

����������� 	

�����
�������������

�����	������ ��	����

Liping Liu
The University of Akron, USA

Boris Roussev
University of the Virgin Islands, USA

Hershey • London • Melbourne • Singapore
����� ������ �� !�"#�$�

Acquisitions Editor: Renée Davies
Development Editor: Kristin Roth
Senior Managing Editor: Amanda Appicello
Managing Editor: Jennifer Neidig
Copy Editor: Maria Boyer
Typesetter: Larissa Zearfoss
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2006 by Idea Group Inc. All rights reserved. No part of this book may be reproduced,
stored or distributed in any form or by any means, electronic or mechanical, including photocopying,
without written permission from the publisher.

Product or company names used in this book are for identification purposes only. Inclusion of the
names of the products or companies does not indicate a claim of ownership by IGI of the trademark
or registered trademark.

Library of Congress Cataloging-in-Publication Data

Management of the object-oriented development process / Liping Liu and Borislav Roussev, editors.
 p. cm.
 Summary: "This book consists of a series of high-level discussions on technical and managerial issues
related to object-oriented development"--Provided by publisher.
 Includes bibliographical references and index.
 ISBN 1-59140-604-8 (hard cover) -- ISBN 1-59140-605-6 (softcover) -- ISBN 1-59140-606-4
(ebook)
 1. Object-oriented programming (Computer science) 2. Computer software--Development. I. Liu,
Liping. II. Roussev, Borislav.
 QA76.64.M348 2005
 005.1'17--dc22
 2005004533

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. Each chapter is assigned to at
least 2-3 expert reviewers and is subject to a blind, peer review by these reviewers. The views expressed
in this book are those of the authors, but not necessarily of the publisher.

�����������	
� ���

�
�������������

�����	������ ��	����

%�
���	
�&	������

Preface .. vi

Chapter I
Object-Oriented Modeling in UML2 .. 1

Boris Roussev, University of the Virgin Islands, USA

Chapter II
MDA with xUML: Model Construction and Process
Management .. 36

Boris Roussev, University of the Virgin Islands, USA

Chapter III
Management Planning in a Changing Development Environment ... 61

Melissa L. Russ, Luminary Software and Space Telescope
 Science Institute, USA
John D. McGregor, Luminary Software and
 Clemson University, USA

Chapter IV
MDA Design Space and Project Planning .. 87

Boris Roussev, University of the Virgin Islands, USA

Chapter V
Agile Outsourcing to India: Structure and Management 109

Boris Roussev, University of the Virgin Islands, USA
Ram Akella, University of California, USA

Chapter VI
User Requirements Validation and Architecture Discovery
through Use Case Invariants and Model Animation 141

Boris Roussev, University of the Virgin Islands, USA
Yvonna Rousseva, University of the Virgin Islands, USA

Chapter VII
RUP and eXtreme Programming: Complementing Processes 183

Gary Pollice, Worcester Institute of Technology, USA

Chapter VIII
Managing Complexity with MDSD .. 200

Jorn Bettin, SoftMetaWare, USA

Chapter IX
Agile RUP: Taming the Rational Unified Process .. 231

Gary K. Evans, Evanetics, Inc., USA

Chapter X
Planning and Managing the Human Factors for the Adoption
and Diffusion of Object-Oriented Software Development
Processes ... 247

Magdy K. Serour, University of Technology, Sydney, Australia

Chapter XI
Web Services in Service-Oriented Architectures 278

Gerald N. Miller, Microsoft Corporation, USA

Chapter XII
Model-Based Development: Metamodeling, Transformation
and Verification .. 289

Juan de Lara, Universidad Autónoma de Madrid, Spain
Esther Guerra, Universidad Carlos III, Spain
Hans Vangheluwe, McGill University, Canada

Chapter XIII
Agile Project Controlling and Effort Estimation 313

Stefan Roock, it-agile GmbH, Germany
Henning Wolf, it-agile GmbH, Germany

Chapter XIV
Improving OO Design Process Using Rules, Patterns and
Refactoring .. 325

Javier Garzás, University Rey Juan Carlos, Spain
Mario Piattini, University of Castilla-La Mancha, Spain

Chapter XV
The BORM Method: A Third Generation Object-Oriented
Methodology .. 337

Roger Knott, Loughborough University, UK
Vojtech Merunka, University of Agriculture in Prague,
 Czech Republic
Jiri Polak, Deloitte & Touche, Prague, Czech Republic

About the Authors .. 361

Index ... 368

���
���

Introduction

Dilemmas involving notation, project planning, project management, and ac-
tivity workflow pervade the world of software development. Object-orienta-
tion provides an elegant language for framing such problems, and powerful
tools for resolving them.
In this book, we have brought together a collection of presentations, giving
the reader an in-depth look into the technical, business, and social issues in
managing object-oriented development processes, as well as presenting new
technologies, making software development more effective. The chapters in
the book examine many topics in the research frontier of software develop-
ment, including methods, technologies, strategies, and the human factor. The
book also presents the fundamentals of object-oriented project management.
The various backgrounds of the contributing authors—industrial, consulting,
research, and teaching—yielded presentations, complementing and enriching
each other. As a result, the book paints a holistic picture of the multi-faceted
problems in object-oriented software development. It should be of interest to
software developers, project managers, system analysts, and graduate and
upper-level college students majoring in information systems and computer
science who would like to deepen their knowledge in the field of object-
oriented project management.
Very briefly, some of the major topics discussed in this book include: software
development life cycle; development strategies, for example, open source,
outsourcing, and product lines; componentization; the human factor; object-
oriented notation and techniques, such as xUML, MDA, and MDSD; re-
quirements engineering; design patterns; project management; and system in-
tegration with Web services.

vi

Organization

The book is organized into 15 chapters. Each chapter emphasizes a particular
area, identifies important shortcomings, discusses current activities, offers new
insights into the problematics, and suggests opportunities for improving the
management of object-oriented software development projects.
Motivated by computer simulation, the notions of object, class, and class gen-
eralization were formulated by Dahl and Nygaard in 1967. However, it was
not until the mid-1990s that the first industrial-strength, object-oriented nota-
tions were complemented by sound development methods. Today, the ob-
ject-oriented world is dominated by UML to the extent that UML and object-
orientation have become synonymous. The book naturally begins with an in-
troduction to UML2. The emphasis is on the novel features of UML and the
new trends in object-orientation, namely, modeling of large things, a higher
level of modeling abstraction, design automation, precision, and freedom from
the constraints of the implementation platform.
In Chapter II, the themes from the introductory chapter are re-examined in
the framework of xUML (executable UML) and MDA (model-driven ar-
chitecture). MDA and xUML are among the latest initiatives of OMG.
They promise to change the way software is created by combining a mod-
eling language with a model manipulation language, rendering implementation
programming obsolete. The chapter presents the two methodologies. It also
discusses the MDA activity workflow and presents a development method for
projects relying on xUML.
In Chapter III, Russ and McGregor present a model for planning object-
oriented projects. The authors structure the software development land-
scape into a triad of high-level dimensions—technology, method, and or-
ganizational strategy—where each dimension is further divided into sev-
eral sub-dimensions. The model defines project planning as navigating
through a multi-dimensional hyperspace.
In Chapter IV, the Russ-McGregor model has been applied to evaluate the
strength and weaknesses of xUML and MDA. The analysis sheds light on the
economics of model-driven software development, and on the difficulties
project managers and developers alike may encounter in adopting the two
technologies in an industrial setting.
In Chapter V, Roussev and Akella present a new approach to managing
outsourcing projects. Drawing on experience with Indian software firms, the
authors closely analyze the problems faced by outsourcing clients and off-

vii

viii

shore developers. Roussev and Akella show how these problems can be suc-
cessfully resolved by scaling down a large outsourcing project to meet the
Agile “sweet spot,” and by carefully managing the communication patterns
among all stakeholders.
In Chapter VI, Roussev and Rousseva present a process extension applicable
to both lightweight and heavyweight development methods. The extension is
based on a business value invariant, and views the iterative and incremental
model of software development as a communication model. The proposed
techniques link the informal user requirements world to the system model,
which makes it possible to derive mechanically the system architecture from
the user requirements, and automatically to validate it with respect to the
system’s use case model through model animation.
It is a well-known fact that many of the agile practices are incompatible with
the context of large-sized projects. Gary Pollice and Gary Evans, two nation-
ally recognized methodologists, independently present their approaches to
reproducing the conditions for agility in large-sized projects by balancing agil-
ity and discipline. Pollice and Evans look out for common grounds between
Agile and RUP to get the best of both worlds.
In Chapter IX, Jorn Bettin, director of an international strategic technology
management consultancy, addresses the question of how to create durable and
scalable software architectures, so that the underlying design intent survives over
a period of many years. Bettin goes beyond object-orientation and traditional
iterative software development to define a set of guiding principles for compo-
nent encapsulation and abstraction, and to form the foundation for a model-
driven approach to software development.
In Chapter X, Magdy Serour from the Centre for Object Technology Appli-
cations and Research (COTAR) at the University of Technology, Sydney, delves
into a gray area of object-orientation, namely, the effect of various human
factors on the adoption and diffusion of an object-oriented software develop-
ment process. Serour defines a process to assist organizations in planning and
managing their transition to object-oriented development. The author discusses
key “soft” factors, such as motivation, leadership, and overcoming the resis-
tance to culture change, which are critical in promoting the process of organi-
zational change.
In Chapter XI, Gerald Miller from Microsoft addresses a very important area
of the new technological wave. Integration of systems in a cost-effective way
is crucial for most enterprises, as many integration efforts fail to bring about
the promised return on investment. Miller’s presentation discusses how to

ix

resolve the system integration nightmare by building a service-oriented archi-
tecture with Web services which integrates disparate systems, both within
organizations and across business partners’ firewalls.
In Chapter XII, de Lara, Guerra, and Vangheluwe give an overview of model-
based software development, and propose ideas concerning meta-modeling
and the use of visual languages for the specification of model transformations,
model simulation, analysis, and code generation. They also examine the im-
pact of model-based techniques on the development process.
The Agile methods are based on the presumption that a complete and stable
requirements specification is generally impossible. This assumption invalidates
the very vehicle for computing project velocity, progress, deadline prognosis,
and budget allocations, as project managers cannot track the number of closed
vs. open requirements. In Chapter XIII, Roock and Wolf demonstrate a prac-
tical technique, integrating lightweight mechanisms for project controlling into
Agile methods. They propose to combining an (incomplete) hierarchical de-
composition of a system with abstract measurements. Their approach ad-
dresses pressing management needs without incurring the burden of a water-
fall-like exhaustive specification upfront.
Object-oriented knowledge comes in different forms, for example, principles,
heuristics, patterns, refactoring, lessons learned, defects, and best practices.
In Chapter XIV, Garzás and Piattini define an ontology of object-oriented
micro-architectural design knowledge to systematize this knowledge so that it
can be easily comprehended by developers and used in practical cases.
In the final chapter, Knott, Merunka, and Polak propose a new object-oriented
methodology, which makes extensive use of business process modeling. The
authors contrast and compare their approach to similar development approaches,
and provide a case study to demonstrate the feasibility of their methodology.

x

��'�	(���������

We would like to thank Mehdi Khosrow-Pour, Idea Group Inc. Senior Edi-
tor, for inviting and accepting our book proposal and for his insistence on
timely completion of this project. Thank you also to Jan Travers, Idea Group
Inc. Managing Director, for her patience that made it possible to bring this
project to fruition. We would also like to thank all referees for their assistance
in reviewing and improving on some of the chapter materials.

The second editor would also like to thank Professor Aubrey Washington and
Chancellor Jennifer Jackson at the University of the Virgin Islands for their
continued support and encouragement. He is indebted to his colleague, Pro-
fessor John Munro, for his professional advice, valuable suggestions, and feed-
back. He is grateful to Professor Akella at the University of California, Santa
Cruz, for providing me with the opportunity to work and do research in the
Silicon Valley.

Above all, he expresses his deep gratitude to Professor Yvonna Rousseva, his
spouse, for her insightful comments, incisive critique, and numerous thought-
provoking discussions. Without her, this book would have been impossible to
finish.

Object-Oriented Modeling in UML2 1

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Object-Oriented
Modeling in UML2

Boris Roussev
University of the Virgin Islands, USA

Abstract

Object-orientation (OO) is a powerful design methodology, which has
firmly moved into the mainstream of software development. In 2002, both
the IEEE John von Neumann Medal and the ACM Turing Award (the Nobel
Prize for Computing) were awarded to the scholars who started the
object-oriented journey back in 1967. Despite this recognition, object-
orientation is far from being the dominant technology of choice. Contrary
to the common belief, a recent authoritative study reports that only 30%
of the software companies rely on OO technologies, and that the waterfall
model is still the most popular lifecycle model of software development.
In this introductory chapter, we present the fundamental concepts and
principles of object-oriented modeling with UML version 2. Born out of
the efforts to resolve the software crisis, UML has taken such a hegemonic
role that we fear object-orientation may undergo a population
“bottleneck.” In biology, this is an event that dangerously cuts the
amount of genetic diversity in a population. The objectives of this chapter
are as follows: 1) to present the influential ideas in the evolution of object-
orientation; 2) to identify the lasting trends in object-orientation; 3) to

2 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

introduce the core UML modeling languages and some of the techniques
closely associated with them; and 4) to discuss some of the challenges with
object-oriented modeling. In addition, we present the E-ZPass system, a
system of moderate complexity used as a running example in the first five
chapters of this book. This presentation is the book’s cornerstone. There
is not a single chapter in the rest of this volume that does not assume an
overdetermined <<UML>> reader.

Introduction

Building large and complex software systems is notoriously difficult. To build
such systems, we need methodologies backed by languages that would feature
characteristics addressing the following needs:

 Features Needs

� To structure a system into modular components that can
be developed, maintained, and reused separately. Control complexity.

� To base the semantic structure and behavior of the
solution on the problem being solved. Reduce the cognitive burden.

� To raise the level of abstraction of the artifacts being
constructed. Curb complexity.

�
To use a common vocabulary with the client. To describe
the problem in a notation that is client and designer
friendly.

Link business and
technology, and improve
communication.

� To describe a problem precisely and in a way that avoids
delving into technical details.

Testability, executability,
portability, productivity, and
design automation.

�
To allow for reuse at all levels: requirements, analysis,
design, architecture, and domain, and at all levels of
interest: structural, behavioral, and communicational.

Improve quality and
productivity.

� To provide the basis for effective management of the
development process. Develop cost-effectively.

� To automate repetitive design and implementation tasks. Improve quality and
productivity.

	 To facilitate iterative and incremental, architecture-
centered, test-driven processes.

Risk mitigating, exploratory
processes.

 To respond to change quickly and in a cost-effective
manner.

Satisfy the ever-evolving
user needs.

Object-Oriented Modeling in UML2 3

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object-orientation (OO) is a powerful design methodology based on the
principles listed above. The importance of OO has now been firmly
recognized by industrial and research communities alike. In 2002, both the
IEEE John von Neumann Medal and the ACM Turing Award (the Nobel
Prize for Computing) were awarded to Ole-Johan Dahl and Kristen Nygaard
for their pioneering work in OO through the design and implementation of
SIMULA67. A quote from the ACM address confirms the importance of this
seminal work:

Their [Dahl and Nygard’s] work has led to a fundamental change
in how software systems are designed and programmed, resulting
in reusable, reliable, scalable applications that have streamlined
the process of writing software….

In modern history of science, it is not very common to have such a low adoption
rate as in the case of OO. The work of Dahl and Nygaard was made almost
extinct by two programming languages called COBOL and C, which muscled
their way through, backed by several major industry players and governmental
agencies.
Despite the recognition, OO (with the exception of use cases) is not yet the
dominant technology of choice. In a comprehensive study, Laplante and
Neill (2004) report that only 30% of the software companies rely on OO
technologies and that the waterfall model is still the most popular lifecycle
model in use. The authors conclude that OO techniques are not dominant,
which is in sharp contrast with the common belief about the popularity of
OO methods and technology.
In this introductory chapter, we lay the fundamental concepts of OO using
the Unified Modeling Language (UML, 2004). Since it was adopted by the
OMG in 1997, UML has been widely accepted throughout the software-
modeling world and successfully applied to diverse domains. Therefore,
it will not be much of an exaggeration to paraphrase from Wittgenstein1:
namely, the limits of UML mean the limits of my OO world.
Since OO modeling is dominated by UML in all areas, it seems unlikely for
an OO notation or method to be able to survive away from UML. In the
foreseeable future, the evolutionary history of OO will be tied in very
closely to that of UML. As a result, OO methods may undergo a population
“bottleneck.” In biology, this is an event that cuts dangerously the amount

4 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of genetic diversity in a population. On the bright side, OMG is backed by a
large industrial consortium, and important decisions are taken with broad
consensus and (in truly OO spirit) after an incremental and iterative
process. Despite the dominant role of UML, there are alternative ap-
proaches, for example, the OPEN Modeling Language (Firesmith,
Henderson-Sellers, & Graham, 1998) and the Business Object Notation
(Paige & Ostroff, 1999).
The rest of the chapter is structured as follows. The next section presents
a brief history of OO focusing on influential ideas and contribution. Then
we introduce the core set of modeling language of UML2. We use as a
running example a real-world system of moderate complexity. We next
discuss some of the challenges with OO modeling, before concluding the
chapter.

Brief History of Object-Orientation

The crisis in software development is not from yesterday. Being relatively
young, software development has lacked until recently a proven apparatus
for design and evaluation of software products. The historic conference,
sponsored by NATO, that diagnosed the crisis of software development and
proposed “software engineering” as a remedy, took place in Garmisch,
Germany, in the Bavarian Alps, in 1968. After the conference, Dijkstra, one
of the participants, wrote: “For me it was the end of the Middle Ages. It was
very sunny.” However, almost 40 years later, resorting to best practices,
documented as development methods, such as RUP and Agile, testifies to
the fact that it might have marked not so much the end of the Middle Ages,
but rather it might have foreshadowed the harbinger of a Renaissance.
In this section, we attempt to summarize chronologically the OO Renais-
sance. The review of the early OO analysis and design methods is based on
the insightful discussion in Graham and Wills (2001).
The rapidly improving performance/price ratio of hardware entailed wide
adoption of client-server multi-tier information systems in every sphere of
human activity. In the 1980s, the software development community came
under increased pressure to develop usable, dependable, and scalable
distributed systems in a cost-effective way.

Object-Oriented Modeling in UML2 5

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To increase productivity and quality, the software industry had to adopt
methods of building systems out of reusable components, and at the same
time to raise the level of abstraction of the designed artifacts. There were
two major challenges to materializing these ideas. First, with structured
methods, less than half of a system could be built out of reusable components
(Biggerstaff & Richter, 1989). And second, raising the level of abstraction
leaves developers with less meaningful artifacts—that is, less semantic
richness and fewer venues for extensibility.
Structured methods view a system as a hierarchy of functions and rigidly
separate process knowledge from data. Self-contained, customizable, and
reusable components did not naturally fit in this environment.
The software industry responded to these challenges by shifting its focus to
OO methods. Up until the early 1980s, OO was largely associated with the
development of graphical user interfaces and AI. In the 1980s, interest
extended to OO design, mainly to support the OO programming language
Smalltalk and the OO extension of the imperative language C, named C++.
In the late 1980s and early 1990s, interest moved away from OO design to
OO analysis. Several influential works helped gradually shape the field of
OO analysis. The coinage object-oriented design is attributed to Booch,
who published a paper in 1988 and a book (Booch, 1991, 1993) with the
same name.
The switch from well-established structured analysis techniques to OO
analysis methods naturally began with extending the entity-relationship
model (Codd et al., 1980) and endowing entities with behavioral aspects,
the so-called data-driven approach. Data-driven methodologies (Coad &
Yourdon, 1991; Rumbaugh et al., 1991; Shlaer & Mellor, 1988) approached
application development as relational database development.
Coad and Yourdon (1991) added operations to entities to define class
models as a basis of a simple OO analysis method, which immediately
became popular. OMT (Rumbaugh et al, 1991), built on the work of Coad
and Yourdon, and Shlaer and Mellor (1988) proposed the use of finite state
machines (FSMs) to describe the lifecycles of class instances. This idea
came to fruition in the work of Shlaer and Mellor (1992), who also advanced
the notion of translational modeling, thus laying the foundation for Execut-
able UML (Mellor & Balcer, 2002) and Model-Driven Architecture (MDA,
2004).

6 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A second group of OO methods emerged in parallel with the data-driven group,
called responsibility-driven methods. They shied away from the entity-relation-
ship model and more strictly adhered to OO principles.
Wirfs-Brock et al. (1990) developed a set of responsibility-driven design
(RDD) techniques. Among the most important contributions of RDD are the
extension of the idea of CRC cards (Beck & Cunningham, 1989) and the
introduction of stereotypes. CRC cards are physical cardboard pieces
visualizing classes with their responsibility and collaborations (hence the
name CRC). Developers are encouraged to take the view of an instance of
a class (called anthropomorphism) and act out the object’s lifecycle in order
to discover new classes in the problem domain. Then, these CRC cards are
used as a starting point for design. This technique became one of the
underpinnings of the Agile methodologies (Beck, 1999).
Cook and Daniels’ (1994) Syntropy added rigor to OO modeling by
introducing a pure expression language, later called OCL to express
modeling concepts, such as uniqueness constraints, invariants, transition
guards, and operation pre- and post-condition, that cannot even be repre-
sented on class diagrams and finite state machines.
As OO notations mushroomed in the early 1990s, so did the OO methods that
lived on them. MOSES (Henderson-Sellers & Edwards, 1994) was the first
OO method to include a full-fledged development process and metrics.
SOMA (Graham, 1994), following in the footsteps of MOSES, attempted
to fuse the best practices of all methods, and in addition emphasized
requirements engineering, process, and rigor.
Arguably the most influential work, which later became the foundation of
RUP (Kruchten, 2000), was the OO incarnation of Objectory (Jacobson,
1992). Objectory started out as a proprietary method in Erickson, a Swedish
telecommunication company, in the late 1960s. The major contributions of
Jacobson’s work are the following: use cases (clusters of scenarios of
system usage); use case analysis; the use of sequence diagrams for class
discovery and distribution of responsibilities among classes; the boundary-
controller-entity design pattern, which allowed the containment of “change-
ability” through “locality of change;” and the definition of software
development as model transformation from more abstract to more detailed
and precise models.
In 1997, OMG standardized and published UML version 1. UML1 quickly
became the norm for OO modeling. UML was influenced by OMT, OCL, the
Booch notation, activity diagrams for process modeling (Martin & Odell,

Object-Oriented Modeling in UML2 7

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1992), stereotypes (Wirfs-Brock et al., 1990), and multiple interfaces from
Microsoft’s COM+ technology. UML’s belated conception was the major
cause for its inconsistencies and deficiencies (Miller, 2002). The industry
had already invested in the creation of expensive CASE tools, and CASE
tool vendors resisted many innovations and simplifications that would
render their tools obsolete.
The two most popular methods used for OO software development with
UML are RUP, developed at Rational by Jacobson et al. (Kruchten, 2000),
and the lighter-weight Agile methods (Beck, 1999). Both RUP and Agile are
based on an iterative and incremental lifecycle, in which the system
architecture evolves (hence the term evolutionary) incrementally from a
prioritized set of user requirements in a series of mini-waterfall cycles of
business-modeling/requirements-elicitation/analysis/design/implementa-
tion/test. The evolutionary approaches are requirements-driven (each
artifact can be traced to a requirement) and architecture-centered (or
architecture first). They outperform in terms of customer satisfaction and
cost methods based on the waterfall model in fast-paced, dynamic environ-
ments, with a great risk exposure due to the multiple feedback opportunities
for customers to situate and orient the development effort. The evolutionary
approaches are based on a reciprocal relationship between system and user.
On the one hand, the user envisions the system. On the other hand, the system
changes the user’s perception about the system. Therefore, we could expect
that a partially completed prototype (increment) will be able to reveal early
on the anticipated change in the users, and in this way to reduce the
backtracking in the development process.
The inconsistencies in UML1 prompted several minor revisions (UML1.x),
followed by a major one, whose result will be UML2. The standardization
process is scheduled for completion by the end of 2004. UML2 promises
to be a breakthrough in model-driven development by making models
executable and by automating the relationship between models and code.
Objects turned out to be disproportionately small compared to the size of
the systems being built with them. The second wave of innovations in OO
analysis was marked by an increased interest in things bigger than objects,
namely things allowing reuse on a larger scale, but foremost, things
automating the software design process. The trend, which began in the mid-
1990s, is toward more complex structures at a higher level of abstraction,
gradating from design patters and components, through aspects, to domains.
The second trend informing OO today is design automation.

8 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduced in a seminal work (Gamma, Helm, Johnson, & Vlissides, 1995),
design patterns have quickly gained popularity among developers. A design
pattern is a description of a problem, a best practice for its solution, and
when and how to apply the best practice (typically, via instantiation) in new
situations. Gamma et al. showed the advantage of reusing aggregations of
objects along with the mechanisms for their interactions. The reusability of
design knowledge with design patterns, however, comes at a certain price.
Garzás and Piattini (2005) list a number of problems with design patterns:
difficult application, temptation to recast everything as a pattern, pattern
overload, high-dependence on a programming language (except for analysis
patterns), complex non-homogeneous catalogs, and a steep learning curve
for some counter-intuitive patterns, to name a few. It is important to note that
design patterns do not raise the level of abstraction at which design is
carried out. They describe solutions at the object level.
OO provided the foundation for component-based development. Compo-
nents are big things that do raise the level of abstraction in design. A
component is a set of closely related objects, encapsulated together to
support a set of clearly defined interfaces. With components, a system is
described in terms of interactions among component interfaces. Designed
with reusability in mind, components lead to increased productivity and
quality. To use components, developers ought to be equipped with tools for
component customization, initialization, and interface inspection.
To address the issue of crosscutting concerns, Kiczales (1996) introduced
aspect-oriented programming (AOP). AOP deals with abstractions on a
plane different from object-oriented modeling. AOP advocates specifying
separately the various pervasive requirements of a system, for instance,
security and transaction management, which do not decompose into behav-
ior centered on a single locus, and then, to weave them together into a
coherent system. AOP focuses on the system’s infrastructure, something that
cannot be done effectively only in terms of components and objects. AOP’s
major drawback is that aspects are defined at code level.
The largest truly reusable constructs in OO are domains. An executable
domain model captures precisely the conceptual entities of a single subject
matter (Mellor & Balcer, 2002). Each domain forms a cohesive whole,
semantically autonomous from other domains, which makes domains the
largest units of reuse. A domain is modeled as a set of communicating
objects or more precisely as a set of communicating object state machines.
Executable domain models can be simulated and debugged, woven together

Object-Oriented Modeling in UML2 9

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

through bridges, and automatically compiled to code based on the principles of
generative programming (Czarnecki & Eisenecker, 2000). Domains bear
certain similarity to aspects, but they are, in distinction, defined at a very
abstract model level.
In line with model-driven development and domain modeling, OMG launched
the Model-Driven Architecture initiative (MDA, 2004). The essence of the
MDA approach is the clear separation between executable platform indepen-
dent models (PIM) and platform specific models (PSM), and the application
of marks and mappings to transform PIMs to PSMs, and to generate code from
PSMs. The notions of model executability and model mappings bring in the so-
much-sought-after design automation. MDA raises the level of abstraction and
avoids technology dependence, thus addressing the complexity and portability
problems. Furthermore, MDA applies very successfully the separation-of-
concern principle by capturing design knowledge in machine-readable map-
pings and application knowledge in executable domain models. Model
executability affords model testing and debugging, thus realizing the “proving
with code” principle, only at a much more abstract level.
The level of reuse culminates in product lines (Withey, 1996; PL, 2004),
breaking easily the 90% reuse barrier. The product lines method aims at
identifying units of common functionality in a family of products and
defining a customized development process, minimizing the effort neces-
sary to duplicate this functionality in the related products. Several methods
(Bosch, 2000; Bayer et al., 1999; Atkinson, Bayer, & Muthig, 2000) attempt
to combine component-based development, design patterns, and product
lines, and to provide developers with the necessary automation tools.
Design automation reaches its highest in Model-Driven Software Develop-
ment (MDSD) (Bettin, 2004, 2005). MDSD is a synergy of product line,
DSLs2, and MDA. MDSD is characterized by the conscious distinction
between building software factories and building software applications
(also referred to as domain engineering). MDSD supports domain-specific
specialization and mass customization.
With less emphasis on programming, requirements engineering and systems
analysis will grow more and more important as time goes by. Research
efforts in the requirements engineering area are toward understanding the
role of requirements in the wider systems engineering process and toward
validating user requirements in a manner similar to validating software—
that is, requirements should be automatically translated to code and executed
via simulation techniques (Lamsweerde, 2000).

10 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Modeling with UML

In this section, we introduce the core set of the UML modeling languages
needed to design OO systems. The UML models we discuss are class
diagrams modeling the information structure of a system, FSMs represent-
ing the behavior of individual objects, use cases expressing user require-
ments, and interaction diagrams (sequence and communication diagrams)
modeling interactions among societies of objects, collaborating to realize
user requirements.

Case Study

In this and the next four chapters, we will use the following system as a
running example.
In the road traffic E-ZPass system, drivers of authorized vehicles are
charged at tollgates automatically. They pass through special lanes called
E-Z lanes. To use the system, a driver has to register and install an electronic
tag (a gizmo) in his/her vehicle. The vehicle registration includes the
owner’s personal data, credit card or bank account, and vehicle details. As
a registered vehicle passes through the tollgate, an antenna electronically reads
account information on the gizmo, and the toll is automatically deducted from
the prepaid account. The amount to be debited depends on the kind of the
vehicle. When an authorized vehicle passes through an E-Z lane, a green light

Figure 1. E-ZPass system

Object-Oriented Modeling in UML2 11

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

comes on, and the amount being debited is displayed. If an un-authorized
vehicle passes through an E-Z lane, a yellow light comes on and a road camera
takes a photo of the plate, used to fine the vehicle’s owner (fine processing is
outside the system scope). There are E-Z lanes where the same type of vehicles
pay a fixed amount, for example at a toll bridge, and there are E-Z lanes where
the amount depends on the type of vehicle and the distance traveled, for
example on a highway. For the latter, the system stores the entrance tollgate and
the exit tollgate.

User Requirements Model

A user requirement is a dialogical specification of what the system must do.
As user requirements are elicited, they are organized into use cases.
Requirements are not yet first-order elements in UML, but they are sched-
uled to become such in the forthcoming Systems Engineering UML profile.
The systems engineering profile defines about 10 different types of require-
ments, which fall into three broad categories: operational, functional, and
quality of service (QoS). Operational and functional requirements are best
expressed as usage scenarios modeled with sequence diagrams or commu-
nication diagrams (formerly collaboration diagrams). QoS requirements
come in several types (e.g., usability, security, and performance, to mention
a few) and are modeled as constraints.
Since their introduction in the late 1980s (Jacobson, 1987), use cases have
proven to be an immensely popular software development tool. Use cases
organize requirements—such as tens of usage scenarios—around a common
operational capability. They describe the system as a black box. Use cases
present a conceptual model of the intended system behavior by specifying
services or capabilities that the system provides to its users.
In use case models, the system’s environment, or context, is modeled as
actors, which are essentially roles played by end users or external systems
(a single user may perform many roles). In Figure 2, the actors for the E-
ZPass system are Driver, Bank, and Operator. They are rendered as stick
figures. The actors communicate with the use cases rendered as ovals via
communication links. A use case contains and organizes multiple scenarios. A
scenario is a linear sequence of transactions performed by actors in a dialogue
with the system that brings value to the actors.

12 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A system is conceptually decomposed into subsystems of related use cases
linked by <<include>> and <<extend>> dependency relationships or sharing
common actors. <<>> indicates a stereotype. Stereotypes are a lightweight
UML extension mechanism. A stereotype defines the meaning of a new building
block, which has derived from an existing one. The <<include>> relationship is
used to extract out a coherent part of a use case, typically for the purpose of
reuse. It can also be used to decompose a system-level use case into “part” use
cases to be realized by different subsystems. The <<extend>> relationship is used
when the behavior of one use case, called base use case, may be extended with
the behavior of another use case under certain conditions. Users find the
direction of the <<extend>> relationship counter-intuitive (from the extension use
case to the base use case). It is best to think of it as the extension use case
pushing functionality to the base use case. Figure 2 illustrates the discussed
concepts related to use cases.
A use case diagram shows only the use case’s organization. The flows of events
in every use case are described in text. The following is a fairly standard
template for use case descriptions.

Figure 2. E-ZPass use case model

Driver

Pass 1-Point Tollgate

Pass 2-Point Tollgate

Register Vehicle Operator

Invalid Account

Bank

Debit Account

<<include>>

<<extend>>
<<include>>

Object-Oriented Modeling in UML2 13

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Use case name

Description: brief narrative description.

Actors: a set of Actors

Basic flow of events: numbered sequence of events

Exceptional flow of events: numbered sequence of events

Pre-conditions: contract between actors and use case

Post-conditions: result of a use case execution

We show below the structure of PassOnePointTollgate use case.

Use Case: PassOnePointTollgate

Description: This use case describes the system’s behavior in response to
a vehicle passing through a single tollgate.

Actors: Driver

Basic Flow

1. The use case begins when a vehicle with a gizmo passes through a
single tollgate. The tollgate sensor reads the gizmo’s ID. The system
records the passage, including date, time, location, and rate; dis-
plays the amount the driver will be charged; and turns the green light
on.

Exceptional Flow of Events:

• The gizmo is invalid or missing. The system turns the yellow light
on and a photo of the vehicle is taken.

Pre-Conditions: None

Post-Conditions: The vehicle’s account is updated with the passage
information and the driver’s credit card.

Modeling the System’s Information Structure

The concepts used for describing systems’ information structures in UML are
class, object, relationship, component, subsystem, and OCL constraints.

14 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Objects, Classes, and Relationships

The real world is populated with objects (or instances) of different kinds:
books, bank accounts, and tollgates, to mention a few. Each object has a
number of characteristic attributes that identify it. For example, a book has
a title, author, and publisher. A bank account has an account number, owner,
and interest rate. Figure 3 shows the characteristic attributes of several
kinds of objects. Such an object description is called class, because it
describes a class (set) of similar objects.
Although the object’s attribute values give us information about the object’s
identity, this information is somewhat static. The attributes alone fail to
represent the dynamic nature of many objects. What we need to know are the
operations in which the objects can be involved, or in other words, the behavior
the objects can exhibit. For example, a bank account can accumulate interest
rate, can be debited or credited.
Graphically, a class is represented as a rectangle with three compartments as
shown in Figure 4. The top compartment contains the class name. The middle

Figure 3. Class attributes

Book

ISBN
Title
Publisher
FirstAuthor

BankAccount

AccountNumber
Owner
InterestRate

Tollgate

Location
Rate

Figure 4. Class structure with characteristic attributes and operations

Class Name

Attributes

Operations()

BankAccount

AccountNumber
Owner
InterestRate

Debit()
Credit()
Balance()
AccumulateInterest()

Object-Oriented Modeling in UML2 15

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

compartment contains the characteristic features, called attributes. The bottom
compartment defines the operations in which the objects of the class can be
involved. Depending on the modeler’s goals, any comportment, except for the
name, can be omitted.

Relationships
The attributes and operations alone are not sufficient to understand the
“essence” of an object. An object in isolation does not have a complete “self-
identity.” The human mind distinguishes between objects by difference. This
difference is determined by the relationships into which objects can enter, by
the ways the objects can be used. The relationships into which an object can
enter are determined by the object’s responsibilities to other objects (imple-
mented as publicly accessible operations). Similar to how words mean in a
language, we can say that an object acquires “self-identity” through different
relationships with other objects. Objects are never strictly defined and identi-
fied unless they enter into relationships.
Jacques Derrida, the French linguist-philosopher, has famously argued that
everything has an originary lack. By entering into relationships with other
objects, the thing compensates for this originary lack. Let us consider a bed
and breakfast room. The room alone is a lump of bricks and furniture,
inconsequential for understanding its purpose, which can be articulated and
manifested only through the relationships into which the room participates. The
relationship room-owner and the relationship room-guest are the room’s
“essential” characteristics. For the owner, the room is a source of income, while
for the guest, the room is a place to rest. The former relationship satisfies the
owner’s lack or desire (for a source of income), while the latter satisfies the
guest’s lack (a home away from home). We can say that the room’s relation-
ships came into being to fill in the owner’s and the guest’s voids.3

In OO, relationships are formalized as associations of various kinds. Associa-
tions model the rules of a problem domain. On class diagrams, associations are
drawn as lines connecting classes. An association between two classes implies
that at runtime the instances of the classes can be linked in some way, enabling
them to invoke each other’s operations. An arrowhead is indicative of the
association’s navigability. A line with no arrowheads denotes a bi-directional
association—that is, at runtime objects on either side of the association can
invoke an operation on the object on the opposite side.

16 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Each association has an identifier, which can be a meaningful name or an
automatically generated label (e.g., R2). The meaning of an association is
expressed with a pair of association ends and a pair of multiplicity ranges. An
association end can be either a role (e.g., “buyer”) or a verb phrase (e.g.,
“rents”), as shown in Figure 5. The association end indicates the meaning
of the association from the point of view of the class on the opposite end.
Roles help overcome the following deficiency of class models. Once
created, an instance belongs to its class forever. To show that this instance
may serve different purposes at different times, we use roles: for example,
an instance of class Employee can be acting as developer in one relationship
and as a supervisor in another one.
A multiplicity range shows how many instances of the class on the near (next
to the range) end can participate in a relationship with a single instance from
the class on the far end. For instance, a room has exactly one owner (we have
consciously excluded partnership), but an owner can own (at least) one or more
rooms (see Figure 5). The most commonly used multiplicity ranges are: 1..1 (1,
for short), 1..* (one or many), 0..1 (0 or 1), 0..* (0 or many).
To describe a relationship, modelers take the view of an instance of each
participating class, a technique called anthropomorphism. For example, let
us consider association R2 in Figure 5. From the room’s point of view: “A
room is owned by one owner;” and from the owner’s point of view: “An
owner owns one or more rooms.”

Aggregation and Composition
An aggregation is a kind of association denoting a “whole-part” relation
between two classes. Since aggregation is a kind of association, all properties
applying to associations apply to aggregations too. In class diagrams, the
“whole” end is represented by an empty diamond.
Composition is a stronger form of aggregation, where the “whole” is respon-
sible for creating and destroying the “part.” The composition end is signified

Figure 5. Class relationships

Guest Room1..*0..1
rents
1..*

accommodates
0..1 R2

Owner11..*
is_owned_by

1
owns
1..* R1

Object-Oriented Modeling in UML2 17

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with a filled diamond. The real difference between aggregation and composition
stands out only in coding as containment by reference and containment by
value. In terms of modeling there are no semantic differences between the two
associations.

Interface
An interface is a named collection of operation signatures (name, parameter
types, return type), attributes, and a protocol state machine (a subset of FSM)
defining a service. An interface specifies a contract for a service to be offered
by a server class, without revealing any implementation details. It has no
behavior by itself, and it cannot not be instantiated. The operations an interface
specifies are implemented in a class (could be a structured class, see below),
and at runtime they are provided by an instance of this class. The relationship
between an interface and its realizing class is best described as type inheritance,
since it signifies that the realizing class conforms to the contract specified by the
interface—that is, the realizing class is type conformant to the interface type. In
class diagrams, this relation is stereotyped as <<realize>> (see Figure 7). UML
also uses the ball-and-socket notation, where the ball represents an interface
to be realized by a class (see Figure 7). Interfaces are there to separate the
specification of a service from its implementation. We say that a class realizes
an interface if it provides operations for all the operations specified in the
interface. One class may realize multiple interfaces.

Figure 6. Aggregation and composition

Figure 7. Interface specifying a service and a class implementing the
service

iCharge

makePayment()

<<Interface>> Bank

makePayment()
authorize() iCharge

Bank

makePayment()
authorize()

Tollgate Lights1
R3

1

controls owner

18 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generalization
When two or more classes share a common structure and behavior, the
commonalities can be factored out and placed in a more general super class,
from which the rest of the classes inherit (or derive). The super class has
attributes, associations, or behavior that apply to all derived subclasses. The
derived classes are said to specialize the super class by adding or modifying
attributes, associations, or behavior.
In Figure 8, EZPass is a superclass, and OnePointPass and TwoPointPass are
subclasses. The subclasses can either specialize or extend the super class.
Generalization can be described as “is_a” relationship, for example,
OnePointClass “is_a” kind of EZPass. The “is_a” relationship imposes
interface compliance on the participating classes. This means that any
occurrence of the superclass can be substituted with an instance of the
subclass without semantically breaking the model.
Specializing, also called polymorphism, means that the same operation has a
different implementation in the subclass. In UML, only operations and FSMs
can be specialized (overridden or redefined); for example, operation
CalculateRate in TwoPointPass is implemented differently from its analog
in EZPass, even though it has the same interface. Extending means that the
subclass can have new attributes, operations, states, or transitions.
Through generalization, we may avoid class modification by elegantly reusing the
superclass functionality for creating specialized subclasses. The specialized

Figure 8. Generalization-specialization hierarchy

OnePointPass

Location
DateTime

TwoPointPass
EntryLocation
ExitLocation
EntryDateTime
ExitDateTime
Distance

Vehicle
Plate
Tag

EZPass
Rate

getRate()
calculatePay()

0..*1

belongs_to

R4

makes

1 0..*

R5

Object-Oriented Modeling in UML2 19

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

classes have some of their inherited responsibilities redefined and possibly new
ones added. For example, if a need arises for a super-fast E-Z tollgate, we will
not have to change anything in the existing tollgates. All that is required is to extend
the generalization hierarchy with a new subclass for the new type of tollgate.

Package, Structured Class, Component, and Subsystem

To effectively develop large systems, we need to model their large-scale parts
and how these parts interact with each other. To be scalable, a modeling
notation should allow for parts to contain smaller parts, which can have, in turn,
even smaller parts, and so on. At the most detailed level, parts are class
instances. For modeling things at the large end of the spectrum, UML provides
structured classes, components, and subsystems, all based on the notion of
class. To develop large systems, it is also important to be able to divide the
work into manageable units. For this purpose, UML provides packages.

Package
UML packages are a mechanism for organizing modeling elements, including
other packages, into groups. A package defines only a namespace for the
elements it contains. Packages are used to divide a system model into
independent parts, which can be developed independently. Graphically, a
package is rendered as a tabbed folder (see Figure 9).

Figure 9. Packages and <<import>> relation

Tollgate

Register Driver Payment

20 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A dependency is a using relation signifying that a change in the independent thing
may affect the dependent thing, but not vice versa. <<import>> is a kind of
dependency relation, which grants permission to the elements in one package to
access the elements contained in another one. Relation <<import>> is rendered
as a dotted arrow. The arrowhead points to the package being imported, as
shown in Figure 9. It is important to note that the permission is one-way.

Structured Class
A structured class is a runtime container for instances of classes and other
structured classes, collectively called parts or elements. These parts are
interconnected with communication links named connectors, as shown in
Figure 10. Apart from being in charge of creating and destroying its parts
and connectors, a structured class may coordinate its parts’ activities, for
example, through an FSM.
A structured class contains its part through composition. An instance multiplic-
ity number written in the corner of a part shows the number of instances from
that part. The parts and the connectors constitute the part topology of the
structured class.
A structured class offers a collection of services to its environment, published
via <<provided>> interfaces and accessed at runtime via ports. A provided
interface is a contract for service. If, in turn, a structured class uses the services
of other instances (including structured classes), it can place demands on these
instances by <<required>> interfaces. UML uses the ball-and-socket notation
for the provided (ball) and required (socket) interfaces (see Figure 10). Ports
can be thought of as being typed by their interfaces. Typed ports serve as

Figure 10. Structured class, ports, provide and required interfaces, and
connectors

StructuredClass

InstanceA
1

InstanceB
1

InstanceC
1

port_cl

iRequest

port_serv

iService

Object-Oriented Modeling in UML2 21

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

access points for interactions between the internal parts of the structured class
and its environment.
Ports relay the incoming messages to the internal parts and the outgoing
messages from the internal parts to the external objects attached to the
structured class through connectors without revealing the part’s identity.
To summarize, a port publishes the operations implemented by a collaboration
of internal parts on the structured class border. The structured class boundary
and ports decouple the internal elements from the external environment, thus
making a structured class reusable in any environment that conforms to the
required interfaces imposed by its ports.

Components
A UML component is a structured class providing a coherent set of services
used and replaced together. A component’s behavior is specified in terms
of provided and required interfaces. We say that a component is typed by
its interfaces. A component may be substituted by another one, only if the two
are type conformant. There are no differences between structured classes and
components, except for the connotation that components can be configured
and used like Lego blocks in different contexts to build things.
At present, the most widely used commercial component frameworks are
Enterprise Java Beans, .NET, COM+, and CORBA Component Model.

Subsystem
A subsystem is a large-scale component and a unit of hierarchical decompo-
sition. At the highest level, a system is decomposed into several subsystems. In
addition to a collection of services, a subsystem defines a namespace for its
parts. A subsystem may have separate specification and realization parts
stereotyped respectively as <<specification>> and <<realization>>. This
makes it possible for one specification to have multiple realizations.
Components can be assembled in an enclosing <<subsystem>> container by
wiring together their required and provided interfaces. The components’
interfaces are linked either by connectors or by dependency relationships
(see Figure 11).
The Infrastructure package is a container for common elements such as types
(classes and interfaces) exposed in component interfaces, usage points (ser-
vices), and extension points (classes to subclass in other packages).

22 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since structured classes, components, and subsystems are classes (unlike
packages), they may participate in associations and generalizations.

Constraints and Object Constraint Language
Constraints are a fundamental part of a system’s structure and semantics. The
Object Constraint Language (OCL) (Warmer & Kleppe, 1998) is a formal,
pure expression language augmenting graphical UML models to produce
unambiguous and precise system descriptions. OCL is an integral part of UML,
and it is used to define the semantics of UML. OCL combines first-order
predicate logic with a diagram navigation language. It provides operations on
sets, bags, and sequences to support the manipulation and queries of collec-
tions of model elements.
UML uses OCL to express constraints, navigability, action semantics, and object
queries. Even though visual models define some constraints, like association
multiplicities, in OCL we can specify richer ones, such as uniqueness constraints,
formulae, limits, and business rules. OCL constraints provide precision, which
facilitates design by contract and executability (see Chapter II).
Very succinctly, a constraint is a semantic restriction on one or more model
elements. Types of constraints include, but are not limited to, constraints on

Figure 11. Components, subsystems, and packages

RegisterDriver

port_card

iGetCard

RegisterDriver

port_debit

iDebit

port_get_card

iGetCard
<<Subsystem>>

<<Subsystem>>
PassOnePointTG

port_debit

iDebit

port_get_card

iGetCard
<<Subsystem>>

RegisterDriver

port_debit

iDebit
<<Component>>

<<flow>>

debitOperation

Infrastructure

CreditCardInfo iDebit

<<interface>>

ConfirmationiGetCard

<<interface>>

Object-Oriented Modeling in UML2 23

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

associations between classes, pre- and post-conditions on class operations,
multiplicity of class instances, type constraints on class attribute values,
invariants on classes, and guards in state models.
Each OCL expression is written and evaluated in the context of an instance of
a model element. Let the context be an instance of class Driver, shown in Figure
12 (the irrelevant elements on the class diagram are suppressed). We can
restrict the driver’s age to 16 years with the following constraint.

context Driver inv:

 self.Age > 16

As another example, if we want to make sure that all tags have unique IDs, we
can write:

context Tag inv:

 Tag.allInstances()->forAll(t1, t2 |

 t1<>t2 implies t1.TagID <> t2.TagID)

Pre- and post-conditions specify the effect of a class operation without stating
its algorithm or implementation. To indicate the operation for which the
conditions must hold, we extend the constraint’s context with the operation
name. For example,

Figure 12. Class diagram

Payment
Amount

Passage
calculateRate()

CreditCard

0..11
is_paid

0..1
is_for
1 R6

Vehicle

0..*

1

gets0..*

made_by1

R5

1 1..*
covered_by
1

charged_for
1..*R4

Driver
LastName
Age

11..*
belongs_to

1..*
owns

1R1

24 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

context CreditCard::Charge(Amount: Real): Boolean

 pre: self.IsValid

 post: self.Balance = self.Balance@pre + Amount

where Balance@pre refers to the value of the attribute at the start of the
operation.
Next, we show how starting from a specific instance we can navigate its class
associations to refer to related objects and the values of their attributes. To
navigate association R6 in Figure 12, we use the association’s label and the role
predicate at the far end:

context Payment inv:

 self.Amount = self.R6.is_for.CalculateRate()

It is important to note that OCL is not a programming language, and OCL
expressions cannot, therefore, express assignment statements or flow of
control. The evaluation of an OCL expression is instantaneous, meaning that
the states of the objects in a model cannot change during expression
evaluation.
Often OCL expressions are critiqued for having poor readability and for being
inefficient in specifying requirements-level and analysis-level concepts (Ambler,
2002). This critique comes from methodologists favoring code over models
and from system analysts using UML diagrams as sketches of OO designs, the
so called UMLAsSketch.4 To improve OCL readability, Mellor (2002, p.128)
introduces the notion of constraint idiom as a general pattern for commonly
occurring types of constraints and suggests the use of predefined tags for these
types. The latter makes models less cluttered and less cryptic (see Chapter 2).
Since constraints are a fundamental part of the semantics of a problem domain,
there is no simple alternative for building precise models.
With OCL, an object’s interface can be defined as a set of protocols to which
the object conforms. A protocol consists of the following three invariants
defined for each operation: pre-condition, post-condition, and operation
signature.
Constraints do not have to be written in OCL. They can be specified in any
action language supporting the Precise Action Semantics for UML (UML AS,
2001), for example, OAL (2004) and KC (2004). However, action languages

Object-Oriented Modeling in UML2 25

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are not specification languages. Their purpose is to define computations in
executable models.

Object Behavior

We are interested in how objects act both in isolation and in collaboration
with other objects. In UML, the former behavior is modeled with FSM
models, while the latter is modeled with communication (formerly collabo-
ration diagrams) and sequence diagrams.

State Dependent Behavior

In order to determine the future actions of a class instance, we need to know
its past, a rather Newtonian approach.5 For example, the answer to the
question “Can I withdraw $50 from my account?” depends upon the history
of deposit and withdrawal transactions carried out. If the owner has
deposited $60 and withdrawn $20, the answer will be “No,” given that the
account cannot be overdrawn.
We could succinctly represent the history of the bank account by its balance,
$40, rather than the whole sequence of past bank transactions. To do so, we
can add an attribute, say Balance, to class BankAccount, and base the behavior
of operation Debit() on the value of the new attribute.
We call the abstract representation of an object’s history state. The state of an
object represents that object’s potential, or in other words, the actions in which
the object can be engaged.
It takes a lot of sophisticated and error-prone code to manage the concurrent
access to the data and operations of objects with a great number of states.
For such objects, it is better to model explicitly their states, state evolution,
and the relation between states and allowed actions. An object can progress
through different states over its lifetime. This progression is called lifecycle.
An FSM model defines the lifecycle of a state-dependent class. In UML,
statecharts diagrams visualize FSMs. FSM models comprise four types of
elements: states, transitions, events, and procedures.
A state represents a stage in the lifecycle of an object. The states are a bounded
set of mutually exclusive conditions of existence: at any moment, an object is
in exactly one state, referred to as current state. Signals are incidents in the

26 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

domain modeled as events. They can be internal (generated by the FSM) or
external (generated by other FSMs). A transition points to “the next” state,
which the object will enter from the current state upon receipt of a particular
event. States are drawn as rectangles with rounded corners and transitions as
arrows. Each state has a name. A transition is labeled with the event that causes
the transition.
In the executable UML profile, the FSM model includes procedures of actions
(executable sections), one per state, executed on entry to a state. Figure 13
shows the FSM for class Tollgate. For readability’s sake, we have written the
state procedures in pseudo code. The initial state for the FSM is NewTollgate.
In this state, the tollgate controller sets its own location and rate, and then it
relates itself to an instance of class Lights. Once related, the tollgate controller
signals the Lights instance to turn its green lights on. Next, the initialized tollgate
generates signal operate(mode) to itself to transition to state Ready. This signal
is shown as an event attached to the transition from state NewTollgate to state
Ready. In state Ready, the tollgate checks the mode value provided by event
operate(mode) to see if it has to send a signal to the lights controller to turn its
yellow lights on, and then waits passively to receive a “tag detected” signal from
its sensor. Upon receipt of detectTag(), the tollgate enters state VerifyTag and
executes its state procedure. The procedure verifies the detected tag, creates
a new Passage instance, and transitions to state CreatePayment. If the tag is
invalid, the tollgate goes back to state Ready. In state CreatePayment, the

Figure 13. FSM model for class Tollgate

NewTollgate
entry/
// Set location and rate
// Relate self to lights
// Generate signal turn lights green
// Generate signal to transition to
 state Ready

Ready
entry/
// If mode is 2
// Generate signal to turn yellow lights on
// Else
// Transition to state VerifyTag
// End if

operate(mode)

VerifyTag
entry/
// If the tag is valid
// Create a new Passage instance
// Transition to CreatePayment
// Else
// Generate signal operate(2)
// End if

CreatePayment
entry/
// Create a new credit card charge
// Generate signal to self to transition to
 state Ready

detectTag(tagID)
operate(mode)

procPayment()

operate(mode)

Object-Oriented Modeling in UML2 27

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tollgate retrieves the credit card, serving the vehicle related to the detected tag,
and creates a Payment instance, taking care of charging the credit card. At this
point, the tollgate returns to state Ready to process the next vehicle.
Not all classes exhibit interesting lifecycles. The behavior of a class can be
defined as state dependent or simple (state independent). FSM models are not
constructed for simple classes.

Collaborative Behavior

In order to work toward achieving a common goal, objects interact by calling
synchronously each other’s operations, called message passing, or by sending
asynchronously signals modeled as events. Interactions can be visualized on
interaction diagrams, which come in two main forms: sequence and communi-
cation diagrams.
Unlike FSMs, interaction diagrams do not tell the complete story about the
involved objects. Instead, they focus on particular sequences of messages
or events, called scenarios or traces. Scenarios are used to communicate
with stakeholders or to conduct interaction analysis. Interaction analysis
aims at understanding and defining the communication patterns within a
collaboration of objects realizing one or more user requirements.
If we have to compare interaction diagrams to FSMs, we can say that, apart
from their scope—individual versus group—the former provide a black box
view of the participating instances, while the latter afford a white box view of
the ways in which instances respond to signals and messages. For this reason,
interaction diagrams are said to be partially constructive, and as such, they
cannot be used to generate code.

Sequence Diagrams
Once the elicited user requirements are modeled with use cases and the classes
supporting the use cases are discovered, it is time to verify the decisions made.
An important objective in the early stages of a project is to mitigate risks and
to gain a high level of confidence in the discovered classes and their responsi-
bilities. Mistakes at early stages are costly since they result in backtracking and
extensive rework.
Interaction analysis is a technique employing sequence diagrams to analyze the
dynamics of the classes derived from a use case description. Sequence

28 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

diagrams have the following uses: (1) to analyze the dynamic interactions
between class instances and to reduce the risk of incorrect class discovery; (2)
to create traceability relationships from use cases to class diagrams;(3) to
tackle the problem of allocating responsibilities among classes and to define the
class interfaces (public operations); and (4) to plan functional system testing.
Sequence diagrams display the causal dependencies among messages and
signals exchanged between lifelines of instances and their relative time
ordering. Figure 14 shows how a sequence diagram portrays the time ordering
of the messages exchanged among instances during the execution of a scenario.
The instances taking part in the scenario are arranged along the X-axis, with the
initiating instance (usually an actor) being on the far left side. The lifelines of the
instances are represented as vertical bars, with time flowing from top to bottom.
Messages and signals are modeled as arrows pointing to the receiver. Signals
are modeled with a half arrowhead, while messages are modeled with a full
arrowhead. The direction of the arrowhead is indicative of the invocation
direction and not of the data flow. The lifeline of an object created or destroyed
during an interaction starts or ends, respectively, with the receipt of a message
or signal. A large X marks the end of a lifeline. The focus of control is a rectangle
superimposed over a lifeline, indicating that the instance is performing an action.
The top of the rectangle coincides with the start of the action, while its bottom
aligns with the action’s completion.
The black box view offered by a sequence diagram can be cracked open if
instead of focus of control, the modeler shows the names of the states through
which the instance progresses.

Communication Diagrams
A communication diagram is an object diagram showing the messages and their
ordering attached to the static links between the objects, as illustrated in Figure
14. A communication diagram emphasizes the organization of the objects.
To sum up, interaction diagrams lack the completeness of FSMs. They are used
primarily to explore and verify a particular scenario rather than build an artifact.
During exploration, new messages, signals, operations, and even classes can be
discovered and added to the model.

Object-Oriented Modeling in UML2 29

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Some Merits and Deterrents

Advantages

According to many authors, OO is advantageous because it allows for a
seamless transition between the phases of software development by using
a uniform language for requirements engineering, analysis, design, and
programming.6 This is a major prerequisite for transformational development,
where the system is built in a sequence of transformations or refinements from
more abstract to more detailed models. Each transformation or refinement
preserves the source model properties in the target model.
OO narrows the semantic gap between entities in the problem and the solution
domains, leading to better traceability, and ultimately, to better chances of
validating the software artifacts by customers.
Improved interpersonal communications through objects is another success
factor. OO encourages a common vocabulary between end users and develop-
ers (Booch, 1996).
As a system evolves, the function or the business processes it performs tend to
change, while the object abstractions tend to remain unchanged. Thus, remov-
ing the emphasis on functions results in more maintainable designs. When

Figure 14. Sequence and communication diagrams

 : Driver
 : Tollgate : Passage : Vehicle : Payment : Sensor

pass_by
detectTag

create

getCCard

makePayment

operate

 : Driver

 : Tollgate

 : Payment

 : Passage : Vehicle

 : Sensor

1: pass_by 2: detectTag

3: create

4: 5: getCCard

6:

7: makePayment

8:

9: operate

30 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

changes are necessary, OO contains changeability through locality of change.
Inheritance and polymorphism make OO systems easier to extend.
OO analysis emphasizes the importance of well-defined interfaces between
objects, which led to the development of components.

Disadvantages

Traditionally, OO methods have paid little attention to business modeling,
a very important area of software development. The enterprise business
model represents the business concepts in the problem domain. An explicit
description of the system’s business processes leads to a better understand-
ing of the role of the system in the organization, and therefore, the resulting
system is more likely to be appropriate to the problem being solved.
Though OO modeling is supported by object abstraction, this device alone
cannot capture aspects bigger than small-scale entities. There are many
pervasive requirements (e.g., security, concurrency, transaction manage-
ment) that do not decompose into behavior centered on a single locus. In
addition, the gains from reusability at the object (i.e., class) level are insignifi-
cant. The real benefit from reusability comes at the component level, and even
more so at the architecture level and domain level.
OO might exacerbate the “analysis-paralysis” problem. Because of the uniform
notation, there is a strong temptation to design rather than perform analysis.
Another downside of OO modeling is that it takes myriads of models to
understand and express objects: static (class and deployment diagrams),
behavior models (sequence, communication, diagrams, and use cases), and
state-change models (statechart and activity diagrams).
UML2 is expected to add new features to the OO modeling repertoire. This
raises reasonable concerns and is rightfully perceived by developers as a
language bloat. To counter this effect, the creators of UML2 maintain that the
modeling language has been compartmentalized in two ways. First, the different
sub-languages are meant to be independent of each other, which, if true,
threatens to invalidate the multi-view approach to system modeling. Second,
they say that learning UML2 is not an “all or nothing” proposition. UML
modelers will be able to select only those parts that are useful in solving their
problem and safely ignore the rest. In our view, the latter is easier said than
done. In order to choose which part of UML to leave out, the developer should

Object-Oriented Modeling in UML2 31

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be familiar with the capabilities and limitations of all parts of the language, so
sufficient breath of knowledge is still required.

Conclusion

It is firmly believed that the solution to the current software crisis depends on
raising the level of abstraction of the constructed software artifacts and on
increasing the level of automation in the software design process. “Divide and
conquer” proved insufficient to contain the software complexity. This point is
illustrated by the revised Roman adage, “Divide to conquer, but unite to rule.”
Abstraction and automation are the only effective means we can apply to curb
complexity that overwhelms our cognitive capacities. “Un-mastered complex-
ity” is the root cause for the software crisis.
The use of models with executable semantics is set to move into the mainstream
of OO software development. Automation through executability challenges the
tacit assumption that software development will remain the same type of mental
activity it has always been—that is, given a problem, a developer should
liberally apply creativity to synthesize a solution. The “liberal creativity”
approach rules out a quantum leap in the ability to develop software, because
the human mind does not evolve in sync with the growing software complexity.
As Herbert Robins has stated, “Nobody is going to run 100 meters in five
seconds, no matter how much is invested in training and machines. The same
can be said about using the brain. The human mind is no different now from what
it was five thousand years ago. And when it comes to mathematics [understand
software], you must realize that this is the human mind at an extreme limit of its
capacity.”
Dijkstra’s reaction to this statement was “So reduce the use of the brain and
calculate!” and then, Dijkstra went on to elaborate that “for going from A to B
fast, there exist alternatives to running that are orders of magnitude more
effective.” Robbins’ argument fell flat on its face.
The advantage of adding automation to object-oriented models is, in
Dijkstra’s spirit, increased use of calculation at the expense of “liberal
creativity” to master the software complexity and put the software crisis to
rest.

32 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

With less emphasis on programming, requirements engineering and systems
analysis will become more and more important as time goes on. Mellor has aptly
said that the model is the code. Since models are derived from user require-
ments, we can conclude by transitivity that in the OO future, the user will be the
code.

References

Ambler, S. (2002). Toward executable UML. Software Development Jour-
nal, (January).

Atkinson, C., Bayer, J., & Muthig, D. (2000). Component-based product line
development. The KobrA approach. Proceedings of the 1st Software
Product Lines Conference (SPLC1) (pp. 289-309).

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen,
T., & DeBaud, J. (1999). PuLSE: A methodology to develop software
product lines. Proceedings of the Symposium on Software Reusabil-
ity (SSR’99).

Beck, K. (1999). Extreme programming explained: Embrace change.
Reading, MA: Addison-Wesley.

Beck, K., & Cunningham, W. (1989). A laboratory for teaching object-
oriented thinking. Proceedings of OOPSLA ’89. ACM SIGPLAN
Notices, 24 (pp. 1-6).

Bettin, J. (2004). Model-driven software development: An emerging paradigm
for industrialized software asset development. Retrieved from http://
www.softmetaware.com

Bettin, J. (2005). Managing complexity with MDSD. In B. Roussev (Ed.),
Management of the object-oriented software development process.
Hershey, PA: Idea Group Inc.

Booch, G. (1993). Object-oriented analysis and design with applications
(2nd ed.). Reading, MA: Addison-Wesley.

Booch G. (1996). Object solutions. Reading, MA: Addison-Wesley.
Booch, G. (1996). Object solutions: Managing the object-oriented project.

Reading, MA: Addison-Wesley.

Object-Oriented Modeling in UML2 33

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bosch, J. (2000). Design and use of software architectures: Adopting and
evolving a product line approach. Reading, MA: Addison-Wesley.

Brooks, F. (1998). The mythical man-month: Essay of software engineer-
ing (anniversary ed.). Reading, MA: Addison-Wesley.

Chen, P. (1977). The entity-relationship approach to logical data base
design. Wellesley, MA: Q.E.D. Information Sciences.

Coad, P., & Yourdon, E. (1991). Object-oriented design. Englewood
Cliffs, NJ: Prentice-Hall.

Codd, A.F. (1970). A relational model for large shared data banks.
Communication of the ACM, 13(6).

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., &
Jeremaes, P. (1994). Object-oriented development: The fusion method.
Englewood Cliffs, NJ: Prentice-Hall.

Cook, S., & Daniels, J. (1994). Designing object systems: Object-oriented
modeling with Syntropy. Englewood Cliffs, NJ: Prentice-Hall.

Czarnecki, K., & Eisenecker, U. (2000). Generative programming: Meth-
ods, tools, and applications. Reading, MA: Addison-Wesley.

D’Souza, D., & Wills, A. (1998). Objects, components and frameworks
with UML: The catalysis approach. Reading, MA: Addison-Wesley.

Firesmith, D., Henderson-Sellers, B., & Graham, I. (1998). OPEN modeling
language reference manual. New York: Cambridge University Press.

Fowler, M. (2003). UML distilled: A brief guide to the standard object
modeling language (3rd ed.). Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software. Reading, MA:
Addison-Wesley.

Garzás, J., & Piattini, M. (2005). Improving the OO design process using rules,
patterns, and refactoring. In B. Roussev (Ed.), Management of the
object-oriented software development process. Hershey, PA: Idea
Group Inc.

Graham, I. (1994). The SOMA method: Adding rules to classes. In A.
Carmichael (Ed.), Object development methods (pp. 199-210). New
York.

Graham, I., & Wills, A. (2001). UML—A tutorial. Retrieved from
www.trireme.com

34 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Henderson-Sellers, B., & Edwards, J.M. (1994). BOOKTWO of object-
oriented knowledge: The working object. Prentice-Hall.

Jacobson, I. (1987). Object-oriented development in an industrial environ-
ment. ACM SIGPLAN Notices, 22(12), 183-191.

Jacobson, I. (1992). Object-oriented software engineering: A use case
driven approach. Reading, MA: Addison-Wesley.

Kiczales, G. (1996). Aspect-oriented programming. Computing Surveys,
28(4), 154.

Kruchten, P. (2000). The rational unified process: An introduction.
Reading, MA: Addison-Wesley.

Lacan, J. (1977). Ecrits: A selection (A. Sheridan, trans.). London:
Tavistock.

Lamsweerde, A. (2000). Requirements engineering in the year 00: A
research perspective. Proceedings of the 2nd International Confer-
ence on Software Engineering. Limerick: ACM Press.

Laplante, P.A., & Neill, C.J. (2004). “The demise of the waterfall model
is imminent” and other urban myths. ACM Queue, (February), 10-15.

Martin, J., & Odell, J. (1992). Object-oriented analysis & design.
Englewood Cliffs, NJ: Prentice-Hall.

MDA. (2004). OMG Model-Driven Architecture. Retrieved from
www.omg.org/mda

Mellor, S.J., & Balcer, M.J. (2002). Executable UML: A foundation for
Model-Driven Architecture. Reading, MA: Addison-Wesley.

Miller, J. (2002). What UML should be. Communications of the ACM,
45(11).

OAL. (2004). BridgePoint object action language. Retrieved from
www.projtech.com

Paige, R.F., & Ostroff, J.S. (1999). A comparison of the business object
notation and the Unified Modeling Language. In R. France & B. Rumpe
(Eds.), Proceedings of <<UML>>’99—The Unified Modeling Lan-
guage Beyond the Standard, Fort Collins, Colorado, USA.

PL. (2004). SEI collection of resources on product lines. Retrieved from
www.sei.cmu.edu

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Loensen, W. (1991).
Object-oriented modeling and design. New York: Prentice-Hall.

Object-Oriented Modeling in UML2 35

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Shlaer, S. & Mellor, S.J. (1988). Object-oriented systems analysis: Model-
ing the world in data. Englewood Cliffs, NJ: Prentice-Hall.

Shlaer, S., & Mellor, S.J. (1992). Object lifecycles: Modeling the world in
states. Englewood Cliffs, NJ: Prentice-Hall.

UML. (2004). Unified Modeling Language. Retrieved from www.uml.org
UML AS. (2001). UML Action Semantics. Retrieved from www.omg.org
Warmer, J., & Kleppe, A. (1998). The Object Constraint Language:

Precise modeling with UML. Reading, MA: Addison-Wesley.
Wendorff, P. (2001). Assessment of design patterns during software

reengineering: Lessons learned from a large commercial project.
Proceedings of the European Conference on Software Maintenance
and Reengineering (pp. 77-84).

Wirfs-Brock, R., Wilkerson, B., & Wiener, L. (1990). Designing object-
oriented software. Englewood Cliffs, NJ: Prentice-Hall.

Withey, J. (1996). Investment analysis of software assets for product lines.
Retrieved from http://www.sei.cmu.edu/publications/documents/
96.reports/96.tr.010.html

Endnotes

1 “The limits of my language mean the limits of my world” - Ludwig
Wittgenstein.

2 DSLs (domain specific languages) are modeling languages targeting a
particular technological domain or problem.

3 The linguistic approach to object-orientation is an ongoing interdisci-
plinary project with Yvonna Rousseva, who is credited with the idea
of redefining objects through the premises of the theory of
deconstruction.

4 Fowler (2003) divides the use of UML into UMLAsSketch, UMLAs
BluePrint, and UMLAsProgrammingLanguage.

5 In Newtonian mechanics, if we know the trajectories of a system of
bodies, we can determine the positions of the bodies at any future moment.

6 Other authors see this as a weakness, for example, Knott et al. (2005),
included in this book.

36 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

MDA with xUML:
Model Construction and

Process Management
Boris Roussev

University of the Virgin Islands, USA

Abstract

xUML epitomizes the convergence of visual modeling with model
manipulation programming. The results of this merger are executable
models and model-driven software development. This chapter presents
the fundamental notions of constructing executable domain models with
xUML, as well as the principles of the MDA approach. In particular, we
define the new roles of the developers in development processes based on
MDA and the MDA activity workflow. We discuss also the output artifacts
from each activity. As new technologies require new software development
processes, we present an iterative and incremental model-driven process,
combined with techniques for project planning and progress estimation
based on BERT and ERNIE. We show how model executability creates
congenial conditions for the application of higher-order cognitive skills in
the software development process, and for the substitution of liberal
creativity with design automation.

MDA with xUML: Model Construction and Process Management 37

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

C.A. Petri was the first to define formally the notion of communicating state
machines in his PhD thesis, “Kommunikation mit Automaten,” back in 1962.
His visual modeling language for modeling concurrency and synchronization,
later known as Petri nets, is an extension of the Finite State Machine (FSM)
theory. Even though Petri nets is an intuitive and powerful process coordination
language, several pieces were crucially missing to bridge the Petri nets paradise
to the real world. Petri nets lacked an information structure model such as class
diagrams, a development process for effective product development from
informal requirements such as Agile (Beck, 1999), and action semantics (other
than transition firing rules). Action semantics defines a virtual machine for model
interpretation, giving substance to the notion of model “executability.”
The Shlaer-Mellor method (Shlaer & Mellor, 1988, 1992), one of the first
object-oriented (OO) analysis methods, uses class diagrams to represent the
information structure of a system. This information model was influenced by the
relational theory of data (Codd, 1970) and database modeling with entity-
relationship diagrams (Chen, 1977). Shlaer and Mellor reinvented the idea of
communicating FSMs in the context of OO by employing FSMs to abstract
lifecycles of objects, whose progression is driven by external or internal
asynchronous signals. They describe objects’ execution behavior as state
procedures consisting of actions. The actions perform tasks on modeling
elements; for example, they traverse an association link to retrieve the value of
an attribute in a related instance, or generate signals to the FSMs of related
objects. Shlaer and Mellor advanced the idea of composing complete systems
out of executable models.
Shlaer and Mellor put at the top of the OO agenda the notion of model
executability. Their method evolved into a pure object-oriented notation
(Mellor & Balcer, 2002; Mellor et al., 2004), which is currently shaping up the
future of UML.
Model-Driven Architecture (MDA) (Mellor & Balcer, 2002) is a term defined
by OMG. The MDA approach to software development relies on Executable
UML (xUML) (MDA, 2004), a UML profile with executable semantics. MDA
distinguishes between Platform Independent Models (PIM) and Platform
Specific Models (PSM).
In MDA, software does not need to be programmed at all, or at least not by
humans. This can be achieved through the integration of a programming

38 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

language at a high level of language abstraction into a visual modeling language.
The result is a modeling language with executable semantics. The models
constructed with such languages can be simulated and debugged—that is,
validated at model level and then compiled to source code for any target
platform. This eliminates the verification gap between visual software models
and end users. As a result, a system can be delivered in small increments of
executable models produced in fast cycles.
MDA spearheads the new wave of OO technologies aiming at design automa-
tion and at IT artifacts construction at a higher level of abstraction. MDA is kith
and kin with technologies such as generative programming (Czarnecki &
Eisenecker, 2000) (transformational mappings), aspect-oriented program-
ming (Kiczales, 1996) (merging mappings), design patterns (Gamma, Helm,
Johnson, & Vlissides, 1995) (modeling societies of objects along with their
interactions), product lines (PL, 2004) (clear separation between application
logic and software architecture), MDSD (Bettin, 2004) (design automation),
Microsoft’s software factories, domain engineering (PL, 2004) (software
assets), and domain-specific languages (Czarnecki & Eisenecker, 2000)
(metamodeling and domains).
This chapter has several objectives: 1) to examine the relationship between
cognitive skills and model-driven software design; 2) to justify the adoption of
the MDA approach; 3) to present in sufficient detail the xUML technology; 4)
to define the developer roles in the MDA process; 5) to present the operational
structure of an MDA process; and 6) discuss issues in planning xUML projects.
The examples in this chapter are from the E-ZPass system described in Chapter
1. The rest of the chapter is organized as follows. First, we discuss how merging
mappings, called bridges, resolve the interface problem in component-based
software design and justify the adoption of MDA. Next, we show how to
construct executable models and present an iterative process for model-driven
development with xUML. In the final section, we offer our conclusions.

Abstract Executable Assets

In this section, we discuss how model executability, model mapping, and
software design at a higher level of abstraction blend together to produce
software assets.

MDA with xUML: Model Construction and Process Management 39

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Constructing Assets with Late Component
Externalization

Objects have not lived up to all expectations. They have turned out to be
disproportionately small compared to the size of the systems being built with
them. Gamma et al. (1995) showed the advantages of reusing collections of
related objects. In the E-ZPass system, for example, a vehicle inevitably
belongs to a driver, and it only makes sense to reuse these two objects together.
Societies of closely related objects provide the foundation for components. A
component is an encapsulation of objects exposing a set of interfaces. With
components, a system is described in terms of interactions among component
interfaces and is built by wiring up these interfaces. There are two major
challenges to component-based software development. The first is active
dependency management—how to minimize the dependencies among compo-
nent interfaces. A component is said to have a fully externalized interface if all
types exposed in its interfaces are defined in a package residing outside the
component (Bettin, 2005). The fully externalized interface defines the usage
environment of the component, and decouples the component from its peers.
However, even with active dependency management, a small change in one of
the interfaces entails locating every place where the interface is used, changing
it to use the new interface, unit test the new code, reintegrate, and then
integration test the whole system (Mellor et al., 2004). The second challenge
to component-based development is how to wire up the component interfaces.
Wiring is done with glue code, which prevents the reuse of the individual
components in a new environment since the components become dependent on
the glue code. The remedy to this problem is to apply late (or dynamic)
externalization, meaning to externalize the interfaces and apply the glue code
just before the system is deployed. Late externalization makes each component
a reusable asset, and not a liability (Bettin, 2005).
MDA achieves late externalization through bridges. Bridges are formal map-
pings between modeling elements of two executable models. Ironically, inter-
faces decouple components, and in turn, bridges decouple (or localize)
interfaces.

Do Not Work Harder, Work Smarter and Get Help

It is well known that software creators labor away at their products under the
intense pressure of the time-to-market force and the ever-increasing demand

40 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

for product complexity. Given a problem, there are three ways to devise a
solution faster: work harder, work smarter, or get help. In this chapter, we
focus on “work smarter” and “get help.”
Devising a solution is an iterative process of four steps: comprehension,
analysis, synthesis, and evaluation (Bloom, 1956). In comprehension, the
problem solver acquires some (not necessarily deep) understanding of the
problem domain. The ability to identify and interpret conceptual entities is
essential. Comprehension is followed by analysis, where the problem is divided
into sub-problems, after which partial solutions are designed. The next higher
level is synthesis. Here, the problem solver needs to fit the partial solutions
together and design the overall solution. The ability to predict the behavior of
a system resulting from composing components or from applying a transforma-
tion to a component is central. Finally, evaluation is the most advanced level.
It requires judging a solution by different criteria and finding logical fallacies.
The ability to judge implies the abilities to analyze and synthesize in order to
consider alternative solutions. This makes evaluation the most difficult sub-
process.
In OO software development, UML graphical models are used to create visio-
spatial metaphors for software systems. In many realms, pictorial code for
organizing and presenting information is superior to verbal code, for example,
maps and civil engineering blueprints. By analogy, the assumption is that visual
models in software development facilitate comprehension, communication, and
inference better than text (source code) models.
In conventional software development, synthesis equates to programming,
while evaluation amounts to testing the executable code. Unfortunately, UML
models cannot be of much help in the higher-level cognitive skills, namely,
synthesis and evaluation. This is used as a cogent argument against modeling,
or at best, against the large-scale use of modeling. In Agile, for example,
modeling is relegated to drawings for the purpose of communication because
modeling fails the “proving with code” principle, the Agile term for evaluation.
Agile modelers suggest that the model be extracted from the code each time a
program is changed, which is right under the assumption that the long-lasting
asset of the development effort is the system code.
The model of a language is called metamodel. We would like to distinguish
between the language describing a problem and the language describing its
solution. The problem is described in the language of the customer. The
solution, on the other hand, is expressed in an implementation language, at a
much lower level of language abstraction. The semantic gap between the

MDA with xUML: Model Construction and Process Management 41

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

problem and the solution is the conceptual distance between the metamodels
of the problem and solution languages.
The commutative diagram in Figure 1 shows three possible ways of producing
software.
With the code-driven approach, the leftmost dotted line, the developer
comprehends the problem in terms of some programming language, or figura-
tively, climbs up the “hard” way the semantic slope from the problem to the
solution domain. Analysis, synthesis, and evaluation are carried out in the
solution domain. Since the customer is the ultimate authority accepting the
software solution, there is a need to switch constantly between the problem and
solution domains.
With the model-based approach, on the other hand (the middle dotted line in
Figure 1), comprehension and analysis are done in the problem domain, that is,
in the language of the customer, or at least, in a language whose metamodel is
very close to that of the customer’s language. Then, the developer transforms
manually1 the analysis artifacts to a mental image expressed in some program-
ming language. Synthesis and evaluation, as with the code-driven approach, are
done in the solution domain. In the model-based approach, models are a little
more than documentation for the code. Models help developers comprehend
the problem domain, conceive the software architecture, and partially shape the
design. Since models are visual and abstract, they are easier to understand,
communicate, and synthesize than code. In theory, model-based development

Figure 1. Software production approaches

���������	��

�����
 �������������	��

��������

�����

������������������
���

��	���������
�����
���
���

��
����

Code-based

Model-based

Model-driven

42 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

should improve productivity and quality dramatically, but in practice there is
little evidence to that effect.
With model-driven development, the rightmost dotted line in Figure 1, compre-
hension, analysis, synthesis, and evaluation are done in the language of the
customer because models are endowed with executable semantics, and as
such, they do not fall short of the “proving with code” principle. This approach
is “smarter” because no mental effort on the part of the developer is required
to switch between the problem and solution domains. Since a model compiler
automatically generates (understand design) the implementation from the
conceptual solution, we “get help” from the computer. The model compiler
trades “creativity” for calculation in much the same way as spreadsheets reduce
repetitive “creative” addition of numbers to a computation defined by a formula.
Both in code-driven and model-based development, program code is the sole
business asset to be produced. Artifacts other than code are considered aiding
communication at best, and red tape at worst. OO or not, code is amorphous
and cannot be easily reused. In model-driven development, however, execut-
able models become the major business assets to be built and to last.

Building Executable Models

A model is expressed in a modeling language with abstract syntax and
semantics. The abstract syntax defines the modeling primitives that can be
composed to build a model. The language semantics defines the meaning of
these primitives. A model that can be converted mechanically to executable
code is executable. xUML is a modeling language based on the Precise Actions
Semantics for UML (UML AS, 2001). The action semantics is not an action
language. It defines only the semantics for creating objects, sending signals to
objects, and accessing objects’ data, as well as the semantics for functional
computations. A particular action language must be used to express these
computations.
A distinguishing feature of all executable models is their precision and consis-
tency. Without being formal and accurate, executable models cannot be
simulated and later translated to code. To build precise executable models, we
need to construct at least three different but entirely consistent types of models.
Figure 2 gives a high-level view of model-driven development with xUML.

MDA with xUML: Model Construction and Process Management 43

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Class diagrams represent the information structure of the system, FSMs
represent the objects’ lifecycles and execution behavior, and sequence dia-
grams represent objects’ communication patterns over a relative time axis.
FSMs and communication diagrams jointly define the behavioral aspects and
constraints of the modeled objects. Each of these separate views can be
thought of as a projection of the underlying system model on a different plane.
An important distinction of xUML models is that the code is not considered a
first class (text) view of the system. In xUML, the relation model-code is not
commutative. The code is the result of an irreversible transformation of the
executable model. There is no round-trip engineering since code is not allowed
to deviate from the model.
The first step in MDA is requirements gathering and domain identification.
When developing complex software systems, the problem being addressed
often includes a number of different and unrelated subject matters. In xUML,
each subject matter is abstracted as a separate domain. Domains are analyzed
independently. Different domains may interact with each other using the client-
server model: for example, one domain acts as a service provider, while another
takes the role of a client. To partition the application into domains, developers
must first gain good understanding of the user requirements through use case
modeling. The result of requirements gathering and domain identification is the
informal system model shown in Figure 2, where user requirements are

Figure 2. Views of executable models in xUML

��������

	�
����
����

��
����

��
������
	�������

����

����������

��������

������������

���������������

���������������

x

����

�������
����� ������

!"�����#��������

�����
��������

44 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modeled as use cases and subject matters as domains. To show the client-
server relationships among domains, we depict them on a domain chart (see
Figure 3). Each domain is represented with a package symbol (tabbed folder),
and each client-server dependency with a dotted line from the client domain to
the server domain (similar to package source code dependency relationship).
Domain dependencies are called bridges. Packages are used to model domains
because they are a mechanism for organizing modeling elements into groups.
The platform-independent executable model is developed from the informal
requirements model. It has two complementary views, structural and behav-
ioral. A class diagram describes the conceptual entities and their relationships
in a single domain. The lifecycle of a class is specified by an FSM model, while
object interactions are portrayed on sequence diagrams. Each state in an FSM
has a state procedure. A state procedure consists of a sequence of actions, and
it is executed upon state entry. The actions access instance data and perform
functional computations and synchronization.
As domain modeling progresses, the partially completed executable model can
be simulated to test its behavior against scenarios derived from the use case
model. Testing may expose both modeling and requirements errors. The
executable model (and if necessary, the requirements model) is redesigned to
fix the errors and is tested again. Upon completion, the executable domain
models of the different domains are linked together through the bridges to form
the complete system, and then are compiled to source code for the target
software platform.
Next, we discuss in greater detail the construction of executable domain
models.

Figure 3. Domain chart

Tollgate

Register Driver Payment

MDA with xUML: Model Construction and Process Management 45

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Domains and Use Cases

Requirements analysis starts with use cases. As usual, use cases model the
actors communicating with the system, the goals of the actors, the value those
actors expect to get from the system, and the way actors interact with the
system.
Domains differ from subsystems in a subtle way. Domains are logically
consistent because they are populated with the conceptual entities of a single
subject matter. These conceptual entities belong together and cannot be reused
separately. In contrast, the boundaries of a system package are somewhat
arbitrary. They are defined mainly to slice a big project into manageable
subprojects.
A domain may group several use cases, but it is also possible for a use case to
cut through several domains. If domains are too large for a single team, they may
be decomposed into subsystems, but not into sub-domains, because the results
of any domain decomposition will violate the logical consistency requirement.
Since domains are independent subject matters, they can be built iteratively and
incrementally.

Classes, States, Events, and Actions

xUML is a platform-independent language, defined at a language level of
abstraction high enough so that it can be translated into any software platform.
For example, a class in xUML may be mapped to a Java class, running on an
enterprise server, or to a C structure, running on an embedded device.
xUML uses standard class diagrams brimming over with constraints to model
the conceptual entities and their relationships living in the domain of interest.
Most concepts fall into one of the following five categories: tangible things, roles
(e.g., people), incidents (e.g., events), interactions (e.g., transactions), and
specifications (e.g., type of service or type of product) (Mellor & Balcer,
2002).
Constraints are a fundamental part of a domain’s semantics. They are rules that
restrict the values of attributes and/or associations in a class model. For
example, objects may have one or more attributes that are required to be
unique. In xUML, analysts capture such domain knowledge through identifiers.
An identifier is a set of one or more attributes that uniquely identify each object
of a class (e.g., CardNumber in class CreditCard). We use the tag {I} to

46 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Domain information structure

Sensor
DetectedTagID

Lights

Tollgates
Location {I}
Rate

11
feeds_data

11
gets_input

1

1

controls1

is_controlled_by1

R10

Passage

DateTime
Location {R8}
Amount

0..*1
registers

0..*1
at

R8

Payment
AcctNumber
BillingAddress
ExpDate
Holder
Amount

0..1

1

is_paid

1

0..1

for

R6

Vehicle

LicensePlate {I}
TagID {I}

0..*

1

gets0..*

made_by1

R5

CreditCard
AcctNumber {I}
BillingAddress
ExpDate
Holder
StartDate

1 1..*
covered_by

1..*1
charged_for

R4

R7

designate identifying attributes. This tag is a constraint idiom for the more
cryptic OCL expression. Identifiers are also used to formalize associations by
the automatic creation of referential attributes in associated classes.
xUML relies on associations, association classes, and generalization to ab-
stract the relationships among the conceptual entities in a domain. Every
association has a unique association number (an automatically generated label,
e.g., R2). The association has a pair of roles (one at each end) and a pair of
multiplicity ranges (one at each end). The roles indicate the meaning of the
association from the point of view of each class. A multiplicity range indicates
how many objects of one class are related to a single object of the other class.
Now we can define precisely what referential attributes are. An attribute
referring to an instance of an associated class is called referential. For example,
attribute CardNumber in class Payment is a referential attribute since it refers
to attribute CardNumber in CreditCard. Referential attributes are tagged with
{Rn}, where n is the association number of the association being navigated.
The value of a referential attribute of an instance is the value of the identifying
attribute in the related instance of the associated class. Analysts are not
required to use the same name for the identifying attribute and referential
attribute, but it certainly helps. The tag {Rn} is another example of a constraint
idiom. Figure 4 illustrates the concepts we discussed.

MDA with xUML: Model Construction and Process Management 47

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To summarize, in xUML, attributes fall into one of the following three catego-
ries: descriptive attributes are pertinent characteristic features of a class,
identifying attributes are class identifiers, and referential attributes describe
class associations.
Some associations require additional classes to capture data that do not
properly belong to any of the participating classes (see Figure 5). An instance
of an association class comes into existence when an association link between
the two principal instances is created. For example, to assess the guests’
satisfaction, we need an association class attached to R2. Class Satisfaction
qualifies the relationship Guest–Room.
With each object, we associate an FSM model to specify its state-dependent
behavior. In Figure 6, we show the FSMs for classes Tollgate, Lights, and
Payment. The execution of xUML models differs fundamentally from sequential
program execution. An executable model is a set of interacting FSMs. All
object FSMs evolve concurrently, and so are the sequences of actions of their
state procedures, unless constrained by synchronization. It is up to the
developer to sequence the actions of the different FSMs and ensure object data
consistency.
An FSM synchronizes its behavior with another one by sending a signal that is
interpreted by the receiver as an event. The order of the exchanged signals
between sender and receiver FSM pairs is preserved. Upon receipt of an event,
a state machine fires a transition, arrives at the next state, and then executes the
procedure associated with the new state. The state procedure is a set of
statements in some action language that must run to completion before the next

Figure 5. Association class Satisfaction capturing data structure of
association R2

Satisfaction

Service

Guest
FirstName
LastName
Email

Room
RoomNo
RoomType
BaseRate

1..*0..*
has_rented

1..*
accommodates

0..* R2

1..*0..1

R3

0..1 1..*occupiesis_hosting

48 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

event is processed. The statements are executed sequentially, as dictated by
any control logic constructs. If the received event is not attached to one of the
outgoing transitions of the current state, the event is simply ignored (events are
not buffered).
An action language provides four types of actions: data access, event
generation, test, and transformation. It supports these through control logic,
access to the data in the class diagram, access to the data supplied by events

Figure 6. Communicating object FSMs

NewTollgate
entry/
self.location = rcvd_evt.loc;
self.rate = rcvd_evt.rate;
relate self to rcvd_evt.lights across R10;
generate turnLights(mode: "green") to
lights;
generate operate(model: 1) to self;

Ready
entry/
If (rcvd_evt.mode = 2)
 // turn yellow lights on
 generate turnYellow() to self->Lights[R10];
end if;

operate(mode)

VerifyTag
entry/
select one auto from instances of Vehicle
 where selected.tagID = rcvd_evt.tagID;
if (non_empty auto)
 self.tagID = rcvd_evt.tagID;
 create object instance newPass of Passage;
 newPass.location = self.location;
 newPass.date = SysClock.currentDate();
 relate newPass to auto across R5;
 relate newPass to self across R8;
 generate procPayment() to self;
else
 generate operate(mode: 2) to self;
end if;

CreatePayment
entry/
// Create a new credit card charge
select one auto from instances of Vehicle
 where selected.tagID = rcvd_evt.tagID;
select one ccard related by auto->CreditCard[R4];
generate makePayment(
 acctNumber: ccard.accountNumber,
 billingAddr: ccard.billingAddr,
 expDate: ccard.expDate,
 holder: ccard.holder,
 amount: self.rate,
 pass: self->Passage[R8]) to Payment creator;
generate operate(mode: 1) to self;

detectTag(tagID)
operate(mode)

procPayment()

operate(mode)

NewLights
entry/

Green
entry/

Red
entry/

Yellow
entry/
generate turnGreen
 to self delay 5;

turnGreen() turnOff()

turnOff()

turnGreen()turnYellow()

MakeCharge
entry/
generate chargeApproval(
 account: self.acctNumber,
 billingAddr: self.billingAddr,
 expDate: self.expDate,
 holder: self.holder,
 amount: self.amount) to EE_Bank;
generate procNotCompleted to self delay 100;

makeCharge()

makePayment(acctNumber, billingAddr,
expDate, holder, amount, pass)

Init
entry/
self.acctNumber = rcvd_evt.acctNumber;
self.billingAddr = rcvd_evt.billingAddr;
self.expDate = rcvd_evt.expDate;
self.holder = rcvd_evt.holder;
self.amount = rcvd_evt.amount;
relate self to rcvd_evt.pass across R7;
generate makeCharge() to self;

Timeout
entry/
Self.approval = false;
//attempt later
generate outstandingPayment to
 self->Passage[R7]->Vehicle[R5];

Processing Completed
entry/
Self.approval = rcvd_evt.status;
if (self.approval != true)
 generate paymentDeclined
 to self->Passage[R7]->Vehicle[R5];
end if;

chargeTimedOut()
chargeProcessed(code)

MDA with xUML: Model Construction and Process Management 49

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

triggering transitions, and access to timers. Even though action languages have
assignments, conditionals, and loops, they should not be viewed as program-
ming languages, but rather as model manipulation languages. The purpose of the
actions is to perform tasks on modeling elements appearing on the diagrams of
an executable model. Examples of model manipulation actions include navigat-
ing class associations; setting the values of attributes; generating signals to
FSMs (including self); and creating, deleting and relating objects. In Figure 7,
we present the state procedure associated with state CreatePayment in the
FSM of class Tollgate. First, the state procedure identifies the vehicle related
to the tag detected by the tollgate’s sensor.

select one auto from instances of Vehicle

 where selected tagID == rcvd_evt.tadID;

Then, it retrieves the credit card charged for the vehicle’s bill.

select one ccard related by auto->CreditCard[R4];

Next, the state procedure generates a signal (with all the necessary information
in the signal’s parameters) to the Payment class constructor to create a new
Payment instance. And finally, the procedure generates a signal to its own FSM
to fire its transition to state Ready.

Figure 7. A State procedure is a sequence of actions

CreatePayment
entry/
// Create a new credit card charge
select one auto from instances of Vehicle
 where selected.tagID = rcvd_evt.tagID;
select one ccard related by auto->CreditCard[R4];
generate makePayment(
 acctNumber: ccard.accountNumber,
 billingAddr: ccard.billingAddr,
 expDate: ccard.expDate,
 holder: ccard.holder,
 amount: self.rate,
 pass: self->Passage[R8]) to Payment creator;
generate operate(mode: 1) to self;

50 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

generate operate(mode:1) to self;

From a given state, an FSM determines which transition to fire by consulting
that state’s transition table. The transition table is a list of events, and “the next”
states resulting from these events.
Though the actions are executable, they are free of platform-dependent detail,
such as data structures, thus providing support for model simulation and, later
on, for code generation.
Apart from state procedures, sequences of actions can be used to define
constraints (though OCL is better suited for this purpose) and domain bridges.
Sequence diagrams visualize the domain dynamics by portraying the execution
traces, resulting from the signals exchanged among the objects—that is, by the
objects’ FSMs. In xUML, sequence diagrams emphasize state change over a
relative time axis. Since the different domain views must be consistent, each
signal that appears on a sequence diagram must be defined as an event attached
to at least one transition in the FSM of the object whose lifeline is targeted by
the signal.

Testing

In MDA, due to the formal nature of executable models, software testing comes
closer to hardware testing, and it is possible to use automatic test generators.
A developer can ascertain that an executable model satisfies the use case
specification by simulating the model through a discrete event simulation. The
bad news is that concurrency and asynchronous communications yield non-
reproducible timing errors, which can take forever to isolate with testing.
A model verifier tool simulates (discrete event simulation) an executable model
by interpreting its actions. The model execution is driven by an event queue.
Events generated externally or internally during model execution that have yet
to be processed are placed on this queue. As model execution proceeds, events
are de-queued and processed in order. The model continues to process events
from the simulation event queue until the queue becomes empty or a deadlock
occurs. The model execution results are recorded in a simulation trace, which
can be examined by testers to evaluate the tests.

MDA with xUML: Model Construction and Process Management 51

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Translation and Code Generation

The executable model is run through a series of transformations preserving its
semantic content. The output model (or code) resulting from the application of
a mapping preserves the causal order of the actions in the input model(s). A
transformation may only reduce the degree of concurrency.
The last transformation step is code generation. The validated models are
translated to source code for the target platform by a model compiler. The
ability to translate an application model without modification to code for a
variety of platforms is the essence of the MDA approach. At compile time, the
model compiler adds the needed design detail, such as code implementing
persistence or transaction management and allocation of computations to
processors and threads.

Model Checking
Model checking verifies the properties of a system under all possible evolu-
tions, and not just under scenarios defined by analysts. Early attempts to use
aggressively formal methods in industrial software design have collapsed for
economic reasons. There was no return on investment in formal verification.
We bring up the issue of model checking because executable models are natural
representations for model-based verification, which means higher yield on
investment in formal methods.
As illustrated in Figure 8, the conventional approach to software verification is
to extract a verification model from the program code and to perform model
checking on this verification model. There are two serious problems with such
techniques. First, the state space of a fully functional program is unbounded and
far too complex for formal verification. Formal verification is feasible only when
applied to an abstract model. Second, the business properties are the interest-

Figure 8. Conventional approach to software verification

����������	
 ���
�
�
���
��������
 ����

��	���	���������	��������
����
���������

52 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ing properties to check. However, the logic implementing the business prop-
erties is so deeply buried and scattered in the amorphous implementation code
that it is practically lost.
In MDA, model checking can be performed on a system representation, which
is automatically derived from the executable model. In addition, model check-
ing can be conducted in terms of domain problem properties (see Figure 9).
Sharygina et al. (2002) propose to conduct model checking by translating the
validated xUML model to COSPAN (Hardin, Har’El, & Kurshan, 1996).
COSPAN is an FSM-based model checking system.
In the methodology presented in Figure 9, modeling provides the construction
of validated executable specifications, while model checking assures that the
executable specifications meet the desirable requirements. Model checking
checks that a given system satisfies the desired behavioral properties through
exhaustive enumeration of all reachable states. When the design fails to satisfy
a desired property, a counter-example is generated, which is used to identify
the cause for the error.
The abstract executable models resolve the state space explosion problem
typical of software systems. Strong name space containment, resulting from
domain partitioning, is equivalent to hardware physical decomposition. For the
first time, it is possible to apply successfully model checking on commercial
scale software (Syriagina et al., 2002). If model checking becomes main-
stream, it would have a tremendous effect on quality assurance and control.

Figure 9. Model checking in MDA

����������	
 ��
�����

�	�	�����
��

����������
��

������	��
�
��������	��� ���������
��
��
���

��������	���

��
��

�������

��
�
���

������	��
��
�
���

�����
�

����
��	���

 !���	�"�����
��

#����������
��

MDA with xUML: Model Construction and Process Management 53

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MDA Process

Model-driven development can be done with waterfall and iterative processes
alike. Since executable models are operationally the same as executable code,
Agile (Beck, 1999) principles and practices can be readily applied to the
construction of executable models. Agile MDA (Mellor, 2004) is suitable for
projects with unstable requirements, where it is more important for the process
to be adaptive (agile) than to be predictive (planned).

Operational Structure of the Process

To show the operational structure of an MDA process, we use a data flow
diagram (DFD) model. In DFDs, bubbles represent activities, boxes represent
external information sources/sinks, arrows represent data flows, and open-
ended rectangles represent data stores.
The Requirements Analysis activity receives inputs from the business stake-
holders and generates as output a requirements model. The requirements
model, developed by the requirements analyst, consists of a use case model and
a domain chart. From the use case model, the analysts develop the PIMs for
each domain on the domain chart and store them in a model repository. Each
domain is executed to test its behavior with test cases derived from the use case
model. Testing the executable model may expose errors in the user require-
ments. The cycle Analyze/Design–Test continues until all requirements are
realized and all detected errors are fixed. Concurrently with modeling, design-
ers can develop, acquire, or update the mapping rules, and evaluate their
correctness and performance. Once the executable models and the mapping
rules are complete, the domains are woven together, after which the system
code is generated.
In activity Non-Functional Testing, the tester needs to assess the following
aspects of the implementation: timing behavior, performance, and interactions
with external entities (what has been modeled as actors). Reliability and
functionality have already been tested in the analysis activity Test Models. If
model checking is conducted (the gray bubbles in Figure 9), the executable
model is translated automatically to a form required by the selecting model
checking package. The model translation activity gets its input from the model
repository. The requirements analyst specifies the properties to be tested from

54 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the requirements model. The Model Checking activity verifies the behavior of
the derived formal model against the specified properties under all possible
evolutions of the model. The results are used by the analysts in the next Analyze/
Design–Test loop. The mappings knowledgebase can be implemented concur-
rently with the executable models. The cycle Develop Mapping Rules–Evaluate
Design continues until all the mappings are defined and tested. During the Non-
Functional Testing activity, the tester may expose errors in the executable
models and the mappings. After the errors are fixed, the system code is
generated and tested again.

Planning xUML Projects

Past statistical data shows that only one-third of all projects are considered
completely successful in terms of meeting planned goals (e.g., see the Standish
Group reports). This fact alone testifies to the difficulty of project planning. The
major reason for poor scheduling is the innate inability to plan with accuracy
under changing and evolving requirements, although other factors have a
negative impact as well (e.g., planning for motivation).

Figure 10. Data flow diagram for MDA workflow

Requirements
model

Analyze/
Design

Model
Repository

Property
Specification

Formal Model

Model
Translation

Model
Checking

Test
Models

Generate
Code

Code

Req.
Analysis

Develop
Mapping

Rules

Mapping
Rules

Evaluate
Design

Non-functioal
Testing

Bus.
Stakeholders

MDA with xUML: Model Construction and Process Management 55

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The two main objectives of planning are to allocate tasks to developers and to
provide a benchmark against which the progress of the project is measured.
Planning is an ongoing activity throughout the project lifecycle. It is based on
estimation, and unfortunately, estimation is hardly ever accurate. Collected
historical data are used to inform planning. Based on this data, the project
manager constantly adjusts the plan to reflect the new knowledge being
acquired in the development process.
We present a useful technique for constructing estimates, called BERT, and
another technique for improving the ability to estimate, called ERNIE (Douglas,
2004). With BERT, the work to be done is divided into atomic tasks of no more
than 80 hours in duration, called estimable work units (EWUs). The manager
constructs three estimates: 1) the mean (50%) estimate; 2) the optimistic (20%)
estimate; and 3) the pessimistic (80%) estimate.
The mean estimate is the one that developers will beat half of the time.
According to the central limit theorem, if all mean estimates are true 50%
estimates, then the project will come in on time. The mean estimate does not
take into account the risk associated with project activities and with their
estimates. Many decisions in planning are driven by the desire to reduce risks.
Risk can be modeled as a statistical variable with a distribution whose values
represent the chances of EWU failure. In iterative approaches, the risk
mitigation strategy boils down to immediate proactive steps to reduce risk
probability or risk impact.
BERT uses the following risk management adjustment. The optimistic and
pessimistic estimates are the times the developer will beat 20% and 80% of the
time, respectively. The difference between the two estimates is the confidence
the manager has in the mean estimate. The following formula is used to calculate
the estimate for the task at hand,

(Pessimistic + 4 × Mean + Optimistic) / 6 * Ec,

where Ec is the estimate confidence coefficient. The confidence coefficient is
based on the manager’s personal track record. The ideal value for this
coefficient is 1.0, but its typical range is from 1.5 to 5.0. The manager aims at
improving his/her ability to estimate over time—that is, to get his/her coefficient
as close as possible to 1.0.
Managers use the ERNIE technique to calculate the current value for Ec from
their past performance,

56 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ec
n+1=Σ(deviations using Ec

n) / (# of estimates) + 1.00

In an iterative process, project managers develop two kinds of plans: a coarse-
grained phase plan and a fine-grained iteration plan. The phase plan is very
concise and is produced very early. It defines the phases of the lifecycle, the
phases’ milestones, and the project’s staffing profile. The iteration plan is
produced using traditional planning techniques, like Ghant charts and PERT
charts, based on the estimates and risks (the risk is inverse proportional to the
confidence estimate) constructed with BERT and ERNIE. The iteration plan
should take into account the expertise and availability of human resources.
Kruchten (2000) visualizes the iteration plan as a sliding window through the
phase plan. Agile methods, true to their lightweight nature, by and large ignore
the phase plan or the milestones of the phase plan.

Roles in the MDA Process

A development method defines who is doing what, how, and when (i.e., a
method defines roles, activities, artifacts, and partial order on activities).
Think of a role as an actor. One and the same developer, just like an actor,
could play different roles at different times of the project lifecycle. A role is
defined by a set of activities and responsibilities related to the artifacts being
created or controlled (Kruchten, 2000). The roles in the MDA process are
requirements analyst, analyst, architect, designer (programmer), tester, and
maintainer (Mellor & Watson, 2004).

Requirements Analysts

In the MDA process, the purpose of requirements analysis is to elicit, model,
and manage the user requirements. The requirements analyst may employ use
case models, activity diagrams, sequence diagrams, or other models to
accomplish the job. This phase remains by and large people driven. Because
the artifacts produced in the subsequent analysis-design phase are executable
(i.e., testable), customers have ample opportunities to provide feedback.

MDA with xUML: Model Construction and Process Management 57

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Analyst

The analyst transforms the informal system requirements to executable models.
The analyst renders the application business logic into class diagrams, FSMs,
and actions grouped into procedures. These three primary models can be
complemented with sequence diagrams (also called execution traces) and
communication diagrams.

Architect

The architect is in charge of the application’s architecture. The architect
coordinates the models and the mappings being developed or reused and
makes sure they are compatible. Mellor envisions that as the market for model
compilers matures, the primary activities in the architect’s portfolio would be
model acquisition, model integration, compiler selection with the concomitant
performance tuning, and managing the application structure.

Designer

The designer is in charge of implementing or adapting the model compiler’s
archetypes. Archetypes define the rules for translating the application into a
particular implementation. The programming language is determined by the
QVT (Query, Views, Transformations), the knowledgebase for mapping rules.
Even when writing the mappings, the designer is not involved in particular
implementation details. His/her work is to create generic templates (e.g., a
FIFO queue for objects), which at design time are instantiated to generate a
particular implementation (e.g., a FIFO queue of driver’s payments).
The relationship architect–designer is that of policy–mechanism. The architect
decides on the policy for model transformations, while the designer implements
the mechanism by programming the archetypes. The work of the designer is to
encapsulate knowledge in micro-level abstractions and using his/her implemen-
tation platform expertise to fine-tune the application’s performance.
A similar policy–mechanism relationship exists between architect and analyst.

58 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Tester

The purpose of testing is to assess the quality of the executable models. Quality
has two aspects, which the tester has to address. The aspects are absence of
defects and fitness for a purpose. The tester performs two types of testing,
corresponding to unit testing and integration testing in code-driven design.
First, executable models are tested with a simulator to verify that they exhibit
the required functionality, and then sets of domain models are tested together
to verify the bridge mappings. Testing is of course use case driven. Test-
generation tools are available in most development environments. Such a tool
can quickly produce a large set of tests from a model, and then execute them
against this model.

Maintainers

The maintenance phase of a product begins upon completing the product
acceptance test and continues until the product is phased out. With conven-
tional software products, maintenance only delays the inevitable obsolescence
(in 3-5 years). Over time, the product’s complexity grows until the maintenance
cost surpasses the production cost, at which point further maintenance is
blocked by overwhelming complexity (Bettin, 2004).
In MDA, the role of the maintainer is quite different. The maintainer incremen-
tally builds software assets, which can be reused across a large number of
enterprise applications over a long period of time. When a request for change
is approved, either a model (functional change) or a mapping (platform change)
is modified, but never the final software product. The code for the modified
system is generated after the model or mapping update. The job of the
maintainer bears similarities to those of the analyst and the designer.
The higher level of abstraction of the maintenance activity in MDA, and the fact
that executable models are aligned with the enterprise business process and
strategy, turns software products based on executable models from liabilities,
depreciating over time, to software assets incrementally acquiring ever greater
value (Bettin, 2004).

MDA with xUML: Model Construction and Process Management 59

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

The adoption of UML as an OMG standard in 1997 changed the way software
is produced. Model transformation added the much sought-after rigor to OO
software development, and culminated in MDA and xUML. In this chapter, we
introduced the principles of the model-driven approach to software design, and
we showed how to construct systems out of executable models, using as a
running example a system of moderate complexity. We defined the new roles
and responsibilities of developers, and presented the activity workflow with the
MDA approach. We showed the operational structure of the MDA process,
and discussed how to plan and estimate the progress of Agile MDA projects.
In Chapter IV, we assess the opportunities and challenges MDA presents to
software firms. We analyze how this new technology changes the software
design space and project planning. We also give guidelines aiding developers
and software product managers in the transition to model-driven development
with xUML.

References

Beck, K. (1999). Extreme programming explained: Embrace change.
Reading, MA: Addison-Wesley.

Bettin, J. (2004). Model-driven software development: An emerging paradigm
for industrialized software asset development. Retrieved from http://
www.softmetaware.com

Bettin, J. (2005). Managing complexity with MDSD. In B. Roussev (Ed.),
Management of the object-oriented software development process.
Hershey, PA: Idea Group Inc.

Chen, P. (1977). The entity-relationship approach to logical data base
design. Wellesley, MA: Q.E.D. Information Sciences.

Codd, A.F. (1970). A relational model for large shared data banks. Commu-
nications of the ACM, 13(6).

Czarnecki, K., & Eisenecker, U. (2000). Generative programming: Meth-
ods, tools, and applications. Reading, MA: Addison-Wesley.

60 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Douglas, B. (2004). Real time UML (3rd ed.). Boston: Addison-Wesley.
Hardin R., Har’El, Z., & Kurshan, R. (1996). COSPAN. Proceedings of

CAV’96 (LNCS 1102, pp. 423-427).
Henderson-Sellers, B. (1996). Object-oriented metrics, measures of com-

plexity. Englewood Cliffs, NJ: Prentice-Hall.
Kiczales, G. (1996). Aspect-oriented programming, Computing Surveys,

28(4), 154.
Kruchten, P. (2000). The rational unified process: An introduction.

Reading, MA: Addison-Wesley.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:

Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

MDA. (2004). OMG Model-Driven Architecture. Retrieved from
www.omg.org/mda

Mellor, S.J. (2004). Agile MDA. Retrieved from http://www.omg.org/agile
Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (2004). MDA distilled. Boston:

Addison-Wesley.
Mellor, S.J., & Balcer, M.J. (2002). Executable UML: A foundation for

Model-Driven Architecture. Boston: Addison-Wesley Professional.
Mellor, S.J., & Watson, A. (2004). Roles in the MDA process. Retrieved from

www.omg.org/mda
PL. (2004). SEI collection of resources on product lines. Retrieved from

www.sei.cmu.edu
Shlaer, S., & Mellor, S.J. (1988). Object-oriented systems analysis: Mod-

eling the world in data. Englewood Cliffs, NJ: Prentice-Hall.
Shlaer, S., & Mellor, S.J. (1992). Object lifecycles: Modeling the world in

states. Englewood Cliffs, NJ: Prentice-Hall.
UML AS. (2001). UML actions semantics. Retrieved from www.omg.org

Endnote

1 Little help might be available, e.g., a modeling tool automatically generat-
ing class templates or supporting some kind of round-trips.

Management Planning in a Changing Development Environment 61

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Management Planning
in a Changing
Development
Environment

Melissa L. Russ
Luminary Software and Space Telescope Science Institute, USA

John D. McGregor
Luminary Software and Clemson University, USA

Abstract

Technologies such as aspect-oriented and generative programming bring
new capabilities to object-oriented software development. They do not
simply replace existing techniques; they change the shape of the
development environment. Development is a multi-dimensional landscape
of organizational patterns such as software product lines, of meta-
information such as build scripts and templates, and of technologies such
as model-driven development. Traditional patterns of development
management are not sufficient to effectively manage development in this
emerging context. In this chapter we provide an overview of some existing

62 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and emerging elements, describe how they affect development, and
present a management framework for planning software development.

Introduction

Every manager knows the fundamental relationship shown in Figure 1. To
increase quality, you must increase schedule or cost or both. Exactly how much
you must increase the cost or the schedule depends upon a number of factors
such as the technologies being used to construct the software and the scheduling
techniques being used to manage it. For example, if the schedule is optimized,
it can no longer be traded off for improved quality. It also depends upon the
process that defines how the software will be constructed.
An effective process helps humans carry out an activity correctly and efficiently,
producing quality outputs. It is particularly useful for those inexperienced in that
particular activity. The process describes a proven, repeatable approach. It
describes what to do, what to use to do it, and when to do it. As new corporate
goals are set or new tools and techniques are developed, processes are
modified to remain useful and realistic.
A number of software development processes have been defined by individual
projects and consulting companies. The Software Engineering Institute (SEI)
even has a framework for measuring how well an organization defines its
processes (Paulk, Curtis, Chrissis, & Weber, 1993). Often the process
definitions are easy to read and understand, but less than effective when put into
practice. Many definitions make so many simplifying assumptions that they do

Figure 1. Project management trade-offs

 schedule

cost quality

Management Planning in a Changing Development Environment 63

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

not provide useful guidance in actual situations. We will discuss techniques for
planning that will make your current processes more effective.
The software development landscape becomes more expansive daily as new
technologies, new methods, and new strategies emerge, while existing tech-
nologies, methods, and strategies remain in use. Organizational and technical
managers have an increasing number of options from which to choose. There
is no clear mapping between these new elements and existing processes that
shows how a process must change when new elements are incorporated into
an organization’s portfolio. The purpose of this chapter is to help managers
define that mapping.
Software is a strategically significant factor in an increasing number of products
and hence of increasing strategic significance to the organization. We will focus
on those development organizations that construct strategically significant,
software-intensive products. The achievement of an organization’s strategic
objectives is dependent upon the reliability of the software portion of the
organization’s supply chain. Many events can disrupt the supply chain such as
the software being delivered with poor quality or being delivered in an untimely
manner. While exact figures differ, reports consistently indicate that less than
half of the software developed is completed on time and is of acceptable
quality. The approach described in this chapter can, we believe, increase this
percentage.
Our thesis is: the success of a software development effort depends upon the
combination of development strategies, models and methods, and technologies
that an organization selects. When software becomes an integral part of
corporate strategy, and technologies are selected to achieve specific goals, a
standardized, one-size-fits-all approach to development is not adequate to
faithfully represent actual development practice. Development models of a few
years ago are not effective at capturing the dynamism and concurrency of
emerging development technologies. The approach provided in this chapter is
intended to be modular and configurable. This allows the construction of
effective plans and processes that reflect the realities of the development
environment for a particular organization.
The remainder of this chapter is structured as follows. First we survey the
software development landscape and consider some trends and new ideas.
Then we show how to use that information to define effective plans and
processes. Finally we present a case study that illustrates a number of the
points.

64 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Landscape

The landscape we are addressing is vast and not easily categorized. To allow
for flexible classifications, we will use the concept of “concerns,” as used by
Tarr, Ossher, Harrison, and Sutton (1999). Concerns are not orthogonal nor
are they mutually exclusive. They are a way of grouping ideas that address a
common issue or “concern.” We will separate concerns so that we can more
easily discuss the variations between types of techniques and within a set of
related techniques.
We divide the software development landscape into three concerns: technolo-
gies and techniques, models and methods, and strategies, as shown in Figure
2. A software development method is a specific ordering of tasks that employ
technologies in order to implement strategies. We consider each separately,
including characteristics of each that influence decisions about the other.

Technologies and Techniques

Technologies are the fundamental elements in a development effort and the
most visible selection that a project manager makes. The Java language is a
technology. Technologies are usually accessed through tools. The Java com-
piler, the Java debugger, and the Java class documentation tool are some of the
tools that make the Java technology accessible to users.

Figure 2. Three dimensions of plan definitions

technologies and techniques

methods and models

strategies

Management Planning in a Changing Development Environment 65

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Most software-intensive products are built with a variety of technologies. For
example, the executable code of an Eclipse plug-in may be written in Java, but
its accompanying configuration file is written in XML (Eclipse, 2004). That
same plug-in may generate Java Server Page (JSP) templates that are instan-
tiated in an HTML browser.
Each technology is chosen for a specific job based on its characteristics (or its
publicity). In some cases a technology is chosen after an engineering study
shows it to be the best fit to the needs of the organization or project. All too
often however, a technology is chosen because it is popular at the moment or
because it is what was used in the last project. These decisions are sometimes
made without sufficient consideration of the impact on cost, schedule, and
quality.
Technologies bring with them techniques for carrying out development activi-
ties. Changing programming languages, for instance to Java from C, change
certain patterns of programming. Changing from one technology to another
incurs a loss in productivity as personnel adjust to the new patterns. The cost
of adopting a new technology should be balanced by benefits within the scope
of the project or in the context of some development strategy.

Technology Concerns

In this section we decompose the technologies and techniques concern into
several concerns, including structures, notations, levels of abstraction, and
transformations.

Fundamental Structures

Behavior and data are grouped together to facilitate the design and construction
of software products. There are several techniques for accomplishing this,
including:

• Functions and independent data structures
• Objects
• Components
• Aspects

66 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Java language uses objects as its fundamental structuring element. AspectJ,
an extension to Java, uses an aspect as the fundamental structure augmented by
the Java objects. The implications of choosing a particular structuring approach
can be significant. For example, when many companies began using objects as
the structuring element, it soon became apparent that this led to a design
technique that focused first on concepts in the domain and then implementation-
specific concepts. It also led to a more abstract approach, which worked best
with up-front design modeling. The change to objects resulted in changes to the
existing development processes and to the skills needed by developers. Early
adopters of new approaches, such as aspects, often must discover the new
process patterns to accommodate the new structures. For example, the
crosscutting nature of aspects is giving more attention to the infrastructure areas
of software systems such as security and persistence. The trend is toward more
complex structures that require a longer learning curve initially.

Notation

Programming languages and modeling languages are needed in every develop-
ment effort. In some development efforts, information is captured in several
different notations at different times in the process. The manager needs to
achieve a balance between using one very general notation, which can be used
across the entire process, but may not adequately represent the development
information and using several different notations, each of which expresses the
information of a particular development phase precisely, but results in transla-
tion errors as one type of information is transformed into another. The trend is
toward more comprehensive, general-purpose modeling notations accompa-
nied by specialized extensions for specific domains (e.g. the Unified Modeling
Language, or UML). The formal semantics of UML should reduce translation
errors between stages in the development process.

Levels of Abstraction

A technique operates on information that is to some degree abstract. Source
code is compiled into object code. Templates are instantiated into source code,
which is then compiled into object code. Model types are often defined by
metamodels. The trend in software development currently is toward the
developer working with higher levels of abstraction and using tools to produce

Management Planning in a Changing Development Environment 67

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

concrete products from those abstractions. This, in turn, requires the developer
be able to use more powerful notations and possess higher-order analytic skills.

Transformations

Transformation of one type of information into another type or from one syntax
into another is a common occurrence. Source code is transformed into object
code. The Report Program Generator (RPG) transformed report specifications
into standard reports. CASE tools routinely transform UML diagrams into the
user’s choice of source-level programming languages. The release of UML2.0
is supporting more complete transformations and new development strategies
such as model-driven development (Soley, 2000). This allows the develop-
ment organization to concentrate more on their core business and spend less
time on implementation details. The trend is toward safer, but more generic
transformation technologies.

Methods and Models

A software development method defines the set of activities that an organization
uses to create a piece of software. For example, an agile software development
method defines steps for developing test cases, writing code, and executing test
cases, in that order (Beck, 2002). Different methods define different sets of
activities and different orderings of those activities. Traditional development
methods define the same activities as the agile method, but define the ordering
as: writing code, writing test cases, and executing test cases.
Because a method defines activities, it is often referred to as a process. In this
chapter we want to make a distinction between a method and a process. We
classify several processes, the Rational Unified Process for one, as methods
because they go beyond the normal bounds of a process definition to specify
the notations and models that should be used. Process, which we treat later, is
limited to describing a flow of activities and information.
In addition to defining activities, a development method defines how to model
the software that is to be built in order to reduce the complexity of managing
the problem. This includes notations and types of diagrams that provide a
comprehensive means of representing the intended software. The more math-
ematically rigorous the model, the more useful the diagrams to the development
team, although the team will have taken longer to prepare the diagrams.

68 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Methods

Here we give an overview of a few of the more popular methods.
Rational’s Unified Process (RUP) (Kruchten, 2000) became one of the most
widely used methods for object-oriented software development. It is based on
a hybrid iterative, incremental process model. The process covers the basic
software development process, shown in the shaded area of Figure 3. The
representation of the process is a matrix in which the basic steps of the software
development process form the vertical axis. The horizontal axis covers four broad
stages, shown as the leftmost four items on the horizontal axis in Figure 3.
Enterprise Unified Process is an extension of RUP developed by Ambler and
Nalbone (2004). The extension is shown in Figure 3. They added two
additional stages: Production and Retirement. They also extended beyond
basic development activities to include the supporting activities and the broader
enterprise activities.
The shaded shapes in Figure 3 represent the amount of effort being exerted on
the particular activity at any point in the process.

Figure 3. Enterprise Unified Process

 Inception Elaboration Construction Transition Production Retirement

Requirements

Analysis and Design

Implementation

Test

Deployment

Development

Support

Enterprise

Configuration
Management

Deployment

Project
Management

Portfolio
Management

RUP

Management Planning in a Changing Development Environment 69

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Agile is the most recent addition and is the most flexible of all the methods
discussed here. As the name implies, the intention is to be able to respond
quickly to changes in knowledge or customer requirements. Agile methods,
such as Extreme Programming, use an incremental style of development (Beck,
1999) to direct the work of very small teams, often only two people. Products
are designed by collective discussion among the teams. Each team is then
assigned responsibility for implementing very small pieces of product function-
ality. The agile approach contradicts the trend mentioned earlier of more
formality. There is more emphasis on human-to-human communication than on
a formal, comprehensive design prior to the start of coding.
Rapid Application Development (RAD) was used for many years, particularly
in the 1980s and early1990s, as a method for developing “cookie cutter”
applications. That is, applications that followed very closely a particular design
pattern could be produced rapidly because of specialized tools. The primary
example is the development of client-server applications where a simple client
accessed a database to manipulate or add data to the database. Many call
centers and customer contact systems were setup using this basic approach.
The developer uses a tool that walks him or her through a sequence of actions
that result in a completed application. There are similar tools now for applica-
tions that use the J2EE architecture. Some of the tools start with a wizard that
sequences the developer through specifying key elements of the architecture
pattern.
Team Software Process (TSP) and Personal Software Process (PSP) are
methods limited in scope to a development team and an individual developer
respectively (Humphrey, 2002). These processes take a very different view of
development from the previous processes we have discussed. These processes
provide only a high-level view of what development actions the developers
take. They provide a very detailed view of how the developers track their work.
They stress the collection of productivity and accuracy data, and the use of that
data to improve performance.

Models

The development method defines a specific modeling notation(s) to be used and
the models that are built using that notation. While several notations exist, the
Unified Modeling Language is widely used for representing development
information. UML is used to represent analysis information in the form of use

70 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cases and design information in terms of a number of diagrams, some of which
are shown in Figure 4. UML even defines an extension specifically for testing.
Analysis and design models provide visibility into the structures and definitions
used to create the software, but additional models are needed for additional
facets of development. Graphical views of version control hierarchies and the
roadmap of product releases would allow developers to more quickly and
accurately identify where they need to work or where inconsistencies may exist.

Models and Methods Concerns

In this section we separate the models and methods concern into three more
specific concerns: organization, granularity, and scope.

• Organization: Every method, and the processes we have identified as
methods, defines relationships among development activities. These
relationships sequence the activities. It may be a partial ordering allowing
concurrency of activities. The trend is toward more concurrency.

• Granularity: The number of fundamental activities encapsulated within a
step in the process varies from one process to another. “Design” may be

Figure 4. UML diagrams

Category

Student Work

Actual Student Work Annotation
Guardian

Student

Assignment
Grade

*
*

*
* *

Assigned

Missing

Excused

Grade

Assignment Submitted Excused
Submitted Assignment Becomes Due

Assignment Submitted

& Graded

Excuse Submitted

Excuse Submitted

Instructor Student Grader Student
Work Grade

Create

Determine
Create

Assignment Grade
Book

Record (Grade)

Assign (Assignment)
Submit (Student Work)

Management Planning in a Changing Development Environment 71

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a step in a process, while another process has three steps: “architecture
design,” “class design,” and “application design.” The broader the defini-
tion of a step, the less guidance the process gives the developer. The trend
is to view a method definition in a hierarchical manner. Different viewers
see different granularities of activity definitions. A manager may only see
three activities in the method definition, while a developer might see those
three broken into nine or ten more specific definitions.

• Scope: The traditional “development” method usually includes only the
technical steps that directly affect the creation of source code. More
recent methods encompass the broader issues of product planning or even
the planning of multiple products. The trend is to be more inclusive, and
more realistic, in identifying the enterprise activities that are necessary for
development methods to be successful.

Strategies

A product development strategy is a set of guiding principles and high-level
objectives that are defined to achieve specific goals. The software product line
development strategy (Clements & Northrop, 2002) achieves large gains in
productivity and reduces the time to get a product to market. Similarly,
outsourcing is a strategy that achieves reduced production costs, but some-
times with increased time to get a product to market. Having a documented,
formal product development strategy (Butler, 2003) facilitates aligning devel-
opment projects with organizational goals. A development strategy defines
broad directions for certain activities, such as division of responsibilities and
determining the scope of the analysis and design activities. A strategy typically
does not mandate a specific method or technologies, but there are definite
interactions. For example, outsourcing requires the use of a more formal design
notation than development involving co-located teams.
Below, we very briefly describe several recent strategies.

• Software Product Line: This strategy (Clements & Northrop, 2002)
increases the productivity of personnel and reduces the time required to
bring a product to market. A software product line is a group of related
products that are planned and managed as a single unit. The common
functionality among the products is identified and leveraged to achieve
strategically significant levels of reuse of software. A product line may

72 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

achieve 85-95% reuse with careful planning. The strategy encompasses
both management and technical aspects of software product develop-
ment.

• Outsourcing: This strategy involves using resources outside the organi-
zation to accomplish tasks (Clarke, 2004). The current popular trend is
to outsource tasks to organizations in countries where costs are drastically
lower than where the outsourcing organization is located. This is not a new
idea. The United States government has long split tasks where govern-
ment employees defined requirements for products and outside contrac-
tors develop the products. This has led to a community referred to as the
“acquisition” community.

• Open Source: This often-misunderstood strategy provides public access
to the source code an organization produces. What is misunderstood is
that this does not mean that the source code is free for any use. This
strategy rests on the belief that others will contribute new ideas and
perhaps some code so that the contributing organizations will receive
benefit from participating in the development of a common tool or
standard technique. The Eclipse project, sponsored primarily by IBM, is
a current example (Eclipse, 2004).

• Enterprise Architecture: Enterprise architecture is a strategy for align-
ing the information technology actions of various groups spread across the
entire enterprise. Such an architecture defines the structure for all of the
components of an organization’s computation resources. It makes choices
for the entire organization about certain key technologies and techniques.
The goal of an enterprise architecture is a coherent set of technologies and
techniques for the enterprise, not just a single business unit. Organizations
that utilize this strategy impose an additional layer of constraint on
development and acquisition projects. The project team is not allowed to
make decisions or choices that violate this high-level structure.

Strategy Concerns

We separate the Strategy concern into three more specific concerns: goals,
scope, and abstraction.

• Goals: A strategy has a set of goals that it is designed to achieve. There
should be a clear mapping between the goals of the strategy and the

Management Planning in a Changing Development Environment 73

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

actions that implement the strategy. The trend is toward supporting a more
diverse set of goals including hard-to-quantify goals such as “improve
customer satisfaction.”

• Scope: A strategy has a “sphere of influence,” those activities and
decisions for which it provides direction and constraint. The software
product line strategy has a wide scope of influence. It influences both
business and technical decisions concerning software-intensive product
design. For example, the team assigned to produce one of the products
in a product line cannot make design decisions that contradict the overall
product line architecture. The trend is to be more encompassing as
executive and technical managers recognize the need for coordination of
corporate goals and development goals.

• Abstraction: A strategy is a high-level philosophy that does not constrain
specifics, but does impose broad directions. A strategy may be imple-
mented in many ways. Some ways will be more effective than others. The
trend is toward strategies that abstract development issues and concerns
to a level where they can be reasoned about in terms of the business goals.

Plans and Processes

Managers define project plans and processes for each development effort. Our
thesis stated that the effectiveness of these plans and processes is related to
choices that are made. In the previous section we illustrated that the develop-
ment landscape is multi-dimensional. There are relationships and constraints
among those dimensions. A project plan, which does not properly resolve these
constraints, cannot lead to a successful result. In this section we identify the
characteristics of plans and processes that will be affected by the technologies,
methods, and strategies of the development effort.

Process Models

A process model gives an overall “shape” to the specific process that will be
used for a development effort. It takes a few essential assumptions and guides
the development of specific development processes. First we briefly define a
few process models, and then we discuss how these are used in defining a
process.

74 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The fundamental shape of the process derives from its philosophical basis. In
this section we discuss four fundamental process models.

• Waterfall: The waterfall model makes the basic assumption that each
major activity in the process uses information from the previous activity as
input, but there is no interaction between the activities. The phrase often
used is “throwing it over the wall” to the next activity. Mistakes made in
an activity are fixed by the recipients of the output rather than the persons
who made the original mistake. This assumption is realistic in certain
situations, such as a government software development where a govern-
ment analyst develops a set of requirements and hands those off to a
contractor to actually create the software. Some large corporations have
structured their departments to have business analysts in one structure and
software developers in another structure. The waterfall model was even
codified in a U.S. military standard, MIL STD2167A (DoD, 1988).

• Spiral: The spiral approach defined by Boehm (1988) did two things
differently from the waterfall model. First, it indicated, by the spiral shape,
that activities that were performed early in the process would be revisited
later. Second, it expanded the scope of the activities defined as part of the
software development process. The revisiting of an activity provides
experts in an area such as requirements or architecture with the opportu-
nity to fix mistakes they made, but the model limits when this can happen.
The spiral model was adopted by many organizations because of the more
realistic view of handling mistakes. However, the apparent limitation of
when errors could be corrected made the process less realistic than the
iterative model discussed next. The spiral model also implied a different
organization than did the waterfall, with more interaction among the
various management and technical groups.

• Iterative: The iterative model provides more flexibility than the spiral
model, but often with a smaller scope. An iteration is a pass through a set
of development activities. One iteration might only pass through analysis
and initial design before ending, while the next might go as far as
architectural design. Iterations may be planned to end at a certain activity,
or they may be ended by the discovery of a major problem with
information developed earlier in the iteration.
The iterative model provides a means of representing exploratory studies
early in a project when the team may develop a set of requirements and

Management Planning in a Changing Development Environment 75

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

explore the initial design of a solution to support those requirements. The
iterations are more flexible in terms of content and duration than a pass
around the spiral.

• Incremental: The incremental model is most often used in conjunction
with the iterative model but can be used with any other model. This is an
alternative means of slicing the project for work packets. An increment is
some subset of the total product functionality. An increment might be a
“horizontal” slice involving the development of the user interface, or it
might be a “vertical” slice running from a subset of the interface through the
business logic to a subset of the database.
An increment provides a “divide and conquer” strategy for addressing
complex products. When combined with the iterative model, an iterative,
incremental process can be formed that encourages concurrent explora-
tion of high-risk functionality.

Project Plans

A project plan is an instantiation of a development process. It defines who will
operate the development process, when the phases in the process will be
executed, and the risks associated with each of the activities. The plan provides
justification for the development effort, the strategy to be followed, and
estimates of the resources needed for the development of products. These
functions may be accomplished in separate documents, but we will think of
them as a single plan.
The technologies, methods, and strategies selected for a project heavily
influence the plan. The software product line strategy invokes an investment
approach that requires careful justification based on estimates of costs and
benefits. One approach to this is described in Boeckle, Clements, McGregor,
Muthig, and Schmid (2004). Outsourcing strategies also have to be justified,
usually by discussions about liability and ownership issues. The project plan
describes how the strategy will be implemented in the context of achieving the
goals of the enterprise.
The development plan must justify each of the technologies chosen for
producing products. The programming language may be selected based on the
level of developer skill, the level of automated type checking desired, the
presence or absence of a virtual machine, or the range of platforms on which

76 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the product must run. The justification is usually based on the attributes of the
technology such as binding time or rigor of checking during compilation.
The development plan explains and details the development method chosen for
producing products. The method may be an enterprise-mandated method, or
it may have been selected for specific reasons such as a need for discovery of
requirements.
In each of these sections of the plan, the goals of the development effort should
play a prominent role. Project plans are often neglected or ignored. This is
usually because they do not perform an essential function. Making the plan goal
oriented can make it a must-read by newly assigned personnel, development
partners, and upper-level management.

Relating Technologies, Methods, and
Strategies to Plans and Processes

The job of managers who have some level of responsibility for software
development is to define a set of plans and processes that will result in effective,
efficient production of products. When preparing for a new project, the
manager either adopts the process definitions used in a previous project or
decides to define new ones. All too often the decision is to continue to use
existing processes. This may work if the existing processes were effective, the
goals of the enterprise have not changed, and if no changes are made in the
development environment for the new project. In this section we use the
landscape survey to talk about emerging trends and how to adapt to them. The
number of variables is large, and we do not pretend to be able to cover all of
them. We will present a case study that illustrates the use of the tables.
Any new process definition is constrained by the previous investment and the
culture and tradition of the organization. We are not free to change everything
about a process at the same time. By focusing on the changes in technologies,
methods, and strategies that are anticipated, the changes to processes can be
confined to those that can be directly justified. These changes can be analyzed
in terms of their impact on the activities and artifacts of the process and the
impact mitigated with appropriate support.
We are now concerned with how our original three concerns—technologies
and techniques, models and methods, and strategies—interact as a manager
makes decisions about the development environment. Due to space limitations

Management Planning in a Changing Development Environment 77

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

we cannot discuss every interaction in detail. In Table 1, Table 2, and Table 3,
we provide a series of questions intended to illustrate the relationships among
the various concerns. The manager should use these questions to stimulate
analysis before a decision is made.

Table 1. Technology concerns vs. model concerns

 Scope Granularity Organization
Structure Does the chosen

model notation
completely
represent the
chosen structure?

Does the chosen
model notation
at least reach the
level of
granularity of
the chosen
structure?

Does the chosen model
notation organize
information about the
chosen structure in an
intuitive manner?

Notation Is the chosen
model notation
compatible with
the other notations
within the scope of
the project?

Is the granularity
of the model
compatible with
the notation of
the rest of the
project?

Can the notation
accompanying the
technology express the
organization of the
model?

Transformations Does the chosen
model notation
support
transformations
that map every
model element to
targets?

Is the granularity
of the model
compatible with
the level of
transformation
available in the
technology?

Do the transformations
of the technology
operate with
input/output pairs that
reflect the organization
of the model?

Levels of
Abstraction

Is the scope of
interest sufficiently
broad to
encompass the
levels of
abstraction?

Does the
granularity of
the models and
methods match
the levels of
abstraction of
the technology?

Is the organization of
the models compatible
with the levels of
abstraction in the
technology?

Table 2. Model concerns vs. strategy concerns

 Goals Scope Abstractions
Scope Does the model

scope cover all
concerns of the
strategy?

Does the scope of the
models match the
scope of the strategy?

Does the model
scope encompass
the abstractions of
importance to the
strategy?

Granularity Are the goals of
the strategy stated
in terms that the
granularity of the
model can handle?

Is the scope of the
strategy covered by
the model?

Do some of the
abstractions in the
strategy match the
fundamental units
of the model?

Organization Does the
organization of the
model facilitate
the goals of the
strategy?

Can the model be
organized to cover
the scope of the
strategy?

Does the
organization of the
model make sense
with the set of
abstractions in the
strategy?

78 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Case Study

We use as our case study the Arcade Game Maker (AGM) software product
line (McGregor, 2004). This is an online artifact used for illustrating software
product line concepts. It provides a realistic environment in which to study the
product line strategy. In this section we describe the software development
process for this product line. This example illustrates the general approach, but
does not cover all technologies, methods, and strategies.
We chose this example in part because the SEI has developed a framework that
lists many of the techniques, methods, and strategies that are used in software
product line practice (SEI, 2004). The framework makes explicit a number of
relationships. Users of this strategy can easily understand the implications of
making specific choices.

Table 3. Strategy concerns vs. technology concerns
 Structure Notation Transformation Levels of

Abstraction
Goals Does one of

the chosen
technologies
provide
structures that
represent the
goals of the
strategy?

Does one of
the chosen
technologies
provide
notation
capable of
expressing the
concepts in the
strategy’s
goals?

Does one of the chosen
technologies provide
transformations that
result in goal-level
artifacts?

Do the levels of
abstraction in the
technology
contribute to
achieving the goals
of the strategy?

Scope Do the
structures in
the chosen
technology
cover the
scope of the
strategy?

Are the
notations in
the
technologies
capable of
expressing the
complete
scope of the
strategy?

Are the results of a
transformation still
within the scope of the
strategy?

Do the levels of
abstraction in the
technology fit the
scope of the
strategy?

Abstractions Are the
abstractions
defined in the
strategy
compatible
with the
structures
defined in the
technologies?

Can the
notations in
the
technologies
express the
abstractions in
the strategies?

Can the transformations
in the technologies
operate on the
abstractions in the
strategies?

Can the levels of
abstraction in the
technology
represent the
abstractions in the
strategy?

Management Planning in a Changing Development Environment 79

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Overview

AGM intends to build nine products, three different variations of three different
games. The product line manager decided these products should be built using
a product line strategy. The strategy encompasses both the technical and
business portions of software-intensive product development. The scope of the
software product line strategy is more comprehensive from the previous
development strategy, so some number of processes need to be defined and
coordinated.
A software product line realizes increases in productivity and decreased time
to market by achieving strategically significant levels of reuse, often 85-95%.
The product line organization defines two main development roles: core asset
builders and product builders. The core asset builders create all the pieces
needed to build the common pieces of the products. The product builders use
the core assets to produce products. They also build those portions of the
product that are unique. Previously, analysis of the requirements was to be
handled by one group and then a second group handled all of the implementa-
tion. Teams had to be reassigned and trained in these new roles.
Before adopting the software product line approach, AGM used a traditional
approach to software development:

• textual requirements,
• flowcharts of individual procedures, and
• implementation in the C language.

The process was largely waterfall. The process maturity of the organization was
low, with each new project being conducted in isolation from other projects that
had been attempted previously. In keeping with national averages, about half
of the projects at AGM were canceled with no delivery.
For the products in the product line, AGM made certain strategic decisions and
then focused on process definition. In addition to adopting the software product
line strategy, the decision was made to outsource the actual implementation. An
initial technology decision was also made. The product line managers decided
the Arcade Game Maker product line would be implemented using the
Microsoft Visual Studio .Net and the C# language, which uses component-
based software engineering technology. The outsourcing strategy required a

80 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

strong separation between the design and implementation. C# provides an
interface structure that provides the separation, which C lacks. At the same
time, C# was more compatible with the development culture of AGM than Java
would have been.

Process Definition

We will address a number of issues about the changes in existing processes, but
we will not attempt to provide a complete set of processes.
It is the goal of process definition to support the two chosen strategies by
making compatible tactical decisions. The waterfall process model was not
sufficiently flexible for the exploration that has to be accommodated when
planning nine products simultaneously. An iterative process is flexible, but by
itself is incompatible with the outsourcing strategy. The final basic process
model for the AGM product line is two consecutive iterative processes in which
the first process produces design outputs used as inputs to the second process
where the design is implemented.
AGM had to coordinate requirements and design information for all nine
products over the life of the product line. The new development process had
to contain an advanced configuration management process to coordinate the
many pieces for all of the products. The discipline was an important cultural
feature.

Method Selection

To support the product line approach and the use of outsourcing, AGM needed
improved communication of requirements and design information. Flowcharts
only cover a very small portion of the design space and text descriptions of
requirements and other design information are too ambiguous to ensure clear
communication with an implementation partner. They adopted the Unified
Modeling Language as the language to be used prior to source code. The
Together modeling environment was selected. This became a requirement for
the outsourcing contractor as well. It meant that the artifacts that serve as input
and output between processes and phases within the process would all be in a
single language.

Management Planning in a Changing Development Environment 81

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Production Planning

The software product line strategy requires a production planning process. The
core assets are designed to make the development of individual products an
efficient process. In building the production plan, the AGM core asset
developers make choices of technologies and tools that will be used. The

Table 4. Technologies vs. models for the case study

 Scope Granularity Organization
Structure Does the chosen

model notation
completely
represent the
chosen structure?
UML is a complete
object
representation
notation.

Does the chosen
model notation at
least reach the level
of granularity of the
chosen structure?
UML supports
objects, the primary
structure of C#.

Does the chosen model
notation organize
information about the
chosen structure in an
intuitive manner?
UML has a number of
diagrams that present
the different facets of a
system design.

Notation Is the chosen
model notation
compatible with
the other notations
used in the project?
UML and C# are
compatible.

Is the granularity of
the model compatible
with the notation of
the rest of the
project?
C# uses objects as
the main structure, as
does UML.

Can the notation
accompanying the
technology express the
organization of the
model?
C# can express the
relationships available
in UML. It also has
separate constructs for
the static and dynamic
aspects of the UML
model.

Transformations Does the chosen
model notation
support
transformations
that map every
model element to
targets?
UML still uses text
notes to explain
some intent. These
cannot be
automatically
transformed.

Is the granularity of
the model compatible
with the level of
transformation
available in the
technology?
A number of
transforms work at
the object level so
they are compatible.

Do the transformations
of the technology
operate with
input/output pairs that
reflect the organization
of the model?
Analysis models are
transformed into design
models. The design
models are transformed
into code.

Levels of
Abstraction

Is the scope of
interest sufficiently
broad to
encompass the
levels of
abstraction?
The definition of
UML includes a
metamodel that can
correspond to the
reflective language
level.

Does the granularity
of the models and
methods match the
levels of abstraction
of the technology?
Yes, as already
shown.

Is the organization of
the models compatible
with the levels of
abstraction in the
technology?
The UML models are
seamless. Different
levels of abstraction are
handled in a compatible
manner.

82 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

decision to use Microsoft Visual Studio.Net was made because the component
structure supports the outsourcing strategy. Components are assembled based
on interfaces. The implementations behind the interfaces can be done by
different people with a minimum of communication. The design process outputs
a set of interface definitions that can then be used as a basis for communication
with the remote implementation team.
The AGM case study illustrates connections between a number of decisions.
Table 4, Table 5, and Table 6 give connections between several decisions. The
strategic decisions made before the product line organization was initiated led
to specific selections of process model and development technologies. The
result was a consistent, coherent development environment in which it was
possible to meet corporate goals.
By answering the questions in the tables, we have identified a problem in the
development environment, as shown in the shaded cells in the tables. The
software product line strategy encompasses both technical and managerial
aspects of product production. The manager has not yet identified a modeling

Table 5. Models vs. strategies for the case study

 Goals Scope Abstractions
Scope Does the model scope

cover all concerns of
the strategy?
There are not
sufficient models to
cover all the goals of
product lines. UML
does not provide
means of indicating
measures of
productivity, for
example.

Does the scope of the
models match the
scope of the strategy?
There are not
sufficient models to
cover the managerial
aspects of product
lines.

Does the model scope
encompass the
abstractions of
importance to the
strategy? The model
can represent the
programmatic
abstractions, but no
managerial aspects.

Granularity Are the goals of the
strategy stated in terms
that the granularity of
the model can handle?
No, UML deals with
objects while a
product line deals with
products.

Is the scope of the
strategy covered by
the model?
No.

Do some of the
abstractions in the
strategy match the
fundamental units of
the model? Yes, the
strategy produces
reusable assets. Objects
and components can be
reusable.

Organization Does the organization
of the model facilitate
the goals of the
strategy?
Yes, it contributes.

Can the model be
organized to cover
the scope of the
strategy? No.

Does the organization
of the model make
sense with the set of
abstractions in the
strategy?
The current models are
a subset of the strategy.

Management Planning in a Changing Development Environment 83

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 6. Strategy vs. technology for case study

 Structure Notation Transformation Levels of
Abstraction

Goals Does one of the
chosen
technologies
provide structures
that represent the
goals of the
strategy? No.

Does one of the
chosen
technologies
provide notation
capable of
expressing the
concepts in the
strategy’s goals?
No.

Does one of the
chosen technologies
provide
transformations that
result in goal-level
artifacts?
Yes, C# produces
products.

Do the levels of
abstraction in the
technology
contribute to
achieving the
goals of the
strategy?
Yes, the goals of
reusability rely
on the
abstractions in
UML and C#.

Scope Do the structures in
the chosen
technology cover
the scope of the
strategy? Yes, the
program-level
structure in C#
covers the scope of
the strategy.

Are the notations
in the
technologies
capable of
expressing the
complete scope
of the strategy?
No, it does not
adequately cover
non-functional
issues.

Are the results of a
transformation still
within the scope of
the strategy?
Yes, the
transformations
create objects and
programs.

Do the levels of
abstraction in the
technology fit
the scope of the
strategy?
Yes.

Abstractions Are the abstractions
defined in the
strategy compatible
with the structures
defined in the
technologies?
Yes, although the
modeling
technology cannot
represent the full
range.

Can the notations
in the
technologies
express the
abstractions in
the strategies?
Yes.

Can the
transformations in
the technologies
operate on the
abstractions in the
strategies? Partially,
there are
abstractions in the
strategy that are
beyond the
“program” scope
and therefore
beyond the
technology.

Can the levels of
abstraction in the
technology
represent the
abstractions in
the strategy?
Yes.

notation that addresses the managerial aspects. Boeckle et al. (2004) provides
a modeling kit for addressing these abstractions. The manager will have to
carefully monitor text documents until such time as this notation is in use.

Future Trends

New business models and strategies continue to emerge at an increasing rate.
The software content of products is also increasing. We believe that our

84 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

framework will remain in tact, and the landscape described in Figure 2 will simply
grow larger to accommodate the choices facing managers and developers.
The increasing formality of modeling notations, advances in method engineer-
ing, and other process-related work will provide improved techniques for
identifying dependencies and constraints between strategies and the technolo-
gies and models that support them.

Conclusion

We began with a view of the current state of software-intensive products:

• Complexity is increasing.
• Development times are getting shorter.
• Demands for flexibility are increasing.

In attempts to meet these challenges, software development organizations are
exploring the development landscape shown in Figure 2. In order to be
successful in adapting the development process to the new technologies,
methods, and strategies:

• The manager must make systematic and controlled changes in the devel-
opment environment.

• The manager must understand the relationships among the technologies,
methods, and strategies, and how these relationships constrain the changes
that can be made.

The development process, which blends these elements, is instantiated as a
project plan for a specific product development effort. The project plan
determines the trade-offs among the three factors shown in Figure 1.
We have illustrated the validity of our thesis by first defining the landscape of
elements and then showing how the selection of certain elements causes
changes to the process. Through the case study we have illustrated how the
concerns are visible in a project and how they can be handled. We have outlined

Management Planning in a Changing Development Environment 85

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a number of tasks for the development manager and the development team. Our
experience in a variety of environments and situations, and the experience of
those we have referenced, shows that the return on investment for the time spent
on these tasks will be high.

References

Ambler, S., & Nalbone, J. (2004). Enterprise unified process. Ronin
International.

Beck, K. (1999) Extreme programming explained: Embrace change.
Reading, MA: Addison-Wesley.

Beck, K. (2002). Test driven development. Reading, MA: Addison-Wesley.
Boeckle, G., McGregor, J.D., Clements, P., Muthig, D., & Schmid, K.

(2004). Calculating return on investment for software product lines. IEEE
Software, (May/June).

Boehm, B. (1988). A spiral model of software development and enhancement.
IEEE Computer, 21(5), 61-72.

Butler Group. (2003, November). Application development strategies.
Clarke, D. (2004). The dangers of outsourcing (and what to do about them).

CIO, (February).
Clements, P., & Northrop, L. (2002). Software product lines. Reading, MA:

Addison-Wesley.
DoD (Department of Defense). (1988). DoD-STD-2167A: Defense System

Software Development.
Eclipse. (2004). Retrieved from www.eclipse.org
Humphrey, W. (2002). Three process perspectives: Organization, teams, and

people. Annals of Software Engineering, 14, 39-72.
Kruchten, P. (2000). The Rational Unified Process: An introduction.

Reading, MA: Addison-Wesley.
Major, M.L., & McGregor, J.D. (1999). A software development process for

small projects. IEEE Software.
McGregor, J.D. (2004). Retrieved from www.cs.clemson.edu/~johnmc/

productLines/example/

86 Russ & McGregor

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber, C.V. (1993). Capability
maturity model, version 1.1. IEEE Software, 10(4), 18-27.

Software Engineering Institute. (2004). Retrieved from www.sei.cmu.edu/
plp/

Soley, R. (2000, November). Model-Driven Architecture. Object Manage-
ment Group.

Tarr, P., Ossher, H., Harrison, W., & Sutton, S.M. Jr. (1999, May). N
degrees of separation: Multi-dimensional separation of concerns, Pro-
ceedings of the 21st International Conference on Software Engineer-
ing.

MDA Design Space and Project Planning 87

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

MDA Design Space and
Project Planning

Boris Roussev
University of the Virgin Islands, USA

Abstract

The change to Model-Driven Architecture (MDA) with Executable UML
(xUML) results in changes to the existing object-oriented development
practices, techniques, and skills. To use a transformational approach to
create objects with Finite State Machines (FSMs), communicating by
exchanging signals, adopters of MDA and xUML have to acquire expertise
in new areas such as domain modeling, concurrency, non-determinism,
precise modeling with FSM, programming in model-manipulation action
languages, writing OCL constraints, and clear separation of application
from architecture. The much more complex xUML object model presents
system analysts with a longer and steeper learning curve. In this chapter,
we critically evaluate the opportunities, capabilities, limitations, and
challenges of MDA based on xUML. The purpose of our analysis is to aid
organizations, software developers, and software product managers in
their transition to this new development paradigm, and to assist them in
understanding how MDA and xUML change the software design space
and project planning.

88 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

With the conventional way of developing software, analysts create high-level
system models independent of implementation detail. Then, designers adapt
these models to the constraints imposed by the implementation platform and the
non-functional system requirements. Finally, programmers write the system
code from the design models. The software design activity is the act of
elaborating informal analysis models by adding increasing amounts of detail
(Kruchten, 2000). Analysis-level models are informal because they do not have
executable semantics, and therefore cannot be formally checked.
With MDA (Mellor & Balcer, 2002), analysts create executable models in
xUML, test these models, translate them to design models, and finally compile
(translate) the executable models into source code for a particular platform.
The MDA design activity is the act of buying, building, or adapting mapping
functions and model compilers, and targeting a particular software platform
(e.g., J2EE or .NET). We say that MDA is a translational approach to systems
development because executable analysis-level models are translated to sys-
tem code.
Standardized approaches to software development, such as Agile (Beck,
1999) and RUP (Kruchten, 2000), are weathered best practices applicable to
wide ranges of software projects. These methods are not sufficient in construct-
ing effective project plans and processes, reflecting the unique realities in
software firms and markets. As useful and distilled as they are, best practices
have two major shortfalls: 1) lack of predictive relationship between adopted
process and product quality; and 2) inability to adapt to changing environments.
The following example illustrates our point.
Consider the statement, “XP (an Agile methodology) without pair program-
ming is not XP.” This is a dogmatic, but not theoretically sound statement. There
is no sufficient data in support of the proposition that the immediate feedback
cycle of pair programming is better or worse than, say, solo programming with
team software inspections, with respect to quality or productivity. There is
evidence that in many contexts, software inspections produce products of
superior quality and/or increase productivity (ePanel, 2003).
To overcome the deficiencies of the standardized approaches to software
development, Russ and McGregor (2005), see the previous chapter, propose
a model which structures the software development landscape into three
cornerstone concerns: technology, process, and strategy. Each concern is

MDA Design Space and Project Planning 89

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

further decomposed into several sub-concerns. A concern is a group of
concepts, activities, roles, and models addressing a common issue, or in other
words, a concern encapsulates micro-level knowledge about some aspect of
project management. Concerns are neither orthogonal nor independent. To
show briefly the relations between the three concerns, one can say that a
process implements a strategy by making use of technologies.
In this context, Russ and McGregor define project planning as navigation in a
multi-dimensional development space. A distinguishing feature of Russ and
McGregor’s model is its account for the economic context through the strategy
concern. Putting strategy on an equal footing with technology and process
accounts for the complex sources and processes of value creation. The result
is a holistic model that treats risk and competition in a sophisticated manner by
linking technical and economic dimensions.
The objectives of this chapter are to assess how MDA based on xUML
enriches and at the same time limits the software development landscape, and
to assist adopters of MDA in the transition to model-driven object-oriented
(OO) software development.
The remainder of the chapter is structured as follows. First we offer a high-level
overview of model-driven development. Then we assess MDA and xUML in
the framework of Russ-McGregor’s model of the software design space. That
is followed by a discussion of the challenges adopters of MDA are likely to
experience in the transition to model-driven development with xUML. The final
section outlines a promising area of model-driven development and concludes.

MDA with xUML

MDA is one of the latest OMG initiatives. It is based on the ideas that code and
executable models are operationally the same, that executable models can be
simulated and tested upon construction, and that the verified model can be
compiled to system code. One mature technology for designing executable
models is xUML. xUML is a UML profile that defines executable semantics
(UML AS, 2001) for a subset of the UML modeling languages (UML, 2004).
xUML is an executable and translatable specification language. The construc-
tive core of xUML includes object (class) models, object (class) FSMs, and
communication diagrams.

90 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

MDA separates systems into subject matters called domains, and specifies
each domain with an executable platform-independent model (PIM) ex-
pressed in xUML. The executable PIMs are translated to platform-specific
models (PSM), which, in turn, can be combined and translated mechanically
into source code. A model compiler, called also architecture, encapsulates
design and decision knowledge in the form of machine-readable mappings.
It translates a system specified in xUML into a target programming language.
Architectures can be bought or developed in-house. Executable models can
be simulated with model simulators and debuggers before translation to
code begins. Since the architecture is also a subject matter, the model’s
translation is the act of weaving together subject matters. Marks are
modeling extensions used when there is ambiguity as to which mapping rule
to apply to a modeling element, or when there is a need for additional
information in order to apply a mapping. For example, a mark can designate
a class attribute as persistent or a class as remote. Marks are defined by a
marking model, which describes their structure and semantics.
To sum up, MDA defines the process of producing system code from a
problem specification in xUML as a chain of mappings applied to marked
models.
Separating the application model from the architecture model ensures that
the architecture is applied uniformly and systematically to all application
domains. The separation also simplifies and speeds up the development
process by providing parallel tracks for the two activities. Figure 1 shows
a workflow diagram for MDA development. The architecture modeling and
the application domains modeling are activities carried out in parallel swim
lanes. In addition, each application domain can be modeled independently
of (concurrently with) the rest of the application domains. Another benefit
from separating application and architecture is the possibility to enhance
system performance without affecting system behavior, and vice versa, to
change or extend the application functionality without modifying the
underlying architecture.
The architecture is a set of rules, most commonly archetypes (similar to C++
templates), mapping model elements to blocks of code or to another model’s
elements. In MDA, the implementation phase is completely automated, while
human expertise in the design phase is restricted to at most two junctions. One
is the decision on what model compiler to use, based upon the targeted
software platform. And second, if an in-house model compiler is developed or
updated, a designer has to program the compiler’s archetypes.

MDA Design Space and Project Planning 91

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Analysis of Model-Driven
Development with xUML

The change to model-driven development with xUML results in changes to the
existing OO development practices, techniques, skills, and strategies. In this
section, we analyze how MDA affects the OO software design space and
project planning. Our assessment is done in the context of Russ-McGregor’s
model.
The cause-and-effect diagram in Figure 2 summarizes the Russ-McGregor
model. We propose the following changes to the original model. The strategy
concern is extended with two dimensions: internal (microeconomic) context
and external (macroeconomic) context. The microeconomic discourse is
defined by the organization itself. The macroeconomic discourse is the eco-
nomic environment in which the organization operates. Two new dimensions
are added to the process concern: quality assurance and level of evolution. The
level of evolution captures the stability of the produced artifacts. Waterfall-
shaped processes have a lower level of evolution. Iterative processes exhibit
a higher and very dynamic level of evolution. Agile methods, for instance, are
characterized by relentless refactoring and rework, and therefore exhibit an
extremely high level of evolution. The level of evolution is an economic issue.
If the risk exposure for a module is high, evolutionary approaches tend to
perform better.

Figure 1. Concurrent activities in MDA development with xUML

������������

..

�		
��
�����

�������

�		
��
����
�

.

92 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Next, we consider the impact of xUML on the different aspects of OO software
development.

Technology Concerns

Software technologies are important enablers, as the demand for software and
its complexity continue to grow. MDA with xUML is a tool-centric technology.
It is unthinkable to use xUML without a proper tool support. xUML technology
is accessible to developers by the following minimal set of tools: xUML
development environment, xUML simulator and debugger, and xUML com-
piler.
At present, the time-to-market pressure mandates that software be produced
to a great extent by adapting and integrating existing software. The trend in
software technology is toward tools, models, and languages addressing the
integration challenge. Integration with xUML is easier than with programming
languages because of the clear and formal interfaces between the organizational
structures (i.e., domain models) and the higher-level of abstraction of
executable models.
A related trend is the shift to technologies expressing software without
fixing the design to an implementation context, thus making software
adaptable to unanticipated contexts. The xUML PIMs are not contaminated

Figure 2. Russ-McGregor model

Project Planning

Technology

Strategy Method

Organizational units

Notation

Level of abstraction

Transformation

Lifecycle scope

Process model

Phase granularity

Quality assurance

Goals

Strategy scope

Abstraction

Level of evolution

Local context

Global economic context

MDA Design Space and Project Planning 93

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

with implementation details, and with an appropriate architecture, the PIMs can
be translated to any target platform.
The fact that xUML responds well to these two trends goes a long way toward
building morphogenic software, software able to adapt to new contexts
(Ossher & Tarr, 2001).
The technology concern is further decomposed into organizational units,
notations, levels of abstraction, and transformations.

Organizational Structures

Russ and McGregor identify the following four ways of grouping together
behavior and data: functions, objects, components, and aspects (Kiczales,
1996). xUML adds domains to the above list. In addition, xUML extends the
object concept with the notion of lifecycle, defined by an FSM model, where
the states of the object’s FSM act as pre-conditions or guards for the
invocation of the object’s operations. Unification of data and behavior in
objects with lifecycles is far more coherent and consistent than it is in
conventional objects with operations, where the state-dependent behavior is
represented implicitly.

Notation

True to its UML heritage, information in xUML is captured in several different
notations at different times in the process. In distinction with UML, the different
views are compatible, consistent, and completely interdependent. xUML
models are formal models and not just descriptive drawings or charts. In
addition to objects with FSMs, xUML relies heavily on capturing domain
semantics with constraints written in OCL (Object Constraint Language). OCL
is a formal, pure-expression language combining first-order predicate logic
with a diagram navigation language (Warmer & Kleppe, 1998).

Level of Abstraction

To be executable, models must be precise and have actions associated with
them. Actions are expressed in a language with action semantics. The action
language used to manage objects, access attributes, traverse links, make

94 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

choices, and iterate, inevitably brings down the level of abstraction of xUML
models, and consequently makes analysis less abstract. But overall, the
development process is at a higher level of abstraction than processes relying
on UML, since the action language is simpler than typical implementation
languages (e.g., C/C++, C#, or Java), has precise semantics, and is integrated
with the visual models. The action language increases the expressivity of UML
models.
With UML, system analysts are neither required to program nor to be clinically
precise. xUML changes the responsibilities of the system analyst. Analysts
must use FSMs, an action language, and OCL extensively. Even though OCL
is a pure expression language, its constructs are somewhat cryptic; further,
knowledge of logic, set theory, and multisets are prerequisites for writing
successful OCL constraints (pre- and post-conditions, invariant, and guards).
FSMs, action languages, and OCL increase the precision in the analysis phase
at the expense of lowering its level of abstraction.

Transformations

The success of OO software processes is predicated on the fact that software
development is defined as model transformation from more abstract to more
detailed and precise models (Jacobson, 1992). Model transformations allow
for user requirements to be traced to the modules of the implemented system,
and ensure that user needs are met. It also plays an important role in change
management. There is a broad understanding that in order to capture best the
different system facets, modeling must be done from different perspectives, and
that the different system views must be advanced simultaneously (Kruchten,
1995). The latter also relies on model transformation to ensure consistency
among the models of the different views.
With respect to model transformation, xUML is the undisputed champion. The
xUML technology is based on safe model transformations and mappings. Since
MDA is a transformational approach to software development, a development
team practicing MDA can concentrate on modeling the core business of the
problem domain under consideration, and to spend less (or no) time on
design and implementation detail.
In xUML, class diagrams, FSMs, communication diagrams, and state
procedures are all different representations of the same underlying domain
model. As a result, the freedom to advance simultaneously the different system

MDA Design Space and Project Planning 95

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

views at intra-domain level is restricted. This might negatively affect the process
of domain conceptualization.

Tools

Software development in the large requires appropriate tools and technologies.
The already partly in place technical infrastructure needed to support MDA
includes: model builders, verifiers, compilers, debuggers, analyzers, and testers.
To make the most of these tools, they should be able to interoperate and
interchange models seamlessly. The major impediment toward attaining seam-
less interchange is the specification of UML (Mellor, 2002). At present, UML
specifies the abstract syntax of each modeling language separately. Mellor
argues that in order for UML to be truly translatable and executable, UML
should have a small executable kernel for defining the meaning of a problem
solution and a separate presentation layer for representing elements or aspects
in different forms (diagrams). This will not only resolve the consistency
problems among different diagrams, but will also enable the free interchange of
models among tools coming from different vendors, thus giving rise to a
powerful tool chain.
There are several mature visual design tools on the market supporting MDA
with xUML, for example, Kennedy Carter (KC, 2004) and BridgePoint (BP,
2004). These tools allow developers to construct visual models of the designed
system, and to verify the models’ behavior and properties through model-level
simulation. The tools also provide model compilers for a number of software
platforms.
Also, it should be noted that commercial MDA tools are expensive, support
only small subsets of UML (might limit creativity or expression), and rely on
proprietary languages to specify transformations between PIM, PSM, and
code. The element of vendor dependence conflicts with the increasing demand
for open standards and software integration (Bettin, 2004). The promise of
MDA is that users will not be locked into a single vendor. This is difficult
to imagine, given that there are no standards for an action and transformation
languages. The xUML standard defines only the semantics of executable
models, and not the syntax of the action language.
As a tool-centric technology, xUML forces organizations to collect data, which
can help an organization move up the CMM maturity ladder (Paulk et al., 1993)
faster.

96 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Method

A software method describes a repeatable approach guiding the assignment
and management of tasks in a development team or organization.
The rigor of executable models and their more-complex object model make
executable models more difficult to design, but at the same time more useful.
Since there is no implementation phase in the product development lifecycle,
the overall time to complete a MDA project is shorter.

Organization

Every method allows a certain degree of concurrency among activities. The
trend is toward more concurrency. The precise nature of xUML restricts
concurrency at intra-domain level. The clean interfaces among problem do-
mains, however, increase the degree of concurrency at inter-domain level, as
shown in Figure 1. With MDA, concurrent modeling of domains is possible and
almost a must. An activity, which can proceed in parallel with analysis, is
building the mappings knowledge base (the architecture). The inter-domain
concurrency, combined with concurrent architecture design, outweighs the
limited concurrency at intra-domain level. xUML proponents maintain that the
MDA development lifecycle is shorter than that of any other OO method (and
it is only logical); however, to the best of our knowledge, formal studies have
not been conducted.

Scope

The use of xUML spans the entire product lifecycle. In this respect, MDA is
second to none. All other OO methods have to deal with the code view of
the system separately from the system model. The MDA approach also
outperforms other OO methods when it comes to aligning the development
process to an organization’s business goals.

Quality Assurance

Precise domain modeling results in system functionality meeting better client
needs. Model executability enables a developer to ascertain that the high-level

MDA Design Space and Project Planning 97

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

analysis model satisfies the use case specification by simulating the models
through a discrete event simulation.
Another technique for quality control that can be considered is model checking.
Model checking attempts to verify the properties of a system under all possible
evolutions, not just under scenarios defined by analysts or tests generated by
testing tools. We bring up the issue of model checking because executable
models are a natural representation for model-based verification (Syriagina et
al., 2002). This fact means higher yield on investment in formal methods. The
conventional approach to software verification is to extract a verification model
from the program code and to perform model checking on this verification
model. However, the state space of a fully functional program is unbounded and
far too complex for application of formal verification, except for toy examples
or selected features of carefully selected blocks of code. Verification is only
feasible when executed on an abstract model. Since xUML models are abstract
and their complexity level is much less than the programs they are translated to,
it is feasible to apply model checking to tested and validated executable
models. Another advantage with executable models is that model checking can
be performed directly on the PIM in terms of the domain properties. In
conclusion, xUML has the potential to change the role of formal verification,
and model checking can become mainstream. This, in turn, will have enormous
impact on quality assurance.
Clients can expect improved quality with MDA, since design decisions are not
intertwined with application logic. Implementation automation is another driver
for superior quality. In xUML, implementation is replaced with mechanic
construction—that is, applications are no longer re-implemented over and over
again, but instead, existing architectures and design knowledge are reused. The
complexity of reuse at design level is not something to be underestimated. This
complexity is multiplicative, not additive (Mellor, Scott, Uhl, & Weise, 2004).
For example, if there are three possible database servers, three different
implementations of J2EE app server, and three operating systems, there are 27
possible implementations, even though there are only 10 components (the
above nine, plus one for the application). Once the code of the application is
mixed with that of the other parts, none of them can be reused separately
because they all rely heavily on glue code that holds the system components
together. This is not just an interface problem, even though it often manifests
itself as such. The different system components may not match architecturally,
a problem dubbed architectural mismatch (Garlan, Allen, & Ockerbloom,
1994), which complicates matters even more.

98 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Translating executable models to application code minimizes coding and code
inspection efforts, coding errors, and component integration problems. Ac-
cording to Project Technology experts (PT, 2004), organizations that have
adopted xUML have experienced up to a ten-fold reduction in defect rates.
What is particularly interesting is that the benefit of reduced defect rate is more
significant for large-sized, complex projects—MDA scales up very well.
It would be interesting to see if a quality control technique such as pair
modeling, the analog of pair programming, will find its way in MDA. Beck
(1999) states, “If code reviews are good, we’ll review code all the time (pair
programming).” The rationale for pair programming is the error-prone nature
of coding. If initial results are anything to go by, pair modeling should not be
needed. Model inspections can be used in the way they have been used in
programming (Gilb & Graham, 1993) for years.

Process Model

Model-driven development with xUML can be used with a waterfall process
or an evolutionary process. A waterfall lifecycle works well for projects with
stable requirements, known architecture, and a standard work breakdown
structure (e.g., many real-time systems). In less deterministic and fast-paced
environments, development methods are based on iterative and incremental
lifecycle models.
Mellor (2004) proposes Agile MDA, a process based on many of the
principles and practices of the Agile Alliance (2001). The basic premise of
Agile MDA is that since executable models eliminate the verification gap
between visual software models and end users, a running system can be
delivered in small increments produced in short iterations, of one to two weeks.
As we already mentioned, MDA does not have a separate implementation
phase, and its design phase differs substantially from conventional design
activities in other OO approaches. There are new realities in the analysis
phase as well. With MDA, analysis is more rigorous than ever before. The latter
brings up two issues: 1) Are system analysts adequately prepared to handle
mathematical rigor and programming in an action language (conversely, are
designers, with experience in programming, ready to do analysis)? and 2) Are
there situations where too much formalism too early would be a stumbling
block? MDA defines the Computation-Independent Model (CIM), which, in

MDA Design Space and Project Planning 99

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

our view, deals with these two issues. So, we end up with two different models,
informal charts and formal executable models, the very idea against which
MDA revolted.

Strategies

A development strategy outlines general directions for project activities to
achieve certain strategic goals. From an engineering point of view, the goal of
a software process is to produce high-quality software in a cost-effective way.
This definition does not take into account the economic context in which
software is produced. In engineering, cost is commonly equated with value
added. From an economics point of view, software development is an
investment activity, and as such, the ultimate goal of a software process is to
create maximum value for any given investment (Boehm & Sullivan, 2000).
The difference between cost and value is best pronounced in a strategy
targeting a dynamic marketplace, though there are more dimensions to it. Most
software cost estimation models are calibrated to a minimal cost strategy, which
does not include the time-to-market force. A software product produced at a
minimal cost and brought to a competitive market three months after the
competitor’s analog has no value added, but possibly value destroyed. In other
words, minimal cost is not equivalent to maximal value, because minimal cost
captures only the direct cost of resources (e.g., time and money) spent on a
project, without considering the opportunity cost of delay.

Abstraction

Russ and McGregor (2005) observe the trend toward strategies that make it
possible to reason about development issues in terms of business goals. In
xUML, developers model the semantics of a subject matter without any
concern about the implementation details of the targeted platforms. The
higher level of abstraction of executable domain models free of platform-
specific detail brings closer software process, end product, and business goals.
As a consequence, development concerns can be abstracted and mapped to
business goals.

100 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Macroeconomic Context

Both legacy and new software systems are rarely based on maintainable and
scalable architectures. Design for change is a value-maximizing strategy only
when changes can be anticipated correctly or development is not time-
constrained. The question is, should one design for change if doing so would
delay bringing a product to a competitive market or make a product expensive?
In other words, a non-maintainable or non-scalable architecture might be the
result of a value-optimal strategy compatible with the market force pushing for
lower software development costs and shorter development lifecycles.
Figure 3 shows how code complexity grows over time (Bettin, 2004). From a
certain point on, the aging takes its toll and a small requirements change entails
disproportionate code complexity. From that threshold on, it is economically
justified to scrap the system and to build or acquire a new one.
With MDA, the problem of change management in development and mainte-
nance is alleviated because of the formally defined “trace” relationships among
modeling and software artifacts, coming in the form of formally defined mapping
functions. MDA pushes the threshold point forward in the future for two
reasons: 1) technological changes do not affect the core domain models; and
2) requirements changes are handled at a higher level of abstraction, and due
to the formal <<trace>> relationship, their impact is easier to assess.

Microeconomic Context

Henderson-Sellers (1996) and Bettin (2004) observe that software quality
degrades faster when software is treated as capital cost—that is, maintenance
only delays the inevitable obsolescence (see the Quality trend line in Figure 3).
This view is incompatible with incrementally building software assets reused
across a large number of enterprise applications, software assets whose value
appreciates rather than depreciates (Bettin, 2004). In general, building soft-
ware assets is a long-term investment strategy and must be carefully planned to
ensure return on investment. Since xUML leverages domain-specific knowl-
edge captured in executable domain models, strategic software assets are built
at no extra cost. More importantly, the executable models acquire lasting value
and become business assets because they are not byproducts of writing code,
but they are the code. Furthermore, executable domain models do not

MDA Design Space and Project Planning 101

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

degenerate into liabilities over time because they are aligned with the business
processes of the enterprise (Bettin, 2004).

Strategies

We consider the impact of xUML on two widely practiced strategies for
software development.

Outsourcing Strategy

Outsourcing is a product development strategy aiming at reduced production
cost. With this strategy, product design is delegated to a team in a region where
costs are favorable for the outsourcing client. Apart from the issue of intellectual
property, the outsourcing strategy hangs on a balance between the cost of in-
house training, expertise, and availability of human resources, and the inability
of outsourcing suppliers to interact with clients. Depending on the conditions,
outsourcing may increase or decrease the time required to bring a product
to market. The isolation of the implementation partners and the concomitant
poor communication may preclude the use of evolutionary process models
in the entire lifecycle and impose a more rigid, waterfall-shaped process model.
Russ and McGregor (2005) report a case study, where a two-phase waterfall
model is combined with mini-iterations at phase level. The lack of clear

Figure 3. Rate of code complexity over time

c om p lexity

tim e (years)

����������	

���
����	�

qua lity deg r adation

����

���
����	�

����������	

����

�����	�

102 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

communication calls for the use of a formal and rigorous notation to bring up the
information richness of the dialogue between the outsourcing clients and
outsourcing suppliers.
The analysis above suggests that an outsourcing strategy would benefit from the
formal and precise nature of xUML. A viable option is to carry out domain
partitioning and domain interface specification at the outsourcing client (onsite),
and then to communicate these models to the implementation partners to
develop the final product offsite.

Product Line Strategy

The product line strategy achieves strategically significant levels of reuse by
identifying common functionality among multiple products. The product line
strategy reduces the average time required to bring a set of products to market,
at the expense of the time required to develop the first products in the set.
xUML fits well within the thrust of the product line strategy. On the one hand,
the elevated level of abstraction makes it easier to modify the functionality of
the core executable domain models to manufacture customized products. This
ease of extensibility is combined with design (compiler) reuse. A single software
architecture can be applied to all products targeting a common platform. On the
other hand, an application can be translated to different platforms without any
changes to the application model.

Challenges

As with any approach, there are pros and cons to adopting MDA. Separating
application logic from software architecture facilitates portability and reuse of
domain, application, and design intellectual property embodied in executable
models. Though unlikely, these may come at the price of lower performance
and even at the price of increased complexity.

Concurrent Composition vs. Sequential Composition

In executable models, each object has its own FSM that defines its behavior.
The FSMs evolve concurrently, and so the actions of the procedures are

MDA Design Space and Project Planning 103

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

associated with the states of the different FSMs (unless, of course, constrained
by synchronization). The onus is on the developer to sequence the actions of
the different FSMs and to ensure object data consistency. The developer has
to prove that the system is deadlock free (bad things will never happen) and that
it is live (good things will eventually happen). The latter are the subject matter
of the theory of concurrency. We have not seen a single presentation on xUML
or MDA touching upon this issue.
Let us take as an example the composition of the innocuous state machines A
and B shown in Figure 4. The behavior of each FSM taken in isolation is easily
predictable. Composing the two, however, leads to a deadlock. A will wait
forever for B to generate event EventB(), and B will wait forever for event
EventA(). As a result of the composition, the modeler has to deal with the active
states of the two state machines—the distributed system state.
In programming, for example, concurrency is restricted to a small collection of
classes, instantiated usually from a catalog of concurrent design patterns (e.g.,
Lea, 1999). Alternatively, concurrency can be implemented as an aspect and
weaved with the application logic as a service, for example, concurrency
control in J2EE servers or in CORBA implementations. If we again compare
xUML to programming, we will see that in programming, the default compo-
sition of the behaviors of a pair of objects is sequential, whereas in xUML
models it is concurrent. Even though a concurrent composition has multiple
advantages, such as effective mapping to different hardware architectures,
better performance, and faithful representation of concurrent business pro-

Figure 4. Deadlock

Init
entry/

Yellow
entry/
generate eventA to B;

eventB()

Init
entry/

Yellow
entry/
generate eventB to A;

eventA()

104 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cesses, verifying concurrent systems through simulation and testing alone is far
less effective than doing so with sequential systems.

MDA Modeling Skills

The success of a software project depends on a synergy of soft and hard design
techniques. System analysts working with customers and end users acquire
expertise in the “soft” side of systems development. These skills are important
because software systems are social systems, built for humans by humans.
System analysts, in general, lack training in formal methods, and in particular,
in the theory of concurrency. Formal methods, the “hard” part of system design,
are typically mastered by computer engineers, who, on the other hand, are not
versed in soft methods.
The origins of xUML, and the background of its creators, for that matter, can
be traced to the realms of real-time systems, computer engineering, and formal
models. This is indicative of the skills, rigor, and discipline required from xUML
modelers. MDA demands from developers both “soft” and “hard” thinking, as
this approach blurs the boundary between analysis and design. In MDA, it is
more appropriate to speak of analysis/design models rather than just analysis
models.
Not surprisingly, activity models are not among those commonly employed in
MDA. Activity diagrams lack rigor, and they do not relate seamlessly to the rest
of the UML modeling languages. This contradicts the idea of transformational
development. However, activity diagrams are beneficial in business modeling.
They capture in an intuitive way the business processes in an enterprise. Is there
another rift here between “soft” and “hard” approaches?
According to Booch (2004), it takes as little as two months of on-the-job
training and formal guidance to adopt the MDA approach. This time is certainly
not more than what is required with any breakthrough technology. Booch also
maintains that the learning curve for MDA is not steeper than that of UML. We
would have agreed if there were no issue with concurrency and mathemati-
cal rigor.

Model Executability and Testing

The value of model simulators is in proving logical correctness. Since simulators
do not test the real system, testing has to be done twice, once at model level

MDA Design Space and Project Planning 105

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and once at code level. Further, since simulation is not carried out in the target
environment, its results have limited merit. On the upside, once a model
compiler is acquired, the system code can be generated instantaneously, and
tested and debugged in the real execution environment.

Conclusion

In this chapter, we analyzed how MDA and xUML change the software design
space and project planning. We also discussed the difficulties that MDA
adopters are likely to encounter in the transition to this new software develop-
ment methodology.
MDA differentiates clearly between building abstract domain models and
designing software architectures. The model-driven development makes pos-
sible the large-scale reuse of application models and software architectures,
and allows for inter-domain concurrency and compression in the software
development lifecycle. In addition, MDA automates all repetitive tasks in
software development.
The cost of developing and maintaining systems with xUML is significantly
lower. Once the models are constructed, they have greater longevity than code
because they evolve independently of other models, in synch with the evolution
of the enterprise business process.
The MDA approach is a nice fit for designing systems that are expected to have
a long lifetime—that is, for lasting software assets. xUML is instrumental in
preventing fast architectural degradation in large-sized systems and in building
product lines producing families of sustainable software assets using highly
automated processes.
By raising the level of abstraction of the software design process, MDA
improves communication among stakeholders. The MDA approach aligns
well with the business strategy and the micro- and macro-economic
contexts, in which software products are being developed.
However, precise modeling, concurrency issues (synchronization, deadlock,
liveness, boundedness, livelock), complex object model, and model-manipu-
lation programming impose demanding requirements on developers. To meet
these requirements, modelers need to acquire both higher-order analytical
skills, technical skills, and skills in formal methods. This is not something to be

106 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

underestimated. We spotlight system analysts’ lack of expertise and experi-
ence in formal design as a major impediment toward the fast adoption of xUML.
We see Domain-Specific Languages (DSLs) as a technology holding out a
great promise to automate software development and overcome UML defi-
ciencies in the areas of requirements engineering and initial systems analysis.
DSLs are modeling languages targeting a particular technological domain or
problem: for example, accountants use spreadsheets (not OO modeling) to
express their accounting artifacts. DSLs bridge the gap between business and
technology. In this area, the challenge ahead is the development of DSL models
that naturally fit within their respective domains. The MDA framework can be
used to define DSLs and to serve as a backbone holding together DSLs,
product lines, and evolutionary agile processes. In this way, DSLs can become
a viable alternative to UML modeling, addressing the needs of specific
technological domains.

References

Agile Alliance. (2001). Agile Alliance manifesto. Retrieved from www.aanpo.org
Beck, K. (1999). Extreme programming explained: Embrace change.

Reading, MA: Addison-Wesley.
Bettin, J. (2004). Model-driven software development: An emerging paradigm

for industrialized software asset development. Retrieved from http://
www.softmetaware.com

Boehm, B., & Sullivan, K. (2000). Software economics: A roadmap. In
Finkelstein (Ed.), The Future of Software Engineering, International
Conference on Software Engineering, Limerick, Ireland.

Booch, G. (2004). MDA: A motivated manifesto? Software Development.
Retrieved from www.sdmagazine.com

Douglas, B. (2004). Real-time UML (3rd ed.). Boston: Addison-Wesley.
ePanel. (2003). Panel on software inspections and pair programming. Re-

trieved from www.cebase.org
Garlan, D., Allen, R., & Ockerbloom, J. (1994). Architectural mismatch: Why

reuse is so hard. IEEE Software, 12(6), 17-26.

MDA Design Space and Project Planning 107

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gilb, T., & Graham, G. (1993). Software inspection. Reading, MA: Addison-
Wesley.

Hardin R., Har’El, Z., & Kurshan, R. (1996). COSPAN. Proceedings of
CAV’96 (LNCS 1102, pp. 423-427).

Henderson-Sellers, B. (1996). Object-oriented metrics, measures of com-
plexity. Englewood Cliffs, NJ: Prentice-Hall.

Jacobson, I. (1992). Object-oriented software engineering: A use case
driven approach. Reading, MA: Addison-Wesley.

KC. (2004). iUML. Retrieved from www.kc.com/MDA/xuml.html
Kiczales, G. (1996). Aspect-oriented programming. Computing Surveys,

28(4), 154.
Kruchten, P. (1995). The 4+1 view model of software architecture. IEEE

Software, 12(6), 42-50.
Kruchten, P. (2000). The Rational Unified Process: An introduction.

Reading, MA: Addison-Wesley.
Mellor, S. (2002). Make models be assets. Communications of the ACM,

45(11), 76.
Mellor, S.J. (2004). Agile MDA. Retrieved from http://www.omg.org/agile
Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (2004). MDA distilled. Boston:

Addison-Wesley.
Mellor, S.J., & Balcer, M.J. (2002). Executable UML: A foundation for

model-driven architecture. Boston: Addison-Wesley Professional.
Ossher, O., & Tarr, P. (2001). Using multidimensional separation of concerns

to (re)shape evolving software. Communications of the ACM, 44(10),
43-50.

Paulk, M., Curtis, B., Chrissis, M., & Weber, C. (1993). Capability maturity
model, version 1.1. IEEE Software, 10(4), 18-27. Retrieved in 2004
from www.sei.cmu.edu

PT. (2004). Project technology. Retrieved from www.projtech.com
Russ, M., & McGregor, J.D. (2005). Management planning in a changing

development environment. In B. Roussev (Ed.), Management of the
object-oriented software development process. Hershey, PA: Idea
Group Inc.

108 Roussev

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML. (2004). Unified Modeling Language. Retrieved from www.uml.org
UML AS. (2001). UML actions semantics. Retrieved from www.omg.org
Warmer, J., & Kleppe, A. (1998). The Object Constraint Language:

Precise modeling with UML. Reading, MA: Addison-Wesley.

Agile Outsourcing to India: Structure and Management 109

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Agile Outsourcing
to India:

Structure and
Management

Boris Roussev
University of the Virgin Islands, USA

Ram Akella
University of California, USA

Abstract

The combination of low labor costs, technological sophistication, project
management skills, and successful software establishment makes India a
particularly attractive location for software production outsourcing.
Furthermore, in most situations, information and communication
technologies render virtual presence practically equivalent to physical
presence, thus enabling effective communication and cooperation in a
distributed mode. This chapter introduces a project structure creating
agile conditions for large outsourcing software projects. The agility
advantage is achieved by scaling down a large project into a number of
small-sized projects working in agile settings. We divide the work into
R&D activities, located onsite, and production activities, located offsite.

110 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The proposed approach makes Agile applicable to the stressed condition
of outsourcing environments without compromising the quality and the
pace of the software development effort. Creating a context congenial to
agile methods hinges on maintaining a good balance between the functions
and sizes of onsite and offsite teams, on redefining the developers’ roles,
and on reorganizing the information flow between the different development
activities to compensate for the lack of customer onsite, team co-location,
and tacit project knowledge.

Introduction

We live in a digital world, where any activity not requiring a “physical presence”
can be outsourced to any place that is connected. Even the term “physical
presence” comes with a qualification. Information and communication tech-
nologies (ICTs) enable cooperation in a distributed mode. Technologies, such
as groupware and video-conferencing, are increasingly becoming feasible for
organizations to use in international projects. In addition, these technologies are
changing the way we perceive presence and absence. The largely digital nature
of software development allows changing its geography of provision. Advances
in ICT have been essential for loosening the spatial constraints on software
development.
The combination of low labor costs, technological sophistication, project
management skills, and successful software establishment makes India a
particularly attractive location for software production outsourcing. From
1996-1997 to 2003-2004, the export software sales of the Indian IT industry
had an average annual growth rate of 38.7% to reach a total of US$12.2 billion
in 2003-2004 (Nasscom, 2004).
Even though India has had a qualified labor pool and the enabling technologies,
along with the great pressure exerted on firms in developed nations to lower
costs, the Indian software industry still operates in the low value-added
segments, typically in applications development, testing, and maintenance,
while the high-end work, such as developing the IT strategy, building the
software architecture, designing the system, integrating the project with enter-
prise packages, and designing custom components are all discharged by firms
in developed countries (Dossani & Kenney, 2003).

Agile Outsourcing to India: Structure and Management 111

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Agile methods (Beck, 1999) are popular software development processes
designed to be used on small- to mid-sized software projects. The Agile
movement started in the mid-1990s. The first major project to apply an agile
method was the Chrysler Comprehensive Compensation system, a payroll
system developed in 1996. This method, called extreme programming, was
described in Beck (1999) and became the foundation for the Agile Alliance
Manifesto (Agile Alliance, 2001).
Agile methods are based on the notion that object-oriented software develop-
ment is not a rigidly defined process, but an empirical one that may or may not
be repeated with the same success under changed circumstances.
Agile methods are based in four critical values—simplicity, communication,
feedback, and courage—informing a set of key practices (Pollice, 2004),
which will be considered later on. Boehm and Turner (2004) define agile
methods as “very light-weight processes that employ short iterative cycles;
actively involve users to establish, prioritize, and verify requirements; and rely
on tacit knowledge within a team as opposed to documentation.”
Many of the agile practices are incompatible with the context of outsourcing,
for example, customer onsite, team co-location, short lifecycle, and embracing
change. But above all, agile methods can be applied only to small-sized
projects.
In the past, there have been several attempts to reproduce the conditions for
agility in large-sized projects. To the best of our knowledge, no such attempt
has been made for outsourcing projects. Pollice (2001), Evans (2004), and
Boehm and Turner (2004) propose to scale up agile methods by balancing
agility and discipline. Pollice and Evans, for instance, look out for common
grounds between Agile and RUP (Jacobson, Booch, & Rumbaugh, 1999),
while Boehm and Turner try to get the best of both agile and plan-driven
(waterfall) worlds. In contrast, Kruchten (2004) proposes to scale down large
projects to meet the Agile “sweet spot,” based on experience reported in
Brownsword and Clements (1996) and Toth, Kruchten, and Paine (1994).
In this chapter we show how to reengineer large-sized (and small-sized)
outsourcing projects to benefit from the “sweet spot” of Agile, while avoiding
its “bitter spot.” The proposed approach makes Agile applicable to the
stressed condition of outsourcing environments, without compromising the
quality of the software development effort. Creating a context congenial to agile
methods hinges on maintaining a good balance between the functions and sizes
of onsite and offsite teams, on redefining the developers’ roles, and on
reorganizing the information flow between the different development activities.

112 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The rest of the chapter is structured as follows. First, we examine the state of
the Indian software industry and show the problems experienced by Indian
software suppliers. Next, we present the structure of the Agile outsourcing
project, customized to the needs of the Indian outsourcing context. We then
elaborate the inception and architectural activities, giving enough detail of how
large-sized projects can be decomposed to a number of relatively independent
agile projects and showing how the resulting builds are integrated. A discussion
of many of the issues likely to be faced by Indian suppliers when applying the
proposed approach follows, and the final section concludes and outlines plans
for future work.

Outsourcing to India

Brief History

The genesis of outsourcing to Indian software firms can be traced back to the
1970s. By the late 1990s, India had become a leading supplier of contract
software programming due to its combination of skilled, low-cost labor and
project management skills (D’Costa, 2003). Indian software firms such as
HCL, Infosys, and Wipro have become globally competitive. Further, their
interaction with the global economy has contributed to the development of
executive and managerial talent capable of securing overseas contracts,
managing the interface with foreign customers, and migrating software devel-
opment activities across national and firm boundaries.
Multinationals in developed countries and domestic firms quickly understood
that there was a significant opportunity to undertake labor-cost arbitrage
offshoring to India and moved, beginning in the 1990s, to establish Indian
operations. Because the economics were so compelling, Indians living in the
U.S. and the UK soon followed suit by establishing outsourcing firms in the U.S.
and the UK, respectively, which discharged the work to India.

Drivers

The foremost reason for outsourcing is the potential cost savings, with quality
commensurate or even better than that currently provided by the developed

Agile Outsourcing to India: Structure and Management 113

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nation software developers. India-based outsourcers estimate that, in general,
savings on a given activity would have to be at least 40% to make the relocation
worthwhile (Dossani & Kenney, 2003). We group the rest of the drivers for
outsourcing into technological and economic.
During the last decade, the cost of data transmission has dropped by more than
50%. The lowered telecom costs make it feasible to undertake even commu-
nication-intensive tasks outside of the U.S.
Another technological enabler is the ongoing revolution in the world of
documents. Today’s industrial-strength scanners digitize documents at the rate
of 400 pages per minute. The digitized documents can be viewed anywhere in
the world on a computer with a high-speed connection.
The last technological development we would like to consider is the wide-
spread use of standard software platforms in corporate information systems,
for example, database systems and ERP systems. Standard software platforms
facilitate outsourcing since domain knowledge becomes uniform and transfer-
able across industries, or branches thereof. This means that employees ought
to acquire only standard, portable skills, thus lessening risks for both suppliers
and clients.
Technology is necessary, but not sufficient to convince companies that they
should outsource software development to India. Clients need assurance that
the process would not be to their detriment and would bring in good return on
investment. India has a very successful software establishment, with a proven
track record in satisfying international customers in the area of application
programming and maintenance. This creates the necessary comfort levels in the
clients. The comfort-building process is assisted by the visible presence of large
multinationals like IBM, Dell, Microsoft, General Electric, and British Airways,
who have established Indian operations over the past years.
Another very significant factor driving software development outsourcing is the
profitability crisis in the developed countries. With revenues largely stagnant for
the last four years, firms are under intense pressure to cut costs while retaining
quality.

Analysis of the Indian IT Sector

In their analysis, Akella and Dossani (2004) divide the Indian software export
into two functional areas: services and products. The authors conclude that, in

114 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

countries like India, the ability to develop global (but not local) products is more
difficult relative to producing services. They observe that, in the Indian software
export, services dominate products, and also that services in particular are
supplied mostly to non-IT firms in the core, non-critical components of their
activities.
A second division is between serving clients from the IT sector and clients
outside the IT sector. The ratio between the two sectors offers an insight into
the maturity of a software industry: the greater the numbers and the greater the
relative weight for the non-IT sector, the more mature the software industry is.
Akella and Dossani classify the Indian software industry output into the
following nearly exhaustive list of categories: 1) Web-based support; 2) data
processing and management; 3) embedded software; 4) maintenance and
legacy systems; and 5) application software development and maintenance.
The complexities of the activities involved in all five categories fare low in the
complexity pyramid of labor, as shown in Figure 1. Moreover, all five
categories predominantly serve clients from the IT sector.
Both IT and non-IT client activities can be divided into core and non-core on
the one hand, and critical and non-critical on the other hand. Core activities are
manufacturing and engineering services that differentiate a firm from its com-
petitors, and they are key to its continued growth. Non-core activities are the
firm’s non-competitive services, such as payroll and human resources. The
boundary between core and non-core is not clearly cut. Within both core and
non-core activities, there are activities crucial to their functioning, termed
critical activities.

Figure 1. Activities and pyramid of labor

�����������	�
��
������

����

���	�

���
�

�
����

�
��������	�
�������

�
����
���

����

�����
����

�������������

��

	��������
�

���
��������

���

�
�
��

��

�

�

�
��
��	������������
������

�����
��

��
�
�

Agile Outsourcing to India: Structure and Management 115

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

From Indian suppliers’ point of view, non-core and non-critical activities are
the easiest to obtain because they tend to be the most standardized across
industries, and clients are most willing to outsource them because they do not
involve knowledge transfer. Indian suppliers commonly work on applications
at the next more difficult level—core, non-critical activities, and rarely on core,
critical activities (Akella & Dosssani, 2004).

Strengths of Indian Software Firms

The substantial share of services provided to non-IT clients suggests that Indian
firms have expanded their project management capabilities and started to
acquire domain knowledge. This could explain the trend of moving away from
consultants to direct supplying of end users.
The resource of skilled and motivated people is the most important component
of any project. The level of experience and educational qualification of staff at
Indian software firms is commensurate to that of most developed countries. The
major Indian corporations, for example, are overwhelmingly qualified for ISO
9001, a European standard on quality assurance, and most of them have SEI/
CMM certification with a high average score of 4.2 (out of 5) (Nasscom,
2004). SEI/CMM is the Carnegie Mellon University-based Software Engi-
neering Institute’s Capability Maturity Model (Paulk, Curtis, Chrissis, &
Weber, 1993).
Availability of skilled workers is complemented by a rising supply of CS/EE
graduates, which was expected to reach about 99,000 new graduates in 2004-
2005 (Nasscom, 2004). Furthermore, Akella and Dossani’s study implies that
Indian suppliers have the skills to manage projects remotely.
It has been observed that the ratio of onsite/offsite workers increases with firm
size. This trend reflects the growing capabilities of larger Indian firms to provide
more sophisticated consulting services. The approach proposed in this work
relies on an increased onsite presence.

116 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Outsourcing Software Development Activities

What Can Be Outsourced?

When the software development process is considered in its totality, it appears
to resist relocation because software production requires face-to-face
interactivity with clients (and among co-developers), for example, user require-
ments elicitation and testing. The development workflow has to be parsed into
activities requiring different levels of interactivity, and the less client-communi-
cation-intensive activities can be potentially outsourced.
The software complexity chain is frequently described as a series of processes,
each of which is less complex than the earlier one. The initial processes are less
labor intensive than the later ones. The complexity of a process is roughly
inverse-proportional to its labor intensity. The pyramid model in Figure 1
gradates the processes in terms of labor, complexity, risk, and communication
intensity.
Theoretically, outsourcing is possible for all the levels of the complexity
pyramid, but there are important differences of how outsourcing for each level
is likely to be implemented. The processes at or closer to the pyramid’s apex,
such as domain knowledge acquisition, architecture design, and technology
determination, are objectively more difficult to outsource.
Moving up the complexity pyramid entails establishing an intimate client-
supplier rapport and acquiring knowledge about the client’s core and critical
activities. The higher the pyramid level is, the more communication-intensive
the activities become, and the bigger the demand grows for domain, architec-
tural, and design knowledge. Adopting agile methods can help Indian suppliers
move up the “value chain” because agile methods address the issues enumer-
ated above.
Developing domain expertise, however, is difficult and risky because the firm
becomes dependent on a single industry sector or process. And yet, special-
ization offers the potential of finding a niche outside the ferocious competition
in highly commoditized sectors.
Smaller software firms are at a disadvantage because they lack domain skills
and acquiring domain knowledge may be risky. The step transforming the
business proposition from simple labor cost arbitrage to significant value
addition involves acquiring deep-enough domain expertise.

Agile Outsourcing to India: Structure and Management 117

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Interactivity

Interactivity always comes across as a stumbling block for outsourcing.
Interactivity has two dimensions—interaction among co-developers and inter-
action with clients. Requirements elicitation and acceptance testing are the
activities requiring the most active involvement on the part of the client, which
makes them impossible to offshore.
The greater the need of co-developers to interact across a set of different
activities of the software process, the higher the risk threshold of outsourcing
a subset of the activities is. Outsourcing the entire set of activities might be
considered as a way of retaining interactivity at the new location. But, if some
activities cannot be outsourced because that would disrupt the interaction with
the client, then outsourcing the others might need rethinking.

Savings from Concentrating Activities in One Location

Often, a number of teams distributed across multiple time zones and reporting
to different companies work on a large common project. There might be
different reasons for having multiple teams with an inefficient spatial posture
cooperating on a project. Most commonly, as companies expand, they
outgrow the local labor pools and must establish teams in other regions. It might
be too expensive to consolidate these teams in a single location in a developed
country, especially for multinationals (e.g., a company with teams in France,
Switzerland, Canada, and the Silicon Valley).
The advantages of concentration by relocating to India stem from the larger
team size, which relates to economies of scale, such as retaining interactivity at
the new location, standardized management practices, and tacit knowledge
dissemination. Furthermore, a larger team is likely to have experts with
precious domain knowledge in different industry sectors or technologies. In
addition, an outsourcing supplier could pool many clients’ businesses. A big
firm in India can offer guarantees of quality that smaller domestic software firms
could not match, owing to the larger labor pool and the division of labor.
For foreign equity participation companies (FEPs)—Indian firms whose for-
eign equity funding is 100%—the software development process can be
reengineered during the act of outsourcing, and inefficient and ineffective
practices can be easily abandoned. Very often such practices are legacies of

118 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

earlier methodologies, such as waterfall lifecycle, iteration planning, and
project controlling, that were not eliminated as the development process
evolved. As Arthur (1994) has observed, all too often processes evolve in a
path-dependent manner, which may not be the most efficient configuration.
These inefficiencies can be addressed during the transfer without disrupting
work patterns, since the developers at the new location would not have the
outsourcing company culture.

Rethinking of Earlier Cost-Benefit Decisions

The lower cost of more highly skilled personnel calls for rethinking of estab-
lished cost-benefit decisions. The much lower cost of software engineers in
India compared to the U.S. makes it possible to increase the density of software
inspections or to dispel managers’ doubts about the feasibility of pair program-
ming. Other activities that are candidates for reconsideration are regression and
integration testing, iteration planning, and metrics for tracking project progress.
In all of the above-mentioned practices, lower labor costs can change the
break-even point, and thus create new sources of revenue.
There may also be diseconomies of scale. There are quite naturally risks
associated with centralizing the development process at one location. The most
significant of these is the danger of losing touch with the national environment(s).
In this respect, the effectiveness of the communication process between
supplier and outsourcer is critical.

Problems Experienced by Indian Suppliers

The following issues are likely to have an impact on outsourcing. The major
challenge faced by Indian software firms is shortage of domain expertise in
some function areas. According to the Outsourcing Institute (2004), domain
knowledge and expertise are needed in subject areas that are new to India, such
as finance, insurance, healthcare, and logistics. However, Indian software firms
have acquired sufficient expertise in accounting and banking, which have
already been successfully outsourced to India. Maintaining a seamless relation-
ship between the outsourcing supplier and the outsourcing organization back in
the developed country is always a challenge.
The problems experienced by Indian suppliers can be “objective” or “subjec-
tive.” For instance, it is objectively difficult to communicate effectively with a

Agile Outsourcing to India: Structure and Management 119

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

remote client. The lack of expertise in project scheduling is, on the other hand,
subjective, particular because it is not universally true. More often than not, a
lot more could be done to alleviate the subjective problems rather than the
objective ones.
Outsourcing problems fall into three categories: 1) communication—relation-
ship with remote clients; 2) technical know-how—domain expertise, experi-
ence in building software architectures, design experience, and inadequate
quality thereof; and 3) management—project coordination and project sched-
uling.
In order to compete successfully on the global market for software products
and long-lasting assets (reusable domain solutions), Indian software firms need
to resolve the communication, technical know-how, and management issues
listed above.

The Agile Outsourcing Project

In this section, we present an agile method of software development geared
toward the context of outsourcing.

Core Agile Practices

Agile methods are iterative and incremental. In an iterative process, the
activities that were performed earlier in the process are revisited later.
Revisiting activities provides developers in areas such as requirements engi-
neering and software architecture with the opportunity to fix mistakes they have
made. The iterative model implies more interactions among the various man-
agement and technical groups. It is a means of carrying out exploratory studies
early on in a project when the team develops the requirements and discovers
a suitable architecture.
Some important agile practices are the following (Beck, 1999):

• Embracing Change: Respond to change quickly to create more value for
the customer.

120 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Fast Cycle: Deliver small releases frequently, implement highest priority
functions first, speed up requirements elicitation, and integrate daily.

• Simple Design: Strive for a lean design, restructure (refactor) the design
to improve communication and flexibility or to remove duplication, while
at the same time preserve the design’s behavior.

• Pair Programming: To quote from Beck, “If code reviews are good,
we’ll review code all the time.” With pair programming, two programmers
collaborate side by side at one machine. This quality control practice also
helps disseminate tacit knowledge among the team members.

• Test-Driven Development: Quality control technique, where a devel-
oper first writes a test, and then writes the code to pass that test.

• Tacit Knowledge: Preference for project knowledge in team members’
heads rather than in documents.

• Customer Onsite: Continuous access to a customer to resolve ambigu-
ities, set priorities, establish scope and boundary conditions, and provide
test scenarios.

• Co-Location: Developers and onsite customer work together in a
common room to enhance tacit project knowledge and deepen members’
expertise.

• Retrospection: A post-iteration review of the work done and work
planned. This reflective activity facilitates learning and helps improve the
estimates for the rest of the project.

The enumerated practices (or disciplines) vary with the method. The disciplines
can be divided into three broad categories: 1) communication, such as pair-
programming and tacit knowledge; 2) management, such as planning game,
scrums (short daily planning sessions, in which the whole team takes part), short
cycle, and frequent delivery; and 3) technical, such as test-driven design, simple
design, and refactoring. These categories correspond to the three groups of
problems experienced by Indian suppliers, as previously discussed.
The fast cycle of agile methods gives business stakeholders multiple and timely
feedback opportunities, which makes agile methods explorative (aid in archi-
tecture discovery and requirements verification) and adaptive to change. There
is a broad consensus that agile methods outperform other software develop-
ment methods for small projects in dynamic environments, such as in e-
commerce.

Agile Outsourcing to India: Structure and Management 121

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. Impact of agile practices on Indian suppliers’ concerns

What we see as a problem with all agile methods (e.g., extreme programming)
is that they do not provide guidelines for building high-quality software, which
is a natural consequence of their informal nature.
The feasibility-impact grid in Figure 2 shows how the core agile practices can
alleviate the Indian suppliers’ concerns.

Pr
ac

tic
es

\C
on

ce
rn

s

Domain experti
se

Architec
ture

Design

Sche
duling

Communicatio
n

Coordination

Quality

C
us

to
m

er
 o

ns
ite

√
√

Fa
st

 c
yc

le
√

√
√

√
Em

br
ac

in
g c

ha
ng

e
√

√
√

T
es

t-
dr

iv
en

 d
ev

el
op

m
en

t
√

√
Re

fa
ct

or
in

g
√

√
Si

m
pl

e d
es

ig
n

√
√

Re
tr

os
pe

ct
io

n
√

√
√

√
R

is
k

m
iti

ga
tio

n
√

Ta
ci

t k
no

w
le

dg
e

√
√

√
Co

-lo
ca

tio
n

√
√

√
Pl

an
ni

ng
 g

am
e

√
√

Sc
ru

m
s

√
√

Pa
ir-

pr
og

ra
mm

in
g

√
√

Im
m

ed
ia

te
 c

us
to

m
er

 fe
ed

b
ac

k
√

√
√

√

122 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Structuring the Agile Outsourcing Project

The main question we address below is how to reproduce the conditions ideal
for agility in an outsourcing project.
Even a quick look at the core agile practices above would reveal that some of
them are incompatible, while others are not entirely consistent with the context
of outsourcing, for example, customer onsite, co-location, short lifecycle, and
embracing change. Above all, agile methods can be applied only to small
projects.
Kruchten (2004) proposes to scale down large projects to meet the Agile
“sweet spot.” The author describes the organization of a large project as an
evolving structure, starting out as one, co-located team, which over time is
transformed to a team of teams (with a tree-like structure).
Kruchten suggests organizing the iterative process into four typical RUP
phases, as shown in Figure 3. Each phase shifts the focus of the development
effort onto a different activity. A phase consists of one or more iterations, where
iterations can be thought of as mini waterfalls.
The structure of the agile outsourcing project is based in Kruchten’s approach.
However, in an agile outsourcing project, the primary goal is not to slice a big
project into multiple agile subprojects (which might be required anyway), but
to outsource the project to one or more agile teams, which are co-located at
a remote site and share common culture and educational background.
The structure of the development process is illustrated in Figure 4. The phases
of the lifecycle are separated between “research and development” (R&D)
activities and “production” activities, as suggested in Royce (2002). R&D is
carried out onsite—close to the client—while production takes place offsite
(the supplier’s site). Elaboration is split between R&D and production. The two
new phases are called architectural elaboration and production elaboration.

Figure 3. Typical RUP phases of the iterative process

���
	���	��� ����
�	���

...�	������ �	�������

�������	���

...

����
	���

�	����� tim e

Agile Outsourcing to India: Structure and Management 123

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A team comprising requirements engineers and architects starts the develop-
ment process. Initially, this team focuses on the business case, vision, and
requirements. The team works closely with the client in a typical agile setting.
The team’s objective, however, is not to deliver executable code (a must in
agile methods), but to set up an architectural prototype, including prioritized
system-level use cases.
When the team has got enough clarity on key architectural choices, it can set
about building and testing an architectural prototype.
Towards the end of the architectural elaboration phase, when the architecture
stabilizes, additional teams are created offsite. Each new team is seeded
preferably with two members of the architecture team. For large projects, the
early architectural prototype is used to slice the project into smaller, consider-
ably independent agile projects. Each agile project “owns” part of the system
architecture.
The “seed developers” transfer domain expertise from the client to the
supplier’s site. The “seed developers” take on several roles. They lead the
teams, serve as local architects, act as customer surrogates, communicate with
the initial architecture team, and if necessary, communicate directly with the

Figure 4. Team structure of agile outsourcing

...

�����	���

...�	�� �!" �	�� �!#�	�� �$

���
	���	��� %���
�	���
�����	��	���

�
�&���	���

�����	��	����%���

'�����	����(�

�����
	���	���

%���

'�����	���

%��� ��	����	

��	����	�

��	����	

��	����	�

%����	�� �!� �	�� !�)$

*��
�	�*�
�	�

'�����	���

�
�&���	���

���

���

	���
����
���	�

++���,���
�--

��	����	����(

%�
	�%���

++���,���
�--

��	����	����(

%�
	�%���

����
����

124 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

client. This organization creates near-perfect conditions for agility in each
offsite team.
Each agile offsite team works on a subsystem and develops its detailed
subsystem use case model—hence the second elaboration phase, named
“production elaboration” in Figure 4.
For small projects, one offsite production team will suffice to develop the
complete code. For large projects, however, several production teams might
be necessary to do the job. In addition, one or more infrastructure teams must
be set up to develop common elements such as middleware, services, and any
reusable assets. The customers for the infrastructure teams are all other teams.
Thus, no matter how many teams are spawned offsite, they all work in agile
conditions, even though predominantly with customer surrogates.
It is important to use a common software tool to reduce the risk of miscommu-
nication, to track and communicate project requirements, to identify replicated
modules, to map test cases to requirements, and to successfully integrate the
outputs from the agile teams’ builds.
The context diagrams in Figure 5 model the environments in which the different
offsite teams operate. Note the dual nature of “seed developers.” On the one

Figure 5. Context diagrams for offsite teams

��������	
����

�����

����������

����
����	���������

����������	�����������

������������	����

����������	�����������

��������	
����

�����

��������������

����

����	���������

����������	�����������

������������	����

����������	�����������

����������	����

����������	�����������

(a) Production team

(b) Infrastructure team

Agile Outsourcing to India: Structure and Management 125

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

hand, a “seed developer” impersonates a customer, and on the other hand, he/
she is part of the team.
The interactions of offsite teams with the real customer are supposed to be
infrequent, and to be mediated by the “seed developers” and the architecture
team. For large projects, somebody needs to put together the builds delivered
by the production and infrastructure teams, and to test the assembled system.
This job is assigned to the Integration & Test Team, or integration team for
short. The testing engages the client so that the client’s feedback situates the
project and steers the future effort.
The problem with the integration team is that it gets input from the offsite teams,
but receives feedback from the client. Normally, the input and the feedback are
coming from the same place—the customer. To account for this anomaly, we
split the integration team into two teams, one located onsite and the other offsite
(see Figure 4). Both integration teams derive directly from the initial architec-
ture team. This guarantees that the developers in charge of integration and
testing thoroughly understand the client’s needs.
A sore issue stemming from the proposed organization is that of fault propaga-
tion. For example, a defect committed by one of the production or infrastruc-
ture teams can propagate through the integration process before the client
detects it. Owing to the late stage of its detection, isolating and removing such
a defect is expensive.
We have provisioned for two floodgates preventing fault propagation: 1) the
“seed developers” in each offsite team; and 2) the test engineers in the
integration team. Since they all come from the primary architecture team, it is
very likely that they would be able to detect many of defects, which are normally
revealed with help from customers.
The only two teams operating in non-agile, but still iterative and incremental
mode, are the onsite and offsite integration teams.
The iterations (heart beats) of both the agile and integration teams can be best
illustrated with the dual beat structure shown in Figure 6. Striking a balance
between the lengths of the agile and integration iterations is the underlying
objective of the management team.
The management team, composed of all local team managers, is led by the
managers of the integration teams. We do not show the management team as
a separate box in Figure 4 because management is thinly distributed across all
teams.

126 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Since all offsite teams reside in the same country, and most probably in the same
city, say Bangalore, there are no cultural differences to overcome, and
communications among production, infrastructure, and integration teams are
not as ineffective as they are with geographically distributed teams. The
management team is in a favorable position because good communication is a
prerequisite for effective coordination.

Activities and Workflow

In this section, we give more detail about the activities in an agile outsourcing
project, as well as their workflow and information artifacts. We focus on
inception, architectural elaboration, and production elaboration because they
are critical to creating the agile contexts for the offsite teams.

Inception Phase

During inception, the emphasis is on the user requirements. A user requirement
is a specification of what the system must do. As user requirements are elicited,

Figure 6. Nested iterations

Agile team iteration:
week to a month

Integration (project) iteration:
1 month to 6 months

Agile Outsourcing to India: Structure and Management 127

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

they are organized into use cases. Very briefly, use cases are dialogical
descriptions of system usage. By coalescing related transactions and scenarios
into identifiable chunks, use case models focus on the dynamic behavior of a
system at a macro level.
Use case descriptions can smoothly scale to large and small systems alike. They
promote refinement and traceability from system-level usage goals down to
low-level (subsystem, component, and instance) usage goals. Use cases are
sufficiently flexible to be used in highly iterative and incremental development
environments, as the one proposed in this work.
If a system consists of several subsystems, use case analysis can be applied
recursively to the subsystems as well. This defines clearly the requirements and
responsibilities of each subsystem. Subsystem-level use cases are derived from
the system-level use cases and the system architecture (the architectural
decomposition of the system into subsystems).
A system is decomposed into subsystems of related use cases, for example, use
cases linked by <<include>> and <<extend>> dependency relationships or
use cases sharing common actors. The <<include>> relationship is used to
extract out a coherent part of a use case, typically for the purpose of reuse. It
can also be used to decompose a system-level use case into part use cases to
be realized by different subsystems.
The following technique is helpful in mapping a system-level use case to two or
more subsystem use cases. The high-level use case is decomposed into a
partially ordered set of activities on an activity diagram, where the different
subsystems are modeled as swim lanes. Concurrent activities can be mapped
to different swim lanes. Each such activity forms a subsystem use case. The
actors of the subsystem use cases may be the original actors or other
subsystems.

Architectural Elaboration

The onsite team carries out the architectural elaboration. The goals of the
architecture team are to partition the system into multiple semantic domains
centered around different subject matters, to define the architectural decompo-
sition of the system into subsystems, and to map system-level use cases to
subsystem use cases.
The architecture team defines the model organization of the system being
developed, and thus determines the allocation of jobs to teams. Appropriate

128 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

model organization would allow teams to work effectively on a common
project. The two main issues in model organization are how to allow different
teams to reuse parts of the projects they do not “own” and how to efficiently
implement a build process.
A UML package is a container for modeling elements, and as an organizational
unit, it is a natural choice for a configuration item (CI) (a piece of ownership)
in a configuration management (CM) tool. A package defines a namespace for
the modeling elements it contains. Since UML offers no guidelines as to what
constitutes a package, the question is what modeling elements should go into
one package versus another.

Domain Modeling

A domain is a subject area with a shared vocabulary (Mellor & Balcer, 2002),
for example, user interface (UI) or payment transaction management. Each
domain contains many classes organized around a single subject matter. Most
domains require specialized expertise, such as experience and knowledge in UI
design or in payment transaction management. It makes sense to allocate the
modeling of a domain to a developer with domain knowledge in that particular
subject area.
Since a domain model captures precisely the conceptual entities of a single
subject matter, it can be said that domain models are logical models. Logical
models are in sharp contrast to subsystem models, which are pieces of the
physical system. Typically, a physical subsystem is constructed from instances
of several logical models. For example, a collaboration realizing a system-level
use case would involve instances from a UI domain, a business logic domain,
a transaction management domain, a persistent storage domain, and a security
domain.
At first, it might seem that domains add yet another concern to a software
development initiative, but it is all about economic numbers. Constructing
domain models reduces production cost by simplifying the development
process and by improving product quality.
The underlying philosophy is that a domain-specific model captures precious
domain knowledge (e.g., persistence). Domain modeling leverages scarce
domain knowledge normally limited to very few team members and shields the
rest of the team from the domain implementation detail. For example, to make

Agile Outsourcing to India: Structure and Management 129

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

an object persistent, a developer needs only to mark its class or one of its
attributes as persistent, and a persistent software entity is automatically
generated at compile time. The result is a simplified development process,
where only a few developers need detailed knowledge about domain techni-
calities.
Henderson-Sellers (1996) and Bettin (2004) observe that software quality
degrades faster when software is treated as capital cost (i.e., maintenance only
delays the inevitable obsolescence). Treating software as capital cost is
incompatible with incrementally building software assets1 and strategic soft-
ware2 assets reused across a large number of enterprise applications, software
assets whose value appreciates rather than depreciates. Since domain model-
ing leverages domain-specific knowledge captured in the form of domain
models, strategic software assets are built at no extra cost. Domain models do
not degenerate into liabilities3 over time because they are aligned with the
business process architecture of the enterprise and they have the potential to
achieve mass customization4 (Bettin, 2004).
Domains, unlike objects, are not elemental, but just like objects they are
cohesive. The classes and components in a domain are tightly coupled and
interdependent, and yet the domain is autonomous—its classes and compo-
nents are decoupled from entities lying outside the domain boundary. Once
constructed, domain models have greater longevity than an application because
they evolve independently of other domain models out of which the application
is built; that is, they become corporate assets and the biggest units of reuse.
Companies want to be able to adapt their software systems to the constantly
changing business environment with minimum effort. It is easy to cope with the
intra-domain effect of a change because the domain model naturally fits to the
domain’s subject matter, and the effect of the change is expressed in the
language of the domain (i.e., in familiar domain concepts). The latter taken to
the extreme is called end user programming. This scenario works only if no
changes are made to the modeling notation. Changing the modeling notation
leads to domain engineering and software product line engineering (SEI, 2004).
Domain modeling also alleviates the problem with the inter-domain effect of a
change. The semantic autonomy of each domain implies that a domain can be
replaced by another one using different conceptual entities or different imple-
mentation without affecting the application.
Domain modeling is a pragmatic approach that avoids heavy up-front invest-
ment and long-term design degradation (Bettin, 2004). It provides an incre-

130 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mental path of building sustainable domain-specific assets. Software products
built out of domain models are not liabilities designed as one-off systems.5

Partitioning the project into domains promotes the development of domain
models, with externalized interface definitions serving the goal of active
dependency management. This is especially true for a domain model that has
been developed by domain experts over several years. The market for such
software assets has not matured yet, but it is projected to grow up (Booch,
2004; Mellor et al., 2004).

Structured Classes, Subsystems, and Components

In UML2.0, developers represent the containment hierarchy of a system
through structured classes. A structured class may contain internal structured
classes and instances, each of which may be further decomposed into struc-
tured classes and instances, ad infinitum.
The concept of a structured class is based on decomposition and encapsula-
tion. The parts contained in the structured class define the decomposition
aspect. Of course, the structured class is more than a simple container for the
parts. A structured class has parts connected with connectors, publishes
services via provided interfaces, provides runtime connections via ports, and
imposes demands on other structured classes (servers) via required interfaces.
Components are structured classes constituting the primary replaceable units
of software. In addition, components have an <<artifact>> section used mainly
to specify a unit of deployment, such as a .dll file (dynamic library).
In UML 2.0, a subsystem is defined as a subordinate system within a larger
system. The subsystems define the large-scale physical architecture of the
system. Subsystems are specialized components (i.e., structured classes) used
to decompose a system into parts. A subsystem has one compartment for its
specification and one compartment for its realization. Either or both of these
compartments could be empty or omitted. Developers can use ports and
interfaces to show how subsystems relate to other subsystems. The compo-
nents and objects within a subsystem cooperate to realize a common set of use
cases. Ports and interfaces aid in encapsulating the subsystem’s internal
structure.

Agile Outsourcing to India: Structure and Management 131

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Model Organization

Use Case-Based Model Organization for Small-Sized Systems
For small-sized systems, the package structure can be organized by use cases.
The system model is divided into packages of related use cases. This model
organization is straightforward and allows tracing requirements easily to model
elements. The downside of the use-case-based model organization is that it
does not scale up well and encumbers reuse. Developers are forced to reinvent
similar classes in different use case collaborations.
A quick remedy is to add a framework package for common elements such as
usage points (services) and extension points (classes to subclass in use case
packages). Regardless of this remedy, the use-case-based model organization
still works well only for small-sized systems. Identifying commonalities in large
systems leads to an explosive context and inter-team communication growth.

Domain-Based Model Organization—Large-Sized Systems
We propose to derive the package structure and contents for large-sized
systems from the requirements model, the architecture model, and the domain
model. The top-level packages of the domain-based system model are:

• System use cases and actors package
• Domains package
• Infrastructure package
• Subsystems package
• Builds package

The system use cases package contains system-level use cases and their actors.
The domain package has one sub-package for each domain.
The infrastructure domain is a special type of domain. Infrastructure domains
contain services and extension points for system communication and infrastruc-
ture, and they are dependent on the selected implementation technology (e.g.,
RMI/J2EE or CORBA). The infrastructure package contains one sub-package
for each infrastructure domain. An infrastructure domain evolves into a self-
contained subsystem package, which is assigned to an infrastructure team.

132 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Several production teams may use the classes and components, realizing the
services of the infrastructure package.
Each subsystem package contains the classes and components of a subsystem,
the largest-scale pieces of system functionality. If any of the subsystem
packages is large enough, it can be recursively divided into sub-packages until
the size of the leaf packages becomes manageable. A leaf package is a unit of
ownership, such as a CI in a CM tool. A subsystem package normally refers
to classes of several domain packages.
The builds package is divided into sub-packages, one per prototype to allow
for easy management of incremental builds. This package also includes the
system test model, such as test cases, test procedures, and test scripts, along
with the drivers, stubs, and collaborations realizing the test model.
The domain-based model organization scales up well to large-sized projects
for three main reasons. First, subsystem package decomposition can be
applied recursively, resulting in subsystems realizing subsystem use cases.
Second, classes from different domains may be reused in different deployment
settings of the designed system, and third, domain models are assets that can
be reused across projects.
The following are the major problems teams may experience with the domain-
based model organization. Developers tend to blur the distinction between
domain models and subsystem models. There is an overhead associated with
maintaining two separate types of models: domain models (logical) and
subsystem models (physical).
If reuse is not a primary objective or if the system being designed is a small-sized
one, a use-case-based model organization might work better because of the
lower added overhead associated with model organization.

Production Elaboration

All strategic decisions for the overall organization structure of the system have
been made in the architectural elaboration phase. Production elaboration drills
down inside the subsystems to specify the semantic objects whose collabora-
tions deliver the system’s structure and behavior.
The demarcation line between architectural and production elaborations is the
divide between logical and physical models, and between system-level use
cases and subsystem use cases.

Agile Outsourcing to India: Structure and Management 133

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In production elaboration, the subsystem use cases are detailed and mapped
to collaborations of components and objects. The following technique can
assist in elaborating a system-level scenario. The developer starts out with the
high-level sequence diagram for the scenario, and then adds lifelines for the
instances of the identified classes. In this way, the developer can trace the
elaborated scenario back to the original one and verify the design. Communi-
cation diagrams are extensively used to represent the stabilized semantic object
structure. The measure of goodness at this level is benchmarked by whether the
architectural design can realize the usage scenarios defined at the system level.
The described approach scales up well to many levels of subsystem decompo-
sition. As mentioned earlier, the seed developers and production teams serve
as customer surrogates.
Next we show how packages are assigned to teams, for example, the
architecture team is in charge of developing the system use cases, and therefore
“owns” the system use cases package.

Packages Team
System use cases package Architecture team
Domains package Reused if already developed or assigned to

the architecture team
Infrastructure domain packages Infrastructure teams
Subsystem packages Production teams
Builds package Integration and test teams

Discussion

Challenges to Agile Outsourcing Projects

Managers of agile outsourcing projects ought to be aware of the following
challenges looming ahead.
The architecture team is the key to project success. It is of paramount
importance that this team be a good mix of requirements analysts and architects.
According to Akella and Dossani (2004), the total percent of technical staff in
Indian software firms is about 85% and of MBAs about 4.9%. In contrast, in
Silicon Valley, 28% of the Indian IT engineers have MBA degrees, which is a
significant comparative advantage. According to the same study, Indian
suppliers are mostly “pure-IT” firms, that is, they have limited domain knowl-

134 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

edge outside the IT sector, and the average percentage share of architecture/
technology consulting amounts to about 2.9%.
In this context, we see the formation of a balanced architecture team as a major
challenge to agile outsourcing projects, for members of this team elicit require-
ments, build the primary system architecture, and subsequently take the roles
of surrogate customers, local managers, integration and test engineers, and
communicate with the customer throughout the entire lifecycle.
Inter-team dependencies reduce teams’ abilities (especially affected is the
infrastructure team) to test code and deliver builds. Production teams should
provide early on the infrastructure team(s) with stubs, so that the work of the
infrastructure team(s) proceeds smoothly.
In large projects, it is difficult to balance teams’ workloads. Adaptive sched-
uling algorithms in grid computing have proven superior to static scheduling
algorithms (Blumofe & Leiserson, 1999; Roussev & Wu, 2001). We propose
employee stealing as an adaptive technique for load balancing. An overloaded
team (thief) picks up a victim team at random and tries to steal a developer from
the victim. If the victim is under-loaded, the stealing succeeds. Otherwise, a
new attempt to steal a developer is made.
The random choice of a victim team and a developer makes the technique
dynamic and adaptive. The geographical proximity of the offsite teams and the
agile method applied are essential prerequisites for employee stealing because
they facilitate fast learning.
Employee stealing is a knowledge dissemination technique, which can be
viewed as a generalization of pair programming and developer rotation in
extreme programming. Employee stealing may be applied as a routine practice,
even with balanced projects, in order to improve inter-team communication
and coordination, to arbitrate in problems straddling two teams, and to
preclude loss of common goal.
With multiple teams, there is always the danger of replicating functionality
across teams. The proximity and common culture of the offsite teams work
against the chances of duplicating functionality. The participation of the
members of the architecture and later integration teams in design reviews and
software inspections helps detect replication early. Employee stealing is
another effective mechanism to curb duplication.

Agile Outsourcing to India: Structure and Management 135

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Why Agility is the Right Path for Indian Suppliers

In his book Good to Great, Collins (2001) characterizes how self-discipline
and entrepreneurial agility contribute to greatness at the corporate level (see
Figure 7). Boehm and Turner (2004, p. 156) observe similarity between the
patterns of creativity at corporate management and in software development,
and apply Collins’ method for performing self-assessment to software organi-
zations.
Small Indian firms are mostly startup organizations, and agility improves their
chances of survival. Both foreign equity participation companies and major
Indian companies aim at the North-East quadrant in Figure 7, and therefore
agility will be instrumental in attaining their goals.
The rapid growth of Indian outsourcing suppliers has created a dynamic labor
market with a large demand for lead developers for new projects. The average
turnover level exceeds 15%. Suffice it to mention that in some cases contracts
have placed a liability on the supplier for certain levels of turnover in an attempt
to protect the interests of the client. Agile outsourcing could break the impact
of high turnover. Several core agile practices (e.g., preference for tacit
knowledge, pair programming, and retrospection), along with employee steal-
ing, allow new team members to be brought quickly up to speed.
Agile outsourcing could aid the transfer of domain knowledge to Indian
suppliers. With more domain knowledge and the pressing need to communicate
directly with customers, agile outsourcing would help organizations move
farther away from consultants to directly supply end users.

Figure 7. Good-to-great matrix of creative discipline

������������

	�
�����
���

���������
��

	�
�����
���

�
��
��

	�
�����
���

����

	�
�����
���

D
iscipline

A g ility

136 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The increased revenue per employee, arising from moving up the “value chain,”
could be partly offset by the increase in the onsite/offsite developers ratio. The
small agile team size would allow small and medium enterprises to catch up with
foreign equity participation companies and major Indian companies. As a
result, small and medium companies could directly participate in complete
service and product development.

Executable Domain Models

Below we discuss briefly executable domain models, which are believed to
become mainstream in the near future (Booch, 2004; Mellor et al., 2004).
Executable models are at the heart of the latest OMG initiative—the Model-
Driven Architecture (OMG, 2004).
When working on a model or part of it, a developer must be able to answer the
question, “Is this model correct?” Agile methods, through the “prove with code
principle” and fast cycle, answer this question almost instantaneously, hence the
shorter development times and the better customer satisfaction.
In our view, a problem with agile methods is the level at which the software
artifacts are tested. When a system is designed in UML, it has to be tested in
UML and not in the underlying source language. While, at times, it is necessary
to drill down to the lowest level of detail (e.g., to stress-test the build), the
majority of testing ought to be at model level, where the precious business logic
and knowledge are captured.
In order for a model to be testable, it has to be executable, which means that
the modeling language must have executable semantics. Executable UML
(xUML) is a UML profile with precise action semantics (AS, 2001) that allows
system developers to build executable system models, and then to map these
models using code generators to source code for a target platform (Mellor &
Balcer, 2002).
Executable domain models are expected to play an increasing role in software
production. Executable domain models fit naturally with the domain-based
model organization of agile outsourcing projects.

Agile Outsourcing to India: Structure and Management 137

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

In the late 1990s and early 2000s, agile methods took the imagination of
software developers by storm. This fact clearly indicates that heavyweight
methods have not been embraced wholeheartedly by developers and managers
alike, and are found either impractical or costly (or both) in many environments.
Driven by low labor costs for commensurate quality in India, and also by
stagnant revenues in developed countries, firms have been increasingly
outsourcing software production to India. In this chapter, we introduced a
novel project structure creating agile conditions for large outsourcing software
projects. The proposed structure is tailored to the needs of the Indian
outsourcing suppliers. Several assumptions make agile outsourcing Indian-
unique. First, we assume that there are large pools of qualified developers
residing in one geographical area and even in one city. Second, the outsourcing
country has grown a sustainable software industry that is supported by
advanced information and telecommunication technologies, and led by talented
managers, allowing it to secure large software projects.
We showed how to slice a large software project into multiple agile projects.
We proposed to separate the development activities to R&D activities, carried
out onsite, close to the client, and production activities, carried out offsite in
India. The onsite, architecture team starts work on the project. In cooperation
with the client, the architecture team develops the high-level use case model of
the system and completes an architectural prototype with the strategic deci-
sions for the overall system structure. The agile offsite teams are seeded with
members of the architecture team and start functioning toward the end of the
architectural elaboration. The “seed developers” transfer domain expertise to
the supplier’s site and act as customer surrogates to help reproduce agile
conditions offsite. Outsourcing the entire set of production activities retains
interactivity at the offsite location.
The domain-based package structure of the system model is organized by
domains, subsystem use cases, and builds. This model organization scales up
well to large-sized projects, because the subsystem packages can be recur-
sively divided into smaller ones. The domain packages facilitate reuse of
components and classes from different subject matters. The domain models
could become software assets reused across projects.
To balance the teams’ workloads and avoid replicating functionality by
different teams, we proposed a new adaptive technique called employee

138 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

stealing. Employee stealing is instrumental in disseminating tacit knowledge
about the project and in lifting up the developers’ expertise. It also improves
the inter-team communication and coordination, and precludes the loss of
common goal.
We plan on combining aspects of domain engineering and executable domain
models in xUML with agile outsourcing to raise the level of abstraction and
reuse, and to automate the repetitive tasks in the software process. We are
especially interested in employing techniques preventing architectural degrada-
tion in large systems and in building “software factories” that produce families
of sustainable software assets using highly automated processes. We would
like to support the emerging “supply chains” for software development, which
enables mass customization. To fully support domain-driven design, we ought
to differentiate clearly between building a product platform and designing an
application. Gearing executable domain models to the proposed agile outsourcing
methodology will result in making agile outsourcing even more agile.

References

Agile Alliance. (2001). Agile Alliance manifesto. Retrieved from
www.aanpo.org

Akella, R., & Dossani, R. (2004). Private communication.
Arthur, B.W. (1994). Increasing returns and path dependence in the

economy. Ann Arbor: University of Michigan Press.
AS. (2001). UML actions semantics. Retrieved from www.omg.org
Beck, K. (1999). Extreme programming explained: Embrace change.

Boston: Addison-Wesley.
Bettin, J. (2004). Model-driven software development: An emerging paradigm

for industrialized software asset development. Retrieved from http://
www.softmetaware.com

Blumofe, R.D., & Leiserson, C.E. (1999). Scheduling multithreaded compu-
tations by work stealing. Journal of ACM, 46(5), 720-748.

Boehm, B., & Turner, T. (2004). Balancing agility with discipline. Boston:
Addison-Wesley.

Agile Outsourcing to India: Structure and Management 139

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Booch, G. (2004). MDA: A motivated manifesto? Software Development,
(August). Retrieved from http://www.sdmagazine.com

Brownsword, L., & Clements, P. (1996). A case study in successful product
line development. Technical Report CMU/SEI-96-TR-035, Software
Engineering Institute.

Collins, J. (2001). Good to great. New York: HarperCollins.
D’Costa, A.P. (2003). Uneven and combined development: Understanding

India’s software exports. World Development, 31(1), 211-226.
Dossani, R., & Kenney, M. (2003). Went for cost, stayed for quality?: Moving

the back office to India. Asia-Pacific Research Center, Stanford Univer-
sity. Retrieved from http://APARC.stanford.edu

Evans, G. (2004). Agile RUP: Taming the Rationa Unified Process. In B.
Roussev (Ed.), Management of object-oriented software develop-
ment. Hershey, PA: Idea Group Inc.

Henderson-Sellers, B. (1996). Object-oriented metrics, measures of com-
plexity. Englewood Cliffs, NJ: Prentice-Hall.

Jacobson, I. (1987). Object-oriented development in an industrial environ-
ment. ACM SIGPLAN Notices, 22(12), 183-191.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified software
development process. Boston: Addison-Wesley.

Kruchten, P. (2004). Scaling down large projects to meet the Agile “Sweet
Spot.” The Rational Edge, (August).

Mellor, S.J., Kendall, S., Uhl, A., & Weise, D. (2004). MDA distilled.
Boston: Addison-Wesley.

Mellor, S.J., & Balcer, M.J. (2002). Executable UML: A foundation for
Model-Driven Architecture. Boston: Addison-Wesley.

Nasscom. (2004). Indian software and services exports. Retrieved from
www.nasscom.org

OMG. (2004). OMG Model-Driven Architecture. Retrieved from http://
www.omg.org/mda/

Outsourcing Institute. (2004). Retrieved from http://www.outsourcing.com
Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber, C.V. (1993). Capability

maturity model, version 1.1. IEEE Software, 10(4), 18-27. Software
Engineering Institute. (2004). Retrieved from www.sei.cmu.edu

140 Roussev & Akella

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Pollice, G. (2001). RUP and XP, part I: Finding common ground, and part II:
Valuing differences. The Rational Edge.

Pollice, G. (2004). RUP and eXtreme Programming: Complementing pro-
cesses. In B. Roussev (Ed.), Management of object-oriented software
development. Hershey, PA: Idea Group Inc.

Roussev, B., & Wu, J. (2001). Task scheduling on NOWs using lottery-based
workstealing. Annual Review of Scalable Computing, 3, World Scien-
tific, Singapore University Press.

Royce, W. (2002). The case for results-based software management. The
Rational Edge, (June).

SEI. (2004). Carnegie Mellon Software Engineering Institute, Product Line
Practice. Retrieved from www.sei.cmu.edu/productlines/

Toth, K., Kruchten, P., & Paine, T. (1993). Modernizing air traffic control
through modern software methods. Proceedings of the 38th Annual Air
Traffic Control Association Conference, Nashville, TN.

Endnotes

1 In domain modeling, a software asset is anything from models, compo-
nents, frameworks, generators, to languages and techniques.

2 Strategic assets are the software assets at the heart of a business—assets
that grow into an active human- and machine-usable knowledge base
about a business and its process.

3 A software liability is software that is cost burden—that is., software that
costs more than it is delivering to the business (Bettin, 2004).

4 Mass customization meets the requirements of heterogeneous markets by
producing goods and services to match individual customer’s needs with
near mass production efficiency.

5 One-off systems have a very short lifespan and are too expensive for most
practical purposes.

User Requirements Validation and Architecture Discovery 141

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

User Requirements
Validation and

Architecture Discovery
through Use Case

Invariants and
Model Animation

Boris Roussev
University of the Virgin Islands, USA

Yvonna Rousseva
University of the Virgin Islands, USA

Abstract

This work proposes a technique for requirements validation and logical
structure discovery, compatible with evolutionary process models. The
technique is based on a conservation law, called business value invariant,
which quantifies the exchange of business objects between a system and
its environment. With the invariant, the logical class structure of the
designed system is algorithmically derived from its use case model. To

142 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

validate that the modeled requirements and derived structure faithfully
reflect the user requirements, the behavior of the constructed prototype
is projected on the business objects exchanged on the system’s boundary,
and the projected behavior is animated with a labeled transition system
analyzer. The model animation approach explicitly describes the interface
between the system and its environment, and through OCL pre- and post-
conditions, it distinguishes between system and environment
responsibilities. The animated prototype links the outwardly visible
“interobject” behavior to the information structures and the behaviors of
the comprising parts, or “intraobject” behavior. Unlike formal notations
based on logic, the proposed approach does not preclude the owners of the
problem from taking part in the problem-solving process, that is, the
knowledge locked in the prototype can be validated. The proposed
prototyping technique acts as a discursive communication instrument,
bringing the worlds of clients and developers a step closer.

Introduction

Software development is a problem-solving activity where a problem has been
identified and a software system is commissioned to address this problem.
Brooks (1995) points out that “the hardest single part of building a software
system is deciding precisely what to build”; in other words, the principal
challenge faced by a development team is the elicitation of precise user
requirements.
Requirements engineering (RE) is a branch of systems engineering concerned
with the elicitation, modeling, validation, and management of evolving user
requirements. The activities in requirements engineering both situate and orient
the software development effort to a real-world problem and give it a narrow
compass toward satisfying the goals of the various system stakeholders.
The results from a recent, and so far the only, significant field survey (Neill &
Laplante, 2003) on RE practices indicate that 33% of companies do not
employ any methodology for requirements modeling and analysis. Out of the
remaining 67%, only 7% use formal techniques, compared to 51% using
informal natural language representations. In an earlier study, Nikula, Sajaniemi,
and Kälviäinen (2000) report that none of the 15 participants they surveyed
had a requirements management tool in use. Against this backdrop, the

User Requirements Validation and Architecture Discovery 143

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

conclusions of the CHAOS report that most software project failures are
caused by requirements-related shortfalls such as lack of user input,
incomplete requirements, changing requirements, unrealistic expectations,
and unclear objectives should not come as a surprise (Standish Group,
2003).
Adopting a systems view in RE is of utmost importance, because software
cannot function in isolation from the environment in which it is embedded. RE
is a multi-disciplinary, human-centered process. In this chapter, we draw upon
a variety of disciplines including systems engineering, object models, finite state
machines (FSMs), logic, linguistics, communication theory, semiotics, and
cognitive science, to validate user requirements.
The most popular RE approach to modeling user requirements is the use case
model (Jacobson, 1987). Over 50% of the software firms use scenarios and
use cases in the requirements phase (Neill & Laplante, 2003). Use cases are
popular even among teams that do not use object-oriented (OO) technologies.
Requirements validation is the act of showing that the elicited requirements
provide an accurate account of stakeholder goals. Prototyping (Davis, 1992)
is a class of requirements validation and elicitation techniques used in environ-
ments marred with uncertainty. Even within the waterfall model, about 60% of
the teams perform some sort of prototyping, with half of them applying
evolutionary prototyping and only one-fourth applying throwaway prototyping.
Requirements validation (with formal methods or with prototyping) is difficult
for two reasons: one philosophical and one social.
To be recognized as an engineering discipline, requirements engineering had to
adopt a logical positivist approach, meaning it had to work under the assump-
tion that there is an objective external reality to which the designed software
must relate. This, however, poses the question of what is true in this objective
world. On the one hand, we have Karl Popper’s thesis about the limits of
empirical observation (essentially, a theory cannot be proven correct via
observation, but only refuted). Derrida (1967) and Lacan (1977) approached
the question of what is true through language and questioned the idea of logical
positivism. They showed that truth is language-driven and language-biased.
For RE, this translates into the problem being dependent on the notation used
to describe it. Furthermore, since validating requirements is a dialogic process
between business stakeholders and analysts, an analyst could ascribe new
meanings to the business stakeholders’ requirements, a process called counter-
transference or projective introspection (project one’s own desires and
agendas onto others). The bottom line is that we cannot draw a sharp

144 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

demarcation line between, on the one hand, validating requirements and, on the
other hand, convincing business stakeholders about what their requirements
are.
The social problem in requirements validation is related to negotiating an
agreement satisfying the competing and often conflicting needs of the various
stakeholders (Briggs & Grünbacher, 2002).
The constructive core of UML (2004), the language we use to create our truths,
includes class diagrams and FSMs. Since their introduction in the late 1980s,
use cases have proven to be an immensely popular software development tool.
This clearly indicates a shift in emphasis, one departing from modeling informa-
tion flow and system state towards modeling stakeholders’ goals (Dardenne,
Lamsweerde, & Fickas, 1993) and scenarios that illustrate how these goals can
be attained. Use cases organize requirements (e.g., tens of usage scenarios)
around a common goal. The use cases describe dialogically the outwardly
visible system capabilities, and in addition, they are used to decompose the
system into conceptual subsystems.
A scenario, often represented on a sequence diagram, describes a collabora-
tion of relevant conceptual entities and one or more actors working together to
achieve a certain goal. This is called interobject behavior. In contrast, an FSM
describes the behavior of a single object, called intraobject behavior. Harel,
the inventor of statecharts, refers to the stark difference between interobject
and intraobject behaviors as the grand duality of system behavior, and states
that we are far from having a good algorithmic understanding of this duality
(Douglas, 2004). Not only do we not have the means available for deriving one
view from the other, but we also do not exactly know how to test efficiently if
two such descriptions are mutually consistent.
In situations with a great deal of uncertainty, prototyping (Davis, 1992) can be
used to elicit and validate requirements. Developing a prototype is an aggres-
sive risk management strategy. Ideally, the upfront investment in designing the
prototype will be offset by reducing the probability of risk exposure later in the
development lifecycle. An early prototype provides feedback opportunities for
business stakeholders and can be further used to provoke discussions or think-
aloud protocols (Shaw & Gaines, 1996), thus acting as a driver for information
gathering. A prototype facilitates the requirements analysis and validation, and
may give an insight into the logical system architecture. Depending on the
notation used, a prototype can make possible the application of model
checking or other V&V techniques.

User Requirements Validation and Architecture Discovery 145

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The objective of this chapter is twofold. First, it has the purpose of offering a
precise, user- and developer-friendly technique for validating user require-
ments through animating a system prototype, and second, it aims at providing
a lightweight process extension addressing the grand duality problem: to derive
algorithmically the system logical class model system (intraobject state and
behavior) from interobject behavioral descriptions.
The rest of the chapter is structured as follows. First, we take the view of
analysis as learning aided by interactive animation. Next, we present a
discursive communication model of the process of eliciting user requirements.
Then, we present the business value invariant (BVI) of a use case, and a process
extension for requirements and architecture validation. After further discussion,
we outline plans for future work and conclude.

Analysis Viewed as Learning
Aided by Animation

During and after the construction of a model, the modeler wants to evaluate the
model’s quality. There are two types of model review pertinent to RE: model
animation (Gravel & Henderson, 1996) and model verification (Easterbrook et
al., 1998).
Model animation is a discrete, even simulation, and as such, it is a form of partial
validation. Model animation is a quick and intuitive way of checking the model
that allows for business stakeholders to take part in the validation activity.
Modelers and end users can examine example behaviors, communications, and
interactions.
The benefits of animating the use case realization can be understood better if
use case analysis is viewed as a cognitive process. The use case model specifies
what needs to be accomplished. The job of the system analyst is to elicit and
communicate this knowledge to all stakeholders by using a modeling notation
and technique. From this point of view, RE is a process of accumulating valid
information about the problem domain and of communicating it clearly to
developers and clients alike. This makes the process of requirements develop-
ment analogous to the process of learning (Gemino & Wand, 2003). From this
perspective, the usefulness of the modeling technique should be evaluated
based upon its ability to represent, communicate, and develop understand-
ing of the application domain.

146 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cognitive sciences have produced a variety of models providing insight into the
mechanics of learning. Although theories differ in knowledge representation, they
all agree on two elements of learning, namely the use of analogical reasoning and
the effect of prior knowledge. There has been a general understanding that the
notion of metaphor can be brought to bear on the questions of how prior
knowledge organizes new learning and of how analogical reasoning operates.
Carroll and Mach (1985) define metaphor as a “kernel comparison statement
whose primary function in learning is to stimulate active learner-initiated thought
process.” Gentner (1998) defines metaphor as “a kind of similarity in which the
same system of relations holds across different objects that supports further
inferences.” These two definitions shed light on the function and mechanics of
metaphor. In active learning, the metaphor provides an orienting framework
guiding learners to hypothesize and verify new knowledge. The metaphor “seeds”
the constructive process of knowledge acquisition.
For centuries, graphic models have been used to present spatiovisual entities
and concepts, like maps and building blueprints. In software development,
graphic models have been used to represent things that are metaphorically
spatiovisual, like class diagrams and state machine models. The underlying
assumption is that a graphic model enhances the developers’ ability to think and
to apply the power of spatial inference to reasoning about software artifacts,
hoping to achieve an increase in productivity and software quality. Graphic
models are also used to record information (blueprints), in other words, to
externalize internal knowledge (i.e., memory and processing off-loading).
In this work, we propose to validate the system requirements by animating the
dialogue between the end users modeled as actors and the designed system
modeled as use cases. Model animation can facilitate requirements validation
because, according to the congruence principle for effective graphics, the
content and format of the graphics should correspond to the content and format
of the concepts being conveyed. This principle suggests that animated graphic
models should be more effective than static graphic charts in presenting change
over time. However, research results show that this is not always the case
(Tversky, Morrison, & Betrancourt, 2002). Animated graphics have a proven
success of outperforming static ones only when the animated graphics convey
more information, or involve interactivity or prediction.
One possible explanation for the ineffectiveness of animation is the violation of
the second principle of effective graphics, called apprehension principle.
According to this principle, graphics should be accurately perceived and

User Requirements Validation and Architecture Discovery 147

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

appropriately comprehended. If the animation is too fast, the receiver (learner)
cannot accurately perceive the conveyed information. Overwhelmed by the
continuous pictorial information flow, the receiver has no time to process and
comprehend the transmitted information.
Only judicious use of interactivity is known to cancel out these negative effects
by allowing the receiver to control the speed of the information flow and the
evolution of the system under study. Pausing, starting, and replaying an animation
all allow for re-inspection and focusing on specific sequences of actions.
Overcoming the negative effects of inaccurate perception and inappropriate
comprehension results in bringing out several key advantages of animation.
Animations are a richer source of information than static graphic models. Static
graphics portray a relatively smaller number of coarse segments, whereas
animations portray both the coarse and the fine segments. Thompson and
Riding (1990) demonstrate that animation facilitates learning when it presents
the fine-grained actions that static graphics do not present.
Prediction is another factor known to facilitate self-initiated learning (Hegarty,
Quilici, Narayanan, Holmquist, & Moreno, 1999). In prediction, participants
anticipate outcomes, and then view animated graphics to check if their
predictions were fulfilled. With model animation, analysts and clients learn
actively about the problem domain by building hypotheses (predictions) and by
testing the validity of these hypotheses.

Prototyping as Discursive
Communication Model

In this section, we consider the mechanisms through which prototyping elicits
knowledge about the organizational context in which the system is embedded.
Client needs elicitation and system design are both communication-intensive
and communication-driven processes. The expression of clients’ needs is
mediated through language; therefore, developers need to examine the clients’
language, and be attentive to its slippery, unstable, and indeterminate nature. As
meanings are not immutably fixed, getting acquainted with the clients’ context
should bring about a clearer understanding of clients’ needs. A change in
context duly calls for a change of meaning. The use case model does not
explicitly account for this context-sensitive meaning of user requirements.

148 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Very abstractly, a client communicates a requirement (message) to an analyst
in natural language in the dialect of some problem domain. Correctly under-
standing the intention of a message not only requires prompt feedback from the
receiver, but it also demands an ongoing mutual communication between
sender and receiver. Given the dynamics of this client-analyst dialogue, the
receiver can, and actually does, affect the sender’s context, thus altering the
meaning of the sender’s messages. The constantly evolving meaning necessi-
tates considering the production of meaning (i.e., making meaning in discourse).
The main factor for the success of OO analysis is the improved communication
between the interlocutors, or stakeholders in our case in point. Object-
orientation narrows the semantic gap between the problem and the solution
domains by encouraging a shared vocabulary between end users and develop-
ers. The shared vocabulary allows for information-rich communication be-
tween interlocutors. This results in improved traceability, and ultimately allows
clients to validate the software artifacts being produced.
Even assuming that it may be possible for the client to present the system analyst
with un-contradictory and complete user requirements, the analyst would still
be unable to fully comprehend the user requirements, because doing so requires
that the analyst consider the requirements in context, and the context in systems
development is constituted as domain knowledge.
The human mind cannot interpret things in the world as unrelated bits and pieces
because individual entities and concepts look different in different contexts—
that is, the human mind needs to situate things in the context of their production.
For example, we could recall the famous duck-rabbit puzzle, shown in Figure
1, where the interpreter cannot tell whether the picture shows a duck or a rabbit
without taking into account the picture’s context.
Figure 2 shows a model of linguistic communication, devised by Roman
Jacobson. The client uses a code (common or shared vocabulary) familiar to
both analyst and client to express the message. The message has a context or
referent and is transmitted through a contact, a medium such as live speech.
In order for the message (the requirements) to be interpreted correctly by the
analyst, the analyst must be familiar with the client’s context. By context we
mean the environment in which the client operates. The context is constituted
of tangible and conceptual entities and their relationships. Conceptual entities
include, but are not limited to, the client’s beliefs about other entities and the
client’s beliefs about the beliefs of the other clients. A message can have more
than one context. This view of the meaning of a message (or more generally a

User Requirements Validation and Architecture Discovery 149

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

text) is maintained by the theory of hermeneutics. The hermeneutic approach
emphasizes the central role of the message. The context is there only to inform
about the meaning of the message. The context is independent of the text and
is considered to be static and flat (no multiple layers). The context can be
viewed as constituting the rules, norms, and assumptions governing the environ-
ment of the message.
One last note worth highlighting is that the message is a consistent and
indispensable part of the context. This key role makes message interpretation
spiral. The meaning of preceding message constituents might need revision in
light of subsequent message constituents; in other words, antecedents
explain successors, which in turn shed light on the antecedents, or the so-
called hermeneutic loop.
Even though Jacobson’s model brings up the legitimate issue of the all-
important context of a message, this model is still found wanting in resolving the
interpretation ambiguity arising from the recursive nature of the problem. The
client still needs to send the context of the context of the message, and so on.
The main disadvantage of the hermeneutics theory is the inability to express the
dynamic nature of the message. A message is not simply part of one or more
contexts, but rather part and parcel of an interactive deictic process, a

Figure 1. Duck-rabbit puzzle

Figure 2. Roman Jacobson’s model of communication

����

��

���� ����������	
!

���	��	

���	��	
!

"����
	�����	

150 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

discussion, in which many agents participate. In discourse analysis, to under-
stand the meaning of a message, one should know the goals and responsibilities
of the message sender. In discourse analysis, to understand the meaning of a
message, which is never immutable, one should know the goals and responsi-
bilities of the message sender. Therefore, to understand and correctly interpret
a message, which is always caught up in the process of becoming itself, the
receiver must inquire about the development that has led to the message
creation. Because the receiver must become an active agent in the discourse,
the receiver, in turn, influences the sender in this ongoing, dynamic course of
discussion.
According to Jacques Lacan’s formula of communication, “Human language
constitutes a communication in which the emitter receives from the receiver his
own message in an inverted form” (Lacan, 1977, p. 329). The way we read
Lacan, “inverted form” of a message should be understood as the posing of
questions.
The impact of the system analyst on the client is on two planes. First, the system
analyst helps clients articulate their needs, and, second, by building the
information system, the analyst changes the client’s context, the nature of work,
and the organization.
Helping clients articulate their needs is not trivial. The client’s needs are often
displaced by the strong desire for immediate satisfaction or consummation,
adding executable semantics to the ordinary need. Kruchten (2000) gives the
following example. Instead of describing his/her need to communicate better,
a client states, “I want automatic e-mail notification.” The real need (better
communication) is displaced by the strong desire for immediate satisfaction.
Schleirmacher, credited with founding hermeneutics as a discipline in its own
right, claimed that a successful interpreter could understand the author of the
message as well as, or even better than, the author understood himself, because
the interpretation highlights hidden motives and strategies (agendas), also
referred to as projective introspection or empathy. This, however, could be
egregiously counterproductive. Psychoanalysis would call this counter-trans-
ference—the interpreter ascribes to the author his or her own repressions and
desires, thus falling in the “intentional fallacy” trap. The analyst has to resist this
as much as possible. The danger of counter-transference increases with
developers who lack domain knowledge, for example, computer engineers
without experience in the particular problem or functional domain.
The second major role of the analyst, and of the whole development team for
that matter, is to become part of the client’s discourse. The dialogue is usually

User Requirements Validation and Architecture Discovery 151

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

initiated by the client. The analyst, or the development team, respectively,
responds with an increment, a piece of executable functionality, produced in
one iteration. Then the client tests the increment, and the communication cycle
repeats. In the testing subprocess, or the ensuing discourse between analyst
and client, the client may become aware of a compelling necessity to redefine
his/her needs.
The sequence diagram in Figure 3 shows the discourse between client and
analyst in progress (i.e., the spiral of message exchange).
The asterisk denotes iteration. The alt operator expresses branching. The
feedback loop in the communication model, along with the subsequent testing
of the analyst’s understanding by the client, narrows the gap between the
floating signifier (articulated needs) and signified (ever evolving real needs).
The prototype should be seen as the analyst’s materialized and animated
understanding of the stakeholders’ needs. In Figure 3, the building of the
prototype is modeled with messages “analysis” and “development.”
The process described by the discursive communication model is an intermi-
nable one. It continues after the software system has been delivered and
accepted by the client. This part of the process is referred to as system
maintenance. From a certain point onward, the aging starts taking its toll, and
a small user requirements change entails disproportionate implementation

Figure 3. Discourse involving clients and analysts

������ ����	
�

��

���
������������
�

��������
�

�����
��
���

	
���

�����������

�������������������
��

���
����	
�

 �
�

alt

*

152 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

complexity. From that threshold onward, it is economically justifiable to have
a complete system rewrite, to start all over again.
The communication model in Figure 3 can be thought of as generalization of the
widely cited “hump” diagram (Kruchten, 2000) and spiral model diagram
(Boehm, 1988).

The Business Value
Invariant of a Use Case

We will use the E-ZPass system described in Chapter 1 as a running example.

User Requirements and Model Transformation

User Requirements Model

A user requirements model should possess the following characteristics. First,
it must explicitly describe the interface between the system and its environment,
and then distinguish between system and environment responsibilities. Since a
system is evaluated with respect to its usage in its environment, the specification
should provide a basis for validating the system’s role in that environment.
Second, the user requirements must be justified. A justification can be achieved
if each constraint placed on the system is aligned with and traceable to the goals
of the various stakeholders. Third, the system specification should be given in
a form that is accessible to both developers and stakeholders, and should
provide all the information needed to design the system and no more, hence no
under- or over-specification (Parnas, 1972; McDermid, 1994). An over-
specification implies premature design decisions, whereas an under-specifica-
tion means that the designers do not have sufficient information, thus degrading
the specification’s usefulness as a contract.
The second characteristic, namely the justified user requirements, suggests that
a design contract cannot be constructed without considering the goals of the
stakeholders for the system. However, if the requirements model explicitly
describes the stakeholders’ goals, it may include contextual information. The
contextual information describes situations that are outside the system’s scope,

User Requirements Validation and Architecture Discovery 153

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

causing confusion as to whether the system should or should not provide a
means to deal with the situation. Therefore, explicitly describing the stakehold-
ers’ goals would conflict, by and large, with the objective of attaining a
“designer-friendly” specification. This reveals two disparate requirements
regarding the requirements model: on the one hand, to provide a valid
description of the stakeholders’ goals, and on the other hand, to serve as a
precise description of the system to be designed. To appease these conflicting
requirements, the system’s functional description must be sufficiently user- and
developer-friendly. In addition, it must facilitate effective communication
among all stakeholders. The requirements model will be user-friendly, if the
modeling language employed is expressive, precise, and understandable to all
stakeholders. In this respect, it is of utmost importance to express requirements
at interface level using declarative specifications, such as Catalysis’ OCL pre-
and post-conditions (D’Souza & Wills, 1998) and invariants (Roussev, 2003).
We assume that the system functional specification is represented as a set of use
cases and that an evolutionary development process has been adopted.
The proposed process extension builds an executable model of a use case,
which can be animated jointly by all stakeholders to validate the requirements
and the initial logical decomposition (analysis level architecture). The execut-
able model is generated using the BVI extension to use cases (Roussev, 2003).
The BVI facilitates the algorithmic transformation of a use case to a set of FSMs
and class models. The precision of the generated models allows for model
animation. Model animation projects (or reverse-engineers) the analysis level
architecture to communication events occurring on the system-environment
boundary. This makes it possible for end users and developers to validate the
user requirements and the class model generating the animated requirements
early in the development process, and to avoid costly backtracking.

Model Mapping

Shannon and Weaver (1949) define information as a reduction in uncertainty.
For a system to be of value to its users, it has to reduce the user’s (we equate
receiver with user) level of uncertainty. To ensure that the software solution is
adequate to the problem at hand, modern software processes, such as RUP
(Kruchten, 2000) and Agile (Beck, 1999), are requirements-driven and
actively engage business stakeholders in the development process.

154 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Furthermore, the development team has to demonstrate that the solution
satisfies the user requirements, by proving the system (code view) and the
requirements models isomorphic. A proven technique for bridging the gap
between two models is to use a series of transformations and/or refinements
preserving the properties of interest, such as observational equivalence (Milner,
1989) and Model-Driven Architecture (MDA) with Executable UML (xUML)
(Mellor, Scott, Uhl, & Weise, 2004). For instance, the success of RUP is
predicated on the fact that it is defined as model refinement from more abstract
to more detailed models, whereas that of MDA is attributed to model
transformation. Refinement and transformation allow for user requirements to
be traced to the implementation modules, and therefore ensure that user needs
be met, thus making effective change management possible.

The Business Value Invariant

OO methods are weak in guiding the transition from informal requirements
towards formal model (Wieringa, 1998). The discontinuity in model transfor-
mation is due to the lack of mature user-friendly formal models for requirements
modeling. As a result, round-trips between RE and analysis are encumbered,
which in turn makes the validation of software architectures against systems
requirements hard to accomplish.
The BVI is an extension to the use case model and the underpinning of a
development process deriving the logical class model (analysis architecture) of
a system through a clearly defined sequence of model transformations. The
invariant is a design contract defined over business domain objects exchanged
between actors and system in the course of a use case performance. The
behavior of each actor and counter-actor—the agent within the system
responding to actor-initiated transactions—is bound by the design contract and
is described by an FSM (non-hierarchical statechart). Each state in an FSM is
characterized by gaining or giving away a business object. The logical class
model is obtained as the composition of the actors’ and counter-actors’ FSMs.
The BVI approach fills the gap between the outwardly visible system behavior
as offered by use cases and the “first cut” at system architecture, the analysis
class model. The BVI abstracts the detail of the system architecture concerned
with data representation and resource allocation. It focuses on the interaction
between the environment (actors) and the system (use cases).

User Requirements Validation and Architecture Discovery 155

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Actors, Counter-Actors, and Design Contract

From the perspective of an actor, a use case performs something that adds
value to the actor, such as calculating a result, generating a new object or
changing the state of another object. Isaac Newton observed that contact
forces are always exerted by one body (initiator) on another body (respon-
dent). If we imagine that the actor initiating the use case instance is the body
exerting the contact force, then there must be at least one respondent on the
receiving end.

Definition 1. The respondent trading values with the actor initiating the use
case instance is called counter-actor class. Actors and counter-actors are
collectively called agents.

For each use case, there exists a conservation law (i.e., an invariant).

Axiom 1. The joint distributed count of business values exchanged between
the actors and the counter-actors in the course of a use case execution is
constant. This property is called the business value invariant of a use case.

The invariant is instrumental in identifying classes and OCL constraints.
Jacobson (1992) gives two criteria helpful in determining the scope of a use
case, the key phrases being “resulting value” and “participating actor.” He went
a step further by saying that “in some cases, actors are willing to pay for the
value returned,” but he stopped short of generalizing and defining the exchange
of values. Below, we show how the exchange of business objects in the course
of the execution of a use case instance is defined by a business value invariant
and how this invariant is used to discover the system structure.
The use case diagram for the E-ZPass system is shown in Figure 4. Below we
show the description for use case Register Vehicle (the reset is given in the
Appendix).

Use Case: Register Vehicle

Description: This use case describes vehicle registration.

Actors: Driver, Operator, and Bank

Basic Flow

156 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. A driver provides an operator with contact information, including name
and mailing address, the vehicle type, and the vehicle’s registration. In
response, the operator stores the information and prompts the driver to
provide a valid credit card, which will be debited automatically at every
E-Z lane.

2. The driver provides a credit card. The system verifies the card with the
bank.

3. The system generates a unique ID, provides the driver with a gizmo with
the generated ID, and stores the credit card information and the gizmo
ID associated with the registered car.

Exceptional Flow of Events:

• The driver can cancel the registration at any point. The system rolls back
to its state prior to the registration.

• In step (2), if the verification fails, the registration is cancelled.

Pre-Conditions: The driver has a valid vehicle registration and a valid credit card.

Figure 4. E-ZPass use case diagram

Driver

Pass 1-Point Tollgate

Pass 2-Point Tollgate

Register Vehicle Operator

Invalid Account

Bank

Debit Account

<<include>>

<<extend>>
<<include>>

User Requirements Validation and Architecture Discovery 157

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Post-Conditions: The driver receives a gizmo with a unique ID. The driver’s
personal information, vehicle, and gizmo are entered into the system.

Driver is the actor initiating the execution of the use case. The value gained by
Driver is a gizmo with a unique ID. The value given away is the contact, vehicle,
and credit card information. The respondent verifying the credit card is Bank.
Another actor, named Operator, is the respondent in charge of verifying the
vehicle registration and the driver’s license. It is not clear from the use case
model where the Tag ID gained by Driver is coming from. Who is giving away
this business object? To balance the invariant, we introduce a counter-actor,
called TagGenerator, which is giving away this tag ID. The invariant for the use
case is shown in Figure 5. Note that TagGenerator is a counter-actor. It was
discovered using the invariant. Prior to introducing it, the invariant for the use
case was not satisfied, that is, the count of business objects gained or given
away by actor Driver did not balance with the business objects gained or given
away by actors Operator and Bank.
At the highest level of abstraction, the evolution of an agent is defined as a
contract. A contract is an exact specification of the interface of an object. The
supplier (server) knows the conditions under which its services will be
provided. If the client does not live up to the expectations, the supplier is not
held responsible. The client makes sure the conditions are met. The rights of
each party can be mapped directly to the obligations of the other one. The
business values given away (obtained) by an agent are described in the notes
attached to the agent on the left (right) side (see Figure 5). These values specify
the state of an agent before and after the execution of a use case, or in other
words the agent’s pre- and post-conditions. The invariant for Register Driver
expresses the fact that the joint distributed count of business objects before the
execution of the use case (described in the notes attached to the left) is the same
as the joint distributed count of business objects after the execution of the use
case (the business objects described in the notes attached to the right).
The invariants for use cases PassSingleTollGate and PassTwoPointTollgate
are given in the Appendix.

158 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Deriving Class Diagram and OCL Specification for a Use Case

Having identified all agents of a use case, we describe the evolution each of
them undergoes by an FSM. An FSM model can represent a system at an
arbitrary level of detail. In analysis, it is mandatory that we stay out of design.
This requirement is met by associating each state with a business object that is
either obtained or given away as the event associated with the transition leading

Figure 5. BVI for use case Register Driver

������ �������

����	
�� ����	
���

�	
���	
�

��
����

������

��

	�
��
��

�����������

�����
��	��

	�
��

��	
�

�����������������

	�������������

�
	���������

������	
����

��
������ ���

����
�����
����

	�
��

��	
�

�	
���

���

	�
��
���
������������

�����
��	����	
�

����
������

��
������ ���

�����������
�����
������������

��
������ �����

	����

!	�"�
��	
�� !	�"�
��	
���

Σ���	�
��#$��
��#�����������
��
 � Σ ���	�
��#$��
��	�
��������
��

Figure 6. FSM model for actor Driver

User Requirements Validation and Architecture Discovery 159

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to the state. Figure 6 shows the FSM for actor Driver derived from the main
flow of the use case.
To each agent gaining a value corresponds an agent giving away that value and
vice versa. For convenience’s sake, we have numbered the states in each
model, so that they can be referred to and unambiguously distinguished from
other models. The FSMs for Operator, TagGenerator, and Bank are shown in
Figure 7.

Reduction of a Set of FSMs to a Class Diagram

The parallelogram law for the composition of forces was stated by Newton (see
Figure 8). F1 and F2 are called concurrent forces. R is called the resultant, and
it is equivalent to the combined action of the two forces. Milner (1989) was
among the first to apply the parallelogram of forces in computer science. Unlike
Milner’s, the composition we propose derives the static structure of the system
from the concurrent FSM descriptions.
Maciaszek (2001) observed that there is an interesting dichotomy with regard
to actors. Actors can be both external and internal to a system. They are
external because they interact with the system from the outside. They are

Figure 7. FSM models for Operator, Bank, and TagGenerator

160 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9. Class diagram generated from the FSM model for Driver

internal because the system may maintain information about actors, so that it
can knowingly interact with the external actors. Hence, the specification needs
to hold two models related to an actor—a model of the actor and a model of
what the system records about the actor. It is important to note that Jacobson
(1992) did define actors as stereotyped classes. However, to the best of our
knowledge, the definition is for the purposes of generalization and instantiation,
as well as for uniform notation; for example, actor Manager who inherits from
actor Clerk can initiate instances of all use cases that a Clerk can and, in
addition, some others. Like external entities in context diagrams, actors are
meant to model interactions and communications between the system and its
environment.
We use the actor’s dichotomy as a heuristic for discovering entity and controller
classes. The system must create an object of class Driver (if the object already
exists, it is linked) for each vehicle registration. The agent FSMs are considered
one at a time. The order of their processing is not significant. We select an FSM
not processed yet, and then we create a class for the agent and stereotype it

Figure 8. Parallelogram of forces

F2
R

F1

O

Refuse

CreditCard

ContactInfo

Vehicle
Gizmo

Driver
<<agent>>

1

1

1

1

gets
R4

11

has

1
belongs
1 R1

1
1

1

contact

1
R2

1..n
1

owns

1..n
owned_by 1

R31

1..n
R5

is_given

gets

1..n

1

User Requirements Validation and Architecture Discovery 161

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

accordingly (see Figure 9). Next, we create one class for each value gained or
given away by the agent and link the class to the agent class. Finally, we
determine and add the associations creating the collaboration paths between
classes necessary for the use case execution (e.g., association R6 in Figure 10).
The class model can be refactored at any time, so long as the new model does
not invalidate the BVI for the use case (see Figure 10).
Figure 11 shows how as a result of analyzing the FSM for Operator, we extend
the initial class model with a new actor class and several association links. The

Figure 10. Refactored class model

Figure 11. Class model extended with knowledge from the FSM for
Operator

Refuse

ContactInfo

Driver
<<agent>>11 11

gets

R4

1

1

1
contact

1

R2

Gizmo

R5

Vehicle1..n

1

owns
1..n

owned_by 1
R3

1

1

has
1

sticks_to
1

CreditCard11

has

1

belongs
1 R1

1

1..n

R6

is_paid_by

pays_for 1..n

1

Refuse

ContactInfo

R5

Gizmo
TagGen

<<agent>>

TagID

1

1

R7

0..n

1R8 generated_by
1

generates
0..n1

1

Driver
<<agent>>11 11

gets

R4

1

1

1 contact

1

R2

CreditCard1

1belongs

1 has

1

R1

Vehicle1..n

1

owns
1..n

owned_by 1
R3

1

1 has

1sticks_to

1
1..n

1

pays_for1..n

paid_by1
R6

162 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12. Compete class model for use case Register Driver

complete class model after processing agents Bank and TagGenerator is
presented in Figure 12. Agent classes are stereotyped as entity classes to
record the long-lived changes in the redistribution of business values in the
system. Since each agent interacts with other agents, we duplicate the agent
classes, and the clones form a pool of initial candidates for controller classes
in the Boundary-Controller-Entity design pattern (Jacobson, 1992). This is
justified by the behavioral knowledge in the FSMs and the existence of
collaboration paths between agents and relevant business objects.
Figure 13 shows the physical decomposition of E-ZPass into subsystems. The
package structure is organized by use cases. Each subsystem publishes a set
of required and provided interfaces, derived from the interactions, formalized
by the invariants. The runtime connections between the subsystems are
presented with ports. It is important to note that all subsystems make use of the
same well-defined set of types (interfaces and classes) in their public interfaces,
hence the <<import>> dependencies to the infrastructure package. The
infrastructure package defines and exposes the “common currency” for com-
munication between the subsystems. The reasons for externalizing the sub-

Refuse

R10
GizmoTagGen

<<agent>>

ContactInfo

Driver
<<agent>>

1

1

contact
1

1

R2

TagID 11 11

0..n

1 generates

0..ngenerated_by

1

Vehicle1..n

1

owns
1..n

owned_by 1
R3

1

1
has

1
sticks_to

1

Confirm

Authenticate

Bank
<<agent>>

R7

R6

R5

Operator

CreditCard1

1belongs

1 has

1

R1

1..n

1

pays_for1..n

paid_by1

R6

Message

0..*

1

0..*

1

1

0..*

1

0..*

1..*

1 referred_to

about

1

1..*R4

R8

R9

User Requirements Validation and Architecture Discovery 163

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system interfaces are two: to limit the dependencies among the subsystems and
to define their usage environment—that is, “what” the subsystem needs to
provide to its environment (Bettin, 2004).

Converting the FSMs to OCL Specifications

The Object Constraint Language (OCL) (Warmer & Kleppe, 1998) is a
formal, pure expression language augmenting graphical UML models to
produce unambiguous and precise system descriptions. OCL is an integral part
of UML, and it is also used to define the semantics of UML.
OCL combines first-order predicate logic with a diagram navigation language.
It provides operations on sets, bags, and sequences to support the manipulation
and queries of collections of model elements.
UML uses OCL to express constraints, navigability, action semantics, and
object queries. Even though visual models define some constraints, like
association multiplicity, in OCL we can specify richer ones, such as uniqueness
constraints, formulae, limits, and business rules. OCL constraints provide
precision, which facilitates design by contract.

Figure 13. Subsystems of E-ZPass

RegisterDriver

port_card

iGetCard

RegisterDriver

port_debit

iDebit

port_get_card

iGetCard
<<Subsystem>>

<<Subsystem>>
PassOnePointTG

port_debit

iDebit

port_get_card

iGetCard
<<Subsystem>>

RegisterDriver

port_debit

iDebit
<<Component>>

<<flow>>

debitOperation

Infrastructure

CreditCardInfo iDebit

<<interface>>

ConfirmationiGetCard

<<interface>>

164 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A constraint is a semantic restriction on one or more model elements. Types of
constraints include, but are not limited to, constraints on associations between
classes, pre- and post-conditions on class operations, multiplicity of class
instances, type constraints on class attribute values, invariants on classes, and
guards in state models.
Each OCL expression is written and evaluated in the context of the instances
of some model element, for example:

context Driver inv:

 self.Age > 16

As another example, to make sure that all tags have unique IDs, we write:

context Tag inv:

 Tag.allInstances()->forAll(t1, t2 |

 t1<>t2 implies t1.TagID <> t2.TagID)

Pre- and post-conditions specify the effect of a class operation without stating
an algorithm or implementation. To indicate the operation for which the
conditions must hold, we extend the constraint’s context with the name of the
operation.

context CreditCard::Charge(Amount: Real): Boolean

 pre: self.IsValid

 post: self.Balance = self.Balance@pre + Amount

where Balance@pre refers to the value of the attribute at the start of the
operation.
OCL is not a programming language, and therefore OCL expressions cannot
express programming logic or flow of control. OCL expressions have been
criticized for having poor readability and for being inefficient in specifying
requirements-level and analysis-level concepts (Ambler, 2002). The critique
comes from methodologists favoring code over models and from system
analysts using UML diagrams as sketches of OO designs, the so-called
UMLAsSketch (Fowler, 2003). Mellor (2002) introduced the notion of

User Requirements Validation and Architecture Discovery 165

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constraint idiom as a general pattern for commonly occurring types of con-
straints and suggested the use of predefined tags for these types. The latter
makes models less cluttered and less cryptic. Since constraints are a fundamen-
tal part of the semantics of a domain, there is no simple alternative for building
precise domain models.
Constraints can also be written in any action language supporting the Precise
Action Semantics for UML (AS, 2001). However, action languages are not
specification languages, and their purpose is to define computations in execut-
able models.

Declarative Specification

The evolution of each agent, for example Driver, is described by two consecu-
tive frames (snapshots). The service that a use case provides must be a
complete sequence of actions after the performance of which the system will be
in a state allowing the execution of the sequence all over again.
Let us consider again the FSM for Driver. We define declaratively the behavior
of use case from the driver’s point of view as a contract in terms of OCL
expressions. The contract is an exact specification of the service provided by
the use case w.r.t. Driver. The service is described by two sets of constraints
whose context is an instance of Driver:

• Pre-Conditions: The conditions under which the service will be pro-
vided.

• Post-Conditions: A specification of the result, given that the precondi-
tions are fulfilled.

The service pre- and post-conditions are described in the notes attached to the
agents on the left- and right-hand sides of Driver and Driver', respectively, as
shown in Figure 14. We split complicated constraints into several separate
constraints to improve their readability and writeability (and diagnostic power,
in case runtime checking is employed).
The precondition for a Driver to register a vehicle is to have a valid credit card
and a mail address that coincides with the card’s billing address. This is an
example of a constraint that cannot be expressed in a class model alone. The
Drier’s post-condition includes a gizmo with a unique ID.

166 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition, we define the following two constraints. gizmos->notEmpty is a
precondition indicating that an instance of Gizmo is available at the outset. The
constraint uses the predefined property notEmpty of the OCL type Set. The
second constraint is a post-condition using the predefined feature of all OCL
types allInstances. It is instrumental not only in specifying a uniqueness
constraint, but also (implicitly through the logic-and of all postconditions) in
expressing a semantic relationship between the value of vehicle.gizmo and the
association Vehicle–Gizmo. This expression accesses the meta-level UML
model to express the fact that a gizmo is assigned to exactly one vehicle.

User Requirements Validation

Model Animation

Labeled Transition System Analyzer (LTSA) (Magee & Kramer, 2003) is a tool
for analyzing concurrent systems. A system in LTSA is represented as a set of

Figure 14. OCL contract for use case Register Driver

������

$����	��

%���

���&�����	��

�
�����

�����

������
�����������
�
����
����
���	�
������������

����!�����"��!��"��!
�
���������"�����

��������#����$�%���������
�
�
�����
�!!�����
��&�����!
�!!����
����!
��$�!'

���������
!� �

���'���
�	���

$����	��(

%���(

���&�����	��(

������������
����!

������(

����
��������&�
������
�(���������)�*
���
������������"�����
�

�
�����������$�!����
������
���
������!�����	��
�
����

����

#����$�
�$$�����������
���
��$$+,-� .,/� ���	$���
����,
����

������/��
����

�����
�
�����

����
	���������

����
	���������

����
	���������

����
	���������

��
	'���
�	���

User Requirements Validation and Architecture Discovery 167

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

interacting FSMs. LTSA supports animation to facilitate interactive exploration
of system behavior. The analyzer can also perform progress and safety checks.
Though useful, the latter are outside the scope of our interest. Progress and safety
checks require training in formal methods. Our goal is to enrich, at no extra cost,
system analysts’ toolsets, as well as to offer a lightweight process extension for
requirements and system architecture validation.
LTSA takes as input the text descriptions of the FSMs and generates their
composition. Graphical FSM models, though expressive, become unwieldy for
a large number of states and transitions. An FSM text description is formed by
the events of its transitions using action prefix, ->, and choice, |, operators. By
action we mean the sending or receiving of an event.
Figure 15 displays the model of a drinks dispensing machine. It dispenses
hot coffee if the red button is pressed, or iced tea if the blue button is pressed.
The text description for the drinks dispensing machine is as follows:

DRINKS = (red->coffee->DRINKS  blue->tea->DRINKS).

The initial state is always numbered 0, and transitions are drawn in a clockwise
direction. The text descriptions for the FSMs of use case Register Driver are
shown in Figure 16.
To define FSM parallel composition, we have to introduce the notion of trace.
An FSM describes all possible evolutions (runs) of a system. A particular run
of a system is captured by a trace. A trace is a path in the FSM graph starting

Figure 15. FSM model of a drinks dispensing machine

168 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from the initial state. It is formed by the events on the path using the action prefix
operator. The following is a trace of the drinks dispensing machine:

red->coffee->blue->tea.

The parallel composition of two FSMs S and T, denoted by S || T, yields an
FSM generating all possible interleavings of the traces of S and T (Magee &
Kramer, 2003). Figure 17 shows the parallel composition of FSMs SEA and
YAGHT, written as ||VOYAGE = (SEA || YAGHT).
Events common to two or more FSMs are called shared. Shared events model
FSM interactions. A shared event must be executed at the same time by all
participating FSMs. Figure 18 shows the composition of two FSMs, which
have a common event called buffer. The composition is written as ||WORK-
SHOP = (PRODUCER || CONSUMER).

Figure 16. Text descriptions of FSMs for use case Register Driver

DRIVER = (contactInfo->creditCard->vehicleInfo->(gizmo->DRIVER | refuse->DRIVER)).

OPERATOR = (contactInfo->creditCard->authCard->

 (confirm->tagID->gizmo->OPERATOR | refuse->OPERATOR)).

BANK = (authCard->(confirm->BANK | refuse->BANK)).

TAGGEN = (tagID->TAGGEN).

Figure 17. Parallel composition

User Requirements Validation and Architecture Discovery 169

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 19 depicts the composite FSM for use case Register Driver. The
component FSMs are DRIVER, OPERATOR, BANK, and TAGGEN. The
composition operation is written as: ||REGISTER_DRIVER = (DRIVER ||
OPERATOR || BANK || TAGGEN).
LTSA parses and compiles every agent’s text description to an FSM, and then
generates a single FMS by composing the agent FSMs. The resulting FSM may
be viewed graphically or textually and analyzed.

Figure 18. Parallel composition with shared events

PRODUCER = (produce->buffer->PRODUCER).

CONSUMER = (buffer->consume->CONSUMER).

||WORKSHOP = (PRODUCER || CONSUMER).

Figure 19. Composite FSM for use case Register Driver

170 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 20. Two consecutive screenshots of the LTSA Animator window

FSM Animation

LTSA performs a user-controlled animation of the composite FSM by allowing
explicit control of all events in the model. Figure 20 shows two screenshots of
the LTSA Animator window. The analyzer lets the user control the events
offered by the FSM model to its environment. The set of all events is shown
in the right pane. The events, which can be chosen for execution at a
particular step, are ticked. The event executed on the previous step is
outlined. The sequence of events, shown in the left pane, is the trace that has
brought the FSM to its current state. In the current state, the user can choose
between events refuse (refuse authentication) and tagID (tag ID will be
generated after a successful authentication). Let us assume that the user selects
refuse for execution. In response, LTSA transitions to the next state and offers
a new set of events for execution, the screenshot on the right. The animation
game continues until the system reaches a final state, deadlock, or the user quits
analysis.

Requirements and Architecture Validation

The essence of any evolutionary process boils down to specifying the system
capabilities as use cases, and then to prioritize the use cases according to their
risk magnitude. The use case with the highest priority is analyzed first. Analysis
is followed by design, implementation, and testing of a collaboration of objects
realizing the use case under consideration. The testing is done with test cases

User Requirements Validation and Architecture Discovery 171

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

derived from the use case description. The resulting increment is integrated into
a new build, after which integration and regression tests are run. Then, the next
highest priority use case is selected, and the described process is repeated all
over again.
In analysis, a use case is realized by a collaboration of logical classes. To
validate that the functionality of the analysis-level architecture satisfies the
user requirements, we suggest the following extension applicable to any
evolutionary process.
For every use case:

1. Identify the counter-actors for the use case under consideration.
2. Identify the business objects exchanged between actors and counter-

actors, needed to satisfy the goal of the initiating actor.
3. Define and balance the BVI for the use case. This activity may require

revisiting steps (1) and (2), and revising some of the decisions already
made, such as adding business objects and/or counter-actors.

4. Describe the evolution of each agent with an FSM. Associate every
transition with an event modeling the acquiring of or giving away a business
object.

5. Derive the FSMs’ text descriptions and enter them into the LTSA tool.
Then, generate the composite FSM for the use case.

6. In collaboration with representatives of the various stakeholder groups,
animate the composite and component FSMs to validate that the analysis-
level architecture supports the desired use case behavior. If there is no
consensus that the animated model behavior is a faithful account for the
stakeholder requirements, repeat the process.

Our experience shows that the described process converges very quickly. We
attribute this to the fact that the prototype’s animation involves interactivity and
prediction. We view the BVI prototype of a use case as a discursive instrument
of communication, enabling a meaningful and information-rich dialogue among
stakeholders.

172 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Discussion

The proposed process extension is advantageous for several reasons.
Formal guidelines for transforming a use case model to class models are
practically missing in the literature. The presented BVI technique is an attempt
to fill this void.
FSM modeling and FSM animation are intuitive and comprehensible to all
stakeholders. Our experience confirms the findings of Davis (1988) that
introducing FSM modeling to non-technical people takes on average an hour.
Since the BVI process extension is defined over domain objects, all stakehold-
ers can take part in the requirements validation, and also it guarantees that
analysts stay out of design.
With the proposed approach, there is no up-front data modeling. The business
object model is built incrementally in the process of designing the prototype.
To reflect the reality of a changing world, the requirements model should
facilitate evolution over time. Requirements models play an important role in
software development change management because the requests for change
inevitably originate from business stakeholders. Requirements traceability
deals with the impact of change, and helps to scope its possible effect and
manage requirements’ evolution over time. When a requirement is changed or
added, the developer ought to be able to determine which system views will be
affected and to change them accordingly. With the proposed technique, a
change in the required or provided interface of an agent will invalidate the use
case invariant. The BVI allows for a change to be traced forward to the agent
FSMs and to the use case logical class model, and vice versa (traced
backward). The analyst copes in a controlled way with the effect of a change
by balancing the violated invariant.
The BVI approach differs from requirements prototyping and evolutionary
prototyping in some fundamental ways. Requirements prototyping (Hickey,
Davis, & Kaiser, 2003) is used as a requirements determination method that
can be employed in requirements elicitation. Essentially, it is an “add-on”
technique for improving user-developer communication and not a systems
development methodology because it does not include any design activities. In
contrast, with evolutionary prototyping, the developed artifacts are not dis-
carded. Evolutionary prototyping constructs a preliminary system release
prototype, which grows into a production system. The proposed process
extension has all the benefits of requirements prototyping, without incurring

User Requirements Validation and Architecture Discovery 173

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the extra cost of a “throw-away” prototype. It is not only meant to elicit initial
user reactions, but also to guide the discovery of the system’s logical structure.
Unlike evolutionary prototyping, we do not advocate the construction of a
preliminary system with all the negative consequences imposed on developers
by an inadequate start. Instead, we propose a process extension, producing a
prototype that can be animated interactively and formally analyzed, a prototype
compliant with any evolutionary process model.
Davis’ (1988) is one of the first noteworthy, comprehensive attempts, still
tenable today, that points out the desirable traits of a behavioral specification
technique. It: 1) is understandable to all stakeholders including non-computer-
oriented users; 2) serves as a design contract for developers; 3) should provide
automated checks for ambiguity, incompleteness, and inconsistency; 4) en-
courages the requirements engineer to think and write in terms of external
system behavior, not internal components; 5) should organize information in the
requirements model; 6) should provide basis for automated prototype genera-
tion; 7) should provide basis for automated test generation; and 8) should be
suitable to the particular application.
The use case model extended with invariants and model animation satisfies
every single criterion Davis has defined, and in addition, links the outwardly
visible, high-level system behavior to the behaviors and the information
structures of the individual comprising parts. The FSMs’ traces, for example,
constitute readily available functional tests. The formal nature of the model
allows for automatic test generation, and given a suitable fault model, the traces
can be used to assess quantitatively the tests’ fault coverage.
With the BVI approach, the cost of writing an invariant for a use case is offset
by the ease and precision of classes, associations, and state behavior discov-
ery. This cost is further reduced by the multiple feedback opportunities for end
users to get the “yes, buts” out as early as requirements engineering, and thus
make the processes of requirements elicitation and logical architecture con-
verge faster. In a typical evolutionary process, developers cannot get feedback
from end users before an iteration ends, which depending on the process can
be anywhere between two to three weeks with Agile, and up to three months
with RUP. With the proposed approach, the prototype for a large system, like
the one used as a running example in this chapter, can be built within several
working hours.
Precision is the basis for requirements analysis and for validation that the
modeled requirements are indeed what business stakeholders want. Since
requirements engineering straddles the informal world of stakeholders and the

174 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

formal world of software developers, the question is not whether to use formal
methods, but when to formalize. For example, Jacobson (2002) shares the
view that formalism should creep into the system model. In contrast, Catalysis
and BVI rely on rigorous OCL specifications early in the process. In formal
methods, logic provides the rigor for performing analysis and reasoning. In
recent years, many formal techniques have been proposed by the research
community, for example, temporal logic for timing constraints, deontic logic for
contracts, linear logic for resources, and Z and VDM for specifying operations
with pre- and post-condition (Easterbrook et al., 1998; Jones, 1986; Spivey,
1989), but have not been widely adopted in practice (Neill & Laplante, 2003).
Though very desirable, formal methods are expensive to introduce in a software
process. This cost-related impediment owes to the high requirements on the
developer for mathematical maturity. It is also due to the high cost of keeping
a specification up-to-date in dynamic project settings, and the amount of effort
that needs to go into constructing and analyzing a formal specification. A
notable exception is Alloy (Jackson, 2002), which is proposed as a lightweight
formal specification language. However, Alloy does not address modeling of
interactions and is not tightly coupled to UML.
It is important to point out how our approach differs from formal methods.
Unlike formal notations based on logic, the BVI approach does not preclude
the owners of the problem from taking part in the problem-solving process; that
is, the knowledge locked in the prototype can be validated. The capability to
perform analysis and simulation on the model is the most noteworthy feature of
the proposed technique, which is not currently addressed by OCL. It is still
unknown to what extent OCL would be analyzed, though research toward
this task has been done (e.g., Richters & Gogolla, 2002). Jackson (2002)
discusses the difficulty of putting a language, like OCL, in an analyzable form.
On the down side, the BVI prototype cannot represent non-functional require-
ments, such as security and performance requirements.

Future Work

To scale up better to large-sized projects, we are working on a decomposition
technique, decomposing a BVI to sub-BVIs, and later composing the sub-
BVIs’ prototypes to yield the use case prototype.

User Requirements Validation and Architecture Discovery 175

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

What we see as a promising venue is to link (or even map) the BVI prototype
to executable UML models. This will enable the modeling of non-functional
requirements and will further automate the development process.
We intend to extend the modeling technique and apply it to building domain
models (Jackson & Zave, 1993; Mellor et al., 2004). A domain model is a
complete but abstract description of the existing system. OMG’s MDA uses
the term PIM (platform independent model) to describe a similar, though less
inclusive notion. A domain model is a software asset, leveraging domain
knowledge and requirements reuse. The proposed technique makes it easy to
reuse requirements across families of software products, so it can be used
successfully in building software product lines.
Finally, we are interested in integrating the BVI prototyping technique with
techniques for conflict resolution, requirements prioritization, and group con-
sensus, such as EasyWinWin, JAD (August, 1991), User-Centered Design
(Carrol, 1996), AND Interviews and Focus Groups (Macaulay, 1996).

Conclusion

In this work, we presented an algorithmic method of deriving the logical class
model for a use case and for projecting the behavior of the use case realization
over a set of observable business objects, exchanged between the system and
its environment. The set of business objects is discovered using an algebraic
invariant, called business value invariant. The invariant steers the process of
building the information structure supporting the use case, as well as the
formal description of a use case as a set of communicating state machines.
To validate the modeled requirements, the derived system behavior is
animated with a labeled transition system analyzer. Animating the system
prototype allows for powerful visualization, study, and validation proce-
dures such as interactivity and prediction. The proposed approach strength-
ens the traceability between use cases and use case realizations. It allows
the owners of a problem to participate actively in the specification of the
problem and in the validation of the logical structure of the solution. The
proposed approach can be used in conjunction with any evolutionary process.
Since it affords roundtrips between requirements modeling and analysis, it
shortens these phases of the software lifecycle. To conclude, the proposed

176 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

prototyping technique acts as a discursive communication instrument, bringing
the worlds of clients and developers a step closer.

References

Ambler, S. (2002). Toward Executable UML. Software Development,
(January).

AS. (2001). UML Actions Semantics. Retrieved from www.omg.org
August, J. (1991). Joint application design: The group session approach to

system design. Yourdon Press.
Beck, K. (1999). Embracing change with extreme programming. IEEE Com-

puter, 32(10), 70-77.
Bettin, J. (2004). Model-driven software development: An emerging paradigm

for industrialized software asset development. Retrieved from
www.softmeta.com

Boehm, B. (1988). A spiral model of software development and enhancement.
IEEE Computer, 21(5), 61-72.

Briggs, B., & Grünbacher, P. (2002). EasyWinWin: Managing complexity in
requirements negotiation with GSS. Proceedings of the Hawaii Interna-
tional Conference on System Sciences.

Brooks, F. (1995). The mythical man-month (anniversary edition). Reading,
MA: Addison-Wesley.

Carroll, J. (1996). Encountering others: Reciprocal openings in participatory
design and user-centered design. Journal of Human-Computer Inter-
action, 11(3), 285-290.

Carroll, J., & Mack, R. (1985). Metaphors, computing systems, and active
learning. International Journal of Human-Computer Studies, 22, 39-
57.

D’Souza, D., & Wills, A. (1998). Objects, components and frameworks
with UML: The catalysis approach. Reading, MA: Addison-Wesley.

Davis, A. (1988). A comparison of techniques for the specification of external
system behavior. Communications of the ACM, 31(9), 1098-1115.

User Requirements Validation and Architecture Discovery 177

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Davis, A. (1992). Operational prototyping: A new development approach.
Software, 9(5), 70-78.

Derrida, J. (1967). L’Ecriturie et la différence. Paris.
Douglas, B.P. (2004). Real Time UML (3rd ed.). Boston: Addison-Wesley.
Easterbrook, E., Lutz, R., Covington, R., Kelly, J., Ampo, Y., & Hamilton, D.

(1998). Experiences using lightweight formal methods for requirements
modeling. IEEE Transactions on Software Engineering, 24(1), 4-14.

Dardenne, A., Lamsweerde, A., & Fickas, S. (1993). Goal-directed require-
ments acquisition. Science of Computer Programming, 20, 3-50.

Davis, A. (1992). Operational prototyping: A new development approach.
Software, 9(5), 70-78.

Fowler, M. (2003). UML distilled: A brief guide to the standard object
modeling language (3rd ed.). Reading, MA: Addison-Wesley.

Gemino, A., & Wand, Y. (2003). Evaluating modeling techniques based on
models of learning. Communications of the ACM, 46(10), 79-84.

Gentner, D. (1998). Analogy. In W. Bechtel & G. Graham (Eds.), A compan-
ion to cognitive science (pp. 107-113). Oxford: Blackwell.

Gravell, A., & Henderson, P. (1996). Executing formal specifications need not
be harmful. IEEE Software Engineering Journal, 11(2), 104-110.

Hegarty, M., Quilici, J., Narayanan, N., Holmquist, S., & Moreno, R. (1999).
Designing multimedia manuals that explain how machines work: Lessons
from evaluation of a theory-based design. Journal of Educational
Multimedia and Hypermedia, 8, 119-150.

Hickey, A., Davis, A., & Kaiser, D. (2003). Requirements elicitation tech-
niques: Analyzing the gap between technology availability and technology
use. Comparative Technology Transfer and Society Journal, 1(3),
279-302.

Jackson, M., & Zave, P. (1993). Domain descriptions. Proceedings of the
1st International Symposium on Requirements Engineering (pp. 56-
64), San Diego.

Jackson, D. (2002). Alloy: A lightweight object modeling notation. ACM
Transactions on Software Engineering, 11(2).

Jacobson, I. (1987). Object-oriented development in an industrial environ-
ment. ACM SIGPLAN Notices, 22(12), 183-191.

178 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I. (1992). Object-oriented software engineering: A use case
driven approach. Reading, MA: Addison-Wesley.

Jacobson, I. (2002). Private communication.
Jones, C. (1986). Systematic software development using VDM. Englewood

Cliffs, NJ: Prentice-Hall.
Kruchten, P. (2000). The Rational Unified Process: An introduction.

Reading, MA: Addison-Wesley.
Lacan, J. (1977). Ecrits: A selection (A. Sheridan, trans.). London:

Tavistock.
Macaulay, L. (1996). Requirements engineering. Berlin: Springer.
Maciaszek, L. (2001). Requirements analysis and system design. Reading,

MA: Addison-Wesley.
Magee, J., & Kramer, J (1999). Concurrency: State models and Java

programs. New York: John Wiley & Sons.
McDermid, J. (1994). Requirements analysis: Orthodoxy, fundamentalism and

heresy. In Jirotka & Goguen (Eds.), Requirements engineering: Social
and technical issues (pp. 17-40). Academic Press.

Mellor, S.J., Scott, K., Uhl, A., & Weise, D. (2004). MDA distilled. Boston:
Addison-Wesley.

Mellor, S.J., & Balcer, M.J. (2002). Executable UML: A foundation for
Model-Driven Architecture. Boston: Addison-Wesley Professional.

Milner, R. (1989). Communication and concurrency. International Series in
Computer Science. Englewood Cliffs, NJ: Prentice-Hall.

Neill, C., & Laplante, P. (2003). Requirements engineering: The state of the
practice. IEEE Software, 40-45.

Nikula U., Sajaniemi, J., & Kälviäinen, H. (2000). A state-of-the-practice
survey on requirements engineering in small- and medium-sized
enterprises, Telecom Business Research Center Lappeenranta,
Lappeenranta University of Technology, Finland. Retrieved from
www.lut.fi/TBRC/

Parnas, D. (1972). A technique for software module specification with
examples. Communications of the ACM, 15(5), 330-336.

Richters, M., & Gogolla, M. (2002). OCL: Syntax, semantics, and tools. In
Clark & Warmer (Eds.), Object modeling with the OCL, the rationale

User Requirements Validation and Architecture Discovery 179

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

behind the Object Constraint Language. Berlin: Springer (LNCS
2263).

Roussev, B. (2003), Generating OCL specifications and class diagrams from
use cases: A Newtonian approach. Proceedings of the 36th Hawaii
International Conference on System and Sciences (HICSS-36), Ha-
waii.

Shannon, C.E., & Weaver, W. (1949). The mathematical theory of commu-
nications. Urbana, IL: University of Illinois Press.

Shaw, M., & Gaines, B. (1996). Requirements acquisition. Software
Engineering Journal, 11(3), 149-165.

Spivey, J.M. (1989). The Z notation: A reference manual. Englewood
Cliffs, NJ: Prentice-Hall.

Standish Group. (2003). CHAOS research report. Retrieved from
www.standishgroup.com

Thompson, S., & Riding, R. (1990). The effect of animated diagrams on the
understanding of a mathematical demonstration in 11- to 14-year-old
pupils. British Journal of Educational Psychology, 60, 93-98.

Tversky, B., Morrison, B., & Betrancourt, M. (2002). Animation: Can it
facilitate? International Journal of Human Computer Interaction, 57,
247-262.

UML. (2004). UML Specification. Retrieved from www.omg.org
Warmer, J., & Kleppe, A. (1998). The Object Constraint Language:

Precise modeling with UML. Reading, MA: Addison-Wesley.
Wieringa, R. (1998). A survey of structured and object-oriented software

specification methods and techniques. ACM Computing Surveys, 30(4).

180 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Appendix

PassOnePointTollGate

������ �������

��	�

��
���

������
������

���������
������

	�������������������
�����
������
�
���������	��

���������

��	����	�

��������
 ��������
�

������

��	����������

 ���

!��	�
���������"

AUTHORITY = (fine->AUTHORITY).

BANK = (card->(debit->BANK | refuse->BANK)).

DRIVER = (tagID->(passage->DRIVER | yellow->fine->DRIVER)).

GATE = (tagID->card->(debit->passage->GATE | refuse->yellow->GATE)).

||REGISTER = (DRIVER || GATE || BANK || AUTHORITY).

User Requirements Validation and Architecture Discovery 181

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

PassTwoPointTollgate

������ �������

��	�

�	��
���
���
�������
���

�	��
������
�
!����������
�����

�����"

�

�%�
	�����������������
�	��
��� ����	
�	��
������
�

#	��
����� #	��
������

���
�
	�

�

�%����	
��

������� ����	
!����������
�����
!
�������	����	�""

#�������� #���������

��������
 ��������
�

��	�

������

��	��

 �����	��!��	�
�
����������"

��	����������

DRIVER = (entryTagID->entryPassage->exitTagID->(yellow->DRIVER |
exitPassage->DRIVER)).

ENTRY_GATE = (entryTagID->entryLocation->entryPassage->ENTRY_GATE).

EXIT_GATE =(exitTagID->exitLocation->card->

(debit->exitPassage->EXIT_GATE | refuse->fine->yellow->EXIT_GATE)).

BANK = (card->(debit->BANK | refuse->BANK)).

AUTHORITY = (fine->AUTHORITY).

||TWO_POINT_TG = (DRIVER || ENTRY_GATE || EXIT_GATE || BANK || AUTHORITY).

182 Roussev & Rousseva

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

RUP and eXtreme Programming: Complementing Processes 183

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

RUP and eXtreme
Programming:
Complementing

Processes
Gary Pollice

Worcester Institute of Technology, USA

Abstract

The Rational Unified Process, or RUP, and eXtreme Programming
(XP) are two popular software development methodologies or processes.
Most people tend to think of them as opposing methods, where a project
may adopt one or the other, but certainly not both. This essay describes
how the two can be applied together to improve the software development
practices of an organization.

Apples and Oranges

Trying to compare RUP to XP, or vice-versa, is truly like comparing apples to
oranges. They were designed for completely different purposes and apply to
different software development contexts and different levels of process. This

184 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

does not mean that you have to choose one or the other. XP and RUP are based
upon similar principles and contain valuable techniques to guide you through
software development projects. They can be applied in a complementary
manner with a little bit of forethought and planning. The following sections are
designed to help you understand both of these practices and how to apply them
to your organization and project. These sections are:

• Introduction to RUP and XP
• Core Values and Principles
• Similarities and Differences
• Applying the Practices

Introduction to RUP and XP

RUP

RUP is not a single process. It is a process framework that describes, in detail,
a set of activities, artifacts, and responsibilities that may apply to a software
development organization. The framework is designed as a consistent descrip-
tion of an incremental, iterative software development lifecycle. RUP describes
process along two dimensions, time and discipline, as shown in Figure 1, which
is referred to as the RUP “hump” chart. The disciplines are applied at different
levels, depending upon where the project is according to the time dimension.
The time dimension describes a software project as it moves through four
phases: Inception, Elaboration, Construction, and Transition. At the end of
each phase, there is a milestone that determines if the phase is complete, and
whether it is appropriate and advantageous to proceed to the next phase. Each
milestone provides for a “go or no-go” decision by the stakeholders of the
project. The milestones allow timely cancellation of projects that are unfeasible
or too costly, usually due to changing requirements and business climate.
The Inception phase is the first of the RUP phases. During this phase you work
to understand all of the stakeholders in the project, their needs and expecta-
tions, and describe the system’s requirements at a high level. You build a
shared vision of the project’s results. At the end of the phase, you are in a

RUP and eXtreme Programming: Complementing Processes 185

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

position to state what you plan on building, who wants it, and whether the results
deliver sufficient value to the stakeholders to warrant continued work. This is
called the Lifecycle Objectives (LCO) milestone. If the stakeholders agree that
the project is worth continuing, you proceed to the Elaboration phase.
During the Elaboration phase you attack technical risks. The core architecture
of the project is developed. In a project that extends a previous software
product, you enhance the existing architecture to accommodate new features.
While the developers, usually architects, develop the technical framework, the
stakeholders work with analysts and other team members to refine the
requirements that were defined at a high level during Inception. At the end of
Elaboration, the team is able to exhibit an executable architecture, and the
Lifecycle Architecture (LCA) milestone is assessed. An executable architec-
ture is running software that embodies just enough functionality to give evidence
that the project is technically feasible and can be done within acceptable cost
and time constraints. At this point it is common to add team members for the
Construction phase.
The bulk of development work is performed during the Construction phase.
Remaining features are added to the executable architecture, and earlier

Figure 1. The RUP “hump” chart

Disciplines Inception Elaboration Construction Transition

Phases

Business Modeling

Requirements

Analysis & Design

Implementation

T e s t

Configuration &
Change Mgt.

Project Mgt.

Environment

Deployment

Initial Elab #1 Elab #2 Const
#1

Const
#2

Const
#N

Tran
#1

Tran
#2

Iterations

186 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

features are refined to make them ready for deployment. Requirements
continue to be analyzed and managed, and possible changes are factored into
each iteration’s plans. At the end of Construction, the software is functionally
complete and ready to be deployed to an end user community. While it is rare,
the project may still be cancelled. The stakeholders review the work and the
ongoing costs during the Initial Operation Capability (IOC) milestone review
at the end of the Construction phase. If the business environment has changed
and/or the cost to complete the deployment of the software is not acceptable,
the project may be cancelled; otherwise, the project enters the final phase.
The purpose of the Transition phase is to ensure that the complete product is
customer ready. Typically the Transition phase encompasses the beta test
period. This allows the documentation, packaging, and complete release cycle
to be tested. Any problems or last-minute defects or problems are worked out
during Transition. At the end of Transition, the final milestone, Product Release
(PRM), is evaluated and the product released. Usually, requirements for the
next release and defect have been deferred to begin the cycle over again.
Subsequent releases are handled as separate RUP projects.1

While the phases are sequential, the RUP process framework is not. It follows
the spiral model described by Barry Boehm in 1988. During each iteration, all
or most of the RUP disciplines are employed to produce working software. The
disciplines are simply a way of grouping related activities and responsibilities.
The disciplines in the current RUP product are:

• Business Modeling
• Requirements
• Analysis and Design
• Implementation
• Test
• Deployment
• Configuration and Change Management
• Project Management
• Environment

Different activities from the disciplines are emphasized depending upon whether
the iteration is early in the project (Inception) or later in the project (toward the

RUP and eXtreme Programming: Complementing Processes 187

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

end of Construction or in Transition). This produces the “humps” in Figure 1,
but the exact amount of effort shown is an estimate based upon experience over
many different types of projects.

eXtreme Programming

eXtreme Programming is a mostly developer-centered set of tightly collabora-
tive practices that are designed to be used together on small to medium-sized
software projects. XP was originally designed by Kent Beck and Ward
Cunningham in the 1990s. The practice was described by Beck (1999) in his
book, Extreme Programming Explained. The first major project to apply the
practice was the Chrysler Comprehensive Compensation system. This is a
payroll system developed for Chrysler Corporation around 1996.
The original set of practices has been modified slightly and extended, but not
too much. XP has captured the imagination of many programmers and software
professionals. There are many articles, conference presentations, and confer-
ences today that focus on XP and its application and evolution.
XP is based upon four values: simplicity, communication, feedback, and
courage. The key practices are designed to support these values when they are
applied consistently throughout the project. There are 12 practices in the
original description of XP. At the current time, there are 13 that seem to be
widely accepted.2 The 13 practices and brief descriptions of each follow:

• Whole team: The complete team, developers, business people, and any
others work together daily in the same location. Usually there is a large
common room where the work occurs.

• Planning game: This practice involves the team planning process.
Business people prioritize and select the work to be done, and technical
people estimate the difficulty and amount they are able to deliver during
an iteration.

• Small releases: The team releases working software to the customer
(not necessarily to end users) for every iteration.

• Customer tests: Customers are responsible for writing and running the
acceptance tests for the system. They may have technical people help
them implement the tests using automated testing tools, but they are the
ones responsible for determining that acceptance criteria are met.

188 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Simple design: The team implements the simplest possible solution for
the current requirements and does not concern itself with things that might
occur in the future. They strive to have the simplest, leanest design. The
actual practice is one of continuous design where the design is continually
undergoing refinement and evolves as necessary.

• Pair programming: Two programmers work together, actively, on all
code that is put into production. They sit at one computer and work on the
same piece of code. One programmer is the driver, but both are
contributing to the intellectual effort that goes into producing correct
software.

• Test-driven development: Originally this was called programmer test-
ing and Test-First Programming (TFP). It has evolved into test-driven
development. The practice requires programmers to write a test that fails
before writing code that implements needed functionality in the final
system. The claim is that the practice leads naturally into a clean design.

• Refactoring: In order to keep the design simple as the code evolves, the
team continually takes time to refactor and keep the code as simple as
possible, understandable, and clean.3

• Continuous integration: The team keeps the complete system inte-
grated at all times. Often tools are employed that automatically start
integration builds whenever there is new code checked into the version
control system. This ensures that any problems with integration are caught
and fixed as early as possible.

• Collective code ownership: On an XP project any programmer has the
right and the responsibility to make changes to any code when necessary.
Used in conjunction with simple design and refactoring, it ensures the code
base is kept as clean as possible.

• Coding standard: The team follows a coding standard in order to have
the code look as if it were written by a single person. The standard
identifies not only the placement of syntactic items, but naming and
documentation conventions.

• Metaphor: Metaphor is a practice that has been hard to nail down. An
XP team develops a metaphor to communicate the vision of the product
and how it works. Often more than one metaphor is necessary.

• Sustainable pace: This was originally called the 40 hour week practice,
but it soon became evident that different teams had ideas about what is

RUP and eXtreme Programming: Complementing Processes 189

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

reasonable in terms of weekly effort. The general rule is that a team
member will not put in two weeks in a row of overtime.

The practices are shown graphically in Figure 2, which is referred to as the
“circle of life.” The outer circle represents those practices that apply to the
whole team throughout each iteration. The inner circle are the practices that the
developers practice daily, several times during the day. The middle circle are
practices that support the other two.

Core Values and Principles

The core XP values were described in the previous section. The core values of
RUP are not as apparent and are not explicitly stated in RUP. But after
working with RUP for a while, you begin to understand that the values are
quite similar to the agile values, but allow for more variability in how the values
are emphasized.

Figure 2. XP circle of life

190 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Along with the agile values, there are several supporting principles of agile
software development. These are the principles behind the Agile Manifesto that
was drafted to launch the agile software development movement. The prin-
ciples are presented here, somewhat paraphrased:4

• Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

• Welcome changing requirements, even late in development. Agile pro-
cesses harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the
project.

• Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

• Working software is the primary measure of progress. Agile processes
promote sustainable development.

• The sponsors, developers, and users should be able to maintain a constant
pace indefinitely.

• Continuous attention to technical excellence and good design enhances
agility.

• Simplicity—the art of maximizing the amount of work not done—is
essential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

• At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Again, RUP had not specifically elaborated the principles behind successful
use. In December 2001, Per Kroll, the director of the RUP team, wrote an
article titled “The Spirit of the RUP.” In the article he identified eight specific
principles that embody the spirit behind RUP. These are:

RUP and eXtreme Programming: Complementing Processes 191

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Attack major risks early and continuously…or they will attack you.
2. Ensure that you deliver value to your customer.
3. Stay focused on executable software.
4. Accommodate change early in the project.
5. Baseline an executable architecture early on.
6. Build your system with components.
7. Work together as one team.
8. Make quality a way of life, not an afterthought.

The RUP principles were further expanded in Kroll and Kruchten’s (2003)
book, The Rational Unified Process Made Easy.

Similarities and Differences

There are clearly many similarities between RUP and XP that can be inferred
from looking at the principles upon which they are based. There are other
similarities that can be seen upon closer examination. There are also significant
differences that make one approach a better choice than the other in the right
situation. In many cases it is quite appropriate to combine RUP and XP
practices on a project to optimize the project’s chance for success.

Similarities

The first and possibly the major similarity between RUP and XP is that they are
both iterative and incremental in nature. Although RUP has the sequential
phases, the real work is done iteratively. Except for early Inception iterations,
each iteration results in working software that delivers potential value to the
customer. In XP the iterations are made as short as possible, typically a week.
On a RUP project, the length of iteration is not specified, but the spirit of RUP
is that the iterations should not be too long. Iterations of two weeks to a month
are common.
The incremental nature of both methods is apparent when you consider that
each iteration builds upon the work done in previous iterations. XP tells you to

192 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

refactor the code, but you do not throw away the work you have completed.
You add onto it. In RUP, you plan iterations by implementing use cases, or
scenarios of particular use cases, so that you deliver value that is usable, and
then you add onto that by including more use cases or scenarios in future
iterations. In both approaches work done in early iterations forms the basis for
later work.
Team reflection is a key to successful adoption of both XP and RUP. RUP
explicitly describes a point at the end of each iteration where the team reviews
the iteration and decides what changes are needed. Following the last principle
of the Agile Manifesto, XP teams are continually looking for ways to improve
their process.
Until “The Spirit of the RUP” was published, many people had the mistaken
impression that RUP was mostly concerned with the form of the project, rather
than the ultimate deliverable, which is working software. Successful RUP
practitioners knew this to be false, but there were cases where people tried to
do everything RUP said, exactly as shown in RUP, and they failed. This led to
the view that RUP completely defined exactly what each team member should
do from the beginning of a project to the conclusion.
There is a very important, yet unstated, similarity between RUP and XP—if you
are trying it for the first time, you probably need a coach. Whether you call the
person a coach, mentor, companion, or some other appropriate name, the role
is important to maximize your team’s potential for success. The coach’s
responsibilities may be different for XP than for RUP, but it is just as important.
The first time a team attempts to apply XP, they will find that it is highly
disciplined and often difficult to consistently apply the practices at all times.5

Any change is hard and more difficult the farther it is from your normal
operational mode. Many of the XP practices, such as pair programming and
test-driven development, are very different than what developers might be used
to. The role of the coach on an XP project is to help the team adapt to the
changes and understand how to work together effectively.
The RUP coach’s main responsibility is to help the team determine which set
of practices, the level of formality, and the activities that best suit the project at
hand. Like the XP coach, the RUP coach also has to educate the team on new
practices. Bergström and Råberg (2004) describe many of the characteristics
and responsibilities of the RUP coach in their book, Adopting the Rational
Unified Process.

RUP and eXtreme Programming: Complementing Processes 193

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Change is the one constant factor that both XP and RUP agree on. While XP
follows the agile principle of allowing change at any time, RUP takes a
slightly different viewpoint. Change can happen at any time, but it is
managed change. In truth, both are saying the same thing. If there is a very
late change in an XP project, the customer will have to decide what gets done
and what gets deferred in the next iteration in order to accommodate the
change. And, this has to be done within the sustainable pace practice. In
RUP, the change will go through a prioritization process where the benefits
and risks are analyzed and the hard decisions of whether to include the
change, remove something, or change the end date are made.
Dealing with changing requirements relates to another common feature be-
tween RUP and XP—managing risk. Both approaches to software develop-
ment are based upon minimizing the risk of failure. RUP has explicit artifacts to
help manage risk. One of these is the Risk List that is created early in the
project, and continually updated and reviewed to help teams deal with risk.
During each iteration the team works on activities that mitigate the top risks.
The Elaboration phase in a RUP project is designed to address and mitigate
technical risks. This means that the architects evaluate the requirements and
design the architecture to ensure that the software can be built, and provide
enough code to prove the solution. In XP, when a technical risk occurs, the
team will often work on a spike solution, where developers take a short period
to investigate and try different approaches to the problem. This is similar to the
work done during Elaboration, but on a smaller piece of the project.
Testing and quality are another area of agreement between RUP and XP. The
TDD practice in XP places a high value on correct code that matches the
requirements as described in the test. Customer tests ensure the software meets
the customer’s needs. Pride in the quality of their code has become a very
noticeable trait of XP developers.
One only need look at the Test discipline in the RUP hump chart to see that
testing and quality are an integral part of a RUP project from the beginning.
RUP identifies several activities and practices that are applied throughout the
project to help develop a quality product and validate the product against the
requirements.
The way requirements are gathered and expressed is both a similarity and
difference between the two methods. RUP does not require, but advocates use
cases as the primary way of describing functional requirements. A use case is
a complete sequence of actions that are initiated by an actor6 that delivers

194 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

visible results. XP recommends user stories as the preferred method for
capturing requirements. User stories are short descriptions of functionality that
the system must deliver. They are written by the customer on index cards.
Allistair Cockburn has said that user stories are promises for conversations
between the customer and developer.
Usually when you plan an iteration, the customer decides which user stories
will be implemented during the iteration. The user stories are rated as far
as the effort that will be required, and the customer has the ability to select
user stories that do not require more effort than the team has budgeted for
the iteration. Clearly, there are some connections between the stories, and
some must precede others. Often a team will package user stories that must
be implemented in some sequence together. This is very similar to a use
case. The user stories are like steps of a use case and can be very effective
tools for planning.

Differences

While there are many similarities between XP and RUP, there are significant
differences. Understanding both the similarities and differences is necessary if
you want to adopt an approach to developing software that effectively utilizes
practices from both. The main differences fall into four categories:

1. The nature of the process
2. Scope
3. Project size
4. Information content

Each of them will be explained in the following paragraphs.
A popular misconception about RUP is that it is a process. In fact, RUP is a
process framework. It is based upon the Software Process Engineering
Metamodel (SPEM). This is a metamodel for how to describe processes. As
such, RUP contains a lot of information that must be tailored for each
instance—the context in which the software development project lives. A sure
way to fail with RUP is to try and apply all of the guidance to any single project.
This is the reason that a main responsibility of a RUP coach is to select the

RUP and eXtreme Programming: Complementing Processes 195

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

activities and features of RUP that are appropriate for the team and project at
hand.
XP on the other hand is a specific instance of practices that are interdependent.
There is an ongoing debate as to what it means to “do XP.” If you consider XP
to be the application of all of the practices continually and consistently, then it
is easy to decide whether a team is doing XP. That is not necessarily a realistic
viewpoint, but one we can use to illustrate the difference between the nature of
XP and RUP.
The scope of the process refers to how much of the complete software lifecycle
it addresses. XP is mainly code and developer-centric. It does address very
well the interaction of the business stakeholders (Customer) with the develop-
ers, but does not really address the business context, deployment, and other
issues that are included in a full software project lifecycle. In terms of the RUP
phases, XP focuses on the Elaboration and Construction phases.
The scope of RUP is broader than XP. It explicitly takes into account many of
the environmental aspects, business context, delivery, and support issues that
are not covered or implicit in XP. RUP does not cover all of a software
product’s lifecycle however. There is no explicit description of the support,
maintenance, and retirement of the software. Several extensions have been
made to RUP by third parties to cover these and other areas.
RUP is usually applied across an organization. Each project or department will
customize it as necessary, but the general approach is the same. XP is typically
applied at the project level, although some large departments in organizations
like Sabre Airline Solutions have adopted XP as the primary development
process throughout.
Project size is another differentiator. When Kent Beck described XP, he
described it as a method that was quite appropriate for teams of approximately
10 developers. It is easy to see that when the project team gets too large, the
ability to co-locate the whole team could become a problem. There are other
impediments to the rapid feedback and communication that XP promotes when
applied to a large team. There are several case studies of how larger teams have
tried to apply some of the XP practices with varying success.7

RUP was designed to apply to many different-sized project teams. It was
widely thought to be applicable only to large teams, but this is not the case.
Grady Booch made the statement that most software development is done,
when you get to the actual working units, in teams of about seven developers.
Philippe Kruchten describes how one might use RUP on a single person

196 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

project, and Pollice et al. (2004) describe how they applied RUP to a project
with four people. But RUP has also been used successfully in large, multi-
national organizations like Volvo IT. A description of that project can be found
in the appendix of Bergström and Råberg (2004).
The final major difference between RUP and XP is the information content.
XP can be described quite succinctly. There have been numerous books
written about it, but the key practices and the values are quite easy to
describe. XP does not describe explicit artifacts, has very few roles, and
provides little description of the sequence of activities, prerequisites,
timing, and other characteristics of the process that are described in RUP.
RUP is more like a software engineering encyclopedia or textbook. It contains
not only a high-level description of the different process elements; it contains
a lot of detailed information about how to perform activities, what templates
might be appropriate for certain artifacts, what tools are useful, how to use
them, and so on. If RUP were printed, it would be over 3,000 pages of text—
clearly too much to absorb for any single project.

Applying the Practices

The worth of any process is not in having a process, but in applying it
successfully to help you deliver value to your customers. Questions like “Are
we doing RUP?” or “Are we doing XP?” are not that important. Better
questions to ask are “Is our process helping us provide value to our customer?”
and “What can we do even better?”
Knowing the similarities and differences between XP and RUP, as well as other
methodologies, can help you select the right practices, at the right level, for your
organization and project. The most important characteristic you should possess
is common sense. Do not be wedded to a specific approach or practice until
you know what your ultimate goal is. Then look for the best match. There are,
however, some general guidelines for selecting the appropriate approach that
are described in the following paragraphs.

• Use only what you need: Often, people rely on the process too much.
They think that as long as there is a process in place and it covers
everything, they are guaranteed to have a successful project. Because they

RUP and eXtreme Programming: Complementing Processes 197

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are afraid of missing something, they try to include everything. This leads
to a bloated process that either no one follows, or that people follow and
produce a lot of needless artifacts, forgetting the primary goal of delivering
valuable software. The best advice is to include only those practices,
artifacts, activities, and so on that you are sure you need, and leave out
the rest. If you omit something that you need, you will find out soon enough
and have time to add it to your process. If you include something that you
do not need, you may never know.

There is one caution about applying this suggestion. Do not omit something just
for the sake of keeping your process small or lean. Be objective in your
assessment of your needs. For example, if you have a distributed development
team or there are other projects that depend upon yours, then using user stories
on index cards and getting the real details through face-to-face conversations
with the customers is probably not enough. You may have to write out some use
cases or Software Requirement Specification (SRS) documents.

• Don’t be afraid to change things: Just as requirements change for
software projects, the needs of the team may change or the initial process
may be inadequate. Both RUP and XP encourage reflection and change.
Self-examinations and evaluations are needed for a healthy team and
organization.

• Apply process at appropriate levels: It would probably be foolish to
try to get all enterprise-wide software development using only XP
practices in a very large organization. At the highest levels of the
organization, there might be teams responsible for strategic systems
planning, corporate infrastructure and architecture, and so on. Much of
the work these teams do is not code-centric. The XP practices are not
appropriate. Activities like business modeling and architectural analysis
described in RUP are better suited to these groups.

At some point, software projects are started in organizations like the one just
described that get down to building and delivering applications. The teams
responsible for this work can certainly apply many of the practices from
processes like XP. Test-driven development can be used by almost any
software developer who is writing code, as can pair programming. In general
you don’t want the developers to be spending the bulk of their time developing

198 Pollice

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UML diagrams or writing use cases. You want them creating a solution that
transforms the requirements to software.

• If you have multiple levels of process, make sure they are coordi-
nated: Even if you have applied different processes in your organization
as suggested above, things may not go smoothly. A good bit of coordina-
tion is required. At the very minimum, there will be requirements and
schedules that cross individual projects. Someone must ensure that they
are scheduled and managed properly. In a large organization, there is a
need for project and program managers who are responsible for just this
type of coordination.

Summary

RUP and XP are both effective approaches to developing high-quality,
valuable software. They have many similarities and some significant differences.
While they may be used alone, one approach to improving the effectiveness of
your organization and project team might be applying practices from both at the
right level. By using common sense and following a few guidelines, you can
identify and apply the right set of practices to help your organization succeed.

References

Beck, K. (1999). Extreme programming explained: Embrace change.
Reading, MA: Addison-Wesley.

Bergström, S., & Råberg, L. (2004). Adopting the Rational Unified
Process: Success with the RUP. Reading, MA: Addison-Wesley.

Kroll, P., & Kruchten, P. (2003). The Rational Unified Process made easy:
A practitioner’s guide to Rational Unified Process. Reading, MA:
Addison-Wesley.

Pollice, G. et al. (2004). Software development for small teams: A RUP-
centric approach. Reading, MA: Addison-Wesley.

RUP and eXtreme Programming: Complementing Processes 199

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Endnotes

1 Some organizations will enter a cycle of continuous enhancement to a
product by performing very limited Inception and Elaboration phases, and
concentrating on Construction and Transition for each release. Some
people extend RUP to add a Maintenance phase that embodies this type
of cycle.

2 This list is taken from Ron Jeffries Web site: http://
www.xprogramming.com/xpmag/whatisxp.htm.

3 XP teams talk about refactoring as a way to remove “code smells.” They
say that like dead fish, code will smell the longer it is allowed to decay.

4 Taken from http://agilemanifesto.org/principles.html.
5 One of the reasons that XP is extreme is that you are extreme in the

application of the practices by doing them all of the time. Kent Beck
described this as “turning the knobs all the way up.” This is a metaphor to
thinking of a machine with dials for each practice that indicate how much
you apply them on your project.

6 An actor is an entity, not necessarily a human, outside of the system being
built.

7 Papers have been presented on this subject at many of the XP and Agile
Software Development conferences. Look there for specific case studies.

200 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

Managing Complexity
with MDSD

Jorn Bettin
SoftMetaWare, USA

Abstract

This chapter addresses the question of how to successfully create durable
and scalable software architectures that enable the underlying design
intent of a system to survive over a period of many years, such that no
accidental dependencies are introduced as part of further software
development and maintenance. The answer involves looking beyond
object-orientation and traditional iterative software development. In
order to prevent long-term design degradation, and in order to efficiently
execute software development in the large, the introduction of
dependencies between components needs to be actively managed, relying
on a set of guiding principles for component encapsulation and abstraction.
The guiding principles required turn out to be a natural extension to the
principles of design by contract, they have a direct impact on the modular
structure of software source code, and they form a foundation for model-
driven approaches to software development.

Managing Complexity with MDSD 201

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Object-orientation was invented for the purpose of modeling physical systems
(Dahl & Nygaard, n.d.), and the concept of models lies at the root of object-
orientated approaches. The prediction that objects would lead to substantial
software reuse and productivity gains in the software industry has turned out to
be wrong. Objects are useful, but industrial use of object-oriented languages
has shown that objects are too small-scale for meaningful reuse. The lack of
constructs for modularization and encapsulation at a level of abstraction above
classes has led to the concept of components where specifications are cleanly
separated from implementation and where components can be nested. The
concept of nested components is critical for achieving reuse. Nesting enables
a group of collaborating components to be packaged as a reusable piece of
functionality, and modern object-oriented languages such as Java and C#
directly support the component concept in the form of interfaces, Java
packages, and C# namespaces.
Unfortunately, components still depend strongly on specific implementation
technologies, which makes it difficult to build complex solutions by assembling
components from arbitrary sources. Furthermore, practitioners realized that
component interfaces expressed as a set of operations do not provide suffi-
ciently precise specifications. This has led to design by contract (Meyer, 1997),
and to the distinction between provided and required interfaces that we now
find in the UML (www.omg.org/uml/).

Motivation to go Beyond
Objects and Components

Objects and components together provide one coherent modeling paradigm.
A number of scientific and engineering disciplines have developed their own
modeling paradigms and notations, which are geared to the specific require-
ments of the problem domain. Mathematicians use a mature notation that is
extremely useful and unlikely to change, accountants have been using spread-
sheets for many years and are unlikely to switch to object-oriented program-
ming, electrical engineers are using a standardized notation for designing
electronic circuits, and the list goes on. This leads to some important lessons for

202 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

software development. Perhaps it is not such a good idea to assume that all
software development should be ruled by one modeling paradigm. Models
expressed in the notations listed above provide examples of non-object-
oriented models that are translated mechanically into working code by appli-
cations such as symbolic mathematics packages, spreadsheet packages, and
electronic circuit production systems.
There are many more examples of highly specialized domains, where there is
no industry standard modeling notation, but where it still makes sense to
develop a domain-specific modeling notation instead of specifying software
using the “one-fits-all” object/component paradigm. The advantage of domain-
specific modeling notations lies in their natural fit to the problem domain. This
is especially true for those notations that have been developed over many
decades by domain experts. Companies want to be able to adapt their software
systems to a constantly changing business environment with minimum effort.
Ideally this is realized through model-driven applications, where domain
experts are provided with modeling tools that allow them to express relevant
changes in a notation that is built on familiar domain concepts. This is also
known as end user programming. Of course, this only works to a point; it does
not extend to changes to the modeling notation—which leads into the topic of
domain engineering1 and software product lines (www.sei.cmu.edu/plp/)—
that is, sets of software-intensive systems sharing a common, managed set of
features that satisfy the needs of a particular market segment or mission and that
are developed from a common set of core software assets in a prescribed way.
The Model-Driven Software Development (MDSD) paradigm (Bettin, 2004a)
is a pragmatic approach to software product line engineering that avoids the
heavy up-front investment into an application platform. It provides an incre-
mental path for the development of suitable domain-specific notations. The
underlying philosophy of software product line engineering and Model-Driven
Software Development is that every software development initiative beyond a
certain magnitude validates the development of appropriate domain-specific
languages to express software specifications. The MDSD best practices (VB,
2004) are intended to bring down the costs of building a domain-specific
software production facility to the level where domain-specific languages
become attractive for many middle-of-the-road software development projects.
A key element in MDSD is iterative dual-track development—that is, devel-
oping an application, and in parallel, at the same time, developing the infrastruc-
ture for a highly automated application production facility. Both parts are
developed incrementally and iteratively as show in Figure 1. In any particular

Managing Complexity with MDSD 203

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

iteration, infrastructure development is one step ahead. New releases of
infrastructure are only introduced at the start of application development
iterations. In practice it is a good idea to use a fixed duration for all iterations,
which minimizes the disruption caused by upgrading to new iterations of the
production facility.
It is important to realize that the term “domain” need not always relate to a
specific industry or a product family; the term domain can just as well relate to
a sub-domain of the domain of software engineering. Modern component-
based software systems make extensive use of frameworks that implement
various technical concerns (i.e., “domains”) such as transaction handling,
logging, persistence, and so forth. The nature of object-oriented frameworks
means that framework usage code is highly repetitive and pattern based. The
MDSD approach advocates the development of an appropriate modeling
notation that reflects the core framework concepts, which can be used to
automatically generate the framework completion source code. Hence, object-
oriented frameworks can be considered as the first step towards developing a
domain-specific language.
The use of technical object-oriented frameworks is common practice, and the
use of MDSD is likely to become common practice in this context within the
next few years. Without support by MDSD tools, object-oriented frameworks
are notoriously difficult to understand and use, which is why successful
frameworks tend to be small and focused. MDSD enables framework devel-
opers to do a proper job and shield framework users from framework

Figure 1. Iterative dual-track development

Integration
and

Feedback

Application
Development

(n)

Infrastructure
Development

(n+1)

feedback

204 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

implementation details. The result is a simplified application development
process, where only a few team members need detailed knowledge about the
technical object-oriented frameworks used.

Software Development Processes

MDSD is designed for scaling up agile software development to large, multi-
team environments involving more than 20 people. The approach is also
suitable for smaller teams if they are building a series of related applications or
a product that needs to be maintained and supported over a period of three
years or more.
There are a number of factors that affect software development in the large, that
is, factors that are relevant to MDSD:

• The software development skills vary across the organization. Hence, the
notion of a globally applicable software development process that pre-
scribes activities at the micro scale is impractical, as it would unnecessarily
constrain the productivity of the most experienced team members
(Cockburn, 2001).

• The depth of domain expertise varies across the organization, and
typically, the number of true domain experts is limited.

• The work is distributed across several teams that need to be carefully
coordinated and managed. Often teams are separated geographically and
by time zone differences, and sometimes also by culture and language
barriers.

• The number of stakeholders is large. Especially in the case of product
development, a formal yet unbureaucratic process is required to manage
the diverging interests and priorities of various customers.

• Business milestones are imposed externally and are non-negotiable. Late
delivery is unacceptable.

• The software development budget is fixed and is not expected to be
exceeded.

Managing Complexity with MDSD 205

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Given that these are the typical constraints and expectations, the statistics about
software project failures should come as no surprise. Table 1 provides an
overview of how different software development approaches deal with these
context parameters.
The ratings in Table 1 are certainly subjective, and they are only intended to
indicate relative strengths and weaknesses, but they do provide insight into the
motivating factors that have contributed to the creation of the MDSD paradigm.
It should also be noted that MDSD should be seen as a paradigm that is
compatible in principle with any agile method, and that is also compatible with
RUP. After all, RUP is a process framework, and according to its definition,
any process that is use case driven, architecture centric, and iterative and
incremental can be interpreted as an instance of RUP. Thus as long as initial
functional software requirements are captured in the form of use cases; an
MDSD approach is within the scope of the RUP framework. Using a similar line
of reasoning, the proponents of RUP have argued that XP can be seen as a
minimalist implementation of RUP called dX (Booch, Martin, & Newkirk,

Table 1. Comparison of approaches for iterative software development

Provides techniques for MDSD SPLE RUP XP

Dealing with a range of experience levels +++ +++ + ++
Dealing with a range of depth of domain
expertise +++ +++ + ++

Scaling to a distributed organization +++ +++ ++ +
Balancing the interests of a range of
stakeholders +++ + + ++

Meeting fixed business milestones +++ + ++ ++
+

Maximizing the return from a fixed budget +++ + ++ ++
+

Separation of concerns +++ ++ +
Iterative adjustment of the balance between
infrastructure development and application
development

+++ ++ + +

Achieving agility ++ + + ++
+

Minimizing the up-front investment required
to implement and roll-out the approach ++ + +++ ++

+

206 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1998). Instead of another instance of a “method war,” it is much more
productive to concentrate on techniques from different methods, which can be
strung together into a working approach that is suitable for a specific context.
The following paragraphs provide a brief perspective on each of the ap-
proaches listed in Table 1, highlighting areas where MDSD can be used to
compensate specific weaknesses.

Extreme Programming

Extreme Programming (Beck 2000), also known as XP, is a highly disciplined
approach that relies heavily on verbal communication, and that assumes above-
average skill levels. Hence, XP does not provide concrete guidance in terms of
software design patterns and focuses on collaboration, on aspects of project
management, and on requirements management. The assumption about above-
average skill levels does not hold in a sufficiently large environment and imposes
limitations on the scalability of XP. Some XP techniques such as pair program-
ming cannot be applied to distributed teams. The larger the environment, the more
verbal communication needs to be supplemented with externalized knowledge
and documentation. However, XP encourages timeboxed iterations, and pro-
vides concrete techniques for management of scope and priorities that are
compatible with the MDSD recommendations for iterative development.

The Rational Unified Process

The sheer size of the Rational Unified Process (Jacobson, Booch, &
Rumbaugh, 1999) framework means that it can be more expensive to
instantiate RUP than to develop a tailored and streamlined software
development process from the ground up. Unless an experienced process
engineer configures RUP, there is also a real danger that the number of work
products to be produced is not trimmed down sufficiently for fear of missing
something, resulting in a bloated high-ceremony process. The documenta-
tion of RUP contains descriptions of activities at an unrealistic level of
detail. Despite this level of detail, RUP provides no concrete guidance in
terms of software design patterns, and no support for active dependency
management—that is, RUP does not leverage deep domain knowledge
(Bettin 2004a). Although RUP is clearly iterative, it does not mandate
timeboxed2 iterations, and it provides very little guidance for managing

Managing Complexity with MDSD 207

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

scope from iteration to iteration. The core value of RUP lies not in the details,
but in its core concepts: use case driven, architecture centric, and iterative and
incremental.

Traditional Product Line Approaches

Product line approaches are ideal to address the varying skill levels and varying
levels of domain expertise in large teams. Product line approaches have been
used successfully with distributed teams (Bosch, 2000). A key advantage is
that the application development process is not derived from a fixed template
such as in RUP, but that instead the application development process is molded
around the concrete needs and requirements of the specific context, and is
entirely defined by the team that develops the software production facility. The
main disadvantage of traditional product line approaches is the lack of agility,
in particular the up-front investment into an application platform3 during the
initial creation of the product line. This drastically reduces the practical
applicability of traditional software product line approaches.

Non-Software Product Line Approaches

Non-software product line approaches in general, including RUP and XP, do
not explicitly distinguish between building a software production facility and
building software products or applications. In practice, however, the skills
requirements for these two activity streams are different. If the two streams are
not separated, it becomes very hard, in a large team, to establish priorities that
are fully aligned with the objectives of stakeholders. When using an approach
such as RUP, this issue can be addressed by introducing an appropriate team
structure that mirrors the setup suggested by software product line engineering
approaches.

Model-Driven Software Development

Model-Driven Software Development provides explicit techniques to apply
the principles for agile development to software product line engineering. This
means the development of a software production facility occurs incrementally,
and in parallel with the development of a reference implementation that defines

208 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the software architecture for a family of applications or products. One practical
lesson from software development in the large is that consistency of work
products is only achievable to the degree that consistency can be enforced by
the use of tools and automation. Therefore, MDSD has a very strong emphasis
on automation and the construction of specialized tools that leverage scarce
domain knowledge that traditionally tends to remain locked within the brains of
a few team members.
This remainder of this chapter concentrates on techniques for dependency
and complexity management that become practical with the help of MDSD
tools. The objective of these techniques is the creation of durable and
scalable software architectures that enable the underlying design intent of
the system to survive over a period of many years, such that no accidental
dependencies are introduced as part of further software development and
maintenance.
Is this goal achievable? In real-world software projects, the concern about
software architecture usually increases with team size, but in the end, when it
comes to building a system, software is often cobbled together without effective
control over the dependencies that are created between various pieces. In
order to prevent long-term design degradation, and in order to efficiently
execute software development in the large, the introduction of dependencies
between components needs to be actively managed, relying on tools for the
mechanical enforcement of standards and rules.

Managing Complexity

Model-driven generation can be used to enforce specific patterns and to
prevent arbitrary dependencies. That still leaves the work of those who
produce prototypes and reference implementations from which generator
configurations and templates are derived. If a single person produces the
complete reference implementation, and if that person consciously and care-
fully thinks about every dependency in the design, then all is fine. In reality,
consciously managing the impact of every dependency is only possible by
adhering to a set of guiding principles for encapsulation and abstraction, even
in a single-developer project. The larger the software development effort, the
greater the need for conscious dependency management.

Managing Complexity with MDSD 209

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The principles required for effective dependency management turn out to be a
natural addition to the six principles for design by contract.

• Whereas the design by contract principles focus on precision in the
specification of component behavior,

• the principles for fully externalized interface definitions focus on
precision in the delimitation of types that can be used in the communication
between components.

The latter principles, which are defined in detail later on, have a direct impact
on the package/module/component structure of software code, and therefore
their correct application can easily be verified mechanically in the code base.
If correct usage is confirmed, then a potential component user can understand
what each component is doing by looking at the component specification,
without having to look inside. The concept of fully externalized interfaces adds
value to all non-trivial software development projects, and is particularly well
suited for use in a model-driven software development process.
A major influence on MDSD is the concept of uniformity that underpins the
KobrA software product line approach (Atkinson et al., 2002), in which every
behavior-rich software entity is treated uniformly, regardless of its granularity
or location in the “containment tree” that describes a software system. In other
words, software entities—which in KobrA are called “Komponents”—have
the property of a fractal.
Taken together, the two sets of principles mentioned above form the foundation
for Industrialized Software Asset Development, serving the following goals:

• Promotion of reuse and pluggability of software assets.4

• Provision of patterns for the design of Open Source software assets that
help maximize the (re)use potential of Open Source software assets.

• Provision of support for the mass-customization5 of software products
(i.e., the management of variability in a software product family).

• Provision of a set of simple rules that limit the creation of dependencies
between software assets, so that Model-Driven Software Development
tools can be used to enforce software architecture specified in the form of
models.

210 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In describing standards for software component development, we work
from the inside out: starting with a single component and its specification,
then looking at its use, at customization/extension, and lastly taking one step
back, looking at the containing component, raising the level of abstraction
by one level.

The Problematic Side of Design Patterns

Design patterns—and patterns in general it seems—tend to encourage describ-
ing the solution in more precise terms than the problem; that is, by leading from
context to the solution, they focus inwards, on the “how” rather than the “what.”
There are exceptions, but software pattern authors generally tend to prefer
precise descriptions of a solution over precise descriptions of the context to
which the solution applies. In a model and domain-driven approach however,
the need for precision starts at the level of abstraction of the problem space.
If we want to build durable software, we need to use component specification
techniques that force us to focus on understanding the “what” first. What
services do clients want from my component? And precisely what is the
“language” that my clients understand or want to talk in?
A classical design pattern to control and limit dependencies between compo-
nents/subsystems is the façade pattern (Gamma, Helm, Johnson, & Vlissides,
1994), and that is about as far as most projects worry about dependencies. In
fact, the façade pattern is a good example of a pattern that is obviously very
useful, but is not specific enough to achieve active dependency management
without further qualification. The usage example in the book by Gamma et al.
(1994) completely ignores the dependencies created by the types used in the
signatures of the operations exposed in the façade. The particular types used
in the operations of the example seem to reside inside the subsystem that is
supposed to be encapsulated by the façade. The façade pattern says nothing
about whether these types must be defined within the subsystem, or whether
these types could also be defined externally.
No subsystem lives in a vacuum. If a second subsystem communicates with the
first via the façade, it depends not only on the façade, but also on the types
exposed via the façade. If the second subsystem makes use of one of these
types in its own façade, all of its clients end up depending on the first subsystem.
The more subsystems end up depending on the types exposed in the façade

Managing Complexity with MDSD 211

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the first subsystem in the way just illustrated (i.e., not as direct dependents,
but rather as “second cousins”), the less justification there is for keeping the
type definitions in the first subsystem. However, none of the other subsystems
would provide a more logical home either. This should be enough to set the
scene for the concept of fully externalized interfaces.

What is a Component?

Although the concept of a component has been around for a number of years,
the concept is still (2004) not used consistently across the software industry.
The problem is mainly educational, exacerbated by the slightly different spin
that vendors tend to put on new concepts to differentiate themselves. Just as
with object orientation, a lot of damage has been done by hype and setting
wrong expectations. At least with the UML standardization effort, vendors now
have come to a common ground that is reflected in the UML 2 (www.omg.org/
uml/) definition of “component”:

A component is a modular part of a system that encapsulates its
contents and whose manifestation is replaceable within its
environment. A component defines its behavior in terms of provided
and required interfaces. As such, a component serves as a type,
whose conformance is defined by these provided and required
interfaces (encompassing both their static as well as dynamic
semantics).

Even if this definition is not necessarily a literary gem, it provides a common
denominator on which we can build—further relevant OMG specifications of
component semantics are part of the UML metamodel and MOF. For practical
purposes, and untainted by vendor-specific interpretations, Brown (2000, pp.
62-63) provides an excellent description of the essence of components. We
quote the most important points that complement the UML 2 definition:

Component approaches concentrate design efforts on defining
interfaces to pieces of a system, and describing an application as
the collaborations that occur among those interfaces. The interface
is the focal point for all analysis and design activities. Implementers

212 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of a component can design and build the component in any
appropriate technology as long as it supports the operations of the
interface and is compatible with the execution environment.
Similarly, users of another component can define their use of that
component by reference only to its interfaces. This provides a
measure of independence between component developers, and
improves the flexibility of the system as the components are
upgraded and replaced…Solutions are designed as collections of
collaborating components. However, there are different abstract levels
on which this component design may be considered.

The first paragraph of this description simply spells out the basic implications
of the UML definition of a component. The second paragraph stresses the
importance of the usage environment of components, and the relevance of
different levels of abstraction—which is taken much further by KobrA (Atkinson
et al., 2002).
Beyond the basic definition of a component, the UML 2 standard provides
several improvements for the specification of software components, notably
the distinction between provided and required interfaces, and the concept of
ports which provides a natural way to precisely model nested components.

Precise Component Specifications

Design by contract (Meyer 1997), which defines a component interface as a
collection of operations with signatures, invariants, and pre- and post-condi-
tions, is a good starting point, and can be applied to provided and required
interfaces. The design by contract principles are best expressed using the
following terminology from Mitchell and McKim (2002):

A command is a stereotype of operation that can change the state
of an object but does not return a result.
A query is a stereotype of operation that returns a result but that
does not change the state (visible properties) of an object.

Armed with these definitions, the design by contract principles are the following
(again taken from Mitchell & McKim, 2002):

Managing Complexity with MDSD 213

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Principles of Design By Contract

1. Separate queries from commands.
2. Separate basic queries from derived queries. Derived queries can be

specified in terms of basic queries. In other words, reuse simple queries
to build more complex queries, and avoid duplication in query specifica-
tions.

3. For each derived query, write a post-condition that specifies what
result will be returned in terms of one or more basic queries. Then,
if we know the values of the basic queries, we also know the values of
derived queries.

4. For each command, write a post-condition that specifies the value
of every basic query. Now we know the total visible effect of each
command.

5. For every query and command, decide on a suitable pre-condition.
Pre-conditions constrain when clients may call the queries and com-
mands.

6. Write invariants to define unchanging properties of objects. Con-
centrate on properties that help the reader build an appropriate concep-
tual model of the abstraction that the class embodies.

Design by contract is a useful technique as part of a test-driven approach, and
just as with any test-driven approach, it is necessary for a project to agree up
to what level the technique is applied. In a system of nested subsystems, design
by contract adds the most value when applied to the interfaces of the highest-
level subsystems.
In fact, writing automated tests can be a very convenient and natural way to
provide “sufficiently complete and precise interface specifications” for compo-
nents. Allowable interaction patterns between a component and its clients are
an important part of a component’s interface specification. These interaction
patterns are ideally captured in the form of tests, which then provide a
component user with valuable knowledge on how a component is intended to
be used. So writing automated tests adds significant value beyond “testing.” It
can enable component users to make use of a component without having to
dig deep into the implementation to understand it.

214 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As required, the principles of design by contract and test-driven development
can be applied at lower levels—for example by pragmatically creating auto-
mated unit tests, and writing appropriate constraints to catch defects that have
been uncovered in manual function testing.
In order to be able to use a component properly, we need a specification of
the intended or valid usage protocol, such as a precise specification of
allowable interaction patterns between a client and the component. Above
we have already indicated how test-driven development can be used to that
end. On the topic of visual, non-code-based specifications of interaction
patterns, we refer to the interesting work on CoCoNuts (Reussner, n.d.).
Cleaveland (2001) introduces the useful concept of a dependent-type-set for
a component c, which is defined recursively as follows:

1. The type of c is a member of the dependent-type-set.
2. If t is in the dependent-type-set, then so are all superclasses of t.
3. If t is in the dependent-type-set, then so are all types referenced in the

source code of t, including the types of parameter values, instance
variables, local variables, and each expression.

For many objects in software systems encountered in practice, the dependent-
type-set consists of most or even all the types of the system. In other words:
these systems are not component-based, as they do not allow reuse of specific
objects in the form of self-contained components.
Component-based software development focuses on minimizing the depen-
dent-type-sets of components, so that individual components or small groups
of collaborating components can be deployed as a unit without having further
external dependencies. When building software using an object-oriented
language, there will always be some parts of the software that depend on
intrinsic types and a set of base classes provided by the language. It may be
appropriate to allow the limited set of intrinsic types and a well-defined set of
base classes to be used throughout a system. The use of all other types needs
to be carefully managed, and this includes types defined in libraries and
frameworks that are part of the wider language environment. Typically, these
non-trivial types only need to be used in one or a few specific components,
and their use should not be scattered arbitrarily throughout a system.

Managing Complexity with MDSD 215

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hardly any software development project starts with a clean slate. Often a
given system exists and needs to be extended, or a new system needs to fit
into an existing set of systems and subsystems. This means it makes sense
to examine how loose coupling of components can incrementally be
achieved in such an environment.
The first step to active dependency management within software is to introduce
component interfaces, and then to limit the use of types in component interfaces
to well-defined sets. We distinguish two stereotypes of components: <<sub-
systems>> and <<platforms>>, with the former containing the component
implementation, and the latter serving as the dependent-type-set for the former.
In the remainder of this chapter, we simply talk about Components and
Component Platforms to refer to <<subsystem>> components and <<plat-
form>> components respectively.
Initially the implementation of some Component interfaces may need to be
wired up to non-component-based existing code, and we concentrate on
defining sensible boundaries and corresponding interfaces for our Components
based on the principles of Fully Externalized Component Interface Defi-
nitions:

The Principles of Fully Externalized Component Interface Definitions

1. The types exposed in a Component interface are all defined in a
Component Platform that resides outside the Component. Thus a
Component Platform exposes the types contained within it, and is
therefore fundamentally different from a Component.

2. Components may either contain realizations of the types used in their
interface, or they may obtain access to instances of the types used in
their interface via an interface of the corresponding Component
Platform.

3. The interfaces of several Components within an architectural layer
may share a common Component Platform.

4. For convenience purposes, a Component Platform may be defined as
a union of other Component Platforms.

5. The level of abstraction can be raised by constructing a Component
Platform from a group of collaborating Components and their common
Component Platform, and using a façade and any required helper

216 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

classes to lift the API. The implementation—the “contained” Component
Platform and the collaborating Components depending on it—is physi-
cally contained in a separate implementation package, so that the macro-
level Component Platform only exposes the types that are used by
macro-level Components.

Principles 1 and 2 are illustrated in Figure 2.
We see that:

• The ComponentSpecification interface declaration sits outside the compo-
nent that realizes the interface.

• The types that are allowed to be used in ComponentSpecification (inter-
face) are defined in a separate ComponentPlatform package. These types
may be realized in the component (if the ComponentPlatform is a simple
collection of type definitions), or they may be obtained via the
ComponentPlatformSpecification interface (if the ComponentPlatform is a
framework). Note that the ComponentPlatformSpecification interface sits
outside the ComponentPlatform package. Hence the “cool stuff” compo-

Figure 2. Fully externalized interface definitions6

cd Component

coolStuff::
CoolStuff

ComponentSpecification

componentPlatform::
ComponentPlatform

ComponentPlatformSpecification

Managing Complexity with MDSD 217

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nent needs to import the ComponentPlatformSpecification interface, so that
it can instantiate types defined in the ComponentPlatform package via
operations in the ComponentPlatformSpecification interface.

• If our component contains “cool stuff” that we want to promote for
widespread use and reuse, then it is worthwhile to consider making certain
pieces available in Open Source format (with an appropriate Open
Source license, for which the requirements vary depending on the in-
tended usage environment of the component).

To limit dependencies between a set of collaborating components, it is
advisable to define a “common currency” for communication between compo-
nents. This is achieved by mandating that all collaborating components
make use of the same well-defined set of types in their public interfaces,
which leads us to principle 3.

Figure 3. Component usage environment

cd ComponentUse

componentPlatform:
:

ComponentPlatformComponentPlatformSpecification

coolStuff2::
CoolStuff2

ComponentSpecification2

coolStuff3::
CoolStuff3

ComponentSpecification3

coolStuff::
CoolStuff

ComponentSpecification

218 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The reasoning for introducing the concept of a Component Platform Speci-
fication separate from Component Specifications becomes clear when we
look at Figure 3: externalized component interface definitions lead us to think
about the usage environment of our component, about “what” our component
needs to provide. In Figure 3 there are two components that use the “cool stuff”
component, which is indicated through corresponding dependency arrows in
the diagram. To keep the diagram simple, we have not shown any potential
dependencies on ComponentSpecification2 and ComponentSpecification3. The
interesting point to note is that any further dependencies between the three
components do not lead to any new dependencies. All types used in the
component interfaces are defined in the ComponentPlatform.
The Fully Externalized Component Interface Definitions principles are appli-
cable at all levels of granularity, and they provide a practically usable interpre-
tation of the relativity of platforms in MDA (www.omg.org/mda/), as we
shall see later. Figure 3 also hints at the reasoning behind the specific pieces that
are potential candidates for an Open Source implementation.

Using Open Source as a Quality/Standardization Driver

Making a Component Specification and the corresponding Component Plat-
form, including its specification Open Source, promotes competition for cost-
efficient implementations. The first step might be a competitor who comes up
with a better implementation of our “cool stuff”—it may perform better, require
less memory, but adheres to the same specification. In particular if our “cool
stuff” has been successful (others have built on it), there will be a strong
incentive for the competitor to support the interface of our original “cool stuff”
component.
Why would a commercial software vendor be interested in opening up
commercially successful software in that way? Think about the following:

• Making the component specifications available in Open Source form
sends a strong message to the market: we have this “cool stuff,” and we
want you to use it without needing to worry about vendor lock-in.

• Price is not everything. If the potential market is large, a quick
expansion and development of the market may lead to more revenue
than a high price and a completely closed architecture.

Managing Complexity with MDSD 219

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The timing in making the relevant source code Open Source can be used
as a tool to manage revenue. You want to have a fairly well-featured
component/product before you Open Source the specification. The
competition will take a while to produce a cheaper clone, which provides
a window of time for recouping the investment into the first release. In case
your implementation is of high quality, the competition might never catch
up. Otherwise, as we shall see later, you can use a competitor’s improve-
ment as a stepping stone forward.

Extension and Evolution

Usage of a software component in a number of systems and contexts leads
to new insights and new requirements, and possibly to a demand for
variations of the component. By focusing on the “what,” externalized

Figure 4. Component extension

cd ComponentExtension

ReallyCoolStuff

ReallyCoolSpecification

ComponentSpecification

«interface»

somePlace::ReallyCoolSpecification

«interface»

macroLevelPlatformImpl::ComponentSpecification

componentPlatform:
:

ComponentPlatform
ComponentPlatformSpecification

220 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

component interface definitions lead to the expression of variabilities in the
language of the problem domain rather than in the language of the solution
domain. The simplest form of evolving a component is by extending the
interface as shown in Figure 4 to provide “really cool stuff.”
In this scenario, the Component Platform stays the same. The new
ReallyCoolSpecification may or may not need to be Open Source, depending on
whether the ComponentSpecification is Open Source, and depending on the
flavor of the Open Source license used. For backwards-compatibility, and to
enable incremental migration of clients, the “really cool stuff” component not
only implements the new ReallyCoolSpecification interface, but also implements
the ComponentSpecification interface.
Open Source licenses that require extensions/modifications to be bound to
the same license are beneficial to the entire software community if some
organization develops a useful extension. This may mean that a competitor
overtakes the original developer of CoolStuff. However, this model also enables
the original developer to leap onto any improvements and take them to the next

Figure 5. Component Platform extension

cd PlatformExtension

platformExtension:
:CoolPlatform

CoolPlatformSpecification

«interface»

somePlace::CoolPlatformSpecification

«interface»

macroLevelPlatformImpl::ComponentPlatformSpecification

UltimatelyCoolStuff

Ul timatelyCoolSpecificaton

ComponentSpecification

«interface»

somePlace::UltimatelyCoolSpecificaton

«interface»

macroLevelPlatformImpl::ComponentSpecification

Managing Complexity with MDSD 221

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

level. Hence the resulting competition is constructive, not destructive; it enables
the software community to build on the achievements of others; and market
economics automatically lead to the selection of the most maintainable imple-
mentations.
The next possible kind of component extension involves an extension of the
Component Platform to be able to deliver “ultimately cool stuff.”
In this scenario, the comments and incentives regarding Open Source are the
same as in the previous scenario: depending on the licensing model, the
CoolPlatform may or may not be Open Source.

Stacks of Component Platforms

The concept of fully externalized interfaces can be applied at all levels of
granularity, and we start again with the picture of collaborating components to
illustrate this point.
To reduce the level of coupling for a client component that needs access to
functionality of all three components in Figure 6, it may be advisable to wrap
the three components into one “Macro-Level” Component Platform, which
leads to Figure 7. Basically, this is a form of API lifting.

Figure 6. Macro-level platform

cd macroLev elPlatform

componentPlatform

+ ComponentPlatform

ComponentPlatformSpecification

coolStuff

+ CoolStuff

ComponentSpecification

coolStuff2

+ CoolStuff2

ComponentSpecification2

coolStuff3

+ CoolStuff3

ComponentSpecification3

«interface»

ComponentPlatformSpecification

«interface»

ComponentSpecification

«interface»

ComponentSpecification2

«interface»

ComponentSpecification3

«realize»«realize»«realize»

«realize»

222 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

cd
 P

la
tf

o
rm

S
ta

c
ks

M
a

cr
oL

ev
el

P
la

tf
or

m

(f
ro

m
 m

a
cr

o
L

e
ve

lP
la

tf
o

rm
)

co
m

p
on

en
tP

la
tf

o
rm

::
C

o
m

po
n

e
n

tP
la

tf
or

m

C
o

m
p

o
n

e
n

tP
la

tf
o

rm
S

p
e

ci
fi

ca
ti

o
n

c
o

o
lS

tu
ff

::
C

o
ol

S
tu

ff

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n

c
o

o
lS

tu
ff

3
::

C
o

ol
S

tu
ff

3

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n
3

c
o

o
lS

tu
ff2

::
C

o
o

lS
tu

ff
2

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n
2

m
a

cr
o

L
ev

e
lP

la
tf

o
rm

::
M

a
cr

o
L

e
v

e
lP

la
tf

o
rm

Fa
ca

de

M
a

cr
o

L
e

ve
lP

la
tf

o
rm

S
p

e
ci

fi
ca

ti
o

n

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n
3

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n
2

C
o

m
p

o
n

e
n

tS
p

e
ci

fi
ca

ti
o

n
C

o
m

p
o

n
e

n
tP

la
tf

o
rm

S
p

e
ci

fi
ca

ti
o

n

m
a

cr
oL

ev
e

lC
om

po
ne

nt
::

M
a

cr
o

L
e

v
e

lC
o

m
p

o
n

e
n

t

M
a

cr
o

L
e

ve
lC

o
m

p
o

n
e

n
tS

p
e

ci
fi

ca
ti

o
n

M
a

cr
o

L
e

ve
lP

la
tf

o
r m

S
p

e
ci

fi
ca

ti
o

n

«
d

e
le

g
a

te
»

Figure 7. Nested platforms

Managing Complexity with MDSD 223

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The façade depicted in Figure 7 does not have to be a single class in all
implementation scenarios. Also the diagram does not show details such as
all the other types beyond the façade that are defined in the macroLevelPlatform,
which are used by macroLevelComponent. The Macro Level Platform in Figure
7 is implemented with the help of a macroLevelPlatformImpl package (Figure 8),
which is the container of the content in Figure 6.
We now have a scalable and well-defined technique for managing dependen-
cies. The interfaces of all our components have well-defined and limited
dependent-type-sets, and the implementation of our components can be
exchanged without affecting clients of our components.
Full componentization is achieved in a second step, by also channeling all
dependencies of a component’s implementation through a component plat-
form, which then defines the dependent-type-set of the entire component, and
starts to grow from a simple collection of types into a framework. In summary
this means:

1. Start componentization by defining appropriate component boundaries
based on available domain knowledge. Usually some domain analysis is
required to uncover domain knowledge and to represent it in formal
models. A combined top-down and bottom-up approach assists in the
identification of appropriate components for various architectural layers.7

Figure 8. Macro-level component use

cd MacroLev elComponentUse

macroLev elComponent

macroLev elPlatform

«interface»

MacroLevelComponentSpecification

«interface»

MacroLevelPlatformSpecification
macroLev elPlatformImpl

«realize»

«realize»

224 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Incrementally put in place appropriate component interfaces using the
principles of fully externalized interfaces, and route communication be-
tween components through these interfaces to limit the dependent-type-
sets of the component interfaces.

2. Incrementally refactor the component implementations, to limit the depen-
dent-type-sets of each component by removing external dependencies
and evolving the relevant component platforms. Start with those compo-
nents that cause the most pain (maintenance costs), and continue until the
dependent-type-sets of all strategic8 components are restricted to well-
defined component platforms.

Modern object-oriented languages that directly support the basic component
concept via packages and interfaces allow a straightforward implementation of
component platforms and stacks of component platforms.
The difficulty in practice is to enforce the principles of externalized interface
definitions in large team environments where resources of various skill levels are
working with a code base. This is where MDSD (Bettin, 2004b) is extremely
useful, as it can be used to introduce component specification languages that
represent the various stereotypes of components that occur in the software
architecture of a product or product family as first-class citizens—the applica-
tion modeling language used by application developers then typically does not
allow creation of “components,” but only allows the creation of “Enterprise
Components,” “Business Components,” and so forth by selecting from a list of
component stereotypes that is predetermined by the software architect (Bettin,
2003). The connections between components can be wired-up by defining and
using a module interconnecting language as illustrated in Cleaveland (2001).

Practical Considerations

Components Supporting Multiple Interfaces

The techniques described in the previous sections are applicable to both peer-
to-peer communication between components and to communication be-
tween neighboring architectural layers. This may mean that a given component

Managing Complexity with MDSD 225

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may need to expose two or more types of interfaces: one for peer-to-peer
communication, and one for each architectural layer that touches the compo-
nent.
Each type of interface may require a quite different Component Platform. This
is especially obvious when constructing a domain layer, where functional
components have peer-to-peer interfaces—which should be as coarse grained
as possible, and where additionally, application and presentation layers sit on
top of the domain layer and require fine-grained access to domain objects so
these can be represented/manipulated on the user interface.
There is nothing that prevents the externalization of interfaces for each interface
of a component, and hence a component may be associated with multiple
component platforms.
A component platform may be a simple collection of types, or it may be a full-
fledged application framework. The evolution of a component platform is
determined by the characteristics of the components that are built on top of it.
If the components are sufficiently different, the component platform may always
remain a simple collection of types. If however there are significant common-
alties in the components using the component platform, then an evolution
towards an application framework is a natural consequence. Insisting on
externalized interface definitions not only serves the goal of active dependency
management, but also reduces the necessary amount of refactoring required to
distill an application platform from a set of related components. It is worthwhile
noting that the distillation of an application framework not only reduces the size
of the code base, but also may eliminate the need for some peer-to-peer
component interfaces.

Mass Customization

The techniques described for component extension and evolution can obvi-
ously be used to define variants as required. A component specification may
however need to accommodate several independent variabilities, resulting
in a huge number of possible variations. For example, a component
specification may allow, for example:

• a choice of locale to determine the language in user interfaces and
documentation,

226 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• a choice of target technology environment—Microsoft DotNET or J2EE,
or

• a choice of various persistence mechanisms.

In this type of situation, which is the typical mass customization scenario, it is
impractical to rely on reuse of pre-fabricated components. Instead, the
implementation of decisions that resolve the variabilities in component speci-
fications are more practically addressed just before compile-time (at compo-
nent configuration-time), or in some cases even at run-time.
A model-driven variant configurator that implements a decision model for a
software product family, in conjunction with a model-driven generator, is a
powerful tool to assist with automated component configuration and assembly.
If a code generator is used to configure a component based on the values in a
decision model, then component-configuration-time is equivalent with genera-
tion-time. The generator reads the decision model, and is used to generate
necessary configuration information and any required code to glue the gener-
ated components to the relevant component platforms. Additionally, for a
product instance, the generator may produce at least the skeletons of any
necessary code artifacts that are not covered by domain-specific frameworks
contained in component platforms.

Componentization in Non-Software Product Line
Settings

Not many software organizations develop large software product families and
make use of software mass customization. What value does componentization
add in other settings? The answer depends on the scale of the software that
needs to be supported, maintained, and developed. The scale is determined not
only by the physical size of the code base in terms of lines of code or a similar
measure, but it is also determined by the expected useful life of the software.
If a software system is built as a one-off system that is only expected to be
used for, say, two years, then componentization may not add much value.
However, only very few systems fall into this category. It is usually much
too expensive to develop software that has such a short life span.

Managing Complexity with MDSD 227

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Most software systems are expected to last at least three years, and in many
cases software systems remain in use over 10 years or longer. The reason why
parts of software systems are sometimes redeveloped from scratch is because
software maintenance and enhancements could not keep up with the speed of
change of requirements, or with the speed of change in the prevalent techno-
logical environment in which the software needs to execute.
Non-componentized software is a major reason for inability to economi-
cally implement software changes, because spurious complexity is intro-
duced through unlimited dependent-type-sets. This means that changes are
accompanied by unpredictable side effects, and it means a highly time-
consuming trial-and-error coding cycle for the software development team.
In the absence of well-defined component boundaries that provide known
limits to the impact of a change, it is a sheer impossibility for software
developers to fully understand the implications of a code change in a large
base of non-componentized software.
Thus any software that has a life expectancy of three years or longer, and that
consists of several 100,000 lines of code, is worthwhile to componentize.
The low life expectancy that some organizations attach to their software is the
result of experience with non-componentized software, which for reasons
explained above has a natural tendency to become less and less maintainable,
and therefore typically leads to a complete re-write at some point. However,
componentization is no silver bullet:

• If reasonably componentized software is neglected, it can easily degrade
into non-componentized software.

• There is no hard boundary between “non-componentized” and
“componentized,” there are various grades from poorly componentized to
fully componentized, and different people may have different opinions of
what represents a sufficient degree of componentization.

Component boundaries need to be drawn to maximize separation of concerns,
and need to take into consideration the commonalities and variabilities between
components, both at a technological as well as on a functional level.
Arbitrarily componentized software will be nearly as hard to maintain as
non-componentized software. In the end, hard economic numbers count. If

228 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

maintenance costs are not sustainable, the reasons can be any combination of
the following:

Problem Solution

1. The software is insufficiently or
inappropriately componentized.

Identify and replace software liabilities9 through
incremental componentization. Introduce
economically driven build/buy/Open Source
decisions into the software development process.

2. There is a lack of quality
assurance measures, and low
quality code leaks into production
software, making defects very
expensive to fix.

Institute a rigorous and effective QA regime.
Note: This problem often goes hand in hand
with problem 1.

3. The software development process
is overly bureaucratic.

Adopt an agile approach; eliminate all “write-
only” work products that no one reads.

4. The software is feature-saturated,
and the value of nice-to-have
features to the business is less than
the cost of developing new
features.

Stop developing new functionality.
Note: This is a rare problem, and it can be the
perception of an organization where the real
problem is 1.

References

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,
Muthig, D., Paech, B., Wuest, J., & Zettel, J. (2002). Component-based
product line engineering with UML. Reading, MA: Addison-Wesley.

Beck, K. (2000). Extreme Programming explained: Embrace change.
Reading, MA: Addison-Wesley.

Bettin, J. (2004a). Model-Driven Software Development: An emerging para-
digm for industrialized software asset development. Retrieved from
www.softmetaware.com/mdsd-and-isad.pdf

Bettin, J. (2004b). Model-Driven Software Development teams, building a
software supply chain for distributed global teams. Retrieved from
w w w . s o f t m e t a w a r e . c o m / d i s t r i b u t e d - s o f t w a r e - p r o d u c t -
development.pdf

Managing Complexity with MDSD 229

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bettin, J. (2003). Best practices for component-based development and
Model-Driven Architecture. Retrieved from http://
www.softmetaware.com/best-practices-for-cbd-and-mda.pdf

Booch, G., Martin, R.C., & Newkirk, J. (1998). The process. Retrieved from
www.objectmentor.com/resources/articles/RUPvsXP.pdf

Bosch, J. (2000). Design & use of software architectures, adopting and
evolving a product-line approach. Reading, MA: Addison-Wesley.

Brown, A.W. (2000). Large-scale component-based development.
Englewood Cliffs, NJ: Prentice-Hall.

Cleaveland, C. (2001). Program generators with XML and Java. Englewood
Cliffs, NJ: Prentice-Hall.

Dahl, O.-J., & Nygaard, K. (n.d.). How object-oriented programming started.
Retrieved from heim.ifi.uio.no/~kristen/FORSKNINGSDOK_MAPPE/
F_OO_start.html

Cockburn, A. (2001). Agile software development. Reading, MA: Addison-
Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns:
Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The Unified Software
Development Process. Reading, MA: Addison-Wesley.

Meyer, B. (1997). Object-oriented software construction. Englewood
Cliffs, NJ: Prentice-Hall.

Mitchell, R., & McKim, J. (2002). Design by contract by example. Reading,
MA: Addison-Wesley.

Reussner, R. (n.d.). CoCoNuts. Retrieved from www.dstc.monash.edu.au/
staff/ralf-reussner/coconuts/coconuts.html

Endnotes

1 In Software Product Line Engineering terminology, Domain Engineering
is the activity of collecting, organizing, and storing past experience in
building systems or parts of a system in a particular domain in the form of

230 Bettin

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

reusable assets (i.e., reusable work products), as well as providing
adequate means for reusing these assets (i.e., retrieval, qualification,
dissemination, adaptation, assembly, and so on) when building new
systems.

2 Timeboxing can be used to achieve a regular cycle of software delivery
and to establish a familiar rhythm in an iterative process. Over the course
of a few iterations, teams gain speed by following a well-engrained
routine, and the easiest way to coordinate multiple teams is through
synchronized timeboxes.

3 An application platform is the set of core assets in a product line that is
designed for reuse across members of the product line.

4 Model-Driven Software Development defines a software asset as “any-
thing from models, components, frameworks, generators, to languages
and techniques.”

5 Mass customization meets the requirements of increasingly heteroge-
neous markets by “producing goods and services to match [an] individual
customer’s needs with near mass production efficiency.”

6 In the UML diagrams in this section and in all the following sections,
dependency arrows indicate <<import>> dependencies at the source
code level, and code that may benefit from publication using an Open
Source license is indicated using bold lines.

7 In a layered architecture, source code is organized in a hierarchy of
layers, with code in each layer only dependent on code in the layers below
it, ideally only on the layer immediately below it.

8 Model-Driven Software Development defines strategic assets as the
software assets at the heart of your business—assets that grow into an
active human- and machine-usable knowledge base about your business
and processes.

9 A software liability is software that is a cost burden, that is, software that
costs more than it is delivering in value to the business.

Agile RUP: Taming the Rational Unified Process 231

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Agile RUP:
Taming the Rational

Unified Process

Gary K. Evans
Evanetics, USA

Abstract

The Rational Unified Process (RUP) is the de facto iterative software
development process in use today. But it is huge (over 3,200 files),
prescriptive, and generic rather than concise, agile, and specific.
Organizations moving to RUP are often confused about how to apply it to
their culture, unsure how much of it to adopt, and wary of how they can
adapt it to their specific software projects. This chapter starts with a brief
summary of the traditional waterfall development process, then offers an
overview of RUP, its philosophy and distinctive features. Then the general
philosophy of agile development is discussed. The body of the chapter
defines a small set of activities that have been successfully applied in
commercial “Agile” RUP projects by the author. The chapter then
discusses how some of the major stakeholder groups on a software project
are affected by moving to an agile process.

232 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The Rational Unified Process (RUP) and the Unified Modeling Language
(UML) are present in some way on many object-oriented projects today. UML
is a visual notation for concisely expressing object-oriented concepts. RUP is
a process description that uses UML to express the content of its own artifacts
and tasks. RUP is not so much a specific process, as it is a description of a
process framework. It is large and complex (over 3,500 files in more than 200
folders) because it is a generic framework. But despite its girth, RUP incorpo-
rates just a few very basic principles and advocates the best practices of [RUP]:

• Develop Iteratively
• Manage Requirements
• Use Component Architectures
• Model Visually
• Continuously Verify Quality
• Manage Change

These practices are predicated on the principles that an effective process
should be:

• Iterative: Do the same activities in small pieces, over and over.
• Incremental: Gain a bit more understanding of the problem, and add a

bit more solution, at each iteration, building on what was done previously.
• Risk-Focused: Address risk early and often, focusing on the most

architecturally significant properties of the system, and the highest risk
areas before developing the easy, “low hanging fruit” of the system.

• Controlled: Control the process to meet your needs, do not allow the
process to blindly control you.

• Use Case (i.e., requirements) Driven: The goal is established by the
total requirements, and the operational requirements are captured in a
form known as use cases.

• Architecture-Centric: Architectural integrity and stability are empha-
sized over ad hoc software design details.

Agile RUP: Taming the Rational Unified Process 233

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

One of RUP’s appealing characteristics is that it emphasizes activities over
documentation. This observation always surprises those learning RUP for the
first time because of the many templates, diagrams, and other artifacts that RUP
employs. But it is the activities, and the roles that perform those activities, that
produce the many documents defined by RUP. And it is a very legitimate
question whether a group using RUP should do all the defined activities, define
all the RUP roles, and produce all the RUP artifacts.
The answer is “No,” and RUP clearly dictates that its contents must be tailored
to specific organizations and projects. Companies using RUP should define a
RUP development case that specifies those parts of RUP that the company or
project will use, those parts that will not be used, and non-RUP artifacts and
activities that will be added to the project.
So the very definition of RUP accommodates flexibility: it is designed to meet
your organization’s needs, not designed to force your organization to RUP’s
very comprehensive, yet generic definition. This flexibility is critical to the future
success of RUP. I approach RUP as a catalog of best practices, received
wisdom, and some interesting new insights into the process of software
development. But while RUP is a flexible framework, it is still a prescriptive
definition of software development. By prescriptive, I mean it pre-scribes
(literally, writes before) with some rigor what should be done, who should be
doing it, and when it should be done. Not that a prescription is inherently bad:
for those companies or projects in the seat-of-the-pants development mode,
having a checklist and tour guide such as RUP can dramatically improve their
chances for success in transitioning to an actual, defined process. But for
projects that have a need for a looser, less prescriptive, and lower overhead
personality, out-of-box RUP must be either abandoned, or defined in a lighter,
more facile way. The remainder of this chapter will address the latter option:
making RUP agile.

Agile RUP

Agile software development is both a process issue and a mindset issue. In
mindset it appropriates the best of the “let’s try something different” attitude,
and abandons the worst of the “you have to do it this way” attitude. Philosophi-
cally, the agile approach is very humble:

234 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• There is no single best way to build software.
• You cannot really plan the execution of the project until you are doing the

project.
• If you need to do something to produce great software, do it; otherwise,

do not do it.

But these simple statements can seem wildly radical for organizations that
accept the received wisdom of the last 30+ years that says software is
manufactured, or engineered, much as automobiles and airplanes are engi-
neered. But those of us who do software for a living have long recognized that
how we really develop software does not fit neatly into this manufacturing box.
For many of us it is self-evident that software is organically composed, like
music or a short story, rather than linearly manufactured, step by step, like
bridges and automobiles.
How do I determine if I need to do X, or Y, or Z? There is an inevitable tension
in answering this question, because in the discourse of software process
improvement, agility is a disruptive element. The agile philosophy promises that
“doing less will get you more.” It sounds a little too good to be true. Yet, the
principles and practices of agility assault our thinking and our comfort zones
infinitely more than they affect our code. Agility does not just change how we
write code—it changes everything about how we develop software, and I will
discuss later how several of the stakeholder groups in software development
are affected by agile practices.
But the agile approaches are relatively new and popular mostly among early
adopters. Most commercial software today is being developed with either a
seat-of-the-pants approach (that is, no defined process) or with the venerable
waterfall process. As anecdotal evidence I submit the following experience.
In April 2002 I participated in a panel on software development methods at the
Software Development Conference in San Jose, California. Before the panel
discussion started, the moderator asked for a show of hands from the attendees
about the development process they were using in their work. About six hands
were raised to signify eXtreme Programming (XP) or a variant; about a dozen
or so hands were raised for agile development processes of any kind—
including RUP. But most of the 800 people attending raised their hand for
waterfall or variants of waterfall. My consulting experience, however, suggests
that many of those acknowledging waterfall or some variant thereof were really

Agile RUP: Taming the Rational Unified Process 235

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

uncomfortably close to the seat-of-the-pants approach and thought it was
properly called “waterfall.”
The traditional waterfall approach has been validation “in the large.” This is
carried out by the practices of “Big Requirements Up Front” and “Big Design
Up Front.” These are justified by the twin assumptions that: a) we must
understand everything before we start building the system; and b) if we write
it down and “freeze” the content, it must, therefore, be correct. The waterfall
approach implicitly assumes that software is manufactured, that it is actually
possible to understand everything up front, and that it is possible to do all the
design before coding, and all the coding before system test, and so on.
Agile approaches perform validation “in the small.” They advocate appropri-
ating a “good enough” understanding of the problem to be solved and building
our software in small steps. The agile mindset is a humble view: it simply says
that we cannot understand everything about our system until we actually build
the system. And to build the correct system, we must build it in small, verifiable
pieces that we continuously validate against the customer’s expectations.
Simply put, in the waterfall approach we try to understand so we can then go
forward to build the system. In the agile approach we begin building so we can
understand. In the traditional approach we do not expect, nor schedule time to
go backward and make changes to what we have already done (because we
should have figured it all out before we started). But in the agile approach, we
go forward so we can justify going backward to fill-in what we inevitably missed
in a previous step. This backtracking is planned. As the eXtreme Programming
community says, agility embraces change.
This is the essential difference between planned iteration and the unplanned
rework so common in waterfall-based projects. In any prescriptive approach,
adherence to the prescribed software process is considered the major deter-
minant of success. In the agile approach, adaptation toward achieving the end-
goal—working software—is the major factor in success.
Table 1 summarizes some contrasts between these remarkably different
approaches.

236 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Making RUP Agile

My goal in agile RUP has always been to keep the best of RUP, but reduce,
or eliminate, its prescribed tasks in the most agile manner possible. An
instructive example of this is the issue of software modeling. In the process
description below, I clearly advocate the practice of modeling software. While
the eXtreme Programming community diminishes or eliminates the practice of
software modeling, my experience clearly demonstrates that modeling is an
essential practice for typical development organizations populated with mere
mortals rather than software gods. But I do not advocate modeling for the sole
purpose of constructing models. Rather, the models should be produced only
if they actually help you to better understand both your problem and solution,
so they can directly help you produce the right code. Similarly, I do not
advocate using highly structured, large-overhead document templates, or
capturing every project artifact in a CASE tool. This kind of over-control can
guarantee the death of a project before it even gets started. Until a model is
stable, continually updating its representation in a CASE tool can quickly drain
a project’s energy from its real goals of understanding what is to be built, and
actually building it. Agile RUP says yes, capture meaningful models in a CASE
tool, but only after the models have stabilized. It is not at all uncommon for a
domain class diagram to go through dozens of versions before it starts to
stabilize. Until it does, just maintain the model on a large white board and keep
revising the white board. Think agile, and do agile. For an excellent discussion
of the practices of agile modeling, see AMBLER.
The following section offers a brief outline of an agile RUP process that I follow
in my software development projects with clients in diverse industries. This
description assumes you are familiar with core UML elements such as sequence
diagrams and use cases.

 Waterfall Agile
Guiding Metaphor Manufacturing/engineering Organic/emergent
Focus Documentation, schedule People, Working code
Dynamic Structure Cause & effect,

Preventive approach
Chaordic (Ordered chaos),
Adaptive approach

Table 1. Contrasts between the prescriptive approach and the agile
approach

Agile RUP: Taming the Rational Unified Process 237

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

And I make an immediate disclaimer here: I am focusing on the actual tasks of
software development, not on the RUP’s supporting disciplines of configura-
tion management, project management, environment, and so forth. These
disciplines certainly are important in an agile RUP process, but the scope of this
chapter is to describe the minimum tasks needed to build executable software
within an iteration.

Getting Prepared

Figure 1 lists activities you do at the beginning of the project, to understand
enough of the goals and “big picture” so you can confidently establish an initial
plan for iteratively building the system. We are not doing any code development
yet. We are exploring the breadth and depth of the system’s requirements and
goals. This initial plan will change. In fact, if your initial plan does not change
through the life of your project, you are most certainly still adhering to a
waterfall mindset. In an agile project the initial planning is done relatively
quickly, with a minimal investment of time and resources, because of the reality
that the plan will change. My rule of thumb from my projects is to spend three
to five weeks on the initial planning for a team of five to six people, with an
estimated system size of up to 250,000 lines of code.

For Each Iteration

As you complete the last task above, you will have an initial project plan
enumerating the goals of the project, your overall staffing needs, the current
known risks, and planned deliverables and delivery schedule. This schedule will
be supplemented with an iteration schedule listing each iteration, its staffing and
duration, and the services that will be written in that iteration.
This initial plan is our best estimate of the breadth of the project, but it is
necessarily very shallow. Now we are in a position to provide some depth to
the description of our iterations. The steps in Figure 2 are performed as a group
in each iteration, so you will perform all nine steps 15 times if you have 15
iterations. As executable code is delivered from one iteration, the next iteration
builds on that one, until all functionality is delivered in the last iteration.

238 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1.

Task/Activity Description

a) Identify the architecturally
significant functional requirements
for the system, and the major non-
functional requirements for the
system.

The non-functional requirements (e.g., scalability,
reliability, performance, security, etc.) determine the
architectural choices you will make. The functional
requirements describe the value the system will
provide to its users. The architecturally significant
functional requirements are those that provide the
most important or most frequently requested services
to the user, and will determine the chosen
architecture from the choices available. Services
visible to end users are captured as use cases.

Do not try to embrace every use case or every detail
in the beginning. Be selective and focus on those
20% of use cases which give you 80% coverage of
your major system services. During the iterations
you can add in the less significant use cases.

b) Identify the major business
abstractions that are part of the
domain for which your system is
being developed.

These business abstractions are the “things” in your
system and will become the classes in your system.
An insurance domain includes policies, owners,
coverages, claims, and so forth.

c) Define the responsibilities and
relationships for each class in the
domain.

Classes have three basic properties: structure (the
data the class owns), behavior (the services the class
provides through its methods), and responsibilities
(the justification for the class’s existence). The
responsibilities of the class determine the other two
properties. The class’s relationships are derived from
its responsibilities, and usually represented through
the class’s data (e.g., as references to other
classes/objects).

d) Construct the initial domain class
diagram for your system.

The domain class diagram is a UML analysis artifact,
not a design or technology artifact. It captures the
business abstractions in your domain, and the
relationships among these abstractions. Each class
must have a responsibility specification, but very
little if any internal data or functions are defined yet.
The value of this diagram cannot be underestimated:
it is your source of agreement with your business
people on the “things” in your system, and provides
a common metaphor for the entire development
team.

e) Identify the major risk factors on
your project, and use this risk profile
to prioritize the most architecturally
significant use cases.

Now you know enough about the major goals and
services of your system to determine which use cases
contain architecturally significant functional
requirements. You should also have an initial
understanding of the major business and high-level
technical risks on the project. Start a written Risk
List, and write the content of the architecturally
significant use cases.

Agile RUP: Taming the Rational Unified Process 239

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

What All This Means
for the Project Team

Now that we have a better appreciation for how to apply an agile personality
to RUP, let us look at how the agile, iterative approach affects various
stakeholder groups in the software development process.

Development Team

Too often, programmers, designers, and architects work in isolation. Many
times, corporate policies actually encourage the “lone hero” persona. Perfor-
mance appraisal practices are invariably focused on individual merit and on an

Figure 1. (continued)

Task / Activity Description

f) Partition the major use cases, and their
contained scenarios, across a timeline of
planned iterations.

Based on estimated or known team size, allocate the
architecturally significant use cases (or scenarios,
which are specific paths through a use case) into
time-based “buckets”. These buckets are iterations,
within which your team will analyze, design and
implement a small subset of the requirements of the
system. Each iteration is a short-duration project in
itself. Determining how many iterations you will
need is totally subjective at this point. You will
change the number and duration of these planned
iterations as you actually measure the development
team’s ability to deliver functionality (i.e., their
velocity). The iteration plan at this point is
analogous to a Table of Contents, rather than a
deeply researched article.

For each iteration you have identified, describe the
goals of the iteration, the staffing, the schedule, the
risks, inputs and deliverables. Keep the iterations
focused and limited (I prefer three to four weeks per
iteration). Your goal is to make each iteration a
“mini-waterfall” project so you can “eat the
elephant one bite at a time!” Each iteration
description should cover all of the software
activities in the process: requirements, analysis,
design, implementation and test. Each iteration will
also involve QA, Development, Product
Management, etc. and each iteration will produce an
executable. Using iterations is a “divide and
conquer” strategy, and allows you to know within
days or weeks if you are getting off schedule.

240 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Task/Activity Description
1. For the use cases in this current

iteration, construct analysis-
level interaction diagrams (i.e.,
UML sequence diagrams or
collaboration diagrams) to
merge the functional flow in the
use cases and scenarios with the
classes and relationships in the
domain class diagram.

Use cases capture services visible to an end
user. These services must be carried out by the
classes in your system. UML interaction
diagrams illustrate how your classes will carry
out the work of your use cases. Developing
these diagrams will allow you to discover
operations, which meet the business
requirements in your requirements artifacts.

2. Test and challenge the analysis-
level interaction diagrams.

Your analysis classes, their responsibilities,
and their interactions must all work together
to meet the business goals of your system.
Review the use cases and the interaction
diagrams with your business analysts, and
customers, to validate that your understanding
is congruent with theirs.

3. Develop analysis-level
statechart diagrams for each
class with “significant” state.

Not all classes have state. But for those that do
have state-driven behavior, developing a UML
statechart diagram is very useful. Statecharts
provide information on new operations for the
class being modeled, especially private
operations.

4. Develop design-level
interaction diagrams and
statechart diagrams with
technical content.

When your customer and business analysts
agree your models capture the business
problem to be solved, it is time to take
technology issues into consideration. Analysis
models describe “what” the problem is.
Design-level models describe “how” the
solution will be defined. In this step you will
introduce platform, language, and
architectural artifacts, for example, collection
classes to manage one-to-many and many-to-
many relationships, or Enterprise Java Beans
and Application Servers for those platform
component models.

5. Challenge the design-level
interaction diagrams and
statechart diagrams for the
iteration’s use cases,
discovering additional
operations and data assigned to
your classes; produce a design-
level class diagram with these
operations and data.

This update cycle is the heart of iterative
design: look at your system using interaction
diagrams, introduce new design classes as
necessary, assign responsibilities and
operations as needed, then add these
discoveries to the (now) design-level class
diagram.

Figure 2.

employee’s ability to “stand out” from the rest of the team. Developers usually
are not chastised for working alone, or for working too many hours. We love
heroes and heroic effort. We are suspicious of someone who cannot “do it
alone.” And worst of all, in the non-iterative world where project status is
equated with signed-off documentation rather than delivered code, developers
can hide behind documentation reviews and long, vague schedules.

Agile RUP: Taming the Rational Unified Process 241

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. (continued)

6. Develop the code for the use
 cases in the current iteration
 from the current design-level
 diagrams.

You have done enough at this point with the
use cases and classes for this iteration. Now,
go and write the code that implements the
design decisions you have captured in your
agile models. Do not try to make the models
perfect, or even complete. The models’
purpose in life is to help you understand what
is needed so you can write actual, working
code.

7. Test the code in the current
 iteration.

You have to test the code you have written. In
the agile world, however, we often write our
tests before we write our system code. This is
an approach called Test-Driven Design, and
two excellent introductions to this
development practice are ASTELS and
HUNT. By testing against the known
requirements, you can validate whether you
have produced the features you were supposed
to in this iteration.

8. Conduct an iteration review This is a short review. I ask only five
questions of the development team:

• Did we achieve the iteration goal?
• What went right (and why)?
• What went wrong (and why)?
• What do we want to change for the

next iteration?
• Do we need to update the project

plan?
The last question sends tremors through
management, but it is the most important
question. Better to honestly adjust the plan
based on our learning from the current
iteration than to stick our head in the sand and
ignore the forces beyond our immediate
control.

9. Conduct the next iteration
 (i.e., go to Step 1) adding in
 the next set of use cases or
 scenarios until the system is
 completely built.

The iteration plan for the next iteration is
actually constructed in this current iteration.
Only in this current iteration can you really
understand what needs to be done next. The
plan may or may not be affected by the results
of the review of the current iteration.

This loop is the heart of an iterative,
incremental development process: do the same
things over and over, building in the current
iteration on your results from previous
iterations.

In the agile, iterative world, developers are challenged to let go of:

• seeking details too soon,
• designing before the problem is defined,
• isolation and working alone,

242 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• writing code, and then
• trying to devise tests.

In agile projects, developers experience total exposure: if you do not deliver
code every few weeks that fulfill the requirements of the iteration…you have
failed. There is no middle ground, no gray area to “spin” the results. As Martha
and the Vandellas recorded in Motown, there is “no where to run, no where to
hide….”
In an iterative project, real, working software is delivered at every iteration.
This software may only contain a few new features. It may be just “plumbing”
with little business logic. But real, working software is delivered at every
iteration. First, the interfaces are proven. Then, integration of the components
is proven. Then, complex algorithmic processing is added. Software is avail-
able for review at every iteration. Project status is not determined by signed-
off documents promising code. Project status is demonstrated with working
code. For the development team this means “victory” is achieved again and
again at each iteration. Developers love real results, and on well-run iterative
projects, morale is usually very high because real code is delivered early and
often.

Business Analysts

Traditional, waterfall-process projects invariably over-invest in what is called
Big Requirements Up Front (BRUF). Large requirements specifications are
produced at the beginning of the project before any code is allowed to be
written. These specifications are usually produced by many analysts and
subject matter experts.
In an agile, iterative project, Business Analysts (BAs) and Project Managers
do not have to have all of the requirements up front. Developers do not need
all of the requirements up front. They just need the major requirements up front.
They will solicit requirements as needed from the BAs. BAs just have to be able
to find, supply, or obtain the requirements when they are needed. The
philosophy here is that software development is not manufacturing, it is an
organic, emergent process of discovery.
This statement that all project requirements are not needed up-front is, in my
experience, the single most contentious area for groups moving to agile

Agile RUP: Taming the Rational Unified Process 243

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process. BRUF is a habit (or crutch) that most organizations find very difficult
to give up. I worked on an ambitious, $5 million project for a U.S. company.
They brought me in as a consultant and mentor on their first iterative project
using RUP. During our initial interview, they shared with me that they had spent
six months of effort with nine business analysts and subject matter experts
gathering the project’s requirements. I delicately inquired about their commit-
ment to the iterative approach, and their straight-faced response was, “Oh, we
are committed to iterating on this project, just as soon as we get all the
requirements!” My involvement with that project was very short-lived.
But it is legitimate to challenge my view. You might ask, “How can you say you
don’t need all the requirements? You need to know what to build, don’t you?”
And my answer is: yes, of course, you need to know what to build. You just do
not need all the requirements before you start. My justification is very simple.
To build the right system, you need to implement the features the customer
really wants, and these features have to live and execute in the right architectural
geography that supports those features. Can you agree with this? OK, now
consider any project you have managed or developed. What percentage of the
total requirements determined the design and architecture of the system you
developed? Typically, 5% to 10% of the total requirements determined the
design. The other 90% to 95% of requirements merely followed whatever
design or architecture you chose. What we need at the beginning of a project
is a good enough understanding of that 5% to 10% of major and architecturally
significant requirements that determine the design. The remainder are given,
discovered, explored, and implemented as the project continues through its
iterations. It is the role of the BA on an iterative project to be a conduit for these
emergent requirements throughout the project lifecycle.
At this point it is not unusual to hear an objection: “But what if you miss a major
requirement in the beginning, and you realize in iteration 6 that your design must
be changed?” OK. We change it. This is what you would do in a BRUF project.
No matter how much time you spend doing BRUF, you will miss something,
probably something that will affect the chosen design, architecture, or deploy-
ment of the system. The real issue here is that in an agile project, we embrace
these discoveries and make the changes at planned points in the process (i.e.,
at the iteration boundaries). In a BRUF and waterfall project, there are no
defined points to accommodate these changes in a controlled manner. Change
will happen, and when it does you can be agile or fragile. The choice is not
difficult.

244 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Project Management

The most pervasive myth in project management today is this: if we put process
controls in place, the project will succeed. The extrapolation of this delusion is
obvious: the more controls in place, the more success you will have. So pile
controls on top of controls…. Obviously, no one would really recommend this.
But if our rejection is based only on the non-scalability of this notion, we are
perhaps not seeing that this notion of the value of control is wrong in itself.
Certainly, we need to have some level of control. The issue is the kind of
control, not how much. The kind of control we need is where we control the
process, not let the process control us. A valuable process is controlled, not
controlling. In the waterfall world, a common gestalt is: if we build a plan, the
plan is true; if we stick to the plan, we will achieve our goal. This only works
when nothing changes, and when nothing goes wrong.
In our world of internet time and software death marches, our biggest need
today is not prescription, it is adaptation. How many PMI-certified project
managers believe they are controlling their project with huge, plotter-sized
Microsoft™Project wallcharts—wallcharts that detail four hours of work for
Fred Developer nine months and three days from now? We cannot be sure what
Fred will actually be doing tomorrow! Iterative project management
requires…humility.
Someone once said, “The value is not in the plan, but in the planning.” Agile
processes are agile because they enable adaptation. Agile project management
has a different dynamic. Here are just a few examples:

• Attack risk: In my experience, a major cause of project failures is in this
statement: “They spent all their time doing the easy stuff.” Attack risk early
or it will attack you later. The project manager must work with the
development team to identify the major business and technical risks. The
iteration plans must address these risks head-on, with the courage to state
early in a project, “We’re having some challenges that may affect the entire
approach we have chosen.” Not pleasant, but much better than investing
80% of your project funds and discovering in the 11th hour that you have
to go back into major re-design activity.

• Expect rework (slips) early in the project rather than later: Because
an agile RUP team will address risk early in the project, obstacles will arise

Agile RUP: Taming the Rational Unified Process 245

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

early. But when these obstacles are overcome, there should be no slips
attributed to technical risk near the end of the project.

• Monitor iterations to prevent gold-plating by the developers:
Gold-plating is the adding of “cool” or enhanced features not in the
requirements. The Project Manager must continually monitor the iteration
plans and the iteration deliverables for “unnecessary creativity” from the
development team.

• You do not have to have all the requirements in order to start the
project: Get the right requirements at the right time. The Project Manager
is like a sports coach and has to anticipate when to get the information that
will be needed by the team as they progress in their understanding of the
system being developed.

• Manage “in your headlights:” Do not add detail beyond what you
actually know. The detail of your plan must match the proximity of the
execution: iterations close in time will have greater detail in tasks,
resources, and features than iterations further away in time.

• Put the software first: If a task does not directly contribute to delivering
proper, working software, do not do it. This requires the project manager
to map the value stream on the project, and identify and eliminate waste,
where waste is any task that does not contribute to delivering the software.
This is a sensitive political area, but it is an ethical issue as well. Waste is
not good, and sometimes it is our own corporate policies that are causing
waste.

• Do not believe your own press releases: If you become convinced you
will succeed, do not start piling new “essential” features onto the project.
Some call this “scope creep.” The project manager must keep the project
focused. If the customer truly wants new features added, agile RUP does
not call this scope creep, it says: “Renegotiate the project.” If your time,
budget, and effort are sized to a given set of features, when this set
changes, it is now a different project and everything is up for redefinition.

Conclusion

As we have seen in this chapter, agile RUP affects virtually every part of
software development. But the investment is worthwhile. RUP provides a

246 Evans

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

process framework with pre-defined value for conducting object-oriented
projects, and even classic procedural projects in COBOL or C. But it is generic
and prescriptive, and no organization can afford to do every task or produce
every artifact defined in off-the-shelf RUP. Making RUP agile is a simple matter
of vision and humility: keep your focus on delivering software that meets a
business need, and acknowledge that today’s software is just too complex to
completely characterize in a lump-sum effort up-front.

Acknowledgment

Portions of this chapter come from articles previously published by the author
in IBM/Rational Software Corporation’s online magazine The Rational Edge,
available online at www.therationaledge.com.

References

Ambler, S. (2002). Agile modeling. New York: John Wiley & Sons.
Astels, D. (2003). Test-driven development: A practical guide. Englewood

Cliffs, NJ: Prentice-Hall.
Hunt, A., & Thomas, D. (2003). Pragmatic unit testing. The Pragmatic

Bookshelf.
RUP. Rational Unified Process, version 2003.06.00.

Planning and Managing Human Factors 247

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Planning and Managing
the Human Factors

for the Adoption
and Diffusion of
Object-Oriented

Software Development
Processes

Magdy K. Serour
University of Technology, Sydney, Australia

Abstract

Although there are a large number of contemporary software development
processes/methodologies available to assist and guide software
professionals in developing software systems, there is no specific process
that can assist organizations in planning and managing their transition to
this new work environment. As a result, there are still a large number of
information technology (IT) organizations that have not yet implemented
any object-oriented (OO) process. For them, the transition to a new work

248 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

environment and the adoption and utilization of a software process
implies a number of problems, commonly including necessary human and
organizational resistance to the ensuing cultural change. This chapter
provides IT organizations and professionals with insights into the most
important key success factors that may promote the entire process of
organizational change. We investigate the effect of various human factors
on the adoption and diffusion of an object-oriented software development
process. Some of the human factors include motivation, leadership,
resistance to culture change, and willingness and readiness to change. In
addition, this chapter explores the significant role of these factors in
controlling the entire process of implementing an OO process in practice,
emphasizing the significance of planning and managing these “soft”
factors to achieve clear advantages and gain enviable results.

Introduction

This chapter investigates and examines the effect of various human behavioral
patterns during the organizational transition to an object-oriented (OO) work
environment, and the adoption and diffusion of an OO software development
process. Technology is only a tool; what makes the difference is the individual
who makes use of the technology, and the culture that motivates people to
realize and understand the advantages of adopting such technology (Zakaria &
Yusof, 2001).
During any paradigm shift, human tendencies play a critical role that may
invariably result in either success or failure. Examples of such human aspects
may include cultural change coupled with people’s resistance, motivation,
education and training, communications, and leadership. Collectively, these
factors can form either opposing or supporting forces that may influence and
impact on the entire transition process. Therefore, human aspects must be
seriously considered, well addressed, planned, and managed for a rewarding
result.
Past studies (e.g., Gibson, 1999; Ioannidis & Gopalakrishnan, 1999; Nambisan
& Wang, 1999; Auer & Dobler, 2000; Jurison, 2000; Burshy, 2001) of the
process of organizational transition have related the transition process to how
organizations adopted innovation, ideas, new technologies (e.g., Web services

Planning and Managing Human Factors 249

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and e-business), or new “ways of doing things” (e.g., the adoption and
deployment of an OO process).
What these processes missed in the past was the first (and the most critical) step
towards the adoption of a new technology. They all missed the study of moving
organizations from their current state or environment to their desired one where
they can feel comfortable, familiar, and confident to adopt and diffuse an
innovation or new technologies such as OO processes. Getting organizations
ready to adopt and diffuse a new technology involves a number of serious
managerial decisions that must be made to provide full management support,
dedication, and commitment. Organizations must feel comfortable and familiar
with the new way of “doing things” before any attempt is made to implement
these new ways in practice to avoid or lessen people’s natural resistance to
change, and also increase their acceptance and readiness.
Hence, the main objective of investigating the impact of human issues is to gain
a full understanding of individual behavior during the transition and also to
examine different human factors that influence the response of individuals within
organizations toward the adoption of an OO software development process.

Organizational Change and
Human Factors

“The greatest difficulty in the world is not for people to accept new
ideas, but to make them forget about old ideas.” John Maynard
Keynes

People Behavior During Organizational Change

During an organizational transition, different people play different roles, such as
motivators, adopters, resistors, opposers, and neutral or observers (Bridges,
1995). How they respond to change during transition can, and in most cases
does, dominate and determine the success or failure of the entire project. The
inextricable reality is that people are different, and so act and react to changes
differently; from time-to-time even the same person can behave in a different
manner.

250 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bridges (1995) claims that changes are always accompanied by natural
resistance, as changes often drive people out of their comfort zone. Conse-
quently, people can develop a resistance to change and become the main
obstacle to the whole organizational change.
Once an organization comes to realize what it needs to achieve and decides
how it will accomplish its goals, the main challenge becomes the issue of
effective and efficient management of human factors. It is quite surprising to
know that 80% of project failures are traced back to mismanagement of human
factors (Jacobson, Ericsson, & Jacobson, 1995).
Unfortunately, there are many organizations still struggling to deal with difficul-
ties related to the effective management of human or sociological factors during
technology adoption and diffusion. This type of problem is usually caused by
management’s lack of commitment to the human factors of IT. Szewczak and
Khosrow-Pour (1996) relate this problem of mismanagement of human as-
pects to the fact that, in general, organizations traditionally invest a significant
proportion of their resources to obtain the necessary hardware and software
technologies, but with insignificant investment in the human aspect of technol-
ogy. An experienced software development team that has been around for
more than a decade, for example, is likely to have superior expertise in (and
consequently be comfortable with) traditional software modeling techniques
such as Flow Charts, Data Flow, and Entity Relationship Diagrams. Profes-
sionals of this type would not be openly receptive to changing their existing
work culture and switching to modern OO techniques such as Object Model,
Use Case, and interactions Diagrams. This kind of human culture change can
form a major challenge during the transition that may increase people’s
resistance to change.

The Challenges of Human Factors

In general, human aspects are the most difficult challenge to be addressed
during any organizational change (Zakaria & Yusof, 2001). The transition
process to OO and the adoption of an OO process usually involves a large
number of technical as well as non-technical issues. Various authors have
referred to these non-technical issues as soft factors (Constantine, 1995) and
sociological factors (DeMarco & Lister, 1987). We call these ‘human’ Key
Success Factors in this discussion, since they deal with the ‘human aspect’ of
change. These human factors necessarily require complete understanding and

Planning and Managing Human Factors 251

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

managing alongside the technological factors. Since OO contains elements
relevant to all stages of the development lifecycle (not only coding), and
includes models for requirements engineering, project management, team
building, and so on, adopting OO process requires a combination of learning
about technical issues as well as larger scale sociological issues.
People, procedures, and tools are the three critical aspects that must be well
planned and managed during any organizational change (Serour, Henderson-
Sellers, Hughes, Winder, & Chow, 2002). Certainly out of these three aspects,
people are the most demanding aspect to be changed and managed. Eason
(1983) argues that the human factors of technology are far more important than
technical factors. The most challenging aspects of the transitioning to object-
orientation remain in establishing a new software development environment and
in introducing a new work culture to managers, software developers, and
customers (Ushakov, 2000).
As a result, it is imprudent for management to expect every team member to
agree with all the proposed changes. It may even be unwise to anticipate full
commitment and belief in the new organization mission, especially at the early
stage of transitioning. Organizations must face reality by realizing that change
is often difficult in the best of circumstances and seldom goes exactly to plan.
Management must be mindful that only a minority of individuals will wholeheart-
edly welcome any proposed changes to the way they have done things for so
long.
The challenge to software professionals is to change and adapt to a new
environment. A possible scenario may ensue where developers need to adopt
new ways of ‘thinking’ about software, followed by OO modeling/designing,
developing, quality assuring, and testing the software. Adopting a new ap-
proach of developing software may include technical factors (e.g., CASE tools,
Programming languages, and databases) that require a reasonable degree of
human culture change in order to utilize them to their maximum potential.
Individuals, especially those working on software projects, work under the
influence of various personal, motivational, and social factors. These factors,
more often than not, remain in the background. Due to their elusive and
intangible nature, these human factors are often difficult to discern, analyze, and
improve on when change is about to be implemented.
As a result, moving working professionals to new ways of perceiving and
undertaking various tasks is very difficult (Fingar, 1996). However, many
studies such as Szewczak and Khosrow-Pour (1996) suggest many organiza-
tions are still struggling to deal with problems related to the human aspects of

252 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

technology. Furthermore, they correlated this problem to management’s lack
of commitment to the human side of IT.
It is vital, then, that organizations pay careful attention in addressing all human
or soft factors, and be open and ready to confront and solve any conflicts that
may influence the entire transition. Organizations need to appreciate individual
behavior when examining the transition and the adoption of new OO process;
they need to investigate and explore the different factors that influence the
response of individuals within the organization towards the new technology. To
accomplish a successful transition, an organization needs to advance people’s
motivation and enthusiasm, maintain management commitment, and provide
efficient and persuasive mentors whose leadership may be seen as the source
of expert guidance (Jacobson et al., 1995).
The art of managing cultural interfaces has become an everyday business
challenge at every organizational level (O’Hara-Devereaux & Johansen,
1994). The main question here, and management’s major challenge, is how an
organization makes the transition a driving force for all people involved in being
adopters and supporters of the change, instead of opposers or neutral players.
Constantine (1996), during the OOPSLA’96 panel discussion pertaining to
human factors, contended that it is quite easy to communicate with machines
and solve problems, but with people it is difficult. The main reason is because
people are very difficult to “generalize.”

Human Factors and Risk Issues

Organizations must be aware of the consequences and the possible risks
involved in mismanaging the human factors during the introduction of a new
work culture such as OO process. The improper planning and managing of
human factors can easily lead to undesirable consequences, such as building
resistance to change, and adding more confusion, uncertainty, and fear that can
considerably diminish the chance of success. Schein (1999) interestingly states
that there was no such failure for technology adoption; instead it was a failure
to understand the organizational and the individuals’ culture.
As a result, organizations that are aiming to adopt an OO process need to
address not only the technological factors of the adoption, but also the human
factors. As an example, organizations must provide adequate education and
training to their people in order to understand and grasp the fundamentals and
underpinning concepts of object-orientation and development processes, as it

Planning and Managing Human Factors 253

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is a critical factor to avoid those risky consequences. Bridges (1995) argues
that the most prevailing cause for the unsuccessful implantation of organiza-
tional changes can be attributed to a lack of planning in managing the impact of
change on individuals. He also emphasizes that many organizations that are not
properly geared to handle this facet of change can run the major risk of
jeopardizing their own existence.
Therefore, management may be very well advised to create a plan to manage
and mitigate these potential risk factors by answering the following questions:

• How are people likely to respond to the change?
• What is required to convince people that the change is worth the effort?
• What actions are necessary to earn people’s support and commitment to

the change?

In addition, management needs to identify the ultimate and most effective means
in achieving the following objectives:

• Selling the change to all people involved, including customers.
• Motivating people to make the transition.
• Reducing people’s resistance to change.
• Eliminating people’s fear and uncertainty.
• Minimizing the change’s disruption to people.
• Mitigating the increasing tensions between people during the change.
• Encouraging people to be enthusiastic for the change, as opposed to being

apathetic and an obstacle.

By answering the above questions and achieving the related objectives,
organizations will be able to use persuasive approaches to human change,
ensuring that everyone is comfortable and willing to accept, and make use of,
the new OO process with all its associated changes.

254 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Human Factors

Human Culture and Necessary Culture Change

“In a time of rapid change, standing still is the most dangerous
course of action.” Brian Tracy

The Oxford English Dictionary (9th edition) broadly defines human culture as
the arts and other manifestations of human intellectual achievement regarded
collectively as the improvement by mental or physical training. In particular,
Palvia, Palvia, and Roche (1996) define the culture of IT professionals as the
set of values and practices shared by these members of an organization involved
in information technology activities, including managers, developers, and
customers/end users.
Personal culture is usually characterized and distinguished by the individual’s
values, such as behavior, attitude, experience, and beliefs. There are people
who work well under pressure, whereas others work well only when properly
supervised and directed, and then there are the ‘cowboys’ (Constantine, 1993)
who prefer to work on their own. Cooper (1994) asserts that an IT person’s
culture may resist the introduction of a new process which realigns status,
power, and working habits, especially when they violate some of the group’s
shared values. Current personal culture can be incompatible with certain new
processes to the degree that risky consequences may be incurred, including
resistance to change, a negative attitude and behavior, implementation failure,
or the achievement of totally unsatisfactory results. Human culture change—
that is, the physiological change that people undergo to alter the way they carry
out their work on a daily basis—is one of the hardest and most longstanding
parts of the adoption of an OO software development process (Fayad &
Laitinen, 1998).

Natural Resistance to Change

Coupled with the introduction of a new work culture, people tend to naturally
build resistance to any challenge of changing their culture and/or learning new
things. The unfamiliarity with the new changes can lead to a discomfort that

Planning and Managing Human Factors 255

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

naturally increases people’s resistance. In general, change is often seen as a
personal threat by those involved in transition (Huse, 1975).
Resistance to change can also come from management, project leaders, and
customers/end users for similar reasons, including fear of change and uncer-
tainty of their capability of carrying out these changes (Fayad & Laitinen,
1998). Furthermore, adopting an OO process also requires people to advance
their skills and knowledge, and/or gain new ones, as well as learning new tools
and techniques. All these changes can lead to a threat that, if people are not
capable of changing their culture, they will be out of the workforce, and be
replaced by others who possess the required OO knowledge and skills and are
capable of utilizing the new process. Resistance may also happen during the
course of adoption when people are faced with serious impediments. For
example, people may reach a stage when they feel that they cannot use their old
ways (ad hoc) and at the same time they are not comfortable with the new ways
(OO process). They then try to escape or oppose the changes. This leads to
an increased level of resistance.
During organizational change, managing people’s resistance becomes a critical
issue that must be seriously considered so as to accomplish satisfactory results.
For that reason, organizations must be able to effectively manage people’s
resistance to leading and directing the change process. To do so, management
must first understand what resistance really means. What do people really
resist? Do they resist the new environment, new technology, or the changes they
have to undertake? And finally, why do people really resist? Do they resist for
psychological reasons, technological issues, personal concerns, or a combina-
tion of all?

What Resistance Really Means?

Naturally, people want to improve and find better ways of doing things. A part
of making improvements is causing changes, and changes are always faced with
different types of resistance. People’s resistance can be a result of different
human reactions that sometimes form obstacles, impediments, hindrances, and
difficulties to change. One of the risky issues regarding people’s resistance is
that, sometimes, managers see resistance as a sign of laziness, stupidity, or just
unwillingness and opposition to change (Fayad & Laitinen, 1998).
In actual fact, resistance can be a sign of people’s disinterest or they could be
busy with more pressing issues. Resistance could also be a signal of conflict of

256 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

interest or contradictory point of views. Moreover, resistance could be a silent
request for assistance, more information, or an assertion of different priorities.
Resistance can be viewed as an opportunity to gather information and learn
better about current and desired state (Bamberger, 2002).

What People Really Resist?

Naturally, people do not like to lose. They do not like their own things to be
taken away from them, and that is exactly what people resist. People associate
change with the loss of their existing comforts. People do not resist the change
itself, so much as they resist the uncertainties, fear, and discomforts associated
with it. People, especially those who are confident and comfortable with their
existing culture, resist the idea of changing their ways of doing things, and facing
the risk of becoming unfamiliar and uncomfortable with the new ways. In
addition, every change involves a degree of risk, and people are naturally
reluctant to take risks and face the unknown.

Why People Really Resist?

To manage the resistance to change, it is important first to understand the
various reasons behind it. Resistance could happen at an early stage of the
introduction of the new change and/or at a later stage, during the change
process. People resist change when they are unaware of the need to change
and, accordingly, are uncertain of the final result. On the other hand, Bamberger
(2002) notes that change often meets with resistance because it is seen as a
personal threat that leads to fear of failure and rejection. Fayad and Laitinen
(1998) relate resistance to the lack of a clear view of the current state and
objective goals. They further note that resistance to change often exists as a
result of structural conflicts within the organization. Lack of management’s
commitment and inconsistent actions with the new change can also elicit
resistance.
Bridges (1995) declares that when changes take place, people get angry, sad,
frightened, depressed, and confused. These emotional states can be mistaken
for bad morale, but they rarely are. Rather they are more likely to be a sign of
grieving, the natural sequence of emotions people go through when they lose
something that matters to them. People resist the loss of competence that they
once had and which was associated with their old familiar tasks. Transition is

Planning and Managing Human Factors 257

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tiring; during the change, people build resistance when they feel unfamiliar and
uncomfortable with the new ways. Resistance happens when people feel that
they cannot use their existing old ways, and at the same time they are not
comfortable and familiar with the new ways. From a different perspective,
people build resistance when they feel that the new ways they have to follow
can negatively affect their productivity. For example, an inappropriate new
process or technique can discourage people to change, as it can lead to a drop
in people’s productivity.
Accordingly, with the introduction of a new OO process, people’s resistance
to transition and culture change could be a result of one or more of the following
human behavior factors:

• They see the transition with its necessary changes as a threat to their jobs.
• They do not have inadequate knowledge and experience related to the

new OO process.
• They are afraid of learning new ways of carrying out their jobs.
• They doubt the benefits of adopting a new OO process.
• They are afraid of failure or that they will not be able to understand the new

process.
• It is exhausting to learn new things, and some think they are too old to learn

a new process.
• Some prefer to do what they know best, even when they acknowledge

there may possibly be a better way (The devil you know!).
• They are overloaded with their current projects with no time to learn new

things.
• They are not in favor of the new process with its associated modeling

language and/or CASE tools.

Even during the transition process, and when changes take place, people can
develop more resistance and be less motivated for different reasons including:

• Anxiety rises and motivation falls.
• They are afraid of failing.
• They are unsure of the new way.

258 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• They are afraid that they may be blamed if something goes wrong.
• They try to avoid learning new things.
• They become self-protective.
• They respond slowly and want to go back to the “old way.”
• They doubt the benefits of the new way.
• They feel panic and confused.

Unsurprisingly, even customers may develop some resistance and be reluctant
to accept the changes as a result of the risk factors involved in introducing a new
process that would affect their products. Therefore, customers must be
involved in the change process owing to their effective role in supporting the
organization’s adoption of a new OO process. The customer role needs to be
changed from being just a customer requesting and running a software appli-
cation to that of being an effective and supportive partner in the whole process
of producing their products.

Defeating People’s Resistance to Change

As discussed above, many managers see resistance as a sign of laziness,
stupidity, or just plain perversity on the part of employees (Fayad & Laitinen,
1998). Lawrence (1969) suggests that resistance to change should not be
treated as a problem, but rather as an expected symptom and an opportunity,
or a request, for learning and better knowing the unknown. Also, Senge (1990)
stated that resistance to change generally has a real basis that must be
understood in order for it to be dealt with. In order to manage people’s
resistance to change, organizations need to understand better the very human
reactions they face when they are asked to do something differently or change
their work habits. Management must plan and practice some strategies to
manage and deal with people’s resistance.
To do so, management must begin to understand what “resistance” really is?
What are the major reasons for people to build resistance to change? Then they
must establish a suitable work environment for people to undergo the required
changes. Management cannot change people, they have to change themselves
and they only change when they have the appropriate and supportive environ-
ment (Boyett & Boyett, 2000). Bridges (1995) reported that most managers
and leaders put only 10% of their energy into selling the problem, but 90% into

Planning and Managing Human Factors 259

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

selling the solution to the problem. Management must put more energy into
“selling” the problem that is the reason for the change, because people are
not interested in looking for a solution to a problem they do not know they
have. Management must realize that culture change is very tiring. People
will feel tired, overwhelmed, down, and depressed. Management must look
at those symptoms as a natural human reaction, and work hard to rebuild its
people self-confidence and give them the feeling of competence in master-
ing the new way. Management must realize their people’s capabilities and
give them what they can do best without any fear of failure. Anxiety is
natural, and the best way to defeat it is to educate and train people on their
new environment. Adequate education and training regarding the newly
adopted process can easily eliminate the fear of the unknown, the uncertain-
ties about the final result, and thus lead to elimination of people’s resis-
tance.

Defeating Resistance with Participation
One of the most effective ingredients to defeat people’s resistance to change
is by encouraging them at an early stage to participate in planning for the change;
Huse (1975) confirms this fact by assuring that people—during transition—see
change as a threat unless they have participated in its planning. Lawrence
(1969) has demonstrated through one of his case studies, where an identical
change was introduced to several factory groups, that the first group, who was
not offered any explanation, resisted all management’s efforts, whereas the
second group, who was involved in the change planning, carried out its
transition with minimal resistance, and an initial small productivity drop was
rapidly recovered.
Involvement of people in planning their change allows them to understand why
they need to go through it and what they should expect. Humphrey (1995)
affirms that people’s resistance can be gradually changed to acceptance, once
people are convinced of the necessity of the changes, and also they can see the
value of undergoing the change. So, management must show and convince
people that the change they need to go through is not a threat, but rather an
opportunity for improvement.

Defeating Resistance with Small Wins
Humphrey (1995) asserts that people’s resistance to change is proportional to
its magnitude. Therefore, resistance can be reduced by planning a number of

260 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

small changes instead of a hefty change. Transitioning an IT organization to OO
environment and adopting an OO process involves outsized changes. Psycho-
logical, organizational, and technological changes that can be planned in an
incremental manner are “small wins.” By introducing the new changes in small
increments, each increment will be easy to sell and implement. People will feel
confident and positive every time they successfully achieve one increment, and
become even more enthusiastic and motivated to implement the next increment.
This technique can lead to a smooth transition by enhancing people’s willing-
ness to participate and reducing their total resistance. For example, the process
of adopting a new OO method could well be started by addressing the
Requirements Engineering (RE) activity as a major focus to engender everyone’s
involvement. An initial RE approach, using a well-defined technique such as the
use case technique, can be introduced and utilized without the burden of all
other activities and techniques. Once people feel confident in carrying out the
RE activity, another major activity such as user interface design can be
introduced in the same manner and so on for all other activities.

Education and Training (Knowledge and Skills)

Younessi and Marut (2002) define education as an opportunity to learn and
ideally master a number of theories—principles that enable the recipient to
assess, analyze, and act appropriately to a broad range of relevant situations.
The impact of education is usually more abstract and wide in scope. They also
defined training as the provision of an opportunity to learn and ideally practice
some skills in a controlled environment to carry out a particular task(s). The
impact of training is usually more focused, direct, and narrow in scope. In other
words, education provides people with the answer to “know what,” whereas
training provides them with the answer to “know how.” People can gain
knowledge and skills either through education and training courses provided by
their organization and/or through real-life work experience.
In general, people need education and training in their discipline to enable and
empower them to assess and perform their duties in a professional and
satisfactory manner. In the context of the adoption of a new OO process,
technical people need to learn about the new process and associated technol-
ogy to feel comfortable when using it (Zakaria & Yusof, 2001). The individual’s
knowledge and experience related to the new process play an effective role in
making the decision for the adoption. People with adequate and appropriate

Planning and Managing Human Factors 261

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

knowledge and experience of their new OO process can be more self-
motivated and enthusiastic to make a transition than others. On the other
hand, during an organizational change, lack of knowledge and/or experience
could elicit people’s resistance to change and increase their feeling of
incompetency and frustration.

Necessity of Education and Training for Transition

Younessi and Marut (2002) have emphasized the vital role of education and
training during the adoption of a new OO process by suggesting that education
and training is an obligatory component for the successful introduction of
software processes into an organization. Furthermore, they considered educa-
tion and training as a Critical Success Factor for adopting these processes.
Perkins and Rao (1990) stated that the more knowledge and experience
people have, the more they are able to contribute to decisions regarding the
adoption of OO processes. They also emphasized the impact of training related
to the new technology that increases their ability to adopt, diffuse, and master
processes, techniques, and tools. Conner (1992) demonstrates the imperative
role of education and training in adoption by saying that people change only
when they have the capacity to do so.
People’s experience towards OO processes should have a positive impact on
the adoption (process) of such technology. In the context of adopting a new
OO process, Sultan and Chan (2000) stated that the greater the knowledge and
skills of individuals, the more likely they are to adopt it.
Management must recognize the critical nature of proper education and
training, since experience has shown that between 25 and 40% of the total cost
of an extensive project will be spent on education and training (Mize, 1987).
More experience enables people to contribute more towards the transition and
the adoption of new OO processes. People’s appropriate knowledge, expe-
rience, and education may have a positive impact on their transition. The greater
the work experience of individuals with the organization, the more likely they
are to transition and adopt the new process. Highly skilled staff can manage
themselves more easily, particularly during a paradigm shift. Therefore, an
individual’s satisfactory level of knowledge and education towards the new
technology and processes forms another imperative management challenge.

262 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Motivation

“Motivation is the release of power within a person to accomplish
some desired results. It is a major key for achievement and
success.” Dr. Len Restall

Motivation has a remarkable power and is a major influence on people’s
behavior towards any achievement (Humphrey, 1997). In order to investigate
the importance of motivation during the organizational adoption of OO pro-
cesses, we need to understand what motivation is, its role during the adoption,
and what motivates people.

What is Motivation?

Bolton (2002) defines motivation as a sociological concept used to describe
individual factors that produce and maintain certain sorts of human behavior
towards a goal. Hence, motivation, as a goal-directed behavior, is a driving
force that stimulates people to achieve a set of planned goals.
Motivation is often driven from a desire or an inspiration to accomplish a
defined objective, combined with the ability to work towards that objective. In
other words, Motivation is the ability of taking good ideas or serious changes,
and coupling them with appropriate knowledge and skills to achieve desired
objectives.
Consequently, people who are aiming to achieve a specific goal must be both
motivated and have the power and ability to work towards that goal. People
who are motivated towards an accomplishment must be also capable and
empowered to do so (carry out the work).
In the context of this chapter, motivating people during the adoption of a new
OO software process could mean those factors which cause individuals within
the organization to do more than they otherwise would. For example, to transit
a development team to a totally new OO environment and/or adopting a new
process, people need to work more than usual to change their existing work
culture and adopt a new way. Then, motivation becomes a measure of an
individual’s level of readiness and willingness to participate effectively
towards a successful transition.

Planning and Managing Human Factors 263

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Role of Motivation During Adoption

Pfeffer (1982) states that when people understand and accept a goal, and
believe they can meet it, they will generally work very hard to do so.
Additionally and from a different perspective, Maslow (1970), when he
described his “Hierarchy of Needs,” stated that people are capable of
achieving their goals if they believe that they can achieve them.
Motivation provides people with the understanding of the reasons for the
change that increases their acceptability, which in turn improves their ability to
accomplish a successful mission. Moreover, motivated people more often than
not are capable of defining and achieving their own goals.
During an organizational change, people need to have compelling and persua-
sive reason(s) why they have to go through changes. Once they are convinced
and believe in their mission, they will feel more competent to carry out their
necessary changes successfully. This becomes a positive motivation that makes
people desire to accomplish their goals that result in their very best performance
(Humphrey, 1997).
On the other hand, lack of motivation during adoption can lead to negative
consequences that may contribute to undesirable results. Those consequences
may include fear, confusion, frustration, and uncertainty. Humphrey (1997)
confirms the vital role of motivation by saying, “Without motivated and capable
employees, no technical organization can prosper.”
As a result, management must improve and maintain people’s motivation to help
them to be more effective and efficient in moving to their desired work
environment with the adoption and utilization of a formal OO process.
Motivation addresses the degree to which people want to, and are willing to,
complete the work necessary to change their existing work culture. Further-
more, during transitioning to a new work environment, management must
maintain people’s motivation if they try to give up easily, or too soon, so as to
encourage them to keep trying as long as they believe in their goals.

What Motivates People?

Bolton (2002) suggests that a good first step towards understanding what
motivates people is to know what people want from their jobs. The answer
could be gaining financial advantages, acquiring more skills and knowledge, or
working with the latest technologies. In reality, it is very difficult to predict and

264 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

judge on people’s desire because it depends on the individual’s values and
beliefs.
What motivates people to change their work culture and adopt a new process
differs, all depending on their needs and perception of the new process. Hence,
not all people can be motivated by the same things and to the same degree.
Therefore, management—especially during transition—needs to understand
why their people do their work, and consequently elicit what motivates them and
how to maintain that motivation through the entire process. Understanding
people’s aspiration can help management not only motivate people, but also
support their motivation by maintaining and increasing the reasons for motivation.
Motivation is often seen as the driving force that moves people to perform some
actions. Then, in the context of the adoption and diffusion of an OO process,
people need a comfortable, familiar, valuable, and convincing driving force or
“motivation factor” to move them to perform more effectively than they
usually do.
People feel comfortable when they confidently know how to do their jobs.
Enhancing people’s skills and knowledge to the required level for transition
makes them feel comfortable with the new process. Formal and professional
education and training pertaining to OO processes are considered to be
effective and efficient techniques to achieve people’s self-confidence. In order
to motivate people, training must include clarification of language and jargon or
commands used to avoid further frustration and anxiety, as new technologies
usually have a mystifying and alienating potential. The more comfortable people
feel with the new technology (here OO process), the more willing they are to
experiment with it (Zakaria & Yusof, 2001).
Motivation factors must also add extra values for people such as financial
reward, or learning a new language, process, or tool. For example, someone
likely to retire in a year is unlikely to learn a new way of doing things. On the
other hand, an enthusiastic newcomer to the project is likely to put in the extra
effort needed to pick up new methods of thinking and modeling.
People who are in the move (e.g., changing profession, changing company, or
reaching retirement) will not be interested in changing their culture, and they
become difficult to motivate to change their current culture because they will not
gain any benefits. To motivate people to change their culture, they need
assurance of benefiting from the change.

Planning and Managing Human Factors 265

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The driving force must also be convincing, it must be relevant to what people
usually do, and it must be in a way that people can believe and make use of.
Most people must be convinced of the need to change before they will willingly
comply (Humphrey, 1995).

Leadership

“Leadership is the ability to provide those functions required for
successful group action.” Weldon Moffitt

Leadership is well thought-out by many researchers and authors as a funda-
mental activity of project management, and they simply describe it as motivation
plus organization (Stogdill, 1974; Thite, 2001; Phillips, 2002; Castle, Luong,
& Harris, 2002).
In general, leadership plays a significant role in how people effectively perform
their jobs. Rogers (1995) defines leadership as the degree to which an
individual is able to guide, direct, and influence other individuals’ attitudes
informally in a desired way. Stogdill (1974) describes leadership as a process
of influencing group activities toward goal setting and goal achievement.
Leadership is a practice that needs special skills and talent to motivate people
to get things done in a favorable and constructive way. Bridges (1995) affirms
that leading a team of professionals efficiently is an invaluable resource to any
leader who is eager and willing to understand how to inspire team members.
Also, it is a vital ability to augment teams’ cooperation and individuals’
commitment and productive participation. Above all, an effective leadership is
a Critical Success Factor on how team members become adaptable to changing
circumstances (Thite, 2000).
Leadership is basically situational. Fiedler (1967) suggests that there is no one
style of leadership that suits every project situation. Rather, it should be
contingent upon the nature of the organization, the team, and the project
situation. Leadership style should be flexible and agile enough to be adapted to
suit the project at hand in the most appropriate manner. Phillips (2002) claims
that the “appropriate” leadership style is the style with the highest probability
of success. Additionally, a good leader should effectively mix and cooperate
with team members.

266 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Leadership Style for Adoption

“A leader is best when people barely know that he/she exists.”
Whitter Bynner

During an organizational change situation, leadership style must be adapted to
promote and support the organizational change. Social factors such as the style
of leadership can influence the individual’s ability to transit to a new work
climate. Thite (2000) emphasizes the importance of the appropriate leadership
style during a change situation by considering it as a Critical Success Factor.
Changing people’s work culture and introducing them to a new way of doing
their job is usually accompanied by increasing anxiety, ambiguity, and insecu-
rity. During such time, a supportive leadership style can effectively contend with
and overcome these problems.
Due to the fact that an effective leadership style should depend on the follower
and the project situation, leaders must use the most appropriate style of
leadership that best suits the project situation that yields the best chance of
success (Phillips, 2002). Furthermore, Phillips states that managers must be
able not only to determine the most appropriate leadership style, but also to
apply that style correctly.
Stodgill (1974) supports that argument by saying, “The most effective leaders
exhibit a degree of versatility and flexibility that enables them to adapt their
behavior to the changing and contradictory demands made on them.” More-
over, Hersey, Blanchard, and Johnson (1996) proclaim that successful and
effective leaders are able to adapt their leadership style to best fit the
requirements of the situation. Therefore, leaders within an organization about
to introduce a major change to their work environment—such as the adoption
of a new OO process—must have adequate resources (mainly time), a strong
interest in the mission, and a greater exposure to the new process they are about
to adopt. Sultan and Chan (2000) firmly assert that the greater the opinion
leadership among group members, the greater the chance of a successful
transition and adoption.
Leadership always means responsibility. Consequently, an effective leadership
style for a transitioning organization must be driven from top management with
full support and commitment, and it must be also coupled with a rational degree
of authority. Co, Patuwo, and Hu (1998) support that by saying: “Ideally, the

Planning and Managing Human Factors 267

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

team leadership should come from top management: one who is a ‘doer’, and
who commands respect throughout the entire company.”
During the organizational transition to a new work environment, leadership
should foster strong alignment with the organization’s vision. Team members
that depend primarily on strong alignment with their organization’s vision are at
their best with well-understood practices applied to well-understood prob-
lems. Furthermore, successful leaders must be able to create a new work
environment in which team members feel comfortable and familiar, and also
enjoy what they are doing.
Lockwood (1991) and Constantine (1994) affirm that the working culture
shapes the style in which software development is carried out. Different styles
of organization during different situations require somewhat different forms of
leadership style and management, and each will tend to have somewhat
different software practices.
Leaders who are leading their teams through a serious change—such as
adopting a new OO process—must be able to:

• Define a clear vision and mission.
• Provide convincing and compelling reasons for the change.
• Focus on and be concerned with the why to aspect of the transition, rather

than the how to.
• Manage and motivate team members.
• Maintain an authority level to make appropriate decisions in the face of

uncertainty.
• Provide full support and commitment to their followers.
• Provide adequate and appropriate resources including time, education,

and training.
• Establish clear communication channels with team members.
• Monitor and review tasks allocated to team members.
• Recognize and appreciate achievements, and reward people for doing

good work.

268 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Perception of OO Processes

While IT organizations perceive new OO processes as an essential means
to advance their existing software development culture and effectively
compete in the marketplace, individuals could have a different perception.
Since people are different, their needs and expectations are also different.
The more positively people perceive their new process with regard to its
characteristics—advantages, observability, compatibility, complexity, and
trialability—the more likely it is that the process will be adopted and
utilized.

Management of Expectations

From past projects, it has been proven that people with life experience are able
to deal with conflicts of interest that may arise due to their ability to make any
decision regarding the transition (Hill, Smith, & Mann, 1987). To emphasize the
vital role of education on conflict resolution, Barclay (1991) stated that any
organization’s members who have adequate education and significant real-life
experience are well prepared to deal with interdepartmental conflict. It has to
be made very clear from the beginning, to both managers and developers, that
following a new OO process is not a magic wand or a silver bullet to make the
entire organization’s dreams come true, but rather is simply today’s best
approach option for software development. Nonetheless, it is also important
that managers appreciate not only the benefits of adopting a new process, but
also become aware of all the pitfalls and consequences of changing people’s
existing work culture.
Different stakeholders such as managers, developers, and customers may look
at, assess, and evaluate OO processes, as a new technology to be adopted and
utilized, from a different perspective. Senior managers are always looking for
the dollar value return for their spending and investments. They evaluate the
technology based on how much it will reduce the cost of software production
with improved quality. Project managers and team leaders may assess the new
OO processes from a different perspective. They emphasize project manage-
ment aspects, gaining more control and meeting customer’s expectations with
on-time delivery based on building the software system from the pre-tested and
proven software components. Software developers may value the proposed
process for adoption as the new fad and trend to developing software. They

Planning and Managing Human Factors 269

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

view the transition process as a good opportunity to acquire new skills, and
learn new tools and techniques. Unquestionably, this will insert desirable
additions in their resume, add value to their worth in the market, and make
them in more demand.
From the above discussion, unrealistic expectation from adopting a new OO
process and also any conflict of people’s interest can have a negative impact
on the entire transition process. People will be reluctant to work effectively
together as a team if they do not share the same interest and/or have different
expectations.
In order to overcome the barrier of the conflict of interest, management and
champion teams must include a specific plan to resolve that conflict between
people, and reach mutual perceptions, consensus, and understanding.
Proper education, mentoring, and open discussions are examples of good
techniques that can be used to achieve good understanding and realistic
expectations of the new process. Stakeholders must come to some sort of
consensus as to what they can expect from adopting a new process and also
should be fully aware of the new technology pitfalls as much as its benefits.
Stakeholders’ consensus and shared understanding, as well as realistic expec-
tations of the new process, can lead to a good working environment that can
positively impact on the process of transition and thus the quality of the software
produced.

Sharing the Vision with the Organization

People perform better if they feel that they share the value of the change with
their firm. Managers need to provide the right organizational climate to ensure
that their employees can see that, by working towards the organizational goals,
they are also achieving some of their own goals. These goals could be financial
rewards, or personal rewards such as the respect of their colleagues, or job
satisfaction, or a combination of any number of things that the employee
considers to be important.
During organizational change, such as the adoption and diffusion of an OO
process, to gain people’s acceptance, management should get people involved
during the initial stage, listen to what they have to say, respect their view, and
involve them in discussions and debates regarding the change. Follow up with
them on any further progress. Give them the feeling that they are the owners and
supporters of the change. Give them the impression that we are only interested

270 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

in the change if it will help them and make their job more efficient and more
enjoyable. Never blame the people for any faults or mistakes, but rather blame
the product, the techniques, and/or the tools being used. Organizations need to
try everything they can during the adoption of a new process to gain their
people’s willingness and support such as:

• Choose a flexible software development process/methodology to be
tailored to best suit the organization’s environment.

• Obtain senior and middle management support and commitments.
• Set an appropriate change management plan.
• Establish a transition support team to sell the changes to everyone and to

deal with all transition issues.
• Plan for adequate resources.
• Plan for rewarding people behind the transition.
• Carry out the changes gradually and avoid overloading people.
• Plan for the appropriate type of education and training to enhance

people’s skills that minimize their fear and confusion.
• Introduce new ways in formal and informal ways as required.
• Never blame people for any failure; instead blame the process (no

criticism).
• Listen to people and encourage their individual contribution.
• Reinforce the new way of following the new adopted process.
• Start with small jobs with high chance of success so they to gain self-

confidence.
• Celebrate success with people.

Organizations should set a well-defined set of guiding beliefs that the mission
of the transition and adopting a new OO process is worthy and must be shared
with people. Individuals must be in harmony and agreement with an organization’s
value and goals. When individuals share the same values and beliefs as the
organization, they form a psychological union as a group. They become more
congruent to the organization. Thus, the efforts of adopting a new process are
determined and rigorous. The sharing of ideas and commitments through
cooperation and harmony within an organization often leads to an effective

Planning and Managing Human Factors 271

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

change and positive participation. Needless to say, whenever individual goals
are in alignment, or close to alignment, with the organizational goals, then
any initiative undertaken by the organization to adopt and diffuse a new
technology—in our case, OO process—will be easily accepted and utilized
by individuals. When people share the vision and beliefs with their
organization, they feel that they share the ownerships of their new process
and the accountability of the whole transition procedure. This feeling can
motivate the individuals and assist management to defeat resistance to
change should it arise. A strong organizational culture is usually measured
by the way in which the key values are intensely held and widely shared.
It has a greater influence upon employees than weak culture.

Communication Channels

When Zakaria and Yusof (2001) analyzed the implementation of technological
change from a user-centered approach, they asserted that communication is a
critical element in ensuring the success of a new technological change such as
the adoption of OO processes.
Communications are defined as a process by which individuals exchange
information through a common system of behavior. The process of communi-
cation between individuals has an influence on organizational transition, be-
cause it has a strong impact in conjunction with the leadership. A strong and
effective communication network has a strong positive impact on adoption of
a new technology. Proper and open communication channels can, from one
side, help management to express their commitment and support to their
people. From the other side, these channels can give people opportunities to
discuss and exchange their concerns regarding their transition in order to adopt
the new process. This can strongly increase people’s cooperation, which
enhances their ability to carry out the required changes effectively. From a
project management point of view, open communications keep management in
continuous contact with their people, and they can closely observe the
transition progress to quickly resolve any problems that may occur. Commu-
nication can take different forms such as meetings. During an organizational
transition to a new work environment and adopting a new process, meetings—
driven by management—are seen as ways of undoubting management’s
commitment and support to change.

272 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

It can be clearly noticed that by considering and managing the human factors
in great detail, the chances of successful adoption and diffusion of a software
development process are enhanced significantly. Based on our research
projects and several empirical studies, we conclude the following:

• Human factors play a vital role during the organizational transition to adopt
and diffuse an OO process, as they can form either a promoting or
resisting force.

• Understanding of the new desired OO process work environment can
assist management in putting together a plan to manage the necessary
cultural change.

• During an organizational change, managing people’s resistance becomes
a critical issue that must be seriously considered so as to accomplish
satisfactory results.

• Organizations must be able to effectively manage people’s resistance to
leading and directing the change process.

• Involving individuals in planning and making decisions can positively
eliminate their resistance to change and enhance their ability to carry out
a successful transition.

• The individual’s knowledge and experience related to the new process
play an effective role in making the decision for the transition.

• More knowledge and experience enable people to contribute more
towards the transition and the adoption of new technologies, including OO
processes.

• The greater the work experience of individuals with the organization, the
more likely they are to transition and adopt the new process.

• Gaining adequate knowledge and proper training on OO processes and
associated tools can significantly contribute to enhancing people’s ability
to positively involve themselves in the transition process.

• The more knowledge and experience the organization’s individuals have
regarding OO processes, the more likely they are to change and adopt the
new work culture and thus enhance the chances of a successful transition
to a totally new OO software development environment.

Planning and Managing Human Factors 273

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• When people understand and accept a goal and believe they can meet it,
they will generally work very hard to do so.

• Motivation provides people with the understanding of the reasons for the
change that increases their acceptability, which in turn improves their
ability to accomplish a successful transition.

• Maintaining and enhancing people’s motivation during transition can be a
driving force for people to wholeheartedly and positively participate.

• Successful and effective leaders are able to adapt their leadership style to
best fit the requirements of the situation.

• The greater the opinion leadership among group members, the greater the
chance of a successful transition and adoption.

• The more positively people perceive the new process with regard to its
characteristics—advantages, observability, compatibility, complexity, and
trialability—the more likely that the process will be adopted and effec-
tively used.

• Management of expectations of the new process and conflict resolution
can lead to a good working environment that can positively impact the
change process.

• When individuals share the same values and beliefs with the organization,
they are more likely to effectively participate towards the change.

• When people share the vision and beliefs with their organization, they feel
that they share the ownerships and the accountability of the whole change
practice and thus their new OO process.

• The sharing of ideas and commitments through cooperation and harmony
within an organization often leads to an effective change and positive
participation.

• The more individuals find values in the organizational change, the more
likely they are to contribute to the transition success.

• The more congruent and rewarding the individuals perceive the
organization’s values, the more positive is the influence on the transition
and the adoption.

274 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Auer, D. & Dobler, H. (2000). A model for migration to object-oriented
software development with special emphasis on improvement of accep-
tance. Proceedings of TOOLS Sydney 2000 Conference (pp. 132-
143). Los Alamitos, CA: IEEE Computer Society Press.

Bamberger, J. (2002). Managing resistance—techniques for managing change
and improvement. Asia Pacific Software Engineering Process Group
(SEPG) Conference Handbook and CD-ROM (p. 30), Hong Kong.

Barclay, D.W. (1991). Interdepartmental conflict in organizational buying: The
impact of the organizational context. Journal of Marketing Research,
18(28), 145-159.

Bolton, L. (2002). Information technology and management. Retrieved De-
cember 15, 2002, from http://opax.swin.edu.au/~388226/howto/it2/
manage1.htm

Boyett, J.H., & Boyett, T. (2000). The skills of excellence: The new knowl-
edge requirements for the twenty-first century workplace. Retrieved June
3, 2002, from http://www.jboyett.com/skillsof.htm

Bridges, W. (1995). Managing transitions, making the most of change.
Nicholas Brealey.

Burshy, D. (2001). Technology adoption—many roadblocks slow it down.
Electronic Design, 49(9), 20-21.

Castle, R.D., Luong, H.S., & Harris, H. (2002). A holistic approach to
organisational learning for leadership development. Proceedings of the
IEEE International Engineering Management Conference, Cam-
bridge, UK.

Co, H.C., Patuwo, B.E., & Hu, M.Y. (1998). The human factor in advanced
manufacturing technology adoption: An empirical analysis. International
Journal of Operations & Production Management, 18(1), 87-106.

Conner, D.R. (1992). Managing at the speed of change. New York: Villard
Books.

Constantine, L.L. (1993). Coding cowboys and software sages. American
Programmer, 6(7), 11-17.

Constantine, L.L. (1994). Leading your team wherever they go. Constantine:
Team Leadership, Software Development, 2(12), 1-6.

Planning and Managing Human Factors 275

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Constantine, L.L. (1995). Constantine on Peopleware. Englewood Cliffs,
NJ: Prentice Hall.

Constantine, L.L. (1996, October). Panel on soft issues and other hard
problems in software development (Ward Cunningham, Luke Hohmann,
Norman Kerth). Proceedings of OOPSLA’96 (pp. 6-10), San Jose, CA.

Cooper, R.B. (1994). The internal impact of culture on IT implementation.
Information and Management, 27(1), 17-31.

DeMarco, T., & Lister, T. (1987). Peopleware: Productive projects and
teams. Dorset House.

Eason, K.D. (1983). The process of introducing information technology:
behavior and information technology (pp. 197-213). New York:
Prentice-Hall.

Fayad, M.E., & Laitinen, M. (1998). Transition to object-oriented software
development. New York: John Wiley & Sons.

Fiedler, F.E. (1967). A theory of leadership effectiveness. New York:
McGraw-Hill.

Fingar, P. (1996). The blueprint for business objects. New York: SIGS
Books.

Gibson, S. (1999). Videoconferencing still shy of adoption. PC Week, 16(13),
130-131.

Hersey, K.H., Blanchard, & Johnson, D.E. (1996). Management of organiza-
tional behavior. Utilizing human resources (8th ed.). Upper Saddle
River, NJ: Prentice-Hall.

Hill, T., Smith, N.D., & Mann, M.F. (1987). Role of efficacy expectations in
predicting the decision to use advanced technologies: The case of com-
puters. Journal of Applied Psychology, 72(2), 307-313.

Humphrey, W.S. (1995). A discipline for software engineering. Reading,
MA: Addison-Wesley.

Humphrey, W.S. (1997). Managing technical people-innovation, team-
work, and the software process (6th ed.). Reading, MA: Addison-
Wesley-Longman.

Huse, E.F. (1975). Organization development and change. St. Paul, MN:
West.

276 Serour

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ioannidis, A., & Gopalakrishnan, S. (1999). Determinants of global informa-
tion management: An extension of existing models to firm in a developing
country. Journal of Global Information Management, 7(3), 30-49.

Jacobson, I., Ericsson, M., & Jacobson, A. (1995). The object advantage,
business process reengineering with object technology. Wokingham,
UK: ACM Press.

Jurison, J. (2000). Perceived value and technology adoption across four end
user groups. Journal of End User Computing, 12(4), 21-33.

Lawrence, P.R. (1969). How to deal with resistance to change. Harvard
Business Review, 4-6.

Lockwood, L.A.D. (1991). Strategies for managing application development.
Fox Software Developers Conference Proceedings. Toledo, OH: Fox
Software.

Maslow, A. (1970). Motivation and personality (2nd ed.). Harper & Row.
Mize, J.H. (1987). Success factors for advanced manufacturing systems.

Dearborn, MI: Society of Manufacturing Engineering.
Nambisan, S., & Wang, Y. (1999). Roadblocks to Web technology adoption?

Communications of the ACM, 42(1), 98-101.
O’Hara-Devereaux, M., & Johansen, R. (1994). GlobalWork (p. 35).
Palvia, P.C., Palvia, S.C., & Roche, E.M. (1996). Global information

technology and systems management: Key issues and trends. Nashua,
NH: Ivy league Publishing.

Perkins, W.S., & Rao, R.C. (1990). The role of experience in information use
and decision-making by marketing managers. Journal of Marketing
Research, 18(27), 1-10.

Pfeffer, J. (1982). Organizations and organization theory. Marshfield, MA:
Pitman.

Phillips, D.A. (2002). How effective is your leadership style? IEEE Antenna’s
and Propagation Magazine, 44(2), 124-125.

Schein, E.H. (1999). Process consultation revisited: Building the helping
relationship. Reading, MA: Addison-Wesley.

Senge, P.M. (1990). The fifth discipline: The art & practice of the learning
organization. New York: Doubleday/Currency.

Serour, M.K., Henderson-Sellers, B., Hughes, J., Winder, D., & Chow, L.
(2002). Organizational transition to object technology: Theory and prac-

Planning and Managing Human Factors 277

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tice. Proceedings of Object-Oriented Information Systems: 8th Inter-
national Conference (pp. 229-241), Montpellier, France. Berlin,
Heidelberg: Springer-Verlag.

Stogdill, R.M. (1974). Historical friends in leadership theory and research.
Journal of Contemporary Business, pp.7-7

Szewczak, E., & Khosrow-Pour, M. (1996). The human side of information
technology management (p. 1). Hershey, PA: Idea Group Publishing.

Thite, M.R. (2000). Leadership styles in information technology projects. The
International Journal of Project Management, 18(4), 235-241.

Thite, M.R. (2001). Help us but help yourself: The paradox of contemporary
career management. Career Development International, 6(6), 312-
317.

Ushakov, I.B. (2000). Introducing an OO technology in non-OO standard
environment. Proceedings of the 4th IEEE International Symposium
and Forum on Software Engineering Standards (pp. 1-5), Curitiba,
Brazil.

Younessi, H., & Marut, W. (2002). The impact of training and education
in the success of introducing object-oriented into an organization.
Unpublished Paper.

Zakaria, N., & Yusof, S. (2001). The role of human and organizational culture
in the context of technological change. IEEE Software, 83-87.

278 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

Web Services in
Service-Oriented

Architectures

Gerald N. Miller
Microsoft Corporation, USA

Abstract

There is little debate in either corporate or academic circles that Web
services comprise a large part of the next technological wave. Clearly,
Web services will be instrumental in building service-oriented architec-
tures that integrate disparate systems, both within organizations and
across business partners’ firewalls. The question is not if, or even when,
to implement Web services—it is how.

Introduction

According to nearly every industry pundit, including those from ardent com-
petitors such as Sun Microsystems, IBM, and Microsoft Corporation,

Web Services in Service-Oriented Architectures 279

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

integration of systems is critically important for most enterprises. The
ability to quickly assimilate and aggregate large amounts of information
from disparate systems can mean the difference between life and death for
an organization. Ease of access by customers, seamless supply chain
management with business partners—these are quickly becoming the only
distinguishing factors in an increasingly commoditized marketplace.
One of the problems with integrating computer systems is the incredible
complexity and associated cost of doing so. Many systems are old and scantily
documented; still others are proprietary with no natural hooks into their data.
And these are just problems that exist within a company’s firewall—imagine
how the complexity increases as an enterprise begins integrating its systems
with those of its business partners and customers, with the added security
ramifications brought on by Internet communications!
The sheer number of interconnections is another problem. Companies have
many systems—the alphabet soup of ERP, HR, CRM, SCM—each with many
constituents. The geometric complexity of all these interconnections begins to
stagger the imagination. It is no wonder that so many integration efforts fail to
bring about promised savings or other business benefits.

Figure 1. The complexity of integrating systems

280 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web services offer a tidy solution to this integration mess. Rather than having
to understand each system’s deep underlying data structures, or having to
write point-to-point application integration code, companies can simply
add a Web services layer around individual systems that exposes necessary
information and functionality in a standard way. Integration then becomes
an effort to orchestrate business process by making Web services calls,
rather than a massive retooling effort.

Service-Oriented Architecture

In a global business environment characterized by increasing competition, the
demands on IT organizations continue to press for more and more agility. IT is
being asked to do more with less, to provide quicker and higher returns on
investments while faced with shrinking budgets. At the same time, these
organizations are looking to provide their constituents with systems that “just
work” reliably and securely.
A service-oriented architecture can play a key role in helping IT organizations
be successful in these endeavors. Simply put, a service-oriented architecture,

Figure 2. Systems need to talk to each other

Web Services in Service-Oriented Architectures 281

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

or SOA, is an approach to organizing IT systems such that data and logic are
accessed by routing messages between network interfaces. In doing so, the
specific implementation of each service becomes irrelevant so long as its
interface remains the same. In other words, SOA allows consistent, stable
interfaces to diverse and volatile implementations.
The services invoked in a service-oriented architecture represent unique
business capabilities or operations, and as such align closely with the semantics
of the business. For example, services for most organizations can be broken
into categories such as human resources, corporate procurement, and manu-
facturing. The set of human resource services might include functions such as
hire and fire, while procurement might includes services to retrieve catalogs of
items, or to place orders.
In a service-oriented architecture, organizations explicitly delineate service
boundaries and make sure that each service is entirely autonomous. In order to
communicate with each other, services share their schema—the definition of
how they expect to receive information, and how they plan to return informa-
tion. They do not share implementation details. This type of intercommunication
is described as policy based—services declare the policy necessary to

Figure 3. Describing business functions as services

282 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

communicate with them, never the details of how they plan to perform their
job.
While object-oriented programming techniques are often used to develop
individual services, services are definitely not objects. Objects are as-
sumed to be nearby; services are assumed to be far away. Objects are
assumed to have limited latency; services are assumed to have variable
latency. Objects are described in terms of methods and properties; services
are described in terms of messages and routing. Where objects are generally
accessed synchronously, services are most often accessed asynchronously.
Because service orientation describes how the business actually works
while defining a stable set of interfaces to reach these capabilities, it
significantly reduces the complexity of connecting the various systems that
exist inside organizations. An SOA makes a company more agile by
facilitating controlled change for continuous improvement. In short, a
service-oriented architecture is an approach to manage the complexity of
enterprise application portfolios and an architecture for cross-organiza-
tional process integration.

Why Web Services?

In order to be useful in the real world, a service-oriented architecture requires
a way to actually connect the network of services. This means that SOA needs
a new distributed component model that provides remote access to logic in a
standard way. This is where Web services come to the rescue.
At its very root, a Web service is nothing other than a server that listens for and
replies with SOAP, generally via HTTP. In practice, a Web service will support
WSDL to describe its interfaces, and should also be listed in a UDDI registry.
Of course, at this point Web services are deceptively simple—but the industry
is coalescing around Web services standards for security, transactions, state
management, and workflow. Every member of the technology community has
a vested interest in developing these standards.
One interesting group of standards is referred to as the set of WS-* standards.
These standards add functionality to the base Web services specification to
provide for business-critical attributes such as end-to-end security, reliable
delivery, message routing, and transactions. As these standards become
ingrained in servers, applications, and even hardware—it is not too hard to

Web Services in Service-Oriented Architectures 283

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

imagine XML routers—more and more service-oriented architectures
supported by Web services will emerge.

Which Platform?

Most Web services development is being accomplished today using either
Microsoft .NET or Sun Microsystems’ J2EE specification. Both are able
platforms that have a distinct place in corporate development. Because
Microsoft .NET is a newer specification, the rest of this chapter will describe
its advantages over J2EE. Still, bear in mind that J2EE is a highly capable
platform with years of successful implementations behind it. Also, as Microsoft
and the J2EE community come closer together, these platform differences will
become less and less important as the platforms themselves provide more and
more interoperability between themselves.
The business world is very large, and there is certainly room for several Web
services development tools. In some cases it will be very clear whether
Microsoft .NET or J2EE (or some other technology) is appropriate—for
example, when a company has existing investments in a particular technology,

Figure 4. The WS-* standards

284 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is experiencing resource constraints, or has limitations based on software
they are already using. In most cases, however, Microsoft .NET will
currently offer a considerable advantage based on time-to-market, perfor-
mance, and overall cost of solution.

In Business, the Faster the Better

One of the main goals of application development is to get the best solution
possible as quickly as you can. To do this, the development tools must address
the needs of enterprise architects, system designers, application developers,
and quality assurance testers.
Microsoft Visual Studio, the flagship suite of tools for Microsoft .NET
development, is almost unanimously hailed as the best development suite on the
market. The product allows enterprises to define templates for consistency
across all development projects; it allows architects to use graphical design
tools to generate program documentation; it provides developers with the
widest choice of languages and features anywhere; and it provides testers a rich
debugging environment to monitor end-to-end program flow.

Figure 5. Microsoft Visual Studio .NET design tools for architects

Web Services in Service-Oriented Architectures 285

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

As compelling as Visual Studio is, Microsoft .NET programs do not have
to be built with that tool; other vendors such as Borland offer great
development suites, and there are even shared source C# compilers
available.
Microsoft .NET programs run inside the Common Language Runtime
(CLR), just as J2EE programs run inside the Java Virtual Machine (JVM).
The .NET Framework adds a rich library of functionality to the CLR,
considerably stronger than the additional capabilities J2EE brings to the
JVM. In J2EE, even simple tasks become difficult—for example, EJB
performance problems cause most programmers to use bi-modal data
access, which requires them to write twice as much code. Because the .NET
Framework is so rich, programmers will typically have to write signifi-
cantly fewer lines of code than they will with J2EE—for example, one of
J2EE’s most ardent supporters recently concluded that the most optimized
Java Pet Store possible requires 14,000 lines of code under J2EE, but only
4,079 using the .NET Framework.
So, what does a 71% reduction in coding mean? It means the application is
finished that much quicker. It also means a shorter QA cycle and a more
stable and secure product, since bug counts grow with line counts.

Figure 6. A sample of the .NET framework

286 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Simply put, .NET applications will see the light of day long before their
J2EE brethren.

Performance

Much has been made about .NET vs. J2EE performance, so I will briefly
mention how much faster .NET solutions will tend to run. Still, overall
performance is rarely a critical factor in enterprise systems. More important are
figures such as how many users the system can support per server, because this
translates directly into deployment and maintenance cost.
The Middleware Company’s recent Java Pet Shop study is highly relevant to
this discussion. The Middleware Company is a significant player in the J2EE
world, deriving nearly all its revenue from Java and J2EE publishing and
consulting. The company also runs TheServerSide.com, one of the most
popular J2EE Web sites.
The Java Pet Shop study concluded that Microsoft .NET requires one-fifth the
code as J2EE, supports 50-600% more users (depending on the application
server), and offers nearly twice the transactions/second on a significantly less
expensive platform—all with no errors, while both J2EE application servers
studied threw exceptions, and one could not even complete the benchmark.
This from a J2EE-biased company that even Sun regards as a definitive source
of information!
Even Sun’s own data from the JavaOne 2002 conference shows that 86% of
J2EE users surveyed had performance concerns. It is telling, too, that there are
no J2EE-based applications in the TPC-C benchmarks. For example, IBM’s
TPC-C submissions use either Microsoft COM+ or IBM’s older, non-Java/
non-J2EE transaction processing monitor formerly known as Encina.
The J2EE community often counters the performance argument by claiming that
J2EE shops trade speed for portability. This is a red herring, as there is no real
portability between J2EE application servers—even Oracle’s Web site admits,
“Though in theory, any J2EE application can be deployed on any J2EE-
compliant application server, in practice, this is not strictly true.” IBM’s Web
site contains a white paper over 200 pages in length explaining how to port
a J2EE application from BEA WebLogic to WebSphere. The portability
argument is truly nothing but FUD and misdirection.
Simply put, .NET applications are faster and support more users than
comparable J2EE solutions.

Web Services in Service-Oriented Architectures 287

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Cost of Solution

The total cost of a solution consists of how much money an enterprise spends
to build and then deploy the application. In both cases, Microsoft .NET offers
a significant advantage over J2EE.
When building a J2EE solution, programmers have a severely limited range of
language choice—they can only use Java. On the other hand, the .NET
Framework supports almost 30 languages. In fact, Visual Studio supports four
languages out of the box (J#, a Java-syntax language, C#, C++, and Visual
Basic .NET), giving each language identical support. While C# is a great
language for .NET development, the .NET Framework is in no way optimized
for C# only. In addition, other vendors offer a wide array of additional
languages for .NET development, including JScript, Perl, COBOL, Fortran,
Smalltalk, even Eiffel and Mondrian! Clearly, companies will generally not build
solutions using, say, 10 languages at once. However, the choice to use
whichever language makes sense for a particular project can generate signifi-
cant savings, because companies can use existing programmers without retrain-
ing them for Java. In addition, Visual Basic programmers tend to be more
plentiful and less expensive than Java programmers. And, we previously
established that once developers begin writing code, they will have to write a
lot less code, translating again into significant savings.
Once the application is ready, it must be deployed. In the .NET world, this
means running it on an Intel-based server with Windows 2000 Server or the
upcoming Windows Server 2003. According to The Middleware Company,
with software costs running approximately $5,990, a fully configured server for
the .NET solution will cost around $36,990. Contrast this with the same server
running a commercial J2EE application server, which adds between $40,000
and $48,000 per server! Even if an enterprise chooses Linux to eliminate the
$5,990 Windows license, they still have to add the application server. Even
today’s ‘new math’ can’t justify eliminating less than $6,000 for an additional
$48,000 cost.
Finally, because performance data indicate that J2EE solutions support fewer
users than .NET solutions on comparable hardware, the J2EE solutions will
generally require more of these more expensive servers.
.NET solutions are simply less expensive to build, less expensive to deploy,
and less expensive to maintain.

288 Miller

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion

Web services are clearly critical for the next wave of enterprise computing—
integrating disparate business systems for more effective use of information.
Companies like Microsoft and Sun should be commended for their clear
commitment to work together toward a common industry standard for all our
customers’ benefit.
There should always be more than one choice of development environment for
customers, because there will never be one solution that is always appropriate
for everyone in every situation. The world is big enough for both Microsoft
.NET and J2EE. Still, for the reasons outlined herein, Microsoft .NET will
generally be a better choice for most companies in most situations.

Acknowledgment

The opinions expressed herein are those of the author and may not reflect those
of his employer. This chapter is an expansion of an article that originally
appeared in Communications of the ACM.

Metamodeling, Transformation and Verification 289

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Model-Based
Development:
Metamodeling,
Transformation
and Verification

Juan de Lara
Universidad Autónoma de Madrid, Spain

Esther Guerra
Universidad Carlos III, Spain

Hans Vangheluwe
McGill University, Canada

Abstract

Since the beginning of computer science more than 50 years ago, software
engineers have sought techniques resulting in higher levels of quality and
productivity. Some of these efforts have concentrated in increasing the
level of abstraction in programming languages (from assembler to
structured languages to object-oriented languages). In the last few years,
we have witnessed an increasing focus on development based on high-
level, graphical models. They are used not only as a means to document

290 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the analysis and design activities, but also as the actual “implementation”
of the application, as well as for automatic analysis, code, and test case
generation. The notations used to describe the models can be standard
and general purpose (for example, UML) or tightly customized for the
application domain. Code generation for the full application is only
accomplished for specific, well-understood application domains. A key
initiative in this direction is OMG’s Model-Driven Architecture (MDA),
where models are progressively transformed until executable code is
obtained. In this chapter, we give an overview of these technologies and
propose ideas following this line (concerning metamodeling and the use of
visual languages for the specification of model transformation, model
simulation, analysis and code generation), and examine the impact of
model-based techniques in the development process.

Introduction

Stakeholders in the development process have different interests. Managers
want the product on time and within cost, users want more functionality and low
prices, and developers want to reduce the effort in building the application. One
of the means of reducing this effort is by increasing the level of abstraction of
programming languages (that is, conceptually using a higher-level virtual
machine). Using higher abstraction level notations, programs become more
compact and easier to understand, write, and maintain. In this way, developers
deal with less (accidental) details about the system they are building and
concentrate on describing its essential properties (Brooks, 1995). Usually,
powerful abstract constructs are only available in well-understood application
domains, such as editors for visual languages (de Lara & Vangheluwe, 2002a).
Ideally in these domains, from (possibly graphical) high-level descriptions of
the application to be built, the program code is automatically generated. Other
times, these models of the application are used for analysis of the program
properties (such as efficiency, scalability, or design correctness). This is
possible if the model semantics are formally defined (and have adequate
analysis techniques) or if the model is translated into a formalism for which
verification techniques are available (Guerra & de Lara, 2003; Heckel, Küster,
& Taentzer, 2002).

Metamodeling, Transformation and Verification 291

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For specific domains, the application to be generated can be described through
metamodels. These are models specified using a high-level notation (such as
UML class diagrams) and describe the set of all possible instances the user can
build. Note how metamodels are static descriptions of the application to be
generated. To describe its behavior, several approaches can be used. For
specific domains, it is possible to offer a number of predefined functionalities
in the generated tool. For example, in the case of generation of customized
visual editors, one could have predefined functionality in the generated editor,
for example to create, edit, or connect modeling primitives. Another possibility
is to specify the functionality using the programming language of the generated
code. Finally, this functionality can be specified using visual notations at the
meta-level. The latter approach is the one we follow in this chapter, although
usually, one finds a mixing of the three approaches.
A further step in model-based development is the proposed Model-Driven
Architecture (MDA) initiative by OMG (MDA, 2004; Raistrick, Francis,
Wright, Carter, & Wilkie, 2004). In this envisioned paradigm, software
engineers create a Platform-Independent Model (PIM) of the design, which is
automatically transformed (refined) into a Platform-Specific Model (PSM)
from which executable code is generated. Model transformation is thus a key
issue in this technology. Code generation can be seen as a special case of the
latter.
In this chapter, we present our vision of metamodeling, and show how its
combination with graph transformation is a powerful approach for domain-
specific application generation and for model transformation with the aim of
verification. These concepts are illustrated with some examples using the
AToM3 tool (de Lara & Vangheluwe, 2002), built by the authors, and the
implications of these technologies in the development process are discussed.

Metamodeling

Metamodeling allows describing visual languages (formalisms) using a (possi-
bly graphical) high-level notation that we call a “meta-formalism.” These are
formalisms expressive enough to describe other formalisms’ syntax. A formal-
ism is defined by a metamodel, while a meta-formalism is described by a meta-
metamodel.

292 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Most modeling environments (e.g., UML 1.5 Specification, 2003) are orga-
nized in four metamodeling layers as Figure 1 shows. The highest layer (M4)
contains the description of different meta-formalisms used for specifying
formalisms at the M3 layer. At the M4 level we must have at least a means to
specify entities (MetaClasses), data (MetaAttributes), operations
(MetaOperations), and relationships (MetaRelationships). These concepts
are organized in the description of the different meta-formalisms. For example,
in the UML meta-architecture, these elements are organized as the MOF (Meta
Object Facility—UML 1.5 Specification, 2004) meta-metamodel, which is
very similar to a core subset of UML class diagrams. This meta-metamodel is
used to describe the UML syntax (the UML metamodel) at the M3 level.
In the M3 layer we describe the syntax of the different formalisms we are
interested in, using the meta-formalisms in the M4 layer. For example, in this
layer we could have descriptions of State Automata, the different UML
diagrams, Differential Algebraic Equations, and so forth. The different models
that can be described using one of the formalisms in layer M3 belonging to the
M2 layer. Finally, the M1 layer contains data resulting from the execution of the
models in the M2 layer. All meta-levels contain models, which should be

Figure 1. Metamodeling levels

Metamodeling, Transformation and Verification 293

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

consistent with the description of the model at the upper layer and are instances
of these. Some metamodeling approaches are strict (Atkinson & Kühne,
2002), in the sense that every element of the n meta-layer is an instance of some
other element at the n+1 meta-layer. The exception is the highest layer, in which
each meta-formalism definition must be consistent with the meta-formalism in
which it was defined (possibly itself).
A metamodeling environment is able to generate a modeling tool for a
formalism, given the description of its metamodel. For the generation of such
a tool, not only must one include in the metamodel information about the entities
and their relationships (abstract syntax), but also about the visualization of the
different elements (concrete syntax). It may be possible to have arbitrary
mappings from abstract to concrete syntax.
This metamodeling approach is immediately applicable to the generation of
visual modeling environments (de Lara & Vangheluwe, 2002; Lédczi el al.,
2001), where the modeling language is described by a metamodel. Figure 2
shows a metamodel for UML Activity Diagrams (built with the AToM3 tool)
which closely follows the UML 1.5 specification. Note how we have included
a visualization element (the SwimLane), which does not belong to the abstract

Figure 2. A metamodel for Activity Diagrams

294 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

syntax, but to the concrete one. Swim lanes are a means to visually arrange the
activity states. In addition, we have to define the concrete visualization for each
element in the metamodel. In AToM3 this is done with a visual editor, where the
user can draw icon-like graphics (for classes) or arrow-like graphics (for
associations).
Figure 3 shows the generated tool from the metamodel in Figure 2, where a
model of a sales process has been drawn. Note that the user interface of the tool
has changed with respect to Figure 2, in particular the row of buttons to the left.
These buttons are used to create the modeling primitives defined in the
metamodel, as well as to access further user-defined functionality.
In general, one has three options regarding the means to specify the functionality
of the generated environment (although they can be combined). The generated
environment may be made of some predefined code (that we call the kernel),
which is completed by some other code generated from the metamodel. The
predefined code may implement some core functionality, common to all the
generated applications. This is a good approach if the application domain is well
understood, but sometimes different, specific functionality is needed for each
generated application. This is the approach in AToM3, which is made of a

Figure 3. An Activity Diagram model

Metamodeling, Transformation and Verification 295

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

kernel, with the functionality to load and save models, generate code from them,
and create the entities of the loaded metamodels.
Extra functionality can be included in the generated application by coding (by
hand) in the implementation language. This has the disadvantage of being low-
level (in comparison with the approach used to describe the metamodel) and
requires knowledge about the kernel API in order to implement the new
functionality. This can also be done in AToM3 by adding code in Python.
Finally, one can include information about the functionality of the generated
application at the meta-level, using high-level notations. In AToM3 one can
configure a part of the user interface by modifying a model that is automatically
generated from the metamodel. In this model the user creates the buttons that
will appear in the user interface when the formalism that he has designed is
loaded (left row of buttons in Figures 2 and 3). Figure 4 shows the model of the
user interface for the Activity Diagrams tool shown in Figure 3.
Some of the buttons in the model in Figure 4 were automatically generated (the
ones to create the primitives defined in the metamodel), but the user can add
other buttons. Each button is provided with functionality specified either in
Python code or as graph transformation rules (Rozenberg, 1997). The func-
tionality usually consists on some computation performed using the current
instance of the described metamodel. Models, metamodels, and meta-
metamodels can be described as attributed, typed graphs. In this way,

Figure 4. Model of the user interface for the Activity Diagrams modeling
environment

296 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

computations on models can be naturally, graphically, and formally described
as graph transformation rules. This is a concept that will be explained in the next
section.

Model Transformation with
Graph Grammars

Graph grammars (Rozenberg, 1997) are similar to Chomsky grammars (Aho
et al., 1986), which are applied on strings, but rules have graphs in left- and
right-hand sides (LHS and RHS). Graph grammars are useful to generate sets
of valid graphs or to specify operations on them. In order to apply a rule to a
model, a graph rewriting processor looks for graph matchings between the
LHS of a rule and a zone of an input graph (called host graph). When this
happens, the matching subgraph in the host graph is replaced by the RHS. Rules
may have conditions that must be met in order for the rule to be applied and
actions that are performed once the rule is applied. Some graph rewriting
processors (such as AToM3) iteratively apply a list of rules (ordered by
priority) to the host graph until none of them is applicable. When a rule can be
applied, the processor again starts trying the rule at the beginning of the list.
Other processors have a (possibly graphical) control language to select the rule
to be considered next.
In our approach, we use graph grammars to specify operations on models
(typically model execution, optimization, and transformation) at any meta-level,
as these can be expressed as attributed, typed graphs. In this case, the
attributes of the nodes in the LHS must be provided with the matching
conditions. In AToM3, we can specify that either a specific value or any value
will make a match. Nodes in both LHS and RHS are also provided with labels
to specify the mapping between LHS and RHS. If a node label appears in the
LHS of a rule, but not in the RHS, then the node is deleted when the rule is
applied. Conversely, if a node label appears in the RHS but not in the LHS, then
the node is created when the rule is applied. Finally, if a node label appears both
in the LHS and in the RHS of a rule, the node is not deleted. If a node is created
or maintained by a rule, we must specify in the RHS the attributes’ values after
the rule application. In AToM3 there are several possibilities. If the node label
is already present in the LHS, the attribute value can be copied. We also have

Metamodeling, Transformation and Verification 297

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the option of giving it a specific value or assigning it a program to calculate the
value, possibly using the value of other attributes.
Figure 5 shows an example, where two rules for the definition of a simulator for
finite automata are shown. The arrow labeled as “4” in the LHS of Rule 1 is the
pointer to the current state. The black rectangle labeled as “5” points to a list
that contains the input stream. The first element is labeled as “7” and its value
is the same that the one in transition 2. If the rule is applied, then the first element
in the input stream is consumed and the current pointer is moved through
transition 2 to the next state. The second rule has a Negative Application
Condition (NAC). NACs specify conditions that should not be present in the
host graph in order for the rule to be applied. The rule creates a pointer to the
automaton initial state in case there is not one already.
Figure 6 shows the application of Rule 1 to a model G, resulting in a model H.
The occurrence of the LHS in G has been shaded. The marked elements have
been substituted by the corresponding elements in the rule RHS, resulting in
model H. Note how the successive application of Rule 1 results in the simulation
of the model. Morphisms between LHS and the host graph can be non-
injective; in this way, nodes 1 and 3 in Rule 1 can be identified into a single node
in the model (that is, we do not need an extra rule for the case of self-loop
transitions), so we can again apply Rule 1 to Model H in Figure 6.

Figure 5. Two rules for the specification of a simulator for automata

298 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. Application of a rule to a model

Using a model of the computation in the form of a graph grammar has several
advantages over embedding the computation in a lower-level, textual language.
Graph grammars are a natural, graphical, formal, and high-level formalism. Its
theoretical background can help in demonstrating the termination and correct-
ness of the computation model. Nonetheless, its use is constrained by efficiency
as in the most general case, subgraph isomorphism testing is NP-complete.
However, the use of small subgraphs on the LHS of graph grammar rules, as
well as using node and edge types and attributes, can greatly reduce the search
space in the matching process.
The example transformation showed in Figures 5 and 6 “animate” a model, by
defining the formalism operational semantics. In the context of model-driven
development, there are other useful transformations, for example those trans-
lating a model instance of a source metamodel into a model instance of a target
metamodel. There are several reasons to do this. On one hand the formalism
represented by the target metamodel may have appropriate methods for
analysis. In this case, the property under investigation in the source model has
to be preserved during the transformation. If the transformation is expressed as
a graph grammar, one can use its theoretical results to show certain properties
of the transformation itself (de Lara & Taentzer, 2004), among them semantic

Metamodeling, Transformation and Verification 299

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

consistency (preservation of semantic properties—such as behavior—of source
models).
On the other hand, the target metamodel may be a more concrete (lower
abstraction level) representation of the system. For example, a design model
can be refined into a model of the code. Note that in this case, a metamodel for
the coding language is needed, and the design is transformed into a model
similar to the abstract syntax graph (Aho et al., 1986) that a compiler obtains
when parsing a textual program. These transformations for refinement are the
ones that can be found in the context of the MDA. In this case, one is also
interested in showing the preservation of certain model properties.
Figure 7 shows two of the rules for transforming Activity Diagrams into Petri
nets (Murata, 1989). Petri nets offer analysis methods that allow us to verify
properties that cannot be analyzed in UML, as its semantics are not formally
defined. Both rules deal with the translation of choice pseudostates (with

Figure 7. Some rules for transforming Activity Diagrams into Petri nets

300 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

diamond shape). The second rule adds a Petri net place for each condition, and
the first rule eliminates the choice once no more output transitions remain. After
the repeated application of both rules, the input and output states to the choice
pseudostate are connected to a number of Petri net transitions. That is, during
the transformation, models are a mixing of the source metamodel elements and
target metamodel elements. At the end of the transformation, the model only has
elements of the target metamodel. In order to define the possible relationships
of source and target elements during the transformation, we create a metamodel
to describe the kind of models that can appear during the translation. For
example, the RHS of rule “BranchSecond” has a link of type “ST-ARC” that
relates states (from Activity Diagrams) to transitions (from Petri nets). A similar
situation occurs with the link of type “TS-ARC.”
The next section shows an example, where we use transformations into Petri
nets for the analysis of a UML model composed of Statecharts, Class, Object,
and Activity Diagrams.

An Example

Figure 8 shows a UML Class Diagram with the classes involved in the design:
a Sales Company is composed of a number of Stockrooms and has Customers
that place Orders. We have defined a Statechart for Order objects (the
diagram in the right-hand side of Figure 8). An Order object can be in one of
the following states: New, Placed, Entered, Filled, or Delivered. The Statechart
changes the state in reaction to method invocations (Place, Enter, Fill, and
Deliver). Additionally, on receiving method invocation “Enter” with the stock-
room where the “Order” is to be processed, private method “SetStorage” is
invoked in order to store the “Stockroom” object (in “storage”).
The Customer class has an associated Statechart, which models the fact that
customers can buy items (calling the Buy method). Once the order has been
issued, customers can either cancel or pay the order. Once the order is sent to
the customer (method Send), he can either confirm that the content is correct
(method Confirm), or that there are some defects (method Defective). Figure
8 also shows an object diagram that depicts the initial system configuration for
the analysis (one Customer object, one Sales Company Object, and three
Stockroom objects). The Activity Diagram in Figure 3 is also part of the

Metamodeling, Transformation and Verification 301

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

example and shows a typical sales process. This diagram could have been
created in order to specify a use case, like “shell goods,” for example.
The example we present here shows a typical situation in the development
process, because there is incomplete information, as some classes (Sales
Company and Stockroom) do not have an associated Statechart. We assume
a general Statechart for all of them, composed of a single state, from which all
the available class methods can be invoked.
In order to analyze the models correctness, we translate the Activity Diagram
and the Statecharts into a single Petri-Net model to analyze if the models are
consistent and to check properties of the resulting net (deadlock, reachable
states, etc.) using Petri net analysis methods. Further properties can be
investigated by generating (implicitly or explicitly) the state space of the net and
performing model checking (Clarke, Grumberg, & Peled, 1999). This tech-
nique allows checking if the model verifies a certain property, which is specified
using some kind of temporal logic (Computational Tree Logic in the example).

Figure 8. The Class, Object, and Statechart Diagrams for the example

302 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Our approach for the translation of Statecharts into Petri nets was shown in de
Lara and Vangheulwe (2002b). The main idea is to translate each Statechart
state into a place and represent methods as special places that we call
“interface places.” These places form the interface of the Statechart, and when
an object wants to make a method invocation, it puts a token in the correspond-
ing place. The result of transforming the Statecharts in Figure 8 is shown in
Figure 9. We have translated the Statechart of each object in the Object
diagram (shown inside the rounded rectangles in Figure 9, that we call Petri net
modules). Note how some of these Petri net modules are coupled because of
the method invocations in the Statechart transitions. For example, in the
Statechart for the customer, there is a method invocation to the Defective
method of class Sales Company (in one of the transitions departing from the
“waiting order” state). This is translated as an arc that puts a token in the place
corresponding to the Defective method of the Petri net module for class Sales
Company.

Figure 9. Transformation of the Statecharts models into a single Petri net
model

Metamodeling, Transformation and Verification 303

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Once we have translated the Statecharts, the Activity Diagram is also trans-
lated. This diagram couples the already translated modules, as Activity Dia-
gram states contain entry and exit actions with method invocations. The result
of this transformation is shown in Figure 10.
Once all the diagrams have been transformed, we can use Petri net analysis
methods (Murata, 1989)—for example, the ones based on the reachability
graph, matrix of equations, simplification, and structural techniques. In general,
the properties that one is interested in analyzing using these methods are:

• Reachability of a certain state: We may be interested in knowing
whether one object or a combination of objects in our system can reach
a certain state. This includes also error or inconsistent states, which can
indicate a flaw in our models. As we model method invocations as places,
we can also use this property to check if certain methods will be called.

Figure 10. Transformation of all the models

304 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Liveness, which shows how often transitions can fire: We can use
this property to find deadlocks in our system. Deadlocks are situations
when the execution of our system cannot progress and we typically want
to avoid in our designs. Liveness can also tell us about how often a certain
method can be called, or how often a certain state can be reached.

• Boundedness and safeness, which investigate if the number of
tokens in the net is bounded: This property of the Petri net is granted
by the translation procedure.

• Persistence, which investigates if enabled transitions remain en-
abled after the firing of other transitions: In our context this is related
to the interruption of some process when another process is executed.

• Place invariants (also related to conservation) show the relation-
ships among the number of tokens in places that hold during all the
possible executions: In our context, we can use them to show if a certain
relationship between the actual states of the object Statecharts hold in all
executions.

• Transition invariants show that a firing sequence leaves the net in
the same state: This is related to reversibility, which investigates if after
an execution, we can again reach the initial state. We can use transition
invariants to show that after several method invocations, the state of the
system remains unchanged.

In the example, we use techniques based on the reachability graph, which
represents the space state of the net. This graph is an approximation if the net
is not bounded, and then is called coverability graph. Figure 11 shows a part
of the reachability graph (in this case it is an exact representation of the state
space) produced by the net in our example; the full reachability graph has 50
states. Note how there are many “interleavings” due to the possible parallel
execution of method invocations and state changes.
Once we have the state space of the model (which represents all the possible
executions of our system), we can use model checking (Clarke et al., 1999) to
verify if certain properties hold. Properties can be specified using temporal
logic, in our case “Computational Tree Logic.” This logic allows us to express
properties in computation paths using path quantifiers “A” (for all computation
paths) and “E” (in all computation paths). For example, one can check if the
system reaches deadlock (always or sometimes); if a certain object, or a

Metamodeling, Transformation and Verification 305

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

combination of them, reaches (or leaves) a certain state (always or sometimes);
if a certain method (or a chain of methods) is invoked always (or sometimes);
or if certain property holds until some other property becomes true.
In our example, we can verify using model checking that the system enters in
deadlock (in all possible computation paths), obtain the state in which this is
produced and the chain of transitions leading to it. It is then easy to check that
the Customer object is in state “Service Paid” when deadlock is present.
Inspecting the Statechart, one finds that in order to leave that state, method
“Send” has to be invoked, and this invocation has not been specified in any of
the Statecharts nor in the Activity Diagram. That is, the order is in state
“Delivered,” but it has not been sent, so the customer cannot confirm its arrival.
We can correct the design error by adding an extra exit action (Juan.send()) in
the Activity Diagram state “Deliver Order.”

Figure 11. Reachability graph of the example

306 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implications for the
Development Process

In a typical development process, the code is the main product, and models are
just a documentation of this. Most of the times, these models are inexistent,
incomplete, or are not up to date (as maintenance is frequently done only at the
level of code). Also frequently, code is the only subject for testing. In this way,
sometimes testing occurs too late in the development process. In contrast, the
presented approach makes stress in the modeling phase. Models are the main
products to be generated during development. These are graphical, higher
level, and usually easier to understand than code, therefore the development
based on models promises higher levels of productivity and quality. When
provided with adequate semantics, models can be verified in order to find
defects earlier in the development phase. This contrasts with the usual approach
based on static inspection of documents and (late) testing of code. In addition,
models are easier to maintain than code, and if code is automatically generated
from models, then both can be easily kept up to date.
Thus, our proposal based on model verification applies to the analysis and
design phases, and in principle could be used with any development process.
It must be remembered that the cost to correct an error exponentially increases
as the project development advances. In this way, our approach allows an early
identification of analysis and design errors.
Figure 12 shows a very simplified model of the development process and how
our approach integrates in it. We have used an Activity Diagram from the OMG
standard Software Process Engineering Metamodel (SPEM 1.0 Specification,
2002). For simplicity, we have omitted some activities (like reviews and
integration testing), and we have not explicitly included the relationships
between activities, but only the products they consume and produce. Note
however that iterations are possible and common between some of these
activities. In the process model, from the user requirements and the initial
design, some properties or conditions that the system should verify are
specified (activity “Property Specification”). These can be, for example,
safety conditions in critical systems or consistency conditions in database
systems. These conditions should be translated into some notation (Computa-
tional Tree Logic in our example) for their verification. A key issue here is the
possibility of automatic or assisted translations of these conditions. Once the
conditions are translated, they can be verified on some of the defined models

Metamodeling, Transformation and Verification 307

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(“Model Verification” activity). For this purpose models have to be translated,
but this can be transparent to the developer. Note how there is an analogy here
between verification of models and verification of code (“Code Testing”
activity). But while we verify (by proving the property on all computations)
properties on models, code should be verified by deriving test cases. These
select the best computation paths to be tested. In model verification, however,
verifying all paths of computation can be done due to the higher level of
abstraction of models.
The work we have presented is an example of the use of formal methods. These
are attempts to use mathematics in the development of a software application,
in order to reduce the number of errors of the resulting system (Berry, 2002).
Although they offer significant benefits in terms of improved quality, their use
in industry nowadays is usually reduced to some safety-critical systems. They
are not broadly used due to several reasons, among them their high cost (which
only pays if the cost of delivered errors is prohibitive) and the need of expert

Figure 12. Integrating our approach in the development process

308 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

personnel in a certain formal method. This expert knowledge is seldom found
among the average software engineers.
As we have seen, we propose hiding the verification process by letting the
developers specify the system in a well-known modeling language (UML) and
then automatically translating these models into a semantic domain for further
analysis. In this way, we free developers with the need to learn new notations
or methodologies in order to use a formal method. The use of common modeling
notation, together with appropriate tool support for the verification, can
sensibly lower the cost of introducing formal methods, as well as reduce the
learning curve for software developers. It is our belief that the development of
adequate theoretical results, combined with tool support, can make the use of
formal techniques very attractive, even for regular software projects.
Our approach also makes stress in code generation from high-level models. In
general, we can distinguish three different scenarios for code generation. In the
first one, code generation is used for rapid prototyping, as a means to work with
users during the analysis phase. Once (part of) the application requirements are
established, the generated prototypes are discarded and the application is
developed probably using more efficient languages.
In the second scenario, a generative approach can be used in the context of
product lines (Pohjonen & Tolvanen, 2002). The idea here is to customize by
means of high-level models the application to be generated. The generated
code is then combined with a common, kernel code, which results in the final
application. Note how this approach is possible for well-understood, domain-
specific applications, where domain abstractions and their mapping into code
can be adequately identified. An example of this is the approach of AToM3,
where visual languages are defined by means of metamodels and the generated
code is combined with the AToM3 kernel.
In the third scenario (the most powerful approach), the full application code is
generated from the models and is not restricted to domain-specific applica-
tions. It is promoted by the MDA and benefits from executable models
(Raistrick et al., 2004). With the xUML approach one can execute a reduced
set of UML models by means of the action semantics. Note how the three
scenarios are benefited from the possibility of performing verifications at the
level of models before code generation or implementation. In particular, the
approach presented in this chapter is complementary to the xUML approach.
While in xUML it is possible to test models by simulation (that is, some paths
in the execution are tried), in our approach we can formally verify certain
properties in all computation paths.

Metamodeling, Transformation and Verification 309

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Related Work

The presented technologies have a precedent in the already classical notion of
Fourth Generation Languages (4GL) (Martin, 1985), which were also known
as “report generation languages.” These languages were designed for specific
application domains (typically related to database queries) and had a syntax
close to natural language. A typical example of this kind of languages was SQL.
Another related approach is Generative Programming (GP), which allows one
to automatically generate software from a generative domain model (Czarnecki
& Eisenecker, 2000). A generative domain model describes a system family by
means of a problem space, a solution space, and configuration knowledge. The
problem space contains domain-specific concepts and features; the solution
space defines the target model elements that can be generated and all possible
variations. The configuration knowledge specifies illegal feature combinations,
default settings and dependencies, construction rules, and optimization rules.
GP introduces generators as the mechanisms for producing the target. In our
approach we model these generators as graph transformation rules.
There are other examples of verification of UML models based on transforma-
tion into semantic domains. For example, in López-Grao, Merseguer, and
Campos (2004), Stochastic Petri nets are used to evaluate system perfor-
mance, specified with the UML profile for schedulability. In the approach of
Heckel et al. (2002), CSP was chosen as the semantic domain for verification.
Nonetheless, to our knowledge, our approach is unique in the sense that it
combines metamodeling (for the definition of the visual languages), graph
transformation (for specification of any model manipulation), and model
checking for the analysis of combinations of several UML models.

Conclusion

In this chapter, we have presented an approach for model-based development
based on metamodels and graph transformation. Models are the main assets
during development. These can be transformed for verification, optimization, or
code generation. The approach is in the line of the MDA sponsored by the
OMG, and has the potential to result in higher levels of quality (properties are
verified in the models) and productivity (code is automatically generated).

310 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Transferring these concepts for their wide use in industry is only possible with
adequate automation. In this direction, we are working in the transparent
verification of the models. In this way, models are transformed to the most
adequate target formalism (one with appropriate analysis methods) and results
are translated back and given to the software engineer in the context of the
source language. In this way, the engineer does not need to be familiar with the
target notation in order to perform the verification.

Acknowledgments

Juan de Lara’s work has been partially sponsored by the Spanish Ministry of
Science and Technology (TIC2002-01948). Hans Vangheluwe gratefully
acknowledges partial support by a National Sciences and Engineering Re-
search Council of Canada (NSERC) Individual Research Grant.

References

Aho, A.V., Sethi, R., & Ullman, J.D. (1986). Compilers, principles, tech-
niques and tools. Reading, MA: Addison-Wesley.

Atkinson, C., & Kühne, T. (2002). Rearchitecting the UML infrastructure.
ACM Transactions on Modeling and Computer Simulation, 12(4),
290-321.

Berry, D.M. (2002). Formal methods: The very idea. Some thoughts about
why they work when they work. Science of Computer Programming,
42, 11-27.

Brooks, F.P. (1995). The mythical man month. Reading, MA: Addison-
Wesley.

Clarke, E.M., Grumberg, O., & Peled, D.A. (1999). Model checking.
Boston: MIT Press.

Czarnecki, K., & Eisenecker, U. (2000). Generative programming: Meth-
ods, tools, and applications. Reading, MA: Addison-Wesley.

de Lara, J., & Vangheluwe, H. (2002). AToM3: A tool for multi-formalism
modeling and metamodeling. Proceedings of ETAPS/FASE’02 (pp.

Metamodeling, Transformation and Verification 311

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

174-188). Berlin: Springer-Verlag (LNCS 2306). See also the AToM3

homepage at http://atom3.cs.mcgill.ca
de Lara, J., & Taentzer, G. (2004). Automated model transformation and its

validation with AToM3 and AGG. Proceedings of Diagrams 2004 (pp.
182-198). Berlin: Springer-Verlag (LNAI 2980).

de Lara, J., & Vangheluwe, H. (2002). Computer-aided multi-paradigm
modeling to process Petri nets and Statecharts. Proceedings of
ICGT’2002 (pp. 239-253). Berlin: Springer-Verlag (LNCS 2505).

Guerra, E., & de Lara, J. (2003). A framework for the verification of UML
models. Examples using Petri nets. Proceedings of Jornadas de
Ingeniería del Software y Bases de Datos (JISBD’03) (pp. 325-334).
Alicante.

Heckel, R., Küster, J., & Taentzer, G. (2002). Towards the automatic
translation of UML models into semantic domains. Proceedings of
AGT’02/ETAPS’02 (pp. 12-22).

Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nordstrom, G., Sprinkle, J.,
& Karsai, G. (2001). Composing domain-specific design environments.
IEEE Computer, (November), 44-51. See also the GME homepage at
http://www.isis.vanderbilt.edu/Projects/gme/default.html

López-Grao, J.P., Merseguer, J., & Campos, J. (2004). From UML Activity
Diagrams to Stochastic Petri nets: Application to software performance
engineering. Proceedings of the 4th ACM International Workshop on
Software and Performance (pp. 25-36).

Martin, J. (1985). Fourth-generation languages. Volume I: Principles.
Upper Saddle River, NJ: Prentice-Hall.

MDA. Homepage at http://www.omg.org/mda/
Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceed-

ings of the IEEE, 77(4), 541-579.
Pohjonen, R., & Tolvanen, J.-P. (2002). Automated production of family

members: Lessons learned. Proceedings of the 2nd International
Workshop on Product Line Engineering—The Early Steps: Planning,
Modeling, and Managing (PLEES’02) (pp. 49-57). See also the
MetaEdit+ homepage at http://www.metacase.com

Raistrick, C., Francis, P., Wright, J., Carter, C., & Wilkie, I. (2004). Model-
Driven Architecture with Executable UML. Cambridge, UK: Cam-
bridge University Press.

312 de Lara, Guerra & Vangheluwe

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Rozenberg, G. (Ed.). (1997). Handbook of graph grammars and comput-
ing by graph transformation (vol. 1). World Scientific.

SPEM (Software Process Engineering Metamodel) 1.0 Specification. (2002,
November). Retrieved from http://www.omg.org/UML

Unified Modeling Language (UML) 1.5 Specification. (2003, March). Re-
trieved from http://www.omg.org/UML

Agile Project Controlling and Effort Estimation 313

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

Agile Project
Controlling and

Effort Estimation
Stefan Roock

it-agile GmbH, Germany

Henning Wolf
it-agile GmbH, Germany

Abstract

Project controlling was not in the focus of agile methods like eXtreme
Programming (XP, cf. Beck, 1999) for a long time. Since agile methods
are grass rooted, they derive from practitioners and focus on their needs.
This chapter shows how to integrate lightweight mechanisms for project
controlling into agile methods. The main idea is to combine (incomplete)
hierarchical decomposition of systems with abstract measurements. The
presented techniques address management needs without building barriers
for developers.

314 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The main question of project controlling is: “Are we at functionality in time on
budget?” The first step is to measure the current state of the project. From this
base it is possible to create a prognosis of the project’s progress in the future
and to answer the question above.
Many approaches to project controlling (all of the non-agile) assume that a
complete and stable requirements specification is available up front. Every time
a requirement is implemented, the project leader can close it. Tracking closed
vs. open requirements allows:

• computing the velocity of the project,
• measuring the progress of implementation, and
• creating a prognosis for the deadline.

Agile methods (for an overview, see Fowler, 2003) are in contrast to conven-
tional project controlling. They claim that in most cases, a complete require-
ments specification is an illusion. Instead, the requirements specification is
inconsistent, incomplete, and continuously changing. Therefore, the require-
ment specification is perceived as a moving target. This perspective has led to
the perception that agile projects are uncontrollable. Since project controlling
needs stable data, a classic requirements specification is indeed not suitable for
controlling agile projects. This chapter proposes hierarchical decomposition of
requirements and hierarchical tracking for controlling large agile projects.

Our Background

The authors have worked with agile methods since 1999, with a focus on
eXtreme Programming. They work as project managers and consultants for
agile projects. Their experience covers projects from 6 person months (3
developers) to 30 person years (20 developers). Recently the authors
integrated elements from SCRUM, Crystal, and other agile methods into their
project management toolbox.

Agile Project Controlling and Effort Estimation 315

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Agile Way of Tracking

In the agile methodology, development is scheduled for so-called iterations.
The suggested iteration length depends on the actual methodology used. XP has
a iteration duration of one to three weeks, SCRUM iterations last 30 days, and
Crystal iterations last three months. Programming tasks (stories in XP speak)
are assigned to iterations at the iteration planning. Stories assigned to an
iteration must not change during the iteration.
On the stable base of the assigned stories, a simple tracking can be done for
each single iteration using story burndown charts (as shown in Figure 1 for a
SCRUM project; cf. Schwaber & Beedle, 2001). The measured project
velocity provides the base for the future prognosis.
Burndown charts are a powerful instrument for controlling the development
during an iteration. If the prognosis shows that the team is not able to implement
all stories, stories are removed from the iteration. If the team works faster than
expected, additional stories can be assigned to the iteration.

Figure 1. Example burndown chart

Remaining Efforts

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Day

P
er

so
n

 H
o

u
rs

Today

Measured

Prognosis

316 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This kind of tracking is effective for the short timeframes of iterations. It does
not scale up to large projects since normally it is impossible to know all stories
of the whole project up front: the tracking base becomes instable again.

Hierarchical Tracking

While it is impossible to have a complete set of all stories for medium- to large-
size projects, it is always possible to have the big picture. Depending on the
project size, the big picture varies:

• for small projects: the set of all stories;
• for medium-size projects: the set of all features (a feature is a system

functionality that provides business value for the customer; it is a set of
stories);

• for large projects: the set of all subsystems (a subsystem has a set of
features).

The elements of the big picture are suitable for project tracking as long as they
are stable and small in number (should be less than 100 elements).
Figure 2 shows a large project divided into possible subsystems. The sub-
systems are not detailed up front, but on demand when the developers start to
work on a subsystem. Then the subsystem is detailed into features and the
features are detailed into stories.

Figure 2. Subsystems of a large project

Customer

Order

Production

Accounting

Agile Project Controlling and Effort Estimation 317

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The subsystems can be linked via the features to the stories, and therefore to
the programming tasks of the developers. Every time a story is completed, it can
be computed how many stories of the current feature are completed. Knowing
the progress of the features allows the project manager to compute the state of
the current subsystem, which leads to the progress of the whole project.

Estimation with Effort Points

The efforts needed to implement two stories may vary a lot; the same is true for
features and subsystems. Therefore, simply counting stories, features, and
subsystems is too rough for project controlling. We use effort points (EP) to
weight the complexity of items. Stories are weighted with story effort points
(step), features with feature effort points (feep), and subsystems with system
effort points (syep).1

The estimation by effort points defines the complexity of elements of the same
level (subsystem, feature, story) relative to each other. A subsystem with 3 syep
roughly needs three times the effort of a 1 syep subsystem. Our experience
shows that it is quite easy to estimate this relative complexity. After estimating
the relative complexity of the subsystems of a project, we go on estimating the
features of a few subsystems and then the stories of a few features. With simple
mathematics we can transform syep, feep, and step into each other. Thus we
get an estimation of the whole project with just some of the features and stories.

Figure 3. Estimation with effort points

2 syep

Customer

5 syep

Order
3 syep

Production

2 syep

Accounting

Edit
Customer

3 feepSearch
Customer

5 feep
Print

Customer List
2 feep

Delete
Customer

1 feep

Show Customer - 2 step

Save Customer - 1 step

Check Plausibility - 2 step

318 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3 shows an example for an effort estimation with the subsystems
Customer, Order, Accounting, and Production.
The figure shows that the 3 feep of the feature Edit Customer relate to 5 step
(for the three stories). Therefore 1 feep computes to 5/3=1.67 step. In the
subsystem Customer 2 syep relate to 11 feep, which computes 1 syep to 11/
2=5.5 feep. In summary 1 syep computes to 5.5*1.67=9.19 step.
When we know how much effort is required to implement a step, we can
compute the efforts for features, subsystems, and the whole project. Assuming
15 person hours (peh) for a step in the example above, we compute that we
need 15 peh * 1.67 = 25 peh per feep and 25 peh * 9.19 = 230 peh per syep.
Since the whole project has 12 syep in total, the complete project effort is 230
peh * 12 = 2,760 peh.
The effort needed to implement a step may vary from developer to developer.
The basis for the effort calculation in the given example are 3 stories with 5 step
for just one feature of one subsystem. Assume that we have just finished 75 peh
of 2,760 peh for the whole project, that represents just 2% of the system effort!
If we assume 20 instead of 15 peh for a step, the total effort would be 33%
higher (3,671 instead of 2,760 peh). Evidently, a higher percentage of already
implemented system functionality increases confidence in our estimation. It is
useful to implement stories of different features and even different subsystems
in the beginning. Knowledge, conditions, requirements, and used technology
may vary a lot between features and subsystems. This has an influence on the
effort estimation; for example, some feature requiring some unknown technol-
ogy leads to a higher estimation for this feature. Always our first estimations are
fuzzy, but they give an idea about the dimension of the project. The better our
data basis, the sharper our estimation becomes.

Putting It All Together

New XP/agile projects start with an initial exploration phase in which the
ground for the project is built. The team warms up, technology is explored, and
the efforts are estimated. For the effort estimation, the big picture of the system
functionality is required. In larger projects the big picture will contain a list of
the subsystems. We then identify a few subsystems which we investigate further
to sketch their features. Few of the features are then broken down into
estimateable stories.

Agile Project Controlling and Effort Estimation 319

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

During the exploration phase we implement some of the stories to compute the
initial velocity of the team (peh per step). Based on the computation scheme
described above, we can roughly estimate the effort for the whole project.
The selection of subsystems, features, and stories that are analyzed in detail
reflects their importance for generating business value. That leads to more
accurate effort estimations for the important system functionality and reduced
accuracy for the “nice to have” features.
In parallel we choose at least a small, a mid-size, and a large subsystem
(measured in syep) to define all features for them. With the resulting features we
also select small, mid-size, and large features (measured in feep) to define their
stories. Then we implement small, mid-size, and large stories (measured in
step).
Implementing subsystems and features sequentially would conflict with the idea
of short releases. For a usable release one would need features of several
subsystems. This is similar for the features—in the beginning the users only need
a part of each feature. Therefore we count fully completed stories and compute
the completion degree (percentage) of features and subsystems (see Figure 4).
SCRUM-like diagrams show us the progress of the project on the different
levels (subsystems, features, stories). Iteration completion diagrams simply
count open step every day and show progress for the current iteration
(consisting of a number of stories). Release completion diagrams show the
progress for the current release. Depending on the length of the release, we

Figure 4. Project completeness in agile projects

60%

Customer

70%

Order
40%

Production

10%

Accounting

Edit
Customer

100%Search
Customer

60%
Print

Customer List
30%

Delete
Customer

0%

320 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

count open step or compute open feep. We assume that the stories or features
for a release are known. Release completion diagrams are usually updated
every week. Project completion diagrams show the progress on the level of
subsystems and are computed every week or every few weeks.
In most cases all project participants, including the customer and all develop-
ers, have access to the diagrams. This is especially necessary in situations
where the tracking data suggest adapting the plan while skipping some of the
stories or features. But in some cases when our customers insist on making
fixed-price projects, we only use the information internally.
The approach presented in this chapter has its limitations. The following
prerequisites are essential:

• A rather complete and stable list of subsystems for the project is needed.
• The productivity of the team must be measured or estimated. If a team

cannot measure its productivity, the project is still in the exploration phase.

Experiences

The described concepts must be adapted to the project situation at hand. We
accumulated experience with the presented techniques:

• The initial estimation is rough. Estimations get better the more we know
about the project and the more stories and features we implement.

• Most business sectors have well-established concepts of organizing large
systems into subsystems—often oriented to departments. While the
relationships between legacy systems often are tangled, the division into
subsystems proved to be stable. Therefore it is often possible to gain a
complete list of all subsystems of the project in a short period of time.

• Business analysts and experienced developers have a good understanding
of the complexity of the subsystems. Therefore estimating the subsystems
with system effort points becomes quite easy.

• The levels used for hierarchical decomposition must be adapted to the
project situation. For a lot of projects, stories and features are sufficient
and the subsystem concept is not necessary.

Agile Project Controlling and Effort Estimation 321

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Some project trackers prefer to track remaining efforts in person days
directly instead of effort points. This is the original SCRUM way of
tracking, but it leads to instability when the productivity of the team varies.
Estimations based on effort points are not influenced by varying produc-
tivity.

Experiences from Project Beaker

We joined Project Beaker when it had been running several years. The main
problem with the project was its unknown state. Once again an important
deadline was exceeded.
The project controlling instruments presented in this chapter were useful, even
though the project was not agile at all, but had a waterfall-like style. We
discovered three types of requirements: change requests, use cases, and
subsystems. We interpreted change requests as stories and use cases as
features. Then we estimated the efforts with effort points for the three levels and
calculated the remaining effort of the project in effort points.
The previous productivity could be analyzed because the project was active for
quite a long time. We computed the needed hours per effort point by estimating
a representative set of completed change requests and use cases (result: 11
person hours per effort point). We created SCRUM-like completion diagrams
based on this analysis of the previous productivity. These diagrams enabled
effective communication while programmers and management had severe
communication problems. The management saw a visualization of the project
state for the first time during the project. This made possible discussions
between management and programmers about the future directions of the
project.
Several actions were proposed to get the project back on the timeline based
on the discussions. Introducing new programmers into the team was controver-
sial: the project team suspected that it would take a very long time for new
programmers to become acquainted with the system, while management
assumed a linear growth in productivity. In this situation the completion
diagrams proved useful. We used a worst- and a best-case scenario to assess
the effects of introducing new programmers to the team. We created new
completion diagrams based on these worst- and best-case effects of
introducing new programmers. The new completion diagram is shown in
Figure 5 with releases R1 to R4. The remaining efforts increase after every
release since each release has its set of stories.

322 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The gap between best and worst case increases with time. It became clear that
there was a chance to meet all deadlines. It also became clear that the risk was
high of failing to meet some or all of the deadlines. It was possible to check the
assumptions: We included the measured productivity into the diagram and
compared it with the best- and worst-case productivity. (Our assumptions
were right: The real productivity was in between best and worse case, and it
was closer to the best case.)

Project Bear Experience

Currently we stand at the beginning of Phase 2 of two phases and have just
fixed the contract. Phase 1 produced a lot of prototypes and was a long

Figure 5. Completion diagram for Project Beaker

-200

-100

0

100

200

300

400

500

W
ee

k 37 39 41 43 45 47 49 51 1 3 5 7 9 11 13 15 17 19 21

Weeks

R
em

ai
n

in
g

 E
ff

o
rt

 P
o

in
ts

BEST CASE WORST CASE

R4R3R2R1

Agile Project Controlling and Effort Estimation 323

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

exploration phase. Phase 2 is a variable-scope, fixed-price project. We made
requirements that are a “feature size” part of the contract. The customer may
change requirements during development as long as the sum of feature points
is not increased.
Our estimation basis was quite stable due to the long exploration phase. The
project produces four large systems for four different organizational units. The
effort to finish a feature is different for each organizational unit, which had a
strong impact on our project estimation.
We started out with an initial rough estimation based on the idea of hierarchical
effort points described above. To end up with a dimension of 4,000 person
days for the whole project, it only took a few days of discussions with
customers. Unspecified circumstances led to an effort reduction to 2,800
person days. In discussions between software developers and the customer,
the feature lists were reworked to give full particulars and better estimations.
To track the project progress, the hierarchical tracking is now to be installed.
To complete the iteration and release planning, hierarchical structures were
also necessary so that reasonable releases would be delivered to the customer.
We are not really certain if our estimation of extra effort for producing
productive software instead of prototypes is appropriate. But we gained some
experiences with two smaller systems we delivered in Phase 1 which led to
noticeable additions to the effort estimation.

Conclusion

Our approach combines well-known practices for effort estimation and project
controlling (tracking). Abstract measurement (with effort points) is used on
different levels: subsystems, features, and stories. That provides a lightweight
method for estimating even larger systems.
Future research could focus on empirical data of the accuracy of the estima-
tions, as well as heuristics for the impact of typical context factors (e.g., team
size, reachability of customers, unknown technologies).

324 Roock & Wolf

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Albrecht, A.J. (1979). Measuring application development productivity.
GUIDE/SHARE: Proceedings of the IBM Applications Development
Symposium.

Beck, K. (1999). Extreme programming explained.
Fowler, M. (2003). The new methodology. Retrieved August 11, 2004, from

http://www.martinfowler.com/articles/newMethodology.html
Schwaber, K., & Beedle, M. (2001). Agile software development with

SCRUM.

Endnote

1 Using abstract measures is well known from Function Point Analysis (cf.
Albrecht, 1979). Instead of counting fields and dialogues, we estimate
effort on different levels relative to each other.

Improving OO Design Process Using Rules, Patterns and Refactoring 325

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Improving OO
Design Process

Using Rules, Patterns
and Refactoring

Javier Garzás
mCentric, University Rey Juan Carlos, Spain

Mario Piattini
University of Castilla-La Mancha, Spain

Abstract

In recent years different areas of knowledge related to the construction of
object-oriented (OO) designs such as principles, heuristics, patterns, and
refactoring techniques have been consolidated, but there is a lot of work
still to be done in order to systematize and offer this knowledge to OO
designers in such a way that it can be easily used in practical cases. In
order to clarify this, we have defined an ontology of OO Micro Architectural
Design Knowledge and the foundations of an OO design method based in
the knowledge.

326 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OO Micro Architectural
Design Knowledge

Many authors (Shaw, 1990; McConnell, 2003) have commented on the need
for defined chunks of knowledge in the software engineering field. In this
regard, the software engineering community has advanced greatly in recent
years, and we currently have much accumulated knowledge: standards, meth-
odologies, methods, metrics, techniques, languages, patterns, processes,
concepts, and so forth. Nevertheless, the field of software engineering is still
beset by a lack of structured and classified chunks of knowledge, and not all
knowledge is transmitted, accessible, or studied in the same way.
One example of this lack of structured and classified knowledge is the Object-
Oriented (OO) Micro Architectural Design. Object-oriented knowledge is
popularized in different forms—principles, heuristics, patterns, refactoring,
lessons learned, defects, best practices, and so forth—but the difference
between these concepts is generally unclear, and moreover, not all of them have
received the same amount of attention or have reached the same degree of
maturity.
In this sense, we find the OO design principles; in this field, there are several
important contributions, such as Meyer (1988), Helm, Johnson, and Vlissides
(1995), or Martin (1996) (Table 2 shows examples).Regarding OO design
heuristics, the main works to which we can refer are Riel (1996) and Booch
(1996) (Table 3 shows examples). On the other hand, bad smells and
refactorings are rapidly gaining acceptance, thanks to Fowler (2000) and Beck
and Fowler’s (2000) work. Finally, patterns are the elements that have
undergone the greatest evolution; proof of this is the numerous publications on

Dependency Inversion Principle (DIP):
Depend upon abstractions. Do not depend
upon specifications.

Interface Segregation Principle (ISP):
Many client-specific interfaces are better than
one general-purpose interface.

Do not Concrete Super class Principle
(DCSP): Avoid maintaining concrete super
classes.

Interface Design Principle (IDP):
“Program” an interface, not an
implementation.

Table 1. Examples of OO principles

Improving OO Design Process Using Rules, Patterns and Refactoring 327

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

this topic (Coad, 1992; Gamma et al., 1995; Buschmann, Meunier, Rohnert,
Sommerlad, & Stal, 1996; Rising 1998); moreover, a strong community-
centered environment to the patterns has consolidated with the years (examples
of this are PLOP conferences), discussing and formalizing patterns.
Nevertheless, the problem confronting the designer is how to articulate all this
knowledge and to apply it in the Object-Oriented Design (OOD). In fact, even
advanced chunks of knowledge like patterns have this problem, and this
situation could give rise to incorrect applications of the patterns. At the present
time, using exclusive patterns is not sufficient to guide a design in a formal way;
again, necessary is the designer’s experience to avoid the overload, the non-
application, or the wrong use of patterns. In fact, according to our own
observation in developers Wendorff (2001) and Schmidt (1995), when
patterns are used, several types of problems occur: difficult application, difficult
learning, temptation to recast everything as a pattern, pattern overload, and so
forth.
Moreover, a solid and structured knowledge does not exist on OO design
principles, heuristics, or bad smells, and these are still immature chunks being
used in an isolated way or even being ignored. The work of discovering, in order
to formalize and to classify these, is still not finished, and it is an important
investigation line. On the other hand, a well-defined, classified, and homoge-
neous catalog does not exist of principles, heuristics, and so forth, where their
applicability is detailed.
The problem is how to articulate and apply all this knowledge. The large number
of patterns, principles, heuristics, and so forth that have been discovered so far
need to be organized. Many of them are competitors; we need to experiment

Table 2. Examples of OO heuristics

All data should be hidden within its class. Do not change the state of an object without
going through its public interface.

Minimize the number of messages in the
protocol of a class.

Eliminate irrelevant classes from your
design.

Eliminate classes that are outside the system. A class must know what it contains, but it
should never know who contains it.

328 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and find which are best to use. According to our own observation, several types
of deficiencies happen in catalogs: Search and Complex Application, High
Dependence of the Programming Language, and Comparatives. Analyzing
existing knowledge, making tools that use this, or determining the effectiveness
of this could all be good research topics.
A large part of the previous problems comes from a faulty classification,
cataloguing, and formalization of the Object-Oriented Design Knowledge
(OODK), almost only centered in the pattern concept. More knowledge—in
fact, still knowing the patterns and applying them in a correct way—these allow
many details to pass to achieve a good design. Other solutions exist for certain
problems that have already repeated for years and that are not patterns; these
other solutions (principles, heuristics, etc.) are known by the most experienced
designers and are based on experience.

Ontology of OO Design Knowledge

An ontology describes a domain in a generic way and provides an agreed
understanding of it. It has a number of advantages, such as structuring and
unifying accumulated essential knowledge, benefits for communication, teach-
ing concepts, sharing, and resolving terminological incompatibilities. It would
therefore be beneficial to define an ontology for the structuring and unifying of
OO Micro Architectural Design Knowledge.
We find many chunks related to Object-Oriented Micro Architectural Design
Knowledge; in order to clarify this, we have defined an ontology of OO Micro
Architectural Design Knowledge (see Figure 1, where a UML class diagram is
used to express the ontology). In this ontology we have grouped the chunks of
knowledge into two groups:

• Declarative Knowledge: Concepts describing what to do with a
problem: Heuristics, Patterns, Bad Smells, Best Practices, and so forth.

• Operative Knowledge: Concepts describing operations or processes
for carrying out changes in software including concepts such as design
refactorings.

Improving OO Design Process Using Rules, Patterns and Refactoring 329

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We have observed that principles, heuristics, bad smells, and so forth have the
same common structure, as they all have the structure and form of a Rule—they
posit a condition and offer a recommendation. It should be stressed that the
“recommendation” is not a solution like that of the pattern. Patterns are more
formalized than rules: their descriptions are broader, they propose solutions to
problems, while rules are recommendations to fulfill. Unlike patterns, rules are
greatly based on using natural language, which can be more ambiguous (Pescio,
1997). With all, we can distinguish the following entities of declarative knowl-
edge (see Figure 1): rules and patterns. Regarding attribute entities, we have
based these on the attributes used by Gamma et al. (1995) to describe a design
pattern. Many of these attributes are common to all knowledge elements, and
these common attributes are located in the top entity (see Figure 1). However,
other attributes are specific. The Structure attribute is a synonym for a solution
in a pattern, while we have created the Recommendation attribute for rules that
would be close to the solution of the pattern (Pescio, 1997), and the Mechanics
attribute for refactorings, our choice of name being taken from Fowler’s (2000)
refactoring catalog. The attributes Participants (the classes and/or objects
participating in the design pattern and their responsibilities) and Collaborations
(how the participants carry out their responsibilities together) concern declara-
tive knowledge. The Sample Design attribute concerns operative knowledge.

Figure 1. OO Micro-Architectural Design Knowledge ontology

���������	
��
���������
��	
����
�
����	

�����������
�� ����������������
��� ������
�	

��������
�� ������
��

���� ������� ��������
��

����
������
 �	��!��"��	
���
���
��
 ���
���
�
 �#

��	�$�����	
%��"�&	�	

���
�	������	�����'

())�

())�

*))�
())�

�	�
�����������#�'

���
�	������	�����'

�	������	�����

����
����

 ���
���������
��	
���%��"�����

330 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Implementation attribute is substituted for Mechanics (this is in Refactoring,
as we are dealing with design refactoring, not code refactoring). The Related
Patterns attribute has been generalized and appears in each of the relationships
between entities.
At this point, we shall now concentrate on the relationships between entities
(see Figure 1):

• “To apply a Pattern implies the use of another Pattern.” This relationship
is obvious, since it has been featured in pattern catalogs for some time. The
cardinality is from 0 to n (examples of this we can see in Gamma et al.,
1995).

• “To apply a Rule implies the use of a Pattern.” Often, when we introduce
a rule, we obtain a new design, which needs a pattern. One example of this
situation is the application of the “Dependency Inversion” (Martin, 1996),
which introduces an abstract class or an interface, which in turn necessi-
tates a creational pattern (Gamma et al., 1995) to create instances and
associate objects in the new situation. This does not always happen
(cardinality 0 to n), not all the rules imply the introduction of a pattern (for
example the “Long Method” rule by Fowler, 2000).

• “The Declarative knowledge is introduced by Operative knowledge.” All
declarative knowledge (rules and patterns) is introduced in the design by
an element of Operative knowledge (a refactoring), cardinality from 1 to
n. This is quite obvious since it does not make sense for an element of
Declarative knowledge to exist if it cannot be introduced:

• The relationship between patterns and refactorings can be observed
reading some of the refactoring catalogs that concentrate on the design
level (see Fowler, 2000). Gamma et al. (1995) state that “design
patterns provide the refactorings with objectives,” that there is a natural
relationship between patterns and refactorings, where the patterns can
be the objective and the refactorings the way of achieving them; in fact,
as Fowler (2000) says, there should be catalogs of refactorings which
contemplate all design patterns. In this way, refactorings, such as
“Replace Type Code with State/Strategy,” concentrate on introducing
patterns within a system.

• The relationship between rules and refactorings has not been studied as
much as that between patterns and refactorings. Generally, we observe

Improving OO Design Process Using Rules, Patterns and Refactoring 331

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that rules are introduced in the design, just like patterns, by means of
the refactorings. And in the light of what has been said previously, it
becomes clearer how refactorings store knowledge about how to
introduce elements in designs in a controlled way. Continuing with the
example of the “Dependency Inversion” rule, we see that in order to
resolve the violation of this rule, we insert an abstract entity into the
design, which would be carried out with the refactorings.

• “An element of Operative Knowledge is composed of others.”
Refactoring catalogs such as Fowler’s (2000) shows several ex-
amples, where, for example, the Refactoring “Extract Method” is not
composed, but is used by others (cardinality 0 to n).

Foundations of an OOD Method
Based in the Knowledge

“Using design artifacts (i.e., patterns) increments design quality” is a popular
sentence; but what does “design quality” mean? Using design patterns incre-
ments design quality, we put together a common terminology, we have proven
solutions, and so forth. In this sense, there are many works about metrics and
design quality (e.g., Genero, Piattini, & Calero, 2000; Brito e Abreu &
Carapuça, 1994; Briand, Morasca, & Basili, 1999; Henderson-Sellers, 1996).
Since design quality can be measured by quality metrics, the use of design
patterns should lead to better measurements. However, many common OOD
metrics indicate lower quality if design patterns are used. In this sense, Reibing
(2001) comments that if we have two similar designs A and B for the same
problem, B using design patterns and A not using design patterns, B should have
a higher quality than A. However, if we apply “classic” object-oriented design
metrics to both designs, the metrics tell us that design A is better—mostly
because it has less classes, operations, inheritance, associations, and so forth.
Who is wrong? Metrics or the pattern community? Do we have the wrong
quality metrics for object-oriented design? Or does using patterns in fact make
a design worse, not better? So what is the cause of the contradiction between
the supposed quality improvement by design patterns and the measured quality
deterioration (Reibing, 2001)?

332 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A lot of times, when we hear “patterns increments design quality,” it is the same
as “patterns increments the maintenance of design” or “patterns increments the
maintenance quality.” But again, what does “maintenance quality” mean?
According to the ISO/IEC 9126–2001 “Software Product Evaluation—
Quality Characteristics and Guidelines for Their Use,” standard maintainability
is subdivided into Analyzability, Changeability, Stability, Testability, and
Compliance. In our case, if we obtain a correct OO design, we will obtain better
maintenance. Considering the ISO 9126 standard, three important parameters
for quality maintenance of OO Micro Architectural Design exist:

• Analyzability in OO Micro Architectural Design: Analyzability al-
lows us to understand the design. This is an essential requisite in order to
be able to modify the design in a realistic period of time.

• Changeability in OO Micro Architectural Design: Changeability
allows a design to be able to change easily, an important requirement at
the time of extended functionality into an existing code. In our case, the
element that provides changeability is what it is called indirection. Nordberg
(2001) comments, “At the heart of many design patterns is an indirection
between service provider and service consumer. With objects the indirec-
tion is generally via an abstract interface.”

• Stability in OO Micro Architectural Design: Stability allows us to
reduce risk of the unexpected effect of modifications. Many design classes
have this objective. For example, many abstract classes avoid code
duplication; others increase the cohesion.

Therefore, when a design artifact is introduced, it affects the maintainability
quality in a different way:

• Every time a pattern is introduced, at least one indirection appears in the
design.

• Every time an indirection is added, it increases the design changeability.
• Every time a designs class that is not an indirection is added, it increases

the design stability.
• Every time we add an indirection class or a stability class, the software

moves further away from the analysis. Design classes—indirections or

Improving OO Design Process Using Rules, Patterns and Refactoring 333

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

others (such as notifications, observer classes, etc.)—are not of business
logic; upon adding indirections or design classes, the design becomes less
semantic, less comprehensible, or less analyzable. Each design class
moves the software further from the “real world” or analysis-level view of
the problem and deeper into relatively artificial mechanism classes that
add overhead to design comprehension.

To be specific, at the time of applying patterns to a software design, opposite
forces appear; these forces are directly related to maintainability. On the one
hand, we have the inconvenience that the solution, once obtained, can be very
complex, and this means that the design is less comprehensible, and modifying
the design is more difficult (Prechelt, Unger, Tichy, & Bossler, 2000). Thus, to
continue with the previous concepts, a curious relation between Changeability,
Stability, and Analyzability appears; if we increase the design’s Changeability
or Stability, then we will decrease the design’s Analyzability:

• If a design has many design patterns, this design will have a great amount
of Changeability and Stability. This increments the maintenance quality.

• If a design has many design patterns, this design will not have a great
amount of Analyzability. This decrements the maintenance quality.

We can see that questions such as “Patterns increments design quality?” or
“Patterns increments maintenance quality?” do not have a clear answer. Note
that these are important guidelines rather than hard rules or strict criterions, and
they are designed to help you improve your design.
With these guidelines and with the Ontology, we can outline a method for
improving the quality of Object-Oriented Micro Architectural Design; Figure
2 shows this. This is an iterative method, and each iteration consists of
application of rules and patterns, along with associated refactorings. Guidelines
about changeability, analyzability, and stability help to maintain and improve the
application of design artifacts.

334 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusions and Future Projects

The experts have always used proven ideas, although over recent years
different areas of knowledge related to the construction of OO designs such as
principles, heuristics, patterns, and refactoring techniques have been consoli-
dated. We believe that there is a lot of work still to be done in order to
systematize and offer this knowledge to OO designers in such a way that it can
be easily used in practical cases. In fact, up until now the different studies that
have been published present these elements in a disconnected way that at times
makes their application more difficult. This problem occurs when choosing a
pattern and incorporating it into an existing model.
Our experience in consulting has demonstrated that there is still a lot of work
to be done in order to systematize and offer design knowledge to designers in
such a way that it can be easily used in practical cases. In order to facilitate this
task, we have developed this ontology, these guidelines, and a basic method.

Figure 2. Foundations of a method based in knowledge

����������	�
���

���
������������
��
������
����������

����������

����
�
����	�
�

Micro
Archite ctural

Des ign

Softw are Engine ers

Rules
Catalog

Changeability Analyzability Stability

Improving OO Design Process Using Rules, Patterns and Refactoring 335

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Acknowledgment

This research is part of the MAS project supported by CICYT (TIC 2003-
02737-C02-02).

References

Beck, K., & Fowler M. (2000). Bad smells in code. In M. Fowler (Ed.),
Refactoring improving the design of existing code. Reading, MA:
Addison-Wesley.

Booch, G. (1996). Managing the object-oriented project. Reading, MA:
Addison-Wesley.

Briand, L., Morasca, S., & Basili, V. (1999). Defining and validating measures
for object-based high-level design. IEEE Transactions on Software
Engineering, 25(5), 722-743.

Brito e Abreu, F., & Carapuça, R. (1994). Object-oriented software engi-
neering: Measuring and controlling the development process. Proceed-
ings of the 4th International Conference on Software Quality.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996).
A system of patterns: Pattern-oriented software architecture. Read-
ing, MA: Addison-Wesley.

Coad, P. (1992). Object-oriented patterns. Communications of the ACM,
35(9), 152-159.

Fowler, M. (2000). Refactoring improving the design of existing code.
Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns:
Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley.

Genero, M., Piattini, M., & Calero, C. (2000). Early measures for UML class
diagrams. L´Objet, 6(4), 489-515.

Henderson-Sellers, B. (1996). Object-oriented metrics—measures of com-
plexity. Englewood Cliffs, NJ: Prentice-Hall.

336 Garzás & Piattini

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Martin, R.C. (1996, August-December). Engineering notebook. C++ Re-
port, (August-December, published in four parts).

McConnell, S. (2003). Professional software development. Reading, MA:
Addison-Wesley.

Meyer, B. (1988). Object-oriented software construction. Englewood
Cliffs, NJ: Prentice-Hall.

Nordberg, M.E. (2001). Aspect-oriented indirection—beyond OO design
patterns. Proceedings of OOPSLA 2001, Workshop Beyond Design:
Patterns (Mis)Used. Tampa Bay, FL: EEUU.

Pescio, C. (1997). Principles versus patterns. IEEE Computer, 30(9), 130-
131.

Prechelt, L., Unger, B., Tichy, W., & Bossler, P. (2000). A controlled
experiment in maintenance comparing design patterns to simpler solu-
tions. IEEE Transactions on Software Engineering.

Reibing, R. (2001). The impact of pattern use on design quality. Proceedings
of OOPSLA 2001, Workshop Beyond Design: Patterns (Mis)Used.
Tampa Bay, FL: EEUU.

Riel, A.J. (1996). Object-oriented design heuristics. Reading, MA: Addison-
Wesley.

Rising, L. (1998). The patterns handbook: Techniques, strategies, and
applications. Cambridge University Press.

Schmidt, D.C. (1995). Experience using design patterns to develop reusable
object-oriented communication software. Communications of the ACM,
38(10), 65-74.

Shaw, M. (1990). Prospects for an engineering discipline of software. IEEE
Software, 7(6), 15-24.

Wendorff, P. (2001). Assessment of design patterns during software
reengineering: lessons learned from a large commercial project. Proceed-
ings of CSMR 2001—European Conference on Software Mainte-
nance and Reengineering (pp. 77-84).

The BORM Method: A Third Generation Object-Oriented Methodology 337

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

The BORM Method:
A Third Generation

Object-Oriented
Methodology

Roger Knott
Loughborough University, UK

Vojtech Merunka
University of Agriculture in Prague, Czech Republic

Jiri Polak
Deloitte & Touche, Prague, Czech Republic

Abstract

BORM (Business Object Relationship Modeling) is an object-oriented
system development methodology, which has proven to be very effective
in the development of business systems. The effectiveness gained is largely
due to a unified and simple method for presenting all aspects of the
relevant model. The BORM methodology makes extensive use of business
process modeling. This chapter outlines BORM, its tools and methods, and
discusses differences from other similar development methodologies.

338 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Business Object Relation Modeling (BORM) (Knott, Merunka, & Polak,
2003a, 2003b, 2000; Polak, Merunka, & Carda, 2003) has been in continu-
ous development since 1993 when it was intended as a vehicle to provide
seamless support for building object-oriented software systems based on pure
object-oriented languages such as Smalltalk and object databases. It has now
evolved into a robust system development methodology that has been used
successfully to develop a wide range of systems of diverse sizes—in particular:

• to identify business processes in Prague city hospitals as a prerequisite for
further cost analysis;

• to model necessary properties of the general agricultural commodities
wholesale sector in the Czech Republic;

• for business process reengineering in the electricity supply industry;
• for telecommunication network management in the Czech Republic.

Such systems range through all sizes of software development as can be seen
in Table 1.
BORM has proven to be effective and beneficial in the process of describing
and subsequently understanding how real business systems evolve. Such
knowledge is the key for the success of any business and is especially crucial
for those employees who are responsible for business development.

Do We Need Another Object-Oriented
Design Methodology?

The first and we think the major problem with existing object-oriented
methodologies arises in the initial stages of the system development cycle
(Bahrami, 1999; Eriksson & Penker, 2000; Goldberg & Rubin, 1995; Cotterrell
& Hughes, 1995; Cantor, 1998; Royce, 1998; Rumbaugh, Blaha, Premerlani,
Eddy, & Lorensen, 1991). The initial stage of any object-oriented design
methodologies should be concerned with two tasks. The first is the specification

The BORM Method: A Third Generation Object-Oriented Methodology 339

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of the requirements for the system. The second is the construction of an initial
object model, often called an essential object or conceptual model built out
of a set of domain-specific objects known as essential objects. Both these
tasks should be carried out with the active participation of the stakeholders, in
order to ensure that the correct system is being developed. Consequently, any
tools or diagrams used at these early stages should be meaningful to the
stakeholders, many of who are not ‘computer system literate’.
The most common technique for requirements specification in current object-
oriented methodologies is use case modeling (Jacobson, 1992). Use case
modeling is concerned with the identification of actors, which are external

Table 1.

Project Number
of system
functions

Number of
scenarios

Number
of process
diagrams

Number of
objects
(participants)

Average
number of
states per
object

Average
number of
activities per
object

National agrarian
chamber (analysis
and design of
software for fruit
market public
information system)

4 7 7 6 4 4

Hospital complex
(BPR of
organization
structure)

6 12 12 8 10 12

TV and radio
broadcasting
company (BPR and
company
transformation for
open market)

4 9 9 14 8 8

Regional electricity
distribution
company (customer
information system
analysis)

12 19 19 23 12 12

Regional electricity
distribution
company (failure
handling information
system analysis and
prototype
implementation)

19 31 34 27 13 14

Regional gas
distribution
company (BPR of all
companies)

28 81 97 210 11 12

Regional gas
distribution
company (BPR of all
companies)

23 60 63 120 12 12

340 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

entities interacting with the system. This means that in order to employ use case
modeling, it is necessary for developers to already know the system boundary
and distinguish between entities, which are internal and external to that
boundary. It is our experience that the correct identification of the system
boundary is a ‘non-trivial’ task, which often requires significant understanding
of the proposed system, and consequently can only successfully take place at
the end of the requirements specification stage.
Use case models are essentially text based; any diagrams employed do not
contain any significant information, but only identify the actors involved in each
use case. Neither is it an object-oriented process, as the use cases determined
could be subsequently developed in any programming paradigm. Moreover,
use case modeling is often insufficient by itself to fully support the depths
required for initial system specification. Fowler (1999) highlights some defi-
ciencies in the use case approach, suggesting that use case diagrams, if they are
to convey all the necessary information, need supplementation by Sequence
and Activity diagrams as suggested by Jacobson (1992). These modifications
to use case Analysis would result in a number of different diagrams that are used
initially to define the interaction between any proposed system and its users.
There are many other views on the effectiveness of use cases as a first stage in
System Design. Simons and Graham (1999) for example describe a situation
where use case modeling obscures the true business logic of a system.
The approach adopted in BORM is based on the fundamental concept of
process modeling. This follows from the belief that it is essential, for the
deployment of a new system not to view that system in isolation, but to view it
in the context of the company’s total organizational environment. A new
system, when introduced into an organization, will normally totally change the
way that the organization operates. In addition, a BORM process model is
object-oriented from its conception and is expressed in easy-to-understand
graphical notation. From the process model, scenarios are developed. Sce-
narios were originally developed in Object Behavior Analysis (OBA) (Rubin &
Goldberg, 1992) to capture similar information to that presented in use cases.
A Scenario however is an instance of a User Interaction with the system,
whereas a use case is more like a procedural description of a type of user
interaction. Our experiences on the projects listed above suggest that stake-
holders tend to express themselves naturally in terms of scenarios and that the
process way of thinking is more natural to business employees. Consequently,
stakeholders in the proposed system can more easily understand BORM

The BORM Method: A Third Generation Object-Oriented Methodology 341

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

models and consequently make a greater contribution to the correctness of the
system design.
In BORM, initial diagrams are expressed only in problem-domain-specific
concepts; any software-orientated concepts are left until later in the modeling
process. In Addition, in the early stages BORM uses a single diagram that
embodies the same information as the numerous diagrams used by other
methodologies. This is an attempt to make it easier for the user to form a
complete understanding of the interaction of the various system components.
In BORM concepts and their notation change as the development process
proceeds. This is in sharp contrast with UML, which claims to be a universal
system, in that the same notation is used for analysis, design, and documenting
the implementation. Our reasons for changing notation are based on the
observation that this universality of the UML’s notation hinders the design
process. In this we are in broad agreement with the criticism of this aspect of
UML expressed by Simons and Graham (1999).
The second problem that we find with most development methodologies is that,
during subsequent stages, they require a number of different diagrams to fully
describe the system. Each diagram is used to model an independent aspect of
the system. Thus, we have one diagram for the object’s static structure and a
second for the state changes of particular objects; one diagram showing the
message passing between objects and a further diagram to model the activities
the system must perform.
The fundamental principle of object-oriented systems is one of encapsulation.
This means that all an object’s data values are stored in the same place as the
functions (methods) that manipulate them. The synergy created by this unifica-
tion of data and functionality leads to greater understanding of the situation
being modeled and to a correctly designed solution being developed.
A diagram is a visual representation of an abstract model, which exists in the
brain of the analyst. Developers use diagrams to communicate with customers
and other designers. If this model is object-oriented in nature, its representation
should reflect it and must not require the viewer to deduce this fact from a
number of different diagrams, each of which reveals one particular aspect of the
object nature of the model.
Finally, the modeling concepts used in most development methodologies are
used throughout the system development cycle. Moreover these notations tend
to be specifically designed to represent concepts from object-oriented pro-
gramming languages at an abstract level.

342 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For example, the models used in OMT (Rumbaugh et al., 1991) or UML
(Booch et al., 1998; Rumbaugh, Jacobson, & Booch, 1998) can use quanti-
fiers, link classes, external relations, aggregations, and so forth. While many of
these concepts are necessary for software implementation in hybrid object-
oriented programming languages such as Java, C++, or C#, they are too
‘computer-oriented’ to be useful in capturing primary system information. Such
diagrams are often ‘conceptually rich’ and difficult for the customer and other
‘non computer’ people to fully understand. There is of course no compulsion
to use these features, but in our experience, software designers will often use
all the facilities provided without any consideration as to their appropriateness.
The use of complex concepts too early in the design process often compromises
the requirements determined for the system, since users find themselves
constricted by the programming nature of the models and consequently are
unable to fully articulate their needs. Simons and Graham(1999), speaking of
UML, state: “Developers often take the most concrete example of notational
element in use and retrofit these interpretations higher up in the analysis
process.”
If we compare standard Entity-Relation Diagram (ERD) (Carteret & Vidgen,
1995; Date, 1995) with ‘object-class diagram’ used in OMT or UML, we find
that ERD only uses three basic, but powerful concepts. Object-class diagram,
on the other hand, generally uses about 20 different concepts, spread over a
number of different levels of abstraction.
In the analysis phase, we need to acquire the best possible knowledge of the
problem formulation, and there the implementation details may cause trouble.
On the other hand, in the design phase we need to focus on implementing the
outputs from the analysis, but we do not need to know some aspects of the
reality modeled.

BORM Basics

BORM, like other OOA&D methodologies, is based on the spiral model for
the development life cycle (Yourdon, 1995). One loop of the object-oriented
spiral model contains stages of strategic analysis, initial analysis, advanced
analysis, initial design, advanced design, implementation, and testing (see
Figure 1).

The BORM Method: A Third Generation Object-Oriented Methodology 343

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The first three stages are collectively refereed to as the expansion stages.
Expansion ends with the finalizing of the detailed analysis conceptual model,
which fully describes the solution to the problem from the requirements point
of view.
The remaining stages are called the consolidation stages. They are concerned
with the process of developing from ‘expanded ideas’ to a working application.
During these stages the previously completed conceptual model is transformed
step-by-step, refined, and finalized into a software design.
In BORM the object-oriented design stage is fluently connected to implemen-
tation without any sharp discontinuity, similar to the smooth transition between
object-oriented analysis and object-oriented design. As a consequence, we
can consider the program coding as the last and the most detailed phase of the
design process.
During the progress around the loop, the developer may undertake small
excursions (little spirals out from the main spiral) into the implementation of
smaller partial applications, used to develop, test, and tune the program
incrementally by using previously completed modules.
The behavior of any prototype (in BORM we prefer the more accurate name
‘deliverable’) is also interesting. Every finalized application is also a deliver-

Figure 1. BORM stages

���������������	
�������	
�����
���������
���	�����������
���������
���	��������������������

�����

�����

�	��
��	

�����

���������

�����

���������	

�
�
����	

��
������	����

������
���	

�
�
����	

����
�����	����

����������

	��
���

���

�		�
���
��

����

�
��	

�
��
�����
��
����

����������������

���
������
���

����������������

����������������

����������������
���
������
���

������������

����������������

������������

������������������

�
���
�
���

�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

�

�
�
�
�
�
��
�
�

�
�
�

�
�
�
�
�
��
�
�

�
�
�

����������������

344 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

able and may be used as a basis for generating further requirements, which in
turn lead to a new development loop.
BORM supports development in pure object-oriented programming environ-
ments like Smalltalk, where it is possible to create software applications, which
can be changed or updated at runtime.
The main concepts used in initial modeling are

• objects, and their behavior;
• association (data links) between objects; and
• communication (reports) between object behaviors.

Every object is viewed as a machine with states and transitions dependent on
the behavior of other objects. Each state is defined by its semantic rule over
object data associations, and each transition is defined by its behavior,
necessary to transform the object from its initial to its terminal state. Conse-
quently BORM objects have the characteristics of Mealy-type automaton
(Shlaer & Mellor, 1992).
A business object diagram accents the mutual relationships (communications
and associations) of states and transitions of objects in the modeled system.
In BORM, it is possible for each concept to have some of the following:

1. A Set of predecessor concepts from which it could be derived by an
appropriate technique, and a Set of successor concepts, which could be
derived from it by an appropriate technique. For example a conceptual
object composition from a business object association.

2. A validity Range—The phases (of the development process) where it is
appropriate. State–Transition diagrams for example are used extensively
in business conceptual modeling poorly supported by current program-
ming language.

3. A Set of techniques and rules which guide the step-by-step transforma-
tion and the concept revisions between the system development phases.
These are the following:

4. Object Behavior Analysis, which is a technique for transforming the initial
informal problem description into the first object-oriented representation.

The BORM Method: A Third Generation Object-Oriented Methodology 345

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Behavioral Constraints, which are a set of determining rules that describe
the set of possible transformations of the initial model into more detailed
forms, with precisely specified object hierarchies like inheritance, depen-
dency, aggregation, and so forth.

6. Pattern Application, which helps to synthesize the analysis object model
by the inclusion of object patterns.

7. A Set of Structural Transformations (Class Refactoring, Hierarchies
Conversions and Substitutions, solving Legacy problems solving pro-
gramming environment constraints) which are aimed at the final transfor-
mation of the detailed design model into a form acceptable in the
implementation environment (programming language, database, user in-
terface, operating system, etc.).

Figure 2. BORM evolution of concepts

��������������	���������
���	���������
���	���������
���

�������
��������������
������� ��	
�������	
�����

����������
�������
�����������
�������
�

�������
�����������
����

������������������
���������
�������������������
���������
�

��
��

��	
������	
����������������������������

������
�������������
 ������
������!��
�"

��	
��������������
 ��	
�������!��
�"

����������������
 �����������!��
�"

�
��
�����
��
����

����������������
���
������
���

����������������
����������������

����������������
���
������
���

������������
����������������

������������
������������

���
�
������
�
���

���
������

	���
���#���������
���������������������

������

����
���

���������
���

�������
���
������
����
	

��
����

��
���
�����
�	��
�
�����	������������������
����

�
�
���$�
�����
�����

��!��

������
���

�����

�������

��
��	����

����%�����%�

%����

����������

��!��

������
���

�����

��
%��

������
���

��������������
����$���
����������

%����

����������

��!��

������
���

�����

��
%��

����������

���������

��%���
����

��
�
��
�

�
��
�
��

��
�
��

�

�
�
!�

�

�

�
��
�
�

�

�
��

�
��

�
�
�

���
������

������
��������

�������

�����%������%� ��������%��� ��������%���

��%���
����

346 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

An Example: A Car Fleet

In Figure 3, the required system functions are shown as rectangles (equivalent
to use cases), while ovals are used to show scenarios. Black, light arrows are
used to link scenarios to system functions.

System Scenarios

We can describe each scenario by a short textual description, which includes
details of its association to functions and participants.

Scenario No. 1—associated with function(s): 1,
3, 2

Continues in scenario No. 2
Uses scenario No. 3

Initiation Action Participants Result
Employee needs a car
for a business trip

Application submission,
application
assessment/approval,
and car assignment

Car,
Authorized Employee
Manager,
Fleet Manager

The employee is
either assigned a
car or must cancel
the trip.

Scenario No. 2—associated with function(s): 1,
3

Follows scenario No. 1

Initiation Action Participants Result
An Authorized
employee has a car
assigned.

An Authorized
employee makes a
business trip.

Car,
Authorized Employee,
Fleet Manager

After the
completion of the
business trip, the
car is returned to
Fleet Operations.
Alternatively, the
car was not used
and is returned
unused.

Scenarios play a similar role for BORM to that played by use cases in those
development methodologies supported by UML. However, our diagrams are
different to the analogous use case diagrams, as the system functions and
scenarios are shown on the same diagram as their associations. In such a
diagram, light bold arrows are used to show transition between scenarios.

The BORM Method: A Third Generation Object-Oriented Methodology 347

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Finally, bold black arrows between scenarios show the existence of a ‘in-
cludes’ relationship. (Our definition of this type of relationship is identical to the
<<includes>> relationship in UML 1.3 (Fowler, 1999)).
The construction of the system function diagram takes place in parallel with the
development of the business object model. In this latter type of diagram, we do
not distinguish whether a participant represents a class, instance, or collection
of objects. An example of such a diagram that identifies all processes carried
out by the participants is provided in Figure 4. In such a diagram, we consider
only the following two kinds of relationships:

• associations, which are represented by black arrows; and
• is-a hierarchy, represented by gray arrows.

It is important to note that in this phase of development, an is-a hierarchy is not
the same as software object inheritance based on a conceptual object type
hierarchy. The conditions for two business objects to be in an is-a hierarchy are
based on their membership of domains and sub-domains, where a domain is a
set of real-world objects.

Figure 3. System functionality

an authorised employee’s requests
for a car for a business trip

an authorised employee’s requests
for a car for a business trip

the employee’s manager
evaluation of applications
for the use of a company
car

system administration
(car data, authorization
records, authosed users,
…)

viewing
archived

data

setting up access
rights and data

entry

the authorised
employee carries

out his trip

an application is
submitted, assessed,

approved or rejected and
a car is allocated

the fleet
manager

selects a car

<<include>>

348 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

We next develop the process diagram in Figure 5. This diagram expresses all
the possible process interactions between participants in the system.
This diagram shows the same associations between the business objects as the
previous one, but adds time and behavioral dimensions. Thus we show the
states, activities transitions, and operations for the business objects. This is a
very powerful diagram. It conveys information that in the UML would require
at least two diagrams (State and sequence diagrams). Yet despite conveying
large amounts of information, the BORM group has found that it is clearly
understood by stakeholders in the system development.
The next diagram marks the transition to the advanced analysis phase of
development. Here we develop the conceptual object relation diagram. We are
concerned here with conceptual objects and the various associations that exist
between them. Gray arrows are used to show type hierarchies, where polymor-
phism is the determining criteria. Note that this is different than hierarchies in the
previous diagrams. In this diagram we identify object classes, which are
denoted by rectangles, and collection of classes that are denoted by double-
border hexagons. Both these are derived from entities in the previous diagram.
Note the conceptual class ‘Car’ which is associated with two different multi-
objects—, company cars and rental cars. For this association we do not need

Figure 4. The Business Object Model—the initial BORM object relationship
model

The BORM Method: A Third Generation Object-Oriented Methodology 349

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. Process model: Details of object behavior

350 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. The conceptual diagram, created from Figure 4

to have class hierarchy structure, even though we will have two different
collections of ‘Car’ objects. The criterion we use is to create a new class only
if its behavior is different from its subclass.
The ovals are methods (Operations in UML) that the classes provide. The
arrows between them show message passing, where the messages could be

The BORM Method: A Third Generation Object-Oriented Methodology 351

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 7. Client-side software diagram

either synchronous (normal arrowhead) or asynchronous (half arrowhead).
This diagram shows both object relations and behavior.
Figure 7 shows the client-side software objects. This model is obtained by a
simple transformation from the type hierarchy into an inheritance hierarchy. In
general, such a transformation is based on the need to fit conceptual object
structure into concrete software environment structures (Blaha & Premerlani,
1998), which are limited by:

a. target programming language syntax and paradigm, and
b. reuse of existing objects from legacy components.

352 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the example, the implementation of the type hierarchy has to take into
account the restriction that employee information is held in an existing legacy
database. This has necessitated the construction of additional types in the
database for job-position, team, and manager. In such a diagram we are
working with software objects, which have software relationships with other

Figure 8. Server-side software diagram

The BORM Method: A Third Generation Object-Oriented Methodology 353

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

objects that need to reflect the concrete implementation environment. Black
arrows are used to show inheritance. Note, this is classical object-oriented
inheritance and hence is not the same as our previous type hierarchy. This is
because inheritance is not the only way to implement new object types; we may
implement new object types by composition. In our example, three conceptual
types—manager, authorized employee, and fleet manager—will be imple-
mented as instances of the legacy class employee composed with the new class
job-position.
In this phase, it is also very important to know what classes are reused and what
concepts are created as new ones or as reused artifacts. We denote the former
by putting an asterisk before the name.
At this stage we also create a server side software object diagram.
The reason we need to differentiate between client- and server-side software
models is because the system is often implemented in two different program-
ming environments: pure object-oriented VisualWorks/Smalltalk for the client
and relational ODBC/Oracle DBMS for the server.
Our final diagram is a hierarchy of Software components. Each component has
its main (or interface) class and may be constructed out of other components
or may serve as the link to some database table on the server. For example, in
VisualWork’s (Hopkins & Horan, 1995) ObjectLens, special classes are
created for implementing database access. If we work with instances of this
class, the system internally performs data manipulation operations on the
server. Consequently, each instance of this special class is linked with one row
in the relation table). The previous hierarchy diagram was directly used to
implement the system using this tool.

BORM and XP

XP (Beck, 2000) is a relatively new way to develop software. It is based on
a few basic premises, which are also common to other ‘lightweight’ technolo-
gies often described as ‘Agile techniques’(Ambler, 2002). However, there are
problems using the standard XP approach in the requirements analysis phase.
We have used the BORM business process modeling approach to help analysts
during this initial phase. In real-world projects with analysts, we found that the

354 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9. Components

The BORM Method: A Third Generation Object-Oriented Methodology 355

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

use of BORM functions and scenarios and participant modeling cards provided
an ideal tool in which to model user stories. In addition, we found that the
BORM process diagram provided an essential tool in those areas when re-
engineering of current business systems was a prerequisite for subsequent
software development.
One of the factors of XP is that the code should provide the documentation.
This approach is fine if the only people who need to read the documents are
other programmers who can read the code. However, we have found on a
number of occasions a need to provide documentation of the developed system
for the end users who did not have this programming expertise. In these cases
we found that the BORM process diagrams provided a useful source of
information that was comprehensible to such non-technical end users. The
diagrams were also used to provide data for the generation of user tests and
user manuals. These results were unforeseen outcomes of using BORM to
supplement the XP approach.

BORM and RUP (Unified Process)

RUP is one of the most widely used methodologies for software development.
Much of RUP is compatible with BORM; both are concerned with the system
lifecycle. We think that the major differences between RUP and BORM are the
following:

1. BORM provides a gradual transformation of models based on precisely
defined constraint rules (for example, by applying patterns and refactoring).

2. BORM provides greater support for pure object-oriented concepts like
refactoring which are an integral part of the BORM development process.

3. BORM provides support for the maintenance phase of the system
lifecycle. The outcome of this phase is frequently the source for the start
of the next development cycle. In this aspect, BORM follows the ideas of
Ambler (1998).

In BORM, software development is regarded as an essential sequel to business
process analysis. Without the business context being considered first, any
software analysis is deficient.

356 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Sources of UML and of BORM

UML arose from a number of different sources. Whatever their differences,
however, most of the initial sources were from methodologies that were
developing systems using hybrid languages like C++ and relational database
systems. C++ has for many applications now been succeeded by Java or
occasionally by C#, but the differences between these languages are not very
significant during the design process. These origins are reflected in the nature
and structure of UML.
BORM arose from developing systems using Smalltalk and object-oriented
databases. Smalltalk is still the most successful current implementation of the
pure object-oriented paradigm. BORM was designed as a methodology and
related notation with the intent of using pure object-oriented concepts. In was
a belief of the BORM developers that the pure object-oriented paradigm was
the best way of modeling real-world problems and that this approach should be
maintained for as long as possible during the development process. Indeed, for
most applications, it is only in the final design stages that the developers have
to start thinking about how the model is to be implemented. It is the BORM
belief that the development of the initial system model using real-world analysis,
rather than software system concepts, leads to a better and more robust design.
If a system is described using UML and RUP, the designers from the initial
stages have to constrict their thinking to the restrictions imposed by hybrid
languages and relational databases. If the same developers were to use BORM,
they would be restricted only in the implementation phase by the limitations
imposed by the inability of current programming languages to fully support the
object-oriented paradigm.
In BORM we do not separate the static and dynamic aspects of the problem
modeled; we put them both in the same model. The BORM approach of
combining dynamic and static aspects can be achieved in a UML class diagram,
using standard UML elements, but only by the extensive use of a stereotype
mechanism and elements normally used in other diagrams. The consequence is
that such diagrams are very complex and cluttered, and often unacceptable to
both designers and customers. In BORM we have begun to use a slightly
modified form of the UML diagrams to obtain a model more easily understood
by those from a UML background. The basic modeling elements used in UML
diagrams have been extended by the addition of new symbols to denote any
pure object-oriented concepts required. This approach is coherent with the

The BORM Method: A Third Generation Object-Oriented Methodology 357

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

other works for extending UML; for example the xUML project with commu-
nicating state machines and the UML business extension project based on the
former Jacobson’s method known as Objectory. The structure of UML allows
the notation to be extended and for UML concepts to be combined. There are
many academic projects looking at valid ways in which UML can be extended,
but it is still true that the significant majority of analysts using UML use only
basic UML diagrams. This approach, based on a minimum set of UML
diagrams, is the only approach supported by current CASE tools.
BORM is supported by two special CASE tools: Craft.CASE
(www.craftcase.com) and Meta.

The Advantages of BORM

1. BORM is based on the premise that business process modeling must be
carried out before any software system development. Consequently,
BORM provides a consistent approach and notation to the analysis and
design of business environment, the derivation of the software requirement
specification, and finally the analysis and design of the software.

2. BORM follows the process-oriented approach (Darnton & Darnton,
1997), combined with the pure object-oriented paradigm, which has
proven to be beneficial in software development Generally, we believe the
process-oriented approach led to a faster and more comprehensive
analysis of the problem being solved.

3. In our experience stakeholders from the problem domain are able to
understand the BORM approach very quickly—normally a one-hour
introduction at the start of analysis is enough.

4. In Deloitte & Touche’s Prague office, a business consulting team has
worked for the past four to five years using the BORM system, as well as
ARIS and Rational’s Objectory/Unified method. They have found BORM
to be on average three to four times faster in carrying out the analysis phase
compared to other methods.

5. The methodology is easily acceptable to domain experts, analysis consult-
ants, and developers. Because BORM is based on a step-by-step
transformation of the model, in each phase only a limited and consistent
subset of BORM concepts are used.

358 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

6. BORM has been used enthusiastically by Smalltalk and Java program-
mers and by non-relational object database programmers. One feature of
BORM they find attractive is the way it exploits collection concepts, not
just classes and the way that these collection classes are seamlessly
integrated into the development environment.

7. BORM, as it originated from a pure object-oriented concept, has more
object hierarchies (polymorphism, is-a, dependency) than other software
development methods, which derived mainly from C++ programming; it
further only provides concepts supported by programming languages.
Usually only object inheritance is supported. In BORM, we also work
with object relationships, which do not have direct implementation in
current programming languages, but have proven to be useful in the
conceptual modeling of problem domain.

8. These last two features provide a much richer language with which to
express modeling ideas.

Conclusion

Today, when improved visual programming tools—combined with the support
of rapid application development environments—are available, it would ap-
pear that the whole software development process is becoming easier. This
statement is true, however, only for those cases where the complexity of the
solution and of users’ requirements is relatively simple. But business systems
developed for real companies often have a very high level of complexity and
uncertainty, especially in the initial development phases, which make develop-
ment much more difficult. Consequently, it is essential (from the software
developer’s viewpoint) to improve the initial phases of software development.
Until recently, it was correctly assumed that conceptual modeling tools and
techniques were used through all stages of project development, from the initial
phase to the eventual implementation. However, the position of conceptual
modeling is currently being used solely in the implementation phase, as a result
of the evolution of software development tools. The analysis is now being
performed using newly developed techniques and “business” objects modeling
tools.
The authors would like to acknowledge the support of the research project
MSM6046070904.

The BORM Method: A Third Generation Object-Oriented Methodology 359

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Ambler, S.W. (1998). Process patterns. Cambridge: Cambridge University
Press.

Ambler, S.W. (2002). Agile modeling. Indianapolis: John Wiley & Sons.
Bahrami, A. (1999). Object-oriented system development. New York:

McGraw-Hill.
Beck, K. (2000). Extreme Programming explained. Reading, MA: Addison-

Wesley.
Blaha, M., & Premerlani, W. (1998). Object-oriented modeling and design

for database applications. Upper Saddle River, NJ: Prentice-Hall.
Booch, G., Rumbaugh, J., & Jacobson, I. (1998). The Unified Modeling

Language user guide. Reading, MA: Addison-Wesley.
Cantor, M. (1998). Object-oriented project management with UML.

Indianapolis: John Wiley & Sons.
Carteret, C., & Vidgen, R. (1995). Data modeling for information systems.

London: Pitman Publishing.
Coterrell, M., & Hughes, B. (1995). Software project management. Lon-

don: Thomson Computer Press.
Darnton, G., & Darnton, M. (1997). Business process analysis. London:

International Thomson Publishing.
Date, C.J. (1995). An introduction to database systems (6th ed.). Reading,

MA: Addison-Wesley.
Eriksson, H.-E., & Penker, M. (2000). Business modeling with UML.

Indianapolis: John Wiley & Sons.
Fowler, M., & Scott, K. (1999). UML distilled (2nd ed.). Reading, MA:

Addison-Wesley.
Gamma, E., Helm, R., Johnson, R ., & Vlissides, J. (1994). Design patterns.

Reading, MA: Addison-Wesley.
Goldberg, A., & Rubin, K.S. (1995). Succeeding with objects—decision

frameworks for project management. Reading, MA: Addison-Wesley.
Hopkins, T., & Horan, B. (1995). Smalltalk—an introduction to applica-

tion development using VisualWorks. Upper Saddle River, NJ: Prentice-
Hall.

360 Knott, Merunka & Polak

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jacobson, I. (1992). Object-oriented software engineering—a use-case-
driven approach. Reading, MA: Addison-Wesley.

Knott, R.P., Merunka, V., & Polak, J. (2000). Process modeling for object-
oriented analysis using BORM object behavioral analysis. Proceedings
of the 4th International Conference on Requirements Engineering
(ICRE 2000) (pp. 7-16). Chicago: IEEE Computer Society Press.

Knott, R.P., Merunka, V., & Polak, J. (2003a). The BORM methodology: A
third-generation fully object-oriented methodology. Knowledge-Based
Systems, 16, 77-89.

Knott, R.P., Merunka, V., & Polak, J. (2003b). The role of object-oriented
process modeling in requirements engineering phase of information sys-
tems development. In Z. Harnos, M. Herdon, & T. Wiwczaroski (Eds.),
Proceedings of the 4th EFITA Conference (pp. 300-307). Debrecen,
Hungary: University of Debrecen.

Polak, J., Merunka, V., & Carda, A. (2003). Umení systémového návrhu.
Prague: Grada.

Royce, W. (1998). Software project management: A unified framework.
Reading, MA: Addison-Wesley.

Rubin, K.S., & Goldberg, A. (1992). Object behavior analysis. Communica-
tions of the ACM, 35.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Upper Saddle River, NJ: Prentice-
Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling
Language reference manual. Reading, MA: Addison-Wesley.

Shlaer, S., & Mellor, S.J. (1992). Object-oriented systems analysis: Mod-
eling the world in states. Upper Saddle River, NJ: Prentice-Hall.

Simone, A.J.H., & Graham, I. (1999). 30 things that go wrong in object
modeling with UML 1.3. In H. Kilov, B. Rumpe, & I. Simmonds (Eds.),
Behavioral specifications of businesses and systems. Dordrecht: Kluwer
Academic Publishers.

Yourdon, E. (1995). Mainstream objects—an analysis and design ap-
proach for business. Upper Saddle River, NJ: Prentice-Hall.

About the Authors 361

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Liping Liu is an associate professor of management and information systems
at The University of Akron (USA). He earned his PhD in business from the
University of Kansas (1995). His research interests are in the areas of
uncertainty reasoning and decision making in artificial intelligence, electronic
business, systems analysis and design, technology adoption, and data quality.
His articles have appeared in Decision Support Systems, European Journal
of Operational Research, IEEE Transactions, Information and Manage-
ment, Journal of Risk and Uncertainty, and others. He is known for his
theories of course utilities and linear belief functions, which have been taught in
the nation’s top PhD programs in computer science, economics, accounting,
management, and psychology. He currently serves as a co-editor for Classic
Works on Dempster-Shafer Theory of Belief Functions, and on editorial
boards and committees of many international journals and conferences. He has
strong practical and teaching interests in e-business systems design, develop-
ment, and integration, and has won several teaching awards. His recent
consulting experience includes designing and developing a patient record
management system, a payroll system, a course management system, and an e-
travel agent.

Boris Roussev is an associate professor of CIS at the University of the Virgin
Islands (USA). His diverse background includes teaching and research expe-
rience in Europe, South Africa, and the U.S. Dr. Roussev’s interests are in the
areas of object-oriented and economic-driven software development, require-

362 About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ments engineering, and project management. He conducts research on causes
of project failures, working from the presumptions that value-neutral principles
and practices in software development are unable to deal with the sources of
project failures, and that in order to manage effectively the computer technol-
ogy, one has to consider the social context in which it is deployed and
produced. In addition, Dr. Roussev has experience in software risk manage-
ment and software process quality factor analysis. All of the above is combined
with industry experience in software methods such as domain engineering,
product lines, MDA with xUML, generative programming, and aspect-ori-
ented programming. Dr. Roussev’s most recent research initiative is an
interdisciplinary project on object-oriented linguistics and semiotics.

* * *

Ram Akella is professor and director of information systems and technology
management at the University of California at Silicon Valley Center/Santa Cruz
(USA). At Stanford, Berkeley, and Carnegie Mellon, as a faculty member and
a director, Dr. Akella has led major multi-million-dollar interdisciplinary team
efforts in high tech and semiconductors. He earned his BS degree from IIT
Madras and his PhD from IISc Bangalore. Dr. Akella completed postdoctoral
work at Harvard University and worked at MIT. His research and teaching
interests include IT, enterprise software, knowledge management, product
lifecycle management, supply chain management, financial engineering and
investment, business process optimization, and e-business. Faculty awards
include those from IBM, AMD, and KLA, and Dr. Akella has been cited in
Marquis’ Who’s Who. He has interacted extensively with industries, including
many of the U.S., European, Asian, Japanese, and Indian software and
hardware companies. Dr. Akella has served as an associate editor for Opera-
tions Research and IEEE.

Jorn Bettin is a software consultant with a special interest in techniques to
optimize the productivity of software development teams and in designing
large-scale component systems. He is managing director of SoftMetaWare, a
consultancy that provides strategic technology management advice, with
resources based in the U.S., New Zealand/Australia, and Europe. Prior to co-
founding SoftMetaWare in 2002, he worked for over 13 years as a consultant
and mentor in the IT industry in Germany, New Zealand, and Australia. He has

About the Authors 363

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

implemented automated, model-driven development in several software orga-
nizations and has worked in methodology leadership roles in an IBM product
development lab. Mr. Bettin and two co-authors have published a book about
model-driven software development in German entitled, Modellgetriebene
Softwareentwicklung, and expect to publish an English edition in 2005.

Gary K. Evans is a nationally known agile process evangelist, object technol-
ogy mentor, instructor, and course developer for Evanetics
(www.evanetics.com) based in Columbia, South Carolina (USA). His focus
is on reducing project risk and eliminating uncertainty on large, distributed
software development projects. He provides object technology mentoring,
consulting, and training for Java, C++, VB, and C# development. He speaks
on diverse object technology topics at national technical conferences, including
Software Development Best Practices, the Rational User Conference, and
UML World. He is a recognized expert in use case development, object
modeling, the IBM Rational Unified Process, agile software processes, and
in applying object-oriented practices to non-object-oriented languages such as
COBOL. He is actively engaged in the agile software development community,
and he has published more than a dozen articles for various technical magazines,
including The Rational Edge. He is a contributing editor for Software
Development magazine, for which he specializes in object-oriented CASE
tools, methods, and agile software process. He holds a BS in computer science
(with High Honors) from the School of Engineering and Applied Science,
University of Virginia, and he is a member of the Tau Beta Pi National
Engineering Honor Society. He also holds a BA in philosophy from Lehigh
University, USA.

Javier Garzás (javier.garzas@m-centric.com or jgarzas@gmail.com) is a
project manager at mCentric in Madrid, Spain, where he drives the software
process improvement and software quality assurance program. He is also a
lecturer at the Rey Juan Carlos University of Madrid. His current responsibili-
ties include leading mCentric to CMM Level 3. Due to his experience at several
important companies, his research and software engineering skills cover areas
such as OO design, CMM, software process, and project management. He
obtained his MSc and PhD degrees in computer science at the University of
Castilla - La Mancha. He holds a master’s degree in enterprise application
integration as well.

364 About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Esther Guerra works at GFI Madrid as project manager. She is also working
toward her PhD at the Universidad Autonóma de Madrid in the area of formal
methods for software development. Her main research interests include meta-
modeling, verification of UML, and hypermedia systems.

Roger Knott is a lecturer in the Department of Computer Science at
Loughborough University in the heart of the British Midlands. He began
programming in the late 1960s using machine-code, as no high-level languages
were available. Since discovering Smalltalk 80, he has been a keen advocate
of pure object-oriented methods.

Juan de Lara is an associate professor at the Universidad Autonóma (UAM)
de Madrid in Spain, where he teaches software engineering, automata theory,
as well as modeling and simulation. His research interests include Web-based
simulation, meta-modeling, graph transformation, distance learning, and social
agents. He received his PhD in Computer Science in June 2000 at UAM.
During 2001, as a post-doctoral researcher at McGill University, he created
the AToM3 prototype. Later, he also spent time at TU Berlin working on graph
transformation.

John D. McGregor is a partner at Luminary Software and an associate
professor of computer science at Clemson University (USA). He conducts
research, teaches graduate software engineering courses, and serves as a
consultant to companies in several domains. Dr. McGregor has conducted
research for organizations such as the Software Engineering Institute, National
Science Foundation, DARPA, IBM and AT&T. He has applied those research
results on projects in telecommunications, insurance, and financial institutions.
He is co-author of A Practical Guide to Testing Object-Oriented Software
(Addison-Wesley). Dr. McGregor’s current research interests include soft-
ware product lines, design quality, testing, and measurement.

Vojtech Merunka is a lecturer in the Faculty of Economics at the University
of Agriculture, Prague, Czech Republic. He is a leading light in the computer
science community and well known for his advocacy of object-oriented system
developments. Many of his former students have set up some of the leading IT
companies currently operating the Czech Republic. Professor Merunka also

About the Authors 365

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

works as a consultant and has been responsible for many software projects,
several of which have been developed using BORM.

Gerald N. Miller is the chief technology officer for Microsoft’s U.S. Central
Region.

Mario Piattini earned MS and PhD degrees in computer science from the
Polytechnic University of Madrid, and an MS in psychology from the UNED.
He became a certified information system auditor and certified information
security manager by ISACA (Information System Audit and Control Associa-
tion). He is a full professor at the Department of Computer Science at the
University of Castilla - La Mancha, in Ciudad Real, Spain, and author of several
books and papers on databases, software engineering, and information sys-
tems. He leads the ALARCOS research group specializing in information
system quality. His research interests are software quality, advanced database
design, metrics, software maintenance, information system audit, and security.

Gary Pollice is professor of practice at Worcester Polytechnic Institute,
Worcester, Massachusetts (USA). He teaches software engineering, design,
testing, and other computer science courses, and also directs student projects.
Before entering the academic world, he spent more than 35 years developing
various kinds of software, from business applications to compilers and tools.
His last industry job was with IBM Rational Software, where he was known as
‘the RUP Curmudgeon’; he was also a member of the original Rational Suite
team. Professor Pollice is the primary author of Software Development for
Small Teams: A RUP-Centric Approach (2004, Addison-Wesley). He holds
a BA in mathematics and an MS in computer science.

Jiri Polak is a senior partner in Deloitte & Touche’s Eastern European division
and is based in Prague, Czech Republic. Prior to working for Deloitte, he was
a lecturer at the Czech Technical University in Prague. At Deloitte he has been
responsible for a number of significant software projects, many of which have
been developed using BORM. This has enabled the methodology to be honed
in the real-world environment.

366 About the Authors

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stefan Roock works as a consultant for agile methods, object-oriented
architectures, and technologies. He has many years of industrial experience
helping software development teams to go agile.

Yvonna Rousseva teaches English at the University of the Virgin Islands
(USA). She holds a master’s degree in English philology, and continues to be
fascinated by the nature of the linguistic sign and the inexhaustible possibilities
of language. Among her versatile interests are language theory, object-oriented
linguistics, discourse and communication theory, hermeneutics, active learning,
modeling, and metaphors. Professor Rousseva is also a poet whose creative
journey is inspired by the search for the similar in the dissimilar, and by the
notion that there is no disparity between poetry and abstract thought.

Melissa L. Russ is a partner in Luminary Software and a project engineer at
the Space Telescope Science Institute in Baltimore (USA). In her current
position she directs a team of system engineers in defining the system require-
ments for future space telescopes. She has many years of experience in
developing, implementing, and improving software development processes. As
a consultant she has also mentored others in these same tasks. She is co-author
of several technical articles and research papers in journals such as IEEE
Software in the areas of object-oriented software development and require-
ments, and process definition.

Magdy K. Serour is a research fellow at the Centre for Object Technology
Applications and Research (COTAR) at the University of Technology, Sydney
(UTS). He is the co-founder of SB, the Software Group Pty Ltd (1982), and
has 28 years of experience in Information Technology, being significantly
involved in object technology adoption, requirement engineering, modeling,
implementation, and IT consulting. Dr. Serour’s current interests are in
organizational transition, e-transformation, agile methodologies, software pro-
cess reengineering and software process improvement, and capability determi-
nation for object-oriented/component-based software development
(OOSPICE). He holds a BS in accounting (Cairo University), a GDipl in
computing (ICL, London), a Dipl in computing (Control Data, Sydney), an MS
in computing (UWS, Sydney), and a PhD (UTS, Sydney) in the area of
migration to object-oriented technology.

About the Authors 367

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hans Vangheluwe is an assistant professor in the School of Computer
Science at McGill University (Canada), where he teaches modeling and
simulation, as well as software design. He also heads the Modeling, Simulation,
and Design Lab (http://msdl.cs.mcgill.ca). Some of his model compiler work
has led to the WEST++ tool, which was commercialized for use in the design
and optimization of waste water treatment plants. He was the co-founder and
coordinator of the European Union’s ESPRIT Basic Research Working Group
8467 “Simulation in Europe,” and a founding member of the Modelica Design
Team.

Henning Wolf works as a project manager in agile software development
projects. One of his tasks is the effort estimation of projects.

368 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

A

abstraction 93, 99
action language 48
activity diagrams 299
adaptation 244
advanced analysis 342
advanced design 342
agents 155
agile 53, 67, 88, 98, 111, 123, 313
agile alliance 98
agile alliance manifesto 111
agile MDA 53
agile methodology 88
agile methods 111, 313
agile outsourcing 123, 126
agile practices 111
agile software development 67
analysis level architecture 153
analyst 57, 242
analyzability 332
architect 57
architectural design 326
AspectJ 66
aspects 65
association class 47

associations 347
attack risk 244

B

BERT 55
Big Requirements Up Front (BRUF)

242
bridges 39
BRUF (Big Requirements Up Front)

242
business analysts 242
business components 224
business object relationship modeling

337
business value invariant 155

C

capability maturity model 115
CASE 67, 236, 251
changeability 6, 332
class diagrams 10
client activities 114
coding standard 188
collective code ownership 188
common language runtime 285

Index 369

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

communication 149
comparison statement 146
complex application 328
complexity pyramid 116
component 65, 211
component platforms 215
component specifications 218
component specification 216
computation-independent model 98
computer-oriented 342
conceptual model 339
concern 64, 89
configuration item 128
configuration management 128
consolidation stages 343
context 148
continuous integration 188
CORBA component model 21
core values 184
cost 62
counter-actor 155
critical success factor 261, 266
Crystal 315

D

data flow 53, 250
deadline 314
declarative knowledge 328
dependency inversion 330
design artifacts 331
design patterns 210
design quality 331
designer 57
development case 233
diagrams 10
differential algebraic equations 292
discourse analysis 150
domain 43, 203
domain-specific languages 106

E

E-Z lanes 10
effort estimation 318
effort points 317
enterprise architecture 72
entity relationship diagrams 250, 342

ERNIE 55
ERP systems 113
essential object 339
estimation 317
executable model 47
executable models 53
executable UML 5, 37, 87, 154
expansion stages 343
exploration phase 318
externalization 39
eXtreme Programming 183, 206,

234, 313

F

feature effort points 317
finite state machine (FSM) 5, 43, 159
flow charts 250
foreign equity participation 117
formalisms 291
fourth generation languages 309
fractal 209
FSM (finite state machine) 5, 43, 159

G

generative programming 309
gestalt 244
graph grammars 296

H

hermeneutics 149
hump chart 184

I

IBM 278
identifier 45
implementation 342
Indian IT industry 110
industrialized software asset develop-

ment 209
initial analysis 342
initial design 342
initial operation capability 186
interactivity 117
interface places 302
ISO 9001 115

370 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

J

J2EE 283
Jacobson, R. 149
Java virtual machine 285

K

kernel comparison statement 146
knowledge 328

L

labeled transition system analyzer 166
language 48, 285, 309
late externalization 39
leadership 265
level of abstraction 93
lifecycle objectives 185

M

macro-level 216
macroeconomic context 100
maintainers 58
mappings 38
maturity model 115
MDA 9, 37, 54, 89
MDA workflow 54
meta-formalism 291
metaAttributes 292
metaClasses 292
metamodel 40, 291
metaOperations 292
metaphor 188
metaRelationships 292
method 63, 96
method war 206
micro architectural design 326
microeconomic context 100
Microsoft .NET 283
Microsoft Corporation 278
Microsoft Visual Studio 284
model of communication 149
model-based verification 51
model-driven architecture

5, 37, 87, 154, 290

model-driven software development
9, 202, 207

model-driven software development 36
modeling paradigm 201
modeling/designing 251
models 63
motivation factor 264
mutual relationships 344

N

non-functional testing 53
non-hierarchical 154
non-IT client activities 114
notation 93

O

object behavior analysis 340, 344
object constraint language 22
object model 250
object-orientated analysis 148
object-orientation 1, 201
object-oriented 1, 248, 325
object-oriented design 5, 327
object-oriented programming 282
OnePointPass 18
onsite/offsite developers 136
open source 72, 209
open source software 209
operative knowledge 328
Oracle DBMS 353
organization 96
organizational structures 93
outsourcing 72, 101, 113
outsourcing strategy 101
over-specification 152
Oxford English Dictionary 254

P

pair programming 188
PassOnePointTollgate 13
pattern 330
personal software process 69
Petri nets 37, 299
PIM (platform independent model) 9,

37, 291

Index 371

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

platform independent model (PIM) 9,
37, 291

platform specific model (PSM) 9, 37,
291

platforms 215
precise action semantics 42, 165
prescriptive 233
process 76, 98, 232, 337
process framework 232
process model 98, 337
product development 79
product line strategy 102
programming 188
project controlling 112, 313
project plan 73
prototyping 144
PSM (platform specific models) 9, 37,

291

Q

quality of service 11

R

rational unified process (RUP) 68,
183, 205, 232

rational’s objectory 357
refactoring 188
referential attributes 46
requirements analysts 56
requirements engineering 142, 260
requirements validation 143
resistance 258
roles 56
RUP (rational unified process) 68,

183, 205, 232

S

scenario 144
schedule 62
scope 96
SCRUM 315, 321
search application 328
seed developers 123
seeds 146
SEI/CMM 115

sequence diagrams 27
service-oriented architecture 280
Shlaer-Mellor method 37
simple design 188
small wins 260
smalltalk 353
sociological factors 250
software asset development 209
software complexity chain 116
software development 1, 9,

63, 110, 202, 214
Software Engineering Institute 62
software process 69, 117, 174, 306
software process engineering

metamodel 306
software-intensive products 63
Spirit of the RUP, The 192
stability 332
state machines 5
statecharts 300
states 344
stories 315
story burndown charts 315
story effort points 317
strategic analysis 342
strategic objectives 63
strategies 63
structural transformations 345
subsystems 215
Sun Microsystems 278
sustainable pace 188

T

Tag ID 157
TagGenerator 157
team software process 69
technologies 63
test-driven 188
test-first 188
tester 58
testing 53
tools 95
transformational mappings 38
transitions 344
TwoPointPass 18

372 Index

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

U

UDDI 282
UML (unified modeling language) 3,

40, 66, 232, 293
UML activity diagrams 293
UML graphical models 40
unified method 357
unified modeling language (UML) 3, 40,

66, 232, 293
uniformity 209
use case 232, 250
user requirements model 152

V

velocity 314
virtual machine 285
visual studio 285
VisualWorks 353

W

waterfall 234
WSDL 282

X

X-axis 28
XML routers 283
XP 313
xUML 45, 89

InfoSci-Online
Experience the latest full-text research in the fields
of Information Science, Technology & Management

infosci-online.comA PRODUCT OF

Publishers of Idea Group Publishing, Information Science Publishing, CyberTech Publishing, and IRM Press

“…The theoretical bent
of many of the titles
covered, and the ease
of adding chapters to
reading lists, makes it
particularly good for
institutions with strong
information science
curricula.”

— Issues in Science and
Technology Librarianship

To receive your free 30-day trial access subscription contact:
Andrew Bundy

Email: abundy@idea-group.com • Phone: 717/533-8845 x29
Web Address: www.infosci-online.com

InfoSci-Online is available to libraries to help keep students,
faculty and researchers up-to-date with the latest research in
the ever-growing field of information science, technology, and
management.

The InfoSci-Online collection includes:
� Scholarly and scientific book chapters
� Peer-reviewed journal articles
� Comprehensive teaching cases
� Conference proceeding papers
� All entries have abstracts and citation information
� The full text of every entry is downloadable in .pdf format

Some topics covered:
� Business Management
� Computer Science
� Education Technologies
� Electronic Commerce
� Environmental IS
� Healthcare Information Systems
� Information Systems
� Library Science
� Multimedia Information Systems
� Public Information Systems
� Social Science and Technologies

InfoSci-Online
features:
� Easy-to-use
� 6,000+ full-text

entries
� Aggregated
� Multi-user access

Idea Group
R E F E R E N C E

Edited by: John Wang,
Montclair State University, USA

Two-Volume Set • April 2005 • 1700 pp
ISBN: 1-59140-557-2; US $495.00 h/c
Pre-Publication Price: US $425.00*
*Pre-pub price is good through one month
after the publication date

� Provides a comprehensive, critical and descriptive exami-
nation of concepts, issues, trends, and challenges in this
rapidly expanding field of data warehousing and mining

� A single source of knowledge and latest discoveries in the
field, consisting of more than 350 contributors from 32
countries

� Offers in-depth coverage of evolutions, theories, method-
ologies, functionalities, and applications of DWM in such
interdisciplinary industries as healthcare informatics, artifi-
cial intelligence, financial modeling, and applied statistics

� Supplies over 1,300 terms and definitions, and more than
3,200 references

New Releases from Idea Group Reference

Idea Group Reference is pleased to offer complimentary access to the electronic version
for the life of edition when your library purchases a print copy of an encyclopedia

For a complete catalog of our new & upcoming encyclopedias, please contact:
701 E. Chocolate Ave., Suite 200 • Hershey PA 17033, USA • 1-866-342-6657 (toll free) • cust@idea-group.com

ENCYCLOPEDIA OF

DISTANCE LEARNING

April 2005 • 650 pp
ISBN: 1-59140-560-2; US $275.00 h/c
Pre-Publication Price: US $235.00*

*Pre-publication price good through
one month after publication date

ENCYCLOPEDIA OF

MULTIMEDIA TECHNOLOGY
AND NETWORKING

April 2005 • 650 pp
ISBN: 1-59140-561-0; US $275.00 h/c
Pre-Publication Price: US $235.00*
*Pre-pub price is good through

one month after publication date

ENCYCLOPEDIA OF

INFORMATION SCIENCE
AND TECHNOLOGY

AVAILABLE NOW!

Five-Volume Set • January 2005 • 3807 pp
ISBN: 1-59140-553-X; US $1125.00 h/c

� More than 450 international contributors provide exten-
sive coverage of topics such as workforce training,
accessing education, digital divide, and the evolution of
distance and online education into a multibillion dollar
enterprise

� Offers over 3,000 terms and definitions and more than
6,000 references in the field of distance learning

� Excellent source of comprehensive knowledge and liter-
ature on the topic of distance learning programs

� Provides the most comprehensive coverage of the issues,
concepts, trends, and technologies of distance learning

ENCYCLOPEDIA OF

DATABASE TECHNOLOGIES
AND APPLICATIONS

Four-Volume Set • April 2005 • 2500+ pp
ISBN: 1-59140-555-6; US $995.00 h/c
Pre-Pub Price: US $850.00*
*Pre-pub price is good through one
month after the publication date

www.idea-group-ref.com

The Premier Reference Source for Information Science and Technology Research

ENCYCLOPEDIA OF

DATA WAREHOUSING
AND MINING

