
PVM� Parallel Virtual Machine

Scienti�c and Engineering Computation

Janusz Kowalik� Editor

Data�Parallel Programming on MIMD Computers

by Philip J� Hatcher and Michael J� Quinn� ����

Unstructured Scienti�c Computation on Scalable Multiprocessors

edited by Piyush Mehrotra� Joel Saltz� and Robert Voigt� ����

Parallel Computational Fluid Dynamics� Implementations and Results

edited by Horst D� Simon� ����

Enterprise Integration Modeling� Proceedings of the First International Conference

edited by Charles J� Petrie� Jr�� ����

The High Performance Fortran Handbook

by Charles H� Koelbel� David B� Loveman� Robert S� Schreiber� Guy L� Steele Jr�� and

Mary E� Zosel� ����

Using MPI� Portable Parallel Programming with the Message�Passing Interface

by William Gropp� Ewing Lusk� and Anthony Skjellum� ����

PVM� Parallel Virtual Machine � A Users� Guide and Tutorial for Networked Parallel

Computing
by Al Geist� Adam Beguelin� Jack Dongarra� Weicheng Jiang� Robert Manchek� and

Vaidy Sunderam� ����

PVM� Parallel Virtual Machine
A Users� Guide and Tutorial for Networked Parallel Computing

Al Geist

Adam Beguelin

Jack Dongarra

Weicheng Jiang

Robert Manchek

Vaidy Sunderam

The MIT Press

Cambridge� Massachusetts

London� England

c� ���� Massachusetts Institute of Technology

All rights reserved� No part of this book may be reproduced in any form by any electronic or
mechanical means �including photocopying� recording� or information storage and retrieval� without
permission in writing from the publisher�

This book was set in LaTEX by the authors and was printed and bound in the United States of America�

Library of Congress Cataloging�in�Publication Data

This book is also available in postscript and html forms over the Internet�
To retrieve the postscript �le you can use one of the following methods	

� anonymous ftp

ftp netlib��cs�utk�edu

cd pvm��book

get pvm�book�ps

quit

� from any machine on the Internet type	

rcp anon�netlib��cs�utk�edu�pvm��book�pvm�book�ps pvm�book�ps

� sending email to netlib�ornl�gov and in the message type	
send pvm�book�ps from pvm��book

� use Xnetlib and click
library�� click
pvm��� click
book�� click
pvm�
pvm�book�ps�� click

download�� click
Get Files Now�� �Xnetlib is an X�window interface to the netlib software based on
a client�server model� The software can be found in netlib�
send index from xnetlib���

To view the html �le use the URL	

� http���www�netlib�org�pvm��book�pvm�book�html

Contents

Series Foreword xi

Preface xiii

� Introduction �

��� Heterogeneous Network Computing �

��� Trends in Distributed Computing �

��� PVM Overview �

��� Other Packages �

����� The p� System �

����� Express 	

����� MPI 	

����� The Linda System

� The PVM System ��

� Using PVM ��

��� How to Obtain the PVM Software ��

��� Setup to Use PVM ��

��� Setup Summary ��

��� Starting PVM ��

��� Common Startup Problems ��

��� Running PVM Programs ��

��	 PVM Console Details �	

��
 Host File Options ��

� Basic Programming Techniques ��

��� Common Parallel Programming Paradigms ��

����� Crowd Computations ��

����� Tree Computations �	

��� Workload Allocation ��

����� Data Decomposition ��

����� Function Decomposition ��

vi Contents

��� Porting Existing Applications to PVM ��

� PVM User Interface ��

��� Process Control ��

��� Information ��

��� Dynamic Con�guration ��

��� Signaling ��

��� Setting and Getting Options ��

��� Message Passing ��

����� Message Bu
ers ��

����� Packing Data ��

����� Sending and Receiving Data �	

����� Unpacking Data ��

��	 Dynamic Process Groups ��

� Program Examples ��

��� Fork�Join ��

��� Dot Product �

��� Failure 	�

��� Matrix Multiply 	�

��� One�Dimensional Heat Equation
�

����� Di
erent Styles of Communication ��

� How PVM Works ��

	�� Components ��

	���� Task Identi�ers ��

	���� Architecture Classes ��

	���� Message Model ��

	���� Asynchronous Noti�cation ��

	���� PVM Daemon and Programming Library ��

	�� Messages �	

	���� Fragments and Databufs �	

Contents vii

	���� Messages in Libpvm �	

	���� Messages in the Pvmd �

	���� Pvmd Entry Points �

	���� Control Messages ���

	�� PVM Daemon ���

	���� Startup ���

	���� Shutdown ���

	���� Host Table and Machine Con�guration ���

	���� Tasks ���

	���� Wait Contexts ���

	���� Fault Detection and Recovery ���

	���	 Pvmd� ���

	���
 Starting Slave Pvmds ��	

	���� Resource Manager ���

	�� Libpvm Library ���

	���� Language Support ���

	���� Connecting to the Pvmd ���

	�� Protocols ���

	���� Messages ���

	���� Pvmd�Pvmd ���

	���� Pvmd�Task and Task�Task ���

	�� Message Routing ��	

	���� Pvmd ��	

	���� Pvmd and Foreign Tasks ��

	���� Libpvm ���

	���� Multicasting ���

	�	 Task Environment ���

	�	�� Environment Variables ���

	�	�� Standard Input and Output ���

	�	�� Tracing ���

	�	�� Debugging ���

	�
 Console Program ���

	�� Resource Limitations ���

viii Contents

	���� In the PVM Daemon ���

	���� In the Task ���

	��� Multiprocessor Systems ���

	����� Message�Passing Architectures ��	

	����� Shared�Memory Architectures ���

	����� Optimized Send and Receive on MPP ���

� Advanced Topics ���

�� XPVM ���

���� Network View ��	

���� Space�Time View ��

���� Other Views ���

�� Porting PVM to New Architectures ���

���� Unix Workstations ���

���� Multiprocessors ���

	 Troubleshooting ��	

��� Getting PVM Installed ��	

����� Set PVM ROOT ��	

����� On�Line Manual Pages ��

����� Building the Release ��

����� Errors During Build ��

����� Compatible Versions ���

��� Getting PVM Running ���

����� Pvmd Log File ���

����� Pvmd Socket Address File ���

����� Starting PVM from the Console ���

����� Starting the Pvmd by Hand ���

����� Adding Hosts to the Virtual Machine ���

����� PVM Host File ���

����	 Shutting Down ���

��� Compiling Applications ���

����� Header Files ���

Contents ix

����� Linking ���

��� Running Applications ���

����� Spawn Can�t Find Executables ���

����� Group Functions ���

����� Memory Use ���

����� Input and Output ���

����� Scheduling Priority ���

����� Resource Limitations ��	

��� Debugging and Tracing ��	

��� Debugging the System ��

����� Runtime Debug Masks ���

����� Tickle the Pvmd ���

����� Starting Pvmd under a Debugger ���

����� Sane Heap ���

����� Statistics ���

Glossary ���

A History of PVM Versions �	�

B PVM � Routines �
�

Bibliography �	�

Index �		

Series Foreword

The world of modern computing potentially o
ers many helpful methods and tools to

scientists and engineers� but the fast pace of change in computer hardware� software� and

algorithms often makes practical use of the newest computing technology di�cult� The

Scienti�c and Engineering Computation series focuses on rapid advances in computing

technologies and attempts to facilitate transferring these technologies to applications

in science and engineering� It will include books on theories� methods� and original

applications in such areas as parallelism� large�scale simulations� time�critical computing�

computer�aided design and engineering� use of computers in manufacturing� visualization

of scienti�c data� and human�machine interface technology�

The series will help scientists and engineers to understand the current world of ad�

vanced computation and to anticipate future developments that will impact their com�

puting environments and open up new capabilities and modes of computation�

This volume presents a software package for developing parallel programs executable

on networked Unix computers� The tool called Parallel Virtual Machine �PVM� allows

a heterogeneous collection of workstations and supercomputers to function as a single

high�performance parallel machine� PVM is portable and runs on a wide variety of

modern platforms� It has been well accepted by the global computing community and

used successfully for solving large�scale problems in science� industry� and business�

Janusz S� Kowalik

Preface

In this book we describe the Parallel Virtual Machine �PVM� system and how to develop

programs using PVM� PVM is a software system that permits a heterogeneous collection

of Unix computers networked together to be viewed by a user�s program as a single

parallel computer� PVM is the mainstay of the Heterogeneous Network Computing

research project� a collaborative venture between Oak Ridge National Laboratory� the

University of Tennessee� Emory University� and Carnegie Mellon University�

The PVM system has evolved in the past several years into a viable technology for

distributed and parallel processing in a variety of disciplines� PVM supports a straight�

forward but functionally complete message�passing model�

PVM is designed to link computing resources and provide users with a parallel platform

for running their computer applications� irrespective of the number of di
erent computers

they use and where the computers are located� When PVM is correctly installed� it

is capable of harnessing the combined resources of typically heterogeneous networked

computing platforms to deliver high levels of performance and functionality�

In this book� we describe the architecture of the PVM system and discuss its computing

model� the programming interface it supports� auxiliary facilities for process groups�

the use of PVM on highly parallel systems such as the Intel Paragon� Cray T�D� and

Thinking Machines CM��� and some of the internal implementation techniques employed�

Performance issues� dealing primarily with communication overheads� are analyzed� and

recent �ndings as well as enhancements are presented� To demonstrate the viability of

PVM for large�scale scienti�c supercomputing� we also provide some example programs�

This book is not a textbook� rather� it is meant to provide a fast entrance to the world

of heterogeneous network computing� We intend this book to be used by two groups

of readers� students and researchers working with networks of computers� As such� we

hope this book can serve both as a reference and as a supplement to a teaching text on

aspects of network computing�

This guide will familiarize readers with the basics of PVM and the concepts used in

programming on a network� The information provided here will help with the following

PVM tasks�

� Writing a program in PVM

� Building PVM on a system

� Starting PVM on a set of machines

� Debugging a PVM application

xiv Preface

A Bit of History

The PVM project began in the summer of ��
� at Oak Ridge National Laboratory� The

prototype system� PVM ���� was constructed by Vaidy Sunderam and Al Geist� this

version of the system was used internally at the Lab and was not released to the outside�

Version � of PVM was written at the University of Tennessee and released in March

����� During the following year� PVM began to be used in many scienti�c applications�

After user feedback and a number of changes �PVM ��� � ����� a complete rewrite was

undertaken� and version � was completed in February ����� It is PVM version ��� that

we describe in this book �and refer to simply as PVM�� The PVM software has been

distributed freely and is being used in computational applications around the world�

Who Should Read This Book

To successfully use this book� one should be experienced with common programming

techniques and understand some basic parallel processing concepts� In particular� this

guide assumes that the user knows how to write� execute� and debug Fortran or C

programs and is familiar with Unix�

Typographical Conventions

We use the following conventions in this book�

� Terms used for the �rst time� variables� and book titles are in italic type� For example�

For further information on PVM daemon see the description in PVM� Parallel Virtual

Machine � A Users� Guide and Tutorial for Networked Parallel Computing�

� Text that the user types is in Courier bold font� For example� � pvm

The Map

This guide is divided into three major parts� it includes nine chapters� a glossary� two

appendixes and a bibliography�

� Part I � Basics �Chapters ����� This part provides the facts� as well as some interpretation

of the underlying system� It describes the overall concepts� system� and techniques for

making PVM work for applications�

� Introduction to PVM � introduction to network computing and PVM� terms and con�

cepts� including an overview of the system

Preface xv

� Overview of PVM

� C� C��� and Fortran

� basic principles

� �hello�c� example

� other systems �e�g�� MPI�

� PVM Tutorial

� setting up PVM

� running an existing program

� console

� XPVM

� Programming

� basic programming techniques

� data decomposition � partitioning

� function decomposition

� putting PVM in existing code

� User Interface

� functions

� host�le

� Program Examples

� PVM programs

� Part � � Details �Chapters 	���� This part describes the internals of PVM�

� How PVM Works

� Unix hooks to PVM interfaces

� multiprocessors � shared and distributed memory

� Advanced Topics

� portability

� debugging

� tracing

� XPVM details

� Troubleshooting� interesting tidbits and information on PVM� including frequently

asked questions�

xvi Preface

� Part � � The Remains� This part provides some useful information on the use of the

PVM interface�

� Glossary of Terms� gives a short description for terms used in the PVM context�

� Appendix A� History of PVM versions� list of all the versions of PVM that have been

released from the �rst one in February ���� through July ����� Along with each version

we include a brief synopsis of the improvements made in version ��

� Appendix B� Man Pages� provides an alphabetical listing of all the PVM � routines�

Each routine is described in detail for both C and Fortran use� There are examples and

diagnostics for each routine�

� Quick Reference Card for PVM� provides the name and calling sequence for the PVM

routines in both C and Fortran� �If this card is missing from the text a replacement

can be downloaded over the network by ftp�ing to netlib��cs�utk�edu� cd pvm��book�

get refcard�ps��

� Bibliography

Comments and Questions

PVM is an ongoing research project� As such� we provide limited support� We welcome

feedback on this book and other aspects of the system to help in enhancing PVM� Please

send comments and questions to pvm�msr�epm�ornl�gov� by e�mail� While we would

like to respond to all the electronic mail received� this may not be always possible� We

therefore recommend also posting messages to the newsgroup comp�parallel�pvm� This

unmoderated newsgroup was established on the Internet in May ���� to provide a forum

for discussing issues related to the use of PVM� Questions �from beginner to the very

experienced�� advice� exchange of public�domain extensions to PVM� and bug reports

can be posted to the newsgroup�

Acknowledgments

We gratefully acknowledge the valuable assistance of many people who have contributed

to the PVM project� In particular� we thank Peter Rigsbee and Neil Lincoln for their

help and insightful comments� We thank the PVM group at the University of Tennessee

and Oak Ridge National Laboratory�Carolyn Aebischer� Martin Do� June Donato� Jim

Kohl� Keith Moore� Phil Papadopoulos� and Honbo Zhou�for their assistance with the

development of various pieces and components of PVM� In addition we express appre�

ciation to all those who helped in the preparation of this work� in particular to Clint

Preface xvii

Whaley and Robert Seccomb for help on the examples� Ken Hawick for contributions to

the glossary� and Gail Pieper for helping with the task of editing the manuscript�

A number of computer vendors have encouraged and provided valuable suggestions

during the development of PVM� We thank Cray Research Inc�� IBM� Convex Com�

puter� Silicon Graphics� Sequent Computer� and Sun Microsystems for their assistance

in porting the software to their platforms�

This work would not have been possible without the support of the O�ce of Scienti�c

Computing� U�S� Department of Energy� under Contract DE�AC���
�OR������ the Na�

tional Science Foundation Science and Technology Center Cooperative Agreement No�

CCR�

������ and the Science Alliance� a state�supported program at the University of

Tennessee�

PVM� Parallel Virtual Machine

� Introduction

Parallel processing� the method of having many small tasks solve one large problem�

has emerged as a key enabling technology in modern computing� The past several years

have witnessed an ever�increasing acceptance and adoption of parallel processing� both

for high�performance scienti�c computing and for more �general�purpose� applications�

was a result of the demand for higher performance� lower cost� and sustained productiv�

ity� The acceptance has been facilitated by two major developments� massively parallel

processors �MPPs� and the widespread use of distributed computing�

MPPs are now the most powerful computers in the world� These machines combine

a few hundred to a few thousand CPUs in a single large cabinet connected to hundreds

of gigabytes of memory� MPPs o
er enormous computational power and are used to

solve computational Grand Challenge problems such as global climate modeling and

drug design� As simulations become more realistic� the computational power required to

produce them grows rapidly� Thus� researchers on the cutting edge turn to MPPs and

parallel processing in order to get the most computational power possible�

The second major development a
ecting scienti�c problem solving is distributed com�

puting� Distributed computing is a process whereby a set of computers connected by

a network are used collectively to solve a single large problem� As more and more or�

ganizations have high�speed local area networks interconnecting many general�purpose

workstations� the combined computational resources may exceed the power of a single

high�performance computer� In some cases� several MPPs have been combined using

distributed computing to produce unequaled computational power�

The most important factor in distributed computing is cost� Large MPPs typically cost

more than ��� million� In contrast� users see very little cost in running their problems

on a local set of existing computers� It is uncommon for distributed�computing users to

realize the raw computational power of a large MPP� but they are able to solve problems

several times larger than they could using one of their local computers�

Common between distributed computing and MPP is the notion of message passing�

In all parallel processing� data must be exchanged between cooperating tasks� Several

paradigms have been tried including shared memory� parallelizing compilers� and mes�

sage passing� The message�passing model has become the paradigm of choice� from the

perspective of the number and variety of multiprocessors that support it� as well as in

terms of applications� languages� and software systems that use it�

The Parallel Virtual Machine �PVM� system described in this book uses the message�

passing model to allow programmers to exploit distributed computing across a wide

variety of computer types� including MPPs� A key concept in PVM is that it makes a

collection of computers appear as one large virtual machine� hence its name�

� Chapter �

��� Heterogeneous Network Computing

In an MPP� every processor is exactly like every other in capability� resources� software�

and communication speed� Not so on a network� The computers available on a network

may be made by di
erent vendors or have di
erent compilers� Indeed� when a program�

mer wishes to exploit a collection of networked computers� he may have to contend with

several di
erent types of heterogeneity�

� architecture�

� data format�

� computational speed�

� machine load� and

� network load�

The set of computers available can include a wide range of architecture types such as

�
���
� PC class machines� high�performance workstations� shared�memory multipro�

cessors� vector supercomputers� and even large MPPs� Each architecture type has its

own optimal programming method� In addition� a user can be faced with a hierarchy of

programming decisions� The parallel virtual machine may itself be composed of parallel

computers� Even when the architectures are only serial workstations� there is still the

problem of incompatible binary formats and the need to compile a parallel task on each

di
erent machine�

Data formats on di
erent computers are often incompatible� This incompatibility

is an important point in distributed computing because data sent from one computer

may be unreadable on the receiving computer� Message�passing packages developed for

heterogeneous environments must make sure all the computers understand the exchanged

data� Unfortunately� the early message�passing systems developed for speci�c MPPs are

not amenable to distributed computing because they do not include enough information

in the message to encode or decode it for any other computer�

Even if the set of computers are all workstations with the same data format� there is

still heterogeneity due to di
erent computational speeds� As an simple example� consider

the problem of running parallel tasks on a virtual machine that is composed of one super�

computer and one workstation� The programmermust be careful that the supercomputer

doesn�t sit idle waiting for the next data from the workstation before continuing� The

problem of computational speeds can be very subtle� The virtual machine can be com�

posed of a set of identical workstations� But since networked computers can have several

other users on them running a variety of jobs� the machine load can vary dramatically�

Introduction �

The result is that the e
ective computational power across identical workstations can

vary by an order of magnitude�

Like machine load� the time it takes to send a message over the network can vary

depending on the network load imposed by all the other network users� who may not

even be using any of the computers in the virtual machine� This sending time becomes

important when a task is sitting idle waiting for a message� and it is even more important

when the parallel algorithm is sensitive to message arrival time� Thus� in distributed

computing� heterogeneity can appear dynamically in even simple setups�

Despite these numerous di�culties caused by heterogeneity� distributed computing

o
ers many advantages�

� By using existing hardware� the cost of this computing can be very low�

� Performance can be optimized by assigning each individual task to the most appropriate

architecture�

� One can exploit the heterogeneous nature of a computation� Heterogeneous network

computing is not just a local area network connecting workstations together� For exam�

ple� it provides access to di
erent data bases or to special processors for those parts of

an application that can run only on a certain platform�

� The virtual computer resources can grow in stages and take advantage of the latest

computational and network technologies�

� Program development can be enhanced by using a familiar environment� Programmers

can use editors� compilers� and debuggers that are available on individual machines�

� The individual computers and workstations are usually stable� and substantial expertise

in their use is readily available�

� User�level or program�level fault tolerance can be implemented with little e
ort either in

the application or in the underlying operating system�

� Distributed computing can facilitate collaborative work�

All these factors translate into reduced development and debugging time� reduced con�

tention for resources� reduced costs� and possibly more e
ective implementations of an

application� It is these bene�ts that PVM seeks to exploit� From the beginning� the PVM

software package was designed to make programming for a heterogeneous collection of

machines straightforward�

��� Trends in Distributed Computing

Stand�alone workstations delivering several tens of millions of operations per second are

commonplace� and continuing increases in power are predicted� When these computer

� Chapter �

systems are interconnected by an appropriate high�speed network� their combined com�

putational power can be applied to solve a variety of computationally intensive applica�

tions� Indeed� network computing may even provide supercomputer�level computational

power� Further� under the right circumstances� the network�based approach can be e
ec�

tive in coupling several similar multiprocessors� resulting in a con�guration that might

be economically and technically di�cult to achieve with supercomputer hardware�

To be e
ective� distributed computing requires high communication speeds� In the

past �fteen years or so� network speeds have increased by several orders of magnitude

�see Figure �����

10

100

1000

Bandwidth
Mbit/s

1980 1985 1990 1995

Token ring

FDDI

Gigabit
Networks

Ethernet

Year

Figure ���
Networking speeds

Among the most notable advances in computer networking technology are the follow�

ing�

� Ethernet � the name given to the popular local area packet�switched network technology

invented by Xerox PARC� The Ethernet is a �� Mbit�s broadcast bus technology with

distributed access control�

� FDDI � the Fiber Distributed Data Interface� FDDI is a ����Mbit�sec token�passing ring

that uses optical �ber for transmission between stations and has dual counter�rotating

rings to provide redundant data paths for reliability�

� HiPPI � the high�performance parallel interface� HiPPI is a copper�based data commu�

nications standard capable of transferring data at
�� Mbit�sec over �� parallel lines

or ��� Gbit�sec over �� parallel lines� Most commercially available high�performance

computers o
er a HIPPI interface� It is a point�to�point channel that does not support

multidrop con�gurations�

Introduction �

� SONET � Synchronous Optical Network� SONET is a series of optical signals that

are multiples of a basic signal rate of ���
� Mbit�sec called OC��� The OC�� �������

Mbit�sec� and OC��� ������
 Mbit�sec� have been designated as the customer access

rates in future B�ISDN networks� and signal rates of OC���� ������ Gbit�sec� are de�ned�

� ATM � Asynchronous Transfer Mode� ATM is the technique for transport� multiplexing�

and switching that provides a high degree of �exibility required by B�ISDN� ATM is a

connection�oriented protocol employing �xed�size packets with a ��byte header and �

bytes of information�

These advances in high�speed networking promise high throughput with low latency

and make it possible to utilize distributed computing for years to come� Consequently�

increasing numbers of universities� government and industrial laboratories� and �nancial

�rms are turning to distributed computing to solve their computational problems� The

objective of PVM is to enable these institutions to use distributed computing e�ciently�

��� PVM Overview

The PVM software provides a uni�ed framework within which parallel programs can

be developed in an e�cient and straightforward manner using existing hardware� PVM

enables a collection of heterogeneous computer systems to be viewed as a single parallel

virtual machine� PVM transparently handles all message routing� data conversion� and

task scheduling across a network of incompatible computer architectures�

The PVM computing model is simple yet very general� and accommodates a wide

variety of application program structures� The programming interface is deliberately

straightforward� thus permitting simple program structures to be implemented in an in�

tuitive manner� The user writes his application as a collection of cooperating tasks� Tasks

access PVM resources through a library of standard interface routines� These routines

allow the initiation and termination of tasks across the network as well as communication

and synchronization between tasks� The PVM message�passing primitives are oriented

towards heterogeneous operation� involving strongly typed constructs for bu
ering and

transmission� Communication constructs include those for sending and receiving data

structures as well as high�level primitives such as broadcast� barrier synchronization� and

global sum�

PVM tasks may possess arbitrary control and dependency structures� In other words�

at any point in the execution of a concurrent application� any task in existence may

start or stop other tasks or add or delete computers from the virtual machine� Any

process may communicate and�or synchronize with any other� Any speci�c control and

dependency structure may be implemented under the PVM system by appropriate use

� Chapter �

of PVM constructs and host language control��ow statements�

Owing to its ubiquitous nature �speci�cally� the virtual machine concept� and also

because of its simple but complete programming interface� the PVM system has gained

widespread acceptance in the high�performance scienti�c computing community�

��� Other Packages

Several research groups have developed software packages that like PVM assist program�

mers in using distributed computing� Among the most well known e
orts are P� ����

Express ���� MPI �	�� and Linda ���� Various other systems with similar capabilities are

also in existence� a reasonably comprehensive listing may be found in ��	��

����� The p� System

P� ��� is a library of macros and subroutines developed at Argonne National Laboratory

for programming a variety of parallel machines� The p� system supports both the shared�

memory model �based on monitors� and the distributed�memory model �using message�

passing�� For the shared�memory model of parallel computation� p� provides a set of

useful monitors as well as a set of primitives from which monitors can be constructed�

For the distributed�memory model� p� provides typed send and receive operations and

creation of processes according to a text �le describing group and process structure�

Process management in the p� system is based on a con�guration �le that speci�es

the host pool� the object �le to be executed on each machine� the number of processes

to be started on each host �intended primarily for multiprocessor systems�� and other

auxiliary information� An example of a con�guration �le is

� start one slave on each of sun� and sun�

local �

sun� � �home�mylogin�p	pgms�sr
test

sun� � �home�mylogin�p	pgms�sr
test

Two issues are noteworthy in regard to the process management mechanism in p��

First� there is the notion a �master� process and �slave� processes� and multilevel hi�

erarchies may be formed to implement what is termed a cluster model of computation�

Second� the primary mode of process creation is static� via the con�guration �le� dy�

namic process creation is possible only by a statically created process that must invoke

a special o� function that spawns a new process on the local machine� Despite these

restrictions� a variety of application paradigms may be implemented in the p� system in

a fairly straightforward manner�

Introduction �

Message passing in the p� system is achieved through the use of traditional send and

recv primitives� parameterized almost exactly as other message�passing systems� Several

variants are provided for semantics� such as heterogeneous exchange and blocking or

nonblocking transfer� A signi�cant proportion of the burden of bu
er allocation and

management� however� is left to the user� Apart from basic message passing� p� also

o
ers a variety of global operations� including broadcast� global maxima and minima�

and barrier synchronization�

����� Express

In contrast to the other parallel processing systems described in this section� Express ���

toolkit is a collection of tools that individually address various aspects of concurrent com�

putation� The toolkit is developed and marketed commercially by ParaSoft Corporation�

a company that was started by some members of the Caltech concurrent computation

project�

The philosophy behind computing with Express is based on beginning with a sequential

version of an application and following a recommended development life cycle culminat�

ing in a parallel version that is tuned for optimality� Typical development cycles begin

with the use of VTOOL� a graphical program that allows the progress of sequential al�

gorithms to be displayed in a dynamic manner� Updates and references to individual

data structures can be displayed to explicitly demonstrate algorithm structure and pro�

vide the detailed knowledge necessary for parallelization� Related to this program is

FTOOL� which provides in�depth analysis of a program including variable use analy�

sis� �ow structure� and feedback regarding potential parallelization� FTOOL operates

on both sequential and parallel versions of an application� A third tool called ASPAR

is then used� this is an automated parallelizer that converts sequential C and Fortran

programs for parallel or distributed execution using the Express programming models�

The core of the Express system is a set of libraries for communication� I�O� and parallel

graphics� The communication primitives are akin to those found in other message�passing

systems and include a variety of global operations and data distribution primitives� Ex�

tended I�O routines enable parallel input and output� and a similar set of routines are

provided for graphical displays from multiple concurrent processes� Express also con�

tains the NDB tool� a parallel debugger that uses commands based on the popular �dbx�

interface�

����� MPI

The Message Passing Interface �MPI� �	� standard� whose speci�cation was completed

in April ����� is the outcome of a community e
ort to try to de�ne both the syntax

� Chapter �

and semantics of a core of message�passing library routines that would be useful to a

wide range of users and e�ciently implementable on a wide range of MPPs� The main

advantage of establishing a message�passing standard is portability� One of the goals of

developing MPI is to provide MPP vendors with a clearly de�ned base set of routines that

they can implement e�ciently or� in some cases� provide hardware support for� thereby

enhancing scalability�

MPI is not intended to be a complete and self�contained software infrastructure that

can be used for distributed computing� MPI does not include necessities such as process

management �the ability to start tasks�� �virtual� machine con�guration� and support

for input and output� As a result� it is anticipated that MPI will be realized as a

communications interface layer that will be built upon native facilities of the underlying

hardware platform� with the exception of certain data transfer operations that might be

implemented at a level close to hardware� This scenario permits the provision of PVM�s

being ported to MPI to exploit any communication performance a vendor supplies�

����� The Linda System

Linda ��� is a concurrent programming model that has evolved from a Yale University re�

search project� The primary concept in Linda is that of a �tuple�space�� an abstraction

via which cooperating processes communicate� This central theme of Linda has been

proposed as an alternative paradigm to the two traditional methods of parallel process�

ing� that based on shared memory� and that based on message passing� The tuple�space

concept is essentially an abstraction of distributed shared memory� with one important

di
erence �tuple�spaces are associative�� and several minor distinctions �destructive and

nondestructive reads and di
erent coherency semantics are possible�� Applications use

the Linda model by embedding explicitly� within cooperating sequential programs� con�

structs that manipulate �insert�retrieve tuples� the tuple space�

From the application point of view Linda is a set of programming language exten�

sions for facilitating parallel programming� It provides a shared�memory abstraction for

process communication without requiring the underlying hardware to physically share

memory�

The Linda system usually refers to a speci�c implementation of software that supports

the Linda programming model� System software is provided that establishes and main�

tains tuple spaces and is used in conjunction with libraries that appropriately interpret

and execute Linda primitives� Depending on the environment �shared�memory multipro�

cessors� message�passing parallel computers� networks of workstations� etc��� the tuple

space mechanism is implemented using di
erent techniques and with varying degrees of

e�ciency� Recently� a new system scheme has been proposed� at least nominally related

to the Linda project� This scheme� termed �Pirhana� ���� proposes a proactive approach

Introduction �

to concurrent computing� computational resources �viewed as active agents� seize com�

putational tasks from a well�known location based on availability and suitability� This

scheme may be implemented on multiple platforms and manifested as a �Pirhana system�

or �Linda�Pirhana system��

� The PVM System

PVM �Parallel Virtual Machine� is a byproduct of an ongoing heterogeneous network

computing research project involving the authors and their institutions� The general

goals of this project are to investigate issues in� and develop solutions for� heterogeneous

concurrent computing� PVM is an integrated set of software tools and libraries that

emulates a general�purpose� �exible� heterogeneous concurrent computing framework on

interconnected computers of varied architecture� The overall objective of the PVM sys�

tem is to to enable such a collection of computers to be used cooperatively for concurrent

or parallel computation� Detailed descriptions and discussions of the concepts� logistics�

and methodologies involved in this network�based computing process are contained in

the remainder of the book� Brie�y� the principles upon which PVM is based include the

following�

� User�con�gured host pool� The application�s computational tasks execute on a set of

machines that are selected by the user for a given run of the PVM program� Both single�

CPU machines and hardware multiprocessors �including shared�memory and distributed�

memory computers� may be part of the host pool� The host pool may be altered by adding

and deleting machines during operation �an important feature for fault tolerance��

� Translucent access to hardware� Application programs either may view the hardware

environment as an attributeless collection of virtual processing elements or may choose

to exploit the capabilities of speci�c machines in the host pool by positioning certain

computational tasks on the most appropriate computers�

� Process�based computation� The unit of parallelism in PVM is a task �often but not

always a Unix process�� an independent sequential thread of control that alternates be�

tween communication and computation� No process�to�processor mapping is implied or

enforced by PVM� in particular� multiple tasks may execute on a single processor�

� Explicit message�passing model� Collections of computational tasks� each performing

a part of an application�s workload using data�� functional�� or hybrid decomposition�

cooperate by explicitly sending and receiving messages to one another� Message size is

limited only by the amount of available memory�

� Heterogeneity support� The PVM system supports heterogeneity in terms of machines�

networks� and applications� With regard to message passing� PVM permits messages

containing more than one datatype to be exchanged between machines having di
erent

data representations�

� Multiprocessor support� PVM uses the native message�passing facilities on multipro�

cessors to take advantage of the underlying hardware� Vendors often supply their own

�� Chapter �

optimized PVM for their systems� which can still communicate with the public PVM

version�

The PVM system is composed of two parts� The �rst part is a daemon� called pvmd�

and sometimes abbreviated pvmd� that resides on all the computers making up the virtual

machine� �An example of a daemon program is the mail program that runs in the

background and handles all the incoming and outgoing electronic mail on a computer��

Pvmd� is designed so any user with a valid login can install this daemon on a machine�

When a user wishes to run a PVM application� he �rst creates a virtual machine by

starting up PVM� �Chapter � details how this is done�� The PVM application can then be

started from a Unix prompt on any of the hosts� Multiple users can con�gure overlapping

virtual machines� and each user can execute several PVM applications simultaneously�

The second part of the system is a library of PVM interface routines� It contains a

functionally complete repertoire of primitives that are needed for cooperation between

tasks of an application� This library contains user�callable routines for message passing�

spawning processes� coordinating tasks� and modifying the virtual machine�

The PVM computing model is based on the notion that an application consists of

several tasks� Each task is responsible for a part of the application�s computational

workload� Sometimes an application is parallelized along its functions� that is� each task

performs a di
erent function� for example� input� problem setup� solution� output� and

display� This process is often called functional parallelism� A more common method

of parallelizing an application is called data parallelism� In this method all the tasks

are the same� but each one only knows and solves a small part of the data� This is

also referred to as the SPMD �single�program multiple�data� model of computing� PVM

supports either or a mixture of these methods� Depending on their functions� tasks may

execute in parallel and may need to synchronize or exchange data� although this is not

always the case� An exemplary diagram of the PVM computing model is shown in Figure

���� and an architectural view of the PVM system� highlighting the heterogeneity of the

computing platforms supported by PVM� is shown in Figure ����

The PVM system currently supports C� C��� and Fortran languages� This set of

language interfaces have been included based on the observation that the predominant

majority of target applications are written in C and Fortran� with an emerging trend in

experimenting with object�based languages and methodologies�

The C and C�� language bindings for the PVM user interface library are implemented

as functions� following the general conventions used by most C systems� including Unix�

like operating systems� To elaborate� function arguments are a combination of value

parameters and pointers as appropriate� and function result values indicate the outcome

of the call� In addition� macro de�nitions are used for system constants� and global

The PVM System ��

Input &

Partitioning

Comp 2Comp 1

Output &
Display

SPMD

Inter-component comm & sync
Inter-instance comm & sync

SPMD

(a) PVM Computation Model

Figure ���
PVM system overview

variables such as errno and pvm errno are the mechanism for discriminating between

multiple possible outcomes� Application programs written in C and C�� access PVM

library functions by linking against an archival library �libpvm��a� that is part of the

standard distribution�

Fortran language bindings are implemented as subroutines rather than as functions�

This approach was taken because some compilers on the supported architectures would

not reliably interface Fortran functions with C functions� One immediate implication of

this is that an additional argument is introduced into each PVM library call for status

results to be returned to the invoking program� Also� library routines for the placement

and retrieval of typed data in message bu
ers are uni�ed� with an additional parameter

indicating the datatype� Apart from these di
erences �and the standard naming pre�xes

� pvm for C� and pvmf for Fortran�� a one�to�one correspondence exists between the two

�� Chapter �

Cluster 1

Cluster 2

MPP

Bridge/
Router

Cluster 3

Vector SC

PVM:
Uniform
View of
Multiprogrammed
Virtual Machine

(b) PVM Architectural Overview

Figure ���
PVM system overview

language bindings� Fortran interfaces to PVM are implemented as library stubs that in

turn invoke the corresponding C routines� after casting and�or dereferencing arguments

as appropriate� Thus� Fortran applications are required to link against the stubs library

�libfpvm��a� as well as the C library�

All PVM tasks are identi�ed by an integer task identi�er �TID� � Messages are sent

to and received from tids� Since tids must be unique across the entire virtual machine�

they are supplied by the local pvmd and are not user chosen� Although PVM encodes

information into each TID �see Chapter 	 for details� the user is expected to treat the

tids as opaque integer identi�ers� PVM contains several routines that return TID values

so that the user application can identify other tasks in the system�

There are applications where it is natural to think of a group of tasks � And there are

cases where a user would like to identify his tasks by the numbers �� �p� ��� where p is

The PVM System ��

the number of tasks� PVM includes the concept of user named groups� When a task joins

a group� it is assigned a unique �instance� number in that group� Instance numbers start

at � and count up� In keeping with the PVM philosophy� the group functions are designed

to be very general and transparent to the user� For example� any PVM task can join

or leave any group at any time without having to inform any other task in the a
ected

groups� Also� groups can overlap� and tasks can broadcast messages to groups of which

they are not a member� Details of the available group functions are given in Chapter ��

To use any of the group functions� a program must be linked with libgpvm��a�

The general paradigm for application programming with PVM is as follows� A user

writes one or more sequential programs in C� C��� or Fortran 		 that contain em�

bedded calls to the PVM library� Each program corresponds to a task making up the

application� These programs are compiled for each architecture in the host pool� and

the resulting object �les are placed at a location accessible from machines in the host

pool� To execute an application� a user typically starts one copy of one task �usually the

�master� or �initiating� task� by hand from a machine within the host pool� This process

subsequently starts other PVM tasks� eventually resulting in a collection of active tasks

that then compute locally and exchange messages with each other to solve the problem�

Note that while the above is a typical scenario� as many tasks as appropriate may be

started manually� As mentioned earlier� tasks interact through explicit message passing�

identifying each other with a system�assigned� opaque TID�

Shown in Figure ��� is the body of the PVM program hello� a simple example that

illustrates the basic concepts of PVM programming� This program is intended to be

invoked manually� after printing its task id �obtained with pvm mytid���� it initiates a

copy of another program called hello other using the pvm spawn�� function� A successful

spawn causes the program to execute a blocking receive using pvm recv� After receiving

the message� the program prints the message sent by its counterpart� as well its task

id� the bu
er is extracted from the message using pvm upkstr� The �nal pvm exit call

dissociates the program from the PVM system�

Figure ��� is a listing of the �slave� or spawned program� its �rst PVM action is

to obtain the task id of the �master� using the pvm parent call� This program then

obtains its hostname and transmits it to the master using the three�call sequence �

pvm initsend to initialize the send bu
er� pvm pkstr to place a string� in a strongly typed

and architecture�independent manner� into the send bu
er� and pvm send to transmit it

to the destination process speci�ed by ptid� �tagging� the message with the number ��

�� Chapter �

�include
pvm��h

main��

�

int cc� tid� msgtag�

char buf������

printf�
i�m t�x�n
� pvm
mytid����

cc � pvm
spawn�
hello
other
� �char����� ��

� �� �tid��

if �cc �� �� �

msgtag � ��

pvm
recv�tid� msgtag��

pvm
upkstr�buf��

printf�
from t�x� �s�n
� tid� buf��

� else

printf�
can�t start hello
other�n
��

pvm
exit���

�

Figure ���
PVM program hello�c

The PVM System ��

�include
pvm��h

main��

�

int ptid� msgtag�

char buf������

ptid � pvm
parent���

strcpy�buf�
hello� world from
��

gethostname�buf � strlen�buf�� �	��

msgtag � ��

pvm
initsend�PvmDataDefault��

pvm
pkstr�buf��

pvm
send�ptid� msgtag��

pvm
exit���

�

Figure ���
PVM program hello other�c

� Using PVM

This chapter describes how to set up the PVM software package� how to con�gure a

simple virtual machine� and how to compile and run the example programs supplied

with PVM� The chapter is written as a tutorial� so the reader can follow along with the

book beside the terminal� The �rst part of the chapter describes the straightforward use

of PVM and the most common errors and problems in set up and running� The latter

part of the chapter describes some of the more advanced options available to customize

the reader�s PVM environment�

��� How to Obtain the PVM Software

The latest version of the PVM source code and documentation is always available through

netlib� Netlib is a software distribution service set up on the Internet that contains a

wide range of computer software� Software can be retrieved from netlib by ftp� WWW�

xnetlib� or email�

PVM �les can be obtained by anonymous ftp to netlib��cs�utk�edu� Look in direc�

tory pvm�� The �le index describes the �les in this directory and its subdirectories�

Using a world wide web tool like Xmosaic the PVM �les are accessed by using the

address http���www�netlib�org�pvm��index�html�

Xnetlib is a X�Window interface that allows a user to browse or query netlib for avail�

able software and to automatically transfer the selected software to the user�s computer�

To get xnetlib send email to netlib�ornl�gov with the message send xnetlib�shar

from xnetlib or anonymous ftp from cs�utk�edu pub�xnetlib�

The PVM software can be requested by email� To receive this software send email to

netlib�ornl�gov with the message� send index from pvm�� An automatic mail han�

dler will return a list of available �les and further instructions by email� The advantage

of this method is that anyone with email access to Internet can obtain the software�

The PVM software is distributed as a uuencoded� compressed� tar �le� To unpack

the distribution the �le must be uudecoded� uncompressed� and tar xvf �lename� This

will create a directory called pvm� wherever it is untarred� The PVM documentation is

distributed as postscript �les and includes a User�s Guide� reference manual� and quick

reference card�

��� Setup to Use PVM

One of the reasons for PVM�s popularity is that it is simple to set up and use� PVM

does not require special privileges to be installed� Anyone with a valid login on the hosts

�	 Chapter �

can do so� In addition� only one person at an organization needs to get and install PVM

for everyone at that organization to use it�

PVM uses two environment variables when starting and running� Each PVM user

needs to set these two variables to use PVM� The �rst variable is PVM ROOT� which is

set to the location of the installed pvm� directory� The second variable is PVM ARCH�

which tells PVM the architecture of this host and thus what executables to pick from

the PVM ROOT directory�

The easiest method is to set these two variables in your �cshrc �le� We assume you are

using csh as you follow along this tutorial� Here is an example for setting PVM ROOT�

setenv PVM
ROOT �HOME�pvm�

It is recommended that the user set PVM ARCH by concatenating to the �le �cshrc�

the content of �le �PVM ROOT�lib�cshrc�stub� The stub should be placed after PATH

and PVM ROOT are de�ned� This stub automatically determines the PVM ARCH for

this host and is particularly useful when the user shares a common �le system �such as

NFS� across several di
erent architectures�

Table � lists the PVM ARCH names and their corresponding architecture types that

are supported in PVM ����

The PVM source comes with directories and make�les for most architectures you are

likely to have� Chapter
 describes how to port the PVM source to an unsupported archi�

tecture� Building for each architecture type is done automatically by logging on to a host�

going into the PVM ROOT directory� and typing make� The make�le will automatically

determine which architecture it is being executed on� create appropriate subdirectories�

and build pvm� pvmd�� libpvm��a� and libfpvm��a� pvmgs� and libgpvm��a� It places

all these �les in �PVM ROOT�lib�PVM ARCH� with the exception of pvmgs which is placed

in �PVM ROOT�bin�PVM ARCH�

��� Setup Summary

� Set PVM ROOT and PVM ARCH in your �cshrc �le

� Build PVM for each architecture type

� Create a �rhosts �le on each host listing all the hosts you wish to use

� Create a �HOME��xpvm hosts �le listing all the hosts you wish to use prepended by an

����

Using PVM ��

PVM ARCH Machine Notes
AFX� Alliant FX
�
ALPHA DEC Alpha DEC OSF��
BAL Sequent Balance DYNIX
BFLY BBN Butter�y TC����
BSD��� �����
��� PC runnning Unix BSDI� ���BSD� NetBSD
CM� Thinking Machines CM� Sun front�end
CM� Thinking Machines CM� Uses native messages
CNVX Convex C�series IEEE f�p�
CNVXN Convex C�series native f�p�
CRAY C���� YMP� T�D port available UNICOS
CRAY� Cray��
CRAYSMP Cray S�MP
DGAV Data General Aviion
E��K Encore �����
HP��� HP����� model ��� HPUX
HPPA HP����� PA�RISC
I��� Intel iPSC
��� Uses native messages
IPSC� Intel iPSC
� ��� host SysV� Uses native messages
KSR� Kendall Square KSR�� OSF��� uses shared memory
LINUX �����
��� PC running Unix LINUX
MASPAR Maspar DEC front�end
MIPS MIPS ����
NEXT NeXT
PGON Intel Paragon Uses native messages
PMAX DECstation ����� ���� Ultrix
RS�K IBM
RS���� AIX ���
RT IBM RT
SGI Silicon Graphics IRIS IRIX ��x
SGI� Silicon Graphics IRIS IRIX ��x
SGIMP SGI multiprocessor Uses shared memory
SUN� Sun � SunOS ���
SUN� Sun �� SPARCstation SunOS ���
SUN�SOL� Sun �� SPARCstation Solaris ��x
SUNMP SPARC multiprocessor Solaris ��x� uses shared memory
SYMM Sequent Symmetry
TITN Stardent Titan
U��� IBM ��� AIX
UVAX DEC MicroVAX

Table ���
PVM ARCH names used in PVM �

�� Chapter �

��� Starting PVM

Before we go over the steps to compile and run parallel PVM programs� you should be

sure you can start up PVM and con�gure a virtual machine� On any host on which PVM

has been installed you can type

� pvm

and you should get back a PVM console prompt signifying that PVM is now running on

this host� You can add hosts to your virtual machine by typing at the console prompt

pvm� add hostname

And you can delete hosts �except the one you are on� from your virtual machine by

typing

pvm� delete hostname

If you get the message �Can�t Start pvmd�� then check the common startup problems

section and try again�

To see what the present virtual machine looks like� you can type

pvm� conf

To see what PVM tasks are running on the virtual machine� you type

pvm� ps �a

Of course you don�t have any tasks running yet� that�s in the next section� If you type

�quit� at the console prompt� the console will quit but your virtual machine and tasks

will continue to run� At any Unix prompt on any host in the virtual machine� you can

type

� pvm

and you will get the message �pvm already running� and the console prompt� When you

are �nished with the virtual machine� you should type

pvm� halt

This command kills any PVM tasks� shuts down the virtual machine� and exits the

console� This is the recommended method to stop PVM because it makes sure that the

virtual machine shuts down cleanly�

Using PVM ��

You should practice starting and stopping and adding hosts to PVM until you are

comfortable with the PVM console� A full description of the PVM console and its many

command options is given at the end of this chapter�

If you don�t want to type in a bunch of host names each time� there is a host�le option�

You can list the hostnames in a �le one per line and then type

� pvm hostfile

PVM will then add all the listed hosts simultaneously before the console prompt appears�

Several options can be speci�ed on a per�host basis in the host�le� These are described

at the end of this chapter for the user who wishes to customize his virtual machine for a

particular application or environment�

There are other ways to start up PVM� The functions of the console and a performance

monitor have been combined in a graphical user interface called XPVM� which is available

precompiled on netlib �see Chapter
 for XPVM details�� If XPVM has been installed at

your site� then it can be used to start PVM� To start PVM with this X window interface�

type

� xpvm

The menu button labled �hosts� will pull down a list of hosts you can add� If you click

on a hostname� it is added and an icon of the machine appears in an animation of the

virtual machine� A host is deleted if you click on a hostname that is already in the virtual

machine �see Figure ����� On startup XPVM reads the �le �HOME��xpvm hosts� which

is a list of hosts to display in this menu� Hosts without leading ��� are added all at once

at startup�

The quit and halt buttons work just like the PVM console� If you quit XPVM and

then restart it� XPVM will automatically display what the running virtual machine looks

like� Practice starting and stopping and adding hosts with XPVM� If there are errors�

they should appear in the window where you started XPVM�

�� Chapter �

��� Common Startup Problems

If PVM has a problem starting up� it will print an error message either to the screen

or in the log �le �tmp�pvml��uid�� This section describes the most common startup

problems and how to solve them� Chapter � contains a more complete troubleshooting

guide�

If the message says

�t ��	����� Can�t start pvmd

�rst check that your �rhosts �le on the remote host contains the name of the host from

which you are starting PVM� An external check that your �rhosts �le is set correctly is

to type

� rsh remote
host ls

If your �rhosts is set up correctly� then you will see a listing of your �les on the remote

host�

Other reasons to get this message include not having PVM installed on a host or not

having PVM ROOT set correctly on some host� You can check these by typing

� rsh remote
host �PVM
ROOT�lib�pvmd

Some Unix shells� for example ksh� do not set environment variables on remote hosts

when using rsh� In PVM ��� there are two work arounds for such shells� First� if you set

the environment variable� PVM DPATH� on the master host to pvm��lib�pvmd� then

this will override the default dx path� The second method is to tell PVM explicitly were

to �nd the remote pvmd executable by using the dx� option in the host�le�

If PVM is manually killed� or stopped abnormally �e�g�� by a system crash�� then check

for the existence of the �le �tmp�pvmd��uid�� This �le is used for authentication and

should exist only while PVM is running� If this �le is left behind� it prevents PVM from

starting� Simply delete this �le�

If the message says

�t ��	����� Login incorrect

it probably means that no account is on the remote machine with your login name� If

your login name is di
erent on the remote machine� then you must use the lo� option

in the host�le �see Section ��	��

If you get any other strange messages� then check your �cshrc �le� It is important

that you not have any I�O in the �cshrc �le because this will interfere with the startup

of PVM� If you wish to print out information �such as who or uptime� when you log in�

you should do it in your �login script� not when you�re running a csh command script�

Using PVM ��

��� Running PVM Programs

In this section you�ll learn how to compile and run PVM programs� Later chapters of

this book describe how to write parallel PVM programs� In this section we will work

with the example programs supplied with the PVM software� These example programs

make useful templates on which to base your own PVM programs�

The �rst step is to copy the example programs into your own area�

� cp �r �PVM
ROOT�examples �HOME�pvm��examples

� cd �HOME�pvm��examples

The examples directory contains a Make�le�aimk and Readme �le that describe how

to build the examples� PVM supplies an architecture�independent make� aimk� that

automatically determines PVM ARCH and links any operating system speci�c libraries

to your application� aimk was automatically added to your �PATH when you placed the

cshrc�stub in your �cshrc �le� Using aimk allows you to leave the source code and

make�le unchanged as you compile across di
erent architectures�

The master�slave programming model is the most popular model used in distributed

computing� �In the general parallel programming arena� the SPMD model is more pop�

ular�� To compile the master�slave C example� type

� aimk master slave

If you prefer to work with Fortran� compile the Fortran version with

� aimk fmaster fslave

Depending on the location of PVM ROOT� the INCLUDE statement at the top of the

Fortran examples may need to be changed� If PVM ROOT is not HOME�pvm�� then

change the include to point to �PVM ROOT�include�fpvm��h� Note that PVM ROOT is

not expanded inside the Fortran� so you must insert the actual path�

The make�le moves the executables to �HOME�pvm��bin�PVM ARCH� which is the default

location PVM will look for them on all hosts� If your �le system is not common across

all your PVM hosts� then you will have to build or copy �depending on the architectures�

these executables on all your PVM hosts�

Now� from one window� start PVM and con�gure some hosts� These examples are

designed to run on any number of hosts� including one� In another window cd to

�HOME�pvm��bin�PVM ARCH and type

� master

�� Chapter �

The program will ask how many tasks� The number of tasks does not have to match the

number of hosts in these examples� Try several combinations�

The �rst example illustrates the ability to run a PVM program from a Unix prompt on

any host in the virtual machine� This is just like the way you would run a serial a�out

program on a workstation� In the next example� which is also a master�slave model

called hitc� you will see how to spawn PVM jobs from the PVM console and also from

XPVM�

hitc illustrates dynamic load balancing using the pool�of�tasks paradigm� In the pool

of tasks paradigm� the master program manages a large queue of tasks� always sending

idle slave programs more work to do until the queue is empty� This paradigm is e
ective

in situations where the hosts have very di
erent computational powers� because the least

loaded or more powerful hosts do more of the work and all the hosts stay busy until the

end of the problem� To compile hitc� type

� aimk hitc hitc
slave

Since hitc does not require any user input� it can be spawned directly from the PVM

console� Start up the PVM console and add a few hosts� At the PVM console prompt

type

pvm� spawn �� hitc

The ���� spawn option causes all the print statements in hitc and in the slaves to appear

in the console window� This feature can be useful when debugging your �rst few PVM

programs� You may wish to experiment with this option by placing print statements in

hitc�f and hitc slave�f and recompiling�

hitc can be used to illustrate XPVM�s real�time animation capabilities� Start up

XPVM and build a virtual machine with four hosts� Click on the �tasks� button and

select �spawn� from the menu� Type �hitc� where XPVM asks for the command� and

click on �start�� You will see the host icons light up as the machines become busy� You

will see the hitc slave tasks get spawned and see all the messages that travel between

the tasks in the Space Time display� Several other views are selectable from the XPVM

�views� menu� The �task output� view is equivalent to the ���� option in the PVM

console� It causes the standard output from all tasks to appear in the window that pops

up�

There is one restriction on programs that are spawned from XPVM �and the PVM

console�� The programs must not contain any interactive input� such as asking for how

many slaves to start up or how big a problem to solve� This type of information can be

read from a �le or put on the command line as arguments� but there is nothing in place

to get user input from the keyboard to a potentially remote task�

Using PVM ��

��� PVM Console Details

The PVM console� called pvm� is a stand�alone PVM task that allows the user to inter�

actively start� query� and modify the virtual machine� The console may be started and

stopped multiple times on any of the hosts in the virtual machine without a
ecting PVM

or any applications that may be running�

When started� pvm determines whether PVM is already running� if it is not� pvm

automatically executes pvmd on this host� passing pvmd the command line options and

host�le� Thus PVM need not be running to start the console�

pvm ��n�hostname�� �hostfile�

The �n option is useful for specifying an alternative name for the master pvmd �in case

hostname doesn�t match the IP address you want�� Once PVM is started� the console

prints the prompt

pvm�

and accepts commands from standard input� The available commands are

add followed by one or more host names� adds these hosts to the virtual machine�

alias de�nes or lists command aliases�

conf lists the con�guration of the virtual machine including hostname� pvmd task ID�

architecture type� and a relative speed rating�

delete followed by one or more host names� deletes these hosts from the virtual machine�

PVM processes still running on these hosts are lost�

echo echo arguments�

halt kills all PVM processes including console� and then shuts down PVM� All daemons

exit�

help can be used to get information about any of the interactive commands� Help may

be followed by a command name that lists options and �ags available for this command�

id prints the console task id�

jobs lists running jobs�

kill can be used to terminate any PVM process�

mstat shows the status of speci�ed hosts�

ps �a lists all processes currently on the virtual machine� their locations� their task id�s�

and their parents� task id�s�

�� Chapter �

pstat shows the status of a single PVM process�

quit exits the console� leaving daemons and PVM jobs running�

reset kills all PVM processes except consoles� and resets all the internal PVM tables

and message queues� The daemons are left in an idle state�

setenv displays or sets environment variables�

sig followed by a signal number and TID� sends the signal to the task�

spawn starts a PVM application� Options include the following�

�count number of tasks� default is ��

�host spawn on host� default is any�

�ARCH spawn of hosts of type ARCH�

�� enable debugging�

�� redirect task output to console�

���le redirect task output to �le�

����le redirect task output append to �le�

�	 trace job� display output on console

�	�le trace job� output to �le

trace sets or displays the trace event mask�

unalias unde�nes command alias�

version prints version of PVM being used�

The console reads �HOME��pvmrc before reading commands from the tty� so you can

do things like

alias ! help

alias h help

alias j jobs

setenv PVM
EXPORT DISPLAY

� print my id

echo new pvm shell

id

PVM supports the use of multiple consoles� It is possible to run a console on any host

in an existing virtual machine and even multiple consoles on the same machine� It is

also possible to start up a console in the middle of a PVM application and check on its

progress�

Using PVM ��

��� Host File Options

As we stated earlier� only one person at a site needs to install PVM� but each PVM user

can have his own host�le� which describes his own personal virtual machine�

The host�le de�nes the initial con�guration of hosts that PVM combines into a virtual

machine� It also contains information about hosts that you may wish to add to the

con�guration later�

The host�le in its simplest form is just a list of hostnames one to a line� Blank

lines are ignored� and lines that begin with a are comment lines� This allows you to

document the host�le and also provides a handy way to modify the initial con�guration

by commenting out various hostnames �see Figure �����

Several options can be speci�ed on each line after the hostname� The options are

separated by white space�

lo
 userid allows you to specify an alternative login name for this host� otherwise� your

login name on the start�up machine is used�

so
pw will cause PVM to prompt you for a password on this host� This is useful in the

cases where you have a di
erent userid and password on a remote system� PVM uses rsh

by default to start up remote pvmd�s� but when pw is speci�ed� PVM will use rexec��

instead�

dx
 location of pvmd allows you to specify a location other than the default for this

host� This is useful if you want to use your own personal copy of pvmd�

ep
 paths to user executables allows you to specify a series of paths to search down

to �nd the requested �les to spawn on this host� Multiple paths are separated by a colon�

If ep� is not speci�ed� then PVM looks in �HOME�pvm��bin�PVM ARCH for the application

tasks�

sp
 value speci�es the relative computational speed of the host compared with other

hosts in the con�guration� The range of possible values is � to ������� with ���� as the

default�

bx
 location of debugger speci�es which debugger script to invoke on this host if

debugging is requested in the spawn routine�

Note� The environment variable PVM DEBUGGER can also be set� The default de�

bugger is pvm��lib�debugger�

wd
 working directory speci�es a working directory in which all spawned tasks on

this host will execute� The default is �HOME�

ip
 hostname speci�es an alternate name to resolve to the host IP address�

�	 Chapter �

so
ms speci�es that a slave pvmd will be started manually on this host� This is useful

if rsh and rexec network services are disabled but IP connectivity exists� When using

this option you will see in the tty of the pvmd�

�t ��	����� ready Fri Aug �" � �	"�	" �##�

��� Manual startup ���

Login to
honk
 and type�

pvm��lib�pvmd �S �d� �nhonk � �a#ca#$��cb� 	�#� � �a#$c	������

Type response�

On honk� after typing the given line� you should see

ddpro������ arch�ALPHA� ip� �a#$c	���a e� mtu�	�#��

which you should relay back to the master pvmd� At that point� you will see

Thanks

and the two pvmds should be able to communicate�

If you want to set any of the above options as defaults for a series of hosts� you can

place these options on a single line with a ! for the hostname �eld� The defaults will be

in e
ect for all the following hosts until they are overridden by another set�defaults line�

Hosts that you don�t want in the initial con�guration but may add later can be speci�ed

in the host�le by beginning those lines with an �� An example host�le displaying most

of these options is shown in Figure ����

Using PVM ��

Figure ���
XPVM system adding hosts

� configuration used for my run

sparky

azure�epm�ornl�gov

thud�cs�utk�edu

sun	

Figure ���
Simple host�le listing virtual machine con�guration

�� Chapter �

� Comment lines start with � �blank lines ignored�

gstws

ipsc dx��usr�geist�pvm��lib�I ���pvmd�

ibm��scri�fsu�edu lo�gst so�pw

� set default options for following hosts with �

� ep��sun�problem��%�nla�mathlib

sparky

�azure�epm�ornl�gov

midnight�epm�ornl�gov

� replace default options with new values

� lo�gageist so�pw ep�problem�

thud�cs�utk�edu

speedy�cs�utk�edu

� machines for adding later are specified with �

� these only need listing if options are required

�sun	 ep�problem�

�castor dx��usr�local�bin�pvmd�

�dasher�cs�utk�edu lo�gageist

�elvis dx�%�pvm��lib�SUN	�pvmd�

Figure ���
PVM host�le illustrating customizing options

� Basic Programming Techniques

Developing applications for the PVM system�in a general sense� at least�follows the

traditional paradigm for programming distributed�memory multiprocessors such as the

nCUBE or the Intel family of multiprocessors� The basic techniques are similar both

for the logistical aspects of programming and for algorithm development� Signi�cant

di
erences exist� however� in terms of �a� task management� especially issues concerning

dynamic process creation� naming� and addressing� �b� initialization phases prior to

actual computation� �c� granularity choices� and �d� heterogeneity� In this chapter�

we discuss the programming process for PVM and identify factors that may impact

functionality and performance�

��� Common Parallel Programming Paradigms

Parallel computing using a system such as PVM may be approached from three fun�

damental viewpoints� based on the organization of the computing tasks� Within each�

di
erent workload allocation strategies are possible and will be discussed later in this

chapter� The �rst and most commonmodel for PVM applications can be termed �crowd�

computing � a collection of closely related processes� typically executing the same code�

perform computations on di
erent portions of the workload� usually involving the peri�

odic exchange of intermediate results� This paradigm can be further subdivided into two

categories�

� The master�slave �or host�node� model in which a separate �control� program termed

the master is responsible for process spawning� initialization� collection and display of

results� and perhaps timing of functions� The slave programs perform the actual com�

putation involved� they either are allocated their workloads by the master �statically or

dynamically� or perform the allocations themselves�

� The node�only model where multiple instances of a single program execute� with one

process �typically the one initiated manually� taking over the noncomputational respon�

sibilities in addition to contributing to the computation itself�

The second model supported by PVM is termed a �tree� computation� In this scenario�

processes are spawned �usually dynamically as the computation progresses� in a tree�

like manner� thereby establishing a tree�like� parent�child relationship �as opposed to

crowd computations where a star�like relationship exists�� This paradigm� although less

commonly used� is an extremely natural �t to applications where the total workload is

not known a priori� for example� in branch�and�bound algorithms� alpha�beta search�

and recursive �divide�and�conquer� algorithms�

�� Chapter �

The third model� which we term �hybrid�� can be thought of as a combination of the

tree model and crowd model� Essentially� this paradigm possesses an arbitrary spawning

structure� that is� at any point during application execution� the process relationship

structure may resemble an arbitrary and changing graph�

We note that these three classi�cations are made on the basis of process relationships�

though they frequently also correspond to communication topologies� Nevertheless� in all

three� it is possible for any process to interact and synchronize with any other� Further�

as may be expected� the choice of model is application dependent and should be selected

to best match the natural structure of the parallelized program�

����� Crowd Computations

Crowd computations typically involve three phases� The �rst is the initialization of the

process group� in the case of node�only computations� dissemination of group information

and problem parameters� as well as workload allocation� is typically done within this

phase� The second phase is computation� The third phase is collection results and

display of output� during this phase� the process group is disbanded or terminated�

The master�slave model is illustrated below� using the well�known Mandelbrot set

computation which is representative of the class of problems termed �embarrassingly�

parallel� The computation itself involves applying a recursive function to a collection

of points in the complex plane until the function values either reach a speci�c value

or begin to diverge� Depending upon this condition� a graphical representation of each

point in the plane is constructed� Essentially� since the function outcome depends only

on the starting value of the point �and is independent of other points�� the problem can

be partitioned into completely independent portions� the algorithm applied to each� and

partial results combined using simple combination schemes� However� this model permits

dynamic load balancing� thereby allowing the processing elements to share the workload

unevenly� In this and subsequent examples within this chapter� we only show a skeletal

form of the algorithms� and also take syntactic liberties with the PVM routines in the

interest of clarity� The control structure of the master�slave class of applications is shown

in Figure ����

�Master Mandelbrot algorithm��

�Initial placement�

for i �� � to NumWorkers � �

pvm
spawn��worker name�� �Start up worker i�

pvm
send��worker tid��###� �Send task to worker i�

Basic Programming Techniques ��

Mandelbrot
Tasks

Master

Slave

Slave

Slave

Slave

Figure ���
Master�slave paradigm

endfor

�Receive�send�

while �WorkToDo�

pvm
recv� � �Receive result�

pvm
send��available worker tid��###�

�Send next task to available worker�

display result

endwhile

�Gather remaining results��

for i �� � to NumWorkers � �

pvm
recv� � �Receive result�

pvm
kill��worker tid i�� �Terminate worker i�

display result

endfor

�� Chapter �

�Worker Mandelbrot algorithm��

while �true�

pvm
recv�###� �Receive task�

result �� MandelbrotCalculations�task� �Compute result�

pvm
send��master tid�� � �Send result to master�

endwhile

The master�slave example described above involves no communication among the

slaves� Most crowd computations of any complexity do need to communicate among the

computational processes� we illustrate the structure of such applications using a node�

only example for matrix multiply using Cannon�s algorithm ��� �programming details for

a similar algorithm are given in another chapter�� The matrix�multiply example� shown

pictorially in Figure ��� multiplies matrix subblocks locally� and uses row�wise multicast

of matrix A subblocks in conjunction with column�wise shifts of matrix B subblocks�

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A

11A

22A

C

= +

C A B

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A

11A

22A

00A
00A

11A 11A

22A22A

C

= +

C BT

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

01B00B 02B

10B B11 12B

20B 21B 22B

00A 01A 02A

10A 11A 12A

20A 21A 22A

C

= +

C A B

C00 C01 C02

C12C11C10

C20 C21 C22

C00 C01 C02

C12C11C10

C20 C21 C22

10B B11 12B

20B 21B 22B

01B00B 02B

01A

12A

20A

C

= +

C A B

Step 1: First "pipe"

Step 2: Multiply temp matrix and matrix B

Step 3: First "roll"

Step 4: Second "pipe"

First 4 Steps of Pipe-Multiply-Roll on a 3x3 Mesh-Connected Machine

Figure ���
General crowd computation

Basic Programming Techniques ��

�Matrix Multiplication Using Pipe�Multiply�Roll Algorithm�

�Processor � starts up other processes�

if ��my processor number� � �� then

for i �� � to MeshDimension�MeshDimension

pvm
spawn��component name�� � ��

endfor

endif

forall processors Pij� � �� i�j � MeshDimension

for k �� � to MeshDimension��

�Pipe��

if myrow � �mycolumn�k� mod MeshDimension

�Send A to all Pxy� x � myrow� y �� mycolumn�

pvm
mcast��Pxy� x � myrow� y �� mycolumn��###�

else

pvm
recv�###� �Receive A�

endif

�Multiply� Running totals maintained in C��

Multiply�A�B�C�

�Roll��

�Send B to Pxy� x � myrow��� y � mycolumn�

pvm
send��Pxy� x � myrow��� y � mycolumn�� �

pvm
recv� � �Receive B�

endfor

endfor

����� Tree Computations

As mentioned earlier� tree computations typically exhibit a tree�like process control struc�

ture which also conforms to the communication pattern in many instances� To illustrate

this model� we consider a parallel sorting algorithm that works as follows� One process

�the manually started process in PVM� possesses �inputs or generates� the list to be

sorted� It then spawns a second process and sends it half the list� At this point� there

are two processes each of which spawns a process and sends them one�half of their al�

�� Chapter �

ready halved lists� This continues until a tree of appropriate depth is constructed� Each

process then independently sorts its portion of the list� and a merge phase follows where

sorted sublists are transmitted upwards along the tree edges� with intermediate merges

being done at each node� This algorithm is illustrative of a tree computation in which

the workload is known in advance� a diagram depicting the process is given in Figure

���� an algorithmic outline is given below�

3 0 1 6 5742
1

3 0 1 4 5 6 7 Stage 32

30 1 2 3 Stage 3

14 5 6 73210

1113141215910071463 2 85

071463 2 10 9 11 15 13 145 8 12
0

10 9 118 12 13 14 15071463 25 Stage 3

0

9 1110 2Stage 3

071463 2 13 14 15

4 5 6 73210 13 14 15

10 11

9 10

Time
Stage 2

Stage 4

Stage 1

Stage 2

Stage 5

5 Stage 4128

12118

9

Split-Sort-Merge Algorithm on Four-Node Hypercube

Figure ���
Tree�computation example

� Spawn and partition list based on a broadcast tree pattern� �

for i �� � to N� such that �&N � NumProcs

forall processors P such that P � �&i

pvm
spawn����� �process id P XOR �&i�

Basic Programming Techniques ��

if P � �&�i��� then

midpt� � PartitionList�list��

�Send list����midpt� to P XOR �&i�

pvm
send��P XOR �&i��###�

list �� list�midpt����MAXSIZE�

else

pvm
recv�###� �receive the list�

endif

endfor

endfor

� Sort remaining list� �

Quicksort�list�midpt����MAXSIZE��

� Gather�merge sorted sub�lists� �

for i �� N downto �� such that �&N � NumProcs

forall processors P such that P � �&i

if P � �&�i��� then

pvm
send��P XOR �&i�� �

�Send list to P XOR �&i�

else

pvm
recv� � �receive temp list�

merge templist into list

endif

endfor

endfor

��� Workload Allocation

In the preceding section� we discussed the common parallel programming paradigms with

respect to process structure� and we outlined representative examples in the context of

the PVM system� In this section we address the issue of workload allocation� subsequent

to establishing process structure� and describe some common paradigms that are used

in distributed�memory parallel computing� Two general methodologies are commonly

used� The �rst� termed data decomposition or partitioning� assumes that the overall

problem involves applying computational operations or transformations on one or more

�	 Chapter �

data structures and� further� that these data structures may be divided and operated

upon� The second� called function decomposition� divides the work based on di
erent

operations or functions� In a sense� the PVM computing model supports both function

decomposition �fundamentally di
erent tasks perform di
erent operations� and data de�

composition �identical tasks operate on di
erent portions of the data��

����� Data Decomposition

As a simple example of data decomposition� consider the addition of two vectors� A����N�

and B����N�� to produce the result vector� C����N�� If we assume that P processes are work�

ing on this problem� data partitioning involves the allocation of N�P elements of each

vector to each process� which computes the corresponding N�P elements of the resulting

vector� This data partitioning may be done either �statically�� where each process knows

a priori �at least in terms of the variables N and P� its share of the workload� or �dy�

namically�� where a control process �e�g�� the master process� allocates subunits of the

workload to processes as and when they become free� The principal di
erence between

these two approaches is �scheduling�� With static scheduling� individual process work�

loads are �xed� with dynamic scheduling� they vary as the computation progresses� In

most multiprocessor environments� static scheduling is e
ective for problems such as the

vector addition example� however� in the general PVM environment� static scheduling

is not necessarily bene�cial� The reason is that PVM environments based on networked

clusters are susceptible to external in�uences� therefore� a statically scheduled� data�

partitioned problem might encounter one or more processes that complete their portion

of the workload much faster or much slower than the others� This situation could also

arise when the machines in a PVM system are heterogeneous� possessing varying CPU

speeds and di
erent memory and other system attributes�

In a real execution of even this trivial vector addition problem� an issue that cannot

be ignored is input and output� In other words� how do the processes described above

receive their workloads� and what do they do with the result vectors" The answer to

these questions depends on the application and the circumstances of a particular run�

but in general�

�� Individual processes generate their own data internally� for example� using random num�

bers or statically known values� This is possible only in very special situations or for

program testing purposes�

�� Individual processes independently input their data subsets from external devices� This

method is meaningful in many cases� but possible only when parallel I�O facilities are

supported�

�� A controlling process sends individual data subsets to each process� This is the most com�

Basic Programming Techniques ��

mon scenario� especially when parallel I�O facilities do not exist� Further� this method

is also appropriate when input data subsets are derived from a previous computation

within the same application�

The third method of allocating individual workloads is also consistent with dynamic

scheduling in applications where interprocess interactions during computations are rare

or nonexistent� However� nontrivial algorithms generally require intermediate exchanges

of data values� and therefore only the initial assignment of data partitions can be accom�

plished by these schemes� For example� consider the data partitioning method depicted

in Figure ���� In order to multiply two matrices A and B� a group of processes is �rst

spawned� using the master�slave or node�only paradigm� This set of processes is con�

sidered to form a mesh� the matrices to be multiplied are divided into subblocks� also

forming a mesh� Each subblock of the A and B matrices is placed on the corresponding

process� by utilizing one of the data decomposition and workload allocation strategies

listed above� During computation� subblocks need to be forwarded or exchanged between

processes� thereby transforming the original allocation map� as shown in the �gure� At

the end of the computation� however� result matrix subblocks are situated on the indi�

vidual processes� in conformance with their respective positions on the process grid� and

consistent with a data partitioned map of the resulting matrix C� The foregoing discus�

sion illustrates the basics of data decomposition� In a later chapter� example programs

highlighting details of this approach will be presented�

����� Function Decomposition

Parallelism in distributed�memory environments such as PVM may also be achieved by

partitioning the overall workload in terms of di
erent operations� The most obvious ex�

ample of this form of decomposition is with respect to the three stages of typical program

execution� namely� input� processing� and result output� In function decomposition� such

an application may consist of three separate and distinct programs� each one dedicated to

one of the three phases� Parallelism is obtained by concurrently executing the three pro�

grams and by establishing a �pipeline� �continuous or quantized� between them� Note�

however� that in such a scenario� data parallelism may also exist within each phase� An

example is shown in Figure ���� where distinct functions are realized as PVM compo�

nents� with multiple instances within each component implementing portions of di
erent

data partitioned algorithms�

Although the concept of function decomposition is illustrated by the trivial exam�

ple above� the term is generally used to signify partitioning and workload allocation by

function within the computational phase� Typically� application computations contain

several di
erent subalgorithms�sometimes on the same data �the MPSD or multiple�

�� Chapter �

program single�data scenario�� sometimes in a pipelined sequence of transformations�

and sometimes exhibiting an unstructured pattern of exchanges� We illustrate the gen�

eral functional decomposition paradigm by considering the hypothetical simulation of

an aircraft consisting of multiple interrelated and interacting� functionally decomposed

subalgorithms� A diagram providing an overview of this example is shown in Figure ���

�and will also be used in a later chapter dealing with graphical PVM programming��

9

8

7

65432

1

flight_dynamics

control

atmosphere

tail body wing wing rudder

input_data

Figure ���
Function decomposition example

In the �gure� each node or circle in the �graph� represents a functionally decomposed

piece of the application� The input function distributes the particular problem param�

eters to the di
erent functions � through �� after spawning processes corresponding to

distinct programs implementing each of the application subalgorithms� The same data

may be sent to multiple functions �e�g�� as in the case of the two wing functions�� or

data appropriate for the given function alone may be delivered� After performing some

amount of computations these functions deliver intermediate or �nal results to functions

	�
� and � that may have been spawned at the beginning of the computation or as results

become available� The diagram indicates the primary concept of decomposing applica�

tions by function� as well as control and data dependency relationships� Parallelism is

achieved in two respects�by the concurrent and independent execution of modules as

Basic Programming Techniques ��

in functions � through �� and by the simultaneous� pipelined� execution of modules in a

dependency chain� as� for example� in functions �� ��
� and ��

��� Porting Existing Applications to PVM

In order to utilize the PVM system� applications must evolve through two stages� The

�rst concerns development of the distributed�memory parallel version of the application

algorithm�s�� this phase is common to the PVM system as well as to other distributed�

memory multiprocessors� The actual parallelization decisions fall into two major cate�

gories � those related to structure� and those related to e�ciency� For structural deci�

sions in parallelizing applications� the major decisions to be made include the choice of

model to be used �i�e�� crowd computation vs� tree computation and data decomposi�

tion vs� function decomposition�� Decisions with respect to e�ciency when parallelizing

for distributed�memory environments are generally oriented toward minimizing the fre�

quency and volume of communications� It is typically in this latter respect that the

parallelization process di
ers for PVM and hardware multiprocessors� for PVM envi�

ronments based on networks� large granularity generally leads to better performance�

With this quali�cation� the parallelization process is very similar for PVM and for other

distributed�memory environments� including hardware multiprocessors�

The parallelization of applications may be done ab initio� from existing sequential

versions� or from existing parallel versions� In the �rst two cases� the stages involved are

to select an appropriate algorithm for each of the subtasks in the application� usually

from published descriptions or by inventing a parallel algorithm� and to then code these

algorithms in the language of choice �C� C��� or Fortran 		 for PVM� and interface them

with each other as well as with process management and other constructs� Parallelization

from existing sequential programs also follows certain general guidelines� primary among

which are to decompose loops� beginning with outermost loops and working inward� In

this process� the main concern is to detect dependencies and to partition loops such

that the dependencies are preserved while allowing for concurrency� This parallelization

process is described in numerous textbooks and papers on parallel computing� although

few textbooks discuss the practical and speci�c aspects of transforming a sequential

program to a parallel one�

Existing parallel programsmay be based upon either the shared�memory or distributed�

memory paradigms� Converting existing shared�memory programs to PVM is similar to

converting from sequential code� when the shared�memory versions are based upon vector

or loop�level parallelism� In the case of explicit shared memory programs� the primary

task is to locate synchronization points and replace these with message passing� In order

�� Chapter �

to convert existing distributed�memory parallel code to PVM� the main task is to convert

from one set of concurrency constructs to another� Typically� existing distributed mem�

ory parallel programs are written either for hardware multiprocessors or other networked

environments such as p� or Express� In both cases� the major changes required are with

regard to process management� For example� in the Intel family of DMMPs� it is com�

mon for processes to be started from an interactive shell command line� Such a paradigm

should be replaced for PVM by either a master program or a node program that takes

responsibility for process spawning� With regard to interaction� there is� fortunately� a

great deal of commonality between the message�passing calls in various programming

environments� The major di
erences between PVM and other systems in this context

are with regard to �a� process management and process addressing schemes� �b� virtual

machine con�guration�recon�guration and its impact on executing applications� �c� het�

erogeneity in messages as well as the aspect of heterogeneity that deals with di
erent

architectures and data representations� and �d� certain unique and specialized features

such as signaling� and task scheduling methods�

� PVM User Interface

In this chapter we give a brief description of the routines in the PVM � user library�

This chapter is organized by the functions of the routines� For example� in the section

on Message Passing is a discussion of all the routines for sending and receiving data

from one PVM task to another and a description of PVM�s message passing options�

The calling syntax of the C and Fortran PVM routines are highlighted by boxes in each

section�

An alphabetical listing of all the routines is given in Appendix B� Appendix B contains

a detailed description of each routine� including a description of each argument in each

routine� the possible error codes a routine may return� and the possible reasons for the

error� Each listing also includes examples of both C and Fortran use�

In PVM � all PVM tasks are identi�ed by an integer supplied by the local pvmd� In

the following descriptions this task identi�er is called TID� It is similar to the process

ID �PID� used in the Unix system and is assumed to be opaque to the user� in that the

value of the TID has no special signi�cance to him� In fact� PVM encodes information

into the TID for its own internal use� Details of this encoding can be found in Chapter

	�

All the PVM routines are written in C� C�� applications can link to the PVM library�

Fortran applications can call these routines through a Fortran 		 interface supplied with

the PVM � source� This interface translates arguments� which are passed by reference in

Fortran� to their values if needed by the underlying C routines� The interface also takes

into account Fortran character string representations and the various naming conventions

that di
erent Fortran compilers use to call C functions�

The PVM communication model assumes that any task can send a message to any

other PVM task and that there is no limit to the size or number of such messages� While

all hosts have physical memory limitations that limits potential bu
er space� the commu�

nication model does not restrict itself to a particular machine�s limitations and assumes

su�cient memory is available� The PVM communication model provides asynchronous

blocking send� asynchronous blocking receive� and nonblocking receive functions� In our

terminology� a blocking send returns as soon as the send bu
er is free for reuse� and

an asynchronous send does not depend on the receiver calling a matching receive before

the send can return� There are options in PVM � that request that data be transferred

directly from task to task� In this case� if the message is large� the sender may block

until the receiver has called a matching receive�

�� Chapter �

A nonblocking receive immediately returns with either the data or a �ag that the data

has not arrived� while a blocking receive returns only when the data is in the receive

bu
er� In addition to these point�to�point communication functions� the model supports

multicast to a set of tasks and broadcast to a user�de�ned group of tasks� There are also

functions to perform global max� global sum� etc�� across a user�de�ned group of tasks�

Wildcards can be speci�ed in the receive for the source and label� allowing either or both

of these contexts to be ignored� A routine can be called to return information about

received messages�

The PVM model guarantees that message order is preserved� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

Message bu
ers are allocated dynamically� Therefore� the maximummessage size that

can be sent or received is limited only by the amount of available memory on a given host�

There is only limited �ow control built into PVM ���� PVM may give the user a can�t

get memory error when the sum of incoming messages exceeds the available memory� but

PVM does not tell other tasks to stop sending to this host�

��� Process Control

int tid � pvm mytid� void �

call pvmfmytid� tid �

The routine pvm mytid�� returns the TID of this process and can be called multiple

times� It enrolls this process into PVM if this is the �rst PVM call� Any PVM system

call �not just pvm mytid� will enroll a task in PVM if the task is not enrolled before the

call� but it is common practice to call pvm mytid �rst to perform the enrolling�

int info � pvm exit� void �

call pvmfexit� info �

The routine pvm exit�� tells the local pvmd that this process is leaving PVM� This

routine does not kill the process� which can continue to perform tasks just like any other

UNIX process� Users typically call pvm exit right before exiting their C programs and

right before STOP in their Fortran programs�

PVM User Interface ��

int numt � pvm spawn� char �task� char ��argv� int flag�

char �where� int ntask� int �tids �

call pvmfspawn� task� flag� where� ntask� tids� numt �

The routine pvm spawn�� starts up ntask copies of an executable �le task on the

virtual machine� argv is a pointer to an array of arguments to task with the end of

the array speci�ed by NULL� If task takes no arguments� then argv is NULL� The flag

argument is used to specify options� and is a sum of�

Value Option Meaning

� PvmTaskDefault PVM chooses where to spawn processes�

� PvmTaskHost where argument is a particular host to spawn on�

� PvmTaskArch where argument is a PVM ARCH to spawn on�

� PvmTaskDebug starts tasks under a debugger�

 PvmTaskTrace trace data is generated�

�� PvmMppFront starts tasks on MPP front�end�

�� PvmHostCompl complements host set in where�

These names are prede�ned in pvm��include�pvm��h� In Fortran all the names are

prede�ned in parameter statements which can be found in the include �le

pvm��include�fpvm��h�

PvmTaskTrace is a new feature in PVM ���� It causes spawned tasks to generate

trace events� PvmTasktrace is used by XPVM �see Chapter
�� Otherwise� the user must

specify where the trace events are sent in pvm setopt���

On return� numt is set to the number of tasks successfully spawned or an error code if

no tasks could be started� If tasks were started� then pvm spawn�� returns a vector of

the spawned tasks� tids� and if some tasks could not be started� the corresponding error

codes are placed in the last ntask � numt positions of the vector�

The pvm spawn�� call can also start tasks on multiprocessors� In the case of the Intel

iPSC�
�� the following restrictions apply� Each spawn call gets a subcube of size ntask

and loads the program task on all of these nodes� The iPSC�
�� OS has an allocation

limit of �� subcubes across all users� so it is better to start a block of tasks on an

iPSC�
�� with a single pvm spawn�� call rather than several calls� Two di
erent blocks

of tasks spawned separately on the iPSC�
�� can still communicate with each other as

well as any other PVM tasks even though they are in separate subcubes� The iPSC�
��

�� Chapter �

OS has a restriction that messages going from the nodes to the outside world be less

than ��� Kbytes�

int info � pvm kill� int tid �

call pvmfkill� tid� info �

The routine pvm kill�� kills some other PVM task identi�ed by TID� This routine is

not designed to kill the calling task� which should be accomplished by calling pvm exit��

followed by exit���

int info � pvm catchout� FILE �ff �

call pvmfcatchout� onoff �

The default is to have PVM write the stderr and stdout of spawned tasks to the log �le

�tmp�pvml��uid�� The routine pvm catchout causes the calling task to catch output

from tasks subsequently spawned� Characters printed on stdout or stderr in children

tasks are collected by the pvmds and sent in control messages to the parent task� which

tags each line and appends it to the speci�ed �le �in C� or standard output �in Fortran��

Each of the prints is prepended with information about which task generated the print�

and the end of the print is marked to help separate outputs coming from several tasks

at once�

If pvm exit is called by the parent while output collection is in e
ect� it will block until

all tasks sending it output have exited� in order to print all their output� To avoid this�

one can turn o
 the output collection by calling pvm catchout��� before calling pvm exit�

New capabilities in PVM ��� include the ability to register special PVM tasks to

handle the jobs of adding new hosts� mapping tasks to hosts� and starting new tasks�

This creates an interface for advanced batch schedulers �examples include Condor �����

DQS ����� and LSF ���� to plug into PVM and run PVM jobs in batch mode� These

register routines also create an interface for debugger writers to develop sophisticated

debuggers for PVM�

The routine names are pvm reg rm��� pvm reg hoster��� and pvm reg tasker��� These

are advanced functions not meant for the average PVM user and thus are not presented

in detail here� Speci�cs can be found in Appendix B�

PVM User Interface ��

��� Information

int tid � pvm parent� void �

call pvmfparent� tid �

The routine pvm parent�� returns the TID of the process that spawned this task or the

value of PvmNoParent if not created by pvm spawn���

int dtid � pvm tidtohost� int tid �

call pvmftidtohost� tid� dtid �

The routine pvm tidtohost�� returns the TID dtid of the daemon running on the same

host as TID� This routine is useful for determining on which host a given task is running�

More general information about the entire virtual machine� including the textual name

of the con�gured hosts� can be obtained by using the following functions�

int info � pvm config� int �nhost� int �narch�

struct pvmhostinfo ��hostp �

call pvmfconfig� nhost� narch� dtid� name� arch� speed� info�

The routine pvm con�g�� returns information about the virtual machine including the

number of hosts� nhost� and the number of di
erent data formats� narch� hostp is a

pointer to a user declaried array of pvmhostinfo structures� The array should be of size

at least nhost� On return� each pvmhostinfo structure contains the pvmd TID� host

name� name of the architecture� and relative CPU speed for that host in the con�guration�

The Fortran function returns information about one host per call and cycles through

all the hosts� Thus� if pvmfcon�g is called nhost times� the entire virtual machine will

be represented� The Fortran interface works by saving a copy of the hostp array and

returning one entry per call� All the hosts must be cycled through before a new hostp

array is obtained� Thus� if the virtual machine is changing during these calls� then the

change will appear in the nhost and narch parameters� but not in the host information�

Presently� there is no way to reset pvmfcon�g�� and force it to restart the cycle when it

is in the middle�

�	 Chapter �

int info � pvm tasks� int which� int �ntask�

struct pvmtaskinfo ��taskp �

call pvmftasks� which� ntask� tid� ptid� dtid�

flag� aout� info �

The routine pvm tasks�� returns information about the PVM tasks running on the

virtual machine� The integer which speci�es which tasks to return information about�

The present options are ���� which means all tasks� a pvmd TID �dtid�� which means

tasks running on that host� or a TID� which means just the given task�

The number of tasks is returned in ntask� taskp is a pointer to an array of pvmtaskinfo

structures� The array is of size ntask� Each pvmtaskinfo structure contains the TID�

pvmd TID� parent TID� a status �ag� and the spawned �le name� �PVM doesn�t know

the �le name of manually started tasks and so leaves these blank�� The Fortran function

returns information about one task per call and cycles through all the tasks� Thus� if

where # �� and pvmftasks is called ntask times� all tasks will be represented� The Fortran

implementation assumes that the task pool is not changing while it cycles through the

tasks� If the pool changes� these changes will not appear until the next cycle of ntask

calls begins�

Examples of the use of pvm con�g and pvm tasks can be found in the source to the

PVM console� which is just a PVM task itself� Examples of the use of the Fortran

versions of these routines can be found in the source pvm��examples�testall�f�

��� Dynamic Con�guration

int info � pvm
addhosts� char ��hosts� int nhost� int �infos�

int info � pvm
delhosts� char ��hosts� int nhost� int �infos�

call pvmfaddhost� host� info �

call pvmfdelhost� host� info �

The C routines add or delete a set of hosts in the virtual machine� The Fortran

routines add or delete a single host in the virtual machine� In the Fortran routine info

is returned as � or a status code� In the C version info is returned as the number of

hosts successfully added� The argument infos is an array of length nhost that contains

the status code for each individual host being added or deleted� This allows the user to

check whether only one of a set of hosts caused a problem rather than trying to add or

delete the entire set of hosts again�

PVM User Interface ��

These routines are sometimes used to set up a virtual machine� but more often they

are used to increase the �exibility and fault tolerance of a large application� These

routines allow an application to increase the available computing power �adding hosts�

if it determines the problem is getting harder to solve� One example of this would be a

CAD�CAM program where� during the computation� the �nite�element grid is re�ned�

dramatically increasing the size of the problem� Another use would be to increase the

fault tolerance of an application by having it detect the failure of a host and adding in

a replacement�

��� Signaling

int info � pvm sendsig� int tid� int signum �

call pvmfsendsig� tid� signum� info �

int info � pvm notify� int what� int msgtag� int cnt� int tids �

call pvmfnotify� what� msgtag� cnt� tids� info �

The routine pvm sendsig�� sends a signal signum to another PVM task identi�ed by

TID� The routine pvm notify requests PVM to notify the caller on detecting certain

events� The present options are as follows�

PvmTaskExit � notify if a task exits�

PvmHostDelete � notify if a host is deleted �or fails��

PvmHostAdd � notify if a host is added�

In response to a notify request� some number of messages �see Appendix B� are sent

by PVM back to the calling task� The messages are tagged with the user supplied

msgtag� The tids array speci�es who to monitor when using TaskExit or HostDelete�

The array contains nothing when using HostAdd� If required� the routines pvm con�g

and pvm tasks can be used to obtain task and pvmd tids�

If the host on which task A is running fails� and task B has asked to be noti�ed if task

A exits� then task B will be noti�ed even though the exit was caused indirectly by the

host failure�

�� Chapter �

��� Setting and Getting Options

int oldval � pvm
setopt� int what� int val �

int val � pvm
getopt� int what �

call pvmfsetopt� what� val� oldval �

call pvmfgetopt� what� val �

The routine pvm setopt is a general�purpose function that allows the user to set or get

options in the PVM system� In PVM �� pvm setopt can be used to set several options�

including automatic error message printing� debugging level� and communication routing

method for all subsequent PVM calls� pvm setopt returns the previous value of set in

oldval� The PVM ��� what can have the following values�

Option Value Meaning

PvmRoute � routing policy

PvmDebugMask � debugmask

PvmAutoErr � auto error reporting

PvmOutputTid � stdout destination for children

PvmOutputCode � output msgtag

PvmTraceTid � trace destination for children

PvmTraceCode 	 trace msgtag

PvmFragSize
 message fragment size

PvmResvTids � allow messages to reserved tags and tids

PvmSelfOutputTid �� stdout destination for self

PvmSelfOutputCode �� output msgtag

PvmSelfTraceTid �� trace destination for self

PvmSelfTraceCode �� trace msgtag

See Appendix B for allowable values for these options� Future expansions to this list are

planned�

The most popular use of pvm setopt is to enable direct route communication between

PVM tasks� As a general rule of thumb� PVM communication bandwidth over a network

doubles by calling

pvm
setopt� PvmRoute� PvmRouteDirect ��

The drawback is that this faster communication method is not scalable under Unix�

PVM User Interface ��

hence� it may not work if the application involves over �� tasks that communicate ran�

domly with each other� If it doesn�t work� PVM automatically switches back to the

default communication method� It can be called multiple times during an application

to selectively set up direct task�to�task communication links� but typical use is to call it

once after the initial call to pvm mytid���

��� Message Passing

Sending a message comprises three steps in PVM� First� a send bu
er must be initialized

by a call to pvm initsend�� or pvm mkbuf��� Second� the message must be �packed�

into this bu
er using any number and combination of pvm pk!�� routines� �In Fortran

all message packing is done with the pvmfpack�� subroutine�� Third� the completed

message is sent to another process by calling the pvm send�� routine or multicast with

the pvm mcast�� routine�

A message is received by calling either a blocking or nonblocking receive routine and

then �unpacking� each of the packed items from the receive bu
er� The receive routines

can be set to accept any message� or any message from a speci�ed source� or any message

with a speci�ed message tag� or only messages with a given message tag from a given

source� There is also a probe function that returns whether a message has arrived� but

does not actually receive it�

If required� other receive contexts can be handled by PVM �� The routine pvm recvf��

allows users to de�ne their own receive contexts that will be used by the subsequent

PVM receive routines�

���� Message Bu�ers

int bufid � pvm initsend� int encoding �

call pvmfinitsend� encoding� bufid �

If the user is using only a single send bu
er �and this is the typical case� then

pvm initsend�� is the only required bu
er routine� It is called before packing a new

message into the bu
er� The routine pvm initsend clears the send bu
er and creates a

new one for packing a new message� The encoding scheme used for this packing is set by

encoding� The new bu
er identi�er is returned in bufid�

The encoding options are as follows�

PvmDataDefault � XDR encoding is used by default because PVM cannot know

whether the user is going to add a heterogeneous machine before this message is sent� If

�� Chapter �

the user knows that the next message will be sent only to a machine that understands

the native format� then he can use PvmDataRaw encoding and save on encoding costs�

PvmDataRaw � no encoding is done� Messages are sent in their original format� If

the receiving process cannot read this format� it will return an error during unpacking�

PvmDataInPlace � data left in place to save on packing costs� Bu
er contains only

sizes and pointers to the items to be sent� When pvm send�� is called� the items are

copied directly out of the user�s memory� This option decreases the number of times the

message is copied at the expense of requiring the user to not modify the items between

the time they are packed and the time they are sent� One use of this option would be

to call pack once and modify and send certain items �arrays� multiple times during an

application� An example would be passing of boundary regions in a discretized PDE

implementation�

The following message bu
er routines are required only if the user wishes to manage

multiple message bu
ers inside an application� Multiple message bu
ers are not required

for most message passing between processes� In PVM � there is one active send bu
er

and one active receive bu
er per process at any given moment� The developer may create

any number of message bu
ers and switch between them for the packing and sending

of data� The packing� sending� receiving� and unpacking routines a
ect only the active

bu
ers�

int bufid � pvm mkbuf� int encoding �

call pvmfmkbuf� encoding� bufid �

The routine pvm mkbuf creates a new empty send bu
er and speci�es the encoding

method used for packing messages� It returns a bu
er identi�er bufid�

int info � pvm freebuf� int bufid �

call pvmffreebuf� bufid� info �

The routine pvm freebuf�� disposes of the bu
er with identi�er bufid� This should

be done after a message has been sent and is no longer needed� Call pvm mkbuf�� to

create a bu
er for a new message if required� Neither of these calls is required when

using pvm initsend��� which performs these functions for the user�

PVM User Interface ��

int bufid � pvm getsbuf� void �

call pvmfgetsbuf� bufid �

int bufid � pvm getrbuf� void �

call pvmfgetrbuf� bufid �

pvm getsbuf�� returns the active send bu
er identi�er� pvm getrbuf�� returns the

active receive bu
er identi�er�

int oldbuf � pvm setsbuf� int bufid �

call pvmfsetrbuf� bufid� oldbuf �

int oldbuf � pvm setrbuf� int bufid �

call pvmfsetrbuf� bufid� oldbuf �

These routines set the active send �or receive� bu
er to bufid� save the state of the

previous bu
er� and return the previous active bu
er identi�er oldbuf�

If bufid is set to � in pvm setsbuf�� or pvm setrbuf��� then the present bu
er is saved

and there is no active bu
er� This feature can be used to save the present state of

an application�s messages so that a math library or graphical interface which also uses

PVM messages will not interfere with the state of the application�s bu
ers� After they

complete� the application�s bu
ers can be reset to active�

It is possible to forward messages without repacking them by using the message bu
er

routines� This is illustrated by the following fragment�

bufid � pvm
recv� src� tag ��

oldid � pvm
setsbuf� bufid ��

info � pvm
send� dst� tag ��

info � pvm
freebuf� oldid ��

���� Packing Data

Each of the following C routines packs an array of the given data type into the active

send bu
er� They can be called multiple times to pack data into a single message� Thus�

a message can contain several arrays each with a di
erent data type� C structures must

be passed by packing their individual elements� There is no limit to the complexity of the

packed messages� but an application should unpack the messages exactly as they were

packed� Although this is not strictly required� it is a safe programming practice�

The arguments for each of the routines are a pointer to the �rst item to be packed�

nitem which is the total number of items to pack from this array� and stride which is

the stride to use when packing� A stride of � means a contiguous vector is packed� a

�� Chapter �

stride of � means every other item is packed� and so on� An exception is pvm pkstr��

which by de�nition packs a NULL terminated character string and thus does not need

nitem or stride arguments�

int info � pvm
pkbyte� char �cp� int nitem� int stride �

int info � pvm
pkcplx� float �xp� int nitem� int stride �

int info � pvm
pkdcplx� double �zp� int nitem� int stride �

int info � pvm
pkdouble� double �dp� int nitem� int stride �

int info � pvm
pkfloat� float �fp� int nitem� int stride �

int info � pvm
pkint� int �np� int nitem� int stride �

int info � pvm
pklong� long �np� int nitem� int stride �

int info � pvm
pkshort� short �np� int nitem� int stride �

int info � pvm
pkstr� char �cp �

int info � pvm
packf� const char �fmt� ��� �

PVM also supplies a packing routine that uses a printf�like format expression to specify

what data to pack and how to pack it into the send bu
er� All variables are passed as

addresses if count and stride are speci�ed� otherwise� variables are assumed to be values�

A description of the format syntax is given in Appendix B�

A single Fortran subroutine handles all the packing functions of the above C routines�

call pvmfpack� what� xp� nitem� stride� info �

The argument xp is the �rst item of the array to be packed� Note that in Fortran the

number of characters in a string to be packed must be speci�ed in nitem� The integer

what speci�es the type of data to be packed� The supported options are as follows�

STRING � REAL	 �

BYTE� � COMPLEX �

INTEGER� � REAL �

INTEGER	 � COMPLEX�� 	

These names have been prede�ned in parameter statements in the include �le

pvm��include�fpvm��h� Some vendors may extend this list to include ���bit archi�

tectures in their PVM implementations� We will be adding INTEGER
� REAL��� etc��

as soon as XDR support for these data types is available�

PVM User Interface ��

���� Sending and Receiving Data

int info � pvm send� int tid� int msgtag �

call pvmfsend� tid� msgtag� info �

int info � pvm mcast� int �tids� int ntask� int msgtag �

call pvmfmcast� ntask� tids� msgtag� info �

The routine pvm send�� labels the message with an integer identi�er msgtag and sends

it immediately to the process TID�

The routine pvm mcast�� labels the message with an integer identi�er msgtag and

broadcasts the message to all tasks speci�ed in the integer array tids �except itself��

The tids array is of length ntask�

int info � pvm psend� int tid� int msgtag�

void �vp� int cnt� int type �

call pvmfpsend� tid� msgtag� xp� cnt� type� info �

The routine pvm psend�� packs and sends an array of the speci�ed datatype to the

task identi�ed by TID� The de�ned datatypes for Fortran are the same as for pvmfpack���

In C the type argument can be any of the following�

PVM
STR PVM
FLOAT

PVM
BYTE PVM
CPLX

PVM
SHORT PVM
DOUBLE

PVM
INT PVM
DCPLX

PVM
LONG PVM
UINT

PVM
USHORT PVM
ULONG

PVM contains several methods of receiving messages at a task� There is no function

matching in PVM� for example� that a pvm psend must be matched with a pvm precv�

Any of the following routines can be called for any incoming message no matter how it

was sent �or multicast��

int bufid � pvm recv� int tid� int msgtag �

call pvmfrecv� tid� msgtag� bufid �

This blocking receive routine will wait until a message with label msgtag has arrived

from TID� A value of �� in msgtag or TID matches anything �wildcard�� It then places

�� Chapter �

the message in a new active receive bu
er that is created� The previous active receive

bu
er is cleared unless it has been saved with a pvm setrbuf�� call�

int bufid � pvm nrecv� int tid� int msgtag �

call pvmfnrecv� tid� msgtag� bufid �

If the requested message has not arrived� then the nonblocking receive pvm nrecv��

returns bufid # �� This routine can be called multiple times for the same message to

check whether it has arrived� while performing useful work between calls� When no more

useful work can be performed� the blocking receive pvm recv�� can be called for the same

message� If a message with label msgtag has arrived from TID� pvm nrecv�� places this

message in a new active receive bu
er �which it creates� and returns the ID of this bu
er�

The previous active receive bu
er is cleared unless it has been saved with a pvm setrbuf��

call� A value of �� in msgtag or TID matches anything �wildcard��

int bufid � pvm probe� int tid� int msgtag �

call pvmfprobe� tid� msgtag� bufid �

If the requested message has not arrived� then pvm probe�� returns bufid # �� Oth�

erwise� it returns a bu�d for the message� but does not �receive� it� This routine can

be called multiple times for the same message to check whether it has arrived� while

performing useful work between calls� In addition� pvm bu�nfo�� can be called with the

returned bu�d to determine information about the message before receiving it�

int bufid � pvm trecv� int tid� int msgtag� struct timeval �tmout �

call pvmftrecv� tid� msgtag� sec� usec� bufid �

PVM also supplies a timeout version of receive� Consider the case where a message

is never going to arrive �because of error or failure�� the routine pvm recv would block

forever� To avoid such situations� the user may wish to give up after waiting for a �xed

amount of time� The routine pvm trecv�� allows the user to specify a timeout period� If

the timeout period is set very large� then pvm trecv acts like pvm recv� If the timeout

period is set to zero� then pvm trecv acts like pvm nrecv� Thus� pvm trecv �lls the gap

between the blocking and nonblocking receive functions�

int info � pvm bufinfo� int bufid� int �bytes� int �msgtag� int �tid �

call pvmfbufinfo� bufid� bytes� msgtag� tid� info �

PVM User Interface ��

The routine pvm bu�nfo�� returns msgtag� source TID� and length in bytes of the

message identi�ed by bufid� It can be used to determine the label and source of a

message that was received with wildcards speci�ed�

int info � pvm precv� int tid� int msgtag� void �vp� int cnt�

int type� int �rtid� int �rtag� int �rcnt �

call pvmfprecv� tid� msgtag� xp� cnt� type� rtid� rtag� rcnt� info �

The routine pvm precv�� combines the functions of a blocking receive and unpacking

the received bu
er� It does not return a bufid� Instead� it returns the actual values of

TID� msgtag� and cnt�

int ��old��� � pvm recvf�int ��new��int buf� int tid� int tag��

The routine pvm recvf�� modi�es the receive context used by the receive functions

and can be used to extend PVM� The default receive context is to match on source

and message tag� This can be modi�ed to any user�de�ned comparison function� �See

Appendix B for an example of creating a probe function with pvm recf���� There is no

Fortran interface routine for pvm recvf���

���� Unpacking Data

The following C routines unpack �multiple� data types from the active receive bu
er� In

an application they should match their corresponding pack routines in type� number of

items� and stride� nitem is the number of items of the given type to unpack� and stride

is the stride�

int info � pvm
upkbyte� char �cp� int nitem� int stride �

int info � pvm
upkcplx� float �xp� int nitem� int stride �

int info � pvm
upkdcplx� double �zp� int nitem� int stride �

int info � pvm
upkdouble� double �dp� int nitem� int stride �

int info � pvm
upkfloat� float �fp� int nitem� int stride �

int info � pvm
upkint� int �np� int nitem� int stride �

int info � pvm
upklong� long �np� int nitem� int stride �

int info � pvm
upkshort� short �np� int nitem� int stride �

int info � pvm
upkstr� char �cp �

int info � pvm
unpackf� const char �fmt� ��� �

�	 Chapter �

The routine pvm unpackf�� uses a printf�like format expression to specify what data

to unpack and how to unpack it from the receive bu
er�

A single Fortran subroutine handles all the unpacking functions of the above C routines�

call pvmfunpack� what� xp� nitem� stride� info �

The argument xp is the array to be unpacked into� The integer argument what speci�es

the type of data to be unpacked� �Same what options as for pvmfpack����

��� Dynamic Process Groups

The dynamic process group functions are built on top of the core PVM routines� A

separate library libgpvm��a must be linked with user programs that make use of any

of the group functions� The pvmd does not perform the group functions� This task is

handled by a group server that is automatically started when the �rst group function is

invoked� There is some debate about how groups should be handled in a message�passing

interface� The issues include e�ciency and reliability� and there are tradeo
s between

static versus dynamic groups� Some people argue that only tasks in a group can call

group functions�

In keeping with the PVM philosophy� the group functions are designed to be very

general and transparent to the user� at some cost in e�ciency� Any PVM task can join

or leave any group at any time without having to inform any other task in the a
ected

groups� Tasks can broadcast messages to groups of which they are not a member� In

general� any PVM task may call any of the following group functions at any time� The

exceptions are pvm lvgroup��� pvm barrier��� and pvm reduce��� which by their nature

require the calling task to be a member of the speci�ed group�

int inum � pvm joingroup� char �group �

int info � pvm lvgroup� char �group �

call pvmfjoingroup� group� inum �

call pvmflvgroup� group� info �

These routines allow a task to join or leave a user named group� The �rst call to

pvm joingroup�� creates a group with name group and puts the calling task in this

group� pvm joingroup�� returns the instance number �inum� of the process in this group�

Instance numbers run from � to the number of group members minus �� In PVM �� a

task can join multiple groups�

PVM User Interface ��

If a process leaves a group and then rejoins it� that process may receive a di
erent

instance number� Instance numbers are recycled so a task joining a group will get the

lowest available instance number� But if multiple tasks are joining a group� there is no

guarantee that a task will be assigned its previous instance number�

To assist the user in maintaining a continuous set of instance numbers despite joining

and leaving� the pvm lvgroup�� function does not return until the task is con�rmed to

have left� A pvm joingroup�� called after this return will assign the vacant instance

number to the new task� It is the user�s responsibility to maintain a contiguous set of

instance numbers if the algorithm requires it� If several tasks leave a group and no tasks

join� then there will be gaps in the instance numbers�

int tid � pvm gettid� char �group� int inum �

int inum � pvm getinst� char �group� int tid �

int size � pvm gsize� char �group �

call pvmfgettid� group� inum� tid �

call pvmfgetinst� group� tid� inum �

call pvmfgsize� group� size �

The routine pvm gettid�� returns the TID of the process with a given group name and

instance number� pvm gettid�� allows two tasks with no knowledge of each other to get

each other�s TID simply by joining a common group� The routine pvm getinst�� returns

the instance number of TID in the speci�ed group� The routine pvm gsize�� returns the

number of members in the speci�ed group�

int info � pvm barrier� char �group� int count �

call pvmfbarrier� group� count� info �

On calling pvm barrier�� the process blocks until countmembers of a group have called

pvm barrier� In general count should be the total number of members of the group� A

count is required because with dynamic process groups PVM cannot know how many

members are in a group at a given instant� It is an error for processes to call pvm barrier

with a group it is not a member of� It is also an error if the count arguments across a

given barrier call do not match� For example it is an error if one member of a group calls

pvm barrier�� with a count of �� and another member calls pvm barrier�� with a count

of ��

�� Chapter �

int info � pvm bcast� char �group� int msgtag �

call pvmfbcast� group� msgtag� info �

pvm bcast�� labels the message with an integer identi�er msgtag and broadcasts the

message to all tasks in the speci�ed group except itself �if it is a member of the group��

For pvm bcast�� �all tasks� is de�ned to be those tasks the group server thinks are in

the group when the routine is called� If tasks join the group during a broadcast� they

may not receive the message� If tasks leave the group during a broadcast� a copy of the

message will still be sent to them�

int info � pvm reduce� void ��func���� void �data�

int nitem� int datatype�

int msgtag� char �group� int root �

call pvmfreduce� func� data� count� datatype�

msgtag� group� root� info �

pvm reduce�� performs a global arithmetic operation across the group� for example�

global sum or global max� The result of the reduction operation appears on root� PVM

supplies four prede�ned functions that the user can place in func� These are

PvmMax

PvmMin

PvmSum

PvmProduct

The reduction operation is performed element�wise on the input data� For example� if

the data array contains two �oating�point numbers and func is PvmMax� then the result

contains two numbers�the global maximum of each group members �rst number and

the global maximum of each member�s second number�

In addition users can de�ne their own global operation function to place in func� See

Appendix B for details� An example is given in the source code for PVM� For more

information see PVM ROOT�examples�gexamples�

Note� pvm reduce�� does not block� If a task calls pvm reduce and then leaves the

group before the root has called pvm reduce� an error may occur�

� Program Examples

In this chapter we discuss several complete PVM programs in detail� The �rst example�

forkjoin�c� shows how to to spawn o
 processes and synchronize with them� The second

example discusses a Fortran dot product program� PSDOT�F� The third example� fail�

ure�c� demonstrates how the user can use the pvm
notify�� call to create fault tolerant

appliations� We present an example that performs a matrix multiply� Lastly� we show

how PVM can be used to compute heat di
usion through a wire�

��� Fork�Join

Our �rst example demonstrates how to spawn o
 PVM tasks and synchronize with them�

The program spawns several tasks� three by default� The children then synchronize by

sending a message to their parent task� The parent receives a message from each of the

spawned tasks and prints out information about the message from the child tasks�

The fork�join program contains the code for both the parent and the child tasks� Let�s

examine it in more detail� The very �rst thing the program does is call pvm
mytid���

This function must be called before any other PVM call can be made� The result of

the pvm
mytid�� call should always be a positive integer� If it is not� then something

is seriously wrong� In fork�join we check the value of mytid� if it indicates an error�

we call pvm
perror�� and exit the program� The pvm
perror�� call will print a mes�

sage indicating what went wrong with the last PVM call� In our example the last

call was pvm
mytid��� so pvm
perror�� might print a message indicating that PVM

hasn�t been started on this machine� The argument to pvm
perror�� is a string that

will be prepended to any error message printed by pvm
perror��� In this case we pass

argv���� which is the name of the program as it was typed on the command line� The

pvm
perror�� function is modeled after the Unix perror�� function�

Assuming we obtained a valid result for mytid� we now call pvm
parent��� The

pvm
parent�� function will return the TID of the task that spawned the calling task�

Since we run the initial fork�join program from the Unix shell� this initial task will not

have a parent� it will not have been spawned by some other PVM task but will have been

started manually by the user� For the initial forkjoin task the result of pvm
parent��

will not be any particular task id but an error code� PvmNoParent� Thus we can dis�

tinguish the parent forkjoin task from the children by checking whether the result of the

pvm
parent�� call is equal to PvmNoParent� If this task is the parent� then it must

spawn the children� If it is not the parent� then it must send a message to the parent�

Let�s examine the code executed by the parent task� The number of tasks is taken

from the command line as argv���� If the number of tasks is not legal� then we exit the

�� Chapter �

program� calling pvm
exit�� and then returning� The call to pvm
exit�� is important

because it tells PVM this program will no longer be using any of the PVM facilities�

�In this case the task exits and PVM will deduce that the dead task no longer needs its

services� Regardless� it is good style to exit cleanly�� Assuming the number of tasks is

valid� forkjoin will then attempt to spawn the children�

The pvm
spawn�� call tells PVM to start ntask tasks named argv���� The second

parameter is the argument list given to the spawned tasks� In this case we don�t care to

give the children any particular command line arguments� so this value is null� The third

parameter to spawn� PvmTaskDefault� is a �ag telling PVM to spawn the tasks in the

default location� Had we been interested in placing the children on a speci�c machine

or a machine of a particular architecture� then we would have used PvmTaskHost or

PvmTaskArch for this �ag and speci�ed the host or architecture as the fourth parameter�

Since we don�t care where the tasks execute� we use PvmTaskDefault for the �ag and

null for the fourth parameter� Finally� ntask tells spawn how many tasks to start� the

integer array child will hold the task ids of the newly spawned children� The return

value of pvm
spawn�� indicates how many tasks were successfully spawned� If info is not

equal to ntask� then some error occurred during the spawn� In case of an error� the error

code is placed in the task id array� child� instead of the actual task id� The fork�join

program loops over this array and prints the task ids or any error codes� If no tasks were

successfully spawned� then the program exits�

For each child task� the parent receives a message and prints out information about

that message� The pvm
recv�� call receives a message �with that JOINTAG� from any

task� The return value of pvm
recv�� is an integer indicating a message bu
er� This

integer can be used to �nd out information about message bu
ers� The subsequent call to

pvm
bufinfo�� does just this� it gets the length� tag� and task id of the sending process

for the message indicated by buf� In fork�join the messages sent by the children contain

a single integer value� the task id of the child task� The pvm
upkint�� call unpacks the

integer from the message into the mydata variable� As a sanity check� forkjoin tests the

value of mydata and the task id returned by pvm
bufinfo��� If the values di
er� the

program has a bug� and an error message is printed� Finally� the information about the

message is printed� and the parent program exits�

The last segment of code in forkjoin will be executed by the child tasks� Before placing

data in a message bu
er� the bu
er must be initialized by calling pvm
initsend��� The

parameter PvmDataDefault indicates that PVM should do whatever data conversion is

needed to ensure that the data arrives in the correct format on the destination processor�

In some cases this may result in unnecessary data conversions� If the user is sure no

data conversion will be needed since the destination machine uses the same data format�

then he can use PvmDataRaw as a parameter to pvm
initsend��� The pvm
pkint��

Program Examples ��

call places a single integer� mytid� into the message bu
er� It is important to make sure

the corresponding unpack call exactly matches the pack call� Packing an integer and

unpacking it as a �oat will not work correctly� Similarly� if the user packs two integers

with a single call� he cannot unpack those integers by calling pvm
upkint�� twice� once

for each integer� There must be a one to one correspondence between pack and unpack

calls� Finally� the message is sent to the parent task using a message tag of JOINTAG�

Fork Join Example

��

Fork Join Example

Demonstrates how to spawn processes and exchange messages

��

�� defines and prototypes for the PVM library ��

�include �pvm��h�

�� Maximum number of children this program will spawn ��

�define MAXNCHILD ��

�� Tag to use for the joing message ��

�define JOINTAG ��

int

main�int argc� char� argv���

�

�� number of tasks to spawn� use � as the default ��

int ntask � ��

�� return code from pvm calls ��

int info�

�� my task id ��

int mytid�

�� my parents task id ��

int myparent�

�� children task id array ��

int child�MAXNCHILD��

int i� mydata� buf� len� tag� tid�

�� Chapter �

�� find out my task id number ��

mytid � pvm
mytid���

�� check for error ��

if �mytid � �� �

�� print out the error ��

pvm
perror�argv�����

�� exit the program ��

return ���

�

�� find my parent�s task id number ��

myparent � pvm
parent���

�� exit if there is some error other than PvmNoParent ��

if ��myparent � �� �� �myparent '� PvmNoParent�� �

pvm
perror�argv�����

pvm
exit���

return ���

�

�� if i don�t have a parent then i am the parent ��

if �myparent �� PvmNoParent� �

�� find out how many tasks to spawn ��

if �argc �� �� ntask � atoi�argv�����

�� make sure ntask is legal ��

if ��ntask � �� ((�ntask � MAXNCHILD�� � pvm
exit��� return �� �

�� spawn the child tasks ��

info � pvm
spawn�argv���� �char����� PvmTaskDefault� �char����

ntask� child��

�� print out the task ids ��

for �i � �� i � ntask� i���

if �child�i� � �� �� print the error code in decimal��

printf�
 �d
� child�i���

else �� print the task id in hex ��

printf�
t�x�t
� child�i���

Program Examples ��

putchar���n���

�� make sure spawn succeeded ��

if �info �� �� � pvm
exit��� return ��� �

�� only expect responses from those spawned correctly ��

ntask � info�

for �i � �� i � ntask� i��� �

�� recv a message from any child process ��

buf � pvm
recv���� JOINTAG��

if �buf � �� pvm
perror�
calling recv
��

info � pvm
bufinfo�buf� �len� �tag� �tid��

if �info � �� pvm
perror�
calling pvm
bufinfo
��

info � pvm
upkint��mydata� �� ���

if �info � �� pvm
perror�
calling pvm
upkint
��

if �mydata '� tid� printf�
This should not happen'�n
��

printf�
Length �d� Tag �d� Tid t�x�n
� len� tag� tid��

�

pvm
exit���

return ��

�

�� i�m a child ��

info � pvm
initsend�PvmDataDefault��

if �info � �� �

pvm
perror�
calling pvm
initsend
�� pvm
exit��� return ���

�

info � pvm
pkint��mytid� �� ���

if �info � �� �

pvm
perror�
calling pvm
pkint
�� pvm
exit��� return ���

�

info � pvm
send�myparent� JOINTAG��

if �info � �� �

pvm
perror�
calling pvm
send
�� pvm
exit��� return ���

�

pvm
exit���

�� Chapter �

� forkjoin

t�����c t	��	# tc���"

Length 	� Tag ��� Tid t	��	#

Length 	� Tag ��� Tid tc���"

Length 	� Tag ��� Tid t�����c

� forkjoin 	

t�����e t�����d t	��	b tc���

Length 	� Tag ��� Tid t	��	b

Length 	� Tag ��� Tid tc���

Length 	� Tag ��� Tid t�����d

Length 	� Tag ��� Tid t�����e

Figure ���
Output of fork�join program

return ��

�

Figure ��� shows the output of running forkjoin� Notice that the order the messages

were received is nondeterministic� Since the main loop of the parent processes messages

on a �rst�come �rst�serve basis� the order of the prints are simply determined by time it

takes messages to travel from the child tasks to the parent�

��� Dot Product

Here we show a simple Fortran program� PSDOT� for computing a dot product� The pro�

gram computes the dot product of arrays� X and Y� First PSDOT calls PVMFMYTID��

and PVMFPARENT��� The PVMFPARENT call will return PVMNOPARENT if the

task wasn�t spawned by another PVM task� If this is the case� then PSDOT is the master

and must spawn the other worker copies of PSDOT� PSDOT then asks the user for the

number of processes to use and the length of vectors to compute� Each spawned process

will receive n�nproc elements of X and Y� where n is the length of the vectors and nproc

is the number of processes being used in the computation� If nproc does not divide n

evenly� then the master will compute the dot product on extra the elements� The subrou�

tine SGENMAT randomly generates values for X and Y� PSDOT then spawns nproc��

copies of itself and sends each new task a part of the X and Y arrays� The message

contains the length of the subarrays in the message and the subarrays themselves� After

the master spawns the worker processes and sends out the subvectors� the master then

Program Examples ��

computes the dot product on its portion of X and Y� The master process then receives

the other local dot products from the worker processes� Notice that the PVMFRECV

call uses a wildcard ���� for the task id parameter� This indicates that a message from

any task will satisfy the receive� Using the wildcard in this manner results in a race

condition� In this case the race condition does not cause a problem since addition is

commutative� In other words� it doesn�t matter in which order we add the partial sums

from the workers� Unless one is certain that the race will not have an adverse e
ect on

the program� race conditions should be avoided�

Once the master receives all the local dot products and sums them into a global dot

product� it then calculates the entire dot product locally� These two results are then

subtracted� and the di
erence between the two values is printed� A small di
erence can

be expected because of the variation in �oating�point roundo
 errors�

If the PSDOT program is a worker then it receives a message from the master process

containing subarrays of X and Y� It calculates the dot product of these subarrays and

sends the result back to the master process� In the interests of brevity we do not include

the SGENMAT and SDOT subroutines�

Example program
 PSDOT�F

PROGRAM PSDOT

�

� PSDOT performs a parallel inner �or dot� product� where the vectors

� X and Y start out on a master node� which then sets up the virtual

� machine� farms out the data and work� and sums up the local pieces

� to get a global inner product�

�

� �� External Subroutines ��

EXTERNAL PVMFMYTID� PVMFPARENT� PVMFSPAWN� PVMFEXIT� PVMFINITSEND

EXTERNAL PVMFPACK� PVMFSEND� PVMFRECV� PVMFUNPACK� SGENMAT

�

� �� External Functions ��

INTEGER ISAMAX

REAL SDOT

EXTERNAL ISAMAX� SDOT

�

� �� Intrinsic Functions ��

INTRINSIC MOD

�	 Chapter �

�

� �� Parameters ��

INTEGER MAXN

PARAMETER � MAXN � ��� �

INCLUDE �fpvm��h�

�

� �� Scalars ��

INTEGER N� LN� MYTID� NPROCS� IBUF� IERR

INTEGER I� J� K

REAL LDOT� GDOT

�

� �� Arrays ��

INTEGER TIDS������

REAL X�MAXN�� Y�MAXN�

�

� Enroll in PVM and get my and the master process� task ID number

�

CALL PVMFMYTID� MYTID �

CALL PVMFPARENT� TIDS��� �

�

� If I need to spawn other processes �I am master process�

�

IF � TIDS��� �EQ� PVMNOPARENT � THEN

�

� Get starting information

�

WRITE����� �How many processes should participate ����	�!�

READ����� NPROCS

WRITE�������� MAXN

READ����� N

TIDS��� � MYTID

IF � N �GT� MAXN � THEN

WRITE����� �N too large� Increase parameter MAXN to run���

� �this case��

STOP

END IF

�

� LN is the number of elements of the dot product to do

Program Examples ��

� locally� Everyone has the same number� with the master

� getting any left over elements� J stores the number of

� elements rest of procs do�

�

J � N � NPROCS

LN � J � MOD�N� NPROCS�

I � LN � �

�

� Randomly generate X and Y

�

CALL SGENMAT� N� �� X� N� MYTID� NPROCS� MAXN� J �

CALL SGENMAT� N� �� Y� N� I� N� LN� NPROCS �

�

� Loop over all worker processes

�

DO �� K � �� NPROCS��

�

� Spawn process and check for error

�

CALL PVMFSPAWN� �psdot�� �� �anywhere�� �� TIDS�K�� IERR �

IF �IERR �NE� �� THEN

WRITE����� �ERROR� could not spawn process ���K�

� �� Dying � � ��

CALL PVMFEXIT� IERR �

STOP

END IF

�

� Send out startup info

�

CALL PVMFINITSEND� PVMDEFAULT� IBUF �

CALL PVMFPACK� INTEGER	� J� �� �� IERR �

CALL PVMFPACK� REAL	� X�I�� J� �� IERR �

CALL PVMFPACK� REAL	� Y�I�� J� �� IERR �

CALL PVMFSEND� TIDS�K�� �� IERR �

I � I � J

�� CONTINUE

�

� Figure master�s part of dot product

�� Chapter �

�

GDOT � SDOT� LN� X� �� Y� � �

�

� Receive the local dot products� and

� add to get the global dot product

�

DO �� K � �� NPROCS��

CALL PVMFRECV� ��� �� IBUF �

CALL PVMFUNPACK� REAL	� LDOT� �� �� IERR �

GDOT � GDOT � LDOT

�� CONTINUE

�

� Print out result

�

WRITE����� � �

WRITE����� ��x�y� � ��GDOT

�

� Do sequential dot product and subtract from

� distributed dot product to get desired error estimate

�

LDOT � SDOT� N� X� �� Y� � �

WRITE����� ��x�y� � sequential dot product� �x�y�& � ���

� �distributed dot product��

WRITE����� �(�x�y� � �x�y�& (� ��ABS�GDOT � LDOT�

WRITE����� �Run completed��

�

� If I am a worker process �i�e� spawned by master process�

�

ELSE

�

� Receive startup info

�

CALL PVMFRECV� TIDS���� �� IBUF �

CALL PVMFUNPACK� INTEGER	� LN� �� �� IERR �

CALL PVMFUNPACK� REAL	� X� LN� �� IERR �

CALL PVMFUNPACK� REAL	� Y� LN� �� IERR �

�

� Figure local dot product and send it in to master

Program Examples ��

�

LDOT � SDOT� LN� X� �� Y� � �

CALL PVMFINITSEND� PVMDEFAULT� IBUF �

CALL PVMFPACK� REAL	� LDOT� �� �� IERR �

CALL PVMFSEND� TIDS���� �� IERR �

END IF

�

CALL PVMFEXIT� � �

�

���� FORMAT�I���� Successfully spawned process ���I���� TID ���I���

���� FORMAT��Enter the length of vectors to multiply �� ���I"������

STOP

�

� End program PSDOT

�

END

��� Failure

The failure example demonstrates how one can kill tasks and how one can �nd out when

tasks exit or fail� For this example we spawn several tasks� just as we did in the previous

examples� One of these unlucky tasks gets killed by the parent� Since we are interested

in �nding out when a task fails� we call pvm
notify�� after spawning the tasks� The

pvm
notify�� call tells PVM to send the calling task a message when certain tasks exit�

Here we are interested in all the children� Note that the task calling pvm
notify�� will

receive the noti�cation� not the tasks given in the task id array� It wouldn�t make much

sense to send a noti�cation message to a task that has exited� The notify call can also

be used to notify a task when a new host has been added or deleted from the virtual

machine� This might be useful if a program wants to dynamically adapt to the currently

available machines�

After requesting noti�cation� the parent task then kills one of the children� in this

case� one of the middle children is killed� The call to pvm
kill�� simply kills the task

indicated by the task id parameter� After killing one of the spawned tasks� the parent

waits on a pvm
recv���� TASKDIED� for the message notifying it the task has died� The

task id of the task that has exited is stored as a single integer in the notify message� The

process unpacks the dead task�s id and prints it out� For good measure it also prints out

�� Chapter �

the task id of the task it killed� These ids should be the same� The child tasks simply

wait for about a minute and then quietly exit�

Example program
 failure�c

��

Failure notification example

Demonstrates how to tell when a task exits

��

�� defines and prototypes for the PVM library ��

�include �pvm��h�

�� Maximum number of children this program will spawn ��

�define MAXNCHILD ��

�� Tag to use for the task done message ��

�define TASKDIED ��

int

main�int argc� char� argv���

�

�� number of tasks to spawn� use � as the default ��

int ntask � ��

�� return code from pvm calls ��

int info�

�� my task id ��

int mytid�

�� my parents task id ��

int myparent�

�� children task id array ��

int child�MAXNCHILD��

int i� deadtid�

int tid�

char �argv�$��

Program Examples ��

�� find out my task id number ��

mytid � pvm
mytid���

�� check for error ��

if �mytid � �� �

�� print out the error ��

pvm
perror�argv�����

�� exit the program ��

return ���

�

�� find my parent�s task id number ��

myparent � pvm
parent���

�� exit if there is some error other than PvmNoParent ��

if ��myparent � �� �� �myparent '� PvmNoParent�� �

pvm
perror�argv�����

pvm
exit���

return ���

�

�� if i don�t have a parent then i am the parent ��

if �myparent �� PvmNoParent� �

�� find out how many tasks to spawn ��

if �argc �� �� ntask � atoi�argv�����

�� make sure ntask is legal ��

if ��ntask � �� ((�ntask � MAXNCHILD�� � pvm
exit��� return �� �

�� spawn the child tasks ��

info � pvm
spawn�argv���� �char����� PvmTaskDebug� �char����

ntask� child��

�� make sure spawn succeeded ��

if �info '� ntask� � pvm
exit��� return ��� �

�� print the tids ��

for �i � �� i � ntask� i��� printf�
t�x�t
�child�i��� putchar���n���

�� Chapter �

�� ask for notification when child exits ��

info � pvm
notify�PvmTaskExit� TASKDIED� ntask� child��

if �info � �� � pvm
perror�
notify
�� pvm
exit��� return ��� �

�� reap the middle child ��

info � pvm
kill�child�ntask�����

if �info � �� � pvm
perror�
kill
�� pvm
exit��� return ��� �

�� wait for the notification ��

info � pvm
recv���� TASKDIED��

if �info � �� � pvm
perror�
recv
�� pvm
exit��� return ��� �

info � pvm
upkint��deadtid� �� ���

if �info � �� pvm
perror�
calling pvm
upkint
��

�� should be the middle child ��

printf�
Task t�x has exited��n
� deadtid��

printf�
Task t�x is middle child��n
� child�ntask�����

pvm
exit���

return ��

�

�� i�m a child ��

sleep�����

pvm
exit���

return ��

�

��� Matrix Multiply

In our next example we program a matrix�multiply algorithm described by Fox et al� in

�
�� The mmult program can be found at the end of this section� The mmult program

will calculate C # AB� where C� A� and B are all square matrices� For simplicity we

assume that m�m tasks will be used to calculate the solution� Each task will calculate

a subblock of the resulting matrix C� The block size and the value of m is given as a

command line argument to the program� The matrices A and B are also stored as blocks

distributed over the m� tasks� Before delving into the details of the program� let us �rst

describe the algorithm at a high level�

Program Examples ��

Assume we have a grid of m �m tasks� Each task �tij where � � i� j � m� initially

contains blocks Cij� Aij� and Bij � In the �rst step of the algorithm the tasks on the

diagonal �tij where i # j� send their block Aii to all the other tasks in row i� After the

transmission of Aii� all tasks calculate Aii�Bij and add the result into Cij� In the next

step� the column blocks of B are rotated� That is� tij sends its block of B to t�i���j�

�Task t�j sends its B block to t�m���j�� The tasks now return to the �rst step� Ai�i���
is multicast to all other tasks in row i� and the algorithm continues� After m iterations

the C matrix contains A� B� and the B matrix has been rotated back into place�

Let�s now go over the matrix multiply as it is programmed in PVM� In PVM there is

no restriction on which tasks may communicate with which other tasks� However� for

this program we would like to think of the tasks as a two�dimensional conceptual torus�

In order to enumerate the tasks� each task joins the group mmult� Group ids are used to

map tasks to our torus� The �rst task to join a group is given the group id of zero� In

the mmult program� the task with group id zero spawns the other tasks and sends the

parameters for the matrix multiply to those tasks� The parameters are m and bklsize�

the square root of the number of blocks and the size of a block� respectively� After all

the tasks have been spawned and the parameters transmitted� pvm
barrier�� is called

to make sure all the tasks have joined the group� If the barrier is not performed� later

calls to pvm
gettid�� might fail since a task may not have yet joined the group�

After the barrier� we store the task ids for the other tasks in our �row� in the array

myrow� This is done by calculating the group ids for all the tasks in the row and asking

PVM for the task id for the corresponding group id� Next we allocate the blocks for

the matrices using malloc��� In an actual application program we would expect that the

matrices would already be allocated� Next the program calculates the row and column

of the block of C it will be computing� This is based on the value of the group id� The

group ids range from � to m � � inclusive� Thus the integer division of �mygid�m� will

give the task�s row and �mygid modm� will give the column� if we assume a row major

mapping of group ids to tasks� Using a similar mapping� we calculate the group id of

the task directly above and below in the torus and store their task ids in up and down�

respectively�

Next the blocks are initialized by calling InitBlock��� This function simply initializes

A to random values� B to the identity matrix� and C to zeros� This will allow us to verify

the computation at the end of the program by checking that A # C�

Finally we enter the main loop to calculate the matrix multiply� First the tasks on

the diagonal multicast their block of A to the other tasks in their row� Note that the

array myrow actually contains the task id of the task doing the multicast� Recall that

pvm
mcast�� will send to all the tasks in the tasks array except the calling task� This

procedure works well in the case of mmult since we don�t want to have to needlessly

�� Chapter �

handle the extra message coming into the multicasting task with an extra pvm
recv���

Both the multicasting task and the tasks receiving the block calculate the AB for the

diagonal block and the block of B residing in the task�

After the subblocks have been multiplied and added into the C block� we now shift

the B blocks vertically� Speci�cally� we pack the block of B into a message� send it to

the up task id� and then receive a new B block from the down task id�

Note that we use di
erent message tags for sending the A blocks and the B blocks as

well as for di
erent iterations of the loop� We also fully specify the task ids when doing a

pvm
recv��� It�s tempting to use wildcards for the �elds of pvm
recv��� however� such

a practice can be dangerous� For instance� had we incorrectly calculated the value for up

and used a wildcard for the pvm
recv�� instead of down� we might have sent messages to

the wrong tasks without knowing it� In this example we fully specify messages� thereby

reducing the possibility of mistakes by receiving a message from the wrong task or the

wrong phase of the algorithm�

Once the computation is complete� we check to see that A # C� just to verify that the

matrix multiply correctly calculated the values of C� This check would not be done in a

matrix multiply library routine� for example�

It is not necessary to call pvm
lvgroup��� since PVM will realize the task has exited

and will remove it from the group� It is good form� however� to leave the group before

calling pvm
exit��� The reset command from the PVM console will reset all the PVM

groups� The pvm
gstat commandwill print the status of any groups that currently exist�

Example program
 mmult�c

��

Matrix Multiply

��

�� defines and prototypes for the PVM library ��

�include �pvm��h�

�include �stdio�h�

�� Maximum number of children this program will spawn ��

�define MAXNTIDS ���

�define MAXROW ��

�� Message tags ��

Program Examples ��

�define ATAG �

�define BTAG �

�define DIMTAG $

void

InitBlock�float �a� float �b� float �c� int blk� int row� int col�

�

int len� ind�

int i�j�

srand�pvm
mytid����

len � blk�blk�

for �ind � �� ind � len� ind���

� a�ind� � �float��rand��������������� c�ind� � ���� �

for �i � �� i � blk� i��� �

for �j � �� j � blk� j��� �

if �row �� col�

b�j�blk�i� � �i��j�! ��� � ����

else

b�j�blk�i� � ����

�

�

�

void

BlockMult�float� c� float� a� float� b� int blk�

�

int i�j�k�

for �i � �� i � blk� i���

for �j � �� j � blk� j ���

for �k � �� k � blk� k���

c�i�blk�j� �� �a�i�blk�k� � b�k�blk�j���

�

int

�	 Chapter �

main�int argc� char� argv���

�

�� number of tasks to spawn� use � as the default ��

int ntask � ��

�� return code from pvm calls ��

int info�

�� my task and group id ��

int mytid� mygid�

�� children task id array ��

int child�MAXNTIDS����

int i� m� blksize�

�� array of the tids in my row ��

int myrow�MAXROW��

float �a� �b� �c� �atmp�

int row� col� up� down�

�� find out my task id number ��

mytid � pvm
mytid���

pvm
setopt�PvmRoute� PvmRouteDirect��

�� check for error ��

if �mytid � �� �

�� print out the error ��

pvm
perror�argv�����

�� exit the program ��

return ���

�

�� join the mmult group ��

mygid � pvm
joingroup�
mmult
��

if �mygid � �� �

pvm
perror�argv����� pvm
exit��� return ���

�

�� if my group id is � then I must spawn the other tasks ��

Program Examples ��

if �mygid �� �� �

�� find out how many tasks to spawn ��

if �argc �� �� �

m � atoi�argv�����

blksize � atoi�argv�����

�

if �argc � �� �

fprintf�stderr�
usage� mmult m blk�n
��

pvm
lvgroup�
mmult
�� pvm
exit��� return ���

�

�� make sure ntask is legal ��

ntask � m�m�

if ��ntask � �� ((�ntask �� MAXNTIDS�� �

fprintf�stderr�
ntask � �d not valid��n
� ntask��

pvm
lvgroup�
mmult
�� pvm
exit��� return ���

�

�� no need to spawn if there is only one task ��

if �ntask �� �� goto barrier�

�� spawn the child tasks ��

info � pvm
spawn�
mmult
� �char����� PvmTaskDefault� �char����

ntask��� child��

�� make sure spawn succeeded ��

if �info '� ntask��� �

pvm
lvgroup�
mmult
�� pvm
exit��� return ���

�

�� send the matrix dimension ��

pvm
initsend�PvmDataDefault��

pvm
pkint��m� �� ���

pvm
pkint��blksize� �� ���

pvm
mcast�child� ntask��� DIMTAG��

�

else �

�� recv the matrix dimension ��

�� Chapter �

pvm
recv�pvm
gettid�
mmult
� ��� DIMTAG��

pvm
upkint��m� �� ���

pvm
upkint��blksize� �� ���

ntask � m�m�

�

�� make sure all tasks have joined the group ��

barrier�

info � pvm
barrier�
mmult
�ntask��

if �info � �� pvm
perror�argv�����

�� find the tids in my row ��

for �i � �� i � m� i���

myrow�i� � pvm
gettid�
mmult
� �mygid�m��m � i��

�� allocate the memory for the local blocks ��

a � �float��malloc�sizeof�float��blksize�blksize��

b � �float��malloc�sizeof�float��blksize�blksize��

c � �float��malloc�sizeof�float��blksize�blksize��

atmp � �float��malloc�sizeof�float��blksize�blksize��

�� check for valid pointers ��

if �'�a �� b �� c �� atmp�� �

fprintf�stderr�
�s� out of memory'�n
� argv�����

free�a�� free�b�� free�c�� free�atmp��

pvm
lvgroup�
mmult
�� pvm
exit��� return ���

�

�� find my block�s row and column ��

row � mygid�m� col � mygid � m�

�� calculate the neighbor�s above and below ��

up � pvm
gettid�
mmult
� ��row�!�row�����m�����m�col��

down � pvm
gettid�
mmult
� ��row �� �m����!col��row����m�col���

�� initialize the blocks ��

InitBlock�a� b� c� blksize� row� col��

�� do the matrix multiply ��

Program Examples ��

for �i � �� i � m� i��� �

�� mcast the block of matrix A ��

if �col �� �row � i��m� �

pvm
initsend�PvmDataDefault��

pvm
pkfloat�a� blksize�blksize� ���

pvm
mcast�myrow� m� �i����ATAG��

BlockMult�c�a�b�blksize��

�

else �

pvm
recv�pvm
gettid�
mmult
� row�m � �row �i��m�� �i����ATAG��

pvm
upkfloat�atmp� blksize�blksize� ���

BlockMult�c�atmp�b�blksize��

�

�� rotate the columns of B ��

pvm
initsend�PvmDataDefault��

pvm
pkfloat�b� blksize�blksize� ���

pvm
send�up� �i����BTAG��

pvm
recv�down� �i����BTAG��

pvm
upkfloat�b� blksize�blksize� ���

�

�� check it ��

for �i � � � i � blksize�blksize� i���

if �a�i� '� c�i��

printf�
Error a��d� ��g� '� c��d� ��g� �n
� i� a�i��i�c�i���

printf�
Done��n
��

free�a�� free�b�� free�c�� free�atmp��

pvm
lvgroup�
mmult
��

pvm
exit���

return ��

�

��� One�Dimensional Heat Equation

Here we present a PVM program that calculates heat di
usion through a substrate� in

this case a wire� Consider the one�dimensional heat equation on a thin wire�

�� Chapter �

�A

�t
#

��A

�x�
�������

and a discretization of the form

Ai���j �Ai�j
�t

#
Ai�j�� � �Ai�j �Ai�j��

�x�
�������

giving the explicit formula

Ai���j # Ai�j �
�t

�x�
�Ai�j�� � �Ai�j � Ai�j���� �������

initial and boundary conditions�

A�t� �� # �� A�t� �� # � for all t

A��� x� # sin��x� for � � x � ��
The pseudo code for this computation is as follows�

for i � ��tsteps���

t � t�dt�

a�i��������

a�i���n������

for j � ��n���

a�i���j��a�i�j� � mu��a�i�j������a�i�j��a�i�j�����

end�

t�

a�i�����n����

plot�a�i����

end

For this example we will use a master�slave programming model� The master� heat�c�

spawns �ve copies of the program heatslv� The slaves compute the heat di
usion for

subsections of the wire in parallel� At each time step the slaves exchange boundary in�

formation� in this case the temperature of the wire at the boundaries between processors�

Let�s take a closer look at the code� In heat�c the array solution will hold the solution

for the heat di
usion equation at each time step� This array will be output at the end of

the program in xgraph format� �xgraph is a program for plotting data�� First the heatslv

tasks are spawned� Next� the initial data set is computed� Notice that the ends of the

wires are given initial temperature values of zero�

The main part of the program is then executed four times� each with a di
erent value

for $t� A timer is used to compute the elapsed time of each compute phase� The initial

Program Examples ��

data sets are sent to the heatslv tasks� The left and right neighbor task ids are sent

along with the initial data set� The heatslv tasks use these to communicate boundary

information� �Alternatively� we could have used the PVM group calls to map tasks

to segments of the wire� By using the group calls we would have avoided explicitly

communicating the task ids to the slave processes��

After sending the initial data� the master process simply waits for results� When the

results arrive� they are integrated into the solution matrix� the elapsed time is calculated�

and the solution is written out to the xgraph �le�

Once the data for all four phases has been computed and stored� the master program

prints out the elapsed times and kills the slave processes�

Example program
 heat�c

��

heat�c

Use PVM to solve a simple heat diffusion differential equation�

using � master program and $ slaves�

The master program sets up the data� communicates it to the slaves

and waits for the results to be sent from the slaves�

Produces xgraph ready files of the results�

��

�include
pvm��h

�include �stdio�h�

�include �math�h�

�include �time�h�

�define SLAVENAME
heatslv

�define NPROC $

�define TIMESTEP ���

�define PLOTINC ��

�define SIZE ����

int num
data � SIZE�NPROC�

�� Chapter �

main��

� int mytid� task
ids�NPROC�� i� j�

int left� right� k� l�

int step � TIMESTEP�

int info�

double init�SIZE�� solution�TIMESTEP��SIZE��

double result�TIMESTEP�SIZE�NPROC�� deltax��

FILE �filenum�

char �filename�	��"��

double deltat�	��

time
t t��

int etime�	��

filename������ �
graph�
�

filename������ �
graph�
�

filename������ �
graph�
�

filename������ �
graph	
�

deltat��� � $��e���

deltat��� � $��e���

deltat��� � $��e���

deltat��� � $��e�#�

�� enroll in pvm ��

mytid � pvm
mytid���

�� spawn the slave tasks ��

info � pvm
spawn�SLAVENAME��char �����PvmTaskDefault�

�

NPROC�task
ids��

�� create the initial data set ��

for �i � �� i � SIZE� i���

init�i� � sin�M
PI � � �double�i � �double��SIZE��� ���

init��� � ����

init�SIZE��� � ����

�� run the problem 	 times for different values of delta t ��

for �l � �� l � 	� l��� �

Program Examples ��

deltax� � �deltat�l��pow������double�SIZE�������

�� start timing for this run ��

time��t���

etime�l� � t��

�� send the initial data to the slaves� ��

�� include neighbor info for exchanging boundary data ��

for �i � �� i � NPROC� i��� �

pvm
initsend�PvmDataDefault��

left � �i �� �� ! � � task
ids�i����

pvm
pkint��left� �� ���

right � �i �� �NPROC���� ! � � task
ids�i����

pvm
pkint��right� �� ���

pvm
pkint��step� �� ���

pvm
pkdouble��deltax�� �� ���

pvm
pkint��num
data� �� ���

pvm
pkdouble��init�num
data�i�� num
data� ���

pvm
send�task
ids�i�� 	��

�

�� wait for the results ��

for �i � �� i � NPROC� i��� �

pvm
recv�task
ids�i�� "��

pvm
upkdouble��result���� num
data�TIMESTEP� ���

�� update the solution ��

for �j � �� j � TIMESTEP� j���

for �k � �� k � num
data� k���

solution�j��num
data�i�k� � result�wh�j�k���

�

�� stop timing ��

time��t���

etime�l� � t� � etime�l��

�� produce the output ��

filenum � fopen�filename�l�����
w
��

fprintf�filenum�
TitleText� Wire Heat over Delta Time� �e�n
�

deltat�l���

fprintf�filenum�
XUnitText� Distance�nYUnitText� Heat�n
��

�� Chapter �

for �i � �� i � TIMESTEP� i � i � PLOTINC� �

fprintf�filenum�
�
Time index� �d�n
�i��

for �j � �� j � SIZE� j���

fprintf�filenum�
�d �e�n
�j� solution�i��j���

fprintf�filenum�
�n
��

�

fclose �filenum��

�

�� print the timing information ��

printf�
Problem size� �d�n
�SIZE��

for �i � �� i � 	� i���

printf�
Time for run �d� �d sec�n
�i�etime�i���

�� kill the slave processes ��

for �i � �� i � NPROC� i��� pvm
kill�task
ids�i���

pvm
exit���

�

int wh�x� y�

int x� y�

�

return�x�num
data�y��

�

The heatslv programs do the actual computation of the heat di
usion through the

wire� The slave program consists of an in�nite loop that receives an initial data set�

iteratively computes a solution based on this data set �exchanging boundary information

with neighbors on each iteration�� and sends the resulting partial solution back to the

master process�

Rather than using an in�nite loop in the slave tasks� we could send a special message

to the slave ordering it to exit� To avoid complicating the message passing� however� we

simply use the in�nite loop in the slave tasks and kill them o
 from the master program�

A third option would be to have the slaves execute only once� exiting after processing

a single data set from the master� This would require placing the master�s spawn call

inside the main for loop of heat�c� While this option would work� it would needlessly add

overhead to the overall computation�

Program Examples ��

For each time step and before each compute phase� the boundary values of the tem�

perature matrix are exchanged� The left�hand boundary elements are �rst sent to the

left neighbor task and received from the right neighbor task� Symmetrically� the right�

hand boundary elements are sent to the right neighbor and then received from the left

neighbor� The task ids for the neighbors are checked to make sure no attempt is made

to send or receive messages to nonexistent tasks�

Example program
 heatslv�c

��

heatslv�c

The slaves receive the initial data from the host�

exchange boundary information with neighbors�

and calculate the heat change in the wire�

This is done for a number of iterations� sent by the master�

��

�include
pvm��h

�include �stdio�h�

int num
data�

main��

�

int mytid� left� right� i� j� master�

int timestep�

double �init� �A�

double leftdata� rightdata� delta� leftside� rightside�

�� enroll in pvm ��

mytid � pvm
mytid���

master � pvm
parent���

�	 Chapter �

�� receive my data from the master program ��

while��� �

pvm
recv�master� 	��

pvm
upkint��left� �� ���

pvm
upkint��right� �� ���

pvm
upkint��timestep� �� ���

pvm
upkdouble��delta� �� ���

pvm
upkint��num
data� �� ���

init � �double �� malloc�num
data�sizeof�double���

pvm
upkdouble�init� num
data� ���

�� copy the initial data into my working array ��

A � �double �� malloc�num
data � timestep � sizeof�double���

for �i � �� i � num
data� i��� A�i� � init�i��

�� perform the calculation ��

for �i � �� i � timestep��� i��� �

�� trade boundary info with my neighbors ��

�� send left� receive right ��

if �left '� �� �

pvm
initsend�PvmDataDefault��

pvm
pkdouble��A�wh�i����������

pvm
send�left� $��

�

if �right '� �� �

pvm
recv�right� $��

pvm
upkdouble��rightdata� �� ���

�� send right� receive left ��

pvm
initsend�PvmDataDefault��

pvm
pkdouble��A�wh�i�num
data����������

pvm
send�right� ���

�

if �left '� �� �

pvm
recv�left� ���

pvm
upkdouble��leftdata������

�

Program Examples ��

�� do the calculations for this iteration ��

for �j � �� j � num
data� j��� �

leftside � �j �� �� ! leftdata � A�wh�i�j�����

rightside � �j �� �num
data���� ! rightdata � A�wh�i�j�����

if ��j�������left�����

A�wh�i���j�� � ����

else if ��j���num
data�������right�����

A�wh�i���j�� � ����

else

A�wh�i���j���

A�wh�i�j���delta��rightside���A�wh�i�j���leftside��

�

�

�� send the results back to the master program ��

pvm
initsend�PvmDataDefault��

pvm
pkdouble��A����num
data�timestep����

pvm
send�master�"��

�

�� just for good measure ��

pvm
exit���

�

int wh�x� y�

int x� y�

�

return�x�num
data�y��

�

��
�� Di�erent Styles of Communication

In this chapter we have given a variety of example programs written in Fortran and C�

These examples demonstrate various ways of writing PVM programs� Some break the

code into two separate programs� while others use a single program with conditionals

�� Chapter �

to handle spawning and computing phases� These examples show di
erent styles of

communication� both among worker tasks and between worker and master tasks� In

some cases messages are used for synchronization� in others the master processes simply

kill of the workers when they are no longer needed� We hope that these examples can be

used as a basis for better understanding how to write PVM programs and for appreciating

the design tradeo
s involved�

� How PVM Works

In this chapter we describe the implementation of the PVM software and the reasons

behind the basic design decisions� The most important goals for PVM � are fault tol�

erance� scalability� heterogeneity� and portability� PVM is able to withstand host and

network failures� It doesn�t automatically recover an application after a crash� but it

does provide polling and noti�cation primitives to allow fault�tolerant applications to be

built� The virtual machine is dynamically recon�gurable� This property goes hand in

hand with fault tolerance� an application may need to acquire more resources in order to

continue running once a host has failed� Management is as decentralized and localized

as possible� so virtual machines should be able to scale to hundreds of hosts and run

thousands of tasks� PVM can connect computers of di
erent types in a single session�

It runs with minimal modi�cation on any �avor of Unix or an operating system with

comparable facilities �multitasking� networkable�� The programming interface is simple

but complete� and any user can install the package without special privileges�

To allow PVM to be highly portable� we avoid the use of operating system and language

features that would be be hard to retro�t if unavailable� such as multithreaded processes

and asynchronous I�O� These exist in many versions of Unix� but they vary enough from

product to product that di
erent versions of PVM might need to be maintained� The

generic port is kept as simple as possible� though PVM can always be optimized for any

particular machine�

We assume that sockets are used for interprocess communication and that each host in

a virtual machine group can connect directly to every other host via TCP ���� and UDP

���� protocols� The requirement of full IP connectivity could be removed by specifying

message routes and using the pvmds to forward messages� Some multiprocessor machines

don�t make sockets available on the processing nodes� but do have them on the front�end

�where the pvmd runs��

��� Components

����� Task Identi�ers

PVM uses a task identi�er �TID� to address pvmds� tasks� and groups of tasks within a

virtual machine� The TID contains four �elds� as shown in Figure 	��� Since the TID is

used so heavily� it is made to �t into the largest integer data type ��� bits� available on

a wide range of machines�

The �elds S� G� and H have global meaning� each pvmd of a virtual machine interprets

them in the same way� The H �eld contains a host number relative to the virtual machine�

As it starts up� each pvmd is con�gured with a unique host number and therefore �owns�

�� Chapter �

31 0

S G H L

1830

Figure ���
Generic task id

part of the TID address space� The maximum number of hosts in a virtual machine is

limited to �H � � ������� The mapping between host numbers and hosts is known to

each pvmd� synchronized by a global host table� Host number zero is used� depending on

context� to refer to the local pvmd or a shadow pvmd� called pvmd� �Section 	���	��

The S bit is used to address pvmds� with the H �eld set to the host number and

the L �eld cleared� This bit is a historical leftover and causes slightly schizoid naming�

sometimes pvmds are addressed with the S bit cleared� It should someday be reclaimed

to make the H or L space larger�

Each pvmd is allowed to assign private meaning to the L �eld �with the H �eld set to

its own host number�� except that �all bits cleared� is reserved to mean the pvmd itself�

The L �eld is �
 bits wide� so up to ��� � � tasks can exist concurrently on each host�

In the generic Unix port� L values are assigned by a counter� and the pvmd maintains a

map between L values and Unix process id�s� Use of the L �eld in multiprocessor ports

is described in Section 	����

The G bit is set to form multicast addresses �GIDs�� which refer to groups of tasks�

Multicasting is described in Section 	�����

The design of the TID enables the implementation to meet the design goals� Tasks can

be assigned TIDs by their local pvmds without o
�host communication� Messages can

be routed from anywhere in a virtual machine to anywhere else� by hierarchical naming�

Portability is enhanced because the L �eld can be rede�ned� Finally� space is reserved

for error codes� When a function can return a vector of TIDs mixed with error codes� it

is useful if the error codes don�t correspond to legal TIDs� The TID space is divided up

as follows�

Use S G H L
Task identi
er 	 	 ���Hmax ���Lmax
Pvmd identi
er � 	 ���Hmax 	
Local pvmd �from task� � 	 	 	
Pvmd
 from master pvmd � 	 	 	
Multicast address 	 � ���Hmax 	��Lmax
Error code � � �small neg� number�

How PVM Works ��

Naturally� TIDs are intended to be opaque to the application� and the programmer

should not attempt to predict their values or modify them without using functions sup�

plied in the programming library� More symbolic naming can be obtained by using a

name server library layered on top of the raw PVM calls� if the convenience is deemed

worth the cost of name lookup�

����� Architecture Classes

PVM assigns an architecture name to each kind of machine on which it runs� to distin�

guish between machines that run di
erent executables� because of hardware or operating

system di
erences� Many standard names are de�ned� and others can be added�

Sometimes machines with incompatible executables use the same binary data repre�

sentation� PVM takes advantage of this to avoid data conversion� Architecture names

are mapped to data encoding numbers� and the encoding numbers are used to determine

when it is necessary to convert�

����� Message Model

PVM daemons and tasks can compose and send messages of arbitrary lengths containing

typed data� The data can be converted using XDR ���� when passing between hosts with

incompatible data formats� Messages are tagged at send time with a user�de�ned integer

code and can be selected for receipt by source address or tag�

The sender of a message does not wait for an acknowledgment from the receiver� but

continues as soon as the message has been handed to the network and the message bu
er

can be safely deleted or reused� Messages are bu
ered at the receiving end until received�

PVM reliably delivers messages� provided the destination exists� Message order from each

sender to each receiver in the system is preserved� if one entity sends several messages to

another� they will be received in the same order�

Both blocking and nonblocking receive primitives are provided� so a task can wait for a

message without �necessarily� consuming processor time by polling for it� Or� it can poll

for a message without hanging� A receive with timeout is also provided� which returns

after a speci�ed time if no message has arrived�

No acknowledgments are used between sender and receiver� Messages are reliably de�

livered and bu
ered by the system� If we ignore fault recovery� then either an application

will run to completion or� if some component goes down� it won�t� In order to provide

fault recovery� a task �TA� must be prepared for another task �TB � from which it wants

a message� to crash� and must be able to take corrective action� For example� it might

reschedule its request to a di
erent server� or even start a new server� From the viewpoint

of TA� it doesn�t matter speci�cally when TB crashes relative to messages sent from TA�

�� Chapter �

While waiting for TB � TA will receive either a message from TB or noti�cation that TB
has crashed� For the purposes of �ow control� a fully blocking send can easily be built

using the semi�synchronous send primitive�

����� Asynchronous Noti�cation

PVM provides noti�cation messages as a means to implement fault recovery in an appli�

cation� A task can request that the system send a message on one of the following three

events�

Type Meaning

PvmTaskExit Task exits or crashes
PvmHostDelete Host is deleted or crashes
PvmHostAdd New hosts are added to the VM

Notify requests are stored in the pvmds� attached to objects they monitor� Requests

for remote events �occurring on a di
erent host than the requester� are kept on both

hosts� The remote pvmd sends the message if the event occurs� while the local one sends

the message if the remote host goes down� The assumption is that a local pvmd can be

trusted� if it goes down� tasks running under it won�t be able to do anything� so they

don�t need to be noti�ed�

����
 PVM Daemon and Programming Library

PVM Daemon One pvmd runs on each host of a virtual machine� Pvmds owned by

�running as� one user do not interact with those owned by others� in order to reduce

security risk� and minimize the impact of one PVM user on another�

The pvmd serves as a message router and controller� It provides a point of contact�

authentication� process control� and fault detection� An idle pvmd occasionally checks

that its peers are still running� Even if application programs crash� pvmds continue to

run� to aid in debugging�

The �rst pvmd �started by hand� is designated the master� while the others �started

by the master� are called slaves� During normal operation� all are considered equal� But

only the master can start new slaves and add them to the con�guration� Recon�guration

requests originating on a slave host are forwarded to the master� Likewise� only the

master can forcibly delete hosts from the machine�

Programming Library The libpvm library allows a task to interface with the pvmd

and other tasks� It contains functions for packing �composing� and unpacking messages�

and functions to perform PVM syscalls by using the message functions to send service

How PVM Works ��

requests to the pvmd� It is made as small and simple as possible� Since it shares

an address space with unknown� possibly buggy� code� it can be broken or subverted�

Minimal sanity�checking of parameters is performed� leaving further authentication to

the pvmd�

The top level of the libpvm library� including most of the programming interface func�

tions� is written in a machine�independent style� The bottom level is kept separate and

can be modi�ed or replaced with a new machine�speci�c �le when porting PVM to a new

environment�

��� Messages

����� Fragments and Databufs

The pvmd and libpvm manage message bu
ers� which potentially hold large amounts of

dynamic data� Bu
ers need to be shared e�ciently� for example� to attach a multicast

message to several send queues �see Section 	������ To avoid copying� all pointers are to

a single instance of the data �a databuf�� which is refcounted by allocating a few extra

bytes for an integer at the head of the data� A pointer to the data itself is passed around�

and routines subtract from it to access the refcount or free the block� When the refcount

of a databuf decrements to zero� it is freed�

PVM messages are composed without declaring a maximum length ahead of time�

The pack functions allocate memory in steps� using databufs to store the data� and frag

descriptors to chain the databufs together�

A frag descriptor struct frag holds a pointer �fr dat� to a block of data and its

length �fr len�� It also keeps a pointer �fr buf� to the databuf and its total length

�fr max�� these reserve space to prepend or append data� Frags can also reference static

�non�databuf� data� A frag has link pointers so it can be chained into a list� Each frag

keeps a count of references to it� when the refcount decrements to zero� the frag is freed

and the underlying databuf refcount is decremented� In the case where a frag descriptor

is the head of a list� its refcount applies to the entire list� When it reaches zero� every

frag in the list is freed� Figure 	�� shows a list of fragments storing a message�

����� Messages in Libpvm

Libpvm provides functions to pack all of the primitive data types into a message� in

one of several encoding formats� There are �ve sets of encoders and decoders� Each

message bu
er has a set associated with it� When creating a new message� the encoder

set is determined by the format parameter to pvm mkbuf��� When receiving a message�

the decoders are determined by the encoding �eld of the message header� The two

�� Chapter �

most commonly used ones pack data in raw �host native� and default �XDR� formats�

Inplace encoders pack descriptors of the data �the frags point to static data�� so the

message is sent without copying the data to a bu
er� There are no inplace decoders� Foo

encoders use a machine�independent format that is simpler than XDR� these encoders are

used when communicating with the pvmd� Alien decoders are installed when a received

message can�t be unpacked because its encoding doesn�t match the data format of the

host� A message in an alien data format can be held or forwarded� but any attempt to

read data from it results in an error�

Figure 	�� shows libpvm message management� To allow the PVM programmer to

handle message bu
ers� they are labeled with integer message id�s �MIDs�� which are

simply indices into the message heap� When a message bu
er is freed� its MID is recycled�

The heap starts out small and is extended if it becomes full� Generally� only a few

messages exist at any time� unless an application explicitly stores them�

A vector of functions for encoding�decoding primitive types �struct encvec� is initial�

ized when a message bu
er is created� To pack a long integer� the generic pack function

pvm pklong�� calls �message heap�mid��ub codef��enc long��� of the bu
er� En�

coder vectors were used for speed �as opposed to having a case switch in each pack

function�� One drawback is that every encoder for every format is touched �by naming it

in the code�� so the linker must include all the functions in every executable� even when

they�re not used�

����� Messages in the Pvmd

By comparison with libpvm� message packing in the pvmd is very simple� Messages are

handled using struct mesg �shown in Figure 	���� There are encoders for signed and

unsigned integers and strings� which use in the libpvm foo format� Integers occupy four

bytes each� with bytes in network order �bits ������ followed by bits ������� ����� Byte

strings are packed as an integer length �including the terminating null for ASCII strings��

followed by the data and zero to three null bytes to round the total length to a multiple

of four�

����� Pvmd Entry Points

Messages for the pvmd are reassembled from packets in loclinpkt�� if from a local

task� or in netinpkt�� if from another pvmd or foreign task� Reassembled messages are

passed to one of three entry points�

How PVM Works ��

struct
umbuf

nref

Integer
message
ID

len
tag
src
...

e−init
e−byte
e−int
...

d−init
d−byte
d−int
...

Encoder
function
vector

Message
heap

struct
frag

databuf

frag
list

current
frag

0

0

Figure ���
Message storage in libpvm

�		 Chapter �

nrefstruct
frag

databuf

frag
list

current
frag

struct
mesg

len
tag
src
wid
...

Figure ���
Message storage in pvmd

How PVM Works �	�

Function Messages From
loclentry�� Local tasks
netentry�� Remote pvmds
schentry�� Local or remote special tasks

�Resource manager� Hoster� Tasker�

If the message tag and contents are valid� a new thread of action is started to handle

the request� Invalid messages are discarded�

����
 Control Messages

Control messages are sent to a task like regular messages� but have tags in a reserved

space �between TC FIRST and TC LAST�� Normally� when a task downloads a message� it

queues it for receipt by the program� Control messages are instead passed to pvmmctl��

and then discarded� Like the entry points in the pvmd� pvmmctl�� is an entry point

in the task� causing it to take some asynchronous action� The main di
erence is that

control messages can�t be used to get the task�s attention� since it must be in mxfer���

sending or receiving� in order to get them�

The following control message tags are de�ned� The �rst three are used by the di�

rect routing mechanism �discussed in Section 	������ TC OUTPUT is used to implement

pvm catchout�� �Section 	�	���� User�de�nable control messages may be added in the

future as a way of implementing PVM signal handlers�

Tag Meaning

TC CONREQ Connection request
TC CONACK Connection ack
TC TASKEXIT Task exited�doesn
t exist
TC NOOP Do nothing
TC OUTPUT Claim child stdout data
TC SETTMASK Change task trace mask

��� PVM Daemon

����� Startup

At startup� a pvmd con�gures itself as a master or slave� depending on its command line

arguments� It creates and binds sockets to talk to tasks and other pvmds� and it opens

an error log �le �tmp�pvml�uid� A master pvmd reads the host �le if supplied� otherwise

it uses default parameters� A slave pvmd gets its parameters from the master pvmd via

the command line and con�guration messages�

�	� Chapter �

After con�guration� the pvmd enters a loop in function work��� At the core of the

work loop is a call to select�� that probes all sources of input for the pvmd �local tasks

and the network�� Packets are received and routed to send queues� Messages to the

pvmd are reassembled and passed to the entry points�

����� Shutdown

A pvmd shuts down when it is deleted from the virtual machine� killed �signaled�� loses

contact with the master pvmd� or breaks �e�g�� with a bus error�� When a pvmd shuts

down� it takes two �nal actions� First� it kills any tasks running under it� with signal

SIGTERM� Second� it sends a �nal shutdown message �Section 	����� to every other pvmd

in its host table� The other pvmds would eventually discover the missing one by timing

out trying to communicate with it� but the shutdown message speeds the process�

����� Host Table and Machine Con�guration

A host table describes the con�guration of a virtual machine� It lists the name� address

and communication state for each host� Figure 	�� shows how a host table is built from

struct htab and struct hostd structures�

Host tables are issued by the master pvmd and kept synchronized across the virtual

machine� The delete operation is simple� On receiving a DM HTDEL message from the

master� a pvmd calls hostfailentry�� for each host listed in the message� as though

the deleted pvmds crashed� Each pvmd can autonomously delete hosts from its own table

on �nding them unreachable �by timing out during communication�� The add operation

is done with a three�phase commit� in order to guarantee global availability of new hosts

synchronously with completion of the add�host request� This is described in Section

	���
�

Each host descriptor has a refcount so it can be shared by multiple host tables� As

the con�guration of the machine changes� the host descriptors �except those added and

deleted� of course� propagate from one host table to the next� This propagation is

necessary because they hold various state information�

Host tables also serve other uses� They allow the pvmd to manipulate host sets� for

example� when picking candidate hosts on which to spawn a task� Also� the advisory

host �le supplied to the master pvmd is parsed and stored in a host table�

Host File If the master pvmd is started with a host �le� it parses the �le into a host

table� filehosts� If some hosts in the �le are to be started automatically� the master

sends a DM ADD message to itself� The slave hosts are started just as though they had

been added dynamically �Section 	���
��

How PVM Works �	�

struct
htab

0 1 2

serial,
len,
master,
...

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

p
v
m
d
’

m
a
s
t
e
r

s
l
a
v
e

struct
hostd

Frags
to Send

Message
Reassembly

Frags sent,
not yet Acked

Frags
Received
Out of Order

hosts

Figure ���
Host table

�	� Chapter �

����� Tasks

Each pvmd maintains a list of all tasks under its management �Figure 	���� Every task�

regardless of state� is a member of a threaded list� sorted by task id� Most tasks are also

in a second list� sorted by process id� The head of both lists is locltasks�

link

plink

txq

rxp

rxm

link

plink

txq

rxp

rxm

link

plink

txq

rxp

rxm

tid
ptid
...

link

plink

txq

rxp

rxm

0
0
...

401
0
...

405
401
...

Packet
Reassembly

Message
Reassembly

locltasks

Packets
to Send

Figure ���
Task table

PVM provides a simple debugging system described in Section 	�	��� More complex

debuggers can be built by using a special type of task called a tasker� introduced in

version ���� A tasker starts �execs� and is the parent of� other tasks� In general� a

debugger is a process that controls the execution of other processes � can read and write

their memories and start and stop instruction counters� On many species of Unix� a

debugger must be the direct parent of any processes it controls� This is becoming less

common with growing availability of the attachable ptrace interface�

The function of the tasker interface overlaps with the simple debugger starter� but is

fundamentally di
erent for two reasons� First� all tasks running under a pvmd �during

the life of the tasker� may be children of a single tasker process� With PvmTaskDebug� a

new debugger is necessarily started for each task� Second� the tasker cannot be enabled

or disabled by spawn �ags� so it is always in control� though this is not an important

di
erence�

How PVM Works �	�

If a tasker is registered �using pvm reg tasker��� with a pvmd when a DM EXEC mes�

sage is received to start new tasks� the pvmd sends a SM STTASK message to the tasker

instead of calling execv��� No SM STTASKACK message is required� closure comes

from the task reconnecting to the pvmd as usual� The pvmd doesn�t get SIGCHLD signals

when a tasker is in use� because it�s not the parent process of tasks� so the tasker must

send noti�cation of exited tasks to the pvmd in a SM TASKX message�

����
 Wait Contexts

The pvmd uses a wait context �waitc� to hold state when a thread of operation must be

interrupted� The pvmd is not truly multithreaded but performs operations concurrently�

For example� when a pvmd gets a syscall from a task and must interact with another

pvmd� it doesn�t block while waiting for the other pvmd to respond� It saves state in a

waitc and returns immediately to the work�� loop� When the reply arrives� the pvmd

uses the information stashed in the waitc to complete the syscall and reply to the task�

Waitcs are serial numbered� and the number is sent in the message header along with

the request and returned with the reply�

For many operations� the TIDs and kind of wait are the only information saved� The

struct waitc includes a few extra �elds to handle most of the remaining cases� and a

pointer� wa spec� to a block of extra data for special cases�the spawn and host startup

operations� which need to save struct waitc spawn and struct waitc add�

Sometimes more than one phase of waiting is necessary�in series� parallel� or nested�

In the parallel case� a separate waitc is created for each foreign host� The waitcs are

peered �linked in a list� together to indicate they pertain to the same operation� If a

waitc has no peers� its peer links point to itself� Usually� peered waitcs share data�

for example� wa spec� All existing parallel operations are conjunctions� a peer group is

�nished when every waitc in the group is �nished� As replies arrive� �nished waitcs are

collapsed out of the list and deleted� When the �nished waitc is the only one left� the

operation is complete� Figure 	�� shows single and peered waitcs stored in waitlist �the

list of all active waitcs��

When a host fails or a task exits� the pvmd searches waitlist for any blocked on this

TID and terminates those operations� Waitcs from the dead host or task blocked on

something else are not deleted� instead� their wa tid �elds are zeroed� This approach

prevents the wait id�s from being recycled while replies are still pending� Once the defunct

waitcs are satis�ed� they are silently discarded�

�	� Chapter �

wid
kind
...

link

peer

spec

wid
kind
...

link

peer

spec

wid
kind
...

link

peer

spec

link

peer

spec

0

waitlist

shared
data

struct waitc

Figure ���
Wait context list

����� Fault Detection and Recovery

Fault detection originates in the pvmd�pvmd protocol �Section 	������ When the pvmd

times out while communicating with another� it calls hostfailentry��� which scans

waitlist and terminates any operations waiting on the down host�

A pvmd can recover from the loss of any foreign pvmd except the master� If a slave

loses the master� the slave shuts itself down� This algorithm ensures that the virtual

machine doesn�t become partitioned and run as two partial machines� It does� however�

decrease fault tolerance of the virtual machine because the master must never crash�

There is currently no way for the master to hand o
 its status to another pvmd� so it

always remains part of the con�guration� �This is an improvement over PVM �� in which

the failure of any pvmd would shut down the entire system��

����� Pvmd�

The shadow pvmd �pvmd�� runs on the master host and is used by the master to start

new slave pvmds� Any of several steps in the startup process �for example� starting a

shell on the remote machine� can block for seconds or minutes �or hang�� and the master

pvmd must be able to respond to other messages during this time� It�s messy to save all

the state involved� so a completely separate process is used�

The pvmd� has host number � and communicates with the master through the normal

pvmd�pvmd interface� though it never talks to tasks or other pvmds� The normal host

failure detection mechanism is used to recover in the event the pvmd� fails� The startup

operation has a wait context in the master pvmd� If the pvmd� breaks� the master catches

a SIGCHLD from it and calls hostfailentry��� which cleans up�

How PVM Works �	�

����� Starting Slave Pvmds

Getting a slave pvmd started is a messy task with no good solution� The goal is to get a

process running on the new host� with enough identity to let it be fully con�gured and

added as a peer�

Ideally� the mechanism used should be widely available� secure� and fast� while leaving

the system easy to install� We�d like to avoid having to type passwords all the time� but

don�t want to put them in a �le from where they can be stolen� No one system meets all

of these criteria� Using inetd or connecting to an already�running pvmd or pvmd server

at a reserved port would allow fast� reliable startup� but would require that a system

administrator install PVM on each host� Starting the pvmd via rlogin or telnet with

a chat script would allow access even to IP�connected hosts behind �rewall machines and

would require no special privilege to install� the main drawbacks are speed and the e
ort

needed to get the chat program working reliably�

Two widely available systems are rsh and rexec��� we use both to cover the cases

where a password does and does not need to be typed� A manual startup option allows

the user to take the place of a chat program� starting the pvmd by hand and typing in

the con�guration� rsh is a privileged program that can be used to run commands on

another host without a password� provided the destination host can be made to trust

the source host� This can be done either by making it equivalent �requires a system

administrator� or by creating a �rhosts �le on the destination host �this isn�t a great

idea�� The alternative� rexec��� is a function compiled into the pvmd� Unlike rsh� which

doesn�t take a password� rexec�� requires the user to supply one at run time� either by

typing it in or by placing it in a �netrc �le �this is a really bad idea��

Figure 	�	 shows a host being added to the machine� A task calls pvm addhosts�� to

send a request to its pvmd� which in turn sends a DM ADD message to the master �possibly

itself�� The master pvmd creates a new host table entry for each host requested� looks

up the IP addresses� and sets the options from host �le entries or defaults� The host

descriptors are kept in a waitc add structure �attached to a wait context� and not yet

added to the host table� The master forks the pvmd� to do the dirty work� passing it a

list of hosts and commands to execute �an SM STHOST message�� The pvmd� uses rsh�

rexec�� or manual startup to start each pvmd� pass it parameters� and get a line of

con�guration data back� The con�guration dialog between pvmd� and a new slave is as

follows�

pvmd
 � slave� �exec� �PVM ROOT�lib�pvmd �s �d� �nhonk � ��a�ca�	
�f	a

����
 ��a�	c�

����

slave � pvmd
� ddpro��
��� arch�ALPHA� ip���a�	c�

�b
f� mtu������

pvmd
 � slave� EOF

�	� Chapter �

pvm_addhosts()

tm_addhost()

start_slaves()

slave_config()

dm_startack()

dm_htupd()
dm_htupd()

dm_htupdack()

dm_htcommit()
dm_htcommit()

dm_htupdack()

3

6

7,8

8

Blocked

Pvmd 2Task 2/1 Pvmd 1 (master) Pvmd 3 (new)

dm_add()

dm_addack()

Pvmd’

tim
e

Figure ���
Timeline of addhost operation

How PVM Works �	�

The addresses of the master and slave pvmds are passed on the command line� The

slave writes its con�guration on standard output� then waits for an EOF from the pvmd�

and disconnects� It runs in probationary status �runstate � PVMDSTARTUP� until it

receives the rest of its con�guration from the master pvmd� If it isn�t con�gured within

�ve minutes �parameter DDBAILTIME�� it assumes there is some problem with the master

and quits� The protocol revision �DDPROTOCOL� of the slave pvmd must match that of

the master� This number is incremented whenever a change in the protocol makes it

incompatible with the previous version� When several hosts are added at once� startup

is done in parallel� The pvmd� sends the data �or errors� in a DM STARTACK message to

the master pvmd� which completes the host descriptors held in the wait context�

If a special task called a hoster is registered with the master pvmd when it receives

the DM ADD message� the pvmd� is not used� Instead� the SM STHOST message is sent to

the hoster� which starts the remote processes as described above using any mechanism it

wants� then sends a SM STHOSTACK message �same format as DM STARTACK� back to the

master pvmd� Thus� the method of starting slave pvmds is dynamically replaceable� but

the hoster does not have to understand the con�guration protocol� If the hoster task fails

during an add operation� the pvmd uses the wait context to recover� It assumes none of

the slaves were started and sends a DM ADDACK message indicating a system error�

After the slaves are started� the master sends each a DM SLCONF message to set param�

eters not included in the startup protocol� It then broadcasts a DM HTUPD message to all

new and existing slaves� Upon receiving this message� each slave knows the con�gura�

tion of the new virtual machine� The master waits for an acknowledging DM HTUPDACK

message from every slave� then broadcasts an HT COMMIT message� shifting all to the

new host table� Two phases are needed so that new hosts are not advertised �e�g�� by

pvm config��� until all pvmds know the new con�guration� Finally� the master sends a

DM ADDACK reply to the original request� giving the new host id�s�

Note� Recent experience suggests it would be cleaner to manage the pvmd� through

the task interface instead of the host interface� This approach would allow multiple

starters to run at once �parallel startup is implemented explicitly in a single pvmd�

process��

����� Resource Manager

A resource manager �RM� is a PVM task responsible for making task and host scheduling

�placement� decisions� The resource manager interface was introduced in version ���� The

simple schedulers embedded in the pvmd handle many common conditions� but require

��	 Chapter �

the user to explicitly place program components in order to get the maximum e�ciency�

Using knowledge not available to the pvmds� such as host load averages� a RM can make

more informed decisions automatically� For example� when spawning a task� it could

pick the host in order to balance the computing load� Or� when recon�guring the virtual

machine� the RM could interact with an external queuing system to allocate a new host�

The number of RMs registered can vary from one for an entire virtual machine to one

per pvmd� The RM running on the master host �where the master pvmd runs� manages

any slave pvmds that don�t have their own RMs� A task connecting anonymously to a

virtual machine is assigned the default RM of the pvmd to which it connects� A task

spawned from within the system inherits the RM of its parent task�

If a task has a RM assigned to it� service requests from the task to its pvmd are routed

to the RM instead� Messages from the following libpvm functions are intercepted�

Libpvm function Default Message RM Message

pvm addhost�� TM ADDHOST SM ADDHOST

pvm delhost�� TM DELHOST SM DELHOST

pvm spawn�� TM SPAWN SM SPAWN

Queries also go to the RM� since it presumably knows more about the state of the

virtual machine�

Libpvm function Default Message RM Message

pvm config�� TM CONFIG SM CONFIG

pvm notify�� TM NOTIFY SM NOTIFY

pvm task�� TM TASK SM TASK

The call to register a task as a RM �pvm reg rm��� is also redirected if RM is already

running� In this way the existing RM learns of the new one� and can grant or refuse the

request to register�

Using messages SM EXEC and SM ADD� the RM can directly command the pvmds to

start tasks or recon�gure the virtual machine� On receiving acknowledgement for the

commands� it replies to the client task� The RM is free to interpret service request pa�

rameters in any way it wishes� For example� the architecture class given to pvm spawn��

could be used to distinguish hosts by memory size or CPU speed�

How PVM Works ���

��� Libpvm Library

����� Language Support

Libpvm is written in C and directly supports C and C�� applications� The Fortran

library� libfpvm��a �also written in C�� is a set of wrapper functions that conform to

the Fortran calling conventions� The Fortran�C linking requirements are portably met

by preprocessing the C source code for the Fortran library with m	 before compilation�

����� Connecting to the Pvmd

On the �rst call to a libpvm function� pvm beatask�� is called to initialize the library

state and connect the task to its pvmd� Connecting �for anonymous tasks� is slightly

di
erent from reconnecting �for spawned tasks��

The pvmd publishes the address of the socket on which it listens in �tmp�pvmd�uid�

where uid is the numeric user id under which the pvmd runs� This �le contains a line of

the form

"f���������f" or �tmp�aaa��	��

This is the IP address and port number �in hexadecimal� of the socket� or the path if a

Unix�domain socket� To avoid the need to read the address �le� the same information is

passed to spawned tasks in environment variable PVMSOCK�

To reconnect� a spawned task also needs its expected process id� When a task is

spawned by the pvmd� a task descriptor is created for it during the exec phase� The

descriptor must exist so it can stash any messages that arrive for the task before it

reconnects and can receive them� During reconnection� the task identi�es itself to the

pvmd by its PID� If the task is always the child of the pvmd �i�e�� the exact process

exec�d by it�� then it could use the value returned by getpid��� To allow for intervening

processes� such as debuggers� the pvmd passes the expected PID in environment variable

PVMEPID� and the task uses that value in preference to its real PID� The task also passes

its real PID so it can be controlled normally by the pvmd�

pvm beatask�� creates a TCP socket and does a proper connection dance with the

pvmd� Each must prove its identity to the other� to prevent a di
erent user from spoo�ng

the system� It does this by creating a �le in �tmp writable only by the owner� and

challenging the other to write in the �le� If successful� the identity of the other is proven�

Note that this authentication is only as strong as the �lesystem and the authority of root

on each machine�

A protocol serial number �TDPROTOCOL� is compared whenever a task connects to a

pvmd or another task� This number is incremented whenever a change in the protocol

��� Chapter �

makes it incompatible with the previous version�

Disconnecting is much simpler� It can be done forcibly by a close from either end�

for example� by exiting the task process� The function pvm exit�� performs a clean

shutdown� such that the process can be connected again later �it would get a di
erent

TID��

��� Protocols

PVM communication is based on TCP � UDP� and Unix�domain sockets� While more

appropriate protocols exist� they aren�t as generally available�

VMTP ��� is one example of a protocol built for this purpose� Although intended for

RPC�style interaction �request�response�� it could support PVM messages� It is packet

oriented and e�ciently sends short blocks of data �such as most pvmd�pvmd manage�

ment messages� but also handles streaming �necessary for task�task communication�� It

supports multicasting and priority data �something PVM doesn�t need yet�� Connections

don�t need to be established before use� the �rst communication initializes the protocol

drivers at each end� VMTP was rejected� however� because it is not widely available

�using it requires modifying the kernel��

This section explains the PVM protocols� There are three connections to consider�

Between pvmds� between pvmd and task� and between tasks�

��
�� Messages

The pvmd and libpvm use the same message header� shown in Figure 	�
� Code contains

an integer tag �message type�� Libpvm uses Encoding to pass the encoding style of

the message� as it can pack in di
erent formats� The pvmd always sets Encoding �and

requires that it be set� to � �foo�� Pvmds use the Wait Context �eld to pass the wait id�s

�if any� zero if none� of the waitc associated with the message� Certain tasks �resource

manager� tasker� hoster� also use wait id�s� The Checksum �eld is reserved for future

use� Messages are sent in one or more fragments� each with its own fragment header

�described below�� The message header is at the beginning of the �rst fragment�

��
�� Pvmd�Pvmd

PVM daemons communicate with one another through UDP sockets� UDP is an unreli�

able delivery service which can lose� duplicate or reorder packets� so an acknowledgment

and retry mechanism is used� UDP also limits packet length� so PVM fragments long

messages�

We considered TCP� but three factors make it inappropriate� First is scalability� In

How PVM Works ���

0

4

8

12

Byte 0 1 2 3

Wait Context ID

Code

Encoding

(reserved for checksum)

Figure ���
Message header

a virtual machine of N hosts� each pvmd must have connections to the other N � ��

Each open TCP connection consumes a �le descriptor in the pvmd� and some operating

systems limit the number of open �les to as few as ��� whereas a single UDP socket

can communicate with any number of remote UDP sockets� Second is overhead� N

pvmds need N �N � ���� TCP connections� which would be expensive to set up� The

PVM�UDP protocol is initialized with no communication� Third is fault tolerance� The

communication system detects when foreign pvmds have crashed or the network has gone

down� so we need to set timeouts in the protocol layer� The TCP keepalive option might

work� but it�s not always possible to get adequate control over the parameters�

The packet header is shown in Figure 	��� Multibyte values are sent in �Internet�

network byte order �most signi�cant byte �rst��

0

4

8

12

Byte 0 1 2 3

Destination TID

Source TID

Sequence Number Ack Number

SO
M

E
O

M

D
A

T

FI
N

A
C

K unused

Figure ��	
Pvmd�pvmd packet header

The source and destination �elds hold the TIDs of the true source and �nal destination

of the packet� regardless of the route it takes� Sequence and acknowledgment numbers

start at � and increment to ������ then wrap to zero�

SOM �EOM� � Set for the �rst �last� fragment of a message� Intervening fragments

have both bits cleared� They are used by tasks and pvmds to delimit message boundaries�

DAT � If set� data is contained in the packet� and the sequence number is valid� The

��� Chapter �

packet� even if zero length� must be delivered�

ACK � If set� the acknowledgment number �eld is valid� This bit may be combined

with the DAT bit to piggyback an acknowledgment on a data packet��

FIN � The pvmd is closing down the connection� A packet with FIN bit set �and DAT

cleared� begins an orderly shutdown� When an acknowledgement arrives �ACK bit set

and ack number matching the sequence number from the FIN packet�� a �nal packet is

sent with both FIN and ACK set� If the pvmd panics� �for example on a trapped segment

violation� it tries to send a packet with FIN and ACK set to every peer before it exits�

The state of a connection to another pvmd is kept in its host table entry� The protocol

driver uses the following �elds of struct hostd�

Field Meaning
hd hostpart TID of pvmd
hd mtu Max UDP packet length to host
hd sad IP address and UDP port number
hd rxseq Expected next packet number from host
hd txseq Next packet number to send to host
hd txq Queue of packets to send
hd opq Queue of packets sent� awaiting ack
hd nop Number of packets in hd opq

hd rxq List of out�of�order received packets
hd rxm Bu�er for message reassembly
hd rtt Estimated smoothed round�trip time

Figure 	��� shows the host send and outstanding�packet queues� Packets waiting to

be sent to a host are queued in FIFO hd txq� Packets are appended to this queue by the

routing code� described in Section 	����� No receive queues are used� incoming packets

are passed immediately through to other send queues or reassembled into messages �or

discarded�� Incoming messages are delivered to a pvmd entry point as described in

Section 	�����

The protocol allows multiple outstanding packets to improve performance over high�

latency networks� so two more queues are required� hd opq holds a per�host list of

unacknowledged packets� and global opq lists all unacknowledged packets� ordered by

time to retransmit� hd rxq holds packets received out of sequence until they can be

accepted�

The di
erence in time between sending a packet and getting the acknowledgement is

used to estimate the round�trip time to the foreign host� Each update is �ltered into the

�Currently� the pvmd generates an acknowledgement packet for each data packet�

How PVM Works ���

databuf

struct
hostd

struct
pkt

nref
tid
name
arch
...

txq

opq

rxq

rxm

nref
tid
name
arch
...

txq

opq

rxq

rxm

Global
Retry
queue

opq

Figure ���

Host descriptors with send queues

��� Chapter �

estimate according to the formula

hd rttn # ��	� � hd rttn�� � ���� �$t�

When the acknowledgment for a packet arrives� the packet is removed from hd opq

and opq and discarded� Each packet has a retry timer and count� and each is resent

until acknowledged by the foreign pvmd� The timer starts at � � hd rtt� and doubles for

each retry up to �
 seconds� hd rtt is limited to nine seconds� and backo
 is bounded

in order to allow at least �� packets to be sent to a host before giving up� After three

minutes of resending with no acknowledgment� a packet expires�

If a packet expires as a result of timeout� the foreign pvmd is assumed to be down or

unreachable� and the local pvmd gives up on it� calling hostfailentry��

��
�� Pvmd�Task and Task�Task

A task talks to its pvmd and other tasks through TCP sockets� TCP is used because it

delivers data reliably� UDP can lose packets even within a host� Unreliable delivery re�

quires retry �with timers� at both ends� since tasks can�t be interrupted while computing

to perform I�O� we can�t use UDP�

Implementing a packet service over TCP is simple because of its reliable delivery� The

packet header is shown in Figure 	���� No sequence numbers are needed� and only �ags

SOM and EOM �these have the same meaning as in Section 	������ Since TCP provides

no record marks to distinguish back�to�back packets from one another� the length is sent

in the header� Each side maintains a FIFO of packets to send� and switches between

reading the socket when data is available and writing when there is space�

0

4

8

12

Byte 0 1 2 3

Destination TID

Source TID

SO
M

E
O

M unused

Packet Length

Figure ����
Pvmd�task packet header

The main drawback to TCP �as opposed to UDP� is that more system calls are needed

to transfer each packet� With UDP� a single sendto�� and single recvfrom�� are re�

quired� With TCP� a packet can be sent by a single write�� call� but must be received

by two read�� calls� the �rst to get the header and the second to get the data�

How PVM Works ���

When tra�c on the connection is heavy� a simple optimization reduces the average

number of reads back to about one per packet� If� when reading the packet body� the

requested length is increased by the size of a packet header� the read may succeed in

getting both the packet body and header of the next packet at once� We have the header

for the next packet for free and can repeat this process��

Version ��� introduced the use of Unix�domain stream sockets as an alternative to TCP

for local communication� to improve latency and transfer rate �typically by a factor of

two�� If enabled �the system is built without the NOUNIXDOM option�� stream sockets are

used between the pvmd and tasks as well as between tasks on the same host�

��� Message Routing

����� Pvmd

Packet Bu�ers Packet descriptors �struct pkt� track message fragments through the

pvmd� Fields pk buf� pk max� pk dat and pk len are used in the same ways as similarly

named �elds of a frag� described in Section 	����� Besides data� pkts contain state to

operate the pvmd�pvmd protocol�

Message Routing Messages are sent by calling sendmessage��� which routes by desti�

nation address� Messages for other pvmds or tasks are linked to packet descriptors and at�

tached to a send queue� If the pvmd addresses a message to itself� sendmessage�� passes

the whole message descriptor to netentry��� avoiding the packet layer entirely� This

loopback interface is used often by the pvmd� During a complex operation� netentry��

may be reentered several times as the pvmd sends itself messages�

Messages to the pvmd are reassembled from packets in message reassembly bu
ers� one

for each local task and remote pvmd� Completed messages are passed to entry points

�Section 	������

Packet Routing A graph of packet and message routing inside the pvmd is shown in

Figure 	���� Packets are received from the network by netinput�� directly into bu
ers

long enough to hold the largest packet the pvmd will receive �its MTU in the host table��

Packets from local tasks are read by loclinput��� which creates a bu
er large enough

for each packet after it reads the header� To route a packet� the pvmd chains it onto the

queue for its destination� If a packet is multicast �see Section 	������ the descriptor is

replicated� counting extra references on the underlying databuf� One copy is placed in

each send queue� After the last copy of the packet is sent� the databuf is freed�

�This was once implemented� but was removed while the code was updated and hasn�t been
reintroduced�

��� Chapter �

work()

netinput()

loclinput() loclinpkt()

netentry()

loclentry()

schentry()

sendmessage()

mesg_to_task()

pkt_to_host()

netoutput()

locloutput()

t_txq

hd_txq

hd_txq

t_txq
Function call

Packet
Message

pkt_to_task()

netinpkt()

Figure ����
Packet and message routing in pvmd

Refragmentation Messages are generally built with fragment length equal to the

MTU of the host�s pvmd� allowing them to be forwarded without refragmentation� In

some cases� the pvmd can receive a packet �from a task� too long to be sent to another

pvmd� The pvmd refragments the packet by replicating its descriptor as many times as

necessary� A single databuf is shared between the descriptors� The pk dat and pk len

�elds of the descriptors cover successive chunks of the original packet� each chunk small

enough to send� The SOM and EOM �ags are adjusted �if the original packet is the start

or end of a message�� At send time� netoutput�� saves the data under where it writes

the packet header� sends the packet� and then restores the data�

����� Pvmd and Foreign Tasks

Pvmds usually don�t communicate with foreign tasks �those on other hosts�� The pvmd

has message reassembly bu
ers for each foreign pvmd and each task it manages� What

it doesn�t want is to have reassembly bu
ers for foreign tasks� To free up the reassembly

bu
er for a foreign task �if the task dies�� the pvmd would have to request noti�cation

from the task�s pvmd� causing extra communication�

For the sake of simplicity the pvmd local to the sending task serves as a message

repeater� The message is reassembled by the task�s local pvmd as if it were the receiver�

How PVM Works ���

then forwarded all at once to the destination pvmd� which reassembles the message again�

The source address is preserved� so the sender can be identi�ed�

Libpvm maintains dynamic reassembly bu
ers� so messages from pvmd to task do not

cause a problem�

����� Libpvm

Four functions handle all packet tra�c into and out of libpvm� mroute�� is called by

higher�level functions such as pvm send�� and pvm recv�� to copy messages into and out

of the task� It establishes any necessary routes before calling mxfer��� mxfer�� polls

for messages� optionally blocking until one is received or until a speci�ed timeout� It

calls mxinput�� to copy fragments into the task and reassemble messages� In the generic

version of PVM� mxfer�� uses select�� to poll all routes �sockets� in order to �nd those

ready for input or output� pvmmctl�� is called by mxinput�� when a control message

�Section 	����� is received�

Direct Message Routing Direct routing allows one task to send messages to another

through a TCP link� avoiding the overhead of forwarding through the pvmds� It is

implemented entirely in libpvm� using the notify and control message facilities� By

default� a task routes messages to its pvmd� which forwards them on� If direct routing is

enabled �PvmRouteDirect� when a message �addressed to a task� is passed to mroute���

it attempts to create a direct route if one doesn�t already exist� The route may be granted

or refused by the destination task� or fail �if the task doesn�t exist�� The message is then

passed to mxfer���

Libpvm maintains a protocol control block �struct ttpcb� for each active or denied

connection� in list ttlist� The state diagram for a ttpcb is shown in Figure 	���� To

request a connection� mroute��makes a ttpcb and socket� then sends a TC CONREQ control

message to the destination via the default route� At the same time� it sends a TM NOTIFY

message to the pvmd� to be noti�ed if the destination task exits� with closure �message

tag� TC TASKEXIT� Then it puts the ttpcb in state TTCONWAIT� and calls mxfer�� in

blocking mode repeatedly until the state changes�

When the destination task enters mxfer�� �for example� to receive a message�� it re�

ceives the TC CONREQ message� The request is granted if its routing policy �pvmrouteopt

'� PvmDontRoute� and implementation allow a direct connection� it has resources avail�

able� and the protocol version �TDPROTOCOL� in the request matches its own� It makes

a ttpcb with state TTGRNWAIT� creates and listens on a socket� and then replies with

a TC CONACK message� If the destination denies the connection� it nacks� also with a

TC CONACK message� The originator receives the TC CONACK message� and either opens

the connection �state � TTOPEN� or marks the route denied �state � TTDENY�� Then�

��	 Chapter �

mroute�� passes the original message to mxfer��� which sends it� Denied connections

are cached in order to prevent repeated negotiation�

If the destination doesn�t exist� the TC CONACK message never arrives because the

TC CONREQ message is silently dropped� However� the TC TASKEXIT message generated

by the notify system arrives in its place� and the ttpcb state is set to TTDENY�

This connect scheme also works if both ends try to establish a connection at the

same time� They both enter TTCONWAIT� and when they receive each other�s TC CONREQ

messages� they go directly to the TTOPEN state�

OPEN
link is up

waiting to free
PCB structure

DEAD

CONWAIT
have requested
expect ack or
crossed request

GRNWAIT
have granted
must accept() when other
connects

DENY
connection denied;
do not try again

(no PCB)make ttpcb, socket
send CONREQ
post TaskExit notify

Want connection
Receive CONREQ

make ttpcb, socket
send CONGRN
listen()

Socket connects

accept()

Receive
TASKEXIT

Receive
TASKEXIT

Read EOF on sock,
bad write

Receive
CONACK(NACK)

mroute()
cleans up

connect()

Receive
CONACK(ACK)
or CONREQ

Figure ����
Task�task connection state diagram

����� Multicasting

The libpvm function pvm mcast�� sends a message to multiple destinations simultane�

ously� The current implementation only routes multicast messages through the pvmds�

It uses a ��N fanout to ensure that failure of a host doesn�t cause the loss of any messages

�other than ones to that host�� The packet routing layer of the pvmd cooperates with

the libpvm to multicast a message�

How PVM Works ���

To form a multicast address TID �GID�� the G bit is set �refer to Figure 	���� The L

�eld is assigned by a counter that is incremented for each multicast� so a new multicast

address is used for each message� then recycled�

To initiate a multicast� the task sends a TM MCA message to its pvmd� containing a list

of recipient TIDs� The pvmd creates a multicast descriptor �struct mca� and GID� It

sorts the addresses� removes bogus ones� and duplicates and caches them in the mca� To

each destination pvmd �ones with destination tasks�� it sends a DM MCA message with the

GID and destinations on that host� The GID is sent back to the task in the TM MCA reply

message�

The task sends the multicast message to the pvmd� addressed to the GID� As each

packet arrives� the routing layer copies it to each local task and foreign pvmd� When

a multicast packet arrives at a destination pvmd� it is copied to each destination task�

Packet order is preserved� so the multicast address and data packets arrive in order at

each destination� As it forwards multicast packets� each pvmd eavesdrops on the header

�ags� When it sees a packet with EOM �ag set� it �ushes the mca�

��� Task Environment

����� Environment Variables

Experience seems to indicate that inherited environment �Unix environ� is useful to an

application� For example� environment variables can be used to distinguish a group of

related tasks or to set debugging variables�
PVM makes increasing use of environment� and may eventually support it even on

machines where the concept is not native� For now� it allows a task to export any part
of environ to tasks spawned by it� Setting variable PVM EXPORT to the names of other
variables causes them to be exported through spawn� For example� setting

PVM�EXPORT�DISPLAY
SHELL

exports the variables DISPLAY and SHELL to children tasks �and PVM EXPORT too��

The following environment variables are used by PVM� The user may set these�

PVM ROOT Root installation directory

PVM EXPORT Names of environment variables to inherit through spawn

PVM DPATH Default slave pvmd install path

PVM DEBUGGER Path of debugger script used by spawn

The following variables are set by PVM and should not be modi�ed�

��� Chapter �

PVM ARCH PVM architecture name

PVMSOCK Address of the pvmd local socket� see Section 	����

PVMEPID Expected PID of a spawned task

PVMTMASK Libpvm Trace mask

����� Standard Input and Output

Each task spawned through PVM has �dev�null opened for stdin� From its parent� it

inherits a stdout sink� which is a �TID	 code
 pair� Output on stdout or stderr is read by

the pvmd through a pipe� packed into PVM messages and sent to the TID� with message

tag equal to the code� If the output TID is set to zero �the default for a task with no

parent�� the messages go to the master pvmd� where they are written on its error log�

Children spawned by a task inherit its stdout sink� Before the spawn� the parent can

use pvm setopt�� to alter the output TID or code� This doesn�t a
ect where the output

of the parent task itself goes� A task may set output TID to one of three settings� the

value inherited from its parent� its own TID� or zero� It can set output code only if output

TID is set to its own TID� This means that output can�t be assigned to an arbitrary task�

Four types of messages are sent to an stdout sink� The message body formats for each

type are as follows�

Spawn� �code� f Task has been spawned
int tid� Task id
int ��� Signals spawn
int ptid TID of parent

g

Begin� �code� f First output from task
int tid� Task id
int ��� Signals task creation
int ptid TID of parent

g

Output� �code� f Output from a task
int tid� Task id
int count� Length of output fragment
char data�count� Output fragment

g

End� �code� f Last output from a task
int tid� Task id
int � Signals EOF

g

How PVM Works ���

The �rst two items in the message body are always the task id and output count� which

allow the receiver to distinguish between di
erent tasks and the four message types� For

each task� one message each of types Spawn� Begin� and End is sent� along with zero

or more messages of class Output� �count � ��� Classes Begin� Output and End will be

received in order� as they originate from the same source �the pvmd of the target task��

Class Spawn originates at the �possibly di
erent� pvmd of the parent task� so it can be

received in any order relative to the others� The output sink is expected to understand

the di
erent types of messages and use them to know when to stop listening for output

from a task �EOF� or group of tasks �global EOF��

The messages are designed so as to prevent race conditions when a task spawns another

task� then immediately exits� The output sink might get the Endmessage from the parent

task and decide the group is �nished� only to receive more output later from the child

task� According to these rules� the Spawn message for the second task must arrive before

the End message from the �rst task� The Begin message itself is necessary because the

Spawn message for a task may arrive after the End message for the same task� The state

transitions of a task as observed by the receiver of the output messages are shown in

Figure 	����

Unstarted

Exited

Spawn

Spawn

Spawn

Output

Output

Begin

Begin

End

End

Figure ����
Output states of a task

The libpvm function pvm catchout�� uses this output collection feature to put the

output from children of a task into a �le �for example� its own stdout�� It sets output

TID to its own task id� and the output code to control message TC OUTPUT� Output from

children and grandchildren tasks is collected by the pvmds and sent to the task� where

it is received by pvmmctl�� and printed by pvmclaimo���

��� Chapter �

����� Tracing

The libpvm library has a tracing system that can record the parameters and results of

all calls to interface functions� Trace data is sent as messages to a trace sink task just

as output is sent to an stdout sink �Section 	�	���� If the trace output TID is set to zero

�the default�� tracing is disabled�

Besides the trace sink� tasks also inherit a trace mask� used to enable tracing function�

by�function� The mask is passed as a �printable� string in environment variable PVMTMASK�

A task can manipulate its own trace mask or the one to be inherited from it� A task�s

trace mask can also be set asynchronously with a TC SETTMASK control message�

Constants related to trace messages are de�ned in public header �le pvmtev�h� Trace

data from a task is collected in a manner similar to the output redirection discussed

above� Like the type Spawn� Begin� and End messages which bracket output from a task�

TEV SPNTASK� TEV NEWTASK and TEV ENDTASK trace messages are generated by the pvmds

to bracket trace messages�

The tracing system was introduced in version ��� and is still expected to change some�

what�

����� Debugging

PVM provides a simple but extensible debugging facility� Tasks started by hand could

just as easily be run under a debugger� but this procedure is cumbersome for those

spawned by an application� since it requires the user to comment out the calls to

pvm spawn�� and start tasks manually� If PvmTaskDebug is added to the �ags passed

to pvm spawn��� the task is started through a debugger script �a normal shell script��

�PVM ROOT�lib�debugger�

The pvmd passes the name and parameters of the task to the debugger script� which

is free to start any sort of debugger� The script provided is very simple� In an xterm

window� it runs the correct debugger according to the architecture type of the host� The

script can be customized or replaced by the user� The pvmd can be made to execute a

di
erent debugger via the bx� host �le option or the PVM DEBUGGER environment variable�

��� Console Program

The PVM console is used to manage the virtual machine�to recon�gure it or start and

stop processes� In addition� it�s an example program that makes use of most of the

libpvm functions�

pvm getfds�� and select�� are used to check for input from the keyboard and mes�

sages from the pvmd simultaneously� Keyboard input is passed to the command inter�

How PVM Works ���

preter� while messages contain noti�cation �for example� HostAdd� or output from a

task�

The console can collect output or trace messages from spawned tasks� using the redi�

rection mechanisms described in Section 	�	�� and Section 	�	��� and write them to the

screen or a �le� It uses the begin and end messages from child tasks to maintain groups

of tasks �or jobs�� related by common ancestors� Using the PvmHostAdd notify event� it

informs the user when the virtual machine is recon�gured�

��	 Resource Limitations

Resource limits imposed by the operating system and available hardware are in turn

passed to PVM applications� Whenever possible� PVM avoids setting explicit limits�

instead� it returns an error when resources are exhausted� Competition between users

on the same host or network a
ects some limits dynamically�

����� In the PVM Daemon

Howmany tasks each pvmd can manage is limited by two factors� the number of processes

allowed a user by the operating system� and the number of �le descriptors available to

the pvmd� The limit on processes is generally not an issue� since it doesn�t make sense

to have a huge number of tasks running on a uniprocessor machine�

Each task consumes one �le descriptor in the pvmd� for the pvmd�task TCP stream�

Each spawned task �not ones connected anonymously� consumes an extra descriptor�

since its output is read through a pipe by the pvmd �closing stdout and stderr in the

task would reclaim this slot�� A few more �le descriptors are always in use by the pvmd

for the local and network sockets and error log �le� For example� with a limit of �� open

�les� a user should be able to have up to �� tasks running per host�

The pvmdmay become a bottleneck if all these tasks try to talk to one another through

it�

The pvmd uses dynamically allocated memory to store message packets en route be�

tween tasks� Until the receiving task accepts the packets� they accumulate in the pvmd

in an FIFO procedure� No �ow control is imposed by the pvmd� it will happily store all

the packets given to it� until it can�t get any more memory� If an application is designed

so that tasks can keep sending even when the receiving end is o
 doing something else

and not receiving� the system will eventually run out of memory�

��� Chapter �

����� In the Task

As with the pvmd� a task may have a limit on the number of others it can connect to

directly� Each direct route to a task has a separate TCP connection �which is bidirec�

tional�� and so consumes a �le descriptor� Thus� with a limit of �� open �les� a task

can establish direct routes to about �� other tasks� Note that this limit is in e
ect only

when using task�task direct routing� Messages routed via the pvmds use only the default

pvmd�task connection�

The maximum size of a PVM message is limited by the amount of memory available to

the task� Because messages are generally packed using data existing elsewhere in memory�

and they must be reside in memory between being packed and sent� the largest possible

message a task can send should be somewhat less than half the available memory� Note

that as a message is sent� memory for packet bu
ers is allocated by the pvmd� aggravating

the situation� In�place message encoding alleviates this problem somewhat� because the

data is not copied into message bu
ers in the sender� However� on the receiving end�

the entire message is downloaded into the task before the receive call accepts it� possibly

leaving no room to unpack it�

In a similar vein� if many tasks send to a single destination all at once� the destination

task or pvmdmay be overloaded as it tries to store the messages� Keeping messages from

being freed when new ones are received by using pvm setrbuf�� also uses up memory�

These problems can sometimes be avoided by rearranging the application code� for

example� to use smaller messages� eliminate bottlenecks� and process messages in the

order in which they are generated�

���� Multiprocessor Systems

Developed initially as a parallel programming environment for Unix workstations� PVM

has gained wide acceptance and become a de facto standard for message�passing pro�

gramming� Users want the same programming environment on multiprocessor comput�

ers so they can move their applications onto these systems� A common interface would

also allow users to write vendor�independent programs for parallel computers and to do

part or most of the development work on workstations� freeing up the multiprocessor

supercomputers for production runs�

With PVM� multiprocessor systems can be included in the same con�guration with

workstations� For example� a PVM task running on a graphics workstation can display

the results of computations carried out on a massively parallel processing supercomputer�

Shared�memory computers with a small number of processors can be linked to deliver

supercomputer performance�

How PVM Works ���

Compute Partition

Service

Node

task

daemon

Figure ����
PVM daemon and tasks on MPP host

The virtual machine hides the con�guration details from the programmer� The physical

processors can be a network of workstations� or they can be the nodes of a multicom�

puter� The programmer doesn�t have to know how the tasks are created or where they

are running� it is the responsibility of PVM to schedule user�s tasks onto individual pro�

cessors� The user can� however� tune the program for a speci�c con�guration to achieve

maximum performance� at the expense of its portability�

Multiprocessor systems can be divided into two main categories� message passing

and shared memory� In the �rst category� PVM is now supported on Intel�s iPSC�
��

and Paragon� as well as Thinking Machine�s CM��� Porting PVM to these platforms is

straightforward� because the message�passing functions in PVM map quite naturally onto

the native system calls� The di�cult part is the loading and management of tasks� In the

second category� message passing can be done by placing the message bu
ers in shared

memory� Access to these bu
ers must be synchronized with mutual exclusion locks�

PVM ��� shared memory ports include SGI multiprocessor machines running IRIX ��x

and Sun Microsystems� Inc�� multiprocessor machines running Solaris ��� �This port also

runs on the Cray Research� Inc�� CS������ In addition� CRAY and DEC have created

PVM ports for their T�D and DEC ���� shared memory multiprocessors� respectively�

������ Message�Passing Architectures

��� Chapter �

Data

pvm pack��

Fixed�size Fragments

Figure ����
Packing	 breaking data into �xed�size fragments

A typical MPP system has one or more service nodes for user logins and a large number

of compute nodes for number crunching� The PVM daemon runs on one of the service

nodes and serves as the gateway to the outside world� A task can be started on any one

of the service nodes as a Unix process and enrolls in PVM by establishing a TCP socket

connection to the daemon� The only way to start PVM tasks on the compute nodes is via

pvm spawn��� When the daemon receives a request to spawn new tasks� it will allocate

a set of nodes if necessary� and load the executable onto the speci�ed number of nodes�

The way PVM allocates nodes is system dependent� On the CM��� the entire partition

is allocated to the user� On the iPSC�
��� PVM will get a subcube big enough to

accommodate all the tasks to be spawned� Tasks created with two separate calls to

pvm spawn�� will reside in di
erent subcubes� although they can exchange messages

directly by using the physical node address� The NX operating system limits the number

of active subcubes system�wide to ��� Pvm spawn will fail when this limit is reached or

when there are not enough nodes available� In the case of the Paragon� PVM uses the

default partition unless a di
erent one is speci�ed when pvmd is invoked� Pvmd and the

spawned tasks form one giant parallel application� The user can set the appropriate NX

environment variables such as NX DFLT SIZE before starting PVM� or he can specify

the equivalent command�line arguments to pvmd �i�e�� pvmd �sz ����

PVM message�passing functions are implemented in terms of the native send and

receive system calls� The �address� of a task is encoded in the task id� as illustrated in

Figure 	��	� This enables the messages to be sent directly to the target task� without any

31 0

S G

1830 12

node numberproc idhost id

Figure ����
How TID is used to distinguish tasks on MPP

help from the daemon� The node number is normally the logical node number� but the

How PVM Works ���

receiving task

pvm send��

sending task

�bu�ered� pvm recv��
pvm unpack��

Data

Figure ����
Bu�ering	 bu�ering one fragment by receiving task until pvm recv�� is called

physical address is used on the iPSC�
�� to allow for direct intercube communication�

The instance number is used to distinguish tasks running on the same node�

PVM normally uses asynchronous send primitives to send messages� The operating

system can run out of message handles very quickly if a lot of small messages or several

large messages are sent at once� PVM will be forced to switch to synchronous send

when there are no more message handles left or when the system bu
er gets �lled up�

To improve performance� a task should call pvm send�� as soon as the data becomes

available� so �one hopes� when the other task calls pvm recv��� the message will already be

in its bu
er� PVM bu
ers one incoming packet between calls to pvm send���pvm recv���

A large message� however� is broken up into many �xed�size fragments during packing�

and each piece is sent separately� Bu
ering one of these fragments is not su�cient

unless pvm send�� and pvm recv�� are synchronized� Figures 	��� and 	��
 illustrate this

process�

The front end of an MPP system is treated as a regular workstation� Programs to be

run there should be linked with the regular PVM library� which relies on Unix sockets

to transmit messages� Normally one should avoid running processes on the front end�

because communication between those processes and the node processes must go through

the PVM daemon and a TCP socket link� Most of the computation and communication

should take place on the compute nodes in order to take advantage of the processing

power of these nodes and the fast interconnects between them�

Since the PVM library for the front end is di
erent from the one for the nodes� the

executable for the front end must be di
erent from the one compiled for the nodes� An

SPMD program� for example� has only one source �le� but the object code must be linked

with the front end and node PVM libraries separately to produce two executables if it is

to be started from the front end� An alternative would be a �hostless� SPMD program�

which could be spawned from the PVM console�

Table 	�� shows the native system calls used by the corresponding PVM functions on

��	 Chapter �

Table ���
Implementation of PVM system calls

PVM iPSC
�� Paragon CM��

pvm spawn getcube�load nx loadve fork

pvm send isend�csend isend�csend CMMD send async� noblock

pvm recv irecv irecv CMMD receive async

pvm mcast gsendx gsendx CMMD send async� noblock

various platforms�

The CM�� is somewhat di
erent from the Intel systems because it requires a special

host process for each group of tasks spawned� This process enrolls in PVM and relays

messages between pvmd and the node programs� This� needless to say� adds even more

overhead to daemon�task communications�

Another restrictive feature of the CM�� is that all nodes in the same partition are

scheduled as a single unit� The partitions are normally con�gured by the system manager

and each partition must contain at least �� processors� User programs are run on the

entire partition by default� Although it is possible to idle some of the processors in a

partition� as PVM does when fewer nodes are called for� there is no easy way to harness

the power of the idle processors� Thus� if PVM spawns two groups of tasks� they will

time�share the partition� and any intergroup tra�c must go through pvmd�

Additionally� CMMD has no support for multicasting� Thus� pvm mcast�� is imple�

mented with a loop of CMMD async send���

������ Shared�Memory Architectures

The shared�memory architecture provides a very e�cient medium for processes to ex�

change data� In our implementation� each task owns a shared bu
er created with the

shmget�� system call� The task id is used as the �key� to the shared segment� If the

key is being used by another user� PVM will assign a di
erent id to the task� A task

communicates with other tasks by mapping their message bu
ers into its own memory

space�

To enroll in PVM� the task �rst writes its Unix process id into pvmd�s incoming box�

It then looks for the assigned task id in pvmd�s pid�TID table�

The message bu
er is divided into pages� each of which holds one fragment �Fig�

ure 	����� PVM�s page size can be a multiple of the system page size� Each page has

a header� which contains the lock and the reference count� The �rst few pages are used

as the incoming box� while the rest of the pages hold outgoing fragments �Figure 	�����

How PVM Works ���

Page Layout

lock

reference count

fragment

g

message

page header

Figure ���	
Structure of a PVM page

To send a message� the task �rst packs the message body into its bu
er� then delivers

the message header �which contains the sender�s TID and the location of the data� to

the incoming box of the intended recipient� When pvm recv�� is called� PVM checks the

incoming box� locates and unpacks the messages �if any�� and decreases the reference

count so the space can be reused� If a task is not able to deliver the header directly

because the receiving box is full� it will block until the other task is ready�

Inevitably some overhead will be incurred when a message is packed into and unpacked

from the bu
er� as is the case with all other PVM implementations� If the bu
er is full�

then the data must �rst be copied into a temporary bu
er in the process�s private space

and later transferred to the shared bu
er�

Memory contention is usually not a problem� Each process has its own bu
er� and

each page of the bu
er has its own lock� Only the page being written to is locked� and no

process should be trying to read from this page because the header has not been sent out�

Di
erent processes can read from the same page without interfering with each other� so

multicasting will be e�cient �they do have to decrease the counter afterwards� resulting

in some contention�� The only time contention occurs is when two or more processes

trying to deliver the message header to the same process at the same time� But since the

header is very short ��� bytes�� such contention should not cause any signi�cant delay�

��� Chapter �

inbox

pid�tid table

outgoing

pages

�
�
�

outgoing

pages

�
�
�

inbox

pvmd msg bu�er task msg bu�er

Figure ���

Structures of shared message bu�ers

To minimize the possibility of page faults� PVM attempts to use only a small number

of pages in the message bu
er and recycle them as soon as they have been read by all

intended recipients�

Once a task�s bu
er has been mapped� it will not be unmapped unless the system

limits the number of mapped segments� This strategy saves time for any subsequent

message exchanges with the same process�

������ Optimized Send and Receive on MPP

In the original implementation� all user messages are bu
ered by PVM� The user must

pack the data into a PVM bu
er before sending it� and unpack the data after it has

been received into an internal bu
er� This approach works well on systems with rela�

tively high communication latency� such as the Ethernet� On MPP systems the packing

and unpacking introduce substantial overhead� To solve this problem we added two

new PVM functions� namely pvm psend�� and pvm precv��� These functions combine

packing�unpacking and sending�receiving into one single step� They could be mapped

directly into the native message passing primitives available on the system� doing away

with internal bu
ers altogether� On the Paragon these new functions give almost the

same performance as the native ones�

How PVM Works ���

Although the user can use both pvm psend�� and pvm send�� in the same program�

on MPP the pvm psend�� must be matched with pvm precv��� and pvm send�� with

pvm recv���

� Advanced Topics

��� XPVM

It is often useful and always reassuring to be able to see the present con�guration of the

virtual machine and the status of the hosts� It would be even more useful if the user

could also see what his program is doing�what tasks are running� where messages are

being sent� etc� The PVM GUI called XPVM was developed to display this information�

and more�

XPVM combines the capabilities of the PVM console� a performance monitor� and a

call�level debugger into a single� easy�to�use X�Windows interface� XPVM is available

from netlib in the directory pvm��xpvm� It is distributed as precompiled� ready�to�

run executables for SUN�� RS�K� ALPHA� SUN�SOL�� HPPA� and SGI�� The XPVM

source is also available for compiling on other machines�

XPVM is written entirely in C using the TCL�TK ���� toolkit and runs just like

another PVM task� If a user wishes to build XPVM from the source� he must �rst obtain

and install the TCL�TK software on his system� TCL and TK were developed by John

Ousterhout at Berkeley and can be obtained by anonymous ftp to sprite�berkeley�edu

The TCL and XPVM source distributions each contain a README �le that describes

the most up�to�date installation procedure for each package respectively�

Figure
�� shows a snapshot of XPVM in use�

Like the PVM console� XPVM will start PVM if PVM is not already running� or will

attach to the local pvmd if it is� The console can take an optional host�le argument

whereas XPVM always reads �HOME��xpvm hosts as its host�le� If this �le does not

exist� then XPVM just starts PVM on the local host �or attaches to the existing PVM��

In typical use� the host�le �xpvm hosts contains a list of hosts prepended with an ��

These hostnames then get added to the Hosts menu for addition and deletion from the

virtual machine by clicking on them�

The top row of buttons perform console�like functions� The Hosts button displays a

menu of hosts� Clicking on a host toggles whether it is added or deleted from the virtual

machine� At the bottom of the menu is an option for adding a host not listed� The Tasks

button brings up a menu whose most�used selection is spawn� Selecting spawn brings up

a window where one can set the executable name� spawn �ags� start position� number of

copies to start� etc� By default� XPVM turns on tracing in all tasks �and their children�

started inside XPVM� Clicking on Start in the spawn window starts the task� which will

then appear in the space�time view� The Reset button has a menu for resetting PVM

�i�e�� kill all PVM tasks� or resetting di
erent parts of XPVM� The Quit button exits

��� Chapter �

Figure ���
XPVM interface � snapshot during use

Advanced Topics ���

XPVM while leaving PVM running� If XPVM is being used to collect trace information�

the information will not be collected if XPVM is stopped� The Halt button is used when

one is through with PVM� Clicking on this button kills all running PVM tasks� shuts

down PVM cleanly� and exits the XPVM interface� The Help button brings up a menu

of topics the user can get help about�

During startup� XPVM joins a group called xpvm� The intention is that tasks started

outside the XPVM interface can get the TID of XPVM by doing tid � pvm gettid�

xpvm� � �� This TID would be needed if the user wanted to manually turn on trac�

ing inside such a task and pass the events back to XPVM for display� The expected

TraceCode for these events is ����

While an application is running� XPVM collects and displays the information in real

time� Although XPVM updates the views as fast as it can� there are cases when XPVM

cannot keep up with the events and it falls behind the actual run time�

In the middle of the XPVM interface are trace�le controls� It is here that the user can

specify a trace�le�a default trace�le in �tmp is initially displayed� There are buttons

to specify whether the speci�ed trace�le is to be played back or overwritten by a new

run� XPVM saves trace events in a �le using the �self de�ning data format� �SDDF�

described in Dan Reed�s Pablo ���� trace playing package� The analysis of PVM traces

can be carried out on any of a number of systems such as Pablo�

XPVM can play back its own SDDF �les� The tape�player�like buttons allow the user

to rewind the trace�le� stop the display at any point� and step through the execution� A

time display speci�es the number of seconds from when the trace display began�

The Views button allows the user to open or close any of several views presently

supplied with XPVM� These views are described below�

����� Network View

The Network view displays the present virtual machine con�guration and the activity of

the hosts� Each host is represented by an icon that includes the PVM ARCH and host

name inside the icon� In the initial release of XPVM� the icons are arranged arbitrarily

on both sides of a bus network� In future releases the view will be extended to visualize

network activity as well� At that time the user will be able to specify the network

topology to display�

These icons are illuminated in di
erent colors to indicate their status in executing PVM

tasks� Green implies that at least one task on that host is busy executing useful work�

Yellow indicates that no tasks are executing user computation� but at least one task is

busy executing PVM system routines� When there are no tasks on a given host� its icon

is left uncolored or white� The speci�c colors used in each case are user customizable�

The user can tell at a glance how well the virtual machine is being utilized by his

��� Chapter �

PVM application� If all the hosts are green most of the time� then machine utilization is

good� The Network view does not display activity from other users� PVM jobs or other

processes that may be running on the hosts�

In future releases the view will allow the user to click on a multiprocessor icon and

get information about the number of processors� number of PVM tasks� etc�� that are

running on the host�

����� Space�Time View

The Space�Time view displays the activities of individual PVM tasks that are running on

the virtual machine� Listed on the left�hand side of the view are the executable names

of the tasks� preceded by the host they are running on� The task list is sorted by host so

that it is easy to see whether tasks are being clumped on one host� This list also shows

the task�to�host mappings �which are not available in the Network view��

The Space�Time view combines three di
erent displays� The �rst is like a Gantt chart�

Beside each listed task is a horizontal bar stretching out in the �time� direction� The

color of this bar at any time indicates the state of the task� Green indicates that user

computations are being executed� Yellow marks the times when the task is executing

PVM routines� White indicates when a task is waiting for messages� The bar begins

at the time when the task starts executing and ends when the task exits normally� The

speci�c colors used in each case are user customizable�

The second display overlays the �rst display with the communication activity among

tasks� When a message is sent between two tasks� a red line is drawn starting at the

sending task�s bar at the time the message is sent and ending at the receiving task�s bar

when the message is received� Note that this is not necessarily the time the message

arrived� but rather the time the task returns from pvm recv��� Visually� the patterns

and slopes of the red lines combined with white �waiting� regions reveal a lot about the

communication e�ciency of an application�

The third display appears only when a user clicks on interesting features of the Space�

Time view with the left mouse button� A small �pop�up� window appears giving detailed

information regarding speci�c task states or messages� If a task bar is clicked on� the state

begin and end times are displayed� along with the last PVM system call information� If

a message line is clicked on� the window displays the send and receive time as well as the

number of bytes in the message and the message tag�

When the mouse is moved inside the Space�Time view� a blue vertical line tracks the

cursor and the time corresponding to this vertical line is displayed as Query time at the

bottom of the display� This vertical line also appears in the other �something vs� time�

views so the user can correlate a feature in one view with information given in another

view�

Advanced Topics ���

The user can zoom into any area of the Space�Time view by dragging the vertical line

with the middle mouse button� The view will unzoom back one level when the right

mouse button is clicked� It is often the case that very �ne communication or waiting

states are only visible when the view is magni�ed with the zoom feature� As with the

Query time� the other views also zoom along with the Space�Time view�

����� Other Views

XPVM is designed to be extensible� New views can be created and added to the Views

menu� At present� there are three other views� task utilization vs� time view� call trace

view� and task output view� Unlike the Network and Space�Time views� these views are

closed by default� XPVM attempts to draw the views in real time� hence� the fewer open

views� the faster XPVM can draw�

The Utilization view shows the number of tasks computing� in overhead� or waiting for

each instant� It is a summary of the Space�Time view for each instant� Since the number

of tasks in a PVM application can change dynamically� the scale on the Utilization view

will change dynamicallywhen tasks are added� but not when they exit� When the number

of tasks changes� the displayed portion of the Utilization view is completely redrawn to

the new scale�

The Call Trace view provides a textual record of the last PVM call made in each task�

The list of tasks is the same as in the Space�Time view� As an application runs� the text

changes to re�ect the most recent activity in each task� This view is useful as a call level

debugger to identify where a PVM program�s execution hangs�

Unlike the PVM console� XPVM has no natural place for task output to be printed�

Nor is there a �ag in XPVM to tell tasks to redirect their standard output back to

XPVM� This �ag is turned on automatically in all tasks spawned by XPVM after the

Task Output view is opened� This view gives the user the option to also redirect the

output into a �le� If the user types a �le name in the �Task Output� box� then the

output is printed in the window and into the �le�

As with the trace events� a task started outside XPVM can be programmed to send

standard output to XPVM for display by using the options in pvm setopt��� XPVM

expects the OutputCode to be set to ��	�

��� Porting PVM to New Architectures

PVM has been ported to three distinct classes of architecture�

� Workstations and PCs running some version of Unix

� Distributed�memory multiprocessors like the Intel hypercubes

��	 Chapter �

� Shared�memory multiprocessors like the SGI Challenge

Each of these classes requires a di
erent approach to make PVM exploit the capabilities

of the respective architecture� The workstations use TCP�IP to move data between hosts�

the distributed�memory multiprocessors use the native message�passing routines to move

data between nodes� and the shared�memory multiprocessors use shared memory to move

data between the processors� The following sections describe the steps for porting the

PVM source to each of these classes�

Porting PVM to non�Unix operating systems can be very di�cult� Nonetheless� groups

outside the PVM team have developed PVM ports for DEC�s VMS and IBM�s OS��

operating systems� Such ports can require extensive rewriting of the source and are not

described here�

����� Unix Workstations

PVM is supported on most Unix platforms� If an architecture is not listed in the �le

�PVM ROOT�docs�arches� the following description should help you to create a new PVM

port� Anything from a small amount of tweaking to major surgery may be required�

depending on how accomodating your version of Unix is�

The PVM source directories are organized in the following manner� Files in src form

the core for PVM �pvmd and libpvm�� �les in console are for the PVM console� which

is just a special task� source for the FORTRAN interface and group functions are in the

libfpvm and pvmgs directories� respectively�

In each of the source directories� the �le Makefile�aimk is the generic make�le for all

uniprocessor platforms� System�speci�c de�nitions are kept in the conf directory under

��PVM ARCH��def� The script lib�aimk� invoked by the top�level make�le� determines

the value of PVM ARCH� then chooses the appropriate make�le for a particular architecture�

It �rst looks in the PVM ARCH subdirectory for a make�le� if none is found� the generic one

is used� The custom information stored in the conf directory is prepended to the head

of the chosen make�le� and the build begins� The generic make�les for MPP and shared�

memory systems are Make�le�mimd and Make�le�shmem� respectively� System�speci�c

rules are kept in the make�le under the PVM ARCH subdirectory�

The steps to create a new architecture �for example ARCH� are�

� Add a rule to the script lib�pvmgetarch so it returns ARCH� PVM uses this program

to determine machine architecture at run time� pvmgetarch tries to use the uname or

arch command �supplied by many vendors�� If there is no such command� we check for

the existence of a �le or device unique to a machine � try to �nd one that doesn�t depend

on con�guration options� Don�t break the existing architectures when adding a new one�

unless you won�t be sharing the code or just want to hack it together� At worst� you can

Advanced Topics ���

override pvmgetarch by setting PVM ARCH in your �cshrc �le�

� Create �les ARCH�def and ARCH�m	 in pvm��conf� As a �rst try� copy them from

another architecture similar to yours �you�ll have to �gure that out�� ARCH�def is

a machine�dependent header used with the generic make�les �for example see the �le

src�Makefile�aimk�� It de�nes the following variables �and possibly others��

� PVM ARCH � This is set to the architecture name� ARCH�

� ARCHCFLAGS � This lists any special C compiler �ags needed� for example� optimizer limits or
�oating�point switches �Not� for example� �O�� It also de
nes macros needed to switch in optional
PVM source code� for example� �DSYSVSIGNAL� Common compiler macros are explained below�

� ARCHDLIB � This lists any special libraries needed to link with the pvmd� for example �lsocket�
You
ll need to set this if there are symbols unde
ned while linking the pvmd� You can use nm and
grep to
nd the missing functions in �usr�lib�lib��a� They may occur in multiple libraries�
but are probably de
ned in only one�

� ARCHLIB � This lists any special libraries needed to link with tasks �anything linked with
libpvm�� It is probably a supeset of ARCHDLIB� because libpvm uses mostly the same functions
as the pvmd� and also uses XDR�

� HASRANLIB � This should be set to t if your machine has the ranlib command� and f otherwise�

Compiler macros imported from conf�ARCH�def are listed at the top of the �le named

src�Makefile�aimk� They enable options that are common to several machines and so

generally useful� New ones are added occasionally� The macro IMA ARCH can be used

to enable code that only applies to a single architecture� The ones most commonly used

are�

� FDSETPATCH � If fd set de
nitions are missing from the system �rare these days��

� HASSTDLIB � If system has �stdlib�h��

� NOGETDTBLSIZ � If system doesn
t have getdtablesize�� �uses sysconf� SC OPEN MAX� in�
stead��

� NOREXEC � If system doesn
t have rexec�� function�

� NOSOCKOPT � If system doesn
t have setsockopt�� function� or it doesn
t work�

� NOSTRCASE � If system doesn
t have strcasecmp�� or strncasecmp�� �includes replacements��

� NOTMPNAM � If system doesn
t have tmpnam�� function� or it
s broken�

� NOUNIXDOM � To disable use of Unix�domain sockets for local communication�

� NOWAIT
 � If system doesn
t have wait
�� function �uses waitpid����

� NOWAITPID � If system doesn
t have waitpid�� function either �uses wait����

� RSHCOMMAND � If rsh command isn
t named ��usr�ucb�rsh��

� SHAREDTMP � If �tmp directory is shared between machines in a cluster�

��� Chapter �

� SOCKADHASLEN � If struct sockaddr has an sa len
eld�

� SYSVBFUNC � If system doesn
t have bcopy�� but does have memcpy���

� SYSVSIGNAL � If system has System�� signal handling �signal handlers are uninstalled after
each signal��

� SYSVSTR � If system doesn
t have index�� but does have strchr���

� UDPMAXLEN � To set a di�erent maximum UDP packet length �the default is �	����

ARCH�m	 is a �le of commands for the m	 macro processor� that edits the libfpvm C

source code to conform to FORTRAN calling conventions� which vary from machine to

machine� The two main things you must determine about your FORTRAN are� �� How

FORTRAN subroutine names are converted to linker symbols� Some systems append

an underscore to the name� others convert to all capital letters� �� How strings are

passed in FORTRAN � One commonmethod is to pass the address in a char�� and pass

corresponding lengths after all remaining parameters� The easiest way to discover the

correct choices may be to try every common case �approximately three� for each� First�

get the function names right� then make sure you can pass string data to FORTRAN

tasks�

� Add ARCH to the arches�� array in src�pvmarchc�c� You must determine the data

format of your machine to know which class to assign it to� Machines with the same

arches�i��archnum have the same binary representations for integers and �oating point

numbers� At worst� put the new machine in a class by itself�

� Modify the source if it still doesn�t work� Use cpp symbol IMA ARCH to include modi��

cations that only apply to ARCH� so they don�t a
ect other ports�

����� Multiprocessors

Porting to MPP systems is more di�cult because most of them do not o
er a standard

Unix environment on the nodes� We discuss some of these limitations below�

Processes running on the nodes of an Intel iPSC�
�� have no Unix process id�s and

they cannot receive Unix signals� There is a similar problem for the Thinking Machine�s

CM���

If a node process forks� the behavior of the new process is machine dependent� In any

event it would not be allowed to become a new PVM task� In general� processes on the

nodes are not allowed to enroll unless they were spawned by PVM�

By default� pvm spawn�� starts tasks on the �compute� nodes� To spawn multiple

copies of the same executable� the programmer should call pvm spawn�� once and specify

the number of copies�

Advanced Topics ���

On some machines �e�g�� iPSC�
���� only one process is allowed on each node� so

the total number of PVM tasks on these machines cannot exceed the number of nodes

available�

Several functions serve as the multiprocessor �interface� for PVM� They are called by

pvmd to spawn new tasks and to communicate with them� The implementation of these

functions is system dependent� the source code is kept in the src�PVM ARCH�pvmdmimd�c

�message passing� or src�PVM ARCH�pvmdshmem�c �shared memory�� We give a brief

description of each of these functions below� Note that pvmdmimd�c can be found in the

subdirectory PVM ARCH because MPP platforms are very di
erent from one another�

even those from the same vendor�

void mpp�init�int argc� char ��argv��

Initialization� Called once when PVM is started� Arguments argc and argv

are passed from pvmd main���

int mpp�load�int flags� char �name� char �argv� int count� int �tids� int ptid��

Create partition if necessary� Load executable onto nodes� create new

entries in task table� encode node number and process type into task IDs�

flags
 exec options�

name
 executable to be loaded�

argv
 command line argument for executable�

count
 number of tasks to be created�

tids
 array to store new task IDs�

ptid
 parent task ID�

void mpp�output�struct task �tp� struct pkt �pp��

Send all pending packets to nodes via native send� Node number and process

type are extracted from task ID�

tp
 destination task�

pp
 packet�

int mpp�mcast�struct pkt pp� int �tids� int ntask��

Global send�

pp
 packet�

tids
 list of destination task IDs�

ntask
 how many�

int mpp�probe���

Probe for pending packets from nodes �non�blocking�� Returns � if packets

are found� otherwise ��

void mpp�input���

Receive pending packets �from nodes� via native receive�

��� Chapter �

void mpp�free�int tid�

Remove node�process�type from active list�

tid
 task ID�

In addition to these functions� the message exchange routine in libpvm� mroute���

must also be implemented in the most e�cient native message�passing primitives� The

following macros are de�ned in src�pvmmimd�h�

ASYNCRECV�buf�len�

Non�blocking receive� Returns immediately with a message handle�

buf
 �char ��� buffer to place the data�

len
 �int�� size of buffer in bytes�

ASYNCSEND�tag�buf�len�dest�ptype�

Non�blocking send� Returns immediately with a message handle�

tag
 �int�� message tag�

buf
 �char ��� location of data�

len
 �int�� size of data in bytes�

dest
 �long�� address of destination node�

ptype
 instance number of destination task�

ASYNCWAIT�mid�

Blocks until operation associated with mid has completed�

mid
 message handle �its type is system�dependent��

ASYNCDONE�mid�

Returns � if operation associated with mid has completed� and � otherwise�

mid
 message handle �its type is system�dependent��

MSGSIZE�mid�

Returns size of message most recently arrived�

mid
 message handle �its type is system�dependent��

MSGSENDER�mid�

Returns node number of the sender of most recently received message�

mid
 message handle �its type is system�dependent��

PVMCRECV�tag�buf�len�

Blocks until message has been received into buffer�

tag
 �int�� expected message tag�

buf
 �char ��� buffer to place the data�

len
 �int�� size of buffer in bytes�

Advanced Topics ���

PVMCSEND�tag�buf�len�dest�ptype�

Blocks until send operation is complete and buffer can be reused�

Non�blocking send� Returns immediately with a message handle�

tag
 �int�� message tag�

buf
 �char ��� location of data�

len
 �int�� size of data in bytes�

dest
 �long�� address of destination node�

ptype
 instance number of destination task�

These functions are used by mroute�� on MPP systems� The source code for mroute

for multiprocessors is in src�lpvmmimd�c or src�lpvmshmem�c depending on the class�
For shared�memory implementations� the following macros are de�ned in the �le

src�pvmshmem�h�

PAGEINITLOCK�lp�

Initialize the lock pointed to by lp�

PAGELOCK�lp�

Locks the lock pointed to by lp�

PAGEUNLOCK�lp�

Unlocks the lock pointed to by lp�

In addition� the �le pvmshmem�c contains routines used by both pvmd and libpvm�

� Troubleshooting

This chapter attempts to answer some of the most common questions encountered by

users when installing PVM and running PVM programs� It also covers debugging the

system itself� which is sometimes necessary when doing new ports or trying to determine

whether an application or PVM is at fault� The material here is mainly taken from other

sections of the book� and rearranged to make answers easier to �nd� As always� RTFM

pages �rst� Printed material always lags behind reality� while the online documentation

is kept up�to�date with each release� The newsgroup comp�parallel�pvm is available to

post questions and discussions�

If you �nd a problem with PVM� please tell us about it� A bug report form is included

with the distribution in �PVM ROOT�doc�bugreport� Please use this form or include

equivalent information�

Some of the information in this chapter applies only to the generic Unix implementation

of PVM� or describes features more volatile than the standard documented ones� It is

presented here to aid with debugging� and tagged with a � to warn you of its nature�

Examples of shell scripts are for either C�shell �csh� tcsh� or Bourne shell �sh� ksh��

If you use some other shell� you may need to modify them somewhat� or use csh while

troubleshooting�

	�� Getting PVM Installed

You can get a copy of PVM for your own use or share an already�installed copy with

other users� The installation process for either case more or less the same�

����� Set PVM ROOT

Make certain you have environment variable PVM ROOT set �and exported� if applicable�

to directory where PVM is installed before you do anything else� This directory is where

the system executables and libraries reside� Your application executables go in a private

directory� by default �HOME�pvm��bin��PVM ARCH� If PVM is already installed at your

site you can share it by setting PVM ROOT to that path� for example �usr�local�pvm��

If you have your own copy� you could install it in �HOME�pvm��

If you normally use csh� add a line like this to your �cshrc �le�

setenv PVM ROOT �HOME�pvm�

If you normally use sh� add these lines to your �profile�

PVM ROOT��HOME�pvm� PVM DPATH��HOME�pvm��lib�pvmd export PVM ROOT PVM DPATH

��� Chapter �

Make sure these are set in your current session too�

Older versions of PVM assumed an installation path of �HOME�pvm�� Versions ��� and

later require that the PVM ROOT variable always be set� Note� For compatibility with

older versions of PVM and some command shells that don�t execute a startup �le� newer

versions guess �HOME�pvm� if it�s not set� but you shouldn�t depend on that�

����� On�Line Manual Pages

On�line manual pages compatible with most Unix machines are shipped with the source

distribution� These reside in �PVM ROOT�man and can be copied to some other place �for

example �usr�local�man or used in�place� If the man program on your machine uses the

MANPATH environment variable� try adding something like the following near the end of

your �cshrc or �login �le�

if �' �!MANPATH� setenv MANPATH �usr�man��usr�local�man

setenv MANPATH ��MANPATH���PVM
ROOT�man

Then you should be able to read both normal system man pages and PVM man pages

by simply typing man subject�

����� Building the Release

The following commands download� unpack� build and install a release�

�start in directory just above PVM root� for example �HOME or �usr�local�
� ftp netlib��cs�utk�edu

Name
 anonymous

Password
 your id� user�host�domain

ftp� cd pvm

ftp� bin

ftp� get pvm
�
�tar�z�uu �or the most recent version�
ftp� quit

� uudecode pvm
�
�tar�z�uu

� zcat pvm
�
�tar�Z � tar xf �

� cd pvm

� setenv PVM ROOT �cwd

� make

����� Errors During Build

The compiler may print a few warning messages� we suggest you ignore these unless the

build doesn�t complete or until you have some other reason to think there is a problem� If

Troubleshooting ���

you can�t build the unmodi�ed distribution �out of the box� on a supported architecture�

let us know�

����
 Compatible Versions

The protocols used in building PVM are evolving� with the result that newer releases are

not compatible with older ones� Compatibility is determined by the pvmd�task and task�

task protocol revision numbers� These are compared when two PVM entities connect�

they will refuse to interoperate if the numbers don�t match� The protocol numbers are

de�ned in src�ddpro�h and src�tdpro�h �DDPROTOCOL� TDPROTOCOL��

As a general rule� PVM releases with the same second digit in their version numbers

�for example ����� and ������ will interoperate� Changes that result in incompatibility

are held until a major version change �for example� from ��� to �����

	�� Getting PVM Running

To get PVM running� you must start either a pvmd or the PVM console by hand� The ex�

ecutables are named pvmd� and pvm� respectively� and reside in directory �PVM ROOT�lib�

�PVM ARCH� We suggest using the pvmd or pvm script in �PVM ROOT�lib instead� as this

simpli�es setting your shell path� These scripts determine the host architecture and run

the correct executable� passing on their command line arguments�

Problems when starting PVM can be caused by system or network trouble� running

out of resources �such as disk space�� incorrect installation or a bug in the PVM code�

����� Pvmd Log File

The pvmd writes errors on both its standard error stream �only until it is fully started�

and a log �le� named �tmp�pvml�uid� uid is your numeric user id �generally the number

in the third colon�separated �eld of your passwd entry�� If PVM was built with the

SHAREDTMP option �used when a cluster of machines shares a �tmp directory�� the log �le

will instead be named �tmp�pvml�uid�hostname�

If you have trouble getting PVM started� always check the log �le for hints about

what went wrong� If more than one host is involved� check the log �le on each host� For

example� when adding a new host to a virtual machine� check the log �les on the master

host and the new host�

Try the following command to get your uid�

�grep �whoami� �etc�passwd �� ypmatch �whoami� passwd� �

� awk �F
 ��print �
�exit �

��	 Chapter �

����� Pvmd Socket Address File

The pvmd publishes the address of the socket to which local tasks connect in a �le named

�tmp�pvmd�uid� uid is your numeric user id �generally in the third �eld of your passwd

entry�� If PVM was built with the SHAREDTMP option �used when a cluster of machines

shares a �tmp directory�� the �le will be named �tmp�pvmd�uid�hostname� See x	���� for

more information on how this �le is used�

The pvmd creates the socket address �le while starting up� and removes it while shut�

ting down� If while starting up� it �nds the �le already exists� it prints an error message

and exits� If the pvmd can�t create the �le because the permissions of �tmp are set

incorrectly or the �lesystem is full� it won�t be able to start up�

If the pvmd is killed with un uncatchable signal or other catastrophic event such as a

�Unix� machine crash� you must remove the socket address �le before another pvmd will

start on that host�

Note that if the pvmd is compiled with option OVERLOADHOST� it will start up even if

the address �le already exists �creating it if it doesn�t�� It doesn�t consider the existence

of the address �le an error� This allows disjoint virtual machines owned by the same user

to use overlapping sets of hosts� Tasks not spawned by PVM can only connect to the

�rst pvmd running on an overloaded host� however� unless they can somehow guess the

correct socket address of one of the other pvmds�

����� Starting PVM from the Console

PVM is normally started by invoking the console program� which starts a pvmd if one is

not already running and connects to it� The syntax for starting a PVM console is�

pvm ��ddebugmask� ��nhostname� �host�le�

If the console can�t start the pvmd for some reason� you may see one of the following

error messages� Check the pvmd log �le for error messages� The most common ones are

described below�

Can�t start pvmd � This message means that the console either can�t �nd the pvmd

executable or the pvmd is having trouble starting up� If the pvmd complains that it

can�t bind a socket� perhaps the host name set for the machine does not resolve to an

IP address of one of its interfaces� or that interface is down� The console�pvmd option

�nname can be used to change the default�

Can�t contact local daemon � If a previously running pvmd crashed� leaving behind

its socket address �le� the console may print this message� The pvmd will log error

message pvmd already running!� Find and delete the address �le�

Troubleshooting ���

Version mismatch � The console �libpvm� and pvmd protocol revision numbers don�t

match� The protocol has a revision number so that incompatible versions won�t attempt

to interoperate� Note that having di
erent protocol revisions doesn�t necessarily cause

this message to be printed� instead the connecting side may simply hang�

����� Starting the Pvmd by Hand

It is necessary to start the master pvmd by hand if you will use the so�pw or so�ms

options in the host �le or when adding hosts� These options require direct interaction

with the pvmd when adding a host� If the pvmd is started by the console� or otherwise

backgrounded� it will not be able to read passwords from a TTY�

The syntax to start the master pvmd by hand is�

�PVM ROOT�lib�pvmd ��ddebugmask� ��nhostname� �host�le�

If you start a PVM console or application� use another window� When the pvmd

�nishes starting up� it prints out a line like either� �a#$ee	��a#a or �tmp�aaa����"$�

If it can�t start up� you may not see an error message� depending on whether the problem

occurs before or after the pvmd stops logging to its standard error output� Check the

pvmd log �le for a complete record�

����
 Adding Hosts to the Virtual Machine

This section also applies to hosts started via a host �le� because the same mechanism

is used in both cases� The master pvmd starts up� reads the host �le� then sends itself

a request to add more hosts� The PVM console �or an application� can return an error

when adding hosts to the virtual machine� Check the pvmd log �le on the master host

and the failing host for additional clues to what went wrong�

No such host � The master pvmd couldn�t resolve the the host name �or name given

in ip� option� to an IP address� Make sure you have the correct host name�
Can�t start pvmd � This message means that the master pvmd failed to start the

slave pvmd process� This can be caused by incorrect installation� network or permission
problems� The master pvmd must be able to resolve the host name �get its IP address�
and route packets to it� The pvmd executable and shell script to start it must be installed
in the correct location� You must avoid printing anything in your �cshrc �or equivalent�
script� because it will confuse the pvmd communication� If you must print something�
either move it to your �login �le or enclose it in a conditional�

if � � tty �s !! �"prompt � then

echo terminal type is �TERM

stty erase �#"� kill �#u� intr �#c� echo

endif

��� Chapter �

To test all the above� try running the following command by hand on the master host�

rsh host �PVM ROOT�lib�pvmd �s

where host is the name of the slave host you want to test� You should see a message
similar to the following from the slave pvmd and nothing else�

�pvmd pid��
��� slave�config
 bad args

�pvmd pid��
��� pvmbailout���

Version mismatch � This message indicates that the protocol revisions of the master

and slave pvmd are incompatible� You must install the same �or compatible� versions

everywhere�

Duplicate host � This message means that PVM thinks there is another pvmd

�owned by the same user� already running on the host� If you�re not already using

the host in the current virtual machine or a di
erent one� the socket address �le �x������

must be left over from a previous run� Find and delete it�

����� PVM Host File

A host �le may be supplied to the pvmd �or console� which passes it to the pvmd� as a

command�line parameter� Each line of the �le contains a host name followed by option

parameters� Hosts not preceded by ��� are started automatically as soon as the master

pvmd is ready� The syntax�

� option option ���

changes the default parameters for subsequent hosts �both those in the host �le and those

added later�� Default statements are not cumulative� each applies to the system defaults�

For example� after the following two host �le entries�

� dx�pvm��lib�pvmd

� ep��bin��usr�bin�pvm��bin��PVM
ARCH

only ep is changed from its system default �dx is reset by the second line�� To set multiple

defaults� combine them into a single line�

����� Shutting Down

The preferred way to shut down a virtual machine is to type halt at the PVM console�

or to call libpvm function pvm halt��� When shutting PVM down from the console� you

may see an error message such as EOF on pvmd sock� This is normal and can be ignored�

You can instead kill the pvmd process� it will shut down� killing any local tasks with

SIGTERM� If you kill a slave pvmd� it will be deleted from the virtual machine� If you

Troubleshooting ���

kill the master pvmd� the slaves will all exit too� Always kill the pvmd with a catchable

signal� for example SIGTERM� If you kill it with SIGKILL� it won�t be able to clean up

after itself� and you�ll have to do that by hand�

	�� Compiling Applications

����� Header Files

PVM applications written in C should include header �le pvm��h� as follows�

�include �pvm��h�

Programs using the trace functions should additionally include pvmtev�h� and resource

manager programs should include pvmsdpro�h� You may need to specify the PVM include

directory in the compiler �ags as follows�

cc ��� �I�PVM ROOT�include ���

A header �le for Fortran �fpvm��h� is also supplied� Syntax for including �les in

Fortran is variable� the header �le may need to be pasted into your source� A statement

commonly used is�

INCLUDE ��usr�local�pvm�include�fpvm��h�

����� Linking

PVM applications written in C must be linked with at least the base PVM library�

libpvm�� Fortran applications must be linked with both libfpvm� and libpvm�� Programs

that use group functions must also be linked with libgpvm�� On some operating systems�

PVM programs must be linked with still other libraries �for the socket or XDR functions��

Note that the order of libraries in the link command is important� Unix machines

generally process the list from left to right� searching each library once� You may also

need to specify the PVM library directory in the link command� A correct order is shown

below �your compiler may be called something other than cc or f""��

cc�f$$ � compiler flags � � source files � � loader flags �

�L�PVM�ROOT�lib��PVM�ARCH �lfpvm
 �lgpvm
 �lpvm

� libraries needed by PVM � � other libraries �

The aimk program supplied with PVM automatically sets environment variable PVM ARCH

to the PVM architecture name and ARCHLIB to the necessary system libraries� Before

running aimk� you must have PVM ROOT set to the path where PVM is installed� You can

use these variables to write a portable� shared make�le �Makefile�aimk��

��� Chapter �

	�� Running Applications

����� Spawn Can�t Find Executables

No such file � This error code is returned instead of a task id when the pvmd fails to

�nd a program executable during spawn�

Remember that task placement decisions are made before checking the existence of

executables� If an executable is not installed on the selected host� PVM returns an error

instead of trying another one� For example� if you have installed myprog on � hosts of

a 	 host virtual machine� and spawn 	 instances of myprog with default placement� only

� will succeed� Make sure executables are built for each architecture you�re using� and

installed in the correct directory� By default� PVM searches �rst in pvm��bin��PVM ARCH

�the pvmd default working directory is �HOME� and then in �PVM ROOT�bin��PVM ARCH�

This path list can be changed with host �le option ep�� If your programs aren�t on a

�lesystem shared between the hosts� you must copy them to each host manually�

����� Group Functions

failed to start group server � This message means that a function in the group

library �libgpvm��a� could not spawn a group server task to manage group membership

lists� Tasks using group library functions must be able to communicate with this server�

It is started automatically if one is not already running� The group server executable

�pvmgs� normally resides in �PVM ROOT�bin��PVM ARCH� which must be in the pvmd

search path� If you change the path using the host �le ep� option� make sure this

directory is still included� The group server may be spawned on any host� so be sure one

is installed and your path is set correctly everywhere�

����� Memory Use

Tasks and pvmds allocate some memory �using malloc��� as they run� Malloc never

gives memory back to the system� so the data size of each process only increases over its

lifetime� Message and packet bu
ers �the main users of dynamic memory in PVM� are

recycled� however�

The things that most commonly cause PVM to use a large amount of memory are

passing huge messages� certain communication patterns and memory leaks�

A task sending a PVM message doesn�t necessarily block until the corresponding re�

ceive is executed� Messages are stored at the destination until claimed� allowing some

leeway when programming in PVM� The programmer should be careful to limit the num�

ber of outstanding messages� Having too many causes the receiving task �and its pvmd

if the task is busy� to accumulate a lot of dynamic memory to hold all the messages�

Troubleshooting ���

There is nothing to stop a task from sending a message which is never claimed �because

receive is never called with a wildcard pattern�� This message will be held in memory

until the task exits�

Make sure you�re not accumulating old message bu
ers by moving them aside� The

pvm initsend�� and receive functions automatically free the current bu
er� but if you

use the pvm set�sr�buf�� routines� then the associated bu
ers may not be freed� For

example� the following code fragment allocates message bu
ers until the system runs out

of memory�

while ��� �

pvm�initsend�PvmDataDefault�� �� make new buffer ��

pvm�setsbuf����

�� now buffer won�t be freed by next initsend ��

� As a quick check� look at the message handles returned by initsend or receive func�

tions� Message ids are taken from a pool� which is extended as the number of message

bu
ers in use increases� If there is a bu
er leak� message ids will start out small and

increase steadily�

� Two undocumented functions in libpvm dump information about message bu
ers�

umbuf dump�int mid� int level��

umbuf list�int level��

Function umbuf dump�� dumps a message bu
er by id �mid�� Parameter level is one of�

Level Information dumped

� One�line summary

� List of data fragments

� All data packed in message

Function umbuf list�� calls umbuf dump�� for each message in the message heap�

����� Input and Output

Each task spawned through PVM has its stdout and stderr �les connected to a pipe that

is read by the pvmd managing the task� Anything printed by the task is packed into

a PVM message by the pvmd and sent to the task�s stdout sink� The implementation

of this mechanism is described in x	�	��� Each spawned task has �dev�null opened as

stdin�

��� Chapter �

Output from a task running on any host in a virtual machine �unless redirected by the

console� or a parent task� is written in the log �le of the master pvmd by default�

You can use the console spawn command with �ag �� to collect output from an

application �the spawned tasks and any others they in turn spawn�� Use function

pvm catchout�� to collect output within an application�

The C stdio library �fgets��� printf��� etc�� bu
ers input and output whenever

possible� to reduce the frequency of actual read�� or write�� system calls� It decides

whether to bu
er by looking at the underlying �le descriptor of a stream� If the �le is

a tty� it bu
ers only a line at a time� that is� the bu
er is �ushed whenever the newline

character is encountered� If the descriptor is a �le� pipe� or socket� however� stdio bu
ers

up much more� typically �k bytes�

A task spawned by PVM writes output through a pipe back to its pvmd� so the stdout

bu
er isn�t �ushed after every line �stderr probably is�� The pvm exit�� function closes

the stdio streams� causing them to be �ushed so you should eventually see all your output�

You can �ush stdout by calling fflush�stdout� anywhere in your program� You can

change the bu
ering mode of stdout to line�oriented for the entire program by calling

setlinebuf�stdout� near the top of the program�

Fortran systems handle output bu
ering in many di
erent ways� Sometimes there is

a FLUSH subroutine� sometimes not�

In a PVM task� you can open a �le to read or write� but remember that spawned

components inherit the working directory �by default �HOME� from the pvmd so the �le

path you open must be relative to your home directory �or an absolute path�� You can

change the pvmd �and therefore task� working directory �per�host� by using the host �le

option wd��

����
 Scheduling Priority

� PVM doesn�t have a built�in facility for running programs at di
erent priorities �as

with nice�� but you can do it yourself� You can call setpriority�� �or perhaps nice���

in your code or replace your program with a shell script wrapper as follows�

cd %�pvm
�bin�SUN�

mv prog prog�

echo �P������� shift� exec nice ��� �P �&� � prog

chmod $		 prog

When prog is spawned� the shell script execs prog� at a new priority level�

You could be even more creative and pass an environment variable through PVM to

the shell script� to allow varying the priority without editing the script� If you want to

Troubleshooting ���

have real fun� hack the tasker example to do the work� then you won�t have to replace

all the programs with wrappers�

One reason for changing the scheduling priority of a task is to allow it to run on a

workstation without impacting the performance of the machine for someone sitting at

the console� Longer response time seems to feel worse than lower throughput� Response

time is a
ected most by tasks that use a lot of memory� stealing all the physical pages

from other programs� When interactive input arrives� it takes the system time to reclaim

all the pages� Decreasing the priority of such a task may not help much� because if it�s

allowed to run for a few seconds� it accumulates pages again� In contrast� cpu bound

jobs with small working set sizes may hardly a
ect the response time at all� unless you

have many of them running�

����� Resource Limitations

Available memory limits the maximum size and number of outstanding messages the

system can handle� The number of �le descriptors �I�O channels� available to a process

limits the number of direct route connections a task can establish to other tasks� and the

number of tasks a single pvmd can manage� The number of processes allowed to a user

limits the number of tasks that can run on a single host� and so on�

An important thing to know is that you may not see a message when you reach a

resource limit� PVM tries to return an error code to the o
ending task and continue

operation� but can�t recover from certain events �running out of memory is the worst��

See x	�� for more information on how resource limits a
ect PVM�

	�� Debugging and Tracing

First� the bad news� Adding printf�� calls to your code is still a state�of�the�art method�

ology�

PVM tasks can be started in a debugger on systems that support X�Windows� If

PvmTaskDebug is speci�ed in pvm spawn��� PVM runs �PVM ROOT�lib�debugger� which

opens an xterm in which it runs the task in a debugger de�ned in pvm��lib�debugger��

The PvmTaskDebug �ag is not inherited� so you must modify each call to spawn� The

DISPLAY environment variable can be exported to a remote host so the xterm will al�

ways be displayed on the local screen� Use the following command before running the

application�

setenv PVM�EXPORT DISPLAY

Make sure DISPLAY is set to the name of your host �not unix��� and the host name

��� Chapter �

is fully quali�ed if your virtual machine includes hosts at more than one administrative

site� To spawn a task in a debugger from the console� use the command�

spawn �" � rest of spawn command �

You may be able to use the libpvm trace facility to isolate problems� such as hung

processes� A task has a trace mask� which allows each function in libpvm to be selectively

traced� and a trace sink� which is another task to which trace data is sent �as messages��

A task�s trace mask and sink are inherited by any tasks spawned by it�

The console can spawn a task with tracing enabled �using the spawn ���� collect the

trace data and print it out� In this way� a whole job �group of tasks related by parentage�

can be traced� The console has a trace command to edit the mask passed to tasks it

spawns� Or� XPVM can be used to collect and display trace data graphically�

It is di�cult to start an application by hand and trace it� though� Tasks with no parent

�anonymous tasks� have a default trace mask and sink of NULL� Not only must the �rst

task call pvm setopt�� and pvm settmask�� to initialize the tracing parameters� but it

must collect and interpret the trace data� If you must start a traced application from a

TTY� we suggest spawning an xterm from the console�

spawn �� �usr�local�X��R$�bin�xterm �n PVMTASK

The task context held open by the xterm has tracing enabled� If you now run a PVM

program in the xterm� it will reconnect to the task context and trace data will be sent

back to the PVM console� Once the PVM program exits� you must spawn a new xterm

to run again� since the task context will be closed�

Because the libpvm library is linked with your program� it can�t be trusted when

debugging� If you overwrite part of its memory �for example by overstepping the bounds

of an array� it may start to behave erratically� making the fault hard to isolate� The

pvmds are somewhat more robust and attempt to sanity�check messages from tasks� but

can still be killed by errant programs�

The pvm setopt�� function can be used to set the debug mask for PVM message�

passing functions� as described in x������ Setting this mask to �� for example� will force

PVM to log for every message sent or received by that task� information such as the

source� destination� and length of the message� You can use this information to trace

lost or stray messages�

	�� Debugging the System

Youmayneed to debug the PVM system when porting it to a new architecture� or because

an application is not running correctly� If you�ve thoroughly checked your application

Troubleshooting ���

and can�t �nd a problem� then it may lie in the system itself� This section describes a

few tricks and undocumented features of PVM to help you �nd out what�s going on�

����� Runtime Debug Masks

� The pvmd and libpvm each have a debugging mask that can be set to enable logging of

various information� Logging information is divided into classes� each enabled separately

by a bit in the debug mask� The pvmd and console have a command line option ��d� to

set the debug mask of the pvmd to the �hexadecimal� value speci�ed� the default is zero�

Slave pvmds inherit the debug mask of the master as they are started� The debug mask

of a pvmd can be set at any time using the console tickle command on that host� The

debug mask in libpvm can be set in the task with pvm setopt���

The pvmd debug mask bits are de�ned in ddpro�h� and the libpvm bits in lpvm�c� The

meanings of the bits are not well de�ned� since they�re only intended to be used when

�xing or modifying the pvmd or libpvm� At present� the bits in the debug mask are as

follows�

Name Bit Debug Messages about
pkt 	x� Packet routing
msg � Message routing
tsk � Task management
slv � Slave pvmd startup
hst �	 Host table updates
sel �	 Select loop �below packet routing layer�
net �	 Network twiddling
mpp �	 MPP port speci
c
sch �		 Resource manager interface

����� Tickle the Pvmd

� The tickle function is a simple� extensible interface that allows a task to poke at its

local pvmd as it runs� It is not formally speci�ed� but has proven to be very useful

in debugging the system� Tickle is accessible from the console �tickle command� or

libpvm� Function pvm tickle�� sends a TM TICKLE message to the pvmd containing

a short �maximum of ten� array of integers and receives an array in reply� The �rst

element of the array is a subcommand� and the remaining elements are parameters� The

commands currently de�ned are�

��	 Chapter �

Args Return Action

	 � Dump instrumented heap �x������ to pvmd log
le
� � Dump host table
� � Dump task table
� � Dump waitc list
� � Dump class�name list
� mask Get pvmd debug mask
� mask � Set pvmd debug mask to mask

� max � Set max outstanding packets to max

� tid � Trigger host fail for host tid
� �ag � Dump pvmd statistics �x������� clear if �ag nonzero

New tickle commands are generally added to the end of the list�

����� Starting Pvmd under a Debugger

If the pvmd breaks� you may need to start it under a debugger� The master pvmd can

be started by hand under a debugger� and the PVM console started on another terminal�

To start a slave pvmd under a debugger� use the manual startup �so�ms� host �le option

so the master pvmd will allow you to start the slave by hand� Or� use the dx� host �le

option to execute a script similar to lib�debugger� and run the pvmd in a debugger in

an xterm window�

����� Sane Heap

� To help catch memory allocation errors in the system code� the pvmd and libpvm use

a sanity�checking library called imalloc� Imalloc functions are wrappers for the regular

libc functions malloc��� realloc��� and free��� Upon detecting an error� the imalloc

functions abort the program so the fault can be traced�

The following checks and functions are performed by imalloc�

�� The length argument to malloc is checked for insane values� A length of zero is changed

to one so it succeeds�

�� Each allocated block is tracked in a hash table to detect when free�� is called more

than once on a block or on something not from malloc���

�� i malloc�� and i realloc��write pads �lled with a pseudo�random pattern outside the

bounds of each block� which are checked by i free�� to detect when something writes

past the end of a block�

�� i free�� zeros each block before it frees it so further references may fail and make

themselves known�

�� Each block is tagged with a serial number and string to indicate its use� The heap

space can be dumped or sanity�checked at any time by calling i dump��� This helps �nd

Troubleshooting ���

memory leaks�

Since the overhead of this checking is quite severe� it is disabled at compile time by

default� De�ning USE PVM ALLOC in the source make�le�s� switches it on�

����
 Statistics

� The pvmd includes several registers and counters to sample certain events� such as

the number of calls made to select�� or the number of packets refragmented by the

network code� These values can be computed from a debug log� but the counters have less

adverse impact on the performance of the pvmd than would generating a huge log �le�

The counters can be dumped or reset using the pvm tickle�� function or the console

tickle command� The code to gather statistics is normally switched out at compile time�

To enable it� one edits the make�le and adds �DSTATISTICS to the compile options�

Glossary

asynchronous Not guaranteed to enforce coincidence in clock time� In an asynchronous

communication operation� the sender and receiver may or may not both be engaged in

the operation at the same instant in clock time�

atomic Not interruptible� An atomic operation is one that always appears to have been

executed as a unit�

bandwidth A measure of the speed of information transfer typically used to quantify

the communication capability of multicomputer and multiprocessor systems� Bandwidth

can express point�to�point or collective �bus� communications rates� Bandwidths are

usually expressed in megabytes per second�

barrier synchronization An event in which two or more processes belonging to some

implicit or explicit group block until all members of the group have blocked� They may

then all proceed� No member of the group may pass a barrier until all processes in the

group have reached it�

big�endian A binary data format in which the most signi�cant byte or bit comes �rst�

See also little�endian�

bisection bandwidth The rate at which communication can take place between one

half of a computer and the other� A low bisection bandwidth or a large disparity between

the maximum and minimum bisection bandwidths achieved by cutting the computers

elements in di
erent ways is a warning that communications bottlenecks may arise in

some calculations�

broadcast To send a message to all possible recipients� Broadcast can be implemented

as a repeated send or in a more e�cient method� for example� over a spanning tree where

each node propagates the message to its descendents�

bu�er A temporary storage area in memory� Many methods for routing messages be�

tween processors use bu
ers at the source and destination or at intermediate processors�

bus A single physical communications medium shared by two or more devices� The

network shared by processors in many distributed computers is a bus� as is the shared

data path in many multiprocessors�

cache consistency The problem of ensuring that the values associated with a particular

variable in the caches of several processors are never visibly di
erent�

channel A point�to�point connection through which messages can be sent� Program�

ming systems that rely on channels are sometimes called connection oriented� to distin�

guish them from connectionless systems in which messages are sent to named destinations

rather than through named channels�

��� Glossary

circuit A network where connections are established between senders and receivers�

reserving network resources� Compare with packet switching�

combining Joining messages together as they traverse a network� Combining may be

done to reduce the total tra�c in the network� to reduce the number of times the start�

up penalty of messaging is incurred� or to reduce the number of messages reaching a

particular destination�

communication overhead A measure of the additional workload incurred in a parallel

algorithm as a result of communication between the nodes of the parallel system�

computation�to�communication ratio The ratio of the number of calculations a pro�

cess does to the total size of the messages it sends� alternatively� the ratio of time spent

calculating to time spent communicating� which depends on the relative speeds of the

processor and communications medium� and on the startup cost and latency of commu�

nication�

contention Con�ict that arises when two or more requests are made concurrently for

a resource that cannot be shared� Processes running on a single processor may contend

for CPU time� or a network may su
er from contention if several messages attempt to

traverse the same link at the same time�

context switching Saving the state of one process and replacing it with that of an�

other� If little time is required to switch contexts� processor overloading can be an

e
ective way to hide latency in a message�passing system�

daemon A special�purpose process that runs on behalf of the system� for example� the

pvmd process or group server task�

data encoding A binary representation for data objects �e�g�� integers� �oating�point

numbers� such as XDR or the native format of a microprocessor� PVM messages can

contain data in XDR� native� or foo format�

data parallelism A model of parallel computing in which a single operation can be

applied to all elements of a data structure simultaneously� Typically� these data structures

are arrays� and the operations act independently on every array element or reduction

operations�

deadlock A situation in which each possible activity is blocked� waiting on some other

activity that is also blocked�

distributed computer A computer made up of smaller and potentially independent

computers� such as a network of workstations� This architecture is increasingly studied

because of its cost e
ectiveness and �exibility� Distributed computers are often hetero�

geneous�

Glossary ���

distributed memory Memory that is physically distributed among several modules�

A distributed�memory architecture may appear to users to have a single address space

and a single shared memory or may appear as disjoint memory made up of many separate

address spaces�

DMA Direct memory access	 allowing devices on a bus to access memory without in�

terfering with the CPU�

e�ciency A measure of hardware utilization� equal to the ratio of speedup achieved on

P processors to P itself�

Ethernet A popular LAN technology invented by Xerox� Ethernet is a ���Mbit�S

CSMA�CD �Carrier Sense Multiple Access with Collision Detection� bus� Computers

on an Ethernet send data packets directly to one another� They listen for the network

to become idle before transmitting� and retransmit in the event that multiple stations

simultaneously attempt to send�

FDDI Fiber Distributed Data Interface	 a standard for local area networks using optical

�ber and a ����Mbit�s data rate� A token is passed among the stations to control access

to send on the network� Networks can be arranged in topologies such as stars� trees� and

rings� Independent counter�rotating rings allow the network to continue to function in

the event that a station or link fails�

FLOPS Floating�Point Operations per Second� a measure of memory access perfor�

mance� equal to the rate at which a machine can perform single�precision �oating�point

calculations�

fork To create another copy of a running process� fork returns twice� Compare with

spawn�

fragment A contiguous part of a message� Messages are fragmented so they can be sent

over a network having �nite maximum packet length�

group A set of tasks assigned a common symbolic name� for addressing purposes�

granularity The size of operations done by a process between communications events�

A �ne�grained process may perform only a few arithmetic operations between processing

one message and the next� whereas a coarse�grained process may perform millions�

heterogeneous Containing components of more than one kind� A heterogeneous archi�

tecture may be one in which some components are processors� and others memories� or

it may be one that uses di
erent types of processor together�

hierarchical routing Messages are routed in PVM based on a hierarchical address �a

TID�� TIDs are divided into host and local parts to allow e�cient local and global routing�

��� Glossary

HiPPI High Performance Parallel Interface� a point�to�point ����MByte�sec interface

standard used for networking components of high�performance multicomputers together�

host A computer� especially a self�complete one on a network with others� Also� the

front�end support machine for� for example� a multiprocessor�

hoster A special PVM task that performs slave pvmd startup for the master pvmd�

interval routing A routing algorithm that assigns an integer identi�er to each possible

destination and then labels the outgoing links of each node with a single contiguous

interval or window so that a message can be routed simply by sending it out the link in

whose interval its destination identi�er falls�

interrupt�driven system A type of message�passing system� When a message is de�

livered to its destination process� it interrupts execution of that process and initiates

execution of an interrupt handler� which may either process the message or store it for

subsequent retrieval� On completion of the interrupt handler �which may set some �ag or

sends some signal to denote an available message�� the original process resumes execution�

IP Internet Protocol� the Internet standard protocol that enables sending datagrams

�blocks of data� between hosts on interconnected networks� It provides a connectionless�

best�e
ort delivery service� IP and the ICMP control protocol are the building blocks

for other protocols such as TCP and UDP�

kernel A program providing basic services on a computer� such as managing memory�

devices� and �le systems� A kernel may provide minimal service �as on a multiprocessor

node� or many features �as on a Unix machine�� Alternatively� a kernel may be a basic

computational building�block �such as a fast Fourier transform� used iteratively or in

parallel to perform a larger computation�

latency The time taken to service a request or deliver a message that is independent

of the size or nature of the operation� The latency of a message�passing system is the

minimum time to deliver any message�

Libpvm The core PVM programming library� allowing a task to interface with the pvmd

and other tasks�

linear speedup The case when a program runs faster in direct proportion to the number

of processors used�

little�endian A binary data format is which the least signi�cant byte or bit comes �rst�

See also big�endian�

load balance The degree to which work is evenly distributed among available proces�

sors� A program executes most quickly when it is perfectly load balanced� that is� when

Glossary ���

every processor has a share of the total amount of work to perform so that all proces�

sors complete their assigned tasks at the same time� One measure of load imbalance is

the ratio of the di
erence between the �nishing times of the �rst and last processors to

complete their portion of the calculation to the time taken by the last processor�

locality The degree to which computations done by a processor depend only on data

held in memory that is close to that processor� Also� the degree to which computations

done on part of a data structure depend only on neighboring values� Locality can be

measured by the ratio of local to nonlocal data accesses� or by the distribution of distances

of� or times taken by� nonlocal accesses�

lock A device or algorithm the use of which guarantees some type of exclusive access

to a shared resource�

loose synchronization The situation when the nodes on a computer are constrained

to intermittently synchronize with each other via some communication� Frequently� some

global computational parameter such as a time or iteration count provides a natural

synchronization reference� This parameter divides the running program into compute

and communication cycles�

mapping An allocation of processes to processors� allocating work to processes is usu�

ally called scheduling�

memory protection Any system that prevents one process from accessing a region of

memory being used by another� Memory protection is supported in most serial comput�

ers by the hardware and the operating system and in most parallel computers by the

hardware kernel and service kernel of the processors�

mesh A topology in which nodes form a regular acyclic d�dimensional grid� and each

edge is parallel to a grid axis and joins two nodes that are adjacent along that axis� The

architecture of many multicomputers is a two� or three�dimensional mesh� meshes are

also the basis of many scienti�c calculations� in which each node represents a point in

space� and the edges de�ne the neighbors of a node�

message ID An integer handle used to reference a message bu
er in libpvm�

message passing A style of interprocess communication in which processes send dis�

crete messages to one another� Some computer architectures are called message�passing

architectures because they support this model in hardware� although message passing has

often been used to construct operating systems and network software for uniprocessors

and distributed computers�

message tag An integer code �chosen by the programmer� bound to a message as it is

sent� Messages can be accepted by tag value and�or source address at the destination�

��� Glossary

message typing The association of information with a message that identi�es the

nature of its contents� Most message�passing systems automatically transfer information

about a message�s sender to its receiver� Many also require the sender to specify a type

for the message� and let the receiver select which types of messages it is willing to receive�

See message tag�

MIMD Multiple�Instruction Multiple�Data� a category of Flynn�s taxonomy in which

many instruction streams are concurrently applied to multiple data sets� A MIMD ar�

chitecture is one in which heterogeneous processes may execute at di
erent rates�

multicast To send a message to many� but not necessarily all possible recipient pro�

cesses�

multicomputer A computer in which processors can execute separate instruction streams�

can have their own private memories� and cannot directly access one another�s memories�

Most multicomputers are disjoint memory machines� constructed by joining nodes �each

containing a microprocessor and some memory� via links�

multiprocessor A computer in which processors can execute separate instruction streams�

but have access to a single address space� Most multiprocessors are shared�memory

machines� constructed by connecting several processors to one or more memory banks

through a bus or switch�

multiprocessor host The front�end support machine of� for example� a multicomputer�

It may serve to boot the multicomputer� provide network access� �le service� etc� Utilities

such as compilers may run only on the front�end machine�

multitasking Executing many processes on a single processor� This is usually done by

time�slicing the execution of individual processes and performing a context switch each

time a process is swapped in or out� but is supported by special�purpose hardware in

some computers� Most operating systems support multitasking� but it can be costly if

the need to switch large caches or execution pipelines makes context switching expensive

in time�

mutual exclusion A situation in which at most one process can be engaged in a spec�

i�ed activity at any time� Semaphores are often used to implement this�

network A physical communication medium� A network may consist of one or more

buses� a switch� or the links joining processors in a multicomputer�

network byte order The Internet standard byte order �big�endian��

node Basic compute building block of a multicomputer� Typically a node refers to

a processor with a memory system and a mechanism for communicating with other

processors in the system�

Glossary ���

non�blocking An operation that does not block the execution of the process using it�

The term is usually applied to communications operations� where it implies that the

communicating process may perform other operations before the communication has

completed�

notify A message generated by PVM on a speci�ed event� A task may request to be

noti�ed when another task exits or the virtual machine con�guration changes�

NUMA Non�Uniform Memory Access� an architecture that does not support constant�

time read and write operations� In most NUMA systems� memory is organized hierar�

chically� so that some portions can be read and written more quickly than others by a

given processor�

packet A quantity of data sent over the network�

packet switching A network in which limited�length packets are routed independently

from source to destination� Network resources are not reserved� Compare with circuit�

parallel computer A computer system made up of many identi�able processing units

working together in parallel� The term is often used synonymously with concurrent

computer to include both multiprocessor and multicomputer� The term concurrent is

more commonly used in the United States� whereas the term parallel is more common in

Europe�

parallel slackness Hiding the latency of communication by giving each processor many

di
erent tasks� and having the processors work on the tasks that are ready while other

tasks are blocked �waiting on communication or other operations��

PID Process Identi�er �in UNIX� that is native to a machine or operating system�

polling An alternative to interrupting in a communication system� A node inspects its

communication hardware �typically a �ag bit� to see whether information has arrived or

departed�

private memory Memory that appears to the user to be divided between many ad�

dress spaces� each of which can be accessed by only one process� Most operating systems

rely on some memory protection mechanism to prevent one process from accessing the

private memory of another� in disjoint�memory machines� the problem is usually �nding

a way to emulate shared memory using a set of private memories�

process An address space� I�O state� and one or more threads of program control�

process creation The act of forking or spawning a new process� If a system permits

only static process creation� then all processes are created at the same logical time� and

no process may interact with any other until all have been created� If a system permits

dynamic process creation� then one process can create another at any time� Most �rst

��	 Glossary

and second generation multicomputers only supported static process creation� while most

multiprocessors� and most operating systems on uniprocessors� support dynamic process

creation�

process group A set of processes that can be treated as a single entity for some pur�

poses� such as synchronization and broadcast or multicast operations� In some parallel

programming systems there is only one process group� which implicitly contains all pro�

cesses� in others� programmers can assign processes to groups statically when con�guring

their program� or dynamically by having processes create� join and leave groups during

execution�

process migration Changing the processor responsible for executing a process during

the lifetime of that process� Process migration is sometimes used to dynamically load

balance a program or system�

pvmd PVM daemon� a process that serves as a message router and virtual machine

coordinator� One PVD daemon runs on each host of a virtual machine�

race condition A situation in which the result of operations being executed by two or

more processes depends on the order in which those processes execute� for example� if

two processes A and B are to write di
erent values VA and VB to the same variable�

randomized routing A routing technique in which each message is sent to a randomly

chosen node� which then forwards it to its �nal destination� Theory and practice show

that this can greatly reduce the amount of contention for access to links in a multicom�

puter�

resource manager A special task that manages other tasks and the virtual machine

con�guration� It intercepts requests to create�destroy tasks and add�delete hosts�

route The act of moving a message from its source to its destination� A routing algo�

rithm is a rule for deciding� at any intermediate node� where to send a message next� a

routing technique is a way of handling the message as it passes through individual nodes�

RTFM Read The Fine Manual

scalable Capable of being increased in size� More important� capable of delivering an

increase in performance proportional to an increase in size�

scheduling Deciding the order in which the calculations in a program are to be exe�

cuted and by which processes� Allocating processes to processors is usually called map�

ping�

self�scheduling Automatically allocating work to processes� If T tasks are to be done

by P processors� and P � T � then they may be self�scheduled by keeping them in a

central pool from which each processor claims a new job when it �nishes executing its

old one�

Glossary ���

semaphore A data type for controlling concurrency� A semaphore is initialized to an

integer value� Two operations may be applied to it� signal increments the semaphore�s

value by one� and wait blocks its caller until the semaphore�s value is greater than zero�

then decrements the semaphore� A binary semaphore is one that can only take on the

values � and �� Any other synchronization primitive can be built in terms of semaphores�

sequential bottleneck A part of a computation for which there is little or no paral�

lelism�

sequential computer Synonymous with a Von Neumann computer� that is� a �con�

ventional� computer in which only one processing element works on a problem at a given

time�

shared memory Real or virtual memory that appears to users to constitute a single

address space� but which is actually physically disjoint� Virtual shared memory is often

implemented using some combination of hashing and local caching� Memory that appears

to the user to be contained in a single address space and that can be accessed by any

process� In a uniprocessor or multiprocessor there is typically a single memory unit� or

several memory units interleaved to give the appearance of a single memory unit�

shared variables Variables to which two or more processes have access� or a model of

parallel computing in which interprocess communication and synchronization are man�

aged through such variables�

signal

SIMD Single�Instruction Multiple�Data� a category of Flynn�s taxonomy in which a

single instruction stream is concurrently applied to multiple data sets� A SIMD architec�

ture is one in which homogeneous processes synchronously execute the same instructions

on their own data� or one in which an operation can be executed on vectors of �xed or

varying size�

socket An endpoint for network communication� For example� on a Unix machine� a

TCP�IP connection may terminate in a socket� which can be read or written through a

�le descriptor�

space sharing Dividing the resources of a parallel computer among many programs so

they can run simultaneously without a
ecting one another�s performance�

spanning tree A tree containing a subset of the edges in a graph and including every

node in that graph� A spanning tree can always be constructed so that its depth �the

greatest distance between its root and any leaf� is no greater than the diameter of the

graph� Spanning trees are frequently used to implement broadcast operations�

spawn To create a new process or PVM task� possibly di
erent from the parent� Com�

pare with fork�

��� Glossary

speedup The ratio of two program execution times� particularly when times are from

execution on � and P nodes of the same computer� Speedup is usually discussed as a

function of the number of processors� but is also a function �implicitly� of the problem

size�

SPMD Single�Program Multiple�Data� a category sometimes added to Flynn�s taxon�

omy to describe programs made up of many instances of a single type of process� each

executing the same code independently� SPMD can be viewed either as an extension of

SIMD or as a restriction of MIMD�

startup cost The time taken to initiate any transaction with some entity� The startup

cost of a message�passing system� for example� is the time needed to send a message of

zero length to nowhere�

supercomputer A time�dependent term that refers to the class of most powerful com�

puter systems worldwide at the time of reference�

switch A physical communication medium containing nodes that perform only com�

munications functions� Examples include crossbar switches� in which N �M buses cross

orthogonally at NM switching points to connect N objects of one type to M objects of

another� and multistage switches in which several layers of switching nodes connect N

objects of one type to N objects of another type�

synchronization The act of bringing two or more processes to known points in their

execution at the same clock time� Explicit synchronization is not needed in SIMD pro�

grams �in which every processor either executes the same operation as every other or

does nothing� but is often necessary in SPMD and MIMD programs� The time wasted

by processes waiting for other processes to synchronize with them can be a major source

of ine�ciency in parallel programs�

synchronous Occurring at the same clock time� For example� if a communication event

is synchronous� then there is some moment at which both the sender and the receiver

are engaged in the operation�

task The smallest component of a program addressable in PVM� A task is generally a

native �process� to the machine on which it runs�

tasker A special task that manages other tasks on the same host� It is the parent of

the target tasks� allowing it to manipulate them �e�g�� for debugging or other instrumen�

tation��

TCP Transmission Control Protocol� a reliable host�host stream protocol for packet�

switched interconnected networks such as IP�

thread A thread of program control sharing resources �memory� I�O state� with other

threads� A lightweight process�

Glossary ���

TID Task Identi�er� an address used in PVM for tasks� pvmds� and multicast groups�

time sharing Sharing a processor among multiple programs� Time sharing attempts

to better utilize a CPU by overlapping I�O in one program with computation in another�

trace scheduling A compiler optimization technique that vectorizes the most likely

path through a program as if it were a single basic block� includes extra instructions at

each branch to undo any ill e
ects of having made a wrong guess� vectorizes the next

most likely branches� and so on�

topology the con�guration of the processors in a multicomputer and the circuits in a

switch� Among the most common topologies are the mesh� the hypercube� the butter�y�

the torus� and the shu%e exchange network�

tuple An ordered sequence of �xed length of values of arbitrary types� Tuples are used

for both data storage and interprocess communication in the generative communication

paradigm�

tuple space A repository for tuples in a generative communication system� Tuple

space is an associative memory�

UDP User Datagram Protocol� a simple protocol allowing datagrams �blocks of data�

to be sent between hosts interconnected by networks such as IP� UDP can duplicate or

lose messages� and imposes a length limit of �� kbytes�

uniprocessor A computer containing a single processor� The term is generally syn�

onymous with scalar processor�

virtual channel A logical point�to�point connection between two processes� Many

virtual channels may time share a single link to hide latency and to avoid deadlock�

virtual concurrent computer A computer system that is programmed as a concur�

rent computer of some number of nodes P but that is implemented either on a real

concurrent computer of some number of nodes less than P or on a uniprocessor running

software to emulate the environment of a concurrent machine� Such an emulation system

is said to provide virtual nodes to the user�

virtual cut�through A technique for routing messages in which the head and tail of

the message both proceed as rapidly as they can� If the head is blocked because a link it

wants to cross is being used by some other message� the tail continues to advance� and

the message�s contents are put into bu
ers on intermediate nodes�

virtual machine A multicomputer composed of separate �possibly self�complete� ma�

chines and a software backplane to coordinate operation�

virtual memory Con�guration in which portions of the address space are kept on a

secondary medium� such as a disk or auxiliary memory� When a reference is made to a

��� Glossary

location not resident in main memory� the virtual memory manager loads the location

from secondary storage before the access completes� If no space is available in main

memory� data is written to secondary storage to make some available� Virtual memory is

used by almost all uniprocessors and multiprocessors to increase apparent memory size�

but is not available on some array processors and multicomputers�

virtual shared memory Memory that appears to users to constitute a single address

space� but that is actually physically disjoint� Virtual shared memory is often imple�

mented using some combination of hashing and local caching�

Von Neumann architecture Any computer that does not employ concurrency or

parallelism� Named after John Von Neumann ���������	�� who is credited with the

invention of the basic architecture of current sequential computers�

wait context A data structure used in the pvmd to hold state when a thread of oper�

ation must be suspended� for example� when calling a pvmd on another host�

working set Those values from shared memory that a process has copied into its pri�

vate memory� or those pages of virtual memory being used by a process� Changes a

process makes to the values in its working set are not automatically seen by other pro�

cesses�

XDR eXternal Data Representation An Internet standard data encoding �essentially

just big�endian integers and IEEE format �oating point numbers�� PVM converts data

to XDR format to allow communication between hosts with di
erent native data formats�

A History of PVM Versions

This appendix contains a list of all the versions of PVM that have been released from

the �rst one in February ���� through August ����� Along with each version we include

a brief synopsis of the improvements made in this version� Although not listed here� new

ports were being added to PVM with each release� PVM continues to evolve driven by

new technology and user feedback� Newer versions of PVM beyond those listed here may

exist at the time of reading� The latest version can always be found on netlib�

PVM ��� �never released�

any of the several initial experimental PVM versions

used to study heterogeneous distributed computing issues�

PVM ��� �Feb� �##��

� Complete rewrite of in�house experimental PVM software �v�����

� cleaned up the specification and implementation

to improve robustness and portablility�

PVM ��� �Mar� �##��

� process�process messages switched to XDR

to improve protability of source in heterogeneous environments�

� Simple console interpreter added to master pvmd�

PVM ��� �April �##��

� pvmd�pvmd message format switched to XDR�

� Get and put functions vectorized to improve performance�

� broadcast function ��� deprecated

PVM ����� �June �##��

� improved password�less startup via rsh�rcmd

� added per�host options to hostfile format�

ask for password

specify alternate loginname

specify alternate pvmd executable location

� pvmd�pvmd protocol version checked to prevent mixed versions

interoperating�

� added support for short and long integers in messages�

� added �reset� pvmd command to reset the vm�

��� Appendix A

� can specify
�
 as host to initiateM�� to create on localhost

PVM ����� �July �##��

� added �barr� command to check barrier�ready status

� pstatus�� libpvm call added to return size of virtual machine

PVM ����	 �Oct� �##��

� pvmds negotiate maximum UDP message length at startup�

� removed static limitation on number of hosts �used to be 	���

PVM ��	�� �Feb� �##��

� added direct�connect TCP message transfer available through

vsnd�� and vrcv�� to improve communication performance�

� added option to specify user executable path on each host�

� version check added between pvmd and libpvm to prevent running

incompatible versions�

� libpvm automatically prints error messages�

� libpvm error codes standardized and exported in
pvmuser�h
�

� includes instrumented heap to aid system debugging�

� host file default parameters can be set with ����

� libpvm returns error code instead of exiting in case

of fatal error�

PVM ��	�� �June �##��

� added new ports and bug fixes

PVM ��	�� �Dec� �##��

� pvmuser�h made compatible with C���

� can force messages to be packed in raw data format to avoid XDR�

� rcv�� will return BadMsg if message can�t be decoded�

PVM ��� �Feb� �##��

Complete redesign of PVM software both the user interface and

the implementation in order to�

� allow scalability to hundreds of hosts�

� allow portability to multiprocessors � operating systems

other than Unix�

� allows dynamic reconfiguration of the virtual machine�

History of PVM Versions ���

� allows fault tolerance

� allows asynchronous task notification � task exit�

machine reconfiguration�

� includes dynamic process groups�

� separate PVM console task�

PVM ��� �April �##��

� added task�task direct routing via TCP

using normal send and receive calls�

PVM ����� �May �##�� Five bug fix patches released for PVM ���

PVM ����� �May �##��

PVM ����� �June �##��

PVM ����	 �July �##��

PVM ����$ �Aug� �##��

PVM ��� �Aug� �##��

� distributed memory ports merged with Unix port source�

Ports include I ��� PGON� CM$�

� conf�ARCH�def files created for per�machine configuration

to improve source portability and package size�

� pvmd adds new slave hosts in parallel to improve performance�

� stdout and stderr from tasks can be redirected to a task�console�

� option OVERLOADHOST allows virtual machines running under the

same login to overlap i�e� user can have multiple overlapping vm�

� new printf�like pack and unpack routines pvm
packf�� and

pvm
unpackf�� available to C and C�� programmers�

� added pack� unpack routines for unsigned integers�

� environment passed through spawn��� controlled by

variable PVM
EXPORT�

��� Appendix A

� many enhancements and features added to PVM console program�

� pvmd and libpvm use PVM
ROOT and PVM
ARCH environment

variables if set�

PVM ����� �Sept� �##�� Six bug fix patches released for PVM ���

PVM ����� �Sept� �##��

PVM ����� �Oct� �##��

PVM ����	 �Nov� �##��

PVM ����$ �Dec� �##��

PVM ����� �Jan� �##	�

PVM ����� �June �##	�

� PVM
ROOT environment variable now must be set�

�HOME�pvm� is no longer assumed�

� shared�memory ports merged with Unix and distributed memory ports�

Ports include SUNMP and SGIMP�

� New functions pvm
psend�� and pvm
precv�� send and receive raw

data buffers� enabling more efficient implementation on machines

such as multiprocessors�

� new function pvm
trecv�� blocks until a message is received or a

specified timeout �in seconds and usec� improves fault tolerance�

� Inplace packing implemented for dense data reducing packing costs�

� Resource Manager� Hoster and Tasker interfaces defined

to allow third party debuggers and resource managers to use PVM�

� libpvm parameter�result tracing implemented to drive XPVM tool�

tasks inherit trace destination and per�call event mask�

� XPVM� a graphical user interface for PVM� is released�

History of PVM Versions ���

� added collective communication routines to group library�

global reduce and scatter�gather

� libpvm function pvm
catchout�� collects output of children tasks�

output can be appended to any FILE� �e�g� stdout��

� new hostfile option
wd�
 sets the working directory of the pvmd�

� environment variables expanded when setting ep� or

bp� in the hostfile�

PVM ����� �June �##	� bug fix patches for PVM ���

PVM ����� �July �##	�

PVM ����� �August �##	�

B PVM � Routines

This appendix contains an alphabetical listing of all the PVM � routines� Each routine

is described in detail for both C and Fortran use� There are examples and diagnostics

for each routine�

��� Appendix B

pvmfaddhost�� pvm addhosts��

Adds one or more hosts to the virtual machine�

Synopsis

C int info � pvm addhosts� char ��hosts� int nhost� int �infos �

Fortran call pvmfaddhost� host� info �

Parameters

hosts � an array of pointers to character strings containing the names of

the machines to be added�

nhost � integer specifying the number of hosts to be added�

infos � integer array of length nhost which contains the status code re�

turned by the routine for the individual hosts� Values less than

zero indicate an error�

host � character string containing the name of the machine to be added�

info � integer status code returned by the routine� Values less than

nhost indicate partial failure� values less than � indicate total

failure�

Discussion

The routine pvm addhosts adds the list of computers pointed to in hosts to the existing

con�guration of computers making up the virtual machine� If pvm addhosts is successful�

info will be equal to nhost� Partial success is indicated by � �#info�nhost� and total

failure by info� �� The array infos can be checked to determine which host caused the

error�

The Fortran routine pvmfaddhost adds a single host to the con�guration with each call�

If a host fails� the PVM system will continue to function� The user can use this routine

to increase the fault tolerance of his PVM application� The status of hosts can be

requested by the application using pvm mstat and pvm con�g� If a host has failed� it

will be automatically deleted from the con�guration� With pvm addhosts a replacement

host can be added by the application� It is still the responsibility of the application

developer to make the application tolerant of host failure� Another use of this feature

would be to add more hosts as they become available �for example� on a weekend� or if

the application dynamically determines it could use more computational power�

PVM � Routines ���

Examples

C�

static char �hosts�� � �

sparky
�

thud�cs�utk�edu
�

��

info � pvm
addhosts� hosts� �� infos ��

Fortran�

CALL PVMFADDHOST� �azure�� INFO �

Errors

The following error conditions can be returned by pvm addhosts

Name Possible Cause

PvmBadParam giving an invalid argument value�

PvmAlready already been added�

PvmSysErr local pvmd is not responding�

The following error conditions can be returned in infos

Name Possible Cause

PvmBadParam bad hostname syntax�

PvmNoHost no such host�

PvmCantStart failed to start pvmd on host�

PvmDupHost host already in con�guration�

PvmBadVersion remote pvmd version doesn�t match�

PvmOutOfRes PVM has run out of system resources�

��� Appendix B

pvmfbarrier�� pvm barrier��

Blocks the calling process until all processes in a group have called it�

Synopsis

C int info � pvm barrier� char �group� int count �

Fortran call pvmfbarrier� group� count� info �

Parameters

group � character string group name� The group must exist and the call�

ing process must be a member of the group�

count � integer specifying the number of group members that must call

pvm barrier before they are all released� Though it can be di
er�

ent� the count is expected to be the total number of members of

the speci�ed group�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm barrier blocks the calling process until count members of the group

have called pvm barrier� The count argument is required because processes could be

joining the given group after other processes have called pvm barrier� Thus PVM doesn�t

know how many group members to wait for at any given instant� Although count can

be set less� it is typically the total number of members of the group� Hence� the logical

function of the pvm barrier call is to provide a group synchronization� During any given

barrier call all participating group members must call barrier with the same count value�

Once a given barrier has been successfully passed� pvm barrier can be called again by

the same group using the same group name�

As a special case� if count equals �� then PVM will use the value of pvm gsize�� �i�e�� all

the group members�� This case is useful after a group is established and not changing

during an application�

If pvm barrier is successful� info will be �� If some error occurs� info will be � ��

PVM � Routines ���

Examples

C�

inum � pvm
joingroup�
worker
 ��

�

�

info � pvm
barrier�
worker
� $ ��

Fortran�

CALL PVMFJOINGROUP�
shakers
� INUM �

COUNT � ��

CALL PVMFBARRIER�
shakers
� COUNT� INFO �

Errors

The following error conditions can be returned by pvm barrier�

Name Possible Cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a count � ��

PvmNoGroup giving a nonexistent group name�

PvmNotInGroup calling process is not in speci�ed group�

��� Appendix B

pvmfbcast�� pvm bcast��

Broadcasts the data in the active message bu
er�

Synopsis

C int info � pvm bcast� char �group� int msgtag �

Fortran call pvmfbcast� group� msgtag� info �

Parameters

group � character string group name of an existing group�

msgtag � integer message tag supplied by the user� msgtag should be �# ��

It allows the user�s program to distinguish between di
erent kinds

of messages�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm bcast broadcasts a message stored in the active send bu
er to all the

members of group� In PVM ��� the broadcast message is not sent back to the sender�

Any PVM task can call pvm bcast��� it need not be a member of the group� The content

of the message can be distinguished by msgtag� If pvm bcast is successful� info will be

�� If some error occurs� info will be � ��

pvm bcast is asynchronous� Computation on the sending processor resumes as soon as

the message is safely on its way to the receiving processors� This procedure is in contrast

to synchronous communication� during which computation on the sending processor halts

until a matching receive is executed by all the receiving processors�

pvm bcast �rst determines the tids of the group members by checking a group database�

A multicast is performed to these tids� If the group is changed during a broadcast� the

change will not be re�ected in the broadcast� Multicasting is not supported by most

multiprocessor vendors� Typically their native calls support only broadcasting to all the

user�s processes on a multiprocessor� Because of this omission� pvm bcast may not be

an e�cient communication method on some multiprocessors�

PVM � Routines ���

Examples

C�

info � pvm
initsend� PvmDataRaw ��

info � pvm
pkint� array� ��� � ��

msgtag � $ �

info � pvm
bcast�
worker
� msgtag ��

Fortran�

CALL PVMFINITSEND� PVMDEFAULT �

CALL PVMFPKFLOAT� DATA� ���� �� INFO �

CALL PVMFBCAST� �worker�� $� INFO �

Errors

The following error conditions can be returned by pvm bcast�

Name Possible Cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a negative msgtag�

PvmNoGroup giving a nonexistent group name�

��� Appendix B

pvmfbu�nfo�� pvm bu�nfo��

Returns information about the requested message bu
er�

Synopsis

C int info � pvm
bufinfo� int bufid� int �bytes�

int �msgtag� int �tid �

Fortran call pvmfbufinfo� bufid� bytes� msgtag� tid� info �

Parameters

bufid � integer specifying a particular message bu
er identi�er�

bytes � integer returning the length in bytes of the entire message�

msgtag � integer returning the message label�

tid � integer returning the source of the message�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm bufinfo returns information about the requested message bu
er� Typ�

ically it is used to determine facts about the last received message such as its size or

source� pvm bu�nfo is especially useful when an application is able to receive any in�

coming message� The action taken depends on the source tid and the msgtag associated

with the message that comes in �rst� If pvm bu�nfo is successful� info will be �� If some

error occurs� info will be � ��

Examples

C�

bufid � pvm
recv� ��� �� ��

info � pvm
bufinfo� bufid� �bytes� �type� �source ��

Fortran�

CALL PVMFRECV� ��� ��� BUFID �

CALL PVMFBUFINFO� BUFID� BYTES� TYPE� SOURCE� INFO �

Errors

The following error conditions can be returned by pvm bufinfo�

PVM � Routines ���

Name Possible Cause

PvmNoSuchBuf speci�ed bu
er does not exist�

PvmBadParam invalid argument�

��	 Appendix B

pvmfcatchout�� pvm catchout��

Catches output from child tasks�

Synopsis

C �include �stdio�h�

int bufid � pvm catchout� FILE �ff �

Fortran call pvmfcatchout� onoff �

Parameters

ff � File descriptor on which to write collected output�

onoff � Integer parameter� Turns output collection on or o
�

Discussion

The routine pvm catchout causes the calling task �the parent� to catch output from tasks

spawned after the call to pvm catchout� Characters printed on stdout or stderr in children

tasks are collected by the pvmds and sent in control messages to the parent task� which

tags each line and appends it to the speci�ed �le� Output from grandchildren �spawned

by children� tasks is also collected� provided the children don�t reset PvmOutputTid�

Each line of output has one of the following forms�

�txxxxx� BEGIN

�txxxxx� �text from child task�

�txxxxx� END

The output from each task includes one BEGIN line and one END line� with whatever

the task prints in between�

In C� the output �le descriptor may be speci�ed� Giving a null pointer turns output

collection o
� Note� The �le option is not implemented in PVM ������ output goes to

calling task�s stdout�

In Fortran� output collection can only be turned on or o
� and is logged to stdout of the

parent task�

If pvm exit is called while output collection is in e
ect� it will block until all tasks sending

it output have exited� in order to print all their output� To avoid this� one can turn o

the output collection by calling pvm catchout��� before calling pvm exit�

pvm catchout�� always returns PvmOk�

PVM � Routines ���

Examples

C�

�include �stdio�h�

pvm
catchout�stdout��

Fortran�

CALL PVMFCATCHOUT� � �

Errors

No error conditions are returned by pvm catchout�

��� Appendix B

pvmfcon�g�� pvm con�g��

Returns information about the present virtual machine con�guration�

Synopsis

C int info � pvm config� int �nhost� int �narch�

struct pvmhostinfo ��hostp �

struct pvmhostinfo �

int hi
tid�

char �hi
name�

char �hi
arch�

int hi
speed�

� hostp�

Fortran call pvmfconfig� nhost� narch� dtid�

name� arch� speed� info �

Parameters

nhost � integer returning the number of hosts �pvmds� in the virtual

machine�

narch � integer returning the number of di
erent data formats being used�

hostp � pointer to an array of structures that contain information about

each host� including its pvmd task ID� name� architecture� and

relative speed�

dtid � Integer returning pvmd task ID for this host�

name � Character string returning name of this host�

arch � Character string returning name of host architecture�

speed � Integer returning relative speed of this host� Default value is

�����

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm config returns information about the present virtual machine� The

information returned is similar to that available from the console command conf� The C

function returns information about the entire virtual machine in one call� The Fortran

function returns information about one host per call and cycles through all the hosts�

PVM � Routines ���

Thus� if pvmfcon�g is called nhost times� the entire virtual machine will be represented�

If pvm con�g is successful� info will be �� If some error occurs� info will be � ��

Examples

C�

info � pvm
config� �nhost� �narch� �hostp ��

Fortran�

Do i��� NHOST

CALL PVMFCONFIG� NHOST�NARCH�DTID�i��HOST�i��ARCH�i��

SPEED�i��INFO �

Enddo

Errors

The following error condition can be returned by pvm config

Name Possible Cause

PvmSysErr pvmd not responding�

��� Appendix B

pvmfdelhost�� pvm delhosts��

Deletes one or more hosts from the virtual machine�

Synopsis

C int info � pvm delhosts� char ��hosts� int nhost� int �infos �

Fortran call pvmfdelhost� host� info �

Parameters

hosts � an array of pointers to character strings containing the names of

the machines to be deleted�

nhost � integer specifying the number of hosts to be deleted�

infos � integer array of length nhost which contains the status code re�

turned by the routine for the individual hosts� Values less than

zero indicate an error�

host � character string containing the name of the machine to be deleted�

info � integer status code returned by the routine� Values less than

nhost indicate partial failure� values less than � indicate total

failure�

Discussion

The routine pvm delhosts deletes from the virtual machine one or more computers

pointed to in hosts� All PVM processes and the pvmd running on these computers

are killed as the computer is deleted� If pvm delhosts is successful� info will be nhost�

Partial success is indicated by � �# info � nhost� and total failure by info � �� The

array infos can be checked to determine which host caused the error�

The Fortran routine pvmfdelhost deletes a single host from the con�guration with each

call�

If a host fails� the PVM system will continue to function and will automatically delete

this host from the virtual machine� An application can be noti�ed of a host failure by

calling pvm notify� It is still the responsibility of the application developer to make his

application tolerant of host failure�

PVM � Routines ���

Examples

C�

static char �hosts�� � �

sparky
�

thud�cs�utk�edu
�

��

info � pvm
delhosts� hosts� � ��

Fortran�

CALL PVMFDELHOST� �azure�� INFO �

Errors

The following error conditions can be returned by pvm delhosts�

Name Possible cause

PvmBadParam giving an invalid argument value�

PvmSysErr local pvmd not responding�

PvmOutOfRes PVM has run out of system resources�

��� Appendix B

pvmfexit�� pvm exit��

Tells the local pvmd that this process is leaving PVM�

Synopsis

C int info � pvm exit� void �

Fortran call pvmfexit� info �

Parameters

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm exit tells the local pvmd that this process is leaving PVM� This routine

does not kill the process� which can continue to perform tasks just like any other serial

process�

Pvm exit should be called by all PVM processes before they stop or exit for good� It

must be called by processes that were not started with pvm spawn�

Examples

C�

�� Program done ��

pvm
exit���

exit���

Fortran�

CALL PVMFEXIT�INFO�

STOP

Errors

The following error condition can be returned by pvm exit���

Name Possible Cause

PvmSysErr pvmd not responding

PVM � Routines ���

pvm�reebuf�� pvm freebuf��

Disposes of a message bu
er�

Synopsis

C int info � pvm freebuf� int bufid �

Fortran call pvmffreebuf� bufid� info �

Parameters

bufid � integer message bu
er identi�er�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm freebuf frees the memory associated with the message bu
er identi�ed

by bufid� Message bu
ers are created by pvm mkbuf� pvm initsend� and pvm recv� If

pvm freebuf is successful� info will be �� If some error occurs� info will be � ��

pvm freebuf can be called for a send bu
er created by pvm mkbuf after the message has

been sent and is no longer needed�

Receive bu
ers typically do not have to be freed unless they have been saved in the

course of using multiple bu
ers� But pvm freebuf can be used to destroy receive bu
ers

as well� Therefore� messages that arrive but are no longer needed as a result of some

other event in an application can be destroyed so they will not consume bu
er space�

Typically� multiple send and receive bu
ers are not needed� and the user can simply use

the pvm initsend routine to reset the default send bu
er�

There are several cases where multiple bu
ers are useful� One example involves libraries

or graphical interfaces that use PVM and interact with a running PVM application but

do not want to interfere with the application�s own communication� When multiple

bu
ers are used� they generally are made and freed for each message that is packed� In

fact� pvm initsend simply does a pvm freebuf followed by a pvm mkbuf for the default

bu
er�

��� Appendix B

Examples

C�

bufid � pvm
mkbuf� PvmDataDefault ��

�

info � pvm
freebuf� bufid ��

Fortran�

CALL PVMFMKBUF� PVMDEFAULT� BUFID �

�

CALL PVMFFREEBUF� BUFID� INFO �

Errors

The following error conditions can be returned by pvm freebuf�

Name Possible Cause

PvmBadParam giving an invalid argument value�

PvmNoSuchBuf giving an invalid bu�d value�

PVM � Routines ���

pvmfgetinst�� pvm getinst��

Returns the instance number in a group of a PVM process�

Synopsis

C int inum � pvm getinst� char �group� int tid �

Fortran call pvmfgetinst� group� tid� inum �

Parameters

group � character string group name of an existing group�

tid � integer task identi�er of a PVM process�

inum � integer instance number returned by the routine� Instance num�

bers start at � and count up� Values less than zero indicate an

error�

Discussion

The routine pvm getinst takes a group name group and a PVM task identi�er tid and

returns the unique instance number that corresponds to the input� If pvm getinst is

successful� inum will be �# �� If some error occurs� inum will be � ��

Examples

C�

inum � pvm
getinst�
worker
� pvm
mytid�� ��

��������

inum � pvm
getinst�
worker
� tid�i� ��

Fortran�

CALL PVMFGETINST� �GROUP��� TID� INUM �

Errors

The following error conditions can be returned by pvm getinst�

Name Possible Cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving an invalid tid value�

PvmNoGroup giving a nonexistent group name�

PvmNotInGroup specifying a group in which the tid is not a member�

�		 Appendix B

pvmfgetopt�� pvm getopt��

Shows various libpvm options�

Synopsis

C int val � pvm getopt� int what �

Fortran call pvmfgetrbuf� what� val �

Parameters

what � Integer de�ning what to get� Options include the following�

Option value Meaning

PvmRoute � routing policy

PvmDebugMask � debugmask

PvmAutoErr � auto error reporting

PvmOutputTid � stdout device for children

PvmOutputCode � output msgtag

PvmTraceTid � trace device for children

PvmTraceCode 	 trace msgtag

PvmFragSize
 message fragment size

PvmResvTids � Allow messages to reserved tags and TIDs

val � Integer specifying value of option� Prede�ned route values are as

follows�

Option value Meaning

PvmRoute � routing policy

PvmDontRoute �

PvmAllowDirect �

PvmRouteDirect �

Discussion

The routine pvm getopt allows the user to see the value of options set in PVM� See

pvm setopt for a description of options that can be set�

PVM � Routines �	�

Examples

C�

route
method � pvm
getopt� PvmRoute ��

Fortran�

CALL PVMFGETOPT� PVMAUTOERR� VAL �

Errors

The following error conditions can be returned by pvm getopt�

Name Possible Cause

PvmBadParam giving an invalid argument�

�	� Appendix B

pvmfgetrbuf�� pvm getrbuf��

Returns the message bu
er identi�er for the active receive bu
er�

Synopsis

C int bufid � pvm getrbuf� void �

Fortran call pvmfgetrbuf� bufid �

Parameters

bufid � integer the returned message bu
er identi�er for the active receive

bu
er�

Discussion

The routine pvm getrbuf returns the message bu
er identi�er bufid for the active receive

bu
er or � if there is no current bu
er�

Examples

C�

bufid � pvm
getrbuf���

Fortran�

CALL PVMFGETRBUF� BUFID �

Errors

No error conditions are returned by pvm getrbuf�

PVM � Routines �	�

pvmfgetsbuf�� pvm getsbuf��

Returns the message bu
er identi�er for the active send bu
er�

Synopsis

C int bufid � pvm getsbuf� void �

Fortran call pvmfgetsbuf� bufid �

Parameters

bufid � integer the returned message bu
er identi�er for the active send

bu
er�

Discussion

The routine pvm getsbuf returns the message bu
er identi�er bufid for the active send

bu
er or � if there is no current bu
er�

Examples

C�

bufid � pvm
getsbuf���

Fortran�

CALL PVMFGETSBUF� BUFID �

Errors

No error conditions are returned by pvm getsbuf�

�	� Appendix B

pvmfgettid�� pvm gettid��

Returns the tid of the process identi�ed by a group name and instance number�

Synopsis

C int tid � pvm gettid� char �group� int inum �

Fortran call pvmfgettid� group� inum� tid �

Parameters

group � character string that contains the name of an existing group�

inum � integer instance number of the process in the group�

tid � integer task identi�er returned�

Discussion

The routine pvm gettid returns the tid of the PVM process identi�ed by the group name

group and the instance number inum� If pvm gettid is successful� tid will be � �� If

some error occurs� tid will be � ��

Examples

C�

tid � pvm
gettid�
worker
����

Fortran�

CALL PVMFGETTID��worker��$�TID�

Errors

The following error conditions can be returned by pvm gettid�

Name Possible Cause

PvmSysErr Cannot contact the local pvmd �most likely� it is not

running��

PvmBadParam Bad parameter �most likely� a NULL character

string��

PvmNoGroup No group exists by that name�

PvmNoInst No such instance in the group�

PVM � Routines �	�

pvmfgsize�� pvm gsize��

Returns the number of members currently in the named group�

Synopsis

C int size � pvm gsize� char �group �

Fortran call pvmfgsize� group� size �

Parameters

group � character string group name of an existing group�

size � integer returning the number of members presently in the group�

Values less than zero indicate an error�

Discussion

The routine pvm gsize returns the size of the group named group� If there is an error�

size will be negative�

Since groups can change dynamically in PVM �� this routine can guarantee only to return

the instantaneous size of a given group�

Examples

C�

size � pvm
gsize�
worker
 ��

Fortran�

CALL PVMFGSIZE� �group��� SIZE �

Errors

The following error conditions can be returned by pvm gsize�

Name Possible Cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving an invalid group name�

�	� Appendix B

pvmfhalt pvm halt��

Shuts down the entire PVM system�

Synopsis

C int info � pvm halt� void �

Fortran call pvmfhalt� info �

Parameters

info � Integer returns the error status�

Discussion

The routine pvm halt shuts down the entire PVM system including remote tasks� remote

pvmd� the local tasks �including the calling task�� and the local pvmd�

Errors

The following error condition can be returned by pvm halt�

Name Possible Cause

PvmSysErr local pvmd is not responding�

PVM � Routines �	�

pvmfhostsync�� pvm hostsync��

Gets time�of�day clock from PVM host�

Synopsis

C �include �sys�time�h�

int info � pvm hostsync� int host� struct timeval �clk�

struct timeval �delta �

Fortran call pvmfhostsync� host� clksec� clkusec�

deltasec� deltausec� info �

Parameters

host � TID of host�

clk or

clksec and

clkusec� � Returns time�of�day clock sample from host�

delta or

deltasec and

deltausec� � Returns di
erence between local clock and remote host clock�

Discussion

pvm hostsync�� samples the time�of day clock of a host in the virtual machine and

returns both the clock value and the di
erence between local and remote clocks�

To reduce the delta error due to message transit time� local clock samples are taken

before and after reading the remote clock� Delta is the di
erence between the mean local

clocks and remote clock�

Note that the delta time can be negative� The microseconds �eld is always normalized

to ���������� while the sign of the seconds �eld gives the sign of the delta�

In C� if clk or delta is input as a null pointer� that parameter is not returned�

Errors

The following error conditions can be returned by �pvm synchost

Name Possible Cause

PvmSysErr Local pvmd is not responding�

PvmNoHost no such host�

PvmHostFail host is unreachable �and thus possibly failed��

�	� Appendix B

pvm�nitsend�� pvm initsend��

Clears default send bu
er and speci�es message encoding�

Synopsis

C int bufid � pvm initsend� int encoding �

Fortran call pvmfinitsend� encoding� bufid �

Parameters

encoding � integer specifying the next message�s encoding scheme�

Options in C are as follows�

Encoding value Meaning

PvmDataDefault � XDR

PvmDataRaw � no encoding

PvmDataInPlace � data left in place

bufid � integer message bu
er identi�er� Values less than zero indicate

an error�

Discussion

The routine pvm initsend clears the send bu
er and prepares it for packing a new mes�

sage� The encoding scheme used for this packing is set by encoding� XDR encoding is

used by default because PVM cannot know whether the user is going to add a heteroge�

neous machine before this message is sent� If the user knows that the next message will

be sent only to a machine that understands the native format� he can use PvmDataRaw

encoding and save on encoding costs�

PvmDataInPlace encoding speci�es that data be left in place during packing� The mes�

sage bu
er contains only the sizes and pointers to the items to be sent� When pvm send

is called� the items are copied directly out of the user�s memory� This option decreases

the number of times a message is copied� at the expense of requiring that the user not

modify the items between the time they are packed and the time they are sent� The

PvmDataInPlace is not implemented in PVM ����

If pvm initsend is successful� bufid will contain the message bu
er identi�er� If some

error occurs� bufid will be � ��

See also pvm mkbuf�

PVM � Routines �	�

Examples

C�

bufid � pvm
initsend� PvmDataDefault ��

info � pvm
pkint� array� ��� � ��

msgtag � � �

info � pvm
send� tid� msgtag ��

Fortran�

CALL PVMFINITSEND�PVMRAW� BUFID�

CALL PVMFPACK� REAL	� DATA� ���� �� INFO �

CALL PVMFSEND� TID� �� INFO �

Errors

The following error conditions can be returned by pvm initsend�

Name Possible Cause

PvmBadParam giving an invalid encoding value�

PvmNoMem Malloc has failed� There is not enough memory to

create the bu
er�

��	 Appendix B

pvmfjoingroup�� pvm joingroup��

Enrolls the calling process in a named group�

Synopsis

C int inum � pvm joingroup� char �group �

Fortran call pvmfjoingroup� group� inum �

Parameters

group � character string group name of an existing group�

inum � integer instance number returned by the routine� Instance num�

bers start at � and count up� Values less than zero indicate an

error�

Discussion

The routine pvm joingroup enrolls the calling task in the group named group and returns

the instance number inum of this task in this group� If there is an error� inum will be

negative�

Instance numbers start at � and count up� When using groups� a �group� inum� pair

uniquely identi�es a PVM process� This is consistent with the previous PVM naming

schemes� If a task leaves a group by calling pvm lvgroup and later rejoins the same group�

the task is not guaranteed to get the same instance number� PVM attempts to reuse

old instance numbers� thus� when a task joins a group� it will get the lowest available

instance number� A PVM � task can be a member of multiple groups simultaneously�

Examples

C�

inum � pvm
joingroup�
worker
 ��

Fortran�

CALL PVMFJOINGROUP� �group��� INUM �

Errors

The following error conditions can be returned by pvm joingroup�

PVM � Routines ���

Name Possible Cause

PvmSysErr pvmd was not started or has crashed�

PvmBadParam giving a NULL group name�

PvmDupGroup trying to join a group one is already in�

��� Appendix B

pvmfkill�� pvm kill��

Terminates a speci�ed PVM process�

Synopsis

C int info � pvm kill� int tid �

Fortran call pvmfkill� tid� info �

Parameters

tid � integer task identi�er of the PVM process to be killed �not

yourself��

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm kill sends a terminate �SIGTERM� signal to the PVM process iden�

ti�ed by tid� In the case of multiprocessors the terminate signal is replaced with a

host�dependent method for killing a process� If pvm kill is successful� info will be �� If

some error occurs� info will be � ��

pvm kill is not designed to kill the calling process� To kill yourself in C call pvm exit��

followed by exit��� To kill yourself in Fortran� call pvmfexit followed by stop�

Examples

C�

info � pvm
kill� tid ��

Fortran�

CALL PVMFKILL� TID� INFO �

Errors

The following error conditions can be returned by pvm kill�

Name Possible Cause

PvmBadParam giving an invalid tid value�

PvmSysErr pvmd not responding�

PVM � Routines ���

pvm�vgroup�� pvm lvgroup��

Unenrolls the calling process from a named group�

Synopsis

C int info � pvm lvgroup� char �group �

Fortran call pvmflvgroup� group� info �

Parameters

group � character string group name of an existing group�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm lvgroup unenrolls the calling process from the group named group� If

there is an error� info will be negative�

If a process leaves a group by calling either pvm lvgroup or pvm exit� and later rejoins

the same group� the process may be assigned a new instance number� Old instance

numbers are reassigned to processes calling pvm joingroup�

Examples

C�

info � pvm
lvgroup�
worker
 ��

Fortran�

CALL PVMFLVGROUP� �group��� INFO �

Errors

The following error conditions can be returned by pvm lvgroup�

Name Possible Cause

PvmSysErr pvmd not responding�

PvmBadParam giving a NULL group name�

PvmNoGroup giving a nonexistent group name�

PvmNotInGroup asking to leave a group one is not a member of�

��� Appendix B

pvmfmcast�� pvm mcast��

Multicasts the data in the active message bu
er to a set of tasks�

Synopsis

C int info � pvm mcast� int �tids� int ntask� int msgtag �

Fortran call pvmfmcast� ntask� tids� msgtag� info �

Parameters

ntask � integer specifying the number of tasks to be sent to�

tids � integer array of length at least ntask containing the task IDs of

the tasks to be sent to�

msgtag � integer message tag supplied by the user� msgtag should be �# ��

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm mcast multicasts a message stored in the active send bu
er to ntask

tasks speci�ed in the tids array� The message is not sent to the caller even if its tid is

in tids� The content of the message can be distinguished by msgtag� If pvm mcast is

successful� info will be �� If some error occurs� info will be � ��

The receiving processes can call either pvm recv or pvm nrecv to receive their copy of the

multicast� pvm mcast is asynchronous� Computation on the sending processor resumes

as soon as the message is safely on its way to the receiving processors� This is in contrast

to synchronous communication� during which computation on the sending processor halts

until the matching receive is executed by the receiving processor�

pvm mcast �rst determines which other pvmds contain the speci�ed tasks� Then passes

the message to these pvmds� which in turn distribute the message to their local tasks

without further network tra�c�

Multicasting is not supported by most multiprocessor vendors� Typically their native

calls support only broadcasting to all the user�s processes on a multiprocessor� Because

of this omission� pvm mcast may not be an e�cient communication method on some

multiprocessors except in the special case of broadcasting to all PVM processes�

PVM � Routines ���

Examples

C�

info � pvm
initsend� PvmDataRaw ��

info � pvm
pkint� array� ��� � ��

msgtag � $ �

info � pvm
mcast� tids� ntask� msgtag ��

Fortran�

CALL PVMFINITSEND�PVMDEFAULT�

CALL PVMFPACK� REAL	� DATA� ���� �� INFO �

CALL PVMFMCAST� NPROC� TIDS� $� INFO �

Errors

The following error conditions can be returned by pvm mcast��

Name Possible Cause

PvmBadParam giving a msgtag � ��

PvmSysErr pvmd not responding�

PvmNoBuf no send bu
er�

��� Appendix B

pvmfmkbuf�� pvm mkbuf��

Creates a new message bu
er�

Synopsis

C int bufid � pvm mkbuf� int encoding �

Fortran call pvmfmkbuf� encoding� bufid �

Parameters

encoding � integer specifying the bu
er�s encoding scheme�

Options in C are as follows�

Encoding value Meaning

PvmDataDefault � XDR

PvmDataRaw � no encoding

PvmDataInPlace � data left in place

bufid � integer message bu
er identi�er returned� Values less than zero

indicate an error�

Discussion

The routine pvm mkbuf creates a new message bu
er and sets its encoding status to

encoding� If pvm mkbuf is successful� bufid will be the identi�er for the new bu
er�

which can be used as a send bu
er� If some error occurs� bufid will be � ��

With the default setting XDR encoding is used when packing the message because PVM

cannot know whether the user is going to add a heterogeneous machine before this

message is sent� The other options to encoding allow the user to take advantage of

knowledge about his virtual machine even when it is heterogeneous� For example� if the

user knows that the next message will be sent only to a machine that understands the

native format� he can use PvmDataRaw encoding and save on encoding costs�

PvmDataInPlace encoding speci�es that data be left in place during packing� The mes�

sage bu
er contains only the sizes and pointers to the items to be sent� When pvm send

is called� the items are copied directly out of the user�s memory� This option decreases

the number of times a message is copied at the expense of requiring that the user not

modify the items between the time they are packed and the time they are sent� The

PvmDataInPlace is also not implemented in PVM ����

PVM � Routines ���

pvm mkbuf is required if the user wishes to manage multiple message bu
ers and should

be used in conjunction with pvm freebuf� pvm freebuf should be called for a send bu
er

after a message has been sent and is no longer needed�

Receive bu
ers are created automatically by the pvm recv and pvm nrecv routines and

do not have to be freed unless they have been explicitly saved with pvm setrbuf�

Typically multiple send and receive bu
ers are not needed� and the user can simply use

the pvm initsend routine to reset the default send bu
er�

There are several cases where multiple bu
ers are useful� One example where multi�

ple message bu
ers are needed involves libraries or graphical interfaces that use PVM

and interact with a running PVM application but do not want to interfere with the

application�s own communication�

When multiple bu
ers are used� they generally are made and freed for each message that

is packed�

Examples

C�

bufid � pvm
mkbuf� PvmDataRaw ��

�� send the message ��

info � pvm
freebuf� bufid ��

Fortran�

CALL PVMFMKBUF�PVMDEFAULT� MBUF�

� SEND MESSAGE HERE

CALL PVMFFREEBUF� MBUF� INFO �

Errors

The following error condition can be returned by pvm mkbuf�

Name Possible Cause

PvmBadParam giving an invalid encoding value�

PvmNoMem Malloc has failed� There is not enough memory to

create the bu
er�

��� Appendix B

pvmfmstat�� pvm mstat��

Returns the status of a host in the virtual machine�

Synopsis

C int mstat � pvm mstat� char �host �

Fortran call pvmfmstat� host� mstat �

Parameters

host � character string containing the host name�

mstat � integer returning machine status�

Value Meaning

PvmOk host is OK

PvmNoHost host is not in virtual machine

PvmHostFail host is unreachable �and thus possibly failed�

Discussion

The routine pvm mstat returns the status mstat of the computer named hostwith respect

to running PVM processes� This routine can be used to determine whether a particular

host has failed and whether the virtual machine needs to be recon�gured�

Examples

C�

mstat � pvm
mstat�
msr�ornl�gov
 ��

Fortran�

CALL PVMFMSTAT� �msr�ornl�gov�� MSTAT �

Errors

The following error conditions can be returned by pvm mstat�

Name Possible Cause

PvmSysErr pvmd not responding�

PvmNoHost giving a host name not in the virtual machine�

PvmHostFail host is unreachable �and thus possibly failed��

PVM � Routines ���

pvmfmytid�� pvm mytid��

Returns the tid of the process�

Synopsis

C int tid � pvm mytid� void �

Fortran call pvmfmytid� tid �

Parameters

tid � integer task identi�er of the calling PVM process is returned�

Values less than zero indicate an error�

Discussion

The routine enrolls this process into PVM on its �rst call and generates a unique tid if

this process was not created by pvm spawn� pvm mytid returns the tid of the calling

process and can be called multiple times in an application� Any PVM system call �not

just pvm mytid� will enroll a task in PVM if the task is not enrolled before the call�

The tid is a ���bit positive integer created by the local pvmd� The �� bits are divided

into �elds that encode various information about this process� such as its location in

the virtual machine �i�e�� local pvmd address�� the CPU number in the case where the

process is on a multiprocessor� and a process ID �eld� This information is used by PVM

and is not expected to be used by applications�

If PVM has not been started before an application calls pvm mytid� the returned tid

will be � ��

Examples

C�

tid � pvm
mytid� ��

Fortran�

CALL PVMFMYTID� TID �

Errors

The following error condition can be returned by pvm mytid�

Name Possible cause

PvmSysErr pvmd not responding�

��	 Appendix B

pvmfnotify�� pvm notify��

Requests noti�cation of PVM event such as host failure�

Synopsis

C int info � pvm
notify� int what� int msgtag�

int cnt� int �tids �

Fortran call pvmfnotify� what� msgtag� cnt� tids� info �

Parameters

what � integer identi�er of what event should trigger the noti�cation�

Presently the options are�

Value Meaning

PvmTaskExit notify if task exits

PvmHostDelete notify if host is deleted

PvmHostAdd notify if host is added

msgtag � integer message tag to be used in noti�cation�

cnt � integer specifying the length of the tids array for PvmTaskExit

and PvmHostDelete� For PvmHostAdd speci�es the number of

times to notify�

tids � integer array of length ntask that contains a list of task or

pvmd tids to be noti�ed� The array should be empty with the

PvmHostAdd option�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm notify requests PVM to notify the caller on detecting certain events�

In response to a notify request� some number of messages �see below� are sent by PVM

back to the calling task� The messages are tagged with the code �msgtag� supplied to

notify�

The tids array speci�es who to monitor when using TaskExit or HostDelete� it contains

nothing when using HostAdd� If required� the routines pvm con�g and pvm tasks can

be used to obtain task and pvmd tids�

The noti�cation messages have the following format�

PVM � Routines ���

PvmTaskExit One notify message for each tid requested� The message body contains a

single tid of exited task�

PvmHostDeleteOne message for each tid requested� The message body contains a single

pvmd�tid of exited pvmd�

PvmHostAdd Up to cnt notify messages are sent� The message body contains an integer

count followed by a list of pvmd�tids of the new pvmds� The counter of PvmHostAdd

messages remaining is updated by successive calls to pvm notify� Specifying a cnt of ��

turns on PvmHostAdd messages until a future notify� a count of zero disables them�

Tids in the notify messages are packed as integers�

The calling task�s� are responsible for receiving the message with the speci�ed msgtag

and taking appropriate action� Future versions of PVM may expand the list of available

noti�cation events�

Note that the notify request is �consumed�� for example� a PvmHostAdd request gener�

ates a single reply message�

Examples

C�

info � pvm
notify� PvmHostAdd� ####� �� dummy �

Fortran�

CALL PVMFNOTIFY� PVMHOSTDELETE� ����� NPROC� TIDS� INFO �

Errors

The following error conditions can be returned by pvm notify�

Name Possible Cause

PvmSysErr pvmd not responding�

PvmBadParam giving an invalid argument value�

��� Appendix B

pvmfnrecv�� pvm nrecv��

Checks for nonblocking message with label msgtag�

Synopsis

C int bufid � pvm nrecv� int tid� int msgtag �

Fortran call pvmfnrecv� tid� msgtag� bufid �

Parameters

tid � integer task identi�er of sending process supplied by the user� �A

�� in this argument matches any tid �wildcard���

msgtag � integer message tag supplied by the user� msgtag should be �# ��

�A �� in this argument matches any message tag �wildcard���

bufid � integer returning the value of the new active receive bu
er iden�

ti�er� Values less than zero indicate an error�

Discussion

The routine pvm nrecv checks to see whether a message with label msgtag has arrived

from tid� If a matching message has arrived� pvm nrecv immediately places the message

in a new active receive bu
er� which also clears the current receive bu
er� if any� and

returns the bu
er identi�er in bufid�

If the requested message has not arrived� then pvm nrecv immediately returns with a �

in bufid� If some error occurs�c �which bufid will be � ��

A �� in msgtag or tid matches anything� This allows the user the following options� If

tid # �� and msgtag is de�ned by the user� then pvm nrecv will accept a message from

any process that has a matching msgtag� If msgtag # �� and tid is de�ned by the user�

pvm nrecv will accept any message that is sent from process tid� If tid # �� and msgtag

��� then pvm nrecv will accept any message from any process�

pvm nrecv is non�blocking in the sense that the routine always returns immediately either

with the message or with the information that the message has not arrived at the local

pvmd yet� pvm nrecv can be called multiple times to check whether a given message has

arrived yet� In addition� pvm recv can be called for the same message if the application

runs out of work it could do before receiving the data�

If pvm nrecv returns with the message� the data in the message can be unpacked into

the user�s memory using the unpack routines�

PVM � Routines ���

The PVM model guarantees the following about message order� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

Examples

C�

tid � pvm
parent���

msgtag � 	 �

arrived � pvm
nrecv� tid� msgtag ��

if � arrived � � �

info � pvm
upkint� tid
array� ��� � ��

else

�� go do other computing ��

Fortran�

CALL PVMFNRECV� ��� 	� ARRIVED �

IF � ARRIVED �GT� � � THEN

CALL PVMFUNPACK� INTEGER	� TIDS� �$� �� INFO �

CALL PVMFUNPACK� REAL � MATRIX� ���� ���� INFO �

ELSE

� GO DO USEFUL WORK

ENDIF

Errors

The following error conditions can be returned by pvm nrecv�

Name Possible Cause

PvmBadParam giving an invalid tid value or msgtag�

PvmSysErr pvmd not responding�

��� Appendix B

pvmfpack�� pvm pk���

Packs the active message bu
er with arrays of prescribed data type�

Synopsis

C

int info � pvm
packf� const char �fmt� ��� �

int info � pvm
pkbyte� char �xp� int nitem� int stride �

int info � pvm
pkcplx� float �cp� int nitem� int stride �

int info � pvm
pkdcplx� double �zp� int nitem� int stride �

int info � pvm
pkdouble�double �dp� int nitem� int stride �

int info � pvm
pkfloat� float �fp� int nitem� int stride �

int info � pvm
pkint� int �ip� int nitem� int stride �

int info � pvm
pkuint� unsigned int �ip� int nitem� int stride �

int info � pvm
pkushort� unsigned short �ip� int nitem� int stride �

int info � pvm
pkulong� unsigned long �ip� int nitem� int stride �

int info � pvm
pklong� long �ip� int nitem� int stride �

int info � pvm
pkshort� short �jp� int nitem� int stride �

int info � pvm
pkstr� char �sp �

Fortran

call pvmfpack� what� xp� nitem� stride� info �

Parameters

fmt � printflike format expression specifying what to pack �see discussion��

nitem � the total number of items to be packed �not the number of bytes��

stride � the stride to be used when packing the items� For example� if stride# � in

pvm pkcplx� then every other complex number will be packed�

xp � pointer to the beginning of a block of bytes� Can be any data type� but

must match the corresponding unpack data type�

cp � complex array at least nitem!stride items long�

zp � double precision complex array at least nitem!stride items long�

dp � double precision real array at least nitem!stride items long�

fp � real array at least nitem!stride items long�

ip � integer array at least nitem!stride items long�

jp � integer!� array at least nitem!stride items long�

sp � pointer to a null terminated character string�

PVM � Routines ���

what � integer specifying the type of data being packed�

what options

STRING � REAL	 �

BYTE� � COMPLEX �

INTEGER� � REAL �

INTEGER	 � COMPLEX�� 	

info � integer status code returned by the routine� Values less than zero indicate

an error�

Discussion

Each of the pvm
pk� routines packs an array of the given data type into the active

send bu
er� The arguments for each of the routines are a pointer to the �rst item to be

packed� nitem which is the total number of items to pack from this array� and stride

which is the stride to use when packing�

An exception is pvm pkstr�� which by de�nition packs a NULL terminated character

string and thus does not need nitem or stride arguments� The Fortran routine pvmf�

pack� STRING� ���� expects nitem to be the number of characters in the string and

stride to be ��

If the packing is successful� info will be �� If some error occurs� info will be � ��

A single variable �not an array� can be packed by setting nitem# � and stride# �� C

structures have to be packed one data type at a time�

The routine pvm packf�� uses a printflike format expression to specify what and how to

pack data into the send bu
er� All variables are passed as addresses if count and stride

are speci�ed otherwise� variables are assumed to be values� A BNF�like description of

the format syntax is�

format � null (init (format fmt

init � null (��� ���

fmt � ��� count stride modifiers fchar

fchar � �c� (�d� (�f� (�x� (�s�

count � null (���#�� (���

stride � null (��� � ���#�� (��� �

modifiers � null (modifiers mchar

mchar � �h� (�l� (�u�

Formats�

� means initsend � must match an int �how� in the param list�

c pack�unpack bytes

��� Appendix B

d integers

f float

x complex float

s string

Modifiers�

h short �int�

l long �int� float� complex float�

u unsigned �int�

��� count or stride must match an int in the param list�

Future extensions to the what argument in pvmfpack will include �� bit types when XDR

encoding of these types is available� Meanwhile users should be aware that precision can

be lost when passing data from a �� bit machine like a Cray to a �� bit machine like a

SPARCstation� As a mnemonic the what argument name includes the number of bytes

of precision to expect� By setting encoding to PVMRAW �see pvm�nitsend� data can be

transferred between two �� bit machines with full precision even if the PVM con�guration

is heterogeneous�

Messages should be unpacked exactly like they were packed to insure data integrity�

Packing integers and unpacking them as �oats will often fail because a type encoding

will have occurred transferring the data between heterogeneous hosts� Packing �� integers

and ��� �oats then trying to unpack only � integers and the ��� �oats will also fail�

PVM � Routines ���

Examples

C�

info � pvm
initsend� PvmDataDefault ��

info � pvm
pkstr�
initial data
 ��

info � pvm
pkint� �size� �� � ��

info � pvm
pkint� array� size� � ��

info � pvm
pkdouble� matrix� size�size� � ��

msgtag � � �

info � pvm
send� tid� msgtag ��

Fortran�

CALL PVMFINITSEND�PVMRAW� INFO�

CALL PVMFPACK� INTEGER	� NSIZE� �� �� INFO �

CALL PVMFPACK� STRING� �row $ of NXN matrix�� �#� �� INFO �

CALL PVMFPACK� REAL � A�$���� NSIZE� NSIZE � INFO �

CALL PVMFSEND� TID� MSGTAG� INFO �

Errors

The following error conditions can be returned by pvm pk��

Name Possible Cause

PvmNoMem Malloc has failed� Message bu
er size has exceeded

the available memory on this host�

PvmNoBuf There is no active send bu
er to pack into� Try calling

pvm initsend before packing message�

��� Appendix B

pvmfparent�� pvm parent��

Returns the tid of the process that spawned the calling process�

Synopsis

C int tid � pvm parent� void �

Fortran call pvmfparent� tid �

Parameters

tid � integer returns the task identi�er of the parent of the calling

process� If the calling process was not created with pvm spawn�

then tid # PvmNoParent�

Discussion

The routine pvm parent returns the tid of the process that spawned the calling process�

If the calling process was not created with pvm spawn� then tid is set to PvmNoParent�

Examples

C�

tid � pvm
parent���

Fortran�

CALL PVMFPARENT� TID �

Errors

The following error condition can be returned by pvm parent�

Name Possible Cause

PvmNoParent The calling process was not created with pvm spawn�

PVM � Routines ���

pvmfperror�� pvm perror��

Prints the error status of the last PVM call�

Synopsis

C int info � pvm perror� char �msg �

Fortran call pvmfperror� msg� info �

Parameters

msg � character string supplied by the user which will be prepended to

the error message of the last PVM call�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm perror returns the error message of the last PVM call� The user can

use msg to add additional information to the error message� for example� its location�

All stdout and stderr messages are placed in the �le �tmp�pvml��uid� on the master

pvmd�s host�

Examples

C�

if � pvm
send� tid� msgtag �

pvm
perror���

Fortran�

CALL PVMFSEND� TID� MSGTAG �

IF� INFO �LT� � � CALL PVMFPERROR� �Step ��� INFO �

Errors

No error condition is returned by pvm perror�

��	 Appendix B

pvmfprecv�� pvm precv��

Receives a message directly into a bu
er�

Synopsis

C int info � pvm psend� int tid� int msgtag�

char �buf� int len� int datatype �

int atid� int atag� int alen �

Fortran call pvmfpsend� tid� msgtag� buf� len� datatype�

atid� atag� alen� info �

Parameters

tid � integer task identi�er of sending process �to match��

msgtag � integer message tag �to match� msgtag should be �# ��

buf � pointer to a bu
er to receive into�

len � length of bu
er �in multiple of data type size��

datatype � type of data to which buf points �see below��

atid � returns actual TID of sender�

atag � returns actual message tag�

atid � returns actual message length�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm recv blocks the process until a message with label msgtag has arrived

from tid� pvm precv� it then places the contents of the message in the supplied bu
er�

buf� up to a maximum length of len ! �size of data type��

pvm precv can receive messages sent by pvm psend� pvm send� pvm mcast� or pvm bcast�

A �� in msgtag or tid matches anything� This allows the user the following options� If

tid # �� and msgtag is de�ned by the user� pvm recv will accept a message from any

process that has a matching msgtag� If msgtag # �� and tid is de�ned by the user�

pvm recv will accept any message that is sent from process tid� If tid # �� and msgtag

��� pvm recv will accept any message from any process�

In C the datatype parameter must be one of the following� depending on the type of data

to be sent�

PVM � Routines ���

datatype Data Type

PVM
STR string

PVM
BYTE byte

PVM
SHORT short

PVM
INT int

PVM
FLOAT real

PVM
CPLX complex

PVM
DOUBLE double

PVM
DCPLX double complex

PVM
LONG long integer

PVM
USHORT unsigned short int

PVM
UINT unsigned int

PVM
ULONG unsigned long int

In Fortran the same data types speci�ed for unpack should be used�

The PVM model guarantees the following about message order� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

pvm recv is blocking� which means the routine waits until a message matching the user

speci�ed tid and msgtag values arrives at the local pvmd� If the message has already

arrived� pvm recv returns immediately with the message�

pvm precv does not a
ect the state of the current receive message bu
er �created by the

other receive functions��

Examples

C�

info � pvm
precv� tid� msgtag� array� cnt� PVM
FLOAT�

�src� �atag� �acnt ��

Fortran�

CALL PVMFPRECV� ��� 	� BUF� CNT� REAL	�

SRC� ATAG� ACNT� INFO �

��� Appendix B

Errors

The following error conditions can be returned by pvm send�

Name Possible Cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

PVM � Routines ���

pvmfprobe�� pvm probe��

Checks whether message has arrived�

Synopsis

C int bufid � pvm probe� int tid� int msgtag �

Fortran call pvmfprobe� tid� msgtag� bufid �

Parameters

tid � integer task identi�er of sending process supplied by the user� �A

�� in this argument matches any tid �wildcard���

msgtag � integer message tag supplied by the user� msgtag should be �# ��

�A �� in this argument matches any message tag �wildcard���

bufid � integer returning the value of the new active receive bu
er iden�

ti�er� Values less than zero indicate an error�

Discussion

The routine pvm probe checks to see if a message with label msgtag has arrived from tid�

If a matching message has arrived� pvm probe returns a bu
er identi�er in bufid� This

bufid can be used in a pvm bu�nfo call to determine information about the message

such as its source and length�

If the requested message has not arrived� pvm probe returns with a � in bufid� If some

error occurs� bufid will be � ��

A �� in msgtag or tid matches anything� This feature allows the user the following

options� If tid # �� and msgtag is de�ned by the user� then pvm probe will accept a

message from any process that has a matching msgtag� If msgtag # �� and tid is de�ned

by the user� then pvm probe will accept any message that is sent from process tid� If tid

�� and msgtag # ��� then pvm probe will accept any message from any process�

pvm probe can be called multiple times to check whether a given message has arrived

yet� After the message has arrived� pvm recv must be called before the message can be

unpacked into the user�s memory using the unpack routines�

��� Appendix B

Examples

C�

tid � pvm
parent���

msgtag � 	 �

arrived � pvm
probe� tid� msgtag ��

if � arrived � � �

info � pvm
bufinfo� arrived� �len� �tag� �tid ��

else

�� go do other computing ��

Fortran�

CALL PVMFPROBE� ��� 	� ARRIVED �

IF � ARRIVED �GT� � � THEN

CALL PVMFBUFINFO� ARRIVED� LEN� TAG� TID� INFO �

ELSE

� GO DO USEFUL WORK

ENDIF

Errors

The following error conditions can be returned by pvm probe�

Name Possible Cause

PvmBadParam giving an invalid tid value or msgtag�

PvmSysErr pvmd not responding�

PVM � Routines ���

pvmfpsend�� pvm psend��

Packs and sends data in one call�

Synopsis

C int info � pvm psend� int tid� int msgtag� char �buf�

int len� int datatype �

Fortran call pvmfpsend� tid� msgtag� buf� len� datatype� info �

Parameters

tid � integer task identi�er of destination process�

msgtag � integer message tag supplied by the user� msgtag should be �# ��

buf � pointer to a bu
er to send�

len � length of bu
er �in multiple of data type size��

datatype � type of data to which buf points �see below��

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm psend takes a pointer to a bu
er buf� its length len� and its data type

datatype and sends this data directly to the PVM task identi�ed�

pvm psend data can be received by pvm precv� pvm recv� pvm trecv� or pvm nrecv�

msgtag is used to label the content of the message� If pvm send is successful� info will

be �� If some error occurs� info will be � ��

The pvm psend routine is asynchronous� Computation on the sending processor resumes

as soon as the message is safely on its way to the receiving processor� This approach

is in contrast to synchronous communication� during which computation on the sending

processor halts until the matching receive is executed by the receiving processor�

In C the datatype parameter must be one of the following� depending on the type of data

to be sent�

datatype Data Type

PVM
STR string

PVM
BYTE byte

PVM
SHORT short

PVM
INT int

��� Appendix B

PVM
FLOAT real

PVM
CPLX complex

PVM
DOUBLE double

PVM
DCPLX double complex

PVM
LONG long integer

PVM
USHORT unsigned short int

PVM
UINT unsigned int

PVM
ULONG unsigned long int

In Fortran the same data types speci�ed for pack should be used�

The PVM model guarantees the following about message order� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

pvm psend does not a
ect the state of the current outgoing message bu
er �created by

pvm initsend and used by pvm send��

Examples

C�

info � pvm
psend� tid� msgtag� array� ����� PVM
FLOAT ��

Fortran�

CALL PVMFPSEND� TID� MSGTAG� BUF� CNT� REAL	� INFO �

PVM � Routines ���

Errors

The following error conditions can be returned by pvm send�

Name Possible Cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

��� Appendix B

pvmfpstat�� pvm pstat��

Returns the status of the speci�ed PVM process�

Synopsis

C int status � pvm pstat� tid �

Fortran call pvmfpstat� tid� status �

Parameters

tid � integer task identi�er of the PVM process in question�

status � integer returns the status of the PVM process identi�ed by tid�

Status is PvmOk if the task is running� PvmNoTask if not� and

PvmBadParam if the tid is bad�

Discussion

The routine pvm pstat returns the status of the process identi�ed by tid� Also note

that pvm notify�� can be used to notify the caller that a task has failed�

Examples

C�

tid � pvm
parent���

status � pvm
pstat� tid ��

Fortran�

CALL PVMFPARENT� TID �

CALL PVMFPSTAT� TID� STATUS �

Errors

The following error conditions can be returned by pvm pstat�

Name Possible Cause

PvmBadParam bad parameter �most likely� an invalid tid value��

PvmSysErr pvmd not responding�

PvmNoTask task not running�

PVM � Routines ���

pvmfrecv�� pvm recv��

Receives a message�

Synopsis

C int bufid � pvm recv� int tid� int msgtag �

Fortran call pvmfrecv� tid� msgtag� bufid �

Parameters

tid � integer task identi�er of sending process supplied by the user� �A

�� in this argument matches any tid �wildcard���

msgtag � integer message tag supplied by the user� msgtag should be �# ��

It allows the user�s program to distinguish between di
erent kinds

of messages � �A �� in this argument matches any message tag

�wildcard���

bufid � integer returns the value of the new active receive bu
er identi�er�

Values less than zero indicate an error�

Discussion

The routine pvm recv blocks the process until a message with label msgtag has arrived

from tid� pvm recv then places the message in a new active receive bu
er� which also

clears the current receive bu
er�

A �� in msgtag or tid matches anything� This allows the user the following options� If

tid # �� and msgtag is de�ned by the user� then pvm recv will accept a message from

any process which has a matching msgtag� If msgtag # �� and tid is de�ned by the

user� then pvm recv will accept any message that is sent from process tid� If tid # ��

and msgtag # ��� then pvm recv will accept any message from any process�

The PVM model guarantees the following about message order� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

If pvm recv is successful� bufidwill be the value of the new active receive bu
er identi�er�

If some error occurs� bufid will be � ��

pvm recv is blocking� which means the routine waits until a message matching the user

speci�ed tid and msgtag values arrives at the local pvmd� If the message has already

arrived� then pvm recv returns immediately with the message�

��	 Appendix B

Once pvm recv returns� the data in the message can be unpacked into the user�s memory

using the unpack routines�

Examples

C�

tid � pvm
parent���

msgtag � 	 �

bufid � pvm
recv� tid� msgtag ��

info � pvm
upkint� tid
array� ��� � ��

info � pvm
upkint� problem
size� �� � ��

info � pvm
upkfloat� input
array� ���� � ��

Fortran�

CALL PVMFRECV� ��� 	� BUFID �

CALL PVMFUNPACK� INTEGER	� TIDS� �$� �� INFO �

CALL PVMFUNPACK� REAL � MATRIX� ���� ���� INFO �

Errors

The following error conditions can be returned by pvm recv�

Name Possible Cause

PvmBadParam giving an invalid tid value� or msgtag � ���

PvmSysErr pvmd not responding�

PVM � Routines ���

���� pvm recvf��

Rede�nes the comparison function used to accept messages�

Synopsis

C int ��old��� � pvm
recvf� int ��new�� int bufid�

int tid� int tag ��

Fortran NOT AVAILABLE

Parameters

tid � integer task identi�er of sending process supplied by the user�

tag � integer message tag supplied by the user�

bufid � integer message bu
er identi�er�

Discussion

The routine pvm recvf de�nes the comparison function to be used by the pvm recv and

pvm nrecv functions� It is available as a means to customize PVM message passing�

pvm recvf sets a user supplied comparison function to evaluate messages for receiving �

The default comparison function evaluates the source and message tag associated with

all incoming messages�

pvm recvf is intended for sophisticated C programmers who understand the function of

such routines �like signal� and who require a receive routine that can match on more

complex message contexts than the default provides�

pvm recvf returns � if the default matching function� otherwise� it returns the matching

function� The matching function should return the following�

Value Action Taken

� � return immediately with this error code

� do not pick this message

� pick this message� and do not scan the rest

� � pick this highest ranked message after scanning them all

��� Appendix B

Example� Implementing probe with recvf

�include
pvm��h

static int foundit � ��

static int

foo
match�mid� tid� code�

int mid�

int tid�

int code�

�

int t� c� cc�

if ��cc � pvm
bufinfo�mid� �int���� �c� �t�� � ��

return cc�

if ��tid �� �� ((tid �� t�

�� �code �� �� ((code �� c��

foundit � ��

return ��

�

int

probe�src� code�

�

int ��omatch����

int cc�

omatch � pvm
recvf�foo
match��

foundit � ��

if ��cc � pvm
nrecv�src� code�� � ��

return cc�

pvm
recvf�omatch��

return foundit�

�

Errors

No error condition is returned by pvm recvf�

PVM � Routines ���

pvmfreduce�� pvm reduce��

Performs a reduce operation over members of the speci�ed group�

Synopsis

C int info � pvm reduce� void ��func����

void �data� int count� int datatype�

int msgtag� char �group� int root�

Fortran call pvmfreduce� func� data� count� datatype�

msgtag� group� root� info �

Parameters

func � function that de�nes the operation performed on the global data�

Prede�ned are PvmMax� PvmMin� PvmSum� and PvmProduct�

Users can de�ne their own function�

data � �ointer to the starting address of an array of local values� On

return� the data array on the root will be overwritten with the

result of the reduce operation over the group�

count � integer specifying the number of elements in data array�

datatype � integer specifying the type of the entries in the data array�

msgtag � integer message tag supplied by the user� msgtag should be � ��

group � character string group name of an existing group�

root � integer instance number of group member who gets the result�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm reduce�� performs global operations such as max� min� and sum over

all the tasks in a group� All group members call pvm reduce�� with their local data� and

the result of the reduction operation appears on the user�speci�ed root task root� The

root task is identi�ed by its instance number in the group�

The pvm supplies the following prede�ned global functions that can be speci�ed in func�

PvmMin

PvmMax

PvmSum

PvmProduct

��� Appendix B

PvmMax and PvmMin are implemented for datatypes byte� short� integer� long� �oat�

double� complex� and double complex� For complex values the minimum �maximum� is

that complex pair with the minimum �maximum� modulus� PvmSum and PvmProduct

are implemented for datatypes short� integer� long� �oat� double� complex� and double

complex�

C and Fortran de�ned datatypes are as follows�

C Data Types Fortran Data Types

�����������������������������������

PVM
BYTE BYTE�

PVM
SHORT INT�

PVM
INT INT	

PVM
FLOAT REAL	

PVM
CPLX COMPLEX

PVM
DOUBLE REAL

PVM
DCPLX COMPLEX��

PVM
LONG

A user�de�ned function may be used used in func� the synax is�

C void func�int �datatype� void �x� void �y�

int �num� int �info�

Fortran call func�datatype� x� y� num� info�

func is the base function used for the reduction operation� Both x and y are arrays of

type speci�ed by datatype with num entries� The arguments datatype and info are as

speci�ed above� The arguments x and num correspond to data and count above� The

argument y contains received values�

Note� pvm reduce�� does not block� if a task calls pvm reduce and then leaves the group

before the root has called pvm reduce� an error may occur�

The current algorithm is very simple and robust� A future implementation may make

more e�cient use of the architecture to allow greater parallelism�

PVM � Routines ���

Examples

C�

info � pvm
reduce�PvmMax� �myvals� ��� PVM
INT�

msgtag�
workers
� roottid��

Fortran�

CALL PVMFREDUCE�PvmMax� MYVALS� COUNT� INT	�

MTAG� �workers�� ROOT� INFO�

Errors

The following error conditions can be returned by pvm reduce�

Name Possible Cause

PvmBadParam giving an invalid argument value�

PvmNoInst calling task is not in the group�

PvmSysErr local pvmd is not responding�

��� Appendix B

��� pvm reg hoster��

Registers this task as responsible for adding new PVM hosts�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg hoster��

Parameters

info � integer status code returned by the routine�

Discussion

The routine pvm reg hoster registers the calling task as a PVM slave pvmd starter�

When the master pvmd receives a DM ADD message� instead of starting the new slave

pvmd processes itself� it passes a message to the hoster� which does the dirty work and

sends a message back to the pvmd�

Note� This function isn�t for beginners� If one doesn�t grok what it does� he probably

doesn�t need it�

For a more complete explanation of what�s going on here� the user should refer to the

PVM source code and�or user guide section on implementation� this is just a man page�

That said���

When the master pvmd receives a DM ADD message �request to add hosts to the virtual

machine�� it looks up the new host IP addresses� gets parameters from the host �le if

it was started with one� and sets default parameters� It then either attempts to start

the processes �using rsh or rexec�
� or� if a hoster has registered� sends it a SM STHOST

message�

The format of the SM STHOST message is as follows�
int nhosts number of hosts

f

int tid of host

string options from host�le so# �eld

string login in form �username��hostname�domain

string command to run on remote host

g �nhosts�

The hoster should attempt to run each command on each host and record the result� A

command usually looks like

PVM � Routines ���

�PVM
ROOT�lib�pvmd �s �d �nhonk � �a#ca#$��f$a 	�#� � �a#$c	������

and a reply from a slave pvmd like

ddpro������ arch�ALPHA� ip� �a#$c	���b�f� mtu�	�#��

When �nished� the hoster should send a SM STHOSTACK message back to the address of

the sender �the master pvmd�� The format of the reply message is as follows�
f

int tid of host� must match request

string status result line from slave or error code

g �� implied count
The TIDs in the reply must match those in the request� They may be in a di
erent

order� however�

The result string should contain the entire reply �a single line� from each new slave pvmd�

or an error code if something went wrong� Legal error codes are the literal names of the

pvm errno codes� for example �PvmCantStart�� The default PVM hoster can return

PvmDSysErr or PvmCantStart� and the slave pvmd itself can return PvmDupHost�

The hoster task must use pvm setopt�PvmResvTids� �� to allow sending reserved mes�

sages� Messages must be packed using data format PvmDataFoo�

��� Appendix B

��� pvm reg rm��

Registers this task as PVM resource manager�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg rm� struct hostinfo ��hip �

struct hostinfo�

int hi
tid�

char �hi
name�

char �hi
arch�

int hi
speed�

� hip�

Parameters

hostp � pointer to an array of structures that contain information about

each host� including its pvmd task ID� name� architecture� and

relative speed�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm reg rm�� registers the calling task as a PVM task and slave host sched�

uler� This means it intercepts certain libpvm calls from other tasks in order to have a

say in scheduling policy� The scheduler will asynchronously receive messages from tasks

containing requests for service� as well as messages from pvmds notifying it of system

failures�

Note� this is not a trivial task� It cannot be called simply to turn o
 the default round�

robin task assignment� Rather� it allows the user to write his own scheduler and hook it

to PVM�

To understand what the following messages mean� the user should refer to the PVM

source code and�or user guide section on implementation� There�s just too much to say

about them�

When one of the following libpvm functions is called in a task with resource manager

set� the given message tag is sent to to scheduler�

PVM � Routines ���

Libpvm call Sched� message Normal message

pvm addhosts�� SM ADDHOST TM ADDHOST

pvm con�g�� SM CONFIG TM CONFIG

pvm delhosts�� SM DELHOST TM DELHOST

pvm notify�� SM NOTIFY TM NOTIFY

pvm spawn�� SM SPAWN TM SPAWN

pvm tasks�� SM TASK TM TASK

pvm reg sched�� SM SCHED TM SCHED

The resource manager must in turn compose the following messages and send them to

the pvmds�

Sched� Message Normal Message

SM EXEC DM EXEC

SM EXECACK DM EXECACK

SM ADD DM ADD

SM ADDACK DM ADDACK

SM HANDOFF �none�

The following messages are sent asynchronously to the resource manager by the system�

Sched� Message Meaning

SM TASKX notify of task exit�fail

SM HOSTX notify of host delete�fail

The resource manager task must use pvm setopt�PvmResvTids� �� to allow sending

reserved messages� Messages must be packed using data format PvmDataFoo�

��	 Appendix B

��� pvm reg tasker��

Registers this task as responsible for starting new PVM tasks�

Synopsis

C �include �pvmsdpro�h�

int info � pvm reg tasker��

Parameters

info � integer status code returned by the routine�

Discussion

The routine pvm reg tasker registers the calling task as a PVM task starter� When a

tasker is registered with a pvmd� and the pvmd receives a DM EXEC message� instead

of fork��ing and exec��ing the task itself� it passes a message to the tasker� which does

the dirty work and sends a message back to the pvmd�

Note� If this doesn�t make sense� don�t worry about it� This function is for folks who

are writing stu
 like debugger servers and so on� For a more complete explanation of

what�s going on here� the user should refer to the PVM source code and�or user guide

section on implementation� this is only a man page�

When the pvmd receives a DM EXEC message �request to exec new tasks�� it searches

epath �the PVM executable search path� for the �le name� If it �nds the �le� it then either

attempts to start the processes �using fork�� and exec��� or� if a tasker has registered�

sends it a SM STTASK message�

The format of the SM STTASK message is as follows�
int tid of task

int flags as passed to spawn��

string path absolute path of the executable

int argc number of arguments to process

string argv�argc� argument strings

int nenv number of environment variables to pass to task

string env�nenv� environment strings

The tasker must attempt to start the process when it gets one of these messages� The

tasker doesn�t reply to the pvmd if the task is successfully started� the task will reconnect

to the pvmd on its own �using the identi�er in envar PVMEPID��

PVM � Routines ���

The tasker must send a SM TASKX message to the pvmd when any task that it owns

�has started� exits� or if it can�t start a particular task� The format of the SM TASKX

message is as follows�
int tid of task

int status the Unix exit status �from wait���

int u sec user time used by the task� seconds

int u usec microseconds

int s sec system time used by the task� seconds

int s usec microseconds

The tasker task must use pvm setopt�PvmResvTids� �� to allow sending reserved mes�

sages� Messages must be packed using data format PvmDataFoo�

��� Appendix B

pvmfsend�� pvm send��

Sends the data in the active message bu
er�

Synopsis

C int info � pvm send� int tid� int msgtag �

Fortran call pvmfsend� tid� msgtag� info �

Parameters

tid � integer task identi�er of destination process�

msgtag � integer message tag supplied by the user� msgtag should be �# ��

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm send sends a message stored in the active send bu
er to the PVM process

identi�ed by tid� msgtag is used to label the content of the message� If pvm send is

successful� info will be �� If some error occurs� info will be � ��

The pvm send routine is asynchronous� Computation on the sending processor resumes

as soon as the message is safely on its way to the receiving processor� This is in contrast

to synchronous communication� during which computation on the sending processor halts

until the matching receive is executed by the receiving processor�

pvm send �rst checks to see whether the destination is on the same machine� If so and

this host is a multiprocessor� then the vendor�s underlying message�passing routines are

used to move the data between processes�

Examples

C�

info � pvm
initsend� PvmDataDefault ��

info � pvm
pkint� array� ��� � ��

msgtag � � �

info � pvm
send� tid� msgtag ��

Fortran�

CALL PVMFINITSEND�PVMRAW� INFO�

CALL PVMFPACK� REAL � DATA� ���� �� INFO �

CALL PVMFSEND� TID� �� INFO �

PVM � Routines ���

Errors

The following error conditions can be returned by pvm send�

Name Possible Cause

PvmBadParam giving an invalid tid or a msgtag�

PvmSysErr pvmd not responding�

PvmNoBuf no active send bu
er� Try calling pvm initsend�� be�

fore sending�

��� Appendix B

pvmfsendsig�� pvm sendsig��

Sends a signal to another PVM process�

Synopsis

C int info � pvm sendsig� int tid� int signum �

Fortran call pvmfsendsig� tid� signum� info �

Parameters

tid � integer task identi�er of PVM process to receive the signal�

signum � integer signal number�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm sendsig sends the signal number signum to the PVM process identi�ed

by tid� If pvm sendsig is successful� info will be �� If some error occurs� info will be

� ��

pvm sendsig should be used only by programmers with signal�handling experience� It

is very easy in a parallel environment for interrupts to cause nondeterministic behavior�

deadlocks� and even system crashes� For example� if an interrupt is caught while a process

is inside a Unix kernel call� then a graceful recovery may not be possible�

Examples

C�

tid � pvm
parent���

info � pvm
sendsig� tid� SIGKILL��

Fortran�

CALL PVMFBUFINFO� BUFID� BYTES� TYPE� TID� INFO ��

CALL PVMFSENDSIG� TID� SIGNUM� INFO �

Errors

The following error conditions can be returned by pvm sendsig�

Name Possible Cause

PvmSysErr pvmd not responding�

PvmBadParam giving an invalid tid value�

PVM � Routines ���

pvmfsetopt�� pvm setopt��

Sets various libpvm options

Synopsis

C int oldval � pvm setopt� int what� int val �

Fortran call pvmfsetrbuf� what� val� oldval �

Parameters

what � Integer de�ning what is being set� Options include�

Option Value Meaning

PvmRoute � routing policy

PvmDebugMask � debugmask

PvmAutoErr � auto error reporting

PvmOutputTid � stdout device for children

PvmOutputCode � output msgtag

PvmTraceTid � trace device for children

PvmTraceCode 	 trace msgtag

PvmFragSize
 message fragment size

PvmResvTids � allow messages to reserved tags and TIDs

val � Integer specifying new setting of option� Prede�ned route values

are as follows�

Option Value Meaning

PvmRoute � routing policy

PvmDontRoute �

PvmAllowDirect �

PvmRouteDirect �

oldval � Integer returning the previous setting of the option�

Discussion

The routine pvm setopt is a general�purpose function to allow the user to set options in

the PVM system� In PVM ��� pvm setopt can be used to set several options� including

��� Appendix B

automatic error message printing� debugging level� and communication routing method

for all subsequent PVM calls� Pvm setopt returns the previous value of set in oldval�

PvmRoute� In the case of communication routing� pvm setopt advises PVM on whether

to set up direct task�to�task links PvmRouteDirect �using TCP� for all subsequent com�

munication� Once a link is established� it remains until the application �nishes� If a direct

link can not be established because one of the two tasks has requested PvmDontRoute or

because no resources are available� then the default route through the PVM daemons is

used� On multiprocessors such as Intel Paragon this option is ignored because the com�

munication between tasks on these machines always uses the native protocol for direct

communication� pvm setopt can be called multiple times to selectively establish direct

links� but is typically set only once near the beginning of each task� PvmAllowDirect is

the default route setting� This setting on task A allows other tasks to set up direct links

to A� Once a direct link is established between tasks� both tasks will use it for sending

messages�

PvmDebugMask� For this option val is the debugging level� When debugging is turned

on� PVM will log detailed information about its operations and progress on its stderr

stream� The default is no debug information�

PvmAutoErr� In the case of automatic error printing� any PVM routines that return

an error condition will automatically print the associated error message� The argument

val de�nes whether this reporting is to be turned on ��� or turned o
 ��� for subsequent

calls� A value of ��� will cause the program to exit after printing the error message �not

implemented in ����� The default is reporting turned on�

PvmOutputTid� For this option val is the stdout device for children� All the standard

output from the calling task and any tasks it spawns will be redirected to the speci�ed

device� Val is the tid of a PVM task or pvmd� The default val of � redirects stdout to

master host� which writes to the log �le �tmp�pvml��uid�

PvmOutputCode� Only meaningful on task with PvmOutputTid set to itself� This is

the message tag value to be used in receiving messages containing standard output from

other tasks�

PvmTraceTid� For this option val is the task responsible for writing out trace event for

the calling task and all its children� Val is the tid of a PVM task or pvmd� The default

val of � redirects trace to master host�

PvmTraceCode� Only meaningful on task with PvmTraceTid set to itself� This is the

message tag value to be used in receiving messages containing trace output from other

tasks�

PvmFragSize� For this option val speci�es the message fragment size in bytes� The

default value varies with host architecture�

PVM � Routines ���

PvmResvTids� A val of � enables the task to send messages with reserved tags and to

non�task destinations� The default ��� results in a PvmBadParam error instead�

Examples

C�

oldval � pvm
setopt� PvmRoute� PvmRouteDirect ��

Fortran�

CALL PVMFSETOPT� PVMAUTOERR� �� OLDVAL �

Errors

The following error conditions can be returned by pvm setopt�

Name Possible Cause

PvmBadParam giving an invalid arg�

��� Appendix B

pvmfsetrbuf�� pvm setrbuf��

Switches the active receive bu
er and saves the previous bu
er�

Synopsis

C int oldbuf � pvm setrbuf� int bufid �

Fortran call pvmfsetrbuf� bufid� oldbuf �

Parameters

bufid � integer specifying the message bu
er identi�er for the new active

receive bu
er�

oldbuf � integer returning the message bu
er identi�er for the previous

active receive bu
er�

Discussion

The routine pvm setrbuf switches the active receive bu
er to bufid and saves the pre�

vious active receive bu
er oldbuf� If bufid is set to �� the present active receive bu
er

is saved� and no active receive bu
er exists�

A successful receive automatically creates a new active receive bu
er� If a previous

receive has not been unpacked and needs to be saved for later� then the previous bu�d

can be saved and reset later to the active bu
er for unpacking�

The routine is required when managingmultiple message bu
ers� For example� in switch�

ing back and forth between two bu
ers� one bu
er could be used to send information to

a graphical interface while a second bu
er could be used send data to other tasks in the

application�

Examples

C�

rbuf� � pvm
setrbuf� rbuf� ��

Fortran�

CALL PVMFSETRBUF� NEWBUF� OLDBUF �

Errors

The following error conditions can be returned by pvm setrbuf�

PVM � Routines ���

Name Possible Cause

PvmBadParam giving an invalid bu�d�

PvmNoSuchBuf switching to a nonexistent message bu
er�

��	 Appendix B

pvmfsetsbuf�� pvm setsbuf��

Switches the active send bu
er�

Synopsis

C int oldbuf � pvm setsbuf� int bufid �

Fortran call pvmfsetsbuf� bufid� oldbuf �

Parameters

bufid � integer the message bu
er identi�er for the new active send bu
er�

A value of � indicates the default receive bu
er�

oldbuf � integer returning the message bu
er identi�er for the previous

active send bu
er�

Discussion

The routine pvm setsbuf switches the active send bu
er to bufid and saves the previous

active send bu
er oldbuf� If bufid is set to �� the present active send bu
er is saved�

and no active send bu
er exists�

The routine is required when managingmultiple message bu
ers� For example� in switch�

ing back and forth between two bu
ers� one bu
er could be used to send information to

a graphical interface while a second bu
er could be used send data to other tasks in the

application�

Examples

C�

sbuf� � pvm
setsbuf� sbuf� ��

Fortran�

CALL PVMFSETSBUF� NEWBUF� OLDBUF �

Errors

The following error conditions can be returned by pvm setsbuf�

Name Possible Cause

PvmBadParam giving an invalid bu�d�

PvmNoSuchBuf switching to a nonexistent message bu
er�

PVM � Routines ���

pvmfspawn�� pvm spawn��

Starts new PVM processes�

Synopsis

C int numt � pvm spawn� char �task� char ��argv�

int flag� char �where�

int ntask� int �tids �

Fortran call pvmfspawn� task� flag� where�

ntask� tids� numt �

Parameters

task � character string containing the executable �le name of the PVM

process to be started� The executable must already reside on the

host on which it is to be started� The default location PVM looks

at is �HOME�pvm��bin��PVM
ARCH�filename �

argv � pointer to an array of arguments to the executable with the end

of the array speci�ed by NULL� If the executable takes no argu�

ments� then the second argument to pvm spawn is NULL�

flag � integer specifying spawn options�

In C flag should be the sum of the following�

Option value Meaning

PvmTaskDefault � PVM can choose any machine to start task

PvmTaskHost � where speci�es a particular host

PvmTaskArch � where speci�es a type of architecture

PvmTaskDebug � start processes under debugger

PvmTaskTrace
 processes will generate PVM trace data !

PvmMppFront �� start process on MPP front�end

PvmHostCompl �� use complement host set

��� Appendix B

where � character string specifying where to start the PVM process� Depending on

the value of flag� where can be a host name such as �ibm��epm�ornl�gov�

or a PVM architecture class such as �SUN��� If flag is �� where is ignored�

and PVM will select the most appropriate host�

ntask � integer specifying the number of copies of the executable to start up�

tids � integer array of length at least ntask� On return the array contains the

tids of the PVM processes started by this pvm spawn call� If there is a

error starting a given task� then that location in the array will contain the

associated error code�

numt � integer returning the actual number of tasks started� Values less than

zero indicate a system error� A positive value less than ntask indicates a

partial failure� In this case the user should check the tids array for the

error code�s��

Discussion

The routine pvm spawn starts up ntask copies of the executable named task� On systems

that support environment� spawn passes selected variables in parent environment to chil�

dren tasks� if set� the environment variable PVM EXPORT is passed� if PVM EXPORT

contains the names of other variables �separated by ����� they are passed too� This is use�

ful� for example� for the following�

setenv DISPLAY myworkstation����

setenv MYSTERYVAR ��

setenv PVM
EXPORT DISPLAY�MYSTERYVAR

The hosts on which the PVM processes are started is set by the flag and where argu�

ments� On return� the array tids contains the PVM task identi�ers for each process

started�

If pvm spawn starts one or more tasks� numt will be the actual number of tasks started�

If a system error occurs� numt will be � �� If numt is less than ntask� some executables

have failed to start and the user should check the last ntask � numt locations in the tids

array that will contain the associated error codes �see below for meaning�� The �rst

numt tids in the array are good� which can be useful for functions such as pvm mcast���

When flag is set to � and where is set to NULL �or ��� in Fortran�� a heuristic is used

to distribute the ntask processes across the virtual machine� Currently� the heuristic is

round�robin assignment starting with the next host in the table� Later PVM will use the

PVM � Routines ���

metrics of machine load and rated performance �sp#� to determine the most appropriate

hosts�

If the PvmHostCompl �ag is set� the resulting host set gets complemented� Also� the

TaskHost hostname ��� is taken as localhost� This allows spawning tasks on ��� to get

the localhost or to spawn n� � things on TaskHost�HostCompl ��� to get any but the

localhost�

In the special case where a multiprocessor is speci�ed by where� pvm spawn will start

all ntask copies on this single machine using the vendor�s underlying routines�

If PvmTaskDebug is set� the pvmd will start the task�s� in a debugger� In this case� in�

stead of executing pvm��bin�ARCH�task args� pvmd will executes pvm��lib�debugger

pvm��bin�ARCH�task args� The debugger is a shell script that the users can modify to

their individual tastes� Currently� the script starts an xterm with dbx or a comparable

debugger in it�

Examples

C�

numt � pvm
spawn�
host
� �� PvmTaskHost�

sparky
� �� �tid��� ��

numt � pvm
spawn�
host
� �� �PvmTaskHost�PvmTaskDebug��

sparky
� �� �tid��� ��

numt � pvm
spawn�
node
� �� PvmTaskArch�

RIOS
� �� �tid�i� ��

numt � pvm
spawn�
FEM�
� args� �� �� ��� tids ��

numt � pvm
spawn�
pde
� �� PvmTaskHost�

paragon�ornl
� $��� tids ��

Fortran�

FLAG � PVMARCH � PVMDEBUG

CALL PVMFSPAWN� �node�� FLAG� �SUN	�� �� TID���� NUMT �

CALL PVMFSPAWN� �FEM��� PVMDEFAULT� ���� ��� TIDS� NUMT �

CALL PVMFSPAWN� �TBMD�� PVMHOST� �cm$�utk�edu�� ��� TIDS� NUMT �

Errors

The following error conditions can be returned by pvm spawn either in numt or in the

tids array�

��� Appendix B

Name Value Possible Cause

PvmBadParam �� giving an invalid argument value�

PvmNoHost �� Speci�ed host is not in the virtual machine�

PvmNoFile �	 Speci�ed executable cannot be found� The default

location PVM looks in %�pvm��bin�ARCH where

ARCH is PVM architecture name�

PvmNoMem ��� Malloc failed� Not enough memory on host�

PvmSysErr ��� pvmd not responding�

PvmOutOfRes ��	 out of resources�

PVM � Routines ���

pvmftasks�� pvm tasks��

Returns information about the tasks running on the virtual machine�

Synopsis

C int info � pvm
tasks� int where� int �ntask�

struct pvmtaskinfo ��taskp �

struct pvmtaskinfo�

int ti
tid�

int ti
ptid�

int ti
host�

int ti
flag�

char �ti
a
out�

int ti
pid�

� taskp�

Fortran call pvmftasks� where� ntask� tid� ptid�

dtid� flag� aout�info �

Parameters

where � integer specifying what tasks to return information about� The

options are the following�

� for all the tasks on the virtual machine

pvmd tid for all tasks on a given host

tid for a speci�c task

ntask � integer returning the number of tasks being reported on�

taskp � pointer to an array of structures which contain information about

each task including its task ID� parent tid� pvmd task ID� sta�

tus �ag� the name of this task�s executable �le� and task �O�S

dependent� process id� The status �ag values are waiting for a

message� waiting for the pvmd� and running�

tid � integer returning task ID of one task

ptid � integer returning parent task ID

dtid � integer returning pvmd task ID of host task is on�

��� Appendix B

flag � integer returning status of task

aout � character string returning the name of spawned task� Manually

started tasks return blank�

info � integer status code returned by the routine� Values less than zero

indicate an error�

Discussion

The routine pvm tasks returns information about tasks running on the virtual machine�

The information returned is the same as that available from the console command ps�

The C function returns information about the entire virtual machine in one call� The

Fortran function returns information about one task per call and cycles through all

the tasks� Thus� if where # �� and pvmftasks is called ntask times� all tasks will be

represented�

If pvm tasks is successful� info will be �� If some error occurs� info will be � ��

Examples

C�

info � pvm
tasks� �� �ntask� �taskp ��

Fortran�

CALL PVMFTASKS� DTID� NTASK� INFO �

Errors

The following error conditions can be returned by pvm tasks�

Name Possible Cause

PvmBadParam invalid value for where argument�

PvmSysErr pvmd not responding�

PvmNoHost speci�ed host not in virtual machine�

PVM � Routines ���

pvmftidtohost�� pvm tidtohost��

Returns the host ID on which the speci�ed task is running�

Synopsis

C int dtid � pvm tidtohost� int tid �

Fortran call pvmftidtohost� tid� dtid �

Parameters

tid � integer task identi�er speci�ed�

dtid � integer tid of the host�s pvmd returned�

Discussion

The routine pvm tidtohost returns the host ID dtid on which the speci�ed task tid is

running�

Examples

C�

host � pvm
tidtohost� tid��� ��

Fortran�

CALL PVMFTIDTOHOST�TID� HOSTID�

Errors

These error conditions can be returned by pvm tidtohost�

Name Possible cause

PvmBadParam giving an invalid tid�

��� Appendix B

pvmftrecv�� pvm trecv��

Receives with timeout�

Synopsis

C int bufid � pvm trecv� int tid� int msgtag�

struct timeval �tmout �

Fortran call pvmftrecv� tid� msgtag� sec� usec� bufid �

Parameters

tid � integer to match task identi�er of sending process�

msgtag � integer to match message tag� should be � ��

tmout � time to wait before returning without a message�

sec� usec � integers de�ning Time to wait before returning without a

message�

bufid � integer returns the value of the new active receive bu
er identi�er�

Values less than zero indicate an error�

Discussion

The routine pvm trecv blocks the process until a message with label msgtag has arrived

from tid� pvm trecv� then places the message in a new active receive bu
er� also clearing

the current receive bu
er� If no matching message arrives within the speci�ed waiting

time� pvm trecv returns without a message�

A �� in msgtag or tid matches anything� This allows the user the following options� If

tid # �� and msgtag is de�ned by the user� then pvm recv will accept a message from

any process that has a matching msgtag� If msgtag # �� and tid is de�ned by the user�

then pvm recv will accept any message that is sent from process tid� If tid # �� and

msgtag # ��� then pvm recv will accept any message from any process�

In C� the tmout �elds tv sec and tv usec specify how long pvm trecv will wait without

returning a matching message� In Fortran� two separate parameters� sec and usec� are

passed� With both set to zero� pvm trecv behaves the same as pvm nrecv��� which is to

probe for messages and return immediately even if none are matched� In C� passing a null

pointer in tmout makes pvm trecv act like pvm recv��� that is� it will wait inde�nitely�

In Fortran� setting sec to �� has the same e
ect�

The PVM model guarantees the following about message order� If task � sends message

A to task �� then task � sends message B to task �� message A will arrive at task �

PVM � Routines ���

before message B� Moreover� if both messages arrive before task � does a receive� then a

wildcard receive will always return message A�

If pvm trecv is successful� bufid will be the value of the new active receive bu
er iden�

ti�er� If some error occurs� bufid will be � ��

Once pvm trecv returns� the data in the message can be unpacked into the user�s memory

using the unpack routines�

Examples

C�

struct timeval tmout�

tid � pvm
parent���

msgtag � 	 �

if ��bufid � pvm
trecv� tid� msgtag� �tmout �� ��� �

pvm
upkint� tid
array� ��� � ��

pvm
upkint� problem
size� �� � ��

pvm
upkfloat� input
array� ���� � ��

�

Fortran�

CALL PVMFRECV� ��� 	� ��� �� BUFID �

IF �BUFID �GT� �� THEN

CALL PVMFUNPACK� INTEGER	� TIDS� �$� �� INFO �

CALL PVMFUNPACK� REAL � MATRIX� ���� ���� INFO �

ENDIF

Errors

The following error conditions can be returned by pvm trecv�

Name Possible Cause

PvmBadParam giving an invalid tid value� or msgtag � ���

PvmSysErr pvmd not responding�

��	 Appendix B

pvmfunpack�� pvm upk���

Unpacks the active message bu
er into arrays of prescribed data type�

Synopsis

C

int info � pvm
unpackf� const char �fmt� ��� �

int info � pvm
upkbyte� char �xp� int nitem� int stride �

int info � pvm
upkcplx� float �cp� int nitem� int stride �

int info � pvm
upkdcplx� double �zp� int nitem� int stride �

int info � pvm
upkdouble�double �dp� int nitem� int stride �

int info � pvm
upkfloat� float �fp� int nitem� int stride �

int info � pvm
upkint� int �ip� int nitem� int stride �

int info � pvm
upklong� long �ip� int nitem� int stride �

int info � pvm
upkshort� short �jp� int nitem� int stride �

int info � pvm
upkstr� char �sp �

Fortran

call pvmfunpack� what� xp� nitem� stride� info �

Parameters

fmt � printf�like format expression specifying what to pack �see discussion��

nitem � the total number of items to be unpacked �not the number of bytes��

stride � the stride to be used when packing the items� For example� if stride# � in

pvm upkcplx� then every other complex number will be unpacked�

xp � pointer to the beginning of a block of bytes� Can be any data type� but

must match the corresponding pack data type�

cp � complex array at least nitem!stride items long�

zp � double precision complex array at least nitem!stride items long�

dp � double precision real array at least nitem!stride items long�

fp � real array at least nitem!stride items long�

ip � integer array at least nitem!stride items long�

jp � integer!� array at least nitem!stride items long�

sp � pointer to a null terminated character string�

PVM � Routines ���

what � integer specifying the type of data being unpacked�

what options

STRING � REAL	 �

BYTE� � COMPLEX �

INTEGER� � REAL �

INTEGER	 � COMPLEX�� 	

info � integer status code returned by the routine� Values less than zero indicate

an error�

Discussion

Each of the pvm
upk� routines unpacks an array of the given data type from the active

receive bu
er� The arguments for each of the routines are a pointer to the array to be

unpacked into� nitem which is the total number of items to unpack� and stride which

is the stride to use when unpacking�

An exception is pvm upkstr�� which by de�nition unpacks a NULL terminated character

string and thus does not need nitem or stride arguments� The Fortran routine pvm�

funpack� STRING� ���� expects nitem to be the number of characters in the string and

stride to be ��

If the unpacking is successful� info will be �� If some error occurs� info will be � ��

A single variable �not an array� can be unpacked by setting nitem# � and stride# ��

The routine pvm unpackf�� uses a printf�like format expression to specify what and how

to unpack data from the receive bu
er� All variables are passed as addresses� A BNF�like

description of the format syntax is as follows�

format � null (init (format fmt

init � null (��� ���

fmt � ��� count stride modifiers fchar

fchar � �c� (�d� (�f� (�x� (�s�

count � null (���#�� (���

stride � null (��� � ���#�� (��� �

modifiers � null (modifiers mchar

mchar � �h� (�l� (�u�

Formats�

� means initsend � must match an int �how� in the param list�

c pack�unpack bytes

d integer

f float

��� Appendix B

x complex float

s string

Modifiers�

h short �int�

l long �int� float� complex float�

u unsigned �int�

��� count or stride must match an int in the param list�

Future extensions to the what argument will include ���bit types when XDR encoding

of these types is available� Meanwhile� users should be aware that precision can be

lost when passing data from a ���bit machine like a Cray to a �� bit machine like a

SPARCstation� As a mnemonic the what argument name includes the number of bytes

of precision to expect� By setting encoding to PVMRAW �see pvm�nitsend�� data can be

transferred between two ���bit machines with full precision even if the PVM con�guration

is heterogeneous�

Messages should be unpacked exactly as they were packed to ensure data integrity� Pack�

ing integers and unpacking them as �oats will often fail because a type encoding will have

occurred transferring the data between heterogeneous hosts� Packing �� integers and ���

�oats� then trying to unpack only � integers and the ��� �oats� will also fail�

Examples

C�

info � pvm
recv� tid� msgtag ��

info � pvm
upkstr� string ��

info � pvm
upkint� �size� �� � ��

info � pvm
upkint� array� size� � ��

info � pvm
upkdouble� matrix� size�size� � ��

Fortran�

CALL PVMFRECV� TID� MSGTAG ��

CALL PVMFUNPACK� INTEGER	� NSIZE� �� �� INFO �

CALL PVMFUNPACK� STRING� STEPNAME� � �� INFO �

CALL PVMFUNPACK� REAL	� A�$���� NSIZE� NSIZE � INFO �

Errors

The following error conditions can be returned by pvm upk��

PVM � Routines ���

Name Possible Cause

PvmNoData Reading beyond the end of the receive bu
er� Most

likely cause is trying to unpack more items than were

originally packed into the bu
er�

PvmBadMsg The received message cannot be decoded� Most likely

because the hosts are heterogeneous and the user

speci�ed an incompatible encoding� Try setting the

encoding to PvmDataDefault �see pvm mkbuf��

PvmNoBuf There is no active receive bu
er to unpack�

Bibliography

��� R� Butler and E� Lusk� Monitors� messages� and clusters	 The p� parallel programming system�
Technical Report Preprint MCS�P��������� Argonne National Laboratory� Argonne� IL� �����

��� L�E� Cannon� A cellular computer to implement the kalman �lter algorithm� Phd thesis� Montana
State University� �����

��� Nicholas Carriero and David Gelernter� LINDA in context� Communications of the ACM�
�����	�������� April �����

��� David Cheriton� VMTP	 Versatile Message Transaction Protocol� RFC ����� Stanford University�
February �����

��� J� Wang et� al� LSBATCH	 A Distributed Load Sharing Batch System� Csri technical report �����
University of Toronto� April �����

��� J� Flower� A� Kolawa� and S� Bharadwaj� The Express way to distributed processing� Supercom�

puting Review� pages ������ May �����

��� Message Passing Interface Forum� Mpi	 A message�passing interface standard� Computer Science
Dept� Technical Report CS�������� University of Tennessee� Knoxville� TN� April ����� �To appear
in the International Journal of Supercomputer Applications� Volume �� Numbers �
�� ������

��� G� C� Fox� S�W� Otto� andA� J� G� Hey� Matrix algorithmson a hypercube I	 Matrix multiplication�
Parallel Computing� �	������ �����

��� David Gelernter and David Kaminsky� Supercomputing out of recycled garbage	 Preliminary
experience with Piranha� In ���� International Conference on Supercomputing� pages ��������
ACM� ACM Press� July �����

���� T� Green and J� Snyder� DQS� A Distributed Queuing System� Scri technical report ��������
Florida State University� August �����

���� M� Litzkow� M� Livny� and M� Mutka� Condor � A hunter of idle workstations� In Proceedings of

the Eighth Conference on Distributed Computing Systems� San Jose� California� June �����

���� John K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� �����

���� J� Postel� Transmission control protocol� RFC ���� Information Sciences Institute� September
�����

���� J� Postel� User datagram protocol� RFC ���� Information Sciences Institute� September �����

���� Daniel A� Reed� Robert D� Olson� Ruth A� Aydt� Tara M� Madhyastha� Thomas Birkett� David W�
Jensen� Bobby A� A� Nazief� and Brian K� Totty� Scalable performance environments for parallel
systems� In Quentin Stout and Michael Wolfe� editors� The Sixth Distributed Memory Computing

Conference� pages �������� IEEE� IEEE Computer Society Press� April �����

���� Sun Microsystems� Inc� XDR	 External Data Representation Standard� RFC ����� Sun Microsys�
tems� Inc�� June �����

���� Louis Turcotte� A survey of software environments for exploiting networked computing resources�
Draft report� Mississippi State University� Jackson� Mississippi� January �����

Index

ATM� �

bottleneck� ���

C
language binding� ��

C��
language binding� ��

chat script� ���
comments� xvi
comp�parallel�pvm� xvi
console program� ���
control messages� ���
Cray Research�s CS����� ���
crowd computing� ��

daemon� ��
data parallelism� ��
debugging� ���� ���
imalloc� ���
log� ���
mask� ���
pvm setopt��� ���
runtime� ���
system� ���
tickle� ���

debugmask� ���
DEC�s VMS� ���
distributed computing� �
dynamic con�guration� �����
dynamic process groups� �����

environment variables� ���
ethernet� �
examples
Cannon�s algorithm� ��
dot product� �����
embarrassingly parallel� ��
failure� �����
fork join� �����
heat equation� �����
Mandelbrot� ��
matrix multiply� ��� �����
tree computations� ��

Express� �� �

fault detection� ���
fault tolerance� ���
FDDI� �
�le descriptor� ���
�rewall machines� ���
Fortran� ���
language binding� ��

functional parallelism� ��

Gantt chart� ���
getting options� �����
global max� ��
global sum� ��
Grand Challenge problems� �
group of tasks� ��

heterogeneity� �
HiPPI� �
host pool� ��
host table� ���
host�node� ��
hoster� ���
host�le� ��� ��
hostless� ���

IBM�s OS
�� ���
inplace message� ���
Intel
iPSC
���� ���� ���
Paragon� ���� ���

Intel iPSC
���� ���
Intel NX operating system� ���

libfpvm��a� ���
libgpvm��a� ��
Linda� �� �
Pirhana� �
tuple�space� �

m�� ���
machine con�guration� ���
manual startup� ���
massively parallel processors MPP� �
master�slave� ��
memory limit� ���
message
maximum size� ���

message bu�ers� �����
message passing� �� ��
message routing� ���
MID� ��
MPI� ���
MPP� ���
MPSD� ��
multicast address� ���
multicasting� ���
multiple consoles� ��
multiprocessor systems� ���
multiprocessors� ���

netlib� ���
node�only� ��
non�Unix systems� ���

��� Index

Ousterhout� ���
overhead� ���

P�� �
Pablo� ���
packing data� �����
password� ���
porting existing applications� �����
porting PVM� ���
probe function� ��
process control� ��
processes
limit� ���

protocol
pvmd�pvmd� ���� ���
pvmd�task� ���
task�task� ���
TCP� ���
UDP� ���
VMTP� ���

protocols� �������
PVM
computing model� ��
console� �����
deamon� �������
GUI� ���
host �le� �����
instance number� ��
PVM ARCH� ��
PVM ROOT� ��
running programs� �����
setup� �����
signal handlers� ���
starting� �����
TID� ��

PVM ARCH� ���
PVM DEBUGGER� ���
PVM DPATH� ���
PVM EXPORT� ���
PVM ROOT� ���
pvmd� ��
connecting� ���
delete hosts� ���
direct message routing� ���
dynamic memory� ���
foreign tasks� ���
libpvmd� ���
message routing� ���
messages� ��
MPP� ���
packet bu�ers� ���
packet routing� ���
refragmentation� ���
shutdown� ���

slave� ���
startup� ���
task limit� ���
task manager� ���
wait context� ���

pvmd�� ���
pvmd�task� ���� ���
pvmd�� ��
PVMEPID� ���
PVMSOCK� ���
PVMTMASK� ���

questions� xvi

receiving data� �����
reduction operation� ��
Reed� ���
resoruce limitations� �������
resource manager� ���
rexec� ���
rlogin� ���
rsh� ���

scalability� ���
SDDF� ���
self de�ning data format� ���
sending data� �����
service nodes� ���
setting options� �����
shadow pvmd� ���
shared memory� ���
signaling� ��
Solaris� ���
SONET� �
SPMD� ��
SPMD program� ���
standard I
O� ���
stderr� ��
stdout� ��
Sun Microsystems� ���

task� ��
task�task� ���
TCL
TK� ���
telnet� ���
Thinking Machine�s CM��� ���� ���
trace events� ��
tracing� ���� ���
tree computation� ��
troubleshooting
startup problems� ��

Unix workstations� ���
unpacking data� �����

Index ���

user output� ��

virtual machine� �

workload
data decomposition� �����
function decomposition� �����

wrapper functions� ���

XDR� ��
XPVM� ��� �������
network view� �������
space�time view� ���

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue true
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

