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Preface 

Despite the fears of university mathematics departments, mathematics 
educat,ion is growing rather than declining. But the truth of the matter 
is that the increases are occurring outside departments of mathematics. 
Engineers, computer scientists, physicists, chemists, economists, statisti- 
cians, biologists, and even philosophers teach and learn a great deal of 
mathematics. The teaching is not always terribly rigorous, but it tends to 
be better motivated and better adapted to the needs of students. In my 
own experience teaching students of biostatistics and mathematical biol- 
ogy, I attempt to convey both the beauty and utility of probability. This 
is a tall order, partially because probability theory has its own vocabulary 
and habits of thought. The axiomatic presentation of advanced probability 
typically proceeds via measure theory. This approach has the advantage 
of rigor, but it inwitably misses most of the interesting applications, and 
many applied scientists rebel against the onslaught of technicalities. In the 
current book, I endeavor to achieve a balance between theory and appli- 
cations in a rather short compass. While the combination of brevity apd 
balance sacrifices many of the proofs of a rigorous course, it is still consis- 
tent with supplying students with many of the  relevant theoretical tools. 
In my opinion, it better to present the mathematical facts without proof 
rather than omit them altogether. 

In the preface to his lovely recent textbook (1531, David Williams writes, 
“Probability and Statistics used to  be married; then they separated, then 
they got divorced; now they hardly see each other.” Although this split 
is doubtless irreversible, at least we ought to  be concerned with properly 
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bringing up their children, applied probability and computational statis- 
tics. If we fail, then science as a whole will suffer. You see before you my 
attempt to give applied probability the attention it deserves. My other re- 
cent book (951 covers computational statistics and aspects of computational 
probability glossed over here. 

This graduate-level textbook presupposes knowledge of multivariate cal- 
culus, linear algehra, and ordinary differential equations. In probability 
theory, students should be comfortable with elementary combinatorics, gen- 
erating functions, probability densities and distributions, expectations, and 
conditioning arguments. My intended audience includes graduate students 
in applied mathematics, biostatistics, computational biology, computer sci- 
ence, physics, and statistics. Because of the diversity of needs, instructors 
are encouraged to exercise their own judgment in deciding what chapters 
and.topics to cover. 

Chapter 1 reviews elementary probability while striving to give a brief 
survey of relevant results from measure theory. Poorly prepared students 
should supplement this material with outside reading. Well-prepared stu- 
dents can skim Chapter 1 until they reach the less well-knom' material of 
the final two sections. Section 1.8 develops properties of the multivariate 
normal distribution of special interest to students in biostatistics and sta- 
tistics. This material h applied to optimization theory in Section 3.3 and 
to diffusion processes in Chapter 11. 

We get down to serious business in Chapter 2, which is an extended essay 
on calculating expectations. Students often camplain that probability is 
nothing more than a bag of tricks. For better or worse, they are confronted 
here with some of those tricks. Readers may want to skip the h a 1  two 
sections of the chapter on surface area distributions on a first pass through 
the book. 

Chapter 3 touches on advanced topics from convexity, inequalities, and 
optimization. Beside the obvious applications to computational statistics, 
part of the motivation for this material is its applicability in calculating 
bounds on probabilities and moments. 

Combinatorics has the odd reputation of being difficult in spite of rely- 
ing on elementary methods. Chapters 4 and 5 are my stab at making the 
subject accessible and interesting. There is no doubt in my mind of combi- 
natorics' practical importance. More and more we live in a world domiuated 
by discrete bits of information. The stress on algorithms in Chapter 5 is 
intended to appeal to computer scientists. 

Chapt,ers 6 through 11 cover core material on stochastic processes that 
I have taught to students in mathematical biology over a span of many 
years. If supplemented with appropriate sections from Chapters 1 and 2, 
there is su6cient material here for a traditional semester-long course in 
stochastic processes. Although my examples are weighted toward biology, 
particularly genetics, I have tried to achieve variety. The fortunes of this 
hook doubtless will hinge on how cornpelling readers find these example. 
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You can leaf through the Table of Contents to get a better idea of the topics 
covered in these chapters. 

In the final two chapters on Poisson approximation and number the- 
ory, the applications of probability to other branches of mathematics come 
to the fore. These chapters are hardly in the mainstream of stocliastic 
processes and are meant for independent reading as much as for classrootn 
presentation. 

All chapters come with exercises. These are not graded by difficulty, but 
hints are provided for some of the more difficult ones. My own practice is 
to require one problem for each hour and a half of lecture. Students are 
allowed to choose among the problems within each chapter and are graded 
on the best of the solutions they present. This strategy provides incentive 
for the students to attempt more than the minimum number of problems. 

I would like to thank my former and current UCLA and University of 
Michigan students for their help in debngging this text. In retrospect, there 
were far more contributing students than I can possibly credit. At the 
risk of offending the many, let me single out Brian Dolan, Ruzong Fan, 
David Hunter, Wei-hsnn Liao, Ben Redelings, Eric Schadt, Marc Suchard, 
Janet Sinsheinier, and Andy Ming-Ham Yip. I also thank John Kimmel of 
Springer-Verlag for his editorial assistance. 

Finally, I dedicate this book to my mother, Alma Lange, on the occasion 
of her 80th birthday. Thanks, Mom, for your cheerfulness and generosity 
in raising me. You were, and always will be, an inspiration to  the whole 
family. 



Preface to the First Edition

When I was a postdoctoral fellow at UCLA more than two decades ago,
I learned genetic modeling from the delightful texts of Elandt-Johnson [2]
and Cavalli-Sforza and Bodmer [1]. In teaching my own genetics course over
the past few years, first at UCLA and later at the University of Michigan,
I longed for an updated version of these books. Neither appeared and I was
left to my own devices. As my hastily assembled notes gradually acquired
more polish, it occurred to me that they might fill a useful niche. Research
in mathematical and statistical genetics has been proceeding at such a
breathless pace that the best minds in the field would rather create new
theories than take time to codify the old. It is also far more profitable to
write another grant proposal. Needless to say, this state of affairs is not
ideal for students, who are forced to learn by wading unguided into the
confusing swamp of the current scientific literature.

Having set the stage for nobly rescuing a generation of students, let me
inject a note of honesty. This book is not the monumental synthesis of pop-
ulation genetics and genetic epidemiology achieved by Cavalli-Sforza and
Bodmer. It is also not the sustained integration of statistics and genetics
achieved by Elandt-Johnson. It is not even a compendium of recommen-
dations for carrying out a genetic study, useful as that may be. My goal
is different and more modest. I simply wish to equip students already so-
phisticated in mathematics and statistics to engage in genetic modeling.
These are the individuals capable of creating new models and methods
for analyzing genetic data. No amount of expertise in genetics can over-
come mathematical and statistical deficits. Conversely, no mathematician
or statistician ignorant of the basic principles of genetics can ever hope to
identify worthy problems. Collaborations between geneticists on one side
and mathematicians and statisticians on the other can work, but it takes
patience and a willingness to learn a foreign vocabulary.

So what are my expectations of readers and students? This is a hard
question to answer, in part because the level of the mathematics required
builds as the book progresses. At a minimum, readers should be familiar
with notions of theoretical statistics such as likelihood and Bayes’ theorem.
Calculus and linear algebra are used throughout. The last few chapters
make fairly heavy demands on skills in theoretical probability and combi-
natorics. For a few subjects such as continuous time Markov chains and
Poisson approximation, I sketch enough of the theory to make the expo-
sition of applications self-contained. Exposure to interesting applications
should whet students’ appetites for self-study of the underlying mathemat-
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ics. Everything considered, I recommend that instructors cover the chapters
in the order indicated and determine the speed of the course by the math-
ematical sophistication of the students. There is more than ample material
here for a full semester, so it is pointless to rush through basic theory if
students encounter difficulty early on. Later chapters can be covered at the
discretion of the instructor.

The matter of biological requirements is also problematic. Neither the
brief review of population genetics in Chapter 1 nor the primer of molecu-
lar genetics in Appendix A is a substitute for a rigorous course in modern
genetics. Although many of my classroom students have had little prior
exposure to genetics, I have always insisted that those intending to do re-
search fill in the gaps in their knowledge. Students in the mathematical
sciences occasionally complain to me that learning genetics is hopeless be-
cause the field is in such rapid flux. While I am sympathetic to the difficult
intellectual hurdles ahead of them, this attitude is a prescription for failure.
Although genetics lacks the theoretical coherence of mathematics, there are
fundamental principles and crucial facts that will never change. My advice
is follow your curiosity and learn as much genetics as you can. In scientific
research chance always favors the well prepared.

The incredible flowering of mathematical and statistical genetics over
the past two decades makes it impossible to summarize the field in one
book. I am acutely aware of my failings in this regard, and it pains me to
exclude most of the history of the subject and to leave unmentioned so many
important ideas. I apologize to my colleagues. My own work receives too
much attention; my only excuse is that I understand it best. Fortunately,
the recent book of Michael Waterman delves into many of the important
topics in molecular genetics missing here [4].

I have many people to thank for helping me in this endeavor. Carol
Newton nurtured my early career in mathematical biology and encouraged
me to write a book in the first place. Daniel Weeks and Eric Sobel deserve
special credit for their many helpful suggestions for improving the text. My
genetics colleagues David Burke, Richard Gatti, and Miriam Meisler read
and corrected my first draft of Appendix A. David Cox, Richard Gatti, and
James Lake kindly contributed data. Janet Sinsheimer and Hongyu Zhao
provided numerical examples for Chapters 10 and 12, respectively. Many
students at UCLA and Michigan checked the problems and proofread the
text. Let me single out Ruzong Fan, Ethan Lange, Laura Lazzeroni, Eric
Schadt, Janet Sinsheimer, Heather Stringham, and Wynn Walker for their
diligence. David Hunter kindly prepared the index. Doubtless a few errors
remain, and I would be grateful to readers for their corrections. Finally, I
thank my wife, Genie, to whom I dedicate this book, for her patience and
love.
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A Few Words about Software

This text contains several numerical examples that rely on software from
the public domain. Readers interested in a copy of the programs MENDEL
and FISHER mentioned in Chapters 7 and 8 and the optimization program
SEARCH used in Chapter 3 should get in touch with me. Laura Lazzeroni
distributes software for testing transmission association and linkage dise-
quilibrium as discussed in Chapter 4. Daniel Weeks is responsible for the
software implementing the APM method of linkage analysis featured in
Chapter 6. He and Eric Sobel also distribute software for haplotyping and
stochastic calculation of location scores as covered in Chapter 9. Readers
should contact Eric Schadt or Janet Sinsheimer for the phylogeny software
of Chapter 10 and Michael Boehnke for the radiation hybrid software dis-
cussed in Chapter 11. Further free software for genetic analysis is listed in
the recent book by Ott and Terwilliger [3].

0.1 References

[1] Cavalli-Sforza LL, Bodmer WF (1971) The Genetics of Human Pop-
ulations. Freeman, San Francisco

[2] Elandt-Johnson RC (1971) Probability Models and Statistical Methods
in Genetics. Wiley, New York

[3] Terwilliger JD, Ott J (1994) Handbook of Human Genetic Linkage.
Johns Hopkins University Press, Baltimore

[4] Waterman MS (1995) Introduction to Computational Biology: Maps,
Sequences, and Genomes. Chapman and Hall, London



Preface to the Second Edition

Progress in genetics between the first and second editions of this book has
been nothing short of revolutionary. The sequencing of the human genome
and other genomes is already having a profound impact on biological re-
search. Although the scientific community has only a vague idea of how
this revolution will play out and over what time frame, it is clear that large
numbers of students from the mathematical sciences are being attracted
to genomics and computational molecular biology in response to the latest
developments. It is my hope that this edition can equip them with some of
the tools they will need.

Almost nothing has been removed from the first edition except for a
few errors that readers have kindly noted. However, more than 100 pages
of new material has been added in the second edition. Most prominent
among the additions are new chapters introducing DNA sequence analysis
and diffusion processes and an appendix on the multivariate normal dis-
tribution. Several existing chapters have also been expanded. Chapter 2
now has a section on binding domain identification, Chapter 3 a section
on Bayesian estimation of haplotype frequencies, Chapter 4 a section on
case-control association studies, Chapter 7 new material on the gamete
competition model, Chapter 8 three sections on QTL mapping and factor
analysis, Chapter 9 three sections on the Lander-Green-Kruglyak algorithm
and its applications, Chapter 10 three sections on codon and rate varia-
tion models, and Chapter 14 a better discussion of statistical significance
in DNA sequence matches. Sprinkled throughout the chapters are several
new problems.

I have many people to thank in putting together this edition. It has been
a consistent pleasure working with John Kimmel of Springer. Ted Reich
kindly helped me in gaining permission to use the COGA alcoholism data
in the QTL mapping example of Chapter 8. Many of the same people who
assisted with editorial suggestions, data analysis, and problem solutions in
the first edition have contributed to the second edition. I would particu-
larly like to single out Jason Aten, Lara Bauman, Michael Boehnke, Ruzong
Fan, Steve Horvath, David Hunter, Ethan Lange, Benjamin Redelings, Eric
Schadt, Janet Sinsheimer, Heather Stringham, and my wife, Genie. As a
one-time editor, Genie will particularly appreciate that a comma now ap-
pears in my dedication between “wife” and “Genie,” thereby removing any
suspicion that I am a polygamist.
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1

Basic Principles of Population
Genetics

1.1 Introduction

In this chapter we briefly review some elementary results from population
genetics discussed in more detail in the references [2, 3, 4, 6, 7, 10, 13].
Various genetic definitions are recalled merely to provide a context for this
and more advanced mathematical theory. Readers with a limited knowledge
of modern genetics are urged to learn molecular genetics by formal course
work or informal self-study. Appendix A summarizes a few of the major
currents in molecular genetics. In Chapter 15, we resume our study of pop-
ulation genetics from a stochastic perspective by exploiting the machinery
of diffusion processes.

1.2 Genetics Background

The classical genetic definitions of interest to us predate the modern molec-
ular era. First, genes occur at definite sites, or loci, along a chromosome.
Each locus can be occupied by one of several variant genes called alleles.
Most human cells contain 46 chromosomes. Two of these are sex chromo-
somes — two paired X’s for a female and an X and a Y for a male. The
remaining 22 homologous pairs of chromosomes are termed autosomes.
One member of each chromosome pair is maternally derived via an egg;
the other member is paternally derived via a sperm. Except for the sex
chromosomes, it follows that there are two genes at every locus. These con-
stitute a person’s genotype at that locus. If the two alleles are identical,
then the person is a homozygote; otherwise, he is a heterozygote. Typ-
ically, one denotes a genotype by two allele symbols separated by a slash
/. Genotypes may not be observable. By definition, what is observable is a
person’s phenotype.

A simple example will serve to illustrate these definitions. The ABO
locus resides on the long arm of chromosome 9 at band q34. This locus
determines detectable antigens on the surface of red blood cells. There
are three alleles, A, B, and O, which determine an A antigen, a B antigen,
and the absence of either antigen, respectively. Phenotypes are recorded by
reacting antibodies forA andB against a blood sample. The four observable
phenotypes are A (antigen A alone detected), B (antigen B alone detected),



2 1. Basic Principles of Population Genetics

TABLE 1.1. Phenotypes at the ABO Locus

Phenotypes Genotypes
A A/A, A/O
B B/B, B/O
AB A/B
O O/O

AB (antigens A and B both detected), and O (neither antigen A nor B
detected). These correspond to the genotype sets given in Table 1.1.

Note that phenotype A results from either the homozygous genotype
A/A or the heterozygous genotype A/O; similarly, phenotype B results
from either B/B or B/O. Alleles A and B both mask the presence of the
O allele and are said to be dominant to it. Alternatively, O is recessive
to A and B. Relative to one another, alleles A and B are codominant.

The six genotypes listed above at the ABO locus are unordered in the
sense that maternal and paternal contributions are not distinguished. In
some cases it is helpful to deal with ordered genotypes. When we do, we
will adopt the convention that the maternal allele is listed to the left of the
slash and the paternal allele is listed to the right. With three alleles, the
ABO locus has nine distinct ordered genotypes.

The Hardy-Weinberg law of population genetics permits calculation of
genotype frequencies from allele frequencies. In the ABO example above,
if the frequency of the A allele is pA and the frequency of the B allele
is pB , then a random individual will have phenotype AB with frequency
2pApB . The factor of 2 in this frequency reflects the two equally likely
ordered genotypes A/B and B/A. In essence, Hardy-Weinberg equilibrium
corresponds to the random union of two gametes, one gamete being an
egg and the other being a sperm. A union of two gametes, incidentally, is
called a zygote.

In gene mapping studies, several genetic loci on the same chromosome
are phenotyped. When these loci are simultaneously followed in a human
pedigree, the phenomenon of recombination can often be observed. This
reshuffling of genetic material manifests itself when a parent transmits to
a child a chromosome that differs from both of the corresponding homol-
ogous parental chromosomes. Recombination takes place during the for-
mation of gametes at meiosis. Suppose, for the sake of argument, that in
the parent producing the gamete, one member of each chromosome pair is
painted black and the other member is painted white. Instead of inheriting
an all-black or an all-white representative of a given pair, a gamete in-
herits a chromosome that alternates between black and white. The points
of exchange are termed crossovers. Any given gamete will have just a
few randomly positioned crossovers per chromosome. The recombination
fraction between two loci on the same chromosome is the probability that
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they end up in regions of different color in a gamete. This event occurs
whenever the two loci are separated by an odd number of crossovers along
the gamete. Chapter 12 will elaborate on this brief, simplified description
of the recombination process.

1

A
A1/A1

� �

� �

O
A2/A2

2

3

A
A1/A2

� �

� �

4

O
A2/A2

� �

� �

5

O
A1/A2

FIGURE 1.1. A Pedigree with ABO and AK1 Phenotypes

As a concrete example, consider the locus AK1 (adenylate kinase 1) in
the vicinity of ABO on chromosome 9. With modern biochemical techniques
it is possible to identify two codominant alleles, A1 and A2, at this enzyme
locus. Figure 1.1 depicts a pedigree with phenotypes listed at the ABO locus
and unordered genotypes listed at the AK1 locus. In this pedigree, as in
all pedigrees, circles denote females and squares denote males. Individuals
1, 2, and 4 are termed the founders of the pedigree. Parents of founders
are not included in the pedigree. By convention, each nonfounder or child
of the pedigree always has both parents included.

Close examination of the pedigree shows that individual 3 has alleles A
and A1 on his paternally derived chromosome 9 and alleles O and A2 on
his maternally derived chromosome 9. However, he passes to his child 5 a
chromosome with O and A1 alleles. In other words, the gamete passed is
recombinant between the loci ABO and AK1. On the basis of many such
observations, it is known empirically that doubly heterozygous males like
3 produce recombinant gametes about 12 percent of the time. In females
the recombination fraction is about 20 percent.

The pedigree in Figure 1.1 is atypical in several senses. First, it is quite
simple graphically. Second, everyone is phenotyped; in larger pedigrees,
some people will be dead or otherwise unavailable for typing. Third, it is
constructed so that recombination can be unambiguously determined. In
most matings, one cannot directly count recombinant and nonrecombinant
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gametes. This forces geneticists to rely on indirect statistical arguments to
overcome the problem of missing information. The experimental situation
is analogous to medical imaging, where partial tomographic information is
available, but the full details of transmission or emission events must be
reconstructed. Part of the missing information in pedigree data has to do
with phase. Alleles O and A2 are in phase in individual 3 of Figure 1.1. In
general, a gamete’s sequence of alleles along a chromosome constitutes a
haplotype. The alleles appearing in the haplotype are said to be in phase.
Two such haplotypes together determine a multilocus genotype (or simply
a genotype when the context is clear).

Recombination or linkage studies are conducted with loci called traits
and markers. Trait loci typically determine genetic diseases or interesting
biochemical or physiological differences between individuals. Marker loci,
which need not be genetic loci in the traditional sense at all, are signposts
along the chromosomes. A marker locus is simply a place on a chromosome
showing detectable population differences. These differences, or alleles, per-
mit recombination to be measured between the trait and marker loci. In
practice, recombination between two loci can be observed only when the
parent contributing a gamete is heterozygous at both loci. In linkage analy-
sis it is therefore advantageous for a locus to have several common alleles.
Such loci are said to be polymorphic.

The number of haplotypes possible for a given set of loci is the product
of the numbers of alleles possible at each locus. In the ABO-AK1 example,
there are k = 3 × 2 = 6 possible haplotypes. These can form k2 genotypes
based on ordered haplotypes or k + k(k−1)

2 = k(k+1)
2 genotypes based on

unordered haplotypes.
To compute the population frequencies of random haplotypes, one can

invoke linkage equilibrium. This rule stipulates that a haplotype fre-
quency is the product of the underlying allele frequencies. For instance,
the frequency of an OA1 haplotype is pOpA1 , where pO and pA1 are the
population frequencies of the alleles O and A1, respectively. To compute
the frequency of a multilocus genotype, one can view it as the union of two
random gametes in imitation of the Hardy-Weinberg law. For example,
the genotype of person 2 in Figure 1.1 has population frequency (pOpA2)2,
being the union of two OA2 haplotypes. Exceptions to the rule of linkage
equilibrium often occur for tightly linked loci.

1.3 Hardy-Weinberg Equilibrium

Let us now consider a formal mathematical model for the establishment
of Hardy-Weinberg equilibrium. This model relies on the seven following
explicit assumptions: (a) infinite population size, (b) discrete generations,
(c) random mating, (d) no selection, (e) no migration, (f) no mutation, and
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(g) equal initial genotype frequencies in the two sexes. Suppose for the sake
of simplicity that there are two alleles A1 and A2 at some autosomal locus
in this infinite population and that all genotypes are unordered. Consider
the result of crossing the genotype A1/A1 with the genotype A1/A2. The
first genotype produces only A1 gametes, and the second genotype yields
gametes A1 and A2 in equal proportion. For the cross under consideration,
gametes produced by the genotype A1/A1 are equally likely to combine
with either gamete type issuing from the genotype A1/A2. Thus, for the
cross A1/A1 × A1/A2, the frequency of offspring obviously is 1

2A1/A1 and
1
2A1/A2. Similarly, the cross A1/A1 × A2/A2 yields only A1/A2 offspring.
The cross A1/A2 ×A1/A2 produces offspring in the ratio 1

4A1/A1, 12A1/A2,
and 1

4A2/A2. These proportions of outcomes for the various possible crosses
are known as segregation ratios.

TABLE 1.2. Mating Outcomes for Hardy-Weinberg Equilibrium

Mating Type Nature of Offspring Frequency

A1/A1 ×A1/A1 A1/A1 u2

A1/A1 ×A1/A2
1
2A1/A1 + 1

2A1/A2 2uv
A1/A1 ×A2/A2 A1/A2 2uw
A1/A2 ×A1/A2

1
4A1/A1 + 1

2A1/A2 + 1
4A2/A2 v2

A1/A2 ×A2/A2
1
2A1/A2 + 1

2A2/A2 2vw
A2/A2 ×A2/A2 A2/A2 w2

Suppose the initial proportions of the genotypes are u for A1/A1, v for
A1/A2, and w for A2/A2. Under the stated assumptions, the next genera-
tion will be composed as shown in Table 1.2. The entries in Table 1.2 yield
for the three genotypes A1/A1, A1/A2, and A2/A2 the new frequencies

u2 + uv +
1
4
v2 =

(
u+

1
2
v
)2

uv + 2uw +
1
2
v2 + vw = 2

(
u+

1
2
v
)(1

2
v + w

)

1
4
v2 + vw + w2 =

(1
2
v + w

)2

,

respectively. If we define the frequencies of the two alleles A1 and A2 as
p1 = u+ v

2 and p2 = v
2 + w, then A1/A1 occurs with frequency p2

1, A1/A2

with frequency 2p1p2, and A2/A2 with frequency p2
2. After a second round

of random mating, the frequencies of the genotypes A1/A1, A1/A2, and
A2/A2 are

(
p2
1 +

1
2
2p1p2

)2

=
[
p1(p1 + p2)

]2

= p2
1
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2
(
p2
1 +

1
2
2p1p2

)(1
2
2p1p2 + p2

2

)
= 2p1(p1 + p2)p2(p1 + p2)

= 2p1p2(1
2
2p1p2 + p2

2

)2

=
[
p2(p1 + p2)

]2

= p2
2.

Thus, after a single round of random mating, genotype frequencies stabilize
at the Hardy-Weinberg proportions.

We may deduce the same result by considering the gamete population.
A1 gametes have frequency p1 and A2 gametes frequency p2. Since random
union of gametes is equivalent to random mating, A1/A1 is present in the
next generation with frequency p2

1, A1/A2 with frequency 2p1p2, and A2/A2

with frequency p2
2. In the gamete pool from this new generation, A1 again

occurs with frequency p2
1 + p1p2 = p1(p1 + p2) = p1 and A2 with frequency

p2. In other words, stability is attained in a single generation. This random
union of gametes argument generalizes easily to more than two alleles.

Hardy-Weinberg equilibrium is a bit more subtle for X-linked loci. Con-
sider a locus on the X chromosome and any allele at that locus. At genera-
tion n let the frequency of the given allele in females be qn and in males be
rn. Under our stated assumptions for Hardy-Weinberg equilibrium, one can
show that qn and rn converge quickly to the value p = 2

3q0 + 1
3r0. Twice as

much weight is attached to the initial female frequency since females have
two X chromosomes while males have only one.

Because a male always gets his X chromosome from his mother, and his
mother precedes him by one generation,

rn = qn−1. (1.1)

Likewise, the frequency in females is the average frequency for the two sexes
from the preceding generation; in symbols,

qn =
1
2
qn−1 +

1
2
rn−1. (1.2)

Equations (1.1) and (1.2) together imply

2
3
qn +

1
3
rn =

2
3

(1
2
qn−1 +

1
2
rn−1

)
+

1
3
qn−1

=
2
3
qn−1 +

1
3
rn−1. (1.3)

It follows that the weighted average 2
3qn + 1

3rn = p for all n.
From equations (1.2) and (1.3), we deduce that

qn − p = qn − 3
2
p+

1
2
p
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=
1
2
qn−1 +

1
2
rn−1 − 3

2

(
2
3
qn−1 +

1
3
rn−1

)
+

1
2
p

= −1
2
qn−1 +

1
2
p

= −1
2

(qn−1 − p) .

Continuing in this manner,

qn − p =
(
−1

2

)n

(q0 − p).

Thus the difference between qn and p diminishes by half each generation,
and qn approaches p in a zigzag manner. The male frequency rn displays
the same behavior but lags behind qn by one generation. In contrast to the
autosomal case, it takes more than one generation to achieve equilibrium.
However, equilibrium is still approached relatively fast. In the extreme case
that q0 = .75 and r0 = .12, Figure 1.2 plots qn for a few representative
generations.

•

•

•

•
• • • • • • •

Generation

F
re

qu
en

cy

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 1.2. Approach to Equilibrium of qn as a Function of n

At equilibrium how do we calculate the frequencies of the various geno-
types? Suppose we have two alleles A1 and A2 with equilibrium frequencies
p1 and p2. Then the female genotypes A1/A1, A1/A2, and A2/A2 have fre-
quencies p2

1, 2p1p2, and p2
2, respectively, just as in the autosomal case. In

males the hemizygous genotypes A1 and A2 clearly have frequencies p1

and p2.
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Example 1.3.1 Hardy-Weinberg Equilibrium for the Xg(a) Locus

The red cell antigen Xg(a) is an X-linked dominant with a frequency
in Caucasians of approximately p = .65. Thus, about .65 of all Caucasian
males and about p2 + 2p(1 − p) = .88 of all Caucasian females carry the
antigen.

1.4 Linkage Equilibrium

Loci on nonhomologous chromosomes show independent segregation at
meiosis. In contrast, genes at two physically close loci on the same chromo-
some tend to stick together during the formation of gametes. The recombi-
nation fraction θ between two loci is a monotone, nonlinear function of the
physical distance separating them. In family studies in man or in breeding
studies in other species, θ is the observable rather than physical distance.
In Chapter 12 we show that 0 ≤ θ ≤ 1

2 . The upper bound of 1
2 is attained

by two loci on nonhomologous chromosomes.
The population genetics law of linkage equilibrium is of fundamental

importance in theoretical calculations. Convergence to linkage equilibrium
can be proved under the same assumptions used to prove Hardy-Weinberg
equilibrium. Suppose that allele Ai at locus A has frequency pi and allele Bj

at locus B has frequency qj . Let Pn(AiBj) be the frequency of chromosomes
with alleles Ai and Bj among those gametes produced at generation n.
Since recombination fractions almost invariably differ between the sexes,
let θf and θm be the female and male recombination fractions, respectively,
between the two loci. The average θ = (θf + θm)/2 governs the rate of
approach to linkage equilibrium.

We can express Pn(AiBj) by conditioning on whether a gamete is an egg
or a sperm and on whether nonrecombination or recombination occurs. If
recombination occurs, then the gamete carries the two alleles Ai and Bj

with equilibrium probability piqj . Thus, the appropriate recurrence relation
is

Pn(AiBj) =
1
2
[
(1 − θf )Pn−1(AiBj) + θfpiqj

]

+
1
2
[
(1 − θm)Pn−1(AiBj) + θmpiqj

]

= (1 − θ)Pn−1(AiBj) + θpiqj .

Note that this recurrence relation is valid when the two loci occur on non-
homologous chromosomes provided θ = 1

2 and we interpret Pn(AiBj) as
the probability that someone at generation n receives a gamete bearing the
two alleles Ai and Bj . Subtracting piqj from both sides of the recurrence
relation gives

Pn(AiBj) − piqj = (1 − θ)[Pn−1(AiBj) − piqj ]
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...
= (1 − θ)n[P0(AiBj) − piqj ].

Thus, Pn(AiBj) converges to piqj at the geometric rate 1 − θ. For two
loci on different chromosomes, the deviation from linkage equilibrium is
halved each generation. Equilibrium is approached much more slowly for
closely spaced loci. Similar, but more cumbersome, proofs of convergence to
linkage equilibrium can be given for three or more loci [1, 5, 9, 11]. Problem
7 explores the case of three loci.

1.5 Selection

The simplest model of evolution involves selection at an autosomal locus
with two alleles A1 and A2. At generation n, let allele A1 have population
frequency pn and allele A2 population frequency qn = 1 − pn. Under the
usual assumptions of genetic equilibrium, we deduced the Hardy-Weinberg
and linkage equilibrium laws. Now suppose that we relax the assumption of
no selection by postulating different fitnesses wA1/A1 , wA1/A2 , and wA2/A2

for the three genotypes. Fitness is a technical term dealing with the repro-
ductive capacity rather than the longevity of people with a given genotype.
Thus, wA1/A1/wA1/A2 is the ratio of the expected genetic contribution to
the next generation of an A1/A1 individual to the expected genetic con-
tribution of an A1/A2 individual. Since only fitness ratios are relevant,
we can without loss of generality put wA1/A2 = 1, wA1/A1 = 1 − r, and
wA2/A2 = 1 − s, provided of course that r ≤ 1 and s ≤ 1. Observe that r
and s can be negative.

To explore the evolutionary dynamics of this model, we define the average
fitness

w̄n = (1 − r)p2
n + 2pnqn + (1 − s)q2n

= 1 − rp2
n − sq2n

at generation n. Owing to our implicit assumption of random union of
gametes, the Hardy-Weinberg proportions appear in the definition of w̄n

even though the allele frequency pn changes over time. Because A1/A1

individuals always contribute an A1 allele whereas A1/A2 individuals do so
only half of the time, the change in allele frequency ∆pn = pn+1 − pn can
be expressed as

∆pn =
(1 − r)p2

n + pnqn
w̄n

− pn

=
(1 − r)p2

n + pnqn − (1 − rp2
n − sq2n)pn

w̄n
(1.4)

=
pnqn[s− (r + s)pn]

w̄n
.
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At a fixed point p∞ ∈ [0, 1], we have ∆p∞ = 0. In view of equation
(1.4), this can occur only when p∞ equals 0, 1, or possibly s

r+s . The third
point is a legitimate fixed point if and only if r and s have the same sign.
In the case r > 0 and s ≤ 0, the linear function g(p) = s− (r+ s)p satisfies
g(0) ≤ 0 and g(1) < 0. It is therefore negative throughout the open interval
(0, 1), and equation (1.4) implies that ∆pn < 0 for all pn ∈ (0, 1). It follows
that the decreasing sequence pn has a limit p∞ < 1 when p0 < 1. Equation
(1.4) shows that p∞ > 0 is inconsistent with ∆p∞ = limn→∞ ∆pn = 0.
Hence, we arrive at the intuitively obvious conclusion that the A1 allele is
driven to extinction. In the opposite case r ≤ 0 and s > 0, the A2 allele is
driven to extinction.

When r and s have the same sign, it is helpful to consider the difference

pn+1 − s

r + s
= ∆pn + pn − s

r + s

= − (r + s)pnqn
(
pn − s

r+s

)

1 − rp2
n − sq2n

+ pn − s

r + s

=
1 − rp2

n − sq2n − (r + s)pnqn
1 − rp2

n − sq2n

(
pn − s

r + s

)

=
1 − rpn − sqn
1 − rp2

n − sq2n

(
pn − s

r + s

)
.

If both r and s are negative, then the factor

λ(pn) =
1 − rpn − sqn
1 − rp2

n − sq2n
> 1,

and pn − s
r+s has constant sign and grows in magnitude. Therefore, ar-

guments similar to those given in the r > 0 and s ≤ 0 case imply that
limn→∞ pn = 0 for p0 <

s
r+s and limn→∞ pn = 1 for p0 >

s
r+s . The point

s
r+s is an unstable equilibrium.

If both r and s are positive, then 0 ≤ λ(pn) < 1, and pn − s
r+s has

constant sign and declines in magnitude. In this case, limn→∞ pn = s
r+s ,

and the point s
r+s is a stable equilibrium. For p0 ≈ s

r+s ,

λ(pn) ≈ λ
( s

r + s

)

=
r + s− 2rs
r + s− rs

,

and pn − s
r+s ≈ λ( s

r+s )n(p0 − s
r+s ). In other words, pn approaches its

equilibrium value locally at the geometric rate λ( s
r+s ).

The rate of convergence of pn to 0 or 1 depends on whether there
is selection against the heterozygous genotype A1/A2. Consider the case
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r ≥ 0 and s < 0 of selection against a dominant. Then pn → 0 and the
approximation

pn+1 =
(1 − r)p2

n + pnqn
1 − rp2

n − sq2n

≈ pn

(1 − s)

for pn ≈ 0 makes it clear that pn approaches 0 locally at geometric rate
1

1−s .
If r > 0 and s = 0, then pn → 0 still holds, but convergence no longer

occurs at a geometric rate. Indeed, the equality

pn+1 =
pn(1 − rpn)

1 − rp2
n

entails

1
pn+1

− 1
pn

=
1
pn

(
1 − rp2

n

1 − rpn
− 1

)

=
r(1 − pn)
1 − rpn

≈ r.

It follows that for p0 close to 0

1
pn

− 1
p0

=
n−1∑
i=0

( 1
pi+1

− 1
pi

)

≈ nr.

This approximation implies the slow convergence

pn ≈ 1
nr + 1

p0

for selection against a pure recessive.
Heterozygote advantage (r and s both positive) is the most inter-

esting situation covered by this classic selection model. Geneticists have
suggested that several recessive diseases are maintained at high frequencies
by the mechanism of heterozygote advantage. The best evidence favoring
this hypothesis exists for sickle cell anemia [2]. A single dose of the sickle
cell gene appears to confer protection against malaria. The evidence is
much weaker for a heterozygote advantage in Tay-Sachs disease and cystic
fibrosis. Geneticists have conjectured that these genes may protect carriers
from tuberculosis and cholera, respectively [14].
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1.6 Balance Between Mutation and Selection

Mutations furnish the raw material of evolutionary change. In practice,
most mutations are either neutral or deleterious. We now briefly discuss
the balance between deleterious mutations and selection. Consider first the
case of a dominant disease. In the notation of the last section, let A2 be
the normal allele and A1 the disease allele, and define the fitnesses of the
three genotypes by r ≥ 0 and s < 0. If the mutation rate from A2 to A1

is µ, then equilibrium is achieved between the opposing forces of mutation
and selection when

q∞ =
p∞q∞ + (1 − s)q2∞

1 − rp2∞ − sq2∞
(1 − µ).

If we multiply this equation by 1− rp2∞ − sq2∞ and divide it by q∞, we get

1 − rp2
∞ − sq2∞ = (1 − sq∞)(1 − µ).

Dropping the negligible term rp2∞, we find that this quadratic has the
approximate solution

q∞ ≈ 1 − µ

2

[
1 +

√
1 +

4µ
s(1 − µ)2

]

≈ 1 − µ

2

[
1 + 1 +

2µ
s(1 − µ)2

]

≈ 1 +
µ(1 − s)

s
,

which yields p∞ = 1 − q∞ ≈ µ(1−s)
−s . The corresponding equilibrium fre-

quency of affecteds is 2p∞q∞ ≈ 2µ(1−s)
−s .

For a recessive disease (r > 0 and s = 0), the balance equation becomes

q∞ =
p∞q∞ + q2∞

w̄∞
(1 − µ)

=
q∞

1 − rp2∞
(1 − µ).

In other words, 1 − rp2
∞ = 1 − µ, which has solution p∞ =

√
µ/r. The

frequency of affecteds at equilibrium is now p2∞ = µ
r . Thus given equal mu-

tation rates, dominant and recessive diseases will afflict comparable num-
bers of people. In contrast, the underlying allele frequencies and rates of
approach to equilibrium vary dramatically. Indeed, it is debatable whether
any human population has existed long enough for the alleles at a recessive
disease locus to achieve a balance between mutation and selection. Ran-
dom sampling of gametes (genetic drift) and small initial population sizes
(founder effect) play a much larger role in determining the frequency of
recessive diseases in modern human populations.
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1.7 Problems

1. In blood transfusions, compatibility at the ABO and Rh loci is im-
portant. These autosomal loci are unlinked. At the Rh locus, the +
allele codes for the presence of a red cell antigen and therefore is
dominant to the − allele, which codes for the absence of the antigen.
Suppose that the frequencies of the two Rh alleles are q+ and q−.
Type O− people are universal donors, and type AB+ people are uni-
versal recipients. Under genetic equilibrium, what are the population
frequencies of these two types of people? (Reference [2] discusses these
genetic systems and gives allele frequencies for some representative
populations.)

2. Suppose that in the Hardy-Weinberg model for an autosomal locus
the genotype frequencies for the two sexes differ. What is the ultimate
frequency of a given allele? How long does it take genotype frequencies
to stabilize at their Hardy-Weinberg values?

3. Consider an autosomal locus with m alleles in Hardy-Weinberg equi-
librium. If allele Ai has frequency pi, then show that a random non-
inbred person is heterozygous with probability 1−∑m

i=1 p
2
i . What is

the maximum of this probability, and for what allele frequencies is
this maximum attained?

4. In forensic applications of genetics, loci with high exclusion probabil-
ities are typed. For a codominant locus with n alleles, show that the
probability of two random people having different genotypes is

e =
n−1∑
i=1

n∑
j=i+1

2pipj(1 − 2pipj) +
n∑

i=1

p2
i (1 − p2

i )

under Hardy-Weinberg equilibrium [8]. Simplify this expression to

e = 1 − 2
( n∑

i=1

p2
i

)2

+
n∑

i=1

p4
i .

Prove rigorously that e attains its maximum emax = 1 − 2
n2 + 1

n3

when all pi = 1
n . For two independent loci with

√
n alleles each, verify

that the maximum exclusion probability based on exclusion at either
locus is 1− 4

n2 + 4
n5/2 − 1

n3 . How does this compare to the maximum
exclusion probability for a single locus with n equally frequent alleles
when n = 16? What do you conclude about the information content of
two loci versus one locus? (Hint: To prove the claim about emax, note
that, without loss of generality, one can assume p1 ≤ p2 ≤ · · · ≤ pn. If
pi < pi+1, then e can be increased by replacing pi and pi+1 by pi +x
and pi+1 − x for x positive and sufficiently small.)
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5. Moran [12] has proposed a model for the approach of allele frequencies
to Hardy-Weinberg equilibrium that permits generations to overlap.
Let u(t), v(t), and w(t) be the relative proportions of the genotypes
A1/A1, A1/A2, and A2/A2 at time t. Assume that in the small time
interval (t, t+dt) a proportion dt of the population dies and is replaced
by the offspring of random matings from the residue of the population.
In effect, members of the population have independent, exponentially
distributed lifetimes of mean 1. The other assumptions for Hardy-
Weinberg equilibrium remain in force.

(a) Show that for small dt

u(t+ dt) = u(t)(1 − dt) +
[
u(t) +

1
2
v(t)

]2
dt+ o(dt).

Hence,

u′(t) = −u(t) +
[
u(t) +

1
2
v(t)

]2
.

(b) Similarly derive the differential equations

v′(t) = −v(t) + 2
[
u(t) +

1
2
v(t)

][1
2
v(t) + w(t)

]

w′(t) = −w(t) +
[1
2
v(t) + w(t)

]2
.

(c) Let p(t) = u(t)+ 1
2v(t) be the allele frequency of A1. Verify that

p′(t) = 0 and that p(t) = p0 is constant.
(d) Show that

[u(t) − p2
0]

′ = −[u(t) − p2
0],

and so

u(t) − p2
0 = [u(0) − p2

0]e
−t.

(e) Similarly prove

v(t) − 2p0(1 − p0) = [v(0) − 2p0(1 − p0)]e−t

w(t) − (1 − p0)2 = [w(0) − (1 − p0)2]e−t.

(f) If time is measured in generations, then how many generations
does it take for the departure from Hardy-Weinberg equilibrium
to be halved?

6. Consider an X-linked version of the Moran model in the previous
problem. Again let u(t), v(t), and w(t) be the frequencies of the three
female genotypes A1/A1, A1/A2, and A2/A2, respectively. Let r(t)
and s(t) be the frequencies of the male genotypes A1 and A2.
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(a) Verify the differential equations

r′(t) = −r(t) + u(t) +
1
2
v(t)

s′(t) = −s(t) +
1
2
v(t) + w(t)

u′(t) = −u(t) + r(t)
[
u(t) +

1
2
v(t)

]

v′(t) = −v(t) + r(t)
[1
2
v(t) + w(t)

]
+ s(t)

[
u(t) +

1
2
v(t)

]

w′(t) = −w(t) + s(t)
[1
2
v(t) + w(t)

]
.

(b) Show that the frequency r(t)
3 + 2

3 [u(t)+ 1
2v(t)] of the A1 allele is

constant.
(c) Let p0 be the frequency of the A1 allele. Demonstrate that

[r(t) − p0]′ = −3
2
[r(t) − p0],

and hence

r(t) − p0 = [r(0) − p0]e−
3
2 t.

(d) Use parts (a) and (c) to establish

lim
t→∞

[
u(t) +

1
2
v(t)

]
= p0.

(e) Show that

[(u(t) − p2
0)e

t]′

= u′(t)et + u(t)et − p2
0e

t

= r(t)
[
u(t) +

1
2
v(t)

]
et − p2

0e
t

=
(
p0 + [r(0) − p0]e−

3
2 t
)

×
(
p0 − 1

3
p0 − 1

3
[r(0) − p0]e−

3
2 t
)3

2
et − p2

0e
t

=
(
p0 + [r(0) − p0]e−

3
2 t
)

×
(
p0 − 1

2
[r(0) − p0]e−

3
2 t
)
et − p2

0e
t

=
p0

2
[r(0) − p0]e−

t
2 − 1

2
[r(0) − p0]2e−2t.

Thus,

u(t) − p2
0 = [u(0) − p2

0]e
−t + p0[r(0) − p0](e−t − e−

3
2 t)

− 1
4
[r(0) − p0]2[e−t − e−3t].
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It follows that limt→∞ u(t) = p2
0.

(f) Finally, show that

lim
t→∞ s(t) = 1 − p0

lim
t→∞ v(t) = 2p0(1 − p0)

lim
t→∞w(t) = (1 − p0)2.

7. Consider three loci A—B—C along a chromosome. To model conver-
gence to linkage equilibrium at these loci, select alleles Ai, Bj , and
Ck and denote their population frequencies by pi, qj , and rk. Let θAB

be the probability of recombination between loci A and B but not
between B and C. Define θBC similarly. Let θAC be the probability of
simultaneous recombination between loci A and B and between loci
B and C. Finally, adopt the usual conditions for Hardy-Weinberg and
linkage equilibrium.

(a) Show that the gamete frequency Pn(AiBjCk) satisfies

Pn(AiBjCk) = (1 − θAB − θBC − θAC)Pn−1(AiBjCk)
+ θABpiPn−1(BjCk) + θBCrkPn−1(AiBj)
+ θACqjPn−1(AiCk).

(b) Define the function

Ln(AiBjCk) = Pn(AiBjCk) − piqjrk − pi[Pn(BjCk) − qjrk ]
− rk [Pn(AiBj) − piqj ] − qj [Pn(AiCk) − pirk ].

Show that Ln(AiBjCk) satisfies

Ln(AiBjCk) = (1 − θAB − θBC − θAC)Ln−1(AiBjCk).

(Hint: Substitute for Pn(BjCk) − qjrk and similar terms using
the recurrence relation for two loci.)

(c) Argue that limn→∞ Ln(AiBjCk) = 0. As a consequence, con-
clude that limn→∞ Pn(AiBjCk) = piqjrk.

8. Consulting Problems 5 and 6, formulate a Moran model for approach
to linkage equilibrium at two loci. In the context of this model, show
that

Pt(AiBj) = e−θtP0(AiBj) + (1 − e−θt)piqj ,

where time t is measured continuously.
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9. To verify convergence to linkage equilibrium for a pair of X-linked
loci A and B, define Pnx(AiBj) and Pny(AiBj) to be the frequencies
of the AiBj haplotype at generation n in females and males, respec-
tively. For the sake of simplicity, assume that both loci are in Hardy-
Weinberg equilibrium and that the alleles Ai and Bj have frequencies
pi and qj . If zn denotes the column vector [Pnx(AiBj), Pny(AiBj)]t

and θ the female recombination fraction between the two loci, then
demonstrate the recurrence relation

zn = Mzn−1 + θpiqj

(
1
2
1

)
(1.5)

under the usual equilibrium conditions, where the matrix

M =
(

1
2 [1 − θ] 1

2
1 − θ 0

)
.

Show that equation (1.5) can be reformulated as wn = Mwn−1 for
wn = zn − piqj1t, where 1 = (1, 1)t. Solve this last recurrence and
show that limn→∞ wn = 0. (Hints: The matrix power Mn can be
simplified by diagonalizing M . Show that the eigenvalues ω1 and ω2

of M are distinct and less than 1 in absolute value.)

10. Consider an autosomal dominant disease in a stationary population.
If the fitness of normal A2/A2 people to the fitness of affected A1/A2

people is in the ratio 1 − s : 1, then show that the average num-
ber of people ultimately affected by a new mutation is 1−s

−s . (Hints:
An A2/A2 person has on average 2 children while an A1/A2 person
has on average 2

1−s children, half of whom are affected. Write and
solve an equation counting the new mutant and the expected num-
ber of affecteds originating from each of his or her mutant children.
Remember that s < 0.)

11. Consider a model for the mutation-selection balance at an X-linked
locus. Let normal females and males have fitness 1, carrier females
fitness tx, and affected males fitness ty. Also, let the mutation rate
from the normal allele A2 to the disease allele A1 be µ in both sexes.
It is possible to write and solve two equations for the equilibrium
frequencies p∞x and p∞y of carrier females and affected males.

(a) Derive the two approximate equations

p∞x ≈ 2µ+ p∞x
1
2
tx + p∞yty

p∞y ≈ µ+ p∞x
1
2
tx

assuming the disease is rare.
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(b) Solve the two equations in (a).

(c) When tx = 1, show that the fraction of affected males represent-
ing new mutations is 1

3 (1 − ty). This fraction does not depend
on the mutation rate.

(d) If tx = 1 and ty = 0, then prove that p∞x ≈ 4µ and p∞y ≈ 3µ.

12. In the selection model of Section 1.5, it of some interest to deter-
mine the number of generations n it takes for allele A1 to go from
frequency p0 to frequency pn. This is a rather difficult problem to
treat in the context of difference equations. However, for slow selec-
tion, considerable progress can be made by passing to a differential
equation approximation. This entails replacing pn by a function p(t)
of the continuous time variable t. If we treat one generation as our
unit of time, then the analog of difference equation (1.4) is

dp

dt
=

pq[s− (r + s)p]
w̄

,

where q = 1− p and w̄ = 1− rp2 − sq2. If we take this approximation
seriously, then

n ≈
∫ n

0

dt =
∫ pn

p0

w̄

pq[s− (r + s)p]
dp.

Show that this leads to

n ≈
(

1
s
− 1

)
ln
pn

p0
+
(

1
r
− 1

)
ln

1 − pn

1 − p0

−
(

1
r

+
1
s
− 1

)
ln

|s− (r + s)pn|
|s− (r + s)p0|

when pn and p0 are both on the same side of the internal equilibrium
point and neither r nor s is 0. Derive a similar approximation when
s = 0 or r = 0. Why is necessary to postulate that pn and p0 be
on the same side of the internal equilibrium point? Is it possible to
calculate a negative value of n? If so, what does it mean?

13. Let f(p) be a continuously differentiable map from the interval [a, b]
into itself, and let p∞ = f(p∞) be an equilibrium (fixed) point of the
iteration scheme pn+1 = f(pn). If |f ′(p∞)| < 1, then show that p∞
is a locally stable equilibrium in the sense that limn→∞ pn = p∞ for
p0 sufficiently close to p∞. How fast does pn converge to p∞? Apply
this general result to determine the speed of convergence to linkage
equilibrium for an autosomal locus.

14. To explore the impact of genetic screening for carriers, consider a
lethal recessive disease with two alleles, the normal allele A2 and the
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recessive disease allele A1. Mutation from A2 to A1 takes place at rate
µ. No backmutation is permitted. An entire population is screened
for carriers. If a husband and wife are both carriers, then all fetuses
of the wife are checked, and those who will develop the disease are
aborted. The couple compensates for such unsuccessful pregnancies,
so that they have an average number of normal children. Affected
children born to parents not at high risk likewise are compensated for
by the parents. These particular affected children are new mutations
and do not contribute to the next generation. Let un and vn be the
frequency of people with genotypes A1/A2 and A2/A2, respectively,
at generation n.

TABLE 1.3. Mating Outcomes under Genetic Screening

Mating Type Frequency A1/A2 Offspring A2/A2 Offspring

A1/A2 ×A1/A2 u2
n

2
3 + 4

9µ
1
3 − 4

9µ

A1/A2 ×A2/A2 2unvn
1
2 + 3

4µ
1
2 − 3

4µ

A2/A2 ×A2/A2 v2
n 2µ 1 − 2µ

(a) In Table 1.3, mathematically justify the mating frequencies ex-
actly and the offspring frequencies to order O(µ2). (Hint: Apply
the expansion (1 − x)−1 =

∑∞
k=0 x

k for |x| < 1.)

(b) Derive a pair of recurrence relations for un+1 and vn+1 based
on the results of Table 1.3. Use the recurrence relations to show
that un + vn = 1 for all n.

(c) Demonstrate that the recurrence relation for un+1 has equilib-
rium value u∞ =

√
6µ. This implies a frequency of approxi-

mately
√

3µ/2 for allele A1. (Hint: In the recurrence for un+1,
substitute vn = 1 − un and take limits. Assume that u∞ is of
order

√
µ and neglect all terms of order µ3/2 or smaller.)

(d) Find the function f(u) giving the recurrence un+1 = f(un).
Show that f ′(u∞) ≈ 1 − 2

√
2µ/3.

(e) Discuss the implications of the above analysis for genetic screen-
ing. Consider the increase in the equilibrium frequency of the
disease allele and, in light of Problem 13, the speed at which
this increased frequency is attained.
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2

Counting Methods and the EM
Algorithm

2.1 Introduction

In this chapter and the next, we undertake the study of estimation meth-
ods and their applications in genetics. Because of the complexity of genetic
models, geneticists by and large rely on maximum likelihood estimators
rather than on competing estimators derived from minimax, invariance, ro-
bustness, or Bayesian principles. A host of methods exists for numerically
computing maximum likelihood estimates. Some of the most appealing in-
volve simple counting arguments and the EM algorithm. Indeed, historically
geneticists devised many special cases of the EM algorithm before it was
generally formulated by Dempster et al. [5, 12]. Our initial example retraces
some of the steps in the long march from concrete problems to an abstract
algorithm applicable to an astonishing variety of statistical models.

2.2 Gene Counting

Suppose a geneticist takes a random sample from a population and observes
the phenotype of each individual in the sample at some autosomal locus.
How can the sample be used to estimate the frequency of an allele at the
locus? If all alleles are codominant, the answer is obvious. Simply count
the number of times the given allele appears in the sample, and divide by
the total number of genes in the sample. Remember that there are twice
as many genes as individuals.

TABLE 2.1. MN Blood Group Data

Phenotype Genotype Number
M M/M 119
MN M/N 76
N N/N 13

Example 2.2.1 Gene Frequencies for the MN Blood Group

The MN blood group has two codominant alleles M and N . Crow [4]
cites the data from Table 2.1 on 208 Bedouins of the Syrian desert. To
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estimate the frequency pM of the M allele, we count two M genes for each
M phenotype and one M gene for eachMN phenotype. Thus, our estimate
of pM is p̂M = 2×119+76

2×208 = .755. Similarly, p̂N = 2×13+76
2×208 = .245. Note that

p̂M + p̂N = 1.
In general, at a locus with k codominant alleles, suppose we count ni

alleles of type i in a random sample of n unrelated people. Then the ratio
p̂i = ni

2n provides a desirable estimate of the frequency pi of allele i. Since
the counts (n1, . . . , nk) follow a multinomial distribution, the expectation
E(p̂i) = 2npi

2n = pi. In other words, p̂i is an unbiased estimator. By the
strong law of large numbers, p̂i is also a strongly consistent estimator [6].
In passing, we also note the variance and covariance expressions

Var(p̂i) =
2npi(1 − pi)

(2n)2

=
pi(1 − pi)

2n

Cov(p̂i, p̂j) = −2npipj

(2n)2

= −pipj

2n
.

Finally, as observed in Problem 3, the p̂i constitute the maximum likelihood
estimates of the pi.

This simple gene-counting argument encounters trouble if we consider a
locus with recessive alleles because we can no longer infer genotypes from
phenotypes. Consider the ABO locus, for instance. Suppose we observe nA

people of type A, nB people of type B, nAB people of type AB, and nO

people of type O. Let n = nA+nB+nAB+nO be the total number of people
in the random sample. If we want to estimate the frequency pA of the A
allele, we cannot say exactly how many of the nA people are homozygotes
A/A and how many are heterozygotes A/O. Thus, we are prevented from
directly counting genes.

There is a way out of this dilemma that exploits Hardy-Weinberg equi-
librium. If we knew the true allele frequencies pA and pO , then we could
correctly apportion the nA individuals of phenotype type A. Genotype A/A
has frequency p2

A in the population, while genotype A/O has frequency
2pApO. Of the nA people of type A, we expect nA/A = nAp

2
A/(p

2
A +2pApO)

people to have genotype A/A and nA/O = nA2pApO/(p2
A + 2pApO) people

to have genotype A/O. Employing circular reasoning, we now estimate pA

by

p̂A =
2nA/A + nA/O + nAB

2n
. (2.1)

The trick now is to remove the circularity by iterating. Suppose we make
an initial guess pmA, pmB , and pmO of the three allele frequencies at it-
eration 0. By analogy to the reasoning leading to (2.1), we attribute at
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iteration m

nm,A/A = nA
p2

mA

p2
mA + 2pmApmO

people to genotype A/A and

nm,A/O = nA
2pmApmO

p2
mA + 2pmApmO

people to genotype A/O. We now update pmA by

pm+1,A =
2nm,A/A + nm,A/O + nAB

2n
. (2.2)

The update for pmB is the same as (2.2) except for the interchange of the
labels A and B. The update for pmO is equally intuitive and preserves
the counting requirement pmA + pmB + pmO = 1. This iterative proce-
dure continues until pmA, pmB , and pmO converge. Their converged values
p∞A, p∞B , and p∞O provide allele frequency estimates. This gene-counting
algorithm [12] is a special case of the EM algorithm.

Example 2.2.2 Gene Frequencies for the ABO Blood Group

As a practical example, let nA = 186, nB = 38, nAB = 13, and nO = 284.
These are the types of 521 duodenal ulcer patients gathered by Clarke et
al. [2]. As an initial guess, take p0A = .3, p0B = .2, and p0O = .5. The
gene-counting iterations can be done on a pocket calculator. It is evident
from Table 2.2 that convergence occurs quickly.

TABLE 2.2. Iterations for ABO Duodenal Ulcer Data

Iteration m pmA pmB pmO

0 .3000 .2000 .5000
1 .2321 .0550 .7129
2 .2160 .0503 .7337
3 .2139 .0502 .7359
4 .2136 .0501 .7363
5 .2136 .0501 .7363

2.3 Description of the EM Algorithm

A sharp distinction is drawn in the EM algorithm between the observed,
incomplete data Y and the unobserved, complete data X of a statistical
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experiment [5, 9, 13]. Some function t(X) = Y collapses X onto Y . For
instance, if we represent X as (Y, Z), with Z as the missing data, then
t is simply projection onto the Y -component of X . It should be stressed
that the missing data can consist of more than just observations missing
in the ordinary sense. In fact, the definition of X is left up to the intuition
and cleverness of the statistician. The general idea is to choose X so that
maximum likelihood becomes trivial for the complete data.

The complete data are assumed to have a probability density f(X | θ)
that is a function of a parameter vector θ as well as of X . In the E step of
the EM algorithm, we calculate the conditional expectation

Q(θ | θn) = E[ln f(X | θ) | Y, θn].

Here θn is the current estimated value of θ. In the M step, we maximize
Q(θ | θn) with respect to θ. This yields the new parameter estimate θn+1,
and we repeat this two-step process until convergence occurs. Note that θ
and θn play fundamentally different roles in Q(θ | θn).

The essence of the EM algorithm is that maximizingQ(θ | θn) leads to an
increase in the loglikelihood ln g(Y | θ) of the observed data. This assertion
is proved in the following theoretical section, which can be omitted by
readers interested primarily in practical applications of the EM algorithm.

2.4 Ascent Property of the EM Algorithm

The entropy (or information) inequality at the heart of the EM algorithm
is a consequence of Jensen’s inequality, which relates convex functions to
expectations. Recall that a twice-differentiable function h(w) is convex on
an interval (a, b) if and only if h′′(w) ≥ 0 for all w in (a, b). If the defining
inequality is strict, then h(w) is said to be strictly convex.

Proposition 2.4.1 (Jensen’s Inequality) Let W be a random variable with
values confined to the possibly infinite interval (a, b). If E denotes ex-
pectation and h(w) is convex on (a, b), then E[h(W )] ≥ h[E(W )]. For a
strictly convex function, equality holds in Jensen’s inequality if and only if
W = E(W ) almost surely.

Proof: Put u = E(W ). For w in (a, b), we have

h(w) = h(u) + h′(u)(w − u) + h′′(v)
(w − u)2

2
≥ h(u) + h′(u)(w − u)

for some v between u and w. Note that v is in (a, b). Now substitute the
random variable W for the point w and take expectations. It follows that

E[h(W )] ≥ h(u) + h′(u)[E(W ) − u]
= h(u).
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If h(w) is strictly convex, then the neglected term h′′(v) (w−u)2

2 is positive
whenever w �= u.

The next proposition uses the language of measure theory. To assist
readers unfamiliar with the subject, it is fair to point out that in practical
applications most measures reduce to ordinary length, area, or volume for
continuous random variables and to counting for discrete random variables.
In the former case, we integrate, and in the later case, we sum. The term
“almost everywhere” is the counterpart of “almost surely” in probability
theory and can be interpreted as everywhere with little harm.

Proposition 2.4.2 (Entropy Inequality) Let f and g be probability densi-
ties with respect to a measure µ. Suppose f > 0 and g > 0 almost every-
where relative to µ. If Ef denotes expectation with respect to the probability
measure fdµ, then Ef (ln f) ≥ Ef (ln g), with equality only if f = g almost
everywhere relative to µ.

Proof: Because −ln(w) is a strictly convex function on (0,∞), Jensen’s
inequality applied to the random variable g/f implies

Ef (ln f) − Ef (ln g) = Ef (−ln
g

f
)

≥ −lnEf (
g

f
)

= −ln
∫

g

f
fdµ

= −ln
∫
gdµ

= 0.

Equality holds only if g
f = Ef ( g

f ) almost everywhere relative to µ. However
Ef ( g

f ) = 1.

Reverting to the notation Q(θ | θn) = E[ln f(X | θ) | Y = y, θn] of the
EM algorithm, we next prove that

Q(θn | θn) − ln g(y | θn) ≥ Q(θ | θn) − ln g(y | θ)
for all θ and θn, where g(y | θ) is the likelihood of the observed data Y = y.
To this end, note that both f(x | θ)

g(y | θ) and f(x | θn)
g(y | θn) are conditional densities of

X on {x: t(x) = y} with respect to some measure µy. The entropy inequality
now indicates that

Q(θ | θn) − ln g(y | θ) = E
(

ln
[
f(X | θ)
g(Y | θ)

]
| Y = y, θn

)

≤ E
(

ln
[
f(X | θn)
g(Y | θn)

]
| Y = y, θn

)

= Q(θn | θn) − ln g(y | θn).
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Thus, the difference ln g(y | θ) − Q(θ | θn) attains its minimum when
θ = θn. If we choose θn+1 to maximize Q(θ | θn), then it follows that

ln g(y | θn+1) = Q(θn+1 | θn) + [ln g(y | θn+1) −Q(θn+1 | θn)]
≥ Q(θn | θn) + [ln g(y | θn) −Q(θn | θn)]
= ln g(y | θn),

with strict inequality when f(x | θn+1)/g(y | θn+1) and f(x | θn)/g(y | θn)
are different conditional densities or when Q(θn+1 | θn) > Q(θn | θn). This
verifies the promised ascent property ln g(y | θn+1) ≥ ln g(y | θn) of the
EM algorithm.

2.5 Allele Frequency Estimation by the EM
Algorithm

Let us return to the ABO example and formalize gene counting as an EM
algorithm. The observed numbers of people in each of the four phenotypic
categories constitute the observed data Y , while the unknown numbers of
people in each of the six genotypic categories constitute the complete data
X . Let nA/A be the number of people of genotype A/A. Define nA/O, nB/B ,
and nB/O similarly and set n = nA + nB + nAB + nO. Note that the nAB

people of phenotype AB and the nO people of phenotype O are already
correctly assigned to their respective genotypes A/B and O/O. With this
notation the complete data loglikelihood becomes

ln f(X | p) = nA/A ln p2
A + nA/O ln(2pApO) + nB/B ln p2

B

+ nB/O ln(2pBpO) + nAB ln(2pApB) + nO ln p2
O (2.3)

+ ln
(

n

nA/A nA/O nB/B nB/O nAB nO

)
.

In the E step of the EM algorithm, we take the expectation of ln f(X | p)
conditional on the observed counts nA, nB , nAB , and nO and the current
parameter vector pm = (pmA, pmB, pmO)t. It is obvious that

E(nAB | Y, pm) = nAB

E(nO | Y, pm) = nO.

A moment’s reflection also yields

nm,A/A = E(nA/A | Y, pm)

= nA
p2

mA

p2
mA + 2pmApmO

nm,A/O = E(nAO | Y, pm)

= nA
2pmApmO

p2
mA + 2pmApmO

.
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The conditional expectations nm,B/B and nm,B/O are given by similar ex-
pressions.

The M step of the EM algorithm maximizes the Q(p | pm) function de-
rived from (2.3) by replacing nA/A by nm,A/A, and so forth. Maximization
of Q(p | pm) can be accomplished by introducing a Lagrange multiplier and
finding a stationary point of the unconstrained function

H(p, λ) = Q(p | pm) + λ(pA + pB + pO − 1).

Setting the partial derivatives

∂

∂pA
H(p, λ) =

2nm,A/A

pA
+
nm,A/O

pA
+
nAB

pA
+ λ

∂

∂pB
H(p, λ) =

2nm,B/B

pB
+
nm,B/O

pB
+
nAB

pB
+ λ

∂

∂pO
H(p, λ) =

nm,A/O

pO
+
nm,B/O

pO
+

2nO

pO
+ λ

∂

∂λ
H(p, λ) = pA + pB + pO − 1

equal to 0 provides the unique stationary point of H(p, λ). The solution of
the resulting equations is

pm+1,A =
2nm,A/A + nm,A/O + nAB

2n

pm+1,B =
2nm,B/B + nm,B/O + nAB

2n

pm+1,O =
nm,A/O + nm,B/O + 2nO

2n
.

In other words, the EM update is identical to gene counting.

2.6 Classical Segregation Analysis by the EM
Algorithm

Classical segregation analysis is used to test Mendelian segregation ratios
in nuclear family data. A nuclear family consists of two parents and their
common offspring. Usually the hypothesis of interest is that some rare dis-
ease shows an autosomal recessive or an autosomal dominant pattern of
inheritance. Because the disease is rare, it is inefficient to collect families
at random. Only families with at least one affected sibling enter a typical
study. The families who come to the attention of an investigator are said
to be ascertained. To test the Mendelian segregation ratio p = 1

2 for an
autosomal dominant disease or p = 1

4 for an autosomal recessive disease,
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the investigator must correct for the ascertainment process. The simplest
ascertainment model postulates that the number of ascertained siblings fol-
lows a binomial distribution with success probability π and number of trials
equal to the number of affected siblings. In effect, families are ascertained
only through their affected siblings, and siblings come to the attention of
the genetic investigator independently, with common probability π per sib-
ling. The number of affecteds likewise follows a binomial distribution with
success probability p and number of trials equal to the number of siblings.
The EM algorithm can be employed to estimate p and π jointly. More
complicated and realistic ascertainment models are discussed in [14].

Suppose that the kth ascertained family has sk siblings, of whom rk are
affected and ak are ascertained. The numbers rk and ak constitute the
observed data Yk for the kth ascertained family. The missing data consist
of the number of at-risk families that were missed in the ascertainment
process and the corresponding statistics rk and ak = 0 for each of these
missing families. The likelihood of the observed data is

∏
k

(
sk

rk

)
prk(1 − p)sk−rk

(
rk

ak

)
πak(1 − π)rk−ak

1 − (1 − pπ)sk
,

where the product extends only over the ascertained families. The denom-
inator 1− (1− pπ)sk in this likelihood is the probability that a family with
sk siblings is ascertained.

These denominators disappear in the complete data likelihood

∏
k

(
sk

rk

)
prk(1 − p)sk−rk

(
rk
ak

)
πak(1 − π)rk−ak

because we no longer condition on the event of ascertainment for each
family. This simplification is partially offset by the added complication
that the product now extends over both the ascertained families and the
at-risk unascertained families. If θ = (p, π), rmk = E(rk | Yk, θm), and
amk = E(ak | Yk, θm), then the E step of the EM algorithm amounts to
forming

Q(θ | θm) =
∑

k

[rmk ln p+ (sk − rmk) ln(1 − p)

+ amk lnπ + (rmk − amk) ln(1 − π)].

The M step requires solving the equations

∑
k

[rmk

p
− sk − rmk

1 − p

]
= 0

∑
k

[amk

π
− rmk − amk

1 − π

]
= 0.
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The EM updates are therefore

pm+1 =
∑

k rmk∑
k sk

(2.4)

πm+1 =
∑

k amk∑
k rmk

. (2.5)

We need to reduce the sums in the updates (2.4) and (2.5) to sums over
the ascertained families alone. To achieve this goal, first note that the sum∑

k amk =
∑

k ak automatically excludes contributions from the unascer-
tained families. To simplify the other sums, consider the kth ascertained
family. If we view ascertainment as a sampling process in which unascer-
tained families of size sk are discarded one by one until the kth ascertained
family is finally ascertained, then the number of unascertained families
discarded before reaching the kth ascertained family follows a shifted geo-
metric distribution with success probability 1 − (1 − pπ)sk . The sampling
process discards, on average,

(1 − pπ)sk

1 − (1 − pπ)sk

unascertained families before reaching the kth ascertained family. Once
this ascertained family is reached, the sampling process for the (k + 1)th
ascertained family begins.

How many affected siblings are contained in the unascertained families
corresponding to the kth ascertained family? The expected number of af-
fected siblings in one such unascertained family is

ek =

∑sk

j=0 j
(
sk

j

)
pj(1 − p)sk−j(1 − π)j

(1 − pπ)sk
.

A little calculus shows that

ek =
d

dt

[1 − p+ p(1 − π)t]sk

(1 − pπ)sk
|t=1

=
sk[1 − p+ p(1 − π)t]sk−1p(1 − π)

(1 − pπ)sk
|t=1

=
skp(1 − π)

1 − pπ
.

The expected number of affected siblings in the unascertained families cor-
responding to the kth ascertained family is given by the product

skp(1 − π)
1 − pπ

(1 − pπ)sk

1 − (1 − pπ)sk
=

skp(1 − π)(1 − pπ)sk−1

1 − (1 − pπ)sk

of the expected number of affecteds per unascertained family times the
expected number of unascertained families.
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These considerations lead us to rewrite the updates (2.4) and (2.5) as

pm+1 =

∑
k

[
rk + skpm(1−πm)(1−pmπm)sk−1

1−(1−pmπm)sk

]

∑
k sk[1 + (1−pmπm)sk

1−(1−pmπm)sk
]

πm+1 =
∑

k ak∑
k

[
rk + skpm(1−πm)(1−pmπm)sk−1

1−(1−pmπm)sk

] ,

where all sums extend over the ascertained families alone.

TABLE 2.3. Cystic Fibrosis Data

Siblings s Affecteds r Ascertaineds a Families n
10 3 1 1
9 3 1 1
8 4 1 1
7 3 2 1
7 3 1 1
7 2 1 1
7 1 1 1
6 2 1 1
6 1 1 1
5 3 3 1
5 3 2 1
5 2 1 5
5 1 1 2
4 3 2 1
4 3 1 2
4 2 1 4
4 1 1 6
3 2 2 3
3 2 1 3
3 1 1 10
2 2 2 2
2 2 1 4
2 1 1 18
1 1 1 9

Example 2.6.1 Segregation Analysis of Cystic Fibrosis

The cystic fibrosis data of Crow [3] displayed in Table 2.3 offer an op-
portunity to apply the EM algorithm. In this table the column labeled
“Families n” refers to the number of families showing a particular config-
uration of affected and ascertained siblings. For these data the maximum
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likelihood estimate p̂ = .2679 is consistent with the theoretical value of
p = 1/4 for an autosomal recessive. Starting from p = π = 1/2, the EM
algorithm takes about 20 iterations to converge to the maximum likelihood
estimates p̂ = .2679 and π̂ = .3594.

2.7 Binding Domain Identification

Lawrence and Reilly [8] discuss an EM algorithm for recognizing DNA pro-
tein binding domains. Protein binding is intimately connected with regula-
tion of DNA transcription as discussed in the first two sections of Appendix
A. For instance, promoter domains facilitate the binding of transcription
factors that collectively form a complex initiating RNA synthesis by RNA
polymerase II. The DNA bases occuring within a domain are not absolutely
fixed. The famous TATA box about 10 bases upstream of many genes has
the consensus sequence TAxxxT, where the x bases are variable. This vari-
ability makes domain recognition difficult.

As a toy example of the kind of data encountered, consider the four gene
segments listed in Table 2.4. These are part of a larger data set of 18 E.

TABLE 2.4. CRP Gene Segments

Gene Base Sequence
1 aacgcaatTAATGTGAGTTAGCTCACTCATtaggca..
2 ccattaccgccaaTTGTGTAACAGAGATTACACAAacgcgt..
3 gacaaaaacgagtaagAAAAGTGTCTATAAACACGGCAgaagaa..
4 caatgtctgtggtTTTTTTGATCGTTTTCAAAAAAagcgcc..

coli segments generated by restriction digests, each digest excising a total
of 105 bases [8]. All 18 segments contain a cyclic adenosine monophosphate
receptor protein (CRP) binding domain that is exactly 22 bases long. In
the four segments depicted, bases in the binding domain are capitalized.
For the purposes of this model, we assume that the upstream segments are
independently generated and show no gaps in their binding domains. At
most one domain is permitted per segment.

A fair amount of notation is inevitable in deriving the EM algorithm.
Suppose that there u upstream segments, s sites (base positions) per seg-
ment, d sites covered by a binding domain, and exactly one domain per
segment. Denote the observed base at site j of segment i by yij . The ma-
trix Y = (yij) constitutes the observed data. Each of the yij takes one of
the four values A (adenosine), T (thymine), C (cytosine), or G (guanine).
If Ij is a domain {j, . . . , j+d−1} commencing at site j, then the likelihood
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of the observed data is

g(Y | p) =
u∏

i=1

1
s− d+ 1

s−d+1∑
j=1

∏
k∈Ij

p(k − j + 1, yik)
∏
k �∈Ij

p(0, yik).

Here p(0, b) is the probability that any site outside the binding domain is
occupied by base b, and p(m, b), 1 ≤ m ≤ d, is the probability that position
m within the binding domain is occupied by base b. Each base is assigned
independently according to these probabilities, and each domain is assigned
an initial site independently and uniformly from the set {1, . . . , s− d+ 1}.

We identify the missing data with a matrix Z = (zij) of indicator random
variables. Entry zij determines whether the binding domain in segment i
begins at site j . With this understanding, the loglikelihood of the complete
data X = (Y, Z) reduces to

ln f(X | p) =
u∑

i=1

s−d+1∑
j=1

zij


∑

k∈Ij

ln p(k − j + 1, yik) +
∑
k �∈Ij

ln p(0, yik)


 .

Note here that only one of the zij is nonzero for each i. The E step of the
EM algorithm evaluates the conditional expectation

E(zij | Y, pn) =

∏
k∈Ij

pn(k − j + 1, yik)
∏

k �∈Ij
pn(0, yik)

∑s−d+1
m=1

∏
k∈Im

pn(k −m+ 1, yik)
∏

k �∈Im
pn(0, yik)

using Bayes’ rule. Adapting the reasoning of the ABO example, it is easy
to demonstrate that the M step gives

pn+1(0, b) =
1

u(s− d)

u∑
i=1

s−d+1∑
j=1

E(zij | Y, pn)
∑
k �∈Ij

1{yik=b}

pn+1(m, b) =
1
u

u∑
i=1

s−d+1∑
j=1

E(zij | Y, pn)1{yi,j+m−1=b}.

On convergence, not only does the EM algorithm supply the background
probabilities p(0, b) and the domain probabilities p(m, b), but it also yields
for each site the posterior probability that the site initiates a binding do-
main.

2.8 Problems

1. At some autosomal locus with two alleles R and r, let R be domi-
nant to r. Suppose a random sample of n people contains nr people
with the recessive genotype r/r. Prove that

√
nr/n is the maximum

likelihood estimate of the frequency of allele r under Hardy-Weinberg
equilibrium.
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2. Color blindness is an X-linked recessive trait. Suppose that in a ran-
dom sample there are fB normal females, fb color-blind females, mB

normal males, and mb color-blind males. If n = 2fB +2fb +mB +mb

is the number of genes in the sample, then show that under Hardy-
Weinberg equilibrium the maximum likelihood estimate of the fre-
quency of the color-blindness allele is

p̂b =
−mB +

√
m2

B + 4n(mb + 2fb)
2n

.

Compute the estimate p̂b = .0772 for the data fB = 9032, fb = 40,
mB = 8324, and mb = 725. These data represent an amalgamation
of cases from two distinct forms of color blindness [4]. Protanopia, or
red blindness, is determined by one X-linked locus, and deuteranopia,
or green blindness, by a different X-linked locus.

3. Consider a codominant, autosomal locus with k alleles. In a random
sample of n people, let ni be the number of genes of allele i. Show that
the gene-counting estimates p̂i = ni/(2n) are maximum likelihood
estimates.

4. In forensic applications of DNA fingerprinting, match probabilities
p2

i for homozygotes and 2pipj for heterozygotes are computed [1]. In
practice, the frequencies pi can only be estimated. Assuming codom-
inant alleles and the estimates p̂i = ni/(2n) given in the previous
problem, show that the natural match probability estimates satisfy

E(p̂2
i ) = p2

i +
pi(1 − pi)

2n

Var(p̂2
i ) =

4p3
i (1 − pi)

2n
+O

( 1
n2

)

E(2p̂ip̂j) = 2pipj − 2pipj

2n

Var(2p̂ip̂j) =
4pipj

2n
[pi + pj − 4pipj ] +O

( 1
n2

)
.

(Hint: The ni have joint moment-generating function (
∑

i pie
si)2n.)

5. Consider two loci in Hardy-Weinberg equilibrium, but possibly not
in linkage equilibrium. Devise an EM algorithm for estimating the
gamete frequencies pAB , pAb, paB , and pab, where A and a are the
two alleles at the first locus and B and b are the two alleles at the
second locus [17]. In a random sample of n individuals, let nAABB

denote the observed number of individuals of genotype A/A at the
first locus and of genotype B/B at the second locus. Denote the eight
additional observed double-genotype frequencies similarly. The only
one of these observed numbers entailing any ambiguity is nAaBb; for
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individuals of this genotype, phase cannot be discerned. Now show
that the EM update for pAB is

pm+1,AB =
2nAABB + nAABb + nAaBB + nmAB/ab

2n

nmAB/ab = nAaBb
2pmABpmab

2pmABpmab + 2pmAbpmaB
.

There are similar updates for pAb, paB , and pab, but these can be
dispensed with if one notes that for all m

pA = pmAB + pmAb

pB = pmAB + pmaB

1 = pmAB + pmAb + pmaB + pmab,

where pA and pB are the gene-counting estimates of the frequencies
of alleles A and B. Implement this EM algorithm on the mosquito
data [17] given in Table 2.5. You should find that p̂AB = .73.

TABLE 2.5. Mosquito Data at the Idh1 and Mdh Loci

nAABB = 19 nAABb = 5 nAAbb = 0
nAaBB = 8 nAaBb = 8 nAabb = 0
naaBB = 0 naaBb = 0 naabb = 0

6. In a genetic linkage experiment, AB/ab animals are crossed to mea-
sure the recombination fraction θ between two loci with alleles A and
a at the first locus and alleles B and b at the second locus. In this
design the dominant alleles A and B are in the coupling phase. Ver-
ify that the offspring of an AB/ab×AB/ab mating fall into the four
categories AB, Ab, aB, and ab with probabilities π1 = 1

2 + (1−θ)2

4 ,

π2 = 1−(1−θ)2

4 , π3 = 1−(1−θ)2

4 , and π4 = (1−θ)2

4 , respectively. Devise
an EM algorithm to estimate θ, and apply it to the counts

(y1, y2, y3, y4) = (125, 18, 20, 34)

observed on 197 offspring of such matings. You should find the max-
imum likelihood estimate θ̂ = .2083 [11]. (Hints: Split the first cate-
gory into two so that there are five categories for the complete data.
Reparameterize by setting φ = (1 − θ)2.)

7. In an inbred population, the inbreeding coefficient f is the probability
that two genes of a random person at some locus are both copies of
the same ancestral gene. Assume that there are k codominant alleles
and that pi is the frequency of allele Ai. Show that fpi + (1 − f)p2

i
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is the frequency of a homozygous genotype Ai/Ai and (1 − f)2pipj

is the frequency of a heterozygous genotype Ai/Aj . Suppose that we
observe nij people of genotype Ai/Aj in a random sample. Formulate
an EM algorithm for the estimation of the parameters f, p1, . . . , pk

from the observed data.

8. Consider the data from the London Times [15] for the years 1910 to
1912 reproduced in Table 2.6. The two columns labeled “Deaths i”
refer to the number of deaths of women 80 years and older reported
by day. The columns labeled “Frequency ni” refer to the number of
days with i deaths. A Poisson distribution gives a poor fit to these
data, possibly because of different patterns of deaths in winter and
summer. A mixture of two Poissons provides a much better fit. Under
the Poisson admixture model, the likelihood of the observed data is

9∏
i=0

[
αe−µ1

µi
1

i!
+ (1 − α)e−µ2

µi
2

i!

]ni

,

where α is the admixture parameter and µ1 and µ2 are the means of
the two Poisson distributions.

TABLE 2.6. Death Notices from the London Times

Deaths i Frequency ni Deaths i Frequency ni

0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1

Formulate an EM algorithm for this model. Let θ = (α, µ1, µ2)t and

zi(θ) =
αe−µ1µi

1

αe−µ1µi
1 + (1 − α)e−µ2µi

2

be the posterior probability that a day with i deaths belongs to Pois-
son population 1. Show that the EM algorithm is given by

αm+1 =
∑

i nizi(θm)∑
i ni

µm+1,1 =
∑

i nizi(θm)i∑
i nizi(θm)

µm+1,2 =
∑

i ni[1 − zi(θm)]i∑
i ni[1 − zi(θm)]

.
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From the initial estimates α0 = .3, µ01 = 1.0, and µ02 = 2.5, compute
via the EM algorithm the maximum likelihood estimates α̂ = .3599,
µ̂1 = 1.2561, and µ̂2 = 2.6634. Note how slowly the EM algorithm
converges in this example.

9. In the EM algorithm, demonstrate the identity

∂

∂θi
Q(θ | θn)|θ=θn =

∂

∂θi
L(θn)

for any component θi of θ at any interior point θn of the parameter
domain. Here L(θ) is the loglikelihood of the observed data Y .

10. Suppose that the complete data in the EM algorithm involve N
binomial trials with success probability θ per trial. Here N can be
random or fixed. If M trials result in success, then the complete data
likelihood can be written as θM (1− θ)N−Mc, where c is an irrelevant
constant. The E step of the EM algorithm amounts to forming

Q(θ | θn) = E(M | Y, θn) ln θ + E(N −M | Y, θn) ln(1 − θ) + ln c.

The binomial trials are hidden because only a function Y of them is
directly observed. Show in this setting that the EM update is given
by either of the two equivalent expressions

θn+1 =
E(M | Y, θn)
E(N | Y, θn)

= θn +
θn(1 − θn)

E(N | Y, θn)
d

dθ
L(θn),

where L(θ) is the loglikelihood of the observed data Y [10, 16]. (Hint:
Use Problem 9.)

11. As an example of the hidden binomial trials theory sketched in Prob-
lem 10, consider a random sample of twin pairs. Let u of these pairs
consist of male pairs, v consist of female pairs, and w consist of op-
posite sex pairs. A simple model to explain these data involves a
random Bernoulli choice for each pair dictating whether it consists
of identical or nonidentical twins. Suppose that identical twins oc-
cur with probability p and nonidentical twins with probability 1− p.
Once the decision is made as to whether the twins are identical or
not, then sexes are assigned to the twins. If the twins are identical,
one assignment of sex is made. If the twins are nonidentical, then two
independent assignments of sex are made. Suppose boys are chosen
with probability q and girls with probability 1− q. Model these data
as hidden binomial trials. Using the result of Problem 10, give the
EM algorithm for estimating p and q. What other problems from this
chapter involve hidden binomial trials?
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12. Chun Li has derived an extension of Problem 10 for hidden multino-
mial trials. Let N denote the number of hidden trials, θi the proba-
bility of outcome i of k possible outcomes, and L(θ) the loglikelihood
of the observed data Y . Derive the EM update

θn+1
i = θn

i +
θn

i

E(N | Y, θn)


 ∂

∂θi
L(θn) −

k∑
j=1

θn
j

∂

∂θj
L(θn)


 .

Here the superscripts indicate iteration number.

13. In the spirit of Problem 10, formulate models for hidden Poisson and
exponential trials [16]. If the number of trials is N and the mean per
trial is θ, then show that the EM update in the Poisson case is

θn+1 = θn +
θn

E(N | Y, θn)
d

dθ
L(θn)

and in the exponential case is

θn+1 = θn +
θ2n

E(N | Y, θn)
d

dθ
L(θn),

where L(θ) is the loglikelihood of the observed data Y .

14. Suppose light bulbs have an exponential lifetime with mean θ. Two
experiments are conducted. In the first, the lifetimes y1, . . . , yn of n
independent bulbs are observed. In the second, p independent bulbs
are observed to burn out before time t, and q independent bulbs are
observed to burn out after time t. In other words, the lifetimes in the
second experiment are both left and right censored. Construct an EM
algorithm for finding the maximum likelihood estimate of θ [7].

15. A palindromic DNA string such as ggatcc equals its reverse comple-
ment. Amend the EM algorithm of Section 2.7 so that it handles
palindromic binding domain patterns. What restrictions does this
imply on the domain probabilities p(m, b)?
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3

Newton’s Method and Scoring

3.1 Introduction

This chapter explores some alternatives to maximum likelihood estimation
by the EM algorithm. Newton’s method and scoring usually converge
faster than the EM algorithm. However, the trade-offs of programming
ease, numerical stability, and speed of convergence are complex, and sta-
tistical geneticists should be fluent in a variety of numerical optimization
techniques for finding maximum likelihood estimates. Outside the realm of
maximum likelihood, Bayesian procedures have much to offer in small to
moderate-sized problems. For those uncomfortable with pulling prior distri-
butions out of thin air, empirical Bayes procedures can be an appealing
compromise between classical and Bayesian methods. This chapter illus-
trates some of these well-known themes in the context of allele frequency
estimation and linkage analysis.

3.2 Newton’s Method

In iterating toward a maximum point θ̂, Newton’s method and scoring rely
on quadratic approximations to the loglikelihood L(θ) of a model. To mo-
tivate Newton’s method, let us define the score dL(θ) to be the differential
or row vector of first partial derivatives of L(θ) and the observed infor-
mation −d2L(θ) to be the Hessian matrix of second partial derivatives
of −L(θ). A second-order Taylor’s expansion around the current point θn

gives

L(θ) ≈ L(θn) + dL(θn)(θ − θn) +
1
2
(θ − θn)td2L(θn)(θ − θn). (3.1)

In Newton’s method, one maximizes the quadratic approximation on the
right of (3.1) by setting its gradient

dL(θn)t + d2L(θn)(θ − θn) = 0

and solving for the next iterate

θn+1 = θn − d2L(θn)−1dL(θn)t.

Obviously, any stationary point of L(θ) is a fixed point of Newton’s algo-
rithm.
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There are two potential problems with Newton’s method. First, it can be
expensive computationally to evaluate the observed information. Second,
far from θ̂, Newton’s method is equally happy to head uphill or downhill.
In other words, Newton’s method is not an ascent algorithm in the sense
that L(θn+1) > L(θn). To generate an ascent algorithm, we can replace the
observed information −d2L(θn) by a positive definite approximating matrix
An. With this substitution, the proposed increment ∆θn = A−1

n dL(θn)t, if
sufficiently contracted, forces an increase in L(θ). For a nonstationary point,
this assertion follows from the first-order Taylor’s expansion

L(θn + α∆θn) − L(θn) = dL(θn)α∆θn + o(α)
= αdL(θn)A−1

n dL(θn)t + o(α),

where the error ratio o(α)
α → 0 as the positive contraction constant α→ 0.

Thus, a positive definite modification of the observed information combined
with some form of backtracking leads to an ascent algorithm. The simplest
form of backtracking is step-halving. If the initial increment ∆θn does not
produce an increase in L(θ), then try 1

2∆θn. If 1
2∆θn fails, then try 1

4∆θn,
and so forth.

3.3 Scoring

A variety of ways of approximating the observed information exists. The
method of steepest ascent replaces the observed information by the iden-
tity matrix I . The usually more efficient scoring algorithm replaces the ob-
served information by the expected information J(θ) = E[−d2L(θ)]. The
alternative representation J(θ) = Var[dL(θ)] of J(θ) as a covariance matrix
shows that it is nonnegative definite [8, 18]. An extra dividend of scoring is
that the inverse matrix J(θ̂)−1 immediately supplies the asymptotic vari-
ances and covariances of the maximum likelihood estimate θ̂ [8, 18]. Scoring
and Newton’s method share this advantage since the observed information
is asymptotically equivalent to the expected information under reasonably
natural assumptions. The available evidence indicates that the observed
information matrix is slightly superior to the expected information matrix
in estimating parameter asymptotic standard errors [7].

It is possible to compute J(θ) explicitly for exponential families of
densities [10]. Such densities take the form

f(x | θ) = g(x)eβ(θ)+h(x)tγ(θ) (3.2)

relative to some measure ν, which in practice is usually either Lebesgue
measure or counting measure. Most of the distributional families commonly
encountered in statistics are exponential families. The score and expected
information can be expressed in terms of the mean vector µ(θ) = E[h(X)]
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and covariance matrix Σ(θ) = Var[h(X)] of the sufficient statistic h(X).
Several authors [2, 3, 10] have noted the representations

dL(θ) = [h(x) − µ(θ)]tΣ(θ)−1dµ(θ) (3.3)
J(θ) = dµ(θ)tΣ(θ)−1dµ(θ), (3.4)

where dµ(θ) is the matrix of partial derivatives of µ(θ). If the vector γ(θ)
in definition (3.2) is linear in θ, then

J(θ) = −d2L(θ) = −d2β(θ),

and scoring coincides with Newton’s method.
Although we will not stop to derive the general formulas (3.3) and (3.4),

it is instructive to consider the special case of a multinomial distribution
with m trials and success probability pi for category i. If X = (X1, . . . , Xl)t

denotes the random vector of counts and θ the model parameters, then the
loglikelihood of the observed data X = x is

L(θ) =
l∑

i=1

xi ln pi(θ) + ln
(

m

x1 . . . xl

)
,

and consequently the score vector dL(θ) has entries

∂

∂θj
L(θ) =

l∑
i=1

xi

pi(θ)
∂

∂θj
pi(θ).

Here θj is the jth component of θ. Because ∂
∂θj

∑l
i=1 pi(θ) = ∂

∂θj
1 = 0, the

expected information matrix J(θ) has entries

J(θ)jk = E
[
− ∂2

∂θj∂θk
L(θ)

]

=
l∑

i=1

E(Xi)
1

pi(θ)2
∂

∂θj
pi(θ)

∂

∂θk
pi(θ)

−
l∑

i=1

E(Xi)
1

pi(θ)
∂2

∂θj∂θk
pi(θ)

= m

l∑
i=1

1
pi(θ)

∂

∂θj
pi(θ)

∂

∂θk
pi(θ) (3.5)

−m

l∑
i=1

∂2

∂θj∂θk
pi(θ)

= m

l∑
i=1

1
pi(θ)

∂

∂θj
pi(θ)

∂

∂θk
pi(θ).
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These results for the multinomial distribution are summarized in Table
3.1, which displays the loglikelihood, score vector, and expected information
matrix for some commonly applied exponential families. In the table,X = x
represents a single observation from the binomial, Poisson, and exponential
families. The mean E(X) is denoted by µ for the Poisson and exponential
distributions. For the binomial family, we express the mean E(X) = mp
in terms of the number of trials m and the success probability p per trial.
This is similar to the conventions adopted above for the multinomial family.
Finally, the differentials dp, dpi, and dµ appearing in the table are row
vectors of partial derivatives with respect to the entries of θ.

TABLE 3.1. Score and Information for Some Exponential Families

Distribution L(θ) dL(θ) J(θ)

Binomial x ln p+
(m− x) ln(1 − p)

x−mp
p(1−p)dp

m
p(1−p)dp

tdp

Multinomial
∑

i xi ln pi

∑
i

xi

pi
dpi

∑
i

m
pi
dpt

idpi

Poisson −µ+ x lnµ −dµ+ x
µdµ

1
µdµ

tdµ

Exponential −lnµ− x
µ − 1

µdµ+ x
µ2 dµ

1
µ2 dµ

tdµ

Example 3.3.1 Inbreeding in Northeast Brazil

Data cited by Yasuda [20] on haptoglobin genotypes from 1,948 people
from northeast Brazil are recorded in column 2 of Table 3.2. The hap-
toglobin locus has three codominant alleles G1, G2, and G3 and six corre-
sponding genotypes. The slight excess of homozygotes in these data sug-
gests inbreeding. Now the degree of inbreeding in a population is captured
by the inbreeding coefficient f , which is formally defined as the probability
that the two genes of a random person at a given locus are copies of the
same ancestral gene. Column 3 of Table 3.2 gives theoretical haptoglobin
genotype frequencies under the usual conditions necessary for genetic equi-
librium except that inbreeding is now allowed. To illustrate how these fre-
quencies are derived by conditioning, consider the homozygous genotype
G1/G1. If the two genes of a random person are copies of the same an-
cestral gene, then the two genes are G1 alleles with probability p1, the
population frequency of the G1 allele. On the other hand, if the two genes
are not copies of the same ancestral gene, then they are independently the
G1 allele with probability p2

1. Thus, G1/G1 has frequency fp1 + (1− f)p2
1.

For a heterozygous genotype such as G1/G2, it is impossible for the genes
to be copies of the same ancestral gene, and the appropriate genotype fre-
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quency is (1 − f)2p1p2.

TABLE 3.2. Brazilian Genotypes at the Haptoglobin Locus

Genotype Observed Number Genotype Frequency

G1/G1 108 fp1 + (1 − f)p2
1

G1/G2 196 (1 − f)2p1p2

G1/G3 429 (1 − f)2p1p3

G2/G2 143 fp2 + (1 − f)p2
2

G2/G3 513 (1 − f)2p2p3

G3/G3 559 fp3 + (1 − f)p2
3

Because p3 = 1 − p1 − p2, this model effectively has only the three
parameters (p1, p2, f). From the initial values, (p01, p02, f0) = ( 1

3 ,
1
3 , .02),

scoring converges in five iterations to the maximum likelihood estimates

(p̂1, p̂2, f̂) = (.2157, .2554, .0431).

If we invert the expected information matrix, then the asymptotic standard
errors of p̂1, p̂2, and f̂ are .0067, .0071, and .0166, respectively. If we invert
the observed information matrix, the first two standard errors remain the
same and the third changes to .0165. The asymptotic correlations of f̂
with p̂1 and p̂2 are less than .02 in absolute value regardless of how they
are computed.

3.4 Application to the Design of Linkage
Experiments

In addition to being useful in the scoring algorithm, expected information
provides a criterion for the rational design of genetic experiments. In animal
breeding, it is possible to set up test matings for the detection of linkage
and estimation of recombination fractions. Consider two linked, codomi-
nant loci A and B with alleles A1 and A2 and B1 and B2, respectively.
The simplest experimental design is the phase-known, double-backcross
mating A1B1/A2B2 × A1B1/A1B1. This mating notation conveys, for ex-
ample, that the left parent has one haplotype with alleles A1 and B1 and
another haplotype with alleles A2 and B2. Offspring of this mating can be
categorized as recombinant with probability θ and nonrecombinant with
probability 1 − θ. In view of equation (3.5), the expected information per
offspring is

J(θ) =
1
θ

+
1

1 − θ
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=
1

θ(1 − θ)
. (3.6)

The efficiencies of mating designs can be compared based on their ex-
pected information numbers J(θ) [17]. The phase-known, double-inter-
cross mating A1B1/A2B2×A1B1/A2B2 offers an alternative to the double-
backcross mating. Table 3.3 shows nine phenotypic categories and their as-
sociated probabilities (column 3) for offspring of this mating. Since some
of these probabilities are identical, the corresponding categories can be col-
lapsed. Thus, categories 1 and 9 can be combined into a single category
with probability (1− θ)2/2; categories 2, 4, 6, and 8 can be combined into
a single category with probability 2θ(1 − θ); and categories 5 and 7 can
be combined into a single category with probability θ2/2. Category 3 has
a unique probability. Based on these four redefined categories and formula
(3.5), the expected information per offspring is

J(θ) = 4 +
2(1− 2θ)2

θ(1 − θ)
+

2(1− 2θ)2

θ2 + (1 − θ)2
. (3.7)

TABLE 3.3. Offspring Probabilities for a Double-Intercross Mating

Category i Phenotype c× c pi c× r pi

1 A1/A1, B1/B1
(1−θ)2

4
θ(1−θ)

4

2 A1/A1, B1/B2
θ(1−θ)

2
θ2+(1−θ)2

4

3 A1/A2, B1/B2
θ2+(1−θ)2

2 θ(1 − θ)

4 A1/A2, B1/B1
θ(1−θ)

2
θ2+(1−θ)2

4

5 A1/A1, B2/B2
θ2

4
θ(1−θ)

4

6 A1/A2, B2/B2
θ(1−θ)

2
θ2+(1−θ)2

4

7 A2/A2, B1/B1
θ2

4
θ(1−θ)

4

8 A2/A2, B1/B2
θ(1−θ)

2
θ2+(1−θ)2

4

9 A2/A2, B2/B2
(1−θ)2

4
θ(1−θ)

4

Besides comparing the double-backcross mating to the coupling × cou-
pling, double-intercross mating, we can compare both to the phase-known,
coupling×repulsion, double-intercross mating A1B1/A2B2×A1B2/A2B1.
Column 4 of Table 3.3 now provides the correct probabilities for the nine
phenotypic categories. The odd-numbered categories of Table 3.3 collapse
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FIGURE 3.1. Graph of Linkage Information Numbers

to a single category with probability 2θ(1 − θ), and the even-numbered
categories to a single category with probability θ2 + (1 − θ)2. In this case,
the expected information reduces to

J(θ) =
2(1 − 2θ)2

θ(1 − θ)
+

4(1 − 2θ)2

θ2 + (1 − θ)2
. (3.8)

In Figure 3.1 we plot the information numbers (3.6), (3.7), and (3.8) as
functions of θ in circles, in boxes, and as a smooth curve, respectively. (See
also Table 3.8 of [17].) Inspection of these curves shows that both inter-
cross designs have nearly twice the information content as the backcross
design for θ small. Beyond about θ = .1, the intercross designs begin to
degrade relative to the backcross design. In the neighborhood of θ = .5,
the backcross design and the coupling×coupling, double-intercross design
have about equivalent information while the coupling×repulsion, double-
intercross design is of no practical value. In general, if one design has α
times as much information per offspring as a second design, then it takes α
times as many offspring for the second design to achieve the same precision
in estimating θ as the first design.

3.5 Quasi-Newton Methods

Quasi-Newton methods of maximum likelihood update the current ap-
proximation An to the observed information −d2L(θn) by a low-rank per-
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turbation satisfying a secant condition. The secant condition originates
from the first-order Taylor’s approximation

dL(θn)t − dL(θn+1)t ≈ d2L(θn+1)(θn − θn+1).

If we set

gn = dL(θn)t − dL(θn+1)t

sn = θn − θn+1,

then the secant condition is −An+1sn = gn. The unique symmetric, rank-
one update to An satisfying the secant condition is furnished by Davidon’s
formula [5]

An+1 = An − cnvnv
t
n, (3.9)

with constant cn and vector vn specified by

cn =
1

(gn +Ansn)tsn
(3.10)

vn = gn +Ansn.

Until recently, symmetric rank-two updates such as those associated with
Davidon, Fletcher, and Powell (DFP) or with Broyden, Fletcher, Gold-
farb, and Shanno (BFGS) were considered superior to the more parsimo-
nious update (3.9). However, numerical analysts [4, 11] are now beginning
to appreciate the virtues of Davidon’s formula. To put it into successful
practice, monitoring An for positive definiteness is necessary. An immedi-
ate concern is that the constant cn is undefined when the inner product
(gn + Ansn)tsn = 0. In such situations, or when (gn + Ansn)tsn is small
compared to vt

nvn, one can ignore the secant requirement and simply take
An+1 = An.

If An is positive definite and cn ≤ 0, then An+1 is certainly positive
definite. If cn > 0, then it may be necessary to shrink cn to maintain positive
definiteness. In order for An+1 to be positive definite, it is necessary that

vt
nA

−1
n [An − cnvnv

t
n]A−1

n vn = vt
nA

−1
n vn[1 − cnv

t
nA

−1
n vn]

> 0.

In other words, 1 − cnv
t
nA

−1
n vn > 0 must hold. Conversely, this condition

is sufficient to insure positive definiteness of An+1. This fact can be most
easily demonstrated by noting the Sherman-Morrison formula [15]

[An − cnvnv
t
n]−1 = A−1

n +
cn

1 − cnvt
nA

−1
n vn

A−1
n vn[A−1

n vn]t. (3.11)

Formula (3.11) shows that [An − cnvnv
t
n]−1 exists and is positive definite

under the stated condition. Since the inverse of a positive definite matrix
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is positive definite, it follows that An − cnvnv
t
n is positive definite as well.

This necessary and sufficient condition suggests that cn be replaced by
min{cn, (1 − ε)/(vt

nA
−1
n vn)} in updating An, where ε is some constant in

(0, 1).

3.6 The Dirichlet Distribution

In this section, we briefly discuss the Dirichlet distribution. In the next
section, we use it to construct an empirical Bayes procedure for estimating
allele frequencies when genotype data are available from several different
populations. As is often the case, the Bayes procedure provides an inter-
esting and useful alternative to maximum likelihood estimation.

The Dirichlet distribution is a natural generalization of the beta dis-
tribution [12]. To generate a Dirichlet random vector Y = (Y1, . . . , Yk)t, we
take k independent gamma random variables X1, . . . , Xk of unit scale and
form the ratios

Yi =
Xi∑k

j=1Xj

.

By “unit scale” we mean that Xi has density xαi−1
i e−xi/Γ(αi) on (0,∞)

for some αi > 0. Clearly, each Yi ≥ 0 and
∑k

i=1 Yi = 1.
We can find the joint density of (Y1, . . . , Yk−1) by considering the larger

random vector Z = (Y1, . . . , Yk−1, S)t, where S =
∑k

i=1Xi. The inverse
transformation

x = T (z)

=



y1s
...
yks




with yk = 1 −∑k−1
i=1 yi has Jacobian

det(dT ) = det




s 0 . . . 0 y1
0 s . . . 0 y2
...

...
. . .

...
...

0 0 . . . s yk−1

−s −s . . . −s yk




= det




s 0 . . . 0 y1
0 s . . . 0 y2
...

...
. . .

...
...

0 0 . . . s yk−1

0 0 . . . 0 1




= sk−1.
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It follows that the density function of Z is

[
k∏

i=1

yαi−1
i

Γ(αi)

]
s
∑

k

i=1
αi−1e−s.

Integrating out the variable s, we find that (Y1, . . . , Yk−1)t has density

Γ(α.)∏k
i=1 Γ(αi)

k∏
i=1

yαi−1
i , (3.12)

where α. =
∑k

i=1 αi. It is more convenient to think of the density (3.12) as
applying to the whole random vector Y . From this perspective, the density
exists relative to the uniform measure on the unit simplex

∆k =
{
(y1, . . . , yk)t : y1 > 0, . . . , yk > 0,

k∑
i=1

yi = 1
}
.

Once the density (3.12) is in hand, the elegant moment formula

E
( k∏

i=1

Y mi

i

)
=

Γ(α.)∏k
i=1 Γ(αi)

∫

∆k

k∏
i=1

ymi+αi−1
i dy

=
Γ(α.)

Γ(m. + α.)

k∏
i=1

Γ(mi + αi)
Γ(αi)

(3.13)

follows immediately from the fact that the density has total mass 1. The
moment formula (3.13) and the factorial property Γ(t + 1) = tΓ(t) of the
gamma function together yield the mean E(Yi) = αi/α..

3.7 Empirical Bayes Estimation of Allele
Frequencies

Consider a locus with k codominant alleles. If in a sample of n people
allele i appears ni times, then the maximum likelihood estimate of the ith
allele frequency is ni/(2n). This classical estimate based on the multinomial
distribution can be contrasted to a Bayes estimate using a Dirichlet prior
for the allele frequencies p1, . . . , pk [13].

The Dirichlet prior is a conjugate prior for the multinomial distribution
[14]. This means that if the allele frequency vector p = (p1, . . . , pk)t has
a Dirichlet prior with parameters α1, . . . , αk, then taking into account the
data, p has a Dirichlet posterior with parameters n1 +α1, . . . , nk +αk. We
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deduce this fact by applying the moment formula (3.13) in the conditional
density computation

Γ(α.)∏
k

i=1
Γ(αi)

(
2n

n1...nk

)∏k
i=1 p

ni+αi−1
i

Γ(α.)∏
k

i=1
Γ(αi)

(
2n

n1...nk

) ∫
∆k

∏k
i=1 q

ni+αi−1
i dq

=
Γ(2n+ α.)∏k
i=1 Γ(ni + αi)

k∏
i=1

pni+αi−1
i .

The posterior mean (ni +αi)/(2n+α.) is a strongly consistent, asymptot-
ically unbiased estimator of pi.

The primary drawback of being Bayesian in this situation is that there
is no obvious way of selecting a reasonable prior. However, if data from
several distinct populations are available, then one can select an appropriate
prior empirically. Consider the marginal distribution of the allele counts
(N1, . . . , Nk)t in a sample of genes from a single population. Integrating
out the prior on the allele frequency vector p = (p1, . . . , pk)t yields the
predictive distribution [16]

Pr(N1 = n1, . . . , Nk = nk)

=
(

2n
n1 · · ·nk

)
Γ(α.)

Γ(2n+ α.)

k∏
i=1

Γ(ni + αi)
Γ(αi)

. (3.14)

This distribution is known as the Dirichlet-multinomial distribution.
Its parameters are the α’s rather than the p’s.

With independent data from several distinct populations, one can esti-
mate the parameter vector α = (α1, . . . , αk)t of the Dirichlet-multinomial
distribution by maximum likelihood. The estimated α can then be recycled
to compute the posterior means of the allele frequencies for the separate
populations. This interplay between frequentist and Bayesian techniques is
typical of the empirical Bayes method.

To estimate the parameter vector α characterizing the prior, we again
revert to Newton’s method. We need the score dL(α) and the observed
information −d2L(α) for each population. Based on the likelihood (3.14),
elementary calculus shows that the score has entries

∂

∂αi
L(α) = ψ(α.) − ψ(2n+ α.) + ψ(ni + αi) − ψ(αi), (3.15)

where ψ(s) = d
ds ln Γ(s) is the digamma function [9]. The observed infor-

mation has entries

− ∂2

∂αi∂αj
L(α) = −ψ′(α.) + ψ′(2n+ α.) (3.16)

−1{i=j}[ψ′(ni + αi) − ψ′(αi)],
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where 1{i=j} is the indicator function of the event {i = j}, and where ψ′(s)
is the trigammaTrigamma function function d2

ds2 ln Γ(s) [9]. The digamma
and trigamma functions appearing in the expressions (3.15) and (3.16)
should not be viewed as a barrier to computation since good software for
evaluating these transcendental functions does exist [1, 19].

Equation (3.16) for a single population can be summarized in matrix
form by

−d2L(α) = D − c11t, (3.17)

where D is a diagonal matrix with ith diagonal entry

di = ψ′(αi) − ψ′(ni + αi),

c is the constant ψ′(α.) − ψ′(2n+ α.), and 1 is a column vector of all 1’s.
Because the trigamma function is decreasing [9], di > 0 when ni > 0. For
the same reason, c > 0. Since the representation (3.17) is preserved under
finite sums, it holds, in fact, for the entire sample.

The observed information matrix (3.17) is the sum of a diagonal matrix,
which is trivial to invert, plus a symmetric, rank-one perturbation. From
our discussion of Davidon’s symmetric, rank-one update, we know how to
correct the observed information when it fails to be positive definite. A
safeguarded Newton’s method can be successfully implemented using the
Sherman-Morrison formula to invert −d2L(α) or its substitute.

TABLE 3.4. Allele Counts in Four Subpopulations

Allele White Black Chicano Asian
5 2 0 0 0
6 84 50 80 16
7 59 137 128 40
8 41 78 26 8
9 53 54 55 68

10 131 51 95 14
11 2 0 0 7
12 0 0 0 1

Total 2n 372 370 384 154

Example 3.7.1 Houston Data on the HUMTH01 Locus

The data of Edwards et al. [6] on the eight alleles of the HUMTH01
locus on chromosome 11 are reproduced in Table 3.4. The allele names for
this tandem repeat locus refer to numbers of repeat units. From the four
separate Houston subpopulations of whites, blacks, Chicanos, and Asians,
the eight α’s are estimated by maximum likelihood to be .11, 4.63, 7.33,
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TABLE 3.5. Classical and Bayesian Allele Frequency Estimates

Allele White Black Chicano Asian
5 .0054 .0000 .0000 .0000

.0053 .0003 .0003 .0006
6 .2258 .1351 .2083 .1039

.2227 .1380 .2064 .1147
7 .1586 .3703 .3333 .2597

.1667 .3645 .3301 .2630
8 .1102 .2108 .0677 .0519

.1105 .2045 .0707 .0609
9 .1425 .1459 .1432 .4416

.1465 .1498 .1471 .4073
10 .3522 .1378 .2474 .0909

.3424 .1421 .2445 .1070
11 .0054 .0000 .0000 .0455

.0057 .0007 .0007 .0404
12 .0000 .0000 .0000 .0065

.0002 .0002 .0002 .0061
Sample
Size 2n 372 370 384 154

2.97, 5.32, 5.26, .27, and .10. The large differences in the estimated α’s
suggest that arbitrarily invoking a reference prior with all α’s equal would
be a mistake in this problem.

Using the estimated α’s, Table 3.5 compares the maximum likelihood es-
timates (first row) and posterior mean estimates (second row) of the allele
frequencies within each subpopulation. It is noteworthy that all posterior
means are within one standard error of the maximum likelihood estimates.
(These standard errors are given in Table 2 of [6].) Nonetheless, the empiri-
cal Bayes procedure does tend to moderate the extremes in estimated allele
frequencies seen in the different subpopulations. In particular, all posterior
means are positive. The maximum likelihood estimates suggest that those
alleles failing to appear in a sample are absent in the corresponding sub-
population. The empirical Bayes estimates suggest more reasonably that
such alleles are simply rare in the subpopulation.

3.8 Empirical Bayes Estimation of Haplotype
Frequencies

Estimation of haplotype frequencies is even more fraught with uncertainty
than estimation of allele frequencies. Many haplotypes are so rare that they
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do not appear in most population samples. In the absence of data to the
contrary, one can argue that it is reasonable to steer haplotype frequency
estimates toward linkage equilibrium. From an empirical Bayesian perspec-
tive, the most natural equilibrium frequencies can be found by computing
allele frequency estimates at each locus and taking products. We build on
this insight by choosing a Dirichlet prior whose mode occurs at these es-
timated haplotype frequencies. A short calculation shows that the mode
of the Dirichlet density (3.12) reduces to the point p with coordinates
pi = βi/β, where βi = αi − 1 and β = α. − k. Thus we choose βi so
that the ratio βi/β coincides with the frequency of the ith haplotype under
linkage equilibrium using the estimated allele frequencies. These choices do
not determine β, which specifies the overall strength of the prior.

Problem 5 of Chapter 2 discusses the standard EM algorithm for maxi-
mum likelihood estimation of haplotype frequencies from a random sample
of individuals. The Bayesian version of the EM algorithm adds β pseudo-
haplotypes to the various haplotype classes in proportion to their linkage
equilibrium frequencies βi/β. Problem 12 of this chapter shows how to in-
clude these pseudo-haplotypes in the haplotype counting update of the EM
algorithm.

3.9 Problems

1. Let f(x) be a real-valued function whose Hessian matrix ( ∂2

∂xi∂xj
f)

is positive definite throughout some convex open set U of Rm. For
u �= 0 and x ∈ U , show that the function t → f(x + tu) of the real
variable t is strictly convex on {t : x + tu ∈ U}. Use this fact to
demonstrate that f(x) can have at most one local minimum point on
any convex subset of U .

2. Apply the result of Problem 1 to show that the loglikelihood of the
observed data in the ABO example of Chapter 2 is strictly concave
and therefore possesses a single global maximum. Why does the max-
imum occur on the interior of the feasible region?

3. Show that Newton’s method converges in one iteration to the maxi-
mum of the quadratic function

L(θ) = d+ etθ +
1
2
θtFθ

if the symmetric matrix F is negative definite.

4. Verify the loglikelihood, score, and expected information entries in
Table 3.1 for the binomial, Poisson, and exponential families.
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5. A family of discrete density functions pn(θ) defined on {0, 1, . . .} and
indexed by a parameter θ > 0 is said to be a power-series family if
for all n

pn(θ) =
cnθ

n

g(θ)
, (3.18)

where cn ≥ 0 and where g(θ) =
∑∞

k=0 ckθ
k is the appropriate normal-

izing constant. If X1, . . . , Xm is a random sample from the discrete
density (3.18) with observed values x1, . . . , xm, then show that the
maximum likelihood estimate of θ is a root of the equation

1
m

m∑
i=1

xi =
θg′(θ)
g(θ)

.

Prove that the expected information in a single observation is

J(θ) =
σ2(θ)
θ2

,

where σ2(θ) is the variance of the density (3.18).

6. Let the m independent random variables X1, . . . , Xm be normally
distributed with means µi(θ) and variances σ2/wi, where the wi are
known constants. From observed values X1 = x1, . . . , Xm = xm, one
can estimate the mean parameters θ and the variance parameter σ2

simultaneously by the scoring algorithm. Prove that scoring updates
θ by

θn+1 (3.19)

= θn +
[ m∑

i=1

widµi(θn)tdµi(θn)
]−1 m∑

i=1

wi[xi − µi(θn)]dµi(θn)t

and σ2 by

σ2
n+1 =

1
m

m∑
i=1

wi[xi − µi(θn)]2.

In the least-squares literature, the scoring update of θ is better known
as the Gauss-Newton algorithm.

7. In the Gauss-Newton algorithm (3.19), the matrix

m∑
i=1

widµi(θn)tdµi(θn)
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can be singular or nearly so. To cure this ill, Marquardt suggested
substituting

An =
m∑

i=1

widµi(θn)tdµi(θn) + λI

for it and iterating according to

θn+1 = θn +A−1
n

m∑
i=1

wi[xi − µi(θn)]dµi(θn)t. (3.20)

Prove that the increment ∆θn = θn+1 − θn proposed in equation
(3.20) minimizes the criterion

1
2

m∑
i=1

wi[xi − µi(θn) − dµi(θn)∆θn]2 +
λ

2
‖∆θn‖2

2.

8. Consider the quadratic function

L(θ) = −(1, 1)θ− 1
2
θt

(
2 1
1 1

)
θ

defined on R2. Compute the iterates of the quasi-Newton scheme

θn+1 = θn +A−1
n dL(θn)t

starting from θ1 = (0, 0)t and A1 = −
(

1 0
0 1

)
and using Davidon’s

update (3.9).

9. For symmetric matrices A and B, define A � 0 to mean that A is
nonnegative definite and A � B to mean that A − B � 0. Show that
A � B and B � C imply A � C. Also show that A � B and B � A
imply A = B. Thus, � induces a partial order on the set of symmetric
matrices.

10. In the notation of Problem 9, demonstrate that two positive definite
matrices A = (aij) and B = (bij) satisfy A�B if and only they satisfy
B−1 �A−1. If A �B, then prove that detA ≥ detB, trA ≥ trB, and
aii ≥ bii for all i. (Hints: A � B is equivalent to xtAx ≥ xtBx for all
vectors x. Thus, A � B if and only if I � A−1/2BA−1/2 if and only if
all eigenvalues of A−1/2BA−1/2 are ≤ 1.)

11. Let X = (X1, . . . , Xm)t follow a multinomial distribution with n
trials and m categories. If the success probability for category i is θi
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for 1 ≤ i ≤ m− 1 and 1−∑m−1
j=1 θj for i = m, then show that X has

expected information

J(θ) = n




θ−1
1 0 · · · 0
0 θ−1

2 · · · 0
...

...
. . .

...
0 0 · · · θ−1

m−1


+

n

1 −∑m−1
j=1 θj

11t,

where 1 is a column vector of ones.

12. In the setting of the EM algorithm, suppose that Y is the observed
data and X is the complete data. Let Y and X have expected infor-
mation matrices J(θ) and I(θ), respectively. Prove that I(θ) � J(θ)
in the notation of Problem 9. If we could redesign our experiment so
that X is observed directly, then invoke Problem 10 and argue that
the standard error of the maximum likelihood estimate of any com-
ponent θi will tend to decrease. (Hints: Using the notation of Section
2.4, let h(X | θ) = f(X | θ)/g(Y | θ) and prove that

I(θ) − J(θ) = E{E[−d2 lnh(X | θ) | Y, θ]}.

The inner expectation on the right of this equation is an expected
information.)

13. As an application of Problems 10, 11 and 12, consider the estima-
tion of haplotype frequencies from a random sample of people who
are genotyped at the same linked, codominant loci. The resulting
multilocus genotypes lack phase. Find an explicit upper bound on
the expected information matrix for the haplotype frequencies and
an explicit lower bound on the standard error of each estimated fre-
quency. (Hints: The complete data specify phase. For the standard-
error bound, use the Sherman-Morrison formula.)

14. Let Y = (Y1, . . . , Yk)t follow a Dirichlet distribution with parameters
α1, . . . , αk. Compute Var(Yi) and Cov(Yi, Yj) for i �= j. Also show
that (Y1 + Y2, Y3, . . . , Yk)t has a Dirichlet distribution.

15. In the notation of Problem 14, find the score and expected infor-
mation of a single observation from the Dirichlet distribution. (Hint:
In calculating the expected information, take the expectation of the
observed information rather than the covariance matrix of the score.)

16. Suppose n unrelated people are sampled at a codominant locus with k
alleles. If Ni = ni genes of allele type i are counted, and if a Dirichlet
prior is assumed with parameters α1, . . . , αk, then we have seen that
the allele frequency vector p = (p1, . . . , pk)t has a posterior Dirichlet
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distribution. Use formula (3.13) and show that

E(p2
i | N1 = n1, . . . , Nk = nk) =

(ni + αi)2

(2n+ α.)2

Var(p2
i | N1 = n1, . . . , Nk = nk) =

(ni + αi)4

(2n+ α.)4
−
[

(ni + αi)2

(2n+ α.)2

]2

E(2pipj | N1 = n1, . . . , Nk = nk) = 2
(ni + αi)(nj + αj)

(2n+ α.)2

Var(2pipj | N1 = n1, . . . , Nk = nk) =
4(ni + αi)2(nj + αj)2

(2n+ α.)4

−
[
2(ni + αi)(nj + αj)

(2n+ α.)2

]2

,

where xr = x(x + 1) · · · (x + r − 1) denotes a rising factorial power.
It is interesting that the above mean expressions entail

E(p2
i | N1 = n1, . . . , Nk = nk) > p̃2

i

E(2pipj | N1 = n1, . . . , Nk = nk) < 2p̃ip̃j ,

where p̃i and p̃j are the posterior means of pi and pj .

17. Problem 5 of Chapter 2 considers haplotype frequency estimation for
two linked, biallelic loci. The EM algorithm discussed there relies on
the allele-counting estimates pA, pa, pB , and pb.

(a) Construct the Dirichlet prior from these estimates mentioned
in Section 3.8 and devise an EM algorithm that maximizes the
product of the prior and the likelihood of the observed data. In
particular, show that the EM update for pAB is

pm+1,AB =
2nAABB + nAABb + nAaBB + nmAB/ab + βAB

2n+ β

nmAB/ab = nAaBb
2pmABpmab

2pmABpmab + 2pmAbpmaB
,

where βAB = αAB − 1 and β = α− 4. There are similar updates
for pAb, paB , and pab. (Hint: The log prior passes untouched
through the conditional expectation of the E step of the EM
algorithm.)

(b) Implement this EM algorithm on the mosquito data given in
Table 2.5 of Chapter 2 for the value α − 4 = 10 and starting
from the estimated linkage equilibrium frequencies. You should
find that p̂AB = .717, p̂Ab = .083, p̂aB = .121, and p̂ab = .079.

(c) Describe how you would generalize the algorithm to more than
two loci and more than two alleles per locus.
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4

Hypothesis Testing and
Categorical Data

4.1 Introduction

Most statistical geneticists are frequentists, and fairly traditional ones at
that. In testing statistical hypotheses, they prefer pure significance tests
or likelihood ratio tests based on large sample theory. Although one could
easily dismiss this conservatism as undue reverence for Karl Pearson and
R. A. Fisher, it is grounded in the humble reality of geneticists’ inability
to describe precise alternative hypotheses and to impose convincing priors.
In the first part of this chapter, we will review by way of example the large
sample methods summarized so admirably by Cavalli-Sforza and Bodmer
[6], Elandt-Johnson [11], and Weir [44]. Then we will move on to modern
elaborations of frequentist tests for contingency tables. Part of the nov-
elty here is in designing tests sensitive to certain types of departures from
randomness. Permutation procedures permit approximation of the exact
p-values for these tests and consequently relieve our anxieties about large
sample approximations [28].

4.2 Hypotheses About Genotype Frequencies

An obvious question of interest to a geneticist is whether a trait satisfies
Hardy-Weinberg equilibrium in a particular population. If the trait is not in
Hardy-Weinberg equilibrium, then two explanations are possible. First, the
genetic model for the trait may be incorrect. For instance, a one-locus model
is inappropriate for a two-locus trait. If the model is basically correct, then
the further population assumptions necessary for Hardy-Weinberg equilib-
rium may not be met. Thus, forces such as selection and migration may be
distorting the Hardy-Weinberg proportions.

Our aim in this section is to discuss simple likelihood methods for testing
Hardy-Weinberg proportions. We emphasize likelihood ratio tests rather
than the usual chi-square tests. The two types of tests are similar, but
likelihood ratio tests extend more naturally to other statistical settings. Our
exposition assumes familiarity with basic notions of large sample theory.
Many books cover the essentials. At an elementary level we recommend
[31] and at an advanced level [14, 26, 36].
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Example 4.2.1 ABO Ulcer Data

Consider the ABO duodenal ulcer data presented earlier and repeated in
column 2 of Table 4.1. If we do not assume Hardy-Weinberg equilibrium,
then each of the four phenotypes A, B, AB, and O is assigned a correspond-
ing frequency qA, qB , qAB , and qO , with no implied functional relationship
among them except for qA + qB + qAB + qO = 1. The maximum likeli-
hood estimates of these phenotypic frequencies are the sample proportions
q̂A = nA

n = 186
521 , q̂B = nB

n = 38
521 , q̂AB = nAB

n = 13
521 , and q̂O = nO

n = 284
521 .

Under Hardy-Weinberg equilibrium, gene counting provides the maximum
likelihood estimates p̂A = .2136, p̂B = .0501, and p̂O = .7363. Denote the
vector of maximum likelihood estimates for the two hypotheses by q̂ and
p̂, respectively, and the corresponding maximum likelihoods by L(q̂) and
L(p̂). The likelihood ratio test involves the statistic

2 ln
L(q̂)
L(p̂)

= 2 ln
q̂nA

A q̂nB

B q̂nAB

AB q̂nO

O

(p̂2
A + 2p̂Ap̂O)nA(p̂2

B + 2p̂Bp̂O)nB (2p̂Ap̂B)nAB (p̂2
O)nO

= 2nA ln
q̂A

p̂2
A + 2p̂Ap̂O

+ 2nB ln
q̂B

p̂2
B + 2p̂B p̂O

+ 2nAB ln
q̂AB

2p̂Ap̂B
+ 2nO ln

q̂O
p̂2

O

= 2 (1.578− 1.625− 1.740 + 1.983)
= .393.

This statistic is approximately distributed as a χ2 distribution with de-
grees of freedom equaling the difference in the number of independent para-
meters between the full hypothesis and the Hardy-Weinberg subhypothesis.
In this case the degrees of freedom are 3 − 2 = 1. The likelihood ratio is
not significant at the .05 level based on comparison with a χ2

1 distribution.
Thus, we provisionally accept Hardy-Weinberg equilibrium in this popula-
tion of ulcer patients.

The ABO ulcer data come from a study that also includes data on normal
controls [7]. Table 4.1 provides the more comprehensive data. It appears

TABLE 4.1. ABO Data on Ulcer Patients and Controls

Phenotype Ulcer Patients Normal Controls
A 186 279
B 38 69

AB 13 17
O 284 315

that there may be too many O-type individuals among the ulcer patients.
We can test this conjecture by testing whether allele frequencies differ be-
tween ulcer patients and normal controls. Let p, q, and r denote the vector
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of allele frequencies among patients, controls, and the combined sample,
respectively. To test the hypothesis p = q, we compute separate maximum
likelihoods Lu(p̂), Ln(q̂), and Lc(r̂) for the ulcer patients, normal controls,
and combined sample under the assumption of Hardy-Weinberg equilib-
rium. The appropriate likelihood ratio statistic is

χ2
2 = 2 ln

Lu(p̂)Ln(q̂)
Lc(r̂)

= 2 lnLu(p̂) + 2 lnLn(q̂) − 2 lnLc(r̂).

The degrees of freedom of the χ2 are the difference 4 − 2 = 2 between
the number of independent parameters for the two populations treated
separately versus in combination.

Gene counting for the normal controls yields the maximum likelihood
estimates q̂A = .2492, q̂B = .0655, and q̂O = .6853 and for the combined
sample r̂A = .2335, r̂B = .0588, and r̂O = .7077. Straightforward compu-
tations yield

lnLu(p̂) = −173.903− 189.955− 97.750− 49.963
= −511.571

lnLn(q̂) = −238.134− 253.114− 163.050− 58.161
= −712.459

lnLc(r̂) = −414.198− 443.848− 261.644− 107.846
= −1227.536.

Hence, the homogeneity χ2
2 = 2 (−511.571− 712.459 + 1227.536) = 7.012.

This statistic is significant at the .05 level but not at the .01 level. Sub-
sequent studies have substantiated the association between duodenal ulcer
and blood type O.

Example 4.2.2 Color Blindness

The data for this color-blindness example were mentioned in Problem
2 of Chapter 2. If Hardy-Weinberg equilibrium does not hold, then we
postulate a probability qB for normal females, qb for color-blind females,
rB for normal males, and rb for color-blind males. The only functional
relationship tying these frequencies together are the constraints qB +qb = 1
and rB + rb = 1. If in a random sample there are fB normal females, fb

color-blind females, mB normal males, and mb color-blind males, then the
likelihood of the sample is

(
fB + fb

fB

)
qfB

B qfb

b

(
mB +mb

mB

)
rmB

B rmb

b .

Maximizing this likelihood leads to the estimates q̂B = fB

fB+fb
, q̂b = fb

fB+fb
,

r̂B = mB

mB+mb
, and r̂b = mb

mB+mb
.
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Under the Hardy-Weinberg restrictions, Problem 2 of Chapter 2 shows
how to compute the maximum likelihood estimates of the allele frequency
pb. Testing Hardy-Weinberg equilibrium with the data fB = 9032, fb = 40,
mB = 8324, and mb = 725 requires computing the approximate chi-square
statistic

χ2
1 = 2 ln

q̂fB

B q̂fb

b r̂
mB

B r̂mb

b

(1 − p̂2
b)fB (p̂2

b)fb(1 − p̂b)mB (p̂b)mb

= 2fB ln
q̂B

1 − p̂2
b

+ 2fb ln
q̂b
p̂2

b

+ 2mB ln
r̂B

1 − p̂b
+ 2mb ln

r̂b
p̂b

= 2 (14.115− 12.081− 26.144 + 26.669)
= 5.118.

This chi-square statistic has 2 − 1 = 1 degree of freedom and is significant
at the .025 level. In fact, there are two different common forms of color
blindness in humans. A two-locus X-linked model does provide an adequate
fit to these data.

4.3 Other Multinomial Problems in Genetics

Historically, chi-square tests have been the preferred method of testing hy-
potheses about multinomial data with known probabilities per category.
Chi-square tests are appropriate when no clear alternative suggests itself.
However, in many genetics problems the most reasonable alternative is
some type of clustering of observations in one or a few categories. In such
situations, tests for detecting excess counts in a few categories should be
conducted. Ewens et al. [12] highlight the Zmax test in an application to
in situ hybridization, a form of physical mapping of genes to particular
chromosome regions. This application is characterized by fairly large ob-
served counts in most categories and an excess count in a single category.
Other applications, such as measuring the nonrandomness of chromosome
breakpoints in cancer [9], involve lower counts per category and excess
counts in several categories.

For relatively sparse multinomial data with known but unequal proba-
bilities per category, other statistics besides Zmax are useful. For instance,
the number of categories Wd with d or more observations can be a sensitive
indicator of clustering. Problems in detecting nonrandomness in mutations
in different proteins or in amino acids along a single protein afford interest-
ing opportunities for applying the Wd statistic [17, 43]. When the variance
and mean of Wd are approximately equal, then Wd is approximately Pois-
son [4, 22]. In practice, this asymptotic approximation should be checked
by applying an exact numerical algorithm for computing p-values.
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4.4 The Zmax Test

Consider a multinomial experiment with n trials and m categories. Denote
the probability of category i by pi and the random number of outcomes in
category i by Ni. The Zmax statistic [12, 15] is defined by

Zmax = max
1≤i≤m

Ni − npi√
npi(1 − pi)

.

This statistic is designed to detect departures from the multinomial as-
sumptions caused by the clustering of the observations in one or a few
categories. Consequently, a one-sided test is appropriate, and the multino-
mial model is rejected when Zmax is too large. The specific form of the
Zmax statistic is suggested by the fact that the category specific statistics

Zi =
Ni − npi√
npi(1 − pi)

are standardized to have mean 0 and variance 1. Furthermore, when n
is large, each Zi is approximately normally distributed. The usual rule of
thumb npi ≥ 3 for normality is helpful, particularly if a continuity correc-
tion is added to Zi.

To compute p-values for Zmax, let zmax be the observed value of the
statistic, and define the events Ai = {Zi ≥ zmax}. Then

Pr(Zmax ≥ zmax) = Pr
( m⋃

i=1

Ai

)

≤
m∑

i=1

Pr(Ai) (4.1)

≈ m[1 − Φ(zmax)],

where Φ is the standard normal distribution function. Alternatively, each
Pr(Ai) can be computed exactly as a right-tail probability of a binomial
distribution with n trials and success probability pi.

The upper bound (4.1) can be supplemented by the lower bound

Pr
( m⋃

i=1

Ai

)
≥

m∑
i=1

Pr(Ai) −
∑
i<j

Pr(Ai ∩Aj)

≥
m∑

i=1

Pr(Ai) −
∑
i<j

Pr(Ai) Pr(Aj) (4.2)

=
m∑

i=1

Pr(Ai) +
1
2

m∑
i=1

Pr(Ai)2 − 1
2

[
m∑

i=1

Pr(Ai)

]2

≈ m[1 − Φ(zmax)] − m(m− 1)
2

[1 − Φ(zmax)]2.
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If m[1 − Φ(zmax)] is small, then the bound (4.1) will be an excellent ap-
proximation to the p-value.

The first inequality in (4.2) is an example of an inclusion-exclusion
bound. To prove it, take expectations in the inequality

1∪m
i=1Ai ≥

m∑
i=1

1Ai −
∑
i<j

1Ai1Aj (4.3)

involving indicator functions. To establish the inequality (4.3), suppose
that a sample point belongs to exactly k of the events Ai. If k = 0, then
inequality (4.3) is trivial. If k > 0, then inequality (4.3) becomes 1 ≥ k−(k

2

)
,

which is logically equivalent to k2 − 3k + 2 = (k − 2)(k − 1) ≥ 0. The
replacement Pr(Ai∩Aj) ≤ Pr(Ai) Pr(Aj) in (4.2) can be rigorously justified
[19, 27] as sketched in Problem 3. Note that this inequality reflects the
negative correlation of the multinomial components Ni.

Ewens et al. [12] suggest that if the Zmax test is highly significant, then
the category i with largest component Zi should be removed and the Zmax

statistic recalculated. This entails replacing n by n − Ni and each pj by
pj/(1− pi) for j �= i and computing a new Zmax for the reduced data. This
procedure is repeated until all outlying categories have been identified and
Zmax is no longer significant.

Example 4.4.1 Application to In Situ Hybridization

TABLE 4.2. Zmax Test for the ZYF Probe in Macropus eugenii

Segment Proportion pi Grains ni Statistic zi

1p 0.042 24 3.666
1q 0.189 37 -2.406
2p 0.019 4 -0.571
2q 0.136 25 -2.261

3/4p 0.104 35 1.174
3/4q 0.178 44 -0.886
5p 0.031 29 7.030
5q 0.097 28 0.190
6p 0.048 11 -0.670
6q 0.062 11 -1.564
7 0.053 19 1.126

Xp 0.011 4 0.534
Xq 0.018 3 -0.911
Y 0.012 5 0.908

In situ hybridization is a technique for mapping unique sequence DNA
probes to particular chromosomal regions [12]. In metaphase spreads,
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chromosomes are highly contracted and can be distinguished on the basis
of size, position of their centromeres, and characteristic banding patterns.
To map a probe, the DNA trapped within a metaphase spread on a micro-
scope slide is denatured in situ and hybridized with a tritium-labeled or
fluorescent-labeled probe. A photographic emulsion immediately above the
spread registers the presence of the probe on one or more chromosomes.

When a human probe is hybridized to chromosomes of another mam-
malian species, the probe and corresponding conserved sequence on the
mammalian chromosome may be sufficiently different that the hybridiza-
tion signal is weak. In such cases the probe can appear to hybridize pref-
erentially to several different chromosomal regions. To pick out the real
peaks of hybridization from purely random peaks, Ewens et al. [12] apply
the Zmax test. Table 4.2 reproduces their data on the hybridization of the
human ZYF probe, a zinc finger protein probe on the Y chromosome, to
homologous regions of the chromosomes of the Australian marsupial Macro-
pus eugenii. Fourteen chromosomal segments and 279 hybridization events
appear in the table. The observed zmax statistic of 7.030 is significant at
the .001 level and confirms the presence of a ZYF homologue on the p arm
of chromosome 5 of the marsupial. Recalculation of the Zmax statistic with
segment 5p omitted shows a second significant site on region 1p. Further
analysis identifies no other significant regions.

4.5 The Wd Statistic

Another useful statistic is the number of categories Wd having d or more
observations, where d is some fixed positive integer. This statistic has mean
λ =

∑m
i=1 µi, where

µi =
n∑

k=d

(
n

k

)
pk

i (1 − pi)n−k

is the probability that the count of category i satisfies Ni ≥ d. If the
variance of Wd is close to λ, then as discussed in Problem 4, Wd follows an
approximate Poisson distribution with mean λ [4].

As a supplement to this approximation, it is possible to compute the
distribution function Pr(Wd ≤ j) recursively by adapting a technique of
Sandell [32]. Once this is done, the p-value of an experimental result wd

can be recovered via Pr(Wd ≥ wd) = 1 − Pr(Wd ≤ wd − 1). The recursive
scheme can be organized by defining tj,k,l to be the probability thatWd ≤ j,
given k trials and l categories. The indices j, k, and l are confined to the
ranges 0 ≤ j ≤ wd − 1, 0 ≤ k ≤ n, and 1 ≤ l ≤ m. The l categories implicit
in tj,k,l refer to the first l of the overall m categories; the ith of these l
categories is assigned the conditional probability pi/(p1 + · · · + pl).
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With these definitions in mind, note first the obvious initial values (a)
t0,k,1 = 1 for k < d, (b) t0,k,1 = 0 for k ≥ d, and (c) tj,k,1 = 1 for j > 0.
Now beginning with l = 1, compute tj,k,l recursively by conditioning on
how many observations fall in category l. Since at most d− 1 observations
can fall in category l without increasing Wd by 1, the recurrence relation
for j = 0 is

t0,k,l

=
min{d−1,k}∑

i=0

(
k

i

)(
pl

p1 + · · · + pl

)i(
1 − pl

p1 + · · · + pl

)k−i

t0,k−i,l−1,

and the recurrence relation for j > 0 is

tj,k,l

=
min{d−1,k}∑

i=0

(
k

i

)(
pl

p1 + · · · + pl

)i(
1 − pl

p1 + · · · + pl

)k−i

tj,k−i,l−1

+
k∑

i=d

(
k

i

)(
pl

p1 + · · · + pl

)i (
1 − pl

p1 + · · · + pl

)k−i

tj−1,k−i,l−1.

These recurrence relations jointly permit replacing the matrix (tj,k,l−1) by
the matrix (tj,k,l). At the end of this recursive scheme on l = 2, . . . ,m, we
extract the desired probability twd−1,n,m.

This algorithm for computing the distribution function of Wd relies on
evaluation of binomial probabilities bi,k =

(
k
i

)
ri(1 − r)k−i. The naive way

of computing the bi,k is to evaluate the binomial coefficient separately and
then multiply it by the two appropriate powers. The recurrence relations
bi,k = rbi−1,k−1 + (1− r)bi,k−1 for 0 < i < k and the boundary recurrences
b0,k = (1 − r)b0,k−1 and bk,k = rbk−1,k−1 offer a faster and more stable
method. To start the recurrence, use the initial conditions b0,1 = 1 − r
and b1,1 = r. It is noteworthy that the binomial recurrence increments the
number of trials k whereas the recurrence for the distribution function of
Wd increments the number of categories l.

Example 4.5.1 Mutations in Hemoglobin α

Mutations in the human hemoglobin molecule have been observed in
many populations. Vogel and Motulsky [43] tabulate 66 mutations in the
141 amino acids of the hemoglobin α chain. Of these 141 amino acids, 16
show two or more mutations. With all pi = 1

141 , the mean of W2 is λ = 11.3.
Under the Poisson approximation for W2, the associated p-value is .11. In
this example the Poisson approximation is poor, and the exact algorithm
yields the more impressive p-value of .028. Thus, the data suggest nonran-
domness. It may be that some amino acids are so essential for hemoglobin
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function that mutations in these amino acids are immediately eliminated
by evolution.

4.6 Exact Tests of Independence

The problem of testing linkage equilibrium is equivalent to a more gen-
eral statistical problem of testing for independence in contingency tables.
To translate into the usual statistical terminology, one need only equate
“locus” to “factor,” “allele” to “level,” and “linkage equilibrium” to “inde-
pendence.” In exact inference, one conditions on the marginal counts of a
contingency table. In the linkage equilibrium setting, this means condition-
ing on the allele counts at each locus. Suppose we sample n independent
haplotypes defined on m loci. Recall that a haplotype i = (i1, . . . , im) is
just an m-tuple of allele choices at the participating loci. If the frequency
of allele k at locus j is pjk, then under linkage equilibrium the haplotype
i = (i1, . . . , im) has probability

pi =
m∏

j=1

pjij ,

and the haplotype counts {ni} from the sample follow a multinomial dis-
tribution with parameters (n, {pi}). The marginal allele counts {njk} at
any locus j likewise follow a multinomial distribution with parameters
(n, {pjk}). Since under the null hypothesis of linkage equilibrium, marginal
counts are independent from locus to locus, the conditional distribution of
the haplotype counts is

Pr({ni} | {njk}) =

(
n

{ni}
)∏

i p
ni

i∏m
j=1

(
n

{njk}
)∏

k(pjk)njk

=

(
n

{ni}
)

∏m
j=1

(
n

{njk}
) . (4.4)

One of the pleasant facts of exact inference is that the multivariate Fisher-
Yates distribution (4.4) does not depend on the unknown allele frequen-
cies. Problem 8 indicates how to compute its moments [23].

We can also derive the Fisher-Yates distribution by a counting argument
involving a sample space distinct from the space of haplotype counts. Con-
sider an m × n matrix whose rows correspond to loci and whose columns
correspond to haplotypes. At locus j there are n genes with njk genes rep-
resenting allele k. If we uniquely label each of these n genes, then there are
n! distinguishable permutations of the genes in row j. The uniform sample
space consists of the (n!)m matrices derived from the n! permutations of
each of the m rows. Each such matrix is assigned probability 1/(n!)m. For
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instance, if we distinguish duplicate alleles by a superscript ∗, then the 3×4
matrix



a1 a2 a∗1 a∗2
b3 b1 b∗1 b2
c2 c1 c3 c∗2


 (4.5)

for m = 3 loci and n = 4 haplotypes represents one out of (4!)3 equally
likely matrices and yields the nonzero haplotype counts

na1b3c2 = 1
na2b1c1 = 1
na1b1c3 = 1
na2b2c2 = 1.

To count the number of matrices consistent with a haplotype count vec-
tor {ni}, note that the haplotypes can be assigned to the columns of a
typical matrix from the uniform space in

(
n

{ni}
)

ways. Within each such as-
signment, there are

∏m
j=1

∏
k njk! permutations of the genes of the various

allele types among the available positions for each allele type. It follows
that the haplotype count vector {ni} has probability

Pr({ni}) =

(
n

{ni}
)∏m

j=1

∏
k njk !

(n!)m

=

(
n

{ni}
)

∏m
j=1

(
n

{njk}
) .

In other words, we recover the Fisher-Yates distribution.
This alternative representation yields a device for random sampling from

the Fisher-Yates distribution [24]. If we arrange our observed haplotypes
in an m× n matrix as described above and randomly permute the entries
within each row, then we get a new matrix whose haplotype counts are
drawn from the Fisher-Yates distribution. For example, appropriate per-
mutations within each row of the matrix (4.5) produce the matrix



a1 a∗1 a2 a∗2
b1 b∗1 b2 b3
c2 c∗2 c1 c3




with nonzero haplotype counts

na1b1c2 = 2
na2b2c1 = 1
na2b3c3 = 1.
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Iterating this permutation procedure r times generates an independent,
random sample Z1, . . . , Zr from the Fisher-Yates distribution. In practice,
it suffices to permute all rows except the bottom row m because haplotype
counts do not depend on the order of the haplotypes in a haplotype matrix
such as (4.5). Given the observed value Tobs of a test statistic T for linkage
equilibrium, we estimate the corresponding p-value by the sample average
1
r

∑r
l=1 1{T (Zl)≥Tobs}.

In Fisher’s exact test, the statistic T is the negative of the Fisher-Yates
probability (4.4). Thus, the null hypothesis of linkage equilibrium (inde-
pendence) is rejected if the observed Fisher-Yates probability is too low.
The chi-square statistic

∑
i

[ni−E(ni)]
2

E(ni)
is also reasonable for testing inde-

pendence, provided we estimate its p-value by random sampling and do
not foolishly rely on the standard chi-square approximation. As noted in
Problem 8, the expectation E(ni) = n

∏m
j=1(njij/n).

Example 4.6.1 Chromosome-11 Haplotype Data

Weir and Brooks [45] construct 184 haplotypes on 8 chromosome-11
markers from phenotype data on 24 Utah pedigrees. Omitting the two
markers BEGl-Hind3 and ADJ-BCl and the two individuals 1353-8600 and
1355-8516 due to incomplete typing, we wind up with 180 full haplotypes
on 6 pertinent markers. These markers possess 2, 2, 10, 5, 3, and 2 alleles,
respectively. The data can be summarized in a six-dimensional contingency
table by giving the counts ni for each possible haplotype i = (i1, . . . , i6).
Since there are 2 × 2 × 10× 5 × 3 × 2 = 1, 200 haplotypes in all, the table
is very sparse, and large sample methods of testing linkage equilibrium are
suspect. The chi-square statistic χ2 =

∑
i

[ni−E(ni)]
2

E(ni)
has an observed value

of 1,517 for these data. This corresponds to a large sample p-value of es-
sentially 0. On the other hand, the empirical p-value calculated from 3,999
independent samples of the χ2 statistic is .1332± .0057 [24]. Although the
grossly misleading large sample result is hardly surprising in this extreme
case, it does remind us of the limitations of large sample approximations
and the remedies offered by modern computing.

Readers should be aware that there are other methods for calculating p-
values associated with exact tests on contingency tables. Agresti [1] surveys
the deterministic algorithms useful on small to intermediate-sized tables.
For the large, sparse tables encountered in testing Hardy-Weinberg and
linkage equilibrium, Markov chain Monte Carlo methods can be even faster
than the random permutation method described above [16, 24].

4.7 Case-Control Association Tests

With little change, the same analysis applies to case-control association
studies. In this setting two factors appear, disease status and genotype.
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The levels for disease status are case and control. The levels for genotype
are the various observed genotypes among either cases or controls. One
can use multilocus genotypes rather than single-locus genotypes and, when
available, haplotypes rather than genotypes. The use of haplotypes doubles
sample size and leads to smaller tables with less sparsity. Because cases
often differ from controls in the overabundance of one or two genotypes
(or haplotypes), it is desirable to implement a test that is sensitive to such
departures. A variation on the Zmax test is nearly ideal in this regard.
Consider the standardized residuals

Zij =
cij − E(cij)√

Var(cij)
,

where c1j is the number of times genotype j appears among cases and c2j

is the number of times genotype j appears among controls. The statistic
Zmax = maxi,j Zij simplifies to Zmax = max1,j |Zij | because Z2j = −Z1j .
Permutation of case-control labels offer the opportunity of approximating
the distribution of this statistic. Problems 8 and 9 give the mean and
variance of c1j as

E(c1j) =
c1.c.j
n

(4.6)

Var(c1j) =
c1.(c1. − 1)c.j(c.j − 1)

n(n− 1)
+ E(c1j) − E(c1j)2,

where c1. is the number of cases, c.j is the number of times genotype j
appears among both cases and controls, and n is the number of cases plus
the number of controls. The marginal sums c1. and c.j are the analogs of
the marginal allele counts njk in the linkage equilibrium problem.

Example 4.7.1 Exact Treatment of the ABO Ulcer Data

The ABO ulcer data of Table 4.1 provide a chance to compare the various
test statistics. The permutation version of Fisher’s exact test and the Zmax

test give p-values of 0.0335± 0.0036 and 0.0169± 0.0026, respectively, for
10,000 permutations. As anticipated, the Zmax statistic attains its maxi-
mum for genotype O. These results compare well with the p-value of 0.0295
for the likelihood ratio test and suggest that the Zmax statistic possesses
somewhat greater power than the other two statistics for detecting depar-
tures in a single genotype.

4.8 The Transmission/Disequilibrium Test

Example 4.2.1 on the association between the ABO system and duodenal
ulcer depended on detecting a difference in allele frequencies between pa-
tients and normal controls. In a racially homogeneous population like that
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of Britain at the time of the Clarke et al. study [7], this is a reasonable pro-
cedure. However, in racially mixed societies like that of the United States,
associations can result from population stratification rather than direct
causation of alleles at a candidate locus or linkage disequilibrium between
the alleles at a marker locus and deleterious alleles at a nearby disease-
predisposing locus. Thus, if a disease is concentrated in one racial or ethnic
group, then that group’s allele frequencies at a marker will predominate in
the affecteds regardless of whether or not the marker is linked to a disease
locus. If normal controls are not matched by ethnicity to affecteds, then
transmission association can be easily confused with ethnic association.

The transmission/disequilibrium test neatly circumvents these mislead-
ing ethnic associations by exploiting the internal controls provided by par-
ents [13, 39, 41]. If marker data are collected on the parents of an affected
as well as on the affected himself, then one can determine for a codominant
marker which of the maternal and paternal alleles are passed to the affected
and which are not. The only ambiguity arises when both parents and the
child share the same heterozygous genotype. Even in this case one can still
count the number of alleles of each type passed to the affected. In the trans-
mission/disequilibrium test, the marker alleles potentially contributed by
heterozygous parents to sampled affecteds are arranged in a 2 × m con-
tingency table, with one row counting parental alleles passed to affecteds
and the other row counting parental alleles not passed to affecteds. The m
columns correspond to the m different alleles seen among the parents. It
seems reasonable in this scheme to exclude contributions from homozygous
parents because these tell us nothing about transmission distortion.

In analyzing contingency table data of this sort, we should explicitly
condition on the parental genotypes. This eliminates ethnic association.
Once we have done this, there is no harm in counting alleles transmitted
to affected siblings or to related, affected individuals scattered throughout
an extended pedigree. The two inviolable rules to observe are that both
parents of an affected must be typed and that marker typing should done
in one part of a family without regard to the outcomes of marker typing in
another part of the family.

The transmission/disequilibrium test for two alleles permits exact cal-
culation of p-values [39]. In generalizing the test to multiple alleles, this
convenience is sacrificed, but one can approach the problem of calculating
approximate p-values by standard permutation techniques [37, 20, 25]. The
question of an appropriate test statistic also becomes murky unless we con-
sider rather simple, and probably unrealistic, alternative hypotheses. We
will suggest two statistics that are intuitively reasonable. Both are based on
computing a standardized residual for each cell of the 2×m table. Let cij be
the count appearing in row i and column j of the table. If hj heterozygous
parents carry allele j, then under the null hypothesis of Mendelian trans-
mission, cij is binomially distributed with hj trials and success probability
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1/2. The standardized residual corresponding to cij is therefore

Zij =
cij − hj

2√
hj

4

.

The chi-square statistic χ2 =
∑2

i=1

∑m
j=1 Z

2
ij furnishes an omnibus test for

departure from the null hypothesis of Mendelian segregation to affecteds.
The maximum standardized residual Zmax = maxi,j Zij should be sensitive
to preferential transmission of a single allele to affecteds just as in the in
situ hybridization and the case-control association problems.

The conditional probability space involved in testing the null hypothesis
is complicated. Verbally we can describe its sample points as those tables
that could have been generated by transmission from the parents with their
given genotypes to their affected offspring. The constraints imposed by
conditioning on parental genotypes not only fix the margins on the table but
also couple the fate of alleles shared by parents. Under the null hypothesis,
each relevant transmission event is independent and equally likely to involve
either gene of the transmitting parent. Except for biallelic markers [39], it is
difficult to compute the exact distribution of either proposed test statistic in
this setting. However, we can easily sample from the underlying probability
space by randomly selecting for each affected what maternal and paternal
genes are transmitted to him. Once these random segregation choices are
made, then a new table is constructed by counting the number of alleles of
each type transmitted to affecteds. If we let Ti be the value of the statistic T
for the ith randomly generated table from a sample of n such independent
tables, then the p-value of the observed statistic Tobs can be approximated
by the sample proportion

P̂r(T ≥ Tobs) =
1
n

n∑
i=1

1{Ti≥Tobs}.

TABLE 4.3. Transmission/Disequilibrium Test for Costa Rican AT Families

Transmission Allele
Pattern 1 3 4 5 7 8 10 11 20 21

Transmitted 3 0 22 0 1 0 0 0 0 2
Not Transmitted 0 4 0 4 3 4 1 1 2 9

Example 4.8.1 Ataxia-telangiectasia (AT) in Costa Rica

Table 4.3 summarizes marker data on 16 Costa Rican children afflicted
with the recessive disease ataxia-telangiectasia (AT). At the chromosome-
11 marker D11S1817, 28 of their 32 fully-typed parents are heterozygous.



4. Hypothesis Testing and Categorical Data 73

Inspection of Table 4.3 strongly suggests that at the very least, allele 4
of this marker is preferentially transmitted to affecteds. This suspicion is
confirmed by the two permutation tests. Out of 106 independent trials,
none of the simulated statistics was as large as the corresponding observed
statistics χ2 = 92.91 and Zmax = 4.69. In fact, there are just a handful of
different AT mutations segregating in this population isolate. Each muta-
tion is defined by a unique haplotype signature involving marker D11S1817
and several other markers closely linked to the AT locus [42].

The early papers on the TDT have prompted many interesting gener-
alizations. For instance, versions of the TDT exist for sibships and even
pedigrees [2, 5, 34, 38, 40]. Other generalizations are described in the pa-
pers [8, 18, 21, 30, 33, 46]. In Chapter 7 we meet a parametric version of
the TDT known as the gamete competition model.

4.9 Problems

1. Test for Hardy-Weinberg equilibrium in the MN Syrian data pre-
sented in Chapter 2.

2. Table 4.4 lists frequencies of coat colors among cats in Singapore [35].
Assuming an X-linked locus with two alleles, estimate the two allele
frequencies by gene counting. Test for Hardy-Weinberg equilibrium
using a likelihood ratio test.

TABLE 4.4. Coat Colors among Singapore Cats

Females Males
Dark t/t Calico t/y Yellow y/y Dark t Yellow y

63 55 12 74 38

3. Let (N1, . . . , Nm) be the outcome vector for a multinomial experiment
with n trials and m categories. Prove that

Pr(N1 ≤ t1, . . . , Nm ≤ tm) ≤
m∏

i=1

Pr(Ni ≤ ti) (4.7)

Pr(N1 ≥ t1, . . . , Nm ≥ tm) ≤
m∏

i=1

Pr(Ni ≥ ti) (4.8)

for all integers t1, . . . , tm. If all tk = 0 in (4.8) except for ti and tj ,
conclude that

Pr(Ni ≥ ti, Nj ≥ tj) ≤ Pr(Ni ≥ ti) Pr(Nj ≥ tj)
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as stated in the text. (Hints: It suffices to show that (4.7) holds when
n = 1 and that the set of random vectors satisfying (4.7) is closed
under the formation of sums of independent random vectors. For (4.8)
consider the vectors −N1, . . . ,−Nm.)

4. Using the Chen-Stein method and probabilistic coupling, Barbour et
al. [4] show that the statistic Wd satisfies the inequality

sup
A⊂N

|Pr(Wd ∈ A) − Pr(Z ∈ A)| ≤ 1 − e−λ

λ
[λ− Var(Wd)],(4.9)

where Z is a Poisson random variable having the same expectation
λ =

∑m
i=1 µi as Wd, and where N denotes the set {0, 1 . . .} of non-

negative integers. Prove that

λ− Var(Wd) =
∑

i

µ2
i −

∑
i

∑
j �=i

Cov(1{Ni≥d}, 1{Nj≥d}).

In view of Problem 3, the random variables 1{Ni≥d} and 1{Nj≥d} are
negatively correlated. It follows that the bound (4.9) is only useful
when the number λ−1(1 − e−λ)

∑
i µ

2
i is small. What is the value of

λ−1(1 − e−λ)
∑

i µ
2
i for the hemoglobin data when d = 2? Careful

estimates of the difference λ− Var(Wd) are provided in [4].

5. Consider a multinomial model with m categories, n trials, and prob-
ability pi attached to category i. Express the distribution function of
the maximum number of counts maxi Ni observed in any category in
terms of the distribution functions of the Wd. How can the algorithm
for computing the distribution function of Wd be simplified to give
an algorithm for computing a p-value of maxiNi?

6. Continuing Problem 5, define the statistic Ud to be the number of
categories i withNi < d. Express the right-tail probability Pr(Ud ≥ j)
in terms of the distribution function of Wd. This gives a method for
computing p-values of the statistic Ud. In some circumstances Ud has
an approximate Poisson distribution. What do you conjecture about
these circumstances?

7. The nonparametric linkage test of de Vries et al. [10] uses affected
sibling data. Consider a nuclear family with s affected sibs and a
heterozygous parent with genotype a/b at some marker locus. Let na

and nb count the number of affected sibs receiving the a and b alleles,
respectively, from the parent. If the other parent is typed, then this
determination is always possible unless both parents and the child
are simultaneously of genotype a/b. de Vries et al. [10] suggest the
statistic T = |na − nb|. Under the null hypothesis of independent
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transmission of the disease and marker genes, Badner et al. [3] show
that T has mean and variance

E(T ) =

{
s( 1

2 )s
(

s
s
2

)
s even

s( 1
2 )s−1

(s−1
s−1
2

)
s odd

Var(T ) = s− E(T )2.

Prove these formulas. If there are n such parents (usually two per
family), and the ith parent has statistic Ti, then the overall statistic

∑n
i=1[Ti − E(Ti)]√∑n

i=1 Var(Ti)

should be approximately standard normal. A one-sided test is ap-
propriate because the Ti tend to increase in the presence of linkage
between the marker locus and a disease predisposing locus. (Hint:
The identities

s
2−1∑
i=0

(
s

i

)
= 2s−1 −

(
s
s
2

)

2
s
2−1∑
i=0

i

(
s

i

)
= s

[
2s−2 −

(
s− 1

s
2

)]

for s even and similar identities for s odd are helpful.)

8. To compute moments under the Fisher-Yates distribution (4.4), let

ur =
{
u(u− 1) · · · (u− r + 1) r > 0
1 r = 0

be a falling factorial power, and let {li} be a collection of nonnegative
integers indexed by the haplotypes i = (i1 . . . , im). Setting l =

∑
i li

and ljk =
∑

i 1{ij=k}li, show that

E
(∏

i

n
l
i

i

)
=

∏m
j=1

∏
k(njk)l

jk

(nl)m−1
.

In particular, verify that E(ni) = n
∏m

j=1

njij

n .

9. Verify the mean and variance expressions in equation (4.6) using
Problem 8. Alternatively, write c1j as a sum of indicator random
variables and calculate the mean and variance directly. Check that
the two methods give the same answer. (Hints: In applying Problem
8, i has two components. Set all but one of the li equal to 0. Set the
remaining one equal to 1 or 2 to get either a first or second factorial
moment. The kth indicator random variable indicates whether the
kth person is a case and has genotype j.)
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10. A geneticist phenotypes n unrelated people at each of m loci with
codominant alleles and records a vector i = (i1/i∗1, . . . , im/i∗m) of
genotypes for each person. Because phase is unknown, i cannot be
resolved into two haplotypes. The data gathered can be summarized
by the number of people ni counted for each genotype vector i. Let njk

be the number of alleles of type k at locus j observed in the sample,
and let nh be the total number of heterozygotes observed over all
loci. Assuming genetic equilibrium, prove that the distribution of the
counts {ni} conditional on the allele totals {njk} is

Pr({ni} | {njk}) =

(
n

{ni}
)
2nh

∏m
j=1

(
2n

{njk}
) . (4.10)

The moments of the distribution (4.10) are computed in [24]; just as
with haplotype count data, all allele frequencies cancel.

11. Describe and program an efficient algorithm for generating random
permutations of the set {1, . . . , n}. How many calls of a random num-
ber generator are involved? How many interchanges of two numbers?
You might wish to compare your results to the algorithm in [29].

12. Describe and program a permutation version of the two-sample t-test.
Compare it on actual data to the standard two-sample t-test.
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5

Genetic Identity Coefficients

5.1 Introduction

Genetic identity coefficients are powerful theoretical tools for genetic analy-
sis. Geneticists have devised these indices to measure the degree of inbreed-
ing of a single individual and the degree of relatedness of a pair of relatives.
Since the degree of inbreeding of a single individual can be summarized by
the relationship between his or her parents, we will focus on identity coef-
ficients for relative pairs. These coefficients pertain to a generic autosomal
locus and depend only on the relevant pedigree connecting two relatives
and not on any phenotypes observed in the pedigree. In Chapter 6 we will
investigate the applications of identity coefficients. Readers desiring moti-
vation for the combinatorial problems attacked here may want to glance at
Chapter 6 first.

5.2 Kinship and Inbreeding Coefficients

Two genes G1 and G2 are identical by descent (i.b.d.) if one is a physical
copy of the other or if they are both physical copies of the same ancestral
gene. Two genes are identical by state if they represent the same allele.
Identity by descent implies identity by state, but not conversely. The sim-
plest measure of relationship between two relatives i and j is their kinship
coefficient Φij . Malécot [12] defined this index to be the probability that a
gene selected randomly from i and a gene selected randomly from the same
autosomal locus of j are i.b.d. The kinship coefficient takes into account
the common ancestry of i and j but not their observed phenotypes at any
particular locus. When i and j are the same person, the same gene can
be drawn twice because kinship sampling is done with replacement. The
inbreeding coefficient fi of an individual i is the probability that his
or her two genes at any autosomal locus are i.b.d.; inbreeding sampling is
done without replacement. Since Φii = 1

2 (1+fi) and fi = Φkl, where k and
l are the parents of i, an inbreeding coefficient entails no new information.
Note that fi = 0 unless i’s parents k and l are related. If fi > 0, then i is
said to be inbred.

The last column of Table 5.1 lists kinship coefficients for several com-
mon types of relative pairs. The table also contains probabilities for other
identity coefficients. Before defining these additional indices of relationship,
let us focus on a simple algorithm for computing kinship coefficients. This
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TABLE 5.1. Condensed Coefficients of Identity

Relationship ∆7 ∆8 ∆9 Φ

Parent–Offspring 0 1 0 1
4

Half Siblings 0 1
2

1
2

1
8

Full Siblings 1
4

1
2

1
4

1
4

First Cousins 0 1
4

3
4

1
16

Double First Cousins 1
16

6
16

9
16

1
8

Second Cousins 0 1
16

15
16

1
64

Uncle–Nephew 0 1
2

1
2

1
8

algorithm produces the kinship coefficient for every possible pair in a pedi-
gree. These coefficients can be arranged in a symmetric matrix Φ with Φij

as the entry in row i and column j. To compute Φ, we first number the
people in the pedigree in such a way that every parent precedes his or her
children. Any person should have either both or neither of his or her par-
ents present in the pedigree. To avoid ambiguity, it is convenient to assume
that all pedigree founders are non-inbred and unrelated.

1
� �

� �

2

3
� �

� �

4

5
� �

� �

6

FIGURE 5.1. A Brother–Sister Mating

The matrix Φ is constructed starting with the 1×1 submatrix in its upper
left corner. This submatrix is iteratively expanded by adding a partial row
and column as each successive pedigree member is encountered. To make
this precise, consider the numbered individuals in sequence. If the current
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individual i is a founder, then set Φii = 1
2 , reflecting the assumption that

founders are not inbred. For each previously considered person j, also set
Φij = Φji = 0, reflecting the fact that j can never be a descendant of i due
to our numbering convention. If i is not a founder, then let i have parents k
and l. It is clear that Φii = 1

2 + 1
2Φkl because in sampling the genes of i we

are equally likely to choose either the same gene twice or both maternally
and paternally derived genes once. Likewise, Φij = Φji = 1

2Φjk + 1
2Φjl

because we are equally likely to compare either the maternal gene of i or the
paternal gene of i to a randomly drawn gene from j. These rules increase
the extent of Φ by an additional diagonal entry and the corresponding
partial row and column up to the diagonal entry. This recursive process is
repeated until the matrix Φ is fully defined.

To see the algorithm in action, consider Figure 5.1. The pedigree depicted
there involves a brother–sister mating. Its kinship matrix

Φ =




1
2 0 1

4
1
4

1
4

1
4

0 1
2

1
4

1
4

1
4

1
4

1
4

1
4

1
2

1
4

3
8

3
8

1
4

1
4

1
4

1
2

3
8

3
8

1
4

1
4

3
8

3
8

5
8

3
8

1
4

1
4

3
8

3
8

3
8

5
8




is constructed by creating successively larger submatrices in the upper left
corner of the final matrix.

Before proceeding further, let us pause to consider a counterexample
illustrating a subtle point about the kinship algorithm. In the pedigree
displayed in Figure 5.1, we have Φ35 �= 1

2Φ15 + 1
2Φ25 in spite of the fact

that 3 has parents 1 and 2. This paradox shows that the substitution rule
for computing kinship coefficients should always operate on the higher-
numbered person. The problem in this counterexample is that while the
paternal (or maternal) gene passed to 3 is randomly chosen, once this choice
is made, it limits what can pass to 5. The two random experiments of
choosing a gene from 1 to pass to 3 and choosing a gene from 1 for kinship
comparison with 5 are not one and the same.

While useful in many applications, the kinship coefficient Φij does not
completely summarize the genetic relation between two individuals i and
j. For instance, siblings and parent–offspring pairs share a common kinship
coefficient of 1

4 . Recognizing the deficiencies of kinship coefficients, Gillois
[2], Harris [3], and Jacquard [5] capitalized on earlier work of Cotterman [1]
and introduced further genetic identity coefficients. Collectively, these new
identity coefficients better discriminate between different types of relative
pairs. Unfortunately, the traditional graph-tracing algorithms for computa-
tion of these identity coefficients are cumbersome compared to the simple
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algorithm just given for the computation of kinship coefficients [13]. We
will explore more recent algorithms that approach the problem of com-
puting identity coefficients obliquely by first defining generalized kinship
coefficients and then relating these generalized kinship coefficients to the
pairwise identity coefficients [9].

�

�

�

�i’s genes

j’s genes

g1
i g2

i

g1
j g2

j

� � � � �

� � � � �

� � � � �

� � � � �

�
��
�

S∗
1

�
�

S∗
2

�
�

S∗
3

�
�

S∗
4

�
�

S∗
5

� � � � �

� � � � �

� � � � �

� � � � �

S∗
6 S∗

7 S∗
8 S∗

9 S∗
10

� � � � �

� � � � �

� � � � �

� � � � �

S∗
11

�
��
�

S∗
12

�
�

S∗
13

�
�

S∗
14 S∗

15

FIGURE 5.2. The Fifteen Detailed Identity States

5.3 Condensed Identity Coefficients

Consider the ordered genotypes g1
i /g

2
i and g1

j /g
2
j of two people i and j at

some autosomal locus. The relation of identity by descent partitions these
four genes into equivalence classes or blocks of i.b.d. genes. How many
different partitions or identity states exist? Exhaustive enumeration gives
a total of 15 partitions or detailed identity states.

These are depicted in Figure 5.2, which is adapted from [6]. In Figure
5.2, dots correspond to genes and lines connect genes that are i.b.d. The
detailed identity states range from the partition S∗

1 with only one block,
where all four genes are i.b.d., to the partition S∗

15 with four blocks, where
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no genes are i.b.d. Several of the partitions are equivalent if maternally
derived genes and paternally derived genes are interchanged in one or both
of the two people i and j. If the maternal and paternal origins of the two
pairs of genes are ignored, then the 15 detailed identity states collapse
to 9 condensed identity states [6]. Figure 5.3 depicts these nine states
S1, . . . , S9. Note that

S3 = S∗
2 ∪ S∗

3

S5 = S∗
4 ∪ S∗

5

S7 = S∗
9 ∪ S∗

12

S8 = S∗
10 ∪ S∗

11 ∪ S∗
13 ∪ S∗

14.

�

�

�

�i’s genes

j’s genes

� � � � �

� � � � �

� � � � �

� � � � �

�
��
�

S1 S2

�
�

S3 S4

�
�

S5

� � � �

� � � �

� � � �

� � � �

S6 S7 S8 S9

FIGURE 5.3. The Nine Condensed Identity States

Suppose ∆k denotes the probability of condensed state Sk. Although
it is not immediately obvious how to compute the condensed identity
coefficient ∆k, some general patterns can easily be discerned. For example,
∆1, ∆2, ∆3, and ∆4 are all 0 when i is not inbred. Likewise, ∆1, ∆2, ∆5,
and ∆6 are 0 when j is not inbred. The relation

Φij = ∆1 +
1
2
(∆3 + ∆5 + ∆7) +

1
4
∆8

is also easy to verify and provides an alternative method of computing the
kinship coefficient Φij .

By ad hoc reasoning, one can compute the ∆k in simple cases. For ex-
ample, Table 5.1 gives the nonzero ∆k for some common pairs of relatives.



86 5. Genetic Identity Coefficients

A more complex example is afforded by the two offspring of the brother–
sister mating in Figure 5.1. Straightforward but tedious calculations show
that ∆1 = 1

16 , ∆2 = 1
32 , ∆3 = 1

8 , ∆4 = 1
32 , ∆5 = 1

8 , ∆6 = 1
32 , ∆7 = 7

32 ,
∆8 = 5

16 , and ∆9 = 1
16 in this case. Because inbreeding is rare, the three

coefficients ∆7, ∆8, and ∆9 originally introduced by Cotterman [1] suffice
for most practical purposes.

5.4 Generalized Kinship Coefficients

We generalize classical kinship coefficients by randomly sampling one gene
from each person on an ordered list of n people rather than one gene from
each of two people [7, 8, 9, 17]. If a person is repeated in the list, then
sampling is done with replacement. The ordered sequence of n sampled
genes G1, . . . , Gn can be partitioned into nonoverlapping blocks whose con-
stituent genes are i.b.d. A generalized kinship coefficient gives the proba-
bility that a particular partition occurs.

This simple verbal description necessarily involves complex notation. For
instance, with four individuals i, j, k, and l, there are 15 partitions of the
four sampled genes Gi, Gj , Gk, and Gl. Again these range from the single-
block partition {Gi, Gj , Gk, Gl}, where all of the genes are i.b.d., to the
four-block partition {Gi}, {Gj}, {Gk}, {Gl}, where no genes are i.b.d. We
will denote the probability of any such partition by enclosing its blocks
within parentheses preceded by Φ, bearing in mind that this probability
depends neither on the order of the blocks nor on the order of the sampled
genes within a block. Thus, the two partitions mentioned above have prob-
abilities Φ({Gi, Gj , Gk , Gl}) and Φ({Gi}, {Gj}, {Gk}, {Gl}), respectively.
The classical kinship coefficient between i and j becomes Φ({Gi, Gj}) in
this notation, and its complementary probability becomes Φ({Gi}, {Gj}).

5.5 From Kinship to Identity Coefficients

What is the relationship between generalized kinship coefficients and con-
densed identity coefficients? Suppose we randomly sample two genes G1

i

and G2
i from i and two genes G1

j and G2
j from j. Now consider one of the

detailed identity states S∗
k of Figure 5.2. If we imagine G1

i and G2
i occupying

the upper two gene positions and G1
j and G2

j occupying the lower two gene
positions, then S∗

k defines a detailed identity state of the four randomly
sampled genes. Corresponding to the 15 random detailed identity states
are 9 random condensed identity states as shown in Figure 5.3. Denote the
probability of a random condensed identity state Sk by Ψk. The probability
Ψk is an integer multiple of a generalized kinship coefficient. For example,

Ψ1 = Φ({G1
i , G

2
i , G

1
j , G

2
j}),
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and by symmetry

Ψ8 = Φ({G1
i , G

1
j}{G2

i }{G2
j}) + Φ({G1

i , G
2
j}{G2

i }{G1
j})

+ Φ({G2
i , G

1
j}{G1

i }{G2
j}) + Φ({G2

i , G
2
j}{G1

i }{G1
j})

= 4Φ({G1
i , G

1
j}{G2

i }{G2
j})

since S8 = S∗
10 ∪ S∗

11 ∪ S∗
13 ∪ S∗

14.
It is straightforward to express the Ψ’s in terms of the ∆’s by conditioning

on which condensed identity state the four original genes of i and j occupy.
For instance,

Ψ1 = ∆1 +
1
4
∆3 +

1
4
∆5 +

1
8
∆7 +

1
16

∆8. (5.1)

To verify equation (5.1), suppose the four genes of i and j occur in con-
densed identity state S1. Then the four randomly sampled genes fall in S1

with probability 1. This accounts for the first term on the right of equation
(5.1). The second term 1

4∆3 arises because if the four genes of i and j are
in S3, both G1

j and G2
j must be drawn from the lower left gene of S3 to

achieve state S1 for the randomly sampled genes. Given condensed identity
state S3, G1

j and G2
j are so chosen with probability 1

4 . The term 1
4∆5 is

accounted for similarly. The term 1
8∆7 arises because if the four genes of i

and j are in S7, the four randomly sampled genes must all be drawn from
either the left-hand side of S7 or the right-hand side of S7. Finally, the
term 1

16∆8 arises because if the four genes of i and j are in S8, the four
randomly sampled genes can only be drawn from the left-hand side of S8.
The remaining condensed identity states are incompatible with the random
condensed identity state S1. For example, there is no term involving ∆2 in
equation (5.1) since S2 does not permit identity by descent between any
gene of i and any gene of j.

Similar reasoning leads to the complete system of equations

Ψ1 = ∆1 +
1
4
∆3 +

1
4
∆5 +

1
8
∆7 +

1
16

∆8

Ψ2 = ∆2 +
1
4
∆3 +

1
2
∆4 +

1
4
∆5 +

1
2
∆6 +

1
8
∆7 +

3
16

∆8 +
1
4
∆9

Ψ3 =
1
2
∆3 +

1
4
∆7 +

1
8
∆8

Ψ4 =
1
2
∆4 +

1
8
∆8 +

1
4
∆9

Ψ5 =
1
2
∆5 +

1
4
∆7 +

1
8
∆8 (5.2)

Ψ6 =
1
2
∆6 +

1
8
∆8 +

1
4
∆9

Ψ7 =
1
4
∆7
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Ψ8 =
1
4
∆8

Ψ9 =
1
4
∆9.

It is obvious that the matrix of coefficients appearing on the right of
(5.2) is upper triangular. This allows us to backsolve for the ∆’s in terms
of the Ψ’s, beginning with ∆9 and working upward toward ∆1. The result
is

∆1 = Ψ1 − 1
2
Ψ3 − 1

2
Ψ5 +

1
2
Ψ7 +

1
4
Ψ8

∆2 = Ψ2 − 1
2
Ψ3 − Ψ4 − 1

2
Ψ5 − Ψ6 +

1
2
Ψ7 +

3
4
Ψ8 + Ψ9

∆3 = 2Ψ3 − 2Ψ7 − Ψ8

∆4 = 2Ψ4 − Ψ8 − 2Ψ9

∆5 = 2Ψ5 − 2Ψ7 − Ψ8 (5.3)
∆6 = 2Ψ6 − Ψ8 − 2Ψ9

∆7 = 4Ψ7

∆8 = 4Ψ8

∆9 = 4Ψ9.

It follows that one can compute all of the condensed identity coefficients
∆1, . . . ,∆9 by computing the coefficients Ψ1, . . . ,Ψ9. The algorithm de-
veloped in the next section for calculating generalized kinship coefficients
immediately specializes to calculation of the Ψ’s.

5.6 Calculation of Generalized Kinship Coefficients

Generalized kinship coefficients (kinship coefficients for short) can be com-
puted recursively by a straightforward algorithm having two phases [7, 9,
14, 17]. In the recursive phase of the algorithm, a currently required kinship
coefficient is replaced by a linear combination of subsequently required kin-
ship coefficients. This replacement is effected by moving upward through a
pedigree and substituting randomly sampled parental genes for randomly
sampled offspring genes. In the static phase of the algorithm, boundary
kinship coefficients involving only randomly sampled genes from founders
are evaluated. Not surprisingly, the algorithm is reminiscent of our earlier
algorithm for computing ordinary kinship coefficients. We again assume the
members of a pedigree are numbered so that parents precede their offspring.

Boundary Conditions

Boundary Condition 1 If a founder, or indeed any person, is involved in
three or more blocks, then Φ = 0. This condition is obvious because
a person has exactly two genes at a given autosomal locus.
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Boundary Condition 2 If two founders occur in the same block, then
again Φ = 0. This condition follows because founders are by definition
unrelated.

Boundary Condition 3 If only founders contribute sampled genes and
neither boundary condition 1 nor boundary condition 2 pertains, then
Φ = ( 1

2 )m1−m2 , where m1 is the total number of sampled founder
genes over all blocks, andm2 is the total number of founders sampled.
To verify this condition, imagine choosing one initial gene for each
founder involved in Φ. Since a founder cannot be inbred, a subsequent
gene chosen for him or her must coincide with the initial choice if
the two genes contribute to the same block. If they contribute to
two different blocks, the subsequent gene must differ from the initial
gene. In either case, the correct choice is made with probability 1

2
independently of other choices.

Recurrence Rules

Suppose i is a nonfounder involved in a kinship coefficient Φ. The three
recurrence rules operate by substituting genes sampled from i’s parents
j and k for genes sampled from i. It is required that no person involved
in Φ be a descendant of i. According to our numbering convention, this
requirement can be met by taking i to be the highest-numbered person in
Φ. The form of the recurrence rules depends on whether i belongs to one
or two blocks. In the former case, suppose without loss of generality that
i occupies the first part of the first block. In the latter case, suppose that
i occupies the first parts of the first two blocks. It is noteworthy that all
three recurrence rules preserve or diminish the number of sampled genes
involved in the replacement kinship coefficients relative to the number of
sampled genes involved in the current kinship coefficient. In stating the
rules, we let Gi, Gj , and Gk denote randomly sampled genes from i, j, and
k, respectively.

Recurrence Rule 1 Assume that only one gene Gi is sampled from i.
Then

Φ[{Gi, . . .}{} . . .{}] =
1
2
Φ[{Gj , . . .}{} . . .{}]

+
1
2
Φ[{Gk, . . .}{} . . .{}].

This rule follows because the gene drawn at random from i is equally
likely to be a gene drawn at random from either j or k.

Recurrence Rule 2 Assume that the genes G1
i , . . . , G

s
i are sampled from

i for s > 1. If these genes occur in one block, then

Φ[{G1
i , . . . , G

s
i , . . .}{} . . .{}]
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= [1 − 2
(1

2

)s

]Φ[{Gj , Gk, . . .}{} . . .{}]

+
(1

2

)s

Φ[{Gj , . . .}{} . . .{}]

+
(1

2

)s

Φ[{Gk, . . .}{} . . .{}].

In this rule the genes G1
i , . . . , G

s
i are replaced, respectively, by single

genes from both j and k, by a single gene from j only, or by a single
gene from k only. The three corresponding coefficients 1 − 2( 1

2 )s,
( 1
2 )s, and ( 1

2 )s are determined by binomial sampling with s trials and
success probability 1

2 .

Recurrence Rule 3 Assume that the genes G1
i , . . . , G

s
i , G

s+1
i , . . . , Gs+t

i

are sampled from i. If the first s genes occur in one block and the
remaining t genes occur in another block, then

Φ[{G1
i , . . . , G

s
i , . . .}{Gs+1

i , . . . , Gs+t
i , . . .}{} . . .{}]

=
(1

2

)s+t

Φ[{Gj , . . .}{Gk, . . .}{} . . .{}]

+
(1

2

)s+t

Φ[{Gk, . . .}{Gj , . . .}{} . . .{}].

This rule follows because neither the maternal gene nor the paternal
gene of i can be present in both blocks. Again binomial sampling
determines the coefficients ( 1

2 )s+t.

Example 5.6.1 Sample Calculations for an Inbred Pedigree

Consider the inbred siblings 5 and 6 in Figure 5.1. Let us compute the
kinship coefficient 1

4Ψ8 = Φ({G1
5, G

1
6}{G2

5}{G2
6}), where Gl

k denotes the
lth sampled gene of person k. Recurrence rule 3 and symmetry imply

1
4
Ψ8 =

1
4
Φ({G1

3, G
1
6}{G1

4}{G2
6}) +

1
4
Φ({G1

4, G
1
6}{G1

3}{G2
6})

=
1
2
Φ({G1

3, G
1
6}{G1

4}{G2
6})

=
1
8
Φ({G1

3, G
2
3}{G1

4}{G2
4}) +

1
8
Φ({G1

3, G
2
4}{G1

4}{G2
3}).

Recurrence rules 2 and 3, boundary conditions 2 and 3, and symmetry
permit us to express A = Φ({G1

3, G
2
3}{G1

4}{G2
4}) as

A =
1
2
Φ({G1

1, G
1
2}{G1

4}{G2
4}) +

1
4
Φ({G1

1}{G1
4}{G2

4})

+
1
4
Φ({G1

2}{G1
4}{G2

4})

= 0 +
1
2
Φ({G1

1}{G1
4}{G2

4})
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=
1
8
Φ({G1

1}{G2
1}{G1

2}) +
1
8
Φ({G1

1}{G1
2}{G2

1})

=
1
4
Φ({G1

1}{G2
1}{G1

2})

=
1
8
.

Although here we replace 3 by the grandparents 1 and 2 before we replace
4 by the same pair, this is permitted because 4 is not a descendant of 3. In
like manner, B = Φ({G1

3, G
2
4}{G1

4}{G2
3}) can be reduced to

B =
1
4
Φ({G1

1, G
2
4}{G1

4}{G1
2}) +

1
4
Φ({G1

2, G
2
4}{G1

4}{G1
1})

=
1
2
Φ({G1

1, G
2
4}{G1

4}{G1
2})

=
1
8
Φ({G1

1, G
2
1}{G2

2}{G1
2}) +

1
8
Φ({G1

1, G
2
2}{G2

1}{G1
2})

=
1
8
× 1

4
+

1
8
× 0

=
1
32
.

These reductions yield 1
4Ψ8 = 1

8A + 1
8B = 5

256 for this particular sibling
pair. The condensed identity coefficient ∆8 = 4Ψ8 = 5

16 for the pair follows
directly from equation (5.3).

5.7 Problems

1. Consider two non-inbred relatives i and j with parents k and l and
m and n, respectively. Show that

∆7 = ΦkmΦln + ΦknΦlm

∆8 = 4Φij − 2∆7

∆9 = 1 − ∆7 − ∆8,

where the condensed identity coefficients all pertain to the pair i and
j. Thus, in the absence of inbreeding, all nonzero condensed identity
coefficients can be expressed in terms of ordinary kinship coefficients.

2. Given the assumptions and notation of Problem 1 above, show that
4∆7∆9 ≤ ∆2

8 [15]. This inequality puts an additional constraint on
∆7, ∆8, and ∆9 besides the obvious nonnegativity requirements and
the sum requirement ∆7 + ∆8 + ∆9 = 1. (Hints: Note first that

Φij =
1
2
∆7 +

1
4
∆8

=
1
4
Φkm +

1
4
Φkn +

1
4
Φlm +

1
4
Φln.
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Next apply the inequality (a + b)2 ≥ 4ab to prove 4∆7 ≤ (4Φij)2;
finally, rearrange.)

3. Calculate all nine condensed identity coefficients for the two inbred
siblings 5 and 6 of Figure 5.1.

4. The Cholesky decomposition of a positive definite matrix Ω is the
unique lower triangular matrix L = (lij) satisfying Ω = LLt and
lii > 0 for all i. Let Φ be the kinship matrix of a pedigree with n
people numbered so that parents precede their children. The Cholesky
decomposition L of Φ can be defined inductively one row at a time
starting with row 1. Given that rows 1, . . . , i − 1 have been defined
and that i has parents r and s, define [4, 10]

lij =





0 j > i
1
2 lrj + 1

2 lsj j < i

(Φii −
∑i−1

k=1 l
2
ik)

1
2 j = i.

Prove by induction that L is the Cholesky decomposition of Φ. Why
is lii positive? (Hints: Φii >

1
2Φri + 1

2Φsi and Φij = 1
2Φrj + 1

2Φsj for
j < i.)

5. Explicit diagonalization of the kinship matrix Φ of a pedigree is an
unsolved problem in general. In this problem we consider the special
case of a nuclear family with n siblings. For convenience, number the
parents 1 and 2 and the siblings 3, . . . , n+2. Let ei be the vector with
1 in position i and 0 elsewhere. Show that the kinship matrix Φ for the
nuclear family has one eigenvector e1 − e2 with eigenvalue 1

2 ; exactly
n − 1 orthogonal eigenvectors 1

m−3

∑m−1
j=3 ej − em, 4 ≤ m ≤ n + 2,

with eigenvalue 1
4 ; and one eigenvector

e1 + e2 +
4λ− 2
n

(e3 + · · · + en+2)

with eigenvalue λ for each of the two solutions of the quadratic equa-
tion

λ2 − (
1
2

+
n+ 1

4
)λ+

1
8

= 0.

This accounts for n+ 2 orthogonal eigenvectors and therefore diago-
nalizes Φ.

6. Continuing Problem 5, we can extract some of the eigenvectors and
eigenvalues of a kinship matrix of a general pedigree [16]. Consider a
set of individuals in the pedigree possessing the same inbreeding coef-
ficient and the same kinship coefficients with other pedigree members.
Typical cases are a set of siblings with no children and a married pair
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of pedigree founders with shared offspring but no unshared offspring.
Without loss of generality, number the members of the set 1, . . . ,m
and the remaining pedigree members m+ 1, . . . , n. Show that

(a) The kinship matrix Φ can be written as the partitioned matrix

Φ =
(
a1Im + a211t 1bt

b1t C

)
,

where 1 is a column vector consisting of m 1’s, Im is the m×m
identity matrix, a1 and a2 are real constants, b is a column vector
with n−m entries, and C is the (n−m)×(n−m) kinship matrix
of the n−m pedigree members not in the designated set.

(b) The matrix a1Im + a211t has 1 as eigenvector with eigenvalue
a1 +ma2 and m− 1 orthogonal eigenvectors

ui =
1

i− 1

i−1∑
j=1

ej − ei,

i = 2, . . . ,m, with eigenvalue a1. Note that each ui is perpen-
dicular to 1.

(c) The m−1 partitioned vectors
(
ui

0

)
are orthogonal eigenvectors

of Φ with eigenvalue a1.

7. We define the X-linked kinship coefficient Φij between two relatives
i and j as the probability that a gene drawn randomly from an X-
linked locus of i is i.b.d. to a gene drawn randomly from the same
X-linked locus of j. When i = j, sampling is done with replacement.
When either i or j is male, one necessarily selects the maternal gene.
Show how the algorithm of Section 5.2 can be modified to compute
the X-linked kinship matrix Φ of a pedigree [11].

8. Selfing is a mating system used extensively in plant breeding. As its
name implies, a plant is mated to itself, then one of its offspring is
mated to itself, and so forth. Let fn be the inbreeding coefficient of the
relevant plant after n rounds of selfing. Show that fn+1 = 1

2 (1 + fn)
and therefore that fn = (2n − 1)/2n.

9. Geneticists employ repeated sib mating to produce inbred lines of lab-
oratory animals such as mice. At generation 0, two unrelated animals
are mated to produce generation 1. A brother and sister of generation
1 are then mated to produce generation 2, and so forth. Let φn be the
kinship coefficient of the brother–sister combination at generation n,
and let fn be their common inbreeding coefficient. Demonstrate that
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fn+1 = φn and that

φn+1 =
1
2
φn +

1
4
fn +

1
4

=
1
2
φn +

1
4
φn−1 +

1
4
.

From this second-order difference equation, deduce that

φn = 1 −
(

1
2

+
1√
5

)(
1 +

√
5

4

)n

−
(

1
2
− 1√

5

)(
1 −√

5
4

)n

.

Thus, limn→∞ φn = limn→∞ fn = 1, and one random allele is fixed
at each locus.

10. Wright proposed a path formula for computing inbreeding coefficients
that can be generalized to computing kinship coefficients [15]. The
pedigree formula is

Φij =
∑
pij

(
1
2

)n(pij )

[1 + fa(pij)],

where the sum extends over all pairs pij of nonintersecting paths
descending from a common ancestor a(pij) of i and j to i and j,
respectively, and where n(pij) is the number of people counted along
the two paths. The common ancestor is counted only once. If i = j,
there is only the degenerate pair of paths that start and end at i but
possess no arcs connecting a parent to a child. In this case, the formula
reduces to the fact Φii = 1

2 (1 + fi). In general, a path is composed of
arcs connecting parents to their children. Two paths intersect when
they share a common arc. To get a feel for Wright’s formula, verify it
for the case of siblings of unrelated parents. Next prove it in general
by induction. Note that although founders are allowed to be inbred,
no two of them can be related. (Hint: Consider first the founders of
a pedigree and then, recursively, each child of parents already taken
into account.)

11. The definition of a generalized X-linked kinship coefficient exactly
parallels the definition of a generalized kinship coefficient except that
genes are sampled from a generic X-linked locus rather than a generic
autosomal locus. Adapt the algorithm of Section 5.6 to the X-linked
case by showing how to revise the boundary conditions and recurrence
relations [18].
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6

Applications of Identity
Coefficients

6.1 Introduction

The current chapter discusses some applications of kinship and condensed
identity coefficients. We commence with the simplest problem of genetic
risk prediction involving just two relatives. This setting is artificial because
practical genetic counseling usually takes into account information on a
whole pedigree rather than information on just a single relative. We will
revisit the question of genetic counseling when we explore algorithms for
computing pedigree likelihoods.

Our applications of identity coefficients to the correlations between rel-
atives, to risk ratios for qualitative diseases, and to robust linkage analysis
are more relevant. Calculation of correlations between relatives forms the
foundation of classical biometrical analyses of quantitative traits such as
height, weight, and cholesterol level [3]. Due to the advent of molecular ge-
netics and positional cloning strategies and to the controversies surrounding
race and IQ, biometrical genetics has fallen out of fashion. Nonetheless, it
is still a useful tool for exploratory analysis of quantitative traits. If one is
mindful of its untestable assumptions and treats its results with caution,
then biometrical genetics can offer remarkable insights into the nature and
strength of genetic influences on quantitative traits.

Calculation of genetic risk ratios brings genetics into the mainstream
of epidemiological thinking on qualitative diseases. Although the models
employed to interpret risk ratios are simplistic, it is helpful to have simple
models for benchmarks. If these models are ruled out for a disease, then
geneticists should adopt robust methods for mapping genes predisposing
people to the disease. This chapter ends by explaining one such robust
technique for linkage analysis. Section 9.13 takes up this topic again and
offers better statistics.

6.2 Genotype Prediction

One application of condensed identity coefficients involves predicting the
genotype of person j based on the observed genotype of person i. At an
autosomal locus in Hardy-Weinberg equilibrium, suppose allele ak has pop-
ulation frequency pk. To obtain the genotypic distribution of j at this locus
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given j’s relationship to i and i’s genotype, we condition on the various con-
densed identity states that i and j can jointly occupy. (Figure 5.3 depicts
the nine possible states.) This conditioning yields

Pr(j = am/an | i = ak/al) =
9∑

r=1

Pr(j = am/an | Sr, i = ak/al)

×Pr(Sr | i = ak/al).

If i has heterozygous genotype ak/al and inbreeding coefficient fi [7], then
states S1, . . . , S4 are impossible, and

Pr(Sr | i = ak/al) =
Pr(Sr, i = ak/al)

Pr(i = ak/al)

=
{

0 for r ≤ 4
∆r2pkpl

(1−fi)2pkpl
for r > 4

=
{

0 for r ≤ 4
∆r

1−fi
for r > 4.

When i is a homozygote ak/ak, states S1, . . . , S4 come into play. In this
case [2],

Pr(Sr | i = ak/ak) =
Pr(Sr, i = ak/ak)

Pr(i = ak/ak)

=





∆rpk

fipk+(1−fi)p2
k

for r ≤ 4
∆rp2

k

fipk+(1−fi)p2
k

for r > 4

=

{
∆r

fi+(1−fi)pk
for r ≤ 4

∆rpk

fi+(1−fi)pk
for r > 4.

Note that Pr(Sr | i = ak/al) = Pr(Sr | i = ak/ak) = ∆r when fi = 0.
The conditional probabilities Pr(j = am/an | Sr, i = ak/al) can be

computed as follows [7]: In states S1 and S7, j has the same genotype as i.
In states S2, S4, S6, and S9, j’s genotype is independent of i’s genotype. In
states S2 and S6, j is also an obligate homozygote and has the homozygous
genotype am/am with probability pm. In states S4 and S9, j’s genotype
follows the Hardy-Weinberg law. In states S3 and S8, j shares one gene in
common with i; the shared gene is equally likely to be either of i’s two genes.
The other gene of j is drawn at random from the surrounding population.
Thus, if i is a heterozygote ak/al in state S8, then j has genotypes ak/ar

(ar �= al), al/ar (ar �= ak), and ak/al with probabilities pr/2, pr/2, and
pk/2+pl/2, respectively. If i is a homozygote ak/ak in states S3 or S8, then
j has genotype ak/ar with probability pr. Finally in state S5, j is again
an obligate homozygote. If i is ak/al, then j is equally likely to be either
ak/ak or al/al.
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Example 6.2.1 Siblings at the ABO Locus

Consider two non-inbred siblings i and j and their ABO phenotypes.
Because Pr(Sr | i = A/B) = ∆r, we have, for example,

Pr(j = A/B | i = A/B)

=
1
4

Pr(j = A/B | S7, i = A/B) +
1
2

Pr(j = A/B | S8, i = A/B)

+
1
4

Pr(j = A/B | S9, i = A/B)

=
1
4
× 1 +

1
2

(
1
2
pA +

1
2
pB

)
+

1
4
2pApB .

Similarly,

Pr(j = A | i = O/O)
= Pr(j = A/A | i = O/O) + Pr(j = A/O | i = O/O)

=
1
4
× 0 +

1
2
× 0 +

1
4
p2

A +
1
4
× 0 +

1
2
pA +

1
4
2pApO .

If we assign i either phenotype A or phenotype B, then we must decompose
i’s phenotype into its constituent genotypes. Problem 2 addresses compli-
cations of this sort.

6.3 Covariances for a Quantitative Trait

Consider a quantitative trait controlled by a single locus in Hardy-Weinberg
equilibrium. Let the kth allele ak at the determining locus have population
frequency pk. In the absence of environmental effects, a non-inbred person
with ordered genotype ak/al has constant trait value µkl = µlk. No gener-
ality is lost if we standardize all trait values so that the random value X of
a non-inbred person has mean E(X) =

∑
k

∑
l µklpkpl = 0. In quantitative

genetics, an additive decomposition µkl = αk +αl is sought. Because such a
decomposition may not be possible, the allelic contributions αk are chosen
to minimize the deviations δkl = µkl − αk − αl. The classical way of doing
this is to minimize the sum of squares

∑
k

∑
l

δ2klpkpl =
∑

k

∑
l

(µkl − αk − αl)2pkpl. (6.1)

Setting the partial derivative of (6.1) with respect to αk equal to 0 gives

0 = −4
∑

l

(µkl − αk − αl)pkpl

= −4pk

∑
l

δklpl.
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It follows that the optimal deviations satisfy
∑

l δklpl = 0 for all k.
Because E(X) = 0 and

∑
k pk = 1, we also find that

0 =
∑

k

pk

∑
l

δklpl

=
∑

k

∑
l

δklpkpl

=
∑

k

∑
l

µklpkpl −
∑

k

∑
l

αkpkpl −
∑

k

∑
l

αlpkpl

= −2
∑

k

αkpk.

Using the fact
∑

k αkpk = 0 just established, we now conclude that

0 =
∑

l

δklpl

=
∑

l

µklpl −
∑

l

αkpl −
∑

l

αlpl

=
∑

l

µklpl − αk.

In other words, αk =
∑

l µklpl.
The above calculations can be carried out in a more abstract setting.

Suppose Z1 and Z2 are independent random variables. Given a random
variable X with E(X) = 0, how can one choose functions h1 and h2 so that
E{[X − h1(Z1) − h2(Z2)]2} is minimized? This problem is easy to solve if
one observes that E[h1(Z1)] = E[h2(Z2)] = 0 should hold and that

Var[X − h1(Z1) − h2(Z2)] = Var(X) + Var[h1(Z1)] + Var[h2(Z2)]
− 2 Cov[X,h1(Z1)] − 2 Cov[X,h2(Z2)]

= Var[X − h1(Z1)] + Var[X − h2(Z2)]
−Var(X).

Now it is well known that Var[X − hi(Zi)] is minimized by taking hi(Zi)
to be the conditional expectation E(X | Zi) of X given Zi [4]. In the
present case, X is the trait value, Z1 is the maternal allele, and Z2 is the
paternal allele. The solution E(X | Zi = ak) =

∑
l µklpl coincides with

αk given above. It is natural to introduce the additive genetic variance
σ2

a = 2 Var[E(X | Zi)] and the dominance genetic variance

σ2
d = Var[X − E(X | Z1) − E(X | Z2)].

Next suppose i and j are relatives. It is of some interest to compute the
covariance Cov(Xi, Xj) between the trait values Xi and Xj of i and j. Let
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us do this calculation under the simplifying assumption that neither i nor
j is inbred. Conditioning on the various identity states and using the facts∑

k pk = 1,
∑

k αkpk = 0,
∑

l δklpl = 0, and αk =
∑

l µklpl, we deduce

E(XiXj)

= ∆7ij

∑
k

∑
l

(αk + αl + δkl)2pkpl

+ ∆8ij

∑
k

∑
l

∑
m

(αk + αl + δkl)(αk + αm + δkm)pkplpm

+ ∆9ij

∑
k

∑
l

∑
m

∑
n

(αk + αl + δkl)(αm + αn + δmn)pkplpmpn

= ∆7ij

[
2
∑

k

α2
kpk +

∑
k

∑
l

δ2klpkpl

]
+ ∆8ij

∑
k

α2
kpk

= 2
[
1
2
∆7ij +

1
4
∆8ij

]
2
∑

k

α2
kpk + ∆7ij

∑
k

∑
l

δ2klpkpl

= 2Φijσ
2
a + ∆7ijσ

2
d,

where σ2
a = 2

∑
k α

2
kpk and σ2

d =
∑

k

∑
l δ

2
klpkpl are explicit expressions for

the additive and dominance genetic variances. Since E(Xi) = E(Xj) = 0,
the desired covariance Cov(Xi, Xj) = E(XiXj). When i and j represent
the same person, Var(Xi) = σ2

a + σ2
d is the total genetic variance. If i

is a parent of j, then Cov(Xi, Xj) = 1
2σ

2
a. If i and j are siblings, then

Cov(Xi, Xj) = 1
2σ

2
a + 1

4σ
2
d.

The above arguments generalize to allow some environmental determi-
nation of the trait. Suppose that Wi and Wj are the random genotypes of
two non-inbred relatives i and j. If Xi and Xj are independent given Wi

and Wj , then the expression for Cov(Xi, Xj) continues to hold provided
we define µkl = E(X | W = ak/al) for the trait value X and genotype W
of a random person. Indeed, in view of our convention that E(X) = 0, we
find that

Cov(Xi, Xj) = E(XiXj)
= E[E(XiXj |Wi,Wj)]
= E[E(Xi |Wi) E(Xj |Wj)].

However, the total trait variance of any person is inflated because

Var(X) = Var[E(X | W )] + E[Var(X |W )]
= σ2

a + σ2
d + E[Var(X |W )].

These simple variance and covariance expressions extend straightfor-
wardly to polygenic traits, where many genes of small effect act additively
to determine a quantitative trait. Many interesting statistical problems
arise in this classical biometrical genetics setting.
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6.4 Risk Ratios and Genetic Model Discrimination

The correlation patterns among relatives provide a simple yet powerful
means of discriminating between genetic models for a trait. Following Risch
[10], let us explore these patterns for a genetic disease characterized by two
states, normal and affected. To any person in a population there corre-
sponds an indicator random variable X such that X = 0 if the person is
normal and X = 1 if the person is affected. In this notation the prevalence
of the disease is K = Pr(X = 1) = E(X).

The disease may have both genetic and environmental determinants. For
the sake of simplicity, we assume that the disease indicators Xi and Xj

of two relatives i and j are independent given their genotypes. We further
suppose that the prevalence of the disease does not vary with age and that
genetic equilibrium holds at the disease locus. These strong assumptions
are apt to be violated in practice, but they may hold approximately. For
instance, if selection is weak and mating is nearly random, then the as-
sumption of genetic equilibrium may not be too damaging. Furthermore,
if by a certain age every person definitely does or does not contract the
disease, then we can restrict our attention to people beyond this cutoff age.

Now consider two non-inbred relatives i and j of type R. Given that per-
son i is affected, it is often possible to estimate empirically the conditional
probability KR = Pr(Xj = 1 | Xi = 1) that j is affected also. The joint
probability of both i and j being affected is

KKR = Pr(Xi = 1, Xj = 1) (6.2)
= E(XiXj).

For a single-locus model, the covariance decomposition for two relatives
gives

E(XiXj) = Cov(Xi, Xj) +K2

= 2Φijσ
2
a + ∆7ijσ

2
d +K2. (6.3)

An important index for discriminating between genetic models is the risk
ratio λR = KR/K for a relative of type R. λR measures the increased risk
of disease for the relative of an affected person compared to the population
prevalence. It follows from equations (6.2) and (6.3) that

λR − 1 = ΦR
2σ2

a

K2
+ ∆7R

σ2
d

K2
. (6.4)

In equation (6.4), Φ and ∆7 are subscripted by the relative type R. Table 6.1
lists some relative types and their corresponding values of λR−1. Note that
parent–offspring pairs are first-degree relatives; half-siblings, grandparent–
grandchild, and uncle–niece pairs are typical second-degree relatives; and
first cousins are typical third-degree relatives.
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TABLE 6.1. λR for Different Relative Types R

R Relative Type Adjusted Risk Ratios λR − 1

M Identical twin
σ2

a

K2 +
σ2

d

K2

S Sibling
σ2

a

2K2 +
σ2

d

4K2

1 First-degree
σ2

a

2K2

2 Second-degree
σ2

a

4K2

3 Third-degree
σ2

a

8K2

Evidently from the entries in the table for first, second, and third-degree
relatives,

λ1 − 1 = 2(λ2 − 1)
= 4(λ3 − 1), (6.5)

and if σ2
d = 0, then for identical twins and siblings

λM − 1 = 2(λS − 1)
= 2(λ1 − 1).

More complicated multilocus models yield different patterns of decline
in λR − 1. For example, consider a two-locus multiplicative model. The
disease indicator X now satisfies X = Y Z, where Y and Z are indicators
for two independent loci. This model is appropriate for a double-dominant
disease. In this case, if the alleles at the first locus are A and a and at the
second locus B and b, then people of unordered genotypes {A/A,B/B},
{A/a,B/B}, {A/A,B/b}, and {A/a,B/b} are affected, and people of all
other genotypes are normal.

As noted above, the population prevalence is

K = E(X)
= E(Y ) E(Z)
= K1K2,

with K1 = E(Y ) and K2 = E(Z). For two relatives of type R, the joint
probability of both being affected is in obvious notation

KKR = E(XiXj)
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= E(YiZiYjZj)
= E(YiYj) E(ZiZj)
= K1K1RK2K2R.

This computation relies on the Y random variables being independent of
the Z random variables. The risk ratio

λR =
KR

K

=
K1R

K1

K2R

K2

= λ1Rλ2R.

Using the equations (6.5) for each locus separately, it follows that for
second-degree relatives

λ2 = λ12λ22

=
(

1
2
λ11 +

1
2

)(
1
2
λ21 +

1
2

)
,

and for third-degree relatives

λ3 = λ13λ23

=
(

1
4
λ11 +

3
4

)(
1
4
λ21 +

3
4

)
,

again in more or less obvious notation. The simple formulas

λ2 − 1
λ1 − 1

=
λ3 − 1
λ2 − 1

=
1
2

no longer apply. For instance, when λ11 = λ21 = 4, we have λ1 = 16,
(λ2 − 1)/(λ1 − 1) = .35, and (λ3 − 1)/(λ2 − 1) = .39. Thus, the ratio
(λn − 1)/(λn−1 − 1) declines faster than for a single-locus model.

A possibly more realistic variant of the single-locus model is a two-locus
genetic heterogeneity model. In this model either of two independent loci
can cause the disease. Let Y be the disease indicator random variable for
the first locus, and let Z be the disease indicator random variable for the
second locus. Since the two forms of the disease are indistinguishable, X =
Y +Z−Y Z is the indicator for the disease caused by either or both loci. For
a moderately rare disease, the term Y Z will be 0 with probability nearly
1. Neglecting the term Y Z, the approximate population prevalence of the
disease under the heterogeneity model is

K = E(Y ) + E(Z)
= K1 +K2.
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Again in obvious notation, the joint probability of i and j both being
affected is approximately

KKR = E[(Yi + Zi)(Yj + Zj)]
= E(YiYj) + E(Yi) E(Zj) + E(Yj) E(Zi) + E(ZiZj)
= K1K1R + 2K1K2 +K2K2R.

The equations for K and KKR can be combined to yield

KKR −K2 = K1K1R + 2K1K2 +K2K2R − (K1 +K2)2

= K2
1 (λ1R − 1) +K2

2 (λ2R − 1), (6.6)

where λ1R = K1R/K1 and λ2R = K2R/K2. Dividing (6.6) by K2 now gives

λR − 1 =
(
K1

K

)2

(λ1R − 1) +
(
K2

K

)2

(λ2R − 1),

with λR = KR/K.
We conclude from this analysis that the pattern of decline of λR − 1 for

the two-locus heterogeneity model is indistinguishable from that for the
single-locus model. Risch [10] argues that the index λR − 1 declines too
rapidly in schizophrenia to fit the pattern dictated by these two models.
He reports a prevalence of K = .0085 and the risk ratios displayed in Table
6.2.

TABLE 6.2. Risk Ratios for Schizophrenia

Relative Type R Risk Ratio λR

Identical twin 52.1

Fraternal twin 14.2

Sibling 8.6

Offspring 10.0

Half-sibling 3.5

Niece or nephew 3.1

Grandchild 3.3

First cousin 1.8
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6.5 An Affecteds-Only Method of Linkage Analysis

Genetic epidemiologists are now actively attempting to map some of the
genes contributing to common diseases. This task is complicated by the
poorly understood inheritance patterns for many of these diseases. While
major genes certainly contribute to some common diseases such as breast
cancer and Alzheimer disease, the classical monogenic patterns of inheri-
tance typically do not fit pedigree and population data. One strategy for
identifying disease predisposing genes is to restrict mapping studies to pedi-
grees showing multiple affecteds with early age of onset. Such pedigrees are
more apt to segregate major genes than pedigrees with isolated affecteds
showing late onset. Even this enrichment strategy does not guarantee a
single Mendelian pattern of inheritance in the ascertained pedigrees.

In the absence of a well-defined disease inheritance model, it is still prof-
itable to pursue linkage analysis by robust methods. Robust linkage meth-
ods are predicated on the observation that a marker allele will track a
closely linked disease allele as both descend from a founder through a pedi-
gree. Only recombination can separate a pair of such alleles present in a
pedigree founder. Thus, marker genes can be used as surrogates for disease
genes. Robust linkage tests seek to assess the amount of marker allele shar-
ing among affecteds. Excess sharing is taken as evidence that the marker
locus is closely linked to a disease predisposing locus. The marker locus
may be a candidate locus for the disease. In this case it is perhaps better
to speak of association between the marker and the disease.

Our immediate goal is to examine one robust linkage statistic and to
compute the mean and variance of this statistic using kinship coefficients
[12]. These computations are valid under the null hypothesis of independent
segregation of the marker locus and the disease. Beyond this independence
assumption, nothing specific is assumed about disease causation.

Consider a pedigree and two affected individuals i and j in that pedigree
who are typed at a given marker locus. We assume that the marker locus
is in Hardy-Weinberg equilibrium and that its alleles are codominant with
the kth allele having population frequency pk. At the heart of our robust
statistic is the pairwise statistic Zij assessing the marker sharing between
i and j. It is desirable for Zij to give greater weight to shared rare alleles
than to shared common alleles. This weighting is

accomplished via a weighting function f(p) of the population frequency
p of the shared allele. Typical choices for f(p) are f(p) = 1, f(p) = 1/

√
p,

and f(p) = 1/p. Now let Mi and Mj be the observed marker genotypes of
i and j. Imagine drawing one marker gene Gi at random from i and one
marker gene Gj at random from j.

The statistic Zij is defined as the conditional expectation

Zij = E(1{Gi=Gj}f(pGi) |Mi,Mj), (6.7)

where the indicator function 1{Gi=Gj} is 1 when the sampled genes Gi and
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Gj match in state. Although substituting i.b.d. for identity by state might
be attractive in this definition, the alternative statistic with i.b.d. matches
counted would be considerably more difficult to evaluate. In any event, if
person i has observed genotype Mi = ak/al and person j has genotype
Mj = am/an, then definition (6.7) reduces to

Zij =
1
4
1{ak=am}f(pk) +

1
4
1{ak=an}f(pk)

+
1
4
1{al=am}f(pl) +

1
4
1{al=an}f(pl).

From the pairwise statistics Zij , we form an overall statistic Z =
∑

{i,j} Zij

by summing over all affected pairs {i, j} typed in the pedigree. In most
applications we take i �= j, but the contrary procedure of comparing an
affected person to himself can be useful for inbred affecteds if the disease
is thought to be caused by recessively acting genes.

Since the mean and variance of Z obviously are

E(Z) =
∑
{i,j}

E(Zij)

Var(Z) =
∑
{i,j}

∑
{k,l}

Cov(Zij , Zkl),

it suffices to calculate E(Zij) and Cov(Zij , Zkl). If we condition on whether
the two sampled genes Gi and Gj are i.b.d., then it follows that

E(Zij) = E[1{Gi=Gj}f(pGi)]

= Φij

∑
k

f(pk)pk + (1 − Φij)
∑

k

f(pk)p2
k.

The covariance Cov(Zij , Zkl) = E(ZijZkl) − E(Zij) E(Zkl) can be com-
puted by first noting that 1{Gi=Gj}f(pGi) depends only on the observed
marker genotypes Mi and Mj and that 1{Gk=Gl}f(pGk

) depends only on
the observed marker genotypes Mk and Ml. These two facts imply that

E(ZijZkl)
= E[E(1{Gi=Gj}f(pGi) |Mi,Mj) E(1{Gk=Gl}f(pGk

) |Mk,Ml)]
= E[E(1{Gi=Gj}f(pGi)1{Gk=Gl}f(pGk

) | Mi,Mj ,Mk,Ml)]
= E[1{Gi=Gj}f(pGi)1{Gk=Gl}f(pGk

)].

To evaluate the last expectation, we condition on how the four sam-
pled genes Gi, Gj , Gk , and Gl are partitioned under identity by descent.
Consider again the condensed identity states of Figure 5.3. In each state,
imagine genes Gi and Gj appearing on the top row in no particular order
and genes Gk and Gl appearing on the bottom row in no particular order.
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Let Υr denote the probability of the condensed identity state Sr under
these conventions. Then

E(ZijZkl) =
∑

r

E(1{Gi=Gj}f(pGi)1{Gk=Gl}f(pGk
) | Sr)Υr.

Table 6.3 lists the necessary conditional expectations. The entries in
the table are straightforward to verify. For instance, consider the entry
for state S8. In this condensed identity state, one of the two genes on
the top row is i.b.d. with one of the two genes on the bottom row. Thus,
1{Gi=Gj}1{Gk=Gl} = 1 only when Gi, Gj , Gk, and Gl all agree in state. By
independence, all four genes coincide with the mth allele with probability
p3

m.
To compute the probabilities Υr, we reason as we did in Chapter 5 in

passing between generalized kinship coefficients and condensed identity co-
efficients. Consider the 15 detailed identity states possible for 4 genes as
depicted in Figure 5.2. Now imagine in all states that the sampled genes
Gi and Gj occupy the top row in some particular order and that Gk and
Gl occupy the bottom row in some particular order. The probability of any
detailed identity state is just a generalized kinship coefficient involving the
four sampled genes Gi, Gj , Gk, and Gl. Under the usual correspondence
between detailed and condensed states, adding the appropriate generalized
kinship coefficients yields each Υr.

TABLE 6.3. Conditional Expectations for Marker Sharing

State r E(1{Gi=Gj}f(pGi)1{Gk=Gl}f(pGk
) | Sr)

1
∑

m pmf(pm)2

2 {∑m pmf(pm)}2

3, 5, 7
∑

m p2
mf(pm)2

4, 6 {∑m p2
mf(pm)}{∑m pmf(pm)}

8
∑

m p3
mf(pm)2

9 {∑m p2
mf(pm)}2

Given a collection of pedigrees, it is helpful to combine the marker-
sharing statistics from the individual pedigrees into one grand statistic.
The grand statistic should reflect the information content available in the
individual pedigrees and should lead to easily approximated p-values. If Zm

is the statistic corresponding to the mth pedigree, then these goals can be
achieved by defining

T =
∑

mwm[Zm − E(Zm)]√∑
m w2

m Var(Zm)
,
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where wm is a positive weight assigned to pedigree m. Under the null
hypothesis of independent segregation of the disease phenotype and the
marker alleles, the grand statistic T has mean 0 and variance 1. For a
moderately large number of pedigrees, T should be approximately normally
distributed as well. In practice, p-values can be computed by simulation,
and normality need not be taken for granted. A one-sided test is appropriate
because excess marker sharing increases the observed value of T .

Choice of the weights is bound to be somewhat arbitrary. With rm typed
affecteds in a pedigree, results of Hodge [6] suggest

wm =

√
rm − 1

Var(Zm)
. (6.8)

This weighting scheme represents a compromise between giving all pedi-
grees equal weight (wm = 1/

√
Var(Zm)) and overweighting large pedigrees

(wm = 1). Overweighting is a potential problem because the number of
affected pairs rm(rm − 1)/2 is a quadratic rather than a linear function of
rm. If we suspect recessive inheritance and want to exploit information on
inbred affecteds, then it is reasonable to replace rm − 1 by rm in formula
(6.8).

Applications of the statistic T to pedigree data on Huntington disease,
rheumatoid arthritis,Arthritis, rheumatoid breast cancer, and Alzheimer
disease are discussed in the references [5, 9, 12]. Extension of the statistic
to multiple linked markers is undertaken in [13].

6.6 Problems

1. Let the disease allele at a recessive disease locus have population
frequency q. If a child has inbreeding coefficient f , argue that his
or her disease risk is fq + (1 − f)q2. What assumptions does this
formula entail? Now suppose that a fraction α of all marriages in the
surrounding population are between first cousins [1]. Show that the
fraction of affecteds due to first-cousin marriages is

α( 1
16q + 15

16q
2)

f̄ q + (1 − f̄)q2
=

α(1 + 15q)
16[f̄ + (1 − f̄)q]

,

where f̄ is the average inbreeding coefficient of the population. Com-
pute this fraction for α = .02,f̄ = .002, and for q = .01 and q = .001.
What conclusions do you draw from your results?

2. Consider a disease trait partially determined by an autosomal locus
with two alleles 1 and 2 having frequencies p1 and p2. Let φk/l be the
probability that a person with genotype k/l manifests the disease.
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For the sake of simplicity, assume that people mate at random and
that the disease states of two relatives i and j are independent given
their genotypes at the disease locus. Now let Xi and Xj be indicator
random variables that assume the value 1 when i or j is affected,
respectively. Show that

Pr(Xj = 1 | Xi = 1) =
∑
gi

∑
gj

∑
Sr

Pr(Xj = 1 | gj) Pr(gj | Sr, gi)

×Pr(Sr | gi) Pr(gi | Xi = 1), (6.9)

where gi and gj are the possible genotypes of i and j and Sr is a con-
densed identity state. This gives an alternative to computing risks by
multiplying the relative risk ratio λR by the prevalence K. Explicitly
evaluate the risk (6.9) for identical twins and parent–offspring pairs.

3. Suppose that marker loci on different chromosomes are typed on two
putative relatives. At locus i, let pij be the likelihood of the observed
pair of phenotypes conditional on the relatives being in condensed
identity state Sj . In the absence of inbreeding, only the states S7,
S8, and S9 are possible. If we want to estimate the true relationship
between the pair, then we can write the likelihood of the observations
as

L(∆) =
∏

i

(∆7pi7 + ∆8pi8 + ∆9pi9)

and attempt to estimate the ∆’s [11]. Describe an EM algorithm
to find the maximum likelihood estimates. The value of L(∆) can
be compared under the maximum likelihood estimates and under
choices for the ∆’s characterizing typical relative pairs such as parent–
offspring, siblings, first cousins, and so forth. Discuss the merits and
demerits of this strategy. For one objection, see Problem 2 of Chapter
5.

4. Suppose that the two relatives i and j are inbred. Show that the
covariance between their trait values Xi and Xj is

Cov(Xi, Xj) = (4∆1 + 2∆3 + 2∆5 + 2∆7 + ∆8)
∑

k

α2
kpk

+ (4∆1 + ∆3 + ∆5)
∑

k

αkδkkpk

+ ∆1

∑
k

δ2kkpk + ∆7

∑
k

∑
l

δ2klpkpl

+ (∆2 − fifj)
(∑

k

δkkpk

)2

.

What is Cov(Xi, Xj) when σ2
d = 0?
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5. For a locus with two alleles, show that the additive genetic variance
satisfies

σ2
a = 2p1p2(α1 − α2)2

= 2p1p2[p1(µ11 − µ12) + p2(µ12 − µ22)]2. (6.10)

As a consequence of formula (6.10), σ2
a can be 0 only in the unlikely

circumstance that µ12 lies outside the interval with endpoints µ11

and µ22. (Hint: Expand 0 = 2(α1p1 + α2p2)2 and subtract from the
expression defining σ2

a.)

Show that the dominance genetic variance satisfies

σ2
d = p2

1p
2
2(µ11 − 2µ12 + µ22)2.

It follows that if either p1 or p2 is small, then σ2
d will tend to be small

compared to σ2
a. Hint: Let µ = p2

1µ11 +2p1p2µ12 +p2
2µ22. Since µ = 0,

it follows that

δ11 = µ11 − 2α1 + µ

= p2
2(µ11 − 2µ12 + µ22)

δ12 = −p1p2(µ11 − 2µ12 + µ22)
δ22 = p2

1(µ11 − 2µ12 + µ22).

6. Prove that any pair of nonnegative numbers (σ2
a, σ

2
d) can be realized

as additive and dominance genetic variances. The special pairs ( 1
2 , 0)

and (0, 1) show that the two matrices Φ = (Φij) and ∆7 = (∆7ij)
defined for an arbitrary non-inbred pedigree are legitimate covariance
matrices. (Hint: Based on the previous problem,

σ2
a = 2p1p2(p1u+ p2v)2

σ2
d = p2

1p
2
2(u− v)2

for u = µ11 − µ12 and v = µ12 − µ22. Solve for u and v.)

7. Show that the matrices Φ and ∆7 of coefficients assigned to a pedigree
do not necessarily commute. It is therefore pointless to attempt a
simultaneous diagonalization of these two matrices. (Hint: Consider
a nuclear family consisting of a mother, father, and two siblings.)

8. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be measured values for two dif-
ferent traits on a pedigree of n people. Suppose that both traits are
determined by the same locus. Show that there exist constants σaxy

and σdxy such that

Cov(Xi, Yj) = 2Φijσaxy + ∆7ijσdxy
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for any two non-inbred relatives i and j [8]. Prove that the two ma-
trices

(
σ2

axx σaxy

σaxy σ2
ayy

) (
σ2

dxx σdxy

σdxy σ2
dyy

)

are covariance matrices, where σ2
axx, σ2

dxx, σ2
ayy, and σ2

dyy are the
additive and dominance genetic variances of the X and Y traits,
respectively. (Hints: For the first part, consider the artificial trait
W = X + Y for a typical person. For the second part, prove that

σaxy = 2 Cov(A1, B1)
σdxy = Cov(X −A1 −A2, Y −B1 −B2),

where Ak = E(X | Zk) and Bk = E(Y | Zk), Z1 and Z2 being the
maternal and paternal alleles at the common locus.)

9. In the two-locus heterogeneity model with X = Y + Z − Y Z, carry
through the computations retaining the product term Y Z. In partic-
ular, let Km be the prevalence of the mth form of the disease, and
let KmR be the recurrence risk for a relative of type R under the
mth form. If K is the prevalence and KR is the recurrence risk to a
relative of type R under either form of the disease, then show that

K = K1 +K2 −K1K2

KKR = K1K1R +K1K2 −K1K1RK2 +K1K2 +K2K2R

−K1K2K2R −K1K1RK2 −K1K2K2R +K1K1RK2K2R.

Assuming that K1, K2, K1R, and K2R are relatively small, verify the
approximation

λR − 1

=
(
K1

K

)2

(λ1R − 1) +
(
K2

K

)2

(λ2R − 1)

+
K1K2

K2
[2K1 + 2K2 −K1K2 − 2K1R − 2K2R +K1RK2R]

≈
(
K1

K

)2

(λ1R − 1) +
(
K2

K

)2

(λ2R − 1),

where λmR = KmR/Km and λR = KR/K.

10. In the pedigree depicted in Figure 6.1, compute the marker-sharing
statistic Z and its expectation E(Z) for the three phenotyped affect-
eds 3, 4, and 6. Assume f(p) = 1/p, pa = 1/2, pb = 1/4, and for a
third unobserved marker allele pc = 1/4.
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FIGURE 6.1. A Pedigree Illustrating Marker Sharing Among Affecteds

6.7 References

[1] Crow JF, Kimura M (1970) An Introduction to Population Genetics
Theory. Harper and Row, New York

[2] Elston RC, Lange K (1976) The genotypic distribution of relatives of
homozygotes when consanguinity is present. Ann Hum Genet 39:493–
496

[3] Fisher RA (1918) The correlation between relatives on the supposition
of Mendelian inheritance. Trans Roy Soc Edinb 52:399–433

[4] Grimmett GR, Stirzaker DR (1992) Probability and Stochastic
Processes, 2nd ed. Oxford University Press, Oxford

[5] Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B,
King M-C (1990) Linkage of early-onset familial breast cancer to chro-
mosome 17q21. Science 250:1684–1689

[6] Hodge SE (1984) The information contained in multiple sibling pairs.
Genet Epidemiology 1:109–122

[7] Jacquard A (1974) The Genetic Structure of Populations. Springer-
Verlag, New York

[8] Lange K, Boehnke M (1983) Extensions to pedigree analysis. IV. Co-
variance components models for multivariate traits. Amer J Med Genet
14:513–524

[9] Pericak-Vance MA, Bebout JL, Gaskell PC Jr, Yamaoka LH, Hung
W-Y, Alberts MJ, Walker AP, Barlett RJ, Haynes CA, Welsh KA,



114 6. Applications of Identity Coefficients

Earl NL, Heyman A, Clark CM, Roses AD (1991) Linkage studies in
familial Alzheimer disease: evidence for chromosome 19 linkage. Amer
J Hum Genet 48:1034–1050

[10] Risch N (1990) Linkage strategies for genetically complex traits. I.
Multilocus models. Amer J Hum Genet 46:22–228

[11] Thompson EA (1986) Pedigree Analysis in Human Genetics. Johns
Hopkins University Press, Baltimore

[12] Weeks DE, Lange K (1988) The affected-pedigree-member method of
linkage analysis. Amer J Hum Genet 42:315–326

[13] Weeks DE, Lange K (1992) A multilocus extension of the affected-
pedigree-member method of linkage analysis. Amer J Hum Genet
50:859–868



7

Computation of Mendelian
Likelihoods

7.1 Introduction

Rigorous analysis of human pedigree data is a vital concern in genetic epi-
demiology, human gene mapping, and genetic counseling. In this chapter
we investigate efficient algorithms for likelihood computation on pedigree
data, placing particular stress on the pioneering algorithm of Elston and
Stewart [8]. It is no accident that their research coincided with the in-
troduction of modern computing. To analyze human pedigree data is te-
dious, if not impossible, without computers. Pedigrees lack symmetry, and
all simple closed-form solutions in mathematics depend on symmetry. The
achievement of Elston and Stewart [8] was to recognize that closed-form so-
lutions are less relevant than good algorithms. However, the Elston-Stewart
algorithm is not the end of the story. Evaluation of pedigree likelihoods re-
mains a subject sorely in need of further theoretical improvement. Linkage
calculations alone are among the most demanding computational tasks in
modern biology.

7.2 Mendelian Models

Besides the raw materials of pedigree structure and observed phenotypes,
a genetic model is a prerequisite for likelihood calculation. At its most
elementary level, a model postulates the number of loci necessary to explain
the phenotypes. Mendelian models, as opposed to polygenic models, involve
only a finite number of loci. For purposes of discussion, it is convenient to
use the term “genotype” when discussing the multilocus, ordered genotypes
of an underlying model. Because ordered genotypes preserve phase, they
are preferable to unordered genotypes for theoretical and computational
purposes. Of course, observed genotypes are always unordered.

Any Mendelian model revolves around the three crucial notions of pri-
ors, penetrances, and transmission probabilities [8]. Prior probabil-
ities pertain only to founders. If G is a possible genotype for a founder,
then in the absence of other knowledge, Prior(G) is the probability that
the founder carries genotype G. Almost all models postulate that prior
probabilities conform to Hardy-Weinberg and linkage equilibrium.

Penetrance functions specify the likelihood of an observed phenotype X
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given an unobserved genotype G. We denote a penetrance by Pen(X | G).
Penetrances apply to all people in a pedigree, founders and nonfounders
alike. Implicit in the notion of penetrance is the assumption that the phe-
notypes of two or more people are independent given their genotypes. This
restriction rules out complex models in which common environment in-
fluences phenotypes. It is easier to incorporate environmental effects in
polygenic models. In Mendelian models, likelihood evaluation involves com-
binatorics; in polygenic models, it involves linear algebra.

In general, Pen(X | G) can represent a conditional likelihood as well as a
conditional probability. This would be the case, for instance, with a quan-
titative trait X following a different Gaussian density for each genotype.
For many genetic traits, Pen(X | G) is either 0 or 1; in other words, each
genotype leads to one and only one phenotype. When a phenotype is un-
observed, it is natural to assume that the penetrance function is identically
1.

The third and last component probability of a likelihood summarizes the
genetic transmission of the trait or traits observed. Let Tran(Gk | Gi, Gj)
denote the probability that a mother i with genotype Gi and a father j with
genotype Gj produce a child k with genotype Gk. For ordered genotypes,
the child’s genotype Gk can be visualized as an ordered pair of gametes
(Uk, Vk), Uk being maternal in origin and Vk being paternal in origin. If
all participating loci reside on the same chromosome, then Uk and Vk are
haplotypes. Because any two parents create gametes independently, the
transmission probability

Tran(Gk | Gi, Gj) = Tran(Uk | Gi) Tran(Vk | Gj)

factors into two gamete transmission probabilities. Unordered geno-
types do not obey this gamete factorization rule.

Specification of gamete transmission probabilities is straightforward for
single-locus models. For a single autosomal locus, Tran(H | G) is either
1, 1

2 , or 0, depending on whether the single allele H is identical in state
to both, one, or neither of the two alleles of the parental genotype G,
respectively. For multiple linked loci, Haldane’s model [10] permits easy
computation of gamete transmission probabilities, provided one is willing
to neglect the phenomenon of chiasma interference. For the sake of compu-
tational simplicity, we now adopt Haldane’s model, which postulates that
recombination occurs independently on disjoint intervals.

To apply Haldane’s model, one begins by discarding all homozygous loci
in the parent. This entails no loss of information because recombination
events can never be inferred between such loci. Between each remaining
adjacent pair of heterozygous loci, gametes can be scored as recombinant
or nonrecombinant. Once adjacent intervals have been consolidated to the
point where all interval endpoints are marked by heterozygous loci, cal-
culation of gamete transmission probabilities is straightforward. Invoking
independence, the probability of a gamete is now 1

2 times the product over
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all consolidated intervals of the corresponding recombination fractions θ or
of their complements 1−θ, depending on whether the gamete shows recom-
bination on a given interval or not. The factor of 1

2 accounts for the parental
chromosome chosen for the first locus. In the exceptional case where there
are no heterozygous loci, the gamete transmission probability is 1. If there
is only one heterozygous locus, the gamete transmission probability is 1

2 .
Recombination fractions for consolidated intervals can be computed via
Trow’s formula as described in Problem 1.

The likelihood L of a pedigree with n people can now be assembled from
these component parts. Let the ith person have phenotype Xi and possible
genotype Gi. Conditioning on the genotypes of each of the n people yields
Ott’s [27] representation of the likelihood

L =
∑
G1

· · ·
∑
Gn

Pr(X1, . . . , Xn | G1, . . . , Gn) Pr(G1, . . . , Gn)

=
∑
G1

· · ·
∑
Gn

∏
i

Pen(Xi | Gi) Pr(G1, . . . , Gn) (7.1)

=
∑
G1

· · ·
∑
Gn

∏
i

Pen(Xi | Gi)
∏
j

Prior(Gj)
∏

{k,l,m}
Tran(Gm | Gk, Gl),

where the product on j is taken over all founders and the product on
{k, l,m} is taken over all parent–offspring triples.

At this point, several comments are appropriate concerning the explicit
likelihood representation (7.1). First, ranges of summation for the geno-
types are not specified. At the very least it is profitable to eliminate any
genotype Gi with Pen(Xi | Gi) = 0. We will discuss later an algorithm
for genotype elimination that performs much better than this naive tac-
tic in most circumstances. Second, the notation in (7.1) does not make it
clear whether the likelihood L should be computed as a joint sum or as
an iterated sum. One can argue rigorously that an iterated sum is always
preferable to a joint sum if minimizing counts of additions and multiplica-
tions is taken as a criterion [18]. Viewing (7.1) as an iterated sum opens
up the possibility of rearranging the order of summation so as to achieve
the most efficient computation. Third, calculation of L is numerically sta-
ble since only additions and multiplications of nonnegative numbers are
involved. There will be no disastrous roundoff errors due to subtraction
of quantities of similar magnitude. However, serious underflows can be en-
countered because all terms are usually probabilities and hence lie in the
interval [0, 1]. Underflows can be successfully defused by repeated rescaling
and reporting the final answer as a loglikelihood. Last of all, the various
terms in (7.1) can be viewed as values taken on by arrays. For instance,
Pen(Xi | Gi) is an array of rank 1 that depends on the possible genotypes
Gi for i. Similarly, Tran(Gk | Gi, Gj) is an array of rank 3 depending on Gi,
Gj , and Gk jointly. Thus, computation of L is inherently array-oriented.
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7.3 Genotype Elimination and Allele Consolidation

As hinted above, systematic genotype elimination is a powerful technique
for accelerating likelihood evaluation. This preprocessing step involves more
than just using those genotypes compatible with a person’s observed phe-
notype. The phenotypes of the person’s relatives also impose rigid com-
patibility constraints on his or her possible genotypes. Although this fact
has long been known informally, it is helpful to state a formal algorithm
that mimics how geneticists reason. In doing so, we will focus on ordered
genotypes at a single autosomal locus. Because ordered genotypes carry
phase information, applying the algorithm separately to several linked loci
automatically eliminates superfluous phases among the loci as well as su-
perfluous genotypes within each locus.

Here then is the algorithm [18, 19]:

(A) For each pedigree member, list only those ordered genotypes compat-
ible with his or her phenotype.

(B) For each nuclear family:

(1) Consider each mother–father genotype pair.

(a) Determine which zygotes can arise from the genotype pair.
(b) If each child in the nuclear family has one or more of these

zygote genotypes among his or her current list of genotypes,
then save the parental genotypes and any child genotype
matching one of the created zygote genotypes.

(c) If any child has none of these zygote genotypes among his
or her current list of genotypes—in other words, is incom-
patible with the current parental pair of genotypes—then
take no action to save any genotypes.

(2) For each person in the nuclear family, exclude any genotypes not
saved during step (1) above.

(C) Repeat part (B) until no more genotypes can be excluded.

As an illustration of the algorithm, consider the pedigree of Figure 7.1
at the ABO locus, and suppose individuals 2, 3, and 5 alone are typed at
this locus. Then applying part (A) of the algorithm leads to the genotype
sets displayed in column 2 of Table 7.1. Applying (B) to the nuclear family
{3, 4, 5} gives column 3, and finally, applying (B) to the nuclear family
{1, 2, 3} gives column 4. Recall that the maternal allele is listed to the left
of the paternal allele in an ordered genotype. This convention shows up in
the genotype set for person 3. No further genotypes can be eliminated by
repeated use of (B), and column 4 provides the minimal genotype sets. In
more extensive pedigrees, genotype eliminations can ripple up and down
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FIGURE 7.1. A Pedigree Partially Typed at the ABO Locus

through the pedigree, requiring multiple visits to each nuclear family. For
pedigrees that are graphically trees, that is, have no loops or cycles, the
algorithm is guaranteed to eliminate all superfluous genotypes for each
person [19]. O’Connell and Weeks present a generalization of the algorithm
that is optimal even in the exceptional cases [5].

TABLE 7.1. Genotype Sets for a Genotype Elimination Example

After After Applying After Applying

Person Applying (A) (B) to {3, 4, 5} (B) to {1, 2, 3}
1 All 9 genotypes All 9 genotypes {A/A,A/O,O/A,

A/B,B/A}
2 {O/O} {O/O} {O/O}

3 {A/A,A/O,O/A} {A/O,O/A} {O/A}

4 All 9 genotypes {A/O,O/A,B/O,
O/B,O/O}

{A/O,O/A,B/O,
O/B,O/O}

5 {O/O} {O/O} {O/O}

Allele consolidation is another tactic that reduces ranges of summation.
At a highly polymorphic, codominant marker locus, most pedigrees will
segregate only a subset of the possible alleles. If a person i is untyped, then
the range of summation for his or her genotypes may involve genotypes
composed of alleles not actually seen within the pedigree. These unseen
genotypes can be consolidated by consolidating unseen alleles. In most ap-
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plications, this action will not change the likelihood of the pedigree, pro-
vided the lumped allele is assigned the appropriate summed population
frequency. For instance, suppose only the first three alleles from the set
{Ai : 1 ≤ i ≤ 6} of six possible alleles are seen among the typed people of
a pedigree. Then one can consolidate alleles A4, A5, and A6 into a single
artificial allele A7 with frequency p7 = p4 + p5 + p6 in obvious notation.

If allele consolidation is carried out on a pedigree-by-pedigree basis, then
substantial computational savings can be realized. Even more dramatic
savings can occur when allele consolidation is carried out locally within a
pedigree. O’Connell and Weeks’ [26] explanation of local consolidation is
well worth reading but a little too lengthy to recite here. Finally, note that
there are some problems such as allele frequency estimation from pedigree
data [2] where allele consolidation is disastrous. A little common sense
should be an adequate safeguard against these abuses.

7.4 Array Transformations and Iterated Sums

To elaborate on some of the comments made earlier about iterated sums
and arrays, we now strip away the genetics overlay and concentrate on
issues of numerical analysis. As an example [18], consider the problem of
computing the sum of products

∑
G1∈S1

∑
G2∈S2

∑
G3∈S3

A(G1, G2)B(G2)C(G2, G3), (7.2)

where Si is the finite range of summation for the index Gi, and where A,
B, and C are arrays of real numbers. Let Si have mi elements. Computing
(7.2) as a joint sum requires 2m1m2m3 multiplications and m1m2m3 − 1
additions. If we compute (7.2) as an iterated sum in the sequence (3, 2, 1)
specified, we first compute an array

D(G2) =
∑

G3∈S3

C(G2, G3)

in m2(m3 − 1) additions. Note that the arrays A and B do not depend on
the index G3 so it is uneconomical to involve them in the sum on G3. Next
we compute an array

E(G1) =
∑

G2∈S2

A(G1, G2)B(G2)D(G2) (7.3)

in 2m1m2 multiplications andm1(m2−1) additions. Last of all, we compute
the sum

∑
G1∈S1

E(G1) inm1−1 additions. The total arithmetic operations
needed for the joint sum is 3m1m2m3 − 1; for the iterated sum the total
is m2(3m1 + m3 − 1) − 1. It is clear that the iterated sum requires the
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same number of operations when m3 = 1 and strictly fewer operations
when m3 > 1. If we take the alternative order (3, 1, 2), the total operations
are m2(m1 +m3 + 1) − 1. Thus, the order (3, 1, 2) is even better than the
original order (3, 2, 1).

Note that when (7.2) is computed as an iterated sum, arrays are con-
stantly being created and discarded. At each summation, those arrays de-
pending on the current summation index are multiplied together, and the
resulting product array is summed on this index. This process leads to a
new array no longer depending on the eliminated index, and those arrays
participating in the formation of the new array can now be discarded. Each
summation therefore transforms the original computational problem into
a problem of the same sort, except that the number of indices is reduced
by one. Eventually, all indices are eliminated, and the original problem is
solved.

Finding an optimal or nearly optimal summation sequence is highly non-
trivial. In genetics problems, one can attempt to generate such sequences
by working from the periphery of the pedigree inward. Such pruning of the
pedigree succeeds for graphically simple pedigrees. However, in the pres-
ence of inbreeding, cycles or loops in the graphical structure of the pedigree
impede this approach. Furthermore, a purely graphical treatment ignores
the important differences in the number of genotypes per person. A detailed
analysis of this problem is carried out in [9].

Greedy algorithms provide useful heuristics for choosing a nearly opti-
mal summation sequence. For instance, we can always sum on that index
requiring the fewest current arithmetic operations to eliminate. Thus, in
our toy example, we would start with index 1 or 3 depending on whether
m1 < m3 or m1 > m3. A tie m1 = m3 is broken arbitrarily. This greedy
heuristic is not always optimal, as Problem 3 indicates.

Another context where greedy algorithms arise naturally is in the for-
mation of array products. Consider, for instance, equation (7.3). If we first
multiply array B times array D to get

F (G2) = B(G2)D(G2),

and then multiply and sum to form

E(G1) =
∑

G2∈S2

A(G1, G2)F (G2),

we save m1m2 −m2 multiplications. This example illustrates that arrays
should always be multiplied pairwise until only two arrays involving the
current summation index survive. These last two arrays can then be mul-
tiplied and afterwards summed, or they can be simultaneously multiplied
and summed. The latter method generalizes matrix multiplication; it entails
the same amount of arithmetic but requires less storage than the former
method. In forming pairwise products of intermediate arrays, we face the
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question of what two arrays to multiply at any given step. In equation (7.3)
the answer is obvious. In more complex examples, we can resort to a greedy
approach; namely, at each stage we always pick the two arrays that cost
the least to multiply. Ties at any stage are broken by arbitrarily choosing
one of the best pairs of arrays.

7.5 Array Factoring

The calculation of pedigree likelihoods involving many linked markers has
raised interesting challenges. Even with complete phenotyping of all pedi-
gree members, phase ambiguities pose a problem. Lathrop et al. [22] show
that for many fully typed nuclear families (with or without grandparents
appended), the likelihood factors into a product of likelihoods involving
subsets of the loci. These multiplicand likelihoods can be quickly evalu-
ated. Lander and Green [17] take a different approach. They redefine the
likelihood expression (7.1) so that the sums extend over loci rather than
people. In other words, their algorithm steps through the likelihood calcu-
lation locus by locus while considering all people simultaneously at each
locus. This tactic has the consequence of radically displacing the source of
computational complexity. Instead of scaling exponentially in the number
of loci, their algorithm scales linearly. However, since all pedigree members
are taken simultaneously, it scales exponentially in the number of pedigree
members. Although the clever speedups proposed by Kruglyak et al. [15, 16]
help, very large pedigrees are simply beyond the reach of the Lander and
Green algorithm.

A synthesis of these two methods is possible [9]. On one hand, the factor-
ization method of Lathrop et al. [22] ultimately depends on being able to
factor the prior, penetrance, and transmission arrays. On the other hand,
the method of Lander and Green [17] shifts summations from people to
loci. It is possible to decompose on both people and loci in such a manner
that the prior, penetrance, and transmission arrays factor. This sugges-
tion entails viewing the multilocus ordered genotypes of a given person
as originating from a Cartesian product of his or her single-locus ordered
genotypes. A negative consequence of this synthesis is the substitution of a
swarm of small arrays where a few large ones formerly sufficed. In compen-
sation for this complication is the potential benefit of encountering much
smaller initial and intermediate arrays in the likelihood calculation.

To elaborate on this synthesis, consider again a typical person i in a
pedigree with n members. Suppose that i’s phenotype Xi is determined
by m loci 1, . . . ,m taken in their natural order along a chromosome. A
multilocus ordered genotype Gi of i decomposes into an ordered sequence
Gi = (Gi1, ..., Gim) of single-locus ordered genotypes Gij . Under Hardy-
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Weinberg and linkage equilibrium, the prior Prior(Gi) factors as

Prior(Gi) =
m∏

j=1

Prior(Gij). (7.4)

If i’s phenotype Xi also decomposes into separate observations Xij at each
locus, then most penetrance functions exhibit the factorization

Pen(Xi | Gi) =
m∏

j=1

Pen(Xij | Gij). (7.5)

Failures of assumption (7.5) are rare in linkage studies and represent epis-
tasis among loci. Both equations (7.4) and (7.5) are forms of probabilistic
independence.

Factorization of transmission arrays is more subtle. According to Hal-
dane’s model, a gamete transmission probability Tran(Hk | Gi) factors into
terms encompassing blocks of loci, with each block delimited by two het-
erozygous loci in the parent i. For example, suppose r and s, 1 < r < s < m,
are the only heterozygous loci in the parental genotype Gi. Then the trans-
mission probability for the haplotype Hk factors as

Tran(Hk | Gi) = Tran[(Hk1, . . . , Hkr) | (Gi1, . . . , Gir)]
×Tran[(Hk,r+1, . . . , Hks) | (Gir, . . . , Gis), Hkr ]
×Tran[(Hk,s+1, . . . , Hkm) | (Gis, . . . , Gim), Hks],

where the block (r, . . . , s) spans the only interval on which recombination
can be counted. Traversing the haplotype from locus 1 to locus m, a factor
of 1

2 accounts for which parental allele is encountered at the first heterozy-
gous locus r. Thus,

Tran[(Hk1, . . . , Hkr) | (Gi1, . . . , Gir)] =
1
2
.

Recombination or nonrecombination between loci r and s is summarized
by

Tran[(Hk,r+1, . . . , Hks) | (Gir, . . . , Gis), Hkr ]

=
{
θrs for recombination on interval [r, s]
1 − θrs for nonrecombination on interval [r, s],

where θrs is the recombination fraction between loci r and s. Finally, be-
cause recombination cannot be scored between loci s and m,

Tran[(Hk,s+1, . . . , Hkm) | (Gis, . . . , Gim), Hks] = 1.

For transmission array factorization to be useful, it must take the same
form for all possible multilocus genotypes Gi. Clearly, a transmission array
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can be factored uniformly into two terms involving a given locus and loci to
the right and left of it, respectively, only if the contributing parent is an ob-
ligate heterozygote at the locus. A combination of inspection and genotype
elimination quickly identifies all obligate heterozygous loci in parents.

In this reformulated model, the summations in the likelihood representa-
tion (7.1) are replaced by analogous summations over person–locus combi-
nations Gij . Although this substitution increases the complexity of finding
a good summation sequence, most other features of likelihood evaluation re-
main unchanged. For instance, genotype elimination is already carried out
one locus at a time. Array creation and annihilation are handled similarly
in both likelihood formulations, except that more numerous but smaller
arrays are encountered in the person–locus mode of calculation.

7.6 Examples of Pedigree Analysis

Example 7.6.1 Paternity Testing

Paternity testing confirms or eliminates a putative father as the actual
father of a child. Phenotyping of the mother, child, and putative father
is done at a number of different marker loci. If a genetic inconsistency is
found, then the putative father is absolved. On the other hand, if the trio
is consistent at all loci typed, then either a rare event has occurred or the
putative father is the actual father. There are two ways of quantifying the
rarity of this event. The Bayesian approach is to compute a likelihood ratio
of the trio with the putative father as real father versus the trio with the
real father as a random male. This likelihood ratio or paternity index
can be transformed into a posterior probability if a prior probability of
paternity is supplied.

A strictly frequentist approach to the problem is to compute the prob-
ability that a random male would be excluded by at least one of the tests
based on the phenotypes of the mother and child. This exclusion proba-
bility relieves a judge or jury from the necessity of quantifying their prior
probabilities of paternity. Both posterior and exclusion probabilities can
be computed for each locus separately and then cumulated over all loci
jointly. The locus-by-locus statistics are useful in determining which loci
are critically important in confirming paternity. The cumulative statistics
are the ones quoted in court.

To compute the paternity index, imagine two pedigrees. The first pedi-
gree, Ped1, contains the mother and child and the putative father as actual
father. The second pedigree, Ped2, substitutes a random male with all phe-
notypes unknown for the actual father. The putative father is present as
an isolated individual unrelated to the child in Ped2. Suppose the vec-
tor Xj denotes the observed phenotypes for the trio of mother, child,
and putative father at the jth locus of a set of marker loci in Hardy-
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TABLE 7.2. Phenotypes for a Paternity-Testing Problem

Person ABO Phenotype ADA Phenotype
Mother AB 1/1
Child B 1/2
Putative Father B 1/2

Weinberg and linkage equilibrium. The paternity index for the jth locus is
Pr(Xj | Ped1)/Pr(Xj | Ped2). Over all loci it is

∏
j Pr(Xj | Ped1)∏
j Pr(Xj | Ped2)

. (7.6)

Let α be the prior probability that the putative father is the actual father
based on the nongenetic evidence; let β be the posterior probability that
the putative father is the actual father based on both the nongenetic and
the genetic evidence. Then a convenient form of Bayes’ theorem is

β

1 − β
=

α
∏

j Pr(Xj | Ped1)
(1 − α)

∏
j Pr(Xj | Ped2)

.

The exclusion probability for the jth locus can be found by carrying out
the genotype elimination algorithm on Ped2 for this locus. Let Sj be the
set of non-excluded genotypes for the random male. Then the exclusion
probability for locus j is 1 − ∑

Gj∈Sj
Pr(Gj). The exclusion probability

over all loci typed is 1 −∏
j [
∑

Gj∈Sj
Pr(Gj)].

TABLE 7.3. Statistics for the Paternity-Testing Example

Locus Paternity Index Exclusion Probability
ABO 1.39 .078
ADA 7.58 .872
Both Loci 10.5 .882

As a simple numerical example, consider the phenotype data in Table 7.2.
At the ABO locus, suppose the three alleles A, B, and O have population
frequencies of .28, .06, and .66, respectively. At the ADA locus, suppose
the two codominant alleles 1 and 2 have population frequencies of .934
and .066, respectively. It is evident in this case that the only excluded
genotype for the father at the ABO locus is A/A; at the ADA locus, the only
excluded genotype is 1/1. Table 7.3 lists the computed paternity indices and
exclusion probabilities. Although the ADA locus is less polymorphic than
the ABO locus, in this situation it yields the more decisive statistics. In
practice, a larger number of individually more polymorphic loci would be
used.
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Example 7.6.2 Gamete Competition Model

When a new locus is investigated, one of the first statistical tasks is
to check whether its proposed alleles and genotypes conform to Mendelian
segregation ratios. The typical way of doing this is to subdivide all available
nuclear families into different mating types. For any given pair of parental
genotypes, there are from one to four possible offspring genotypes. The
numbers of offspring observed in the various genotypic categories are used
to compute an approximate χ2 statistic. These approximate χ2 statistics
are then added over the various mating types to give a grand χ2. This
classical procedure suffers from the fact that the component χ2 statistics
often lack adequate numbers for large sample theory to apply. If the alleles
at the proposed locus involve dominance, then defining mating types is also
problematic.

An alternative procedure is to assign each allele Ai a segregation pa-
rameter τi. These parameters can be estimated by maximum likelihood
from the available pedigree data. The parameters enter the likelihood cal-
culations at the level of gamete transmission probabilities. For two dif-
ferent alleles Ai and Aj , take Pr(Ai | Ai/Aj) = τi/(τi + τj) as suggested
in the Bradley-Terry model for ranking sports teams in the same league.
[3, 12, 14, 20, 29, 30]. For a homozygous parental genotype Ai/Ai, take
Pr(Ai | Ai/Ai) = 1. Under the hypothesis of Mendelian segregation, all
the τ ’s are equal. Because multiplying the τ ’s by the same constant pre-
serves segregation ratios, one should impose a constraint such as τi = 1 for
one i. Using a likelihood ratio statistic, one can then test whether all other
τi = 1.

As a simple numerical example, consider the four alleles 1+, 1−, 2+,
and 2− of the PGM1 marker locus on chromosome 1. The PGM1 data of
Lewis et al. [23] lists 93 people in 5 pedigrees. For these data, the maximum
likelihood estimates are τ̂1+ = 1, τ̂1− = .79, τ̂2+ = .84, and τ̂2− = 1.26.
The likelihood ratio statistic is approximately distributed as a χ2 with three
degrees of freedom. The observed value of this statistic,

2 × [(−114.70)− (−115.64)] = 1.88,

suggests that the alleles of the PGM1 locus do conform to Mendelian in-
heritance. Note that this analysis safely ignores the issue of ascertainment.

This gamete competition model also forms the basis of a attractive
parameteric generalization of the transmission/disequilibrium test (TDT).
In the absence of severity data, the most natural implementation uses
Mendelian segregation ratios for transmission to unaffected children and
Bradley-Terry segregation ratios for transmission to affected children. This
tactic permits detection of distorted transmission to affecteds. The model
also accommodates quantitative as well as qualitative outcomes, allows for
covariates, and makes effective use of full pedigree data. To use quantita-
tive outcomes and covariates, it is convenient to reparameterize by writing
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τi = eωi [29]. This eliminates the positivity constraint τi > 0. Disease sever-
ity can be taken into account by writing ωi = βixp, where xp is the child’s
severity index adjusted by gender and standardized to have mean 0 and
variance 1. If large values of the severity index are associated with allele i,
then we expect the estimated value of βi to be positive. Because

Pr(i/j → i) =
1

1 + e(βj−βi)xp
, (7.7)

we take one βi = 0. Under the null hypothesis of Mendelian transmission,
all βi = 0.

It is instructive to see how the gamete competition model handles intra-
genic single nucleotide polymorphisms (SNPs). Unfortunately, com-
bining multiple intragenic SNPs into a single super marker complicates
application of the traditional TDT, which requires codominant markers.
For instance, suppose we score each of three linked SNPs as a 1 or 0. An
observed triple heterozygote is consistent with any of the four unordered
haplotype pairs 111/000, 110/001, 101/010, and 011/100. If we admit the
possibility of incomplete typing within a single individual, the ambiguity
is even greater. Circumventing the phase problem by assigning individuals
their most probable haplotypes is arbitrary and bound to lead to subtle bi-
ases. The gamete competition model neatly circumvents the phase problem
by including each possible haplotype pair weighted by its overall contribu-
tion to the likelihood of the pedigree. This is a virtue of a likelihood-based
method compared to a nonparametric method. Of course, applying the
gamete competition model to multilocus SNP data will require good esti-
mates of haplotype frequencies. The safest course is to estimate haplotype
frequencies simultaneously with transmission parameters.

The pedigree data of Keavney et al. [13] on three SNPs within the
angiotensin-1 converting enzyme (ACE) gene illustrate the gamete competi-
tion model in action. We test whether gamete transmission at these markers
correlates with the quantitative trait, gender adjusted serum ACE levels.
The intragenic SNPs involved are the fourth (A-240T), sixth (T1237C) and
ninth (G2350A) polymorphisms. Because the ACE gene spans only 26kb
(kilobases), the recombination fractions between these SNPs are effectively
zero. For the sake of readability, each of the three SNPs incorporates its
two alleles as the first and last letter of its name. Thus, T1237C has alleles
T and C. The pedigree data consist of 83 white British families ranging
in size from 4 to 18 members [13]. Families were selected without regard
to ACE levels, which were determined on 405 family members. Genotypes
were collected on 555 family members.

We now consider the impact on ACE levels of transmission at all three
loci. The most general model based on equation (7.7) has 8 possible haplo-
types. The likelihood ratio statistic of 80.26 = 2(−682.63 + 722.76) of the
null hypothesis (all β’s 0) has an asymptotic p-value < 10−6 on 7 degrees of
freedom. In Table 7.4, the maximum likelihood estimates of the haplotype
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TABLE 7.4. Transmission of A-240T, T1237C and G2350A Haplotypes as a Func-
tion of ACE Level

ijk ATA ATG ACA ACG
f̂ijk .414 ± .025 .010 ± .006 .058 ± .012 .180 ± .020
ijk TTA TTG TCA TCG
f̂ijk .005 ± .004 .0001 ± .0000 .008 ± .005 .325 ± .024
ijk ATA ATG ACA ACG
β̂ijk .000 ± .000 .393 ± .928 .149 ± .370 1.137 ± .230
ijk TTA TTG TCA TCG
β̂ijk -2.101 ± 3.105 .110 ± 23.913 .508 ± .614 1.470 ± .212

frequencies fTTA, fTTG, and fTCA fall below 1% and have large attached
standard errors. When we repeat the analysis after binning haplotype TTA
with TCA and haplotype TTG with TCG, the resulting likelihood ratio sta-
tistic is 81.22 (p-value < 10−6 with 5 degrees of freedom). Further analysis
of these data suggest that SNP G2350A alone is driving the association
and that neither of the more upstream markers A-240T and T1237C are
likely to play a part in controlling ACE levels.

Example 7.6.3 Risk Prediction

Risk prediction in genetic counseling reduces to an exercise in computing
conditional probabilities [4, 25]. Figure 7.2 depicts a typical risk prediction
problem. The fetus 7 in Figure 7.2 has been tested for the marker gene
secretor linked to the autosomal dominant disease myotonic dystrophy. As-
suming that myotonic dystrophy cannot be clinically diagnosed at the fetal
stage, what is the risk that the fetus will eventually develop the disease?
At the myotonic dystrophy locus, affected individuals in the pedigree are
denoted by partially darkened circles or squares. The disease allele Dm+ is
so rare that the Dm+/Dm+ disease genotype is virtually nonexistent. The
secretor locus also exhibits dominance, with the Se+ allele being dominant
to the Se− allele. Thus, phenotypes at either locus convey whether the
dominant allele is present.

To compute the risk to the fetus, we must form the ratio of two proba-
bilities. The denominator probability is just the probability of the observed
phenotypes within the pedigree. These phenotypes include the fetus’s se-
cretor phenotype, but not its unknown disease phenotype. The numerator
probability is the probability of the observed phenotypes within the pedi-
gree plus an assigned phenotype of affected for the fetus at the myotonic
dystrophy locus. Given Hardy-Weinberg and linkage equilibrium, allele fre-
quencies of pSe+ = .52 and pDm+ = .0001, and a recombination fraction
of θ = .08 between the two loci, the risk to the fetus can be computed as
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FIGURE 7.2. Risk Prediction for a Pedigree Segregating Myotonic Dystrophy

.84. It takes great patience to carry out these calculations by hand, but a
computer does them in less than a twinkling of an eye [20]. This example
is mainly of historical interest since the gene for myotonic dystrophy has
been cloned [1].

Example 7.6.4 Lod Scores and Location Scores

Geneticists are keenly interested in mapping genes to particular regions
of particular chromosomes. Classically they have defined linkage groups in
plants and nonhuman animal species by testing for reduced recombination
between two loci in a breeding experiment. In humans, planned matings
are ethically objectionable, and geneticists must rely on the random re-
combination data provided by human pedigrees. During the past decade a
vigorous effort has been made to map large numbers of marker loci using
a common group of specially chosen pedigrees [6]. These CEPH (Centre
d’Etude du Polymorphisme Humain) pedigrees are large nuclear families.
Most of them include all four associated grandparents; this helps deter-
mine phase relations in the parents. With the advent of physical mapping
techniques such as somatic cell hybrids, in situ hybridization, and radia-
tion hybrids, pedigree analysis has diminished in importance, but it still
is the only method for mapping clinically important diseases of unknown
etiology.

In mapping a disease locus, the CEPH pedigrees are useless. Only pedi-
grees segregating the disease trait of interest contain linkage information
on that trait. In a typical clinical genetics study, the likelihood of the
trait and a single marker is computed over one or more relevant pedi-
grees. This likelihood L(θ) is a function of the recombination fraction θ
between the trait locus and the marker locus. The standardized loglikeli-
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FIGURE 7.3. An Episodic Ataxia Pedigree with Reconstructed Haplotypes

hood Z(θ) = log10[L(θ)/L( 1
2 )] is referred to as a lod score. Here “lod”

is an abbreviation for “logarithm of the odds.” A lod score permits easy
visualization of linkage evidence. As a rule of thumb, most geneticists pro-
visionally accept linkage if Z(θ̂) ≥ 3 at its maximum θ̂ on the interval
[0, 1

2 ]; they provisionally reject linkage at a particular θ if Z(θ) ≤ −2. Ac-
ceptance and rejection are treated asymmetrically because with 22 pairs
of human autosomes it is unlikely that a random marker even falls on the
same chromosome as a trait locus.

Figure 7.3 depicts an updated version of pedigree 4 from an article by
Litt et al. mapping the autosomal dominant disease episodic ataxia to
chromosome 12p [24]. Presumably the great-grandmother 2001 is the source
of the disease gene in this pedigree. Her affected descendants are indicated
by black circles and squares. Except for 2001 and the spouse 1011 of 1010,
all of the remaining 29 members of the pedigree were available for typing
with the nine 12p markers shown in the figure. Figure 7.4 plots the lod score
between episodic ataxia and the marker D12S372. This pedigree strongly
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FIGURE 7.4. Lod Score Curve for Episodic Ataxia Versus Marker D12S372

suggests but does not prove linkage. Note that individual 9004 is a definite
recombinant between the disease locus and D12S372; this fact explains the
limiting behavior limθ→0Z(θ) = −∞ of the lod score curve. In this example
as in all examples, Z( 1

2 ) = 0 by definition.
Once a disease gene is mapped to a particular chromosome region, ge-

neticists saturate the region by typing many nearby markers in the disease
pedigrees. Because the order and separation of the markers are usually
known from the CEPH families, the goal now becomes one of positioning
the disease locus on the known marker map. In the method of location
scores, we accomplish this task by evaluating and plotting the joint like-
lihood of the disease and marker phenotypes as a function of the position
of the disease locus [21, 28, 31]. This necessitates converting recombination
fractions into map distances, a process we will consider in Chapter 12. For
the moment, let us only mention Haldane’s map function

d = −1
2

ln(1 − 2θ) (7.8)

and its inverse

θ =
1
2
(1 − e−2d), (7.9)

which is certainly reminiscent of a Poisson process with intensity 2. The
map distance d featured in these formulas represents the expected number
of crossovers between the two loci per gamete. The unit of distance is the
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Morgan (or the centiMorgan, which equals 10−2 Morgans), in honor of one
of the pioneers of gene mapping. Map distances have the advantages of be-
ing additive over large distances and approximately equaling recombination
fractions for small distances.

A location score is analogous to a lod score. An origin is arbitrarily fixed
and map distances d are now measured relative to it. If L(d) denotes the
likelihood of the trait and marker data when the trait locus is at position
d, then Z(d) = log10[L(d)/L(∞)] defines the location score. In effect, one
standardizes the loglikelihood by moving the trait off the marker chromo-
some. This extreme position entails independent segregation of the trait
gene relative to the marker genes. One defect of location scores is that re-
combination fractions do not depend on sex. If we postulate a common ratio
of female to male map distances, then even this defect can be remedied.

Figure 7.5 plots a location score curve for the episodic ataxia pedigree
drawn in Figure 7.3. Owing to the computational difficulty of this prob-
lem, only the representative marker pY2/1 from the tight cluster pY2/1,
pY21/1, KCNA5, and D12S99 was used in the calculations. The map for the
six participating chromosome 12p markers can be summarized as follows:

Recombination Fractions Between Adjacent 12p Markers

S91
1cM
—– S100

1cM
—– CACNL1A1

3cM
—– S372

3cM
—– pY 2/1

4cM
—– S93

In Figure 7.5, the origin occurs at locus D12S91, and distances are given
in units of centiMorgans (cM).
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Inspection of the location score curve shows that it rises above the mag-
ical level of 3 and that the episodic ataxia gene probably resides on the
interval from D12S372 to pY2/1. Where the marker S372 is uninformative
for linkage, other markers fill the information gap. Thus, location scores
make better use of scarce disease pedigrees than lod scores do. In Chapter
9 we will revisit this problem and demonstrate how the haplotypes dis-
played in Figure 7.3 are reconstructed and how one can compute location
scores using an almost arbitrary number of markers.

7.7 Problems

1. Under Haldane’s model of independent recombination on disjoint in-
tervals, it is possible to compute the recombination fraction θij be-
tween two loci i < j by Trow’s formula

1 − 2θij =
j−1∏
k=i

(1 − 2θk,k+1), (7.10)

where the loci occur in numerical order along the chromosome, and
where θk,k+1 is the recombination fraction between the adjacent loci
k and k + 1. Verify Trow’s formula first for three loci (i = 1 and
j = 3) and then by induction for an arbitrary number of loci. (Hint:
For three loci, recombination occurs between loci 1 and 3 if and only
if it occurs between loci 1 and 2 and not between loci 2 and 3, or vice
versa.)

2. Consider the partially typed, inbred pedigree depicted in Figure 7.6.
The phenotypes displayed in the figure are unordered genotypes at a
single codominant locus with three alleles. Show that the genotype
elimination algorithm fails to eliminate some superfluous genotypes
in this pedigree.

3. The sum of array products
∑

G1∈S1

· · ·
∑

G9∈S9

A(G1, G2, G3, G4)B(G4, G5)

× C(G5, G6)D(G6, G7, G8, G9)

can be evaluated as an iterated sum by the greedy algorithm. If all
range sets Si have the same number of elements m > 2, then show
that one greedy summation sequence is (5, 1, 2, 3, 4, 7, 8, 9, 6). Prove
that the alternative nongreedy sequence (1, 2, 3, 4, 5, 7, 8, 9, 6) requires
fewer arithmetic operations (additions plus multiplications) [18].
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FIGURE 7.6. A Genotype Elimination Counterexample

4. Consider the array product

E(G1, G2, G3, G4, G5)
= A(G1, G2, G3)B(G1)C(G2, G3, G4)D(G5),

where the range set Si for the index Gi has 4, 2, or 3 elements ac-
cording as i = 1, i ∈ {2, 3, 4}, or i = 5. Show that the greedy tactic
of assembling the product array from the pairwise products of the
multiplicand arrays first multiplies B times D, then A times C, and
finally the product BD times the product AC. Demonstrate that the
alternative of multiplying A times B, then C times D, and finally the
product AB times the product CD requires fewer total multiplica-
tions [18].

5. Verify the numerical entries in Table 7.3.

6. Do by hand the risk prediction calculation for myotonic dystrophy,
showing the various steps of the computations in detail. Neglect the
extremely rare Dm+ /Dm+ genotype at the myotonic dystrophy lo-
cus. Using two-locus genotypes, evaluate the two required likelihoods
as seven-fold iterated sums.

7. Figure 7.7 gives a pedigree for an autosomal recessive disease and
a linked marker. The four marker genes a, b, c, and d are assumed
distinct. If the recombination fraction between the two loci is θ, then
show that the risk of the fetus 5 being affected is

(1 − θ)5θ + (1 − θ)4θ2 + (1 − θ)2θ4 + (1 − θ)θ5

(1 − θ)4 + 2(1− θ)2θ2 + θ4
.
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FIGURE 7.7. Risk Prediction for a Recessive Disease via a Linked Marker

8. A healthy male had a sister with cystic fibrosis (CF), but she and his
parents are dead. What is his risk of being a carrier for this recessive
disease? About 75 percent of all disease alleles at the CF locus are
accounted for by the ∆F508 mutation. If he tests negative for the
∆F508 mutation, what is his risk of being a carrier [28]?

� �
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FIGURE 7.8. Risk Prediction for an X-linked Recessive Disease

9. The grandson 7 depicted in the pedigree of Figure 7.8 is afflicted
by a lethal, X-linked recessive disease [25]. Problem 11 of Chapter 1
notes that if the carrier females for such a disease are fully fit, then
they have a population frequency 4µ, where µ is the mutation rate to
the disease allele. In view of this fact, demonstrate that the mother
4 has a chance of approximately 5/13 of carrying the disease allele.
Consequently, her next son has a chance of 5/26 of being affected.
(Hints: Either the grandmother 1 is a carrier, or the mother 4 is a
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new mutation and passes the disease allele to the grandson 7, or the
grandson 7 is a new mutation. The presence of unaffected uncles 5
and 6 and an unaffected brother 8 modifies the probabilities of these
contingencies. Because µ is very small, you may approximate the
probability of a carrier female passing either the normal or disease
allele as 1/2. You may also approximate the prior probability of a
normal female or normal male as 1.)

10. Consider a nuclear family in which one parent is affected by an auto-
somal dominant disease [11]. If the affected parent is heterozygous at
a codominant marker locus, the normal parent is homozygous at the
marker locus, and the number of children n ≥ 2, then the family is in-
formative for linkage. Because of the phase ambiguity in the affected
parent, we can split the children of the family into two disjoint sets of
size k and n− k, the first set consisting of recombinant children and
the second set consisting of nonrecombinant children, or vice versa.
Show that the likelihood of the family is

L(θ) =
1
2
θk(1 − θ)n−k +

1
2
θn−k(1 − θ)k,

where θ is the recombination fraction between the disease and marker
loci. A harder problem is to characterize the maximum of L(θ) on the
interval [0, 1

2 ]. Without loss of generality, take k ≤ n
2 . Then demon-

strate that the likelihood curve is unimodal with maximum at θ = 0
when k = 0, at θ = 1

2 when (n − 2k)2 ≤ n, and at θ ∈ (0, 1
2 ) oth-

erwise. (Hints: The case k = 0 can be resolved straightforwardly by
inspecting the derivative L′(θ). For the remaining two cases, write
L′(θ) = θk−1(1 − θ)n−kg(τ), where g(τ) is a polynomial in τ = θ

1−θ .
From this representation check that θ = 0 is a local minimum of L(θ)
and that θ = 1

2 is a stationary point of L(θ). The maximum of L(θ)
must therefore occur at θ = 1

2 or some other positive root of g(τ).
Use Descartes’ rule of signs [7] and symmetry to limit the number of
positive roots of g(τ) on τ ∈ (0, 1], that is, θ ∈ (0, 1

2 ]. Compute L′′( 1
2 )

to determine the nature of the stationary point θ = 1
2 .)

11. Consider the revision

L(β) =
∑
G1

· · ·
∑
Gn

∏
i

Pen(Xi | Gi)β1{Gi=g}

×
∏
j

Prior(Gj)
∏

{k,l,m}
Tran(Gm | Gk, Gl)

of the likelihood expression (7.1), where β is an artificial parame-
ter and g is a fixed genotype. Prove that d

dβ lnL(1) is the expected
number of people in the pedigree with genotype g conditional on the
observed phenotypes in the pedigree. Note that this device is easy to
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implement in a good pedigree analysis program with the ability to
compute partial derivatives numerically. Suggest at least one other
interesting conditional expectation that one could compute by this
technique.
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The Polygenic Model

8.1 Introduction

The standard polygenic model of biometrical genetics can be motivated
by considering a quantitative trait determined by a large number of loci
acting independently and additively [12]. In a pedigree of m people, let Xk

i

be the contribution of locus k to person i. The trait value Xi =
∑

k X
k
i for

person i forms part of a vector X = (X1, . . . , Xm)t of trait values for the
pedigree. If the effects of the various loci are comparable, then the central
limit theorem implies that X follows an approximate multivariate normal
distribution. (See the references [19, 21] and Appendix B.) Furthermore,
independence of the various loci implies Cov(Xi, Xj) =

∑
k Cov(Xk

i , X
k
j ).

From our covariance decomposition for two non-inbred relatives at a single
locus, it follows that

Cov(Xi, Xj) = 2Φijσ
2
a + ∆7ijσ

2
d,

where σ2
a and σ2

d are the additive and dominance genetic variances summed
over all participating loci. These covariances can be expressed collectively
in matrix notation as Var(X) = 2σ2

aΦ + σ2
d∆7. Again it is convenient to

assume that X has mean E(X) = 0. Although it is an article of faith that
the assumptions necessary for the central limit theorem actually hold for
any given trait, one can check multivariate normality empirically.

Environmental effects can be incorporated in this simple model by sup-
posing that the observed trait value for person i is the sum Yi = Xi + Zi

of a genetic contribution Xi and an environmental contribution Zi. If we
assume that the random vector Z = (Z1, . . . , Zm)t is uncorrelated with X
and follows a multivariate normal distribution with mean vector ν and co-
variance matrix Υ, then the trait vector Y = (Y1, . . . , Ym)t is multivariate
normal with mean E(Y ) = ν and covariance Var(Y ) = 2σ2

aΦ + σ2
d∆7 + Υ.

Different levels of environmental sophistication can be incorporated by
appropriately choosing ν and Υ. Typically ν is defined to be a linear func-
tion ν = Aµ of a parameter vector µ of p mean components. The m× p
design matrix A specifies the measured covariates determining this lin-
ear function. For instance, µ might be (µf , µm, α)t, where µf is the female
population mean at birth, µm is the male population mean at birth, and
α is a regression coefficient on age. A row of A is then either (1, 0, age)
or (0, 1, age), depending on whether the corresponding person is female or
male.

Among the simplest possibilities for Υ is Υ = σ2
eI , where I is the m×m
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identity matrix. The parameter σ2
e is referred to as a variance compo-

nent. For this choice of Υ, environmental contributions are uncorrelated
among pedigree members. Note that environmental contributions include
trait measurement errors. To represent shared environments within a pedi-
gree, it is useful to define a household indicator matrix H = (hij) with
entries

hij =
{ 1 i and j are in the same household

0 otherwise.

A reasonable covariance model incorporating both household and random
effects is Υ = σ2

hH + σ2
eI , giving an overall covariance matrix Ω for Y of

Ω = 2σ2
aΦ + σ2

d∆7 + σ2
hH + σ2

eI.

This last representation suggests studying the general model

Ω =
r∑

k=1

σ2
kΓk, (8.1)

where the variance components σ2
k are nonnegative and the matrices Γk are

known covariance matrices. Since measurement error will enter almost all
models, at least one of the Γk should equal I . For convenience, we assume
Γr = I .

8.2 Maximum Likelihood Estimation by Scoring

The mean components µ1, . . . , µp and the variance components σ2
1 , . . . , σ

2
r

appear as parameters in the multivariate normal loglikelihood

L(γ) = −m
2

ln 2π − 1
2

ln det Ω − 1
2
(y − Aµ)tΩ−1(y −Aµ) (8.2)

for the observed data Y = y [15, 17, 21, 23]. In equation (8.2), det Ω
denotes the determinant of Ω, and γ = (µ1, . . . , µp, σ

2
1 , . . . , σ

2
r )t denotes the

parameters collected into a column vector. Because Γr = I , Ω is nonsingular
whenever σ2

r > 0.
To implement the scoring algorithm for maximum likelihood estimation

of γ, we need the loglikelihood L(γ), score dL(γ), and expected informa-
tion J(γ) over all the pedigrees in a sample. Because these quantities add
for independent pedigrees, it suffices to consider a single pedigree. In de-
riving the score and expected information for a single pedigree, we could
use the general results presented in Chapter 3 for exponential families of
distributions. It is more illuminating to proceed directly after reviewing the
following facts from linear algebra and calculus:
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(a) If B = (bij) is a square matrix with cofactor Bij corresponding to
entry bij , then the determinant detB =

∑
j bijBij is expandable on

any row i. If B is invertible as well, then its inverse C = B−1 has
entries cij = 1

det B (Bji).

(b) If B = (bij) is a square matrix, then the trace tr(B) of B is defined
by tr(B) =

∑
i bii. The trace function satisfies tr(BC) = tr(CB) for

any two conforming matrices B and C.

(c) The matrix transpose operation satisfies (BC)t = CtBt.

(d) The expectation of a random vectorX = (X1, . . . , Xn)t is defined com-
ponentwise by E(X) = [E(X1), . . . ,E(Xn)]t. Linearity carries over
from the scalar case in the sense that

E(X + Y ) = E(X) + E(Y )
E(BX) = B E(X)

for a compatible random vector Y and a compatible matrix B.

(e) If B is a matrix and W is a random vector, then the quadratic form
W tBW has expectation E(W tBW ) = tr[BVar(W )]+E(W )tB E(W ).
To verify this assertion, observe that

E(W tBW ) = E
(∑

ij

WibijWj

)

=
∑
ij

bij E(WiWj)

=
∑
ij

bij [Cov(Wi,Wj) + E(Wi) E(Wj)]

= tr[BVar(W )] + E(W )tB E(W ).

(f) The partial derivative of a matrix B = (bij) with respect to a scalar
parameter θ is the matrix with entries ( ∂

∂θ bij). Because the trace func-
tion is linear, ∂

∂θ tr(B) = tr( ∂
∂θB). The product rule of differentiation

implies ∂
∂θ (BC) = ( ∂

∂θB)C +B ∂
∂θC.

(g) The derivative of a matrix inverse is ∂
∂θB

−1 = −B−1( ∂
∂θB)B−1. To

derive this formula, solve for ∂
∂θB

−1 in

0 =
∂

∂θ
I

=
∂

∂θ
(B−1B)

=
( ∂
∂θ
B−1

)
B +B−1 ∂

∂θ
B.
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(h) If B is a square matrix, then ∂
∂θ ln detB = tr(B−1 ∂

∂θB). This formula
is validated by

∂

∂θ
ln detB =

∑
ij

( ∂

∂bij
ln detB

) ∂
∂θ
bij

=
∑
ij

Bij

detB
∂

∂θ
bij

= tr
(
B−1 ∂

∂θ
B
)

using property (a).

Applying the above facts to the loglikelihood (8.2) leads to the score.
With respect to the mean component µi, we have

∂

∂µi
L =

1
2

(
A

∂

∂µi
µ
)t

Ω−1(y −Aµ) +
1
2
(y −Aµ)tΩ−1A

∂

∂µi
µ

=
( ∂

∂µi
µ
)t

AtΩ−1(y −Aµ).

With respect to the variance component σ2
i , we have

∂

∂σ2
i

L = −1
2
∂

∂σ2
i

ln det Ω − 1
2
(y −Aµ)t ∂

∂σ2
i

Ω−1(y −Aµ)

= −1
2

tr(Ω−1Γi) +
1
2
(y −Aµ)tΩ−1ΓiΩ−1(y −Aµ).

In similar fashion, the elements of the observed information matrix are

− ∂2

∂µi∂µj
L =

( ∂

∂µj
µ
)t

AtΩ−1A
∂

∂µi
µ

− ∂2

∂σ2
i ∂µj

L =
( ∂

∂µj
µ
)t

AtΩ−1ΓiΩ−1(y −Aµ)

= − ∂2

∂µj∂σ2
i

L

− ∂2

∂σ2
i ∂σ

2
j

L = − 1
2

tr(Ω−1ΓiΩ−1Γj)

+
1
2
(y −Aµ)tΩ−1ΓiΩ−1ΓjΩ−1(y −Aµ)

+
1
2
(y −Aµ)tΩ−1ΓjΩ−1ΓiΩ−1(y −Aµ)

= − 1
2

tr(Ω−1ΓiΩ−1Γj)

+ (y −Aµ)tΩ−1ΓiΩ−1ΓjΩ−1(y −Aµ).
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Note that ∂
∂µi

µ and ∂
∂σ2

i

Ω = Γi are treated as constants in these derivations.
Since E(Y ) = Aµ, the expected information matrix has entries

E
(
− ∂2

∂µi∂µj
L
)

=
( ∂

∂µj
µ
)t

AtΩ−1A
∂

∂µi
µ

E
(
− ∂2

∂σ2
i ∂µj

L
)

=
( ∂

∂µj
µ
)t

AtΩ−1ΓiΩ−1[E(Y ) −Aµ]

= 0 (8.3)

E
(
− ∂2

∂σ2
i ∂σ

2
j

L
)

= −1
2

tr(Ω−1ΓiΩ−1Γj) + tr(Ω−1ΓiΩ−1ΓjΩ−1Ω)

=
1
2

tr(Ω−1ΓiΩ−1Γj).

Some simplification in the above formulas can be achieved by defining
the partial score dµL = ( ∂

∂µ1
L, . . . , ∂

∂µp
L) and the corresponding partial

observed information matrix −d2
µL. Since ( ∂

∂µ1
µ, . . . , ∂

∂µp
µ) is the identity

matrix I ,

dµL
t = AtΩ−1(y −Aµ)

−d2
µL = AtΩ−1A.

The expected information matrix J evidently has the block diagonal form

J =
(

E[−d2
µL] 0

0 E[−d2
σ2L]

)
,

where −d2
σ2L is the observed information matrix on σ2 = (σ2

1 , . . . , σ
2
r)t.

Since the block form of J is retained under matrix inversion, the current
µ is updated in the scoring algorithm by

µ+ (AtΩ−1A)−1AtΩ−1(y −Aµ) = (AtΩ−1A)−1AtΩ−1y. (8.4)

If there is more than one pedigree, the quantities AtΩ−1A andAtΩ−1y must
be summed over all pedigrees before matrix inversion and multiplication.
The scoring increment ∆σ2 to σ2 is similarly expressed as

∆σ2 = E(−d2
σ2L)−1dσ2Lt.

It is convenient to initialize σ2 at (0, . . . , 0, 1)t. Since Ω = I in this case,
the first iteration of the scoring algorithm (8.4) produces the standard lin-
ear regression estimate of µ. Of course, this estimate does not take into
account the correlational architecture of the pedigree. In those unlikely cir-
cumstances when µ is known exactly, the initial value σ2 = (0, . . . , 0, 1)t

leads to a least-squares estimate of σ2 after a single iteration of scoring.
(See Problem 4.) Computation of the score dL and expected information
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matrix E(−d2L) also simplifies drastically when Ω = I . This fact can be
used to good advantage in a quasi-Newton search of the loglikelihood [29].
Although quasi-Newton methods explicitly require neither the observed nor
the expected information matrix, a good initial approximation to the ob-
served information matrix is crucial. Starting a search at σ2 = (0, . . . , 0, 1)t

and approximating the observed information matrix by the expected infor-
mation matrix fits in well with the quasi-Newton strategy.

The basic model just presented can be generalized in many useful ways
[21]. First, missing observations can be handled by deleting the appropri-
ate rows (and columns) of the observation vector y, the design matrix A,
and the covariance matrix Ω of a pedigree. Second, theoretical means and
covariances that depend nonlinearly on the parameters can be accommo-
dated. To be precise, suppose A(µ) is the mean vector and Ω(σ2) is the
covariance matrix of a given pedigree. Then any appearance of A ∂

∂µi
µ in

the scoring algorithm is replaced by ∂
∂µi

A(µ), and any appearance of Γi is
replaced by ∂

∂σ2
i

Ω(σ2). Third, as we shall see later in this chapter, covari-
ance models for multivariate traits can be devised.

8.3 Application to Gc Measured Genotype Data

Human group specific component (Gc) is a transport protein for vitamin
D. The Gc locus determines qualitative variation in the Gc protein. An
interesting question is whether the genotypes at the Gc locus also influence
quantitative differences in plasma concentrations of the Gc protein. Daiger
et al. [6] collected relevant data on 31 identical twin pairs, 13 fraternal twin
pairs, and 45 unrelated controls. Gc concentrations and Gc genotypes are
available on all individuals. The three genotypes 1/1, 1/2, and 2/2 at the
Gc locus are distinguishable.

A reasonable model for these data involves p = 5 mean components
and r = 3 variance components [4]. The covariates are Gc genotype, sex,
and age. To accommodate these covariates requires mean components µ1/1,
µ1/2, and µ2/2 for the three genotypes, a male offset µmale to distinguish
males from females, and a regression coefficient µage on age. With these
components, the expected trait value for a 35-year-old female with Gc
genotype 1/2 is µ1/2 + 35µage, for instance. For a 15-year-old male with
genotype 2/2, the expected trait value is µ2/2 + µmale + 15µage.

Instead of choosing the variance components σ2
a, σ2

d, and σ2
e parameter-

izing the additive genetic variance, the dominance genetic variance, and
the random environmental variance, we can proceed somewhat differently
for these data. Let σ2

tot be the total trait variance, ρident the correlation
between identical twins, and ρfrat the correlation between fraternal twins.
Mathematically the two sets of parameters give the same model. Biologi-
cally, the interpretation of the second set of parameters is less rigid. Note
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that the hypothesis σ2
d = 0 is equivalent to the hypothesis ρfrat = 1

2ρident.

TABLE 8.1. Maximum Loglikelihoods for the Gc Data

Model Loglikelihood Parameters
Full Model - 217.610 8
ρfrat = 1

2ρident - 217.695 7
µ1/1 = µ1/2 = µ2/2 - 230.252 6

Table 8.1 summarizes maximum likelihood output from the computer
program FISHER [22] for these data. In the first analysis conducted, all
eight parameters were estimated under the model just described. The sec-
ond analysis was performed under the constraint ρfrat = 1

2ρident, and the
third analysis was performed under the constraints µ1/1 = µ1/2 = µ2/2. A
likelihood ratio test shows that there is virtually no evidence against the
assumption ρfrat = 1

2ρident. Furthermore, under the model ρfrat = 1
2ρident,

the estimated correlation between identical twins is .80, indicating a highly
heritable trait. High heritability is also suggested by the extremely signifi-
cant likelihood ratio test for the equality of the three Gc genotype means.
Although further test statistics do detect modest departures from normal-
ity in these data, it is safe to say that Gc genotypes have a major impact
on plasma concentrations of the Gc protein.

8.4 Multivariate Traits

Often geneticists collect pedigree data on more than one quantitative trait.
To understand the common genetic and environmental determinants of two
traits, let X = (X1, . . . , Xn)t and Y = (Y1, . . . , Yn)t be the random values
of the nmembers of a non-inbred pedigree [21]. If both traits are determined
by the same locus, then in the absence of environmental effects, we know
that

Cov(Xi, Xj) = 2Φijσ
2
ax + ∆7ijσ

2
dx (8.5)

Cov(Yi, Yj) = 2Φijσ
2
ay + ∆7ijσ

2
dy, (8.6)

where σ2
ax and σ2

dx are the additive and dominance genetic variances of the
X trait, and σ2

ay and σ2
dy are the additive and dominance genetic variances

of the Y trait. If we consider the sum Zi = Xi + Yi, then we can likewise
write the decomposition

Cov(Zi, Zj) = 2Φijσ
2
az + ∆7ijσ

2
dz (8.7)

in obvious notation. Subtracting equations (8.5) and (8.6) from equation
(8.7), dividing by 2, and invoking symmetry and the bilinearity of the
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covariance operator, we deduce that

Cov(Xi, Yj) = Cov(Yi, Xj)
= 2Φijσaxy + ∆7ijσdxy, (8.8)

where

σaxy =
1
2
(σ2

az − σ2
ax − σ2

ay)

σdxy =
1
2
(σ2

dz − σ2
dx − σ2

dy)

are additive and dominance cross covariances, respectively.
It is helpful to collect the covariances (8.8) into a single variance matrix.

Notationally and computationally, the key is the matrix Kronecker product
[16, 30]. Let A = (aij) be an r × s matrix and B = (bij) an t × u matrix.
The Kronecker product A⊗ B is the rt× su block matrix

A⊗B =



a11B · · · a1sB

...
. . .

...
ar1B · · · arsB


 .

Problem 8 explores some of the many theoretical properties of Kronecker
products. Given the Kronecker product construction, the covariances can
be collectively expressed as

Var
[(

X
Y

)]

= σ2
ax

(
2Φ 0
0 0

)
+ σaxy

(
0 2Φ

2Φ 0

)
+ σ2

ay

(
0 0
0 2Φ

)

+ σ2
dx

(
∆7 0
0 0

)
+ σdxy

(
0 ∆7

∆7 0

)
+ σ2

dy

(
0 0
0 ∆7

)
(8.9)

= 2
(
σ2

ax σaxy

σaxy σ2
ay

)
⊗ Φ +

(
σ2

dx σdxy

σdxy σ2
dy

)
⊗ ∆7.

The covariance representation (8.9) carries over to two traits determined
by multiple loci if each locus contributes additively to each trait. Random
measurement error can also be incorporated in this scheme if the covariance
matrix (8.9) is amended to include the further terms

σ2
ex

(
I 0
0 0

)
+ σexy

(
0 I
I 0

)
+ σ2

ey

(
0 0
0 I

)
=

(
σ2

ex σexy

σexy σ2
ey

)
⊗ I.

Finally, if we desire to model common household effects, then we tack on
the additional terms

σ2
hx

(
H 0
0 0

)
+ σhxy

(
0 H
H 0

)
+ σ2

hy

(
0 0
0 H

)
=

(
σ2

hx σhxy

σhxy σ2
hy

)
⊗H,
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where H is the household indicator matrix. Means can be linearly parame-
terized as

E
[(

X
Y

)]
=

(
A
B

)
µ

for given design matrices A and B.
For three or more multivariate traits, we get analogous Kronecker prod-

ucts involving matrices Σa, Σd, Σe, and Σh for the additive, dominance,
random environment, and common household effects, respectively. Each of
these matrices is a parameterized covariance matrix figuring in the decom-
position of the multivariate trait for a single, random individual. In carrying
out parameter estimation by scoring, we are faced with a dilemma. Matrices
such as Σa are required to be symmetric and nonnegative definite. Symme-
try presents little trouble in scoring, but nonnegative definiteness is much
harder to enforce. For a bivariate trait, we can reparameterize by replac-
ing the cross-covariance σaxy by the cross-correlation ρaxy subject to the
bounds −1 ≤ ρaxy ≤ 1. In higher dimensions, this solution to the dilemma
is no longer open to us. A better remedy is to reparameterize by going over
to the Cholesky decompositions of Σa, Σd, Σe, and Σh. As mentioned
in Problem 4 of Chapter 5, the Cholesky decomposition ∆ of a matrix Λ is
lower triangular, has nonnegative diagonal entries, and satisfies the square
root equation Λ = ∆∆t. Clearly ∆ has just the right number of parame-
ters, and its off-diagonal entries are unrestricted. The simple nonnegativity
constraints on the diagonal entries are easily accommodated in maximum
likelihood estimation.

8.5 Left and Right-Hand Finger Ridge Counts

Total finger ridge count is a highly heritable trait for which an abundance
of pedigree data exists. In her Tables 1 and 3, Holt [14] records left and
right-hand ridge counts on 48 nuclear families and 18 pairs of identical
twins. To assess the degree to which the left and right-hand counts are un-
der common genetic and environmental control, we can treat these counts
as bivariate traits and estimate mean and covariance components by max-
imum likelihood. Because it is well known that dominance effects are small
for ridge counts, we postulate an additive genetic variance for each hand
(σ2

al and σ2
ar), a random environmental variance for each hand (σ2

el and
σ2

er), an additive genetic correlation between hands (ρalr), and a random
environmental correlation between hands (ρelr). We also postulate for each
hand a separate mean for males (m) and females (f). This gives the four
mean parameters µml, µfl, µmr, and µfr in addition to the six covariance
parameters.

The maximum likelihood estimates for Holt’s data plus or minus the
corresponding asymptotic standard errors appear in Table 8.2. From this
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TABLE 8.2. Maximum Likelihood Estimates for the Ridge Count Data

Parameter Estimate Parameter Estimate
µml 66.6± 2.8 ρalr .992± .008
µfl 59.0± 2.8 σ2

ar 657.5± 69.2
µmr 68.9± 2.9 σ2

el 30.3± 7.5
µfr 62.7± 2.8 ρelr −.146± .178
σ2

al 638.8± 65.7 σ2
er 35.6± 9.9

table we can draw several tentative conclusions. First, ridge counts tend
to be higher for males than females and for right hands than left hands.
Second, left and right-hand ridge counts are highly heritable traits, as re-
flected in the ratio of the additive genetic variances to the corresponding
random environmental variances. Third, the additive genetic correlation is
surprisingly strong and the environmental correlation is surprisingly weak.
If these data are credible, then ridge counts on the left and right hands are
basically determined by the same set of genes. Furthermore, the environ-
mental determinants for the two hands may act independently; indeed, the
estimate of the environmental correlation is less than one standard devia-
tion from 0. Although we omit them here, overall goodness of fit statistics
suggest that the model is reasonably accurate [21].

8.6 QTL Mapping

QTL mapping is predicated on the assumption that one locus contributes
disproportionately to a quantitative trait [1, 3, 13, 15, 32]. We can estimate
the extent of that contribution if we quantify more accurately the allele
sharing between each pair of relatives at the quantitative trait locus
(QTL). The kinship coefficient Φjk is an average value depending only on
the pedigree connecting j and k. If we track the transmission of marker
genes in the vicinity of the QTL, then we can use this information to
estimate a conditional kinship coefficient Φ̂jk that provides a much better
idea of the extent of allele sharing at the QTL. We can extend this line
of reasoning to an arbitrary number n of QTL loci floating in a polygenic
sea. If we denote the conditional kinship matrix corresponding to the ith
QTL by Φ̂i, then the overall covariance matrix for a univariate trait with
no dominance or household effects becomes

Ω = 2
n∑

i=1

σ2
aiΦ̂i + 2σ2

aΦ + σ2
eI,

One can test the null hypothesis that the additive genetic variance σ2
ai

equals zero by comparing the likelihood of this restricted model with the
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model where σ2
ai is estimated. The difference between the two log10 like-

lihoods produces a lod score similar to the classical lod score of linkage
analysis. Twice the difference in loge likelihoods of these two models yields
a test statistic that is asymptotically distributed as a 1/2 : 1/2 mixture
of a χ2

1 variable and a point mass at zero [33]. When multiple QTLs are
jointly considered, the resulting likelihood ratio test statistic has a more
complicated asymptotic distribution. Accurate computation of the condi-
tional kinship matrices Φ̂i as a function of map position of the ith QTL
is obviously a critical step in QTL mapping. Fortunately, this problem can
be attacked by exact computation on small pedigrees and stochastic sim-
ulation methods on large pedigrees. We defer discussion of particulars to
Chapter 9.

8.7 Factor Analysis

Factor analysis has the potential to uncover the coordinated control of
multiple traits by the same genes. The standard factor analysis model pos-
tulates that a covariance matrix Λ can be written as ∆∆t, where ∆ is a
factor loading matrix [24]. This appears identical to the Cholesky decom-
position, but there are two crucial differences. First, the matrix ∆ is no
longer square; indeed, it may have far fewer columns than rows. Second, ∆
is no longer lower triangular. If we write ∆ and Λ as partitioned matrices
in the obvious manner, then we have
(

Λ11 Λ12

Λ21 Λ22

)
=

(
∆1

∆2

)
(∆t

1 ∆t
2 ) =

(
∆1∆t

1 ∆1∆t
2

∆2∆t
1 ∆2∆t

2

)
,

where the number of columns of ∆1 and ∆2 equals the number of factors.
This equality suggests taking ∆1 to be the Cholesky decomposition of
Λ11 and ∆t

2 to be ∆−1
1 Λ12. The parameterization of ∆ by the unique

combination of the Cholesky block ∆1 plus the arbitrary block ∆2 feeds
directly into maximum likelihood estimation. Admittedly this procedure
is somewhat ad hoc, but in view of the well-known indeterminacy of the
factor loadings, the exact nature of ∆ is intrinsically less interesting than
the excess of its rows over its columns.

The maximum likelihood estimator ∆̂ of ∆ = (δij) immediately yields
the maximum likelihood estimator Λ̂ = ∆̂∆̂t of Λ = (λij ). If ∆ has f
columns corresponding to f underlying factors, a particular estimate λ̂ij

can be written as

λ̂ij =
min{i,j,f}∑

k=1

δ̂ik δ̂jk

One of the disadvantages of the Cholesky and factor analytic parameteri-
zations is that the asymptotic standard errors of the estimated parameters
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are hard to interpret. This suggests transforming the asymptotic variances
and covariances based on the expansion

Var(λ̂ij) =
min{i,j,f}∑

k=1

min{i,j,f}∑
l=1

Cov(δ̂ik δ̂jk , δ̂ilδ̂jl). (8.10)

The delta method of large sample theory uses the linearizations

δ̂ik δ̂jk ≈ δikδjk + δik(δ̂jk − δjk) + δjk(δ̂ik − δik)

δ̂ilδ̂jl ≈ δilδjl + δil(δ̂jl − δjl) + δjl(δ̂il − δil)

to approximate

Cov(δ̂ik δ̂jk, δ̂ilδ̂jl)

≈ δ̂ik δ̂ilσ̂jk,jl + δ̂ik δ̂jlσ̂jk,il + δ̂jk δ̂ilσ̂ik,jl + δ̂jk δ̂jlσ̂ik,il, (8.11)

where σ̂jk,jl is the estimated covariance of δ̂jk and δ̂jl and so forth. Inverting
the observed information matrix produces the estimated covariances, which
can be substituted in the expansion (8.10) of the asymptotic variance.

8.8 A QTL Example

We now examine data submitted by the Collaborative Study on the Ge-
netics of Alcoholism (COGA) to the Eleventh Genetic Analysis Workshop.
COGA investigators at six American sites conducted a genome scan of al-
coholism and related risk factors on 105 pedigrees containing 1214 people.
The relevant risk factors in our case are platelet activity levels of the en-
zyme monoamine oxidase B (MAOB) and auditory and visual event related
potentials (ERPs). ERPs are complex brain waves indicative of cognitive
brain activity in response to certain stimuli such as light or sound. P300 is
one component of these waves that shows an amplitude reduction in recov-
ering alcoholics and relatives of alcoholics at risk for developing alcoholism.

As a followup to the positive linkage findings of various workshop par-
ticipants, [2, 18, 25, 31] we undertake here a trivariate analysis of MAOB
activity and two ERP measurements on the z area of the scalp, the Pz
and Cz leads of P300 amplitude. Two families have been excluded in this
analysis, one with MAOB levels more than 10 standard deviations from
the mean and one with questionable genotyping results. All three traits are
adjusted for sex and the Pz and Cz leads for age. Figure 8.1 depicts three
location score curves, the lower one with one QTL factor and the upper two
with two and three QTL factors, respectively. These curves are defined by
log10 Ld/L, where Ld is the maximum likelihood of the multivariate normal
model with the QTL at position d, and L is the maximum likelihood of the
multivariate normal model omitting the QTL.
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FIGURE 8.1. QTL Location Score Curves

Throughout the entire region on chromosome 12 the two factor and full
model yield almost identical QTL curves. This is hardly surprising since
the Pz and Cz leads are not only highly correlated but have similar QTL
curves when analyzed as single traits. In the region from 0 to 50 cM, the
one factor model is nearly identical to the full model. In this region, the
location score for MAOB analyzed alone is zero, and including this trait
contributes no new linkage information. From 50cM to nearly the end of the
chromosome the upper curve is distinct from the lower curve. In this region,
the linkage signals from MAOB and the Pz and Cz leads are sufficiently
different that two factors are more explanatory than one factor. Finally,
at the end of the chromosome all three curves nearly coincide again. This
suggests that a single QTL might determine the three traits in this region.

Of course, the possibility of over-interpretation is real in this analysis
given the modest maxima of the curves. The reduced models do have the
advantage of parsimony and better precision in parameter estimates. Com-
pared to univariate QTL analysis, the Cholesky and factor analytic parame-
terizations appear to give bumpier likelihood surfaces. In our experience,
it is prudent to commence optimization from multiple starting points to
avoid being misled by inferior local modes.
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8.9 The Hypergeometric Polygenic Model

Two elaborations of the polygenic model present substantial computational
difficulties. In the polygenic threshold model, a qualitative trait such
as the presence or absence of a birth defect is determined by an underly-
ing polygenically determined liability. If a person’s liability falls above a
fixed threshold, then the person possesses the trait [9, 10]; otherwise, he or
she does not. Likelihood evaluation under the polygenic threshold model
involves multivariate normal distribution functions and nasty numerical in-
tegrations [23]. In the mixed model, a quantitative trait is determined as
the sum of a polygenic contribution plus a major gene contribution [8, 27].
In this case, computational problems arise because the likelihood is a mix-
ture of numerous multivariate normal densities [28].

One strategy to overcome these computational barriers is to approximate
polygenic inheritance by segregation at a large, but finite, number of addi-
tive loci. In the finite polygenic model, the alleles at n symmetric loci
are termed polygenes and are categorized as positive or negative [11, 34].
Positive polygenes contribute +1 and negative polygenes −1 to a trait. If
positive and negative polygenes are equally frequent at each locus, then
the trait mean and variance for a random non-inbred person are 0 and 2n,
respectively. An arbitrary mean µ and variance σ2 for the trait X can be
achieved by transforming X to σ√

2n
X + µ. When the number of loci n is

moderately large, X appropriately standardized is approximately normal.
Although the finite polygenic model is superficially attractive, it is defeated
by the 3n multilocus genotypes per person necessary to implement it.

If one is willing to allow nongenetic transmission, then the situation
can be salvaged by employing the hypergeometric polygenic model of
Cannings et al. [5]. In this model the 2n polygenes of a person exist in a
common pool that ignores separate loci. If we equate a person’s genotype
to the number of positive polygenes within it, then there are only 2n + 1
possible genotypes. This is a major reduction from 3n. A gamete is gener-
ated in this model by randomly sampling without replacement n polygenes
from a parental pool of 2n polygenes. Thus, a person having i positive poly-
genes transmits a gamete having j positive polygenes with hypergeometric
probability

τi→j =

(
i
j

)(
2n−i
n−j

)
(
2n
n

) .

Two independently generated gametes unite to form a child. To make this
hypergeometric polygenic model as similar as possible to the finite poly-
genic model, we finally postulate that all pedigree founders independently
share the binomial distribution

(
2n
i

)(
1
2

)2n

(8.12)
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for their number of positive polygenes i.
The hypergeometric polygenic model mimics the polygenic model well

in two regards. First, both models entail the same pattern of variances
and covariances among the relatives of a non-inbred pedigree. Second, as
n→ ∞ in the hypergeometric polygenic model, appropriately standardized
trait values within a pedigree tend to multivariate normality. We will verify
the first of these assertions, leaving the second for interested readers to
glean from the reference [20].

To compute the means, variances, and covariances of the trait values
within a pedigree, let Xi denote the trait value of pedigree member i. When
i is a pedigree founder, E(Xi) = 0 by virtue of the binomial distribution
(8.12). If i has parents k and l in the pedigree, then we can decompose

Xi = Yk→i + Yl→i

into a gamete contribution from k plus a gamete contribution from l. As-
suming that the parental trait means vanish, we infer that

E(Xi) = E[E(Xi | Xk, Xl)]
= E[E(Yk→i | Xk)] + E[E(Yl→i | Xl)]

= E
(1

2
Xk

)
+ E

(1
2
Xl

)

= 0

and inductively conclude that all trait means in the pedigree vanish.
To compute trait covariances, let j be another member of the pedigree

who is not a descendant of i. If i is a founder, then Xi and Xj are inde-
pendent and consequently uncorrelated. If i has parents k and l, then

Cov(Xi, Xj) = E[Cov(Xi, Xj | Xk, Xl)]
+ Cov[E(Xi | Xk, Xl),E(Xj | Xk, Xl)]

= 0 + Cov[
1
2
(Xk +Xl),E(Xj | Xk, Xl)]

=
1
2

Cov[Xk,E(Xj | Xk, Xl)]

+
1
2

Cov[Xl,E(Xj | Xk, Xl)]

=
1
2

Cov[E(Xk | Xk, Xl),E(Xj | Xk, Xl)]

+
1
2

Cov[E(Xl | Xk, Xl),E(Xj | Xk, Xl)]

=
1
2

Cov(Xk, Xj) +
1
2

Cov(Xl, Xj).

Note that E[Cov(Xi, Xj | Xk, Xl)] = 0 in this calculation because Xi and
Xj are independent conditional on the parental values Xk and Xl. The
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recurrence

Cov(Xi, Xj) =
1
2

Cov(Xk, Xj) +
1
2

Cov(Xl, Xj) (8.13)

is precisely the recurrence obeyed by ordinary kinship coefficients.
Calculation of variances is a little more complicated. If i is a founder,

then the binomial distribution (8.12) implies Var(Xi) = 2n. If i has parents
k and l, then

Var(Xi) = E[Var(Xi | Xk, Xl)] + Var[E(Xi | Xk, Xl)]
= E[Var(Yk→i | Xk, Xl)] + E[Var(Yl→i | Xk, Xl)]

+ Var[
1
2
(Xk +Xl)]

= E[Var(Yk→i | Xk)] + E[Var(Yl→i | Xl)] (8.14)

+
1
4

Var(Xk) +
1
2

Cov(Xk, Xl) +
1
4

Var(Xl).

To make further progress, we must compute E[Var(Yk→i | Xk)]. With
this end in mind, suppose we label the 2n polygenes of k by the numbers
1, . . . , 2n, and let Wm be +1 or −1 according as the mth polygene of
k is positive or negative. If we also let Am be the event that the mth
polygene of k is sampled in forming the gamete contribution Yk→i, then
Xk =

∑2n
m=1Wm and Yk→i =

∑2n
m=1 1AmWm. A moment’s reflection shows

that Var(1Ar) = 1
4 and that

Cov(1Ar , 1As) =

(
2n−2
n−2

)
(
2n
n

) − 1
4

= − 1
4(2n− 1)

.

Conditional on W = (W1, . . . ,W2n)t, we therefore calculate that

Var(Yk→i | Xk) = Var(Yk→i | W )

=
[
1
4

+
1

4(2n− 1)

] 2n∑
m=1

W 2
m − 1

4(2n− 1)

(
2n∑

m=1

Wm

)2

=
[
1
4

+
1

4(2n− 1)

]
2n− 1

4(2n− 1)
X2

k

and consequently that

E[Var(Yk→i | Xk)] =
[
1
4

+
1

4(2n− 1)

]
2n− 1

4(2n− 1)
Var(Xk).

Substituting this and a similar expression for E[Var(Yl→i | Xl)] in equation
(8.14) produces the recurrence

Var(Xi) =
[
1
2

+
1

2(2n− 1)

]
2n+

1
4

(
1 − 1

2n− 1

)
Var(Xk)
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+
1
4

(
1 − 1

2n− 1

)
Var(Xl) +

1
2

Cov(Xk, Xl). (8.15)

In the absence of inbreeding, Cov(Xk, Xl) = 0, and one can argue induc-
tively that Var(Xi) = 2n. Indeed, the induction hypothesis Var(Xk) = 2n
and Var(Xl) = 2n and the recurrence (8.15) imply that Var(Xi) = 2n.

Summarizing the situation for a non-inbred pedigree, all means reduce
to E(Xi) = 0 and all variances to Var(Xi) = 2n. All covariances either
are 0 or are governed by the recurrence (8.13). Thus, insofar as first and
second moments are concerned, the hypergeometric polygenic model ex-
actly mimics the inheritance of a fully additive polygenic trait (σ2

d = 0)
with mean 0 and variance 2n. This resemblance and the empirical calcula-
tions carried out by Elston, Fernando, and Stricker [11, 34] for the mixed
model suggest that the hypergeometric polygenic model is a computation-
ally efficient substitute for the polygenic model. A pleasing aspect of this
substitution is that all computations can be performed via a version of the
Elston-Stewart algorithm featured in Chapter 7.

8.10 Application to Risk Prediction

For a simple numerical application to the polygenic threshold model, con-
sider the pedigree of Figure 8.2. In this pedigree, darkened individuals
are afflicted by a hypothetical disease with a prevalence of .01 and a
heritability of .75. We approximate the polygenic liability to disease
of person i in the pedigree by the sum Zi = σa( 1√

2n
Xi) + σeYi, where

Xi is determined by the hypergeometric polygenic model with 2n poly-
genes; the Yi are independent, standard normal deviates; σ2

a = .75; and
σ2

e = .25. The ratio σ2
a/(σ

2
a +σ2

e ) is by definition the heritability of each Zi.
Given that each Zi follows an approximate standard normal distribution,
the liability threshold of 2.326 is determined by the prevalence condition

1√
2π

∫∞
2.326

e−z2/2dz = .01.
The individuals represented by ♦ marks in Figure 8.2 are unborn, po-

tential children. Table 8.3 gives the conditional probabilities that these
children will be afflicted with the disease. The recurrence risks recorded
evidently stabilize at about 35 percent, 12 percent, and 6 percent as the
number of polygenes 2n → ∞. Under the alternative hypothesis of an
autosomal dominant mode of disease, these risks are 1/2, 1/2, and 0, re-
spectively. In counseling families such as this one, where risks are strongly
model dependent, one should obviously exercise caution.
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FIGURE 8.2. Risk Prediction Under the Polygenic Threshold Model

TABLE 8.3. Recurrence Risks for the Unborn Children in Figure 8.1

Polygenes 2n Child 8 Child 11 Child 12
10 .326 .081 .054
20 .349 .104 .057
30 .354 .111 .058
40 .357 .115 .058
50 .358 .117 .058

8.11 Problems

1. Suppose that Aiµ̂ and Ω̂i are the mean vector and covariance ma-
trix for the ith of s pedigrees evaluated at the maximum likelihood
estimates. Under the multivariate normal model (8.1), show that

s∑
i=1

(Y i −Aiµ̂)tΩ̂−1
i (Y i −Aiµ̂) =

s∑
i=1

mi,

where mi is the number of entries of the trait vector Y i [15]. Hint:
r∑

k=1

σ̂2
k

∂

∂σ2
k

L(γ̂) = 0.

2. In the notation of Problem 1, prove that the pedigree statistic

(Y i −Aiµ)tΩ−1
i (Y i −Aiµ)

has a χ2
mi

distribution when evaluated at the true values of µ and σ2

[30]. This χ2
mi

distribution holds approximately when the maximum
likelihood estimates µ̂ and σ̂2 are substituted for their true values.
There is a slight dependence among the statistics

(Y i −Aiµ̂)tΩ̂−1
i (Y i −Aiµ̂)
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because of the functional relationship featured in Problem 1. (Hint:

What is the distribution of Ω− 1
2

i (Y i−Aiµ)? Recall that a linear trans-
formation of a multivariate normal variate is multivariate normal.)

3. Verify that the formulas (8.3) for the expected information matrix
continue to hold when the mean A(µ) and the covariance Ω(σ2) are
nonlinear functions of the underlying parameter vectors µ and σ2,
provided any appearance of A ∂

∂µi
µ is replaced by ∂

∂µi
A(µ) and any

appearance of Γi is replaced by ∂
∂σ2

i

Ω(σ2).

4. Suppose all pedigrees from a sample have been amalgamated into a
single pedigree. For a trait vector Y with E(Y ) = 0, consider the
covariance components model

YiYj =
r∑

k=1

σ2
kΓkij + eij , (8.16)

where the eij are independent, identically distributed random errors.
Let U be the matrix Y Y t, Wk be the matrix Γk, and e be the matrix
(eij), all written in lexicographical order as column vectors. Then the
model (8.16) can be written as

U = Wσ2 + e, (8.17)

where W = (W1, . . . ,Wr). Show that the normal equations for esti-
mating σ2 reduce to one step of scoring starting from (0, . . . , 0, 1)t.
This result is due to Robert Jennrich.

5. As an alternative to scoring in the polygenic model, one can imple-
ment the EM algorithm [7]. In the notation of the text, consider a
multivariate normal random vector Y with mean ν = Aµ and covari-
ance Ω =

∑r
k=1 σ

2
kΓk, where A is a fixed design matrix, the σ2

k > 0,
the Γk are positive definite covariance matrices, and Γr = I . Let the
complete data consist of independent, multivariate normal random
vectors X1, . . . , Xr such that Y =

∑r
k=1X

k and such that Xk has
mean 1{k=r}Aµ and covariance σ2

kΓk. If γ = (µ1, . . . , µp, σ
2
1 , . . . , σ

2
r)t,

and the observed data are amalgamated into a single pedigree with
m people, then prove the following assertions:

(a) The complete data loglikelihood is

ln f(X | γ) = −1
2

r∑
k=1

{ln det Γk +m lnσ2
k

+
1
σ2

k

[Xk − E(Xk)]tΓ−1
k [Xk − E(Xk)]}.



160 8. The Polygenic Model

(b) Omitting irrelevant constants, the Q(γ | γn) function of the EM
algorithm is

Q(γ | γn)

= − 1
2

r−1∑
k=1

{m lnσ2
k +

1
σ2

k

[tr(Γ−1
k Υnk) + νt

nkΓ−1
k νnk]}

− m

2
lnσ2

r − 1
2σ2

r

[tr(Υnr) + (νnr −Aµ)t(νnr −Aµ)],

where νnk is the conditional mean vector

νk = 1{k=r}Aµ+ σ2
kΓkΩ−1[y −Aµ]

and Υnk is the conditional covariance matrix

Υk = σ2
kΓk − σ2

kΓkΩ−1σ2
kΓk

of Xk given Y = y evaluated at the current iterate γn. (Hint:
Consider the concatenated random normal vector

(
Xk

Y

)
and use

fact (e) proved in the text.)

(c) The solution of the M step is

µn+1 = (AtA)−1Atνnr

σ2
n+1,k =

1
m

[tr(Γ−1
k Υnk) + νt

nkΓ−1
k νnk], 1 ≤ k ≤ r − 1

σ2
n+1,r =

1
m

[tr(Υnr) + (νnr − Aµn+1)t(νnr −Aµn+1)].

In the above update, µn+1 is the next iterate of the mean vector
µ and not a component of µ.

6. Continuing Problem 5, show that σ2
nk ≥ 0 holds for all k and n if

σ2
1k ≥ 0 holds initially for all k. If all σ2

1k > 0, show that all σ2
nk > 0.

7. Continuing Problem 5, suppose that one or more of the covariance
matrices Γk is singular. For instance, in modeling common household
effects, the corresponding missing data Xk can be represented as
Xk = σkMkW

k, where Mk is a constant m×s matrix having exactly
one entry 1 and the remaining entries 0 in each row, and where W k

has s independent, standard normal components. Each component of
W k corresponds to a different household; each row of Mk chooses the
correct household for a given person. It follows from this description
that

σ2
kΓk = Var(Xk)

= σ2
kMkM

t
k.
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The matrix Hk = MkM
t
k is the household indicator matrix described

in the text. When Xk has the representation σkMkW
k, one should

replace Xk in the complete data by σkW
k. With this change, show

that the EM update for σ2
k is

σ2
n+1,k =

1
s
[tr(Υnk) + νt

nkνnk],

where νnk and Υnk are

νk = σ2
kM

t
kΩ−1(y −Aµ)

Υk = σ2
kI − σ4

kM
t
kΩ−1Mk

evaluated at the current parameter vector γn.

8. Demonstrate the following facts about the Kronecker product of two
matrices:

(a) c(A⊗B) = (cA) ⊗B = A⊗ (cB) for any scalar c.

(b) (A⊗B)t = At ⊗Bt.

(c) (A+B) ⊗ C = A⊗ C +B ⊗ C.

(d) A⊗ (B + C) = A⊗B +A⊗ C.

(e) (A⊗B) ⊗ C = A⊗ (B ⊗ C).

(f) (A⊗B)(C ⊗D) = (AC) ⊗ (BD).

(g) If A and B are invertible square matrices, then

(A⊗B)−1 = A−1 ⊗B−1.

(h) If λ is an eigenvalue of the square matrix A with algebraic mul-
tiplicity r and µ is an eigenvalue of the square matrix B with
algebraic multiplicity s, then λµ is an eigenvalue of A⊗B with
algebraic multiplicity rs.

(i) If A and B are square matrices, tr(A⊗B) = tr(A) tr(B).

(j) If A is an m×m matrix, and B is an n× n matrix, then

det(A⊗B) = det(A)n det(B)m.

All asserted operations involve matrices of compatible dimensions.
(Hint: For part (h), let A = USU−1 and B = V TV −1 be the Jordan
canonical forms of A and B. Check that S ⊗ T is upper triangular.)

9. In some variance component models, several pedigrees share the same
theoretical mean vector µ and variance matrix Ω. Maximum likeli-
hood computations can be accelerated by taking advantage of this re-
dundancy. In concrete terms, we would like to replace a random sam-
ple y1, . . . , yk from a multivariate normal distribution with a smaller
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random sample z1, . . . , zl in a manner that leaves the loglikelihood
invariant up to a known multiplicative constant. Show that this re-
quirement can be expressed formally as

−k
2

ln | det Ω| − k

2
tr
[
Ω−1 1

k

k∑
j=1

(yj − µ)(yj − µ)t
]

= −c



l

2
ln | det Ω| − l

2
tr
[
Ω−1 1

l

l∑
j=1

(zj − µ)(zj − µ)t
]




for some constant c. Matching terms involving ln | det Ω| forces the
choice c = k

l . Given c, we then take

1
l

l∑
j=1

(zj − µ)(zj − µ)t =
1
k

k∑
j=1

(yj − µ)(yj − µ)t.

Prove that this last equality holds for all µ if and only if z̄ = ȳ and

1
l

l∑
j=1

(zj − z̄)(zj − z̄)t =
1
k

k∑
j=1

(yj − ȳ)(yj − ȳ)t = S. (8.18)

Until this point, we have not specified the reduced sample size l. If
each yj has m components, we claim that we can take l = m + 1.
This claim is based on constructing m+1 vectors v1, . . . , vm+1 in Rm

satisfying

m+1∑
j=1

vj = 0 (8.19)

m

m+ 1

m+1∑
j=1

vjv
t
j = Im×m,

where Im×m is the m ×m identity matrix. Given these vectors and
given the Cholesky decomposition S = MM t of the sample variance
of the sequence y1, . . . , yk, we define zj =

√
mMvj + ȳ. Show that this

construction yields the sample mean equality z̄ = ȳ and the sample
variance equality (8.18).

Thus, it remains to construct the sequence v1, . . . , vm+1. Although
geometrically the vectors form the vertices of a regular tetrahedron,
we proceed in a purely algebraic fashion. For m = 1, the trivial choice
v1 = (1) and v2 = (−1) clearly meets the stated requirements. If
v1, . . . , vm work in Rm−1, then verify by induction that the vectors

wj =
(
vj

√
1 −m−2

−m−1

)
1 ≤ j ≤ m
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wm+1 =
(

0
1

)

satisfy the two equalities (8.19) in Rm.

10. In the factor analysis model of Section 8.7, we can exploit the approx-
imate multivariate normality of the estimators to derive a different
approximation to the parameter asymptotic standard errors. Sup-
pose the multivariate normal random vector Z has mean µ = (µi)
and variance Ω = (ωij). Verify by evaluation of the appropriate par-
tial derivatives of the characteristic function E(eiθtZ) = eiθtµ−θtΩθ/2

at θ = 0 that

Cov(ZiZj , ZkZl) = E(ZiZjZkZl) − E(ZiZj) E(ZkZl)
= µjµlωik + µiµlωjk + µjµkωil

+ µiµkωjl + ωikωjl + ωilωjk .

This translates into the refined approximate covariance

Cov(δ̂ik δ̂jk , δ̂ilδ̂jl) ≈ δ̂ik δ̂ilσ̂jk,jl + δ̂ik δ̂jlσ̂jk,il

+ δ̂jk δ̂ilσ̂ik,jl + δ̂jk δ̂jlσ̂ik,il (8.20)
+ σ̂ik,ilσ̂jk,jl + σ̂ik,jlσ̂jk,il,

which can be substituted in the expansion (8.10) of the asymptotic
variance.

11. Any reasonable model of QTL mapping for an X-linked trait must
take into account the phenomenon of X inactivation in females. As
a first approach, assume that all females are divided into n patches
and that in each patch one of the two X chromosomes is randomly
inactivated. If we suppose that the patches contribute additively, but
not necessarily equally, to a quantitative trait u, then we can write
u =

∑n
i=1 ciui. Here the ui are identically distributed random vari-

ables of unit variance, and the ci are scale constants measuring the
functional sizes of the patches. For a monogenic trait, we postulate
that ui = αk when allele k is expressed in patch i. If allele k has
population frequency pk, then show that

E(u) =
( n∑

i=1

ci

)(∑
k

αkpk

)
.

This mean also applies to males provided we make the assumption
that a male is also divided into n patches. This is a harmless fiction
because the same maternally derived allele is expressed in each patch
of a male.
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To calculate the covariance between the trait values u and v of two
relatives, we exploit the bilinearity property

Cov(u, v) =
n∑

i=1

n∑
j=1

cicj Cov(ui, vj).

To make further progress, let zij be the indicator function of the
event that the genes expressed in patch i of the first person and
patch j of the second person are identical by descent. The probabil-
ity Pr(zij = 1) = φ is just the X-linked kinship coefficient between
the two relatives. This probability can be either unconditional or con-
ditional. If it is conditional, then in QTL mapping we condition on
the observed X-linked marker types for the two individuals and their
relatives. In any case, by conditioning on the zij , prove that

Cov(u, v) =
( n∑

i=1

ci

)2

φ.

Given that only one gene is expressed in the same patch of the same
person, show that the trait variance for a single person is

Var(u) =
( n∑

i=1

c2i

)
(1 − φ) +

( n∑
i=1

ci

)2

φ.

Because φ = 1 for a male and φ = 1
2 for a non-inbred female, it is

trivial to show when the ci are positive that the male trait variance
(
∑n

i=1 ci)
2 exceeds the female trait variance 1

2

∑n
i=1 c

2
i + 1

2 (
∑n

i=1 ci)
2.

This makes sense; the process of X inactivation smooths the contri-
butions from different alleles and decreases the variance.

In practice, we need to select parameters that can be estimated from
pedigree data. Assuming that there are no inbred females, one way
of achieving this is to let σ2

a = (
∑n

i=1 ci)
2 and σ2

f =
∑n

i=1 c
2
i . Then,

except for female variances, all trait variances and covariances can
be expressed as σ2

aφ. For a female trait variance, we amend this ex-
pression by adding σ2

f (1 − φ), with the understanding that φ = 1/2.
The extra term σ2

f can easily be included in the random environment
portion of any multivariate normal model.

12. In the hypergeometric polygenic model, verify that the number of
positive polygenes a non-inbred person possesses follows the binomial
distribution (8.12). Do this by a qualitative argument and by checking
analytically the reproductive property

∑
g1

∑
g2

(
2n
g1

)(
1
2

)2n(2n
g2

)(
1
2

)2n

τg1×g2→g3 =
(

2n
g3

)(
1
2

)2n

for polygene transmission under sampling without replacement.
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13. In the hypergeometric polygenic model, Var(Xi) = 2n holds for each
person

i in a non-inbred pedigree. In the presence of inbreeding, give a coun-
terexample to this formula. However, prove that

0 ≤ Cov(Xi, Xj) ≤ (2 + q)n

for all pairs i and j from a pedigree with q people. Note that the
special case i = j gives an upper bound on trait variances. (Hint:
Argue by induction using the recurrence formulas for variances and
covariances.)

14. In the hypergeometric polygenic model, suppose that one randomly
samples each of the n polygenes transmitted to a gamete with replace-
ment rather than without replacement. If j �= i is not a descendant
of i, and i has parents k and l, then show that this altered model
entails

E(Xi) = 0

Cov(Xi, Xj) =
1
2

Cov(Xk, Xj) +
1
2

Cov(Xl, Xj)

Var(Xi) = 2n+
1
4

(
1 − 1

n

)
Var(Xk) +

1
4

(
1 − 1

n

)
Var(Xl)

+
1
2

Cov(Xk, Xl).

15. Continuing Problem 14, let vm be the trait variance of a person m
generations removed from his or her relevant pedigree founders in a
non-inbred pedigree. Verify that vm satisfies the difference equation

vm = 2n+
1
2

(
1 − 1

n

)
vm−1

with solution

vm =
4n

1 + 1
n

+
[
1
2

(
1 − 1

n

)]m(
v0 − 4n

1 + 1
n

)
.

Check that vm steadily increases from v0 = 2n to the limit v∞ = 4n
1+ 1

n

.
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9

Descent Graph Methods

9.1 Introduction

Mapping disease and marker loci from pedigree phenotypes is one of the
most computationally onerous tasks in modern biology. Even tightly opti-
mized software can be quickly overwhelmed by the synergistic obstructions
of missing data, multiple marker loci, multiple alleles per marker locus,
and inbreeding. This unhappy situation has prompted mathematical and
statistical geneticists to formulate alternatives to the Elston-Stewart algo-
rithm. The most productive alternatives use elementary graph theory. The
Lander-Green-Kruglyak algorithm alluded to in Chapter 7 exploits gene
flow graphs and works well on small pedigrees. For large pedigrees, it is
helpful to combine the graph theory perspective with stochastic methods
of numerical integration [12, 23, 24, 32, 39, 40, 42].

One of the advantages of descent graph methods is that they enable us
to ask questions about genetic identity by descent. This has implications
for computing nonparametric linkage statistics and conditional kinship co-
efficients. Although the deterministic and stochastic algorithms share a
common core, they diverge in several details. The Lander-Green-Kruglyak
algorithm makes an interesting detour into Fourier analysis. The stochastic
methods can be viewed as part of the Markov chain Monte Carlo (MCMC)
revolution sweeping statistics. The Metropolis algorithm and Gibbs sam-
pling make it straightforward to construct a Markov chain sampling from
a complicated conditional distribution [7, 8, 10, 13, 28, 38]. Once a sam-
ple is available, then any conditional expectation can be approximated by
forming its corresponding sample average. The implications of this insight
are profound for both classical and Bayesian statistics. As a bonus, trivial
changes to the Metropolis algorithm yield simulated annealing, a general-
purpose algorithm for solving difficult combinatorial optimization problems
such as haplotyping [17, 31].

The agenda for this rather long chapter is to (a) review the existing
theory of finite-state Markov chains, (b) briefly explain the Metropolis al-
gorithm and simulated annealing, (c) apply these ideas to the computation
of location scores and the reconstruction of haplotypes, (d) develop the
Walsh transform and Baum’s algorithm standing behind the Lander-Green-
Kruglyak algorithm, and (e) show how these techniques fit in computing
nonparametric linkage statistics, conditional kinship coefficients, and error
probabilities in genotyping.
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9.2 Review of Discrete-Time Markov Chains

For the sake of simplicity, we will only consider chains with a finite state
space [6, 11]. The movement of such a chain from epoch (or generation) to
epoch is governed by its transition probability matrix P = (pij). If Zn

denotes the state of the chain at epoch n, then pij = Pr(Zn = j | Zn−1 = i).
As a consequence, every entry of P satisfies pij ≥ 0, and every row of P
satisfies

∑
j pij = 1. Implicit in the definition of pij is the fact that the

future of the chain is determined by its present without regard to its past.
This Markovian property is expressed formally by the equation

Pr(Zn = in | Zn−1 = in−1, . . . , Z0 = i0) = Pr(Zn = in | Zn−1 = in−1).

The n-step transition probability p
(n)
ij = Pr(Zn = j | Z0 = i) is given

by the entry in row i and column j of the matrix power Pn. This follows
because the decomposition

p
(n)
ij =

∑
i1

· · ·
∑
in−1

pii1 · · · pin−1j

over all paths i → i1 → · · · → in−1 → j corresponds to matrix multipli-
cation. A question of fundamental theoretical importance is whether the
matrix powers Pn converge. If the chain eventually forgets its starting state,
then the limit should have identical rows. Denoting the common limiting
row by π, we deduce that π = πP from the calculation



π
...
π


 = lim

n→∞Pn+1

=
(

lim
n→∞Pn

)
P

=



π
...
π


P.

Any probability distribution π on the states of the chain satisfying the
condition π = πP is termed an equilibrium or stationary distribution
of the chain. For finite-state chains, equilibrium distributions always exist
[6, 11]. The real issue is uniqueness.

Mathematicians have attacked the uniqueness problem by defining ap-
propriate ergodic conditions. For a finite-state chain, two ergodic assump-
tions are invoked. The first is aperiodicity; this means that the greatest
common divisor of the set {n ≥ 1 : p(n)

ii > 0} is 1 for every state i. Aperiod-
icity trivially holds when pii > 0 for all i. The second ergodic assumption
is irreducibility; this means that for every pair of states (i, j) there exists
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a positive integer nij such that p(nij)
ij > 0. In other words, every state is

reachable from every other state. Said yet another way, all states commu-
nicate. For an irreducible chain, Problem 5 states that the integer nij can
be chosen independently of the particular pair (i, j) if and only if the chain
is also aperiodic. Thus, we can merge the two ergodic assumptions into the
single assumption that some power Pn has all entries positive. Under this
single ergodic condition, a unique equilibrium distribution π exists with all
entries positive.

Equally important is the ergodic theorem [6, 11]. This theorem permits
one to run a chain and approximate theoretical means by sample means.
More precisely, let f(z) be some function defined on the states of an ergodic
chain. Then limn→∞ 1

n

∑n−1
i=0 f(Zi) exists and equals the theoretical mean

Eπ[f(Z)] =
∑

z

πzf(z)

of f(Z) under the equilibrium distribution π. This result generalizes the
law of large numbers for independent sampling.

The equilibrium condition π = πP can be restated as the system of
equations

πj =
∑

i

πipij (9.1)

for all j. In many Markov chain models, the stronger condition

πjpji = πipij (9.2)

holds for all pairs (i, j). If this is the case, then the probability distribution
π is said to satisfy detailed balance. Summing equation (9.2) over i yields
the equilibrium condition (9.1). An irreducible Markov chain with equilib-
rium distribution π satisfying detailed balance is said to be reversible.
Irreducibility is imposed to guarantee that all entries of π are positive.

If i1, . . . , im is any sequence of states in a reversible chain, then detailed
balance implies

πi1pi1i2 = πi2pi2i1

πi2pi2i3 = πi3pi3i2

...
πim−1pim−1im = πimpimim−1

πimpimi1 = πi1pi1im .

Multiplying these equations together and canceling the common positive
factor πi1 · · ·πim from both sides of the resulting equality gives Kolmo-
gorov’s circulation criterion [15]

pi1i2pi2i3 · · · pim−1impimi1 = pi1impimim−1 · · · pi3i2pi2i1 . (9.3)
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Conversely, if an irreducible Markov chain satisfies Kolmogorov’s crite-
rion, then the chain is reversible. This fact can be demonstrated by explic-
itly constructing the equilibrium distribution and showing that it satisfies
detailed balance. The idea behind the construction is to choose some arbi-
trary reference state i and to pretend that πi is given. If j is another state,
let i → i1 → · · · → im → j be any path leading from i to j. Then the
formula

πj = πi
pii1pi1i2 · · · pimj

pjimpimim−1 · · · pi1i
(9.4)

defines πj . A straightforward application of Kolmogorov’s criterion (9.3)
shows that the definition (9.4) does not depend on the particular path
chosen from i to j. To validate detailed balance, suppose that k is adjacent
to j. Then i → i1 → · · · → im → j → k furnishes a path from i to k
through j. It follows from (9.4) that πk = πjpjk/pkj , which is obviously
equivalent to detailed balance. In general, the value of πi is not known
beforehand. Setting πi = 1 produces the equilibrium distribution up to a
normalizing constant.

Example 9.2.1 Two Different Markov Chains on a DNA Strand

As explained in Appendix A, a DNA strand is constructed from the four
bases A (adenine), G (guanine), C (cytosine), and T (thymine). The strand
has a directionality so that we can imagine starting at its 5′ end and walking
toward its 3′ end. As one proceeds along the strand, the bases encountered
are not independent. To a first approximation [37], the successive bases
conform to a Markov chain with transition matrix

P =




A C G T
A .32 .18 .23 .27
C .37 .23 .05 .35
G .30 .21 .25 .24
T .23 .19 .25 .33


.

It is easy to check that the equilibrium distribution of this aperiodic chain
is π = (.30, .20, .20, .30).

Bishop et al. [2] use the above chain to construct a more complicated
Markov chain capturing the random distances between restriction sites.
Restriction enzymes recognize certain specific sequences of bases along
a DNA strand and cut the DNA at these restriction sites. For instance, the
enzyme AluI recognizes the sequence AGCT. To investigate the random
distance between restriction sites for AluI, it is helpful to construct a chain
with states A, C, G, T, AG, AGC, and AGCT. The first four states are
interpreted as in the chain above. AG is the state where the current DNA
base is G and the previous base is A. Here part of the desired restriction
site pattern has been achieved. The state AGC is even further along on
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the way to the desired full restriction site AGCT. Once AGCT is attained,
the next base encountered will completely disrupt the pattern, and we are
back again at A, C, G, or T. This second chain has transition matrix

P =




A C G T AG AGC AGCT
A .32 .18 0 .27 .23 0 0
C .37 .23 .05 .35 0 0 0
G .30 .21 .25 .24 0 0 0
T .23 .19 .25 .33 0 0 0
AG .30 0 .25 .24 0 .21 0
AGC .37 .23 .05 0 0 0 .35
AGCT .23 .19 .25 .33 0 0 0



.

9.3 The Hastings-Metropolis Algorithm and
Simulated Annealing

The Hastings-Metropolis algorithm is a device for constructing a Markov
chain with a prescribed equilibrium distribution π on a given state space
[13, 28]. Each step of the chain is broken into two stages, a proposal stage
and an acceptance stage. If the chain is currently in state i, then in the
proposal stage a new destination state j is proposed according to a proba-
bility density qij = q(j | i). In the subsequent acceptance stage, a random
number is drawn uniformly from [0, 1] to determine whether the proposed
step is actually taken. If this number is less than the Hastings-Metropolis
acceptance probability

aij = min
{

1,
πjqji

πiqij

}
, (9.5)

then the proposed step is taken. Otherwise, the proposed step is declined,
and the chain remains in place.

Historically, Metropolis et al. [28] considered only symmetric proposal
densities with qij = qji. In this case the acceptance probability reduces to

aij = min
{
1,
πj

πi

}
. (9.6)

It is also noteworthy that in applying either formula (9.5) or formula (9.6),
the πi need only be known up to a multiplicative constant.

To prove that π is the equilibrium distribution of the chain constructed
from the Hastings-Metropolis scheme (9.5), it suffices to check that detailed
balance holds. If π puts positive weight on all points of the state space, it is
clear that we must impose the requirement that the inequalities qij > 0 and
qji > 0 are simultaneously true or simultaneously false. This requirement
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is also implicit in definition (9.5). Now suppose without loss of generality
that the fraction

πjqji

πiqij
≤ 1

for some j �= i. Then detailed balance follows immediately from

πiqijaij = πiqij
πjqji

πiqij
= πjqji

= πjqjiaji.

The Gibbs sampler is a special case of the Hastings-Metropolis algo-
rithm for Cartesian product state spaces [7, 8, 10]. Suppose that each
sample point i = (i1, . . . , im) has m components. For instance, ic could
represent the genotype of person c in a pedigree of m people. The Gibbs
sampler updates one component of i at a time. If the component is cho-
sen randomly and resampled conditional on the remaining components,
then the acceptance probability is 1. To prove this assertion, let ic be the
uniformly chosen component, and denote the remaining components by
i−c = (i1, . . . , ic−1, ic+1, . . . , im). If j is a neighbor of i reachable by chang-
ing only component ic, then j−c = i−c. Hence, the proposal probability

qij =
1
m

πj∑
{k:k−c=i−c} πk

satisfies πiqij = πjqji, and the ratio appearing in the acceptance probability
(9.5) is 1. In the location score application discussed in this chapter, the
Gibbs sampler leads to chains that either mix too slowly or are reducible.
For this reason, the general Metropolis algorithm is preferable.

In simulated annealing we are interested in finding the most probable
state of a Markov chain [17, 31]. If this state is k, then πk > πi for all i �= k.
To accentuate the weight given to state k, we can replace the equilibrium
distribution π by a distribution putting probability

π
(τ)
i =

π
1
τ

i∑
j π

1
τ
j

on state i. Here τ is a small, positive parameter traditionally called temper-
ature. For a chain with symmetric proposal density, the distribution π

(τ)
i

can be attained by running the chain with acceptance probability

aij = min
{
1,
(πj

πi

) 1
τ
}
. (9.7)

In fact, what is done in simulated annealing is that the chain is run with
τ gradually decreasing to 0. If τ starts out large, then in the early steps
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of simulated annealing, almost all proposed steps are accepted, and the
chain broadly samples the state space. As τ declines, fewer unfavorable
steps are taken, and the chain eventually settles on some nearly optimal
state. With luck this state is k or a state equivalent to k if several states are
optimal. Simulated annealing is designed to mimic the gradual freezing of a
substance into a crystalline state of perfect symmetry and hence minimum
energy.

9.4 Descent States and Descent Graphs

To apply the MCMC method to the analysis of human pedigree data, we
must choose an appropriate state space and a mechanism for moving be-
tween neighboring states of the space. Given our goal of computing lo-
cation scores, the state space must capture gene flow at multiple marker
loci. For the sake of simplicity and in keeping with most genetic practice,
only codominant alleles will be allowed at the marker loci. The state space
will also omit mention of the trait locus. This locus is handled somewhat
differently and appears later in our discussion.

The states of our state space are rather complicated graphs describing
gene flow in a pedigree at the participating marker loci. It suffices to fo-
cus on a single pedigree because location scores are computed pedigree
by pedigree. Figure 9.1 (a) depicts a typical pedigree with marker pheno-
types noted at a codominant marker locus. Figure 9.1 (b) conveys more
detailed, but consistent, information about the gene flow in the pedigree.
Each person is replaced by two nodes; the left node is a place holder for
his maternally inherited gene, and the right node is a place holder for his
paternally inherited gene. Arcs connect parent nodes to child nodes and
determine which grandparental genes children inherit. For example, the
granddaughter 8 inherits from her father 4 the maternal gene of her grand-
mother 1. The maternal gene of the grandmother is labeled allele 1, which
is consistent with the observed phenotype 1/4 of the granddaughter. The
combination of the gene flow graph and the assigned founder alleles in Fig-
ure 9.1 (b) constitutes a descent state at the locus. The gene flow graph
alone is called a descent graph at the locus. An assignment of one descent
state (respectively, descent graph) to each participating locus constitutes
a descent state (respectively, descent graph) of the pedigree.

Several comments are in order at this point. First, a descent state at
a locus determines an ordered genotype for each and every person in the
pedigree. Some descent states are consistent with the observed phenotypes
of the pedigree, and some descent states are not. Those that are consistent
are said to be legal; those that are not are illegal. Second, if a descent
graph is consistent with at least one legal descent state, then the descent
graph is legal; otherwise, it is illegal. Obviously, the collection of descent
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(b) Descent State Description of Gene Flow

FIGURE 9.1. Gene Flow in a Fully Typed Pedigree

graphs is much smaller than the collection of descent states. This is the
reason for preferring descent graphs to descent states as points of the state
space [40, 41]. The size of the state space is further diminished by allowing
only legal descent graphs.

The equilibrium distribution π of our Markov chain should match the
distribution of legal descent graphs Ĝ conditioned on the observed marker
phenotypes M of the pedigree. Because the normalizing factor Pr(M) is
irrelevant in applying the Metropolis acceptance formula (9.6), it suffices
to calculate joint probabilities Pr(Ĝ∩M) rather than the conditional prob-
abilities π

Ĝ
= Pr(Ĝ | M). If we let G be an arbitrary descent state, then

Pr(Ĝ ∩M) =
∑

G �→ Ĝ∩M

Pr(G), (9.8)

where G �→ Ĝ∩M denotes consistency between G and both Ĝ and M . The
descent state probability Pr(G) is the product

Pr(G) = Prior(G) Trans(G)
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of a prior probability and a transmission probability.
Under the usual assumptions of genetic equilibrium, Prior(G) is the prod-

uct of the population frequencies of the founder alleles involved in G. Since
a descent state entails no ambiguities about recombination, Trans(G) re-
duces under Haldane’s model of recombination to a product of a power of 1

2
and relevant powers of the recombination fractions and their complements
for the adjacent intervals separating the markers. Finally, owing to the fact
that all compatible descent states G �→ Ĝ exhibit the same transmission
pattern, we can reexpress the likelihood (9.8) as

Pr(Ĝ ∩M) = Trans(Ĝ)
∑

G �→ Ĝ∩M

Prior(G). (9.9)

In the next section we tackle the subtle problem of quick computation of
the sum of priors

∑
G �→ Ĝ∩M

Prior(G) [19, 34].

9.5 Descent Trees and the Founder Tree Graph

Given l loci in a pedigree with p people and f founders, there are 2lp nodes
in a descent graph. These nodes are grouped in 2lf descent trees. The
descent tree rooted at a particular founder node contains that founder node
and those non-founder nodes inheriting the corresponding founder gene. All
nodes of a descent tree involve the same locus. When a founder gene is not
passed to any descendant of the founder, then the descent tree exists but
is degenerate.

It is convenient to proceed to a higher level of abstraction and make
the founder trees into an undirected graph. This abstraction serves to keep
track of how founder alleles are constrained in a coupled manner by the ob-
served marker phenotypes in the pedigree. The nodes of the founder tree
graph are the descent trees of the descent graph. Two nodes of the founder
tree graph are connected by an edge if and only if the two corresponding
descent trees pass through the same typed locus of some person in the
pedigree. This definition precludes connecting two descent trees associated
with different loci. Part (a) of Figure 9.2 shows a descent graph for a single
marker locus in which each descent tree is labeled above its rooting founder
gene. Do not confuse these labels with the allele symbols used in descent
states. Part (b) of Figure 9.2 shows the founder tree graph corresponding
to this descent graph, assuming all nonfounders and no founders are typed
at the locus.

It is possible for two descent trees at the same locus to mutually impinge
on more than one person typed at the locus. Although this information
is relevant to discerning whether the two trees are genetically compatible
with the observed phenotypes in the pedigree, for the sake of simplicity, we
will still view the descent trees as connected by just a single edge. When
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(b) Founder Tree Graph

FIGURE 9.2. Construction of a Founder Tree Graph

a descent tree intersects no one typed at its associated locus, the descent
tree is isolated from all other descent trees in the founder tree graph.

As suggested above, if we assign an allele to each descent tree via the
founder gene at its root, then the fates of two connected descent trees are
coupled by the common, typed people through which they pass. For exam-
ple, if both descent trees pass through an individual having heterozygous
genotype ai/aj , then one of the descent trees must carry allele ai and the
other allele aj . They cannot produce a legal descent state if they both carry
allele ai or allele aj , or one descent tree carries a completely different al-
lele. Refinement of these simple ideas involving the founder tree graph will
permit us to compute the prior sum

∑
G �→ Ĝ∩M

Prior(G) associated with a
descent graph.

One can subdivide the nodes of the founder tree graph into connected
components. These components are sets of descent trees and should not
be confused with the components of the descent graph, which are single
descent trees. In the founder tree graph, two nodes belong to the same
component if and only if one can travel from one node to the other by a
finite sequence of edges. A component is said to be singleton if it consists
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TABLE 9.1. Allele Vectors for the Components of the Founder Tree Graph

Descent Trees in Component Legal Allele Vectors
{B} All singleton allele vectors

{A,C,E} (1, 2, 1) and (2, 1, 2)
{D,F,G,H} (1, 2, 3, 4)

of a single node. In a nonconsanguineous pedigree, a descent tree forms
a singleton component if it passes through no one typed at its associated
locus. In this case, all alleles can be legally assigned to the founder gene at
the top of the descent tree. In a consanguineous pedigree, a descent tree
can form a singleton component even if it descends through a typed child.
However, the descent tree must descend to the child via both of its parents.
If the typed child has homozygous genotype ai/ai, then ai is the only allele
permitted for the founder gene. If the typed child is heterozygous, then no
legal allele exists for the founder gene.

The situation for a multinode (or nonsingleton) component of the founder
tree graph is equally simple. If we label the nodes of the component as
t1, . . . , tk, then the founder gene of node t1 is transmitted to some typed
person who is either homozygous or heterozygous. If the person is homozy-
gous, then there is only one legal choice for the founder gene of t1. Because
this founder gene is connected to another founder gene through the current
typed person or another typed person, the connected founder gene is also
completely determined. This second founder gene is in turn connected to
a third founder gene through some typed person. Hence, the third founder
gene is also uniquely determined. In general, a cascade of connecting edges
completely determines the permissible alleles for each of the founder genes
of the component, unless, of course, an inconsistency is encountered at
some step. If descent tree t1 passes through a typed heterozygote, then
the founder gene of t1 may be either observed allele. Once one of these
two alleles is chosen for t1, then the alleles of all other founder genes in
the component are determined by the argument just given. Thus, we can
summarize the situation for a multinode component t1, . . . , tk by noting
that either two, one, or no allele vectors a = (at1 , . . . , atk

) can be legally
assigned to the founder genes of the component. Table 9.1 displays all legal
allele vectors for each component of the founder tree graph shown in part
(b) of Figure 9.2 based on the genotypes shown in part (a) of the same
figure.

To simplify
∑

G �→ Ĝ∩M
Prior(G), label the connected components of the

founder tree graph C1, . . . , Cm, and let G �→ Ĝ∩M be a consistent descent
state. As just noted, there is an allele vector ai with constituent alleles aij

assigned to each component Ci of the descent state G. Under conditions of
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genetic equilibrium, each founder gene is sampled independently; therefore,

Prior(G) =
m∏

i=1

Pr(ai)

=
m∏

i=1

∏
j

Pr(aij). (9.10)

By construction, the founder genes assigned to different components do not
impinge on one another. In other words, the set of founder genes consistent
with Ĝ andM is drawn from the Cartesian product of the sets S1, . . . , Sm of
legal allele vectors for the components C1, . . . , Cm, respectively. Applying
the distributive rule to equation (9.10) consequently yields

∑

G �→ Ĝ∩M

Prior(G) =
m∏

i=1

Pr(Ci), (9.11)

where

Pr(Ci) =
∑

ai∈Si

∏
j

Pr(aij).

As mentioned earlier, an allele vector set Si contains either all allele vectors
or just two, one, or none. In the first case, Pr(Ci) =

∑
ai∈Si

Pr(ai) = 1,
and in the remaining three cases, Pr(Ci) =

∑
ai∈Si

Pr(ai) contains only
two, one, or no terms. Hence, calculation of

∑
G �→ Ĝ∩M

Prior(G) reduces
to easy component-by-component calculations.

Although likelihood calculation with non-codominant markers or incom-
pletely penetrant traits can be handled similarly, two complications intrude.
First, we need a systematic method of generating the set Si of allele vectors
for component Ci. Second, we must include penetrance values in the like-
lihood calculation, assuming that each person’s phenotypes at the various
loci are independent conditional on his or her genotypes at the loci. Re-
garding the second complication, note that each component Ci carries with
it a set Qi of phenotyped people through whom the founder genes pass.
Specifying an allele vector ai ∈ Si determines the genotype of each person
k ∈ Qi. In computing Pr(Ci), we must multiply the product

∏
j Pr(aij) by

the penetrance of each k ∈ Qi at the current locus.
The allele vectors ai ∈ Si can be generated efficiently by a backtracking

scheme [29]. This entails growing a compatible allele vector from partial
vectors that are compatible. The idea can be illustrated by reference to
component C2 = {A,C,E} of Figure 9.2 We start with the assignment
(aA) = (1), which is consistent with the phenotypes in the pedigree, grow
it to (aA, aC) = (1, 1), which is inconsistent, discard all vectors begin-
ning with (aA, aC) = (1, 1), move on to (aA, aC) = (1, 2), which is consis-
tent, grow this to (aA, aC , aE) = (1, 2, 1), which is consistent, discard each
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of the next three vectors (aA, aC , aE) = (1, 2, 2), (aA, aC , aE) = (1, 2, 3),
and (aA, aC , aE) = (1, 2, 4) as inconsistent, backtrack to the partial vector
(aA, aC , ) = (1, 3), which is inconsistent, and so forth, until ultimately we
identify the second compatible vector (aA, aC , aE) = (2, 1, 2) and reject all
other allele vectors. The virtue of backtracking is that it eliminates large
numbers of incompatible vectors without actually visiting each of them.
If penetrances are quantitative, so that every genotype is compatible with
every phenotype, then Si expands to a Cartesian product having n|Ci| ele-
ments, where |Ci| is the number of founder genes in Ci and n is the number
of alleles at the current locus. In this case, backtracking will successfully
construct every allele vector in the Cartesian product, but the correspond-
ing computational complexity balloons to unacceptable levels if either |Ci|
or n is very large. Backtracking is certainly possible in small pedigrees for
recessive disease loci with just two alleles [18].

9.6 The Descent Graph Markov Chain

The set of descent graphs over a pedigree becomes a Markov chain if we
incorporate transition rules for moving between descent graphs. The most
basic transition rule, which we call rule T0, switches the origin of an arc
descending from a parent to a child from the parental maternal node to
the parental paternal node or vice versa [23, 24, 32, 40, 41]. The arbitrary
arc chosen is determined by a combination of child, locus, and maternal or
paternal source. Figure 9.3 illustrates rule T0 at the black node.
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FIGURE 9.3. Example of Transition Rule T0

From the basic rule T0 we can design composite transition rules that
make more radical changes in an existing descent graph and consequently
speed up the circulation of the chain. For example, the composite transition
rule T1 illustrated in Figure 9.4 operates on the two subtrees descending
from the person with black nodes at the given locus. One of these subtrees
is rooted at the maternal node, and the other is rooted at the paternal node.
The two subtrees are detached from their rooting nodes and rerooted at
the opposite nodes. More formally, transition rule T1 begins by choosing a
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FIGURE 9.4. Example of Transition Rule T1

person i and a locus l. It then performs a T0 transition at each node deter-
mined by a child of i, the given locus l, and the sex of i. Thus, every child
of i who previously inherited i’s maternal gene now inherits i’s paternal
gene and vice versa.
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FIGURE 9.5. Examples of Transition Rules T2a and T2b

Our second composite transition rule has the two variants T2a and T2b

illustrated in Figure 9.5. Each variant begins by choosing a locus l and
a couple i and j with common children. Four different descent subtrees
are rooted at the parents i and j. In Figure 9.5 these start at the black
nodes. Rule T2a exchanges the subtree rooted at the maternal node of i
with the subtree rooted at the maternal node of j; it likewise exchanges
the paternally rooted subtrees of i and j. In contrast, rule T2b exchanges
the maternally rooted subtree of i with the paternally rooted subtree of j
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and vice versa. Two subtle points of this process are worth stressing. After
swapping subtrees, we have paternally derived genes flowing to maternal
nodes and vice versa. The obvious adjustments must be made in the chil-
dren and grand-children to correct these forbidden patterns of gene flow.
Also, if either parent has children with another spouse, then that parent’s
relevant subtrees are reduced. Only the paths descending through the chil-
dren shared with the chosen spouse are pertinent. Problem 11 asks readers
to provide a formal description of the sequence of T0 and T1 transitions
invoked in executing a T2a or T2b transition.

1/1 2/2 1/1 2/2

3/3 3/3

1/2

� � � � � � � �

� � � � � � � �

� � � �

� �

�
�

�� �

�
�

���
�

�
��

�
�

��
	
	
	


�
�
��

1/1 2/2 1/1 2/2

3/3 3/3

1/2

� � � � � � � �

� � � � � � � �

� � � �

� �

�
�

�� �

�
�

���
�

�
��

�
�

��
	
	
	


�
�
��

1/1 2/2 1/1 2/2

3/3 3/3

1/2

� � � � � � � �

� � � � � � � �

� � � �

� �

�
�

�� �

�
�

���
�

�
��

�
�

��
	
	
	


�
�
��

	
	
	


�
�
�� � �

�

�
�
��

�
�
�� �

�
��

�

Graph A Graph C

Graph B

FIGURE 9.6. Failure of Descent Graphs A and C to Communicate

One of the complications in constructing a Markov chain on legal de-
scent graphs is that two states may not communicate in the presence of
three or more alleles per marker. Figure 9.6 gives a counterexample in-
volving a single marker locus. In the pedigree depicted in Figure 9.6, all
founders are typed and homozygous; the great-grandchild is typed and het-
erozygous. This great-grandchild must receive his allele 1 from one pair of
great-grandparents and his allele 2 from the other pair. The two possibilities
are labeled descent graph A and descent graph C. However, it is impossible
to move in a finite number of transitions from descent graph A to descent
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graph C without passing through an illegal descent graph such as descent
graph B, where the great-grandchild inherits a homozygous genotype.

The remedy to this dilemma is to “tunnel through” illegal descent graphs
by taking multiple transitions per step of the Markov chain [32]. In practice,
we employ a random number of transitions per step of the chain. This per-
mits the chain to pass through illegal descent graphs on its way between
legal descent graphs. Among the many devices for selecting the random
number of transitions per step, one of the most natural is to sample from
a geometric distribution with mean 2. This procedure entails taking a sin-
gle transition with probability 1

2 , two transitions with probability 1
4 , three

transitions with probability 1
8 , and so forth. For each transition one ran-

domly selects a transition rule and a person and locus. If the transition rule
selected is T0, then one also randomly selects a maternal or paternal node
to switch. If one of the T2 transitions is selected, then one also randomly
selects a spouse of the selected person.

Although selections are random, they need not be uniform. For example,
it is probably wise to select transition T0 more often than T1, and T1 more
often than T2, and to target untyped people more often than typed people.
It makes sense to make other choices uniformly, such as the selection of
a spouse for a T2 transition or of a maternal or paternal node for a T0

transition. In implementing the Metropolis algorithm, it simplifies matters
to keep the proposal distribution symmetric and use equation (9.6). This is
possible if independent choices are made at each transition. Indeed, because
each transition is its own inverse, taking a given sequence of transitions in
reverse order leads back from a proposed descent graph to the current
descent graph.

The Metropolis algorithm always takes steps to more favorable descent
graphs but never allows steps to illegal descent graphs. It is perfectly pos-
sible for the Markov chain to remain in place if a step is rejected or the
step consists of a double application of the same transition. This feature
forces the chain to be aperiodic. Finally, the chain is also irreducible since
the tunneling mechanism permits the chain to move from any legal descent
graph to any other legal descent graph in a single step.

9.7 Computing Location Scores

Location scores can be computed by a hybrid of stochastic sampling of
marker descent graphs and deterministic likelihood evaluation. Denote the
unknown trait position by d and the observed trait phenotypes on a pedi-
gree by T . Since it is trivial to compute the likelihood Pr(T ) of the trait
phenotypes in the absence of the marker phenotypes, the key ingredient
in computing a location score log10[Prd(T | M)/Pr(T )] is the conditional
probability Prd(T | M).
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If we can sample from marker descent graphs Ĝ given the marker types
M , then we can employ standard pedigree likelihood programs such as
MENDEL [25] to estimate Prd(T | M). The basis for this computation is
the obvious decomposition

Prd(T | M) =
∑

Ĝ

Prd(T | Ĝ) Pr(Ĝ | M), (9.12)

which relies implicitly on the assumption of linkage equilibrium between
the trait and marker loci. To evaluate (9.12), we run a Metropolis-coupled
Markov chain on marker descent graphs Ĝ. This chain has equilibrium dis-
tribution matching the conditional distribution Pr(Ĝ | M). If a sequence
of descent graphs Ĝ0, . . . , Ĝn−1 is generated by running the chain, then
the sample average 1

n

∑n−1
i=0 Prd(T | Ĝi) will approximate Prd(T | M) ac-

curately for n sufficiently large.
Deterministic computation of Prd(T ∩ Ĝi) can be done by MENDEL if

it is alerted to recognize a mixture of the marker descent graph Ĝi and the
trait phenotypes T as legitimate input [34]. Division of the joint likelihood
Prd(T ∩ Ĝi) output by MENDEL by the marginal likelihood Pr(Ĝi) then
gives the requisite conditional likelihood Prd(T | Ĝi) used in computing the
sample average approximation. Since the trait locus is usually biallelic, and
since sampling from the Markov chain fills in all of the missing information
on marker gene flow, the deterministic part of a location score calculation
is generally quick.

9.8 Finding a Legal Descent Graph

The MCMC method of location scores must start with a legal descent
graph. Finding such a descent graph is harder than it first appears, but
fortunately the problem yields to a randomized version of genotype elim-
ination. The successful strategy proceeds locus by locus and constructs a
legal vector of ordered genotypes for a pedigree. From this vector a descent
state and corresponding descent graph are then assembled. Based on the
genotype elimination method of Chapter 7, the following algorithm applies
[34]:

1. Perform step (A) of genotype elimination on the pedigree.

2. Perform steps (B) and (C) of genotype elimination.

3. Consider each individual’s genotype list:

(a) If all people possess exactly one ordered genotype, then use these
genotypes to construct a descent state, assigning sources in the
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process. If a parent is homozygous at a locus, then randomly
assign sources to all genes contributed by the parent to his or
her children. Exit the algorithm with success.

(b) If any genotype list is empty, then either there is an inconsistency
in the pedigree data, or one of the rare counterexamples to the
optimality of genotype elimination has occurred. In either case,
exit the algorithm with failure.

(c) Otherwise, choose one of the people with multiple genotypes
currently listed and randomly eliminate all but one of his or her
ordered genotypes. Now return to step 2.

If the algorithm fails, then one should check the pedigree for phenotyp-
ing errors and nonpaternity. One of these two alternatives is certain for a
graphically simple pedigree. If no errors are found, and the pedigree has
cycles or loops—for instance, if it is inbred—then the algorithm should be
retried with different random choices in step 3, part (c).

9.9 Haplotyping

In haplotyping one attempts to find the most likely descent state for a se-
lected group of markers typed on a pedigree [19, 34]. Simulated annealing
is designed to solve combinatorial optimization problems of just this sort.
Because the space of descent states is very large, it is again advantageous to
work on the much smaller state of descent graphs. This entails maximizing
a different function than the conditional likelihood π

Ĝ
= Pr(Ĝ | M) of a

descent graph Ĝ given the marker phenotypes M . Here we assign to Ĝ the
joint likelihood Pr(G) = Pr(G∩M) of the most likely descent state G con-
sistent with both Ĝ and M . This modified objective function is substituted
for π

Ĝ
in the simulated annealing acceptance probability (9.7).

Recall that the transmission probability Trans(G) in the joint likelihood
Pr(G ∩M) does not depend on G. A best descent state corresponding to
the descent graph Ĝ therefore maximizes the product

Prior(G) =
m∏

i=1

Pr(ai),

where ai is any legal allele vector assigned to component Ci of the founder
tree graph associated with Ĝ. To maximize Prior(G), one simply maximizes
each factor Pr(ai) over its set Si of legal allele vectors. When the set Si

has one or two members, then it is trivial to choose the best member. If Si

consists of more than two members, then Ci must consist of a single descent
tree, and Si contains all possible alleles for the corresponding founder gene.
In this case, one chooses the allele with maximum population frequency.
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Except for the gradual lowering of temperature and the above indicated
revision of the acceptance probability, the remaining details of simulated
annealing exactly parallel the Markov chain simulations employed in cal-
culating location scores.

9.10 Application to Episodic Ataxia

We now apply the preceding theory to the pedigree of episodic ataxia shown
in Figure 7.3. After manually haplotyping the pedigree, Litt et al. [27] reject
the standard CEPH marker map [3] because it “would result in an obligate
triple crossover, within a 3-cM region, in individual 113.” Accordingly, their
Figure 2A presents a haplotype vector for the pedigree using the alternative
order that shifts locus D12S99 three positions distal (toward the telomere)
to its CEPH position. They claim that this alternative order reduces the
apparent triple crossover to a single crossover.

The descent graph method improves on their manual haplotyping of the
nine marker loci and produces the haplotypes shown in Figure 7.3. The orig-
inal disease-bearing chromosome passed from affected to affected is flagged
by • signs. This chromosome is disrupted twice by recombination events.
Close inspection of our computer-generated reconstruction shows that it
eliminates the triple crossover and a total of three superfluous recombina-
tion events postulated in the Litt et al. reconstruction [27]. Thus, there
is no reason to question the CEPH map. Fortunately, these revisions do
not affect the conclusion drawn by Litt et al. that the episodic ataxia locus
lies between the marker D12S372 and the pY2/1–pY21/1–KCNA5–D12S99
marker cluster.

The episodic ataxia pedigree also illustrates MCMC calculation of loca-
tion scores. As mentioned in Chapter 7, this pedigree is near the limit of
what is computable by deterministic likelihood algorithms. Eliminating the
three loci pY21/1, KCNA5, and D12S99, MENDEL calculates the exact lo-
cation scores given by the continuous curve in Figure 7.5. The difference
between the exact scores and the MCMC location scores (the dotted curve
in Figure 7.5) is always less than 0.1 and usually less than 0.04. It is note-
worthy that the deterministic calculations take 11 times longer than the
MCMC calculations on one desktop computer — 2 hours versus 22 hours.
Even more impressive is that scaling up to larger pedigrees and a denser
marker map is straightforward for the MCMC method but impractical for
deterministic methods.
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9.11 The Lander-Green-Kruglyak Algorithm

Descent graphs also provide a basis for deterministically computing the
likelihood of a small pedigree [18, 19, 20, 21]. Success within this framework
depends on (a) the assumption of genetic equilibrium, (b) the product
rule for calculating penetrances across many loci, and (c) the application
of results from the theory of hidden Markov chains and Fourier analysis.
In explaining how these parts fit together, our first order of business is
to identify an appropriate Markov chain. Instead of viewing the chain as
evolving over time, we think of it as evolving from one locus to the next
along a sequence of ordered loci. At each locus, the state of the chain is the
pedigree’s descent graph at that locus. Likelihood calculation proceeds via
Baum’s forward algorithm as described here and in Chapter 11 [1, 4].

Baum’s algorithm recursively updates the joint probabilities

αi(j) = Pr(Y1 = y1, . . . , Yi−1 = yi−1, Zi = j),

where in the current context Yi represents the random vector of pheno-
types at locus i, and Zi represents the random descent graph at that lo-
cus. In Section 9.5 we dealt with the problem of computing the likelihood
φi(yi | j) that Yi = yi given that Zi = j. Each of the m meiotic events
in the pedigree involves a random choice of whether the contributing par-
ent transmits a grandmaternally or a grandpaternally derived allele. These
choices determine 2m a priori equally likely descent graphs at each locus.
Hence, α1(j) = 2−m at the first locus. Because of the inherent phase un-
certainties within a pedigree founder, it is also possible to force one child of
each founder to inherit the founder’s grandmaternal allele at an autosomal
locus [20]. This action decreases the size of the state space of the Markov
chain and speeds up likelihood evaluation. In the interests of brevity, we
omit further discussion of this subtle effect.

Baum’s forward algorithm updates αi(j) via

αi+1(k) =
∑

j

αi(j)φi(yi | j)ti(k | j), (9.13)

where ti(k | j) is the conditional probability that descent graph k occurs
at locus i + 1 given descent graph j at locus i. At the last locus, say
locus n, we recover the likelihood of the pedigree by forming the sum∑

j φn(yn | j)αn(j). At first sight it appears that the update (9.13) takes
on the order of O(22m) arithmetic operations. This discouraging estimate
neglects crucial symmetries, however.

To expose these symmetries, we represent the descent graphs j and k by
m-vectors of indicators

j = (j1, . . . , jm)
k = (k1, . . . , km),
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where jr = 0 or 1 according as the rth meiosis in j involves the transmission
of a grandmaternal gene or grandpaternal gene and similarly for kr. If we
let θi denote the recombination fraction between loci i and i+ 1, then

ti(k | j) =
m∏

r=1

(1 − θi)1{kr−jr=0 mod 2}θ
1{kr−jr=1 mod 2}
i .

The meiosis indicators j and k can be viewed as elements of a commutative
group if we define addition by

j + k = [(j1 + k1) mod 2, . . . , (jm + km) mod 2]

and the identity element by 0 = (0, . . . , 0). (See Problem 12 for the proper-
ties of a commutative group.) From the group perspective, Baum’s update
(9.13) becomes the convolution

αi+1(k) =
∑

j

βi(j)ti(k − j) = βi ∗ ti(k),

where βi(j) = αi(j)φi(yi | j). This suggests the possibility of exploiting
elementary Fourier analysis in the guise of the Walsh transform [16].

The Walsh transform turns a sequence aj indexed by a meiosis indicator
j into a new sequence âk indexed by a meiosis indicator k via

âk =
1∑

j1=0

· · ·
1∑

jm=0

m∏
r=1

(−1)krjraj

=
∑

j

(−1)〈k,j〉aj , (9.14)

where 〈k, j〉 =
∑m

r=1 krjr. The inverse Walsh transform

ǎk =
1

2m

∑
j

(−1)〈k,j〉aj .

deserves its names because

1
2m

∑
k

(−1)〈l,k〉âk =
1

2m

∑
k

(−1)〈l,k〉
∑

j

(−1)〈k,j〉aj

=
∑

j

aj
1

2m

∑
k

(−1)〈k,j−l〉

=
∑

j

aj
1

2m

1∑
k1=0

· · ·
1∑

km=0

m∏
r=1

(−1)kr(jr−lr)

= al.
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The last equality is the consequence of the identity

1∑
kr=0

(−1)kr(lr−jr) =
{

2 jr = lr
0 jr �= lr

for all lr, jr ∈ {0, 1}.
The Walsh transform sends the convolution a ∗ bk =

∑
j ajbk−j into the

pointwise product âlb̂l. Indeed,
∑

k

(−1)〈l,k〉a ∗ bk =
∑

k

(−1)〈l,k〉
∑

j

ajbk−j

=
∑

j

(−1)〈l,j〉aj

∑
k

(−1)〈l,k−j〉bk−j

=
[∑

j

(−1)〈l,j〉aj

][∑
j

(−1)〈l,j〉bj
]
.

Assuming that the Walsh transform and its inverse are quick to compute,
a good indirect strategy for computing a ∗ bk is to Walsh transform ak and
bk separately, take the pointwise product âlb̂l, and then inverse transform.

Inspection of equation (9.14) suggests that we evaluate the multiple sum
as an iterated sum. The inner sum

a
(1)
(j1,...,jm−1,km) =

1∑
jm=0

(−1)kmjmaj

= a(j1,...,jm−1,0) + (−1)kma(j1,...,jm−1,1).

replaces the index jm by the index km. The next sum

a
(2)
(j1,...,jm−2,km−1,km) =

1∑
jm−1=0

(−1)km−1jm−1a
(1)
(j1,...,jm−2,jm−1,km)

= a
(1)
(j1,...,jm−2,0,km) + (−1)km−1a

(1)
(j1,...,jm−2,1,km)

replaces the index jm−1 by the index km−1. Each succeeding sum likewise
trades a j index for a k index. Because there are m indices and each in-
dex substitution requires 2m additions or subtractions, this fast Walsh
transform computes âk = a

(m)
k in O(m2m) operations, an enormous sav-

ings over the O(22m) operations required by the naive method. Because the
inverse Walsh transform also has computational complexity O(m2m), and
pointwise multiplication has computational complexity O(2m), the indirect
method of computing a convolution takes only O(m2m) operations.

It turns that the we can explicitly calculate the Walsh transform t̂i(k)
of the transition matrix ti(j). If we define sr(jr) = (1 − θi)1−jrθjr

i , then
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ti(j) =
∏m

r=1 sr(jr). Hence,

t̂i(k) =
1∑

j1=0

· · ·
1∑

jm=0

m∏
r=1

(−1)krjrsr(jr)

=
m∏

r=1

1∑
jr=0

(−1)krjrsr(jr)

=
m∏

r=1

{
1 kr = 0
1 − 2θi kr = 1

=
{

1
∑m

r=1 kr = 0

(1 − 2θi)
∑

m

r=1
kr

∑m
r=1 kr > 0

.

If we posit unequal female θxi and male θyi recombination fractions sepa-
rating loci i and i+1, then a straightforward adaptation of these arguments
yields

t̂i(k) = (1 − 2θxi)p(k)(1 − 2θyi)q(k),

where p(k) is the number of components kr = 1 with r a female meiosis
and q(k) is the number of components kr = 1 with r a male meiosis.

9.12 Genotyping Errors

One or two unfortunately placed genotyping errors can profoundly influ-
ence the magnitude of lod and location scores. Although many errors can
be detected by a careful rereading of gels or other phenotypic tests, it is
often more powerful to use the contextual evidence provided by relatives.
Overt violations of Mendel’s laws are the easiest to detect. The less ob-
vious errors such as unlikely double recombinants do more damage. For
these more subtle errors, the best approach is to construct a genotyping
error model and compute posterior error probabilities. The single-locus ver-
sion of this tactic is advocated in the papers [5, 26, 30, 36]. In practice, any
realistic error model forces one to consider many alternative genotypes. At
a highly polymorphic marker locus, this complication creates a major com-
putational bottleneck for the Elston-Stewart method. Computing posterior
error probabilities with multiple linked markers just exacerbates the prob-
lem. The deterministic and stochastic descent graph methods discussed in
this chapter are capable of handling posterior error computations involving
linked markers. Only in this setting can unlikely double recombinants be
detected.

There are several plausible models for mistyping error. All invoke inde-
pendence of typing errors from person to person and locus to locus. The
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simplest error model posits a uniform distribution of errors over the avail-
able genotypes at a single locus. Empirically, this penetrance model appears
capable of detecting most typing errors. In reading the bands of a gel, er-
rors are not distributed uniformly over all genotypes but tend to cluster.
For example, with tandem repeat loci, a repeat allele is ordinarily confused
with a neighboring allele with one more or one less repeat. This kind of
error often causes heterozygotes to be mistyped as homozygotes. Taking a
uniform distribution over neighboring genotypes as defined by neighboring
alleles should model gel reading better. Computational speed would also be
enhanced by eliminating some genotypes as mistyping choices for a given
genotype. Of course, if geneticists adopt single nucleotide polymorphisms
and genotyping chips and discard tandem repeat markers and gels, then
the naive uniform model becomes more persuasive.

Regardless of the error model, all posterior error probabilities reduce to
simple conditional probabilities. Let M denote the collection of observed
genotypes in a pedigree and Aij the event that the true genotype and
observed genotype at locus j of person i match. The posterior probability
of no error at this locus and person is just the conditional probability
Pr(M ∩Aij | M). Given the correct penetrance function implementing the
genotyping error model, one can approximate this conditional probability
stochastically as the proportion of time in the Markov chain simulation
that the true and observed genotypes match. This is one setting where it
is preferable to operate on descent states rather than descent graphs since
this change obviates the need for implementing a time-consuming backtrack
scheme to compute the likelihood of each encountered descent graph. If one
proceeds deterministically, it is easiest to evaluate Pr(M ∩Aij) and Pr(M)
separately and divide. A trivial adjustment of the genotyping penetrance
function accounts for the difference between these probabilities. For small
pedigrees, it helps in the deterministic computations to reduce the set of
possible alleles at each locus to those actually seen in the pedigree. This
may change posterior probabilities slightly, but the decrease in computing
time easily justifies the shortcut.

9.13 Marker Sharing Statistics

Well-designed descent-graph statistics can readily capture excess identity-
by-descent sharing among the affected members of a disease pedigree. We
have already encountered one such statistic in Chapter 6. The current sta-
tistics are better because they exploit multiple linked markers and geno-
typing results on normal as well as affected members of a pedigree. In com-
puting these new statistics, descent graphs can be sampled exhaustively
on small pedigrees or stochastically on large pedigrees [19, 33]. Statistics
are scored by sliding a hypothetical trait locus across the marker map. At
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each putative position of the trait locus, the observed marker phenotypes
determine the conditional probabilities of the different descent graphs at
the trait locus. A given descent graph partitions the set of genes of affected
people at the trait locus into blocks. Two genes belong to the same block
if and only if they are identical by descent. Good nonparametric linkage
statistics quantify the clustering of genes in such partitions.

In discussing possible statistics, it is useful to consider a generic partition
of genes into m identity by descent blocks B1, . . . , Bm. If block Bi contains
|Bi| genes, then some appealing sharing statistics are:

Tblocks = m

Tmax = max
1≤i≤m

|Bi|

Tpairs =
m∑

i=1

(|Bi|
2

)
(9.15)

Tall =
m∏

i=1

|Bi|!

Statistic Tblocks counts the number of blocks, Tmax records the maximum
number of genes within any block, and Tpairs counts the number of pairs
of genes identical by descent over all blocks. Statistic Tall is a rapidly in-
creasing function of the size of the blocks [43]. A low value of Tblocks or a
high value of Tmax, Tpairs, or Tall indicates clustering.

Now suppose we have r affecteds in a pedigree. If we suspect dominant
disease inheritance, then in most cases there is only one disease gene per
affected. This suggests that we entertain the thought experiment of sam-
pling one trait gene from each affected before making any comparison. Let
ik be an indicator that is 0 when we sample a maternal gene of the kth
affected person and 1 when we sample a paternal gene. Given a descent
graph, the statistics Tblocks through Tall are all meaningful for the genes
indicated by the vector (i1, . . . , ir). Furthermore, the statistic

T dom
j = max

(i1,...,ir)
Tj [(i1, . . . , ir)]

is apt to be more informative of the sharing caused by dominant inheritance
than the statistic Tj . For a recessive disease, there are two disease genes per
affected, and sampling seems counterproductive. A compromise between
these two extremes is to employ the averaged statistic

T add
j =

1
2r

1∑
i1=0

· · ·
1∑

ir=0

Tj [(i1, . . . , ir)]

designed for diseases with additive penetrances.
In practice, one takes the expected values of these nonparametric sta-

tistics conditional on the observed marker genotypes, the trait location,
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and the constellation of affecteds within the pedigree. Consider one of the
suggested statistics U , and denote its value on pedigree k by Uk. If this
pedigree has observed marker phenotypes Mk, then our test statistic is
the conditional expectation Zk = E(Uk | Mk). In Chapter 6, we suggested
testing for excess marker sharing using the standardized statistic

S =
∑

k wk [Zk − E(Zk)]√∑
k w

2
k Var(Zk)

,

where wk is a positive weight assigned to pedigree k. The reader will recall
the specific recommendation

wk =
√

rk
Var(Zk)

for a pedigree with rk affecteds. Unfortunately, the problem now intrudes of
how to calculate E(Zk) and Var(Zk). On small pedigrees, one can compute
the unconditional values E(Uk) and Var(Uk) simply by enumerating all
possible descent graphs. While it is true that E(Zk) = E(Uk), we can only
assert that Var(Zk) ≤ Var(Uk). If we substitute Var(Uk) for Var(Zk), a
standard normal approximation for S is bound to be conservative.

It seems that the only remedy is to compute p-values empirically. The
necessary simulations are feasible if done intelligently. The fact that dif-
ferent pedigrees are independent and contribute additively to each sharing
statistic eases the pain of simulation considerably. Consider a generic sum
S = X1 + · · · + Xn of n independent random variables. For example, we
could take

Xk = wk[Zk − E(Zk)], wk =
√

rk
Var(Uk)

.

If we want to sample S a million times, we can in principle sample the whole
vector (X1, . . . , Xn) a million times and sum. This would be prohibitively
expensive in the pedigree case because of the work involved in simulating
each Xk. One simulation statistic for one pedigree involves completely re-
sampling the observed markers by gene dropping and then recomputing
the test statistic in question. Alternatively, we could sample each Xk, say a
hundred times, then construct a million different vectors (X1, . . . , Xn) by
repeatedly drawing each Xk independently from its previously constructed
subsample of size one hundred. If n is large and the variances Var(Xk) are
comparable, then this two-stage procedure is reasonably accurate and costs
a fraction of the naive procedure.

These ideas are now implemented in the latest version of MENDEL.
Extensive testing suggests that the statistics displayed in Table 9.2 have
the most power against the indicated alternatives [22]. The superscript
“rec” in the table refers to the original statistics given in equation (9.15)
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TABLE 9.2. Best Marker-Sharing Statistics for Various Alternatives

Disease Single Generation Multiple Generations
Model of Affecteds of Affecteds

Recessive T rec
blocks T rec

blocks

Additive T add
pairs, T

add
all T add

pairs, T
add
all

Dominant T add
pairs, T

add
all T dom

blocks

with no sampling. Wherever the statistics T add
pairs and T add

all appear together
in Table 9.2, we tend to prefer T add

pairs because its reduced skewness leads to
better approximation of p-values and less sensitivity to extreme pedigrees.
Despite these tentative conclusions, many questions remain unresolved. For
example, could we increase the power of the various pairs statistics by giving
distantly related affected pairs more weight? It is certainly more striking
for distantly related relatives to share marker alleles than for closely related
relatives.

In concluding this chapter and section, we note that the current compu-
tational methods are easily adapted to supply the conditional kinship coef-
ficients needed in QTL mapping. Each descent graph determines a unique
kinship coefficient between a pair of relatives regardless of their disease sta-
tus. Averaging over all possible descent graphs then yields their conditional
kinship coefficient given the observed marker data. Again we can perform
the computations stochastically or deterministically. If we want conditional
kinship coefficients at points between real markers, we can add pseudo-
markers with no observed data or implement the algorithm described in
[35].

9.14 Problems

1. Numerically find the equilibrium distribution of the Markov chain
corresponding to the AluI restriction site model. Is this chain re-
versible?

2. The restriction enzyme HhaI has the recognition site GCGC. Formu-
late a Markov chain for the attainment of this restriction site when
moving along a DNA strand. What are the states and what are the
transition probabilities?

3. “Selfing” is a plant breeding scheme that mates an organism with
itself, selects one of the progeny randomly and mates it with itself,
and so forth from generation to generation. Suppose at some genetic
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locus there are two alleles A and a. A plant can have any of the three
genotypes A/A, A/a, or a/a. Define a Markov chain with three states
giving the genotype of the current plant in the selfing scheme. Show
that the nth power of the transition matrix is

Pn =




1 0 0
1
2 − ( 1

2 )n+1 ( 1
2 )n 1

2 − ( 1
2 )n+1

0 0 1


 .

What is limn→∞ Pn? Demonstrate that this Markov chain has mul-
tiple equilibrium distributions and characterize them.

4. Find a transition matrix P such that limn→∞ Pn does not exist.

5. For an irreducible chain, demonstrate that aperiodicity is a necessary
and sufficient condition for some power Pn of the transition matrix
P to have all entries positive. (Hint: For sufficiency, you may use the
following number theoretic fact: Suppose S is a set of positive integers
that is closed under addition and has greatest common divisor 1. Then
there exists an integer m such that n ∈ S whenever n ≥ m.)

6. Let Z0, Z1, Z2, . . . be a realization of an ergodic chain. If we sample
every kth epoch, then show (a) that the sampled chain Z0, Zk, Z2k, . . .
is ergodic, (b) that it possesses the same equilibrium distribution as
the original chain, and (c) that it is reversible if the original chain is.
Thus, we can estimate theoretical means by sample averages using
only every kth epoch of the original chain.

7. The Metropolis acceptance mechanism (9.6) ordinarily implies ape-
riodicity of the underlying Markov chain. Show that if the proposal
distribution is symmetric and if some state i has a neighboring state
j such that πi > πj , then the period of state i is 1, and the chain,
if irreducible, is aperiodic. For a counterexample, assign probability
πi = 1

4 to each vertex i of a square. If the two vertices adjacent to a
given vertex i are each proposed with probability 1

2 , then show that
all proposed steps are accepted by the Metropolis criterion and that
the chain is periodic with period 2.

8. If the component updated in Gibbs sampling depends probabilis-
tically on the current state of the chain, how must the Hastings-
Metropolis acceptance probability be modified to preserve detailed
balance? Under the appropriate modification, the acceptance proba-
bility is no longer always 1.

9. Importance sampling is one remedy when the states of a Markov chain
communicate poorly [13]. Suppose that π is the equilibrium distribu-
tion of the chain. If we sample from a chain whose distribution is ν,
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then we can recover approximate expectations with respect to π by
taking weighted averages. In this scheme, the state z is given weight
wz = πz/νz. If Z0, Z1, Z2 . . . is a run from the chain with equilibrium
distribution ν, then under the appropriate ergodic assumptions, prove
that

lim
n→∞

∑n−1
i=0 wZif(Zi)∑n−1

i=0 wZi

= Eπ[f(X)].

The choice νz ∝ π
1/τ
z for τ > 1 lowers the peaks and raises the valleys

of π [14]. Unfortunately in practice, if ν differs too much from π, then
the estimator

∑n−1
i=0 wZif(Zi)∑n−1

i=0 wZi

of the expectation Eπ[f(X)] will have a large variance for n of mod-
erate size.

10. Another device to improve mixing of a Markov chain is to run several
parallel chains on the same state space and occasionally swap their
states [9]. If π is the distribution of the chain we wish to sample
from, then let π(1) = π, and define m − 1 additional distributions
π(2), . . . , π(m). For instance, incremental heating can be achieved by
taking

π(k)
z ∝ π

1
1+(k−1)τ
z

for τ > 0. At epoch n we sample for each chain k a state Znk given
the chain’s previous state Zn−1,k. We then randomly select chain i
with probability 1

m and consider swapping states between it and chain
j = i + 1. (When i = m no swap is performed.) Under appropriate
ergodic assumptions on the m participating chains, show that if the
acceptance probability for the proposed swap is

min
{
1,
π

(i)
Znj

π
(j)
Zni

π
(i)
Zni

π
(j)
Znj

}
,

then the product chain is ergodic with equilibrium distribution given
by the product distribution π(1) ⊗ π(2) ⊗ · · · ⊗ π(m). The marginal
distribution of this distribution for chain 1 is just π. Therefore, we
can throw away the outcomes of chains 2 through m, and estimate
expectations with respect to π by forming sample averages from the
embedded run of chain 1. (Hint: The fact that no swap is possible
at each step allows the chains to run independently for an arbitrary
number of steps.)
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11. Formally describe the transition rules T2a and T2b on descent graphs
in terms of the transition rules T0 and T1.

12. Consider the set G of column vectors j = (j1, . . . , jm)t whose entries
are either 0 or 1. If m = 3, a typical vector in G is (0, 1, 1). Altogether
G has 2m elements. Prove that G forms a commutative group under
the addition operation

j + k = [(j1 + k1) mod 2, . . . , (jm + km) mod 2]t.

This entails showing that

(a) If j and k are in G, then j + k is in G.

(b) For all j, k, and l in G, we have j + (k + l) = (j + k) + l.

(c) For all j and k in G, we have j + k = k + j.

(d) There is an identity element 0 of G such that j + 0 = j.

(e) Every element j has an additive inverse −j such that

j − j = j + (−j) = 0.

Note that you may simply cite without proof any relevant facts about
modulo arithmetic.

13. One can adapt the Lander-Green-Kruglyak algorithm to perform hap-
lotyping. In the notation of Section 9.11, define γi(yi | j) to be the
likelihood of the most likely descent state consistent with the descent
graph j and the marker phenotypes yi at locus i. Section 9.9 de-
scribes how to compute γi(yi | j). At locus 1 set β1(j) = γ1(y1 | j)
and p1(j) = j for each descent graph j of the pedigree. Given these
initial values, recursively set

βi+1(k) = max
j
βi(j)ti(k | j)γi+1(yi+1 | k).

If the maximum over j occurs for descent graph j∗, let

pi+1(k) = (pi(j∗), k).

In the case of a tie, arbitrarily choose j∗ from among the possible
best j. At locus n, the last locus, suppose k provides a maximum
of βn(j). Show that the path pn(k) solves the haplotyping problem
in the sense of providing an optimal descent graph, which can be
completed to an optimal descent state as described in Section 9.9.
Prove that this dynamic programming solution has computational
complexity O(n22m), where m is the effective number of meioses.
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10

Molecular Phylogeny

10.1 Introduction

Inferring the evolutionary relationships among related taxa (species, gen-
era, families, or higher groupings) is one of the most fascinating problems of
molecular genetics [17, 22, 23]. It is now relatively simple to sequence genes
and to compare the results from several contemporary taxa. In the current
chapter we will assume that the chore of aligning the DNA sequences from
these taxa has been successfully accomplished. The taxa are then arranged
in an evolutionary tree (or phylogeny) depicting how taxa diverge from
common ancestors. A single ancestral taxon roots the binary tree describ-
ing the evolution of the contemporary taxa. The reconstruction problem
can be briefly stated as finding the rooted evolutionary tree best fitting the
current DNA data. Once the best tree is identified, it is also of interest to
estimate the branch lengths of the tree. These tell us something about the
pace of evolution. For the sake of brevity, we will focus on the problem of
finding the best tree.

It is worth emphasizing that molecular phylogeny is an area of intense
current research. Most of the models applied are caricatures of reality. Be-
sides the dubious assumption that alignment is perfect, the models fail to
handle site-to-site variation in the rate of evolution, correlation in the evolu-
tion of neighboring sites, and sequence variation within a taxon. Evolution-
ary biologists tend take the attitude that it is necessary to start somewhere
and that a failure to account for details will not distort overall patterns if
the patterns are sufficiently obvious. Mathematical biology abounds with
compromises of this sort. However, better models can answer more subtle
questions. Scientific attention is now shifting to identifying gene families,
sequence motifs, and conserved regions within genes. The final sections of
this chapter deal with codon models and spatial correlation in the rate of
evolution. These modeling elaborations have the potential of shedding light
on protein structure and function.

10.2 Evolutionary Trees

An evolutionary tree is a directed graph showing the relationships be-
tween a group of contemporary taxa and their hypothetical common ances-
tors. The root of the tree is the common ancestor of all of the contempo-
rary taxa. The other nodes are either the contemporary taxa at the tips of
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FIGURE 10.1. The Only Rooted Tree for Two Contemporary Taxa

the tree or speciation events (internal nodes) from which two new taxa
bifurcate.

The first theoretically interesting question about evolutionary trees is
how many trees Tn there are for n contemporary taxa. For n = 2, obviously
Tn = 1; the single tree with two contemporary taxa is depicted in Figure
10.1. The three possible trees for three contemporary taxa are depicted
in Figure 10.2. In general, Tn = (2n−3)!

2n−2(n−2)! . Thus, T4 = 15, T5 = 105,
T6 = 945, and so forth.
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FIGURE 10.2. The Three Rooted Trees for Three Contemporary Taxa

To verify the formula for Tn, first note that an evolutionary tree with n
tips has 2n − 1 nodes and 2n − 2 edges. This is certainly true for n = 2,
and it follows inductively because every new tip to the tree adds two nodes
and two edges. The formula for Tn is proved in similar inductive fashion.
T2 = (2 · 2− 3)!/(22−20!) = 1 obviously works. Given a tree with n tips, tip
n+ 1 can be attached to any one of the existing 2n− 2 edges or it can be
attached directly to the root if the current bifurcation of the root is moved
slightly forward in time. Thus,

Tn+1 = (2n− 1)Tn

=
(2n− 1)(2n− 3)!

2n−2(n− 2)!
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=
(2n− 1)(2n− 2)(2n− 3)!

2n−22(n− 1)(n− 2)!

=
(2n− 1)!

2n−1(n− 1)!
.

For instance with n = 2, the single rooted tree of Figure 10.1 is transformed
into one of the three rooted trees of Figure 10.2 by the addition of the tip
3.

10.3 Maximum Parsimony

The first step in constructing an evolutionary tree is to partially sequence
the DNA of one representative member from each of several related taxa. A
site-by-site comparison of the bases observed along some common stretch of
DNA is then undertaken to ascertain which evolutionary tree best explains
the relationships among the taxa. In the past, evolutionary biologists have
also compared amino acid sequences deduced from one or more common
proteins. DNA sequence data are now preferred because of their greater
information content. As discussed in Appendix A, the four DNA bases are
A (adenine), G (guanine), C (cytosine), and T (thymine). Of these, two are
purines (A and G), and two are pyrimidines (C and T).
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FIGURE 10.3. A Maximum Parsimony Assignment

The maximum parsimony method first devised by Eck and Dayhoff
[4] and later modified by Fitch [8] provides a computationally fast tech-
nique for choosing a best evolutionary tree. Maximum parsimony assigns
bases site by site to the internal nodes of an evolutionary tree so as to
achieve the minimum number of base changes as one passes from descen-
dant nodes to ancestral nodes. For instance, Figure 10.3 (a) depicts the
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FIGURE 10.4. Another Maximum Parsimony Assignment

result of sequencing four contemporary taxa 1, 2, 3, and 4 at a particular
DNA site; Figure 10.3 (b) represents an assignment of bases to the inter-
nal nodes that leads to only one disagreement between neighboring nodes
in the given evolutionary tree. This assignment, which is not unique, is a
maximum parsimony assignment. Figures 10.4 (a) and 10.4 (b) depict a
maximum parsimony assignment to a different evolutionary tree. In this
case, the minimum number of base changes is two. Hence, these two evo-
lutionary trees can be distinguished given the bases observed on the four
contemporary taxa. When many sites are considered, each rooted tree is
assigned a maximum parsimony score at each site. These scores are then
added over all sites to give a maximum parsimony criterion for a rooted
tree.

One flaw in this scheme is that several rooted trees will possess the same
maximum parsimony score. This fact can be appreciated by considering the
role of the root. The root is unique in having exactly two neighbors. All
other internal nodes have three neighbors, and the tips have one neighbor.
If, on one hand, the bases at the two neighbors of the root agree, then the
root will be assigned their shared base. If, on the other hand, the bases
at the two neighbors of the root disagree, then the root will be assigned a
base agreeing with one neighbor and disagreeing with the other neighbor. In
either case, omitting the root leaves the maximum parsimony score assigned
to the rooted tree unchanged. Thus, rooted trees that lead to the same
unrooted tree are indistinguishable under maximum parsimony. Figure
10.5 illustrates how two different rooted trees can collapse to the same
unrooted tree. The unrooted tree with the minimum maximum parsimony
sum is declared the best unrooted tree.

Let us now demonstrate in detail how maximum parsimony operates
[4, 8, 10]. Assignment of bases to nodes is done inductively starting with
the tips, at which the bases are naturally fixed. Now suppose that we have
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solved the maximum parsimony problem for the two direct descendants i
and j of an internal node k. By this we mean that we have constructed a
maximum parsimony assignment to the subtree consisting of i and all of its
descendants under the condition that the base at i is fixed at a particular
value bi. We likewise assume that we have constructed a maximum parsi-
mony assignment to the subtree consisting of j and all of its descendants
under the condition that the base at j is fixed at a particular value bj . Let
the corresponding maximum parsimony scores be si(bi) and sj(bj). If node
i represents a contemporary taxon with observed base bobs

i , then we take
si(bi) = 1{bi �=bobs

i
} and similarly for node j.

Suppose we now fix the base of the parent node k at a particular value
bk. The value of the maximum parsimony score sk(bk) assigned to k under
this condition is by definition

sk(bk) = min
(bi,bj)

[1{bk �=bi} + 1{bk �=bj} + si(bi) + sj(bj)]. (10.1)

We now move inductively upward through the tree until reaching the root
l. At that juncture, the maximum parsimony score for the whole tree is
s = minbl

sl(bl). If in equation (10.1) node i is a contemporary taxon, then
in view of the definition of si(bi), the intermediate score sk(bk) reduces to

sk(bk) = min
bj

[1{bk �=bobs
i } + 1{bk �=bj} + sj(bj)].
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Analogous simplifications hold when node j is a contemporary taxon and
when nodes i and j are both contemporary taxa.

For three contemporary taxa, it is trivial to verify that the parsimony
score s takes one of the three values 0, 1, or 2. If the observed bases of
the three taxa all agree, then s = 0; if two bases agree and one disagrees,
then s = 1; and if all three disagree, then s = 2. Since the three possible
rooted trees for three contemporary taxa collapse to the same unrooted
tree, these numerical conclusions are consistent with the fact that maximum
parsimony is actually a device for distinguishing unrooted trees. Problem
3 explores the more informative situation with four contemporary taxa.

Computation of the maximum parsimony score is best accomplished by
recursively traversing the nodes of the underlying evolutionary tree in a
postorder fashion [18]. In a recursive traversal, we view each internal node
as possessing a left and right subtree. In the maximum parsimony postorder
traversal, we first compute recursively the scores si(bi) for nodes in the left
subtree of the root, then we compute recursively the scores si(bi) for nodes
in the right subtree of the root, and finally we compute the scores at the
root. The recursive nature of postorder traversal guarantees that the we
visit the tips first and then move upward through the tree. In a preorder
traversal, we visit the root first, then its left subtree recursively, and finally
its right subtree recursively. Thus, postorder traversal is bottom-up, and
preorder traversal is top-down.

A preorder traversal is convenient in assigning a set of bases that realize
the maximum parsimony score. To assign the optimal bases, we first con-
struct a system of pointers in the postorder traversal. When we visit node
k, we connect base bk to the bases bi and bj at the daughter nodes i and
j that furnish the minimum of the right-hand side of equation (10.1). In
the case of a tie, we choose a pair (bi, bj) arbitrarily among the best pairs.
The preorder traversal commences by choosing an optimal base at the root.
We then follow the constructed pointers recursively down through the left
subtree and then recursively down through the right subtree. As we visit
each internal node, the appropriate pointer from its parent node identifies
a base compatible with the maximum parsimony score.

In spite of maximum parsimony’s speed and intuitive appeal, it can be
misleading in extreme cases. Felsenstein [5] points out that maximum par-
simony even fails the basic test of statistical consistency. In the remainder
of this chapter, we focus on building a parametric model for the evolution-
ary changes at a single DNA site and implementing maximum likelihood
estimation within the context of this model [6].
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10.4 Review of Continuous-Time Markov Chains

As a prelude to the model-based approach, let us pause to review the theory
of finite-state, continuous-time Markov chains. Just as in the discrete-time
theory summarized in Chapter 9, the behavior of a Markov chain can be
described by an indexed family Zt of random variables giving the state oc-
cupied by the chain at each time t. Of fundamental theoretical importance
are the probabilities pij(t) = Pr(Zt = j | Z0 = i). For a chain having a
finite number of states, these probabilities can be found by solving a ma-
trix differential equation. To derive this equation, we use the short-time
approximation

pij(t) = λijt+ o(t) (10.2)

for i �= j, where λij is the transition rate (or infinitesimal transition
probability) from state i to state j. Equation (10.2) implies the further
short-time approximation

pii(t) = 1 − λit+ o(t), (10.3)

where λi =
∑

j �=i λij .
Now consider the Chapman-Kolmogorov relation

pij(t+ h) = pij(t)pjj (h) +
∑
k �=j

pik(t)pkj(h), (10.4)

which simply says the process must pass through some intermediate state k
at time t en route to state j at time t+h. Substituting the approximations
(10.2) and (10.3) in (10.4) yields

pij(t+ h) = pij(t)(1 − λjh) +
∑
k �=j

pik(t)λkjh+ o(h).

Sending h to 0 in the difference quotient

pij(t+ h) − pij(t)
h

= −pij(t)λj +
∑
k �=j

pik(t)λkj +
o(h)
h

produces the forward differential equation

p′ij(t) = −pij(t)λj +
∑
k �=j

pik(t)λkj . (10.5)

The system of differential equations (10.5) can be summarized in matrix
notation by introducing the matrices P (t) = [pij(t)] and Λ = (Λij), where
Λij = λij for i �= j and Λii = −λi. The forward equations in this notation
become

P ′(t) = P (t)Λ (10.6)
P (0) = I,
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where I is the identity matrix. It is easy to check that the solution of the
initial value problem (10.6) is furnished by the matrix exponential

P (t) = etΛ =
∞∑

k=0

tkΛk

k!
. (10.7)

Probabilists call Λ the infinitesimal generator or infinitesimal tran-
sition matrix of the process.

A probability distribution π = (πi) on the states of a Markov chain is a
row vector whose components satisfy πi ≥ 0 for all i and

∑
i πi = 1. If

πP (t) = π (10.8)

holds for all t ≥ 0, then π is said to be an equilibrium distribution for
the chain. Written in components, the eigenvector equation (10.8) reduces
to
∑

i πipij(t) = πj . Again, this is completely analogous to the discrete-
time theory described in Chapter 9. For small t, equation (10.8) can be
rewritten as

π(I + tΛ) + o(t) = π.

This approximate form makes it obvious that πΛ = 0 is a necessary condi-
tion for π to be an equilibrium distribution. Multiplying (10.7) on the left
by π shows that πΛ = 0 is also a sufficient condition for π to be an equi-
librium distribution. In components, this necessary and sufficient condition
amounts to

∑
j �=i

πjλji = πi

∑
j �=i

λij (10.9)

for all i. If all the states of a Markov chain communicate, then there is one
and only one equilibrium distribution π. Furthermore, each of the rows of
P (t) approaches π as t → ∞. Lamperti [16] provides a clear exposition of
these facts.

Fortunately, the annoying feature of periodicity present in discrete-time
theory disappears in the continuous-time theory. The definition and proper-
ties of reversible chains carry over directly from discrete time to continuous
time provided we substitute infinitesimal transition probabilities for tran-
sition probabilities. For instance, the detailed balance condition becomes

πiλij = πjλji (10.10)

for all pairs i �= j. Kolmogorov’s circulation criterion for reversibility contin-
ues to hold, and when it is true, the equilibrium distribution is constructed
from the infinitesimal transition probabilities exactly as in discrete time.
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10.5 A Nucleotide Substitution Model

Models for nucleotide substitution are of great importance in molecular
evolution. Kimura [13], among others, views the changes occurring at a
single position or site as a continuous-time Markov chain involving the four
bases A, G, C, and T. The matrix Λ below gives the transition rates under
a generalization of Kimura’s model of neutral evolution. In this matrix the
rows and columns are labeled by the four states in the order A, G, C, and
T from top to bottom and left to right.

Λ =




A G C T
A −(α+ γ + λ) α γ λ
G ε −(ε+ γ + λ) γ λ
C δ κ −(δ + κ+ β) β
T δ κ σ −(δ + κ+ σ)


.

Without further restrictions, this chain does not satisfy detailed balance.
If we impose the additional constraints βγ = λσ and αδ = εκ, then the
distribution

πA =
δ

γ + δ + κ+ λ

πG =
κ

γ + δ + κ+ λ

πC =
γ

γ + δ + κ+ λ
(10.11)

πT =
λ

γ + δ + κ+ λ

satisfies detailed balance. To verify detailed balance, one must check six
equalities of the type (10.10). For instance, πAα = πGε follows directly
from the definitions of πA and πG and the constraint αδ = εκ. Kolmogorov’s
criterion indicates that the two stated constraints are necessary as well as
sufficient for detailed balance.

In the Markov chain, two purines or two pyrimidines are said to differ by
a transition. (This convention of the evolutionary biologists is confusing.
All states differ by what a probabilist would call a single transition of the
chain. However, we will defer to the biologists on this point.) A purine and
a pyrimidine are said to differ by a transversion. The matrix Λ displays a
modest amount of symmetry in the sense that the two transversions leading
to any given state always share the same transition rate.

In principle, it is possible to solve for the finite-time transition matrix
P (t) in this model by exponentiating the infinitesimal generator Λ. To avoid
this rather cumbersome calculation, we generalize the arguments of Kimura
[13] and exploit the symmetry inherent in the model. Define qAY (t) to be
the probability that the chain is in either of the two pyrimidines C or T
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at time t given that it starts in A at time 0. We will derive a system of
coupled ordinary differential equations obeyed by qAY (t) and pAG(t). The
entry pAG(t) of P (t) is the probability that the chain is in G at time t given
that it starts in A at time 0. By the same reasoning that led to the forward
equation (10.5), we have

qAY (t+ h) = qAY (t)(1 − δh− κh) + pAG(t)(γ + λ)h
+ [1 − qAY (t) − pAG(t)](γ + λ)h+ o(h),

where 1 − qAY (t) − pAG(t) equals the probability pAA(t) of being in A at
time t. Forming the obvious difference quotient and letting h → 0 yields
the differential equation

q′AY (t) = −c1qAY (t) + c2,

where

c1 = δ + κ+ γ + λ

c2 = γ + λ.

This equation can be solved by multiplying by the integrating factor ec1t

and isolating the terms [qAY (t)ec1t]′ involving qAY (t) on the left side of the
equation. These manipulations yield the solution

qAY (t) =
c2
c1

(1 − e−c1t) (10.12)

satisfying the initial condition qAY (0) = 0.
To solve for pAG(t), write the forward approximation

pAG(t+ h) = pAG(t)(1 − εh− γh− λh) + qAY (t)κh
+ [1 − qAY (t) − pAG(t)]αh+ o(h).

This leads to the differential equation

p′AG(t) = −c3pAG(t) + c4qAY (t) + α,

where

c3 = ε+ α+ γ + λ

c4 = κ− α.

Substituting the solution (10.12) for qAY (t), one can straightforwardly ver-
ify that this last differential equation has solution

pAG(t) =
c2c4 + αc1

c1c3
− c2c4
c1(c3 − c1)

e−c1t

+
c2c4 − α(c3 − c1)

c3(c3 − c1)
e−c3t (10.13)
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satisfying pAG(0) = 0.
This analysis has produced the probabilities pAA(t), pAG(t), and qAY (t)

of being in A, G, or either pyrimidine at time t starting from A at time
0. To decompose qAY (t) into its two constituent probabilities pAC(t) and
pAT (t), define qUU (t) to be the probability that the chain is in either purine
at time t given that it starts in either purine at time 0. Likewise, define
qUC(t) to be the probability that the chain is in the pyrimidine C at time t
given that it starts in either purine at time 0. Because of the symmetry of
the transition rates, qUU (t) makes sense, and qUC(t) = pAC(t) = pGC(t).
From qAY (t) and pAC(t), we calculate pAT (t) = qAY (t) − pAC(t).

To derive a differential equation for qUU (t), note the approximation

qUU (t+ h) = qUU (t)(1 − γh− λh) + qUC(t)(δ + κ)h
+ [1 − qUU (t) − qUC(t)](δ + κ)h+ o(h),

where 1 − qUU (t) − qUC(t) is the probability of being in T at time t. This
approximation leads to

q′UU (t) = −c1qUU (t) + c5,

where c1 was defined previously and

c5 = δ + κ.

Again, the solution

qUU (t) =
c5 + (c1 − c5)e−c1t

c1
(10.14)

satisfying qUU (0) = 1 follows directly.
The approximation for qUC(t),

qUC(t+ h) = qUC(t)(1 − δh− κh− βh) + qUU (t)γh
+ [1 − qUU (t) − qUC(t)]σh+ o(h),

yields the differential equation

q′UC(t) = −c6qUC(t) + c7qUU (t) + σ,

where

c6 = δ + κ+ σ + β

c7 = γ − σ.

In view of equation (10.14) and the initial condition qUC(0) = 0, the solu-
tion for qUC(t) is

qUC(t) =
c5c7 + σc1

c1c6
+

(c1 − c5)c7
c1(c6 − c1)

e−c1t

− c7(c6 − c5) + σ(c6 − c1)
c6(c6 − c1)

e−c6t. (10.15)
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In summary, we have found the top row [pAA(t), pAG(t), pAC(t), pAT (t)]
of P (t) corresponding to the nucleotide A. By symmetrical arguments, the
other rows of P (t) can also be calculated. In the limit t → ∞, the rows of
P (t) all collapse to the equilibrium distribution π.

10.6 Maximum Likelihood Reconstruction

Maximum likelihood provides a second method of comparing evolutionary
trees. As with maximum parsimony, DNA data are gathered at several
different sites for several different contemporary taxa. A model is then
posed for how differences evolve at the various sites. Most models involve
the following assumptions:

(a) All sites evolve according to the same tree.

(b) All sites evolve independently.

(c) All sites evolve according to the same stochastic laws.

(d) Conditional on the base at a given site of an internal node, evolution
proceeds independently at the site along the two branches of the tree
descending from the node.

Further assumptions about the detailed nature of evolution at a site can be
imposed. For instance, we can adopt the generalized Kimura substitution
model as just developed.

We now discuss how to compute the likelihood of the bases observed
at the tips of an evolutionary tree for a particular site. According to as-
sumptions (a), (b), and (c), we need merely multiply these site-specific
likelihoods to recover the overall likelihood of a given tree. For a tree with
n tips, it is convenient to label the internal nodes 1, . . . , n− 1 and the tips
n, . . . , 2n − 1. Also, let bi be either one of the four possible bases at an
internal node or the observed base at a tip. If the root is node 1, then
designate the prior probability of base b1 at this node by qb1 . Assumption
(d) now provides the likelihood expression

∑
b1

· · ·
∑
bn−1

qb1
∏
(i,j)

Pr(bj | bi), (10.16)

where (i, j) ranges over all pairs of ancestral nodes i and direct descendant
nodes j.

The sums-of-products expression (10.16) is analogous to our earlier rep-
resentation of a pedigree likelihood. The factor qb1 corresponds to a prior,
and the factor Pr(bj | bi) to a transmission probability. There is no ana-
log of a penetrance function or of genotype elimination in this context. To
evaluate expression (10.16), we carry out one summation at a time. It is
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most economical to choose an order for the iterated sums consistent with
the graphical structure of the tree. In particular, the tree should be pruned
working upward from the tips. This can be accomplished by a postorder
traversal. Other methods of pruning are possible, but none is as easy to
implement computationally in a recursive computer language.

It is a curious feature of reversible Markov-chain models that the root
can be eliminated and one of the two direct descendants of the root substi-
tuted for it. Suppose that nodes 2 and 3 are the direct descendants of the
root. Those arrays of the likelihood (10.16) involving the index b1 are qb1 ,
Pr(b2 | b1), and Pr(b3 | b1). In the Markov-chain context, it is natural to
take qb1 as the equilibrium distribution. Furthermore, if t2 and t3 are the
times separating the root from nodes 2 and 3, respectively, then

Pr(b2 | b1) = pb1b2(t2)
Pr(b3 | b1) = pb1b3(t3).

Isolating the sum over b1 and invoking finite-time detailed balance now give
∑
b1

qb1pb1b2(t2)pb1b3(t3) =
∑
b1

qb2pb2b1(t2)pb1b3(t3)

= qb2
∑
b1

pb2b1(t2)pb1b3(t3)

= qb2pb2b3(t2 + t3).

(See Problem 7 for a brief discussion of finite-time detailed balance.) This is
Felsenstein’s pulley principle. The root can be eliminated and moved to
either one of its direct descendants—in this case, node 2. Thus, if only re-
versible chains are considered, then maximum likelihood cannot distinguish
two rooted trees that correspond to the same unrooted tree [6].

10.7 Origin of the Eukaryotes

Eukaryotic organisms differ from prokaryotic organisms in possessing a
nucleus, a cellular organelle housing the chromosomes. The origin of eu-
karyotes from prokaryotic bacteria is one of the most intriguing questions
in evolutionary biology. Bacteria can be subdivided into four broad groups.
The eubacteria are common pathogens of eukaryotes, the halobacte-
ria are found at high salt concentrations, the eocytes metabolize sulfur
and are found at high pressures and temperatures, and the methanogens
metabolize methane. Evolutionary biologists have traditionally classified
the latter three groups in a single phylum, the archebacteria, leaving the
eubacteria as the natural candidates for the ancestors of eukaryotes. In sup-
port of this view is the fact that mitochondria and chloroplasts, important
organelles of eukaryotic cells, derive from eubacteria. Lake [15] upset this
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tidy classification by comparing 16s ribosomal RNA sequences from a va-
riety of representative eukaryotic and prokaryotic organisms. His analysis
refutes the archebacterial grouping and supports the eocytes as the closest
bacterial ancestor of the eukaryotes.

In this example we examine a small portion of Lake’s original data. The
relevant subset consists of 1,092 aligned bases from the rRNA of the or-
ganisms A. salina (a eukaryote), B. subtilis (a eubacterium), H. morrhuae
(a halobacterium), and D. mobilis (an eocyte). These four taxa can be
arranged in the three unrooted evolutionary trees depicted in Figure 10.6.
Maximum parsimony favors the G tree with a score of 975 versus a score
of 981 for each of the E and F trees. Although this result supports the
archebacteria theory of the origin of the eukaryotes, the evidence is hardly
decisive.
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FIGURE 10.6. Unrooted Trees for the Evolution of Eukaryotes

Maximum likelihood analysis of the same data contradicts the maximum
parsimony ranking. Under the reversible version of the generalized Kimura
model presented in Section 10.5, the E, F, and G trees have maximum
loglikelihoods (base e) of −4598.2, −4605.2, and −4606.6, respectively. Ac-
cording to the pulley principle, we are justified in treating each of these
unrooted trees as rooted at one node of branch 5. (See Figure 10.6 for the
numbering of the branches.) Column 2 of Table 10.1 displays the parameter
estimates and their standard errors for the favored E tree. In the table, cer-
tain entries are left blank. For instance, under reversibility the parameters
ε and σ are eliminated by the constraints ε = αδ/κ and σ = βγ/λ. The
distribution at the root is specified as the stationary distribution (10.11).
To avoid confounding branch lengths in the model with the infinitesimal
rate parameters α through σ, we force the branch length of branch 4 to be
1.

A crude idea of the goodness of fit of the model can be gained by com-
paring it to the unrestricted multinomial model with 44 = 256 cells. Under
the unrestricted model, the maximum loglikelihood of the data is −4361.3.
The corresponding chi-square statistic of 473.8 = 2(−4361.3 + 4598.2) on
245 degrees of freedom is extremely significant. However, the multinomial
data are sparse, and we should be cautious in applying large sample theory.

Under the full version of the generalized Kimura model, all rooted trees
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TABLE 10.1. Parameter Estimates for the Best Eukaryotic Trees

Estimates for Best Estimates for Best
Parameter Unrooted Tree Rooted Tree

α .155± .016 .051± .013
β .174± .019 .217± .023
γ .084± .007 .078± .009
δ .080± .007 .060± .009
ε .174± .018
κ .107± .009 .117± .013
λ .067± .006 .078± .009
σ .134± .025
πA .193± .012
πG .373± .015
πC .297± .015
πT .137± .011

Branch 1 1.642± .153 1.690± .154
Branch 2 .234± .047 .110± .044
Branch 3 .539± .065 .568± .065
Branch 4 1 ± 0 1 ± 0
Branch 5 .188± .051 .190± .050
Branch 6 .082± .050

are in principle distinguishable. Figure 10.7 depicts the best rooted tree,
which, not surprisingly, collapses to the unrooted E tree. Column 3 of Table
10.1 provides maximum likelihood parameter estimates for this rooted tree.
The corresponding maximum loglikelihood (−4536.2) represents a substan-
tial improvement over the maximum loglikelihood (−4598.2) of the E tree
under the reversible version of the model. Most of this improvement occurs
because imposing the stationary distribution on the root in the reversible
model is incompatible with the wide variation in DNA base proportions
in the contemporary species displayed in Table 10.2. Indeed, under the
generalized Kimura model with stationarity imposed, the maximum log-
likelihood of the best rooted tree falls to −4588.7. This best tree coincides

TABLE 10.2. Observed Base Proportions for the Four Contemporary Taxa

A. salina D. mobilis H. morrhuae B .subtilis
Base Eukaryote Eocycte Halobacterium Eubacterium

A .250 .232 .202 .255
G .319 .328 .367 .279
C .230 .263 .290 .234
T .202 .178 .141 .232
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FIGURE 10.7. Best Rooted Tree for the Evolution of Eukaryotes

with the tree depicted in Figure 10.7.
Without the assumption of stationarity, two other rooted trees reducing

to the E tree have nearly the same loglikelihoods (−4537.3 and −4537.4)
as the best rooted tree. Apparently, distinguishing rooted trees in practice
is much harder than distinguishing them in theory. On the other hand, the
best rooted tree corresponding to either an F or G tree has a much lower
loglikelihood than that (−4544.2) of the best rooted tree.

10.8 Codon Models

Except for regulatory regions, codons rather than nucleotides are the units
of evolution. Because there are 61 non-stop codons compared to 4 nu-
cleotides, codon models are much more computationally demanding than
nucleotide models. Nonetheless, taking variation at the codon level into ac-
count can substantially improve reconstruction of evolutionary trees [9, 25].
It also helps identify conserved domains within proteins. The most natural
method of turning a nucleotide substitution model into a codon substitu-
tion model is to penalize nonsynonymous codon changes. For example,
suppose ωbd is the infinitesimal transition rate from base b to base d. On the
codon level, the infinitesimal transition rate from codon (a, b, c) to codon
(a, d, c) is still ωbd, assuming sites mutate independently. If two codons are
nonsynonymous, then one can penalize transitions between them by replac-
ing ωbd by ρωbd for ρ < 1. Here we can view ρ as the probability that a
proposed evolutionary change is accepted. If the destination codon is one
of the three stop codons, the acceptance probability is 0. The acceptance
probability for a synonymous change is 1. In the presence of strong positive
selection, a value of ρ > 1 is plausible. In this case, we simply interpret the
product ρωbd as a rate.

Besides accounting for nonsynonymous codon changes in a parsimonious
manner, this codon model possesses the attractive property of turning a
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reversible nucleotide model into a reversible codon model. Suppose the
equilibrium distribution of the nucleotide model is given by πb for each
nucleotide b. Under reversibility, πbωbd = πdωdb. If the acceptance proba-
bilities are symmetric, then we claim that the equilibrium probability of
the codon (a, b, c) is πaπbπc up to a multiplicative constant. The proof of
this statement is simply the equality

πaπbπcωbdρ = πaπdπcωdbρ,

where ρ = ρ(a,b,c)→(a,d,c) = ρ(a,d,c)→(a,b,c). Because stop codons are omit-
ted, we must normalize our proposed equilibrium distribution by divid-
ing its entries by the sum

∑
(a,b,c) πaπbπc taken over all non-stop codons

(a, b, c).
In practice it is advantageous to group the twenty amino acids into

penalty sets having roughly similar charge properties [19]. The most nat-
ural division according to charge consists of four groups: the non-polar
amino acids S1 = {G, I, V, L,A,M,P, F,W}, the positive-polar/positively
charged amino acids S2 = {Q,N, Y,H,K,R}, the negative-polar/negatively
charged amino acids S3 = {S, T,E,D}, and the single amino acid cysteine
S4 = {C}. Cysteine is put into a group by itself because of its propensity
to form disulfide bonds bridging different parts of a protein. In the sets
S1 through S4, we use the amino acid abbreviations listed in Table A.1 of
Appendix A. To achieve a parsimonious parameterization of the acceptance
probabilities, we distinguish the acceptance probability ρ0 within a group,
the acceptance probability ρ1 between a polar and a nonpolar group, the ac-
ceptance probability ρ2 between different polar groups, and the acceptance
probability ρ3 involving substitution of a cysteine. One would anticipate
that ρ0 > ρ1 > ρ2 and ρ0 > ρ3. The one case where we might expect
the symmetry condition to fail involves ρ3. Substitution of another amino
acid for a cysteine involved in a disulfide bond is bound to be much less
likely than the reserve substitution. However, it would take an enormous
amount of data to see this effect, and it is mathematically advantageous to
maintain symmetry for the sake of reversibility.

10.9 Variation in the Rate of Evolution

Some amino acids of a protein are so crucial to function and structure that
they strongly resist substitution. Because of the division of a protein into
functional and structural domains, these resistant codon sites tend to be
clumped. Cross taxa comparisons can help identify the resistant sites and
the level of spatial correlation. The key is to use the theoretical machinery
of Gibbs random fields [2, 12, 24]. For the sake of argument, suppose that
we classify codon sites as fast or slow evolvers using an indicator random
variable Ci that equals 1 when codon site i is slow evolving and equals 0
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when codon site i is fast evolving. If the sites are numbered 1 through m,
then a Gibbs random field assigns the prior probability

Pr(C = c) =
eH(c)

∑
d e

H(d)

to the random vector C = (C1, . . . , Cm) using a potential function H(c).
One fruitful choice of H(c) is

H(c) = θ0

m∑
i=1

ci +
r∑

j=1

θj

m−j∑
i=1

1{ci=ci+j}.

This multilevel logistic model [3] accounts for the proportion of slow evolv-
ing codon sites through the parameter θ0. Spatial correlation at a distance
j ≥ 1 is accounted for by the parameter θj . The larger θj is, the stronger
the correlation between codon sites i and i + j. Common sense suggests
that in most circumstances θ1 ≥ θ2 ≥ · · · ≥ θr ≥ 0. The special case r = 1
is just the Ising model of statistical mechanics [21].

To compute the likelihood of the data under the rate variation model, we
follow Schadt and Lange [19], and let Lc =

∏m
i=1 Lci denote the likelihood

of the data given the rate variation vector C = c = (c1, . . . , cm). The overall
likelihood is then

L =
1∑

d e
H(d)

∑
c

Lce
H(c)

=
1∑

d e
H(d)

1∑
c1=0

· · ·
1∑

cm=0

m∏
i=1

Lcie
θ0ci

r∏
j=1

m−j∏
i=1

e
θj1{ci=ci+j} .

Computation of either the partition function
∑

d e
H(d) or the numerator∑

c Lce
H(c) of L reduces to the evaluation of a multiple sum of products of

arrays. Once again we compute the multiple sum as an iterated sum. Con-
sider the numerator of L. In the forward algorithm, we eliminate the indices
c1, · · · , cm in the indicated order. Starting with the array a0(c1, . . . , cr) = 1
at step 0, at step i we create the new array ai(ci+1, . . . , cmin{i+r,m}) via

ai(ci+1, . . . , cmin{i+r,m})

=
1∑

ci=0

Lcie
θ0ci

min{r,m−i}∏
j=1

eθj1{ci=ci+j}ai−1(ci, . . . , cmin{i−1+r,m})

and discard the old array ai−1(ci, . . . , cmin{i−1+r,m}). The final array am

has zero dimension and furnishes the numerator
∑

c Lce
H(c).

In computing ai(ci+1, . . . , cmin{i+r,m}) it is advantageous to perform the
indicated array multiplications pairwise, starting with the two smallest ar-
rays Lcie

θ0ci , multiplying the resulting product against eθ11{ci=ci+1} , and
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so forth until a single array holding Lcie
θ0ci

∏min{r,m−i}
j=1 eθj1{ci=ci+j} is

formed. Multiplication of this array against ai−1(ci, . . . , cmin{i−1+r,m}) can
be carried out simultaneously with addition over the index ci. When the
array eθj1{ci=ci+j} is brought into play, its obvious symmetries can be ex-
ploited to reduce the overall computational burden. The computational
complexity of the forward algorithm scales linearly in m.

These technical details fail to specify how we distinguish between slow
and fast-evolving codon sites. One obvious choice is to again modulate
the rate of evolution through the acceptance probabilities. Slow evolution
can be distinguished from fast evolution by introducing a multiplicative
parameter η ∈ (0, 1) and replacing each acceptance probability ρi by ηρi.
For synonymous codon changes, it makes sense to retain the acceptance
probability of 1.
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FIGURE 10.8. Standard Tree for the Evolution of Six Mammalian Taxa

10.10 Illustration of the Codon and Rate Models

To illustrate the flexibility of the codon substitution and rate variation
models, we now apply them to six aligned β-hemoglobin genes from the
mammalian taxa: opossum, goat, rat, rabbit, monkey, and human [7]. The
globin gene superfamily is well understood, both structurally and evolution-
arily. The β-hemoglobin sequence used in this study stretches over 444 nu-
cleotides and represents 148 codons. In goats, the second and third codons
are missing; we set these to unobserved in the subsequent data analysis.
The β-hemoglobin secondary structure includes 11 α-helices encompassing
111 codons. These helices are conserved, but less so than the non-helical
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regions, which contain the oxygen binding site. Figure 10.8 displays the
generally accepted phylogeny connecting these taxa.

TABLE 10.3. Parameter Estimates for Mammalian Hemoglobin

Parameter Estimate Parameter Estimate
α 0.144± 0.305 branch 1 0.076± 0.024
β 0.138± 0.164 branch 2 0.182± 0.027
γ 0.117± 0.186 branch 3 0.424± 0.024
δ 0.059± 0.163 branch 4 0.923± 0.025
ε 0.123± 0.147 branch 5 0.773± 0.054
κ 0.069± 0.159 branch 6 0.001± 0.049
λ 0.099± 0.241 branch 7 0.605± 0.147
σ 0.164± 0.215 branch 8 1.071± 0.132
ρ0 1.102± 0.157 branch 9 1.000
ρ1 0.470± 0.220 branch 10 1.000
ρ2 0.964± 0.267
ρ3 3.275± 0.361
θ0 −0.276± 0.157
θ1 0.458± 0.227
η 0.055± 0.317

Given this tree, Table 10.3 lists the maximum likelihood parameter es-
timates and their standard errors for the codon model with spatial cor-
relation. To avoid estimating nucleotide frequencies at the root, we use a
fully reversible model incorporating equation (10.11). Table 10.4 provides
the maximum loglikelihoods (base e) for this model and some alternative
reversible models. It is noteworthy that each successive model refinement
yields a substantial improvement in the maximum loglikelihood. Perhaps,
the most interesting increase — from -1918.6 to -1889.8 — occurs in going
from a nucleotide model to a codon model with the same set of parameters.
Apparently, omitting stop codons substantially improves the realism of the
codon version of the nucleotide model.

The parameter estimates displayed Table 10.3 satisfy the unexpected
inequalities ρ̂3 > ρ̂0 > 1 > ρ̂2 > ρ̂1. We have let these parameters float in
the estimation procedure rather than enforce the natural inequalities. As
partial explanations for the odd behavior of the estimates, it is useful to
bear in mind the small amount of data and the fact that all “acceptance
probabilities” ρi for fast evolution are replaced by much lower acceptance
probabilities ηρi for slow evolution. The small sample size also explains the
large standard errors attached to most parameter estimates.
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TABLE 10.4. Maximum Loglikelihoods of Various Hemoglobin Models

Model Rate Penalty Spatial Maximum
Type Classes Parameters Parameters Loglikelihood

Nucleotide 1 0 0 -1918.6
Codon 1 0 0 -1889.8
Codon 1 1 0 -1853.2
Codon 1 4 0 -1847.4
Codon 2 4 2 -1825.4

10.11 Problems

1. Compute the number of unrooted evolutionary trees possible for n
contemporary taxa. (Hint: How does this relate to the number of
rooted trees?)

2. In the notation of Section 10.2, let Sn = T2 + · · · + Tn. Prove the
inequalities

Tn

(
1 +

n− 2
2n2

)
≤ Sn ≤ Tn

(
1 +

1
n− 1

)

for all n ≥ 2.

3. Consider four contemporary taxa numbered 1, 2, 3, and 4. A total of
n shared DNA sites are sequenced for each taxon. Let Nwxyz be the
number of sites at which taxon 1 has base w, taxon 2 base x, and so
forth. If we denote the three possible unrooted trees by E, F, and G,
then we can define three statistics

NE =
∑

r∈{A,G,C,T}

∑
s�=r

Nrrss

NF =
∑

r∈{A,G,C,T}

∑
s�=r

Nrsrs

NG =
∑

r∈{A,G,C,T}

∑
s�=r

Nrssr

for discriminating among the unrooted trees. Show that maximum
parsimony selects the unrooted tree E, F, or G with largest statis-
tic NE, NF, or NG. Draw the unrooted tree corresponding to each
statistic.

4. Let u and v be column vectors with the same number of components.
Applying the definition of the matrix exponential (10.7), show that

esuvt

=
{
I + suvt if vtu = 0
I + esvtu−1

vtu uvt otherwise.
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Using this, compute the 2 × 2 matrix exponential

exp
[
s

(−α α
β −β

)]
,

and find its limit as s→ ∞.

5. Consider a continuous-time Markov chain with infinitesimal transi-
tion matrix Λ = (Λij) and equilibrium distribution π. If the chain is
at equilibrium at time 0, then show that it experiences t

∑
i πiλi tran-

sitions on average during the time interval [0, t], where λi =
∑

j �=i Λij .

6. Let Λ be the infinitesimal transition matrix and π the equilibrium
distribution of a reversible Markov chain with n states. Define an
inner product 〈u, v〉π on complex column vectors u and v with n
components by

〈u, v〉π =
∑

i

uiπiv
∗
i ,

where ∗ denotes complex conjugate. Verify that Λ satisfies the self-
adjointness condition

〈Λu, v〉π = 〈u,Λv〉π.
Conclude by standard arguments that Λ has only real eigenvalues.

7. Let Λ = (Λij) be an m × m matrix and π = (πi) be a 1 × m row
vector. Show that the equality πiΛij = πjΛji is true for all pairs
(i, j) if and only if diag(π)Λ = Λtdiag(π), where diag(π) is a di-
agonal matrix with ith diagonal entry πi. Now suppose Λ is an in-
finitesimal generator with equilibrium distribution π. If P (t) = etΛ

is its finite-time transition matrix, then show that detailed balance
πiΛij = πjΛji for all pairs (i, j) is equivalent to finite-time detailed
balance πipij(t) = πjpji(t) for all pairs (i, j) and times t ≥ 0.

8. Let Λ be the infinitesimal transition matrix of a Markov chain, and
suppose µ ≥ maxi λi. If R = I + 1

µΛ, prove that R has nonnegative
entries and that

S(t) =
∞∑

i=0

e−µt (µt)
i

i!
Ri

coincides with P (t). (Hint: Verify that S(t) satisfies the same defining
differential equation and the same initial condition as P (t).)

9. Let P (t) = [pij(t)] be the finite-time transition matrix of a finite-state
irreducible Markov chain. Show that pij(t) > 0 for all i, j, and t > 0.
Thus, no state in a continuous-time chain displays periodic behavior.
(Hint: Use Problem 8.)
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10. Let A and B be the 2 × 2 real matrices

A =
(
a −b
b a

)
, B =

(
λ 0
1 λ

)
.

Show that

eA = ea

(
cos b − sin b
sin b cos b

)
, eB = eλ

(
1 0
1 1

)
.

(Hints: Note that 2× 2 matrices of the form
(

a −b
b a

)
are isomorphic

to the complex numbers under the correspondence
(

a −b
b a

)
↔ a + bi.

For the second case write B = λI + C.)

11. Define matrices

A =
(
a 0
1 a

)
, B =

(
b 1
0 b

)
.

Show that AB �= BA and that

eAeB = ea+b

(
1 1
1 2

)

eA+B = ea+b
[
cosh(1)

(
1 0
0 1

)
+ sinh(1)

(
0 1
1 0

)]
.

Hence, eAeB �= eA+B . (Hint: Use Problem 10 to calculate eA and eB .
For eA+B write A+B = (a+ b)I +R with R satisfying R2 = I .)

12. Prove that det(eA) = etr(A), where tr is the trace function. (Hint:
Since the diagonalizable matrices are dense in the set of matrices
[11], by continuity you may assume that A is diagonalizable.)

13. For the nucleotide substitution model of Section 10.5, prove formally
that P (t) has the same pattern for equality of entries as Λ. For exam-
ple, pAC(t) = pGC(t). (Hint: Prove by induction that Λk has the same
pattern as Λ. Then note the matrix exponential definition (10.7).)

14. For the nucleotide substitution model of Section 10.5, show that Λ
has eigenvalues 0, −(γ+λ+δ+κ), −(α+ε+γ+λ), and −(δ+κ+β+σ)
and corresponding right eigenvectors

1 =
(
1, 1, 1, 1

)t

u =
(
1, 1,−c5

c2
,−c5

c2

)t

v =
(α(c5 − c3) + κc2
δ(c3 − c2) − εc5

,
−ε(c5 − c3) − δc2
δ(c3 − c2) − εc5

, 1, 1
)t

w =
(
1, 1,

β(c2 − c6) + λc5
γ(c6 − c5) − σc2

,
−σ(c2 − c6) − γc5
γ(c6 − c5) − σc2

)t

,
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respectively, where the constants c1, . . . , c6 are same ones defined in
equations (10.12) through (10.15).

15. For the nucleotide substitution model of Section 10.5, verify in general
that the equilibrium distribution is

πA =
ε(δ + κ) + δ(γ + λ)

(α+ γ + ε+ λ)(γ + δ + κ+ λ)

πG =
α(δ + κ) + κ(γ + λ)

(α+ γ + ε+ λ)(γ + δ + κ+ λ)

πC =
γ(δ + κ) + σ(γ + λ)

(β + δ + κ+ σ)(γ + δ + κ+ λ)

πT =
λ(δ + κ) + β(γ + λ)

(β + δ + κ+ σ)(γ + δ + κ+ λ)
.

16. There is an explicit formula for the equilibrium distribution of a
continuous-time Markov chain in terms of weighted in-trees [20]. To
describe this formula, we first define a directed graph on the states
1, . . . , n of the chain. The vertices of the graph are the states of the
chain, and the arcs of the graph are ordered pairs of states (i, j) hav-
ing transition rates λij > 0. If it is possible to reach some designated
state k from every other state i, then a unique equilibrium distribu-
tion π = (π1, . . . , πn) exists for the chain. Note that this reachability
condition is weaker than requiring that all states communicate.

The equilibrium distribution is characterized by defining certain sub-
graphs called in-trees. An in-tree Ti to state i is a subgraph having
n − 1 arcs and connecting each vertex j �= i to i by some directed
path. Ignoring orientations, an in-tree is graphically a tree; observing
orientations, all paths lead to i. The weight w(Ti) associated with
the in-tree Ti is the product of the transition rates λjk labeling the
various arcs (j, k) of the in-tree. For instance, in the nucleotide sub-
stitution chain, one in-tree to A has arcs (G,A), (C,A), and (T,C).
Its associated weight is εδσ.

In general, the equilibrium distribution is given by

πi =

∑
Ti
w(Ti)∑

j

∑
Tj
w(Tj)

. (10.17)

The reachability condition implies that in-trees to state k exist and
consequently that the denominator in (10.17) is positive. The value
of the in-tree formula (10.17) is limited by the fact that in a Markov
chain with n states there can be as many as nn−2 in-trees to a given
state. Thus, in the nucleotide substitution model, there are 44−2 = 16
in-trees to each state and 64 in-trees in all. If you are undeterred by
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this revelation, then use formula (10.17) to find the equilibrium dis-
tribution of the nucleotide substitution chain of Section 10.5 when
detailed balance is not assumed. Your answer should match the dis-
tribution appearing in Problem 15.

17. In his method of evolutionary parsimony, Lake [14] has highlighted
the balanced transversion assumption. This assumption implies the
constraints λAC = λAT , λGC = λGT , λCA = λCG, and λTA = λTG

in the nucleotide substitution model with general transition rates.
Without further restrictions, infinitesimal balanced transversions do
not imply finite-time balanced transversions. For example, the iden-
tity pAC(t) = pAT (t) may not hold. Prove that finite-time balanced
transversions follow if the additional closure assumptions

λAG − λGA = λG − λA

λCT − λTC = λT − λC

are made [1]. (Hint: Show by induction that the matrices Λk have the
balanced transversion pattern for equality of entries.)

18. In Lake’s balanced transversion model of the last problem, show that

λAGλGT = λATλGA

λCTλTA = λTCλCA

are necessary and sufficient conditions for the corresponding Markov
chain to be reversible.

19. In the Ising model, one can explicitly calculate the partition function∑
c e

H(c) of Section 10.10. To simplify matters, we impose circular
symmetry and write

H(c) = θ0

m∑
i=1

ci + θ1

m∑
i=1

1{ci=ci+1},

where cm+1 = c1. Show that

∑
c

eH(c) =
1∑

c1=0

· · ·
1∑

cm=0

m∏
i=1

eθ0cieθ11{ci=ci+1}

=
∑
u1

· · ·
∑
um

m∏
i=1

ut
iZui+1. (10.18)

Here each ui ranges over the set of two vectors (1, 0)t and (0, 1)t, and
Z is the 2 × 2 matrix

Z =
(
eθ1 eθ0

eθ0 e2θ0+θ1

)
.
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Use the representation (10.18) of the partition function to prove that
∑

c

eH(c) = φm
1 + φm

2 ,

where φ1 and φ2 are the eigenvalues of Z. What are these eigenvalues?
(Hints: Express the partition function as a matrix trace, and use the
identity

∑
u uu

t = I .)
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11

Radiation Hybrid Mapping

11.1 Introduction

In the 1970s Goss and Harris [12] developed a new method for mapping
human chromosomes. This method was based on irradiating human cells,
rescuing some of the irradiated cells by hybridization to rodent cells, and
analyzing the hybrid cells for surviving fragments of a particular human
chromosome. For various technical reasons, radiation hybrid mapping
languished for nearly a decade and a half until revived by Cox et al. [10].
The current, more sophisticated and successful versions raise many fasci-
nating statistical problems. We will first discuss the mathematically simpler
case of haploid radiation hybrids. Once this case is thoroughly digested, we
will turn to the mathematically subtler case of polyploid radiation hybrids.

In the haploid version of radiation hybrid mapping, an experiment starts
with a human–rodent hybrid cell line [10]. This cell line incorporates a full
rodent genome and a single copy of one of the human chromosomes. To frag-
ment the human chromosome, the cell line is subjected to an intense dose of
X-rays, which naturally also fragments the rodent chromosomes. The repair
mechanisms of the cells rapidly heal chromosome breaks, and the human
chromosome fragments are typically translocated or inserted into rodent
chromosomes. However, the damage done by irradiation is lethal to the cell
line unless further action is taken to rescue individual cells. The remedy is
to fuse the irradiated cells with cells from a second unirradiated rodent cell
line. The second cell line contains only rodent chromosomes, so no confu-
sion about the source of the human chromosome fragments can arise for a
new hybrid cell created by the fusion of two cells from the two different cell
lines. The new hybrid cells have no particular growth advantage over the
more numerous unfused cells of the second cell line. However, if cells from
the second cell line lack an enzyme such as hypoxanthine phosphoribosyl
transferase (HPRT) or thymidine kinase (TK), both the unfused and the
hybrid cells can be grown in a selective medium that kills the unfused cells
[10]. This selection process leaves a few hybrid cells, and each of the hybrid
cells serves as a progenitor of a clone of identical cells.

Each clone can be assayed for the presence or absence of various human
markers on the original human chromosome. Depending on the radiation
dose and other experimental conditions, the cells of a clone generally con-
tain from 20 to 60 percent of the human chromosome fragments generated
by the irradiation of its ancestral human–rodent hybrid cell [8, 10]. The
basic premise of radiation hybrid mapping is that the closer two loci are
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on the human chromosome, the less likely it is that irradiation will cause a
break between them. Thus, close loci will tend to be concordantly retained
or lost in the hybrid cells, while distant loci will tend to be independently
retained or lost. The retention patterns from the various hybrid clones
therefore give important clues for determining locus order and for estimat-
ing the distances between adjacent loci for a given order.

11.2 Models for Radiation Hybrids

The breakage phenomenon for a particular human chromosome can be rea-
sonably modeled by a Poisson process. The preliminary evidence of Cox
et al. [10] suggests that this Poisson breakage process is roughly homoge-
neous along the chromosome. For their data on human chromosome 21, Cox
et al. [10] found that 8,000 rads of radiation produced on average about
four breaks per cell. The intensity λ characterizing the Poisson process is
formally defined as the breakage probability per unit length. Assuming a
length of 4×104 kilobases (kb) for chromosome 21, λ ≈ 4/(4×104) = 10−4

breaks per kb when a cell is exposed to 8,000 rads [10].
For any two loci, the simple mapping function

1 − θ = e−λδ (11.1)

relates the probability θ of at least one break between the loci to the phys-
ical distance δ between them. When λδ is small, θ ≈ λδ. This is analogous
to the approximate linear relationship between recombination fraction and
map distance for small distances in genetic recombination experiments. In-
deed, except for minor notational differences, equation (11.1) is Haldane’s
mapping function for recombination without chiasma interference.

In addition to breakage, fragment retention must be taken into account
when analyzing radiation hybrid data. A reasonable assumption is that dif-
ferent fragments are retained independently. For the purposes of this exposi-
tion, we will make the further assumption that there is a common fragment
retention probability r. Boehnke et al. [5] consider at length more compli-
cated models for fragment retention. For instance, the fragment bearing
the centromere of the chromosome may be retained more often than other
fragments. This is biologically plausible because the centromere is involved
in coordination of chromosome migration during cell division. However,
these more complicated models appear to make little difference in ultimate
conclusions.

In a radiation hybrid experiment, a certain number of clones are scored
at several loci. For example, in the Cox et al. [1990] chromosome 21 data,
99 clones were scored at 14 loci. In some of the clones, only a subset
of the loci was scored. One of their typical clones can be represented as
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, ?, 0, 0, 1). A “1” in a given position of this observa-
tion vector indicates that the corresponding human locus was present in
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the hybrid clone; a “0” indicates that the locus was absent; and a “?” in-
dicates that the locus was untyped in the clone or gave conflicting typing
results.

11.3 Minimum Obligate Breaks Criterion

Computing the minimum number of obligate breaks per order allows com-
parisons of different orders [3, 4, 5, 23]. If the order of the loci along the
chromosome is the same as the scoring order, then the clone described in
the last section requires three obligate breaks. These breaks occur when-
ever a run of 0’s is broken by a 1 or vice versa; untyped loci are ignored
in this accounting. The minimum number of obligate breaks for each clone
can be summed over all clones to give a grand sum for a given order. This
grand sum serves as a criterion for comparing orders. The minimum breaks
criterion can be minimized over orders by a stepwise algorithm [5] or by
standard combinatorial optimization techniques such as branch-and-bound
[19] and simulated annealing [17].

The advantage of the minimum breaks criterion is that it depends on al-
most no assumptions about how breaks occur and fragments are retained.
Given a common retention rate, this criterion is also strongly statistically
consistent. Following Barrett [1] and Speed et al. [20], let us demonstrate
this fact. Consider m loci taken in their natural order 1, . . . ,m along a
chromosome, and imagine an infinite number of independent, fully-typed
radiation hybrid clones at these loci. Let Bi(σ) be the random number of
obligate breaks occurring in the ith clone when the loci are ordered accord-
ing to the permutation σ. In general, a permutation can be represented as
an m-vector (σ(1), . . . , σ(m)). Ambiguity about the left-to-right orienta-
tion of the loci can be avoided by confining our attention to permutations
σ with σ(1) < σ(m). The correct order is given by the identity permutation
id.

Given n clones, the best order is identified by the permutation giving
the smallest sum Sn(σ) =

∑n
i=1Bi(σ). Consistency requires that Sn(id)

be the smallest sum for n large enough. Now the law of large numbers
indicates that limn→∞ 1

nSn(σ) = E[B1(σ)] with probability 1. Thus to
demonstrate consistency, it suffices to show that the expected number of
breaks E[B1(id)] under id is strictly smaller than the expected number of
breaks E[B1(σ)] under any other permutation σ.

To compute E[B1(id)], note that the interval separating loci i and i+ 1
manifests an obligate break if and only if there is a break between the two
loci and one locus is retained while the other locus is lost. This event occurs
with probability 2r(1 − r)θi,i+1, where r is the retention probability and
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FIGURE 11.1. An Interval Match for the Permutation σ = (4, 6, 2, 1, 3, 5).

θi,i+1 is the breakage probability between the two loci. Thus,

E[B1(id)] = 2r(1 − r)
m−1∑
i=1

θi,i+1. (11.2)

The corresponding expression for an arbitrary permutation σ is

E[B1(σ)] = 2r(1 − r)
m−1∑
i=1

θσ(i),σ(i+1). (11.3)

The interval Iσ(i) defined by a pair {σ(i), σ(i + 1)} is a union of adjacent
intervals from the correct order 1, . . . ,m. It is plausible to conjecture that
we can match in a one-to-one fashion each interval (k, k + 1) against a
union Iσ(i) containing it. See Figure 11.1 for a match involving the permu-
tation (σ(1), σ(2), σ(3), σ(4), σ(5), σ(6)) = (4, 6, 2, 1, 3, 5). If this conjecture
is true, then either θk,k+1 = θσ(i),σ(i+1) when the union Iσ(i) contains a sin-
gle interval, or θk,k+1 < θσ(i),σ(i+1) when the union Iσ(i) contains several
intervals. If the former case holds for all intervals (k, k + 1), then σ = id.
The inequality E[B1(id)] < E[B1(σ)] for σ �= id now follows by taking the
indicated sums (11.2) and (11.3).
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Thus, the crux of the proof reduces to showing that it is possible to
match one to one each of the intervals (k, k + 1) against a union set Iσ(i)

that contains or covers it. This assertion is a special case of Hall’s marriage
theorem [6]. A simple direct proof avoiding appeal to Hall’s theorem can
be given by induction on m. The assertion is certainly true for m = 2.
Suppose it is true for m− 1 ≥ 2 and any permutation. There are two cases
to consider.

In the first case, the last locus m is internal to the given permutation
σ in the sense that σ equals (σ(1), . . . , i,m, j, . . . , σ(m)). Omitting m from
σ gives a permutation ω of 1, . . . ,m − 1 for which the m − 2 intervals
(1, 2), . . . , (m − 2,m − 1) can be matched by induction. Assuming j < i,
the pair {i, j} in ω covers one of the intervals (j, j + 1), . . . , (i − 1, i) in
this matching. In the permutation σ, match the pair {j,m} to this covered
interval. This is possible because j < i. To the pair {i,m} in σ, match the
interval (m − 1,m). The full matching for σ is constructed by appending
these two matches to the matches for ω minus the match for the pair {i, j}.
The situation with i < j is handled similarly.

In the second case, m is positioned at the end of σ. By our conven-
tion this means σ = (σ(1), . . . , σ(m − 1),m). By induction, a matching
can be constructed between ω = (σ(1), . . . , σ(m − 1)) and the intervals
(1, 2), . . . , (m − 2,m − 1). To this matching append the permitted match
between the pair {σ(m− 1),m} and (m− 1,m). This completes the proof.

Clones with undetected typing errors can unduly influence the ranking
of locus orders. A clone bearing a large number of obligate breaks probably
should be retyped at the loci delimiting its obligate breaks. To identify
outlier clones, one needs to compute the distribution of the number of
obligate breaks under the true order and the true retention and breakage
probabilities. This distribution can be computed recursively by defining
pk(i, j) to be the joint probability that there are j obligate breaks scored
among the first k loci of a clone and that the kth locus is present in the
clone in i copies. The index k ranges from 1 to m, the index j ranges from 0
to k−1, and the index i equals 0 or 1. In this notation, the initial conditions

p1(i, 0) =
{ 1 − r for i = 0
r for i = 1

are obvious. With no missing data and with θk now indicating the breakage
probability between loci k and k + 1, the appropriate recurrence relations
for adding locus k + 1 are

pk+1(0, j) = pk(0, j)(1 − θkr) + pk(1, j − 1)θk(1 − r)
pk+1(1, j) = pk(0, j − 1)θkr + pk(1, j)[1 − θk(1 − r)].

In these recurrence relations, pk(i, j) is taken as 0 whenever j < 0. When
the final locus k = m is reached, the probabilities pm(i, j) can be summed
on i to produce the distribution of the number of obligate breaks. In prac-
tice, the best order identified and estimates of the retention and breakage
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probabilities under this order must be substituted in the above calculations.
The next section addresses maximum likelihood estimation.

11.4 Maximum Likelihood Methods

The disadvantage of the minimum obligate breaks criterion is that it pro-
vides neither estimates of physical distances between loci nor comparisons
of likelihoods for competing orders. Maximum likelihood obviously reme-
dies the latter two defects, but does so at the expense of introducing some
of the explicit assumptions mentioned earlier. We will now briefly discuss
how likelihoods are computed and maximized for a given order. Different
orders can be compared on the basis of their maximum likelihoods.

Because different clones are independent, it suffices to demonstrate how
to compute the likelihood of a single clone. Let X = (X1, . . . , Xm) be the
observation vector for a clone potentially typed at m loci. The component
Xi is defined as 0, 1, or ?, depending on what is observed at the ith locus.
We can gain a feel for how to compute the likelihood of X by considering
two simple cases. If m = 1 and X1 �= ?, then X1 follows the Bernoulli
distribution

Pr(X1 = i) = ri(1 − r)1−i (11.4)

for retention or nonretention. When m = 2 and both loci are typed, the
likelihood must reflect breakage as well as retention. If θ is the probability
of at least one break between the two loci, then

Pr(X1 = 0, X2 = 0) = (1 − r)(1 − θr)
Pr(X1 = 1, X2 = 0) = Pr(X1 = 0, X2 = 1)

= (1 − r)θr (11.5)
Pr(X1 = 1, X2 = 1) = 1 − 2(1 − r)θr − (1 − r)(1 − θr)

= (1 − θ + θr)r.

Note that we parameterize in terms of the breakage probability θ between
the two loci rather than the physical distance δ between them. Besides the
obvious analytical simplification entailed in using θ, only the product λδ
can be estimated anyway. The parameters λ and δ cannot be separately
identified.

As noted earlier, the probability of an obligate break between the two
loci is 2r(1 − r)θ, in agreement with the calculated value

Pr(X1 �= X2) = Pr(X1 = 1, X2 = 0) + Pr(X1 = 0, X2 = 1)

from (11.5). It is natural to estimate r and Pr(X1 �= X2) by their empirical
values. Given these estimates, one can then estimate θ via the identity

θ =
Pr(X1 �= X2)

2r(1 − r)
.
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Problems 2 and 3 elaborate on this point.
Generalization of the likelihood expressions in (11.5) to more loci involves

two subtleties. First, the sheer number of terms accounting for all possible
breakage and retention patterns quickly becomes unwieldy. Second, missing
data can no longer be ignored. The key to efficient likelihood computation is
to recognize that the likelihood splits into simple factors based on a hidden
Markov property of the underlying model. To expose this factorization
property, again assume that the loci 1, . . . ,m occur in numerical order
along the chromosome. Let θi be the breakage probability on the interval
connecting loci i and i+1, and suppose only loci 1 ≤ t1 < t2 < · · · < tn ≤ m
are typed. If the typing result at locus tk is xtk

, then

Pr(X = x) = Pr(Xt1 = xt1) (11.6)

×
n∏

i=2

Pr(Xti = xti) | Xt1 = xt1 , . . . , Xti−1 = xti−1).

Now Pr(Xt1 = xt1) is immediately available from (11.4). In the degenerate
case n = 1, the product in (11.6) is taken as 1. In general, the independence
property of the governing Poisson process implies

Pr(Xti = xti | Xt1 , . . . , Xti−1) = Pr(Xti = xti | Xti−1).

Indeed, when Xti = Xti−1 ,

Pr(Xti = xti | Xt1 , . . . , Xti−1) =
[
1 −

ti−1∏
j=ti−1

(1 − θj)
]
rxti (1 − r)1−xti

+
ti−1∏

j=ti−1

(1 − θj). (11.7)

The first term on the right of (11.7) involves conditioning on at least one
break between loci ti−1 and ti. Here the retention fate of locus ti is no
longer tied to that of locus ti−1. The second term involves conditioning
on the complementary event. When Xti �= Xti−1 , we have the simpler
expression

Pr(Xti = xti | Xt1 , . . . , Xti−1) =
[
1 −

ti−1∏
j=ti−1

(1 − θj)
]
rxti (1 − r)1−xti

since a break must occur somewhere between the two loci.
The EM algorithm provides an attractive avenue to maximum likelihood

estimation of the m parameters θ1, . . . , θm−1 and r. Collect these m pa-
rameters into a vector γ = (θ1, . . . , θm−1, r)t. Each of the entries γi of γ
can be viewed as a success probability for a hidden binomial trial. As doc-
umented in Problem 9 of Chapter 2, the EM update for any one of these
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parameters takes either of the equivalent generic forms

γnew,i =
E(#successes | obs, γold)

E(#trials | obs, γold)

= γold,i +
γold,i(1 − γold,i)

∂L(γold)

∂γi

E(#trials | obs, γold)
, (11.8)

where obs denotes the observations X over all clones, and L is the loglikeli-
hood function. The second form of the update (11.8) requires less thought
to implement since only mechanical differentiations are involved in form-
ing the score. If the number of clones is H , then H is also the expected
number of trials appearing in the denominator for both updates to θi. The
expected number of trials for r coincides with the expected number of frag-
ments. This expectation can be found by letting Ni be the random number
of breaks between loci i and i + 1 over all clones. The first form of the
update for θi shows that

θnew,i =
E(Ni | obs, γold)

H
.

It follows that the expected number of fragments over all H clones is

H +
m−1∑
i=1

E(Ni | obs, γold) = H(1 +
m−1∑
i=1

θnew,i).

11.5 Application to Haploid Data

TABLE 11.1. Best Locus Orders for Haploid Radiation Hybrid Data

Orders ∆L Breaks
1 2 3 4 5 6 7 8 9 10 11 12 13 0.00 123
1 2 3 4 5 6 7 8 10 9 11 12 13 1.49 125
1 2 3 4 5 13 12 11 10 9 8 7 6 1.79 126
5 4 3 2 1 6 7 8 9 10 11 12 13 1.84 128
1 2 3 4 5 7 6 8 9 10 11 12 13 1.93 127
6 7 1 2 3 4 5 8 9 10 11 12 13 2.26 127
6 7 5 4 3 2 1 8 9 10 11 12 13 2.43 128
1 2 3 4 5 6 7 8 11 10 9 12 13 3.22 127
1 2 3 4 5 6 7 8 11 9 10 12 13 3.23 127
1 2 3 4 5 13 12 11 9 10 8 7 6 3.28 128
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The Cox et al. [10] data mentioned earlier involves 99 hybrids typed at 14
marker loci on chromosome 21. Examination of these data [5] shows that
the markers D21S12 and D21S111 are always concordantly retained or lost.
Since order cannot be resolved for these two loci, locus D21S111 is excluded
from the analysis presented here. Table 11.1 presents the 10 best orders
based on the maximum likelihood criterion. The difference in maximum
loglikelihoods between the best order and the current order is given in the
column labeled ∆L. Logarithms here are to the base 10, so a difference of
3 corresponds to a likelihood ratio of 1,000. The minimum obligate breaks
criterion is given in the column labeled Breaks. It is encouraging that the
three best maximum likelihood orders are also the three best minimum
obligate breaks orders. Evidently, some of the better orders involve complex
rearrangements of the best order.

The diagram below gives the estimated distances between adjacent pairs
of loci under the best order. These distances are expressed in the expected
numbers of breaks × 100 between the two loci per chromosome. (One ex-
pected break is one Ray, so the appropriate units here are centiRays,
abbreviated cR.) In Table 11.1 and the diagram, the loci D21S16, D21S48,
D21S46, D21S4, D21S52, D21S11, D21S1, D21S18, D21S8, APP, D21S12,
D21S47, and SOD1 are numbered 1 through 13, respectively.

Interlocus Distances for the Best Order

1
7.6− 2

7.9− 3
19.4− 4

27.3− 5
64.4− 6

18.0− 7
55.6− 8

34.9− 9
11.1− 10

23.5− 11
36.2− 12

25.3− 13

11.6 Polyploid Radiation Hybrids

Polyploid radiation hybrid samples can be constructed in several ways. For
instance, one can pool different haploid clones and test each of the pools
so constructed for the presence of the various markers to be mapped. If c
clones are pooled at a time, then a pool contains fragments generated by
c independently irradiated chromosomes. The overlapping nature of a pool
obscures fragment retention patterns. Balanced against this information
loss is the information gained by attaining a higher effective retention rate
per locus per pool.

Another method of generating polyploid samples is to expose normal
human diploid cells to a lethal dose of gamma irradiation. Some of the
irradiated cells can again be rescued by hybridization to unirradiated cells
from a rodent cell line. If the rodent cells are deficient in an enzyme such as
HPRT, then only the hybrid cells will grow in a culture medium requiring
the enzyme. Thus, the design of the diploid experiment is almost identical to
the original haploid design. The diploid design carries with it the advantage
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that the same clones can be used to map any chromosome of interest.
Although in principle one could employ heterozygous markers, geneticists
forgo this temptation and score only the presence, and not the number of
markers per locus in a diploid clone. Finally, just as with haploid clones,
one can pool diploid clones to achieve sampling units with an arbitrary
even number of chromosomes.

We now present methods for analyzing polyploid radiation hybrids with
c chromosomes per clone or sampling unit [15]. For the sake of brevity, we
use the term “clone” to mean either a haploid clone, a diploid clone, or a
fixed number of pooled haploid or diploid clones. Our analysis will assume
that the breakage and fragment retention processes are independent among
chromosomes and that typing can reveal only the presence and not the
number of markers per locus in a clone.

11.7 Maximum Likelihood Under Polyploidy

Again let X = (X1, . . . , Xm) denote the observation vector for a single
clone. If no markers are observed at the ith locus, then Xi = 0. If one or
more markers are observed, then Xi = 1. Because (1 − r)c is the probabil-
ity that all c copies of a given marker are lost, the single-locus polyploid
likelihood reduces to the Bernoulli distribution

Pr(X1 = i) = [1 − (1 − r)c]i(1 − r)c(1−i).

The two-locus polyploid likelihoods

Pr(X1 = 0, X2 = 0) = [(1 − r)(1 − θr)]c

Pr(X1 = 1, X2 = 0) = Pr(X1 = 0, X2 = 1)
= (1 − r)c − [(1 − r)(1 − θr)]c (11.9)

Pr(X1 = 1, X2 = 1) = 1 − 2(1 − r)c + [(1 − r)(1 − θr)]c

generalize the two-locus haploid likelihoods (11.5). The expression for the
first probability Pr(X1 = 0, X2 = 0) in (11.9) is a direct consequence of
the independent fate of the c chromosomes during fragmentation and re-
tention. Considering a given chromosome, the marker at locus 1 is lost
with probability 1 − r. Conditional on this event, the marker at locus 2
must also be lost. This second event occurs with probability 1−θr since its
complementary event occurs only when there is a break between the two
loci and the fragment bearing the second locus is retained. The stated ex-
pression for Pr(X1 = 0, X2 = 1) in (11.9) can be computed by subtracting
Pr(X1 = 0, X2 = 0) from the probability (1−r)c that all c markers are lost
at locus 1. Finally, Pr(X1 = 1, X2 = 1) is most easily computed by sub-
tracting the three previous probabilities in (11.9) from 1 and simplifying.
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Preliminary estimates of the parameters r and θ can be derived from the
empirically observed values of Pr(X1 = 0, X2 = 0) and Pr(X1 = 1, X2 = 1).
In fact, the equation

Pr(X1 = 1, X2 = 1) − Pr(X1 = 0, X2 = 0) = 1 − 2(1 − r)c

can be solved to give

r = 1 −
[
1 − Pr(X1 = 1, X2 = 1) + Pr(X1 = 0, X2 = 0)

2

] 1
c

.(11.10)

Once r is known, θ is determined from the first equation in (11.9) as

θ =
1 − r − [Pr(X1 = 0, X2 = 0)]

1
c

r(1 − r)
. (11.11)

Thus, the map (θ, r) → (Pr(X1 = 1, X2 = 1),Pr(X1 = 0, X2 = 0)) is one
to one. Its range is not the entire set {(s, t) : s ≥ 0, t ≥ 0, s+ t ≤ 1} since
one can demonstrate that any image point of the map must in addition
satisfy the inequality

Pr(X1 = 1, X2 = 0)2

≤ Pr(X1 = 1, X2 = 1) Pr(X1 = 0, X2 = 0). (11.12)

See Problem 8 for elaboration.
The observed values of Pr(X1 = 1, X2 = 1) and Pr(X1 = 0, X2 = 0)

are maximum likelihood estimates for the simplified model in which the
only constraints on the four probabilities displayed in (11.9) are nonnega-
tivity, the symmetry condition Pr(X1 = 1, X2 = 0) = Pr(X1 = 0, X2 = 1),
and the requirement that the four probabilities sum to 1. This simplified
model has in effect two parameters, which we can identify with the prob-
abilities Pr(X1 = 1, X2 = 1) and Pr(X1 = 0, X2 = 0) and estimate by
their empirical values. These values are maximum likelihood estimates un-
der the simplified model. If these estimates satisfy inequality (11.12), then
they furnish maximum likelihood estimates of the radiation hybrid model
as well. Since maximum likelihood estimates are preserved under repara-
meterization, the maximum likelihood estimates of r and θ can then be
computed by substituting estimated values for theoretical values in (11.10)
and (11.11).

Under the polyploid model with many loci, likelihood calculation is hin-
dered by the fact that likelihoods no longer factor. Nonetheless, it is possible
to design a fast algorithm for likelihood calculation based on the theory of
hidden Markov chains [18]. In the current context, there exists a Markov
chain whose current state is the number of markers present in a clone at the
current locus. As the chain progresses from one locus to the next, starting
at the leftmost locus and ending at the rightmost locus, it counts the num-
ber of markers at each locus in the clone. These numbers are hidden from
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view because only the presence or absence of markers is directly observ-
able. Suppose the chain is in state i at locus k. The probability tc,k(i, j) of a
transition from state i at locus k to state j at locus k+1 is of fundamental
importance.

To compute tc,k(i, j), consider first a haploid clone. In this situation the
chromosome copy number c = 1, and it is clear that

t1,k(0, 0) = 1 − θkr

t1,k(0, 1) = θkr

t1,k(1, 0) = θk(1 − r)
t1,k(1, 1) = 1 − θk(1 − r).

Employing these simple transition probabilities, we can write the following
general expression:

tc,k(i, j) =
min{i,j}∑

l=max{0,i+j−c}

(
i

l

)(
c− i

j − l

)
(11.13)

× t1,k(1, 1)lt1,k(1, 0)i−lt1,k(0, 1)j−lt1,k(0, 0)c−i−j+l.

Formula (11.13) can be deduced by letting l be the number of markers
retained at locus k that lead via the same original chromosomes to markers
retained at locus k+ 1. These l markers can be chosen in

(
i
l

)
ways. Among

the i markers retained at locus k, the fate of the l markers retained at locus
k+1 and the remaining i− l markers not retained at locus k+1 is captured
by the product t1,k(1, 1)lt1,k(1, 0)i−l in (11.13). For j total markers to be
retained at locus k+ 1, the c− i markers not retained at locus k must lead
to j − l markers retained at locus k+ 1. These j − l markers can be chosen
in
(
c−i
j−l

)
ways. The product t1,k(0, 1)j−lt1,k(0, 0)c−i−j+l captures the fate

of the c − i markers not retained at locus k. Finally, the upper and lower
bounds on the index of summation l insure that none of the powers of the
t1,k(u, v) appearing in (11.13) is negative.

In setting down the likelihood for the observations (X1, . . . , Xm) from a
single clone, it is helpful to define a set Oi corresponding to each Xi. This
set indicates the range of markers possible at locus i. Thus, let

Oi =





{0, 1, . . . , c} for Xi missing
{0} for Xi = 0
{1, . . . , c} for Xi = 1.

The sets O1, . . . , Om encapsulate the same information as (X1, . . . , Xm).
Owing to the Markovian structure of the model, the likelihood of the ob-
servation vector (X1, . . . , Xm) amounts to

P =
∑

j1∈O1

· · ·
∑

jm∈Om

(
c

j1

)
rj1 (1 − r)c−j1

m−1∏
k=1

tc,k(jk, jk+1). (11.14)



11. Radiation Hybrid Mapping 243

The necessity of evaluating this sum of products lands us in familiar terrain.
Here, however, there is more symmetry than in pedigree calculations. As
suggested by Baum [2, 11], it is natural to evaluate the sum as an iterated
sum in either the forward or reverse direction.

Suppose Zi is the unobserved number of markers at locus i. The only
restriction on Zi is that Zi ∈ Oi. Baum’s forward algorithm is based on
recursively evaluating the joint probabilities

αk(j) = Pr(Z1 ∈ O1, . . . , Zk−1 ∈ Ok−1, Zk = j)

for j ∈ Ok. At the leftmost locus α1(j) =
(
c
j

)
rj(1− r)c−j , and the obvious

update is

αk+1(j) =
∑
i∈Ok

αk(i)tc,k(i, j).

The likelihood (11.14) can be recovered by forming the sum
∑

j∈Om
αm(j)

at the rightmost locus.
In Baum’s backward algorithm we recursively evaluate the conditional

probabilities

βk(i) = Pr(Zk+1 ∈ Ok+1, . . . , Zm ∈ Om | Zk = i),

for i ∈ Ok, starting by convention at βm(j) = 1 for j ∈ Om. The required
update is clearly

βk(i) =
∑

j∈Ok+1

tc,k(i, j)βk+1(j).

In this instance the likelihood (11.14) can be recovered at the leftmost locus
by forming the sum

∑
i∈O1

α1(i)β1(i).
A quick search of the likelihood can be achieved if the partial derivatives

of the likelihood can be computed analytically. Let us now indicate briefly
how to do this based on the intermediate results of Baum’s forward and
backward algorithms. For instance, consider a partial derivative ∂

∂θi
P of P

with respect to a breakage probability. Inspection of equation (11.14) leads
to the expression

∂

∂θi
P =

∑
j1∈O1

· · ·
∑

jm∈Om

(
c

j1

)
rj1 (1 − r)c−j1

×
[ ∂

∂θi
tc,i(ji, ji+1)

]∏
k �=i

tc,k(jk, jk+1). (11.15)

Evidently, (11.15) can be evaluated as

∂

∂θi
P =

∑
ji∈Oi

∑
ji+1∈Oi+1

αi(ji)
[ ∂

∂θi
tc,i(ji, ji+1)

]
βi+1(ji+1).(11.16)
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Similar reasoning implies that

∂

∂r
P =

∑
j1∈O1

[ ∂
∂r
α1(j1)

]
β1(j1) (11.17)

+
m−1∑
i=1

∑
ji∈Oi

∑
ji+1∈Oi+1

αi(ji)
[ ∂
∂r
tc,i(ji, ji+1)

]
βi+1(ji+1).

The partial derivatives appearing on the right-hand sides of (11.16) and
(11.17) are tedious but straightforward to evaluate. An efficient evaluation
of P and its partial derivatives can therefore be orchestrated by carrying out
the backward algorithm first, followed by the forward algorithm performed
simultaneously with the computation of all partial derivatives. Given a
partial derivative ∂

∂γi
P of the likelihood P , one forms the corresponding

entry in the score vector by taking the quotient ( ∂
∂γi

P )/P .
Finally, we note that the EM algorithm for maximum likelihood esti-

mation generalizes easily to the polyploid case. The only differences are
that now the expected number of trials for a breakage parameter is cH
and the expected number of trials for the common retention probability is
cH(1 +

∑m−1
i=1 θnew,i), where H is again the total number of clones.

11.8 Obligate Breaks Under Polyploidy

An obligate break is scored between two loci i and i+1 of a clone whenever
Xi = 1 and Xi+1 = 0 or vice versa. According to equation (11.9), the
probability of this event is

Pr(Xi = 1, Xi+1 = 0) + Pr(Xi = 0, Xi+1 = 1)
= 2(1 − r)c[1 − (1 − θir)c].

Because the probability 2(1−r)c[1− (1−θir)c] has a positive partial deriv-
ative 2cr(1−r)c(1−θir)c−1 with respect to θi, it is increasing as a function
of θi. Monotonicity of the obligate breakage probability was the only prop-
erty used in establishing the statistical consistency of the minimum breaks
criterion for ordering loci. Thus, the minimum breaks criterion is applicable
to polyploid radiation hybrids and can form the basis of a quick method
for ranking locus orders.

Outlier detection by counting obligate breaks is also feasible. With the
probabilities pk(i, j) defined as in the haploid case, we can again compute
the distribution of the number of obligate breaks per clone assuming no
missing data. Note that now the index i specifying the number of marker
copies present at locus k ranges from 0 to c instead of from 0 to 1. The
initial conditions are

p1(i, 0) =
(
c

i

)
ri(1 − r)c−i.
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Taking into account the defining condition for an obligate break leads to
the recurrence relation

pk+1(i, j) =
∑
l∼i

pk(l, j)tc,k(l, i) +
∑
l�∼i

pk(l, j − 1)tc,k(l, i)

for all 0 ≤ i ≤ c, where l ∼ i indicates that l and i are simultaneously in ei-
ther the set {0} or the set {1, . . . , c}, and where the transition probabilities
tc,k(l, i) are defined in (11.13). As already noted in the haploid case, when
the final locus k = m is reached, the probabilities pm(i, j) can be summed
on i to produce the distribution of the number of obligate breaks.

11.9 Bayesian Methods

Bayesian methods offer an attractive alternative to maximum likelihood
methods. To implement a Bayesian analysis of locus ordering, two technical
hurdles must be overcome. First, an appropriate prior must be chosen. Once
this choice is made, efficient numerical schemes for estimating parameters
and posterior probabilities must be constructed.

It is more convenient to put a prior on the distances between the adja-
cent loci of an order than on the breakage probabilities determined by these
distances. In designing a prior for interlocus distances, we can assume with
impunity that the intensity of the breakage process satisfies λ = 1. It is
also reasonable to assume that the m loci to be mapped are sampled uni-
formly from a chromosome interval of known physical length. This length
may be difficult to estimate in base pairs. Furthermore, physical distances
measured in base pairs are less relevant than physical distances measured
in expected number of breaks (Rays). We can circumvent the calibration
problem of converting from one measure of physical distance to the other
by using the results of a maximum likelihood analysis. Suppose that un-
der the best maximum likelihood order, we estimate a total of b expected
breaks between the first and last loci. With m uniformly distributed loci,
adjacent pairs of loci should be separated by an average distance of b

m−1 .
This quantity should also approximate the average distance from the left
end of the interval to the first locus and from the right end of the interval
to the last locus. These considerations suggest that d = (m+1)b

m−1 would be
a reasonable expected number of breaks to assign to the prior interval. In
practice, this value of d may be too confining, and it is probably prudent
to inflate it somewhat.

Given a prior interval of length d, let δi be the distance separating the
adjacent loci i and i + 1 under a given order. To calculate the joint dis-
tribution of the vector of distances (δ1, . . . , δm−1), expand this vector to
include the distance δ0 separating the left end of the interval from the first
locus. These spacings are related to the positions t1, . . . , tm of the loci on
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the interval by the lower triangular transformation

δi =
{
t1 i = 0
ti+1 − ti 1 ≤ i ≤ m− 1. (11.18)

Because the ti correspond to order statistics from the uniform distribution
on [0, d], the positions vector (t1, . . . , tm) has uniform density m!/dm on
the set

{(t1, . . . , tm) : 0 ≤ t1 ≤ · · · ≤ tm ≤ d}.
The fact that the Jacobian of the transformation (11.18) is 1 implies that
the spacings vector (δ0, . . . , δm−1) has uniform density m!/dm on the set

{(δ0, . . . , δm−1) : 0 ≤ δi, i = 0, . . . ,m− 1,
m−1∑
i=0

δi ≤ d}.

The marginal density of the subvector (δ1, . . . , δm−1) can now be recovered
by the integration

∫ d−δ1−···−δm−1

0

m!
dm

dδ0 =
m!(d− δ1 − · · · − δm−1)

dm
.

This prior for the spacings δ1, . . . , δm−1 resides on the set

{(δ1, . . . , δm−1) : 0 ≤ δi, i = 1, . . . ,m− 1,
m−1∑
i=1

δi ≤ d}.

A uniform prior on [0,1] is plausible for the retention probability r. This
prior should be independent of the prior on the spacings. With the resulting
product prior now fixed for the parameter vector γ = (δ1, . . . , δm−1, r)t, we
can estimate parameters by maximizing the log posterior L(γ) + R(γ),
where L(γ) is the loglikelihood and

R(γ) = ln(d− δ1 − · · · − δm−1)

is the log prior. This yields the posterior mode. Because the M step
is intractable, the EM algorithm no longer directly applies. However, in-
tractability of the M step is no hindrance to the EM gradient algorithm
[13]. If Q(γ | γold) is the standard Q function produced by the E step of
the EM algorithm, then the EM gradient algorithm updates γ via

γnew = γold −
[
d20Q(γold | γold) + d2R(γold)

]−1

(11.19)

× [dL(γold) + dR(γold)]t,

where dL and dR denote the differentials of L and R, d2R is the second
differential of R, and d20Q(γ | γold) is the second differential of Q relative
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to its left argument. In effect, we update γ by one step of Newton’s method
applied to the function Q(γ | γold) + R(γ), keeping in mind the identity
d10Q(γold | γold) = dL(γold) proved in Problem 9 of Chapter 2.

All of the terms appearing in (11.19) are straightforward to evaluate. For
instance, taking into account relation (11.1) with λ = 1, we have

∂

∂δi
L(γ) =

∂

∂θi
L(γ)

dθi

dδi

=
∂

∂θi
L(γ)(1− θi).

Differentiation of the log prior produces

∂

∂δi
R(γ) = − 1

d− δ1 − · · · − δm−1

∂

∂r
R(γ) = 0

−d2R = (dR)tdR.

Computation of the diagonal matrix d20Q(γ | γ) is more complicated.
Let Ni be the random number of chromosomes in the sample with breaks
between loci i and i + 1. As noted earlier, this random variable has a
binomial distribution with success probability θi and cH trials. Because
of the nature of the complete data likelihood, it follows that modulo an
irrelevant constant,

Q(γ | γold)
= E(Ni | obs, γold) ln(θi) + E([cH −Ni] | obs, γold) ln(1 − θi).

Straightforward calculations show that

∂2

∂δ2i
Q(γ | γold) = −E(Ni | obs, γold)(1 − θi)

θ2i
.

If θ̃new,i is the EM update of θi ignoring the prior, then as remarked pre-
viously, E(Ni | obs, γold) = cHθ̃new,i .

It is possible to simplify the EM gradient update (11.19) by applying the
Sherman-Morrison formula discussed in Chapter 3. In the present context,
we need to compute (A+ uut)−1v for the diagonal matrix

A = −d20Q(γold | γold)

and the vectors u = dR(γold) and vt = dL(γold) + dR(γold). Because R(γ)
does not depend on r, the partial derivative ∂

∂rR(γ) vanishes. Thus, the
matrix A + uut is block diagonal, and the EM gradient update for the
parameter r coincides with the EM gradient update for r ignoring the
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prior. This suggests that the EM gradient update and the ordinary EM
update for r will be equally effective in finding the posterior mode.

From the Bayesian perspective, perhaps more important than finding
the posterior mode is the possibility of computing posterior probabilities
for the various locus orders. Under the natural assumption that all orders
are a priori equally likely, the posterior probability of a given order α is

∫
eLα(γ)+Rα(γ)dγ∑

β

∫
eLβ(γ)+Rβ(γ)dγ

, (11.20)

where the sum in the denominator ranges over all possible orders β and
Lβ and Rβ denote the loglikelihood and log prior appropriate to order β.
Two ugly issues immediately rear their heads at this point. First, unless the
number of loci m is small, the number of possible orders can be astronom-
ical. This problem can be finessed if the leading orders can be identified
and the sum truncated to include only these orders. In many problems only
a few orders contribute substantially to the denominator of the posterior
probability (11.20).

The other issue is how to evaluate the integrals appearing in (11.20). Due
to the complexity of the integrands, there is no obvious analytic method
of carrying out the integrations. For haploid data, Lange and Boehnke
[14] suggest two approximate methods. Both of these methods have their
drawbacks and can be computationally demanding. Here we suggest an
approximation based on Laplace’s method from asymptotic analysis [7, 22].
The idea is to expand the logarithm of the integrand eLα(γ)+Rα(γ) in a
second-order Taylor’s series around the posterior mode γ̂. Recalling the
well-known normalizing constant for the multivariate normal density and
defining Fα(γ) = Lα(γ) +Rα(γ), this approximation yields

∫
eFα(γ)dγ ≈

∫
eFα(γ̂)+ 1

2 (γ−γ̂)td2Fα(γ̂)(γ−γ̂)dγ

= eFα(γ̂)(2π)
m
2 det(−d2Fα(γ̂))−

1
2 . (11.21)

The accuracy of Laplace’s approximation increases as the log posterior
function becomes more peaked around the posterior mode γ̂. The quadratic
form d2Fα(γ̂) measures the curvature of Fα(γ) at γ̂.

11.10 Application to Diploid Data

Table 11.2 lists the 10 best orders identified for 6 loci on chromosome 4
from 85 diploid clones created at the Stanford Human Genome Center and
distributed by Research Genetics of Huntsville, Alabama. These six se-
quence tagged sites constitute a small subset of a much more extensive
set of chromosome 4 markers. The columns labeled Prob. 1, Prob. 2, and
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Prob. 3 are posterior probabilities calculated under various approximations
of the integrals

∫
eLβ(γ)+Rβ(γ)dγ in formula (11.20). The first approxima-

tion is ∫
eLβ(γ)+Rβ(γ)dγ ∝ eLβ(γ̂)+Rβ(γ̂), (11.22)

where γ̂ is the maximum likelihood estimate and the log prior function
Rβ(γ) is taken as 0. The second approximation uses the actual log prior
function in (11.22) and replaces the maximum likelihood estimate by the
posterior mode. The third approximation is just the Laplace approximation
(11.21). For the numbers shown in Table 11.2, all 360 = 6!

2 orders were
included in the denominator of (11.20).

The three posterior probabilities displayed in Table 11.2 evidently agree
well. Except for one minor reversal for the Laplace approximation, the 10
listed orders have the same ranks. These posterior probability ranks are
roughly similar to the ranks based on minimum obligate breaks.

TABLE 11.2. Best Locus Orders for Diploid Radiation Hybrid Data

Orders Prob. 1 Prob. 2 Prob. 3 Breaks
1 2 3 4 5 6 .36114 .35690 .34569 52
1 2 3 5 4 6 .32028 .33051 .32845 51
2 3 4 5 6 1 .16736 .16301 .16601 51
2 3 5 4 6 1 .14554 .14451 .15400 51
1 2 3 6 5 4 .00244 .00222 .00233 54
1 4 5 6 3 2 .00136 .00119 .00128 54
1 3 2 4 5 6 .00054 .00045 .00053 56
1 2 3 5 6 4 .00038 .00036 .00054 54
1 3 2 5 4 6 .00024 .00022 .00029 55
1 4 6 5 3 2 .00021 .00019 .00029 54

The failure of Table 11.2 to identify a decisively best order reflects uncer-
tainties in placing locus 1 to the right or to the left of the major cluster of
loci and in reversing loci 4 and 5 in this cluster. The maximum likelihood
odds for pair reversals under the best identified order are given in the dia-
gram below. It is interesting that the odds for inverting loci 1 and 2 provide
no hint of the overall ambiguity in ordering locus 1. Clearly, caution should
be exercised in interpreting pairwise inversion odds.

Pairwise Inversion Odds for the Best Order

1
5.8×109

—— 2
6.7×102

—— 3
1.7×1013

—— 4
1.1

—— 5
1.5×104

—— 6

Maximum likelihood estimates of the interlocus distances under the best
order are as follows:
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Interlocus Distances for the Best Order

1
108.7
—— 2

17.4
—— 3

37.9
—— 4

11.9
—— 5

12.5
—— 6

The total map length between locus 1 and locus 6 is b = 188.4 cR under
this order. In the Bayesian analyses, b was increased to 200 cR to determine
a prior interval length of 7×200

5 = 280 cR. Interlocus distances based on the
posterior mode then give a total map length of only 176.5 cR. Apparently,
imposition of a tight prior tends to decrease estimated interlocus distances.

11.11 Problems

1. For m loci in a haploid clone with no missing observations, the ex-
pected number of obligate breaks E[B(id)] is given by expression
(11.2).

(a) Under the correct order, show [1] that

Var[B(id)] = 2r(1 − r)
{m−1∑

i=1

θi,i+1 − 2r(1 − r)
m−1∑
i=1

θ2i,i+1

+ (1 − 2r)2
m−2∑
i=1

m−1∑
j=i+1

θi,i+1θj,j+1(1 − θi+1,j)
}
,

where the breakage probability θi+1,j = 0 when i+1 = j. (Hint:
Let Si be the indicator of whether a break has occurred between
loci i and i+ 1. Verify that

E(SiSj) = r(1 − r)θi,i+1θj,j+1[1 − θi+1,j(1 − 2r)2]

by considering four possible cases consistent with SiSj = 1. The
first case is characterized by retention at locus i, nonretention
at locus i + 1, retention at locus j, and nonretention at locus
j + 1.)

(b) The above expression for Var[B(id)] can be simplified in the
Poisson model by noting that

1 − θi+1,j =
j−1∏

k=i+1

(1 − θk,k+1).

Using this last identity, argue by induction that

m−2∑
i=1

m−1∑
j=i+1

θi,i+1θj,j+1(1 − θi+1,j)
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=
m−1∑
i=1

θi,i+1 − [1 −
m−1∏
i=1

(1 − θi,i+1)].

2. In a haploid radiation hybrid experiment with m loci, let Xij be the
observation at locus j of clone i. Assuming independence of the

clones and no missing data, show that

r̂n =
1
n

n∑
i=1

1
m

m∑
j=1

1{Xij=1} (11.23)

is a strongly consistent sequence of estimators of r. Let ajk be the
probability Pr(Xij �= Xik) = 2r(1 − r)θjk . Show that

ânjk =
1
n

n∑
i=1

1{Xij �=Xik}

is a strongly consistent sequence of estimators of ajk . Finally, prove
that

θ̂njk =
ânjk

2r̂n(1 − r̂n)
(11.24)

is a strongly consistent sequence of estimators of θjk , the breakage
probability between loci j and k.

3. In addition to the assumptions of the last problem, suppose that there
are just m = 2 loci. Prove that the estimates (11.23) and (11.24)
of r and θ reduce to the maximum likelihood estimates described in
Sections 11.4 and 11.7 when inequality (11.12) is satisfied empirically.

4. Let θ̂njk be any strongly consistent sequence of estimators of θjk for
polyploid radiation hybrid data. Prove that minimizing the estimated
total distance

D(σ) = −
m−1∑
i=1

ln[1 − θ̂n,σ(i),σ(i+1)]

between the first and last loci of an order σ provides a strongly con-
sistent criterion for choosing the true order.

5. Let L(γ) be the loglikelihood for the dataX on a single, haploid clone
fully typed at m loci. Here γ = (θ1, . . . , θm−1, r)t is the parameter
vector. The expected information matrix J has entries

Jγiγj = E
[
− ∂2

∂γi∂γj
L(γ)

]
.
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Show that [9, 14]

Jθiθi =
r(1 − r)(2 − θi)

(1 − θir)θi(1 − θi + θir)
Jθir = Jrθi

=
(1 − 2r)(1 − θi)

(1 − θir)(1 − θi + θir)

Jrr =
1

r(1 − r)
+

m−1∑
i=1

θi

[
1 − r

r(1 − θir)
+

r

(1 − r)(1 − θi + θir)

]
.

Prove that all other entries of J are 0. Hints: Use the factorization
property of the likelihood. In the case of two loci, denote the proba-
bility Pr(X1 = i,X2 = j) by pij for brevity. Then a typical entry Jαβ

of J is given by

Jαβ =
1∑

i=0

1∑
j=0

1
pij

[
∂pij

∂α

] [
∂pij

∂β

]
.

6. Continuing the last problem, prove that Jθiθi has a maximum at r = 1
2

when θi is fixed. Use this fact to show that Jθiθi ≤ 1/[2θi(1 − θi)].
Given a known retention probability r, this inequality proves that
the asymptotic standard error of the estimated θi will be at least

√
2

times greater than that calculated for a simple binomial experiment
with success probability θ.

7. Complete the calculation of the partial derivatives of the likelihood
for a single clone under the polyploid model by specifying the partial
derivatives ∂

∂θi
tc,i, ∂

∂r tc,i, and ∂
∂rα1(j1) appearing in equations (11.16)

and (11.17).

8. Under the polyploid model for two loci, consider the map

(θ, r) → (q00, q11)
q00 = Pr(X1 = 0, X2 = 0)
q11 = Pr(X1 = 1, X2 = 1).

Show that this map from {(θ, r) : θ ∈ [0, 1], r ∈ (0, 1)} is one to one
and onto the region

Q = {(q00, q11) : q00 ∈ (0, 1), q11 ∈ (0, 1), q00q11 ≥ q201},
where q01 = Pr(X1 = 0, X2 = 1). Prove that θ = 0 if and only if
q00 + q11 = 1, and θ = 1 if and only if q00q11 = q201. The upper
boundary of Q is formed by the line q00 + q11 = 1 and the lower
boundary by the curve q00q11 = q201. Prove that the curve is generated
by the function q11 = 1 + q00 − 2

√
q00.
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9. Under the polyploid model for two loci, show that the expected in-
formation for θ is

Jθθ =
c2r2(1 − θr)c−2(1 − r)c[1 − 2(1 − r)c + (1 − θr)c]
[1 − (1 − θr)c][1 − 2(1 − r)c + (1 − r)c(1 − θr)c]

.

Argue that Jθθ has a maximum as a function of r near r = 1
c+1 when

θ is near 0. (Hint: Be careful because limθ→0 Jθθ = ∞. The singularity
at θ = 0 is removable in the function ∂

∂r ln Jθθ.)

This result suggests that the value r = 1
c+1 is nearly optimal for

small θ in the sense of providing the smallest standard error of the
maximum likelihood estimate θ̂ of θ. In this regard note that Jθr and
Jrr have finite limits as θ → 0. Thus for small θ, the approximate
standard error of θ̂ is proportional to 1√

Jθθ
even when r is jointly

estimated with θ.

10. In computing the distribution of the number of obligate breaks per
clone in the polyploid model, how must the initial conditions and
recurrences for the probabilities pk(i, j) be modified when some loci
are untyped?

11. The construction of radiation hybrids always involves a selectable
enzyme such as HPRT or TK. On the chromosome containing the
selectable locus, at least one fragment containing the locus is neces-
sary to form a viable clone. This requirement invalidates our model
of fragment retention for the chromosome in question. The obvious
amendment of the model is to condition on the event of retention of
at least one fragment bearing the selectable locus. Discuss how this
change of the model affects likelihood calculation via Baum’s forward
and backward algorithms [16].
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Models of Recombination

12.1 Introduction

At meiosis, each member of a pair of homologous chromosomes replicates
to form two sister chromosomes known as chromatids. The maternally
and paternally derived sister pairs then perfectly align to form a bundle
of four chromatids. Crossing-over occurs at points along the bundle known
as chiasmata. At each chiasma, one sister chromatid from each pair is
randomly selected and cut at the crossover point. The cell then rejoins the
partial paternal chromatid above the cut to the partial maternal chromatid
below the cut, and vice versa, to form two hybrid maternal–paternal chro-
matids. The preponderance of evidence suggests that the two chromatids
participating in a chiasma are chosen nearly independently from chiasma to
chiasma [31]. This independence property is termed lack of chromatid in-
terference. After crossing-over has occurred, the recombined chromatids
of a bundle are coordinately separated by two cell divisions so that each of
the four resulting gametes receives exactly one chromatid.

The number and positions of the chiasmata along a chromatid bundle
provide an example of a stochastic point process [6]. Most probabilists
are familiar with point processes such as Poisson processes and renewal
processes. This chapter considers point process models for the formation of
chiasmata. Each such chiasma process induces correlated and identically
distributed crossover processes on the four gametes created from a chro-
matid bundle. We can conceive of both chiasma and crossover processes as
occurring on a fixed interval of the real line. When one makes, as we do
in this chapter, the assumption of no chromatid interference, then each of
the four crossover processes is created from the chiasma process by ran-
dom thinning of chiasmata. If we characterize a gamete by the origin
of one of its telomeres (chromosome ends), then it participates in half
of the crossovers on average. Random thinning amounts to independently
choosing for each chiasma whether the gamete does or does not participate
in the underlying crossover event. Because of the symmetry of the model,
these two choices are equally likely.

For any well-behaved set A on the chromatid bundle, the random variable
NA counts the number of random points in A. The chiasma process is de-
termined by these random variables. Two important functions of A are the
intensity measure E(NA) and the avoidance probability Pr(NA = 0).
It is natural to assume that E(N{a}) = 0 for every fixed point a and that
random points never coincide. Beyond these assumptions, we seek models
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that correctly capture the phenomenon of chiasma interference. This sec-
ond kind of interference involves the suppression of additional chiasmata in
the vicinity of a chiasma already formed. Although a fair amount is known
about the biochemistry and cytology of crossing-over, no one has suggested
a mechanism that fully explains chiasma interference [28, 30]. Until such
a mechanism appears, we must be content with purely phenomenological
models for the relatively small number of chiasmata per chromatid bundle.
Even if a satisfactory model is devised, calculation of gamete probabilities
under it may be very cumbersome. The models considered in this chapter
have the advantage of permitting exact calculation of multilocus gamete
probabilities.

12.2 Mather’s Formula and Its Generalization

Mather [19] discovered a lovely formula connecting the recombination frac-
tion θ separating two loci at positions a and b to the random number of
chiasmata N[a,b] occurring on the interval [a, b] of the chromatid bundle.
Mather’s formula

θ =
1
2

Pr(N[a,b] > 0)

=
1
2
[1 − Pr(N[a,b] = 0)] (12.1)

makes it clear that 0 ≤ θ ≤ 1
2 and that θ increases as b increases for a fixed.

The genetic map distance d separating a and b is defined as 1
2 E(N[a,b]), the

expected number of crossovers on [a, b] per gamete. The unit of distance is
the Morgan, in honor of Thomas Hunt Morgan. For short intervals, θ ≈ d
because E(N[a,b]) ≈ Pr(N[a,b] > 0).

To prove (12.1), note first that a gamete is recombinant between two loci
a and b if and only if an odd number of crossovers occurs on the gamete
between a and b. Let rn be the probability that the gamete is recombinant
given that n chiasmata occur on the chromatid bundle between a and b. It
is clear that r0 = 0. For n > 0, we have the recurrence

rn =
1
2
rn−1 +

1
2
(1 − rn−1) (12.2)

because a gamete is recombinant after n crossovers if it is recombinant
after n − 1 crossovers and does not participate in crossover n, or if it is
nonrecombinant after n− 1 crossovers and does participate in crossover n.
In view of recurrence relation (12.2), it follows that rn = 1

2 for all n > 0,
and this fact proves Mather’s formula (12.1).

As a simple application of Mather’s formula, suppose that the number
of chiasmata on the chromatid bundle between a and b follows a Poisson
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distribution with mean λ. Then a gamete is recombinant with probability
1
2 (1 − e−λ) and nonrecombinant with probability 1

2 (1 + e−λ). Haldane’s
model, which postulates that the chiasma process is Poisson, turns out to
be crucial in generalizing Mather’s formula [17, 24]. To derive this gener-
alization, we employ a randomization technique pioneered by Schrödinger.

Consider a sequence of k+1 loci along a chromosome. The k+1 loci define
k adjacent intervals I1, . . . , Ik . A gamete can be recombinant on some of
these intervals and nonrecombinant on others. For a subset S ⊂ {1, . . . , k},
let yS denote the probability that the gamete is recombinant on each of the
intervals Ii indexed by i ∈ S and nonrecombinant on each of the remaining
intervals Ii indexed by i /∈ S. Under Haldane’s model, the numbers of
chiasmata falling on disjoint intervals are independent. Therefore,

yS =
∏
i∈S

1
2
(1 − e−λi)

∏
i/∈S

1
2
(1 + e−λi), (12.3)

where λi denotes the expected number of chiasmata on interval Ii.
Next consider what happens when we fix the number NIi = ni of chias-

mata occurring on each interval Ii. The probability of the recombination
pattern dictated by S now changes to the conditional probability ynS ,
where n is the multi-index (n1, . . . , nk). We recover yS via

yS =
∑
n

ynS

k∏
i=1

λni

i

ni!
e−λi . (12.4)

Equating formulas (12.3) and (12.4) and multiplying by
∏k

i=1 e
λi , we de-

duce that

yS

k∏
i=1

eλi =
∑
n

ynS

k∏
i=1

λni

i

ni!

=
(1

2

)k ∏
i∈S

(eλi − 1)
∏
i/∈S

(eλi + 1). (12.5)

We extract the coefficient ynS by evaluating the partial derivative

∂
∑k

i=1
ni

∂λn1
1 · · · ∂λnk

k

(
yS

k∏
i=1

eλi

)

at λ1 = · · · = λk = 0. Equating the two results from identity (12.5) yields

ynS =
(1

2

)k ∏
i∈S

(1 − 1{ni=0})
∏
i/∈S

(1 + 1{ni=0})

=
(1

2

)k ∑
T

(−1)|S∩T |1{
∑

i∈T
ni=0},
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where T ranges over all subsets of {1, . . . , k} and |S ∩ T | indicates the
number of elements in the intersection S ∩ T . This last formula continues
to hold when the fixed counts ni are replaced by the random counts NIi .
Taking expectations therefore produces

yS = E(yN S)

=
(1

2

)k ∑
T

(−1)|S∩T | Pr
(∑

i∈T

NIi = 0
)

(12.6)

=
(1

2

)k 1∑
t1=0

· · ·
1∑

tk=0

(−1)
∑

k

i=1
siti Pr

( k∑
i=1

tiNIi = 0
)
,

where si = 1{i∈S} and ti = 1{i∈T} are the obvious indicator functions.
This is the sought-after generalization of Mather’s formula [24, 26]. It col-
lectively expresses the multilocus gamete probabilities as the inverse Walsh
transform of the avoidance probabilities of the chiasma process.

Special cases of (12.6) are easy to construct. For instance, Mather’s for-
mula (12.1) can be restated as y{1} = 1

2 [1 − Pr(NI1 = 0)] for k = 1. The
probability of nonrecombination is y∅ = 1

2 [1 + Pr(NI1 = 0)]. When k = 2,
two of the relevant gamete probabilities are

y{1}

=
1
4
[1 − Pr(NI1 = 0) + Pr(NI2 = 0) − Pr(NI1 +NI2 = 0)

y{1,2} (12.7)

=
1
4
[1 − Pr(NI1 = 0) − Pr(NI2 = 0) + Pr(NI1 +NI2 = 0)].

12.3 Count-Location Model

The count-location model operates by first choosing the total number N of
chiasmata along the bundle of four chromatids [13, 23]. If we identify the
bundle with the unit interval [0, 1], then N = N[0,1]. Let qn = Pr(N = n)
be the distribution of N . Once the number of chiasmata is chosen, the
individual chiasmata are located independently along the bundle according
to some common continuous distribution F (t). If λ = E(N) in this setting,
then the map length of an interval [a, b] reduces to d = 1

2λ[F (b) − F (a)].
The recombination fraction θ of the interval can be expressed compactly
via the generating function Q(s) =

∑∞
n=0 qns

n of N . Conditioning on the
value of N , we find that

θ =
1
2

Pr(N[a,b] > 0)

=
1
2

∞∑
n=0

qn[1 − Pr(N[a,b] = 0 | N = n)]
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=
1
2

∞∑
n=0

qn{1 − [1 − F (b) + F (a)]n}

=
1
2
− 1

2
Q(1 − 2λ−1d).

Thus, the count-location model yields a map function θ = M(d) giving
the recombination fraction θ of an interval purely in terms of the corre-
sponding map distance d.

Gamete probabilities are easily computed in the count-location model
based on formula (12.6). Indeed, if Ii = [ai, bi] and wi = F (bi) − F (ai),
then the gamete probability yS can be expressed in either of the equivalent
forms

yS =
(1

2

)k ∑
T

(−1)|S∩T |Q(1 −
∑
i∈T

wi)

=
∞∑

n=0

qn

(1
2

)k ∑
T

(−1)|S∩T |(1 −
∑
i∈T

wi)n.

Further algebraic simplification of yS is possible but will not be pursued
here [24].

Example 12.3.1 Haldane’s Model

Haldane’s Poisson model corresponds to the chiasma count distribution
qn = λne−λ/n! with generating function Q(s) = e−λ(1−s) [11]. In this case,
the conversion between map distance d and recombination fraction θ is
mediated by the pair of functions mentioned in equations (7.8) and (7.8)
of Chapter 7. Although Haldane’s model is widely used, it unrealistically
entails no chiasma interference. This defect is partially compensated for by
its computational simplicity. See, for instance, Problem 1 of this chapter
and Trow’s formula in Problem 1 of Chapter 7.

Other simple choices for the chiasma count distribution include the bi-
nomial and truncated Poisson distributions with generating functions

Q(s) =
(1

2
+
s

2

)r

Q(s) =
e−λ(1−s) − e−λ

1− e−λ
,

respectively [12, 29]. The latter choice is particularly useful because it incor-
porates the empirical observation that almost all chromatid bundles display
at least one chiasma.

12.4 Stationary Renewal Models

Renewal processes provide another important class of recombination
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models. A renewal process is generated by the partial sums of a sequence
X1, X2, . . . of nonnegative, i.i.d. random variables. The first random point
on [0,∞) occurs at X1, the second at X1 +X2, the third at X1 +X2 +X3,
and so forth [8, 15, 25]. If the Xi have common continuous distribution
function F (x) with mean µ, then for large x the interval (x, x+∆x) contains
approximately ∆x

µ random points. The expected number of random points
U(x) on the interval (0, x] coincides with the distribution function E(N[0,x])
of the intensity measure. In the renewal theory literature, F (x) is said to
be the interarrival distribution, and U(x) is said to be the renewal
function. If the Xi follow an exponential distribution, then the renewal
process collapses to a Poisson process with intensity λ = 1

µ and renewal
function U(x) = x

µ .
The identity U(x) = x

µ characterizes a Poisson process. In general, we
can achieve a uniform distribution for the intensity measure by passing
to a delayed renewal process where X1 follows a different distribution
function F∞(x) than the subsequent Xi. The appropriate choice of F∞(x)
turns out to have density F ′∞(x) = [1 − F (x)]/µ. Problem 3 sketches a
proof of this fact. The delayed renewal process with density [1 − F (x)]/µ
is a stationary point process in the sense that it exhibits the same
stochastic behavior regardless of whether we begin observing it at 0 or
at some subsequent nonrandom point y > 0. In particular, the waiting
time until the next random point after y also follows the equilibrium
distribution F∞(x).

For more than two generations, geneticists have proposed various map
functions. The recent work of Zhao and Speed [32] clarifies which of these
map functions legitimately arise from point process models. They show
that any valid map function can be realized by constructing a stationary
renewal process for the underlying chiasma process. Implicit in this finding
is the fact that a map function does not uniquely define its chiasma process.

In exploring the map function problem, let us consider for the sake of
simplicity a map function θ = M(d) that is twice differentiable and whose
derivative satisfies the fundamental theorem of calculus in the form

M ′(d2) −M ′(d1) =
∫ d2

d1

M ′′(x)dx.

By virtue of Mather’s formula (12.1), it is clear that (a) M(0) = 0, (b)
M ′(d) ≥ 0, and (c) M ′(0) = 1. If at least one chiasma is certain on a
segment of infinite length, then it is also clear that (d) limd→∞M(d) = 1

2 .
The final property (e) M ′′(d) ≤ 0 is true but more subtle.

Property (e) can be proved by noting that formula (12.6) implies on one
hand that

y{1,2,3} − y{1,3}

=
1
8

[
− 2 Pr(NI2 = 0) + 2 Pr(NI1 = 0, NI2 = 0)
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+ 2 Pr(NI2 = 0, NI3 = 0) − 2 Pr(NI1 = 0, NI2 = 0, NI3 = 0)
]

= −1
4

E
[
(1 − 1{NI1=0})1{NI2=0}(1 − 1{NI3=0})

]
(12.8)

≤ 0.

On the other hand, if the map distance assigned to interval Ij is dj , then one
can invoke Mather’s formula (12.1) and exchange avoidance probabilities
for recombination fractions in the above computation. This gives

y{1,2,3} − y{1,3}

=
1
8

{
− 2[1 − 2M(d2)] + 2[1 − 2M(d1 + d2)] (12.9)

+ 2[1− 2M(d2 + d3)] − 2[1 − 2M(d1 + d2 + d3)]
}
.

Equality (12.9) and inequality (12.8) together imply that

M(d1 + d2 + d3) −M(d1 + d2) −M(d2 + d3) +M(d2)

=
∫ d2+d3

d2

[M ′(d1 + u) −M ′(u)]du

≤ 0.

Because this holds for all positive dj , the integrandM ′(d1+u)−M ′(u) ≤ 0,
and property (e) follows from the difference quotient definition of M ′′(d)
[27].

Now suppose a chiasma process is determined by a stationary renewal
model with distribution function F (x) having density f(x) = F ′(x). Be-
cause of stationarity, the map length of the interval [a, a+ b] is d = b

2µ . In
view of Mather’s formula (12.1) and the form of the equilibrium density
F ′∞(x), the corresponding recombination fraction is

M(d) =
1
2

{
1 − 1

µ

∫ ∞

b

[1 − F (x)]dx
}

=
1
2

{
1 − 1

µ

∫ ∞

2µd

∫ ∞

x

f(y)dydx
}
.

Differentiating this expression twice with respect to d yields

M ′′(d) = −2µf(2µd).

Thus, f(x) can be recovered via

f(x) = − 1
2µ
M ′′

( x

2µ

)
. (12.10)

Without loss of generality, we can always rescale distances so that µ = 1
2

in this formula.
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Conversely, if we postulate the existence of a map function M(d) satisfy-
ing properties (a) through (e), then equation (12.10) defines a valid density
function f(x). Indeed, property (e) indicates that f(x) ≥ 0, and properties
(a) and (d) indicate that

∫∞
0
M ′(x)dx = 1

2 . In view of properties (b) and
(e), this last fact entails limx→∞M ′(x) = 0. Thus, the calculation

∫ ∞

0

f(x)dx = M ′(0) − lim
x→∞M ′(x)

= 1

verifies that f(x) has total mass 1. Using f(x) to construct a stationary
renewal process yields a map function matching M(d) and proves Zhao and
Speed’s converse.

Example 12.4.1 Kosambi’s Map Function

Kosambi’s map function [16] M(d) = 1
2 tanh(2d) has first two derivatives

M ′(d) =
4

(e2d + e−2d)2

M ′′(d) = −16
e2d − e−2d

(e2d + e−2d)3
.

From these expressions it is clear that properties (a) through (e) are true.
Taking µ = 1

2 in equation (12.10) yields

f(x) = 16
e2x − e−2x

(e2x + e−2x)3
.

12.5 Poisson-Skip Model

The Poisson-skip process is a particularly simple stationary renewal
model that is generated by a Poisson process with intensity λ and a skip
distribution sn on the positive integers. Random Poisson points are divided
into o points and χ points; o points are “skipped” to reach χ points, which
naturally correspond to chiasmata. At each χ point, one independently
chooses with probability sn to skip n − 1 o points before encountering
the next χ point. This recipe creates a renewal process with interarrival
distribution

F (x) =
∞∑

n=1

sn

∞∑
m=n

(λx)m

m!
e−λx.

The Poisson tail probability
∑∞

m=n
(λx)m

m! e−λx appearing in this formula is
the probability that the nth random point to the right of the current χ point
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lies within a distance x of the current χ point. If we let ω =
∑∞

n=1 nsn be
the mean number of points until the next χ point, then Wald’s formula [15]
shows that F (x) has mean ω

λ . The density of the equilibrium distribution
is

λ

ω
[1 − F (x)] =

λ

ω

∞∑
n=1

sn

[
1 −

∞∑
m=n

(λx)m

m!
e−λx

]

=
λ

ω

∞∑
n=1

sn

n−1∑
m=0

(λx)m

m!
e−λx.

According to equation (12.1), the map function for the Poisson-skip
model boils down to

θ =
1
2

{
1 − λ

ω

∫ ∞

x

[1 − F (y)]dy
}

=
1
2

{
1 − λ

ω

∫ ∞

x

∞∑
n=1

sn

n−1∑
m=0

(λy)m

m!
e−λydy

}
.

Because successive integrations by parts yield

∫ ∞

x

(λy)m

m!
e−λydy =

1
λ

m∑
k=0

(λx)k

k!
e−λx,

it follows that

θ =
1
2

{
1 − 1

ω

∞∑
n=1

sn

n−1∑
m=0

m∑
k=0

(λx)k

k!
e−λx

}

=
1
2

{
1 − e−λx

ω

∞∑
n=1

sn

n−1∑
k=0

(n− k)
(λx)k

k!

}
.

To calculate gamete probabilities under the Poisson-skip model, it is
helpful to consider two associated Markov chains. The state space for the
first chain is {0, 1, 2, . . .}. When the chain is in state 0, the most recent
point encountered was a χ point. When it is in state i > 0, it is must
pass exactly i − 1 o points before encountering the next χ point. Thus,
if the chain is currently in state 0, then it moves to state n − 1, n > 1,
with transition rate λsn. This transition mechanism implies that the chain
decides how many o points to skip simultaneously with moving to the next
point. When the chain decides to skip no o points, it remains in state 0.
If the chain is currently in state n > 0, then it falls back to state n − 1
with transition rate λ. These are the only moves possible. If at most r − 1
o points can be skipped, then the motion of the chain on the reduced state
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space {0, 1, 2, . . . , r − 1} is summarized by the infinitesimal generator

Γ =




0 1 · · · r − 2 r − 1
0 −λ(1 − s1) λs2 · · · λsr−1 λsr

1 λ −λ · · · 0 0
...

...
...

...
...

r − 1 0 0 · · · λ −λ


.

The equilibrium distribution for the chain has entries πm = 1
ω

∑
n>m sn.

Indeed, the balance condition πΓ = 0 reduces to

− 1
ω

∑
n>0

snλ(1 − s1) +
1
ω

∑
n>1

snλ = 0

for row m = 0 and to

1
ω

∑
n>0

snλsm+1 − 1
ω

∑
n>m

snλ+
1
ω

∑
n>m+1

snλ = 0

for row m > 0. These equations follow from the identity
∑

n>0 sn = 1.
The second Markov chain is identical to the first except that it has an

absorbing state 0abs. In state 0 the chain moves to state 0abs with transition
rate λs1. In state 1 it moves to state 0abs instead of state 0 with transition
rate λ. If at most r− 1 o points can be skipped, then this second chain has
infinitesimal generator

∆ =




0 1 · · · r − 2 r − 1 0abs

0 −λ λs2 · · · λsr−1 λsr λs1
1 0 −λ · · · 0 0 λ
...

...
...

...
...

...
r − 1 0 0 · · · λ −λ 0
0abs 0 0 · · · 0 0 0



.

As emphasized in Chapter 10, the entry pij(t) of the matrix exponential
etΓ provides the probability that the Poisson-skip process moves from state
i of the first Markov chain at time 0 to state j of the same chain at time t.
The entry qij(t) of the matrix exponential et∆ provides the probability that
the Poisson-skip process moves from state i of the first chain to state j of
the first chain without encountering a χ point during the interim. Because
∆ has the partition structure

∆ =
(

Φ v
0 0

)

for Φ an r×r matrix and v a 1×r column vector, one can easily demonstrate
that et∆ has the corresponding partition structure with etΦ as its upper
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left block. More to the point, the entries of qij(t) of etΦ can be explicitly
evaluated as

q0j(t) =

{
e−λt j = 0∑

k>j sk
(λt)k−j

(k−j)! e
−λt j > 0

(12.11)

for i = 0, and as

qij(t) =
{ 0 j > i or j = 0

(λt)i−j

(i−j)! e
−λt 0 < j ≤ i

(12.12)

for i > 0.
The solutions (12.11) and (12.12) can be established by path-counting

arguments. For instance, the expression for q00(t) is based on the obser-
vation that the Poisson-skip process cannot leave state 0 and return to it
without encountering a χ point. The process stays in state 0 with proba-
bility e−λt. On the other hand, the process can leave state 0 and end up
in state j > 0 if the kth point to its right is the next χ point and if it
encounters k − j o points during the time interval [0, t]. Conditioning on
the value of k gives the expression in (12.11) for q0j(t) when j > 0. Similar
reasoning leads to the expressions (12.12) for qij(t) when i > 0.

Although at first glance finding explicit solutions for the entries pij(t)
of etΓ seems hopeless, some simplification can be achieved by considering
the discrete renewal process corresponding to how many random points are
skipped. Starting from a χ point, let un be the probability that the nth
point to the right of the current point is a χ point. By definition, u0 = 1.
Furthermore, the probabilities un satisfy the classical recurrence relation

un = s1un−1 + s2un−2 + · · · + sn−1u1 + snu0,

which enables one to compute all of the un beginning with u0. This re-
currence is derived by conditioning on the number of the next-to-last χ
point.

Armed with these probabilities, we can now express

pij(t) = 1{0<j≤i}
(λt)i−j

(i− j)!
e−λt + 1{j=0}

∞∑
n=0

un
(λt)i+n

(i+ n)!
e−λt

+ 1{j>0}
∞∑

n=0

un

∑
k>j

sk
(λt)i+n+k−j

(i+ n+ k − j)!
e−λt. (12.13)

Indeed, the first term (λt)i−je−λt/(i − j)! of (12.13) expresses the prob-
ability of encountering i − j o points during [0, t]; this is relevant when
there is a direct path from state i to j that does not pass through state
0. The term un(λt)i+ne−λt/(i + n)! is the probability of passing through
the i − 1 current o points to the right, hitting the next χ point, and re-
turning to a χ point after encountering n further points. Finally, the term
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unsk(λt)i+n+k−je−λt/(i+n+ k− j)! is the probability of passing through
the i− 1 current o points to the right, hitting the next χ point, returning
to a χ point after encountering n further points, and then passing through
k − j remaining o points en route to a χ point k points down the road.

We are now in a position to calculate gamete probabilities. According to
formula (12.6), we must first calculate the avoidance probability

Pr
(∑

i∈T

NIi = 0
)

for a subset {Ii : i ∈ T} of the ordered, adjacent intervals I1, . . . , Ik. Sup-
pose, for example, that k = 3 and T = {1, 3}. Let interval Ii have length
xi. At the start of interval I1, the Poisson-skip process is in state r of the
first Markov chain with equilibrium probability πr. On the interval I1, the
process must not encounter a χ point. It successfully negotiates the interval
and winds up at state s with probability qrs(x1). On interval I2, there is
no restriction on the process, so it moves from state s at the start of the
interval to state t at the end of the interval with probability pst(x2). On
interval I3, the process again must not encounter a χ point. Therefore, the
process successfully ends in state u with probability qtu(x3). Summing over
all possible states at the start and finish of each interval gives the avoidance
probability

Pr(NI1 +NI3 = 0) =
∑

r

∑
s

∑
t

∑
u

πrqrs(x1)pst(x2)qtu(x3).

In obvious matrix notation, this reduces to

Pr(NI1 +NI3 = 0) = πex1Φex2Γex3Φ1.

The general case is handled in exactly the same fashion.
Avoidance probabilities can be combined to give a compact formula for

gamete probabilities by defining the two matrices

R(x) =
1
2
(exΓ − exΦ)

Z(x) =
1
2
(exΓ + exΦ).

Returning to our special case with three intervals, suppose that we wish
to calculate y{1,2}. Applying the distributive law in the gamete probability
formula (12.6), we easily deduce that

y{1,2} = πR(x1)R(x2)Z(x3)1.

In effect, we choose on each interval whether to avoid χ points, and thus
use matrix exΦ, or whether to embrace both χ and o points, and thus use
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matrix exΓ. The factors of 1
2 in the definition of R(x) and Z(x) give the

overall factor ( 1
2 )k in (12.6), and the factors of +1 and −1 make the sign

(−1)|S∩T | come out right. In general, if a set S is characterized by the
k-tuple of indicators si = 1{i∈S}, then the gamete probability yS can be
expressed as

yS = πR(x1)s1Z(x1)1−s1 · · ·R(xk)skZ(xk)1−sk1. (12.14)

Formula (12.14) can also be derived and implemented by defining an ap-
propriate hidden Markov chain. Let Uj be the unobserved state of the first
Markov chain at locus j, and let Yj be the observed indicator random vari-
able flagging whether recombination has occurred between loci j−1 and j.
To compute a gamete probability Pr(Y2 = i1, . . . , Yk+1 = ik), one can ap-
ply Baum’s forward algorithm as in the radiation hybrid model of Chapter
11 [2, 7]. We begin the recursive computation of the joint probabilities

fj(uj) = Pr(Y2 = i1, . . . , Yj = ij−1, Uj = uj)

by setting f1(u1) = πu1 . At locus k + 1 we recover the gamete probability
Pr(Y2 = i1, . . . , Yk+1 = ik) from the identity

Pr(Y2 = i1, . . . , Yk+1 = ik) =
∑
uk+1

fk+1(uk+1).

In view of Mather’s formula (12.1), if ij = 1, then

fj+1(uj+1) =
∑
uj

fj(uj)
1
2

[
puj ,uj+1(xj) − quj ,uj+1(xj)

]

because 1
2 [puj ,uj+1(xj)−quj ,uj+1(xj)] is the probability that the chain moves

from state Uj = uj at locus j to state Uj+1 = uj+1 at locus j + 1 and that
the chosen gamete is recombinant on the interval between the loci. On the
other hand, if ij = 0, then

fj+1(uj+1) =
∑
uj

fj(uj)
1
2

[
puj ,uj+1(xj) + quj ,uj+1(xj)

]

because

quj ,uj+1(xj) +
1
2

[
puj ,uj+1(xj) − quj ,uj+1(xj)

]

=
1
2

[
puj ,uj+1(xj) + quj ,uj+1(xj)

]

is the probability that the chain moves from state Uj = uj at locus j to state
Uj+1 = uj+1 at locus j + 1 and that the chosen gamete is nonrecombinant
on the interval between the loci. Hence, Baum’s forward algorithm is simply
a device for carrying out the vector times matrix multiplications implied
by formula (12.14).
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Example 12.5.1 Chi-Square Model

In the chi-square model [1, 5, 10, 21, 22, 33], a fixed number of points is
skipped. If every rth point is a χ point, then si = 1{i=r} and the equilibrium
distribution π is uniform on {0, 1, . . . , r − 1}. The discrete renewal density
un = 1{n=0 mod r}. The expressions for q0j(t) and pij(t) simplify to

q0j(t) =

{
e−λt j = 0
(λt)r−j

(r−j)! e
−λt j > 0

and

pij(t) = 1{j≤i}
(λt)i−j

(i− j)!
e−λt +

∞∑
m=1

(λt)mr+i−j

(mr + i− j)!
e−λt.

This model tends to fit data well.

12.6 Chiasma Interference

Chiasma interference can be roughly divided into count interference and
position interference. Count interference arises when the total number
of chiasmata on a chromosome follows a non-Poisson distribution. Position
interference arises when the formation of one chiasma actively discourages
the formation of other chiasmata nearby. The count-location model exhibits
count interference but not position interference. Stationary renewal mod-
els exhibit both types of interference and therefore are somewhat better
equipped to capture the subtleties of recombination data.

Traditionally, geneticists have measured interference by coincidence co-
efficients. The coincidence coefficient C(I1, I2) of two adjacent intervals I1
and I2 is defined as the ratio of the probability of recombination on both
intervals to the product of their individual recombination fractions. Based
on equations (12.1) and (12.7), this ratio is

C(I1, I2) =
1
4 [1 − Pr(NI1 = 0) − Pr(NI2 = 0) + Pr(NI1 +NI2 = 0)]

1
2 [1 − Pr(NI1 = 0)] 12 [1 − Pr(NI2 = 0)]

.

The conditions C(I1, I2) < 1 and C(I1, I2) > 1 are referred to as posi-
tive and negative interference, respectively. Positive interference occurs
when

Pr(NI1 +NI2 = 0) < Pr(NI1 = 0) Pr(NI2 = 0), (12.15)

and negative interference occurs when the reverse inequality obtains. Hal-
dane’s model gives equality and exhibits no interference.
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In the count-location model, inequality (12.15) is equivalent to

Q(1 − x1 − x2) < Q(1− x1)Q(1 − x2), (12.16)

where x1 = 2
λd1 and x2 = 2

λd2 are the standardized map lengths of the
intervals I1 and I2, and Q(s) is the generating function of the total number
of chiasmata on the chromatid bundle. It is of some interest to characterize
the class C of discrete distributions for the chiasma count N guaranteeing
positive interference or at least noninterference. In general, we can say that
C

(a) is closed under convergence in distribution,

(b) is closed under convolution,

(c) contains all distributions whose generating functions Q(s) are log-
concave in the sense that d2

ds2 lnQ(s) ≤ 0,

(d) contains all distributions concentrated on the set {0, 1} or on the set
{1, 2, 3, 4}.

Properties (a) and (b) are trivial to deduce. Problems 8 and 9 address
properties (c) and (d). Property (d) is particularly relevant because most
chromatid bundles carry between one and four chiasmata. From these four
properties, we can build up a list of specific members of C. For instance,
C contains all binomial distributions and all distributions concentrated on
two adjacent integers. Compound Poisson distributions such as the negative
binomial exhibit negative interference rather than positive interference.

For the stationary renewal model, we allow equality in inequality (12.15)
and reexpress it for all y, z ≥ 0 as

F̄∞(y + z) ≤ F̄∞(y)F̄∞(z), (12.17)

where the right-tail probability

F̄∞(x) = 1 − F∞(x)

=
1
µ

∫ ∞

0

[1 − F (w + x)]dw. (12.18)

Log-concavity of F̄∞(x) is a sufficient condition for the submultiplicative
property (12.17). Indeed, the inequality

ln F̄∞(y + z) =
∫ y+z

0

d

dx
ln F̄∞(x)dx

≤
∫ y

0

d

dx
ln F̄∞(x)dx +

∫ z

0

d

dx
ln F̄∞(x)dx

= ln F̄∞(y) + ln F̄∞(z)
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is equivalent to the inequality

0 ≤
∫ y

0

[ d
dx

ln F̄∞(x) − d

dx
ln F̄∞(x + z)

]
dx,

which is certainly true if d
dx ln F̄∞(x) is decreasing.

A sufficient condition in turn for

d2

dx2
ln F̄∞(x) = − d

dx

1 − F (x)
µF̄∞(x)

=
f(x)

µF̄∞(x)
− [1 − F (x)]2

µ2F̄∞(x)2
(12.19)

≤ 0

to hold is that the hazard rate f(x)
1−F (x) be increasing in x. If this is the

case, then in view of equation (12.18), we can average the right-hand side
of the inequality

f(x)
1 − F (x)

≤ f(x+ w)
1 − F (x+ w)

with respect to the probability density

1 − F (x+ w)∫∞
0 [1 − F (x+ v)]dv

=
1 − F (x+ w)
µF̄∞(x)

to give the bound

f(x)
1 − F (x)

≤ 1 − F (x)
µF̄∞(x)

.

This last bound implies the log-concavity condition (12.19).
In summary, increasing hazard rate leads to positive interference [14]. For

the particular case of the Poisson-skip process, we can assert considerably
more. Let C now be the class of discrete skip distributions {sn}∞n=1 that
guarantee positive interference or no interference. Then C satisfies prop-
erties (a) and (b) enumerated for the count-location model. Furthermore,
properties (c) and (d) are replaced by

(e) contains all distributions {sn}∞n=1 that are positive on some interval,
0 elsewhere, and log-concave in the sense that s2n ≥ sn−1sn+1 for all
n,

(f) contains all distributions concentrated on a single integer or two ad-
jacent integers, all binomial, negative binomial, Poisson, and uniform
distributions, and all shifts of these distributions by positive integers.

Although the proofs of these assertions are not beyond us conceptually, we
refer interested readers to [18] for details.
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12.7 Application to Drosophila Data

As an application of the various recombination models, we now briefly dis-
cuss the classic Drosophila data of Morgan et al. [20]. These early geneticists
phenotyped 16,136 flies at 9 loci covering almost the entire Drosophila X
chromosome. Because of the nature of the genetic cross employed, a fly
corresponds to a gamete scorable on each interlocus interval as recombi-
nant or nonrecombinant. Table 12.1 presents the gamete counts n recorded.
Here the set S denotes the recombinant intervals. For example, 6,607 flies
were nonrecombinant on all intervals (the first category), and one fly was
recombinant on intervals 5, 6, and 8 and nonrecombinant on all remaining
intervals (the last category).

TABLE 12.1. Gamete Counts in the Morgan et al. Data

S n S n S n S n
φ 6607 {2, 4} 38 {6, 7} 21 {2, 5, 6} 3
{1} 506 {2, 5} 85 {6, 8} 30 {2, 5, 7} 4
{2} 1049 {2, 6} 237 {7, 8} 2 {2, 5, 8} 1
{3} 855 {2, 7} 123 {1, 2, 3} 1 {2, 6, 7} 2
{4} 1499 {2, 8} 70 {1, 2, 6} 1 {2, 6, 8} 3
{5} 937 {3, 4} 22 {1, 3, 5} 1 {2, 7, 8} 2
{6} 1647 {3, 5} 55 {1, 4, 5} 1 {3, 4, 7} 2
{7} 683 {3, 6} 177 {1, 4, 6} 1 {3, 4, 8} 1
{8} 379 {3, 7} 88 {1, 4, 7} 2 {3, 5, 6} 1
{1, 2} 3 {3, 8} 38 {1, 4, 8} 1 {3, 5, 7} 2
{1, 3} 6 {4, 5} 41 {1, 5, 7} 2 {3, 5, 8} 3
{1, 4} 41 {4, 6} 198 {1, 5, 8} 1 {3, 6, 7} 1
{1, 5} 55 {4, 7} 159 {1, 6, 8} 1 {3, 6, 8} 1
{1, 6} 118 {4, 8} 91 {2, 3, 6} 1 {4, 5, 8} 1
{1, 7} 54 {5, 6} 35 {2, 4, 6} 4 {4, 6, 8} 4
{1, 8} 34 {5, 7} 49 {2, 4, 7} 5 {4, 7, 8} 1
{2, 3} 3 {5, 8} 40 {2, 4, 8} 6 {5, 6, 8} 1

Table 12.2 summarizes the results presented in the papers [18, 23]. Hal-
dane’s model referred to in the first row of the table fits the data poorly.
The count-location model yields an enormous improvement in the maxi-
mum loglikelihood displayed in the last column of the table. In the count-
location model, the maximum likelihood estimates of the count proba-
bilities are (q0, q1, q2, q3) = (.06, .41, .48, .05); these estimates correct the
slightly erroneous values given in [23]. The departure of the count proba-
bilities from a Poisson distribution is one of the reasons Haldane’s model
fails so miserably. The chi-square and mixture models referred to in Table
12.2 are special cases of the Poisson-skip model. The best fitting chi-square
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and mixture models have skip distributions determined by s5 = 1 and
(s4, s5) = (.06, .94), respectively. These two models yield a further very
large improvement over the count-location model because they take into
account position interference as well as count interference. In spite of the
inadequacies of Haldane’s model and the count-location model, all four
models give roughly similar estimates of the map distances (in centiMor-
gans = 100 × Morgans) between adjacent pairs of loci. Note that Haldane’s
model and the count-location model compensate for the reduced number
of double crossovers on adjacent intervals by expanding map distances.

TABLE 12.2. Analysis of the Morgan et al. Data

Interval
Model 1 2 3 4 5 6 7 8 max lnL

Haldane 5.4 11.4 8.5 15.2 8.9 18.4 8.1 4.6 −37956.61
Count-Loc 5.3 10.8 8.2 14.2 8.6 16.9 7.8 4.5 −37449.17
Chi-square 5.1 9.8 7.5 13.3 8.4 15.6 7.5 4.4 −36986.87
Mixture 5.1 9.8 7.5 13.3 8.4 15.5 7.5 4.4 −36986.34

12.8 Problems

1. Prove that in Haldane’s model the gamete probability formula (12.6)
collapses to the obvious independence formula

yS =
k∏

i=1

θsi

i (1 − θi)1−si .

2. Karlin’s binomial count-location model [12] presupposes that the to-
tal number of chiasmata N has binomial distribution with generating
function Q(s) = ( 1

2 + s
2 )r. Compute the corresponding map function

and its inverse.

3. Consider a delayed renewal process generated by the sequence of inde-
pendent random variables X1, X2, . . . such that X1 has distribution
function G(x) and Xi has distribution function F (x) for i ≥ 2. If
G(x) = F (x), then show that the renewal function U(x) = E(N[0,x])
satisfies the renewal equation

U(x) = F (x) +
∫ x

0

U(x− y)dF (y). (12.20)
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If G(x) is chosen to make the delayed renewal process stationary, then
show that

x

µ
= G(x) +

∫ x

0

U(x− y)dG(y), (12.21)

where µ is the mean of F (x). If d̂H(λ) =
∫∞
0
e−λxdH(x) denotes

the Laplace transform of the distribution function H(x) defined on
(0,∞), also verify the identity

d̂G(λ) =
1 − d̂F (λ)

µλ
.

Finally, prove that the Laplace transform of the density 1
µ [1 − F (x)]

matches d̂G(λ).

4. Show that Felsenstein’s [9] map function

θ =
1
2

e2(2−γ)d − 1
e2(2−γ)d − γ + 1

(12.22)

arises from a stationary renewal model when 0 ≤ γ ≤ 2. Kosambi’s
map function is the special case γ = 0. Why does (12.22) fail to give
a legal map function when γ > 2? Note that at γ = 2 we define
θ = d

2d+1 by l’Hôpital’s rule.

5. Continuing Problem 4, prove that Felsenstein’s map function has in-
verse

d =
1

2(γ − 2)
ln
[

1 − 2θ
1 − 2(γ − 1)θ

]
.

6. The Carter and Falconer [4] map function has inverse

M−1(θ) =
1
4
[tan−1(2θ) + tanh−1(2θ)].

Prove that the map function satisfies the differential equation

M ′(d) = 1 − 16M4(d)

with initial condition M(0) = 0. Deduce from these facts that M(d)
arises from a stationary renewal model.

7. Fix a positive integer m, and let wm = e
2πi
m be the principal mth root

of unity. For each integer j, define the segmental function mαj(x)
of x to be the finite Fourier transform

mαj(x) =
1
m

m−1∑
k=0

exwk
mw−jk

m .

These functions generalize the hyperbolic trig functions cosh(x) and
sinh(x). Prove the following assertions:
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(a) mαj(x) = mαj+m(x).

(b) mαj(x+ y) =
∑m−1

k=0 mαk(x)mαj−k(y).

(c) mαj(x) =
∑∞

k=0
xj+km

(j+km)! for 0 ≤ j ≤ m− 1.

(d) d
dx

[
mαj(x)

]
= mαj−1(x) .

(e) Consider the differential equation dm

dxm f(x) = kf(x) with initial
conditions dj

dxj f(0) = cj for 0 ≤ j ≤ m − 1, where k and the cj
are constants. Show that

f(x) =
m−1∑
j=0

cjk
− j

m mαj(k
1
mx).

(f) The differential equation dm

dxm f(x) = kf(x) + g(x) with initial
conditions dj

dxj f(0) = cj for 0 ≤ j ≤ m− 1 has solution

f(x) =
∫ x

0

k−
m−1

m mαm−1[k
1
m (x − y)]g(y)dy

+
m−1∑
j=0

cjk
− j

m mαj(k
1
mx).

(g) limx→∞ e−x
mαj(x) = 1

m .

(h) In a Poisson process of intensity 1, e−x
mαj(x) is the probability

that the number of random points on [0, x] equals j modulo m.

(i) Relative to this Poisson process, let Nx count every mth random
point on [0, x]. Then Nx has probability generating function

P (s) = e−x
m−1∑
j=0

s−
j
m mαj(s

1
mx).

(j) Furthermore, Nx has mean

E(Nx) =
x

m
− e−x

m

m−1∑
j=0

jmαj(x).

(k) limx→∞
[
E(Nx) − x

m

]
= −m−1

2m .

8. In the count-location model, suppose that the count distribution has
a log-concave generating function Q(s). Prove that the model exhibits
positive or no interference [23].
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9. In the count-location model, suppose that the count distribution is
concentrated on the set {0, 1} or on the set {1, 2, 3, 4}. Prove that
the model exhibits positive or no interference [23]. (Hint: Check the
log-concavity property by showing that Q′′(s)Q(s) − Q′(s)2 reduces
to a sum of negative terms.)

10. In the count-location model, suppose that the count distribution has
generating function

Q(s) =
8
35
s+

1
5
s4 +

4
7
s5.

Prove that the opposite of inequality (12.16) holds for x1 = .4 and
x2 = .1 and, therefore, that negative interference occurs [23].

11. The Poisson-skip model with skip distribution s1 = p and s3 = 1− p
has interarrival density

f(x) = pe−x + (1 − p)
x2

2
e−x.

Show that f(x) has decreasing hazard rate for x small and positive
[18].

12. The collection of count-location models that are also stationary re-
newal models is very small [3]. Haldane’s homogeneous Poisson model
is one example. Another is the trivial model with no chiasmata. The
admixture of two such independent processes furnishes a third exam-
ple subsuming the first two. To prove that this exhausts the possi-
bilities, consider a count-location process that uniformly distributes
its points on [0, 1]. Let qn denote the nth count probability. If the
process is also a stationary renewal process, let F∞(x) be the distri-
bution of X1 and F (x) be the distribution of the subsequent Xi, in
the notation of Section 12.4. Show that

F∞(x) = 1 −
∞∑

n=0

qn(1 − x)n

and that

F (x) = Pr(X2 ≤ x | X1 = y)

= 1 −
∑∞

n=0 nqn(1 − x− y)n−1

∑∞
n=0 nqn(1 − y)n−1

.

Use these identities and the identity F ′∞(x) = [1−F (x)]/µ to demon-
strate that φ(x) =

∑∞
n=0 nqn(1− x)n−1 satisfies the functional equa-

tion φ(x)φ(y) = µ−1φ(x + y), where µ is the mean of F (x). Setting
ψ(x) = µφ(x), it follows that ψ(x)ψ(y) = ψ(x + y) and ψ(0) = 1.
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The only decreasing function fitting this description is ψ(x) = e−βx

for some β > 0. Argue that this solution entails

pn =
βn−1e−β

µn!
, n ≥ 1

1 − p0 =
1 − e−β

βµ
.
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13

Sequence Analysis

13.1 Introduction

One of the first chores after a gene is mapped and cloned is to search
for similarities between the gene and previously cloned genes. These ho-
mologies can illuminate the evolutionary history of the new gene and the
structure and function of its derived protein. Indeed, it is fair to say that
sequence comparison is the single most useful application of the burgeoning
genetic databases. Cross species comparisons are being done on a massive
scale to identify gene families, regulatory motifs, and conserved re-
gions within genes. In this chapter, we explore some of the principles and
algorithms applied in recognizing DNA sequence patterns and producing
optimal alignments between two sequences. Our treatments of both prob-
lems are necessarily superficial.

In pattern recognition, we limit our comments to testing for the over-
abundance or underabundance of known patterns using simple Poisson
models. Pattern discovery is a more diffuse and difficult topic. In sequence
alignment we look only at dynamic programming algorithms. Com-
peting approaches tend to be either more heuristic or more convoluted
[2, 10, 11, 12]. Dynamic programming solves a problem by taking advantage
of already computed solutions of smaller examples of the same problem.
The general technique is well worth learning. Even the current specialized
algorithms for sequence alignment apply not only to molecular genetics but
also to other diverse problem areas such as text collation, error detection
and correction of coded messages, and matching of geological strata [5].

13.2 Pattern Matching

Occasionally, one is interested in counting the number of occurrences of
a particular pattern in a DNA sequence and in determining whether the
pattern is over, or under, represented. For instance, one might suspect
that the AluI restriction site AGCT occurs too seldomly in a given DNA
sequence x = (x1, . . . , xn). For the sake of simplicity, assume that each
xi of x is drawn independently from the set of possible bases A, C, G,
and T with probabilities pA, pC , pG, and pT , respectively. For any i be-
tween 4 and n, the probability that (xi−3, xi−2, xi−1, xi) = (A,G,C,T) is
pApGpCpT . Furthermore, the number of bases between neighboring oc-
currences of this pattern is nearly geometrically distributed with success
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probability pApGpCpT . If we go over to a continuous approximation, we can
envision AluI sites scattered randomly according to a Poisson process on
the interval [0, n] with intensity pApGpCpT . This model is motivated by the
observations that interarrival times in a Poisson process are exponentially
distributed and that the exponential distribution is the continuous analog
of the geometric distribution.

For other restriction enzymes, the situation is more complicated. For in-
stance, consider the restriction enzyme HhaI with recognition site GCGC.
In this case, recognition sites tend to occur in clumps. Thus, if GCGC oc-
curs, it is easy to achieve a second recognition site by extending GCGC
to GCGCGC. In treating this and more general patterns, we had better
be specific in defining a clump. The most workable definition of a clump
involves renewal theory and departs slightly from standard English usage.
In a finite DNA sequence, if the first occurrence of the pattern ends at posi-
tion n, then we have the first renewal at position n. Subsequent renewals of
the pattern occur at subsequent nonoverlapping occurrences of the pattern.
For example, in the sequence TGCGCAGCGCGCGCGCA, renewals occur
at positions 5, 10, and 14. A clump is formed by a renewal of the pattern
and any overlapping realizations of the pattern to the right of the renewal.
Thus, the clump sizes for the three renewals just noted are 1, 2, and 2.

Rather than treat this specific case further, let us consider a general
pattern R = (r1, . . . , rm) and investigate its expected clump size c. To
determine c, we set R(i) = (r1, . . . , ri) and R(i) = (rm−i+1, . . . , rm). The
equation we are looking for is

c = 1 +
m−1∑
i=1

pri+1 · · · prm1{R(i)=R(i)}. (13.1)

The constant 1 on the right of this equation simply counts a renewal of
the pattern. The ith term in the sum involves the overlap at i sites of
the renewal with a second realization of the pattern to the right of the
renewal. To attain this second realization, the condition R(i) = R(i) must
hold. The remaining m− i bases of the second realization must also fill out
the pattern. This further condition holds with probability pri+1 · · · prm .

Once again we suppose that clumps occur according to a Poisson process
with intensity λ [1]. Naturally, this assumption improves for restriction
enzymes that cut less frequently. Ignoring the fact that R cannot start at
any of the last m − 1 sites, the expected number of occurrences of the
pattern R is the product

ncλ = npr1 · · · prm .

Solving for the mean distance λ−1 between renewals yields

λ−1 =
c

pr1 · · · prm

=
m∑

i=1

1
pr1 · · · pri

1{R(i)=R(i)},
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using the obvious fact R(m) = R(m) in equation (13.1).
One can test the Poisson hypothesis in various ways [12]. For instance,

the total number of clumps T should be approximately normal with mean
and variance nλ. If we divide the interval [0, n] into k equal subintervals
and let Ti denote the number of clumps in the ith subinterval, then the
normal approximation to the Poisson suggests that

S =
k∑

i=1

(Ti − nλ/k)2

nλ/k

should be approximately chi-square with k degrees of freedom. If we esti-
mate λ by T/n, then the degrees of freedom drop by 1. As a rule of thumb,
k should satisfy T/k ≥ 5.

Alternatively, we can condition on T and check whether the T points are
uniformly distributed over [0, n]. The standard Kolmogorov-Smirnov test
assesses the largest deviation between the empirical distribution function
of the points and the uniform distribution on [0, n]. Finally, the interclump
distances are approximately exponentially distributed. This suggests test-
ing the smallest and largest interclump distances against their respective
exponential and extreme value distributions. Section 14.6 develops these
statistics and more elaborate test statistics.

13.3 Alphabets, Strings, and Alignments

How can we quantify the similarity of two finite strings from a com-
mon alphabet? One fruitful approach is to introduce a distance function
on strings. In mathematical analysis, distance is measured by a metric
d(x, y) ≥ 0 having the properties (a) d(x, y) = d(y, x), (b) d(x, y) = 0 if
and only if x = y, and (c) d(x, z) ≤ d(x, y) + d(y, z). Property (c) is called
the triangle inequality. We will assume that a metric d(x, y) is defined on
the underlying alphabet; for many purposes, the trivial choice d(x, y) = 1
for x �= y is adequate. Once we have a metric on the alphabet, then we
can define a metric called the Levenshtein metric on finite strings from
the alphabet. Before attempting to construct the Levenshtein metric, a few
motivating remarks will be helpful.

First, even in genetics more than one alphabet is of interest. The obvious
choice is the four letter alphabet A, C, T, and G. This reduces to a two letter
alphabet if we simply record whether a base is a purine or a pyrimidine.
A third alphabet is the 20 letter alphabet composed of the different amino
acids.

Second, we need to exercise some care in defining the term alignment.
Consider the two English words GENETICS and GENOTYPES and their
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two alignments

G E N E T I C S -
G E N O T Y P E S

G E N E T - I C S
G E N O T Y P E S

The first alignment makes slightly more sense linguistically, but the second
alignment displays more aligned letter matches. Note that both alignments
involve the blank character -. In molecular applications, blank characters
are called insertions or deletions, or simply indels if there is no need to
distinguish between them. It is very convenient to add the blank character
to any alphabet. If there is metric d(x, y) defined on the alphabet, we will
extend the metric so that d(−, x) = d(x,−) = δ > 0 for some constant δ.
It is also convenient to extend every finite string x = (x1, . . . , xm) to be an
infinite string by appending an infinite number of blank characters to its
right end.

Aligning strings involves the insertion of a finite number of leading or in-
ternal blanks rather than an infinite number of trailing blanks. However, we
are not allowed to insert leading and internal blanks willy-nilly in aligning
two strings; overlapping inserted blanks

(−
−
)

are forbidden. This restriction
implies that there are only a finite number of possible alignments of two
strings x = (x1, . . . , xm) and y = (y1, . . . , yn) with m and n letters, re-
spectively. Indeed, if the derived strings x∗ and y∗ provide an alignment of
x and y, then the nontrivial part of the alignment extends from position
1 to at most position m + n. These extreme alignments are achieved by
appending n leading blanks to x to create x∗ and taking y∗ = y or by
appending m leading blanks to y to create y∗ and taking x∗ = x.

To calculate the number of alignments f(m,n) between two given strings
x = (x1, . . . , xm) and y = (y1, . . . , yn), we derive a recurrence relation
whose concomitant initial condition is

f(0, j) = f(i, 0) = 1 (13.2)

for all nonnegative integers i and j. The recurrence relation (13.3) below
stems from the simple observation that the nontrivial part of any alignment
ends with one of the three pairs

(
xm

−
)
,
(−
yn

)
, or

(
xm

yn

)
. The remainder of the

alignment to the left of one of these pairs constitutes a legitimate alignment
between two shorter strings. Hence,

f(m,n) = f(m− 1, n) + f(m,n− 1) + f(m− 1, n− 1). (13.3)

This recurrence relation is difficult to solve, but we can easily show that it
grows extremely rapidly.

Let g(m,n) =
(
m+n

m

)
=
(
m+n

n

)
. Then it is clear that the binomial coeffi-

cient g(m,n) satisfies the same initial condition (13.2) as f(m,n) but the
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simpler recurrence

g(m,n) = g(m− 1, n) + g(m,n− 1) (13.4)

based on Pascal’s combinatorial triangle. We now argue inductively that
f(m,n) ≥ g(m,n). The induction is primed by the identical initial con-
dition (13.2). Assuming the inequality holds for all pairs of nonnegative
integers (m,n) with m+ n = k− 1 > 0 for some integer k− 1, we advance
the induction from k− 1 to k by neglecting the third term f(m− 1, n− 1)
on the right of recurrence (13.3), substituting g(m − 1, n) for f(m − 1, n)
and g(m,n − 1) for f(m,n − 1), and finally invoking recurrence (13.4).
This proves the inequality for all pairs (m,n) with m + n = k. The size
of g(n, n) can be accurately estimated by application of Stirling’s formula
n! ∼ √

2πnn+ 1
2 e−n. A straightforward calculation shows that

g(n, n) ∼ 22n

√
πn

.

13.4 Minimum Distance Alignment

To an alignment x∗ and y∗ of x and y, we assign the distance
∑

i d(x
∗
i , y

∗
i ).

Although this is an infinite sum, all but a finite number of terms are 0 owing
to the fact d(−,−) = 0. The Levenshtein distance between the original
strings x and y we now define as

D(x,y) = min
(x∗,y∗)

∑
i

d(x∗i , y
∗
i ),

where the pair (x∗,y∗) ranges over all possible alignments. The symmetry
property (a) characterizing a metric follows directly from the definition of
D(x,y). The inequality D(x,y) ≥ 0 is also obvious. Equality holds when
x = y because d(x, y) is a metric. Strict inequality holds when x �= y
because there are only a finite number of alignment pairs (x∗,y∗). Thus,
property (b) of a metric is also true.

The validity of the triangle inequality (c) is less obvious. One way of
proving it is to think of computing the alignment distance

∑
i d(x

∗
i , y

∗
i ) by

transforming x into y by a sequence of steps, each step carrying its own
penalty. Consider the example of converting the word INDUSTRY into the
word INTEREST [5] in the following listing

I N D U S T R Y
I N D U S T R -
I N D U S T - -
I N R U S T - -
I N R E S T - -
I N T R E S T -
I N T E R E S T
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The first two deletions exact penalty δ each, the next two substitutions ex-
act penalties d(D,R) and d(U,E), and the last two insertions exact penalty
δ each. This tallies with the distance 4δ + d(D,R) + d(U,E) attributed to
the alignment

I N - - D U S T R Y
I N T E R E S T - -

In general, each listing provides a path from x to y corresponding to a
unique alignment. The length of the path is the sum the penalties exacted
along the way; this length perfectly matches the distance of the correspond-
ing alignment if no repetitious operations such as the insertion and deletion
of the same blank are carried out. The distance D(x,y) is the length of
the minimal path from x to y. The relevance of these observations to prov-
ing the triangle inequality lies in appending a minimal path from y to z
to a minimal path from x to y. The length of the concatenated path is
D(x,y) +D(y, z). Being one of many paths connecting x and z, the con-
catenated path has length bounded below by D(x, z). Thus, the triangle
property is true.

One of the difficulties with the Levenshtein metric is that it is implic-
itly given as the solution to a minimization problem over the large space
of alignments. Even though we cannot give an explicit formula for the
metric, we can calculate its value with reasonable efficiency via a dy-
namic programming algorithm introduced by Needleman and Wunsch [6].
If x = (x1, . . . , xm) and y = (y1, . . . , yn) are two strings, then the dynamic
programming algorithm operates on the matrix of distances with entries
Dij = D[(x1, . . . , xi), (y1, . . . , yj)]. A little reflection renders the boundary
values

Di0 = iδ, D0j = jδ, i, j ≥ 0

obvious. These boundary values are fed into the recurrence

Dij = min{Di−1,j + δ,Di,j−1 + δ,Di−1,j−1 + d(xi, yj)}, (13.5)

whose proof follows the pattern of the proof of the recurrence (13.3). For
instance, if the optimal alignment between (x1, . . . , xi) and (y1, . . . , yj) ends
with the pair

(
xi

−
)
, then we should take an optimal alignment up to this pair

with cost Di−1,j and add the penalty d(xi,−). Taking the minimum over
the three possible final pairs yields the minimum distance of any alignment
between the partial strings (x1, . . . , xi) and (y1, . . . , yj).

The beauty of the dynamic programming algorithm is that it not only
provides the distance D(x,y) when we reach (i, j) = (m,n), but it does so
efficiently and yields an optimal alignment in the process. The number of
operations is of order O(mn) because the recurrence (13.5) accesses only
entries below and to the left of the current entry and consequently can be
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run entirely within the rectangle {(i, j) ∈ [0,m] × [0, n]}. To construct an
optimal alignment, all we have to do is record at each application of the
recurrence (13.5) which of the three terms gives the minimum. In case of a
tie, we arbitrarily choose a best term. If we keep track of this information
in a system of pointers, then when we reach entry (m,n) in the matrix of
distances, we can follow the pointers back to (0, 0). At each step we recover
one more pair of an optimal alignment, working from its right end to its
left end.

If more than one best alignment exists, and we want to identify all of
them, then we need to keep track of a stack of equivalent pointers at each
entry of the D matrix. Only in the case of a tie will a stack contain more
than a single pointer. In finding the first optimal alignment, we start at
(m,n) and follow the path defined by the top pointer of each successively
encountered stack. Once we reach (0, 0) or a boundary and identify this
alignment, we reverse direction along the pointers previously traversed.
Each time we backup and hit a stack, we move down one pointer in the
stack, and start a new forward path commencing with that pointer. When
we reach (0, 0) or a boundary, we identify a new optimal alignment. If at
any stage in a backtrack we hit the bottom of a stack and cannot descend
farther, then we backtrack along the bottom pointer to the next entry of the
D matrix. The backtracking process ends when the final backtrack hits the
bottom of the stack at (m,n). Because it produces successive alignments
that share as much of their right ends as possible, backtracking is very
efficient.

An interesting variant of the dynamic programming algorithm is specifi-
cally designed to handle the simultaneous insertion or deletion of multiple
bases. This occurs often enough in the evolution of DNA sequences to war-
rant comment. Suppose that we penalize an indel of length k by g(k). For
example, we could take g(k) = α + (k − 1)β; the case α = β = δ obvi-
ously coincides with our previous penalty on single indels. In general, it
is desirable to impose the subadditivity condition g(k) ≤ kg(1) on g(k)
because the insertion or deletion of a block of bases is more likely than the
sequential insertion or deletion of each base of the block.

To compute the distance D(x,y) between two strings x = (x1, . . . , xm)
and y = (y1, . . . , yn), it is necessary to define three quantities Eij , Fij ,
and Gij analogous to Dij . These are the minimum distances between two
alignments of the partial strings (x1, . . . , xi) and (y1, . . . , yj) ending in

(
xi

−
)
,(−

yj

)
, and

(
xi

yj

)
, respectively. Clearly, we have Dij = min{Eij , Fij , Gij}. The

boundary conditions for these matrices are

E00 = 0, Ei0 = g(i), E0j = ∞,

F00 = 0, Fi0 = ∞, F0j = g(j)
G00 = 0, Gi0 = ∞, G0j = ∞

for i and j positive. The infinities appearing among these boundary condi-
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tions signal that the corresponding terms represent impossible conditions.
For example, E0j = ∞ because it is impossible to end an alignment with(
x0
−
)

when x is a null string.
These boundary values feed into the recurrences

Eij = min{ min
1≤k≤i

{Fi−k,j + g(k)}, min
1≤k≤i

{Gi−k,j + g(k)}}
Fij = min{ min

1≤k≤j
{Ei,j−k + g(k)}, min

1≤k≤j
{Gi,j−k + g(k)}} (13.6)

Gij = min{Ei−1,j−1, Fi−1,j−1, Gi−1,j−1} + d(xi, yj).

In the first recurrence, the blank at the end of the alignment is part of
a larger gap involving k consecutive blanks. Overall the gap contributes
a gap distance g(k). Because the gap ends with

(
xi

−
)
, it must be flanked

on the left by either
(−
yj

)
or

(
xi−k

yj

)
. To the left of the gap, we take the

best possible alignment constructible from the partial strings (x1, . . . , xi−k)
and (y1, . . . , yj) ending with the appropriate pair. The second recurrence
is proved similarly, and the third recurrence is even simpler because the
compatible alignments cannot end with a gap.

The computational complexity of algorithm (13.6) is of order

m∑
i=1

n∑
j=1

(i+ j) =
n∑

j=1

(
m+ 1

2

)
+

m∑
i=1

(
n+ 1

2

)

= O(nm2 +mn2).

For an affine gap distance g(k) = α + (k − 1)β, the algorithm can be
revised so that it achieves the computational complexity O(mn) of the
original algorithm (13.5). The same boundary conditions apply, but now
the recurrences reduce to

Eij = min{Ei−1,j + β, Fi−1,j + α,Gi−1,j + α}
Fij = min{Ei,j−1 + α, Fi,j−1 + β,Gi,j−1 + α} (13.7)
Gij = min{Ei−1,j−1, Fi−1,j−1, Gi−1,j−1} + d(xi, yj).

The first of these recurrences is derived by considering the three possible
pairs

(
xi−1
−
)
,
(−
yj

)
, and

(
xi−1
yj

)
immediately preceding the end pair

(
xi

−
)
. The

other recurrences are derived similarly.
Construction of a particular minimum distance alignment based on the

recurrences (13.7) again proceeds via a system of pointers with the twist
that a pointer in one matrix may point to an entry in another matrix. For
example, suppose in the first recurrence of (13.7) that the minimum term
is Fi−1,j + α. Then the pointer at entry (i, j) of the E matrix points to
entry (i − 1, j) of the F matrix. In any event, starting with the minimum
term in Dmn = min{Emn, Fmn, Gmn} and following the pointers back to a
boundary, one can trace out a minimum distance alignment.
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13.5 Parallel Processing and Memory Reduction

Computational complexity is not the only criterion for evaluating an algo-
rithm. Demands on memory and the potential for parallel processing are
also important. Proper implementation of the Needleman-Wunsch algo-
rithm leads to substantial improvements in both regards. Parallel process-
ing cannot be achieved by proceeding row by row or column by column in
the dynamic programming matrix, but it can be achieved by proceeding
along parallel diagonal lines. With a proportional gap penalty g(k) = kδ,
suppose we know the entries Di,j for all combinations (i, j) with i+ j ≤ m.
Then each entry Di,j along the diagonal i + j = m + 1 is determined
independently via equation (13.5) from three entries in the two previous
diagonal lines i+ j = m and i+ j = m− 1. A multiprocessor machine with
shared memory could easily exploit this fact.

Memory reduction is more subtle. As presented, the Needleman-Wunsch
algorithm requires storing a pointer at each of mn cells. If it were not for
this storage requirement, then we could proceed row by row (or column by
column), discarding rows (or columns) as we go. Discarding already visited
rows or columns reduces the memory requirement to min{m,n}. It is possi-
ble to tweak the Needleman-Wunsch algorithm in a manner that retains this
storage advantage, preserves the traceback property, and merely doubles
the overall computational complexity. For the sake of convenience, assume
a proportional gap penalty and choose i = �m

2 �. Any optimal alignment of
x against y matches the letter xi with either a letter yj or a −. In the former
case, we perform the Needleman-Wunsch algorithm without traceback sep-
arately on the left substring (x1, . . . , xi−1) and the full string y, and on the
right substring (xi+1, . . . , xm) and the full string y. For the left substring of
(x1, . . . , xi−1), let the optimal alignment ending with the pair (i− 1, j− 1)
have distance Li−1,j−1, and for the right substring (xi+1, . . . , xm), let the
optimal alignment beginning with the pair (i + 1, j + 1) have distance
R(i+1, j+1). (It is trivial to modify the Needleman-Wunsch algorithm to
give optimal subalignments beginning with index pairs rather than ending
with index pairs.) If we match xi against −, then the pertinent left distance
for each j is Li−1,j rather than Li−1,j−1. The best index j to match with
i solves the problem

min
j

{Li−1,j−1 + d(xi, yj) +Ri+1,j+1, Li−1,j + d(xi,−) +Ri+1,j+1}. (13.8)

Once we identify j, we can fill out the rest of the optimal match by recur-
sively applying our modified algorithm to the pair of left x and y substrings
and to the pair of right x and y substrings.

Although it is clear that the maximum storage required by this scheme is
m+n, we must make certain the computational complexity does not balloon
out of control. One thing we can dismiss right off is the depicted additions
and minima involved in finding the solution to (13.8). The amount of work
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here is proportional to n. It is true that this problem is solved recursively,
but there are only on the order of log2m recursion levels to consider. To
simplify matters further, we now count only the minima involved in the
various invocations of the Needleman-Wunsch algorithm without traceback.
With this proviso, we claim that the complexity c(m,n) of the space-saving
algorithm satisfies c(m,n) ≤ 2mn. This inequality is trivially true for m
equal to 1. For larger values of m we argue inductively that

c(m,n) ≤ n
m

2
+ n

m

2
+ c(m/2, j) + c(m/2, n− j)

≤ mn+mj +m(n− j) (13.9)
= 2mn.

The occurrences of nm/2 in the first inequality in (13.9) account for the two
initial applications of the unadorned Needleman-Wunsch algorithm. The
remaining terms c(m/2, j) and c(m/2, n− j) reflect the recursive nature of
the space-saving algorithm.

13.6 Maximum Similarity Alignment

There is nothing sacred in aligning strings by minimum distance. In simi-
larity alignment, a relatively large positive score s(x, x) > 0 is assigned to
a pairwise match, a relatively small positive score or a negative score s(x, y)
to a mismatch x �= y, and a negative score s(x,−) = s(−, x) = −δ < 0
to an indel. The overall similarity of an alignment x∗ and y∗ of strings x
and y is the sum

∑
i s(x

∗
i , y

∗
i ), where again only a finite number of terms

contribute owing to the convention s(−,−) = 0. The similarity between x
and y is now defined as

S(x,y) = max
(x∗,y∗)

∑
i

s(x∗i , y
∗
i )

Calculation of S(x,y) proceeds just as the case of minimum distance align-
ment except that in the recurrence (13.5) and its boundary conditions we
substitute max for min and s(x, y) for d(x, y). If we penalize longer gaps
proportionately less severely than single gaps, then we assign a negative
score h(k) to a gap of length k. Extension of the underlying recurrences
and their associated boundary conditions for these more complicated gap
scores is left to the reader.

It is of some interest to determine when minimum distance and maximum
similarity give the same best alignment. The next proposition bears on this
question.

Proposition 13.6.1 Suppose that the metric d(x, y) and similarity score
s(x, y) are related by s(x, y) = c − d(x, y) and the gap distance g(k) and
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gap score h(k) by h(k) = −g(k) + ck
2 for some constant c > 0. Then we

have s(x, x) = c for all x, and some similarity scores are negative provided
0 < c < max(x,y) d(x, y). More importantly,

D(x,y) + S(x,y) =
c(m+ n)

2
.

Hence, an optimal distance alignment is an optimal similarity alignment,
and vice versa.

Proof: In an alignment x∗ and y∗ of x = (x1, . . . , xm) and y = (y1, . . . , yn),
let

(
xi

yj

) ∈ (x∗
y∗
)

be a typical aligned pair and #k be the number of indels of
length k. A simple counting argument reveals that

m+ n = 2
∑

(xi
yj

)∈(x∗
y∗)

1 +
∑

k

k#k.

Hence,

D(x,y)

= min
(x∗,y∗)




∑

(xi
yj

)∈(x∗
y∗)

d(xi, yj) +
∑

k

g(k)#k




= min
(x∗,y∗)




∑

(xi
yj

)∈(x∗
y∗)

c−
∑

(xi
yj

)∈(x∗
y∗)

s(xi, yj) −
∑

k

h(k)#k +
∑

k

ck

2
#k




=
c(m+ n)

2
− max

(x∗,y∗)




∑

(xi
yj

)∈(x∗
y∗)

s(xi, yj) +
∑

k

h(k)#k




The fact that the same alignment x∗ and y∗ gives both minimum distance
and maximum similarity is obvious from the above equalities. The other
claims of the proposition are also clear.

13.7 Local Similarity Alignment

Two DNA sequences with little overall similarity may well possess regions
with high similarity. Thus, the best global alignment between two sequences
is often of less interest than the best local alignment between the sequences.
The Smith-Waterman algorithm for finding a best local alignment is one
of the most widely applied computational tools in modern biology [7]. The
following brief derivation shows that it has the same complexity O(mn) as
the Needleman-Wunsch global alignment algorithm.
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We first treat the case of a proportional gap score h(k) = −kδ. In de-
termining the best local alignment of two strings x = (x1, . . . , xm) and
y = (y1, . . . , yn), we define the matrix entry

Hkl = max{0, S[(xi, . . . , xk), (yj , . . . , yl)] : 1 ≤ i ≤ k, 1 ≤ j ≤ l}.
In other words, Hkl is the best similarity for an x substring ending with
xk against a y substring ending with yl. The presence of 0 in the defini-
tion of Hkl indicates that a null string is a candidate substring in each case.
The Smith-Waterman algorithm computes H(x,y) = maxkl Hkl and a best
local alignment in the process. In computing the Hkl by dynamic program-
ming, we have the boundary conditions Hk0 = H0l = 0 because aligning an
x (or y) substring against a null string gives a negative similarity score un-
less the x (or y) substring itself is null. Finally, the dynamic programming
algorithm feeds these boundary conditions into the recurrence

Hkl = max{0, Hk−1,l − δ,Hk,l−1 − δ,Hk−1,l−1 + s(xk , yl)}. (13.10)

To find a best local alignment, we establish a system of pointers. Tracing
these pointers back from the best pair (k, l), we either reach a boundary or
a pointer points to the 0 term in (13.10). In either case, we terminate the
optimal substrings on the left.

We can extend the Smith-Waterman algorithm to an affine gap score
h(k) = −α − (k − 1)β by introducing the maximum substring similarities
Ekl, Fkl, and Gkl for substring alignments ending in

(
xk

−
)
,
(−
yl

)
, and

(
xk

yl

)
,

respectively. In this notation Hkl = max{Ekl, Fkl, Gkl}, and we have the
boundary conditions Ekl = Fkl = Gkl = 0 if either k = 0 or l = 0. The
corresponding recurrences are

Ekl = max{0, Ek−1,l − β, Fk−1,l − α,Gk−1,l − α}
Fkl = max{0, Ek,l−1 − α, Fk,l−1 − β,Gk,l−1 − α}
Gkl = max{0, Ek−1,l−1 + s, Fk−1,l−1 + s,Gk−1,l−1 + s},

where in the last equation we have abbreviated s = s(xk, yl).
Finally, to identify repeat units within a DNA sequence x, it is helpful to

compare x to itself. Since x matches itself perfectly, the best local alignment
is the trivial global alignment. To avoid drawing this conclusion in the
Smith-Waterman algorithm, we define the new boundary condition Hii = 0
for all i and invoke the recurrence (13.10) only on the upper triangle of (Hij)
where i < j.

13.8 Multiple Sequence Comparisons

Alignment of three or more sequences is considerably harder than alignment
of two sequences [8, 12]. To see how the computational complexity of global
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alignment varies with the number of sequences, suppose that we have m
sequences and the ith sequence is (xi

1, . . . , x
i
ni

). Dynamic programming
requires a score function s(y1, . . . , ym), where each yj is a letter or a gap
−, with at most m − 1 gaps. The score function is sufficient to determine
a solution given the assumption of proportional gap scores. The dynamic
programming algorithm operates recursively by updating the maximum
score S(i1, . . . , im) assigned to the best alignment involving the first ij
elements of the jth sequence. To express the update as concisely as possible,
define the increment ∆i to 0 or 1 and the operator ∆ix to be

∆ix =
{− if ∆i = 0
x if ∆i = 1

.

In this notation, dynamic programming gives

S(i1, . . . , im)
= max

∆1+···+∆m>0
{S(i1 − ∆1, . . . , im − ∆m) + s(∆1x

1
i1 , . . . ,∆mx

m
im

)},

beginning with S(0, . . . , 0) = 0 and omitting the value ∆j = 1 whenever
the index ij = 0. Because the maximum extends over 2m − 1 possible vec-
tors (∆1, . . . ,∆m), the overall complexity is O(2m

∏m
i=1 ni). This rapidly

mounting complexity obviously limits the usefulness of dynamic program-
ming and has prompted a diversity of heuristic treatments of the multiple
alignment problem [2, 10, 12].

Problems

1. Suppose we wished to test the hypothesis that recognition sites for
a certain restriction enzyme are Poisson distributed along a chromo-
some with a predicted intensity λ0. One experimental approach would
be to sample the fragments resulting from a digest of the chromosome
by the restriction enzyme. The sampling is done by a probe, which
is a small segment of the overall chromosome. The probe is made
radioactive or fluorescent and will combine with and highlight those
fragments sharing a common stretch of DNA with it. The lengths
of the fragments can be measured, but it is impossible to tell which
fragments are internal to the probe and which are partially external.
To test the hypothesis that the true intensity λ = λ0, one can add
up all fragment lengths and subtract the length of the probe. The
resulting statistic X should be the sum of two independent exponen-
tially distributed random variables with intensity λ. To complete the
design of the experiment, we use n widely spaced probes and measure
n independent excess distances X1, . . . , Xn.

(a) Find the maximum likelihood estimate of λ.
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(b) Show that the likelihood ratio test rejects the null hypothesis
λ = λ0 whenever the statistic

T = 2λ0

n∑
i=1

Xi

is too large or too small.

(c) Prove that T has a χ2
4n distribution.

2. Use the Borel-Cantelli lemma [4] to prove that the pattern SFS of a
success, failure, and success occurs infinitely many times in a sequence
of Bernoulli trials. This result obviously generalizes to more complex
patterns.

3. Renewal theory deals with repeated visits to a special state in a sto-
chastic process [3, 4]. Once the state is entered, the process leaves it
and eventually returns for the first time after n > 0 steps with proba-
bility fn. The return times following different visits are independent.
Define un to be the probability that the process is in the special state
at epoch n given that it starts in the state at epoch 0. Show that

un = f1un−1 + f2un−2 + · · · + fnu0

for n ≥ 1. If we define the generating functions U(s) =
∑∞

n=0 uns
n

and F (s) =
∑∞

n=0 fns
n with f0 = 0 and u0 = 1, then prove that

U(s) = [1 − F (s)]−1.

4. Repeated visits to a pattern such as GCGC in a DNA sequence consti-
tute a renewal process as noted in the text. Given the assumptions of
Section 13.2, one can calculate the generating functions U(s) and F (s)
defined in Problem 3 for renewals of the pattern R = (r1, . . . , rm). If
we let pR = pr1 · · · prm and

qk =

{ 1 k = 0
prm−k+1 · · · prm1{R(m−k)=R(m−k)} 1 ≤ k ≤ m− 1
0 k ≥ m

,

then show that

pR =
n−1∑
k=0

un−kqk (13.11)

for n ≥ m. Use this to prove that

pRs
m

1 − s
= [U(s) − 1]Q(s) (13.12)

U(s) =
pRs

m + (1 − s)Q(s)
(1 − s)Q(s)
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F (s) =
pRs

m

pRsm + (1 − s)Q(s)

F ′(1) =
Q(1)
pR

,

where Q(s) =
∑m−1

n=0 qns
n. Note that F ′(1) is the expected time be-

tween renewals. Explicitly calculate F ′(1) for the pattern GCGC.
(Hints: To demonstrate equation (13.11), condition on the most re-
cent renewal of the pattern. In proving equation (13.12), multiply
equation (13.11) by sn and sum on n. You will need to use the fact
uj = 0 for 1 ≤ j ≤ m− 1.)

5. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) be two strings such that
m ≥ n. Show that:

(a) The number of alignments of length m is
(
m
n

)
.

(b) The number of alignments of length m+ 2 is
(
n
2

)(
m+2

n

)
.

(c) In general, the number of alignments of lengthm+k is
(
n
k

)(
m+k

n

)
.

(d) The total number of alignments is
∑

k

(
n
k

)(
m+k

n

)
.

Note that we distinguish the double pairs
(
xi−
−yj

)
and

(−xi

yj−
)
.

6. If we refuse to distinguish the double pairs
(

xi−
−yj

)
and

(−xi

yj−
)

in an
alignment between two strings x = (x1, . . . , xm) and y = (y1, . . . , yn),
then show that the number of alignments reduces to

(
m+n

m

)
. (Hints:

Argue that an alignment is completely determined by what pairs
(
xi

yj

)

occur within it. Hence, there are
∑

k

(
m
k

)(
n
k

)
=
∑

k

(
m

m−k

)(
n
k

)
=
(
m+n

m

)
possible alignments.)

7. A gap penalty g(k) ≥ 0 is said to be subadditive if g(k) ≤ kg(1)
for all k ≥ 0 and concave if g(k + 1) − g(k) ≥ g(k + 2) − g(k + 1)
for all k ≥ 0. Show that a concave gap penalty g(k) with g(0) = 0
is subadditive and that the particular choice g(k) = α ln(k + 1) is
concave for α ≥ 0. (Hint: Any concave function on the nonnegative
integers can be extended to a concave function on [0,∞) by linear
interpolation. Subadditivity is then geometrically obvious.)

8. Continuing Problem 7, let f(l) be a function on the nonnegative in-
tegers, and define a function gk(l) = f(k+ l)− f(k) for every integer
k ≥ 0. Show that f(l) is concave if and only if each gk(l) is subaddi-
tive.

9. Consider a word of length n chosen from the four-letter DNA alphabet
{A,T,C,G}. If letters are chosen for each position independently with
probabilities pA, pT , pC , and pG, respectively, then let RA

n be the
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length of the longest run of A’s in the word. Show that the distribution
of RA

n satisfies the recurrence relation

Pr(RA
n ≤ m) =

m+1∑
i=1

pi−1
A (1 − pA) Pr(RA

n−i ≤ m)

for n > m and the initial condition Pr(RA
n ≤ m) = 1 for n ≤ m [9].

Similar results obtain for runs of any other letter.

10. In the context of the last problem, let SA
n be the length of the longest

run of any letter when the word starts with an A. Define ST
n , SC

n ,
and SG

n similarly. Argue that

Pr(SA
n ≤ m) =

m∑
i=1

pi−1
A

[
pT Pr(ST

n−i ≤ m) (13.13)

+ pC Pr(SC
n−i ≤ m) + pG Pr(SG

n−i ≤ m)
]

for n > m and that Pr(SA
n ≤ m) = 1 for n ≤ m. Show how recurrence

(13.13) and similar recurrences for the distributions of ST
n , SC

n , and
SG

n permit exact calculation of the distribution of the length of the
maximal run Rn of any letter type.
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14

Poisson Approximation

14.1 Introduction

In the past few years, mathematicians have developed a powerful technique
known as the Chen-Stein method [2, 5] for approximating the distribution
of a sum of weakly dependent Bernoulli random variables. In contrast to
many asymptotic methods, this approximation carries with it explicit error
bounds. Let Xα be a Bernoulli random variable with success probability pα,
where α ranges over some finite index set I . It is natural to speculate that
the sum S =

∑
α∈I Xα is approximately Poisson with mean λ =

∑
α∈I pα.

The Chen-Stein method estimates the error in this approximation using
the total variation distance between two integer-valued random variables
Y and Z. This distance is defined by

‖L(Y ) −L(Z)‖ = sup
A⊂N

|Pr(Y ∈ A) − Pr(Z ∈ A)|,

where L denotes distribution, and N denotes the integers. Taking A = {0}
in this definition yields the useful inequality

|Pr(Y = 0) − Pr(Z = 0)| ≤ ‖L(Y ) −L(Z)‖.
The coupling method is one technique for explicitly bounding the total

variation distance between S =
∑

α∈I Xα and a Poisson random variable
Z with the same mean λ [5, 15]. In many concrete examples, it is possible
to construct for each α two random variables Uα and Vα on a common
probability space in such a way that Vα is distributed as S − 1 conditional
on the event Xα = 1 and Uα is distributed as S unconditionally. The bound

‖L(S) −L(Z)‖ ≤ 1 − e−λ

λ

∑
α∈I

pα E(|Uα − Vα|) (14.1)

then applies. Because Uα and Vα live on the same probability space, they
are said to be coupled. If Uα ≥ Vα for all α, then the simplified bound

‖L(S) −L(Z)‖ ≤ 1 − e−λ

λ
[λ− Var(S)] (14.2)

holds. Inequality (14.2) shows that Var(S) ≈ E(S) is a sufficient as well as
a necessary condition for S to be approximately Poisson.

The neighborhood method of bounding the total variation distance
exploits certain neighborhoods of dependency Bα associated with each α
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in I [1]. Here Bα is a subset of I containing α. Usually Bα is chosen so that
Xα is independent of those Xβ with β outside Bα. If this is the case, then
define two constants

b1 =
∑
α∈I

∑
β∈Bα

pαpβ

b2 =
∑
α∈I

∑
β∈Bα\{α}

pαβ ,

where

pαβ = E(XαXβ)
= Pr(Xα = 1, Xβ = 1).

In this context, λ − Var(S) = b1 − b2, and the total variation distance
between S and its Poisson approximation Z with mean λ satisfies

‖L(S) −L(Z)‖ ≤ 1 − e−λ

λ
(b1 + b2). (14.3)

Both Chen-Stein methods are well adapted to solving many problems
arising in mathematical genetics. We will illustrate the main ideas through
a sequence of examples. Readers interested in mastering the underlying
theory are urged to consult the references [2, 5, 15].

14.2 The Law of Rare Events

Suppose that X1, . . . , Xn are independent Bernoulli random variables with
success probabilities p1, . . . , pn. If the pα are small and the mean number
of successes λ =

∑n
α=1 pα is moderate in size, then the law of rare events

declares that the sum S =
∑n

α=1Xα is approximately Poisson distributed.
The neighborhood method provides an easy verification of this result. If we
let Nα be the singleton set {α} and Z be a Poisson random variable with
mean λ, then inequality (14.3) reduces to

‖πS − πZ‖TV ≤ 1 − e−λ

λ

n∑
α=1

p2
α

because the sum
∑

β∈Nα\{α} pαβ is empty.

14.3 Poisson Approximation to the Wd Statistic

In Chapter 4 we studied the Wd statistic for multinomial trials. Recall that
Wd denotes the number of categories with d or more successes after n trials.
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If we let qα be the success rate per trial for category α ∈ I = {1, . . . ,m},
then this category accumulates d or more successes with probability

pα =
n∑

k=d

(
n

k

)
qk
α(1 − qα)n−k.

The coupling method provides a bound on the total variation distance
between S = Wd and a Poisson random variable with mean λ =

∑m
α=1 pα.

Our argument will make it clear that we can even elect a different quota dα

for each category in defining the number of categories that meet or exceed
their quotas.

To validate the coupling bound (14.1), we must construct the random
variables Uα and Vα described in Section 14.1. For Uα we imagine conduct-
ing the multinomial trials according to the usual rules and set Uα = Wd.
If the number of outcomes Yα falling in category α satisfies Yα ≥ d, then
Xα = 1, and we set Vα =

∑
β �=αXβ. If Yα < d, then we resample from

the conditional distribution of Yα given the event Yα ≥ d. This produces a
random variable Y ∗

α > Yα, and we redefine the outcomes of the first Y ∗
α −Yα

trials falling outside category α so that they now fall in category α. If we let
Vα be the number of categories other than α that now exceed their quota
d, it is obvious because of the redirection of outcomes that Wd ≥ Vα. Thus,
the conditions for the Chen-Stein bound (14.2) apply. As pointed out in
Problem 4 of Chapter 4, the sum

∑m
α=1 p

2
α should be small for the Poisson

approximation to have any chance of being accurate.

14.4 Construction of Somatic Cell Hybrid Panels

Somatic cell hybrids are routinely used to assign particular human genes
to particular human chromosomes [6, 21]. In brief outline, somatic cell
hybrids are constructed by fusing normal human cells with permanently
transformed rodent cells. The resulting hybrid cells retain all of the rodent
chromosomes while losing random subsets of the human chromosomes. A
few generations after cell fusion, clones can be identified with stable sub-
sets of the human chromosomes. All chromosomes, human and rodent, nor-
mally remain functional. With a broad enough collection of different hybrid
clones, it is possible to establish a correspondence between the presence or
absence of a given human gene and the presence or absence of each of the
24 distinct human chromosomes. From this pattern one can assign the gene
to a particular chromosome.

For this program of gene assignment to be successful, certain major as-
sumptions must be satisfied. First, the human gene should be present on a
single human chromosome or on a single pair of homologous human chro-
mosomes. Second, the human gene should be detectable when present in a
clone and should be distinguishable from any rodent analog of the human
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gene in the clone. Genes are usually detected by electrophoresis of their
protein products or by annealing of an appropriate DNA probe directly to
part of the gene. Third, each of the 24 distinct human chromosomes should
be either absent from a clone or cytologically or biochemically detectable
in the clone. Chromosomes can be differentiated cytologically by size, by
the position of their centromeres, and by their distinctive banding patterns
under appropriate stains. It is also possible to distinguish chromosomes by
in situ hybridization of large, fluorescent DNA probes or by isozyme assays
that detect unique proteins produced by genes on the chromosomes.

In this application of the Chen-Stein method, we consider the informa-
tion content of a panel of somatic cell hybrids [11]. Let n denote the number
of hybrid clones in a panel. Since the Y chromosome bears few genes of in-
terest, hybrids are usually created from human female cells. This gives a
total of 23 different chromosome types—22 autosomes and the X chromo-
some. Figure 14.1 depicts a hybrid panel with n = 9 clones. Each row of
this panel corresponds to a particular clone. Each of the 23 columns cor-
responds to a particular chromosome. A 1 in row i and column j of the
panel indicates the presence of chromosome j in clone i. A 0 indicates the
absence of a chromosome in a clone. An additional test column of 0’s and
1’s is constructed when each clone is assayed for the presence of a given
human gene. Barring assay errors or failures of one of the major assump-
tions, the test column will uniquely match one of the columns of the panel.
In this case the gene is assigned to the corresponding chromosome.

FIGURE 14.1. A Somatic Cell Hybrid Panel
0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1
1 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1
1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1

If two columns of a panel are identical, then gene assignment becomes
ambiguous for any gene residing on one of the two corresponding chro-
mosomes. Fortunately, the columns of the panel in Figure 14.1 are unique.
This panel has the unusual property that every pair of columns differs in at
least three entries. This level of redundancy is useful. If a single assay error
is made in creating a test column for a human gene, then the gene can still
be successfully assigned to a particular human chromosome because it will
differ from one column of the panel in one entry and from all other columns
of the panel in at least two entries. This consideration suggests that built-in
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redundancy of a panel is desirable. In practice, the chromosome constitu-
tion of a clone cannot be predicted in advance, and the level of redundancy
is random. Minimum Hamming distance is a natural measure of the redun-
dancy of a panel. The Hamming distance ρ(cs, ct) of two columns cs and
ct counts the number of entries in which they differ. The minimum Ham-
ming distance of a panel is obviously defined as min{s,t} ρ(cs, ct), where
{s, t} ranges over all pairs of columns from the panel.

When somatic cell hybrid panels are randomly created, it is reasonable to
make three assumptions. First, each human chromosome is lost or retained
independently during the formation of a stable clone. Second, there is a
common retention probability p applying to all chromosome pairs. This
means that at least one member of each pair of homologous chromosomes
is retained with probability p. Rushton [17] estimates a range of p from .07
to .75. The value p = 1

2 simplifies our theory considerably. Third, different
clones behave independently in their retention patterns.

Now denote column s of a random panel of n clones by Cn
s . For any two

distinct columns Cn
s and Cn

t , define Xn
{s,t} to be the indicator of the event

ρ(Cn
s , C

n
t ) < d, where d is some fixed Hamming distance. The random

variable Y n
d =

∑
{s,t}X

n
{s,t} is 0 precisely when the minimum Hamming

distance equals or exceeds d. There are
(
23
2

)
pairs α = {s, t} in the index

set I , and each of the associated Xn
α has the same mean

pα =
d−1∑
i=0

(
n

i

)
qi(1 − q)n−i,

where q = 2p(1− p) is the probability that Cn
s and Cn

t differ in any entry.
This gives the mean of Y n

d as λ =
(
23
2

)
pα.

The Chen-Stein heuristic suggests estimating Pr(Y n
d > 0) by the Poisson

tail probability 1− e−λ. The error bound (14.3) on this approximation can
be computed by defining the neighborhoods Bα = {β : |β| = 2, β∩α �= ∅},
where vertical bars enclosing a set indicate the number of elements in the
set. It is clear that Xn

α is independent of those Xn
β with β outside Bα.

The Chen-Stein constant b1 reduces to
(
23
2

)|Bα|p2
α. An elementary counting

argument shows that

|Bα| =
(

23
2

)
−
(

21
2

)
= 43.

Since the joint probability pαβ does not depend on the particular pair
β ∈ Bα\{α} chosen, the constant b2 is

(
23
2

)
(|Bα| − 1)pαβ . Fortunately,

pαβ = p2
α when p = 1/2. Indeed, by conditioning on the value of the

common column shared by α and β, it is obvious in this special case that
the events Xn

α = 1 and Xn
β = 1 are independent and occur with constant

probability pα. The case p �= 1/2 is more subtle, and we defer the details
of computing pαβ to Problem 8. Table 14.1 provides some representative
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estimates of the probabilities Pr(Y n
d > 0) for p = 1/2. Because the Chen-

Stein method also provides upper and lower bounds on the estimates, we
can be confident that the estimates are accurate for large n. In two cases in
Table 14.1, the Chen-Stein upper bound is truncated to the more realistic
value 1.

TABLE 14.1. Chen-Stein Estimate of Pr(Y n
d > 0)

d n Estimate Lower Bound Upper Bound
1 10 0.2189 0.1999 0.2379
1 15 0.0077 0.0077 0.0077
1 20 0.0002 0.0002 0.0002
1 25 0.0000 0.0000 0.0000
2 10 0.9340 0.0410 1.0000
2 15 0.1162 0.1112 0.1213
2 20 0.0051 0.0050 0.0051
2 25 0.0002 0.0002 0.0002
3 10 1.0000 0.0410 1.0000
3 15 0.6071 0.4076 0.8066
3 20 0.0496 0.0487 0.0505
3 25 0.0025 0.0025 0.0025

14.5 Biggest Marker Gap

Spacings of uniformly distributed points are relevant to the question of
saturating the human genome with randomly generated markers [14]. If
we identify a chromosome with the unit interval [0,1] and scatter n mark-
ers randomly on it, then it is natural to ask for the distribution of the
largest gap between two adjacent markers or between either endpoint and
its nearest adjacent marker. We can attack this problem by the coupling
method of Chen-Stein approximation. Corresponding to the order statistics
W1, . . . ,Wn of the n points, define indicator random variablesX1, . . . , Xn+1

such that Xα = 1 when Wα −Wα−1 ≥ d. At the ends we take W0 = 0 and
Wn+1 = 1. The sum S =

∑n+1
α=1Xα gives the number of gaps of length d

or greater.
Because we can circularize the interval, all gaps, including the first and

the last, behave symmetrically. Just think of scattering n + 1 points on
the unit circle and then breaking the circle into an interval at the first
random point. It therefore suffices in the coupling method to consider the
first Bernoulli variable X1 = 1{W1≥d}. Now scatter the n points in the
usual way, and let U1 count the number of gaps that exceed d in length.
If W1 ≥ d, then define V1 to be the number of gaps other than W1 that
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exceed d. If, on the other hand, W1 < d, then resample W1 conditional on
the event W1 ≥ d to get W ∗

1 . For α > 1, replace the gap Wα −Wα−1 by
the gap (Wα −Wα−1)(1 −W ∗

1 )/(1 −W1) so that the points to the right
of W1 are uniformly chosen from the interval [W ∗

1 , 1] rather than from
[W1, 1]. This procedure narrows all remaining gaps but leaves them in the
same proportion. If we now define V1 as the number of remaining gaps that
exceed d in length, it is clear that V1 has the same distribution as S − 1
conditional on X1 = 1. Because U1 ≥ V1, the Chen-Stein inequality (14.2)
applies.

To calculate the mean λ = E(S), we again focus on the first interval. The
identity Pr(X1 = 1) = Pr(W1 ≥ d) = (1 − d)n and symmetry then clearly
imply that λ = (n+ 1)(1 − d)n. In similar fashion, we calculate

Var(S) = (n+ 1) Var(X1) + (n+ 1)nCov(X1, X2)
= (n+ 1)(1 − d)n − (n+ 1)(1 − d)2n

+ (n+ 1)nE(X1X2) − (n+ 1)n(1 − d)2n.

Because

E(X1X2) = Pr(X1 = 1, X2 = 1)

=
∫ 1

d

∫ 1

u(1)+d

n(n− 1)[1 − u(2)]n−2du(2)du(1)

=
∫ 1−d

d

n[1 − d− u(1)]n−1du(1)

= (1 − 2d)n

for 2d < 1, it follows that

Var(S) = (n+ 1)(1 − d)n − (n+ 1)(1 − d)2n

+ (n+ 1)n(1 − 2d)n − (n+ 1)n(1 − d)2n.

If d is small and n is large, then one can demonstrate that Var(S) ≈ E(S),
and the Poisson approximation is good [5].

It is of some interest to estimate the average number of markers required
to reduce the largest gap below d. From the Poisson approximation, the
median n should satisfy e−(n+1)(1−d)n ≈ 1

2 . This approximate equality can
be rewritten as

n ≈ − ln(n+ 1) + ln ln 2
ln(1 − d)

(14.4)

and used iteratively to approximate the median. If one chooses evenly
spaced markers, it takes only 1

d markers to saturate the interval [0, 1].
For the crude guess n = 1

d , substitution in (14.4) leads to the improved
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approximation

n ≈ − ln( 1
d + 1) + ln ln 2
ln(1 − d)

≈ 1
d

ln
1
d
.

In fact, a detailed analysis shows that the average required number of
markers is asymptotically similar to 1

d ln 1
d for d small [8, 18]. The factor

ln 1
d is the penalty exacted for randomly selecting markers.
The tedium of filling the last few gaps also plagues other mapping en-

deavors such as covering a chromosome by random clones of fixed length
d [20]. If we let the center of each clone correspond to a marker, then ex-
cept for edge effects, this problem is completely analogous to the marker
coverage problem.

14.6 Randomness of Restriction Sites

Restriction enzymes are special bacterial proteins that snip DNA. The
restriction sites where the cutting takes place vary from enzyme to en-
zyme. For instance, the restriction enzyme EcoRI recognizes the six-base
sequence GAATTC and snips DNA wherever this sequence appears. The
restriction enzyme NotI recognizes the rarer eight-base sequence GCGGC-
CGC and consequently tends to produce much longer fragments on average
than EcoRI. To a good approximation, the restriction sites for a particular
enzyme occur along a chromosome according to a homogeneous Poisson
process. Clustering of restriction sites is a particularly interesting violation
of the Poisson process assumptions.

If one visualizes n restriction sites along a stretch of DNA as random
points on the unit interval [0, 1], then under the Poisson process assump-
tion, the n points should constitute a random sample of size n from the
uniform distribution on [0, 1]. The distances between adjacent points are
known as spacings, or scans. An m-spacing is the distance between the
first and last point of m+ 1 adjacent points. In Section 14.5, we approxi-
mated the distribution of the largest 1-spacing. Here we are interested in
detecting clustering by examining the smallest m-spacing Sm from a set
of n restriction sites. Values of m > 1 are important because very short
DNA fragments are difficult to measure exactly. The Chen-Stein method
provides a means of assessing the significance of an observed m-spacing
Sm = s [5, 13].

Consider the collection I of subsets α of size m + 1 from the set of n
random points on [0, 1]. Let Xα be the indicator random variable of the
event that the distance from the first point of α to the last point of α is
less than or equal to s. There are |I | =

(
n

m+1

)
such collections α, and each
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Xα has the same expectation. Because the event {Sm ≤ s} is equivalent to
the event S =

∑
αXα > 0, it suffices to compute the probability S = 0.

The Chen-Stein approximation suggests that Pr(S = 0) ≈ e−λ with

λ =
(

n

m+ 1

)
E(Xα) =

(
n

m+ 1

)
[(m+ 1)sm −msm+1].

Karlin and Macken use this approximation withm = 10 to detect clustering
of PstI restriction sites in the E. coli bacterial genome [13].

To verify the substitution E(Xα) = pα = (m+1)sm−msm+1, we proceed
by conditioning on the position u of the leftmost of them+1 points. Because
the remaining m points of α must lie within a distance s to the right of u,
it follows that

pα = (m+ 1)
∫ 1−s

0

smdu+ (m+ 1)
∫ 1

1−s

(1 − u)mdu

= (m+ 1)sm(1 − s) + sm+1 (14.5)
= (m+ 1)sm −msm+1.

Thus, if s is small,

λ =
(

n

m+ 1

)
[(m+ 1)sm −msm+1]

≈ n(n− 1) · · · (n−m)
m(m− 1) · · · 1 sm.

If λ is to be bounded away from 0 and ∞, written λ � 1, then nm+1sm � 1.
Here n is taken as very large and s as very small.

To compute the Chen-Stein bound (14.3), it is convenient to define the
neighborhood Bα = {β : |β| = m + 1, β ∩ α �= ∅}. Again Xα is indepen-
dent of those Xβ with β outside Bα. The Chen-Stein constant b1 can be
expressed as

b1 = |I ||Bα|p2
α

=
(

n

m+ 1

)[(
n

m+ 1

)
−
(
n−m− 1
m+ 1

)]
[(m+ 1)sm −msm+1]2

= λ2

[
1 −

(
n−m−1

m+1

)
(

n
m+1

)
]

= λ2
[
1 − (1 − m+ 1

n
) · · · (1 − m+ 1

n−m
)
]
.

Now for any m + 1 numbers a1, . . . , am+1 from [0, 1], standard inclusion–
exclusion arguments imply that

a1 + · · · + am+1 −
∑

1≤i<j≤m+1

aiaj ≤ 1 − (1 − a1) · · · (1 − am+1)

≤ a1 + · · · + am+1.
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It follows that b1 � λ2(m+1)2

n � 1
n .

Evaluation of the constant b2 is more difficult. Consider β ∈ Bα such
that |β ∩ α| = k for 0 < k < m+ 1. Let U(1) and U(k) be the positions of
the first and last of the k common points shared by β and α. If we condition
on the values U(1) = u(1) and U(k) = u(k), then the indicator variables Xα

and Xβ are independent and identically distributed. Hence,

Pr(Xα = 1, Xβ = 1 | U(1) = u(1), U(k) = u(k))

= Pr(Xα = 1 | U(1) = u(1), U(k) = u(k))2.

In order that Xα = 1, the m+1−k remaining points in α must be within a
distance s to the left of u(1) and a distance s to the right of u(k). It follows
that Pr(Xα = 1 | U(1) = u(1), U(k) = u(k)) ≤ (3s)m+1−k for u(k) −u(1) ≤ s.

This uniform bound yields a crude upper bound on pαβ if combined with
the probability that U(k) − U(1) ≤ s. This latter probability is

Pr(U(k) − U(1) ≤ s) = ksk−1 − (k − 1)sk

for exactly the same reasons that produced equality (14.5). Thus, we can
assert that pαβ ≤ qk = [ksk−1−(k−1)sk](3s)2[m+1−k] whenever |β∩α| = k.
Since there are

(
m+1

k

)(
n−m−1
m+1−k

)
such collections β for every α,

b2 ≤
m∑

k=1

(
n

m+ 1

)(
m+ 1
k

)(
n−m− 1
m+ 1 − k

)
qk. (14.6)

The upper bound (14.6) is hard to evaluate explicitly, but its dominant
contribution occurs when k = m. Indeed, because of the asymptotic rela-
tions nm+1sm � 1 and qk � s2m−k+1, the kth term of the sum satisfies

(
n

m+ 1

)(
m+ 1
k

)(
n−m− 1
m+ 1 − k

)
qk � n2m−k+2s2m−k+1

� n2m−k+2n− (2m−k+1)(m+1)
m

= n
k−m−1

m .

Thus, the dominant term of the sum is of order n−1/m, and for sufficiently
large n and sufficiently small s, the Poisson approximation Pr(S = 0) ≈ e−λ

applies. The slow rate O(n−1/m) of convergence of the total variation dis-
tance to 0 is rather disappointing in this example. The theoretical argu-
ments and numerical evidence presented by Glaz [9] and Roos [16] suggest
that a compound Poisson approximation performs better.

14.7 DNA Sequence Matching

A basic problem in DNA sequence analysis is to test whether two different
sequences share significant similarities. Strong similarity or homology often
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indicates a common evolutionary origin of the two sequences. In many cases
homology also indicates a common biochemical or structural function of the
genes encoded by the sequences.

To pose the problem of sequence comparison statistically, consider two
sequences with m and n bases, respectively. Now imagine sliding the first
sequence along the second sequence. For some alignment the two sequences
share a region attaining the longest perfect match. (Here the match is local,
and no internal indels are permitted in either sequence.) Since ties can
occur, there may be several such regions. Let Mmn be the random number
of base pairs involved in a longest perfect match. Under the null hypothesis
that the two sequences are unrelated, one can compute the approximate
distribution of Mmn. If the observed value of Mmn is inordinately large
according to this distribution, then significant homology can be claimed.

Computing the distribution of Mmn is subtle. Fortunately, the Chen-
Stein method is applicable. Assume first that the bases appearing at the
various positions of either sequence are chosen independently from the set of
nucleotides {A,C,T,G} with probabilities qA, qC , qT , and qG, respectively.
The probability of a match between any two positions is

q = q2A + q2C + q2T + q2G.

Define Wij to be the indicator random variable for the event of a match
between position i of the first sequence and position j of the second se-
quence. The indicator random variable Xij of the event that a perfect
match of length t or longer begins at positions i and j of the two sequences
is given by

Xij = (1 −Wi−1,j−1)
t−1∏
k=0

Wi+k,j+k .

This expression for Xij ignores end effects. For m and n large compared
to t, end effects will be trivial. Alternatively, imagine the two sequences
wrapped into circles, and interpret the subscript arithmetic involved in
defining Xij as modulo m and n.

According to the Chen-Stein approximation, the distribution function of
the longest match Mmn satisfies

Pr(Mmn < t) = Pr(
∑
(i,j)

Xij = 0)

≈ e−λ,

where λ =
∑

(i,j) Pr(Xij = 1). There are mn pairs (i, j) and each has
probability Pr(Xij = 1) = (1− q)qt of initiating a perfect match. It follows
that λ = mn(1 − q)qt. Evaluating the error bound (14.3) for the Poisson
approximation is possible, but too complicated to present here. See [20] for
the full treatment.
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The Chen-Stein approximation does provide considerable insight into the
distribution ofMmn. For instance, the approximate median ofMmn satisfies
e−λ ≈ 1/2. This gives mn(1 − q)qt ≈ ln 2, or mn(1 − q)/ ln 2 ≈ (1/q)t.
Solving for t yields t ≈ log 1

q
[mn(1− q)/ ln 2]. This suggests that Mmn is of

order log 1
q
[mn(1− q)]. In fact, it is known [3, 19] that Mmn has mean and

variance

E(Mmn) ≈ log 1
q
[mn(1 − q)] + γ log 1

q
e− 1

2
(14.7)

Var(Mmn) ≈
[
π log 1

q
e
]2

6
+

1
12
, (14.8)

where γ ≈ .577 is Euler’s constant. Note that E(Mnn) grows like 2 log1/q n
as n grows; Var(Mnn) stays virtually constant.

To gain some insight into formulas (14.7) and (14.8), it is instructive to
consider the simpler problem of characterizing the limiting behavior of the
maximum number of failures observed in n independent realizations of a
geometric waiting time with failure probability q per trial. The sequence
matching problem is more complicated because it involves the maximum of
mn dependent waiting times, with failure equated to matching and success
to nonmatching.

In the simplified problem, we construct a waiting time that counts the
number of failures before an ultimate success by taking the integer part
�X� of an appropriate exponential waiting time X . Now X can be viewed
as the time until the first random point of a Poisson process on [0,∞). In
this setting the random variable �X� = k if and only if there are no random
points on the disjoint intervals [0, 1), [1, 2), ... , [k − 1, k) and at least one
random point on the interval [k, k+1). If the intensity of the Poisson process
is λ, then this event occurs with probability (e−λ)k(1−e−λ). It follows that
�X� is geometrically distributed with failure probability q = e−λ.

Now let X1, . . . , Xn be n independent, exponentially distributed waiting
times with common intensity λ. Clearly, the integer part of the maximum
Mn = max1≤i≤nXi satisfies �Mn� = max1≤i≤n�Xi�. In view of the in-
equalities 0 ≤ Mn − �Mn� < 1, the moments of �Mn� are approximately
the same as the moments of Mn.

At first glance, calculating the moments of Mn appears hard. However,
progress can be made by invoking a standard representation of the order
statistics X(1) < · · · < X(n) = Mn [8]. Imagine the Xi as random points
scattered on the interval [0,∞). From the calculation

Pr(X(1) ≥ x) =
n∏

i=1

Pr(Xi ≥ x) = e−nλx,

we find that X(1) is exponentially distributed with intensity nλ. Because
of the lack of memory property of the exponential, the n − 1 points to
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the right of X(1) provide an exponentially distributed sample of size n− 1
starting at X(1). Duplicating our argument for X(1), we find that the differ-
ence X(2) −X(1) is independent of X(1) and exponentially distributed with
intensity (n−1)λ. Arguing inductively we now see that Z1 = X(1) and that
the differences Zi+1 = X(i+1) −X(i) are independent and that Zi is expo-
nentially distributed with intensity (n − i + 1)λ. From the representation
Mn = X(n) =

∑n
i=1 Zi, we can read off the first two moments

E(Mn) =
n∑

i=1

1
iλ

≈ lnn
λ

+
γ

λ

Var(Mn) =
n∑

i=1

1
i2λ2

≈ π2

6λ2
.

The normalized random variable Yn = λMn/ lnn has mean 1 and vari-
ance tending to 0. Hence, the sequence Yn converges in probability to 1.
With more effort, one can prove that it converges almost surely to 1. The
Erdös-Rényi law [7] generalizes this almost sure convergence result to global
sequence matches without gaps. Arratia et al. [3, 4] prove analogs of the
Erdös-Rényi law for local sequence alignments.

One can improve on the moment approximation E(�Mn�k) ≈ E(Mk
n).

For instance roughly �Mn� ≈ Mn − U , where U is uniform on [0, 1] and
independent of Mn. Because λ = 1/ log 1

q
e, it follows that

E(�Mn�) ≈ E(Mn) − 1
2

= log 1
q
n+ γ log 1

q
e− 1

2

Var(�Mn�) ≈ Var(Mn) +
1
12

=

(
π log 1

q
e
)2

6
+

1
12
.

14.8 Problems

1. Prove that the Chen-Stein bound (14.1) implies the bound (14.2)
when the inequality Uα ≥ Vα holds for all α.

2. Show that in the neighborhood method λ− Var(S) = b1 − b2.

3. For a random permutation σ1, . . . , σn of {1, . . . , n}, let Xα = 1{σα=α}
be the indicator of a match at position α. Show that the total number
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of matches S =
∑n

α=1Xα satisfies the coupling bound

‖L(S) − L(Z)‖ ≤ 2(1 − e−1)
n

,

where Z follows a Poisson distribution with mean 1. (Hint: Use in-
equality (14.1) rather than inequality (14.2).)

4. In certain situations the hypergeometric distribution can be approx-
imated by a Poisson distribution. Suppose that w white balls and b
black balls occupy a box. If you extract n < w + b balls at random,
then the number of white balls S extracted follows a hypergeometric
distribution. Note that if we label the white balls 1, . . . , w, and let
Xα be the random variable indicating whether white ball α is cho-
sen, then S =

∑w
α=1Xα. Show that you can construct a coupling by

performing the sampling experiment in the usual way. If white ball α
does not show up, then randomly take one of the balls extracted and
exchange it for white ball α. Calculate an explicit Chen-Stein bound,
and give conditions under which the Poisson approximation to S will
be good.

5. Consider the n-dimensional unit cube [0, 1]n. Suppose that each of
its n2n−1 edges is independently assigned one of two equally likely
orientations. Let S be the number of vertices at which all neighboring
edges point toward the vertex. The Chen-Stein method implies that
S has an approximate Poisson distribution Z with mean 1. Verify the
estimate

‖L(S) −L(Z)‖ ≤ (n+ 1)2−n(1 − e−1).

(Hint: Let I be the set of all 2n vertices, Xα the indicator that vertex
α has all of its edges directed toward α, and Bα = {β : ‖β−α‖ ≤ 1}.
Note that Xα is independent of those Xβ with ‖β − α‖ > 1. Also,
b2 = 0 because pαβ = 0 for ‖β − α‖ = 1.)

6. A graph with n nodes is created by randomly connecting some pairs
of nodes by edges. If the connection probability per pair is p, then all
pairs from a triple of nodes are connected with probability p3. For p
small and λ =

(
n
3

)
p3 moderate in size, the number of such triangles

in the random graph is approximately Poisson with mean λ. Use the
neighborhood method to estimate the total variation error in this
approximation.

7. Suppose n balls (people) are uniformly and independently distributed
into m boxes (days of the year). The birthday problem involves find-
ing the approximate distribution of the number of boxes that receive
d or more balls for some fixed positive integer d. This is a special case
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of the Wd Poisson approximation treated in the text by the coupling
method. In this exercise we attack the birthday problem by the neigh-
borhood method. To get started, let the index set I be the collection
of all sets of trials α ⊂ {1, . . . , n} having |α| = d elements. Let Xα be
the indicator of the event that the balls indexed by α all fall into the
same box. Argue that the approximation Pr(Wd = 0) ≈ e−λ with

λ =
(
n

d

)
1

md−1

is plausible. Now define the neighborhoods Bα so that Xα is inde-
pendent of those Xβ with β outside Bα. Prove that the Chen-Stein
constants b1 and b2 are

b1 =
(
n

d

)[(
n

d

)
−
(
n− d

d

)](
1
m

)2d−2

b2 =
(
n

d

) d−1∑
i=1

(
d

i

)(
n− d

d− i

)(
1
m

)2d−i−1

.

When d = 2, compute the total variation bound

1 − e−λ

λ
(b1 + b2) =

1 − e−λ

λ

(
n
2

)
(4n− 7)
m2

.

8. In the somatic cell hybrid model, suppose that the retention probabil-
ity p �= 1

2 . Define wn,d12,d13 = Pr[ρ(Cn
1 , C

n
2 ) = d12, ρ(Cn

1 , C
n
3 ) = d13]

for a random panel with n clones. Show that

pαβ =
d−1∑

d12=0

d−1∑
d13=0

wn,d12,d13 ,

regardless of which β ∈ Bα\{α} is chosen [10]. Setting r = p(1 − p),
verify the recurrence relation

wn+1,d12,d13 = r(wn,d12−1,d13 + wn,d12,d13−1 + wn,d12−1,d13−1)
+ (1 − 3r)wn,d12,d13 .

Under the natural initial conditions, w0,d12,d13 is 1 when d12 = d13 = 0
and 0 otherwise.

9. In the somatic cell hybrid model, suppose that one knows a priori that
the number of assay errors does not exceed some positive integer d.
Prove that assay error can be detected if the minimum Hamming
distance of the panel is strictly greater than d. Prove that the locus
can still be correctly assigned to a single chromosome if the minimum
Hamming distance is strictly greater than 2d.
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10. Consider an infinite sequence W1,W2, . . . of independent, Bernoulli
random variables with common success probability p. Let Xα be the
indicator of the event that a success run of length t or longer begins
at position α. Note that X1 =

∏t
k=1Wk and

Xj = (1 −Wj−1)
j+t−1∏
k=j

Wk

for j > 1. The number of such success runs starting in the first n po-
sitions is given by S =

∑
α∈I Xα, where the index set I = {1, . . . , n}.

The Poisson heuristic suggests the S is approximately Poisson with
mean λ = pt[(n−1)(1−p)+1]. Let Bα = {β ∈ I : |β−α| ≤ t}. Show
that Xα is independent of those Xβ with β outside Bα. In the Chen-
Stein bound (14.3), prove that the constant b2 = 0. Finally, show
that the Chen-Stein constant b1 ≤ λ2(2t+ 1)/n+ 2λpt for 1 < t ≤ n.
(Hint:

b1 = p2t + 2tp2t(1 − p)
+ [2nt− t2 + n− 3t− 1]p2t(1 − p)2

exactly. Note that the pairs α and β entering into the double sum for
b1 are drawn from the integer lattice points {(i, j) : 1 ≤ i, j ≤ n}. An
upper left triangle and a lower right triangle of lattice points from
this square do not qualify for the double sum defining b1. The term
p2t in b1 corresponds to the lattice point (1, 1).)

11. Let X1, . . . , Xn be n independent, exponentially distributed waiting
times with common intensity λ, and define Mn = max1≤i≤nXi. Show
that λMn − lnn converges in distribution to the extreme value sta-
tistic having density e−e−u

e−u. (Hints: This assertion can be most
easily demonstrated by considering the moment generating function
of λMn− lnn. Since Mn has density n(1−e−λx)n−1λe−λx, prove that

E[es(λMn−ln n)] =
∫ ∞

0

es(λx−lnn)n(1 − e−λx)n−1λe−λxdx

=
∫ ∞

− ln n

esu(1 − 1
n
e−u)n−1e−udu.

Argue that in the limit

lim
n→∞ E[es(λMn−ln n)] =

∫ ∞

−∞
esue−e−u

e−udu

=
∫ ∞

0

w−se−wdw (14.9)

= Γ(1 − s),

where Γ(x) is the gamma function. )
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12. Continuing Problem 11, show that Γ(1 − s) is an analytic function
of the complex variable s for |s| sufficiently small and that the con-
vergence in equation (14.9) is uniform. Consequently, the moments
of λMn − lnn converge to the moments of the extreme value density
e−e−u

e−u. Prove that this density has mean and variance

d

ds
ln Γ(1 − s)|s=0 = γ

d2

ds2
ln Γ(1 − s)|s=0 =

∞∑
k=1

1
k2

=
π2

6
,

where γ is Euler’s constant. (Hint: Quote whatever facts you need
about the log gamma function ln Γ(t) [12].)
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15

Diffusion Processes

15.1 Introduction

The early application of diffusion processes by Fisher, Wright, and Kimura
elevated population genetics to one of the more sophisticated branches of
applied mathematics [3, 4, 8]. Although diffusion models address and solve
many interesting stochastic questions that are impossible to even discuss
in a deterministic framework, these models also raise the mathematical
bar. The current chapter surveys the theory at an elementary level, stress-
ing intuition rather than rigor. Readers with the time and mathematical
background should follow up this brief account by delving into serious pre-
sentations of the mathematics [1, 2, 7, 8].

Mathematical geneticists have pushed exact methods in diffusion models
about as far as one could realistically hope. The emphasis has been on sta-
tionary processes. Unfortunately, human genetics models need to take into
account population growth. If further progress is to be made in investigating
nonstationary models, then mathematical geneticists will have to pay more
heed to numerical methods. The final three sections of this chapter con-
front problems arising in numerical implementation of the Wright-Fisher
Markov chain and its diffusion approximation.

15.2 Review of Diffusion Processes

A diffusion process Xt is a continuous-time Markov process that behaves
locally like Brownian motion. Its sample paths are continuous functions
confined to an interval I with left endpoint a and right endpoint b. In some
applications a = −∞ or b = +∞ is appropriate. If a is finite, then I may be
either closed or open at a, and likewise at b. The process Xt is determined
by the Markovian assumption and the distribution of its increments. For
small s and Xt = x, the increment Xt+s − Xt is approximately normally
distributed with mean and variance

E(Xt+s −Xt | Xt = x) = µ(t, x)s+ o(s) (15.1)
E[(Xt+s −Xt)2 | Xt = x] = σ2(t, x)s+ o(s). (15.2)

The functions µ(t, x) and σ2(t, x) ≥ 0 are called the infinitesimal mean
and variance, respectively. Here the term “infinitesimal variance” is used
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rather than “infinitesimal second moment” because the approximation

Var(Xt+s −Xt | Xt = x)
= E[(Xt+s −Xt)2 | Xt = x] − [µ(t, x)s+ o(s)]2

= E[(Xt+s −Xt)2 | Xt = x] + o(s)

follows directly from approximations (15.1) and (15.2). If the infinitesimal
mean and variance do not depend on time t, then the process is time
homogeneous. If µ(t, x) = 0 and σ2(t, x) = 1, then Xt reduces to standard
Brownian motion.

To begin our nonrigorous, intuitive discussion of diffusion processes, we
note that the normality assumption implies

E(|Xt+s −Xt|m | Xt = x) = E
(∣∣∣∣
Xt+s −Xt

σ(t, x)
√
s

∣∣∣∣
m ∣∣∣Xt = x

)[
σ(t, x)

√
s
]m

= o(s) (15.3)

for m > 2. This insight is crucial in various arguments involving Taylor
series expansions. For instance, it allows us to deduce how Xt behaves
under a smooth, invertible transformation. If Yt = g(t,Xt) denotes the
transformed process, then

Yt+s − y =
∂

∂t
g(t, x)s+

∂

∂x
g(t, x)(Xt+s − x) +

1
2
∂2

∂t2
g(t, x)s2

+
∂2

∂t∂x
g(t, x)s(Xt+s − x) +

1
2
∂2

∂x2
g(t, x)(Xt+s − x)2

+O[(|Xt+s − x| + s)3]

for Xt = x and y = g(t, x). Taking conditional expectations produces

E(Yt+s − Yt | Yt = y) =
∂

∂t
g(t, x)s+

∂

∂x
g(t, x)µ(t, x)s

+
1
2
∂2

∂x2
g(t, x)σ2(t, x)s+ o(s).

In similar manner,

Var(Yt+s − Yt | Yt = y) =
[
∂

∂x
g(t, x)

]2

σ2(t, x)s + o(s).

It follows that the transformed diffusion process Yt has infinitesimal
mean and variance

µY (t, y) =
∂

∂t
g(t, x) +

∂

∂x
g(t, x)µ(t, x) +

1
2
∂2

∂x2
g(t, x)σ2(t, x)

σ2
Y (t, y) =

[
∂

∂x
g(t, x)

]2

σ2(t, x),
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at y = g(t, x).
In many cases of interest, the random variable Xt has a density function

f(t, x) that depends on the initial pointX0 = x0. To characterize f(t, x), we
now give a heuristic derivation of Kolmogorov’s forward partial differ-
ential equation. Our approach exploits the notion of probability flux.
Here it helps to imagine a large ensemble of diffusing particles, each inde-
pendently executing the same process. We position ourselves at some point
x and record the rate at which particles pass through x from left to right
minus the rate at which they pass from right to left. This rate, normalized
by the total number of particles, is the probability flux at x. We can express
the flux more formally as the negative derivative − ∂

∂t Pr(Xt ≤ x).
To calculate this time derivative, we rewrite the difference

Pr(Xt ≤ x) − Pr(Xt+s ≤ x)
= Pr(Xt ≤ x,Xt+s > x) + Pr(Xt ≤ x,Xt+s ≤ x)

−Pr(Xt ≤ x,Xt+s ≤ x) − Pr(Xt > x,Xt+s ≤ x)
= Pr(Xt ≤ x,Xt+s > x) − Pr(Xt > x,Xt+s ≤ x).

The first of the resulting probabilities, Pr(Xt ≤ x,Xt+s > x), can be
expressed as

Pr(Xt ≤ x,Xt+s > x) =
∫ ∞

0

∫ x

x−z

f(t, y)φs(y, z) dy dz,

where the increment Z = Xt+s −Xt has density φs(y, z) when Xt = y. In
similar fashion, the second probability becomes

Pr(Xt > x,Xt+s ≤ x) =
∫ 0

−∞

∫ x−z

x

f(t, y)φs(y, z) dy dz,

producing overall

Pr(Xt ≤ x) − Pr(Xt+s ≤ x) =
∫ ∞

−∞

∫ x

x−z

f(t, y)φs(y, z) dy dz.(15.4)

Because for small values of s only values of y near x should contribute
to the flux, we substitute the first-order expansion

f(t, y)φs(y, z) ≈ f(t, x)φs(x, z) +
∂

∂x

[
f(t, x)φs(x, z)

]
(y − x)

in equation (15.4). In light of equations (15.1) and (15.2), this yields

Pr(Xt ≤ x) − Pr(Xt+s ≤ x)

≈
∫ ∞

−∞

∫ x

x−z

{
f(t, x)φs(x, z) +

∂

∂x

[
f(t, x)φs(x, z)

]
(y − x)

}
dy dz
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=
∫ ∞

−∞

{
zf(t, x)φs(x, z) − z2

2
∂

∂x

[
f(t, x)φs(x, z)

]}
dz

≈ µ(t, x)f(t, x)s − 1
2
∂

∂x

[ ∫ ∞

−∞
z2φs(x, z) dzf(t, x)

]

≈ µ(t, x)f(t, x)s − 1
2
∂

∂x

[
σ2(t, x)f(t, x)

]
s.

Using equation (15.3), one can show that these approximations are good
to order o(s). Dividing by s and sending s to 0 give the flux

− ∂

∂t
Pr(Xt ≤ x) = µ(t, x)f(t, x) − 1

2
∂

∂x

[
σ2(t, x)f(t, x)

]
.

A final differentiation with respect to x now produces the Kolmogorov
forward equation

∂

∂t
f(t, x) = − ∂

∂x

[
µ(t, x)f(t, x)

]
+

1
2
∂2

∂x2

[
σ2(t, x)f(t, x)

]
. (15.5)

As t tends to 0, the density f(t, x) concentrates all of its mass around the
initial point x0.

Example 15.2.1 Standard Brownian Motion

If µ(t, x) = 0 and σ2(t, x) = 1, then the forward equation becomes

∂

∂t
f(t, x) =

1
2
∂2

∂x2
f(t, x).

At X0 = 0 one can check the solution

f(t, x) =
1√
2πt

e−
x2
2t

by straightforward differentiation. Thus, Xt has a Gaussian density with
mean 0 and variance t. Here is clear that Xt becomes progressively more
concentrated around its starting point as t tends to 0.

Example 15.2.2 Transformations of Standard Brownian Motion

The transformed Brownian process Yt = σXt + αt + x0 has infinitesimal
mean and variance µY (t, x) = α and σ2

Y (t, x) = σ2. It is clear that Yt

is normally distributed with mean αt + x0 and variance σ2t. The further
transformation Zt = eYt leads to a process with infinitesimal mean and
variance µZ(t, z) = zα+ 1

2zσ
2 and σ2

Z(t, z) = z2σ2. Because Yt is normally
distributed, Zt is lognormally distributed.
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15.3 Wright-Fisher Model

The Wright-Fisher model for the evolution of a deleterious or neutral
gene postulates (a) discrete generations, (b) finite population size, (c) no
immigration, and (d) formation of gametes by random binomial sampling.
In assumption (d), each current population member contributes to an infi-
nite pool of potential gametes in proportion to his or her fitness. Mutation
from the normal allele A2 to the deleterious allele A1 takes place at this
stage with mutation rate η; backmutation is not permitted. In the neu-
tral model we neglect mutation and treat the two alleles symmetrically.
Once the pool of potential gametes is formed, actual gametes are sam-
pled randomly. At each generation, the three genotypes occur in the usual
Hardy-Weinberg proportions even though allele frequencies change over
time.

In Chapter 1 recall that we let wA1/A1 , wA1/A2 , and wA2/A2 denote the
average fitnesses of the three genotypes A1/A1, A1/A2 and A2/A2 of an
autosomally determined trait. Simplifying our previous discussion and no-
tation slightly, for a dominant disease we may suppose wA2/A2 = 1 and
wA1/A1 = wA1/A2 = f < 1. (In the notation of Chapter 1, r ≥ 0 and
1 − s = 1/f .) For a neutral trait, wA1/A1 = wA1/A2 = wA2/A2 = 1, and
for a recessive disease wA2/A2 = wA1/A2 = 1 and wA1/A1 = f < 1. (In the
notation of Chapter 1, s = 0 and 1 − r = f for a recessive.) For our pur-
poses, the population size Nm at generation m need not be constant. The
primary object of study in the current chapter is the frequency Xm of al-
lele A1 at generation m. This frequency is the ratio of the total number Ym

of A1 alleles to the total number of genes 2Nm. The Wright-Fisher model
specifies that Ym is binomially distributed with 2Nm trials and success
probability p(Xm−1) determined by the proportion p(Xm−1) of A1 alleles
in the pool of potential gametes for generation m. In passing to a diffusion
approximation, we take one generation as the unit of time and substitute

µ(m,xm) = E(Xm+1 −Xm | Xm = xm) (15.6)
= p(xm) − xm

σ2(m,xm) = Var(Xm+1 −Xm | Xm = xm) (15.7)

=
p(xm)[1 − p(xm)]

2Nm+1

for the infinitesimal mean µ(t, x) and variance σ2(t, x) of the diffusion
process evaluated at time t = m and position x = xm.

Under neutral evolution, the gamete pool probability p(x) = x. This for-
mula for p(x) entails no systematic tendency for either allele to expand at
the expense of the other allele. For a dominant disease, p(x) = η+fx, which
implies an equilibrium frequency of x∞ = η/(1 − f) in the corresponding
deterministic model. Finally, for a recessive disease, p(x) = η+x−(1−f)x2,
which implies an equilibrium frequency of x∞ =

√
η/(1 − f). Most popu-
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lation geneticists substitute p(x) = x in formula (15.7) defining the infin-
itesimal variance σ2(t, x). This action is justified for neutral and recessive
inheritance, but less so for dominant inheritance where the allele frequency
x is typically on the order of magnitude of the mutation rate η. It is also
fair to point out that in the presence of inbreeding or incomplete mixing of
a population, the effective population size is less than the actual pop-
ulation size [3]. For the sake of simplicity, we will ignore this evolutionary
fact.

15.4 First Passage Time Problems

Let c < d be two points in the interior of the range I of a diffusion process
Xt. Define Tc to be the first time t that Xt = c and similarly for Td. The
processXt exits (c, d) at the time T = min{Tc, Td}. We consider two related
problems involving these first passage times. One problem is to calculate
the probability u(x) = Pr(Td < Tc | X0 = x) that the process exits via d
starting from x ∈ [c, d]. It is straightforward to derive a differential equation
determining u(x) given the boundary conditions u(c) = 0 and u(d) = 1.
With this end in mind, we assume that Xt is time homogeneous.

For s > 0 small and x ∈ (c, d), the probability that Xt reaches either c
or d during the time interval [0, s] is o(s). Thus,

u(x) = E[u(Xs) | X0 = x] + o(s).

If we let ∆Xs = Xs−X0 and expand u(Xs) in a second-order Taylor series,
then we find that

u(Xs) = u(x+ ∆Xs)

= u(x) + u′(x)∆Xs +
1
2

[
u′′(x) + r(∆Xs)

]
∆X2

s , (15.8)

where the relative error r(∆Xs) tends to 0 as ∆Xs tends to 0. Invoking
equations (15.1), (15.2), and (15.8) therefore yields

u(x) = E[u(Xs)] + o(s)

= u(x) + µ(x)u′(x)s +
1
2
σ2(x)u′′(x)s+ o(s),

which upon rearrangement and sending s to 0 gives the differential equation

0 = µ(x)u′(x) +
1
2
σ2(x)u′′(x). (15.9)

It is a simple matter to check that equation (15.9) can be solved explicitly
by defining

v(x) =
∫ x

l

e
−
∫

y

l

2µ(z)
σ2(z)

dz
dy
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and setting

u(x) =
v(x) − v(c)
v(d) − v(c)

. (15.10)

Here the lower limit of integration l can be any point in the interval [c, d].
This particular solution also satisfies the boundary conditions.

Example 15.4.1 Fixation Probabilities in the Neutral Model

In the diffusion approximation to the neutral Wright-Fisher model with
constant population size N , we calculate

v(x) =
∫ x

l

e
−
∫

y

l
0 dz

dy = x− l.

Thus, starting at a frequency of x for allele A1, allele A2 goes extinct before
allele A1 with probability

u(x) = lim
c→0, d→1

x− l − (c− l)
d− l − (c− l)

= x.

This example is typical in the sense that u(x) = (x − c)/(d − c) for any
diffusion process with µ(x) = 0.

Another important problem is to calculate the expectation

w(x) = E[g(T ) | X0 = x]

of a function of the exit time T from [c, d]. For instance, g(t) = tn gives the
nth moment of T , and g(t) = e−θt gives the Laplace transform of T . We
again derive an ordinary differential equation determining w(x), but now
the pertinent boundary conditions are w(c) = w(d) = g(0). To emphasize
the dependence of T on the initial position x, let us write Tx in place of T .

We commence our derivation with the expansion

w(x) = E[g(Tx) | X0 = x]
= E[g(TXs + s) | X0 = x] + o(s)
= E[g(TXs) + g′(TXs)s | X0 = x] + o(s)
= E{E[g(TXs) | Xs] | X0 = x} + E[g′(TXs) | X0 = x]s+ o(s)
= E[w(Xs) | X0 = x] + E[g′(Tx) | X0 = x]s+ o(s).

Employing the same reasoning used in deriving the differential equation
(15.9) for u(x), we deduce that

E[w(Xs) | X0 = x] = w(x) + µ(x)w′(x)s+
1
2
σ2(x)w′′(x)s + o(s).
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It follows that

w(x) = w(x) + µ(x)w′(x)s+
1
2
σ2(x)w′′(x)s

+ E[g′(Tx) | X0 = x]s+ o(s).

Rearranging this and sending s to 0 produce the differential equation

0 = µ(x)w′(x) +
1
2
σ2(x)w′′(x) + E[g′(Tx) | X0 = x].

The special cases g(t) = t and g(t) = e−θt correspond to the differential
equations

0 = µ(x)w′(x) +
1
2
σ2(x)w′′(x) + 1 (15.11)

0 = µ(x)w′(x) +
1
2
σ2(x)w′′(x) − θw(x), (15.12)

respectively.

Example 15.4.2 Fixation Times in the Neutral Model

In the diffusion approximation to the neutral Wright-Fisher model with
constant population size N , equation (15.11) becomes

0 =
x(1 − x)

4N
w′′(x) + 1. (15.13)

If we take c = 0 and d = 1, then w(x) represents the expected time until
fixation of one of the two alleles. To solve equation (15.13), observe that

w′(x) = −4N
∫ x

1
2

1
y(1 − y)

dy + k1

= −4N
∫ x

1
2

[1
y

+
1

(1 − y)

]
dy + k1

= −4N [lnx− ln(1 − x)] + k1

for some constant k1. Integrating again yields

w(x) = −4N
∫ x

1
2

[ln y − ln(1 − y)] dy + k1x+ k2

= −4N [x lnx+ (1 − x) ln(1 − x)] + k1x+ k2

for some constant k2. The boundary condition w(0) = 0 implies k2 = 0,
and the boundary condition w(1) = 0 implies k1 = 0. It follows that

w(x) = −4N [x lnx+ (1 − x) ln(1 − x)] .

This is proportional to N and attains a maximum of 4N ln 2 at x = 1/2.
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15.5 Process Moments

Taking unconditional expectations in expression (15.1) and cumulating the
results up to time t suggests the integral equation

E(Xt) = E(X0) +
∫ t

0

E[µ(s,Xs)] ds

for the mean E(Xt). Differentiating this result with respect to t provides
the ordinary differential equation

d

dt
E(Xt) = E[µ(t,Xt)] (15.14)

characterizing E(Xt). Taking unconditional variances in expression (15.2)
yields in a similar manner

Var(Xt+s) = E[Var(Xt + ∆Xt | Xt)] + Var[E(Xt + ∆Xt | Xt)]
= E[σ2(t,Xt)s+ o(s)] + Var[Xt + µ(t,Xt)s+ o(s)]
= E[σ2(t,Xt)]s+ Var(Xt) + 2 Cov[Xt, µ(t,Xt)]s+ o(s)

for ∆Xt = Xt+s −Xt. Cumulating these results up to time t suggests that

Var(Xt) = Var(X0) +
∫ t

0

E[σ2(s,Xs)] ds

+ 2
∫ t

0

Cov[Xs, µ(s,Xs)] ds.

Finally, differentiating this integral equation gives the ordinary differential
equation

d

dt
Var(Xt) = E[σ2(t,Xt)] + 2 Cov[Xt, µ(t,Xt)] (15.15)

rigorously derived in [6].

Example 15.5.1 Moments in the Wright-Fisher Diffusion Process

In the diffusion approximation to the Wright-Fisher model for a dominant
disease with constant population size N , we have µ(t, x) = η − (1 − f)x.
Hence, the differential equation (15.14) becomes

d

dt
E(Xt) = η − (1 − f) E(Xt)

with solution

E(Xt) =
[
x0 − η

1 − f

]
e−(1−f)t +

η

1 − f
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for X0 = x0. The limiting value of η/(1−f) is the same as the deterministic
equilibrium. In the case of neutral evolution with f = 1 and η = 0, the
mean E(Xt) = x0 is constant. In these circumstances, equation (15.15)
reduces to

d

dt
Var(Xt) =

E(Xt) − E(X2
t )

2N

=
x0 − x2

0 − Var(Xt)
2N

,

with solution

Var(Xt) = x0(1 − x0)
[
1 − e−

t
2N

]
.

This expression tends to x0(1 − x0) as t tends to ∞, which is the variance
of the limiting random variable

X∞ =
{

1 with probability x0

0 with probability 1 − x0 .

Fan and Lange [5] calculate Var(Xt) for the dominant case. In the recessive
case, this approach to E(Xt) and Var(Xt) breaks down because µ(t, x) is
quadratic rather than linear in x.

15.6 Equilibrium Distribution

In certain situations, a time-homogeneous diffusion process will tend to
equilibrium. To find the equilibrium distribution, we set the left-hand side
of Kolmogorov’s equation (15.5) equal to 0 and solve for the equilibrium
distribution f(x) = limt→∞ f(t, x). Integrating the equation

0 = − d

dx

[
µ(x)f(x)

]
+

1
2
d2

dx2

[
σ2(x)f(x)

]
(15.16)

once gives

k1 = −µ(x)f(x) +
1
2
d

dx

[
σ2(x)f(x)

]

for some constant k1. The choice k1 = 0 corresponds to the intuitively
reasonable condition of no probability flux at equilibrium. Dividing the no
flux equation by σ2(x)f(x) yields

d

dx
ln[σ2(x)f(x)] =

2µ(x)
σ2(x)

.
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If we now choose l in the interior of the range I of Xt and integrate a
second time, then we deduce that

ln[σ2(x)f(x)] = k2 +
∫ x

l

2µ(y)
σ2(y)

dy,

from which Wright’s formula

f(x) =
k3e

∫ x

l

2µ(y)
σ2(y)

dy

σ2(x)
(15.17)

for the equilibrium distribution follows. An appropriate choice of the con-
stant k3 = ek2 serves to make

∫
I
f(x)dx = 1 when the equilibrium distrib-

ution exists and is unique.

Example 15.6.1 Equilibrium for a Recessive Disease Gene

Equilibrium for a disease gene is maintained by the balance between selec-
tion and mutation. To avoid fixation of the deleterious allele and to ensure
existence of the equilibrium distribution, backmutation of the deleterious
allele to the normal allele must be incorporated into the model. In reality,
the chance of fixation is so remote that backmutation does not enter into
the following approximation of the equilibrium distribution f(x). Because
only small values of the disease gene frequency are likely, f(x) is concen-
trated near 0. In the vicinity of 0, the approximation x(1 − x) ≈ x holds.
For a recessive disease, these facts suggest that we use

2µ(y)
σ2(y)

=
2[η − (1 − f)y2]

y(1−y)
2N

≈ 4N
[
η

y
− (1 − f)y

]

in Wright’s formula (15.17).
With this understanding,

f(x) ≈ 2Nk3

x
e4Nη ln(x/l)−2N(1−f)(x2−l2)

= k4x
4Nη−1e−2N(1−f)x2

for some constant k4 > 0. The change of variables z = 2N(1− f)x2 shows
that the mth moment of f(x) is

∫

I

xmf(x) dx ≈ k4

∫ 1

0

xm+4Nη−1e−2N(1−f)x2
dx

=
k4

4N(1 − f)

∫ 1

0

xm+4Nη−2e−2N(1−f)x2
4N(1− f)x dx
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=
k4

4N(1 − f)

∫ 2N(1−f)

0

[
z

2N(1 − f)

]m+4Nη−2
2

e−zdz

≈ k4

2[2N(1 − f)]
m
2 +2Nη

∫ ∞

0

z
m
2 +2Nη−1e−zdz

=
k4Γ(m

2 + 2Nη)
2[2N(1 − f)]

m
2 +2Nη

.

Taking m = 0 identifies the normalizing constant

k4 =
2[2N(1− f)]2Nη

Γ(2Nη)
.

With this value of k4 in hand, the mean of f(x) is

∫

I

xf(x) dx ≈ Γ(2Nη + 1
2 )√

2N(1− f)Γ(2Nη)
.

When Nη is large, application of Stirling’s formula implies that the mean
is close to the deterministic equilibrium value

√
η/(1 − f). In practice, one

should be wary of applying the equilibrium theory because the approach
to equilibrium is extremely slow.

15.7 Numerical Methods for Diffusion Processes

It is straightforward to simulate a diffusion process Xt. The definition tells
us to extend Xt to Xt+s by setting the increment Xt+s−Xt equal to a nor-
mal deviate with mean µ(t, x)s and variance σ2(t, x)s. The time increment
s should be small, and each sampled normal variate should be independent.
Techniques for generating random normal deviates are covered in standard
texts on computational statistics and will not be discussed here [9, 10].
Of more concern is how to cope with a diffusion process with finite range
I . Because a normally distributed random variable has infinite range, it
is possible in principle to generate an increment that takes the simulated
process outside I . One remedy for this problem is to take s extremely small.
It also helps if the infinitesimal variance σ2(t, x) tends to 0 as x approaches
the boundary of I . This is the case with the neutral Wright-Fisher process.

Simulation offers a crude method of finding the distribution of Xt. Sim-
ply conduct multiple independent simulations and compute a histogram
of the recorded values of Xt. Although this method is neither particu-
larly accurate nor efficient, it has the virtue of yielding simultaneously the
distributions of all of the Xt involved in the simulation process. Thus, if
1000 times are sampled per simulation, then the method yields all 1000
distributions, assuming that enough computer memory is available. Much
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greater accuracy can be achieved by solving Kolmogorov’s forward equa-
tion. The ideal of an exact solution is seldom attained in practice, even
for time-homogeneous problems. However, Kolmogorov’s forward equation
can be solved numerically by standard techniques for partial differential
equations. Here we would like to discuss a nonstandard method for finding
the distribution of Xt that directly exploits the definition of a diffusion
process.

This method recursively computes the distribution of Xti at n times
points labeled 0 < t1 < · · · < tn = t. In the diffusion approximation to the
Wright-Fisher model, it is reasonable to let δti = ti+1−ti be one generation.
It is also convenient to supplement these points with the initial point t0 = 0.
For each ti, we would like to compute the probability that Xti ∈ [aij , ai,j+1]
for ri +1 points ai0 < · · · < ai,ri . We will say more about these mesh points
later. In the meanwhile, let pij denote the probability Pr(Xti ∈ [aij , ai,j+1])
and cij the center of probability E(Xti | Xti ∈ [aij , ai,j+1]). Our method
carries forward approximations to both of these sequences starting from an
arbitrary distribution for X0.

In passing from time ti to time ti+1, the diffusion process redistrib-
utes a certain amount of probability from interval [aij , ai,j+1] to interval
[ai+1,k, ai+1,k+1]. Given the definition of a diffusion process and the no-
tation m(i, x) = x + µ(ti, x)δti and s2(i, x) = σ2(ti, x)δti, the amount
redistributed is approximately

pij→i+1,k

=
∫ ai,j+1

aij

1√
2πs2(i, x)

∫ ai+1,k+1

ai+1,k

e
− [y−m(i,x)]2

2s2(i,x) dyf(ti, x) dx.(15.18)

=
∫ ai,j+1

aij

1√
2π

∫ [ai+1,k+1−m(i,x)]/s(i,x)

[ai+1,k−m(i,x)]/s(i,x)

e−
z2
2 dzf(ti, x) dx.

(Here and in the remainder of this section the equality sign indicates ap-
proximate equality.) In similar manner, the center of probability cij→i+1,k

of the redistributed probability approximately satisfies

cij→i+1,kpij→i+1,k

=
∫ ai,j+1

aij

1√
2πs2(i, x)

∫ ai+1,k+1

ai+1,k

ye
− [y−m(i,x)]2

2s2(i,x) dyf(ti, x) dx (15.19)

=
∫ ai,j+1

aij

1√
2π

∫ ai+1,k+1−m(i,x)

s(i,x)

ai+1,k−m(i,x)

s(i,x)

[m(i, x) + s(i, x)z]e−
z2
2 dzf(ti, x) dx.

Given these quantities, we calculate

pi+1,k =
ri−1∑
j=0

pij→i+1,k
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ci+1,k =
1

pi+1,k

ri−1∑
j=0

cij→i+1,kpij→i+1,k (15.20)

assuming that Xti is certain to belong to one of the intervals [aij , ai,j+1].
To carry out this updating scheme, we must approximate the integrals

pij→i+1,k and cij→i+1,kpij→i+1,k . If the interval [aij , ai,j+1] is fairly narrow,
then the linear approximations

m(i, x) = µij0 + µij1x

s2(i, x) = σ2
ij (15.21)

f(ti, x) = fij0 + fij1x

should suffice for all x in the interval. The first two of these linear approx-
imations follow directly from the diffusion model. The constants involved
in the third approximation are determined by the equations

pij =
∫ ai,j+1

aij

(fij0 + fij1x) dx

= fij0(ai,j+1 − aij) +
1
2
fij1(ai,j+1 + aij)(ai,j+1 − aij)

cijpij =
∫ ai,j+1

aij

x(fij0 + fij1x) dx

=
1
2
fij0(ai,j+1 + aij)(ai,j+1 − aij)

+
1
3
fij1(a2

i,j+1 + ai,j+1aij + a2
ij)(ai,j+1 − aij)

with inverses

fij0 =
2pij(2a2

ij + 2aijai,j+1 + 2a2
i,j+1 − 3aijcij − 3ai,j+1cij)

(ai,j+1 − aij)3

fij1 =
6pij(2cij − aij − ai,j+1)

(ai,j+1 − aij)3
. (15.22)

Problem 13 asks the reader to check that the linear density fij0 + fij1x is
nonnegative throughout the interval (aij , ai,j+1) if and only if its center of
mass cij lies in the middle third of the interval.

Given the linear approximations (15.21), we now show that the double
integrals (15.18) and (15.19) reduce to expressions involving elementary
functions and the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy.

The latter can be rapidly evaluated by either a power series or a continued
fraction expansion [10]. It also furnishes the key to evaluating the hierarchy
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of special functions

Φk(x) =
1√
2π

∫ x

−∞
yke−y2/2dy

through the integration-by-parts recurrence

Φk(x) = − 1√
2π
xk−1e−x2/2 + (k − 1)Φk−2(x) (15.23)

beginning with Φ0(x) = Φ(x). We can likewise evaluate the related integrals

Ψjk(x) =
∫ x

−∞
yjΦk(y) dy

via the integration-by-parts reduction

Ψjk(x) =
1

j + 1
xj+1Φk(x) − 1

j + 1
Φj+k+1(y). (15.24)

Based on the definition of Φ(x), the integral (15.18) becomes

pij→i+1,k =
∫ ai,j+1

aij

Φ
(z − µij0 − µij1x

σij

)∣∣∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx,

and based on the recurrence (15.23), the integral (15.19) becomes

cij→i+1,kpij→i+1,k

=
∫ ai,j+1

aij

(µij0 + µij1x)Φ
(z − µij0 − µij1x

σij

)∣∣∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx

− σij√
2π

∫ ai,j+1

aij

e−(z−µij0−µij1x)2/(2σ2
ij)
∣∣∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx.

To evaluate the one-dimensional integrals in these expressions for pij→i+1,k

and cij→i+1,kpij→i+1,k , we make appropriate linear changes of variables so
that e−x2/2 and Φ(x) appear in the integrands and then apply formulas
(15.23) and(15.24) as needed. Although the details are messy, it is clear that
these maneuvers reduce everything to combinations of elementary functions
and the standard normal distribution function.

To summarize, the algorithm presented approximates the probability pij

and center of probability cij of each interval [aij , ai,j+1] of a subdivision
of the range I of Xt. Equation (15.22) converts these parameters into a
piecewise-linear approximation to the density of the process in prepara-
tion for propagation to the next subdivision. The actual propagation of
probability from an interval of the current subdivision to another inter-
val of the next subdivision is accomplished by computing pij→i+1,k and
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cij→i+1,kpij→i+1,k based on elementary functions and the standard normal
distribution function. The pieces pij→i+1,k and cij→i+1,k are then reassem-
bled into probabilities and centers of probabilities using equations (15.20).

Choice of the mesh points ai0 < · · · < ai,ri at time ti is governed by
several considerations. First, the probability Pr(Xti �∈ [ai0, ai,ri ]) should be
negligible. Second, σ2(ti, x) should be well approximated by a constant and
µ(ti, x) by a linear function on each interval [aij , ai,j+1]. Third, the density
f(ti, x) should be well approximated by a linear function on [aij , ai,j+1] as
well. This last requirement is the hardest to satisfy in advance, but nothing
prevents one from choosing the next subdivision adaptively based on the
distribution of probability within the current subdivision. Adding more
mesh points will improve accuracy at the expense of efficiency. Mesh points
need not be uniformly spaced. It makes sense to cluster them in regions
of high probability and rapid fluctuations of f(t, x). Given the smoothness
expected of f(t, x), rapid fluctuations are unlikely.

Many of the probabilities pij→i+1,k are negligible. We can accelerate the
algorithm by computing pij→i+1,k and cij→i+1,k only for [ai+1,k, ai+1,k+1]
close to [aij , ai,j+1]. Because the conditional increment Xti+1 −Xti is nor-
mally distributed, it is very unlikely to extend beyond a few standard de-
viations σij given Xti is in [aij , ai,j+1]. Thus, the most sensible strategy is
to visit each interval [aij , ai,j+1] in turn and propagate probability only to
those intervals [ai+1,k, ai+1,k+1] that lie a few standard deviations to the
left or right of [aij , ai,j+1].

15.8 Numerical Methods for the Wright-Fisher
Process

One of the problems with the diffusion approximation to the Wright-Fisher
Markov chain is that it degrades for very low allele frequencies. Because of
the interest in gene extinction, this is regrettable. However in the regime of
low allele frequencies, we can always fall back on the Wright-Fisher Markov
chain. As population size grows, the Markov chain updates become more
and more computationally demanding. The interesting issue thus becomes
how to merge the Markov chain and diffusion approaches seamlessly into a
single algorithm for following the evolution of an allele. Here we present one
possible algorithm and apply it to understanding disease-gene dynamics in
a population isolate.

The algorithm outlined in the previous section has the virtue of being
posed in terms of distribution functions rather than density functions. For
low allele frequencies, discreteness is inevitable, and density functions are
unrealistic. In adapting the algorithm to the regime of low allele frequencies,
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it is useful to let

aij =
j − 1

2

2Ni

for 0 ≤ j ≤ q and some positive integer q. The remaining aij are distributed
over the interval [aiq , 1] less uniformly. This tactic separates the possibility
of exactly j alleles at time ti, 0 ≤ j ≤ q, from other possibilities. For
0 ≤ j ≤ q, binomial sampling dictates that

pij→i+1,k =
∑

l

(
2Ni+1

l

)
pl(1 − p)2Ni+1−l

cij→i+1,k =
1

pij→i+1,k

∑
l

(
2Ni+1

l

)
l

2Ni+1
pl(1 − p)2Ni+1−l

where p = m(i, x) is the gamete pool probability at frequency x = j/(2Ni)
and the sums occur over all l such that l/(2Ni+1) ∈ [ai+1,k, ai+1,k+1). When
0 ≤ k ≤ q, it is sensible to set cij→i+1,k = k/(2Ni+1).

0 0.005 0.01 0.015 0.02 0.025 0.03allele frequency Xt
10

20
30

40
50

60
70

80

generations t0

20

40

60

80

100

120

140

160

density of Xt

FIGURE 15.1. Density of the Frequency of a Recessive Gene

15.9 Specific Example for a Recessive Disease

To illustrate our numerical methods for a recessive disease, we again turn to
Finland. Unless stated to the contrary, we assume that the population has
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grown exponentially from 1000 founders to n0 = 5, 000, 000 contemporary
people over a span of 80 generations. Our hypothetical recessive disease has
mutation rate η = 10−6, fitness f = 0.5, and a high initial gene frequency
of 0.015. The slow deterministic decay to the equilibrium gene frequency
of
√
η/(1 − f) = 0.0014 extends well beyond the present. Figure 15.1 plots

the density of the frequency of the recessive gene from generation 7 to
generation 80. The figure omits the first seven generations because the
densities in that time range are too concentrated for the remaining densities
to scale well. The left ridge of the gene density surface represents a moderate
probability mass collecting in the narrow region where the gene is either
extinct or in danger of going extinct.
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FIGURE 15.2. Extinction Probability of a Recessive Gene

As a technical aside, it is interesting to compare two versions of our
algorithm. Version one carries forward only probabilities and not centers of
probabilities. Version two carries both forward. Version one is about twice
as fast as version two, given the same mesh points at each generation. In
Figure 15.1, version two relies on 175 intervals in the continuous region.
With 2000 intervals in the continuous region, version one takes 25 times
more computing cpu time and still fails to achieve the same accuracy at
generation 80 as version two. Needless to say, the remaining figures in this
section incorporate results from version two.

Gene extinction is naturally of great interest. Figure 15.2 depicts the
probability that the recessive gene is entirely absent from the population.
This focuses our attention squarely on the discrete domain where we would
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expect the diffusion approximation to deteriorate. The solid curve of the
graph shows the outcome of computing directly with the exact Wright-
Fisher chain. At about generation 60, the matrix times vector multiplica-
tions implicit in the Markov chain updates start to slow the computations
drastically. In this example, it took 14 minutes of computing time on a
desktop PC to reach 80 generations. When we used our new algorithm
with q = 40 intervals covering the discrete region and 500 intervals cover-
ing the continuous region, it took only 11 seconds to reach generation 80.
The resulting dashed curve is quite close to the solid curve in Figure 15.2,
and setting q = 50 makes it practically identical.
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FIGURE 15.3. Impact of a Population Bottleneck

Figure 15.3 shows the impact of a population bottleneck. The conven-
tional wisdom among mathematically naive geneticists is that bottlenecks
can exert substantial influence on the frequency of disease genes. This is
simply untrue unless the population dips to a very low level. The figure
contrasts the means and standard deviations of the disease gene frequency
computed with and without a bottleneck. To implement the bottleneck, we
let the population grow exponentially from generation 0 to generation 56 to
a total of 387,000 people. At generation 57 the population drops suddenly
to 43,045 people and then grows exponentially thereafter to 497,444 people
at generation 80, reaching 1/10 of its current actual size. Such a precipitous
drop is far in excess of what any plague or famine has caused in Finnish
history, yet the differences introduced in the gene frequency distribution
are barely perceptible. The mean is unaffected, as would be anticipated,
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and the standard deviation increases only very slightly. Less severe bot-
tlenecks at generation 57 are unnoticeable in these plots. Of course, if a
bottleneck of this fractional magnitude were introduced earlier, then the
impact would be substantial.

15.10 Problems

1. Consider a diffusion process Xt with infinitesimal mean µ(t, x) and
infinitesimal variance σ2(t, x). If the function f(t) is strictly increas-
ing and continuously differentiable, then argue that Yt = Xf(t) is a
diffusion process with infinitesimal mean and variance

µY (t, y) = µ[f(t), y]f ′(t)
σ2

Y (t, y) = σ2[f(t), y]f ′(t).

Apply this result to the situation where Yt starts at y0 and has
µY (t, y) = 0 and σ2

Y (t, y) = σ2(t). Show that Yt is normally dis-
tributed with mean and variance

E(Yt) = y0

Var(Yt) =
∫ t

0

σ2(s) ds.

(Hint: Let Xt be standard Brownian motion.)

2. Consider a time-homogeneous diffusion process Xt starting at x0 and
having µ(t, x) = −αx+η and σ2(t, x) = σ2. Show that Xt is normally
distributed with mean and variance

E(Xt) = x0e
−αt +

η(1 − e−αt)
α

Var(Xt) =
σ2(1 − e−2αt)

2α
.

The case η = 0 and α > 0 is the Ornstein-Uhlenbeck process. (Hints:
The transformed process Yt = Xt/σ2 − η/α has infinitesimal mean
µY (t, z) = −αx/σ2 and infinitesimal variance σ2

Y (t, z) = 1. Check
Kolmogorov’s forward equation for Yt.)

3. Prove that the diffusion process Xt discussed in Problem 2 is not a
smooth, invertible transformationXt = g(t, Yt) of standard Brownian
motion Yt.

4. Calculate the equilibrium distribution for the diffusion process dis-
cussed in Problem 2 by applying Wright’s formula (15.17). What
restriction must you place on α? Show that your conclusions are con-
sistent with the limiting mean and variance of the process.
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5. In the diffusion approximation to a branching process with immigra-
tion, we set µ(t, x) = (α−ν)x+η and σ2(t, x) = (α+ν)x+η, where α
and ν are the birth and death rates per particle and η is the immigra-
tion rate. Justify these expressions by appealing to a continuous-time
Markov chain.

6. Continuing Problem 5, demonstrate that

E(Xt) = x0e
βt +

η

β

[
eβt − 1

]

Var(Xt) =
γx0(e2βt − eβt)

β
+
γη(e2βt − eβt)

β2

− γη(e2βt − 1)
2β2

+
η(e2βt − 1)

2β

for β = α − ν, γ = α + ν, and X0 = x0. When α < ν, the process
eventually reaches equilibrium. Find the limits of E(Xt) and Var(Xt).

7. In Problem 5 suppose η = 0. Verify that the process goes extinct with
probability min{1, e−2α−ν

α+ν x0} by using equation (15.10) and sending
c to 0 and d to ∞.

8. In Problem 5 suppose η > 0 and α < ν. Show that Wright’s formula
leads to the equilibrium distribution

f(x) = k [(α+ ν)x + η]
4ην

(α+ν)2
−1
e

2(α−ν)x
α+ν

for some normalizing constant k > 0 and x > 0.

9. Consider the Wright-Fisher model with no selection but with muta-
tion from allele A1 to allele A2 at rate η1 and from A2 to A1 at rate
η2. With constant population size N , prove that the frequency of the
A1 allele follows the beta distribution

f(x) =
Γ[4N(η1 + η2)]

Γ(4Nη2)Γ(4Nη1)
x4Nη2−1(1 − x)4Nη1−1

at equilibrium. (Hint: Substitute p(x) = x in formula (15.7) defining
the infinitesimal variance σ2(t, x).)

10. Consider the transformed Brownian motion with infinitesimal mean
α and infinitesimal variance σ2 described in Example 15.2.2. If the
process starts at x ∈ [c, d], then prove that it reaches d before c with
probability

u(x) =
e−βx − e−βc

e−βd − e−βc
for β =

2α
σ2
.

Verify that u(x) reduces to (x− c)/(d− c) when α = 0. This simpli-
fication holds for any diffusion process with µ(x) = 0.



338 15. Diffusion Processes

11. Suppose the transformed Brownian motion with infinitesimal mean α
and infinitesimal variance σ2 described in Example 15.2.2 has α ≥ 0.
If c = −∞ and d < ∞, then demonstrate that equation (15.12) has
solution

w(x) = eγ(d−x) for γ =
α−√

α2 + 2σ2θ

σ2
.

Simplify w(x) when α = 0, and show by differentiation of w(x) with
respect to θ that the expected time E(T ) to reach the barrier d is
infinite. When α < 0, show that

Pr(T <∞) = e
2α

σ2 (d−x).

(Hints: The variable γ is a root of a quadratic equation. Why do we
discard the other root? In general, Pr(T <∞) = limθ↓0 E

(
e−θT

)
.)

12. In Problem 11 find w(x) and E(T ) when c is finite. The value α < 0
is allowed.

13. Prove that the linear density fij0 + fij1x is nonnegative throughout
the interval (aij , ai,j+1) if and only if its center of mass cij lies in the
middle third of the interval. (Hint: Without loss of generality, take
aij = 0.)
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Appendix A: Molecular
Genetics in Brief

A.1 Genes and Chromosomes

All of life is ultimately based on biochemistry and all of genetics on the
biochemistry of DNA and RNA. The famous DNA double helix discovered
by Watson and Crick carries the information necessary for the develop-
ment, maintenance, and reproduction of all organisms, from bacteria to
humans. The genetic code consists of an alphabet of four letters (or bases)
organized into words (or codons) of three letters each. Codons are further
grouped into genes or parts of genes known as exons. Genes are trans-
lated as needed by a cell into proteins; these in turn catalyze the many
reactions taking place in the cell and serve as structural components of
cellular organelles and membranes.

The four bases of DNA are adenine, guanine, cytosine, and thymine,
abbreviated A, G, C, and T, respectively. The first two of these bases are
purines; the latter two are pyrimidines. In RNA, a sister compound to
DNA, the pyrimidine uracil (U) is substituted for thymine. Both RNA and
DNA are polymers constructed by linking identical sugar units—ribose
in the case of RNA and deoxyribose in the case of DNA—by identical
phosphate groups. These sugar/phosphate linkages along the backbone of
the polymer (or strand) occur at carbon sites on the sugars designated by
the abbreviations 3′ and 5′. One base is attached to each sugar; a single
repeat unit consisting of a sugar, phosphate group, and base is known as a
nucleotide. Codons are read in the 5′ to 3′ direction.

DNA is distinguished from RNA by its stronger tendency to form double
helices of complementary strands. The two strands of DNA are held to-
gether by hydrogen bonds between the bases projecting into the center of
the double helix from the backbones. The geometry of base pairing dictates
that adenine is paired to thymine and cytosine to guanine. These hydrogen
bonds are strong enough to stabilize the double helix but weak enough to
permit unzipping of the DNA for transcription of a gene on one strand
or replication of both strands when a cell undergoes division. Note that
in transcribing a gene, the antisense DNA strand serves as the template
rather than the sense strand so that the copied messenger RNA will
carry sense rather than antisense codons.

A chromosome is more than just a naked double helix. To protect DNA
from the occasionally harsh environment of the cell, to keep it from getting
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hopelessly tangled, and to control what genes are expressed when, the dou-
ble helix is wrapped around protein structures with a central core of eight
histone proteins. A complex of wrapped DNA and histone core is known as
a nucleosome. Nucleosomes are further organized into chromatid fibers
by supercoiling. Thus, the helical motif is repeated at several levels in the
construction of a chromosome. At the highest level of chromosome organi-
zation are the centromere and two telomeres. The centromere is critical
to proper division of duplicated chromosomes at mitosis and meiosis. The
telomeres protect the ends of a chromosome from degradation and control
the maximal number of divisions a cell line can undergo. In gene mapping,
the centromere and telomeres serve as cytologically visible landmarks. The
adjectives proximal and distal indicate centromeric and telomeric direc-
tions, respectively.

The 22 autosomes and the X chromosome of humans contain a total
of 3 × 109 base pairs. Embedded within the human genome are between
30,000 and 100,000 genes, most of which range from 10,000 to 100,000 bases
in length. Much of the genome consists of noncoding DNA whose function
is poorly understood. However, one should be careful in dismissing the
noncoding regions as “junk” DNA. All organisms must control the timing
and level of transcription of their genes. Geneticists have identified regula-
tory regions such as promoters, enhancers, and silencers upstream and
downstream from many genes. Other regions provide recognition sites for
recombination enzymes and attachment sites for the machinery of chromo-
some segregation during meiosis and mitosis. Even the patently junk DNA
of pseudogenes provides a fossil record of how genes duplicate, evolve,
and are eventually discarded. The full significance of the human genome
will become clear only after it is completely sequenced. Exploring and in-
terpreting this treasure trove should occupy geneticists for many years to
come.

TABLE A.1. Amino Acids

Amino Acid Abbreviation Amino Acid Abbreviation
Alanine Ala or A Leucine Leu or L
Arginine Arg or R Lysine Lys or K
Aspartic acid Asp or D Methionine Met or M
Asparginine Asn or N Phenylalanine Phe or F
Cysteine Cys or C Proline Pro or P
Glutamic acid Glu or E Serine Ser or S
Glutamine Gln or Q Threonine Thr or T
Glycine Gly or G Tryptophan Trp or W
Histidine His or H Tyrosine Tyr or Y
Isoleucine Ile or I Valine Val or V
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A.2 From Gene to Protein

Proteins are constructed from the 20 amino acids shown in Table A.1. With
an alphabet of four letters, three base words could in principle code for
43 = 64 different amino acids. Nature has elected to forgo this opportunity
and instead opts for redundancy in the genetic code. This redundancy is
very evident in Table A.2. Several other features of Table A.2 are worth
noting. First, three codons serve as genetic stop signals for terminating a
growing protein polymer. Second, the codon AUG for methionine also plays
the role of a start signal provided it is preceded by purine-rich sequences
such as AGGA. Third, the base U is substituted for the base T. This
substitution occurs because the DNA specifying a gene is first transcribed
into single-stranded premessenger RNA. After appropriate processing,
premessenger RNA is turned into messenger RNA (mRNA), which is then
translated into protein by cell organelles known as ribosomes. On release
from a ribosome, a protein folds into its characteristic shape. Depending
on its ultimate function, a protein may undergo further processing such as
cleavage or the addition of lipid or carbohydrate groups.

TABLE A.2. The Genetic Code

2nd Position

1st Position U C A G 3rd Position

Phe Ser Tyr Cys U
U Phe Ser Tyr Cys C

Leu Ser Stop Stop A
Leu Ser Stop Trp G

Leu Pro His Arg U
C Leu Pro His Arg C

Leu Pro Gln Arg A
Leu Pro Gln Arg G

Ile Thr Asn Ser U
A Ile Thr Asn Ser C

Ile Thr Lys Arg A
Met Thr Lys Arg G

Val Ala Asp Gly U
G Val Ala Asp Gly C

Val Ala Glu Gly A
Val Ala Glu Gly G
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The processing of premessenger RNA involves several steps. In eukary-
otes (organisms with a well-defined nucleus for housing chromosomes), the
exons of a typical gene are interrupted by noncoding sequences. These in-
tervening sequences (or introns) must be spliced out of the premessenger
RNA. A cap involving a methylated guanine is also added to the 5′ end
of the RNA, and a poly(A) tail involving about 200 adenines is added to
the 3′ end. These additions assist in stabilizing the RNA and binding it to
the ribosomes. After messenger RNA is transported to the exterior of the
nucleus, it is threaded through a ribosome like a magnetic tape through
the head of a tape player. Transfer RNA molecules bring the appropri-
ate amino acids into place for addition to the growing chain of the protein
encoded by the messenger RNA. Figure A.1 summarizes the flow of infor-
mation from gene to protein.

DNA
Stored

Information

� pre mRNA
Replicate

Information

� mRNA
Edited

Information

� protein

Active
Product

FIGURE A.1. Information Flow from Gene to Protein

In the eukaryotic cell, transcription is initiated in the nucleus by a large
complex of proteins that binds to the DNA upstream or at the start of a
gene. The central player in the transcription complex is one of three RNA
polymerases. RNA polymerase I transcribes ribosomal RNA genes, RNA
polymerase II transcribes genes encoding messenger RNA, and RNA poly-
merase III transcribes small RNAs such as transfer RNA [6]. The broad role
assumed by RNA polymerase II is critically dependent on a great number
of accessory proteins known as transcription factors. Many transcription
factors are small proteins that are bound constantly to the central poly-
merase, while others float more freely around the nucleus and bind to more
or less specific patterns in DNA. As scouts for the polymerase, transcription
factors collectively accentuate or repress transcription at specific genes, de-
pending on the needs of the cell. The stretches of DNA recognized by these
proteins are known as binding domains, binding motifs, or simply binding
sites. Promoter domains occur near the start of a gene and enhancer do-
mains more distally. Although the minimal set of promoters necessary for
gene transcription is fairly well understood, repeated or shared promoter
elements are suspects in the precise choreography of tissue and time specific
gene expression.
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A.3 Manipulating DNA

Geneticists manipulate DNA in many ways. For instance, they unzip (or
denature) double-stranded DNA by heating it in solution. They rezip
(or anneal) it by cooling. Because double helices are so energetically fa-
vored, complementary strands quickly find and bind to one another. Even
small segments of one strand will locally anneal to a large segment of a
complementary strand. Geneticists exploit this behavior by devising small
radioactive or fluorescent probes to identify large segments. A single base
mismatch between probe and strand leads to poor annealing. Probes as
short as 20 bases can provide a perfect match to a unique part of the
human genome.

TABLE A.3. Commonly Used Restriction Enzymes

Restriction Recognition Average Fragment
Enzyme Site Length in Man
AluI AGCT 0.3 kb
HaeIII GGCC 0.6 kb
TaqI TCGA 1.4 kb
HpaI CCGG 3.1 kb
EcoRI GAATTC 3.1 kb
PstI CTGCAG 7 kb
NotI GCGGCCGC 9766 kb

Chromosomes are much too large to handle conveniently. To reduce DNA
to more manageable size, geneticists cut it into fragments and measure
the length of the fragments. Restriction enzymes function as geneti-
cists’ molecular scissors. Table A.3 lists some commonly used restriction
enzymes, each of which recognizes a specific base sequence and cuts DNA
there. Recognition sites are scattered more or less randomly throughout
the genome. Restriction maps characterize the number, order, and ap-
proximate separation of recognition sites on large DNA segments. These
maps are laborious to prepare and involve digesting a segment with differ-
ent combinations of restriction enzymes or with a single enzyme at less than
optimal laboratory conditions. These latter partial digests randomly miss
some recognition sites and therefore give a mixture of fragments defined
by adjacent sites and fragments spanning blocks of adjacent sites. Water-
man [9] discusses the interesting computational issues that arise in piecing
together a restriction map.

Gel electrophoresis and Southern blotting are geneticists’ molecular
yardsticks. In electrophoresis, a sample of DNA is placed at the top of
a gel subject to an electric field. Under the influence of the field, DNA
migrates down the gel. Large DNA fragments encounter more obstacles



346 Appendix A: Molecular Genetics in Brief

than small fragments and consequently travel more slowly, just as in a
flowing stream, large stones travel more slowly than small ones. Once the
DNA fragments are separated by size, a Southern blot can be made. This
involves denaturing the fragments by the addition of alkali and transferring
the separated strands to a nitrocellulose or nylon membrane. After the
strands are fixed to the membrane by baking or chemical crossbinding,
radioactive probes are introduced to the membrane and anneal with specific
fragments. When the membrane is applied to an X-ray film, a sequence
of bands develops on the film highlighting those DNA fragments bound
to probes. Alternatively, if sufficient DNA is sampled, then fluorescent or
chemiluminescent probes can be substituted for radioactive probes.

Geneticists often work with minuscule amounts of DNA. For instance, in
genotyping human sperm cells, geneticists encounter single-copy DNA. The
polymerase chain reaction (PCR) permits enormous copy-number am-
plification of a short DNA sequence. The chromosome region surrounding
the target sequence is first denatured by heating it in a solution containing
the four DNA bases, two specially chosen primers, and a polymerase.
As the solution cools, the two primers anneal to the two strand-specific
3′ regions flanking the target sequence. The polymerase then extends each
primer through the target sequence, creating a new strand that partially
complements one of the original strands. This constitutes the first cycle
of PCR and doubles the number of target sequences. Each subsequent cy-
cle of denaturation, primer annealing, and polymerase extension similarly
doubles the number of target sequences. Figure A.2 depicts the first cycle
of the process. Here the primers are shorter than they would be in practice.

Cloning is a kind of in vivo DNA amplification. DNA fragments iso-
lated by restriction enzymes are ligated into circular DNA molecules called
vectors and inserted into bacteria or yeast cells. Once inside the host cells,
vectors resemble viruses in their ability to harness the machinery of the cell
to replicate independently of the host chromosomes. Vast libraries of ran-
dom DNA clones can be maintained in this manner. These clone libraries
furnish the raw material for DNA sequencing.

A.4 Mapping Strategies

Linkage mapping is described in detail in earlier chapters. It is worth em-
phasizing here the nature of most modern markers. Restriction fragment
polymorphisms (RFLPs) exploit individual differences in the presence or
absence of restriction sites. Suppose a probe is constructed to straddle a
polymorphic restriction site for a particular restriction enzyme. If nonpoly-
morphic restriction sites flank the probe region on its left and right, then
Southern blots of appropriately digested DNA from random individuals fall
into three patterns. Homozygotes for the absence of the site show a single
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band high on the gel. This band corresponds to the long fragment between
the two flanking restriction sites. Homozygotes for the presence of the site
show two separate bands lower down on the gel. These correspond to the
two smaller fragments defined by the flanking sites and separated by the
interior restriction site. Heterozygotes show all three bands. If the probe
falls to one side of the polymorphic restriction site, then at most two bands
appear, but it is still possible to distinguish all three genotypes.

The single base pair differences revealed by RFLPs must fall within a re-
striction site for some restriction enzyme. These sites are naturally rare, and
it is convenient to exploit single base pair differences wherever they occur.
This can be accomplished by sequencing a small segment of DNA around
a polymorphic site and designing short probes (or oligonucleotides) that
match the sequence of the segment except at the site. At the site, each
probe matches one of the dominant bases appearing in the population. Be-
cause annealing of a short probe requires a perfect match, Southern blots
with different probes detect different alleles. This technique is particularly
useful in screening for common mutations in disease loci.

The biallelic markers generated by single base pair differences exhibit
limited polymorphism. Short tandem repeat markers are often much
more polymorphic. For instance, the dinucleotide CA is repeated a random
number of times in many regions of the human genome. Repeat numbers
in a repetitive sequence · · ·CACACACACA· · · often vary from person to
person. If a probe closely flanks a repeat region, then Southern blotting
with the probe will reveal allelic differences in the number of repeat units
as length differences in the fragments highlighted by the probe.

Radiation hybrids and somatic cell hybrids are physical mapping
techniques covered in detail in Chapters 11 and 13, respectively. Flu-
orescence in situ hybridization (FISH) and pulsed-field gel elec-
trophoresis are two other competing physical techniques with good reso-
lution. In FISH, probes are directly annealed to chromosomes during the in-
terphase period of cell division. Because chromosomes are less contracted
during interphase, map resolution to within 100,000 bases is possible. In a
recent variation of FISH, probes are annealed to DNA filaments stretched
on a glass slide. In pulsed-field gel electrophoresis, the electric field applied
to a gel is occasionally reversed. This permits large DNA fragments to un-
tangle and slowly migrate down the gel without breaking. If two different
probes anneal to the same large fragment, then presumably they coexist on
the fragment. Using a sufficient number of fragments, closely spaced loci
defined by well-defined probes can be ordered.

One advantage of physical mapping is that it does not require polymor-
phic loci. It is usually harder to find polymorphisms than it is to construct a
probe from unique sequence DNA. For example, geneticists can easily iden-
tify expressed sequence tags by sequencing complementary DNA
(cDNA). Because cDNA is synthesized from messenger RNA, an expressed
sequence tag is guaranteed to be in the coding region of some gene. (Re-
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call that all of the introns are spliced out of messenger RNA, leaving only
the contributions from the exons.) Discovery of expressed sequence tags
and classification of the genes they label have attracted the interest of the
biotechnology industry. Because many genes are expressed only in certain
tissues and only at certain times of development, systematic classification
and mapping of expressed genes is apt to pay off in suggesting candidate
genes for human diseases.

Finally, as a prelude to sequencing the human genome and the genomes
of other species, a great deal of thought and effort has gone into ordering
the clones present in clone libraries. Restriction maps of different clones
often show sufficient similarity to suggest that two clones overlap. Alterna-
tively, two clones may both harbor the same expressed sequence tag. The
presence of such a chromosome anchor on both clones is proof of overlap.
Chains of overlapping clones are referred to as contigs. Readers may con-
sult Waterman [9] for a mathematical analysis of strategies for constructing
contigs and closing the gaps between them.
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Appendix B: The Normal
Distribution

B.1 Univariate Normal Random Variables

A random variable X is said to be standard normal if it possesses the
density function

ψ(x) =
1√
2π
e−

x2
2 .

To find the characteristic function ψ̂(s) = E(eisX ) of X , we derive and
solve a differential equation. Differentiation under the integral sign and
integration by parts together imply that

d

ds
ψ̂(s) =

1√
2π

∫ ∞

−∞
eisxixe−

x2
2 dx

= − i√
2π

∫ ∞

−∞
eisx d

dx
e−

x2
2 dx

=
−i√
2π
eisxe−

x2
2

∣∣∣
∞

−∞
− s√

2π

∫ ∞

−∞
eisxe−

x2
2 dx

= −sψ̂(s).

The unique solution to this differential equation with initial value ψ̂(0) = 1
is ψ̂(s) = e−s2/2. The differential equation also yields the moments

E(X) =
1
i

d

ds
ψ̂(0)

= 0

E(X2) =
1
i2
d2

ds2
ψ̂(0)

=
1
i2

[
− ψ̂(s) + s2ψ̂(s)

]
s=0

= 1.

An affine transformation Y = σX + µ of X is normally distributed with
density

1
σ
ψ
(y − µ

σ

)
=

1√
2πσ

e−
(y−µ)2

2σ2 .
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Here we take σ > 0. The general identity E
[
eis(µ+σX)

]
= eisµE

[
ei(σs)X

]

permits us to write the characteristic function of Y as

eisµψ̂(σs) = eisµ− σ2s2
2 .

The mean and variance of Y are µ and σ2.
One of the most useful properties of normally distributed random vari-

ables is that they are closed under the formation of independent linear
combinations. Thus, if Y and Z are independent and normally distributed,
then aY + bZ is normally distributed for any choice of the constants a and
b. To prove this result, it suffices to assume that Y and Z are standard
normal. In view of the form of ψ̂(s), we then have

E
[
eis(aY +bZ)

]
= E

[
ei(as)Y

]
E
[
ei(bs)Z

]

= ψ̂
[
(a2 + b2)s

]
.

Thus, if we accept the fact that a distribution function is uniquely defined
by its characteristic function, aY + bZ is normally distributed with mean
0 and variance a2 + b2.

Doubtless the reader is also familiar with the central limit theorem. For
the record, recall that if Xn is a sequence of i.i.d. random variables with
common mean µ and common variance σ2, then

lim
n→∞Pr

[∑n
j=1(Xj − µ)√

nσ2
≤ x

]
=

1√
2π

∫ x

−∞
e−

u2
2 du.

Of course, there is a certain inevitability to the limit being standard normal;
namely, if the Xn are standard normal to begin with, then the standardized
sum n−1/2

∑n
j=1Xj is also standard normal.

B.2 Multivariate Normal Random Vectors

We now extend the univariate normal distribution to the multivariate nor-
mal distribution. Among the many possible definitions, we adopt the one
most widely used in stochastic simulation. Our point of departure will be
random vectors with independent, standard normal components. If such a
random vector X has n components, then its density is

n∏
j=1

1√
2π
e−x2

j/2 =
( 1

2π

)n/2

e−xtx/2.

Because the standard normal distribution has mean 0, variance 1, and
characteristic function e−s2/2, it follows that X has mean vector 0, variance



Appendix B: The Normal Distribution 353

matrix I , and characteristic function

E(eistX) =
n∏

j=1

e−s2
j /2 = e−sts/2.

We now define any affine transformation Y = AX + µ of X to be multi-
variate normal [2]. This definition has several practical consequences. First,
it is clear that E(Y ) = µ and Var(Y ) = AVar(X)At = AAt = Ω. Second,
any affine transformation BY + ν = BAX +Bµ+ ν of Y is also multivari-
ate normal. Third, any subvector of Y is multivariate normal. Fourth, the
characteristic function of Y is

E(eistY ) = eistµ E(eistAX) = eistµ−stAAts/2 = eistµ−stΩs/2.

This enumeration omits two more subtle issues. One is whether Y pos-
sesses a density. Observe that Y lives in an affine subspace of dimension
equal to or less than the rank of A. Thus, if Y has m components, then
n ≥ m must hold in order for Y to possess a density. A second issue is
the existence and nature of the conditional density of a set of components
of Y given the remaining components. We can clarify both of these issues
by making canonical choices of X and A based on the classical QR de-
composition of a matrix, which follows directly from the Gram-Schmidt
orthogonalization procedure [1].

Assuming that n ≥ m, we can write

At = Q

(
R
0

)
,

where Q is an n×n orthogonal matrix and R is an m×m upper triangular
matrix with nonnegative diagonal entries. (If n = m, we omit the zero
matrix in the QR decomposition.) It follows that

AX = (L 0t )QtX = (L 0t )Z.

In view of the usual change of variables formula for probability densities
and the facts that the orthogonal matrix Qt preserves inner products and
has determinant ±1, the random vector Z has n independent, standard
normal components and serves as a substitute for X . Not only is this true,
but we can dispense with the last n − m components of Z because they
are multiplied by the matrix 0t. Thus, we can safely assume n = m and
calculate the density of Y = LZ+µ when L is invertible. In this situation,
Ω = LLt is termed the Cholesky decomposition, and the usual change of
variables formula shows that Y has density

f(y) =
( 1

2π

)n/2

| detL−1|e−(y−µ)t(L−1)tL−1(y−µ)/2

=
( 1

2π

)n/2

| det Ω|−1/2e−(y−µ)tΩ−1(y−µ)/2,
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where Ω = LLt is the variance matrix of Y .
To address the issue of conditional densities, consider the compatibly

partitioned vectors Y t = (Y t
1 , Y

t
2 ), Xt = (Xt

1, X
t
2), µ

t = (µt
1, µ

t
2) and ma-

trices

L =
(
L11 0
L21 L22

)
Ω =

(
Ω11 Ω12

Ω21 Ω22

)
.

Now suppose that X is standard normal, that Y = LX + µ, and that L11

has full rank. For Y1 = y1 fixed, the equation y1 = L11X1 + µ1 shows that
X1 is fixed at the value x1 = L−1

11 (y1 − µ1). Because no restrictions apply
to X2, we have

Y2 = L22X2 + L21L
−1
11 (y1 − µ1) + µ2.

Thus, Y2 given Y1 is normal with mean L21L
−1
11 (y1 −µ1) +µ2 and variance

L22L
t
22. To express these in terms of the blocks of Ω = LLt, observe that

Ω11 = L11L
t
11

Ω21 = L21L
t
11

Ω22 = L21L
t
21 + L22L

t
22.

The first two of these equations imply that L21L
−1
11 = Ω21Ω−1

11 . The last
equation then gives

L22L
t
22 = Ω22 − L21L

t
21

= Ω22 − Ω21(Lt
11)

−1L−1
11 Ω12

= Ω22 − Ω21Ω−1
11 Ω12.

None of these calculations requires that Y2 be of full rank. In summary, the
conditional distribution of Y2 given Y1 is normal with mean and variance

E(Y2 | Y1) = Ω21Ω−1
11 (Y1 − µ1) + µ2

Var(Y2 | Y1) = Ω22 − Ω21Ω−1
11 Ω12.
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ABO locus, see Blood group loci
ADA locus, 125
Additive genetic correlation, 149
Additive genetic variance, 100, 111

cross covariance, 148
in calculating risk ratios, 102
in trait covariances, 141

Adenine, 341
Affine gap distance, 288
Affine gap score, 292
Alcoholism example, 152
Alignment, see Sequence alignment
Allele, 1

codominant, 2
dominant, 2
recessive, 2

Allele consolidation, see Pedigree,
likelihood for

Allele-sharing statistics, see Marker-
sharing statistics

AluI restriction site, 172, 195, 281
Alzheimer disease, 109
Amino acids

penalty sets, 219
table of, 342
table with codons, 343

Angiotensin-1 converting enzyme,
127

Antigen, 1
Aperiodicity (ergodic assumption),

170
Array products

greedy algorithm for multi-
plying, 121, 134

Ascent algorithm, 40
Ascertainment, 27
Association tests, 69, 126
Ataxia telangiectasia (AT), 72

Autosome, 1, 342
Avoidance probability, 257

Backtracking
descent graph method, 180
optimization, 40

Backward algorithm, see Baum’s
backward algorithm

Base, 341
Baum’s backward algorithm, 243
Baum’s forward algorithm, 188,

243, 269
Bayes’ theorem, 125
Bayesian method

empirical, see Empirical Bayes
for radiation parameter fre-

quency estimation, 245
Bernoulli random variables

success runs, 295, 314
sum of, 299

Binding domain identification, 31,
37

Binomial distribution, 154
hidden, see Hidden trials

Biometrical genetics, 97
polygenic model, see Polygenic

model
Birthday problem, 312
Blood group loci

ABO blood group
association with ulcers, 70
chromosome location, 1
concavity of loglikelihood,

52
estimation of allele frequen-

cies, 23, 26–27
linkage with AK1 locus, 3
phenotypes, 1
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genotype prediction for sib-
lings, 99

MN blood group, 21, 73
paternity testing example, 125
phenotype frequencies, 13
Rh locus, 13
testing for subpopulation dif-

ferences, 60
testing Hardy-Weinberg equi-

librium, 60
Borel-Cantelli lemma, 294
Bradley-Terry model, 126
Branch-and-bound

for ordering loci, 233
Breakage, see Radiation hybrid(s)
Breast cancer, 109
Brownian motion, 318, 320

Case-control tests, 69
Cats, calico, 73
Centromere, 65, 342
CEPH pedigrees, 129
Chapman-Kolmogorov relation, 209
Chen-Stein bound, 299–300

coupling method, see Coupling
method

neighborhood method, see Neigh-
borhood method

Chi-square statistic
for linkage equilibrium, 69
for testing Hardy-Weinberg equi-

librium, see Likelihood
ratio statistic

for testing segregation ratios,
126

in transmission/disequilibrium
test, 72, 73

restriction site clumping, 283
under polygenic model, 158

Chiasma interference, 258, 270–
272

positive and negative, 270
Chiasma point process, 257
Chiasma(ta), 257

distributions for count of, 271

Haldane’s model for, 116, 133,
177, 232, 259, 261, 270,
274

Karlin’s model for, 274
Cholesky decomposition, 92, 151,

353
covariance matrix parameter-

ization, 149
Chromatid, 257, 342
Chromatid interference, 257
Chromosome(s), 1, 341

chromosome 11 haplotype ex-
ample, 69

covering by random clones,
306

sex, 1
sister, 257

Cloning, 346
Clump size, 282
Codominant alleles, 2
Codon, 341

table of amino acids, 343
Codon models, 218–222

example, 221
penalized transitions, 218
penalty sets, 219
reversible, 219, 222
root probabilities, 222

Coincidence coefficients, 270
Color blindness

allele frequency, 33
testing Hardy-Weinberg equi-

librium, 61
Commutative group, 189, 198
Complementary DNA, see DNA,

complementary
Conjugate prior, 48
Contig, 348
Convex function, 24
Count interference, 270
Count-location model, see Recom-

bination fraction
Coupling × coupling mating, see

Double-intercross mating
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Coupling × repulsion mating, see
Double-intercross mating

Coupling method, 299
for approximatingWd, 74, 301
for approximating hypergeo-

metric distribution, 312
for birthday problem, 312
for gap lengths between mark-

ers, 304–306
for matches in random per-

mutation, 311
Crossover, 2
Crossover processes, 257
Cystic fibrosis

and heterozygote advantage,
11

risk prediction, 135
segregation analysis, 30

Cytosine, 341

Davidon’s formula, 46
Death notice data, 35
Deoxyribonucleic acid, see DNA
Descartes’ rule of signs, 136
Descent graph, 175

likelihood of, 176, 179–181
Descent state, 175

use in haplotyping, 186
Descent tree, 177–179
Design matrix, 141
Detailed balance

continuous time, 210
discrete time, 171

Diffusion process, 317–338
approximate distribution, 329

center of probability, 329
recurrence for, 331
special functions, 331

first passage time, 322
forward equation, 320, 329
infinitesimal mean, 317
infinitesimal variance, 317
ODE for mean, 325
ODE for variance, 325
probability flux, 319

simulation, 328
smooth transformation of, 318
Wright’s formula, 327

Digamma function, 49
Dirichlet distribution, 47

as conjugate prior for multino-
mial, 48

posterior moments, 55
variance and covariance, 55

Dirichlet-multinomial distribution,
49

Distal direction, 342
Distance

genetic, 258
total variation, see Total vari-

ation distance
DNA

annealing, 345
complementary, 347
denaturing, 345
fingerprinting, 33
length of base runs in, 295–

296
manipulation by geneticists,

345
sequence comparison, 281–293,

308–310
strand, 341

Markov chains on, 172
sense and antisense, 341

structure, 341
using restriction enzymes to

cut, 306
vector, 346

Dominance genetic variance, 100,
111

cross covariance, 148
in calculating risk ratios, 102
in trait covariance, 141

Dominant allele, 2
Dominant disease gene

diffusion model, 321
mean frequency, 325

Double-backcross mating, 43
Double-intercross mating, 44–45
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Drosophila
recombination on X chromo-

some, 273
Dynamic programming, 281

haplotyping, 198
multiple sequence alignment,

292–293
Needleman-Wunsch algorithm,

see Needleman-Wunsch
algorithm

Smith-Waterman algorithm,
see Smith-Waterman al-
gorithm

Egg, 1
Electrophoresis, see Gel electrophore-

sis
Elston-Stewart algorithm, 115–117

for hypergeometric polygenic
model, 157

EM algorithm, 23
ascent property, 24–26
expected information, 55
for estimating admixture pa-

rameter, 35
for estimating allele frequen-

cies, 26
for estimating binomial pa-

rameter, 36
for estimating haplotype fre-

quencies, 33, 55
for estimating identity coef-

ficients, 110
for estimating inbreeding co-

efficients, 34
for estimating multinomial pa-

rameters, 37
for estimating recombination

fractions, 34
for estimating segregation ra-

tios, 28
for finding binding domains,

31, 37
for polygenic model, 159–161

for radiation hybrid mapping,
237

gradient method for posterior
mode, 246

Empirical Bayes, 39
for allele frequency estimation,

48
for haplotype frequency esti-

mation, 51, 56
Enhancer region, 342, 344
Entropy inequality, 25
Environmental effect, see Quan-

titative trait
Eocyte, 215
Episodic ataxia pedigree data, 130

haplotyping using descent graph
method, 187

Epistasis, 123
Epoch, 170
Equilibrium distribution, 262

continuous time, 210
discrete time, 170
Wright’s formula, 327

Equilibrium, stable and unstable,
10

Erdös-Rényi law, 311
Ergodic condition, 170, 196
Ergodic theorem, 171
Errors, genotyping, see Genotyp-

ing errors
Eubacteria, 215
Eukaryote, 215, 344
Evolution, neutral

Kimura’s model of, 211–214
equilibrium distribution, 226

Evolution, slow versus fast, 219
Evolutionary parsimony, Lake’s method

of, 227
Evolutionary trees, 203–208

likelihood for, 214
maximum parsimony, see Max-

imum parsimony
model assumptions, 214
possible number of, 204, 223
postorder traversal, 208
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preorder traversal, 208
rooted, 205
unrooted, 206

Exclusion probability, see Pater-
nity testing

Exon, 341
Expected information, see Infor-

mation, expected
Exponential distribution, 310
Exponential family, 40

score and information for spe-
cific examples, 42

Expressed sequence tags, 347
Extinction of allele, 10
Extreme value distribution, 314

moments, 315

Factor analysis, 151–152
example, 152
maximum likelihood, 151
standard errors, 163

Fast Walsh transform, 190
Felsenstein’s map function, see Map

function, Felsenstein’s
Felsenstein’s pulley principle, 215
Finger ridge counts, 149–150
FISH, see Fluorescence in situ hy-

bridization
FISHER pedigree analysis software,

xi, 147
Fisher’s exact test, 69
Fisher-Yates distribution, 67–69

moments of, 75
Fitness, 9
Fixed point, 10, 18
Fluorescence in situ hybridization,

347
Forward algorithm, see Baum’s for-

ward algorithm
rate variation model, 220

Founder, 3
Founder effect, 12
Founder tree graph, 177–180

connected component of, 178

Gamete, 2
Gamete competition model, 126
Gamete probability

in terms of avoidance proba-
bilities, 260

under count-location model,
261

under Poisson-skip model, 265–
269

Gauss-Newton algorithm, 53
Gel electrophoresis, 345

pulsed-field, 347
reading errors, 192

Gene, 1
marker, see Marker gene

Gene assignment, using somatic
cell hybrids, 301–304

Gene counting for allele frequen-
cies, 22

Genetic databases, 281
Genetic drift, 12
Genetic identity coefficient, see Iden-

tity coefficient
Genome, human, 342
Genotype, 1

multilocus, 4
ordered and unordered, 2

Genotype elimination algorithm,
118–120, 133

used to find legal descent graph,
185

Genotyping errors, 191–192
Geometric distribution

descent graph transitions, 184
distance between restriction

sites, 282
sequence matching, 310

Gibbs random fields, 219
partition function, 220, 227
potential function, 220

Gibbs sampling, 174, 196
Graph

descent, see Descent graph
number of triangles in, 312
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Group specific component (Gc),
146–147

Guanine, 341

Haldane’s model, see Chiasma(ta),
Haldane’s model

Hall’s marriage theorem, 235
Halobacteria, 215
Hamming distance, 303

minimum, 303, 313
Haplotype, 4

contingency table counts, 76
frequency estimation, 51, 55,

56
Haplotyping, 186
Haptoglobin locus, 42
Hardy-Weinberg equilibrium, 2

assumptions, 4
at autosomal loci, 6
at X-linked loci, 6, 14
convergence when generations

overlap, 14
for Xg(a) locus, 8
testing for, 59–62, 73

among racially mixed sub-
populations, 70

Hastings-Metropolis algorithm, 173–
175

acceptance probability, 173
for descent graphs, 184
symmetric proposal density,

173, 196
Hazard rate, 272

for Poisson-skip model, 277
Hemizygote, 7
Hemoglobin

codon model for, 221
mutations in, 66

Heritability, 157
Heterozygote, 1

probability of, 13
Heterozygote advantage, 11
HhaI restriction site, 195, 282
Hidden Markov chains

in Lander-Green-Kruglyak al-
gorithm, 188

in Poisson-skip process, 269
in radiation hybrids, 241

Hidden trials
binomial, 36
EM algorithm for, 36, 37
multinomial, 37
Poisson or exponential, 37

Histone proteins, 342
Homologous pairs, 1
Homology, 308

testing DNA sequences for,
308–310

Homozygote, 1
Household indicator matrix, 142
HUMTH01 locus data, 50
Huntington disease, 109
Hybridization, in situ, 62, 64
Hyperbolic trigonometric functions

generalization of, 275
Hypergeometric distribution, 154

approximation by Poisson, 312

Identity by descent, 81
Identity by state, 81
Identity coefficient

condensed, 85
in calculating risk ratios,

102
relation to kinship coeffi-

cient, 85, 91
used for genotype predic-

tion, 97
Identity states

condensed and detailed, 84
partitions for linkage statis-

tics, 193
Importance sampling, 196
In situ hybridization, see Hybridiza-

tion, in situ
In-trees, 226
Inbreeding coefficient, 34, 81

path formula for computing,
94
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relation to disease risk, 109
under sib mating, 93

Indel, 284
Independence testing, see Link-

age equilibrium, testing
for

Infinitesimal transition matrix, 210
eigenvalues of, 224, 225
probability, see Transition rate

Information
expected, 40–42

as efficiency of experimen-
tal design, 43–45

EM algorithm, 55
for Dirichlet distribution,

55
for multivariate normal, 145,

159
for power-series family, 53
for radiation hybrids, 251,

253
multinomial, 54

observed, 39
for Dirichlet-multinomial dis-

tribution, 49
for multivariate normal, 144

Intensity measure, 257
Interarrival distribution, 262

for Poisson-skip model, 277
Interphase, 347
Intron, 344
Irreducibility (ergodic assumption),

170
Ising model, 220, 227
Iterated sum, 120–122, 243

greedy algorithm for, 121, 133

Jensen’s inequality, 24

Kimura’s model, see Evolution, neu-
tral

Kinship coefficient, 81
algorithm for computing, 82–

83
generalized, 86–91

computation of, 88–91
used in robust linkage analy-

sis, 106
in calculating risk ratios, 102
in QTL mapping, 195
relation to identity coefficients,

85
X-linked, 93

generalized, 94
in QTL mapping, 164

Kinship matrix, 83
diagonalization, 92, 111
QTL mapping, 150

Kolmogorov’s circulation criterion
continuous time, 210
discrete time, 171

Kolmogorov-Smirnov test, 283
Kosambi’s map function, see Map

function, Kosambi’s
Kronecker product, 148, 161

Lagrange multiplier, 27
Lander-Green-Kruglyak algorithm,

122, 188–191
in haplotyping, 198

Laplace’s method used in approx-
imating integrals, 248

Levenshtein metric, 283, 286
Liability, 154
Likelihood ratio statistic

for QTL mapping, 151
for testing allele frequency dif-

ferences, 61
for testing Hardy-Weinberg equi-

librium, 60, 62, 73
for testing segregation para-

meters, 126
Linear algebra, some review of,

142–144
Linkage analysis, 4, 346

QTL mapping, 151
robust methods for, 106–109
using lod and location scores,

129–133
Linkage equilibrium, 4
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convergence for three loci, 16
convergence for two loci, 8
convergence when generations

overlap, 16
nonparametric test for, 74
testing for, 67–69

Location scores, 131
stochastic method for, 175,

184, 187
Locus, 1
Lod score, 130
Log-concavity

in count-location model, 271,
277

in Poisson-skip model, 271
of ABO likelihood, 52

Map function, 261
Carter and Falconer’s, 275
Felsenstein’s, 275
for Poisson-skip model, 265
for radiation hybrid breakage,

232
Haldane’s, 131
Karlin’s, 274
Kosambi’s, 264, 275
properties of, 262

Mapping, linkage, see Linkage analy-
sis

Marker(s), 4
gaps between, 304–306
short tandem repeat, 347

Marker-sharing statistics, 112, 192–
195

affecteds-only method, 107
for dominant diseases, 193
for recessive diseases, 193
simulation of p-values, 194

Markov chain
continuous time, 209–210

average number of transi-
tions, 224

equilibrium distribution, 226
discrete time, 170–173

on DNA strand, 172

improving mixing of, 196–197
on pedigree descent graphs,

175–177, 181–184
transition rules, 181–183, 198
with multiple transitions per

step, 184
restriction site model, 172, 195
used in Poisson-skip model,

265
Markov chain Monte Carlo, 169–

198
for testing linkage equilibrium,

69
Marriage theorem, see Hall’s mar-

riage theorem
Mather’s formula, see Recombi-

nation fraction
Matrix exponential, 210, 223
Maximum likelihood estimation

by scoring, see Scoring method
for evolutionary trees, 214–

215
compared to maximum par-

simony, 216
for radiation hybrid mapping

haploid case, 236, 251
polyploid case, 240

in factor analysis, see Factor
analysis

Newton’s method, see New-
ton’s method

of allele frequencies, 32–33
of power-series parameter, 53
Quasi-Newton methods, see

Quasi-Newton methods
using EM algorithm, see EM

algorithm
variances and covariances, 40

Maximum parsimony, 205–208, 223
algorithm for, 206
compared to maximum like-

lihood, 216
tree traversal scheme, 208

Mean components, 141
Meiosis, 2
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Meiosis indicators, 189
MENDEL pedigree likelihood soft-

ware, xi, 185
Messenger RNA, see RNA, mes-

senger
Metaphase spread, 64
Methanogen, 215
Metropolis algorithm, see Hastings-

Metropolis algorithm
Mixed model for polygenic trait,

154
Moran’s model, 14–16
Morgan, 132
Mosquito two-locus genotype data,

34
Multilevel logistic model, 220
Multinomial distribution

Wd statistic for
Poisson approximation to,

300
distribution function, 73, 74
hidden, see Hidden trials
testing hypotheses about, 62–

73
Multivariate normal distribution,

see Normal distribution,
multivariate

Mutation, 12
in hemoglobin, 66

Myotonic dystrophy pedigree data,
128, 134

Needleman-Wunsch algorithm, 286–
290

affine gap distance, 288
memory reduction, 289–290
parallel processing, 289

Neighborhood method, 299
for number of triangles in ran-

dom graph, 312
for somatic cell hybrid pan-

els, 303
for success runs in Bernoulli

trials, 314

for testing clustering of re-
striction sites, 306–308

Neutral model, 321
fixation probabilities, 323
fixation times, 324
mean frequency, 326
variance of frequency, 326

Newton’s method, 39
for a quadratic function, 52

Nonparametric linkage analysis
affecteds-only method, 106
descent graph method, 192

Normal distribution, 351–354
multivariate, 142, 352–354

data compression, 161
univariate, 351–352

Normal equations, 159
Nuclear family, 27

likelihood for, 136
Nucleosome, 342
Nucleotide, 341
Nucleus, 215, 344

Obligate breaks
distribution

haploid case, 235, 250
polyploid case, 244, 253

minimum criterion
consistency of, 233–235
haploid case, 233
polyploid case, 244

Observed information, see Infor-
mation, observed

Oligonucleotide, 347
Order statistics, 310
Ott’s likelihood representation, 117

Partial digest, 345
Partition function, see Gibbs ran-

dom fields, partition func-
tion

Pascal’s triangle, 285
Paternity testing, 124–125
Pattern matching, 281–283
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PCR, see Polymerase chain reac-
tion

Pedigree, 2
condensed identity coefficients

for, 90, 92
gene flow in, 175–177
kinship matrix for, 83, 94
likelihood for, 115–124

allele consolidation, 120
differentiation of, 136
factoring, 122
genotype elimination algo-

rithm, see Genotype elim-
ination algorithm

Ott’s representation, 117
numbering convention for, 82

Penetrance, 115
array factoring, 123

Permutation
best for radiation hybrids, 233
generating random, 76
in transmission/disequilibrium

test, 71
number of fixed points in, 311
two-sample t test, 76

PGM1 locus data, 126
Phase, 4

ambiguity in Snps, 127
Phenotype, 1
Phylogeny, 203
Poisson distribution

as approximate sum of indi-
cators, 299–315

as approximation to hyper-
geometric distribution, 312

as model for chiasmata, 258,
261

in modeling radiation hybrid
breakage, 232

law of rare events, 300
mixture of, 35
restriction sites, 282

Poisson-skip process, 264
chi-square model, 270
map function, 265

positive interference, 270
Polygenes, 154
Polygenic model, 141–165

finite, 154
hypergeometric, 154–157, 164–

165
reproductive property, 164
with inbreeding, 165

threshold, 154
Polymer, 341
Polymerase, 346
Polymerase chain reaction, 346

DNA amplification by, 350
Polymorphic locus, 4
Population isolate

bottleneck, 335
Finnish recessive diseases, 333

Position interference, 270
Positive definiteness

in Newton’s method, 40
in Quasi-Newton methods, 46
in scoring method, 40
partial ordering by, 54

Posterior mode, 246
Posterior probabilities

for genotyping errors, 192
in paternity testing, 124

Potential function, see Gibbs ran-
dom fields, potential func-
tion

Power-series family, 53
Prediction of genotypes, 97
Premessenger RNA, see RNA, pre-

messenger
Primer, 346
Prior for pedigree founders, 115,

214
factoring, 123

Probe, 345
Prokaryote, 215
Promoter region, 342, 344
Protein, 341

construction of, 343–344
Proximal direction, 342
Pseudogene, 342
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Pulley principle, see Felsenstein’s
pulley principle

Pulsed-field gel electrophoresis, see
Gel electrophoresis

Purine, 205, 341
Pyrimidine, 205, 341

QR decomposition, 353
QTL mapping, 150–152

example, 152
X-linked trait, 163

Quantitative trait, 99
covariances between relatives,

100
in presence of inbreeding,

110
covariances for bivariate traits,

111
environmental effect on, 101,

141
multilocus, 141

Quasi-Newton methods, 45, 54
for multivariate normal log-

likelihood, 146

Radiation hybrid(s), 347
breakage probability, 232, 236,

251
criteria for comparing locus

orders, 233–238
haploid two-locus likelihoods,

236
mapping, 231
models for, 232
polyploid

multi-locus likelihood, 241
partial derivatives of like-

lihood, 252
two-locus model, 240, 252–

253
posterior probabilities for lo-

cus orders, 248
Random thinning, 257
Rate variation model, 219–222

example, 221

modulation parameter, 221
Ray, 239
Recessive allele, 2
Recessive disease gene

diffusion model, 321
Finnish bottleneck, 335
Finnish example, 333
Finnish extinction probabil-

ity, 334
impact of counseling, 18
stochastic equilibrium, 327

Recombination, 2
Recombination fraction, 2

as function of map distance,
see Map function

count-location model, 260, 277
Mather’s formula for, 258

generalization of, 260
implications for map func-

tions, 262
Trow’s formula, 117, 133

Reference prior, 51
Regulatory region, 218, 281, 342
Renewal function, 262
Renewal process, 261

delayed, 262, 274
discrete, 267
pattern matching, 282, 294

Restriction enzymes, 172, 306, 345
table of, 345

Restriction fragment polymorphism,
346

Restriction map, 345
Restriction sites, 306

detecting clustering of, 306–
308

Markov chain model, 172, 195
Poisson model, 281, 293

Reversible Markov chain
continuous time, 210
discrete time, 171

RFLP, see Restriction fragment
polymorphism

Ribonucleic acid, see RNA
Ribosome, 343
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Risk, 102, 110
Risk prediction, 128

for myotonic dystrophy, 128,
134

for recessive disease, 134
for X-linked recessive, 135
under polygenic threshold model,

157
Risk ratio, 102

two-locus models, 103–105, 112
RNA

16s ribosomal, 216
messenger, 341, 343
polymerase, 344
premessenger, 343
strand, 341
structure, 341
transfer, 344

Robust linkage analysis, see Link-
age analysis

Root of evolutionary tree, 203

Scan statistic, 306
Schizophrenia, risk ratios for, 105
Schrödinger’s randomization tech-

nique, 259
Score, 39

for Dirichlet distribution, 55
for Dirichlet-multinomial dis-

tribution, 49
for multivariate normal, 144
for some exponential families,

42
Scoring method, 39

for inbreeding coefficient and
allele frequency, 42

for mean and variance com-
ponents, 142

relation to least squares, 53
Secant condition, 46
Segmental function, 275
Segregation parameter, 126
Segregation ratio, 5, 27
Selection, 9

balance with mutation, 12, 17

speed of, 18
Selfing, 93, 195
Sequence alignment

listing, 285
multiple, 292–293
pairwise, 283–292

local similarity, 291–292
maximum similarity, 290–

291
minimum distance, 285–288
number of, 284–285, 295
significance of, 308–311

Sequence tagged sites, 248
Sex chromosome, see Chromosome(s),

sex
Sherman-Morrison formula, 46

in posterior mode calculation,
247

Sickle cell anemia
and heterozygote advantage,

11
Silencer region, 342
Simulated annealing, 174

for haplotyping, 186–187
for ordering loci, 233

Single nucleotide polymorphism,
127

Sister chromosomes, see Chromo-
somes, sister

Smith-Waterman algorithm, 291–
292

Software, xi
Somatic cell hybrid, 301, 347

model for panel construction,
313

panel of chromosome indica-
tors, 302

assumptions, 303
error detection and correc-

tion, 303, 313
Southern blotting, 345
Spacing of markers, 306
Sperm, 1
State space, 170
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Stationary distribution, see Equi-
librium distribution

Stationary point process, 262
Steepest ascent, 40
Step-halving, 40
Stirling’s formula, 285, 328
Stochastic methods, see Markov

chain Monte Carlo
Stochastic point process, 257
Subadditivity, 287, 295
Sum, iterated, see Iterated sum

Tandem repeat locus, 50
Taxon, 203
Tay-Sachs disease and heterozy-

gote advantage, 11
Telomere, 257, 342
Thinning, random, see Random

thinning
Thymine, 341
Tip of evolutionary tree, 203
Total variation distance, 299

bound for, see Chen-Stein bound
Trait, 4
Transcription (of genes), 341, 343
Transcription factor, 344
Transfer RNA, see RNA, transfer
Transition

in evolutionary model, 211
Transition probability matrix, 170,

195–196
Transition rate, 209
Translation (of genes), 341
Transmission probability, 115, 214

array factoring, 123–124
for gametes, 116
gamete competition model, 126

Transmission/disequilibrium test,
70–73, 126

Transversion, 211
Trow’s formula, see Recombina-

tion fraction
Twins, trait covariance between,

146

Univariate normal distribution, see
Normal distribution, uni-
variate

Uracil, 341

Variance component, 142

Wd statistic, 62, 65–67
Poisson approximation to, 300
recursive calculation of dis-

tribution, 74
Wald’s formula, 265
Walsh transform, 189–191, 260
Wright’s path formula, 94
Wright-Fisher model, 320

bottleneck, 335
density function, 333
extinction probability, 334
Finnish example, 333
numerical methods for, 332

X chromosome, 1, 342
convergence to Hardy-Weinberg

equilibrium, 6
X-linked kinship coefficient, see Kin-

ship coefficient, X-linked

Y chromosome, 1

Zmax statistic, 62
approximate distribution, 63
for case-control tests, 70
in testing in situ hybridiza-

tion, 64
in transmission/disequilibrium

test, 72–73
Zygote, 2
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