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Preface

Introduction

Dilemmas involving notation, project planning, project management, and ac-
tivity workflow pervade the world of software development. Object-orienta-
tion provides an elegant language for framing such problems, and powerful
tools for resolving them.

In this book, we have brought together a collection of presentations, giving
the reader an in-depth look into the technical, business, and social issues in
managing object-oriented development processes, as well as presenting new
technologies, making software development more effective. The chapters in
the book examine many topics in the research frontier of software develop-
ment, including methods, technologies, strategies, and the human factor. The
book also presents the fundamentals of object-oriented project management.

The various backgrounds of the contributing authors—industrial, consulting,
research, and teaching—yielded presentations, complementing and enriching
each other. As a result, the book paints a holistic picture of the multi-faceted
problems in object-oriented software development. It should be of interest to
software developers, project managers, system analysts, and graduate and
upper-level college students majoring in information systems and computer
science who would like to deepen their knowledge in the field of object-
oriented project management.

Very briefly, some of the major topics discussed in this book include: software
development life cycle; development strategies, for example, open source,
outsourcing, and product lines; componentization; the human factor; object-
oriented notation and techniques, such as xXUML, MDA, and MDSD; re-
quirements engineering; design patterns; project management; and system in-
tegration with Web services.
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Organization

The book is organized into 15 chapters. Each chapter emphasizes a particular
area, identifies important shortcomings, discusses current activities, offers new
insights into the problematics, and suggests opportunities for improving the
management of object-oriented software development projects.

Motivated by computer simulation, the notions of object, class, and class gen-
eralization were formulated by Dahl and Nygaard in 1967. However, it was
not until the mid-1990s that the first industrial-strength, object-oriented nota-
tions were complemented by sound development methods. Today, the ob-
ject-oriented world is dominated by UML to the extent that UML and object-
orientation have become synonymous. The book naturally begins with an in-
troduction to UML2. The emphasis is on the novel features of UML and the
new trends in object-orientation, namely, modeling of large things, a higher
level of modeling abstraction, design automation, precision, and freedom from
the constraints of the implementation platform.

In Chapter II, the themes from the introductory chapter are re-examined in
the framework of xXUML (executable UML) and MDA (model-driven ar-
chitecture). MDA and xUML are among the latest initiatives of OMG.
They promise to change the way software is created by combining a mod-
eling language with a model manipulation language, rendering implementation
programming obsolete. The chapter presents the two methodologies. It also
discusses the MDA activity workflow and presents a development method for
projects relying on xXUML.

In Chapter III, Russ and McGregor present a model for planning object-
oriented projects. The authors structure the software development land-
scape into a triad of high-level dimensions—technology, method, and or-
ganizational strategy—where each dimension is further divided into sev-
eral sub-dimensions. The model defines project planning as navigating
through a multi-dimensional hyperspace.

In Chapter IV, the Russ-McGregor model has been applied to evaluate the
strength and weaknesses of xXUML and MDA. The analysis sheds light on the
economics of model-driven software development, and on the difficulties
project managers and developers alike may encounter in adopting the two
technologies in an industrial setting.

In Chapter V, Roussev and Akella present a new approach to managing
outsourcing projects. Drawing on experience with Indian software firms, the
authors closely analyze the problems faced by outsourcing clients and oft-
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shore developers. Roussev and Akella show how these problems can be suc-
cessfully resolved by scaling down a large outsourcing project to meet the
Agile “sweet spot,” and by carefully managing the communication patterns
among all stakeholders.

In Chapter VI, Roussev and Rousseva present a process extension applicable
to both lightweight and heavyweight development methods. The extension is
based on a business value invariant, and views the iterative and incremental
model of software development as a communication model. The proposed
techniques link the informal user requirements world to the system model,
which makes it possible to derive mechanically the system architecture from
the user requirements, and automatically to validate it with respect to the
system’s use case model through model animation.

It is a well-known fact that many of the agile practices are incompatible with
the context of large-sized projects. Gary Pollice and Gary Evans, two nation-
ally recognized methodologists, independently present their approaches to
reproducing the conditions for agility in large-sized projects by balancing agil-
ity and discipline. Pollice and Evans look out for common grounds between
Agile and RUP to get the best of both worlds.

In Chapter IX, Jorn Bettin, director of an international strategic technology
management consultancy, addresses the question of how to create durable and
scalable software architectures, so that the underlying design intent survives over
aperiod of many years. Bettin goes beyond object-orientation and traditional
iterative software development to define a set of guiding principles for compo-
nent encapsulation and abstraction, and to form the foundation for a model-
driven approach to software development.

In Chapter X, Magdy Serour from the Centre for Object Technology Appli-
cations and Research (COTAR) at the University of Technology, Sydney, delves
into a gray area of object-orientation, namely, the effect of various human
factors on the adoption and diffusion of an object-oriented software develop-
ment process. Serour defines a process to assist organizations in planning and
managing their transition to object-oriented development. The author discusses
key “soft” factors, such as motivation, leadership, and overcoming the resis-
tance to culture change, which are critical in promoting the process of organi-
zational change.

In Chapter XI, Gerald Miller from Microsoft addresses a very important area
of the new technological wave. Integration of systems in a cost-effective way
is crucial for most enterprises, as many integration efforts fail to bring about
the promised return on investment. Miller’s presentation discusses how to



resolve the system integration nightmare by building a service-oriented archi-
tecture with Web services which integrates disparate systems, both within
organizations and across business partners’ firewalls.

In Chapter XII, de Lara, Guerra, and Vangheluwe give an overview of model-
based software development, and propose ideas concerning meta-modeling
and the use of visual languages for the specification of model transformations,
model simulation, analysis, and code generation. They also examine the im-
pact of model-based techniques on the development process.

The Agile methods are based on the presumption that a complete and stable
requirements specification is generally impossible. This assumption invalidates
the very vehicle for computing project velocity, progress, deadline prognosis,
and budget allocations, as project managers cannot track the number of closed
vs. open requirements. In Chapter XIII, Roock and Wolf demonstrate a prac-
tical technique, integrating lightweight mechanisms for project controlling into
Agile methods. They propose to combining an (incomplete) hierarchical de-
composition of a system with abstract measurements. Their approach ad-
dresses pressing management needs without incurring the burden of a water-
fall-like exhaustive specification upfront.

Object-oriented knowledge comes in different forms, for example, principles,
heuristics, patterns, refactoring, lessons learned, defects, and best practices.
In Chapter XIV, Garzés and Piattini define an ontology of object-oriented
micro-architectural design knowledge to systematize this knowledge so that it
can be easily comprehended by developers and used in practical cases.

In the final chapter, Knott, Merunka, and Polak propose a new object-oriented
methodology, which makes extensive use of business process modeling. The
authors contrast and compare their approach to similar development approaches,
and provide a case study to demonstrate the feasibility of their methodology.
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Chapterl

Object-Oriented
Modeling in UML2

Boris Roussev
University of the Virgin Islands, USA

Abstract

Object-orientation (O0) is a powerful design methodology, which has
firmly moved into the mainstream of software development. In 2002, both
the IEEE Johnvon Neumann Medal and the ACM Turing Award (the Nobel
Prize for Computing) were awarded to the scholars who started the
object-oriented journey back in 1967. Despite this recognition, object-
orientation is far from being the dominant technology of choice. Contrary
to the common belief, a recent authoritative study reports that only 30%
of the software companies rely on OO technologies, and that the waterfall
model is still the most popular lifecycle model of software development.
In this introductory chapter, we present the fundamental concepts and
principles of object-oriented modeling with UML version 2. Born out of
the efforts to resolve the software crisis, UML has taken such a hegemonic
role that we fear object-orientation may undergo a population
“bottleneck.” In biology, this is an event that dangerously cuts the
amount of genetic diversity in a population. The objectives of this chapter
areas follows: 1) to present the influential ideas in the evolution of object-
orientation, 2) to identify the lasting trends in object-orientation; 3) to

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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introduce the core UML modeling languages and some of the techniques
closely associated with them, and 4) to discuss some of the challenges with
object-oriented modeling. In addition, we present the E-ZPass system, a
system of moderate complexity used as a running example in the first five
chapters of this book. This presentation is the book’s cornerstone. There
is not a single chapter in the rest of this volume that does not assume an
overdetermined <<UML>> reader.

Introduction

Building large and complex software systems is notoriously difficult. To build
such systems, we need methodologies backed by languages that would feature

characteristics addressing the following needs:

Features
To structure a system into modular components that can
be developed, maintained, and reused separately.
P To base the semantic structure and behavior of the
solution on the problem being solved.
o To raise the level of abstraction of the artifacts being
constructed.
To use a common vocabulary with the client. To describe
®  the problem in a notation that is client and designer
friendly.

e To describe a problem precisely and in a way that avoids
delving into technical details.

To allow for reuse at all levels: requirements, analysis,
design, architecture, and domain, and at all levels of
interest: structural, behavioral, and communicational.
To provide the basis for effective management of the
development process.

()]

To automate repetitive design and implementation tasks.

To facilitate iterative and incremental, architecture-
centered, test-driven processes.

To respond to change quickly and in a cost-effective
manner.

e & © 9O

Needs

Control complexity.
Reduce the cognitive burden.

Curb complexity.

Link business and
technology, and improve
communication.

Testability, executability,
portability, productivity, and
design automation.

Improve quality and
productivity.

Develop cost-effectively.

Improve quality and
productivity.

Risk mitigating, exploratory
processes.

Satisfy the ever-evolving
user needs.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.
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Object-orientation (OO) is a powerful design methodology based on the
principles listed above. The importance of OO has now been firmly
recognized by industrial and research communities alike. In2002, both the
IEEE John von Neumann Medal and the ACM Turing Award (the Nobel
Prize for Computing) were awarded to Ole-Johan Dahl and Kristen Nygaard
for their pioneering work in OO through the design and implementation of
SIMULAG67. A quote from the ACM address confirms the importance of this
seminal work:

Their [Dahl and Nygard’s] work has led to a fundamental change
in how software systems are designed and programmed, resulting
in reusable, reliable, scalable applications that have streamlined
the process of writing software....

Inmodern history of science, itis not very common to have such alow adoption
rate as in the case of OO. The work of Dahl and Nygaard was made almost
extinct by two programming languages called COBOL and C, which muscled
their way through, backed by several major industry players and governmental
agencies.

Despite the recognition, OO (with the exception of use cases) is not yet the
dominant technology of choice. In a comprehensive study, Laplante and
Neill (2004) report that only 30% of the software companies rely on OO
technologies and that the waterfall model is still the most popular lifecycle
model in use. The authors conclude that OO techniques are not dominant,
which is in sharp contrast with the common belief about the popularity of
OO methods and technology.

In this introductory chapter, we lay the fundamental concepts of OO using
the Unified Modeling Language (UML, 2004). Since it was adopted by the
OMG in 1997, UML has been widely accepted throughout the software-
modeling world and successfully applied to diverse domains. Therefore,
it will not be much of an exaggeration to paraphrase from Wittgenstein':
namely, the limits of UML mean the limits of my OO world.

Since OO modeling is dominated by UML in all areas, it seems unlikely for
an OO notation or method to be able to survive away from UML. In the
foreseeable future, the evolutionary history of OO will be tied in very
closely to that of UML. As aresult, OO methods may undergo a population
“bottleneck.” In biology, this is an event that cuts dangerously the amount

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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of genetic diversity in a population. On the bright side, OMG is backed by a
large industrial consortium, and important decisions are taken with broad
consensus and (in truly OO spirit) after an incremental and iterative
process. Despite the dominant role of UML, there are alternative ap-
proaches, for example, the OPEN Modeling Language (Firesmith,
Henderson-Sellers, & Graham, 1998) and the Business Object Notation
(Paige & Ostroft, 1999).

The rest of the chapter is structured as follows. The next section presents
a brief history of OO focusing on influential ideas and contribution. Then
we introduce the core set of modeling language of UML2. We use as a
running example a real-world system of moderate complexity. We next
discuss some of the challenges with OO modeling, before concluding the
chapter.

Brief History of Object-Orientation

The crisis in software development is not from yesterday. Being relatively
young, software development has lacked until recently a proven apparatus
for design and evaluation of software products. The historic conference,
sponsored by NATO, that diagnosed the crisis of software development and
proposed “software engineering” as a remedy, took place in Garmisch,
Germany, inthe Bavarian Alps, in 1968. After the conference, Dijkstra, one
ofthe participants, wrote: “For me it was the end of the Middle Ages. It was
very sunny.” However, almost 40 years later, resorting to best practices,
documented as development methods, such as RUP and Agile, testifies to
the fact that it might have marked not so much the end of the Middle Ages,
but rather it might have foreshadowed the harbinger of a Renaissance.

In this section, we attempt to summarize chronologically the OO Renais-
sance. The review of the early OO analysis and design methods is based on
the insightful discussion in Graham and Wills (2001).

The rapidly improving performance/price ratio of hardware entailed wide
adoption of client-server multi-tier information systems in every sphere of
human activity. In the 1980s, the software development community came
under increased pressure to develop usable, dependable, and scalable
distributed systems in a cost-effective way.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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To increase productivity and quality, the software industry had to adopt
methods of building systems out of reusable components, and at the same
time to raise the level of abstraction of the designed artifacts. There were
two major challenges to materializing these ideas. First, with structured
methods, less than half ofa system could be built out of reusable components
(Biggerstaff & Richter, 1989). And second, raising the level of abstraction
leaves developers with less meaningful artifacts—that is, less semantic
richness and fewer venues for extensibility.

Structured methods view a system as a hierarchy of functions and rigidly
separate process knowledge from data. Self-contained, customizable, and
reusable components did not naturally fit in this environment.

The software industry responded to these challenges by shifting its focus to
OO methods. Up until the early 1980s, OO was largely associated with the
development of graphical user interfaces and Al. In the 1980s, interest
extended to OO design, mainly to support the OO programming language
Smalltalk and the OO extension of the imperative language C, named C++.

In the late 1980s and early 1990s, interest moved away from OO design to
OO analysis. Several influential works helped gradually shape the field of
OO analysis. The coinage object-oriented design is attributed to Booch,
who published a paper in 1988 and a book (Booch, 1991, 1993) with the
same name.

The switch from well-established structured analysis techniques to OO
analysis methods naturally began with extending the entity-relationship
model (Codd et al., 1980) and endowing entities with behavioral aspects,
the so-called data-driven approach. Data-driven methodologies (Coad &
Yourdon, 1991; Rumbaughetal., 1991; Shlaer & Mellor, 1988) approached
application development as relational database development.

Coad and Yourdon (1991) added operations to entities to define class
models as a basis of a simple OO analysis method, which immediately
became popular. OMT (Rumbaugh et al, 1991), built on the work of Coad
and Yourdon, and Shlaer and Mellor (1988) proposed the use of finite state
machines (FSMs) to describe the lifecycles of class instances. This idea
came to fruition in the work of Shlaer and Mellor (1992), who also advanced
the notion of translational modeling, thus laying the foundation for Execut-
able UML (Mellor & Balcer, 2002) and Model-Driven Architecture (MDA,
2004).

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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A second group of OO methods emerged in parallel with the data-driven group,
called responsibility-driven methods. They shied away from the entity-relation-
ship model and more strictly adhered to OO principles.

Wirfs-Brock et al. (1990) developed a set of responsibility-driven design
(RDD) techniques. Among the most important contributions of RDD are the
extension of the idea of CRC cards (Beck & Cunningham, 1989) and the
introduction of stereotypes. CRC cards are physical cardboard pieces
visualizing classes with their responsibility and collaborations (hence the
name CRC). Developers are encouraged to take the view of an instance of
aclass(called anthropomorphism) and act out the object’s lifecycle in order
to discover new classes in the problem domain. Then, these CRC cards are
used as a starting point for design. This technique became one of the
underpinnings of the Agile methodologies (Beck, 1999).

Cook and Daniels’ (1994) Syntropy added rigor to OO modeling by
introducing a pure expression language, later called OCL to express
modeling concepts, such as uniqueness constraints, invariants, transition
guards, and operation pre- and post-condition, that cannot even be repre-
sented on class diagrams and finite state machines.

As OO notations mushroomed in the early 1990s, so did the OO methods that
lived onthem. MOSES (Henderson-Sellers & Edwards, 1994) was the first
OO method to include a full-fledged development process and metrics.
SOMA (Graham, 1994), following in the footsteps of MOSES, attempted
to fuse the best practices of all methods, and in addition emphasized
requirements engineering, process, and rigor.

Arguably the most influential work, which later became the foundation of
RUP (Kruchten, 2000), was the OO incarnation of Objectory (Jacobson,
1992). Objectory started out as a proprietary method in Erickson, a Swedish
telecommunication company, in the late 1960s. The major contributions of
Jacobson’s work are the following: use cases (clusters of scenarios of
system usage); use case analysis; the use of sequence diagrams for class
discovery and distribution of responsibilities among classes; the boundary-
controller-entity design pattern, which allowed the containment of “change-
ability” through “locality of change;” and the definition of software
development as model transformation from more abstract to more detailed
and precise models.

In 1997, OMG standardized and published UML version 1. UML1 quickly
became the norm for OO modeling. UML was influenced by OMT, OCL, the
Booch notation, activity diagrams for process modeling (Martin & Odell,

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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1992), stereotypes (Wirfs-Brock etal., 1990), and multiple interfaces from
Microsoft’s COM+ technology. UML’s belated conception was the major
cause for its inconsistencies and deficiencies (Miller, 2002). The industry
had already invested in the creation of expensive CASE tools, and CASE
tool vendors resisted many innovations and simplifications that would
render their tools obsolete.

The two most popular methods used for OO software development with
UML are RUP, developed at Rational by Jacobson et al. (Kruchten, 2000),
and the lighter-weight Agile methods (Beck, 1999). Both RUP and Agile are
based on an iterative and incremental lifecycle, in which the system
architecture evolves (hence the term evolutionary) incrementally from a
prioritized set of user requirements in a series of mini-waterfall cycles of
business-modeling/requirements-elicitation/analysis/design/implementa-
tion/test. The evolutionary approaches are requirements-driven (each
artifact can be traced to a requirement) and architecture-centered (or
architecture first). They outperform in terms of customer satisfaction and
costmethods based on the waterfall model in fast-paced, dynamic environ-
ments, with a great risk exposure due to the multiple feedback opportunities
for customers to situate and orient the development effort. The evolutionary
approaches are based on areciprocal relationship between system and user.
Onthe one hand, the user envisions the system. On the other hand, the system
changes the user’s perception about the system. Therefore, we could expect
that a partially completed prototype (increment) will be able to reveal early
on the anticipated change in the users, and in this way to reduce the
backtracking in the development process.

The inconsistencies in UML1 prompted several minor revisions (UML1.x),
followed by a major one, whose result will be UML2. The standardization
process is scheduled for completion by the end of 2004. UML2 promises
to be a breakthrough in model-driven development by making models
executable and by automating the relationship between models and code.

Objects turned out to be disproportionately small compared to the size of
the systems being built with them. The second wave of innovations in OO
analysis was marked by an increased interest in things bigger than objects,
namely things allowing reuse on a larger scale, but foremost, things
automating the software design process. The trend, which began in the mid-
1990s, is toward more complex structures at a higher level of abstraction,
gradating from design patters and components, through aspects, to domains.
The second trend informing OO today is design automation.

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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Introduced in a seminal work (Gamma, Helm, Johnson, & Vlissides, 1995),
design patterns have quickly gained popularity among developers. A design
pattern is a description of a problem, a best practice for its solution, and
when and how to apply the best practice (typically, via instantiation) in new
situations. Gamma et al. showed the advantage of reusing aggregations of
objects along with the mechanisms for their interactions. The reusability of
design knowledge with design patterns, however, comes at a certain price.
Garzas and Piattini (2005) list a number of problems with design patterns:
difficult application, temptation to recast everything as a pattern, pattern
overload, high-dependence on a programming language (except for analysis
patterns), complex non-homogeneous catalogs, and a steep learning curve
for some counter-intuitive patterns, to name a few. It is important to note that
design patterns do not raise the level of abstraction at which design is
carried out. They describe solutions at the object level.

OO provided the foundation for component-based development. Compo-
nents are big things that do raise the level of abstraction in design. A
component is a set of closely related objects, encapsulated together to
support a set of clearly defined interfaces. With components, a system is
described in terms of interactions among component interfaces. Designed
with reusability in mind, components lead to increased productivity and
quality. Touse components, developers ought to be equipped with tools for
component customization, initialization, and interface inspection.

To address the issue of crosscutting concerns, Kiczales (1996) introduced
aspect-oriented programming (AOP). AOP deals with abstractions on a
plane different from object-oriented modeling. AOP advocates specifying
separately the various pervasive requirements of a system, for instance,
security and transaction management, which do not decompose into behav-
ior centered on a single locus, and then, to weave them together into a
coherent system. AOP focuses on the system’s infrastructure, something that
cannot be done effectively only in terms of components and objects. AOP’s
major drawback is that aspects are defined at code level.

The largest truly reusable constructs in OO are domains. An executable
domain model captures precisely the conceptual entities of a single subject
matter (Mellor & Balcer, 2002). Each domain forms a cohesive whole,
semantically autonomous from other domains, which makes domains the
largest units of reuse. A domain is modeled as a set of communicating
objects or more precisely as a set of communicating object state machines.
Executable domain models can be simulated and debugged, woven together
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through bridges, and automatically compiled to code based on the principles of
generative programming (Czarnecki & Eisenecker, 2000). Domains bear
certain similarity to aspects, but they are, in distinction, defined at a very
abstractmodel level.

Inline with model-driven development and domain modeling, OMG launched
the Model-Driven Architecture initiative (MDA, 2004). The essence of the
MDA approach is the clear separation between executable platform indepen-
dentmodels (PIM) and platform specific models (PSM), and the application
of marks and mappings to transform PIMs to PSMs, and to generate code from
PSMs. The notions of model executability and model mappings bring in the so-
much-sought-after design automation. MDA raises the level of abstraction and
avoids technology dependence, thus addressing the complexity and portability
problems. Furthermore, MDA applies very successfully the separation-of-
concern principle by capturing design knowledge in machine-readable map-
pings and application knowledge in executable domain models. Model
executability affords model testing and debugging, thus realizing the “proving
with code” principle, only ata much more abstract level.

The level of reuse culminates in product lines (Withey, 1996; PL, 2004),
breaking easily the 90% reuse barrier. The product lines method aims at
identifying units of common functionality in a family of products and
defining a customized development process, minimizing the effort neces-
sary to duplicate this functionality in the related products. Several methods
(Bosch,2000; Bayeretal., 1999; Atkinson, Bayer, & Muthig, 2000) attempt
to combine component-based development, design patterns, and product
lines, and to provide developers with the necessary automation tools.

Design automationreaches its highest in Model-Driven Software Develop-
ment (MDSD) (Bettin, 2004, 2005). MDSD is a synergy of product line,
DSLs?, and MDA. MDSD is characterized by the conscious distinction
between building software factories and building software applications
(alsoreferred to as domain engineering). MDSD supports domain-specific
specialization and mass customization.

With less emphasis on programming, requirements engineering and systems
analysis will grow more and more important as time goes by. Research
efforts in the requirements engineering area are toward understanding the
role of requirements in the wider systems engineering process and toward
validating user requirements in a manner similar to validating software—
that is, requirements should be automatically translated to code and executed
viasimulation techniques (Lamsweerde, 2000).
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Figure 1. E-ZPass system

Modeling with UML

In this section, we introduce the core set of the UML modeling languages
needed to design OO systems. The UML models we discuss are class
diagrams modeling the information structure of a system, FSMs represent-
ing the behavior of individual objects, use cases expressing user require-
ments, and interaction diagrams (sequence and communication diagrams)
modeling interactions among societies of objects, collaborating to realize
user requirements.

Case Study

In this and the next four chapters, we will use the following system as a
running example.

In the road traffic E-ZPass system, drivers of authorized vehicles are
charged at tollgates automatically. They pass through special lanes called
E-Z lanes. To use the system, adriver has to register and install an electronic
tag (a gizmo) in his/her vehicle. The vehicle registration includes the
owner’s personal data, credit card or bank account, and vehicle details. As
aregistered vehicle passes through the tollgate, an antenna electronically reads
accountinformation on the gizmo, and the toll is automatically deducted from
the prepaid account. The amount to be debited depends on the kind of the
vehicle. When an authorized vehicle passes through an E-Z lane, a green light
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comes on, and the amount being debited is displayed. If an un-authorized
vehicle passes through an E-Z lane, a yellow light comes on and aroad camera
takes a photo of the plate, used to fine the vehicle’s owner (fine processing is
outside the system scope). There are E-Z lanes where the same type of vehicles
pay a fixed amount, for example ata toll bridge, and there are E-Z lanes where
the amount depends on the type of vehicle and the distance traveled, for
example onahighway. For the latter, the system stores the entrance tollgate and
the exit tollgate.

User Requirements Model

A userrequirementis a dialogical specification of what the system must do.
As user requirements are elicited, they are organized into use cases.
Requirements are not yet first-order elements in UML, but they are sched-
uled to become such in the forthcoming Systems Engineering UML profile.
The systems engineering profile defines about 10 different types of require-
ments, which fall into three broad categories: operational, functional, and
quality of service (QoS). Operational and functional requirements are best
expressed as usage scenarios modeled with sequence diagrams or commu-
nication diagrams (formerly collaboration diagrams). QoS requirements
come in several types (e.g., usability, security, and performance, to mention
a few) and are modeled as constraints.

Since their introduction in the late 1980s (Jacobson, 1987), use cases have
proven to be an immensely popular software development tool. Use cases
organize requirements—such as tens of usage scenarios—around a common
operational capability. They describe the system as a black box. Use cases
present a conceptual model of the intended system behavior by specifying
services or capabilities that the system provides to its users.

In use case models, the system’s environment, or context, is modeled as
actors, which are essentially roles played by end users or external systems
(a single user may perform many roles). In Figure 2, the actors for the E-
ZPass system are Driver, Bank, and Operator. They are rendered as stick
figures. The actors communicate with the use cases rendered as ovals via
communication links. A use case contains and organizes multiple scenarios. A
scenario is a linear sequence of transactions performed by actors in a dialogue
with the system that brings value to the actors.
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Figure 2. E-ZPass use case model
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A systemis conceptually decomposed into subsystems of related use cases
linked by <<include>> and <<extend>> dependency relationships or sharing
common actors. <<>>indicates a stereotype. Stereotypes are a lightweight
UML extension mechanism. A stereotype defines the meaning ofanew building
block, which has derived from an existing one. The <<include>>relationship is
used to extract out a coherent part of a use case, typically for the purpose of
reuse. [t can also be used to decompose a system-level use case into “part” use
cases to berealized by different subsystems. The <<extend>>relationship isused
when the behavior of one use case, called base use case, may be extended with
the behavior of another use case under certain conditions. Users find the
direction of the <<extend>>relationship counter-intuitive (from the extension use
case to the base use case). It is best to think of it as the extension use case
pushing functionality to the base use case. Figure 2 illustrates the discussed
concepts related to use cases.

A use case diagram shows only the use case’s organization. The flows of events
in every use case are described in text. The following is a fairly standard
template for use case descriptions.
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Use case name

Description: brief narrative description.

Actors: a set of Actors

Basic flow of events: numbered sequence of events
Exceptional flow of events: numbered sequence of events
Pre-conditions: contract between actors and use case

Post-conditions: result of a use case execution
We show below the structure of PassOnePointTollgate use case.

Use Case: PassOnePointTollgate

Description: This use case describes the system’s behavior in response to
a vehicle passing through a single tollgate.

Actors: Driver
Basic Flow
1. The use case begins when a vehicle with a gizmo passes through a
single tollgate. The tollgate sensor reads the gizmo’s ID. The system
records the passage, including date, time, location, and rate; dis-
plays the amount the driver will be charged; and turns the green light
on.

Exceptional Flow of Events:

* The gizmo is invalid or missing. The system turns the yellow light
on and a photo of the vehicle is taken.

Pre-Conditions: None

Post-Conditions: The vehicle’s account is updated with the passage
information and the driver’s credit card.

Modeling the System’s Information Structure

The concepts used for describing systems’ information structures in UML are
class, object, relationship, component, subsystem, and OCL constraints.
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Objects, Classes, and Relationships

The real world is populated with objects (or instances) of different kinds:
books, bank accounts, and tollgates, to mention a few. Each object has a
number of characteristic attributes that identify it. For example, a book has
atitle, author, and publisher. A bank account has an account number, owner,
and interest rate. Figure 3 shows the characteristic attributes of several
kinds of objects. Such an object description is called class, because it
describes a class (set) of similar objects.

Although the object’s attribute values give us information about the object’s
identity, this information is somewhat static. The attributes alone fail to
represent the dynamic nature of many objects. What we need to know are the
operations in which the objects can be involved, or in other words, the behavior
the objects can exhibit. For example, a bank account can accumulate interest
rate, can be debited or credited.

Graphically, a class isrepresented as arectangle with three compartments as
shown in Figure 4. The top compartment contains the class name. The middle

Figure 3. Class attributes

Book
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AccountNumber -
Title Location
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Publisher InterestRate Rate
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Figure 4. Class structure with characteristic attributes and operations
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compartment contains the characteristic features, called attributes. The bottom
compartment defines the operations in which the objects of the class can be
involved. Depending on the modeler’s goals, any comportment, except for the
name, can be omitted.

Relationships

The attributes and operations alone are not sufficient to understand the
“essence” of an object. Anobjectinisolation does not have a complete “self-
identity.” The human mind distinguishes between objects by difference. This
difference is determined by the relationships into which objects can enter, by
the ways the objects can be used. The relationships into which an object can
enter are determined by the object’s responsibilities to other objects (imple-
mented as publicly accessible operations). Similar to how words meanina
language, we can say that an objectacquires “self-identity” through different
relationships with other objects. Objects are never strictly defined and identi-
fied unless they enter into relationships.

Jacques Derrida, the French linguist-philosopher, has famously argued that
everything has an originary lack. By entering into relationships with other
objects, the thing compensates for this originary lack. Let us consider abed
and breakfast room. The room alone is a lump of bricks and furniture,
inconsequential forunderstanding its purpose, which can be articulated and
manifested only through the relationships into which the room participates. The
relationship room-owner and the relationship room-guest are the room’s
“essential” characteristics. For the owner, the roomis a source of income, while
for the guest, the room is a place to rest. The former relationship satisfies the
owner’s lack or desire (for a source ofincome), while the latter satisfies the
guest’s lack (a home away from home). We can say that the room’s relation-
ships came into being to fill in the owner’s and the guest’s voids.?

In OO, relationships are formalized as associations of various kinds. Associa-
tions model the rules of a problem domain. On class diagrams, associations are
drawn as lines connecting classes. An association between two classes implies
that at runtime the instances of the classes can be linked in some way, enabling
them to invoke each other’s operations. An arrowhead is indicative of the
association’s navigability. A line with no arrowheads denotes a bi-directional
association—thatis, at runtime objects on either side of the association can
invoke an operation on the object on the opposite side.
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Figure 5. Class relationships

accommodates rents owns is_owned_by

Owner

Each association has an identifier, which can be a meaningful name or an
automatically generated label (e.g., R2). The meaning of an association is
expressed with a pair ofassociation ends and a pair of multiplicity ranges. An
association end can be either a role (e.g., “buyer”) or a verb phrase (e.g.,
“rents”), as shown in Figure 5. The association end indicates the meaning
of the association from the point of view of the class on the opposite end.
Roles help overcome the following deficiency of class models. Once
created, an instance belongs to its class forever. To show that this instance
may serve different purposes at different times, we use roles: for example,
aninstance of class Employee can be acting as developer in one relationship
and as a supervisor in another one.

A multiplicity range shows how many instances of the class on the near (next
to the range) end can participate in arelationship with a single instance from
the class on the far end. For instance, aroom has exactly one owner (we have
consciously excluded partnership), butan owner can own (at least) one or more
rooms (see Figure 5). The most commonly used multiplicity ranges are: 1..1 (1,
for short), 1..* (one or many), 0..1 (0 or 1), 0..* (0 or many).

To describe a relationship, modelers take the view of an instance of each
participating class, a technique called anthropomorphism. For example, let
us consider association R2 in Figure 5. From the room’s point of view: “A
room is owned by one owner;” and from the owner’s point of view: “An
owner owns one or more rooms.”

Aggregation and Composition

An aggregation is a kind of association denoting a “whole-part” relation
between two classes. Since aggregation is a kind of association, all properties
applying to associations apply to aggregations too. In class diagrams, the
“whole” end is represented by an empty diamond.

Compositionis a stronger form of aggregation, where the “whole” is respon-
sible for creating and destroying the “part.” The composition end is signified
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Figure 6. Aggregation and composition
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Tollgate Lights

controls owner

with a filled diamond. The real difference between aggregation and composition
stands out only in coding as containment by reference and containment by
value. Interms of modeling there are no semantic differences between the two
associations.

Interface

Aninterface is anamed collection of operation signatures (name, parameter
types, return type), attributes, and a protocol state machine (a subset of FSM)
defininga service. Aninterface specifies a contract for a service to be offered
by a server class, without revealing any implementation details. It has no
behavior by itself, and it cannot not be instantiated. The operations an interface
specifies are implemented in a class (could be a structured class, see below),
and at runtime they are provided by an instance of this class. The relationship
between aninterface and itsrealizing class is best described as type inheritance,
sinceitsignifies thatthe realizing class conforms to the contract specified by the
interface—thatis, the realizing class is type conformant to the interface type. In
class diagrams, thisrelation is stereotyped as <<realize>> (see Figure 7). UML
alsouses the ball-and-socket notation, where the ball represents an interface
to be realized by a class (see Figure 7). Interfaces are there to separate the
specification of aservice fromits implementation. We say thata classrealizes
an interface if it provides operations for all the operations specified in the
interface. One class may realize multiple interfaces.

Figure 7. Interface specifying a service and a class implementing the
service

<<Interface>> Bank Bank
iCharge C
makePayment() makePayment()
makePayment() authorize() iCharge authorize()
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Generalization

When two or more classes share a common structure and behavior, the
commonalities can be factored out and placed in a more general super class,
from which the rest of the classes inherit (or derive). The super class has
attributes, associations, or behavior thatapply to all derived subclasses. The
derived classes are said to specialize the super class by adding or modifying
attributes, associations, or behavior.

InFigure 8, EZPass is a superclass, and OnePointPass and TwoPointPass are
subclasses. The subclasses can either specialize or extend the super class.

Generalization can be described as “is_a” relationship, for example,
OnePointClass “is_a” kind of EZPass. The “is_a” relationship imposes
interface compliance on the participating classes. This means that any
occurrence of the superclass can be substituted with an instance of the
subclass without semantically breaking the model.

Specializing, also called polymorphism, means that the same operation hasa
differentimplementation in the subclass. In UML, only operations and FSMs
can be specialized (overridden or redefined); for example, operation
CalculateRate in TwoPointPass is implemented differently from its analog
in EZPass, even though it has the same interface. Extending means that the
subclass can have new attributes, operations, states, or transitions.

Through generalization, we may avoid class modification by elegantly reusing the
superclass functionality for creating specialized subclasses. The specialized

Figure 8. Generalization-specialization hierarchy
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classes have some of their inherited responsibilities redefined and possibly new
ones added. Forexample, ifaneed arises for a super-fast E-Z tollgate, we will
nothaveto change anything inthe existing tollgates. All thatis required is to extend
the generalization hierarchy with a new subclass for the new type of tollgate.

Package, Structured Class, Component, and Subsystem

To effectively develop large systems, we need to model their large-scale parts
and how these parts interact with each other. To be scalable, a modeling
notation should allow for parts to contain smaller parts, which can have, in turn,
even smaller parts, and so on. At the most detailed level, parts are class
instances. Formodeling things at the large end of the spectrum, UML provides
structured classes, components, and subsystems, all based on the notion of
class. To develop large systems, it is also important to be able to divide the
work into manageable units. For this purpose, UML provides packages.

Package

UML packages are amechanism for organizing modeling elements, including
other packages, into groups. A package defines only a namespace for the
elements it contains. Packages are used to divide a system model into
independent parts, which can be developed independently. Graphically, a
package is rendered as a tabbed folder (see Figure 9).

Figure 9. Packages and <<import>> relation
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Adependency isausingrelation signifying thata change in the independent thing
may affect the dependent thing, but not vice versa. <<import>> is a kind of
dependency relation, which grants permission to the elements in one package to
access the elements contained in another one. Relation <<import>>isrendered
as a dotted arrow. The arrowhead points to the package being imported, as
showninFigure 9. Itis important to note that the permission is one-way.

Structured Class

A structured class is a runtime container for instances of classes and other
structured classes, collectively called parts or elements. These parts are
interconnected with communication links named connectors, as shown in
Figure 10. Apart from being in charge of creating and destroying its parts
and connectors, a structured class may coordinate its parts’ activities, for
example, throughan FSM.

A structured class contains its part through composition. An instance multiplic-
ity number written in the corner of a part shows the number of instances from
that part. The parts and the connectors constitute the part topology of the
structured class.

A structured class offers a collection of services to its environment, published
via<<provided>> interfaces and accessed at runtime via ports. A provided
interfaceis a contract for service. If, in turn, a structured class uses the services
ofother instances (including structured classes), it can place demands on these
instances by <<required>> interfaces. UML uses the ball-and-socket notation
for the provided (ball) and required (socket) interfaces (see Figure 10). Ports
can be thought of as being typed by their interfaces. Typed ports serve as

Figure 10. Structured class, ports, provide and required interfaces, and
connectors
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access points for interactions between the internal parts of the structured class
and its environment.

Ports relay the incoming messages to the internal parts and the outgoing
messages from the internal parts to the external objects attached to the
structured class through connectors without revealing the part’s identity.

To summarize, a port publishes the operations implemented by a collaboration
ofinternal parts on the structured class border. The structured class boundary
and ports decouple the internal elements from the external environment, thus
making a structured class reusable in any environment that conforms to the
required interfaces imposed by its ports.

Components

A UML componentis a structured class providing a coherent set of services
used and replaced together. A component’s behavior is specified in terms
of provided and required interfaces. We say that a component is typed by
its interfaces. A component may be substituted by another one, only ifthe two
are type conformant. There are no differences between structured classes and
components, except for the connotation that components can be configured
and used like Lego blocks in different contexts to build things.

At present, the most widely used commercial component frameworks are
Enterprise Java Beans, NET, COM+, and CORBA Component Model.

Subsystem

A subsystem is a large-scale component and a unit of hierarchical decompo-
sition. Atthe highestlevel, a system is decomposed into several subsystems. In
additionto a collection of services, a subsystem defines anamespace for its
parts. A subsystem may have separate specification and realization parts
stereotyped respectively as <<specification>> and <<realization>>. This
makes it possible for one specification to have multiple realizations.

Components can be assembled in an enclosing <<subsystem>> container by
wiring together their required and provided interfaces. The components’
interfaces are linked either by connectors or by dependency relationships
(see Figure 11).

The Infrastructure package is a container for common elements such as types
(classes and interfaces) exposed in component interfaces, usage points (ser-
vices), and extension points (classes to subclass in other packages).
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Figure 11. Components,

subsystems, and packages
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Since structured classes, components, and subsystems are classes (unlike
packages), they may participate in associations and generalizations.

Constraints and Object Constraint Language

Constraints are a fundamental part of a system’s structure and semantics. The
Object Constraint Language (OCL) (Warmer & Kleppe, 1998) is a formal,
pure expression language augmenting graphical UML models to produce
unambiguous and precise system descriptions. OCL is an integral part of UML,
and it is used to define the semantics of UML. OCL combines first-order
predicate logic with a diagram navigation language. It provides operations on
sets, bags, and sequences to support the manipulation and queries of collec-
tions of model elements.

UML uses OCL to express constraints, navigability, action semantics, and object
queries. Even though visual models define some constraints, like association
multiplicities, in OCL we can specify richer ones, such as uniqueness constraints,
formulae, limits, and business rules. OCL constraints provide precision, which
facilitates design by contract and executability (see Chapter II).

Very succinctly, a constraint is a semantic restriction on one or more model
elements. Types of constraints include, but are not limited to, constraints on
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Figure 12. Class diagram
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associations between classes, pre- and post-conditions on class operations,
multiplicity of class instances, type constraints on class attribute values,
invariants on classes, and guards in state models.

Each OCL expression is written and evaluated in the context of an instance of
amodel element. Let the context be an instance of class Driver, shown in Figure
12 (the irrelevant elements on the class diagram are suppressed). We can
restrictthe driver’s age to 16 years with the following constraint.

context Driverinv:

self.Age > 16

Asanother example, if we want to make sure thatall tags have unique IDs, we
canwrite:

context Taginv:
Tag.alllnstances()->forAll(t1, 2|
t1<>t2 implies t1.TagID <> t2.TaglD)

Pre- and post-conditions specify the effect ofa class operation without stating
its algorithm or implementation. To indicate the operation for which the
conditions must hold, we extend the constraint’s context with the operation
name. Forexample,
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context CreditCard::Charge(Amount: Real): Boolean
pre: self.IsValid

post: self.Balance = self.Balance @pre + Amount

where Balance@pre refers to the value of the attribute at the start of the
operation.

Next, we show how starting from a specific instance we can navigate its class
associations to refer to related objects and the values of their attributes. To
navigate association R6 in Figure 12, we use the association’s label and the role
predicate at the far end:

context Payment inv:

self. Amount = self.R6.is_for.CalculateRate()

It is important to note that OCL is not a programming language, and OCL
expressions cannot, therefore, express assignment statements or flow of
control. The evaluation ofan OCL expression is instantaneous, meaning that
the states of the objects in a model cannot change during expression
evaluation.

Often OCL expressions are critiqued for having poor readability and for being
inefficientin specifying requirements-level and analysis-level concepts (Ambler,
2002). This critique comes from methodologists favoring code over models
and from system analysts using UML diagrams as sketches of OO designs, the
so called UMLAsSketch.* To improve OCL readability, Mellor (2002, p.128)
introduces the notion of constraint idiom as a general pattern for commonly
occurring types of constraints and suggests the use of predefined tags for these
types. The latter makes models less cluttered and less cryptic (see Chapter 2).
Since constraints are a fundamental part of the semantics ofa problem domain,
there is no simple alternative for building precise models.

With OCL, an object’s interface can be defined as a set of protocols to which
the object conforms. A protocol consists of the following three invariants
defined for each operation: pre-condition, post-condition, and operation
signature.

Constraints do not have to be written in OCL. They can be specified in any
action language supporting the Precise Action Semantics for UML (UML AS,
2001), forexample, OAL (2004) and KC (2004). However, action languages
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are not specification languages. Their purpose is to define computations in
executable models.

Object Behavior

We are interested in how objects act both in isolation and in collaboration
with other objects. In UML, the former behavior is modeled with FSM
models, while the latter is modeled with communication (formerly collabo-
ration diagrams) and sequence diagrams.

State Dependent Behavior

In order to determine the future actions of a class instance, we need to know
its past, a rather Newtonian approach.® For example, the answer to the
question “Can [ withdraw $50 from my account?”” depends upon the history
of deposit and withdrawal transactions carried out. If the owner has
deposited $60 and withdrawn $20, the answer will be “No,” given that the
account cannot be overdrawn.

We could succinctly represent the history of the bank account by its balance,
$40, rather than the whole sequence of past bank transactions. To do so, we
canadd anattribute, say Balance, to class BankAccount, and base the behavior
of operation Debit() on the value of the new attribute.

We call the abstract representation of an object’s history state. The state of an
objectrepresents that object’s potential, or in other words, the actions in which
the object can be engaged.

Ittakes alot of sophisticated and error-prone code to manage the concurrent
access to the data and operations of objects with a great number of states.
Forsuchobjects, itis better to model explicitly their states, state evolution,
and the relation between states and allowed actions. An object can progress
through different states over its lifetime. This progression is called lifecycle.
An FSM model defines the lifecycle of a state-dependent class. In UML,
statecharts diagrams visualize FSMs. FSM models comprise four types of
elements: states, transitions, events, and procedures.

A state represents a stage in the lifecycle of an object. The states are abounded
setof mutually exclusive conditions of existence: atany moment, an objectis
in exactly one state, referred to as current state. Signals are incidents in the
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domain modeled as events. They can be internal (generated by the FSM) or
external (generated by other FSMs). A transition points to “the next” state,
which the object will enter from the current state upon receipt of a particular
event. States are drawn as rectangles with rounded corners and transitions as
arrows. Each state hasaname. A transition is labeled with the event that causes
the transition.

Inthe executable UML profile, the FSM model includes procedures of actions
(executable sections), one per state, executed on entry to a state. Figure 13
shows the FSM for class Tollgate. For readability’s sake, we have written the
state procedures in pseudo code. The initial state for the FSM is NewTollgate.
In this state, the tollgate controller sets its own location and rate, and then it
relates itselfto an instance of class Lights. Once related, the tollgate controller
signalsthe Lights instance to turn its green lights on. Next, the initialized tollgate
generates signal operate(mode) to itselfto transition to state Ready. This signal
isshown as an event attached to the transition from state NewTollgate to state
Ready. In state Ready, the tollgate checks the mode value provided by event
operate(mode) to see if it has to send a signal to the lights controller to turn its
yellow lights on, and then waits passively toreceive a “tag detected” signal from
its sensor. Uponreceipt of detectTag(), the tollgate enters state VerifyTag and
executes its state procedure. The procedure verifies the detected tag, creates
anew Passage instance, and transitions to state CreatePayment. If the tag is
invalid, the tollgate goes back to state Ready. In state CreatePayment, the

Figure 13. FSM model for class Tollgate

NewTollgate Ready
entry/ entry/
// Set location and rate operate(mode) // If mode is 2
/I Relate self to lights /I Generate signal to turn yellow lights on
/I Generate signal turn lights green / Else
/I Generate signal to transition to /I Transition to state VerifyTag
state Ready // End if

operate(mode)

operate(mode) detectTag(taglD)

VerifyTag
entry/
entry/ CreatePayment ‘ p /I If the tag is valid
Y . procPayment() /I Create a new Passage instance
/I Create a new credit card charge /' Transition to CreatePayment
/I Generate signal to self to transition to // Else
state Ready /I Generate signal operate(2)
/I End if
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tollgate retrieves the credit card, serving the vehicle related to the detected tag,
and creates a Payment instance, taking care of charging the credit card. Atthis
point, the tollgate returns to state Ready to process the next vehicle.

Notall classes exhibit interesting lifecycles. The behavior of a class can be
defined as state dependent or simple (state independent). FSM models are not
constructed for simple classes.

Collaborative Behavior

Inorder to work toward achieving acommon goal, objects interact by calling
synchronously each other’s operations, called message passing, or by sending
asynchronously signals modeled as events. Interactions can be visualized on
interaction diagrams, which come in two main forms: sequence and communi-
cation diagrams.

Unlike FSMs, interaction diagrams do not tell the complete story about the
involved objects. Instead, they focus on particular sequences of messages
or events, called scenarios or traces. Scenarios are used to communicate
with stakeholders or to conduct interaction analysis. Interaction analysis
aims at understanding and defining the communication patterns within a
collaboration of objects realizing one or more user requirements.

If we have to compare interaction diagrams to FSMs, we can say that, apart
from their scope—individual versus group—the former provide a black box
view of'the participating instances, while the latter afford a white box view of
the ways in which instances respond to signals and messages. For this reason,
interaction diagrams are said to be partially constructive, and as such, they
cannot be used to generate code.

Sequence Diagrams

Oncethe elicited user requirements are modeled with use cases and the classes
supporting the use cases are discovered, itis time to verify the decisions made.
Animportant objective in the early stages of a project is to mitigate risks and
to gainahigh level of confidence in the discovered classes and their responsi-
bilities. Mistakes at early stages are costly since they result in backtracking and
extensive rework.

Interaction analysis is atechnique employing sequence diagrams to analyze the
dynamics of the classes derived from a use case description. Sequence
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diagrams have the following uses: (1) to analyze the dynamic interactions
between class instances and to reduce the risk of incorrect class discovery; (2)
to create traceability relationships from use cases to class diagrams;( 3) to
tackle the problem ofallocating responsibilities among classes and to define the
class interfaces (public operations); and (4) to plan functional system testing.

Sequence diagrams display the causal dependencies among messages and
signals exchanged between lifelines of instances and their relative time
ordering. Figure 14 shows how a sequence diagram portrays the time ordering
ofthe messages exchanged among instances during the execution ofa scenario.
The instances taking partin the scenario are arranged along the X-axis, with the
initiating instance (usually an actor) being on the far left side. The lifelines of the
instances are represented as vertical bars, with time flowing from top to bottom.
Messages and signals are modeled as arrows pointing to the receiver. Signals
are modeled with a halfarrowhead, while messages are modeled with a full
arrowhead. The direction of the arrowhead is indicative of the invocation
direction and not of the data flow. The lifeline of'an object created or destroyed
during an interaction starts or ends, respectively, with the receipt of a message
orsignal. A large X marks the end of alifeline. The focus of control isarectangle
superimposed overalifeline, indicating that the instance is performing an action.
The top ofthe rectangle coincides with the start of the action, while its bottom
aligns with the action’s completion.

The black box view offered by a sequence diagram can be cracked open if
instead of focus of control, the modeler shows the names of the states through
which the instance progresses.

Communication Diagrams

A communication diagram is an object diagram showing the messages and their
ordering attached to the static links between the objects, as illustrated in Figure
14. A communication diagram emphasizes the organization ofthe objects.

To sumup, interaction diagrams lack the completeness of FSMs. They are used
primarily to explore and verify a particular scenario rather than build an artifact.
During exploration, new messages, signals, operations, and even classes can be
discovered and added to the model.
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Figure 14. Sequence and communication diagrams
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Some Merits and Deterrents

Advantages

According to many authors, OO is advantageous because it allows for a
seamless transition between the phases of software development by using
a uniform language for requirements engineering, analysis, design, and
programming.® This is amajor prerequisite for transformational development,
where the system is builtin a sequence of transformations or refinements from
more abstract to more detailed models. Each transformation or refinement
preserves the source model properties in the target model.

OO narrows the semantic gap between entities in the problem and the solution
domains, leading to better traceability, and ultimately, to better chances of
validating the software artifacts by customers.

Improved interpersonal communications through objects is another success
factor. OO encourages acommon vocabulary between end users and develop-
ers (Booch, 1996).

Asasystem evolves, the function or the business processes it performs tend to
change, while the object abstractions tend to remain unchanged. Thus, remov-
ing the emphasis on functions results in more maintainable designs. When
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changes are necessary, OO contains changeability through locality of change.
Inheritance and polymorphism make OO systems easier to extend.

OO analysis emphasizes the importance of well-defined interfaces between
objects, which led to the development of components.

Disadvantages

Traditionally, OO methods have paid little attention to business modeling,
a very important area of software development. The enterprise business
model represents the business concepts in the problem domain. An explicit
description of the system’s business processes leads to a better understand-
ing of the role of the system in the organization, and therefore, the resulting
system is more likely to be appropriate to the problem being solved.

Though OO modeling is supported by object abstraction, this device alone
cannot capture aspects bigger than small-scale entities. There are many
pervasive requirements (e.g., security, concurrency, transaction manage-
ment) that do not decompose into behavior centered on a single locus. In
addition, the gains from reusability at the object (i.e., class) level are insignifi-
cant. The real benefit from reusability comes at the component level, and even
more so atthe architecture level and domain level.

OO might exacerbate the “analysis-paralysis” problem. Because of the uniform
notation, there is a strong temptation to design rather than perform analysis.

Another downside of OO modeling is that it takes myriads of models to
understand and express objects: static (class and deployment diagrams),
behavior models (sequence, communication, diagrams, and use cases), and
state-change models (statechart and activity diagrams).

UML2 is expected to add new features to the OO modeling repertoire. This
raises reasonable concerns and is rightfully perceived by developers as a
language bloat. To counter this effect, the creators of UML2 maintain that the
modeling language has been compartmentalized in two ways. First, the different
sub-languages are meant to be independent of each other, which, if true,
threatens to invalidate the multi-view approach to system modeling. Second,
they say that learning UML2 is not an “all or nothing” proposition. UML
modelers will be able to select only those parts that are useful in solving their
problem and safely ignore the rest. In our view, the latter is easier said than
done. In ord