (3.15) where the definition of £* can also be found.

Having computed an estimate for P, the estimate for the probability distri-
bution function F'(x) can be obtained according to (3.8).

The algorithm is based on the inclusion exclusion formula (3.11) and on the
Boole-Bonferroni bounds. The idea is to compute three unbiased estimators
for P. Using these, a linear combination of them is computed with minimal
variance, which will be the final unbiased estimator.

The first estimator is the crude Monte—Carlo estimator, concerning the ran-

dom variable
O = 0 ifvr=0
°=Y 1 ifr>0

for which we obviously have IE[dy] = Py.
For the second estimator we consider the difference between P and the
Boole—Bonferroni lower bound

Af/ = Py — Py,

Substituting the inclusion exclusion formula (3.11) for the probability, and the
expression for Py, according to (3.24), we get

. . 2 2
. = S (—1)k-lg, — -
A; ;;1) S W+f%+WW+D&'
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The method is based on the following observation: if we substitute the bino-
mial moments by the random variables from (3.23), then cancellation occurs
according to

s = e (3) e (1) vt (4)

k=1

S
—— (v
k*(k* +1)
where we assumed v > 2 and have utilized the obvious relation

i(—l)k‘l < Z ) =(1-1"=0

k=0

~ k) — k* — 1)

Thus we will consider the random variable
0 ifr<1
8 = 1 N " .
— (v~ k - k*—1) ifvr>2
k*(k*+1)(” ) ) ifvz
According to the above considerations, ¢#; := 6; + P, is an unbiased estimator
for Py, that is, E[¢4] = Py holds.
For the third estimator we consider the difference between P and the Boole—
Bonferroni upper bound

A[»,::PP

Z (—1)F71S, + 52
=2

Proceeding analogously as before, cancellation occurs again, and we end up
with the random variable

0 ifr<1
02 1= l(1/—1)(1/—7") ifv>2 [’

r

With ¢9 := 6 + Py we have IE[J2] = Py. Thus, we obtained a third unbiased
estimator for Py .

The final estimate is obtained as follows. Let C be the covariance matrix of
(99, 11,92). The estimate will have the form ¥ := wedp + w11 + wads.
Denoting the vector of weights by wT = (wp,wr,ws), the variance of 9
is obviously wTCw. The weights are determined by solving the following
minimum-—variance problem

min wTCw }

st. wotwi+wy=1 (3.25)
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which, with Lagrange-multiplier J, is equivalent to solving the following sys-
tem of linear equations:

Cw— )e = 0} (3.26)

wo+wy+wp = 1

where e; = 1 for i = 1,2, 3 hold. Notice that, due to the constraint in (3.25),
9 is also an unbiased estimator of Py .
The algorithm runs as follows:

Step 0. Compute bounds
Compute the Boole—Bonferroni bounds P, and Py according to
(3.24), by numerical integration.

Step 1. Generate a sample
Fork =1,..., N proceed as follows:

- Generate a random vector according to the distribution of ¢;
. compute the realization of v, P¥;
- compute corresponding realizations 1§’(§, 1§’f, and 19’2“.

Step 2. Compute first estimates
Compute the estimates

. 1.
m::ﬁ;—‘:ﬁ?’ i=1,2,3;

(for Jp this is implemented via a counter, of course).

Step 3. Compute an estimate for the covariance matrix C
Using the sample, compute an estimate C' for C.

Step 4. Compute weights which minimize variance X
Compute the weights by solving (3.26) with C = C Let the solution
be b = (o, W1, W2).
Step 5. Compute final estimate .
Compute ¥ = Wy + w1 + Wova.
Step 6. Deliver estimate for F(x)
According to (3.8), deliver F' := 1 — ¥ as an estimate for F(x).

For further development of the procedure involving bounds with higher—
order binomial moments and for graph-based bounds see Szantai [284]. For
applying the technique to the computation of other multivariate distribution
functions, including the Dirichlet distribution (cf. page 129) and the gamma
distribution (cf. page 135) see Szantai [281] and [282].
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3.6 Finite discrete distributions

If € has a finite discrete distribution then the SLP problem with joint prob-
ability function can be formulated as a disjunctive programming problem, see
Chapter 2 Section 2.2. Possible solution approaches are to solve the equivalent
mixed—integer linear problem (Ch. 2, 2.19) by employing a general-purpose
solver for such problems, or to apply the general techniques for disjunctive
programming, see, for instance, Nemhauser and Wolsey [212].

In the case, when only the right-hand-side is stochastic, special-purpose
algorithms are available. The basic idea is the following disjunctive formulation
of (3.4), due to Prékopa [233] and Sen [267]:

max clz ]
S
s.t. Yy € U D,
o1 (3.27)
Tx —y > 0
T e B

/

where D, is {y | y > y°}, with y*, s = 1,..., S defined as follows. Let
D:i={y|F(y)>a and Fy—¢) <a foralle e R®*, ¢ >0, e#0}.

The set D is clearly a subset of all joint realizations of &, therefore D is a
finite set. With S denoting the number of elements in D, y° is the s*? element,
indexed in an arbitrary order.

Clearly, y* € D, if and only if F(y®) > « holds and there exists no
y < y°, y # y°, such that F(y) > « holds. For this reason, Prékopa[233]
has coined the following terminology: the elements of D are called p-level
efficient points (PLEP’s) of the probability distribution function F'. The termi-
nology corresponds to the choice a := p for the probability level.

Figure 3.3 shows the probability distribution function for a discrete distri-
bution in R, with four equally probable realizations (1, 1), (2,1), (2,2), and
(3,3). For the level a = 0.5, the realization (2, 2) is the single PLEP of F'.

Problem (3.27) is a disjunctive programming problem with an especially sim-
ple structure. Several algorithms, based on enumeration, cuts, and Lagrangean
relaxation have been proposed to its solution, see Dentcheva et al. [S7], Prékopa
[234], Prékopa et al. [239], Ruszczynski [262], and Sen [267], as well as the
references therein. For an overview see Prékopa [236].

3.7 A guide to available software
3.7.1 SLP problems with logconcave distribution functions

The following solvers have been developed by Mayer, see, for instance
[202]. The cutting plane method of Szantai is implemented as the solver
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Figure 3.3.  Distribution function and level sets of a bivariate finite discrete distribution function
with a PLEP at (2, 2), corresponding to & = 0.5.

PCSPIOR,; the central cutting plane method is implemented in Fortran as the
solver PROBALL, and the reduced gradient approach is implemented as the
solver PROCON. These solvers are for the case when the random right—hand—
side has a non—degenerate multivariate normal distribution; for computing the
probability distribution function and its gradient the subroutines of Deak and
Szantai have been utilized, see the next section. All implementations are in
Fortran and use Minos (see Murtagh and Saunders [210], [211]) for solving the
LP subproblems. The solvers are available along with the model management
system SLP-IOR, as attached solvers, see Section 9.2 in this chapter.

For aiding the selection of an appropriate solver, comparative computational
results can be found in Kall and Mayer [144], [146], and Mayer [201], [202].
According to these tests, we recommend to use PROBALL. There are no inde-
pendent benchmark results available. However, as SLP-IOR is freely available
for academic purposes, the reader can test the solvers herself/himself.

Szantai [283] has implemented in Fortran his cutting plane method as the
solver PCSP. The authors of the methods discussed in Section 3.3 also report
on solving some test problems, the solvers might be available on request, we
suggest to contact the authors.

For the cases, when the problem is not a convex optimization problem, solvers
for global optimization might prove to be useful; for an overview on solvers see
Pintér [224].

3.7.2  Evaluating probability distribution functions

For choosing an appropriate algorithm for the evaluation of multivariate prob-
ability distribution functions, guidelines, based on numerical experimentation,
have been published by Gassmann, Deak, and Szantai [100]. This paper also
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gives an overview on currently available software. Here we just point out the
following issues:

The programs of Alan Genz, implemented in Fortran and MatLab, are avail-
able on his personal homepage
http://www.sci.wsu.edu/math/faculty/genz/homepage.

The algorithm in Section 3.5.1 has been implemented by Deak in the
Fortran subroutine package NORSET, see [52], whereas the methods discussed
in Section 3.5.2 have been implemented in Fortran by Szantai, see [284]. Szantai
[282] has also developed a Fortran subroutine package for computing multivari-
ate non—degenerate normal—, Dirichlet- and gamma distribution functions and
their gradients. The availability of the programs is not clear from the papers,
please contact the authors.

3.7.3  SLP problems with finite discrete distributions

According to our knowledge, there is no publicly available solver for this
class of problems. The authors of the papers cited in Section 3.6 present il-
lustrative numerical examples, and report on implementation of solvers. These
solvers might be available on request; we suggest to contact the authors.

As we have seen in section 3.6, SLP problems in this class are equivalent
to disjunctive programming problems, a subclass of mixed—integer programs.
They belong to the class of NP—complete problems, implying that from the
theoretical worst—case point of view they are difficult to solve. We are not able
to provide the reader with guidance for selecting an algorithm or solver. On
the one hand, we do not have personally any numerical experiences with such
problems. On the other hand, as far as we see, comparative computational
studies are completely missing in the literature. The authors of the papers
cited in section 3.6 merely provide some illustrative examples, which is clearly
insufficient to judge the practical value of the methods (recall that the problems
dealt with are NP complete).

4. Single-stage models based on expectation

This section is devoted to discussing algorithms for expectation—based SLP
problems, presented in Ch. 2, Section 4. First we review those models, for
which a deterministic LP—equivalent exists, thus offering the possibility of
solving them by general-purpose LP software. Subsequently we discuss the
application of the dual decomposition method, presented in Ch. 1, Section 2.6,
for solving various single—stage expectation—based models, with a finite dis-
crete distribution. The order of sections does not follow the order of models
in Ch. 2, Section 4; the discussion is governed by the logic of dual decompo-
sition. The general idea is to solve those models via solving their equivalent
representations as two—stage recourse problems.
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4.1 Solving equivalent LP’s

In this section we will summarize LP-equivalents of models based on ex-
pectation. When reporting the dimensions of these problems we will not count
nonnegativity constraints, or in general, individual bounds on the variables. Let
us denote the number of constraints in the definition of 8 by m.

SLP models involving integrated probability functions have been introduced
and discussed in Ch. 2, Section 4.1. We consider the case when £ has a finite
discrete distribution with IV realizations.

For separate integrated probability functions, LP—equivalents are formulated
in (Ch. 2, 4.10) and (Ch. 2, 4.11), on page 152. (Ch. 2, 4.10) corresponds to an
integrated chance constraint and has m + N + 1 rows and n + N variables.
(Ch. 2, 4.11) involves minimizing an integrated probability function and has
m + N rows and n + N variables. Both problems have a dual block—angular
structure, indicating, that in fact the underlying optimization models can be
formulated as two—stage recourse problems. LP-equivalents for models with
joint integrated probability functions are givenin (Ch. 2, 4.22) and (Ch. 2, 4.23).
These models grow more rapidly with NV, as their countérparts with separate
functions. In fact, (Ch.2, 4.22) has m + 2Ns + 1 constraints and n + 2N
variables, where s is the number of inequalities involved in the joint constraint.
(Ch. 2, 4.23) has the same amount of variables and m + 2N s constraints.

In Ch. 2, Section 4.2 we have discussed a model, based on conditional ex-
pectation. Under the assumption that £ has a logconcave density function, the
stochastic constraint can be converted into a deterministic linear constraint.
Consequently, the equivalent LP has essentially the same size as the original
problem.

Section 4.3 in Chapter 2 is devoted to SLP models involving conditional
value—at—risk (CVaR) functions in the constraints or in the objective. Assuming
that £ has a finite discrete distribution with N realizations, the LP-equivalents
are given as (Ch. 2, 4.38) on page 164 for minimizing CVaR, and as (Ch. 2, 4.45)
on page 166 for a CVaR—constraint. (Ch.2, 4.38) has m + N rows and n +
N + 1 variables, whereas (Ch. 2, 4.45) has the same number of variables and a
single additional constraint. Both matrices have a dual block—angular structure
pointing to the fact that the underlying SLP models are essentially two—stage
recourse problems.

In several cases discussed above we observed a dual block—angular structure.
This suggests using a dual decomposition method, instead of the brute force
application of general-purpose LP—solvers.

4.2  Dual decomposition revisited

The general dual decomposition algorithm has been discussed in Chapter 1,
Section 2.6, on page 31. The basis of the method is the decomposition algorithm
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of Benders [12] which has been adapted to the structure of two—stage recourse
problems with a finite discrete distribution by Van Slyke and Wets [296]; the lat-
ter authors named the method “L—shaped method”. The method is a special case
of nested decomposition, corresponding to two stages, see Ch. 1, Section 2.7.
In this section we will consider the case, where only the right-hand—side and
the technology matrix are stochastic in the recourse subproblem. For the sake
of simplicity, we will also assume that W has the complete recourse property.

Two-stage recourse problems are discussed in detail in Ch. 3, Section 2.
Here we will need the following, slightly modified formulation:

rguurll cTx +w
st. BlQ(z;T(6),h(E))] —w < 0 .1
z € B
where B = {z | Az = b,z > 0}. The recourse function Q( z; T'(€), h(£) ) is
defined as
Q(2;T(€),h(¢)) == min ¢y
st. Wy = h(§)-T(z (4.2)
y =2 0

which can also be expressed via the LP—dual as

Q(z;T(§),h(§)) = max (h(§) - T(€)z) u }
s.t. Wty < q.

@.3)

We assume that B # () holds and that B is bounded.
Having the recourse function in the constraint, instead of the objective,
recourse—constrained problems arise. These have the form

n;in cTz
st. dTz+E[Q(z;T(E),h(€))] < “44)
T € B

and have been introduced and first studied by Higle and Sen {118]. We will set
up the dual decomposition method for (4.1) and (4.4) simultaneously. For this
reason we consider the problem

min clz +0w

o(,w)

st.  dTz+E[Q(z;T(),h(E))] —w < 0 (4.5)
T € B

For the recourse problem (4.1) we choose 8 = 1, d = 0, and both x and w are
considered as variables. For the recourse—constrained problem ¢ = 0 is chosen
and only z is considered as a variable.
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As we have already discussed in Ch. 1, Section 2.6, the recourse function is
convex and piecewise linear, and can equivalently be written in the form

Q=5 T(8), h(€)) = max(h(¢) - T(€)z) u (46)

where U is the (finite) set of vertices of the polyhedral feasible domain of the
recourse problem in the dual form (4.3). Note that the feasible domain of the
dual recourse problem neither depends on & nor on §.

Let us assume now, that £ has a finite discrete distribution with N realiza-

N
tions f’“ and corresponding probabilities p, > 0,k = 1,..., N, Zpk = 1.
k=1

The corresponding realizations of (h(€),T(¢) will be denoted by (h*, T*),
k =1,...,N. Thus, for any fixed z € B, we have to deal with N recourse
subproblems, corresponding to the realizations.

The recourse constraint in (4.5) takes the form

N
dTe + Zka(x;Tk,hk) —w <0
k=1

which, due to the representation (4.6), can be written as

N
d¥z + ;pk Iggg{c(hk —Trkx)Ty —w < 0.

Due to the nonnegativity of probabilities, this single nonlinear inequality con-
straint can be replaced by a system of linear inequality constraints

N
dTz + > pe(h* - TFz) T, —w < 0, wpeUVK, (@47
k=1

where the notation is to be understood as follows. For any

(ﬂl,‘..,ﬂN)EUX...XU = Up,
N

the system (4.7) contains exactly one inequality corresponding to the choice
ug = Uk, k = 1,...,N. Stating this in a different way, the inequalities in
(4.7) are indexed by employing the index set U. Consequently, the system
of inequalities consists of M? inequalities, where M = |U{| is the number of
elements of U.
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Hence we can rewrite (4.5) as follows.

min clz +0w

z(;w)

N
st. dlz+ Zpk(uk)T(hk ~TrFz) —w <0, up €U, Vk (4.8)
k=1
x € B,

This problem will be called the full master problem. It involves, in general, a
tremendous amount of inequality constraints which are, as an additional diffi-
culty, not known explicitly. From the algorithmic point of view, the basic idea
of the dual decomposition method is constraint generation. The constraints in
(4.8) are generated in a step—by—step manner in the hope that very much fewer
inequalities, than in (4.8), are sufficient to reach optimality. Instead of the full
master problem, relaxed master problems of the form

min c¢lz 40w

z(;w)

N
st. dTz+ Zpk(ui)rr(hk ~Tkz) —w <0, j=1,...,v (4.9)
k=1 o
aT(h — Tx) -w <0
B

m IA

z /

are solved, where v is the number of constraints generated so far and uj, € U
Vk,j holds. We have added the constraint @¥(h — Tz) — w < 0, where
h = E[h(¢)], T = E[T(£)], and 4 is any feasible solution of (4.3). Due to the
Jensen—inequality (see Ch. 3, Section 2), the additional inequality is redundant
in the full master problem (4.8). Note that, due to the assumptions concerning B,
and implied by the inclusion of the additional constraint involving expectations,
the optimal solution of the relaxed master problem exists for any v > 0.

The decomposition method for the solution of (4.5) is an adaptation of the
dual decomposition method in Ch. 1, Section 2.6. The formal description fol-
lows.

Step 1. Initialization
Set v := 0, compute & and T', determine a feasible solution of the
recourse subproblem (4.2) (for instance, by the simplex method),
and set up the relaxed master problem (4.9).

Step 2. Solve the relaxed master problem
Solve (4.9), let a solution be (z*, w*), where in the recourse con-
strained case w* = w(= ) holds.

Step 3. Evaluate the expected recourse function
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3.a Fork=1tok = N do:
With z := z* and (h(€), T(€)) := (h*,T*), solve the recourse
subproblem (4.2), for instance, by the dual simplex method. Let
u} denote an optimal dual solution of the k*? subproblem.

3.b Compute the expected value of the recourse function as follows

N
Qz*) = z:pk(hlc - Tka:*)Tuz.

k=1

Step 4. Check for optimality
If Q(z*) < w* then Stop, otherwise continue with the next step.
Step 5. Add an optimality cut to the relaxed master
Setv:=v+1,u; =u;, k=1,..., N and add the corresponding
cut to the set of constraints of the relaxed master (4.9). Continue
with Step 2.

Using an analogous reasoning as for the dual decomposition method in
Ch. 1, Section 2.6, it is clear that the algorithm terminates after a finite number
of iterations and that in the case of stopping, the method delivers an optimal
solution.

We discuss the special case of simple recourse next, see Ch. 3, Section 2.2.
Following Klein Haneveld and Van der Vlerk [169], we consider the case when
the technology matrix T'(§) is also stochastic. The minimization problem
(Ch. 3, 2.42) on page 226, defining the recourse function, is obviously sep-
arable in the components of (y*,y~) € R?™2, with the i*® subproblem given
as

Qi(z;€) == min ¢y} + ¢y

yi -y = () -TIEz p (410)
vi yp > 0
where T; denotes the it" row of T,% = 1, ..., ng. The LP dual problem is
Qi(z;€) = max  (hy(€) — TF(E)z)u;
ui < g 4.11)
u = —q;

which has the optimal solution

[ @ i k() -TFEz>0
h { —q; if hi(€) - TF(€)z <0. (4.12)

The feasible domain of the dual recourse problem (Ch. 3, 2.45) is an mo—
dimensional interval, thus having s™2 vertices. The set of vertices U consists
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of vectors u € IR™2, with either u; = ¢ oru; = —¢;,% = 1,...,mg. The
explicit formula for the recourse function, corresponding to (Ch. 2, 2.46) on
page 227, is the following

Qz,8) =Y (&) — T (©)a]t gt + Y _[hi(&) - T (©)a)g;  (4.13)
g=1 =1

Let us now turn our attention to the dual decomposition method, applied
to simple recourse problems with a random technology matrix and to simple—
recourse constrained problems. The full master problem (4.8) has now 272V 42
constraints. In the dual decomposition method only Step 3.a changes as follows:

Step 3.a Fork=1to k= N do:
Fori = 1to¢ = my do:
Compute the optimal dual solution of the recourse subproblem
according to (4.12), by simply checking signs as follows

= @R (T >0
k2 —q if BF - (TH)Tz <0.

The decomposition method for simple recourse problems with a random
technology matrix, as outlined above, has first been proposed by Klein Haneveld
and Van der Vlerk [169].

Finally let us point out that the adaptation discussed above corresponds to the
dual decomposition method with aggregate cuts. The adaptation of the multi—
cut version, as described in Ch. 1, Section 2.6 page 35 is left as an exercise for
the reader.

4.3  Models with separate integrated probability functions

We consider the models (Ch. 2, 4.8) and (Ch. 2, 4.9) in Ch. 2, Section 4.1,
on page 152, involving separate integrated probability functions, with a finite
discrete distribution. We begin with an observation, due to Higle and Sen [118].
Comparing the explicit formula (4.13) for the recourse function with the model
formulations (Ch. 2, 4.8) and (Ch. 2, 4.9), we see immediately that (Ch. 2, 4.9)
can be considered as a simple recourse problem and (Ch. 2, 4.8) is equivalent
to a problem with a simple-recourse constraint. In both cases mg = 1,¢" =0,
g~ = 1, and d = 0 hold. Thus, the dual decomposition methods, as described
above can directly be applied.

We obviously have i/ = {0, 1} and thus in Step 3.a of the dual decomposition
method (u}); is computed as follows:

x 0 if ¥ —(THTz >0
(uk)i = k y
kv -1 if B*—(THTz <0.

k3
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Consequently the coefficients uy, in the formulation of the full master problem
(4.8) are either O or 1, & = 1,..., N. The N-dimensional binary vector
(u1,...,un)T can in a one—to—one manner be identified with subsets of the
index set N = {1,..., N}, by choosing index i as an element of the subset, if
and only if u; = 1 holds. In this subset-language the full master problem (4.8)
assumes the form

min clz+ Ow

a(w)

st. > pe(Tfz—hF) —w < 0, KCWN (4.14)
kex
x € B

Let us consider the recourse—constrained case with w = -y. Comparing (4.14)
with Theorem 4.12 of Chapter 2, it is clear that the derivation of (4.14) in-
cludes an alternative proof of that theorem. The relaxed master problem can be
formulated as

min clz+ Ow )
z(,w)
s.t. Zpk :c—hk -w <0, j=1,...,v
kek; 4.15)
Tx—h -w <0
w >0
x € B )

where IC; C N holds for all j > 0 and we require Ky = @. The constraint
w > 0 corresponds to the choice X = ) in the full master whereas the constraint
Tz — h —w < 0 arises from the choice K = A and corresponds to the dual
variable & = —1. The relaxed master problems will be constructed in such a
way that KC; N KC; = (0 holds throughout, for ¢ # j.

The final form of the decomposition algorithm is as follows.

Step 1. Initialization
Set v := 0, compute h and T, choose @ = 1 as the dual-feasible
solution of the recourse subproblem (4.2), and set up the relaxed
master problem (4.15).

Step 2. Solve the relaxed master problem
Solve (4.15), let a solution be (x*, w*), where in the recourse con-
strained case w* = w(= +y) holds.

Step 3. Evaluate the expected recourse function

3.a Determine the index set K* = {k | T*z* — h* > 0}.
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3.b Compute the expected value of the recourse function as follows

@) = Y pul(Tra” — 1),

keK*

Step 4. Check for optimality
If Q(z*) < w* then Stop, otherwise continue with the next step.
Step 5. Add an optimality cut to the relaxed master
Setv:=v+ 1, cal K, = K* and add the corresponding cut to the
set of constraints of the relaxed master (4.15). Continue with Step
2.

For integrated chance constraints, the algorithm developed this way is identical
with the cutting—plane algorithm proposed by Klein Haneveld and Van der Vlerk
[169].

Let us next turn our attention to integrated probability functions of the second
kind. We consider the models (Ch. 2, 4.16) and (Ch.2, 4.17). Analogously
as before, (Ch.2, 4.16) can be interpreted as a simple-recourse constrained
problem and (Ch. 2, 4.17) can be viewed as a simple recourse problem. The
adaptation of the dual decomposition method can be developed along the same
lines as for the previous type of integrated probability functions, and is left as
an exercise for the reader (note that now d = 0 does not hold in general). Let us
remark that similarly as before, we obtain an alternative proof for Theorem 4.2
in Chapter 2, as a by—product of constructing the method.

4.4  Models involving CVaR-optimization

In this section we will discuss the dual decomposition method as applied to
the models (Ch. 2, 4.35) on page 163 and (Ch. 2, 4.42) on page 165, both in
Ch. 2, Section 4.3. As in Section 4.3, a comparison with (4.13) for the simple
recourse function reveals the following: Model (Ch. 2, 4.35) involving CVaR~
minimization is equivalent to a simple-recourse problem, whereas (Ch. 2, 4.42)
turns out to be a simple-recourse constrained problem. Furthermore, in the
recourse—constrained case d # 0 holds (cf. (4.4)).

Proceeding analogously, as in Section 4.3, we arrive at the following full
master problem:

min cTz + fw
T,2,Ww
st. 2+ Yope(Tria—h'—z)—w <0, KN} (16)
kek
z € B

where now x and the free variable z are both first—stage variables. For formu-

1

lating the relaxed master problem let us introduce the notation x := — and
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7:=1-— k. Having 0 < a < 1, 7 < 0 obviously holds. Using our notation,
the relaxed master problem can be given as

min ¢Tz + fw

T2,
s.t. ank(Tka:—hk——z) +z-—w<0,j=1,...,v
keks s (4.17)
k(Tx —h) +7z —w <0
z—w<0
X S B J

where for all j > 0 K; C N holds with the prescription Ko = 0. Fur-
thermore, K; C N, Vj and K; NK; = 0, i # j, hold. The constraint
z —w < 0 corresponds to K = ) in the full master problem and the constraint
k(Tx — h) + 72 — w < 0 arises when choosing K = A. Note that the re-
laxed master problems (4.17) involve the free variable z. Due to the additional
constraints it is easy to show, however, that the relaxed master problems have
optimal solutions for any v > 0. Introducing the notation

t =k Z peT*, =k Z peh®, p =k Z Pk, (4.18)
ke, ke, kek;

the relaxed master problem can be written in the compact form

min  c¢lz +0w )
2w
st.  tyr +(l-pp)z —w < Ay, i=1,...,v
Tz +1z —w < kh > (4.19)
z —w < 0
z € B

/

Now we are prepared to formulate the dual decomposition method for the
CVaR—optimization problems.

Step 1. Initialization
Setv := 0, compute h and T', and set up the relaxed master problem
(4.19).

Step 2. Solve the relaxed master problem
Solve (4.19), let a solution be (z*, z*, w*), where in the recourse
constrained case w* = w(= ~y) holds.

Step 3. Evaluate the expected recourse function
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3.a Determine the index set K* = {k | T*z — 2* — h* > 0}.
3.b Compute the expected value of the recourse function as follows

Qz*, z*) = Z or(TRz* — 2* — B%).

kek*

Step 4. Check for optimality
If Q(z*, 2*) < w* then Stop, otherwise continue with the next step.
Step 5. Add an optimality cut to the relaxed master
Set v := v + 1, compute ¢}, k), and p,) according to (4.18), and
add the corresponding cut to the set of constraints of the relaxed
master (4.19). Continue with Step 2.

Let us finally formulate a CVaR-analogue of the polyhedral representa-
tion Theorem 4.12 in Chapter 2, given for integrated chance constraints in
Ch. 2, Section 4.1. Let

~ N R +
D= {(w,z,w) | Zpk (C(m,ﬁk,ﬁk)—z) +z—w§0}.

k=1
We have the following polyhedral representation:

PROPOSITION 4.1

D= () {(m,Z,wHZPk ((ﬁ’“)Tx—é’“—z)H—wgo} (4.20)

KeN kek
with the sum defined as zero for K = {.

Proof: The proof follows directly from the method which lead to the full master
problem (4.16). An alternative, direct proof can also easily be given, along the
lines of the proof of Theorem 4.12 in Chapter 2; this is left as an exercise for
the reader. u

For the solution of CVaR—minimization problems, the algorithm presented
above has been proposed by Kiinzi-Bay and Mayer [174].

4.5  Models with joint integrated probability functions

The subject of this section is a decomposition algorithms for the SLP—
problems (Ch. 2, 4.20) and (Ch. 2, 4.21), involving joint probability functions
and a finite—discrete probability distribution. These problems do not fit into the
general framework of the dual decomposition, as discussed Section 4.2. Nev-
ertheless, we present an algorithm for the two problems simultaneously. We
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consider the optimization problem

min clz +6w
z(,w)
N
ke ~ BV < 421
s.t. ;pklnsl?%cs(tlx h*) w < 0 4.21)
T € B.

Problem (Ch. 2, 4.20) involves a joint integrated chance constraint and can be
obtained from (4.21) by choosing # = 0 and w = +. In this case only x counts
as variable. In problem (Ch. 2, 4.21) a joint integrated probability function is
included into the objective function. This problem is a special also case of
(4.21), corresponding to the choice § = 1; both x and w are considered as
variables.

Note that (4.21) involves the expected value of a maximum of recourse func-
tions which still fits the general framework of recourse constrained program-
ming, as defined by Higle and Sen [118]. One way to develop an algorithm
for (4.21) would be to extend the dual decomposition method to recourse con-
strained models of the discussed type. In this section we will chose the direct
way by presenting the algorithm directly based on the polyhedral representa-
tion theorem 4.1 (Chapter 2, page 152) of Klein Haneveld and Van der Vlerk.
The starting point is an equivalent representation of (4.21) in the form of a full
master problem:

min cTx +0w
z(;w)
st. > me(tE)Tz—hf) —w <0, 1eIF KW, (4.22)
kek
T € B,

where Z = {1, ..., s} is the set of row indices in the joint integrated probability
function, Z := {1 := (lt, k € K) | I € T forall k € K} holds, and t;“k is
the [, row of T*.

The following type of relaxed master problems will be utilized:

min c¢Tz +0w W
z(;w)
s.t. Z (@) Te —hf) —w <0, 5=1,...,y,
(heM; C423)
t?w—ﬁi —w <0, i=1,...,s,
w > 0,
x € B, J
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where M; C N x T is a set of ordered pairs (k,l) with the property that
each k € N appears at most once. We prescribe that Ko = ) holds. Finally,
t; = E[t;(¢)], hs = E[h;(£)] hold for all 5. The constraint w > 0 arises when
choosing M = {} in the full master problem, and £}  — h; — w < 0 has its root
in the choice M = A x {i}. That the additional expectation-based constraints
are redundant in the full master problem, can also be seen directly, by utilizing
the obvious fact that IE[d;] < IE[1 max, ¥;] holds for any random variables

9,4 =1,..., M with finite expecte~d—value. It is easy to show that under our
assumptions (4.23) has an optimal solution for any v > 0. Next we state the
algorithm.

Step 1. Initialization
Set v := 0, compute ; and h;, i = 1,..., s, and set up the relaxed
master problem (4.23).

Step 2. Solve the relaxed master problem
Solve (4.23), let a solution be (z*, w*), where in the case of joint
integrated constraints w* = w(= ) holds.

Step 3. Evaluate the joint integrated probability function

3.a Determine the index set

M = {(k, ) | () " — hf == max ((t])"z* - hf) > 0}.

3.b Compute the the joint integrated probability function as follows

Ky = Y pe(t))Tz* - hf).
(khem~

Step 4. Check for optimality
If K j(z*) < w* then Stop, otherwise continue with the next step.
Step 5. Add an optimality cut to the relaxed master
Setv :=v+1, M, = M* and add the corresponding cut to the
set of constraints of the relaxed master (4.23).
Continue with Step 2.

PROPOSITION 4.2 The above method terminates after a finite number of it-
erations, with x* being an optimal solution of our problem.

Proof: The proof runs along the same lines as the proof of the analogous propo-
sition for the dual decomposition. It is clear that in the case when M* = M
holds for some j < v, then the stopping criterium in Step 4. will hold and the
algorithm terminates. Having a finite number of different of subsets in A/ x Z,
this immediately implies finiteness. For proving the rest, let us first consider
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the case § = 1. In this case ¢Tz* + w* is a lower bound and cT2* + K ;(z*)
is an upper bound for the optimal objective value of (4.21). Thus, the stopping
criterion implies optimality of z*. In the case of an integrated chance constraint
the optimal solution of the relaxed problem turns out to be feasible in the orig-
inal one, thus implying optimality. m]

4.6 A guide to available software

For several models, based on expectation, LP—equivalents exist, see the dis-
cussion in Section 4.1. The straightforward approach for solving these problems
is to apply general-purpose LP solvers to the LP—equivalents. However, having
a large number of realizations, this can become quite time consuming. Thus, if
computing time matters, special-purpose algorithms are preferable.

4.6.1 Models with separate integrated probability functions

The recommended approach is dual decomposition. One possibility is to
formulate the equivalent two—stage simple recourse problem and to employ a
dual-decomposition solver for two—stage problems, see Section 7.5. A special—
purpose solver has been developed by Klein Haneveld and Van der Vlerk [169]
in MatLab, which might be available on request from the authors.

4.6.2  Models with joint integrated probability functions

The same comment applies as in the previous section. Again, a special—
purpose solver, developed by Klein Haneveld and Van der Vlerk [169] in
MatLab, might be available on request from the authors.

4.6.3 Models involving CVaR

For models with CVaR-minimization, a dual decomposition solver named
CVaRMin has been developed in Delphi by Kiinzi-Bay and Mayer [174], for
the LP subproblems Minos (Murtagh and Saunders [211]) has been used. It is
connected to the modeling system SLP-IOR and is available along with this
modeling system, see Ch. 4, Section 9.2.

5.  Single-stage models involving VaR

Models involving quantiles have been the subject of Section 3 in Chapter 2.
We have seen that these models can equivalently be formulated as SLP models
with separate probability functions. Therefore, the considerations concerning
algorithmic approaches in Section 2 apply also for this case.

In finance, portfolio optimization problems involving VaR are quite impor-
tant. For algorithmic approaches, proposed for this particular application, see
Larsen et al. [177], and the references therein.
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6. Single-stage models with deviation measures

Models with deviation measures have been introduced in Ch. 2, Section 5.

Let us discuss models involving quadratic deviation first. Having the quad-
ratic deviation in the objective, the equivalent nonlinear programming prob-
lems (Ch. 2, 5.7)and (Ch. 2, 5.13)are convex quadratic programming problems
without any special structure. Thus, the numerical approach for their solution
consists of employing general-purpose algorithms of quadratic programming,
see, for instance, Nocedal and Wright [214].

Regarding the models (Ch. 2, 5.6) and (Ch. 2, 5.12), these are also convex
programming problems but they are much more difficult from the numerical
point of view. Both of them involve a nonlinear constraint with a convex
quadratic function on the left-hand-side. The straightforward approach is to
apply a general—purpose solver for nonlinear programming. A better idea is the
following: the problems can be reformulated as second order cone programming
(SOCP) problems, see Lobo et al. [181] and primal—dual interior point methods
can be employed for their solution (see also Ch. 2, Section 2).

Considering models with quadratic semi—deviation, the situation is similar.
We only consider the case when the underlying probability distribution is fi-
nite discrete. Having the risk measure in the objective, the convex quadratic
programming problems (Ch. 2, 5.36) and (Ch. 2, 5.41) arise. With quadratic
semi—deviation functions in the constraints, we get the convex programming
models (Ch. 2, 5.35) and (Ch. 2, 5.40) involving a quadratic constraint. Con-
cerning solution algorithms, the same comments apply as for the quadratic
deviation case above. The models with quadratic semi—deviation have a rather
special structure, which could be utilized for developing algorithms tailored to
this structure.

Finally let us consider models with absolute deviation, under the assumption
that the underlying probability distribution is finite discrete. The straightfor-
ward way of solving these models is via solving the corresponding equivalent
LP problems (Ch. 2, 5.22), (Ch. 2, 5.23), or (Ch. 2, 5.27).

An alternative way, resulting in a much more efficient solution approach,
is via equivalent simple recourse models. In Ch. 2, Section 5.2 we have seen
that the general model (Ch. 2, 5.17) is equivalent to the simple recourse model
(Ch. 2, 5.18), provided that = ¢ holds. This assumption has been chosen,
however, merely for the sake of simplicity of presentation. From the consider-
ations in Ch. 2, Section 5.2 it is clear that the general models (Ch. 2, 5.16) and
(Ch.2, 5.17) can equivalently be formulated as the following recourse models
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with a simple recourse structure:

T

min c'z
st. Ely+z] <k
T
nzr—-§ -y +z =0
y >0 6.1)
z >0
x €B. |
and
min E[y+ z] )
st. nle—¢ —y 4z =
Y >0 (6.2)
z >0
z €B. )

The above problem (6.1) is a recourse constrained problem in the sense of Higle
and Sen [118] and (6.2) is a recourse problem with a simple recourse structure
and a random technology matrix.

If for (6.2) n = ¢ holds, then the problem is a classical simple recourse prob-
lem. Consequently, the general algorithms for simple recourse problems can
be applied, even without the assumption that the distribution is finite discrete.

Under the assumption that the probability distribution is finite discrete, the
proposed solution approach is dual decomposition, for both problems above.
In Section 4.2 of this chapter we have derived a general framework of dual
decomposition for recourse models and for recourse constrained models, with
simple recourse structure, where the technology matrix may also be stochastic.
Analogously as for models involving integrated probability functions or CVaR,
this approach results in specialized versions of the dual decomposition method
(see Section 2). Working out the details is left as an exercise for the reader.

6.1 A guide to available software

Concerning solvers for SOCP, see Section 3.7 whereas for solvers for simple
recourse problems consult Section 7.5.

7. Two-stage recourse models

Two—stage recourse models have been discussed in Ch. 3, Section 2. A great
variety of algorithms have been proposed for the solution of this type of prob-
lems; in this book we confine ourselves to discuss some selected algorithmic
approaches. For further methods see, for instance, Birge and Louveaux [23]
and Ruszczynski and Shapiro [263], and the references therein.

If £ has a finite discrete distribution, then the two—stage recourse problem
can be equivalently formulated as a (typically large scale) linear programming
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problem. A naturalidea is to apply interior—point methods for the solution of this
LP problem. Interior point methods have been discussed in Ch. 1, Section 2.9.
Among these methods, algorithms based on the augmented system approach
(see (Ch. 1, 2.53)) turned out to be especially well-suited for the solution of
the specially structured equivalent LP problem, see Maros and Mészaros [193]
and Mészaros {204].

In the next section we discuss some further algorithmic issues concerning
decomposition methods; the methods themselves have already been presented
in Chapter 1. The subsequent section is devoted to successive discrete ap-
proximation methods. In Section 7.3 stochastic methods are discussed while
the subsequent section 7.4 summarizes some algorithmic issues for the special
case of simple recourse.

7.1  Decomposition methods

In this section we consider the two—stage problem (Ch. 3, 2.2), under the
assumption that £ has a finite discrete distribution.

The basic dual decomposition algorithm for two-stage recourse problems
is essentially an application of Benders—decomposition [12], due to Van Slyke
and Wets [296], and is usually called the L—shaped method in the literature.
In Ch. 1, Section 2.6 we have discussed the dual decomposition method, under
the assumption of fixed recourse and presupposing a deterministic objective
in the second stage. The algorithm for the general case is discussed as the
nested decomposition algorithm for multi-stage problems in Ch. 1, Section 2.7;
the two—stage problem is clearly a special case corresponding to 7" = 2. A
variant, also suitable for recourse—constrained problems, has been presented in
Section 4.2. From the numerical point of view, the basic dual decomposition
has some unfavorable features. On the one hand, there is no reliable way for
dropping redundant cuts. On the other hand, especially at the beginning phase
of iterations, the algorithm tends to make inefficient long steps.

For overcoming these difficulties, an important improvement of the basic
dual decomposition algorithm is the regularized decomposition method, due to
Ruszczynski [261]. This algorithm has been the subject of Ch. 1, Section 2.8.
For recent achievements concerning this method see Ruszczynski and
Swigtanowski [264].

Another way for avoiding inefficient long steps, generally known in nonlin-
ear programming, is the trust-region method. This idea has been applied for
two-stage recourse problems by Linderoth and Wright [179], by employing
intervals as trust regions. The authors report quite favorable computational
results concerning their method.

A common feature of all of the dual decomposition methods is the following:
ineach of the iterations, having the current solution z* of the master problem, the
recourse subproblem has to be solved for all realizations of €, in turn. Assuming
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fixed recourse and that q is not stochastic, the recourse subproblem (7.2) or its
dual (7.3) has to be solved with the setting & = ¥, fork = 1,..., N, where N
stands for the number of realizations. Now itis clear that the dual problems (7.3),
corresponding to different realizations, differ only in their objective. Assume
that we have solved the first recourse subproblem, corresponding to ¢ = £1,
by employing the simplex method. The optimal basis B will then be a dual
feasible basis for all of the subproblems corresponding to the other realizations.
Consequently, if for the k! (k > 2) subproblem

y* =BT (W) — T(E")z") 2 0

holds, then B is also primal feasible to this subproblem, therefore 4/* is optimal.
Consequently, for the &t subproblem we have obtained the optimal solution
without starting up the simplex method at all. The idea is that, after having
solved a particular subproblem, the above check is performed for the remaining
subproblems, in order to identify those for which the simplex method has to be
started up subsequently. This idea is called bunching and can reduce substan-
tially the running time of the decomposition method. For further details, and
refinements called trickling down, see Gassmann [95] and Kall and Wallace
[152].

Another idea for decomposition is basis—decomposition. For two—stage re-
course problems, an algorithm of this type has been developed by Strazicky
[278].

7.2 Successive discrete approximation methods
In this section we will make the following assumption
ASSUMPTION 7.1
The first and second moments exist for €.
The model has fixed recourse, that is, W (&) = W, i.e. W (-) is deterministic.

The recourse matrix W has the complete recourse property (Ch. 3, 2.6) (cf.
Assumption 2.1 in Ch. 3, Section 2, on page 203).

q(&) = q, i.e. ¢(.) is deterministic.
For T(€) and h(€) the affinelinear relations (Ch. 3, 2.1) hold.

The recourse subproblem has a finite optimum for any x and any £ (cf. Assump-
tion 2.2 in Ch. 3, Section 2, on page 203).

Under this assumption, the recourse function Q(x; T'(+), h(-)) is a convex func-
tion in & for any x € IR™, see Theorem 2.1 in Ch. 3, Section 2.
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Taking into account our assumptions, the two—stage recourse problem from
Ch. 3, Section 2 has the following form

min ¢tz + B[ Q(z; T(£), h(¢))]

s.t. Az
z

b 1.1
0

vl

where the recourse function Q(z; T(€), h(£)) is defined as

Q(z;T(€), h(€)) == min ¢y
st. Wy
)

hE) - T(E)= (7.2)
0.

vVl

Alternatively, via the duality theory of linear programming we have

Q(z; T(€),h(€§)) = max  (h(§) - T(¢)z)"u 3
st. WTy < g '
Let B:={xz | Az = b, x > 0} be the set of feasible solutions of (7.1). For
the sake of simplicity of presentation, we will assume additionally to Assump-
tion 7.1 that B # 0 holds and that B is bounded.
Notice, that due to our assumptions, the optimal solution for (7.1) exists. Let
x* denote an optimal solution. For later use, let us introduce the notation

Q(z) == Ee[Qz; T(§), h(€))]

for the expected-recourse function, f(z) := cTz + Q(z) for the objective
function of the recourse problem (7.1), and f* := c¢Tz* + Q(x*) for the optimal
objective value of (7.1).

According to Proposition 2.18 in Chapter 1 (page 30), the recourse function
Q(z; T(€), h{(€)) is a piecewise linear convex function in z for fixed £. Due to
the affine-linear relations (Ch. 3, 2.1), the recourse function is piecewise linear
and convex also in £ for fixed z. The proof of this fact is analogous to the proof
of the above—mentioned Proposition and is left as an exercise for the reader.

Successive discrete approximation methods construct discrete approxima-
tions to the probability distribution of £ by successively partitioning a set
= ¢ IR", which is supposed to contain the support of £. We will proceed
as follows. First we discuss algorithms, for which = is supposed to be an r—
dimensional interval and at each iteration the support of £ is covered by a union
of intervals. We concentrate on methods for which we have our own compu-
tational experience. The other algorithmic approaches will be summarized in
the separate subsection 7.2.7.
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7.2.1 Computing the Jensen lower bound

Our Assumption 7.1 implies that Q(z; T'(+), h(-)) is a convex function in £
for any x € IR™ (see Theorem 2.1 in Ch. 3, Section 2). Jensen’s inequality
applies, see Theorem 2.4 in Ch. 3, Section 2. Thus, for the expected recourse
Q(z) we have the lower bound

Q(z; T(u), h(p) < Qz), =€ R™ (7.4)
with p := IE[£]. Consequently,
i) ="+ Q& T(w), h(w) < "z + Q(x), Ve B

holds. A lower bound on the optimal objective value f* of (7.1) can be obtained
by solving '
min  c'z +Q(z; T (n), h(w))
s.t. Az b
z 0

IV Il

which is obviously equivalent to the following LP problem

min cTe +qTy
st. T(wz +Wy = h(p)
Az = b (7.5)
T > 0
y =2 0

Problem (7.5) is called the expected value problem, corresponding to (7.1), cf.
(Ch. 3, 2.67).

7.22  Computing the E-M upper bound for an interval

The purpose of this section is to derive a formula for computing the general-
ized E-M upper bound (Ch. 3, 2.31). For the sake of easy reference we begin
by summarizing the derivation of this bound, as given in Ch. 3, Section 2. Let
E := X}, lo, Bi) be an r—dimensional interval containing the support of the
r—dimensional random vector £ and let

T

€l =16 — )

i=1

be the volume of the r—dimensional interval Z. Let, furthermore, ¢ : = — IR be
a convex function. Our goal is to derive an explicit formula for the generalized
Edmundson—Madansky upper bound on IE[ ¢(£) ].
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For deriving the bound, the following construction will be used. For each
fixed £ € E let n(€) be an r—dimensional discretely distributed random vec-
tor, with stochastically independent components having the following one—
dimensional marginal distributions

a; Bi
Bi—& & —ay
Bi—ai Bi—ay
fori =1,...,r, where the first row corresponds to realizations and the second

row contains the corresponding probabilities (cf. (Ch. 3, 2.26)). Thus, the set of
joint realizations of 7 coincides with the set of vertices of Z. The probability of
the realization corresponding to vertex v¥ (1 < v < 27) is (due to the stochastic
independence assumption)

pl©) = A6 TI(6— o) 7.6)

i€l, i€,

where I, = {i | v} = o4} and J,, = {i | v} = 3;}. Next observe that, due to
the construction of 77, we obviously have for each fixed £ € =

E[m] &
E[n] = 5 = |=¢
E[nr] &

Consequently, the Jensen—inequality yields

0(6) = p(BLE]) < EBlpn)] =D o) pu(€)

with p,,(£) defined as (7.6). Taking expectation results in

E[¢(€)] <Y o) E[p.(8)] (7.7)

which is the multivariate generalization of the Edmundson—Madansky inequal-
ity (Ch. 3, 2.31). For the independent case this inequality is due to Kall and
Stoyan [151], the extension to the dependent case has been given by Frauen-
dorfer [85].

Now we are prepared to derive a formula for IE[p, (£)]. In the case when

the components of £ are stochastically independent, we get immediately from
(7.6)

QW) = Blp()] = [1(6 - Ble]) [[(Bl&]-a). 09

icl, iedy
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Otherwise, utilizing (7.6) a straightforward computation yields
pu(é.) = | ‘ Z (—1)|KUA| H:Bz Hai Hé@
AcC{1,...r} i€l ,NA® ieJyNA® €A
with A® = {1,...,7} \ A, Kup = I, N AU J, N A° and with | K5 | denoting

the number of elements in K, 5. Taking expectation leads to the formula

E[p,(§)] = Yo (~pEal TT8 [Jei hate) (79

AC{1,..r} i€, NAC ieJ,NAe

=

(1}

|-

(1]

which is an expression for Q(v¥) = E[p, ()], where the notation hp (§) =
H &; has been employed (see Ch. 3, Section 2).
€A

By choosing ¢(€) = Q(x; T(£), h(£)), the above upper bound applies. In
fact, due to Assumption 7.1, Q(z;T'(+), h(-)) is a convex function in £ for any
z € R™ (see Theorem 2.1 in Ch. 3, Section 2). We get the Edmundson—
Madansky inequality for two—stage recourse problems

27‘
Q) < ) Q@ T(v), h(v")) QE"), z € R™,  (7.10)
v=1
see Theorem 2.5 in Ch. 3, Section 2. Consequently
27‘
e+ Qz) < Tz + ) Q@ T(v"), h(v”) Q) := fY(z), Ve B
v=1
holds, which immediately implies that fU(z) is an upper bound on the optimal
objective value f* of (7.1), for any z € B. The best E-M upper bound on f*
could be obtained by solving

2T

min T+ Qz; T(W"), h(v*)) Q(v”)
v=1

s.t. Az

b
T 0

which is equivalent to the linear programming problem

v

2T
min ch+ZQ(v”)qu"
v=1
st. Tz +Wy¥ = h(), v=1,...,2" ; (7.11)
Ax = b
T > 0
v 2 0, v=1,...,2" J




Algorithms 323

The size of this LP grows exponentially with the dimension r of the random
variable £, which makes this approach impracticable in a successive discretiza-
tion framework. In the discrete approximation method we will employ an upper
bound with a fixed x.

7.2.3 Computing the bounds for a partition

Similarly to the previous section, let Z := X|_, [c;, 3;] be an r—dimensional
interval containing the support of the r—dimensional random vector £. We
consider a disjoint partition (see Ch. 3, Section 2) X := {=; k=1,---, K}

of =, where the Zy, are half-open or closed intervals, which will be called cells.
K

We have Z,NZp = @ for k # £and U Zx = Zholds. The probability measure

k=1
of the cells will be denoted by 7y, thatis, 7, = P (), k=1,..., K.
According to Lemma 2.8 in Ch. 3, Section 2, the Jensen lower bounds cor-
responding to the partition will be computed as follows. We consider the con-
ditional distribution of £, given £ € E, for the cells separately, and compute
the conditional moments ‘

_ 1
pe= Bl (€€ 5] = [ €Pe(ds)
Tk =k
Using these, the Jensen lower bounds

Li() = e Q(a; T, h(pax)) < / Q(a; T(€), h(E)) Pe(dé)

Zk
are obtained, fork = 1,..., K, x € R™, see Section 7.2.1. By summing up
the inequalities

K K
Ly(z):=> Li(z) =Y m Q(z; T(u), h(pw)) < Q) (7.12)
k=1

k=1
results and consequently

K
f)f(:v) =cTx + ZLk(m) <cTz+Q(x), VzeB
k=1
holds. Finally, for obtaining a lower bound on f*,

K
min Tz + Z Tty
k=1
st T(uw)z +Wy* = h(m), k=1,...,K p (7.13)
T = b
T > 0
v* > 0, k=1,...,K )
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is solved. Denoting by z,, a solution of this LP, we have

Ly, ::WkQ(mx;T(Mk)’h(.Ulk))S/: Qzx; T(§), M(E))Pe(df)  (7.14)

and
K

f/{,’ = cTa:X + ZLk <clz+ Q(=), VzeB. (7.15)
k=1
In particular, f/{j < f* holds meaning that f)g, corresponding to the current
partition X, is a lower bound on the optimal objective value of the recourse
problem (7.1).
In summary, the computation of the Jensen lower bound for a partition X
runs as follows,

Computing the Jensen lower bound

Step 1. Compute moments
Compute the conditional probabilities 7, = IP¢( =y, ) and the con-
ditional expected values py :=IE[{ | € € B, fork=1,..., K.
The computation of these quantities is straightforward in the case
when & has a finite discrete distribution; for continuous distributions
numerical integration is needed, in general.

Step 2. Compute the lower bounds for the cells
Set up and solve the LP problem (7.13), let x,, be an optimal so-
lution. Compute the lower bounds Ly, for the cells according to
714),k=1,...,K.

Step 3. Compute the lower bound for the optimal objective value
Compute f)f according to (7.15).

For the E-M upper bound we proceed analogously. Again, we consider
the conditional distribution of £, given £ € =y, for the cells separately. If
the components of £ are stochastically independent then solely the conditional
probability and the conditional expected value is needed. In general, we com-
pute

i = Blha(€) | € €5y = Wik / ha(€) Pe(de).

Ek
The upper bounds are computed again according to Lemma 2.8, page 221. From
(Ch. 3, 2.40) it follows

”
/: Q(z;T(£), h(€)) Pe(de) < me Y Q(z; T(wg), A(vf))Qy (vF) = Ui (=)
v (7.16)
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wherex € R™, v} isthe v vertexofcell k, k = 1,.. ., K and @, is computed
according to (7.8) in the stochastically independent case and according to (7.9)
in general, where in both cases the moments are replaced by the conditional
moments corresponding to the cells.

Summing up the above inequalities we get

K
Q@) < Y Un(w) := Uy(a) (7.17)
k=1
and consequently
K
Tz +Q(x) < ctx+ ZUk(m) = fg(az), Vz € B. (7.18)
k=1

Notice that for any z € B, fU(z) is an upper bound for the optimal objective
value f*. In the discrete approximation method we will choose = = z,,, that
is, we choose an optimal solution of the LP problem (7.13), which served for
computing the Jensen lower bound. For this choice we introduce the notation
U := Ug(z,). Thus we have

K
fr=ca" + 9(z*) < Txy + ZUk = fU(xy) = fY. (7.19)
k=1

Our choice also implies that the inequality
Li < [ Qaxi T(€), h(€)) Pe(de) < U (7.20)
Sk

holds for k =1, ..., K. The interpretation of this inequality is the following.
Considering the interval-wise decomposition

K
Q) = Be[ Q(: T(E), h(E) ] = 3 / Q(z; T(€), h(E)) Pe(dt),
i=1 Y=k

(7.20) provides upper and lower bounds for the k' term, corresponding to
the k' cell in the partition. The overall bounds fi’ (see (7.15)) and f({,’ (see
(7.18)) are then obtained by summing up the cell-wise bounds in (7.20) and
subsequently adding the term cTz,,.

Thus, Uy, — Ly, provides an error bound for the approximation over the k*h
cell. If, for example, Q(z,;T(-), h(-)) happens to be a linear—affine function
over Zg, then, as it can easily be seen, Uy = Ly holds, and the error will be
zero. The proof of this fact is left as an exercise for the reader.
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For computing the E-M upper bound for a fixed = € B, we proceed as fol-
lows.

Computing the E-M upper bound

Step 1. Compute moments

For each of the cells in turn do:
Compute the conditional probability ;. If the components of £ are
stochastically independent then compute the conditional expected—
value vectors py|, otherwise compute all of the 2" — 1 conditional
Cross—moments [ k.

Step 2. Compute distribution on the vertices and recourse function values
For each of the different vertices vy, v =1,...,2", k=1,..., K
do:

- Compute Q. (vy) accordingto (7.8) or (7.9), depending whether
the components of ¢ are stochastically independent or depen-
dent, respectively. In the computations replace the moments in
the formulas with the conditional moments p; and i , respec-
tively.

- Compute Q(x; T(vy), h{vy)) by solving the linear program-
ming problem (7.2), with § := v},. ‘

Step 3. Compute the upper bounds for the cells
Compute the upper bounds Uy(z), according to (7.16),
k=1,...,K.

Step 4. Compute the upper bound on the optimal objective value
The E-M upper bound fg is finally computed according to (7.17).

7.2.4  The successive discrete approximation method

Corollary 2.3 in Ch. 3, Section 2 formulates the basis for this method: As-
sume that A" and J are two partitions of = containing the support of £, such
that )V is a refinement of X. This means that each of the cells in X is the union
of one or several cells in V. Then for each fixed z € B we have

Ly(z) < Ly(z) £ Q(z) < Uy(z) < Uy(2), (7.21)

see also (7.12) and (7.17). This fact suggests the following algorithmic idea:
starting with =, a sequence of partitions of = is generated by successive re-
finements of the partition. For each partition X' an approximate solution x,, is
computed by solving (7.13) along with the bounds

L * U
Pl . i

see (7.15) and (7.19) The algorithm is stopped when the error bound f/‘(_f - f)’;‘
is below a prescribed stopping tolerance. Convergence properties of this type
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of algorithms have been discussed in Ch. 3, Section 2, see Theorem 2.7 on
page 226.

In this section we concentrate on algorithmic issues. An immediate impli-
cation of the monotonicity property (7.21) is that for the Jensen lower bound
the inequality

v < Iy <[
holds, see (7.15). Consequently, the lower bounds will be monotonically in-
creasing for a sequence of successive refinements of =. The same will not be
true for the E-M upper bounds (7.19). The reason is that these bounds also
depend on the current approximate solution x,, whereas the Jensen bounds
only depend on the current partition.

Given a partition X', the question arises, how the next, refined partition should
be constructed. The key observation in this respect is that, according to (7.20),
the selection of the cells to be subdivided can be performed in a cell-wise
fashion.

We will proceed as follows. Next a general framework of the algorithm will
be formulated and subsequently several issues related to the implementation of
the method will be discussed. The details and recommendations are based on the
implementation of the method, developed by the authors, and on our extensive
computational experience with this solver, named DAPPROX. The current ver-
sion of DAPPROX is for the case when the components of £ are stochastically
independent. Let us emphasize, however, that this assumption does not require
that the random elements of the model (e.g. (h1(€), ha(&), . . ., hm, (£)) should
be stochastically independent, see the affine-linear relations (Ch. 3, 2.1).

For specifying the algorithm, some further notation is needed. Considering
(7.14), we introduce

Qk = Q(ax; T(ux), b))
thus having Ly = WkQ’,;‘. Similarly for (7.16) with z = z,,, let

”
QF =Y Qay; T(vf), h(vf)) Qi (vf)

v=1

resulting in Uy, = ka,lc].

Successive discrete approximation method

Step 1. Initialization
Let X = {E} and set K := 1 for the number of cells in the
partition. Let m; = 1. If the components of £ are stochastically
independent then compute the expected—value vector 1, otherwise
compute all of the 2" — 1 cross—moments p 1.
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Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

STOCHASTIC LINEAR PROGRAMMING

Let fU := oo, this will be the best (lowest) upper bound found
so far. The subdivision process will be registered by employing a
rooted binary tree where the nodes correspond to cells and branch-
ing represents subdivision of the cells. Initially this tree consists
of a single node, which will be the root, with = associated with
it. Choose a stopping tolerance * and a starting tolerance g for
subdivision. Set the iterations counter ¢ = 1.

Compute the Jensen lower bound for X

Apply the algorithm on page 324 for computing the Jensen lower
bound. Thereby skip Step 1 of that algorithm, because the moments
and probabilities are already computed. Thus we get a solution x,,
of (7.13), the lower bounds Ly, k = 1,..., K, for which (7.20)
holds, and a lower bound f/\? for the optimal objective value f* of
the recourse problem.

Compute the E-M upper bound for X

With z = z,,, employ the algorithm on page 326. This delivers the
upper bounds Uy, k = 1,..., K, for which again (7.20) holds, as
well as an upper bound fg on the optimal objective value of the
recourse problem.

Check the stopping criterion

U U U fU — f/\j,:

Set fV := min{ fY, f; }. IfA, := ——=
* Co1+fE

and deliver x, as an ¢*—optimal solution. Otherwise continue with

the next step.

Setup a list of cells to be subdivided

Let S := {k | 6(QL, QY , 7k, k) > €g } where § is one of the se-
lection functions specified below. &y, is the number of subdivisions
which resulted in cell &; in the subdivision tree xj, is the number of
edges between the root and the node representing the k! cell.

If S = 0, then set eg := % €g and repeat this step, otherwise con-
tinue with the next step. With the suggested selection functions 6,
this cycle is finite since the algorithm did not stop in Step 4.

< g* then Stop

Carry out the subdivision
For each k € S, with 2, do

- Choose a coordinate direction. The subdivision of Z; will be
carried out by employing a hyperplane perpendicular to the cho-
sen coordinate axis.

- Subdivide =, into two intervals, by applying a cutting plane
across the conditional expected value y; and perpendicular to
the chosen coordinate direction.
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Step 7. Update the partition
Set K := K + |S|; renumber the cells and update X accordingly.
For each cell which has been subdivided, do the following
- Forboth of the new cells compute the corresponding conditional
probability and conditional moments.
- Append two edges to the corresponding node of the subdivision
tree with the child—nodes corresponding to the new cells.
Set ¢ = ¢ + 1 and continue with Step 2.

There are several points in the algorithmic framework which need further
specification.

Let us begin with the cell-selection function § in Step 5. The following
selection functions are used:

U_olL
[ ] 51(@%7@%,7(]@,}6]6) 1= —?—I:_—I—Q:QEEI
k
n 52(Q£7QkU,7rk,K,k) =Ty ?I:_ IQ%T .
Qk Qk

= 53(@%7 ng Tk, K’k) =T 2 —S—=L 1+ [QLl
Each of these involves the relative approximation error. In the second and
third functions the probability—multiplier enforces that, among cells with ap-
proximately the same relative error, those with a higher probability content are
considered first for subdivision. The third function has been suggested by H.
Gassmann. It has the effect that among cells which qualify according to the
second selection function, those cells will be selected which are the result of
a higher number of subdivisions. This selection function implements a depth—
first selection criterion in the subdivision tree. For further selection functions
and strategies see Kall and Wallace [152]. We have experimented with the
above strategies and also with other, more sophisticated strategies related to the
subdivision tree. Based on our experience, we recommend to use § = Js.
Having selected the cells to be subdivided, the next question arises, how
to choose an appropriate coordinate direction in Step 6. The basis for the
different methods is the following observation (already discussed on page 325):
If Q(z4; T(:), h(:)) is a linear-affine function over Z, then Uy = Ly holds,
that is, the approximation error is zero. Therefore that coordinate direction will
be chosen, along which some measure of nonlinearity is maximal. The idea is
the following. In Step 3 computing the E-M upper bound involved the solution
of the recourse subproblem (7.2) for all of the vertices { := vy, v = 1...,2"
of Z;. We assume that for all of these vertices dual optimal solutions are also
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available, which is always the case when the simplex method has been used.
Let uf be an optimal dual solution of (7.2), corresponding to vertex v}/, These
optimal dual solutions are utilized to construct nonlinearity measures for pairs
of adjacent vertices. Let ¥ be such a function, defined on adjacent vertices of
&, that is, if v}, and v}, are adjacent vertices then ¥ (v, v1) will be the associated
nonlinearity measure.

We introduce the following notation. Fori =1,...,r let

A; = {(a,b) | aand b are vertices of = and
a and b differ only in their i*® coordinate }.

From a geometrical point of view, the elements of A; represent the set of edges
of Z, which are parallel to the i*! coordinate direction. The coordinate—selection
algorithm runs as follows.

Coordinate-selection method

Step 1. Assign nonlinearity measures to coordinate~directions

For each of the coordinates i = 1,...,r compute
U;:= min ¥(a,b).
(a,b)eA;

Step 2. Choose coordinate
Choose a coordinate direction for which ¥; is maximal.

Several nonlinearity measures have been suggested, see Kall and Wallace
[152]. Here we discuss the two measures which have been proposed by
Frauendorfer and Kall [88] and which are implemented in DAPPROX.

The first measure is based on the following observations. Due to our assump-
tions, Q(x,;T(+), h(+)) is a convex piecewise linear function. Let us consider
two adjacent vertices v}'c and v}, of Zy, with associated optimal dual solutions

u}c and uj,. According to Theorem 2.2 in Chapter 3 (page 207), the subgra-
dients of Q(z; T'(§), h(£)) with respect to x are the optimal dual solutions of
the recourse subproblem (7.2), multiplied by a matrix independent on x. Due
to the affine-linear relations (Ch. 3, 2.1), it can be seen analogously that the
subgradients of Q(x; T'(§), h(£)) with respect to £ have a similar form: they
are again the optimal dual solutions of the recourse subproblem, multiplied by
a matrix which does not depend on £.

Assume now that the dual solutions are equal for the two vertices, that is,
we assume that u} = uj, holds. The above considerations imply that the
corresponding subgradients of Q(x,;T'(€), h(€)) with respect to £ are also
equal. Consequently, Q(zy;T(-), h(-)) is a linear-affine function along the
edge, connecting these vertices. Thus we may expect that the difference of dual
solutions for adjacent vertices indicates the degree of nonlinearity along the
corresponding edge. This suggests the first nonlinearity measure for adjacent
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vertices v}; and vi
Wy (ol 0f) o= [, — |
The second measure is based on Lemma 2.3 (page 206) and on the convexity

of Q(z,; T(+), h(-)). We take again two adjacent vertices v, and vj. With the
corresponding optimal dual solutions u}c and ufc we have (see (7.3))

Q(zy; T(vh),h(v)) = (h(vh) — T(vi)z,) Tul

Qzy; T(v}), h(v})) = (h(vy) — T(vh)zy) -

Using these relations and Lemma 2.3 (page 206), we obtain by the subgradient
inequality

()T (h(v]) ~ T(w))zy) < Qay; T(v]), h(v]))
(W) (h(v}) - T(vh)zy) < Qza; T(v]), h(v)).

Let us define
AY

A7

Qs T(vh), h(vg)) — (u}) T ((v}) — T(v})za)

The interpretation of Azj is the following: if we linearize Q(z,;T'(-), h(-)) at

I

Q2 T(v]), h(v})) = ()T (h(v]) — T(v])zy)
k

¢ = v} using the subgradient u}, then A} is the linearization error at £ = v},
The interpretation of Af:' is analogous, by considering the linearization this
time at £ = vj.

We chose o o

Uy(vf, vf) = min{ A, AJ'}
as our second quality measure; for the heuristics behind choosing the minimum
above, see Frauendorfer and Kall [88] or Kall and Wallace [152].

According to our experience, none of the two nonlinearity measures can
be considered as best. Our recommendation is the combined use of them.
One possible implementation is to switch between the two strategies if the
improvement in A, is small for a specified number of subsequent iterations. As
a starting strategy, the use of U is recommended.

7.2.5 Implementation

The successive discrete approximation method involves the solution of sev-
eral LP subproblems.

In Step 2, for computing the Jensen lower bound, the LP problem (7.13)
has to be solved. The straightforward approach for solving (7.13) is to apply a
general-purpose LP solver without any considerations concerning the special
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structure. This may become quite time-consuming with an increasing number
of cells.

A better approach is based on the observation that (7.13) is the LP equiva-
lent of a two-stage problem with a finite discrete distribution. The realizations
of the random vector are the conditional expectations i, and the correspond-
ing probabilities are the conditional probabilities 7, of the cells. Thus, the
number of realizations equals the number of cells in the current partition X
The idea is to apply solvers designed to solving two—stage recourse problems
with a finite discrete distribution. With DAPPROX we have quite good expe-
riences by employing QDECOM for solving (7.13). The solver QDECOM is
an implementation of the regularized decomposition method of Ruszczynski
[261], implemented by Ruszczynski. The algorithm has been discussed in
Ch. 1, Section 2.8.

The next idea is due to Kall and Stoyan [151]. It consists of using a general—
purpose LP solver, but taking into account the specialities of the successive
discrete approximation procedure. In the successive decomposition method,
as discussed in the previous section, typically several cells are subdivided in
a single iteration cycle. For explaining the idea, we assume that a single cell
is subdivided; the extension to the general case is straightforward. The idea is
that, instead of (7.13), its dual

K
max ZhT(Mk)uk + bty

k=1
K L (7.22)
s.t. ZTT(yk)uk + 4Ty < ¢
k=1
WTyk < mxq k=1,...,K |}

is solved. Let X be the partition corresponding to this LP. Assume, for the sake
of simplicity, that the first cell Z; € X is subdivided as 21 = =17 U =19, with
corresponding probabilities 711, 712, and conditional expected values 111, fi12.
Thus we have

T = 711 + 712

7.23
@1 = Tl M1l T T2 B12 ( )
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The dual LP for the new partition will have the form

K )
max hT(p11)ut* +hT (u19)ul? + Z BT (g )u® +6Tw
k=2
K
st TP (u1)u +T7 (pu12)ut? + Z TT(;J,k)uk +ATy<e (7.24)
k=2 )
wTytt <mgq,
WTy!? <m2q,
WTuk Sﬂ-k q,
k = 2, ey K )
Let (4g, k=1,...,K; 7) be a solution of (7.22). Then with
=1 4= ﬂ}-ﬂl, 42 = @al, W =gy, k=2,... K (7.25)
™ ™

we have a feasible solution of (7.24), with the same objective value as the
optimal objective value of (7.22). This can easily be seen by utilizing (7.23)
and the affinelinear relations (Ch. 3, 2.1).

Let us discuss the solution of the LP problems involved in Step 3 next. For
computing the E-M upper bound, the recourse subproblem (7.2) has to be
solved for each of the different vertices among all vertices vy, v = 1,...,2",
k=1,..., K, in the current partition X’. This involves solving a huge amount
of LP problems, in general. The simplex method is especially well-suited for
carry out this task, for the following reason. Instead of solving (7.2), its dual
(7.3) is solved. Notice that the feasible domain of the dual problem does not
depend on £. We have to solve a sequence of LP problems. Except of the first
one, hot start can be used. This means that the optimal basis of the previous
LP is taken as a starting basis for the next LP problem.

In DAPPROX we use Minos for solving the LP subproblems, see Murtagh
and Saunders [210], [211].

The numerical efficiency of successive discrete approximation methods crit-
ically depends on the data—structures used. Hence we give an overview on the
basic data structures used in DAPPROX.

As discussed above, for obtaining the E-M upper bound, the recourse sub-
problem has to be solved for each of the vertices appearing in the current
partition. The straightforward idea of working purely in a cell-wise fashion
and solving the LP problems for the vertices of the cells in turn, is in general
quite inefficient. To see this, consider a vertex of a cell which lies in the interior
of =, see vertex v in the partitions displayed in Figure 7.1. This vertex may
have maximally 2" neighboring cells, that is, it may belong to 2" different cells,
see the partition at the right-hand-side in Figure 7.1. Computing the E-M up-
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Figure 7.1.  Partitions of =.

per bounds cell-wise would mean that the LP belonging to that specific vertex
would be solved 2" times.

One possible remedy, implemented in DAPPROX, is the following: the
different vertices are stored in a separate vertex list. For each vertex v” in
the partition, the following quantities are stored: the coordinates of the vertex
v”, the optimal objective value, and a pointer to an optimal dual solution.
Considering the partitions in Figure 7.1, the vertex list for the partition at the
left-hand-side would consist of 8 elements, and the list for the partition at the
right-hand side would have 9 elements.

Notice that the feasible domain of the dual (7.3) of the recourse subproblem
does not depend on £. According to numerical experience, the number of
different optimal dual solutions which appear in the procedure is usually much
smaller than the number of different vertices of the cells. Therefore, the different
dual solutions are stored in a separate list, and the elements in the vertex list
merely contain a pointer to the corresponding dual solution. This idea is due
to Higle and Sen [119], who used it in the implementation of their stochastic
decomposition method.

The information concerning the cells of the current partition is stored in a
separate list, too. For each of the cells the following quantities are stored: the
two diametrally opposite vertices defining the cell, the conditional probability
and expectation of the cell, the upper and lower bounds corresponding to the
cell, as well as a list of pointers to the vertices of the cell in the vertex list.

The subdivision procedure is recorded by employing a binary tree, the nodes
of which correspond to cells and branching means subdivision. The leaves in
the tree correspond to the current partition. Further information associated with
the nodes includes cell probability, the bounds, and the split coordinate and split
position.

The framework of an iteration of the algorithm, based on the data structures
outlined above, is the following:
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Implementation of the successive discrete approximation method

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Initialization
Initialize all lists in a straightforward fashion.
Compute the Jensen lower bound for X
Traverse the list of cells and compute the conditional probabilities
and expectations. Set up and solve (7.22) and assign the obtained
lower and upper bounds to the cells. Finally compute f/\"}.
Compute the E-M upper bound for X
- Traverse the vertex list and solve the corresponding LP prob-
lems. For each vertex check whether a new dual solution ap-
peared. If yes, append it to the list of dual solutions.
- Traverse the list of cells and employing the pointers to the ver-
tices compute the E-M bound for the cells.
- Finally compute fx
Check the stopping criterion
This is the same as in the general method.
Setup a list of cells to be subdivided
This is also the same as in the general method, too.
Carry out the subdivision
The procedure is the same as for the general method, based on
passing the list of cells once. For the coordinate—selection strategy
U,, parallel edges are needed. This is implemented by setting up a
list of the corresponding pairs of node pointers.
Update the partition
This means now updating the lists. For each of the cells which is
subdivided, the two new cells are added to the list of cells, one of
them replacing the subdivided cell and the other appended to the
list of cells. The new vertices are appended to the vertex list.

Next we discuss the case when £ has a finite discrete distribution.

° & ®

o t o7 —

Figure 7.2. Subdivisions of E for a finite discrete distribution.

For explaining the idea let us consider Figure 7.2 first. In the figure, real-
izations of a two dimensional random variable are indicated by black bullets.
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The left-hand-side of the figure displays =, which is in this case the small-
est interval containing all realizations. The assumed first cut is indicated by
the horizontal dotted line. The resulting first partition is shown in the middle
part of the figure. Notice that for both cells the smallest interval, containing
all realizations, has been taken. Assume, that the subsequent cut is performed
according to the vertical dotted line. The resulting partition is displayed in the
right-hand-side part of the figure. Again, the intervals for the new cells have
been shrank. This means a change in the interpretation of a partition. This is
no more a partition of the original interval, but a partition of the realizations,
covered by the smallest possible intervals cell-wise.

This is also the general idea: after carrying out a subdivision, for each of
the cells in the new partition we take the smallest interval which contains all
realizations belonging to the cell. This has the obvious disadvantage, that now
typically there are no common vertices of the cells. Thus, in the general case, all
ofthe 2" vertices for each of the cells have to be dealt with separately. According
to numerical experience, however, the smaller cells result in much better E-M
upper bounds, and the overall numerical efficiency becomes significantly better
(the overall number of cells needed to achieve the required accuracy is much
smaller). Edirisinghe and Ziemba [70] call this kind of partitioning a cell
redefining strategy.

From the point of view of implementation, an additional feature appears. To
see this, compare the partitions in the middle part and in the right—hand side
part of the figure. The point is, that some vertices in the middle partition vanish
when carrying out the next cut. These dummy vertices have to be removed from
the vertex list, which can either be done by appropriately modifying the update
algorithm after subdivision, or by periodically running a “garbage collection”
procedure.

L4
s
L4

Figure 7.3. Subdivisions of E for independent finite discrete distributions.
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Finally we consider the case, when ¢ has a finite discrete distribution and the
components of ¢ are stochastically independent. Such a situation is displayed
in Figure 7.3. In the left-hand-side of the figure the interval = contains all
realizations. On the boundary of the interval, circles indicate the one dimen-
sional marginal distributions and as before, the black bullets represent the joint
realizations. Unlike in the general case (see Figure 7.2), the joint realizations
are located now in a lattice. This regular pattern has important implications
concerning the efficient implementation. For explaining the idea, we consider
again Figure 7.3. Similarly as in the general case with finite discrete distribu-
tions, the smallest interval = containing all realizations is taken as the starting
point of the method, see the middle part of the figure. Assume that the first cut
is performed according to the vertical dotted line. Performing the subdivision,
the partition shown in the right-hand-side of the figure results, where again the
smallest intervals containing all realizations have been taken. Observe, that the
cell Z; is now one—dimensional, thus having just 2 vertices.

This is an important special feature also in the general case. According
to numerical experience, the dimensions of the cells collapse rapidly as the
subdivision process proceeds. Thus, instead of 27, for a significant number of
cells a much smaller amount of LP problems need to be solved for the E-M
upper bound. This presupposes, of course, that the implementation is tailored to
account for this possibility. Note, that the “collapsing dimensions” phenomenon
has two roots: on the one hand, the components of = should be stochastically
independent, and on the other hand, the cells should be intervals.

7.2.6  Simple recourse

Simple recourse models have been the subject of Ch. 3, Section 2.2. In this
section we discuss how the successive discrete approximation method special-
izes in this case. The resulting algorithm is due to Kall and Stoyan [151].

The main special feature of simple recourse models is separability, see
(Ch. 3, 2.48), (Ch. 3, 2.50), and (Ch. 3, 2.51). For the sake of easy reference
we reproduce some of the key relations, with slightly changed notation: let
z = Tz then with

My £ — T T B =t — 5
Qf (ZZ, 61) . q; ["?1 zl] + g [57' z"] (726)
Qi(2) = EglQi(z,6)]
we have o
Q=8 = Y Qiz,8)
=1 (7.27)

Az) = > Gi(z)
i=1



338 STOCHASTIC LINEAR PROGRAMMING

The separability property implies that the discrete approximation can be
built in a coordinate—wise fashion. Instead of working with the r—dimensional
interval 2 := X[_, [a;, 3;] containing the support, the approximation is built for
the one —dimensional intervals [a;, 8;], ¢ = 1,...,r separately, by considering
the corresponding one—dimensional marginal distributions of &;.

In the general complete recourse case we have constructed an upper bound
for the expected recourse function Q(x), at the point x = x, (see Step 3 of
the algorithm on page 328). In the simple recourse case the expected recourse
function can be computed by an explicit formula, hence we use the function
value itself as an upper bound on the optimal objective value. Next we discuss
the formula for computing the expected recourse.

Due to the separability property, for deriving the formula it is sufficient to
consider the case » = 1. Dropping the subscript 1, the recourse function has
the form

Qz8) =gt [€—2" + ¢ [E-4,

see (7.26).
Let [a, 0] be an interval containing the support of the random variable &,
subdivided as ¢ = a9 < a1 < ... < ag = B. Let I := [ag,a1] and

I = (ak_l, ak] for k > 2, M = ]P,g(Ik ), and py = E[§ I ¢ € Ik],
k=1,..., K. Let, furthermore, k be the index of the interval in the partition
which contains z, that is, z € If, holds.

According to Lemma 2.14 on page 231, we have the formula

Q(z) ]EE[Q(zaf)] = 7}1 Q(zvﬂl) + 7%2 Q~(271&'2)

(7.28)
= f1q7 [ — 27 + fegt [ — 2]*
with 71 = Pe([0,2]), 72 = Pe((2,6]), i = B[E | € € [,2]], and
fg =IE[£ | £ € (2,0]]. This approach has the following drawback: it does
not depend on the current partition, except of K = 2, the quantities 71, @9, fi1,
and /i serve solely for computing Q(z), the rest of the discrete approximation
method makes no use of them.

To see, how a better formula should look like, observe that Q(z, £)asa
function of £ has a single kink at £ = z (see Figure 2.1 on page 229). Thus
it is linear over all subintervals I, in the partition, except of interval I, which
contains z. Therefore the approximation error is zero for all intervals I, k # k,
see the discussion in Section 7.2.4. Consequently, in the approximation scheme
it makes only sense to consider I, for further subdivision. It is also clear that the
subdivision point should be £ = z, because after the subdivision the recourse
function Q(z, €), as a function of &, will be linear on all of the subintervals for
the current fixed 2.
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It is easy to see, that the following extension of (7.28) to several subintervals
hoids:

K
Ee[Q(z,8)] =) Qi(2) (7.29)
k=1
with
_ q (2 — ) Tk if k<k
Qu(z) =14 ¢ (z—pp)mh+q" (uf —2)mp if k=k
gt (ux — 2) T if k>k

where for k = k, 7}, := P¢((an—1,2]), 72 1= Pe((2,ax] ), py ;= B[ | £ €
(ak-1,2]], and p? := E[£ | £ € (2,ax]] hold. If the interval I} happens to
be subdivided in the current iteration then these newly computed quantities can
directly be used in the next iteration.

For specifying the discrete approximation method some further notation is
needed. For j = 1,...,7, let [0y, B;] be an interval containing the support of
&;, X; be the current partition of o, §;] into K; subintervals I, let 7, =
]ng(Ijk),,ujk =IE[& | ¢ € Ijk],fork =1,...,Kj.

In the subsequent description of the method we will just stress those parts
which are different with respect to the general method; for a detailed description
we refer to the general algorithm on page 327.

Successive discrete approximation for simple recourse

Step 1. Initialization
This is basically the same as in the general method, except that now

the initialization is carried out separately for j = 1,...,r.
Step 2. Compute the Jensen lower bound
This is the same as in the general method, too. With z := x,
we also get, due to separability, the separate Jensen lower bounds
K
Qf = Z ijQj(zv /ij), forj=1,...,r.
k=1

Step 3. Compute the recourse objective value
With z = Tz, apply formula (7.29) for computing the marginal
expected recourse function values Q? = Qj(z),forj=1,...,7.
According to (7.27), compute f;_,j := cTz, + Q(2), which will be
an upper bound on f*.

Step 4. Check the stopping criterion
This step is the same as in the general method.

Step 5. Setup a list of coordinates for subdivision
Let7 ={J| 5(QJL, Q;f,wj,;j,mj,;j) > eg }, where k;j is the index
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of the interval containing z;, that is, z; € I ik holds. If 7 = 0,

then set eg := %es and repeat this step, otherwise continue with
the next step.

Step 6. Carry out the subdivision
For each j € 7, split [, ik, at the point z; into two intervals.

Step 7. Update the partition
For each j € J set K; := K; + 1; renumber the cells and update
X accordingly. Notice that for the new cells in the partition the
probabilities and the conditional expectations have already been
computed in Step 3, see (7.29). Update the subdivision trees; set
¢t = ¢+ 1 and continue with Step 2.

In Step 2 of the algorithm, for computing the Jensen lower bound and the
next iteration point, the LP problem (7.13) must be solved. According to the
discussion in Section 7.2.5, an efficient way for solving this is solving the dual
problem, which assumes in the simple recourse case the following form.

r Kj )
max ZZhT(ujk)ujk + bt
i=1 k=1
r K
s.t. Tk + ATy < ¢ (7.30)

J
=1 k=1

.

A

Tk 4; < u?

IA

ijq;_7 {€=1,...,K,
i=1...,r

/

where the components of the n;—dimensional vector ¢; are the elements of the
4% row of T, for all j.

For a sequence of such problems, the Kall-Stoyan method (see page 333) can
be utilized to provide feasible starting points. Comparing (7.30) and the general
counterpart (7.24), we notice that in (7.30) we simply have individual lower and
upper bounds on the variables u/*, instead of the corresponding parts in (7.24),
where the recourse matrix W is involved. Due to this special structure, the Kall—
Stoyan idea can be improved to provide a feasible basic solution for the next
iteration, with the same or a better objective function value. This can be used
for a hot start, which, according to numerical experience, reduces dramatically
the solution time for solving (7.30). We assume for the sake of simplicity of
presentation, that I1; has been split as I11 = I}; U I?, with corresponding
probabilities 7};, 7%, and conditional expected values ul;, u3;. For these
quantities relation (7.23) can be formulated analogously. The LP problem has
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the following form after the split:

max hT(uip)ul! + W7 (ud)udt + D BT (up)wt + T )
(7.k)#(1,1)
st tTuil + tTudl + Z t;rujk + ATy < ¢
(7,k)#(1,1)
—mhq < Uz < T 9
~mikg; < ulP < Tk gy,
k=1,...,K,
ji=1...,7
GR#LY.
The Kall-Stoyan feasible starting point will be, analogously as in (7.25),
1
ait = Mg
i1
2
all = M1 g1
1

and @7 := ﬂ{k for (j, k) # (1,1) as well as & := v, where (@, ¥) is a solution of
(7.30). If z!! was a non—basic variable, then its value is either the corresponding
lower bound or the corresponding upper bound in (7.30). Then both 4! and

12 can be declared as non—basic variables, both of them being on the analogous
lower or upper bound in (7.31). If a!! was a basic variable, then the following
can be done: one of the variables 41! or 413! is shifted to the corresponding
lower or upper bound in (7.31) and the other one is shifted by the same amount
in the opposite direction. The variable shifted to a bound will be declared as
non—basic and the other one as basic. This can be done in such a way, that the
objective function does not decrease. The details are left as an exercise for the
reader.

The authors have implemented the method as the solver SRAPPROX. To
illustrate the efficiency, we refer to our paper Kall and Mayer [148] where we
report on computational results with test problem batteries consisting of simple
recourse problems with r = 300, which have been solved using SRAPPROX
on a 660 MHz PC in approximately half a minute.

7.2.7  Other successive discrete approximation algorithms

As discussed in Ch. 3, Section 2.1, there are basically two different algo-
rithmic approaches, depending on the geometry of =. The approach which
has been discussed so far in this section, employs intervals. Thus, = was an
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r—dimensional interval, and at each iteration the support of £ was covered by a
union of intervals.

Employing also intervals, Edirisinghe and Ziemba [70] report on the im-
plementation of their variant of the successive discrete approximation method,
with an extension to the case when also the recourse objective g is allowed to
be stochastic.

A different approach, also based on interval—partitions, is due to Fabian and
Szoke [76]. The authors combine a bundle—type convex programming method
with a successive discrete approximation scheme. At each iteration a linear
and a quadratic programming problem is to be solved. For the undertying NLP
method see the references in the cited paper.

In the second approach = is a regular simplex, which is partitioned into sub—
simplices as the procedure progresses. For this approach and its implementation
see Frauendorfer [86], who has also extended the algorithm for the case, when
in (7.2) the second stage objective vector ¢ may also contain stochastic entries.
The approach has the advantageous property that for computing the E-M upper
bound, the recourse subproblem (7.2) has to be solved only on the 7 + 1 vertices
of the simplex representing a cell, whereas when employing intervals, 2" LP
problems have to be solved for a cell. The price for this algorithmic advantage
is that the simplex—based upper bounds may be much higher, than the interval—
based bounds; for an example see Kall [140]. According to our knowledge, there
is no comparative computational study available in the literature for comparing
the two approaches.

7.3  Stochastic algorithms
7.3.1 Sample average approximation (SAA)

In this section we will make the same assumptions and consider the same
problem formulation as in Section 7.2.
Employing the notation from Section 7.2, we consider the two—stage problem

min ¢ Tz + Q(x) }
(1.32)

s.t. z € B

with Q(x) := E¢[Q(z; T(§), h(€)) ] and with the recourse function () defined
by the recourse—subproblem (second—stage problem) (7.2). Let f* be the op-
timal objective value of (7.32) and let * be an optimal solution. Finally, =
denotes in this section the support of £.

We also introduce the notation

F(@;8) :=cTz + Q(z; T(£), h(€)) (7.33)
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which results in the reformulation of (7.32)

min B[ f(x;¢
7(z:0)] (7.34)
8.t. x € B.
Let£!, ..., €N beasample according to the distribution of €. This means that
€L, ..., &N areindependent and identically distributed (i.i.d.) random variables,

having the same distribution as £. Let us consider the following random variable

N
On(aily %) = =3 QU T(ER), b)) (7.35)
k=1

which is the sample-mean estimator for the expected value Q(z), for each fixed
x. From the viewpoint of simulation, Qn (x; €%, ..., &N) is the crude Monte—
Carlo approximation to Q(z), see, for instance, Ripley [246]. For each fixed
z, this is clearly an unbiased estimator of Q(z):

N
B Qn(ail, )] = 3 Y ElQET(E, ()] = Q),
k=1

(7.36)
due to the fact that IE[ Q(z; T'(¢%), h(¢¥)) ] = B[ Q(z; T(€), h(£))] holds for
all k.

In particular, choosing an arbitrary & € B,

1 & 1
IN(E;8" . €)= T+ 5 DD QET(ER), hED) = 5 D F(@:€)
k=1 k:=1 (7 37)
is an unbiased estimator of IE] f(Z; ) | and due to
E[9R(&:¢,...,N)] = B[f(#:€)] 2 f* (7.38)

we have an upper bound on f*.
Based on the Monte—Carlo approximation (7.35), let us formulate the pro-
plem

. Ny o e T €1 N
9%, ..., €Y) = min Tz + On(z; €l &N) } (1.39)
s.t. reB

which, under our assumptions, defines the random variable on the left-hand-
side. Let zn (€1, ..., &") be a solution of this problem. Problem (7.39) will be
called a sample average approximation (SAA) problem for the original two—
stage problem (7.32). Notice that the problem on the right—hand—side of (7.39)
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is not a single nonlinear optimization problem but a family of such problems,
corresponding to the different realizations of ¢1,..., &Y. Considering a real-
ization £, ..., €N of £1,..., ¢V, and substituting the random variables with
their realization in the minimization problem above, results in a deterministic
optimization problem. In accordance with the literature, besides (7.39), this
deterministic optimization problem will also be called a SAA—problem. View-
ing (7.39) as a random optimization problem, the deterministic optimization
problem resulting from the substitution of a realization, can be viewed as a
realization of the SAA problem (7.39).

Based on the SAA problem, Mak, Morton, and Wood [187] proposed a lower
bound for f*:

PROPOSITION 7.1 The following inequality holds:

E(95(&,...,eN)] < (7.40)

Proof: We obviously have that 9% (¢%,...,€N) < cTz + Qn(x;¢L,..., €M)
holds for all x € B and all reallzatxons of (¢1,...,¢&N), ¢k ¢ E, for all k.
Taking expectation and utilizing (7.36) leads to

E[9% (¢ ..., M) < Tz + Q(a).

Finally, taking the minimum over z € B on the right-hand-side, yields the
desired inequality. a

Notice that for N = 1 the above lower bound reduces to the wait—and-see
lower bound WS, see Proposition 2.2 in Ch. 3, Section 2.3.

The following monotonicity property has been discovered by Mak et al. [187]
and, independently, by Norkin, Pflug, and Ruszczynski [215].

PROPOSITION 7.2 Let&l, ... eV ¢N+1be (iid,) random variables, having
the same distribution as €. Then

E[95(&...,&Y)] < BWg ... N,

holds.
Proof: Let J := {1,...,N, N + 1}. We utilize the following obvious refor-
mulation for sums of real numbers 7y, ..., VYN, TN+1

N+1 N+1

Z%—Z 2.

k=1 JEJ i#k
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Thus we get

[ﬂN-{-l(&l" e ’§Nv§N+1)] = ‘L]E

N+1
min [z §k)]

1 !
= ——E | min Z Z flz; §J
N+ 1 z€EB —1 JEJ,J;HC
[ N+1 T

1 )

> — i L]
= N+1IE Z melgz f(z; &)
Je€T, j#k ]
N+1 ‘ 7

= Z min Y f(z;¢)

= E[¥% (61 €M)
O
This is an attractive property, implying that increased sample-size leads in
average to the same, or to an improved lower bound.

A second look on the facts and their proofs, discussed so far, reveals that only
the following properties of £ and f have been used: f(z,£) should be finite for
all ¢ € Z and for all z € B, IE[ f(x,&)] should exist for all z € B, and the
solutions of the minimization problems involved should exist. In particular, the
convexity of f(-,£) and of f(z, -) did not play any role. In fact, the generality of
results of the above type allows for designing algorithms for stochastic global
optimization, see Norkin et al. [215].

Notice that the stochastic independence assumption concerning &1, ..., &N
has not been used in the argumentations and proofs above; they remain valid by
merely assuming that the random variables are identically distributed and that
they have the same probability distribution as . . R

Let us now consider a sample (observations) of sample-size N, ¢1, ..., &V,
that is, we take a realization of the (i.i.d.) random variables ¢!, ..., ¢V,

For computing the corresponding realization 9% (%; £1, LEN ) of the statis-
tic 19%, the recourse subproblem (7.2) has to be solved w1th ﬁxed z = & for the
realizations fk, fork=1,...,N.

Concerning the computation of the realization of the statistic 9%, we observe
that the corresponding realization of he random program (7.39) is the two—stage
recourse problem

N
k 2k
min ¢z + Z:Q(x s T(EF), h(EF)) a1

S.t. X e B
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with a finite discrete distribution having the equally probable realizations f k,
fork = 1,..., N. This can be solved with any one of the methods designed for
two—stage recourse problems with a finite discrete distribution. For instance,
under our assumptions the successive discrete approximation method discussed
in Section 7.2 can be used.

The question arises, how good the approximate solution obtained this way is.
Since both 9%, and 9% are random variables, adequate answers to this question
have a probabilistic nature.

Mak et al. [187] propose to use confidence intervals for judging the quality
of a candidate solution £ € B. The idea is to construct confidence intervals on
the optimality gap IE[ f(&;£) ] — f* by utilizing (7.38) and (7.40), which imply
the following upper bound on the optimality gap

E [9%(2;¢,...,6N) =0k (el,...,eM)] > E[f(%;€)] - f

The point is that, instead of estimating the upper and lower bounds from sepa-
rate samples, the same sample is used for both of them according to the above
formula. This corresponds to the variance—reduction technique common ran-
dom numbers in Monte Carlo simulation, see, for instance, Ross [259]. The
confidence intervals are computed by utilizing the central limit theorem of prob-
ability theory; for the details see the above—cited paper [187]. In summary, the
method works as follows. Let M > 0 be fixed and choose a sample-size N.
Forv =1,..., M carry out the following procedure:

Testing the quality of £ € B

Step 1. Generate a sample

Generate a sample of size NV, é . ,EN , according to the proba-
bility distribution of £, and independently of previously generated
samples.

Step 2. Solve a realization of SAA
Solve the corresponding realization of (7.39), thus obtaining
I (€. &),

Step 3. Solve recourse subproblems R
Solve the recourse subproblems (7.2) for § = & k=1,...,N
and compute 9% (2; €L, ..., EN) according to (7.37).

Step 4. Compute the V*® term Jor the estimator of the optimality gap
Compute A, := 95 (#;€1,...,EN) — 9k (€L,...,&EN).

Having executed the above procedure M times, construct the estimator
M

% Z A, for the duality gap and compute a confidence interval as described

v=1
in [187].
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So far we have discussed, how the quality of a given approximate solution
& € B can be judged. For obtaining an approximate solution of the two—stage
recourse problem (7.32), the SA A—based approach relies on solving realizations
of the approximate SAA problem (7.39). Before specifying how the algorithm
works, let us summarize some theoretical results.

Let & € B be fixed. As discussed above, Qn(Z; €1, ..., &N) is an unbiased
estimator of Q(%), for all N. Moreover, due to Kolmogorov’s strong law
of large numbers, Qn(%; &L, ... ,&N) converges to Q(#) almost surely. The
question arises, whether we also have almost sure convergence of the optimal
objective values 19][(,(51, ..., &N) of the SAA problems, to the true optimal
objective value f*. This question can be investigated by employing the theory
of epi—convergence. For the case of deterministic approximations, the main
results based on this theory are summarized in Theorem 2.7 of page 226. In
the stochastic case we have epi—convergence in an almost sure sense, see King
and Rockafellar [162] and King and Wets [163], and the references therein.

Results are also available concerning the speed of convergence of the solu-
tions of (7.39). Assuming, for instance, that the original problem (7.32) has a
unique solution z*, under appropriate assumptions we have that

P(|lzn(E",...,6Y) ~a* 2¢) =0 for N — oo

holds for any ¢ > 0, and the rate of convergence is exponential, see Kan-
iovski, King, and Wets [155]. Under specific assumptions regarding convexity
properties of f or considering the case when £ has a finite discrete distribution,
improved results of this type have been found by Shapiro and Homem—de—-Mello
[273], see also Linderoth et al. [180], and the references in these papers.

The SAA-algorithm relies on “external sampling”, meaning that sampling is
performed prior to solving the (approximate) problem. In contrast to this, “in-
ternal sampling” means that sampling is performed as the algorithm proceeds;
for an example see stochastic decomposition in the next section.

Sample average approximation algorithm

Step 1. Initialization
Choose N > 0, M > 0.

Step 2. Generate samples A R
Generate M independent samples (batches) €17, . .., €V, accord-
ing to the probability distributionof , v = 1,..., M, each of which
has the sample-size N.

Step 3. Solve realizations of SAA

For each of these samples solve the corresponding realization of
(7.39), let ¥ v, be the optimal objective value, v = 1,..., M.
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Step 4. Estimate f*
M

Use ﬁ Z Y, as an estimator of f*.
v=1
Step 5. Test the quality of solution
This step involves statistical techniques for judging solution quality.
For instance, the method for estimating the optimality gap can be
used, as discussed on page 346.

For implementing this method, several important points have to be specified
in a much more detailed fashion.

In general, the crude Monte—Carlo method is notoriously slow, therefore
variance—reduction techniques have to be included, see, for instance Ross
[259]). One such method, relying on common random numbers, has been
mentioned above, regarding the optimality gap.

Assuming that the two—stage problem has a unique solution x*, the solutions
of the realizations of the SAA—problems converge rapidly to «* for N — oo,
in the sense as discussed in this section. Consequently, for N large enough,
we may expect that the solution of SAA will be a good approximation to x*.
The question, how large N should be for getting a good solution, remains open.
Consequently, testing the quality of an obtained approximate solution is of vital
importance. Two kinds of statistical approaches have been proposed for this.
In the first class of methods the optimality gap is estimated; we have discussed
an example for this technique above. The second class of methods tests the
Kuhn-Tucker optimality conditions, see Shapiro and Homem—de—Mello [272].
The practical procedure runs as follows: the above algorithm is carried out for
a starting selection of M and N. Subsequently the solution obtained this way
is tested and if it turns out that it is not yet satisfactory, the algorithm is repeated
with increased N and/or M.

If the solution of (7.32) is not unique, then recognizing an optimal solution
may involve quite large samples. For further discussions of these problems and
for other variance-reduction techniques see Shapiro and Homem—de—Mello
[272], [273] and Linderoth, Shapiro, and Wright [180].

For statistical tests of optimality, based on duality theory, see Higle and Sen
[120].

7.3.2  Stochastic decomposition

The stochastic decomposition (SD) method is a stochastic analog of the
dual decomposition method, developed by Higle and Sen, see [116], {117], and
[119]. The dual decomposition method has been presented in Ch. 1, Section 2.6
{(page 29) and has been further discussed in Section 4.2 of this Chapter.

The monograph [119] by Higle and Sen presents a detailed discussion of the
method, along with the statistical tests involved, and including issues related to
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the implementation. Therefore, in this book we confine ourselves to pointing
out some of the main ideas of the algorithm. Regarding (deterministic) dual
decomposition,we will use the notation introduced in Section 4.2.

Similarly as in Section 7.2, we consider the two—stage recourse problem
(7.1) under Assumption 7.1 on page 318. Additionally, for the sake of sim-
plicity of presentation, we will suppose that Q(x; T'(£), h(£)) > 0 holds for all
x € B, almost surely. For a weaker assumption see Higle and Sen [119]. Our
assumption is fulfilled, for instance, if ¢ > 0 holds, which will be presupposed
for the sake of simplicity.

Let = denote the support of £ in this section.

The SD algorithm relies on “internal sampling”; at iteration k we will have a
sample of sample-size k. Let &1, ..., £F be (i.i.d.) random variables having the
same distribution as £. The idea is to construct a lower bounding approximation
to the sample-average approximation Qy(z; ¢!, ..., £*) of Q(z) (cf. (7.35)),
and to update this approximation as iterations proceed.

Let us recall that due to weak duality and due to the fact that the feasible
domain of the dual (7.3) of the recourse subproblem does not depend on x nor
on &, we have the inequality

ol e
?rl*—*

k
Z z; T(€"), h(£), (7.42)

k
> (h(gh) — T(€h)a)
t=1

which holds for any ¢ € =, any z € B, and any u* € D, t = 1...,k, where
D denotes the feasible domain of the dual (7.3) of the recourse subproblem.
The lower—bounding function on the left-hand—side of (7.42) will be utilized
to generate a cut in the algorithm, and ! will be an optimal dual solution,
t=1,...,k

In the subsequent iteration we deal with a sample &1, ..., &5, €5+1, For
ensuring that the previously generated cut has the lower bounding property
also for the new sample—average approximation Qg1 (z; €1, .. ., €, £6+1), the

previous cut must be updated. The most natural update relies on the following
obvious inequality

1 k , . . 1 k t t
T ;(h(é )~ 7)) < e ;Q(m;T(é ). h(EY)

ko (7.43)

T 2 QETED, k()
t=1



350 STOCHASTIC LINEAR PROGRAMMING

which holds for any &% € =, any z € B, and any u® € D,t = 1...,k. The
relaxed master problem (cf. (4.9)) will have the form

T

min cr 4w
st (BATz —w < —af, t=1,... .k (7.44)
T e B

where the coefficient vectors and constant terms concerning cuts have double
indices, due to the above—mentioned updating. The basic (conceptual) SD al-
gorithm can be specified as follows.

Basic stochastic decomposition method

Step 1. Initialization
Let k := 0, £° := E[£], and solve the corresponding expected—
value (EV) problem (Ch. 3, 2.67). Let 2! be a solution of the EV--
problem. Set Vp := 0. Vj will be the set of the different optimal
dual solutions of the recourse subproblem (7.2) (vertices of D),
encountered up to iteration k.

Step 2. Generate the next sample point
Set k := k + 1 and generate the next sample point £* of €.

Step 3. Solve a recourse subproblem
With £ = & solve the dual recourse subproblem (7.3) by using
the simplex method, let uk € D be an optimal basic solution. If
uk & Vi_ithenletVy :=V,_1 U {uk} otherwise let Vi, := Vj_1.

Step 4. Generate a new cut

- Taking the current feasible solution z¥ € B, for each of the
previous realizations choose the best vertex from Vg, that is,
compute

uf € argmax{ (h(¢") — T(¢")z")Tu | u € Vi },

t=1,... k-1
. Compute the k*® cut

k
+(B5) e : Z (h(et) — T(et)z) Tub.

??'IP—‘

Step 5. Update previous cuts
Fort=1,...,k — 1 compute

k-1 k-1
af:zTat dﬁt.—Tfl.
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Step 6. Solve the relaxed master problem
Solve (7.44); let z**! be an optimal solution.
Continue with Step 2.

Notice that due to the fact that (7.42) holds forany u; € D, the newly generated
cut in Step 4 has the lower bounding property. Due to the “argmax” procedure,
the best such cut is generated taking into account the dual-vertex information
available so far. The update formulas of the previous cuts in Step 5 imply that
the lower bounding property is preserved, see (7.44).

The algorithm above employs aggregate cuts. A version of the SD algorithm
with disaggregate cuts has been developed by Higle, Lowe, and Odio [115].

From the theoretical point of view, all that could be proved for the basic
algorithm, was the existence of a subsequence of the sequence of generated
points z, k = 1,2, .. ., such that every accumulation point of this subsequence
is an optimal solution of the recourse problem (7.1), almost surely (see Higle
and Sen [119].

Therefore, the full version of the SD method of Higle and Sen employs in-
cumbent solutions. Initially, the first incumbent solution is just the solution of
the expected value problem, obtained in Step I of the basic algorithm. The cur-
rent solution of the relaxed master problem becomes the new incumbent, if the
actual objective value of the relaxed master problem is sufficiently lower than
the approximate objective value at the incumbent. The cut corresponding to the
current incumbent is updated in each iteration, using the analogous “argmax”
procedure as for constructing the new cut in Step 4. Considering an appropriate
subsequence of iterations, where the incumbent changes, a numerically imple-
mentable procedure results for identifying approximate solutions of (7.1), see
Higle and Sen [119].

The idea of working with incumbent solutions is also the basis of the regular-
ized dual decomposition method of Ruszczynski [261], see Ch. 1, Section 2.8.
One of the attractive features of regularized decomposition is that it provides
a safe way of removing redundant cuts. The accumulation of redundant cuts
can become in fact a numerical problem for the version of the SD algorithm
discussed so far. Consequently, Higle and Sen [117], [119] developed the
regularized SD algorithm, which can be viewed as a stochastic version of the
regularized dual decomposition method. Let us denote the incumbent solution
at iteration k by Z*. In the regularized SD method, the objective function of the
relaxed master problem (7.44) includes a regularizing term, thus becoming

1
T +w+ §||a: —zF)?,
otherwise the method is basically the same as SD. This regularized version of

the SD method can currently be considered as the best version of SD, see Higle
and Sen [119] for the details.
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The reader might wonder that the basic SD method, as specified above, does
not contain a stopping rule. This is merely for the purpose of simplicity of
presentation. For any stochastic method, the most important questions are how
to stop the algorithm and how to identify an approximate optimal solution of the
two—stage recourse problem, on the basis of results delivered by the method.
We have discussed this problem in the previous section, in connection with the
SAA method. In fact, most of the stopping rules proposed for the SAA method
are essentially generalizations of stopping rules proposed by Higle and Sen for
the SD method, see [119]. Three classes of stopping rules have been proposed.
The first class contains rules which are based on asymptotic properties regarding
the sequence of incumbents. The second type of rules utilizes estimates on the
optimality gap, including also bootstrap schemes. Finally, the third group is
based on optimality conditions. For the details see [119].

The authors have implemented stochastic decomposition as the solver
SDECOM, following [119] and some additional guidelines of Higle and Sen,
which were highly appreciated by the authors. The present version implements
the SD method with incumbents (not yet the regularized version). The stop-
ping rule is a rule based on asymptotic properties. The solver is connected to
SLP-IOR, see Section 9.2.

7.3.3  Other stochastic algorithms

The stochastic methods not yet discussed belong to the class of methods with
“internal sampling”.

The stochastic quasi—gradient methods are stochastic versions of subgradient
methods. The basic idea is to work with stochastic quasi—gradients. Atiteration
v, a random variable v” is a stochastic quasi—gradient at z”, if

E[v” | 2!,...,2"] € 8;(cTz + Q(z¥))

holds. With step—size p,, the next iteration point is computed by the projection
onto the feasible domain B: z"*! := [[z (2 — p,v¥). Under appropriate
assumptions, in particular, by choosing suitable sequences of step—sizes p,,, the
algorithm converges to a solution of the two—stage problem, almost surely. For
details concerning these methods see Ermoliev [75] and Gaivoronski [92], and
the references therein. For an introduction see Kall and Wallace [152].

For stabilizing the sequence of points in stochastic quasi—gradient methods,
Marti [195] and Marti and Fuchs [197], [198] propose algorithms where at cer-
tain iterations deterministic descent directions are used, instead of stochastic
quasi—gradients. The authors call the methods in this class semi—stochastic
approximation methods. Under appropriate assumptions concerning the prob-
ability distribution, these methods also converge to a solution, almost surely.
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Besides stochastic decomposition, another stochastic version of the dual de-
composition method has also been developed, relying on importance sampling.
For this method see Dantzig and Glynn [46] and Infanger [126], [127].

7.4  Simple recourse models

Simple recourse models have been the subject of Ch. 3, Section 2.2. From
the point of view of applications, simple recourse problems are an important
subclass of two—stage recourse problems; they can be solved numerically for a
large amount of random variables. Several authors have proposed algorithms
for simple recourse problems; below we just mention some of the approaches.

One of the algorithms, based on successive discrete approximation, has been
the subject of Section 7.2.6. For the case, when £ has a finite discrete dis-
tribution, methods, utilizing the special basis—structure of the equivalent LP—
problem have been developed by Prékopa [233] and Wets [304]. Further meth-
ods include the algorithms of Cleef [39] which employs a sequence of linear
substitute problems, and the method of Qi [241], who proposes an algorithm
which involves solving linear and nonlinear convex programming subproblems,
in an alternating fashion. For the other methods see the references in the above—
cited papers.

Let us point out, that for several classes of probability distributions, simple
recourse problems can equivalently be formulated as nonlinear programming
problems in algebraic terms, see, for instance, Kall [134].

Finally we consider models with multiple simple recourse, discussed in
Ch. 3, Section 2.2. In the case when £ has a finite discrete distribution, such
models can be transformed into a simple recourse problem, see Theorem 2.8 in
Ch. 3, Section 2.2. Consequently, such problems can be efficiently solved by
solving the equivalent simple recourse problem.

7.5 A guide to available software

In the listing of solvers below, we include also solvers for multistage recourse
problems; two—stage problems are clearly a special case for them.

Let us begin with SLP solvers for recourse problems, available at the NEOS
Server for optimization, http://www-neos.mcs.anl.gov/. The general idea of
the NEOS server is, that users select a solver available at the server, send their
problems, and obtain the solution, via the Internet. The SLP—problem must
be sent to the server in the SMPS format; for this see Gassmann [98], and the
references therein.

s Bnbs (Bouncing nested Benders solver), is an implementation of the nested
decomposition method, for multistage recourse problems with a finite dis-
crete distribution. It has been developed by Fredrik Altenstedt, Department
of Mathematics, Chalmers University of Technology, Sweden. The source
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code of the solver can also be downloaded from the author’s homepage
http://www-neos.mcs.anl.gov/.

» FortSP (the Stochastic Programming extensions to FortMP). The current
version is for two—stage recourse problems with a finite discrete distribution.
It is the SLP-solver in the stochastic programming integrated environment
(SPinE), see Valente et al. [294].

m MSLIP is an implementation of the nested decomposition algorithm, for
multistage recourse problems with a finite discrete distribution, developed
by Gassmann [95]. The code is available to universities and academic in-
stitutions for academic purposes, please contact the author.

The IBM stochastic programming system, OSLSE, designed for multistage
recourse problems with finite discrete distributions, is available for academic
purposes, in executable form. For OSLSE see King et al. [164]. Recently,
IBM initiated the project “COmputational INfrastructure for Operations Re-
search” (COIN-OR). As far as we know, a version of OSLSE is now avail-
able with an added facility, which enables for the user to connect her/his LP
solver to OSLSE, instead of the LP solver OSL of IBM. For the details see
http://www-124.ibm.com/developerworks/opensource/coin/.

The solver SQG is an implementation of stochastic quasi—gradient methods,
see Gaivoronski [93]; the author of this paper encourages interested readers to
connect him,

An interior point method based on the augmented system approach has been
implemented by Csaba Mészaros [204] as the solver BPMPD. We do not know
the present status of this solver, interested readers might contact the author of
BPMPD.

Almost all authors of algorithms, discussed in this section, report on com-
putational experience. Concerning the availability of solvers, we suggest to
contact the authors.

For commercially available solvers we refer to the solvers OSLSE and
DECIS, both available with the algebraic modeling system GAMS, Brooke
et al. [31]. OSLSE has already been mentioned above, DECIS is an implemen-
tation of the importance sampling algorithm, implemented by G. Infanger.

Finally we give a short list of solvers which are connected to to our model
management system SLP-IOR and have not been discussed so far in this section.
They are available for academic purposes along with SLP-IOR, in executable
form. For further details see Section 9.2. The following solvers, all of them
developed for the case of a finite discrete distribution, have been provided to us
by their authors:
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s QDECOM, regularized decomposition method, implemented by A.
Ruszczynski, for two—stage fixed recourse problems.

s SHOR2, decomposition scheme of Shor, implemented by N. Shor and A.
Likhovid, for complete recourse problems.

= SHORI, the same method and authors as for SHOR2, for simple recourse.

s SIRD2SCR, for simple integer recourse, implemented by J. Mayer and M.H.
van der Vlerk.

m MScr2Scr, for multiple simple recourse, implemented by J. Mayer and M.H.
van der Vlerk.

Finally we list of our own solvers, which have already been mentioned in the
preceding sections. The solvers have been implemented by the authors of this
book.

s DAPPROX implements the successive discrete approximation method, for
complete recourse problems, with a deterministic objective in the second
stage, and assuming the stochastic independence of the components of .
Probability distributions: finite discrete, uniform, exponential, and normal
distributions.

= SRAPPROX is an implementation of the successive discrete approximation
algorithm for simple recourse problems. Stochastic independence is not
required; the marginal distributions should belong to one of the classes of
distributions listed with DAPPROX.

= SDECOM is an implementation of of the stochastic decomposition method.

The question, which of the available solvers should be chosen for solving
a specific instance of a two—stage recourse problem, is a difficult one. There
exists no general answer to this question, the performance of algorithms and
solvers may depend substantially on the specific characteristics of the problem
instance. The main factors influencing solver performance are the type of the
probability distribution, the stochastic dependence properties of the components
of £, which parts of the model are stochastic, the number of random variables
(dimension of £), the number of joint realizations in the discretely distributed
case. For instance, having a complete recourse problem with a 10—dimensional
random vector £ with stochastically independent components, and each of the
components having 10 realizations, results in 10*° joint realizations. This rules
out all solvers, based on solving the equivalent LP problem, including solvers
based on dual decomposition or the regularized version of it.

Selecting an appropriate solver is clearly supported by comparative com-
putational results; this seems to be a scarce resource in the SLP literature,
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though. Concerning comparative computational results we refer to Kall and
Mayer [144], [146], [148] and to Mayer [201].

8. Multistage recourse models

Multi—stage recourse models have been discussed in Ch. 3, Section 3. Anal-
ogously to the two-—stage case (see Section 7), many algorithmic proposals have
been published for multistage recourse problems; we will discuss some of the
main approaches. For further algorithms see Birge and Louveaux [23] and
Ruszezynski, and Shapiro [263], and the references therein.

Most of the available algorithms are for the case, when £ has a finite discrete
distribution specified in the form of a scenario tree. If the distribution of £ is
continuous, then the usual approach consists of generating a discrete approx-
imation to the distribution, in the form of a scenario tree, and subsequently
solving the resulting multistage problem with the original distribution replaced
by the approximate discrete distribution. Constructing approximate scenario
trees is called scenario generation and will be the subject of Section 8.2. An-
other class of methods consists of algorithms, which combine the building of
the scenario tree with the optimization process. One of the algorithmic ap-
proaches relies of successive discrete approximation, employing a simplicial
cover of the support of the random vectors, see Frauendorfer [87], Frauendorfer
and Schiirle [89], [90], and the references therein. These algorithms allow that
also the objective function is stochastic, and have been successfully applied in
financial engineering.

8.1 Finite discrete distribution

The multistage recourse problem with a finite discrete distribution, the dis-
tribution being specified in the form of a scenario tree, has been the subject of
Ch. 3, Section 3.1.

A great majority of solution methodologies for this type of problems has
its roots in the nested decomposition method, presented in Ch. 1, Section 2.7.
In that section we have pointed out, that in the framework of the nested de-
composition method, several different variants of the algorithm can be built.
The difference is in the sequence, in which nodes of the tree are processed
in the algorithm. Different sequencing protocols are possible, the description
in Ch. 1, Section 2.7 corresponds to the FFFB (fast—forward—fast-backward)
protocol. For other sequencing protocols see, for instance, Gassmann [95] and
Dempster and Thompson [55], [56].

The above-mentioned (restricted) freedom of choice is due to Propositions
2.20 and 2.21, both in Ch. 1, Section 2.7. These propositions may also serve
as guidelines for building valid variants of nested decomposition.
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A further remark concerns the presentation of the nested decomposition
method. For the sake of simplicity of presentation, we have assumed a form,
where A = 0 holds for 7 < t — 1 (for the general form see (Ch.3, 3.1)). In
Ch. 3, Section 3.1 we have shown that the general formulation can always be
transformed into the special form. Note, however, that this conceptual trans-
formation is not needed when implementing the algorithm; the method can be
reformulated for the general case in a straightforward way, see, for instance,
Dempster and Thompson [56].

For recovering dual variables from the solution delivered by the nested de-
composition algorithm, see Gassmann [96].

Instead of employing a fixed sequencing protocol, the above—mentioned free-
dom in choosing the next node to be processed allows also for dynamic sequenc-
ing algorithms. Methods of this type have been developed by Dempster and
Thompson [55], [56]. The basic idea is using the expected value of perfect in-
formation (EVPI), attached in this case to the nodes, to choose the next node to
be processed among the nodes having the highest EVPI-value. EVPI has been
discussed in Ch. 3, Section 2.3. The multistage extension is due to Dempster
[53], see also [56]. Another useful idea, due to Dempster and Thompson [56],
concerns stage—aggregation. According to this, in the equivalent deterministic
LP, stages can be aggregated, leading to equivalent formulations of the MSLP
problem involving fewer stages. The price for this is an increase in the dimen-
sion of matrices Ay, involved in the problem formulation. This idea has also
been utilized by Edirisinghe [68] for constructing bound-based approximation
for MSLP problems. Another idea in this paper concerns bounds based on
nonanticipativity aggregation. This leads us to our next subject.

The equivalent LP problem (Ch. 1, 2.18) of the MSLP problem is also called
the compact form or implicit form. The reason is that the nonanticipativity
requirement is ensured implicitly, by assigning the decision variables to the
nodes of the scenario tree. The compact form has the disadvantage that in the
case, when the underlying LP problem has some special structure (for instance, it

is a transportation problem), this structure will be partially lost in the equivalent
LP.

Another idea for formulating an equivalent LP preserves the problem struc-
ture. In this approach the decision variables are assigned to scenarios and
nonanticipativity is enforced by explicit constraints. The resulting LP prob-
lems are called explicit forms or split-variable forms. “split-variable” has the
following interpretation: the variables in the implicit form become split into
several variables, according to scenarios. Below we present one variant of this
type of problem formulation, for other variants see, for instance, Kall and Mayer
[149].
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S T

min Y ps (clx{ + > cfmf)
s=1 t=2

s.t. Auxf = b1
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where we assume that the scenarios, belonging to the same bundle, have been
(arbitrarily) ordered, and p(n) is the index of the first scenario in the scenario
bundle corresponding to node n, according to the ordering. Agf., b7, and cf
denote the realization of the corresponding random arrays, according to scenario
s€S.

The last group of constraints obviously enforces the nonancipativity require-
ment; we will call these constraints nonancipativity constraints.

This form is ideally suited for Lagrangean relaxation. In fact, formulating
the Lagrange function with respect to the nonanticipativity constraints, the
following Lagrange—relaxation results:

: S s I 8.8 K] Ls(ny
min Y, ps|az+ > izl ) + Z)\ts(xt —z,°")
s=1 t=2

t,8
s.t. Aux‘i t = b \(8.2)
qxy + AL = b, t=2,...,T; Vs€ S8
T=2
x = 0, Vt, VseS, )

which is separable with respect to the scenarios s € &, and decomposes into
S = |S]| separate subproblems.

Based on Lagrangean relaxation, several algorithms have been proposed for
solving multistage recourse problems with finite discrete distributions. As the
most well-known example, let us mention the progressive hedging algorithm
of Rockafellar and Wets [255], where augmented Lagrangians are utilized. For
further methods based on Lagrangean relaxation see, for instance, Birge and
Louveaux [23] and Ruszczynski and Shapiro (editors) [263].

8.2  Scenario generation

In stochastic programming, scenario generation means generating a discrete
approximation to the probability distribution of £, in the form of a scenario
tree. In the multistage recourse problem, the original probability distribution is
then replaced by this discrete approximation. The resulting multistage recourse
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problem is considered as an approximation of the original problem and can be
solved, for instance, by the nested decomposition method.

The asymptotic properties of this discrete approximation are well-understood,
see, for instance, Pennanen [220], and the references therein. Considering for
T > 3 the present state of the art in scenario generation, there does not exist, at
least according to our knowledge, any practically implementable scenario gen-
eration method, which would deliver for any (reasonable) error bound £ > 0
a scenario tree, such that the deviation between the true objective value of the
multistage problem and the optimal objective value of the approximating prob-
lem is less than €. By “practically implementable” we mean that all constants
in the method are computable with a reasonable numerical effort, and that the
resulting scenario trees (and consequently the equivalent LP problems) have
a manageable size, for most problem instances. The difficulty has its roots in
computing upper bounds on the optimal objective value of the original problem,
see, for instance, Shapiro [271].

Therefore, according to our view, the presently available scenario generation
techniques are essentially heuristic algorithms. For overviews on scenario gen-
eration see DupaCova, Consigli, and Wallace [64] and the references therein.
The book Dupacova, Hurt, and Stépan [67] contains a summary on scenario
generation, along with applications in economics and finance. A comparison of
the different techniques can be found in Kaut and Wallace [158]. In this book
we confine ourselves to discuss some of the main approaches and present two
techniques in a more detailed form.

For continuous distributions, a possible way for arriving at a discrete dis-
tribution leads via sampling, followed by scenario reduction. The scenario
reduction phase can also be used in cases when the original probability distri-
bution is already discrete but involves an unmanageable amount of scenarios.

In a first step a sample ék = (ég, e ,ég), k = 1,...,N, is generated,
according to the joint probability distribution of £&. This can either be done
directly, by generating random vectors, or by simulating sample paths of the
underlying stochastic process. For appropriate techniques see the literature on
simulation, for instance Deak [50], Devroye [59], Ripley [246], or Ross [259].

The sample can be considered as a scenario tree, where each realization

1
defines a root-to—leaf path, each scenario has the same probability —, and

the single branching point is the root. In the second step, this tree is reduced
by employing distances defined between probability distributions. For methods
belonging to this class see Dupacova, Growe—Kuska, and R6misch [66], Heitsch
and Rdmisch [113], and the references therein. Pflug [223] presents a related
algorithm based on optimal discretization, in a financial application framework.

Another algorithmic approach proceeds in the reverse direction. The starting
point is a scenario tree with a single scenario, corresponding to the expected
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value of €. This tree is then grown in an iterative fashion, by employing a cut—

and—paste operation, based on successive partitioning of the supports of the ran-

dom variables &; (f > 2). This method has been discussed in Ch. 3, Section 3.2.
Next we discuss two of the main approaches in a more detailed form.

8.2.1 Bundle-based sampling

The idea is to partition the support of £ into a finite number of subsets
which are utilized for generating a scenario tree via sampling. We discuss the
method under some simplifying assumptions, the extension to the general case
is straightforward. Let Z; C IR™ be an interval containing the support of the
random variable &,t = 2,...,T, thus =2 := X?:z Z; contains the support of €.
For the sake of simplicity let us assume that r; = 7 holds for all £.

Let us partition = along each coordinate into d subintervals, resulting alto-
gether in d"(T~1 cells. This implies a partition of = := X:=2 =, into Tt~V
cells, fort = 2,...,T. With the partition we associate a rooted tree as follows.
The root corresponds to t = 1. The child-nodes of the root correspond to the
cells in the partition of By =%, In general, assume that the tree has been built
up to stage ¢ — 1 such that the nodes in stage ¢ — 1 are associated with the cells
in the partition of Z; ;. For each of the nodes in stage ¢ — 1, define d" children,
corresponding to the partition of Z;. Consequently, the nodes in stage ¢ will
correspond to the partition of =;.

Taking a realization of £, we associate with it the cell of the partition of =,
which contains it. In the tree, this implies an assignment to a scenario, that is,
to the set of nodes along a root—to—leaf path. The algorithm runs as follows:

Bundle—based sampling

Step 1. Initialize
Choose a sample—size N > 0 and choose the parameter d, defining
the number of coordinate—wise subintervals in the partition. Set up
the tree corresponding to the partition, as described above. With
each node of the tree associate a counter and initialize this with 0.
Step 2. Generate a sample X R
Choose N > 0 and randomly generate a sample £¥ = (Eg, e 5{?),
k=1,..., N, according to the joint probability distribution of £.
Step 3. Assign probabilities and realizations to nodes
Foreach k, k =1,..., N, in turn, increase the counter by 1 for all
nodes along the path corresponding to realization § k in the tree, and
store the corresponding realizations £F node-wise. Subsequently,
for each of the nodes n € A do:
- Assign the probability p,, := %ﬂ, where N, is the value of the
counter associated with node n.
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- Compute a realization as the conditional sample mean of the
realizations associated with the node. Assign this realization to
node n.

Step 4. Drop superfluous nodes
Drop all nodes with associated counter values zero. Obviously, after
this the graph remains still a tree.

The algorithm, as it stands above, is a conceptual framework. For instance,
there is no need to store realizations at the nodes, the conditional sample means
can be updated at the same pass over the realizations, which serves for assigning
counter values.

For consistency properties of the above scheme see King and Wets [163]. The
approach clearly has its limitations, due to the combinatorial explosion. The
number of scenarios is d"("~1), which grows exponentially with the dimension
r of the random vector, and with the number of stages 7.

8.2.2 A moment-matching heuristic

The subject of this section is a heuristic algorithm of Heyland, Kaut, and
Wallace [122]. According to this method, the scenario tree is being built in a
node-wise fashion, according to the following scheme:

Sequential framework for scenario generation

Step 1. Initialize
Set t = 1, assign probability 1 to the root node.

Step 2. Generate nodes in the next stage
For each of the nodes in stage ¢ (¢ > 1) proceed as follows:
specify conditional distributional properties (for instance, moments
and correlations), given the outcome corresponding to the specific
node. Generate outcomes (realizations of a random variable with a
finite discrete distribution), which are consistent with the specifica-
tion. Define the corresponding child—nodes and assign to them the
realizations and associated probabilities. If £ = T — 1 then stop,
otherwise set ¢ := ¢t + 1 and repeat Step 2.

In the rest of this section we will discuss the subproblem arising at the nodes:
given some distributional properties of a random vector, generate a finite discrete
distribution having the prescribed distributional properties. More closely, we
consider the following problem: Let ¢ be an r—dimensional random vector
with a finite discrete distribution. We prescribe the number of realizations NV,
the probabilities py, . .., pn of the realizations, the expected values, standard
deviations, skewness, and kurtosis for the 1-dimensional marginal distributions,
as well as the correlation matrix of (. Given these quantities, we wish to
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compute the realizations in such a way that the resulting discrete distribution
has the prescribed properties. The data concerning the marginal distributions
and the realizations z;; which we wish to compute, are summarized in Table 4.2,

where ;= B[¢), 05 = (E{(¢; — )] )3, and

E{(¢ — 1)
13

E[(G — )]
;

OfCi,iI 1,...,7’.

s 5 = 1s the skewness, and

m k= is the kurtosis

y41 P2 ‘e PN
Cl 211 212 .. RAIN M1 a1 S1 k1
a2 221 222 ... 2N M2 02 S22 ko
Cr Zr1 Zr2 e ZrN U Tr Sr kr

Table 4.2. Marginal distribution data and realizations

Additionally to the data summarized in the table, the correlation matrix of ¢
is also prescribed. Let R be the correlation matrix of ¢ defined as

Ry = B[ (G — )G = 1)
ag; O’j

, Li=1,...,1

‘We assume throughout that R is nonsingular, consequently it is positive definite.
The Cholesky—factorization of R is R = L LT, where L is a lower triangular
matrix.

It is clearly sufficient to solve the problem for standardized random variables.
In fact, let £ be the standardized of (, that is,

Ci-/%, Vi

i

&=

Then we have

and the correlation matrices of ¢ and £ are the same. Therefore, it is sufficient to
solve the above problem for standardized random variables. Having generated
the realizations x;; Vi, j for £, then, according to (; = 0;&; + 4, we get the
solution z;; = 0;2;; + p; for the original problem. Consequently, u; = 0 and
oy = 1 will be assumed in the sequel, for all i.
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We will utilize some transformations of random variables and random vec-
tors.

The first one will be called moment—matching transformation and is defined
for random variables. Let & be a standardized random variable (» = 1) and
assume that the first 12 moments of this random variable exist and that these
moments are known. We consider a nonlinear transformation of the following
form

n=TT™(€) = a+ b + £ + d&®
and wish to determine the coeflicients a, b, ¢, and d of this cubic polynomial in
such a way, that E[n] = 0, E[n?] = 1, E[n®] = s, and E[n?] = k hold, with
s and k > 0 prescribed. This requirement can be formulated as the following
system of nonlinear equations

0 = Elp = Ela+b+c®+d’] = Pi(abcd),
1 = E[p?] = El(a+b6+cg?+dg)%] = Pala,bed), o4
s = Epf] = Bllatbitcs +d) = Pyabed, O
k = B = E[a+b+ct+de®)Y] = Pya,b,c,d),

where P;(a, b, ¢, d), denotes a polynomial function of order ¢, in the variables
a, b, ¢, and d. The coefficients of these polynomials involve the moments of
&, with the highest moment having order 12 and appearing in Ps(a, b, ¢, d).
The analytical form of these polynomials can be obtained by straightforward
calculation, see [122].

If the system of equations (8.3) has a real solution, then we have the desired
transformation. It may happen, however, that there exists no real solution of it.
For accounting also for this case, the suggested way of numerical solution relies
on minimizing the sum of quadratic deviations, for instance, by employing
the Levenberg-Marquardt method. Thus, if there does not exist a solution,
the method will deliver a, b, ¢, and d, for which the deviation is minimal.
For the sake of simplicity of presentation, we will assume that whenever this
transformation is applied, the corresponding system (8.3) has a real solution.

The second transformation will be called correlation—matching transforma-
tion, or alternatively forward transformation, and is defined for random vectors.
Let now & be an r—dimensional standardized random vector and assume that
the components of £ are uncorrelated (the correlation matrix of £ is the identity
matrix I). The transformation is defined as the following nonsingular linear
transformation

n=TgF€) = LE,

where L is a lower-triangular matrix with R = L LT (Cholesky—factorization).
Clearly we have [E[n] = IE[L¢] = LIE[£] = 0. Furthermore

E[nn'] = LE[T]LT =LILT =R,
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consequently the covariance matrix of n is R. In particular, we get that the
variance of ; is 1, for all ¢ and thus the correlation matrix of 7 is also R.

Next we take a look, how this transformation changes the third and fourth
moments.

PROPOSITION 8.1 Let us assume that the components of € are stochastically
independent. Then

EpR] = ZL IE[¢]]
. (8.4)
3+ZL E[¢}] - 3)

Elnf]

holds.
Proof: The first equality follows from

[ ] ]E[(L 6)3] - Z Ll]LZkLZl]E[gjgkgl] - ZL IEK?]

Jk,i=1 7=1

where L; is the i’th row of L and we have used the fact that, due to the stochastic
independence assumption, we have IE[{;£.6;] = B[&;]B[£]E[§] = 0 for three
different indices j, k, I, and E[{;¢2] = B[¢|E[¢2] =0 fork =1, j # k.

For the second equality in (8.4) observe:

Elf] = E[(L&)*]1= > LijLiLaLmBE&EEm]

j7k711m=1

where, again implied by the stochastic independence assumption, all terms are
zero, except those where either all four indices are equal, or there exist two
pairs of equal indices. The number of possibilities for selecting the latter is 6,
therefore, observing IE[{?] = 1V, we have

ZL 5J+3ZL ZL + ZL

k=j+1

i
We utilize that Z L%, = 1holds for the Cholesky—factor, for all 4, thus getting
k=1

-1
> Lh+ Z L2
k=1

k=j+1
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which proves the second equality in (8.4). O

Notice that in (8.4) we have two nonsingular triangular systems of linear
equations which, given IE[n?] and IE[n?] for all 4, can be solved for ]E[§3] and

E[£5] Vj, respectively:

E(¢] & |E I—ZL B[]

14

(8.5)

I

B = 3+ E[nz*l—3—_ZL2‘,- (Blrj] - 3)

Now we are prepared to presenting a perfect matching algorithm for the
solution of our problem. Assume that the standardized random vector & has
independent components and that §; := IE[¢3] and k; := IE[¢3] are computed
according to (8.5), with the setting IB[n}} = s; and IE[n}] = k;, V4. The quanti-
ties 8; and k; will be called transformed target moments. Applying the forward
transformation I'g to &, n := ' (£) = L& will be a solution of our problem.
Thus we have the following conceptual algorithm:

Perfect matching conceptual algorithm

Step 1. Initialization
Compute the Cholesky—factorization R = L LT. According to
(8.5), compute §; := IE[¢3] and k; := IE[¢3), using the target mo-
ments and the Cholesky—factor of the target correlation matrix.

Step 2. Choose a starting distribution
Take any discretely distributed standardized r—dimensional random
vector &, which has stochastically independent components, /V joint
realizations and the prescribed probabilities p1, . . . , py for the joint
realizations.

Step 3. Match the transformed target moments 3
Component-wise apply the moment matching transformation ; :=
F::"IZ‘(&), i = 1,...,r. This results in a random vector £, which

has independent components and moments 0, 1, §;, k;.

Step 4. Match the correlations _ B
Apply the forward transformation 7 := ' (§) = L&, then n will
be a solution of our problem, with a perfect matching both for the
first four moments and for the correlation matrix.

The difficulty with the perfect matching method is that, using simulation,
it is not possible to generate a random vector with theoretically independent
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components. Therefore, we will also need a transformation which decreases the
“degree” of dependence. Instead of ensuring independence, we are merely able
to remove correlations. Let & be a standardized random vector with correlation
matrix R and

n=T%"(6) = L',

then the correlation matrix of # will be /. In fact
Efm"] = L' EEET(L™HT = 1.

This transformation will also be called backward transformation.

The heuristic scenario—generation method of Heyland, Kaut, and Wallace
[122] (HKW-method) is designed along the lines of the perfect matching al-
gorithm, Step I is carried out without changes. The implementation of Step
2 consists of randomly and independently generating N random vectors with
independent components, where the components are taken from a standard nor-
mal or from a uniform distribution. Let us denote this discretely distributed
random vector by £ and its correlation matrix matrix by R. The problem is,
that the components of ¢ will not be independent in a theoretical sense.

After having carried out Steps I and 2 of the conceptual algorithm, the HK W—
method proceeds in two phases.

Phase I corresponds to Step 3 of the conceptual method. The goal is to
construct a discrete distribution, such that the components of a corresponding
random vector £ are stochastically independent and have the first four pre-
scribed marginal moments: (0, 1, §;, k;). Instead of the theoretically required
independence, we only try to achieve approximately zero correlations, and a
hopefully good—enough approximation to the moments. The algorithm runs as
follows.

Phase I: removing correlations and matching moments

Step 1. Initialization
Choose €l > 0 for the stopping tolerance concerning correla-

tions. Apply & := I‘"?O’”(gz) componentwise Vi (target moments
are 0, 1§;, k; ¥5).
{— right transformed target moments «—}

Step 2. Compute the correlation matrix and factorize it
Compute R. If |R — I]| < €l then Stop, otherwise continue.
Perform the Cholesky—factorlzatlon of R, resulting in R = LLT,
with L being lower triangular.

Step 3. Remove correlations
Perform backward transformation:
§~ = I’%" & = L1, Store &1 := £, which has zero correlations.
{— zero correlations «}
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Step 4. Achieve transformed target moments
Apply & = F;n‘;cm(&) componentwise Vi; & has the desired mo-
ments, o
{— right transformed target moments «—}
Continue with Step 2.

In the subsequent Phase II, Step 4 of the conceptual algorithm is imple-
mented. Similarly to Phase I, this is also carried out in an iterative manner. The
method is the following.

Phase II: simultaneous moment and correlation matching

Step 1. Initializatzon
Choose eIl for the stopping tolerance regarding correlations. Set
£ := 51 where §I is the distribution, saved in Step 3 of Phase 1.
Apply & :=T%(€) =

Step 2. Compute and factorzze the correlatzon matrix
Compute R. If |R — R|| < €Il then Stop, otherwise continue.
Compute the Cholesky—factorlzatlon R=1LIT.

Step 3. Remove correlations
Perform backward transformation: £ := I‘%"(E) =
{— zero correlations «}

Step 4. Forward transformation ~ y N
Compute &; := 1“”(51) LE. Store 17 := £, which has the right
correlations.
{— right target correlations «}

Step 5. Achieve target moments
Apply &; := Pmom(gz) componentwise Vi.
{- right target moments «}
Continue with Step 2.

The HKW-algorithm is a heuristic scenario-tree generation procedure; there
exist no proofs of finite termination or of convergence for the iterative cycles
involved, neither for Phase I nor for Phase II. Heyland, Kaut, and Wallace [122]
report on successful practical applications and present some quite favorable
computational results, The authors of this book have also implemented the
method, it is one of the scenario—tree generation methods, available with SLP—
IOR, see Section 9.2. Our computational experience is also in favor of the
algorithm.

8.3 A guide to available software

The solvers, available for multistage problems, have been discussed in Sec-
tion 7.5.
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The scenario generation algorithm in Section 8.2.1 is part of the modeling
system OSLSE of IBM, see King et al. [164]. We have also implemented a
version, which is available with SLP-IOR, see Section 9.2.

An experimental implementation of the HK W—method for scenario gener-
ation, presented in Section 8.2.2, has been developed by the authors of the
algorithm, and can be downloaded in executable form from the homepage of
Michal Kaut, http://work.michalkaut.net/.

A commercial version of a scenario reduction method, presented in Dupacova
et al. [66], has been implemented by Nicole Growe as the solver SCENRED.
It is available with the algebraic modeling system GAMS, Brooke et al. [30],
[31].

A comparison of the different scenario—-generation methods can be found in
Kaut and Wallace [158], which may serve as a guide to choose an appropriate
method.

9. Modeling systems for SLP

Modeling systems are aimed to provide support to the various stages in a
model’s life cycle including building, solving, and analyzing problem instances,
and their solution. They have a specified scope concerning model types and
differ in their scope, in the extent of support provided to the different stages
in the model’s life—cycle, and in the range of modeling tools offered by them.
Modeling systems can also be integrated systems, including links to modeling
languages and solvers. Some of the modeling systems are based on modeling
languages.

9.1 Modeling systems for SLP

Considering SLP, presently several modeling systems and tools are available,
below we provide a short list of the most well-known systems. We just list some
of the major characteristic features of the systems, for the details see the cited
papers.

s OSLSE is the stochastic programming system of IBM, see King, Wright,
Parija, and Entriken [164], for multistage recourse models with scenario
trees. It is an optimization system and a library of tools, supporting model
building including scenario generation, and the solution phase. The MSLP
solver with the same name OSLSE, is also separately available.

n SETSTOCH, developed by C. Condevaux—Lanloy and E. Fragniére [40].
This is a modeling tool, with the main goal of supporting the linking of SLP
solvers to algebraic modeling systems. The authors report on the application
of this tool for linking the solver OSLSE to the algebraic modeling system
GAMS.
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= SLP-IOR is our model management system for SLP and will be discussed
in a detailed fashion in Section 9.2.

» SPInE, a stochastic programming integrated environment, developed by P.
Valente, G. Mitra, and C.A. Poojari, see [294]. The scope of the system
consists of multistage recourse models with scenario trees and of chance
constrained models. It serves for supporting the entire modeling life—cycle
and has integrated facilities for accessing databases. A unique feature of this
system is that it includes an extension of the algebraic modeling language
MPL, adding SLP-specific language constructs to it.

= StochasticsT™ is amodeling system for generating large—scale MSLP prob-
lems with scenario trees, developed by Dempster et al. It has a link to the
algebraic modeling system AMPL and to XPRESS-MP. Its component for
stochastic modeling is called stochgen. For an overview see Dempster,
Scott, and Thompson [54]. The main emphasis in this system is on model-
ing.

A modeling system for supporting different LP-equivalent formulations, ac-
cording to the needs of decomposition solvers, and including stage—aggregation,
has been developed by Fourer and Lopes [82]. The targeted model class consists
of MSLP models with scenario trees.

An integrated modeling environment has been developed by Gassmann and
Gay [101], for MSLP models with scenario trees. The integration involves the
algebraic modeling language AMPL (Fourer, Gay, and Kernighan [81]) and
Microsoft’s MS Access and MS Excel.

Shapiro, Powell, and Bernstein [274] developed a Java—-representation for
stochastic online operation research models.

General problems related to formulating SLP models in algebraic modeling
systems are discussed in Gassmann and Ireland [99]; for modeling languages
and systems see Kallrath [154]. Specific issues related to modeling support for
SLP are the subject of the papers Gassmann [97], Kall and Mayer [145], [142].

9.2 SLP-IOR

Our model management system SLP-IOR was one of the first modeling
systems for stochastic linear programming. The system design was published
in Kall and Mayer [141], the first version of the system was available in the
same year. The scope of this version consisted of two-stage recourse models
and models with joint probability constraints. Since then, the system has been
continually further—developed, by extending the scope with new model types,
by adding new modeling tools, and by developing and connecting new solvers.
For an overview see Kall and Mayer [143] and Mayer [201], for the present
state of development see Kall and Mayer [147] and [149], as well as the user’s
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guide to SLP-IOR, available via the Internet at
http://www.unizh.ch/ior/Pages/English/Research/StochOpt/.

For using the former versions, the user had to have her/his own version of
the algebraic modeling system GAMS (Brooke, Kendrick and Meeraus [30],
Brooke et al.[31], and Bussieck and Meeraus [36]). The reason is that the solver
interface of that versions was based on GAMS. Since 2001, this is no more a
requirement, SLP-IOR can be used in a stand—alone mode.

In the rest of this section we give a short overview on SLP-IOR, for the
details see our papers, cited above, and the user guide of SLP-IOR.

9.2.1 General issues
The scope of the present version of SLP—IOR consists of the following model
types:

m Single stage models.

—  Deterministic LP.

— Probability constraints (Ch. 2, Section 2); separate (Ch. 2, Section 2.3)
and joint (Ch. 2, Section 2.5).

— Integrated probability constraint (Ch. 2, Section 4.1); separate and joint.
— CVaR constraint (Ch. 2, Section 4.3).

= Multistage models.

— Deterministic LP.

— Two-stage recourse models (Ch. 3, Section 2).
Random recourse (Ch. 3, Section 2).

Fixed recourse (Ch. 3, Section 2).

Complete fixed recourse (Ch. 3, Section 2.1).

Simple recourse (Ch. 3, Section 2.2); continuous recourse and in-
teger recourse.

*  Multiple simple recourse (Ch. 3, Section 2.2).

¥ % X ¥

—~ Multistage recourse.

The random entries of the arrays in the mode! are represented via affine linear
relations, see (Ch. 3, Section 2.1). The random variables may be independent,
may form a single group of dependent variables, or in the general case, mutually
independent groups of random variables can be specified.

Concerning probability distributions, the choice for univariate distributions
consists of 16 continuous and 7 discrete distributions, containing most of the
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well-known statistical distributions. In the multivariate case, normal and uni-
form distributions are available in the continuous case, empirical and uniform
distributions in the discrete case.

Deterministic LP’s, two—stage and multistage recourse models can be ex-
ported/imported according to the SMPS data—format, see Gassmann [98]. The
present version uses the original specification by Birge, Dempster, Gassmann,
Gunn, King, and Wallace [21], that is, the extensions proposed in [98] are not
yet implemented.

Deterministic linear programs, formulated in the algebraic modeling lan-
guage GAMS (Brooke et al. [30], [31]), can be imported with the aim of for-
mulating stochastic versions of them.

The system includes an interface to the algebraic modeling system GAMS.
Consequently, if the user has a copy of GAMS, all solvers available with that
particular GAMS distribution can also be used for solving SLP problems for-
mulated in SLP-IOR, provided, that an algebraic equivalent exists and the
formulation of it is supported by SLP-IOR. For instance, multistage recourse
problems with a scenario tree can also be solved this way via GAMS.

The user communicates with the system via an interactive, menu—driven
interface.

9.2.2  Analyze tools and workbench facilities

The analyze tools provide support for analyzing a model instance or its
solution. The tools are presently available for recourse models and include

» for two—stage models computing the solutions for the following associated
problems: the expected value problem (EV), the wait—and-see solution
(WS), the expected result (EEV), as well as computing the derived quanti-
ties expected value of perfect information (EVPI), and value of stochas-
tic solution (VSS). For the definition of these characteristic values see
Ch. 3, Section 2.3. Computations are done in the discretely distributed case
directly, for continuous distributions sampling is available.

» For two—stage models checking whether the model instance has the complete
recourse property and analyzing the model for finding out whether it has a
hidden simple recourse structure.

» For two—stage recourse models, computing the solution of the SAA problem,
see Section 7.3.1.

» Computing the recourse objective for a fixed first-stage vector z*. The im-
plementation of the procedures for testing the quality of a solution, discussed
in Section 7.3.1, is in progress.

The primary aim of the workbench facilities is to support the testing of
solvers. They include
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m our test-problem generator GENSLP. This serves for randomly generating
test problem batteries consisting of model instances of recourse problems
or problems with joint probability constraints. Several parameters can be
chosen to control, for instance the nonzero density of the arrays, the type of
recourse matrix (for instance, complete fixed recourse can be prescribed), or
the number of random entries in the stochastic arrays (via the affine-linear
relations (Ch. 3, Section 2.1)).

» Generating test problem batteries by randomly perturbing the array—elements
of a single model instance.

= Running a selected collection of solvers on a battery of test problems, with
the aim of supporting comparative computational studies.

9.2.3 Transformations

Two types of model transformations are supported.

On the one hand, a model instance can be transformed into an algebraic
equivalent provided that such an algebraic equivalent exists. Asan example, let
us consider multistage recourse models with scenario trees. Such models can
either be transformed to an equivalent LP having the compact form, or into ex-
plicit forms (presently 4 different such forms are supported), see Section 8.1 for
a discussion concerning the different equivalent LP forms. These LP problems
can be subsequently exported in MPS form, for the sake of testing LP solvers,
for instance.

On the other hand, a model instance can be transformed into an instance
of another model type, e.g., a two—-stage recourse problem can be transformed
into a chance constrained model. Missing data are replaced by default values.
The aim of this facility is to support the formulation of different types of SLP
models, on the basis of the same underlying data—set.

9.2.4  Scenario generation

Scenario generation has been discussed in Section 8.2. In SLP-IOR two
algorithms are implemented: the bundle-based sampling method, discussed
in Section 8.2.1, and the moment matching heuristic of Heayland, Kaut, and
Wallace [122], see Section 8.2.2,

Besides these, the user can also build manually a scenario tree, via a graph-
ical interface. Several tools are available for supporting this, for instance a
cut-and-—paste procedure, discussed in Ch. 3, Section 3.2 in connection with
discretization methods for MSLP problems.

For the bundle-based simulation method several probability distributions are
available, see Section 9.2.1.
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9.2.5 The solver interface

The solver interface of SLP—IOR is an open interface, in the sense that the
user can connect her/his own solver to the executable of SLP-IOR. For the
details see the user’s guide.

Several solvers are connected to SLP-IOR. Some of them are commercial
solvers, others have been developed by ourselves. Some have been obtained
from the authors of the solver, which we would like to gratefully acknowledge
also in this place. If the user has a copy of GAMS, then the general-purpose
GAMS solvers can also be called within SLP-IOR.

Here we confine ourselves to listing some of the solvers, for a full list see
Kall and Mayer [147], or the user’s guide.

»  General-purpose LP solvers

— HiPlex, variant of the simplex method by Maros [190], [191], Maros
and Mitra [192], implemented by 1. Maros.

— HOPDM, an interior—point method of Gondzio [109], implemented by
J. Gondzio.

— Minos, a commercial solver for NLP, for LP problems it implements
the simplex method. See Murtagh and Saunders [211].

n Solvers for two—stage recourse problems

~  BPMPD general-purpose LP solver, interior point method, implement-
ed by Cs. Mészaros [204], see also Section 7.5. Although a general—
purpose solver, it is especially well-suited for recourse problems with
a finite discrete distribution.

— DAPPROX, successive discrete approximation method, see Section 7.2,
implemented by P. Kall and J. Mayer.

— MSLIP, nested decomposition, implemented by H. Gassmann [95]. For
the nested decomposition method see Ch. 1, Section 2.7.

—  QDECOM, regularized decomposition method of Ruszczynski {261],
implemented by A. Ruszczynski. For the algorithm see
Ch. 1, Section 2.8.

— SDECOM, stochastic decomposition method of Higle and Sen [116],
[119], implemented by P. Kall and J. Mayer. For the method see Sec-
tion 7.3.2.

— SHOR2, decomposition scheme of Shor [275], Shor, Bardadym,
Zhurbenko, Likhovid, Stetsyuk [276], implemented by N. Shor and
A. Likhovid.

m Specialized solvers for simple recourse
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— SHORI, the same method and authors, as for SHOR2, the algorithm
has been adapted to the special structure.

— SRAPPROX, successive discrete approximation method,
see Section 7.2.6, implemented by P. Kall and J. Mayer.

w Simple integer recourse

— SIRD2SCR, implements the convex hull algorithm of Klein Haneveld,
Stougie, and Van der Vlerk [168], implemented by J. Mayer and M.H.
van der Vlerk.

8 Multiple simple recourse

—  MSecr2Scr, transformation of Van der Vlerk [298], see
Ch. 3, Section 2.2, implemented by J. Mayer and M.H. van der Vlerk.

m Joint probability constraints

— PCSPIOR, supporting hyperplane method of Szantai [283], imple-
mented by J. Mayer. For the method see Ch. 1, Section 3.2 and Sec-
tion 3.2.

-~  PROBALL, central cutting plane method, Mayer [201], implemented
by J. Mayer, see Ch. 1, Section 3.2 and Section 3.2,

—  PROCON, reduced gradient method, see Mayer [201], implemented
by J. Mayer. See Ch. 1, Section 3.2 and Section 3.2.

9.2.,6 System requirements and availability

The system runs under the Microsoft Windows32 operating system family; it
has been tested under Windows 95, Windows NT, Windows 2000, and Windows
XP.

If the user has a copy of GAMS, then the GAMS—solvers can also be used
from SLP-IOR, see Section 9.2.1. Having GAMS is, however, not a prerequisite
for using SLP-IOR.

SLP-IOR, in executable form, is available free of charge for academic pur-
poses; for obtaining a copy please contact one of the authors.
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Benders decomposition, see dual decomposition
binomial moments, 285
Boole-Bonferroni—type inequalities, 284--292

chance constraints, see SLP with probability
functions
conditional value—at-risk, 161
convex
function, 61
hull, 16
polyhedral cone, 16, 17
polyhedral set, 16
polyhedron, 16
set, 61
CVaR, see conditional value—at-risk

discrete approximation method, see successive
discrete approximation

disjunctive programming problem, 99
distribution

Cauchy, 115, 135

Dirichlet, 129

gamma, 131, 135

log-normal, 133

normal, 103

stable, 113

Student’s t, 131

Wishart, 130
distribution function, bounds, 284-292
distribution function, computing, 292-298

Monte—Carlo method

based on probability bounds, 298
with antithetic variates, 295

dual

feasible tableau, 22

pivot step, 26

program, 19

simplex algorithm, 27
dual decomposition

algorithm, 31

feasibility cut, 32
multicut, 35
optimality cut, 32

Edmundson—Madansky inequality, 212, 213
generalized, 216
epi-convergence, 225

Farkas lemma, 21

gamma-—concave (‘y—concave)
function, 123
probability measure, 125
GAMS, 354,370, 371, 374
generalized concave, see gamma—concave (y—
concave)

integrated chance constraints, see SLP with inte-
grated probability functions

Jensen inequality, 210
Kolmogorov’s strong law of large numbers, 347

L-shaped method, see dual decomposition
Lagrange function, 65
linear programming, 13-60
algebraic concepts, 13-16
degeneracy, 15
feasible basic solution, 13, 14
feasible basis, 14
basic variables, 14
dual decomposition, 29-37
dual simplex method, 27-29
duality, 19-22
complementarity conditions, 21
strong duality theorem, 20
weak duality theorem, 20
geometry, 16-19
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feasible set, 17
interior-point methods, 56-60
central path, 57
interior-point condition, 56
primal-dual algorithm, 58
nested decomposition, 37-53
nonbasic variables, 14
regularized decomposition, 53-55
simplex method, 22-26
logconcave
function, 90
probability measure, 126
logconvex
function, 90
LP, see linear programming
LP optimality, see simplex criterion

master problem, see master program
master program, 32
relaxed, 42
modeling systems for SLP, 368--374
SLP-IOR, 369-374
moment problem, 212, 219

nested decomposition, 37
algorithm, 49
backtracking, 50
backward pass, 49
feasibility cut, 43, 44

valid, 45
forward pass, 49
optimality cut, 46

valid, 47

NLP, see nonlinear programming

nonlinear programming, 60-73
cutting plane methods

central cuts, 71

moving Slater points, 70

outer linearization, 67
Karush-Kuhn-Tucker conditions, 64
optimality conditions, 64-66
regularity condition, 63
saddle point, 66
saddle point theorem, 66
Slater condition, 63
solution methods, 66-73

pivot
column, 22, 27
row, 23, 27
step, 23, 27
polar cone, 18
portfolio optimization, 80, 120, 147, 169, 173,
177, 182, 189-191, 314
positive hull, 16
probabilistic constraints, see SLP with probabil-
ity functions

STOCHASTIC LINEAR PROGRAMMING

probability function, 92
pseudo—concave function, 88

quantile function, 144
quasi—concave

function, 87

probability measure, 126

regularized decomposition, 53
algorithm QDECOM, 54
risk measure, 180-189
coherent, 183
convex, 183
deviation measure, 183
in finance, 182-184
in SLP, 184-189

SAA, see sample average approximation
saddle point, see NLP
sample average approximation
algorithm, 347
testing solution quality, 346
scenario generation, 358-367
bundle-based sampling, 360
moment matching heuristic, 366, 367
scenario tree, see SLP with recourse, multi-stage
second—order cone program, 274
semi-infinite program, 212, 219
simplex
algorithm, 22
criterion, 15
tableau, 14
SLP with CVaR functions, 159-166
dual decomposition method, 310
SLP with deviation measures
absolute deviation, 169-174
discrete distribution, LP, 171
absolute semi—deviation, 177-178
quadratic deviation, 166-169
quadratic semi—deviation, 174—177
SLP with integrated probability functions
joint, 154-158
dual decomposition method, 313
separate, first kind, 149-153
dual decomposition method, 308
separate, second kind, 153-154
SLP with probability functions, 92-143
discrete distribution, 98
disjunctive programming, 99
independent case, 120
joint
only RHS stochastic, 122-136
random technology matrix, 136-141
separate, 100-120
SLP with quantile functions, 144-146
SLP with recourse constraint, 303
dual decomposition method, 305
SLP with recourse, general problem, 193-198
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constraint-aggregated, 196
decision-aggregated, 195
fully aggregated, 196
nonanticipative policy, 194
SLP with recourse, multi-stage, 248-272
discrete distribution, 249-255
non-discrete distribution, 255-272
discretization (cut and paste), 268
subfiltration (scenario tree), 261
scenario tree, 37, 249, 250
children of node n, 252
future of node n, 252
history of node n, 252
node splitting (cut and paste), 268
parent node of node n, 251
scenario bundle of node n, 252
splitting criterion (cut and paste), 271
state variable, 248
SLP with recourse, two-stage, 198-248
characteristic values, 243-248
expected result of the EV solution
EEV, 244
expected value of perfect information
EV PI, 246
expected value problem EV/, 244
optimal value RS, 243
value of the stochastic solution V' SS,
246
wait-and-see value W' S, 244
complete fixed recourse, 201-226
approximation schemes, 226
complete recourse condition, 202
fixed recourse, 200
induced constraints, 200
MSRT multiple simple recourse, 237
recourse function, 200
relatively comlete fixed recourse, 201
simple recourse, 226-243
discretization error, 232, 234
ESRT function, 229

multiple simple recourse
MScr2Scr, 355, 374
multistage recourse
Bnbs, 353
MSLIP, 354, 373
OSLSE, 354
nonlinear programming
Minos, 281, 373
probability constraints
PCSP, 300
PCSPIOR, 300, 374
PROBALL, 300, 374
PROCON, 300, 374
scenario generation
bundle-based, 368, 372
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moment matching heuristic, 368, 372

SCENRED, 368
second—order cone programs
LOQO, 275
MOSEK, 275
SDPT3, 275
SeDuMi, 275
SOCP, 275
simple integer recourse
SIRD2SCR, 355, 374
two—stage recourse
BPMPD, 354, 373

DAPPROX, 327, 332, 333, 355, 373

DECIS, 354

FortSP, 354

QDECOM, 317, 332, 355,373
SDECOM, 352, 355, 373
SHORI, 355, 374

SHOR?, 355, 373

SQG, 354

SRAPPROX, 341, 355, 374

stochastic decomposition

basic algorithm, 350
incumbent solution, 351
regularized algorithm, 351

SRT function, 228

SLP-IOR, 369-374

analyze, 371

scenario generation, 372
scope, 370

solvers, 373

stochastic linear programming, see SLP
subdifferential, 61
subgradient, 61
successive discrete approximation
algorithm, 327
computing lower bounds, 324

SMPS format, 353, 371
SOCP, see second—order cone program
solver, 273
CVaR-~minimization
CVaRMin, 314

computing upper bounds, 326
for simple recourse, 339
implementation, 335

evaluating distribution functions, 300~301

linear programming
HiPlex, 373
HOPDM, 373
Minos, 300, 314, 333, 373

value-at-risk, 144
VaR, see value-at-risk
vertex, 16

weak convergence of probability measures, 225
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