


STOCHASTIC LINEAR PROGRAMMING 
Models, Theory, and Computation 

PETER KALL 
University of ZurichlSwitzerland 

JANOS MAYER 
University of ZurichlSwitzerland 



Recent titles in the 
INTERNATIONAL SERIES IN 
OPERATIONS RESEARCH & MANAGEMENT SCIENCE 

Frederick S. Hillier, Series Editor, Stanford University 

Zhul QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING 
Ehrgott & Gandibleux/MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated 

Bibliographical Surveys 
Bienstockl Potential Function Methods for Approx. Solving Linear Programming Problems 
Matsatsinis & Siskosl INTELLIGENTSUPPORTSYSTEMS FOR MARKETING 

DECISIONS 
Alpern & GaV THE THEORY OF SEARCH GAMES AND RENDEZVOUS 
HalVHANDBOOK OF TRANSPORTATION SCIENCE - 2" Ed. 
Glover & Kochenberger/HANDBOOK OF METAHEURISTICS 
Graves & RinguestJ MODELS AND METHODS FOR PROJECT SELECTION: 

Concepts from Management Science, Finance and Information Technology 
Hassin & Havivl TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems 
Gershwin et avANALYSIS & MODELING OF MANUFACTURING SYSTEMS 
Marosl COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD 
Harrison, b e  & Nealel THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory and 

Application Converge 
Shanthikumar, Y a o  & Zijml STOCHASTIC MODELING AND OPTIMIZATION OF 

MANUFACTURING SYSTEMS AND SUPPLY CHAINS 
Nabrzyski, Schopf & W ~ g l a r z l  GRID RESOURCE MANAGEMENT: State of the Art and Future 

Trends 
Thissen & Herder1 CRITICAL INFRASTRUCTURES: State of the Art in Research and Application 
Carlsson, Fedrizzi, & FullBrl FUZZY LOGIC IN MANAGEMENT 
Soyer, Mazzuchi & Singpurwalld MATHEMATICAL RELIABILITY: An Expository Perspective 
Chakravarty & Eliashbergl MANAGING BUSINESS INTERFACES: Marketing, Engineering, and 

Manufacturing Perspectives 
Talluri & van Ryzinl THE THEORYAND PRACTICE OF REVENUE MANAGEMENT 
Kavadias & LochlPROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating 

Resources to Maximize Value 
Brandeau, Sainfort & Pierskallal OPERATIONS RESEARCHAND HEALTH CARE: A Handbookof 

Methods and Applications 
Cooper, Seiford & Zhul HANDBOOK OF DATA ENVELOPMENTANALYSIS: Models and Methods 
Luenbergerl LINEAR AND NONLINEAR PROGRAMMING, 2" Ed. 
Sherbrookel OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, 

Second Edition 
Chu, Leung, Hui & Cheungl4th PARTY CYBER LOGISTICS FOR AIR CARGO 
S imch i -bv i ,  Wu & S h e d  HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: 

Modeling in the E-Business Era 
Gass & Assadl AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History 
Greenberg/ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN 

OPERATIONS RESEARCH 
Weberl  UNCERTAINTYIN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision 

Support 
Figueira, Greco & EhrgottJ MULTIPLE CRITERIA DECISIONANALYSIS: State of the Art Surveys 
Reveliotisl REAL-TIME MANAGEMENT OF RESOURCE ALLOCATIONS SYSTEMS: A Discrete 

Event Systems Approach 

* A list of the early publications in the series is at the end of the book * 



STOCHASTIC LINEAR PROGRAMMING 
Models, Theory, and Computation 

PETER KALL 
University of ZurichlSwitzerland 

JANOS MAYER 
University of ZurichlSwitzerland 

Q - Springer 



Peter Kall 
University of Zurich 
Switzerland 

JAnos Mayer 
University of Zurich 
Switzerland 

Library of Congress Cataloging-in-Publication Data 

A C.I.P. Catalogue record for this book is available 
from the Library of Congress. 

ISBN 0-387-23385-7 e-ISBN 0-387-24440-9 Printed on acid-free paper. 

Copyright O 2005 by Kluwer Academic Publishers. 
All rights reserved. This work may not be translated or copied in whole or in 
part without the written permission of the publisher (Springer Science + 
Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except 
for brief excerpts in connection with reviews or scholarly analysis. Use in 
connection with any form of information storage and retrieval, electronic 
adaptation, computer software, or by similar or dissimilar methodology now 
know or hereafter developed is forbidden. 
The use in this publication of trade names, trademarks, service marks and 
similar terms, even if the are not identified as such, is not to be taken as an 
expression of opinion as to whether or not they are subject to proprietary rights. 

Printed in the United States of America. 

9 8 7 6 5 4 3 2 1  SPIN 11050001 



Contents 

Notations 
Preface 

1. BASICS 

1 Introduction 

2 Linear Programming Prerequisites 
2.1 Algebraic concepts and properties 
2.2 Geometric interpretation 
2.3 Duality statements 
2.4 The Simplex Method 
2.5 The Dual Simplex Method 
2.6 Dual Decomposition 
2.7 Nested Decomposition 
2.8 Regularized Decomposition 
2.9 Interior Point Methods 

3 Nonlinear Programming Prerequisites 
3.1 Optimality Conditions 
3.2 Solution methods 

2. SINGLE-STAGE SLP MODELS 

1 Introduction 

2 Models involving probability functions 
2.1 Basic properties 
2.2 Finite discrete distribution 
2.3 Separate probability functions 
2.3.1 Only the right-hand-side is stochastic 
2.3.2 Multivariate normal distribution 



STOCHASTIC LINEAR PROGRAMMING 

Stable distributions 
A distribution-free approach 
The independent case 
Joint constraints: random right-hand-side 
Generalized-concave probability measures 
Generalized-concave distribution functions 
Maximizing joint probability functions 
Joint constraints: random technology matrix 
Summary on the convex programming subclasses 

3 Quantile functions, Value at Risk 
4 Models based on expectation 

4.1 Integrated chance constraints 
4.1.1 Separate integrated probability functions 
4.1.2 Joint integrated probability functions 
4.2 A model involving conditional expectation 
4.3 Conditional Value at Risk 

5 Models built with deviation measures 
5.1 Quadratic deviation 
5.2 Absolute deviation 
5.3 Quadratic semi-deviation 
5.4 Absolute semi-deviation 

6 Modeling risk and opportunity 

7 Risk measures 
7.1 Risk measures in finance 
7.2 Properties of risk measures 
7.3 Portfolio optimization models 

3. MULTI-STAGE SLP MODELS 

1 The general SLP with recourse 

2 The two-stage SLP 
2.1 Complete fixed recourse 
2.2 Simple recourse 
2.3 Some characteristic values for two-stage SLP's 

3 The multi-stage SLP 
3.1 MSLP with finite discrete distributions 
3.2 MSLP with non-discrete distributions 

4. ALGORITHMS 
1 Introduction 



vii 

2 Single-stage models with separate probability functions 
2.1 A guide to available software 

3 Single-stage models with joint probability functions 
3.1 Numerical considerations 
3.2 Cutting plane methods 
3.3 Other algorithms 
3.4 Bounds for the probability distribution function 
3.5 Computing probability distribution functions 
3.5.1 A Monte-Carlo approach with antithetic variates 
3.5.2 A Monte-Carlo approach based on probability bounds 
3.6 Finite discrete distributions 
3.7 A guide to available software 
3.7.1 SLP problems with logconcave distribution functions 
3.7.2 Evaluating probability distribution functions 
3.7.3 SLP problems with finite discrete distributions 

4 Single-stage models based on expectation 
4.1 Solving equivalent LP's 
4.2 Dual decomposition revisited 
4.3 Models with separate integrated probability functions 
4.4 Models involving CVaR-optimization 
4.5 Models with joint integrated probability functions 
4.6 A guide to available software 
4.6.1 Models with separate integrated probability functions 
4.6.2 Models with joint integrated probability functions 
4.6.3 Models involving CVaR 

5 Single-stage models involving VaR 

6 Single-stage models with deviation measures 
6.1 A guide to available software 

7 Two-stage recourse models 
7.1 Decomposition methods 
7.2 Successive discrete approximation methods 
7.2.1 Computing the Jensen lower bound 
7.2.2 Computing the E-M upper bound for an interval 
7.2.3 Computing the bounds for a partition 
7.2.4 The successive discrete approximation method 
7.2.5 Implementation 
7.2.6 Simple recourse 
7.2.7 Other successive discrete approximation algorithms 



viii STOCHASTIC LINEAR PROGRAMMING

7.3
7.3.1
7.3.2
7.3.3
7.4
7.5

Stochastic algorithms
Sample average approximation (SAA)
Stochastic decomposition
Other stochastic algorithms
Simple recourse models
A guide to available software

8 Multistage recourse models
8.1
8.2
8.2.1
8.2.2
8.3

Finite discrete distribution
Scenario generation
Bundle-based sampling
A moment-matching heuristic
A guide to available software

9 Modeling systems for SLP
9.1
9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

References
Index

Modeling systems for SLP
SLP-IOR
General issues
Analyze tools and workbench facilities
Transformations
Scenario generation
The solver interface
System requirements and availability

342
342
348
352
353
353

356
356
358
360
361
367

368
368
369
370
371
372
372
373
374

375

395



Notations 

One-stage models: Joint chance constraints 

arrays (usually given real matrices) 

arrays (usually given real vectors) 

arrays (usually real or integer variable vectors) 

probability space 

set of natural numbers 

IRT endowed with the Borel a-algebra BT 

random vector, i.e. Borel measurable mapping 
inducing the probability measure IPt on BT 
according to IPt(M) = P(t-l[M]) VM E BT 

random array and random vector, respectively, 
defined as: 

h(t) = h + h j t j  ; h, h j  E IRm2 fix 
j=1 

expectation 

expectations IE+[T(J)] = ~ ( f )  and 
lE+ [h(t)] = h(f), respectively 

realization of random t 
realizations ~ ( 8 ,  h ( 6 ,  respectively 

One-stage models: Separate chance constraints 

: i-th row of T(.) 

: i-th component of h(-) 

Two-stage recourse models 

: random array and random vector, respectively, 
defined as: 
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T 

W(.):lRr+lRm2xn2 : W ( J ) = W + ~ W ~ & ; W ,  w ~ E I R ~ ~ ~ ~ ~  
j=1 

r 

q(.) : lRr + lRn2 : q(~)=q+C$~j ;q7qi~~n2  
j=1 

- 
w, : expectations IE+ [W ( J ) ]  = W (c) and 

JEc [4(5)] = q(C), respectively 

Multi-stage recourse models 

J : f l + l R R  : random vector J = ( J  2 ,  . . . , J T) with 
T 

J t : n + I R r t ,  t = 2 , . . . , T a n d x r t =  R 
t=2 

Ct : f l  + lRRt : the state of the process at stage t, defined as 
random vector St = ( J  2 ,  - . . , J t ) ,  t 1 2, or else 

t 

St = (ql,. . . , with Rt = C r,, with the 
~ = 2  

corresponding marginal distribution of J 

n=2 U=R,-~+I 
where At,, At,, E lRmtXnr and R1 = 0, 
w i t h l < ~ < t a n d 2 S t < T  

Multi-stage recourse models: Discrete distribution 

J : n + l R R  : random vector with discrete distribution 

{(p, qs); s = 1, , S) ,  @. 
A A 

scenarios J = (Jl, - . , J;) = (e., . . . , T i )  
A 

with IPE(J = J S )  = qs, s E S := (1, - .  . , S )  
A A 

Ct : f2 + lRRt : discrete set {C,S = (e, . . . , @); s E S )  of 



states defining kt 2 1 different equivalence 
classes U,V S, with s i ,  sj E U,V H ci = 
and an associated set of different states at 
stage t which may be defined by 
St := {p I p minimal in one of the U,V) 
as (2 I p E St) with the distribution 

n 
s - ̂P PI(G =v) = T t p  = I e -c t  I 

s E S  
(see Fig. 1 with e.g. Sz = {1,6,11)) 

Figure 1. Scenario tree: Assigning states to nodes. 
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Multi-staee recourse models: The scenario tree 

tree with nodes N c IN, where n = 1 is the 
T 

(unique) root and I NI = I St I + 1 
t=2 

the stage to which n E N belongs; 
there is a bijection 

T 

@I.}, ~ ( 9 )  : w- {lH + U { ( t , ~ t ) }  
t=2 

such that n tt (tn, p(n)), n 2 2; 
hence we assign with any node n 2 2 

p = c(n) with {zP!"), p(n) E St,} uniquely 
determined by n E N (state in node n) 

set of nodes in stage t,  1 5 t 5 T 

the parent node of node n E N, n 2 2 
(immediate predecessor) 

set of nodes in the path from n E N to the root, 
ordered by stages, including n (history of n) 

S(n) = {s E S I 2 = p}, i.e. the index set 
of those scenarios, for which the scenario path 
contains n E N. S(n)  and the related set of 
scenarios are called the scenario bundle of 
the corresponding node n 

set of children (immediate successors) of n 

future of node n along scenario s E S(n), 
including n (and hence Gs(n) = 0 if s 6 B(n)) 
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Preface 

The beginning of stochastic programming, and in particular stochastic linear 
programming (SLP), dates back to the 50's and early 60's of the last century. 
Pioneers w h e a t  that time-contributed to the field, either by identifying SLP 
problems in particular applications, or by formulating various model types and 
solution approaches for dealing adequately with linear programs containing 
random variables in their right-hand-side, their technology matrix, andlor their 
objective's gradient, have been among others (in alphabetical order): 

E.M.L. Beale [lo], proposing a quadratic programming approach to solve spe- 
cial simple recourse stochastic programs; 
A. Charnes and W.W. Cooper [38], introducing a particular stochastic program 
with chance constraints; 
G.B. Dantzig [43], formulating the general problem of linear programming with 
uncertain data and 
G.B. Dantzig and A. Madansky [47], discussing at an early stage the possibility 
to solve particular two-stage stochastic linear programs; 
G. Tintner [287], considering stochastic linear programming as an appropriate 
approach to model particular agricultural applications; and 
C. van de Panne and W. Popp [293], considering a cattle feed problem modeled 
with probabilistic constraints. 

In addition we should mention just a few results and methods achieved before 
1963, which were not developed in connection with stochastic programming, 
but nevertheless turned out to play an essential role in various areas of our field. 
One instance is the Brunn-Minkowski inequality based on the investigations 
of H. Brunn [32] in 1887 and H. Minkowski [206] in 1897, which comes 
up in connection with convexity statements for probabilistic constraints, as 
mentioned e.g. in Prkkopa [234]. Furthermore, this applies in particular to 
the discussion about bounds on distribution functions, based on inequalities 
published by G. Boole in 1854 and by C.E. Bonferroni in 1937 (for the references 
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see Prkkopa [234]), and on the other hand, about bounds on the expectation of a 
convex function of a random variable, leading to a lower bound by the inequality 
of J.L. Jensen [128], and to the Edmundson-Madansky upper bound due to 
H.P. Edmundson [7 11 and A. Madansky [ 1831. 

Among the concepts of solution approaches, developed until 1963 for linear 
or nonlinear programming problems, the following ones, in part after appropri- 
ate modifications, still serve as basic tools for dealing with SLP problems: 

Besides Dantzig's simplex method and the Dantzig-Wolfe decomposition, de- 
scribed in detail in G.B. Dantzig [44], the dual decomposition proposed by 
J.F. Benders [12], cutting plane methods as introduced by J.E. Kelley [159], 
and feasible direction methods proposed and discussed in detail by G. Zou- 
tendijk [311], may be recognized even within today's solution methods for 
various SLP problems. Of course, these methods and in particular their im- 
plementations have been revised and improved meanwhile, and in addition we 
know of many new solution approaches, some of which will be dealt with in 
this book. 

The aim of this volume is to draw a bow from solution methods of (de- 
terministic) mathematical programming, being of use in SLP as well, through 
theoretical properties of various SLP problems which suggest in many cases the 
design of particular solution approaches, to solvers, understood as implemented 
algorithms for the solution of the corresponding SLP problems. 

Obviously we are far from giving a complete picture on the present knowl- 
edge and computational possibilities in SLP. First we had to omit the area 
of stochastic integer programming (SILP), since following the above concept 
would have implied to give first a survey on those integer programming meth- 
ods used in SILP; this would go beyond the limits of this volume. However 
the reader may get a first flavour of SILP by having a look for instance into 
the articles of W.K. Klein Haneveld, L. Stougie, and M.H. van der Vlerk [168], 
W. Romisch and R. Schultz [256], M.H. van der Vlerk [299], and the recent 
survey of S. Sen [268]. 

And, as the second restriction, in presenting detailed descriptions we have 
essentially confined ourselves to those computational methods for solving SLP 
problems belonging to one of the following categories: 
Either information on the numerical efficiency of a corresponding solver is 
reported in the literature based on reasonable test sets (not just three examples 
or less!) and the solver is publicly available; 
or else, corresponding solvers have been attached to our model management 
system SLP-IOR, either implemented by ourselves or else provided by their 
authors, such that we were able to gain computational experience on the methods 
presented, based on running the corresponding solvers on randomly generated 
test batteries of SLP's with various characteristics like problem size, matrix 
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entries density, probability distribution, range and sign of problem data, and 
some others. 

Finally, we owe thanks to many colleagues for either providing us with 
their solvers to link them to SLP-IOR, or for their support in implementing 
their methods by ourselves. Further, we gratefully acknowledge the critical 
comments of Simon Siegrist at our Institute. Obviously, the remaining errors 
are the sole responsibility of the authors. Last but not least we are indebted 
to the publisher for an excellent cooperation. This applies in particular to the 
publisher's representative, Gary Folven, to whom we are also greatly obliged 
for his patience. 

Ziirich, September 2004 Peter Kall and J h o s  Mayer 



Chapter 1 

BASICS 

1. Introduction 
Linear programs have been studied in many aspects during the last 50 years. 

They have shown to be appropriate models for a wide variety of practical prob- 
lems and, at the same time, they became numerically tractable even for very 
large scale instances. As standard formulations of linear programs (LP) we find 
problems like 

min cTx 
subject to Ax cc b } (1.1) 

l < x  < u, 

with the matrix A E IRmXn, the objective's gradient c E IRn, the right- 
hand-side b E IRm, and the lower and upper bounds 1 E IRn and u E lRn, 
respectively. If some xi is unbounded below andor above, this corresponds to 
li = -w andor ui = w. A, b, C, I, u are assumed to be known fixed data in 
the above model. The relation 'cc' is to be replaced row-wise by one of the 
relations '5' , '=' , or '2' . Then the task is obviously to find the-or at least 
one-optimal feasible solution x E lRn. Alternatively, we often find also the 
LP-formulation 

min cTx 
subject to Ax cc b (1.2) 

1. 0, 

under the analogous assumptions as above. For these two LP types it holds 
obviously that, given a problem of one type, it may be reformulated into an 
equivalent problem of the other type. More precisely, 
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given the LP in the formulation (1.2), by introducing the lower bounds 
1 = (0, . . . , o ) ~  and the upper bounds u = (co, . . . , oo)* (in computa- 
tions rather markers u = (M, . . , M ) ~  with a sufficiently large number 
M ,  e.g. M = lo2', just to indicate unboundedness), the problem is triv- 
ially of the type (1.1); and 

having the LP of type (1.1), introducing variables x+ E IR?, x- E 
IR?, inserting x = x+ - x-, x+ 2 0, x- 2 0, introducing the slack 
variables y E IRn+ and t E IR?, and restating the conditions 1 < x < u 
equivalently as 

the problem is transformed into the type (1.2). 

In the same way it follows that every LP may be written as 

min cTx 
subject to Ax = b 

x 2 0, 

i.e. as a special variant of (1.2). 

Numerical methods known to be efficient in solving LP's belong essentially 
to one of the following classes: 

- Pivoting methods, in particular the simplex andlor the dual simplex 
method; 

- interior point methods for LP's with very sparse matrices; 

- decomposition, dual decomposition and regularized decomposition ap- 
proaches for LP's with special block structures of their coefficient ma- 
trices A. 

In real life problems the fimdamental assumption for linear programming, 
that the problem entries--except for the variables x-be known fixed data, does 
often happen not to hold. It either may be the case that (some of) the entries 
are constructed as statistical estimates from some observed real data, i.e. from 
some samples, or else that we know from the model design that they are random 
variables (like capacities, demands, productivities or prices). The standard ap- 
proach to replace these random variables by their mean values-corresponding 
to the choice of statistical estimates mentioned before-and afterwards to solve 
the resulting LP may be justified only under special conditions; in general, it 
can easily be demonstrated to be dramatically wrong. 
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Assume, for instance, as a model for a diet problem the LP 

min cTx 
s. t. Ax 2: b 

x 2: 0, 

where x represents the quantities of various foodstuffs, and c is the correspond- 
ing price vector. The constraints reflect chemical or physiological requirements 
to be satisfied by the diet. Let us assume that the elements of A and b are fixed 
known data, i.e. deterministic, whereas at least some ofthe elements o f T  andlor 
h are random with a known joint probability distribution, which is not influ- 
enced by the choice of the decision x. Further, assume that the realizations of 
the random variables in T and h are not known before the decision on the diet 
x is taken, i.e. before the consumption of the diet. Replacing the random T and 
h by their expectations T and z and solving the resulting LP 

min cTx 
s.t. Ax 2: b 

x 2: 0, 

can result in a diet P violating the constraints in (1.4) very likely and hence 
with a probability much higher than feasible for the diet to serve successfully 
its medical purpose. Therefore, the medical experts would rather require a 
decision on the diet which satisfies all constraints jointly with a rather high 
probability, as 95% say, such that the problem to solve were 

min cTx 
s. t. Ax 2: b 

P ( T x  2: h)  2 0.95 
x 2: 0, 

a stochastic linearprogram (SLP) with jointprobabilistic constraints. Here we 
had at the starting point the LP (1.4) as model for our diet problem. However, 
the (practical) requirement to satisfy--besides the deierministic constraints 
Ax 2 b-also the reliability constraint P ( T x  2: h)  2: 0.95, yields with (1.6) a 
nonlinear program (NLP). This is due to the fact, that in general the probability 
function G ( x )  := P ( T x  2: h)  is clearly nonlinear. 

As another example, let some production problem be formulated as 
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min cTx 
s.t. Ax = b 

T x  = h 
x 2 0, 

where T and h may contain random variables (productivities, demands, ca- 
pacities, etc.) with a joint probability distribution (independent again of the 
choice of x), and the decision on x has to be taken before the realization of 
the random variables is known. Consequently, the decision x will satisfy the 
constraints Ax = b, x > 0; but after the observation of the random variables' 
realization it may turn out that T x  # h, i.e. that part of the target (like satisfying 
the demand for some of the products, capacity constraints, etc.) is not prop- 
erly met. However, it may be necessary-by a legal commitment, the strong 
intention to maintain goodwill, or similar reasons-to compensate for the de- 
ficiency, i.e. for h - Tx, after its observation. One possibility to cope with 
this obligation may be the introduction of recourse by defining the constraints 
Wy = h - Tx, y 2 0, for instance as model of an emergency production 
process or simply as the measurement of the absolute values of the deficiencies 
(represented by W = ( I ,  -I), with I the identity matrix). Let us assume W to 
be deterministic, and assume the recourse costs to be given as linear by qTy, say. 
Obviously we want to achieve this compensation with minimal costs. Hence 
we have the recourse problem 

For any x, feasible to thejrst stage constraints Ax = b, x 2 0, the recourse 
function, i.e. the optimal value Q(x; T, h) of the second stage problem (1.8), 
depends on T and h and is therefore a random variable. In many applications, 
e.g. in cases where the production plan x has to be implemented periodically 
(daily or weekly, for instance), it may be meaningkl to choose x in such a 
way that the average overall costs, i.e. the sum of the first stage costs cTx and 
the expected recourse costs IE Q(x; T, h), are minimized. Hence we have the 
problem 

min cTx + IE Q(x; T,  h) 
s.t. Ax = b (1.9) 

x L 0, 

a two-stage stochastic linear program (SLP) with Jixed recourse. 
Also in this case, although our starting point was the LP (1.7), the result- 

ing problem (1.9) will be an NLP if the random variables in T and h have a 
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continuous-type joint distribution (i.e. a distribution defined by a density func- 
tion). 

If, however, the random variables in T and h have a joint discrete distribution, 
defined by the realizations ( ~ j ,  hj) with the pr~babilitiesp~, j = 1, - . . , S (with 

S 

p j  > 0 and pj = I), problem (1.9) is easily seen to be equivalent to 
j=l 

S 

rnin cTx + CpjpTyj 
j=l 

s. t. Ax = b  1 (1.10) 
T ~ X  +Wyj = hj, j = l , . . . , S  

x 2 0 
j . 0, Y - 

such that under the discrete distribution assumption we get an LP again, with 
the special data structure indicated in Fig. 1.1. 

Figure 1.1. Dual decomposition structure. 

In applications we observe an increasing need to deal with a generalization 
of the two-stage SLP with recourse (1.9) and (1. lo), respectively. At this point 
we just give a short description as follows: In a first stage, a decision x l  is 
chosen to be feasible with respect to some deterministic first stage constraints. 
Later on, after the realization of a random vector (2, a deficiency in some 
second stage constraints has to be compensated for by ah appropriate recourse 
decision x2(J2). Then after the realization of a further random vector 6, the 
former decisions x1 and x2 (&) may not be feasible with respect to some third 
stage constraints, and a further recourse decision x3(t2, 53) is needed, and so 
on, until a final stage T is reached. Again, we assume that, besides the first 
stage costs cTxl, the recourse decisions xt(Ct), t 1. 2, imply additional linear 
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costs cTxt ( ~ t ) ,  where Ct = (E2, + . , &). Then the multi-stage SLP with f i ed  
recourse is formulated as 

subject to 

where, in general, we shall assume Att(Ct), t 2 2, the matrices on the diag- 
onal, to be deterministic, i.e. Att(Ct) Att. It will turn out that, for general 
probability distributions, this problem-an NLP again-is much more difficult 
than the two-stage SLP (1.9), and methods to approximate a solution are just 
at their beginning phase, at best. However, under the assumption of discrete 
distributions of the random vectors Ct, problem (1.1 1) can also be reformulated 
into an equivalent LP, which in general is of (very) large scale, but again with 
a special data structure to be of use for solution procedures. 

From this short sketch of the subject called SLP, which is by far not complete 
with respect to the various special problem formulations to be dealt with, we 
may already conclude that a basic toolkit of linear and nonlinear programming 
methods cannot be waived if we want to deal with the computational solution 
of SLP problems. To secure the availability of these resources, in the following 
sections of this chapter we shall remind to basic properties of and solution 
methods for LP's and NLP's as they are used or referred to in the SLP context, 
later on. 

In Chapter 2, we present various Single-stage SLP models (like e.g. prob- 
lem (1.6) on page 9) and discuss their theoretical properties, relevant for their 
computational tractability, as convexity statements, for instance. 

In Chapter 3 follows an anlogous discussion of Multi-stage SLP models (like 
problem (1.9) in particular, and problem (1.11) in genekal), focussed among 
others on properties allowing for the construction of particular approximation 
methods for computing (approximate) solutions. 

For some of the models discussed before, Chapter 4 will present solution 
methods, which have shown to be efficient in extensive computational experi- 
ments. 
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2. Linear Programming Prerequisites 
In this section we briefly present the basic concepts in linear programming 

and, for various types of solution methods, the conceptual algorithms. 
As mentioned on page 8 we may use the following standard formulation of 

an LP: 

min cTx 
s.t. Ax = b 

x 2 0. 1 
With A being an (m x n)-matrix, and b and c having corresponding dimensions, 
we know from linear algebra that the system of equations 

Ax = b is solvable if and only if rank(A, b) = rank(A). 

Therefore, solvability of the system Ax = b implies that 

either rank(A) = m, 

or the system contains redundant equations which may be omitted, such that 
for the remaining system Ax = 6 we have the same set of solutions as for 
the original system, and that, for the (ml x n)-matrix A, m l  < m, the 
condition rank(A) = ml holds. 

Observing this well known fact, we henceforth assume without loss of gener- 
ality, that rank(A) = m (5  n) for the (m x n)-matrix A. 

2.1 Algebraic concepts and properties 
Solving the LP (2.1) obviously requires to find an extreme (minimal in our 

formulation) value of a linear function on a feasible set described as the in- 
tersection of a linear manifold, {x I Ax = b} ,  and finitely many halfspaces, 
{x I x j  :j 01, j = 1, . - , n, suggesting that this problem may be discussed in 
algebraic terms. 

DEFINITION 2.1 Any feasible solution P of (2.1) is called a feasible basic 
solution if; for I(?) = { i  1 2 > O}, the set {Ai, i E I(P))  of columns in A is 
linearly independent. 

According to this definition, for any feasible basic solution P of (2.1) holds 

Pi > O f o r i E  I(?), 1-, = O f o r j @  I(*), and Ai&= b. 
iEZ(&) 

Furthermore, with I I(2) I being the cardinality of this set (i.e. the number of 
its elements), if II(P)l < m such that the basic solution P contains less than 
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m strictly positive components, then due to our rank assumption on A there 
is a subset IB(2) with IB(2) > I (2)  and IIB(2) I = m such that the col- 
umn set {Ai, i E IB(2)} is linearly independent or equivalently, that the 
(m x m)-matrix B = (Ai I i E IB(2)) is nonsingular. Introducing, with 
IB(2) = { i l , - + + , i m }  and IN(*) = { I l . . - , n }  \ IB(2) = { j l l - ~ ~ , j n - m } ,  
the vectors xtB) E Rm-the basic variables-and x { ~ )  E Rn-m-the non- 
basic variables-according to 

then, with the (m x (n-m))-matrix N = (Aj I j E IN ( 2 ) )  the system Ax = b 
is, up to a possible rearrangement of columns and variables, equivalent to the 
system 

BxtB) + N X { ~ )  = b. 

Therefore, up to the mentioned rearrangement of variables, the former feasible 
basic solution 2 corresponds to (2tB) = B-lb 2 0, ktN) = O), and the 
submatrix B of A is called a feasible basis . With the same rearrangement of 
the components of the vector c into the two vectors ctB) and ctN) we may 
rewrite problem (2.1) as 

Solving the system of equations for xiB) we get xtB) = B-lb - B d l ~ x t N )  
T 

such that-with y~ := ctB) B-lb the objective value of the feasible basic 
solution (piB) = B-lb 2 0, 2{N) = 0)-problem (2.1) is equivalent to 

For computational purposes (2.2) is usually represented by the simplex tableau 

Qmn-m 

such that the objective and the equality constraints of (2.2) are rewritten as 
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T 
with ( = YB = dB) B-lb, (I = (PI , . . , = ~ - l b ,  and furthermore 

and 
T 

Although not written down explicitly, we assume that also for the reformulation 
(2.3) and (2.4) the nonnegativity constraints xIB) 2 0, xjN) > 0 have to hold. 

To justify the simplex algorithm as a solution method for (2.1) the following 
statements are essential. 

PROPOSITION 2.1 Provided that the LP (2.1) is feasible, i.e. that the feasible 
set B := {x I Ax = b, x > 0) # 8, there exists at least onefeasible basic 
solution. 

PROPOSITION 2.2 Ifthe LP (2.1) is solvable with the optimal value T, then - T I  
there exists at least one feasible basis B, yielding cIB) B-lb = T. 

DEFINITION 2.2 Assume that rank(A) = m. Iffor a feasible basis B and 
the corresponding feasible basic solution 2 with ( ~ ( ~ 1  = B-lb, 2{N) = 0) it 
happens that I I(?) I < m, i.e. that less than m of the basic variables are strictly 
positive, then the basic solution 2 is called degenerate. 

Finally, if we have a feasible basis B such that 8 5 0, than obviously 
this basis is optimal, i.e. (2{B) = P, 2{N) = 0) solves (2.1), since by (2.4) 
z = ( - dTxiN) 2 ( V X { ~ )  > 0. On the other hand, assume that (2.1) 
is solvable, and that in addition all feasible basic solutions are nondegenerate. 
Then for an optimal feasible basis B, existing due to Prop. 2.2, dT 5 0 has to 
hold due to the following argument: 

If, for any feasible basis, dj  > 0 would hold for some j E (1, . - - , n - m), 
due to ,t? > 0 by the assumed nondegeneracy, we could choose x { ~ )  = Tej (ej 
the j-th unit vector in IRn-m) with some T > 0, such that according to (2.4) 
would follow 

Hence, the basis at hand would not be optimal. 
Even without the nondegeneracy assumption the above optimality condition, 

also known as the simplex criterion, can be shown to hold true. 
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PROPOSITION 2.3 The LP (2.1) is solvable ifand only ifthere exists an op- 
timal feasible basis B such that the condition 

is satisfied. 

The proof of the above statements may be found in the literature, e.g. in 
Dantzig 1441, Maros [191], or Vanderbei [295]. 

2.2 Geometric interpretation 
Besides the algebraic formulation of LP's, it is sometimes intuitively helpful 

to have in mind their geometric interpretation. To this end we need the concepts 
of a convex polyhedron and of a convex polyhedral cone. 

DEFINITION 2.3 Givenfinitely many vectors x('), . . . , x(') E IRn, then their 
convex hull 

:= {x I x = x X j x ( j )  with x~j = 1, Xj 2 O V j )  
j=1 j=1 

is called a convex polyhedron, and their positive hull 

is called a convex polyhedral cone. 
Finally, P +C = { z  I z = x + y : x E P, y E C) is called a convexpolyhedral 
set. 

To generate the polyhedron P of Fig. 2.1, the elements x@) and x ( ~ )  are obvi- 
ously redundant, i.e. omitting these elements would result in the same polyhe- 
dron P, whereas no one of the elements x@), - . , x ( ~ )  can be deleted without 
changing the polyhedron essentially. The simple reason is that a polyhedron is 
uniquely determined by its vertices. 

DEFINITION 2.4 Given a convexpolyhedron P, an element y E P is a vertex 
ifand only ifthere are no two further elements v, w E P such that v # y # w 
and y = Xv + (1 - X)w, X E (0,l). 

Similarly, for a convex polyhedral cone not all of the generating elements 
mentioned in Def. 2.3 might be really needed to represent the cone. More 
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Figure 2.1. Polyhedron P = cconv {x('), . . . , ~(~1). 

precisely, whenever one of the generating elements equals a nonnegative linear 
combination ofthe other generating elements, it can be deleted without changing 
the cone. 

With the LP (2.1) the set C = {y I Ay = 0, y 2 0) can be associated. 

PROPOSITION 2.4 The set C = {y I Ay = 0, y 1 0) is a convexpolyhedral 
cone, 

generated either trivially by {0), ifC = {O), 

OK if3y E C : y # 0, generated for instance by ty(l), . . , y(S)), the set of 
feasible basic solutions of the system 

Ay = 0 
eTy = 1, whereeT = (l,..., 1) ,  
Y 2 0. 

With these concepts we may describe the feasible set 

as follows: 

PROPOSITION 2.5 For the feasible set t3 # 0 holds 

where C = y I Ay = 0, y 2 0) and P = conv {x('), a ,  x(')), with \ {x(l), - , x(* ) being the set offeasible basic solutions of B. 
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The set of feasible basic solutions of 13 can be shown to coincide with the set 
of vertices of P (and 23). The proofs of these statements may be found in the 
standard LP literature, or else in Kall-Wallace [152]. 

DEFINITION 2.5 For any nonempty set M C IRn its polar cone is the set 

An obvious consequence of this definition is 

PROPOSITION 2.6 For any nonempty set M c IRn itspolar cone M c IRn 
is a closed convex cone, i.e. MP # 0 is a closed set such that for any two 
z ( ~ )  E MP, i = 1,2, holds Xlz( l)  + ~ ~ z ( ~ )  E MP VXi 2 0. In particulal; for 
any convex polyhedral cone C its polar cone cP is a convex polyhedral cone as 
well. 

Pro08 Obviously, 0 E MP and hence MP # 0 is a convex cone. For 
(z(")  E M P ,  v E IN) converging to i we have for any arbitrary 2 E M that 

T 
z("lT2 5 0 V v  E IN and hence f T 2  = lim z(") 2 5 0, such that i E MP, 

u+OO 

i.e. MP is closed. 
If C is a convex polyhedral cone generated by id ( ' ) ,  . . , d(T) ) ,  with the matrix 

D = (d('), . . . , d(')) the polar cone of C is given as cP = { z  I D ~ Z  5 0 )  
which, in analogy to Prop. 2.4, is a convex polyhedral cone. 0 

According to Proposition 2.5, using the set of feasible basic solutions 
{ x ( l ) ,  - . , x ( ~ ) ) ,  i.e. the vertices of P ,  and the generating set {y( ' ) ,  . . , y(')) 
of C as described in Prop. 2.4, the LP (2.1) can now be rewritten as 

min C Xi cTx(') + C pj cTY(j)  
i=l j=1 

i=l 
Xi  2 0 V i  

> 0 Qj. Pj - 

This representation implies the following extension of Prop. 2.2. 

PROPOSITION 2.7 Provided that B # 0, the LP (2.1) is solvable ifand only 
if cTy 2 0 V y E C, i.e. -c E cP; in this case an optimal solution can 
be chosen as a vertex x ( ~ o )  of B (a feasible basic solution of B) such that 
C T 2 ( i ~ )  = min cTx(i). 

i€{l, . . . ,~} 

Pro08 The assumption, that cTy 2 0 V y E C, is equivalent to the requirement 
that cTy(j)  2 0,  j = 1, .  . . , s. If this condition is violated for at least one y(j)  
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(e.g. for jl), then according to (2.7) for pj1 -t oo follows for the objective 
z + -oo, such that the LP is unsolvable. 
If, on the other hand, the condition is satisfied, then-to solve (2.7)-we would 
choose ~ l j  = 0 V j, which implies the assertion immediately. 0 

As a consequence we get 

PROPOSITION 2.8 IfB # 8, and ifcTx 2 y Vx E B for some y E R, then 
the LP min{cTx I x E B) is solvable. 

Pro08 For any fixed 2 E B and an arbitrary y E C it holds true that 2 + py E 
B Vp > 0, and by assumption we have cT2 + pcTy 2 7, which implies that 
cTy > 0 is satisfied for each y E C; hence the assertion follows from Prop. 2.7. 
0 

2.3 Duality statements 
To the primal LP in its standard formulation 

min cTx 
sa t .  Ax = b 

x 2 0 

another LP, called its dual, is assigned as 

max bTu 
s. t. ATu 5 c. 

The technical rules according to which the dual LP (2.8) is constructed from the 
primal LP (2.1) may roughly be stated as follows: To the equality constraints 
Ax = b in (2.1) correspond the free variables u E IRm in (2.8); to the non- 
negative variables x E R"+ correspond the inequality contraints ATu 5 c with 
the transpose of A as the matrix of coefficients; the right-hand-side b of the 
primal program yields the objective's gradient of the dual program, whereas 
the objective's gradient c of the primal LP turns into the right-hand-side of the 
dual LP; finally, to the minimization in (2.1) corresponds the maximization in 
(2.8). 

Rewriting (2.8) into the standard form, we want to solve the problem 
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To this LP we assign analogously the dual LP 

- max cTz 
s. t. Az 5 -b 

-Az 5 b 
z 5 0 

which, using x := -z, yields 

- max -cTx = min cTx 
s.t. Ax = b 

x > 0 

coinciding with (2.1) again. Hence, the dual of the dual LP is the primal program 
again and we therefore can speak of a pair of dual LP's. 

There are further relations between the primal and the dual LP which are less 
obvious. First, we have the weak duality theorem. 

PROPOSITION 2.9 For any pair of feasible solutions Z and ii of (2.1) and 
(2.8), respectively, it holds that bTii 5 cT5. 

Pro08 According to the assumed feasibilities A5 = b, 5 2 0, and ATii 5 c it 
follows that 

bTii = ( ~ 5 ) ~ i i  = ~ ~ ( ~ ~ i i )  5 ZTc. 

Moreover, there is the following relation between pairs of dual LP's. 

PROPOSITION 2.10 Ifboth of the dual LP's (2.1) and (2.8) are feasible, then 
both of them are solvable. 

Pro08 Let 6 be feasible for (2.8). Then, by the weak duality theorem, cTx > 
bT6 Vx E B. Hence Prop. 2.8 yields the solvability of (2.1). The solvability of 
(2.8) follows analogously. 0 

Finally, we have the strong duality theorem. 

PROPOSITION 2.11 I f  the primal problem is solvable, then so is the dual 
problem, and the optimal values of the two problems coincide. 

Pro08 According to Prop. 2.3 the LP (2.1) is solvable if and only if there exists 
an optimal feasible basis B such that the simplex criterion (2.5) 
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is satisfied. Since, up to a rearrangement of columns of A, we have that 
(B ,  N )  = A, it follows that for ii = B - l T c { ~ }  it holds that 

Hence, ii is feasible for the dual program, and its (dual) objective value is 

thus coinciding with the primal optimal value. 

PROPOSITION 2.12 Both of thepair ofdual LP's (2.1) and (2.8) aresolvable if 
and only ifthere exist feasible solutions x* and u* such that the complementarity 
conditions 

x * ~ ( A ~ u *  - C) = 0 (2.9) 

hold. Then, x* and u* are primal and dual optimal solutions, respectively. 

Proof If both of the LP's are solvable then there exist optimal feasible solutions 
x* and u* such that, by feasibility and strong duality, 

On the other hand, from feasibility, complementarity and weak duality follows 

and hence the optimality of x* and u*. 0 

The strong duality theorem implies a necessary and sufficient condition for 
the feasibility of a system of linear constraints, the Farkas lemma: 

PROPOSITION 2.13 It holds 

{ X  I AX = b, x 2 0 )  # 8 ifand only if ATu I 0 implies bTu 5 0. 

Proof Assume that A? = b holds for some ? i. 0. Then for any ii with 
ATii < 0 follows 

On the other hand, assume that ATu < 0 always implies bTu 5 0. For 
an arbitrary 6 # 0 define c := AT&. Then Prop. 2.7 implies that the LP 
max{bTu I ATu 5 c )  is solvable. By the strong duality theorem, Prop. 2.1 1, 
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its dual, min{cTx I Ax = b, x 2 O), is then solvable as well, and hence 
feasible. 17 

Finally we mention, for later use, that the simplex criterion (2.5) is associated 
with a dual feasible basic solution. 

PROPOSITION 2.14 Assume thatfrom the LP (2.1) with some (not necessarily 
feasible) basis B the simplex tableau (2.3) has been derived, which satisjies the 
simplex criterion dT = c{B}~B-' N - cIN) 5 0. Then with the primal ( 
basis B a dual feasible basis, i.e. a feasible basis of the dualprogram (2.8), is 
associated. 

Proofi Using the basis B, the matrix of the primal LP can be rewritten as 
A = (B, N). Then the dual constraints read as 

with unit matrices I, and In-, of the indicated order. With G = BT-'C{B) 

it follows immediately, that, with 6 = 0 and z2 = cIN) - NTG 2 0 due to the 
simplex criterion, B ~ G  = c { ~ )  and NTG + In-,z2 = dN}. Hence 

is a dual feasible basis. 0 

Due to this relationship, any simplex tableau (2.3) for the primal LP (2.1), 
whether feasible or not, is called dual feasible if the simplex criterion (2.5) is 
satisfied. 

2.4 The Simplex Method 
With this background we formulate the 

Simplex Algorithm 

S I Initialization 
Find a feasible basis B for the LP (2.1). 

S2 Optimality Test 

1f 8 = c{B}~B-~N - dN) 5 0, then stop ( B  is optimal). Oth- ( 
erwise, continue. 

S3 Choice of Pivot Column 
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S 4  

S 5  

Choose p E (1,  - , n - m )  such that d, > 0, and let D, be the 
corresponding column of D. If D, 5 0, then stop (LP (2.1) is un- 
solvable, since x { ~ }  = ~ - ' b  - D , x ~ ~ '  2 0 vxiN' > 0 and hence 
inf{cTx I x  E I3) = -m); otherwise continue. 

Choice of Pivot Row 

The maximal increase T > 0 for x iN}  such that xIB} = p - D,T 2 0 
remains satisfied implies choosing a row p such that 

Pivot Step 

Exchange the roles of xiB' and xiN' such that x f '  becomes nonbasic 
and x iN}  becomes basic, i.e. transform B and N into B and N according 
to 

With B := B and N := N ,  and the implied adjustments of x { ~ ) ,  x IN) ,  
(, p, d and D, as well as of IB (x )  and IN(x ) ,  return to step S2.  

REMARK 2.1 In case that-in step S 3-D, 5 0, we may compute a gen- 
erating element of the cone C = { y  I Ay = 0,  y  > 0 )  from the present 
tableau as follows: Rearranging the components of y  into ( y { B } ,  y{N)) ,  anal- 
ogously to the corresponding rearrangement of the components of x, we get for 
${B) = -Dp and${N) = 1.  eP that ($IB),  $IN)) > - 0  and^${^} + N$IN) = 
-BDp + Np = 0 due to D, = B-IN,,. Hence, $ is a (nontrivial) generating 
element of the cone C = { y  I A y  = 0, y 2 0 )  according to Prop. 2.4 @age 
17). 0 

Denoting one sequence of the steps S 2  - S 5  as a cycle, or else as apivot step, 
we may easily prove 

PROPOSITION 2.15 Provided that, after step S I ,  we have a jirst feasible 
basis, and that all feasible basic solutions of LP (2.1) are nondegenerate, the 
simplex algorithm will terminate afterfiitely many cycles, either with an opti- 
mal feasible basis or with the information that inf{cTx 1 x  c I3) = -m. 
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P, Proo$ As long as Dp $ 0 in step S3, we shall get in step S 4  that - > 0 due 
%P 

to the assumed nondegeneracy. Observing that 

we see that the pivot step in S 5  yields 

x { ~ )  = /3 - i D p l  xiN} = i ,  and in particular z = C - i d ,  < C ,  (2.10) 

according to the choice of p in step 83. Finally, since D, = B - ~  N, is equiva- 
m 

lent with the solution of BD, = Bicrip = N,, where N, depends nontriv- 
i=l 

ially on the column B, (it holds a,, > 0), it is well known from linear algebra 
that replacing column Bp by the column Np as in step S5, yields again a basis 
B which is feasible due to the rule for selecting the pivot row in step S4. Hence, 
after one cycle we get another feasible basic solution with a strictly decreased 
objectiv value. Therefore, no feasible basis can show up more than once in this 
procedure, and the number of feasible bases of an LP is obviously finite. 0 

The nondegeneracy assumption is crucial for this proof. If there exist degen- 
erate feasible basic solutions, it can happen in some finite sequence of cycles, 
that i = 0 for each cycle, and hence the objective is not decreased (in contrast 
to (2.10)), and that at the end of this sequence we get the same basis with which 
the sequence began. Obviously, this may be repeated infinitely often, without 
any decrease of the objective and with nonoptimal bases. We then say that the 
procedure is cycling. However, even if degenerate feasible basic solutions exist, 
we can avoid cycling of the simplex algorithm by introducing additional rules 
in S 3  and/or S4, the choice of the pivot column and/or the pivot row. Common 
approaches are lexicographic rules applied in every pivot step, 

either to the choice of variables entering the basis (S3) as well as of variables 
leaving the basis (S4), if they are not uniquely determined; the strategy to 
choose in either case the variable with the smallest index, is called Bland S 
rule, 

or else to the choice of the variables leaving the basis (S4) only, called the 
lexicographic method. 

PROPOSITION 2.16 Provided that, after step S 1, we have a jrst feasible 
basis, and that either the lexicographic method or Bland's rule is used if the 
respective choice of variables in step S 3 and/or S 4 is not uniquely determined, 
the simplex algorithm will terminate afterjnitely many cycles, either with an 
optimal feasible basis or with the information that inf{cT,x I x E B) = -00. 
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For the proof of this statement see e.g. Vanderbei [295], Theorem 3.2 and 
Theorem 3.3. 

Obviously the pivot step S 5  implies an update of the simplex tableau (2.3) 
which may be easily derived from the equivalent system (2.4) as follows: For 
simplicity rewrite the tableau (2.3) as 

and hence the system (2.4), with x r '  := , as 
n-m 

n-m 

n-m 

In S5 the p-th equation (p 2 1). x y '  = aPo - C a d x l N } ,  is solved for 
j=1 

xiN' (p 2 l h e q u i r i n g  that aPp # 0 as given by S 4 a n d  the resulting 

expression for x iN}  is inserted into all other relations of (2.4). Under the 
assumption that (2.3) is a primal feasible tableau (i.e. Qio 2 0 Vi 2 I), p and p 
are chosen in S3 and S 4  in such a way, that oo, > 0 and that with the increase 

of x iN)  to * 2 0 all basic variables stay nonnegative, and in particular 
QPP 

xiB' + 0. The exchange of xiN' and xLB' yields a new tableau with the 
elements aTj; i = 0, , m; j = 0, . . . , n - m, to be computed as 
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Instead of the primal pivot step, where with a primal feasible tableau we look 
for a pivot column p violating the simplex criterion and then for a pivot row p 
such that the exchange of xjN) and xf '  yields again a primal feasible tableau, 
we also may consider the reverse situation: Given a dual feasible tableau, 
i.e. aoj 5 0, j = 1, . . , n - m, we may look for a pivot row p violating 
primal feasibility, i.e. a,o < 0, and then for a pivot column p such that after 
the exchange of x f )  and xiN} we get again a dual feasible tableau. Since 
the related transformation of the tableau is obviously given again by (2.1 l), 
according to these formulae it is obvious that now necessarily aPp < 0 has to 
hold to maintain a;p 5 0, and that furthermore, to ensure also a;j 5 0 for all 
other j 2 1, the pivot column p has to be chosen such that 

Transforming now the tableau according to (2.1 1) terminates a dualpivot step. 
At this point we may present one method, out of several others described in 

the literature, to realize S I of the simplex algorithm as follows: 

Solve the system Ax = b successively for m variables yielding, with 
some basis B, the tableau 

Qln-m 

amn-m 

corresponding to xlB) = B-lb - B - ~ N x ~ ~ } .  If B-lb 2 0, this 
tableau is primal feasible, and we just have to fill in its first row, 
clBIT B-l b and c { B } ~  B-' N - c { N } ~ .  Otherwise: 
Define the first row as (0, -eT) (with eT = (1, . . , I ) )  corresponding 
to the artificial objective z = eTx{N) =: hTx, for which we now have 
a dual feasible tableau. As long as this tableau is primal infeasible, 
continue with dual pivot steps (if necessary with one of the additional 
lexicographic rules mentioned earlier). 
When a primal feasible tableau-with the feasible basis B, the corre- 
sponding nonbasic part N of A, and the artificial objective-has been - - '1' .. 
found, then replace the first row of the tableau by dB} B-lb and 

T T cm - c{N 
If B = {x I Ax = b, x 2 0) # 8 then, due to Prop. 2.7, our artificial problem 
min{hTx I x E B) is solvable such that the above procedure will yield a 
first primal feasible tableau for our original problem min{cTx I x E B) after 
finitely many dual pivot steps. 
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2.5 The Dual Simplex Method 
As mentioned in Prop. 2.14, a primal simplex tableau, not necessarily feasible 

for the primal LP, but satisfying the simplex criterion, is strongly related to a 
feasible basic solution of the dual LP; therefore, such a primal simplex tableau 
was called dual feasible. This relation is used in 

The Dual Simplex Algorithm 

S  I Initialization 
Find a dual feasible primal tableau (with the primal basis B) for the LP 
(2.1). 

S 2  Feasibility Test 

If ,d = B-lb 2 0, then stop ( B  is an optimal feasible basis). Otherwise, 
continue. 

S 3  Choice of Pivot Row 
Choose p E (1,. . , m} such that /3, < 0 and the corresponding p-th 
r 0 w 0 f D ~ i . e . a ~  = ( a p l , . . . , a  ,,-, ). Ifa,. > O,thenstop(LP(2.1) 
is unsolvable, since B = 0). Otherwise, continue. 

S 4 Choice of Pivot Column 

The maximal increase r 2 0 for s f} ,  such that dr - T . a, 5 0 
remains satisfied, implies choosing a column p such that 

S 5  Pivot Sten 

Exchange the roles of xf}  and xiN} such that zf} becomes nonbasic 

and xiN' becomes basic, i.e. transform B and N into B and a according 

With B := B and N := N, and the implied adjustments of x { ~ } ,  x { ~ } ,  
C, ,d, d and D, as well as of IB(x) and IN(x), return to step S 2 .  

PROPOSITION 2.17 Given a j r s t  dual feasible tableau after step S  1, the 
dual simplex algorithm-if necessary with the dual version of one of the lex- 
icographic rules mentioned above-yields afterjnitely many dual pivot steps 
either the optimal primal solution or else the information, that B = 0. 
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Pro08 By Prop. 2.14 any dual feasible primal tableau-with A = ( B ,  N)- 
corresponds for the dual LP 

subject to ( minbTu 1 or else 
B T u  5 d B )  
N T u  < d N )  

min bTu 

subject to 

BTu + Imv = c{B) 

N T u  + In-,w = cIN)  
v ,  w 2 0  

to the dual feasible basis 

( $ Yn-_ ) with the inverse - N T B T - ~  BT-I 0 
In-m 

Hence we have for the dual constraints 

or else, together with the objective 77 = bTu and, as before, B-lb = P and 
B - I N  = D, 

77 = p T c W  - PTv 
u = B T - ~ ~ { B )  - B ~ - ~ v  
w = -DTciB) + c { ~ )  - (-DT)v 2 0 
v 2 0. 

From these formulae we see immediately that 

- with dual feasibility after step SI, i.e. -DTclB) + d N )  2 0, h m  
,8 2 0 follows dual optimality for v = 0 (S2); 

- with ,Op < 0 and D: 2 0, the dual nonbasic variable up can grow 
arbitrarily and hence the objective 77 -+ oo on the dual feasible set such 
that according to the weak duality theorem Prop. 2.9 there cannot exist 
any primal feasible solution (S3); 

- the requirement to maintain dual feasibility, i.e. w > 0 when increasing 
the nonbasic up, results in the rule for choosing the pivot column (S4). 

Observing that now a p p  < 0 implies again, as in the proof of Prop. 2.15, that 
the exchange of the nonbasic column N p  with the basic column B p  yields a 
basis again, dual feasible by construction. 

Given the LP (2.1) with the (m x n)-matrix A, the question may arise why we 
deal with the dual simplex method, carried out on the primal simplex tableau, 
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instead of just applying the simplex method to the dual LP (2.8) and its asso- 
ciated tableau. One rather heuistic argument is the size of the tableaus which 
have to be updated in every pivot step: Whereas the primal tableau is of the 
order m x (n - m), we obviously have for the dual tableau the order n x m, 
exceeding the former number of elements to be transformed by m2, which can 
be large for realistic problems. In addition, professional implementations of 
the simplex method do not perform the pivot transformations on the respective 
simplex tableaus but essentially just on the corresponding basis inverses (in 
appropriate representations, e.g. in product form). But the basis inverses are of 
order (m x m) for the primal basis and of (n x n) for the dual, the latter being 
substantially greater if, as it is commonly the case in applications, n >> m. 

Although these considerations are not a strict argument for the advantage of 
the dual simplex method, they may serve as a heuristic explanation why the 
dual simplex method empirically in many cases is observed to be more efficient 
than the primal method. For more details on the implementation of the simplex 
method (and its different variants) we may refer for instance to Maros [191]. 

2.6 Dual Decomposition 
As mentioned in the Introduction, in case of a discrete distribution we get for 

the two-stage SLP with recourse the LP (1.10) with the special data structure 
illustrated in Fig. 1.1 on page 1 1. This structure may be used according to an idea 
first presented in Benders [12], originally applied to mixed-integer NLP's. For 
simplicity we present the procedure for the special case of S = 1 realizations 
in (1. lo), i.e. for 

T x  +Wy = h (2.12) 
x 2 0 1  

Y 2 0. 
The extension of the method for S > 1 realizations is then immediate, although 
several variants and tricks can be involved. 

We assume that the LP (2.12) is solvable and, in addition, that the first stage 
feasible set {x I Ax = b, x 1 0) is bounded. According to Prop. 2.7 the 
solvability of (2.12) implies that 

and 

and therefore in particular, for t = 0, 
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such that the recourse function 

f (3) := min{qTy I Wy = h - Tx, y 2 0) 

is finite if the recourse constraints are feasible. Otherwise, we define the re- 
course function as f (x) = w if {y I Wy = h - Tx, y > 0) = 0. Then we 
have 

PROPOSITION 2.18 The recourse function f (x), dejned on the bounded set 
{x I Ax = b, T x  + Wy = h, x 2 0, y 2 0) # 0, ispiecewise linear, convex, 
and bounded below. 

Pro03 By our assumptions, with Bl = {x I Ax = b, x 2 0) it follows 
that B := B1 r l  {x I 3y 2 0 : Wy = h - Tx)  # 0 is bounded. Since 
{x I 3y > 0 : Wy = h - Tx)  # 0 is the projection of the convex polyhedral 
set {(x, y) I T x  + Wy = h, y 2 0) in (x, y)-space into x-space, it is convex 
polyhedral. Hence, B as the intersection of a convex polyhedron with a convex 
polyhedral set is a convex polyhedron, and it holds for x E B 

f(x) = q { ~ w } T ~ $ ( h  - Tx)  if ~ k ' ( h  - Tx) 2 0, 

where Bw (out of W) is an appropriate optimal basis, chosen from the finitely 
many feasible bases of W. Hence, f (x) is piecewise linear and bounded below 
in x E B. Finally, with x1 E B and x2 E B such that f (xi), i = 1,2, is finite, 
and with corresponding recourse solutions yl ,  y2 satisfying 

f ( x i ) = q T y i , i = 1 , 2 ,  and w y i = h - T X ~ ,  y i 2 0 , i = 1 , 2 ,  

for arbitrary X E (0 , l )  and P = Ax1 + (1 - X)x2 it follows that 

XY' + (1 - X)y2 E {y I Wy = h - TP, y > 0) 

and hence that 

demonstrating the convexity off  (x) on its effective domain dom f = B. 0 

Obviously, with the recourse fbnction f (x), the LP (2.12) can be rewritten 
equivalently as the NLP 

min{cTx + f (x)) 
s. t. Ax = b 

x 1 0, 
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restricting x implicitly to the effective domain o f f ,  or else as 

However, this may not yet help a lot since, in general, we do not know the 
(convex polyhedral) recourse function f ( x )  explicitly. To say it in other terms: 
f ( x )  being bounded below, piecewise linear and convex on B implies the ex- 
istence of finitely many linear functions cp,(x), v = 1 , .  . . , L, such that, on 
dom f = B, it holds that f ( x )  = max cp,(x). Hence, to reduce the feasi- 

uE{l,.-,L) 
ble set of (2.13) to the effective domain B off ,  it may be necessary to add some 
further linear constraints ( x )  , . . , $K ( x )  (observe that the polyhedron B is 
defined by finitely many linear constraints) to achieve feasibility of the recourse 
problem, such that instead of (2.13) we get the equivalent LP 

Also in this case, we do not know in advance the linear constraints needed for the 
complete coincidence of this problem with the original LP (2.12). Therefore, 
the idea of the following procedure is to generate successively those additional 
constraints needed to approximate (and finally to hit) the solution of the original 
LP (2.12). 

The Dual Decomposition Algorithm 

S I Initialization 
Find a lower bound 80 for 

and solve the LP 

yielding the solution (2,  b). Define 

Bo = { ( x ,8 )  I Ax = b, x > 0, 8 E R) and 
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S 2  Evaluate the recourse function 
To get f (2) = min{qTy I Wy = h - T2, y 2 0), solve the dual LP 

I f f  (2) = +m, then go to step S3, else to S4. 

S 3  The feasibility cut 
2 is infeasible for (2.12). In this case by Prop. 2.7 (page 18) there 
exists an unbounded growth direction ii (to be revealed in step S 3  of 
the simplex algorithm as one of the finitely many generating elements 
of the cone {u I w T u  5 0); see Remark 2.1 on page 23) such that 
wTii  5 0 and (h - ~ 2 ) ~ i i  > 0, whereas for any feasible x of (2.12) 
there exists some y 2 0 such that Wy = h - Tx. Multiplying this 
equation by ii yields the inequality 

iiT(h - Tz)  = iiTwy I 0, 

which has to hold for any feasible x but is violated by 2. Therefore we 
redefine Bl := Bl n {(x, 8) 1 iiT(h - Tx) 5 0) such that the infeasible 
2 is cut off, and go on to step S5. 

S 4  The optimality cut 
Since f (2) is finite, by Prop. 2.3 there exists for the recourse problem 
a dual optimal feasible basic solution fi, determined in step S 2  above, 
such that 

f(2) = (h - ~ ~ ) ~ f i ,  

whereas for any arbitrary x we have 

f (x) = sup{(h - T X ) ~ U  I w T u  I 9) 
2 (h - ~ x ) ~ f i .  

Therefore, the inequality 8 - f (x) 2 0 in (2.13) implies the linear 
constraint 

8 2 fiT(h - Tx). 

If this constraint is satisfied for (2, 8), i.e. i f f  (2) 5 8, stop the proce- 
dure, since x* := 2 is an optimal first stage solution; otherwise redefine 
the set of constraints as Bl := 231 n {(x, 8) 1 8 2 fiT(h - Tx)), thus 
cutting off the nonoptimal (2,8), and go on to step S5. 

S 5  Solve the updated LP, called the masterprogram, 

min{cTx + 8 1 (x, 8) E Bo n 231) 

yielding the optimal solution ( P , 8 ) .  
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With (Pi.,$) := ( B , 8 )  return to step S2. 

PROPOSITION 2.19 Given the above assumptions, the dual decomposition 
algorithm yields an optimaljrst stage solution x* of (2.12) afterjnitely many 
cycles. 

Prooj  According to Prop. 2.18 the lower bound O0 of S 1 exists (for instance, 
by weak duality for any (w, u) E {(w, u) I ATw + TTu 5 0, w T u  5 q), the 
value bTw + hTu could be chosen as 80). 

Due to the solvability of (2.12) the dual constraints w T u  5 q are feasible 
and independent of x. Hence the dual representation o f f  (9) in S 2  is always 
feasible implying that f (2) is either finite or equal to +oo, the latter indicating 
primal infeasibility. 

I f f  (2) = +oo, i.e. f is infeasible for (2.12), due to Prop. 2.7 there is a 
ii : wTii 5 0 and (h - ~ P ) ~ i i  > 0. We may assume that ii is one of 
finitely many generating elements of the cone {u I w T u  5 0), as we get it 
in step S3 of the simplex algorithm (see Remark 2.1 on page 23). Since the 
cone {u I w T u  5 0) is finitely generated, we shall add at most finitely many 
constraints of the type iiT(h - Tx) _< 0 before we have finite recourse in all 
further cycles. 

I f f  (2) = (h - ~ P ) ~ i i  is finite, we assume ii to be an optimal dual feasible 
basic solution (as delivered by the simplex algorithm). Since there are only 
finitely many dual feasible basic solutions and hence finitely many constraints 
of the type 13 2 iiT(h - Tx) to be added at most, after finitely many cycles, 
with the solution of the updated LP in S5, we must get in the subsequent step 
S 4  that 8 2 iiT(h - TP) = f (2). Due to the facts that 

a) the feasible set of (2.13) is contained in the feasible set Bo n Bl of the 
last master program in the previous step S5, solved by (9,8), and that 

b) this solution (P,8) is obviously feasible for (2.13), 

it follows for any solution (x*, e*) of (2.13) that 

C ~ X *  + e* = C ~ X *  + f (x*) 
2 c T 2 + 8  due to a) 
2 cTx* + O* due to b). 

Hence, P is a first stage solution of (2.12). 0 

Observe that whenever we have that P E dom f with the stopping criterion 
not satisfied, we have to add in S 4  a linear constraint of the type 19 2 4(x) := 
,jl+ijTx, where? = iiTh and6 = -TTii E d f (P), the subdifferential of f in?. 
Hence +(x) is a linear lower bound off  in x E dom f such that 4(P) = f (2). 
This is illustrated in Fig. 2.2. 



STOCHASTIC LINEAR PROGRAMMING 

Figure 2.2. Dual decomposition: Optimality cuts. 

Let us consider now, instead of (2.12), the two-stage SLP (1.10) with S > 1 
realizations, given as 

This is equivalent to the NLP 

with the recourse functions 
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Then we can modify the above dual decomposition algorithm as follows: 

Dual Decomposition - Multicut Version 

S 1 Initialization 
Find, for j = 1, . - . , S, lower bounds 8j for 

and,withp= (pl,-.+,Ps)T, 0 = (01,..+,~s)Tand8 = (81,...,8s)T 
solve the LP 

yielding the solution (2,d). Define 

Bo = {(x, 0) I Ax = b, x 2 0, 0 E RS) and 
al = {IW x {e) I e 2 8). 

S2 Evaluate the recourse functions 
To get fj (2) = min{qT yj I wYj = hj - Tj2, yj 2 0), solve the dual 
LP's 

fj(2) = max{(hj - ~j2)~uj I wTuj 5 q), j = 1,. . - , S. 

If J := {j I fj(2) = +co) # 0, then go to step S3, else to S 4 .  
S3 Feasibility cuts 

We have fj(2) = +co for j E J # 0 implying that 2 is infeasible 
for (2.15). In this case by Prop. 2.7 there exist unbounded growth 
directions g, j E J (to be revealed in step S3 of the simplex algorithm; 
see Remark 2.1 on page 23) such that Vj E J holds wTiij < 0 and 
(hj - ~j2)~iij > 0, whereas for any feasible x of (2.15) there exist 
some yj 2 0 such that wyj = hj - T ~ X .  Multiplying these equations 
by iij yields the inequalities 

which have to hold for any feasible x but are violated by 2 for j E J. 
Therefore we redefine Bl : = Bl n{ (x, 8) 1 iijT (hj - T ~ X )  5 0, j E J) 
such that the infeasible 2 is cut off, and go on to 'step S5. 

S 4  Optimality cuts 
Since fj (2) is finite for all j = 1, . - . , S ,  by Prop. 2.3 there exist for the 
recourse problems dual optimal feasible basic solutions G, determined 
in step S 2  above, such that 
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whereas for any arbitrary x we have 

Therefore, the inequalities Oj - fj(x) 2 0 in (2.15) imply the linear 
constraints 

6, 2 iijT(hj - T ~ x ) .  

If these constraints are satisfied for (P,8), i.e. if f j  (2) 5 oj Vj ,  stop the 
procedure, since x* := P is an optimal first stage solution; otherwise, 
if fj(P) > 8j for j E J # 0, redefine the set of constraints as B1 := 
B1 n {(x, 0) 1 0j 2 iijT(hj - T ~ x )  for j E J ) ,  thus cutting off the 
nonoptimal (P,8), and go on to step S5. 

S 5  Solve the updated master program 

min{cTx + 0 I (x, 0) E Bo n Bl ) 

yielding the optimal solution (E,8). 
With (P,8) := (E,8) return to step S2. 

This multicut version of the dual decomposition method for solving the two- 
stage SLP (1.10) or its equivalent NLP (2.15) is due to Birge and Louveaux (see 
Birge-Louveaux [22]). Similarly to Prop. 2.19, the multicut method can also 
be shown to yield an optimal first stage solution after finitely many cycles. 

Instead of introducing S variables 0j as in the multicut version, we may also 
get along with just one additional variable 0: Instead of (2.15) we deal, again 
equivalently to the SLP (1. lo), with the NLP 

In step S3 we add feasibility cuts to B1 as long as we find fj(P) = +oo for 
at least one j. In step S4, where all recourse function values are finite with 
fj@) = (hj - ~ j ~ ) ~ i i j ,  we 

S 

either add the optimality cut 0 2 x p j i i j T ( h j  - Tix) to Bl if 
j=1 

S 

8 < x p j J T ( h j  - TjP), and then go on to solve the master program in 
j=1 

step S5; 
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s 
or else, if 6 2 pifijT(hj - ~ j i ) ,  we stop with i as an optimal first stage 

j=1 
solution. 

This L-shaped method was introduced by Van Slyke-Wets [296]. Both variants 
of Benders' decomposition are described in detail in Birge-Louveaux [23]. 

2.7 Nested Decomposition 
This section is devoted to an extension of the dual decomposition method to 

multi-stage SLP problems. In (1.1 1) on page 12, we have introduced a general 
multi-stage SLP with fixed recourse. In this section we will additionally allow 
randomness in the recourse matrix and in the objective coefficients. We consider 
the following problem: 

whereJ2,--. ,JTandthereforealsoCt = (J2, .+. ,&),  t = 2,". ,T,arerandom 
vectors with given distributions. Furthermore, since in stage t with 2 5 t 5 T 
the constraint 

has to hold a.s., it should be obvious that for almost every realization & = 
A A A 

Jt), with st-1 (.) being the decision xt-1 taken for the correspond- 
ing sub-path of &, the decision st(&) in stage t has to satisfy the constraints 
wt(&).t(&) = bt (&I - ~t(&)xt-I(&-11, xt G) 2 0. 

If in particular the random vector J := (& , . , JT) (and hence all the vectors 
Jt and Ct) has a finite discrete distribution, defined by fealizations and corre- 

A A 

sponding probabilities as {e, P t ( J  = C )  = qs; s E S := (1, . , S)), we 
can represent the process {Ct; t = 2, . , T) on a scenario tree as follows: 
Node n = 1 in stage 1 corresponds to the assumed deterministic state at the 
beginning of the process; 
in stage 2 we have the nodes n = 2, , K2, each one corresponding to one of 
the different sub-paths contained in the scenarios p, . . , p, endowed 



38 STOCHASTIC LINEAR PROGRAMMING 

with the probability p, = { q ,  I rl = 
sES 

in stage 3 there are then the nodes n = K2 + 1, - . . , K3 corresponding to one of 
the different sub-paths ?$") contained in { p ;  s E S), with the probabilities 

pn = { q ,  I = ?[(n)); and so on. As an example of a scenario tree see 
sES 

the four-stage case in Fig. 2.3 with 10 scenarios. 
Scenarios are the different realizations of CT, they correspond to the root- 

to-leaf paths in the tree. The superscript p(n) denotes the first scenario which 
passes through node n, in a fixed ordering of scenarios. In Figure 2.3 we have, 
e.g., p(2) = 1 and p(8) = 8. For further details on this notation see the section 
about notations. 

By construction, any node n in some stage t, 2 2 has exactly one predecessor 
(node) h, in stage t, - 1, whereas each node n in stage t, < T has a nonempty 
finite set C(n) of successors (nodes in stage t, + I), also called the children of 
n. For any node n in stage t, 2 2 (i.e. < n 5 Kt,) we shall use the 
shorthand Tn, Wn, r,, bn , C. instead of Tt, (%(:(")), Wtn (%(n'), Q, (E'"), 
btn (%(,I), and ct, (%(,)), respectively. 

Figure 2.3. Four-stage scenario tree. 

For later use we introduce some further notations. N denotes the set of nodes 
of the scenario tree and Nt stands for the set of nodes in stage t, i.e., Nl = (1) 
and Nt = {Kt-l + 1, . . . , Kt) fort > 1. The set of nodes of the subtree rooted 
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at n E N will be denoted by G(n). In our example in Figure 2.3 we have, e.g., 
N3 = (4,. . . ,9) and G(2) = (2;  4 , .  . . , 6 ;  10,. . . ,141. 

Now we can rewrite problem (2.17) as the following optimization problem 
on the corresponding scenario tree: 

K2 K3 

rnin C T X ~  + x p n ~ r ~ n  + x p n ~ r ~ n  + . . - { n=2 n=Kz+l 

The above problem can compactly be written as follows: 

Fl = min cTxl + C p , c ~ x ,  
,GN\{l) 

s.t. W1xl = bl 

T,xh, + W,x, = by, v E N \ ( 1 )  

X ,  2 0, u EN. 1 
For the ease of presentation we make the following assumption: 

ASSUMPTION 2.1 The model involves individual upper bounds xn < Un, 
Un 2 0, V n  E N. We consider these upper bounds as being built into rows of 
(W,, b,), with the corresponding rows of Tn consisting of zeros. 

Note that Un does also depend on n E N ,  i.e., multistage models involving 
individual stochastic upper bounds are incorporated in the above formulation. 

This assumption implies that (2.19) is either infeasible, or otherwise it has 
an optimal solution. A further straightforward implication of the assumption 
is that (2.19) is dual feasible. This can be seen as follows: considering the 
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primal-dual pair of LP problems 

min cTx 
Ax bTu + dTv 

I 0,  
Y 1 0 ,  

it is clear that, to an arbitrarily chosen u, there exists v such that (u ,  v) is a 
feasible solution of the dual. 

Problem (2.18) corresponds to the following sequence ofprograms: For node 
n = l  

then for each node in stage 2, i.e., for n E N2 = (2, . . - , K2) 

and in general for any node n E Nt = {Ktwl + 1, .  . . , K t )  in stage tn E 
{ 3 , . . . , T - 1 )  

Finally, for nodes n in stage tn = T, i.e., n € NT = {KT-I + 1, . . , KT) ,  
we get 

T Fn(xhn) = min cnxn 

Wnxn = bn -Tnxhn (2.24) 
X n  1 0. 

For n with tn = T it is obvious from (2.24) that Fn(xhn) is piecewise linear 
and convex in xh, for all n E {KT-1 + 1,. . . , K T )  (see Prop. 2.18, page 30). 
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Then, going backwards through stages T - 1, T - 2, - . ,2, it follows imme- 
diately from (2.23), that the additive terms P"Fm(Xn) are piecewise 

m~c(n )  Pn 
linear and convex in x, implying that also the functions Fn(xhn) are piecewise 

K2 
linear and convex, such that by (2.22) also the additive term C p n ~ , ( x l )  in 

n=2 
(2.21) is piecewise linear and convex in X I .  

Note that for t ,  > 1 the NLP (2.23) can also be written in the following 
equivalent LP form: 

pv T Fn(xhn) = min c;x,+ -cvxv 
v€G(n)\{n) Pn 

with the parameter vector xhn and optimal-value function F,. As usual, 
Fn(xhn) := +m is taken in the infeasible case. The LP problem (2.25) will be 
called a descendant recourseproblem and will be denoted by LPDesc (n, xh, 1. 
In this context, (2.23) is the recursive NLP formulation of LPDesc (n, xhn) .  
For the sake of uniform notation we introduce a virtual node, indexed by 0, as 
the ancestor of the root node. Since the virtual node merely serves for simpli- 
fying notation, it is not added to N. We define a matrix TI  as an (m l  x 1) zero 
matrix (a column vector), where ml is the number of rows of Wl .  Interpreting 
xhl as an arbitrary number, the original multistage problem (2.19) is included 
into this notation, resulting in a constant optimal-value function Fl (xhl ) - Fl. 

Assumption 2.1 implies that LPDesc (n, xh, ) is either infeasible, or other- 
wise it has an optimal solution, furthermore, it is dual feasible for all n E N 
and all xh, . 

For a fixed xh, and t ,  < T, (2.25) is the LP-equivalent of a ( T  - t ,  + 1)- 
stage recourse problem, corresponding to the following scenario tree: take the 
subtree of the original scenario tree, which is rooted at n E N, and divide by 
p, all probabilities associated with the nodes of the subtree. In particular, for 
t ,  = T - 1 the LP problems LPDesc (n, xhn) are LP equivalents of two-stage 
recourse problems. For n E NT n is a leaf of the scenario tree and the LP 
LPDesc (n, xh, ) is an ordinary one-stage LP problem. Nevertheless, for the 
sake of simplicity, we call also these LP's descendant recourse problems. 

Above we have derived the piecewise linearity of Fn(xhn) using backward 
induction. An alternative way of showing this consists of considering the LP 
(2.25) for which Proposition 2.18 (on page 30) directly applies. 
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Consider problem (2.23) for some n with tn < T. In analogy to (2.13) 
on page 31, we introduce an upper bound On to replace the additive term 

&F,(X,) in the objective function. Due to the piecewise linearity 
r n E C ( n )  pn 
of the latter term, the upper bound 8, has to satisfy some additional linear 
constraints 

d;kxn + 8, 2 Snk, k = 1, ... , S n .  

In addition, some further linear constraints 

may be necessary to ensure the feasibility (i.e., the finiteness of F,) of the LP's 
for the nodes m E C(n) ,  such that (2.23) is now replaced by 

Fn (xh,) = min cTxn + 8, 1 

As discussed in connection with (2.14) on page 31, the main idea in dual 
decomposition is to solve a sequence of successively built relaxed masterprob- 
lems 

- 
Fn (xh,) = min cTxn + en 

with parameter vector xh, and optimal-value function fin. Similarly as for 
descendant recourse problems, for the root node holds fil(xh,) = fil, with a 
constant value fil . 

The LP (2.27) will be denoted by LPMast (n, zhn)  'and will be called a 
relaxed masterproblem. Constraints in the second and third group of constraints 
will be called feasibility cuts and optimality cuts, respectively. These will be 
added in a one-by-one manner to LPMast (n, xhn) by the ND algorithm, as it 
will be discussed later. rn = 0 or sn = 0 means that the corresponding group 
of constraints is missing. Furthermore, if sn = 0, then we assume that the 
variable 8, is fixed by an additional constraint 8, = 0. Finally, we will use the 
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above notation also for the leaves (t ,  = T), by keeping r, = 0 and s, = 0 
throughout. 

Due to Assumption 2.1, LPMast (n, xhn ) is either infeasible, or otherwise it 
has an optimal solution. It is also dual feasible, Vn E N,  Vxhn. 

Assume that s, > 0 holds. In this case the third group of inequalities in 
the relaxed master problem (2.27) can equivalently be written as the following 
single inequality constraint: 

This can be put into the objective function thus leading to an equivalent formu- 
lation of the relaxed master problem 

( h n )  = min dsr, + max (Snk - d ~ ~ x , ) ]  1 l<k<sn 

as an NLP problem with a piecewise linear convex objective function. Note 
that for descendant recourse problems we had both an LP formulation (2.25) 
and an NLP formulation (2.23). These have their counterparts (2.27) and (2.28) 
concerning relaxed master problems. 

In the multistage case with T > 2, for 1 5 t ,  < T - 1 two new features 
appear in comparison with the two-stage case, which have to be dealt with. 
On the one hand, both the descendant recourse problem (2.23) and the relaxed 
master problem (2.27) depend on a parameter vector xh,. On the other hand, 
the terms F, in the objective function in (2.23) are defined by multistage (at 
least two-stage) problems. We have to explain how in this situation valid cuts 
can be constructed. 

Let us consider a node n E Nt, t < T,  and its child-nodes m E C(n). We 
assume that the current relaxed master LPMast (n, xh, ) has a solution (8,, 8,). 
The problems LPMast (m, assigned to the child-nodes m E C(n), are ei- 
ther infeasible or have an optimal solution. 

Feasibility cuts 

If LPMast ( m ,  8,) is infeasible for an m E C(n) then a feasibility cut will 
be added to LPMast (n, xh,). The infeasibility of (2.27) implies the objective 
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of the corresponding dual 

to be unbounded from above (note that (2.29) is feasible, due to Assumption 2.1). 
Hence there exists a conegenerating vector (ii,, Gm) with Cm 2 0 satisfying 

rm 

w_T& + C amjGmj 5 0 and 
j=l 

(2.30) 

In (2.30) Gmk is missing since any cone-generating (ii,, Gm, G,) of (2.29) 
S m  

has to satisfy hk = 0, Gmk > 0 Vk, such that Gmk = 0 Vk. 
k=l 

Thus, analogously to Benders' algorithm, for cutting off gn which has led 
to the infeasible relaxed master LPMast (m, P,), the following feasibility cut 
is added to LPMast (n, xh, : 

or equivalently 
L Qm (2.32) 

T m  

where am := T ~ G ~  and an := b;iim + C amjCmj hold. 
j=1 

Notice that 53, is infeasible also for the descendant linear programming prob- 
lem LPDesc (n, xh,) (see 2.25) in the following sense: it can not be extended 
to a feasible solution of this problem. It makes sense therefore to cut off this 
point. 
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DEFINITION 2.6 A feasibility cut aT.xn 2 anj in LPMast (n, xhn will be 
n! called valid, iffor any feasible solution (3,, v E G(n)) of the descendant 

recourse problem LPDesc (n, xh, 1, the inequality aZj3, 2 anj holds. 

Validity of a feasibility cut means that considering any feasible solution of 
LPDesc (n, xhn),  that piece of this solution which corresponds to node n will 
not be cut off. In context of the NLP formulation (2.23), the jth feasibility cut 
in LPMast (n, xhn ) is valid, if and only if for any feasible solution 3, of (2.23) 
for which Fm(3,) < +m holds for all m E C(n), the inequality 2 anj 
holds. 

PROPOSITION 2.20 The following assertions hold: 

(i) Let n E Af be an arbitrary node. Ifin LPMast (n, xh,) either rn = 0 
holds or otherwise all feasibility cuts are valid then for any feasible 
solution (3,, v E G(n)) of LPDesc (n, xh, 1, 3, is a feasible solution 
of LPMast (n, xh,). 

(ii) Let n E Af and m E C(n) be the nodes which have been considered for 
generating the feasibility cut. Provided that in LPMast (m, 2,) either 
r, = 0 holds or otherwise all feasibility cuts are valid, the new cut is 
a valid feasibility cut in LPMast (n, xh,). 

Prooj 
(i): If rn = 0 then (i) is obviously true. Otherwise the assertion is an immediate 
consequence of the definition of validity. 
(ii): To see this, assume that (3,, v E G(n)) is a feasible solution of the 
descendant recourse problem LPDesc (n, xh,). In particular for node m E 
C(n), from which the cut has been generated, we have: 

where the second inequality holds for the following reason: ( z ~ ,  p E G(m)) 
is obviously a feasible solution of LPDesc(m, 3,) and then the inequality 
follows from the assumption concerning feasibility cuts in LPMast (m, 2,). 
Multiplying by ii,, Em, and summing up, we get 

where the last inequality follows from (2.30) and from the nonnegativity of 3,. 
This shows (see (2.3 1)) that for 3, the newly added inequality holds. 0 
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Ovtimalitv cuts 

If LPMast (m, 2,) has a solution for all m E C(n) then we consider append- 
ing an optimality cut to LPMast (n, xh, ). Let (?,, 8,) be an optimal solution 
of LPMast (m, ?J and (Q,, Gm, zh,) be an optimal solution of its dual (2.29), 
then we have 

for all m E C(n). The key observation concerning optimality cuts is the 
following: The feasible domain of the dual problem (2.29) does not depend on 
iin. Consequently, due to weak duality in LP, we have that 

holds for any x,. Therefore we consider adding the following optimality cut to 
LPMast ( n ,  xh, ) : 

If the above inequality holds for (?,, 8,), which is the current solution of 
LPMast (n, xh, ) , then the new constraint would be redundant, otherwise the 
optimality cut will be added to LPMast (n, xh, 1. 

The optimality cut can equivalently be written as 

with 

With the notation just introduced, (2.34) implies that 
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holds for k = s, + 1 and for arbitrary x,. In deriving this inequality we have 
also used the fact, that for the scenario tree x pm = p, holds. 

m€C(n) 
The optimality cut clearly cuts off the current solution (&, en). 

DEFINITION 2.7 An optimality cut d:kxn + On 2 Snk in LPMast (n, xh,) 

will be called valid, ifthe inequality Snk - dTkzn < &Fm(xn) holds 
m€C(n) Pn 

for arbitrary x,. 

Comparing the NLP formulations (2.28) and (2.23) of LPMast (n, xhn) and 
LPDesc (n, xhn), respectively, we observe the reason for this requirement: We 
wish to achieve that the objective function of the relaxed master problem yields 
a lower bound to the objective function of the descendant recourse problem. 

PROPOSITION 2.2 1 The following assertions hold: 

(i) Let n E N be an arbitrary node and assume that all feasibility cuts 
are valid in LPMast (n, xhn 1. Ifeither n E NT, or in LPMast (n, xhn 
s, > 0 holds and all optimality cuts are valid then &(xhn) 5 Fn(xhn) 
holds for any xh,. 

(ii) Let n E N be the node considered in the discussion on optimality cuts. I f  
either n 6 N;.-I, or for all m E C(n) sm > 0 holds and all feasibility- 
and optimality cuts are valid in LPMast ( m ,  $,), then the new cut is a 
valid optimality cut in LPMast (n, xhn). 

Proof 
(i): In the case n E NT the problems LPMast (n, xhn and LPDesc (n, xhn ) 
are identical and therefore we have Pn(xhn) = Fn(xhn) for all xh,. Assume 
n E Nt with t 5 T - 1. Our assumption implies the inequality 

for arbitary x,. We consider the NLP formulations (2.23) and (2.28) of 
LPDesc (n, xhn) and LPMast (n, xh, 1, respectively. If (2.28)) is infeasible 
(Pn(xhn) = + m )  then due to Proposition 2.20 fi), LPDesc (n, xh,) is also 
infeasible and consequently Fn(xhn) = +m holds. Thus we have Fn(xhn) = 
Fn(xhn) = + m .  Assume that (2.28) is feasible. For any feasible solution in 
(2.23), which is infeasible in (2.28), at least one feasibility-cut constraint in 
the latter is violated. The validity of this feasibility cut implies that the right- 
hand-side in (2.38) is +m. Thus taking minima on both sides of (2.38) over 
the feasible domain of (2.28) results in our inequality. 
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(ii): By part (i) of this proposition, our assumption implies that F ~ ( x , )  5 
Fm(xn) holds for all m E C(n) and arbitrary x,. Utilizing (2.37) we get the 
inequality 

which proves (ii). 

Now we are prepared to describe the nested decomposition (ND) algorithm. 
This consists of carrying out the following three basic operations in an iterative 
fashion. 

Starting with stage to, a fonvardpass consists of an attempt of solving all 
relaxed master problems in stages t 1 to, in a stage-by-stage manner. The 
solutions obtained in stage t are used to set up the relaxed master problems 
in stage t + 1. A forward pass terminates either by encountering a node n 
such that LPMast (n ,  4hn) is infeasible, or by obtaining a solution 4, for all 
nodes n with t, 2 to. The solutions obtained this way are consistent in the 
following sense: for any node n with t, > to, before setting up and solving 
LPMast (n ,  4hn ) the relaxed master problem associated with the ancestor node 
has been already solved and the solution of the ancestor problem is used to 
set up LPMast (n ,  4hn). In particular, this implies that for any node n with 
t, > to, (4,, v E B(n)) is a feasible solution of the descendant recourse 
problem LPDesc (n ,  ghn 1. 

Backtracking starts with a node n, for which LPMast (n ,  bhn) is infeasible. 
The following steps are carried out along the unique path from n to the root. 
First a feasibility cut is added to the ancestor's relaxed master problem. The 
relaxed master of the ancestor is solved next. If this turns out to be infeasible 
then the procedure is repeated with the ancestor node being the current node. 
Backtracking terminates either by finding a node along the path with a feasi- 
ble relaxed master problem, or by reaching the root node with an infeasible 
associated relaxed master problem. In the latter case the multistage problem is 
infeasible, the overall procedure terminates. 

A backwardpass presupposes that LPMast (n ,  4hn is feasible with an opti- 
mal solution 4, for all n E N. Starting with t = T - 1, an attempt is made to 
add optimality cuts to all relaxed master problems in stage t. Relaxed master 
problems with added optimality cuts are solved. Afterwards this is repeated 
with stage t = T - 2, and so on, in a backward stage-by-stage manner. Since 
adding an optimality cut does not render a feasible relaxed master problem 
infeasible, the backward pass terminates by reaching the root node. If during 
a whole backward pass no optimality cuts have been added then the current 
solution is optimal and the overall procedure terminates. 



Basics 49 

Note that if for any node n with t, < T the solution 4,  changes then the 
current solutions (if any) associated with the nodes in G(n) \ { n )  become invalid 
in the overall procedure, in general. The reason is that changing 4, implies 
changing the parameter in LPMast (m, 2,) for all m E C ( n )  which may result 
in changing the solution 2,. This in turn implies changes in the parametrization 
of the relaxed master problems associated with the child-nodes of m E C(n),  
and so on. 

Next we formulate the nested decomposition (ND) algorithm. 

Nested Decomposition Algorithm 

S 0 Initialization 
Let rn = 0, S ,  = 0, yn = False 
and add the constraint 8, = 0 to LPMast (n, xh, 1, V n  E N. 
Set t  := 1 and for formal reasons set iih, = 0. 
The Boolean variable yn will be used for the following purpose: y, = 
True indicates that the current relaxed master LPMast ( n ,  Phn)  has a 
solution and it is legitimate to use the current solution (En ,  8,) when 
node n is encountered during the subsequent iterations. y, = False 
indicates that LPMast (n, 4hn) is to be solved whenever node n is en- 
countered. (Observe that for n E NT we'll have r,  = s, = 0 as well 
as 8, = 0 throughout the procedure.) 

S I Select Direction 
If t  < T then go to S 2  (forward pass), otherwise go to S3 (backward 
pass). 

S 2  Forward Pass 
For n E Nt for which y, = False in turn do: 
* Solve LPMast (n, Z h n ) .  If infeasible then store (C,, G,) which 

fulfills (2.30) and continue with S 4 (backtracking). Otherwise con- 
tinue this loop with the next step. 

* Store the solution (2,, 8,); if t  = T then store also the dual solution 
(Cn,  cn, Gn); 

* set y, = True and y, := False for all v E G(n) \ {n ) ;  
* take the next node in Nt. 
Ifthis loop goes through without jumping to S 4 then proceed as follows: 
if t  = T then go to S I ,  otherwise set t := t  + 1 and repeat S2. 

S 3 Backward pass 
Set y := True. This Boolean variable is only used in the present back- 
ward pass. y = True indicates that no optimality cuts have been added 
so far. 
For n E Nt-l in turn do: 
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* Check whether (2.35) holds for the current solution (P,, 8,); 
* if yes, then take the next node in Nt-l, otherwise 
* add an optimality cut: 

- Set y := False; 

- if s, = 0 then drop the constraint 8, = 0; 

- add the optimality cut (2.36) to LPMast (n, 2hn) with k := 
s, + 1; 
set s, := s, + 1; 

- solve LPMast (n, Phn) and temporarily store the dual solution 
(fin, Gn, 6,). 

Note that this loop always goes through: adding an optimality cut does 
not render a previously feasible relaxed master problem infeasible. After 
this loop has gone through check for optimality: If t = 1 and y = True 
then no optimality cut has been added through a whole backward cycle. 
In this case the current solution is optimal, Stop. Otherwise if t > 1 
then set t : = t - 1 and repeat S  3, else return to S  I. 

S  4  Backtracking 

* If n = 1 then the multistage problem is infeasible, Stop. Otherwise 
* make the predecessor of n the current node, i.e., set m := n and 

subsequently n := h,. 
* Add a feasibility cut to LPMast (n, Phn according to (2.32); 
* set y, := False for all v E G(n); 
* solve LPMast (n, ghn). If infeasible then compute (G,, 6,) which 

fulfills (2.30) and repeat S4.  Otherwise set y, := True, store a 
solution (P,, 8,) and return to S  I. 

PROPOSITION 2.22 The following assertions hold: 

(i) The feasibility cuts generated by the algorithm are valid. 

(ii) The optimality cuts generated by the algorithm are also valid. Further- 
more, pn (xhn) < Fn (xhn ) holds for all n E N and all xh,. 

(iii) The algorithm terminates in ajinite number of iterations. 

(iv) Ifthe algorithm terminates in S 4  then the multistage problem is infeasi- 
ble; iftermination occurs in S 3  then the current solution (2,, n E N )  
is optimal. 

Pro03 
(I) Feasibility cuts are generated along backward chains in S4.  If r, = 0 
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holds for LPMast (n, 2hn), belonging to the starting node n of the chain (the 
node in the highest stage), then Proposition 2.20 implies that all feasibility cuts 
added along the chain are valid. This is the case in the initial phase of the 
method. If later on the starting node already has feasibility cuts, they are valid, 
therefore again Proposition 2.20 applies thus ensuring the validity of the newly 
generated cuts. 
(ii) The validity of the optimality cuts follows immediately from Proposi- 
tion 2.21. For the inequality we observe that $(xhn) = F(xhn) holds for 
the leaves n E NT, therefore our inequality follows from Proposition 2.21 by 
backward induction. 
(iii) Due to the construction of the algorithm, none of the cone-generating 
elements and dual feasible basic solutions of LPMast (m, 2,) (m E C(n)) is 
used repeatedly for adding cuts to LPMast (n, xh,) . Consequently, for finite 
termination it is sufficient to show that for any node n E N there exist finitely 
many different cone-generating elements and dual feasible basic solutions of 
relaxed master problems associated with the child-nodes. This is a consequence 
of the fact that the dual feasible region of LPMast (m, 2,) does not depend on 
2n (see also the discussion on page 46). 

For nodes n with tn = T (leaves), both the set of cone-generating elements 
and the set of feasible basic dual solutions are obviously finite. Let us consider 
a node n with tn = T - 1. Both types of cuts for this node are generated either 
on the basis of cone-generating elements or on the basis of dual basic feasible 
solutions of LPMast (m, 2,) with m E C(n). Consequently, the number of 
different feasibility- and optimality cuts in LPMast (n, 2hn) is finite and the 
set of possible cuts is independent on the specific value of xh,. This implies 
that for LPMast (n, xhn ) the number of different dual feasible sets is also finite. 
Consequently, for each node n with tn = T - 1, the number of cone-generating 
elements and dual basic feasible solutions is finite. These are used for generating 
cuts for nodes n with tn = T-2. Using backward induction according to stages, 
it follows that, for any node n E N ,  there are finitely many different feasibility- 
and optimality cuts. This proves (iii). 
(iv) If the algorithm terminates in S 4  then LPMast (1, 2hl) is infeasible. 
Then, due to assertion (i), LPDesc (1, 2h1 ) is also infeasible. The latter being 
the original multistage problem this proves the first statement. 

For any node n E N ,  by successively applying (2.35) and (2.33) we get 
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- Pm T Pl. T - c;'n + C -cm?m + C -(cl.gl. + dl.) 
m ~ ~ ( n )  Pn m~c(n)  p~c(rn) Pn 

where the last inequality follows from the fact, that ((Pi.,, d,)), v E Q(n)) is 
a feasible solution of LPDesc (n, Ph, ) . The full proof follows by an obvious 
induction. Applying this for n = 1, together with assertion (ii), the result fol- 
lows. The above proof also shows that at optimality (2.35) is fulfilled as an 
equality throughout. 0 

Regarding (2.26) and (2.27), we took the liberty of using in both problems 
the same notation for the cuts. For T > 2, however, the nested decomposition 
method generates optimality cuts for LPMast (n, xh,) which are not neces- 
sarily among the optimality cuts of LPDesc(n, xh,), not even at points of 
differentiability of the objective function in (2.23). 

For the dual decomposition method, master problems can be considered as 
relaxations of the full representation (2.14) and the algorithm can be inter- 
preted as building the set of additional constraints in a step-by-step fashion 
(see page 31). As indicated above, this interpretation is no more valid in the 
multistage case. The reason is that, for T > 2 and n E Nt with 1 5 t 5 T - 2, 
optimality cuts are based on relaxed master problems which are themselves in 
the process of being built up. Therefore, optimality cuts do not provide neces- 
sarily supporting hyperplanes to the true optimal-value function. An example 
for this behavior can be found in Birge-Louveaux [23], Section 7.1. For in- 
dicating this distinctive feature, we used the term "relaxed master problem" 
whereas in Section 2.6 on dual decomposition the term "master problem" has 
been employed. 

As in the dual decomposition method, afier a backward pass the current 
value of Fi clearly provides a lower bound on the optimal objective value of 
the multistage problem. After a complete forward pass, i.e. if during a forward 
pass all relaxed master problems turn out to be feasible, the current solution 
(Pn, n E N )  is a feasible solution of the multistage problem (2.18). Thus, 
computing the corresponding objective value results in an upper bound on the 
optimal objective value of the multistage problem. 

Finally let us remark that, based on Propositions 2.20 and 2.21, several dif- 
ferent variants of ND can be built, which differ on the sequencingprotocol, the 
latter meaning the sequence in which nodes are processed (relaxed master prob- 
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lems are considered) in the algorithm. The variant which has been discussed 
in this section implements the FFFB (fast-forward-fast-backward) protocol, 
which has been found in empirical studies by Gassmann [95] to be the best 
variant. 

Nested decomposition for deterministic LP's with a staircase structure has 
been studied by Abrahamson [I], Dantzig [45], and Wittrock [305], [306]. The 
generalization of the dual decomposition to a nested decomposition scheme for 
multistage problems is due to Birge [IS], [20]. The method is also called nested 
Gshaped method, see Birge-Louveaux [23]. 

Finally let us mention that multi-cut versions of the ND method can also be 
built analogously as for two-stage problems, see Section 2.6. 

2.8 Regularized Decomposition 
To reduce the notation, we may write the k-th master problem for the multicut 

method as 

where Dk is the feasible set associated with the set Gk of constraints required 
in this master program. Hence, instead of minimizing 

we minimize, with respect to x, 

a piecewise linear function supporting from below the piecewise linear objective 
function @ of our original NLP (2.15). In particular, in the early cycles of the 
algorithm, this support function Bk is likely not to represent very well the true 
function @ in some neighborhood of the last iterate ?(k). This may imply, that 
even for an dk) close to the overall optimum of (2.15): we get from solving 
(2.40) an dk+l) far away from the optimal point. Hence, it is no surprise that, 
in real size problems, we often observe an "erratic jumping around" of the 
subsequent iterates x ( ~ )  without a substantial progress in the objective, even 
when starting from an overall feasible iterate x ( ~ )  close to the solution of the 
original NLP (2.15). This undesirable behaviour may be improved substantially 
by regularizing the master program with an additive quadratic term which shall 
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avoid too big steps away from an overall feasible approximate solution ,dk) 
within one iteration. Hence, with some control parameter p > 0 and denoting 
the Euclidean norm as 11 11, we deal with master programs of the form 

to find a next trial point x ( ~ ) ,  for which we have to decide by criteria to be 
mentioned in the presentation of the algorithm, whether it is accepted as the 
next approximate or whether we continue with the current approximate, dk). 

We restrict ourselves to just giving a sketch of the modified algorithm. For 
simplicity, degeneracy in the constraints Gk of (2.40) is excluded by assumption, 
such that every vertex of the feasible set Vk C lRnf is determined by exactly 
n + S active constraints (including the first stage equations Ax = b and active 
nonnegativity conditions, i.e. xi = 0 in case). Now we can present a sketch of 
the 

S 

mi* ( ~ 1 1 ~  - z + x + 0 
2~ j=1 

Regularized Decomposition Algorithm QDECOM 

( x ,  ,Os) t Vk 

S 1 Determine a first approximate ~ ( ' 1 ,  overall feasible for (2.15); let k := 1, 
and define V1 as the feasible set determined by the constraint set 

GI := {Ax = b) U {all optimality cuts at 

(k) T $2 solve (2.41) for x ( ~ )  as first stage trial point and ~ ( ~ 1  = (BY), - + . , OS ) 
as recourse approximates. 

X - 
(k) If @(.dk)) = 6(x(lr)) (= cTx(*) + CpjOj ), then stop; dk) is an 

j=1 

optimal first stage solution for (2.15). Otherwise continue. 

S 3  Delete from the constraint set Bk of (2.41) constraints being inactive at 
( ~ ( ~ 1 ,  O(k)), such that no more than n + S constraints are left. 

S 4  If x ( ~ )  satisfies all first stage constraints (i.e. in particular x ( ~ )  ) 0), 
then go to step S5; otherwise add to Gk no more than S violated first 
stage constraints (nonnegativity conditions xi 2 0), yielding Gk+l ; let 
dk+l) := d k ) ,  k := k + 1, and go to step S2. 

S 5  ~etermine f j ( ~ ( ~ ) ) ,  j =  l , . . . , S  . 
1f f j  ( ~ ( ~ 1 )  = +co then add a feasibility cut to Gk, 
else if f j  ( ~ ( ~ 1 )  > t$) then add an optimality cut to A. 

S 6  1f fj(x(k)) = +co for at least one j then let z(~+')  := z ( ~ )  and go to 
step S8; otherwise go to step S 7. 
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S  7 1f @(x(") = &(x("), 
or else if @ ( x ( ~ ) )  5 , ~ @ ( z ( ~ ) )  + (1  - p ) & ( ~ ( ~ ) )  for some parameter 
p  E ( 0 , l )  and exactly n + S constraints were active at ( x ( ~ ) ) ,  dk ) ) ,  
then let := x ( ~ ) ;  
otherwise, let dk+l) := dk) .  

St? Let G k f l  be the constraint set resulting from Gk after deleting and adding 
constraints due to steps S3 and S5, respectively. With Vk+1 the corre- 
sponding feasible set and k := k + 1  return to step S2. 

The parameters p > 0  and p  E ( 0 , l )  can be chosen adaptively between fixed 
bounds in order to improve the progress of the algorithm. 

As we see immediately, during this algorithm all approximates z(k) are over- 
all feasible since the change z("l) := x(lC) only takes place in step S  7, 

- either if @ ( x ( ~ ) )  = & ( x ( ~ ) ) ,  which means that the piecewise linear 
support & of @ coincides with @ in x(lC), as well as obviously in z ( ~ ) ,  
such that, since ( X ( ~ ) , I ~ ( ~ ) )  minimizes (2.41), we have the inequality 
& ( x ( ~ ) )  5 & ( z ( ~ ) )  implying @(x(lC)) < +oo and hence the overall 
feasibility of x ( ~ ) ,  and continuing with the unchanged approximate 
would block the procedure; 

- or if ( x ( ~ ) ) ,  dk ) )  is a vertex of Vk  (corresponding to & having a kink in 
x ( ~ ) )  and the decrease of @ from to x ( ~ )  

is substantial with respect to the corresponding decrease of & and im- 
plies, due to @ ( x ( ~ ) )  - @(dk))  < 0  and therefore @ ( x ( ~ ) )  < +m, 
again the overall feasibility of ~ ( ~ 1 ) .  As an example see Fig. 2.2, with 
the correspondences Q f and 6 4. Here, starting from z ( l )  = x( l )  
with the related optimality cut, we find x ( ~ )  according to the feasibility 
cut being active there. Then we add a new optimality cut in x ( ~ )  due to 
step S  5, but keep z(2) := since @ ( x ( ~ ) )  > @(z(')) .  Hence we get 
next the trial point x ( ~ )  which--depending on the choice of p--could 
be a candidate for the next approximate d3)).  

The algorithm QDECOM was proposed by Ruszczyriski 12611, where the 
details including the proof of its finiteness can be found. The same author also 
provided an implementation of QDECOM which for a very large variety of test 
problems has shown to be highly reliable as well as efficient. 
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2.9 Interior Point Methods 
For the primal LP (2.1) and its dual (2.8), introducing for the latter one the 

slack variables si 2 0, i = 1, . . , n, we know from Prop. 2.12 that for a 
primal-dual pair of solutions the following system has to be satisfied: 

Defining the diagonal matrices X := diag (xi) and S := diag (si), the above 
system requires to find a solution (with e = (1, . . , I ) ~ )  of 

A ~ U + I S - c  
( x , )  := ( $2 ) = 0 (2.43) 

such that 
x 2 0 ,  s 2 0 .  

For the Jacobian of F we have 

which, due to our general assumption that rank(A) = m (see page 13), is 
nonsingular as long as Xi > 0, Si > 0, i = 1, - , n. Hence, having at hand a 
primal-dual feasible pair (2,Q,j.) satisfying the condition 

called strict feasibility or else interior-point condition, we may uniquely deter- 
mine the search direction of the Newton method for the solution of the system 
(2.43) with the conditions (2.44) by solving the linear equations 

F(2,  Q, j.) + J(2, Q, j.) ( g  ) = ( ' i )  (2.46) 

or equivalently 
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PROPOSITION 2.23 Given the strict feasibility condition (2.45), for any w E 
IRn : wi > 0 Vi, there are uniquely determined x, u, s satisfiing 

A proof of this statement may be found in S.J. Wright [308], for instance. Due 
to this statement the concept of the central path, playing an important role in 
the field of interior point methods, can be introduced. 

DEFINITION 2.8 For p > 0, theprimal-dual centralpath is dejned as 

This definition suggests to drive -t 0, due to the conjecture that the limit 

u--10 
8 (x*, u*, s*) = lim (x{p), u{P), s p)) (if it exists) yields a primal-dual pair of 

solutions according to (2.42). Now, starting again with a strictly feasible primal- 
dual pair (?, 6, b), we could, instead of (2.46), design a Newton search direction 

gTb 
in order to drive the system towards the central path for li, = -, such that we 

n 
had to deal with the system 

Finally, the two approaches (2.46) and (2.48) may be mixed by choosing for the 
latter one ali, instead of li, with some a E [0, I], where a = 0 corresponds to 
(2.46), whereas a = 1 reflects fully the goal to move towards the central path. 
Hence the Newton system becomes 

and for the corresponding search direction we have to solve the linear equations 

Thus we have the following conceptual 
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Primal-Dual (Interior Point) Algorithm 

SI  Find (xO, uO, so) satisfying the interior-point condition (2.45) and let 
k := 0. 

XkTSk 
S 2  For some a k  E [O,1]  and p k  = - solve 

n 

S 3  Let 

k k k  (xk+ l ,  uk+ l ,  sk+l) := (x , u , s ) + ak(Axk, Auk, Ask), 

where a k  is chosen such that (xk+', sk+l) > 0. If xk+lSk+le  < Ee 
for some small tolerance E, stop; else return to S 2  with k := k + 1. 

In practice, the requirement of a strictly feasible (xO, uO, so) as a first iterate in 
the above algorithm may involve severe difficulties. Instead, it is also possible- 
and much easier-to start with an infeasible first iterate, more precisely with 
some (2, C, 8) such that (2,s) > 0 is satisfied, but the equality constraints are 
violated, i.e. Gp := A2 - b # 0 andlor Gd := ATC + I 8  - c # 0. Instead 
of the system (2.50) for the search direction we then have to begin the above 
algorithm in step S 2  with the system 

0 I 
( A  0 O ) ( : ) = (  ) .  (2.51) 

S O X  -XSe + afie 

As soon as the first iterate becomes strictly feasible (equivalently, as soon as 
we can choose a k  = 1 in step S3), the subsequent iterates remain strictly 
feasible, such that (2.51) coincides with the original search direction (2.50) 
again. This modification of the above conceptual algorithm is referred to as 
infeasible interior point method. 

The linear system (2.51) (and (2.50) as well), due to the special structure 
of its coefficient matrix, may be reformulated to more compact systems with 
symmetric nonsingular coefficient matrices. First we eliminate As  using the 
last block of equations of (2.5 I), 

SAX + XAS = - X S ~  + a p e ,  

yielding 
AS = -9e + ajiX-'e - x-~SAX, 
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such that for the two other blocks of equations of (2.5 1) we have 

A ~ A U  +As = -Gd 
AAx - - -zip 

and hence due to (2.52) 

Hence, to determine the search direction with this so called augmented system, 
we first solve (2.53) for Au and Ax, and then insert Ax in (2.52) to get As. 
With the notation S; := diag (fi), X ;  := diag (A), the system (2.53) 
contains, with D := S-; xi, the nonsingular diagonal matrix - D - ~  such that 
we can eliminate Ax from 

to get 
Ax = D 2 ( A T ~ u  + Gd - S e  + afix-'e) 

such that the first block of (2.53)) yields 

AAx = AD2(ATnu + 2ird - ,$'e + afix-le)  = -GP , 

leading, together with (2.54) and (2.52), to the normal equations system 

There are many variants of primal-dual interior point methods, depending 
on the adaptive choices of the parameter a and of the steplengths ak, and on 
modifications of the right-hand-sides of (2.5 1) (or the augmented or normal 
equations system derived thereoff), among others. For more details on this 
variety of algorithms we refer to books especially devoted to this subject, for 
instance the ones of den Hertog [114], Roos-Terlaky-Vial[258], Wright [308], 
and Ye [309], just to mention a few. 

In order to get an efficient method in the frame of interior point algorihms, 
it is important to determine efficiently the search directions, to be evaluated 
in every iteration step. For this purpose it is certainly advantageous to have 
the reformulation (2.55), which amounts essentially to solve a system of linear 
equations 

M v = r ,  
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with M = A D ~ A ~  being a symmetric positive definite matrix. Therefore, M 
allows for a Cholesky factorization M = L  . L~ with L  being a nonsingular 
lower triangular matrix, such that the above linear equations can easily be dealt 
with by solving consecutively the two systems 

Ly = r and then L ~ V  = y. 

In general, interior point methods are said to be efficient for large scale 
LP's, in particular for those with (very) sparse coefficient matrices. However, 
this statement requires that with M being sparse also L  will be sparse such 
that solving the two last systems involving L  and L~ becomes very cheap. 
Unfortunately, this consequence does not always hold. In particular, if M 
is overall sparse, but nevertheless contains some dense columns, then very 
likely an undesired fill in of nonzeros into L  may happen. Hence, several 
heuristics have been designed to deal with the submatrices with dense columns 
separately, in order to maintain efficiency first for the sparse part and finally 
also for the rest of the system. The success of these attempts seems to depend 
substantially on the data structure of the LPYs considered. For instance, for 
two-stage SLP's with discrete distributions (and S large) we have-according 
to Fig. 1.1 on page 11 in the introduction-to expect dense columns in the 
leading band matrix containing the submatrices T I ,  . . , T ~ .  Based on many of 
our computational experiments we have to say that various interior point solvers, 
including those general purpose variants implemented in several commercial LP 
software packages, either fail with this problem class or else are clearly ruled out 
by some efficient implementations based on the simplex method, on Benders' 
decomposition as the L-shaped method, or on regularized decomposition as 
the algorithm QDECOM presented in Section 2.8. On the other hand, there 
are interior point implementations designed especially with attention to the 
data structure of two-stage SLP's and behaving in many cases better than the 
simplicia1 or decomposition type methods tested. To mention just one of these, 
BPMPD implemented by Mbsziros [204] behaves impressingly well. Not to be 
misunderstood: This does not mean that this solver is always the most efficient. 
It appears to be true with this class of problems that there are implemented 
solvers of various types, designed regarding our data structure, each of which 
may outperform the others on various subsets of problem instances. 

3. Nonlinear Programming Prerequisites 
Considering for instance the chance constrained problem (1.6) on page 9 

(under some additional assumptions), or else the regularized master program 
(2.41) on page 54, we shall encounter NLP's of the general form 
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min f ( x )  

S .  t. gi(x) 5 0, i = 1,.  a ,  m, 

where we henceforth assume the functions f : IRn -+ IR and gi : IRn --t IR to 
be convex. 

DEFINITION 3.1 A set C g IRn is convex iffor arbitrary x ,  y E C and for any 
X E [O,1] holds Ax + (1 - A) y E C. Then a function cp : C --t IR is convex if 
cp(Xx + (1  - X ) Y )  5 Xcp(x) + (1 - WY) v x ,  Y E C ,  VX E [O,  11. 

This definition implies further properties. First, 

PROPOSITION 3.1 I f c p  : IRn - IR is convex, then cp is continuous. 

Furthermore, a convex function need not be differentiable everywhere, but it 
is-under mild assumptions-subdimentiable. 

DEFINITION 3.2 A vector g E IRn is a subgradient of a convex function cp at 
a point x, if 

gT(. - 2) I 4.) - cpb) v.. 
The set of all subgradients of cp at x is the subdzferential of cp at x, denoted by 
dcp(4. 
Ifdcp(x) # 0, then cp is called subdzferentiable at x. 

A typical result for convex functions is referred to as 

PROPOSITION 3.2 Given a convex function cp : IRn + IR, then for any 
x E IRn the set dcp(x) is nonempty, convex, closed, and bounded. 
In addition, cp is diferentiable in x with the gradient i j  = Vcp(x) ifand only if 
acp(x) = { i j ) ,  i.e. acp(x) is a singleton. 
Finally, given a convex function $ : Rm - IR and a linear afine mapping 
y : IRn - IRm dejned by y(x) := d + Dx with some d E IRm and 
D E IRmXn, then f : IRn + IR composed as f ( x )  := $(y ( x ) )  is convex, 
and for its subdiferential holds the chain rule df  ( x )  = D ~ ~ $ ( ~ ( X ) ) ,  or 
equivalently 

h E df  ( x )  * 39 E d$(y(x))  : h = ~ ~ g .  

For more detailed statements on subdifferentiability o f  convex functions we 
refer to Rockafellar [249]. 

Continuing the discussion o f  problem (3. I), due to the convexity assumption 
we have that the feasible set 

is convex, and that any local minimum P E B is at the same time a global 
minimum, i.e. f ( 2 )  = min f ( x ) .  

X E B  
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Henceforth, in addition to convexity, we assume the functions describing 
problem (3. l), f : Rn t IR and gi : Rn -t IR, to be continuously differen- 
tiable. 

The fact of some continuously differentiable function cp : Rn - IR to be 
convex obviously implies the subgradient inequality of Def. 3.2 at any x E IRn 
with g = Vcp(x); but now also the reverse conclusion is valid. 

PROPOSITION 3.3 cp is convex ifand only i f  

Prooj Assume that (3.2) holds true. Then for arbitrary y, z E IRn, X E (0, I), 
and x = Xy + (1 - X)z follows 

implying 

i.e. the convexity of cp. 
Assume now cp to be convex. Then, for any x, y E IRn and X E (0, I) ,  

together with the mean value theorem we get, with Ox E (0, I), 

= (y - x ) ~ V ( ~ ( X  + Ox(1 - X)(y - x)) 

yielding (3.2) for X t 1. 0 

To get optimality conditions for the NLP (3.1) assume that we have an optimal 
solution 2 E I3. Let I(2) := {i I gi(2) = 0). For i @ I(2), i.e. for gi(2) < 0, 
it follows that gi(2 + az)  5 0 for any z E IRn if we choose a > 0 small 
enough. On the other hand, for z' E IR" with .ZTvgi(2) < 0 Vi E I($), there 
is an 6 > 0 such that for i = 1, . , m holds gi(2 + az') 2 0 V a  E (O,6) and 
hence 2 + az" E l3 V a  E (0,6). For 2 to be a minimal point off  in l3 it follows 
that f (2 + a2)  - f (2 )  1 0 V a  E (O,6). For 2 to be a solution of (3.1) we 
have therefore the (necessary) condition 

zTvgi (2) < 0 , i E I(2) implies that z T v  f (2) 2 0 
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Hence we know the requirements for all directions z satisfying zTvgi(2) < 
0 Vi E I(*), but for z # 0 such that zTvgi(2) = 0 for at least one i E 
I($), it is not clear what we should expect. For technical reasons which will 
be apparent below we strengthen the above condition slightly and state the 
somewhat voluntary modification as regularity condition 

RC For any optimum 2 of (3.1) holds that 

zTvgi(2) 5 0 Vi E I(2) implies z T v  f ( 2 )  2 0.  

REMARK 3.1 Observe that for linear constraints the regularity condition is 
always satisJied: Having 

T 
implies that for any z such that zTvgi(2) = -a(i) z 5 0 it follows that 

Hence, there is an ti > 0 such that 2 + a z  E B V a  E (0, b), and due to the 
optimalty of 2 follows f (2 + az)  - f (2) 2 0; in view of the mean value theorem 
the last inequality implies for a J, 0, that zTV f (2) 2 0, i.e. is satisJied. 

In the nonlinear case it may happen that the above regularity condition does 
not hold. Take for example the elementary problem 

Since there is only one feasible solution, 2 = 0, this is simultaneously the 
optimal solution of theproblem. Here zTvgi(2) < 0 means that 2 . z - 2 < 0, 
which is true for all z E lR1 since 2 = 0, but z T v  f (2) = z . 1 < 0 Vz < 0, 
such that RC is violated. 0 

To check the condition RC seems to be almost impossible, in general, since 
it would require to know an optimal solution 2 E B in advance, which usually 
is not the case. However, there are various other regularity conditions which 
are easier to check and which imply the validity of dd. For convex problems 
(3.1) a very popular assumption is the Slater condition: 

RC For (3.1) there exists a feasible point 5 such that gi(5) < 0 Vi. 

Similarly to Remark 3.1 the Slater condition needs to be required for non- 
linear constraints only, whereas for linear constraints it may be abandonned. 
Without proof we mention that, for convex problems, implies RC. 
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3.1 Optimality Conditions 
We just have seen a particular condition, m ,  which obviously is sufficient 

for the optimality of P in (3.1): For any direction z  leading from P into B, 
i.e. for which h + a z  E B for sufficiently small a > 0, and therefore in 
particular for which gi(5 + a z )  5 0 = gi(2) Vi E I(?), it follows that 
zTVgi(2) I 0 Vi E I ( 2 ) ,  which by RC implies z T v  f ( 2 )  2 0. Hence, from 
Proposition 3.3 we get f (P+az) - f ( 2 )  2 a z T v  f ( 2 )  > 0 for a > 0 and such 
the optimality of P for (3.1). However as discussed above, RC is anything 
but operational for finding optimal solutions. Nevertheless, it is useful for 
deriving more tractable optimality conditions, called the Karush-Kuhn-Tucker 
conditions (KKT): 

PROPOSITION 3.4 Assume that for the convexprogram (3.1) the Slater con- 
dition is satisjed. Then an P E B solves (3.1) ifand only ifthere exists 
an O E IRm such that the following conditions hold: 

i )  V f ( P )  + C O . j v g i ( P )  = 0 
i=l 

ii) g@) 5 0 Vi 
iii) Oi-gi(P) = OVi 
i v )  O 2 0 .  

Proox To show that (3.3) is sufficient for P to be a solution of (XI), we observe 
first that by (3.3) ii) the point P is feasible. Further, for all i E I ( 2 )  we have 
gi(P) = 0 and hence for arbitrary y E B due to Proposition 3.3 

Using again Proposiiton 3.3 as well as (3.3) iii) and i v ) ,  it follows from con- 
dition i )  in (3.3) that 

To show the necessity of KKT assume that f ( 2 )  = min f (x). Since with 
aF13 

the assumed Slater condition the regularity condi t ion-m holds as well 
at 2,  we know that with the active set I(?) = { i  I gi(P) = 0 )  

zTvg i (2 )  5 0 Vi E I(?) implies z T v  f ( 9 )  2 0 .  
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Then from the Farkas lemma (Proposition 2.13, page 2 1) it follows that 

such that with ii = 0 Vi $! I (2 )  the conditions (3.3) i)-iv) are satisfied. 

Since there are, in addition to (3.1), various other NLP formulations, the 
KKT conditions have to be adapted correspondingly. If we have for instance 
the NLP 

min{f ( x )  I g(x) F 0, x 2 0 )  (3 -4) 

with the vector valued function g(x) = (gl(x) ,  . , gm(x))T and all gi and f 
being continuously differentiable and convex as before, we get immediately the 
KKT conditions 

To see this, deal with the additional constraints -x < 0 just as with g(x)  < 0. 
Introducing additional multipliers w E IRT (for -x < 0) and afterwards elimi- 
nating them again leads to the inequalities i )  and the additional complementarity 
conditions i i) .  

Coming back to the original NLP (3. l), the corresponding KKT conditions 
(3.3) have an interpretation which may be of interest also with respect to solution 
methods. Defining the Lagrange function to (3.1) as 

it is obvious that for any fixed ii 2 0 the function L(.,G) is convex in x. 
Considering (3.3) i )  we have, with Vx being the gradient with respect to x, 

such that L(2, Q )  = min L(x,  6) .  On the other hand, for any fixed Z the 
x E IR" 

function L(Z, a )  is linear affine and hence concave in u, resulting in the inverse 
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inequality to (3.2) and implying with QTg(2) = 0 due to (3.3) ii) and iii) that 

such that L(f  , Q) = max L(2, u). 
u20 

Hence, the KKT point (2, G > 0) of Proposition 3.4 is a saddle point of the 
Lagrange function: 

From (3.6) we get the following saddlepoint theorem which may also be inter- 
preted as a strong duality theorem for nonlinear programming. 

PROPOSITION 3.5 Iffor the Lagrange function to (3.1) there exists a saddle 
point (2, ii 2 O), then 

rnax inf L(x,u) = min supL(x,u), 
"20  .€Rn x€Rn u20  

and (2, Q) solves each of these two problems. 

For a proof of this statement see e.g. Luenberger [182]. 
By definition of L(-, +) follows min sup L(x, u) = min{ f (x) I g(x) 5 0). 

" u20 

Therefore, min sup L(x, u) is considered as the primal problem, whereas, in 
2120 

contrast, max inf L(x, U) is its dual. 
u20 x 

3.2 Solution methods 
Several types of solution methods have been proposed for the numerical 

approximation of solutions for nonlinear programs (3.1). Many of these ap- 
proaches may be found in the books of Bazaraa-Shetty [9], Bertsekas [14,15], 
Geiger-Kanzow [103], and McCormick [203], just to mention a few. Most of 
the methods dealt with in this literature belong to one of the following cate- 
gories: 

rn cutting plane methods 
(e.g. Elzinga-Moore [73], Kelley [159], Kleibohm [166], Veinott [297]) 

rn feasible direction methods (e.g. Topkis-Veinott [290], Zoutendijk [3 111) 

rn penalty methods (e.g. Fiacco-McCormick [SO]) 

rn Lagrangian methods (e.g. Bertsekas [14]). 
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In stochastic programming several variants of cutting plane methods have 
mainly been used so far. The reason for this fact seems to be, that in all other 
classes of NLP solution methods, within any iteration there are iterative subcy- 
cles requiring the repeated evaluation of gradients of some modified objective 
functions containing integral functions (expected value functions or probability 
functions) which is expensive to perform. Moreover, using these gradients, 
nonlinear equations then had to be solved. 

Therefore, we restrict ourselves to sketch a few prototypes of cutting plane 
methods, as they are used in stochastic programming. First, let us consider the 
NLP (3.1) 

min {f(x) I gi(x) 5 0, i = l , . . . , m }  
x € R n  

where in addition to the assumptions on page 6 1 we require that 

be bounded and that 3 5 E int B, the latter condition being satisfied if there 
exists a Slater point 5, for instance (see a on page 63). Then, problem (3.1) 
is equivalent to 

min 8 
s.t. gi(x) 5 0, i = l , . . . , m ,  (3.8) 

f(x) - 8 5 0. 

Obviously the additional condition 8 5 f (5) + y with some constant y > 
0 does not change the solution set of (3.8). Hence, instead of this problem 
we may consider the minimization of the linear function cp(x, 8) - 8 on the 
bounded convex set := {(x, 8) 1 x E B, f (x) 5 8 5 f (5) + y), for which 
obviously a point (4,8) E int exists as well. Therefore, we may confine our 
considerations on NLP's of the type 

with a bounded convex set B containing an interior point 3. In this situation 
there exists a convex polyhedron P such that P > B. In other words, due to 
Section 2.2 there are linear constraints defining the feasible set P, and it holds 

Now we may describe a first cutting plane method as proposed originally by 
Veinott [297] and discussed later by Kleibohm [166]: 

Cutting Planes: A First Outer Linearization 

S I Find a 5 E int B and a convex polyhedron Po 2 B; let k := 0. 
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Solve the LP min{cTx I x E Pk) ,  yielding the solution 2(k).  
~f ?(k)  E B, stop; 2(k)  solves (3.9). 
Else, determine d k )  E [$("), it] n b d  B (with [idk), 51 the straight line 
between 2(k)  and 5, and bd B the boundary of B). 

Determine a supporting hyperplane Hk of B in ~ ( ~ 1 ,  i.e. find € En 
T 

and a k  = a(k) dk )  such that 

T 
Hk := { x  I a(k)Tx = a,} and a(') dk)  > 2 a(k)Tx v x  E B. 

T 
Define Pk+l := Pk n { x  I x 5 a k } ,  let k := k + 1, and return to 
step S 2. 

In general we may not expect the iterates dk)  E B or $ ( k )  $4 B to converge. 
However the following statement is easy to prove. 

PROPOSITION 3.6 Under the above assumptions, the accumulation points 
of Idk))) as well as of {z(IC)) solve (3.9). Furthermore, the objective values 
{ c T d k ) )  and { c ~ z ( ~ ) )  converge to min{cTx I x E B}. Finally, in every 
iteration we have an error estimate with respect to the true optimal value 6 of 
(3.9) as 

Ak = min cTz(') - cT f ( k ) .  
l=l,...,k 

For the proof of this statement we refer to the NLP literature mentioned on page 
66. 

REMARK 3.2 Observe that due to c Pk Vk it follows cTdk+') > - 
c T d k )  whereas the sequence { c ~ z ( ~ ) }  need not be monotone. Howevec since 
dk)  E B Vk, we have cTz(" ) 6 Vk, whereas cT$(IE) 5 6 as long as dk )  $4 B. 
Obviously, the above error estimate yields an additional stopping criterion in 
step S 2 according to Ak  < E, with a predetermined tolerance E > 0. 

As to the supporting hyperplane Hk: For the feasible set 

with G ( x )  := m.m gi(x) we determine in S 2 the (unique) boundary point 
llz<m - - 

z(k)  E [2(k) ,  51 n { x  I G ( x )  = 01, and afterwards we define the hyperplane 
T 

HI, := { x  I a(k) x = a k )  with a(k) E d ~ ( z ( ~ ) ) ,  which may be chosen e.g. as 

a(*) = v g j ( z ( * ) )  foranyj : S j ( ~ ( k ) )  = G ( Z ( ~ ) ) ,  and then let ak := a(k)Tz(k).  
Due to (3.2). page 62, itfollows a(k)Tx 5 ax V x  E B, whereas a ( ' ~ ) ~ ? ( * )  > aa. 

T 
Hence,with the inequality x 5 ak added in step S 3 all feasible points of 
B are maintained, and the outer approximate 2ik) is cut of(see Fig. 3.1). 
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Figure 3.1. Three cycles of Veinott's cutting plane method. 

In stochastic programming several cutting plane methods are used, either im- 
plicitly of the above Veinott type to solve recourse problems, or else explicitely 
of an appropriate type for the solution of problems with probabilistic constraints 
as (1.6), for instance. In the latter case, we usually have special NLP's as 

min cTx 
s.t. a(i)Tx 2 bi, i = 1, * , m, (3.10) 

F ( x )  2 a ,  

where F ( x )  = P(w I T x  2 h(w) )  with a given probability distribution P. 
We shall briefly describe two fiuther cutting plane approaches specialized to 

the problem type (3.10) under the following assumptions: 

F  is a concave continuously differentiable function; 

T 
Bli, := I X  1 x  2 bi, i = 1,. a ,  m) is bounded, and hence so is 
23 = Bli, n { x  I F ( x )  2 Q); 
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3xS E Blin being a Slater point for the nonlinear constraint, i.e. satisfying 
F(xS) > a. 

The following method was originally proposed by Zoutendijk and later on 
specialized for chance constrained programs in SzLntai [283]. Obviously it is 
closely related to the above Veinott approach. 

Cutting Planes: Outer Linearization with moving Slater Points 

S 1 Let y(l) := xS, B1 := Dli,, and lc := 1. 

S 2 Solve the LP min{cTx I x E Bk) yielding a solution ~ ( ~ 1 ) .  

S 3 1f F(x(") > a - E (for some predefined tolerance E > 0), then stop; 
else add a feasibility cut according to the next step. 

S 4 Determine z(k) E [ Y ( ~ ) ) ,  x("] n {x I F(x) = a);  
B ~ + ~  := B~ n {Z 1 V F ( Z ( ~ ) ) ~ ( X  - J k ) )  2 0); 

1 y(k++l) := y(k) + -(z(k) - y (k) ) ; lc:=k+l;returntostepS2. 
k + l  

Under the above assumptions on problem (3.10) the same statements concerning 
convergence and error estimates as in Prop. 3.6 hold true for this algorithm. 

REMARK 3.3 Whereas in the previous method the interior point 5 was kept 
$xed throughout the procedure, in this variant the interior point of the set 
{x 1 F(x) 2 a) (originally y(l) = xS) is changed in each cycle as shown in 
Fig. 3.2. Since for any convex set V with some y E int V and any z E bd V 
it follows that Xz + (1 - X)y E int V VX E (0, I), we conclude that in step 
S 4 with y(k) interior to {x I F(x) 2 a} and z(" on its boundary, we get 
y("l) E {x I F(x) > a) and hence again an interior point. Howevel; these 
changes of the interior (Slater) points may improve the convergence rate of the 
algorithm. 

Again for problems of the type (3.10) with the above assumptions modified 
as 

3xS E int Blin being a Slater point for the nonlinear constraint, i.e. sat- 
isfying F(xS) > a ,  let U be such that cTx < U Vtc E B, and assume 
(normalize) c to satisfy llcll = 1, 

we present the following method adapted by Mayer [201] from the central 
cutting plane method introduced by Elzinga-Moore [73] for general convex 
nonlinear programs. Similar methods have been investigated by Bulatov [34] 
as well as Zoutendijk [312] and Zukhovitskii-Primak [3 141. 
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Figure 3.2. Outer linearization with moving Slater points. 

A Central Cutting Plane Method 

S I  Let y(l) := xS, k := 1,and 

S 2 Solve the LP rnax{q I (xT,  I ) ) ~  E Pk) yielding ( x ( ' ) ~ ,  q(k))T as a 
solution. 

S 3 1f v(k )  < (e ((e > 0 a prescribed tolerance), then stop; 
otherwise 

- if F ( x ( ~ ) )  < a ,  then go to step S 4 to add a feasibility cut; 
- else go to step S 5 to add a central (objective) cut. 

S 4 Determine dk)  E [y(lC), x(')] n { x  I F (x )  = a) and let 

P,+, := pk n { (xT ,  I))T I V F ( Z ( ~ ) ) ~ ( X  - z@))  - / I V F ( I ( * ) ) ~ I ~  2 01, 
y(k+l) := y ( k ) ,  k := k + 1, and go to step S 2. 

S 5 Replace the last objective cut by cTx + 7 I cTdk)  * Pk+l. 
1f F ( x ( ~ )  > a, then set y(k+l) := x ( ~ ) ,  
else let &+I) := y(k). 
With k := k + 1 go to step S 2. 

An outer (feasibility) cut according to step S 4  is illustrated in Fig. 3.3 whereas 
objective (central) cuts generated in step S 5 are demonstrated in Fig. 3.4. 
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Figure 3.3. Central cutting plane method: Outer cut. 

Figure 3.4. Central cutting plane method: Objective cuts. 

REMARK 3.4 The basic ideas of this algorithm are obviously related to the 
concept of Hesse's normal form of a linear equation: The equation dTx = p 
is said to be in normal form iflldll = 1. Then, as is well known, a = dT - p 
yields with I a1 the Euclidean distance of y to the hyperplane { x  I d rx  = p), 
with a > 0 ifand only i f d ry  > p. Hence, - for an arbitrary equation aTx = b 

a' b 
with a # 0 the equivalent equation -x = - is in normal form such that 

llall llall 
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aT b 
r ]  5 - y - - or equivalently IIallr] _< aT - b yields an upper boundfor the 

llall llall 
distance r ]  of any y E { y  I aTy 2 b) to the hyperplane { x  I aTx = b). Now it 

T 
is evident thatsolvingan LPof the form max{r] I d(i) x -  Ild(i)llr] 2 pi,  i E I )  
as in step S 2 yields the center 2 and the radius r j  of the largest ball inscribed into 

. T 
thepolyhedron { x  I d(') x 2 pi, i E I ) ,  as was pointed out in Nemhauser- 
Widhelm [209]. 

Therefore, with 

Jk := { j  _< k I iteration j generates a feasibility cut) 
Ik := { l , . . . , k ) \ ~ ~  
Uk := min{U, c ~ x ( ~ ) ) ,  

ZE zk 

in the Ic-th cycle of this algorithm we determine the center x ( ~ )  and the radius 
r ] ( k )  of the largest hypersphere inscribed into the polyhedron Pk defined by 

and, depending on x ( ~ )  6 B or x ( ~ )  E B, we add a feasibility cut or else a 
central cut, respectively. 

PROPOSITION 3.7 Under the above assumptions for the central cuttingplane 
method holds lim r ] ( k )  = 0. IfU > min cTx, then every convergent subse- 

k+oo xEB 
quence of {x@) I k E I k )  converges to a solution of (3.10). 

For the proof and for further details on the convergence behaviour of this 
algorithm we refer to Elzinga-Moore [73]. 



Chapter 2 

SINGLE-STAGE SLP MODELS 

1 Introduction 
In this chapter we consider stochastic programming problems which repre- 

sent a single decision stage. The decision is to be made "here and now" and 
the models do not account for any corrective (recourse) actions which might 
be available after the realization of the random variables in the model becomes 
known. Such type of models typically involve, either in the constraints or in the 
objective function, or in both of them, random variables of the following form 

where J : R -+ Rr is a random vector on a probability space (a, 3, P). T ( J )  
denotes a random s x n matrix, h(J)  E RS stands for a random vector, both 
depending on the random vector J .  The support o f t  is defined as the smallest 
closed set Z c Rr having the property I P ( J  E E) = 1. 

For being more specific, we assume that the dependence is defined in terms 
of affine linear relations as follows: for all 5 E Z we have 

where T ,  T j  E RSXn are deterministic matrices and h, hj E IRS are determin- 
istic vectors, j = 1, . . . , r .  

In this chapter the particular form (1.2) will not be used explicitly. All we 
need is the joint probability distribution of ( T ( t ) ,  h(c)) which will be presup- 
posed as known throughout. As for stochastic programming in general, the 
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basic assumption is that the probability distribution of (T((), h(()) does not 
depend on x. This means that our decision has no influence on the probability 
distribution of the random entries in the model data. 

If in the constraints, [(x, () frequently plays the role of a random slack 
variable in a random linear inequality. For instance, taking the inequality 
T(()x 2 h((), this inequality can evidently also be written in the form 
5(., 5') 2 0. 

For later reference, we write (1.1) also in a row-wise form as 

ci (x; () := tT(()x - hi((), i = 1, . . . , s, (1.3) 

where the components of the n-dimensional random vector ti(() are the ele- 
ments of the ith row of T((), i = 1, . . . , s. Alternatively, (1.1), may be written 
in a column-wise fashion as 

n 

C h  0 = C ~ j ( t ) x j  - h ( 0 ,  (1.4) 
j=l 

where the s-dimensional random vector Tj (() denotes the jth column of T((), 
j = 1, . . . , n. Thus [(x, () can be regarded as an affine linear combination 
of random vectors. Our assumption is that the joint probability distribution of 
these random vectors is known. The coefficients in the linear combination are 
the decision variables xj, consequently the probability distribution of c(x, () 
will depend on our decision. We control the probability distribution of [(x, (), 
by controlling its realizations, according to (1.4). 

The question arises, what can be stated about the probability distribution 
of ((2, ()? In particular, assuming that the joint probability distribution of 
(Tj ((), j = 1, . . . , n; h(()) belongs to a given parametric family of distribu- 
tions, for which families will the affine linear combination [(x, () belong to 
the same family? An example of a family, for which the answer is affirmative, 
is the class of multivariate normal distributions. This question will be further 
pursued in Section 2.3, in connection with separate probability constraints. 

Note that a similar question also arises in mathematical statistics regarding 
linear statistical models. In that case h(() represents an error (noise) term, 
which is usually assumed as being stochastically independent of the random 
vectors Tj((). In mathematical statistics we are dealing with a random vector 
c with unknown distribution and the goal is to choose x in such a way, that 
the distribution of [(x, () provides a good approximation'in a statistical sense 
to the distribution of [. For achieving this, the xj's are considered as random 
variables. The starting point is a joint sample according to the distribution of 
([, Tj((); j = 1,. . . , n) and assuming the linear model (1.4), the aim is to 
construct unbiased estimators for the Xj's. 

In stochastic programming we face a different situation. The primary entity 
is the given joint distribution of (Tj((), j = 1,.  . . , n; h(()) and the goal is 
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to achieve a probability distribution of C(x, E) with advantageous properties, 
whereby x is considered as being deterministic. To make this precise, we will 
attach a quantitative meaning to the term "advantageous" and will arrive this 
way at a classification scheme for the different classes of SLP models as follows: 

rn First we define a function Q : T -+ IR1 for evaluating random vectors, where 
T is some linear space of s-dimensional random vectors defined on a prob- 
ability space (R, F, P). For instance, T will be frequently chosen as the 
linear space of random vectors with finite expected value. For each random 
vector 19 E T, ~ ( 8 )  is interpreted as a quality measure in the corresponding 
modeling approach. Depending on the interpretation of ~(19) as either ex- 
pressing opportunity or risk, "advantageous" will mean that higher or lower 
values of ~(19) are considered as preferable, respectively. In the latter case 
Q will be called a risk measure. The probability distribution function of 19 
will be denoted by F8 and O will denote the support of 19. In the special 
case s = 1, T is some linear space of random variables. In the sequel, the 
term random vector will always mean that s > 1 is permitted whereas the 
term random variable will indicate that s = 1 is assumed. 

rn Based on the chosen function Q for evaluating random variables, decision 
vectors x will be evaluated as follows. We define the corresponding evalu- 
ation function V : IRn + IR1 by substituting C(x, 5') into Q: 

provided that c(x, E) E T holds for all x. V(x) will be interpreted as a 
quality measure for x and will be employed for building SLP models. For 
indicating that the evaluation involves all components of the random vector 
simultaneously, we will call V a joint evaluation function. 

Alternatively, when dealing with constraints, it may make sense to as- 
sign quality measures to the components of <(x, t) separately. If Q is de- 
fined for random variables and Ci(x, () E T holds for all x and all i then 

(x) := e(Ci (x, J)) serves for evaluating x for the ith component of C(x, 0, 
i = 1, . . . , s. Concerning V,, the term separate evaluation function will be 
employed, for pointing out the fact that the components of the random vector 
((x, () are evaluated separately. If s = 1 holds then ~ ( x ,  <) is a random vari- 
able and both adjectives "separate" and "joint" apply. This ambiguity will 
have no substantial influence on the discussions concerning SLP models. 

Having chosen Q, the evaluation function V is uniquely defined. The different 
SLP model classes will correspond to different choices of the quality measure 
Q for random vectors. 
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T will be one ofthe following linear spaces of s-dimensional random vectors: 

L: := { the set of all random vectors on (R ,  F ,  P )  ), 

L," := L F ( R , T ,  P )  = ( 1 9  1 3C : IP(1119112 > C )  = O), 

where Li is the space of s-dimensional random vectors with finite expected 
value, C: stands for the space ofrandom vectors with finite secondmoments, and 
L," denotes the space of random vectors having a bounded support. 

[It 112 = &- is the ~uclidean norm and lltlll = ELl Iti[ holds. 
Note that up to this point we have viewed [ ( x ,  J )  = T ( J ) x  - h(J)  as an 

affine linear combination of random vectors. Alternatively, we can also consider 
[ ( x , J )  as a deviation between T ( J ) x  and h(J) .  In mathematical statistics 
an interpretation could be fitting T ( J ) x  to h(J)  in a least squares sense. In 
this setting, [ ( x ,  J )  would be an error term. Assuming some distributional 
properties of the error term and having a sample for ( T ( J ) ,  h (J) ) ,  the goal in 
mathematical statistics is to find a good fit. In stochastic programming we 
proceed analogously as before: quality measures for random variables will be 
introduced and stochastic programming models will be built by employing the 
corresponding evaluation function V. We interpret the quality measure in this 
case as deviation measure. 

As mentioned above, SLP models will be built by employing evaluation 
functions V corresponding to some quality measure Q. The different SLP model 
classes will be discussed in a framework of prototype models. For employing 
joint- and separate evaluation functions in the constraints, we consider the 
models 

where 6 and ~i are prescribed, i = 1, . . . , s, and B is a polyhedral set 

with A being an m x n matrix and x, b, I, and u having corresponding di- 
mensions. The symbol oc means that any one of the relations 5, =, and 2 is 
permitted row-wise. 
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For models with the evaluation function being in the objective, we consider 
the prototype model 

max cTx + V ( x )  
s.t. x  E t3. 

Alternatively, we will also employ prototype models with reversed direction 
of the inequalities in the constraints of (1.7) and with minimization instead 
of maximization in (1.9). To see the reason for this, let us assume first, that 
for some model class the evaluation function V  is a concave function. In this 
case, both (1.7) and (1.9) are convex programming problems. Assume next 
that for some other SLP model class V  turns out to be a nonlinear convex 
function. In this case our prototype models become non-convex optimization 
problems, whereas their counterparts with reversed inequality constraints and 
minimization in the objective will be convex programming problems. The 
point is that the chances for finding efficient algorithms are much better for 
convex optimization problems than for the non-convex case. This subject will 
be further pursued in Section 6. 

From the modeling viewpoint, stochastic programming models can have a 
composite form, involving several different random vectors ofthe type (1.1). We 
have chosen to work with the above prototype models because they serve well 
for explaining the basic ideas which can then be applied to composite models in 
a straightforward way. For some model classes c  = 0 will be required in (1.9). 
The reason is that, for those model classes, V  has merely some generalized 
concavity property which might be destroyed by adding a linear term. 

The objective function of (1.9) consists of a sum of two terms whereas in 
applications they are usually weighted with respect to each other. Weighting 
can also be interpreted in terms of duality. We take as an example the following 
weighted version of (1.9): 

max cTx + X V ( x )  
s.t. x  E D  

with a positive weight A. This can equivalently be written in the form 

v ( X )  := max c T x + X ( V ( x )  - 6) 
s.t. x  Et3 

where -An is merely a shift in the optimal objective value. This problem is 
called a Lagrangian relaxation of the first optimization problem in (1.7). The 
corresponding Lagrange-dual-problem is then 

For the duality relationships between (1.7), (1.1 l), and (1.12) see Bazaraa and 
Shetty [9]. 
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For the sake of simplicity of presentation, we assume in the sequel that 
positive weighting factors (if any) are taken into account in the definition of c. 

The simplest way for assigning a quality measure to ( ( x ,  J )  is taking ex- 
pectation. To see how this works, let us discuss the application of the idea 
for including a system of random inequalities ( ( x ,  () 2 0 into an SLP model. 
We choose separate evaluation for the components of ( ( x ,  J )  and employ the 
quality measure 

~ ~ ( 1 9 )  := E p ] ,  19 E L: (1.13) 

for the components. Assuming the existence of the expected values of T ( J )  
and h ( J )  and setting tci = 0 for all i, this leads to the following formulation of 
(1.7): 

max cTx 
s.t. q x  > h i ,  i=1 ,  ..., n 1 (1.14) 

x  E l 3  

where := E E  [ t i (<) ]  and hi := E E  [hi(<)] hold, with the components of ti ( J )  
being the elements of the ith row of T ( J ) .  The resulting deterministic LP 
problem is called expected value problem. Unfortunately, the expected value 
problem is frequently used as a substitute for the SLP problem. While in some 
(rare) situations this might be appropriate, in general it is a very crude approach: 
the whole probability distribution is collapsed into a one-point distribution. 
It should by no means be used as the single way for representing ( ( 2 ,  J )  in 
the model. However, accompanied by a constraint or objective part involving 
some other quality measure, it can prove to be an important constituent of the 
SLP model. For examples of this kind see Section 7.3. In financial portfolio 
optimization, the most prominent and widely used model of the combined type 
is the model of Markowitz [189], see also Elton et al. [72]. 

For discussing the next idea, our starting point is again the system of random 
inequalities ( ( x ,  J )  > 0. We interpret this as prescribing the sign of ( ( x ,  J )  and 
consider the inclusion of the system of random inequalities 

into the stochastic programming model. The difficulty is that, besides the 
decision vector x, the constraints also depend on the random vector J .  One of 
the earliest proposals for overcoming this difficulty is dye to Madansky [185], 
[186], who suggested a worst-case approach by prescribing the inequalities 
(1.15) for all J E E, with E denoting the support of the random vector J .  We 
assume that E is a bounded set. This leads to the following formulation of (1.7): 

max cTx 
s.t. T ( J ) x  L  h (J ) ,  J E E 1 (1.16) 

x  E a. 
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Madansky termed the solution of this optimization problem as fat solution. The 
approach corresponds to the following choice of the quality measure 
Q,,: 'Y = C r  is the set of random vectors having a bounded support and 

A 

~ ~ ~ ~ ( 1 9 )  := min min gi, 19 E c:, 
GE@ l<i<s 

where 0 is the support of 19. The formulation (1.16) corresponds to the model 
(1.7) with the inequality constraint chosen as V(x) = Q,,(<(x, J)) 1 0. The 
feasible domain V of (1.16) is the intersection of convex sets and thus it is 
obviously convex: 

In the special case of a finite discrete distribution, E is a finite set and (1.16) 
reduces to a linear programming problem. In general, (1.16) may turn out in 
many cases as being infeasible, especially if = contains infinitely many points. 

Recently, after the new optimization area of semidefinite programming has 
emerged in the 1 WOs, it became numerically feasible to compute fat solutions 
also for bounded domains E containing infinitely many points. The idea is 
that instead of considering = as an index set, J E is explicitly handled 
as a constraint in (1.16) and J is considered as a deterministic variable. For 
instance, with ellipsoidal domains E, (1.16) can be reformulated as an equivalent 
semidefinite programming problem, see Ben-Tal et al. [13] and the references 
therein. The cited paper also presents an extension of this approach to the class 
of semidefinite programming problems. Along with the extension, the approach 
has also been renamed as robust optimization. There are important application 
areas where working with fat solutions makes sense. As an example, let us 
mention structural design for mechanical structures, see Ben-Tal et al. [13]. 
Note that the term "robust optimization" is also used for other model classes; 
we will return to this point later. 

Although in robust optimization, as defined above, = is called the domain 
of uncertainty, the approach has nothing to do with stochastic programming or 
with stochastic modeling in general. It can be considered as a kind of worst- 
case parametric programming approach. If, as in our case, = is the support of a 
random variable J, the probability distribution of J does not play any role: the 
models will deliver identical results for all random variables having the same 
support. For these reasons, the topic of the above kind of robust optimization 
will not be pursued fbrther in this book. 

A straightforward idea for generalizing (1.16) is to consider x as a feasible 
solution, if it satisfies all random inequalities for restricted subsets of the sup- 
port. A natural idea for imposing such a restriction is to consider subsets with 
prescribed probability levels. SLP models of this class have been introduced 
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and first studied by Charnes and Cooper [38], Miller and Wagner [205] and by 
Prkkopa [226]. 
The corresponding quality measure is 

defined on the set of all random vectors on (a, F, P). The evaluation function 
V ( x )  (see (1.5)) will be denoted for this model class by G(x). This leads to 
the concept of probability functions, defined as follows: 

Taking constraints of the form G(x) 1 a, with a being a high probability 
level (for instance, a = 0.99), the prototype model (1.7) assumes the form 

By choosing a = 1 in this model, we obtain a generalization of the concept of a 
fat solution, discussed on page 8 1. In this case x E 23 is considered as feasible, 
if the random inequalities hold in an almost sure sense, meaning that they hold 
except for a subset of f l  having probability measure zero. 

Taking the quality measure separately for the components of [ ( x , t ) ,  
the constraints in (1.7) are Gi(x) 2 ai, with the probability functions 
Gi(x) := Pg ( tT(t)x 2 hi(() ). The probability levels ai are specified 
separately for the individual rows. 

Being in the objective, the probability function will be maximized. 
Alternatively, we might be interested in constraints of the form G(x) 5 /3, 

with /3 being small (for instance, /3 = 0.01). In this context, /3 frequently 
represents a ruin probability, meaning, for instance, the probability of financial 
ruin of a company, death of a patient, or crashing of a bridge. In such modeling 
situations, (1.9) would be formulated with minimizing G in the objective. 

Constraints involving probability functions are called chance-constraints or 
probabilistic constraints. Depending on whether G(x) or Gi(x), i = 1, . . . , s, 
is used, the constraints are called joint- or separate constraints, respectively. 
From another point of view, a separate constraint is a special case of (1.18) 
with T ( t )  consisting of a single row (s = 1). Models based on probability 
functions provide a natural way of building models in several application areas, 
see Prkkopa [234]. Here we just point out two fields, where probabilities play 
an important part in planning anyhow: finance (ruin probability) and electrical 
power systems engineering (loss-of-load probability (LOLP)). Stochastic op- 
timization problems involving probability functions will be discussed in detail 
in Section 2. 
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Let us consider a model involving a probability constraint of the form 
G(x) = IPg( T([)x > h([) ) 2 a ,  with a high probability level a. For 
each fixed x we interpret the event, that some of the random inequalities do 
not hold, as loss. Such type of models have the following characteristic fea- 
ture: On the one hand, they ensure that a loss may only occur with a small 
probability (1 - a). On the other hand, losses may occur, and for the case 
when they occur, the models provide no control for the modeler on the size of 
the loss. In modeling situations, where considering the size of the loss makes 
sense at all, the second characteristic might be considered as a drawback. To 
distinguish between models based on probability constraints and models which 
account for the loss size, Klein Haneveld [I671 calls the quality measure based 
on probability functions qualitative and quality measures accounting also for 
the loss size quantitative. 

Let us discuss shortly situations where the size of the loss does not matter. 
As a hypothetical example let us imagine that a medical treatment is modeled 
and the random inequalities in (1.18) express the survival of the patient. Loss 
means in this case that the patient dies and the size of the loss is meaningless 
in the modeling context. As a more practical example let us consider mechan- 
ical truss optimization problems with a given topology. Such models contain 
several groups of constraints modeling the laws of mechanics. Under random 
loads these models may involve chance-constraints of the above type (see, for 
instance, Marti [I961 and the references therein). The random inequalities in 
(1.18) express some mechanical requirements; if they do not hold, then the 
system crashes. The point is that if the system crashes, then the topology obvi- 
ously changes and the whole model becomes invalid (the model crashes too). 
Therefore, it is pointless to include constraints accounting for the size of the 
loss. 

For the case when taking the loss-size into account makes sense, several 
kinds of remedies have been suggested. It is usually assumed that penalty 
costs are available for the losses. PrAkopa [234] proposes a combined model, 
involving both probabilistic constraints and recourse-constraints in a two stage 
recourse problem, with the expected penalty costs for the losses included as 
an additive term into the objective function. Dert [58] introduces besides the 
probabilistic constraint binary variables for indicating the occurrence of losses 
and uses a penalty term in the objective function for the expected penalty costs 
of losses. 

For introducing the next model class we assume that negative values of 
[(x, [) represent losses and positive values correspond to gains. For the sake 
of simplicity of presentation we also assume that [(x, [) is a random variable 
(s = 1 holds). The loss as a random variable can then be written as 
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where t(() denotes the single row of T((), h(() is a random variable, and 
z-  = max(0, -2) denotes the negative part of z E IR. 

Using this, the probability constraint G(x) 2 a can be written in expected- 
value terms as 

with x denoting the indicator function 

In (1.20) the function x enforces equality across different loss-sizes. Due to an 
idea of Klein Haneveld [167], x is dropped and the following quality measure 
is introduced: 

~;,(e) := q29-1, 29 E L:. 

This results in an evaluation function H (x) := EE [(- (x, ()I which is simply the 
expected value of the random variable expressing losses. In models based on this 
evaluation function, constraints of the form H (x) 5 y will be employed, where 
y is a prescribed maximal level of tolerable expected loss. Constraints based on 
H (x) are called integrated chance constraints. If in the objective, H (x) will 
be minimized. The prototype model with integrated chance constraint has the 
form 

min cTx 
set- E t [ ( - (x , t ) l  5-Y (1.21) 

x € t3. 

For the integrated chance constraints which we have considered so far, only 
(- (x, () plays a role. It might be desirable to take into account the entire distri- 
bution of ((2, (). In fact, the following variant of integrated chance constraints 
takes into account also the expected gain (+ (x, (): 

which can be derived from the quality measure 

and leads to a convex programming formulation for a 5 i. Integrated chance 
constraints, including joint constraints for the case when ((x, () is a random 
vector, will be presented in Section 4.1. 

The remaining model types, which will be reviewed in the introduction, are 
only applicable in the case when ((x, () is a random variable. Thus we have 
((x, 5) = tT(()x - h((), where the components of the n-dimensional random 
vector t(() are the elements of the single row of T((). 
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Motivated by reliability theory, Prkkopa [228] has developed a model which 
is built by utilizing the conditional expectation of the loss size. The quality 
measure is chosen as 

Consequently, ecex (29) is the conditional expectation of the loss, given that a 
loss occurs. with tRe corresponding evaluation function, constraints of the form 

are included into the model, where the prescribed y is a maximal tolerable 
conditional expected loss size. This model will be the subject of Section 4.2. 

In the following discussion it will be convenient to consider positive values 
of <(x, J) as losses and negative values as gains. A further idea to include the 
loss size and simultaneously also provide control on the probability of loss is 
utilizing quantiles. The first stochastic optimization model of this type has been 
proposed by Kataoka [157]. For a given 0 < a < 1, we utilize the following 
quality measure: 

~ ; ~ ~ ( 6 )  := v(19,a) := min{z I Fs(z) 2 a), 19 E ICY, (1.23) 

defined on the set of all random variables on (a, F, P)), and with Fo standing 
for the probability distribution h c t i o n  of 19. In other words, for a given a ,  
etaR(I9) is the left endpoint of the closed interval of a-quantiles of 19. This 
leads to the following evaluation function 

where 6 ( x ,  .) denotes the probability distribution function of C(x, J) for each 
fixed x, and with a being a prescribed (high) probability level, for instance, 
a = 0.95. This quality measure is widely used in the finance industry, it is called 
Value at Risk (VaR) there. We will consider optimization problems involving 
v(x, a )  in Section 3. In general, it is quite difficult to build numerically tractable 
optimization models which are based on VaR. The main difficulty is that v(x, a) ,  
as a function of x, is not convex in general. 

An interesting recent approach for building SLP models is due to Rockafellar 
and Uryasev [250]. The idea is to combine VaR and the conditional expectation 
approach. The following quality measure is chosen: 

The motivation for introducing this quality measure is twofold. On the one 
hand, according to a well-known fact from probability theory, the solution set 
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of the above minimization problem coincides with the set of a-quantiles of 
the distribution of 6. On the other hand, under the assumption that 6 has a 
continuous distribution function, we have 

where v(6, a )  is the value at risk (VaR) (see (1.23)). This means that ~ $ ~ ( 6 )  
is the conditional expectation of the loss given that the loss exceeds VaR. The 
evaluation function 

~ c ( x ,  a )  := Q&~~(C(X> J)) 
has nice convexity properties. Therefore, the prototype problems will involve 
inequality constraints of the form vc(x, a )  I: y and being in the objective, 
vc(x, a )  will be minimized. A further attractive feature is that, for finite discrete 
distributions, the optimization problems can be reduced to linear programming 
problems. A detailed discussion of this model class will be the subject of 
Section 4.3. 

Finally we consider modeling approaches where c(x, J) is interpreted as a 
deviation between tT(<)x and h(J), with the quality measures penalizing this 
deviation. Admittedly, most quality measures which have been introduced so 
far, can also be interpreted from the purely mathematical viewpoint as measur- 
ing deviation. Nevertheless, we have chosen to discuss those quality measures 
as a separate class, which correspond to the following modeling attitude: both 
tT(J)x and h(J) represent important quantities in their own right, and the em- 
phasis in modeling risk is on their deviation. Deviations are interpreted as risk 
and therefore the quality measure will be called a risk measure in this context. 
As a typical example let us mention portfolio optimization in finance, where 
tT(<)x represents the random portfolio return and h(<) models some bench- 
mark return. For this approach see, for instance, Elton et al. [72] and also 
Section 7.3. 

Our first example of a deviation measure is the risk measure 

defined on the linear space of random variables with finite second moment. The 
corresponding evaluation function is 

As a second example we take the mean absolute deviation, with risk measure 

and evaluation function 
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Stochastic programming models, based on risk measures of this type, will be 
the subject of Section 5. Let us mention that stochastic optimization models in 
this class are by some authors also termed as robust optimization problems. 

The basic question concerning the various quality measures is, how the 
stochastic optimization problems, based on these measures, behave from the 
numerical point of view. This will be the main subject of the present chapter. 

From the point of view of efficient numerical solution, the most desirable 
property of a nonlinear optimization problem is that it should be a convex 
programming problem. Regarding the above-formulated prototype problems 
(1.7) and (1.9), in a strict sense these would count as convex programming 
problems under the assumption that V and V, are concave functions. 

For the subsequent discussion we will assume that in the objective function 
of (1.9) the additive linear term cTx is missing, that is, we assume that c = 0 
holds. The reason for this assumption is that we will work with functions V 
having some generalized concavity properties. For such functions the addition 
of a linear term may destroy the generalized concavity property. Examples for 
this phenomenon will be presented later on in this section. 

We will employ the following generalization of the notion of a convex pro- 
gramming problem: we consider the above-mentioned problems as convex pro- 
gramming problems, if the feasible domain is convex and if V(x) is a pseudw 
concave function in (1.9). For general properties of optimization problems of 
this type see, for instance, Bazaraa and Shetty [9] and Avriel, Diewert, Schaible, 
and Zang [7]. 

We proceed with a short discussion concerning some generalizations of con- 
cave functions which will be utilized in this chapter. 

DEFINITION 1.1 Let f : C -+ IR be a function dejined over the convex set C. 

f is called quasi-concave, ifthe inequality 

holds, for all x E C, y E C, and X E [O,l]. 

f is called quasi-convex, if- f is quasi-concave. 

Functions which are both quasi-convex and quasi-concave will be called quasi- 
linear. It is easy to see that f is quasi-concave if and only if the upper-level 
sets 

4 := {X I f ( 4  2 7) (1.24) 

are convex sets, for all y E IR. Thus, for ensuring the convexity of the feasible 
domain in (1.7), it will be sufficient to ensure that the function V is quasi- 
concave. 
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DEFINITION 1.2 Let f : C -+ IR be a continuously differentiable function 
dejned over an open convex set C. 

f is calledpseudo-concave, if the following implication 

holds for all x E C and y E C. 

f is called pseudo-convex, i f  - f pseudo-concave. 

The following facts are easy to check and are left as exercises for the reader: If 
f is a concave function, then it is quasi-concave and in the differentiable case 
it is also pseudo-concave. Pseudo-concave functions are also quasi-concave. 

From our point of view, for maximization problems with quasi-concave re- 
strictions (implying a convex feasible domain) and a pseudo-concave objective 
function, the most important properties are the following, see [9]: 

All local optimal solutions are global solutions. 

The Kuhn-Tucker optimality conditions are sufficient conditions of opti- 
mality. 

Thus, in (1.9), V should be a pseudo-concave function. Note that requir- 
ing only quasi-concavity for V, results in general in non-convex optimization 
problems. Such problems may have local maxima which are not global. 

A further remark concerns the quasi-concavity requirement for the constraint 
function V in (1.7). Although this way the convexity of the feasible domain is 
ensured, quasi-concavity is a rather weak property from the algorithmic point 
of view. One of the difficulties is that regularity conditions, which ensure 
the necessity of the Kuhn-Tucker conditions, are difficult to check in this case. 
From the algorithmic point of view it is much better, when besides the objective 
function, the constraint functions are pseudc+concave too. This implies, for 
instance, that the Slater-regularity can be utilized for enforcing the necessity 
of the Kuhn-Tucker conditions. 

We will need the following fact concerning the pseudo-concavity of frac- 
tional functions: 

PROPOSITION 1.1 Let C be an open convex set and let f and g be two strictly 
positive functions, dejned on C. We assume that both functions are continu- 

f (4 is ously diflerentiable. Iff is concave and g is convex, then h(x)  := - 
.9(x) - .  , 

pseudo-concave on C. 

Prooj Let x E C, y E C, and assume that v T h ( x ) ( y  - x )  5 0 holds. By 
straightforward computation this implies 
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Utilizing the concavity of f ,  the convexity of g, and the positivity of f and 
g, we get the inequality g(x) f (y) - f (x)g(y) 5 0 which immediately yields 
h(y) - h(x) I 0. 0 

Concerning transformations of pseudo-concave functions, the following fact 
will also be needed later on: 

PROPOSITION 1.2 Let C be an open convex set and let g be a continuously 
dzflerentiable pseudo-concave or pseudo-convex function, dejined on C. Let 
f : lR H lR be a continuously dzrerentiable, strictly monotonically increasing 
function, with f'(x) # 0 for all x E IR. Then h(x) := f (g(x)) ispseudo- 
concave or pseudo-convex on C, respectively. 

Proofi For the gradient of h the relation Vh(x) = f1(g(x)) Vg(x) obviously 
holds. We assume that g is pseudo-concave, the proof for the pseudo-convex 
case runs analogously. Let x E C, y E C, and ~ ~ h ( x ) ( ~  - x) 5 0. Utilizing 
our assumptions, from this we get vTg(x) (y - x) 5 0. The pseudo-concavity 
of g implies g(y) I g(x) and the monotonicity off  finally yields h(y) 5 h(x). 

0 

Unfortunately, the sum of a linear and a pseudo-concave function is not 
necessarily pseudo-concave. As an example take fl (x) = -x and f2(x) = 
x + x3. It is easy to see that both functions are pseudo-concave, whereas their 
sum fl (x) + f2(x) = x3 is not pseudo-concave. As a multivariate example 
let us take f (xl, 22) = x1 + x! + x2 + x i  which is the sum of two pseudo- 
concave functions. The graph and the contour lines ofthis function are displayed 
in Figure 1.1. The function is clearly not quasi+oncave, therefore it is not 
pseudo-concave, either. 

Figure 1.1. The sum of two pseudo-concave functions need not to be pseudwoncave. The 
picture shows the graph and the contour lines of the function f (XI, 22) = XI + x: + 2 2  + xz. 
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A W h e r  important class of generalized concave functions consists of loga- 
rithmically concave (logconcave) functions. 

DEFINITION 1.3 Let f : C + R be a nonnegative function dejined over the 
convex set C. 

f is called log-concave, ifthe inequality 

holds, for all x E C, y  E C, and X E ( 0 , l ) .  

f is called log-convex, ifthe reverse inequality holds above. 

The definition immediately implies that for log-concave functions the set 
C+ := { x  I f ( x )  > 0,  x  E C ) is convex. Observe, that the inequality in 
Definition 1.3 holds trivially, if either x  $2 Cf or y  @ C+. This leads to the 
following simple alternative characterization of log-concave functions: 

PROPOSITION 1.3 A nonnegative function f is log-concave over the convex 
set C, ifand only ifC+ = { x  I f ( x )  > 0, x  E C ) is a convex set and log f is 
a concave function over C+. 

The next property involves products of logconcave functions. Let fi, i = 
1,. . . , r be logconcave functions on a convex set C and as before let C: := 

T 

{ x  I f i (x)  > 0, x  E C ), for all i. Then the product f ( x )  = n f i (x)  is also 
i=l 

logconcave on C. In fact, let us observe that 

holds. Thus C+ is a convex set and the assertion follows by considering log f 
on C+. 

A further fact concerning logconcave functions, which will be needed later 
on, is the following. Let f be a logconcave function on Rn. Then g(x )  := 
f ( x  + y) is also logconcave on Rn for any fixed y  E Rn. Moreover, h ( x ,  y) := 
f ( x  + y) is logconcave on R2n. In fact, for arbitrary u ,  v  E Rn and X E ( 0 , l )  
we have g(Xu + (1  - X)v) = f (X(u + y) + (1  - A) ( v  + y))  from which the first 
assertion follows immediately. The second assertion follows also easily from 
the definition of logconcavity. 

Considering logconvex functions, the definition implies that the set C0 := 
{ x  I f ( x )  = 0,  x E C ) is convex. Let rint C stand for the relative interior of C 
(see, for instance, Rockafellar 12491). It is easy to see, that 
rint C n C0 # 0 implies that rint C c C0 holds. Thus, a logconvex func- 
tion f for which rint C n C0 # 0 holds, can only have positive values at the 
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(relative) boundary. Such functions are of no interest to us, therefore we will 
only consider positive logconvex functions. I f f  ( x )  > 0 for all x E C, then f 
is logconvex, if and only if log f is convex. Finally let us remark that logcon- 
vex functions are also convex. This follows immediately from the inequality 
between the geometric and arithmetic means, see, for instance, Hardy et al. 
[112]. 

For further properties of logconcave and logconvex functions see, for in- 
stance, Kallberg and Ziemba [I531 and Prkkopa [234]. 

In the differentiable case, the class of strictly positive logconcave functions 
is a subset of the class of pseudo-concave functions: 

PROPOSITION 1.4 Let f be a continuously diferentiable, strictly positive, 
logconcave function over the open convex set C. Then f is pseudo-concave 
over C. 

Prooj Let x E C, y E C, X E [0, 11, and assume that vT f ( x ) ( ~  - x) 5 0 
holds. This implies that vT log f ( x ) ( y  - x )  = &vT f ( x ) ( ~  - x )  < 0 also 
holds. However, log f (x) being a concave function, it is also pseudo-concave, 
and consequently we have log f ( y )  5 log f ( x ) ,  which implies the assertion 
immediately. 0 

Let us remark, that the notion of pseudo-concave functions can be extended 
to the non-differentiable case, see, for instance, [7]. We will not need this 
generalization in this book. 

Figure 1.2. The graph of the function x + x3 - z and the set {(x, z )  I x + x3 - z 2 0). 

Finally, let us discuss a popular trick for equivalently reformulating the op- 
timization problem (1.9) as follows: 

max cTx +Z 

V ( X )  - Z  2 0 (1.25) 
s.t. x E B. 
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This reformulation is used, for example, if we wish to apply cutting plane 
methods for solving (1.9). If V is a concave function, then (1.25) is obviously 
a convex programming problem. If, however, V is merely pseudo-concave, 
then this is in general not true. An example involving the pseudo-concave 
function x  + x3 is displayed in Figure 1.2; x  + x3 - z  is not quasi-concave and 
the feasible domain of the corresponding problem (1.25) is a non-convex set. 
Thus, the reformulated problem (1.25) is in general much harder to solve than 
the problem in the original formulation. 

Requiring the stronger property of logconcavity (cf. Proposition 1.4) does 
not help, either. Take ex as an example. This fhnction is obviously logcon- 
cave, whereas ex - z  is a nonlinear convex function and the upper level set 
{ ( x ,  z )  I ex - z  2 0 )  is a non-convex set. Thus, ex - z  is obviously not 
logconcave, in fact, it is not quasi-concave. 

As already mentioned above, we will call our optimization problems (1.7) 
and (1.9) convex programming problems, if V is pseudo-concave in (1.9) and 
V is quasi-concave in (1.7), respectively. Whether or not our optimization 
problems are of the convex programming type, depends solely on (generalized) 
concavity properties of the function V. 

2. Models involving probability functions 
This section is devoted to pursuing the idea of using probability as a quality 

measure. We choose the following quality measure for evaluating random 
vectors 

~ ~ ( 2 9 )  := P(d  t 0) ,  29 E t:, (2.1) 

which is defined on the set of all random vectors on (R, F, P). The decision 
vector x  will be evaluated by the corresponding evaluation function G ( x )  := 
b ( c ( x ,  J ) )  := IPE(c(x, J )  2 0). The function G will be called aprobability 
function. In a detailed form we have 

Let x  E IRn be fixed arbitrarily and let S ( x )  := { z  E IRr I T ( z ) x  - h( z )  > 0). 
Due to our assumptions, T( . )  and h(.) are affine linear functions (see (1.2) on 
page 75). Consequently, S ( x )  c IRr is a polyhedral set and 

holds. 
The following prototype problems will be considered: 

max cTx 
s.t. PC(  T ( J ) x  - h ( J )  2 0  ) 2 a 

x  E t? 
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where B is a polyhedral set given, for example, in the standard form 

In this section we will assume throughout that B # 0 holds and that B is 
bounded. 

Both optimization problems (2.4) and (2.5) are non-convex optimization 
problems in general. The emphasis in this section will be laid on identifling 
those subclasses, for which (2.4) and (2.5) belong to the class of convex opti- 
mization problems. We will throughout first consider the basic properties of 
the models above and will subsequently discuss the analogous results for the 
models with reversed direction of the inequality constraint and of optimization, 
respectively. 

Notice that (2.5) is formulated without an additive linear term in the objective 
function. In the case, when the probability function is concave, the objective 
function in (2.5) would obviously remain concave with an additive linear term. 
However, in general, we will only be able to ensure some generalized concavity 
properties of probability functions, which are usually lost when adding a linear 
function to them. 

As already mentioned above, the h c t i o n  G will be called a probability 
function. The constraint involving a probability function in (2.4) is called 
a chance-constraint or a probabilistic constraint. For constraints involving 
probability functions the following terminology will be used. In the case of 
s = 1 the constraint will be called separate, whereas in the case when s > 1 is 
permitted, the term joint constraint will be used. In this sense, joint constraint 
stands for the general case, which specializes to a separate constraint if s = 1 
holds. The corresponding probability functions will be called joint and separate 
probability functions, respectively. This terminology has its roots in modeling. 
Let us consider a joint probability constraint 

where the components of t i (<)  are the elements of the ith row of T(() and let 
us assume that s > 1 holds. In this constraint, the underlying event has the 
following interpretation: a system of random inequalities holds, meaning that 
all of the inequalities hold simultaneously (they hold jointly). Depending on 
the modeling situation, we may wish to consider separately for i = 1, .  . . , s 
the events that the ith random inequality tT(<)x 2 hi(<) holds. In this case, 
the joint constraint above is split into s separate probability constraints, where 
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the probability levels on the right-hand-side can now be chosen differently for 
different rows: 

Let us make a further remark concerning terminology. In the literature, 
model (2.4) is called either chance constrained or alternatively, probabilistic 
constrained model. Both chance and probabilistic have a very general mean- 
ing, including virtually all aspects of randomness. None of them describes with 
sufficient accuracy the fact that we are dealing with constraints and objective 
functions which are defined via probabilities. In order to contrast models in- 
volving probability functions with other SLP models based on different quality 
measures, we use a terminology, which explicitly refers to probability. For this 
reason, we call G a probability function. This terminology has been coined by 
Uryasev, see, for instance, [292]. With our notations, a probability function in 
[292] is defined as a function of the following type: 

where f (x, .) is Borel-measurable for all x. Our case fits this scheme by 
choosing f (x, J) = T(J)x - h(J). In accordance with this, models like (2.4) 
and (2.5) will be generally called SLP models with probability functions. 

Next we discuss the reformulation of the constraint G(x) 2 a ,  as an equiv- 
alent constraint with reversed inequality. We have 

where for any real number z, z- := max(0, -z) denotes the negative part of 
z. Note that, in comparison with the original probability function G(x), the 
probability function on the left-hand-side of the equivalent reversed inequality 
is much more difficult to handle numerically. On the one hand, the underlying 
event in the probability function involves a strict inequality. On the other hand, 
for computing this probability function for a fixed x, the probability measure of 
the region IRT\S(x) is to be computed, which is the complement of apolyhedral 
set and thus it is non-convex in general (cf. (2.3)). In the special case s = 1 the 
situation is much simpler: S(x) is a half-space and thus IRT \ S(x) becomes 
an open half-space. (2.6) reduces to 
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where the components of t(<) are the elements of the single row of T(<). This 
is the straightforward way for reversing a separate probability constraint. We 
still have a strict inequality which can be replaced by an inequality involving 
"S", if the probability distribution function of C(x, 5) is continuous. 

We will also need a reformulation of (2.6) in expectation terms: 

where x is the following indicator function 

For the set of vectors which are feasible with respect to the probability con- 
straint, we introduce the notation 

and for the sake of easy reference we formulate our prototype problems (2.4) 
and (2.5) also in terms of the probability function G as follows: 

max cTx 
s.t. G(x) 2 . } (2.10) 

x E B  

and 
max G(x) 
s.t. a: E a. (2.1 1) 

Remark. Let us consider the case, when one of the rows of the matrix 
( T ( J ) ,  h(<)) is constant almost surely, for instance, it is deterministic. Denot- 
ing by ti (t) the random vector with its components being the elements of the ith 
row of T(<),  we assume without loss of generality that (tT(<), hl (<)) = ( tT,  h) 
a.s. holds, where t E IW and h E R are deterministic. In this case 

holds. This implies, that B(a)  fl f? remains unchanged if G and f? are redefined 
as follows: 

The meaning is the following: essentially deterministic inequalities within a 
probability constraint can be removed from this constraint, by appending them 
to the set of deterministic constraints. 
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As already discussed in the introductory section 1, our optimization problems 
will be considered as convex programming problems, if G is pseudo-concave 
in (2.1 I), and if it is quasi-concave in (2.10). It may happen, however, that G is 
not a quasi-concave function but nevertheless (2.10) is a convex programming 
problem. The point is this. As we have discussed in the introduction to this 
chapter on page 87, a function is quasi-concave if and only if all upper level 
sets are convex. The feasible domain B(a) of (87) is clearly an upper level 
set corresponding to level a. The convexity of the feasible domain of (2.10) 
just means that this specific level set is convex. It will turn out that, for some 
model classes and probability distributions, B(a) becomes convex for a large 
enough. In summary: whether or not (2.10) is a convex programming problem, 
may also depend on the prescribed probability level a. 

2.1 Basic properties 
The purpose of this section is to present some general results which hold 

without any assumptions concerning the probability distribution of t. 
We consider the probability function 

as well as the constraint involving this probability function 

This constraint requires, that for a feasible x the event 

should belong to the set of events G', having probability measure at least a 

For the feasible set, determined by (2.12) and denoted by 

the following representation holds obviously: 
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Both from the theoretical point of view concerning the existence of opti- 
mal solutions and from the standpoint of numerical solution it is an important 
question whether B(a) is a closed set. The answer is affirmative: 

THEOREM 2.1 The set B(a) is closed. 

Pro08 For a proof see Kall and Wallace [152], Proposition 1.7. 0 

Without any assumptions on the probability distribution of J, the sole avail- 
able result concerning the convexity of B(a) is the following: 

THEOREM 2.2 Kall([l34]). B(a) is convex for a = 0 and a = 1. 

Pro08 For a = 0 we clearly have G, = BT and consequently B(a) = IRn 
holds. For the case a = 1 we first observe that A E G1 and B E 61 im- 
ply A n B E G1 (consider the complement of A n B). Now let x E B(l), 
y E B(l), X E [0, 11, and z = Xx + (1 - X)y. Then we have S(x) E 61 and 
S(y) E G1 and consequently S(x) n S(y) E 61. For any fixed J E IRT, the 
inequalities T(J)x 2 h(J) and T(J)y 2 h(J) obviously imply the inequality 
T(J)z 2 h(J). Thus S(x) n S(y) c S(z) holds, implying S(z) E GI. 0 

In the case of a = 0 the probability constraint is clearly redundant. If a = 1, 
then the solution of (2.10) can be interpreted as a "fat solution", in a probabilis- 
tic sense. 

Finally let us discuss the reverse inequality G(x) 5 P. We consider now 

and denoting the feasible set in this case also by B(P) we have 

Analogously as above, we get the following representation: 

Considering the analogous assertion to Theorem 2.2, B(1) = IRn is obvi- 
ously convex and the probability constraint is redundant. B(0) is in general 
not convex, though. To see this, let us consider the example with x E IR1, 
G(x) = IP(x 2 J1, -x 2 J2 ) where J has the singular distribution J1 r -1, 
(2 - -1. We have B(0) = (-co, -1) U (1, co) which is ~bviously not convex. 
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2.2 Finite discrete distribution 
We consider the case, when < has a finite discrete distribution, given by a 

realization tableau 

N 
with pi > 0 Vi and C pi = 1 .  

i=l 
The discussion will be focused on the model (2. lo), formulated as follows 

max cTx 
s.t. x E B(a) n B (2.16) 

with B(a) = { x 1 G(x) 2 a }. 
In the discretely distributed case the representation (2.13) on page 97 spe- 

cializes as follows. Let I = (1, . . . , N } ,  then we have 

For the separate realizations of < let us introduce the notation 

These sets are clearly convex polyhedral sets. Employing this notation, the 
representation above can be written in the form 

Figure 2.1 shows the following example from Kall [134]: 

with corresponding probabilities of realizations pl = i, p2 = 4, and p3 = $. 
The probability level in the probability constraint is a ,= 3. The feasible 
domain is the shaded region in the figure, which is obviously non-convex. The 
following representation holds: B(a) = [Kl n K2] U [K2 n K3]. 

A necessary condition for B(a) n B # 8 is the following. With the notation 
Io = {i, 1 5 i 5 N I Ki n B = 81, B(a) n B # 8 obviously implies that 
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Figure 2.1. Feasible domain of an SLP problem with joint probability constraint and finite 
discrete distribution. 

must hold, otherwise each of the intersections in (2.18) would involve at least 
one j E lo, which would lead after intersecting B(a) with 17 to a union of 
empty sets. 

From (2.18) it is immediately clear, that our optimization problem (2.16) 
involves maximizing a linear function over a union of convex polyhedral sets. 
Thus, in general, the optimization problems do not belong to the class of convex 
optimization problems. This type of problems is called disjunctive program- 
mingproblem, see, for instance, Nemhauser and Wolsey [2 121. 

Utilizing the usual transformation of disjunctive programming, an equivalent 
mixed-integer formulation of (2.16) is the following (Raike [242]): 

min cTx \ 

s.t. T(?)x + M . ( 1 - z k )  >h(?),  k = l ,  . . . ,  N 
N 

C ~ i z i  > a  
i=l 

zk € { O , l } , k Z l  , . . . ,  N 
E B 

> (2.19) 
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where binary variables zj have been introduced and M is a "big enough" con- 
stant. M is chosen in such a way, that M > h ( p )  - T ( ~ ) x  holds, Vx E B, 
k = 1, . . . , N. Under our assumptions (B # 0, B bounded), such an M can be 
computed, for instance, by solving the following linear programming problems 
fork 6 Io: 

and setting M = max Mk. 
kUo 

For the case when only the right-hand-side is stochastic, further equivalent 
formulations as mixed-integer linear programming problems can be found in 
Prbkopa [234]. 

There are some special cases, where the union in (2.17) amounts in a single 
convex polyhedral set. 

THEOREM 2.3 Marti 1971 [194]. Let pio = miniel pi. Then B(a) is convex 
for a > 1 -pio.  

Pro08 For the proof see Kall[134]. 0 

Notice that a > 1 -pio implies that B(a) = B(1) holds. Consequently, the 
constraint involving a probability hnction (2.12) can be replaced by the system 
of linear inequalities 

Requiring that the inequalities should hold for all realizations, results in a "fat 
solution". 

The result can be sharpened in a further special case: 

THEOREM 2.4 Kall 1976 [I 341. Let pio = miniGI pi and assume that pio 
is uniquely determined. Let Pil = mini,I\(io) pi. Then B(a) is convex for 
a > 1 -p i1 .  

Pro08 For the proof see Kall[134]. 0 

2.3 Separate probability functions 
This section is devoted to discussing stochastic programming models which 

involve separate probability functions. The general prototype formulation of 
such problems has the same form as (2.4) and (2.5) with <(x, J) now being a 
random variable (s = 1). To emphasize one of the typical sources of such prob- 
lems, we give a formulation for a random vector C(x, J) where the evaluation 
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function has been applied component-wise: 

max cTx 

and 
max tT(+ 1 4) ) 

s.t. x € B 
where the components of the n-dimensional random vector t k ( J )  are the ele- 
ments of the kth row of T((), Vk;  t ( ( )  is an n-dimensional random vector and 
hk(() ,  h ( ( )  are random variables Vk.  The term separate means, as we have 
discussed previously, that each of the probability functions appearing in the 
model formulations involves a single random inequality. 

For the discussions regarding convexity of the feasible domain, it is clearly 
sufficient to consider a single separate probability function: 

For the sake of simplicity we introduce the notation q := t ( J )  and replace 
the right-hand-side h( ( )  by (, because only the probability distribution of 
( t (OT,  h ( J ) )  counts anyway. Thus the probability function has the following 
form: 

G ( x ) = I P ~ ( x ~ ~ ~ x - t 2 0 ) .  

With our notation, the definition of <(x,  () on page 75 takes the form 

Note that <(x, 7, () is now a random variable. 
The goal of this section is to identify subclasses of SLP models with separate 

probability functions, which lead to convex programming problems. We will 
also give equivalent formulations for these models in algebraic terms, which 
provide the basis for the numerical solution of the problems. It will turn out for 
this class of models that both type of constraints G ( x )  2 a and G(x)  5 P can 
lead, under appropriate assumptions, to convex optimization problems. 

We will proceed as follows. Next we will discuss the special case when 
only the right-hand-side is stochastic. This will be followed by considering 
the case when (q,  J )  has a multivariate normal distribution. Next the results 
will be generalized to the class of stable distributions. Finally we discuss a 
distribution-free approach. 

Considering other distributions, we mention that in the case when the com- 
ponents of (q,  () are independent and have exponential distributions, Biswal et 
al. [26] have presented an equivalent algebraic formulation as an NLP problem. 
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2.3.1 Only the right-hand-side is stochastic 
We assume that q - t holds, with t being deterministic. In this case the 

probability function has the form 

For the case of reverse random inequalities tTx 5 C we just consider the proba- 
bility function corresponding to (-t, -<). Denoting the probability distribution 
function of the random variable [ by FE, we have 

The probability distribution function of a random variable being monotonically 
increasing, it is both quasi-convex and quasi-concave (it is quasi-linear). It is 
easy to see that substituting a linear function into a quasi-convex function results 
in a quasi-convex function, the same being true in the quasi-concave case. 
Consequently, G(x) is both quasi-convex and quasi concave which immediately 
implies that both {x I G(x) 2 a) and {x I G(x) 5 P) are convex sets. From 
the algorithmic point of view, however, it is desirable to obtain an explicit 
representation in terms of inequalities involving algebraic functions. This is 
easy to achieve in our case. 

Considering first the constraint G(x) > a, this is obviously equivalent to a 
linear constraint: 

where Q r  (a)  denotes the left end-point of the closed interval of a-quantiles 
of Ft (for properties of quantiles see, for instance, Cram& [41]). 

Turning our attention to the reverse constraint G(x) 5 P we observe that this 
can be written as ~ ~ ( t ~ x )  5 ,L?. Assuming that FE is continuous (for instance, 
C has a continuous distribution), we obtain again an equivalent linear inequality 

with ~;(/3) denoting the right end-point of the interval of P-quantiles of Ft. 
For arbitrary distributions, the equivalent reformulation should be set up with 

care. If Ft is continuous at the point Q; (P), then the above formulation holds. 
If, however, Ft is discontinuous at Q; (P), then the equivalent formulation is 
the following 

with a strict linear inequality implying the numerically unpleasant feature that 
the set {x I G(x) 5 p) is an open half-space. This aspect reflects an asymmetry 
between the two setups G(x) 2 a and G(x) 5 ,d of the constraints. 
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Having, for instance, a finite discrete distribution for J, the theoretically 
correct reformulation may consist of the strict inequality above. From the 
modeling point of view this is usually not a real problem: the unfavorable event 
(loss) can mostly be formulated as a strict inequality IPg( tTx < J ) and thus 
we get 

that means, we obtain an equivalent linear constraint. 
For discussing the situation concerning the objective function, we consider 

the problem (2.11) which in our case has the form 

max ~ ( ( t ~ x )  

s.t. x E B ,  

This is a linearly constrained nonlinear programming problem. Let us associate 
with (2.23) the following linear programming problem: 

max tTx 

s.t. x €23. 

If FE is strictly monotone, then (2.23) and (2.24) are clearly equivalent. In the 
general case, some care is needed. Provided that (2.24) has an optimal solution, 
this will be an optimal solution also for (2.23). Under our assumptions (B # 0, 
B bounded) this is always the case. For an unbounded polyhedral set B it may 
happen, however, that (2.24) has an unbounded objective over B, whereas (2.23) 
has an optimal solution. 

Analogous comments apply in the case when in (2.23) the objective is min- 
imized. 

2.3.2 Multivariate normal distribution 
In this section we discuss the case, when (rlT, J ) ~  has a joint multivariate 

normal distribution. For excluding the case already discussed in the previous 
section, we assume that q is stochastic, that means, that j9d E IRn : q = d a.s. 

DEFINITION 2.1 See, for example, Tong [289]. The r-dimensional random 
vector [ has a multivariate normal distribution, ifthere exist an (r  x s )  matrix 
B and p E IRT, such that 

[ = ~ t + p  (2.25) 

holds, where t is an s-dimensional random vector with being stochastically 
independent and having a standard normal distribution, Vi. 
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Note that this definition allows for deterministic components of c: if the ith row 
of B is zero then we have Ci r pi. From the definition immediately follows 
that 

IE[c] = p  and 

C = B B ~ ,  where C denotes the covariance matrix of 5 

hold. 
C is clearly a symmetric positive semidefinite matrix. The multivariate nor- 

mal distribution is called non-degenerate, if C is positive definite. This is the 
case if and only if B has full row rank. Otherwise the distribution is called 
degenerate or singular. 

The multivariate normal distribution is uniquely determined by the expected- 
value vector p  and the covariance matrix C, see, for instance, Tong [289]. We 
will use the notation 5 N N ( p ,  C), meaning that the random vector 5 has a 
normal distribution with expected value vector p  and covariance matrix C. 

If the multivariate normal distribution is non-degenerate, then it is absolutely 
continuous w.r. to the Lebesgue-measure on IR', having the probability density 
function 

where 1x1 denotes the determinant of C. 
Let R be the correlation matrix of 5, defined as 

where ui and uj denote the standard deviations of Ci and C j ,  respectively. The 
non-degenerate multivariate normal distribution is called standard multivariate 
normal distribution, if the expected value vector is the zero-vector and the 
standard deviation of the components of C is 1. It is defined by the following 
density function 

The corresponding distribution function will be denoted by @(y; R). In the 
univariate case we drop R in the notation; cp stands for the density function of 
the standard normal distribution, that means, we have 

and the corresponding distribution function will be denoted by cP. 
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Figure 2.2. The bivariate normal distribution function with correlation T = 0. 

Figure 2.3. The bivariate normal distribution function with correlation r = 0.9. 

Figure 2.2 shows the density- and distribution functions of the bivariate 
normal distribution with correlation r = 0. In Figure 2.3 these functions are 
displayed for the case r = 0.9. 

Having a symmetric positive semidefinite matrix C and vector p as primary 
data, a lower-triangular matrix B for relation (2.25) can be computed by the 
Cholesky-factorization for symmetric positive semidefinite matrices, see, for 
instance, Golub and Van Loan [107]. 

From the definition it follows immediately, that any affine linear transfor- 
mation of a random vector with a multivariate normal distribution has again a 
multivariate normal distribution. 

Assume now, that the (n + 1)-dimensional random vector cT = (rlT, OT 
has a multivariate normal distribution: 
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where D  is an (n x s) matrix, d  E IRS, p  E IRn. We get 

It follows that [ ( x ,  q, t )  is normally distributed with 

where 1 1  . 1 1  denotes the Euclidean norm. The first term on the right-hand-side 
is the variance of qTx with DDT being the covariance matrix of q. In the 
second term ( ~ d ) ~ x  is the covariance between qTx and J with Dd being the 
cross-covariance vector between q  and t. The third term is the variance o f t .  

If V a r [ C ( x ,  q, t)] = 0  then C(x, q, t )  = E[C(x, q, ()I ,  as., otherwise the 
standardized C(x, q, t) has a standard normal distribution. 

In the case IIDTx - dl1 > 0  we obtain via standardization 

where in the last step we utilized the symmetry of the standard normal distri- 
bution, that means, we made use of the relation @(x)  = 1 - a( -x ) ,  Vx  E IR. 
Thus we get the following formula for G(x):  

i f D T x - d = 0  
and pTx - pn+1 L 0, 
i f D T x - d = 0  

G(x )  = 
and pTx - pn+l < 0, 

(2.32) 

, i f D T x - d # 0 .  

Regarding the constraint G(x)  2 a ,  under the assumption DTx - d  # 0  we 
get 
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In the case when DTx - d = 0, the last inequality reduces to the first case in 
(2.32), consequently the equivalence holds in all cases. Note that for a 2 4 we 
have @-'(a) 2 0. The Euclidean norm being convex, 1 1  DTx - dl( is a convex 
function of x. Consequently, assuming that a 2 i holds, the function on the 
left-hand-side of the last inequality in (2.33) is a convex function. This implies 
that the set of feasible solutions w.r. to this constraint is a convex set. We have 
derived the following theorem: 

THEOREM 2.5 Kataoka 1963 [157], Van de Panne and Popp 1963 [293]. Let 
the ( n  + l)-dimensional random vector cT = ( r lT ,  [)T have a multivariate 
normal distribution and let a 2 4. Then the set B(a)  = { x I G ( x )  2 a ) is 
convex. 

For the case, when a < 4 holds, we have the following assertion: 

THEOREM 2.6 Kall 1976 [134]. Let n > 1 and assume that the ( n  + 1)- 
dimensional random vector cT = (rlT,  [)T has a non-degenerate multivariate 
normal distribution. I fa  < 4 then either B(a)  = IRn holds or otherwise B(a) 
is a non-convex set. 

Pro08 Let P G  ̂ En be such that P @ B(a)  holds. We will show, that under our 
assumptions, there exist x(') E B(a)  and x ( ~ )  E B(a)  such that x(') # x ( ~ )  
and P = + x ( ~ ) )  holds. From this our assertion follows immediately. 
n > 1 implies that there exists v E IRn such that v # 0 and pTv = 0 hold. Let 
us consider the constraint (2.33) along the line x(X) = P + Xu, X E R: 

where we used that pTx(X) = pTP, VX E R holds. We obviously have 
1 1  DTx(X) - dl1 2 1 1  DTx(X) 1 1  - Ild 1 1 ,  and an easy computation yields 
1 1  DTx(X) [ I 2  = X2vTDDTv + 2XvTDDTP + P T ~ D T P .  Matrix D has full 
row rank and v # 0, therefore 

lim IIDTx(X) - dl1 = oo 
X - t ~ o o  

holds. Taking into account @-' ( a )  < 0, this implies that 3Xo E E ,  such that 
both x(Xo) E B(a)  and x(-Xo) E B(a).  Obviously x(Xo) # x(-Xo) and 
P = 4 (x(Xo) + x(-Xo)). 0 

For the probability function with reversed random inequalities, that means, 
for e ( x )  := JP(rlTx 5 J )  = IP(<(x, q , J )  5 0 )  we get 

T i f D  x - d = ~ a n d p ~ x - p ~ + ~  5 0  

G ( x )  = 
if DTx - d = 0 and pTx - pn+l > 0 

if DTx - d + 0. 
IIDTx - dll 

(2.34) 
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This can either be derived by an analogous argumentation as above, or more 
directly as follows. Observe that if [(x, q, J) has a normal distribution, then 
-<(x, q, J) also has a normal distribution with the same variance and with 
reversed sign of the expected value. Thus (2.32) can be directly applied for 
-[(x,q,J), by writing G a s  G(x) = IP(-[(x, q,J) 2 0). 

Utilizing the formulas (2.32) and (2.34), we obtain the following equivalent 
representations of probability constraints: 

where for a 2 the functions on the left-hand-side of the equivalent inequal- 
ities are convex, therefore the feasible domain determined by these inequalities 
is convex. 

We turn our attention to the case with reverse inequalities in the constraints, 
that means, we deal with G(x) I P and G(x) I P. In the case when the 
probability distribution is degenerate, the previously used technique for deriving 
the equivalent form leads to strict inequalities. Having DTx - d = 0, the 
formulas (2.32) and (2.34) imply a strict inequality (the second cases in these 
formulas apply). Assuming non-degeneracy of the probability distribution, we 
obtain the following equivalent representations by reversing the inequalities in 
(2.35): 

where, provided that P 5 4 holds, the functions on the left-hand-side of the 
equivalent inequalities are concave, consequently the feasible domain deter- 
mined by these inequalities is convex. 

In the case, when the probability distribution is degenerate, we observe a 
similar asymmetry as in the previous section on page 103 between the two 
formulations differing in the direction of the inequality (G(x) 2 a versus 
G(x) I p). The remedy is analogous: In practical modeling this difficulty can 
usually be overcome by working with strict inequalities in the model formu- 
lation. For instance, taking the constraint P C (  <(x, J) < 0 ) I 0, this can be 
equivalently formulated as 

which results according to (2.35) in the linear constraint 

thus determining a convex feasible domain for /3 < $ 
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Next we turn our attention to models with probability functions in the ob- 
jective and restrict our discussion to the case, when cT = (7T,  OT has a 
non-degenerate multivariate normal distribution. The distribution of 5 is non- 

degenerate, if and only if the matrix ( $ ) has full row rank, see Definition 2.1 
, 

and (2.28). Consequently, in the non-degenerate case D T x  - d  # 0 holds for 
all x  E Rn. In particular, choosing x  = 0 shows that d  # 0 holds. 

In the non-degenerate case we have, see (2.32): 

In a maximization problem the desired property of G ( x )  would be pseudo- 
concavity. Unfortunately, G ( x )  is not even quasi-concave. Quasi-concavity is 
namely equivalent with the convexity of all of the upper level sets (see page 87). 
This is implied by (2.35) for a 2 4. For any 0 < a < 4, however, the lower 
level set is convex according to (2.36). The upper level sets corresponding 
to the same a cannot be also convex, because this would mean that both the 
upper- and the lower level sets are half-spaces. This is not possible due to our 
non-degeneracy assumption IIDTx - dl1 # 0 for all x  E Rn. Consequently 
G ( x )  is not quasi-concave. An analogous reasoning shows that G ( x )  is not 
quasi-convex, either. 

Introducing the notation 

we have G ( x )  = a( g ( x )  ). Fortunately, by restricting G ( x )  to certain open 
half-spaces we have 

PROPOSITION 2.1 IfcT = (vT,  OT has a non-degenerate multivariate nor- 
mal distribution, then both g ( x )  and G ( x )  are 

a) pseudo-concave on the open half-space { x  I pTx > pn+l ) and 
b) pseudo-convex on the open half-space { x  I pTx < pn+l ). 

Prooj Due to the non-degeneracy assumption llDTx - dl1 > 0 V x  E IRn 
holds. Due to Proposition 1.1 on page 88, the fractional function g ( x )  is 
pseudwoncave on open convex sets where the numerator is positive, and 
pseudo-convex on open convex sets where the numerator is negative. Taking 
as open convex sets the open half-spaces in the proposition, the result regarding 
g ( x )  follows. Utilizing the fact that is a strictly monotonically increasing, dif- 
ferentiable function, with W ( x )  # 0 V x  E R ,  the assertion concerning G ( x )  
follows from the already proved assertion regarding g ( x )  and from Proposi- 
tion 1.2 on page 89. 
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Let us consider (2.1 1) on page 95, which in our case has the form 

According to Proposition 2.1, the objective function of this linearly constrained 
problem is pseudo-concave, if x E B implies pTx > CLn+l. Thus, in this 
case, (2.38) is a convex programming problem. Taking into account the strict 
monotonicity of a, (2.38) is equivalent to the following linearly constrained 
convex programming problem 

s.t. x E B . )  

This problem belongs to the class of fractional programming problems, see, for 
instance, Avriel, Diewert, Schaible, and Zang [7] and Schaible [265]. Propo- 
sition 2.1 implies that the objective function in (2.39) is pseudo-concave in 
the open half-space { x  I pTx > pn+1) and it is pseudo-convex in the open 
half-space { x  I pTx < P,+~). 

Consequently, if pTx > pn+l Vx  E B holds, then (2.39) is a convex pro- 
gramming problem. This property can be enforced, for instance, by including 
a linear inequality of the form CLTx 2 pn+l + E,  E > 0 into the definition 
of B. This might be well justified if a high probability is to be achieved by 
maximizing IP( qTx 2 J ). For achieving high probabilities it is necessary to 
have ~ [ ~ ~ x ]  > IE[J], which is just the required inequality. 

If the reverse inequality { x  I pTx < pn+1) holds over B, then our objective 
is pseudo-convex, (2.39) involves maximizing a pseudo-convex function, and 
thus it becomes much more difficult to solve numerically. In the general case, 
when none of the two inequalities involving expectations holds uniformly over 
B, then (2.39) becomes a general non-convex optimization problem. In this 
case efficient solution methods are only available for rather low dimensions of 
x. 

In the case when (2.38) and (2.39) are formulated as minimization problems, 
the above results can be adapted in a straightforward way. If we take z ( x )  = 
IP ( qTx 5 J ) instead of G ( x )  then the above discussion applies with exchanged 
roles of the inequalities pTx > p,+1 and pTx < pn+l. 

Finally we discuss the special case when J is deterministic. Note that the 
non-degeneracy assumption above implies that all components of q as well as 
J have non-degenerate univariate marginal distributions, that means, both the 
"technology matrix" and the right-hand-side are stochastic. We assume now 
that J pn+l := h holds with h E IR being deterministic. Considering (2.29), 
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this means that d = 0 holds throughout. Non-degeneracy of the distribution in 
this case means that D has full row rank. 

The explicit form of z and the probability constraint can simply be obtained 
by setting d = 0 in (2.34) and in (2.36), respectively. Considering the problem 
of minimizing G(x)  results in: 

-,uTx + h 
min 

IIDTxll 
s.t. x E B  

which makes only sense under the assumption 0 @ t?. We have seen that 
problem (2.40) is a convex programming problem provided that ,uTx < h Vx E  
t? holds, which is a natural assumption when working with small probabilities. 

Figure 2.4 shows the graph and the contour lines of the function 

which is the quotient of a linear and a convex function. In the contour plot 
darker regions represent lower values. Let e > 0; for the figure we have chosen 
E = 0.1. The function f is pseudo-concave for { x  E JR2 I X I  1 2 2  + e }  and 
pseudo-convex for { x  E JR2 I X I  5 x2 - e}. 

Figure 2.4. Quotient of a linear and a nonlinear convex function. 

2.3.3 Stable distributions 
In the previous section, in the derivation of the explicit formula (2.33), it 

seems to be essential at a first glance, that both the expected value and the 
variance exist for [ ( x ,  q, J). A more careful analysis reveals, however, that 
quite other properties of the normal distribution are those, which matter. 
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Before carrying out this analysis, we discuss classifications of univariate 
distributions, which will be needed later on. We define a relation o between 
univariate distribution functions, see Feller [79]. Let F and H be two univariate 
distribution functions, then 

F o H u 3a > 0, b : H(x) = F(ax  + b) Vx E R1 holds. (2.41) 

or equivalently 

F o H  u 3 a > O , b :  H - = F ( X ) V X E I R ~ .  (2.42) (" D b, 

This relation is obviously reflexive, symmetric, and transitive. Consequently 
we obtain a classification of all distribution functions. We may choose a repre- 
sentative from each class, and consider it as astandard distribution for that class. 
Let D be a class in this classification, and let Ho be the standard distribution 
in 2). Then for any F E D we have: 3a > 0, b, such that F(x) = H O ( ~ ) ,  
V x E IR1 holds. a is called the scale- and b the location parameter of F (w.r. 
to the standard distribution). The classes in this classification are also called 
location-scale classes. 

Let 5 be a random variable with Fc E 2). This fact will be denoted as < N D. 
Then 3a, b E R, a > 0 such that Fc(x) = ~ ~ ( 9 )  holds. This relation has 
the following interpretation: Let x = G. Then we have 

that means, x has the standard distribution of 2). The transformation above 
is called standardization of 5 .  This can also be expressed as follows: for any 
5 N D 3a > 0, b, such that 5 = a x  + b and F, = Ho holds. A final remark to 
this concept: let 5 be a random variable with Fc E D, and let p > 0, q be real 
numbers. Then obviously pc + q N D holds. 

We consider next the set of symmetric distributions. A distribution is called 
symmetric if for the distribution function F the following relation holds (see 
Feller [79]): F(x) = 1 - F- (-x) Vx E R ,  where F- (-x) stands for the left- 
sided limit of F at -x. If the density function f exists then the condition for 
symmetry can be written as f (x) = f (-2) Vx E R. On,the set of symmetric 
distributions the following equivalence relation establishes a classification: 

F o H  a 3 a > 0  : ~ ( x ) = ~ ( a x ) ' d x E I R ~ .  

The classes in this classification will be called symmetric scale classes. 
If the random variable 5 has a symmetric distribution, this is clearly equiv- 

alent with and -5 having the same distribution function, that means, with 
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FC = F-C. Let S be a class of symmetric distributions. Then 5 - S implies 
p( - S V p  E IR, p + 0. For p > 0 this is clear from the definition. If p < 0 
then we may write p< = ( -p)  (-5). Now we have FC = F-C, and the assertion 
follows immediately. 

If a location-scale class D contains a single symmetric distribution, then it 
obviously contains the whole symmetric scale class S of this distribution. In 
this case the standard distribution can be selected as a symmetric distribution, 
that means, Ho E S. Let 5 - D and p, q E IR, p # 0. Then, for such classes, 
p< + q - D holds. For p > 0 this is clear from the definition. Let us assume 
that p < 0 holds. Standardization gives that 3a  > 0, b such that 5 = a x  + b and 
Fx = Ho. Substitution results in p[ + q = a p x  + bp + q. From this follows 
a p x  - S and consequently p< + q - D. 

Let us introduce the notion of a stable distribution next. For this concept see, 
for instance, Feller [79] and Uchaikin and Zolotarev [291]. 

A distribution function F, the corresponding probability distribution, and a 
random variable having this distribution are calledstable, if for any real numbers 
sl > 0, ml ,  s 2  > 0, and m2 there exist real numbers s > 0 and m, such that 

holds, where * stands for the convolution operator. Let F be a stable distribution 
function and let D its class in the above classification. From (2.43) immediately 
follows, that all H E D are stable, that means, we may use the term class of 
stable distributions. In particular, the standard distribution Ho E D is also 
stable. Another easy consequence of (2.43) is the following: if F E D, H E 23, 
and 2) is a stable class, then F* H E D holds. Using the fact, that the distribution 
function of the sum of two stochastically independent random variables is the 
convolution of their distribution functions, we get the following: Let D be 
a stable class, Si - D, i = 1,. . . , s, Xi  E IR Xi  > 0 Qi. Assume that 
Ci, i = 1,. . . , s are stochastically independent. Then the distribution function 

S 

of C XiCi also belongs to 2). This property is, however, not sufficient for our 
i= l 

purposes: in (2.28) we deal with arbitrary linear combinations of independent 
random variables. 

A distribution function F ,  the corresponding probability distribution, and a 
random variable having this distribution are called strictly stable, if for any real 
numbers sl > 0 and sz > 0 there exists a real number s > 0, such that 

holds, where * stands as before for the convolution operator. In the following 
we restrict our attention to symmetric distributions. Let F be a strictly stable 
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distribution function and let S be its class in the classification of symmetric dis- 
tributions. The analogous results hold, as for stable distributions. In particular, 
if F E S and H E S, then F * H E S follows. This implies for symmetric 
distributions the following: Let S be a strictly stable class of symmetric distri- 
butions, Ci E S, i = 1, . . . , s, Xi  E R Vi, and not all Xi's are zero. Assume that 
Ci, i = 1, . . . , s are stochastically independent. Then the distribution function 

S 

of C XiCi also belongs to S. 
i=l 
As an example for a stable class of distributions let us shortly discuss the 

univariate normal distribution. The univariate normal distribution functions 
form a location-scale class, because they are of the form: F(x)  = Q, (+), 
0 < a E R, b E R, where Q, is the distribution function of the standard 
normal distribution. This is a stable class. To see this, it is sufficient to check 
the stability of Q,. Considering the convolution (2.43) 

where the left-hand-side is the distribution function of the sum of two inde- 
pendent 5 - N ( m l ,  a:) and 7 - N(m2,a,2) random variables. We know 
that < + 7 has a normal distribution. On the other hand, the expected value 
is additive w.r. to summation, and the variance is also additive provided that 
the random variables are stochastically independent. Therefore the above re- 
lation holds for m = ml + m2 and a = d=. This argumentation 
also shows that the class of symmetric (centered) normal distribution func- 
tions F(x)  = Q, (:) , 0 < a E IR form a strictly stable class of symmetric 
distributions. 

Now we take the proposed second look at the derivation of the explicit form 
for G in Section 2.3.2. 

1 The multivariate distribution of C was defined by the affine linear relations 
(2.28) for the realizations, in terms of the i.i.d. (independent and identically 
distributed) random variables ti, i = 1 . . . s. In that particular case the dis- 
tribution of ti was standard normal, Vi, which, as discussed above, belongs 
to the strictly stable class of symmetric normal distributions. 

2 Subsequently we have established in (2.29) an affine linear relation for 
<(x, 7 ,  C ) ,  in terms of t. 

3 Considering the linear part, this is a linear combination of random variables 
with distributions from a strictly stable class, therefore the linear combi- 
nation belongs also to that class. Due to the additive deterministic term, 
C(x, 7 ,  5 )  belongs to the stable class of normal distributions. In addition, 
using the specific properties of the normal distribution, we were also able to 
compute the parameters of C(x, 7 ,  E ) ,  in terms of our decision variables x. 
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4 Finally, in (2.29), we have standardized C (x, 7, E) in order to derive a formula 
for G(x), involving the distribution function of the standard distribution in 
the location-scale class. Using this formula, the constraint G(x) 2 a has 
been reformulated as (2.33). By good luck, this resulted in a constraint of 
the convex programming type. 

Another well-known stable univariate distribution is the Cauchy distribution, 
see, for instance, Feller [79]. For this distribution the expected value and 
consequently the variance do not exist. The density function of the Cauchy 
distribution C(m, t) is the following: 

where m is a location parameter and t > 0 is a scale parameter. Taking 
m = 0 the resulting subclass of symmetric distributions is strictly stable. The 
distribution function of the standard Cauchy distribution C(0, I),  defined by the 
density function with t = 1 

will be denoted by 6. The following fact is also well-known, see, for instance, 
Feller [79]: Let rn C(ml, tl) and 7 N C(m2, t2), and assume that [ and 7 are 
stochastically independent. Then ( + 7 N C(ml + m2, t l  + t2) holds. 

We will carry out the above procedure for a multivariate Cauchy distribution, 
see Marti [194]. 

DEFINITION 2.2 The r-dimensional random vector c has a non-degenerate 
multivariate Cauchy distribution, ifthere exist an ( r  x s )  matrix B with full 
row rank and having at least one nonzero in each of its columns and m E IRT, 
such that 

c = ~ ( + m  (2.45) 

where ( is an s-dimensional random vector with its components being stochas- 
tically independent and ti having a standard Cauchy distribution, Vi.  

Let us assume, that the (n + 1)-dimensional random vector cT = (rlT, e)T 
has a non-degenerate multivariate Cauchy distribution. In the same way, as in 
Section 2.3.2, we get: 

Let us remark that llDTx - dl1 # 0 holds for all x, due to the assumption 

that the transformation matrix ( ) has full row rank (see also (2.28)). We 
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conclude that [(x, q, J) has a Cauchy distribution, and proceed by computing 
its parameters. If (DTx - d)i + 0 then &(DTx - d)i N C(0, I(DTx - d)iI) 
holds. Consequently we have tT (DTx - d) N C(0, llDTx - dill), where for 
y E IRS llylll := C:=l Iyil. Finally we get: 

Using standardization, as in (2.32) we get the following formula for G(x): 

where we utilized the symmetry of the standard Cauchy distribution. Compar- 
ing this with the analogous formula (2.32) for the non-degenerate multivariate 
normal distribution, it can be observed that the sole difference is the different 
norm in the denominator. 

We proceed now analogously as in (2.33) to arrive at: 

The standard Cauchy distribution being symmetric, for a 2 4, V1 (a) 2 0 
holds. Because norms are convex functions, 11 DTx - d 11 1 is a convex function 
of x. As for the normal distribution, we conclude that the function on the left- 
hand-side of the inequality is a concave function, and the set of x vectors, for 
which this inequality holds, is convex. We have derived the following theorem: 

THEOREM 2.7 Marti 1971 [194]. Let the (n+ l)-dimensional random vector 
cT = (qT, J)T have a non-degenerate multivariate Cauchy distribution and 
let a 2 i. Then the set B(a) = { x  I G(x) 2 a ) is convex. 

The alternative formulations of the probability constraints are analogous to those 
for the normal distribution. The difference is that, instead of the Euclidean norm, 
the ) I  . Ill-norm is to be substituted throughout. This seems to introduce, how- 
ever, an additional difficulty: the 1 1  . Ill-norm is a non-differentiable function 
of its argument. Under the assumption a 2 4, a second look reveals, however, 
that by introducing additional variables the constraint (2.48) can be equivalently 
formulated as a set of linear constraints. In this respect, probability constraints 
are easier to deal with for the Cauchy distribution as for the normal distribution. 
For discussing the transformation let us formulate (2.48) in a detailed form: 

s 
T V1 (a)  IDFX - dil - m x < -mn+l (2.49) 

i=l 
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where Di is the ith column of D. This constraint is equivalent to the following 
system of linear constraints: 

in the following sense: Let 3 be a feasible solution of (2.49). Choosing jjk = 
I D ~ Z  - dkl Vk implies that (3, jjk, k = 1, . . . , s) is a feasible solution of (2.49). 
Vice versa, let (2, ck, k = 1, . . . , s) be feasible for (2.50). Then the inequality 

I D z 2  - dk 1 < yk holds Vk, which implies that 2 is feasible for (2.49). 
There is an important special case, as observed by Marti [194], in which 

the problem transforms into a deterministic LP problem, without introduc- 
ing additional variables and constraints. Let us assume that B c IRn+ holds 
which is the case, for instance, if the system of linear inequalities defining B 
includes x 2 0. Assume further, that the components of (q ,  J )  are stochasti- 
cally independent and that they have Cauchy distributions qi N C(mi, t i )  i = 

1, . . . , n and J N C(mn+i1 tn+1). In this case the matrix ( ) is a diagonal 

( (n + 1) x ( n  + 1) ) matrix, with the ti's on its diagonal, see (2.3). Conse- 
n 

quently we get IIDTx - dl11 = C tixi + tn+l and (2.48) becomes a linear 
i=l 

constraint. 

2.3.4 A distribution-free approach 
The sole assumption in this section is that the second moments of (rlT, J )  

exist. Let (pT ,  pn+l) = E[ (rlT, J )  ] and C be the covariance matrix of (qT, J ) .  
We assume that C is positive definite and take the Cholesky factorization 
C = L L~ with L being a lower triangular matrix (cf. the discussion on 
page 105). We consider L in the partitioned form 

where D is an (n x n )  matrix and d E IRn. For c (x ,  q, J )  = qTx - J we get 
the same expression (2.30) as for the normal distribution 
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The idea is to employ upper bounds on the probability function G ( x )  = 
IP( qTx - J 2 0 ). Utilizing the Chebyshev-inequality we get 

G(x)  = 

L 

L 

We consider the 
,O = 0.01. The idea is to require instead ofthis inequality the stronger inequality 

For having a nonempty solution set of this inequality, for small P values we 
may suppose that -pTx + p,+1 > 0 holds. This may be enforced by including 
a constraint -pTx + pn+l > e, with E > 0, into the set of linear constraints of 
the problem. Assuming this, we can write (2.52) as follows 

which defines a convex set. 
For the case when (q, J )  has a multivariate normal distribution, we have 

derived an equivalent formulation for G(x)  5 ,B (first line in (2.34)). Slightly 
reformulated, this constraint is 

which is quite similar to (2.53). The sole difference is the different multiplier 
for the term 1 1  DTx - d 1 1 .  Taking /3 = 0.01, for example, we have P-6 = 10 
and -@-'(/3) = 2.32. Thus, in the normally distributed case, requiring (2.53) 
instead of (2.54), a much stronger inequality results. Consequently, the feasible 
domain becomes much smaller in general. A prototype substitute problem takes 
the form 

min cTx 
s.t. ,8-4 \lDTx - dl\ + pTx 5 pn+1 (2.55) 

x E a. 
If for a given distribution, like the multivariate normal or the Cauchy dis- 

tribution, an algebraic equivalent formulation exists, it makes no sense to use 
the stronger inequality (2.53). If, however, the distribution belongs to a class 
of distributions for which no equivalent algebraic formulation is known, or we 
have incomplete information regarding the distribution but have good estimates 
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for the expected value and the covariance matrix, the substitute constraint (2.53) 
may provide a valuable modeling alternative. Notice that for any distribution 
with existing second moments, employing (2.53) in the model ensures that for 
the solution x* the true inequality G(x*) 5 P holds also. In other words, em- 
ploying (2.55) is a conservative approach, which might be quite acceptable if, 
for instance, p represents the ruin probability of a company. Nevertheless, it 
may happen that the optimal objective value in (2.55) becomes too high (too 
high costs, for instance), due to the narrower feasible domain in comparison 
with the feasible domain according to the true constraint G ( x )  5 0. 

Analogously, if G(x)  is to be minimized in an SLP model, one might consider 
a substitute model with the upper bound from (2.51) in the objective. Thus, 
instead of 

min G(x)  
s.t. x E B 

we may consider the substitute problem 

Under the assumption that - j ~ ~ x  + pn+l > 0 holds for all x E B, we get the 
equivalent formulation 

T 
min P X - P ~ + I  1 

IIDTx - 4 ( 

where equivalence means that the set of optimal solution of the two problems 
coincide. According to Proposition 2.1, the objective function in (2.56) is 
pseudo-convex over B, thus (2.56) is a convex programming problem. A com- 
parison with (2.39) shows that the substitute problem and the original problem 
are equivalent in the case of the non-degenerate multivariate normal distribu- 
tion (notice that (2.39) corresponds to maximizing G). In the general case, 
the optimal objective value of the substitute problem (2.56) provides an upper 
bound on the optimal objective value of the original problem. Taking again 
the interpretation of G(x)  as ruin probability, for any optimal solution x* of 
(2.56), the ruin probability G(x*) will not exceed the optimal objective value 
of (2.56). Concerning applicability of this approach, similar comments apply 
as for (2.55). 

We would like to emphasize that, in general, both (2.55) and (2.56) are 
substitutes for the corresponding original problems, in general they are not 
equivalent to the true problems. Finally let us point out that this approach has 
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first been suggested by Roy 12601 and is utilized in the safety-first approaches 
to portfolio optimization, see Elton et al. [72]. 

2.4 The independent case 
In this section we consider the joint probability function 

where the components of the n-dimensional random vector ti(<) are the ele- 
ments of the ith row of the (s x n) random matrix T(J). We will assume in 
this section throughout that s > 1 holds. 

Our basic assumption is that the random vectors 

are stochastically independent. Models of this type have first been formulated 
and studied by Miller and Wagner [205]. 

The stochastic independence implies that the random vector ((x, J), with 
Ci (x, J) = tT (J)x - hi (J), i = 1, . . . , s, has stochastically independent compo- 
nents. Consequently, the probability function can be written in the independent 
case as follows: 

We observe, that the probability function G(x) is the product of probabil- 
ity functions of the type, which have been studied in Section 2.3 on separate 
constraints; each term in the product involves a single random inequality. 

Let us discuss the case first, when ti (J) - ti V i  holds, that means, we assume 
that only the right-hand-side is stochastic. Setting h(J) := J, we have 

Distribution functions being monotonously increasing, the terms of the product 
are quasiconcave functions. This does not imply, however, the quasiconcavity 
of the product. Assuming positivity of the distribution functions, a natural 
idea is to transform the product into a sum, by a logarithmic transformation. 
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The logarithm-function being strictly monotonically increasing, this would be 
suitable also from the optimization point of view. This way we get: 

log G(x) = log Fti ( tTx ). 

log G(x) will be concave, ifthe univariate distribution functions Fti are logcon- 
cave. As already noted by Miller and Wagner [205], logconcavity of univariate 
distribution functions is a thoroughly studied subject in statistics, more closely 
in reliability theory. It has been found that many important distributions, in- 
cluding the normal distribution, have logconcave distribution functions. For a 
recent summary see, for instance, Sengupta and Nanda [269] and the references 
therein. 

Let us assume that the distribution functions Fti are logconcave Vi, in the 
sense of the general Definition 1.3 on page 90. G(x), being the product of log- 
concave functions, is logconcave (see page 90). Consequently, the probability 
constraint 

defines a convex set, Va E [0, 11. If the distribution functions are positive, the 
constraint can also be written as 

for all a E (0, 11. 
If we drop the assumption of stochastic independence, but keep the supposi- 

tion that only the right-hand-side is stochastic, then from (2.58) we see, that for 
the logconcavity of G it is sufficient, that the joint distribution function FE,,.,. 5, 
is logconcave. This is true for several important distributions, and will be the 
subject of the subsequent Section 2.5. 

Finally we discuss the situation under the stochastic independence assump- 
tion and random coefficients in the inequalities, see (2.57). We assume that the 
joint distributions of the rows are non-degenerate multivariate normal. For the 
separate terms of the product we can use the explicit form (2.32), derived in the 
section on separate probability constraints, thus resulting in: 

where p(i), ~ ( ~ 1 ,  and d(i) are the parameters of the normal distribution corre- 
sponding to the ith row, Vi. According to Proposition 2.1 on page 109, the terms 
of the product in (2.60) are pseudo-concave functions, at least on appropriate 
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open half-spaces. Unfortunately, this does not even imply that G(x) is quasi- 
concave. To ensure the convexity of { x I G(x) > a ) quite strong additional 
assumptions are needed. This topic will be further pursued in Section 2.6. 

2.5 Joint constraints: random right-hand-side 
In this section we consider a single probability constraint under the assump- 

tion that T(<) - T holds, that means, we assume that the technology matrix 
is deterministic. We also simplify the notation by setting h(<) := J. Conse- 
quently, the probability constraint has the following form: 

where T is an (s x n) matrix and < is an s-dimensional random vector. Em- 
ploying the probability distribution function Fe, G(x) can be formulated as 
G(x) = F<(Tx). An alternative formulation for the probability constraint 
above is the following: 

From these representations it is clear, that for the convexity of the feasible 
domain 

B(a) = {a: I G(x) 2 a )  

it is sufficient, that the probability distribution function F4 is quasi-concave. 
In the next subsection we will introduce the notion of generalized-concave 

probability measures. Via generalized-concavity properties of density func- 
tions this will lead to identifying several important classes of probability dis- 
tributions for which FE is quasi-concave. Subsequently we consider transfor- 
mations which lead to generalized-concave probability functions. In the final 
subsection we consider SLP problems with joint probability functions in the 
objective. 

2.5.1 Generalized-concave probability measures 
We will assume in this section that the probability distribution Pe is absolutely 

continuous (w.r. to the Lebesgue-measure), that means, we assume that the 
probability measure is generated by a probability density function. We will 
discuss various conditions concerning the probability measure PC induced by 
E,  under which the probability distribution function FS is quasi-concave. 

We begin by discussing generalized means, see Hardy, Littlewood, and P6lya 
[112]. 

Let a 2 0, b 2 0, and X E [ O , l ] .  The generalized means M$(a, b) are 
defined as follows: for ab = 0 let M$(a,  b) = 0, for all y E IRu {-m) u {m). 
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Otherwise, that is, if ab > 0 holds, we define 

[Xa7+(l-~)by]: ,  if - m < y < m  

a n d y # O  

if y = O  (2.63) 

min{a, b), if y = -00 

if y = m .  

The following monotonicity property of these generalized means will be used, 
see 11121: 

with the inequality being strict, unless a = b or ab = 0. Based on these 
generalized means we define: 

DEFINITION 2.3 A nonnegative function f : JRn -+ JR+ will be called y- 
concave, iffor any x, y E IRn and X E [O ,1 ]  the following inequality holds: 

Let us note that in the literature this kind of generalized concave functions, 
as well as the generalized concave measures introduced later in this section, are 
usually called a-concave, see for instance, Dancs and Uhrin [42] and Norkin 
and Roenko [2 161. Because a is used for probability levels in this chapter, we 
use the term y-concave, instead. 

Let f be a y-concave function and C+ := {x ) f (x) > 0). The y-concavity 
immediately implies that C+ is a convex set. As already discussed for the 
logconcave case (c.f. Proposition 1.3 on page go), this observation leads to 
the following alternative characterization: the nonnegative function f is y- 
concave, if and only if C+ is a convex set and the inequality in Definition 2.3 
holds for all x, y E Cf. 

For various y values, y-concavity can be interpreted over C+ as follows (see 
the definition of the generalized means): 

y = +m: f is constant; 

0 < y < +m: f 7  is a concave function, note that' y = 1 corresponds to 
ordinary concavity; 

y = 0: f is logconcave, that means, log f is concave; 

rn - m  < y < 0: f 7 is a convex function; 

y = -m: f is quasi-concave. 
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Notice that we have stated the properties only over C+. To see the reason, let us 
discuss the case y = 1. A nonnegative function f is l-concave, if it is concave 
over the convex set Cf, where it is positive. I f f  is defined over Rn, this does 
not mean that f is a concave function there. The following nonnegative function 
g : R - - + R +  

( )  = { ; - x2 i f x  E [-1711 
if x E (-oo, -1) or x E (1, oo) 

is obviously l-concave but it is not concave. Considering the well-known 
properties of concave functions, some caution is needed when l-concave func- 
tions are dealt with. For instance, let g : IR + R+ and h : IR + R+ be both 
l-concave functions, with C$ := {x I g(x) > 0) and Ch+ := {x I h(x) > 0). 
Then for g + h we have C,f+h := {x 1 g(x) + h(x) > 0) = C: U c:, which 
is a non-convex set in general. Thus, the sum of l-concave functions is not 
necessarily l-concave. 

The monotonicity property of the generalized means implies: if f is 72- 

concave, then it is yl-concave, for all yl < y2. In particular, i ff  is y-concave 
for any y E [-oo, oo] then f is quasi-concave. For the implications concerning 
the various types of generalized concavity see Figure 2.6. 

Although pseudo-concavity does not fit into the class of y-concave func- 
tions, logconcave functions, which are continuously differentiable over their 
domain of positivity, are also pseudo-concave there, see Proposition 1.4 on 
page 91. Consequently, for y 2 0 the y-concave functions, having the above 
smoothness property, are also pseudwconcave over their positivity domain. 

We wish to extend the notion of y-concavity to probability measures. For 
this we have to specify first, how a linear combination of sets should be defined. 
Let A and B two subsets of RT and let X E I . .  We employ the following 
definitions: 

Figure 2.5 shows the convex combination of two sets. For the properties of 
these operations on sets see, for instance, Rockafellar [249]. 

We will confine ourselves to the case, when both sets are convex. Let A and 
B be convex sets; A, p E R. The following properties ,are important for the 
future discussion: 

A + B and XA are convex sets, see [249]. 

Let X 1 0 and p 2 0. Then (A + p)A = XA + pA (without the convexity 
of A only (A + p)A c XA + pA holds). See [249]. 

If either A or B is open, then A + B is open. 
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Figure 2.5. Convex combination of two sets with X = i. 

If both A and B are closed, and at least one of them is bounded, then A + B is 
closed. The sum of two unbounded closed convex sets need not to be closed, 
see [249]. If both A and B are closed then A + B is Borel-measurable, see, 
for instance, [74]. 

If A is convex, then it is obviously Lebesgue-measurable, because the 
boundary has Lebesgue-measure 0. 

If A is convex, then it is not necessarily Borel-measurable. To see this, 
let us construct a convex set in Et2 as follows: Let us take a non-Borel- 
measurable set K on the interval [O,27r) (for the existence of such a set see, 
for instance, Billingsley [17]) and let us map this set onto the boundary of 
the open unit disc in Et2 by the mapping Q : K K: Et2, x -+ (cos x, sin x). 
The union of the open unit disk and the image of IC under Q is obviously 
convex, and, as a union of a Borel-measurable set (the open unit disc), and 
a non-Borel-measurable set, it cannot be Borel-measurable. 

The sum of two Borel-measurable sets is not necessarily Borel-measurable, 
see Erdos and Stone [74]. 

As a next step, we will define generalized concavity properties of probability 
measures, in analogy with Definition 2.3. Considering the list of properties 
above, one must be careful in working with convex combinations of Borel- 
sets. Therefore we formulate the definition as follows: 

DEFINITION 2.4 The probability measure IP on the Borel-sets BT is called 
y-concave, iffor any convex, measurable sets A and B and any X E [O,l], for 
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which XA + ( 1  - A) B  is Borel-measurable, the following inequality holds: 

A y-concave probability measure with y = -00 will be called a quasi-concave. 
In this case the defining inequality takes the form 

For y = 0  we have a logconcave probability measure, with the defining in- 
equality 

P ( X A  + (1 - X ) B )  2 P ( A ) ~ P ( B ) ~ - ~ .  

Let J be a random variable and PE the induced measure on 8'. We denote 
by Ft the probability distribution function of J .  For any convex, closed set A  in 
IRr let us introduce the function r A ( y )  = P t ( A  + {y ) ) .  Then the following 
proposition holds. 

PROPOSITION 2.2 I f P E  is a y-concave measure, then rA is a y-concave 
function. 

Pro08 Let x ,  y  E IRr, X E [0, 11. Then we have 

0 

Let us assume, that P C  is y-concave. Taking A  = R.1 we get from Proposi- 
tion 2.2, that Fg is y-concave. Consequently, { x  1 P t ( T x  2 J )  2 a )  is a 
convex set,Va E [0, 11 (see (2.6 1)) .  

Let us consider 
H ( Y )  :=P€{Y I J 2 Y ) .  

Choosing now A  = IR?, Proposition 2.2 implies, that H is also y-concave. 
Consequently, { x  I P S ( T x  5 J )  2 a ) is also a convex set,Va E [0, 11. 

The above considerations imply, that for showing that the distribution func- 
tion F  is y-concave, it is sufficient to prove the y-concavity of the probability 
distribution PC. 

The following fundamental theorem links, for continuous distributions, the 
y-concavity of the probability density function with the y-concavity of PC. 
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THEOREM 2.8 Let f be a y-concaveprobability density function for theprob- 
ability distribution of the r-dimensional random variable J. Let - $ 5 y 5 oo. 

Then PC is an -- 7' concave probability measure. 
1 + r y  

Pro08 Let X E [O,1]  and assume that the convex sets A, B, and 
XA + (1 - X)B are Borel-measurable. The y-concavity off  implies: 

Now we apply an integral-inequality, see Prhkopa [234] ( for y = 0 it is called 
Pr&kopaYs inequality): 

which completes the proof. 0 

For some ranges of y-values we summarize the assertion of the theorem, 
together with the implications from Theorem 2.2, see also see Figure 2.6. For 
this let C := { x ( f (x) > 0 ) and let us assume that C is a convex set. 

1 
f is constant over C + F and H T are concave, consequently both F and 
H are logconcave and therefore also quasi-concave. 

f is logconcave d F and H are logconcave and therefore quasi-concave, 
too. 

f -+ is convex + F and H are quasixoncave. 

Logconcave functions have several nice properties. We will need the follow- 
ing fact: 

THEOREM 2.9 Prikopa [227] Let f : IRn+m -t IR+ be a logconcave 
function. Then 

s(x) := J ~ ( x , Y ) ~ Y  

IRm 
is a logconcave function on IRn. 
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implication 
4 N 

1 -- 
f quasiconcave f convex f logconcave f constant on C 

1 

F quasiconcave F logconcave F~ concave 

Figure 2.6. yconcave density functions versus &-concave distribution functions. 

Proofi See Prkkopa [234]. 
Iff  is a logconcave density function then this theorem implies that all marginal 
density functions are logconcave, too. 

Iff and g are two logconcave density functions on IRn then their convolution 
is also logconcave. In fact, the logconcavity of f implies that h(x, y) := 
f (x - y) is logconcave in lR.2n (see the remark on page 90). Thus f (x - y)g(y) 
is logconcave in lR.2n. Applying Theorem 2.9 yields the result. 

For y = 0 Theorem 2.8 has first been established by Prkkopa in 1971 [226], 
by Leindler 1972 [178], and in its final form by Prkkopa 1973 [227]. Dinghas 
1957 [60] proved the theorem for y > 0. Borell proved the theorem in full 
generality in 1975 [27]. 

The breakthrough in the field of generalized concave measures and their 
application in stochastic programming has been achieved by Prkkopa, who 
developed the theory of logarithmic concave probability measures. These fun- 
damental results have inspired several authors: papers with alternative proofs 
have appeared, the theory has been extended to quasi-concave measures, and 
applications in stochastic programming, statistics, and economics have been 
studied. For a comprehensive discussion of these results see Prkkopa [234] 
and the references therein. Here we confine ourselves to refer to Brascamp 
and Lieb [29], Dancs and Uhrin [42], Das Gupta [48], Kallberg and Ziemba 
11531, Norkin and Roenko [2 161, and Rinott [245]. Converse results have been 
obtained, for instance, by Borell [27], Brascamp and Lieb [29], and Kall[134]. 

As applications of Theorem 2.8, below we give some examples for multi- 
variate probability distributions, for which the probability distribution function 
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is quasi-concave or even logconcave. The probability distribution- and density 
functions will be denoted by F and f ,  respectively. For a square matrix D, its 
determinant will be denoted by ID]. For multivariate distributions and their 
usage in statistics see, for instance, Johnson and Kotz [129] and Mardia, Kent, 
and Bibby [188]. 

a Uniform distribution on a convex set. The density function is 

& i f x ~ C  
f ( 4  = 

0  otherwise, 

where C c IRS is a bounded convex set with a positive Lebesgue-measure 
X(C). f is obviously logconcave thus F is logconcave, too. 

Non-degenerate normal distribution. The density function of this distribu- 
tion is positive on IRT and is given in (2.26) on page 104. Taking logarithm 
and neglecting the additive constant results in 

This is a concave function, because with C, C-l is also positive definite, 
see for instance, Horn and Johnson [121]. Thus f is logconcave implying 
the logconcavity of F. Figure 2.7 shows the standard bivariate normal 
distribution h c t i o n  and its logarithm. 

Figure 2.7. The bivariate standard normal distribution function and its logarithm. 

w Dirichlet distribution. This is the joint distribution of the random variables 
r r  1-1 

qj = tj LC ti] , j = 1 , .  . . , r ,  where t j ,  j = 0) .  . . , r are independent 
i = O  
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random variables, & having X2-distribution with vj > 0 degrees of freedom. 
The density function of this distribution is 

where O j ,  j = 0, . . . , r are the parameters of the distribution; Oj  = ;vj V j .  
S 

On the convex set C+ := { x  1 x > 0, 2 xj < 1 ) the density function 
j=l 

is positive and it is zero if x 6 C+. Therefore, see Proposition 1.3 on 
page 90, for checking logconcavity, it is sufficient to consider log f ( x )  over 
C+. Apart of an additive constant, we have for x E Cf: 

If O j  2 1 V j  then this is a linear combination, with nonnegative coefficients, 
of concave functions, therefore log f ( x )  is concave on C+. Let us remark 
that the concavity of the first term in the right-hand-side follows from the 
fact, that substitution of an affine-linear function into a concave function 
preserves concavity. We have got: provided that Oj  2 1 for j = 0,.  . . , s 
holds, f is logarithmic concave implying the logconcavity of F. 

Wishart distribution. This is the joint distribution of the elements of the 
sample covariance matrix for a multivariate normal population. Let us con- 
sider a sample with sample-size N > s from a population consisting of 
s-dimensional random vectors having a multivariate normal distribution 
with covariance matrix C. The density function for this distribution is the 
following: 

y ~ ~ l i ( ~ - ~ - ~ )  e-3Tr(C-1x) if X is positive definite 

otherwise 

where X is an (s x s) symmetric matrix and 

S 

holds. For an ( s  x s) matrix D, Tr D := C Djj  denotes the trace of D. 
j=1 

We wish to check whether f is logconcave. For this we observe that the 
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set C+ := { X  I X is symmetric positive definite) is obviously a convex 
subset of the linear space of symmetric ( s  x s) matrices. Therefore it is 
sufficient to consider log f on C+. 

1 1 
log f ( X )  = logy + - ( N  - s - 2) log 1x1 - 5 ~ r  C'X. 

2 
The third term is obviously linear in X .  According to an inequality of Fan 
(see, for instance, Beckenbach and Bellman [l  I]), the function 1x1 is a 
logconcave function of X. Therefore, if N 2 s - 2 then f is logconcave 
and so F is logconcave, too. 

t-distribution (Student-distribution) We consider the joint distribution of 
- 1 

j = j (5) , j = 1, . . . , T ,  where ( & ,  . . . , tr) has a joint standardized 
non-degenerate multivariate normal distribution with correlation matrix R. 
5 has a x-distribution with v degrees of freedom. The density function for 
this distribution is positive on IRS and has the analytical form 

f (4 = '(f (V + s ) )  (l + i x ~ R - l x ) - i ( v + s )  
(nu) 5 I?(:) 1 RI ? v 

where the parameters are R, a symmetric positive definite matrix, and the 
1 

positive integer V ,  interpreted as degrees of freedom. f -a  is, apart of a 
positive multiplicative constant, as follows: 

which is a convex function on IRS. To see this, let us remark first that 

is convex because the positive definite matrix above induces a norm in 
IRS+'. We have g = h l + I ,  therefore the convexity of g follows from 
the fact, that substituting a convex function into a monotonically increasing 
convex function results in a convex composite function. Thus f - 3  is convex, 
implying that F is quasi-concave. 

Univariate gamma distribution. The density function of this distribution is 

otherwise 

where X > 0 and .9 > 0 are parameters. This distribution will be denoted 
by G(X,  19). If X = 1, then the distribution is called a standard gamma 
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distribution. Assuming x > 0 and taking logarithm we observe that f is 
logconcave, provided that 19 2 1 holds. If an s-dimensional random vector 
r] has stochastically independent components q -- G(Xi, 19i) and 19i 2 1 V i  
holds, then r ]  has a logconcave distribution. This follows by considering the 
density function of r ] ,  which is the product of the one-dimensional density 
functions of the components. The univariate densities being logconcave, 
their product is logconcave, too. 

2.5.2 Generalized-concave distribution functions 
So far we have discussed one way for ensuring generalized concavity of the 

distribution function Ft. The method, applicable for continuous distributions, 
has been the following: the generalized concavity of the probability density 
function has been studied, which implied via Theorem 2.8 the generalized con- 
cavity of Ft. For several important multivariate distributions it turned out that 
Ft is pseudo-concave, or that they even have the more important logconcavity 
property. 

Another possibility has been discussed in Section 2.4. Under the assumption 
that the components of E are stochastically independent, the joint distribution 
function is the product of the one-dimensional marginal distribution functions, 
that means, 

S 

i= 1 

If the marginal distribution functions FE, are log-concave then Ft will be log- 
concave, too. 

In the sequel we explore further ways for ensuring generalized concavity 
properties of the probability distribution function. The idea is to apply transfor- 
mations to random vectors having generalized-concave distributions, in order 
to obtain distributions for which the probability distribution function again has 
some generalized concavity properties. 

The subsequent theorems and the insight behind their application in stochas- 
tic programming have been first found by Prbkopa for the logconcave case. 
Their extension to the y-concave case is straightforward. 

The following general theorem gives a sufficient condition for generalized 
concavity of composite functions. See, for instance, Prkkopa [234] and for an 
extension Tamm [286]. 

We consider the following probability function: 
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THEOREM 2.10 Let gi, i = 1, . . . , m be quasi-concave functions, that means, 
let gi (-, .) be jointly quasi-concave in both arguments. For the sake of simplicity 
we also assume that g is continuous. Assume further, that E has a y-concave 
probability distribution. Then M(x) is a y-concave function. 

Proofi Let R(x) := { z I g(x, z) 1 0 ) C IRS. Due to our assumptions these 
sets are convex and closed Vx and we have M (x) = IPE (R(x)). Let X E (0, I), 
x, y E IRn. The basic ingredient of the proof is the following inclusion, which 
can be proved in a straightforward way: 

Using this and the y-concavity of the probability measure, we immediately get: 

As an application of this theorem we will show, how it can be applied to 
prove logconcavity of the log-normal distribution function. 

Log-normal distribution. Let the random variables f i ,  . . . , <, have a joint 
non-degenerate multivariate normal distribution. The joint distribution of 
the random variables = ee$ i = 1,. . . , s is called a multivariate log- 
normal distribution. The density function of this distribution is not logcon- 
cave, see Prkkopa [234]. For the joint distribution hnction F, we have: 

In the preceding section we have seen that the probability measure of a non- 
degenerate multivariate normal distribution is logconcave. Theorem 2.10 
can be applied with y = 0 thus showing that F, is a logconcave function. 

Let us consider next the effect of linear transformations of random variables 
having y-concave distributions. The following theorem holds: 

THEOREM 2.11 Let 5 be an s-dimensional random vector, D an (r x s )  
matrix, and C = DE + d. IfJ has a y-concave distribution then the distribution 
of C is also y-concave. 
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Proofi Let X E (0, l)  and let A, B y  CA := XA+ (1 - A) B be Borel-measurable 
convex sets in IRT. Then their inverse images in IRS under the affine linear 
transformation defined by D and d, that means, 

A := { x l D x + d ~ A ) ,  
B := { x \ D x + d ~ B ) ,  and 
CA := { x ~ D x + ~ E C ~ )  

are Borel-measurable convex sets in IRS. It is easy to see that 

holds. Using this we get 

This theorem can be utilized to study generalized concavity properties of 
distributions, which are derived in a similar way, as the multivariate normal dis- 
tribution. We take s  stochastically independent continuous random variables, 
each of them having a y-concave density function. The joint density function 
is then the product of the density functions of the components. If this joint 
density function is y-concave, then via Theorem 2.1 1, C = DJ + d will have 
a y-concave distribution. Especially, if the components of J have logconcave 
densities (y = 0), then the joint density function of J will be logconcave (see 
page 90). 

a The multivariate normal distribution. We consider the multivariate nor- 
mal distribution, see Definition 2.1 on Page 103. In Section 2.5.1 we have 
proved, by applying Theorem 2.8, that the non-degenerate multivariate nor- 
mal distribution is logconcave. Without the non-degeneracy assumption 
we can proceed as follows. Recall (definition 2.1 on page 103) that the 
r-dimensional random vector 5 has a multivariate normal distribution, if 
C = BJ + p holds, where B is an (r x s )  matrix, p E IRT holds, and the 
components of J are independent and have a standard normal distribution. 
The joint probability distribution of J is then obviously non-degenerate 
multivariate normal. Thus, Theorem 2.8 implies that J has a logconcave 
probability distribution. Consequently, the application of Theorem 2.1 1 
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yields the logconcavity of the probability distribution of < and thus the log- 
concavity of the multivariate normal distribution in the general case. 

A multivariategamma distribution. In the preceding section on Page 13 1 we 
have seen that the univariate gamma distribution has a logconcave density 
function, therefore our technique can be used in this case, too. Prkkopa and 
Szintai 123 81 have defined a multivariate gamma distribution as follows. Let 
J be a s = 2I' - 1 dimensional random vector with stochastically indepen- 
dent components. The components are assumed to have standard gamma 
distributions, see Page 13 1. Let D be an (r  x 2* - 1) matrix with nonzero 
columns and components equal to 0 or 1. The distribution of C := DJ 
is called a multivariate gamma distribution. If for the parameter 29 2 1 
holds, then Theorem 2.1 1 implies that the distribution of 5 is logconcave. If 
29 < 1 then the distribution of C is not necessarily logconcave, but the joint 
distribution function FC is still a logconcave function, see [238]. 

Figure 2.8. The graph of the bivariate standard Cauchy-distribution and the upper level set 
corresponding to level 0.005. 

In Section 2.3.3 we have considered a multivariate Cauchy distribution, 
which is derived on the basis of an affine linear transformation as discussed 
above, see definition 2.2 on page 115. A natural idea is trying to apply The- 
orem 2.1 1 for deriving some y-concavity property of the multivariate Cauchy 
distribution. Notice, however, that the density function of the univariate Cauchy 
distribution is not logconcave. Moreover, as it can easily be seen, the product 
of the density functions of standard univariate Cauchy distributions is not even 
quasi-concave, see Figure 2.8. Therefore, see Figure 2.6, the joint density h c -  
tion of J is not y-concave, for any y. Consequently, our technique does not 
go through in this case. Notice, however, that there are other generalizations 
of the Cauchy distribution to the multivariate case, where the distribution is 
quasi-concave, see Prkkopa [236]. 
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Finally let us comment on the case when J has a finite discrete distribution. 
Prkkopa [234] gave a definition of logconcavity of such distributions and studied 
their properties. In Dentcheva et al. [57], the authors extend this notion to r- 
concave discrete distributions, where r-concavity corresponds to y-concavity 
(see Section 2.5.1) in the continuous case, and is appropriately modified for 
the discretely distributed case. The authors also report on algorithmically rel- 
evant applications by providing bounds on the optimal objective value of SLP 
problems with probabilistic constraints. 

2.5.3 Maximizing joint probability functions 
For the case when the probability function is in the objective, we formulate 

the prototype problem 
max G(x)  
s.t. x  E 23 

(2.66) 

where G is the probability function G(x)  = IPE ( T x  2: J )  and 23 is a polyhedral 
set determined by linear inequalities andor equalities, see (1.8) on page 78. 

If G is log-concave and differentiable then it is also pseudwoncave, see 
Proposition 1.4 on page 9 1. This is the case, for instance, for the non-degenerate 
multivariate normal distribution or for the log-normal distribution (see pages 
129 and 133). Consequently, for log-concave distributions, (2.66) is a linearly 
constrained convex optimization problem. Some other distributions only have 
the quasi-concavity property, like the multivariate t-distribution (see page 13 1). 
In such cases (2.66) has a quasi-concave objective function and the problem 
may have local maxima which are not global solutions; the problem becomes 
much more difficult to solve numerically. 

Note that (2.66) has been formulated as a maximization problem. Assuming 
s  > 1, that is, assuming that J is a random vector, this is the only way for arriving 
at convex programming problems. Reversing the random inequality does not 
help in this respect: with G the function G : G ( X )  = IPE(Tx 5 J )  is also log- 
concave, see the discussion on page 126. For reversing the random inequality 
in the multivariate case see also (2.6) on page 94. Thus, for J having a log- 
concave distributions and assuming s > 1, the counterpart of (2.66) involving 
minimization is a much more difficult problem numerically than (2.66). 

2.6 Joint constraints: random technology ,matrix 
In this section we consider the probability function in full generality 

where the ( s  x n) technology matrix T ( J )  is also allowed to be stochastic. In 
Section 2.3 on separate probability constraints we have assumed that s = 1 
holds. We have seen that the feasible domain is convex under various further 
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assumptions concerning the probability distribution and the probability level a. 
If s > 1, then the convexity of the feasible domain can only be ensured under 
quite strong assumptions. We will discuss the case, when the joint distribution 
of the random entries is multivariate normal. 

The matrix of random entries (T([), h([)) will both be considered column- 
wise and row-wise, therefore we introduce the notation: 

Here the s-dimensional random vector [(j) denotes the jth column of T([) for 
j 5 n, and the right-hand-side h([)  for j = n + 1. 

Let cT = . . , be the random vector consisting of all ran- 
dom entries in columns major order. The n + 1-dimensional random vector 
rl(i) stands for the ith row, 1 5 i 5 s, i.e., rl(i)T = (Til([), . . . , T,,([), hi([)). 
Let rlT = (rl(l)T,. . . , rl(S)T) be the random vector consisting of all random 
entries in rows major order. 

For any vector x E Rn let 2 E Eln+' be ZT = (XI,. . . ,xn,  -1). For 
simplicity of notation in this section we drop the explicit reference to [ in 
<(x, [). We have the following alternative representations 

Please not that we distinguish between the random vector ( and <(x) defined 
in (2.67). 

We assume that C has a multivariate normal distribution. This implies a mul- 
tivariate normal distribution for q, as well as for the marginal distributions of 

and rl(i), Vi, j ,  and for the distribution of C(x) (see Section 2.3.2 and [289]). 

Let p(x) be the expected-value vector and C(x) be the covariance matrix of 
[(x). We proceed with computing these moments in terms of the moments of 
C and 7. To this we introduce some further notation: 

M is the ( s x (n + 1) ) matrix of expected values of (T([), h([)); 

d i 9 j )  is the (s x s) covariance matrix of ~ ( ~ 1  if i = j, otherwise the cross- 
covariance matrix of c ( ~ )  and @), i = 1,. . . , n + 1, j = 1,.  . . , n + 1; 
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rn ~ ( ~ j )  is the ( (n + 1) x (n+ 1) ) covariance matrix of 77(i) if i = j ,  otherwise 
the cross-covariance matrix of 77(i) and $1, i = 1, . . . , s, j = 1, . . . , s. 

For the expected value of ((x) we immediately get 

For the covariance matrix of ((x) we obtain two alternative forms corre- 
sponding to the column-wise and row-wise representations, respectively. We 
proceed with the column-wise form. For computing the covariance matrix, we 
note that ((x) is defined by an affine linear transformation: 

A straightforward computation gives for the covariance matrix of [(x): 

In the alternative representation we observe: 

which immediately leads to 

Next we observe that IP( [(x) 2 0 ) = IP( -[(x) I 0 ), where -[(x) is 
also normally distributed with the same covariance matrix as ((x) and expected 



Single-stage SLP models 139 

value vector -,u(x). We will consider the case when all covariance matrices 
d i ~ j )  are multiples of a fixed symmetric positive semidefinite matrix. Therefore 
it is sufficient to prove convexity for one of the sets 

B ( a )  : = { x l ~ ( S ( x ) L O ) L a ) ,  

A(a) : = { x I I P ( C ( x ) l O ) l a ) ,  

the convexity of the other one follows immediately. 

THEOREM 2.12  Prkkopa [229]. Let us assume that ( has a joint multivariate 
normal distribution and that 

I either there exists an ( ( n  + 1 )  x (n  + 1 ) )  matrix S  and a symmetricpositive 
semidejinite matrix C, such that d i j )  = Si jC  holds V i ,  j , 

2 or there exists an ( s  x s )  matrix 3 and a symmetric positive semidejinite 
matrix 6, such that = Sij6 holds, V i ,  j. 

In both cases, i f a  2 4 then A(a) is a convex set. 

Proof We begin with proving the first assertion of the theorem. We will assume 
that S  is nonsingular; for the general case see Prkkopa [234]. For the covariance 
matrix of ( ( x )  we have (cf. ( 2.68) ) 

In particular, for the variance we get 

We may assume that Cii > 0  holds Vi .  
In fact, Cii = 0  implies that W a r [ ( i  ( x ) ]  = 0 ,  V x .  Consequently, the coeffi- 

cients and right-hand-side in the i th row of the system of random inequalities 
are a.s. constant. Therefore (see the Remark on page 95) the ith inequality can 
be moved to the set of deterministic constraints in the corresponding optimiza- 
tion problem. 

From relation (2.71) immediately follows, that S  is 'a symmetric positive 
semidefinite matrix. We have assumed that S  is nonsingular, therefore S  is 
positive definite. 

Another implication of (2.70) is, that the correlation matrix R of ((x) does 
not depend on x .  In fact, R, := Qorr[(i ( x ) ,  ( j  ( x ) ]  = & holds. 

2% 33 
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By standardizing [(x) (see page 104) we get: 

where ZTS2 > 0 holds, due to our assumption concerning S and the fact that 
~ # O V X E R ~ .  

Let 

where 1 1  . I l s  is clearly a norm in Rn+l. With this notation we have 

@(z; R) is a multivariate distribution function, consequently it is monoton- 
ically increasing in each of its variables. This implies that @(zi) 2 @(z;  R) 
Vi holds. Under our assumption a 2 4, we deduce that h(x) 2 0 holds 
Vx E d ( a ) .  

Let x E A(a), y E A(a), X E (0, l)  and let Z and 5 be the correspond- 
ing n + l-dimensional vectors with their last coordinate being equal to -1, cf. 
page 137. 

With the notation xx = Ax + (1 - X)y and = A 2  + (1 - X)Q, using the 
triangle inequality for norms we get: 

We will make use of the following trivial fact: for A, B, C, D E R ,  C > 0, 
and D > 0 we have 

with IF. = A; 0 < IF. < 1. Applying this componentwise in (2.72) with the 
setting A = Xh(x), B = (1 - X)h(y), C = XI1211s, and D = (1 - X)llclls, 
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and utilizing the logconcavity of Q>(z; R) we get: 

The proof of the second assertion runs along analogous lines. For the co- 
variance matrix of C(x) we now have (see (2.68) ) 

For the variance we get 

Arguing similarly as for the first assertion, we conclude that Sii > 0 V i  may be 
assumed. If is positive definite, then the rest of the proof runs analogously 
to the proof of the first assertion. For the general case see Prkkopa [234]. 

0 

Let us remark, that the second assertion of the theorem has originally been 
proved in [229] under the assumption of the stochastic independence of the 
rows of (T (J ) ,  h ( J ) ) ;  the general case has been proved by Burkauskas [35]. 

2.7 Summary on the convex programming subclasses 
SLP models with probability functions are non-convex in general but in 

the preceding sections we have found important subclasses consisting of con- 
vex programming problems. From the practical modeling point of view it is 
important to know, whether a particular model instance involving probability 
functions is a convex programming problem. Having namely a convex program- 
ming problem there are good chances for finding efficient solution algorithms, 
or in many cases general-purpose software can be used for solving the problem. 

Therefore, for the sake of easy reference, in this section we summarize those 
model classes which consist of convex programming problems. For further 
such model classes see Prkkopa [234]. If a particular model instance does not 
belong to any one of these model classes then most probably it is a non-convex 
optimization problem. This is not certain in general, of course; further research 
is needed which may lead to the discovery of new convex programming classes 
of SLP problems with probability functions. 
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where T(J) denotes a random s x n matrix, h(J) E IRS stands for a random 
vector. The components of the n-dimensional random vector ti(,$ are the 
elements of the ith row of T(J), Vi and q ( J )  stands for the jth column of 
T(J), V j .  If s = 1 (separate probability function) holds, we use the notation 
t(E> = T ( 0 ;  CL = IE[t(J)l, P ~ + I  = W ( J ) I .  

A. General cases: convex models are identified by choosing specific probability 
4 

levels. If a = 1 or a = 0 or ,L? = 1 then B(a), B(a), V(P), and 5 ( ~ )  are 
all convex sets. (Proposition 2.2 on page 97 and the discussion on page 97). 

B. J has a finite discrete distribution: convex models are identified by choosing 
specific probability levels. If a is high enough (as precisely formulated in 
the assumptions of Proposition 2.3 on page 100 and Proposition 2.4 on 
page 100) then B(a) and @a) are convex. In general, however, B(a), 
g ( a ) ,  V(P), and S(P) are non-convex sets. Equivalent linear mixed- 
integer programming reformulations are available, see (2.19) on page 100. 

C. Separate probability functions, s = 1: convex cases are identified by choos- 
ing specific probability distributions and probability levels. 

1. If only the right-hand-side is stochastic then B(a), @(a), V(p), and 
$(P) are half-spaces, determined by linear inequalities (Section 2.3.1) 
although for D(P), and g ( ~ )  some care is needed if J does not have 
a continuous distribution (page 103). (2.66) can be formulated as a 
deterministic linear program if 23 is bounded, otherwise some caution is 
needed, see (2.24) on page 103. These results hold for arbitrary values 
O < a < l a n d O < p < l .  

2. If (t(J), h(J)) has a multivariate normal distribution and a 2 4 and ,O 5 
4 hold, then B(a), &a), D(P), and 5 ( ~ )  are convex sets, determined 
by convex nonlinear constraints, see Section 2.3.2, (2.35), and (2.36) 
on page 108. Some care is needed concerning D(P), and $(P), see 
(2.36) on page 108, in the case when the distribution is degenerate, see 
page 108. If the distribution is non-degenerate then G(x) is pseudo- 
concave on B, if pTx > p,+1 holds for all x E B. It is pseudo-convex 
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on By if pTx < pn+l holds for all x E B. Similar assertions hold for 
e ( x )  with exchanged roles of the inequalities for the expected values 
(Proposition 2.1) on page 109. Thus (2.66) is a convex programming 
problem if for all x E By pTx > pn+l holds. The corresponding 
minimization problem is a convex programming problem provided that 
for all x E B the reverse strict inequalities pTx < pn+l hold. 

3. If (t(J), h(J)) has a multivariate Cauchy distribution, similar remarks 
apply as in the normally distributed case, see Section 2.3.3. This section 
outlines also a technique for carrying out the analysis for distributions 
belonging to the class of stable distributions. 

Stochastically independent random variables, s > 1: convex cases are iden- 
tified by choosing specific probability distributions. If only h(J) is stochas- 
tic, (hl(<), . . . , h,(J) are stochastically independent, and each hi(<) has a 
log-normal distribution function, then G(x) is a log-concave function and 
B(a) is convex (Section 2.4). 

Only the right-hand-side is stochastic: convex cases are identified by choos- 
ing specific probability distributions. In the case of s = 1 this has been 
discussed above in item B. 1 and under the assumption of stochastic inde- 
pendence the discussion can be found under item D. In the general case G(x)  
and G(x) are log-concave for the following multivariate distributions: uni- 
form (page 129), non-degenerate normal (page 129), Dirichlet (page 129), 
Wishart (page 130), log-normal (page 133), and gamma (page 135). The 
probability functions G and G(x) are quasi-concave for the multivariate t- 
distribution (page 13 1). Consequently, B(a) and &a) are convex. Having 
G(x) or e ( x )  in the objective function, (2.66) is a convex programming 
problem for the log-concave distributions listed above. Regarding the case 
with reverse inequality constraints and the same distributions, D(P), and 
s ( ~ )  are non-convex sets in general and the minimization variant of (2.66) 
is a non-convex optimization problem. 

Random technology matrix: for the case s = 1 the discussion can be found 

under items C.2 and C.3. For s > 1, B(a) and &a) are convex under the 
following assumptions: (TI (J), . . . , TI (J), h(J)) have a joint multivariate 
normal distribution and the covariance matrices of the columns as well as 
the cross-covariance matrices are constant multiples of a fixed covariance 
matrix, then B(a) and &a)  are convex sets. This holds also under the anal- 
ogous assumption concerning the rows. For both facts see Proposition 2.12 
on page 139. 
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3. Quantile functions, Value at Risk 
One way for including simultaneously the loss size and the probability of 

loss into an SLP model leads via quantiles. Recall that for a random variable 
6 with distribution function F8 and for 0 < a < 1, z E IR is an a-quantile, if 
both inequalities 

IP(19 5 z) > a and IP(6 2 z) 2 1  - a  

hold. The set of a-quantiles is a non-empty closed interval for 0 < a < 1, 
see, for instance, Cramkr [41]. We assume that 0 < a < 1 holds and assign 
the following quality measure to random variables: 

~;~,(6) := v(6,a)  := min{z I Fs(z) t a}, 6 E ICY,  (3.1) 

defined on the set of all random variables over 1;2. According to this definition, 
for a given a, v(6, a )  is the left endpoint of the closed interval of a-quantiles 
of 6. 

Similarly as in Section 2.3 on separate probability functions, for the sake of 
simplicity of notation, we consider the random variable 

We interpret positive values of C(x, q, E )  as loss and negative values as gain. 
The evaluation function corresponding to the risk measure (3.1) will be the 
following: 

~ ( x ,  a )  := min{z 1 9(x ,  z) > a} (3.3) 
where 9 ( x ,  -) denotes the probability distribution function of <(x, q, t). We 
will call v(x, a )  a quantile function. a will typically have a large value, for 
instance, a = 0.95. The interpretation of v(x, a) is in this case a minimal loss 
level, corresponding to the decision vector x, with the following property: the 
probability of the event that the loss will not exceed v(x, a )  is at least a. In 
financial applications v(x, a )  is called Value at Risk (VaR), see Elton et al. [72], 
and the references therein. We will adopt this terminology for our more general 
setting. 

We consider minimizing the sum of a linear function and VaR, under linear 
constraints. 

min cTx + v(x, a )  

s.t. x EB. 

By using the definition of v(x, a )  and introducing an additional variable z, the 
following equivalent formulation results: 

min cTx + z 
s.t. 9 (x ,  z) > a 

x E a. 1 
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The equivalence with (3.4) is immediate by noting that for each fixed x E B 
in (3.5), it is sufficient to take into account the minimal z in the constraint, this 
minimal z is however v(x, a) .  Substituting the definition of 6 finally leads to 
the formulation 

min cTx + z 
s.t. IFyqTx-J 5 z )  > a  1 (3.6) 

I(: E a. 
This model clearly belongs to the class of SLP models with separate probability 
functions, see (2.21) with s = 1, in Section 2.3. The probability function in the 
model above is a special case of the general form with the "technology vector" 
containing a deterministic component 

It is an interesting fact, that the first SLP model for minimizing VaR has been 
formulated by Kataoka [I571 in the form (3.6) already in 1963. 

Being a special case of SLP models with separate probability functions, the 
whole machinery developed in Section 2.3 applies. We will illustrate this by 
discussing the case of the multivariate normal distribution. Let 

and assume that (q, J) has a multivariate normal distribution (see page 105). For 
a fixed (x, z), the z-term can be interpreted as merely modifying the expected 
value of J, therefore for c ( x ,  z) the explicit form (2.34) on page 108 applies 
with pn+l replaced by pn+l + z. Consequently, see (2.35) on page 108, (3.6) 
can be written as 

min cTx + z 
s.t. @ - l ( a ) l l ~ ~ x  - dl1 + pTx - z 5 pn+l 1 (3.7) 

x E I3. 

At the optimal solution the nonlinear constraint is clearly active. This obser- 
vation leads, by eliminating z, to the following linearly constrained alternative 
formulation: 

min cTx + @-l (a)( [  D ~ X  - dl1 + pTx - p,+l 
~ . t .  x E a 

Assuming that a > 4 holds, due to the convexity of the Euclidean norm both 
models (3.7) and (3.8) are convex programming problems. 

Except of those cases, discussed in Section 2.3, which can be formulated 
as convex programming problems, the model (3.6) is in general a non-convex 
optimization problem. 
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Turning now our attention to SLP problems with VaR-constraints, we con- 
sider problems of the following form: 

min cTx 
x 

s.t. min{z I 9 ( x , z )  2 a )  5 r; 
z (3.9) 

x E a. 

Observe that the minimum in the minimization problem involved in the first 
constraint is attained. Therefore, for a fixed x this constraint holds, if and only 
if there exists a z E IR such that it holds for that z. Thus the optimization 
problem (3.9) can be equivalently formulated as follows: 

min cTx 
x , z  

s.t. 9 ( x , z )  2 a 
z 5r; 

x E B. 

Finally, substituting the definition of 9 results in 

min cTx 

s.t. EyrlTx - z 5 S )  2 a 

Thus, also in this case, we have obtained an equivalent problem which belongs to 
the class of SLP problems with separate probability functions, see Section 2.3. 
Therefore, analogous comments and formulations apply, as for the SLP problem 
in which VaR is minimized, see (3.6). 

For further stochastic programming problems based on quantile functions 
see Kibzun and Kan [ 16 11. 

4. Models based on expectation 
The simplest way of including expectations into an SLP model is based on 

choosing the quality measure 

defined on the linear space of random variables with finite expected value. We 
consider the random variable 

where t (c )  is an n-dimensional random vector and h ( t )  is a random variable. 
Under the assumption that the expected value of (T(<),  h ( ( ) )  exists, we obtain 
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the following deterministic linear-affine evaluation function for x: 

with E = E [t (J)] and h = E[h(J)]. In the case when 5 (x, J) is a random vector, 
this holds componentwise. Consequently, the prototype models (1.7) and (1.9) 
become linear programming problems. These LP's are called expected value 
problems, corresponding to the SLP problem. 

On the one hand, having an equivalent linear programming problem is an 
attractive feature from the numerical point of view. On the other hand, however, 
replacing the probability distribution by a one-point distribution leads to a very 
crude approximation of the original distribution in general. In some modeling 
situations it may happen that the solution Z of the expected value problem also 
solves a corresponding SLP problem. However, this is usually an indication of a 
modeling or data error: the corresponding SLP model is not "truly stochastic". 
Unfortunately, the expected value problem is frequently used by modelers as 
a substitute for the SLP problem, without further considerations. When doing 
this, extreme care is needed, since the solution obtained this way may turn 
out to be quite risky when evaluated by an alternative evaluation function. 
Taking the expected value problem should by no means be used as the single 
way representing ((x, J) in the model. Accompanied with other constraints or 
objective functions, based on alternative quality measures, utilizing Q, (6) may 
lead to important and meaningful model formulations. As an example we refer 
to the portfolio optimization model of Markowitz [I 891 which has been applied 
with tremendous success in finance. 

The picture radically changes if the expectation is taken separately for the 
positive- or negative part of ((2, E ) ,  or if conditional expectations are utilized. 
In this section we will discuss several important model classes based on these 
ideas. 

We shall need some basic facts from probability theory concerning expecta- 
tions. Let 6 be a random variable and assume that E[6] exists. Recall from 
probability theory, that this assumption means the finiteness of the integral 

w 

ItldFfi (t) where F' denotes the probability distribution of 6. 
J -w 

The following well-known integral representations will be used in this sec- 
tion, for which, for the sake of completeness, we also present a proof. Intro- 
ducing the notation uf := max(0, u)  and u- := max(0, -u) for all u E IR, 
we have 
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PROPOSITION 4.1 Assume that E [ 8 ]  exists. Then for all z E IR 
both E[(I9 - z)+]  and E[(I9 - 2 ) - ]  exist and we have: 

Pro08 The existence of IE[I9] obviously implies the existence of the expected 
values on the left-hand-side in (4.1). Using integration by parts we get for 
Z < Y  

and consequently 

where we have used the fact that the existence of the expected value of I9 implies 
that lim y ( l  - F&(y)  = 0 holds. For the second relation we get similarly via 

11'00 

integration by parts: 

where we used that lim xF@(x) = 0 holds, due to the existence of the ex- 
24-00 

pected value of 19. 0 
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4.1 Integrated chance constraints 
Similarly as in Section 2 concerning probability functions, also in this section 

we will distinguish two cases: first we discuss the case when [ ( x ,  J )  := T ( J ) x -  
h ( J )  is a random variable (s = 1 holds, see (1.1) on page 75). Afterwards we 
consider the general case when [ ( x ,  J )  := T ( J ) x  - h(J )  is a random vector, 
that means, s 2 1 holds. We will assume throughout that the expected values 
of T ( J )  and h ( J )  exist. 

4.1.1 Separate integrated probability functions 
We consider the random variable 

where t(5) is an n-dimensional random vector and h ( J )  is a random variable. 
Depending on whether positive or negative values of [ ( x ,  J )  are considered as 
losses, the loss as a random variable can be written as 

C + ( X ,  5) := [ t ( ~ ) ~ x  - h(Ol+ 

or 
r-(2, J )  := [ ~ ( J ) ~ x  - ~ ( o I - ,  

respectively. Here we have made use of the notation z+ = max(0, z )  and 
z- = max(0, -z) ,  z  E IR. z+ will be called the positive part and z- the 
negative part of the real number z. 

Let us assume that losses are modeled as negative values of [ ( x ,  J ) .  Using the 
notation above, the probability constraint corresponding to the random linear 
inequality [ ( x ,  J )  2 0 can obviously be written in expectation terms (see (2.8) 
on page 95) as follows 

with the indicator function 

In the second inequality in (4.2) the application of function x results in assigning 
the constant value 1 to the loss irrespectively of its size. This can heuristically 
be viewed as the source of the generally non-convex behavior of probability 
functions, see the nice examples in Klein Haneveld [I671 and Klein Haneveld 
and Van der Vlerk [169]. This observation leads to integrated chance constraints 
by dropping x in (4.2) and by prescribing an upper bound for IE+[[-(x, J ) ] .  
More specifically, we choose two risk measures for random variables as 
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defined on the linear space of random variables with finite expected value. The 
corresponding evaluation functions K  and H will be 

K ( x )  := ezc(C(x, 0) = W + ( x ,  01 and 

H ( x )  := e 3 3 4  t ) )  = %[C-(x, < ) I ,  
respectively. The functions K  ( x )  and H ( x )  will be called separate integrated 
probability functions. Assuming, for instance, that losses correspond to nega- 
tive values of ( ( x ,  e) ,  a separate integrated chance constraint has the form 

( 5(x, 0 )- I 5 7 (4.4) 

where y is a prescribed maximal tolerable expected loss. The following relation 
provides an explanation of the term "integrated": due to Proposition 4.1 on 
page 147 we have 

Ed ((($9 0 1- I 

The second equality holds because the set of jump-points of the distribution 
function 9 ( x ,  r) := JP ( ( ( x ,  J )  5 z )  is countable and therefore it has (Lebesgue) 
measure 0. 

Let us define the positive- and negative-part functions cp+ and cp- according 
to cp+(z) := z f  and cp-(z) := z- for z  E R, respectively. Both of these 
functions are obviously convex. From the optimization point of view the most 
attractive property of separate integrated probability functions is formulated in 
the subsequent proposition: 

PROPOSITION 4.2 Both H ( x )  and K(x ) ,  and consequently 
Elt [ I ( ( x ,  J )  1 ] = H ( x )  + K  ( x )  are convex functions on Rn. 

Proof The assertion follows easily from the convexity of the functions c p + ( - )  
and cp- (.). We prove the assertion for K ( x ) ;  the proof for H ( x )  is analogous. 
We have K ( x )  = IEE [ cp+ ( ( ( x ,  5 )  ) 1. Because ( ( x ,  E )  is linear in x  and cp+ is a 
convex function, cp+(((x, E )  ) is convex for each fixed J .  Taking the expected 
value preserves convexity. For a formal proof let x,  y E Rn and 0 5 X I: 1. 
We have 
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0 

This result implies that K (x) and H (x) are convex, in particular also for finite 
discrete distributions. This is in sharp contrast with probability functions, where 
(generalized) concavity holds only under various assumptions, excluding finite 
discrete distributions in general. 

With C+(x, J) representing losses, the following prototype models will be 
considered: 

min cTx 
set. ~ [ C + ( X > E ) I  5 Y (4.5) 

x E B 

and 

where y 2 is a prescribed maximally tolerable loss level. Due to Proposi- 
tion 4.2, both problems are convex programming problems. Convex functions 
being continuous (see, for instance, Rockafellar [249]), the feasible set of (4.5) 
is obviously closed. 

Note that there is no way of building convex programming models of the 
above type with reversed inequality constraints in (4.5) or with maximization 
in (4.6) which are based on separate integrated probability functions. Because 
both K(x) and H (x) are convex, it is immaterial whether the loss is represented 
by S+(X> 5) or by C- (x, J). 

Next we assume that J has a finite discrete distribution with N realizations 
and corresponding probabilities given in the tableau 

N 
with pi > 0 V i  and C pi = 1. We introduce the notation T~ = T(?), 

k l  

hk = =(?),I, = 1 ,..., N , a n d N =  (1 ,..., N). ~ h e i ~ ~ r o w o f ~ ~  willbe 
denoted by tf and if s = 1 then the single row of T h i l l  be denoted by tk. 
For notational convenience, both tf and tk will be considered as row-vectors 
( (1 x n) matrices). 

Problems (4.5) and (4.6) can in this case be formulated as follows: 

min cTx I 
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min cTx + C p k ( t k x  - hk)+ 
k= l I 

These nonlinear programming problems can be equivalently formulated as lin- 
ear programming problems by introducing the auxiliary variables yk,  k  = 
1, ..., N: 

min cTx 

and 

min c T x + C p k y k  

k s.t. t x  -yk 5 h k , k = 1  ,..., N 1 (4.1 1) 

yk 2 0 ,  k = 1 ,  ..., N 

x  E B 

The equivalence of (4.8) and (4.10) as well as the equivalence of (4.9) and (4.1 I) 
follows easily from the following fact: if 2 ,  y k ,  lc = 1, . . . , N is a feasible 
solution of either (4.10) or (4.1 I), then then the following inequality holds: 

Let S(y) = { x  1 IEt[Cf ( x ,  <)I) < y }  be the set of feasible solutions cor- 
responding to the integrated chance constraint. The following representation 
holds, which plays an important role in the dual decomposition algorithm (see 
Section 4.3). 

THEOREM 4.1 Van der Vlerk and Klein Haneveld [I691 For y  > 0, S ( y )  is 
a polyhedral set. In fact the following representation holds: 
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Proofi We have 

K ( x )  = IE€ [C+ ( x ,  01 = 

- 

- - 

Using this representation we get 

from which the result immediately follows. 0 

In (4.12), for K = 8 c N the sum over the empty index set is interpreted as 
having the value 0 thus the corresponding inequality holds for any x. Conse- 
quently, S ( y )  is represented by a system of 2N - 1 proper linear inequalities. 

Models (4.5) and (4.6) deliver identical solutions for random variables for 
which C+(x, J )  is the same almost surely. This is not the case with the follow- 
ing variant of integrated chance constraints: 

with a being prescribed. Because K ( x )  2 0 and K ( x )  5 IEE [ ( ( ( x ,  5 )  11 obvi- 
ously hold for all x, it is sufficient to consider a-values with a E [0, 11. Using 
the relations z = z+ - z- and lzl = z+ + z-, z E IR, the above inequality 
can be equivalently written as 

or as 
(1 - 2a)lEc[5+(x, J ) ]  + a ( f x  - h) 5 0 (4.15) 

with f = IEE [ t (J )]  and h = IEt [h(J)] .  
This motivates the choice of the following quality measure for evaluating 

random variables in our framework for constructing SLP models: 

We obtain the evaluation function as usual by substituting 8 = [ ( x ,  J ) :  
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Proposition 4.2 implies that K,(x) is convex for a < i and it is concave for 
1 a > Z. For a = i the function is clearly linear-affine. 

Choosing a such that a E [0, i] holds, the parameter a will be interpreted as 
a risk-aversion parameter. Decreasing a means decreasing risk-aversion. The 
prototype models will have the form 

min cTx 
s.t. a(&-k)+(1-2a)IEE[C+(x,J)]  SO (4.16) 

x E B 

with a E [0, 41 prescribed. Both problems are clearly convex programming 
problems. 

Interpreting C f  ( x ,  J )  as gain (and, consequently, C- ( x ,  J )  as loss), we choose 
the parameter a such that a E [i, 11 holds. By utilizing K, with a E [i , 11, the 
corresponding optimization problems are analogous to the two models above, 
with reversed inequality constraint in (4.16) and with changing "min" to "max" 
in (4.17). 

If the probability distribution of J is finite discrete, problems (4.16) and 
(4.17) can be equivalently formulated as linear programming problems. This 
can be done analogously as above for (4.5) and (4.6), we leave the details as an 
exercise for the reader. 

For the case of a finite discrete distribution the feasible set is polyhedral 
an analogous representation holds as in Theorem 4.1. We formulate it for the 
case a E [0, i ] ,  the variant with a E [i, 11 can be obtained from this in a 
straightforward way. Let S^(a) = { x  I K,(x) 5 0) be the set of feasible 
solutions corresponding to this type of integrated chance constraint. 

THEOREM 4.2 Van der Vlerk and Klein Haneveld [I 691 For y 2 0, S (y )  is 
a polyhedral set and the following representation holds: 

{ X I  K,(r) SO}= n { X  I ( l - 2 a ) ~ p r ( t x ~ - h * ) + a ( h - L )  SO}. 
KcN k € K  

ProoJ The proof runs along the same lines as the proof for Theorem 4.1. 

4.1.2 Joint integrated probability functions 
Let s > 1 and with C(x, J )  = T ( J ) x  - h(J) .  Analogously as before, define 
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where on the right-hand-side the positive- and negative parts of the vectors are 
defined in a componentwise fashion. For a heuristic introduction of integrated 
chance constraint we proceed analogously as in the case s = 1. We assume that 
losses are represented by negative values of [(x, J). The probability constraint 
in expected value terms looks as follows (see (2.8) on page 95): 

Analogously to the special case s = 1, dropping x results in the joint integrated 
chance constraint (cf. (4.4)): 

with prescribed maximal tolerable loss y. We proceed by defining the quality 
measures for random variables by 

respectively. The functions K j (x) and Hj  (x) will be called joint integrated 
probability functions. 

The attractive property of convexity remains preserved by the generalization: 

PROPOSITION 4.3 Both Hj(x) and Kj(x)  are convex functions on IRn. 

Proofl The proof is similar to the proof for Proposition 4.2. For any fixed J, 
Ci(., J)+ is a convex function for the same reasons as in the case s = 1, see the 
proof of Proposition 4.2. max C? ( a ,  J) is the point-wise maximum of convex 

l<i<s 

functions, consequently this function is also convex for each fixed J (see, for 
instance, Rockafellar [249]). Taking the expected value w.r. to < preserves con- 
vexity, see the proof of Proposition 4.2, therefore K j  is a convex function. The 
proof for H j  is analogous. 0 

Let us emphasize that the convexity property holds also for a random tech- 
nology matrix and without any restriction on the probability distribution of J, 
beyond the existence of the expected value. 
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The prototype SLP problems are formulated as follows: 

and 

min cTx + IEt [ max (F (x, <) ] 
l l i l s  (4.19) 

s.t. x E t? 

with the prescribed maximal loss level y 2 0. Both of them are obviously 
convex programming problems and due to the convexity of Kj ,  the feasible set 
is closed also for (4.18). 

Reversing the inequality in the integrated chance constraint in (4.18) and 
changing min to max in (4.19) leads in general in both cases to non-convex 
optimization problems. 

There is no change in the behavior of the optimization problems if we utilize 
Hj  instead of K j  in the problem formulations. 

Assume next that 5 has a finite discrete distribution, specified in (4.7). Then 
(4.18) and (4.19) take the form 

min cTx 
N 

s.t. C p k m a x ( t :  x - h k ) +  < y  
l l i l s  I (4.20) 

k=l 

x E t? 

and 

N 

min cTz+  C p k  max(t:x - hk)+ 
l<i<s k=l (4.21) 

s.t. x E B 

We introduce auxiliary variables yf and zk, i = 1, . . . , s, k = 1, . . . , N and for- 
mulate equivalent linear programming problems to (4.20) and (4.21) as follows 
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(see Klein Haneveld and Van der Vlerk [l69]): 

and 
N 

min cTx + Chtk 
k=l 

k s.t. t f x  -yi 5 h f ,  k = l ,  ..., N , i = l ,  ..., s 

-y," +zk 2 0 ,  k = 1 ,  ..., N , i = l ,  ..., s 1 (4.23) 

min cTx 
\ 

N 

s.t. C p . r k  5 r 
k=l 

k t f x  -yi s h f ,  k = l ,  ..., N , i = l ,  ..., s 

-y: +rk 2 0 ,  k = 1 ,  ..., ~ , i = l ,  ..., s 

k 
Yi 2 0 ,  k = 1 ,  ..., N , i = l ,  ..., s 

rQ0,  k = 1 ,  ..., N  

x  E t? / 

The equivalence can readily be proved, based on the following fact: if 3, yf, 
.Zk, k  = 1,. . . , N ,  i  = 1,.  . . , s is a feasible solution of either (4.22) or (4.23) 
then the following inequality holds: 

(4.22) ' 

Let S j ( y )  = { x  I IEE[ max ~ ? ( x , [ ) ] )  < y). For [ having a finite discrete 
l<i<s 

distribution, Theorem 4.1 has the following generalization: 

THEOREM 4.3 Van der Vlerk and Klein Haneveld [I 691 For y  2 0, S j ( y )  is 
a polyhedral set and the following representation holds: 

whereZ= ( 1  , . . . ,  s ) , Z K  := { I  := ( I k ,  k  E K:) I lk ~ Z f o r a l l k  E K ) ,  
and te is the lib row of T'. 
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Pro08 We have 

where N+ := {k 6 JV I l~2,s &(x,  p) > 0). Thus we get for the constraint: 

Substituting the definition of [i(x,  p) and noting that the number of linear in- 
equalities which determine S J ( y )  is obviously finite yields the result. 0 

For counting the inequalities in (4.24) let us observe first that the number of 
inequalities for a fixed index set K (the cardinality of ~ 1 ~ 1 )  is slKI. Adding up 
for all subsets of N (except of 0) results in 

The models in this section are due to Klein Haneveld [I671 and have been 
subsequently investigated by Klein Haneveld and Van der Vlerk [169]. For 
hrther properties of integrated chance constraints see these references. 

4.2 A model involving conditional expectation 
We consider negative values of the random variable [ ( x ,  () as losses and will 

discuss constraints which are based on the conditional expectation of the loss 
given that a loss occurs. This corresponds to the quality measure for random 
variables 

ecexp(19):=E[-tqtP<O], LYEL: ,  (4.25) 

if lP(8 < 0)  > 0 and ecexp(6) := 0 otherwise. Assuming that 19 has a contin- 
uous distribution, we have the following close relation between ecexp and the 
quality measure eoc which lead to integrated chance constraints (see (4.3) on 
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page 150): Q; (6 )  = ecexp (6)IP(t9 < 0). This follows immediately from 

Constraints of the form 

will be considered, with y being a prescribed upper bound for the conditional 
loss size. In general, constraints of this type result in non-convex optimization 
problems. In the special case when only the right-hand-side is stochastic, the 
feasible set corresponding to the constraint (4.26) is convex for a broad class of 
univariate distributions. We choose 

where t  E IRn is a deterministic vector and J is a random variable. 
The following result will be utilized: 

PROPOSITION 4.4 Assume that J has a continuous distribution with a logcon- 
cave density function. Assume furthermore that the expected value of J exists. 
Then 

l( t)  := IE[J - t I J - t  > 01 
is a monotonically decreasing function oft. 

Pro08 This is a well-known fact in reliability theory where 1 ( t )  is called mean 
residual life. For a proof see, for instance, Prkkopa [234]. 

We assume that for J the assumptions of the theorem hold. Then (4.26) takes 
the form 

l(tTx) 5 y e tTx > 1-y-f) 
where 1 - I  is to be understood as a generalized inverse defined as l-'(z) := 
inf{z I l ( z )  5 y ) .  Consequently, the constraint (4.26) can be reformulated as 
a deterministic linear constraint. 

4.3 Conditional Value at Risk 
We assume that positive values of < ( x 7  J )  represent losses. For motivating 

the quality (risk) measure which will be introduced, let us start with computing 
a conditional expected value. Let 6 be a random variable with finite expected 
value, F8 its distribution function, 0 < a < 1, and v, an a-quantile of the 
distribution of 6 (see Section 3 for the definition of quantiles). Note that due 
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to a < 1, IP(19 < v,) < 1 holds and consequently we have IP(19 2 v,) > 0. 
Introducing the notation T, = IP(19 2 v,) we get 

If Fd is continuous, we have F8(v,) = a and IP(19 2 v,) = 1 - a. Conse- 
quently, in this case the above relation takes the form 

On the other hand, due to a well-known fact in probability theory, the following 
optimization problem has a solution for any 0 < a < 1 and the solution set is 
the interval of a-quantiles: 

min (aIE[(19 - z)+] + (1 - a)IE[(6 - z)-1) . (4.29) 

Using z = z+ - z-, we have 

Taking expectation, this leads to the equivalent formulation of the objective 
function of the unconstrained minimization problem (4.29) as 

which results in the following equivalent formulation of (4.29): 

1 
min ( z  + ---- 

(1 - a )  
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Utilizing (4.1) and introducing the notation uc(z) for the objective function of 
this unconstrained optimization problem, we have 

The function uc(-) is obviously convex. In fact, for each fixed 19, (19 - z)+ is 
obtained from the convex function (.)+ by substituting a linear function, there- 
fore it is convex. Taking the expected value clearly preserves convexity, see, for 
instance, the proof of Proposition 4.2 on page 150. Thus (4.30) is a convex pro- 
gramming problem. As mentioned above, the set of solutions of (4.30) consists 
of the set of a-quantiles of the distribution of 19. This is easy to see under the 
assumption that F8 is continuous. In fact, due to the integral representation in 
(4.3 1) it follows immediately that uc(z) is continuously differentiable. Taking 
into account that (4.3 1) is a convex programming problem, the set of optimal 
solutions is determined by the equation = 0 which can be written as 

which obviously has as solution set the interval of a-quantiles. Based on the 
fact that for uc(z), being a convex function, the left- and right-sided derivatives 
exist for all z E IR, a proof for the general case can be found in Rockafellar 
and Uryasev [25 I]. An elementary proof is given by Pflug [222]. 

The solution set of problem (4.30) being the interval of cu-quantiles, it 
follows that in particular the value-at-risk v, := ~(19, a)  (for the definition 
see (3.1) on page 144) is an optimal solution of (4.29). Taking into account 
(4.28) it follows that for continuous Fo the optimal objective value in (4.30) is 
E[19 1 19 2 419, a )  1. Consequently, in this case, the optimal objective value of 
(4.30) is the conditional expected value of the loss, given that the loss is greater 
than or equal to VaR. This motivates introducing the following risk measure for 
random variables: 

defined on the linear space of random variables with finite expected value. For 
the case when F8 is continuous, we have 

where ~(19, a )  is the Value-at-Risk corresponding to 19 and a, see (3.1) on 
page 144. 
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Because the value-at-risk ~ ( 1 9 ,  a )  is an optimal solution of (4.29), substitut- 
ing it for z in (4.29) immediately leads to the inequality 

The risk measure ~ ~ ( 1 9 ,  a )  has been introduced by Rockafellar and Uryasev 
[250] for a financial application where the authors call it Conditional Value- 
at-Risk (CVaR). We will use this terminology also in our context. For the 
corresponding evaluation function for x we consider the random variable 

where t(E) is an n-dimensional random vector and h(<) is a random variable. 
The evaluation function, denoted by vc(x,  a) ,  is 

1 
vc(x,  a)  := min [ r  + -E[(( (x ,  c )  - r ) + ] ]  . 

1 - a  

Introducing the notation 

we have the shorthand form 

vc(x ,  a )  = min w r ( x ,  z ) .  
Z 

Let +(x ,  .) denote the probability distribution fbnction of ( ( x ,  <). For later 
reference we formulate the specialization of the general findings above for the 
case 19 = ( ( x ,  E )  as a separate proposition: 

PROPOSITION 4.5 Let x E IRn be arbitrary and assume 0 < a < 1. For the 
unconstrained optimization problem 

the following assertions hold: this is a convex optimization problem; the optimal 
solution exists and is attained; the set of optimal solutions coincides with the 
set of a-quantiles of +(x ,  a ) .  

Pro08 The proof follows readily from the general case. 0 

Let us consider w:(x, r )  as a fbnction in the joint variables ( x ,  z ) .  

PROPOSITION 4.6 w: is a convex function. 
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Proofi [ ( x ,  J )  - z  being a linear-affine function of ( x ,  z )  and (.)+ being a 
convex function implies that the composite function ( [ ( x ,  J )  - z)+ is jointly 
convex in (2, z )  for each fixed J .  Proceeding analogously as in the proof of 
Proposition 4.2 on page 150 it is easy to see that taking the expected value 
preserves convexity. 0 

Next we formulate the corresponding optimization problems. SLP models 
involving CVaR in the objective can be formulated as follows. 

This can obviously be written in the equivalent form 

min cTx + z  + & E [ ( [ ( x ,  J )  - z)+] 
( ~ 4 )  I 

The equivalence is due to the fact, that for each fixed x  E B in (4.35) it is 
sufficient to take into account the corresponding z  for which the sum of the 
second and third terms in the objective is minimal with fixed x  (this minimum 
is attained for any x, see the discussion above). 

Proposition 4.6 immediately implies that (4.35) is a convex programming 
problem for arbitrary probability distribution of J .  Let (x*, z*) be an optimal 
solution of (4.35). Then z* is an a-quantile of 6 ( x * ,  .) and we have 

where v(x*, a )  is the Value-at-Risk corresponding to x* (for VaR see (3.3) on 
page 144). 

Let us turn our attention to the particular case when J has a finite discrete 
distribution with N realizations and corresponding probabilities given as 

N 
with pi > 0 Vi  and C pi = 1. Let us introduce the notation t"= t ( p ) ,  

i=l 

hk := h(&, k = 1, . . . , N. The optimization problefn (4.35) specializes as 
follows: 
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Using a well-known idea in optimization, this nonlinear programming prob- 
lem can be transformed into a linear programming problem by introducing 
additional variables yk for representing ( [ ( x ,  p)  - z)+ for all k = 1,. . . , N .  
The equivalent linear programming problem is the following: 

The equivalence can be seen as follows. If ( 3 , ~ )  is a feasible solution of (4.37) 
then taking jjk = [ (3 ,  p )  - z)+ for all k,  the resulting (4,Z,  jjk, k = 1, . . . , N )  
is obviously feasible in (4.38) with equal objective values. Vice versa, let 
(&2 ,  &, k = 1, . . . , N )  be a feasible solution of (4.38). Then ( P , 2 )  is evi- 
dently feasible in (4.37) and due to the first constraint in (4.38), the correspond- 
ing objective value in (4.37) does not exceed the objective value in (4.38). This 
proves the equivalence. Substituting for [ ( x ,  p)  results in the final form of the 
equivalent LP problem: 

N 

min cTx + z + A E pk yk 
(x,4 k=l 

s.t. t k x - z  -yk L h k ,  k = 1 ,  ..., N 1 (4.39) 

yk 2 0 ,  k = 1 ,  ..., N 

x E B. 

Let us turn our attention to the optimization problems with CVaR constraints. 

min cTx 
s.t. vc(x ,a)  < y 

x E B 

where y is a prescribed threshold. Substituting for vc(x,  a )  results in 

min cTx 
x 

s.t. minw:(x,z)  l y  
Z 

(4.41) 
x E B 

Due to Proposition 4.5 the minimum in the first inequality is attained for any 
x E B. Therefore, for any fixed x,  the first inequality holds if and only if there 



Single-stage SLP models 165 

exists a z E R for which w,O(x, z )  < y holds. Substituting for wF(x,  z ) ,  the 
following equivalent formulation results: 

min cTx 
(x?) 
s.t. 2 + &IE[(c(x ,  8 - z ) + ]  5 7 (4.42) 

This is a nonlinear optimization problem involving a nonlinear constraint. From 
Proposition 4.6 immediately follows that this problem belongs to the class of 
convex optimization problems, for an arbitrary probability distribution of J .  

Let us consider the case of a finite discrete distribution of J ,  as specified in 
(4.36). This leads to the specialized form 

min cTx 
( w )  

N 

~ . t .  + C p k ( c ( x , B )  - I ) +  5 7 1 (4.43) 
k=l 

x E B 

Using the same transformation as for deriving (4.38), we get the equivalent 
formulation as 

min cTx 
(G4 

N 

s.t. PkYk 5 7 
k=l 

c(x,?> -2  -yk 5 0 ,  k = 1 ,  ..., N 
yk 2 0 ,  k = l ,  ..., N 

The final equivalent form is obtained by substituting for C(x,  p): 
min cTx 
( w )  
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Finally let us discuss the interpretation of vc(x, a ) ,  0 < a < 1. From our 
general discussions at the beginning of this section it follows readily, that under 
the assumption that the probability distribution function @(x, .) of the random 
variable C(x, E) is continuous, we have the relation 

where v(x, a )  is the Value-at-Risk corresponding to C(x, E) and a. If ( has for 
example a finite discrete distribution then this relation does not hold anymore 
in general. 

For the following discussion let as consider again a random variable 19 and 
assume that the expected value exist. In this terms the above relation has been 
formulated in (4.33) under the assumption that the distribution function Fo of 
19 is continuous. It has the form 

where ~(19, a )  is the VaR corresponding to 19 and a ,  see (3.1) on page 144. 
For general distributions an interpretation has been given by Rockafellar and 

Uryasev in [25 11. The conditional expectation relation above holds in general, 
if the original distribution function F8 is replaced by the upper-tail distribution 
function F$ defined as follows: 

Another interpretation, representing a-CVaR as a mean over a of Cx-VEiR, has 
been found by Acerbi [2]. For further properties of CVaR see Rockafellar and 
Uryasev [251] and Acerbi and Tasche [3]. In the latter paper several related 
risk measures and their interrelations are also presented. 

5. Models built with deviation measures 
In this section we deal exclusively with quality measures expressing risk. 

Similarly as in Section 2.3, for the sake of simplicity we employ the notation 
77 := t(5) and replace the right-hand-side h(€J by t. Thus we consider the 
random variable 

C(x, 77, E) := rlTx - E 
where 77 denotes an n-dimensional random vector and ( is a random variable. 
We will assume in this section that the expected value of (qT, 5) exists and will 
use the notation p := E[q] E IRn and pn+l := E[(] E IR.. 

5.1 Quadratic deviation 
The risk measure is chosen as 
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defined on the linear space of random variables with finite variance. We assume 
that the second moments for the random vector (qT, c )  exist and the distribution 
is non-degenerate, meaning that the covariance matrix of this random vector 
is positive definite. The corresponding evaluation function will be denoted by 
Q(x )  and has the form 

It is interpreted as measuring the deviation between the random variables qTx 
and e. 
PROPOSITION 5.1 Q is a convex function. 

Pro08 An elegant proof of this assertion can be obtained by combining Propo- 
sitions 7.2 and 7.5 in Section 7. Here we present a direct elementary proof. 
Let us consider the functions q : IRn+' + IR and i : IRn+l -+ IR defined 
as q(x, %+I) = "[ (qTx  + E x n + ~ ) ~ ]  and G ( x ,  %+I) = J-3 re- 
spectively. We will prove that 4 is a convex function. Due to the relation 
Q(x )  = i ( x ,  -I), the assertion follows from this. 

We consider q(x,  %,+I) first. This function is obviously nonnegative, 
q(x,  %,+I) 2 0 holds for all x E IRn, xn+l E IR. The function is quadratic 

therefore, because of the nonnegativity of q, the symmetric matrix in the second 
line in (5.2) is positive semidefinite. Thus q is a convex function. In general, 
the square root of a convex function need not to be convex (take z and f i  
for z 2 0). In our case Q(x, xn+1) = JQ(Z,Z,+1) is the square root of a 
positive semidefinite quadratic form, therefore it is convex. To see this let 
D be an ( n  x n )  symmetric positive semidefinite matrix, we shall prove that 
d(x)  := a is a convex function. For this function d(Xx) = Xd(x) holds 
obviously for all X 2 0 and x E IRn. Therefore, for proving the convexity of 
d, it is sufficient to prove that d(x + y) 5 d(x)  + d(y) (subadditivity) holds for 
all x ,  y E IRn (see Proposition 7.1 on page 181). We have 

By applying the Cauchy-Schwarz inequality to the first term on the right-hand- 
side we get 

x T ~ ( x  + y) = [ X T D ) ] [ D )  ( x  + y)] 5 ~ J ( x  Y ) ~ D ( x  + Y ) ,  
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where D1i2 denotes the symmetric square root of the positive semidefinite 
matrix D. The latter is defined as follows: take the spectral decomposition 
D =  TAT^ of D, where the columns of T consist of an orthonormal system 
of eigenvectors of D and the diagonal elements of the diagonal matrix A are 
the corresponding eigenvalues. Taking D1I2 := T A ' / ~ T ~  we obviously have 
D = D ' / ~ D ' / ~ .  Performing analogously with the second term in (5.3) and 
substituting into (5.3) yields the result. 0 

Applying (5.2) for 4 and j, defined as r j  := q - p and j := < - pn+l, and 
setting xn+l = -1 from (5.2) it follows that 

holds, where V := E[7j7jT] = C o v [ q ,  q] is the covariance matrix of q, d := 

EYA = C o v [ q ,  <] is the cross-covariance vector between q and <, and v := 

E [ t 2 ]  = War[<] is the variance of <. Note that V is a positive semidefinite 
matrix. Thus we have have derived the formula 

We obtain the following convex optimization problems 

min cTx 
s.t. d x T V x  - 2dTx + v + (pTx  - pn+1)2 I f i  1 (5.4) 

x E i? 

and 
min J x T v x  - 2dTx + v + (pTx - ~ , + ~ ) 2  

s.t. x E B .  

Due to the definition of Q, the expression under the square root is nonnegative 
for all x E IRn, and the positive square root function is strictly monotonically 
increasing, consequently we have the equivalent formulation 

min cTx 
s.t. x T v x  + (pTx  - pn+1)2 - 2dTx I rc - v 1 (5.6) 

x E i? 

and 
min x T v x  + (pTx - pn+1)2 - 2dTx 
s.t. x EL?. (5.7) 

The matrix V is positive semidefinite, therefore both problems are convex opti- 
mization problems. Note that (5.7) is a convex quadratic optimization problem. 
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A widely used variant of the above risk measure for random variables is the 
standard deviation: 

eS,,(6) := o(6 )  := dE[(19 - E [ I ~ ] ) ~ ] ,  6  E L:. 

The evaluation function becomes 

Qd(x )  = d x T v x  - 2drx + v 
leading to the convex optimization problems 

min cTx 
s.t. x T v x  - 2dTx 5 rc - v 1 (5.9) 

x  E B 

and 
min x T v x  - 2dTx 
s.t. x E B .  1 

An important special case is 5 - 0. The evaluation function becomes 

a($)  := 4-1 = (5.1 1) 

where V is covariance matrix of 77. Because of their practical importance we 
formulate also the resulting optimization problems. For obvious reasons, these 
can equivalently be formulated in terms of a2 ( x )  as follows: 

min cTx 
s.t. x T v x  5 rc 1 (5.12) 

x  E B 

and 
min x T v x  
s.t. x  E B. 1 

Optimization problems of this type are widely used in financial portfolio opti- 
mization, see Markowitz [I891 and Elton et al. [72]. 

5.2 Absolute deviation 
Let the risk measure be 

defined on the linear space of random variables with finite expected value. 
Assuming that the expected value of (rlT, 5) exists we get the corresponding 
evaluation function 

A(x )  := E[( r lTx  - 511 (5.15) 
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which is interpreted as measuring deviation between the random variables qTx 
and J .  Let [ ( x ,  q ,  J )  := qTx - J .  We have: 

PROPOSITION 5.2 A(.)  is a convex function. 

Proofi The absolute-value function being convex and [(., q,  J )  being linear, 
the composite function I[(-, q,  J ) I  is convex for any fixed realization of (q ,  J ) .  
Taking expected value preserves convexity. The full proof runs analogously as 
the proof of Proposition 4.2 on page 150. 0 

Thus the optimization problems 

min cTx 
s.t. E [ l q T x  - ( I ]  5 K (5.16) 

x E I3 

and 
min E[lqTx-511 
s.t. x E I3 (5.17) 

are convex optimization problems for arbitrary random variables with finite 
expected value. 

The model (5.17) is closely related to simple recourse problems. To see 
this let q - t with t being an n-dimensional deterministic vector and let us 
formulate this problem equivalently as follows. We introduce the nonnegative 
random variables y and z and make use of the relations lul = u+ + u- and 
u = u+ - U-  which hold for any real number u. This results in the following 
equivalent simple recourse formulation of (5.17) 

min E [ y + z ]  
s.t. t T x  - J  -9 +z = 0 

Y (5.1 8) 
z 2 0  

x E I3. 

where the constraints involving random variables are interpreted as usual: they 
should hold in the almost sure sense. For proving the equivalence let 2, along 
with the random variables 6 and 2 be a feasible solution of (5.18). Then D 
is obviously a feasible solution of (5.17) and for the corresponding objective 
function values we have 

In the reverse direction, when 3 is a feasible solution of (5.17) then setting 
= ( t T 3  - J)+ and 2 = ( t T 3  - J ) -  we get a feasible solution to (5.18) and 

the objective values are equal. This proves the equivalence. 
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Let us consider the case of a finite discrete distribution next. Assume that 
(rlT, J) has N distinct realizations with corresponding probabilities given in the 
table: 

N 
with pi > 0 Vi  and C pi = 1. Let t k  := (jj")T, hk := p, k = 1,. . . , N. In 

i=l. 
this case our optimization problems have the form 

min cTx 
N 

and 

N 

min C p ~ l t ~ x - - h * l  

Both of these problems are nonlinear programming problems. We utilize a 
transformation, analogous to the transformation which lead to the formula- 
tion (5.1 8). Introducing this time deterministic auxiliary variables yk and z k ,  
k = 1, . . . , N, we obtain the equivalent deterministic linear programming for- 
mulations 

min cTx 
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The proof of the equivalence of (5.21) and (5.23) runs along the same lines 
as the proof for the equivalence of (5.17) and (5.18). For the equivalence 
of (5.20) and (5.22) it is sufficient to remark, that for any feasible solution 
(2, &, &,  k = 1, . . . , N) of (5.22), 2 is feasible in (5.20), due to the following 
inequality: 

Analogously to the quadratic measure, we consider the variant which mea- 
sures absolute deviations from the expected value and is called mean absolute 
deviation (MAD): 

The evaluation function becomes 

leading to convex optimization problems, which are analogous to (5.16) and 
(5.17). The linear programming formulations for the case of a finite discrete 
distribution coincide with (5.22) and (5.23) when we set tk := (p - and 
hk := - pn+l. 

An important special case in practice (for instance, in portfolio optimization 
in finance) is the case J = 0 thus leading to the deviation measure 

For the discretely distributed case we formulate the particular form of the opti- 
h 

mization problems explicitly. Let t%= qk (note that in (5.22) and (5.23) we 
have had tk  = (qk)T). (5.20) and (5.2 1) have the form now 

min cTz I 
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and 

respectively. The equivalent linear programming formulations can easily be 
obtained from (5.22) and (5.23), by substituting t k x  with ( tk  - ,uITx there. 

Models of this type have first been proposed in the framework of portfolio 
optimization in finance by Konno and Yamazaki [172]. In this paper the authors 
propose a variant for the equivalent linear program (5.23) (with the substitution 
described above), by introducing fewer auxiliary variables on the cost of a larger 
amount of constraints, as follows: 

The equivalence with (5.23) can easily be seen, for instance, by considering 
separately the cases ( tk  - ,uITx 2 0 and (tk - , Y ) ~ x  < 0. 

Let us assume next that q has a non-degenerate multivariate normal dis- 
tribution and let x E IRn be fixed. Then the random variable qTx, being 
a linear transformation of a random vector with a non-degenerate normal 
distribution, is normally distributed (see Section 2.3.2). We obviously have 
F := lE[qTx] = ,uTx and d2 := V a r [ q T x ]  = x T v x .  An easy computation 
gives: 

This implies that for a non-degenerate normal distribution the the models with 
absolute deviation and those with quadratic deviation are equivalent. Note, 
however, that due to the scaling factor f i n -  above, in the model (5.12) with a 
quadratic constraint, a scaling in the parameter K has to be accounted for. 
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From the statistical point of view the natural measure for absolute deviations 
would be the absolute deviation from the median, instead of the expected value. 
The difficulty is that we are dealing with linear combinations of random vari- 

n 

ables r]Tx = Tixi. The median of r]Tx is in general by no means equal 
i= 1 

to the linear combination of the medians of the components of r] .  This makes 
it extremely difficult to build numerically tractable median-based optimization 
problems of the deviation type. 

5.3 Quadratic semi-deviation 
In both of the previous sections we employed risk measures which pe- 

nalized deviations in both directions. The quadratic risk measure Q(x) = 
J ~ [ ( r ] ~ x  - 02] (5.1) evaluates upper- and lower deviations of r]Tx with re- 
spect to the target random variable J in the same manner. This observation 
holds also for the standard deviation a(x) = JIE[(~Tx - P ~ x ) ~ ]  (5.1 1) with 
respect to the deterministic target P ~ X ,  and for the absolute-deviation counter- 
parts A(%) (5.19, and Ad(x) (5.24). All of these risk measures model risk as 
deviation from a target, irrespectively of the direction of this deviation. 

In many modeling situations, however, the direction of deviation matters. 
In such cases one of them is favorable (gain) and the other is disadvantageous 
(loss). 

We introduce the following risk measures for random variables: 

both of them being defined on the linear space of random variables with fi- 
nite variance and with z- = max(0, -z), z+ = max(0, z) standing for the 
negative- and positive part for a real number z, respectively. 

Let us assume that the second moments for ( T ~ ,  J) exist. The corresponding 
evaluation functions, denoted by Q-(x) and Qf (x), respectively, are defined 
as 

These measures are interpreted as measuring the upper/lower deviation between 
r]Tx and J. Both Q+(x) and Q-(x) are convex functions; this will be proved 
in a general framework in Section 7.2, see Propositions 7.2 and 7.5 there. 

Let us assume that negative values of the random variable [(x, r ] ,  J) := 
rlTx - J represent losses. Then the following prototype optimization problems 
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result 
rnin cTx 
s.t. d ~ [ (  (rlTx - t ) - )2]  5 f i  (5.29) 

x E B  

and 

both of which are convex optimization problems. They can be equivalently 
written, due to the fact that the fhction fi is strictly monotonically increasing, 

rnin cTx 
s.t. E [ (  (rlTx - t)- ) 2 ]  5 K (5.3 1) 

x E B  

and 
rnin E [ (  (qTx - 0- ) 2 ]  

s.t. x E B  

Let us discuss the case when (7, t )  has a discrete distribution specified in 
(5.19) on page 17 1. In this case our problems assume the form: 

rnin cTx 
N 

s.t. C P r ( ( t % - h k ) - ) 2  5 K, k =  1 ,..., N 
k=l 

x E B  

and 

By introducing auxiliary variables yk, k = 1,.  . . , N,  these problems can be 
written equivalently as follows: 

rnin cTx 
N 

sat. ~ P I Y ~  SK, k= 1 ,  ..., N 
k=l 

tkz  +yk 2 hk, k = 1,. . . , N 
Y k  20, k = 1 ,  ..., N 

x E B. 
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Problem (5.36) is a convex quadratic programming problem whereas (5.35) is 
a quadratically constrained convex optimization problem. 

For proving the equivalence of (5.33) and (5.35), as well as of (5.34) and 
(5.36) let us make the following observation. If (6, j j k ,  k = 1 , .  . . , N )  is a fea- 
sible solution of either (5.35) or (5.36), then the constraints imply the inequality 
( ( t k 6  - hk)-  5 yk for all k. Consequently, in both cases 

holds. From this the equivalence follows in a straightforward way; the detailed 
proof is left as an easy exercise to the reader. 

Analogously as in both previous sections we discuss the variants measuring 
deviations from the expected value. 

These are called upper standard semi-deviation and lower standard semi- 
deviation, respectively. The evaluation functions are obtained by substituting 
( q  - p)Tx - ( J  - pn+l for I9 which leads to convex optimization problems 
analogous to (5.3 1) and (5.17). In the case of a finite discrete distribution, the 
linear programming formulations coincide with (5.35) and (5.34) provided that 
the definitions tk  := (p - p)T and hk := - pn+l are used. 

We discuss the important special case where J = 0 holds separately. The 
valuation functions take the form: 

which are interpreted as measuring the upper/lower deviation between qTx and 
its expected value pTx. Because of its importance in practice we formulate 
the optimization problems for the case when J has a finite discrete distribution 
explicitly. With t h o w  considered as a column vector, (5.33) and (5.34) have 
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the form: 

min c T x  
N 

s.t. x p k ( ( ( t k - p ) T x ) - ) 2  5 A, k = 1 ,..., N (5.38) 
k=l 

x  E B 

whereas (5.35) and (5.36) assume the form 

min c T x  

s.t. 5 p k y i  56, k = 1 ,  ..., N 
k=l 

( t k - p ) T x  +yk 2 0 ,  k = l ,  ..., N 
yk LO, k = l ,  ..., N 

x E 8. 

and 
N 

min xpkya 
k= 1 

s.t. ( t"p)Tx +yk LO, k = 1 ,  ..., N 1 (5.41) 

gk LO, k = 1 ,  ..., N 
x E B. 

The importance of introducing this type of risk measures has first been recog- 
nized by Markowitz [189] who also applied them in financial portfolio opti- 
mization. 

5.4 Absolute semi-deviation 
Similarly to the way for constructing a semi-deviation variant for quadratic 

deviation, we get the following semi-deviation measures: 

defined on he space of random variables with finite expected value and with 
z-  = max{O, -z),  z+ = max{O, Z )  for any real number z. Note that we do 
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not obtain new risk measures: These risk measures have been already discussed 
in Section 4.1, in connection with integrated chance constraints, see (4.3) on 
page 150. Now we consider them again, this time in relation with the absolute- 
deviation risk measure @, defined in (5.14). Using the relations z  = z+ - z- 

1 1 
and lzl = z+ + z- we obtain that z- = - (lzl - z )  and z f  = - (121 + z )  hold. 

2 2 
Thus we have 

The evaluation function A(x)  (5.15) defined on page 170 has now the semi- 
deviation counterparts: 

which are the separate integrated probability functions defined in Section 4.1 
on page 155. The following relations hold: 

According to Proposition 5.2 on page 170 A(.)  is a convex function, conse- 
quently both K ( x )  and H ( x )  are convex functions, too. 

Turning our attention to the case when the lowerlupper absolute deviation is 
measured with respect to the expected value, we obviously have (see (5.42)) 

This implies that the optimization model for minimizing the corresponding 
evaluation function will deliver the same results as its mean-absolute-deviation 
counterpart. With the valuation function in the constraint, the only difference 
with respect to (5.25) will be the right-hand-side of this constraint: with the 
semi-deviation measure this will be 2 ~ .  

6. Modeling risk and opportunity 
The different SLP model classes in the previous sections have been identified 

as follows: a quality measure Q has been chosen first which characterizes the 
model class. Based on the selected quality measure, the corresponding evalua- 
tion function V ( x )  := e(C(x, E )  was utilized in building SLP models belonging 
to the class of models. 
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In this section we will take a look on some modeling issues concerning 
SLP models. For the sake of simplicity we will consider the following pair of 
prototype problems 

with the evaluation functions V in the objective. Analogous reasoning applies 
for SLP models involving constraints with V. 

Before proceeding let us emphasize that the two problems in (6.1) are by no 
means equivalent from the numerical point of view. Assuming, for instance, 
that V is a convex function, this implies that the minimization problem is in 
general much more easier to solve numerically than its maximization counter- 
part. Applying the usual trick for transforming the maximization problem into 
a minimization problem involving -V in the objective, does not help in this 
respect, of course. 

Let us point out next that, from the modeling viewpoint, the mere definition 
and mathematical properties of a quality measure Q do not a priori imply a 
selection between the two possible models in (6.1). To see this, consider the 
standard deviation h(19)  := a(19) := E [ ( 8  - ~ [ 1 9 ] ) ~ ]  1 as a quality measure, 
discussed in Section 5.1. Notice that the implied evaluation hnction V is a con- 
vex function. With this evaluation function, the SLP model (5.10) on page 169 
corresponds to the minimization formulation in (6.1). The usage of this model 
presupposes the following modeling attitude: the modeler interprets any de- 
viation from the expected value as risk, quantifies the deviations by choosing 
the standard deviation as quality measure, and seeks to minimize this quality 
measure. In this modeling context, the quality measure Q,, can be interpreted 
as a risk measure. Note that assuming a symmetric distribution, a large stan- 
dard deviation indicates that 19 exhibits large deviations both in the upward and 
downward direction with respect to the expected value. Consider now a gam- 
bler. For sheihe the upward deviations represent an opportunity for winning, 
therefore larger standard deviations will be preferred to smaller values. This 
modeler would choose the maximization problem in (6.1). Consequently, for 
such a modeler the interpretation of the same quality measure Q,, is clearly an 
opportunity measure. The modeler faces a non-convex optimization problem. 

In the previous example the same quality measure served simultaneously as 
risk- and opportunity-measure, the sole difference was the way, how it has been 
used for building SLP models. Both for the risk-averse modeler and for the 
gambler the standard deviation is not the best way for building an SLP model. 
To see this, and to further explore the ways for modeling risk and opportunity, 
let us assume that 

rn negative values of ((2, () - E[((x, J)] are interpreted as something un- 
pleasant, like costs, loss in wealth, or loss in health; 
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positive values of c(x, J) - E[c(x, J)] quantify something desirable, like 
monetary gains or stability of an engineering structure; 

rn c(x, E )  - IE[c(x, J)] = 0 expresses neutrality in the risk-opportunity aspect. 

Instead of the standard deviation, in this situation it makes sense to choose 
the lower- and upper standard semi-deviations (see Section 5.3) as quality 
measures. The risk-averse modeler would choose the lower semi-deviation 
~6 (19) := ~ [ ( 1 9 - ) ~ ]  4, interpreted as a risk measure. The corresponding opti- 
mization problem is the minimization problem in (6.1). A modeler who does 
not care for risk would choose the upper semi-deviation @+(6) := ~ [ ( 1 9 + ) ~ ] +  

Q 
with the corresponding maximization problem in (6.1). The corresponding 
evaluation functions are convex functions for both the lower- and for the up- 
per semi-deviation, see the discussion on page 174. Therefore, again, the 
risk-averse modeler faces a convex optimization problem whereas the modeler 
neglecting risk has a non-convex optimization problem to solve. The idea of 
combining the two quality measures, for instance as Q- - with X > 0, 

Q 
and minimizing the resulting evaluation function, still results in a non-convex 
optimization problem. 

Another possibility for employing a suitable quality measure is to work 
with separate integrated probability functions, see Section 4.1. The risk-averse 
modeler would choose @iC (19) : = E [19-] with the corresponding minimization 
problem whereas herlhis risk-seeking counterpart would employ @iC(19) := 
E[19+] and the maximization problem. Both corresponding evaluation functions 
are convex, see proposition 4.2, therefore analogous comments apply as for the 
semi-deviations. There is, however, an essential difference: now it makes 
sense to combine the two quality measures. This leads to the quality measure @zc discussed on page 153 with a E [ O , l ] .  For a E [0, i) it serves as a 
risk measure with a convex evaluation function whereas for a E (i, 0] it can be 
interpreted as quantifying opportunity with a corresponding concave evaluation 
function. 

Finally let us discuss the usage of probability functions in modeling. Con- 
cerning separate probability functions, we have seen in Section 2.3, that, for 
certain special cases convex programming problems arise. This is true both 
for the risk-averse and for the risk-seeking attitude. For joint probability con- 
straints the situation is different, see Section 2.5.3. Convex programming prob- 
lems can only be obtained when interpreting the quality measure as a measure 
of opportunity, that means, the evaluation function is to be maximized. 

7. Risk measures 
We consider random variables of the form 
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where (r],J) is an n + 1-dimensional random vector defined on a probability 
space (R, 3, IP); r ]  denotes an n-dimensional random vector and J is a random 
variable. Whenever the expected value of (r]T, J) exists we will employ the 
notation p := E[r]] E IRn and pn+l := a[<] E IR. 

In the previous sections we used a two-step scheme in presenting the various 
stochastic programming model classes. In a first step we have specified a 
function Q : T -t IR for evaluating random variables with T being some linear 
space of random variables, defined on a probability space (0, 3, P). We have 
called Q a quality measure concerning random variables. In a second step, 
provided that ((x, r ] ,  J) E T holds for all x, we have substituted ((x, r ] ,  J) into 
Q thus getting the evaluation function V, V(x) := ~ ( ( ( x ,  r ] ,  J)). V has been 
subsequently used for building SLP models. Assuming that Q quantifies risk, 
V has been built into SLP models as follows: If in the objective, then V(x) was 
minimized and if in a constraint then constraints of the type V(x) < K were 
employed. This modeling attitude justifies the usage of the term "risk measure" 
for Q. For optimization models involving V in the above outlined fashion, the 
(generalized) convexity of V is clearly an advantageous property. It leads to 
optimization problems for which we have good chances for finding an efficient 
numerical solution procedure. 

For fixed ( r ] ,  J), <(-, r ] ,  J) is a linear-affine function, thus there is a close 
relation between structural properties of Q and (generalized) convexity proper- 
ties of V. The purpose of this section is to discuss properties of various risk 
measures and their impact on the evaluation function. 

Let (R, 3 ,  P) be a probability space and I9 be a random variable on it. The 
distribution function of I9 will be denoted by F8 and O denotes the support of 
19. Recall, that T has been chosen as one of the linear spaces listed in (1.6) on 
page 78. 

A function g : X -+ IR, defined on a linear space X,  is called positive 
homogeneous, if for any X 2 0 and x E X ,  the relation g(Xx) = Xg(x) holds. g 
is called subadditive, if for any x, y E X the inequality g(x + y) 5 g(x) + g(y) 
holds. For later reference the following simple facts are formulated as an 
assertion: 

PROPOSITION 7.1 Let g : X -t IR be a function dejned on a linear space 
X .  Then 

a) ifg is both positive homogeneous and subadditive then it is convex. 

b) Suppose that g is positive homogeneous and convex. This implies subaddi- 
tivity. 

Proof In fact, let x, y E X and X E (0,l)  then we have 
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where the inequality follows from subadditivity and the equality from positive 
homogeneity. This proves a). Suppose that g is positive homogeneous and 
convex and let x,  y E X then 

from which b) follows. 0 

The next proposition establishes a relation between properties of Q and prop- 
erties of the corresponding evaluation function V. 

PROPOSITION 7.2 Let T be a linear space of random variables and 
Q : T -t IR a real-valued function on T. Assume that rlTx - [ E T holds for 
all x and let V(x) := Q ( ~ ~ X  - 5). Then we have: 

a) If@ is convex then V is convex too. 

b) If5 - 0 and Q is subadditive then V is also subadditive. 

c) If< = 0 and Q ispositive homogeneous then V is also positive homogeneous. 

Pro08 
a) Let x, y E IRn and X E [O ,1 ]  then we have 

Assertions b) and c) follow similarly. 0 

Notice that in the above assertions the stated properties of V hold for any 
probability distribution of 19 E T. Thus we obtain convex SLP problems under 
the sole assumption 19 E T. By proving the convexity of a specific risk measure 
Q, we obtain alternative proofs of convexity of the corresponding SLP problems 
discussed in the previous sections. 

7.1 Risk measures in finance 
In financial theory and praxis, more closely in portfolio optimization, an 

increasing effort in research is devoted to identify those properties of risk mea- 
sures, which are distinguishing features. The general aim of the research is 
twofold. On the one hand, the goal is to develop an axiomatically founded 
risk theory in finance. On the other hand, the aim is to provide guidelines for 
practitioners for choosing an appropriate risk measure in their daily work and 
to support the construction of appropriate standards for risk management in 
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the finance industry. Several different definitions and systems of axioms have 
been proposed in the financial literature. Below we simply list some of the cur- 
rent definitions without discussing their intuitive background and implications, 
these being application-specific. 

Kijima and Ohnisi [165] propose the following definition: Q is a risk measure, 
if the following properties hold for any 9 ,  &, O2 E 'Y and A,  C  E IR, X 2 0: 

( K l )  ~ ( 6 1  + 92) I ~ ( 9 1 )  + ~ ( 9 2 )  (subadditivity) 
(K2) @(w = X @ ( ? J )  (positive homogeneity) 
(K3)  ~ ( 0 )  L 0 (nonnegativity) 

(7.1) 

(K4)  g(6 + C )  = ~ ( 9 )  for C  2 0 (shift invariance) 

The first paper addressing the important issue of axiomatic foundation is by 
Artzner, Delbaen, Eber, and Heath [6]. The authors propose the axioms below 
and explore their implications. We formulate the axioms for random variables 
representing losses, whereas in the original paper the interpretation is future 
value. 

(A l )  Q ( & +  92) I ~ ( 9 1 )  + ~ ( 9 2 )  (subadditivity) 
(A2) @(Ad) = (positive homogeneity) 
(A3) If o1 1 1 9 ~  then ~ ( 9 1 )  1 ~ ( 9 ~ )  (monotonicity) (7.2) 

(A4) ~ ( 9  + C )  = ~ ( 9 )  + C  (translation invariance) 

The authors call a function Q for which the above axioms hold a coherent risk 
measure. Concerning SLP models in general, in an intuitive sense the axiom A4 
looks rather unusual. The reason for including it in this form is that the authors 
consider capital requirement problems, see [6]. For distinguishing between 
the different requirements concerning translation in (7.1) and (7.2), we use 
the terms "shift invariance" and "translation invariance", respectively. In the 
system of axioms of Fijllmer and Schied [83], [84], subadditivity and positive 
homogeneity is replaced by the weaker requirement of convexity 

( F l )  ~ ( 9 )  is a convex function (convexity) 
(F2) If 1 9 ~  5 o2 then ~ ( 9 1 )  1 492) (monotonicity) (7.3) 
(F3) ~ ( 9  + C )  = ~ ( 9 )  + C  (translation invariance) 

leading to convex risk measures. Coherent risk measures are obviously convex; 
a convex risk measure is coherent, if it is positive homogeneous (see Proposi- 
tion 7.1). Rockafellar, Uryasev, and Zabarankin 12521 introduce the notion of 
deviation measure for 'Y = L:. Their the axioms are 

( D l )  491 + 92) 5 ~ ( 9 1 )  + ~ ( 6 2 )  (subadditivity) 
( 0 2 )  @(A$) = A d 4  (positive homogeneity) 
( 0 3 )  ~ ( 9 )  > 0 for 9  non-constant, (7.4) 

~ ( 8 )  = 0 otherwise (nonnegativity) 
( 0 4 )  Q(9 + c) = ~ ( $ 1  (shift invariance) 
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The authors also define an associated risk measure called expectation-bounded 
risk measure, see [252], and explore the implications in portfolio theory. Notice 
that for a deviation measure the axioms (7.1) hold; the axioms for a deviation 
measure can be considered as a refinement (restriction) of (7.1). 

Due to the different prescription for the case of a translation, the set of risk 
measures obeying (7.1) or (7.4) and the risk measures for which either (7.2) or 
(7.3) hold, are disjunct sets. 

We feel that there is not much chance that a general definition of a risk mea- 
sure can be given, which would be acceptable also beyond the field of finance. 
From our general stochastic programming point of view, the convexity of a 
risk-measure is surely a desirable property. Proposition 7.2 implies, namely, 
that the SLP models, which are built on the basis of such a measure, are convex 
optimization problems. From this viewpoint, a risk measure can be considered 
as more valuable, when beyond serving as a diagnostic metric, it can also be 
built into efficiently solvable optimization models which involve, for instance, 
minimizing risk. Without exception, all of the above definitions correspond to 
risk measures of this type. 

7.2 Properties of risk measures 
This section is devoted to discussing convexity properties of risk measures 

which have been utilized for building stochastic programming models. Unless 
explicitly referring to the axioms (7.3) of convex risk measures, under convexity 
we will simply mean convexity of the risk-measure-function Q. We will use 
the following notation: the functions E+ : IR t IR+ and e- : IR t IR+ are 
defined as e+(z) = zf and e- (z) = z-, respectively, where z+ = max(0, z) 
and z- = max(0, -z) are the positive- and negative part of the real number 
z. Let further E denote the absolute-value function e(z) = lzl for all z E IR. 
The relation E = e+ + E- obviously holds. Note that ef ,  E-, and E are positive 
homogeneous and subadditive functions, therefore they are convex. 

PROPOSITION 7.3  The following risk measures are positive homogeneous 
and subbadditive. Moreovel; they are also monotonously increasing and trans- 
lation invariant. Consequently, they are convex risk measures in the sense of 
axioms (7.3) and being positively homogeneous they are also coherent accord- 
ing to axioms (7.2). 

~ ~ ( 6 )  := E[I9], I9 E L:, (Section 4); 

g(I9)  := max $, 19 E L.: (Section I .  page dl); note that we have changed 
BEQ 

minimum to maximum for getting a risk measure; 

1 1 
e&,(I9) := vc(19,a) := min [ z +  -E[(I9-z)']], 19 E L1, 0 < a < 

1 - a  
1, (Section 4.3). 
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(A): The assertion holds trivially because Q, is a linear function. El 
Let X 1 0 be a real number and 19 E C y  with support O. Then XO is a 
set therefore it is the support of X6. For the definition of the operation 

XO see (2.64) on page 124. Thus we have 

For proving subadditivity let 191, 6 2  E C';O with supports O1 and 02, respec- 
tively. Let O := O1 + O2 where the sum of the two sets is defined according 
to (2.64) on page 124. From the discussion on that page it follows that O is a 
closed set. Consequently, O contains the support of 191 + 192. Thus we have 

For any real number C,  the support of 19 + C is O + {C), from which the 
translation invariance immediately follows. If gl(w) 5 02(w) holds for all 
w E R then we obviously have efat(191) 5 ~ ~ ~ ~ ( 1 9 2 ) .  

I O e t X  2 0and19 E C1. IfX =O,thenwehave 

a 1 
pCvaR(X19) = Q&~(O) = min [ Z  + PIE[(-z)+] = 0, 

1-a 

where the last equality follows from 

Assuming X > 0 we have 

Z 1 Z 
= A min [ - + -E[(6 - x)+] ] 

z X 1-a  

For proving subadditivity we utilize the fact (see Section 4.3) that the minimum 
in the definition is attained. Let fil ,  192 E C1 and zl, z2 corresponding solutions 
of the minimization problem in the definition. For proving subadditivity it is 
sufficient to prove convexity (see Proposition 7.1). Let 0 < X < 1, ZA be the 
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minimum for A91 + (1 - X)G2, and a = Xzl + (1 - X)z2. Utilizing the 
convexity of cp+ we get 

Due to the fact that cp+ is a monotonically increasing function, the monotonicity 
of ,o:,, follows immediately. Let C E IR then we have 

thus the translation invariance follows. 

For the next group of risk measures translation- or shift-invariance does not 
hold, but we have: 

PROPOSITION 7 . 4  The risk measures listed below are positive homogeneous 
and subbadditive and they are also monotonous. 

(DO @ic(9) := E[9+ 1, 9 E L:. (Section 4.1); 

(D2) e ~ ( 9 )  := E[9-1, 9 E Ci. (Section 4.1). 

(E) e:c(9) := aE[9] + (1 - 2a)E[9+] = ae,(9) + (1 - 2a)eiC(9), 9 E L:. 
0 I: a < i, (Section 4.1). 

Prooj 
We have Q: (9) = E[(p+(rP)]. The function (p+ being positively ho- 

mogeneous and subadditive, as well as monotonously increasing, the assertion 
follows immediately. In fact, for proving subadditivity let d l ,  g2 E C1 then we 
have 

The proof for positive homogeneity is analogous. eiC turns out to be a mono- 
tonically increasing function. 
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In this case eiC(I9) = E[cp-(8)] holds. The positive homogeneity and 
subadditivity of cp- implies these properties for e;. q- being monotonously 
decreasing, eiC is monotonically decreasing, too. 

( This follows immediately from the linearity of the first term and from 

In the next group neither translation-invariance nor monotonicity holds. 
Nevertheless, we have 

PROPOSITION 7.5 The following risk measures are positive homogeneous 
and subbadditive. 

(F) eQ(B)  := I9 E Lf. (Section 5. I); 

(G) := E[1191], I9 E L:, (Section 5.2): 

(H) Q: (0) := JIE[(6+)2] and 

; ( I 9  := , I9 E L:, (Section 5.3). 

Pro08 The positive homogeneity is trivial for all cases therefore we confine 
ourselves to proving subadditivity. 
I(F) Let r P l ,  192 E L2 then the Minkowski-inequality immediately yields 

We have pA(19) = E [ p ( B )  ] and the assertion follows from the subaddi- 
tlvlty of cp. 
@We prove the assertion for Q+ the proof for $ is analogous. We utilize 

Q ' 
the subadditivity of cp+ and again the Minkowski-inequality: 

Finally we turn our attention to the deviation measures in Section 5. 
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PROPOSITION 7.6 The following risk measures are deviation measures ac- 
cording to the axioms (7.4). 

(I) eStd(19) := a(8)  := @[(19 - IE[6])2], 19 E 13:; 

(K) @id(19) := a+($) : = JIE [( (19 - IE [dl)+ )2] and 

Q p )  := a- (x) := JE[( (19 - IE[19])- )2], 19 E ti; 

(L) := IE[ (19 - IE[19])+ ] = ;eMA,(6) and 
@iAD(8) := E [ ( 8  - IE[19])'] = $eMAD(19), 19 E ti. 

Pro08 Note that each one of these risk measures results from an already consid- 
ered risk measure by substituting 19 by 19 - IE[19]. Therefore it is clear that each 
one is positive homogeneous and subadditive. All of them are nonnegative and 
can only be zero if 19 is constant. Finally the shift-property 0 4  holds trivially. 

Recall, that due to proposition Proposition 7.1, the positive homogeneity and 
subadditivity of the risk functions considered so far implies that all of them are 
convex. 

The risk measures listed below have been used for building SLP models but 
have not yet been considered: 

(M) ~ ~ ( 1 9 )  := IP (19 2 O), 19 E V, (Section 2); 

(0) ~:~,(19) := v(19,a) := min{z I F8(z) 2 a) ,  19 E V, 0 < a < 1, 
(Section 3). 

They are non-convex in general. Despite this fact, we have seen in the previous 
sections that under some assumptions concerning the probability distribution 
and parameter values, using these quality measures resulted in convex or in 
generalized convex optimization problems. The point is the following: having 
a convex risk measure Q, this leads automatically to convex evaluation functions 
(see Proposition 7.2) and thus to convex optimization problems. In other words, 
the convexity of Q is a sufficient condition for getting convex optimization 
problems. The convexity of Q is by no means also necessary for this, as the 
convex optimization models, built on the basis of the aboye risk measures, and 
presented in the previous sections demonstrate. 

At last let us consider risk measures for random vectors, introduced in Sec- 
tion 4.1 as 

(P) $(d) := IE[ max 19:] and@,;(" := E [ m m  "1, d~ ,Ci 
l<i<s l<i<s 
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where .9 is now an s-dimensional random vector. These risk measures have the 
properties: 

PROPOSITION 7.7 Both Q+ and Q: are positive homogeneous and subaddi- 
JlC JlC 

tive. Moreovel; both of them are monotonous. 

Pro08 The positive homogeneity is obvious. We prove the subadditivity for 
Q+, the proof for Q: is analogous. Let dl),  d2) E C: then we have 
J'C JlC 

(2) + max [ (4'))' ] ]  + IE [ maw [ (2Pi ) ]] 
l s i s s  l l i s s  

where for the first inequality we used the subadditivity of c p f  and the second 
inequality follows from the properties of the max operator. From the properties 
of c p f  and cp- it is also clear that Q+ is monotonically increasing whereas Q: 

JlC JlC 

is monotonically decreasing. 0 

7.3 Portfolio optimization models 
For illustrating the use of various risk measures in practice, we present some 

portfolio optimization models. We consider a one-period financial portfolio 
optimization problem with n risky assets. Let rlT = (ql ,  . . . , %) be the vector 
of random returns of the assets and ri := IE[vi], i = 1 ,  . . . , n be the expected 
returns. The asset-weights in the portfolio will be denoted by X I ,  . . . , xn, thus 
<(x, 7 )  := rlTx represents the random portfolio return. With p standing for a 
prescribed minimal expected return level, we consider optimization problems 
of the following form: 

where B is a polyhedral set determined by additional linear constraints, Q is a 
risk measure, and IT = ( 1 ,  . . . , 1 )  holds. The interpretation is the following: 
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we are looking for a portfolio with minimum risk, under prescribing a minimum 
acceptable level p of expected return. 

Some well-known particular cases, differing in the choice of the risk measure 
are the following: 

Q = Q,, corresponds to the classical minimum-variance model of 
Markowitz [189]; 

Q = Q; leads to the mean-semivariance model of Markowitz [189]; 

Q = Q,,, gives the mean-absolute-deviation model of Konno and 
Yamazaki [ 1 721; 

Q = @Eva, corresponds to the mean-CVaR model of Rockafellar and 
Uryasev [250]; 

Q = results in the mean-VaR model widely used in the finance industry, 
see, for instance, Jorion [13 11. 

Note that all of these risk measures belong to the class of deviation measures. 
Although problem (7.5) is also useful in its own right, in finance this problem 
is considered as a parametric optimization problem with parameter p. The 
optimal objective value $(p), as a function of p, plays an important role. Its 
graph in R2 is called the ejicient frontier, corresponding to the risk Q and 
return p. Traditionally, the efficient frontier is represented graphically with 
the horizontal axis corresponding to risk and the vertical one corresponding to 
return. 

The reason behind considering the efficiency curve is the following: we ac- 
tually face a bi-objective optimization problem, where we would like to maxi- 
mize the expected return and at the same time minimize risk. In all cases listed 
above, $(p) is strictly monotonically increasing in p, on the interval where 
the constraint rTx 2 p is active at the optimal solution. Consequently, on 
the $-interval corresponding to this interval, $-' exists and is strictly mono- 
tonically increasing. Thus it makes sense to consider the following alternative 
representation of the efficiency curve: 

p($) = max rTx I 

where now $ > 0 plays the role of a parameter. The interpretation of this 
problem is the following: we maximize expected return under the condition 
that the maximum acceptable risk is $. 
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Due to the multi-objective character of the problem setting, it is not surpris- 
ing that a third characterization of the efficient frontier is via the optimization 
problem 

max rTz - vQ(qTz) ) 

where in this case v 2 0 is acting as a (risk-aversion) parameter for the effi- 
ciency curve. The evaluation function for the risk is accounted for by an additive 
term with a negative sign. 

For details on the relationship between these three problems see, for instance, 
Palmquist, Uryasev, and Krokhmal [2 181. 

Let us finally remark that taking ((z, q, J) := qTz - J instead of ((z, q) := 
qTz also leads to an important class of portfolio optimization problems. In this 
case J may represent, for instance, the random return of a benchmark which 
can be, for instance, an index like the Dow Jones Industrial Average. 



Chapter 3 

MULTI-STAGE SLP MODELS 

For various SLP models with recourse, we present in this chapter properties 
which are relevant for the particular solution methods developed for various 
model types, to be discussed later on. 

1 The general SLP with recourse 
As briefly sketched in Section 1, an SLP with recourse is a dynamic decision 

model with T 1 2 stages, as illustrated in Fig. 1.1, 

Figure 1.1. Dynamic decision structure. 

where for stagewise emerging feasibility sets 

we take successively 

- a first stage decision XI E B1 c IRnl; then, after observing the realization 
of a random variable (or vector) J2, 

- a second stage decision x2 (xl ; &) E B2 (xl ; J2) c IRn2 ; then after observ- 
ing the realization of a further random variable (or vector) 6, 
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- a third stage decision ~ 3 ( ~ 1 ,  22; &,  c3) E B3(xl, 22; &, J3) c Rn3;  and so 
on until, after observing the realization of tT, finally 

Here the feasibility set Bt (xl, . . , xt-1; <2, . , &) for xt is given by (random) 
linear constraints, depending on the previous decisions X I ,  - . . , xt-1 and the 
observations of 52,  . , &. 

For each stage t the decision xt(xl, . . - , xt-1; (2, . , &) involves the t-th 
stage objective value c:(t2, . . , Et) xt(xl ,  , xt-1; (2, . . . , &), and the goal 
is to minimize the expected value of the sum of these T objectives. 

More precisely, the general model may be stated as follows: Given a proba- 
bility space (52, G, P) ,  random vectors tt : 52 - Rrt , and the probability dis- 
tribution IPE induced by < = ([z, . . . , J;)~ : 52 - RR, R = 7-2 + . . + TT, 

on the Borel a-field of RR, with St = ( t z ,  - . , tT)T being the state variable 
at stage t, the multi-stage stochastic linear program (MSLP) reads as 

where xt : Rr2+"'+rt - Rnt is to be Borel measurable, implying that 
xt(Ct(-)) : 52 - Rnt is Ft-measurable, with Ft = c G being the 
a-algebra in 52 generated at stage t by Ct. With C1 = J1 being constant and 
therefore Fl = {0,52}, it follows that Ft c Ft+1 for t = 1,. , T - 1, such 
that F = {Fl , F 2 ,  - , FT} is aj2tration. With xt (Ct ( a ) )  being Ft-measurable 
for t = 1, - . , T,  the policy {xt (Ct ( a ) ) ;  t = 1, - . , T) is said to be F-adapted 
or else nonanticipative. 

The Jt : 52 --+ Rrt being random vectors defined on the probability space 
(52, 6, P} implies that they are G-measurable. We say that Jt E ~ ~ ( 5 2 ,  IWt) 

if, in addition, they are square integrable, i.e. if ll&(w) 1I2~(dw) exists. S, 
ASSUMPTION 1.1 Let 

- AtT (.) , bt ( a ) ,  ct ( a )  be linear aflne in Ct (i.e. Ft-measurable), where At, (.) 
is a mt x nT-matrix. 
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Due to this assumption, also the elements of At7(.), bt(.), c t ( - )  are square- 
integrable with respect to P. Hence, requiring that xt E ~ ~ ( 0 ,  IRnt) W 
holds, Schwarz's inequality (see e.g. Zaanen [310]) implies in particular that 
E[C?(<~)X~ (&)I, t = 2, . , T,  exist, such that problem (1.1) is well defined. 

Sometimes the following reformulation of (1.1) may be convenient: Given 

- a probability space ( 0 ,  6, P); 

- Ft, t = 1, . . , T, being a-algebras such that Ft c 6 Vt and Ft c for 
t = 1, . , T - 1 (i.e. {Ft 1 t = 1, , T) being a filtration); 

- F := {Fl, . . , FT), where possibly, but not necessarily, FT = 6 ;  

- Xt a linear subspace of ~ ~ ( 0 ,  IRnt) (with respect to (f2, 6, P)), including 
the set of .&simple functions; 

- Mt the set of Ft-measurable functions 0 - IRnt and hence, Xt n Mt 
being a closed linear subspace of Xt; 

then problem (1.1) may be restated as 

with At,, bt , ct assumed to be Ft-measurable for 1 5 T 5 t ,  t = 1, . . , T,  
and to have finite second moments, as implied by Assumption 1.1 (remember: 
Fl = (0, $21, such that All, bl , cl are constant). 

Following S.E. Wright [307] various aggregated problems may be derived 
from (1.2) by using coarser information structures, i.e. subfiltrations F = 

{Ft}, Ft c Ft+1, such that Ft C Ft, Vt, instead of the original filtration 
%={&I, & C F t + l ,  t = l , . . . , T - 1  . 
Denoting problem (1.2) as P ( F ,  F ) ,  we then may consider 

- the decision-aggregated problem P(?, F ) ,  
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where is the set of .?t-measurable functions fl - IRnt, such that 
x = (x:, - . , xT)T is ?-adapted; 

A 

- the constraint-aggregated problem P ( 3 ,  F ) ,  

i.e. x is F-adapted as in (1.2), and the constraints are stated in conditional 
A 

expectation given Ft;  
A A 

- and the fully aggregated problem P ( F ,  3 )  defined as: 

min E x E [ct I .?t] xt 

E { b t R )  a.s.Vt I (1.5) 

Observe that by Assumption 1.1 the expected values 

exist and hence, the conditional expectations in (1.4) and (l.5), 

are a.s. uniquely determined and .?t-measurable due to the Radon-Nikodyrn 
theorem (see e.g. Halmos [Ill]).  

A A 

Denoting for the above problems P ( F ,  F ) ,  P(?, F ) ,  P ( F ,  .?), P ( 3 , F )  
A A 

- their feasible sets by B(F ,  F ) ,  B(.?, F ) ,  B(F,  .?) and B(F,  F ) ,  and 
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- their optimal values by inf ( P ( 3 ,  F)) ,  inf (P(.?, F)) ,  inf ( P ( F ,  y ) )  and 
inf (P(.?, .?)), 

respectively, and following the usual convention in optimization theory that 
inf{cp(x) I x E B) = cx, if B = 0, S.E. Wright [307] mentioned the following 
relations between the above problems: 

PROPOSITION 1.1 For the feasible sets of the above problems hold the inclu- 
sions 

B(F,  F )  2 B(.?, A F )  A V, F )  G V, f) 
a(.?, 3 )  c B(F, F) B(F, F )  2 q.?, F) , 

implying for the corresponding optimal values the inequalities 

inf(P(3,  .?)) I inf (P(3 ,  F ) )  I inf (P(.?, F ) )  
inf(P(F, y ) )  I inf(P(.?, P ) )  I inf (P(.?, 3 ) )  . 

Prooj The above inclusions result from the following observations: 

B(F,  F )  2 B(.?, F ) :  Any {xt) E B(.?, F )  satisfies the constraints of (1.3) 

and hence in particular the conditions xt E Xt n Gt Vt. Since .?t C Ft Vt, we 
then have xt E Xt n Mt W, such that {xt) E B ( 3 , F ) .  

B(F,  F )  C B(F, .?): Any {xt) E B(F,  F )  is F-adapted and satisfies all 
t 

other constraints in (1.2), in particular the random vectors x AtTxT and bt, 

measurable w.r.t. Ft, coincide almost surely, such that for any &-algebras 

c Ft their conditional expectations E 
A 

being a.s. uniquely determined and Ft-measurable as mentioned above, coin- 
cide a.s. as well. Hence we have {xt) E B(F,  .?). 
The two remaining inclusions, 

A A 

a(.?, F )  g a(.?, .?) and B(3 ,  .?) > B(F,  F ) ,  

as well as the inequalities for the optimal values, are now obvious. 0 

REMARK 1.1 Concerning the fully aggregatedproblem (1.5) we have the fol- 
lowing facts: 

Given that F is injinite, i.e. at least one of the a-algebras Ft = u(Ct) , t = 
1, - . , T , is notjnitely generated (equivalenth, at least one ran&omAvector 
Ct has not ajnite discrete distribution), and 7 isjnite, then P ( 3 ,  F )  with 
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jinitely many constraints and variables is clearly simpler to deal with than 
P(F, F);  

for a sequence {.%'I of finite)jiltrations with successive reJinements, i.e. 
?; Vt, under appropriate assumptions, e.g. for a correspondingse- 
quence of measures P, on ?& converging weakly to P (see Billingsley [16]), 
we may expect convergence of the optimal values of ( I S )  to that one of (1.2); 

according to Prop. 1.1, in general there is no dejinite relationship be- 
tween the optimal values of ( I S )  and of (1.2), as remarked for instance by 
Wright [307] (p. 900); however there arespecialproblem classes-inpartic- 
ular in the two-stage case-;;an_dparticular assumptions for the multi-stage 
case implying that inf (P(F,  3)) yields a lower bound for inf (P(F,  F)) ,  
which can be used in designing solution methods, as we shall see later. 

First we shall deal with two-stage SLP's. Under various assumptions on the 
model structure and the underlying probability distributions, we shall reveal 
properties of the recourse function and its expectation which turn out to be 
useful when designing solution methods. Unfortunately, not all of these results 
can be generalized to corresponding statements for multi-stage SLP's in general. 

2. The two-stage SLP 
In the previous section, for the T-stage SLP we had the following gen- 

eral probabilistic setup: On some probability space (52, G, P)  a sequence of 
random vectors Jt : 52 - IRrt, t = 2, - .  . , T ,  was defined, such that 
J = ( J T ,  . , JT)T induced the probability distribution IPE on the Borel a-field 
of IRr2+ "'+'T. Then the random vectors St = (Jr, . . . , J ? ) ~ ,  t = 2,  - . , T ,  
implied the filtration F = {F2, . . , FT) with Ft = =(St).  Restricting our- 
selves in this section to the case T = 2 allows for the following simplification 
of this setup. 

Assume some probability space (52,  F ,  P) together with a random vector J : 
52 + IRr to be given, such that F = a(<). Then J induces the probability mea- 
sure IPg on Br, the Borel a-algebra in Rr, according to IP5(B) = P ( J - ~  [B])  
VB E 8'. 

Besides deterministic arrays A E IRml Xnl, b E IRml, and c E IRnl, for 
the first stage, let the random arrays T ( J )  E IRmZXn1, W ( J )  E IRm2 Xn2,  
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h(E) E IRm2, and q(5)  E Rn2, be defined for the second stage as: 

r 

T(C) = T + C T~ tj ; T,  ~j E IRm2 deterministic, 
j=1 

r 1 

Then, with E E L2 (a, IRr)  due to Assumption 1.1 and according to (1.2), the 
general two-stage SLP with random recourse is formulated as 

w(E) = W + 1 W' t j  ; W, W j  E IRm2 X n 2  deterministic, 
j=1 
r 

h(()  = h + hi ej ; h, hi E IRm2 deterministic, 
j=1 

r 

where Y-corresponding to (1.2fiis a linear subspace of ~ ~ ( 0 ,  IRn2) (with 
respect to (a, F, P)), including the set of F-simple functions; and M is the set 
of F-measurable functions - IRn2. To avoid unnecessary formalism, we 
may just assume, that Y = L~ (a, IRn2) which obviously contains the F-simple 
functions and satisfies Y c M. 

Hence problem (2.2) is equivalent to 

(2.1) 

A brief sketch on modelling situations leading to variants of the general 
two-stage SLP (2.3) is given in Chapter 1 on page 10. 

REMARK 2.1 Instead of the constraints {Ax = b, x 1 0) in (2.3) we also 
could consider constraints of the form {Ax cc b, 1 5 x 5 u) as in Chapter 
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I, ( I .  I )  on page 7, and the constraints {W (0 y(E) = h([) - T(E)x, y ( [ )  2 
0 as . )  of (2.3) could be replaced as well by {W(O y ( E )  O; h(E) - T(<)x, i I 
y ( c )  I ii a x ) .  However, in order to have a un$edpresentation, for two-stage 
programs we stay with the formulation chosen in (2.3). 0 

Except for particular cases where it is stated explicitly otherwise, instead of 
(2. I)  we shall restrict ourselves to W(. )  r W ,  i.e. tof ied  recourse. In general, 
problem (2.3) contains implicitly the recourse function 

To simplify the notation, we shall enter into the recourse function Q(x; .) 
of (2.4), in addition to the first stage decision variable x, only those param- 
eter arrays being random in the model under consideration. For instance, 
Q(x; T(<),  h(E)) indicates that T (.) , h(.) are random arrays defined according 
to (2.1) whereas W(. )  - W, q(.) q; and Q(x; h(5)) stands for h(.) being 
a random vector due to (2.1) and T( . )  r T ,  W( . )  = W, q ( - )  = q being 
deterministic data. 

Furthermore, in applications of this model, the selection of a decision 2 
feasible for the first stage constraints Ax = b, x  2 0, appears to be mean- 
ingful only if it allows almost surely to satisfy the second stage constraints 
W(()y(E) = h(E) - T(E)P, y ( J )  2 0 as., since otherwise, according to the 
usual convention, we should get for the recourse function 

with some positive probability. This implies 

- or else the expected recourse Q(2) to be undefined if with positive proba- 
bility Q(2; T(E), h ( 0 ,  W ( E ) ,  q ( J ) )  = -co results sinlultaneously. 

Clearly in anyone of these situations 2 is not to be chosen since neither an 
infinite nor an undefined objective value corresponds to our aim to minimize 
the objective of (2.3). Hence, in general we may be faced with so-called induced 
constraints on x, meaning that we require 
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For E = supp Pt-the support of PC, i.e. the smallest closed set in IRT such 
that PC (E) = 1-being an infinite set, K is described in general by an infinite 
set of constraints, which is not easy to deal with. If however E is either finite, i.e. 
E = {J1, - . , I"), or else a convex polyhedron given by finitely many points as 
Z = conv {el,. . , JP) (see Chapter 1, Def. 2.3 on page 16), then the induced 
constraints imply x E K with 

and, with B1 := {x I Ax = b, x 2 0) c IRnl, the first stage decisions have 
to satisfy x E B1 n K. A more detailed discussion of induced constraints 
may be found in Rockafellar-Wets [253] and in Walkup-Wets [300] (see also 
Ka11 [134], Ch. 111). 

2.1 Complete fixed recourse 
If for a particular application it does not seem appropriate, that the future 

outcomes of J affect the set of feasible first stage decisions, we might require 
at least relatively complete recourse: 

Due to the Farkas lemma, Chapter 1, Prop. 2.13 on page 2 1, condition (2.5) is 
equivalent to: 

Vx E 81 holds : [wT(J)u 5 0 * (h(J) - ~ ( J ) x ) ~ u  5 0 a.s. ] . 

Hence the requirement of relatively complete recourse is a joint restriction on 
Bl and on the range of h(J), T (J) , W (t)  for J E E, simultaneously, which may 
be difficult to verify, in general. 

Therefore, in applications it is often preferred to assume completefied re- 
course, which requires for W( t )  - W the following condition: 

{z I z =  Wy, y 2 0) =IRm2.  (2.6) 

If this condition is satisfied, then for any 2 feasible according to an arbitrary set 
of first stage constraints in (2.3), and for any realization i of the random vector 
J, the second stage constraints in (2.4) are feasible. Furthermore, complete 
fixed recourse is a condition on the matrix W only, and may easily be checked 
due to 

LEMMA 2.1 A matrix W E IRm2 Xn2  satisjes the complete recourse condition 
(2.6) if and only i f  

- rank(W) = ma, and 



202 STOCHASTIC LINEAR PROGRAMMING 

- for an arbitrary set {Wi,, Wi2 , . - - , Wim2 ) of linearly independent columns 
of W, the linear constraints 

are feasible. 

Proofl Assume that W is a complete recourse matrix. Then from (2.6) follows 
that rank(W) = ma necessarily holds. 

Furthermore, for some selection {Wi,, Wi2, - . , Wim2) of linearly indepen- 
dent columns of W, let 

m2 

k=l 

By our assumption on W, we have {y I Wy = 2, y 1 0) # 0. Hence, with 
the index set {jl, . . , jn2-m2) chosen such that 

there exists a feasible solution 6 of 

Hence, with 

Assume now that the conditions of this lemma hold. Choose an arbitrary 
i E IRm2. Then the linear equation 

has a unique solution {jjiiji,, . . , jjim2 ). If jjik 2 0 for lc = 1, . . . , ma, we 
have a feasible solution for the recourse equation Wy = i. Otherwise, set 
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7 := rnin{j&, . . , gim2) < 0. Let 9 be a feasible solution of (2.7). Then for 

follows 

such that jj is a feasible solution of Wy = Z, y 2 0. 

Hence, to verify complete fixed recourse, we only have to determine rank(W) 
and-if rank(W) = rnz is satisfied-to check the feasibility of (2.7) by ap- 
plying any algorithm for finding a feasible basic solution of this system, as e.g. 
the method described in Section 2.4 on page 26. Throughout our discussion of 
two-stage SLP's we shall make the 

ASSUMPTION 2.1 The recourse matrix W satisjies the complete Jixed re- 
course condition (2.6). 

Even for the complete fixed recourse case if, with CP being the polar cone 
of C = {y I Wy = 0, y > 0), it happens that 

then, due to Prop. 2.6 in Chapter 1 (page 18) {J I -q(J) E CP) # 0 is closed, 
such that the definition of the support z implies PE (En{( I -q([) E CP)) < 1. 

Hence, with Eo = 2 \ {J I -q(J) E CP), by Prop. 2.7 in Chapter 1 
@age 18) follows Q(x; T(J), h(J), q(J)) = -oo for J E So with probability 
PE (Eo) > 0, yielding Q(x)  = -oo Vx E B1. 

Therefore, for allowing the objective of (2.3) to discriminate among various 
first stage feasible solutions, we need to assume that -q(J) E CP VJ E E, 
i.e. using the Farkas lemma (Chapter 1, Prop. 2.13 on page 21) we add to 
Assumption 2.1 the further 

ASSUMPTION 2.2 The recourse matrix W together with q(.) satis& 
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Observe that due to (2.8) the requirement that -q(J) E cP V< E E is equivalent 
to dual feasibility of the recourse problem, a.s. 

LEMMA 2.2 Given Assumptions 2.1 and 2.2, for any x E Rnl there exists an 
optimal recourse y(.) E Y such that Q(x; T(J), h(E), q(E)) = qT (c) y([). 

Proofi Due to Assumptions 2.1 and 2.2 the LP 

is solvable for all 5 E E. Let ~ ( " 1 ,  v = 1, . , K,  denote all bases out of 
W (i.e. all the regular m2 x m2-submatrices of W). Partitioning W into 
the basic part B(,) and the nonbasic part N(") and correspondingly restating 
q(5) E (qBw ( 0 ,  QN(Y) (E)) and Y 2 (YBW, YNW), we h o w  from Prop. 2.3 
in Chapter 1 (page 16) that with the convex polyhedral set 

Y E  2 (yBw ( 0  = B(Y)-' (h(E) - T(Ox), YNW ( 0  = 0) solves (2.9) for 
any ( E A,. Furthermore, due to (2.1) we have that y(.) E L2(d,, IRn2) for 
v = 1, . - . .K. Since--due to the solvability of (2.9) for all J E =-we have 

K K 

that U A, 2 this inclusion also holds for U d, with the sets d, defined 
v= l  v=l 

as& =A1 andd, = A , \ U ~ ~ ~ A ,  forv = 2 , . . . , K  . 
Therefore, {E n d, I v = 1, . . . , K )  is a (disjoint) partition of E with y(.) 

according to 

a solution of (2.9), being piecewise linear in J and hence belonging to Y, and 
yielding Q(x; T(E), h(E), 4E)) = qT(E)y(E). 

The above convex polyhedral sets A, depend, by definition, on x, and so 
do the painvise disjoint sets d,,  which we may indicate by denoting them 
as d,(x). Then for some given x ( ~ ) ,  i = 1,2, and any 5 E E there exist 
vi E (1, . . - , K )  such that E E d, ( ~ ( ~ 1 )  and hence 

Q(x("; ~ ( 0 ,  ME), dE)) = q:(,) ( E ) B ( ~ ' ) - ~ ( ~ ( F )  - T(F)X(~)) 
= a,([) + d(f i )T( t )~( i )  , I (2.10) 

where a, (t)  = qT ~ ( 4  (0 ~ ( ~ ' ) - l h ( < )  E L1 

and - d(,') (E) = (qT ~ ( v i )  ( t )  B('I)-'T (c))' E L' . 
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Since, due to the simplex criterion, u(") = B(".)-'~ q ~ ( v i )  ( J ) ,  = l ,  2, are 
dual feasible with respect to (2.9), it follows for i # j 

Now we are ready to show that (2.3) under appropriate assumptions is a 
meaningful optimization problem. 

THEOREM 2.1 Let the Assumptions 2.1 and 2.2 be satisfied. Then the recourse 
function Q(x;  T ( 0 ,  h(O,q(E)) is 

a) finitely valued Vx E Bl , J E Z, 

b) convex in x  VJ E Z, and 

c) Lipschitz continuous in x  VJ E E with a Lipschitz constant D ( J )  E L'. 

Proof a) The LP defining the recourse function Q(x;  T ( J ) ,  h ( J ) ,  q ( J ) )  is given 
by (2.9) as 

min{qT(t>y I W Y  = h ( 0  - T(J )x ,  Y 2 O ) ,  

which due to Assumption 2.1 is primal feasible for arbitrary x  E IRnl and 
J E IRr, and according to Assumption 2.2 is also dual feasible VJ E E; therefore 
it is solvable for all x  E Bl and for all J E E, such that 

Q(x;  T ( J ) ,  h ( J ) ,  q ( J ) )  is finitely valued Vx E Bl and VJ E 2 . 

b) Hence for an arbitrary i E Z and some x( l ) ,  x ( ~ )  E B1 there exist y(i) for 
i = 1 ,2  such that 

Q ( x ( ~ ) ;  ~ ( 0 ,  h ( i ) ,  q ( 0 )  = qT(i)y(i), where 
= h ( i )  - T ( [ ) x ( ~ ) ,  y(i) > 0. 

Then for 5  = AX(')  + (1 - x ) x ( ~ )  with some X E ( 0 , l )  it follows that 

g = ~ y ( ' )  + (1 - ~ ) y ( ~ )  is feasible for W y  = h ( i )  - T ( ~ ) z ,  y  0 .  

Hence 
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showing the convexity of Q(x; ~ ( i ) ,  h(i),  q(i)) in x. 

c) For any two x(l) # x ( ~ )  and any J 6 Z, according to (2.10) there exist 
vi E {I , . . . ,  K), i = 1,2, suchthat 

such that 

Hence, with D(J) = max I ~ ~ ( " ~ ) ( < ) I I  E L'-due to (2.10)-follows the 
i€{l,...,K) 

proposition. 0 

Due to Chapter 1, Def. 3.2 (page 61) a vector g E IRn is a subgradient of a 
convex function cp : IRn - IR at a point x if it satisfies 

and the subdifferential dcp(x) is the set of all subgradients of cp at x. In particular 
for linear programs we have 

LEMMA 2.3 Assume that the LP 

is solvable Vb E IRm. Then its optimal value cp(b) (obviously convex in 
b) is subdifferentiable at any b, and the subdiffential is given as dcp(b) = 
arg max{bTu I ATu 5 c),  the set of optimal dual solutions at b. 

Prooj ~ o r a ~ i v e n z  let t E arg max{zTu I ATu 5 c), such that cp(i;) = gTt. 
Hence t is also feasible for the LP cp6) = max{gTu I ATu 5 C} for an 
arbitrary; such thatZTii 5 cp6) holds. Hence 
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showing that argmax{gTu I ATu 5 C) c a v 6 ) .  
Assume now that g E dp(i;) for some g . Therefore, for any b holds 

With 2 E arg min{cTx / Ax = %, x 2 0) and x ( ~ )  = 2 + e i (2  0), i = 
1, . . , n, (ei the i-th unit vector), by our assumption, for all b(i) =  AX(^), the 
LP7s cp(b(i)) = min{cTx I Ax = b(i), x 2 0) are solvable. Obviously we 
have cp(b(i)) < such that 

implying I c, the dual feasibility of g. Then, due to the weak duality 
theorem (Chapter 1, Prop. 2.9, page 20), we have 9% - &) < 0. Assume 
that with some a < 0 holds 9% - cp(%) < a. For = 0 obviously follows 
q4) = 0 such that the subgradient inequality, valid for all b, yields 

This contradiction, implied by the assumption 9% - cp(%) I a < 0, shows 
that g% = cp(i;) and hence a&) c arg max{gTu I ATu 5 c) . 0 

Now we get immediately 

THEOREM 2.2 Given the Assumptions 2.1 and 2.2, the recourse function 
Q(x; T(E), h(E), q(<)) is subdifferentiable in x for any E Z. For any 2 
holds (the subscript at d indicating the variable of subdifferentiation) 

Proof For an arbitrary [ E E define b(x; [) := h(e) - T(J)x. Introducing 

from Lemma 2.3 follows for the subdifferential of $ ( a ;  t )  at b(2; [) 

Then from Prop. 3.2 in Chapter 1 (page 61) we know that 
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THEOREM 2.3 Since J E L2(0 ,  IRT) (i.e. J square-integrable with respect to 
IPd, the expected recourse Q(x) is 

a) jinitely valued Vx E 231, and 

b) a convex and Lipschitz continuous function in x. 

Hence, (2.3) is a convex optimization problem with a Lipschitz continuous 
objective function. 

Prooj a) Let 2 6 IRnl be fixed. Due to Assumptions 2.1 and 2.2, for any 
J E E there exists an optimal feasible basic solution of the recourse program 
(2.9), i.e. there is an (m2 x ma)-submatrix B of W such that 

where the components of the m2 -subvector qB(J) of q(J) correspond to the 
columns in B selected from W, as mentioned in Chapter 1, Prop. 2.2 (page 
15). Together with the simplex criterion, Prop. 2.3 in Chapter 1 (page 16), such 
a particular basis is feasible and optimal on a polyhedral subset EB c E, a 
so-called decision region (also: stability region). 

According to (2.1) and (2.12), the recourse function Q(2; T(J), h(J), q(J)) 
is, in general, a quadratic function in J for J E EB, such that the integral 

r 

Q(2; T(J), h(J), q(J))IP<(dJ) exists due to the assumption that J E La. I= 
 the Assumptions 2.1 and 2.2, the support Z is contained in the union of 
finitely many decision regions, which implies that also 

b) In Theorem 2.1, for any J E z, the recourse function Q(x; T(J), h(J), q(J)) 
has been shown to be convex and Lipschitz continuous in x, with a Lipschitz 
constant D(J) E L1. 

P 

Hence the convexity of Q(x) = Q(x; T(J), h(J), q(J))IP<(dJ) is obvi- 
ous. 

I= 
And for any two x(l) and x ( ~ )  we have 
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with the Lipschitz constant D = J, - D(J)IPE(dJ). 0 

COROLLARY 2.1 Given that, instead of t E L2(@ IRr), the random entries 
q (J)  and (h(<), T (5 ) )  are stochastically independent and J E L'(i-2, IRr) (i.e. 
J is integrable with respect to IPd, the conclusions of Th. 2.3 hold true, as well. 

Prooj Only the existence of Q(x)  = J, Q(x;  T ( J ) ,  h ( t ) ,  q(t))IPt (d t )  has to 
be proved, which follows, with J E L' (6, IRr), from the independence of q( t )  
and ( h ( J ) ,  T ( t ) )  according to 

REMARK 2.2 In Theorem 2.2 the subdifferential of the recourse function at 
any f under the Assumptions 2.1 and 2.2 was derived as 

It can be shown, that then Q(.) is subdzferentiable at f and 

where this integral is understood as the set G(J)IPa(dt) for all func- (1 1 
tions G(.)  being measurable selectionsfrom dxQ( f ;  T ( . ) ,  h ( - ) ,  q(.)) such that 

IIG(O I I  ~r ( d t )  aists- 

Finally, Q(- )  is differentiable at f if and only i f  a xQ( f ;  T ( - ) ,  h(.), q(.)) is a 
singleton as .  with respect to Pa. 



210 STOCHASTIC LINEAR PROGRAMMING 

To prove statements of this type involves several technicalities, like the ex- 
istence of measurable selections from subdzferentials or equivalently, from 
solution sets of optimization problems, integrability statements like Lebesgue 's 
bounded convergence theorem, and so on. Under spec$c assumptions, these 
problems were considered for instance in Kall[132], Kall-Oettli [150], Rock- 
afellar [248] (see also Kall[134]), and the general case is dealt with in Ch. 2 
of Ruszczytiski-hapio [263], where a sketch of a proof is presented. 

Due to the fact that (sub)gradient methods will not be a central part of our 
discussion of solution approaches for recourse problems later on, we omit a 
proof of the above interchangeability of subdzferentiation and integration. 

Finally, assume that q(J) = q, i.e. q(.) is deterministic. Then we have 

PROPOSITION 2.1 Given the Assumptions 2.1 and 2.2 (the latter one now 
reading as {u I wTu I q) # Q)), Q(x; T(.), h(.)) is a convex function in J for 
any x E Rnl. 

Proof According to (2.1) for any fixed x 6 Rnl the right-hand-side of the LP 

is linear in J, which implies the asserted convexity. 0 

In this case we have a lower bound for Q(x), frequently used in solution 
methods, which is based on Jensen 's inequality [128]: 

LEMMA 2.4 Let J E Rr be a random vector with probability distribution IPt 
such that IEc [J] exists, and assume cp : Rr - IR to be a convex function. 
Then the following inequality holds true: 

Proof Due to Chapter 1, Prop. 3.2, at any j E Rr there exists a nonempty, 
convex, compact subdifferential acp([). Hence for any linear affine function 
e(.) out of the family L( for some E IRr with 

the set of linear support functions to cp(.) at j, we have the subgradient inequality 
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By integration with respect to IPE follows 

such that t ( E E  [t]) yields a lower bound for IEE [ c p ( E ) ] .  

Since IEE [[I E IRT, due to the subgradient inequality, at any i E IRT holds 

Hence, in {LE, i E IRT}, the set of all possible linear support fbnctions to i p ( . ) ,  

we get 
argmax{Uk It]) I t ( - )  E . l a  , i E w} = IEE [ti. 

E 
Therefore, among all linear support functions to c p ( - )  we get the greatest lower 

bound for lE IV(E)I  by choosing e = E~ [ [ I ,  i.e. t(t) = ~ ( 4  [ E I )  +gg, (t - 
IEE [El ), yielding 

Whereas under the assumptions of Lemma 2.4 we know for sure that the 
integral J,, (p(J)IP6(dJ) is bounded below, it cannot be excluded in general 
that IEE [ q (J ) ]  = +oo holds. In contrast, under our assumptions for Prop. 
2.1 we know from Cor. 2.1 that &(x) = IEc [Q(x; T(E), h(J) ) ]  is finite for all 
x E IRnl. From Prop. 2.1 and Lemma 2.4 follows immediately the Jensen 
lower bound for the expected recourse: 

THEOREM 2.4 Given the Assumptions 2.1 and 2.2, with ,$ = IEE [ J ] ,  the ex- 
pected recourse &(x) = IEE [Q(x; T ( J ) ,  h(E))] is bounded below due to 

Observe that in this case the lower bound for the expected recourse is defined 
by the one-point distribution I P ,  with IP,({q I q = 0) = 1, which does not 
depend on the particular recourse function, since 

holds true for any function Q(x; T ( . ) ,  h( . ))  being convex in [ .  
Concerning upper bounds for the expected recourse, the situation is more dif- 

ficult. The first attempts to derive upper bounds for the expectation of convex 
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functions of random variables are assigned to Edmundson [71] and Madan- 
sky [183]. Therefore, the basic relation is referred to as Edmundson-Madansky 
inequality (E-M): 

LEMMA 2 .5  Let T be a random variable with supp IP, C [a,  P] c IR such 
that the expectation p = E, [T] E [a, PI. Then, for any convex function 
+ : [a, P] - IR holds 

where .i is the discrete random variable with the two-point distribution 

P - a  P - p ,  I P + ( { q + = p ) ) =  -. Pi({+ I .i = a) )  = - (2.16) 
P - a  P - a  

Prooj With A, = - - we have A,a + (1 - A,)P = T VT E [a, P] and 
P - a  

A, E [0, 11. Due to the convexity of $ follows 

and therefore, integrating both sides of this inequality with respect to IP,, 

It is worthwhile to observe the following relation to the theory of moment 
problems and semi-infinite programs. Under the assumptions of Lemma 2.5 
consider, with P the set of probability measures on [a, PI, as primal (P) the 
problem 

a so-called moment problem, and as its dual problem (D) 

the corresponding semi-infinite program. 
Since, as required by the constraints of (D), a linear affine function majorizes 

a convex function on an interval if and only if it does so on the endpoints, (D) 
is equivalent to 
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Due to the fact that a I p I ,6 this LP is solvable, and hence so is its dual (P), 
which now reads as 

and has, as the unique solution of its constraints, the distribution of .i as given 
in (2.16). It is worth mentioning that in this case the solution of the moment 
problem (P), i.e. the E-M distribution yielding the upper bound, is independent 
of the particular choice of the convex function $. 

Suppose now that we have a random vector J E R T .  Then, as mentioned in 
[I5 11, Lemma 2.5 can immediately be generalized as follows: 

LEMMA 2.6 
ponents of E 
IP,,, i = 1,. 

Let supp IPt C E = XL=l [ai, Pi] C IRT and assume the com- 
to be stochastically independent. With p = ES [J] E E let 
- , r, be the two-point distributions dejned on [ai, Pi] as 

Pi - Pi 
IP,i({vi 1 vi = ail) = - 

Pi - Qi 

Pi - ai , %({% 1 Vi = Pi}) = - . (2.19) 
Pi - ai 

Then for the random vector 7 E IRT with the probability distribution given as 

IP, = IPV1 x IPq2 x . . . x IPqr on = [ai, Pi] (2.20) 

it follows for any convex function cp : E + IR that 

Pro08 With IPgi the marginal distribution of IPt for Ji E [ai, Pi], the assumed 
stochastic independence of the components of J implies that 

Hence the asserted inequality (2.21) follows immediately from Lemma 2.5 by 
induction to r ,  using the fact that the product measures IPE and IP, allow for 
iterated integration, as known from Fubini's theorem (see Halmos [l 1 11). 0 

Also in this case we may assign a moment problem, with P the set of all 
product measures on E = XL=lEi = XL=l [ai, Pi], stated as (P) 

and its dual semi-infinite program (D) 
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is obviously a convex function in ti. Therefore again, the constraints of (D) are 
satisfied if and only if they hold in the endpoints ai and Pi of all intervals Ei. 
Hence (D) is equivalent to 

which due to pi E [ai, Pi] is solvable again and hence so is its dual, the moment 
problem 

Since the only feasible solution of its constraints coincides with the two-point 
measures (2.19), the product measure (2.20) solving the moment problem (P) 
is independent of the particular convex function cp, again. 

For later use we just mention the following fact, which due to the above 
results is evident: 

COROLLARY 2.2 Let suppIP[ C z = Xl=l[ai, Pi] C IRT with p = IEt [El 
and assume the function cp : E - IR to be convex separable, i.e. cp(<) = 

r 

pi (&). Then, with the distributions IP, given in (2.19), it follows that 

We shall refer to (2.19, (2.21) and (2.24 as the E-M inequality. For the 
expected recourse we then get the E-M upper bound: 

THEOREM 2.5 Assume that the components of J are stochastically indepen- 
dent and that supp IPg c z = Xi'l [ai, Pi] with p = IE[ [El E Z. Given 
the Assumptions 2.1 and 2.2, with the E-M distribution dejned by (2.19) and 
(2.20) the expected recourse Q(x) = IEE [Q(x; T(t) ,  h(<))] is bounded above 
according to 

a x )  5 IErJ&(x; T ( d ,  h(d) l  - (2.25) 
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According to Lemma 2.6 and Cor. 2.2 we have the E-M inequality for multi- 
dimensional distributions either for random vectors with independent compo- 
nents or for convex integrands being separable. However this upper bound does 
not remain valid for arbitrary integrands and dependent components, in general, 
as shown by the following example: 

EXAMPLE 2.1 Let t be the discrete random vector in lR2 with the 

distribution of c: 
realizations: (0,O) (1,O) (0 , l )  (1 , l )  
probabilities: 0.1 0.2 0.1 0.6 

and the expectation ( = (0.8,0.7), yielding the 

mar~inal distributions o f  €1 and €9: 

realizations: 0 1 
probabilities lPh : 0.2 0.8 
probabilities lPt : 0.3 0.7 

being obviously stochastically dependent. Using these marginal distributions 
to compute the E-M distribution according to Th. 2.5, we get the 

E-M distribution o f  n: 

realizations: (0,O) (1,O) (0 , l )  (1 , l )  
probabilities: 0.06 0.24 0.14 0.56 

and the expectation i j  = (0.8,0.7). Then for any convex function p(., a )  such 
that 

cp(0,O) = p(1,O) = cp(0,l) = 0 and cp(1,l) = 1 

we get Et [p(()] = 0.6 and E, [p(q)] = 0.56. Hence, in this case, with the 
E-Mdistribution (2.20) as derived for the independent case, the E-M inequality 
(2.21) does not hold. 

To generalize the E-M inequality for random vectors with dependent com- 
ponents and supp IPE c S = XL=l [ai, Pi], and for arbitrary convex integrands, 
according to Frauendorfer [85 ]  we may proceed as follows: 

Assume first that for some t E S we have the random vector 5 with the 
one-point distribution IP< ({C I C = c)) = 1. Obviously the components of C 
are stochastically independent, and for %(ti) with the two-point distributions 
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holds 
IE,i(t) hi] = Ji = IEci [[i] 

Hence for the probability measure 

p,(~) = p,,(h) x p,(~a) X . x p,T(~T) on = Xl= l  [ai, Pi1 (2.28) 

defined on the vertices v" of 8, v = 1, - , 2T, we have the probabilities 

where I, = {i I v,Y = ai) and J, = {1, . - - , r )  \ I" (with n { - )  = 1). Thus 
i ~ 0  

we get immediately 

LEMMA 2.7 For any convex function cp : E - R, Jensen's inequality im- 
plies 

Hence, with the probability measure $ defined on the vertices v" of E by 

we get the generalized E-M inequality 

REMARK 2.3 Observe that for stochastically independent components of J, 
due to (2.30) we get for the generalized E-M distribution 

such that in this case $ coincides with the E-M distribution Po for the inde- 
pendent case as derived in (2.19) and (2.20). 0 
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Hence Theorem 2.5 may be generalized as follows: 

THEOREM 2.6 Assume that supp PE c = Xl='=l [ai, Pi] such that also 
= IEt [ ( I  E E . Under the Assumptions 2.1 and 2.2 and with the generalized 

E-M distribution $ as dejned in (2.30), according to (2.31) the expected 
recourse & ( x )  = IEt [Q(x;  T ( ( ) ,  h ( ( ) ) ]  is bounded above as 

For any A c ( 1 ,  . , r )  define h A ( ( )  := n & and denote the joint mo- 
kEA 

ments for all A c (1,. . , r )  as mA := ha(J)IPE(dJ)  (with mg = 1). h 
Then we have, for any vertex vv  of 8, that hA(vv)  = n a k  . 11 Pk,  

kEAnL kEAnJ, 
and from (2.27) and (2.28) follows 

such that (2.30) and (2.33) imply 

Hence the upper bound distribution $ of Lemma 2.7 preserves all joint moments 
of the original distribution P C ,  suggesting to consider, for P being the set of 
all probability measures on 8, the moment problem (P) 

SUP { J v ( t ) ~ d t )  I S_ ~ A ( c ) P ( ~ F )  = a n  v~ c { L .  + .  , T I } .  (2.35) 
PEP - 

For the dual of this problem we assign the variables yo to A = 0 (a0 = 1) 
and y~ to any nonempty subset A C ( 1 ,  . , r ) .  This yields the semi-infinite 
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program (D) 

Requiring the constraints of (D) to hold only at the vertices of E yields the 
modified problem (D) 

and its dual (P), the moment problem searching for a measure IP in P,,, 2, the 
set of probability distributions on the vertices of E, becomes 

Due to (2.34) the upper bound distribution $ of Lemma 2.7 is feasible for this 
moment problem (P). Furthermore, since the matrix of the system of linear 
constraints of (p), i.e. 

H := (hA(vv); v = 1 ,  a ,  2', A c ( 1 , .  . . , r ) ) ,  

is regular, as shown in Kall [137], the generalized E-M distribution $ is the 
unique solution of (P) and independent of p. Finally, according to linear pro- 
gramming duality and since p,,, = c ? we have 

On the other hand for any J E E, given the regularity of H, the linear system 

2' 

x h n ( v v k ( ~ )  = hn(0 ,  A c { l , - . . , r )  (2.37) 
v=l 

has the unique solution {qu(J) = I P , ( c ) ( ~ v ) ;  v = 1 , .  ,2') due to (2.33), 
being continuous in J .  Then for any IP feasible in ( P )  follows 



Multi-stage SLP Models 219 

Hence {&,; v = 1, . . ,2') is a probability distribution on the vertices of 
E which is feasible for the moment problem (P). Since (2.37) also includes 
2T - x vYqv(F) = F, by the convexity of q follows for the objective of (P) 

v= 1 

Therefore we have 

such that the generalized E-M distribution $ solves the moment problem (P), 
and as shown in Kall [137], it is the unique solution of (P). 

REMARK 2.4 In the above cases we could reduce particular moment prob- 
lems (P), as e.g. (2.35), stated on P, the set of all probability measures on 
some support S, to moment problems (p) on Pd, some sets ofprobability mea- 
sures withjnite discrete supports Ed c S, such that a solution of (p) was 
simultaneously a solution of (P). 

This observation is not surprising in view of a very general result, mentioned 
in Kemperman [I601 and assigned to Richter [244] and Rogosinski [257], 
stated as follows: 

"Let fl, . f N  be integrable functions on the probability space (R, 8, P). 
Then there exists aprobability measure p withjnite support in R such that 

Even card (supp p) < N + 1 may be achieved." 

Hence we can take advantage of the theory of semi-injnite programming. 
With 

S, an arbitrary (usually injnite) index set, and 
a : S + IRn, b : S - IR, c E IRn arbitrary 

the problem 
v(P) := inf{cTy 1 aT(s)y 2 b(s) Vs E S) 

is called a Iprimal) semi-injnite program. Its dual program requires, for some 
si E S, i = 1, . . , q > 1, to determine a positivejnite discrete measure p with 
p(si) = Xi as a solution of the generalized moment problem 
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Whereas weak duality, i.e. v(D) I: v(P),  is evident, a detailed discussion of 
statements on (strong) duality as well as on existence of solutions for these two 
problems under various regularity assumptions may be found in textbooks like 
Glasshoff-Gustafson [I061 and Goberna-Ldpez [I081 (or in reviews as e.g. in 
Kall[138]). 

Moment problems have been considered in detail in probability theory (see 
e.g. Krein-Nudel'man [I 731) and in other areas of applied mathematics (like 
e.g. Karlin-Studden [156]), and a profound geometric approach waspresented 
in Kemperman [I 601. 

In connection with stochasticprograms with recourse momentproblems were 
investigated tojnd upper bounds for the expected recourse, also under assump- 
tions on the set E containing supp I P g  and moment conditions being diferent 
from those mentioned above. 

For instance, for a convex function cp, E being a (bounded) convexpolyhe- 
dron, and the feasible set ofprobability measures IP given by the moment condi- 

tion cp(J)IP(dJ) = (= IEg [J]) ,  the momentproblem sup cp(J)IP(dJ) 1 IPEIP h 
turns out to be the linear program to determine an optimal discrete measure on 
the vertices of Z where, in contrast to the above E-M measures, the solution 
depends on cp in general (see e.g. Dupai.ovd [62, 631). 

Furthermore, for a lower semi-continuous proper convex function cp and E 
being an arbitrary closed convex set, and again with 

the momentproblem sup cp(J)IP (dJ), considered by Birge- Wets [25], am- 
P E P  h 

aunts to determine ajnite discrete probability measure IP on ext E and a$nite 
discrete nonnegative measure v on ext rc E (with rc E the recession cone of E, 
see Rockafellar [249]), which for injnite sets ext Z and ext rc E appears to be 
a dzjicult task, whereas it seems to become somewhat easier if E is assumed 
to be a convex polyhedral set as discussed e.g. in Edirisinghe-Ziemba [69], 
Gassmann-Ziemba [102], Huang-Ziemba-Ben-Tal [l24]). Also in these cases, 
the solutions of the momentproblems, i.e. the optimal measures, depend on cp, in 
general. For the special situation where cp is convex and E is a regular simplex, 
i. e. 

mentioned in Birge-Wets [24] and later investigated and used extensively by 
Frauendorfer [86], the moment problem under the abovejrst order moment 
conditions has the unique solution of a regular system of linear equations, 
independent of cp again. 
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Finally, for E = IRT with / ( ~ ~ ( d t )  = p and I l l ~ 1 1 ~ l P ~ ( d ( )  = p, 
w 

(with 1 1  - 1 1  the Euclidean norm) moment problems with the nonlinear moment 
conditions 

have been discussed, jrst for simplicia1 recourse functions cp by Dulb [61], 
and then for more general nonlinear recourse functions in Kall[139]. In these 
cases, the solutions of the moment problems depend on cp, in general. Under 
appropriate assumptions on the recourse functions these momentproblems turn 
out to be nonsmooth optimization problems, solvable with bundle-trust methods 
as described in Schramm-Zowe [266], for instance. 

We have sketched possibilities to derive upper bounds for the expected re- 
course using results from the theory on semi-injnite programming and moment 
problems. Similarly, the theory on partial orderings of spaces ofprobability 
measures, as described in Stoyan [277] and Muller-Stoyan 12081, could be 
used. Attempts in this direction may be found e.g. in Frauendorfer [86] and in 
Kall-Stoyan [I51 1. 0 

Assuming that, for the given random vector (, we have supp lPt c 3 = 
X;=,[ai, pi], due to Jensen and Edrnundson-Madansky there follow for any 
convex finction cp and f = IEt [(I the bounds 

where q has the discrete distribution $ on the vertices of E described in Lemma 
2.7. Hence these bounds result from finitely many arithmetic operations pro- 

vided the joint moments p ~  := h ~ ( ( ) l P t  ( d ( )  = Eg [hA (()] are known I 
for all A c (1, . , r ) .  The following observation is the basis of a method 
of discrete approximations (of the distribution) to solve complete recourse 
problems, as to be discussed later. Assume that we have a disjoint partition 
X = {Ek; k = 1, a ,  K) of 3, where the Zk # 0 are half-open or closed 

K 

intervals, the cells, such that Zk n Et = 0 for k # P and U Ek = 3. Then 
k=l 

there follows 
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L E M M A  2.8 Under the above assumptions holds, with r k  = PC (zk), for the 
lower bounds of EF [cp(J)] 

whereas for the upper bounds we get the inequalities 

where Qk is the E-M distribution on Zk yielding p i  := Et [hA(<) I [ E sk] 
f o r a l l h c  { l , . . . , r } a n d k =  l , . . . , K ,  andQistheE-MdistributiononE 
as described in Lemma 2.7. 

Prooj For any Pt-integrable function $ : Z --+ IRp, p E IN, we have the 
equality 

K 

& d E t  W(F) I F E %I = E t  [$(F)I . (2.41) 
k=l 

K 

Hence, with $ the identity, we have x n k E t  [( I E E Ek] = i. Then, 
k=l 

the convexity of cp implies the first inequality of (2.39), whereas the second 
one follows from the fact that Jensen's inequality holds true for conditional 
expectations, as well (see Pfanzagl [22 11). 

The first equation in (2.40) follows from (2.41) with $ = cp. The follow- 
ing inequality holds true due to the fact, that the E-M inequality is valid for 
conditional expectations, as well. For the probability measure Qk holds for all 
A c {l , . . . , r}  
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such that with ?1, = hA due to (2.41) 

K 

Hence, the probability measure 1 x k Q k  is feasible for the moment problem 
k=l 

(2.35) which is solved by Q, thus implying the last inequality of (2.40). 0 

Hence, with any arbitrary convex function cp : E - IR on the interval 
S c IRr, for any probability distribution IPE on E and for each choice of a 
partition X = {Ek; k = 1, . . , K) of E, we have bounds on IEg [ c p ( t ) ]  by 

- a discrete random vector 7 with distribution IP,, yielding 

the Jensen lower bound due to (2.39), and 

- a discrete random vector q with distribution Q,, yielding 

the (generalized) E-M upper bound according to (2.40) (with the measure 
K - - 

Q, = nxQr in the above notation). 
k=l 

Let a further partition y = {TI; 1 = 1,. . , L) of E be a refinement of X ,  i.e. 
each cell of X is the union of one or several cells of y, then as an immediate 
consequence of Lemma 2.8 follows 

COROLLARY 2.3 Under the above assumptions, the partition y of S being a 
rejnement of the partition X  implies 

and 

and hence an increasing lower and a decreasing upper bound. 
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Pro08 Since Y is a refinement of X ,  for y # X there is at least one cell Zk 
of X being partitioned into some cells Tikl, . . , Tiksk of Y, such that sk > 1 

Sk 

and U TI, ,  = Ex.  Observing that with pik, = Pc(Tlkv) holds 
v= 1 

SL. 

S k 

due to pikv = lik the convexity of ip implies 
u= 1 

Therefore, this increases in (2.39) the k-th term 

In a similar way, the monotone decreasing of the upper bound may be shown, 
following the arguments in the proof of Lemma 2.8. 0 

Hence, refining the partitions of E successively improves the approximation 
of IEt [cp(c)], by the Jensen bound from below and by the E-M bound from 
above. Defining in some partition X = {"ck; k = 1, . - . , K) of "c the diameter 
of any cell Zk E X as 

and then introducing the grid width of this partition X as 

grid X := max diam "ck , 
k=1;-,K 

we may prove convergence of the above bounds to IEg [cp(()] under appropriate 
assumptions (see Kall[133]). 

LEMMA 2.9 Let supp IPt C "c = X:='=l[ai, Pi] and cp : 3 - IR be continu- 
ous. Assume a sequence { X u }  ofsuccessively rejnedpartitions of 5 to be given 
such that lim grid Xu = 0. Then, for {Pqx , )  and {Qqx, )  the corresponding 

V"OO 

sequences of Jensen distributions and E-M distributions, respectively, follows 

a m  l cp(E)IPvXv (4) = lim l v ( E ) Q ~ , ~ ~  (4) = p ( E P t ( 4 )  
V'OO - - V'OO - - - 
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Proo$ Due to our assumptions cp is uniformly continuous on E implying 

According to the assumptions on { X " )  there exists some v(6,) such that 
grid X" < 6, Vv > ~ ( 6 , )  . Hence, for v > ~ ( 6 , )  and any cell EL E X" holds 
Icp(J) - ~ ( q )  1 < E VJ, q E EL. The Jensen distribution IF',,, assigns the prob- 

ability ./ri = IF'( (EL) = 1, IP<(dJ) to the realization = E6 [J I J E EL] . 
-k 

Hence we get 

such that cp(O~,,. (dJ) - 4 J ) P d d J )  . 
The convergence of the E-M bound may be shown similarly. 0 

This result gives rise to introduce the following convergence concepts: 

DEFINITION 2.1 A sequence of probability measures IF': on BT (the Bore1 
a-algebra on IRT) is said to converge weakly to the measure IF'( i f for the 
corresponding distribution functions F, and F ,  respectively, holds 

lim F, (J )  = F ( J )  for every continuitypoint J of F. 
" 4 0 0  

DEFINITION 2.2 Let {$; $,, v E IN) be a set of functions on IRT. The 
sequence {$,, v E IN) is said to epi-converge to $ iffor any J E IRT 

- there exists a sequence {qv - J )  such that lim sup $v (qv) 5 $ (J),  
" 4 0 0  

- for all sequences {qv - J )  holds $(J)  5 lim inf $v (qv). 
v+w 

Lemma 2.9 ensures that the sequences of measures {IF',,, ) and 
converge weakly to IF'(, as shown in Billingsley [16, 171. Under the Assump- 
tions 2.1 and 2.2, for the recourse function Q(x;  T ( J ) ,  h(J)) (with J E E, the 
above interval) and for any sequence of probability measures IF': on E con- 
verging weakly to IF'(, it follows that the approximating expected recourse 
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functions Q" (x) = Q(x; T (J), h(J))IPE(dJ) epi-converge to the true ex- L * 

pected recourse Q(x) = Q(x; T(J), h(J))IPg(dJ), as has been shown e.g. I, 
in Wets [303]; related investigations are found in Robinson-Wets [247] and 
Kall[136]. The epi-convergence of the QV has the following desirable conse- 
quence: 

THEOREM 2.7 Assume that {QV) epi-converges to & . Then, with some con- 
vexpolyhedral set X c IRn, for the two-stage SLP with recourse we have 

PV E arg min{cTx + QV(x)) Vv E IN, 
X 

then for any accumulation point P of {PV) it follows that 

and for any subsequence (2"") c (2") with lim PV" = P we have 
K 4 o o  

c T i  + &(P) = lim {cT?"" + Q(PV")). 
&--too 

A proof of this statement may be found for instance in Wets [303] (see also 
Kall [135]). Due to this result we may design approximation schemes for the 
solution of two-stage SLP's with recourse, as will be discussed later. 

2.2 Simple recourse 
For the special complete recourse case with T(J) r T, q(J) = (q+T, q-T)T, 

h(J) - J, and W = (I ,  -I), we get the simple recourse function 

Q(x,J) := min q+Ty+ + q-TY- 
Iy+ - Iy- = J - TX 1 (2.42) 

Y+, y- 2 0.  

Given that J is a random vector in IRm2 such that E g  [J] exists, we have the 
expected simple recourse 

yielding the two-stage SLP with simple recourse 
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which was first analyzed in detail by Wets [302]. 
Obviously, problem (2.42) is always feasible; and it is solvable iff its dual 

program 
max(t - TX)*U 

(2.45) 
u > -4- 

is feasible, which in turn is true iff q+ + q- > 0. Considering (2.45), we get 
immediately the optimal recourse value as 

where, for p E IR, 

p i f p > 0  -p i f p < 0  
[PI+ = { 0 else and [PI- = { 0 else. 

This optimal recourse value Q(x, 5) is achieved in (2.42) by choosing 

Introducing x := Tx, we get from (2.47) the optimal value of (2.42) as 

with 

Hence the recourse function Q(x, 5) of (2.42) may be rewritten as a separable 
function in (xi, ti), implying also the expected recourse Q(x) to be equivalent 
to a separable function in xi (see Wets [302]) such that (2.44) may be rewritten 
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with 

In this case, as indicated by the operator IEt, to compute the expected simple 
recourse we may restrict ourselves to the marginal distributions of the single 
components ti instead of the joint distribution of t = (&, . . . , tm,)T. From 
(2.49) obviously follows that Qi(*, ti) is a convex function in xi (and hence in 
x) for any fixed value of ti. Hence, the expected recourse Gi(.) is convex in Xi 
as well. 

If PC happens to be a finite discrete distribution with the marginal distribution 
of any component given by pij = IPt ( { J  I ti = tij)), j = 1, . . , ki, then 
(2.50) is equivalent to the linear program 

which due to its special data structure can easily be solved. 
If, on the other hand, PE or at least some of its marginal distributions IF'[, are 

of the continuous type, the corresponding expected recourse &(.) and hence 
the program (2.50) may be expected to be nonlinear. Nevertheless, the simple 
recourse functions Qi (Xi, ti) and their expectations Qi (xi) have some special 
properties, advantageous in solution procedures and not shared by complete re- 
course functions in general. To discuss these particular properties we introduce 
simple recourse type functions (referred to as SRT functions) and discuss some 
of their properties advantageous for their approximation. 

DEFINITION 2.3 For a real variable z, a random variable c with distribution 
PF and real constants a, P, y with a + P 1 0, the function cp(., a )  given by 

is called a simple recourse type function (see Fig. 2.1). 
Then, IEt [i] provided to exist, 
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Figure 2.1. SRT function. 

is the expected SRTfunction (ESRTfunction). 

Obviously, the functions Qi(Xi, ti) and Gi(xi) considered above are SRT 
and expected SRT functions, respectively; however, SRT functions may also 
appear in models different from (2.42)-(2.44), as we shall se later. 

From Definition 2.3 follows immediately 

L E M M A  2.10 Let cp(., -) be a SRT function and a(.) the corresponding ex- 
pected SRTfunction. Then 

rn cp(z, a )  is convex in E for anyfied z E IR.; 

cp(., t )  is convex in z for anyfied 5 E R; 

rn a(.)  is convex in z. 

Since (2.42)-(2.44) describes a particular complete fixed recourse problem, 
we know already from Section 2.1 that, given t is integrable and q+ + q- 2 0 
(compare Assumption 2.2), the functions ~i (xi, ti) and Qi (xi) have these 
properties. 

Assuming p := IEl [i] to exist, Jensen's inequality for SRT functions obvi- 
ously holds: 

Furthermore, from the integrability of i follows immediately (with Fc being 

the distribution function of J) 
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LEMMA 2.11 For 

holds: 

and analogously 

In particular follows: 

Hence we have, as mentioned above, 

and, furthermore (see Fig. 2.2), 

Consider now an interval I  = {J I a < J I b) 5 suppIPt-implying 
at least one of the bounds a,  b  to be finite-with IPe ( I )  > 0. Then Jensen's 
inequality holds as well for the corresponding conditional expectations. 

LEMMA 2.12 WithpII  = IEi[i1 t E I ]  and 

@ 11 ( z )  = IEi [ c p ( t ,  i) I J E I ] ,  for all z E R holds 

As shown in Kall-Stoyan [15 11, in analogy to Lemma 2.1 1 follows also 

LEMMA 2.13 For anyJinite a and/or b, for I = (a ,  b] holds 
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Figure 2.2. SRT and expected SRT function (supp lPe bounded). 

Assume now that J := supp IPi = [a, b] is a finite interval. Then, by Lemma 
2.11 we have 

@(z) = cp(z,p) forz 5 a o r z  2 b, (2.53) 

and for z E (a, b) Jensen's inequality yields cp(z, p) 5 @(z). To get an upper 
bound for z E (a, b) and hence an estimate for @(z) we may use the E-M 
inequality 

P - a  @(z) 5 b-p cp(z, a) + - ~ ( 2 ,  b) 
b - a  b - a  

to get, for z E (a, b), 

If cp(z, a )  happens to be linear on J ,  the lower and upper bounds of these 
inequalities coincide such that @(z) = cp(z, p) Qz. If, on the other hand, cp(z, a )  

is nonlinear (convex) on J ,  the approximation of @(2) for any 2 E (a, b) due 
to (2.54) can be improved as follows: Partition J = [a, b] at a1 := 2 into the 
two intervals Il := [ao, all and 4 := (al, a2], where ao := a and a2 := b. 
Observing that, with pi := Pi (Ii), i = 1 ,2  we have pa p l1, + pa . p = p 
as well as, for any IPi -integrable function + ( a ) ,  the relation 

Lemma 2.12 implies 

LEMMA 2.14 Due to the convexity of cp(z, -), we have 



232 STOCHASTIC LINEAR PROGRAMMING 

a) for arbitrary z E (ao, a2) 

Pro08 The above relations are consequences of previously mentioned facts: 

a) The two equations reflect (2.55), the first inequality follows from the con- 
vexity of cp(z, .), and the second inequality applies Lemma 2.12. 

b) The first two equations apply Lemma 2.13, the last equation uses (2.55) 
again. 0 

Hence, instead of the upper bound in (2.54), we get the exact value @(2) = 
@(al) = plcp(a1, p 11,) + pacp(a1, p as well as the increased lower bound 
cp*(z, P pl, p !r2) of @(z) (see Fig. 2.3) as 

If, on the other hand, the partition J = [ao, all U (al, a2] = Il U I2 is given, 
we know from Lemma 2.13 and 2.14 together with (2.55) that 

hence @(z) > plcp(z, p 11,)+p2cp(z, p may occur only ifz E int IIUint 12,  
which implies that @ 11, (z) > cp(z, p 11,,) for z E int I, with v = 1 or v = 2.  
Then we may derive the following rather rough error estimate: 

LEMMA 2.15 For z E int I,,, v = 1,2, we have the parameter-fee error 
estimate A, (z) satisfiing 
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Figure 2.3. Expected SRT function: Increasing lower bounds. 

Pro08 Using the relations cp(z, p IIu) = a [ p  11, - z]+ + P[p 11, - z]- - y from 
Definition 2.3 as well as 

due to Lemma 2.14 and the convexity of @ lIv according to Lemma 2.10, we 
get for z = + (1 - X)a, with X E (0 , l )  
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Assuming 

au - P lru and 1 - X 5 P1rv - au-1 
z 9 q r v  - A 1  

a,  - a,-1 a,  - a,-I 

it follows that 

a,-1 + a,  the maximum of the last term being assumed for p II,, = 
2 

such that 

For z 2 ,u lrv the result follows analogously. 0 

Taking the probabilities p, associated with the partition intervals I ,  into 
account yields an improved global error estimate: 

LEMMA 2.16 Given the interval partition {I,; v = 1 ,2 )  of J = supp Pi. 
and z E I,, then the global error estimate A ( z )  satisjies 

for z E int I,, whereas for z E {ao, a l ,  a2) we have A ( z )  = 0. 

Prooj For z E I ,  Lemma 2.13 yields @ pv ( z )  - ~ ( z ,  p = 0 for v # K;  

hence from Lemmas 2.14 and 2.15 follows for z E int I ,  
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and for z E {ao, a l ,  az)  Lemma 2.14 b) yields A(z) = 0. 0 

The simple recourse function (2.42) was extended by Klein Haneveld [I671 
to the multiple simple recourse function. Here, instead of (2.49), for any single 
recourse constraint the following value is to be determined: 

where 
Uo = 0 < U l  < < UK-1 

lo = 0 < l1 < ... < 1K-1, 

with > -9: and gf; + q; > 0 (to ensure convexity and prevent from 
linearity of this modified recourse function). 

According to these assumptions, for any value of r := J - z it is obvious 
to specify a feasible solution of (2.56), namely for any 6 E (1, . . , K )  (with 
~ ~ = 0 0 a n d 1 ~ = 0 0 )  

Furthermore, this feasible solution is easily seen to be optimal along the fol- 
lowing arguments: 

- Due to the increasing marginal costs (for surplus as well as for shortage), 
assuming r E [u,-~, uIE) and y; = 0 Vk, it is certainly meaningful to 
exhaust the available capacities for the variables yl, , y,-1 first. The 
same argument holds true if r E (-l,, -1,-1] and y; = 0 Vk. 
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- Assuming a feasible solution of (2.56) with some y i  as well as some y- Ic? simultaneously being greater than some 6 > 0 ,  allows to reduce these van- 
ables to % = yyk+, - 6 and ŷ; = y- - 6, yielding a new feasible solution 

2 k2 
with the objective changed by (-6) (9; + qL2) with ( g i  + qX;) 2 0  due 
to the assumptions. Therefore, the modified feasible solution is at least as 
good as the original one as far as minimization of the objective is concerned. 

Hence, for r = J - z E [ u ~ - ~ ,  u K )  with K E ( 1 ,  - .  , K )  we get 

K - 2  

+ + 
C ( 9 :  - 9:+1)uk + q L " K - l  - 91 uo + 9 ,  (7 - u K - 1 )  

k=l 
K - 1  

C($ - q : + l ) u k + q z r  with uo = 0 ,  = 0 .  
k=O 

+ a 0 : = q 1  , a k : = q ~ + , - q r c + , k = l  , . . a ,  K - 1 ,  

it follows immediately that 

= Ca,-l for k  = I ,  ... , K 

such that 

Analogously, for r = J - z E ( - I K ,  - l K - l ]  with K E ( 1 ,  - - . , K )  we get 
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with Po := q; , Pk := qE+l - q;, k = 1, a ,  K - 1, such that in general 

Due to the assumptions on (2.56), we have a0 + Po 1 0 as well as 

Hence, whereas the SRT function 

according to Definition 2.3 represents the optimal objective value with a simple 
recourse constraint and implies for some application constant marginal costs 
for shortage and surplus, respectively, we now have the objective's optimal 
value for a so-called multiple simple recourse constraint, allowing to model 
increasing marginal costs for shortage and surplus, respectively, which may be 
more appropriate for particular real life problems. 

To study properties of this model in more detail it is meaningful to introduce 
multiple simple recourse type functions (referred to as MSRT functions) as 
follows. 

DEFINITION 2.4 For real constants {ak ,  Pk, uk, lk ;  k = 0,  . - , K - 1 )  and 
y, such that a0 + Po 1 0 and 

the function $ ( a ,  .) given by 

is called a multiple simple recourse type function (see Fig. 2.4). 
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is the expected MSRTfunction. 

REMARK 2.5 In this dejnition the number of "shortage pieces " and of "sur- 
plus pieces" is assumed to coincide (with K). Obviously this is no restriction. 
If; for instance, we had for the number L of "surplus pieces " that L < K, with 
the trivial modification 

lk = lk-l + 1, Pk = 0 for k = L, . . . , K - 1 

we would have that 

-13 -12 -11 U2 

Figure 2.4. MSRT function. 
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For the expected MSRT function we have 

using the substitutions q = E - uk and C = (  + lk (and = q and 5 = C in the 
last expression). 

The last one of the above relations for Q ( z )  + y, i.e. 

indicates a formal similarity with an expected SRT function using a positive 
linear combination of the distribution functions Fi ( E  + u k )  and Ft (5  - l k ) ,  
I c=O, . . . ,K-1 ,  

Due to Definition 2.4, H ( . )  is monotonically increasing, right-continuous, and 
satisfies 

K-1 
H(F) 2 0 Vc,  lim H(F) = 0,  and lim H ( c )  = (ar + Pk)  > 0 ,  

+-00 E-SW k=O 
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K-1 

such that standardizing H (.), i.e. dividing by W := (ak  + ,Oh), yields a 
k=O 

new distribution function as the mixture 

Assuming now that 9( .)  may be represented as an expected SRT function 
using the distribution function G ( a )  we get, with constants A, B and C to be 
determined later, using the trivial relations p+ = p + p- and p- = -p + p+, 
and writing J instead of Jrrn for simplicity, 
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Hence we have 

K-1 
To get coincidence with equation (2.57) we ought to have, with W, = C a k  

A + B  -- 
W 

- 1 and 

To assure that the left-hand side of the last equation is constant (in z), we have 
the condition 

A- Wfl-B.W,=O, 
which together with A  + B  = W = W, + Wp implies that 

A= W, and B =  Wp, 

such that 
K-1 K-l 

Hence, for the multiple simple recourse problem (with one recourse con- 
straint) 

we have derived in an elementary way the following result, deduced first in 
Van der Vlerk [298], based on a statement proved in Klein Haneveld-Stougie- 
Van der Vlerk [168]: 
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THEOREM 2.8 The multiple simple recourseproblem (2.59) with the expected 
MSRT function 

is equivalent to the simple recourse problem with the expected SRT function 

using the distribution function 

and the constant 

As shown in Van der Vlerk [298], if Fi represents a finite discrete distribution 

{(E,,p,); v =  l , . . . , N )  with p, >OQv, xp, = 1, (2.64) 

then G corresponds to a finite discrete distribution with at most N (2K - 1) 
painvise different realizations (with positive probabilities). This distribution, 
disregarding possible coincidences of some of its realizations, according to 
(2.62) and (2.64) is given by the following set of realizations and their corre- 
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sponding probabilities 

K-1 

with y = x ( a k  ~ k )  . 
k=O 

2.3 Some characteristic values for two-stage SLP's 
Due to (2.3) and (2.4), the optimal value RS of the general (two-stage) 

stochastic program with recourse is given as 

where 

with Y = L2(52, IRn2). As in (2.1), we assume that the random parameters in 
these problems are defined as linear affine mappings on E = IRr by 

r 

T ( t )  = T + x ~j t j  ; T,  Tj E IRm2 deterministic, 
j = l  

r 

W ( t )  = W + x wj tj  ; W, Wj  E IRm2"n2 deterministic, 
j=1 
r 

h ( t )  = h + x hj t j  ; h, hj E Rm2 deterministic, 
j= l  
r 

q ( t )  = q + x qj t j  ; q,  q j  E Rn2 deterministic. 
j=1 
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Following one common approach to deal with stochastic programs, the ran- 
dom vector [ would be replaced by its expectation t = Eg [[], yielding instead 
of RS the optimal value E V  of the expected value problem, 

Except for the first moment f, this model does not take at all into account 
the distribution of [. Hence the solution will always be the same, no matter 
of the distribution being discrete or continuous, skew or symmetric, flat or 
concentrated, as long as the expectation remains the same. In other words, the 
randomness of [ does not play an essential role in this model. 

So far, in the recourse model (2.66) the decision on the first stage variable x 
had to be taken before the realization of [ was known. Assuming in contrast the 
wait-and-see situation, where we have to decide on x only when the outcome 
of [ is known, leads to the family of LP's for [ E Z 

for which the so-called wait-and-see value WS is associated with (2.66): 

Finally, with the first stage solution fixed as any optimal first stage solution 
P of the E V  problem (2.67), we may ask for the objective's value of (2.66), 
the expected result of the E V  solution 

Observe that, in contrast to the values R S ,  E V ,  and WS, the value E E V  
may not be uniquely determined by (2.69): If the expected value problem (2.67) 
happens to have two different solutions 2 # 53, this may lead to E E V ( P )  # 
E E V ( 2 ) .  

For the above values assigned in various ways to the recourse model (2.66) 
several relations are known which, essentially, can be traced back to Madan- 
sky [184]. 



Multi-stage SLP Models 245 

PROPOSITION 2.2 For an arbitrary recourse problem (2.66) and the associ- 
atedproblems (2.68) and (2.69) the following inequalities hold: 

Furthermore, with the recourse function Q(x; T ( 0 ,  h(J)) ,  allowing only for 
the matrix T( . )  and the right-hand-side h(.) to contain random data, it follows 
that 

E V S R S I E E V .  (2.71) 

Pro08 Let x* be an optimal first stage solution of (2.66). Then obviously the 
inequality 

r(E) I cTx* + Q(x*; T(E), h ( 0 ,  WE), q(E)) % E 

holds, and therefore 

ws = IEt [r(OI I {cTx* + Et [Q(x*; T ( 0 ,  h ( 8 ,  W ( 0 ,  q(E))I) = RS . 
The second inequality in (2.70) is obvious. 

To show the second part, for any fixed 5 the recourse function 

is convex in [. In particular, for the optimal first stage solution x* of (2.66) 
follows with Jensen's inequality and the definition (2.67) of E V ,  that 

which implies (2.71). 0 

PROPOSITION 2.3 Given the recourse function Q(x; h ( J ) )  (i.e. only the right- 
hand-side h(.) is random) it follows that 

E V I  WS. 

Pro08 For the wait-and-see situation we have 

which is obviously convex in E .  Then by Jensen's inequality follows 
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For more general recourse functions the inequality of Prop. 2.3 cannot be 
expected to hold true; for a counterexample see Birge-Louveaux [23]. 

Furthermore, in Avriel-Williams [8] the expected value of perfect informa- 
tion EVPI  was introduced as 

EVPI  := RS - WS (2.72) 

and may be understood in applications as the maximal amount a decision maker 
would be willing to pay for the exact information on future outcomes of the 
random vector J.  Obviously due to Prop. 2.2 we have EVPI  2 0. However, 
to compute this value exactly would require by (2.72) to solve the original 
recourse problem (2.66) as well as the wait-and-see problem (2.68), both of 
which may turn out to be hard tasks. Hence the question of easier computable 
and still sufficiently tight bounds on the EVPI  was widely discussed. As may 
be expected, the results on bounding the expected recourse function mentioned 
earlier are used for this purpose as well as approaches especially designed for 
bounding the EVPI  as presented e.g. in Huang-Vertinsky-Ziemba [123] and 
some of the references therein. 

Finally, the value of the stochastic solution was introduced in Birge [19] as 
the quantity 

VSS := EEV - R S ,  (2.73) 

which in applications may be given the interpretation of the expected loss for 
neglecting stochasticity in determining the first stage decision, as mentioned 
with the EV solution of (2.67). Obviously it measures the extra cost for using, 
instead of the "true" first stage solution for the recourse problem (2.66), the first 
stage solution of the expected value problem (2.67). Also in this case Prop. 2.2 
implies VSS > 0. 

If in the problem at hand there is no randomness around, in other words if 
with some fixed i E IR' we have IPc ( J  = i) = 1, then obviously follows 
EVPI  = VSS = 0. In turn, if one of these characteristic values is strictly 
positive, it is often considered as a "measure of the degree of stochasticity" of 
the recourse problem. However, one must be careful with this interpretation; it 
should be observed that examples can be given for which either EVPI  = 0 
and VSS > 0 or, on the other side, EVPI  > 0 and VSS = 0 (see Birge- 
Louveaux [23]). Hence, the impact of stochasticity to the EVPI  and the 
VSS may be rather different. Although these values are not comparable in 
general, there are at least some joint bounds: 
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PROPOSITION 2.4 With the recourse function Q ( x ;  T ( J ) ,  h ( J ) ) ,  allowingonly 
for the matrix T ( - )  and the right-hand-side h( .)  to contain random data, the 
value of the stochastic solution has the upper bound 

With the recourse function Q ( x ;  h ( J ) ) ,  i.e. with only the right-hand-side h( .)  
being random, the expected value ofperfect information is bounded above as 

EVPI  < EEV - E V .  (2.75) 

Proo? Due to (2.7 1) in Prop. 2.2, we have RS 2 EV and therefore 

V S S = E E V - R S <  E E V - E V .  

From Prop. 2.3 we know that with the recourse function Q ( x ;  h ( J ) )  holds 
EV < WS. Hence, together with Prop. 2.2 we get 

The above bounds are due to Avriel-Williams [8] for the EVPI  and Birge 
[19] for the VSS. 

In the literature, you may occasionally find statements claiming that the 
bounds given in (2.74) and (2.75) hold true without the restrictions made in 
Prop. 2.4. There are obvious reasons to doubt those claims. Concerning VSS 
the above argument for (2.71) using Jensen's inequality fails as soon as we loose 
the convexity of the recourse function in ( for any fixed 5. For the EVPI  we 
present again the following example (as mentioned in Kall [134]): 

EXAMPLE 2.2 With X = IR+ let c = 2, W = (1,  - I ) ,  q = (1,  o ) ~  and 

Then we have 5? = 2, h = 7 and 

7  
EV = min{2x + yl ( 22 + yl - y2 = 7;  x  2 0,  y 2 0 )  = 7 with 6 = - 

2 

With 
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and 

follows 
7  1 3  

E E V  = 2 - + - . - = 7.75 
2 2 2  

and hence E E V  - E V  = 0.75. On the other hand we get RS as optimal 
value from 

yielding RS = 7  with x* = 2, y?) = 6. To get the W S  we compute 

and 

yielding W S  = 0.5 .2 + 0 . 5 . 8  = 5  such that 

E V P I =  RS- W S = 2 >  E E V - E V = 0 . 7 5  

3. The multi-stage SLP 
According to (1.1) on page 194 the general MSLP may be stated as 

where on a given probability space (a, 6 ,  P) random vectors Jt : - IRrt 
are defined, with [ = ([T, . . , J;)~ inducing the probability distribution IPt 
on IR'~+"'+~T, and Ct = ([Z, a - , J ? ) ~  the state variable at stage t. 
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REMARK 3.1 Not to overload the notation, for the remainder of this section, 
instead of J = (Jz, . . , J$)T and Ct = (Jz, a + - , J F ) ~ ,  we shall write J = 
((2, - . - , JT) and [t = (J2, . + . , Jt), understanding that J = (52, , JT) E 
'JRT~+"'+TT and [t = ((52, - . , et) E IRT2+ ".+Tt, as before. 

Furthermore, the (random) decisions xt ( a )  are required to be Ft-measurable, 
with Ft = c 9. Since (31, . ,J+) is a filtration, this implies the 
nonanticipativity of the feasible policies {xl ( a ) ,  - . , xT(.)). Finally, Assump- 
tion 1 .l ,  page 194, prescribes the square-integrability of Jt (.) w.r.t. P for 
t = 1, . a , T, and At7 ( a ) ,  bt (.), ct (.) are assumed to be linear affine in [t. 

In addition, we have required the square-integrability of the decisions xt (.). 
Obviously, for J having a non-discrete distribution, to solve problem (3.1) 

means to determine decision functions xt(.) (instead of decision variables) 
satisfying infinitely many constraints, which appears to be a very hard task 
to achieve, in general. The problem becomes more tractable for the case of 
J having a finite discrete distribution, a situation found or assumed in most 
applications of this model. 

3.1 MSLP with finite discrete distributions 
T 

Let J : R - IRR, R = rt, be a random vector with a finite dis- 
t=2 

Crete distribution, having the realizations p, p, - . , cs with the probabilities 
ql,q2, . . - , qs, respectively. 

Anyone of these realizations is also denoted as a scenario p = (@, . , <$) 
A 

with the probability IPE{( = JS) = qs, s E S := (1, - .  a ,  S). Then the time 
discrete stochastic process {[t; t = 2, . - , T) with discretely distributed state 
variables ct may be assigned to a scenario tree as follows: 

- The (deterministic) state of the system at stage 1 is assigned to node 1, the 
unique root of the tree. 

A 

- Among all scenarios J ', s = 1, . . , S,  there are a finite number k2 having 
painvise different realizations ci of the stage 2 state variables, denoted as 

?:(") = g("), n = 2, . . . , 1 + k2, and assigned to the nodes numbered as 
n = 2,. . . ,1 + k2 =: K2. Here p(n) refers to the first of the scenarios 

A fi s = 1, . . - , S,  passing through the particular state [i. Node 1 is con- 
nected by an arc to each of the k2 nodes in stage 2 due to the fact, that the 
corresponding states in stage 2 are realized by at least one scenario. 

- Having assigned, according to all scenarios, up and until stage t < T the 
nodes and arcs to all states and implied transitions between consecutive states 



250 STOCHASTIC LINEAR PROGRAMMING 

A A A A A 

(i.e. given a scenario t = ( t i ,  . . , e-l, ttA. . , t$l, implies a transition 
A A A A 

from state <i-l = (t;, - . , to <t = ( t i ,  . . . , t t )  at least once), we 
A A A A 

consider for each scenario J S  the state = ( t i , .  . . ,ti+,). Again, 
in stage t + 1 there is a finite number kt+l of different states denoted as 
-p(n) 
<t+l , n = Kt  + 1, - , K t  + kt+l =: Kt+l, and assigned to the nodes 
Kt + 1 , .  . . , K t  + =: Kt+l (with p(n) referring again to the first 
scenario passing through this particular state). Finally, we insert the arcs 
from stage t to stage t + 1 according to the implied transitions. 

With this scenario tree, representing graphically the possible developments of 
the stochastic process (52, . - . , ST} over time, we may combine probabilistic 
information to get a complete description of the process (see Fig. 3.1). 

To this end, we may identify the leaf nodes of the tree (the stage T nodes) 
A 

KT-1 + 1, . . . , KT with the scenarios J S, s = 1, . . , S, and assign to these 
nodes the probabilities qs of the respective scenario. Hence we have first the 
probabilities to reach the leaf nodes n = KT-1 + 1, - . a , KT as pn = qn-~T- l .  

For all other nodes, i.e. for n 5 KT-1, we then compute the probabilities 
p, to pass through these nodes: Given node n, by the above construction of 
the scenario tree we know the stage tn of this node as well as its corresponding 

A 

state c ~ ' ~ ) ;  then with S(n) = {s I <; = %(")} we have {p I s E S(n)}, the 
set of scenarios passing through this state, called the scenario bundle of node n, 
and we get pn, the total probability of this scenario bundle, as pn = x q,. 

s€S(n) 

After the above description of a scenario tree it seems to be meaningful to 
introduce the following collection of specific variables and sets for discussing 
various issues on scenario trees. These entities have shown to be useful when 
dealing with rather complex problems defined on scenario trees, like e.g. multi- 
stage SLP's with finite discrete distributions, as to be discussed next. There we 
shall make use of the following 

Notation for scenario trees: 

( N ,  A) : rooted tree with nodes N c IN (n = 1 the unique root), 
and A the set of arcs. 
The nodes n E N are assigned to stages t = 1, . , T,  
with n = 1 in stage t = 1, and with kt > 0 nodes for 

T 

t =2, . . - ,T ,andINI  = l + x k t  
t=2 

The arcs in A connect selected nodes of stage t and 
stage t + 1, t = 1, . . , T - 1, such that each node in 
some stage t < T has at least one immediate successor, 
and each node in some stage t > 1 has exactly one 
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Figure 3.1. Four-stage scenario tree representing a stochastic process. 

immediate predecessor. 
Any path nl, . . , nT, with nl = 1, t,, = t for t > 2, 
and (nt, nt+l) E A for t = 1, - . . , T - 1, corresponds 

A 

one-to-one to the scenario E S ,  s E S = (1, . , S), 
identified with the leaf node n~ . 
qs = IP,t{E = p), the probability of scenario p, and 
hence the probability to reach the leaf node identified 
with this scenario; 

the stage of node n E N; 
the smallest s E S such that scenario passes 
through the state 2 assigned to node n; 
A 

C n  := E(n), the state in stage tn uniquely assigned to n; 

the set of nodes in stage t with 1D(t)l = kt; 

parent node (immediate predecessor) of n E N, n > 2; 

set of nodes in the unique path from n E N through the 
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successive predecessors back to the root, ordered by 
stages, the history of n (including n); 

: S(n) = {S I = c(n)} ,  the index set identifying the 
scenario bundle of node n; 

: pn = x q,, the probability to pass node n; 
s€S(n) 

: the set of children (immediate successors) of node n; 

: the future of node n along scenario p : s 6 S(n), 
including node n, i.e. the nodes nt, = n, . . , n~ 
provided the path {nl , . . . , nt, , - - - , nT) corresponds to 
scenario p (hence G,(n) = 0 if s $ S(n)); 

Pm : qn-+rn = - Vm E G(n), the conditional probability to 
Pn 

reach node m given node n (provided that pn > 0). 

To keep the following problem formulations simple, we introduce 

ASSUMPTION 3.1 For any MSLP with ajnite discrete distribution of the sce- 
narios J holds 

q , = ~ ~ { J = ~ ) > o  V S E S .  (3- 2) 

By construction the following facts are obvious: 

- Through each node passes at least one scenario, i.e. S(n) # 8 Vn E N; 
- given any stage t, each scenario passes through exactly one node in stage t, 

i.e. U S(n) = SandS(n)  n S ( m )  = 0Vn,m E D(t )  : n # m .  
n€D(t) 

Hence, it follows in general that 

and due to Assumption 3.1 holds 
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For the general MSLP (3. I), the decisions xt (Ct )  in stage t are required to be 
Ft-measurable with Ft = o(Ct) c G. For having a finite discrete distribution, 

-1 -p (n )  a(Ct) is generated by the kt atoms 5, [Ctn 1, n = Kt-1 + 1, . . , Kt. Then 
xt (-) has to be constant on each of these atoms or equivalently, to each node n ,. 
we have to determine the decision vector xn := xtn ( C  n).  Observing that the ex- 

T - pected values 1 [ c T ( ~ ~ ) x ~ ( b ) ]  may now be written as pnctn (Cn)x,, 
n=Kt-lfl 

problem (3.1) for a discrete distribution reads as 

withpl = 1 and c: ( f l )  = cl, Atlt, ( f l )  = All, btl ( T I )  = bl being constant. 
With an obvious simplification of the notation problem (3.5) may be rewritten 
equivalently as 

As the dual LP of (3.6) we have 

REMARK 3.2 Ifinparticulal; Vn E N \ (1)  and A for each node m E IFl(n) : 
tm < tn - 1, we have that Atnt,(n) = Atntm(Cn) = 0, then with Wl := All 
and 

Tn := Atntn-l(n) and Wn := Atntn(n) Vn E N \ (1) 



254 STOCHASTIC LINEAR PROGRAMMING 

problem (3.6) reads as 

Hence we have the same problem structure as assumed when discussing the 
nested decomposition in section 2.7 of Chapter I ,  in particular the structure of 
problem (2.1 9) on page 39. 

Thegeneral MSLPproblem (3.1) can always be transformed to an equivalent 
problem where At, = 0 holds for r < t - 1, thus assuming the following form 

formally corresponding to (3.8), where now zt is an nl + . . . + nt-dimensional 
variable and Tt and Wt have mt  + nl + . . . + nt rows. For specz5ing the 
transformation which maps (3.1) into (3.9) we will employ double indices. The 
transformation is as follows. Let 

with zt,, being an n,-dimensional variable, r = 1, . . . , t, and with ztt corre- 
sponding to xt in (3.1). The matrices are dejned as follows. Let Wl = AIt1. 
For 1 < t < T we dejne 

and 

and for t = T let 
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Loosely speaking, the auxiliary variables (zt,1, . . . , zt , t -~)  serve for 'Iforward- 
ing " the solution to later stages. As an example let us consider an MSLP with 
T = 4 and let us drop in the notation the dependency on Ct. The original 
structure is 

which transforms into 

In the literature, multi-stage SLP 's are often presented just in the so-called 
staircase formulation (3.8). Although problems of this form, at thejirst glance, 
looksimpler than problems in the lower block triangular formulation like (3.6). 
this does not imply a computational advantage in general. Indeed, ifthe stair- 
case formulation results from the above transformation of (3.1) into (3.9), then 
the numbers of variables and of constraints are increased. 0 

3.2 MSLP with non-discrete distributions 
In Section 2.1 we have discussed two-stage SLP's with complete fixed re- 

course and with bounded distributions, i.e. with supp I P g  C Z = Xi=l [ai, Pi]. 
In particular, we considered the recourse function Q(x;  T ( J ) ,  h ( ( ) ) ,  which 
according to our notation (see page 200) implies for the second stage prob- 
lem (2.4) that only T( . )  and h(.) (or some elements of these arrays) are ran- 
dom. In this case, we could apply Jensen's inequality to get in Theorem 2.4 a 

r 
lower bound for the expected recourse &(x)  = / Q(x;  T((), h(())IPE (dc) as 

Jg 
Q(x;  T(<), h(<)) 5 Q(x) ,  where < := Eg [(I. In other Words, introducing the 
Jensen distribution IP, as the one-point distribution with IP,{q = Eg [(I) = 1, 
the Jensen inequality can formally be written as 
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On the other hand, we have derived particular discrete probability distri- 
butions $, on the vertices v" of E, the E-M distribution for stochastically 
independent components of E in Lemma 2.6 and the generalized E-M distribu- 
tion for stochastically dependent components of < in Lemma 2.7, respectively, 
which were shown to solve two special types of moment problems. According 
to Theorems 2.5 and 2.6, using these distributions the E-M inequality provides 
an upper bound for the expected recourse as 

For any disjoint interval partition X  = { E k ;  k  = 1,. . . , K )  of E, we apply 
Jensen's inequality for the conditional expectations, meaning to introduce on the 
conditional expectations& := IEc [c I E E Zk],-k = 1 , .  . . , K, thecorrespond- 
ing discrete distribution IPS, , defined by P,, { J k )  = IPt { zk) ,  and to compute 

h Q ( x ;  T ( q ) ,  h(q))lP,,  ( d q )  to get a lower bound for & ( x ) .  Similarly, we 

K - - 

apply the E-M inequality using the distribution 9, = P t { E k )  . Qnl,, 
k= l 

where QqZb is either the E-M distribution or else the generalized E-M distri- 
bution solving the corresponding conditional moment problems, conditioned 
with respect to the cell Ek E X .  This way, according to Lemma 2.8 we get an 
increased lower bound as well as a decreased upper bound. 

For any sequence of appropriately refined interval partitions { X u )  the cor- 
responding sequences of discrete distributions {IP,,, ) and {$,,, ) of Jensen 
distributions and E-M distributions, respectively, are shown in Lemma 2.9 to 
converge weakly to the original distribution Pt.  For the corresponding se- 
quences {@) and {&) of Jensen lower bounds and E-M upper bounds, 
respectively, of the expected recourse function &, this implies epi-convergence 
of both sequences to &. This convergence behaviour, however, provides due 
to Theorem 2.7 promising conditions to design approximation schemes for the 
solution of two-stage SLPYs with complete fixed recourse. 

The question arises whether we may expect a similar approach to be appli- 
cable for the solution of multi-stage SLP's with more than two stages. To get a 
first impression let us take a look at a rather simple three-stage example. 



Multi-stage SLP Models 257 

EXAMPLE 3.1 Consider the completeJixed recourse problem 

with the joint probability distribution IP( of C := (C2, J3)T on its support 
= [O, 11 x [0, 11, given by the density 

1 + ~  for 0552,5350.5 
1 + ~  for 0.5552 ,5351  
1-E for 0 5 5 2  <0.5<53 5 1  
1 - E for 0 5 53 < 0.5 < 52 5 1 
0 else, 

where E is some constant such that E E (- 1, +I). 

Figure 3.2. supplPC = E2 x s3 = s2 x (z: U 3:) with density f (&,&). 

For the marginal distribution of t2 we obviously get the marginal density as 
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such that the corresponding distribution IPt is U [O, 11, the uniform distribution 
on the interval [0, 11. According to the dejinition o f f  (t2, &),for 6 follows the 
same marginal distribution. - 

Considering, for instance, the interval E := { [ O ,  0.51 x [O,  0.51) c R 2 ,  we 
get 

1 

whereas for the marginal distributions in U [O,1] follows 

Hence, for E # 0 the random variables t2 and t3 are dependent. 
Due to the objective of our recourseproblem, for any givenjirst stage solution 

x 2 0 the second stage solution yi ( J 2 ) ,  i = 1,2, minimizing the second stage 
objective y1(&) + 292 ( t2 ) ,  has to satis! the rules 

a) t 2  < x + ~ l ( t 2 )  = 0, y2(t2) = x - J2  

b) ( 2  2 x =+ yl(t2) = E2 - 2, y2(t2) = 0. 
Minimizing the third stage objective zl ( J 2 ,  J3 )  + z2 ( J 2 ,  J 3 )  then yields, for both 
of the cases a) and b) above, 

Observe that aJirst stage decision x < 0 is not feasible. On the other hand, 
x > 1 cannot be optimal, since this would increase unnecessarily the overall 
objective, more precisely thejirst stage cost 2x plus the expected second stage 
costIE[yl(t2)+2y2(t2)] due to a)  byatleast2(x- 1)+2E[(x- t2)]  > 4(x-1). 
Hence we compute the objective value, for 0 5 x I 1, as 

For the last integral we get 
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where A = B for symmetry reasons (see Fig. 3.2). For A, the integral taken 
over the triangle above the line 53 = J2 in Fig. 3.2, we get by integration of 
( t 3  - t 2 ) f  ( ' 5 9  t 3 )  

2 - E  
such that A + B = - 

6 
and hence 

Obviously, min V ( x )  is achieved at 2 = 0 such that the optimal value of our 
x>o 

problem turns out to be 

5 - E  
V* = min V ( x )  = - 

210 6 '  

Let us now discretize the distributions of ( 2  in stage two and = (t2, &)T in 
stage three by choosing thepartitions x2 of E2 and x3 of s2 x s 3 ,  respectively, 
as follows: 

Stage 2: x2 = {z2)  yielding for J2  the realization 

Stage 3: x3 = { E 2  x [0, i )  , s2 x [i, I]} yielding for the realiza- 

tions 

with 
1 

P31 = E' ( { h  E [O,;))) = and 
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Then the discretized problem reads as 

3 
Also in this case the optimum is achieved for 5 = 0 with = - Comparing 

4 ' 
5 - E  

this value with the optimum V* = - 
6 

of the original problem, we see that 

In conclusion, even for a rather simple situation like three stages, randomness 
in the right-hand-sides only, and completejixed recourse, we cannot expect in 
general to get a lower bound of the optimum by discretization of the distributions 
in an analogous manner as in the two-stage case. 

This example as well as the following considerations are essentially based on 
discussions related to an idea, originally due to S. Sen, concerning refinements 
of discretizations in order to improve discrete approximations for MSLP prob- 
lems. The outcome of these endeavours was reported in F6sek-Kall-Mayer- 
Sen-Siegrist [9 11. 

Obviously, with appropriate successive refinements of partitions X: of the 
sets [E~ x - . x Et] > supp Pgt, t = 2, . . , t;  v = 1,2, . ., we may expect 
weak convergence of the associated discrete distributions {Pvtx;) and hence 
epi-convergence of the related objective functions of the general MSLP (3. I), 
as shown by Pennanen [220]. Thus Th. 2.7 (page 226) suggests that a solution 
could be approximated by this kind of successive discretization of the distribu- 
tions. However it seems difficult to control this procedure since, in difference 
to the two-stage case, for the general MSLP we do not have error bounds on 
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the optimal value. According to Ex. 3.1, even for the much simpler problem 

with complete fixed recourse and only the right-hand-sides being random, we 
cannot expect to get at least lower bounds, in general. 

Nevertheless, we shall discuss first, for the purpose of defining a fully aggre- 
gated problem instead of the MSLP (3. I), how an arbitrary finite subfiltration 
F and the corresponding scenario tree can be generated. Again, we assume 
the supports of the stagewise distributions to be bounded. Hence there exist 
intervals zt c IRrt such that supp P,t, C Et,  t = 2,  . . , T. Then we proceed 
as follows: 

Subfiltration and the corresponding scenario tree 

- Forthe stages v = I , . - - , T  - 1 repeat: 

Let N,+I := 0. 
Then for each node n in stage v (i.e. t, = v) and some r, 2 1: 
Define a finite set Cn ofchildren of n such that IC, I = r, and, for any m with 
m # n ,  t m = t n = v , t h a t C m ~ C n = 0 a s w e l l a ~ C n ~ N P = 0 V p < v  
holds. Furthermore, let := NU+l u Cn and associate individually 
with the set C n  := { k p ) ,  . , k c ) }  a partition of E Y f 1  into subintervals as 

T n  

"+I  = U 1;;; . (3.1 1) 
1=1 

- To generate the subfiltration, for t = 2,  . . , T repeat: 
For each n E Nt and hn E its unique parent node, and Ek the 
subinterval corresponding to node n in the partition of St associated with 
Chn, let := Rchn) n [Ek].  
Define the subfiltration $by Ft := a{R(") ( n E Nt), t = 2 , .  + , T,  with 
o { R ( ~ )  ( n E Nt} the a-algebra generated by the sets n E Nt. 

- The defining elements of the discretely distributed stochastic process corre- 
sponding to the above finite subfiltration, i.e. the realizations at node n 
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and their probabilities p,, may be assigned to the nodes as follows: 
For any n E JV \ (1) let X(n) = {el = 1,. . - etn = n )  be the 
history of node n. By the above construction, each node e, E Z(n) corre- 
sponds uniquely to a particular subinterval ZL of S". Then for the discrete 

process we choose the state 5̂ n at node n and the corresponding probability 
Pn as 

5̂ n = IE [Ct, 1 Ct, E x:"=~EE] 
(3.12) 

Pn =  PI^, ({Ctn E X:"=~E;}) . 

Using this discrete process we may then replace the general MSLP (3. l), defined 
with respect to the filtration F, by the fully aggregated problem with respect to 
the subfiltration ?, as represented by the LP (3.5). 

Whereas, according to Ex. 3.1, for problem (3.10) we cannot expect to 
achieve lower bounds for the optimal value by discretization of the underly- 
ing stochastic process in general, the situation will be better if Assumption 1.1 
is modified as follows: 

ASSUMPTION 3.2 Let 

- only the right-hand-sides bt be random (and linear afine in Ct); 

- the distributions of tt be bounded within some intervals Et c IRrt, i.e. 
supp Ptt Et; 

- the random vectors t 2 ,  . , tT be stochastically independent; 

- the Att be completefied recourse matrices Vt. 

With X(n) = {el = 1, . . , tt, = n )  the history of node n as before, the 
assumed stochastic independence of t2, . . , JT implies the distribution (3.12) 
to be modified to 
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Hence we replace problem (3.10) by the fully aggregated problem 

using the distribution (3.13). Then we get 

LEMMA 3.1 Let problem (3.10) satisfj Assumption 3.2. Then for any subjil- 
tration ? constructed as above, the optimal value of the aggregated problem 
(3.14) is a lower bound of the optimum in (3.10). 

Proofi It is well known that problem (3.10) can be formulated as a recursive se- 
quence of optimization problems (see Olsen [2 171 and Rockafellar-Wets [254]). 
For this purpose we use the following notation: 

zt := { X I ,  . . , x t }  for the sequence of decision vectors up to stage t; 

Ct := ( J 2 ,  . , & )  for the state variable at stage t, as before; 

(2 for any realization of Ct;  
E; E zt for node n in stage t due to (3.1 I), and ,$ := IE[& 1 tt E Zk]. 

Now the above mentioned recursion may be formulated as follows: 

Let aT+1 (zT; &) - 0 VzT,  &. Determine iteratively for t = T,  T - 1 ,  . . , 2 ,  
and for all nodes n in stage tn = t, using the assumed stagewise independence 
by applying Fubini's theorem (see Halmos [I 1 I]), 

which finally yields 

n = ? ~ { c : x l  + @2(x1; ? I ) }  

A 

s.t. AIIXI  = bi(C1) = b l ,  X I  1 0 ,  
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the optimal value of (3. lo), with & being the realization of J1 r const due to 
the fact that in the first stage there is only one (deterministic) state. The notation 
"Ett" just indicates that the integral is taken with respect to P,t, only. 

If (zt , 8 )  is jointly convex in (zt, 81,  as is trivially true for aT+1, then 
it follows immediately, that 

A 

is jointly convex in (zt-1; Ct) (recall that bt (&) is linear affine in &). Thus, 
from (3.15) follows that 

is jointly convex in (zt-1; 6-1) as well. Hence, by Jensen's inequality holds 

In analogy to (3.15), for the discretized problem (3.14) with QT+l r 0 we 
define for t = T, T - 1, ,2, and for all nodes n in stage t, = t, the recursion 

we'll get 
ql := min{cTxl+ ~ z ( x 1 ;  TI)) 

$1 .. 
s.t. Allxl = bl(C1) - bl, XI 2 0 

as the optimal value of (3.14). 
Provided that Qt+l(zt; 8 )  5 @t+l(zt; g ) ,  as it is obviously the case for 

t = T, we conclude from (3.1 5) and (3.1 7), using Jensen's inequality (3.16) 
(for conditional expectations), that 
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and hence 

such that finally 

A 

with B := {xl I Allxl = bi((1) bi, XI 2 0). 0 

As seen above, with Assumption 3.2, and observing Assumption 3.1 when 
generating a finite subfiltration and the corresponding scenario tree for prob- 
lem (3. lo), as described on page 261, we get the fully aggregated problem (see 

n 

with bn = btn(cn) andpn > OVn E N. 
As the dual LP of (3.18) we have 

With the substitution un = pn.rr, (3.19) is equivalent to 

with q,,, the conditional probability to reach node n given node m. 
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For {i?,, ii,) to be a primal-dual pair of optimal solutions, according to 
Chapter 1, Prop. 2.12, the complementarity conditions 

( ~ t ,  - C q m - + n ~ r ~ ~ & ) ~ i ? m  = 0 Vm € N (3.21) 
n G ( m )  

have to hold (with qm+m = 1). 

Discretization under special assumptions 

Under Assumption 3.2 on problem (3.10) and Assumption 3.1 on the discretized 
distributions (implying positive probabilities for all scenarios generated) we 
shall discuss now, how a successive refinement of the partitions and hence a 
correspondingly growing scenario tree can be designed, such that the approxi- 
mation of (3.10) by the generated problem (3.18) is improved. 

To begin with, let y be the coarse subfiltration with each yt being generated 
by the elementary events {<;l[~T], 0 ( T = 1, . , t )  i.e. by {R,0). Then 
for node n = t holds tn = n = t and Ek = St, such that by (3.13) follows 

A 5̂ n = St = E [St], yielding the aggregated problem 

The corresponding basic scenario tree is shown in Fig. 3.3. 

Figure 3.3. Basic scenario tree. 

In the coarse subfiltration, & was generated by {R,0) Vt E {1, . , T). Let 
this subfiltration be refined into ? by partitioning Bt for a particular t > 1 
into two subintervals Ei ,  E i  (whereas in all other stages the trivial partitions 
{F, s # t)remain unchanged). Then it follows that 

for s < t 
ys is generated by [Zi], J,-' [&;I, 0) for s = t 

{R,<~~[~~],<;~[~~],J;~[E~],~) f o r s > t .  
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The modification of the scenario tree, corresponding to splitting node n = t, is 
shown in Fig. 3.4. 

Figure 3.4. Basic scenario tree: First split. 

Obviously we have now two branches from stage t onwards, corresponding 
to the subintervals Etl and Ei of the partition of St . Denoting the nodes of the 
two scenarios as (t, A), t = 1, . . , T, and (t, B), t = 1, - . , T,  the respective 
components $'A) of s = 2, . . . , T, are, due to (3.13), determined as 

and analogously for ? ( ' I ~ ) ,  s = 2, - , T, follows 

The corresponding node probabilities are 

i f s  < t 
P(s,A) = 

i f s < t  

Hence the new aggregated problem is 
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Assume now that 7 = (N,  A) is the scenario tree associated with problem 
(3.18). To split in this tree some node i > 1 into the nodes il and i2, or 
equivalently to subdivide the corresponding =ti g =ti into two subintervals 
~ f l  and =fi (observing Assumption 3.1), we have to run the following node 
splitting procedure: 

Cut and paste 

S1 Partition into ~ f i  and =It; compute 
&, = phi (sf:), V = 1,2, 

Pi" r, = 7, v = l,2, withsi = P@?), 
Pi 

S2 Let 4 = (Nl, Al) with Nl c N ,  A1 c A be the maximal subtree of 
I = (N ,  A) rooted at node i E N. 
Let 3 = (N2, .A2) be a copy of 4, with its root denoted as j $! N and 
all other node labels modified such that N2 n N = 0 ,  A2 n A = 0. 
Assign to the nodes of 3 the same quantities as associated with the 
corresponding nodes of 'TI. 

S3 With H(i) the history of node i in I ,  and %(n) the history within I, 
for n E N,, v = 1,2  respectively, update the values of the subtrees 4 
and 5 as follows: 

4 : Set bjl) := bi,, and for n E G(i) \ {i}, the future of i in 4, let 

bil) := bt, (Cn), with computed according to (3.13), with the 
history of n being composed as {'Fl(hi), i ,  'Fl(n)}; 
multiply the node probabilities by rl. 

12 : Set b y )  = biz, and for m E G ( j )  \ { j } ,  the future of j in 3, let 

b c )  := bt,(fm), with fm computed according to (3.13), with the 
history of m being composed as {'Fl(hi), j, %(m)), implying that 
b c )  equals the right-hand-side for the corresponding node in Nl; 
multiply the node probabilities by r2. 

(Observe that %(hi) = 'Fl(hj) will be enforced in step S4.) 

S4 Introduce a new edge from the parent node hi of i to the node j ,  the root 
of 3, thus pasting 5 to 7 and yielding the new tree (see Fig. 3.5) 

I+ = (N+, A+), with 
N+ = N u N ~  and 
A+ = AUA2U{(hi,j)}. 
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Figure 3.5. Cut and paste. 

It is easy to see that with the above procedure of cut and paste the optimal 
values of the related primal LP's are non-decreasing. 

PROPOSITION 3.1 With V being the optimal value of the fully aggregated 
problem (3.18) corresponding to the scenario tree 7 ,  and V+ being the optimal 
value for the corresponding LP on 'T+ as generated by cut andpaste, it follows 
that V+ 2 V . 

Proofi Let {u,, n E N) be a solution of the dual program (3.19) associated 
with 7. To each node n E N2 assign the vector un as determined for the 
corresponding node n E Nl . 

Now define for n E N f ,  with r, from step S1, 

- rlu, i f n  E NI 
u, := T ~ U ,  i f n  E N2 

Un else. 

In order to show that {G,, n E N+) is a feasible solution to the dual program 
(3.19) associated with I f ,  we have distinguish the following cases: 

with pm as defined in step S3 for m 6 Nl. 

The analogous argument holds, with Q instead of rl . 
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Hence, {G, n E N + )  is feasible for the dual program (3.19) corresponding 
to 7+ and, with the right-hand-sides gn updated according to step S3, yields 
the objective value 

This shows that the objective of the feasible solution {&, n E N f )  for I f  
coincides with the optimal value for 7, such that V +  2 V obviously has to 
hold. 0 

COROLLARY 3.1 Let c be the optimal value ofproblem (3.10). IfAssumption 
3.2 is satisjied, then each method, splitting succesively any nodes (except the 
root) in the scena~io tree according to the cut and paste procedure, converges 
to a value V*  I V .  

Proofl Under the given assumptions, the optimal objective values of the aggre- 
gated problems are 

monotonically nondecreasing according to Prop. 3.1, and 

they are lower bounds of the optimal value of (3.10) due to Lemma 3.1. 

Although this cut and paste procedure seems to have a promising behaviour, 
we are still left with two open questions: 

1) Is there any criterion (even a heuristic one, maybe) for deciding on the 
next node to be split? 

2) Given this criterion, may it happen that for the limit V* in Corollary 3.1 
holds V* < c ?  

As to the first question, for a fixed node n > 1 let {Pm I m E N ( n )  \ { n ) )  and 
{k I m E G ( n ) )  be parts of solutions of (3.18) and (3.2 O), respectively, and 
consider the LP 

yn(bn) := rnin(ctn - qn+mALtn+m)T~n 
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Since {Ek; k E N) solves (3.18), in particular En is feasible in (3.24). Fur- 
thermore, the {+!; e E N) being optimal in (3.20) and En > 0 due to (3.24), 
we conclude, observing (3.2 I), that 

showing that En with the optimal value cp,(b,) = 0 solves the LP (3.24). Using 
(3.13) we have that p = ( p n ,  IE[& I Etn E z k ] )  . Replacing b, = btn ( p )  
by the random Zn(<tn) := btn ( p n ,  &), it is obvious that the optimal value 

is a convex function in Etn, such that due to Jensen 

and we have the lower bound 1, = 0 for IE[~,&(&,)) I Jtn E zk] . On the 
other hand, according to Lemma 2.7 (on page 2 16), we can determine the E-M - 
upper bound u, for IE[cpn(bn(&n)) I Jtn E . If, with some prescribed 
tolerance A > 0, the splitting criterion 

is satisfied, we may decide to split node n as described in the cut and paste 
procedure, in order to increase the lower bound and thereby to improve the 
approximative solution. Observe however, that this criterion (un - 1, > A) 
to increase the lower bound and thereby to improve the solution in a particular 
node, is based on a heuristic argument. But it is one positive answer to the 
first question, at least. Moreover, test runs with this criterion did work out 
surprisingly well. 

To come to the second question, consider the following example: 

EXAMPLE 3.2 Assume the followingproblem to be given: 
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where t2 U[O, 61 and t3 U[1,1.5], with U being the uniform distribution. 
The fully aggregatedproblem with IE [J2] = 3 and IE [I3] = 1.25 as right-hand- 
sides is easily seen to have the optimal solution 

with the optimal value 
- -  17 

and the dual solution 
1 1 1  P = (4 ,4 ,4 )  . 

- 
Considering problem (3.25) for n = 2, we find that ( ~ ~ ( b ~ ( & ) )  = 0 for 
J2 E [O, 61, i.e. p:! is linear on z2 implying that u2 - l2 = 0. Analogously - 
v3(b3 (& )) = 0 for J3 E [I, 1.51 such that also 93  is linear on z3 and there- 
fore US - l3 = 0. Hence the above splitting criterion (3.26) cannot be satisfied, 
and the procedure would stop with the above solution, with V* = V. 

Howevel; subdividing E~ = [O, 61 into the intervals [O, 3) and [3,6] and 
solving the corresponding LR would yield the optimal value 

and the same result would be achieved with splitting, instead of z2, the interval 
z3 = [I, 1.51 into [I, 1 .25) and [1.25, 1.51. 0 

Hence, in this example the procedure, using the above splitting criterion 
(3.26), had to be finished with u, - 1, = 0 for all nodes n > 1, although there 
was a substantial difference - V* > 0. This fact could (and can in general) 
only be discovered by analyzing (sub)sets of nodes simultaneously in detail. In 
other words: For the approach using the splitting criterion (3.26) so far there is 
not known any simple stopping rule stating the (near-)optimality of the present 
iterative solution for problem (3.10). 



Chapter 4 

ALGORITHMS 

1. Introduction 

The discussion of algorithms in this chapter is organized according to the 
framework of different SLP model classes, as presented in the previous chapters. 
A computer implementation of an algorithm will be called a solver. 

For the algorithms presented in detail in this chapter, sufficient and repro- 
ducible empirical evidence is available concerning the numerical efficiency of a 
corresponding solver. On the one hand, this means that results of computational 
experiments with several test problems or test problem batteries are available in 
the literature. On the other hand, reproducibility presupposes the public avail- 
ability of the solver. With most of the algorithms, discussed in detail in this 
chapter, we have our own computational experience; several solvers have been 
implemented and tested by ourselves. These solvers, along with further solvers 
provided by their authors, are publicly available as connected to our modeling 
system SLP-IOR, see Section 9.2. 

2. Single-stage models with separate probability functions 

In this section we discuss algorithms for SLP models with separate probabil- 
ity functions, presented in Chapter 2, Section 2.3. If only the right-hand-side is 
stochastic then the models can be transformed into deterministic LP models, as 
discussed in Chapter 2, Section 2.3.1. In this section we have also pointed out 
some pitfalls which have to be taken into account in this approach. The equiva- 
lent LP models do not have any SLP-specific structure, thus the recommended 
approach is to employ general-purpose LP solvers. 

In the general case we will consider probability functions of the form 
G(x) = IPt( x I rlTx - < 2 0 ) where 7 is an n-dimensional random vector 
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and t is a random variable. We concentrate on constraints 

If the joint distribution of (q, 5) is multivariate normal then the above con- 
straint can be written in the following equivalent form, see ((Ch. 2, 2.35) on 
page 108 

T @ - l ( a ) l l ~ T x  - dl1 - /J x I -pn+i (2.1) 
Assuming that a > 4 holds, we can write (2.1) as 

which is called a second-order cone constraint. Models involving this type 
of constraints are called second-order cone programs (SOCP). Such models 
have been first studied by Nesterov and Nemirovsky [213], who also proposed 
interior-point methods for their solution. 

Figure 2.1. The ice-cream cone, or Lorentz cone in R3. 

The terminology has its roots in the fact that SOCP is intimately related to 
the second-order cone (also called ice-cream cone or Lorentz cone) 

where 11 11 stands for the Euclidean norm. See Figure 2.1 for a second-order 
cone in lR3. A general SOCP-constraint has the form 

with A denoting an m x n matrix, x E lRn, the other arrays having compatible 
dimensions. This constraint can equivalently be written as the following cone- 
constraint 
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For an overview on SOCP see Lobo et al. [181] and the references therein. 
The state-of-the-art solution methods are primal-dual interior point methods, 
for a nice unified presentation see Peng, Roos, and Terlaky [219]. 

Assuming additionally to the normal distribution that the components of 
(q, J) are stochastically independent, Seppala and Orpana, T. [270] propose 
a successive linearization algorithm, which is also based on the second-order 
cone structure as discussed above. 

Weintraub and Vera [301] propose a different approach by applying the sup- 
porting hyperplane method of Veinott (see Section 3.2 in Chapter 1) for the 
general normally distributed case. 

In the case when (q, J) has a multivariate Cauchy distribution and assuming 
that a 2 4 holds, the probabilistic constraint can be written in the following 
equivalent form, see (2.48) on page 1 16 

which can be interpreted as a first-order cone constraint. This problem can be 
formulated equivalently as an LP problem, see (2.49) on page 1 17, which can 
then be solved by general-purpose LP solvers. Alternatively, special-purpose 
interior point algorithms might be more efficient. 

2.1 A guide to available software 
The straightforward approach is to solve the deterministic equivalent prob- 

lems by employing a general-purpose solvers. This is the only approach 
presently available for the case of the Cauchy distribution. 

For the case of the non-degenerate multivariate normal distribution, a much 
better approach is to employ solvers for SOCP. There are several solvers avail- 
able in the public domain: 

= SOCP (C and Matlab), developed by Miguel S. Lobo, Lieven Vandenberghe, 
and Stephen Boyd, [I8 11 
http://www.stanford.edu/-boydlSOCP.htm1. 

SeDuMi (MatLab toolbox) Jos F. Sturrn [279], 
http:Nfewcal.kub.nl/sturrn/software/sedumi.html. 

SDPT3 version 3.02 (Matlab) Kim C. Toh, Reha Tiitiincii, and Michael J. 
Todd [288], 
http://www.math.nus.edu.sg/-mattohkclsdpt .htrnl. 

For implementing your own solver see, for instance, Andersen et al. [5], Kuo 
and Mittelmann [175], Lobo et al. [181], or Peng et al. [219]. 

Commercial solvers: MOSEK and LOQO, for fiu-ther information see the 
Decision Tree for Optimization Software at node 
http://plato.la.asu.edu/topics/problems/ 
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For selecting an appropriate solver, see the benchmarks of Hans Mittelmann, 
[207]; http://plato.asu.edu/bench.htrnl. 

If, additionally, the components of (q ,  <) are stochastically independent, the 
solver CHAPS, developed by Seppala and Orpana, T. [270], could prove to be 
an efficient alternative. 

3. Single-stage models with joint probability functions 
This section is devoted to algorithms for solving models which involve joint 

probability functions, under the assumption that only the right-hand-side is 
stochastic. 

The general case, where the technology matrix is also stochastic, has been 
discussed in Chapter 2, Section 2.6. In this case the probability function G is 
not quasi-concave in general, implying that the SLP problems are non-convex 
optimization problems. This is in general so, even if < has a multivariate nor- 
mal distribution. However, under some assumptions concerning the structure 
of the correlation matrices, convex optimization problems arise, as discussed 
in Ch. 2, Section 2.6. According to our knowledge, there are no specialized al- 
gorithms available for this type of problems. Consequently, the sole presently 
available approach for such problems is to treat them as nonlinear optimization 
problems and to try to apply general-purpose algorithms of nonlinear optimiza- 
tion, or in the non-convex case techniques of non-convex programming. 

Under the assumption that only the right-hand-side is stochastic, the joint 
probability function is defined as 

where T is an (s  x n) matrix, < is an s-dimensional random vector, x E IRn, 
and the components of ti are the elements of the ith row of T. For separate 
probability functions (s = I), the corresponding SLP-problems are equivalent 
to LP-problems, see Section 2.3.1 in Chapter 2. Consequently, we assume that 
s > 1 holds. 

Concerning the probability distribution of 5, we will discuss algorithms for 
two cases. 

On the one hand, we will assume that 5 has a continuous distribution, with 
a logconcave probability distribution function F. The presentation will mainly 
be focused on the case when < has a non-degenerate multivariate normal distri- 
bution; possible extensions to other logconcave distributions will be indicated 
via remarks. Algorithmic issues for this case are the subject of the subsequent 
sections 3.1-3.5. 

On the other hand, in Section 3.6 we assume that < has a finite discrete 
distribution, and discuss different algorithmic approaches for this case. 
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The model formulations considered in this section are the following (see 
Chapter 2, (2.4) and (2.5) on page 93 and (2.61) on page 122): 

min cTx 
s.t. F ( T x )  2 a 

x  E B  

where 0 5 a < 1 is a probability level, and 

max F ( T x )  
s.t. x  E B. 

In both cases F denotes the joint probability distribution fhction ofthe random 
right-hand-side J. It is sometimes advantageous to recast (3.2) as 

min cTx 
s.t. F(Y)  2 a 

T X  -9 2 0 (3.4) 

x  E B. 

To see the equivalence of (3.2) and (3.4), let (3, g )  be a feasible solution of (3.4) 
and let c := TZ. Due to the monotonicity properties of probability distribution 
functions, ( z ,  G) is also a feasible solution of (3.4), with the same objective 
value. From this the equivalence follows readily. 

Taking the algorithmic point of view, let us consider, for instance, cutting 
plane methods. When applying these methods, the matrix of cuts is usually 
dense. Assuming that cuts are stored in the rows, in formulation (3.2) this matrix 
would involve n columns whereas in formulation (3.4) the number of columns 
is s, where s is the number of inequalities involved in the joint probability 
function. The point is that usually s << m holds, therefore formulation (3.4) 
is more suitable from the point of view of implementation, than (3.2). 

3.1 Numerical considerations 
In this section the general assumption will be that J has a non-degenerate 

multivariate normal distribution. 
Notice, that we can assume that the distribution of J is standardized. 

is equivalent to the formulation (3.1), where pi and ai are the expected value 
and the standard deviation of Ji, respectively. 

Notice, that both problems (3.2) and (3.3) are nonlinear programming prob- 
lems. Although (3.3) is linearly constrained and (3.2) involves a linear objective 
and a single nonlinear constraint, problems of the above type are hard to solve 
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numerically in general. Next we summarize the main sources of difficulties, 
see also Mayer [202]. 

Let us note, that the nonlinear function F, involved in the model formula- 
tions, is in general not given via an algebraic formula. For computing function 
values F(x) and gradient values VF(x), numerical integration is needed. For 
higher dimensions of the random right-had-side J, for instance for s = 20, the 
only way for computing F (x) and V F (x) is utilizing Monte Carlo integration 
methods. This implies on the one hand, that computing these quantities is rel- 
atively time-consuming compared to the evaluation of algebraic formulas. On 
the other hand, the approximation error is relatively large. Consequently, for 
higher values of s (for instance, s = 20), there is no chance to obtain a solution 
of (3.2) or (3.3) with a high accuracy. Therefore, according to our opinion, the 
main requirement which solution methods should fulfill, is robustness. 

Considering our optimization problems from the purely nonlinear program- 
ming point of view, these problems are convex programming problems for a 
large class of probability distributions, including the non-degenerate multivari- 
ate normal distribution, see Chapter 2 Section 2.5. We observe, however, some 
quite unfavorable features. Figure 3.1 shows the graph of the bivariate standard 
normal distribution function. 

Figure 3.1. The probability distribution function of the bivariate standard normal distribution. 

Notice the large flat regions in the figure. Assume that we have an iteration 
point 2 somewhere in the flat region. For finding the next iteration point, the 
vast majority of NLP algorithms utilizes local information, based on VF(2), 
and perhaps also requires curvature information which originate in higher- 
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order derivatives. The difficulty is that derivatives are very small in that region 
and vary largely depending on the location of 8. The latter property indicates 
that this deficiency is difficult to overcome, if not impossible, by scaling the 
problem. To illustrate, how derivatives behave, let us consider the standard n- 
variate normal distribution with independent random variables, in which case 
it is easy to compute derivatives. The order of magnitude of is displayed 
in Table 4.1, where 8i = X for all i. The different A-values correspond to the 
rows of the table. Let us take, for instance, the entry -3945, corresponding to 
X = -30 and s = 20. The interpretation is that the magnitude of the partial 
derivative in the 20-dimensional case, in the point with all coordinates being 
equal to -30, is This phenomenon can be interpreted as some kind of 

Table 4.1. Order of magnitude of derivatives of the multivariate normal distribution fbnction 

hidden non-convexity of the convex optimization problem. The region, where 
the derivatives have reasonable magnitude and thus iteration points can be well 
dealt with by algorithms, is non-convex as can be seen in Figure 3.1. 

As noted in Mayer [202], an additional difficulty is that the steepness of the 
function between the lower- and upper almost-horizontal parts becomes rather 
high with increasing dimension s, as displayed in Figure 3.2. This implies that 
the region, where the derivatives have manageable values, becomes narrower 
for higher-dimensional random vectors J. 

All algorithms for the solution of (3.2) and (3.3), discussed in this book, re- 
quire the computation of the gradient VF. Assuming a continuous distribution 
and that the density function f is a positive and continuous function, we have 
the following well-known expression (see, for instance, Cram& [41]): 

where f (t2, . . . ts I tl ) is the conditional density function of (J2, . . . , J,), given 
J1 = tl, and fl is the marginal density function of El. By differentiating both 
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Figure 3.2. The probability distribution function of the standard normal distribution along the 
line yi = X Vi,  for dimensions s = 2, 10, 30, and 50. 

sides with respect to XI we obtain 
$2 x s  

- -  dF(x) - fl(xl) J . . . J f (t2, . . . t, 1 xl)dt2, . . . dt, 
8x1 -00 -00 (3.5) 

where F(x2,  . . . , x, 1 xl) stands for the conditional distribution function of 
(t, - .  ,&),given G = 21. 

Analogous expressions hold for the partial derivatives with respect to the 
variables 2 2 ,  . . . , x,. 

In the case of a non-degenerate multivariate normal distribution the above 
formula takes an especially simple form. On the one hand, fl (xl) = cp(xl) with 
cp denoting the density function of the standard univariate normal distribution. 
On the other hand, it is well-known, see Mardia et al. [188], that the conditional 
distribution of (c2, . . . , &), given = XI, is also non-degenerate multivariate 
normal. Denoting the correlation matrix of < by R = (pij), the parameters of 
this normal distribution are 

where fi  E lEtS-l is the expected value vector and the ((s - 1) x (s - 1)) co- 
variance matrix is demoted by 2. The matrix 2 is in fact nonsingular, the proof 
of this is left as an exercise for the reader. Thus, F(x2, . . . , x, I xl) in (3.5) is 
the probability distribution function of a non-degenerate multivariate normal 
distribution, specified by the above parameters fi  and 2. Consequently, having 
a numerical procedure for evaluating multivariate normal distribution functions, 
the same procedure can also be used to compute the partial derivatives. This 
procedure for computing the gradient vector of multivariate probability distri- 
bution functions was proposed by Prbkopa [225]. 
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Another case, where the above approach is especially well-suited is the case 
of the Dirichlet distribution, for which the conditional distributions are also 
Dirichlet distributions. 

As pointed out above, our problems are nonlinear optimization problems. 
Provided that for computing F(x) and V F  (x) we have numerical procedures at 
our disposal, implemented in the appropriate programming language, a possible 
approach to solve these problems could be employing general-purpose NLP 
solvers. In fact, Dupaeovi, Gaivoronski, Kos, and Szintai [65] report on a 
successful application of the general-purpose solver Minos, for the solution of 
a problem of our type. The point is, however, that the starting point for the 
iterations has been quite close to the optimal solution (by far not somewhere in 
the flat regions). According to our experience concerning the same numerical 
problem, the solver Minos gets stuck in the starting point, as soon as the starting 
point is not that close to the optimum. Nevertheless, in practical problems 
there are frequently good starting points available, thus, for such problems, the 
approach via a general-purpose NLP solver might work. 

In general, however, special-purpose algorithms and their implementation 
in solvers is needed. The usual way for developing such algorithms is adapting 
general nonlinear programming algorithms to the special structure and proper- 
ties of problems involving joint probability functions. 

In the next section we present approaches based on cutting-plane algorithms 
and will summarize the other approaches in Section 3.3. 

3.2 Cutting plane methods 
Cutting plane methods are discussed in detail in Ch. 1, Section 3.2. In this 

section we restrict ourselves to pointing out those features, which are taken 
into account in the development of methods, adapted to the special structure 
and properties of (3.2). The problem will be considered in the equivalent form 
(3.4). 

We begin by considering the classical outer approximation methods of Kelley 
[159], Kleibohm [166], and Veinott [297]). These methods involve outer 
polyhedral approximations Bk of the feasible domain B of (3.2) and generate 
a sequence dk) G Bk as solutions of the LP rnin{cTx I x E Bk). 1f idk) E B 
then the algorithms stop, otherwise Bk+l is constructed by appending a cutting 
plane to the set of constraints in Bk. 

In the algorithm proposed by Kelley, the cutting plane, based on VF($(~) 
(with jj(" = T#)) is computed by linearizing F at the infeasible point $(k). 

Infeasible points correspond to the lower plateau in Figure 3.1 where the com- 
ponents of V F  are very small (see Table 4.1) and become practically zero not 
too far away from the feasible domain. 

In the algorithm of Kleibohm [I661 and Veinott [297]) a Slater-point xS, 
lying on the upper plateau in Figure 3.1, is utilized as a navigation point. The 



282 STOCHASTIC LINEAR PROGRAMMING 

intersection z(" of the line segment [ Y ( ~ ) ,  xS] and the feasible domain's bound- 
ary is computed and the cut is constructed as a supporting hyperplane of the 
feasible domain at dk). This fits well the properties of F in our problem: at 
the feasible point ~ ( ~ 1 ,  V F  behaves well from the numerical point of view. On 
the basis of this supporting hyperplane method, Szintai [283] developed an al- 
gorithm for solving (3.4), with the additional feature of a moving Slater-point, 
as described in Ch. 1, Section 3.2. 

In the central cutting plane method of Elzinga and Moore [73], the sequence 
of approximating polyhedra Bk and iteration points x ( ~ )  are computed differ- 
ently: instead of solving the LP min{cTx I x E Bk), the center of the largest 
inscribed sphere of Bk is taken as the next iteration point ~ ( ~ 1 ) .  The cut is con- 
structed as follows. If, with $(k) = T?(~)),  e(" < a holds, then a Kelley cut 
is applied, otherwise a central (objective) cut cTx 2 cT2(" is utilized. For 
the same reason, as discussed above concerning the cutting plane method of 
Kelley, this algorithm is unsuitable for solving (3.4). 

The remedy is obvious: in the case jj(k) < a ,  instead of the Kelley cut, a 
supporting hyperplane should be applied. This presupposes again the availabil- 
ity of a Slater point. A further idea concerns the moving of the Slater points. 
In the case when a central cut is applied, and additionally fi(k) > a holds then 
(2(k)), can be employed as the next Slater point in the algorithm. This 
leads to a central cutting plane method for solving (3.4), as proposed by Mayer 
[201]. For the details of the algorithm see Ch. 1, Section 3.2. 

For both algorithms we need the existence of a Slater point, thus we require: 

ASSUMPTION 3.1 Problem (3.4) is Slater regular, that means that there exists 
a feasible solution (xS, yS) of (3.4), for which ~ ( y ~ )  > a holds. 

Notice that for starting up the algorithms an initial starting point is needed. 
For computing this, we employ problem (3.3) which involves maximizing the 
probability. The problem can equivalently written as 

max T I 

where the function in the nonlinear constraint is concave, due to our assump- 
tions. Notice that for getting a convex optimization problem, we took log F (x) 
in the constraint. This is necessary in general, see the discussion concerning 
(1.25) in Chapter 2, Section 1. Problem (3.6) is obviously Slater regular and 
for any x E f3 it is easy to construct a Slater point by appropriately choosing T.  

Thus, theoretically, both cutting-plane methods can be applied for the solution 
of this problem. Considering our problem, we still have to overcome the diffi- 
culty that, depending on the choice of x, y = T x  may be in the domain where 
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there V F  is practically zero. This can be overcome by imposing individual 
lower bounds on the components of y. In the case of a normal distribution 
these can be, for instance, yi 2 pi - 3 * ai, with pi and ai being the expected 
value and standard deviation of the ith one-dimensional marginal distribution 
o f t ,  respectively. If the goal is just to find a Slater point for (3.4) then the 
iterations can be stopped, when the current iterate is already a Slater point for 
that problem. 

Notice that the vehicle of imposing lower bounds on the components of y 
can also be utilized when applying the algorithms for solving (3.4). Some care 
is needed in this case, however. Applying too narrow lower bounds may result 
in a largely increased number of iterations and possibly also in almost parallel 
supporting hyperplanes. The reason is that in this case the iteration points may 
lay in a narrow region along the boundary of the feasible domain. 

An important ingredient of both algorithms is the line-search procedure, for 
computing the intersection of the line segment [y(", xS]  and the boundary of 
the feasible domain. Introducing the notation @(A) := ~ ( y ( "  + +(xS - Y ( ~ ) ) ,  
the problem is to find a A*, for which a 2 *(A) 2 a - e holds, for some 
prescribed tolerance E > 0. The line-search is an important part of many 
nonlinear programming techniques and the overall performance ofthe algorithm 
may critically depend on the proper choice of the line-search procedure. There 
are several algorithms available for this purpose, see, for instance, Bazaraa and 
Shetty [9]. In our case, computing F and V F  is relatively time-consurning 
and can only be performed with a rather limited accuracy, in general. As we 
will see later, for F there are some easily computable lower- and upper bounds 
available. The idea is to utilize these bounds in the line-search for reducing the 
number of steps where the value of F has to be computed. 

For illustrating, let us consider bisection search which would run as follows: 
Initially we have 9 (0)  < a - e and 9 (1)  > a. We consider [ O , l ]  as our starting 
interval. Compute 9 at the midpoint of the current interval, that is, compute 
~ ( 4 ) .  1f 9(4) < a - e choose [i, 11 as the next interval, otherwise take [0, 41. 
Repeat the procedure till the length of the interval becomes small enough. 

Let us assume now that we have bounds FL(x)  5 F ( x )  5 FU ( x )  available, 
with !PL and QU denoting the corresponding bounds on 9. If in the above 
procedure ~ ~ ( 4 )  < a - E holds, then we can safely choose [i, 11 as our next 
interval. If this is not the case, then we check the inequality iQL(i) 2 a. If 
this holds then we can choose (0, $1 as the successor interval in the search. If 
none of these two inequalities hold then we are forced to compute 9(3) and 
to decide on that basis. For the details concerning implementation and further 
computational issues see Kall and Mayer [146], Mayer [201], and Szintai [283]. 
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3.3 Other algorithms 
Several authors have proposed further algorithms, based on some general 

framework of nonlinear programming. 
The first algorithm for joint probabilistic constraints is due to Prkkopa and 

Dehk, see PrCkopa et al. [237]. This method was based on a feasible direction 
method of Zoutendijk. 

In the case, when F  is a logconcave function, a natural idea is to work with 
logarithmic barrier functions by taking Q ( x ,  K) := cTx + 6 log F ( x )  - a as the 
objective function in the barrier subproblem. For fixed K, Q ( x ,  K) is a concave 
function of x  on the set { x  I F ( x )  2 a). This fact is by no means obvious, for 
a proof see Prkkopa 12341. An algorithm based on this idea has been developed 
by Rapcshk [243]. For variants and applications see Prkkopa [234] and for 
penalty and barrier methods in general see, for example, Bazaraa and Shetty 
PI .  

Komhromi [I711 proposed a dual method, based on an appropriately con- 
structed dual problem, for a detailed exposition see also Prkkopa [234]. 

Mayer [199] constructed a reduced gradient type algorithm, with a suitably 
chosen direction finding subproblem. For details see, for instance, Kall and 
Wallace [I 521, Prkkopa [234], and Mayer [20 I]. 

Growe [I 101 has developed algorithms for the case when the components of 
E are stochastically independent and the marginal distributions are logconcave. 
The algorithms are sample based and use techniques of non-parametric statistics 
for building LP-approximations to the problem. 

Dehk [51] proposes a regression-based algorithm for the case when the 
probability distribution has a logconcave density function; the basic idea is to 
approximate the probability distribution function F  ( x )  via quadratic regression 
and to work with a sequence of the corresponding approximating problems. 

Gaivoronski [92] proposes quasigradient methods and reports on their im- 
plementation. Prkkopa [235] presents an approach for obtaining approximate 
solutions by incorporating the bounds on the probability distribution function 
into the model formulation. 

For overviews on existing methods see Prkkopa [231], [236] and Mayer 
[200]; for detailed exposition of the methods see Kall and Wallace [I 521, Mayer 
[201], and Prkkopa [234]. 

3.4 Bounds for the probability distribution function 
The bounds in this section are distribution-free, meaning that they are valid 

irrespective of the probability distribution of the random vector : f l  + IRT, 
being a random vector on a probability space ( f l ,  F, P). Our goal is to find 
lower- and upper bounds on the probability distribution function F of E.  
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We consider a fixed x E lRT and will derive bounds on F (x) . We will proceed 
as follows. In a step-by-step fashion we derive several alternative formulas and 
methods for computing F(x). It will turn out that, in general, none of them 
can be used in practice for computing F (x) numerically. Nevertheless, finally 
we arrive at a formulation which offers a natural framework for constructing 
numerically computable bounds on F (x). 

We introduce the notation 

where superscript c denotes the complement of a set. Notice that these sets 
depend on x. Having a fixed x, for the ease of presentation we will suppress 
this dependency in the notation, concerning also notions derived on the basis 
of the above sets. 

Using the newly introduced notation, for the probability distribution function 
we get 

Let furthermore v : S-2 + {0,1, . . . , r) be a random variable which counts 
the number of events which occur out of B1,. . . , BT. Formally, with I(w) = 
( 1  5 i 5 r 1 w E Bi),  we have the definition v(w) = II(w)l. Employ- 
ing this random variable, we obtain for the distribution function the following 
expression 

F(x) = 1 - P({w 1 u(w) 2 1)) .  (3.9) 

The question remains open, how to compute the probability on the right-hand- 
side of the above expression. We introduce the notation 

and will call Sk the kth binomial moment of v, k = 0,1, .  . . , r. Notice that for 
computing all binomial moments, we have to evaluate all probabilities in (3. lo), 
the number of which grows exponentially with r. Anyhow, presupposing that 
all binomial moments are known, the probability in question can be computed 
according to the inclusion-exclusion formula, see Feller [78], as follows. 
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Using mathematical induction it is easy to prove that, for every even integer 
0 5 m < r, we have the inequalities 

For m = 0 we get the well-known inequality concerning probabilities 

and for m = 2 we obtain the inequalities 

We wish to derive sharp bounds of this type. Let us associate with v the random 

The following fact explains the term binomial moments concerning Sk: 

PROPOSITION 3.1 For k = 0, . . . , r holds 

Proofi Let xi : 0 + IR be indicator variables defined as 

1 if w E Bi 
xi (w) = 0 otherwise. 

Then we obviously have that v(w) = xl(w) + . . . xr(w) holds, for all w E 0. 
Consequently, 

holds. Taking expectation 
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yields the result. 0 
Utilizing that v has a finite discrete distribution, the above result can also be 

written as 

Assuming that the binomial moments Sk are known, (3.12) can be viewed as 
a system of linear equations for the unknown probabilities IP( v(w) = i ), i = 
0,1, . . . , r. Let us consider this system with added nonnegativity requirements 
concerning the unknowns: 

The coefficient matrix of the equation part of the system has an upper-triangular 
structure with non-zeros along the main diagonal. Consequently, this matrix 
is nonsingular implying that the equation part has the unique solution vi* = 
IP(v(w) = i )  2 O,i=O ,..., r(cf.(3.12)). 

Thus we get 

Theoretically, this approach offers a possibility for computing IP( v 2 1 ) as 
follows. Compute all binomial moments Sk, k = 0,1, . . . , r. Subsequently 
set up and solve (3.13) and compute IP( v 2 1 ) according to the formula 
above. Finally compute F ( x )  according to (3.9). From the numerical point 
of view the difficulty is the very first step in this procedure: computing the bi- 
nomial moments involves the computation of probabilities according to (3. lo), 
the number of which grows exponentially with r. On the other hand, having 
computed the binomial moments, there is no need to take the roundabout way 
via solving (3.13), because IP( v 2 1 ) can be directly computed using the 
exclusion-inclusion formula (3.1 1). 

The formulation via (3.11) offers, however, an elegant way for constructing 
bounds by employing relaxation as follows. The idea is keeping only the equa- 
tions corresponding to the first few binomial moments. With the first and second 
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binomial moments, the LP formulation for the lower bound is the following. 

min vl +v2 +. . . +VT 

s.t. vl 2212 +. . . +rv, = S1 (3.14) 
v2 +... + ( ; ) u ,  = s2 

vi 2 0, i = l ,  ..., r. 

Notice that the system of linear equations in (3.13) has a unique solution v* = 
(v:, . . . , v , * ) ~ .  Therefore, when formulating it as an LP with the same objective 
as in (3.14), the resulting LP has the optimal solution v*. Observing that (3.14) 
is a relaxation of that LP, we immediately get that 

holds, showing that the optimal objective value of (3.14) in fact provides a lower 
bound. An upper bound V,,, can be obtained analogously, by simply changing 
in (3.14) the direction of optimization to maximization. 

Observe that both (3.14) and its counterpart for the upper bound are LP- 
problems just having two equality constraints and for both problems the feasible 
domain being non-empty and bounded, both problems have optimal solutions. 
By taking into account the special structure, closed form solutions can be derived 
for both LP problems as explained in detail in Kall and Wallace [152]. We get 

where for any real number A, 1x1 denotes thefloor of A, meaning the greatest 
integer which is less than or equal to A. The bounds (3.15) are called Boole- 
Bonferroni bounds. 

The above way for deriving these bounds is due to Kwerel [176] and Prkkopa 
[230]. Bounds in explicit form, involving higher order binomial moments, have 
been obtained by Kwerel [I761 and Boros and Prkkopa [28]. Algorithmically 
computable bounds are presented in Prkkopa [232]. For the details see Prkkopa 
[234] and for Boole-Bonferroni-type bounds in general see also Galambos and 
Simonelli [94]. 

Taking into account (3.9) and (3.15), we get for the probability distribution 
F ( x )  the following bounds 

2 2 2 
1-&(x)+-S2(x) 5 F ( x )  < 1- 

r k* ( x )  + 1 S1(x)' B* ( x )  (k* ( x )  + 1) s2 (2) 
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where we now explicitly indicate the dependency of the binomial moments on 
x (see the remarks concerning (3.7)) and k(x) is given as specified in (3.15). 

The final step in presenting an algorithm for computing the bounds consists 
of specifying how the binomial moments Sl(x) and S2(x) can be computed. 
For Sl (x) we have (cf. (3.10)) 

where Fi(xi) is the distribution function of the ith one dimensional marginal 
distribution of J. Considering now S2(x), for fixed i and j we have 

where IP ( Ai ) = Fi (xi) holds for all i and mhermore 

holds for all i and j. Here Fij(xi, xj) is the probability distribution function 
corresponding to the two-dimensional marginal distribution of (ti, Jj) . Thus 
we get for the binomial moment S2 (x) the expression 

If J has a non-degenerate multivariate normal distribution then all marginal 
distributions are non-degenerate normal distributions, see, for instance, Mardia 
et al. [188]. Similar results hold for the Dirichlet and gamma distributions, see 
Prbkopa [234], cf. also Theorem 2.9 on page 127. For computing the value of 
univariate and bivariate normal distribution functions see the next section. 

An alternative way for deriving bounds on F(x) is based on graphs. Our 
starting point is the formulation (3.8). According to this relation, for deriving 
bounds on F(x) it is sufficient to construct bounds on IP( B1 U . . . U B, ). We 
will discuss an upper bound for this probability, due to Hunter [125], which 
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results in a lower bound on F (x). The following relations obviously hold. 

where [j] is any index in { 1, . . . , j - 1 ). Thus, depending on the choice of the 
Ijl's, (3.16) provides altogether ( r  - I)! upper bounds. We would be interested 
in the best of these bounds. A convenient way for dealing with the upper bounds 
in (3.16) is via the following construction: 

Let G = (V, E )  be an undirected complete weighted graph with r nodes 
(vertices). We associate the event Bi with vertex i and the intersection Bi n Bj 
with edge (i, j )  E E ,  for all 1 5 i, j 5 r ,  i # j. The weights are associated to 
the edges via (i, j )  H IP( Bi n Bj ) for all (i, j) E E. The idea is to represent 
the second term on the right-hand-side of (3.16) as the weight of a spanning 
tree in G. A spanning tree is a subgraph T of G, which is a tree and has the 
same set of vertices as G. Consequently, T has r - 1 edges, it is connected, 
and it contains no cycles (see, for instance Ahuja et al. [4]). The weight of the 
spanning tree, denoted by w(T), is defined as the sum of weights over all edges 
of T. 

We observe that, for any fixed choice of [j] for all j ,  the second sum in the 
right-hand-side of (3.16) is equal to the weight of the following spanning tree 
of G. Choose all edges ([j], j )  and consider the subtree T of G which has this 
set of edges and the corresponding set of nodes. Notice that, for j = 2, [2] = 1 
is the only available choice. Consequently, all nodes of G appear also as nodes 
of T. Furthermore, due to its construction, T is obviously a tree with its weight 
equal to the sum under consideration in (3.16). 

Thus we have associated to each one of the (r - I)! bounds in (3.16) a 
spanning tree in G. However, the number of different spanning trees of G is 
,,.~-2 , see Knuth [I701 Volume 1, which is in general much higher than the 

number of possible bounds considered so far. Our next observation is the 
following. While the left-hand-side and the first term in the right-hand-side 
of the inequality (3.16) are both independent on the assignment of indices to the 
events, the second term on the right-hand-side depends not only on the choice 
of the [jl's but also on the numbering of the events. Thus we can get further 
bounds by renumbering these events. 
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For accomplishing this let us now consider an arbitrary spanning tree T of 
G. We associate with this tree a reordering of the indices of the events by the 
following r-step process. In step 1 choose any node i and assign the index 1 
to Bi. In general, in step v (1 < v 5 r )  proceed as follows. Select one of 
the already renumbered nodes, which has a not yet renumbered neighbor Bk. 
Let r; be the already assigned new index of this node. Assign the index v to 
Bk and set [v] := r;. Due to the fact that T is a tree, it is easy to see that this 
procedure can be carried out in r steps and that the weight of the tree is equal 
to the corresponding sum in (3.16), according to the new indexing of events. 

Consequently, the best upper bound can be obtained by solving the following 
optimization problem: 

max P ( Bi (x) n Bj (x) ) 
T E 7  

(&~)€ET 

where 7 is the set of all spanning trees of G and ET is the set of edges of T. 
Let us denote by T* (x) an optimal solution of (3.17). We obtain the following 
lower bound for F(x) (see (3.8) and (3.16)): 

Problem (3.17) is a classical problem in combinatorial optimization, where it 
is usually formulated as a minimization problem and is called the minimum 
spanning tree problem. There are several thoroughly studied and well-tested 
algorithms available, see Ahuja et al. [4]. It is easy to see that the direction of 
optimization does not matter; the same algorithms can be used for both variants, 
with obvious modifications. In our case we have a dense graph (G is a complete 
graph), therefore Prim's method is well-suited for the solution of the problem, 
see Ahuja et al. [4]. The algorithm builds the minimum spanning tree in a 
greedy manner in r - 1 iterations, by adding a new edge to the tree at each 
of the iterations. Wee will keep two lists: at iteration v, V, will be the list of 
vertices and E, will be the list of edges of the current subtree. The general 
framework of this algorithm for solving (3.17) is the following: 

Step I .  Initialization 
Look for a longest edge (i, j) = argmax(k,l$? ( Bk n B1 ). Set 
v = l , E l = { ( i , j ) ) , a n d I / l = { i ) .  

Step 2. Choose the next edge 
If v = r - 1 then stop, the current graph with set of edges E, 
is a maximum weight spanning tree of G. Otherwise look for the 
longest edge with one of its vertices in V, and the other one in 
v \ v,: 
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Step 3. Add a new edge to the tree 
Let Ev+1 = Ev U { ( p ,  q) ); V,+1 = V, U { q ); set v := v + 1 and 
continue with Step 2. 

Let us point out, that the above scheme is just the framework of the method; 
the efficiency largely depends on the details of the implementation, especially 
on the organization of the heap, see Ahuja et al. [4]. 

It is well-known that the Hunter bound is always at least as good, as the 
Boole-Bonferroni bound, see Prikopa [234]. The bounds can be further im- 
proved by employing hypergraphs and hypertrees, see Bukszk and Prikopa 
[33], Szhtai [284], Szhntai and Bukszhr [285], and the references therein. 

3.5 Computing probability distribution functions 
The main goal of this section is to discuss algorithms for computing the value 

of the multivariate normal probability distribution function. Besides this, we 
will also outline ideas for computing the probability distribution function of 
some other multivariate distributions. 

For computing the probability distribution function of the univariate normal 
distribution, there are ready-made functions available in almost all comput- 
ing environments. For computing the bivariate normal distribution function 
Fij (xi, xj) several well-tested procedures are available. One of the simplest 
tricks is based on the following reformulation: 

where fij (y I x) is the conditional density function of 6, given & = x. For the 
normal distribution, the conditional distributions are also normal distributions, 
see Mardia et al. [188]. We obtain that fij(y ( x) is the density function of a 

univariate normal distribution N ( p j  + (pij 2) (x - pi), o!(l - p:;)), where 
pi denotes the expected value and oi stands for the standard deviation of ti, 
and pij denotes the correlation coefficient between Ji and Jj., for all i and j. 
Consequently the inner integrand in (3.19) is just a normal univariate proba- 
bility distribution function. Thus, Fij (xi, xj) can be evaluated by employing a 
univariate numerical quadrature for integration. For a state-of-the art review 
for computing bivariate normal probabilities see Genz [104]. This paper also 
presents methods for computing trivariate normal probabilities. 
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Let us turn our attention to the multivariate case. Recall that the standardnon- 
degenerate multivariate normal distribution function has the following form (cf. 
(Ch. 2, 2.27)): 

F ( x )  = 1 ,-$ vTR-'u dy (3.20) 
(2x)f 1 ~ 1 4  

IR' 
where R is the nonsingular correlation matrix of J. From the numerical point 
of view the problem is to evaluate the above multivariate integral. In principle, 
this can be done by standard nested quadrature methods of numerical analysis. 
For higher dimensions, however, the specialities of the problem are to be taken 
into account. Algorithms of this kind have been developed by several authors, 
mainly for the cases of multivariate normal- and t-distributions, see the review 
papers of Genz and Bretz [I051 and Gassmann, Dehk, and Szintai [loo], and 
the references therein. 

In this book we will restrict ourselves to the Monte-Carlo approach and will 
discuss two basic techniques for computing F (x ) .  The two algorithms can also 
be combined; for the resulting hybrid method see Gassmann et al. [loo]. This 
paper also provides a review on methods for computing multivariate normal 
probabilities. 

3.5.1 A Monte-Carlo approach with antithetic variates 
For the non-degenerate multivariate normal distribution, this method has 

been developed by Dehk 1491. Recently, Genz and Bretz [105] extended the 
method to multivariate t-distributions. We will discuss the multivariate normal 
case. 

The starting point is to transform the integral in (3.20) to a polar form. Let 
R = L L~ be the Cholesky-factorization of R with L being a lower-triangular 
matrix (see Ch. 2, Section 2.3). Applying the transformation y = Lz first 

For changing to polar coordinates apply the transformation z = ru with llull = 
1 which results in 

Notice that, apart of a normalizing constant, the integrand in (3.21) is the 
probability density function of the x-distribution with r degrees of freedom, 
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see Johnson et al. [130]. In fact, the method can also be derived in a purely 
probabilistic fashion, as it has been done in the original paper of Dehk 1491, see 
also Deik [50] and Tong [289] Theorem 4.1.1. 

Normalizing (3.21) leads to the equivalent form 

where 
T-1 - L p  

s ( P ) = ~  e 
is the probability distribution function of the x-distribution with r degrees of 
freedom and the normalizing constants y and K. are 

where y is the surface area of the r-dimensional unit sphere, see, for instance, 
Price [240]. (3.22) can also be written as follows 

The idea is to evaluate the first (surface) integral by Monte-Carlo methods, 
whereas for the second (univariate) integral numerical integration is used. 
Choosing a sample-size N, the framework of the method is the following: 

Step I .  Generatingpoints on the unit sphere 
Generate N sample points f i l ,  . . . , f iN  uniformly distributed on the 
unit sphere in IRT. 

Step 2. Compute h 
For each of the sample points k = 1,. . . , N, in turn do: 

compute pl (uk) and p2 (uk); 
evaluate hk := h(uk) by numerical integration. 

Step 3. Compute the Monte-Carlo estimator 

For computing uniformly distributed points on the r-dimensional unit sphere, 
the standard method is the following: 

Step I .  Generate r (i.i.d.) random numbers dl, . . . , dT according to the 
standard univariate normal distribution; 
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Step 2. compute d = Jw, 
Step 3. deliver uT = (%, . . . , $). 

For this method and further methods for generating uniformly distributed points 
on the r-dimensional unit sphere see Devroye [59]. The method discussed so 
far would correspond to the "crude" Monte-Carlo method, with the estimator 
having a variance proportional to &. As in Monte-Carlo methods in general, 
it is of vital importance to include some variance reduction techniques, see, for 
instance, Ripley [246] or Ross [259]. De&kproposes the following variant ofthe 
method of antithetic variates, with m 5 r being a parameter of the algorithm: 

Step I .  Generate points on the unit sphere 
Generate N . r sample points iik k = 1,. . . , N,  j  = 1,. . . , r 
uniformly distributed on the unit sphere in IRT. 

Step 2. Compute h 
For each k = 1,. . . , N,  in turn do: 

Convert iikl,. . . , iikr into an orthonormal system v l ,  . . . , v,, 
by employing, for instance, the standard Gram-Schmidt pro- 
cedure. For a possible (but very unlikely) linear dependency 
among the generated vectors, apply a heuristics based on drop- 
ping and recomputing some of the vectors. 

Compute M := 2m ( ) vectors on the unit sphere accord- 

ing to 
m 

with 1 5 jl < . . . < jm < r and with 
s E S, where S := { s  E IRm I si = 1 or si = -1, Qi). 
For each of these vectors compute pl(w(s, jl ,  . . . , j m ) )  and 
P ~ ( w ( s , ~ I , .  . . , jm) )  and 
evaluate hk(s, j l ,  . . . , j,) := h(w(s ,  j l ,  . . . , j,)) by numeri- 
cal integration. 
Compute 

Step 3. Compute the Monte-Carlo estimator 
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Concerning the parameter m of the procedure, best results were reported for 
the choices m = 1 and m = 3, see Gassmann, Deik, and Szintai [loo]. For 
the implementation of the algorithm and recent improvements see De& [52].  

3.5.2 A Monte-Carlo approach based on probability bounds 
This approach has been developed by Szintai [280], [281]. We discuss the 

technique for computing the probability 

where the random variable v counts the number of events which occur out of 
B1, . . . , Br, see page 285. Recall that according to Proposition 3.1 we have for 
all k > 1 

.[(I)] = s k .  (3.23) 

The method will be based on the Boole-Bonferroni bounds 

see (3.15) where the definition of k* can also be found. 
Having computed an estimate for P, the estimate for the probability distri- 

bution function F(x )  can be obtained according to (3.8). 
The algorithm is based on the inclusion exclusion formula (3.1 1) and on the 

Boole-Bonferroni bounds. The idea is to compute three unbiased estimators 
for P. Using these, a linear combination of them is computed with minimal 
variance, which will be the final unbiased estimator. 

The first estimator is the crude Monte-Carlo estimator, concerning the ran- 
dom variable 

for which we obviously have IE[d0] = Pv. 
For the second estimator we consider the difference between fi and the 

Boole-Bonferroni lower bound 

Substituting the inclusion exclusion formula (3.11) for the probability, and the 
expression for PL according to (3.24), we get 
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The method is based on the following observation: if we substitute the bino- 
mial moments by the random variables from (3.23), then cancellation occurs 
according to 

where we assumed v 2 2 and have utilized the obvious relation 

Thus we will consider the random variable 

According to the above considerations, 191 := 61 + PL is an unbiased estimator 
for Pv, that is, IE[fll] = Pv holds. 

For the third estimator we consider the difference between P and the Boole- 
Bonferroni upper bound 

Proceeding analogously as before, cancellation occurs again, and we end up 
with the random variable 

With 192 := 62 + PU we have IE[192] = Pv. Thus, we obtained a third unbiased 
estimator for Pv. 

The final estimate is obtained as follows. Let C be the covariance matrix of 
(go, 191,192). The estimate will have the form 6 := woiJO + wl& + ~2192. 
Denoting the vector of weights by wT = (wo, wl, w2), the variance of 19 
is obviously wTCw. The weights are determined by solving the following 
minimum-variance problem 

min wTCw 
s.t. wo + Wl + w2 = 1 

(3.25) 
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which, with Lagrange-multiplier A, is equivalent to solving the following sys- 
tem of linear equations: 

where ei = 1 for i = 1,2 ,3  hold. Notice that, due to the constraint in (3.25), 
19 is also an unbiased estimator of Pv. 

The algorithm runs as follows: 

Step 0. Compute bounds 
Compute the Boole-Bonferroni bounds PL and Pu according to 
(3.24), by numerical integration. 

Step I .  Generate a sample 
For k = 1, . . . , N proceed as follows: 

Generate a random vector according to the distribution of J; 
compute the realization of v, fik; 

compute corresponding realizations dk, @, and dk. 
Step 2. Computejrst estimates 

Compute the estimates 

(for 80 this is implemented via a counter, of course). 

Step 3. Compute an estimate for the covariance matrix C 
Using the sample, compute an estimate 6' for C. 

Step 4. Compute weights which minimize variance 
Compute the weights by solving (3.26) with C = c Let the solution 
be GT = (60, Gl, 62). 

Step 5. Computejnal estimate 
Compute 8 = zijoao + 6181 + &&. 

Step 6. Deliver estimate for F (x) 
According to (3.8), deliver fi := 1 - 8 as an estimate for F(x). 

For further development of the procedure involving bounds with higher- 
order binomial moments and for graph-based bounds see Szintai [284]. For 
applying the technique to the computation of other multivariate distribution 
functions, including the Dirichlet distribution (cf. page 129) and the gamma 
distribution (cf. page 135) see Szintai [281] and [282]. 
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3.6 Finite discrete distributions 
If { has a finite discrete distribution then the SLP problem with joint prob- 

ability function can be formulated as a disjunctive programming problem, see 
Chapter 2 Section 2.2. Possible solution approaches are to solve the equivalent 
mixed-integer linear problem (Ch. 2, 2.19) by employing a general-purpose 
solver for such problems, or to apply the general techniques for disjunctive 
programming, see, for instance, Nemhauser and Wolsey [212]. 

In the case, when only the right-hand-side is stochastic, special-purpose 
algorithms are available. The basic idea is the following disjunctive formulation 
of (3.4), due to Prkkopa [233] and Sen [267]: 

max cTx 

where Ds is {y I y 1 yS), with yS, s = 1,. . . , S defined as follows. Let 

D := { y  I F(y) 2 a and F(y - E) < a for all e E IRS, e > 0, E # 0) .  

The set D is clearly a subset of all joint realizations of {, therefore D is a 
finite set. With S denoting the number of elements in D, yS is the sth element, 
indexed in an arbitrary order. 

Clearly, yS E D, if and only if F(yS) 2 a holds and there exists no 
y 5 ys, y # yS, such that F(y) 1 a holds. For this reason, PrCkopa[233] 
has coined the following terminology: the elements of D are called plevel 
efficient points (PLEP's) of the probability distribution function F. The termi- 
nology corresponds to the choice a := p for the probability level. 

Figure 3.3 shows the probability distribution function for a discrete distri- 
bution in JR2, with four equally probable realizations (1, I), (2, I), (2,2), and 
(3,3). For the level a = 0.5, the realization (2,2) is the single PLEP of F. 

Problem (3.27) is a disjunctive programming problem with an especially sim- 
ple structure. Several algorithms, based on enumeration, cuts, and Lagrangean 
relaxation have been proposed to its solution, see Dentcheva et al. [57], PrCkopa 
[234], Prkkopa et al. [239], Ruszczyhki [262], and Sen [267], as well as the 
references therein. For an overview see PrCkopa [236]. 

3.7 A guide to available software 
3.7.1 SLP problems with logconcave distribution functions 

The following solvers have been developed by Mayer, see, for instance 
12021. The cutting plane method of Szintai is implemented as the solver 
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Figure 3.3. Distribution function and level sets of a bivariate finite discrete distribution function 
with a PLEP at (2,2), corresponding to a = 0.5. 

PCSPIOR; the central cutting plane method is implemented in Fortran as the 
solver PROBALL, and the reduced gradient approach is implemented as the 
solver PROCON. These solvers are for the case when the random right-hand- 
side has a non-degenerate multivariate normal distribution; for computing the 
probability distribution function and its gradient the subroutines of Deik and 
Szintai have been utilized, see the next section. All implementations are in 
Fortran and use Minos (see Murtagh and Saunders [2 101, [2 1 11) for solving the 
LP subproblems. The solvers are available along with the model management 
system SLP-IOR, as attached solvers, see Section 9.2 in this chapter. 

For aiding the selection of an appropriate solver, comparative computational 
results can be found in Kall and Mayer [144], [146], and Mayer [201], [202]. 
According to these tests, we recommend to use PROBALL. There are no inde- 
pendent benchmark results available. However, as SLP-IOR is freely available 
for academic purposes, the reader can test the solvers herselfhimself. 

Szintai [283] has implemented in Fortran his cutting plane method as the 
solver PCSP. The authors of the methods discussed in Section 3.3 also report 
on solving some test problems, the solvers might be available on request, we 
suggest to contact the authors. 

For the cases, when the problem is not a convex optimization problem, solvers 
for global optimization might prove to be useful; for an overview on solvers see 
Pintkr [224]. 

3.7.2 Evaluating probability distribution functions 
For choosing an appropriate algorithm for the evaluation of multivariate prob- 

ability distribution functions, guidelines, based on numerical experimentation, 
have been published by Gassmann, Deik, and Szintai [loo]. This paper also 
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gives an overview on currently available software. Here we just point out the 
following issues: 

The programs of Alan Genz, implemented in Fortran and MatLab, are avail- 
able on his personal homepage 
http://www~sci.wsu.edu!mathlfacultylgenzkomepage. 

The algorithm in Section 3.5.1 has been implemented by Deak in the 
Fortran subroutine package NORSET, see [52], whereas the methods discussed 
in Section 3.5.2 have been implemented in Fortran by Szintai, see [284]. Szintai 
[282] has also developed a Fortran subroutine package for computing multivari- 
ate non-degenerate normal-, Dirichlet- and gamma distribution functions and 
their gradients. The availability of the programs is not clear from the papers, 
please contact the authors. 

3.7.3 SLP problems with finite discrete distributions 
According to our knowledge, there is no publicly available solver for this 

class of problems. The authors of the papers cited in Section 3.6 present il- 
lustrative numerical examples, and report on implementation of solvers. These 
solvers might be available on request; we suggest to contact the authors. 

As we have seen in section 3.6, SLP problems in this class are equivalent 
to disjunctive programming problems, a subclass of mixed-integer programs. 
They belong to the class of NP-complete problems, implying that from the 
theoretical worst-case point of view they are difficult to solve. We are not able 
to provide the reader with guidance for selecting an algorithm or solver. On 
the one hand, we do not have personally any numerical experiences with such 
problems. On the other hand, as far as we see, comparative computational 
studies are completely missing in the literature. The authors of the papers 
cited in section 3.6 merely provide some illustrative examples, which is clearly 
insufficient to judge the practical value of the methods (recall that the problems 
dealt with are NP complete). 

4. Single-stage models based on expectation 
This section is devoted to discussing algorithms for expectation-based SLP 

problems, presented in Ch. 2, Section 4. First we review those models, for 
which a deterministic LP-equivalent exists, thus offering the possibility of 
solving them by general-purpose LP software. Subsequently we discuss the 
application of the dual decomposition method, presented in Ch. 1, Section 2.6, 
for solving various single-stage expectation-based models, with a finite dis- 
crete distribution. The order of sections does not follow the order of models 
in Ch. 2, Section 4; the discussion is governed by the logic of dual decompo- 
sition. The general idea is to solve those models via solving their equivalent 
representations as two-stage recourse problems. 
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4.1 Solving equivalent LP's 
In this section we will summarize LP-equivalents of models based on ex- 

pectation. When reporting the dimensions of these problems we will not count 
nonnegativity constraints, or in general, individual bounds on the variables. Let 
us denote the number of constraints in the definition of B by m. 

SLP models involving integrated probability functions have been introduced 
and discussed in Ch. 2, Section 4.1. We consider the case when < has a finite 
discrete distribution with N realizations. 

For separate integrated probability functions, LP-equivalents are formulated 
in (Ch. 2, 4.10) and (Ch. 2, 4.1 l), on page 152. (Ch. 2, 4.10) corresponds to an 
integrated chance constraint and has m + N + 1 rows and n + N variables. 
(Ch. 2, 4.1 1) involves minimizing an integrated probability function and has 
m + N rows and n + N variables. Both problems have a dual block-angular 
structure, indicating, that in fact the underlying optimization models can be 
formulated as two-stage recourse problems. LP-equivalents for models with 
joint integratedprobability functions are given in (Ch. 2, 4.22) and (Ch. 2, 4.23). 
These models grow more rapidly with N ,  as their counterparts with separate 
functions. In fact, (Ch. 2, 4.22) has m + 2Ns + 1 constraints and n + 2N 
variables, where s is the number of inequalities involved in the joint constraint. 
(Ch. 2, 4.23) has the same amount of variables and m + 2Ns constraints. 

In Ch. 2, Section 4.2 we have discussed a model, based on conditional ex- 
pectation. Under the assumption that < has a logconcave density function, the 
stochastic constraint can be converted into a deterministic linear constraint. 
Consequently, the equivalent LP has essentially the same size as the original 
problem. 

Section 4.3 in Chapter 2 is devoted to SLP models involving conditional 
value-at-risk (CVaR) functions in the constraints or in the objective. Assuming 
that < has a finite discrete distribution with N realizations, the LP-equivalents 
are given as (Ch. 2, 4.38) on page 164 for minimizing CVaR, and as (Ch. 2, 4.45) 
on page 166 for a CVaR-constraint. (Ch. 2,4.38) has m + N rows and n + 
N + 1 variables, whereas (Ch. 2, 4.45) has the same number of variables and a 
single additional constraint. Both matrices have a dual block-angular structure 
pointing to the fact that the underlying SLP models are essentially two-stage 
recourse problems. 

In several cases discussed above we observed a dual block-angular structure. 
This suggests using a dual decomposition method, instead of the brute force 
application of general-purpose LP-solvers. 

4.2 Dual decomposition revisited 
The general dual decomposition algorithm has been discussed in Chapter 1, 

Section 2.6, on page 3 1. The basis of the method is the decomposition algorithm 
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of Benders [12] which has been adapted to the structure of two-stage recourse 
problems with a finite discrete distribution by Van Slyke and Wets [296]; the lat- 
ter authors named the method "Gshaped method". The method is a special case 
of nested decomposition, corresponding to two stages, see Ch. 1, Section 2.7. 
In this section we will consider the case, where only the right-hand-side and 
the technology matrix are stochastic in the recourse subproblem. For the sake 
of simplicity, we will also assume that W has the complete recourse property. 

Two-stage recourse problems are discussed in detail in Ch. 3, Section 2. 
Here we will need the following, slightly modified formulation: 

where B = { x I A x  = b, x 2 0 ). The recourse function Q( x; T(E), h(E) ) is 
defined as 

which can also be expressed via the LP-dual as 

We assume that B # 0 holds and that B is bounded. 
Having the recourse function in the constraint, instead of the objective, 

recourse-constrained problems arise. These have the form 

and have been introduced and first studied by Higle and Sen [118]. We will set 
up the dual decomposition method for (4.1) and (4.4) simultaneously. For this 
reason we consider the problem 

For the recourse problem (4.1) we choose 0 = 1, d = 0, and both x and w are 
considered as variables. For the recourse-constrained problem 0 = 0 is chosen 
and only x is considered as a variable. 
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As we have already discussed in Ch. 1, Section 2.6, the recourse function is 
convex and piecewise linear, and can equivalently be written in the form 

where U  is the (finite) set of vertices of the polyhedral feasible domain of the 
recourse problem in the dual form (4.3). Note that the feasible domain of the 
dual recourse problem neither depends on x nor on J. 

Let us assume now, that € has a finite discrete distribution with N realiza- 
N 

tions ik and corresponding probabilities pk > 0, k = 1,. . . , N, x p k  = 1. 
k=l 

The corresponding realizations of (h(J), T(J) will be denoted by (hk, T", 
lc = 1 , .  . . , N. Thus, for any fixed x E B, we have to deal with N recourse 
subproblems, corresponding to the realizations. 

The recourse constraint in (4.5) takes the form 

which, due to the representation (4.6), can be written as 

Due to the nonnegativity of probabilities, this single nonlinear inequality con- 
straint can be replaced by a system of linear inequality constraints 

where the notation is to be understood as follows. For any 

the system (4.7) contains exactly one inequality corresponding to the choice 
uk = Ck, k = 1,. . . , N. Stating this in a different way, the inequalities in 
(4.7) are indexed by employing the index set UN. Consequently, the system 
of inequalities consists of M~ inequalities, where M  = IU I is the number of 
elements of U .  
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Hence we can rewrite (4.5) as follows. 

min cTx +OW 
.(w) 

N 
T k  s t .  dTx + x p k ( u X )  (h - Tkx) -W 5 0, uk E U, Vk Ne408) 

k=l 
x E t?, I 

This problem will be called the full master problem. It involves, in general, a 
tremendous amount of inequality constraints which are, as an additional diffi- 
culty, not known explicitly. From the algorithmic point of view, the basic idea 
of the dual decomposition method is constraint generation. The constraints in 
(4.8) are generated in a step-by-step manner in the hope that very much fewer 
inequalities, than in (4.8), are sufficient to reach optimality. Instead of the full 
master problem, relaxed master problems of the form 

are solved, where v is the number of constraints generated so far and u i  E U 
Vk, j holds. We have added the constraint iiT(h - TX) - w 5 0, where 
h = E[h([)], T = E[T(J)], and ii is any feasible solution of (4.3). Due to the 
Jensen-inequality (see Ch. 3, Section 2), the additional inequality is redundant 
in the full master problem (4.8). Note that, due to the assumptions concerning t?, 
and implied by the inclusion of the additional constraint involving expectations, 
the optimal solution of the relaxed master problem exists for any v 2 0. 

The decomposition method for the solution of (4.5) is an adaptation of the 
dual decomposition method in Ch. 1, Section 2.6. The formal description fol- 
lows. 

Step I .  Initialization 
Set u := 0, compute h and T, determine a feasible solution of the 
recourse subproblem (4.2) (for instance, by 'the simplex method), 
and set up the relaxed master problem (4.9). 

Step 2. Solve the relaxed master problem 
Solve (4.9), let a solution be (x*, w*), where in the recourse con- 
strained case w* = w(= y) holds. 

Step 3. Evaluate the expected recourse function 
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3.a For k = 1 to k = N do: 
With x := x* and (h([), T(E)) := (hk, Tk), solve the recourse 
subproblem (4.2), for instance, by the dual simplex method. Let 
u i  denote an optimal dual solution of the kth subproblem. 

3. b Compute the expected value of the recourse function as follows 

Step 4. Check for optimality 
If Q(x*) 5 w* then Stop, otherwise continue with the next step. 

Step 5. Add an optimality cut to the relaxed master 
Set v := v + 1, u i  = ui ,  k = 1,. . . , N and add the corresponding 
cut to the set of constraints of the relaxed master (4.9). Continue 
with Step 2. 

Using an analogous reasoning as for the dual decomposition method in 
Ch. 1, Section 2.6, it is clear that the algorithm terminates after a finite number 
of iterations and that in the case of stopping, the method delivers an optimal 
solution. 

We discuss the special case of simple recourse next, see Ch. 3, Section 2.2. 
Following Klein Haneveld and Van der Vlerk [169], we consider the case when 
the technology matrix T(J) is also stochastic. The minimization problem 
(Ch. 3, 2.42) on page 226, defining the recourse function, is obviously sep- 
arable in the components of (y+, y-) E R ~ ~ ~ ,  with the ith subproblem given 
as 

where T, denotes the ith row of T ,  i = 1, . . . , n2. The LP dual problem is 

which has the optimal solution 

The feasible domain of the dual recourse problem (Ch. 3, 2.45) is an m2- 
dimensional interval, thus having sm2 vertices. The set of vertices U consists 
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of vectors u E IRm2, with either ui = q: or ui = -qT, i = 1,. . . , mz. The 
explicit formula for the recourse function, corresponding to (Ch. 2, 2.46) on 
page 227, is the following 

Let us now turn our attention to the dual decomposition method, applied 
to simple recourse problems with a random technology matrix and to simple- 
recourse constrained problems. The full master problem (4.8) has now 2n2 + 2 
constraints. In the dual decomposition method only Step 3.a changes as follows: 

Step 3.a For k = 1 to k = N do: 
F o r i =  1 t o i = m 2 d o :  
Compute the optimal dual solution of the recourse subproblem 
according to (4.12), by simply checking signs as follows 

The decomposition method for simple recourse problems with a random 
technology matrix, as outlined above, has first been proposed by Klein Haneveld 
and Van der Vlerk [ 1691. 

Finally let us point out that the adaptation discussed above corresponds to the 
dual decomposition method with aggregate cuts. The adaptation of the multi- 
cut version, as described in Ch. 1, Section 2.6 page 35 is left as an exercise for 
the reader. 

4.3 Models with separate integrated probability functions 
We consider the models (Ch. 2, 4.8) and (Ch. 2, 4.9) in Ch. 2, Section 4.1, 

on page 152, involving separate integrated probability functions, with a finite 
discrete distribution. We begin with an observation, due to Higle and Sen [118]. 
Comparing the explicit formula (4.13) for the recourse function with the model 
formulations (Ch. 2, 4.8) and (Ch. 2, 4.9), we see immediately that (Ch. 2, 4.9) 
can be considered as a simple recourse problem and (Ch. 2, 4.8) is equivalent 
to a problem with a simple-recourse constraint. In both cases ma = 1, qf = 0, 
q- = 1, and d = 0 hold. Thus, the dual decomposition methods, as described 
above can directly be applied. 

We obviously have U = {0,1) and thus in Step 3.a of the dual decomposition 
method is computed as follows: 
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Consequently the coefficients uk in the formulation of the full master problem 
(4.8) are either 0 or 1, k = 1,. . . , N. The N-dimensional binary vector 
(u l , .  . . , u ~ ) ~  can in a one-to-one manner be identified with subsets of the 
index set N  = (1,. . . , N), by choosing index i as an element of the subset, if 
and only if ui = 1 holds. In this subset-language the full master problem (4.8) 
assumes the form 

rnin cTx+ Ow 
4 w )  

~ . t .  C R ( ~ I x -  hk )  -W 5 0, K C N  (4.14) 
IcEK 

x E B 

Let us consider the recourse-constrained case with w = y. Comparing (4.14) 
with Theorem 4.12 of Chapter 2, it is clear that the derivation of (4.14) in- 
cludes an alternative proof of that theorem. The relaxed master problem can be 
formulated as 

min cTx+ Ow 
4 r w )  

s.t. C p k ( ~ k ~ - h k )  -w 5 0, j = l , . . . , v  
k E K j  

T x  - h -W 5 0  
w 2 0  

Iz: E a 

where Kj C N  holds for all j 2 0 and we require KO = 0. The constraint 
w 2 0 corresponds to the choice K = 0 in the full master whereas the constraint 
T x  - h - w 5 0 arises from the choice K = N  and corresponds to the dual 
variable ii = -1. The relaxed master problems will be constructed in such a 
way that Ki n ICj = 0 holds throughout, for i # j. 

The final form of the decomposition algorithm is as follows. 

Step I .  Initialization 
Set v := 0, compute h and T ,  choose ii = 1 as the dual-feasible 
solution of the recourse subproblem (4.2), and set up the relaxed 
master problem (4.15). 

Step 2. Solve the relaxed master problem 
Solve (4. IS), let a solution be (x*,  w*), where in the recourse con- 
strained case w* = w(= y )  holds. 

Step 3. Evaluate the expected recourse function 

3.a Determine the index set K* = {k I T%* - h" 0). 
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3. b Compute the expected value of the recourse function as follows 

Step 4. Check for optimality 
If Q(x*) 5 w* then Stop, otherwise continue with the next step. 

Step 5. Add an optimality cut to the relaxed master 
Set v := v + 1 ,  calK, = IC* and add the corresponding cut to the 
set of constraints of the relaxed master (4.15). Continue with Step 
2. 

For integrated chance constraints, the algorithm developed this way is identical 
with the cutting-plane algorithm proposed by Klein Haneveld and Van der Vlerk 
[169]. 

Let us next turn our attention to integrated probability functions ofthe second 
kind. We consider the models (Ch. 2, 4.16) and (Ch. 2, 4.17). Analogously 
as before, (Ch. 2, 4.16) can be interpreted as a simple-recourse constrained 
problem and (Ch. 2, 4.17) can be viewed as a simple recourse problem. The 
adaptation of the dual decomposition method can be developed along the same 
lines as for the previous type of integrated probability functions, and is left as 
an exercise for the reader (note that now d = 0 does not hold in general). Let us 
remark that similarly as before, we obtain an alternative proof for Theorem 4.2 
in Chapter 2, as a by-product of constructing the method. 

4.4 Models involving CVaR-optimization 
In this section we will discuss the dual decomposition method as applied to 

the models (Ch. 2, 4.35) on page 163 and (Ch. 2, 4.42) on page 165, both in 
Ch. 2, Section 4.3. As in Section 4.3, a comparison with (4.13) for the simple 
recourse function reveals the following: Model (Ch. 2, 4.35) involving CVaR- 
minimization is equivalent to a simple-recourse problem, whereas (Ch. 2, 4.42) 
turns out to be a simple-recourse constrained problem. Furthermore, in the 
recourse-constrained case d # 0 holds (cf. (4.4)). 

Proceeding analogously, as in Section 4.3, we arrive at the following full 
master problem: 

min cTx + O W  
x,-%'W 

s.t. z+&-pk(@x-hk-I - w ~ o , ~ c N  (4.16) 
kEK I 

where now z and the free variable z are both first-stage variables. For formu- 
lating the relaxed master problem let us introduce the notation K := and 
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7 := 1 - R. Having 0 < a < 1, T < 0 obviously holds. Using our notation, 
the relaxed master problem can be given as 

min cTx + OW 
x,z,'W 

where for all j 2 0 c N holds with the prescription ICo = 0. Fur- 
thermore, lCj c N, V j  and Xi n ICj = 0, i # j ,  hold. The constraint 
x - w 5 0 corresponds to K: = 0 in the full master problem and the constraint 
R(TX - 6) + TZ - w 5 0 arises when choosing K: = N. Note that the re- 
laxed master problems (4.17) involve the free variable z. Due to the additional 
constraints it is easy to show, however, that the relaxed master problems have 
optimal solutions for any v 2 0. Introducing the notation 

the relaxed master problem can be written in the compact form 

min cTx +Ow 
x,z,'W 

s.t. tplx +(1 - pii1)z -w < hp1, i = 1,. . . , v 
RTX +TZ -w 5 RL 

z - w < o  

x E a 
Now we are prepared to formulate the dual decomposition method for the 
CVaR-optimization problems. 

Step I .  Initialization 
Set v := 0, compute h and T ,  and set up the relaxed master problem 
(4.19). 

Step 2. Solve the relaxed master problem 
Solve (4.19), let a solution be (x*, z*, w*), where in the recourse 
constrained case w* = w(= y) holds. 

Step 3. Evaluate the expected recourse function 



Algorithms 

Step 4. 

Step 5. 

3.a Determine the index set IC* = { k  I T ~ X  - z* - hk > 0). 
3. b Compute the expected value of the recourse function as follows 

Q(x*, z*) = p k ( ~ ~ x *  - z* - h". 
~ E K *  

Check for optimality 
If Q(x*, z*) 5 w* then Stop, otherwise continue with the next step. 
Add an optimality cut to the relaxed master 
Set v := v + 1, compute t[,], h[,], and pi,] according to (4.1 8), and 
add the corresponding cut to the set of constraints of the relaxed 
master (4.19). Continue with Step 2. 

Let us finally formulate a CVaR-analogue of the polyhedral representa- 
tion Theorem 4.12 in Chapter 2, given for integrated chance constraints in 
Ch. 2, Section 4.1. Let 

We have the following polyhedral representation: 

with the sum de$ned as zero for K: = 0. 

Prooj The proof follows directly from the method which lead to the full master 
problem (4.16). An alternative, direct proof can also easily be given, along the 
lines of the proof of Theorem 4.12 in Chapter 2; this is left as an exercise for 
the reader. 0 

For the solution of CVaR-minimization problems, the algorithm presented 
above has been proposed by Kiinzi-Bay and Mayer [174]. 

4.5 Models with joint integrated probability functions 
The subject of this section is a decomposition algorithms for the SLP- 

problems (Ch. 2, 4.20) and (Ch. 2, 4.21), involving joint probability functions 
and a finite-discrete probability distribution. These problems do not fit into the 
general framework of the dual decomposition, as discussed Section 4.2. Nev- 
ertheless, we present an algorithm for the two problems simultaneously. We 
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consider the optimization problem 

min cTx +Ow 
4 , ~ )  

N 

s.t. CPk rnau(tfx - hk)+ -w < 0 (4.2 1) 
l s i ls  k= 1 

Problem (Ch. 2, 4.20) involves a joint integrated chance constraint and can be 
obtained from (4.21) by choosing 8 = 0 and w = y. In this case only x counts 
as variable. In problem (Ch. 2, 4.21) a joint integrated probability function is 
included into the objective function. This problem is a special also case of 
(4.21), corresponding to the choice 8 = 1; both x and w are considered as 
variables. 

Note that (4.2 1) involves the expected value of a maximum of recourse func- 
tions which still fits the general framework of recourse constrained program- 
ming, as defined by Higle and Sen [118]. One way to develop an algorithm 
for (4.21) would be to extend the dual decomposition method to recourse con- 
strained models of the discussed type. In this section we will chose the direct 
way by presenting the algorithm directly based on the polyhedral representa- 
tion theorem 4.1 (Chapter 2, page 152) of Klein Haneveld and Van der Vlerk. 
The starting point is an equivalent representation of (4.21) in the form of a full 
master problem: 

where Z = (1, . . . , s }  is the set of row indices in the joint integrated probability 
function, I' := {Z := ( lk, k E IC) I lk E I for a11 k E IC} holds, and tfk is 
the Ith row of T ~ .  

The following type of relaxed master problems will be utilized: 

min cTx +Ow 
4,'~) 

s.t. C pk((t t)Tx-ht)  - w < O ,  j = l ,  ..., V, 
(W)EMj  
T - ti x - hi -W 5 0, i = l ,  ..., S, 

w l 0, 
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where M j  c N x Z is a set of ordered pairs ( I c ,  1 )  with the property that 
each k E N appears at most once. We prescribe that KO = 0 holds. Finally, 

= E[ti(F,)], hi = E [ h i ( J ) ]  hold for all i. The constraint w 2 0 arises when 
choosing M = 0 in the full master problem, and T x  - hi - w 5 0 has its root 
in the choice M = N x {i). That the additional expectation-based constraints 
are redundant in the full master problem, can also be seen directly, by utilizing 
the obvious fact that IEIOi] 5 E [  max O j ]  holds for any random variables 

l<j<M 
Oi, i = 1, .  . . , M with finite expectedvalue. It is easy to show that under our 
assumptions (4.23) has an optimal solution for any v 2 0. Next we state the 
algorithm. 

Step 1. Initialization 
Set v := 0, compute 5 and hi, i = 1,. . . , s, and set up the relaxed 
master problem (4.23). 

Step 2. Solve the relaxed master problem 
Solve (4.23), let a solution be (x* ,  w*),  where in the case of joint 
integrated constraints w* = w(= y) holds. 

Step 3. Evaluate the joint integratedprobability function 

3.a Determine the index set 

M* = { ( k ,  I )  I ( t f ) T x *  - hf := m v  ( ( t f )Tx* - hf ) > 0). 
l<z<s 

3. b Compute the the joint integrated probability function as follows 

Step 4. 

Step 5. 

k T  * K J ( ~ * )  = ~ k ( ( t l )  x  - $1. 
(k , l )€M* 

Check for optimality 
If K J ( x * )  5 w* then Stop, otherwise continue with the next step. 
Add an optimality cut to the relaxed master 
Set v := v + 1, M ,  = M* and add the corresponding cut to the 
set of constraints of the relaxed master (4.23). 
Continue with Step 2. 

PROPOSITION 4.2 The above method terminates after ajnite number of it- 
erations, with x* being an optimal solution of our problem. 

Prooj The proof runs along the same lines as the proof of the analogous propo- 
sition for the dual decomposition. It is clear that in the case when M* = M j  
holds for some j 5 v, then the stopping criterium in Step 4. will hold and the 
algorithm terminates. Having a finite number of different of subsets in N x 1, 
this immediately implies finiteness. For proving the rest, let us first consider 
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the case 8 = 1. In this case cTx* + W* is a lower bound and cTx* + Kj(x*) 
is an upper bound for the optimal objective value of (4.21). Thus, the stopping 
criterion implies optimality of x*. In the case of an integrated chance constraint 
the optimal solution of the relaxed problem turns out to be feasible in the orig- 
inal one, thus implying optimality. 0 

4.6 A guide to available software 
For several models, based on expectation, LP-equivalents exist, see the dis- 

cussion in Section 4.1. The straightforward approach for solving these problems 
is to apply general-purpose LP solvers to the LP-equivalents. However, having 
a large number of realizations, this can become quite time consuming. Thus, if 
computing time matters, special-purpose algorithms are preferable. 

4.6.1 Models with separate integrated probability functions 
The recommended approach is dual decomposition. One possibility is to 

formulate the equivalent two-stage simple recourse problem and to employ a 
dual-decomposition solver for two-stage problems, see Section 7.5. A special- 
purpose solver has been developed by Klein Haneveld and Van der Vlerk [169] 
in MatLab, which might be available on request from the authors. 

4.6.2 Models with joint integrated probability functions 
The same comment applies as in the previous section. Again, a special- 

purpose solver, developed by Klein Haneveld and Van der Vlerk [I691 in 
MatLab, might be available on request from the authors. 

4.6.3 Models involving CVaR 
For models with CVaR-minimization, a dual decomposition solver named 

CVaRMin has been developed in Delphi by Kiinzi-Bay and Mayer [174], for 
the LP subproblems Minos (Murtagh and Saunders [211]) has been used. It is 
connected to the modeling system SLP-IOR and is available along with this 
modeling system, see Ch. 4, Section 9.2. 

5. Single-stage models involving VaR 
Models involving quantiles have been the subject of Section 3 in Chapter 2. 

We have seen that these models can equivalently be formulated as SLP models 
with separate probability functions. Therefore, the considerations concerning 
algorithmic approaches in Section 2 apply also for this case. 

In finance, portfolio optimization problems involving VaR are quite impor- 
tant. For algorithmic approaches, proposed for this particular application, see 
Larsen et al. [177], and the references therein. 
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6. Singlestage models with deviation measures 

Models with deviation measures have been introduced in Ch. 2, Section 5. 

Let us discuss models involving quadratic deviation first. Having the quad- 
ratic deviation in the objective, the equivalent nonlinear programming prob- 
lems (Ch. 2, 5.7) and (Ch. 2, 5.13) are convex quadratic programming problems 
without any special structure. Thus, the numerical approach for their solution 
consists of employing general-purpose algorithms of quadratic programming, 
see, for instance, Nocedal and Wright [214]. 

Regarding the models (Ch. 2, 5.6) and (Ch. 2, 5.12), these are also convex 
programming problems but they are much more difficult from the numerical 
point of view. Both of them involve a nonlinear constraint with a convex 
quadratic function on the left-hand-side. The straightforward approach is to 
apply a general-purpose solver for nonlinear programming. A better idea is the 
following: the problems can be reformulated as second order cone programming 
(SOCP) problems, see Lobo et al. [I8 11 and primal-dual interior point methods 
can be employed for their solution (see also Ch. 2, Section 2). 

Considering models with quadratic semi-deviation, the situation is similar. 
We only consider the case when the underlying probability distribution is fi- 
nite discrete. Having the risk measure in the objective, the convex quadratic 
programming problems (Ch. 2, 5.36) and (Ch. 2, 5.41) arise. With quadratic 
semi-deviation functions in the constraints, we get the convex programming 
models (Ch. 2, 5.35) and (Ch. 2, 5.40) involving a quadratic constraint. Con- 
cerning solution algorithms, the same comments apply as for the quadratic 
deviation case above. The models with quadratic semi-deviation have a rather 
special structure, which could be utilized for developing algorithms tailored to 
this structure. 

Finally let us consider models with absolute deviation, under the assumption 
that the underlying probability distribution is finite discrete. The straightfor- 
ward way of solving these models is via solving the corresponding equivalent 
LP problems (Ch. 2, 5.22), (Ch. 2, 5.23), or (Ch. 2, 5.27). 

An alternative way, resulting in a much more efficient solution approach, 
is via equivalent simple recourse models. In Ch. 2, Section 5.2 we have seen 
that the general model (Ch. 2, 5.17) is equivalent to the simple recourse model 
(Ch.2, 5.18), provided that r t holds. This assumption has been chosen, 
however, merely for the sake of simplicity of presentation. From the consider- 
ations in Ch. 2, Section 5.2 it is clear that the general models (Ch. 2, 5.16) and 
(Ch. 2, 5.17) can equivalently be formulated as the following recourse models 
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with a simple recourse structure: 

min cTx 
s.t. IE[y + z ]  I K 

qTx-< -y  +z = O  
Y  L 0  

z  2 0  
x E a. 

and 
min I E [ y + z ]  
s.t. r]Tx-< -y +z = 0  

Y  2 0  
z  2 0  

x € a. 
The above problem (6.1) is a recourse constrained problem in the sense of Higle 
and Sen [118] and (6.2) is a recourse problem with a simple recourse structure 
and a random technology matrix. 

If for (6.2) r ]  t holds, then the problem is a classical simple recourse prob- 
lem. Consequently, the general algorithms for simple recourse problems can 
be applied, even without the assumption that the distribution is finite discrete. 

Under the assumption that the probability distribution is finite discrete, the 
proposed solution approach is dual decomposition, for both problems above. 
In Section 4.2 of this chapter we have derived a general framework of dual 
decomposition for recourse models and for recourse constrained models, with 
simple recourse structure, where the technology matrix may also be stochastic. 
Analogously as for models involving integrated probability functions or CVaR, 
this approach results in specialized versions of the dual decomposition method 
(see Section 2). Working out the details is left as an exercise for the reader. 

6.1 A guide to available software 
Concerning solvers for SOCP, see Section 3.7 whereas for solvers for simple 

recourse problems consult Section 7.5. 

7. IItro-stage recourse models 
Two-stage recourse models have been discussed in Ch. 3, Section 2. A great 

variety of algorithms have been proposed for the solution of this type of prob- 
lems; in this book we confine ourselves to discuss some selected algorithmic 
approaches. For hrther methods see, for instance, Birge and Louveaux [23] 
and Ruszczyliski and Shapiro [263], and the references therein. 

If < has a finite discrete distribution, then the two-stage recourse problem 
can be equivalently formulated as a (typically large scale) linear programming 
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problem. A natural idea is to apply interior-point methods for the solution ofthis 
LP problem. Interior point methods have been discussed in Ch. 1, Section 2.9. 
Among these methods, algorithms based on the augmented system approach 
(see (Ch. 1, 2.53)) turned out to be especially well-suited for the solution of 
the specially structured equivalent LP problem, see Maros and Mkszhos [193] 
and MkszAros [204]. 

In the next section we discuss some further algorithmic issues concerning 
decomposition methods; the methods themselves have already been presented 
in Chapter 1. The subsequent section is devoted to successive discrete ap- 
proximation methods. In Section 7.3 stochastic methods are discussed while 
the subsequent section 7.4 summarizes some algorithmic issues for the special 
case of simple recourse. 

7.1 Decomposition methods 
In this section we consider the two-stage problem (Ch. 3, 2.2), under the 

assumption that J has a finite discrete distribution. 
The basic dual decomposition algorithm for two-stage recourse problems 

is essentially an application of Benders4ecomposition [12], due to Van Slyke 
and Wets [296], and is usually called the L-shaped method in the literature. 
In Ch. 1, Section 2.6 we have discussed the dual decomposition method, under 
the assumption of fixed recourse and presupposing a deterministic objective 
in the second stage. The algorithm for the general case is discussed as the 
nested decomposition algorithm for multi-stage problems in Ch. 1, Section 2.7; 
the two-stage problem is clearly a special case corresponding to T = 2. A 
variant, also suitable for recourse-constrained problems, has been presented in 
Section 4.2. From the numerical point of view, the basic dual decomposition 
has some unfavorable features. On the one hand, there is no reliable way for 
dropping redundant cuts. On the other hand, especially at the beginning phase 
of iterations, the algorithm tends to make inefficient long steps. 

For overcoming these difficulties, an important improvement of the basic 
dual decomposition algorithm is the regularized decomposition method, due to 
Ruszczyliski [261]. This algorithm has been the subject of Ch. 1, Section 2.8. 
For recent achievements concerning this method see Ruszczyhski and 
~wi~tanowski [264]. 

Another way for avoiding inefficient long steps, generally known in nonlin- 
ear programming, is the trust-region method. This idea has been applied for 
two-stage recourse problems by Linderoth and Wright [179], by employing 
intervals as trust regions. The authors report quite favorable computational 
results concerning their method. 

A common feature of all of the dual decomposition methods is the following: 
in each of the iterations, having the current solution x* of the master problem, the 
recourse subproblem has to be solved for all realizations of J, in turn. Assuming 
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fixed recourse and that q is not stochastic, the recourse subproblem (7.2) or its 
dual (7.3) has to be solved with the setting J  = (5 for k = 1, . . . , N,  where N 
stands for the number ofrealizations. Now it is clear that the dual problems (7.3), 
corresponding to different realizations, differ only in their objective. Assume 
that we have solved the first recourse subproblem, corresponding to J  = jl, 
by employing the simplex method. The optimal basis B will then be a dual 
feasible basis for all of the subproblems corresponding to the other realizations. 
Consequently, if for the kth (k 2 2) subproblem 

holds, then B is also primal feasible to this subproblem, therefore yk is optimal. 
Consequently, for the kth subproblem we have obtained the optimal solution 
without starting up the simplex method at all. The idea is that, after having 
solved a particular subproblem, the above check is performed for the remaining 
subproblems, in order to identify those for which the simplex method has to be 
started up subsequently. This idea is called bunching and can reduce substan- 
tially the running time of the decomposition method. For further details, and 
refinements called trickling down, see Gassmann [95] and Kall and Wallace 
[152]. 

Another idea for decomposition is basis-decomposition. For two-stage re- 
course problems, an algorithm of this type has been developed by Strazicky 
[278]. 

7.2 Successive discrete approximation methods 
In this section we will make the following assumption 

Thejirst and second moments exist for J. 

The model hasfied recourse, that is, W (J )  - W, i.e. W ( . )  is deterministic. 

The recourse matrix W has the complete recourse property (Ch. 3, 2.6) (cJ 
Assumption 2.1 in Ch. 3, Section 2, on page 203). 

q(J) E q, i.e. q(.) is deterministic. 

For T ( J )  and h(J)  the aflne-linear relations (Ch. 3, 2.1) hold. 

The recourse subproblem has ajinite optimum for any x  and any J  (cJ Assump- 
tion 2.2 in Ch. 3, Section 2, on page 203). 

Under this assumption, the recourse function Q(x;  T ( . ) ,  h(.))  is a convex func- 
tion in J  for any x E IRnl, see Theorem 2.1 in Ch. 3, Section 2. 
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Taking into account our assumptions, the two-stage recourse problem fiom 
Ch. 3, Section 2 has the following form 

where the recourse function Q(x;  T ( t ) ,  h ( t ) )  is defined as 

Alternatively, via the duality theory of linear programming we have 

Let B := { x  I Ax = b, x  2 0 } be the set of feasible solutions of (7.1). For 
the sake of simplicity of presentation, we will assume additionally to Assump- 
tion 7.1 that B # 0 holds and that B is bounded. 

Notice, that due to our assumptions, the optimal solution for (7.1) exists. Let 
x* denote an optimal solution. For later use, let us introduce the notation 

for the expected-recourse function, f ( x )  := cTx + &(x)  for the objective 
function ofthe recourse problem (7.1), and f * := cTx* + &(x*) for the optimal 
objective value of (7.1). 

According to Proposition 2.18 in Chapter 1 (page 30), the recourse function 
Q(x;  T ( t ) ,  h ( t ) )  is a piecewise linear convex function in x  for fixed t. Due to 
the affine-linear relations (Ch. 3, 2. l), the recourse function is piecewise linear 
and convex also in J for fixed x. The proof of this fact is analogous to the proof 
of the above-mentioned Proposition and is left as an exercise for the reader. 

Successive discrete approximation methods construct discrete approxima- 
tions to the probability distribution of t by successively partitioning a set 
B c lRT, which is supposed to contain the support of t. We will proceed 
as follows. First we discuss algorithms, for which Z is supposed to be an r- 
dimensional interval and at each iteration the support o f t  is covered by a union 
of intervals. We concentrate on methods for which we have our own compu- 
tational experience. The other algorithmic approaches will be summarized in 
the separate subsection 7.2.7. 
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7.2.1 Computing the Jensen lower bound 
Our Assumption 7.1 implies that Q(x; T(.), h(.)) is a convex function in J 

for any x E Rnl (see Theorem 2.1 in Ch. 3, Section 2). Jensen's inequality 
applies, see Theorem 2.4 in Ch. 3, Section 2. Thus, for the expected recourse 
&(x) we have the lower bound 

with p := IE[ J 1. Consequently, 

holds. A lower bound on the optimal objective value f * of (7.1) can be obtained 
by solving 

min cTx + Q(x; T(P), ~ ( c L ) )  

s.t. Ax = b 
x 2 0  

which is obviously equivalent to the following LP problem 

min cTx +qTy 1 

Problem (7.5) is called the expected value problem, corresponding to (7. I), cf. 
(Ch. 3, 2.67). 

7.2.2 Computing the E-M upper bound for an interval 
The purpose of this section is to derive a formula for computing the general- 

ized E-M upper bound (Ch. 3, 2.3 1). For the sake of easy reference we begin 
by summarizing the derivation of this bound, as given in Ch. 3, Section 2. Let 
E := XI=l [ai, pi] be an r-dimensional interval containing the support of the 
r-dimensional random vector J and let 

be the volume of the r-dimensional interval Z. Let, furthermore, cp : E -+ IR be 
a convex function. Our goal is to derive an explicit formula for the generalized 
Edmundson-Madansky upper bound on IE [ cp(c) 1. 
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For deriving the bound, the following construction will be used. For each 
fixed J E Z let q(J) be an r-dimensional discretely distributed random vec- 
tor, with stochastically independent components having the following one- 
dimensional marginal distributions 

for i = 1, . . . , r ,  where the first row corresponds to realizations and the second 
row contains the corresponding probabilities (cf. (Ch. 3, 2.26)). Thus, the set of 
joint realizations of q coincides with the set of vertices of 2. The probability of 
the realization corresponding to vertex vV (1 5 v 5 2') is (due to the stochastic 
independence assumption) 

where I, = {i I V: = ai) and J, = {i I V: = Pi). Next observe that, due to 
the construction of q, we obviously have for each fixed J E Z 

Consequently, the Jensen-inequality yields 

with p,(J) defined as (7.6). Taking expectation results in 

which is the multivariate generalization of the Edmundson-Madansky inequal- 
ity (Ch. 3, 2.31). For the independent case this inequality is due to Kall and 
Stoyan [151], the extension to the dependent case has been given by Frauen- 
dorfer [85]. 

Now we are prepared to derive a formula for IE[p,(c)]. In the case when 
the components of J are stochastically independent, we get immediately from 
(7.6) 
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Otherwise, utilizing (7.6) a straightforward computation yields 

with AC = ( 1 , .  . . , r )  \ A, KYA = I,, r l  A u JY n Ac and with )KYAI denoting 
the number of elements in KvA. Taking expectation leads to the formula 

which is an expression for $(vv)  = E[pv( ( )  1, where the notation hn(J) = , & has been employed (see Ch. 3, Section 2). 
iEA 

By choosing c p ( J )  = Q(x; T ( J ) ,  h(J)) ,  the above upper bound applies. In 
fact, due to Assumption 7.1, Q(x; T ( . ) ,  h( . ) )  is a convex function in J for any 
x E lRnl 
Madansky 

(see Theorem 2.1 in Ch. 3, Section 2). We get the Edmundson- 
inequality for two-stage recourse problems 

2T 

Q(x) 6 Q ( X ;  ~ ( v " ) ,  h(vv)) $(vY),  x  E Rnl, (7.10) 
v=l 

see Theorem 2.5 in Ch. 3, Section 2. Consequently 

holds, which immediately implies that f ' ( 2 )  is an upper bound on the optimal 
objective value f * of (7.l), for any x E B. The best E-M upper bound on f * 
could be obtained by solving 

2T 

min cTx + C Q(X; T(u"), h(vY)) $(vv)  
v=l 

s.t. Ax = b 
x > 0 

which is equivalent to the linear programming problem 
2T \ 

min cTx + C $(vv)  qTyY 
v=l 

s.t. T(vv)x +Wyv = h(vv), v = 1 ,  ..., 2?- 
Ax = b  

x 2 0 
yV 2 0, v = 1 ,  ..., 2T. / 
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The size of this LP grows exponentially with the dimension r of the random 
variable J, which makes this approach impracticable in a successive discretiza- 
tion framework. In the discrete approximation method we will employ an upper 
bound with a fixed x. 

7.2.3 Computing the bounds for a partition 
Similarly to the previous section, let Z := [ai, Pi] be an r-dimensional 

interval containing the support of the r-dimensional random vector J. We 
consider a disjoint partition (see Ch. 3, Section 2) X := {Sk; k = 1,. . , K )  
of S ,  where the Zk are half-open or closed intervals, which will be called cells. 

K 

WehaveZknZl = (fork # l a n d  U = -k = E holds. The probability measure 
k=l 

of the cells will be denoted by rk,  that is, r k  = lPt (Sk), k = 1, . . . , K .  
According to Lemma 2.8 in Ch. 3, Section 2, the Jensen lower bounds cor- 

responding to the partition will be computed as follows. We consider the con- 
ditional distribution of J, given J E Sk, for the cells separately, and compute 
the conditional moments 

Using these, the Jensen lower bounds 

are obtained, for k = 1, . . . , K ,  x E IRnl, see Section 7.2.1. By summing up 
the inequalities 

results and consequently 
K 

k=l 
holds. Finally, for obtaining a lower bound on f *, 

K 

min cTx + C r k q T y k  
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is solved. Denoting by xx a solution of this LP, we have 

and 
K 

fk := cTxX + Lh < cTx + Q(x), VX E B. (7.15) 
k=l 

In particular, f: 5 f * holds meaning that f t ,  corresponding to the current 
partition X, is a lower bound on the optimal objective value of the recourse 
problem (7.1). 

In summary, the computation of the Jensen lower bound for a partition X 
runs as follows. 

Computing the Jensen lower bound 

Step 1. Compute moments 
Compute the conditional probabilities ~ r ,  = IPg(Ek ) and the con- 
ditional expected values pk := E[ J I < E Ek ], for k = 1, . . . , K. 
The computation of these quantities is straightforward in the case 
when J has a finite discrete distribution; for continuous distributions 
numerical integration is needed, in general. 

Step 2. Compute the lower bounds for the cells 
Set up and solve the LP problem (7.13), let xx be an optimal so- 
lution. Compute the lower bounds Lk for the cells according to 
(7.14),k= 1 ,..., K. 

Step 3. Compute the lower bound for the optimal objective value 
Compute f; according to (7.15). 

For the E-M upper bound we proceed analogously. Again, we consider 
the conditional distribution of J, given 5 E Ek, for the cells separately. If 
the components of < are stochastically independent then solely the conditional 
probability and the conditional expected value is needed. In general, we com- 
pute 

1 
 PA,^ := E[ hh(J) I E E Ek ] = 

The upper bounds are computed again according to Lemma 2.8, page 22 1. From 
(Ch. 3, 2.40) it follows 
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where x E IRnl, v;cV is the vth vertex ofcell k, k = 1, . . . , K and Qk is computed 
according to (7.8) in the stochastically independent case and according to (7.9) 
in general, where in both cases the moments are replaced by the conditional 
moments corresponding to the cells. 

Summing up the above inequalities we get 

and consequently 

Notice that for any x E 8, f:(x) is an upper bound for the optimal objective 
value f *. In the discrete approximation method we will choose x = xx, that 
is, we choose an optimal solution of the LP problem (7.13), which served for 
computing the Jensen lower bound. For this choice we introduce the notation 
Uk := Uk (xx). Thus we have 

Our choice also implies that the inequality 

holds for k = 1, . . . , K. The interpretation of this inequality is the following. 
Considering the interval-wise decomposition 

(7.20) provides upper and lower bounds for the kth term, corresponding to 
the kth cell in the partition. The overall bounds f: (see (7.15)) and f: (see 
(7.18)) are then obtained by summing up the cell-wise bounds in (7.20) and 
subsequently adding the term cTxx. 

Thus, Uk - Lk provides an error bound for the approximation over the kth 
cell. If, for example, Q(xx; T(.), h(.)) happens to be a linear-affine function 
over Ek, then, as it can easily be seen, Uk = Lk holds, and the error will be 
zero. The proof of this fact is left as an exercise for the reader. 
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For computing the E-M upper bound for a fixed x E By we proceed as fol- 
lows. 

Computing the E-M upper bound 

Step I .  Compute moments 
For each of the cells in turn do: 
Compute the conditional probability xk. If the components of < are 
stochastically independent then compute the conditional expected- 
value vectors pk] ,  otherwise compute all of the 2' - 1 conditional 
cross-moments p ~ , k .  

Step 2. Compute distribution on the vertices and recourse function values 
For each of the different vertices vi, v = 1, . . . ,2', Ic = 1, . . . , K 
do: 

Compute Q k  (vi) according to (7.8) or (7.9), depending whether 
the components of < are stochastically independent or depen- 
dent, respectively. In the computations replace the moments in 
the formulas with the conditional moments PI,  and p ~ , k ,  respec- 
tively. 
Compute Q(x; T(vi), h(v1)) by solving the linear program- 
ming problem (7.2), with < := vi. 

Step 3. Compute the upper bounds for the cells 
Compute the upper bounds Uk (x), according to (7.16), 
I c =  1, ..., K .  

Step 4. Compute the upper bound on the optimal objective value 
The E-M upper bound f z  is finally computed according to (7.17). 

7.2.4 The successive discrete approximation method 
Corollary 2.3 in Ch. 3, Section 2 formulates the basis for this method: As- 

sume that X and Y are two partitions of s containing the support of <, such 
that Y is a rejnement of X. This means that each of the cells in X is the union 
of one or several cells in y. Then for each fixed x E B we have 

see also (7.12) and (7.17). This fact suggests the following algorithmic idea: 
starting with E, a sequence of partitions of s is generated by successive re- 
finements of the partition. For each partition X an approximate solution xx is 
computed by solving (7.13) along with the bounds 

see (7.15) and (7.19) The algorithm is stopped when the error bound f; - f$ 
is below a prescribed stopping tolerance. Convergence properties of this type 
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of algorithms have been discussed in Ch. 3, Section 2, see Theorem 2.7 on 
page 226. 

In this section we concentrate on algorithmic issues. An immediate impli- 
cation of the monotonicity property (7.21) is that for the Jensen lower bound 
the inequality 

fk < f; < f* 
holds, see (7.15). Consequently, the lower bounds will be monotonically in- 
creasing for a sequence of successive refinements of =. The same will not be 
true for the E-M upper bounds (7.19). The reason is that these bounds also 
depend on the current approximate solution xx, whereas the Jensen bounds 
only depend on the current partition. 

Given a partition X, the question arises, how the next, refined partition should 
be constructed. The key observation in this respect is that, according to (7.20), 
the selection of the cells to be subdivided can be performed in a cell-wise 
fashion. 

We will proceed as follows. Next a general framework of the algorithm will 
be formulated and subsequently several issues related to the implementation of 
the method will be discussed. The details and recommendations are based on the 
implementation of the method, developed by the authors, and on our extensive 
computational experience with this solver, named DAPPROX. The current ver- 
sion of DAPPROX is for the case when the components of E are stochastically 
independent. Let us emphasize, however, that this assumption does not require 
that the random elements of the model (e.g. (hl (e), ha ( 0 ,  . . . , h,, (e)) should 
be stochastically independent, see the affine-linear relations (Ch. 3, 2.1). 

For specifying the algorithm, some further notation is needed. Considering 
(7.14), we introduce 

thus having LI, = nkQk. Similarly for (7.16) with x = xx, let 

resulting in UI, = nkQ;. 

Successive discrete ao~roximation method 

Step 1. Initialization 
Let X = {E) and set K := 1 for the number of cells in the 
partition. Let nl  = 1. If the components of ( are stochastically 
independent then compute the expected-value vector pl, otherwise 
compute all of the 2' - 1 cross-moments p,j 1. 
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Let f := w, this will be the best (lowest) upper bound found 
so far. The subdivision process will be registered by employing a 
rooted binary tree where the nodes correspond to cells and branch- 
ing represents subdivision of the cells. Initially this tree consists 
of a single node, which will be the root, with Z associated with 
it. Choose a stopping tolerance E* and a starting tolerance ES for 
subdivision. Set the iterations counter L = 1. 

Step 2. Compute the Jensen lower bound for X 
Apply the algorithm on page 324 for computing the Jensen lower 
bound. Thereby skip Step 1 of that algorithm, because the moments 
and probabilities are already computed. Thus we get a solution xx 
of (7.13), the lower bounds Lk, lc = 1,. . . , K ,  for which (7.20) 
holds, and a lower bound ft for the optimal objective value f * of 
the recourse problem. 

Step 3. Compute the E-M upper bound for X 
With x = xX, employ the algorithm on page 326. This delivers the 
upper bounds Uk, k = 1,. . . , K ,  for which again (7.20) holds, as 
well as an upper bound fi on the optimal objective value of the 
recourse problem. 

Step 4. Check the stopping criterion 

Set f := min{ fU, fi ). If A, := f" - f,L < E* then Stop 
1 + lf,LI - 

and deliver xx as an &*-optimal solution. Otherwise continue with 
the next step. 

Step 5. Setup a list of cells to be subdivided 
Let S := { lc 1 6(Qi ,  Q!, nk, K+) 2 ES ) where 6 is one of the se- 
lection functions specified below. KI, is the number of subdivisions 
which resulted in cell lc; in the subdivision tree &I, is the number of 
edges between the root and the node representing the lcth cell. 
If S = 0, then set ES := 4 ES and repeat this step, otherwise con- 
tinue with the next step. With the suggested selection hnctions 6, 
this cycle is finite since the algorithm did not stop in Step 4. 

Step 6. Carry out the subdivision 
For each lc E S, with Ek do 

- Choose a coordinate direction. The subdivision of Zk will be 
carried out by employing a hyperplane perpendicular to the cho- 
sen coordinate axis. 

Subdivide Ek into two intervals, by applying a cutting plane 
across the conditional expected value p k  and perpendicular to 
the chosen coordinate direction. 
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Step 7. Update the partition 
Set K := K + IS]; renumber the cells and update X accordingly. 
For each cell which has been subdivided, do the following 

For both of the new cells compute the corresponding conditional 
probability and conditional moments. 
Append two edges to the corresponding node of the subdivision 
tree with the child-nodes corresponding to the new cells. 

Set L = L + 1 and continue with Step 2. 

There are several points in the algorithmic framework which need further 
specification. 

Let us begin with the cell-selection function 6 in Step 5. The following 
selection functions are used: 

Each of these involves the relative approximation error. In the second and 
third functions the probability-multiplier enforces that, among cells with ap- 
proximately the same relative error, those with a higher probability content are 
considered first for subdivision. The third function has been suggested by H. 
Gassmann. It has the effect that among cells which qualify according to the 
second selection function, those cells will be selected which are the result of 
a higher number of subdivisions. This selection function implements a depth- 
first selection criterion in the subdivision tree. For further selection functions 
and strategies see Kall and Wallace [152]. We have experimented with the 
above strategies and also with other, more sophisticated strategies related to the 
subdivision tree. Based on our experience, we recommend to use 6 = ~ 5 ~ .  

Having selected the cells to be subdivided, the next question arises, how 
to choose an appropriate coordinate direction in Step 6. The basis for the 
different methods is the following observation (already discussed on page 325): 
If Q ( x x ;  T( . ) ,  h(.)) is a linear-affine function over Ek, then Uk = Lk holds, 
that is, the approximation error is zero. Therefore that coordinate direction will 
be chosen, along which some measure of nonlinearity is maximal. The idea is 
the following. In Step 3 computing the E-M upper bound involved the solution 
of the recourse subproblem (7.2) for all of the vertices 5 := vi ,  v = 1 . . . ,2' 
of zk. We assume that for all of these vertices dual optimal solutions are also 
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available, which is always the case when the simplex method has been used. 
Let u i  be an optimal dual solution of (7.2), corresponding to vertex vi .  These 
optimal dual solutions are utilized to construct nonlinearity measures for pairs 
of adjacent vertices. Let 6 be such a function, defined on adjacent vertices of 
E, that is, if vk and v i  are adjacent vertices then $(v:, 4) will be the associated 
nonlinearity measure. 

We introduce the following notation. For i = 1, . . . , r let 

:= { (a,  b) I a and b are vertices of E and 
a and b differ only in their ith coordinate ). 

From a geometrical point of view, the elements of represent the set of edges 
of E, which are parallel to the ith coordinate direction. The coordinate-selection 
algorithm runs as follows. 

Coordinate-selection method 

Step I .  Assign nonlinearity measures to coordinate-directions 
For each of the coordinates i = 1, . . . , r compute . . 
Qi := min @(a, b). 

(a,b)~Ai 
Step 2. Choose coordinate 

Choose a coordinate direction for which !Pi is maximal. 

Several nonlinearity measures have been suggested, see Kall and Wallace 
[152]. Here we discuss the two measures which have been proposed by 
Frauendorfer and Kall[88] and which are implemented in DAPPROX. 

The first measure is based on the following observations. Due to our assurnp- 
tions, Q(xx; T( . ) ,  h(.)) is a convex piecewise linear function. Let us consider 
two adjacent vertices v i  and v i  of Ek, with associated optimal dual solutions 
u i  and ui .  According to Theorem 2.2 in Chapter 3 @age 207), the subgra- 
dients of Q(x;  T ( 0 ,  h(<)) with respect to x are the optimal dual solutions of 
the recourse subproblem (7.2), multiplied by a matrix independent on x. Due 
to the affine-linear relations (Ch. 3, 2.1), it can be seen analogously that the 
subgradients of Q(x;  T(E),  h ( J ) )  with respect to have a similar form: they 
are again the optimal dual solutions of the recourse subproblem, multiplied by 
a matrix which does not depend on J .  

Assume now that the dual solutions are equal for the two vertices, that is, 
we assume that u i  = ui  holds. The above considerations imply that the 
corresponding subgradients of Q(xx; T ( t ) ,  h ( 0 )  with respect to J are also 
equal. Consequently, Q(xx; T ( . ) ,  h( . ) )  is a linear-affine function along the 
edge, connecting these vertices. Thus we may expect that the difference of dual 
solutions for adjacent vertices indicates the degree of nonlinearity along the 
corresponding edge. This suggests the first nonlinearity measure for adjacent 
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The second measure is based on Lemma 2.3 (page 206) and on the convexity 
of Q(xx; T( . ) ,  h(.)).  We take again two adjacent vertices v; and vi. With the 
corresponding optimal dual solutions u i  and u i  we have (see (7.3)) 

Using these relations and Lemma 2.3 (page 206), we obtain by the subgradient 
inequality 

Let us define 

The interpretation of A? is the following: if we linearize Q(xx; T( . ) ,  h( .))  at 
c = vi using the subgradient u;, then A: is the linearization error at < = vi. 
The interpretation of A? is analogous, by considering the linearization this 
time at 5 = vi. 

We chose 
Q2(vi, v i )  := min{ A?, A? ) 

as our second quality measure; for the heuristics behind choosing the minimum 
above, see Frauendorfer and Kall[88] or Kall and Wallace [152]. 

According to our experience, none of the two nonlinearity measures can 
be considered as best. Our recommendation is the combined use of them. 
One possible implementation is to switch between the two strategies if the 
improvement in A, is small for a specified number of subsequent iterations. As 
a starting strategy, the use of Q2 is recommended. 

7.2.5 Implementation 
The successive discrete approximation method involves the solution of sev- 

eral LP subproblems. 
In Step 2, for computing the Jensen lower bound, the LP problem (7.13) 

has to be solved. The straightforward approach for solving (7.13) is to apply a 
general-purpose LP solver without any considerations concerning the special 
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structure. This may become quite time-consumie with an increasing number 
of cells. 

A better approach is based on the observation that (7.13) is the LP equiva- 
lent of a two-stage problem with a finite discrete distribution. The realizations 
of the random vector are the conditional expectations p k  and the correspond- 
ing probabilities are the conditional probabilities nk of the cells. Thus, the 
number of realizations equals the number of cells in the current partition X. 
The idea is to apply solvers designed to solving two-stage recourse problems 
with a finite discrete distribution. With DAPPROX we have quite good expe- 
riences by employing QDECOM for solving (7.13). The solver QDECOM is 
an implementation of the regularized decomposition method of Ruszczyhski 
[261], implemented by Ruszczyhski. The algorithm has been discussed in 
Ch. 1, Section 2.8. 

The next idea is due to Kall and Stoyan [15 11. It consists of using a general- 
purpose LP solver, but taking into account the specialities of the successive 
discrete approximation procedure. In the successive decomposition method, 
as discussed in the previous section, typically several cells are subdivided in 
a single iteration cycle. For explaining the idea, we assume that a single cell 
is subdivided; the extension to the general case is straightforward. The idea is 
that, instead of (7.13), its dual 

K 

max C h T ( p k ) u k  + bTv 
k=l 
K I (7.22) 

s.t. C T ~ ( ~ ~ ) U ~  + A ~ Z )  5 c 
k=l 

w T u k  < nkq, k =  1, ..., K 

is solved. Let X be the partition corresponding to this LP. Assume, for the sake 
of simplicity, that the first cell El E X is subdivided as El = Ell U Zl2, with 
corresponding probabilities ~ 1 1 ,  n12, and conditional expected values p11, p12. 
Thus we have 
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The dual LP for the new partition will have the form 

Let ( ek, k = 1, . . . , K ;  .Zi ) be a solution of (7.22). Then with 

we have a feasible solution of (7.24), with the same objective value as the 
optimal objective value of (7.22). This can easily be seen by utilizing (7.23) 
and the affine-linear relations (Ch. 3, 2.1). 

Let us discuss the solution of the LP problems involved in Step 3 next. For 
computing the E-M upper bound, the recourse subproblem (7.2) has to be 
solved for each of the different vertices among all vertices v;, v = 1,. . . , 2T, 
k = 1,.  . . , K ,  in the current partition X. This involves solving a huge amount 
of LP problems, in general. The simplex method is especially well-suited for 
carry out this task, for the following reason. Instead of solving (7.2), its dual 
(7.3) is solved. Notice that the feasible domain of the dual problem does not 
depend on J. We have to solve a sequence of LP problems. Except of the first 
one, hot start can be used. This means that the optimal basis of the previous 
LP is taken as a starting basis for the next LP problem. 

In DAPPROX we use Minos for solving the LP subproblems, see Murtagh 
and Saunders [2 101, [2 1 11. 

The numerical efficiency of successive discrete approximation methods crit- 
ically depends on the data-structures used. Hence we give an overview on the 
basic data structures used in DAPPROX. 

As discussed above, for obtaining the E-M upper bound, the recourse sub- 
problem has to be solved for each of the vertices appearing in the current 
partition. The straightforward idea of working purely in a cell-wise fashion 
and solving the LP problems for the vertices of the cells in turn, is in general 
quite inefficient. To see this, consider a vertex of a cell which lies in the interior 
of E, see vertex v in the partitions displayed in Figure 7.1. This vertex may 
have maximally 2T neighboring cells, that is, it may belong to 2T different cells, 
see the partition at the right-hand-side in Figure 7.1. Computing the E-M up- 
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Figure 7.1. Partitions of 5. 

per bounds cell-wise would mean that the LP belonging to that specific vertex 
would be solved 2' times. 

One possible remedy, implemented in DAPPROX, is the following: the 
different vertices are stored in a separate vertex list. For each vertex vV in 
the partition, the following quantities are stored: the coordinates of the vertex 
vV, the optimal objective value, and a pointer to an optimal dual solution. 
Considering the partitions in Figure 7.1, the vertex list for the partition at the 
left-hand-side would consist of 8 elements, and the list for the partition at the 
right-hand side would have 9 elements. 

Notice that the feasible domain of the dual (7.3) of the recourse subproblem 
does not depend on E.  According to numerical experience, the number of 
different optimal dual solutions which appear in the procedure is usually much 
smaller than the number of different vertices ofthe cells. Therefore, the different 
dual solutions are stored in a separate list, and the elements in the vertex list 
merely contain a pointer to the corresponding dual solution. This idea is due 
to Higle and Sen [119], who used it in the implementation of their stochastic 
decomposition method. 

The information concerning the cells of the current partition is stored in a 
separate list, too. For each of the cells the following quantities are stored: the 
two diametrally opposite vertices defining the cell, the conditional probability 
and expectation of the cell, the upper and lower bounds corresponding to the 
cell, as well as a list of pointers to the vertices of the cell in the vertex list. 

The subdivision procedure is recorded by employing a binary tree, the nodes 
of which correspond to cells and branching means subdivision. The leaves in 
the tree correspond to the current partition. Further information associated with 
the nodes includes cell probability, the bounds, and the split coordinate and split 
position. 

The framework of an iteration of the algorithm, based on the data structures 
outlined above, is the following: 
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Implementation of the successive discrete approximation method 

Step I .  

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 

Initialization 
Initialize all lists in a straightforward fashion. 
Compute the Jensen lower bound for X 
Traverse the list of cells and compute the conditional probabilities 
and expectations. Set up and solve (7.22) and assign the obtained 
lower and upper bounds to the cells. Finally compute fi. 
Compute the E-M upper bound for X 

Traverse the vertex list and solve the corresponding LP prob- 
lems. For each vertex check whether a new dual solution ap- 
peared. If yes, append it to the list of dual solutions. 
Traverse the list of cells and employing the pointers to the ver- 
tices compute the E-M bound for the cells. 
Finally compute f:. 

Check the stopping criterion 
This is the same as in the general method. 
Setup a list of cells to be subdivided 
This is also the same as in the general method, too. 
Carry out the subdivision 
The procedure is the same as for the general method, based on 
passing the list of cells once. For the coordinate-selection strategy 
Q2, parallel edges are needed. This is implemented by setting up a 
list of the corresponding pairs of node pointers. 
Update the partition 
This means now updating the lists. For each of the cells which is 
subdivided, the two new cells are added to the list of cells, one of 
them replacing the subdivided cell and the other appended to the 
list of cells. The new vertices are appended to the vertex list. 

Next we discuss the case when J has a finite discrete distribution. 

Figure 7.2. Subdivisions of 9 for a finite discrete distribution. 

For explaining the idea let us consider Figure 7.2 first. In the figure, real- 
izations of a two dimensional random variable are indicated by black bullets. 
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The left-hand-side of the figure displays z, which is in this case the small- 
est interval containing all realizations. The assumed first cut is indicated by 
the horizontal dotted line. The resulting first partition is shown in the middle 
part of the figure. Notice that for both cells the smallest interval, containing 
all realizations, has been taken. Assume, that the subsequent cut is performed 
according to the vertical dotted line. The resulting partition is displayed in the 
right-hand-side part of the figure. Again, the intervals for the new cells have 
been shrank. This means a change in the interpretation of a partition. This is 
no more a partition of the original interval, but a partition of the realizations, 
covered by the smallest possible intervals cell-wise. 

This is also the general idea: after carrying out a subdivision, for each of 
the cells in the new partition we take the smallest interval which contains all 
realizations belonging to the cell. This has the obvious disadvantage, that now 
typically there are no common vertices of the cells. Thus, in the general case, all 
of the 2T vertices for each of the cells have to be dealt with separately. According 
to numerical experience, however, the smaller cells result in much better E-M 
upper bounds, and the overall numerical efficiency becomes significantly better 
(the overall number of cells needed to achieve the required accuracy is much 
smaller). Edirisinghe and Ziemba [70] call this kind of partitioning a cell 
redefining strategy. 

From the point of view of implementation, an additional feature appears. To 
see this, compare the partitions in the middle part and in the right-hand side 
part of the figure. The point is, that some vertices in the middle partition vanish 
when carrying out the next cut. These dummy vertices have to be removed from 
the vertex list, which can either be done by appropriately modifying the update 
algorithm after subdivision, or by periodically running a "garbage collection" 
procedure. 

Figure 7.3. Subdivisions of Z for independent finite discrete distributions. 
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Finally we consider the case, when C has a finite discrete distribution and the 
components of C are stochastically independent. Such a situation is displayed 
in Figure 7.3. In the left-hand-side of the figure the interval E contains all 
realizations. On the boundary of the interval, circles indicate the one dimen- 
sional marginal distributions and as before, the black bullets represent the joint 
realizations. Unlike in the general case (see Figure 7.2), the joint realizations 
are located now in a lattice. This regular pattern has important implications 
concerning the efficient implementation. For explaining the idea, we consider 
again Figure 7.3. Similarly as in the general case with finite discrete distribu- 
tions, the smallest interval E containing all realizations is taken as the starting 
point of the method, see the middle part of the figure. Assume that the first cut 
is performed according to the vertical dotted line. Performing the subdivision, 
the partition shown in the right-hand-side of the figure results, where again the 
smallest intervals containing all realizations have been taken. Observe, that the 
cell Z1 is now one-dimensional, thus having just 2 vertices. 

This is an important special feature also in the general case. According 
to numerical experience, the dimensions of the cells collapse rapidly as the 
subdivision process proceeds. Thus, instead of 2', for a significant number of 
cells a much smaller amount of LP problems need to be solved for the E-M 
upper bound. This presupposes, of course, that the implementation is tailored to 
account for this possibility. Note, that the "collapsing dimensions" phenomenon 
has two roots: on the one hand, the components of E should be stochastically 
independent, and on the other hand, the cells should be intervals. 

7.2.6 Simple recourse 
Simple recourse models have been the subject of Ch. 3, Section 2.2. In this 

section we discuss how the successive discrete approximation method special- 
izes in this case. The resulting algorithm is due to Kall and Stoyan [151]. 

The main special feature of simple recourse models is separability, see 
(Ch. 3, 2.48), (Ch. 3, 2.50), and (Ch. 3, 2.51). For the sake of easy reference 
we reproduce some of the key relations, with slightly changed notation: let 
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The separability property implies that the discrete approximation can be 
built in a coordinate-wise fashion. Instead of working with the r-dimensional 
interval E := X6, [ai, Pi] containing the support, the approximation is built for 
the one -dimensional intervals [ai, Pi], i = 1, . . . , r separately, by considering 
the corresponding one-dimensional marginal distributions of ti. 

In the general complete recourse case we have constructed an upper bound 
for the expected recourse function &(x), at the point x = xx (see Step 3 of 
the algorithm on page 328). In the simple recourse case the expected recourse 
function can be computed by an explicit formula, hence we use the function 
value itself as an upper bound on the optimal objective value. Next we discuss 
the formula for computing the expected recourse. 

Due to the separability property, for deriving the formula it is sufficient to 
consider the case r = 1. Dropping the subscript 1, the recourse function has 
the form 

see (7.26). 
Let [a, P] be an interval containing the support of the random variable E, 

subdivided as a = a0 < a1 < . . . < a K  = P. Let Il := [ao, all and 
I k  := (ak-l,ak] fo rk  2 2;rrk = IPE(Ik), andpk := IE[J I t E Ik], 
k = 1,.  . . , K. Let, furthermore, k be the index of the interval in the partition 
which contains z, that is, z E Ii holds. 

According to Lemma 2.14 on page 23 1, we have the formula 

with +I = p t ( [ a , z l ) ,  +a = pg((z,P1),  81 = IE[E I E E [a,zl l ,  and 
8 2  = IE[e I < E (z, P] 1. This approach has the following drawback: it does 
not depend on the current partition; except of K = 2, the quantities +I, e2,  81, 
and jI2 serve solely for computing &), the rest of the discrete approximation 
method makes no use of them. 

To see, how a better formula should look like, observe that ~ ( z ,  t )  as a 
function of E has a single kink at J = z (see Figure 2.1 on page 229). Thus 
it is linear over all subintervals Ik in the partition, except of interval IE which 
contains z. Therefore the approximation error is zero for all intervals Ik,  k # E, 
see the discussion in Section 7.2.4. Consequently, in the approximation scheme 
it makes only sense to consider IiE for further subdivision. It is also clear that the 
subdivision point should be < = z, because after the subdivision the recourse 
function ~ ( z ,  t ) ,  as a function of E, will be linear on all of the subintervals for 
the current fixed x. 



Algorithms 339 

It is easy to see, that the following extension of (7.28) to several subintervals 
holds: 

with 

where for k  = E, n i  := IPg( ( ~ ~ - 1 ,  z] ), n i  := PC( ( z ,  ak]  ), := IE[< I J E 
( a k F l ,  z] 1, and & := I E [  J I J E (2, ak]  ] hold. If the interval IiE happens to 
be subdivided in the current iteration then these newly computed quantities can 
directly be used in the next iteration. 

For specifying the discrete approximation method some further notation is 
needed. For j = 1 , .  . . , r, let [aj,  ,Oj] be an interval containing the support of 
J j ,  X' be the current partition of [ a j ,  ,Oj] into K j  subintervals I jk ,  let njr, = 
I P r j ( I j k ) , p j k = I E I J j  I [ j E I j k ] , f 0 r k = l , . . . , K j .  

In the subsequent description of the method we will just stress those parts 
which are different with respect to the general method; for a detailed description 
we refer to the general algorithm on page 327. 

Successive discrete approximation for simple recourse 

Step 1. Initialization 
This is basically the same as in the general method, except that now 
the initialization is carried out separately for j = 1, . . . , r .  

Step 2. Compute the Jensen lower bound 
This is the same as in the general method, too. With z := xx 
we also get, due to separability, the separate Jensen lower bounds 

Kj 

&f := C n t b & j ( . t ,  P jb) ,  f 0 r j  = 1 , .  . . , T .  

k=l 
Step 3. Compute the recourse objective value 

With z = Txx apply formula (7.29) for computing the marginal 
expected recourse function values QY := a ( z j ) ,  for j = 1, . . . , r. 
According to (7.27), compute f: := cTxx + &(z),  which will be 
an upper bound on f * . 

Step 4. Check the stopping criterion 
This step is the same as in the general method. 

Step 5. Setup a list of coordinates for subdivision 
Let J = { j I 6 ( & f ,  QY,  9ij, 5 4 )  > ES }, where l j  is the index 
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of the interval containing zj, that is, zj E IjLi holds. If 3 = 0, 
then set ES := 4 ES and repeat this step, otherwise continue with 
the next step. 

Step 6. Carry out the subdivision 
For each j E 3 ,  split Ijkj at the point zj  into two intervals. 

Step 7. Update the partition 
For each j E 3 set K j  := K j  + 1; renumber the cells and update 
X accordingly. Notice that for the new cells in the partition the 
probabilities and the conditional expectations have already been 
computed in Step 3, see (7.29). Update the subdivision trees; set 
L = L + 1 and continue with Step 2. 

In Step 2 of the algorithm, for computing the Jensen lower bound and the 
next iteration point, the LP problem (7.13) must be solved. According to the 
discussion in Section 7.2.5, an efficient way for solving this is solving the dual 
problem, which assumes in the simple recourse case the following form. 

where the components of the nl-dimensional vector t j  are the elements of the 
jth row of T, for all j. 

For a sequence of such problems, the Kall-Stoyan method (see page 333) can 
be utilized to provide feasible starting points. Comparing (7.30) and the general 
counterpart (7.24), we notice that in (7.30) we simply have individual lower and 
upper bounds on the variables ujk, instead of the corresponding parts in (7.24), 
where the recourse matrix W is involved. Due to this special structure, the Kall- 
Stoyan idea can be improved to provide a feasible basic solution for the next 
iteration, with the same or a better objective function value. This can be used 
for a hot start, which, according to numerical experience, reduces dramatically 
the solution time for solving (7.30). We assume for the sake of simplicity of 
presentation, that Ill has been split as Ill = Illl U I&, with corresponding 
probabilities xil, r;l, and conditional expected values For these 
quantities relation (7.23) can be formulated analogously. The LP problem has 
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the following form after the split: 

The Kall-Stoyan feasible starting point will be, analogously as in (7.25), 

and Q k  := @ f o r  (j, k) # (1,l) as well as 8 := B, where (a, B) is a solution of 
(7.30). 1f fill was a non-basic variable, then its value is either the corresponding 
lower bound or the corresponding upper bound in (7.30). Then both el1 and 
el2 can be declared as non-basic variables, both of them being on the analogous 
lower or upper bound in (7.3 1). 1f was a basic variable, then the following 
can be done: one of the variables 6:' or fiil is shifted to the corresponding 
lower or upper bound in (7.3 1) and the other one is shifted by the same amount 
in the opposite direction. The variable shifted to a bound will be declared as 
non-basic and the other one as basic. This can be done in such a way, that the 
objective function does not decrease. The details are left as an exercise for the 
reader. 

The authors have implemented the method as the solver SRAPPROX. To 
illustrate the efficiency, we refer to our paper Kall and Mayer [I481 where we 
report on computational results with test problem batteries consisting of simple 
recourse problems with r = 300, which have been solved using SRAPPROX 
on a 660 MHz PC in approximately half a minute. 

7.2.7 Other successive discrete approximation algorithms 
As discussed in Ch. 3, Section 2.1, there are basically two different algo- 

rithmic approaches, depending on the geometry of E. The approach which 
has been discussed so far in this section, employs intervals. Thus, E was an 
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r-dimensional interval, and at each iteration the support of 5 was covered by a 
union of intervals. 

Employing also intervals, Edirisinghe and Ziemba [70] report on the im- 
plementation of their variant of the successive discrete approximation method, 
with an extension to the case when also the recourse objective q is allowed to 
be stochastic. 

A different approach, also based on interval-partitions, is due to F i b i h  and 
Szoke [76]. The authors combine a bundle-type convex programming method 
with a successive discrete approximation scheme. At each iteration a linear 
and a quadratic programming problem is to be solved. For the underlying NLP 
method see the references in the cited paper. 

In the second approach E is a regular simplex, which is partitioned into sub- 
simplices as the procedure progresses. For this approach and its implementation 
see Frauendorfer [86], who has also extended the algorithm for the case, when 
in (7.2) the second stage objective vector q may also contain stochastic entries. 
The approach has the advantageous property that for computing the E-M upper 
bound, the recourse subproblem (7.2) has to be solved only on the r + 1 vertices 
of the simplex representing a cell, whereas when employing intervals, 2' LP 
problems have to be solved for a cell. The price for this algorithmic advantage 
is that the simplex-based upper bounds may be much higher, than the interval- 
based bounds; for an example see Kall[140]. According to our knowledge, there 
is no comparative computational study available in the literature for comparing 
the two approaches. 

7.3 Stochastic algorithms 
7.3.1 Sample average approximation (SAA) 

In this section we will make the same assumptions and consider the same 
problem formulation as in Section 7.2. 

Employing the notation from Section 7.2, we consider the two-stage problem 

with &(x) := IEE [ Q(x; T(c ) ,  h(5)) ] and with the recourse function Q defined 
by the recourse-subproblem (second-stage problem) (7.2). Let f * be the op- 
timal objective value of (7.32) and let x* be an optimal solution. Finally, E 
denotes in this section the support of 5. 

We also introduce the notation 
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which results in the reformulation of (7.32) 

Let J 1 ,  . . . , J N  be a sample according to the distribution of J .  This means that 
J 1 ,  . . . , J N  are independent and identically distributed (i.i.d.) random variables, 
having the same distribution as J .  Let us consider the following random variable 

which is the sample-mean estimator for the expected value Q(x) ,  for each fixed 
x. From the viewpoint of simulation, QN (x ;  J 1 ,  . . . , J N )  is the crude Monte- 
Carlo approximation to Q(x) ,  see, for instance, Ripley [246]. For each fixed 
x, this is clearly an unbiased estimator of Q(x):  

(7.36) 
due to the fact that E [ Q ( x ;  T ( J k ) ,  h ( J k ) ) ]  = E [ Q ( x ; T ( J ) ,  h ( J ) ) ]  holds for 
all k. 

In particular, choosing an arbitrary 2 E a, 

is an unbiased estimator of E [  f (2;  J )  ] and due to 

we have an upper bound on f * . 
Based on the Monte-Carlo approximation (7.39, let us formulate the pro- 

plem 

L 1 i IN ( J  , . . . , tN)  := min cTx + QN ( x ;  J 1 ,  . . . , J N )  
(7.39) 

s.t. x  E a 
which, under our assumptions, defines the random variable on the left-hand- 
side. Let xN (tl, . . . , J N )  be a solution of this problem. Problem (7.39) will be 
called a sample average approximation (SAA) problem for the original two- 
stage problem (7.32). Notice that the problem on the right-hand-side of (7.39) 
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is not a single nonlinear optimization problem but a family of such problems, 
corresponding to the different realizations of E l , .  . . , tN. Considering a real- 
ization ,$', . . . , iN of (', . . . , t N ,  and substituting the random variables with 
their realization in the minimization problem above, results in a deterministic 
optimization problem. In accordance with the literature, besides (7.39), this 
deterministic optimization problem will also be called a SAA-problem. View- 
ing (7.39) as a random optimization problem, the deterministic optimization 
problem resulting from the substitution of a realization, can be viewed as a 
realization of the SAA problem (7.39). 

Based on the SAA problem, Mak, Morton, and Wood [187] proposed a lower 
bound for f * : 

PROPOSITION 7.1 The following inequality holds: 

Proof We obviously have that G;((', . . . , t N )  I cTx + QN(x; (I , .  . . , t N )  
holds for all x E 23 and all realizations of (El,. . . , tN) ,  tk E E, for all k .  
Taking expectation and utilizing (7.36) leads to 

Finally, taking the minimum over x E 23 on the right-hand-side, yields the 
desired inequality. 

Notice that for N = 1 the above lower bound reduces to the wait-and-see 
lower bound WS, see Proposition 2.2 in Ch. 3, Section 2.3. 

The following monotonicity property has been discovered by Mak et al. [187] 
and, independently, by Norkin, Pflug, and Ruszczynski [2 151. 

PROPOSITION 7.2 ~ e t  (I, . . . , tN, tN+l be (i.i.d.) random variables, having 
the same distribution as 5. Then 

holds. 

Proof Let 3 := (1, . . . , N, N + 1). We utilize the following obvious refor- 
mulation for sums of real numbers yl, . . . , y ~ ,  y ~ + l  
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Thus we get 

L 1 
= W N ( t  ,-, tN)I .  

This is an attractive property, implying that increased sample-size leads in 
average to the same, or to an improved lower bound. 

A second look on the facts and their proofs, discussed so far, reveals that only 
the following properties of J and f have been used: f (x, J) should be finite for 
all t E Z and for all x E B, E[ f (x, t )  ] should exist for all x E B, and the 
solutions of the minimization problems involved should exist. In particular, the 
convexity off (., t )  and off (x, .) did not play any role. In fact, the generality of 
results of the above type allows for designing algorithms for stochastic global 
optimization, see Norkin et al. [2 151. 

Notice that the stochastic independence assumption concerning tl, . . . , tN 
has not been used in the argumentations and proofs above; they remain valid by 
merely assuming that the random variables are identically distributed and that 
they have the same probability distribution as J. 

Let us now consider a sample (observations) of sample-size N, tl, . . . , t N ,  
that is, we take a realization of the (i.i.d.) random variables t l ,  . . . , FN. 

For computing the corresponding realization 29; (2; J1, . . . , t N )  of the statis- 
tic lg;, the recourse subproblem (7.2) has to be solved with fixed x  = 2 for the 
realizations t k ,  for k = 1, . . . , N. 

Concerning the computation of the realization of the statistic .9;, we observe 
that the corresponding realization of he random program (7.39) is the two-stage 
recourse problem 

s.t. X E B  J 
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with a finite discrete distribution having the equally probable realizations ik, 
for k = 1, . . . , N. This can be solved with any one of the methods designed for 
two-stage recourse problems with a finite discrete distribution. For instance, 
under our assumptions the successive discrete approximation method discussed 
in Section 7.2 can be used. 

The question arises, how good the approximate solution obtained this way is. 
Since both 19s and 65 are random variables, adequate answers to this question 
have a probabilistic nature. 

Mak et al. [187] propose to use confidence intervals for judging the quality 
of a candidate solution 2 E B. The idea is to construct confidence intervals on 
the optimality gap E[ f (2; 5 )  ] - f * by utilizing (7.38) and (7.40), which imply 
the following upper bound on the optimality gap 

The point is that, instead of estimating the upper and lower bounds from sepa- 
rate samples, the same sample is used for both of them according to the above 
formula. This corresponds to the variance-reduction technique common ran- 
dom numbers in Monte Carlo simulation, see, for instance, Ross [259]. The 
confidence intervals are computed by utilizing the central limit theorem ofprob- 
ability theory; for the details see the above-cited paper [187]. In summary, the 
method works as follows. Let M > 0 be fixed and choose a sample-size N. 
For v = 1, . . . , M carry out the following procedure: 

Testing the quality of 2 E B 

Step I .  

Step 2. 

Step 3. 

Step 4. 

Having 
M 

Generate a sample 
Generate a sample of size N, i', . . . , iN, according to the proba- 
bility distribution of E,  and independently of previously generated 
samples. 
Solve a realization of SAA 
Solve the corresponding realization of (7.39), thus obtaining 
L 2 ~ N ( E  , . . ., iN). 

Solve recourse subproblems 
Solve the recourse subproblems (7.2) for J = jk,  k = 1 ,  . . . , N 
and compute 6K(?; i', . . . , iN) according to (7.37). 
Compute the vth term for the estimator of the optimality gap 

L ^1 Compute A, := 6:(2; i', . . . , iN) - g N ( J  , . . . , iN).  
executed the above procedure M times, construct the estimator 

A, for the duality gap and compute a confidence interval as described 
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So far we have discussed, how the quality of a given approximate solution 
2 E 23 can be judged. For obtaining an approximate solution of the two-stage 
recourse problem (7.32), the SAA-based approach relies on solving realizations 
of the approximate SAA problem (7.39). Before specifying how the algorithm 
works, let us summarize some theoretical results. 

Let 2 E L? be fixed. As discussed above, QN (2; (I, . . . , t N )  is an unbiased 
estimator of Q(2), for all N. Moreover, due to Kolmogorov's strong law 
of large numbers, QN (2; (I, . . . , t N )  converges to Q(2) almost surely. The 
question arises, whether we also have almost sure convergence of the optimal 
objective values 19&((', . . . , cN) of the SAA problems, to the true optimal 
objective value f *. This question can be investigated by employing the theory 
of epi-convergence. For the case of deterministic approximations, the main 
results based on this theory are summarized in Theorem 2.7 of page 226. In 
the stochastic case we have epi-convergence in an almost sure sense, see King 
and Rockafellar [I621 and King and Wets [163], and the references therein. 

Results are also available concerning the speed of convergence of the solu- 
tions of (7.39). Assuming, for instance, that the original problem (7.32) has a 
unique solution x*, under appropriate assumptions we have that 

~ ~ ( l l x ~ ( ( l , . . . , ( ~ ) - x * l l  2 ~ )  - t o  for N - t o o  

holds for any E > 0, and the rate of convergence is exponential, see Kan- 
iovski, King, and Wets [155]. Under specific assumptions regarding convexity 
properties off  or considering the case when ( has a finite discrete distribution, 
improved results of this type have been found by Shapiro and Homem-de-Mello 
[273], see also Linderoth et al. [180], and the references in these papers. 

The SAA-algorithm relies on "external sampling", meaning that sampling is 
performed prior to solving the (approximate) problem. In contrast to this, "in- 
ternal sampling" means that sampling is performed as the algorithm proceeds; 
for an example see stochastic decomposition in the next section. 

Sample average approximation algorithm 

Step 1. Initialization 
Choose N > 0, M > 0. 

Step 2. Generate samples 
Generate M independent samples (batches) illu, . . . , iNtu, accord- 
ing to the probability distribution of (, v = 1, . . . , M, each of which 
has the sample-size N. 

Step 3. Solve realizations of SAA 
For each of these samples solve the corresponding realization of 
(7.39), let iJN,, be the optimal objective value, v = 1, . . . , M .  
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Step 4. Estimate f * 
M 

Use 1 9 ~ ,  as an estimator of f * . 
v= 1 

Step 5. Test the quality of solution 
This step involves statistical techniques forjudging solution quality. 
For instance, the method for estimating the optimality gap can be 
used, as discussed on page 346. 

For implementing this method, several important points have to be specified 
in a much more detailed fashion. 

In general, the crude Monte-Carlo method is notoriously slow, therefore 
variance-reduction techniques have to be included, see, for instance Ross 
[259]). One such method, relying on common random numbers, has been 
mentioned above, regarding the optimality gap. 

Assuming that the two-stage problem has a unique solution x*, the solutions 
of the realizations of the SAA-problems converge rapidly to x* for N -+ oo, 
in the sense as discussed in this section. Consequently, for N large enough, 
we may expect that the solution of SAA will be a good approximation to x*. 
The question, how large N should be for getting a good solution, remains open. 
Consequently, testing the quality of an obtained approximate solution is of vital 
importance. Two kinds of statistical approaches have been proposed for this. 
In the first class of methods the optimality gap is estimated; we have discussed 
an example for this technique above. The second class of methods tests the 
Kuhn-Tucker optimality conditions, see Shapiro and Homem-de-Mello [272]. 
The practical procedure runs as follows: the above algorithm is carried out for 
a starting selection of M and N. Subsequently the solution obtained this way 
is tested and if it turns out that it is not yet satisfactory, the algorithm is repeated 
with increased N andlor M. 

If the solution of (7.32) is not unique, then recognizing an optimal solution 
may involve quite large samples. For further discussions of these problems and 
for other variance-reduction techniques see Shapiro and Homem-de-Mello 
[272], [273] and Linderoth, Shapiro, and Wright [180]. 

For statistical tests of optimality, based on duality theory, see Higle and Sen 
[120]. 

7.3.2 Stochastic decomposition 
The stochastic decomposition (SD) method is a stochastic analog of the 

dual decomposition method, developed by Higle and Sen, see [116], [I 171, and 
[119]. The dual decomposition method has been presented in Ch. 1, Section 2.6 
(page 29) and has been further discussed in Section 4.2 of this Chapter. 

The monograph [I191 by Higle and Sen presents a detailed discussion of the 
method, along with the statistical tests involved, and including issues related to 
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the implementation. Therefore, in this book we confine ourselves to pointing 
out some of the main ideas of the algorithm. Regarding (deterministic) dual 
decomposition,we will use the notation introduced in Section 4.2. 

Similarly as in Section 7.2, we consider the two-stage recourse problem 
(7.1) under Assumption 7.1 on page 318. Additionally, for the sake of sim- 
plicity of presentation, we will suppose that Q ( x ;  T ( J ) ,  h ( J ) )  2 0 holds for all 
x E t?, almost surely. For a weaker assumption see Higle and Sen [119]. Our 
assumption is fulfilled, for instance, if q 2 0 holds, which will be presupposed 
for the sake of simplicity. 

Let E denote the support of J in this section. 
The SD algorithm relies on "internal sampling"; at iteration k we will have a 

sample of sample-size k. Let J 1 , .  . . , J k  be (i.i.d.) random variables having the 
same distribution as J .  The idea is to construct a lower bounding approximation 
to the sample-average approximation Qk ( x ;  J 1 ,  . . . , J k )  of Q ( x )  (cf. (7.35)), 
and to update this approximation as iterations proceed. 

Let us recall that due to weak duality and due to the fact that the feasible 
domain of the dual (7.3) of the recourse subproblem does not depend on x nor 
on J ,  we have the inequality 

which holds for any J t  E E, any x E t?, and any ut E V, t = 1. . . , k, where 
V denotes the feasible domain of the dual (7.3) of the recourse subproblem. 
The lower-bounding function on the left-hand-side of (7.42) will be utilized 
to generate a cut in the algorithm, and ut will be an optimal dual solution, 
t =  1, ..., k. 

In the subsequent iteration we deal with a sample J 1 , .  . . , J k ,  J k + l .  For 
ensuring that the previously generated cut has the lower bounding property 

k  k f l  he also for the new sample-average approximation Qk+l ( x ;  J 1 ,  . . . , J , J ), t 
previous cut must be updated. The most natural update relies on the following 
obvious inequality 
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which holds for any Jt E E, any x E By and any ut E D, t  = 1 . . . , k .  The 
relaxed master problem (cf. (4.9)) will have the form 

min cTx + w  
k ( D f ) T ~  - W 5 -at ,  t  = 1, .  . . , k  (7.44) 

x E B 

where the coefficient vectors and constant terms concerning cuts have double 
indices, due to the above-mentioned updating. The basic (conceptual) SD al- 
gorithm can be specified as follows. 

Basic stochastic decomposition method 

Step I .  Initialization 
Let k  := 0, to := IE[ J I,  and solve the corresponding expected- 
value (EV) problem (Ch. 3, 2.67). Let x1 be a solution of the EV- 
problem. Set Vo := 0. Vk will be the set of the different optimal 
dual solutions of the recourse subproblem (7.2) (vertices of D), 
encountered up to iteration k .  

Step 2. Generate the next sample point 
Set k  := k  + 1 and generate the next sample point Jk of J. 

Step 3. Solve a recourse subproblem 
With J = ("olve the dual recourse subproblem (7.3) by using 
the simplex method, let uk E D be an optimal basic solution. If 
uk $ then let Vk := Vk-1 U { u ~ ) ,  othenvise let Vk := Vk-1. 

Step 4. Generate a new cut 

Taking the current feasible solution xk E B, for each of the 
previous realizations choose the best vertex from Vk, that is, 
compute 

t =  1, ..., k -  1. 
Compute the kth cut 

Step 5. Update previous cuts 
Fort = 1,. . . , k  - 1 compute 



Step 6. Solve the relaxed master problem 
Solve (7.44); let xkf l be an optimal solution. 
Continue with Step 2. 

Notice that due to the fact that (7.42) holds for any ut E D, the newly generated 
cut in Step 4 has the lower bounding property. Due to the "argmax" procedure, 
the best such cut is generated taking into account the dual-vertex information 
available so far. The update formulas of the previous cuts in Step 5 imply that 
the lower bounding property is preserved, see (7.44). 

The algorithm above employs aggregate cuts. A version of the SD algorithm 
with disaggregate cuts has been developed by Higle, Lowe, and Odio [115]. 

From the theoretical point of view, all that could be proved for the basic 
algorithm, was the existence of a subsequence of the sequence of generated 
points xk, k = 1,2, . . ., such that every accumulation point of this subsequence 
is an optimal solution of the recourse problem (7. I), almost surely (see Higle 
and Sen [119]. 

Therefore, the full version of the SD method of Higle and Sen employs in- 
cumbent solutions. Initially, the first incumbent solution is just the solution of 
the expected value problem, obtained in Step 1 of the basic algorithm. The cur- 
rent solution of the relaxed master problem becomes the new incumbent, if the 
actual objective value of the relaxed master problem is sufficiently lower than 
the approximate objective value at the incumbent. The cut corresponding to the 
current incumbent is updated in each iteration, using the analogous "argmax" 
procedure as for constructing the new cut in Step 4. Considering an appropriate 
subsequence of iterations, where the incumbent changes, a numerically imple- 
mentable procedure results for identifying approximate solutions of (7. I), see 
Higle and Sen [119]. 

The idea of working with incumbent solutions is also the basis of the regular- 
ized dual decomposition method of Ruszczyliski [261], see Ch. 1, Section 2.8. 
One of the attractive features of regularized decomposition is that it provides 
a safe way of removing redundant cuts. The accumulation of redundant cuts 
can become in fact a numerical problem for the version of the SD algorithm 
discussed so far. Consequently, Higle and Sen [117], [I191 developed the 
regularized SD algorithm, which can be viewed as a stochastic version of the 
regularized dual decomposition method. Let us denote the incumbent solution 
at iteration k by In the regularized SD method, the objective function of the 
relaxed master problem (7.44) includes a regularizing term, thus becoming 

otherwise the method is basically the same as SD. This regularized version of 
the SD method can currently be considered as the best version of SD, see Higle 
and Sen [I191 for the details. 
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The reader might wonder that the basic SD method, as specified above, does 
not contain a stopping rule. This is merely for the purpose of simplicity of 
presentation. For any stochastic method, the most important questions are how 
to stop the algorithm and how to identify an approximate optimal solution of the 
two-stage recourse problem, on the basis of results delivered by the method. 
We have discussed this problem in the previous section, in connection with the 
SAA method. In fact, most of the stopping rules proposed for the SAA method 
are essentially generalizations of stopping rules proposed by Higle and Sen for 
the SD method, see [119]. Three classes of stopping rules have been proposed. 
The first class contains rules which are based on asymptotic properties regarding 
the sequence of incumbents. The second type of rules utilizes estimates on the 
optimality gap, including also bootstrap schemes. Finally, the third group is 
based on optimality conditions. For the details see [119]. 

The authors have implemented stochastic decomposition as the solver 
SDECOM, following [I  191 and some additional guidelines of Higle and Sen, 
which were highly appreciated by the authors. The present version implements 
the SD method with incumbents (not yet the regularized version). The stop- 
ping rule is a rule based on asymptotic properties. The solver is connected to 
SLP-IOR, see Section 9.2. 

7.3.3 Other stochastic algorithms 
The stochastic methods not yet discussed belong to the class of methods with 

"internal sampling". 
The stochastic quasi-gradient methods are stochastic versions of subgradient 

methods. The basic idea is to work with stochastic quasi-gradients. At iteration 
v, a random variable vV is a stochastic quasi-gradient at xu, if 

holds. With stepsize p,, the next iteration point is computed by the projection 
onto the feasible domain B: xV+l := nB (xu - p,vU). Under appropriate 
assumptions, in particular, by choosing suitable sequences of stepsizes p,, the 
algorithm converges to a solution of the two-stage problem, almost surely. For 
details concerning these methods see Ermoliev [75] and Gaivoronski [92], and 
the references therein. For an introduction see Kall and Wallace [152]. 

For stabilizing the sequence of points in stochastic quasi-gradient methods, 
Marti 11951 and Marti and Fuchs 11971, [I981 propose algorithms where at cer- 
tain iterations deterministic descent directions are used, instead of stochastic 
quasi-gradients. The authors call the methods in this class semi-stochastic 
approximation methods. Under appropriate assumptions concerning the prob- 
ability distribution, these methods also converge to a solution, almost surely. 
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Besides stochastic decomposition, another stochastic version of the dual de- 
composition method has also been developed, relying on importance sampling. 
For this method see Dantzig and Glynn [46] and Infanger [126], [127]. 

7.4 Simple recourse models 
Simple recourse models have been the subject of Ch. 3, Section 2.2. From 

the point of view of applications, simple recourse problems are an important 
subclass of two-stage recourse problems; they can be solved numerically for a 
large amount of random variables. Several authors have proposed algorithms 
for simple recourse problems; below we just mention some of the approaches. 

One of the algorithms, based on successive discrete approximation, has been 
the subject of Section 7.2.6. For the case, when ( has a finite discrete dis- 
tribution, methods, utilizing the special basis-structure of the equivalent LP- 
problem have been developed by Prhkopa [233] and Wets [304]. Further meth- 
ods include the algorithms of Cleef [39] which employs a sequence of linear 
substitute problems, and the method of Qi [241], who proposes an algorithm 
which involves solving linear and nonlinear convex programming subproblems, 
in an alternating fashion. For the other methods see the references in the above- 
cited papers. 

Let us point out, that for several classes of probability distributions, simple 
recourse problems can equivalently be formulated as nonlinear programming 
problems in algebraic terms, see, for instance, Kall [134]. 

Finally we consider models with multiple simple recourse, discussed in 
Ch. 3, Section 2.2. In the case when ( has a finite discrete distribution, such 
models can be transformed into a simple recourse problem, see Theorem 2.8 in 
Ch. 3, Section 2.2. Consequently, such problems can be efficiently solved by 
solving the equivalent simple recourse problem. 

7.5 A guide to available software 
In the listing of solvers below, we include also solvers for multistage recourse 

problems; two-stage problems are clearly a special case for them. 
Let us begin with SLP solvers for recourse problems, available at the NEOS 

Server for optimization, http://www-neos.m&.anl.gov/. The general idea of 
the NEOS server is, that users select a solver available at the server, send their 
problems, and obtain the solution, via the Internet. The SLP-problem must 
be sent to the server in the SMPS format; for this see Gassmann [98], and the 
references therein. 

Bnbs (Bouncing nested Benders solver), is an implementation of the nested 
decomposition method, for multistage recourse problems with a finite dis- 
crete distribution. It has been developed by Fredrik Altenstedt, Department 
of Mathematics, Chalmers University of Technology, Sweden. The source 
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code of the solver can also be downloaded from the author's homepage 

FortSP (the Stochastic Programming extensions to FortMP). The current 
version is for two-stage recourse problems with a finite discrete distribution. 
It is the SLP-solver in the stochastic programming integrated environment 
(SPinE), see Valente et al. [294]. 

MSLiP is an implementation of the nested decomposition algorithm, for 
multistage recourse problems with a finite discrete distribution, developed 
by Gassmann 1951. The code is available to universities and academic in- 
stitutions for academic purposes, please contact the author. 

The IBM stochastic programming system, OSLSE, designed for multistage 
recourse problems with finite discrete distributions, is available for academic 
purposes, in executable form. For OSLSE see King et al. [164]. Recently, 
IBM initiated the project "COmputational INfrastructure for Operations Re- 
search" (COIN-OR). As far as we know, a version of OSLSE is now avail- 
able with an added facility, which enables for the user to connect herthis LP 
solver to OSLSE, instead of the LP solver OSL of IBM. For the details see 

The solver SQG is an implementation of stochastic quasi-gradient methods, 
see Gaivoronski [93]; the author of this paper encourages interested readers to 
connect him. 

An interior point method based on the augmented system approach has been 
implemented by Csaba MQzkos [204] as the solver BPMPD. We do not know 
the present status of this solver, interested readers might contact the author of 
BPMPD. 

Almost all authors of algorithms, discussed in this section, report on com- 
putational experience. Concerning the availability of solvers, we suggest to 
contact the authors. 

For commercially available solvers we refer to the solvers OSLSE and 
DECIS, both available with the algebraic modeling system GAMS, Brooke 
et al. [3 11. OSLSE has already been mentioned above, DECIS is an implemen- 
tation of the importance sampling algorithm, implemented by G. Infanger. 

Finally we give a short list of solvers which are connected to to our model 
management system SLP-IOR and have not been discussed so far in this section. 
They are available for academic purposes along with SLP-IOR, in executable 
form. For further details see Section 9.2. The following solvers, all of them 
developed for the case of a finite discrete distribution, have been provided to us 
by their authors: 
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QDECOM, regularized decomposition method, implemented by A. 
Ruszczyliski, for two-stage fixed recourse problems. 

SHOR2, decomposition scheme of Shor, implemented by N. Shor and A. 
Likhovid, for complete recourse problems. 

SHOR1, the same method and authors as for SHOW, for simple recourse. 

m SIRD2SCR, for simple integer recourse, implemented by J. Mayer and M.H. 
van der Vlerk. 

MScdScr, for multiple simple recourse, implemented by J. Mayer and M.H. 
van der Vlerk. 

Finally we list of our own solvers, which have already been mentioned in the 
preceding sections. The solvers have been implemented by the authors of this 
book. 

DAPPROX implements the successive discrete approximation method, for 
complete recourse problems, with a deterministic objective in the second 
stage, and assuming the stochastic independence of the components of J. 
Probability distributions: finite discrete, uniform, exponential, and normal 
distributions. 

SRAPPROX is an implementation of the successive discrete approximation 
algorithm for simple recourse problems. Stochastic independence is not 
required; the marginal distributions should belong to one of the classes of 
distributions listed with DAPPROX. 

SDECOM is an implementation of of the stochastic decomposition method. 

The question, which of the available solvers should be chosen for solving 
a specific instance of a two-stage recourse problem, is a difficult one. There 
exists no general answer to this question, the performance of algorithms and 
solvers may depend substantially on the specific characteristics of the problem 
instance. The main factors influencing solver performance are the type of the 
probability distribution, the stochastic dependence properties ofthe components 
of J, which parts of the model are stochastic, the number of random variables 
(dimension of J), the number of joint realizations in the discretely distributed 
case. For instance, having a complete recourse problem with a 10-dimensional 
random vector ( with stochastically independent components, and each of the 
components having 10 realizations, results in 10l0 joint realizations. This rules 
out all solvers, based on solving the equivalent LP problem, including solvers 
based on dual decomposition or the regularized version of it. 

Selecting an appropriate solver is clearly supported by comparative com- 
putational results; this seems to be a scarce resource in the SLP literature, 
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though. Concerning comparative computational results we refer to Kall and 
Mayer [144], [146], [148] and to Mayer [201]. 

8. Multistage recourse models 

Multi-stage recourse models have been discussed in Ch. 3, Section 3. Anal- 
ogously to the two-stage case (see Section 7), many algorithmic proposals have 
been published for multistage recourse problems; we will discuss some of the 
main approaches. For further algorithms see Birge and Louveaux [23] and 
Ruszczynski, and Shapiro [263], and the references therein. 

Most of the available algorithms are for the case, when E has a finite discrete 
distribution specified in the form of a scenario tree. If the distribution of E is 
continuous, then the usual approach consists of generating a discrete approx- 
imation to the distribution, in the form of a scenario tree, and subsequently 
solving the resulting multistage problem with the original distribution replaced 
by the approximate discrete distribution. Constructing approximate scenario 
trees is called scenario generation and will be the subject of Section 8.2. An- 
other class of methods consists of algorithms, which combine the building of 
the scenario tree with the optimization process. One of the algorithmic ap- 
proaches relies of successive discrete approximation, employing a simplicia1 
cover of the support of the random vectors, see Frauendorfer [87], Frauendorfer 
and Schiirle [89], [90], and the references therein. These algorithms allow that 
also the objective function is stochastic, and have been successfully applied in 
financial engineering. 

8.1 Finite discrete distribution 

The multistage recourse problem with a finite discrete distribution, the dis- 
tribution being specified in the form of a scenario tree, has been the subject of 
Ch. 3, Section 3.1. 

A great majority of solution methodologies for this type of problems has 
its roots in the nested decomposition method, presented in Ch. 1, Section 2.7. 
In that section we have pointed out, that in the framework of the nested de- 
composition method, several different variants of the algorithm can be built. 
The difference is in the sequence, in which nodes of the tree are processed 
in the algorithm. Different sequencingprotocols are possible, the description 
in Ch. 1, Section 2.7 corresponds to the FFFB (fast-forward-fast-backward) 
protocol. For other sequencing protocols see, for instance, Gassmann [95] and 
Dempster and Thompson [55], 1561. 

The above-mentioned (restricted) freedom of choice is due to Propositions 
2.20 and 2.21, both in Ch. 1, Section 2.7. These propositions may also serve 
as guidelines for building valid variants of nested decomposition. 
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A further remark concerns the presentation of the nested decomposition 
method. For the sake of simplicity of presentation, we have assumed a form, 
where At, = 0 holds for 7 < t - 1 (for the general form see (Ch. 3, 3.1)). In 
Ch. 3, Section 3.1 we have shown that the general formulation can always be 
transformed into the special form. Note, however, that this conceptual trans- 
formation is not needed when implementing the algorithm; the method can be 
reformulated for the general case in a straightforward way, see, for instance, 
Dempster and Thompson [56]. 

For recovering dual variables from the solution delivered by the nested de- 
composition algorithm, see Gassmann [96]. 

Instead of employing a fixed sequencing protocol, the above-mentioned free- 
dom in choosing the next node to be processed allows also for dynamic sequenc- 
ing algorithms. Methods of this type have been developed by Dempster and 
Thompson [55], [56]. The basic idea is using the expected value of perfect in- 
formation (EVPI), attached in this case to the nodes, to choose the next node to 
be processed among the nodes having the highest EVPI-value. EVPI has been 
discussed in Ch. 3, Section 2.3. The multistage extension is due to Dempster 
[53], see also [56]. Another useful idea, due to Dempster and Thompson [56], 
concerns stage-aggregation. According to this, in the equivalent deterministic 
LP, stages can be aggregated, leading to equivalent formulations of the MSLP 
problem involving fewer stages. The price for this is an increase in the dimen- 
sion of matrices At,, involved in the problem formulation. This idea has also 
been utilized by Edirisinghe [68] for constructing bound-based approximation 
for MSLP problems. Another idea in this paper concerns bounds based on 
nonanticipativity aggregation. This leads us to our next subject. 

The equivalent LP problem (Ch. 1, 2.18) of the MSLP problem is also called 
the compact form or implicit form. The reason is that the nonanticipativity 
requirement is ensured implicitly, by assigning the decision variables to the 
nodes of the scenario tree. The compact form has the disadvantage that in the 
case, when the underlying LPproblem has some special structure (for instance, it 
is a transportation problem), this structure will be partially lost in the equivalent 
LP. 

Another idea for formulating an equivalent LP preserves the problem struc- 
ture. In this approach the decision variables are assigned to scenarios and 
nonanticipativity is enforced by explicit constraints. The resulting LP prob- 
lems are called explicit forms or split-variable forms. "split-variable" has the 
following interpretation: the variables in the implicit form become split into 
several variables, according to scenarios. Below we present one variant of this 
type ofproblem formulation, for other variants see, for instance, Kall and Mayer 
[149]. 
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sf 2 0, vt, vs E S 

= sf, vs E S(n)Vn E ~ ( t ) ,  t = 1,. . . ,T 

where we assume that the scenarios, belonging to the same bundle, have been 
(arbitrarily) ordered, and p(n) is the index of the first scenario in the scenario 
bundle corresponding to node n, according to the ordering. Air, bf, and cf 
denote the realization of the corresponding random arrays, according to scenario 
s E S. 

The last group of constraints obviously enforces the nonancipativity require- 
ment; we will call these constraints nonancipativity constraints. 

This form is ideally suited for Lagrangean relaxation. In fact, formulating 
the Lagrange function with respect to the nonanticipativity constraints, the 
following Lagrange-relaxation results: 

which is separable with respect to the scenarios s E S ,  and decomposes into 
S = IS/ separate subproblems. 

Based on Lagrangean relaxation, several algorithms have been proposed for 
solving multistage recourse problems with finite discrete distributions. As the 
most well-known example, let us mention the progressive hedging algorithm 
of Rockafellar and Wets [255], where augmented Lagrangians are utilized. For 
further methods based on Lagrangean relaxation see, for instance, Birge and 
Louveaux [23] and Ruszczyliski and Shapiro (editors) [263]. 

8.2 Scenario generation 
In stochastic programming, scenario generation means generating a discrete 

approximation to the probability distribution o f t ,  in the form of a scenario 
tree. In the multistage recourse problem, the original probability distribution is 
then replaced by this discrete approximation. The resulting multistage recourse 
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problem is considered as an approximation of the original problem and can be 
solved, for instance, by the nested decomposition method. 

The asymptotic properties ofthis discrete approximation are well-understood, 
see, for instance, Pennanen [220], and the references therein. Considering for 
T 2 3 the present state of the art in scenario generation, there does not exist, at 
least according to our knowledge, any practically implementable scenario gen- 
eration method, which would deliver for any (reasonable) error bound E > 0 
a scenario tree, such that the deviation between the true objective value of the 
multistage problem and the optimal objective value of the approximating prob- 
lem is less than e. By "practically implementable" we mean that all constants 
in the method are computable with a reasonable numerical effort, and that the 
resulting scenario trees (and consequently the equivalent LP problems) have 
a manageable size, for most problem instances. The difficulty has its roots in 
computing upper bounds on the optimal objective value of the original problem, 
see, for instance, Shapiro [271]. 

Therefore, according to our view, the presently available scenario generation 
techniques are essentially heuristic algorithms. For overviews on scenario gen- 
eration see DupaEovi, Consigli, and Wallace [64] and the references therein. 
The book DupaEovi, Hurt, and S t ~ ~ i n  [67] contains a summary on scenario 
generation, along with applications in economics and finance. A comparison of 
the different techniques can be found in Kaut and Wallace [158]. In this book 
we confine ourselves to discuss some of the main approaches and present two 
techniques in a more detailed form. 

For continuous distributions, a possible way for arriving at a discrete dis- 
tribution leads via sampling, followed by scenario reduction. The scenario 
reduction phase can also be used in cases when the original probability distri- 
bution is already discrete but involves an unmanageable amount of scenarios. 

In a first step a sample tk = ( t i , .  . . , $ , ) ,  lc = 1,. . . , N, is generated, 
according to the joint probability distribution of I .  This can either be done 
directly, by generating random vectors, or by simulating sample paths of the 
underlying stochastic process. For appropriate techniques see the literature on 
simulation, for instance Deik [50], Devroye [59], Ripley [246], or Ross [259]. 

The sample can be considered as a scenario tree, where each realization 
1 

defines a root-to-leaf path, each scenario has the same probability - and 
N '  

the single branching point is the root. In the second step, this tree is reduced 
by employing distances defined between probability distributions. For methods 
belonging to this class see Dupaeovi, Growe-Kuska, and Romisch [66], Heitsch 
and Romisch [113], and the references therein. Pflug [223] presents a related 
algorithm based on optimal discretization, in a financial application framework. 

Another algorithmic approach proceeds in the reverse direction. The starting 
point is a scenario tree with a single scenario, corresponding to the expected 
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value of J. This tree is then grown in an iterative fashion, by employing a cut- 
and-paste operation, based on successive partitioning of the supports of the ran- 
dom variables Jt (t > 2). This method has been discussed in ch. 3, Section 3.2. 

Next we discuss two of the main approaches in a more detailed form. 

8.2.1 Bundle-based sampling 
The idea is to partition the support of J into a finite number of subsets 

which are utilized for generating a scenario tree via sampling. We discuss the 
method under some simplifying assumptions, the extension to the general case 
is straightforward. Let Et c Rrt be an interval containing the support of the 

T random variable Jt, t = 2, . . . , T, thus E := Et contains the support of J. 
For the sake of simplicity let us assume that rt = r holds for all t. 

Let us partition E along each coordinate into d subintervals, resulting alto- 
gether in dr(T-l) cells. This implies a partition of kt := x:=, =, into dr(t-l) 
cells, for t = 2, . . . , T. With the partition we associate a rooted tree as follows. 
The root corresponds to t = 1. The child-nodes of the root correspond to the 
cells in the partition of k2 = E2. In general, assume that the tree has been built 
up to stage t - 1 such that the nodes in stage t - 1 are associated with the cells 
in the partition of Et-l. For each of the nodes in stage t - 1, define dr children, 
corresponding to the partition of Et. Consequently, the nodes in stage t will 
correspond to the partition of gt. 

Taking a realization of J, we associate with it the cell of the partition of S, 
which contains it. In the tree, this implies an assignment to a scenario, that is, 
to the set of nodes along a root-to-leaf path. The algorithm runs as follows: 

Bundlebased sampling 

Step 1. Initialize 
Choose a sample-size N > 0 and choose the parameter d, defining 
the number of coordinate-wise subintervals in the partition. Set up 
the tree corresponding to the partition, as described above. With 
each node of the tree associate a counter and initialize this with 0. 

Step 2. Generate a sample 
Choose N > 0 and randomly generate a sample ik = (([, . . . , &), 
k = 1, . . . , N, according to the joint probability distribution of J. 

Step 3. Assign probabilities and realizations to nodes 
For each k,  k  = 1, . . . , N, in turn, increase the counter by 1 for all 
nodes along the path corresponding to realization ( I C  in the tree, and 
store the corresponding realizations if node-wise. Subsequently, 
for each of the nodes n E N do: 

Assign the probability pn := %, where N, is the value of the 
counter associated with node n. 
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Compute a realization as the conditional sample mean of the 
realizations associated with the node. Assign this realization to 
node n. 

Step 4. Drop superJuous nodes 
Drop all nodes with associated counter values zero. Obviously, after 
this the graph remains still a tree. 

The algorithm, as it stands above, is a conceptual framework. For instance, 
there is no need to store realizations at the nodes, the conditional sample means 
can be updated at the same pass over the realizations, which serves for assigning 
counter values. 

For consistency properties of the above scheme see King and Wets [163]. The 
approach clearly has its limitations, due to the combinatorial explosion. The 
number of scenarios is dr(T-l), which grows exponentially with the dimension 
r of the random vector, and with the number of stages T. 

8.2.2 A moment-matching heuristic 
The subject of this section is a heuristic algorithm of Haryland, Kaut, and 

Wallace [122]. According to this method, the scenario tree is being built in a 
node-wise fashion, according to the following scheme: 

Seauential framework for scenario generation 

Step 1. Initialize 
Set t = 1, assign probability 1 to the root node. 

Step 2. Generate nodes in the next stage 
For each of the nodes in stage t (t 2 1) proceed as follows: 
specify conditional distributional properties (for instance, moments 
and correlations), given the outcome corresponding to the specific 
node. Generate outcomes (realizations of a random variable with a 
finite discrete distribution), which are consistent with the specifica- 
tion. Define the corresponding child-nodes and assign to them the 
realizations and associated probabilities. If t = T - 1 then stop, 
otherwise set t := t + 1 and repeat Step 2. 

In the rest of this section we will discuss the subproblem arising at the nodes: 
given some distributional properties of a random vector, generate a finite discrete 
distribution having the prescribed distributional properties. More closely, we 
consider the following problem: Let < be an r-dimensional random vector 
with a finite discrete distribution. We prescribe the number of realizations N, 
the probabilities pl, . . . , p~ of the realizations, the expected values, standard 
deviations, skewness, and kurtosis for the l-dimensional marginal distributions, 
as well as the correlation matrix of 5. Given these quantities, we wish to 
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compute the realizations in such a way that the resulting discrete distribution 
has the prescribed properties. The data concerning the marginal distributions 
and the realizations zij which we wish to compute, are summarized in Table 4.2, 

where pi = E [GI, ui = ( E [(S, - ) a, and 

Table 4.2. Marginal distribution data and realizations 

Additionally to the data summarized in the table, the correlation matrix of C 
is also prescribed. Let R be the correlation matrix of C defined as 

We assume throughout that R is nonsingular, consequently it is positive definite. 
The Cholesky-factorization of R is R = L LT, where L is a lower triangular 
matrix. 

It is clearly sufficient to solve the problem for standardized random variables. 
In fact, let t be the standardized of 5, that is, 

Then we have 

and the correlation matrices of C and t are the same. Therefore, it is sufficient to 
solve the above problem for standardized random variables. Having generated 
the realizations xij Vi, j for t ,  then, according to Ci = niti + pi, we get the 
solution zij = aixij + pi for the original problem. Consequently, pi = 0 and 
ai = 1 will be assumed in the sequel, for all i. 
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We will utilize some transformations of random variables and random vec- 
tors. 

The first one will be called moment-matching transformation and is defined 
for random variables. Let t be a standardized random variable (r = 1) and 
assume that the first 12 moments of this random variable exist and that these 
moments are known. We consider a nonlinear transformation of the following 
form 

q = I'T{m(t) := a + be + e2 + dt3 

and wish to determine the coefficients a, b, c, and d of this cubic polynomial in 
such a way, that E[q] = 0, E[q2] = 1, I E [ ~ ~ ]  = s, and IE[q4] = k hold, with 
s and k > 0 prescribed. This requirement can be formulated as the following 
system of nonlinear equations 

0 = IE[q] = E [ a  + bt + e2 + dt3] = Pl(a ,  b, c, d), 
1 = E[q2] = E[(a+bJi+&+dt:)2] = Pz(a,b,c,d), 
s = IE[q3] = E[(a  + bt + ct2 + dJ3)3] = P3(a, b, c, d), (8.3) 

k = IE[q4] = E[(a  + bt + ct2 + dt3)4] = %(a, b, c, d), 

where Pi(a, b, c, d), denotes a polynomial function of order i, in the variables 
a, b, c, and d. The coefficients of these polynomials involve the moments of 
t ,  with the highest moment having order 12 and appearing in %(a, b, c, d). 
The analytical form of these polynomials can be obtained by straightfonvard 
calculation, see [l22]. 

If the system of equations (8.3) has a real solution, then we have the desired 
transformation. It may happen, however, that there exists no real solution of it. 
For accounting also for this case, the suggested way of numerical solution relies 
on minimizing the sum of quadratic deviations, for instance, by employing 
the Levenberg-Marquardt method. Thus, if there does not exist a solution, 
the method will deliver a, b, c, and d, for which the deviation is minimal. 
For the sake of simplicity of presentation, we will assume that whenever this 
transformation is applied, the corresponding system (8.3) has a real solution. 

The second transformation will be called correlation-matching transforma- 
tion, or alternatively forward transformation, and is defined for random vectors. 
Let now t be an r-dimensional standardized random vector and assume that 
the components of 5 are uncorrelated (the correlation matrix o f t  is the identity 
matrix I). The transformation is defined as the following nonsingular linear 
transformation 

7 = r g ( t )  := L t, 
where L is a lower-triangular matrix with R = L L~ (Cholesky-factorization). 
Clearly we have E [q] = E [LC] = L E[t] = 0. Furthermore 
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consequently the covariance matrix of 7 is R. In particular, we get that the 
variance of q is 1, for all i and thus the correlation matrix of 7 is also R. 

Next we take a look, how this transformation changes the third and fourth 
moments. 

PROPOSITION 8.1 Let us assume that the components of ( are stochastically 
independent. Then 

holds. 

Proofl The first equality follows from 

where Li is the i'th row of L and we have used the fact that, due to the stochastic 
independence assumption, we have E [(j(&] = IE [Jj]IE [&I E [&I = 0 for three 
different indices j, k, I ,  and IE[J~<;] = IE[<~]E[(?] = 0 for k = I ,  j # k. 

For the second equality in (8.4) observe: 

where, again implied by the stochastic independence assumption, all terms are 
zero, except those where either all four indices are equal, or there exist two 
pairs of equal indices. The number of possibilities for selecting the latter is 6, 
therefore, observing E[$] = 1 Vj, we have 

i 

We utilize that C L:, = 1 holds for the Cholesky-factor, for all i, thus getting 
k= 1 
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which proves the second equality in (8.4). 0 

Notice that in (8.4) we have two nonsingular triangular systems of linear 
equations which, given E[$] and IE[q;] for all i, can be solved for IE[@ and 
IE[@ Vj, respectively: 

Now we are prepared to presenting a perfect matching algorithm for the 
solution of our problem. Assume that the standardized random vector J has 
independent components and that ii := IE[J3] and & := IE[J3] are computed 
according to (8.5), with the setting E[$] = si and IE[q;] = b, Vi. The quanti- 
ties ii and ki will be called transformed target moments. Applying the forward 
transformation l?g to J, q := r g ( J )  = LJ will be a solution of our problem. 
Thus we have the following conceptual algorithm: 

Perfect matching conceptual algorithm 

Step I .  Initialization 
Compute the Cholesky-factorization R = L LT. According to 
(8.5), compute ii := IE[J3] and ki := IE[t3], using the target mo- 
ments and the Cholesky-factor of the target correlation matrix. 

Step 2. Choose a starting distribution 
Take any discretely distributed standardized r-dimensional random 
vector i ,  which has stochastically independent components, N joint 
realizations and the prescribed probabilities pl , . . . , p~ for the joint 
realizations. 

Step 3. Match the transformed target moments 
Component-wise apply the moment matching transformation ti := 
I?;%(&), i = 1, . . . , r. This results in a random vector f, which 

has independent components and moments 0, 1, ii) ki. 

Step 4. Match the correlations 
Apply the forward transformation q := rg([) = L{, then q will 
be a solution of our problem, with a perfect matching both for the 
first four moments and for the correlation matrix. 

The difficulty with the perfect matching method is that, using simulation, 
it is not possible to generate a random vector with theoretically independent 
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components. Therefore, we will also need a transformation which decreases the 
"degree" of dependence. Instead of ensuring independence, we are merely able 
to remove correlations. Let J be a standardized random vector with correlation 
matrix R and 

7 = r p ( J )  := L-It ,  

then the correlation matrix of 7 will be I. In fact 

This transformation will also be called backward transformation. 
The heuristic scenario-generation method of Haryland, Kaut, and Wallace 

[I221 (HKW-method) is designed along the lines of the perfect matching al- 
gorithm. Step l is carried out without changes. The implementation of Step 
2 consists of randomly and independently generating N random vectors with 
independent components, where the components are taken from a standard nor- 
mal or from a uniform distribution. Let us denote this discretely distributed 
random vector by 5 and its correlation matrix matrix by R. The problem is, 
that the components of 5 will not be independent in a theoretical sense. 

After having carried out Steps I and 2 of the conceptual algorithm, the HKW- 
method proceeds in two phases. 

Phase I corresponds to Step 3 of the conceptual method. The goal is to 
construct a discrete distribution, such that the components of a corresponding 
random vector 5 are stochastically independent and have the first four pre- 
scribed marginal moments: (0, 1,  &,  ki). Instead of the theoretically required 
independence, we only try to achieve approximately zero correlations, and a 
hopehlly good-enough approximation to the moments. The algorithm runs as 
follows. 

Phase I: removing correlations and matching moments 

Step I .  Initialization 
Choose E& > 0 for the stopping tolerance concerning correla- 
tions. Apply ti := I'?9m(ci) componentwise Vi (target moments 

si,ki 

are 0, 1 &, ki Vi). 
{+ right transformed target moments t) 

Step 2. Compute the correlation matrix and factorize it 
Compute R. If I I R  - Ill < EL then Stop, otherwise continue. 
Perform the Cholesky-factorization of R, resulting in R = 2iT, 
with i being lower triangular. 

Step 3. Remove correlations 
Perform backward transformation: 
5 := r F ( 5 )  = i-'& Store 5' := 5,  which has zero correlations. 
{t zero correlations t) 
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Step 4. Achieve transformed target moments 
Apply & := l?;>y(c) componentwise Vi; & has the desired mo- 
ments. 
{+ right transformed target moments t) 
Continue with Step 2. 

In the subsequent Phase 11, Step 4 of the conceptual algorithm is imple- 
mented. Similarly to Phase I, this is also carried out in an iterative manner. The 
method is the following. 

Phase 11: simultaneous moment and correlation matching 

Step I .  Initialization 
Choose E$ for the stopping tolerance regarding correlations. Set 
i := fc, where 5' is the distribution, saved in Step 3 of Phase I. 
~ p p i y  ti := r; (f) = LC. 

Step 2. Compute and factorize the correlation matrix 
Compute R. If 11 R - RJI < E$ then Stop, otherwise continue. 
Compute the Cholesky-factorization R = iiT. 

Step 3. Remove correlations 
Perform backward transformation: 5 := r Y ( 5 )  = i-lf .  

{t zero correlations t) 
Step 4. Forward transformation 

Compute 5, := l ? ~ ( & )  = LC. Store := 5, which has the right 
correlations. 
(4 right target correlations t) 

Step 5. Achieve target moments 
Apply 5, : = r z>~  (&) componentwise W. 
{t right target moments t) 
Continue with Step 2. 

The HKW-algorithm is a heuristic scenario-tree generation procedure; there 
exist no proofs of finite termination or of convergence for the iterative cycles 
involved, neither for Phase I nor for Phase 11. Hnryland, Kaut, and Wallace [122] 
report on successfbl practical applications and present some quite favorable 
computational results. The authors of this book have also implemented the 
method; it is one of the scenari-tree generation methods, available with SLP- 
IOR, see Section 9.2. Our computational experience is also in favor of the 
algorithm. 

8.3 A guide to available software 
The solvers, available for multistage problems, have been discussed in Sec- 

tion 7.5. 
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The scenario generation algorithm in Section 8.2.1 is part of the modeling 
system OSLSE of IBM, see King et al. [164]. We have also implemented a 
version, which is available with SLP-IOR, see Section 9.2. 

An experimental implementation of the HKW-method for scenario gener- 
ation, presented in Section 8.2.2, has been developed by the authors of the 
algorithm, and can be downloaded in executable form from the homepage of 
Michal Kaut, http://work.michalkaut.net/. 

A commercial version of a scenario reduction method, presented in DupaEovL 
et al. [66], has been implemented by Nicole Growe as the solver SCENRED. 
It is available with the algebraic modeling system GAMS, Brooke et al. [30], 
[3 11. 

A comparison of the different scenario-generation methods can be found in 
Kaut and Wallace [I 581, which may serve as a guide to choose an appropriate 
method. 

9. Modeling systems for SLP 
Modeling systems are aimed to provide support to the various stages in a 

model's life cycle including building, solving, and analyzing problem instances, 
and their solution. They have a specified scope concerning model types and 
differ in their scope, in the extent of support provided to the different stages 
in the model's life-cycle, and in the range of modeling tools offered by them. 
Modeling systems can also be integrated systems, including links to modeling 
languages and solvers. Some of the modeling systems are based on modeling 
languages. 

9.1 Modeling systems for SLP 
Considering SLP, presently several modeling systems and tools are available, 

below we provide a short list of the most well-known systems. We just list some 
of the major characteristic features of the systems, for the details see the cited 
papers. 

= OSLSE is the stochastic programming system of IBM, see King, Wright, 
Parija, and Entriken [164], for multistage recourse models with scenario 
trees. It is an optimization system and a library of tools, supporting model 
building including scenario generation, and the solution phase. The MSLP 
solver with the same name OSLSE, is also separately available. 

SETSTOCH, developed by C. Condevaux-Lanloy and E. Fragnikre [40]. 
This is a modeling tool, with the main goal of supporting the linking of SLP 
solvers to algebraic modeling systems. The authors report on the application 
of this tool for linking the solver OSLSE to the algebraic modeling system 
GAMS. 
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a SLP-IOR is our model management system for SLP and will be discussed 
in a detailed fashion in Section 9.2. 

SPInE, a stochastic programming integrated environment, developed by P. 
Valente, G. Mitra, and C.A. Poojari, see [294]. The scope of the system 
consists of multistage recourse models with scenario trees and of chance 
constrained models. It serves for supporting the entire modeling life-cycle 
and has integrated facilities for accessing databases. A unique feature of this 
system is that it includes an extension of the algebraic modeling language 
MPL, adding SLP-specific language constructs to it. 

a stochasticsTM is a modeling system for generating large-scale MSLP prob- 
lems with scenario trees, developed by Dempster et al. It has a link to the 
algebraic modeling system AMPL and to XPRESS-MP. Its component for 
stochastic modeling is called stochgen. For an overview see Dempster, 
Scott, and Thompson [54]. The main emphasis in this system is on model- 
ing. 

A modeling system for supporting different LP-equivalent formulations, ac- 
cording to the needs of decomposition solvers, and including stage-aggregation, 
has been developed by Fourer and Lopes [82]. The targeted model class consists 
of MSLP models with scenario trees. 

An integrated modeling environment has been developed by Gassmann and 
Gay [101], for MSLP models with scenario trees. The integration involves the 
algebraic modeling language AMPL (Fourer, Gay, and Kernighan [all) and 
Microsoft's MS Access and MS Excel. 

Shapiro, Powell, and Bernstein [274] developed a Java-representation for 
stochastic online operation research models. 

General problems related to formulating SLP models in algebraic modeling 
systems are discussed in Gassmann and Ireland [99]; for modeling languages 
and systems see Kallrath [154]. Specific issues related to modeling support for 
SLP are the subject of the papers Gassmann [97], Kall and Mayer [145], [142]. 

9.2 SLP-IOR 
Our model management system SLP-IOR was one of the first modeling 

systems for stochastic linear programming. The system design was published 
in Kall and Mayer [141], the first version of the system was available in the 
same year. The scope of this version consisted of two-stage recourse models 
and models with joint probability constraints. Since then, the system has been 
continually further-developed, by extending the scope with new model types, 
by adding new modeling tools, and by developing and connecting new solvers. 
For an overview see Kall and Mayer [143] and Mayer [201], for the present 
state of development see Kall and Mayer [I471 and [149], as well as the user's 
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guide to SLP-IOR, available via the Internet at 

For using the former versions, the user had to have herkis own version of 
the algebraic modeling system GAMS (Brooke, Kendrick and Meeraus [30], 
Brooke et a1.[3 I], and Bussieck and Meeraus [36]). The reason is that the solver 
interface of that versions was based on GAMS. Since 2001, this is no more a 
requirement, SLP-IOR can be used in a stand-alone mode. 

In the rest of this section we give a short overview on SLP-IOR, for the 
details see our papers, cited above, and the user guide of SLP-IOR. 

9.2.1 General issues 
The scope of the present version of SLP-IOR consists of the following model 

types: 

Single stage models. 

- Deterministic LP. 
- Probability constraints (Ch. 2, Section 2); separate (Ch. 2, Section 2.3) 

and joint (Ch. 2, Section 2.5). 
- Integratedprobability constraint (Ch. 2, Section 4.1); separate andjoint. 
- CVaR constraint (Ch. 2, Section 4.3). 

Multistage models. 

- Deterministic LP. 
- Two-stage recourse models (Ch. 3, Section 2). 

* Random recourse (Ch. 3, Section 2). 
* Fixed recourse (Ch. 3, Section 2). 
* Complete fixed recourse (Ch. 3, Section 2.1). 
* Simple recourse (Ch. 3, Section 2.2); continuous recourse and in- 

teger recourse. 
* Multiple simple recourse (Ch. 3, Section 2.2). 

- Multistage recourse. 

The random entries of the arrays in the model are represented via affine linear 
relations, see (Ch. 3, Section 2.1). The random variables may be independent, 
may form a single group of dependent variables, or in the general case, mutually 
independent groups of random variables can be specified. 

Concerning probability distributions, the choice for univariate distributions 
consists of 16 continuous and 7 discrete distributions, containing most of the 
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well-known statistical distributions. In the multivariate case, normal and uni- 
form distributions are available in the continuous case, empirical and uniform 
distributions in the discrete case. 

Deterministic LP's, two-stage and multistage recourse models can be ex- 
portedlimported according to the SMPS data-format, see Gassmann [98]. The 
present version uses the original specification by Birge, Dempster, Gassmann, 
Gunn, King, and Wallace [21], that is, the extensions proposed in [98] are not 
yet implemented. 

Deterministic linear programs, formulated in the algebraic modeling lan- 
guage GAMS (Brooke et al. [30], [3 I]), can be imported with the aim of for- 
mulating stochastic versions of them. 

The system includes an interface to the algebraic modeling system GAMS. 
Consequently, if the user has a copy of GAMS, all solvers available with that 
particular GAMS distribution can also be used for solving SLP problems for- 
mulated in SLP-IOR, provided, that an algebraic equivalent exists and the 
formulation of it is supported by SLP-IOR. For instance, multistage recourse 
problems with a scenario tree can also be solved this way via GAMS. 

The user communicates with the system via an interactive, menu-driven 
interface. 

9.2.2 Analyze tools and workbench facilities 
The analyze tools provide support for analyzing a model instance or its 

solution. The tools are presently available for recourse models and include 

for two-stage models computing the solutions for the following associated 
problems: the expected value problem (EV), the wait-and-see solution 
(WS), the expected result (EEV), as well as computing the derived quanti- 
ties expected value of perfect information (EVPI), and value of stochas- 
tic solution (VSS). For the definition of these characteristic values see 
Ch. 3, Section 2.3. Computations are done in the discretely distributed case 
directly, for continuous distributions sampling is available. 

For two-stage models checking whether the model instance has the complete 
recourse property and analyzing the model for finding out whether it has a 
hidden simple recourse structure. 

For two-stage recourse models, computing the solution of the SAA problem, 
see Section 7.3.1. 

Computing the recourse objective for a fixed first-stage vector x*. The im- 
plementation of the procedures for testing the quality of a solution, discussed 
in Section 7.3.1, is in progress. 

The primary aim of the workbench facilities is to support the testing of 
solvers. They include 
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rn our test-problem generator GENSLP. This serves for randomly generating 
test problem batteries consisting of model instances of recourse problems 
or problems with joint probability constraints. Several parameters can be 
chosen to control, for instance the nonzero density of the arrays, the type of 
recourse matrix (for instance, complete fixed recourse can be prescribed), or 
the number of random entries in the stochastic arrays (via the affine-linear 
relations (Ch. 3, Section 2.1)). 

rn Generating test problem batteries by randomly perturbing the array-elements 
of a single model instance. 

Running a selected collection of solvers on a battery of test problems, with 
the aim of supporting comparative computational studies. 

9.2.3 Transformations 
Two types of model transformations are supported. 
On the one hand, a model instance can be transformed into an algebraic 

equivalent provided that such an algebraic equivalent exists. As an example, let 
us consider multistage recourse models with scenario trees. Such models can 
either be transformed to an equivalent LP having the compact form, or into ex- 
plicit forms (presently 4 different such forms are supported), see Section 8.1 for 
a discussion concerning the different equivalent LP forms. These LP problems 
can be subsequently exported in MPS form, for the sake of testing LP solvers, 
for instance. 

On the other hand, a model instance can be transformed into an instance 
of another model type, e.g., a two-stage recourse problem can be transformed 
into a chance constrained model. Missing data are replaced by default values. 
The aim of this facility is to support the formulation of different types of SLP 
models, on the basis of the same underlying data-set. 

9.2.4 Scenario generation 
Scenario generation has been discussed in Section 8.2. In SLP-IOR two 

algorithms are implemented: the bundle-based sampling method, discussed 
in Section 8.2.1, and the moment matching heuristic of Haryland, Kaut, and 
Wallace [122], see Section 8.2.2. 

Besides these, the user can also build manually a scenario tree, via a graph- 
ical interface. Several tools are available for supporting this, for instance a 
cut-and-paste procedure, discussed in Ch. 3, Section 3.2 in connection with 
discretization methods for MSLP problems. 

For the bundle-based simulation method several probability distributions are 
available, see Section 9.2.1. 
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9.2.5 The solver interface 

The solver interface of SLP-IOR is an open interface, in the sense that the 
user can connect herkis own solver to the executable of SLP-IOR. For the 
details see the user's guide. 

Several solvers are connected to SLP-IOR. Some of them are commercial 
solvers, others have been developed by ourselves. Some have been obtained 
from the authors of the solver, which we would like to gratefully acknowledge 
also in this place. If the user has a copy of GAMS, then the general-purpose 
GAMS solvers can also be called within SLP-IOR. 

Here we confine ourselves to listing some of the solvers, for a full list see 
Kall and Mayer [147], or the user's guide. 

General-purpose LP solvers 

- HiPlex, variant of the simplex method by Maros [190], [191], Maros 
and Mitra [192], implemented by I. Maros. 

- HOPDM, an interior-point method of Gondzio [109], implemented by 
J. Gondzio. 

- Minos, a commercial solver for NLP, for LP problems it implements 
the simplex method. See Murtagh and Saunders [211]. 

Solvers for two-stage recourse problems 

- BPMPD general-purpose LP solver, interior point method, implement- 
ed by Cs. M6sziros [204], see also Section 7.5. Although a general- 
purpose solver, it is especially well-suited for recourse problems with 
a finite discrete distribution. 

- DAPPROX, successive discrete approximation method, see Section 7.2, 
implemented by P. Kall and J. Mayer. 

- MSLiP, nested decomposition, implemented by H. Gassmann [95]. For 
the nested decomposition method see Ch. 1, Section 2.7. 

- QDECOM, regularized decomposition method of Ruszczyhki [261], 
implemented by A. Ruszczynski. For the algorithm see 
Ch. 1, Section 2.8. 

- SDECOM, stochastic decomposition method of Higle and Sen [116], 
11191, implemented by P. Kall and J. Mayer. For the method see Sec- 
tion 7.3.2. 

- SHOR2, decomposition scheme of Shor [275], Shor, Bardadym, 
Zhurbenko, Likhovid, Stetsyuk [276], implemented by N. Shor and 
A. Likhovid. 

Specialized solvers for simple recourse 
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- SHOR1, the same method and authors, as for SHOR2, the algorithm 
has been adapted to the special structure. 

- SRAPPROX, successive discrete approximation method, 
see Section 7.2.6, implemented by P. Kall and J. Mayer. 

Simple integer recourse 

- SIRD2SCR, implements the convex hull algorithm of Klein Haneveld, 
Stougie, and Van der Vlerk [168], implemented by J. Mayer and M.H. 
van der Vlerk. 

w Multiple simple recourse 

- MScrZScr, transformation of Van der Vlerk [298], see 
Ch. 3, Section 2.2, implemented by J. Mayer and M.H. van der Vlerk. 

m Joint probability constraints 

- PCSPIOR, supporting hyperplane method of Szintai [283], imple- 
mented by J. Mayer. For the method see Ch. 1, Section 3.2 and Sec- 
tion 3.2. 

- PROBALL, central cutting plane method, Mayer [201], implemented 
by J. Mayer, see Ch. 1, Section 3.2 and Section 3.2. 

- PROCON, reduced gradient method, see Mayer [201], implemented 
by J. Mayer. See Ch. 1, Section 3.2 and Section 3.2. 

9.2.6 System requirements and availability 
The system runs under the Microsoft Windows32 operating system family; it 

has been tested under Windows 95, Windows NT, Windows 2000, and Windows 
XP. 

If the user has a copy of GAMS, then the GAMS-solvers can also be used 
from SLP-IOR, see Section 9.2.1. Having GAMS is, however, not aprerequisite 
for using SLP-IOR. 

SLP-IOR, in executable form, is available free of charge for academic pur- 
poses; for obtaining a copy please contact one of the authors. 
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Benders decomposition, see dual decomposition 
binomial moments, 285 
Boole-Bonferroni-type inequalities, 284-292 

chance constraints, see SLP with probability 
functions 

conditional value-at-risk, 16 1 
convex 

function, 61 
hull, 16 
polyhedral cone, 16, 17 
polyhedral set, 16 
polyhedron, 16 
set, 61 

CVaR, see conditional value-at-risk 

discrete approximation method, see successive 
discrete approximation 

disjunctive programming problem, 99 
distribution 

Cauchy, 115,135 
Dirichlet, 129 
gamma, 131,135 
log-normal, 133 
normal, 103 
stable, 113 
Student's t, 131 
Wishart, 130 

distribution function, bounds, 284-292 
distribution function, computing, 292-298 

Monte-Carlo method 
based on probability bounds, 298 
with antithetic variates, 295 

dual 
feasible tableau, 22 
pivot step, 26 
program, 19 
simplex algorithm, 27 

dual decomposition 
algorithm, 3 1 

feasibility cut, 32 
multicut, 35 
optimality cut, 32 

Edmundson-Madansky inequality, 212,213 
generalized, 2 16 

epi-convergence, 225 

Farkas lemma, 2 1 

gamma-concave (y-concave) 
function, 123 
probability measure, 125 

GAMS, 354,370,371,374 
generalized concave, see gamma-concave (y- 

concave) 

integrated chance constraints, see SLP with inte- 
grated probability functions 

Jensen inequality, 210 

Kolmogorov's strong law of large numbers, 347 

L-shaped method, see dual decomposition 
Lagrange function, 65 
linear programming, 13-60 

algebraic concepts, 13-16 
degeneracy, 15 
feasible basic solution, 13, 14 
feasible basis, 14 

basic variables, 14 
dual decomposition, 29-37 
dual simplex method, 27-29 
duality, 19-22 

complementarity conditions, 21 
strong duality theorem, 20 
weak duality theorem, 20 

geometry, 16-19 
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feasible set, 17 
interior-point methods, 5 6 6 0  

central path, 57 
interior-point condition, 56 
primal-dual algorithm, 58 

nested decomposition, 37-53 
nonbasic variables, 14 
regularized decomposition, 53-55 
simplex method, 22-26 

logconcave 
function, 90 
probability measure, 126 

logconvex 
function, 90 

LP, see linear programming 
LP optimality, see simplex criterion 

master problem, see master program 
master program, 32 

relaxed, 42 
modeling systems for SLP, 368-374 

SLP-IOR, 369-374 
moment problem, 212,219 

nested decomposition, 37 
algorithm, 49 
backtracking, 50 
backward pass, 49 
feasibility cut, 43,44 

valid, 45 
forward pass, 49 
optimality cut, 46 

valid, 47 
NLP, see nonlinear programming 
nonlinear programming, 60-73 

cutting plane methods 
central cuts, 71 
moving Slater points, 70 
outer linearization, 67 

Kamsh-Kuhn-Tucker conditions, 64 
optimality conditions, 64-66 
regularity condition, 63 
saddle point, 66 
saddle point theorem, 66 
Slater condition, 63 
solution methods, 66-73 

pivot 
column, 22,27 
row, 23,27 
step, 23,27 

polar cone, 18 
portfolio optimization, 80, 120, 147, 169, 173, 

177,182,189-191,314 
positive hull, 16 
probabilistic constraints, see SLP with probabil- 

ity functions 

probability function, 92 
pseudo-concave function, 88 

quantile function, 144 
quasi-concave 

function, 87 
probability measure, 126 

regularized decomposition, 53 
algorithm QDECOM, 54 

risk measure, 180-189 
coherent, 183 
convex, 183 
deviation measure, 183 
in finance, 182-184 
in SLP. 184-1 89 

SAA, see sample average approximation 
saddle point, see NLP 
sample average approximation 

algorithm, 347 
testing solution quality, 346 

scenario generation, 358-367 
bundle-based sampling, 360 
moment matching heuristic, 366,367 

scenario tree, see SLP with recourse, multi-stage 
second-order cone program, 274 
semi-infinite program, 212,2 19 
simplex 

algorithm, 22 
criterion, 15 
tableau, 14 

SLP with CVaR functions, 159-166 
dual decomposition method, 3 10 

SLP with deviation measures 
absolute deviation, 169-174 

discrete distribution, LP, 171 
absolute semi-deviation, 177-178 
quadratic deviation, 166-169 
quadratic semi-deviation, 174-177 

SLP with integrated probability functions 
joint, 154-158 

dual decomposition method, 3 13 
separate, first kind, 149-1 53 

dual decomposition method, 308 
separate, second kind, 153-154 

SLP with probability functions, 92-143 
discrete distribution, 98 

disjunctive programming, 99 
independent case, 120 
joint 

only RHS stochastic, 122-136 
random technology matrix, 136141 

separate, 100-120 
SLP with quantile functions, 144-146 
SLP with recourse constraint, 303 

dual decomposition method, 305 
SLP with recourse, general problem, 193-198 
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constraint-aggregated, 196 
decision-aggregated, 195 
fully aggregated, 196 
nonanticipative policy, 194 

SLP with recourse, multi-stage, 248-272 
discrete distribution, 249-255 
non-discrete distribution, 255-272 

discretization (cut and paste), 268 
subfiltration (scenario tree), 261 

scenario tree, 37,249,250 
children of node n, 252 
future of node n, 252 
history of node n, 252 
node splitting (cut and paste), 268 
parent node of node n, 25 1 
scenario bundle of node n, 252 
splitting criterion (cut and paste), 271 

state variable, 248 
SLP with recourse, two-stage, 198-248 

characteristic values, 243-248 
expected result of the EV solution 

EEV,  244 
expected value of perfect information 

EVPI ,  246 
expected value problem EV, 244 
optimal value RS, 243 
value of the stochastic solution V S S ,  

246 
wait-and-see value WS, 244 

complete fixed recourse, 201-226 
approximation schemes, 226 
complete recourse condition, 202 

fixed recourse, 200 
induced constraints, 200 
MSRT multiple simple recourse, 237 
recourse function, 200 
relatively comlete fixed recourse, 201 
simple recourse, 226-243 

discretization error, 232,234 
ESRT function, 229 
SRT function, 228 

SLP-IOR, 369-374 
analyze, 371 
scenario generation, 372 
scope, 370 
solvers, 373 

SMPS format, 353,371 
SOCP, see second-order cone program 
solver, 273 

CVaR-minimization 
CVaRMin, 3 14 

evaluating distribution functions, 300-301 
linear programming 

HiPlex, 373 
HOPDM, 373 
Minos, 300,3 14,333,373 

multiple simple recourse 
MScRScr, 355,374 

multistage recourse 
Bnbs, 353 
MSLiP, 354,373 
OSLSE, 354 

nonlinear programming 
Minos, 281,373 

probability constraints 
PCSP, 300 
PCSPIOR, 300,374 
PROBALL, 300,374 
PROCON, 300,374 

scenario generation 
bundle-based, 368,372 
moment matching heuristic, 368,372 
SCENRED, 368 

second-order cone programs 
LOQO, 275 
MOSEK, 275 
SDPT3,275 
SeDuMi, 275 
SOCP, 275 

simple integer recourse 
SIRD2SCR, 355,374 

two-stage recourse 
BPMPD, 354,373 
DAPPROX, 327,332,333,355,373 
DECIS, 354 
FortSP, 354 
QDECOM, 3 17,332,355,373 
SDECOM, 352,355,373 
SHOR1,355,374 
SHOR2,355,373 
SQG, 354 
SRAPPROX, 341,355,374 

stochastic decomposition 
basic algorithm, 350 
incumbent solution, 35 1 
regularized algorithm, 35 1 

stochastic linear programming, see SLP 
subdifferential, 61 
subgradient, 61 
successive discrete approximation 

algorithm, 327 
computing lower bounds, 324 
computing upper bounds, 326 
for simple recourse, 339 
implementation, 335 

value-at-risk, 144 
VaR, see value-at-risk 
vertex, 16 

weak convergence of probability measures, 225 
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