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To my daughters, Jane and Maggie





Preface to the Second Edition

If this book were my child, I would say that it has grown up after passing
through a painful adolescence. It has rebelled at times over my indecision.
While it has aspired to greatness, I have aspired to closure. Although the
second edition of Optimization occasionally demanded more exertion than I
could muster, writing it has broadened my intellectual horizons. I hope my
own struggles to reach clarity will translate into an easier path for readers.
The book’s stress on mathematical fundamentals continues. Indeed, I

was tempted to re-title it Mathematical Analysis and Optimization. I re-
sisted this temptation because my ultimate goal is still to teach optimiza-
tion theory. Nonetheless, there is a new chapter on the gauge integral and
expanded treatments of differentiation and convexity. The focus remains
on finite-dimensional optimization. The sole exception to this rule occurs
in the new chapter on the calculus of variations. In my view functional
analysis is just too high a rung on the ladder of mathematical abstraction.
Covering all of optimization theory is simply out of the question. Even

though the second edition is more than double the length of the first, many
important topics are omitted. The most grievous omissions are the simplex
algorithm of linear programming and modern interior point methods. For-
tunately, there are many admirable books devoted to these subjects. My
development of adaptive barrier methods and exact penalty methods also
partially compensates.
In addition to the two chapters on integration and the calculus of vari-

ations, four new chapters treat block relaxation (block descent and block
ascent) and various advanced topics in the convex calculus, including the
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viii Preface to the Second Edition

Fenchel conjugate, subdifferentials, duality, feasibility, alternating projec-
tions, projected gradient methods, exact penalty methods, and Bregman
iteration. My own interests in data mining and biological applications have
dictated the nature of these chapters. High-dimensional problems are driv-
ing the discipline of optimization. These are qualitatively different from
traditional problems, and standard algorithms such as Newton’s method
are often impractical. Penalization, model sparsity, and the MM algorithm
now assume dominant roles. Fortunately, many of the challenging modern
problems can also be phrased as convex programs.
In the first edition I eschewed the convention of setting vectors and ma-

trices in boldface type. In the second edition I embrace it. Although this
decision improves readability, it carries with it some residual ambiguity.
The main difficulty lies in distinguishing constant vectors and matrices
from vector and matrix-valued functions. In general, I have elected to set
functions in ordinary type even when they are vector or matrix valued.
The exceptions occur in the calculus of variations, where functions are con-
sidered vectors in infinite-dimensional spaces. Thus, a function appears in
ordinary type when its argument is displayed and in boldface type when
its argument is omitted.
Many people have helped me prepare this second edition. Hua Zhou and

Tongtong Wu, my former postdoctoral fellows, and Eric Chi, my current
postdoctoral fellow, deserve special credit. Without their assistance, the
book would have been intellectually duller and graphically drearier. I would
also like to thank my former doctoral students David Alexander, David
Hunter, Mary Sehl, and Jinjin Zhou for proofreading and critiquing the
new material. The students in my optimization class checked most of the
exercises. I am indebted to Forrest Crawford, Gabriela Cybis, Gary Evans,
Mitchell Johnson, Wesley Kerr, Kevin Keys, Omid Kohannim, Lewis Lee,
Matthew Levinson, Lae Un Kim, John Ranola, and Moses Wilkes for their
help.
Finally, let me report on my daughters Maggie and Jane, to whom this

book is dedicated. Maggie is now embarked on a postdoctoral fellowship
in medical ethics at Macquarie University in Sydney, Australia. Jane is
completing her dissertation in biostatistics at the University of Washington.
Assimilating their scholarship will keep me young for many years to come.



Preface to the First Edition

This foreword, like many forewords, was written afterwards. That is just
as well because the plot of the book changed during its creation. It is
painful to recall how many times classroom realities forced me to shred
sections and start anew. Perhaps such adjustments are inevitable. Certainly
I gained a better perspective on the subject over time. I also set out to
teach optimization theory and wound up teaching mathematical analysis.
The students in my classes are no less bright and eager to learn about
optimization than they were a generation ago, but they tend to be less
prepared mathematically. So what you see before you is a compromise
between a broad survey of optimization theory and a textbook of analysis.
In retrospect, this compromise is not so bad. It compelled me to revisit the
foundations of analysis, particularly differentiation, and to get right to the
point in optimization theory.
The content of courses on optimization theory varies tremendously. Some

courses are devoted to linear programming, some to nonlinear program-
ming, some to algorithms, some to computational statistics, and some to
mathematical topics such as convexity. In contrast to their gaps in mathe-
matics, most students now come well trained in computing. For this reason,
there is less need to emphasize the translation of algorithms into computer
code. This does not diminish the importance of algorithms, but it does
suggest putting more stress on their motivation and theoretical properties.
Fortunately, the dichotomy between linear and nonlinear programming is
fading. It makes better sense pedagogically to view linear programming
as a special case of nonlinear programming. This is the attitude taken in

ix



x Preface to the First Edition

the current book, which makes little mention of the simplex method and
develops interior point methods instead. The real bridge between linear
and nonlinear programming is convexity. I stress not only the theoretical
side of convexity but also its applications in the design of algorithms for
problems with either large numbers of parameters or nonlinear constraints.
This graduate-level textbook presupposes knowledge of calculus and lin-

ear algebra. I develop quite a bit of mathematical analysis from scratch
and feature a variety of examples from linear algebra, differential equa-
tions, and convexity theory. Of course, the greater the prior exposure of
students to this background material, the more quickly the beginning chap-
ters can be covered. If the need arises, I recommend the texts [82, 134, 135,
188, 222, 223] for supplementary reading. There is ample material here for
a fast-paced, semester-long course. Instructors should exercise their own
discretion in skipping sections or chapters. For example, Chap. 10 on the
EM algorithm primarily serves the needs of students in biostatistics and
statistics. Overall, my intended audience includes graduate students in ap-
plied mathematics, biostatistics, computational biology, computer science,
economics, physics, and statistics. To this list I would like to add upper-
division majors in mathematics who want to see some rigorous mathematics
with real applications. My own background in computational biology and
statistics has obviously dictated many of the examples in the book.
Chapter 1 starts with a review of exact methods for solving optimization

problems. These are methods that many students will have seen in calculus,
but repeating classical techniques with fresh examples tends simultaneously
to entertain, instruct, and persuade. Some of the exact solutions also appear
later in the book as parts of more complicated algorithms.
Chapters 2 through 4 review undergraduate mathematical analysis.

Although much of this material is standard, the examples may keep the in-
terest of even the best students. Instructors should note that Carathéodory’s
definition rather than Fréchet’s definition of differentiability is adopted.
This choice eases the proof of many results. The gauge integral, another
good addition to the calculus curriculum, is mentioned briefly.
Chapter 5 gets down to the serious business of optimization theory.

McShane’s clever proof of the necessity of the Karush–Kuhn–Tucker con-
ditions avoids the complicated machinery of manifold theory and convex
cones. It makes immediate use of the Mangasarian–Fromovitz constraint
qualification. To derive sufficient conditions for optimality, I introduce sec-
ond differentials by extending Carathéodory’s definition of first differen-
tials. To my knowledge, this approach to second differentials is new. Be-
cause it melds so effectively with second-order Taylor expansions, it renders
critical proofs more transparent.
Chapter 6 treats convex sets, convex functions, and the relationship be-

tween convexity and the multiplier rule. The chapter concludes with the
derivation of some of the classical inequalities of probability theory. Prior
exposure to probability theory will obviously be an asset for readers here.
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Chapters 8 and 9 introduce the MM and EM algorithms. These exploit
convexity and the notion of majorization in transferring minimization of the
objective function to a surrogate function. Minimizing the surrogate func-
tion drives the objective function downhill. The EM algorithm, which is a
special case of the MM algorithm, arose in statistics. It is a slight misnomer
to call these algorithms. They are really prescriptions for constructing al-
gorithms. It takes experience and skill to wield these tools effectively, so
careful attention to the examples is imperative.
Chapter 10 covers Newton’s method and its statistical variants, scoring

and the Gauss–Newton algorithm. To make this material less dependent on
statistical knowledge, I have tried to motivate several algorithms from the
perspective of positive definite approximation of the second differential of
the objective function. Chapter 11 covers the conjugate gradient algorithm,
quasi-Newton algorithms, and the method of trust regions. These classical
subjects are in danger of being dropped from the curriculum of nonlinear
programming. In my view, this would be a mistake.
Chapter 12 is devoted to convergence questions, both local and global.

This material beautifully illustrates the virtues of soft analysis. Instruc-
tors wanting to emphasize practical matters may be tempted to sacrifice
Chap. 12, but the constant interplay between theory and practice in de-
signing new algorithms argues for its inclusion.
Chapter 13 on convex programming ends the book where more advanced

treatises would start. I discuss adaptive barrier methods as a novel appli-
cation of the MM algorithm, Dykstra’s algorithm for finding feasible points
in convex programming, and the rudiments of duality theory. These top-
ics belong to the promised land. All you get here is a glimpse from the
mountaintop looking out across the river.
Let me add a few words about notation. Lower-division undergraduate

texts carefully distinguish between scalars and vectors by setting vectors in
boldface type. This convention is considered cumbersome in higher math-
ematics and is dropped. However, mathematical analysis is plagued by a
proliferation of superscripts and subscripts. I prefer to avoid superscripts
because of the possible confusion with powers. This decision makes it diffi-
cult to distinguish an element of a vector sequence from a component of a
vector. My compromise is to represent the mth entry of a vector sequence
as x(m) and the nth component of that sequence element as xmn. Simi-
lar conventions hold for matrices. Thus, Mjkl is the entry in row k and
column l of the jth matrix M(j) of a sequence of matrices. Elements of
scalar sequences are subscripted in the usual fashion without the enclosing
parentheses.
I would like to thank my UCLA students for their help and patience

in debugging this text. If it is readable, it is because their questions cut
through the confusion. In retrospect, there were more contributing students
than I can credit. Let me single out Jason Aten, Lara Bauman, Brian Dolan,
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Wei-Hsun Liao, Andrew Nevai-Tucker, Robert Rovetti, and Andy Yip. Paul
Maranian kindly prepared the index and proofread my last draft. Finally,
I thank my ever helpful and considerate editor, John Kimmel.
I dedicate this book to my daughters, Jane and Maggie. It has been a

privilege to be your father. Now that you are adults, I hope you can find
the same pleasure in pursuing ideas that I have found in my professional
life.
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1
Elementary Optimization

1.1 Introduction

As one of the oldest branches of mathematics, optimization theory served as
a catalyst for the development of geometry and differential calculus [258].
Today it finds applications in a myriad of scientific and engineering dis-
ciplines. The current chapter briefly surveys material that most students
encounter in a good calculus course. This review is intended to showcase
the variety of methods used to find the exact solutions of elementary prob-
lems. We will return to some of these methods later from a more rigorous
perspective. One of the recurring themes in optimization theory is its close
connection to inequalities. This chapter introduces a few classical inequal-
ities; more will appear in succeeding chapters.

1.2 Univariate Optimization

The first optimization problems students encounter are univariate. Solu-
tion techniques for these simple problems are hardly limited to differential
calculus. Our first two examples illustrate how plane geometry and algebra
can play a role.

Example 1.2.1 Heron’s Problem

The ancient mathematician Heron of Alexandria posed one of the earliest
optimization problems. Consider the two points A and B and the line

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 1,
© Springer Science+Business Media New York 2013
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2 1. Elementary Optimization

A

B

C
D

E

FIGURE 1.1. Diagram for Heron’s problem

containing the points C and D drawn in Fig. 1.1. Heron’s problem is to
find the position of C on the line that minimizes the sum of the distances
|AC| and |BC|. The correct choice of C is determined by reflecting B
across the given line to give E. From E we draw the line to A and note
its intersection C with the original line. To demonstrate that C minimizes
the total distance |AC|+ |BC|, consider any other point D on the original
horizontal line. By symmetry, |AC| + |BC| = |AC| + |CE|. Similarly, by
symmetry, |AD| + |BD| = |AD| + |DE|. Because the sum of the lengths
of two sides of a triangle exceeds the length of the third side, it follows
immediately that |AC| + |CE| ≤ |AD| + |DE|. Thus, C solves Heron’s
problem.
This example also has an optical interpretation. If we imagine that

the horizontal line containing C lies on a mirror, then light travels along
the quickest path between A and B via the mirror. This extremal princi-
ple can be explained by considering the wave nature of light, but we omit
the long digression. It is interesting that the geometric argument automat-
ically implies that the angle of incidence of the light ray equals the angle
of reflection.

Example 1.2.2 Simple Arithmetic-Geometric Mean Inequality

If x and y are two nonnegative numbers, then
√
xy ≤ (x + y)/2. This can

be proved by noting that

0 ≤ (
√
x−√y)2

= x− 2
√
xy + y.

Evidently, equality holds if and only if x = y. As an application consider
maximization of the function f(x) = x(1− x). The inequality just derived
shows that

f(x) ≤
(
x+ 1− x

2

)2

=
1

4
,

with equality when x = 1/2. Thus, the maximum of f(x) occurs at the
point x = 1/2. One can interpret f(x) as the area of a rectangle of fixed
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perimeter 2 with sides of length x and 1−x. The rectangle with the largest
area is a square. The function 2f(x) is interpreted in population genetics
as the fraction of a population that is heterozygous at a genetic locus with
two alleles having frequencies x and 1 − x. Heterozygosity is maximized
when the two alleles are equally frequent.

With the advent of differential calculus, it became possible to solve
optimization problems more systematically. Before discussing concrete ex-
amples, it is helpful to review some of the standard theory. We restrict
attention to real-valued functions defined on intervals. The intervals in
question can be finite or infinite in extent and open or closed at either end.
According to a celebrated theorem of Weierstrass, a continuous function
f(x) defined on a closed finite interval [a, b] attains its minimum and max-
imum values on the interval. These extremal values are necessarily finite.
The extremal points can occur at the endpoints a or b or at an interior
point c. In the latter case, when f(x) is differentiable, an even older princi-
ple of Fermat requires that f ′(c) = 0. The stationarity condition f ′(c) = 0
is no guarantee that c is optimal. It is possible for c to be a local rather
than a global minimum or maximum or even to be a saddle point. How-
ever, it usually is a simple matter to check the endpoints a and b and any
stationary points c. Collectively, these points are known as critical points.
If the domain of f(x) is not a closed finite interval [a, b], then the min-

imum or maximum of f(x) may not exist. One can usually rule out such
behavior by examining the limit of f(x) as x approaches an open boundary.
For example on the interval [a,∞), if limx→∞ f(x) = ∞, then we can be
sure that f(x) possesses a minimum on the interval, and we can find it
by comparing the values of f(x) at a and any stationary points c. On a
half open interval such as (a, b], we can likewise find a minimum whenever
limx→a f(x) =∞. Similar considerations apply to finding a maximum.
The nature of a stationary point c can be determined by testing the

second derivative f ′′(c). If f ′′(c) > 0, then c at least qualifies as a local
minimum. Similarly, if f ′′(c) < 0, then c at least qualifies as a local maxi-
mum. The indeterminate case f ′′(c) = 0 is consistent with c being a local
minimum, maximum, or saddle point. For example, f(x) = x4 attains its
minimum at 0 while f(x) = x3 has a saddle point there. In both cases,
f ′′(0) = 0. Higher-order derivatives or other qualitative features of f(x)
must be invoked to discriminate among these possibilities. If f ′′(x) ≥ 0 for
all x, then f(x) is said to be convex. Any stationary point of a convex func-
tion is a minimum. If f ′′(x) > 0 for all x, then f(x) is strictly convex, and
there is at most one stationary point. Whenever it exists, the stationary
point furnishes the global minimum. A concave function satisfies f ′′(x) ≤ 0
for all x. Concavity bears the same relation to maxima as convexity does
to minima.
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FIGURE 1.2. A rectangle inscribed in a circle

Example 1.2.3 (Kepler) Largest Rectangle Inscribed in a Circle

Figure 1.2 depicts a rectangle inscribed in a circle of radius 1 centered at the
origin. If we suppose the vertical sides of the rectangle cross the horizontal
axis at the point (−x, 0) and (x, 0), then Pythagoras’s theorem gives the
coordinates of the corners as noted in the figure. Here x is restricted to the
interval [0, 1]. From these coordinates, it follows that the rectangle has area

f(x) = 4x
√
1− x2.

Because f(0) = f(1) = 0, the maximum of f(x) occurs somewhere in the
open interval (0, 1). Straightforward differentiation shows that

f ′(x) = 4
√
1− x2 − 4x2√

1− x2 .

Setting f ′(x) equal to 0 and solving for x gives the critical point x = 1/
√
2

and the critical value f(1/
√
2) = 2. Since there is only one critical point

on (0, 1), it must be the maximum point. The largest inscribed rectangle is
a square as expected.

Example 1.2.4 Snell’s Law

Snell’s law refers to an optical experiment involving two different media, say
air and water. The less dense the medium, the faster light travels. Since
light takes the path of least time, it bends at an interface such as that
indicated by the horizontal axis in Fig. 1.3. Here we ask for the point (x, 0)
on the interface intersecting the light path. If we assume the speed of light
above the interface is s1 and below the interface is s2, then the total travel
time is given by
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FIGURE 1.3. Diagram for Snell’s law

f(x) =

√
a2 + x2

s1
+

√
b2 + (d− x)2

s2
. (1.1)

The derivative of f(x) is

f ′(x) =
x

s1
√
a2 + x2

− d− x
s2
√
b2 + (d− x)2 .

The minimum exists because lim|x|→∞ f(x) = ∞. Although finding a sta-
tionary point is difficult, it is clear from the monotonicity of the func-
tions x/

(
s1
√
a2 + x2

)
and (d−x)/(s2√b2 + (d− x)2) that it is unique. In

trigonometric terms, Snell’s law can be expressed as

sin θ1
s1

=
sin θ2
s2

using the angles at the minimum point as noted in Fig. 1.3.

Example 1.2.5 The Functions fn(x) = xnex

The functions fn(x) = xnex for n ≥ 1 exhibit interesting behavior. Fig-
ure 1.4 plots fn(x) for n between 1 and 3. It is clear that limx→−∞ fn(x) = 0
and limx→∞ fn(x) =∞. These limits do not rule out the possibility of local
maxima and minima. To find these we need

f ′
n(x) = (xn + nxn−1)ex

f ′′
n (x) = [xn + 2nxn−1 + n(n− 1)xn−2]ex.

Setting f ′
n(x) = 0 produces the critical point x = −n, and when n > 1, the

critical point x = 0. A brief calculation shows that f ′′
n (−n) = (−n)n−1e−n.

Thus, −n is a local minimum for n odd and a local maximum for n even.
At 0 we have f ′′

2 (0) = 2 and f ′′
n (0) = 0 for n > 2. Thus, the second derivative

test fails for n > 2. However, it is clear from the variation of the sign of
fn(x) to the right and left of 0 that 0 is a minimum of fn(x) for n even and
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FIGURE 1.4. Plots of xex, x2ex, and x3ex

a saddle point of fn(x) for n > 1 and odd. One strength of modern graphing
programs such as MATLAB is that they quickly suggest such conjectures.

Example 1.2.6 Fenchel Conjugate of fp(x) = |x|p/p for p > 1

The Fenchel conjugate f�(y) of a convex function f(x) is defined by

f�(y) = sup
x

[yx− f(x)]. (1.2)

Remarkably, f�(y) is also convex. As a particular case of this result, we
consider the Fenchel conjugate of fp(x). It turns out that f�

p (y) = fq(y),
where

1

p
+

1

q
= 1.

Here neither p nor q need be integers. According to the second derivative
test, the function fp(x) = |x|p/p is convex on the real line whenever p > 1.
The possible failure of f ′′

p (x) to exist at x = 0 does not invalidate this
conclusion. To calculate f�

p (y), we observe that f
′
p(x) = |x|p−1 sgn(x). This

clearly implies that x = |y|1/(p−1) sgn(y) maximizes the concave function
g(x) = yx− fp(x). At the maximum point
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f�
p (y) = yx− |x|

p

p

= |y|1+1/(p−1) − |y|
p/(p−1)

p

=
|y|q
q
,

proving our claim.
Inserting the calculated value of f�

p (y) in the definition (1.2) leads to
Young’s inequality

xy ≤ |x|p
p

+
|y|q
q
. (1.3)

The double-dual identity f��
p (x) = fp(x) is a special case of a general

result proved later in Proposition 14.3.2. Historically, the Fenchel conjugate
was introduced by Legendre for smooth functions and later generalized by
Fenchel to arbitrary functions.

1.3 Multivariate Optimization

Although multivariate optimization is more subtle, it typically parallels
univariate optimization [125, 212, 247]. The most fundamental differences
arise because of constraints. In unconstrained optimization, the right defi-
nitions and notation ease the generalization. Before discussing these issues
of calculus, we look at two classical inequalities that can be established by
purely algebraic techniques.

Example 1.3.1 Cauchy-Schwarz Inequality

Suppose x and y are any two points in Rn. The Cauchy-Schwarz inequality
says

∣∣∣∣∣
n∑

i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1

x2i

)1/2( n∑
i=1

y2i

)1/2

.

If we define the inner product

x∗y =

n∑
i=1

xiyi

using the transpose operator ∗ and the Euclidean norm

‖x‖ =

(
n∑

i=1

x2i

)1/2

,
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then the inequality can be restated as |x∗y| ≤ ‖x‖ · ‖y‖. Equality occurs
in the Cauchy-Schwarz inequality if and only if y is a multiple of x or vice
versa.
In proving the inequality, we can immediately eliminate the case x = 0

where all components of x are 0. Given that x �= 0, we introduce a scalar
λ and consider the quadratic

0 ≤ ‖λx+ y‖2
= ‖x‖2λ2 + 2x∗yλ+ ‖y‖2

=
1

a
(aλ+ b)

2
+ c− b2

a

with a = ‖x‖2, b = x∗y, and c = ‖y‖2. In order for this quadratic to
be nonnegative for all λ, it is necessary and sufficient that c − b2/a ≥ 0,
which is just an abbreviation for the Cauchy-Schwarz inequality. For the
quadratic to attain the value 0, the condition c−b2/a = 0 must hold. When
the quadratic vanishes, y = −λx.

Example 1.3.2 Arithmetic-Geometric Mean Inequality

One generalization of the simple arithmetic-geometric mean inequality of
Example 1.2.2 takes the form

n
√
x1 · · ·xn ≤ x1 + · · ·+ xn

n
, (1.4)

where x1, . . . , xn are any n nonnegative numbers. For a purely algebraic
proof of this fact, we first note that it is obvious if any xi = 0. If all xi > 0,
then divide both sides of the inequality by n

√
x1 · · ·xn. This replaces xi

by yi = xi/ n
√
x1 · · ·xn and leads to the equality n

√
y1 · · · yn = 1. It now

suffices to prove that y1+ · · ·+ yn ≥ n, which is trivially valid when n = 1.
For n > 1 we argue by induction. Clearly the assumption n

√
y1 · · · yn = 1

implies that there are two numbers, say y1 and y2, with y1 ≥ 1 and y2 ≤ 1.
If this is true, then (y1− 1)(y2− 1) ≤ 0, or equivalently y1y2 +1 ≤ y1 + y2.
Invoking the induction hypothesis, we now reason that

y1 + · · ·+ yn ≥ 1 + y1y2 + y3 + · · ·+ yn

≥ 1 + (n− 1).

As a prelude to discussing further examples, it is helpful to briefly sum-
marize the theory to be developed later and often taken for granted in
multidimensional calculus courses. The standard vocabulary and symbol-
ism adopted here stress the minor adjustments necessary in going from one
dimension to multiple dimensions.
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For a real-valued function f(x) defined on Rn, the differential df(x)
is the generalization of the derivative f ′(x). For our purposes, df(x) is
the row vector of partial derivatives; its transpose is the gradient vector
∇f(x). The symmetric matrix of second partial derivatives constitutes the
second differential d2f(x) or Hessian matrix. A stationary point x satisfies
∇f(x) = 0. Fermat’s principle says that all local maxima and minima on
the interior of the domain of f(x) are stationary points.
If d2f(x) is positive definite at a stationary point y, then y furnishes

a local minimum. If d2f(y) is negative definite, then y furnishes a local
maximum. The function f(x) is said to be convex if d2f(x) is positive
semidefinite for all x; it is strictly convex if d2f(x) is positive definite for all
x. Every stationary point of a convex function represents a global minimum.
At most one stationary point exists per strictly convex function. Similar
considerations apply to concave functions and global maxima, provided
we substitute “negative” for “positive” throughout these definitions. These
facts are rigorously proved in Chaps. 4, 5, and 6.

Example 1.3.3 Least Squares Estimation

Statisticians often estimate parameters by the method of least squares.
To review the situation, consider n independent experiments with outcomes
y1, . . . , yn. We wish to predict yi from p covariates (predictors) xi1, . . . , xip
known in advance. For instance, yi might be the height of the ith child in a
classroom of n children. Relevant predictors might be the heights xi1 and
xi2 of i’s mother and father and the sex of i coded as xi3 = 1 for a girl and
xi4 = 1 for a boy. Here we take p = 4 and force xi3xi4 = 0 so that only one
sex is possible. If we use a linear predictor

∑p
j=1 xijθj of yi, it is natural

to estimate the regression coefficients θj by minimizing the sum of squares

f(θ) =

n∑
i=1

(
yi −

p∑
j=1

xijθj

)2

.

Differentiating f(θ) with respect to θj and setting the result equal to 0
produce

n∑
i=1

xijyi =
n∑

i=1

p∑
k=1

xijxikθk.

If we let y denote the column vector with entries yi and X denote the
matrix with entry xij in row i and column j, then these p normal equations
can be written in vector form as

X∗y = X∗Xθ
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and solved as

θ̂ = (X∗X)−1X∗y.

In order for the indicated matrix inverse (X∗X)−1 to exist, n ≥ p should
hold and the matrix X must be of full rank. See Problem 22.
To check that our proposed solution θ̂ represents the global minimum,

we calculate the Hessian matrix d2f(θ). Its entries

∂2

∂θj∂θk
f(θ) = 2

n∑
i=1

xijxik

permit us to identify d2f(θ) with the matrix 2X∗X. Owing to the full
rank assumption, the symmetric matrix X∗X is positive definite. Hence,
f(θ) is strictly convex, and θ̂ is the global minimum.

1.4 Constrained Optimization

The subject of Lagrange multipliers has a strong geometric flavor. It deals
with tangent vectors and directions of steepest ascent and descent. The
classical theory, which is all we consider here, is limited to equality con-
straints. Inequality constraints were not introduced until later in the game.
The gradient direction∇f(x) = df(x)∗ is the direction of steepest ascent

of f(x) near the point x. We can motivate this fact by considering the linear
approximation

f(x+ tu) = f(x) + tdf(x)u + o(t)

for a unit vector u and a scalar t. The error term o(t) becomes negligi-
ble compared to t as t decreases to 0. The inner product df(x)u in this
approximation is greatest for the unit vector u = ∇f(x)/‖∇f(x)‖. Thus,
∇f(x) points locally in the direction of steepest ascent of f(x). Similarly,
−∇f(x) points locally in the direction of steepest descent.
Now consider minimizing or maximizing f(x) subject to the equality

constraints gi(x) = 0 for i = 1, . . . ,m. A tangent direction w at the point
x on the constraint surface satisfies dgi(x)w = 0 for all i. Of course, if
the constraint surface is curved, we must interpret the tangent directions
as specifying directions of infinitesimal movement. From the perpendicu-
larity relation dgi(x)w = 0, it follows that the set of tangent directions
is the orthogonal complement S⊥(x) of the vector subspace S(x) spanned
by the ∇gi(x). To avoid degeneracies, the vectors ∇gi(x) must be linearly
independent. Figure 1.5 depicts level curves g(x) = c and gradients ∇g(x)
for the function sin(x) cos(y) over the square [0, π]× [−π

2 ,
π
2 ]. Tangent vec-

tors are parallel to the level curves (contours) and perpendicular to the
gradients (arrows).
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FIGURE 1.5. Level curves and steepest ascent directions for sin(x) cos(y)

At an optimal (or extremal) point y, we have df(y)w = 0 for every
tangent direction w ∈ S⊥(y); otherwise, we could move infinitesimally
away from y in the tangent directions w and −w and both increase and
decrease f(x). In other words, ∇f(y) is a member of the double orthogonal
complement S⊥⊥(y) = S(y). This enables us to write

∇f(y) = −
m∑
i=1

λi∇gi(y)

for properly chosen constants λ1, . . . , λm. Alternatively, the Lagrangian
function

L(x,ω) = f(x) +

m∑
i=1

ωigi(x)

has a stationary point at (y,λ). In this regard, note that

∂

∂ωi
L(y,λ) = 0

owing to the constraint gi(y) = 0. The essence of the Lagrange multiplier
rule consists in finding the stationary points of the Lagrangian. Although
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our intuitive arguments need logical tightening in many places, they offer
the basic geometric insights.

Example 1.4.1 Projection onto a Hyperplane

A hyperplane in Rn is the set of points H = {x ∈ Rn : z∗x = c} for some
vector z ∈ Rn and scalar c. There is no loss in generality in assuming that
z is a unit vector. If we seek the closest point on H to a point y, then
we must minimize ‖y − x‖2 subject to x ∈ H . We accordingly form the
Lagrangian

L(x, λ) = ‖y − x‖2 + λ(z∗x− c).
Setting the partial derivative with respect to xi equal to 0 gives

−2(yi − xi) + λzi = 0.

This equality entails x = y − 1
2λz in vector notation. It follows that

c = z∗x = z∗y − 1

2
λ‖z‖2.

In view of the assumption ‖z‖ = 1, we find that

λ = −2(c− z∗y)

and consequently that

x = y + (c− z∗y)z.

If y ∈ H to begin with, then x = y.

Example 1.4.2 Estimation of Multinomial Proportions

As another statistical example, consider a multinomial experiment with m
trials and observed successes m1, . . . ,mn over n categories. The maximum
likelihood estimate of the probability pi of category i is p̂i = mi/m, where
m = m1 + · · ·+mn. To demonstrate this fact, let

L(p) =

(
m

m1, . . . ,mn

) n∏
i=1

pmi

i

denote the likelihood. If mi = 0 for some i, then we interpret pmi

i as 1 even
when pi = 0. This convention makes it clear that we can increase L(p)
by replacing pi by 0 and pj by pj/(1 − pi) for j �= i. Thus, for purposes
of maximum likelihood estimation, we can assume that all mi > 0. Given
this assumption, L(p) tends to 0 when any pi tends to 0. It follows that
we can further restrict our attention to the interior region where all pi > 0
and maximize the loglikelihood lnL(p) subject to the equality constraint
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∑n
i=1 pi = 1. To find the maximum of lnL(p), we look for a stationary

point of the Lagrangian

L(p, λ) = ln

(
m

m1, . . . ,mn

)
+

n∑
i=1

mi ln pi + λ
( n∑

i=1

pi − 1
)
.

Setting the partial derivative of L(p, λ) with respect to pi equal to 0 gives
the equation

−mi

pi
= λ.

These n equations are satisfied subject to the constraint by taking λ = −m
and p̂i = mi/m. Thus, the necessary condition for a maximum holds at p̂.
One can show that p̂ furnishes the global maximum by exploiting the strict
concavity of L(p). Although we will omit the details of this argument, it is
fair to point out that strict concavity follows from

∂2

∂pi∂pj
lnL(p) =

{−mi

p2
i

i = j

0 i �= j .

In statistical applications, the negative second differential −d2 lnL(p) is
called the observed information matrix.

Example 1.4.3 Eigenvalues of a Symmetric Matrix

Let M = (mij) be an n × n symmetric matrix. Recall that M has n
real eigenvalues and n corresponding orthogonal eigenvectors. To find the
minimum or maximum eigenvalue of M , consider optimizing the quadratic
form x∗Mx subject to the constraint ‖x‖2 = 1. To handle this nonlinear
constraint, we introduce the Lagrangian

L(x, λ) = x∗Mx+ λ(1 − ‖x‖2).
Setting the partial derivative of L(x, λ) with respect to xi equal to 0 yields

2

n∑
j=1

mijxj − 2λxi = 0.

In matrix notation, this reduces to Mx = λx. It follows that

x∗Mx = λx∗x = λ.

Thus, the stationary points of the Lagrangian are eigenvectors of M .
The Lagrange multipliers are the corresponding stationary values or
eigenvalues. The maximum and minimum eigenvalues occur among these
stationary values. This result does not directly invoke the spectral decom-
position theorem.
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To prove that every symmetric matrix possesses a spectral decomposition,
one can argue by induction. The scalar case is trivial, so suppose that the
claim is true for every (n − 1) × (n − 1) symmetric matrix. If M is an
n × n symmetric matrix, then as just noted, M has a maximum eigen-
value λ and corresponding unit eigenvector x. Consider the deflated matrix
N = M − λxx∗ and the subspace S = {cx : c ∈ R}. It is clear that N
maps S into 0. Furthermore, N also maps the perpendicular complement
S⊥ of S into itself. Indeed, if y ∈ S⊥, then

x∗Ny = x∗(My − λxx∗y) = λx∗y − λx∗y = 0.

By the induction hypothesis, the symmetric linear transformation induced
by N on S⊥ possesses a spectral decomposition. The n− 1 eigenvectors of
this decomposition, which are automatically perpendicular to x, also serve
as eigenvectors of M .

Example 1.4.4 A Minimization Problem with Two Constraints

In three dimensions the plane x1 + x2 + x3 = 1 intersects the cylinder
x21 + x22 = 1 in an ellipse. To find the closest point on the ellipse to the
origin, we construct the Lagrangian

L(x,λ) = x21 + x22 + x23 + λ1(x1 + x2 + x3 − 1) + λ2(x
2
1 + x22 − 1).

The stationary points of L(x,λ) satisfy the system of equations

2x1 + λ1 + 2λ2x1 = 0

2x2 + λ1 + 2λ2x2 = 0 (1.5)

2x3 + λ1 = 0

in addition to the constraints. Since λ1 = −2x3, the first two equations of
the system (1.5) can be recast as

(1 + λ2)x1 = x3

(1 + λ2)x2 = x3.

If λ2 = −1, then x3 = 0. In this case it is geometrically obvious that
(1, 0, 0) and (0, 1, 0) are the only two points that satisfy the constraints
x1 +x2 = 1 and x21 +x22 = 1. On the other hand, if λ2 �= −1, then x1 = x2.
In this case, the constraints 2x1+x3 = 1 and 2x21 = 1 dictate the solutions

(
√
2
2 ,

√
2
2 , 1−

√
2) and (−

√
2
2 ,−

√
2
2 , 1+

√
2). Of the four candidate points, it

is easy to check that (1, 0, 0) and (0, 1, 0) are closest to the origin.

Example 1.4.5 A Population Genetics Problem

The multiplier rule is sometimes hard to apply, and ad hoc methods can lead
to better results. In the setting of the multinomial distribution, consider
the problem of maximizing the sum
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f(p) =
∑
i<j

(2pipj)
2 1

2

subject to the constraints
∑n

i=1 pi = 1 and all pi ≥ 0. This problem has a
genetics interpretation involving a locus with n codominant alleles labeled
1, . . . , n. (See Sect. 8.4 for some genetics terminology.) At the locus, most
genotype combinations of a mother, father, and child make it possible to
infer which allele the mother contributes to the child and which allele the
father contributes to the child. It turns out that the only ambiguous case
occurs when all three family members share the same heterozygous geno-
type i/j, where i �= j. The probability of this configuration is (2pipj)

2 1
2 if

pi and pj are the population frequencies (proportions) of alleles i and j.
Here 2pipj is the frequency of an i/j mother or an i/j father and 1

2 is the
probability that one of them transmits an i allele and the other transmits
a j allele. Thus, f(p) represents the probability that the trio’s genotypes
do not permit inference of the child’s maternal and paternal alleles.
The case n = 2 is particularly simple because the function f(p) then

reduces to 2(p1p2)
2. In view of Example 1.2.2, the maximum of 1

8 is attained
when p1 = p2 = 1

2 . This suggests that the maximum for general n occurs
when all pi =

1
n . Because there are

(
n
2

)
heterozygous genotypes,

f
( 1

n
1
)

=

(
n

2

)( 2

n2

)2 1

2
=

n− 1

n3
,

which is strictly less than 1
8 for n ≥ 3. Our first guess is wrong, and we

now conjecture that the maximum occurs on a boundary where all but
two of the pi = 0. If we permute the components of a maximum point,
then symmetry dictates that the result will also be a maximum point. We
therefore order the parameters so that 0 < p1 ≤ p2 ≤ · · · ≤ pn, avoiding
for the moment the lower-dimensional case where p1 = 0.
We now argue that we can increase f(p) by increasing p2 by q ∈ [0, p1]

at the expense of decreasing p1 by q. Consider the function

g(q) = 2(p1 − q)2
n∑

i=3

p2i + 2(p2 + q)2
n∑

i=3

p2i + 2(p1 − q)2(p2 + q)2

which equals the original objective function except for an additive constant
independent of q. For n ≥ 3, straightforward differentiation gives

g′(q) = −4(p1 − q)
n∑

i=3

p2i + 4(p2 + q)

n∑
i=3

p2i

− 4(p1 − q)(p2 + q)2 + 4(p1 − q)2(p2 + q)
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= 4(p2 − p1 + 2q)
[ n∑

i=3

p2i − (p1 − q)(p2 + q)
]

≥ 4(p2 − p1 + 2q)
[ n∑

i=3

p2i − (p2 − q)(p2 + q)
]

= 4(p2 − p1 + 2q)
[ n∑

i=4

p2i + p23 − p22 + q2
]

≥ 0

for q ∈ [0, p1]. Thus, we should reduce p1 to 0 and increase p2 to p2 + p1.
Furthermore, we should keep discarding the lowest positive pj until all but
two of the pi equal 0. Finally, we set the remaining two pi equal to

1
2 . This

verifies our second conjecture.

Example 1.4.6 Polygon of Greatest Area Inscribed in a Circle

As a generalization of Example 1.2.3, consider a polygon inscribed in a
circle. For a given number of vertices, the polygon with the greatest area
is regular. Here is a proof using elementary plane geometry [213]. Let i,
j, and k be three successive vertices as depicted in Fig. 1.6. If we fix the
positions of i and k, then we can ask for the optimal placement of vertex
j. The only part of the polygon in play is the triangle ijk. The area of
the triangle equals half its base times its height. The base distance from
i to k is fixed, and the height is clearly a maximum when j is moved to
the position j′ on the perpendicular bisector of the base. When j = j′, the
sides ij and jk have equal length. Repeating this argument for all successive
vertex triples demonstrates that all sides must have equal length and that
the polygon is regular. This is a constrained optimization problem because
all vertices are forced to lie on the given circle. Presumably one could reach
the conclusion that the polygon is regular by invoking Lagrange multipliers,
but the necessary machinery would obscure the underlying simplicity of the
problem.

i

j

k

j

FIGURE 1.6. The triangle defined by three adjacent vertices
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1.5 Problems

1. Given a point C in the interior of an acute angle, find the points A
and B on the sides of the angle such that the perimeter of the triangle
ABC is as short as possible. (Hint: Reflect C perpendicularly across
the two sides of the angle to points C1 and C2, respectively. Let A
and B be the intersections of the line segment connecting C1 and C2

with the two sides.)

2. Find the point in a triangle that minimizes the sum of the squared
distances from the vertices. Show that this point is the intersection
of the medians of the triangle.

3. Given an angle in the plane and a point in its interior, find the line
that passes through the point and cuts off from the angle a triangle of
minimal area. This triangle is determined by the vertex of the angle
and the two points where the constructed line intersects the sides of
the angle.

4. Find the minima of the functions

f(x) = x lnx

g(x) = x− lnx

h(x) = x+
1

x

on (0,∞). Demonstrate rigorously that your solutions are indeed the
minima.

5. For t > 0 prove that ex > xt for all x > 0 if and only if t < e [69].

6. Consider the function

f(x) = 2 (x+ 2) (x lnx− x+ 1)− 3 (x− 1)
2

defined on the interval (0,∞). Show that f(x) ≥ f(1) = 0 for all x.
(Hint: Expand f(x) in a third-order Taylor series around x = 1.)

7. Demonstrate that Euler’s function f(x) = x2 − 1/ lnx possesses no
local or global minima on either domain (0, 1) or (1,∞).

8. Prove the harmonic-geometric mean inequality

1

1
n

(
1
x1

+ · · ·+ 1
xn

) ≤ n
√
x1 · · ·xn

for n positive numbers x1, . . . , xn.
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9. Prove the arithmetic-quadratic mean inequality

1

n

n∑
i=1

xi ≤
(
1

n

n∑
i=1

x2i

)1/2

for any nonnegative numbers x1, . . . , xn.

10. Heron’s classical formula for the area of a triangle with sides of length
a, b, and c is

√
s(s− a)(s− b)(s− c), where s = (a+ b + c)/2 is the

semiperimeter. Show that the triangle of fixed perimeter with greatest
area is equilateral.

11. Consider the sequences

en =
(
1 +

1

n

)n

, fn =
(
1− 1

n

)n

.

It is well known that limn→∞ en = e and limn→∞ fn = e−1. Use the
arithmetic-geometric mean inequality to prove that en ≤ en+1 and
fn ≤ fn+1. In addition, prove that en ≤ f−1

n , that en and f−1
n have

finite limits, and that these limits are equal [34]. (Hint: Write en as
the product of 1 and n copies of 1 + 1

n .)

12. Demonstrate that the function

f(x) = 4x1 +
x1
x22

+
4x2
x1

on R2 has the minimum value 8 for x1 and x2 positive. At what point
x is the minimum attained? (Hint: Write

f(x) = 4

(
4x1 +

x1

x2
2
+ 2x2

x1
+ 2x2

x1

4

)

and apply the arithmetic-geometric mean inequality [34]. Attacking
this problem by calculus is harder.)

13. Let Hn = 1 + 1
2 + · · ·+ 1

n . Verify the inequality n n
√
n+ 1 ≤ n +Hn

for any positive integer n (Putnam Competition, 1975).

14. Consider an n-gon circumscribing the unit circle in R2. Demonstrate
that the n-gon has minimum area if and only if all of its n sides have
equal length. (Hint: Let θm be the circular angle between the two
points of tangency of sides m and m+ 1 [69]. Show that the area of
the quadrilateral defined by the center of the circle, the two points of
tangency, and the intersection of the two sides is given by tan θm

2 .)
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15. Find the minimum of the function

g(x) = 2x21 + x22 +
1

2x21 + x22

on R2. (Hint: Consider f(x) = x+ 1/x on (0,∞).)

16. In forensic applications of genetics, the sum

s(p) = 1− 2
( n∑

i=1

p2i

)2

+

n∑
i=1

p4i

occurs [165]. Here the pi are nonnegative and sum to 1. Prove rigor-
ously that s(p) attains its maximum smax = 1 − 2

n2 + 1
n3 when all

pi =
1
n . (Hint: To prove the claim about smax, note that without loss

of generality one can assume p1 ≤ p2 ≤ · · · ≤ pn. If pi < pi+1, then
s(p) can be increased by replacing pi and pi+1 by pi+x and pi+1−x
for x positive and sufficiently small.)

17. Suppose that a and b are real numbers satisfying 0 < a < b. Prove
that the origin locally minimizes f(x) = (x2 − ax21)(x2 − bx21) along
every line x1 = ht and x2 = kt through the origin. Also show that
f(t, ct2) < 0 for a < c < b and t �= 0. The origin therefore affords
a local minimum along each line through the origin but not a local
minimum in the wider sense. If c < a or c > b, then f(t, ct2) > 0 for
t �= 0, and the paradox disappears.

18. Demonstrate that the function x21+x
2
2(1−x1)3 has a unique stationary

point in R2, which is a local minimum but not a global minimum. Can
this occur for a continuously differentiable function with domain R?

19. Find all of the stationary points of the function

f(x) = x21x2e
−x2

1−x2
2

in R2. Classify each point as either a local minimum, a local maxi-
mum, or a saddle point.

20. Rosenbrock’s function f(x) = 100(x21 − x2)
2 + (x1 − 1)2 achieves its

global minimum at x = 1. Prove that ∇f(1) = 0 and d2f(1) is
positive definite.

21. Consider the polynomial

p(x) =
[
x21 + (1− x2)2

][
x22 + (1− x1)2

]

in two variables. Show that p(x) is symmetric in the sense that
p(x1, x2) = p(x2, x1), that lim ‖x‖→∞ p(x) = ∞, and that p(x) does
not attain its minimum along the diagonal x1 = x2.
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22. Suppose that the m × n matrix X has full rank and that m ≥ n.
Show that the n× n matrix X∗X is invertible and positive definite.

23. Consider two sets of positive numbers x1, . . . , xn and α1, . . . , αn such
that

∑n
i=1 αi = 1. Prove the generalized arithmetic-geometric mean

inequality

n∏
i=1

xαi

i ≤
n∑

i=1

αixi

by minimizing
∑n

i=1 αixi subject to the constraint
∏n

i=1 x
αi

i = c.

24. Suppose the components of a vector x ∈ Rn are positive and have
product

∏n
k=1 xk = 1. Prove that

n∏
k=1

(1 + xk) ≥ 2n.

25. Find the rectangular box in R3 of greatest volume having a fixed
surface area.

26. Let S(0, r) = {x ∈ Rn : ‖x‖ = r} be the sphere of radius r centered
at the origin. For y ∈ Rn, find the point of S(0, r) closest to y.

27. Find the parallelepiped of maximum volume that can be inscribed in
the ellipsoid

x21
a2

+
x22
b2

+
x23
c2

= 1.

Assume that the parallelepiped is centered at the origin and has edges
parallel to the coordinate axes.

28. A twice continuously differentiable function f(x) on R2 satisfies

∂2

∂x21
f(x) +

∂2

∂x22
f(x) > 0

for all x. Prove that f(x) has no local maxima [69]. An example of
such a function is f(x) = ‖x‖2 = x21 + x22.

29. Use the Cauchy-Schwarz inequality to verify the inequalities

n∑
m=0

amx
m ≤ 1√

1− x2

(
n∑

m=0

a2m

) 1
2

0 ≤ x < 1

n∑
m=1

am
m

≤
√
π2

6

(
n∑

m=1

a2m

) 1
2
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n∑
m=1

am√
m+ n

≤
√
ln 2

(
n∑

m=1

a2m

) 1
2

n∑
m=0

(
n

m

)
am ≤

(
2n

n

) 1
2

(
n∑

m=1

a2m

) 1
2

.

The upper bound n can be finite or infinite in the first two cases [243].

30. Verify Lagrange’s identity

(
n∑

i=1

xiyi

)2

=

n∑
i=1

x2i

n∑
j=1

y2j −
1

2

n∑
i=1

n∑
j=1

(
xiyj − xjyi

)2

.

How does this lead to a proof of the Cauchy-Schwarz inequality and
its stated condition for equality?

31. Demonstrate the bound

∣∣∣
n∑

m=1

am

∣∣∣2 +
∣∣∣

n∑
m=1

(−1)mam
∣∣∣2 ≤ (n+ 2)

n∑
m=1

a2m.

This is better than the obvious bound 2n
∑n

m=1 a
2
m given by the

Cauchy-Schwarz inequality [243]. (Hint: Let en and on be the sum of
the am with m even and odd, respectively.)

32. Consider the function f(x) =
∑n

m=1 pm cos(αmx) for a discrete prob-
ability distribution p1, . . . , pn. Given that g(x) = cosαx satisfies the
identity g(x)2 = 1

2 [1 + g(2x)], show that f(x) satisfies the inequal-
ity f(x)2 ≤ 1

2 [1 + f(2x)]. This is the Harker-Kasper inequality from
X-ray crystallography [243].

33. For positive numbers b1, . . . , bn and h1, . . . , hn, show that

min
1≤m≤n

hm
bm

≤ h1 + · · ·+ hn
b1 + · · ·+ bn

≤ max
1≤m≤n

hm
bm

.

This inequality of Cauchy has the baseball interpretation that a bat-
ting average of a team is never worse than that of its worst player
and never better than that of its best player [243]. (Hint: Consider
the case n = 2 and use induction.)



2
The Seven C’s of Analysis

2.1 Introduction

The current chapter explains key concepts of mathematical analysis
summarized by the six adjectives convergent, complete, closed, compact,
continuous, and connected. Chapter 6 will add to these six c’s the seventh c,
convex. At first blush these concepts seem remote from practical problems
of optimization. However, painful experience and exotic counterexamples
have taught mathematicians to pay attention to details. Fortunately, we
can benefit from the struggles of earlier generations and bypass many of
the intellectual traps.

2.2 Vector and Matrix Norms

In multidimensional calculus, vector and matrix norms quantify notions of
topology and convergence [48, 105, 117, 207]. Norms are also helpful in
estimating rates of convergence of iterative methods for solving linear and
nonlinear equations and optimizing functions. Functional analysis, which
deals with infinite-dimensional vector spaces, uses norms on functions.
We have already met the Euclidean vector norm ‖x‖ on Rn. For most

purposes, this norm suffices. It shares with other norms the four properties:

(a) ‖x‖ ≥ 0,

(b) ‖x‖ = 0 if and only if x = 0,

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 2,
© Springer Science+Business Media New York 2013
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(c) ‖cx‖ = |c| · ‖x‖ for every real number c,

(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Property (d) is known as the triangle inequality. To prove it for the Eu-
clidean norm, we note that the Cauchy-Schwarz inequality implies

‖x+ y‖2 = ‖x‖2 + 2x∗y + ‖y‖2
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2
= (‖x‖+ ‖y‖)2 .

One immediate consequence of the triangle inequality is the further in-
equality ∣∣ ‖x‖ − ‖y‖ ∣∣ ≤ ‖x− y‖.
Two other simple but helpful norms are the �1 and �∞ norms

‖x‖1 =

n∑
i=1

|xi|

‖x‖∞ = max
1≤i≤n

|xi|.

Some of the properties of these norms are explored in the problems. In the
mathematical literature, the three norms are often referred to as the �2, �1,
and �∞ norms.
Anm×nmatrixA = (aij) can be viewed as a vector in Rmn. Accordingly,

we define its Frobenius norm

‖A‖F =

⎛
⎝ m∑

i=1

n∑
j=1

a2ij

⎞
⎠

1/2

=
√
tr(AA∗) =

√
tr(A∗A),

where tr(·) is the matrix trace function. Our reasons for writing ‖A‖F
rather than ‖A‖ will soon be apparent. In the meanwhile, the Frobenius
matrix norm satisfies the additional condition

(e) ‖AB‖ ≤ ‖A‖ · ‖B‖
for any two compatible matrices A = (aij) and B = (bij). Property (e) is
verified by invoking the Cauchy-Schwarz inequality in

‖AB‖2F =
∑
i,j

∣∣∣∑
k

aikbkj

∣∣∣2

≤
∑
i,j

(∑
k

a2ik

)(∑
l

b2lj

)

=
(∑

i,k

a2ik

)(∑
l,j

b2lj

)
(2.1)

= ‖A‖2F ‖B‖2F .
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The Frobenius norm does not satisfy the natural condition

(f) ‖I‖ = 1

for an identity matrix I. Indeed, an easy calculation shows that ‖I‖F =
√
n

when I is n× n.
To meet all of the conditions (a) through (f), we need to turn to induced

matrix norms. Let ‖ · ‖ denote both the Euclidean norm on Rm and the
Euclidean norm on Rn. The induced Euclidean norm on m× n matrices is
defined by

‖A‖ = sup
x 
=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖. (2.2)

For reasons explained in Proposition 2.2.1, the induced norm (2.2) is called
the spectral norm. The question of whether the indicated supremum exists
definition (2.2) is settled by the inequalities

‖Ax‖ ≤
n∑

i=1

|xi| · ‖Aei‖ ≤
(

n∑
i=1

‖Aei‖
)
‖x‖,

where x =
∑n

i=1 xiei and ei is the unit vector whose entries are all 0
except for eii = 1. More exotic induced matrix norms can be concocted
by substituting non-Euclidean norms in the numerator and denominator
of definition (2.2). For square matrices, the two norms ordinarily coincide.
All of the defining properties of a matrix norm are trivial to check for an
induced matrix norm. For instance, property (e) follows from

‖AB‖ = sup
‖x‖=1

‖ABx‖

≤ ‖A‖ sup
‖x‖=1

‖Bx‖

= ‖A‖ · ‖B‖.
Definition (2.2) also clearly entails the equality ‖I‖ = 1 when m = n.
The next proposition determines the value of the Euclidean norm ‖A‖.

In the proposition, ρ(M ) denotes the absolute value of the dominant eigen-
value of the square matrix M . This quantity is called the spectral radius
of M .

Proposition 2.2.1 If A = (aij) is an m× n matrix, then

‖A‖ =
√
ρ(A∗A) =

√
ρ(AA∗) = ‖A∗‖.

When A is symmetric, ‖A‖ reduces to ρ(A). The norms ‖A‖ and ‖A‖F
satisfy

‖A‖ ≤ ‖A‖F ≤ √
n‖A‖. (2.3)

Finally, when A is a row or column vector, the Euclidean matrix and vector
norms of A coincide.
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Proof: Choose an orthonormal basis of eigenvectors u1, . . . ,un for the
symmetric matrix A∗A with corresponding eigenvalues arranged so that
0 ≤ λ1 ≤ · · · ≤ λn. If x =

∑n
i=1 ciui is a unit vector, then

∑n
i=1 c

2
i = 1,

and

‖A‖2 = sup
‖x‖=1

x∗A∗Ax

= sup
‖x‖=1

n∑
i=1

λic
2
i

≤ λn.

Equality is achieved when cn = ±1 and all other ci = 0. If A is symmetric
with eigenvalues μi arranged so that |μ1| ≤ · · · ≤ |μn|, then the ui can be
chosen to be the corresponding eigenvectors. In this case, clearly λi = μ2

i .
To prove that ρ(A∗A) = ρ(AA∗), choose an eigenvalue λ �= 0 of A∗A

with corresponding eigenvector v. Multiplying the equation A∗Av = λv
on the left by A produces (AA∗)Av = λAv. Because A∗Av = λv, the
vector Av �= 0. Thus, λ is an eigenvalue of AA∗ with eigenvector Av.
Likewise, any eigenvalue ω �= 0 of AA∗ is also an eigenvalue of A∗A.
To verify the left bound of the pair of bounds (2.3), apply inequality (2.1)

with B = x in the definition of ‖A‖. The right bound follows from

∑m
i=1 a

2
ij = ‖Aej‖2 ≤ ‖A‖2

by summing on j. Finally, suppose that A is a column vector. The two
bounds (2.3) with n = 1 show that ‖A‖ = ‖A‖F . If A is a row vector, the
same reasoning applied to A∗ gives ‖A‖ = ‖A∗‖ = ‖A∗‖F = ‖A‖F .

2.3 Convergence and Completeness

A sequence xm ∈ Rn converges to x, written limm→∞ xm = x, provided
limm→∞ ‖xm − x‖ = 0 in the standard Euclidean norm. For convergence
of xm to x to occur, it is necessary and sufficient that each component
sequence xmi converge to xi. Convergence of a sequence of matrices is
defined similarly using either the Frobenius norm ‖A||F or the induced
matrix norm ‖A‖. The pair of bounds (2.3) shows that the two norms are
equivalent in testing convergence.
Convergent sequences of vectors or matrices enjoy many useful proper-

ties. Some of these are mentioned in the next proposition.

Proposition 2.3.1 In the following list, once a limit is assumed to ex-
ist for an item, it is assumed to exist for all subsequent items. With this
proviso, we have:

(a) If limm→∞ xm = x, then limm→∞ ‖xm‖ = ‖x‖.
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(b) If limm→∞ ym = y, then

lim
m→∞x∗

mym = x∗y.

(c) If a and b are real scalars, then

lim
m→∞ [axm + bym] = ax+ by.

(d) If limm→∞ Mm = M for a sequence of matrices compatible with x,
then

lim
m→∞Mmxm = Mx.

(e) If M is square and invertible, then M−1
m exists for large m and

lim
m→∞M−1

m = M−1.

(f) Finally, if limm→∞ Nm = N for a sequence of matrices compatible
with M , then

lim
m→∞MmNm = MN .

Proof: As a sample proof, part (d) follows from the inequalities

‖Mmxm −Mx‖ ≤ ‖Mmxm −Mmx‖+ ‖Mmx−Mx‖
≤ ‖Mm‖ · ‖xm − x‖+ ‖Mm −M‖ · ‖x‖

‖Mm‖ ≤ ‖Mm −M‖+ ‖M‖.

Part (e) will be proved after Example 2.3.3.

In some situations, we know that the members of a sequence become
progressively closer together. A Cauchy sequence xm exhibits a strong form
of this phenomenon; namely, for every ε > 0, there is an m such that
‖xp − xq‖ ≤ ε for all p, q ≥ m. The real line R is complete in the sense
that every Cauchy sequence possesses a limit. The rational numbers are
incomplete by contrast because a sequence of rationals can converge to an
irrational. The completeness of R carries over to Rn. Indeed, if xm is a
Cauchy sequence, then under the Euclidean norm we have

|xpi − xqi| ≤ ‖xp − xq‖.

This shows that each component sequence is Cauchy and consequently
possesses a limit xi. The vector x with components xi then furnishes a
limit for the vector sequence xm.
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Example 2.3.1 Existence of Suprema and Infima

The completeness of the real line is equivalent to the existence of least upper
bounds or suprema. Consider a nonempty set S ⊂ R that is bounded above.
If the set is finite, then its least upper bound is just its largest element.
If the set is infinite, we choose a and b such that the interval [a, b] contains
an element of S and b is an upper bound of S. We can generate supS
by a bisection strategy. Bisect [a, b] into the two subintervals [a, (a+ b)/2]
and [(a + b)/2, b]. Let [a1, b1] denote the left subinterval if (a + b)/2 pro-
vides an upper bound. Otherwise, let [a1, b1] denote the right subinterval.
In either case, [a1, b1] contains an element of S. Now bisect [a1, b1] and
generate a subinterval [a2, b2] by the same criterion. If we continue bisect-
ing and choosing a left or right subinterval ad infinitum, then we generate
two Cauchy sequences ai and bi with common limit c. By the definition
of the sequence bi, c furnishes an upper bound of S. By the definition of
the sequence ai, no bound of S is smaller than c. Establishing the existence
of the greatest lower bound inf S for S bounded below proceeds similarly.
If S is unbounded above, then supS = ∞, and if it is unbounded below,
then inf S = −∞.

Example 2.3.2 Limit Superior and Limit Inferior

For a real sequence xn. we define the limit superior and limit inferior by

lim sup
n→∞

xn = inf
m

sup
n≥m

xn = lim
m→∞ sup

n≥m
xn

lim inf
n→∞ xn = sup

m
inf
n≥m

xn = lim
m→∞ inf

n≥m
xn.

If supn xn =∞, then lim supn→∞ xn =∞, and if limn→∞ xn = −∞, then
lim supn→∞ xn = −∞. From these definitions, one can also deduce that

lim sup
n→∞

−xn = − lim inf
n→∞ xn (2.4)

and that

lim inf
n→∞ xn ≤ lim sup

n→∞
xn. (2.5)

The sequence xn has a limit if and only if equality prevails in inequal-
ity (2.5). In this situation, the common value of the limit superior and
inferior furnishes the limit of xn.

Example 2.3.3 Series Expansion for a Matrix Inverse

If a square matrix M has norm ‖M‖ < 1, then we can write

(I −M)−1 =
∞∑
i=0

M i.
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To verify this claim, we first prove that the partial sums Sj =
∑j

i=0 M
i

form a Cauchy sequence. This fact is a consequence of the inequalities

‖Sk − Sj‖ =
∥∥∥

k∑
i=j+1

M i
∥∥∥

≤
k∑

i=j+1

‖M i‖

≤
k∑

i=j+1

‖M‖i

for k ≥ j and the assumption ‖M‖ < 1. If we let S represent the limit of
the Sj , then part (f) of Proposition 2.3.1 implies that (I−M)Sj converges
to (I −M)S. But (I −M)Sj = I −M j+1 also converges to I. Hence,
(I −M)S = I, and this verifies the claim S = (I −M)−1.

With this result under our belts, we now demonstrate part (e) of Proposi-
tion 2.3.1. Because ‖M−1(M−Mm)‖ ≤ ‖M−1‖ ·‖M−Mm‖, the matrix
inverse [I−M−1(M −Mm)]−1 exists for large m. Therefore, we can write
the inverse of

Mm = M − (M −Mm)

= M [I −M−1(M −Mm)]

as

M−1
m = [I −M−1(M −Mm)]−1M−1.

The proof of convergence is completed by noting the bound

‖M−1
m −M−1‖ =

∥∥∥
∞∑
i=1

[M−1(M −Mm)]iM−1
∥∥∥

≤
∞∑
i=1

‖M−1‖i‖M −Mm‖i‖M−1‖

=
‖M−1‖2‖M −Mm‖

1− ‖M−1‖ · ‖M −Mm‖
,

applying in the process the matrix analog of part (a) of Proposition 2.3.1.

Example 2.3.4 Matrix Exponential Function

The exponential of a square matrix M is given by the series expansion

eM =
∞∑
i=0

1

i!
M i.
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To prove the convergence of the series, it again suffices to show that the
partial sums Sj =

∑j
i=0

1
i!M

i form a Cauchy sequence. The bound

‖Sk − Sj‖ =
∥∥∥

k∑
i=j+1

1

i!
M i

∥∥∥ ≤
k∑

i=j+1

1

i!
‖M‖i

for k ≥ j is just what we need.
The matrix exponential function has many interesting properties. For

example, the function N(t) = etM solves the differential equation

N ′(t) = MN(t)

subject to the initial condition N(0) = I. Here t is a real parameter, and we
differentiate the matrix N(t) entry by entry. In Example 4.2.2 of Chap. 4,
we will prove that N(t) = etM is the one and only solution. The law
of exponents eA+B = eAeB for commuting matrices A and B is another
interesting property of the matrix exponential function. One way of proving
the law of exponents is to observe that et(A+B) and etAetB both solve the
differential equation

N ′(t) = (A+B)N(t)

subject to the initial condition N(0) = I. Since the solution to such an
initial value problem is unique, the two solutions must coincide at t = 1.

2.4 The Topology of Rn

Mathematics involves a constant interplay between the abstract and the
concrete. We now consider some qualitative features of sets in Rn that
generalize to more abstract spaces. For instance, there is the matter of
boundedness. A set S ⊂ Rn is said to be bounded if it is contained in some
ball B(0, r) = {x ∈ Rn : ‖x‖ < r} of radius r centered at the origin 0.
As we shall see in our discussion of compactness, boundedness takes on
added importance when it is combined with the notion of closedness. A
closed set is closed under the formation of limits. Thus, S ⊂ Rn is closed if
for every convergent sequence xm taken from S, we have limm→∞ xm ∈ S
as well.
It takes time and effort to appreciate the ramifications of these ideas.

A few of the most pertinent ones for closedness are noted in the next
proposition.

Proposition 2.4.1 The collection of closed sets satisfy the following:

(a) The whole space Rn is closed.

(b) The empty set ∅ is closed.
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(c) The intersection S = ∩αSα of an arbitrary number of closed sets Sα

is closed.

(d) The union S = ∪αSα of a finite number of closed sets Sα is closed.

Proof: All of these are easy. For part (d), observe that for any convergent
sequence xm taken from S, one of the sets Sα must contain an infinite
subsequence xmk

. The limit of this subsequence exists and falls in Sα.

Some examples of closed sets are closed intervals (−∞, a], [a, b], and
[b,∞); closed balls {y ∈ Rn : ‖y−x‖ ≤ r}; spheres {y ∈ Rn : ‖y−x‖ = r};
hyperplanes {x ∈ Rn : z∗x = c}; and closed halfspaces {x ∈ Rn : z∗x ≤ c}.
A closed set S of Rn is complete in the sense that all Cauchy sequences
from S possess limits in S.

Example 2.4.1 Finitely Generated Convex Cones

A set C is a convex cone provided αu+ βv is in C whenever the vectors u
and v are in C and the scalars α and β are nonnegative. A finitely generated
convex cone can be written as

C =
{ m∑

i=1

αivi : αi ≥ 0, i = 1, . . . ,m
}
.

Demonstrating that C is a closed set is rather subtle. Consider a sequence
uj =

∑m
i=1 αjivi in C converging to a point u. If the vectors v1, . . . ,vm are

linearly independent, then the coefficients αji are the unique coordinates
of uj in the finite-dimensional subspace spanned by the vi. To recover
the αji, we introduce the matrix V with columns v1, . . . ,vm and rewrite
the original equation as uj = V αj . Multiplying this equation by first
V ∗ and then by (V ∗V )−1 on the left gives αj = (V ∗V )−1V ∗uj . This
representations allows us to conclude that αj possesses a limit α with
nonnegative entries. Therefore, the limit u = V α lies in C.
If we relax the assumption that the vectors are linearly independent,

we must resort to an inductive argument to prove that C is closed. The
case m = 1 is true because a single vector v1 is linearly independent.
Assume that the claim holds for m − 1 vectors. If the vectors v1, . . . ,vm

are linearly independent, then we are done. If the vectors v1, . . . ,vm are
linearly dependent, then there exist scalars β1, . . . , βm, not all 0, such that∑m

i=1 βivi = 0. Without loss of generality, we can assume that βi < 0 for
at least one index i. We can express any point u ∈ C as

u =

m∑
i=1

αivi =

m∑
i=1

(αi + tβi)vi

for an arbitrary scalar t. If we increase t gradually from 0, then there is a
first value at which αj + tβj = 0 for some index j. This shows that C can
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be decomposed as the union

C =

m⋃
j=1

{∑
i
=j

γivi : γi ≥ 0, i �= j
}
.

Each of the convex cones {∑i
=j γivi : γi ≥ 0, i �= j} is closed by the
induction hypothesis. Since a finite union of closed sets is closed, C it-
self is closed. A straightforward extension of this argument establishes the
stronger claim that every point in the cone can be represented as a positive
combination of a linearly independent subset of {v1, . . . ,vm}.
The complement Sc = Rn \ S of a closed set S is called an open set.

Every x ∈ Sc is surrounded by a ball B(x, r) completely contained in Sc.
If this were not the case, then we could construct a sequence of points xm

from S converging to x, contradicting the closedness of S. This fact is the
first of several mentioned in the next proposition.

Proposition 2.4.2 The collection of open sets satisfy the following:

(a) Every open set is a union of balls, and every union of balls is an open
set.

(b) The whole space Rn is open.

(c) The empty set ∅ is open.

(d) The union S = ∪αSα of an arbitrary number of open sets Sα is open.

(e) The intersection S = ∩αSα of a finite number of open sets Sα is open.

Proof: Again these are easy. Parts (d) and (e) are consequences of the set
identities

(∩αSα)
c

= ∪αS
c
α

(∪αSα)
c = ∩αS

c
α

and parts (c) and (d) of Proposition 2.4.1.

Some examples of open sets are open intervals (−∞, a), (a, b), and (b,∞);
balls {y ∈ Rn : ‖y − x‖ < r}, and open halfspaces {x ∈ Rn : z∗x < c}.
Any open set surrounding a point is called a neighborhood of the point.
Some examples of sets that are neither closed nor open are the unbalanced
intervals (a, b] and [a, b), the discrete set V = {n−1 : n = 1, 2, . . .}, and the
rational numbers. If we append the limit 0 to the set V , then it becomes
closed.
A boundary point x of a set S is the limit of a sequence of points from

S and also the limit of a different sequence of points from Sc. Closed sets
contain all of their boundary points, and open sets contain none of their
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boundary points. The interior of S is the largest open set contained within
S. The closure of S is the smallest closed set containing S. For instance,
the boundary of the ball B(x, r) = {y ∈ Rn : ‖y − x‖ < r} is the sphere
S(x, r) = {y ∈ Rn : ‖y − x‖ = r}. The closure of B(x, r) is the closed ball
C(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}, and the interior of C(x, r) is B(x, r).
A closed bounded set is said to be compact. Finite intervals [a, b] are typ-

ical compact sets. Compact sets can be defined in several equivalent ways.
The most important of these is the Bolzano-Weierstrass characterization.
In preparation for this result, let us define a multidimensional interval [a, b]
in Rn to be the Cartesian product

[a, b] = [a1, b1]× · · · × [an, bn]

of n one-dimensional intervals. We will only consider closed intervals. The
diameter of [a, b] is the greatest separation between any two of its points;
this clearly reduces to the distance ‖a− b‖ between its extreme corners.

Proposition 2.4.3 (Bolzano-Weierstrass) A set S ⊂ Rn is compact if
and only if every sequence xm in S has a convergent subsequence xmi with
limit in S.

Proof: Suppose every sequence xm in S has a convergent subsequence xmi

with limit in S. If S is unbounded, then we can define a sequence xm with
‖xm‖ ≥ m. Clearly, this sequence has no convergent subsequence. If S is
not closed, then there is a convergent sequence xm with limit x outside
S. Clearly, no subsequence of xm can converge to a limit in S. Thus, the
subsequence property implies compactness.
For the converse, let xm be a sequence in the compact set S. Because S

is bounded, it is contained in a multidimensional interval [a, b]. If infinitely
many of the xm coincide, then these can be used to construct a constant
subsequence that trivially converges to a point of S. Otherwise, let T0
denote the infinite set ∪∞

m=1{xm}.
The rest of the proof adapts the bisection strategy of Example 2.3.1. The

first stage of the bisection divides [a, b] into 2n subintervals of equal volume.
Each of these subintervals can be written as [a1, b1], where a1j = aj and
b1j = (aj + bj)/2 or a1j = (aj + bj)/2 and b1j = bj. There is no harm in
the fact that these subintervals overlap along their boundaries. It is only
vital to observe that one of the subintervals contains an infinite subset
T1 ⊂ T0. Let us choose such a subinterval and label it using the generic
notation [a1, b1]. We now inductively repeat the process. At stage i + 1
we divide the previously chosen subinterval [ai, bi] into 2n subintervals of
equal volume. Each of these subintervals can be written as [ai+1, bi+1],
where either ai+1,j = aij and bi+1,j = (aij + bij)/2 or ai+1,j = (aij + bij)/2
and bi+1,j = bij . One of these subintervals, which we label [ai+1, bi+1] for
convenience, contains an infinite subset Ti+1 ⊂ Ti.
We continue this process ad infinitum. in the process choosing xmi from

Ti and mi > mi−1. Because Ti ⊂ [ai, bi] and the diameter of [ai, bi] tends
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to 0, the subsequence xmi is Cauchy. By virtue of the completeness of Rn,
this subsequence converges to some point x, which necessarily belongs to
the closed set S.

In many instances it is natural to consider a subset S of Rn as a topo-
logical space in its own right. Notions of distance and convergence carry
over immediately, but we must exercise some care in defining closed and
open sets. In the relative topology, a subset T ⊂ S is closed if and only if
it can be represented as the intersection T = S ∩ C of S with a closed set
C of Rn. If T is closed in S, then the obvious choice of C is the closure of
T in Rn. Likewise, T ⊂ S is open in the relative topology if and only if it
can be represented as the intersection T = S ∩ O of S with an open set
O of Rn. These two definitions are consistent with an open set being the
relative complement of a closed set and vice versa. They are also consistent
with the development of continuous functions sketched in the next section.

2.5 Continuous Functions

Continuous functions are the building blocks of mathematical analysis.
Continuity is such an intuitive notion that ancient mathematicians did
not even bother to define it. Proper recognition of continuity had to wait
until differentiability was thoroughly explored. Our approach to continuity
emphasizes convergent sequences. A function f(x) from Rm to Rn is said
to be continuous at y if f(xi) converges to f(y) for every sequence xi

that converges to y. If the domain of f(x) is a subset S of Rm, then the
sequences xi and the point y are confined to S. Finally, f(x) is said to be
continuous if it is continuous at every point y of its domain.
The definition of continuity through convergent sequences tends to be

simpler to apply than the competing ε and δ approach of calculus. We leave
it to the reader to show that the two definitions are fully equivalent. Either
definition has powerful consequences. For instance, it is clear that a vector-
valued function is continuous if and only if each of its component functions
is continuous. Before enumerating other less obvious consequences, it is
helpful to forge a few tools for recognizing and constructing continuous
functions. Fortunately, the collection of continuous functions is closed under
many standard algebraic operations. Here are a few examples.

Proposition 2.5.1 Given that the vector-valued functions f(x) and g(x)
and matrix-valued function M(x) and N(x) are continuous and compatible
whenever necessary, the following algebraic combinations are continuous:

(a) The norm ‖f(x)‖.
(b) The inner product f(x)∗g(x).

(c) The linear combination αf(x) + βg(x) for real scalars α and β.
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(d) The matrix-vector product M(x)f(x).

(e) The matrix inverse M−1(x) when M(x) is square and invertible.

(f) The matrix product M(x)N(x).

(g) The functional composition f ◦ g(x) = f [g(x)].

Proof: Parts (a) through (f) are all immediate by-products of Proposi-
tion 2.3.1 and the definition of continuity. For part (g), suppose xi tends
to x. Then f(xi) tends to f(x), and so f ◦ g(xi) tends to f ◦ g(x).
Example 2.5.1 Rational Functions

Because the coordinate variables xi of x ∈ Rn are continuous, all polynomi-
als in these variables are continuous as well. For example, the determinant
of a square matrix is a continuous function of the entries of the matrix. A
quotient of two polynomials (rational function) in the coordinate variables
xi of x ∈ Rn is continuous where its denominator does not vanish. Finally,
any linear transformation of one vector space into another is continuous.

Example 2.5.2 Distance to a Set

The distance dist(x, S) from a point x ∈ Rn to a set S is defined by

dist(x, S) = inf
z∈S

‖z − x‖.

To prove that the function dist(x, S) is continuous in x, take the infimum
over z ∈ S of both sides of the triangle inequality

‖z − x‖ ≤ ‖z − y‖+ ‖y − x‖.

This demonstrates that dist(x, S) ≤ dist(y, S) + ‖y − x‖. Reversing the
roles of x and y then leads to the inequality

| dist(x, S)− dist(y, S)| ≤ ‖y − x‖,

establishing continuity.
In generalizing continuity to more abstract topological spaces, the char-

acterizations in the next proposition are crucial.

Proposition 2.5.2 The following conditions are equivalent for a function
f(x) from T ⊂ Rm to Rn:

(a) f(x) is continuous.

(b) The inverse image f−1(S) of every closed set S is closed.

(c) The inverse image f−1(S) of every open set S is open.
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Proof: To prove that (a) implies (b), suppose xi is a sequence in f−1(S)
tending to x ∈ T . Then the conclusion limi→∞ f(xi) = f(x) identifies f(x)
as an element of the closed set S and therefore x as belonging to f−1(S).
Conditions (b) and (c) are equivalent because of the relation

f−1(S)c = f−1(Sc)

between inverse images and set complements. Finally, to prove that (c)
entails (a), suppose that limi→∞ xi = x. For any ε > 0, the inverse image
of the ball B[f(x), ε] is open by assumption. Consequently, there exists a
neighborhood T ∩B(x, δ) mapped into B[f(x), ε]. In other words,

‖f(xi)− f(x)‖ < ε

whenever ‖xi − x‖ < δ, which is sufficient to validate continuity.

Example 2.5.3 Continuity of m
√
x

The root function f(x) = m
√
x is the functional inverse of the power function

g(x) = xm. We have already noted that g(x) is continuous. On the interval
(0,∞), it is also strictly increasing and maps the open interval (a, b) onto
the open interval (am, bm). Put another way, f−1[(a, b)] = (am, bm). (Here
we implicitly invoke the intermediate value property proved in Proposi-
tion 2.7.1.) Because the inverse image of a union of open intervals is a
union of open intervals, application of part (c) of Proposition 2.5.2 estab-
lishes the continuity of f(x).

Example 2.5.4 The Set of Positive Definite Matrices

A symmetric n× n matrix M = (mij) can be viewed as a point in Rm for
m =

(
n
2

)
+n. To demonstrate that the subset S of positive definite matrices

is open in Rm, we invoke the classical criterion of Sylvester. (See Problem 29
of Chap. 5 or [136].) This test for positive definiteness uses the determinants
of the principal submatrices of M . The kth of these submatrices Mk is
the k × k upper left block of M . If M is positive definite, then one can
show that Mk is positive definite by taking a nontrivial k × 1 vector xk

and padding it with zeros to construct a nontrivial n × 1 vector x. It is
then clear that x∗

kMkxk = x∗Mx > 0. Because Mk is positive definite,
its determinant detMk > 0. Conversely, if all of the detMk > 0, then M
itself is positive definite.
Given this background, we write

S =
n⋂

k=1

{M : detMk > 0}.

Because the functions detMk are continuous in the entries of M , the
inverse images {M : detMk > 0} of the open set (0,∞) are open. Since a
finite intersection of open sets is open, S itself is an open set.
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As opposed to inverse images, the image of a closed (open) set under a
continuous function need not be closed (open). However, continuous func-
tions do preserve compactness.

Proposition 2.5.3 Suppose the continuous function f(x) maps the com-
pact set S ⊂ Rm into Rn. Then the image f(S) is compact.

Proof: The key is to apply Proposition 2.4.3. Let f(xi) be a sequence in
f(S). Extract a convergent subsequence xij of xi with limit y ∈ S. Then
the continuity of f(x) compels f(xij ) to converge to f(y).

We now come to one of the most important results in optimization theory.

Proposition 2.5.4 (Weierstrass) Let f(x) be a continuous real-valued
function defined on a set S of Rn. If the set T = {x ∈ S : f(x) ≥ f(y)} is
compact for some y ∈ S, then f(x) attains its supremum on S. Similarly,
if T = {x ∈ S : f(x) ≤ f(y)} is compact for some y ∈ S, then f(x) attains
its infimum on S. Both conclusions apply when S itself is compact.

Proof: Consider the question of whether the function f(x) attains its
supremum u = supx∈S f(x). The set f(T ) is bounded by virtue of Propo-
sition 2.5.3, and the supremum of f(x) on T coincides with u. For every
positive integer i choose a point xi ∈ T such that f(xi) ≥ u − 1/i. In
view of the compactness of T , we can extract a convergent subsequence of
xi with limit z ∈ T . The continuity of f(x) along this subsequence then
implies that f(z) = u.

Example 2.5.5 Closest Point in a Set

To prove that the distance dist(x, S) is achieved for some z ∈ S, we must
assume that S is closed. In finding the closest point to x in S, choose any
point y ∈ S. The set T = S ∩ {z : ‖z − x‖ ≤ ‖y − x‖} is both closed and
bounded and therefore compact. Proposition 2.5.4 now informs us that the
continuous function z �→ ‖z − x‖ attains its infimum on S.

Example 2.5.6 Equivalence of Norms

Every norm ‖x‖† on Rn is equivalent to the Euclidean norm ‖x‖ in the
sense that there exist positive constants a and b such that the inequalities

a‖x‖ ≤ ‖x‖† ≤ b‖x‖ (2.6)

hold for all x. To prove the right inequality in (2.6), let e1, . . . , en denote
the standard basis. Then conditions (c) and (d) defining a norm indicate
that x =

∑n
i=1 xiei satisfies

‖x‖† ≤
n∑

i=1

|xi| · ‖ei‖† = ‖x‖
n∑

i=1

‖ei‖†.

This proves the upper bound with b =
∑n

i=1 ‖ei‖†.
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To establish the lower bound, we note that property (c) of a norm allows
us to restrict attention to the sphere S = {x : ‖x‖ = 1}. Now the function
x �→ ‖x‖† is uniformly continuous on Rn because

∣∣ ‖x‖† − ‖y‖† ∣∣ ≤ ‖x− y‖† ≤ b‖x− y‖
follows from the upper bound just demonstrated. Since the sphere S is
compact, the continuous function x → ‖x‖† attains its lower bound a on
S. In view of property (b) defining a norm, a > 0.

Example 2.5.7 The Fundamental Theorem of Algebra

Consider a polynomial p(z) = cnz
n + cn−1z

n−1 + · · · + c0 in the complex
variable z with cn �= 0. The fundamental theorem of algebra says that
p(z) has a root. d’Alembert suggested an interesting optimization proof of
this fact [30]. We begin by observing that if we identify a complex number
with an ordered pair of real numbers, then the domain of the real-valued
function |p(z)| is R2. The identity

|p(z)| = |z|n
∣∣∣cn +

cn−1

z
+ · · ·+ c0

zn

∣∣∣
shows that |p(z)| tends to ∞ whenever |z| tends to ∞. Therefore, the set
T = {z : |p(z| ≤ d} is compact for any d, and Proposition 2.5.4 implies
that |p(z)| attains its minimum at some point y. Expanding p(z) around y
gives a polynomial

q(z) = p(z + y) = bnz
n + bn−1z

n−1 + · · ·+ b0

with the same degree as p(z). Furthermore, the minimum of |q(z)| occurs at
z = 0. Suppose b1 = · · · = bk−1 = 0 and bk �= 0. For some angle θ ∈ [0, 2π),
the scaled complex exponential

u =

∣∣∣∣ b0bk
∣∣∣∣
1/k

eiθ/k

is a root of the equation bku
k + b0 = 0. The function f(t) = |q(tu)| clearly

satisfies f(t) ≥ |b0| and
f(t) = |bktkuk + b0|+ o(tk) = |b0(1− tk)|+ o(tk)

for t small and positive. These two conditions are compatible only if b0 = 0.
Hence, the minimum of |q(z)| = |p(z + y)| is 0.

Example 2.5.8 Continuity of the Roots of a Polynomial

As a followup to the previous example, let us prove that the roots of a
polynomial depend continuously on its coefficients [261]. One has to exercise
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caution in stating this result. First, we limit ourselves to monic polynomials
p(z) = zn + cn−1z

n−1 + · · ·+ c0. Second, we rely on the fact that a monic
polynomial can be written in factored form as

p(z) = (z − r1) · · · (z − rn) (2.7)

based on the roots guaranteed by the fundamental theorem of algebra. Let
r be a root of p(z) of multiplicity m and q(z) = zn+dn−1z

n−1+ · · ·+d0 be
a second monic polynomial of the same degree n as p(z). We now interpret
continuity to mean that for every ε > 0, there exists a δ > 0 such that q(z)
has at least m roots within ε of r whenever the coefficient vector d of q(z)
satisfies ‖d − c‖ < δ. Here we use the Euclidean norm on R2n. In proving
this result, we need the simple bound

|rj | ≤ max
{
1,

n−1∑
i=0

|ci|
}
.

on the roots of a monic polynomial p(z) in terms of its coefficients. The
proof of the bound is an immediate consequence of the identity

rj = −
n−1∑
i=0

cir
i−n+1
j .

We are now in a position to verify the asserted continuous dependence.
Suppose it fails for the polynomial p(z) and the specified root r. Then for
some ε > 0 there exists a sequence qk(z) of monic polynomials of degree n
with fewer than m roots within ε of r but whose coefficients dki converge to
the coefficients ci. Since the coefficients of the qk(z) converge, by the above
inequality, the roots ski of the qk(z) are bounded. We can therefore extract
a subsequence qkl

(z) whose roots converge to the complex numbers ti. At
most m− 1 of the ti equal r. The representation

p(z) = lim
l→∞

qkl
(z) = (z − t1) · · · (z − tn)

is at odds with the representation (2.7) of p(z). Indeed, one has m roots
equal to r, and the other has at most m− 1 roots equal to r. This contra-
diction proves the claimed continuity of the roots.
As an illustration consider the quadratic p(z) = z2 − 2z + 1 = (z − 1)2

with the root 1 of multiplicity 2. For δ > 0 small the related polynomial
z2−2z+1−δ has the real roots 1±√δ while the polynomial z2−2z+1+δ
has the complex roots 1 ± √−δ. A more important application concerns
the continuity of the eigenvalues of a matrix. Suppose the sequence Mk

of square matrices converges to the square matrix M . Then the sequence
of characteristic polynomials det(zI −Mk) converges to the characteristic
polynomial det(zI −M). It follows that the eigenvalues of Mk converge
to the eigenvalues of M in the sense just explained.
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A function f(x) is said to be uniformly continuous on its domain S if
for every ε > 0 there exists a δ > 0 such that ‖f(y)− f(x)‖ < ε whenever
‖y − x‖ < δ. This sounds like ordinary continuity, but the chosen δ does
not depend on the pivotal point x ∈ S. One of the virtues of a compact
domain is that it forces uniform continuity.

Proposition 2.5.5 (Heine) Every continuous function f(x) from a com-
pact set S of Rm into Rn is uniformly continuous.

Proof: Suppose f(x) fails to be uniformly continuous. Then for some ε > 0,
there exist sequences xi and yi from S such that limi→∞ ‖xi−yi‖ = 0 and
‖f(xi)− f(yi)‖ ≥ ε. Since S is compact, we can extract a subsequence of
xi that converges to a point u ∈ S. Along the corresponding subsequence
of yi we can extract a subsubsequence that converges to a point v ∈ S.
Substituting the constructed subsubsequences for xi and yi if necessary,
we may assume that xi and yi both converge to the same limit u = v. The
condition ‖f(xi)− f(yi)‖ ≥ ε now contradicts the continuity of f(x) at u.

Example 2.5.9 Rigid Motions

Uniform continuity certainly appears in the absence of compactness. One
spectacular example is a rigid motion. By this we mean a function f(x) of
Rn into itself with the property ‖f(y)−f(x)‖ = ‖y−x‖ for every choice of
x and y. We can better understand the rigid motion f(x) by investigating
the translated rigid motion g(x) = f(x)− f(0) that maps the origin 0 into
itself. Because g(x) preserves distances, it also preserves inner products.
This fact is evident from the equalities

‖y − x‖2 = ‖y‖2 − 2y∗x+ ‖x‖2
‖g(y)− g(x)‖2 = ‖g(y)‖2 − 2g(y)∗g(x) + ‖g(x)‖2

‖g(y)‖2 = ‖y‖2
‖g(x)‖2 = ‖x‖2.

The inner product identity

g(y)∗g(x) = y∗x

is only possible if g(y) is linear. To demonstrate this assertion, note that
g(x) maps the standard orthonormal basis e1, . . . , en onto the orthonormal
basis g(e1), . . . , g(en). Because

g(αx+ βy)∗g(ei) = (αx+ βy)∗ei
= αx∗ei + βy∗ei
= [αg(x) + βg(y)]∗g(ei)
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holds for all i, it follows that g(αx+βy) = αg(x)+βg(y). In other words,
g(x) is linear. The linear transformations that preserve angles and distances
are precisely the orthogonal transformations. Thus, the rigid motion f(x)
reduces to an orthogonal transformation Ux followed by the translation
f(0). Conversely, it is trivial to prove that every such transformation

f(x) = Ux+ f(0)

is a rigid motion.

Example 2.5.10 Multilinear Maps

A k-linear map M [u1, . . . ,uk] transforms points from the k-fold Cartesian
product Rm × Rm × · · · × Rm into points in Rn and satisfies the rules

M [u1, . . . , cuj , . . . ,uk] = cM [u1, . . . ,uj , . . . ,uk]

M [u1, . . . ,uj + vj , . . . ,uk] = M [u1, . . . ,uj , . . . ,uk]

+M [u1, . . . ,vj , . . . ,uk]

for every scalar c, index j, vector vj , and combination of vectors u1, . . . ,uk.
For example, matrix multiplication u �→ Au is 1-linear and the determinant
map U �→ detU is k-linear on the columns uj of a k×k matrix. A k-linear
map into the real line (n = 1) is called a k-linear form. The k-linear form

[u1, . . . ,uk] �→
k∏

j=1

v∗
juj (2.8)

for any fixed combination [v1, . . . ,vk] of vectors is often useful in applica-
tions. A k-linear map M [u1, . . . ,uj , . . . ,uk] is said to be symmetric if

M [u1, . . . ,ui, . . . ,uj , . . . ,uk] = M [u1, . . . ,uj , . . . ,ui, . . . ,uk]

for all pairs of indices i and j and antisymmetric if

M [u1, . . . ,ui, . . . ,uj , . . . ,uk] = −M [u1, . . . ,uj , . . . ,ui, . . . ,uk].

The determinant function is antisymmetric.
One can easily check that the collection Lk(Rm,Rn) of k-linear maps from

Rm × Rm × · · · × Rm to Rn forms a vector space under pointwise addition
and scalar multiplication. Its dimension is mkn. Indeed, let e1, . . . , em be
a basis for Rm and f1, . . . ,fn be a basis for Rn. If ui =

∑m
j=1 cijej , then

the expansion

M [u1, . . . ,uk] =

m∑
j1=1

· · ·
m∑

jk=1

( k∏
i=1

ci,ji

)
M [ej1 , . . . , ejk ] (2.9)
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correctly suggests that the k-linear maps with

M j1,...,jk,l[ei1 , . . . , eik ] =
{
f l i1 = j1, . . . , ik = jk
0 otherwise

constitute a basis of Lk(Rm,Rn). For a linear form M [u1, . . . ,uk], it is
helpful to think of the numbers M [ei1 , . . . , eik ] as coefficients that define
the linear form just as the coefficients of a matrix define the corresponding
linear transformation.
Equation (2.9) also implies that M [u1, . . . ,uk] is a continuous function

of its arguments. Therefore, the norm

‖M‖ = sup
uj 
=0 ∀j

‖M [u1, . . . ,uk]‖
‖u1‖ · · · ‖uk‖ = sup

‖uj‖=1∀j
‖M [u1, . . . ,uk]‖

on Lk(Rm,Rn) induced by the Euclidean norms on Rm and Rn is finite.

For example, the norm of the k-linear form (2.8) is
∏k

j=1 ‖vj‖. This value
is attained by choosing uj = ‖vj‖−1vj and serves as an absolute upper
bound on the k-linear form on unit vectors by virtue of the Cauchy-Schwarz
inequality. The inequality

‖M [u1, . . . ,uk]‖ ≤ ‖M‖‖u1‖ · · · ‖uk‖ (2.10)

is an immediate consequence of the definition of ‖M‖. Problem 33 asks the
reader to verify that the map (M ,u1, . . . ,uk) �→M [u1, . . . ,uk] is jointly
continuous in its k + 1 variables.

2.6 Semicontinuity

For real-valued functions, the notions of lower and upper semicontinuity
are often useful substitutes for continuity. A real-valued function f(x) with
domain T ⊂ Rm is lower semicontinuous if the set {x ∈ T : f(x) ≤ c} is
closed in T for every constant c. Given the duality of closed and open sets,
an equivalent condition is that {x ∈ T : f(x) > c} is open in T for every
constant c. A real-valued function g(x) is said to be upper semicontinu-
ous if and only if f(x) = −g(x) is lower semicontinuous. Owing to this
simple relationship, we will confine our attention to lower semicontinuous
functions. The next proposition gives two alternative definitions.

Proposition 2.6.1 A necessary and sufficient condition for f(x) to be
lower semicontinuous is that

f(x) ≤ lim inf
n→∞ f(xn) (2.11)

whenever limn→∞ xn = x in T . Another necessary and sufficient condition
is that the epigraph {(x, y) ∈ T × R : f(x) ≤ y} is a closed set.
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Proof: Suppose f(x) is lower semicontinuous and limn→∞ xn = x. For any
ε > 0, the point x lies in the open set {y ∈ T : f(y) > f(x) − ε}. Hence,
f(xn) > f(x)−ε for all sufficient large n. But this implies inequality (2.11).
Similarly, if xn converges to x and yn ≥ f(xn) converges to y, then the
inequality y ≥ lim infn→∞ f(xn) ≥ f(x) follows, and the epigraph is closed.
Thus, both stated conditions are necessary.
For sufficiency, suppose inequality (2.11) holds. Consider a sequence xn

in the set {y ∈ T : f(y) ≤ c} with limit x. It is clear that f(x) ≤ c
as well. Thus, {y ∈ T : f(y) ≤ c} is closed. To deal with the second
sufficient condition, suppose the epigraph is closed, but f(x) is not lower
semicontinuous. Then there exists a sequence xn converging to x in T
and an ε > 0 such that f(x) − ε > lim infn→∞ f(xn). It follows that the
pair (xn, f(x) − ε) is in the epigraph for infinitely many n. Because the
epigraph is closed, this forces the contradiction that (x, f(x) − ε) belongs
to the epigraph.

Part of the motivation for defining semicontinuity is to generalize
Proposition 2.5.4. The result stated there for global maxima holds for upper
semicontinuous functions, and the result for global minima holds for lower
semicontinuous functions. The proof carries over almost word for word.
It is also obvious that any continuous function is lower semicontinuous,
and any function that is both lower and upper semicontinuous is continu-
ous. Fortunately, the closure properties of lower semicontinuous functions
are quite flexible.

Proposition 2.6.2 The collection of lower semicontinuous functions with
common domain T ⊂ Rm satisfies the following rules:

(a) If fk(x) is a family of lower semicontinuous functions, then supk fk(x)
is lower semicontinuous.

(b) If fk(x) is a finite family of lower semicontinuous functions, then
mink fk(x) is lower semicontinuous.

(c) If f(x) and g(x) are lower semicontinuous, then f(x) + g(x) is lower
semicontinuous.

(d) If f(x) and g(x) are both positive and lower semicontinuous, then
f(x)g(x) is lower semicontinuous.

(e) If f(x) is lower semicontinuous and g(x) is continuous with range U
contained in T , then f ◦ g(x) is lower semicontinuous.

Proof: These rules follow from the set identities

{x : sup
k
fk(x) > c} = ∪k{x : fk(x) > c}

{x : min
k
fk(x) > c} = ∩k{x : fk(x) > c}
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{x : f(x) + g(x) > c} = ∪d({x : f(x) > c− d} ∩ {x : g(x) > d})
{x : f(x)g(x) > c} = ∪d>0({x : f(x) > d−1c} ∩ {x : g(x) > d})
{y : f ◦ g(y) > c} = g−1[{x : f(x) > c}]

and the properties of open sets and continuous functions summarized in
Propositions 2.4.2 and 2.5.2.

Example 2.6.1 Row and Column Rank

Every m×n matrix A has a well defined nullity and rank. Although these
are not continuous functions of A, the former function is upper semicon-
tinuous, and the latter function is lower semicontinuous. In view of the
dimension identity nullity(A) = n − rank(A), to validate both claims it
suffices to show that rank(A) is lower semicontinuous. Consider an arbi-
trary constant c and an arbitrary matrix A = (aij) with rank(A) > c. If we
abbreviate rank(A) = r, then there exist row indices 1 ≤ i1 < · · · < ir ≤ m
and column indices 1 ≤ j1 < · · · < jr ≤ n such that the submatrix

⎛
⎜⎝
ai1j1 · · · ai1jr
...

. . .
...

airj1 · · · airjr

⎞
⎟⎠

has nonzero determinant. Because the determinant function is continuous,
the same submatrix has nonvanishing determinant for all m×n matrices B
close to A. It follows that {A : rank(A) > c} is an open set and therefore
that rank(A) is lower semicontinuous.

2.7 Connectedness

Roughly speaking, a set is disconnected if it can be split into two pieces
sharing no boundary. A set is connected if it is not disconnected. One way
of making this vague distinction precise is to consider a set S disconnected
if there exists a real-valued continuous function φ(x) defined on S and
having range {0, 1}. The nonempty subsets A = φ−1(0) and B = φ−1(1)
then constitute the two disconnected pieces of S. According to part (b) of
Proposition 2.5.2, both A and B are closed. Because one is the complement
of the other, both are also open.
Arcwise connectedness is a variation on the theme of connectedness. A

set is said to be arcwise connected if for any pair of points x and y of the
set there is a continuous function f(t) from the interval [0, 1] into the set
satisfying f(0) = x and f(1) = y. We will see shortly that arcwise con-
nectedness implies connectedness. On open sets, the two notions coincide.
Can we identify the connected subsets of the real line? Intuition suggests

that the only connected subsets are intervals. Here a single point x is viewed
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as the interval [x, x]. Suppose S is a connected subset of R, and let a and b
be two points of S. In order for S to be an interval, every point c ∈ (a, b)
should be in S. If S fails to contain an intermediate point c, then we can
define a continuous function φ(x) disconnecting S by taking φ(x) = 0 for
x < c and φ(x) = 1 for x > c. Thus, every connected subset must be an
interval.
To prove the converse, suppose a disconnecting function φ(x) lives on an

interval. Select points a and b of the interval with φ(a) = 0 and φ(b) = 1.
Without loss of generality we can take a < b. On [a, b] we now carry out the
bisection strategy of Example 2.3.1, selecting the right or left subinterval at
each stage so that the values of φ(x) at the endpoints of the selected subin-
terval disagree. Eventually, bisection leads to a subinterval contradicting
the uniform continuity of φ(x) on [a, b]. Indeed, there is a number δ such
that |φ(y) − φ(x)| < 1 whenever |y − x| < δ; at some stage, the length of
the subinterval containing points with both values of φ(x) falls below δ.
This result is the first of four characterizing connected sets.

Proposition 2.7.1 Connected subsets of Rn have the following properties:

(a) A subset of the real line is connected if and only if it is an interval.

(b) The image of a connected set under a continuous function is connected.

(c) The union S = ∪αSα of an arbitrary collection of connected subsets is
connected if one of the sets Sβ has a nonempty intersection Sβ ∩ Sα

with every other set Sα.

(d) Every arcwise connected set S is connected.

Proof: To prove part (b) let f(x) be a continuous map from a connected set
S ⊂ Rm into Rn. If the image f(S) is disconnected, then there is a continu-
ous function φ(x) disconnecting it. The composition φ ◦ f(x) is continuous
by part (g) of Proposition 2.5.1 and serves to disconnect S, contradicting
the connectedness of S. To prove (c) suppose that the continuous function
φ(x) disconnects the union S. Then there exists y ∈ Sα1 and z ∈ Sα2

with φ(y) = 0 and φ(z) = 1. Choose u ∈ Sβ ∩ Sα1 and v ∈ Sβ ∩ Sα2 . If
φ(u) �= φ(v), then φ(x) disconnects Sβ. If φ(u) = φ(v), then φ(y) �= φ(u)
or φ(z) �= φ(v). In the former case φ(x) disconnects Sα1 , and in the latter
case φ(x) disconnects Sα2 . Finally, to prove part (d), suppose the arcwise
connected set S fails to be connected. Then there exists a continuous dis-
connecting function φ(x) with φ(y) = 0 and φ(z) = 1. Let f(t) be an arc
in S connecting y and z. The continuous function φ ◦ f(t) then serves to
disconnect [0, 1].

Example 2.7.1 The Intermediate Value Property

Consider a continuous function f(x) from an interval [a, b] to the real
line. The intermediate value theorem asserts that the image f([a, b]) co-
incides with the interval [min f(x),max f(x)]. This theorem, which is a
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consequence of properties (a) and (b) of Proposition 2.7.1, has many
applications. For example, suppose g(x) is a continuous function from [0, 1]
into [0, 1]. If f(x) = g(x)−x, then it is obvious that f(0) ≥ 0 and f(1) ≤ 0.
It follows that f(x) = 0 for some x. In other words, g(x) has a fixed point
satisfying g(x) = x.

Example 2.7.2 Connectedness of Spheres

The set S(x, r) in Rn is the image of the continuous map y �→ x+ ry/‖y‖
of the domain T = Rn \ 0. Hence, to prove connectedness when n > 1,
it suffices to prove that T is connected. To achieve this, we argue that
T is arcwise connected. Consider two points u and v in T . If 0 does not
lie on the line segment between u and v, then we can use the function
f(t) = u + t(v − u) to connect u and v. If 0 lies on the line segment,
choose any w not on the line determined by u and v. Now the continuous
function

f(t) =

{
u+ 2t(w − u) t ∈ [0, 12 ]
w + (2t− 1) (v −w) t ∈ [ 12 , 1]

connects u and v. The sphere S(x, r) in R reduces to the two points x− r
and x+ r and is disconnected.

2.8 Uniform Convergence

Many delicate issues of analysis revolve around the question of whether
a given property of a sequence of functions fm(x) is preserved under a
passage to a limit. As a simple example, consider the sequence fm(x) = xm

of continuous functions defined on the unit interval [0, 1]. It is clear that
fm(x) converges pointwise to the discontinuous function

f(x) =
{
0 0 ≤ x < 1
1 x = 1 .

The failure of f(x) to be continuous suggests that an additional hypothesis
must be imposed. The key hypothesis is uniform convergence. This requires
for each ε > 0 that there exists an integer k such that |fm(x)−f(x)| < ε for
all m ≥ k and all x. Here the adjective “uniform” refers to the assumption
that the same k works for all x. Of course, k is allowed to depend on ε.

Proposition 2.8.1 Suppose the sequence of continuous functions fm(x)
maps a domain D ⊂ Rp into Rq. If fm(x) converges uniformly to f(x) on
D, then f(x) is also continuous.

Proof: Choose y ∈ D and ε > 0, and take k so that ‖fm(x) − f(x)‖ < ε
3

for all m ≥ k and x. By virtue of the continuity of fk(x), there is a δ > 0
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such that ‖fk(x)− fk(y)‖ < ε
3 whenever ‖x− y‖ < δ. Assuming that y is

fixed and ‖x− y‖ < δ, we have

‖f(x)− f(y)‖ ≤ ‖f(x)− fk(x)‖+ ‖fk(x)− fk(y)‖+ ‖fk(y)− f(y)‖
<

ε

3
+
ε

3
+
ε

3
= ε.

This shows that f(x) is continuous at y.

Example 2.8.1 Weierstrass M -Test

Suppose the entries gk(x) of a sequence of continuous functions satisfy
‖gk(x)‖ ≤Mk, where

∑∞
k=1Mk <∞. Then Cauchy’s criterion and Propo-

sition 2.8.1 together imply that the partial sums fl(x) =
∑l

k=1 gk(x) con-
verge uniformly to the continuous function f(x) =

∑∞
k=1 gk(x).

2.9 Problems

1. Let x1, . . . ,xm be points in Rn. State and prove a necessary and
sufficient condition under which the Euclidean norm equality

‖x1 + · · ·+ xm‖ = ‖x1‖+ · · ·+ ‖xm‖
holds. (Hints: Square and expand both sides. Use the necessary and
sufficient conditions of the Cauchy-Schwarz inequality term by term.)

2. Show that it is possible to choose n + 1 points x0,x1, . . . ,xn in Rn

such that ‖xi‖ = 1 for all i and ‖xi − xj‖ = ‖xk − xl‖ for all pairs
i �= j and k �= l. These points define a regular simplex with vertices
on the unit sphere. (Hint: One possibility is to take x0 = n−1/21 and
xi = a1+ bei for i ≥ 1, where

a = −1 +
√
n+ 1

n3/2
, b =

√
n+ 1

n
.

Any rotated version of these points also works.)

3. Show that

‖x‖q ≤ ‖x‖p (2.12)

‖x‖p ≤ n
1
p− 1

q ‖x‖q (2.13)

when p and q are chosen from {1, 2,∞} and p < q. Here ‖x‖2 is the
Euclidean norm on Rn. These inequalities are sharp. Equality holds
in inequality (2.12) when x = (1, 0, . . . , 0)∗, and equality holds in
inequality (2.13) when x = (1, 1, . . . , 1)∗.
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4. Show that ‖x‖2 ≤ ‖x‖∞‖x‖1 ≤ √n‖x‖2 for any vector x ∈ Rn.

5. Prove that 1 ≤ ‖I‖† and ‖M‖−1
† ≤ ‖M−1‖† for any matrix norm on

square matrices satisfying the defining properties (a) through (e) of
Sect. 2.2.

6. Set ‖M‖max = maxi,j |mij | for M = (mij). Show that this defines a
vector norm but not a matrix norm on n× n matrices M .

7. Let M be an m× n matrix. Prove that its spectral norm satisfies

‖M‖ = sup
‖v‖=1

‖Mv‖ = sup
‖u‖=1, ‖v‖=1

u∗Mv

for u ∈ Rm and v ∈ Rn.

8. Demonstrate that the spectral norm on m × n matrices satisfies
‖UM‖ = ‖M‖ = ‖MV ‖ for all orthogonal matrices U and V
of the right dimensions. Show that the Frobenius norm satisfies the
same orthogonal invariance principle.

9. Show that an m× n matrix M = (mij) has the matrix norms

‖M‖1 = max
1≤j≤n

m∑
i=1

|mij |

‖M‖∞ = max
1≤i≤m

n∑
j=1

|mij |

induced by the vector norms ‖x‖1 and ‖x‖∞.

10. Let M be an m × n matrix of full column rank n. Prove that there
exists a positive constant c such that ‖My‖ ≥ c‖y‖ for all y ∈ Rn.

11. Demonstrate properties (2.4) and (2.5) of the limit superior and limit
inferior. Also check that the sequence xn has a limit if and only if
equality holds in inequality (2.5).

12. Let l = lim supn→∞ xn. Show that:

(a) l = −∞ if and only if limn→∞ xn = −∞.

(b) l = +∞ if and only if for every positive integer m and real r
there exists an n ≥ m with xn > r.

(c) l is finite if and only if (a) for every ε > 0 there is an m such
that n ≥ m implies xn < l+ ε and (b) for every ε > 0 and every
m there is an n ≥ m such that xn > l− ε.

Similar properties hold for the limit inferior.
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13. For any sequence of real numbers xn, prove that

inf
n
xn ≤ lim inf

n→∞ xn and lim sup
n→∞

xn ≤ sup
n
xn.

If yn is a second sequence of real numbers, then prove that

lim inf
n→∞ (xn + yn) ≥ lim inf

n→∞ xn + lim inf
n→∞ yn

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn.

Finally, if xn ≤ yn for all n, then prove that

lim inf
n→∞ xn ≤ lim inf

n→∞ yn and lim sup
n→∞

xn ≤ lim sup
n→∞

yn.

14. Let xn be a sequence of nonnegative real numbers with

xn+1 ≤ xn +
1

n2

for all n ≥ 1. Show that limn→∞ xn exists [69].

15. Let xm be a convergent sequence in Rn with limit x. Prove that the
sequence sm = (x1+· · ·+xm)/m of arithmetic means converges to x.

16. Show that

lim
x→∞ p(x)e−x = 0

for every polynomial p(x).

17. Prove that the set of invertible matrices is open and that the sets of
symmetric and orthogonal matrices are closed in Rn2

.

18. A square matrix is nilpotent if Ak = 0 for some positive integer k. If
A and B are nilpotent, then show that A+B need not be nilpotent.
If we add the hypothesis that A and B commute, then show that
A + B is nilpotent. Use Example 2.3.3 to construct the inverses of
the matrices I +A and I −A for A nilpotent [69].

19. Show that e−M is the matrix inverse of eM . A skew symmetric matrix
M satisfiesM∗ = −M . Show that eM is orthogonal when M is skew
symmetric.

20. Demonstrate that the matrix exponential function M �→ eM is con-
tinuous. (Hint: Apply the Weierstrass M -test.)

21. Demonstrate that the function

f(x) =

{
x1x2

x2
1−x2

2
|x1| �= |x2|

0 otherwise

on R2 is discontinuous at 0.
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22. Let f(x) and g(x) be real-valued continuous functions defined on
the same domain. Prove that max{f(x), g(x)} and min{f(x), g(x)}
are continuous functions. Prove that the function f(x) = maxi xi is
continuous on Rn.

23. Define the function

f(x) =
{
x x is rational
1− x x is irrational

on [0, 1]. At what points is f(x) continuous? What is the image
f([0, 1])?

24. Give an example of a continuous function that does not map an open
set to an open set. Give another example of a continuous function
that does not map a closed set to a closed set.

25. Show that the set of n × n orthogonal matrices is compact. (Hint:
Show that every orthogonal matrix O has norm ‖O‖ = 1.)

26. Let f(x) be a continuous function from a compact set S ⊂ Rm into
Rn. If f(x) is one-to-one, then demonstrate that the inverse function
f−1(y) is continuous from f(S) to S.

27. Let C = A×B be the Cartesian product of two subsets A ⊂ Rm and
B ⊂ Rn. Prove that:

(a) C is closed in Rm+n if both A and B are closed.

(b) C is open in Rm+n if both A and B are open.

(c) C is compact in Rm+n if both A and B are compact.

(d) C is connected in Rm+n if both A and B are connected.

28. Prove the converse of each of the assertions in Problem 27.

29. Without appeal to Proposition 2.5.5, show that every polynomial on
R is uniformly continuous on a compact interval [a, b].

30. Let f(x) be uniformly continuous on R and satisfy f(0) = 0. Demon-
strate that there exists a nonnegative constant c such that

|f(x)| ≤ 1 + c|x|
for all x [69].

31. Suppose that f(x) is continuous on [0,∞) and limx→∞ f(x) exists
and is finite. Prove that f(x) is uniformly continuous on [0,∞) [69].

32. Characterize those maps f(x) from Rn into itself that have the prop-
erty ‖f(y)− f(x)‖ = c‖y − x‖ for all x and y. Here the constant c
need not equal 1.
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33. Prove that the multilinear map (M ,u1, . . . ,uk) �→M [u1, . . . ,uk] is
jointly continuous in its k + 1 variables. (Hint: Write

M [u1, . . . ,uk]−N [v1, . . . ,vk] = (M −N )[u1, . . . ,uk]

+N [u1 − v1,u2, . . . ,uk]

+N [v1,u2 − v2, . . . ,uk]

...

+N [v1,v2, . . . ,uk − vk]

and take norms.)

34. Let M [u1, . . . ,uk] be a symmetric k-linear map. Demonstrate that

M [u1, . . . ,uk] =
1

2kk!

∑
ε1 · · · εkM [(ε1u1 + · · ·+ εkuk)

k],

where the sum ranges over all combinations of ε1 = ±1, . . . , εk = ±1.
Hence, a symmetric k-linear map is determined by its values on the
diagonal of its domain.

35. Continuing Problem 34, define the alternative norm

‖M‖sym = sup
u 
=0

‖M [uk]‖
‖u‖k = sup

‖u‖=1

‖M [uk]‖.

Prove the inequalities

‖M‖sym ≤ ‖M‖ ≤ kk

k!
‖M‖sym.

36. Show that the indicator function of an open set is lower semicontinu-
ous and that the indicator function of a closed set is upper semicontin-
uous. Also show that floor function f(x) = �x� is upper semicontinu-
ous and that the ceiling function f(x) = �x� is lower semicontinuous.

37. Suppose the n numbers x1, . . . , xn lie on [0, 1]. Prove that the function

f(x) =
1

n

n∑
i=1

|x− xi|

attains the value 1
2 for some x ∈ [0, 1]. (Hint: Consider f(0) and f(1).)

38. Show that a hyperplane {x : z∗x = c} in Rn is connected but that
its complement is disconnected.
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39. If the real-valued function f(x) on [a, b] is continuous and one-to-one,
then prove that f(x) is either strictly increasing or strictly decreasing.

40. Demonstrate that a polynomial of odd degree possesses at least one
real root.

41. Prove that the closure of a connected set is connected.

42. Suppose T is a connected set in Rn. Define

Uε = {y ∈ Rn : dist(y, T ) < ε}
Vε = {y ∈ Rn : dist(y, T ) ≤ ε}

for ε > 0 and dist(y, T ) = infx∈T ‖y − x‖. Demonstrate that Uε and
Vε are connected. (Hints: Vε is the closure of Uε. For Uε argue by
contradiction using the definition of a connected set.)

43. On what domains do the sequences of functions

(a) fn(x) = (1 + x/n)n

(b) fn(x) = nx/(1 + n2x2)

(c) fn(x) = nx

(d) fn(x) = x−1 sin(nx)

(e) fn(x) = xe−nx

(f) fn(x) = x2n/(1 + x2n)

converge [68]? On what domains do they converge uniformly?

44. Suppose that f(x) is a function from the real line to itself satisfying
f(x + y) = f(x) + f(y) for all x and y. If f(x) is continuous at a
single point, then show that f(x) = cx for some constant c. (Hints:
Prove that f(x) is continuous everywhere and that f(q) = f(1)q for
all rational numbers q.)

45. Suppose that g(x) is a function from the real line to itself satisfying
g(x+ y) = g(x)g(y) for all x and y. If g(x) is continuous at a single
point, then prove that either g(x) is identically 0 or that there exists
a positive constant d with g(x) = dx. (Hint: Show that either g(x) is
identically 0 or that g(x) is positive for all x. In the latter case, take
logarithms and reduce to the previous problem.)

46. Suppose the real-valued function f(x,y) is jointly continuous in its
two vector arguments and C is a compact set. Show that the functions

g(x) = inf
y∈C

f(x,y) and h(x) = sup
y∈C

f(x,y)

are continuous.



3
The Gauge Integral

3.1 Introduction

Much of calculus deals with the interplay between differentiation and
integration. The antiquated term “antidifferentiation” emphasizes the fact
that differentiation and integration are inverses of one another. We will
take it for granted that readers are acquainted with the mechanics of in-
tegration. The current chapter develops just enough integration theory to
make our development of differentiation in Chap. 4 and the calculus of
variations in Chap. 17 respectable. It is only fair to warn readers that in
other chapters a few applications to probability and statistics will assume
familiarity with properties of the expectation operator not covered here.
The first successful effort to put integration on a rigorous basis was un-

dertaken by Riemann. In the early twentieth century, Lebesgue defined
a more sophisticated integral that addresses many of the limitations of
the Riemann integral. However, even Lebesgue’s integral has its defects.
In the past few decades, mathematicians such as Henstock and Kurzweil
have expanded the definition of integration on the real line to include
a wider variety of functions. The new integral emerging from these in-
vestigations is called the gauge integral or generalized Riemann integral
[7, 68, 108, 193, 250, 255, 278]. The gauge integral subsumes the Riemann
integral, the Lebesgue integral, and the improper integrals met in tradi-
tional advanced calculus courses. In contrast to the Lebesgue integral, the
integrands of the gauge integral are not necessarily absolutely integrable.

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 3,
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It would take us too far afield to develop the gauge integral in full
generality. Here we will rest content with proving some of its elementary
properties. One of the advantages of the gauge integral is that many theo-
rems hold with fewer qualifications. The fundamental theorem of calculus is
a case in point. The commonly stated version of the fundamental theorem
concerns a differentiable function f(x) on an interval [a, b]. As all students
of calculus know,

∫ b

a

f ′(x) dx = f(b)− f(a).

Although this version is true for the gauge integral, it does not hold for the
Lebesgue integral because the mere fact that f ′(x) exists throughout [a, b]
does not guarantee that it is Lebesgue integrable.
This quick description of the gauge integral is not intended to imply that

the gauge integral is uniformly superior to the Lebesgue integral and its
extensions. Certainly, probability theory would be severely handicapped
without the full flexibility of modern measure theory. Furthermore, the ad-
vanced theory of the gauge integral is every bit as difficult as the advanced
theory of the Lebesgue integral. For pedagogical purposes, however, one can
argue that a student’s first exposure to the theory of integration should fea-
ture the gauge integral. As we shall see, many of the basic properties of
the gauge integral flow directly from its definition. As an added dividend,
gauge functions provide an alternative approach to some of the material of
Chap. 2.

3.2 Gauge Functions and δ-Fine Partitions

The gauge integral is defined through gauge functions. A gauge function
is nothing more than a positive function δ(t) defined on a finite interval
[a, b]. In approximating the integral of a function f(t) over [a, b] by a finite
Riemann sum, it is important to sample the function most heavily in those
regions where it changes most rapidly. Now by a Riemann sum we mean a
sum

S(f, π) =
n−1∑
i=0

f(ti)(si+1 − si),

where the mesh points a = s0 < s1 < · · · < sn = b form a partition π of
[a, b], and the tags ti are chosen so that ti ∈ [si, si+1]. If δ(ti) measures the
rapidity of change of f(t) near ti, then it makes sense to take δ(t) small in
regions of rapid change and to force si and si+1 to belong to the interval
(ti − δ(ti), ti + δ(ti)). A tagged partition with this property is called a δ-
fine partition. Our first proposition relieves our worry that δ-fine partitions
exist.
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Proposition 3.2.1 (Cousin’s Lemma) For every gauge δ(t) on a finite
interval [a, b] there is a δ-fine partition.

Proof: Assume that [a, b] lacks a δ-fine partition. Since we can construct a
δ-fine partition of [a, b] by appending a δ-fine partition of the half-interval
[(a + b)/2, b] to a δ-fine partition of the half-interval [a, (a + b)/2], it fol-
lows that either [a, (a+ b)/2] or [(a+ b)/2, b] lacks a δ-fine partition. As in
Example 2.3.1, we choose one of the half-intervals based on this failure and
continue bisecting. This creates a nested sequence of intervals [ai, bi] con-
verging to a point x. If i is large enough, then [ai, bi] ⊂ (x− δ(x), x+ δ(x)),
and the interval [ai, bi] with tag x is a δ-fine partition of itself. This con-
tradicts the choice of [ai, bi] and the assumption that the original interval
[a, b] lacks a δ-fine partition.

Before launching into our treatment of the gauge integral, we pause to
gain some facility with gauge functions [108]. Here are three examples that
illustrate their value.

Example 3.2.1 A Gauge Proof of Weierstrass’ Theorem

Consider a real-valued continuous function f(t) with domain [a, b]. Suppose
that f(t) does not attain its supremum on [a, b]. Then for each t there exists
a point x ∈ [a, b] with f(t) < f(x). By continuity there exists δ(t) > 0 such
that f(y) < f(x) for all y ∈ [a, b] with |y − t| < δ(t). Using δ(t) as a
gauge, select a δ-fine partition a = s0 < s1 < · · · < sn = b with tags
ti ∈ [si, si+1] and designated points xi satisfying f(ti) < f(xi). Let xmax

be the point xi having the largest value f(xi). Because xmax lies in some
interval [si, si+1], we have f(xmax) < f(xi). This contradiction discredits
our assumption that f(x) does not attain its supremum. A similar argument
applies to the infimum.

Example 3.2.2 A Gauge Proof of the Heine-Borel Theorem

One can use Cousin’s lemma to prove the Heine-Borel Theorem on the real
line [278]. This theorem states that if C is a compact set contained in the
union ∪αOα of a collection of open sets Oα, then C is actually contained in
the union of a finite number of the Oα. Suppose C ⊂ [a, b]. Define a gauge
δ(t) so that the interval (t− δ(t), t+ δ(t)) does not intersect C when t �∈ C
and (t− δ(t), t+ δ(t)) is contained in some Oα when t ∈ C. Based on δ(t),
select a δ-fine partition a = s0 < s1 < · · · < sn = b with tags ti ∈ [si, si+1].
By definition C is contained in the union ∪ti∈C Ui, where Ui is the set Oα

covering ti. The Heine-Borel theorem extends to compact sets in Rn.

Example 3.2.3 A Gauge Proof of the Intermediate Value Theorem

Under the assumption of the previous example, let c be an number strictly
between f(a) and f(b). If we assume that there is no t ∈ [a, b] with f(t) = c,
then there exists a positive number δ(t) such that either f(x) < c for all
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x ∈ [a, b] with |x− t| < δ(t) or f(x) > c for all x ∈ [a, b] with |x− t| < δ(t).
We now select a δ-fine partition a = s0 < s1 < · · · < sn = b and observe
that throughout each interval [si, si+1] either f(t) < c or f(t) > c. If to
start f(s0) = f(a) < c, then f(s1) < c, which implies f(s2) < c and so
forth until we get to f(sn) = f(b) < c. This contradicts the assumption
that c lies strictly between f(a) and f(b). With minor differences, the same
proof works when f(a) > c.

In preparation for our next example and for the fundamental theorem
of calculus later in this chapter, we must define derivatives. A real-valued
function f(t) defined on an interval [a, b] possesses a derivative f ′(c) at
c ∈ [a, b] provided the limit

lim
t→c

f(t)− f(c)
t− c = f ′(c) (3.1)

exists. At the endpoints a and b, the limit is necessarily one sided. Tak-
ing a sequential view of convergence, definition (3.1) means that for every
sequence tm converging to c we must have

lim
m→∞

f(tm)− f(c)
tm − c = f ′(c).

In calculus, we learn the following rules for computing derivatives:

Proposition 3.2.2 If f(t) and g(t) are differentiable functions on (a, b),
then [

αf(t) + βg(t)
]′

= αf ′(t) + βg′(t)
[
f(t)g(t)

]′
= f ′(t)g(t) + f(t)g′(t)

[ 1

f(t)

]′
= − f

′(t)
f(t)2

.

In the third formula we must assume f(t) �= 0. Finally, if g(t) maps into
the domain of f(t), then the functional composition f ◦ g(t) has derivative

[f ◦ g(t)]′ = f ′ ◦ g(t)g′(t).
Proof: We will prove the above sum, product, quotient, and chain rules in
a broader context in Chap. 4. Our proofs will not rely on integration.

Example 3.2.4 Strictly Increasing Functions

Let f(t) be a differentiable function on [c, d] with strictly positive derivative.
We now show that f(t) is strictly increasing. For each t ∈ [c, d] there exists
δ(t) > 0 such that

f(x)− f(t)
x− t > 0 (3.2)
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for all x ∈ [a, b] with |x− t| < δ(t). According to Proposition 3.2.1, for any
two points a < b from [c, d], there exists a δ-fine partition

a = s0 < s1 < · · · < sn = b

of [a, b] with tags ti ∈ [si, si+1]. In view of inequality (3.2), at least one
of the two inequalities f(si) ≤ f(ti) ≤ f(si+1) must be strict. Thus, the
telescoping sum

f(b)− f(a) =
n−1∑
i=0

[f(si+1)− f(si)]

must be positive.

3.3 Definition and Basic Properties of the Integral

With later applications in mind, it will be convenient to define the gauge
integral for vector-valued functions f(x) : [a, b] �→ Rn. In this context, f(x)
is said to have integral I if for every ε > 0 there exists a gauge δ(x) on
[a, b] such that

‖S(f, π)− I‖ < ε (3.3)

for all δ-fine partitions π. Our first order of business is to check that the
integral is unique whenever it exists. Thus, suppose that the vector J is a
second possible value of the integral. Given ε > 0 choose gauges δI(x) and
δJ (x) leading to inequality (3.3). The minimum δ(x) = min{δI(x), δJ (x)}
is also a gauge, and any partition π that is δ-fine is also δI and δJ -fine.
Hence,

‖I − J‖ ≤ ‖I − S(f, π)‖ + ‖S(f, π)− J‖ < 2ε.

Since ε is arbitrary, J = I.
One can also define f(x) to be integrable if its Riemann sums are Cauchy

in an appropriate sense.

Proposition 3.3.1 (Cauchy criterion) A function f(x) : [a, b] �→ Rn is
integrable if and only if for every ε > 0 there exists a gauge δ(x) > 0 such
that

‖S(f, π1)− S(f, π2)‖ < ε (3.4)

for any two δ-fine partitions π1 and π2.

Proof: It is obvious that the Cauchy criterion is necessary for integrability.
To show that it is sufficient, consider the sequence εm = m−1 and compat-
ible sequence of gauges δm(x) determined by condition (3.4). We can force
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the constraints δm(x) ≤ δm−1(x) to hold by inductively replacing δm(x) by
min{δm−1(x), δm(x)} whenever needed. Now select a δm-fine partition πm
for eachm. Because the gauge sequence δm(x) is decreasing, every partition
π that is δm-fine is also δm−1-fine. Hence, the sequence of Riemann sums
S(f, πm) is Cauchy and has a limit I satisfying ‖S(f, πm) − I‖ ≤ m−1.
Finally, given the potential integral I, we take an arbitrary ε > 0 and
choose m so that m−1 < ε. If π is δm-fine, then the inequality

‖S(f, π)− I‖ ≤ ‖S(f, π)− S(f, πm)‖+ ‖S(f, πm)− I‖ < 2ε.

completes the proof.

For two integrable functions f(x) and g(x), the gauge integral inherits
the linearity property

∫ b

a

[αf(x) + βg(x)] dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx

from its approximating Riemann sums. To prove this fact, take ε > 0 and
choose gauges δf (x) and δg(x) so that

∥∥∥S(f, πf )−
∫ b

a

f(x) dx
∥∥∥ < ε,

∥∥∥S(f, πg)−
∫ b

a

g(x) dx
∥∥∥ < ε

whenever πf is δf -fine and πg is δg-fine. If the tagged partition π is δ-fine
for the gauge δ(x) = min{δf (x), δg(x)}, then

∥∥∥S(αf + βg, π)− α
∫ b

a

f(x) dx − β
∫ b

a

g(x) dx
∥∥∥

≤ |α|
∥∥∥S(f, π)−

∫ b

a

f(x) dx
∥∥∥ + |β|

∥∥∥S(g, π)−
∫ b

a

g(x) dx
∥∥∥

≤ (|α| + |β|)ε.
The gauge integral also inherits obvious order properties. For example,∫ b

a f(x) dx ≥ 0 whenever the integrand f(x) ≥ 0 for all x ∈ [a, b]. In this

case, the inequality |S(f, π)− ∫ b

a
f(x) dx| < ε implies

0 ≤ S(f, π) ≤
∫ b

a

f(x) dx+ ε.

Since ε can be made arbitrarily small for f(x) integrable, it follows that∫ b

a
f(x) dx ≥ 0. This nonnegativity property translates into the

order property

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx
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for two integrable functions f(x) ≤ g(x). In particular, when both f(x)
and |f(x)| are both integrable, we have

∣∣∣
∫ b

a

f(x) dx
∣∣∣ ≤

∫ b

a

|f(x)| dx .

For vector-valued functions, the analogous rule

∥∥∥
∫ b

a

f(x) dx
∥∥∥ ≤

∫ b

a

‖f(x)‖ dx (3.5)

is also inherited from the approximating Riemann sums. The reader can
easily supply the proof using the triangle inequality of the Euclidean norm.
It does not take much imagination to extend the definition of the gauge
integral to matrix-valued functions, and inequality (3.5) applies in this
setting as well.
One of the nicest features of the gauge integral is that one can perturb

an integrable function at a countable number of points without changing
the value of its integral. This property fails for the Riemann integral but is
exhibited by the Lebesgue integral. To validate the property, it suffices to
prove that a function that equals 0 except at a countable number of points
has integral 0. Suppose f(x) is such a function with exceptional points
x1, x2, . . . and corresponding exceptional values f1,f2, . . .. We now define
a gauge δ(x) with value 1 on the nonexceptional points and values

δ(xj) =
ε

2j+2[‖f j‖+ 1]

at the exceptional points. If π is a δ-fine partition, then xj can serve as
a tag for at most two intervals [si, si+1] of π and each such interval has
length less than 2δ(xj). It follows that

‖S(f, π)‖ ≤ 2
∑
j

‖f(xj)‖ 2ε

2j+2[‖f j‖+ 1]
≤ ε

∞∑
j=1

1

2j
= ε

and therefore that
∫ b

a
f(x) dx = 0.

In practice, the interval additivity rule
∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx (3.6)

is obviously desirable. There are three separate issues in proving it. First,
given the existence of the integral over [a, c], do the integrals over [a, b]
and [b, c] exist? Second, if the integrals over [a, b] and [b, c] exist, does
the integral over [a, c] exist? Third, if the integrals over [a, b] and [b, c]
exist, are they additive? The first question is best approached through
Proposition 3.3.1. For ε > 0 there exists a gauge δ(x) such that

‖S(f, π1)− S(f, π2)‖ < ε
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for any two δ-fine partitions π1 and π2 of [a, c]. Given δ(x), take any two
δ-fine partitions γ1 and γ2 of [a, b] and a single δ-fine partition ω of [b, c].
The concatenated partitions γ1 ∪ ω and γ2 ∪ ω are δ-fine throughout [a, c]
and satisfy

‖S(f, γ1)− S(f, γ2)‖ = ‖S(f, γ1 ∪ ω)− S(f, γ2 ∪ ω)‖ < ε.

According to the Cauchy criterion, the integral over [a, b] therefore exists.
A similar argument implies that the integral over [b, c] also exists. Finally,
the combination of these results shows that the integral exists over any
interval [u, v] contained within [a, b].
For the converse, choose gauges δ1(x) on [a, b] and δ2(x) on [b, c] so that

∥∥∥S(f, γ)−
∫ b

a

f(x) dx
∥∥∥ < ε,

∥∥∥S(f, ω)−
∫ c

b

f(x) dx
∥∥∥ < ε

for any δ1-fine partition γ of [a, b] and any δ2-fine partition ω of [b, c]. The
concatenated partition π = γ ∪ ω satisfies

∥∥∥S(f, π)−
∫ b

a

f(x) dx −
∫ c

b

f(x) dx
∥∥∥

≤
∥∥∥S(f, γ)−

∫ b

a

f(x)
∥∥∥+

∥∥∥S(f, ω)−
∫ c

b

f(x) dx
∥∥∥ (3.7)

< 2ε

because the Riemann sums satisfy S(f, π) = S(f, γ)+S(f, ω). This suggests
defining a gauge δ(x) equal to δ1(x) on [a, b] and equal to δ2(x) on [b, c].
The problem with this tactic is that some partitions of [a, c] do not split
at b. However, we can ensure a split by redefining δ(x) by

δ̃(x) =

{
min{δ1(b), δ2(b)} x = b
min{δ(x), 12 |x− b|} x �= b .

This forces b to be the tag of its assigned interval, and we can if needed
split this interval at b and retain b as tag of both subintervals. With δ(x)
amended in this fashion, any δ-fine partition π can be viewed as a con-
catenated partition γ ∪ ω splitting at b. As such π obeys inequality (3.7).
This argument simultaneously proves that the integral over [a, c] exists and
satisfies the additivity property (3.6)
If the function f(x) is vector-valued with n components, then the in-

tegrability of f(x) should imply the integrability of each its components
fi(x). Furthermore, we should be able to write

∫ b

a

f(x) dx =

⎛
⎜⎝
∫ b

a
f1(x) dx

...∫ b

a fn(x) dx

⎞
⎟⎠ .
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Conversely, if its components are integrable, then f(x) should be integrable
as well. The inequalities

‖S(f, π)− I‖ ≤
n∑

i=1

|S(fi, π)− Ii| ≤
√
n‖S(f, π)− I‖.

based on Example 2.5.6 and Problem 3 of Chap. 2 are instrumental in
proving this logical equivalence. Given that we can integrate component
by component, for the remainder of this chapter we will deal exclusively
with real-valued functions.
We have not actually shown that any function is integrable. The most

obvious possibility is a constant. Fortunately, it is trivial to demonstrate
that

∫ b

a

c dx = c(b − a).

Step functions are one rung up the hierarchy of functions. If

f(x) =
n−1∑
i=0

ci1(si,si+1](x)

for a = s0 < s1 < · · · < sn = b, then our nascent theory allows us to
evaluate

∫ b

a

f(x) dx =

n−1∑
i=0

∫ si+1

si

ci dx =

n−1∑
i=0

ci(si+1 − si).

This fact and the next technical proposition turn out to be the key to
showing that continuous functions are integrable.

Proposition 3.3.2 Let f(x) be a function with domain [a, b]. Suppose for
every ε > 0 there exist two integrable functions g(x) and h(x) satisfying
g(x) ≤ f(x) ≤ h(x) for all x and

∫ b

a

h(x) dx ≤
∫ b

a

g(x) dx + ε.

Then f(x) is integrable.

Proof: For ε > 0, choose gauges δg(x) and δh(x) on [a, b] so that

∣∣∣S(g, πg)−
∫ b

a

g(x) dx
∣∣∣ < ε,

∣∣∣S(h, πh)−
∫ b

a

h(x) dx
∣∣∣ < ε
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for any δg-fine partition πg and any δh-fine partition πh. If π is a δ-fine
partition for δ(x) = min{δg(x), δh(x)}, then the inequalities

∫ b

a

g(x) dx− ε < S(g, π)

≤ S(f, π)

≤ S(h, π)

<

∫ b

a

h(x) + ε

≤
∫ b

a

g(x) dx+ 2ε

trap S(f, π) in an interval of length 3ε. Because the Riemann sum S(f, γ)
for any other δ-fine partition γ is trapped in the same interval, the integral
of f(x) exists by the Cauchy criterion.

Proposition 3.3.3 Every continuous function f(x) on [a, b] is integrable.

Proof: In view of the uniform continuity of f(x) on [a, b], for every ε > 0
there exists a δ > 0 with |f(x) − f(y)| < ε when |x − y| < δ. For the
constant gauge δ(x) = δ and a corresponding δ-fine partition π with mesh
points s0, . . . , sn, let mi be the minimum and Mi be the maximum of f(x)
on [si, si+1]. The step functions

g(x) =

n∑
i=1

mi1(si,si+1](x), h(x) =

n∑
i=1

Mi1(si,si+1](x)

then satisfy g(x) ≤ f(x) ≤ h(x) except at the single point a. Furthermore,

∫ b

a

h(x) dx −
∫ b

a

g(x) dx ≤ ε

n∑
i=1

(si+1 − si)

= ε(b− a).
Application of Proposition 3.3.2 now completes the proof.

3.4 The Fundamental Theorem of Calculus

The fundamental theorem of calculus divides naturally into two parts. For
the gauge integral, the first and more difficult part is easily proved by
invoking what is called the straddle inequality. Let f(x) be differentiable
at the point t ∈ [a, b]. Then there exists δ(t) > 0 such that

∣∣∣f(x)− f(t)
x− t − f ′(t)

∣∣∣ < ε
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for all x ∈ [a, b] with |x− t| < δ(t). If u < t < v are two points straddling t
and located in [a, b] ∩ (t− δ(t), t+ δ(t)), then

|f(v)− f(u)− f ′(t)(v − u)| ≤ |f(v)− f(t)− f ′(t)(v − t)|
+ |f(t)− f(u)− f ′(t)(t − u)|

≤ ε(v − t) + ε(t− u) (3.8)

= ε(v − u).
Inequality (3.8) also clearly holds when either u = t or v = t.

Proposition 3.4.1 (Fundamental Theorem I) If f(x) is differentiable
throughout [a, b], then

∫ b

a

f ′(x) dx = f(b)− f(a).

Proof: Using the gauge δ(t) figuring in the straddle inequality (3.8), select
a δ-fine partition π with mesh points a = s0 < s1 < · · · < sn = b and tags
ti ∈ [si, si+1]. Application of the inequality and telescoping yield

|f(b)− f(a)− S(f ′, π)| =
∣∣∣
n−1∑
i=0

[f(si+1)− f(si)− f ′(ti)(si+1 − si)]
∣∣∣

≤
n−1∑
i=0

|f(si+1)− f(si)− f ′(ti)(si+1 − si)|

≤
n−1∑
i=0

ε(si+1 − si)

= ε(b− a).
This demonstrates that f ′(x) has integral f(b)− f(a).
The first half of the fundamental theorem remains valid for a continuous

function f(x) that is differentiable except on a countable set N [250]. Since
changing an integrand at a countable number of points does not alter its
integral, it suffices to prove that

f(b)− f(a) =

∫ b

a

g(t) dt, where g(t) =

{
0 t ∈ N
f ′(t) t �∈ N .

Suppose ε > 0 is given. For t �∈ N define the gauge value δ(t) to satisfy
the straddle inequality. Enumerate the points tj of N, and define δ(tj) > 0
so that |f(tj) − f(tj + s)| < 2−j−2ε whenever |s| < δ(tj). Now select a
δ-fine partition π with mesh points a = s0 < s1 < · · · < sn = b and tags
ri ∈ [si, si+1]. Break the sum

f(b)− f(a)− S(g, π) =
n−1∑
i=0

[
f(si+1)− f(si)− g(ri)(si+1 − si)

]
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into two parts. Let S′ denote the sum of the terms with tags ri �∈ N, and
let S′′ denote the sum of the terms with tags ri ∈ N . As noted earlier,
|S′| ≤ ε(b − a). Because a tag is attached to at most two subintervals, the
second sum satisfies

|S′′| ≤
∑
ri∈N

|f(si+1)− f(si)|

≤
∑
ri∈N

[
|f(si+1)− f(ri)|+ |f(ri)− f(si)|

]

≤ 2

∞∑
j=1

22−j−2ε = ε.

It follows that |S′+S′′| ≤ ε(b−a+1) and therefore that the stated integral
exists and equals f(b)− f(a).
In demonstrating the second half of the fundamental theorem, we will

implicitly use the standard convention

∫ c

d

f(x) dx = −
∫ d

c

f(x) dx

for c < d. This convention will also be in force in proving the substitution
formula.

Proposition 3.4.2 (Fundamental Theorem II) If a function f(x) is
integrable on [a, b], then its indefinite integral

F (t) =

∫ t

a

f(x) dx

has derivative F ′(t) = f(t) at any point t where f(x) is continuous. The
derivative is taken as one sided if t = a or t = b.

Proof: In deriving the interval additivity rule (3.6), we showed that the
integral F (t) exists. At a point t where f(x) is continuous, for any ε > 0
there is a δ > 0 such that −ε < f(x) − f(t) < ε when |x − t| < δ and
x ∈ [a, b]. Hence, the difference

F (t+ s)− F (t)
s

− f(t) =
1

s

∫ t+s

t

[f(x) − f(t)] dx

is less than ε and greater than −ε for |s| < δ. In the limit as s tends to 0,
we recover F ′(t) = f(t).

The fundamental theorem of calculus has several important corollaries.
These are covered in the next three propositions on the substitution rule,
integration by parts, and finite Taylor expansions.
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Proposition 3.4.3 (Substitution Rule) Suppose f(x) is differentiable
on [a, b], g(x) is differentiable on [c, d], and the image of [c, d] under g(x)
is contained within [a, b]. Then

∫ g(d)

g(c)

f ′(y) dy =

∫ d

c

f ′[g(x)]g′(x) dx.

Proof: Part I of the fundamental theorem and the chain rule identity

{f [g(x)]}′ = f ′[g(x)]g′(x)

imply that both integrals have value f [g(d)]− f [g(c)].

Proposition 3.4.4 (Integration by Parts) Suppose f(x) and g(x) are
differentiable on [a, b]. Then f ′(x)g(x) is integrable on [a, b] if and only if
f(x)g′(x) is integrable on [a, b]. Furthermore, the two integrals are related
by the identity

∫ b

a

f ′(x)g(x) dx +

∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a),

Proof: The product rule for derivatives is

[f(x)g(x)]′ = f ′(x)g(x) + f(x)g′(x).

If two of three members of this identity are integrable, then the third is as
well. Since part I of the fundamental theorem entails

∫ b

a

[f(x)g(x)]′dx = f(b)g(b)− f(a)g(a),

the proposition follows.

The derivative of a function may itself be differentiable. Indeed, it makes
sense to speak of the kth-order derivative of a function f(x) if f(x) is
sufficiently smooth. Traditionally, the second-order derivative is denoted
f ′′(x) and an arbitrary kth-order derivative by f (k)(x). We can use these
extra derivatives to good effect in approximating f(x) locally. The next
proposition makes this clear and offers an explicit estimate of the error in
a finite Taylor expansion of f(x).

Proposition 3.4.5 (Taylor Expansion) Suppose f(x) has a derivative
of order k+1 on an open interval around the point y. Then for all x in the
interval, we have

f(x) = f(y) +

k∑
j=1

1

j!
f (j)(y)(x − y)j +Rk(x), (3.9)
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where the remainder

Rk(x) =
(x − y)k+1

k!

∫ 1

0

f (k+1)[y + t(x− y)](1 − t)kdt.

If |f (k+1)(z)| ≤ b for all z between x and y, then

|Rk(x)| ≤ b|x− y|k+1

(k + 1)!
. (3.10)

Proof: When k = 0, the Taylor expansion (3.9) reads

f(x) = f(y) + (x− y)
∫ 1

0

f ′[y + t(x− y)]dt

and follows from the fundamental theorem of calculus and the chain rule.
Induction and the integration-by-parts formula

∫ 1

0

f (k)[y + t(x− y)](1− t)k−1dt

= − 1

k
f (k)[y + t(x− y)](1− t)k

∣∣∣1
0

+
x− y
k

∫ 1

0

f (k+1)[y + t(x − y)](1− t)kdt

=
1

k
f (k)(y) +

x− y
k

∫ 1

0

f (k+1)[y + t(x− y)](1− t)kdt

now validate the general expansion (3.9). The error estimate follows directly
from the bound |f (k+1)(z)| ≤ b and the integral

∫ 1

0

(1− t)kdt =
1

k + 1
.

3.5 More Advanced Topics in Integration

Within the confines of a single chapter, it is impossible to develop rigorously
all of the properties of the gauge integral. In this section we will discuss
briefly four topics: (a) integrals over unbounded intervals, (b) improper
integrals and Hake’s theorem, (c) the interchange of limits and integrals,
and (d) multidimensional integrals and Fubini’s theorem.
Defining the integral of a function over an unbounded interval requires

several minor adjustments. First, the real line is extended to include the
points ±∞. Second, a gauge function δ(x) is now viewed as mapping x
to an open interval containing x. The associated interval may be infinite;
indeed, it must be infinite if x equals ±∞. In a δ-fine partition π, the



3.5 More Advanced Topics in Integration 67

interval Ij containing the tag xj is contained in δ(xj). The length of an
infinite interval Ij is defined to be 0 in an approximating Riemann sum
S(f, π) to avoid infinite contributions to the sum. Likewise, the integrand
f(x) is assigned the value 0 at x = ±∞.
This extended definition carries with it all the properties we expect. Its

most remarkable consequence is that it obliterates the distinction between
proper and improper integrals. Hake’s theorem provides the link. If we
allow a and b to be infinite as well as finite, then Hake’s theorem says a
function f(x) is integrable over (a, b) if and only if either of the two limits

lim
c→a

∫ b

c

f(x) dx or lim
c→b

∫ c

a

f(x) dx

exists. If either limit exists, then
∫ b

a
f(x) dx equals that limit. For instance,

the integral

∫ ∞

1

1

x2
dx = lim

c→∞

∫ c

1

1

x2
dx = lim

c→∞−
1

x

∣∣∣c
1

= 1

exists and has the indicated limit by this reasoning.

Example 3.5.1 Existence of
∫∞
0 sinc(x) dx

Consider the integral of sinc(x) = sin(x)/x over the interval (0,∞). Because
sinc(x) is continuous throughout [0, 1] with limit 1 as x approaches 0, the
integral over [0, 1] is defined. Hake’s theorem and integration by parts show
that the integral

∫ ∞

1

sinx

x
dx = lim

c→∞

∫ c

1

sinx

x
dx

= lim
c→∞

(
−cosx

x

∣∣∣c
1
−
∫ c

1

cosx

x2
dx

)

= cos 1−
∫ ∞

1

cosx

x2
dx

exists provided the integral of x−2 cosx exists over (1,∞). We will demon-
strate this fact in a moment. If we accept it, then it is clear that the integral
of sinc(x) over (0,∞) exists as well. As we shall find in Example 3.5.4, this
integral equals π/2. In contrast to these positive results, sinc(x) is not
absolutely integrable over (0,∞). Finally, we note in passing that the sub-
stitution rule gives

∫ ∞

0

sin cx

x
dx =

∫ ∞

0

sin y

c−1y
c−1 dy =

∫ ∞

0

sin y

y
dy =

π

2
.

for any c > 0.
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We now ask under what circumstances the formula

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

lim
n→∞ fn(x) dx (3.11)

is valid. The two relevant theorems permitting the interchange of limits
and integrals are the monotone convergence theorem and the dominated
convergence theorem. In the monotone convergence theorem, we are given
an increasing sequence fn(x) of integrable functions that converge to a
finite limit for each x. Formula (3.11) is true in this setting provided

sup
n

∫ b

a

fn(x) dx < ∞.

In the dominated convergence theorem, we assume the sequence fn(x) is
trapped between two integrable functions g(x) and h(x) in the sense that

g(x) ≤ fn(x) ≤ h(x)

for all n and x. If limn→∞ fn(x) exists in this setting, then the inter-
change (3.11) is allowed. The choices

fn(x) = 1[1,n](x)x
−2 cosx , g(x) = −x−2 , h(x) = x−2

in the dominated convergence theorem validate the existence of∫ ∞

1

x−2 cosx dx = lim
n→∞

∫ n

1

x−2 cosx dx.

We now consider two more substantive applications of the monotone and
dominated convergence theorems.

Example 3.5.2 Johann Bernoulli’s Integral

As example of delicate maneuvers in integration, consider the integral∫ 1

0

1

xx
dx =

∫ 1

0

e−x ln x dx

=

∫ 1

0

∞∑
n=0

(−x ln x)n
n!

dx

=

∞∑
n=0

1

n!

∫ 1

0

(−x ln x)ndx .

The reader will notice the application of the monotone convergence theorem
in passing from the second to the third line above. Further progress can be
made by applying the integration by parts result∫ 1

0

xm lnn x dx = − n

m+ 1

∫ 1

0

xm+1 ln
n−1 x

x
dx

= − n

m+ 1

∫ 1

0

xm lnn−1 x dx
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recursively to evaluate

∫ 1

0

(−x lnx)ndx =
n!

(n+ 1)n

∫ 1

0

xn dx =
n!

(n+ 1)n+1
.

The pleasant surprise

∫ 1

0

1

xx
dx =

∞∑
n=0

1

(n+ 1)n+1

emerges.

Example 3.5.3 Competing Definitions of the Gamma Function

The dominated convergence theorem allows us to derive Gauss’s represen-
tation

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)

of the gamma function from Euler’s representation

Γ(z) =

∫ ∞

0

xz−1e−xdx .

As students of statistics are apt to know from their exposure to the beta
distribution, repeated integration by parts and the fundamental theorem
of calculus show that∫ 1

0

xz−1(1− x)n dx =
n!

z(z + 1) · · · (z + n)
.

The substitution rule yields

nz

∫ 1

0

xz−1(1− x)n dx =

∫ n

0

yz−1
(
1− y

n

)n

dy .

Thus, it suffices to prove that
∫ ∞

0

xz−1e−xdx = lim
n→∞

∫ n

0

yz−1
(
1− y

n

)n

dy .

Given the limit

lim
n→∞

(
1− y

n

)n

= e−y,

we need an integrable function h(y) that dominates the nonnegative se-
quence

fn(y) = 1[0,n](y)y
z−1

(
1− y

n

)n
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from above in order to apply the dominated convergence theorem. In light
of the inequality (

1− y

n

)n

≤ e−y,

the function h(y) = yz−1e−y will serve.

Finally, the gauge integral extends to multiple dimensions, where a ver-
sion of Fubini’s theorem holds for evaluating multidimensional integrals
via iterated integrals [278]. Consider a function f(x,y) defined over the
Cartesian product H×K of two multidimensional intervals H and K. The
intervals in question can be bounded or unbounded. If f(x,y) is integrable
over H ×K, then Fubini’s theorem asserts that the integrals

∫
H
f(x,y) dx

and
∫
K f(x,y) dy exist and can be integrated over the remaining variable

to give the full integral. In symbols,∫
H×K

f(x,y) dx dy =

∫
K

[ ∫
J

f(x,y) dx
]
dy =

∫
J

[ ∫
K

f(x,y) dy
]
dx .

Conversely, if either iterated integral exists, one would like to conclude that
the full integral exists as well. This is true whenever f(x,y) is nonnega-
tive. Unfortunately, it is false in general, and two additional hypotheses
introduced by Tonelli are needed to rescue the situation. One hypothesis
is that f(x,y) is measurable. Measurability is a technical condition that
holds except for very pathological functions. The other hypothesis is that
|f(x,y)| ≤ g(x,y) for some nonnegative function g(x,y) for which the
iterated integral exists. This domination condition is shared with the dom-
inated convergence theorem and forces f(x,y) to be absolutely integrable.

Example 3.5.4 Evaluation of
∫∞
0

sinc(x) dx

According to Fubini’s theorem∫ n

0

∫ nπ

0

e−xy sinx dx dy =

∫ nπ

0

∫ n

0

e−xy sinx dy dx . (3.12)

The second of these iterated integrals∫ nπ

0

∫ n

0

e−xy sinx dy dx =

∫ nπ

0

sinx

x
dx−

∫ nπ

0

e−nx sinx

x
dx

tends to
∫∞
0

sinc(x) dx as n tends to∞ by a combination of Hake’s theorem
and the dominated convergence theorem. The inner integral of the left
iterated integral in (3.12) equals∫ nπ

0

e−xy sinx dx = −e−xy cosx
∣∣∣nπ
0
− ye−xy sinx

∣∣∣nπ
0

− y2
∫ nπ

0

e−xy sinx dx

= 1− e−nπy cosnπ − y2
∫ nπ

0

e−xy sinx dx
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after two integrations by parts. It follows that

∫ nπ

0

e−xy sinx dx =
1− e−nπy cosnπ

1 + y2
.

Finally, application of the dominated convergence theorem gives

lim
n→∞

∫ n

0

1− e−nπy cosnπ

1 + y2
dy =

∫ ∞

0

1

1 + y2
dy

=
π

2
.

Equating the limits of the right and left hand sides of the identity (3.12)
therefore [278] yields the value of π/2 for

∫∞
0

sinc(x) dx.

3.6 Problems

1. Give an alternative proof of Cousin’s lemma by letting y be the supre-
mum of the set of x ∈ [a, b] such that [a, x] possesses a δ-fine partition.

2. Use Cousin’s lemma to prove that a continuous function f(x) defined
on an interval [a, b] is uniformly continuous there [108]. (Hint: Given
ε > 0 define a gauge δ(x) by the requirement that |f(y)− f(x)| < 1

2ε
for all y ∈ [a, b] with |y − x| < 2δ(x).)

3. A possibly discontinuous function f(x) has one-sided limits at each
point x ∈ [a, b]. Show by Cousin’s lemma that f(x) is bounded on
[a, b].

4. Suppose f(x) has a nonnegative derivative f ′(x) throughout [a, b].
Prove that f(x) is nondecreasing on [a, b]. Also prove that f(x) is
constant on [a, b] if and only if f ′(x) = 0 for all x. (Hint: These yield
easily to the fundamental theorem of calculus. Alternatively for the
first assertion, consider the function

fε(x) = f(x) + εx

for ε > 0.)

5. Using only the definition of the gauge integral, demonstrate that

∫ b

a

f(t) dt =

∫ −a

−b

f(−t) dt

when either integral exists.
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6. Based on the standard definition of the natural logarithm

ln y =

∫ y

1

1

x
dx,

prove that ln yz = ln y + ln z for all positive arguments y and z. Use
this property to verify that ln y−1 = − ln y and that ln yr = r ln y for
every rational number r.

7. Apply Proposition 3.3.2 and demonstrate that every monotonic func-
tion defined on an interval [a, b] is integrable on that interval.

8. Let f(x) be a continuous real-valued function on [a, b]. Show that
there exists c ∈ [a, b] with

∫ b

a

f(x) dx = f(c)(b− a).

9. In the Taylor expansion of Proposition 3.4.5, suppose f (k+1)(x) is
continuous. Show that we can replace the remainder by

Rk(x) =
(x − y)k+1

(k + 1)!
f (k+1)(z)

for some z between x and y.

10. Suppose that f(x) is infinitely differentiable and that c and r are pos-
itive numbers. If |f (k)(x)| ≤ ck!rk for all x near y and all nonnegative
integers k, then use Proposition 3.4.5 to show that

f(x) =

∞∑
k=0

f (k)(y)

k!
(x − y)k

near y. Explicitly determine the infinite Taylor series expansion of the
function f(x) = (1 + x)−1 around x = 0 and justify its convergence.

11. Suppose the nonnegative continuous function f(x) satisfies

∫ b

a

f(x) dx = 0.

Prove that f(x) is identically 0 on [a, b].

12. Consider the function

f(x) =

{
x2 sin (x−2) x �= 0
0 x = 0 .

Show that
∫ 1

0
f ′(x) dx = sin (1) and limt↓0

∫ 1

t
|f ′(x)| dx =∞. Hence,

f ′(x) is integrable but not absolutely integrable on [0,1].
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13. Prove that
∫ ∞

0

xαe−xβ

dx =
1

β
Γ

(
α+ 1

β

)

for α and β positive [82].

14. Justify the formula

∫ 1

0

ln(1− x)
x

= −
∞∑
n=1

1

n2
.

15. Show that
∫ ∞

0

xz−1

ex − 1
dx = ζ(z)Γ(z),

where ζ(z) =
∑∞

n=1 n
−z.

16. Prove that the functions

f(x) =

∫ ∞

1

sin t

x2 + t2
dt

g(x) =

∫ ∞

0

e−xt cos t dt, x > 0,

are continuous.

17. Let fn(x) be a sequence of integrable functions on [a, b] that converges
uniformly to f(x). Demonstrate that f(x) is integrable and satisfies

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx .

(Hints: For ε > 0 small take n large enough so that

fn(x) − ε

2(b− a) ≤ f(x) ≤ fn(x) +
ε

2(b− a)
for all x.)

18. Let p and q be positive integers. Justify the series expansion

∫ 1

0

xp−1

1 + xq
dx =

∞∑
n=0

(−1)n
p+ nq

by the monotone convergence theorem. Be careful since the series
does not converge absolutely [278].
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19. Suppose f(x) is a continuous function on R. Demonstrate that the
sequence

fn(x) =
1

n

n−1∑
k=0

f

(
x+

k

n

)

converges uniformly to a continuous function on every finite interval
[a, b] [69].

20. Prove that

∫ 1

0

xb − xa
lnx

dx = ln
b+ 1

a+ 1

for 0 < a < b [278] by showing that both sides equal the double
integral

∫
[0,1]×[a,b]

xy dx dy .

21. Integrate the function

f(x, y) =
y2 − x2

(x2 + y2)2

over the unit square [0, 1]× [0, 1]. Show that the two iterated integrals
disagree, and explain why Fubini’s theorem fails.

22. Suppose the two partial derivatives ∂2

∂x1∂x2
f(x) and ∂2

∂x2∂x1
f(x) exist

and are continuous in a neighborhood of a point y ∈ R2. Show that
they are equal at the point. (Hints: If they are not equal, take a small
box around the point where their difference has constant sign. Now
apply Fubini’s theorem.)

23. Demonstrate that
∫ ∞

0

e−x2

dx =

√
π

2

by evaluating the integral of f(y) = y2e
−(1+y2

1)y
2
2 over the rectangle

(0,∞)× (0,∞).
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Differentiation

4.1 Introduction

Differentiation and integration are the two pillars on which all of calculus
rests. For real-valued functions of a real variable, all of the major issues
surrounding differentiation were settled long ago. For multivariate differen-
tiation, there are still some subtleties and snares. We adopt a definition of
differentiability that avoids most of the pitfalls and makes differentiation
of vectors and matrices relatively painless. In later chapters, this definition
also improves the clarity of exposition.
The main theme of differentiation is the short-range approximation of

curved functions by linear functions. A differential gives a recipe for car-
rying out such a linear approximation. Most linear approximations can
be improved by adding more terms in a Taylor series expansion. Adding
quadratic terms brings in second differentials. We will meet these in the
next chapter after we have mastered first differentials. Our current treat-
ment stresses theory and counterexamples rather than the nuts and bolts
of differentiation.

4.2 Univariate Derivatives

In this section we explore univariate differentiation in more detail. The stan-
dard repertoire of differentiable functions includes the derivatives nxn−1

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 4,
© Springer Science+Business Media New York 2013
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TABLE 4.1. Derivatives of some elementary functions

f(x) f ′(x) f(x) f ′(x) f(x) f ′(x)
xn nxn−1 ex ex lnx 1/x

sinx cosx cosx − sinx tanx 1 + tan2 x

sinhx coshx coshx sinhx tanhx 1− tanh2 x

arcsinx 1/
√
1− x2 arccosx −1/√1− x2 arctanx 1/(1 + x2)

arcsinhx 1/
√
x2 + 1 arccoshx 1/

√
x2 − 1 arctanhx 1/(1− x2)

of the monomials xn and, via the sum, product, and quotient rules, the
derivatives of all polynomials and rational functions. These functions are
supplemented by special functions such as lnx, ex, sinx, and cosx. Vir-
tually all of the special functions can be defined by power series or as the
solutions of differential equations. For instance, the system of differential
equations

(cosx)′ = − sinx

(sinx)′ = cosx

with the initial conditions cos 0 = 1 and sin 0 = 0 determines these trigono-
metric functions. We will take most of these facts for granted except to add
in the case of cosx and sinx that the solution of the defining system of
differential equations involves a particular matrix exponential. Table 4.1
lists the derivatives of the most important elementary functions.
It is worth emphasizing that differentiation is a purely local operation

and that differentiability at a point implies continuity at the same point.
The converse is clearly false. The functions

fn(x) =
{
xn x rational
0 x irrational

illustrate the local character of continuity and differentiability. For n > 0
the functions fn(x) are continuous at the point 0 but discontinuous every-
where else. In contrast, f ′

1(0) fails to exist while f ′
n(0) = 0 for all n ≥ 2.

In this instance, we must resort directly to the definition (3.1) to evaluate
derivatives.
We have already mentioned Fermat’s result that f ′(x) must vanish at any

interior extreme point. For example, suppose that c is a local maximum of
f(x) on (a, b). If f ′(c) > 0, then choose ε > 0 such that f ′(c)− ε > 0. This
choice then entails

f(x) > f(c) + [f ′(c)− ε](x− c)
> f(c)

for all x > c with x−c sufficiently small, contradicting the assumption that
c is a local maximum. If f ′(c) < 0, we reach a similar contradiction using
nearby points on the left of c.
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Fermat’s principle has some surprising implications. Among these is the
mean value theorem.

Proposition 4.2.1 Suppose f(x) is continuous on [a, b] and differentiable
on (a, b). Then there exists a point c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b − a).
Proof: Consider the function

g(x) = f(b)− f(x) + f(b)− f(a)
b− a (x− b).

Clearly, g(x) is also continuous on [a, b] and differentiable on (a, b). Fur-
thermore, g(a) = g(b) = 0. It follows that g(x) attains either a maximum or
a minimum at some c ∈ (a, b). At this point, g′(c) = 0, which is equivalent
to the mean value property.

The mean value theorem has the following consequences:

(a) If f ′(x) ≥ 0 for all x ∈ (a, b), then f(x) is increasing.

(b) If f ′(x) = 0 for all x ∈ (a, b), then f(x) is constant.

(c) If f ′(x) ≤ 0 for all x ∈ (a, b), then f(x) is decreasing.

For an alternative proof, one can build on Example 3.2.4 of Chap. 3. See
Problem 4 of that chapter.

Example 4.2.1 A Trigonometric Identity

The function f(x) = cos2 x+ sin2 x has derivative

f ′(x) = −2 cosx sinx+ 2 sinx cos x = 0.

Therefore, f(x) = f(0) = 1 for all x.

Here are two related matrix applications of univariate differentiation.

Example 4.2.2 Differential Equations and the Matrix Exponential

The derivative of a vector or matrix-valued function f(x) with domain
(a, b) is defined entry by entry. We have already met the matrix-valued
differential equation N ′(t) = MN(t) with initial condition N(0) = I. To
demonstrate that N(t) = etM is a solution, consider the difference quotient

e(t+s)M − etM
s

=
1

s

∞∑
j=1

(t+ s)j − tj
j!

M j

= M

∞∑
j=1

tj−1

(j − 1)!
M j−1 +

∞∑
j=1

(t+ s)j − tj − jtj−1s

sj!
M j

= MetM +

∞∑
j=1

(t+ s)j − tj − jtj−1s

sj!
M j .



78 4. Differentiation

We now apply the error estimate (3.10) of Chap. 3 for the first-order Taylor
expansion of the function f(t) = tj . If c bounds |t+s| for s near 0, it follows
that ∣∣(t+ s)j − tj − jtj−1s

∣∣ ≤ j(j − 1)cj−2s2/2

and that∥∥∥∥
∞∑
j=1

(t+ s)j − tj − jtj−1s

sj!
M j

∥∥∥∥ ≤ |s|
2

∞∑
j=2

j(j − 1)cj−2

j!
‖M‖j

=
|s|
2
‖M‖2ec‖M‖.

This is enough to show that

lim
s→0

∥∥∥e(t+s)M − etM
s

−MetM
∥∥∥ = 0.

One can demonstrate that etM is the unique solution of the differential
equation N ′(t) = MN(t) subject to N(0) = I by considering the ma-
trix P (t) = e−tMN(t) using any solution N(t). Because the product rule
of differentiation pertains to matrix multiplication as well as to ordinary
multiplication,

P ′(t) = −Me−tMN(t) + e−tMMN(t) = 0.

By virtue of part (b) of Proposition 4.2.1, P (t) is the constant matrix
P (0) = I. If we take N(t) = etM , then this argument demonstrates
that e−tM is the matrix inverse of etM . If we take N(t) to be an arbi-
trary solution of the differential equation, then multiplying both sides of
e−tMN(t) = I on the left by etM implies that N(t) = etM as claimed.

Example 4.2.3 Matrix Logarithm

Let M be a square matrix with ‖M‖ < 1. It is tempting to define the
logarithm of I −M by the series expansion

ln(I −M ) = −
∞∑
k=1

Mk

k

valid for scalars. This definition does not settle the question of whether

eln(I−M) = I −M . (4.1)

The traditional approach to such issues relies on Jordan canonical forms
[137]. Here we would like to sketch an analytic proof. Consider the matrix-
valued functions

f(t) = eln(I−tM)

fn(t) = e−
∑n

k=1
tkMk/k

= e−tMe−t2M2/2 · · · e−tnMn/n
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of the scalar t. It is clear that fn(t) converges uniformly to f(t) on every
interval [0, 1 + δ) for δ > 0 small enough. Furthermore, the product rule,
the chain rule, and the law of exponents show that

f ′
n(t) = −(M + tM2 + · · ·+ tn−1Mn)fn(t)

= −M(I − tnMn)(I − tM )−1fn(t).

Because I − tnMn tends to I, it follows that

lim
n→∞ f ′

n(t) = −M(I − tM)−1f(t)

uniformly on [0, 1 + δ). This in turn implies

f(t)− f(0) = lim
n→∞[fn(t)− fn(0)]

= lim
n→∞

∫ t

0

f ′
n(s) ds

= −M
∫ t

0

(I − sM)−1f(s) ds

by virtue of Problem 17 of Chap. 3. Differentiating this equation with
respect to t produces the differential equation

f ′(t) = −M(I − tM)−1f(t) (4.2)

with initial condition f(0) = I. Clearly f(t) = I − tM is one solution
of the differential equation (4.2). In view of Problem 16, this solution is
unique. Comparing the two formulas for f(t) at the point t = 1 now gives
the desired conclusion (4.1).

4.3 Partial Derivatives

There are several possible ways to extend differentiation to real-valued
functions on Rn. The most familiar is the partial derivative

∂if(x) =
∂

∂xi
f(x) = lim

t→0

f(x+ tei)− f(x)
t

,

where ei is one of the standard unit vectors spanning Rn. There is nothing
sacred about the coordinate directions. The directional derivative along the
direction v is

dvf(x) = lim
t→0

f(x+ tv)− f(x)
t

.
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If we confine t ≥ 0 in this limit, then we have a forward derivative along v.
Readers should be on the alert that we will use the same symbol dvf(x) for
both directional derivatives. The context will make it clear which concept
is pertinent.
To illustrate these definitions, consider the function

f(x) =
√
|x1x2|

on R2. It is clear that both partial derivatives are 0 at the origin. Along
a direction v = (v1, v2)

∗ with neither v1 = 0 nor v2 = 0, consider the
difference quotient

f(0+ tv)− f(0)
t

=
|t|√|v1v2|

t
.

This has limit
√|v1v2| as long as we restrict t > 0. Thus, the forward

directional derivative exists, but the full directional derivative does not.
For another example, let

f(x) =
{
x1 + x2 if x1 = 0 or x2 = 0
1 otherwise .

This function is clearly discontinuous at the origin of R2, but the partial
derivatives ∂1f(0) = 1 and ∂2f(0) = 1 are well defined there. These and
similar anomalies suggest the need for a carefully structured theory of dif-
ferentiability. Such a theory is presented in the next section.
Second and higher-order partial derivatives are defined in the obvious

way. For typographical convenience, we will occasionally employ such ab-
breviations as

∂2ijf(x) =
∂2

∂xi∂xj
f(x).

Readers will doubtless recall from calculus the equality of mixed second
partial derivatives. This property can fail. For example, suppose we define
f(x) = g(x1), where g(x1) is nowhere differentiable. Then ∂2f(x) and
∂212f(x) are identically 0 while ∂1f(x) does not even exist. The key to
restoring harmony is to impose continuity in a neighborhood of the current
point.

Proposition 4.3.1 Suppose the real-valued function f(y) on R2 has par-
tial derivatives ∂1f(y), ∂2f(y), and ∂

2
12f(y) on some open set. If ∂212f(y)

is continuous at a point x in the set, then ∂221f(x) exists and

∂2

∂x2∂x1
f(x) = ∂221f(x) = ∂212f(x) =

∂2

∂x1∂x2
f(x). (4.3)

This result extends in the obvious way to the equality of second mixed par-
tials for functions defined on open subsets of Rn for n > 2.
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Proof: Consider the first difference by u1

g(x2) = Δ1f(x1, x2) = f(x1 + u1, x2)− f(x1, x2)

and the second difference by u2

Δ21f(x1, x2) = g(x2 + u2)− g(x2)
= f(x1 + u1, x2 + u2)− f(x1, x2 + u2)

− f(x1 + u1, x2) + f(x1, x2).

Applying the mean value theorem twice gives

Δ21f(x1, x2) = u2g
′(x2 + θ2u2)

= u2[∂2f(x1 + u1, x2 + θ2u2)− ∂2f(x1, x2 + θ2u2)]

= u1u2∂
2
12f(x1 + θ1u1, x2 + θ2u2)

for θ1 and θ2 in (0, 1). In view of the continuity of ∂212f(y) at x, it follows
that

lim
‖u‖→0

Δ21f(x1, x2)

u1u2
= ∂212f(x1, x2)

regardless of how the limit is approached. This proves the existence of the
iterated limit

lim
u2→0

lim
u1→0

Δ21f(x1, x2)

u1u2
= lim

u2→0

∂1f(x1, x2 + u2)− ∂1f(x1, x2)
u2

= ∂221f(x1, x2)

and simultaneously the equality of mixed partials. Problem 22 of Chap. 3
offers an alternative proof under stronger hypotheses.

4.4 Differentials

The question of when a real-valued function is differentiable is perplexing
because of the variety of possible definitions. In choosing an appropriate
definition, we are governed by several considerations. First, it should be
consistent with the classical definition of differentiability on the real line.
Second, continuity at a point should be a consequence of differentiability
at the point. Third, all directional derivatives should exist. Fourth, the
differential should vanish wherever the function attains a local maximum
or minimum on the interior of its domain. Fifth, the standard rules for
combining differentiable functions should apply. Sixth, the logical proofs of
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the rules should be as transparent as possible. Seventh, the extension to
vector-valued functions should be painless. Eighth and finally, our geomet-
ric intuition should be enhanced.
We now present a definition conceived by Constantin Carathéodory [40]

and expanded by recent authors [1, 18, 29, 160] that fulfills these condi-
tions. A real-valued function f(y) on an open set S ⊂ Rm is said to be
differentiable at x ∈ S if a function s(y,x) exists for y near x satisfying

f(y)− f(x) = s(y,x)(y − x) (4.4)

lim
y→x

s(y,x) = s(x,x).

The row vector s(y,x) is called a slope function. We will see in a moment
that its limit s(x,x) defines the differential df(x) of f(y) at x.
The standard definition of differentiability due to Fréchet reads

f(y)− f(x) = df(x)(y − x) + o(‖y − x‖)

for y near the point x. The row vector df(x) appearing here is again termed
the differential of f(y) at x. Fréchet’s definition is less convenient than
Carathéodory’s because the former invokes approximate equality rather
than true equality. Observe that the error [s(y,x) − df(x)](y − x) under
Carathéodory’s definition satisfies

|[s(y,x)− df(x)](y − x)| ≤ ‖s(y,x)− df(x)‖ · ‖y − x‖,

which is o(‖y − x‖) as y tends to x in view of the continuity of s(y,x).
Thus, Carathéodory’s definition implies Fréchet’s definition. The converse
is trivial when the argument of f(x) is a scalar, for then the difference
quotient

s(y, x) =
f(y)− f(x)

y − x (4.5)

serves as a slope function. Proposition 4.4.1 addresses the general case.
Carathéodory’s definition (4.4) has some immediate consequences. For

example, it obviously compels f(y) to be continuous at x. Furthermore, if
we send t to 0 in the equation

f(x+ tv)− f(x)
t

= s(x+ tv,x)v, (4.6)

then it is clear that the directional derivative dvf(x) exists and equals
s(x,x)v. The special case v = ei shows that the ith component of s(x,x)
reduces to the partial derivative ∂if(x). Since s(x,x) and df(x) agree
component by component, they are equal, and, in general, we have the
formula dvf(x) = df(x)v for the directional derivative.
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Fermat’s principle that the differential of a function vanishes at an interior
maximum or minimum point is also trivial to check in this context. Suppose
x affords a local minimum of f(y). Then

f(x+ tv)− f(x) = ts(x+ tv,x)v ≥ 0

for all v and small t > 0. Taking limits in the identity (4.6) now yields
the conclusion df(x)v ≥ 0. The only way this can hold for all v is for
df(x) = 0. If x occurs on the boundary of the domain of f(y), then we can
still glean useful information. For example, if f(y) is differentiable on the
closed interval [c, d] and c provides a local minimum, then the condition
f ′(c) ≥ 0 must hold.
The extension of the definition of differentiability to vector-valued

functions is equally simple. Suppose f(y) maps an open subset S ⊂ Rm

into Rn. Then f(y) is said to be differentiable at x ∈ S if there exists an
n×m matrix-valued function s(y,x) continuous at x and satisfying equa-
tion (4.4) for y near x. The limit limy→x s(y,x) = df(x) is again called the
differential of f(y) at x. The rows of the differential are the differentials of
the component functions of f(x). Thus, f(y) is differentiable at x if and
only if each of its components is differentiable at x. This characterization is
also valid under Fréchet’s definition of the differential and leads to a simple
proof of the second half of the next proposition.

Proposition 4.4.1 Carathéodory’s definition and Fréchet’s definition of
the differential are logically equivalent.

Proof: We have already proved that Carathéodory’s definition implies
Fréchet’s definition. The converse is valid because it is valid for scalar-
valued functions. For a matrix-oriented proof of the converse, suppose that
f(y) is Fréchet differentiable at x. If we define the slope function

s(y,x) =
1

‖y − x‖2 [f(y)− f(x)− df(x)(y − x)](y − x)∗ + df(x)

for y �= x, then the identity f(y)− f(x) = s(y,x)(y − x) certainly holds.
To show that s(y,x) tends to df(x) as y tends to x, we now observe that
s(y,x) = uv∗ + df(x) for vectors u and v. In view of the Cauchy-Schwarz
inequality, the spectral norm of the matrix outer product uv∗ satisfies

‖uv∗‖ = sup
w 
=0

‖uv∗w‖
‖w‖ = sup

w 
=0

|v∗w|‖u‖
‖w‖ ≤ ‖u‖‖v‖.

In the current setting this translates into the inequality

‖uv∗‖ ≤ ‖f(y)− f(x)− df(x)(y − x)‖
‖y − x‖ · ‖y − x‖

‖y − x‖ .

Hence, Fréchet’s condition implies limy→x ‖s(y,x)− df(x)‖ = 0.
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In many cases it is easy to identify a slope function. We have already
mentioned slope functions defined by difference quotients. It is worth stress-
ing that while differentials are uniquely determined, slope functions are not.
The real-valued function f(y) = y1y2 is typical. Indeed, the identities

y1y2 − x1x2 = x2(y1 − x1) + y1(y2 − x2)
y1y2 − x1x2 = y2(y1 − x1) + x1(y2 − x2)

define two equally valid slope functions at x.

Example 4.4.1 Differentials of Linear and Quadratic Functions

A linear transformation f(y) = My is differentiable with slope func-
tion s(y,x) = M . The real-valued coordinate functions yi of y ∈ Rn

fall into this category. For a symmetric matrix M , the quadratic form
g(x) = x∗Mx has the difference

y∗My − x∗Mx = (y + x)∗M(y − x).

This gives the differential dg(x) = 2x∗M and gradient ∇g(x) = 2Mx.

Example 4.4.2 Differential of a Multilinear Map

A multilinear map M [u1, . . . ,uk] as defined in Example 2.5.10 is differen-
tiable. The expansion

M [v1, . . . ,vk]−M [u1, . . . ,uk] = M [v1 − u1,v2, . . . ,vk]

+M [u1,v2 − u2, . . . ,vk]

...

+M [u1,u2, . . . ,vk − uk]

displays the slope function as a sum. The corresponding differential

dM [u1, . . . ,uk][w1, . . . ,wk] = M [w1,u2, . . . ,uk]

+M [u1,w2, . . . ,uk]

...

+M [u1,u2, . . . ,wk].

emerges in the limit.

The rules for calculating differentials of algebraic combinations of differ-
entiable functions flow easily from Carathéodory’s definition.

Proposition 4.4.2 If the two functions f(x) and g(x) map the open set
S ⊂ Rm differentiably into Rn, then the following combinations are differ-
entiable and have the displayed differentials:
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(a) d[αf(x) + βg(x)] = αdf(x) + βdg(x) for all constants α and β.

(b) d[f(x)∗g(x)] = f(x)∗dg(x) + g(x)∗df(x).

(c) d[f(x)−1] = −f(x)−2df(x) when n = 1 and f(x) �= 0.

Proof: Let the slope functions for f(x) and g(x) at x be sf (y,x) and
sg(y,x). Rule (a) follows by taking the limit of the slope function identified
in the equality

αf(y) + βg(y)− αf(x)− βg(x) = [αsf (y,x) + βsg(y,x)](y − x).

Rule (b) stems from the equality

f(y)∗g(y)− f(x)∗g(x)
= [f(y)− f(x)]∗g(y) + f(x)∗[g(y)− g(x)]
= g(y)∗sf (y,x)(y − x) + f(x)∗sg(y,x)(y − x),

and rule (c) stems from the equality

f(y)−1 − f(x)−1 = −f(y)−1f(x)−1[f(y)− f(x)]
= −f(y)−1f(x)−1sf (y,x)(y − x).

The chain rule also has an beautifully straightforward proof.

Proposition 4.4.3 Suppose f(x) maps the open set S ⊂ Rk differentiably
into Rm and g(z) maps the open set T ⊂ Rm differentiably into Rn. If the
image f(S) is contained in T , then the composition g◦f(x) is differentiable
with differential dg ◦ f(x) df(x).
Proof: Let sf (y,x) be the slope function of f(y) for y near x and sg(z,w)
be the slope function of g(z) for z near w = f(x). The chain rule follows
after taking the limit of the slope function identified in the equality

g ◦ f(y)− g ◦ f(x) = sg[f(y), f(x)][f(y)− f(x)]
= sg[f(y), f(x)]sf (y,x)(y − x).

The chain rule is much harder to prove under Fréchet’s definition.
Of course, these rules do not exhaust the techniques for finding differ-

entials. Here is an example where we must fall back on the definition. See
Problem 17 for a generalization.

Example 4.4.3 Differential of f+(x)
2

Suppose f(x) is a real-valued differentiable function. Define the function
f+(x) = max{f(x), 0}. In general, f+(x) is not a differentiable function,
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but g(x) = f+(x)
2 is. This is obvious on the open set {x : f(x) < 0},

where dg(x) = 0, and on the open set {x : f(x) > 0}, where

dg(x) = 2f(x)df(x).

The troublesome points are those with f(x) = 0. Near such a point we
have f(y)− 0 = s(y,x)(y − x), and

g(y)− 0 = f+(y)s(y,x)(y − x).

It follows that dg(x) = f+(x)df(x) = 0∗ when f(x) = 0. In general, all
three cases can be summarized by the same rule dg(x) = 2f+(x)df(x).

Example 4.4.4 Forward Directional Derivative of max1≤i≤p gi(x)

As the example |x| = max{−x, x} illustrates, the maximum of two differen-
tiable functions may not be differentiable. For many purposes in optimiza-
tion, forward directional derivatives are adequate. Consider the maximum
f(x) = max1≤i≤p gi(x) of a finite number of real-valued functions differ-
entiable at the point y. To show that f(x) possesses all possible forward
directional derivatives at y, let v �= 0 be an arbitrary direction and tn
any sequence of positive numbers converging to 0. It suffices to prove that
the difference quotients t−1

n [f(y + tnv) − f(y)] tend to a limit dvf(y) in-
dependent of the specific sequence tn. Because the gi(x) are differentiable
at y, they are also continuous at y. Those gi(x) with gi(y) < f(y) play
no role in determining f(x) near y and can be discarded in calculating a
directional derivative. Hence, we assume without loss of generality that all
gi(y) = f(y). With this proviso, we claim that dvf(y) = max1≤i≤p dgi(y)v.
The inequality

lim inf
n→∞

f(y + tnv)− f(y)
tn

≥ lim inf
n→∞

gi(y + tnv)− gi(y)
tn

= dgi(y)v

for any i is obvious. Suppose that

lim sup
n→∞

f(y + tnv)− f(y)
tn

> max
1≤i≤p

dgi(y)v. (4.7)

In view of the definition of lim sup, there exists an ε > 0 and a subsequence
tnm along which

f(y + tnmv)− f(y)
tnm

≥ max
1≤i≤p

dgi(y)v + ε.

Passing to a subsubsequence if necessary, we can choose a j such that

f(y + tnmv)− f(y)
tnm

=
gj(y + tnmv)− gj(y)

tnm
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for all m. Taking limits now produces the contradiction

dgj(y)v ≥ max
1≤i≤p

dgi(y)v + ε.

Hence, inequality (4.7) is false, and the difference quotients tend to the
claimed limit. Appendix A.6 treats this example in more depth.

Example 4.4.5 Analytic Functions

When we come to complex-valued functions f(z) of a complex variable z,
we are confronted with a dilemma in defining differentiability. On the one
hand, we can substitute complex arithmetic operations for real arithmetic
operations in Carathéodory’s definition. If we adopt this perspective, then
the equations

f(z)− f(w) = s(z,w)(z −w) (4.8)

lim
z→w

s(z,w) = s(w,w)

are summarized by saying that f(z) is analytic (or holomorphic) at w.
Most of the results we have proved for differentiable functions carry over
without change to analytic functions. The chain rule is a case in point.
On the other hand, we can view the complex plane as R2 and decompose
z = x + iy and f(z) = g(z) + ih(z) into their real and imaginary parts
with i =

√−1. In this context, f(z) is differentiable at w if there exists a
2× 2 slope matrix m(z,w) satisfying

(
g(z)− g(w)
h(z)− h(w)

)
= m(z,w)

(
x− u
y − v

)
(4.9)

lim
z→w

m(z,w) = m(w,w)

for w = u + iv. A function f(z) analytic at w is differentiable at w.
Indeed, if we decompose s(z,w) = r(z,w) + it(z,w) in equation (4.8),
then identifying real and imaginary parts demonstrates that the matrix

m(z,w) =

(
r(z,w) −t(z,w)
t(z,w) r(z,w)

)

satisfies equation (4.9). Hence, analyticity is stronger than differentiability.
Taking limits on z in this definition of m(z,w) furthermore shows that
f(z) satisfies the Cauchy-Riemann equations

∂

∂x
g(z) =

∂

∂y
h(z)

− ∂

∂y
g(z) =

∂

∂x
h(z)
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at z = w. A beautiful theory with surprising consequences can be
constructed for analytic functions [129, 244]. For example, every analytic
function on an open domain is infinitely differentiable on that domain. The
price we pay for such powerful results is that the class of analytic functions
is much smaller than the class of differentiable functions of R2 into itself.
For example the failure of the Cauchy-Riemann equations implies that the
complex conjugate function x+ iy �→ x− iy is not analytic even though it
is differentiable.

4.5 Multivariate Mean Value Theorem

The mean value theorem is one of the most useful tools of the differential
calculus. Here is a simple generalization to multiple dimensions.

Proposition 4.5.1 Let the function f(y) map an open subset S of Rm

to Rn. If f(y) is differentiable on a neighborhood of x ∈ S, then

f(y) = f(x) +

∫ 1

0

df [x+ t(y − x)] dt (y − x) (4.10)

for y near x. If S is convex, then identity (4.10) holds for all y ∈ S.
Proof: Integrating component by component, we need only consider the
case n = 1. According to the chain rule stated in Proposition 4.4.3, the
real-valued function g(t) = f [x + t(y − x)] of the scalar t has differential
dg(t) = df [x+t(y−x)](y−x). Because differentials and derivatives coincide
on the real line, equality (4.10) follows from the fundamental theorem of
calculus applied to g(t).

The notion of continuous differentiability is ambiguous. On the one hand,
we could say that f(y) is continuously differentiable around x if it possesses
a slope function s(y, z) that is jointly continuous in its two arguments.
This implies the continuity of df(y) = s(y,y) around x. On the other
hand, continuous differentiability suggests that we postulate the continuity
of df(y) to start with. In this case, equation (4.10) yields the slope function

s(y, z) =

∫ 1

0

df [z + t(y − z)] dt. (4.11)

If df(y) is continuous near x, then this choice of s(y, z) is jointly continuous
in its arguments. Hence, the two definitions of continuous differentiability
coincide. It is noteworthy that the particular slope function (4.11) is sym-
metric in the sense that s(y, z) = s(z,y).

Example 4.5.1 Characterization of Constant Functions
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If the differential df(x) of a real-valued function f(x) vanishes on an open
connected set S ⊂ Rn, then f(x) is constant there. To establish this fact, let
z be an arbitrary point of S and define T = {x ∈ S : f(x) = f(z)}. Given
the continuity of f(x), it is obvious that T is closed relative to S. To prove
that T = S, it suffices to show that T is also open relative to S. Indeed, if
T and S \ T are both nonempty open sets, then they disconnect S. Now
any point x ∈ T is contained in a ball B(x, r) ⊂ S. For y ∈ B(x, r),
formula (4.10) and the vanishing of the differential show that f(y) = f(x).
Thus, T is open.

Example 4.5.2 Failure of Proposition 4.2.1

Consider the function f(x) = (cosx, sinx)∗ from R to R2. The obvious
generalization of the mean value theorem stated in Proposition 4.2.1 fails
because there is no x ∈ (0, 2π) satisfying

0 = f(2π)− f(0) =

(− sinx
cosx

)
(2π − 0).

In this regard recall Example 4.2.1.

In spite of this counterexample, the bound

‖f(y)− f(x)‖ ≤
∥∥∥
∫ 1

0

df [x+ t(y − x)] dt
∥∥∥ · ‖y − x‖

≤ sup
t∈[0,1]

‖df [x+ t(y − x)]‖ · ‖y − x‖ (4.12)

is often an adequate substitute for theoretical purposes for functions with
a convex domain. See inequality (3.5) of Chap. 3 for a proof.

4.6 Inverse and Implicit Function Theorems

Two of the harder theorems involving differentials are the inverse and im-
plicit function theorems. The definition of differentials through slope func-
tions tends to make the proofs easier to understand. The current proof
of the inverse function theorem also features an interesting optimization
argument [1].

Proposition 4.6.1 Let f(x) map an open set U ⊂ Rn into Rn. If f(x) is
continuously differentiable on U and the square matrix df(x) is invertible
at the point z, then there exist neighborhoods V of z and W of f(z) such
that the inverse function g(y) satisfying g ◦ f(x) = x exists and maps W
onto V . Furthermore, g(x) is continuously differentiable with differential
dg(x) = df [g(x)]−1.
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Proof: Let f(x) have continuous slope function s(y,x). If s(y,x) is
invertible as a square matrix, then the relations

f(y)− f(x) = s(y,x)(y − x)

and

y − x = s(y,x)−1[f(y)− f(x)]
are equivalent. Now suppose we know f(x) has functional inverse g(y).
Exchanging g(y) for y and g(x) for x in the second relation above produces

g(y)− g(x) = s[g(y), g(x)]−1(y − x), (4.13)

and taking limits gives the claimed differential, provided g(y) is continu-
ous. To prove the continuity of g(y) and therefore the joint continuity of
s[g(y), g(x)]−1, it suffices to show that ‖s[g(y), g(x)]−1‖ is locally bounded.
Continuity in this circumstance is then a consequence of the bound

‖g(y)− g(x)‖ ≤ ‖s[g(y), g(x)]−1‖ · ‖y − x‖
flowing from equation (4.13). In view of these remarks, the difficult part of
the proof consists in proving that g(y) exists.
Given the continuous differentiability of f(x), there is some neighbor-

hood V of z such that s(y,x) is invertible for all x and y in V . Further-
more, we can take V small enough so that the norm ‖s(y,x)−1‖ is bounded
there. On V , the equality f(y) − f(x) = s(y,x)(y − x) shows that f(x)
is one-to-one. Hence, all that remains is to show that we can shrink V so
that f(x) maps V onto an open subset W containing f(z).
For some r > 0, the ball B(z, r) of radius r centered at z is contained

in V . The sphere S(z, r) = {x : ‖x − z‖ = r} and the ball B(z, r) are
disjoint and must have disjoint images under f(x) because f(x) is one-to-
one on V . In particular, f(z) is not contained in f [S(z, r)]. The latter set
is compact because S(z, r) is compact and f(x) is continuous. Let d > 0
be the distance from f(z) to f [S(z, r)].
We now define the set W mentioned in the statement of the proposition

to be the ball B[f(z), d/2] and show that W is contained in the image
of B(z, r) under f(x). Take any y ∈ W = B[f(z), d/2]. The particular
function h(x) = ‖y − f(x)‖2 is differentiable and attains its minimum on
the closed ball C(z, r) = {x : ‖x − z‖ ≤ r}. This minimum is strictly
less than (d/2)2 because z certainly performs this well. Furthermore, the
minimum cannot be reached at a point u ∈ S(z, r), for then

‖f(u)− f(z)‖ ≤ ‖f(u)− y‖+ ‖y − f(z)‖ < 2d/2,

contradicting the choice of d. Thus, h(x) reaches its minimum at some point
u in the open set B(z, r). Fermat’s principle requires that the differential

dh(x) = −2[y − f(x)]∗df(x) (4.14)

vanish at u. Given the invertibility of df(u), we therefore have f(u) = y.
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Finally replace V by the open set B(z, r)∩ f−1{B[f(z), d/2]} contained
within it. Our arguments have shown that f(x) is one-to-one from V onto
W = B[f(z), d/2]. This allows us to define the inverse function g(x) from
W onto V and completes the proof.

Example 4.6.1 Polar Coordinates

Consider the transformation

r = ‖x‖
θ = arctan(x2/x1)

to polar coordinates in R2. A brief calculation shows that this transforma-
tion has differential

( ∂
∂x1

r ∂
∂x2

r
∂

∂x1
θ ∂

∂x2
θ

)
=

(
cos θ sin θ
− 1

r sin θ
1
r cos θ

)
.

Because the determinant of the differential is 1/r, the transformation is
locally invertible wherever r �= 0. Excluding the half axis {x1 ≤ 0, x2 = 0},
the polar transformation maps the plane one-to-one and onto the open set
(0,∞)× (−π, π). Here the inverse transformation reduces to

x1 = r cos θ

x2 = r sin θ

with differential

(
cos θ −r sin θ
sin θ r cos θ

)
=

(
cos θ sin θ
− 1

r sin θ
1
r cos θ

)−1

.

We now turn to the implicit function theorem.

Proposition 4.6.2 Let f(x,y) map an open set S ⊂ Rm+n into Rm. Sup-
pose that f(a, b) = 0 and that f(x,y) is continuously differentiable on a
neighborhood of (a, b) ∈ S. If we split the differential

df(x,y) = [∂1f(x,y), ∂2f(x,y)]

into an m×m block and an m×n block, and if ∂1f(a, b) is invertible, then
there exists a neighborhood U of b ∈ Rn and a continuously differentiable
function g(y) from U into Rm such that f [g(y),y)] = 0. Furthermore, g(y)
is unique and has differential

dg(y) = −∂1f [g(y),y]−1∂2f [g(y),y].
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Proof: The function

h(x,y) =

(
f(x,y)

y

)

from S to Rm+n is continuously differentiable with differential

dh(x,y) =

(
∂1f(x,y) ∂2f(x,y)

0 In

)
.

To apply the inverse function theorem to h(x,y), we must check that
dh(a, b) is invertible. This is straightforward because

(
∂1f(a, b) ∂2f(a, b)

0 In

)(
u
v

)
= 0

can only occur if v = 0 and ∂1f(a, b)u = 0. In view of the invertibility of
∂1f(a, b), the second of these equalities entails u = 0.
Given the invertibility of dh(a, b), the inverse function theorem implies

that h(x,y) possesses a continuously differentiable inverse that maps an
open set W containing (0, b) onto an open set V containing (a, b). The
inverse function takes a point (z,y) into the point [k(z,y),y]. Consider the
function g(y) = k(0,y) defined for (0,y) ∈ W . Being open, W contains a
ball of radius r around (0, b). There is no harm in restricting the domain
of g(y) to the ball U = {y ∈ Rn : ‖y − b‖ < r}. On this domain, g(y) is
continuously differentiable and f [g(y),y] = 0. Because h(x,y) is one-to-
one, g(y) is uniquely determined.
Finally, we can identify the differential of g(y) by constructing a slope

function. If we let f(x,y) have slope function [s1(u,v,x,y), s2(u,v,x,y)]
at (x,y), then

0 = f [g(v),v]− f [g(y),y]
= s1[g(v),v, g(y),y][g(v)− g(y)] + s2[g(v),v, g(y),y](v − y).

The invertibility of s1[g(v),v, g(y),y] for v near y therefore gives

g(v)− g(y) = −s1[g(v),v, g(y),y]−1s2[g(v),v, g(y),y](v − y).

In the limit as v approaches y, we recover the differential dg(y).

Example 4.6.2 Circles and the Implicit Function Theorem

The function f(x, y) = x2 + y2 − r2 has differential df(x, y) = (2x, 2y).
Unless a = 0, the conditions of the implicit function theorem apply at
(a, b). The choice

g(y) = sgn(a)
√
r2 − y2 with g′(y) = − y

x
.

clearly satisfies g(b) = a and g(y)2 + y2 − r2 = 0.
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Example 4.6.3 Tangent Vectors and Tangent Curves

The intuitive discussion of tangent vectors in Sect. 1.4 can be made rigorous
by introducing the notion of a tangent curve at the point x. This is simply a
differentiable curve v(s) having a neighborhood of the scalar 0 as its domain
and satisfying v(0) = x and gi[v(s)] = 0 for all equality constraints and all
s sufficiently close to 0. If we apply the chain rule to the composite function
gi[v(s)] = 0, then the identity dgi(x)v

′(0) = 0 emerges. The vector w =
v′(0) is said to be a tangent vector at x. Conversely, ifw satisfies dgi(x)w =
0 for all i, then we can construct a tangent curve at x with tangent vectorw.
This application of the implicit function theorem requires a little notation.
Let G(x) be the vector-valued function with ith component gi(x). The
differential dG(x) is the Jacobi matrix whose ith row is the differential
dgi(x). In agreement with our earlier notation, ∇G(x) is the transpose of
dG(x).
Now consider the relationship

h(u, s) = G[x+∇G(x)u+ sw] = 0.

Applying the chain rule to the function h(u, s) gives

∂uh(0, 0) = dG[x+∇G(x)u+ sw]∇G(x)
∣∣∣
(u,s)=(0,0)

= dG(x)∇G(x).
Since G(x) = 0 and dG(x)∇G(x) is invertible when dG(x) has full row
rank, the implicit function theorem implies that we can solve for u as a
function of s in a neighborhood of 0. If we denote the resulting continuously
differentiable function by u(s), then our tangent curve is

v(s) = x+∇G(x)u(s) + sw.

By definition u(0) = 0, v(0) = x, and G[v(s)] = 0 for all s close to 0. Thus,
we need only check that v′(0) = w. Because

v′(0) = ∇G(x)u′(0) +w,

it suffices to check that ∇G(x)u′(0) = 0. However, in view of the equality

0 = u′(0)∗0 = u′(0)∗
d

ds
h[u(0), 0] = u′(0)∗dG(x)[∇G(x)u′(0) +w]

and the assumption dG(x)w = 0, this fact is obvious.

4.7 Differentials of Matrix-Valued Functions

To define the differential of a matrix-valued function [184], it helps to unroll
Carathéodory’s definition of differentiability for a vector-valued function
f(x). Let us rewrite the slope expansion f(y)− f(x) = s(y,x)(y − x) as



94 4. Differentiation

f(y)− f(x) =
m∑
j=1

sj(y,x)(yj − xj) (4.15)

using the columns sj(y,x) of the slope matrix s(y,x). This notational
retreat retains the linear dependence of the difference f(y) − f(x) on
the increment y − x and suggests how to deal with matrix-valued func-
tions. The key step is simply to re-interpret equation (4.15) by replacing
the vector-valued function f(x) by a matrix-valued function f(x) and the
vector-valued slope sj(y,x) by a matrix-valued slope sj(y,x). We retain
the requirement that limy→x sj(y,x) = sj(x,x) for each j. The partial dif-
ferential matrices sj(x,x) = ∂jf(x) collectively constitute the differential
of f(x). The gratifying thing about this revised definition of differentia-
bility is that it applies to scalars, vectors, and matrices in a unified way.
Furthermore, the components of the differential match the scalar, vector,
or matrix nature of the original function. We now illustrate the virtue of
this perspective by several examples involving matrix differentials.

Example 4.7.1 The Sum and Transpose Rules

The rules

d[f(x) + g(x)] = df(x) + dg(x), df(x)∗ = [df(x)]∗

flow directly from the above definition of a differential.

Example 4.7.2 The Chain Rule

Consider the composition g◦f(x) of a matrix-valued function with a vector-
valued function. Let g(y) have the slope expansion

g(y)− g(x) =
∑
j

tj(y,x)(yj − xj),

and let the jth component fj(v) of f(v) have the slope expansion

fj(v)− fj(u) =
∑
k

sjk(v,u)(vk − uk).

Then the identity

g ◦ f(v)− g ◦ f(u) =
∑
j

tj [f(v), f(u)][fj(v)− fj(u)]

=
∑
j

tj [f(v), f(u)]
∑
k

sjk(v,u)(vk − uk)

shows that g ◦ f(v) has a differential with
∑

j ∂jg[f(u)]∂kfj(u) as its kth
component.
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Example 4.7.3 The Product Rule

The matrix product f(y)g(y) satisfies the identities

f(y)g(y)− f(x)g(x) = [f(y)− f(x)]g(y) + f(x)[g(y)− g(x)]
= f(y)[g(y)− g(x)] + [f(y)− f(x)]g(x).

Substituting the slope formulas

f(y)− f(x) =
∑
k

sk(y,x)(yk − xk)

g(y)− g(x) =
∑
k

tk(y,x)(yk − xk),

in either identity demonstrates that f(y)g(y) possesses a differential with
kth component ∂kf(x)g(x) + f(x)∂kg(x) at x.

When the product f(x)g(x) is a square matrix, we can apply the trace
operator to the difference f(y)g(y)− f(x)g(x) and conclude that

∂k tr[f(x)g(x)] = tr[∂kf(x)g(x) + f(x)∂kg(x)].

If f(x) is a square matrix, then we can differentiate polynomials in the ar-
gument f(x). In view of the sum rule, it suffices to show how to differentiate
powers of f(x). For example,

∂k[f(x)]
3 = ∂kf(x)[f(x)]

2 + f(x)∂k[f(x)]
2

= ∂kf(x)[f(x)]
2 + f(x)∂kf(x)f(x) + [f(x)]2∂kf(x).

In general,

∂k[f(x)]
n = ∂kf(x)f(x)

n−1 + · · ·+ f(x)n−1∂kf(x).

Because matrix multiplication is not commutative, further simplification
is impossible. Differentiation of polynomials constitutes a special case of
differentiation of power series as discussed in a moment.

Example 4.7.4 The Inverse Rule

Suppose f(y) is an invertible matrix with slope expansion

f(y)− f(x) =
∑
k

sk(y,x)(yk − xk).

Either of the identities

f(y)−1 − f(x)−1 = −f(x)−1[f(y)− f(x)]f(y)−1

= f(x)−1
∑
k

sk(y,x)(yk − xk)f(y)−1
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f(y)−1 − f(x)−1 = −f(y)−1[f(y)− f(x)]f(x)−1

= f(y)−1
∑
k

sk(y,x)(yk − xk)f(x)−1

entail a differential of f(y)−1 with kth component −f(x)−1∂kf(x)f(x)
−1

at the point x.

Example 4.7.5 Matrix Power Series

Let p(x) =
∑∞

n=0 cnx
n denote a power series with radius of convergence r.

As we have seen for the choices p(x) = ex, p(x) = (1 − x)−1, and p(x) =
ln(1−x), one defines the matrix power series p(M) by substituting a square
matrix M with norm ‖M‖ < r for the scalar argument x [128]. On any
disc {x : |x| ≤ s < r} strictly inside its circle of convergence, a power
series p(x) is analytic and converges uniformly and absolutely [134, 223].
Furthermore, p(x) can be differentiated term by term; its derivative p′(x)
retains r as its radius of convergence.
An obvious question of interest is whether p(M) is differentiable. The

easiest route to an affirmative answer exploits forward directional deriva-
tives. Appendix A.6 introduces the notion of a semidifferentiable function.
In the current context, this is a function f(M) possessing all possible for-
ward directional derivatives in the strong sense of Hadamard. Thus, we
demand the existence of the uniform limit

lim
t↓0,U→V

f(M + tU)− f(M )

t
= dV f(M)

for all V . For a semidifferentiable function, Proposition A.6.3 proves that
the ordinary differential df(M) exists whenever the map V �→ dV f(M) is
linear. Our experience with polynomials suggests that

dV p(M) =

∞∑
n=1

cn(V Mn−1 + · · ·+Mn−1V ).

This series certainly qualifies as linear in V . It converges because

‖V Mn−1 + · · ·+Mn−1V ‖ ≤ n‖V ‖ · ‖M‖n−1

and the series
∑∞

n=1 ncnx
n−1 for p′(x) converges absolutely.

Consider the difference quotient

p(M + tU)− p(M )

t
=

∞∑
n=1

cn(UMn−1 + · · ·+Mn−1U) +
1

t
R(U).

The series displayed on the right of this equality converges to dV p(M ).
Furthermore, the norm of the remainder is bounded above by
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1

t
‖R(U)‖ ≤ 1

t

∞∑
n=2

cn

n∑
j=2

(
n

j

)
‖M‖n−j‖tU‖j

= t‖U‖2
∞∑
n=2

cn

n∑
j=2

n(n− 1)

j(j − 1)

(
n− 2

j − 2

)
‖M‖n−j‖tU‖j−2

≤ t‖U‖2
∞∑
n=2

n(n− 1)cn(‖M‖+ t‖U‖)n−2.

Comparison with the absolutely convergent series
∑∞

n=2 n(n−1)cnx
n−2 for

p′′(x) shows that the remainder tends uniformly in norm to 0.

Example 4.7.6 Differential of a Determinant

Sometimes it is simpler to calculate the old-fashioned way with partial
derivatives. For example, consider detM(x). In this case, we exploit the
determinant expansion

detM =
∑
j

mijMij (4.16)

of a square matrix M in terms of the entries mij and corresponding cofac-
torsMij of its ith row. If we ignore the dependence ofM(x) on x and view
M exclusively as a function of its entries mij , then the expansion (4.16)
gives

∂

∂mij
detM = Mij .

The chain rule therefore implies

∂

∂xi
detM(x) =

∑
j

∑
k

∂

∂mjk
detM(x)

∂

∂xi
mjk(x)

=
∑
j

∑
k

Mjk(x)
∂

∂xi
mjk(x).

According to Cramer’s rule, this can be simplified by noting that the matrix
with entry (detM)−1Mjk in row k and column j is M−1. It follows that

∂

∂xi
detM(x) = detM(x) tr

[
M(x)−1 ∂

∂xi
M(x)

]

when M(x) is invertible. If detM(x) is positive, for instance if M(x) is
positive definite, then we have the even cleaner formula

∂

∂xi
ln detM(x) = tr

[
M(x)−1 ∂

∂xi
M(x)

]
.
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This is sometimes expressed in the ambiguous but suggestive form

d [ln detM(x)] = tr
[
M(x)−1dM(x)

]
. (4.17)

As an application of these results, consider minimization of the function

f(M) = a ln detM + b tr(SM−1), (4.18)

where a and b are positive constants and S and M are positive definite
matrices. On its open domain f(M) is obviously differentiable. Because M
is symmetric, we parameterize it by its lower triangle, including of course
its diagonal. At a local minimum, the differential of f(M) vanishes. In view
of the cyclic permutation property of the trace function, this differential
has components

∂kf(M) = a tr(M−1∂kM)− b tr(SM−1∂kMM−1)

= tr[∂kM(aM−1 − bM−1SM−1)]

= tr(∂kMN )

in obvious notation. If k corresponds to the ith diagonal entry of M , then
∂kM has all entries 0 except for a 1 in the ith diagonal entry. If k corre-
sponds to an off-diagonal entry in row i and column j, then ∂kM has all
entries 0 except for a 1 in the off-diagonal entries in the symmetric posi-
tions (i, j) and (j, i). An easy calculation based on ∂kf(M) = tr(∂kMN )
now shows that

∂kf(M ) =

{
nii k = (i, i)
2nij k = (i, j), i > j.

Because the components of the differential vanish, the matrix N must
vanish as well. In other words N = aM−1 − bM−1SM−1 = 0. The one
and only solution to this equation is M = b

aS. In Example 6.3.12 we will
prove that this stationary point provides the minimum of f(M).

4.8 Problems

1. Verify the entries in Table 4.1 not derived in the text.

2. For each positive integer n and real number x, find the derivative, if
possible, of the function

fn(x) =

{
xn sin

(
1
x

)
x �= 0

0 x = 0 .

Pay particular attention to the point 0.
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3. Show that the function

f(x) = x ln(1 + x−1)

is strictly increasing on (0,∞) and satisfies limx→0 f(x) = 0 and
limx→∞ f(x) = 1 [69].

4. Let h(x) = f(x)g(x) be the product of two functions that are each k
times differentiable. Derive Leibnitz’s formula

h(k)(x) =

k∑
j=0

(
k

j

)
f (j)(x)g(k−j)(x).

5. Assume that the real-valued functions f(y) and g(y) are differentiable
at the real point x. If (a) f(x) = g(x) = 0, (b) g(y) �= 0 for y near x,
and (c) g′(x) �= 0, then demonstrate L’Hôpital’s rule

lim
y→x

f(y)

g(y)
=

f ′(x)
g′(x)

.

6. Let f(x) and g(x) be continuous on the closed interval [a, b] and
differentiable on the open interval (a, b). Prove that there exists a
point x ∈ (a, b) such that

[f(b)− f(a)]g′(x) = [g(b)− g(a)]f ′(x).

(Hint: Consider h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x).)

7. Show that sin x
x < 1 for x �= 0. Use this fact to prove 1 − x2

2 < cosx
for x �= 0.

8. Suppose the positive function f(x) satisfies the inequality

f ′(x) ≤ cf(x)

for some constant c ≥ 0 and all x ≥ 0. Prove that f(x) ≤ ecxf(0) for
x ≥ 0 [69].

9. Abbreviate the scalar exponential and logarithmic functions by e(t)
and l(t). Based on the defining differential equations e′(t) = e(t) and
l′(t) = t−1 and the initial conditions e(0) = 1 and l(1) = 0, prove
that e ◦ l(t) = t for t > 0 and l ◦ e(t) = t for all t. Thus, e(t) and l(t)
are functional inverses. (Hint: The derivatives of l◦e(t) and t−1e◦ l(t)
are constant.)
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10. Prove the identities cosx = cos(−x) and sinx = − sin(−x) and the
identities

cos(x + y) = cosx cos y − sinx sin y

sin(x + y) = sinx cos y + cosx sin y.

(Hint: The differential equation

f ′(x) =

(
0 −1
1 0

)
f(x)

with f(0) fixed has a unique solution. In each case demonstrate that
both sides of the two proposed identities satisfy the differential equa-
tion. The initial condition is f(0) = (1, 0)∗ in the first case and
f(0) = (cos y, sin y)∗ in the second case.)

11. Use the defining differential equations for cosx and sinx to show
that there is a smallest positive root π

2 of the equation cosx = 0.
Applying the trigonometric identities of the previous problem, deduce
that cosπ = −1 and that cos(x+2π) = cosx and sin(x+2π) = sinx.
(Hint: Argue by contradiction that cosx > 0 cannot hold for all
positive x.)

12. Let f(x, y) be an integrable function of x for each y. If the partial
derivative ∂

∂y f(x, y) exists, it makes sense to ask when the interchange

d

dy

∫ b

a

f(x, y) dx =

∫ b

a

∂

∂y
f(x, y) dx

is permissible. Demonstrate that a sufficient condition is the existence
of integrable functions g(x) and h(x) satisfying

g(x) ≤ ∂

∂y
f(x, y) ≤ h(x)

for all x and y. Show how to construct g(x) and h(x) when ∂
∂y f(x, y) is

jointly continuous in x and y. (Hint: Apply the mean value theorem
to the difference quotient. Then invoke the dominated convergence
theorem.)

13. Let f(x) be a differentiable curve mapping the interval [a, b] into
Rn. Show that ‖f(x)‖ is constant if and only if f(x) and f ′(x) are
orthogonal for all x.

14. Suppose the constants c0, . . . , ck satisfy the condition

c0 +
c1
2

+ · · ·+ ck
k + 1

= 0.

Demonstrate that the polynomial p(x) = c0 + c1x+ · · ·+ ckx
k has a

root on the interval [0, 1].
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15. Prove that the function

f(x) =

{
e−x−2

x �= 0
0 x = 0

is infinitely differentiable and has derivative f (n)(0) = 0 for every n.

16. Consider the ordinary differential equation M ′(t) = N(t)M(t) with
initial condition M(0) = A for n × n matrices. If A is invertible,
then demonstrate that any two solutions coincide in a neighborhood
of 0. (Hint: If P (t) and Q(t) are two solutions, then differentiate the
product P (t)−1Q(t) using the product and inverse rules.)

17. Let f(x) and g(x) be real-valued functions defined on a neighborhood
of y in Rn. If f(x) is differentiable at y and has f(y) = 0, and g(x)
is continuous at y, then prove that f(x)g(x) is differentiable at y.

18. Consider a continuous function f(x, y) defined on a compact interval
I = [a, b] × [c, d] of R2. Assume that the partial derivative ∂2f(x, y)
is continuous on I and that p(y) and q(y) are differentiable functions
mapping [c, d] into [a, b]. In this setting, prove that the integral

F (y) =

∫ q(y)

p(y)

f(x, y) dx

has derivative

F ′(y) =

∫ q(y)

p(y)

∂2f(x, y) dx+ f [q(y), y]q′(y)− f [p(y), y]p′(y).

(Hint: Use Problem 12.)

19. A real-valued function f(x) on Rn is said to be homogeneous of inte-
ger order k ≥ 1 if f(tx) = tkf(x) for every scalar t and x ∈ Rn. For
instance, f(x) = x3 is homogeneous of order 3 on R. Demonstrate that
a homogeneous differentiable function f(x) satisfies df(x)x = kf(x).

20. As a converse to the chain rule stated in Proposition 4.4.3, suppose
(a) f(y) is continuous at x, (b) g(z) is differentiable at f(x), (c)
g◦f(y) is differentiable at x, and (d) the matrix dg[f(x)] is invertible.
Show that f(y) is differentiable at x. (Hint: Equate the two slope
expansions of g ◦ f(y)− g ◦ f(x).)

21. A real-valued function f(y) is said to be Gâteaux differentiable at x
if there exists a vector g such that

lim
t→0

f(x+ tv)− f(x)
t

= g∗v
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for all unit vectors v. In other words, all directional derivatives exist
and depend linearly on the direction v. In general, Gâteaux differen-
tiability does not imply differentiability. However, if f(y) satisfies a
Lipschitz condition |f(y)− f(z)| ≤ c‖y− z‖ in a neighborhood of x,
then prove that Gâteaux differentiability at x implies differentiability
at x with ∇f(x) = g. In Chap. 6, the proof of Proposition 6.4.1 shows
that a convex function is locally Lipschitz around each of its interior
points. Thus, Gâteaux differentiability and differentiability are equiv-
alent for a convex function at an interior point of its domain. Consult
Appendix A.6 for a fuller treatment of this topic. (Hint: Every u on
the unit sphere of Rn is within ε > 0 of some member of a finite set
{u1, . . . ,um} of points on the sphere. Now write

f(x+w)− f(x)− g∗w = f(x+ ‖w‖uk)− f(x)− ‖w‖g∗uk

+f(x+w)− f(x+ ‖w‖uk)

+‖w‖g∗
(
uk − w

‖w‖
)

for an appropriate choice of uk.)

22. Continuing Problem 21, show that the function

f(x) =

{
1 if x1 = x22 and x2 �= 0
0 otherwise

is Gâteaux differentiable at the origin 0 of R2 but not differentiable
or even continuous there.

23. Demonstrate that the function

f(x) =

{ x1x2

x2
1+x2

x21 + x2 �= 0

0 x21 + x2 = 0

is discontinuous at 0, yet the directional derivative dvf(0) exists for
all v. In this instance, show that v �→ dvf(0) is nonlinear in v.

24. On the set {x �= 0}, demonstrate that ‖x‖ is differentiable with
differential d‖x‖ = ‖x‖−1x∗.

25. Prove that the directional derivative dv‖x‖ fails to exists when x = 0
and v �= 0. Note that the forward directional derivative

lim
t↓0
‖tv‖ − 0

t
= ‖v‖

does exist for all v.

26. Suppose the vector-valued function x(t) is differentiable in the scalar
t. Show that ‖x(t)‖′ ≤ ‖x′(t)‖ whenever x(t) �= 0.
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27. Continuing Problem 2, show that f4(x) is continuously differentiable
on R, that its image is an open subset of R, and yet f4(x) is not
one-to-one on any interval around 0. What bearing does this have on
the inverse function theorem?

28. Demonstrate that the function

f(x) =

{
x+ 2x2 sin

(
1
x

)
x �= 0

0 x = 0

has a bounded derivative f ′(x) for all x and f ′(0) �= 0, yet f(x) is not
one-to-one on any interval around 0. Why does the inverse function
theorem fail in this case?

29. Consider the equation f(x) = tg(x) determined by the continuously
differentiable functions f(x) and g(x) from R into R. If f(0) = 0 and
f ′(0) �= 0, then show that in a suitably small interval |t| < δ there is a
unique continuously differentiable function x(t) solving the equation
and satisfying x(0) = 0. Prove that x′(0) = g(0)/f ′(0).

30. Suppose that the differential df(x) of the continuously differentiable
function f(x) from Rm to Rn has full rank at y. Show that f(x) is
one-to-one in a neighborhood of y. Note that m ≤ n must hold.

31. The mean value inequality (4.12) can be improved. Suppose that
along the line segment {u = x + t(y − x) : t ∈ [0, 1]} the gradient
∇f(u) satisfies the Lipschitz inequality

‖∇f(u)−∇f(v)‖ ≤ λ‖u− v‖ (4.19)

for some constant λ ≥ 0. This is the case if the second differential
d2f(u) exists and is continuous in u. Prove that

‖f(y)− f(x)− df(x)(y − x)‖ ≤ λ

2
‖y − x‖2.

(Hint: Invoke the fundamental theorem of calculus, and bound the
norm of the integrand by inequality (4.19).)

32. Demonstrate that the bound in Problem 31 can be generalized to

‖f(u)− f(v)− df(x)(u− v)‖ ≤ λ

2
(‖u− x‖+ ‖v − x‖)‖u− v‖

for any triple of points u, v, and x contained in the convex domain of
the function f(x). Note the similarity to the straddle inequality (3.8).

33. Given the result of Problem 32, suppose that the domain and range of
f(x) are both contained in Rn and that the matrix df(x) is invertible.
Show that there exist positive constants α, β, and ε such that

α‖u− v‖ ≤ ‖f(u)− f(v)‖ ≤ β‖u− v‖
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for all u and v with max{‖u− x‖, ‖v − x‖} ≤ ε. (Hints: Write

f(u)− f(v) = f(u)− f(v)− df(x)(u − v) + df(x)(u − v),

and apply the bound ‖u− v‖ ≤ ‖df(x)−1‖ · ‖df(x)(u − v)‖.)
34. Consider the function f(M) = M +M 2 defined on n× n matrices.

Show that the range of f(M ) contains a neighborhood of the trivial
matrix 0 [69]. (Hint: Compute the differential of f(M) and apply the
inverse function theorem.)

35. Calculate the differentials of the matrix-valued functions eM and
ln(I −M ). What are the values of these differentials at M = 0?

36. For a differentiable matrix M(x), verify the partial derivatives

∂k(MM∗) = (∂kM)M∗ +M(∂kM)∗

∂k(M
∗M) = (∂kM)∗M +M∗(∂kM)

∂kM
p =

p∑
j=1

M j−1∂kMMp−j , p > 0

∂kM
−p = −

p∑
j=1

M−j∂kMM−p+j−1, p > 0

∂k tr(MM∗) = 2 tr(M∗∂kM)

∂k tr(M
∗M) = 2 tr(M∗∂kM)

∂k tr(M
p) = p tr(Mp−1∂kM)

∂k det(MM∗) = 2 det(MM∗) tr[M∗(MM∗)−1∂kM ]

∂k det(M
∗M) = 2 det(M∗M) tr[(M∗M)−1M∗∂kM)

∂k det(M
p) = p det(Mp) tr(M−1∂kM),

where p is an integer and ∂k = ∂
∂xk

.

37. A random m×m matrix W with density

f(w) =
| detw|(n−m−1)/2e−

1
2 tr(Σ−1w)

2nm/2πm(m−1)/4| detΣ|n/2∏m
i=1 Γ[(n+ 1− i)/2]

is said to be Wishart distributed [3]. Here Σ is positive definite and
n is an integer with n > m. It turns out that the inverse matrix
V = W−1 has density

g(v) =
| detv|−(n+m+1)/2e−

1
2 tr(Σ−1v−1)

2nm/2πm(m−1)/4| detΣ|n/2 ∏m
i=1 Γ[(n+ 1− i)/2] .
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This naturally is called the inverse Wishart density. Demonstrate
that the modes of the Wishart and inverse Wishart densities occur at
w = (n−m− 1)Σ and v = (n+m+ 1)−1Σ−1, respectively. (Hints:
Show that these points are stationary points of the log densities by
considering the function (4.18).)



5
Karush-Kuhn-Tucker Theory

5.1 Introduction

In the current chapter, we study the problem of minimizing a real-valued
function f(x) subject to the constraints

gi(x) = 0, 1 ≤ i ≤ p

hj(x) ≤ 0, 1 ≤ j ≤ q.

All of these functions share some open set U ⊂ Rn as their domain.
Maximizing f(x) is equivalent to minimizing −f(x), so there is no loss
of generality in considering minimization. The function f(x) is called the
objective function, the functions gi(x) are called equality constraints, and
the functions hj(x) are called inequality constraints. Any point x ∈ U satis-
fying all of the constraints is said to be feasible. A constraint hj(x) is active
at the feasible point x provided hj(x) = 0; it is inactive if hj(x) < 0. In
general, we will assume that the feasible region is nonempty. The case p = 0
of no equality constraints and the case q = 0 of no inequality constraints
are both allowed.
In exploring solutions to the above constrained minimization problem,

we will meet a generalization of the Lagrange multiplier rule fashioned
independently by Karush [149] and Kuhn and Tucker [161]. Under fairly
weak regularity conditions, the rule holds at all extrema. In contrast to
this necessary condition, sufficient conditions for an extremum involve sec-
ond derivatives. To state and prove the most useful sufficient condition, we
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must confront second differentials and what it means for a function to be
twice differentiable. The matter is straightforward conceptually but com-
putationally messy. Fortunately, we can build on the material presented in
Chap. 4.

5.2 The Multiplier Rule

Before embarking on the long and interesting proof of the multiplier rule,
we turn to linear programming as a specific example of constrained opti-
mization. A huge literature has grown up around this single application.

Example 5.2.1 Linear Programming

If the objective function f(x) and the constraints gi(x) and hj(x) are
all affine functions z∗x+ c, then the constrained minimization problem is
termed linear programming. In the literature on linear programming, the
standard linear program is posed as one of minimizing f(x) = z∗x subject
to the linear equality constraints V x = d and the nonnegativity constraints
xi ≥ 0 for all 1 ≤ i ≤ n. The inequality constraints are collectively abbre-
viated as x ≥ 0. To show that the standard linear program encompasses
our apparently more general version of linear programming, we note first
that we can omit the affine constant in the objective function f(x). The p
linear equality constraints

0 = gi(x) = v∗
ix− di

are already in the form V x = d if we define V to be the p × n matrix
with ith row v∗

i and d to be the p × 1 vector with ith entry di. The
inequality constraint hj(x) ≤ 0 can be elevated to an equality constraint
hj(x) + yj = 0 by introducing an additional variable yj called a slack
variable with the stipulation that yj ≥ 0. If any of the variables xi is not
already constrained by xi ≥ 0, then we can introduce what are termed free
variables ui ≥ 0 and wi ≥ 0 so that xi = ui−wi and replace xi everywhere
by this difference.

In proving the multiplier rule, it turns out that one must restrict the
behavior of the constraints at a local extremum to avoid redundant con-
straints. There are several constraint qualifications.

Definition 5.2.1 Mangasarian-Fromovitz Constraint Qualification

This condition holds at a feasible point x provided the differentials dgi(x)
are linearly independent and there exists a vector v with dgi(x)v = 0 for
all i and dhj(x)v < 0 for all inequality constraints hj(x) active at x [186].
The vector v is a tangent vector in the sense that infinitesimal motion from
x along v stays within the feasible region.
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Because the Mangasarian-Fromovitz condition is difficult to check, we
will consider the simpler sufficient condition of Kuhn and Tucker [161] in
the next section. In the meantime, we state and prove the Lagrange mul-
tiplier rule extended to inequality constraints by Karush and Kuhn and
Tucker. Our proof reproduces McShane’s lovely argument, which substi-
tutes penalties for constraints [116, 194].

Proposition 5.2.1 Suppose the objective function f(y) of the constrained
optimization problem has a local minimum at the feasible point x. If f(y)
and the various constraint functions are continuously differentiable near
x, then there exists a unit vector of Lagrange multipliers λ0, . . . , λp and
μ1, . . . , μq such that

λ0∇f(x) +
p∑

i=1

λi∇gi(x) +
q∑

j=1

μj∇hj(x) = 0. (5.1)

Moreover, each of the multipliers λ0 and μj is nonnegative, and μj = 0
whenever hj(x) < 0. If the constraint functions satisfy the Mangasarian-
Fromovitz constraint qualification at x, then we can take λ0 = 1.

Proof: Without loss of generality, we assume x = 0 and f(0) = 0. By
renumbering the inequality constraints if necessary, we also suppose that
the first r of them are active at 0 and the last q − r of them are inactive
at 0. Now choose δ > 0 so that (a) the closed ball

C(0, δ) = {y ∈ Rn : ‖y‖ ≤ δ}
is contained in the open domain U , (b) 0 is the minimum point of f(y) in
C(0, δ) subject to the constraints, (c) the objective and constraint functions
are continuously differentiable in C(0, δ), and (d) the constraints hj(x)
inactive at 0 are inactive throughout C(0, δ).
On the road to our ultimate goal, consider the functions

hj+(y) = max{hj(y), 0}.
Using these functions, we now prove that for each 0 < ε ≤ δ, there exists
an α > 0 such that

f(y) + ‖y‖2 + α

p∑
i=1

gi(y)
2 + α

r∑
j=1

hj+(y)
2 > 0 (5.2)

for all y with ‖y‖ = ε. This is not an entirely trivial claim to prove because
f(y) can be negative on C(0, δ) outside the feasible region.
Suppose the claim is false. Then there is a sequence of points ym with

‖ym‖ = ε and a sequence of numbers αm tending to ∞ such that

f(ym) + ‖ym‖2 ≤ −αm

p∑
i=1

gi(ym)2 − αm

r∑
j=1

hj+(ym)2. (5.3)
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Because the boundary of C(0, ε) is compact, the sequence ym has a
convergent subsequence, which without loss of generality we take to be
the sequence itself. The limit z of the sequence clearly has norm ‖z‖ = ε.
Dividing both sides of inequality (5.3) by−αm and sendingm to∞ produce

p∑
i=1

gi(z)
2 +

r∑
j=1

hj+(z)
2 = 0. (5.4)

It follows that z is feasible with f(z) ≥ f(0) = 0. However, inequality (5.3)
requires that each f(ym) ≤ −ε2. Since this last relation is preserved in the
limit, we reach a contradiction and consequently establish the validity of
inequality (5.2).
Our next goal is to prove that there exists a point u and a unit vector

(λ0, λ1, . . . , λp, μ1, . . . , μr)
∗ such that (a) ‖u‖ < ε, (b) each of the multipli-

ers λ0 and μj is nonnegative, and (c)

λ0[∇f(u) + 2u] +

p∑
i=1

λi∇gi(u) +
r∑

j=1

μj∇hj(u) = 0. (5.5)

Observe here that the distinction between active and inactive constraints
comes into play again. To prove the Lagrange multiplier rule (5.5), define

F (y) = f(y) + ‖y‖2 + α

p∑
i=1

gi(y)
2 + α

r∑
j=1

hj+(y)
2

using the α satisfying condition (5.2). For typographical reasons, we omit
the dependence of α on ε.
Given that F (y) is continuous, there is a point u giving the unconstrained

minimum of F (y) on the compact set C(0, ε). Because this point satisfies
F (u) ≤ F (0) = 0, it is impossible that ‖u‖ = ε in view of inequality (5.2).
Thus, u falls in the interior of C(0, ε) where ∇F (u) = 0 must occur. The
gradient condition ∇F (u) = 0 can be expressed as

∇f(u) + 2u+ α

p∑
i=1

2gi(u)∇gi(u) + α
r∑

j=1

2hj+(u)∇hj(u) = 0, (5.6)

invoking the differentiability of the functions hj+(y)
2 derived in Exam-

ple 4.4.3 of Chap. 4. If we divide equality (5.6) by the norm of the vector

v = [1, 2αg1(u), . . . , 2αgp(u), 2αh1+(u), . . . , 2αhr+(u)]
∗

and redefine the Lagrange multipliers accordingly, then the multiplier rule
(5.5) holds with each of the multipliers λ0 and μj nonnegative.
Now choose a sequence εm > 0 tending to 0 and corresponding points

um where the Lagrange multiplier rule (5.5) holds. The sequence of unit
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vectors (λm0, . . . , λmp, μm1, . . . , μmr)
∗ has a convergent subsequence with

limit (λ0, . . . , λp, μ1, . . . , μr)
∗ that is also a unit vector. Replacing the

sequence um by the corresponding subsequence umk
allows us to take limits

along umk
in equality (5.5) and achieve equality (5.1). Observe that umk

converges to 0 because ‖umk
‖ ≤ εmk

.
Finally, suppose the constraint qualification holds at the local minimum

0 and that λ0 = 0. If all of the nonnegative multipliers μj are 0, then
at least one of the λi with 1 ≤ i ≤ p is not 0. But this contradicts the
linear independence of the dgi(0). Now consider the vector v guaranteed
by the constraint qualification. Taking its inner product with both sides of
equation (5.1) gives

r∑
j=1

μjdhj(0)v = 0,

contradicting the assumption that dhj(0)v < 0 for all 1 ≤ j ≤ r and the
fact that at least one μj > 0. Thus, λ0 > 0, and we can divide equation (5.1)
by λ0.

Example 5.2.2 Application to an Inequality

Let us demonstrate the inequality

x21 + x22
4

≤ ex1+x2−2

subject to the constraints x1 ≥ 0 and x2 ≥ 0 [69]. It suffices to show
that the minimum of f(x) = −(x21 + x22)e

−x1−x2 is −4e−2. According to
Proposition 5.2.1 with h1(x) = −x1 and h2(x) = −x2, a minimum point
entails the conditions

− ∂

∂x1
f(x) = (2x1 − x21 − x22)e−x1−x2 = −μ1

− ∂

∂x2
f(x) = (2x2 − x21 − x22)e−x1−x2 = −μ2,

where the multipliers μ1 and μ2 are nonnegative and satisfy μ1x1 = 0 and
μ2x2 = 0. In this problem, the Mangasarian-Fromovitz constraint qualifica-
tion is trivial to check using the vector v = 1. If neither x1 nor x2 vanishes,
then

2x1 − x21 − x22 = 2x2 − x21 − x22 = 0.

This forces x1 = x2 and 2x1 − 2x21 = 0. It follows that x1 = x2 = 1, where
f(1) = −2e−2. We can immediately eliminate the origin 0 from contention
because f(0) = 0. If x1 = 0 and x2 > 0, then μ2 = 0 and 2x2−x22 = 0. This
implies that x2 = 2 and (0, 2) is a candidate minimum point. By symmetry,
(2, 0) is also a candidate minimum point. At these two boundary points,
f(2, 0) = f(0, 2) = −4e−2, and this verifies the claimed minimum value.
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Example 5.2.3 Application to Linear Programming

The gradient of the Lagrangian

L(x,λ,μ) = z∗x+

p∑
i=1

λi

( n∑
j=1

vijxj − di
)
−

q∑
j=1

μjxj

vanishes at the minimum of the linear function f(x) = z∗x subject to the
constraints V x = d and x ≥ 0. Differentiating L(x,λ,μ) with respect to
xj and setting the result equal to 0 gives zj+

∑p
i=1 λivij−μj = 0. In vector

notation this is just

z + V ∗λ− μ = 0

subject to the restrictions μ ≥ 0 and μ∗x = 0. We will revisit linear
programming later and discuss an interior point algorithm and dual linear
programs.

Example 5.2.4 A Counterexample to the Multiplier Rule

The Lagrange multiplier condition is necessary but not sufficient for a point
to furnish a minimum. For example, consider the function f(x) = x31 − x2
subject to the constraint h(x) = x2 ≤ 0. The Lagrange multiplier condition

∇f(0) =

(
0
−1

)
= −∇h(0)

holds, but the origin 0 fails to minimize f(x). Indeed, the one-dimensional
slice x1 �→ f(x1, 0) has a saddle point at x1 = 0. This function has no
minimum subject to the inequality constraint.

Example 5.2.5 Shadow Values

In economic applications the objective function f(x) is often viewed as
a profit or a cost, and the constraints equation gi(x) = 0 is rephrased as
gi(x) = ci, where ci is the amount of some available resource. In the absence
of inequality constraints, the negative Lagrange multiplier −λi is called a
shadow value or price and measures the rate of change of the optimal value
of f(x) relative to ci. Let x(c) denote the optimal point as a function of the
constraint vector c = (c1, . . . , cp)

∗. If we assume that x(c) is differentiable,
then we can multiply the equation

df [x(c)] +

p∑
i=1

λidgi[x(c)] = 0∗

on the right by dx(c) and recover via the chain rule an equation relating
the differentials of f [x(c)] and the gi[x(c)] with respect to c. Because it is
obvious that

∂

∂cj
gi[x(c)] = 1{j=i},
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it follows that

∂

∂cj
f [x(c)] + λj = 0.

Of course, this result is valid generally and transcends its narrow economic
origin.

Example 5.2.6 Quadratic Programming with Equality Constraints

To minimize the quadratic function f(x) = 1
2x

∗Ax + b∗x + c subject to
the linear equality constraints V x = d, we introduce the Lagrangian

L(x,λ) =
1

2
x∗Ax+ b∗x+

p∑
i=1

λi[v
∗
ix− di]

=
1

2
x∗Ax+ b∗x+ λ∗(V x− d).

A stationary point of L(x,λ) is determined by the equations

Ax+ b+ V ∗λ = 0

V x = d,

whose formal solution amounts to(
x
λ

)
=

(
A V ∗

V 0

)−1(−b
d

)
.

The next proposition shows that the indicated matrix inverse exists when
A is positive definite.

Proposition 5.2.2 Let A be an n×n positive definite matrix and V be a
p× n matrix. Then the matrix

M =

(
A V ∗

V 0

)

is invertible if and only if V has linearly independent rows v∗
1, . . . ,v

∗
p. When

this condition holds, M has inverse

M−1 =

(
A−1−A−1V ∗(V A−1V ∗)−1V A−1 A−1V ∗(V A−1V ∗)−1

(V A−1V ∗)−1V A−1 −(V A−1V ∗)−1

)
.

Proof: We first show that the symmetric matrix M is invertible with
the specified inverse if and only if (V A−1V ∗)−1 exists. If M−1 exists,
it is necessarily symmetric. Indeed, taking the transpose of MM−1 = I

gives (M−1)∗M = I. Suppose M−1 has block form

(
B C∗

C D

)
. Then the

identity (
A V ∗

V 0

)(
B C∗

C D

)
=

(
In 0
0 Ip

)
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implies that V C∗ = Ip and AC∗+V ∗D = 0. Multiplying the last equality
by V A−1 gives Ip = −V A−1V ∗D. Thus, (V A−1V ∗)−1 exists. Con-
versely, if (V A−1V ∗)−1 exists, then one can check by direct multiplication
that M has the claimed inverse.
If (V A−1V ∗)−1 exists, then V must have full row rank p. Conversely, if

V has full row rank p, take any nontrivial u ∈ Rp. The fact

u∗V = u1v
∗
1 + · · ·upv∗

p �= 0∗

and the positive definiteness ofA imply u∗V A−1V ∗u>0. Thus, V A−1V ∗

is positive definite and invertible.

Example 5.2.7 Smallest Matrix Subject to Secant Conditions

In some situations covered by Example 5.2.6, the answer can be radically
simplified. Consider the problem of minimizing the Frobenius norm of a
matrix M subject to the linear constraints Mui = vi for i = 1, . . . , q.
It is helpful to rewrite the constraints in matrix form as MU = V for
U = (u1, . . . ,uq) and V = (v1, . . . ,vq). Provided U has full column rank
q, the minimum of the squared norm ‖M‖2F subject to the constraints is
attained by the choice M = V (U∗U)−1U∗. We can prove this assertion
by taking the partial derivative of the Lagrangian

L =
1

2
‖M‖2F +

∑
i

∑
k

λik

(∑
j

mijujk − vik
)

=
1

2

∑
i

∑
j

m2
ij +

∑
i

∑
k

λik

(∑
j

mijujk − vik
)

with respect to mij and equating it to 0. This gives the Lagrange multiplier
equation

0 = mij +
∑
k

λikujk,

which we collectively express in matrix notation as 0 = M + ΛU∗. This
equation and the constraint equation MU = V uniquely determine the
minimum of the objective function. Indeed, straightforward substitution
shows that M = V (U∗U)−1U∗ and Λ = −V (U∗U)−1 constitute the
solution. This result will come in handy later when we discuss accelerating
various algorithms.

5.3 Constraint Qualification

Fortunately, the Mangasarian-Fromovitz constraint qualification is a con-
sequence of a stronger condition suggested by Kuhn and Tucker. This al-
ternative condition requires the differentials dgi(x) of the equality con-
straints and the differentials dhj(x) of the active inequality constraints to
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be collectively linearly independent at x. When the Kuhn-Tucker condition
is true, we can find an n×n invertible matrix A whose first p rows are the
vectors dgi(x) and whose next r rows are the vectors dh1(x), . . . , dhr(x)
corresponding to the active inequality constraints. For example, we can
choose the last n− p− r rows of A to be a basis for the orthogonal com-
plement of the subspace spanned by the first p+ r rows of A. Given that
A is invertible, there certainly exists a vector v ∈ Rn with

Av = −
⎛
⎝0

1
0

⎞
⎠ ,

where the column vectors on the right side of this equality have p, r, and
n−p−r rows, respectively. Clearly, the vector v satisfies the Mangasarian-
Fromovitz constraint qualification.
Even if the Kuhn-Tucker condition fails, there is still a chance that the

constraint qualification holds. Let G be the p×n matrix with rows dgi(x).
Assume that G has full rank. Taking the orthogonal complement of the
subspace spanned by the p rows of G, we can construct an n × (n − p)
matrix K of full rank whose columns are orthogonal to the rows of G.
This fact can be expressed as GK = 0 and implies that the image of the
linear transformationK from Rn−p to Rn is the kernel or null space ofG. In
other words, any v satisfyingGv = 0 can be expressed as v = Ku and vice
versa. If we let z∗

j = dhj(x)K for each of the active inequality constraints,
then the Mangasarian-Fromovitz constraint qualification is equivalent to
the existence of a vector u ∈ Rn−p satisfying z∗

ju < 0 for all 1 ≤ j ≤ r.
If the number of equality constraints p = 0, then we take z∗

j = dhj(x).
The next proposition paves the way for proving a necessary and suffi-

cient condition for this equality-free form of the Mangasarian-Fromovitz
constraint qualification. The result described by the proposition is of inde-
pendent interest; its proof illustrates the fact that adding small penalties
as opposed to large penalties is sometimes helpful [84].

Proposition 5.3.1 (Ekeland) Suppose the real-valued function f(x) is
defined and differentiable on Rn. If f(x) is bounded below, then there are
points where ‖∇f(x)‖ is arbitrarily close to 0.

Proof: Take any small ε > 0 and define the continuous function

fε(x) = f(x) + ε‖x‖.
In view of the boundedness condition, for any y the set

{x : fε(x) ≤ fε(y)}
is compact. Hence, Proposition 2.5.4 implies that fε(x) has a global mini-
mum z depending on ε. We now prove that v = ∇f(z) satisfies ‖v‖ ≤ ε. If
the opposite is true, then the limit relation
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lim
t↓0

f(z − tv)− f(z)
t

= −df(z)v
= −‖v‖2
< −ε‖v‖,

the choice of z, and the triangle inequality together entail

−tε‖v‖ > f(z − tv)− f(z)
= fε(z − tv)− fε(z) + ε‖z‖ − ε‖z − tv‖
≥ ε‖z‖ − ε‖z − tv‖
≥ −εt‖v‖

for sufficiently small t > 0. This contradiction implies that ‖v‖ ≤ ε.

We are now in position to characterize the Mangasarian-Fromovitz con-
straint qualification in the absence of equality constraints. As the next
proposition indicates, the constraint qualification holds if and only if the
convex set generated by the active inequality constraints does not con-
tain the origin. The geometric nature of this result will be clearer after we
consider convex sets in the next chapter.

Proposition 5.3.2 (Gordon) Given r vectors z1, . . . , zr in Rn, define

the function f(x) = ln
[∑r

j=1 exp(z
∗
jx)

]
. Then the following three condi-

tions are logically equivalent:

(a) The function f(x) is bounded below on Rn.

(b) There are nonnegative constants μ1, . . . , μr such that

r∑
i=1

μizi = 0,
r∑

i=1

μi = 1.

(c) There is no vector u such that z∗
ju < 0 for all j.

Proof: It is trivial to check that (b) implies (c) and (c) implies (a). To
demonstrate that (a) implies (b), first observe that

∇f(x) =
1∑r

i=1 e
z∗
i
x

r∑
j=1

ez
∗
jxzj .

According to Proposition 5.3.1, it is possible to choose for each k a point
uk at which

‖∇f(uk)‖ =
∥∥∥

r∑
j=1

μkjzj

∥∥∥ ≤ 1

k
,
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where

μkj =
ez

∗
juk∑r

i=1 e
z∗
i
uk
.

Because the μkj form a vector μk with nonnegative components summing to
1, it is possible to find a subsequence of the sequence μk that converges to a
vector μ having the same properties. This vector satisfies the requirements
of condition (b).

When the equality constraints in nonlinear programming are affine, the
forgoing discussion is easy to summarize. One first eliminates the equality
constraints via the reparameterization x = Ky. Then one defines the dif-
ferentials z∗

j = dhj(x)K of the inequality constraints hj(Ky) in the new
parameterization. The Mangasarian-Fromovitz constraint qualification pos-
tulates the existence of a vector u with u∗zj < 0 for all active constraints
hj(x). The existence of u rules out the possibility that 0 is a convex com-
bination of the vectors zj . Hence, the Lagrange multiplier λ0 of f(x) in
the y parameterization cannot equal 0.

5.4 Taylor-Made Higher-Order Differentials

Roughly speaking, the higher-order differentials of a function f(x) on Rn

arise from its multiple partial derivatives. Thus, ∂2ijf(x) contributes to a

second differential and ∂3ijkf(x) to a third differential. Equality of mixed

partial derivatives involves simple identities such as ∂2ijf(x) = ∂2jif(x) and

∂3ijkf(x) = ∂3kjif(x). The right notation efficiently exposes these symme-
tries. Let j be a vector whose m components ji are drawn from the set
{1, . . . , n}. In this notation we write a mixed partial derivative of the func-
tion f(x) as

∂mj f(x) = ∂j1 · · · ∂jmf(x).
If the partial derivatives of f(x) of order m are continuous at x ∈ Rn, then
Proposition 4.3.1 shows that equality of mixed partials holds and the order
of the components of j is irrelevant. The multinomial coefficient(

m

k

)
=

(
m

k1 . . . kn

)

counts the number of mixed partial derivatives of order m in which the
partial differential operator ∂i appears ki times.
Suppose f(y) is a real-valued function possessing all partial derivatives

of order p or less in a neighborhood of the point x. The first-order Taylor
expansion

f(y) = f(x) +
n∑

i=1

∫ 1

0

∂if [ty + (1− t)x] dt(yi − xi)
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follows directly from the fundamental theorem of calculus and the chain
rule. To pass to the second-order Taylor expansion, one integrates by parts
and replaces the integral

∫ 1

0 ∂if [ty + (1 − t)x] dt (yi − xi)

by

∂if(x)(yi − xi) +
n∑

j=1

∫ 1

0

∂j∂if [ty+(1− t)x](1− t) dt(yi − xi)(yj − xj).

Repeated integration by parts, differentiating f(x) and integrating succes-
sive powers of (1− t), ultimately leads to the Taylor expansion

f(y) =

p−1∑
m=0

1

m!
dmf(x)[(y − x)m] +R(y,x) (5.7)

R(y,x) =
1

(p− 1)!

∫ 1

0

dpf [ty + (1− t)x][(y − x)p](1− t)p−1 dt

of order p. Here we employ the notation of multilinear maps sketched in
Example 2.5.10. The abstract entity dmf(x)[(y − x)m] is a m-linear form
evaluated along its diagonal whose coefficients relative to the standard basis
of Rn reduce to the mixed partial derivatives ∂mj f(x) of order m. Equality
of mixed partials makes dmf(x) a symmetric m-linear form. All of this
sounds complicated, but it simply amounts to local approximation of f(y)
by a polynomial in the components of the difference vector y − x. Our
derivation of the Taylor expansion (5.7) remains valid for f(y) vector or
matrix valued if we operate entry by entry.
The remainder R(y,x) in the expansion (5.7) can be recast in two useful

ways. Assuming the partial derivatives of f(x) of order p and less are
continuous at x, it is obvious that

sp(y,x)[u1, . . . ,up] = p

∫ 1

0

dpf [ty + (1− t)x][u1, . . . ,up](1− t)p−1 dt

is an p-linear map with limy→x s
p(y,x) = sp(x,x) = dpf(x). This suggests

that the expansion

f(y) =

p−1∑
m=0

1

m!
dmf(x)[(y − x)m] +

1

p!
sp(y,x)[(y − x)p] (5.8)

be taken as the definition of Carathéodory differentiability of order p, with
the understanding that the slope sp(y,x) tends to sp(x,x) = dpf(x) as
y tends to x. There is no harm in assuming that sp(y,x) and dpf(x) are
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symmetric multilinear maps since they operate only on diagonal arguments.
Indeed, any multilinear map M [u1, . . . ,up] agrees with its symmetrization

M sym[u1, . . . ,up] =
1

p!

∑
σ

M [uσ1 , . . . ,uσp ]

along its diagonal u1 = u2 = · · · = up. Here the sum ranges over all
permutations σ of {1, . . . , p}.
Alternatively, if we let rp(y,x, t) = dpf [ty + (1− t)x]− dp(x), then the

identity

R(y,x) =
1

(p− 1)!

∫ 1

0

rp(y,x, t)[(y − x)p](1− t)p−1 dt

+
1

p!
dpf(x)[(y − x)p]

and the inequality

‖rp(y,x, t)[(y − x)p]‖ ≤ ‖rp(y,x, t)‖ · ‖y − x‖p

suggest that the expansion

f(y) =

p∑
m=0

1

m!
dmf(x)[(y − x)m] + o(‖y − x‖p)

be taken as the definition of Fréchet differentiability of order p. These two
axiomatic definitions of higher-order differentials are logically equivalent.
Given Carathéodory’s definition, we set dpf(x) = sp(x,x) and note that

‖[sp(y,x)− sp(x,x)][(y − x)p]‖ ≤ ‖sp(y,x)− sp(x,x)‖‖y − x‖p.
Fréchet’s definition follows directly. Proof of the converse is more subtle,
and we omit it. Both definitions require the existence of all partial deriva-
tives of f(y) of order p− 1 and less in a neighborhood of x.
Perhaps just as important as the equivalence of the two definition of

differentiability is the following simple result.

Proposition 5.4.1 The symmetric multilinear maps dmf(x) and sp(x,x)
appearing in the Taylor expansion (5.8) are unique. The slope function
sp(y,x) is not unique as noted in Chap. 4.

Proof: Abbreviate dmf(x) = Mm. The constant M0 equals limy→x f(y).
Consider a second expansion of f(y) with Nm replacing Mm and tp(y,x)
replacing sp(y,x). Suppose by induction that Mk = Nk for k < m < p,
and let yj be the sequence x+ 1

ju for some fixed vector u. Taking limits
on j in the equality

0 =
1

m!
(Mm −Nm)[um] +

p−1∑
k=m+1

jm−k

k!
(Mk −Nk)[uk]

+jm−p[sp(yj ,x)− tp(yj ,x)][u
p]
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gives Mm[um] = Nm[um]. If we now interpret Mm[um] and Nm[um] as
polynomials in the entries of u, then their coefficients must coincide. In
view of the symmetry of Mm and Nm, the coefficients Mm[ei1 , . . . , eim ]
and Nm[ei1 , . . . , eim ] therefore also coincide for all choices ei1 , . . . , eim .
This argument advances the induction one step. The proof of the equality
sp(x,x) = tp(x,x) follows essentially the same pattern.

Example 5.4.1 Second Differential of a Bilinear Map

Consider a bilinear map f(x) = M(x1,x2) of the concatenated vector x
with left block x1 and right block x2. If we take ui = yi − xi, then the
expansion

M(y1,y2) = M(x1 + u1,x2 + u2)

= M(x1,x2) +M(x1,u2) +M(u1,x2) +M(u1,u2)

identifies the bilinear map 2M(u1,u2) as the second differential of f(x).
Similar expansions hold for higher-order multilinear maps.

The most important applications in optimization theory of higher-order
differentials involve scalar-valued functions f(x) and their first and second
differentials df(x) and d2f(x). We retain our convention that the gradient
∇f(x) equals the transpose of the differential df(x). The coefficients of the
linear form df(x)[u] are the first partials ∂if(x). The second-order Taylor
expansion of f(y) around x reads

f(y) = f(x) + df(x)(y − x) +
1

2
(y − x)∗s2(y,x)(y − x). (5.9)

Here the second-order slope s2(y,x) has limit d2f(x); this Hessian matrix
incorporates the second partials ∂2ijf(x). Consequently, one is justified in

viewing d2f(x) as the differential of ∇f(x).
Example 5.4.2 Second Differential of a Quadratic Function

Consider the quadratic function f(x) = 1
2x

∗Ax + b∗x + c defined by an
n× n symmetric matrix A and an n× 1 vector b. The gradient of f(y) is
∇f(y) = Ay + b. The second differential emerges from the slope equation

∇f(y)−∇f(x) = A(y − x)

or the simple calculation d2f(x) = d∇f(x) = (dA)y + Ady + db = A.
Either perspective is consistent with the exact expansion

f(y) = f(x) + (Ax+ b)∗(y − x) +
1

2
(y − x)∗A(y − x).

Uniqueness of the differentials df(x) and d2f(x) is guaranteed by Propo-
sition 5.4.1.
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Example 5.4.3 A Pathological Example

On R2 define the indicator function 1Q(x) to be 1 when both coordinates
x1 and x2 are rational numbers and to be 0 otherwise. The function

f(x) = 1Q(x)(x
3
1 + x32)

is differentiable at the origin 0 but nowhere else on R2. The differential
df(0) = 0 together with the choice

s2(y,0) = 1Q(y)

(
2y1 0
0 2y2

)
.

satisfy expansion (5.9). Furthermore, s2(y,0) tends to the 0 matrix as y
tends to the origin. However, claiming that f(x) is twice differentiable at
the origin seems extreme. To eliminate such pathologies, we demand that
f(x) be differentiable in a neighborhood of a point before we allow it to be
twice differentiable at the point.

Example 5.4.4 Second Differential of the Inverse Polar Transformation

Continuing Example 4.6.1, it is straightforward to calculate that the inverse
polar transformation

g

[(
r
θ

)]
=

(
r cos θ
r sin θ

)

has second differential

d2g

[(
r
θ

)]
=

(
d2 r cos θ
d2 r sin θ

)
=

⎛
⎜⎝

0 − sin θ
− sin θ −r cos θ

0 cos θ
cos θ −r sin θ

⎞
⎟⎠ .

Here we stack the differentials corresponding to the two components for
easy visualization.

Example 5.4.5 First and Second Differentials of the Inverse of a Matrix

Taylor expansions take different shapes depending on how one displays the
results. For instance, the identity

Y −1 −X−1 = −X−1(Y −X)Y −1

is a disguised slope expansion of the inverse of a matrix as a function of its
entries. The corresponding first differential is the linear map

U �→ −X−1UX−1.
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The more elaborate second-order expansion

Y −1 −X−1 = −X−1(Y −X)X−1 +
1

2
Y −1(Y −X)X−1(Y −X)X−1

+
1

2
X−1(Y −X)X−1(Y −X)Y −1

shows that the second differential is the bilinear map

(U ,V ) �→ X−1UX−1V X−1 +X−1V X−1UX−1

evaluated along U = V . Despite the odd appearance of the second differ-
ential, it clearly fulfills its quadratic approximation responsibility.

The rules for calculating second differentials are naturally more compli-
cated than those for calculating first differentials.

Proposition 5.4.2 If the two functions f(x) and g(x) map the open set
S ⊂ Rp twice differentiably into Rq, then the following functional combina-
tions are twice differentiable and have the indicated second differentials:

(a) For all constants α and β,

d2[αf(x) + βg(x)] = αd2f(x) + βd2g(x).

(b) The inner product f(x)∗g(x) satisfies

d2[f(x)∗g(x)] =

q∑
i=1

[
fi(x)d

2gi(x) + gi(x)d
2fi(x)

]

+

q∑
i=1

[∇fi(x)dgi(x) +∇gi(x)dfi(x)] .

(c) For q = 1 and f(x) �= 0,

d2[f(x)−1] = 2f(x)−3∇f(x)df(x)− f(x)−2d2f(x).

Proof: Rule (a) follows directly from the linearity implicit in formula (5.9)
covering the scalar case. For rule (b) it also suffices to consider the scalar
case in view of rule (a). Applying the sum and product rules of differenti-
ation to the gradient of f(x)g(x) gives

d[∇g(x)f(x) +∇f(x)g(x)] = d2g(x)f(x) +∇g(x)df(x)
+d2f(x)g(x) +∇f(x)dg(x).

To verify rule (c), we apply the product, quotient, and chain rules to the
gradient of f(y)−1 identified in the proof of Proposition 4.4.2. This gives

−d
[
∇f(x) 1

f(x)2

]
= −d2f(x) 1

f(x)2
+∇f(x) 2

f(x)3
df(x).
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Note the care exercised here in ordering the different factors prior to
differentiation.

The chain rule for second differentials also is more complex.

Proposition 5.4.3 Suppose f(x) maps the open set S ⊂ Rp twice differ-
entiably into Rq and g(y) maps the open set T ⊂ Rq twice differentiably
into Rr. If the image f(S) is contained in T , then the composite function
h(x) = g ◦ f(x) is twice differentiable with second partial derivatives

∂2klhm(x) =

q∑
i=1

∂igm ◦ f(x)∂2klfi(x)+
q∑

i=1

q∑
j=1

∂kfi(x)∂
2
ijgm ◦ f(x)∂lfj(x).

Proof: It suffices to prove the result when r = 1 and g(x) is scalar valued.
The function h(x) has first differential dh(x) = (dg) ◦ f(x)df(x) and gra-
dient df(x)∗(∇g)◦f(x). The matrix transpose, chain, and product rules of
differentiation derived in Examples 4.7.1, 4.7.2, and 4.7.3 show that ∇h(x)
has differential components

∂k[df(x)
∗∇g ◦ f(x)] = [∂kdf(x)]

∗∇g ◦ f(x)

+ df(x)∗
q∑

j=1

(∂j∇g) ◦ f(x)∂kfj(x).

Alternatively, one can calculate the conventional way with explicit partial
derivatives and easily verify the claimed formula for d2h(x).

5.5 Applications of Second Differentials

Our first proposition, mentioned informally in Chap. 1, emphasizes the im-
portance of second differentials in optimization theory.

Proposition 5.5.1 Consider a real-valued function f(y) with domain an
open set U ⊂ Rp. If f(y) has a local minimum at x and is twice differ-
entiable there, then the second differential d2f(x) is positive semidefinite.
Conversely, if x is a stationary point of f(y) and d2f(x) is positive defi-
nite, then x is a local minimum of f(y). Similar statements hold for local
maxima if we replace the modifiers positive semidefinite and positive defi-
nite by the modifiers negative semidefinite and negative definite. Finally, if
x is a stationary point of f(y) and d2f(x) possesses both positive and neg-
ative eigenvalues, then x is neither a local minimum nor a local maximum
of f(y).
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Proof: Suppose x provides a local minimum of f(y). For any unit vector v
and t > 0 sufficiently small, the point y = x+ tv belongs to U and satisfies
f(y) ≥ f(x). If we divide the expansion

0 ≤ f(y)− f(x)
=

1

2
(y − x)∗s2(y,x)(y − x)

by t2 = ‖y − x‖2 and send t to 0, then it follows that

0 ≤ 1

2
v∗d2f(x)v.

Because v is an arbitrary unit vector, the quadratic form d2f(x) must be
positive semidefinite.
On the other hand, suppose x is a stationary point of f(y), d2f(x) is

positive definite, and x fails to be a local minimum. Then there exists a
sequence of points ym tending to x and satisfying

0 > f(ym)− f(x) =
1

2
(ym − x)∗s2(ym,x)(ym − x). (5.10)

Passing to a subsequence if necessary, we may assume that the unit vec-
tors vm = (ym − x)/‖ym − x‖ converge to a unit vector v. Dividing in-
equality (5.10) by ‖ym − x‖2 and sending m to ∞ consequently yields
0 ≥ v∗d2f(x)v, contrary to the hypothesis that d2f(x) is positive definite.
This contradiction shows that x represents a local minimum.
To prove the final claim of the proposition, let μ be a nonzero eigenvalue

with corresponding eigenvector v. Then the difference

f(x+ tv)− f(x) =
t2

2

{
v∗d2f(x)v + v∗[s2(x+ tv,x)− d2f(x)]v}

=
t2

2

{
μ‖v‖2 + v∗[s2(x+ tv,x)− d2f(x)]v}

has the same sign as μ for t small.

Example 5.5.1 Distinguishing Extrema from Saddle Points

Consider the function

f(x) =
1

4
x41 +

1

2
x22 − x1x2 + x1 − x2

on R2. It is obvious that

∇f(x) =

(
x31 − x2 + 1
x2 − x1 − 1

)
, d2f(x) =

(
3x21 −1
−1 1

)
.

Adding the two rows of the stationarity equation ∇f(x) = 0 gives the
equation x31−x1 = 0 with solutions 0,±1. Solving for x2 in each case yields
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the stationary points (0, 1), (−1, 0), and (1, 2). The last two points are local
minima because d2f(x) is positive definite. The first point is a saddle point
because

d2f(0, 1) =

(
0 −1
−1 1

)

has characteristic polynomial λ2 − λ − 1 and eigenvalues 1
2 (1 ±

√
5). One

of these eigenvalues is positive, and one is negative.

We now state and prove a sufficient condition for a point x to be a
constrained local minimum of the objective function f(y). Even in the
absence of constraints, inequality (5.11) below represents an improvement
over the qualitative claims of Proposition 5.5.1.

Proposition 5.5.2 Suppose the objective function f(y) of the constrained
optimization problem satisfies the multiplier rule (5.1) at the point x with
λ0 = 1. Let f(y) and the various constraint functions be twice differentiable
at x, and let L(y) be the Lagrangian

L(y) = f(y) +

p∑
i=1

λigi(y) +

q∑
j=1

μjhj(y).

If v∗d2L(x)v > 0 for every vector v �= 0 satisfying dgi(x)v = 0 and
dhj(x)v ≤ 0 for all active constraints, then x provides a local minimum of
f(y). Furthermore, there exists a constant c > 0 such that

f(y) ≥ f(x) + c‖y − x‖2 (5.11)

for all feasible y in a neighborhood of x.

Proof: Because of the sign restrictions on the μj , we have f(y) ≥ L(y) for
all feasible y in addition to f(x) = L(x). If L(y) ≥ L(x), then f(y) ≥ f(x),
and if L(y) ≥ L(x)+ c‖y−x‖2, then f(y) ≥ f(x)+ c‖y−x‖2. Therefore,
it suffices to prove these inequalities for L(y) rather than f(y). The second
inequality L(y) ≥ L(x) + c‖y − x‖2 is stronger than the first inequality
L(y) ≥ L(x), so it also suffices to focus on the second inequality.
With this end in mind, let s2L(y,x) be a second slope function for L(y)

at x. If the second inequality is false, then there exists a sequence of fea-
sible points ym converging to x and a sequence of positive constants cm
converging to 0 such that

L(ym)− L(x) =
1

2
(ym − x)∗s2L(ym,x)(ym − x)

< cm‖ym − x‖2. (5.12)

Here dL(x) vanishes by virtue of the multiplier condition. As usual, we
suppose that the sequence of unit vectors

vm =
1

‖ym − x‖(ym − x)
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converges to a unit vector v by extracting a subsequence if necessary.
Dividing inequality (5.12) by ‖ym − x‖2 and taking limits then yields
v∗d2L(x)v ≤ 0. This contradicts our supposition about d2L(x) provided we
can demonstrate that the tangent conditions dgi(x)v = 0 and dhj(x)v ≤ 0
hold for all active constraints. These follow by dividing the equations

0 = gi(ym)− gi(x) = sgi(ym,x)(ym − x)

and

0 ≥ hj(ym)− hj(x) = shj (ym,x)(ym − x)

by ‖ym − x‖ and taking limits. Recall here that hj(x) = 0 at an active
constraint.

Example 5.5.2 Minimum Eigenvalue of a Symmetric Matrix

Example 1.4.3 demonstrated how each eigenvector-eigenvalue pair (x, α) of
a symmetric matrix M provides a stationary point of the Lagrangian

L(x) =
1

2
x∗Mx− α

2
(‖x‖2 − 1).

Suppose that the eigenvalues are arranged so that α1 ≤ · · · ≤ αn and xi

is the unit eigenvector corresponding to αi. We expect that x1 furnishes
the minimum of 1

2y
∗My subject to g1(y) =

1
2 − 1

2‖y‖2 = 0. To check that
this is indeed the case, we note that d2L(y) = M − α1In. The condition
dg1(x1)v = 0 is equivalent to x∗

1v = 0. Because the eigenvectors constitute
an orthonormal basis, the equality x∗

1v = 0 can hold only if

v =

n∑
i=2

cixi.

For such a choice of v, the quadratic form

v∗d2L(x1)v =

n∑
i=2

c2i (αi − α1) > 0

so long as α1 < α2 and v �= 0. Thus, the condition cited in the statement
of Proposition 5.5.2 holds, and the point x1 minimizes y∗My subject to
the constraint ‖y‖ = 1.
The case α1 = α2 is not covered by Proposition 5.5.2. However, we can

fall back on an alternative and simpler proof. Consider any unit vector

w =
n∑

i=1

bixi.
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The inequality

w∗Mw =

n∑
i=1

αib
2
i ‖xi‖2 ≥ α1

n∑
i=1

b2i = α1.

immediately establishes the claimed property once we note that w = x1

achieves the lower bound α1.

Example 5.5.3 Minimum of a Linear Reciprocal Function

Consider minimizing the nonlinear function f(x) =
∑n

i=1 cix
−1
i subject to

the linear inequality constraint
∑n

i=1 aixi ≤ b. Here all indicated variables
and parameters are positive. Differentiating the Lagrangian

L(x) =

n∑
i=1

cix
−1
i + μ

(
n∑

i=1

aixi − b
)

gives the multiplier equations

− ci
x2i

+ μai = 0.

It follows that μ > 0, that the constraint is active, and that

xi =

√
ci
μai

, 1 ≤ i ≤ n

μ =

(
1

b

n∑
i=1

√
aici

)2

. (5.13)

The second differential d2L(x) is diagonal with ith diagonal entry 2ci/x
3
i .

This matrix is certainly positive definite, and Proposition 5.5.2 confirms
that the stationary point (5.13) provides the minimum of f(x) subject to
the constraint.

When there are only equality constraints, one can say more about the
sufficient criterion described in Proposition 5.5.2. Following the discussion
in Sect. 5.3, let G be the p × n matrix G with rows dgi(x) and K an
n × (n − p) matrix of full rank satisfying GK = 0. On the kernel of G
the matrix A = d2L(x) is positive definite. Since every v in the kernel
equals some image point Ku, we can establish the validity of the sufficient
condition of Proposition 5.5.2 by checking whether the matrix K∗AK
of the quadratic form u∗K∗AKu is positive definite. There are many
practical methods of making this determination. For instance, the sweep
operator from computational statistics performs such a check easily in the
process of inverting K∗AK [166].
If we want to work directly with the matrixG, there is another interesting

criterion involving the relation between the positive semidefinite matrix
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B = G∗G and the second differential A = d2L(x). One can rephrase the
sufficient condition of Proposition 5.5.2 by saying that v∗Av > 0 whenever
v∗Bv = 0 and v �= 0. We claim that this condition is equivalent to the
existence of some constant γ > 0 such that the matrix A+ γB is positive
definite [58]. Clearly, if such a γ exists, then the condition holds. Conversely,
suppose the condition holds and that no such γ exists. Then there is a
sequence of unit vectors vm and a sequence of scalars αm tending to ∞
such that

v∗
mAvm + αmv∗

mBvm ≤ 0. (5.14)

By passing to a subsequence if needed, we may assume that the sequence
vm converges to a unit vector v. On the one hand, because B is positive
semidefinite, inequality (5.14) compels the conclusions v∗

mAvm ≤ 0, which
must carry over to the limit. On the other hand, dividing inequality (5.14)
by αm and taking limits imply v∗Bv ≤ 0 and therefore v∗Bv = 0. Because
the limit vector v violates the condition v∗Av > 0, the required γ > 0
exists.

5.6 Problems

1. Find a minimum of f(x) = x21 + x22 subject to the inequality con-
straints h1(x) = −2x1 − x2 + 10 ≤ 0 and h2(x) = −x1 ≤ 0 on R2.
Prove that it is the global minimum.

2. Minimize the function f(x) = e−(x1+x2) subject to the constraints
h1(x) = ex1 + ex2 − 20 ≤ 0 and h2(x) = −x1 ≤ 0 on R2.

3. Find the minimum and maximum of the function f(x) = x1+x2 over
the subset of R2 defined by the constraints

h1(x) = −x1
h2(x) = −x2
h3(x) = 1− x1x2.

4. Consider the problem of minimizing f(x) = (x1 + 1)2 + x22 subject
to the inequality constraint h(x) = −x31 + x22 ≤ 0 on R2. Solve the
problem by sketching the feasible region and using a little geometry.
Show that the multiplier rule of Proposition 5.2.1 with λ0 = 1 fails
and explain why.

5. In the multiplier rule of Proposition 5.2.1, suppose that the Kuhn-
Tucker constraint qualification holds and that λ0 = 1. Prove that the
remaining multipliers are unique.
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6. Consider the inequality constraint functions

h1(x) = −x1
h2(x) = −x2
h3(x) = x21 + 4x22 − 4

h4(x) = (x1 − 2)2 + x22 − 5

on R2. Show that the Kuhn-Tucker constraint qualification fails but
the Mangasarian-Fromovitz constraint qualification succeeds at the
point x = (0, 1)∗. For the inequality constraint functions

h1(x) = x21 − x2
h2(x) = −3x21 + x2,

show that both constraint qualifications fail at the point x = 0 [96].

7. Consider the two functions f(x) = x1 and

g(x) =

⎧⎨
⎩
x2 if x1 ≥ 0
x2 − x21 if x1 < 0, x2 ≤ 0
x2 + x21 if x1 < 0, x2 > 0

defined on R2. Demonstrate that:

(a) f(x) has differential df(x) = (1, 0),

(b) g(x) is continuous except on the half line {(x1, 0)∗ : x1 < 0},
(c) g(x) has differential dg(0) = (0, 1) at the origin.

With these functions in hand, it is possible to show that the La-
grange multiplier rule can fail due to lack of continuity of an equality
constraint. The optimization problem we have in mind is minimizing
f(x) subject to g(x) = 0. Prove that the origin is the unique solu-
tion of this problem. In addition prove that no nontrivial pair (μ, λ)
satisfies the multiplier condition

μ∇f(0) + λ∇g(0) = 0.

8. For a real 2× 2 matrix

M =

(
a b
c d

)
,

define the Frobenius norm ‖M‖F =
√
a2 + b2 + c2 + d2. Let S denote

the set of matrices M with det(M ) = 0. Find the minimum distance
from S to the matrix (

1 0
0 2

)
,
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and exhibit a matrix attaining this distance [69]. (Hints: Introduce
a Lagrange multiplier λ in minimizing 1

2‖M‖2F subject to M ∈ S.
From the multiplier conditions deduce that λ = ±1 if b �= 0. Show
that the assumption λ = ±1 leads to a contradiction. Thus, b = 0
and consequently c = 0. Express a and d as functions of λ and find
the λ’s for which det(M ) = 0.)

9. The equation

n∑
i=1

aix
2
i = c

defines an ellipse in Rn whenever all ai > 0. The problem of Apollo-
nius is to find the closest point on the ellipse from an external point
y [30]. Demonstrate that the solution has coordinates

xi =
yi

1 + λai
,

where λ is chosen to satisfy

n∑
i=1

ai

(
yi

1 + λai

)2

= c.

Show how you can adapt this solution to solve the problem with the
more general ellipse (x − z)∗A(x − z) = c for A a positive definite
matrix.

10. Let A be a positive definite matrix. For a given vector y, find the
maximum of f(x) = y∗x subject to h(x) = x∗Ax− 1 ≤ 0. Use your
result to prove the inequality |y∗x|2 ≤ (x∗Ax)(y∗A−1y).

11. Let A be a full rank m × n matrix and b be an m × 1 vector with
m < n. The set S = {x ∈ Rn : Ax = b} defines a plane in Rn.
If m = 1, S is a hyperplane. Given y ∈ Rn, prove that the closest
point to y in S is

P (y) = y −A∗(AA∗)−1Ay +A∗(AA∗)−1b.

12. If A is a matrix and y is a compatible vector, then Ay ≥ 0 means
that all entries of the vector Ay are nonnegative. Farkas’ lemma says
that x∗y ≥ 0 for all vectors y with Ay ≥ 0 if and only if x is
a nonnegative linear combination of the rows of A. Prove Farkas’
lemma assuming that the rows of A are linearly independent.

13. It is possible to give an elementary proof of the necessity of the
Lagrange multiplier rule under a set of alternative conditions [28].
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In the setting of Proposition 5.2.1, suppose that the equality
constraints gi(y) are affine and that f(y) and the inequality con-
straints hj(x) are merely differentiable at the constrained minimum
x. The constraint qualification is simplified by taking all hj(y) to be
active at x and requiring the matrix

M =

(
dg(x)
dh(x)

)

to have full row rank, where dg(x) and dh(x) stack the differentials
of the gi(x) and hj(x) row by row. The number of columns of M
should exceed the number of rows of M . To validate the Lagrange
multiplier rule, first argue that the equation

(
df(x)
M

)
u =

⎛
⎝ c

0
v

⎞
⎠ (5.15)

can have no solution u when c and the entries of v are all negative
numbers. Indeed, if a solution exists, then show that x+tu is feasible
for t > 0 small enough and satisfies f(x + tu) < f(x). Next argue
that the full rank assumption implies that equation (5.1) holds for
some set of Lagrange multipliers. The real question is whether all μj

are nonnegative. Suppose otherwise and construct a vector v with all
entries negative such that the inner product μ∗v is positive. The full
rank assumption then implies that the equation

Mu =

(
0
v

)

has a solution u. Finally, demonstrate that taking c = −μ∗v forces
u to solve equation (5.15). This contradiction proves that all μj are
nonnegative. (Hints: Full row rank implies full column rank. Hence,
if the matrix appearing on the left side of equation (5.15) has full
row rank, then the equation is solvable for any choice of c and v.
This impossibility implies that df(x) can be expressed as a linear
combination of the rows of M .)

14. A random variable takes the value xi with probability pi for i ranging
from 1 to n. Maximize the entropy −∑n

i=1 pi ln pi subject to a fixed
mean m =

∑n
i=1 xipi. Show that pi = αeλxi for constants α and λ.

Argue that λ is determined by the equation

n∑
i=1

xie
λxi = m

n∑
i=1

eλxi .
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15. Continuing the previous problem, suppose that each xj = j. At the
maximum, show that

pi =
pi−1(1 − p)

1− pn

for some p > 0 and all 1 ≤ i ≤ n. Argue that p exists and is unique
for n > 1.

16. Establish the bound

n∑
m=1

(
pm +

1

pm

)2

≥ n3 + 2n+
1

n

for a discrete probability density p1, . . . , pn. Determine a necessary
and sufficient condition for equality to hold [243].

17. Consider the problem of minimizing the continuously differentiable
function f(x) subject to the constraint x ≥ 0. At a local minimum y
demonstrate that the partial derivative ∂if(y) = 0 when yi > 0 and
∂if(y) ≥ 0 when yi = 0.

18. As a variation on Problem 17, consider minimizing the continuously
differentiable function f(x) subject to the constraints

∑n
i=1 xi = 1

and x ≥ 0. At a local minimum y demonstrate that there exists a
number λ such that the partial derivative ∂if(y) = λ when yi > 0
and ∂if(y) ≥ λ when yi = 0. This result is known as Gibbs’ lemma.

19. Prove Nesbitt’s inequality

n∑
k=1

pk∑
j 
=k pj

≥ n

n− 1

for a discrete probability density p1, . . . , pn. Determine a necessary
and sufficient condition for equality to hold [243].

20. Find the minimum value of f(x) = ‖x‖2 subject to the constraints∑n
i=1 xi = 1 and x ≥ 0. Interpret the result geometrically.

21. For p > 1 define the norm ‖x‖p on Rn satisfying ‖x‖pp =
∑n

i=1 |xi|p.
For a fixed vector z, maximize f(x) = z∗x subject to ‖x‖pp ≤ 1.
Deduce Hölder’s inequality |z∗x| ≤ ‖x‖p‖z‖q for q defined by the
equation p−1 + q−1 = 1.

22. Suppose A is an n×n positive definite matrix. Find the minimum of
f(x) = 1

2x
∗Ax subject to the constraint z∗x− c ≤ 0. It may help to

consider the cases c ≥ 0 and c < 0 separately.
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23. Suppose that v1, . . . ,vm are orthogonal eigenvectors of the n × n
symmetric matrix M . Subject to the constraints

‖x‖2 = 1, v∗
ix = 0, 1 ≤ i ≤ m < n,

show that a minimum of x∗Mx must coincide with an eigenvector of
M . Under what circumstances is there a unique minimum of x∗Mx
subject to the constraints?

24. In the context of Proposition 5.2.1, suppose at the feasible point x
one has df(x)v > 0 for every nontrivial tangent vector v. Recall that
v satisfies dgi(x)v = 0 for all equality constraints and dhj(x)v ≤ 0
for all active inequality constraints. Prove that there exists a positive
constant c such that

f(y) ≥ f(x) + c‖y − x‖

for all feasible points y close enough to x. Thus, x represents a local
minimum of f(y). (Hints: If the contrary is true, then there exists a
sequence of feasible points xm such that

‖xm − x‖ <
1

m
and f(xm) < f(x) +

1

m
‖xm − x‖.

Pass to a subsequence so that ‖xm − x‖−1(xm − x) converges.)

25. Continuing Problem 24, let f(x) = 3x1−x2+x1x2 and h1(x) = −x1,
h2(x) = x1 − x2, and h3(x) = x2 − 2x1. Show that 0 represents a
local minimum by demonstrating the condition df(0)v > 0 for every
nontrivial tangent vector v.

26. In Problem 24, the strict inequality df(x)v > 0 cannot be relaxed
to simple inequality. As an example take f(x) = x2 subject to the
constraint h1(x) = −x21 − x2 ≤ 0. Demonstrate that df(0)v ≥ 0 for
every vector v satisfying dh1(0)v ≤ 0, yet 0 is not a local minimum.

27. Assume that the objective function f(x) and the equality constraints
gi(x) in an equality constrained minimization problem are continu-
ously differentiable. If the gradients ∇gi(y) at a local minimum y
are linearly independent, then the standard Lagrange multiplier rule
holds at y. If in addition f(x) and the gi(x) possess second differ-
entials at y, then show that the second differential d2L(y) of the
Lagrangian satisfies v∗d2L(x)v ≥ 0 for every tangent direction v.
(Hints: As demonstrated in Example 4.6.3, there is a one-to-one cor-
respondence between tangent vectors and tangent curves. Expand
L(x) to second order around y, and use the fact that it coincides
with f(x) at feasible points.)
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28. Demonstrate that the quadratic function f(x) = 1
2x

∗Ax+ b∗x+ c is
unbounded below if either (a) A is not positive semidefinite, or (b) A
is positive semidefinite and Ax = −b has no solution. Why does f(x)
attain its minimum when it is bounded below? (Hints: Diagonalize
A in the form ODO∗, where O is orthogonal and D is diagonal.
Consider the transformed function g(z) = f(x) with z = O∗x.)

29. Sylvester’s criterion states that an n×n symmetric matrix A is pos-
itive definite if and only if its leading principal minors are positive.
To prove this result by induction, verify it in the scalar case n = 1.
Now consider the (n+ 1)× (n+ 1) symmetric block matrix

A =

(
B b
b∗ c

)
,

where B is n× n and positive definite. Define the function

f(x) = (x∗, 1)A
(
x
1

)
= x∗Bx+ 2b∗x+ c,

and show that x = −B−1b furnishes its minimum. At that point
the function has value c − b∗B−1b. Thus, f(x) is positive provided
c− b∗B−1b is positive. Next verify that

detA = (c− b∗B−1b) detB

by checking that(
I 0
d∗ 1

)(
B b
b∗ c

)(
I d
0∗ 1

)
=

(
B 0
0∗ c− b∗B−1b

)

for an appropriate vector d. Put all of these hints together, and ad-
vance the induction from n to n+ 1.

30. Let M be an m×n matrix. Show that there exist unit vectors u and
v such that Mv = ‖M‖u and M∗u = ‖M‖v, where ‖M‖ is the
matrix norm induced by the Euclidean norms on Rm and Rn. (Hint:
See Problem 7 in Chap. 2.)

31. Consider the set of n × n matrices M = (mij). Demonstrate that
detM has maximum value

∏n
i=1 di subject to the constraints√√√√ n∑

j=1

m2
ij = di

for 1 ≤ i ≤ n. This is Hadamard’s inequality. (Hints: Use the La-
grange multiplier condition and the identities detM =

∑n
j=1mijMij

and (M−1)ij = Mji/ detM to show that M can be written as the
product DR of a diagonal matrix D with diagonal entries di and an
orthogonal matrix R with detR = 1.)
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32. For m a positive integer, verify the explicit second slope

s2(y, x) = 2[ym−2 + 2ym−3x+ 3ym−4x2 + · · ·+ (m− 1)xm−2]

of the function f(x) = xm on R. Show that

lim
y→x

s2(y, x) = m(m− 1)xm−2.

33. Supply the missing algebraic steps in Example 5.4.5.

34. Let f(y) be a real-valued function of the real variable y. Suppose that
f ′′(y) exists at a point x. Prove that

f ′′(x) = lim
u→0

f(x+ u)− 2f(x) + f(x− u)
u2

.

Use Problem 2 of Chap. 4 to devise an example where this limit quo-
tient exists but f ′′(x) does not exist.

35. Suppose that f(x) is twice differentiable on the interval (0,∞).
If mj = supx |f (j)(x)|, then show that m2

1 ≤ 4m0m2. (Hints:
Expanding f(x) in a second-order Taylor series, demonstrate that

|f ′(x)| ≤ 2m0

h
+
m2h

2

for all positive h. Choose h to minimize the right-hand side.)

36. Show that the function f(x) = ex1 ln(1 + x2) on R2 has the second-
order Taylor expansion

f(x) = x2 + x1x2 − 1

2
x22 +R2(x)

around 0 with remainder R2(x).

37. Assume the functions f(y) and g(y) mapping R into R are differen-
tiable of order p at the point x. If f (m)(x) = g(m)(x) = 0 for allm < p
but g(p)(x) �= 0, then demonstrate L’Hôpital’s rule

lim
y→x

f(y)

g(y)
=

f (p)(x)

g(p)(x)
.

Find the limit of the ratio sin2 x/(ex
2−1) as x tends to 0. (Hint: Con-

sider the Taylor expansion (5.8) for f(y) and the analogous expansion
for g(y).)

38. Suppose the function f(y) : R �→ R is differentiable of order p > 1
in a neighborhood of a point x where f (m)(x) = 0 for 1 ≤ m < p
and f (p)(x) �= 0. If p is odd, then show that x is a saddlepoint. If p
is even, then show that x is a minimum point when f (p)(x) > 0
and a maximum point when f (p)(x) < 0. (Hint: Invoke the Taylor
expansion (5.8).)



6
Convexity

6.1 Introduction

Convexity is one of the cornerstones of mathematical analysis and has
interesting consequences for optimization theory, statistical estimation, in-
equalities, and applied probability. Despite this fact, students seldom see
convexity presented in a coherent fashion. It always seems to take a back-
seat to more pressing topics. The current chapter is intended as a partial
remedy to this pedagogical gap.
We start with convex sets and proceed to convex functions. These inter-

twined concepts define and illuminate all sorts of inequalities. It is helpful
to have a variety of tests to recognize convex functions. We present such
tests and discuss the important class of log-convex functions. A strictly con-
vex function has at most one minimum point. This property tremendously
simplifies optimization. For a few functions, we are fortunate enough to be
able to find their optima explicitly. For other functions, we must iterate.
The definition of a convex function can be extended in various ways. The

quasi-convex functions mentioned in the current chapter serve as substi-
tutes for convex functions in many optimization arguments. Later chapters
will extend the notion of a convex function to include functions with in-
finite values. Mathematicians by nature seek to isolate the key properties
that drive important theories. However, too much abstraction can be a hin-
derance in learning. For now we stick to the concrete setting of ordinary
convex functions.
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A B

FIGURE 6.1. A convex set on the left and a non-convex set on the right

The concluding section of this chapter rigorously treats several inequali-
ties from the perspective of probability theory. Our inclusion of Bernstein’s
proof of the Weierstrass approximation theorem provides a surprising ap-
plication of Chebyshev’s inequality and illustrates the role of probability
theory in solving problems outside its usual sphere of influence. The less
familiar inequalities of Jensen, Schlömilch, and Hölder find numerous ap-
plications in optimization theory and functional analysis.

6.2 Convex Sets

A set S ⊂ Rn is said to be convex if the line segment between any two points
x and y of S lies entirely within S. Formally, this means that whenever
x,y ∈ S and α ∈ [0, 1], the point z = αx + (1 − α)y ∈ S as well. In
general, any convex combination

∑m
i=1 αixi of points x1, . . . ,xm from S

must also reside in S. Here, the coefficients αi are nonnegative and sum to
1. Figure 6.1 depicts two sets S in R2, one convex and the other non-convex.
The set on the right fails the line segment test for the segment connecting
its two cusps A and B.
It is easy to concoct other examples of convex sets. For example, every

interval on the real line is convex; every ball in Rn, either open or closed,
is convex; and every multidimensional rectangle, either open, closed, or
neither, is convex. Halfspaces and affine subspaces are convex. The former
can be open or closed; the latter are always closed. Finitely generated
cones as described in Example 2.4.1 are closed convex cones. The set of
n× n positive semidefinite matrices is a closed convex cone in the space of
symmetric matrices. The set of n× n positive definite matrices treated in
Example 2.5.4 is an open convex set in the same space. It is not a convex
cone because it excludes the 0 matrix.
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These examples suggest several of the important properties listed in the
next proposition.

Proposition 6.2.1 Convex sets in Rn enjoy the following properties:

(a) The closure of a convex set is convex.

(b) The interior of a convex set is convex.

(c) A convex set is connected.

(d) The intersection of an arbitrary number of convex sets is convex.

(e) The image and inverse image of a convex set under an affine map
f(x) = Ax+ b are convex.

(f) The Cartesian product S × T of two convex sets S and T is convex.

Proof: To prove assertion (a), consider two points x and y in the closure
of the convex set S. There exist sequences uk and vk from S converging
to x and y, respectively. The convex combination wk = αuk + (1 − α)vk

is in S as well and converges to z = αx + (1 − α)y in the closure of S.
To verify assertion (b), suppose x and y lie in the interior of S. For r
sufficiently small, S contains the two balls x+ B(0, r) and y + B(0, r) of
radius r. Consider a point w = αx + (1 − α)y + z with z ∈ B(0, r). The
decomposition

αx+ (1 − α)y + z = α(x+ z) + (1 − α)(y + z)

makes it obvious that w also lies in S. Assertion (c) is a consequence of the
fact that an arcwise connected set is connected. Assertions (d), (e), and (f)
follow directly from the definitions.

Some obvious corollaries can be drawn from items (e) and (f) of Propo-
sition 6.2.1. For example, suppose S and T are convex sets and λ is any
real number. Then we can assert that the sets λS and S + T are convex.
Convex sets have many other crucial properties. Here is one that figures
prominently in optimization theory.

Proposition 6.2.2 For a convex set S of Rn, there is at most one point
y ∈ S attaining the minimum distance dist(x, S) from x to S. If S is
closed, there is exactly one point.

Proof: These claims are obvious if x is in S. Suppose that x is not in S
and that y and z in S both attain the minimum. Then 1

2 (y + z) ∈ S and

dist(x, S) ≤ ‖x− 1

2
(y + z)‖

≤ 1

2
‖x− y‖+ 1

2
‖x− z‖

= dist(x, S).
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Hence, equality must hold in the displayed triangle inequality. This is pos-
sible if and only if x − y = c(x − z) for some positive number c. In view
of the fact that dist(x, S) = ‖x− y‖ = ‖x− z‖, the value of c is 1, and y
and z coincide. The second claim follows from Example 2.5.5 of Chap. 2.

Another important property relates to separation by hyperplanes.

Proposition 6.2.3 Consider a closed convex set S of Rn and a point x
outside S. There exists a unit vector v and real number c such that

v∗x > c ≥ v∗z (6.1)

for all z ∈ S. As a consequence, S equals the intersection of all closed
halfspaces containing it. If x is a boundary point of a convex set S, then
there exists a unit vector v such that v∗x ≥ v∗z for all z ∈ S.
Proof: Let y be the closest point to x in S. Suppose that we can prove
the obtuse angle criterion

(x− y)∗(z − y) ≤ 0 (6.2)

for all z ∈ S. If we take v = x − y, then c = v∗y ≥ v∗z for all z ∈ S.
Furthermore, v∗x > v∗y = c because v∗v = ‖v‖2 > 0. One can clearly
replace v by ‖v‖−1v without disrupting the separation inequalities (6.1).
To prove inequality (6.2), suppose it fails. Then (x− y)∗(z − y) > 0 for

some z ∈ S. For each 0 < α < 1, the point αz + (1− α)y is in S, and

‖x− αz − (1− α)y‖2 = ‖x− y − α(z − y)‖2
= ‖x− y‖2 − α [2(x− y)∗(z − y)− α‖z − y‖2] .

For α sufficiently small, the term above in square brackets is positive, so
αz+(1−α)y improves on the choice of y. This contradiction demonstrates
inequality (6.2).
If x is a boundary point of S, then there exists a sequence of points

xi outside S that converge to x. Let vi be the unit vector defining the
hyperplane separating xi from S. Without loss of generality, we can assume
that some subsequence vij converges to a unit vector v. Taking limits in
the strict inequality v∗

ijxij > v∗
ijz for z ∈ S then yields the desired result

v∗x ≥ v∗z.

Example 6.2.1 Farkas’ Lemma and Markov Chains

As a continuation of Example 2.4.1, consider the finitely generated cone

C =
{ m∑

i=1

αivi : αi ≥ 0, i = 1, . . . ,m
}
.

Because C is closed and convex, any point x outside C can be separated
from C by a hyperplane. Thus, there exists a vector w and a constant
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b with w∗x > b ≥ w∗y for all y in C. Given the origin 0 belongs to
C, the constant b ≥ 0. In fact, b must equal 0. If w∗y > 0 for some y
in C, then rw∗y > b for some r > 0. Since ry belongs to C, we reach
a contradiction. Farkas’ lemma summarizes these findings by posing two
mutually exclusive alternatives, one of which must hold. Either the point
x satisfies x =

∑m
i=1 αivi for nonnegative constants αi, or there exists a

vector w with w∗x > 0 and 0 ≥ w∗vi for all i.
Farkas’ lemma has a clever application in Markov chain theory [97]. Re-

call that a Markov chain on n states is governed by a transition probability
matrix P = (pij) with nonnegative entries and row sums equal to 1. A sta-
tionary distribution is a row vector α with nonnegative entries αi that sum
equal to 1 and satisfy the equilibrium condition α = αP . Farkas’ lemma
gives an easy proof that such vectors α exist. The stationarity conditions
can be restated as the vector equation

(
0
1

)
=

n∑
i=1

αivi

for vectors v1, . . . ,vn with entries vij = pij − 1{j=i} and vi,n+1 = 1 for all
i and j between 1 and n. The Farkas alternative postulates the existence
of a vector w = (w1, . . . , wn+1)

∗ with

w∗
(
0
1

)
= wn+1 > 0

w∗vi =

n∑
j=1

wjpij − wi + wn+1 ≤ 0

for 1 ≤ i ≤ n. Choosing wi = min1≤j≤n wj , we find that

0 ≥
n∑

j=1

wjpij − wi + wn+1 ≥ wn+1,

contradicting the assumption wn+1 > 0. Thus, the stationarity conditions
must hold.

We now turn to a famous convexity result of Carathéodory and its appli-
cation to compact sets. The convex hull of a set S, denoted convS, is the
smallest convex set containing S. Equivalently, convS consists of all con-
vex combinations

∑
i αivi of points vi from S. The convex hull displayed

in Fig. 6.2 consists of the boundary plus all points internal to it.

Proposition 6.2.4 (Carathéodory) Let S be a nonempty subset of Rn.
Every vector from convS can be represented as a convex combination of at
most n + 1 vectors from S. Furthermore, if S is compact, then convS is
also compact.
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FIGURE 6.2. Convex hull of 20 random points in the plane

Proof: Consider the set T = {(y, 1) : y ∈ S}. A point (x, 1) in convT can
be represented as a convex combination (x, 1) =

∑
i αi(vi, 1). The point

(x, 1) also belongs to the cone generated by the vectors (vi, 1). As noted in
Example 2.4.1, we can eliminate all but n+1 linearly independent vectors
(vij , 1) in this representation. It follows that x =

∑
j βjvij with 1 =

∑
j βj

and all βj ≥ 0.
When S is compact, consider a sequence xj =

∑
i βjivji from convS. By

the first part of the proposition, one can assume that the sum over i runs
from 1 to n+1 at most. It suffices to prove that xj possesses a subsequence
that converges to a point in convS. By passing to successive subsequences
as needed, one can assume that each βji converges to βi ≥ 0 and each vji

converges to vi ∈ S. It follows that xj converges to the convex combination∑
i βivi of points from S.

6.3 Convex Functions

Convex functions are defined on convex sets. A real-valued function f(x)
defined on a convex set S is convex provided

f [αx+ (1− α)y] ≤ αf(x) + (1− α)f(y) (6.3)

for all x,y ∈ S and α ∈ [0, 1]. Figure 6.3 depicts how in one dimension
definition (6.3) requires the chord connecting two points on the curve f(x)
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FIGURE 6.3. Plot of the convex function ex + x2

to lie above the curve. If strict inequality holds in inequality (6.3) for every
x �= y and α ∈ (0, 1), then f(x) is said to be strictly convex. One can prove
by induction that inequality (6.3) extends to

f
( m∑

i=1

αixi

)
≤

m∑
i=1

αif(xi)

for any convex combination of points from S. This is the finite form of
Jensen’s inequality. Proposition 6.6.1 discusses an integral form. A concave
function satisfies the reverse of inequality (6.3).

Example 6.3.1 Affine Functions Are Convex

For an affine function f(x) = a∗x+ b, equality holds in inequality (6.3).

Example 6.3.2 Norms Are Convex

The Euclidean norm f(x) = ‖x‖ =
√∑n

i=1 x
2
i satisfies the triangle in-

equality and the homogeneity condition ‖cx‖ = |c| ‖x‖. Thus,
‖αx+ (1− α)y‖ ≤ ‖αx‖+ ‖(1− α)y‖ = α‖x‖+ (1 − α)‖y‖

for every α ∈ [0, 1]. The same argument works for any norm. The choice
y = 2x gives equality in inequality (6.3) and shows that no norm is strictly
convex.



144 6. Convexity

Example 6.3.3 The Distance to a Convex Set Is Convex

The distance dist(x, S) from a point x ∈ Rn to a convex set S is convex
in x. Indeed, for any convex combination αx+(1−α)y, take sequences uk

and vk from S such that

dist(x, S) = lim
k→∞

‖x− uk‖
dist(y, S) = lim

k→∞
‖y − vk‖.

The points αuk + (1 − α)vk lie in S, and taking limits in the inequality

dist[αx+ (1− α)y, S] ≤ ‖αx+ (1 − α)y − αuk − (1 − α)vk‖
≤ α‖x− uk‖+ (1− α)‖y − vk‖

yields dist[αx+ (1 − α)y, S] ≤ α dist(x, S) + (1 − α) dist(y, S).
Example 6.3.4 Convex Functions Generate Convex Sets

Consider a convex function f(x) defined on Rn. Examination of defini-
tion (6.3) shows that the sublevel sets {x : f(x) ≤ c} and {x : f(x) < c}
are convex for any constant c. They may be empty. Conversely, a closed
convex set S can be represented as {x : f(x) ≤ 0} using the continuous
convex function f(x) = dist(x, S). This result does not preclude the pos-
sibility that a convex set is a sublevel set of a nonconvex function. For
instance, the set {x : 1 − x1x2 ≤ 0, x1 ≥ 0, x2 ≥ 0} is convex while the
function 1− x1x2 is nonconvex on the domain {x : x1 ≥ 0, x2 ≥ 0}.
Example 6.3.5 A Convex Function Has a Convex Epigraph

The epigraph of a real-valued function f(x) is defined as the set of points
(y, r) with f(y) ≤ r. Roughly speaking, the epigraph is the region lying
above the graph of f(x). Consider two points (y, r) and (z, s) in the epi-
graph of f(x). If f(x) is convex, then

f [αy + (1− α)z] ≤ αf(y) + (1− α)f(z)
≤ αr + (1− α)s,

and the convex combination α(y, r) + (1 − α)(z, s) occurs in the epigraph
of f(x). Conversely, if the epigraph of f(x) is a convex set, then f(x) must
be a convex function.

Figure 6.3 illustrates how a tangent line to a convex curve lies below the
curve. This property characterizes convex differentiable functions.

Proposition 6.3.1 Let f(x) be a differentiable function on the open con-
vex set S ⊂ Rn. Then f(x) is convex if and only if

f(y) ≥ f(x) + df(x)(y − x) (6.4)

for all x,y ∈ S. Furthermore, f(x) is strictly convex if and only if strict
inequality prevails in inequality (6.4) when y �= x.
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Proof: If f(x) is convex, then we can rearrange inequality (6.3) to give

f [x+ (1− α)(y − x)]− f(x)
(1− α) =

f [αx+ (1− α)y]− f(x)
1− α

≤ f(y)− f(x).
Letting α tend to 1 proves inequality (6.4). To demonstrate the converse, let
z = αx+(1−α)y. Then with obvious notational changes, inequality (6.4)
implies

f(x) ≥ f(z) + df(z)(x− z)

f(y) ≥ f(z) + df(z)(y − z).

Multiplying the first of these inequalities by α and the second by 1−α and
adding the results produce

αf(x) + (1− α)f(y) ≥ f(z) + df(z)(z − z) = f(z),

which is just inequality (6.3). The claims about strict convexity are left to
the reader.

It is useful to have simpler tests for convexity than inequalities (6.3)
and (6.4). One such test involves the second differential d2f(x) of a function
f(x).

Proposition 6.3.2 Consider a twice differentiable function f(x) on the
open convex set S ⊂ Rn. If its second differential d2f(x) is positive semidef-
inite for all x, then f(x) is convex. If d2f(x) is positive definite for all x,
then f(x) is strictly convex.

Proof: The expansion

f(y) = f(x) + df(x)(y − x)

+ (y − x)∗
∫ 1

0

d2f [x+ t(y − x)](1− t) dt (y − x)

for y �= x shows that

f(y) ≥ f(x) + df(x)(y − x),

with strict inequality when d2f(x) is positive definite for all x.

Example 6.3.6 Generalized Arithmetic-Geometric Mean Inequality

The second derivative test shows that the function ex is strictly convex.
Taking yi = exi,

∑n
i=1 αi = 1, and all αi ≥ 0 produces the generalized

arithmetic-geometric mean inequality

n∏
i=1

yαi

i ≤
n∑

i=1

αiyi. (6.5)

Equality holds if all yi coincide or all but one αi equals 0.
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Example 6.3.7 Strictly Convex Quadratic Functions

If the matrix A is positive definite, then Proposition 6.3.2 implies that the
quadratic function f(x) = 1

2x
∗Ax+ b∗x+ c is strictly convex.

Even Proposition 6.3.2 can be difficult to apply. The next proposition
helps us to recognize convex functions by their closure properties.

Proposition 6.3.3 Convex functions satisfy the following:

(a) If f(x) is convex and g(x) is convex and increasing, then the functional
composition g ◦ f(x) is convex.

(b) If f(x) is convex, then the functional composition f(Ax+ b) of f(x)
with an affine function Ax+ b is convex.

(c) If f(x) and g(x) are convex and α and β are nonnegative constants,
then αf(x) + βg(x) is convex.

(d) If f(x) and g(x) are convex, then max{f(x), g(x)} is convex.

(e) If fm(x) is a sequence of convex functions, then limm→∞ fm(x) is
convex whenever it exists.

Proof: To prove assertion (a), we calculate

g ◦ f [αx+ (1− α)y] ≤ g[αf(x) + (1 − α)f(y)]
≤ αg ◦ f(x) + (1− α)g ◦ f(y).

The remaining assertions are left to the reader.

Part (a) of Proposition 6.3.3 implies that ef(x) is convex when f(x) is
convex and that f(x)β is convex when f(x) is nonnegative and convex
and β > 1. One case not covered by the Proposition is products. The
counterexample x3 = x2x shows that the product of two convex functions
is not necessarily convex. In some situations the limit of a sequence of
convex functions is no longer finite. Many authors consider +∞ to be a
legitimate value for a convex function while −∞ is illegitimate. For the
sake of simplicity, we prefer to deal with functions having only finite values.
In Chap. 14 we relax this restriction.

Example 6.3.8 Largest Eigenvalue of a Symmetric Matrix

Part (d) of Proposition 6.3.3 can be generalized. Suppose the function
f(x,y) is convex in y for each fixed x. Then, provided it is finite, the
function supx f(x,y) is convex in y. For a specific application, recall that
Example 1.4.3 proves the formula

λmax(M ) = max
‖x‖=1

x∗Mx
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for the largest eigenvalue of a symmetric matrix. Because the map taking
M into x∗Mx is linear, it follows that λmax(M ) is convex in M . Apply-
ing the same reasoning to −M , we deduce that the minimum eigenvalue
λmin(M) is concave in M .

Example 6.3.9 Differences of Convex Functions

Although the class of convex functions is rather narrow, most well-behaved
functions can be expressed as the difference of two convex functions. For
example, consider a polynomial p(x) =

∑n
m=0 pmx

m. The second derivative
test shows that xm is convex whenever m is even. If m is odd, then xm is
convex on [0,∞), and −xm is convex on (−∞, 0). Therefore,

xm = max{xm, 0} −max{−xm, 0}

is the difference of two convex functions. Because the class of differences
of convex functions is closed under the formation of linear combinations, it
follows that p(x) belongs to this larger class.

A positive function f(x) is said to be log-convex if ln f(x) is convex.
Log-convex functions have excellent closure properties as documented by
the next proposition.

Proposition 6.3.4 Log-convex functions satisfy the following:

(a) If f(x) is log-convex, then f(x) is convex.

(b) If f(x) is convex and g(x) is log-convex and increasing, then the func-
tional composition g ◦ f(x) is log-convex.

(c) If f(x) is log-convex, then the functional composition f(Ax + b) of
f(x) with an affine function Ax+ b is log-convex.

(d) If f(x) is log-convex, then f(x)α and αf(x) are log-convex for any
α > 0.

(e) If f(x) and g(x) are log-convex, then f(x) + g(x), max{f(x), g(x)},
and f(x)g(x) are log-convex.

(f) If fm(x) is a sequence of log-convex functions, then limm→∞ fm(x) is
log-convex whenever it exists and is positive.

Proof: Assertion (a) follows from part (a) of Proposition 6.3.3 after com-
posing the functions ex and ln f(x). To prove that the sum of log-convex
functions is log-convex, we let h(x) = f(x) + g(x) and apply Hölder’s in-
equality as stated in Problem 21 of Chap. 5 and in Example 6.6.3 later in
this chapter. Taking α = 1/p and 1− α = 1/q consequently implies that
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h[αx+ (1− α)y] = f [αx+ (1− α)y] + g[αx+ (1− α)y]
≤ f(x)αf(y)1−α + g(x)αg(y)1−α

≤ [f(x) + g(x)]α[f(y) + g(y)]1−α

= h(x)αh(y)1−α.

The remaining assertions are left to the reader.

Example 6.3.10 The Convex Function of Gordon’s Theorem

In Proposition 5.3.2, we encountered the function

f(x) = ln

⎡
⎣ r∑
j=1

exp(z∗
jx)

⎤
⎦ .

Given the log-convexity of the functions exp(z∗
jx), we now recognize f(x)

as convex. This is one of the reasons for its success in Gordon’s theorem.

Example 6.3.11 Gamma Function

Gauss’s representation of the gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)
(6.6)

shows that it is log-convex on (0,∞) [132]. Indeed, one can easily check that
nz and (z + k)−1 are log-convex and then apply the closure of the set of
log-convex functions under the formation of products and limits. Note that
invoking convexity in this argument is insufficient because the set of convex
functions is not closed under the formation of products. Alternatively, one
can deduce log-convexity from Euler’s definition

Γ(z) =

∫ ∞

0

xz−1e−xdx

by viewing the integral as the limit of Riemann sums, each of which is
log-convex.

Example 6.3.12 Log-concavity of detΣ for Σ Positive Definite

Let Ω be an n × n positive definite matrix. According to Appendix A.2,
the function

f(y) =
( 1

2π

)n/2

| detΩ|−1/2e−y∗Ω−1y/2

is a probability density. Integrating over all y ∈ Rn produces the identity

| detΩ|1/2 =
1

(2π)n/2

∫
e−y∗Ω−1y/2dy.



6.4 Continuity, Differentiability, and Integrability 149

We can restate this identity in terms of the inverse matrix Σ = Ω−1 as

ln detΣ = n ln(2π)− 2 ln

∫
e−y∗Σy/2dy.

By the reasoning of the last two examples, the integral on the right is log-
convex. Because Σ is positive definite if and only if Ω is positive definite,
it follows that ln detΣ is concave in the positive definite matrix Σ.

6.4 Continuity, Differentiability, and Integrability

In this section we discuss some continuity, differentiability, and integrability
properties of convex functions. Let us start with a sobering counterexample
involving the closed unit ball C(0, 1) of Rn and a positive function g(y)
defined on its boundary. One can extend g(y) to a convex function f(x)
with domain C(0, 1) by setting

f(x) =

{
0 ‖x‖ < 1
g(x) ‖x‖ = 1.

Even though f(x) is convex throughout C(0, 1), it is discontinuous every-
where on the boundary. Even worse, f(x) is not even lower semicontinuous.
As the next proposition demonstrates, matters improve considerably if we
restrict our attention to the interior of the domain of a convex function.

Proposition 6.4.1 A convex function f(x) is continuous on the interior
of its domain and locally Lipschitz around every interior point. In other
words, there exists a constant c such that |f(z)− f(y)| ≤ c‖z − y‖ for all
y and z near x.

Proof: Let y be an interior point and C(y, r) be a closed ball of radius r
around y contained within the domain of f(x). Without loss of generality,
we may assume that y = 0. We first demonstrate that f(x) is bounded
above near 0. Define the n+ 1 points

v0 = − r

2n
1, vi = rei − r

2n
1, 1 ≤ i ≤ n,

using the standard basis ei of R
n. It is easy to check that all of these points

lie in C(0, r). Hence, any convex combination
∑n

i=0 αivi also lies in C(0, r).
Even more surprising, any point x in the open interval

J =

n∏
i=1

(
− r

2n
,
r

2n

)

can be represented as such a convex combination. This assertion follows
from the component-by-component equation

xi = r
(
αi − 1

2n

)
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with αi ∈ (0, 1/n) and the identity

x =

n∑
i=1

xiei

= r

n∑
i=1

αiei − r

2n
1

= r

n∑
i=1

αi

(
ei − 1

2n
1
)
−
(
1−

n∑
i=1

αi

) r

2n
1.

The boundedness of f(x) on J now follows from the inequalities

f
( n∑

i=0

αivi

)
≤

n∑
i=0

αif(vi) ≤ max{f(v0), . . . , f(vn)}.

Without affecting its convexity, we now rescale and translate f(x) so
that f(0) = 0 and f(x) ≤ 1 on J . We also rescale x so that J contains the
open ball B(0, 2). For any x in B(0, 2), we have

0 = f(0) ≤ 1

2
f(x) +

1

2
f(−x).

It follows that f(x) is bounded below by −1 on B(0, 2). The final step
of the proof proceeds by choosing two distinct points x and z from the
unit ball B(0, 1). If we define w = z + t−1(z − x) with t = ‖z − x‖, then
w ∈ B(0, 2),

z =
t

1 + t
w +

1

1 + t
x,

and

f(z)− f(x) ≤ t

1 + t
f(w) +

1

1 + t
f(x)− f(x)

=
t

1 + t
f(w)− t

1 + t
f(x)

≤ 2t

1 + t
≤ 2‖z − x‖.

Switching the roles of x and z gives |f(z)−f(x)| ≤ 2‖z−x‖. This Lipschitz
inequality establishes the continuity of f(x) throughout B(0, 1).

We next turn to derivatives. The simplest place to start is forward di-
rectional derivatives. In the case of a convex function f(x) defined on an
interval (a, b), we will prove the existence of one-sided derivatives by estab-
lishing the inequalities

f(y)− f(x)
y − x ≤ f(z)− f(x)

z − x ≤ f(z)− f(y)
z − y (6.7)
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for all points x < y < z drawn from (a, b). If we write

y =
z − y
z − xx+

y − x
z − xz,

then both of these inequalities are rearrangements of the inequality

f(y) ≤ z − y
z − xf(x) +

y − x
z − xf(z).

Careful examination of the inequalities (6.7) with relabeling of points as
necessary leads to the conclusion that the slope

f(y)− f(x)
y − x

is bounded below and increasing in y for x fixed. Similarly, this same slope
is bounded above and increasing in x for y fixed. It follows that both one-
sided derivatives exist at y and satisfy

f ′
−(y) = lim

x↑y
f(y)− f(x)

y − x ≤ lim
z↓y

f(z)− f(y)
z − y = f ′

+(y).

In view of the monotonicity properties of the slope, any number d between
these two limits satisfies the supporting hyperplane inequalities

f(x) ≥ f(y) + d(x− y)
f(z) ≥ f(y) + d(z − y).

Such a number is termed a subgradient. The existence of subgradients is
closely tied to the fact that f(x) is locally Lipschitz.
Our reasoning for convex functions defined on the real lines proves the

existence of forward directional derivatives on higher-dimensional domains.
Indeed, for any point y in the domain of f(x), all one must do is focus on
the function g(t) = f(y + tv) of the nonnegative scalar t. To define the
difference quotient of g(t) at 0, the point y+ tv must belong to the domain
of f(x) for all t sufficiently small. This is certainly possible when y occurs
on the interior of the domain, but it is also possible for boundary points
y and directions v that point into the domain of f(x). In either case,
the convexity of f(x) carries over to g(t). Furthermore, the directional
derivative

dvf(y) = lim
t↓0

f(x+ tv)− f(x)
t

= lim
t↓0

g(t)− g(0)
t

.

is well defined and satisfies dvf(y) < ∞. The value dvf(y) = −∞ can
occur for boundary points y but can be ruled out for interior points. At an
interior point g(t) is defined for t small and negative.
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Finally, let us consider the integrability of a convex function f(x) defined
on a closed interval [a, b]. On the interior of the interval, f(x) is continuous.
Continuity can fail at the endpoints, but typically we can restore it by
replacing f(a) by limx→a f(x) and f(b) by limx→b f(x). If we assume these
limits are finite, then f(x) is continuous throughout the interval and hence
integrable. More surprising is the fact that the fundamental theorem of
calculus applies. The right-hand and left-hand derivatives f ′

+(x) and f
′
−(x)

exist throughout (a, b), and

f(b)− f(a) =

∫ b

a

f ′
+(x) dx =

∫ b

a

f ′
−(x) dx. (6.8)

Because f ′−(x) ≤ f ′
+(x) ≤ f ′−(y) ≤ f ′

+(y) when x < y, the interiors of
the intervals [f ′

−(x), f
′
+(x)] are disjoint. Choosing a rational number from

each nonempty interior shows that the set of points where f ′−(x) �= f ′
+(x)

is countable. The value of an integral is insensitive to the value of its inte-
grand at a countable number of points, and the discussion following Propo-
sition 3.4.1 demonstrates that the fundamental theorem of calculus holds
as stated in equation (6.8).

6.5 Minimization of Convex Functions

Optimization theory is much simpler for convex functions than for ordi-
nary functions. The continuity and differentiability properties of convex
functions certainly support this contention. Even more relevant are the
following theoretical results.

Proposition 6.5.1 Suppose that f(y) is a convex function on the convex
set S ⊂ Rn. If x is a local minimum of f(y), then it is a global minimum of
f(y), and the set {y ∈ S : f(y) = f(x)} is convex. If f(y) is strictly convex
and x is a global minimum, then the solution set {y ∈ S : f(y) = f(x)}
consists of x alone.

Proof: If f(y) ≤ f(x) and f(z) ≤ f(x), then

f [αy + (1− α)z] ≤ αf(y) + (1 − α)f(z) ≤ f(x) (6.9)

for any α ∈ [0, 1]. This shows that the set {y ∈ S : f(y) ≤ f(x)} is convex.
Now suppose that f(y) < f(x). Strict inequality then prevails between the
extreme members of inequality (6.9) provided α > 0. Taking z = x and α
close to 0 shows that x cannot serve as a local minimum. This contradiction
demonstrates that x must be a global minimum. Finally, if f(y) is strictly
convex, then strict inequality holds in the first half of equality (6.9) for all
α ∈ (0, 1). This leads to another contradiction when y = x �= z, and both
are minimum points.
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Example 6.5.1 Piecewise Linear Functions

The function f(x) = |x| on the real line is piecewise linear. It attains its
minimum of 0 at the point x = 0. The convex function f(x) = max{1, |x|}
is also piecewise linear, but it attains its minimum throughout the interval
[−1, 1]. In both cases the set {y : f(y) = minx f(x)} is convex. In higher
dimensions, the convex function f(x) = max{1, ‖x‖} attains its minimum
of 1 throughout the closed ball ‖x‖ ≤ 1.

Proposition 6.5.2 Let f(y) be a convex function defined on a convex set
S ⊂ Rn. A point x ∈ S furnishes a global minimum of f(y) if and only if
the forward directional derivative dvf(x) exists and is nonnegative for all
tangent vectors v = z − x defined by z ∈ S. In particular, a stationary
point of f(y) represents a global minimum.

Proof: Suppose the condition holds and z ∈ S. Then taking t = 1 and
v = z − x in the inequality

f(x+ tv)− f(x)
t

≥ dvf(x)

shows that f(z) ≥ f(x). Conversely, if x represents the minimum, then
the displayed difference quotient is nonnegative. Sending t to 0 now gives
dvf(x) ≥ 0.

Example 6.5.2 Minimum of y on [0,∞)

The convex function f(y) = y has derivative f ′(y) = 1. On the convex set
[0,∞), we have f ′(0)(z − 0) = z ≥ 0 for any z ∈ [0,∞). Hence, 0 provides
the minimum of y. Of course, this is consistent with the Lagrange multiplier
rule f ′(0)− 1 = 0.

Example 6.5.3 The Obtuse Angle Criterion

As a continuation of Propositions 6.2.2 and 6.2.3, define f(y) = 1
2‖y−x‖2

for x �∈ S. If z is the projection of x onto S, then the necessary and
sufficient condition for a minimum given by Proposition 6.5.2 reads

dvf(z) = (z − x)∗v ≥ 0

for every direction v = y−z defined by another point y ∈ S. This inequality
can be rephrased as the obtuse angle criterion (x− z)∗(y − z) ≤ 0 for all
such y. A simple diagram makes this conclusion visually obvious.

In Chap. 5 we found that the multiplier rule (5.1) is a necessary condition
for a feasible point x to be a local minimum of the objective function f(y)
subject to the constraints

gi(y) = 0, 1 ≤ i ≤ p

hj(y) ≤ 0, 1 ≤ j ≤ q.



154 6. Convexity

In the presence of convexity, the multiplier rule is also a sufficient condition.
We now revisit the entire issue under a combination of weaker and stronger
hypotheses. The stronger hypotheses amount to: (a) f(y) is a convex func-
tion, (b) the gi(y) are affine functions, and (c) the feasible region S is a
convex set. Instead of assuming that f(y) and the hj(y) are continuously
differentiable, we now require them to be simply differentiable at the point
of interest x. Note that we do not require the hj(y) to be convex. Of course
if they are, then S is automatically convex.

Proposition 6.5.3 Under the above conditions, suppose the feasible point
x satisfies the multiplier rule (5.1) with λ0 = 1. Then x furnishes a global
minimum of f(y). Conversely, if x is a minimum point satisfying the
Mangasarian-Fromovitz constraint qualification, then the multiplier rule
holds with λ0 = 1.

Proof: Suppose x satisfies the multiplier rule. Take the inner product of
the multiplier formula

∇f(x) +
p∑

i=1

λi∇gi(x) +
q∑

j=1

μj∇hj(x) = 0

with a vector v = z − x defined by a second feasible point z. Because the
equality constraint gi(y) is affine, dgi(x)v = 0. It follows that

df(x)v = −
q∑

j=1

μjdhj(x)v.

This representation puts us into position to apply Proposition 6.5.2. If some
hj(x) < 0, then the multiplier μj = 0. If hj(x) = 0, then the difference
quotient inequality

hj(x+ tv)− hj(x)
t

≤ 0

holds for all t ∈ (0, 1). Note here that the convexity of S subtly enters
the argument. In any case, sending t to 0 produces dhj(x)v ≤ 0. Because
μj ≥ 0, we conclude that df(x)v ≥ 0, and this suffices to establish the
claim that x is a minimum point.
Proposition 14.7.1 proves the converse under relaxed differentiability as-

sumptions. Here we limit ourselves to the case of no equality constraints
(p = 0). In this setting we consider the convex function

m(y) = max{f(y)− f(x), hj(y), 1 ≤ j ≤ q}.
It is clear that the minimum of m(y) occurs at x because m(x) = 0 and
for all remaining y either a constraint is violated or f(y) ≥ f(x). Propo-
sition 6.5.2 therefore implies dvm(x) ≥ 0 for all directions v. Now let J



6.5 Minimization of Convex Functions 155

denote the index set {j : hj(x) = 0}. Since all of the functions defining
m(x) except the inactive inequality constraints achieve the maximum of 0,
Example 4.4.4 yields the forward directional derivative

dvm(x) = max{df(x)v, dhj(x)v, 1 ≤ i ≤ p, j ∈ J}.
Because dvm(x) ≥ 0 for all v, Proposition 5.3.2 shows that there exist a
convex combination of the relevant gradients with

λ0∇f(x) +
q∑

j=1

μj∇hj(x) = 0.

To eliminate the possibility λ0 = 0, now invoke the argument in the last
paragraph of the proof of Proposition 5.2.1 .

Example 6.5.4 Slater’s Constraint Qualification

The Mangasarian-Fromovitz constraint qualification is implied by a sim-
pler condition called the Slater constraint qualification under affine equality
constraints and convex inequality constraints. Slater’s condition postulates
the existence of a feasible point z such that hj(z) < 0 for all j. If x is a can-
didate minimum point and the row vectors dgi(x) are linearly independent,
then the Mangasarian-Fromovitz constraint qualification involves finding a
vector v with dgi(x)v = 0 for all i and dhj(x)v < 0 for all inequality
constraints active at x. If hj(y) is active at x, then the inequalities

0 > hj(z)− hj(x) ≥ dhj(x)(z − x)

demonstrate that the vector v = z−x satisfies the Mangasarian-Fromovitz
constraint qualification. Nothing in this argument depends on the objective
function f(y) being convex.

Example 6.5.5 Concave Constraints

Consider once again the general nonlinear programming problem covered
by Proposition 5.2.1 with the proviso that the equality constraints gi(y) are
affine and the inequality constraints hj(y) are concave rather than convex.
One can eliminate the equality constraint gi(y) = 0 and replace it by the
two inequality constraints gi(y) ≤ 0 and −gi(y) ≤ 0. Under this substitu-
tion all inequality constraints remain concave. In the multiplier rule (5.1)
at a local minimum x, concavity allows us to rule out the possibility that
the multiplier λ0 of ∇f(x) is 0. To prove this fact, assume that the first
r inequality constraints are active at x and the subsequent q − r inequal-
ity constraints are inactive. Fortunately, Farkas’ lemma poses a relevant
dichotomy. Either

−∇f(x) =

r∑
j=1

μj∇hj(x)
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for nonnegative multipliers μj , or there is a vector w with −w∗∇f(x) > 0
and w∗∇hj(x) ≤ 0 for all j ≤ r. Suppose such a vector w exists. If x is
an interior point of the common domain of f(x) and the constraints hj(x),
then on the one hand the inequality

hj(x+ tw) ≤ hj(x) + tdhj(x)w ≤ hj(x) ≤ 0

shows that the point x+ tw is feasible for small t > 0. On the other hand,

f(x+ tw) = f(x) + tdf(x)w + o(t) < f(x)

for small t > 0. This contradicts the assumption that x is a local minimum,
and the multiplier rule holds with λ0 = 1. Linear programming is the
most important application. Here the multiplier rule is a necessary and
sufficient condition for a global minimum regardless of whether the active
affine constraints are linearly independent.

Example 6.5.6 Minimum of a Positive Definite Quadratic Function

The quadratic function f(x) = 1
2x

∗Ax+ b∗x+ c has gradient

∇f(x) = Ax+ b

for A symmetric. Assuming that A is positive definite and affine equality
constraints are present, Proposition 6.5.3 demonstrates that the candidate
minimum point identified in Example 5.2.6 furnishes the global minimum
of f(x). When A is merely positive semidefinite, Example 6.5.5 shows that
the multiplier rule with λ0 = 1 is still a necessary and sufficient condition
for a minimum.

Example 6.5.7 Maximum Likelihood for the Multivariate Normal

The sample mean and sample variance

ȳ =
1

k

k∑
j=1

yj

S =
1

k

k∑
j=1

(yj − ȳ)(yj − ȳ)∗

are also the maximum likelihood estimates of the theoretical mean μ and
theoretical variance Ω of a random sample y1, . . . ,yk from a multivariate
normal distribution. (See Appendix A.2 for a review of the multivariate
normal.) To prove this fact, we first note that maximizing the loglikelihood
function

−k
2
ln detΩ− 1

2

k∑
j=1

(yj − μ)∗Ω−1(yj − μ)
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= −k
2
ln detΩ− k

2
μ∗Ω−1μ+

( k∑
j=1

yj

)∗
Ω−1μ− 1

2

k∑
j=1

y∗
jΩ

−1yj

= −k
2
ln detΩ− 1

2
tr
[
Ω−1

k∑
j=1

(yj − μ)(yj − μ)∗
]

with respect to μ constitutes a special case of the previous example with
A = kΩ−1 and b = −Ω−1∑k

j=1 yj . This leads to the same estimate μ̂ = ȳ
regardless of the value of Ω. Once we fix μ̂, we left with the problem of
estimating Ω. Fortunately, this is a special case of the problem treated at
the end of Example 4.7.6. The point Ω̂ = S corresponds to a maximum
because the function − ln detΩ is log-concave in Ω−1 and the function
tr(Ω−1S) is linear in Ω−1. Here we implicitly assume that S is invertible.
Alternatively, we can estimate Ω by exploiting the Cholesky decomposi-

tions Ω = LL∗ and S = MM∗. (See Problems 37 and 38 for a develop-
ment of the Cholesky decomposition of a positive definite matrix.) In view
of the identities Ω−1 = (L−1)∗L−1 and detΩ = (detL)2, the loglikelihood
becomes

k ln detL−1 − k

2
tr
[
(L−1)∗L−1MM∗

]

= k ln det
(
L−1M

)− k

2
tr
[
(L−1M)(L−1M )∗

]
− k ln detM

using the cyclic permutation property of the matrix trace function. Because
products and inverses of lower triangular matrices are lower triangular, the
matrix R = L−1M ranges over the set of lower triangular matrices with
positive diagonal entries as L ranges over the same set. This permits us to
reparameterize and estimate R = (rij) instead of L. Up to an irrelevant
additive constant, the loglikelihood reduces to

k ln detR− k

2
tr(RR∗) = k

∑
i

ln rii − k

2

∑
i

i∑
j=1

r2ij .

Clearly, this is maximized by taking rij = 0 for j �= i. Differentiation of the
concave function k ln rii− k

2 r
2
ii shows that it is maximized by taking rii = 1.

In other words, the maximum likelihood estimator R̂ is the identity matrix
I. This implies that L̂ = M and consequently that Ω̂ = S.

Example 6.5.8 Geometric Programming

The function

f(t) =

j∑
i=1

ci

n∏
k=1

tβik

k
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is called a posynomial if all components t1, . . . , tn of the argument t and
all coefficients c1, . . . , cj are positive. The powers βik may be positive, neg-
ative, or zero. For instance, t−1

1 +2t31t
−2
2 is a posynomial on R2. Geometric

programming deals with the minimization of a posynomial f(t) subject to
posynomial inequality constraints of the form hj(t) ≤ 1 for 1 ≤ j ≤ q.
Better understanding of geometric programming can be achieved by mak-

ing the change of variables tk = exk . This eliminates the constraint tk > 0
and shows that

g(x) =

j∑
i=1

ci

n∏
k=1

tβik

k =

j∑
i=1

cie
β∗

i x

is log-convex in the transformed parameters. The reparameterized con-
straint functions are likewise log-convex and define a convex feasible region
S. If the vectors β1, . . . ,βj span Rn, then the expression

d2g(x) =

j∑
i=1

cie
β∗

i xβiβ
∗
i

for the second differential proves that g(x) is strictly convex. It follows that
if g(x) possesses a minimum, then it is achieved at a single point.

Example 6.5.9 Quasi-Convexity

If f(x) is convex and g(z) is an increasing function of the real variable z,
then the inequality

f [αx+ (1− α)y] ≤ αf(x) + (1− α)f(y)
≤ max{f(x), f(y)}

implies that the function h(x) = g ◦ f(x) satisfies
h[αx+ (1− α)y] ≤ max{h(x), h(y)} (6.10)

for any α ∈ [0, 1]. Satisfaction of inequality (6.10) is sometimes taken as
the definition of quasi-convexity for an arbitrary function h(x). If f(x) is
strictly convex and g(z) is strictly increasing, then strict inequality prevails
in inequality (6.10) when α ∈ (0, 1) and y �= x. Once again this implication
can be turned into a definition. The importance of strict quasi-convexity
lies in the fact that a strictly quasi-convex function possesses at most one
local minimum, and if a local minimum exists, then it is necessarily the
global minimum.
Similar considerations apply to concave and quasi-concave functions. For

example, the function h(x) = e−(x−μ)2 is strictly quasi-concave because it
is the composition of the strictly increasing function g(y) = ey with the
strictly concave function f(x) = −(x−μ)2. It is clear that h(x) has a global
maximum at x = μ.
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6.6 Moment Inequalities

In this section we assume that readers have a good grasp of probability
theory. For those with limited background, most of the material can be
comprehended by restricting attention to discrete random variables.
Inequalities give important information about the magnitude of prob-

abilities and expectations without requiring their exact calculation. The
Cauchy-Schwarz inequality |E(XY )| ≤ E(X2)1/2 E(Y 2)1/2 is one of the
most useful of the classical inequalities. (The reader should check that this
is just a disguised form of the Cauchy-Schwarz inequality of Chap. 1 applied
to random variables X and Y .) It is also one of the easiest to remember
because it is equivalent to the fact that a correlation coefficient must lie
on the interval [−1, 1]. Equality occurs in the Cauchy-Schwarz inequality
if and only if X is proportional to Y or vice versa.
Markov’s inequality is another widely applied bound. Let g(x) be a non-

negative, increasing function, and let X be a random variable such that
g(X) has finite expectation. Then Markov’s inequality

Pr(X ≥ c) ≤ E[g(X)]

g(c)

holds for any constant c for which g(c) > 0 and follows logically by taking
expectations in the inequality g(c)1{X≥c} ≤ g(X). Chebyshev’s inequality
is the special case of Markov’s inequality with g(x) = x2 applied to the
random variable |X − E(X)|. Chebyshev’s inequality reads

Pr[|X − E(X)| ≥ c] ≤ Var(X)

c2
.

In large deviation theory, we take g(x) = etx and c > 0 and choose t > 0
to minimize the right-hand side of the inequality Pr(X ≥ c) ≤ e−ct E(etX)
involving the moment generating function of X . As an example, suppose
X follows a standard normal distribution. The moment generating func-
tion et

2/2 of X is derived by a minor variation of the argument given in
Appendix A.1 for the characteristic function of X . The large deviation
inequality

Pr[X ≥ c] ≤ inf
t
e−ctet

2/2 = e−c2/2

is called a Chernoff bound. Problem 43 discusses another typical Chernoff
bound.
Our next example involves a nontrivial application of Chebyshev’s in-

equality. In preparation for the example, we recall that a binomially dis-
tributed random variable Sn has distribution

Pr(Sn = k) =

(
n

k

)
xk(1− x)n−k.
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Here Sn is interpreted as the number of successes in n independent trials
with success probability x per trial [89]. The mean and variance of Sn are
E(Sn) = nx and Var(Sn) = nx(1 − x).
Example 6.6.1 Weierstrass’s Approximation Theorem

Weierstrass showed that a continuous function f(x) on [0, 1] can be uni-
formly approximated to any desired degree of accuracy by a polynomial.
Bernstein’s lovely proof of this fact relies on applying Chebyshev’s inequal-
ity to the random variable Sn/n derived from the binomial random variable
Sn just discussed. The corresponding candidate polynomial is defined by
the expectation

E
[
f
(Sn

n

)]
=

n∑
k=0

f
(k
n

)(n
k

)
xk(1− x)n−k.

Note that E(Sn/n) = x and

Var
(Sn

n

)
=

x(1 − x)
n

≤ 1

4n
.

Now given an arbitrary ε > 0, one can find by the uniform continuity
of f(x) a δ > 0 such that |f(u) − f(v)| < ε whenever |u − v| < δ. If
‖f‖∞ = sup |f(x)| on [0, 1], then Chebyshev’s inequality implies

∣∣∣E [
f
(Sn

n

)]
− f(x)

∣∣∣
≤ E

[∣∣∣f(Sn

n

)
− f(x)

∣∣∣]

≤ εPr
(∣∣∣Sn

n
− x

∣∣∣ < δ
)
+ 2‖f‖∞Pr

(∣∣∣Sn

n
− x

∣∣∣ ≥ δ
)

≤ ε+
2‖f‖∞x(1 − x)

nδ2

≤ ε+
‖f‖∞
2nδ2

.

Taking n ≥ ‖f‖∞/(2εδ2) then gives
∣∣∣E [

f
(

Sn

n

)]
− f(x)

∣∣∣ ≤ 2ε regardless of

the chosen x ∈ [0, 1].

Proposition 6.6.1 (Jensen) Let the values of the random variable W be
confined to the possibly infinite interval (a, b). If h(w) is convex on (a, b),
then E[h(W )] ≥ h[E(W )], provided both expectations exist. For a strictly
convex function h(w), equality holds in Jensen’s inequality if and only if
W = E(W ) almost surely.

Proof: For the sake of simplicity, assume that h(w) is differentiable at the
point v = E(W ). Then Jensen’s inequality follows from Proposition 6.3.1
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after taking expectations in the inequality

h(W ) ≥ h(v) + dh(v)(W − v). (6.11)

If h(w) is strictly convex, and W is not constant, then inequality (6.11) is
strict with positive probability. Hence, strict inequality prevails in Jensen’s
inequality. As we will see later, the differentiability assumption on h(w)
can be relaxed by substituting a subgradient for the gradient.

Jensen’s inequality is the key to a host of other inequalities. Here is one
important example.

Example 6.6.2 Schlömilch’s Inequality for Weighted Means

If X is a nonnegative random variable, then we define the weighted mean

function M(p) = E(Xp)
1
p . For the sake of argument, we assume that M(p)

exists and is finite for all real p. Typical values of M(p) are M(1) = E(X)
and M(−1) = 1/E(X−1). To make M(p) continuous at p = 0, it turns
out that we should set M(0) = eE(lnX). The reader is asked to check this
fact in Problem 50. Here we are more concerned with proving Schlömilch’s
assertion that M(p) is an increasing function of p. If 0 < p < q, then the
function x �→ xq/p is convex, and Jensen’s inequality says

E(Xp)q/p ≤ E(Xq).

Taking the qth root of both sides of this inequality yields M(p) ≤ M(q).
On the other hand if p < q < 0, then the function x �→ xq/p is concave,
and Jensen’s inequality says

E(Xp)q/p ≥ E(Xq).

Taking the qth root reverses the inequality and again yields M(p) ≤M(q).
When either p or q is 0, we have to change tactics. One approach is to
invoke the continuity of M(p) at p = 0. Another approach is to exploit the
concavity of lnx. Jensen’s inequality now gives

E(lnXp) ≤ ln E(Xp),

which on exponentiation becomes

epE(lnX) ≤ E(Xp).

If p > 0, then taking the pth root produces

M(0) = eE(lnX) ≤ E(Xp)
1
p ,

and if p < 0, then taking the pth root produces the opposite inequality

M(0) = eE(lnX) ≥ E(Xp)
1
p .
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When the random variableX is confined to the space {1, . . . , n} equipped
with the uniform probabilities pi = 1/n, Schlömilch’s inequalities for the
values p = −1, 0, and 1 reduce to the classical inequalities

1

1
n

(
1
x1

+ · · · 1
xn

) ≤
(
x1 · · ·xn

) 1
n ≤ 1

n

(
x1 + · · ·+ xn

)

relating the harmonic, geometric, and arithmetic means.

Example 6.6.3 Hölder’s Inequality

Consider two random variables X and Y and two numbers p > 1 and q > 1
such that p−1 + q−1 = 1. Then Hölder’s inequality

|E(XY )| ≤ E(|X |p) 1
p E(|Y |q) 1

q (6.12)

generalizes the Cauchy-Schwarz inequality whenever the indicated expec-
tations on its right exist. To prove (6.12), it clearly suffices to assume that
X and Y are nonnegative. It also suffices to take E(Xp) = E(Y q) = 1 once
we divide the left-hand side of (6.12) by its right-hand side. To complete
the proof, substitute the random variables X and Y for the scalars x and
y in Young’s inequality (1.3) and take expectations.

6.7 Problems

1. Suppose S and T are nonempty closed convex sets with empty inter-
section. Prove that there exists a unit vector v such that

sup
x∈S

v∗x ≤ inf
y∈T

v∗y.

If either S or T is bounded, then demonstrate further that strict
inequality prevails in this inequality. (Hints: The set S − T is convex
and does not contain 0. If S is compact, then S − T is closed.)

2. Let C be a convex set situated in Rm+n. Show that the projected set
{x ∈ Rm : (x,y) ∈ C for some y ∈ Rn} is convex.

3. Demonstrate that the set

S = {x ∈ R2 : x1x2 ≥ 1, x1 ≥ 0, x2 ≥ 0}
is closed and convex. Further show that P (S) is convex but not closed,
where Px = x1 denotes projection onto the first coordinate of x.

4. The function P (x, t) = t−1x from Rn× (0,∞) to Rn is called the per-
spective map. Show that the image P (C) and inverse image P−1(D)
of convex sets C and D are convex. (Hint: Prove that P (x, t) maps
line segments onto line segment.)
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5. The topological notions of open, closed, and bounded can be recast
for a convex set C ⊂ Rn [172]. Validate the necessary and sufficient
conditions in each of the following assertions:

(a) C is open if and only if for every x ∈ C and y ∈ Rn, the point
x+ ty belongs to C for all sufficiently small positive t.

(b) C is closed if and only if whenever C contains the open segment
{αx+(1−α)y : α ∈ (0, 1)}, it also contains the endpoints x and
y of the segment.

(c) C is bounded if and only if it contains no ray {x+ty : t ∈ [0,∞)}.
6. Demonstrate that the convex hull of an open set is open.

7. The Gauss-Lucas theorem says that the roots of the derivative p′(z)
of a polynomial p(z) are contained in the convex hull of the roots of
p(z). Prove this claim by exploiting the expansion

0 =
p′(y)
p(y)

=
∑
i

1

y − zi =
∑
i

ȳ − z̄i
‖y − zi‖2 ,

where y is a root of p′(z) differing from each of the roots zi of p(z),
and the overbar sign denotes complex conjugation.

8. Deduce Farkas’ lemma from Proposition 5.3.2.

9. On which intervals are the following functions convex: ex, e−x, xn for
n an integer, |x|p for p ≥ 1,

√
1 + x2, x ln x, and coshx? On these

intervals, which functions are log-convex?

10. Demonstrate that the function f(x) = xn−na lnx is convex on (0,∞)
for any positive real number a and nonnegative integer n. Where does
its minimum occur?

11. Show that Riemann’s zeta function

ζ(s) =

∞∑
n=1

1

ns

is log-convex for s > 1.

12. Show that the function

f(x) =

{
1−e−xt

x x �= 0
t x = 0

is log-convex for t > 0 fixed. (Hints: Use either the second derivative
test, or express f(x) as the integral

f(x) =

∫ t

0

e−xsds,

and use the closure properties of log-convex functions.)
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13. Use Proposition 6.3.1 to prove the Cauchy-Schwarz inequality.

14. Prove the strict convexity assertions of Proposition 6.3.1.

15. Prove parts (b), (c), (d), and (e) of Proposition 6.3.3.

16. Prove the unproved assertions of Proposition 6.3.4.

17. Let f(x) and g(x) be positive functions defined on an interval of the
real line. Prove that:

(a) If f(x) and g(x) are both convex and increasing or both convex
and decreasing, then the product f(x)g(x) is convex.

(b) If f(x) and g(x) are both concave, one is increasing, and the
other is decreasing, then the product f(x)g(x) is concave.

(c) If f(x) is convex and increasing and g(x) is concave and decreas-
ing, then the ratio f(x)/g(x) is convex.

Here “increasing” means nondecreasing and similarly for “decreas-
ing.” Your proofs should not assume that either f(x) or g(x) is dif-
ferentiable.

18. Let f(x) be a convex function on the real line that is bounded above.
Demonstrate that f(x) is constant.

19. Suppose f(x,y) is jointly convex in its two arguments and C is a
convex set. Show that the function

g(x) = inf
y∈C

f(x,y)

is convex. Assume here that the infimum is finite. As a special case,
demonstrate that the distance function dist(x, C) = infy∈C ‖y−x‖∗
is convex for any norm ‖ · ‖∗. (Hint: For x1 and x2 and ε > 0 choose
points y1 and y2 in C satisfying f(xi,yi) ≤ g(xi) + ε.)

20. Let the function f(x, y) be convex in y for each fixed x. Replace x
by a random variable X and take expectations. Show that E[f(X, y)]
is convex in y, assuming the expectations in question exist. For n an
even positive integer with E(Xn) < ∞, use this result to prove that
y �→ E[(X − y)n] is convex in y.

21. Suppose f(x) is absolutely integrable over every compact interval
[a, b] and φ(x) is nonnegative, bounded, vanishes outside a symmetric
interval [−c, c], and has total mass

∫
φ(x) dx = 1. The convolution of

f and φ(x) is defined by

f ∗ φ(x) =

∫
f(x− y)φ(y) dy =

∫
f(y)φ(x− y) dy.
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Prove the following claims:

(a) f ∗ φ(x) is continuous if φ(x) is continuous.
(b) f ∗ φ(x) is k times continuously differentiable if φ(x) is k times

continuously differentiable.

(c) f ∗ φ(x) is nonnegative if f(x) is nonnegative.

(d) f ∗ φ(x) is increasing (decreasing) if f(x) is increasing (decreas-
ing).

(e) f ∗ φ(x) is convex (concave) if f(x) is convex (concave).

(f) f ∗ φ(x) is log-convex if f(x) is log-convex.

Define φn(s) = nφ(nx) and prove as well that f ∗ φn(x) converges to
f(x) at every point of continuity of f(x). This convergence is uniform
on every compact interval on which f(x) is continuous. These facts
imply that convexity properties established by differentiation carry
over to convex functions in general. Can you supply any examples?

22. Suppose the polynomial p(x) has only real roots. Show that 1/p(x)
is log-convex on any interval where p(x) is positive.

23. Demonstrate that the Kullback-Leibler (cross-entropy) distance

f(x) = x1 ln
x1
x2

+ x2 − x1

is convex on the set {x = (x1, x2) : x1 > 0, x2 > 0}.
24. Show that the function f(x) = x21 + x42 on R2 is strictly convex even

though d2f(x) is singular along the line x2 = 0.

25. Prove that:

(a) f(x) = x21/x2 is convex for x2 positive,

(b) f(x) =
(∏n

i=1 xi

)1/n

is concave when all xi > 0,

(c) f(x) =
∑m

i=1 x[i] is concave, where x[1] ≤ · · · ≤ x[n] are the
order statistics of x = (x1, . . . , xn)

∗,

(d) f(x) =
(∑n

i=1

√
xi
)−1

is convex when all xi ≥ 0 and at least
one is positive.

(Hints: Use the second derivative test for (a), (b), and (d). Write

f(x) = min
i1<···<im

[xi1 + · · ·+ xim ]

for (c).)
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26. Let f(x) be a continuous function on the real line satisfying

f
[1
2
(x+ y)

]
≤ 1

2
f(x) +

1

2
f(y).

Demonstrate that f(x) is convex.

27. If f(x) is a nondecreasing function on the interval [a, b], then show
that g(x) =

∫ x

a
f(y)dy is a convex function on [a, b].

28. The Bohr-Mollerup theorem asserts that Γ(z) is the only log-convex
function on the interval (0,∞) that satisfies Γ(1) = 1 and the factor-
ial identity Γ(z + 1) = zΓ(z) for all z. We have seen that Γ(z) has
these properties. Prove conversely that any function G(z) with these
properties coincides with Γ(z). (Hints: Check the inequalities

G(n+ z) ≤ G(n)1−zG(n)znz = (n− 1)!nz

G(n+ 1) ≤ G(n+ z)zG(n+ 1 + z)1−z = G(n+ z)(n+ z)1−z

for all positive integers n and real numbers z ∈ (0, 1). These in turn
yield the inequalities

n!nz

z(z + 1) · · · (z + n)
≤ G(z) ≤ n!nz

z(z + 1) · · · (z + n)
· z + n

n
.

Taking limits on n shows that G(z) equals Gauss’s infinite prod-
uct expansion of Γ(z). Note that this proof simultaneously validates
Gauss’s expansion (6.6).)

29. Let f(x) be a real-valued differentiable function on Rn. If f(x) is
strictly convex, prove that df(x) = df(y) if and only if x = y.

30. Suppose f(x) is convex on Rn and f(y) = 0. Prove that f(x)2 is
differentiable at y with differential 0∗. (Hint: Invoke Proposition 6.4.1
and Fréchet’s definition of differentiability.)

31. Let f(x) be a convex differentiable function on Rn. Show that the
function

g(x) = f(x) + ε‖x‖2

is strictly convex for ε > 0 and that the set {x ∈ Rn : g(x) ≤ g(y)}
is compact for any y.

32. A square matrix M is said to be primitive if its entries are nonnega-
tive and all of the entries of some power Mp of M are positive. The
Perron-Frobenius theorem [136, 150, 234] asserts that a primitive ma-
trix M has a dominant eigenvalue λ > 0 possessing unique right and
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left eigenvectors u and v∗ with positive entries. Furthermore, if we
choose u and v∗ so that v∗u = 1, then

lim
m→∞λ−mMm = uv∗.

From this limit deduce that λ is log-convex in x if the entries of M
are either 0 or log-convex functions of x.

33. Consider minimizing the quadratic function f(y) = 1
2y

∗Ay+b∗y+ c
subject to the vector constraint y ≥ 0 for a positive semidefinite
matrix A. Show that the three conditions Ax + b ≥ 0, x ≥ 0, and
x∗Ax + b∗x = 0 are necessary and sufficient for x to represent a
minimum.

34. Let C be a convex set. Proposition 6.5.2 declares that a point x ∈ C
minimizes a convex function f(y) on C provided dvf(x) ≥ 0 for
every tangent vector v = y − x constructed from a point y ∈ C. If
C is a convex cone, and f(y) is convex and differentiable, then show
that this condition is equivalent to the conditions df(x)x = 0 and
df(x)y ≥ 0 for every y ∈ C.

35. The posynomial f(x) =
∏n

i=1 x
αi

i achieves a unique maximum on the
unit simplex {x ∈ Rn : x ≥ 0,

∑n
i=1 xi = 1} whenever the powers αi

are positive. Find this maximum, and show that it is global. (Hint:
Minimize − ln f(x).)

36. Show that the functions
√|x|, lnx, and �x� are quasi-convex. To the

extent possible, state and prove the quasi-convex analogues of the
convex closure properties covered in Proposition 6.3.3.

37. Let A be an n × n positive definite matrix. The Cholesky decom-
position B of A is a lower-triangular matrix with positive diagonal
entries such that A = BB∗. To prove that such a decomposition
exists we can argue by induction. Why is the case of a 1 × 1 matrix
trivial? Now suppose A is partitioned as

A =

(
A11 A12

A21 A22

)
.

Applying the induction hypothesis, there exist matrices C11 and D22

such that

C11C
∗
11 = A11

D22D
∗
22 = A22 −A21A

−1
11 A12.

Prove that

B =

(
C11 0

A21(C
∗
11)

−1 D22

)



168 6. Convexity

gives the desired decomposition. Extend this argument to show that
B is uniquely determined.

38. Continuing Problem 37, show that one can compute the Cholesky
decomposition B = (bij) of A = (aij) by the recurrence relations

bjj =

√√√√ajj −
j−1∑
k=1

b2jk

bij =
aij −

∑j−1
k=1 bikbjk
bjj

, i > j

for columns j = 1, j = 2, and so forth until column j = n. How can
you compute detA in terms of the entries of B?

39. Prove that the set of lower triangular matrices with positive diagonal
entries is closed under matrix multiplication and matrix inversion.

40. Let X1, . . . , Xn be n independent random variables from a common
distributional family. Suppose the variance σ2(μ) of a generic member
of this family is a function of the mean μ. Now consider the sum
S = X1 + · · · + Xn. If the mean ω = E(S) is fixed, it is of some
interest to determine whether taking E(Xi) = μi = ω/n minimizes
or maximizes Var(S). Show that the minimum occurs when σ2(μ) is
convex in μ and the maximum occurs when σ2(μ) is concave in μ.
What do you deduce in the special cases where the family is binomial,
Poisson, and exponential [201]?

41. If the random variable X has values in the interval [a, b], then show
that Var(X) ≤ (b − a)2/4 and that this bound is sharp. (Hints: Re-
duce to the case [a, b] = [0, 1]. If E(X) = p, then demonstrate that
Var(X) ≤ p(1− p).)

42. Suppose g(x) is a function such that g(x) ≤ 1 for all x and g(x) ≤ 0
for x ≤ c. Demonstrate the inequality

Pr(X ≥ c) ≥ E[g(X)] (6.13)

for any random variable X [89]. Verify that the polynomial

g(x) =
(x− c)(c+ 2d− x)

d2

with d > 0 satisfies the stated conditions leading to inequality (6.13).
If X is nonnegative with E(X) = 1 and E(X2) = β and c ∈ (0, 1),
then prove that the choice d = β/(1− c) yields

Pr(X ≥ c) ≥ (1− c)2
β

.
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Finally, if E(X2) = 1 and E(X4) = β, show that

Pr(|X | ≥ c) ≥ (1 − c2)2
β

.

43. Let X be a Poisson random variable with mean λ. Demonstrate that
the Chernoff bound

Pr(X ≥ c) ≤ inf
t>0

e−ct E(etX)

amounts to

Pr(X ≥ c) ≤ (λe)c

cc
e−λ

for any integer c > λ. Recall that Pr(X = i) = λie−λ/i! for all
nonnegative integers i.

44. Use Jensen’s inequality to prove the inequality

n∏
k=1

xαk

k +

n∏
k=1

yαk

k ≤
n∏

k=1

(xk + yk)
αk

for positive numbers xk and yk and nonnegative numbers αk with
sum

∑n
k=1 αk = 1. Prove the inequality

(
1 +

n∏
k=1

xαk

k

)−1

≤
n∑

k=1

αk

1 + xk

when all xk ≥ 1 and the reverse inequality when all xk ∈ (0, 1].

45. Let Bnf(x) = E[f(Sn/n)] denote the Bernstein polynomial of degree
n approximating f(x) as discussed in Example 6.6.1. Prove that

(a) Bnf(x) is linear in f(x),

(b) Bnf(x) ≥ 0 if f(x) ≥ 0,

(c) Bnf(x) = f(x) if f(x) is linear,

(d) Bnx(1 − x) = n−1
n x(1 − x),

(e) ‖Bnf‖∞ ≤ ‖f‖∞.

46. Suppose the function f(x) has continuous derivative f ′(x). For δ > 0
show that Bernstein’s polynomial satisfies the bound

∣∣∣E [
f
(Sn

n

)]
− f(x)

∣∣∣ ≤ δ‖f ′‖∞ +
‖f‖∞
2nδ2

.

Conclude from this estimate that
∣∣∣
∣∣∣E [

f
(

Sn

n

)]
− f

∣∣∣
∣∣∣
∞

= O(n− 1
3 ).
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47. Let f(x) be a convex function on [0, 1]. Prove that the Bernstein
polynomial of degree n approximating f(x) is also convex. (Hint:
Show that

d2

dx2
E
[
f
(Sn

n

)]
= n(n− 1)

{
E
[
f
(Sn−2 + 2

n

)]

−2 E
[
f
(Sn−2 + 1

n

)]
+ E

[
f
(Sn−2

n

)]}

in the notation of Example 6.6.1.)

48. Verify the following special cases

n∑
m=1

am
[m(m+ 1)]1/5

≤
(

n∑
m=1

|am|5/4
)4/5

n∑
m=1

am√
m

≤
√
π

61/4

(
n∑

m=1

|am|4/3
)3/4

∞∑
m=0

amx
m ≤ (1− x3)−1/3

( ∞∑
m=0

|am|3/2
)2/3

of Hölder’s inequality [243]. In the last inequality we take 0 ≤ x < 1.

49. Suppose 1 ≤ p < ∞. For a random variable X with E(|X |p) < ∞,

define the norm ‖X‖p = E(Xp)
1
p . Now prove Minkowski’s triangle

inequality ‖X+Y ‖p ≤ ‖X‖p+‖Y ‖p. (Hint: Apply Hölder’s inequality
to the right-hand side of

E(|X + Y |p) ≤ E(|X | · |X + Y |p−1) + E(|Y | · |X + Y |p−1)

and rearrange the result.)

50. Suppose X is a random variable satisfying 0 < a ≤ X ≤ b <∞. Use

L’Hôpital’s rule to prove that the weighted mean M(p) = E(Xp)
1
p is

continuous at p = 0 if we define M(0) = eE(lnX).

51. Suppose the random variable X is bounded below by the positive
constant a and above by the positive constant b. Prove Kantorvich’s
inequality

E(X) E(X−1) ≤ μ2

γ2

for μ = 1
2 (a + b) and γ =

√
ab. (Hint: By homogeneity it suffices

to consider the case γ = 1. Apply the arithmetic-geometric mean
inequality [243].)



7
Block Relaxation

7.1 Introduction

As a gentle introduction to optimization algorithms, we now consider block
relaxation. The more descriptive terms block descent and block ascent sug-
gest either minimization or maximization rather than generic optimization.
Regardless of what one terms the strategy, in many problems it pays to up-
date only a subset of the parameters at a time. Block relaxation divides
the parameters into disjoint blocks and cycles through the blocks, updating
only those parameters within the pertinent block at each stage of a cycle
[59]. When each block consists of a single parameter, block relaxation is
called cyclic coordinate descent or cyclic coordinate ascent. Block relax-
ation is best suited to unconstrained problems where the domain of the
objective function reduces to a Cartesian product of the subdomains asso-
ciated with the different blocks. Obviously, exact block updates are a huge
advantage. Equality constraints usually present insuperable barriers to co-
ordinate descent and ascent because parameters get locked into position.
In some problems it is advantageous to consider overlapping blocks.
The rest of this chapter consists of sequence of examples, most of which

are drawn from statistics. Details of statistical inference are downplayed,
but familiarity with classical statistics certainly helps in understanding.
Block relaxation sometimes converges slowly. In compensation, updates
are often very cheap to compute. Judging the performance of optimiza-
tion algorithms is a complex task. Computational speed is only one factor.

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 7,
© Springer Science+Business Media New York 2013
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Reliability and ease of implementation can be equally important. In many
problems block relaxation is trivial to implement.

7.2 Examples of Block Relaxation

Example 7.2.1 Sinkhorn’s Algorithm

Let M = (mij) be a rectangular matrix with positive entries. Sinkhorn’s
theorem [237] says that there exist two diagonal matrices A and B with
positive diagonal entries ai and bj such that the matrix AMB has pre-
scribed row and column sums. Let ri > 0 be the ith row sum and cj > 0
the jth column sum. Because AMB has entry aimijbj at the intersection
of row i and column j, the constraints are∑

i

aimijbj = cj and
∑
j

aimijbj = ri.

For these constraints to be consistent, we must have∑
i

ri =
∑
i

∑
j

aimijbj =
∑
j

cj.

Given this assumption, we now sketch a method for finding A and B.
Consider minimizing the smooth function [156]

f(A,B) = −
∑
i

ri ln ai −
∑
j

cj ln bj +
∑
i

∑
j

aimijbj.

If any ai or bj approaches 0, then f(A,B) tends to ∞. In view of this
fact, the minimum occurs in a region where the parameters ai and bj are
uniformly bounded below by a positive constant. Within this region, it
follows that aimijbj tends to ∞ if either ai or bj tends to ∞. Hence, the
minimum of f(A,B) exists. At the minimum, Fermat’s principle requires

∂

∂ai
f(A,B) = − ri

ai
+
∑
j

mijbj = 0

∂

∂bj
f(A,B) = −cj

bj
+
∑
i

aimij = 0.

These equations are just a disguised form of Sinkhorn’s constraints.
The direct attempt to solve the stationarity equations is almost imme-

diately thwarted. It is much easier to minimize f(A,B) with respect to A
for B fixed or vice versa. If we fix B, then rearranging the first stationarity
equation gives

ai =
ri∑

j mijbj
.
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Similarly, if we fix A, then rearranging the second stationarity equation
yields

bj =
cj∑

i aimij
.

Sinkhorn’s block relaxation algorithm [237] alternates the updates of A
and B.

Example 7.2.2 Poisson Sports Model

Consider a simplified version of a model proposed by Maher [185] for a
sports contest between two teams in which the number of points scored by
team i against team j follows a Poisson process with intensity eoi−dj , where
oi is an “offensive strength” parameter for team i and dj is a “defensive
strength” parameter for team j. (See Sect. 8.9 for a brief description of
Poisson processes.) If tij is the length of time that i plays j and pij is the
number of points that i scores against j, then the corresponding Poisson
loglikelihood function is

�ij(θ) = pij(oi − dj) + pij ln tij − tijeoi−dj − ln pij !, (7.1)

where θ = (o,d) is the parameter vector. Note that the parameters should
satisfy a linear constraint such as d1 = 0 in order for the model be identifi-
able; otherwise, it is clearly possible to add the same constant to each oi and
dj without altering the likelihood. We make two simplifying assumptions.
First, the outcomes of the different games are independent. Second, each
team’s point total within a single game is independent of its opponent’s
point total. The second assumption is more suspect than the first since it
implies that a team’s offensive and defensive performances are somehow
unrelated to one another; nonetheless, the model gives an interesting first
approximation to reality. Under these assumptions, the full data loglikeli-
hood is obtained by summing �ij(θ) over all pairs (i, j). Setting the partial
derivatives of the loglikelihood equal to zero leads to the equations

e−dj =

∑
i pij∑

i tije
oi

and eoi =

∑
j pij∑

j tije
−dj

satisfied by the maximum likelihood estimate (ô, d̂).
These equations do not admit a closed-form solution, so we turn to block

relaxation [59]. If we fix the oi, then we can solve for the dj and vice versa
in the form

dj = − ln

( ∑
i pij∑

i tije
oi

)
and oi = ln

( ∑
j pij∑

j tije
−dj

)
.

Block relaxation consists in alternating the updates of the defensive and
offensive parameters with the proviso that d1 is fixed at 0.
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TABLE 7.1. Ranking of all 29 NBA teams on the basis of the 2002–2003 regular
season according to their estimated offensive plus defensive strengths. Each team
played 82 games

Team ôi + d̂i Wins Team ôi + d̂i Wins

Cleveland −0.0994 17 Phoenix 0.0166 44
Denver −0.0845 17 New Orleans 0.0169 47
Toronto −0.0647 24 Philadelphia 0.0187 48
Miami −0.0581 25 Houston 0.0205 43

Chicago −0.0544 30 Minnesota 0.0259 51
Atlanta −0.0402 35 LA Lakers 0.0277 50

LA Clippers −0.0355 27 Indiana 0.0296 48
Memphis −0.0255 28 Utah 0.0299 47
New York −0.0164 37 Portland 0.0320 50

Washington −0.0153 37 Detroit 0.0336 50
Boston −0.0077 44 New Jersey 0.0481 49

Golden State −0.0051 38 San Antonio 0.0611 60
Orlando −0.0039 42 Sacramento 0.0686 59

Milwaukee −0.0027 42 Dallas 0.0804 60
Seattle 0.0039 40

Table 7.1 summarizes our application of the Poisson sports model to the
results of the 2002–2003 regular season of the National Basketball Asso-
ciation. In these data, tij is measured in minutes. A regular game lasts
48min, and each overtime period, if necessary, adds 5min. Thus, team i is

expected to score 48eôi−d̂j points against team j when the two teams meet
and do not tie. Team i is ranked higher than team j if ôi − d̂j > ôj − d̂i,

which is equivalent to the condition ôi + d̂i > ôj + d̂j .
It is worth emphasizing some of the virtues of the model. First, the

ranking of the 29 NBA teams on the basis of the estimated sums ôi + d̂i
for the 2002–2003 regular season is not perfectly consistent with their
cumulative wins; strength of schedule and margins of victory are reflected
in the model. Second, the model gives the point-spread function for a
particular game as the difference of two independent Poisson random
variables. Third, one can easily amend the model to rank individual players
rather than teams by assigning to each player an offensive and defensive
intensity parameter. If each game is divided into time segments punctuated
by substitutions, then the block relaxation algorithm can be adapted to es-
timate the assigned player intensities. This might provide a rational basis
for salary negotiations that takes into account subtle differences between
players not reflected in traditional sports statistics.

Example 7.2.3 K-Means Clustering

In k-means clustering we must divide n points x1, . . . ,xn in Rm into k
clusters. Each cluster Cj is characterized by a cluster center μj . The best
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clustering of the points minimizes the criterion

f(μ, C) =

k∑
j=1

∑
xi∈Cj

‖xi − μj‖2,

where μ is the matrix whose columns are the μj and C is the collection of
clusters. Because this mixed continuous-discrete optimization problem has
no obvious analytic solution, block relaxation is attractive. If we hold the
clusters fixed, then it is clear from Example 6.5.7 that we should set

μj =
1

|Cj |
∑

xi∈Cj

xi.

Similarly, it is clear that if we hold the cluster centers fixed, then we
should assign point xi to the cluster Cj minimizing ‖xi − μj‖. Block
relaxation, known as Lloyd’s algorithm in this context, alternates cluster
center redefinition and cluster membership reassignment. It is simple and
effective. The initial cluster centers can chosen randomly from the n data
points. The evidence suggests that this should be done in a biased manner
that spreads the centers out [5]. Changing the objective function to

g(μ, C) =

k∑
j=1

∑
xi∈Cj

‖xi − μj‖1

makes it more resistant to outliers. The recentering step is now solved by
replacing means by medians in each coordinate. This takes a little more
computation but is usually worth the effort.

Example 7.2.4 Canonical Correlations

Consider a random vector Z partitioned into a subvector X of predictors
and a subvector Y of responses. (See Sect. 9.7 for a brief discussion of
random vectors, expectations, and variances.) The most elementary form
of canonical correlation analysis seeks two linear combinations a∗X and
b∗Y that are maximally correlated [187]. If we partition the variance matrix
of Z into blocks

Var(Z) =

(
Σ11 Σ12

Σ21 Σ22

)

consistent with X and Y , then the two linear combinations maximize the
covariance a∗Σ12b subject to the variance constraints

a∗Σ11a = b∗Σ22b = 1.

This constrained maximization problem is an ideal candidate for block
relaxation. Problems 8 and 9 relate the best vectors a and b to the singular
value decomposition of a matrix.
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TABLE 7.2. Iterates in canonical correlation estimation

n an1 an2 bn1 bn2
0 1.000000 1.000000 1.000000 1.000000
1 0.553047 0.520658 0.504588 0.538164
2 0.552159 0.521554 0.504509 0.538242
3 0.552155 0.521558 0.504509 0.538242
4 0.552155 0.521558 0.504509 0.538242

For fixed b we can easily find the best a. Introduce the Lagrangian

L(a) = a∗Σ12b− λ

2

(
a∗Σ11a− 1

)
,

and equate its gradient

∇L(a) = Σ12b− λΣ11a

to 0. This gives the maximum point

a =
1

λ
Σ−1

11 Σ12b,

assuming the submatrix Σ11 is positive definite. Inserting this value into
the constraint a∗Σ11a = 1 allows us to solve for the Lagrange multiplier λ
and hence pin down a as

a =
1√

b∗Σ21Σ
−1
11 Σ12b

Σ−1
11 Σ12b.

Because the second differential d2L = −λΣ11 is negative definite, a rep-
resents the maximum. Likewise, fixing a and optimizing over b gives the
update

b =
1√

a∗Σ12Σ
−1
22 Σ21a

Σ−1
22 Σ21a.

As a toy example consider the correlation matrix

Var(Z) =

⎛
⎜⎝

1 0.7346 0.7108 0.7040
0.7346 1 0.6932 0.7086
0.7108 0.6932 1 0.8392
0.7040 0.7086 0.8392 1

⎞
⎟⎠

with unit variances on its diagonal. Table 7.2 shows the first few iterates
of block relaxation starting from a = b = 1. Convergence is exceptionally
quick; more complex examples exhibit slower convergence.
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Example 7.2.5 Iterative Proportional Fitting

Our next example of block relaxation is taken from the contingency table
literature [14, 86]. Consider a three-way contingency table with two-way
interactions. If the three factors are indexed by i, j, and k and have r,
s, and t levels, respectively, then a loglinear model for the observed count
data yijk is defined by an exponentially parameterized mean

μijk = eλ+λ1
i+λ2

j+λ3
k+λ12

ij +λ13
ik+λ23

jk

for each cell ijk. To ensure that all parameters are identifiable, we make
the usual assumption that a parameter set summed over one of its indices
yields 0. For instance, λ1. =

∑
i λ

1
i = 0 and λ12i. =

∑
j λ

12
ij = 0. The overall

effect λ is permitted to be nonzero.
If we postulate independent Poisson distributions for the random vari-

ables Yijk underlying the observed values yijk, then the loglikelihood is

L =
∑
i

∑
j

∑
k

(yijk lnμijk − μijk). (7.2)

Maximizing L with respect to λ can be accomplished by setting

∂

∂λ
L =

∑
i

∑
j

∑
k

(yijk − μijk) = 0.

This tells us that whatever the other parameters are, λ should be adjusted
so that μ... = y... = m is the total sample size. (Here again the dot conven-
tion signifies summation over a lost index.) In other words, if μijk = eλωijk,
then λ is chosen so that eλ = m/ω.... With this proviso, the loglikelihood
becomes

L =
∑
i

∑
j

∑
k

yijk ln
mωijk

ω...
−m

=
∑
i

∑
j

∑
k

yijk ln
ωijk

ω...
+m lnm−m,

which is up to an irrelevant constant just the loglikelihood of a multino-
mial distribution with probability ωijk/ω... attached to cell ijk. Thus, for
purposes of maximum likelihood estimation, we might as well stick with
the Poisson sampling model.
Unfortunately, no closed-form solution to the Poisson likelihood equa-

tions exists satisfying the complicated linear constraints. The resolution of
this dilemma lies in refusing to update all of the parameters simultaneously.
Suppose that we consider only the parameters λ, λ1i , λ

2
j , and λ

12
ij pertinent

to the first two factors. If in equation (7.2) we let

μij = eλ+λ1
i+λ2

j+λ12
ij

αijk = eλ
3
k+λ13

ik+λ23
jk ,
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then setting

∂

∂λ12ij
L =

∑
k

(yijk − μijk)

= yij. − μij.

= yij. − μijαij.

= 0

leads to μij = yij./αij.. The constraint
∑

k(yijk − μijk) = 0 implies that
the other partial derivatives

∂

∂λ
L = y... − μ...

∂

∂λ1i
L = yi.. − μi..

∂

∂λ2j
L = y.j. − μ.j.

vanish as well. This stationary point of the loglikelihood is also a stationary
point of the Lagrangian with all Lagrange multipliers equal to 0.
Of course, we still must nail down λ, λ1i , λ

2
j , and λ12ij . In view of the

definition of μij , the choice

λ12ij = ln
( yij.
αij.

)
− λ− λ1i − λ2j

guarantees that μij = yij./αij.. One can check that the further choices

λ =
1

rs

∑
i

∑
j

lnμij

λ1i =
1

s

∑
j

lnμij − λ

λ2j =
1

r

∑
i

lnμij − λ

satisfy the relevant equality constraints λ1. = 0, λ2. = 0, λ12.j = 0, and

λ12i. = 0. The identity μij = yij./αij. is crucial in this regard.
At the second stage, the parameter set {λ, λ1i , λ3k, λ13ik} is updated, hold-

ing the remaining parameters fixed. At the third stage, the parameter set
{λ, λ2j , λ3k, λ23jk} is updated, holding the remaining parameters fixed. These
three successive stages constitute one iteration of the iterative proportional
fitting algorithm. Each stage either leaves all parameters unchanged or in-
creases the loglikelihood. In this example, the parameter blocks are not
disjoint.
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Example 7.2.6 Matrix Factorization by Alternating Least Squares

Least squares, the most venerable of the statistical fitting procedures, was
initiated by Gauss and Legendre. As explained in Example 1.3.3, the basic
setup involves n independent responses that individually take the form

yi =

p∑
j=1

xijθj + ui. (7.3)

Here yi depends linearly on the unknown regression coefficients θj through
the known predictors xij . The error ui is assumed to be normally dis-
tributed with mean 0 and variance σ2. If we collect the yi into a n × 1
response vector y, the xij into a n × p design matrix X, the θj into a
p× 1 parameter vector θ, and the uj into a n× 1 error vector u, then the
linear regression model can be rewritten in vector notation as y = Xθ+u.
Provided the design matrix X has full rank, the least squares estimate of
θ is θ̂ = (X∗X)−1X∗y. Example 5.2.6 shows how to amend this solu-
tion to take into account affine constraints. In weighted least squares, one
minimizes the criterion

f(θ) =

n∑
i=1

ci

(
yi −

p∑
j=1

xijθj

)2

,

where the ci are positive weights. This reduces to ordinary least squares if
one substitutes

√
ciyi for yi and

√
cixij for xij . It is clear that any method

for solving an ordinary least squares problem can be immediately adapted
to solving a weighted least squares problem.
The history of alternating least squares is summarized by Gifi [104]. Very

early on Kruskal [158] applied the method to factorial ANOVA. Here we
briefly survey its use in nonnegative matrix factorization [174, 175]. Suppose
U is a n × q matrix whose columns u1, . . . ,uq represent data vectors. In
many applications one wants to explain the data by postulating a reduced
number of prototypes v1, . . . ,vp and writing

uj ≈
p∑

k=1

vkwkj

for certain nonnegative weights wkj . The matrix W = (wkj) is p× q. If p
is small compared to q, then the representation U ≈ V W compresses
the data for easier storage and retrieval. Depending on the circumstances,
further constraints may be advisable [72]. For instance, if the entries of U
are nonnegative, then it is often reasonable to demand that the entries of V
be nonnegative as well. If we want each uj to equal a convex combination
of the prototypes, then constraining the column sums of W to equal 1 is
indicated.
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One way of estimating V and W is to minimize the objective function

‖U − V W ‖2F =
n∑

i=1

q∑
j=1

(
uij −

p∑
k=1

vikwkj

)2

.

No explicit solution is known, but alternating least squares offers an it-
erative attack. If W is fixed, then we can update the ith row of V by
minimizing the sum of squares

q∑
j=1

(
uij −

p∑
k=1

vikwkj

)2

.

Similarly, if V is fixed, then we can update the jth column of W by mini-
mizing the sum of squares

n∑
i=1

(
uij −

p∑
k=1

vikwkj

)2

.

In either case we are faced with solving a sequence of least squares problems.
The introduction of nonnegativity constraints and convexity constraints
complicates matters. Problem 12 suggests coordinate descent methods for
solving these two constrained least squares problems. Coordinate descent is
trivial to implement but potentially very slow. We will revisit nonnegative
least squares later from a different perspective.

7.3 Problems

1. Program and test any one of the six examples in this chapter.

2. Demonstrate that cyclic coordinate descent either diverges or con-
verges to a saddle point of the function f : R2 → R defined by

f(x) = (x1 − x2)2 − 2x1x2.

This function of de Leeuw [59] has no minimum.

3. Consider the function f(x) = (x21 + x22)
−1 + ln(x21 + x22) for x �= 0.

Explicitly find the minimum value of f(x). Specify the coordinate
descent algorithm for finding the minimum. Note any ambiguities in
the implementation of coordinate descent, and describe the possible
cluster points of the algorithm as a function of the initial point. (Hint:
Coordinate descent, properly defined, converges in a finite number of
iterations.)
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4. Implement cyclic coordinate descent to minimize the posynomial

f(x) =
1

x31
+

3

x1x22
+ x1x2

over the region {x ∈ R2 : x1 > 0, x2 > 0}. Derive the updates

xn+1,1 =

√√√√ 3
x2
n2

+
√

9
x4
n2

+ 12xn2

2xn2

xn+1,2 = 3

√
6

x2n+1,1

.

Compare your numerical results to those displayed in Table 8.2.

5. In Sinkhorn’s theorem, suppose the matrix M is square. Show that
some entries of M can be 0 as long as some positive power Mp of
M has all entries positive.

6. Consider cluster analysis on the real line. Show that Lloyd’s algorithm
cannot improve on the initial partition π1 = {0, 2} and π2 = {3.5}
despite that the fact that the partition π1 = {0} and π2 = {2, 3.5}
is better. Also demonstrate that Lloyd’s algorithm transforms the
initial partition π1 = {−7,−5}, π2 = {−4, 4}, and π3 = {5, 7} into
the partition π1 = {−7,−5,−4}, π2 = ∅, and π3 = {4, 5, 7}.

7. Let M = (mij) be a nontrivial m × n matrix. The dominant part
of the singular value decomposition (svd) of M is an outer product
matrix λuv∗ with λ > 0 and u and v unit vectors. This outer product
minimizes

‖M − λuv∗‖2F =
∑
i

∑
j

(mij − λuivj)2.

One can use alternating least squares to find λuv∗ [101]. In the first
step of the algorithm, one fixes v and estimates w = λu by least
squares. Show that w has components wi =

∑
jmijvj . Once w is

available, we set λ = ‖w‖ and u = ‖w‖−1w. What are the corre-
sponding updates for v and λ when you fix u? To find the next outer
product in the svd, form the deflated matrix M − λuv∗ and repeat
the process. Program and test this algorithm.

8. Continuing Problem 7, prove that minimizing ‖M −λuv∗‖2F subject
to the constraints ‖u‖ = ‖v‖ = 1 is equivalent to maximizing u∗Mv
subject to the same constraints. The solution vectors u and v are
called singular vectors. The corresponding scalar λ is the singular
value. Problem 7 of Chap. 2 relates λ to the spectral norm of M .
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9. In Example 7.2.4, make the linear change of variables c = Σ
1/2
11 a

and d = Σ
1/2
22 b. In the new variables show that one must maximize

c∗Ωd subject to ‖c‖ = ‖d‖ = 1, where Ω = Σ
−1/2
11 Σ12Σ

−1/2
22 . In the

language of Problems 7 and 8, the first singular vectors c = u and
d = v of the svd of Ω solve the transformed problem. Obviously, the

vectors b = Σ
−1/2
11 u and b = Σ

−1/2
22 v solve the original problem. The

advantage of this approach is that one can now define higher-order
canonical correlations from the remaining singular vectors of the svd.

10. Suppose A is a symmetric matrix and B is a positive definite matrix
of the same dimension. Formulate cyclic coordinate descent and as-
cent algorithms for minimizing and maximizing the Rayleigh quotient

R(x) =
x∗Ax

x∗Bx
(7.4)

over the set x �= 0. Program and test this algorithm.

11. Continuing Problem 10, demonstrate that the maximum and mini-
mum values of the Rayleigh quotient (7.4) coincide with the maximum
and minimum eigenvalues of the matrix B−1A.

12. For a positive definite matrix A, consider minimizing the quadratic
function f(x) = 1

2x
∗Ax+ b∗x+ c subject to the constraints xi ≥ 0

for all i. Show that the cyclic coordinate descent updates are

x̂i = max
{
0, xi − a−1

ii

[∑
j

aijxj + bi

]}
.

If we impose the additional constraint
∑

i xi = 1, the problem is
harder. One line of attack is to minimize the penalized function

fμ(x) = f(x) +
μ

2

(∑
i

xi − 1
)2

for a large positive constant μ. The theory in Chap. 13 shows that the
minimum of fμ(x) tends to the constrained minimum of f(x) as μ
tends to∞. Accepting this result, demonstrate that cyclic coordinate
descent for fμ(x) has updates

x̂i = max
{
0, xi − (aii + μ)−1

[∑
j

aijxj + bi + μ
(∑

j

xj − 1
)]}

.

Program this second algorithm and test it for the choices

A =

(
2 1
1 1

)
, b =

(
1
0

)
.

Start with μ = 1 and double it every time you update the full
vector x. Do the iterates converge to the minimum of f(x) subject
to all constraints?



7.3 Problems 183

TABLE 7.3. Coronary disease data

Disease Cholesterol Blood pressure
status level 1 2 3 4 Total

1 2 3 3 4 12
Coronary 2 3 2 1 3 9

3 8 11 6 6 31
4 7 12 11 11 41

Total 20 28 21 24 93

1 117 121 47 22 307
No coronary 2 85 98 43 20 246

3 119 209 68 43 439
4 67 99 46 33 245

Total 388 527 204 118 1,237

13. Program and test a k-medians clustering algorithm and concoct an
example where it differs from k-means clustering.

14. In fitting splines to data, the problem arises of minimizing the crite-
rion ‖y −Uα− V β‖2 + λβ∗Wβ with respect (α,β) for λ ≥ 0 and
W positive semidefinite [166]. Derive the block descent updates

α = (U∗U)−1U∗(y − V β)

β = (V ∗V + λW )−1V ∗(y −Uα).

15. Consider the coronary disease data [86, 159] displayed in the three-
way contingency Table 7.3. Using iterative proportional fitting, find
the maximum likelihood estimates for the loglinear model with first-
order interactions. Perform a chi-square test to decide whether this
model fits the data better than the model postulating independence
of the three factors.

16. As noted in the text, the loglinear model for categorical data can
be interpreted as assuming independent Poisson distributions for the
various categories with category i having mean μi(θ) = el

∗
i θ, where

li is a vector whose entries are 0’s or 1’s. Calculate the observed
information −d2L(θ) = ∑

i e
l∗i θlil

∗
i in this circumstance, and deduce

that it is positive semidefinite. In the presence of affine constraints
V θ = d on θ, show that any maximum likelihood estimate of θ is
necessarily unique provided the null space (kernel) of V is contained
in the linear span of the li.
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The MM Algorithm

8.1 Introduction

Most practical optimization problems defy exact solution. In the current
chapter we discuss an optimization method that relies heavily on convexity
arguments and is particularly useful in high-dimensional problems such as
image reconstruction [171]. This iterative method is called the MM algo-
rithm. One of the virtues of this acronym is that it does double duty. In
minimization problems, the first M of MM stands for majorize and the
second M for minimize. In maximization problems, the first M stands for
minorize and the second M for maximize. When it is successful, the MM
algorithm substitutes a simple optimization problem for a difficult opti-
mization problem. Simplicity can be attained by: (a) separating the vari-
ables of an optimization problem, (b) avoiding large matrix inversions, (c)
linearizing an optimization problem, (d) restoring symmetry, (e) dealing
with equality and inequality constraints gracefully, and (f) turning a non-
differentiable problem into a smooth problem. In simplifying the original
problem, we must pay the price of iteration or iteration with a slower rate
of convergence.
Statisticians have vigorously developed a special case of the MM algo-

rithm called the EM algorithm, which revolves around notions of missing
data [65, 166, 191]. We present the EM algorithm in the next chapter. We
prefer to present the MM algorithm first because of its greater generality,
its more obvious connection to convexity, and its weaker reliance on difficult
statistical principles.

K. Lange, Optimization, Springer Texts in Statistics 95,
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FIGURE 8.1. A quadratic majorizing function for the piecewise linear function
f(x) = |x− 1|+ |x− 3|+ |x− 4|+ |x− 8|+ |x− 10| at the point xm = 6

8.2 Philosophy of the MM Algorithm

A function g(x | xm) is said to majorize a function f(x) at xm provided

f(xm) = g(xm | xm) (8.1)

f(x) ≤ g(x | xm) , x �= xm. (8.2)

In other words, the surface x �→ g(x | xm) lies above the surface f(x) and is
tangent to it at the point x = xm. Here xm represents the current iterate in
a search of the surface f(x). Figure 8.1 provides a simple one-dimensional
example.
In the minimization version of the MM algorithm, we minimize the sur-

rogate majorizing function g(x | xm) rather than the actual function f(x).
If xm+1 denotes the minimum of the surrogate g(x | xm), then we can
show that the MM procedure forces f(x) downhill. Indeed, the inequalities

f(xm+1) ≤ g(xm+1 | xm) ≤ g(xm | xm) = f(xm) (8.3)

follow directly from the definition of xm+1 and the majorization condi-
tions (8.1) and (8.2). The descent property (8.3) lends the MM algorithm
remarkable numerical stability. Strictly speaking, it depends only on de-
creasing g(x | xm), not on minimizing g(x | xm). This fact has practical
consequences when the minimum of g(x | xm) cannot be found exactly.
When f(x) is strictly convex, one can show with a few additional mild
hypotheses that the iterates xm converge to the global minimum of f(x)
regardless of the initial point x0.
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If g(x | xm) majorizes f(x) at an interior point xm of the domain of
f(x), then xm is a stationary point of the difference g(x | xm)− f(x), and
the gradient identity

∇g(xm | xm) = ∇f(xm) (8.4)

holds. Furthermore, the second differential d2g(xm | xm)−d2f(xm) is posi-
tive semidefinite. Problem 1 makes the point that the majorization relation
between functions is closed under the formation of sums, nonnegative prod-
ucts, limits, and composition with an increasing function. These rules per-
mit us to work piecemeal in simplifying complicated objective functions.
With obvious changes, the MM algorithm also applies to maximization
rather than to minimization. To maximize a function f(x), we minorize it
by a surrogate function g(x | xm) and maximize g(x | xm) to produce the
next iterate xm+1.
The reader might well object that the MM algorithm is not so much

an algorithm as a vague philosophy for deriving an algorithm. The same
objection applies to the EM algorithm. As we proceed through the current
chapter, we hope the various examples will convince the reader of the value
of a unifying principle and a framework for attacking concrete problems.
The strong connection of the MM algorithm to convexity and inequalities
has the natural pedagogical advantage of building on the material presented
in previous chapters.

8.3 Majorization and Minorization

We will feature five methods for constructing majorizing functions. Two of
these simply adapt Jensen’s inequality

f
(∑

i

αiti

)
≤

∑
i

αif(ti)

defining a convex function f(t). It is easy to identify convex functions on
the real line, so the first method composes such a function with a linear
function c∗x to create a new convex function of the vector x. Invoking the
definition of convexity with αi = ciyi/c

∗y and ti = c∗y xi/yi then yields

f(c∗x) ≤
∑
i

ciyi
c∗y

f
(c∗y
yi

xi

)
= g(x | y), (8.5)

provided all of the components of the vectors c, x, and y are positive.
The surrogate function g(x | y) equals f(c∗y) when x = y. One of the
virtues of applying inequality (8.5) in defining a surrogate function is that
it separates parameters in the surrogate function. This feature is critically
important in high-dimensional problems because it reduces optimization
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over x to a sequence of one-dimensional optimizations over each compo-
nent xi. The argument establishing inequality (8.5) is equally valid if we
replace the parameter vector x throughout by a vector-valued function
h(x) of x. The genetics problem in the next section illustrates this variant
of the technique.
To relax the positivity restrictions on the vectors c, x, and y, De Pierro

[67] suggested in a medical imaging context the alternative majorization

f(c∗x) ≤
∑
i

αif

{
ci
αi

(xi − yi) + c∗y
}

= g(x | y) (8.6)

for a convex function f(t). Here all αi ≥ 0,
∑

i αi = 1, and αi > 0 whenever
ci �= 0. In practice, we must somehow tailor the αi to the problem at hand.
Among the obvious candidates for the αi are

αi =
|ci|p∑
j |cj |p

for p ≥ 0. When p = 0, we interpret αi as 0 if ci = 0 and as 1/q if ci is one
among q nonzero coefficients.
Our third method involves the linear majorization

f(x) ≤ f(y) + df(y)(x− y) = g(x | y) (8.7)

satisfied by any concave function f(x). Once again we can replace the
argument x by a vector-valued function h(x).
Our fourth method applies to functions f(x) with bounded curvature

[16, 59]. Assuming that f(x) is twice differentiable, we look for a matrix
B satisfying B � d2f(x) and B � 0 in the sense that B − d2f(x) is
positive semidefinite for all x and B is positive definite. The quadratic
bound principle then amounts to the majorization

f(x) = f(y) + df(y)(x− y)

+ (x− y)∗
∫ 1

0

d2f [y + t(x− y)](1− t) dt (x− y)

≤ f(y) + df(y)(x− y) +
1

2
(x− y)∗B(x− y)

= g(x | y). (8.8)

Our fifth and final method exploits the generalized arithmetic-geometric
mean inequality (6.5) of Chap. 6. With this result in mind, Problem 9 asks
the reader to prove the majorization

n∏
i=1

xαi

i ≤
(

n∏
i=1

yαi

i

)
n∑

i=1

αi

α

(
xi
yi

)α

= g(x | y) (8.9)
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for positive numbers xi, yi, and αi and sum α =
∑n

i=1 αi. Inequality (8.9)
is the key to separating parameters with posynomials. We will use it in
sketching an MM algorithm for unconstrained geometric programming.
Any of the first four majorizations can be turned into minorizations by

interchanging the adjectives convex and concave and positive definite and
negative definite, respectively. Of course, there is an art to applying these
methods just as there is an art to applying any mathematical principle. The
methods hardly exhaust the possibilities for majorization and minorization.
The problems at the end of the chapter sketch other helpful techniques.
Readers are also urged to consult the survey papers [59, 122, 142, 171] and
the literature on the EM algorithm for a fuller discussion.

8.4 Allele Frequency Estimation

The ABO and Rh genetic loci are usually typed in matching blood donors
to blood recipients. The ABO locus incorporates the three alleles A, B,
and O and exhibits the four observable phenotypes A, B, AB, and O.
These phenotypes arise because each person inherits two alleles, one from
his mother and one from his father, and the alleles A and B are genetically
dominant to allele O. Dominance amounts to a masking of the O allele by
the presence of an A or B allele. For instance, a person inheriting an A
allele from one parent and an O allele from the other parent is said to have
genotype A/O and is indistinguishable from a person inheriting an A allele
from both parents. This second person has genotype A/A.
The MM algorithm for estimating the population frequencies or propor-

tions of the three alleles involves an interplay between observed pheno-
types and underlying unobserved genotypes. As just noted, both genotypes
A/O and A/A generate the same phenotype A. Likewise, both genotypes
B/O and B/B generate the same phenotype B. Phenotypes AB and O
correspond to the single genotypes A/B and O/O, respectively.
As a concrete example, Clarke et al. [50] noted that among their popu-

lation sample of n = 521 duodenal ulcer patients, a total of nA = 186 had
phenotype A, nB = 38 had phenotype B, nAB = 13 had phenotype AB,
and nO = 284 had phenotype O. If we want to estimate the frequencies
pA, pB, and pO of the three different alleles from this sample, then we can
employ the MM algorithm with the four phenotype counts as the observed
data.
The likelihood of the data is given by the multinomial distribution in

conjunction with the Hardy-Weinberg law of population genetics. This law
specifies that each genotype frequency equals the product of the corre-
sponding allele frequencies with an extra factor of 2 included to account
for ambiguity in parental source when the two alleles differ. For example,
genotype A/A has frequency p2A, and genotype A/O has frequency 2pApO.
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These assumptions are summarized in the multinomial loglikelihood

f(p) = nA ln
(
p2A + 2pApO

)
+ nB ln

(
p2B + 2pBpO

)
+ nAB ln(2pApB)

+ nO ln p2O + ln

(
n

nA, nB, nAB, nO

)
.

In maximum likelihood estimation we maximize this function of the allele
frequencies subject to the equality constraint pA + pB + pO = 1 and the
nonnegativity constraints pA ≥ 0, pB ≥ 0, and pO ≥ 0.
The loglikelihood function f(p) would be easy to maximize if it were not

for the terms ln
(
p2A + 2pApO

)
and ln

(
p2B + 2pBpO

)
. In the MM algorithm

we attack these functions using the convexity of the function − lnx and
the majorization (8.5). This yields the minorization

ln
(
p2A + 2pApO

) ≥ p2mA

p2mA + 2pmApmO
ln

(
p2mA + 2pmApmO

p2mA

p2A

)

+
2pmApmO

p2mA + 2pmApmO
ln

(
p2mA + 2pmApmO

2pmApmO
2pApO

)
.

A similar minorization applies to ln
(
p2B + 2pBpO

)
. These maneuvers have

the virtue of separating parameters because logarithms turn products into
sums.
Notationally, things become clearer if we introduce the abbreviations

nmA/A = nA
p2mA

p2mA + 2pmApmO

nmA/O = nA
2pmApmO

p2mA + 2pmApmO

and likewise for nmB/B and nmB/O. We are now faced with maximizing
the surrogate function

g(p | pm) = nmA/A ln p2A + nmA/O ln(2pApO) + nmB/B ln p2B

+ nmB/O ln(2pBpO) + nAB ln(2pApB) + nO ln p2O + c,

where c is an irrelevant constant that depends on the current iterate pm

but not on the potential value p of the next iterate. This completes the
minorization step of the algorithm.
The maximization step can be accomplished by introducing a Lagrange

multiplier and finding a stationary point of the Lagrangian

L(p, λ) = g(p | pm) + λ(pA + pB + pO − 1).

Here we ignore the nonnegativity constraints under the assumption that
they are inactive at the solution. Setting the partial derivatives of L(p, λ),

∂

∂pA
L(p, λ) =

2nmA/A

pA
+
nmA/O

pA
+
nAB

pA
+ λ
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TABLE 8.1. Iterations for ABO duodenal ulcer data

Iteration m pmA pmB pmO

0 0.3000 0.2000 0.5000
1 0.2321 0.0550 0.7129
2 0.2160 0.0503 0.7337
3 0.2139 0.0502 0.7359
4 0.2136 0.0501 0.7363
5 0.2136 0.0501 0.7363

∂

∂pB
L(p, λ) =

2nmB/B

pB
+
nmB/O

pB
+
nAB

pB
+ λ

∂

∂pO
L(p, λ) =

nmA/O

pO
+
nmB/O

pO
+

2nO

pO
+ λ

∂

∂λ
L(p, λ) = pA + pB + pO − 1,

equal to 0 provides the unique stationary point of L(p, λ). The solution of
the resulting equations is

pm+1,A =
2nmA/A + nmA/O + nAB

2n

pm+1,B =
2nmB/B + nmB/O + nAB

2n

pm+1,O =
nmA/O + nmB/O + 2nO

2n
.

In other words, the MM update is identical to a form of gene counting
in which the unknown genotype counts are imputed based on the current
allele frequency estimates [239]. In these updates, the denominator 2n is
the total number of genes; the numerators are the current best guesses of
the number of alleles of each type contained in the hidden and manifest
genotypes.
Table 8.1 shows the progress of the MM iterates starting from the initial

estimates p0A = 0.3, p0B = 0.2, and p0O = 0.5. The MM updates are simple
enough to carry out on a pocket calculator. Convergence occurs quickly in
this example.

8.5 Linear Regression

Because t2 is a convex function, we can majorize each summand of the sum
of squares criterion

∑n
i=1(yi − x∗

i θ)
2 using inequality (8.6). The overall
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surrogate

g(θ | θm) =
n∑

i=1

∑
j

αij

[
yi − xij

αij
(θj − θmj)− x∗

i θm

]2
,

achieves equality with the sum of squares when θ = θm. Minimization of
g(θ | θm) yields the updates

θm+1,j = θmj +

∑n
i=1 xij(yi − x∗

i θm)∑n
i=1

x2
ij

αij

(8.10)

and avoids matrix inversion [171]. Although it seems intuitively reasonable
to take p = 1 in choosing

αij =
|xij |p

(
∑

k |xik|p)
,

conceivably other values of p might perform better. In fact, it might accel-
erate convergence to alternate different values of p as the iterations pro-
ceed. For problems involving just a few parameters, this iterative scheme is
clearly inferior to the usual single-step solution via matrix inversion. Cyclic
coordinate descent also avoids matrix operations, and Problem 11 suggests
that it will converge faster than the MM update (8.10).
Least squares estimation suffers from the fact that it is strongly influ-

enced by observations far removed from their predicted values. In least
absolute deviation regression, we replace

∑n
i=1(yi − x∗

i θ)
2 by

h(θ) =
n∑

i=1

∣∣∣yi − x∗
i θ
∣∣∣ =

n∑
i=1

|ri(θ)|, (8.11)

where ri(θ) = yi − x∗
i θ is the ith residual.We are now faced with mini-

mizing a nondifferentiable function. Fortunately, the MM algorithm can be
implemented by exploiting the concavity of the function

√
u in inequality

(8.7). Because

√
u ≤ √

um +
u− um
2
√
um

, (8.12)

we find that

h(θ) =

n∑
i=1

√
r2i (θ)

≤ h(θm) +
1

2

n∑
i=1

r2i (θ)− r2i (θm)√
r2i (θm)

= g(θ | θm).
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Minimizing g(θ | θm) is accomplished by minimizing the weighted sum of
squares

n∑
i=1

wi(θm)ri(θ)
2

with ith weight wi(θm) = |ri(θm)|−1. A slight variation of the usual
argument for minimizing a sum of squares leads to the update

θm+1 = [X∗W (θm)X]−1X∗W (θm)y,

where W (θm) is the diagonal matrix with ith diagonal entry wi(θm). Un-
fortunately, the possibility that some weight wi(θm) is infinite cannot be
ruled out. Problem 14 suggests a simple remedy.

8.6 Bradley-Terry Model of Ranking

In the sports version of the Bradley and Terry model [23, 140, 150], each
team i in a league of teams is assigned a rank parameter ri > 0. Assuming
ties are impossible, team i beats team j with probability ri/(ri + rj). If
this outcome occurs yij times during a season of play, then the probability
of the whole season is

L(r) =
∏
i,j

( ri
ri + rj

)yij

,

assuming the games are independent. To rank the teams, we find the values
r̂i that maximize f(r) = lnL(r). The team with largest r̂i is considered
best, the team with smallest r̂i is considered worst, and so forth. In view
of the fact that lnu is concave, inequality (8.7) implies

f(r) =
∑
i,j

yij

[
ln ri − ln(ri + rj)

]

≥
∑
i,j

yij

[
ln ri − ln(rmi + rmj)− ri + rj − rmi − rmj

rmi + rmj

]

= g(r | rm)

with equality when r = rm. Differentiating g(r | rm) with respect to the
ith component ri of r and setting the result equal to 0 produces the next
iterate

rm+1,i =

∑
j 
=i yij∑

j 
=i(yij + yji)/(rmi + rmj)
.

Because L(r) = L(βr) for any β > 0, we constrain r1 = 1 and omit the
update rm+1,1. In this example, the MM algorithm separates parameters
and allows us to maximize g(r | rm) parameter by parameter.
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8.7 Linear Logistic Regression

In linear logistic regression, we observe a sequence of independent Bernoulli
trials, each resulting in success or failure. The success probability of the ith
trial

πi(θ) =
ex

∗
i θ

1 + ex
∗
i
θ

depends on a predictor (covariate) vector xi and parameter vector θ by
analogy with linear regression. The observation yi at trial i equals 1 for a
success and 0 for a failure. In this notation, the likelihood of the data is

L(θ) =
∏
i

πi(θ)
yi [1− πi(θ)]1−yi .

As usual in maximum likelihood estimation, we pass to the loglikelihood

f(θ) =
∑
i

[yi lnπi(θ) + (1 − yi) ln[1− πi(θ)].

Straightforward calculations show

df(θ) =
∑
i

[yi − πi(θ)]x∗
i

d2f(θ) = −
∑
i

πi(θ)[1 − πi(θ)]xix
∗
i .

The loglikelihood f(θ) is therefore concave, and we seek to minorize it by a
quadratic rather than majorize it by a quadratic as suggested in inequality
(8.8). Hence, we must identify a matrix B such that B is negative definite
and B − d2f(θ) is negative semidefinite for all θ. In view of the scalar
inequality π(1 − π) ≤ 1

4 , we take B = − 1
4

∑
i xix

∗
i . Maximization of the

minorizing quadratic

f(θm) + df(θm)(θ − θm) +
1

2
(θ − θm)∗B(θ − θm)

is a problem we have met before. It does involve inversion of the matrix B,
but once we have computed B−1, we can store and reuse it at every itera-
tion.

8.8 Geometric and Signomial Programs

The idea behind these minimization algorithms is best understood in a
concrete setting. Consider the posynomial

f(x) =
1

x31
+

3

x1x22
+ x1x2 (8.13)
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with the implied constraints x1 > 0 and x2 > 0. The majorization (8.9)
applied to the third term of f(x) yields

x1x2 ≤ xm1xm2

[
1

2

(
x1
xm1

)2

+
1

2

(
x2
xm2

)2
]

=
xm2

2xm1
x21 +

xm1

2xm2
x22.

Applied to the second term of f(x), it gives with x−1
1 replacing x1 and x−1

2

replacing x2,

3

x1x22
≤ 3

xm1x2m2

[
1

3

(
xm1

x1

)3

+
2

3

(
xm2

x2

)3
]

=
x2m1

x2m2

1

x31
+

2xm2

xm1

1

x32
.

The second step of the MM algorithm for minimizing f(x) therefore splits
into minimizing the two surrogate functions

g1(x1 | xm) =
1

x31
+
x2m1

x2m2

1

x31
+

xm2

2xm1
x21

g2(x2 | xm) =
2xm2

xm1

1

x32
+

xm1

2xm2
x22.

If we set the derivatives of each of these equal to 0, then we find the solutions

xm+1,1 = 5

√
3

(
x2m1

x2m2

+ 1

)
xm1

xm2

xm+1,2 = 5

√
6
x2m2

x2m1

.

It is obvious that the point x = ( 5
√
6, 5
√
6)∗ is a fixed point of these equations

and minimizes f(x). Ignoring this fact, Table 8.2 records the iterates of
both the MM algorithm and cyclic coordinate descent. Although the MM
updates are slower to converge, they are less complicated. See Problem 4
of Chap. 7 for the form of the cyclic coordinate descent updates.
This MM analysis carries over to general posynomials except that we

cannot expect to derive explicit solutions of the minimization step. (See
Problem 28.) Each separated surrogate function is a posynomial in a single
variable. If the powers appearing in one of these posynomials are integers,
then the derivative of the posynomial is a rational function, and once we
equate it to 0, we are faced with solving a polynomial equation. This can be
accomplished by bisection or by Newton’s method as discussed in Chap. 10.
Introducing posynomial constraints is another matter. Box constraints in
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TABLE 8.2. MM and coordinate descent iterates for a geometric program

MM algorithm Coordinate descent
m xm1 xm2 f(xm) xm1 xm2 f(xm)
0 1.00000 2.00000 3.75000 1.00000 2.00000 3.75000
1 1.13397 1.88818 3.56899 1.19437 1.61420 3.47886
2 1.19643 1.75472 3.49766 1.32882 1.50339 3.42280
3 1.24544 1.66786 3.46079 1.38616 1.46165 3.41457
4 1.28395 1.60829 3.44074 1.41117 1.44432 3.41312
5 1.31428 1.56587 3.42942 1.42219 1.43685 3.41285
10 1.39358 1.47003 3.41427 1.43082 1.43107 3.41279
20 1.42699 1.43496 3.41280 1.43097 1.43097 3.41279
30 1.43054 1.43140 3.41279 1.43097 1.43097 3.41279
40 1.43092 1.43101 3.41279 1.43097 1.43097 3.41279
50 1.43096 1.43097 3.41279 1.43097 1.43097 3.41279
51 1.43097 1.43097 3.41279 1.43097 1.43097 3.41279

the form ai ≤ xi ≤ bi are consistent with parameter separation as developed
here, but more complicated posynomial constraints are not.
The perturbation

f(x) =
1

x31
+

3

x1x22
+ x1x2 −√x1x2

of the function (8.13) is called a signomial rather than a posynomial [20].
If we want to minimize this new function subject to the constraints x1 > 0
and x2 > 0, then a different tactic is needed for the terms with negative
coefficients [170]. Consider the minorization z ≥ 1 + ln z around the point
z = 1 derived from the convexity of − ln z. If we let z =

√
x1x2/

√
xm1xm2,

then the more elaborate minorization
√
x1x2 ≥ 1

2

√
xm1xm2(2 + lnx1 + lnx2 − lnxm1 − lnxm2)

follows. Multiplication of this by −1 now gives the operative majorization.
Up to an irrelevant additive constant, the overall surrogate function equals
the sum of the two parameter separated surrogates

g1(x1 | xm) =
1

x31
+
x2m1

x2m2

1

x31
+

xm2

2xm1
x21 −

1

2

√
xm1xm2 lnx1

g2(x2 | xm) =
2xm2

xm1

1

x32
+

xm1

2xm2
x22 −

1

2

√
xm1xm2 lnx2.

The corresponding minima are roots of the polynomial equations

0 =
xm2

xm1
x51 −

1

2

√
xm1xm2x

3
1 − 3

(
1 +

x2m1

x2m2

)

0 =
xm1

xm2
x52 −

1

2

√
xm1xm2x

3
2 −

6xm2

xm1
.
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Table 8.3 displays the MM iterates for this signomial program. Each update
relies on Newton’s method to solve the two preceding quintic equations. Al-
though there is no convexity guarantee that the converged point is optimal,
random sampling of the objective function does not produce a better point.

TABLE 8.3. MM iterates for a signomial program

m xm1 xm2 f(xm)
0 1.00000 2.00000 2.33579
1 1.19973 2.04970 2.06522
5 1.39153 1.73281 1.94756
10 1.48648 1.61186 1.92935
15 1.52318 1.57173 1.92702
20 1.53763 1.55678 1.92668
25 1.54336 1.55097 1.92663
30 1.54565 1.54867 1.92662
35 1.54656 1.54776 1.92662
40 1.54692 1.54740 1.92662
45 1.54706 1.54725 1.92662
50 1.54712 1.54720 1.92662
55 1.54714 1.54717 1.92662
60 1.54715 1.54716 1.92662
65 1.54716 1.54716 1.92662

8.9 Poisson Processes

In preparation for our exposition of transmission tomography in the next
section, let us briefly review the theory of Poisson processes, a topic from
probability of considerable interest in its own right. A Poisson process in-
volves points randomly scattered in a region S of Rn [113, 133, 148, 154].
The notion that the points are concentrated on average more in some
regions than in others is captured by postulating an intensity function
λ(x) ≥ 0 on S. The expected number of points in a subregion T is given by
the integral ω =

∫
T
λ(x)dx. If ω =∞, then an infinite number of random

points occur in T . If ω <∞, then a finite number of random points occur
in T , and the probability that this number equals k is given by the Poisson
probability

pk(ω) =
ωk

k!
e−ω.

Derivation of this formula depends critically on the assumption that the
numbers NTi of random points in disjoint regions Ti are independent
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random variables. This basically means that knowing the values of some
of the NTi tells one nothing about the values of the remaining NTi . The
model also presupposes that random points never coincide.
The Poisson distribution has a peculiar relationship to the multinomial

distribution. Suppose a Poisson random variable Z with mean ω repre-
sents the number of outcomes from some experiment, say an experiment
involving a Poisson process. Let each outcome be independently classified
in one of l categories, the kth of which occurs with probability pk. Then
the number of outcomes Zk falling in category k is Poisson distributed
with mean ωk = pkω. Furthermore, the random variables Z1, . . . , Zl are
independent. Conversely, if Z =

∑l
k=1 Zk is a sum of independent Poisson

random variables Zk with means ωk = pkω, then conditional on Z = n, the
vector (Z1, . . . , Zl)

∗ follows a multinomial distribution with n trials and
cell probabilities p1, . . . , pl. To prove the first two of these assertions, let
n = n1 + · · ·+ nl. Then

Pr(Z1 = n1, . . . , Zl = nl) =
ωn

n!
e−ω

(
n

n1, . . . , nl

) l∏
k=1

pnk

k

=

l∏
k=1

ωnk

k

nk!
e−ωk

=
l∏

k=1

Pr(Zk = nk).

To prove the converse, divide the last string of equalities by the probability
Pr(Z = n) = ωne−ω/n!.
The random process of assigning points to categories is termed coloring in

the stochastic process literature. When there are just two colors, and only
random points of one of the colors are tracked, then the process is termed
random thinning. We will see examples of both coloring and thinning in
the next section.

8.10 Transmission Tomography

Problems in medical imaging often involve thousands of parameters. As an
illustration of the MM algorithm, we treat maximum likelihood estimation
in transmission tomography. Traditionally, transmission tomography im-
ages have been reconstructed by the methods of Fourier analysis. Fourier
methods are fast but do not take into account the uncertainties of photon
counts. Statistically based methods give better reconstructions with less
patient exposure to harmful radiation.
The purpose of transmission tomography is to reconstruct the local at-

tenuation properties of the object being imaged [124]. Attenuation is to
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Source

Detector

FIGURE 8.2. Cartoon of transmission tomography

be roughly equated with density. In medical applications, material such as
bone is dense and stops or deflects X-rays (high-energy photons) better
than soft tissue. With enough photons, even small gradations in soft tissue
can be detected. A two-dimensional image is constructed from a sequence
of photon counts. Each count corresponds to a projection line L drawn
from an X-ray source through the imaged object to an X-ray detector. The
average number of photons sent from the source along L to the detector
is known in advance. The random number of photons actually detected
is determined by the probability of a single photon escaping deflection or
capture along L. Figure 8.2 shows one such projection line beamed through
a cartoon of the human head.
To calculate this probability, we let μ(x) be the intensity (or attenuation

coefficient) of photon deflection or capture per unit length at the point
x = (x1, x2) in the plane. We can imagine that deflection or capture events
occur completely randomly along L according to a Poisson process. The
first such event effectively prevents the photon from being detected. Thus,
the photon is detected with the Poisson probability p0(ω) = e−ω of no such
events, where

ω =

∫
L

μ(x)ds

is the line integral of μ(x) along L. In actual practice, X-rays are beamed
through the object along a large number of different projection lines. We
therefore face the inverse problem of reconstructing a function μ(x) in the
plane from a large number of its measured line integrals. Imposing enough
smoothness on μ(x), one can solve this classical deterministic problem by
applying Radon transform techniques from Fourier analysis [124].
An alternative to the Fourier method is to pose an explicitly stochas-

tic model and estimate its parameters by maximum likelihood [167, 168].
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The MM algorithm suggests itself in this context. The stochastic model
depends on dividing the object of interest into small nonoverlapping re-
gions of constant attenuation called pixels. Typically the pixels are squares
on a regular grid as depicted in Fig. 8.2. The attenuation attributed to pixel
j constitutes parameter θj of the model. Since there may be thousands of
pixels, implementation of maximum likelihood algorithms such as scoring
or Newton’s method as discussed in Chap. 10 is out of the question.
To summarize our discussion, each observation Yi is generated by beam-

ing a stream of X-rays or high-energy photons from an X-ray source toward
some detector on the opposite side of the object. The observation (or projec-
tion) Yi counts the number of photons detected along the ith line of flight.
Naturally, only a fraction of the photons are successfully transmitted from
source to detector. If lij is the length of the segment of projection line i
intersecting pixel j, then the probability of a photon escaping attenuation
along projection line i is the exponentiated line integral exp(−∑

j lijθj).
In the absence of the intervening object, the number of photons gen-

erated and ultimately detected follows a Poisson distribution. We assume
that the mean di of this distribution for projection line i is known. Ide-
ally, detectors are long tubes aimed at the source. If a photon is deflected,
then it is detected neither by the tube toward which it is initially headed
nor by any other tube. In practice, many different detectors collect pho-
tons simultaneously from a single source. If we imagine coloring the tubes,
then each photon is colored by the tube toward which it is directed. Each
stream of colored photons is then thinned by capture or deflection. These
considerations imply that the counts Yi are independent and Poisson dis-
tributed with means di exp(−

∑
j lijθj). It follows that we can express the

loglikelihood of the observed data Yi = yi as the finite sum

∑
i

[
− die−

∑
j
lijθj − yi

∑
j

lijθj + yi ln di − ln yi!
]
. (8.14)

Omitting irrelevant constants, we can rewrite the loglikelihood (8.14) more
succinctly as

L(θ) = −
∑
i

fi(l
∗
i θ),

where fi(t) is the convex function die
−t + yit and l∗i θ =

∑
j lijθj is the

inner product of the attenuation parameter vector θ and the vector of
intersection lengths li for projection i.
To generate a surrogate function, we majorize each fi(l

∗
i θ) according to

the recipe (8.5). This gives the surrogate function

g(θ | θm) = −
∑
i

∑
j

lijθmj

l∗i θm
fi

( l∗i θm

θmj
θj

)
(8.15)
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minorizing L(θ). By construction, maximization of g(θ | θm) separates
into a sequence of one-dimensional problems, each of which can be solved
approximately by one step of Newton’s method. We will take up the details
of this in Chap. 10.
The images produced by maximum likelihood estimation in transmis-

sion tomography look grainy. The cure is to enforce image smoothness by
penalizing large differences between estimated attenuation parameters of
neighboring pixels. Geman and McClure [103] recommend multiplying the
likelihood of the data by a Gibbs prior π(θ). Equivalently we add the log
prior

lnπ(θ) = −γ
∑

{j,k}εN
wjkψ(θj − θk)

to the loglikelihood, where γ and the weights wjk are positive constants,
N is a set of unordered pairs {j, k} defining a neighborhood system, and
ψ(r) is called a potential function. This function should be large whenever
|r| is large. Neighborhoods have limited extent. For instance, if the pixels
are squares, we might define the weights by wjk = 1 for orthogonal nearest
neighbors sharing a side and wjk = 1/

√
2 for diagonal nearest neighbors

sharing only a corner. The constant γ scales the overall strength assigned
to the prior. The sum L(θ) + lnπ(θ) is called the log posterior function;
its maximum is the posterior mode.
Choice of the potential function ψ(r) is the most crucial feature of the

Gibbs prior. It is convenient to assume that ψ(r) is even and strictly convex.
Strict convexity leads to the strict concavity of the log posterior function
L(θ)+lnπ(θ) and permits simple modification of the MM algorithm based
on the surrogate function g(θ | θm) defined by equation (8.15). Many
potential functions exist satisfying these conditions. One natural example
is ψ(r) = r2. This choice unfortunately tends to deter the formation of
boundaries. The gentler alternatives ψ(r) =

√
r2 + ε for a small positive ε

and ψ(r) = ln[cosh(r)] are preferred in practice [111]. Problem 35 asks the
reader to verify some of the properties of these two potential functions.
One adverse consequence of introducing a prior is that it couples pairs of

parameters in the maximization step of the MM algorithm for finding the
posterior mode. One can decouple the parameters by exploiting the con-
vexity and evenness of the potential function ψ(r) through the inequality

ψ(θj − θk) = ψ
(1
2

[
2θj − θmj − θmk

]
+

1

2

[
− 2θk + θmj + θmk

])

≤ 1

2
ψ(2θj − θmj − θmk) +

1

2
ψ(2θk − θmj − θmk),

which is strict unless θj + θk = θmj + θmk. This inequality allows us to
redefine the surrogate function as

g(θ | θm)
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= −
∑
i

∑
j

lijθmj

l∗i θm
fi

( l∗i θm

θmj
θj

)

−γ
2

∑
{j,k}εN

wjk[ψ(2θj − θmj − θmk) + ψ(2θk − θmj − θmk)].

Once again the parameters are separated, and the maximization step re-
duces to a sequence of one-dimensional problems. Maximizing g(θ | θm)
drives the log posterior uphill and eventually leads to the posterior mode.

8.11 Poisson Multigraphs

In a graph the number of edges between any two nodes is 0 or 1. A multi-
graph allows an arbitrary number of edges between any two nodes. Multi-
graphs are natural structures for modeling the internet and gene and pro-
tein networks. Here we consider a multigraph with a random number of
edges Xij connecting every pair of nodes {i, j}. In particular, we assume
that the Xij are independent Poisson random variables with means μij . As
a plausible model for ranking nodes, we take μij = pipj, where pi and pj
are nonnegative propensities [217].
The loglikelihood of the observed edge counts xij = xji amounts to

L(p) =
∑
{i,j}

(xij lnμij − μij − lnxij !)

=
∑
{i,j}

[xij(ln pi + ln pj)− pipj − lnxij !].

Inspection of L(p) shows that the parameters are separated except for
the products pipj . To achieve full separation of parameters in maximum
likelihood estimation, we employ the majorization

pipj ≤ pmj

2pmi
p 2
i +

pmi

2pmj
p 2
j .

Equality prevails here when p = pm. This majorization leads to the mi-
norization

L(p) ≥
∑
{i,j}

[xij(ln pi + ln pj)− pmj

2pmi
p2i −

pmi

2pmj
p2j − lnxij !]

= g(p | pm).

Maximization of g(p | pm) can be accomplished by setting

∂

∂pi
g(p | pm) =

∑
j 
=i

xij
pi
−
∑
j 
=i

pmj

pmi
pi = 0
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The solution

pm+1,i =

√
pmi

∑
j 
=i xij∑

j 
=i pmj
(8.16)

is straightforward to implement and maps positive parameters to positive
parameters. When edges are sparse, the range of summation in

∑
j 
=i xij

can be limited to those nodes j with xij > 0. Observe that these sums
need only be computed once. The partial sums

∑
j 
=i pmj =

∑
j pmj − pmi

require updating the full sum
∑

j pmj once per iteration.
A similar MM algorithm can be derived for a Poisson model of arc for-

mation in a directed multigraph. We now postulate a donor propensity pi
and a recipient propensity qj for arcs extending from node i to node j. If
the number of such arcs Xij is Poisson distributed with mean piqj , then
under independence we have the loglikelihood

L(p, q) =
∑
i

∑
j 
=i

[xij(ln pi + ln qj)− piqj − lnxij !]

With directed arcs the observed numbers xij and xji may differ. The
minorization

L(p, q) ≥
∑
i

∑
j 
=i

[xij(ln pi + ln qj)− qmj

2pmi
p 2
i −

pmi

2qmj
q 2
j − lnxij !]

now yields the MM updates

pm+1,i =

√
pmi

∑
j 
=i xij∑

j 
=i qmj
, qm+1,j =

√
qmj

∑
i
=j xij∑

i
=j pmi
. (8.17)

Again these are computationally simple to implement and map positive
parameters to positive parameters. It is important to observe that the log-
likelihood L(p, q) is invariant under the rescaling cpi and c−1qj for some
positive constant c and all i and j. This fact suggests that we fix one
propensity, say p1 = 1, and omit its update.
There are interesting examples of propensity estimation in literary anal-

ysis and attribution. Nodes are words in a text. An arc is drawn between
two consecutive words, from the first word to the second word, provided the
words are not separated by a punctuation mark. Here we examine Char-
lotte Bronte’s novel Jane Eyre. Based on the directed multigraph model, it
is possible to calculate the donor and recipient propensities of each word.
Given these propensities, one can assign a p-value under the Poisson distri-
bution indicating whether two words have an excess number of connections.
Table 8.4 lists the most significant ordered word pairs in Jane Eyre.
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TABLE 8.4. Most significantly connected word pairs in Jane Eyre

Rank −Log p-value Observed Expected Pair

1 −304.77 323 14.30 I am

2 −293.43 420 33.82 It was

3 −271.98 510 62.60 I had
4 −258.13 306 17.28 It is

5 −256.50 251 9.24 You are

6 −239.92 811 192.31 Of the

7 −233.92 155 1.82 Do not
8 −219.41 609 119.73 In the

9 −208.02 173 4.17 Could not

10 −196.42 320 32.02 To be

11 −191.60 154 3.37 Had been

12 −179.88 259 21.18 I could
13 −168.41 138 3.20 Did not

14 −162.75 337 47.45 On the

15 −153.04 317 44.68 I have

16 −152.62 480 106.93 I was
17 −132.87 108 2.46 Have been

18 −118.87 162 12.10 I should

19 −117.57 112 3.91 As if

20 −115.97 130 6.61 There was

21 −114.57 110 3.92 Would be
22 −113.61 123 5.80 Do you

23 −106.61 171 16.85 You have

24 −104.87 62 0.49 At least

25 −103.23 132 8.78 A little

8.12 Problems

1. Prove that the majorization relation between functions is closed un-
der the formation of sums, nonnegative products, limits, and compo-
sition with an increasing function. In what sense is the relation also
transitive?

2. Demonstrate the majorizing and minorizing inequalities

xq ≤ qxq−1
m x+ (1− q)xqm

lnx ≤ x

xm
+ lnxm − 1
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x lnx ≤ x2

xm
+ x lnxm − x

‖x‖ ≥ x∗
mx

‖xm‖
xy ≤ ym

2xm
x2 +

xm
2ym

y2

−xy ≤ −xmym
[
1 + ln

( x

xm

)
+ ln

( y

ym

)]

1

x
≤ 1

xm
− x− xm

x2m
+

(x− xm)2

c3

1

x+ y
≤

(
xm

xm + ym

)2
1

x
+

(
ym

xm + ym

)2
1

y

Determine the relevant domains of each variable q, x, xm, y, ym, and
c, and check that equality occurs in each of the inequalities when
x = xm and y = ym [122].

3. As alternatives to the fifth and sixth examples of Problem 2, demon-
strate the majorizations

xy ≤ 1

2
(x2 + y2) +

1

2
(xm − ym)2 − (xm − ym)(x− y)

−xy ≤ 1

2
(x2 + y2) +

1

2
(xm + ym)2 − (xm + ym)(x+ y)

valid for all values of x, y, xm, and ym.

4. Based on Problem 3, devise an MM algorithm to minimize Rosen-
brock’s function

f(x) = 100(x21 − x2)2 + (x1 − 1)2.

Show that up to an irrelevant constant f(x) is majorized by the sum
of the two functions

g1(x1 | xm) = 200x41 − [200(x2m1 + xm2)− 1]x21 − 2x1

g2(x2 | xm) = 200x22 − 200(x2m1 + xm2)x2.

Hence at each iteration one must minimize a quartic in x1 and a
quadratic in x2. Implement this MM algorithm, and check whether
it converges to the global minimum of f(x) at x = 1.

5. Devise an MM algorithm to minimize Snell’s objective function (1.1).

6. Prove van Ruitenburg’s [263] minorization

lnx ≥ −3xm
2x

− x

2xm
+ lnxm + 2 .
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Deduce the further minorization

x lnx ≥ −3xm
2
− x2

2xm
+ x lnxm + 2x .

7. Suppose p ∈ [1, 2] and xm �= 0. Verify the majorizing inequality

|x|p ≤ p

2
|xm|p−2x2 +

(
1− p

2

)
|xm|p.

This is important in least �p regression.

8. The majorization

|x| ≤ 1

2|xm|
(
x2 + x2m

)
(8.18)

for xm �= 0 is a special case of Problem 7. Use the majorization (8.18)
and the identity

max{x, y} =
1

2
|x− y|+ 1

2
x+

1

2
y

to majorize max{x, y} when xm �= ym. Note that your majorization
contains the product xy up to a negative factor. Describe how one
can invoke Problem 2 or Problem 3 to separate x and y.

9. Prove the majorization (8.9) of the text.

10. Consider the function

f(x) =
1

4
x4 − 1

2
x2.

This function has global minima at x = ±1 and a local maximum at
x = 0. Show that the function

g(x | xm) =
1

4
x4 +

1

2
x2m − xxm

majorizes f(x) at xm and leads to the MM update xm+1 = 3
√
xm.

Prove that the alternative update xm+1 = − 3
√
xm leads to the same

value of f(x), but the first update always converges while the second
oscillates in sign and has two converging subsequences [60].

11. In the regression algorithm (8.10), let p tend to 0. If there are q
predictors and all xij are nonzero, then show that αij = 1/q. This
leads to the update

θm+1,j = θmj +

∑n
i=1 xij(yi − x∗

i θm)

q
∑n

i=1 x
2
ij

. (8.19)
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On the other hand, argue that cyclic coordinate descent yields the
update

θm+1,j = θmj +

∑n
i=1 xij(yi − x∗

i θm)∑n
i=1 x

2
ij

,

which definitely takes larger steps.

12. A number μ is said to be a q quantile of the n numbers x1, . . . , xn if
it satisfies

1

n

∑
xi≤μq

1 ≥ q and
1

n

∑
xi≥μq

1 ≥ 1− q.

If we define

ρq(r) =

{
qr r ≥ 0
−(1− q)r r < 0 ,

then demonstrate that μ is a q quantile if and only if μ minimizes the
function fq(μ) =

∑n
i=1 ρq(xi − μ). Medians correspond to the case

q = 1/2.

13. Continuing Problem 12, show that the function ρq(r) is majorized by
the quadratic

ζq(r | rm) =
1

4

[
r2

|rm| + (4q − 2)r + |rm|
]
.

Deduce from this majorization the MM algorithm

μm+1 =
n(2q − 1) +

∑n
i=1 wmixi∑n

i=1 wmi

wmi =
1

|xi − μm|
for finding a q quantile. This interesting algorithm involves no sorting,
only arithmetic operations.

14. Suppose we minimize the function

hε(θ) =

p∑
i=1

⎧⎨
⎩
[
yi −

q∑
j=1

xijθj

]2
+ ε

⎫⎬
⎭

1/2

(8.20)

instead of the function h(θ) in equation (8.11) for a small, positive
number ε. Show that the same MM algorithm applies with revised
weights wi(θm) = 1/

√
ri(θm)2 + ε.
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15. At the point y suppose the affine function v∗
jx+ aj is the only con-

tribution to the convex function

f(x) = max
1≤i≤n

(v∗
ix+ ai).

achieving the maximum. Show that the quadratic function

g(x | y) =
c

2
‖x− y‖2 + v∗

jx+ aj

=
c

2

∥∥∥∥x− y +
1

c
vj

∥∥∥∥
2

+ v∗
jy −

1

2c
‖vj‖2 + aj

majorizes f(x) with anchor y for c > 0 sufficiently large. Argue that
the best choice of g(x | y) takes c = maxi
=j ci, where

ci =
‖vi − vj‖2

2[aj − ai + (vj − vi)∗y]
,

provided none of the denominators vanish. (Hint: Investigate the tan-
gency conditions between g(x | y) and v∗

ix+ ai.)

16. Based on Problem 15, consider majorization of the �∞ norm ‖x‖∞
around y �= 0. If j is the sole index with |yj | = ‖y‖∞, then prove
that

g(x | y) =
c

2
‖x− y‖2 + sgn(yj)xj

c =
1

|yj | −maxi
=j |yi|
majorizes ‖x‖∞ around y.

17. Suppose the differentiable function f(x) satisfies

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖

for all y and x. Deduce the majorization

f(x) ≤ f(xm) + df(xm)(x− xm) +
L

2
‖x− xm‖2

from the expansion f(x) = f(xm) +
∫ 1

0
df [xm + t(x− xm)]

(x− xm)dt. Verify the special case

‖Mx− y‖2 ≤ ‖Mxm − y‖2 + ‖M‖2 [‖x− xm + zm‖2 − ‖zm‖2
]

zm = ‖M‖−2M∗(Mxm − y)

for the Euclidean and spectral norms.
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18. Validate the Euclidean norm majorization

‖y − x‖† ≤ ‖y − xm‖† + c‖xm − x‖.
Here ‖ · ‖† an arbitrary norm on Rn, and c is the positive constant
guaranteed by Example 2.5.6.

19. Let P be an orthogonal projection onto a subspace of Rn. Demon-
strate the majorization

‖Px‖2 ≤ ‖x− xm‖2 + 2(x− xm)∗Pxm + ‖Pxm‖2.

20. Consider minimizing the function

f(μ) =

p∑
i=1

‖xi − μ‖

for p points x1, . . . ,xp in Rn. Demonstrate that

g(μ | μm) =
1

2

p∑
i=1

‖xi − μ‖2
‖xi − μm‖

majorizes f(μ) at the current iterate μm up to an irrelevant constant.
Deduce Weiszfeld’s algorithm [271]

μm+1 =
1∑p

i=1 wmi

p∑
i=1

wmixi

with weights wmi = 1/‖xi −μm‖. Comment on the relevance of this
algorithm to a robust analogue of k-means clustering.

21. Show that the function f(μ) of Problem 20 is strictly convex whenever
the points x1, . . . ,xp are not collinear.

22. Explain how Problem 31 of Chap. 4 delivers a quadratic majorization.
Describe circumstances under which this majorization is apt to be
poor.

23. In �1 regression show that the estimate of the parameter vector sat-
isfies the equality

m∑
i=1

sgn[yi − μi(θ)]∇μi(θ) = 0,

provided no residual yi−μi(θ) = 0 and the regression functions μi(θ)
are differentiable. What is the corresponding equality for the modified
�1 criterion (8.20)?
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24. Problem 12 of Chap. 7 deals with minimizing the quadratic function
f(x) = 1

2x
∗Ax+b∗x+c subject to the constraints xi ≥ 0. If one drops

the assumption that A = (aij) is positive definite, it is still possible to
devise an MM algorithm. Define matrices A+ and A− with entries
max{aij , 0} and −min{aij , 0}, respectively. Based on the fifth and
sixth majorizations of Problem 2, derive the MM updates

xm+1,i = xm,i

⎡
⎣−bi +

√
b2i + 4(A+xm)i(A

−xm)i

2(A+xm)i

⎤
⎦

of Sha et al. [235]. All entries of the initial point x0 should be positive.

25. Show that the Bradley-Terry loglikelihood f(r) = lnL(r) of Sect. 8.6
is concave under the reparameterization ri = eθi .

26. In the Bradley-Terry model of Sect. 8.6, suppose we want to include
the possibility of ties. One way of doing this is to write the probabil-
ities of the three outcomes of i versus j as

Pr(i wins) =
ri

ri + rj + θ
√
rirj

Pr(i ties) =
θ
√
rirj

ri + rj + θ
√
rirj

Pr(i loses) =
rj

ri + rj + θ
√
rirj

,

where θ > 0 is an additional parameter to be estimated. Let yij
represent the number of times i beats j and tij the number of times
i ties j. Prove that the loglikelihood of the data is

L(θ, r)

=
1

2

∑
i,j

(
2yij ln

ri
ri + rj + θ

√
rirj

+ tij ln
θ
√
rirj

ri + rj + θ
√
rirj

)
.

One way of maximizing L(θ, r) is to alternate between updating θ and
r. Both of these updates can be derived from the perspective of the
MM algorithm. Two minorizations are now involved. The first pro-
ceeds using the convexity of − ln t just as in the text. This produces
a function involving −√rirj terms. Demonstrate the minorization

−√rirj ≥ −ri
2

√
rmj

rmi
− rj

2

√
rmi

rmj
,

and use it to minorize L(θ, r). Finally, determine rm+1 for θ fixed
at θm and θm+1 for r fixed at rm+1. The details are messy, but the
overall strategy is straightforward.
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27. In the linear logistic model of Sect. 8.7, it is possible to separate pa-
rameters and avoid matrix inversion altogether. In constructing a
minorizing function, first prove the inequality

ln[1− π(θ)] = − ln
(
1 + ex

∗
i θ
)

≥ − ln
(
1 + ex

∗
i θm

)
− ex

∗
i θ − ex∗

i θm

1 + ex
∗
i
θm

,

with equality when θ = θm. This eliminates the log terms. Now
apply the arithmetic-geometric mean inequality to the exponential
functions ex

∗
i θ to separate parameters. Assuming that θ has n

components and that there are k observations, show that these ma-
neuvers lead to the minorizing function

g(θ | θm) = − 1

n

k∑
i=1

ex
∗
i θm

1 + ex
∗
i
θm

n∑
j=1

enxij(θj−θmj) +

k∑
i=1

yix
∗
i θ

up to a constant that does not depend on θ. Finally, prove that
maximizing g(θ | θm) consists in solving the transcendental equation

−
k∑

i=1

ex
∗
i θmxije

−nxijθmj

1 + ex
∗
i
θm

enxijθj +

k∑
i=1

yixij = 0

for each j. This can be accomplished numerically.

28. Consider the general posynomial of n variables

f(x) =
∑
α∈S

cα

n∏
i=1

xαi

i

subject to the constraints xi > 0 for each i. Here the index set S ⊂ Rn

is finite, and the coefficients cα are positive. We can assume that at
least one αi > 0 and at least one αi < 0 for every i. Otherwise, f(x)
can be reduced by sending xi to ∞ or 0. Demonstrate that f(x) is
majorized by the sum

g(x | xm) =

n∑
i=1

gi(xi | xm)

gi(xi | xm) =
∑
α∈S

cα

⎛
⎝ n∏

j=1

x
αj

mj

⎞
⎠ |αi|
‖α‖1

(
xi
xmi

)‖α‖1 sgn(αi)

,

where ‖α‖1 =
∑n

j=1 |αj | and sgn(αi) is the sign function. To prove
that the MM algorithm is well defined and produces iterates with
positive entries, demonstrate that

lim
xi→∞ gi(xi | xm) = lim

xi→0
gi(xi | xm) = ∞.



212 8. The MM Algorithm

Finally change variables by setting

yi = lnxi

hi(yi | xm) = gi(xi | xm)

for each i. Show that hi(yi | xm) is strictly convex in yi and therefore
possesses a unique minimum point. The latter property carries over
to the surrogate function gi(xi | xm).

29. Devise MM algorithms based on Problem 28 to minimize the
posynomials

f1(x) =
1

x1x22
+ x1x

2
2

f2(x) =
1

x1x22
+ x1x2.

In the first case, demonstrate that the MM algorithm iterates accord-
ing to

xm+1,1 = 3

√
x2m1

x2m2

, xm+1,2 = 3

√
xm2

xm1
.

Furthermore, show that (a) f1(x) attains its minimum value of 2
whenever x1x

2
2 = 1, (b) the MM algorithm converges after a single

iteration to the value 2, and (c) the converged point x1 depends on
the initial point x0. In the second case, demonstrate that the MM
algorithm iterates according to

xm+1,1 = 5

√
x3m1

x3m2

, xm+1,2 = 5

√
2
x2m2

x2m1

.

Furthermore, show that (a) the infimum of f2(x) is 0, (b) the MM
algorithm satisfies the identities

xm1x
3/2
m2 = 23/10, xm+1,2 = 22/25xm2

for allm ≥ 2, and (c) the minimum value 0 is attained asymptotically
with xm1 tending to 0 and xm2 tending to ∞.

30. A general posynomial of n variables can be represented as

h(y) =
∑
α∈S

cαe
α∗y

in the parameterization yi = lnxi. Here the index set S ⊂ Rn is finite
and the coefficients cα are positive. Show that h(y) is strictly convex
if and only if the power vectors α ∈ S span Rn.
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31. Demonstrate the minorization

n∏
i=1

xαi

i ≥
n∏

j=1

x
αj

mj

(
1 +

n∑
i=1

αi lnxi −
n∑

i=1

αi lnxmi

)
.

How is this helpful in signomial programming [170]? As a concrete
example, devise an MM algorithm to minimize the function

f(x) = x21x
2
2 − 2x1x2x3x4 + x23x

2
4 = (x1x2 − x3x4)2.

Describe the solution as you vary the initial point.

32. Even more functions can be can be brought under the umbrella of
signomial programming. For instance, majorization of the functions
− ln f(x) and ln f(x) is possible for any posynomial

f(x) =
∑
α∈S

cα

n∏
i=1

xαi

i .

In the first case show that

− ln f(x) ≤ −
∑
α∈S

dmα

em

[ n∑
i=1

αi lnxi + ln
(cαem
dmα

)]
(8.21)

holds for dmα = cα
∏n

i=1 x
αi

mi and em =
∑

α dmα. In the second case,
show that

ln f(x) ≤ ln f(xm) +
1

f(xm)

[
f(x)− f(xm)

]
.

This second majorization yields a posynomial, which can be ma-
jorized by the methods already described. Note that the coefficients
cα can be negative as well as positive in the second case [170].

33. Show that the loglikelihood (8.14) for the transmission tomography
model is concave. State a necessary condition for strict concavity in
terms of the number of pixels and the number of projections.

34. In the maximization phase of the MM algorithm for transmission
tomography without a smoothing prior, demonstrate that the exact
solution of the one-dimensional equation

∂

∂θj
g(θ | θm) = 0

exists and is positive when
∑

i lijdi >
∑

i lijyi. Why would this con-
dition typically hold in practice?
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35. Prove that the functions ψ(r) =
√
r2 + ε and ψ(r) = ln[cosh(r)] are

even, strictly convex, infinitely differentiable, and asymptotic to |r|
as |r| → ∞.

36. In positron emission tomography (PET), one seeks to estimate an
object’s Poisson emission intensities λ = (λ1, . . . , λp)

∗. Here p pix-
els are arranged in a 2-dimensional grid surrounded by an array of
photon detectors [167, 265]. The observed data are coincidence counts
(y1, . . . yd) along d lines of flight connecting pairs of photon detectors.
The loglikelihood under the PET model is

L(λ) =
∑
i

[
yi ln

(∑
j

eijλj

)
−
∑
j

eijλj

]
,

where the constants eij are determined from the geometry of the grid
and the detectors. One can assume without loss of generality that∑

i eij = 1. Use Jensen’s inequality to derive the minorization

L(λ) ≥
∑
i

yi
∑
j

wnij ln
(eijλj
wnij

)
−
∑
i

∑
j

eijλj = Q(λ | λn),

where wnij = eijλnj/(
∑

k eikλnk). Show that the stationarity condi-
tions for the surrogate function Q(λ | λn) entail the MM updates

λn+1,j =

∑
i yiwnij∑

i eij
.

To smooth the image, one can maximize the penalized loglikelihood

f(λ) = L(λ)− μ

2

∑
{j,k}∈N

(λj − λk)2,

where μ is a tuning constant, and N is a neighborhood system that
pairs spatially adjacent pixels. If we adopt the majorization

(λj − λk)2 ≤ 1

2
(2λj − λnj − λnk)2 + 1

2
(2λk − λnj − λnk)2,

then show that the revised stationarity conditions are

0 =
∑
i

[yiwnij

λj
− eij

]
− μ

∑
k:∈Nj

(2λj − λnj − λnk).

From these equations derive the smoothed MM updates

λn+1,j =
−bnj −

√
b2nj − 4ajcnj

2aj
,
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where

aj = −2μ
∑
k∈Nj

1

bnj = μ
∑
k∈Nj

(λnj + λnk)− 1

cnj =
∑
i

yiwnij .

Note that aj < 0, so we take the negative sign before the square root.

37. Program and test on real data either of the random multigraph algo-
rithms (8.16) or (8.17). The internet is a rich source of random graph
data.

38. The Dirichlet-multinomial distribution is used to model multivariate
count data x = (x1, . . . , xd)

∗ that is too over-dispersed to be handled
reliably by the multinomial distribution. Recall that the Dirichlet-
multinomial distribution represents a mixture of multinomial distri-
bution with a Dirichlet prior on the cell probabilities p1, . . . , pd. If
α = (α1, . . . , αd)

∗ denotes the Dirichlet parameter vector, Δd de-

notes the unit simplex in Rd, and |α| = ∑d
i=1 αi and |x| =

∑d
i=1 xi,

then the discrete density of the Dirichlet-multinomial is

f(x | α) =

∫
Δd

(|x|
x

) d∏
j=1

p
xj

j

Γ(|α|)
Γ(α1) · · ·Γ(αd)

d∏
j=1

p
αj−1
j dp1 · · · dpd

=

(|x|
x

)
Γ(α1 + x1) · · ·Γ(αd + xd)

Γ(|α|+ |x|)
Γ(|α|)

Γ(α1) · · ·Γ(αd)

=

(|x|
x

)∏d
j=1 αj(αj + 1) · · · (αj + xj − 1)

|α|(|α|+ 1) · · · (|α|+ |x| − 1)
.

Devise an MM algorithm to maximize ln f(x | α) by applying the sup-
porting hyperplane inequality to each term − ln(|α|+k) and Jensen’s
inequality to each term ln(αj + k). These minorizations are designed
to separate parameters. Show that the MM updates are

αm+1,j = αmj

∑
k

sjk
αmj+k∑

k
rk

|αm|+k

for appropriate constants rk and sjk. This problem and similar prob-
lems are treated in the reference [282].

39. In the dictionary model of motif finding [227], a DNA sequence is
viewed as a concatenation of words independently drawn from a dic-
tionary having the four letters A, C, G, and T. The words of the
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dictionary of length k have collective probability qk. The EM algo-
rithm offers one method of estimating the qk. Omitting many details,
the EM algorithm maximizes the function

Q(q | qm) =

l∑
k=1

cmk ln qk − ln
( l∑

k=1

kqk

)
.

Here the constants cmk are positive, l is the maximum word length,
and maximization is performed subject to the constraints qk ≥ 0 for
k = 1, . . . , l and

∑l
k=1 qk = 1. Because this problem can not be solved

in closed form, it is convenient to follow the EM minorization with a
second minorization based on the inequality

lnx ≤ ln y + x/y − 1. (8.22)

Application of inequality (8.22) produces the minorizing function

h(q | qm) =

l∑
k=1

cmk ln qk − ln
( l∑

k=1

kqmk

)
− dm

l∑
k=1

kqk + 1

with dm = 1/(
∑l

k=1 kqmk).

(a) Show that the function h(q | qm) minorizes Q(q | qm).

(b) Maximize h(q | qm) using the method of Lagrange multipliers.
At the current iteration, show that the solution has components

qk =
cmk

dmk − λ
for an unknown Lagrange multiplier λ.

(c) Using the constraints, prove that λ exists and is unique.

(d) Describe a reliable method for computing λ.

(e) As an alternative to the exact method, construct a quadratic
approximation to h(q | qm) near qm of the form

1

2
(q − qm)∗A(q − qm) + b∗(q − qm) + c.

In particular, what are A and b?

(f) Show that the quadratic approximation has maximum

q = qm −A−1
(
b− 1∗A−1b

1∗A−11
1
)

(8.23)

subject to the constraint
∑l

k=1(qk − qmk) = 0.
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(g) In the dictionary model, demonstrate that the solution (8.23)
takes the form

qj = qmj +
(qmj)

2

cmj

⎡
⎣cmj

qmj
− dmj −

1−∑l
k=1 dmk

(qmk)
2

cmk∑l
k=1

(qmk)2

cmk

⎤
⎦

for the jth component of q.

(h) Point out two potential pitfalls of this particular solution in
conjunction with maximizing h(q | qm).

40. In the balanced ANOVA model with two factors, we estimate the
parameter vector θ = (μ,α∗,β∗)∗ by minimizing the sum of squares

f(θ) =

I∑
i=1

J∑
j=1

K∑
k=1

wijk(yijk − μ− αi − βj)2

with all weights wijk = 1. If some of the observations yijk are missing,
then we take the corresponding weights to be 0. The missing obser-
vations are now irrelevant, but it is possible to replace each one by
its predicted value

ŷijk = μ+ αi + βj

given the current parameter values. If there are missing observations,
de Leeuw [59] notes that

g(θ | θm) =

I∑
i=1

J∑
j=1

K∑
k=1

(zijk − μ− αi − βj)2

majorizes f(θ) provided we define

zijk =

{
yijk for a regular observation
ŷijk for a missing observation.

Prove this fact and calculate the MM update of θ, assuming the sum
to 0 constraints

∑I
i=1 αi =

∑J
j=1 βj = 0.

41. Consider the weighted sum of squares criterion

f(θ) =
∑
i

wi[yi − μi(θ)]
2

with weights wi drawn from the unit interval [0, 1]. Show that the
function

g(θ | θm) =
∑
i

[wiyi + (1 − wi)μi(θm)− μi(θ)]
2 + cm

cm =
∑
i

wi(1 − wi)[yi − μi(θm)]2



218 8. The MM Algorithm

majorizes f(θ) [121, 153, 242]. This majorization converts a weighted
least squares problem into an ordinary least squares problem. (Hints:
Write [yi−μi(θ)]

2 = [yi−μi(θm)+μi(θm)−μi(θ)]
2, expand, majorize

wi[μi(θm)− μi(θ)]
2, and complete the square.)

42. Luce’s model [181, 182] is a convenient scheme for ranking items
such as candidates in an election, consumer goods in a certain cate-
gory, or academic departments in a reputational survey. Some people
will be too lazy or uncertain to rank each and every item, prefer-
ring to focus on just their top choices. How can we use this form
of limited voting to rank the entire set of items? A partial ranking
by a person is a sequence of random choices X1, . . . , Xl, with X1

the highest ranked item, X2 the second highest ranked item, and so
forth. If there are r items, then the number l of items ranked may be
strictly less than r; l = 1 is a distinct possibility. The data arrive at
our doorstep as a random sample of s independent partial rankings,
which we must integrate in some coherent fashion. One possibility
is to adopt multinomial sampling without replacement. This differs
from ordinary multinomial sampling in that once an item is chosen, it
cannot be chosen again. However, remaining items are selected with
the conditional probabilities dictated by the original sampling prob-
abilities. Show that the likelihood under Luce’s model reduces to

s∏
i=1

Pr(Xi1 = xi1, . . . , Xili = xili)

=
s∏

i=1

pxi1

li−1∏
j=1

pxi,j+1∑
k 
∈{xi1,...,xij} pk

,

where xij is the jth choice out of li choices for person i and pk is
the multinomial probability assigned to item k. If we can estimate
the pk, then we can rank the items accordingly. The item with largest
estimated probability is ranked first and so on.

The model has the added virtue of leading to straightforward estima-
tion by the MM algorithm. Use the supporting hyperplane inequality

− ln t ≥ − ln tm − 1

tm
(t− tm).

to generate the minorization

Q(p | pm) =

s∑
i=1

li∑
j=1

ln pxij −
s∑

i=1

li−1∑
j=1

wij

∑
k 
∈{xi1,...,xij}

pk

of the loglikelihood up to an irrelevant constant. Specify the positive
weights wij and derive the maximization step of the MM algorithm.
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Show that your update has the intuitive interpretation of equating
the expected number of choices of item k to the observed number of
choices of item k across all voters. Finally, generalize the model so
that person i’s choices are limited to a subset Si of the items. For
instance, in rating academic departments, some people may only feel
competent to rank those departments in their state or region. What
form does the MM algorithm take in this setting?



9
The EM Algorithm

9.1 Introduction

Maximum likelihood is the dominant form of estimation in applied
statistics. Because closed-form solutions to likelihood equations are the
exception rather than the rule, numerical methods for finding maximum
likelihood estimates are of paramount importance. In this chapter we study
maximum likelihood estimation by the EM algorithm [65, 179, 191], a spe-
cial case of the MM algorithm. At the heart of every EM algorithm is some
notion of missing data. Data can be missing in the ordinary sense of a
failure to record certain observations on certain cases. Data can also be
missing in a theoretical sense. We can think of the E (expectation) step of
the algorithm as filling in the missing data. This action replaces the log-
likelihood of the observed data by a minorizing function. This surrogate
function is then maximized in the M step. Because the surrogate function
is usually much simpler than the likelihood, we can often solve the M step
analytically. The price we pay for this simplification is that the EM algo-
rithm is iterative. Reconstructing the missing data is bound to be slightly
wrong if the parameters do not already equal their maximum likelihood
estimates.
One of the advantages of the EM algorithm is its numerical stability.

As an MM algorithm, any EM algorithm leads to a steady increase in
the likelihood of the observed data. Thus, the EM algorithm avoids wildly
overshooting or undershooting the maximum of the likelihood along its
current direction of search. Besides this desirable feature, the EM handles

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 9,
© Springer Science+Business Media New York 2013
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parameter constraints gracefully. Constraint satisfaction is by definition
built into the solution of the M step. In contrast, competing methods of
maximization must incorporate special techniques to cope with parame-
ter constraints. The EM shares some of the negative features of the more
general MM algorithm. For example, the EM algorithm often converges
at an excruciatingly slow rate in a neighborhood of the maximum point.
This rate directly reflects the amount of missing data in a problem. In the
absence of concavity, there is also no guarantee that the EM algorithm
will converge to the global maximum. The global maximum can usually be
reached by starting the parameters at good but suboptimal estimates such
as method-of-moments estimates or by choosing multiple random starting
points.

9.2 Definition of the EM Algorithm

A sharp distinction is drawn in the EM algorithm between the observed,
incomplete data y and the unobserved, complete data x of a statistical
experiment [65, 179, 251]. Some function t(x) = y collapses x onto y.
For instance, if we represent x as (y, z), with z as the missing data, then
t is simply projection onto the y-component of x. It should be stressed
that the missing data can consist of more than just observations missing
in the ordinary sense. In fact, the definition of x is left up to the intuition
and cleverness of the statistician. The general idea is to choose x so that
maximum likelihood estimation becomes trivial for the complete data.
The complete data are assumed to have a probability density f(x | θ)

that is a function of a parameter vector θ as well as of x. In the E step of
the EM algorithm, we calculate the conditional expectation

Q(θ | θn) = E[ln f(X | θ) | Y = y, θn].

Here θn is the current estimated value of θ, upper case letters indicate
random vectors, and lower case letters indicate corresponding realizations
of these random vectors. In the M step, we maximize Q(θ | θn) with
respect to θ. This yields the new parameter estimate θn+1, and we repeat
this two-step process until convergence occurs. Note that θ and θn play
fundamentally different roles in Q(θ | θn).
If ln g(y | θ) denotes the loglikelihood of the observed data, then the EM

algorithm enjoys the ascent property

ln g(y | θn+1) ≥ ln g(y | θn).

Proof of this assertion unfortunately involves measure theory, so some read-
ers may want to take it on faith and skip the rest of this section. A necessary
preliminary is the following well-known inequality from statistics.
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Proposition 9.2.1 (Information Inequality) Let h and k be probabil-
ity densities with respect to a measure μ. Suppose h > 0 and k > 0 almost
everywhere relative to μ. If Eh denotes expectation with respect to the prob-
ability measure hdμ, then Eh(lnh) ≥ Eh(ln k), with equality if and only if
h = k almost everywhere relative to μ.

Proof: Because − ln(w) is a strictly convex function on (0,∞), Proposi-
tion 6.6.1 applied to the random variable k/h yields

Eh(lnh)− Eh(ln k) = Eh

(
− ln

k

h

)

≥ − lnEh

(k
h

)

= − ln

∫
k

h
h dμ

= − ln

∫
k dμ

= 0.

Equality holds if and only if k/h = Eh(k/h) almost everywhere relative
to μ. This necessary and sufficient condition is equivalent to h = k since
Eh(k/h) = 1.

To prove the ascent property of the EM algorithm, it suffices to demon-
strate the minorization inequality

ln g(y | θ) ≥ Q(θ | θn) + ln g(y | θn)−Q(θn | θn),

where Q(θ | θn) = E[ln f(X | θ) | Y = y, θn]. With this end in mind,
note that both f(x | θ)/g(y | θ) and f(x | θn)/g(y | θn) are conditional
densities of X on {x : t(x) = y} with respect to some measure μy. The
information inequality now indicates that

Q(θ | θn)− ln g(y | θ) = E
(
ln

[
f(X | θ)
g(Y | θ)

] ∣∣∣Y = y, θn

)

≤ E
(
ln

[
f(X | θn)

g(Y | θn)

] ∣∣∣Y = y, θn

)

= Q(θn | θn)− ln g(y | θn).

Maximizing Q(θ | θn) therefore drives ln g(y | θ) uphill. The ascent in-
equality is strict whenever the conditional density f(x | θ)/g(y | θ) differs
at the parameter points θn and θn+1 or

Q(θn+1 | θn) > Q(θn | θn).

The preceding proof is a little vague as to the meaning of the conditional
density f(x | θ)/g(y | θ) and its associated measure μy. Commonly the
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complete data decomposes as x = (y, z), where z is considered the missing
data and t(y, z) = y is projection onto the observed data. Suppose (y, z)
has joint density f(y, z | θ) relative to a product measure ω×μ (y, z); ω and
μ are typically Lebesgue measure or counting measure. In this framework,
we define g(y | θ) =

∫
f(y, z | θ)dμ(z) and set μy = μ. The function

g(y | θ) serves as a density relative to ω. To check that these definitions
make sense, it suffices to prove that

∫
h(y, z)f(y, z | θ)/g(y | θ)dμ(z)

is a version of the conditional expectation E[h(Y ,Z) | Y = y] for every
well-behaved function h(y, z). This assertion can be verified by showing

E{1S(Y ) E[h(Y ,Z) | Y ]} = E[1S(Y )h(Y ,Z)]

for every measurable set S. With

E[h(Y ,Z) | Y = y] =

∫
h(y, z)

f(y, z | θ)
g(y | θ) dμ(z),

we calculate

E{1S(Y ) E[h(Y ,Z) | Y = y]}
=

∫
S

∫
h(y, z)

f(y, z | θ)
g(y | θ) dμ(z)g(y | θ) dω(y)

=

∫
S

∫
h(y, z)f(y, z | θ) dμ(z) dω(y)

= E[1S(Y )h(Y ,Z)].

Hence in this situation, f(x | θ)/g(y | θ) is indeed the conditional density
of X given Y = y.

9.3 Missing Data in the Ordinary Sense

The most common application of the EM algorithm is to data missing in
the ordinary sense. For example, Problem 40 of Chap. 8 considers a bal-
anced ANOVA model with two factors. Missing observations in this setting
break the symmetry that permits explicit solution of the likelihood equa-
tions. Thus, there is ample incentive for filling in the missing observations.
If the observations follow an exponential model, and missing data are miss-
ing completely at random, then the EM algorithm replaces the sufficient
statistic of each missing observation by its expected value.
The density of a random variable Y from an exponential family can be

written as

f(y | θ) = g(y)eβ(θ)+h(y)∗γ(θ) (9.1)

relative to some measure ν [73, 218]. The normal, Poisson, binomial, nega-
tive binomial, gamma, beta, and multinomial families are prime examples
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of exponential families. The function h(y) in equation (9.1) is the sufficient
statistic. The maximum likelihood estimate of the parameter vector θ de-
pends on an observation y only through h(y). Predictors of y are incorpo-
rated into the functions β(θ) and γ(θ).
To fill in a missing observation y, we take the ordinary expectation

E[ln f(Y | θ) | θn] = E[ln g(Y ) | θn] + β(θ) + E[h(Y ) | θn]
∗γ(θ)

of the complete data loglikelihood. This function is added to the loglikeli-
hood of the regular observations y1, . . . , ym to generate the surrogate func-
tion Q(θ | θn). For example, if a typical observation is normally distributed
with mean μ(α) and variance σ2, then θ is the vector (α∗, σ2)∗ and

E[ln f(Y | θ) | θn] = ln
1√
2πσ2

− 1

2σ2
E{[Y − μ(α)]2 | θn}

= ln
1√
2πσ2

− 1

2σ2
{σ2

n + [μ(αn)− μ(α)]2}.

Once we have filled in the missing data, we can estimate α without refer-
ence to σ2. This is accomplished by adding each square [μi(αn) − μi(α)]2

corresponding to a missing observation yi to the sum of squares for the ac-
tual observations and then minimizing the entire sum over α. In classical
models such as balanced ANOVA, the M step is exact. Once the iterative
limit limn→∞ αn = α̂ is reached, we can estimate σ2 in one step by the
formula

σ̂2 =
1

m

m∑
i=1

[yi − μi(α̂)]2

using only the observed yi. The reader is urged to work Problem 40 of
Chap. 8 to see the whole process in action.

9.4 Allele Frequency Estimation

It is instructive to compare the EM and MM algorithms on identical prob-
lems. Even when the two algorithms specify the same iteration scheme, the
differences in deriving the algorithms are illuminating. Consider the ABO
allele frequency estimation problem of Sect. 8.4. From the EM perspective,
the complete data x are genotype counts rather than phenotype counts y.
In passing from the complete data to the observed data, nature collapses
genotypes A/A and A/O into phenotype A and genotypes B/B and B/O
into phenotype B. In view of the Hardy-Weinberg equilibrium law, the
complete data multinomial loglikelihood becomes

ln f(X | p) = nA/A ln p2A + nA/O ln(2pApO) + nB/B ln p2B
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+ nB/O ln(2pBpO) + nAB ln(2pApB) + nO ln p2O

+ ln

(
n

nA/A, nA/O, nB/B, nB/O, nAB, nO

)
. (9.2)

In the E step of the EM algorithm we take the expectation of ln f(X | p)
conditional on the observed counts nA, nB, nAB, and nO and the current
parameter vector pm = (pmA, pmB, pmO)

∗. This action yields the surrogate
function

Q(p | pm) = E(nA/A | Y,pm) ln p2A + E(nA/O | Y,pm) ln(2pApO)

+ E(nB/B | Y,pm) ln p2B + E(nB/O | Y,pm) ln(2pBpO)

+ E(nAB | Y,pm) ln(2pApB) + E(nO | Y,pm) ln p2O

+ E

[
ln

(
n

nA/A, nA/O, nB/B, nB/O, nAB, nO

)∣∣∣Y,pm

]
.

It is obvious that

E(nAB | Y,pm) = nAB

E(nO | Y,pm) = nO.

Application of Bayes’ rule gives

nmA/A = E(nA/A | Y,pm)

= nA
p2mA

p2mA + 2pmApmO

nmA/O = E(nA/O | Y,pm)

= nA
2pmApmO

p2mA + 2pmApmO
.

The conditional expectations nmB/B and nmB/O reduce to similar expres-
sions. Hence, the surrogate function Q(p | pm) derived from the complete
data likelihood matches the surrogate function of the MM algorithm up to
a constant, and the maximization step proceeds as described earlier. One of
the advantages of the EM derivation is that it explicitly reveals the nature
of the conditional expectations nmA/A, nmA/O, nmB/B, and nmB/O.

9.5 Clustering by EM

The k-means clustering algorithm discussed in Example 7.2.3 makes hard
choices in cluster assignment. The alternative of soft choices is possible
with admixture models [192, 259]. An admixture probability density h(y)
can be written as a convex combination

h(y) =

k∑
j=1

πjhj(y), (9.3)



9.5 Clustering by EM 227

where the πj are nonnegative probabilities that sum to 1 and hj(y) is
the probability density of group j. According to Bayes’ rule, the posterior
probability that an observation y belongs to group j equals the ratio

πjhj(y)∑k
i=1 πihi(y)

. (9.4)

If hard assignment is necessary, then the rational procedure is to assign y
to the group with highest posterior probability.
Suppose the observations y1, . . . ,ym represent a random sample from

the admixture density (9.3). In practice we want to estimate the admixture
proportions and whatever further parameters θ characterize the densities
hj(y | θ). The EM algorithm is natural in this context with group mem-
bership as the missing data. If we let zij be an indicator specifying whether
observation yi comes from group j, then the complete data loglikelihood
amounts to

m∑
i=1

k∑
j=1

zij [lnπj + lnhj(yi | θ)] .

To find the surrogate function, we must find the conditional expectation
wij of zij . But this reduces to the Bayes’ rule (9.4) with θ fixed at θn and
π fixed at πn, where as usual n indicates iteration number. Note that the
property

∑k
j=1 zij = 1 entails the property

∑k
j=1 wij = 1.

Fortunately, the E step of the EM algorithm separates the π parameters
from the θ parameters. The problem of maximizing

k∑
j=1

cj lnπj

with cj =
∑m

i=1 wij should be familiar by now. Since
∑k

j=1 cj = m, Exam-

ple (1.4.2) shows that πn+1,j =
cj
m .

We now undertake estimation of the remaining parameters assuming
the groups are normally distributed with a common variance matrix Ω
but different mean vectors μ1, . . . ,μk. The pertinent part of the surrogate
function is

m∑
i=1

k∑
j=1

wij

[
− 1

2
ln detΩ− 1

2
(yi − μj)

∗Ω−1(yi − μj)
]

= −m
2
ln detΩ− 1

2

k∑
j=1

m∑
i=1

wij(yi − μj)
∗Ω−1(yi − μj)

= −m
2
ln detΩ− 1

2
tr
[
Ω−1

k∑
j=1

m∑
i=1

wij(yi − μj)(yi − μj)
∗
]
. (9.5)
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Differentiating the surrogate (9.5) with respect to μj gives the equation

m∑
i=1

wijΩ
−1(yi − μj) = 0

with solution

μn+1,j =
1∑m

i=1 wij

m∑
i=1

wijyi.

Maximization of the surrogate (9.5) with respect to Ω can be rephrased
as maximization of

−m
2
ln detΩ− 1

2
tr(Ω−1M)

for the choice

M =

k∑
j=1

m∑
i=1

wij(yi − μn+1,j)(yi − μn+1,j)
∗.

Abstractly this is just the problem we faced in Example 6.5.7. Inspection
of the arguments there shows that

Ωn+1 =
1

m
M . (9.6)

There is no guarantee of a unique mode in this model. Fortunately,
k-means clustering generates good starting values for the parameters. The
cluster centers provide the group means. If we set wij equal to 1 or 0 de-
pending on whether observation i belongs to cluster j or not, then the
matrix (9.6) serves as an initial guess of the common variance matrix.
The initial admixture proportion πj can be taken to be the proportion of
the observations assigned to cluster j.

9.6 Transmission Tomography

The EM and MM algorithms for transmission tomography differ. The MM
algorithm is easier to derive and computationally more efficient. In other
examples, the opposite is true.
In the transmission tomography example of Sect. 8.10, it is natural to

view the missing data as the number of photons Xij entering each pixel j
along each projection line i. These random variables supplemented by the
observations Yi constitute the complete data. If projection line i does not
intersect pixel j, then Xij = 0. Although Xij and Xij′ are not independent,
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the collection {Xij}j indexed by projection i is independent of the collection
{Xi′j}j indexed by another projection i′. This allows us to work projection
by projection in writing the complete data likelihood. We will therefore
temporarily drop the projection subscript i and relabel pixels, starting
with pixel 1 adjacent to the source and ending with pixel m − 1 adjacent
to the detector. In this notation X1 is the number of photons leaving the
source, Xj is the number of photons entering pixel j, and Xm = Y is the
number of photons detected.
By assumption X1 follows a Poisson distribution with mean d. Condi-

tional on X1, . . . , Xj , the random variable Xj+1 is binomially distributed
with Xj trials and success probability e−ljθj . In other words, each of the
Xj photons entering pixel j behaves independently and has a chance e−ljθj

of avoiding attenuation in pixel j. It follows that the complete data loglike-
lihood for the current projection is

−d+X1 ln d− lnX1!

+

m−1∑
j=1

[
ln

(
Xj

Xj+1

)
+Xj+1 ln e

−ljθj + (Xj −Xj+1) ln(1− e−ljθj)

]
.

(9.7)

To perform the E step of the EM algorithm, we merely need to compute
the conditional expectations E(Xj | Xm = y, θ) for 1 ≤ j ≤ m. The

conditional expectations of other terms such as ln
(

Xj

Xj+1

)
appearing in (9.7)

are irrelevant in the subsequent M step.
Reasoning as above, we infer that the unconditional mean of Xj is

μj = E(Xj) = de−
∑j−1

k=1
lkθk

and that the distribution of Xm conditional on Xj is binomial with Xj

trials and success probability

μm

μj
= e

−
∑m−1

k=j
lkθk .

In view of our remarks about random thinning in Chap. 8, the joint prob-
ability density of Xj and Xm therefore reduces to

Pr(Xj = xj , Xm = xm) = e−μj
μ
xj

j

xj !

(
xj
xm

)(μm

μj

)xm
(
1− μm

μj

)xj−xm

,

and the conditional probability density of Xj given Xm becomes

Pr(Xj = xj | Xm = xm) =
e−μj

μ
xj
j

xj!

(
xj

xm

)
(μm

μj
)xm(1− μm

μj
)xj−xm

e−μm
μxm
m

xm!

= e−(μj−μm) (μj − μm)xj−xm

(xj − xm)!
.
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In other words, conditional onXm, the differenceXj−Xm follows a Poisson
distribution with mean μj − μm. This implies in particular that

E(Xj | Xm) = E(Xj −Xm | Xm) +Xm

= μj − μm +Xm.

Reverting to our previous notation, it is now possible to assemble the
surrogate function Q(θ | θn) of the E step. Define

Mij = di(e
−
∑

k∈Sij
likθnk − e−

∑
k
likθnk) + yi

Nij = di(e
−
∑

k∈Sij∪{j} likθnk − e−
∑

k
likθnk) + yi,

where Sij is the set of pixels between the source and pixel j along projec-
tion i. If j′ is the next pixel after pixel j along projection i, then

Mij = E(Xij | Yi = yi, θn)

Nij = E(Xij′ | Yi = yi, θn).

In view of expression (9.7), we find that

Q(θ | θn) =
∑
i

∑
j

[
−Nij lijθj + (Mij −Nij) ln(1 − e−lijθj )

]

up to an irrelevant constant.
If we try to maximize Q(θ | θn) by setting its partial derivatives equal

to 0, we get for pixel j the equation

−
∑
i

Nij lij +
∑
i

(Mij −Nij)lij
elijθj − 1

= 0. (9.8)

This is an intractable transcendental equation in the single variable θj ,
and the M step must be solved numerically, say by Newton’s method. It is
straightforward to check that the left-hand side of equation (9.8) is strictly
decreasing in θj and has exactly one positive solution. Thus, the EM al-
gorithm like the MM algorithm has the advantages of decoupling the pa-
rameters in the likelihood equations and of satisfying the natural boundary
constraints θj ≥ 0. The MM algorithm is preferable to the EM algorithm
because the MM algorithm involves far fewer exponentiations in defining
its surrogate function.

9.7 Factor Analysis

In some instances, the missing data framework of the EM algorithm offers
the easiest way to exploit convexity in deriving an MM algorithm. The com-
plete data for a given problem is often fairly natural, and the difficulty
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in deriving an EM algorithm shifts toward specifying the E step. Statisti-
cians are particularly adept at calculating complicated conditional expecta-
tions connected with sampling distributions. We now illustrate these truths
for estimation in factor analysis. Factor analysis explains the covariation
among the components of a random vector by approximating the vector by
a linear transformation of a small number of uncorrelated factors. Because
factor analysis models usually involve normally distributed random vec-
tors, Appendix A.2 reviews some basic facts about the multivariate normal
distribution.
For the sake of notational convenience, we now extend the expectation

and variance operators to random vectors. The expectation of a random
vector X = (X1, . . . , Xn)

∗ is defined componentwise by

E(X) =

⎛
⎜⎝

E[X1]
...

E[Xn]

⎞
⎟⎠ .

Linearity carries over from the scalar case in the sense that

E(X + Y ) = E(X) + E(Y )

E(MX) = M E(X)

for a compatible random vector Y and a compatible matrix M . The same
componentwise conventions hold for the expectation of a random matrix
and the variances and covariances of a random vector. Thus, we can express
the variance matrix of a random vector X as

Var(X) = E{[X − E(X)][X − E(X)]∗} = E(XX∗)− E(X) E(X)∗.

These notational choices produce many other compact formulas. For in-
stance, the random quadratic form X∗MX has expectation

E(X∗MX) = tr[M Var(X)] + E(X)∗M E(X). (9.9)

To verify this assertion, observe that

E(X∗MX) = E
(∑

i

∑
j

XimijXj

)

=
∑
i

∑
j

mij E(XiXj)

=
∑
i

∑
j

mij [Cov(Xi, Xj) + E(Xi) E(Xj)]

= tr[M Var(X)] + E(X)∗M E(X).

The classical factor analysis model deals with l independent multivariate
observations of the form

Y k = μ+ FXk +Uk.
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Here the p × q factor loading matrix F transforms the unobserved factor
score Xk into the observed Y k. The random vector Uk represents random
measurement error. Typically, q is much smaller than p. The random vectors
Xk and Uk are independent and normally distributed with means and
variances

E(Xk) = 0, Var(Xk) = I

E(Uk) = 0, Var(Uk) = D,

where I is the q× q identity matrix and D is a p× p diagonal matrix with
ith diagonal entry di. The entries of the mean vector μ, the factor loading
matrix F , and the diagonal matrix D constitute the parameters of the
model. For a particular realization y1, . . . ,yl of the model, the maximum
likelihood estimation of μ is simply the sample mean μ̂ = ȳ. This fact is a
consequence of the reasoning given in Example 6.5.7. Therefore, we replace
each yk by yk − ȳ, assume μ = 0, and focus on estimating F and D.
The random vector (X∗

k,Y
∗
k)

∗ is the obvious choice of the complete data
for case k. If f(xk) is the density of Xk and g(yk | xk) is the conditional
density of Y k given Xk = xk, then the complete data loglikelihood can be
expressed as

l∑
k=1

ln f(xk) +
l∑

k=1

ln g(yk | xk)

= − l

2
ln det I − 1

2

l∑
k=1

x∗
kxk − l

2
ln detD

− 1

2

l∑
k=1

(yk − Fxk)
∗D−1(yk − Fxk). (9.10)

We can simplify this by noting that ln det I = 0 and ln detD =
∑p

i=1 ln di.
The key to performing the E step is to note that (X∗

k,Y
∗
k)

∗ follows a
multivariate normal distribution with variance matrix

Var

(
Xk

Y k

)
=

(
I F ∗

F FF ∗ +D

)
.

Equation (A.1) of Appendix A.2 then permits us to calculate the condi-
tional expectation

vk = E(Xk | Y k = yk,F n,Dn)

= F ∗
n(F nF

∗
n +Dn)

−1yk

and the conditional variance

Ak = Var(Xk | Y k = yk,F n,Dn)

= I − F ∗
n(F nF

∗
n +Dn)

−1F n,
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given the observed data and the current values of the matrices F and D.
Combining these results with equation (9.9) yields

E[(Y k − FXk)
∗D−1(Y k − FXk) | Y k = yk]

= tr(D−1FAkF
∗) + (yk − Fvk)

∗D−1(yk − Fvk)

= tr{D−1[FAkF
∗ + (yk − Fvk)(yk − Fvk)

∗]}.

If we define

Λ =

l∑
k=1

[Ak + vkv
∗
k], Γ =

l∑
k=1

vky
∗
k, Ω =

l∑
k=1

yky
∗
k

and take conditional expectations in equation (9.10), then we can write the
surrogate function of the E step as

Q(F ,D | F n,Dn)

= − l
2

p∑
i=1

ln di − 1

2
tr[D−1(FΛF ∗ − FΓ− Γ∗F ∗ +Ω)],

omitting the additive constant

−1

2

l∑
k=1

E(X∗
kXk | Y k = yk,F n,Dn),

which depends on neither F nor D.
To perform the M step, we first maximize Q(F ,D | F n,Dn) with respect

to F , holding D fixed. We can do so by permuting factors and completing
the square in the trace

tr[D−1(FΛF ∗ − FΓ− Γ∗F ∗ +Ω)]

= tr[D−1(F − Γ∗Λ−1)Λ(F − Γ∗Λ−1)∗] + tr[D−1(Ω− Γ∗Λ−1Γ)]

= tr[D− 1
2 (F − Γ∗Λ−1)Λ(F − Γ∗Λ−1)∗D− 1

2 ] + tr[D−1(Ω− Γ∗Λ−1Γ)].

This calculation depends on the existence of the inverse matrix Λ−1. Now
Λ is certainly positive definite if Ak is positive definite, and Problem 22
asserts that Ak is positive definite. It follows that Λ−1 not only exists but
is positive definite as well. Furthermore, the matrix

D− 1
2 (F − Γ∗Λ−1)Λ(F − Γ∗Λ−1)∗D− 1

2

is positive semidefinite and has a nonnegative trace. Hence, the maximum
value of the surrogate function Q(F ,D | F n,Dn) with respect to F is
attained at the point F = Γ∗Λ−1, regardless of the value of D. In other
words, the EM update of F is F n+1 = Γ∗Λ−1. It should be stressed that
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Γ and Λ implicitly depend on the previous values F n and Dn. Once F n+1

is determined, the equation

0 =
∂

∂di
Q(F ,D | F n,Dn)

= − l

2di
+

1

2d2i
(FΛF ∗ − FΓ− Γ∗F ∗ +Ω)ii

provides the update

dn+1,i =
1

l
(F n+1ΛF ∗

n+1 − F n+1Γ− Γ∗F ∗
n+1 +Ω)ii.

One of the frustrating features of factor analysis is that the factor loading
matrix F is not uniquely determined. To understand the source of the
ambiguity, consider replacing F by FO, where O is a q × q orthogonal
matrix. The distribution of each random vector Y k is normal with mean
μ and variance matrix FF ∗ + D. If we substitute FO for F , then the
variance FOO∗F ∗ +D = FF ∗ +D remains the same. Another problem
in factor analysis is the existence of more than one local maximum. Which
one of these the EM algorithm converges to depends on its starting value
[76]. For a suggestion of how to improve the chances of converging to the
dominant mode, see the article [281].

9.8 Hidden Markov Chains

A hidden Markov chain incorporates both observed data and missing data.
The missing data are the sequence of states visited by the chain; the ob-
served data provide partial information about this sequence of states. De-
note the sequence of visited states by Z1, . . . , Zn and the observation taken
at epoch i when the chain is in state Zi by Yi = yi. Baum’s algorithms
[8, 71] recursively compute the likelihood of the observed data

P = Pr(Y1 = y1, . . . , Yn = yn) (9.11)

without actually enumerating all possible realizations Z1, . . . , Zn. Baum’s
algorithms can be adapted to perform an EM search. The references [78,
165, 216] discuss several concrete examples of hidden Markov chains.
The likelihood (9.11) is constructed from three ingredients: (a) the ini-

tial distribution π at the first epoch of the chain, (b) the epoch-dependent
transition probabilities pijk = Pr(Zi+1 = k | Zi = j), and (c) the condi-
tional densities φi(yi | j) = Pr(Yi = yi | Zi = j). The dependence of the
transition probability pijk on i allows the chain to be inhomogeneous over
time and promotes greater flexibility in modeling. Implicit in the definition
of φi(yi | j) are the assumptions that Y1, . . . , Yn are independent given
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Z1, . . . , Zn and that Yi depends only on Zi. For simplicity, we will assume
that the Yi are discretely distributed.
Baum’s forward algorithm is based on recursively evaluating the joint

probabilities

αi(j) = Pr(Y1 = y1, . . . , Yi−1 = yi−1, Zi = j).

At the first epoch, α1(j) = πj by definition. The obvious update to αi(j) is

αi+1(k) =
∑
j

αi(j)φi(yi | j)pijk. (9.12)

The likelihood (9.11) can be recovered by computing the sum

P =
∑
j

αn(j)φn(yn | j)

at the final epoch n.

In Baum’s backward algorithm, we recursively evaluate the conditional
probabilities

βi(k) = Pr(Yi+1 = yi+1, . . . , Yn = yn | Zi = k),

starting by convention at βn(k) = 1 for all k. The required update is clearly

βi(j) =
∑
k

pijkφi+1(yi+1 | k)βi+1(k). (9.13)

In this instance, the likelihood is recovered at the first epoch by forming
the sum P =

∑
j πjφ1(y1 | j)β1(j).

Baum’s algorithms also interdigitate beautifully with the E step of the
EM algorithm. It is natural to summarize the missing data by a collection
of indicator random variables Xij . If the chain occupies state j at epoch i,
then we take Xij = 1. Otherwise, we take Xij = 0. In this notation, the
complete data loglikelihood can be written as

Lcom(θ) =
∑
j

X1j lnπj +

n∑
i=1

∑
j

Xij lnφi(Yi | j)

+

n−1∑
i=1

∑
j

∑
k

XijXi+1,k ln pijk.

Execution of the E step amounts to calculation of the conditional expecta-
tions

E(XijXi+1,k | Y , θm) =
αi(j)φi(yi | j)pijkφi+1(yi+1 | k)βi+1(k)

P

∣∣∣
θ=θm

E(Xij | Y , θm) =
αi(j)φi(yi | j)βi(j)

P

∣∣∣
θ=θm

,
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where Y = y is the observed data, P is the likelihood of the observed data,
and θm is the current parameter vector.
The M step may or may not be exactly solvable. If it is not, then one can

always revert to the MM gradient algorithm discussed in Sect. 10.4. In the
case of hidden multinomial trials, it is possible to carry out the M step
analytically. Hidden multinomial trials may govern (a) the choice of the
initial state j, (b) the choice of an observed outcome Yi at the ith epoch
given the hidden state j of the chain at that epoch, or (c) the choice of
the next state k given the current state j in a time-homogeneous chain.
In the first case, the multinomial parameters are the πj ; in the last case,
they are the common transition probabilities pjk.
As a concrete example, consider estimation of the initial distribution π

at the first epoch of the chain. For estimation to be accurate, there must
be multiple independent runs of the chain. Let the superscript r index the
various runs. The surrogate function delivered by the E step equals

Q(π | πm) =
∑
r

∑
j

E(Xr
1j | Y r = yr,πm) lnπj

up to an additive constant. Maximizing Q(π | πm) subject to the con-
straints

∑
j πj = 1 and πj ≥ 0 for all j is done as in Example 1.4.2. The

resulting EM updates

πm+1,j =

∑
r E(X

r
1j | Y r = yr,πm)

R

for R runs can be interpreted as multinomial proportions with fractional
category counts. Problem 24 asks the reader to derive the EM algorithm for
estimating time homogeneous transition probabilities. Problem 25 covers
estimation of the parameters of the conditional densities φi(yi | j) for some
common densities.

9.9 Problems

1. Code and test any of the algorithms discussed in the text or problems
of this chapter.

2. The entropy of a probability density p(x) on Rn is defined by

−
∫
p(x) ln p(x)dx. (9.14)

Among all densities with a fixed mean vector μ =
∫
xp(x)dx and

variance matrix Ω =
∫
(x−μ)(x−μ)∗p(x)dx, prove that the multi-

variate normal has maximum entropy. (Hints: Apply Proposition 9.2.1
and formula (9.9).)
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3. In statistical mechanics, entropy is employed to characterize the sta-
tionary distribution of many independently behaving particles. Let
p(x) be the probability density that a particle is found at position x
in phase space Rn, and suppose that each position x is assigned an
energy u(x). If the average energy U =

∫
u(x)p(x)dx per particle is

fixed, then Nature chooses p(x) to maximize entropy as defined in
equation (9.14). Show that if constants α and β exist satisfying

∫
αeβu(x)dx = 1 and

∫
u(x)αeβu(x)dx = U,

then p(x) = αeβu(x) does indeed maximize entropy subject to the av-
erage energy constraint. The density p(x) is the celebrated Maxwell-
Boltzmann density.

4. Show that the normal, Poisson, binomial, negative binomial, gamma,
beta, and multinomial families are exponential by writing their den-
sities in the form (9.1). What are the corresponding measure and
sufficient statistic in each case?

5. In the EM algorithm [65], suppose that the complete dataX possesses
a regular exponential density

f(x | θ) = g(x)eβ(θ)+h(x)∗θ

relative to some measure ν. Prove that the unconditional mean of the
sufficient statistic h(X) is given by the negative gradient−∇β(θ) and
that the EM update is characterized by the condition

E[h(X) | Y, θn] = −∇β(θn+1).

6. Suppose the phenotypic counts in the ABO allele frequency estima-
tion example satisfy nA+nAB > 0, nB+nAB > 0, and nO > 0. Show
that the loglikelihood is strictly concave and possesses a single global
maximum on the interior of the feasible region.

7. In a genetic linkage experiment, 197 animals are randomly assigned
to four categories according to the multinomial distribution with cell
probabilities π1 = 1

2 + θ
4 , π2 = 1−θ

4 , π3 = 1−θ
4 and π4 = θ

4 . If the
corresponding observations are

y = (y1, y2, y3, y4)
∗ = (125, 18, 20, 34)∗,

then devise an EM algorithm and use it to estimate θ̂ = .6268 [218].
(Hint: Split the first category into two so that there are five categories
for the complete data.)
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8. Derive the EM algorithm solving Problem 7 as an MM algorithm. No
mention of missing data is necessary.

9. Consider the data from The London Times [259] during the years
1910–1912 given in Table 9.1. The two columns labeled “Deaths i”
refer to the number of deaths to women 80 years and older reported
by day. The columns labeled “Frequency ni” refer to the number of
days with i deaths. A Poisson distribution gives a poor fit to these
data, possibly because of different patterns of deaths in winter and
summer. A mixture of two Poissons provides a much better fit. Under
the Poisson admixture model, the likelihood of the observed data is

9∏
i=0

[
αe−μ1

μi
1

i!
+ (1− α)e−μ2

μi
2

i!

]ni

,

where α is the admixture parameter and μ1 and μ2 are the means of
the two Poisson distributions.

TABLE 9.1. Death notices from The London Times

Deaths i Frequency ni Deaths i Frequency ni

0 162 5 61
1 267 6 27
2 271 7 8
3 185 8 3
4 111 9 1

Formulate an EM algorithm for this model. Let θ = (α, μ1, μ2)
∗ and

zi(θ) =
αe−μ1μi

1

αe−μ1μi
1 + (1− α)e−μ2μi

2

be the posterior probability that a day with i deaths belongs to Pois-
son population 1. Show that the EM algorithm is given by

αm+1 =

∑
i nizi(θm)∑

i ni

μm+1,1 =

∑
i niizi(θm)∑
i nizi(θm)

μm+1,2 =

∑
i nii[1− zi(θm)]∑
i ni[1− zi(θm)]

.

From the initial estimates α0 = 0.3, μ01 = 1. and μ02 = 2.5, compute
via the EM algorithm the maximum likelihood estimates α̂ = 0.3599,
μ̂1 = 1.2561, and μ̂2 = 2.6634. Note how slowly the EM algorithm
converges in this example.
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10. Derive the least squares algorithm (8.19) as an EM algorithm [112].
(Hint: Decompose yi as the sum

∑q
j=1 yij of realizations from inde-

pendent normal deviates with means xijθj and variances 1/q.)

11. Let x1, . . . , xm be an i.i.d. sample from a normal density with mean
μ and variance σ2. Suppose for each xi we observe yi = |xi| rather
than xi. Formulate an EM algorithm for estimating μ and σ2, and
show that its updates are

μn+1 =
1

m

m∑
i=1

(wni1yi − wni2yi)

σ2
n+1 =

1

m

m∑
i=1

[wni1(yi − μn+1)
2 + wni2(−yi − μn+1)

2]

with weights

wni1 =
f(yi | θn)

f(yi | θn) + f(−yi | θn)

wni2 =
f(−yi | θn)

f(yi | θn) + f(−yi | θn)
,

where f(x | θ) is the normal density with θ = (μ, σ2)∗. Demonstrate
that the modes of the likelihood of the observed data come in sym-
metric pairs differing only in the sign of μ. This fact does not prevent
accurate estimation of |μ| and σ2.

12. Consider an i.i.d. sample drawn from a bivariate normal distribution
with mean vector μ = (μ1, μ2)

∗ and variance matrix

Ω =

(
σ2
1 σ12

σ12 σ2
2

)
.

Suppose through some random accident that the first p observations
are missing their first component, the next q observations are miss-
ing their second component, and the last r observations are com-
plete. Design an EM algorithm to estimate the five mean and vari-
ance parameters, taking as complete data the original data before the
accidental loss.

13. The standard linear regression model can be written in matrix
notation as X = Aβ + U . Here X is the r × 1 vector of responses,
A is the r × s design matrix, β is the s × 1 vector of regression co-
efficients, and U is the r × 1 normally distributed error vector with
mean 0 and variance σ2I. The responses are right censored if for each
i there is a constant ci such that only Yi = min{ci, Xi} is observed.
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The EM algorithm offers a vehicle for estimating the parameter vec-
tor θ = (β∗, σ2)∗ in the presence of right censoring [65, 251]. Show
that

βn+1 = (A∗A)−1A∗ E(X | Y , θn)

σ2
n+1 =

1

r
E[(X −Aβn+1)

∗(X −Aβn+1) | Y , θn].

To compute the conditional expectations appearing in these formulas,
let ai be the ith row of A and define

H(v) =

1√
2π
e−

v2

2

1√
2π

∫∞
v e−

w2

2 dw
.

For a censored observation yi = ci <∞, prove that

E(Xi | Yi = ci, θn) = aiβn + σnH
(ci − aiβn

σn

)

E(X2
i | Yi = ci, θn) = (aiβn)

2 + σ2
n

+ σn(ci + aiβn)H
(ci − aiβn

σn

)
.

Use these formulas to complete the specification of the EM algorithm.

14. In the transmission tomography model it is possible to approximate
the solution of equation (9.8) to good accuracy in certain situations.
Verify the expansion

1

es − 1
=

1

s
− 1

2
+

s

12
+O(s2).

Using the approximation 1/(es − 1) ≈ 1/s− 1/2 for s = lijθj , show
that

θn+1,j =

∑
i(Mij −Nij)

1
2

∑
i(Mij +Nij)lij

results. Can you motivate this result heuristically?

15. Suppose that the complete data in the EM algorithm involve N bi-
nomial trials with success probability θ per trial. Here N can be
random or fixed. If M trials result in success, then the complete data
likelihood can be written as θM (1− θ)N−Mc, where c is an irrelevant
constant. The E step of the EM algorithm amounts to forming

Q(θ | θn) = E(M | Y , θn) ln θ + E(N −M | Y , θn) ln(1− θ) + ln c.
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The binomial trials are hidden because only a function Y of them
is directly observed. The brief derivation in Sect. 9.8 shows that the
EM update amounts to

θn+1 =
E(M | Y , θn)
E(N | Y , θn) .

Prove that this is equivalent to the update

θn+1 = θn +
θn(1− θn)

E(N | Y , θn)
d

dθ
L(θn),

where L(θ) is the loglikelihood of the observed data Y [270]. (Hint:
Apply identity (8.4) of Chap. 8.)

16. As an example of hidden binomial trials, consider a random sample
of twin pairs. Let u of these pairs consist of male pairs, v consist
of female pairs, and w consist of opposite sex pairs. A simple model
to explain these data involves a random Bernoulli choice for each
pair dictating whether it consists of identical or nonidentical twins.
Suppose that identical twins occur with probability p and noniden-
tical twins with probability 1 − p. Once the decision is made as to
whether the twins are identical, then sexes are assigned to the twins.
If the twins are identical, one assignment of sex is made. If the twins
are nonidentical, then two independent assignments of sex are made.
Suppose boys are chosen with probability q and girls with probabil-
ity 1− q. Model these data as hidden binomial trials. Derive the EM
algorithm for estimating p and q.

17. Chun Li has derived an EM update for hidden multinomial trials. Let
N denote the number of hidden trials, θi the probability of outcome
i of k possible outcomes, and L(θ) the loglikelihood of the observed
data Y . Derive the EM update

θn+1,i = θni +
θni

E(N | Y , θn)

⎡
⎣ ∂

∂θi
L(θn)−

k∑
j=1

θnj
∂

∂θj
L(θn)

⎤
⎦

following the reasoning of Problem 15.

18. In this problem you are asked to formulate models for hidden Poisson
and exponential trials [270]. If the number of trials is N and the mean
per trial is θ, then show that the EM update in the Poisson case is

θn+1 = θn +
θn

E(N | Y , θn)
d

dθ
L(θn)

and in the exponential case is

θn+1 = θn +
θ2n

E(N | Y , θn)
d

dθ
L(θn),
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where L(θ) is the loglikelihood of the observed data Y .

19. Suppose light bulbs have an exponential lifetime with mean θ. Two
experiments are conducted. In the first, the lifetimes y1, . . . , ym of m
independent bulbs are observed. In the second, p independent bulbs
are observed to burn out before time t, and q independent bulbs are
observed to burn out after time t. In other words, the lifetimes in the
second experiment are both left and right censored. Construct an EM
algorithm for finding the maximum likelihood estimate of θ [95].

20. In many discrete probability models, only data with positive counts
are observed. Counts that are 0 are missing. Show that the likelihoods
for the binomial, Poisson, and negative binomial models truncated at
0 amount to

L1(p) =
∏
i

(
mi

xi

)
pxi(1− p)mi−xi

1− (1− p)mi

L2(λ) =
∏
i

λxie−λ

xi!(1− e−λ)

L3(p) =
∏
i

(
mi+xi−1

xi

)
(1− p)xipmi

1− pmi
.

For observation i of the binomial model, there are xi successes out
of mi trials with success probability p per trial. For observation i of
the negative binomial model, there are xi failures before mi required
successes. For each model, devise an EM algorithm that fills in the
missing observations by imputing a geometrically distributed number
of truncated observations for every real observation. Show that the
EM updates reduce to

pn+1 =

∑
i xi∑

i
mi

1−(1−pn)mi

λn+1 =

∑
i xi∑

i
1

1−e−λn

pn+1 =

∑
i

mi

1−p
mi
n∑

i(xi +
mi

1−p
mi
n

)

for the three models.

21. Demonstrate that the EM updates of the previous problem can be
derived as MM updates based on the minorization

− ln(1 − u) ≥ − ln(1− un) + un
1− un ln

u

un
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for u and un in the interval (0, 1). Prove this minorization first. (Hint:
If you rearrange the minorization, then Proposition 9.2.1 applies.)

22. Suppose that Σ is a positive definite matrix. Prove that the matrix
I − F ∗(FF ∗ + Σ)−1F is also positive definite. This result is used
in the derivation of the EM algorithm in Sect. 9.7. (Hints: For read-
ers familiar with the sweep operator of computational statistics, the
simplest proof relies on applying Propositions 7.5.2 and 7.5.3 of the
reference [166].)

23. A certain company asks consumers to rate movies on an integer scale
from 1 to 5. Let Mi be the set of movies rated by person i. Denote
the cardinality ofMi by |Mi|. Each rater does so in one of two modes
that we will call “quirky” and “consensus”. In quirky mode, i has
a private rating distribution (qi1, qi2, qi3, qi4, qi5) that applies to ev-
ery movie regardless of its intrinsic merit. In consensus mode, rater
i rates movie j according to the distribution (cj1, cj2, cj3, cj4, cj5)
shared with all other raters in consensus mode. For every movie i
rates, he or she makes a quirky decision with probability πi and a
consensus decision with probability 1− πi. These decisions are made
independently across raters and movies. If xij is the rating given to
movie j by rater i, then prove that the likelihood of the data is

L =
∏
i

∏
j∈Mi

[πiqixij + (1− πi)cjxij ].

Once we estimate the parameters, we can rank the reliability of rater
i by the estimate π̂i and the popularity of movie j by its estimated
average rating

∑
k kĉjk.

If we choose the natural course of estimating the parameters by maxi-
mum likelihood, then it is possible to derive an EM or MM algorithm.
From the right perspectives, these two algorithms coincide. Let n de-
note iteration number and wnij the weight

wnij =
πniqnixij

πniqnixij + (1− πni)cnjxij

.

Derive either algorithm and show that it updates the parameters by

πn+1,i =
1

|Mi|
∑
j∈Mi

wnij

qn+1,ix =

∑
j∈Mi

1{xij=x}wnij∑
j∈Mi

wnij

cn+1,jx =

∑
i 1{xij=x}(1− wnij)∑

i(1− wnij)
.
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These updates are easy to implement. Can you motivate them as
ratios of expected counts?

24. In the hidden Markov chain model, suppose that the chain is time
homogeneous with transition probabilities pjk. Derive an EM algo-
rithm for estimating the pjk from one or more independent runs of
the chain.

25. In the hidden Markov chain model, consider estimation of the pa-
rameters of the conditional densities φi(yi | j) of the observed data
y1, . . . , yn. When Yi given Zi = j is Poisson distributed with mean
μj , show that the EM algorithm updates μj by

μm+1,j =

∑n
i=1 wmijyi∑n
i=1 wmij

,

where the weight wmij = E(Xij | Y,μm). Show that the same update
applies when Yi given Zi = i is exponentially distributed with mean
μj or normally distributed with mean μj and common variance σ2.
In the latter setting, demonstrate that the EM update of σ2 is

σ2
m+1 =

∑n
i=1

∑
j wmij(yi − μm+1,j)

2∑n
i=1

∑
j wmij

.



10
Newton’s Method and Scoring

10.1 Introduction

Block relaxation and the MM algorithm are hardly the only methods of
optimization. Newton’s method is better known and more widely applied.
Despite its defects, Newton’s method is the gold standard for speed of
convergence and forms the basis of most modern optimization algorithms
in low dimensions. Its many variants seek to retain its fast convergence
while taming its defects. The variants all revolve around the core idea of
locally approximating the objective function by a strictly convex quadratic
function. At each iteration the quadratic approximation is optimized. Safe-
guards are introduced to keep the iterates from veering toward irrelevant
stationary points.
Statisticians are among the most avid consumers of optimization tech-

niques. Statistics, like other scientific disciplines, has a special vocabulary.
We will meet some of that vocabulary in this chapter as we discuss opti-
mization methods important in computational statistics. Thus, we will take
up Fisher’s scoring algorithm and the Gauss-Newton method of nonlinear
least squares. We have already encountered likelihood functions and the
device of passing to loglikelihoods. In statistics, the gradient of the log-
likelihood is called the score, and the negative of the second differential is
called the observed information. One major advantage of maximizing the
loglikelihood rather than the likelihood is that the loglikelihood, score, and
observed information are all additive functions of independent observations.

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 10,
© Springer Science+Business Media New York 2013

245



246 10. Newton’s Method and Scoring

10.2 Newton’s Method and Root Finding

One of the virtues of Newton’s method is that it is a root-finding technique
as well as an optimization technique. Consider a function f(x) mapping Rn

into Rn, and suppose a root of f(x) = 0 occurs at y. If the slope matrix in
the expansion

0− f(x) = f(y)− f(x)
= s(y,x)(y − x)

is invertible, then we can solve for y as

y = x− s(y,x)−1f(x).

In practice, y is unknown and the slope s(y,x) is unavailable. However,
if y is close to x, then s(y,x) should be close to df(x). Thus, Newton’s
method iterates according to

xm+1 = xm − df(xm)−1f(xm). (10.1)

Example 10.2.1 Division without Dividing

Forming the reciprocal of a number a > 0 is equivalent to solving for a root
of the equation f(x) = a−x−1. Newton’s method (10.1) iterates according
to

xm+1 = xm − a− x−1
m

x−2
m

= xm(2− axm),

which involves multiplication and subtraction but no division. If xm+1 is
to be positive, then xm must lie on the interval (0, 2/a). If xm does indeed
reside there, then xm+1 will reside on the shorter interval (0, 1/a) because
the quadratic x(2 − ax) attains its maximum of 1/a at x = 1/a. Further-
more, xm+1 > xm if and only if 2 − axm > 1, and this latter inequality
holds if and only if xm < 1/a. Thus, starting on (0, 1/a), the iterates xm
monotonically increase to their limit 1/a. Starting on [1/a, 2/a), the first
iterate satisfies x1 ≤ 1/a, and subsequent iterates monotonically increase
to 1/a. Finally, starting outside (0, 2/a) leads either to fixation at 0 or
divergence to −∞.

Example 10.2.2 Extraction of nth Roots

Newton’s method can be used to extract square roots, cube roots, and so
forth. Consider the function f(x) = xn − a for some integer n > 1 and
a > 0. Newton’s method amounts to the iteration scheme

xm+1 = xm − xnm − a
nxn−1

m

=
1

n

[
(n− 1)xm +

a

xn−1
m

]
. (10.2)
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TABLE 10.1. Newton’s iterates for x4 − x2

m xm xm xm
0 −0.74710 −0.66710 −0.500000
1 −2.16581 1.01669 −0.125000
2 −1.68896 1.00066 −0.061491
3 −1.35646 1.00000 −0.030628
4 −1.14388 1.00000 −0.015300
5 −1.03477 1.00000 −0.007648
6 −1.00270 1.00000 −0.003823
7 −1.00002 1.00000 −0.001911
8 −1.00000 1.00000 −0.000955
9 −1.00000 1.00000 −0.000477
10 −1.00000 1.00000 −0.000238

This sequence converges to n
√
a regardless of the starting point x0 > 0.

To demonstrate this fact, we first note that the right-hand side of equation
(10.2) is the arithmetic mean of n−1 copies of the number xm and a/xn−1

m .
Because the arithmetic mean exceeds the geometric mean n

√
a, it follows

that xm ≥ n
√
a for all m ≥ 1. Given this inequality, we have a/xn−1

m ≤ xm.
Again viewing equation (10.2) as a weighted average of xm and the ratio
a/xn−1

m ≤ xm, it follows that xm+1 ≤ xm for allm ≥ 1. Hence, the sequence
x1, x2, . . . is bounded below and is monotonically decreasing. By continuity,
its limit is n

√
a.

Example 10.2.3 Sensitivity to Initial Conditions

In contrast to the previous two well-behaved examples, finding a root of
the polynomial f(x) = x4−x2 is more problematic. These roots are clearly
−1, 0, and 1. We anticipate trouble when f ′(x) = 4x3 − 2x = 0 at the
points −1/√2, 0, and 1/

√
2. Consider initial points near −1/√2. Just to

the left of −1/√2, Newton’s method converges to −1. For a narrow zone
just to the right of −1/√2, it converges to 1, and beyond this zone but to
the left of 1/

√
2, it converges to 0. Table 10.1 gives three typical examples

of this extreme sensitivity to initial conditions. The slower convergence to
the middle root 0 is hardly surprising given that f ′(0) = 0. It appears that
the discrepancy xm−0 roughly halves at each iteration. Problem 2 clarifies
this behavior.

Example 10.2.4 Secant Method

There are several ways of estimating the differential df(xm) appearing in
Newton’s formula (10.1). In one dimension the secant method approximates
f ′(xm) by the slope s(xm−1, xm) using the canonical slope function

s(y, x) =
f(y)− f(x)

y − x .
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This produces the secant update

xm+1 = xm − f(xm)(xm−1 − xm)

f(xm−1)− f(xm)
, (10.3)

which is the prototype for the quasi-Newton updates treated in Chap. 11.
While the secant method avoids computation of derivatives, it typically
takes more iterations to converge than Newton’s method. Safeguards must
also be put into place to ensure its reliability.

Example 10.2.5 Newton’s Method of Matrix Inversion

Newton’s method for finding the reciprocal of a number can be generalized
to compute the inverse of a matrix [138]. Consider the matrix-valued func-
tion f(B) = A−B−1 for some invertible n× n matrix A. Example 5.4.5
provides the first-order differential approximation

f(A−1)− f(B) = 0− (A−B−1) ≈ B−1(A−1 −B)B−1.

Multiplying this equation on the left and right by B and rearranging give

A−1 ≈ 2B −BAB

and hence Newton’s scheme

Bm+1 = 2Bm −BmABm.

Further rearrangement yields

A−1 −Bm+1 = (A−1 −Bm)A(A−1 −Bm),

which entails

‖A−1 −Bm+1‖ ≤ ‖A‖ · ‖A−1 −Bm‖2

for every matrix norm. It follows that the sequence Bm converges at a
quadratic rate to A−1 if B0 is sufficiently close to A−1.

10.3 Newton’s Method and Optimization

Suppose we want to minimize the real-valued function f(x) defined on an
open set S ⊂ Rn. Assuming that f(x) is twice differentiable, the expansion

f(y) = f(x) + df(x)(y − x) +
1

2
(y − x)∗s2(y,x)(y − x)

suggests that we substitute d2f(x) for the second slope s2(y,x) and ap-
proximate f(y) by the resulting quadratic. If we take this approximation
seriously, then we can solve for its minimum point y as

y = x− d2f(x)−1∇f(x).
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In Newton’s method we iterate according to

xm+1 = xm − d2f(xm)−1∇f(xm). (10.4)

It should come as no surprise that algorithm (10.4) coincides with the
earlier version of Newton’s method seeking a root of∇f(x). For this reason,
any stationary point x of f(x) is a fixed point of algorithm (10.4).

Example 10.3.1 Newton’s Method for the Poisson Multigraph Model

Newton’s method can be applied to the Poisson multigraph model intro-
duced in Sect. 8.11. The score vector has entries

∂

∂pi
L(p) =

∑
j 
=i

(xij
pi
− pj

)
,

and the observed information matrix has entries

− ∂2

∂pi∂pj
L(p) =

{
1 i �= j
1
p2
i

∑
k 
=i xik i = j.

For n nodes the matrix −d2L(p) is n × n, and inverting it seems out of
the question when n is large. Fortunately, the Sherman-Morrison formula
comes to the rescue. If we write −d2L(p) as D + 11∗ with D diagonal,
then the explicit inverse

(D + 11∗)−1 = D−1 − 1

1 + 1∗D−11
D−111∗D−1

is available. This makes Newton’s method trivial to implement as long as
one respects the bounds pi ≥ 0. More generally, it is always cheap to invert a
low-rank perturbation of an explicitly invertible matrix. See Problem 10 of
Chap. 11 for Woodbury’s generalization of the Sherman-Morrison formula.

There are two potential problems with Newton’s method. First, it may be
expensive computationally to evaluate or invert d2f(x). Second, far from
the minimum, Newton’s method is equally happy to head uphill or down.
In other words, Newton’s method is not a descent algorithm in the sense
that f(xm+1) < f(xm). This second defect can be remedied by modifying
the Newton increment so that it is a partial step in a descent direction. A
descent direction v at the point x satisfies the inequality df(x)v < 0. The
formula

lim
t↓0

f(x+ tv)− f(x)
t

= df(x)v

for the forward directional derivative shows that f(x+ tv) < f(x) for t > 0
sufficiently small. The key to generating a descent direction is to define
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v = −H−1∇f(x) using a positive definite matrix H. Here we assume that
x is not a stationary point and recall the fact that the inverse of a positive
definite matrix is positive definite.
The necessary modifications of Newton’s method to achieve a descent

algorithm are now clear. We simply replace d2f(xm) by a positive definite
approximating matrixHm and take a sufficiently short step in the direction
Δxm = −H−1

m ∇f(xm). If we believe that the proposed increment is rea-
sonable, then we will be reluctant to shrink Δxm too much. This suggests
backtracking, the simplest form of which is step halving. In step halving,
if the initial increment Δxm does not produce a decrease in f(x), then
try Δxm/2. If Δxm/2 fails, then try Δxm/4, and so forth. We will meet
more sophisticated backtracking schemes later. Note at this juncture we
have said nothing about how well Hm approximates d2f(xm). The quality
of this approximation obviously affects the rate of convergence toward any
local minimum.
If we minimize f(x) subject to the linear equality constraints V x = d,

then minimization of the approximating quadratic can be accomplished as
indicated in Example 5.2.6 of Chap. 5. Because

V (xm+1 − xm) = 0,

the revised increment Δxm = xm+1 − xm is

Δxm = − [
H−1

m −H−1
m V ∗(V H−1

m V ∗)−1V H−1
m

]∇f(xm). (10.5)

This can be viewed as the projection of the unconstrained increment onto
the null space of V . Problem 12 shows that step halving also works for the
projected increment.

10.4 MM Gradient Algorithm

Often it is impossible to solve the optimization step of the MM algorithm
exactly. If f(x) is the objective function and g(x | xm) minorizes or ma-
jorizes f(x) at xm, then Newton’s method can be applied to optimize
g(x | xm). As we shall see later, one step of Newton’s method preserves
the overall rate of convergence of the MM algorithm. Thus, the MM gra-
dient algorithm iterates according to

xm+1 = xm − d2g(xm | xm)−1∇g(xm | xm)

= xm − d2g(xm | xm)−1∇f(xm).

Here derivatives are taken with respect to the left argument of g(x | xm).
Substitution of ∇f(xm) for ∇g(xm | xm) is justified by the comments in
Sect. 8.2. In practice the surrogate function g(x | xm) is either convex or
concave, and its second differential d2g(xm | xm) needs no adjustment to
give a descent or ascent algorithm.
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Example 10.4.1 Newton’s Method in Transmission Tomography

In the transmission tomography model of Chap. 8, the surrogate function
g(θ | θm) of equation (8.15) minorizes the loglikelihood L(θ) in the absence
of a smoothing prior. Differentiating g(θ | θm) with respect to θj gives the
transcendental equation

0 =
∑
i

lij

[
die

−l∗i θmθj/θmj − yi
]
.

One step of Newton’s method starting at θj = θmj produces the next iterate

θm+1,j = θmj +
θmj

∑
i lij(die

−l∗i θm − yi)∑
i lijl

∗
i θmdie

−l∗
i
θm

= θmj

∑
i lij [die

−l∗i θm(1 + l∗i θm)− yi]∑
i lijl

∗
i θmdie

−l∗
i
θm

.

This step typically increases L(θ). The comparable EM gradient update
involves solving the transcendental equation (9.8).

Example 10.4.2 Estimation with the Dirichlet Distribution

As another example, consider parameter estimation for the Dirichlet dis-
tribution [154]. This distribution has probability density

Γ(
∑n

i=1 θi)∏n
i=1 Γ(θi)

n∏
i=1

yθi−1
i (10.6)

on the unit simplex {y = (y1, . . . , yn)
∗ : y1 > 0, . . . , yn > 0,

∑n
i=1 yi = 1}

endowed with the uniform measure. The Dirichlet distribution is used to
represent random proportions. The beta distribution is the special case
n = 2.
If y1, . . . ,yl are randomly sampled vectors from the Dirichlet distribu-

tion, then their loglikelihood is

L(θ) = l ln Γ
( n∑

i=1

θi

)
− l

n∑
i=1

ln Γ(θi) +

l∑
k=1

n∑
i=1

(θi − 1) ln yki.

Except for the first term on the right, the parameters are separated. Fortu-
nately as demonstrated in Example 6.3.11, the function ln Γ(t) is convex.
Denoting its derivative by ψ(t), we exploit the minorization

ln Γ
( n∑

i=1

θi

)
≥ ln Γ

( n∑
i=1

θmi

)
+ ψ

( n∑
i=1

θmi

) n∑
i=1

(θi − θmi)
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and create the surrogate function

g(θ | θm) = l ln Γ
( n∑

i=1

θmi

)
+ lψ

( n∑
i=1

θmi

) n∑
i=1

(θi − θmi)

− l
n∑

i=1

ln Γ(θi) +
l∑

k=1

n∑
i=1

(θi − 1) ln yki.

Owing to the presence of the terms ln Γ(θi), the maximization step is in-
tractable. However, the MM gradient algorithm can be readily implemented
because the parameters are now separated and the functions ψ(t) and ψ′(t)
are easily computed as suggested in Problem 14. The whole process is car-
ried out in the references [163, 199] on actual data.

10.5 Ad Hoc Approximations of d2f(θ)

In minimization problems, we have emphasized the importance of approx-
imating d2f(θ) by a positive definite matrix. Three key ideas drive the
process of approximation. One is the recognition that outer product ma-
trices are positive semidefinite. Another is a feel for when terms are small
on average. Usually this involves comparison of random variables and their
means. Finally, it is almost always advantageous to avoid the explicit cal-
culation of complicated second derivatives.
For example, consider the problem of least squares estimation with non-

linear regression functions. Let us formulate the problem slightly more gen-
erally as one of minimizing the sum of squares

f(θ) =
1

2

n∑
i=1

wi[yi − μi(θ)]
2

involving a weight wi > 0 and response yi for each case i. Here yi is a
realization of a random variable Yi with mean μi(θ). In linear regression,
μi(θ) =

∑
k xikθk. To implement Newton’s method, we need

∇f(θ) = −
n∑

i=1

wi[yi − μi(θ)]∇μi(θ)

d2f(θ) =

n∑
i=1

wi∇μi(θ)dμi(θ)−
n∑

i=1

wi[yi − μi(θ)]d
2μi(θ). (10.7)

In the Gauss-Newton algorithm, we approximate

d2f(θ) ≈
n∑

i=1

wi∇μi(θ)dμi(θ)
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on the rationale that either the weighted residuals wi[yi − μi(θ)] are small
or the regression functions μi(θ) are nearly linear. In both instances, the
Gauss-Newton algorithm shares the fast convergence of Newton’s method.
Maximum likelihood estimation with the Poisson distribution furnishes

another example. Here the count data y1, . . . , yn have loglikelihood, score,
and negative observed information

L(θ) =

n∑
i=1

[yi lnλi(θ)− λi(θ)− ln yi!]

∇L(θ) =

n∑
i=1

[ yi
λi(θ)

∇λi(θ)−∇λi(θ)
]

d2L(θ) =
n∑

i=1

[
− yi
λi(θ)2

∇λi(θ)dλi(θ) + yi
λi(θ)

d2λi(θ)− d2λi(θ)
]
,

where E(yi) = λi(θ). Given that the ratio yi/λi(θ) has average value 1, the
negative semidefinite approximations

d2L(θ) ≈ −
n∑

i=1

yi
λi(θ)2

∇λi(θ)dλi(θ)

≈ −
n∑

i=1

1

λi(θ)
∇λi(θ)dλi(θ)

are reasonable. The second of these leads to the scoring algorithm discussed
in the next section.
The exponential distribution offers a third illustration. Now the data

have means E(yi) = 1/λi(θ). The loglikelihood

L(θ) =

n∑
i=1

[lnλi(θ)− yiλi(θ)]

yields the score and negative observed information

∇L(θ) =

n∑
i=1

[ 1

λi(θ)
∇λi(θ)− yi∇λi(θ)

]

d2L(θ) =

n∑
i=1

[
− 1

λi(θ)2
∇λi(θ)dλi(θ) + 1

λi(θ)
d2λi(θ)− yid2λi(θ)

]
.

Replacing observations by their means suggests the approximation

d2L(θ) ≈ −
n∑

i=1

1

λi(θ)2
∇λi(θ)dλi(θ)
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made in the scoring algorithm. Table 10.2 summarizes the scoring algorithm
with means μi(θ) replacing intensities λi(θ).
Our final example involves maximum likelihood estimation with the

multinomial distribution. The observations y1, . . . , yj are now cell counts
over n independent trials. Cell i is assigned probability pi(θ) and averages
a total of npi(θ) counts. The loglikelihood, score, and negative observed
information amount to

L(θ) =

j∑
i=1

yi ln pi(θ)

∇L(θ) =

j∑
i=1

yi
pi(θ)

∇pi(θ)

d2L(θ) =

j∑
i=1

[
− yi
pi(θ)2

∇pi(θ)dpi(θ) + yi
pi(θ)

d2pi(θ)
]
.

In light of the identity E(yi) = npi(θ), the approximation

j∑
i=1

yi
pi(θ)

d2pi(θ) ≈ n

j∑
i=1

d2pi(θ) = nd21 = 0

is reasonable. This suggests the further negative semidefinite approxima-
tions

d2L(θ) ≈ −
j∑

i=1

yi
pi(θ)2

∇pi(θ)dpi(θ)

≈ −n
j∑

i=1

1

pi(θ)
∇pi(θ)dpi(θ),

the second of which coincides with the scoring algorithm.

10.6 Scoring and Exponential Families

As we have just witnessed, one can approximate the observed information
in a variety of ways. The method of steepest ascent replaces the observed
information by the identity matrix I. The usually more efficient scoring
algorithm replaces the observed information by the expected information
J(θ) = E[−d2L(θ)], where L(θ) is the loglikelihood. The alternative rep-
resentation J(θ) = Var[∇L(θ)] of J(θ) as a variance matrix shows that
it is positive semidefinite and hence a good replacement for −d2L(θ) in
Newton’s method. An extra dividend of scoring is that the inverse matrix
J(θ̂)−1 immediately supplies the asymptotic variances and covariances of
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the maximum likelihood estimate θ̂ [218]. Scoring shares this benefit with
Newton’s method since the observed information is under natural assump-
tions asymptotically equivalent to the expected information.
To prove that J(θ) = Var[∇L(θ)], suppose the data has density f(y | θ)

relative to some measure ν, which is usually ordinary volume measure or
a discrete counting measure. We first note that the score conveniently has
vanishing expectation because

E[∇L(θ)] =

∫ ∇f(y | θ)
f(y | θ) f(y | θ) dν(y)

= ∇
∫
f(y | θ) dν(y)

and
∫
f(y | θ) dν(y) = 1. Here the interchange of differentiation and expec-

tation must be proved, but we will not stop to do so. See the references
[176, 218]. The formal calculation

E[−d2L(θ)] = −
∫ [

d2f(y | θ)
f(y | θ) − ∇f(y | θ)df(y | θ)

f(y | θ)2
]
f(y | θ) dν(y)

= −d2
∫
f(y | θ) dν(y)

+

∫
∇L(θ)dL(θ)f(y | θ) dν(y)

= −0+ E[∇L(θ)dL(θ)]
then completes the verification.
The score and expected information simplify considerably for exponential

families of densities [22, 43, 110, 146, 202]. Based on equation (9.1), the
score and expected information can be expressed succinctly in terms of the
mean vector μ(θ) = E[h(y)] and the variance matrix Σ(θ) = Var[h(y)]
of the sufficient statistic h(y). Our point of departure in deriving these
quantities is the identity

dL(θ) = dβ(θ) + h(y)∗dγ(θ). (10.8)

If γ(θ) is linear in θ, then J(θ) = −d2L(θ) = −d2β(θ), and scoring coin-
cides with Newton’s method. If in addition J(θ) is positive definite, then
L(θ) is strictly concave and possesses at most a single local maximum,
which is necessarily the global maximum.
For an exponential family, the fact that E[∇L(θ)] = 0 can be restated as

dβ(θ) + μ(θ)∗dγ(θ) = 0∗. (10.9)

Subtracting equation (10.9) from equation (10.8) yields the alternative rep-
resentation

dL(θ) = [h(y)− μ(θ)]∗dγ(θ) (10.10)
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of the first differential. This representation implies that the expected infor-
mation is

J(θ) = Var[∇L(θ)] = dγ(θ)∗Σ(θ)dγ(θ). (10.11)

To eliminate dγ(θ) in equations (10.10) and (10.11), note that

dμ(θ) =

∫
h(y)df(y | θ) dν(y)

=

∫
h(y)dL(θ)f(y | θ) dν(y)

=

∫
h(y)[h(y)− μ(θ)]∗ dγ(θ)f(y | θ) dν(y)

=

∫
[h(y)− μ(θ)][h(y)− μ(θ)]∗f(y | θ) dν(y) dγ(θ)

= Σ(θ)dγ(θ).

When Σ(θ) is invertible, this calculation implies dγ(θ) = Σ(θ)−1dμ(θ),
which in view of equations (10.10) and (10.11) yields

dL(θ) = [h(y)− μ(θ)]∗Σ(θ)−1dμ(θ) (10.12)

J(θ) = dμ(θ)∗Σ(θ)−1dμ(θ). (10.13)

One can verify these formulas directly for the normal, Poisson, exponen-
tial, and multinomial distributions studied in the previous section. In each
instance the sufficient statistic for case i is just yi.
Based on equations (9.1), (10.12), and (10.13), Table 10.2 displays the

loglikelihood, score vector, and expected information matrix for some com-
monly applied exponential families. In this table, x represents a single ob-
servation from the binomial, Poisson, and exponential families. For the
multinomial family with m categories, x = (x1, . . . , xm)∗ gives the cate-
gory counts. The quantity μ denotes the mean of x for the Poisson and
exponential families. For the binomial family, we express the mean np as
the product of the number of trials n and the success probability p per
trial. A similar convention holds for the multinomial family.
The multinomial family deserves further comment. Straightforward cal-

culation shows that the variance matrix Σ(θ) has entries

n[1{i=j}pi(θ)− pi(θ)pj(θ)].
Here the matrix Σ(θ) is singular, so the generalized inverse applies in for-
mulas (10.12) and (10.13). In this case it is easier to derive the expected
information by taking the expectation of the observed information given in
Sect. 10.5.
In the ABO allele frequency estimation problem studied in Chaps. 8

and 9, scoring can be implemented by taking as basic parameters pA and pB



10.7 The Gauss-Newton Algorithm 257

TABLE 10.2. Score and information for some exponential families

Family L(θ) ∇L(θ) J(θ)

Binomial x ln p
1−p + n ln(1−p) x−np

p(1−p)∇p n
p(1−p)∇pdp

Multinomial
∑

i xi ln pi
∑

i
xi

pi
∇pi

∑
i

n
pi
∇pidpi

Poisson −μ+ x lnμ −∇μ+ x
μ∇μ 1

μ∇μdμ

Exponential − lnμ− x
μ − 1

μ∇μ+ x
μ2∇μ 1

μ2∇μdμ

and expressing pO = 1−pA−pB. Scoring then leads to the same maximum
likelihood point (p̂A, p̂B, p̂O) = (.2136, .0501, .7363) as the EM algorithm.
The quicker convergence of scoring here—four iterations as opposed to five
starting from (.3, .2, .5)—is often more dramatic in other problems. Scoring
also has the advantage over EM of immediately providing asymptotic stan-
dard deviations of the parameter estimates. These are (.0135, .0068, .0145)
for the estimates (p̂A, p̂B, p̂O).

10.7 The Gauss-Newton Algorithm

Armed with our better understanding of scoring, let us revisit nonlinear re-
gression. Suppose that the n independent responses y1, . . . , yn are normally
distributed with means μi(θ) and variances σ2/wi, where the wi are known
constants. To estimate the mean parameter vector θ and the variance pa-
rameter σ2 by scoring, we first write the loglikelihood up to a constant as
the function

L(φ) = −n
2
lnσ2 − 1

2σ2

n∑
i=1

wi[yi − μi(θ)]
2 = −n

2
lnσ2 − f(θ)

σ2

of the parameters φ = (θ∗, σ2)∗.
Straightforward differentiation yields the score

∇L(φ) =

(
1
σ2

∑n
i=1 wi[yi − μi(θ)]∇μi(θ)

− n
2σ2 + 1

2σ4

∑n
i=1 wi[yi − μi(θ)]

2

)
.

To derive the expected information

J(φ) =

(
1
σ2

∑n
i=1 wi∇μi(θ)dμi(θ) 0

0 n
2σ4

)
,
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we note that the observed information matrix can be written as the sym-
metric block matrix

−d2L(φ) =

(
Hθθ Hθσ2

Hσ2θ Hσ2σ2

)
.

The upper-left block Hθθ equals d2f(θ)/σ2 with d2f(θ) given by equation
(10.7). The displayed value of the expectation E(Hθθ) follows directly from
the identity E[yi − μi(θ)] = 0. The upper-right block Hθσ2 amounts to
−∇f(θ)/σ4, and its expectation vanishes because again E[yi − μi(θ)] = 0.
Finally, the lower-right block Hσ2σ2 equals

− n

2σ4
+

1

σ6

n∑
i=1

wi[yi − μi(θ)]
2.

Its expectation

E(Hσ2σ2) = − n

2σ4
+

1

σ6

n∑
i=1

wi E{[yi − μi(θ)]
2} =

n

2σ4

because Var(yi) = σ2/wi. Readers experienced in calculating variances and
covariances can verify the blocks of J(θ) by forming Var[∇L(θ)].
In any event, scoring updates θ by

θm+1 (10.14)

= θm +
[ n∑

i=1

wi∇μi(θm)dμ(θm)
]−1 n∑

i=1

wi[yi − μi(θm)]∇μi(θm)

and σ2 by

σ2
m+1 =

1

n

n∑
i=1

wi[yi − μi(θm)]2.

The scoring algorithm (10.14) for θ amounts to nothing more than the
Gauss-Newton algorithm. The Gauss-Newton updates can be carried out
blithely neglecting the updates of σ2.

10.8 Generalized Linear Models

The generalized linear model [202] deals with exponential families (9.1)
in which the sufficient statistic h(y) is y and the mean μ(θ) of y com-
pletely determines the distribution of y. In many applications it is natural
to postulate that μ(θ) = q(x∗θ) is a monotone function q(s) of some lin-
ear combination of known predictors x. The inverse of q(s) is called the
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TABLE 10.3. AIDS data from Australia during 1983–1986

Quarter Deaths Quarter Deaths Quarter Deaths

1 0 6 4 11 20
2 1 7 9 12 25
3 2 8 18 13 37
4 3 9 23 14 45
5 1 10 31

link function. In this setting, dμ(θ) = q′(x∗θ)x∗. It follows from equa-
tions (10.12) and (10.13) that if y1, . . . , yj are independent responses with
corresponding predictor vectors x1, . . . ,xj , then the score and expected
information can be written as

∇L(θ) =

j∑
i=1

yi − μi(θ)

σ2
i (θ)

q′(x∗
i θ)xi

J(θ) =

j∑
i=1

1

σ2
i (θ)

q′(x∗
i θ)

2xix
∗
i ,

where σ2
i (θ) = Var(yi).

Table 10.3 contains quarterly data on AIDS deaths in Australia that illus-
trate the application of a generalized linear model [73, 273]. A simple plot of
the data suggests exponential growth. A plausible model therefore involves
Poisson distributed observations yi with means μi(θ) = eθ1+iθ2 . Because
this parameterization renders scoring equivalent to Newton’s method, scor-
ing gives the quick convergence noted in Table 10.4.

10.9 Accelerated MM

We now consider the question of how to accelerate the often excruciatingly
slow convergence of the MM algorithm. The simplest device is to just dou-
ble each MM step [61, 163]. Thus, if F (xm) is the MM algorithm map from
Rp to Rp, then we move to xm + 2[F (xm) − xm] rather than to F (xm).
Step doubling is a standard tactic that usually halves the number of it-
erations until convergence. However, in many problems something more
radical is necessary. Because Newton’s method enjoys exceptionally quick
convergence in a neighborhood of the optimal point, an attractive strategy
is to amend the MM algorithm so that it resembles Newton’s method. The
papers [144, 145, 164] take up this theme from the perspective of optimiz-
ing the objective function by Newton’s method. It is also possible to apply
Newton’s method to find a root of the equation 0 = x− F (x). This alter-
native perspective has the advantage of dealing directly with the iterates of
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TABLE 10.4. Scoring iterates for the AIDS model

Iteration Step halves θ1 θ2
1 0 0.0000 0.0000
2 3 −1.3077 0.4184
3 0 0.6456 0.2401
4 0 0.3744 0.2542
5 0 0.3400 0.2565
6 0 0.3396 0.2565

the MM algorithm. Let G(x) denote the difference G(x) = x− F (x). Be-
cause G(x) has differential dG(x) = I − dF (x), Newton’s method iterates
according to

xm+1 = xm − dG(xm)−1G(xm)

= xm − [I − dF (xm)]−1G(xm). (10.15)

If we can approximate dF (xm) by a low-rank matrix M , then we can
replace I − dF (xm) by I −M and explicitly form the inverse (I −M)−1.
Let us see where this strategy leads.
Quasi-Newton methods operate by secant approximations [27, 32]. It is

easy to generate a secant condition by taking two MM iterates starting
from the current point xm. Close to the optimal point y, the linear ap-
proximation

F ◦ F (xm)− F (xm) ≈ M [F (xm)− xm]

holds, whereM = dF (y). If v is the vector F ◦F (xm)−F (xm) and u is the
vector F (xm)−xm, then the secant condition is Mu = v. In fact, the best
results may require several secant conditions Mui = vi for i = 1, . . . , q,
where q ≤ p. These can be generated at the current iterate xm and the
previous q − 1 iterates. For convenience represent the secant conditions in
the matrix form MU = V for U = (u1, . . . ,uq) and V = (v1, . . . ,vq).
Example 5.2.7 shows that the choice M = V (U∗U)−1U∗ minimizes the
Frobenius norm of M subject to the secant constraint MU = V . In prac-
tice, it is better to make a controlled approximation to dF (y) than a wild
guess.
To apply the approximation, we must invert the matrix I−V (U∗U)−1U∗.

Fortunately, we have the explicit inverse

[I − V (U ∗U)−1U∗]−1 = I + V [U∗U −U∗V ]−1U∗. (10.16)

The reader can readily check this variant of the Sherman-Morrison formula.
It is noteworthy that the q× q matrix U∗U −U∗V is trivial to invert for q
small even when p is large. With these results in hand, the Newton update
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(10.15) can be replaced by the quasi-Newton update

xm+1 = xm − [I − V (U∗U)−1U∗]−1[xm − F (xm)]

= xm − [I + V (U∗U −U∗V )−1U∗][xm − F (xm)]

= F (xm)− V (U∗U −U∗V )−1U∗[xm − F (xm)].

The special case q = 1 is interesting in its own right. A brief calculation
shows that the quasi-Newton update for q = 1 is

xm+1 = (1− cm)F (xm) + cmF ◦ F (xm) (10.17)

cm = − ‖F (xm)− xm‖2
[F ◦ F (xm)− 2F (xm) + xm]∗[F (xm)− xm]

.

This quasi-Newton acceleration enjoys several desirable properties in
high-dimensional problems. First, the computational effort per iteration
is relatively light: two MM updates and a few matrix times vector multi-
plications. Second, memory demands are also light. If we fix q in advance,
the most onerous requirement is storage of the secant matrices U and V .
These two matrices can be updated by replacing the earliest retained se-
cant pair by the latest secant pair generated. Third, the whole scheme is
consistent with linear constraints. Thus, if the parameter space satisfies a
linear constraint w∗x = a for all feasible x, then the quasi-Newton iter-
ates also satisfy w∗xm = a for all m. This claim follows from the equalities
w∗F (x) = a and w∗V = 0. Finally, if the quasi-Newton update at xm fails
the ascent or descent test, then one can always revert to the second MM
update F ◦ F (xm). Balanced against these advantages is the failure of the
quasi-Newton acceleration to respect parameter lower and upper bounds.

Example 10.9.1 A Mixture of Poissons

Problem 9 of Chap. 9 describes a Poisson mixture model for mortality data
from The London Times. Starting from the method of moments estimates
(μ01, μ02, π0) = (1.101, 2.582, .2870), the EM algorithm takes an excru-
ciating 535 iterations for the loglikelihood L(θ) to attain its maximum of
−1989.946. Even worse, it takes 1,749 iterations for the parameters to reach
the maximum likelihood estimates (μ̂1, μ̂2, π̂) = (1.256, 2.663, .3599). The
sizable difference in convergence rates to the maximum loglikelihood and
the maximum likelihood estimates indicates that the likelihood surface is
quite flat. In contrast, the accelerated EM algorithm converges to the max-
imum loglikelihood in about 10–150 iterations, depending on the value of
q. Figure 10.1 plots the progress of the EM algorithm and the different
versions of the quasi-Newton acceleration. Titterington et al. [259] report
that Newton’s method typically takes 8–11 iterations to converge when it
converges for these data. For about a third of their initial points, Newton’s
method fails.
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FIGURE 10.1. MM acceleration for the mixture of Poissons example

Although we have couched quasi-Newton acceleration in terms of the MM
algorithm, it applies to any optimization algorithm with reasonably smooth
parameter updates. Block relaxation is another potential beneficiary. Block
relaxation shares the ascent-descent property of the MM algorithm, so if
acceleration fails to improve the objective function, then one can still make
progress by reverting to the original double step executed in constructing
a new secant.

10.10 Problems

1. What happens when you apply Newton’s method to the functions

f(x) =

{√
x x ≥ 0

−√−x x < 0

and g(x) = 3
√
x?

2. Consider a function f(x) = (x− r)kg(x) with a root r of multiplicity
k. If g′(x) is continuous at r, and the Newton iterates xm converge
to r, then show that the iterates satisfy

lim
m→∞

|xm+1 − r|
|xm − r| = 1− 1

k
.
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3. As an illustration of Problem 2, use Newton’s method to extract a
root of the polynomials p1(x) = x2−1 and p2(x) = x2−2x+1 starting
from x0 = 2. Notice how much more slowly convergence occurs for
p2(x) than for p1(x).

4. Suppose the real-valued f(x) satisfies f ′(x) > 0 and f ′′(x) > 0 for all
x in its domain (d,∞). If the equation f(x) = 0 has a root r, then
demonstrate that r is unique and that Newton’s method converges
to r regardless of its starting point. Further, prove that xm converges
monotonically to r from above when x0 > r and that x1 > r when
x0 < r. How are these results pertinent to Example 10.2.2?

5. Problem 4 applies to polynomials p(x) having only real roots. Suppose
p(x) is a polynomial of degree d with roots r1 < r2 < · · · < rd and
leading coefficient cd > 0. Show that on the interval (rd,∞) the
functions p(x), p′(x), and p′′(x) are all positive. Hence, if we seek
rd by Newton’s method starting at x0 > rd, then the iterates xm
decrease monotonically to rd. (Hint: According to Rolle’s theorem,
what can we say about the roots of p′(x) and p′′(x)?)

6. Suppose that the polynomial p(x) has the known roots r1, . . . , rd.
Maehly’s algorithm [246] attempts to extract one additional root rd+1

by iterating via

xm+1 = xm − p(xm)

p′(xm)−∑d
k=1

p(xm)
(xm−rk)

.

Show that this is just a disguised version of Newton’s method. It has
the virtue of being more numerically accurate than Newton’s method
applied to the deflated polynomial calculated from p(x) by synthetic

division. (Hint: Consider the polynomial q(x) = p(x)
∏d

k=1(x−rk)−1.)

7. Apply Maehly’s algorithm as sketched in Problem 6 to find the roots
of the polynomial p(x) = x4 − 12x3 + 47x2 − 60x.

8. Consider the map

f(x) =

(
x21 + x22 − 2
x1 − x2

)

of the plane into itself. Show that f(x) = 0 has the roots −1 and 1
and no other roots. Prove that Newton’s method iterates according to

xm+1,1 = xm+1,2 =
x2m1 + x2m2 + 2

2(xm1 + xm2)

and that these iterates converge to the root −1 if x01+x02 is negative
and to the root 1 if x01 + x02 is positive. If x01 + x02 = 0, then the
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first iterate is undefined. Finally, prove that

lim
m→∞

|xm+1,1 − y1|
|xm1 − y1|2 = lim

m→∞
|xm+1,2 − y2|
|xm2 − y2|2 =

1

2
,

where y is the root relevant to the initial point x0.

9. Continuing Example 10.2.5, consider iterating according to

Bm+1 = Bm

j∑
i=0

(I −ABm)i (10.18)

to find A−1 [138]. Example 10.2.5 covers the special case j = 1. Verify
the alternative representation

Bm+1 =

j∑
i=0

(I −BmA)iBm,

and use it to prove that Bm+1 is symmetric whenever A and Bm

are. Also show that

A−1 −Bm+1 = (A−1 −Bm)[A(A−1 −Bm)]j .

From this last identity deduce the norm inequality

‖A−1 −Bm+1‖ ≤ ‖A‖j‖A−1 −Bm‖j+1.

Thus, the algorithm converges at a cubic rate when j = 2, at a quartic
rate when j = 3, and so forth.

10. Example 10.2.2 can be adapted to extract the nth root of a positive
semidefinite matrix A [107]. Consider the iteration scheme

Bm+1 =
n− 1

n
Bm +

1

n
B−n+1

m A

starting with B0 = cI for some positive constant c. Show by induc-
tion that (a) Bm commutes with A, (b) Bm is symmetric, and (c)

Bm is positive definite. To prove that Bm converges to A1/n, con-
sider the spectral decomposition A = UDU∗ of A with D diagonal
and U orthogonal. Show that Bm has a similar spectral decomposi-
tion Bm = UDmU∗ and that the ith diagonal entries of Dm and D
satisfy

dm+1,i =
n− 1

n
dmi +

1

n
d−n+1
mi di.

Example 10.2.2 implies that dmi converges to
n
√
di when di > 0. This

convergence occurs at a fast quadratic rate as explained in Propo-
sition 12.2.2. If di = 0, then dmi converges to 0 at the linear rate
n−1
n .
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11. Program the algorithm of Problem 10 and extract the square roots
of the two matrices(

1 1
1 1

)
,

(
2 1
1 2

)
.

Describe the apparent rate of convergence in each case and any diffi-
culties you encounter with roundoff error.

12. Prove that the increment (10.5) can be expressed as

Δxm

= −H−1/2
m

[
I −H−1/2

m V ∗(V H−1
m V ∗)−1V H−1/2

m

]
H−1/2

m ∇f(xm)

= −H−1/2
m (I − Pm)H−1/2

m ∇f(xm)

using the symmetric square root H−1/2
m of H−1

m . Check that the ma-
trix Pm is a projection in the sense that P ∗

m = Pm and P 2
m = Pm

and that these properties carry over to I − Pm. Now argue that

−df(xm)Δxm = ‖(I − Pm)H−1/2
m ∇f(xm)‖2

and consequently that step halving is bound to produce a decrease
in f(x) if (I − Pm)H−1/2

m ∇f(xm) �= 0.

13. Show that Newton’s method converges in one iteration to the mini-
mum of

f(θ) =
1

2
θ∗Aθ + b∗θ + c

when the symmetric matrix A is positive definite. Note that this
implies that the Gauss-Newton algorithm (10.14) converges in a single
step when the regression functions μi(θ) are linear.

14. In Example 10.4.2, digamma and trigamma functions ψ(t) and ψ′(t)
must be evaluated. Show that these functions satisfy the recurrence
relations

ψ(t) = −t−1 + ψ(t+ 1)

ψ′(t) = t−2 + ψ′(t+ 1).

Thus, if ψ(t) and ψ′(t) can be accurately evaluated via asymptotic
expansions for large t, then they can be accurately evaluated for small
t. For example, it is known that ψ(t) = ln t − (2t)−1 + O(t−2) and
ψ′(t) = t−1 + (

√
2t)−2 +O(t−3) as t→∞.

15. Compute the score vector and the observed and expected information
matrices for the Dirichlet distribution (10.6). Explicitly invert the
expected information using the Sherman-Morrison formula.
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16. Verify the score and information entries in Table 10.2.

17. Let g(x) and h(x) be probability densities defined on the real line.
Show that the admixture density f(x) = θg(x) + (1 − θ)h(x) for
θ ∈ [0, 1] has score and expected information

L′(θ) =
g(x)− h(x)

θg(x) + (1− θ)h(x)
J(θ) =

∫
[g(x)− h(x)]2

θg(x) + (1− θ)h(x)dx

=
1

θ(1− θ)
[
1−

∫
g(x)h(x)

θg(x) + (1 − θ)h(x)dx
]
.

What happens to J(θ) when g(x) and h(x) coincide? What does J(θ)
equal when g(x) and h(x) have nonoverlapping domains? (Hint: The
identities

h− g =
θg + (1 − θ)h− g

1− θ , g − h =
θg + (1− θ)h− h

θ

will help.)

18. A quantal response model involves independent binomial observations
y1, . . . , yj with ni trials and success probability πi(θ) per trial for the
ith observation. If xi is a predictor vector and θ a parameter vector,
then the specification

πi(θ) =
ex

∗
i θ

1 + ex
∗
i
θ

gives a generalized linear model. Use the scoring algorithm to estimate
θ̂ = (−5.1316, 0.0677)∗ for the ingot data of Cox [53] displayed in
Table 10.5.

TABLE 10.5. Ingot data for a quantal response model

Trials ni Observation yi Covariate xi1 Covariate xi2
55 0 1 7
157 2 1 14
159 7 1 27
16 3 1 57

19. In robust regression it is useful to consider location-scale families with
densities of the form

c

σ
e−ρ( x−μ

σ ), x ∈ (−∞,∞). (10.19)
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Here ρ(r) is a strictly convex even function, decreasing to the left
of 0 and symmetrically increasing to the right of 0. Without loss
of generality, one can take ρ(0) = 0. The normalizing constant c is
determined by c

∫∞
−∞ e−ρ(r)dr = 1. Show that a random variable X

with density (10.19) has mean μ and variance

Var(X) = cσ2

∫ ∞

−∞
r2e−ρ(r)dr.

If μ depends on a parameter vector θ, demonstrate that the score
corresponding to a single observation X = x amounts to

∇L(φ) =

(
1
σρ

′(x−μ
σ )∇μ

− 1
σ + ρ′(x−μ

σ )x−μ
σ2

)

for φ = (θ∗, σ)∗. Finally, prove that the expected information J(φ)
is block diagonal with upper-left block

c

σ2

∫ ∞

−∞
ρ′′(r)e−ρ(r)dr∇μ(θ)dμ(θ)

and lower-right block

c

σ2

∫ ∞

−∞
ρ′′(r)r2e−ρ(r)dr +

1

σ2
.

20. In the context of Problem 19, take ρ(r) = ln cosh2( r2 ). Show that this
corresponds to the logistic distribution with density

f(x) =
e−x

(1 + e−x)2
.

Compute the integrals

π2

3
= c

∫ ∞

−∞
r2e−ρ(r)dr

1

3
= c

∫ ∞

−∞
ρ′′(r)e−ρ(r)dr

1

3
+
π2

9
= c

∫ ∞

−∞
ρ′′(r)r2e−ρ(r)dr + 1

determining the variance and expected information of the density
(10.19) for this choice of ρ(r).

21. Continuing Problems 19 and 20, compute the normalizing constant c
and the three integrals determining the variance and expected infor-
mation for Huber’s function

ρ(r) =

{
r2

2 |r| ≤ k

k|r| − k2

2 |r| > k .
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22. A family of discrete density functions pn(θ) defined on {0, 1, . . .} and
indexed by a parameter θ > 0 is said to be a power series family if
for all n

pn(θ) =
cnθ

n

g(θ)
, (10.20)

where cn ≥ 0, and where g(θ) =
∑∞

n=0 cnθ
n is the appropriate nor-

malizing constant. If y1, . . . , yj are independent observations from
the discrete density (10.20), then show that the maximum likelihood
estimate of θ is a root of the equation

1

j

j∑
i=1

yi =
θg′(θ)
g(θ)

. (10.21)

Prove that the expected information in a single observation is

J(θ) =
σ2(θ)

θ2
,

where σ2(θ) is the variance of the density (10.20).

23. Continuing problem 22, equation (10.21) suggests that one can find

the maximum likelihood estimate θ̂ by iterating via

θm+1 =
x̄g(θm)

g′(θm)
= f(θm),

where x̄ is the sample mean. The question now arises whether this
iteration scheme is likely to converge to θ̂. Local convergence hinges
on the condition |f ′(θ̂)| < 1. When this condition is true, the map

θm+1 = f(θm) is locally contractive near the fixed point θ̂. Prove that

f ′(θ̂) = 1− σ2(θ̂)

μ(θ̂)
,

where

μ(θ) =
θg′(θ)
g(θ)

is the mean of a single realization. Thus, convergence depends on the
ratio of the variance to the mean. (Hints: By differentiating g(θ) it is
easy to compute the mean and the second factorial moment

E[X(X − 1)] =
θ2g′′(θ)
g(θ)

.

Substitute this in f ′(θ̂), recall Var(X) = E[X(X−1)]+E(X)−E(X)2,
and invoke equality (10.21).)
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24. In the Gauss-Newton algorithm (10.14), the matrix

d2f(θm) =

j∑
i=1

wi∇μi(θm)dμ(θm)

can be singular or nearly so. To cure this ill, Marquardt suggested
choosing λ > 0, substituting

Hm =

j∑
i=1

wi∇μi(θm)dμ(θm) + λI

for d2f(θm), and iterating according to

θm+1 = θm +H−1
m

j∑
i=1

wi[xi − μi(θm)]∇μi(θm). (10.22)

Prove that the increment Δθm = θm+1 − θm proposed in equation
(10.22) minimizes the criterion

1

2

j∑
i=1

wi[xi − μi(θm)− dμi(θm)Δθm]2 +
λ

2
‖Δθm‖2.

25. Survival analysis deals with nonnegative random variables T model-
ing random lifetimes. Let such a random variable T ≥ 0 have density
function f(t) and distribution function F (t). The hazard function

h(t) = lim
s↓0

Pr(t < T ≤ t+ s | T > t)

s

=
f(t)

1− F (t)
represents the instantaneous rate of death under lifetime T . Statis-
ticians call the right-tail probability 1 − F (t) = S(t) the survival
function and view h(t) as the derivative

h(t) = − d

dt
lnS(t).

The cumulative hazard function H(t) =
∫ t

0
h(s)ds obviously satisfies

the identity

S(t) = e−H(t).

In Cox’s proportional hazards model, longevity depends not only on
time but also predictors. This is formalized by taking

h(t) = λ(t)ex
∗α,
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where x and α are column vectors of predictors and regression coeffi-
cients, respectively. For instance, xmight be (1, d)∗, where d indicates
dosage of a life-prolonging drug.

Many clinical trials involve right censoring. In other words, instead of
observing a lifetime T = t, we observe T > t. Censored and ordinary
data can be mixed in the same study. Generally, each observation T
comes with a censoring indicator W . If T is censored, then W = 1;
otherwise, W = 0.

(a) Show that

H(t) = Λ(t)ex
∗α,

where

Λ(t) =

∫ t

0

λ(s)ds.

In the Weibull proportional hazards model, λ(t) = βtβ−1. Show
that this translates into the survival and density functions

S(t) = e−tβex
∗α

f(t) = βtβ−1ex
∗α−tβex

∗α

.

(b) Consider n independent possibly censored observations t1, . . . , tn
with corresponding predictor vectors x1 . . . ,xn and censoring
indicators w1, . . . , wn. Prove that the loglikelihood of the data
is

L(α, β) =

n∑
i=1

wi lnSi(ti) +

n∑
i=1

(1− wi) ln fi(ti),

where Si(t) and fi(t) are the survival and density functions of
the ith case.

(c) Calculate the score and observed information for the Weibull
model as posed. The observed information is

−d2L(α, β) =

n∑
i=1

tβi e
x∗

i α

(
xi

ln ti

)(
xi

ln ti

)∗

+

n∑
i=1

(1 − wi)

(
0 0
0 β−2

)
.

(d) Show that the loglikelihood L(α, β) for the Weibull model is
concave. Demonstrate that it is strictly concave if and only if
the n vectors x1, . . . ,xn span Rm, where α has m components.
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(e) Describe in detail how you would implement Newton’s method
for finding the maximum likelihood estimate of the parameter
vector (α, β). What difficulties might you encounter? Why is
concavity of the loglikelihood helpful?

26. Write a computer program and reproduce the iterates displayed in
Table 10.4.

27. Let x1, . . . , xm be a random sample from the gamma density

f(x) = Γ(α)−1βαxα−1e−βx

on (0,∞). Find the score, observed information, and expected infor-
mation for the parameters α and β, and demonstrate that Newton’s
method and scoring coincide.

28. Continuing Problem 27, derive the method of moments estimators

α̂ =
x2

s2
, β̂ =

x

s2
,

where x = 1
m

∑m
i=1 xi and s2 = 1

m

∑m
i=1(xi − x)2 are the sample

mean and variance, respectively. These are not necessarily the best
explicit estimators of the two parameters. Show that setting the score
function equal to 0 implies that β = α/x is a stationary point of the
loglikelihood L(α, β) of the sample x1, . . . , xm for α fixed. Why does
β = α/x furnish the maximum? Now argue that substituting this
value of β in the loglikelihood reduces maximum likelihood estimation
to optimization of the profile loglikelihood

L(α) = mα lnα−mα lnx−m ln Γ(α) +m(α− 1)lnx−mα.
Here lnx = 1

m

∑m
i=1 lnxi. There are two nasty terms in L(α). One is

α lnα, and the other is ln Γ(α). We can eliminate both by appealing
to a version of Stirling’s formula. Ordinarily Stirling’s formula is only
applied for large factorials. This limitation is inconsistent with small
α. However, Gosper’s version of Stirling’s formula is accurate for all
arguments. This little-known version of Stirling’s formula says that

Γ(α+ 1) ≈
√
(α+ 1/6)2πααe−α.

Given that Γ(α) = Γ(α+1)/α, show that the application of Gosper’s
formula leads to the approximate maximum likelihood estimate

α̂ =
3− d+√

(3− d)2 + 24d

12d
,

where d = lnx − lnx [47]. Why is this estimate of α positive? Why
does one take the larger root of the defining quadratic?
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29. In the multilogit model, items are drawn from m categories. Let yi
denote the ith outcome of l independent draws and xi a corresponding
predictor vector. The probability πij that yi = j is given by

πij(θ) =

⎧⎪⎨
⎪⎩

e
x∗
i
θj

1+
∑

m−1

k=1
e
x∗
i
θk

1 ≤ j < m

1

1+
∑m−1

k=1
e
x∗
i
θk

j = m.

Find the loglikelihood, score, observed information, and expected in-
formation. Demonstrate that Newton’s method and scoring coincide.
(Hint: You can achieve compact expressions by stacking vectors and
using matrix Kronecker products.)

30. Derive formulas (10.16) and (10.17).



11
Conjugate Gradient and Quasi-Newton

11.1 Introduction

Our discussion of Newton’s method has highlighted both its strengths
and its weaknesses. Related algorithms such as scoring and Gauss-Newton
exploit special features of the objective function f(x) in overcoming the
defects of Newton’s method. We now consider algorithms that apply to
generic functions f(x). These algorithms also operate by locally approxi-
mating f(x) by a strictly convex quadratic function. Indeed, the guiding
philosophy behind many modern optimization algorithms is to see what
techniques work well with quadratic functions and then to modify the best
techniques to accommodate generic functions.
The conjugate gradient algorithm [94, 127] is noteworthy for three prop-

erties: (a) it minimizes a quadratic function f(x) from Rn to R in n steps,
(b) it does not require evaluation of d2f(x), and (c) it does not involve
storage or inversion of any n×n matrices. Property (c) makes the method
particularly suitable for optimization in high-dimensional settings. One of
the drawbacks of the conjugate gradient method is that it requires exact
line searches.
Quasi-Newton algorithms [10, 56, 91, 93] enjoy properties (a) and (b) but

not property (c). In compensation for the failure of (c), inexact line searches
are usually adequate with quasi-Newton algorithms. Furthermore, quasi-
Newton methods adapt more readily to parameter constraints. Except for a
discussion of trust regions, the current chapter considers only unconstrained
optimization problems.

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 11,
© Springer Science+Business Media New York 2013
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11.2 Centers of Spheres and Centers of Ellipsoids

As an introduction to many of the central ideas of the chapter, it is
instructive to explore a simple algorithm for finding the center of a sphere.
The fact that we already know the answer should not deter us from consid-
ering algorithmic issues. If the center is the origin, then obviously we can
find it by minimizing the scaled distance function

g(x) = 1
2‖x‖2 = 1

2

∑n
i=1 x

2
i

with gradient ∇g(x) = x. In cyclic coordinate descent, we minimize g(x)
along each coordinate direction in turn, starting from a point x1 and gener-
ating successive points x2, . . . ,xn+1. The search along coordinate direction
ei at iteration i amounts to minimizing the function

g(xi + tei) =
1

2
(xii + t)2 +

1

2

∑
j 
=i

x2ij

of the scalar t. The minimum occurs at t = −xii and yields xi+1. It is
trivial to check that this procedure achieves the minimum in n iterations
and satisfies at iteration i the identities

e∗i ej = 0 and dg(xi)ej = 0 (11.1)

for all j < i. Furthermore, xi+1 minimizes the function

h(t1, . . . , ti) = g
(
x1 +

i∑
j=1

tjej

)

defined on the i-dimensional plane x1 + t1e1 + · · · + tiei formed from all
linear combinations of the first i search directions. Because of the spherical
symmetry of the function g(x), we can substitute any set of nontrivial
orthogonal vectors u1, . . . ,un and reach the same conclusions.
If we consider an arbitrary strictly convex quadratic function

f(y) =
1

2
y∗Ay + b∗y + c (11.2)

=
1

2
(y +A−1b)∗A(y +A−1b)− 1

2
b∗A−1b+ c,

then the situation becomes more interesting. Here the matrix A is positive
definite, so there is no doubt that its inverse A−1 exists. Because the min-
imum of f(y) occurs at y = −A−1b, any method of minimizing f(y) gives
in effect a method for solving the linear equation Ay = −b. The solution
of such equations in high dimensions is one of the primary applications of
the conjugate gradient method.
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We can reduce the problem of minimizing the quadratic function (11.2)
to the previous spherical minimization problem by making the change of
variables y = A−1/2x−A−1b involving the symmetric square root A−1/2

ofA−1. IfA = UDU∗ is the spectral decomposition of the positive definite
matrixA, then A−1/2 = UD−1/2U∗. The invertible transformation x �→ y
sends lines into lines and planes into planes. It also sends the function f(y)
into the function

g(x) = f(y)

= f(A−1/2x−A−1b)

=
1

2
‖x‖2 − 1

2
b∗A−1b+ c

and puts us back where we started, minimizing 1
2‖x‖2. If we have a set

of nontrivial orthogonal vectors u1, . . . ,un in x space, then we can search
along each of these directions in turn and achieve the global minima of g(x)
and f(y) in n iterations.
For later use, it is important to identify the analogs of the orthogonality

conditions (11.1). The direction ui in x space corresponds to the direction

vi in y space defined by A1/2vi = ui. Thus, the condition u∗
iuj = 0 for

all j < i translates into the condition

v∗
iA

1/2A1/2vj = v∗
iAvj = 0

for all j < i. Two vectors vi and vj satisfying such an orthogonality relation
are said to be conjugate. Conjugacy is equivalent to orthogonality under
the nonstandard inner product v∗

iAvj . A finite set of conjugate vectors is
necessarily linearly independent.
In view of the chain rule, we have dg(xi) = df(yi)A

−1/2 for the point

yi = A−1/2xi − A−1b. Thus, the condition dg(xi)uj = 0 for all j < i
translates into the condition

df(yi)A
−1/2A1/2vj = df(yi)vj = 0 (11.3)

for all j < i. Alternatively, the condition df(yi)vj = 0 for all j < i is an
immediate consequence of the fact that yi minimizes the function

h(t1, . . . , ti−1) = f
(
y1 +

i−1∑
j=1

tjvj

)
(11.4)

defined on the plane y1 + t1v1 + · · · + ti−1vi−1 formed from all linear
combinations of the first i− 1 search directions.

11.3 The Conjugate Gradient Algorithm

The flaw with this analysis is that it omits any description of how the initial
point y1 and conjugate directions v1, . . . ,vn are chosen. Choice of y1 is
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more or less arbitrary, depending on the particular problem and relevant
external information. The obvious choice v1 = −∇f(y1) is consistent with
an initial search along the direction of steepest descent. At iteration i > 1
the conjugate gradient algorithm inductively chooses the search direction

vi = −∇f(yi) + αivi−1, (11.5)

where

αi =
df(yi)Avi−1

v∗
i−1Avi−1

(11.6)

is defined so that v∗
iAvi−1 = 0. For 1 ≤ j < i− 1, the conjugacy condition

v∗
iAvj = 0 requires

0 = −df(yi)Avj + αiv
∗
i−1Avj = −df(yi)Avj . (11.7)

Equality (11.7) is hardly obvious, but we can attack it by noting that in
view of definition (11.5) the vectors v1, . . . ,vi−1 and∇f(y1), . . . ,∇f(yi−1)
span the same vector subspace. Hence, the condition df(yi)vj = 0 for all
j < i is equivalent to the condition df(yi)∇f(yj) = 0 for all j < i. However,
df(yi)vj = 0 for all j < i because yi minimizes the function (11.4). Since
∇f(y) = Ay + b and yj+1 = yj + tjvj for some optimal constant tj , we
can also write

∇f(yj+1) = ∇f(yj) + tjAvj . (11.8)

It follows that

df(yi)Avj =
1

tj
df(yi)[∇f(yj+1)−∇f(yj)] = 0

for 1 ≤ j < i − 1. Except for the details addressed in the next paragraph,
this demonstrates equality (11.7) and completes the proof that the search
directions v1, . . . ,vn are conjugate.
If at any iteration we have ∇f(yi) = 0, then the algorithm terminates

with the global minimum. Otherwise, equations (11.3) and (11.5) show that
all search directions vi satisfy

df(yi)vi = −‖∇f(yi)‖2 + αidf(yi)vi−1

= −‖∇f(yi)‖2
< 0.

As a consequence, vi �= 0, v∗
iAvi > 0, and αi+1 is well defined. Finally, the

inequality df(yi)vi < 0 implies that the search direction vi leads down-
hill from yi and that the search constant ti > 0. In fact, the stationarity
condition 0 = df(yi+1)vi and equation (11.8) lead to the conclusion

ti = −df(yi)vi

v∗
iAvi

= − (Ayi + b)∗vi

v∗
iAvi

. (11.9)



11.3 The Conjugate Gradient Algorithm 277

In generalizing the conjugate gradient algorithm to non-quadratic
functions, we preserve most of the structure of the algorithm. Thus, the
revised algorithm first searches along the negative gradient v1 = −∇f(y1)
emanating from the initial point y1. At iteration i it searches along the
direction vi defined by equality (11.5), avoiding the explicit formula (11.9)
for ti. The formula (11.6) for αi is problematic because it appears to
require A. Hestenes and Stiefel recommend the alternative formula

αi =
df(yi)[∇f(yi)−∇f(yi−1)]

v∗
i−1[∇f(yi)−∇f(yi−1)]

(11.10)

based on the substitution

Avi−1 =
1

ti−1
[∇f(yi)−∇f(yi−1)].

Polak and Ribière suggest the further substitutions

v∗
i−1∇f(yi) = 0

v∗
i−1∇f(yi−1) = [−df(yi−1) + αi−1vi−2)]∇f(yi−1)

= −‖∇f(yi−1)‖2.
These produce the second alternative

αi =
df(yi)[∇f(yi)−∇f(yi−1)]

‖∇f(yi−1)‖2
. (11.11)

Finally, Fletcher and Reeves note that the identity

df(yi)∇f(yi−1) = df(yi)[−vi−1 + αi−1vi−2)]

= 0

yields the third alternative

αi =
‖∇f(yi)‖2
‖∇f(yi−1)‖2

. (11.12)

Almost no one now uses the Hestenes-Stiefel update (11.10). Current
opinion is divided between the Polak-Ribière update (11.11) and the
Fletcher-Reeves update (11.12). Numerical Recipes [215] codes both formu-
las but leans toward the Polak-Ribière formula. In addition to this issue,
there are other practical concerns in implementing the conjugate gradient
algorithm. For example, if we fail to stop once the gradient ∇f(y) van-
ishes, then the Polak-Ribière and Fletcher-Reeves updates are undefined.
This suggests stopping when ‖∇f(yi)‖ ≤ ε‖∇f(y1)‖ for some small ε > 0.
There is also the problem of loss of conjugacy. Assuming f(y) is defined on
Rn, it is common practice to restart the conjugate gradient algorithm with
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the steepest descent direction every n iterations. This is also a good idea
whenever the descent condition df(yi)vi < 0 fails. Finally, the algorithm
is incomplete without specifying a line search algorithm. The next sec-
tion discusses some of the ways of conducting a line search. The references
[2, 92, 215] provide a fuller account and appropriate computer code.

11.4 Line Search Methods

The secant method of Example 10.2.4 can obviously be adapted to min-
imize the objective function f(y) along a line r �→ x + rv in Rn. If we
define g(r) = f(x+ rv), then we proceed by searching for a zero of the
derivative g′(r) = df(x+ rv)v. In this guise, the secant method is known
as the method of false position. It iterates according to

rm+1 = rm − g′(rm)(rm−1 − rm)

g′(rm−1)− g′(rm)
.

Two criticisms of the method of false position immediately come to mind.
One is that it indiscriminately heads for maxima as well as minima. Another
is that it does not make full use of the available information.
A better alternative to the method of false position is to approximate

g(r) by a cubic polynomial matching the values of g(r) and g′(r) at rm
and rm−1. Minimizing the cubic should lead to an improved estimate rm+1

of the minimum of g(r). It simplifies matters notationally to rescale the
interval by setting h(s) = g(rm−1 + sdm) and dm = rm − rm−1. Now
s = 0 corresponds to rm−1 and s = 1 corresponds to rm. Furthermore,
the chain rule implies h′(s) = g′(rm−1 + sdm)dm. Given these conventions,
the theory of Hermite interpolation [123] suggests approximating h(s) by
the cubic polynomial

p(s)

= (s− 1)2h0 + s2h1 + s(s− 1)[(s− 1)(h′0 + 2h0) + s(h′1 − 2h1)]

= (2h0 + h′0 − 2h1 + h′1)s
3 + (−3h0 − 2h′0 + 3h1 − h′1)s2 + h′0s+ h0,

where h0 = h(0), h′0 = h′(0), h1 = h(1), and h′1 = h′(1). One can readily
verify that p(0) = h0, p

′(0) = h′0, p(1) = h1, and p
′(1) = h′1.

The conjugate gradient method is locally descending in the sense that
p′(0) = h′0 < 0. To be on the cautious side, p′(1) = h′1 > 0 should hold and
p(s) should be convex throughout the interval [0, 1]. To check convexity,
it suffices to check the conditions p′′(0) ≥ 0 and p′′(1) ≥ 0 since p′′(s) is
linear. Straightforward calculation shows that

p′′(0) = −6h0 + 6h1 − 4h′0 − 2h′1
p′′(1) = 6h0 − 6h1 + 2h′0 + 4h′1.
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Thus, p(s) is convex throughout [0, 1] if and only if

1
3h

′
1 +

2
3h

′
0 ≤ h1 − h0 ≤ 2

3h
′
1 +

1
3h

′
0. (11.13)

Under these conditions, a local minimum of p(s) occurs on [0, 1]. The per-
tinent root of the two possible roots of p′(s) = 0 is determined by the sign
of the coefficient 2h0 + h′0 − 2h1 + h′1 of s3 in p(s). If this coefficient is
positive, then the right root furnishes the minimum, and if this coefficient
is negative, then the left root furnishes the minimum. The two roots can
be calculated simultaneously by solving the quadratic equation

p′(s) = 3(2h0 + h′0 − 2h1 + h′1)s
2 + 2(−3h0 − 2h′0 + 3h1 − h′1)s+ h′0

= 0.

If the condition p′(1) = h′1 > 0 or the convexity conditions (11.13) fail,
or if the minimum of the cubic leads to an increase in g(r), then one should
fall back on more conservative search methods. Golden search involves
recursively bracketing a minimum by three points a < b < c satisfying
g(b) < min{g(a), g(c)}. The analogous method of bisection brackets a zero
of g(r) by two points a < b satisfying g(a)g(b) < 0. For the moment we
ignore the question of how the initial three points a, b, and c are chosen in
golden search.
To replace the bracketing interval (a, c) by a shorter interval, we choose

d ∈ (a, c) so that d belongs to the longer of the two intervals (a, b) and
(b, c). Without loss of generality, suppose b < d < c. If g(d) < g(b), then
the three points b < d < c bracket a minimum. If g(d) > g(b), then the
three points a < b < d bracket a minimum. In the case of a tie g(d) = g(b),
we choose b < d < c when g(c) < g(a) and a < b < d when g(a) < g(c).
These sensible rules do not address the problem of choosing d. Consider

the fractional distances

β = b−a
c−a , δ = d−b

c−a

along the interval (a, c). The next bracketing interval will have a fractional
length of either 1− β or β + δ. To guard against the worst case, we should
take 1 − β = β + δ. This determines δ = 1 − 2β and hence d. One could
leave matters as they now stand, but the argument is taken one step farther
in golden search. If we imagine repeatedly performing golden search, then
scale similarity is expected to set in eventually so that

β =
b− a
c− a =

d− b
c− b =

δ

1− β .

Substituting δ = 1 − 2β in this identity and cross multiplying give the
quadratic β2 − 3β + 1 = 0 with solution

β =
3−√5

2
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equal to the golden mean of ancient Greek mathematics. Following this
reasoning, we should take δ =

√
5− 2 = 0.2361.

There is little theory to guide us in finding an initial bracketing triple
a < b < c. It is clear that a = 0 is one natural choice. In view of the
condition g′(0) < 0, the point b can be chosen close to 0 as well. This leaves
c, which is usually selected based on specific knowledge of f(y), parabolic
extrapolation, or repeated doubling of some small arbitrary distance.

11.5 Stopping Criteria

Deciding when to terminate an iterative method is more subtle than it
might seem. In solving a one-dimensional nonlinear equation g(x) = 0,
there are basically two tests. One can declare convergence when |g(xn)|
is small or when xn does not change much from one iteration to the next.
Ideally, both tests should be satisfied. However, there are questions of scale.
Our notion of small depends on the typical magnitudes of g(x) and x,
and stopping criteria should reflect these magnitudes [66]. Suppose a > 0
represents the typical magnitude of g(x). Then a sensible criterion of the
first kind is to stop when |g(xn)| < εa for ε > 0 small. If b > 0 represents
the typical magnitude of x, then a sensible criterion of the second kind is
to stop when

|xn − xn−1| ≤ εmax{|xn|, b}. (11.14)

To achieve p significant digits in the solution x∞, take ε = 10−p.
When we optimize a function f(x) with derivative g(x) = f ′(x), a third

test comes into play. Now it is desirable for f(x) to remain relatively con-
stant near convergence. If c > 0 represents the typical magnitude of f(x),
then our final stopping criterion is

|f(xn)− f(xn−1)| ≤ εmax{|f(xn)|, c}.

The second and third criteria generalize better than the first criterion
to higher-dimensional problems because solutions often occur on bound-
aries or manifolds where the gradient ∇f(x) is not required to vanish. The
Karush-Kuhn-Tucker conditions are acceptable substitute for Fermat’s con-
dition provided the Lagrange multipliers are known. In higher dimensions,
one should apply the criterion (11.14) to each coordinate of x. Choice of the
typical magnitudes a, b, and c is problem specific, and some optimization
programs leave this up to the discretion of the user. Often problems can be
rescaled by an appropriate choice of units so that the choice a = b = c = 1
is reasonable. When in doubt about typical magnitudes, take this default
and check whether the output of a preliminary computer run justifies the
assumption.
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11.6 Quasi-Newton Methods

Quasi-Newton methods of minimization update the current approximation
Hi to the second differential d2f(xi) of the objective function f(x) by a
low-rank perturbation satisfying a secant condition. The secant condition
originates from the first-order Taylor approximation

∇f(xi+1)−∇f(xi) ≈ d2f(xi)(xi+1 − xi).

If we set

gi = ∇f(xi+1)−∇f(xi)

di = xi+1 − xi,

then the secant condition readsHi+1di = gi. The unique, symmetric, rank-
one update to Hi satisfying the secant condition is furnished by Davidon’s
formula [56]

Hi+1 = Hi + civiv
∗
i (11.15)

with the constant ci and the vector vi specified by

ci = − 1

(Hidi − gi)
∗di

(11.16)

vi = Hidi − gi.

An immediate concern is that the constant ci is undefined when the inner
product (Hidi − gi)

∗di = 0. In such situations or when

|(H idi − gi)
∗di| � ‖Hidi − gi‖ · ‖di‖,

then the secant adjustment is ignored, and the value Hi is retained for
Hi+1.
We have stressed the desirability of maintaining a positive definite

approximation H i to the second differential d2f(xi). Because this is not
always possible with the rank-one update, numerical analysts have inves-
tigated rank-two updates. The involvement of the vectors gi and H idi in
the rank-one update suggests trying a rank-two update of the form

H i+1 = Hi + bigig
∗
i + ciH idid

∗
iH i. (11.17)

Taking the product of both sides of this equation with di gives

Hi+1di = Hidi + bigig
∗
idi + ciHidid

∗
iHidi.

To achieve consistency with the secant condition Hi+1di = gi, we set

bi =
1

g∗
idi

, ci = − 1

d∗
iHidi

.
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The resulting rank-two update was proposed by Broyden, Fletcher,
Goldfarb, and Shanno and is consequently known as the BFGS update.
The symmetric rank-one update (11.15) certainly preserves positive def-

initeness when ci ≥ 0. If ci < 0, then Hi+1 is positive definite only if

v∗
iH

−1
i [H i + civiv

∗
i ]H

−1
i vi = v∗

iH
−1
i vi[1 + civ

∗
iH

−1
i vi]

> 0.

In other words, the condition

1 + civ
∗
iH

−1
i vi > 0 (11.18)

must hold. Conversely, condition (11.18) is sufficient to guarantee positive
definiteness of Hi+1. This fact can be most easily demonstrated by noting
the Sherman-Morrison inversion formula [197]

[H i + civiv
∗
i ]

−1 = H−1
i − ci

1 + civ∗
iH

−1
i vi

H−1
i vi[H

−1
i vi]

∗. (11.19)

Formula (11.19) shows that [H i + civiv
∗
i ]

−1 exists and is positive definite
under condition (11.18). Since the inverse of a positive definite matrix is
positive definite, it follows that Hi + civiv

∗
i is positive definite as well.

If ci < 0 in the rank-one update but condition (11.18) fails, then there
are various options. The preferred is implementation of the trust region
strategy discussed in Sect. 11.7. Alternatively, one can shrink ci to maintain
positive definiteness. Unfortunately, condition (11.18) gives too little
guidance. Problem 12 shows how to control the size of detHi+1 while
simultaneously forcing positive definiteness. An even better strategy that
monitors the condition number of Hi+1 rather than detH i+1 is sketched
in Problem 14. Finally, there is the option of using ci as defined but per-
turbing Hi+1 by adding a constant multiple μI of the identity matrix.
This tactic is similar in spirit to the trust region method. If λ1 is the
smallest eigenvalue of Hi+1, then Hi+1 + μI is positive definite when-
ever λ1 + μ > 0. Problem 15 discusses a fast algorithm for finding λ1.
With appropriate safeguards, some numerical analysts [51, 152] consider
the rank-one update superior to the BFGS update.
Positive definiteness is almost automatic with the BFGS update (11.17).

The key turns out to be the inequality

0 < g∗
idi = df(xi+1)di − df(xi)di. (11.20)

This is ordinarily true for two reasons. First, because di is proportional
to the current search direction vi = −H−1

i ∇f(xi), positive definiteness
of H−1

i implies −df(xi)di > 0. Second, when a full search is conducted,
the identity df(xi+1)di = 0 holds. Even a partial search typically entails
condition (11.20). Section 12.6 takes up the issue of partial line searches.
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The speed of partial line searches compared to that of full line searches
makes quasi-Newton methods superior to the conjugate gradient method
on small-scale problems.
To show that the BFGS update Hi+1 is positive definite when condition

(11.20) holds, we examine the quadratic form

u∗Hi+1u = u∗Hiu+
(g∗

iu)
2

g∗
idi

− (u∗Hidi)
2

d∗
iHidi

(11.21)

for u �= 0. Applying Cauchy’s inequality to the vectors a = H
1/2
i u and

b = H
1/2
i di gives

(u∗Hidi)
2 ≤ (u∗H iu)(d

∗
iH idi),

with equality if and only if u is proportional to di. Hence, the sum of
the first and third terms on the right of equality (11.21) is nonnegative.
In the event that u is proportional to di, the second term on the right of
equality (11.21) is positive by assumption. It follows that u∗Hi+1u > 0
and therefore that Hi+1 is positive definite.
In successful applications of quasi-Newton methods, choice of the initial

matrix H1 is critical. Setting H1 = I is convenient but often poorly scaled
for a particular problem. In maximum likelihood estimation, the expected
information matrix J(x1), if available, is preferable to the identity matrix.
In some problems, J(x) is cheap to compute and manipulate for special
values of x. For instance, J(x) may be diagonal in certain circumstances.
These special x should be considered as starting points for a quasi-Newton
search.
It is possible to carry forward approximations Ki of d2f(xi)

−1 rather
than of d2f(xi). This tactic has the advantage of avoiding matrix inversion
in computing the quasi-Newton search direction vi = −Ki∇f(xi). The
basic idea is to restate the secant condition Hi+1di = gi as the inverse
secant condition Ki+1gi = di. This substitution leads to the symmetric
rank-one update

Ki+1 = Ki + ciwiw
∗
i , (11.22)

where ci = −[(Kigi−di)
∗gi]

−1 and wi = Kigi−di. Note that monitoring
positive definiteness of Ki is still an issue.
For a rank-two update, our earlier arguments apply provided we inter-

change the roles of di and gi. The Davidon-Fletcher-Powell (DFP) update

Ki+1 = Ki + bidid
∗
i + ciKigig

∗
iKi (11.23)

with

bi =
1

g∗
idi

, ci = − 1

g∗
iKigi
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is a competitor to the BFGS update, but the consensus seems to be that
the BFGS update is superior to the DFP update in practice [66].
In closing this section, we would like to prove that the BFGS algorithm

with an exact line search converges in n or fewer iterations for the strictly
convex quadratic function (11.2) defined on Rn. Recall that at iteration i we
search along the direction vi = −H−1

i ∇f(xi) and then in preparation for
the next iteration construct H i+1 according to the BFGS formula (11.17).
Unless ∇f(xi) = 0 and the iterates converge prematurely, the current in-
crement di is a positive multiple tivi of the search direction vi. Our proof of
convergence consists of a subtle inductive argument proving three claims in
parallel. These claims amount to the conjugacy condition vi+1Avj = 0, the
extended secant condition H i+1dj = gj , and the gradient perpendicularity
condition df(xi+1)vj = 0, each for all 1 ≤ j ≤ i and all i ≤ n. Given the
efficacy of successive searches along conjugate directions as demonstrated
in Sect. 11.2, the conjugacy condition vi+1Avj = 0 guarantees convergence
to the minimum of f(y) in n or fewer iterations.
The case i = 0, where all three conditions are vacuous, gets the induction

on i started. In general, assume that the three conditions are true for i− 1
and all 1 ≤ j ≤ i − 1. Equation (11.3) validates the gradient perpendicu-
larity condition for any set of conjugate directions v1, . . . ,vi, not just the
ones determined by the BFGS update (11.17). Given the gradient identity
Adj = gj and the validity of the extended secant condition H i+1dj = gj ,
we calculate

v∗
i+1Avj = −df(xi+1)H

−1
i+1Avj

= −t−1
j df(xi+1)H

−1
i+1Adj

= −t−1
j df(xi+1)H

−1
i+1gj (11.24)

= −t−1
j df(xi+1)dj

= −df(xi+1)vj

= 0,

which is the required conjugacy condition.
Thus, it suffices to prove Hi+1dj = gj for j ≤ i. The case j = i is just

the ordinary secant requirement. For j < i, we observe that

H i+1dj = Hidj + bigig
∗
idj + ciHidid

∗
iHidj .

Now the equalities Hidj = gj and g∗
idj = d∗

iAdj = 0 hold by the induc-
tion hypothesis. Likewise,

d∗
iHidj = d∗

i gj

= d∗
iAdj

= 0

follows from the induction hypothesis. Combining these equalities makes it
clear that H i+1dj = gj and completes the induction and the proof.
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11.7 Trust Regions

If the quadratic approximation

f(x) ≈ f(xi) + df(xi)(x− xi) +
1

2
(x− xi)

∗Hi(x− xi)

to the objective function f(x) is poor, then the naive step

xi+1 = xi −H−1
i ∇f(xi) (11.25)

computed in a quasi-Newton method may be absurdly large. This situation
often occurs for early iterates. One remedy is to minimize the quadratic
approximation to f(x) subject to the spherical constraint ‖x− xi‖2 ≤ r2

for a fixed radius r. This constrained optimization problem has a solution
regardless of whether Hi is positive definite, but to simplify matters in the
remaining discussion, we assume that Hi is positive definite. According to
Proposition 5.2.1, the solution satisfies the multiplier rule

0 = ∇f(xi) +Hi(x− xi) + μ(x− xi) (11.26)

for some nonnegative constant μ. If the point xi+1 generated by the or-
dinary step (11.25) occurs within the open ball ‖x − xi‖ < r, then the
multiplier μ = 0. Of course, there is no guarantee that this choice of xi+1

will lead to a decrease in f(x). If it does not, then one should reduce r, for
instance to r

2 , and try again.
When the point xi+1 generated by the ordinary step (11.25) occurs out-

side the open ball ‖x−xi‖ < r, we are obliged to look for a minimum point
x to the quadratic approximation satisfying ‖x− xi‖ = r. In this case the
multiplier μ may be positive. The fact that μ is unknown makes it impos-
sible to find the minimum in closed form. In principle, one can overcome
this difficulty by solving for μ iteratively, say by Newton’s method. Hence,
we view equation (11.26) as defining x− xi as a function of μ and ask for
the value of μ that yields ‖x−xi‖ = r. To simplify notation, let H = Hi,
y = x− xi, and e = −∇f(xi). We now seek a zero of the function

φ(μ) =
1

r
− 1

‖y(μ)‖ (11.27)

with y(μ) defined by (H + μI)y(μ) = e. Note that φ(0) > 0 if and only
if ‖y(0)‖ > r. To implement Newton’s method, we need φ′(μ). An easy
calculation shows that

φ′(μ) =
y(μ)∗y′(μ)
‖y(μ)‖3 .

Unfortunately, this formula contains the unknown derivative y′(μ). How-
ever, differentiation of the equation (H + μI)y(μ) = e readily yields

y(μ) + (H + μI)y′(μ) = 0, (11.28)
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which implies y′(μ) = −(H + μI)−1y(μ). The complete formula

φ′(μ) = −y(μ)∗(H + μI)−1y(μ)

‖y(μ)‖3

shows that φ(μ) is strictly decreasing. Problem 16 asks the reader to calcu-
late φ′′(μ) and verify that it is nonnegative. Problem 17 asserts that φ(μ)
is negative for large μ. Hence, there is a unique Lagrange multiplier μi > 0
solving φ(μ) = 0 whenever φ(0) > 0. The corresponding y(μi) solves the
trust region problem [198, 241].
If one is willing to extract the spectral decomposition of UDU t of Hi,

then the process can be simplified. Let z = U t(x−xi) and b = U t∇f(xi).
Then the trust region problem reduces to minimizing 1

2z
tDz+btz subject

to ‖z‖2 ≤ r2. The stationarity conditions for the corresponding Lagrangian

L(z, μ) =
1

2
ztDz + btz +

μ

2

(‖z‖2 − r2)

yield

zj = − bj
dj + μ

.

where dj is the jth diagonal entry of D. When z = −D−1b satisfies the
constraint ‖z‖2 ≤ r2, we take μ = 0. Otherwise, we solve the constraint
equality

r2 =
∑
j

(
bj

dj + μ

)2

for μ numerically and determine z and x = Uz + xi accordingly. For
more details about trust regions and their practical implementation, see
the books [66, 107, 151, 205].

11.8 Problems

1. Suppose you possess n conjugate vectors v1, . . . ,vn for the n × n
positive definite matrix A. Describe how you can use the expansion
x =

∑n
i=1 civi to solve the linear equation Ax = b.

2. Suppose that A is an n × n positive definite matrix and that the
nontrivial vectors u1, . . . ,un satisfy

u∗
iAuj = 0, u∗

iuj = 0

for all i �= j. Demonstrate that the ui are eigenvectors of A.
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3. Suppose that the n×n symmetric matrix A satisfies v∗Av �= 0 for all
v �= 0 and that {u1, . . . ,un} is a basis of Rn. If one defines v1 = u1

and inductively

vk = uk −
k−1∑
j=1

u∗
kAvj

v∗
jAvj

vj

for k = 2, . . . , n, then show that the vectors {v1, . . . ,vn} are con-
jugate and provide a basis of Rn. Note that A need not be positive
definite.

4. Consider extracting a root of the equation x2 = 0 by Newton’s
method starting from x0 = 1. Show that it is impossible to satisfy
the convergence criterion

|xn − xn−1| ≤ εmax{|xn|, |xn−1|}

for ε = 10−7 [66]. This example favors the alternative stopping rule
(11.14).

5. Let M be an n× n matrix and d and g be n× 1 vectors. Show that
the matrix

Nopt = M + ‖d‖−2(g −Md)d∗

minimizes the distance ‖N −M‖ between M and an arbitrary n×n
matrix N subject to the secant condition Nd = g [66]. Unfortu-
nately, the rank-one update Nopt is not symmetric when M is sym-
metric. (Hints: Note that (N −M )d = (N opt −M)d for every such
N and that the outer product dd∗ has induced matrix norm ‖d‖2.)

6. Let M be an n× n symmetric matrix and d and g be n× 1 vectors.
Powell proposed the rank-two update

Nopt = M +
(g −Md)d∗ + d(g −Md)∗

‖d‖2 − (g −Md)∗d dd∗

‖d‖4

to M . Show that N opt is symmetric, has rank two, and satisfies the
secant condition Noptd = g [66].

7. Continuing Problem 6, show that the matrix N opt minimizes the
distance ‖N −M‖F between M and an arbitrary n × n symmet-
ric matrix N subject to the secant condition Nd = g. Here ‖A‖F
denotes the Frobenius norm of the matrix A viewed as a vector. Un-
fortunately, Powell’s update does not preserve positive definiteness.
(Hints: Note that (N −M)d = (N opt −M )d for every such N and
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‖(N −M)v‖ ≥ ‖(Nopt −M )v‖ for every v with v∗d = 0. Apply
the identities

‖A‖2F = ‖AO‖2F =
n∑

i=1

‖Aom‖2F

for an orthogonal matrix O with columns o1, . . . ,on.)

8. Consider the quadratic function

Q(x) =
1

2
x∗

(
2 1
1 1

)
x+ (1, 1)x

defined on R2. Compute by hand the iterates of the conjugate gra-
dient and BFGS algorithms starting from x1 = 0. For the BFGS
algorithm take H1 = I and use an exact line search. You should
find that the two sequences of iterates coincide. This phenomenon
holds more generally for any strictly convex quadratic function in the
BFGS algorithm given H1 = I [200].

9. Write a program to implement the conjugate gradient algorithm.
Apply it to the function

f(x) =
1

4
x41 +

1

2
x22 − x1x2 + x1 − x2

with two local minima. Demonstrate that your program will converge
to either minimum depending on its starting value.

10. Prove Woodbury’s generalization

(A+UBV ∗)−1 = A−1 −A−1U(B−1 + V ∗A−1U)−1V ∗A−1

of the Sherman-Morrisonmatrix inversion formula for compatible ma-
trices A, B, U , and V . Apply this formula to the BFGS rank-two
update.

11. A quasi-Newton minimization of the strictly convex quadratic func-
tion (11.2) generates a sequence of points x1, . . . ,xn+1 with A-conju-
gate differences di = xi+1−xi. At the final iteration we have argued
that the approximate Hessian satisfies Hn+1di = gi for 1 ≤ i ≤ n
and gi = ∇f(xi+1)−∇f(xi). Show that this implies Hn+1 = A.

12. In the rank-one update, suppose we want both H i+1 to remain pos-
itive definite and detHi+1 to exceed some constant ε > 0. Explain
how these criteria can be simultaneously met by replacing ci < 0 by

max
{
ci,

( ε

detH i
− 1

) 1

v∗
iH

−1
i vi

}
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in updating Hi. (Hint: In verifying this sufficient condition, you may
want to use the one-dimensional version of the identity

det(A) det(B−1 −U∗A−1U) = det(A−UBU∗) det(B−1)

for compatible matrices A, B, and U .)

13. Let H be a positive definite matrix. Prove [33] that

tr(H)− ln det(H) ≥ ln[cond2(H)]. (11.29)

The condition number cond2(H) of H equals ‖H‖ · ‖H−1‖, that is
the ratio of the largest to smallest eigenvalue of H . (Hint: Express
tr(H) − ln det(H) in terms of the eigenvalues of H. Then use the
inequalities λ− lnλ ≥ 1 and λ > 2 lnλ for all λ > 0.)

14. In Davidon’s symmetric rank-one update (11.15), it is possible to
control the condition number of H i+1 by shrinking the constant ci.
Suppose a moderately sized number δ is chosen. Due to inequality
(11.29), one can avoid ill-conditioning in the matricesH i by imposing
the constraint tr(H i)− ln det(H i) ≤ δ. To see how this fits into the
updating scheme (11.15), verify that

ln det(H i+1) = ln det(Hi) + ln(1 + civ
∗
iH

−1
i vi)

tr(H i+1) = tr(H i) + ci‖vi‖2.
Employing these results, deduce that tr(Hi+1) − ln det(H i+1) ≤ δ
provided ci satisfies

ci‖vi‖2 − ln(1 + civ
∗
iH

−1
i vi) ≤ δ − tr(Hi) + ln det(H i).

15. Suppose the n× n symmetric matrix A has eigenvalues

λ1 < λ2 ≤ · · · ≤ λn−1 < λn.

The iterative scheme xi+1 = (A−ηiI)xi can be used to approximate
either λ1 or λn. Consider the criterion

σi =
x∗
i+1Axi+1

x∗
i+1xi+1

.

Choosing ηi to maximize σi causes limi→∞ σi = λn, while choosing ηi
to minimize σi causes limi→∞ σi = λ1. Show that the extrema of σi
as a function of η are given by the roots of the quadratic equation

0 = det

⎛
⎝ 1 η η2

τ0 τ1 τ2
τ1 τ2 τ3

⎞
⎠ ,
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where τk = x∗
iA

kxi. Apply this algorithm to find the largest and
smallest eigenvalue of the matrix

A =

⎛
⎜⎝

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

⎞
⎟⎠ .

You should find λ1 = 0.01015 and λ4 = 30.2887 [48].

16. Calculate the second derivative φ′′(μ) of the function defined in
equation (11.27). Prove that φ′′(μ) ≥ 0.

17. Show that the solution y(μ) of the equation (H + μI)y(μ) = e
satisfies limμ→∞ ‖y(μ)‖ = 0. How does this justify the conclusion
that the function (11.27) has a zero on (0,∞) when φ(0) > 0?



12
Analysis of Convergence

12.1 Introduction

Proving convergence of the various optimization algorithms is a delicate
exercise. In general, it is helpful to consider local and global convergence
patterns separately. The local convergence rate of an algorithm provides
a useful benchmark for comparing it to other algorithms. On this basis,
Newton’s method wins hands down. However, the tradeoffs are subtle. Be-
sides the sheer number of iterations until convergence, the computational
complexity and numerical stability of an algorithm are critically important.
The MM algorithm is often the epitome of numerical stability and compu-
tational simplicity. Scoring lies somewhere between Newton’s method and
the MM algorithm. It tends to converge more quickly than the MM algo-
rithm and to behave more stably than Newton’s method. Quasi-Newton
methods also occupy this intermediate zone. Because the issues are com-
plex, all of these algorithms survive and prosper in certain computational
niches.
The following short overview of convergence manages to cover only high-

lights. For the sake of simplicity, only unconstrained problems are treated.
Quasi-Newton methods are also ignored. The efforts of a generation of
numerical analysts in understanding quasi-Newton methods defy easy
summary or digestion. Interested readers can consult one of the helpful
references [66, 105, 183, 204]. We emphasize MM and gradient algorithms,
partially because a fairly coherent theory for them can be reviewed in a
few pages.

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 12,
© Springer Science+Business Media New York 2013
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12.2 Local Convergence

Local convergence of many optimization algorithms hinges on the following
result [207].

Proposition 12.2.1 (Ostrowski) Let the differentiable map h(x) from
an open set U ⊂ Rn into Rn have fixed point y. If ‖dh(y)‖† < 1 for some
induced matrix norm, and if x0 is sufficiently close to y, then the iterates
xm+1 = h(xm) converge to y.

Proof: Let h(x) have slope function s(x,y) near y. For any constant r
satisfying ‖dh(y)‖† < r < 1, we have ‖s(x,y)‖† ≤ r for x sufficiently close
to y. It therefore follows from the identities

xm+1 − y = h(xm)− h(y) = s(xm,y)(xm − y)

that a proper choice of x0 yields

‖xm+1 − y‖† ≤ ‖s(xm,y)‖†‖xm − y‖† ≤ r‖xm − y‖†.
In other words, the distance from xm to y contracts by a factor of at least
r at every iteration. This proves convergence.

Two comments are worth making about Proposition 12.2.1. First, the
appearance of a general vector norm and its induced matrix norm obscures
the fact that the condition ρ[dh(y)] < 1 on the spectral radius of dh(y)
is the operative criterion. One can prove that any induced matrix norm
exceeds the spectral radius and that some induced matrix norm comes
within ε of it for any small ε > 0 [166]. Later in this section, we will
generate a tight matrix norm by taking an n × n invertible matrix T and
forming ‖u‖T = ‖Tu‖. It is easy to check that this defines a legitimate
vector norm and that the induced matrix norm ‖M‖T on n× n matrices
M satisfies

‖M‖T = sup
u 
=0

‖TMu‖
‖Tu‖ = sup

v 
=0

‖TMT−1v‖
‖v‖ .

In other words, ‖M‖T = ‖TMT−1‖, and we are back in the familiar
terrain covered by the spectral norm.
Our second comment involves two definitions. A sequence xm is said to

converge linearly to a point y at rate r < 1 provided

lim
m→∞

‖xm+1 − y‖
‖xm − y‖ = r.

The sequence converges quadratically if the limit

lim
m→∞

‖xm+1 − y‖
‖xm − y‖2 = c
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exists. Ostrowski’s result guarantees at least linear convergence; Newton’s
method improves linear convergence to quadratic convergence.
Our intention is to apply Ostrowski’s result to iteration maps of the type

h(x) = x−A(x)−1b(x). (12.1)

A point y is fixed by the map h(x) if and only if b(y) = 0. In optimization
problems, b(x) = ∇f(x) for some real-valued function f(x) defined on Rn.
Thus, fixed points correspond to stationary points. The matrix A(x) is
typically d2f(x) or a positive definite or negative definite approximation
to it. For instance, in statistical applications, −A(x) could be either the
observed or expected information. In the MM gradient algorithm, A(x) is
the second differential d2g(x | xm) of the surrogate function.
Our first order of business is to compute the differential dh(y) and an

associated slope function sh(x,y) at a fixed point y of h(x) in terms of
the slope function sb(x,y) of b(x). Because b(y) = 0 at a fixed point, the
calculation

h(x)− h(y) = x− y −A(x)−1[b(x)− b(y)] (12.2)

= [I −A(x)−1sb(x,y)](x− y)

identifies the slope function

sh(x,y) = I −A(x)−1sb(x,y)

and corresponding differential

dh(y) = I −A(y)−1db(y). (12.3)

In Newton’s method, A(y) = db(y) and

I −A(y)−1db(y) = I − db(y)−1db(y) = 0.

Proposition 12.2.1 therefore implies that the Newton iterates are locally
attracted to a fixed point y. Of course, this conclusion is predicated on
the suppositions that db(x) tends to db(y) as x tends to y and that db(y)
is invertible. To demonstrate quadratic rather than linear convergence, we
now assume that b(x) is differentiable and that its differential db(x) is
Lipschitz in a neighborhood of y with Lipschitz constant λ. Given these
assumptions and the identities h(y) = y and A(x) = db(x), equation (12.2)
implies

h(x)− y = − db(x)−1 [b(x)− b(y)− db(y)(x− y)]

+ db(x)−1 [db(x)− db(y)] (x− y)

Since Problem 31 of Chap. 4 supplies the bound

‖b(x)− b(y)− db(y)(x− y)‖ ≤ λ

2
‖x− y‖2,
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it follows that

‖h(x)− y‖ ≤
(
λ

2
+ λ

)
‖db(x)−1‖ · ‖x− y‖2.

The next proposition summarizes our results.

Proposition 12.2.2 Let y be a 0 of the continuously differentiable func-
tion b(x) from an open set U ⊂ Rn into Rn. If db(y)−1 is invertible and
db(x) is Lipschitz in U with constant λ, then Newton’s method converges
to y at a quadratic rate or better whenever x0 is sufficiently close to y.

Proof: The preceding remarks make it clear that

lim sup
m→∞

‖xm+1 − y‖
‖xm − y‖2 ≤ 3λ

2
‖db(y)−1‖,

and this suffices for quadratic convergence or better.

We now turn to the MM gradient algorithm. Suppose we are minimizing
f(x) via the surrogate function g(x | xm). If y is a local minimum of f(x), it
is reasonable to assume that the matrices C = d2f(y) and D = d2g(y | y)
are positive definite. Because g(x | y)−f(x) attains its minimum at x = y,
the matrix difference D−C is certainly positive semidefinite. The MM gra-
dient algorithm iterates take A(x) = d2g(x | x). In view of formula (12.3),
the iteration map h(x) has differential I −D−1C at y. If we let T be the

symmetric square root D1/2 of D, then

I −D−1C = D−1(D −C)

= T−1T−1(D −C)T−1T .

Hence, I −D−1C is similar to T−1(D −C)T−1.
To establish local attraction of the MM gradient algorithm to y, we need

to choose an appropriate matrix norm. The choice ‖M‖T = ‖TMT−1‖
serves well because Example 1.4.3 and Proposition 2.2.1 imply that

‖I −D−1C‖T = ‖TT−1T−1(D −C)T−1TT−1‖
= ‖T−1(D −C)T−1‖

= sup
u
=0

u∗T−1(D −C)T−1u

u∗u

= sup
v 
=0

v∗(D −C)v

v∗T ∗Tv

= sup
v 
=0

v∗(D −C)v

v∗Dv

= 1− inf
‖v‖=1

v∗Cv

v∗Dv
.
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The symmetry and positive semidefiniteness of D − C come into play in
the third equality in this string of equalities. By virtue of the positive
definiteness of C and D, the continuous ratio v∗Cv/v∗Dv is bounded
below by a positive constant on the compact sphere {v : ‖v‖ = 1}. It follows
that ‖I−D−1C‖T < 1, and Ostrowski’s result applies. Hence, the iterates
xm are locally attracted to y.
Calculation of the differential dh(y) of an MM iteration map h(x) is

equally interesting. This map satisfies the equation

∇g[h(x) | x] = 0

Assuming that the matrix d2g(y | y) is invertible, the implicit function
theorem, Proposition 4.6.2, shows that h(x) is continuously differentiable
with differential

dh(x) = −d2g[h(x) | x]−1d11g[h(x) | x]. (12.4)

Here d11g(u | v) denotes the differential of dg(u | v) with respect to v. At
the fixed point y of h(x), equation (12.4) becomes

dh(y) = −d2g(y | y)−1d11g(y | y). (12.5)

Further simplification can be achieved by taking the differential of

∇f(x)−∇g(x | x) = 0

and setting x = y. These actions give

d2f(y)− d2g(y | y)− d11g(y | y) = 0.

This last equation can be solved for d11g(y | y), and the result substituted
in equation (12.5). It follows that

dh(y) = −d2g(y | y)−1[d2f(y)− d2g(y | y)]
= I − d2g(y | y)−1d2f(y), (12.6)

which is precisely the differential computed for the MM gradient algorithm.
Hence, the MM and MM gradient algorithms display exactly the same
behavior in converging to a stationary point of f(x).
These apparently esoteric details have considerable practical value. In the

setting of the EM algorithm, we replace x by θ, f(x) by the observed data
loglikelihood L(θ), and g(x | xm) by the minorizing function Q(θ | θm).
The rate of convergence of an EM algorithm is determined by how well
the observed data information −d2L(θ) is approximated by the complete
data information matrix −d2Q(θ | θ) at the optimal point. The difference
between these two matrices is termed the missing data information [191,
206]. If the amount of missing data is high, then the algorithm will converge
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slowly. The art in devising an EM or MM algorithm lies in choosing a
tractable surrogate that matches the objective function as closely possible.
Local convergence of the scoring algorithm is not guaranteed by

Proposition 12.2.1 because nothing prevents an eigenvalue of

dh(y) = I + J(y)−1d2L(y)

from falling below −1. Here L(x) is the loglikelihood, J(x) is the expected
information, and h(x) is the scoring iteration map. Scoring with a fixed
partial step,

xm+1 = xm + tJ(xm)−1∇L(xm),

will converge locally for t > 0 sufficiently small. In practice, no adjust-
ment is usually necessary. For reasonably large sample sizes, the expected
information matrix J(y) approximates the observed information matrix
−d2L(y) well, and the spectral radius of dh(y) is nearly 0.
Finally, let us consider local convergence of block relaxation. The argu-

ment x = (x[1],x[2], . . . ,x[b]) of the objective function f(x) now splits into
disjoint blocks, and f(x) is minimized along each block of components x[i]

in turn. LetMi(x) denote the update to block i. To compute the differential
of the full update M(x) at a local optimum y, we need compact notation.
Let ∂if(x) denote the partial differential of f(x) with respect to block i;
the transpose of ∂if(x) is the partial gradient ∇if(x). The updates satisfy
the partial gradient equations

0 = ∇if [M1(x), . . . ,Mi(x),x[i+1], . . . ,x[b]]. (12.7)

Now let ∂j∇if(x) denote the partial differential of the partial gradient
∇if(x) with respect to block j. Taking the partial differential of equa-
tion (12.7) with respect to block j, applying the chain rule, and substituting
the optimal point y =M(y) for x yield

0 =

i∑
k=1

∂k∇if(y)∂jMk(y), j ≤ i

0 =

i∑
k=1

∂k∇if(y)∂jMk(y) + ∂j∇if(y), j > i. (12.8)

It is helpful to express these equations in block matrix form.
For example in the case of b = 3 blocks, the linear system of equa-

tions (12.8) can be represented as L dM(y) = D − U , where U = L∗

and

dM(y) =

⎛
⎝ ∂1M1(y) ∂2M1(y) ∂3M1(y)
∂1M2(y) ∂2M2(y) ∂3M2(y)
∂1M3(y) ∂2M3(y) ∂3M3(y

⎞
⎠
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L =

⎛
⎝ ∂1∇1f(y) 0 0
∂1∇2f(y) ∂2∇2f(y) 0
∂1∇3f(y) ∂2∇3f(y) ∂3∇3f(y

⎞
⎠

D =

⎛
⎝ ∂1∇1f(y) 0 0

0 ∂2∇2f(y) 0
0 0 ∂3∇3f(y

⎞
⎠ .

The identity [∂j∇if(y)]
∗ = ∂i∇jf(y) between two nontrivial blocks of

U and L is a consequence of the equality of mixed partials. The matrix
equation L dM(y) = D −U can be explicitly solved in the form

dM(y) = L−1(D −U).

Here L is invertible provided its diagonal blocks ∂i∇if(y) are invertible. At
an optimal point y, the partial Hessian matrix ∂i∇if(y) is always positive
semidefinite and usually positive definite as well.
Local convergence of block relaxation hinges on whether the spectral

radius ρ of the matrix L−1(U − D) satisfies ρ < 1. Suppose that λ is
an eigenvalue of L−1(D − U) with eigenvector v. These can be complex.
The equality L−1(D − U)v = λv implies (1 − λ)Lv = (L + U − D)v.
Premultiplying this by the conjugate transpose v∗ gives

1

1− λ =
v∗Lv

v∗(L+U −D)v
.

Hence, the real part of 1/(1− λ) satisfies

Re
( 1

1− λ
)

=
v∗(L+U)v

2v∗(L+U −D)v

=
1

2

[
1 +

v∗Dv

v∗d2f(y)v

]

>
1

2

for d2f(y) positive definite. If λ = α + β
√−1, then the last inequality

entails

1− α
(1− α)2 + β2

>
1

2
,

which is equivalent to |λ|2 = α2+β2 < 1. Hence, the spectral radius ρ < 1.

12.3 Coercive Functions

The concept of coerciveness is critical in establishing the existence of min-
imum points. A function f(x) on Rn is said to be coercive if

lim
‖x‖→∞

f(x) = ∞.
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If f(x) is both lower semicontinuous and coercive, then all sublevel sets
{x : f(x) ≤ c} are compact, and the minimum value of f(x) is attained.
This improvement of Weierstrass’ theorem (Proposition 2.5.4) plays a key
role in optimization theory.
Two strategies stand out in proving coerciveness. One revolves around

comparing one function to another. For example, suppose f(x) = x2+sinx
and g(x) = x2 − 1. Then g(x) is clearly coercive and f(x) ≥ g(x). Hence,
f(x) is also coercive. As explained in the next proposition, the second
strategy is restricted to convex functions. In stating the proposition, we
allow f(x) to have the value ∞.

Proposition 12.3.1 Suppose f(x) is a convex lower semicontinuous func-
tion on Rn. Choose any point y with f(y) <∞. Then f(x) is coercive if and
only f(x) is coercive along all nontrivial rays {x ∈ Rn : x = y+ tv, t ≥ 0}
emanating from y.

Proof: The stated condition is obviously necessary. To prove that it is
sufficient, suppose it holds, but f(x) is not coercive. It suffices to take y = 0
because one can always consider the translated function g(x) = f(x− y),
which retains the properties of convexity and lower semicontinuity. Let xn

be a sequence such that limn→∞ ‖xn‖ = ∞ and lim supn→∞ f(xn) < ∞.
By passing to a subsequence if necessary, we can assume that the unit
vectors vn = ‖xn‖−1xn converge to a unit vector v. For t > 0 and n large
enough, convexity implies

f(tvn) ≤ t

‖xn‖f(xn) +
(
1− t

‖xn‖
)
f(0).

It follows that lim infn→∞ f(tvn) ≤ f(0). On the other hand, lower semi-
continuity entails

f(tv) ≤ lim inf
n→∞ f(tvn) ≤ f(0).

Hence, f(x) does not tend to ∞ along the ray tv, contradicting our as-
sumption.

For example, consider the quadratic f(x) = 1
2x

∗Ax + b∗x + c. If A is
positive definite and v �= 0, then f(tv) is a quadratic in t with positive
leading coefficient. Hence, f(x) is coercive along the ray tv. It follows that
f(x) is coercive. When A is positive semidefinite and Av = 0, f(tv) is
linear in t. If the leading coefficient b∗v is positive, then f(x) is coercive
along the ray tv. However, f(x) then fails to be coercive along the ray −tv.
Hence, f(x) is not coercive. This fact does not prevent f(x) from attaining
its minimum. If x satisfies Ax = −b, then the convex function f(x) has a
stationary point, which necessarily furnishes a minimum value.
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Posynomials present another interesting test case. In the exponential
parameterization tk = exk , one can represent a posynomial as

f(x) =

j∑
i=1

cie
β∗

ix.

At the preferred point 0, it is obvious that f(tv) tends to ∞ as t tends to
∞ if and only if at least one βi satisfies β

∗
i v > 0. In other words, f(x) is

coercive if and only if the polar cone

C = {v : β∗
i v ≤ 0 for all i}

consists of the trivial vector 0 alone. Section 14.3.7 treats polar cones in
more detail.
In the original posynomial parameterization, tk tends to 0 as xk tends

to −∞. This suggests the need for a broader definition of coerciveness
consistent with Weierstrass’ theorem. Suppose the lower semicontinuous
function f(x) is defined on an open set U . To avoid colliding with the
boundary of U , we assume that the set

Cy = {x ∈ U : f(x) ≤ f(y)}

is compact for every y ∈ U . If this is the case, then f(x) attains its mini-
mum somewhere in U . The essence of the expanded definition of coercive-
ness is that f(x) tends to ∞ as x approaches the boundary of U or ‖x‖
approaches ∞.

12.4 Global Convergence of the MM Algorithm

In this section and the next, we tackle global convergence. We begin with
the MM algorithm and consider without loss of generality minimization
of the objective function f(x) via the majorizing surrogate g(x | xm). In
studying global convergence, we must carefully specify the parameter do-
main U . Let us take U to be any open convex subset of Rn. It is convenient
to assume that f(x) is coercive on U in the sense just specified and that
whenever necessary f(x) and g(x | xm) and their various first and second
differentials are jointly continuous in x and xm.
We also demand that the second differential d2g(x | xm) be positive

definite. This implies that g(x | xm) is strictly convex. Strict convexity in
turn implies that the solution xm+1 of the minimization step is unique.
Existence of a solution fortunately is guaranteed by coerciveness. Indeed,
the closed set

{x : g(x | xm) ≤ g(xm | xm) = f(xm)}
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is compact because it is contained within the compact set

{x : f(x) ≤ f(xm)}.
Finally, the implicit function theorem, Proposition 4.6.2, shows that the
iteration map xm+1 =M(xm) is continuously differentiable in a neighbor-
hood of every point xm. Local differentiability of M(x) clearly extends to
global differentiability.
Gradient versions of the algorithm (12.1) have the property that station-

ary points of the objective function and fixed points of the iteration map
coincide. This property also applies to the MM algorithm. Here we recall the
two identities ∇g(xm+1 | xm) = 0 and ∇g(xm | xm) = ∇f(xm) and the
strict convexity of g(x | xm). By the same token, stationary points and only
stationary points give equality in the descent inequality f [M(x)] ≤ f(x).
The next technical proposition prepares the ground for a proof of global

convergence. We remind the reader that a point y is a cluster point of a
sequence xm provided there is a subsequence xmk

that tends to y. One can
easily verify that any limit of a sequence of cluster points is also a cluster
point and that a bounded sequence has a limit if and only if it has at most
one cluster point. See Problem 21.

Proposition 12.4.1 If a bounded sequence xm in Rn satisfies

lim
m→∞ ‖xm+1 − xm‖ = 0, (12.9)

then its set T of cluster points is connected. If T is finite, then T reduces
to a single point, and limm→∞ xm = y exists.

Proof: It is straightforward to prove that T is a compact set. If it is
disconnected, then there is a continuous disconnecting function φ(x) having
exactly the two values 0 and 1. The inverse images of the closed sets 0 and
1 under φ(x) can be represented as the intersections T0 = T ∩ C0 and
T1 = T ∩ C1 of T with two closed sets C0 and C1. Because T is compact,
T0 and T1 are closed, nonempty, and disjoint. Furthermore, the distance

dist(T0, T1) = inf
u∈T0

dist(u, T1) = inf
u∈T0,v∈T1

‖u− v‖

separating T0 and T1 is positive. Indeed, the continuous function dist(u, T1)
attains its minimum at some point u of the compact set T0, and the distance
dist(u, T1) separating that u from T1 must be positive because T1 is closed.
Now consider the sequence xm in the statement of the proposition. For

large enough m, we have ‖xm+1 − xm‖ < dist(T0, T1)/4. As the sequence
xm bounces back and forth between cluster points in T0 and T1, it must
enter the closed set W = {u : dist(u, T ) ≥ dist(T0, T1)/4} infinitely often.
But this means that W contains a cluster point of xm. Because W is
disjoint from T0 and T1, and these two sets are postulated to contain all of
the cluster points of xm, this contradiction implies that T is connected.
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Because a finite set with more than one point is necessarily disconnected,
T can be a finite set only if it consists of a single point. Finally, a bounded
sequence with only a single cluster point has that point as its limit.

With these facts in mind, we now state and prove a version of Liapunov’s
theorem for discrete dynamical systems [183].

Proposition 12.4.2 (Liapunov) Let Γ be the set of cluster points gen-
erated by the MM sequence xm+1 =M(xm) starting from some initial x0.
Then Γ is contained in the set S of stationary points of f(x).

Proof: The sequence xm stays within the compact set

{x ∈ U : f(x) ≤ f(x0)}.

Consider a cluster point z = limk→∞ xmk
. Since the sequence f(xm)

is monotonically decreasing and bounded below, limm→∞ f(xm) exists.
Hence, taking limits in the inequality f [M(xmk

)] ≤ f(xmk
) and invok-

ing the continuity of M(x) and f(x) imply f [M(z)] = f(z). Thus, z is a
fixed point of M(x) and consequently also a stationary point of f(x).

The next two propositions are adapted from the reference [195]. In the
second of these, recall that a point x in a set S is isolated if and only if
there exists a radius r > 0 such that S ∩B(x, r) = {x}.
Proposition 12.4.3 The set of cluster points Γ of xm+1 = M(xm) is
compact and connected.

Proof: Γ is a closed subset of the compact set {x ∈ U : f(x) ≤ f(x0)} and
is therefore itself compact. According to Proposition 12.4.1, Γ is connected
provided limm→∞ ‖xm+1 − xm‖ = 0. If this sufficient condition fails, then
the compactness of {x ∈ U : f(x) ≤ f(x0)} makes it possible to extract
a subsequence xmk

such that limk→∞ xmk
= u and limk→∞ xmk+1 = v

both exist, but v �= u. However, the continuity ofM(x) requires v =M(u)
while the descent condition implies

f(v) = f(u) = lim
m→∞ f(xm).

The equality f(v) = f(u) forces the contradictory conclusion that u is a
fixed point of M(x). Hence, the sufficient condition (12.9) for connectivity
holds.

Proposition 12.4.4 Suppose that all stationary points of f(x) are isolated
and that the stated differentiability, coerciveness, and convexity assump-
tions are true. Then any sequence of iterates xm+1 = M(xm) generated
by the iteration map M(x) of the MM algorithm possesses a limit, and
that limit is a stationary point of f(x). If f(x) is strictly convex, then
limm→∞ xm is the minimum point.
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Proof: In the compact set {x ∈ U : f(x) ≤ f(x0)} there can only be a
finite number of stationary points. An infinite number of stationary points
would admit a convergent sequence whose limit would not be isolated.
Since the set of cluster points Γ is a connected subset of this finite set of
stationary points, Γ reduces to a single point.

Two remarks on Proposition 12.4.4 are in order. First, except when strict
convexity prevails for f(x), the proposition offers no guarantee that the
limit y of the sequence xm furnishes a global minimum. Problem 11 con-
tains a counterexample of Wu [275] exhibiting convergence to a saddle
point in the EM algorithm. Fortunately, in practice, descent algorithms al-
most always converge to at least a local minimum of the objective function.
Second, suppose that the set S of stationary points possesses a sequence
zm ∈ S converging to z ∈ S with zm �= z for all m. Because the unit
sphere in Rn is compact, we can extract a subsequence such that

lim
k→∞

zmk
− z

‖zmk
− z‖ = v

exists and is nontrivial. Now let s∇f (y,x) be a slope function for ∇f(x).
Taking limits in

0 =
1

‖zmk
− z‖ [∇f(zmk

)−∇f(z)]

=
1

‖zmk
− z‖s∇f (zmk

, z)(zmk
− z)

then produces 0 = d2f(z)v. In other words, the second differential at z is
singular. If one can rule out such degeneracies, then all stationary points are
isolated. Interested readers can consult the literature on Morse functions
for further commentary on this subject [115].

12.5 Global Convergence of Block Relaxation

Verification of global convergence of block relaxation parallels the MM
algorithm case. Careful scrutiny of the proof of Proposition 12.4.4 shows
that it relies on five properties of the objective function f(x) and the
iteration map M(x):

(a) f(x) is coercive on its convex open domain U ,

(b) f(x) has only isolated stationary points,

(c) M(x) is continuous,

(d) y is a fixed point ofM(x) if and only if it is a stationary point of f(x),
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(e) f [M(y)] ≤ f(y), with equality if and only if y is a fixed point ofM(x).

Let us suppose for notational simplicity that the argument x = (v,w)
breaks into just two blocks. Criteria (a) and (b) can be demonstrated for
many objective functions and are independent of the algorithm chosen to
minimize f(x). In block relaxation we ordinarily take U to be the Carte-
sian product V ×W of two convex open sets. If we assume that f(v,w) is
strictly convex in v for fixed w and vice versa, then the block relaxation
updates are well defined. If f(v,w) is twice continuously differentiable, and
d2vf(v,w) and d2wf(v,w) are invertible matrices, then application of the
implicit function theorem demonstrates that the iteration map M(x) is
a composition of two differentiable maps. Criterion (c) is therefore valid.
A fixed point x = (v,w) satisfies the two equation ∇vf(v,w) = 0 and
∇wf(v,w) = 0, and criterion (d) follows. Finally, both block updates de-
crease f(x). They give a strict decrease if and only if they actually change
either argument v orw. Hence, criterion (e) is true. We emphasize that col-
lectively these are sufficient but not necessary conditions. Observe that we
have not assumed that f(v,w) is convex in both variables simultaneously.

12.6 Global Convergence of Gradient Algorithms

We now turn to the question of global convergence for gradient algorithms
of the sort

xm+1 = xm −A(xm)−1∇f(xm).

The assumptions concerning f(x) made in the previous section remain in
force. A major impediment to establishing the global convergence of any
minimization algorithm is the possible failure of the descent property

f(xm+1) ≤ f(xm)

enjoyed by the MM algorithm. Provided the matrix A(xm) is positive defi-
nite, the direction vm = −A(xm)−1∇f(xm) is guaranteed to point locally
downhill. Hence, if we elect the natural strategy of instituting a limited line
search along the direction vm emanating from xm, then we can certainly
find an xm+1 that decreases f(x).
Although an exact line search is tempting, we may pay too great a price

for precision when we merely need progress. The step-halving tactic men-
tioned in Chap. 10 is better than a full line search but not quite adequate
for theoretical purposes. Instead, we require a sufficient decrease along a
descent direction v. This is summarized by the Armijo rule of considering
only steps tv satisfying the inequality

f(x+ tv) ≤ f(x) + αtdf(x)v (12.10)
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for t > 0 and some fixed α in (0, 1). To avoid too stringent a test, we take
a low value of α such as 0.01. In combining Armijo’s rule with regular step
decrementing, we first test the step v. If it satisfies Armijo’s rule we are
done. If it fails, we choose σ ∈ (0, 1) and test σv. It this fails, we test σ2v,
and so forth until we encounter and take the first partial step σkv that
works. In step halving, obviously σ = 1/2.
Step halving can be combined with a partial line search. For instance,

suppose the line search has been confined to the interval t ∈ [0, s]. If the
point x + sv passes Armijo’s test, then we accept it. Otherwise, we fit
a cubic to the function t �→ f(x + tv) on the interval [0, s] as described
in Sect. 11.4. If the minimum point t of the cubic approximation satisfies
t ≥ σs and passes Armijo’s test, then we accept x + tv. Otherwise, we
replace the interval [0, s] by the interval [0, σs] and proceed inductively.
For the sake of simplicity in the sequel, we will ignore this elaboration of
step halving and concentrate on the unadorned version.
We would like some guarantee that the exponent k of the step decre-

menting power σk does not grow too large. Mindful of this criterion, we
suppose that the positive definite matrix A(x) depends continuously on x.
This is not much of a restriction for Newton’s method, the Gauss-Newton
algorithm, the MM gradient algorithm, or scoring. If we combine continuity
with coerciveness, then we can conclude that there exist positive constants
β, γ, δ, and ε with

‖A(x)‖ ≤ β, ‖A(x)−1‖ ≤ γ

‖∇f(x)‖ ≤ ε, ‖s2f (y,x)‖ ≤ δ

for all x and y in the compact set D = {x ∈ U : f(x) ≤ f(x0)} where any
descent algorithm acts. Here s2f (y,x) is the second slope of f(x).
Before we tackle Armijo’s rule, let us consider the more pressing question

of whether the proposed points x+ v lie in the domain U of f(x). This is
too much to hope for, but it is worth considering whether x+ σdv always
lies in U for some fixed power σd. Fortunately, v(x) = −A(x)−1∇f(x)
satisfies the bound

‖v(x)‖ ≤ γε

on D. Now suppose no single power σk is adequate for all x ∈ D. Then
there exists a sequence of points xk ∈ D with yk = xk + σkv(xk) �∈ U .
Passing to a subsequence if necessary, we can assume that xk converges to
x ∈ D. Because σk is tending to 0, and v(x) is bounded on D, the sequence
yk likewise converges to x. Since the complement of U is closed, x must
lie in the complement of U as well as in D. This contradiction proves our
contention.
To use these bounds, let v = −A(x)−1∇f(x) and consider the inequality

f(x+ tv) = f(x) + tdf(x)v +
1

2
t2v∗s2f (x+ tv,x)v
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≤ f(x) + tdf(x)v +
1

2
t2δ‖v‖2 (12.11)

for x and x+ tv in D. Taking into account the bound on ‖A(x)‖ and the
identity

‖A(x)1/2‖ = ‖A(x)‖1/2

entailed by Proposition 2.2.1, we also have

‖∇f(x)‖2 = ‖A(x)1/2A(x)−1/2∇f(x)‖2
≤ ‖A(x)1/2‖2‖A(x)−1/2∇f(x)‖2 (12.12)

≤ βdf(x)A(x)−1∇f(x).

It follows that

‖v‖2 = ‖A(x)−1∇f(x)‖2
≤ γ2‖∇f(x)‖2
≤ −βγ2df(x)v.

Combining this last inequality with inequality (12.11) yields

f(x+ tv) ≤ f(x) + t

(
1− βγ2δ

2
t

)
df(x)v.

Hence, as soon as σk satisfies

1− βγ2δ

2
σk ≥ α,

Armijo’s rule (12.10) holds. In terms of k, backtracking is guaranteed to
succeed in at most

kmax = max

{⌈
1

lnσ
ln

2(1− α)
βγ2δ

⌉
, d

}

decrements. Of course, a lower value of k may suffice.

Proposition 12.6.1 Suppose that all stationary points of f(x) are iso-
lated and that the stated continuity, differentiability, positive definiteness,
and coerciveness assumptions are true. Then any sequence of iterates xm

generated by the iteration map M(x) = x − tA(x)−1∇f(x) with t chosen
by step decrementing possesses a limit, and that limit is a stationary point
of f(x). If f(x) is strictly convex, then limm→∞ xm is the minimum point.

Proof: Let vm = −A(xm)−1∇f(xm) and xm+1 = xm + σkmvm. The
sequence f(xm) is decreasing by construction. Because the function f(x)
is bounded below on the compact set D = {x ∈ U : f(x) ≤ f(x0)},
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f(xm) is bounded below as well and possesses a limit. Based on Armijo’s
rule (12.10) and inequality (12.12), we calculate

f(xm)− f(xm+1) ≥ −ασkmdf(xm)vm

= ασkmdf(xm)A(xm)−1∇f(xm)

≥ ασkm

β
‖∇f(xm)‖2.

Since σkm ≥ σkmax , and the difference f(xm) − f(xm+1) tends to 0, we
deduce that ‖∇f(xm)‖ tends to 0. This conclusion and the inequality

‖xm+1 − xm‖ = σkm‖A(xm)−1∇f(xm)‖
≤ σkmγ‖∇f(xm)‖,

demonstrate that ‖xm+1 − xm‖ tends to 0 as well. Given these results,
Propositions 12.4.2 and 12.4.3 are true. All claims of the current proposition
now follow as in the proof of Proposition 12.4.4.

12.7 Problems

1. Consider the functions f(x) = x− x3 and g(x) = x+ x3 on R. Show
that the iterates xm+1 = f(xm) are locally attracted to 0 and that
the iterates xm+1 = g(xm) are locally repelled by 0. In both cases
f ′(0) = g′(0) = 1.

2. Consider the iteration map h(x) =
√
a+ x on (0,∞) for a > 0. Find

the fixed point of h(x) and show that it is locally attractive. Is it also
globally attractive?

3. In Example 10.2.1 suppose x0 = 1 and a ∈ (0, 2). Demonstrate that

xm =
1− (1− a)2

m

a∣∣∣xm+1 − 1

a

∣∣∣ = a
∣∣∣xm − 1

a

∣∣∣2.
This shows very explicitly that xm converges to 1/a at a quadratic
rate.

4. In Example 10.2.2 prove that

xm =
√
a+

2
√
a[(

1 + 2
√
a

x0−√
a

)2m

− 1
]

∣∣∣xm+1 −
√
a
∣∣∣ ≤ 1

2
√
a

∣∣∣xm −√a
∣∣∣2
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when n = 2 and x0 > 0. Thus, Newton’s method converges at a
quadratic rate. Use the first of these formulas or the iteration equation
directly to show that limm→∞ xm = −√a for x0 < 0.

5. Suppose the real-valued function f(x) is twice continuously differ-
entiable on the interval (a, b) with a root y where f(y) = 0 and
f ′(y) �= 0. Show that the iteration scheme

xn+1 = xn − f(xn)
2

f [xn + f(xn)]− f(xn)
converges at a quadratic rate to y if x0 is sufficiently close to y. In
particular, demonstrate that

lim
n→∞

xn+1 − y
(xn − y)2 =

f ′′(y)[f ′(y)− 1]

2f ′(y)
.

6. LetA andB be n×nmatrices. IfA and A−B∗AB are both positive
definite, then show that B has spectral radius ρ(B) < 1. Note that
A is symmetric, but B need not be symmetric. (Hint: Consider the
quadratic form v∗(A−B∗AB)v for an eigenvector v of B.)

7. In block relaxation with b blocks, let Bi(x) be the map that updates
block i and leaves the other blocks fixed. Show that the overall itera-
tion map M(x) = Bb ◦ · · · ◦ B1(x) has differential dBb(y) · · · dB1(y)
at a fixed point y. Write dBi(y) as a block matrix and identify the
blocks by applying the implicit function theorem as needed. Do not
confuse Bi(x) with the update Mi(x) of the text. In fact,Mi(x) only
summarizes the update of block i, and its argument is the value of x
at the start of the current round of updates.

8. Consider a Poisson-distributed random variable Y with mean aθ+ b,
where a and b are known positive constants and θ ≥ 0 is a parameter
to be estimated. An EM algorithm for estimating θ can be concocted
that takes as complete data independent Poisson random variables
U and V with means aθ and b and sum U + V = Y . If Y = y is
observed, then show that the EM iterates are defined by

θm+1 =
yθm

aθm + b
.

Show that these iterates converge monotonically to the maximum
likelihood estimate max{0, (y − b)/a}. When y = b, verify that con-
vergence to the boundary value 0 occurs at a rate slower than linear
[90]. (Hint: When y = b, check that θm+1 = bθ0/(maθ0 + b).)

9. The sublinear convergence of the EM algorithm exhibited in the previ-
ous problem occurs in other problems. Here is a conceptually harder
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example by Robert Jennrich. Suppose that W1, . . . ,Wn and B are
independent normally distributed random variables with 0 means.
Let σ2

w be the common variance of the Wi and σ2
b be the variance

of B. If the values yi of the linear combinations Yi = B +Wi are
observed, then show that the EM algorithm amounts to

σ2
m+1,b =

(
nσ2

mbȳ

nσ2
mb + σ2

mw

)2

+
σ2
mbσ

2
nw

nσ2
mb + σ2

mw

σ2
m+1,w =

n− 1

n
s2y +

(
σ2
mwȳ

nσ2
mb + σ2

mw

)2

+
σ2
mbσ

2
mw

nσ2
mb + σ2

mw

,

where ȳ = 1
n

∑n
i=1 yi and s2y = 1

n−1

∑n
i=1(yi − ȳ)2 are the sample

mean and variance. Although one can formally calculate the maxi-
mum likelihood estimates σ̂2

w = s2y and σ̂2
b = ȳ2−s2y/n, these are only

valid provided σ̂2
b ≥ 0. If for instance ȳ = 0, then the EM iterates will

converge to σ2
w = (n− 1)s2y/n and σ2

b = 0. Show that convergence is
sublinear when ȳ = 0.

10. Consider independent observations y1, . . . , yn from the univariate
t-distribution. These data have loglikelihood

L = −n
2
lnσ2 − ν + 1

2

n∑
i=1

ln(ν + δ2i )

δ2i =
(yi − μ)2

σ2
.

To illustrate the occasionally bizarre behavior of the MM algorithm,
we take ν = 0.05 and the data vector y = (−20, 1, 2, 3)∗ with n = 4
observations. Devise an MM maximum likelihood algorithm for esti-
mating μ with σ2 fixed at 1. Show that the iteration map is

μm+1 =

∑n
i=1 wmiyi∑n
i=1 wmi

wmi =
ν + 1

ν + (yi − μm)2
.

Plot the likelihood curve and show that it has the four local maxima
−19.993, 1.086, 1.997, and 2.906 and the three local minima −14.516,
1.373, and 2.647. Demonstrate numerically convergence to a local
maximum that is not the global maximum. Show that the algorithm
converges to a local minimum in one step starting from −1.874 or
−0.330 [191].

11. Suppose the data displayed in Table 12.1 constitute a random sample
from a bivariate normal distribution with both means 0, variances σ2

1
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TABLE 12.1. Bivariate normal data for the EM algorithm

Obs Obs Obs Obs Obs Obs

(1,1) (1,−1) (−1, 1) (−1,−1) (2,∗) (2,∗)
(−2,∗) (−2,∗) (∗,2) (∗,2) (∗,−2) (∗,−2)

and σ2
2 , and correlation coefficient ρ. The asterisks indicate missing

values. Specify the EM algorithm for estimating σ2
1 , σ

2
2 , and ρ. Show

that the observed loglikelihood has a saddle point at the point where
ρ = 0 and σ2

1 = σ2
2 = 5

2 . If the EM algorithm starts with ρ = 0,
prove that convergence to the saddle point occurs [275]. (Hints: At
the given point, show that the observed loglikelihood achieves a global
maximum in σ2

1 and σ2
2 with ρ fixed at 0 and a local minimum in ρ

with σ2
1 and σ2

2 fixed at 5
2 . Also show that the EM algorithm iterates

satisfy

σ2
m+1,1 −

5

2
=

1

3

(
σ2
m1 −

5

2

)

σ2
m+1,2 −

5

2
=

1

3

(
σ2
m2 −

5

2

)
ρm+1 = 0

along the slice ρ = 0.)

12. Under the hypotheses of Proposition 12.4.4, if the MM gradient al-
gorithm is started close enough to a local minimum y of f(x), then
the iterates xm converge to y without step decrementing. Prove that
for all sufficiently large m, either xm = y or f(xm+1) < f(xm)
[163]. (Hints: Let vm = xm+1 − xm, Cm = s2f (xm+1,xm), and

Dm = d2g(xm | xm). Show that

f(xm+1) = f(xm) +
1

2
v∗
m(Cm − 2Dm)vm.

Then use a continuity argument, noting that d2g(y | y) − d2f(y) is
positive semidefinite and d2g(y | y) is positive definite.)

13. Let M(x) be the MM algorithm or MM gradient algorithm map.
Consider the modified algorithm Mt(x) = x+ t[M(x)−x] for t > 0.
At a local optimum y, show that the spectral radius ρt of the differ-
ential dMt(y) = (1 − t)I + tdM(y) satisfies ρt < 1 when 0 < t < 2.
Hence, Ostrowski’s theorem implies local attraction of Mt(x) to y.
If the largest and smallest eigenvalues of dM(y) are ωmax and ωmin,
then prove that ρt is minimized by taking t = [1−(ωmin+ωmax)/2]

−1.
In practice, the eigenvalues of dM(y) are impossible to predict with-
out advance knowledge of y, but for many problems the value t = 2
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works well [163]. (Hints: All eigenvalues of dM(y) occur on [0, 1).
To every eigenvalue ω of dM(y), there corresponds an eigenvalue
ωt = 1− t+ tω of dMt(y) and vice versa.)

14. In the notation of Chap. 9, prove the EM algorithm formula

d2L(θ) = d20Q(θ | θ) + Var[∇ ln f(X | θ) | Y, θ]

of Louis [180].

15. Which of the following functions is coercive on its domain?

(a) f(x) = x+ 1/x on (0,∞),

(b) f(x) = x− lnx on (0,∞),

(c) f(x) = x21 + x22 − 2x1x2 on R2,

(d) f(x) = x41 + x42 − 3x1x2 on R2,

(e) f(x) = x21 + x22 + x23 − sin(x1x2x3) on R3.

Give convincing reasons in each case.

16. Consider a polynomial p(x) in n variables x1, . . . , xn. Suppose that
p(x) =

∑n
i=1 cix

2m
i + lower-order terms, where all ci > 0 and where

a lower-order term is a product bxm1
1 · · ·xmn

n with
∑n

i=1mi < 2m.
Prove rigorously that p(x) is coercive on Rn.

17. Demonstrate that h(x)+k(x) is coercive on Rn if k(x) is convex and
h(x) satisfies lim‖x‖→∞ ‖x‖−1h(x) =∞. Problem 31 of Chap. 6 is a
special case. (Hint: Apply definition (6.4) of Chap. 6.)

18. In some problems it is helpful to broaden the notion of coerciveness.
Consider a continuous function f : Rn �→ R such that the limit

c = lim
r→∞ inf

‖x‖≥r
f(x)

exists. The value of c can be finite or ∞ but not −∞. Now let y be
any point with f(y) < c. Show that the set Sy = {x : f(x) ≤ f(y)}
is compact and that f(x) attains its global minimum on Sy. The
particular function

g(x) =
x1 + 2x2

1 + x21 + x22

furnishes an example when n = 2. Demonstrate that the limit c
equals 0. What is the minimum value and minimum point of g(x)?
(Hint: What is the minimum value of g(x) on the circle {x : ‖x‖ = r}?)
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19. Let f(x) be a convex function on Rn. Prove that all sublevel sets
{x ∈ Rn : f(x) ≤ b} are bounded if and only if

lim
r→∞ inf

‖x‖≥r
f(x) > 0.

20. Assume that the function f(x) is (a) continuously differentiable, (b)
maps Rn into itself, (c) has Jacobian df(x) of full rank at each x,
and (d) has coercive norm ‖f(x)‖. Show that the image of f(x) is all
of Rn. (Hints: The image is connected. Show that it is open via the
inverse function theorem and closed because of coerciveness.)

21. Consider a sequence xm in Rn. Verify that the set of cluster points of
xm is closed. If xm is bounded, then show that it has a limit if and
only if it has at most one cluster point.

22. In our exposition of least absolute deviation regression, we considered
in Problem 14 of Chap. 8 a modified iteration scheme that minimizes
the criterion

hε(θ) =

p∑
i=1

{
[yi − μi(θ)]

2 + ε
}1/2

. (12.13)

For a sequence of constants εm tending to 0, let θm be a corresponding
sequence minimizing (12.13). If φ is a cluster point of this sequence
and the regression functions μi(θ) are continuous, then show that φ
minimizes h0(θ) =

∑p
i=1 |yi − μi(θ)|. If, in addition, the minimum

point φ of h0(θ) is unique and lim‖θ‖→∞
∑p

i=1 |μi(θ)| = ∞, then
prove that limm→∞ θm = φ. (Hints: For the first assertion, take lim-
its in

hε(θm) ≤ hε(θ).

For the second assertion, it suffices to prove that the sequence θm

is confined to a bounded set. To prove this fact, demonstrate the
inequalities |μ|+ |y|+√ε ≥ √r2 + ε ≥ |μ| − |y| for r = y − μ.)

23. Example 10.2.5 and Problem 9 of Chap. 10 suggest a method of ac-
celerating the MM gradient algorithm. Suppose we are maximizing
the loglikelihood L(θ) using the surrogate function is g(θ | θn). To
accelerate the MM gradient algorithm, we can replace the positive
definite matrix B(θ)−1 = −d20g(θ | θ) by a matrix that better ap-
proximates the observed information A(θ) = −d2L(θ). Note that
often d20g(θ | θ) is diagonal and therefore trivial to invert. Now con-
sider the formal expansion

A−1 = (B−1 +A−B−1)−1
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= {B− 1
2 [I −B

1
2 (B−1 −A)B

1
2 ]B− 1

2 }−1

= B
1
2

∞∑
i=0

[B
1
2 (B−1 −A)B

1
2 ]iB

1
2 .

If we truncate this series after a finite number of terms, then we
recover the first iterate of equation (10.18) in the disguised form

Sj = B
1
2

j∑
i=0

[B
1
2 (B−1 −A)B

1
2 ]iB

1
2 .

The accelerated algorithm

θm+1 = θm + Sj(θm)∇L(θm) (12.14)

has several desirable properties.

(a) Show that Sj is positive definite and hence that the update
(12.14) is an ascent algorithm. (Hint: Use the fact that B−1−A
is positive semidefinite.)

(b) Algorithm (12.14) has differential

I + Sj(θ∞)d2L(θ∞) = I − Sj(θ∞)A(θ∞)

at a local maximum θ∞. If d2L(θ∞) is negative definite, then
prove that all eigenvalues of this differential lie on [0, 1). (Hint:
The eigenvalues are determined by the stationary points of the
Rayleigh quotient v∗[A−1(θ∞)− Sj(θ∞)]v/v∗A−1(θ∞)v.)

(c) If ρj is the spectral radius of the differential, then demonstrate
that ρj ≤ ρj−1, with strict inequality when B−1(θ∞) − A(θ∞)
is positive definite.

In other words, the accelerated algorithm (12.14) is guaranteed to
converge faster than the MM gradient algorithm. It will be particu-
larly useful for maximum likelihood problems with many parameters
because it entails no matrix inversion or multiplication, just matrix
times vector multiplication. When j = 1, it takes the simple form

θm+1 = θm + [2B(θm)−B(θm)A(θm)B(θm)]∇L(θm).



13
Penalty and Barrier Methods

13.1 Introduction

Penalties and barriers feature prominently in two areas of modern
optimization theory. First, both devices are employed to solve constrained
optimization problems [96, 183, 226]. The general idea is to replace hard
constraints by penalties or barriers and then exploit the well-oiled ma-
chinery for solving unconstrained problems. Penalty methods operate on
the exterior of the feasible region and barrier methods on the interior.
The strength of a penalty or barrier is determined by a tuning constant.
In classical penalty methods, a single global tuning constant is gradually
sent to∞; in barrier methods, it is gradually sent to 0. Nothing prevents one
from assigning different tuning constants to different penalties or barriers
in the same problem. Either strategy generates a sequence of solutions that
converges in practice to the solution of the original constrained optimiza-
tion problem.
One of the lessons of the current chapter is that it is profitable to view

penalties and barriers from the perspective of the MM algorithm. For ex-
ample, this mental exercise suggests a way of engineering barrier tuning
constants in a constrained minimization problem so that the objective func-
tion is forced steadily downhill [41, 162, 253]. Over time the tuning constant
for each inequality constraint adapts to the need to avoid the constraint or
converge to it.
A detailed study of penalty methods in constrained optimization requires

considerable knowledge of the convex calculus. For this reason we defer
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to Chap. 16 our presentation of exact penalty methods. These methods
substitute absolute value and hinge penalties for square penalties. Numer-
ical analysts have shied away from exact penalty methods because of the
difficulties in working with non-differentiable functions. Such pessimism is
unwarranted, however. In convex programs one can easily follow the solu-
tion path as the penalty constant increases. Certainly, path following has
been highly successful in interior point programming. Readers who want
to pursue this traditional application of path following should consult one
or more of the superb references [19, 30, 96, 203, 205, 274].
Imposition of penalties has other beneficial effects. The addition of con-

vex penalties can regularize a problem by reducing the effect of noise
and eliminating spurious local minima. Penalties also steer solutions to
unconstrained optimization problems in productive directions. Recall, for
instance, the beneficial effects of smoothing penalties in transmission to-
mography. Bayesian statistics is predicated on the philosophy that prior
knowledge should never be ignored. Beyond smoothing and exploitation of
prior knowledge, penalties play a role in model selection. In lasso penal-
ized estimation, statisticians impose an �1 penalty that shrinks parameter
estimates toward zero and performs a kind of continuous model selection
[75, 256]. The predictors whose estimated regression coefficients are exactly
zero are candidates for elimination from the model. With the enormous data
sets now confronting statisticians, considerations of model parsimony have
taken on greater urgency. In addition to this philosophical justification,
imposition of lasso penalties also has an huge impact on computational
speed. Standard methods of regression require matrix diagonalization, ma-
trix inversion, or, at the very least, the solution of large systems of linear
equations. Because the number of arithmetic operations for these processes
scales as the cube of the number of predictors, problems with tens of thou-
sands of predictors appear intractable. Recent research has shown this as-
sessment to be too pessimistic [36, 83, 119, 143, 210, 267]. Coordinate
descent methods mesh well with the lasso and are simple, fast, and stable.
We will see how their potential to transform data mining plays out in both
�1 and �2 regression.

13.2 Rudiments of Barrier and Penalty Methods

In general, unconstrained optimization problems are easier to solve than
constrained optimization problems, and equality constrained problems are
easier to solve than inequality constrained problems. To simplify anal-
ysis, mathematical scientists rely on several devices. For instance, one
can replace the inequality constraint g(x) ≤ 0 by the equality constraint
g+(x) = 0, where g+(x) = max{g(x), 0}. This tactic is not entirely satisfac-
tory because g+(x) has kinks along the boundary g(x) = 0. The smoother
substitute g+(x)

2 avoids the kinks in first derivatives. Alternatively, one
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can introduce an extra parameter y and require g(x)+y = 0 and y ≥ 0. This
tactic substitutes a simple inequality constraint for a complex inequality
constraint.
The addition of barrier and penalty terms to the objective function f(x)

is a more systematic approach. Later in the chapter we will discuss the role
of penalties in producing sparse solutions. In the current section, penalties
are introduced to steer the optimization process toward the feasible region.
In the penalty method we construct a continuous nonnegative penalty p(x)
that is 0 on the feasible region and positive outside it. We then optimize the
functions f(x)+λmp(x) for an increasing sequence of tuning constants λm
that tend to∞. The penalty method works from the outside of the feasible
region inward. Under the right hypotheses, the sequence of unconstrained
solutions xm tends to a solution of the constrained optimization problem.

Example 13.2.1 Linear Regression with Linear Constraints

Consider the problem of minimizing ‖y −Xβ‖2 subject to the linear con-
straints V β = d. If we take the penalty function p(β) = ‖V β − d‖2, then
we must minimize at each stage the function

hm(β) = ‖y −Xβ‖2 + λm‖V β − d‖2.
Setting the gradient

∇hm(β) = −2X∗(y −Xβ) + 2λmV ∗(V β − d)

equal to 0 yields the sequence of solutions

βm = (X∗X + λmV ∗V )−1(X∗y + λmV ∗d). (13.1)

In a moment we will demonstrate that the βm tend to the constrained
solution as λm tends to ∞.

In contrast, the barrier method works from the inside of the feasible
region outward by introducing a continuous barrier function b(x) that is
finite on the interior of the feasible region and infinite on its boundary. We
then optimize the sequence of functions f(x) + μmb(x) as the decreasing
sequence of tuning constants μm tends to 0. Again under the right hypothe-
ses, the sequence of unconstrained solutions xm tends to the solution of the
constrained optimization problem.

Example 13.2.2 Estimation of Multinomial Proportions

In estimating multinomial proportions, we minimize the negative loglikeli-
hood −∑d

i=1 ni ln pi subject to the constraints
∑d

i=1 pi = 1 and pi ≥ 0 for

d categories. An appropriate barrier function is −∑d
i=1 ln pi. The minimum

of the function

hm(p) = −
d∑

i=1

ni ln pi − μm

d∑
i=1

ln pi



316 13. Penalty and Barrier Methods

subject to the constraint
∑d

i=1 pi = 1 occurs at the point with coordinates

pmi =
ni + μm

n+ dμm
,

where n =
∑d

i=1 ni. In this example, it is clear that the solution vector pm

occurs on the interior of the parameter space and tends to the maximum
likelihood estimate as μm tends to 0.

The next proposition highlights the ascent and descent properties of the
penalty and barrier methods.

Proposition 13.2.1 Consider two real-valued functions f(x) and g(x) on
a common domain and two positive constants α < β. Suppose the linear
combination f(x) + αg(x) attains its minimum value at y and the linear
combination f(x) + βg(x) attains its minimum value at z. Then we have
f(y) ≤ f(z) and g(y) ≥ g(z).

Proof: Adding the two inequalities

f(z) + βg(z) ≤ f(y) + βg(y)

−f(z)− αg(z) ≤ −f(y)− αg(y)
and dividing by the constant β − α validates the claim g(y) ≥ g(z). The
claim f(y) ≤ f(z) is proved by interchanging the roles of f(x) and g(x)
and considering the functions g(x) + α−1f(x) and g(x) + β−1f(x).

It is now fairly easy to prove a version of global convergence for the
penalty method.

Proposition 13.2.2 Suppose that both the objective function f(x) and the
penalty function p(x) are continuous on Rn and that the penalized functions
hm(x) = f(x) + λmp(x) are coercive on Rn. Then one can extract a cor-
responding sequence of minimum points xm such that f(xm) ≤ f(xm+1).
Furthermore, any cluster point of this sequence resides in the feasible region
C = {x : p(x) = 0} and attains the minimum value of f(x) there. Finally,
if f(x) is coercive and possesses a unique minimum point in C, then the
sequence xm converges to that point.

Proof: In view of the coerciveness assumption, the minimum points xm

exist. Proposition 13.2.1 confirms the ascent property. Now suppose that z
is a cluster point of the sequence xm and y is any point in C. If we take
limits in the inequalities

f(y) = hm(y) ≥ hm(xm) ≥ f(xm)

along the subsequence xml
tending to z, then the inequality f(y) ≥ f(z)

follows. Furthermore, because the λm tend to infinity, the bound

lim sup
l→∞

λml
p(xml

) ≤ f(y)− lim
l→∞

f(xml
) = f(y)− f(z)
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can only hold if p(z) = liml→∞ p(xml
) = 0.

If f(x) possesses a unique minimum point y in C, then to prove that xm

converges to y, it suffices to prove that xm is bounded. Given that f(x)
is coercive, it is possible to choose r so that f(x) > f(y) for all x with
‖x‖ ≥ r. The assumption ‖xm‖ ≥ r consequently implies

hm(xm) ≥ f(xm) > f(y) = hm(y),

which contradicts the assumption that xm minimizes hm(x). Hence, all xm

satisfy ‖xm‖ < r.

Here is the corresponding result for the barrier method.

Proposition 13.2.3 Suppose the real-valued function f(x) is continuous
on the bounded open set U ⊂ Rn and its closure V. Also suppose the barrier
function b(x) is continuous and coercive on U. If the tuning constants μm

decrease to 0, then the linear combinations hm(x) = f(x) + μmb(x) attain
their minima at a sequence of points xm in U satisfying the descent property
f(xm+1) ≤ f(xm). Furthermore, any cluster point of the sequence furnishes
the minimum value of f(x) on V. If the minimum point of f(x) in V is
unique, then the sequence xm converges to this point.

Proof: Each of the continuous functions hm(x) is coercive on U, being the
sum of a coercive function and a function bounded below. Therefore, the
sequence xm exists. An appeal to Proposition 13.2.1 establishes the descent
property. If z is a cluster point of xm and x is any point of U , then taking
limits in the inequality

f(xm) + μmb(xm) ≤ f(x) + μmb(x)

along the relevant subsequence xml
produces

f(z) ≤ lim
l→∞

f(xml
) + lim sup

l→∞
μml

b(xml
) ≤ f(x).

It follows that f(z) ≤ f(x) for every x in V as well. If the minimum point
of f(x) on V is unique, then every cluster point of the bounded sequence
xm coincides with this point. Hence, the sequence itself converges to the
point.

Despite the elegance of the penalty and barrier methods, they suffer from
three possible defects. First, they are predicated on finding the minimum
point of the surrogate function for each value of the tuning constant. This
entails iterations within iterations. Second, there is no obvious prescription
for deciding how fast to send the tuning constants to their limits. Third,
too large a value of λm in the penalty method or too small a value μm in
the barrier method can lead to numerical instability in finding xm.
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13.3 An Adaptive Barrier Method

The standard convex programming problem involves minimizing a con-
vex function f(x) subject to affine equality constraints a∗

ix − bi = 0 for
1 ≤ i ≤ p and convex inequality constraints hj(x) ≤ 0 for 1 ≤ j ≤ q.
This formulation renders the feasible region convex. To avoid distracting
negative signs in this section, we will replace the constraint hj(x) ≤ 0 by
the constraint vj(x) ≥ 0 for vj(x) = −hj(x). In the logarithmic barrier
method, we define the barrier function

b(x) =

q∑
j=1

ln vj(x) (13.2)

and optimize gm(x) = f(x) + μmb(x) subject to the equality constraints.
The presence of the barrier term ln vj(x) keeps an initially inactive con-
straint vj(x) inactive throughout the search. Proposition 13.2.3 demon-
strates convergence under specific hypotheses.
One way of improving the barrier method is to change the barrier con-

stant as the iterations proceed [41, 162, 253]. This sounds vague, but mat-
ters simplify enormously if we view the construction of an adaptive barrier
method from the perspective of the MM algorithm. Consider the following
inequalities

−vj(xm) ln vj(x) + vj(xm) ln vj(xm) + dvj(xm)(x− xm)

≥ −vj(xm)

vj(xm)
[vj(x)− vj(xm)] + dvj(xm)(x− xm) (13.3)

= −vj(x) + vj(xm) + dvj(xm)(x− xm)

≥ 0

based on the concavity of the functions ln y and vj(x). Because equality
holds throughout when x = xm, we have identified a novel function ma-
jorizing 0 and incorporating a barrier for vj(x). (Such functions are known
as Bregman distances in the literature [24].) The significance of this dis-
covery is that the surrogate function

g(x | xm) = f(x)− γ
q∑

j=1

vj(xm) ln vj(x) (13.4)

+ γ

q∑
j=1

dvj(xm)(x− xm)

majorizes f(x) up to an irrelevant additive constant. Here γ is a fixed pos-
itive constant. Minimization of the surrogate function drives f(x) downhill
while keeping the inequality constraints inactive. In the limit, one or more
of the inequality constraints may become active.
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Because minimization of the surrogate function g(x | xm) cannot be
accomplished in closed form, we must revert to the MM gradient algorithm.
In performing one step of Newton’s method, we need the first and second
differentials

dg(xm | xm) = df(xm)

d2g(xm | xm) = d2f(xm)− γ
q∑

j=1

d2vj(xm)

+ γ

q∑
j=1

1

vj(xm)
∇vj(xm)dvj(xm).

In view of the convexity of f(x) and the concavity of the vj(x), it is obvious
that d2g(xm | xm) is positive semidefinite. It can be positive definite even
if d2f(xm) is not.
As a safeguard in Newton’s method, it is always a good idea to con-

tract any proposed step so that simultaneously f(xm+1) < f(xm) and
vj(xm+1) ≥ δvj(xm) for all j and a small δ such as 0.1. It is also prudent
to guard against ill conditioning of the matrix d2g(xm | xm) as a boundary
vj(x) = 0 is approached and the multiplier vj(xm)−1 tends to ∞. If one
inverts d2g(xm | xm) or a bordered version of it by sweeping [170], then
ill conditioning can be monitored as successive diagonal entries are swept.
When the jth diagonal entry is dangerously close to 0, a small positive ε
can be added to it just prior to sweeping. This apparently ad hoc remedy
corresponds to adding the penalty ε

2 (xj − xmj)
2 to g(x | xm). Although

this action does not compromise the descent property, it does attenuate
the parameter increment along the jth coordinate.
The surrogate function (13.4) does not exhaust the possibilities for ma-

jorizing the objective function. If we replace the concave function ln y by
the concave function −y−α in our derivation (13.3), then we can construct
for each α > 0 and β the alternative surrogate

g(x | xm) = f(x) + γ

q∑
j=1

vj(xm)α+βvj(x)
−α (13.5)

+ γα

q∑
j=1

vj(xm)β−1dvj(xm)(x− xm)

majorizing f(x) up to an irrelevant additive constant. This surrogate also
exhibits an adaptive barrier that prevents the constraint vj(x) from be-
coming prematurely active. Imposing the condition α + β > 0 is desirable
because we want a barrier to relax as its boundary is approached. For this
particular surrogate, straightforward differentiation yields

dg(xm | xm) = df(xm) (13.6)
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d2g(xm | xm) = d2f(xm)− γα
q∑

j=1

vj(xm)β−1d2vj(xm) (13.7)

+ γα(α+ 1)

q∑
j=1

vj(xm)β−2∇vj(xm)dvj(xm).

Example 13.3.1 A Geometric Programming Example

Consider the typical geometric programming problem of minimizing

f(x) =
1

x1x2x3
+ x2x3

subject to

v(x) = 4− 2x1x3 − x1x2 ≥ 0

and positive values for the xi. Making the change of variables xi = eyi

transforms the problem into a convex program. With the choice γ = 1, the
MM gradient algorithm with the exponential parameterization and the log
surrogate (13.4) produces the iterates displayed in the top half of Table 13.1.
In this case Newton’s method performs well, and none of the safeguards is
needed. The MM gradient algorithm with the power surrogate (13.5) does
somewhat better. The results shown in the bottom half of Table 13.1 reflect
the choices γ = 1, α = 1/2, and β = 1.

In the presence of linear constraints, both updates for the adaptive bar-
rier method rely on the quadratic approximation of the surrogate function
g(x | xm) using the calculated first and second differentials. This quadratic
approximation is then minimized subject to the equality constraints as pre-
scribed in Example 5.2.6.

Example 13.3.2 Linear Programming

Consider the standard linear programming problem of minimizing c∗x
subject to Ax = b and x ≥ 0 [87]. At iteration m + 1 of the adaptive
barrier method with the power surrogate (13.5), we minimize the quadratic
approximation

c∗xm + c∗(x− xm) + 1
2γα(α+ 1)

∑n
j=1 x

β−2
mj (xj − xmj)

2

to the surrogate subject to A(x−xm) = 0. Note here the application of the
two identities (13.6) and (13.7). According to Example 5.2.6 and equation
(10.5), this minimization problem has solution

xm+1 = xm − [D−1
m −D−1

m A∗(AD−1
m A∗)−1AD−1

m ]c,

where Dm is a diagonal matrix with jth diagonal entry γα(α+1)xβ−2
mj . It is

convenient here to take γα(α + 1) = 1 and to step halve along the search
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TABLE 13.1. Solution of a geometric programming problem

Iterates for the log surrogate

Iteration m f(xm) xm1 xm2 xm3

1 2.0000 1.0000 1.0000 1.0000
2 1.7299 1.4386 0.9131 0.6951
3 1.6455 1.6562 0.9149 0.6038
4 1.5993 1.7591 0.9380 0.5685
5 1.5700 1.8256 0.9554 0.5478
10 1.5147 1.9614 0.9903 0.5098
15 1.5034 1.9910 0.9977 0.5023
20 1.5008 1.9979 0.9995 0.5005
25 1.5002 1.9995 0.9999 0.5001
30 1.5000 1.9999 1.0000 0.5000
35 1.5000 2.0000 1.0000 0.5000

Iterates for the power surrogate

1 2.0000 1.0000 1.0000 1.0000
2 1.6478 1.5732 1.0157 0.6065
3 1.5817 1.7916 0.9952 0.5340
4 1.5506 1.8713 1.0011 0.5164
5 1.5324 1.9163 1.0035 0.5090
10 1.5040 1.9894 1.0011 0.5008
15 1.5005 1.9986 1.0002 0.5001
20 1.5001 1.9998 1.0000 0.5000
25 1.5000 2.0000 1.0000 0.5000

direction xm+1 − xm whenever necessary. The case β = 0 bears a strong
resemblance to Karmarkar’s celebrated method of linear programming.

We now show that the MM algorithms based on the surrogates (13.4)
and (13.5) converge under fairly natural conditions. In the interests of gen-
erality, we will not require the objective function f(x) to be convex. How-
ever, we will retain the assumptions of linear equality constraints Ax = b
and concave inequality constraints vj(x) ≥ 0. To carry out our agenda,
we assume that (a) f(x) and the constraint functions vj(x) are contin-
uously differentiable, (b) f(x) is coercive, and (c) the second differential
of −∑q

j=1 vj(x) is positive definite on the affine subspace {x : Ax = b}.
For simplicity, the objective function and the constraint functions are de-
fined throughout Rn. Either algorithm starts with a feasible point with all
inequality constraints inactive.
For a subset S ⊂ {1, . . . , q}, letMS be the active manifold defined by the

equalities Ax = b and vj(x) = 0 for j ∈ S and the inequalities vj(x) > 0
for j �∈ S. If MS is empty, then we can safely ignore it in the sequel. Let
PS(x) denote the projection matrix satisfying dvj(x)PS(x) = 0∗ for every
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j ∈ S and defined by

PS(x) = I − dVS(x)∗[dVS(x)dVS(x)∗]−1dVS(x), (13.8)

where dVS(x) consists of the row vectors dvj(x) with j ∈ S stacked one
atop another. For the matrix inverse appearing in equation (13.8) to make
sense, the matrix dVS(x) should have full row rank. The matrix PS(x)
projects a row vector onto the subspace perpendicular to the differentials
dvj(x) of the active constraints. For reasons that will become clear later,
we insist that APS(x) have full row rank for each nonempty manifold MS .
When S is the empty set, we interpret PS(x) as the identity matrix I.
We will call a point x ∈MS a stationary point if it satisfies the multiplier

rule

df(x) + λ∗A−
∑
j∈S

μjdvj(x) = 0∗ (13.9)

for some vector λ and collection of nonnegative coefficients μj . According
to Proposition 6.5.3, a stationary point furnishes a global minimum of f(x)
when f(x) is convex. We will assume that each manifold MS possesses at
most a finite number of stationary points. This is certainly the case when
f(x) is strictly convex, but it can also hold for linear or even non-convex
objective functions [87].

Proposition 13.3.1 Under the conditions just sketched, the adaptive bar-
rier algorithm based on either the surrogate function (13.4) or the surrogate
function (13.5) with β = 1 converges to a stationary point of f(x). If f(x)
is convex, then the algorithms converge to the unique global minimum y of
f(x) subject to the constraints.

Proof: For the sake of brevity, we consider only the surrogate function
(13.4). The coerciveness assumption guarantees that f(x) possesses a
minimum and that all iterates of a descent algorithm remain within a com-
pact set. Because g(x | xm) majorizes f(x), it is coercive and attains its
minimum value as well. Unless f(x) is convex, the minimum point xm+1

of g(x | xm) may fail to be unique. When f(x) is convex, assumption
(c) implies that the quadratic form

u∗d2g(x | xm)u = u∗d2f(x)u− γ
q∑

j=1

vj(xm)

v(x)
u∗d2vj(x)u

+ γ

q∑
j=1

vj(xm)

vj(x)2
[dvj(x)u]

2

is positive whenever u �= 0. Hence, g(x | xm) is strictly convex on the
affine subspace {x : Ax = b}.
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Given these preliminaries, our attack is based on taking limits in the
stationarity equation

0∗ = df(xm+1) + λ∗
mA (13.10)

− γ
q∑

j=1

[
vj(xm)

vj(xm+1)
dvj(xm+1)− dvj(xm)

]

satisfied by g(x | xm) and recovering the Lagrange multiplier rule satisfied
by f(x). If we are to be successful in this regard, then we must show that

lim
m→∞ ‖xm+1 − xm‖ = 0. (13.11)

Suppose the contrary is true. Then there exists a subsequence xmk
such

that

lim inf
k→∞

‖xmk+1 − xmk
‖ > 0.

Invoking compactness and passing to a subsubsequence if necessary, we can
also assume that limk→∞ xmk

= u and limk→∞ xmk+1 = w with u �= w.
In view of the inequalities (13.3) and g(xm+1 | xm) ≤ g(xm | xm) and the
concavity of vj(x) and ln t, we deduce the further inequalities

0 ≤ γ

q∑
j=1

[vj(xmk
)− vj(xmk+1) + dvj(xmk

)(xmk+1 − xmk
)]

≤ γ

q∑
j=1

[
vj(xmk

) ln
vj(xmk

)

vj(xmk+1)
+ dvj(xmk

)(xmk+1 − xmk
)
]

= g(xmk+1 | xmk
)− f(xmk+1)− g(xmk

| xmk
) + f(xmk

)

≤ f(xmk
)− f(xmk+1).

Given that f(xm) is bounded and decreasing, in the limit the difference
f(xmk

)− f(xmk+1) tends to 0. It follows that

γ

q∑
j=1

[vj(u)− vj(w) + dvj(u)(w − u)] = 0,

contradicting the strict concavity of the sum
∑q

j=1 vj(x) on the affine sub-
space {x : Ax = b} and the hypothesis u �= w.
Because the iterates xm all belong to the same compact set, the propo-

sition can be proved by demonstrating that every convergent subsequence
xmk

converges to the same stationary point y. Consider such a subsequence
with limit z. Let us divide the constraint functions vj(x) into those that
are active at z and those that are inactive at z. In the former case, we
take j ∈ S, and in the latter case, we take j ∈ Sc. In a moment we will
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demonstrate that z is a stationary point of MS. Because by hypothesis
there are only a finite number of manifolds MS and only a finite number
of stationary points per manifold, Proposition 12.4.1 implies that all clus-
ter points coincide and that the full sequence xm tends to a limit y. To
finish the proof, we must demonstrate that y satisfies the multiplier rule
for a constrained minimum. This last step is accomplished by taking limits
in equality (13.10), assuming that λm and the ratios vj(xm)/vj(xm+1) all
have limits. To avoid breaking the flow of our argument, we defer proof
of these assertions. If vj(y) > 0, then it is obvious that vj(xm)/vj(xm+1)
tends to 1, corresponding to a multiplier μj = 0 for the inactive constraint
j. If vj(y) = 0, then we must show that the limit of vj(xm)/vj(xm+1)
exceeds 1. Otherwise, the multiplier μj is negative. But this limit relation-
ship is valid because vj(xm+1) ≤ vj(xm) must hold for infinitely many m
in order for vj(xm) to tend to 0.
We now return to the question of whether the limit z of the convergent

subsequence xmk
is a stationary point. To demonstrate that the subse-

quence λmk
converges, we multiply equation (13.10) on the right by the

matrix PS(xmk+1)A
∗ and solve for λmk

. This is possible because the ma-
trix

B(xmk
) = APS(xmk+1)A

∗ = APS(xmk+1)PS(xmk+1)
∗A∗

has full rank by assumption. Since PS(x) annihilates dvj(x) for j ∈ S, and
since xmk+1 converges to z, a brief calculation shows that

λ∗ = lim
k→∞

λmk
= −df(z)PS(z)A

∗B(z)−1.

To prove that the ratio vj(xmk
)/vj(xmk+1) has a limit for j ∈ S, we

multiply equation (13.10) on the right by the matrix-vector product

PS−j (xmk+1)∇vj(xmk+1),

where S−j = S \ {j}. This action annihilates all dvi(xmk+1) with i ∈ S−j

and makes it possible to express

lim
k→∞

vj(xmk
)

vj(xmk+1)
=

[df(z) + λ∗A+ γdvj(z)]PS−j (z)∇vj(z)
γdvj(z)PS−j (z)∇vj(z)

.

Note that the denominator γdvj(z)PS−j (z)∇vj(z) > 0 because γ > 0 and
dVS−j (z) has full row rank. Given these results, we can legitimately take
limits in equation (13.10) along the given subsequence and recover the
multiplier rule (13.9) at z.
Now that we have demonstrated that xm tends to a unique limit y, we

can show that λm and the ratios vj(xm)/vj(xm+1) tend to well-defined
limits by the logic employed with the subsequence xmk

. As noted earlier,
this permits us to take limits in equation (13.10) and recover the multiplier
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rule at y. When f(x) is convex, y furnishes the global minimum. If there
is another global minimum w, then the entire line segment between w and
y consists of minimum points. This contradicts the assumption that there
are at most a finite number of stationary points throughout the feasible
region. Hence, the minimum point y is unique.

The next example illustrates that the local rate of convergence can be
linear even when one of the constraints vi(x) ≥ 0 is active at the minimum.

Example 13.3.3 Convergence for the Multinomial Distribution

As pointed out in Example 1.4.2, the loglikelihood for a multinomial distri-
bution with d categories reduces to

∑d
i=1 ni ln pi, where ni is the observed

number of counts in category i and pi is the probability attached to cate-
gory i. Maximizing the loglikelihood subject to the constraints pi ≥ 0 and∑d

i=1 pi = 1 gives the explicit maximum likelihood estimates pi = ni/n for
n trials. To compute the maximum likelihood estimates iteratively using
the surrogate function (13.4), we find a stationary point of the Lagrangian

−
d∑

i=1

ni ln pi − γ
d∑

i=1

pmi ln pi + γ

d∑
i=1

(pi − pmi) + λ
( d∑

i=1

pi − 1
)
.

Setting the ith partial derivative of the Lagrangian equal to 0 gives

− ni

pi
− γpmi

pi
+ γ + λ = 0. (13.12)

Multiplying equation (13.12) by pi, summing on i, and solving for λ yield
λ = n. Substituting this value back in equation (13.12) produces

pm+1,i =
ni + γpmi

n+ γ
.

At first glance it is not obvious that pmi tends to ni/n, but the algebraic
rearrangement

pm+1,i − ni

n
=

ni + γpmi

n+ γ
− ni

n

=
γ

n+ γ

(
pmi − ni

n

)

shows that pmi approaches ni/n at the linear rate γ/(n+ γ). This is true
regardless of whether ni/n = 0 or ni/n > 0.

13.4 Imposition of a Prior in EM Clustering

Priors imposed in Bayesian models play out as penalties in maximum a
posteriori estimation. As an example, consider the EM clustering model
studied in Sect. 9.5. There we postulated that each normally distributed
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cluster had the same variance matrix. Relaxing this assumption sometimes
causes the likelihood to become unbounded. Imposing a prior improves
inference and stabilizes numerical estimation of parameters [44]. Let us
review the derivation of the EM algorithm with these benefits in mind.
The form of the EM updates

πn+1,j =
1

m

m∑
i=1

wij

for the admixture proportions πj depend only on Bayes’ rule and is valid
regardless of the particular cluster densities. Here wij is the posterior prob-
ability that observation i comes from cluster j. To estimate the cluster
means and common variance, we formed the surrogate function

Q({μj ,Ωj}kj=1 | {μnj ,Ωnj}kj=1)

= −1

2

k∑
j=1

( m∑
i=1

wij

)
ln detΩj

−1

2

k∑
j=1

tr
[
Ω−1

j

m∑
i=1

wij(yi − μj)(yi − μj)
∗
]

with all Ωj = Ω.
It is mathematically convenient to relax the common variance assump-

tion and impose independent inverse Wishart priors on the different vari-
ance matricesΩj . In view of Problem 37 of Chap. 4, this amounts to adding
the logprior

−
k∑

j=1

[
a

2
ln detΩj +

b

2
tr(Ω−1

j Sj)

]

to the surrogate function. Here the positive constants a and b and the
positive definite matrices Sj must be determined. Regardless of how these
choices are made, we derive the usual EM updates

μn+1,j =
1∑m

i=1 wij

m∑
i=1

wijyi

of the cluster means. Note that the constants a and b and the matrices Sj

have no influence on the weights wij computed via Bayes’ rule.
The most natural choice is to take all Sj equal to the sample variance

matrix

S =
1

m

m∑
i=1

(yi − ȳ)(yi − ȳ)∗.
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This choice is probably too diffuse, but it is better to err on the side of
vagueness and avoid getting trapped at a local mode of the likelihood sur-
face. In the absence of a prior, Example 4.7.6 implies that the EM update
of Ωj is

Ω̃n+1,j =
1∑m

i=1 wij

m∑
i=1

wij(yi − μn+1,j)(yi − μn+1,j)
∗

By the same reasoning, the maximum of the penalized surrogate function
with respect to Ωj is

Ωn+1,j =
a

a+
∑m

i=1 wij

(
b

a
S

)
+

∑m
i=1 wij

a+
∑m

i=1 wij
Ω̃n+1,j .

In other words, the penalized EM update is a convex combination of the
standard EM update and the mode b

aS of the prior. Chen and Tan [44]
tentatively recommend the choice a = b = 2/

√
m. As m tends to ∞, the

influence of the prior diminishes.

13.5 Model Selection and the Lasso

We now turn to penalized regression and continuous model selection. Our
focus will be on the lasso penalty and its application in regression problems
where the number of predictors p exceeds the number of cases n [45, 49,
229, 252, 256]. The lasso also finds applications in generalized linear models.
In each of these contexts, let yi be the response for case i, xij be the value
of predictor j for case i, and βj be the regression coefficient corresponding
to predictor j. In practice one should standardize each predictor to have
mean 0 and variance 1. Standardization puts all regression coefficients on
a common scale as implicitly demanded by the lasso penalty.
The intercept α is ignored in the lasso penalty, whose strength is de-

termined by the positive tuning constant λ. If θ = (α, β1, . . . , βp)
∗ is the

parameter vector and g(θ) is the loss function ignoring the penalty, then
the lasso minimizes the criterion

f(θ) = g(θ) + λ

p∑
j=1

|βj |,

where g(θ) = 1
2

∑n
i=1(yi−x∗

i θ)
2 in �2 regression and g(θ) =

∑n
i=1 |yi−x∗

i θ|
in �1 regression. The penalty λ

∑
j |βj | shrinks each βj toward the origin

and tends to discourage models with large numbers of irrelevant predictors.
The lasso penalty is more effective in this regard than the ridge penalty
λ
∑

j β
2
j because |b| is much bigger than b2 for small b.

Lasso penalized estimation raises two issues. First, what is the most ef-
fective method of minimizing the objective function f(θ)? In the current



328 13. Penalty and Barrier Methods

section we highlight the method of coordinate descent [55, 98, 100, 276].
Second, how does one choose the tuning constant λ? The standard answer
is cross-validation. Although this is a good reply, it does not resolve the
problem of how to minimize average cross-validation error as measured by
the loss function. Recall that in k-fold cross-validation, one divides the data
into k equal batches (subsamples) and estimates parameters k times, leav-
ing one batch out per time. The testing error (total loss) for each omitted
batch is computed using the estimates derived from the remaining batches,
and the cross-validation error c(λ) is computed by averaging testing error
across the k batches.
Unless carefully planned, evaluation of c(λ) on a grid of points may be

computationally costly, particularly if grid points occur near λ = 0. Because
coordinate descent is fastest when λ is large and the vast majority of βj
are estimated as 0, it makes sense to start with a very large value and work
downward. One advantage of this tactic is that parameter estimates for a
given λ can be used as parameter starting values for the next lower λ. For
the initial value of λ, the starting value θ = 0 is recommended. It is also
helpful to set an upper bound on the number of active parameters allowed
and abort downward sampling of λ when this bound is exceeded. Once
a fine enough grid is available, visual inspection usually suggests a small
interval flanking the minimum. Application of golden section search over
the flanking interval will then quickly lead to the minimum.
Coordinate descent comes in several varieties. The standard version cy-

cles through the parameters and updates each in turn. An alternative ver-
sion is greedy and updates the parameter giving the largest decrease in the
objective function. Because it is impossible to tell in advance the extent
of each decrease, the greedy version uses the surrogate criterion of steep-
est descent. In other words, for each parameter we compute forward and
backward directional derivatives and update the parameter with the most
negative directional derivative, either forward or backward. The overhead
of keeping track of the directional derivative works to the detriment of
the greedy method. For �1 regression, the overhead is relatively light, and
greedy coordinate descent converges faster than cyclic coordinate descent.
Although the lasso penalty is nondifferentiable, it does possess direc-

tional derivatives along each forward or backward coordinate direction.
For instance, if ej is the coordinate direction along which βj varies, then

dej
f(θ) = lim

t↓0
f(θ + tej)− f(θ)

t
= dej

g(θ) +

{
λ βj ≥ 0
−λ βj < 0,

and

d−ejf(θ) = lim
t↓0

f(θ − tej)− f(θ)
t

= d−ejg(θ) +

{−λ βj > 0
λ βj ≤ 0.
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In �1 regression, the loss function is also nondifferentiable, and a brief cal-
culation shows that the coordinate directional derivatives are

dej

n∑
i=1

|yi − x∗
i θ| =

n∑
i=1

⎧⎨
⎩
−xij yi − x∗

i θ > 0
xij yi − x∗

i θ < 0
|xij | yi − x∗

i θ = 0

and

d−ej

n∑
i=1

|yi − x∗
i θ| =

n∑
i=1

⎧⎨
⎩
xij yi − x∗

i θ > 0
−xij yi − x∗

i θ < 0
|xij | yi − x∗

i θ = 0

with predictor vector x∗
i = (1, z∗

i ) for case i. Fortunately, when a function is
differentiable, its directional derivative along ej coincides with its ordinary
partial derivative, and its directional derivative along −ej coincides with
the negative of its ordinary partial derivative.
When we visit parameter βj in cyclic coordinate descent, we evaluate

dejf(θ) and d−ejf(θ). If both are nonnegative, then we skip the update
for βj . This decision is defensible when g(θ) is convex because the sign of a
directional derivative fully determines whether improvement can be made
in that direction. If either directional derivative is negative, then we must
solve for the minimum in that direction. When the current slope parameter
βj is parked at 0 and the partial derivative ∂

∂βj
g(θ) exists,

dej
f(θ) =

∂

∂βj
g(θ) + λ, d−ejf(θ) = − ∂

∂βj
g(θ) + λ.

Hence, βj moves to the right if ∂
∂βj

g(θ) < −λ, to the left if ∂
∂βj

g(θ) > λ, and

stays fixed otherwise. In underdetermined problems with just a few relevant
predictors, most updates are skipped, and the parameters never budge from
their starting values of 0. This simple fact plus the complete absence of
matrix operations explains the speed of coordinate descent. It inherits its
numerical stability from the descent property of each update.

13.6 Lasso Penalized �1 Regression

In lasso constrained �1 regression, greedy coordinate descent is quick be-
cause directional derivatives are trivial to update. Indeed, if updating βj
does not alter the sign of the residual yi−x∗

i θ for case i, then the contribu-
tions of case i to the various directional derivatives do not change. When
the residual yi − x∗

i θ changes sign, these contributions change by ±2xij .
When a residual changes from 0 to nonzero or vice versa, the increment
depends on the sign of the nonzero residual and the sign of xij .
Updating the value of the chosen parameter can be achieved by the

nearly forgotten algorithm of Edgeworth [80, 81], which for a long time was
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considered a competitor of least squares. Portnoy and Koenker [214] trace
the history of the algorithm from Boscovich to Laplace to Edgeworth. It is
fair to say that the algorithm has managed to cling to life despite decades
of obscurity both before and after its rediscovery by Edgeworth.
To illustrate Edgeworth’s algorithm in operation, consider minimizing

the two-parameter model

g(θ) =
n∑

i=1

|yi − α− ziβ|

with a single slope β. To update α, we recall the well-known connection
between �1 regression and medians and replace α for fixed β by the sample
median of the numbers vi = yi − ziβ. This action drives g(θ) downhill.
Updating β for α fixed depends on writing

g(θ) =

n∑
i=1

|zi|
∣∣∣∣yi − αzi

− β
∣∣∣∣ ,

sorting the numbers vi = (yi−α)/zi, and finding the weighted median with
weight wi = |zi| assigned to vi. We replace β by the order statistic v[i] with
weight w[i] whose index i satisfies

i−1∑
j=1

w[j] <
1

2

n∑
j=1

w[j],

i∑
j=1

w[j] ≥ 1

2

n∑
j=1

w[j].

Problem 6 demonstrates that this choice is valid. Edgeworth’s algorithm
easily generalizes to multiple linear regression. Implementing the algorithm
with a lasso penalty requires viewing the penalty terms as the absolute
values of pseudo-residuals. Thus, we write

λ|βj | = |y − x∗θ|
by taking y = 0 and xk = λ1{k=j}.
Two criticisms have been leveled at Edgeworth’s algorithm. First, al-

though it drives the objective function steadily downhill, it sometimes stalls
at an inferior point. See Problem 8 for an example. The second criticism is
that convergence often occurs in a slow seesaw pattern. These defects are
not completely fatal. As late as 1978, Armstrong and Kung published a
computer implementation of Edgeworth’s algorithm in the journal Applied
Statistics [4].

13.7 Lasso Penalized �2 Regression

In �2 regression with a lasso penalty, we minimize the objective function

f(θ) =
1

2

n∑
i=1

(yi − α− z∗
iβ)

2 + λ

p∑
j=1

|βj | = g(θ) + λ

p∑
j=1

|βj |.
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The update of the intercept parameter can be written as

α̂ =
1

n

n∑
i=1

(yi − z∗
iβ) = α− 1

n

∂

∂α
g(θ).

For the parameter βk, there are separate solutions to the left and right of 0.
These boil down to

β̂k,− = min

{
0, βk −

∂
∂βk

g(θ)− λ∑n
i=1 z

2
ik

}

β̂k,+ = max

{
0, βk −

∂
∂βk

g(θ) + λ∑n
i=1 z

2
ik

}
.

The reader can check that only one of these two solutions can be nonzero.
The partial derivatives

∂

∂α
g(θ) = −

n∑
i=1

ri,
∂

∂βk
g(θ) = −

n∑
i=1

rizik

of g(θ) are easy to compute provided we keep track of all of the residuals
ri = yi − α − z∗

iβ. The residual ri starts with the value yi and is reset to

ri + α− α̂ when α is updated and to ri + zij(βj − β̂j) when βj is updated.
Organizing all updates around residuals promotes fast evaluation of g(θ).
At the expense of somewhat more complex code [99], a better tactic is to
exploit the identity

n∑
i=1

rizik =

n∑
i=1

yizik − α
n∑

i=1

zik −
∑

j:|βj |>0

(
n∑

i=1

zijzik

)
βj .

This representation suggests storing and reusing the inner products

n∑
i=1

yizik,

n∑
i=1

zik,

n∑
i=1

zijzik

for the active predictors.

Example 13.7.1 Obesity and Gene Expression in Mice

Consider a genetics example involving gene expression levels and obesity
in mice. Wang et al. [268] measured abdominal fat mass on n = 311 F2
mice (155 males and 156 females). The F2 mice were created by mating
two inbred strains and then mating brother-sister pairs from the resulting
offspring. Wang et al. [268] also recorded the expression levels in liver of
p = 23,388 genes in each mouse. A reasonable model postulates

yi = 1{imale}α1 + 1{i female}α2 +

p∑
j=1

xijβj + εi,
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λ

FIGURE 13.1. The cross-validation curve c(λ) for obesity in mice

where yi measures fat mass on mouse i, xij is the expression level of gene
j in mouse i, and εi is random error. Since male and female mice exhibit
across the board differences in size and physiology, it is prudent to estimate
a different intercept for each sex. Figure 13.1 plots average prediction error
as a function of λ (lower horizontal axis) and the average number of nonzero
predictors (upper horizontal axis). Here we use �2 penalized regression and
10-fold cross-validation. Examination of the cross-validation curve c(λ) over
a fairly dense grid shows an optimal λ of 7.8 with 41 nonzero predictors.
For �1 penalized regression, the optimal λ is around 3.5 with 77 nonzero
predictors. The preferred �1 and �2 models share 27 predictors in common.
Several of the genes identified are known or suspected to be involved in
lipid metabolism, adipose deposition, and impaired insulin sensitivity in
mice. More details can be found in the paper [276].
The tactics described for �2 regression carry over to generalized linear

models. In this setting, the loss function g(θ) is the negative loglikelihood.
In many cases, g(θ) is convex, and it is possible to determine whether
progress can be made along a forward or backward coordinate direction
without actually minimizing the objective function. It is clearly compu-
tationally beneficial to organize parameter updates by tracking the linear
predictor α+z∗

iβ of each case. Although we no longer have explicit solutions
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to fall back on, the scoring algorithm serves as a substitute. Since it usually
converges in a few iterations, the computational overhead of cyclic coordi-
nate descent remains manageable.

13.8 Penalized Discriminant Analysis

Discriminant analysis is another attractive candidate for penalized estima-
tion. In discriminant analysis with two categories, each case i is character-
ized by a feature vector zi and a category membership indicator yi taking
the values −1 or 1. In the machine learning approach to discriminant anal-
ysis [231, 264], the hinge loss function [1−yi(α+z∗

iβ)]+ plays a prominent
role. Here u+ is shorthand for the convex function max{u, 0}. Just as in
ordinary regression, we can penalize the overall loss

g(θ) =
n∑

i=1

[1− yi(α+ z∗
iβ)]+

by imposing a lasso or ridge penalty. Note that the linear regression function
hi(θ) = α+ z∗

iβ predicts either −1 or 1. If yi = 1 and hi(θ) over-predicts
in the sense that hi(θ) > 1, then there is no loss. Similarly, if yi = −1 and
hi(θ) under-predicts in the sense that hi(θ) < −1, then there is no loss.
Most strategies for estimating θ pass to the dual of the original mini-

mization problem. A simpler strategy is to majorize each contribution to
the loss by a quadratic and minimize the surrogate loss plus penalty [114].
A little calculus shows that (u)+ is majorized at um �= 0 by the quadratic

q(u | um) =
1

4|um| (u+ |um|)2 . (13.13)

(See Problem 13.) In fact, this is the best quadratic majorizer of u+ [62].
Both of the majorizations (8.12) and (13.13) have singularities at the point
um = 0. One simple fix is to replace |um| by |um|+ε wherever |um| appears
in a denominator in either formula. We recommend double precision arith-
metic with 0 < ε ≤ 10−5. Problem 14 explores a more sophisticated remedy
that replaces the functions |u| and u+ by differentiable approximations.
In any case, if we impose a ridge penalty, then the hinge majorization

leads to a pure MM algorithm exploiting weighted least squares. Coordi-
nate descent algorithms with a lasso or ridge penalty are also enabled by
majorization, but each coordinate update merely decreases the objective
function along the given coordinate direction. Fortunately, this drawback
is outweighed by the gain in numerical simplicity in majorizing hinge loss.
The decisions to use a lasso or ridge penalty and apply pure MM or co-
ordinate descent with majorization will be dictated in practical problems
by the number of potential predictors. If a lasso penalty is imposed to
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eliminate irrelevant predictors, then cyclic coordinate descent is preferable,
with the surrogate function substituting for the objective function in each
parameter update.
In discriminant analysis with more than two categories, it is convenient

to pass to ε-insensitive loss and multiple linear regression. The story is too
long to tell here, but it is worth mentioning that the conjunction of a par-
simonious loss function and efficient MM or coordinate descent algorithms
produce some of the most effective discriminant analysis methods tested
[169, 277].

13.9 Problems

1. In Example 13.2.1 prove directly that the solution displayed in equa-
tion (13.1) converges to the minimum point of ‖y −Xβ‖2 subject
to the linear constraints V β = d. (Hints: Assume that the matrix V
has full column rank and consult Example 5.2.6, Proposition 5.2.2,
and Problem 10 of Chap. 11.)

2. Prove that the surrogate function (13.5) majorizes f(x) up to an
irrelevant additive constant.

3. The power plant production problem [226] involves minimizing

f(x) =
n∑

i=1

fi(xi), fi(xi) = aixi +
1

2
bix

2
i

subject to the constraints 0 ≤ xi ≤ ui for each i and
∑n

i=1 xi ≥ d.
For plant i, xi is the power output, ui is the capacity, and fi(xi)
is the cost. The total demand is d, and the cost constants ai and
bi are positive. This problem can be solved by the adaptive barrier
algorithm. Program this algorithm and test it on a simple example
with at least two power plants. Argue that the minimum is unique.
Example 15.6.1 sketches another approach.

4. In Problem 3 investigate the performance of cyclic coordinate descent.
Explain why it fails.

5. Implement and test the EM clustering algorithm with a Bayesian
prior. Apply the algorithm to Fisher’s classic iris data set. Fisher’s
data can be downloaded from the web. See the book [191] for com-
mentary and further references.

6. Show that μ̂ minimizes f(μ) =
∑n

i=1 wi|xi − μ| if and only if

∑
xi<μ̂

wi ≤ 1

2

n∑
i=1

wi and
∑
xi≤μ̂

wi ≥ 1

2

n∑
i=1

wi.
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Assume that the weights wi are positive. (Hint: Apply Proposition
6.5.2.)

7. Consider the piecewise linear function

f(μ) = cμ+
n∑

i=1

wi|xi − μ|,

where the positive weights satisfy
∑n

i=1 wi = 1 and the points satisfy
x1 < x2 < · · · < xn. Show that f(μ) has no minimum when |c| > 1.
What happens when c = 1 or c = −1? This leaves the case |c| < 1.
Show that a minimum occurs when

∑
xi>μ

wi −
∑
xi≤μ

wi ≤ c and
∑
xi≥μ

wi −
∑
xi<μ

wi ≥ c.

(Hints: A crude plot of f(μ) might help. What conditions on the right-
hand and left-hand derivatives of f(μ) characterize a minimum?)

8. Show that Edgeworth’s algorithm [178] for �1 regression converges to
an inferior point for the data values (0.3,−1.0), (−0.4,−0.1),
(−2.0,−2.9), (−0.9,−2.4), and (−1.1, 2.2) for the pairs (xi, yi) and
parameter starting values (α, β) = (3.5,−1.0).

9. Implement and test greedy coordinate descent for lasso penalized �1
regression or cyclic coordinate descent for lasso penalized �2 regression.

10. In lasso penalized regression, suppose the convex loss function g(θ)
is differentiable. A stationary point θ of coordinate descent satisfies
the conditions dej

f(θ) ≥ 0 and d−ejf(θ) ≥ 0 for all j. Here the
intercept α varies along the coordinate direction e0. Calculate the
general directional derivative

dvf(θ) =
∑
j

∂

∂θj
g(θ)vj + λ

∑
j>0

⎧⎨
⎩
vj θj > 0
−vj θj < 0
|vj | θj = 0

and show that

dvf(θ) =
∑
vj>0

dej
f(θ)vj +

∑
vj<0

d−ejf(θ)|vj |.

Conclude that every directional derivative is nonnegative at a station-
ary point. In view of Proposition 6.5.2, stationary points therefore
coincide with minimum points. This result does not hold for lasso
penalized �1 regression.
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11. Show that the function ‖x‖0 =
∑n

i=1 1{xi 
=0} satisfies the properties:

(a) ‖x‖0 is nonnegative and equal to 0 if and only if x = 0,

(b) ‖x‖0 = ‖ − x‖0,
(c) ‖x+ y‖0 ≤ ‖x‖0 + ‖y‖0,
(d) The function x �→ ‖x‖0 is lower semicontinuous.

What norm property fails?

12. For the �0 “norm” ‖x‖0 defined in the previous problem, demonstrate
that

‖x‖0 = lim
ε↓0

n∑
i=1

ln
(
1 + |xi|

ε

)

ln
(
1 + 1

ε

) .

Note that the same limit applies if one substitutes x2i for |xi|. Now
prove the majorization

ln (ε + y) ≤ ln (ε + ym) +
1

ε+ ym
(y − ym)

for nonnegative scalars y and ym, and show how it can be employed
to majorize approximations to ‖x‖0 based on the choices |xi| and x2i .
See the references [39, 88, 272] for applications to sparse estimation
and machine learning.

13. Show that the function u+ = max{u, 0} is majorized by the quad-
ratic function (13.13) at a point um �= 0. Why does it suffice to prove
that u+ and q(u | um) have the same value and same derivative at
um and −um? Also check that u2+ is majorized by u2 for um ≥ 0
and by (u − um)2 for um < 0. (Hint: Draw rough graphs of u+ and
q(u | um).)

14. For a small ε > 0, the functions
√
u2 + ε−√ε and

√
u2+ + ε−√ε are

excellent differentiable approximations to |u| and u+, respectively.
Derive the majorizations

√
u2 + ε−√ε ≤

√
u2m + ε−√ε+ 1

2
√
u2m + ε

(u2 − u2m)

√
u2+ + ε−√ε ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
√
ε
u2 um = 0

√
u2
m+ε+

√
ε

4(u2
m+ε)

[
u+

u2
m

(
√

u2
m+ε+

√
ε)2

]2
um < 0

√
r2m+ε−√

ε

(rm−um)2 (u− um)2 um > 0,
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where in the last case rm is the largest real root of the cubic equation
u3+2umu

2+u2mu+4εum = 0. (Hints: In majorizing the approximation
to u+, in each case assume that q(u | um) = c(u− d)2. Choose c and
d to give one or two tangency points.)

15. Implement and test one of the discriminant analysis algorithms that
depend on quadratic majorization of hinge loss.

16. Nonnegative matrix factorization was introduced by Lee and Seung
[174, 175] as an analog of principal components and vector quantiza-
tion with applications in data compression and clustering. In mathe-
matical terms, one approximates a matrix U with nonnegative entries
uij by a product V W of two low-rank matrices with nonnegative en-
tries vij and wij . If the entries uij are integers, then they can be
viewed as realizations of independent Poisson random variables with
means

∑
k vikwkj . In this setting the loglikelihood is

L(V ,W ) =
∑
i

∑
j

[
uij ln

(∑
k

vikwkj

)
−
∑
k

vikwkj

]
.

Maximization with respect to V and W should lead to a good fac-
torization. Lee and Seung construct a block ascent algorithm that
hinges on the minorization

ln
(∑

k

vikwkj

)
≥

∑
k

anikj
bnij

ln
( bnij
anikj

vikwkj

)
,

where

anikj = vnikw
n
kj , bnij =

∑
k

vnikw
n
kj ,

and n indicates the current iteration. Prove this minorization and de-
rive the Lee-Seung algorithm with alternating multiplicative updates

vn+1
ik = vnik

∑
j uij

wn
kj

bn
ij∑

j w
n
kj

and

wn+1
kj = wn

kj

∑
i uij

vn
ik

bnij∑
i v

n
ik

.

17. Continuing Problem 16, consider minimizing the squared Frobenius
norm

‖U − V W ‖2F =
∑
i

∑
j

(
uij −

∑
k

vikwkj

)2

.
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Demonstrate the majorization

(
uij −

∑
k

vikwkj

)2

≤
∑
k

anikj
bnij

(
uij −

bnij
anikj

vikwkj

)2

based on the notation of Problem 16. Now derive the block descent
algorithm with multiplicative updates

vn+1
ik = vnik

∑
j uijw

n
kj∑

j b
n
ijw

n
kj

and

wn+1
kj = wn

kj

∑
i uijv

n
ik∑

i b
n
ijv

n
ik

.

18. In Problem 16 calculate the partial derivative

∂

∂vil
L(V ,W ) =

∑
j

wlj

( uij∑
k vikwkj

− 1
)
.

Show that the conditions min{vil,− ∂
∂vil

L(V ,W )} = 0 for all pairs

(i, l) are both necessary and sufficient for V to maximize L(V ,W )
when W is fixed. The same conditions apply in minimizing the cri-
terion ‖U −V W ‖2F of Problem 17 with different partial derivatives.

19. In the matrix factorizations described in Problems 16 and 17, it may
be worthwhile shrinking the estimates of the entries of V and W
toward 0 [211]. Let λ and μ be positive constants, and consider the
penalized objective functions

l(V ,W ) = L(V ,W )− λ
∑
i

∑
k

vik − μ
∑
k

∑
j

wkj

r(V ,W ) = ‖U − V W ‖2F + λ
∑
i

∑
k

v2ik + μ
∑
k

∑
j

w2
kj

with lasso and ridge penalties, respectively. Derive the block ascent
updates

vn+1
ik = vnik

∑
j
uij

wn
kj

bn
ij∑

j
wn

kj
+λ
, wn+1

kj = wn
kj

∑
i
uij

vn
ik

bn
ij∑

i
vn
ik

+μ

for l(V ,W ) and the block descent updates

vn+1
ik = vnik

∑
j
uijw

n
kj∑

j
bn
ij
wn

kj
+λvn

ik

, wn+1
kj = wn

kj

∑
i
uijv

n
ik∑

i
bn
ij
vn
ik
+μwn

kj

for r(V ,W ). These updates maintain positivity. Shrinkage is obvious,
with stronger shrinkage for the lasso penalty with small parameters.
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20. Let y1, . . . ,ym be a random sample from a multivariate normal
distribution on Rp. Example 6.5.7 demonstrates that the sample mean
ȳ and sample variance matrix S are the maximum likelihood esti-
mates of the theoretical mean μ and variance Ω. The implicit as-
sumption here is that m ≥ p and S is invertible. Unfortunately, S
is singular whenever m < p. Furthermore, the entries of S typically
have high variance when m ≥ p. To avoid these problems, Levina
et al. [177] pursue lasso penalized estimation of Ω−1. If we assume
that Ω is invertible and let Ω = LL∗ be its Cholesky decomposition,
then Ω−1 = (L∗)−1L−1 = RR∗ for the upper triangular matrix
R = (rij) = (L∗)−1. With the understanding μ̂ = ȳ, show that the
loglikelihood of the sample is

m ln detR− m

2
tr(R∗SR) = m

∑
i

ln rii − m

2

∑
j

r∗jSrj ,

where rj is column j of R. In lasso penalized estimation of R, we
minimize the objective function

f(R) = −m
∑
i

ln rii +
m

2

∑
j

r∗
jSrj + λ

∑
j>i

|rij |.

The diagonal entries of R are not penalized because we want R to
be invertible. Why is f(R) a convex function? For rij �= 0, show that

∂

∂rij
f(R) = −1{j=i}

m

rii
+msiirij +m

∑
k 
=i

sikrkj

+1{j 
=i}

{
λ rij > 0
−λ rij < 0.

Demonstrate that this leads to the cyclic coordinate descent update

r̂ii =
−∑

k 
=i sikrki +
√
(
∑

k 
=i sikrki)
2 + 4sii

2sii
.

Finally for j �= i, demonstrate that the cyclic coordinate descent
update chooses

r̂ij = −m
∑

k 
=i sikrkj + λ

msii

when this quantity is positive, it chooses

r̂ij = −m
∑

k 
=i sikrkj − λ
msii

when this second quantity is negative, and it chooses 0 otherwise. In
organizing cyclic coordinate descent, it is helpful to retain and peri-
odically update the sums

∑
k 
=i sikrkj . The matrixR can be traversed

column by column.



14
Convex Calculus

14.1 Introduction

Two generations of mathematicians have labored to extend the machinery
of differential calculus to convex functions. For many purposes it is conve-
nient to generalize the definition of a convex function f(x) to include the
possibility that f(x) = ∞. This maneuver has the advantage of allowing
one to enlarge the domain of a convex function f(x) defined on a convex
set C ⊂ Rn to all of Rn by the simple device of setting f(x) =∞ for x �∈ C.
Many of the results for finite-valued convex functions generalize successfully
in this setting. For instance, convex functions can still be characterized by
their epigraphs and their satisfaction of Jensen’s inequality.
The notion of the subdifferential ∂f(x) of a convex function f(x) has

been a particularly fertile idea. This set consists of all vectors g satisfying
the supporting hyperplane inequality f(y) ≥ f(x) + g∗(y − x) for all y.
These vectors g are called subgradients. If f(x) is differentiable at x, then
∂f(x) reduces to the single vector ∇f(x). The subdifferential enjoys such
familiar properties as

∂[αf(x)] = α ∂f(x), α > 0

∂[f(x) + g(x)] = ∂f(x) + ∂g(x)

∂[f ◦ g(x)] = dg(x)∗∂f(y)|y=g(x)

under the right hypotheses. Fermat’s principle generalizes in the sense
that y furnishes a minimum of f(x) if and only if 0 ∈ ∂f(y). A version
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DOI 10.1007/978-1-4614-5838-8 14,
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of the mean value theorem is true, and, properly interpreted, the Lagrange
multiplier rule for a minimum remains valid. Perhaps more remarkable are
the Fenchel conjugate and the formula for the subdifferential of the max-
imum of a finite collection of functions. The price of these successes is a
theory more complicated than that encountered in classical calculus.
This chapter takes up the expository challenge of explaining these new

concepts in the simplest possible terms. Fortunately, sacrificing generality
for clarity does not mean losing sight of interesting applications. Convex
calculus is an incredibly rich amalgam of ideas from analysis, linear al-
gebra, and geometry. It has been instrumental in the construction of new
algorithms for the solution of convex programs and their duals. Many read-
ers will want to follow our brief account by pursuing the deeper treatises
[13, 17, 131, 221, 226].

14.2 Notation

Although we allow∞ for the value of a convex function, a function that is
everywhere infinite is too boring to be of much interest. We will rule out
such improper convex functions and the value −∞ for a convex function.
The convex set {x ∈ Rn : f(x) <∞} is called the essential domain of f(x)
and abbreviated dom(f). We denote the closure of a set C by clC and the
convex hull of C by convC.
The notion of lower semicontinuity introduced in Sect. 2.6 turns out to be

crucial in many convexity arguments. Lower semicontinuity is equivalent to
the epigraph epi(f) being closed, and for this reason mathematicians call
a lower semicontinuous function closed. Again, it makes sense to extend
a finite closed function f(x) with closed domain to all of Rn by setting
f(x) =∞ outside dom(f). The fact that a closed convex function f(x) has
a closed convex epigraph permits application of the geometric separation
property of convex sets described in Proposition 6.2.3. As an example of a
closed convex function, consider

f(x) =

{
x lnx− x x > 0
0 x = 0
∞ x < 0.

If on the one hand we redefine f(0) < 0, then f(x) fails to be convex. If on
the other hand we redefine f(0) > 0, then f(x) fails to be closed.

14.3 Fenchel Conjugates

The Fenchel conjugate was defined in Example 1.2.6 for real-valued
functions of a real argument. This transform, which is in some ways the
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optimization analogue of the Fourier transform, has profound consequences
in many branches of mathematics. The Fenchel conjugate generalizes to

f�(y) = sup
x

[y∗x− f(x)] (14.1)

for functions f(x) mapping Rn into (−∞,∞]. The conjugate f�(y) is al-
ways closed and convex even when f(x) is neither. Condition (j) in the
next proposition rules out improper conjugate functions.
On first contact definition (14.1) is frankly a little mysterious. So too

is the definition of the Fourier transform. Readers are advised to exer-
cise patience and suspend their initial skepticism for several reasons. The
Fenchel conjugate encodes the solutions to a family of convex optimization
problems. It is one of the keys to understanding convex duality and serves
as a device for calculating subdifferentials. Finally, the Fenchel biconjugate
f��(x) provides a practical way of convexifying f(x). Indeed, the bicon-
jugate has the geometric interpretation of falling below f(x) and above
any supporting hyperplane minorizing f(x). This claim follows from our
subsequent proof of the Fenchel-Moreau theorem and a double application
of item (f) in the next proposition.

Proposition 14.3.1 The Fenchel conjugate enjoys the following properties:

(a) If g(x) = f(x− v), then g�(y) = f�(y) + v∗y.

(b) If g(x) = f(x)− v∗x− c, then g�(y) = f�(y + v) + c.

(c) If g(x) = αf(x) for α > 0, then g�(y) = αf�(α−1y).

(d) If g(x) = f(Mx), then g�(y) = f�[(M−1)∗y] for M invertible.

(e) If g(x) =
∑n

i=1 fi(xi) for x ∈ Rn, then g�(y) =
∑n

i=1 f
�
i (yi).

(f) If g(x) ≤ h(x) for all x, then g�(y) ≥ h�(y) for all y.

(g) For all x and y, f�(y) + f(x) ≥ y∗x.

(h) The conjugate f�(y) is convex.

(i) The conjugate f�(y) is closed.

(j) If f(x) satisfies f(x) ≥ z∗x+ c for all x, then f�(z) ≤ −c.
(k) f�(0) = − infx f(x).

Proof: All of these claims are direct consequences of definition (14.1). For
instance, claim (d) follows from

g�(y) = sup
x

[y∗x− f(Mx)] = sup
z

[y∗M−1z − f(z)].
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Claims (h) and (i) stem from the convexity and continuity of the affine
functions y �→ y∗x− f(x) and the closure properties of convex and lower
semicontinuous functions under suprema. Finally, claim (j) follows from the
inequality f�(z) ≤ supx[(z − z)∗x− c] = −c.

Example 14.3.1 Conjugate of a Strictly Convex Quadratic

For a well-behaved function f(x), one can find f�(y) by setting the gradient
y−∇f(x) equal to 0 and solving for x. For example, consider the quadratic
f(x) = 1

2x
∗Ax defined by the positive definite matrix A. The gradient

condition becomes y −Ax = 0 with solution x = A−1y. This result gives
the conjugate f�(y) = 1

2y
∗A−1y. For the general convex quadratic

f(x) =
1

2
x∗Ax+ b∗x+ c,

rule (b) of Proposition 14.3.1 implies

f�(y) =
1

2
(y − b)∗A−1(y − b)− c.

For instance, the univariate function f(x) = 1
2x

2 is self-conjugate. Accord-
ing to rule (e) of Proposition 14.3.1, the multivariate function f(x) = 1

2‖x‖2
is also self-conjugate. Rule (g) is called the Fenchel-Young inequality. In the
current example it amounts to

1

2
x∗Ax+

1

2
y∗A−1y ≥ y∗x,

a surprising result in its own right.

Example 14.3.2 Entropy as a Fenchel Conjugate

Consider the convex function f(x) = ln(
∑n

j=1 e
xj ). If f�(y) is finite, then

setting the gradient of y∗x− f(x) with respect to x equal to 0 entails

yi =
exi∑n
j=1 e

xj
.

It follows that the yi are positive and sum to 1. Furthermore,

f�(y) =

n∑
i=1

yi

[
ln yi + ln

( n∑
j=1

exi

)]
− ln

( n∑
j=1

exi

)
=

n∑
i=1

yi ln yi.

With the understanding that 0 ln 0 = 0, the entropy formula

f�(y) =
n∑

i=1

yi ln yi
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remains valid when y occurs on the boundary of the unit simplex. Indeed,
if y belongs to the unit simplex but yi = 0, then we send xi to −∞ and
reduce calculation of the conjugate to the setting y ∈ Rn−1. If yi < 0, then
the sequence xk = −kei gives

lim
k→∞

y∗xk − f(xk) = lim
k→∞

ln
( e−kyi

n− 1 + e−k

)
= ∞.

Similarly, if all yi ≥ 0 but
∑n

j=1 yj �= 1, then one of the two sequences
xk = ±k1 compels the same conclusion f�(y) =∞.

Examples 1.2.6 and 14.3.1 obey the curious rule f��(x) = f(x). This
duality relation is more widely true. An affine function f(x) = z∗x + c
provides another example. This fact follows readily from the form

f�(y) =
{−c y = z
∞ y �= z

of the conjugate. One cannot expect duality to hold for all functions because
Proposition 14.3.1 requires f��(x) to be convex and closed. Remarkably,
the combination of these two conditions is both necessary and sufficient for
proper functions.

Proposition 14.3.2 (Fenchel-Moreau) A proper function f(x) from Rn

to (−∞,∞] satisfies the duality relation f��(x) = f(x) for all x if and only
if it is closed and convex.

Proof: Suppose the duality relation holds. Being the conjugate of a con-
jugate, f(x) = f��(x) is closed and convex. This proves that the stated
conditions are necessary for duality.
To demonstrate the converse, first note that the Fenchel-Young inequality

f(x) ≥ y∗x− f�(y) implies

f(x) ≥ sup
y

[y∗x− f�(y)] = f��(x). (14.2)

In other words, the epigraph epi(f��) of f��(x) contains the epigraph epi(f)
of f(x). Verifying the reverse containment epi(f��) ⊂ epi(f) proves the con-
verse of the proposition. Our general strategy for establishing containment
is to exploit the separation properties of closed convex sets. As already
mentioned, the convexity of f(x) entails the convexity of epi(f), and the
lower semicontinuity of f(x) entails the closedness of epi(f).
We first show that f(x) dominates some affine function and hence that

the conjugate function f�(y) is proper. Suppose x0 satisfies f(x0) < ∞.
Given that epi(f) is closed and convex, we can separate it from the exterior
point [x0, f(x0) − 1] by a hyperplane. Thus, there exists a vector v and
scalars η and ν such that

v∗x+ ηr ≥ ν > v∗x0 + η[f(x0)− 1] (14.3)
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for all x and r ≥ f(x). Sending r to ∞ demonstrates that η ≥ 0. Setting
x = x0 rules out the possibility η = 0. Finally, dividing inequality (14.3)
by η > 0, replacing r by f(x), and rearranging the result yield an affine
function z∗x+ c positioned below f(x).
Now suppose (y, β) is in epi(f��) but not in epi(f). Proposition 6.2.3

guarantees the existence of a vector-scalar pair (v, γ) and a constant ε > 0
such that

v∗y + γβ ≤ v∗x+ γα− ε
for all (x, α) ∈ epi(f). Sending α to ∞ shows that γ ≥ 0. If γ > 0, then

g(x) = γ−1v∗(y − x) + β + γ−1ε ≤ α

for all α ≥ f(x). Hence, g(x) is an affine function positioned below f(x),
and a double application of part (f) of Proposition 14.3.1 implies

f��(y) ≥ g��(y) = g(y) > β,

contradicting the choice of (y, β) ∈ epi(f��).
Completing the proof now requires eliminating the possibility γ = 0.

If we multiply the inequality v∗y− v∗x+ ε ≤ 0 by δ > 0 and add it to the
previous inequality z∗x+ c ≤ f(x), then we arrive at

h(x) = z∗x+ c+ δv∗(y − x) + δε ≤ f(x).

The conclusion

f��(y) ≥ h��(y) = h(y) = z∗y + c+ δε

for all δ > 0 can only be true if f��(y) = ∞, which is also incompatible
with (y, β) ∈ epi(f��).

The left panel of Fig. 14.1 illustrates the relationship between a func-
tion f(x) on the real line and its Fenchel conjugate f�(y). According to
the Fenchel-Young inequality, the line with slope y and intercept −f�(y)
falls below f(x). The curve and the line intersect when y = f ′(x). The
right panel of Fig. 14.1 shows that the biconjugate f��(y) is the greatest
convex function lying below f(x). The biconjugate is formed by taking the
pointwise supremum of the supporting lines.

Example 14.3.3 Perspective of a Function

Let f(x) be a closed convex function. The perspective of f(x) is the func-
tion g(x, t) = tf(t−1x) defined for t > 0. On this domain g(x, t) is closed
and convex owing to the representation

g(x, t) = t sup
y

[t−1x∗y − f�(y)] = sup
y

[x∗y − tf�(y)]
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f(x)

xy − f (y)

f(x)

FIGURE 14.1. Left panel: The Fenchel-Young inequality for f(x) and its conju-
gate f�(y). Right panel: The envelope of supporting lines defined by f�(y)

and the linearity of the map (x, t) �→ x∗y − tf�(y). For instance, the
choice f(x) = x∗Mx for M positive semidefinite yields the convexity
of t−1x∗Mx. The choice f(x) = − lnx shows that the relative entropy
g(x, t) = t ln t− t lnx is convex. Finally, the function

g(x) = (c∗x+ d)f

(
Ax+ b

c∗x+ d

)

is closed and convex on the domain c∗x + d > 0 whenever the function
f(x) is closed and convex.

Example 14.3.4 Indicator and Support Functions

Every set C can be represented by its indicator function

δC(x) =

{
0 x ∈ C
∞ x �∈ C.

If C is closed and convex, then it is easy to check that δC(x) is a closed
convex function. One reason for making the substitution of ∞ for 0 and 0
for 1 in defining an indicator is that it simplifies the Fenchel conjugate

δ�C(y) = sup
x

[y∗x− δC(x)] = sup
x∈C

y∗x.

The function δ�C(y) is called the support function of C. Proposition 14.3.2
implies that the Fenchel biconjugate δ��C (z) equals δC(z).
It turns out that support functions with full essential domains are the

same as sublinear functions with full essential domains. A function h(u) is
said to be sublinear whenever

h(αu + βv) ≤ αh(u) + βh(v)
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holds for all points u and v and nonnegative scalars α and β. Sublinearity is
an amalgam of homogeneity, h(λv) = λh(v) for λ > 0, and convexity,
h[λu + (1 − λ)v] ≤ λh(u) + (1 − λ)h(v) for λ ∈ [0, 1]. One can easily
check that a support function is sublinear. To prove the converse, we first
demonstrate that the conjugate h�(y) of a sublinear function is an indicator
function. Indeed, the identity

λh�(y) = λ sup
x

[y∗x− h(x)]
= sup

x
[y∗(λx)− h(λx)]

= sup
x

[y∗x− h(x)]
= h�(y)

compels h�(y) to equal 0 or∞. When h(x) is finite-valued, Proposition 6.4.1
requires it to be continuous and consequently closed. Thus, Fenchel dual-
ity implies that h(x) equals the support function of the closed convex set
C = {y ∈ Rn : h�(y) = 0}.
The support function h(u) of a closed convex set C is finite valued if

and only if C is bounded. Boundedness is clearly sufficient to guarantee
that h(u) is finite valued. To show that boundedness is necessary as well,
suppose C is unbounded. Then part (c) of Problem 5 of Chap. 6 says that
C contains a ray {u + tv : t ∈ [0,∞)}. This forces h(v) = supx∈C v∗x to
be infinite.

Example 14.3.5 Vector Dual Norms

If C equals the closed unit ball B = {x : ‖x‖† ≤ 1} associated with a
norm ‖x‖† on Rn, then the support function ‖y‖� = δ�B(y) = supx∈B y∗x
also qualifies as a norm. Verification of the norm properties for the dual
norm ‖y‖� is left to the reader as Problem 13. For a sublinear function
such as ‖y‖�, the only things to check are that whether it is nonnegative
and vanishes if and only if x = 0. In defining ‖y‖� one can clearly confine
x to the boundary of B. The generalized Cauchy-Schwarz inequality

y∗x ≤ ‖y‖�‖x‖† (14.4)

follows directly from this observation. Equality in the generalized Cauchy-
Schwarz inequality is attained for some x on the boundary of B because
the maximum of a continuous function over a compact set is attained.
There are many concrete examples of norms and their duals. The dual

norm of ‖x‖1 is ‖x‖∞ and vice versa. For p−1 + q−1 = 1, Example 6.6.3
and Problem 21 of Chap. 5 show that the norms ‖x‖p and ‖y‖q constitute
another dual pair, with the generalized Cauchy-Schwarz inequality reducing
to Hölder’s inequality. Of course, the Euclidean norm ‖x‖ = ‖x‖2 is its own
dual.
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These examples are not accidents. The primary reason for calling ‖y‖� a
dual norm is that taking the dual of the dual gives us back the original norm
‖x‖†. One way of deducing this fact is to construct the Fenchel conjugate
of the convex function f(x) = 1

2‖x‖2†. In view of the generalized Cauchy-

Schwarz inequality and the inequality (‖x‖† − ‖y‖�)2 ≥ 0, we have

y∗x− 1

2
‖x‖2† ≤ ‖y‖�‖x‖† − 1

2
‖x‖2† ≤ 1

2
‖y‖2�.

On the other hand, suppose we choose a vector z with ‖z‖† = 1 such that
equality is attained in the generalized Cauchy-Schwarz inequality. Then for
any scalar s > 0, we find

y∗(sz)− 1

2
‖sz‖2† = s‖y‖�‖z‖† − s2

2
‖z‖2†.

If we take s = ‖y‖�, then this equality gives

y∗(sz)− 1

2
‖sz‖2† =

1

2
‖y‖2�.

In other words, f�(y) = 1
2‖y‖2�. Taking the conjugate of f�(y) = 1

2‖y‖2�
yields f��(x) = f(x) = 1

2‖x‖2†. Thus, the original norm ‖x‖† is dual to the
dual norm ‖y‖�.
Example 14.3.6 Matrix Dual Norms

One can also define dual norms of matrix norms using the Frobenius inner
product 〈Y ,X〉 = tr(Y ∗X). Under this matrix inner product, the Frobe-
nius matrix norm ‖X‖F is self-dual. The easiest way to deduce this fact
is to observe that the Frobenius norm can be calculated by stacking the
columns of X to form a vector and then taking the Euclidean norm of
the vector. Column stacking is clearly compatible with the exchange of the
Frobenius inner product for the Euclidean inner product.
Under the Frobenius inner product, calculation of the dual norm of the

matrix spectral norm is more subtle. The most illuminating approach takes
a detour through Fan’s inequality and the singular value decomposition
(svd) covered in Appendices A.4 and A.5. Any matrix X has an svd rep-
resentation PΣQ∗, where P and Q are orthogonal matrices and Σ is a
diagonal matrix with nonnegative entries σi arranged in decreasing order
along its diagonal. The columns of P and Q are referred to as singular vec-
tors and the diagonal entries of Σ as singular values. The svd immediately
yields the spectral decompositions XX∗ = PΣ2P ∗ and X∗X = QΣ2Q∗

and consequently the spectral norm ‖X‖ = σ1. If Y has svd RΩS∗ with
Ω = diag(ωi), then equality is attained in Fan’s inequality

tr(Y ∗X) ≤
∑
i

ωiσi
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when R = P and S = Q. The matrix X with ‖X‖ = σ1 ≤ 1 giving
the maximum value of tr(Y ∗X) has the same singular vectors as Y and
the singular values σi = 1 for ωi > 0. It follows that the dual norm of the
spectral norm equals

‖Y ‖� =
∑
i

ωi.

This dual norm is also called the nuclear norm or the trace norm.

Example 14.3.7 Cones and Polar Cones

If C is a cone, then the Fenchel conjugate of its indicator function δC(x)
turns out to be the indicator function of the polar cone

C◦ = {y : y∗x ≤ 0, ∀x ∈ C}.
This assertion follows from the limits

lim
c↓0

y∗(cx) = 0

lim
c↑∞

y∗(cx) =

{∞ y∗x > 0
0 y∗x = 0
−∞ y∗x < 0

for any x ∈ C. Although C may be neither convex nor closed, its polar C◦ is
always both. The duality relation δ��C (x) = δC(x) for a closed convex cone
C is equivalent to the set relation C◦◦ = C. Notice the analogy here to the
duality relation S⊥⊥ = S for subspaces under the orthogonal complement
operator ⊥.
As a concrete example, let us calculate the polar cone of the set Sn

+

of n× n positive semidefinite matrices under the Frobenius inner product
〈A,B〉 = tr(AB). IfA ∈ Sn

+ has eigenvalues λ1, . . . , λn with corresponding
unit eigenvectors u1, . . . ,un, then

tr(AB) = tr
( n∑

i=1

λiuiu
∗
iB

)
=

n∑
i=1

λiu
∗
iBui.

IfB ∈ −Sn
+, then it is clear that tr(AB) ≤ 0. Thus, the polar cone contains

−Sn
+. Conversely, supposeB is in the polar cone of Sn

+, and chooseA = vv∗

for some nontrivial vector v. The inequality tr(vv∗B) = v∗Bv ≤ 0 for all
such v implies that B ∈ −Sn

+. Thus, the polar cone of Sn
+ equals −Sn

+.

Example 14.3.8 Log Determinant

Minimization of the objective function (4.18) featured in Example 4.7.6
can be rephrased as calculating the Fenchel conjugate

g�(N ) = sup
P

[tr(NP ) + c ln detP ]
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for c positive and P an n×n positive definite matrix. The essential domain
of g�(N ) is the set of negative definite matrices. Indeed, if N falls outside
this domain, then it possesses a unit eigenvector v with nonnegative eigen-
value λ. The choice P = I + svv∗ has eigenvalues 1 (multiplicity n − 1)
and 1 + s (multiplicity 1). For s > 0 we calculate

tr(NP ) + c ln detP = trN + sλ+ c ln det(I + svv∗)
= trN + sλ+ c ln(1 + s),

which tends to∞ as s tends to∞. When N is negative definite, our previ-
ous calculations gave the gradientN+cP−1 of tr(NP )+c ln detP . Setting
the gradient to 0 yields P = −cN−1 and g�(N) = −cn− c lndet[−c−1N ].
Because a Fenchel conjugate is convex, this line of argument establishes
the log-concavity of detP for P positive definite. Example 6.3.12 presents
a different proof of this fact.

14.4 Subdifferentials

Convex calculus revolves around the ideas of forward directional deriva-
tives and supporting hyperplanes. At this juncture the reader may want
to review Sect. 6.4 on the former topic. Appendix A.6 develops the idea of
a semidifferential, the single most fruitful generalization of forward direc-
tional derivatives to date. For the sake of brevity henceforth, we will drop
the adjective forward and refer to forward directional derivatives simply as
directional derivatives.
Consider the absolute value function f(x) = |x|. At the point x = 0,

the derivative f ′(x) does not exist. However, the directional derivatives
dvf(0) = |v| are all well defined. Furthermore, the supporting hyperplane
inequality f(x) ≥ f(0) + gx is valid for all x and all g with |g| ≤ 1. The
set ∂f(0) = {g : |g| ≤ 1} is called the subdifferential of f(x) at x = 0.
The notion of subdifferential is hardly limited to functions defined on the
real line. Consider a convex function f(x) : Rn �→ (−∞,∞]. By convention
the subdifferential ∂f(x) is empty for x �∈ dom(f). For x ∈ dom(f), the
subdifferential ∂f(x) is the set of vectors g in Rn such that the supporting
hyperplane inequality

f(y) ≥ f(x) + g∗(y − x)

is valid for all y. An element g of the subdifferential is called a subgradient.
If f(x) is differentiable at x, then as we prove later, its subdifferential
collapses to its gradient.
For a nontrivial example, consider f(x) = max{x1, x2} with domain R2.

Off the diagonal D = {x ∈ R2 : x1 = x2}, the convex function f(x)
is differentiable. On D the subdifferential ∂f(x) equals the unit simplex
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S = {w ∈ R2 : w1 + w2 = 1, w1 ≥ 0, w2 ≥ 0}. Indeed for points x ∈ D
and w ∈ S, one can easily demonstrate that

max{y1, y2} ≥ max{x1, x2}+ w1(y1 − x1) + w2(y2 − x2)

is valid for all y by closely examining the two extreme cases w = (1, 0)∗

and w = (0, 1)∗. Conversely, we will prove later that any point w out-
side S fails the supporting hyperplane test for some y. The directional
derivative dvf(x) equals (1, 0)v = v1 for x1 > x2 and (0, 1)v = v2 for
x2 > x1. Example 4.4.4 shows that the directional derivative is dvf(x) =
max{v1, v2} on D. It is no accident that

dvf(x) = max{w∗v : w ∈ ∂f(x) = S} (14.5)

on D. Indeed, the relationship (14.5) is generally true.
As a prelude to proving this fact, let us study the directional deriva-

tive dvf(x) more thoroughly. For f(x) convex and x an interior point
of dom(f), one can argue that dvf(x) exists and is finite for all v be-
cause any line segment starting at x can be extended backwards and re-
main in dom(f). Given that x is internal to the segment, the results of
Sect. 6.4 apply. In addition, one can show that dvf(x) is sublinear in its
argument v. See Example 14.3.4 for the definition of sublinearity. A direc-
tional derivative dvf(x) is obviously homogeneous in v. Because

dvf(x) = lim
t↓0

f(x+ tv)− f(x)
t

is a pointwise limit of its difference quotients, and these are convex functions
of v, dvf(x) is also convex. The monotonicity of the difference quotient
implies that

f(x+ tv)− f(x) ≥ tdvf(x).

Any vector g satisfying g∗v ≤ dvf(x) for all v therefore acts as a subgra-
dient. Conversely, any subgradient g must satisfy g∗v ≤ dvf(x) for all v.
Hence, we have the relation

∂f(x) = {g : g∗v ≤ dvf(x) for all v}. (14.6)

Despite this interesting logical equivalence, the question remains of whether
any subgradient g satisfies g∗v = dvf(x) for a particular direction v.
In constructing a subgradient g with g∗v = dvf(x), we view the map

u �→ g∗u as a linear functional �(u). Initially �(u) is defined for the vector
v of interest by the requirement �(v) = dvf(x). We now show how to
extend �(u) to all of Rn. By homogeneity,

�(λv) = λ�(v) = dλvf(x)
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for λ ≥ 0. This defines �(u) on the ray {λv : λ ≥ 0}. For λ < 0 we continue
to define �(λv) by λ�(v). Jensen’s inequality

0 = d0f(x) ≤ 1

2
d−vf(x) +

1

2
dvf(x)

then implies that

�(−v) = −dvf(x) ≤ d−vf(x)

and assures us that �(u) is dominated by duf(x) on the 1-dimensional
subspace {λv : λ ∈ R}. The remainder of the proof is supplied by the
finite-dimensional version of the Hahn-Banach theorem.

Proposition 14.4.1 (Hahn-Banach) Suppose the linear function �(v) is
defined on a subspace S of Rn and dominated there by the sublinear function
h(v) defined on all of Rn. Then �(v) can be extended to a linear function
that is dominated throughout Rn by h(v).

Proof: The proof proceeds by induction on the dimension of S. Let u be
any point in Rn outside S. It suffices to show that �(v) can be consistently
defined on the subspace T spanned by S and u. For v ∈ S linearity requires

�(v + λu) = �(v) + λ�(u),

and the crux of the matter is properly defining �(u). For two points v and
w in S, we have

�(v) + �(w) = �(v +w) ≤ h(v +w) ≤ h(v − u) + h(w + u).

It follows that

�(v)− h(v − u) ≤ h(w + u)− �(w).

Because v and w are arbitrary, the left-hand side of this inequality is
bounded above for u fixed and the right-hand side is bounded below for u
fixed. The idea now is to define �(u) to be any number α satisfying

sup
v∈S

[�(v)− h(v − u)] ≤ α ≤ inf
w∈S

[h(w + u)− �(w)].

If λ > 0, then our choice of α entails

�(v + λu) = λ
[
α+ �(λ−1v)

]
≤ λ

[
h(λ−1v + u)− �(λ−1v) + �(λ−1v)

]
= h(v + λu).

Similarly if λ < 0, then our choice of α entails

�(v + λu) = −λ [−α+ �(−λ−1v)
]

≤ −λ [h(−λ−1v − u)− �(−λ−1v) + �(−λ−1v)
]

= h(v + λu).

Thus, �(x) is dominated by h(x) on T .
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The next proposition summarizes the previous discussion and collects
some further pertinent facts about subdifferentials. Recall that the notion
of a support function mentioned in the proposition was defined in Exam-
ple 14.3.4.

Proposition 14.4.2 The subdifferential ∂f(x) of a convex function f(x)
is a closed convex set for all x. If x is an interior point of dom(f), then
∂f(x) is nonempty and compact, the directional derivative dvf(x) exists
and is finite for all v, and dvf(x) is the support function of ∂f(x). If f(x)
is differentiable at x, then ∂f(x) coincides with the singleton set {∇f(x)}.
Proof: The supporting hyperplane inequality is preserved under limits and
convex combinations of subgradients. Hence, ∂f(x) is closed and convex.
For an interior point x, the Hahn-Banach theorem shows that ∂f(x) is
nonempty and that

dvf(x) = max
g∈∂f(x)

g∗v,

so by definition dvf(x) is the support function of ∂f(x). To demonstrate
that ∂f(x) is compact, it suffices to show that it is bounded. To reach
a contradiction, assume that gm ∈ ∂f(x) satisfies limm→∞ ‖gm‖ = ∞.
By passing to a subsequence if necessary, one can further assume that the
sequence of unit vectors vm = ‖gm‖−1gm converges to a unit vector v.
If the ball of radius ε centered at x lies wholly within dom(f), then the
inequality

f(x+ εvm) ≥ f(x) + εg∗
mvm = f(x) + ε‖gm‖

contradicts the boundedness of f(y) within the ball guaranteed by Propo-
sition 6.4.1. Finally, suppose f(x) is differentiable at x. For g ∈ ∂f(x) we
have

f(x) + αg∗v ≤ f(x+ αv) = f(x) + αdf(x)v + o(|α|).

If we let v = ∇f(x)− g, then this inequality implies

0 ≤ α[∇f(x)− g]∗[∇f(x)− g] + o(|α|) = α‖∇f(x)− g‖2 + o(|α|).

Taking α < 0 small now yields a contradiction unless ∇f(x)− g = 0.

For a convex function f(x) with domain the real line, the subdifferential
∂f(x) equals the interval [−d−1f(x), d1f(x)]. For instance, the function
f(x) = |y − x| has

∂f(x) =

{−1 x < y
[−1, 1] x = y
1 x > y.



14.4 Subdifferentials 355

The behavior of ∂f(x) at boundary points of dom(f) is more erratic than
the behavior at interior points. For example, the choice

f(x) =

{
−√x x ∈ [0, 1]
∞ otherwise

has subdifferential

∂f(x) =

⎧⎨
⎩
− 1

2
√
x

x ∈ (0, 1)

[−1/2,∞) x = 1
∅ x ≤ 0 or x > 1.

Thus, at one boundary point of dom(f) the subdifferential ∂f(x) is empty,
and at the other it is unbounded.
Here is the convex generalization of Fermat’s stationarity condition.

Proposition 14.4.3 A convex function f(y) possesses a minimum at the
point x if and only if 0 ∈ ∂f(x).
Proof: The inequality f(y) ≥ f(x) for all y is trivially equivalent to the
inequality f(y) ≥ f(x) + 0∗(y − x) for all y.

The next proposition highlights the importance of the Fenchel conjugate
in calculating subdifferentials.

Proposition 14.4.4 For a convex function f(x) with conjugate f�(y),
assertions (a) and (b) from the following list

(a) f(x) + f�(y) = y∗x

(b) y ∈ ∂f(x)

(c) x ∈ ∂f�(y)

are logically equivalent for a vector pair (x,y). If f(x) is closed, then both
assertions are logically equivalent to assertion (c). Furthermore, the set of
minima of f(x) coincides with ∂f�(0).

Proof: A pair (x,y) satisfies condition (a) if and only if y∗x−f(x) attains
its maximum at x for y fixed. The latter condition is equivalent to the con-
vex function h(x) = f(x)− y∗x attaining is minimum. A brief calculation
shows that ∂h(x) = ∂f(x) − y. Proposition 14.4.3 therefore implies that
condition (a) is equivalent to 0 ∈ ∂f(x) − y, which is just a restatement
of condition (b). When f(x) is closed, f��(x) = f(x), and we can reverse
the roles of f(x) and f�(y) and deduce the equivalence of condition (c).
The final assertion of the proposition follows from the observation that
0 ∈ ∂f(x) if and only if x ∈ ∂f�(0).
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Example 14.4.1 Subdifferential of the Indicator of a Closed Convex Set

Let δC(x) be the indicator of a closed convex set C. Outside C the subd-
ifferential ∂δC(x) is empty. For x ∈ C the calculation

∂δC(x) = {y : δC(x) + δ�C(y) = y∗x}
= {y : sup

z∈C
y∗z = y∗x}

= {y : y∗(z − x) ≤ 0 for all z ∈ C}
identifies the subdifferential as the polar cone to the translated set C − x.
This polar cone is denoted NC(x) and called the normal cone to C at x.
The double polar cone NC(x)

◦ is termed the tangent cone to C at x; it is
the smallest closed convex cone containing C − x. Various special cases of
NC(x) readily come to mind. For example, if x belongs to the interior of
C, then NC(x) = {0}. Alternatively, if C is an affine subspace S +x, then
NC(x) = S⊥, the orthogonal complement of the subspace S. When C is
the affine subspace {x : Ax = b} corresponding to solutions of the linear
equation Ax = b, then S equals the kernel of A, and the fundamental
theorem of linear algebra implies that S⊥ equals the range of the transpose
A∗ [248].

Example 14.4.2 Subdifferential of a Norm

Let B be the closed unit ball associated with a norm ‖x‖† on Rn. The dual
norm ‖y‖� defined in Example 14.3.5 coincides with the support function
δ�B(y). These considerations imply

∂‖y‖� = {x : δB(x) + δ�B(y) = y∗x}
= {x ∈ B : ‖y‖� = y∗x}.

The dual relation

∂‖x‖† = {y ∈ U : ‖x‖† = y∗x}
holds for U the closed unit ball associated with ‖y‖�. In the case of the
Euclidean norm, which is its own dual, the subdifferential coincides with
the gradient ‖x‖−1x when x �= 0. At the origin ∂‖0‖ = B. In general for
any norm, 0 ∈ ∂‖x‖† if and only if x = 0. This is just a manifestation of
the fact that x = 0 is the unique minimum point of the norm.

Example 14.4.3 Subdifferential of the Distance to a Closed Convex Set

Let C be a closed convex set in Rn. The distance f(x) = minz∈C ‖z− x‖†
from x to C under any norm ‖z‖† is attained and finite. Furthermore, as
observed in Problem 17 of Chap. 6, f(x) is a convex function. In contrast to
Euclidean distance, the closest point z in C to xmay not be unique. Despite
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this complication, one can calculate the conjugate f�(y) and subdifferential
∂f(x). If U is the closed unit ball of the dual norm ‖y‖�, then the conjugate
amounts to

f�(y) = sup
x

(y∗x−min
z∈C

‖z − x‖†)
= sup

x
sup
z∈C

(y∗x− ‖z − x‖†)
= sup

z∈C
{y∗z + sup

x
[y∗(x− z)− ‖z − x‖†]}

= sup
z∈C

[y∗z + sup
x

(y∗x− ‖x‖†)] (14.7)

= sup
z∈C

[y∗z + δU (y)]

= δ�C(y) + δU (y).

A subgradient y ∈ ∂f(x) is characterized by the equation

y∗x = f�(y) + f(x) = δ�C(y) + δU (y) + f(x),

which clearly forces y to reside in U . To make further progress, select a
point z ∈ C with f(x) = ‖z − x‖†. Because δ�C(y) is the support function
of C, this choice yields the inequality

‖z − x‖† = f(x) = y∗x− δ�C(y) ≤ y∗(x− z). (14.8)

Fortunately, the restriction y ∈ U and the generalized Cauchy-Schwarz
inequality (14.4) imply the opposite inequality, and we conclude that

y∗(x− z) = ‖x− z‖†. (14.9)

The previous example now implies that y ∈ ∂‖x − z‖†. Duplicating the
reasoning that led to inequality (14.8) proves that any other point w ∈ C
satisfies y∗(x −w) ≥ ‖x − z‖†. Subtracting this inequality from equality
(14.9) gives y∗(w− z) ≤ 0. Hence, y belongs to the normal cone NC(z) to
C at z, and we have proved the containment

∂f(x) ⊂ U ∩NC(z) ∩ ∂‖x− z‖†.
The reverse containment is also true. Suppose y belongs to the intersec-

tion U ∩NC(z) ∩ ∂‖x− z‖†. Then the normal cone condition y∗w ≤ y∗z
for all w ∈ C implies the equality y∗z = supw∈C y∗w = δ�C(y). Together
with the subgradient condition y∗(x − z) = ‖x − z‖† of Example 14.4.2,
this gives

f(x) = ‖z − x‖† = y∗(x− z) = y∗x− δ�C(y).
In view of the identity f�(y) = δ�C(y) + δU (y) of equation (14.7) and part
(b) of Proposition 14.4.4, we are justified in concluding that y ∈ ∂f(x).
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In the case of the Euclidean norm and a point x �∈ C, the point z is the
projection onto C, and the subdifferential ∂‖x− z‖† = ‖x− z‖−1(x− z)
reduces to a unit vector consistent with the normal cone NC(z). In other
words, f(x) is differentiable with gradient ‖x− z‖−1(x− z).

14.5 The Rules of Convex Differentiation

Some, but not all, of the usual rules of differentiation carry over to convex
functions. The simplest rule that successfully generalizes is

∂[αf(x)] = α∂f(x)

for α a positive scalar. This result is just another way of saying that the
two supporting plane inequalities

f(y) ≥ f(x) + g∗(y − x)

αf(y) ≥ αf(x) + (αg)∗(y − x)

are logically equivalent. For functions that depend on a single coordinate,
another basic rule that the reader can readily verify is

∂f(xi) = ∂if(xi)ei,

where ∂ takes the subdifferential with respect to x ∈ Rn, ∂i takes the sub-
differential with respect to xi ∈ R, and ei denotes the ith unit coordinate
vector.
Our strategy for deriving other rules is indirect and relies on the charac-

terization (14.5) of the directional derivative as the support function of the
subdifferential. Consider a convex function f(x) all of whose directional
derivatives dvf(z) exist and are finite at some point z ∈ dom(f). In this
circumstance, equation (14.6) defines the subdifferential ∂f(z) in terms of
the directional derivatives dvf(z). Although definition (14.6) is still oper-
ative even when dvf(z) = ∞ for some v, we will ignore this possibility.
Example 14.3.4 documents the fact that every nonempty closed convex set
C is uniquely characterized by its support function

δ�C(y) = sup
x∈C

y∗x.

We will also need the fact that any nonempty set K with closed convex
hull C generates the same support function as C. This is true because

δ�K(y) = sup
x∈K

y∗x = sup
x∈C

y∗x = δ�C(y),

where the middle equality follows from the identity

max{a1, . . . , am} = max

{
m∑
i=1

λiai : all λi ≥ 0,
m∑
i=1

λi = 1

}
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and the continuity and linearity of the map x �→ y∗x.
To generalize the chain rule, consider a convex function f(y) and a dif-

ferentiable function g(x) whose composition f ◦ g(x) with f(y) is convex.
If x ∈ dom(g) and g(x) ∈ dom(f), then the difference quotient

f ◦g(x+ tv)− f ◦ g(x)
t

=
f ◦g(x+ tv)− f [g(x) + tdg(x)v]

t

+
f [g(x) + tdg(x)v]− f ◦g(x)

t

yields in the limit the directional derivative. The first term on the right of
this equation vanishes when g(x) is a linear function. The second term tends
to ddg(x)vf [g(x)], the directional derivative of f(y) at the point y = g(x) in
the direction dg(x)v. Even when g(x) is nonlinear, there is still hope that
the first term vanishes in the limit. Suppose g(x) belongs to the interior of
dom(f). If we let L be the Lipschitz constant for f(y) near the point g(x)
guaranteed by Proposition 6.4.1, then the inequality∣∣∣∣f ◦g(x+ tv)− f [g(x) + tdg(x)v]

t

∣∣∣∣ ≤ L‖g(x+ tv)− g(x)− tdg(x)v‖
t

=
o(t)

t

shows once again that dv(f ◦ g)(x) = ddg(x)vf(y) for y = g(x). This
directional derivative identity translates into the further identity

sup
z∈∂(f◦g)(x)

v∗z = sup
z∈∂f(y)

v∗dg(x)∗z = sup
w∈dg(x)∗∂f(y)

v∗w

connecting the corresponding support functions. In view of our earlier re-
marks regarding support functions and closed convex sets, the convex set
∂(f ◦ g)(x) is the closure of the convex set dg(x)∗∂f(y).
To show that the two sets coincide, it suffices to show that dg(x)∗∂f(y)

is closed. If ∂f(y) is compact, say when y is an interior point of dom(f),
then dg(x)∗∂f(y) is compact as well, and the set equality

∂f ◦ g(x) = dg(x)∗∂f(y)

holds. Equality is also true in some circumstances when ∂f(y) is not com-
pact. For example, when ∂f(y) is polyhedral, the image setA∗∂f(y) gener-
ated by the composition f(Ax+b) is closed for every compatible matrix A.
A polyhedral set is the nonempty intersection of a finite number of closed
halfspaces. Appendix A.3 takes up the subject of polyhedral sets. Propo-
sition A.3.4 is particularly pertinent to the current discussion. The next
proposition summaries our conclusions.

Proposition 14.5.1 (Convex Chain Rule) Let f(y) be a convex func-
tion and g(x) be a differentiable function. If the composition f ◦ g(x) is
well defined and convex, then the chain rule ∂f ◦ g(x) = dg(x)∗∂f(y) is
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valid whenever (a) y = g(x), (b) all possible directional derivatives dvf(y)
exist and are finite, and (c) dg(x)∗∂f(y) is a closed set.

Proof: See the previous discussion.

The composition f(Ax + b) of f(y) with an affine function Ax + b is
not the only case of interest. Recall that f ◦g(x) is convex when f(y) is
convex and increasing and g(x) is convex. In particular, the composite
function g(x)+ = max{0, g(x)} is convex whenever g(x) is differentiable
and convex. Its subdifferential amounts to

∂g(x)+ = dg(x)∗

⎧⎨
⎩

0 g(x) < 0
[0, 1] g(x) = 0
1 g(x) > 0.

In less favorable circumstances, f ◦g(x) is not convex. However, if the di-
rectional derivative dv(f ◦ g)(x) is sublinear in v, then the subdifferential
∂(f ◦ g)(x) still makes sense [220].
The sum rule of differentiation is equally easy to prove. Consider two con-

vex functions f(x) and g(x) possessing all possible directional derivatives
at the point x. The identity

dv [f(x) + g(x)] = dvf(x) + dvg(x)

entails the support function identity

sup
z∈∂[f(x)+g(x)]

v∗z = sup
u∈∂f(x)

v∗u+ sup
w∈∂g(x)

v∗w = sup
z∈∂f(x)+∂g(x)

v∗z.

It follows that ∂[f(x)+g(x)] is the closure of the convex set ∂f(x)+∂g(x).
If either of the two subdifferentials ∂f(x) and ∂g(x) is compact, then the
identity ∂[f(x)+ g(x)] = ∂f(x)+ ∂g(x) holds. Indeed, the sum of a closed
set and a compact set is always a closed set. Again compactness is not nec-
essary. For example, Proposition A.3.4 demonstrates that the sum of two
polyhedral sets is closed. The sum rule is called the Moreau-Rockafellar
theorem in the convex calculus literature. Let us again summarize our con-
clusions by a formal proposition.

Proposition 14.5.2 (Moreau-Rockafellar) Let f(x) and g(x) be con-
vex functions defined on Rn. If all possible directional derivatives dvf(x)
and dvg(x) exist and are finite at a point x, and the set ∂f(x) + ∂g(x) is
closed, then the sum rule ∂[f(x) + g(x)] = ∂f(x) + ∂g(x) is valid.

Proof: See the foregoing discussion.

Example 14.5.1 Mean Value Theorem for Convex Functions.

Let f(x) be a convex function. If two points y and z belong to the interior
of dom(f), then the line segment connecting them does as well. Based on
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the function g(t) = f [ty + (1− t)z], define the continuous convex function

h(t) = g(t)− g(0)− t[g(1)− g(0)].
The sum rule and the chain rule imply that h(t) has subdifferential

∂g(t)− g(1) + g(0) = (y − z)∗∂f [ty + (1− t)z]− g(1) + g(0).

Now h(0) = h(1) = 0, so h(t) attains its minimum on the open interval
(0, 1). At a minimum point t we have 0 ∈ ∂h(t). It follows that

f(y)− f(z) = g(1)− g(0) = v∗(y − z)

for some v ∈ ∂f [ty + (1− t)z].

Example 14.5.2 Quantiles and Subdifferentials

A median μ of n numbers x1 ≤ x2 ≤ · · · ≤ xn satisfies the two inequalities

1

n

∑
xi≤μ

1 ≥ 1

2
and

1

n

∑
xi≥μ

1 ≥ 1

2
.

One can relate this to the minimum of the function

f(x) =

n∑
i=1

|xi − x|.

According to the sum rule, the differential of f(x) equals the set

∂f(x) = −
∑
xi>x

1 +
∑
xi=x

[−1, 1] +
∑
xi<x

1.

A minimum point μ of f(x) is determined by the condition 0 ∈ ∂f(μ),
which is a disguised form of the median definition just given.
As a generalization take q ∈ (0, 1) and define

ρq(r) =

{
qr r ≥ 0
−(1− q)r r < 0 .

The subdifferential of the function fq(x) =
∑n

i=1 ρq(xi − x) is the set

∂fq(x) = −
∑
xi>x

q +
∑
xi=x

[−q, 1− q] +
∑
xi<x

(1− q).

Again the minimum points μq of fq(x) satisfy 0 ∈ ∂fq(μq), which is equiv-
alent to the q-quantile conditions

1

n

∑
xi≤μq

1 ≥ q and
1

n

∑
xi≥μq

1 ≥ 1− q.
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Problem 13 of Chap. 8 suggests an MM algorithm for finding μq that
involves no sorting of the list (x1, . . . , xn). More importantly, one can
devise similar MM algorithms for the wider class of quantile regression
problems [141].

Example 14.5.3 Lasso Penalized Estimation

Lasso penalized estimation minimizes the criterion

g(θ) = f(θ) + λ

p∑
i=1

|θi|,

where λ ≥ 0 and f(θ) is a convex differentiable loss function. The choice
f(θ) = 1

2‖y − Xθ‖2 corresponds to �2 linear regression. In this case, θ
has p+1 components. Penalties are only imposed on the slope parameters
θ1, . . . , θp and not on the intercept parameter θ0. The sum rule implies that
g(θ) has subdifferential

∂g(θ) = ∇f(θ) + λ

p∑
i=1

∂|θi|.

It follows that the stationarity condition 0 ∈ ∂g(θ) amounts to

∂

∂θ0
f(θ) = 0

∂

∂θi
f(θ) ∈ λ

{−1 θi > 0
[−1, 1] θi = 0
1 θi < 0

for 1 ≤ i ≤ p. Hence, a minimum point θ̂ satisfies | ∂
∂θi
f(θ̂)| ≤ λ for all i.

This rather painless deduction extends well beyond �2 regression.

Example 14.5.4 Euclidean Shrinkage

Minimization of the strictly convex function

f(y) = ‖y‖+w∗y +
λ

2
‖y − x‖2

for λ > 0 illustrates the notion of shrinkage. In the absence of the term
‖y‖, the minimum of f(y) occurs at y = λ−1(λx − w). The presence of
the term ‖y‖ shrinks the solution to

y =

[‖λx−w‖ − 1

‖λx−w‖
]
+

λx−w

λ
.

To prove this claim, observe that the subdifferential of f(y) for y �= 0
collapses to the gradient

∇f(y) = ‖y‖−1y +w + λ(y − x).
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The stationarity condition 0 ∈ ∂f(y) defining a minimum implies(
λ+ ‖y‖−1

)
y = λx−w,

which in turn implies

‖y‖ =
‖λx−w‖ − 1

λ
.

Provided ‖λx−w‖ > 1, this is consistent with ‖y‖ > 0, and we can assert
that

y = ‖y‖ y

‖y‖ =
‖λx−w‖ − 1

λ
· λx−w

‖λx−w‖
furnishes the minimum. If ‖λx − w‖ ≤ 1, then we must look elsewhere
for the minimum. The only other possibility is y = 0. In view of Exam-
ple 14.4.2, ∂f(0) = B +w − λx. The required inclusion 0 ∈ B +w − λx
now reduces to a tautology.

Finally, let us consider a rule with no classical analogue. Generalizing
Example 4.4.4, one can easily demonstrate that the maximum function
f(x) = max1≤i≤p gi(x) has directional derivative

dvf(x) = max
i∈I(x)

dvgi(x), (14.10)

where I(x) is the set of indices i such that f(x) = gi(x). All that is
required for the validity of formula (14.10) is the upper semicontinuity of
the functions gi(x) at x and the existence of the directional derivatives
dvgi(x) for i ∈ I(x). If we further assume that the gi(x) are closed and
convex, then f(x) is closed and convex, and

sup
z∈∂f(x)

v∗z = max
i∈I(x)

sup
zi∈∂gi(x)

v∗zi.

In view of our earlier remarks about support functions and convex hulls,
we also have

max
i∈I(x)

sup
zi∈∂gi(x)

v∗zi = sup
z∈conv[∪i∈I(x)∂gi(x)]

v∗z.

If each subdifferential ∂gi(x) is compact, then the finite union ∪i∈I(x)∂gi(x)
is also compact. Because the convex hull of a compact set is compact
(Proposition 6.2.4), the conclusion

∂f(x) = conv[∪i∈I(x)∂gi(x)] (14.11)

emerges. This formula is valid in more general circumstances. For example,
if i is a continuous variable, then it suffices for the gi(x) to be convex, the
set of indices i to be compact, and the function i �→ gi(x) to be upper
semicontinuous for each x [131, 226]. Proposition A.6.6 in the Appendix
also addresses this topic.
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Example 14.5.5 Minima of Max Functions

When the functions gi(x) are convex, a point y minimizes

f(x) = max
1≤i≤n

gi(x)

if and only if 0 ∈ ∂f(y). Equivalently, 0 belongs to the convex hull of the
vectors {∇gi(y)}i∈I(y). According to Proposition 5.3.2, a necessary and
sufficient condition for the latter event to occur is that no vector u exists
with dgi(y)u < 0 for all i ∈ I(y). Of course, such a vector u would con-
stitute a descent direction along which f(x) could be locally reduced. One
can reformulate the problem of minimization of f(x) as a linear program
when the gi(x) = w∗

ix+ ai are affine. In this case one just minimizes the
scalar t subject to the inequality constraints w∗

ix+ ai ≤ t for all i.

Example 14.5.6 Sum of the m Largest Order Statistics

Consider the order statistics x(1) ≤ · · · ≤ x(n) corresponding to a point
x ∈ Rn. The sum

sm(x) =

n∑
i=n−m+1

x(i) = max
|T |=m

∑
i∈T

xi

of the m largest order statistics is a convex function of x. Here T is any
subset of {1, . . . , n} of size |T | = m. The gradient of

∑
i∈T xi is the vector

1T whose ith entry is 1 if i ∈ T and 0 otherwise. The subdifferential ∂sm(x)
is therefore

conv
{
1T :

∑
i∈T xi = sm(x), |T | = m

}

When all of the components of x are unique, sm(x) is differentiable.

Example 14.5.7 Maximum Eigenvalue of a Symmetric Matrix

As mentioned in Example 6.3.8, the maximum eigenvalue λmax(M ) of a
symmetric matrix is a convex function whose value is determined by the
maximum Rayleigh quotient

λmax(M) = sup
‖x‖=1

x∗Mx = sup
‖x‖=1

tr(Mxx∗).

The Frobenius inner product map M �→ tr(Mxx∗) is linear in M and has
differential xx∗. Hence, the subdifferential ∂λmax(M) is the convex hull of
the set {xx∗ : ‖x‖ = 1, Mx = λmax(M )x}. When there is a unique unit
eigenvector x up to sign, λmax(M) is differentiable with gradient xx∗.
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14.6 Spectral Functions

We are already acquainted with some of the connections between eigenvalues
and convexity. The lovely theory of Lewis [17] extends these previously scat-
tered results. Once again the Fenchel conjugate is the tool of choice. Lewis’
theory covers the composition of a symmetric function f : Rn �→ R with
the eigenvalue map λ(X) defined on n× n symmetric matrices X. Recall
that f(x) is symmetric if f(w) = f(x) whenever the vector arguments w
and x agree up to a permutation of their entries. The vector λ(X) presents
the spectrum of X ordered from the largest to the smallest eigenvalue. The
next proposition shows how to calculate the Fenchel conjugate of the com-
posite function f ◦λ(X). In the proposition the operator diag(x) promotes
a vector x to a diagonal matrix with xi as its ith diagonal entry.

Proposition 14.6.1 Suppose f(x) has Fenchel conjugate f�(y). Then the
spectral function g(X) = f ◦λ(X) has Fenchel conjugate f� ◦λ(Y ). Hence,
if f(x) is closed and convex, then f ◦λ(X) is closed and convex and equals
its Fenchel biconjugate.

Proof: Verification relies heavily on Fan’s inequality (A.4.2) proved in
Appendix A.4. If we denote the set of n × n symmetric matrices by Sn,
then Fan’s inequality implies

(f ◦ λ)�(Y ) = sup
X∈Sn

[tr(Y X)− f ◦ λ(X)]

≤ sup
X∈Sn

[λ(Y )∗λ(X)− f ◦ λ(X)]

≤ sup
x∈Rn

[λ(Y )∗x− f(x)]
= f�[λ(Y )].

The reverse inequality follows from the spectral decomposition

Y = U∗ diag(y)U

of Y in terms of an orthogonal matrix U . This leads to

f�[λ(Y )] = sup
x∈Rn

[λ(Y )∗x− f(x)]
= sup

x∈Rn

{tr[UY U∗ diag(x)]− f(x)}
= sup

x∈Rn

{tr[Y U∗ diag(x)U ]− f [λ(U∗ diag(x)U)]}
≤ sup

X∈Sn

{tr(Y ∗X)− f [λ(X)]}
= (f ◦ λ)�(Y ).

Thus, the two extremes of each inequality are equal. The second claim of
the proposition follows from a double application of Proposition 14.3.2.
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The maximum eigenvalue λ(M ) of a symmetric matrix is a spectral
function. We have already calculated its subdifferential. The next proposi-
tion allows us to calculate the subdifferentials of more complicated spectral
functions.

Proposition 14.6.2 Suppose f(x) is closed and convex. A symmetric ma-
trix Y belongs to the subdifferential ∂(f ◦ λ)(X) if and only if the ordered
vector λ(Y ) belongs to the subdifferential ∂f [λ(X)] and X and Y have
simultaneous ordered spectral decompositions X = U∗ diag ◦λ(X)U and
Y = U∗ diag ◦λ(Y )U .

Proof: The combination of Proposition 14.6.1, the Fenchel-Young
inequality, and Fan’s inequality yields

(f ◦ λ)(X) + (f ◦ λ)�(Y ) = f [λ(X)] + f�[λ(Y )]

≥ λ(X)∗λ(Y )

≥ tr(Y X).

The matrix Y belongs to ∂(f ◦λ)(X) if and only if the extreme members of
these two inequalities agree. The first inequality is an equality if and only if
λ(Y ) belongs to the subdifferential ∂f [λ(X)]. As observed in Proposition
A.4.2, the second inequality is an equality if and only if X and Y have
simultaneous ordered spectral decompositions.

Example 14.6.1 Sample Calculations with Spectral Functions

Various matrix norms can be identified as spectral functions. For instance,
the nuclear and Euclidean matrix norms originate from the symmetric con-
vex functions

f1(x) =

n∑
i=1

|xi| and f2(x) = max
1≤i≤n

|xi|.

Example 14.5.7 and Proposition 14.6.2 clearly produce the same subdiffer-
ential for the Euclidean matrix norm. The spectral function

f3(x) =

n∑
i=1

max{−xi, 0},

arises when negative eigenvalues are downplayed.
The forgoing theory can be applied to penalized approximation of sym-

metric matrices. Indeed, consider minimization of

1

2
‖Y −X‖2F + ρfi ◦ λ(Y ) (14.12)

as a function of the symmetric matrix Y for one of the three functions just
defined. Fermat’s rule requires

0 ∈ Y −X + ρ ∂(fi ◦ λ)(Y ).
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In view of Proposition 14.6.2,

X ∈ U∗ diag(y)U + ρU∗ diag[∂fi(y)]U

for y = λ(Y ) and some orthogonal matrix U . It follows that X and Y
have simultaneous spectral decompositions under U . If we let x = λ(X)
and multiply the relation

0 ∈ U∗ diag(y)U −U∗ diag(x)U + ρU∗ diag[∂fi(y)]U ,

by U on the left and U∗ on the right, then the relation

0 ∈ y − x+ ρ∂fi(y),

emerges. But this is just Fermat’s rule for minimizing the spectral function
g(y) = 1

2‖y − x‖2 + ρfi(y).
The problem of minimizing g(y) is separable for the penalty f1(y).

Its solution has components

yi =

{xi − ρ xi > ρ
0 |xi| ≤ ρ
xi + ρ xi < −ρ

(14.13)

exhibiting shrinkage. For the penalty f3(y), the minimum point of g(y) has
a solution with components

yi =

{xi xi > 0
0 −ρ ≤ xi ≤ 0
xi + ρ xi < −ρ

exhibiting one-sided shrinkage.
Finding the minimum of g(y) for the f2(y) penalty is harder because

the objective function is no longer separable. Inspection of g(y) shows that
the solution must satisfy sgn(yi) = sgn(xi) and |yi| ≤ |xi| for all i. Thus,
there is no loss in generality in assuming that 0 ≤ yi ≤ xi for all i. Instead
of exploiting subdifferentials directly, let us focus on forward directional
derivatives. At the point y = 0 an easy calculation shows that

dvg(0) =

n∑
i=1

(0− xi)vi + ρ max
1≤i≤n

|vi|.

According to Proposition 6.5.2, 0 furnishes the minimum of g(y) if and
only if all of these directional derivatives are nonnegative. In view of the
generalized Cauchy-Schwarz inequality

∣∣∣
n∑

i=1

(0− xi)vi
∣∣∣ ≤ ‖x‖1‖v‖∞,

the vector 0 qualifies provided ‖x‖1 ≤ ρ.
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When ‖x‖1 > ρ, there is a simple recipe for constructing the solution y.
Gradually decrease r = ‖y‖∞ from ‖x‖∞ to 0 until the condition∑

xi≥r

(xi − r) = ρ

is met. We claim that the vector y with components

yi =
{
r xi ≥ r
xi 0 ≤ xi < r

provides the minimum. It suffices to prove that the directional derivative

dvg(y) =
∑
xi≥r

(yi − xi)vi + ρmax
xi≥r

vi

is nonnegative regardless of how we choose v. But this fact follows from
the inequality ∑

xi≥r

(yi − xi)vi =
∑
xi≥r

(xi − yi)(−vi)

≥ min
xi≥r

(−vi)
∑
xi≥r

(xi − yi)

= ρmin
xi≥r

(−vi)
= −ρmax

xi≥r
vi.

Given this solution for x with nonnegative components, it is straightforward
to recover the general solution.

Example 14.6.2 Matrix Completion Problem

Similar calculations are pertinent to matrix completion [37]. Consider a
matrix Y = (yij), some of whose entries are unobserved. If Δ denotes the
set of index pairs (i, j) such that yij is observed, then it is convenient to
define the projected matrix PΔ(Y ) with entries

PΔ(Y ) =

{
yij (i, j) ∈ Δ
0 (i, j) �∈ Δ.

Its orthogonal complement P⊥
Δ (Y ) satisfies P⊥

Δ (Y ) + PΔ(Y ) = Y . In the
matrix completion problem one seeks to minimize the criterion

1

2

∑
(i,j)∈Δ

(yij − xij)2 + ρ‖X‖∗

involving the nuclear norm ofX = (xij). One way of attacking the problem
is to majorize the objective function at the current iterate Xm by

g(X | Xm) =
1

2
‖PΔ(Y ) + P⊥

Δ (Xm)−X‖2F + ρ‖X‖∗.
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In light of the MM principle, minimizing g(X | Xm) drives the matrix
completion criterion downhill [189].
Now set Zm = PΔ(Y ) + P⊥

Δ (Xm) and contemplate the expansion

g(X |Xm) =
1

2
‖Zm‖2F − tr(Z∗

mX) +
1

2
‖X‖2F + ρ‖X‖∗.

Suppose X has svd PΣQ∗ and Zm has svd UΩV ∗. According to Fan’s
inequality as discussed in Appendix A.5, − tr(Z∗

mX) ≥ −∑
i ωiσi, with

equality when U = P and V = Q. Here, the ωi and σi are the ordered sin-
gular values ofX and Zm, respectively. Furthermore, neither the Frobenius
norm ‖X‖F = (

∑
i σ

2
i )

1/2 nor the nuclear norm ‖X‖∗ =
∑

i σi depends
on the orthogonal matrices P and Q of singular vectors. Hence, it is op-
timal to take P = U and Q = V . The problem therefore becomes one of
minimizing

1

2

∑
i

(ωi − σi)2 + ρ
∑
i

σi

subject to the nonnegativity constraints σi ≥ 0. The solution is given by
equation (14.13) with xi = ωi ≥ 0 and yi = σi. In practice only the
largest singular values of Ω need be extracted. The Lanczos procedure [107]
efficiently computes these and their corresponding singular vectors.
A related problem is to minimize ‖X‖∗ subject to the quadratic con-

straint 1
2

∑
(i,j)∈Δ(yij −xij)2 ≤ ε [35]. This problem can be recast as mini-

mizing the penalized convex function ‖X‖∗+δC(X), where C is the closed
convex set

C =
{
X = (xij) :

1

2

∑
(i,j)∈Δ

(yij − xij)2 ≤ ε
}
.

To derive an MM algorithm, suppose that the current iterate is Xm and
that Zm = PΔ(Y ) + P⊥

Δ (Xm). If we define the closed convex set

Cm =
{
X = (xij) :

1

2

∑
i

∑
j

(zmij − xij)2 ≤ ε
}
,

then it is obvious that ‖X‖∗ + δCm(X) majorizes ‖X‖∗ + δC(X) around
the point Xm. In this majorization we allow infinite function values.
Minimization of the surrogate function ‖X‖∗ + δCm(X) again relies on

the fact that the nuclear and Frobenius norms are invariant under left and
right multiplication of their arguments by orthogonal matrices. As we have
just argued, we can assume that X and Zm have svds UΣV ∗ and UΩV ∗

involving shared orthogonal matrices U and V . Thus, the current problem
reduces to minimizing

∑
i σi subject to

1
2

∑
i(ωi−σi)2 ≤ ε and σi ≥ 0 for all

i. Of course, the singular values ωi are nonnegative as well. If
1
2

∑
i ω

2
i ≤ ε,

then the trivial solution σi = 0 for all i holds.
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Hence, suppose that 1
2

∑
i ω

2
i > ε and form the Lagrangian

L(σ, λ,μ) =
∑
i

σi + λ
[1
2

∑
i

(ωi − σi)2 − ε
]
−
∑
i

μiσi.

If we assume 1
2

∑
i(ωi−σi)2 = ε and λ > 0, then the stationarity condition

0 = 1 + λ(σi − ωi)− μi

and complementary slackness imply

σi =

{
ωi − λ−1 ωi − λ−1 > 0
0 ωi − λ−1 ≤ 0 .

The condition 1
2

∑
i(ωi − σi)2 = ε then amounts to the identity

1

2

∑
i

min{ωi, λ
−1}2 = ε.

The continuous function f(β) = 1
2

∑
imin{ωi, β}2 is strictly increasing on

the interval [0,maxi ωi]. Since f(0) = 0 and f(maxi ωi) > ε by assump-
tion, there is a unique positive solution. For n singular values, the solution
belongs to the interval [ωk, ωk+1] if and only if

k∑
i=1

ω2
i + (n− k)ω2

k ≤ 2ε ≤
k∑

i=1

ω2
i + (n− k)ω2

k+1.

Because this is equivalent to

(n− k)ω2
k ≤ 2ε−

∑
i

ω2
i +

∑
i>k

ω2
i ≤ (n− k)ω2

k+1

and
∑

i ω
2
i = ‖Zm‖2F , the solution again depends on only the largest sin-

gular values.

Example 14.6.3 Stable Estimation of a Covariance Matrix

Example 6.5.7 demonstrates that the sample mean and sample covariance
matrix

ȳ =
1

k

k∑
j=1

yj

S =
1

k

k∑
j=1

(yj − ȳ)(yj − ȳ)∗

are the maximum likelihood estimates of the theoretical mean μ and the-
oretical covariance Ω of a random sample y1, . . . ,yk from a multivariate
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normal distribution. When the number of components n of y exceeds the
sample size k, this analysis breaks down because it assumes that S is in-
vertible. To deal with this dilemma and to stabilize estimation generally,
we add a penalty. The estimate of μ remains ȳ.
As in Sect. 13.4, we impose a prior p(Ω) on Ω. Now, however, the prior is

designed to steer the eigenvalues of Ω away from the extremes of 0 and ∞.
The reasonable choice

p(Ω) ∝ e−
λ
2 [α‖Ω‖∗+(1−α)‖Ω−1‖∗],

relies on the nuclear norms of Ω and Ω−1, a positive strength constant λ,
and an admixture constant α ∈ (0, 1). This is a proper prior on the set of
invertible matrices because

e−
λ
2 [α‖Ω‖∗+(1−α)‖Ω−1‖∗] ≤ e−cλ‖Ω‖F

for some positive constant c by virtue of the equivalence of any two vector
norms on Rn2

. The normalizing constant of p(Ω) is irrelevant in the ensuing
discussion. Consider therefore minimization of the function

f(Ω) =
k

2
ln detΩ+

k

2
tr(SΩ−1) +

λ

2

[
α‖Ω‖∗ + (1− α)‖Ω−1‖∗

]
.

The maximum of −f(Ω) occurs at the posterior mode. In the limit as λ
tends to 0, −f(Ω) reduces to the loglikelihood.
Fortunately, three of the four terms of f(Ω) can be expressed as func-

tions of the eigenvalues ei of Ω. The trace contribution presents a greater
challenge. Let S = UDU∗ denote the spectral decomposition of S with
nonnegative diagonal entries di ordered from largest to smallest. Likewise,
let Ω = V EV ∗ denote the spectral decomposition of Ω with positive diag-
onal entries ei ordered from largest to smallest. In view of Fan’s inequality
(A.6), we can assert that

− tr(SΩ−1) ≤ −
n∑

i=1

di
ei
,

with equality if and only if V = U . Consequently, we make the latter
assumption and replace f(Ω) by

g(E) =
k

2

n∑
i=1

ln ei +
k

2

n∑
i=1

di
ei

+
λ

2

[
α

n∑
i=1

ei + (1− α)
n∑

i=1

1

ei

]
.

At a stationary point of g(E), we have

0 =
k

ei
− kdi + λ(1 − α)

e2i
+ λα.
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The solution to this essentially quadratic equation is

ei =
−k +√

k2 + 4λα[kdi + λ(1− α)]
2λα

. (14.14)

We reject the negative root as inconsistent with Ω being positive definite.
For the special case k = 0 of no data, all ei =

√
(1 − α)/α, and the prior

mode occurs at a multiple of the identity matrix.
Holding all but one variable fixed in formula (14.14), one can demonstrate

after a fair amount of algebra that

ei = di +
λ(1− α− αd2i )

k
+O

(
1

k2

)
, k →∞

ei =

√
1− α
α

+

[√
1− α
α

kdi
2(1− α) −

k

2α

]
1

λ
+O

(
1

λ2

)
, λ→∞.

These asymptotic expansions accord with common sense. Namely, the data
eventually overwhelms a fixed prior, and increasing the penalty strength
for a fixed amount of data pulls the estimate of Ω toward the prior mode.
Choice of the constants λ and α is an issue. To match the prior to the scale
of the data, we recommend determining α as the solution to the equation

n

√
1− α
α

= tr

(√
1− α
α

I

)
= tr(S).

Cross validation leads to a reasonable choice of λ. For the sake of brevity,
we omit further details. For a summary of other approaches to this subject,
consult the reference [173].

14.7 A Convex Lagrange Multiplier Rule

The Lagrange multiplier rule is one of the dominant themes of optimization
theory. In convex programming it represents both a necessary and sufficient
condition for a minimum point. Our previous proofs of the rule invoked
differentiability. In fact, differentiability assumptions can be dismissed in
deriving the multiplier rule for convex programs. Recall that we posed
convex programming as the problem of minimizing a convex function f(y)
subject to the constraints

gi(y) = 0, 1 ≤ i ≤ p, hj(y) ≤ 0, 1 ≤ j ≤ q,

where the gi(y) are affine functions and the hj(y) are convex functions.
One can simplify the statement of many convex programs by intersect-
ing the essential domains of the objective and constraint functions with a
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closed convex set C. For example, although the set of positive semidefinite
matrices is convex, it is awkward to represent it as an intersection of convex
sets determined by affine equality constraints and simple convex inequality
constraints.
In proving the multiplier rule anew, we will call on Slater’s constraint

qualification. In the current context, this entails postulating the existence
of a point z ∈ C such that gi(z) = 0 for all i and hj(z) < 0 for all j. In
addition we assume that the constraint gradient vectors∇gi(y) are linearly
independent. These preliminaries put us into position to restate and prove
the Lagrange multiplier rule for convex programs.

Proposition 14.7.1 Suppose that f(y) achieves its minimum subject to
the constraints at the point x ∈ C. Then there exists a Lagrangian function

L(y,λ,μ) = λ0f(y) +

p∑
i=1

λigi(y) +

q∑
j=1

μjhj(y)

characterized by the following three properties: (a) L(y,λ,μ) achieves its
minimum over C at x, (b) the multipliers λ0 and μj are nonnegative, and
(c) the complementary slackness conditions μjhj(x) = 0 hold. If Slater’s
constraint qualification is true and x is an interior point of C, then one
can take λ0 = 1. Conversely, if properties (a) through (c) hold with λ0 = 1,
then x minimizes f(y) subject to the constraints.

Proof: To prove the necessity of the three properties, we separate a convex
set and a point by a hyperplane. Accordingly, define the set S to consist
of all points u ∈ Rp+q+1 such that for some y ∈ C, we have u0 ≥ f(y),
ui = gi(y) for 1 ≤ i ≤ p, and up+j ≥ hj(y) for 1 ≤ j ≤ q. To show that the
set S is convex, suppose y ∈ C corresponds to u ∈ S, z ∈ C corresponds to
v ∈ S, and α and β are nonnegative numbers summing to 1. The relations

f(αy + βz) ≤ αf(y) + βf(z) ≤ αu0 + βv0

gi(αy + βz) = αgi(y) + βgi(z) = αui + βvi, 1 ≤ i ≤ p

hj(αy + βz) ≤ αhj(y) + βhj(z) ≤ αup+j + βvp+j , 1 ≤ j ≤ q

and the convexity of C prove the convexity claim. The point to be separated
from S is [f(x),0∗]∗. It belongs to S because x is feasible. It lies on the
boundary of S because the point [f(x) − ε,0∗]∗ does not belong to S for
any ε > 0.
Application of Proposition 6.2.3 shows that there exists a nontrivial vec-

tor ω such that ω0f(x) ≤ ω∗u for all u ∈ S. Identify the entries of ω with
λ0, λ1, . . . , λp, μ1, . . . , μq, in that order. Sending u0 to ∞ implies λ0 ≥ 0;
similarly, sending up+j to ∞ implies μj ≥ 0. If hj(x) < 0, then the vector
u ∈ S with f(x) as entry 0, hj(x) as entry p+ j, and 0’s elsewhere demon-
strates that μj = 0. This proves properties (b) and (c). To verify property
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(a), take y ∈ C and put u0 = f(y), ui = gi(y), and up+j = hj(y). Then
u ∈ S, and the separating hyperplane condition reads

L(y,λ,μ) ≥ λ0f(x) = L(x,λ,μ),

proving property (a).
Next suppose λ0 = 0 and z is a Slater point. The inequality

0 = L(x,λ,μ) ≤ L(z,λ,μ) =

q∑
j=1

μjhj(z)

is inconsistent with at least one μj being positive and all hj(z) being neg-
ative. Hence, it suffices to assume all μj = 0. For any y ∈ C we now find
that

0 = L(x,λ,μ) ≤ L(y,λ,μ) =

p∑
i=1

λigi(y).

Let a(y) denote the affine function
∑p

i=1 λigi(y). We have just shown that
a(y) ≥ 0 for all y in a neighborhood of x. Because a(x) = 0, Fermat’s rule
requires the vector ∇a(x) to vanish. Finally, the fact that some of the λi
are nonzero contradicts the assumed linear independence of the gradient
vectors ∇gi(x). The only possibility left is λ0 > 0. Divide L(y,λ,μ) by λ0
to achieve the canonical form of the multiplier rule.
Finally for the converse, let y ∈ C be any feasible point. The inequalities

f(x) = L(x,λ,μ) ≤ L(y,λ,μ) ≤ f(y)

follow directly from properties (a) through (c) and demonstrate that x
furnishes the constrained minimum of f(y).

Proposition 14.7.1 falls short of our expectations in the sense that the
usual multiplier rule involves a stationarity condition. For convex programs,
the required gradients do not necessarily exist. Fortunately, subgradients
provide a suitable substitute. One can better understand the situation by
exploiting the fact that x minimizes the Lagrangian over the convex set C.
This suggests that we replace the Lagrangian by the related function

K(y,λ,μ) = L(y,λ,μ) + δC(y).

Because K(y,λ,μ) achieves its unconstrained minimum over Rn at x, we
have 0 ∈ ∂K(x,λ,μ). If the sum rule for subdifferentials is justified, then
in view of Example 14.4.1 we recover the generalization

0 ∈ ∂f(x) +

p∑
i=1

λi∂gi(x) +

q∑
j=1

μj∂hj(x) +NC(x)
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of the usual multiplier rule. As we have previously stressed, simple sufficient
conditions ensure the validity of the sum rule.
As an example, consider minimizing the function

f(x) =
∑
i

ai|xi|+
∑
i

bixi

over the closed unit ball, where each constant ai ≥ 0. The multiplier con-
ditions are

0 ∈ bi + μxi + ai

{
1 xi > 0
[−1, 1] xi = 0
−1 xi < 0.

If all |bi| ≤ ai, then these are satisfied at the origin 0 with the choice μ = 0
dictated by complementary slackness. If any |bi| > ai, then we take μ to
be the positive square root of

μ2 =
∑

|bi|>ai

[bi − ai sgn(bi)]2.

Those components xi with |bi| ≤ ai we assign the value 0. The remaining
components we assign the value

xi =
1

μ
[−bi + ai sgn(bi)].

Because the function f(x) is homogeneous and its minimum is negative,
the optimal point x occurs on the boundary of the unit ball.

14.8 Problems

1. Derive the Fenchel conjugates displayed in Table 14.1 for functions
on the real line.

2. Show that the function f1(x) = (x2 − 1)2 has Fenchel biconjugate

f��
1 (x) =

{
0 |x| ≤ 1
(x2 − 1)2 |x| > 1

and that the function

f2(x) =

⎧⎨
⎩
|x| |x| ≤ 1
2− |x| 1 < |x| ≤ 3/2
|x| − 1 |x| > 3/2

has Fenchel biconjugate

f��
2 (x) =

{ |x|
3 |x| ≤ 3/2
f2(x) |x| > 3/2 .
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TABLE 14.1. Some specific Fenchel conjugates

f(x) f�(y)

x

{
0 y = 1
∞ y �= 1

|x|
{
0 |y| ≤ 1
∞ |y| > 1{

1
x x > 0
∞ x ≤ 0

{∞ y > 0
−2√−y y ≤ 0{

x lnx x > 0
∞ x ≤ 0

ey−1

ex

{
y ln y − y y > 0
0 y = 0
∞ y < 0{

x lnx+ (1− x) ln(1− x) x ∈ (0, 1)
0 x ∈ {0, 1}
∞ otherwise

ln(1 + ey)

(Hints: There is no need to calculate the conjugate f�
i (y). According

to inequality (14.2), f��
i (x) falls below fi(x). It also falls above any

line supporting fi(x).)

3. Prove the Fenchel-Young inequality xy ≤ ex − y + y ln y for x and y
nonnegative.

4. Find the support function of the convex set C = {x : x2 + ex1 ≤ 0}
in R2. Explain why this is pertinent to Problem 23 of Chap. 6.

5. Show that the Fenchel conjugate of f(x) = max1≤i≤n xi is

f�(y) =

{
0 all yi ≥ 0 and

∑n
i=1 yi = 1

∞ otherwise .

6. Assume f(x) is a continuous, strictly increasing function with func-
tional inverse g(y) and value f(0) = 0. Show that the even functions
defined by

F (x) =

∫ x

0

f(u)du and G(y) =

∫ y

0

g(v)dv

for x ≥ 0 and y ≥ 0 constitute a conjugate pair. Why is Example 1.2.6
a special case? Give a graphical interpretation of Young’s inequality
xy ≤ F (x) +G(y). (Hint: Equality holds in Young’s inequality when
x = g(y). Interpret graphically and in terms of F �(y).)
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7. Suppose f(x) is a convex function and u ∈ ∂f(x) and v ∈ ∂f(y).
Prove that (u− v)∗(x− y) ≥ 0.

8. For some orthogonal matrix O, suppose f(x) = f(Ox) for all x.
Prove that f�(y) = f�(Oy) for all y as well.

9. Suppose the continuous function f(x) defined on Rn satisfies the con-
dition lim‖x‖→∞ ‖x‖−1f(x) =∞. Show that f�(y) <∞ for all y.

10. Demonstrate that f(x) = 1
2‖x‖2 is the only function satisfying the

identity f(x) = f�(x) for all x. (Hint: Use the trivial inequality
f�(y)+f(x) ≥ y∗x to prove that f(x) ≥ 1

2‖x‖2 when f(x) = f�(x).
For the reverse inequality, substitute this inequality in the definition
of f�(y).)

11. Let f(y) be a differentiable function from Rn to R. Prove that x is a
global minimum of f(y) if and only if ∇f(x) = 0 and f��(x) = f(x)
[130]. (Hints: If x is a global minimum, then 0 is a subgradient of
f(y) at x. Conversely, if the two conditions hold, then show that
every directional derivative dvf(x) satisfies dvf

��(x) ≤ 0. Because
−d−vf

��(x) ≤ dvf
��(x), we have in fact dvf

��(x) = 0 for ev-
ery direction v. Now use Problem 21 of Chap. 4 to establish that
∇f��(x) = 0. Because f��(y) is convex, x minimizes f��(y).)

12. Let the convex function f(x,y) have Fenchel conjugate f�(u,v).
Demonstrate that the function g(x) = infy f(x,y) has Fenchel con-
jugate f�(u,0).

13. Let B = {x : ‖x‖† ≤ 1} be the closed unit ball associated with
a norm ‖x‖† on Rn. Show that ‖y‖� = δ�B(y) = supx∈B y∗x also
qualifies as a norm.

14. Assume f(t) is a proper even function from R to (−∞,∞]. Let ‖x‖†
be a norm on Rn with dual norm ‖y‖�. Prove that the composite
function g(x) = f(‖x‖†) has Fenchel conjugate g�(y) = f�(‖y‖�). We
have already considered the special case of the self-conjugate function
f(t) = 1

2 t
2. (Hint: g�(y) = supt≥o sup‖x‖=t[y

∗x− f(t)].)
15. The infimal convolution of two convex functions f(x) and g(x) is

defined by (f�g)(x) = infw [f(w)+g(x−w)]. Prove that (f�g)(x) is
convex and has Fenchel conjugate f�(y)+g�(y). Calculate (f�g)(x)
when f(x) = ‖x‖ and g(x) = δU (y) for a nonempty set U . What is
the Fenchel conjugate of this particular infimal convolution?

16. Suppose that the convex function f(x) is coercive and twice contin-
uously differentiable with d2f(x) positive definite for all x. Argue
via the implicit function theorem that the stationarity equation 0 =
y−∇f(x) can be solved for x in terms of y. Furthermore, show that
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x(y) = ∇f�(y) by differentiating the equation f�(y) = y∗x(y) −
f [x(y)]. Finally, show that d2f�(y) exists and equals the matrix in-
verse of d2f [x(y)]. (Hints: For the last assertion, consider the equa-
tion ∇f [∇f�(y)] = y, and apply Problem 20 of Chap. 4. Section 12.3
defines coercive functions.)

17. Let f(x)=
1
2x

∗Ax+ b∗x for A positive semidefinite but not positive
definite. Prove that f�(Az+b) = 1

2z
∗Az and f�(y) =∞ if y cannot

be represented as Az + b for some z. (Hint: Invoke Problem 28 of
Chap. 5.)

18. LetA andB be positive semidefinite matrices of the same dimension.
Show that the matrix aA+ bB is positive semidefinite for every pair
of nonnegative scalars a and b. Thus, the set of positive semidefinite
matrices is a convex cone. Why is it a closed set as well?

19. Let A and B be positive definite matrices of the same dimension. We
write A � B provided x∗Ax ≥ x∗Bx for all vectors x. Demonstrate
via the Fenchel conjugate that A � B implies B−1 � A−1.

20. Show that the two closed convex cones

C1 = {x ∈ Rn : xi ≥ 0, ∀i}
C2 = {x ∈ Rn : xi ≤ xi+1, ∀i < n}

have the polar cones

C◦
1 = {y ∈ Rn : yi ≤ 0, ∀i}

C◦
2 = {y ∈ Rn :

j∑
i=1

yi ≥ 0, ∀j < n, and

n∑
i=1

yi = 0}.

21. For a closed convex set C and x ∈ C, prove that the normal cone

NC(x) = {y : PC(x+ y) = x},
where PC(z) projects a point z onto the closest point in C.

22. Let C be a closed convex cone in Rn. Find the normal cone NC(x)
when x ∈ C.

23. Let C be a closed convex cone, For any point x, verify the representa-
tion x = PC(x) + PC◦(x) with PC(x)

∗PC◦(x) = 0. Here PK denotes
projection onto the closed convex set K. (Hints: Let a = PC(x) and
b = PC◦(x). Prove that (ra−a)∗(x−a) ≤ 0 and (rb−b)∗(x−b) ≤ 0
for r ∈ {0, 2}. Next show that x−a ∈ C◦ and that x−b ∈ C. Finally,
show that x−a = b. Throughout apply the obtuse angle criterion of
Example 6.5.3 and the definition of a polar cone.)
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24. Suppose the n×nmatrixA is positive definite. Show that the function
‖x‖† =

√
x∗Ax is a norm. Find its dual norm. (Hint: 〈x,y〉 = x∗Ay

defines an inner product.)

25. A norm ‖x‖† is said to be strictly convex if the conditions

‖x‖† = ‖y‖† =
∥∥∥1
2
(x+ y)

∥∥∥
†

= 1

imply x = y. Which of the norms ‖x‖1, ‖x‖, and ‖x‖∞ is strictly
convex? When ‖x‖† is strictly convex, prove that the closest point in
a closed convex set C to an external point z is unique. (Hint: Reduce
the problem to the case z = 0.)

26. Show that a closed convex function f(x) satisfies

f(x) = sup
r>0

inf
0<‖y−x‖≤r

f(y)

provided dom f contains at least two points. (Hint: Convexity gives
a lower bound and lower semicontinuity an upper bound.)

27. Find the subdifferentials of the functions

f1(x) =

{
0 x ∈ [−1, 1]
|x| − 1 x ∈ [−2,−1) ∪ (1, 2]
∞ otherwise

f2(x) =

{
1−√1− x2 x ∈ [−1, 1]
∞ otherwise.

28. Use the representation |x| = max{−x, x} to find the subdifferential
of |x|.

29. Calculate the subdifferentials ∂‖x‖1 and ∂‖x‖∞ for x ∈ R2 at the
points x = (0, 0), x = (1, 0), and x = (1, 1).

30. Let f(x) and g(x) be positive increasing convex functions with com-
mon essential domain equal to an interval J . Prove that the product
f(x)g(x) is convex with subdifferential f(x)∂g(x)+g(x)∂f(x) on the
interior of J . (Hints: First prove convexity, and then take forward
directional derivatives.)

31. Consider a positive concave function f(x) with essential domain an
interval J . Show that the function g(x) = f(x)−1 is convex with
subdifferential f(x)−2∂[−f(x)] for x interior to J . (Hints: First prove
convexity, and then take forward directional derivatives.)
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32. Consider the indicator function δC(x) of the set

C = {x ∈ R2 : x21 + (x2 − 1)2 ≤ 1}.
Prove that

∂δC(0) = {g ∈ R2 : g1 = 0, g2 ≤ 0}
and that

dvδC(0) = ∞ �= 0 = sup
g∈∂δC(0)

g∗v

for v = (1, 0)∗. This result is inconsistent with the support function
of ∂δC(0) attaining the upper bound dvδC(0). In this case 0 does not
belong to the interior of dom(δC).

33. Demonstrate that the sum C + D of a compact set C and a closed
set D is closed.

34. Let f(x) equal −√x for x ≥ 0 and ∞ for x < 0. If g(x) = f(−x),
then show that ∂f(0) = ∅ and ∂g(0) = ∅ but ∂[f(0)+g(0)] = R. This
result appears to contradict the sum rule. What assumption in our
derivation of the sum rule fails?

35. A counterexample to the chain rule can be constructed by considering
the closed convex set C = {x ∈ R2 : x1x2 ≥ 1, x1 > 0, x2 > 0}. Show
that the Fenchel conjugate of the indicator δC(y) equals the support
function

δ�(y) =
{−2√y1y2 y1 ≤ 0 and y2 ≤ 0
∞ otherwise.

Given the symmetric matrix

P =

(
0 0
0 1

)

that projects a point y onto the y2 axis, prove that

∂(δ�C ◦ P )(0) = {x : x1 = 0, x2 ≥ 0}
P ∗∂δ�C(P0) = {x : x1 = 0, x2 > 0}.

Thus, the two sets differ by the presence and absence of 0.

36. Let f(y) be a convex function and C be a closed convex set in Rm.
For x ∈ dom(f) ∩ C, prove the equivalence of the following three
statements:

(a) x minimizes f(y) on C.

(b) dvf(x) ≥ 0 for all directions v = y − x defined by y ∈ C.
(c) 0 ∈ ∂[f(x) + δC(x)].
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Furthermore, deduce that

∂[f(x) + δC(x)] = ∂f(x) +NC(x)

when x belongs to the interior of either dom(f) or C.

37. Let f(y) : Rn �→ R be a convex differentiable function, A an n ×m
matrix with jth column aj , and λ > 0 a constant. Prove the following
assertions about the function g(z) = f(Az)+λ‖z‖1: (a) g(z) achieves
its global minimum at some point x whenever f(y) is bounded below
or λ is sufficiently large, (b) at the point x

a∗
j∇f(Ax) =

⎧⎨
⎩
−λ xj > 0
u ∈ [−λ, λ] xj = 0
λ xj < 0

for all j, and (c) for the choice f(y) = 1
2‖u− y‖2 the components of

the minimum point satisfy

xj =
S[a∗

j (u−
∑

i
=j xiai), λ]

‖aj‖2 ,

where S(v, λ) = sgn(v)max{|v| −λ, 0} is the soft threshold operator.

38. Suppose the matrix X has singular value decomposition UΣV ∗ with
all diagonal entries of Σ positive. Calculate the subdifferential

∂‖X‖� = {UV ∗ +W : U∗W = 0,WV = 0, ‖W‖ ≤ 1}
of the nuclear norm [269]. (Hints: See Examples 14.3.6 and 14.4.2. The
equality tr(Y ∗X) = ‖X‖�‖Y ‖2 entails equality in Fan’s inequality.)

39. Suppose the convex function g(y | x) majorizes the convex function
f(y) around the point x. Demonstrate that ∂f(x) ⊂ ∂g(x | x). Give
an example where ∂g(x | x) �= ∂f(x). If g(y | x) is differentiable at
x, then equality holds.

40. The �p,q norm on Rn is useful in group penalties [230]. Suppose the
sets σg partition {1, . . . , n}. For x ∈ Rn let xσg denote the vector
formed by taking the components of x derived from σg. For p and q
between 1 and ∞, the �p,q norm equals

‖x‖p,q =

(∑
g

‖xσg‖pq
)1/p

,

Demonstrate that the �r,s norm is dual to the �p,q norm, where r and
s satisfy p−1 + r−1 = 1 and q−1 + s−1 = 1.



15
Feasibility and Duality

15.1 Introduction

This chapter provides a concrete introduction to several advanced topics in
optimization theory. Specifying an interior feasible point is the first issue
that must be faced in applying a barrier method. Given an exterior point,
Dykstra’s algorithm [21, 70, 79] finds the closest point in the intersection
∩r−1
i=0Ci of a finite number of closed convex sets. If Ci is defined by the

convex constraint hi(x) ≤ 0, then one obvious tactic for finding an interior
point is to replace Ci by the set Ci(ε) = {x : hj(x) ≤ −ε} for some
small ε > 0. Projecting onto the intersection of the Ci(ε) then produces an
interior point.
The method of alternating projections is faster in practice than Dykstra’s

algorithm, but it is only guaranteed to find some feasible point, not the
closest feasible point to a given exterior point. Projection operators are
specific examples of paracontractions. We study these briefly and their
classical counterparts, contractions and strict contractions. Under the right
hypotheses, a contraction T possesses a unique fixed point, and the se-
quence xm+1 = T (xm) converges to it regardless of the initial point x0.
Duality is one of the deepest and most pervasive themes of modern

optimization theory. It takes considerable mathematical maturity to appre-
ciate this subtle topic, and it is impossible to do it justice in a short essay.
Every convex program generates a corresponding dual program, which can
be simpler to solve than the original or primal program. We show how to
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construct dual programs and relate the absence of a duality gap to Slater’s
constraint qualification. We also point out important connections between
duality and the Fenchel conjugate.

15.2 Dykstra’s Algorithm

Example 2.5.2 demonstrates that the distance dist(x, C) from a point x in
Rn to a set C is a uniformly continuous function of x. If the set C is closed
and convex, then dist(x, C) is convex in x and dist(x, C) = ‖PC(x)−x‖ for
exactly one projected point PC(x) ∈ C. (See Examples 2.5.5 and 6.3.3 and
Proposition 6.2.2.) Although it is generally impossible to calculate PC(x)
explicitly, some specific projection operators are well known.

Example 15.2.1 Examples of Projection Operators

Closed Euclidean Ball: If C = {y ∈ Rn : ‖y − z‖ ≤ r}, then

PC(x) =

{
z + r

‖x−z‖ (x− z) x �∈ C
x x ∈ C .

Closed Rectangle: If C = [a, b] is a closed rectangle in Rn, then

PC(x)i =

{ ai xi < ai
xi xi ∈ [ai, bi]
bi xi > bi .

Hyperplane: If C = {y ∈ Rn : a∗y = b} for a �= 0, then

PC(x) = x− a∗x− b
‖a‖2 a.

Closed Halfspace: If C = {y ∈ Rn : a∗y ≤ b} for a �= 0, then

PC(x) =

{
x− a∗x−b

‖a‖2 a a∗x > b

x a∗x ≤ b .

Subspace: If C is the range of a matrix A with full column rank, then

PC(x) = A(A∗A)−1A∗x.

Positive Semidefinite Matrices: Let M be an n×n symmetric matrix
with spectral decomposition M = UDU∗, where U is an orthogonal
matrix and D is a diagonal matrix with ith diagonal entry di. The
projection of M onto the set S of positive semidefinite matrices is
given by PS(M ) = UD+U

∗, where D+ is diagonal with ith diagonal
entry max{di, 0}. Problem 7 asks the reader to check this fact.
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Unit Simplex: The problem of projecting a point x onto the unit simplex

S =
{
y :

n∑
i=1

yi = 1, yi ≥ 0 for 1 ≤ i ≤ n
}
.

can be solved by a simple algorithm [77]. If we apply Gibbs lemma
as sketched in Problem 18 of Chap. 5 to f(y) = 1

2‖y − x‖2, then the
coordinates of the minimum point y satisfy

yi =

{
xi − λ yi > 0
xi − λ+ μi yi = 0

for Lagrange multipliers λ and μi ≥ 0. Setting I+ = {i : yi > 0} and
invoking the equality constraint

1 =
∑
i∈I+

yi =
∑
i∈I+

xi − |I+|λ

then imply

λ =
1

|I+|
( ∑

i∈I+

xi − 1
)
.

The catch, of course, is that we do not know I+. The key to avoiding
all 2n possible subsets is the simple observation that the yi and xi
are consistently ordered. Suppose on the contrary that xi < xj and
yj < yi. For small s > 0 substitute yj + s for yj and yi− s for yi. The
objective function f(y) then changes by the amount

1

2

[
(yi − s− xi)2 + (yj + s− xj)2 − (yi − xi)2 − (yj − xj)2

]

= s(xi − xj + yj − yi) + s2,

which is negative for small s. Thus, let z1, . . . , zn denote the xi or-
dered from largest to smallest. For each integer j between 1 and n,
it suffices to set λ = 1

j (
∑j

i=1 zi − 1) and check whether zj > λ and

zj+1 ≤ λ. When these two conditions are met, we put yi = (xi − λ)+
for all i. Michelot’s [196] algorithm as described in Problem 13 also
solves this projection problem.

Closed �1 Ball: Projecting a point x onto the �1 ball

C = {y : ‖y − z‖1 ≤ r}.

yields to a variation of the previous projection algorithm as sketched
in Problem 14.
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Isotone Convex Cone: Projection onto the convex cone

C = {y : yi ≤ yi+1 for 1 ≤ i < n}.
is accomplished by the pool adjacent violators algorithm as discussed
later in Example 15.2.3.

Dykstra’s algorithm [21, 70, 79] is designed to find the projection of a
point x onto a finite intersection C = ∩r−1

i=0Ci of r closed convex sets. Here
are some possible situations where Dykstra’s algorithm applies.

Example 15.2.2 Applications of Dykstra’s Algorithm

Linear Equalities: Any solution of the system of linear equationsAx = b
belongs to the intersection of the hyperplanes a∗

ix = bi, where a∗
i is

the ith row of A.

Linear Inequalities: Any solution of the system of linear inequalities
Ax ≤ b belongs to the intersection of the halfspaces a∗

ix ≤ bi, where
a∗
i is the ith row of A.

Isotone Regression: The least squares problem of minimizing the sum∑n
i=1(xi − wi)

2 subject to the constraints wi ≤ wi+1 corresponds to
projection of x onto the intersection of the halfspaces

Ci = {w ∈ Rn : wi − wi+1 ≤ 0}, 1 ≤ i ≤ n− 1.

Convex Regression: The least squares problem of minimizing the sum∑n
i=1(xi − wi)

2 subject to the constraints wi ≤ 1
2 (wi−1 + wi+1) cor-

responds to projection of x onto the intersection of the halfspaces

Ci =
{
w ∈ Rn : wi − 1

2
(wi−1 + wi+1) ≤ 0

}
, 2 ≤ i ≤ n− 1.

Quadratic Programming: To minimize the strictly convex quadratic
form 1

2x
∗Ax+ b∗x+ c subject to Dx = e and Fx ≤ g, we make the

change of variables y = A1/2x. This transforms the problem to one
of minimizing

1

2
x∗Ax+ b∗x+ c =

1

2
‖y‖2 + b∗A−1/2y + c

=
1

2
‖y +A−1/2b‖2 − 1

2
b∗A−1b+ c

subject to DA−1/2y = e and FA−1/2y ≤ g. The solution in the
y coordinates is determined by projecting −A−1/2b onto the convex
feasible region determined by the revised constraints. Instead of the
symmetric square root transformation y = A1/2x, one can employ
the asymmetric square root transformation y = Ux furnished by the
Cholesky decomposition L = U∗ of A.
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To state Dykstra’s algorithm, it is helpful to label the closed convex sets
C0, . . . , Cr−1 and denote their intersection by C = ∩r−1

i=0Ci. The algorithm
keeps track of a primary sequence xm and a companion sequence ωm. In
the limit, xm tends to PC(x). To initiate the process, we set x0 = x and
ω−r+1 = · · · = ω0 = 0. For m ≥ 0 we then iterate via

xm+1 = PCm mod r
(xm + ωm−r+1)

ωm+1 = xm + ωm−r+1 − xm+1.

Here m mod r is the nonnegative remainder after dividing m by r. In
essence, the algorithm cycles through the convex sets and projects the sum
of the current vector and the relevant previous companion vector onto the
current convex set.

TABLE 15.1. Iterates of Dykstra’s algorithm

Iteration m xm1 xm2

0 −1.00000 2.00000
1 −0.44721 0.89443
2 0.00000 0.89443
3 −0.26640 0.96386
4 0.00000 0.96386
5 −0.14175 0.98990
10 0.00000 0.99934
15 −0.00454 0.99999
25 −0.00014 1.00000
30 0.00000 1.00000
35 0.00000 1.00000

As an example, suppose r = 2, C0 is the closed unit ball in R2, and C1 is
the closed halfspace with x1 ≥ 0. The intersection C is the right half ball
centered at the origin. Table 15.1 records the iterates of Dykstra’s algorithm
starting from the point x0 = (−1, 2)∗ and their eventual convergence to
the geometrically obvious solution (0, 1)∗.
When Ci is a subspace, Dykstra’s algorithm can dispense with the corre-

sponding companion subsequence ωm. In this case, ωm+1 is perpendicular
to Ci whenever m mod r = i. Indeed, since PCi(y) is a linear projection,
we have

xm+1 = PCi(xm + ωm−r+1)

= PCi(xm) + PCi(ωm−r+1)

= PCi(xm)
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under the perpendicularity assumption. The initial condition ωi−r = 0, the
identity

ωm+1 = xm − xm+1 + ωm−r+1

= xm − PCi(xm) + ωm−r+1

= PC⊥
i
(xm) + ωm−r+1,

and induction show that ωm+1 belongs to the perpendicular complement
C⊥

i if m mod r = i. When all of the Ci are subspaces, Dykstra’s algo-
rithm reduces to the method of alternating projections first studied by von
Neumann. Example 15.5.6 will justify Dykstra’s algorithm theoretically.

Example 15.2.3 Pool Adjacent Violators Algorithm

Dykstra’s algorithm can be beat in specific problems. Consider weighted
isotone regression with objective function f(x) = 1

2

∑n
i=1 wi(yi − xi)2 and

arbitrary positive weights wi. The Lagrangian for this problem reads

L(x,μ) =
1

2

n∑
i=1

wi(yi − xi)2 +
n−1∑
i=1

μi(xi − xi+1),

for nonnegative multipliers μi. The optimal point is determined by the
stationarity conditions

0 = wi(xi − yi) + μi − μi−1

and the complementary slackness conditions μi(xi − xi+1) = 0. Here we
define μ0 = μn = 0 for convenience. Because of telescoping, one can solve
for the multipliers in either of the equivalent forms

μj =

j∑
i=1

wi(yi − xi) = −
n∑

i=j+1

wi(yi − xi). (15.1)

since μn =
∑n

i=1 wi(yi − xi) = 0.
The pool adjacent violators algorithm [6, 157] exploits the fact that whole

blocks of the solution vector x are constant. From one block to the next,
this constant increases. The algorithm starts with xi = yi and μi = 0 for all
i and all blocks reducing to singletons. It then marches through the blocks
and considers whether to consolidate or pool adjacent blocks. Let

B = {l, l+ 1, . . . , r − 1, r}
denote a generic block. In view of complementary slackness, the right mul-
tiplier μr is assumed to be 0. According to the above calculations, the
constant assigned to block B is the weighted average

xB =
1∑r

i=l wi

r∑
i=l

wiyi.
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Now the only thing that prevents a block decomposition from supplying
the solution vector is a reversal of two adjacent block constants. Suppose
B1 = {l1, . . . , r1} and B2 = {l2, . . . , r2} are adjacent violating blocks. We
pool the two blocks and assign the constant

xB1∪B2 =
1∑r2

i=l1
wi

r2∑
i=l1

wiyi

to B1 ∪ B2. Note here that r1 + 1 = l2. We must also recalculate the
multipliers associated with the combined block and check that they are
nonnegative. Equation (15.1) is instrumental in achieving this goal. By
induction we assume that it holds when 1 is replaced by li and n replaced
by ri for i ∈ {1, 2}. In recalculating the μj for j between l1 and r2, we can
take the last multiplier μr2 to be 0 by virtue of the definition of xB1∪B2 . For
j between l1 and r1, the left definition in equation (15.1) and the inequality
xB1 > xB1∪B2 imply that the new μj ≥ 0. For j between l2 and r2 − 1, the
right definition in equation (15.1) and the inequality xB1∪B2 > xB2 again
imply that the new μj ≥ 0. Thus, the pooled block satisfies the multiplier
conditions. Pooling continues until all blocks coalesce or no violations occur.
At that point the multiplier conditions hold, and the minimum has been
reached.

15.3 Contractive Maps

We met locally contractive maps in our study of convergence in Chap. 12.
Here we discuss a generalization that is helpful in finding initial feasible
points in nonlinear programming. First recall that a map T : D ⊂ Rn �→ Rn

is contractive relative to a norm ‖x‖† if ‖T (y)− T (z)‖† < ‖y− z‖† for all
y �= z in D. It is strictly contractive if there exists a constant c ∈ [0, 1)
with ‖T (y) − T (z)‖† ≤ c‖y − z‖† for all such pairs. Finally, T is said to
be paracontractive provided for every fixed point y of T (x) the inequality
‖T (x) − y‖† < ‖x − y‖† holds unless x is itself a fixed point. A strictly
contractive map is contractive, and a contractive map is paracontractive.
For instance, the affine map Mx+ v is contractive under some induced

matrix norm whenever the spectral radius ρ(M) < 1. (See Proposition 6.3.2
of the reference [166].) Projection onto a closed convex set C containing
more than a single point is paracontractive but not contractive under the
standard Euclidean norm. To validate paracontraction, note that the obtuse
angle criterion stated in Example 6.5.3 implies

[x− PC(x)]
∗[PC(y)− PC(x)] ≤ 0

[y − PC(y)]
∗[PC(x)− PC(y)] ≤ 0.
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Adding these inequalities, rearranging, and applying the Cauchy-Schwarz
inequality give

‖PC(x)− PC(y)‖2 ≤ (x− y)∗[PC(x)− PC(y)] (15.2)

≤ ‖x− y‖ · ‖PC(x)− PC(y)‖.
Dividing the extremes of inequality (15.2) by ‖PC(x)−PC(y)‖ now demon-
strates that ‖PC(x) − PC(y)‖ ≤ ‖x − y‖. Equality holds in the Cauchy-
Schwarz half of inequality (15.2) if and only if PC(x)− PC(y) = c(x− y)
for some constant c. If y is a fixed point, then overall equality in inequality
(15.2) entails

‖PC(x)− PC(y)‖2 = (x− y)∗[PC(x)− PC(y)] = c‖x− y‖2.
This precipitates a cascade of deductions. First that c = 1, second that
PC(x)− x = PC(y)− y = 0, third that x is a fixed point, and fourth that
the projection map PC(x) is paracontractive under the Euclidean norm.
With this background in mind, we now state and prove an important

result due to Elsner, Koltracht, and Neumann [85].

Proposition 15.3.1 Suppose the continuous maps T0, . . . , Tr−1 of a set
into itself are paracontractive under the norm ‖x‖†. Let Fi denote the set
of fixed points of Ti. If the intersection F = ∩r−1

i=0Fi is nonempty, then the
sequence

xm+1 = Tm mod r(xm)

converges to a limit in F . In particular, if r = 1 and T = T0 has a nonempty
set of fixed points F , then xm+1 = T (xm) converges to a point in F .

Proof: Let y be any point in F . The scalar sequence ‖xm − y‖† satisfies

‖xm+1 − y‖† = ‖Tm mod r(xm)− y‖† ≤ ‖xm − y‖†
and therefore possesses a limit d ≥ 0. Because the sequence xm is bounded,
it possesses a cluster point x∞. Furthermore, ‖x∞ − y‖† attains the lower
bound d. But this implies that ‖Ti(x∞)− y‖† = ‖x∞ − y‖† for all i, and
therefore x∞ ∈ F . For the choice y = x∞, the corresponding constant d
equals 0. Finally, the monotone convergence of ‖xm − x∞‖† to 0 implies
limm→∞ xm = x∞.

There are two corollaries to Proposition 15.3.1. First, the set of fixed
points of the composite map S = Tr−1 ◦ · · · ◦ T0 equals F = ∩r−1

i=0Fi.
Second, S itself is paracontractive. Problem 21 asks the reader to prove
these facts. As a trivial application of the proposition, consider the toy
example of projection onto the half ball appearing in Table 15.1. For the
chosen initial point x0, a single round PC1 ◦PC0(x0) of projection lands in
the half ball. In contrast to Dykstra’s algorithm, the limit is not the closest
point in C = C0 ∩C1 to x0.
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Alternatively, one can iterate via a convex combination

R(x) =

r−1∑
i=0

λiTi(x)

with positive coefficients. Clearly, any point x ∈ F is also a fixed point of
R(x). Conversely, if x is a fixed point and y is any point in F , then

‖x− y‖† =

∥∥∥∥∥
r−1∑
i=0

λiTi(x)−
r−1∑
i=0

λiTi(y)

∥∥∥∥∥
†

≤
r−1∑
i=0

λi‖Ti(x)− Ti(y)‖†

≤
r−1∑
i=0

λi‖x− y‖†

= ‖x− y‖†.
Because equality must occur throughout, it follows from the paracontrac-
tiveness of Ti that x ∈ Fi for each i. Hence, the fixed points ofR(x) coincide
with F . If we take x �∈ F and y ∈ F , then basically the same argument
demonstrates the paracontractiveness requirement ‖R(x)−y‖† < ‖x−y‖†.
Convergence of the iterates xn+1 =

∑r−1
i=0 λiTi(xn) is now a consequence

of the paracontractiveness of the map R(x). The evidence suggests that
simultaneous projection converges more slowly than alternating projection
[42, 109]. However, simultaneous projection enjoys the advantage of being
parallelizable.
Proposition 15.3.1 postulates the existence of fixed points. The next

proposition introduces simple sufficient conditions guaranteeing existence.

Proposition 15.3.2 Suppose T is contractive under a norm ‖x‖† and
maps the nonempty compact set D ⊂ Rn into itself. Then T has a unique
fixed point in D. If T is a strict contraction with contraction constant c,
then the assumption that D is compact can be relaxed to the assumption
that D is closed.

Proof:We first demonstrate that there is at most one fixed point y. If there
is a second fixed point z �= y, then

‖y − z‖† = ‖T (y)− T (z)‖† < ‖y − z‖†,
which is a contradiction.
Now define d = infx∈D f(x) for the function f(x) = ‖T (x)− x‖†. Since

f(x) is continuous, its infimum is attained at some point y in the compact
set D. If y is not a fixed point, then

‖T ◦ T (y)− T (y)‖† < ‖T (y)− y‖†,



392 15. Feasibility and Duality

contradicting the definition of y. On the other hand, if D is not compact,
but T is a strict contraction, then choose any point y ∈ D, and define the
set C = {x ∈ D : f(x) ≤ f(y)}. For x ∈ C we then have

‖x− y‖† ≤ ‖x− T (x)‖† + ‖T (x)− T (y)‖† + ‖T (y)− y‖†
≤ 2f(y) + c‖x− y‖†.

It follows that

‖x− y‖† ≤ 2f(y)

1− c .

Thus, the closed set C is bounded and hence compact. Furthermore, the
inequality f [T (x)] ≤ cf(x) indicates that T maps C into itself. The rest of
the argument proceeds as before.

Example 15.3.1 Stationary Distribution of a Markov Chain

Example 6.2.1 demonstrates that every finite state Markov chain possesses
a stationary distribution. Under an appropriate ergodic hypothesis, this
distribution is unique, and the chain converges to it. In understanding these
phenomena, it simplifies notation to pass to column vectors and replace
P = (pij) by its transpose Q = (qij). It is easy to check that Q maps the
standard simplex

S =
{
x : xi ≥ 0, i = 1, . . . , n,

n∑
i=1

xi = 1
}

into itself and that candidate vectors belong to S. The natural norm on S
is ‖x‖1 =

∑n
i=1 |xi|. According to Problem 9 of Chap. 2, the corresponding

induced matrix norm of Q is

‖Q‖1 = max
1≤j≤n

n∑
i=1

|qij | = max
1≤j≤n

n∑
i=1

pji = 1.

Thus, Q is almost a contraction.
The standard ergodic hypothesis says that some power P k of P has all

entries positive. If we defineR = Qk−c11∗ for c the minimum entry of P k,
then the matrix R has all entries nonnegative and norm ‖R‖1 < 1. Since
1∗(y − x) = 0 for all pairs x and y in S, we have

||Qkx−Qky||1 = ‖R(x− y)‖1 ≤ ‖R‖1‖x− y‖1.
In other words, the map x �→ Qkx is strictly contractive on S. It therefore
possesses a unique fixed point y, and limm→∞ Qmkx = y. Problem 22 asks
the reader to check that the map x �→ Qx shares the fixed point y and
that limm→∞ Qmx = y.
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Proposition 15.3.2 finds applications in many branches of mathematics
and statistics. Part of its value stems from the guaranteed geometric rate
of convergence of the iterates xm+1 = T (xm) to the fixed point y. This
assertion is a straightforward consequence of the inequality

‖x− y‖† ≤ ‖x− T (x)‖† + ‖T (x)− T (y)‖† ≤ f(x) + c‖x− y‖†
involving the function f(x) = ‖T (x)− x‖†. It follows that

‖x− y‖† ≤ 1

1− cf(x). (15.3)

Substituting xm for x and applying the inequality f [T (x)] ≤ cf(x) repeat-
edly now yield the geometric bound

‖xm − y‖† ≤ cm

1− cf(x0).

In numerical practice, inequality (15.3) gives the preferred test for declaring
convergence. If one wants xm to be within ε of the fixed point, then iteration
should continue until f(xm) ≤ ε(1− c).

15.4 Dual Functions

The Lagrange multiplier rule summarizes much of what we know about
minimizing f(x) subject to the constraints gi(x) = 0 for 1 ≤ i ≤ p and
hj(x) ≤ 0 for 1 ≤ j ≤ q. Consequently, it is worth considering the standard
Lagrangian function

L(x,λ,μ) = f(x) +

p∑
i=1

λigi(x) +

q∑
j=1

μjhj(x)

in more detail. Here the multiplier vectors λ and μ are taken as arguments
in addition to the variable x. For a convex program satisfying a constraint
qualification such as Slater’s condition, a constrained global minimum x̂ of
f(x) is also an unconstrained global minimum of L(x, λ̂, μ̂), where λ̂ and
μ̂ are the corresponding Lagrange multipliers. This fact is the content of
Proposition 14.7.1
The behavior of L(x̂,λ,μ) as a function of λ and μ is also interesting.

Because gi(x̂) = 0 for all i and μ̂jhj(x̂) = 0 for all j, we have

L(x̂, λ̂, μ̂)− L(x̂,λ,μ) =

q∑
j=1

(μ̂j − μj)hj(x̂)

= −
q∑

j=1

μjhj(x̂)

≥ 0.
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This proves the left inequality of the two saddle point inequalities

L(x̂,λ,μ) ≤ L(x̂, λ̂, μ̂) ≤ L(x, λ̂, μ̂).

The left saddle point inequality immediately implies

sup
λ,μ≥0

inf
x
L(x,λ,μ) ≤ L(x̂, λ̂, μ̂) = f(x̂).

The right saddle point inequality, valid for a convex program under Slater’s
constraint qualification, entails

L(x̂, λ̂, μ̂) = inf
x
L(x, λ̂, μ̂) ≤ sup

λ,μ≥0
inf
x
L(x,λ,μ).

Hence, we can recover the minimum value of f(x) as

f(x̂) = sup
λ,μ≥0

inf
x
L(x,λ,μ).

The dual function

D(λ,μ) = inf
x
L(x,λ,μ)

is jointly upper semicontinuous and concave in its arguments λ and μ and
is well defined regardless of whether the program is convex. Maximization
of the dual function subject to the constraint μ ≥ 0 is referred to as the
dual program. It trades an often simpler objective function in the original
(primal) program for simpler constraints in the dual program.
In the absence of convexity or Slater’s constraint qualification, we can

still recover a weak form of duality based on the identity

f(x̂) = inf
x

sup
λ,μ≥0

L(x,λ,μ),

which stems from the fact

sup
λ,μ≥0

L(x,λ,μ) =
{
f(x) x feasible
∞ x infeasible.

Because infx L(x,λ,μ) ≤ L(x̂,λ,μ) ≤ f(x̂), we can assert that

sup
λ,μ≥0

inf
x
L(x,λ,μ) ≤ f(x̂) = inf

x
sup

λ,μ≥0
L(x,λ,μ). (15.4)

In other words, the minimum value of the primal problem exceeds the maxi-
mum value of the dual problem. Slater’s constraint qualification guarantees
for a convex program that the duality gap

infx supλ,μ≥0 L(x,λ,μ)− supλ,μ≥0 infx L(x,λ,μ)
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vanishes when the primal problem has a finite minimum. Weak duality
also makes it evident that if the primal program is unbounded below, then
the dual program has no feasible point, and that if the dual program is
unbounded above, then the primal program has no feasible point.
In a convex primal program, the equality constraint functions gi(x) are

affine. If the inequality constraint functions hj(x) are also affine, then we
can relate the dual program to the Fenchel conjugate f�(y) of f(x). Sup-
pose we write the constraints as V x = d and Wx ≤ e. Then the dual
function equals

D(λ,μ) = inf
x

[f(x) + λ∗(V x− d) + μ∗(Wx− e)]

= −λ∗d− μ∗e+ inf
x

[f(x) + (V ∗λ+W ∗μ)∗x] (15.5)

= −λ∗d− μ∗e− f�(−V ∗λ−W ∗μ).

It may be that f�(y) equals ∞ for certain values of y, but we can ignore
these values in maximizing D(λ,μ). As pointed out in Proposition 14.3.1,
f�(y) is a closed convex function.
The dual function may be differentiable even when the objective function

or one of the constraints is not. Let ω = (λ,μ), and suppose that the
solution x(ω) of D(ω) = L(x,ω) is unique and depends continuously on ω.
The inequalities

D(ω1) = L[x(ω1),ω1] ≤ L[x(ω2),ω1]

D(ω2) = L[x(ω2),ω2] ≤ L[x(ω1),ω2]

can be re-expressed as

p∑
i=1

[λ2i − λ1i]gi[x(ω2)] +

q∑
j=1

[μ2j − μ1j ]hj [x(ω2)] ≤ D(ω2)−D(ω1)

p∑
i=1

[λ2i − λ1i]gi[x(ω1)] +

q∑
j=1

[μ2j − μ1j ]hj [x(ω1)] ≥ D(ω2)−D(ω1)

Taking an appropriate convex combination of the left-hand sides of these
two inequalities allows us to write D(ω2) − D(ω1) = s(ω2,ω1)(ω2 − ω1)
for a slope function s(ω2,ω1). The slope requirement

lim
ω2→ω1

s(ω2,ω1) = [g1(x), . . . , gp(x), h1(x), . . . , hq(x)]

with x = x(ω1) follows directly from the assumed continuity of the con-
straints and the solution vector x(ω). Thus, D(ω) is differentiable at ω1.
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15.5 Examples of Dual Programs

Here are some examples of dual programs that feature the close ties between
duality and the Fenchel conjugate. We start with linear and quadratic
programs, the simplest and most useful examples, and progress to more
sophisticated examples.

Example 15.5.1 Dual of a Linear Program

The standard linear program minimizes f(x) = z∗x subject to the linear
equality constraints V x = d and the nonnegativity constraints x ≥ 0. It
is obvious that f�(y) = ∞ unless y = z, in which case f�(z) = 0. Thus
in view of equation (15.5), the dual program maximizes −λ∗d subject to
the constraints −V ∗λ+μ = z and μ ≥ 0. Later we will demonstrate that
there is no duality gap when either the primal or dual program has a finite
solution [87, 183].

Example 15.5.2 Dual of a Strictly Convex Quadratic Program

We have repeatedly visited the problem of minimizing the strictly convex
function f(x) = 1

2x
∗Ax + b∗x + c subject to the linear equality con-

straints V x = d and the linear inequality constraints Wx ≤ e. Ignoring
the constraints, f(x) achieves its minimum value − 1

2b
∗A−1b + c at the

point x = −A−1b. In Example 14.3.1, we calculated the Fenchel conjugate

f�(y) =
1

2
(y − b)∗A−1(y − b)− c.

If there are no equality constraints, then the dual program maximizes the
quadratic

D(μ) = −μ∗e− f�(−W ∗μ)

= −μ∗e− 1

2
(W ∗μ+ b)∗A−1(W ∗μ+ b) + c

= −1

2
μ∗WA−1W ∗μ− (e+WA−1b)∗μ− 1

2
b∗A−1b+ c

subject to μ ≥ 0. The dual program is easier to solve than the primal
program when the number of inequality constraints is small and the number
of variables is large.
In the presence of equality constraints and the absence of inequality

constraints, the maximum of the dual function D(λ) = −λ∗d− f�(−V ∗λ)
occurs where

0 = −d+ V ∇f�(−V ∗λ)
= −d+ V A−1(−V ∗λ− b).
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If V has full row rank, then the last equation has solution

λ = −(V A−1V ∗)−1(V A−1b+ d).

This is just the Lagrange multiplier calculated in Example 5.2.6 and
Proposition 5.2.2. Given the multiplier, it is straightforward to calculate
the optimal value of the primal variable x.

Example 15.5.3 Dual of a Linear Semidefinite Program

The linear semidefinite programming problem consists in minimizing the
trace function X �→ tr(CX) over the cone of positive semidefinite matrices
Sn
+ subject to the linear constraints tr(AiX) = bi for 1 ≤ i ≤ p. Here C

and the Ai are assumed symmetric. According to Sylvester’s criterion, the
constraint B ∈ Sn

+ involves a complicated system of nonlinear inequalities.
It is conceptually simpler to rewrite the constraintB ∈ Sn

+ as −λ1(X) ≤ 0,
where λ1(X) is the minimum eigenvalue of X . Example 6.3.8 proves that
λ1(X) is concave in X.
In defining the dual problem, there is a generic way of accommodating

complicated convex constraints. Suppose in the standard convex program
we confine x to some closed convex set S in addition to imposing explicit
equality and inequality constraints. Minimizing the objective function f(x)
subject to all of the constraints is equivalent to minimizing f(x) + δS(x)
subject to the functional constraints alone. In forming the dual we therefore
take the infimum of the Lagrangian over x in S rather than over all x.
In linear semidefinite programming, we therefore define the dual function

D(λ) = inf
X∈Sn

+

{
tr(CX) +

p∑
i=1

λi[bi − tr(AiX)]
}

= b∗λ+ inf
X∈Sn

+

tr
[(

C −
p∑

i=1

λiAi

)
X
]

= b∗λ+ inf
X∈Sn

+

t(X).

If t(X) < 0 for some X ∈ Sn
+, then t(X) can be made to approach −∞ by

replacing X by cX and taking c large. It follows that we should restrict the
matrix C−∑p

i=1 λiAi to lie in the negative of the polar cone (Sn
+)

◦ of Sn
+.

We know from Example 14.3.7 that (Sn
+)

◦ = −Sn
+. When this restriction

holds and C −∑p
i=1 λiAi is positive semidefinite, the minimum of t(X)

is achieved by setting X = 0. The dual problem thus becomes one of
maximizing b∗λ subject to the condition that C −∑p

i=1 λiAi is positive
semidefinite. Slater’s constraint qualification guaranteeing a duality gap of
0 is just the assumption that there exists a positive definite matrix X that
is feasible for the primal problem.

Example 15.5.4 Regression with a Non-Euclidean Norm
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In unconstrained least squares one minimizes the criterion ‖y−Xβ‖ with
respect to β. If we substitute a non-Euclidean norm ‖z‖† for the Euclidean
norm ‖z‖, then the problem becomes much harder. Suppose the dual norm
to ‖z‖† is ‖w‖�. With no Lagrange multipliers in sight, the dual function
is constant. However, let us repose the problem as minimizing ‖z‖† subject
to the linear constraint z = y −Xβ. The Lagrangian for this version of
the problem is obviously L(z,β,λ) = ‖z‖† + λ∗(y −Xβ − z). In view of
Example 14.3.5, the Fenchel conjugate of f(z,β) = ‖z‖† is

f�(w,γ) = sup
z,β

(w∗z + γ∗β − ‖z‖†) = δB(w) + δ{0}(γ),

where B is the closed unit ball associated with the dual norm. Equation
(15.5) therefore produces the dual function

D(λ) = λ∗y − δB(λ)− δ{0}(X∗λ).

The dual problem consists of minimizing −λ∗y subject to the constraints
X∗λ = 0 and ‖λ‖� ≤ 1.
We can reformulate the regression problem as minimizing the criterion

1
2‖z‖2† subject to the linear constraint z = y −Xβ. The Lagrangian now
becomes

L(z,β,λ) =
1

2
‖z‖2† + λ∗(y −Xβ − z),

and in view of Example 14.3.5 the dual function reduces to

D(λ) = λ∗y − 1

2
‖λ‖2� − δ{0}(X∗λ).

Hence, the dual problem consists of minimizing the function −λ∗y+ 1
2‖λ‖2�

subject to the single constraintX∗λ = 0. In this case there are two different
dual problems.

Example 15.5.5 Dual of a Geometric Program

In passing to the dual, it is helpful to restate geometric programming as

minimize ln

(
m0∑
k=1

ea
∗
0kx+bok

)

subject to ln

(mj∑
k=1

ea
∗
jkx+bjk

)
≤ 0, 1 ≤ j ≤ q.

In this convex version of geometric programming, the positive constants
multiplying the monomials are just the exponentials ebjk . It is hard to take
the Fenchel conjugate of the associated Lagrangian so we resort to the stan-
dard trick of introducing simpler functions fj(zj) with distinct arguments
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and compensating equality constraints. If fj(zj) equals ln (
∑

k e
zjk), then

Example 14.3.2 calculates the entropy conjugate

f�
j (yj) =

{∑
k yjk ln yjk for

∑
k yjk = 1 and all yjk ≥ 0

∞ otherwise.

The equality constraint corresponding to fj(zj) is Ajx+ bj − zj = 0 for
a matrix Aj with rows a∗

jk. In this notation, the simplified Lagrangian
becomes

L(x, z0, . . . , zq,λ,μ)

= f0(z0) +

q∑
j=1

μjfj(zj) +

q∑
j=0

λ∗
j (Ajx+ bj − zj)

= f0(z0)− λ∗
0z0 +

q∑
j=1

μj

[
fj(zj)− μ−1

j λ∗
jzj

]
+

q∑
j=0

λ∗
j (Ajx+ bj).

It follows that the dual function equals

D(λ,μ) = inf
x,z0,...,zq

L(x, z0, . . . , zq,λ,μ)

=

q∑
j=0

λ∗
jbj − f�

0 (λ0)−
q∑

j=1

μjf
�
j (μ

−1
j λj) + δ0

( q∑
j=0

A∗
jλj

)
.

The exceptional cases where one or more μj = 0 require special treatment.
When μj = 0 but λj �= 0, the dual function must be interpreted as −∞.
When μj = 0 and λj = 0, the expression for D(λ,μ) is valid provided we
interpret μjf

�
j (μ

−1
j λj) as 0. Because of the nature of the entropy function,

the constraints λj ≥ 0 for 0 ≤ j ≤ q and ‖λ0‖1 = 1 and ‖λj‖1 = μj for
1 ≤ j ≤ q are implicit in the dual function. The constraints μj ≥ 0 for
1 ≤ j ≤ q are explicit, as is the constraint

∑q
j=0 A

∗
jλj = 0.

Example 15.5.6 Dykstra’s Algorithm as Block Relaxation of the Dual

Dykstra’s problem can be restated as finding the minimum of the convex
function

g(x) = f(x) +

r−1∑
i=0

δCi(x) = f(x) + δC(x)

for f(x) = 1
2‖x − z‖2, C the intersection of the closed convex sets C0

through Cr−1, δC(x) the indicator function of C as defined in Exam-
ple 14.3.4, and z the external point to C. As in Example 15.5.5, it is
difficult to take the Fenchel conjugate of g(x). Matters simplify tremen-
dously if we replace the argument of each δCi(x) by xi and impose the
constraint xi = x. Consider therefore the Lagrangian

L(X ,Λ) = f(x) +
r−1∑
i=0

δCi(xi) +
r−1∑
i=0

λ∗
i (x− xi)
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with X = (x,x0, . . . ,xr−1) and Λ = (λ0, . . . ,λr−1). The dual function is

D(Λ) = − sup
X

[
−

r−1∑
i=0

λ∗
ix− f(x) +

r−1∑
i=0

λ∗
ixi −

r−1∑
i=0

δCi(xi)

]

= −f�

(
−

r−1∑
i=0

λi

)
−

r−1∑
i=0

δ�Ci
(λi).

The dual problem consists of minimizing the convex function

f�

(
−

r−1∑
i=0

λi

)
+

r−1∑
i=0

δ�Ci
(λi).

Dykstra’s algorithm solves the dual problem by block descent [9, 26].
Suppose that we fix all λi except λj . The stationarity condition requires

0 to belong to the subdifferential

∂
[
f�
(
−

r−1∑
i=0

λi

)
+ δ�Cj

(λj)
]

= −∂f�
(
−

r−1∑
i=0

λi

)
+ ∂δ�Cj

(λj).

It follows that there exists a vector xj such that xj ∈ ∂f�
(
−∑r−1

i=0 λi

)
and xj ∈ ∂δ�Cj

(λj). Propositions 14.3.1 and 14.4.4 allow us to invert these

two relations. Thus, −λj ∈ ∂[f(xj)+
∑

i
=j λ
∗
ixj ] and λj ∈ ∂δCj (xj), which

together are equivalent to the primal stationarity condition

0 ∈ ∂
[
f(xj) +

∑
i
=j

λ∗
ixj + ∂δCj(xj)

]
.

As a consequence, it suffices to minimize

f(xj) +
∑
i
=j

λ∗
ixj + δCj(xj) =

1

2

∥∥∥xj +
∑
i
=j

λi − z
∥∥∥2 + δCj (xj) + c,

where c is an irrelevant constant. But this problem is solved by projecting
z −∑

i
=j λi onto the convex set Cj .
The update of λj satisfies

λj = −∂
[
f(xj) +

∑
i
=j

λ∗
ixj

]
= z − xj −

∑
i
=j

λi.

Given the converged values of the λj , the optimal x can be recovered from
the stationarity condition

0 = ∂f(x) +
r−1∑
i=0

λi = x− z +
r−1∑
i=0

λi

for the Lagrangian L(X ,Λ) as x = z −∑r−1
i=0 λi
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Example 15.5.7 Duffin’s Counterexample

Consider the convex program of minimizing f(x) = e−x2 subject to the
inequality constraint h(x) = ‖x‖ − x1 ≤ 0 on R2. This problem does
not satisfy Slater’s condition because all feasible x satisfy x2 = 0 and
consequently h(x) = 0 and f(x) = 1. To demonstrate that there is a
duality gap, we show that the dual function

D(μ) = inf
x
L(x, μ) = inf

x
[e−x2 + μ(‖x‖ − x1)]

is identically 0. Because L(x, μ) ≥ 0 for all x and μ ≥ 0, it suffices to prove
that L(x, μ) can be made less than any positive ε. Choose an x2 so that
e−x2 < ε/2. Having chosen x2, choose x1 so that

√
x21 + x22 − x1 = x1

√
1 +

x22
x21
− x1

≤ x1

(
1 +

x22
2x21

)
− x1

=
x22
2x1

<
ε

2μ
.

With these choices we have L(x, μ) < ε. Thus, the minimum value 1 of the
primal problem is strictly greater than the maximum value 0 of the dual
problem.

Before turning to practical applications of duality in the next section,
we would like to mention the fundamental theorem of linear programming.
Our proof depends on the subtle properties of polyhedral sets sketched in
Appendix A.3. Readers can digest this material at their leisure.

Proposition 15.5.1 If either the primal or dual linear program formulated
in Example 15.5.1 has a solution, then the other program has a solution as
well. Furthermore, there is no duality gap.

Proof: If the primal program has a solution, then inequality (15.4) shows
that the dual program has an upper bound. Proposition A.3.5 therefore
implies that the dual program has a solution. Conversely, if the dual pro-
gram has a solution, then inequality (15.4) shows that the primal program
has a lower bound. Since a linear function is both convex and concave,
a second application of Proposition A.3.5 shows that the primal program
has a solution. According to Example 6.5.5, the existence of either solution
forces the preferred form of the Lagrange multiplier rule and hence implies
no duality gap.
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Example 15.5.8 Von Neumann’s Minimax Theorem

Von Neumann’s minimax theorem is one of the earliest results of game
theory [266]. In purely mathematical terms, it can be stated as the identity

min
y∈S

max
x∈S

x∗Ay = max
x∈S

min
y∈S

x∗Ay, (15.6)

where A = (aij) is an n× n matrix and S is the unit simplex

S =
{
z ∈ Rn : z1 ≥ 0, . . . , zn ≥ 0,

n∑
i=1

zi = 1
}
.

It is possible to view the identity (15.6) as a manifestation of linear pro-
gramming duality. As the reader can check (Problem 28), the primal pro-
gram

minimize u

subject to

n∑
j=1

yj = 1,

n∑
j=1

aijyj ≤ u ∀i, yj ≥ 0 ∀j

has dual program

maximize v

subject to
n∑

i=1

xi = 1,
n∑

i=1

xiaij ≥ v ∀j, xi ≥ 0 ∀i.

Von Neumann’s identity (15.6) is true because the primal and optimal
values p and d of this linear program satisfy

min
y∈S

max
x∈S

x∗Ay = min
y∈S

max
1≤i≤n

e∗iAy = p

max
x∈S

min
y∈S

x∗Ay = max
x∈S

min
1≤j≤n

x∗Aej = d.

Von Neumann’s identity is a special case of the much more general minimax
principle of Sion [155, 238]. This principle implies no duality gap in convex
programming given appropriate compactness assumptions.

15.6 Practical Applications of Duality

The two examples of this section illustrate how duality is not just a theo-
retical construct. It can also lead to the discovery of concrete optimization
algorithms. Practitioners of optimization should always bear this in mind
as well as the lower bound offered by inequality (15.4). Of course, solving
the dual problem is seldom enough. To realize the potential of duality, one
must convert the solution of the dual problem into a solution of the primal
problem.
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Example 15.6.1 The Power Plant Problem

The power plant production problem [226] involves minimizing

f(x) =

n∑
i=1

fi(xi)

subject to the constraints 0 ≤ xi ≤ ui for each i and
∑n

i=1 xi ≥ d. For
plant i, xi is the power output, ui is the capacity, and fi(xi) is the cost.
The total demand is d. The Lagrangian for this minimization problem is

L(x, μ) =
n∑

i=1

fi(xi) + μ
(
d−

n∑
i=1

xi

)
.

As a consequence of the separability of the Lagrangian, the dual function
can be expressed as

D(μ) = μd+
n∑

i=1

min
0≤xi≤ui

[
fi(xi)− μxi

]
.

For the quadratic choices fi(xi) = aixi+
1
2 bix

2
i with positive cost constants

ai and bi, the problem is a convex program, and it is possible to explicitly
solve for the dual. A brief calculation shows that optimal value of xi is

x̂i =

{ 0 0 ≤ μ ≤ ai
μ−ai

bi
ai ≤ μ ≤ ai + biui

ui μ ≥ ai + biui.

These solutions translate into the dual function

D(μ) = μd+

n∑
i=1

⎧⎨
⎩

0 0 ≤ μ ≤ ai

− (μ−ai)
2

2bi
ai ≤ μ ≤ ai + biui

aiui +
1
2 biu

2
i − μui μ ≥ ai + biui.

and ultimately into the derivative D′(μ) = d −∑n
i=1 x̂i. Because D(μ) is

concave, a stationary point furnishes the global maximum. It is straightfor-
ward to implement bisection to locate a stationary point. Steepest ascent is
another route to maximizing D(μ). Problem 26 asks the reader to consider
the impact of assuming one or more bi = 0.

Example 15.6.2 Linear Classification

Classification problems are ubiquitous in statistics. Section 13.8 discusses
one approach to discriminant analysis. Here we take another motivated by
hyperplane separation. The binary classification problem can be phrased in
terms of a training sequence of observation vectors v1, . . . ,vm from Rn and
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an associated sequence of population indicators s1, . . . , sm from {−1,+1}.
In favorable situations, the two different populations can be separated by
a hyperplane defined by a unit vector z and constants c1 ≤ c2 in the sense
that

z∗vi ≤ c1, si = −1
z∗vi ≥ c2, si = +1.

The optimal separation occurs when the difference c2 − c1 is maximized.
This linear classification problem can be simplified by rewriting the sep-

aration conditions as

z∗vi − c1 + c2
2

≤ −c2 − c1
2

, si = −1

z∗vi − c1 + c2
2

≥ +
c2 − c1

2
, si = +1.

If we let a = (c2 − c1)/2, b = (c1 + c2)/(c2− c1), and y = a−1z, then these
become

y∗vi − b ≤ −1, si = −1
y∗vi − b ≥ +1, si = +1. (15.7)

Thus, the linear classification problem reduces to minimizing the criterion
1
2‖y‖2 subject to the inequality constraints (15.7). Observe that the con-
straint functions are linear in the parameter vector (y∗, b)∗ in this semidef-
inite quadratic programming problem. Unfortunately, because the compo-
nent b does not appear in the objective function 1

2‖y‖2, Dykstra’s algorithm
does not apply. Once we find y and b, we can classify a new test vector v
in the s = −1 population when y∗v − b < 0 and in the s = +1 population
when y∗v − b > 0.
There is no guarantee that a feasible vector (y∗, b)∗ exists for the linear

classification problem as stated. A more realistic version of the problem
imposes the inequality constraints

si(y
∗vi − b) ≥ 1− εi (15.8)

using a slack variable εi ≥ 0. To penalize deviation from the ideal of perfect
separation by a hyperplane, we modify the objective function to be

f(y, b, ε) =
1

2
‖y‖2 + δ

m∑
i=1

εi (15.9)

for some tuning constant δ > 0. The constraints (15.8) and εi ≥ 0 are again
linear in the parameter vector x = (y∗, b, ε∗)∗. The Lagrangian
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L(y, b, ε,μ) =
1

2
‖y‖2 + δ

m∑
i=1

εi −
m∑
i=1

μm+iεi

+

m∑
i=1

μi[−si(v∗
iy − b) + 1− εi]

involves 2m nonnegative multipliers μ1, . . . , μ2m.
It is simpler to solve the dual problem than the primal problem. We can

formulate the dual by following the steps of Example 15.5.2. If we express
the inequality constraints as Wx ≤ e, then the matrix transpose W ∗ and
the vector e are

W ∗ = −
⎛
⎝ s1v1 · · · smvm 0
−s1 · · · −sm 0

Im Im

⎞
⎠ , e =

(−1
0

)

in the current setting. The dual problem of consists of maximizing the func-
tion −μ∗e− f�(−W ∗μ) subject to the constraints μi ≥ 0 and restrictions
imposed by the essential domain of the Fenchel conjugate f�(p, q, r). An
easy calculation gives

f�(p, q, r) = sup
y,b,ε

[
p∗y + qb+ r∗ε− 1

2
‖y‖2 − δ

m∑
i=1

εi

]

=

{∞ q �= 0 or ri �= δ for some i
p∗p− 1

2‖p‖2 otherwise

=

{∞ q �= 0 or ri �= δ for some i
1
2‖p‖2 otherwise.

To match −W ∗μ to the indicated essential domain, note that the restric-
tion q = 0 entails the constraint

∑m
i=1 siμi = 0, and the restriction ri = δ

entails the constraint μi + μm+i = δ and therefore the bound μi ≤ δ. For
the vector p we substitute the linear combination

∑m
i=1 siμivi. Hence, the

dual problem consists in maximizing

− μ∗e− f�(−W ∗μ) =

m∑
i=1

μi − 1

2

∥∥∥
m∑
i=1

siμivi

∥∥∥2 (15.10)

=

m∑
i=1

μi − 1

2

m∑
i=1

m∑
j=1

siμiv
∗
i vjsjμj

subject to the constraints
∑m

i=1 siμi = 0 and 0 ≤ μi ≤ δ for all i.
Solving the dual problem fortunately leads to a straightforward solution

of the primal problem. For instance, the Lagrangian conditions

∂

∂yj
L(y, b, ε,μ) = 0
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give y =
∑m

i=1 μisivi. The Lagrangian condition

∂

∂εj
L(y, b, ε,μ) = δ − μj − μm+j = 0

implies that μm+j = δ − μj . The complementary slackness conditions

0 = μi[−si(v∗
iy − b) + 1− εi]

0 = μm+jεj

can be used to determine b and εi for 1 ≤ i ≤ m. If we choose an index
j such that 0 < μj < δ, then μm+j > 0 and εj = 0. It follows that
−sj(v∗

jy − b) + 1 = 0 and that b = v∗
jy − sj since sj = ±1. Given b, all εj

with μj > 0 are determined. If μj = 0, then μm+j = δ > 0 and εj = 0.
Despite these interesting maneuvers, we have not actually shown how

to solve the dual problem. For linear classification problems with many
training vectors v1, . . . ,vm in a high-dimensional space Rn, it is impera-
tive to formulate an efficient algorithm. One possibility is to try a penalty
method. If we subtract the square penalty ω(

∑m
i=1 siμi)

2 from the dual
function (15.10), then the remaining box constraints are consistent with
coordinate ascent. Sending ω to ∞ then produces the dual solution. Alter-
natively, subtracting the penalty ω|∑m

i=1 siμi| converts the dual problem
into an exact penalty problem and opens up the possibility of path following
as described in Chap. 16.

15.7 Problems

1. Let C ⊂ R2 be the cone defined by the constraint x1 ≤ x2. Show that
the projection operator PC(x) has components

PC(x)j =

{
xj x1 ≤ x2
1
2 (x1 + x2) x1 > x2.

Let S ⊂ R3 be the cone defined by the constraint x2 ≤ 1
2 (x1 + x3).

Show that the projection operator PS(x) has components

PS(x)j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xj x2 ≤ 1
2 (x1 + x3)

5
6x1 +

1
3x2 − 1

6x3 j = 1 and x2 >
1
2 (x1 + x3)

1
3x1 +

1
3x2 +

1
3x3 j = 2 and x2 >

1
2 (x1 + x3)

− 1
6x1 +

1
3x2 +

5
6x3 j = 3 and x2 >

1
2 (x1 + x3).

2. If A and B are two closed convex sets, then prove that projection
onto the Cartesian product A×B is effected by the Cartesian product
operator (x,y) �→ [PA(x), PB(y)].



15.7 Problems 407

3. Program and test either an algorithm for projection onto the unit
simplex or the pool adjacent violators algorithm.

4. If C is a closed convex set in Rn and x �∈ C, then demonstrate that

dist(x, C) = inf
y∈C

sup
‖z‖=1

z∗(x− y) = sup
‖z‖=1

inf
y∈C

z∗(x− y).

Also prove that there exists a unit vector z with

dist(x, C) = inf
y∈C

z∗(x− y).

(Hints: The first equality follows from the Cauchy-Schwarz inequality
and the definition of dist(x, C). The rest of the problem depends on
the Cauchy-Schwarz inequality, the particular choice

z = dist(x, C)−1[x− PC(x)],

and the obtuse angle criterion.)

5. Let S and T be subspaces of Rn. Demonstrate that the projections
PS and PT satisfy PSPT = PS∩T if and only if PSPT = PTPS .

6. Let C be a closed convex set in Rn. Show that

(a) dist(x+ y, C + y) = dist(x, C) for all x and y.

(b) PC+y(x+ y) = PC(x) + y for all x and y.

(c) dist(ax, aC) = |a| dist(x, C) for all x and real a.

(d) PaC(ax) = aPC(x) for all x and real a.

Let S be a subspace of Rn. Show that

(a) dist(x+ y, S) = dist(x, S) for all x ∈ Rn and y ∈ S.
(b) PS(x+ y) = PS(x) + y for all x ∈ Rn and y ∈ S.
(c) dist(ax, S) = |a| dist(x, S) for all x ∈ Rn and real a.

(d) PS(ax) = aPS(x) for all x ∈ Rn and real a.

7. Let M be an n × n symmetric matrix with spectral decomposition
M = UDU∗, where U is an orthogonal matrix and D is a diagonal
matrix with ith diagonal entry di. Prove that the Frobenius norm
‖M−PS(M )‖F is minimized over the closed convex cone S of positive
semidefinite matrices by taking PS(M) = UD+U

∗, where D+ is
diagonal with ith diagonal entry max{di, 0}.
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8. Let C = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t} denote the ice cream cone in Rn+1.
Verify the projection formulas

PC [(x, t)] =

⎧⎪⎨
⎪⎩

(x, t) ‖x‖ ≤ t and t ≥ 0
(0, 0) ‖x‖ ≤ −t and t ≤ 0(

‖x‖+t
2‖x‖ x, ‖x‖+t

2

)
otherwise.

9. The convex regression example in Sect. 15.2 implicitly assumes that
the regression function is defined on the integers 1, . . . , n. Consider in-
stead the problem of finding a convex function f(x) on Rm such that
the sum of squares

∑n
i=1[yi−f(xi)]

2 is minimized. Demonstrate that
this alternative problem can be rephrased as the quadratic program-
ming problem of minimizing

∑n
i=1(yi−zi)2 subject to the restrictions

zj ≥ zi + g∗
i (xj − xi)

for all i and j �= i. Here the unknown subgradients gi must be found
along with the function values zi at the specified points xi [19].

10. Verify the projection formula in Problem 11 of Chap. 5 by invoking
the obtuse angle criterion.

11. Suppose C is a closed convex set wholly contained within an affine
subspace V = {y ∈ Rn : Ay = b}. For x �∈ V demonstrate the
projection identity PC(x) = PC ◦ PV (x) [196]. (Hint: Consider the
equality

[x− PC(x)]
∗[y − PC(x)] = [x− PV (x)]

∗[y − PC(x)]

+[PV (x)− PC(x)]
∗[y − PC(x)]

with the obtuse angle criterion in mind.)

12. For positive numbers c1, . . . , cn and nonnegative numbers b1, . . . , bn
satisfying

∑n
i=1 cibi ≤ 1, define the truncated simplex

S =
{
y ∈ Rn :

n∑
i=1

ciyi = 1, yi ≥ bi, 1 ≤ i ≤ n
}
.

If x ∈ Rn has coordinate sum
∑n

i=1 cixi = 1, then prove that the
closest point y in S to x satisfies the Lagrange multiplier conditions

yi − xi + λci − μi = 0

for appropriate multipliers λ and μi ≥ 0. Further show that

λ =
c∗μ
‖c‖2 ≥ 0.
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Why does it follow that yi = bi whenever xi < bi? Prove that the
Lagrange multiplier conditions continue to hold when xi < bi if we re-
place xi by bi and μi by λci. Since the Lagrange multiplier conditions
are sufficient as well as necessary in convex programming, this demon-
strates that (a) we can replace each coordinate xi by max{xi, bi} with-
out changing the projection y of x onto S, and (b) y can be viewed
as a point in a similar simplex in a reduced number of dimensions
when one or more xi ≤ bi [196].

13. Michelot’s [196] algorithm for projecting a point x onto the simplex
S defined in Problem 12 cycles through the following steps:

(a) Project onto the affine subspace Vn = {y ∈ Rn :
∑

i ciyi = 1},
(b) Replace each coordinate xi by max{xi, bi},
(c) Reduce the dimension n whenever some xi = bi.

In view of Problems 12 and 13, demonstrate that Michelot’s algorithm
converges to the correct solution in at most n steps. Explicitly solve
the Lagrange multiplier problem corresponding to step (a). Program
and test the algorithm.

14. Consider the problem of projecting a point x onto the �1 ball

B = {y : ‖y − z‖1 ≤ r}.
Show that it suffices to project x− z onto {w : ‖w‖1 ≤ r} and then
translate the solution ŵ by z. Hence, assume z = 0 without loss of
generality. Now argue that every entry of a solution ŷ should have
the same sign as the corresponding entry of x and that when xi = 0,
it does no harm to take ŷi ≥ 0. Finally, sketch how projection onto
an �1 ball can be achieved by projection onto the unit simplex.

15. The �1,2 norm on Rn is useful in group penalties [230]. Suppose the
sets σg partition {1, . . . , n} into groups with g as the group index. For
x ∈ Rn let xσg denote the vector formed by taking the components
of x derived from σg. The �1,2 norm equals

‖x‖1,2 =
∑
g

‖xσg‖.

Check that ‖x‖1,2 satisfies the properties of a norm. Now consider
projecting a point x onto the ball Br = {y : ‖y‖1,2 ≤ r}. If we let
cg = ‖xσg‖ and suppose that

∑
g cg ≤ r, then the solution is x. Thus,

assume the contrary. If any cg = ‖xσg‖ = 0, argue that one should
take yσg

= 0. Assume therefore that cg > 0 for every g. Collect
the Euclidean distances cg into a vector c, and project c onto the
closest point d in the �1 ball of radius r. This can be accomplished
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by the algorithm described in Problem 14. Finally, prove that the
projection y of x onto Br satisfies yσg

= dgc
−1
g xσg . (Hints: Suppose

that rg ≥ 0 for all g and
∑

g rg ≤ r. The problem of minimizing

‖y − x‖21,2 subject to ‖yσg
‖ ≤ rg for each g is separable and can be

solved by projection onto the pertinent Euclidean balls. Substitution
now leads to the secondary problem of minimizing∑

g

(cg − rg)21{rg≤cg} (15.11)

subject to rg ≥ 0 for all g and
∑

g rg ≤ r. Suppose the optimal
choice of the vector r involves rg > cg for some g. There must be
a corresponding g′ with rg′ < cg′ . One can decrease the criterion
(15.11) by decreasing rg and increasing rg′ . Hence, all rg ≤ cg at the
optimal point, and one can dispense with the indicators 1{rg≥cg} and
minimize the criterion (15.11) by ordinary projection.)

16. A polyhedral set is the nonempty intersection of a finite number of
halfspaces. Program Dykstra’s algorithm for projection onto the clos-
est point of an arbitrary polyhedral set. Also program cyclic projec-
tion as suggested in Proposition 15.3.1, and compare it to Dykstra’s
algorithm on one or more test problems.

17. Demonstrate that the map f(x) = x + e−x is contractive on [0,∞)
but lacks a fixed point. Is f(x) strictly contractive?

18. Prove that the iteration scheme

xm+1 =
1

1 + xm

with domain [0,∞) has one fixed point y and that y is globally
attractive. Is the function f(x) = (1 + x)−1 contractive or strictly
contractive?

19. Consider the map

T (x) =

( 1
2(1+x2)
1
2e

−x1

)

from R2
+ = {x ∈ R2 : x ≥ 0} to itself. Calculate the differential

dT (x) =

(
0 − 1

2(1+x2)2

− 1
2e

−x1 0

)
,

and show that ‖dT (x)‖ ≤ 1
2 for all x. Deduce the mean value in-

equality

‖T (y)− T (z)‖ ≤ 1

2
‖y − z‖

implying that T (x) is a strict contraction with a unique fixed point.
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20. Let M = UDU−1 be an n × n diagonalizable matrix, where D
is diagonal and U is invertible. Here the ith column ui of U is an
eigenvector ofM with eigenvalue di equal to the ith diagonal entry of
D. For a vector x with expansion

∑n
i=1 aiui, define the vector norm

‖x‖† =
∑n

i=1 |ai|. Verify that this defines a norm with induced matrix
norm ‖M‖† = max1≤i≤n |di|. Show that the affine map x �→Mx+v
is a contraction under ‖x‖† whenever the spectral radius of M is
strictly less than 1. Note that the di and ui may be complex. What
is the fixed point of the map?

21. Suppose the maps T0, . . . , Tr−1 are paracontractive with fixed point
sets F0, . . . , Fr−1. If F = ∩r−1

i=0Fi is nonempty, then show that the map
S = Tr−1◦· · ·◦T0 is paracontractive with fixed point set F = ∩r−1

i=0Fi.

22. Suppose the continuous map T from a closed convex set D to itself
has a k-fold composition S = T ◦ · · · ◦ T that is a strict contrac-
tion. Demonstrate that T and S share a unique fixed point, and that
xm+1 = T (xm) converges to it.

23. Let T (x) map the compact convex set C into itself. If there is a norm
‖x‖† under which ‖T (y) − T (x)‖† ≤ ‖y − x‖† for all y and x, then
show that T (x) has a fixed point. Use this result to prove that every
finite state Markov chain possesses a stationary distribution. (Hints:
Choose any z ∈ C and ε ∈ (0, 1) and define

Tε(x) = (1− ε)T (x) + εz.

Argue that Tε(x) is a strict contraction and send ε to 0.)

24. Under the hypotheses of Problem 23, demonstrate that the set of fixed
points is nonempty, compact, and convex. (Hint: To prove convexity,
suppose x and y are fixed points. For λ ∈ [0, 1], argue that the point
z = λx+ (1 − λ)y satisfies

‖y − x‖† ≤ ‖T (y)− T (z)‖† + ‖T (z)− T (x)‖†
≤ ‖y − x‖†.

Deduce from this result that T (z) = z.)

25. Consider the problem of minimizing the convex function f(x) subject
to the affine equality constraints gi(x) = 0 for 1 ≤ i ≤ p and the
convex inequality constraints hj(x) ≤ cj for 1 ≤ j ≤ q. Let v(c)
be the optimal value of f(x) subject to the constraints. Show that
the function v(c) is convex in c.

26. Describe the dual function for the power plan problem when one or
more of the cost functions fi(xi) = aixi is linear instead of quadratic.
Does this change affect the proposed solution by bisection or steepest
ascent?
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27. Calculate the dual function for the problem of minimizing |x| subject
to x ≤ −1. Show that the optimal values of the primal and dual
problems agree.

28. Verify that the two linear programs in Example 15.5.8 are dual
programs.

29. Demonstrate that the dual function for Example 5.5.3 is

D(μ) =

{
0 μ = 0
2
∑n

i=1

√
μaici − μb μ > 0.

Check that this problem is a convex program and that Slater’s con-
dition is satisfied.

30. Derive the dual function

D(λ,μ) = −λ− μ∗e− e−λ−1
n∑

i=1

e−w∗
i μ

for the problem of minimizing the negative entropy
∑n

i=1 xi lnxi sub-
ject to the constraints

∑n
i=1 xi = 1, Wx ≤ e, and all xi ≥ 0. Here

the vector wi is the ith column of W . (Hint: See Table 14.1.)

31. Consider the problem of minimizing the convex function

f(x) = x1 lnx1 − x1 + x2 lnx2 − x2
subject to the constraints x1 + 2x2 ≤ 1, x1 ≥ 0, and x2 ≥ 0. Show
that the primal and dual optimal values coincide [17].

32. In the analytic centering program one minimizes the objective func-
tion f(x) = −∑n

i=1 lnxi subject to the linear equality constraints
V x = d and the positivity constraints xi > 0 for all i. We can in-
corporate the positivity constraints into the objective function by
defining f(x) =∞ if any xi ≤ 0. With this essential domain in mind,
calculate the Fenchel conjugate

f�(y) =

{−n−∑n
i=1 ln(−yi) all yi < 0

∞ any yi ≥ 0 .

Show that the dual problem consists in maximizing

−λ∗d+ n+

n∑
i=1

ln(V ∗λ)i

subject to the constraints (V ∗λ)i > 0 for all i. The primal problem
is easy to solve if we know the Lagrange multipliers. Indeed, straight-
forward differentiation shows that xi = 1/(V ∗λ)i. The moral here is



15.7 Problems 413

that if the number of rows of V is small, then it is advantageous to
solve the dual problem for λ and insert this value into the explicit
solution for x.

33. In the trust region problem of Sect. 11.7, one minimizes a quadratic
f(x) = 1

2x
∗Ax+ b∗x+ c subject to the constraint ‖x‖2 ≤ r2. Why

does the constraint satisfy Slater’s condition? If A is positive definite,
then the problem is convex, and the primal and dual programs have
the same optimal values. Calculate the dual function D(μ) depending
on the Lagrange multiplier μ. If A is not positive definite, then show
that

1

2
x∗Ax+ b∗x+ c = −αr2 + 1

2
x∗(A+ αI)x+ b∗x+ c

subject to the equality constraint ‖x‖2 = r2. How does this permit
one to handle indefinite programs? The article [245] treats this prob-
lem in detail.

34. In the experimental design literature, the problems of D-optimal and
A-optimal designs are well studied [225]. These involve minimizing
the objective functions

f(x) = ln det
( p∑

i=1

xiviv
∗
i

)−1

g(x) = tr
( p∑

i=1

xiviv
∗
i

)−1

subject to the explicit constraints
∑p

i=1 xi = 1 and xi ≥ 0 and the im-
plicit constraint that the matrix

∑p
i=1 xiviv

∗
i is positive definite. The

vectors v1, . . . ,vp in Rn are given in advance. To formulate the dual
problems, set W =

∑p
i=1 xiviv

∗
i and require W to be positive defi-

nite. Derive the dual problems with the constraint W =
∑p

i=1 xiviv
∗
i

included. Show that the dual problems involve maximizing ln detX
and tr(X1/2)2, respectively, subject to the constraints that X is pos-
itive definite and v∗

iXvi ≤ 1 for all i. See the reference [262] for this
formulation and techniques for maximizing the dual function. (Hints:
The dual function for the objective function f(x) is

D(X, λ) = inf
W ,x≥0

{
ln detW−1 + tr

[
X
(
W −

p∑
i=1

xiviv
∗
i

)]}

+λ
( p∑

i=1

xi − 1
)
.

Eliminate λ by reparameterizing X. For the objective function g(x),
take p = 1 in the next exercise.)
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35. Let X be a positive definite matrix and p a positive scalar.
Demonstrate that the function f(W )= tr(W−p)+p tr(XW ) achieves

its minimum of (p + 1) tr[Xp/(p+1)] at the matrix W = X−1/(p+1).
Here the argumentW is also assumed positive definite. (Hint: Reduce
the problem to one of calculating a Fenchel conjugate via Proposi-
tion 14.6.1.)

36. We have repeatedly visited the problem of projecting an exterior point
onto a closed convex set C. Consider a non-Euclidean norm ‖x‖†
with dual norm ‖y‖�. Let u be a point exterior to C. Argue that
the projection of u onto C under this alternative norm can be found
by minimizing the criterion ‖z‖† + δC(x) subject to u − x = z.
Demonstrate that the dual problem can be phrased as minimizing

D(λ) = λ∗u− sup
x∈C

λ∗x for ‖λ‖� ≤ 1.



16
Convex Minimization Algorithms

16.1 Introduction

This chapter delves into three advanced algorithms for convex minimization.
The projected gradient algorithm is useful in minimizing a strictly convex
quadratic over a closed convex set. Although the algorithm extends to more
general convex functions, the best theoretical results are available in this
limited setting. We rely on the MM principle to motivate and extend the
algorithm. The connections to Dykstra’s algorithm and the contraction
mapping principle add to the charm of the subject. On the minus side of
the ledger, the projected gradient method can be very slow to converge.
This defect is partially offset by ease of coding in many problems.
The second algorithm, path following in the exact penalty method,

requires a fairly sophisticated understanding of convex calculus. As de-
scribed in Chap. 13, classical penalty methods for solving constrained opti-
mization problems exploit smooth penalties and send the tuning constant
to infinity. If one substitutes absolute value and hinge penalties for square
penalties, then there is no need to pass to the limit. Taking the penalty
tuning constant sufficiently large generates a penalized problem with the
same minimum as the constrained problem. In path following we track the
minimum point of the penalized objective function as the tuning constant
increases. Invocation of the implicit function theorem reduces path follow-
ing to an exercise in numerically solving an ordinary differential equation
[283, 284].

K. Lange, Optimization, Springer Texts in Statistics 95,
DOI 10.1007/978-1-4614-5838-8 16,
© Springer Science+Business Media New York 2013

415



416 16. Convex Minimization Algorithms

Our third algorithm, Bregman iteration [120, 208, 279], has found the
majority of its applications in image processing. In �1 penalized image
restoration, it gives sparser, better fitting signals. In total variation pe-
nalized image reconstruction, it gives higher contrast images with decent
smoothing. The basis pursuit problem [38, 74] of minimizing ‖u‖1 subject
to Au = f readily succumbs to Bregman iteration. In many cases the basis
pursuit solution is the sparest consistent with the constraint. One can solve
the basis pursuit problem by linear programming, but conventional solvers
are not tailored to dense matrices A and sparse solutions. Many applica-
tions require substitution of ‖Du‖1 for ‖u‖1 for a smoothing matrix D.
This complication motivated the introduction of split Bregman iteration
[106], which we briefly cover. Solution techniques continue to evolve rapidly
in Bregman iteration. The whole field is driven by the realization that well-
controlled sparsity gives better statistical inference and faster, more reliable
algorithms than competing models and methods.

16.2 Projected Gradient Algorithm

For an n × n positive definite matrix A and a closed convex set S ⊂ Rn,
consider the problem of minimizing the quadratic function

f(x) =
1

2
x∗Ax+ b∗x

over S. We have studied this problem in depth in the special case A = I,
where it reduces to projection onto S. Given that projection is relatively
easy for a variety of convex sets, it is worth asking when the more general
problem can be reduced to this special case. One way of answering the
question is through the majorization

x∗Ax = (x− xm + xm)∗A(x− xm + xm)

= (x− xm)∗A(x− xm) + 2x∗
mA(x− xm) + x∗

mAxm

≤ ‖A‖2‖x− xm‖2 + 2x∗
mA(x− xm) + x∗

mAxm.

This majorization leads to the function

g(x | xm) =
‖A‖2
2
‖x− xm‖2 + x∗

mA(x− xm) + b∗(x− xm) + c

majorizing f(x), where c is an irrelevant constant. Completing the square
allows one to rewrite the surrogate function as

g(x | xm) =
‖A‖2
2

∥∥∥∥x− xm +
1

‖A‖2 [Axm + b]

∥∥∥∥
2

+ d

for another irrelevant constant d. The majorization of f(x) persists if we
replace the coefficient ‖A‖2 appearing in g(x | xm) by a larger constant.
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The surrogate function g(x | xm) is essentially a Euclidean distance, and
minimizing it over S is accomplished by projection onto S. If PS(y) is the
projection operator, then the algorithm map boils down to

M(x) = PS

[
x− 1

‖A‖2 (Ax+ b)

]
= PS

[
x− 1

‖A‖2∇f(x)
]
.

According to the MM principle, this projected gradient satisfies the descent
property for the objective function f(x). More generally, the algorithmmap

Mρ(x) = PS

[
x− ρ

‖A‖2 (Ax+ b)

]
= PS

[
x− ρ

‖A‖2∇f(x)
]
.

also possesses the descent property for all ρ ∈ (0, 1]. Convergence of the
projected gradient algorithm is guaranteed by the contraction mapping
theorem stated in Proposition 15.3.2. Indeed, let λ1 ≥ λ2 ≥ · · · ≥ λn
denote the eigenvalues of A. Since ‖PS(u) − PS(v)‖ ≤ ‖u − v‖ for all
points u and v and the matrix I − αA has ith eigenvalue 1− αλi for any
constant α, we have

‖Mρ(x)−Mρ(y)‖ ≤
∥∥∥∥x− ρ

‖A‖2 (Ax+ b)− y +
ρ

‖A‖2 (Ay + b)

∥∥∥∥
=

∥∥∥∥
(
I − ρ

‖A‖2A
)
(x− y)

∥∥∥∥
≤ max

i

∣∣∣∣1− ρλi
λ1

∣∣∣∣ ‖x− y‖.

Provided λn > 0 and ρ ∈ (0, 2), it follows that the map Mρ(x) is a strict
contraction on S. Except for a detail, this proves the second claim of the
next proposition.

Proposition 16.2.1 The projected gradient algorithm

xm+1 = PS

[
xm − ρ

‖A‖2 (Axm + b)

]
(16.1)

for the convex quadratic f(x) = 1
2x

∗Ax+b∗x is a descent algorithm when-
ever ρ ∈ (0, 1]. The algorithm converges to the unique minimum of f(x) on
the convex set S whenever f(x) is strictly convex and ρ ∈ (0, 2).

Proof: Because the iteration map is a strict contraction, the iterates
converge at a linear rate to its unique fixed point y. It suffices to prove
that y furnishes the minimum. In view of the obtuse angle criterion, if z is
any point of S, we have

[
y − ρ

‖A‖2∇f(y)− y
]∗[

z − y
]
≤ 0.
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However, this is equivalent to the condition df(y)(z−y) ≥ 0, which is both
necessary and sufficient for a minimum.

The special case of least squares estimation is important in Proposi-
tion 16.2.1. If

f(x) =
1

2
‖y −Qx‖2 =

1

2
x∗Q∗Qx− y∗Qx+

1

2
‖y‖2, (16.2)

then in our previous notation A = Q∗Q and b = −Q∗y. Furthermore,
the matrix norm ‖A‖2 = ‖Q∗Q‖2 = ‖Q‖22. In practice finding the norm
‖A‖2 is an issue. One can substitute the larger norm ‖A‖F for ‖A‖2 as
noted in Proposition 2.2.1. Alternatively, one can backtrack in the projected
gradient algorithm (16.1). This involves making an initial guess a0 of ‖A‖2
and selecting a constant c > 1. If the point xm+1 does not decrease f(x),
then replace a0 by a1 = ca0 and recompute xm+1. If this new xm+1 does
not decrease f(x), then replace a1 by a2 = c2a0, and so forth. For k large
enough, ak must exceed ‖A‖2. Problem 15 of Chap. 11 explores a simple
algorithm of Hestenes and Karush [126] that efficiently produces the largest
eigenvalue ‖A‖2 of A for n large.
Projected gradient algorithms are not limited to quadratic functions.

Consider an arbitrary differentiable function f(x) whose gradient satisfies
the Lipschitz inequality

‖∇f(y)−∇f(x)‖ ≤ b‖y − x‖

for some b and all x and y. The projected gradient algorithm

xm+1 = PS

[
xm − ρ

b
∇f(xm)

]

with ρ ∈ (0, 2) is designed to minimize f(x) over a closed convex set S.
Problems 1 and 2 sketch a few convergence results in this context [226]. See
also Problem 31 of Chap. 4. For some functions the Lipschitz condition is
only valid for a ball B centered at the current point xm. Then the algorithm
that projects xm − ρ

b∇f(xm) onto the intersection B ∩ S also retains the
descent property. This amendment to the projected gradient method is
inspired by the trust region strategy.

Example 16.2.1 Projection onto the Image of a Convex Set

Suppose projection onto the convex set S is easy. Given a compatible matrix
Q, the projected gradient algorithm allows us to project a point y onto
the image set QS. One merely minimizes the criterion (16.2) over S. For
example, let S be the closed convex set {x : xi ≥ 0 ∀ i > 1}, and let Q
be the lower-triangular matrix whose nonzero entries equal 1. The set QS
is the set {w : w1 ≤ w2 ≤ · · · ≤ wn} whose entries are nondecreasing.
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The two transformations w = Qx and v = Q∗u can be implemented via
the fast recurrences

w1 = x1, wk+1 = wk + xk+1

vn = un, vk = vk+1 + uk.

The first of these recurrences operates in a forward direction; the second
operates in a backward direction. Projection onto QS is quick because the
recurrences and projection onto S are both quick. In practice, the pool
adjacent violators algorithm of Example 15.2.3 is faster overall.

Example 16.2.2 Logistic Regression with a Group Lasso

Data from the National Opinion Research Center offers the opportunity to
perform logistic regression with grouped categorical predictors [57]. Here
we consider the dichotomy happy (very happy plus pretty happy) versus
unhappy surveyed on n = 1, 566 people. In addition to the primary re-
sponse, each participant registered a level in five predictor categories: gen-
der, marital status, education, financial status, and health. Within a cate-
gory (or group) the first level is taken as baseline and omitted in analysis.
In logistic regression we seek to maximize the loglikelihood

lnL(θ) =

n∑
i=1

[yi ln pi + (1− yi) ln(1− pi)]

yi ∈ {0, 1}, pi =
ex

∗
i θ

1 + ex
∗
i
θ
.

Here xi is the predictor vector for person i omitting the first level of each
category; all entries of xi equal 0 or 1. The vector θ encodes the corre-
sponding regression coefficients. The ball S = {θ : ‖θ‖1,2 ≤ r} is defined
via the �1,2 norm mentioned in Problem 15 of Chap. 15. This problem also
outlines an effective algorithm for projection onto an �1,2 ball.
Constrained maximization performs continuous model selection. The �1,2

constraint groups the various parameters by category. As explained in
Example 8.7, one can majorize − lnL(θ) by the convex quadratic

f(θ | θm) = − lnL(θm)− d lnL(θm)(θ − θm) +
1

2
(θ − θm)∗A(θ − θm),

where A = 1
4X

∗X and X is the matrix whose ith row is x∗
i . The projected

gradient algorithm (16.1) with ρ = 1 therefore drives f(θ | θm) downhill
and lnL(θ) uphill. Alternation of majorization and projection is effective
in producing constrained maximum likelihood estimates in the limit.
Table 16.1 lists the estimated regression coefficients within each category

as a function of the radius r. The most interesting findings in the table
are the low impact of education on happiness and the parameter reversals
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TABLE 16.1. Logistic regression with a Group-Lasso constraint

Radius r 0.00 0.20 0.40 0.60 0.80 1.00

Iterations 16 10 12 13 13 13

Female – – – – – –
Male 0.00 0.00 0.00 0.00 −0.00 −0.04
Married – – – – – –
Never married 0.00 0.00 0.00 0.00 −0.03 −0.06
Divorced 0.00 0.00 0.00 0.00 −0.05 −0.12
Widowed 0.00 0.00 0.00 0.00 −0.05 −0.12
Separated 0.00 0.00 0.00 0.00 −0.05 −0.12
Some high school – – – – –
High school 0.00 0.00 0.00 0.00 0.00 0.00
Junior college 0.00 0.00 0.00 0.00 0.00 0.00
Bachelor 0.00 0.00 0.00 0.00 0.00 0.00
Graduate 0.00 0.00 0.00 0.00 0.00 0.00

Poor – – – – – –
Below average 0.00 −0.10 −0.16 −0.20 −0.21 −0.21
Average 0.00 0.08 0.13 0.18 0.20 0.21
Above average 0.00 0.07 0.13 0.20 0.23 0.25
Rich 0.00 0.01 0.01 0.02 0.03 0.03

Poor health – – – – – –
Fair health 0.00 −0.02 −0.06 −0.09 −0.09 −0.09
Good health 0.00 0.00 0.01 0.04 0.06 0.07
Excellent health 0.00 0.05 0.14 0.25 0.31 0.34

between poor and below-average financial status and between poor health
and fair health. The number of iterations until convergence displayed in
Table 16.1 suggest good numerical performance on this typical problem.

One can generalize the projected gradient algorithm in various ways.
For instance, in the projected Newton method, one projects the partial
Newton step xm − τd2f(xm)−1∇f(xm) onto the constraint set S [12].
Here the step length τ is usually taken to be 1, and the second differen-
tial d2f(xm) is assumed positive definite. The projected Newton strategy
tends to reduce the number of iterations while increasing the complexity per
iteration. To minimize generic convex functions, one can substitute subgra-
dients for gradients. Thus, one projects xm−τgm onto S for gm ∈ ∂f(xm)
and some optimal choice of the constant τ . Unfortunately, there exist sub-
gradients whose negatives are not descent directions. For instance, −g is
an ascent direction of f(x) = |x| for any nontrivial g ∈ ∂f(0) = [−1, 1].
The next proposition partially salvages the situation.
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Proposition 16.2.2 Suppose y minimizes the convex function f(x) over
the closed convex set S. If gm ∈ ∂f(xm),

xm+1 = PS [xm − τgm] ,

and xm is not optimal, then the choice

0 < τ <
2[f(xm)− f(y)]

‖gm‖2

produces ‖xm+1 − y‖ < ‖xm − y‖.
Proof: Because projection is nonexpansive,

‖xm+1 − y‖2 = ‖PS(xm − τgm)− PS(y)‖2
≤ ‖xm − τgm − y‖2
= ‖xm − y‖2 − 2τg∗

m(xm − y) + τ2‖gm‖2.

Hence, the inequality f(y) ≥ f(xm) + g∗
m(y − gm) implies

‖xm+1 − y‖2 ≤ ‖xm − y‖2 + 2τ [f(y)− f(xm)] + τ2‖gm‖2
= ‖xm − y‖2 + h(τ)

for the obvious quadratic h(τ), which satisfies h(0) = 0 and attains its
minimum value

min
τ
h(τ) = − [f(xm)− f(y)]2

‖gm‖2

at the positive point

τ̂ =
f(xm)− f(y)

‖gm‖2
.

The claim now follows from the symmetry of h(τ) around the point τ̂ .

In practice the value f(y) is not known beforehand. This necessitates
some strategy for choosing the step-length constants τm. For the sake of
brevity, we refer the reader to the book [226] for further discussion.

16.3 Exact Penalties and Lagrangians

In nonlinear programming, exact penalty methods minimize the function

Eρ(y) = f(y) + ρ

p∑
i=1

|gi(y)|+ ρ

q∑
j=1

max{0, hj(y)},
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where f(y) is the objective function, gi(y) is an equality constraint, and
hj(y) is an inequality constraint. It is interesting to compare this function
to the Lagrangian function

L(y) = f(y) +

p∑
i=1

λigi(y) +

q∑
j=1

μjhj(y)

capturing the behavior of f(y) near a constrained local minimum x.
Proposition 5.2.1 demonstrates that the Lagrangian satisfies the station-
arity condition ∇L(x) = 0; its inequality multipliers are nonnegative and
obey the complementary slackness requirements μjhj(x) = 0. In an exact
penalty method we take

ρ > max{|λ1|, . . . , |λp|, μ1, . . . , μq}. (16.3)

This choice creates the favorable circumstances

L(y) < Eρ(y) for all infeasible y

L(z) ≤ f(z) = Eρ(z) for all feasible z

L(x) = f(x) = Eρ(x) for x optimal

with profound consequences. As the next proposition proves, minimizing
Eρ(y) is effective in minimizing f(y) subject to the constraints.
In most problems the Lagrange multipliers are unknown, so that a certain

amount of trial and error is necessary to ensure that ρ is large enough.
Alternatively, one can simply follow the exact solution path until it merges
with the constrained solution. Before we study path following in detail, it
is helpful to prove necessary and sufficient conditions for the two solutions
to coincide. We start with the sufficient conditions expressed in Proposi-
tion 5.5.2.

Proposition 16.3.1 Under the assumptions of Proposition 5.5.2, a con-
strained local minimum x of f(y) is an unconstrained local minimum of
Eρ(y) given inequality (16.3).

Proof: Suppose the contrary is true, and let xm be a sequence of points
that converge to x and satisfy Eρ(xm) < Eρ(x). Without loss of generality,
assume that the unit vectors

vm =
1

‖xm − x‖(xm − x)

converge to a unit vector v. Now consider the difference quotients

L(xm)− L(x)
‖xm − x‖ ≤ Eρ(xm)− Eρ(x)

‖xm − x‖ < 0. (16.4)
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A brief calculation shows that

lim
m→∞

L(xm)− L(x)
‖xm − x‖ = lim

m→∞ sL(xm,x)vm

= dL(x)v

= df(x)v +

p∑
i=1

λidgi(x)v +

q∑
j=1

μjdhj(x)v,

where sL(y,x) is the slope function of L(y) around x. (See Sect. 4.4 for
a discussion of slope functions.) The stationarity condition ∇L(x) = 0
implies dL(x)v = 0.
The limit of the difference quotient for Eρ(y) is more subtle to calculate.

Under the subscript convention for slope functions, the equality gi(x) = 0
implies

lim
m→∞

|gi(xm)| − |gi(x)|
‖xm − x‖ = lim

m→∞ |sgi(xm,x)vm| = |dgi(x)v|.

The equality hj(x) = 0 for an active inequality constraint entails

lim
m→∞

max{0, hj(xm)} −max{0, hj(x)}
‖xm − x‖ = max{0, dhj(x)v}.

The inequalities hj(x) < 0 and hj(xm) < 0 for an inactive inequality
constraint likewise entail

lim
m→∞

max{0, hj(xm)} −max{0, hj(x)}
‖xm − x‖ = 0.

Hence, if the first r inequality constraints are active, then inequality (16.4)
yields

0 ≥ lim
m→∞

Eρ(xm)− Eρ(x)
‖xm − x‖

= df(x)v + ρ

p∑
i=1

|dgi(x)v|+ ρ

r∑
j=1

max{0, dhj(x)v}.

Subtracting dL(x)v = 0 from the last inequality gives

0 ≥
p∑

i=1

[ρ|dgi(x)v| − λidgi(x)v]

+

r∑
j=1

[ρmax{0, dhj(x)v} − μjdhj(x)v]

≥
p∑

i=1

[ρ|dgi(x)v| − λidgi(x)v]

+

r∑
j=1

(ρ− μj)max{0, dhj(x)v}.
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Because all of the terms in the last two sums are nonnegative, they in
fact vanish. But these are precisely the tangency conditions dgi(x)v = 0
and dhj(x)v ≤ 0 for hj(x) active.
To finish the proof, we now pass to the limit in the second-order Taylor

expansion

1

2
v∗
ms

2
L(xm,x)vm =

1

‖xm − x‖2 [L(xm)− L(x)] < 0

and conclude that v∗d2L(x)v ≤ 0, contrary to the assumption of
Proposition 5.5.2 that no such unit tangent vector exists. Thus, the suppo-
sition that x is not a local minimum of Eρ(y) is untenable.

Further theoretical progress can be made can be made by assuming that
the equality constraints are affine and that the objective and inequality
constraint functions are convex in addition to being differentiable. In these
circumstances Eρ(x) is convex owing to the closure properties of convex
functions described in Proposition 6.3.3. Furthermore, at a feasible point x
with the first r inequality constraints active, the sum and chain rules yield

∂Eρ(x) = ∇f(x) + ρ

p∑
i=1

[−1, 1]∇gi(x) + ρ
r∑

j=1

[0, 1]∇hj(x).

Hence, if

0 = ∇f(x) +
p∑

i=1

λi∇gi(x) +
r∑

j=1

μj∇hj(x), (16.5)

then certainly 0 ∈ ∂Eρ(x). Thus, a constrained minimum point of f(y)
satisfying the multiplier rule (16.5) corresponds to an unconstrained mini-
mum point of Eρ(y). This is just the content of Proposition 16.3.1 special-
ized to convex programming.
Conversely, assume that z is an unconstrained minimum point of Eρ(y)

and that x is a constrained minimum point of f(y) satisfying the multiplier
rule (16.5). If z is feasible, then z also furnishes a constrained minimum
of f(y) because f(y) and Eρ(y) coincide on the feasible region. If z is
infeasible, then

Eρ(x) = f(x) = L(x) ≤ L(z) < Eρ(z).

Here the inequality L(x) ≤ L(z) reflects the fact that the convex function
L(y) attains its minimum at the stationary point x. The contradiction
Eρ(x) < Eρ(z) now shows that z is feasible and consequently furnishes a
constrained minimum of f(y). For the sake of completeness, we restate this
result as a formal proposition.
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Proposition 16.3.2 Suppose in a convex program with differentiable
objective and constraint functions that there exists a constrained minimum
x of f(y) satisfying the multiplier rule. Under condition (16.3), a point
z furnishes a constrained minimum of f(y) if and only if it furnishes an
unconstrained minimum of Eρ(y).
Proof: See the forgoing discussion.

In path following, one tracks the postulated minimum point x(ρ) of Eρ(y)
as a function of ρ until ρ exceeds the Lagrange multiplier threshold. Thus,
specifying a stationarity condition for Eρ(y) is crucial. Unfortunately, our
previous derivations of stationarity conditions assumed either differentia-
bility or convexity. In general nonlinear programs, Eρ(y) is neither. Here we
tackle the stationarity condition via forward directional derivatives. Once
again assume that x is a local minimum of Eρ(y). If the objective and
constraint functions are differentiable at x, then they possess directional
derivatives at x, and

dvEρ(x) = df(x)v + ρ

p∑
i=1

dv|gi(x)|+ ρ

q∑
j=1

dv max{0, hj(x)}.

In proving Proposition 16.3.1, we calculated the obscure pieces making up
dvEρ(y). Based on the notation

NE = {i : gi(x) < 0} NI = {j : hj(x) < 0}
ZE = {i : gi(x) = 0} ZI = {j : hj(x) = 0} (16.6)

PE = {i : gi(x) > 0} PI = {j : hj(x) > 0}

we have

dvEρ(x) = df(x)v − ρ
∑
i∈NE

dgi(x)v + ρ
∑
i∈PE

dgi(x)v + ρ
∑
j∈PI

dhj(x)v

+ρ
∑
i∈ZE

|dgi(x)v|+ ρ
∑
j∈ZI

max{0, dhj(x)v}

= w∗v + ρ
∑
i∈ZE

|dgi(x)v|+ ρ
∑
j∈ZI

max{0, dhj(x)v}

for the obvious choice of w. At a local minimum x of Eρ(y), all directional
derivatives satisfy dvEρ(x) ≥ 0.
We now focus on the function K(v) = dvEρ(x) and derive an appropriate

stationarity condition. Since the composition of a convex function with a
linear function is convex, K(v) is convex even when Eρ(x) is not. Hence, in
dealing with K(v), we can invoke the rules of the convex calculus developed
in Sects. 14.4 and 14.5. Because K(v) achieves its minimum value of 0 at the
origin 0, Proposition 14.4.3 implies the containment 0 ∈ ∂K(0). Applying
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the rules of convex differentiation to K(v) gives the subdifferential

∂K(0) = w + ρ
∑
i∈ZE

[−1, 1]∇gi(x) + ρ
∑
j∈ZI

[0, 1]∇hj(x).

The stationarity condition

0 ∈ ∇f(x)− ρ
∑
i∈NE

∇gi(x) + ρ
∑
i∈PE

∇gi(x) + ρ
∑
j∈PI

∇hj(x)v

+ρ
∑
i∈ZE

[−1, 1]∇gi(x) + ρ
∑
j∈ZI

[0, 1]∇dhj(x) (16.7)

for Eρ(x) is a consequence of these considerations.

16.4 Mechanics of Path Following

Throughout this section we restrict our attention to convex programs. As a
prelude to our derivation of the path following algorithm, we record several
properties of Eρ(x) that mitigate the failure of differentiability.

Proposition 16.4.1 The surrogate function Eρ(x) is increasing in ρ.
Furthermore, Eρ(x) is strictly convex for one ρ > 0 if and only if it is
strictly convex for all ρ > 0. Likewise, when f(x) is bounded below, Eρ(x)
is coercive for one ρ > 0 if and only if is coercive for all ρ > 0. Finally, if
f(x) is strictly convex (or coercive), then all Eρ(x) are strictly convex (or
coercive).

Proof: The first assertion is obvious. For the second assertion, consider
more generally a finite family u1(x), . . . , uq(x) of convex functions, and sup-
pose a linear combination

∑q
k=1 ckuk(x) with positive coefficients is strictly

convex. It suffices to prove that any other linear combination
∑q

k=1 bkuk(x)
with positive coefficients is strictly convex. For any two points x �= y and
any scalar α ∈ (0, 1), we have

uk[αx+ (1− α)y] ≤ αuk(x) + (1− α)uk(y). (16.8)

Since
∑q

k=1 ckuk(x) is strictly convex, strict inequality must hold for at
least one k. Hence, multiplying inequality (16.8) by bk and adding gives

q∑
k=1

bkuk[αx+ (1− α)y] < α

q∑
k=1

bkuk(x) + (1− α)
q∑

k=1

bkuk(y).

The third assertion follows from the criterion given in Proposition 12.3.1.
Indeed, suppose Eρ(x) is coercive, but Eρ∗(x) is not coercive. Then there
exists a point x, a direction v, and a sequence of scalars tn tending to
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∞ such that Eρ∗(x + tnv) is bounded above. This requires the sequence
f(x+ tnv) and each of the sequences |gi(x+ tnv)| and max{0, hj(x+ tnv)}
to remain bounded above. But in this circumstance the sequence Eρ(x+tnv)
also remains bounded above. The final assertion is also obvious.

To speak coherently of solution paths, one must validate the existence,
uniqueness, and continuity of the solution x(ρ) to the stationarity condition
(16.7). Uniqueness follows from assuming that f(x) is strictly convex or
more generally by assuming that Eρ(x) is strictly convex for a single positive
ρ. Existence and continuity are more subtle. Let us restate the stationarity
condition as

0 = ∇f(x) + ρ

r∑
i=1

si∇gi(x) + ρ

s∑
j=1

tj∇hj(x) (16.9)

for coefficient sets {si}ri=1 and {tj}sj=1 that satisfy

si ∈
⎧⎨
⎩
{−1} gi(x) < 0
[−1, 1] gi(x) = 0
{1} gi(x) > 0

and tj ∈
⎧⎨
⎩
{0} hj(x) < 0
[0, 1] hj(x) = 0
{1} hj(x) > 0.

(16.10)

This notation puts us into position to state and prove some basic facts.

Proposition 16.4.2 If Eρ(y) is strictly convex and coercive, then the so-
lution path x(ρ) of equation (16.7) exists and is continuous in ρ. If the
gradient vectors {∇gi(x) : gi(x) = 0} ∪ {∇hj(x) : hj(x) = 0} of the active
constraints are linearly independent at x(ρ) for ρ > 0, then in addition
the coefficients si(ρ) and tj(ρ) are unique and continuous near ρ.

Proof: In accord with Proposition 16.4.1, we assume that either f(x) is
strictly convex and coercive or restrict our attention to the open interval
(0,∞). Consider a subinterval [a, b] containing ρ and fix a point x in the
common domain of the functions Eρ(y). The coercivity of Ea(y) and the
inequalities

Ea[x(ρ)] ≤ Eρ[x(ρ)] ≤ Eρ(x) ≤ Eb(x)

demonstrate that the solution vector x(ρ) is bounded over [a, b]. To prove
continuity, suppose that it fails for a given ρ ∈ [a, b]. Then there exists
an ε > 0 and a sequence ρn tending to ρ such ‖x(ρn) − x(ρ)‖ ≥ ε for
all n. Since x(ρn) is bounded, we can pass to a subsequence if necessary
and assume that x(ρn) converges to some point y. Taking limits in the
inequality Eρn [x(ρn)] ≤ Eρn(x) shows that Eρ(y) ≤ Eρ(x) for all x. Because
x(ρ) is unique, we reach the contradictory conclusions ‖y− x(ρ)‖ ≥ ε and
y = x(ρ).
Verification of the second claim is deferred to permit further discussion

of path following. The claim says that an active constraint (gi(x) = 0
or hj(x) = 0) remains active until its coefficient hits an endpoint of its
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subdifferential. Because the solution path is, in fact, piecewise smooth, one
can follow the coefficient path by numerically solving an ordinary differen-
tial equation (ODE).

Along the solution path we keep track of the index sets defined in equa-
tion (16.6) and determined by the signs of the constraint functions. For
the sake of simplicity, assume that at the beginning of the current seg-
ment si does not equal −1 or 1 when i ∈ ZE and tj does not equal 0 or
1 when j ∈ ZI. In other words, the coefficients of the active constraints
occur on the interiors, either (−1, 1) or (0, 1), of their subdifferentials. Let
us show in this circumstance that the solution path can be extended in a
smooth fashion. Our plan of attack is to reparameterize by the Lagrange
multipliers of the active constraints. Thus, set λi = ρsi for i ∈ ZE and
ωj = ρtj for j ∈ ZI. These multipliers satisfy −ρ < λi < ρ and 0 < ωj < ρ.
The stationarity condition now reads

0 = ∇f(x)− ρ
∑
i∈NE

∇gi(x) + ρ
∑
i∈PE

∇gi(x) + ρ
∑
j∈PI

∇hj(x)

+
∑
i∈ZE

λi∇gi(x) +
∑
j∈ZI

ωj∇hj(x).

For convenience now define

UZ(x) =

[
dgZE

(x)
dhZI

(x)

]

uZ̄(x) = −
∑
i∈NE

∇gi(x) +
∑
i∈PE

∇gi(x) +
∑
j∈PI

∇hj(x).

In this notation the stationarity equation can be recast as

0 = ∇f(x) + ρuZ̄(x) +U∗
Z(x)

(
λ
ω

)
.

Under the assumption that the matrix UZ(x) has full row rank, one can
solve for the Lagrange multipliers in the form

(
λ
ω

)
= −[UZ(x)U∗

Z(x)]
−1UZ(x) [∇f(x) + ρuZ̄(x)] . (16.11)

Hence, the multipliers are unique. Continuity of the multipliers is a
consequence of the continuity of the solution path x(ρ) and the continuity
of all functions in sight on the right-hand side of equation (16.11). This
observation completes the proof of Proposition 16.4.2.
In addition to the stationarity condition, one must enforce the constraint

equations 0 = gi(x) for i ∈ ZE and 0 = hj(x) for j ∈ ZI. Collectively the
stationarity and constraint equations can be written as a vector equation
0 = k(x,λ,ω, ρ) with the active constraints appended below the stationar-
ity condition. To solve for x, λ and ω in terms of ρ, we apply the implicit
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function theorem. This requires calculating the differential of k(x,λ,ω, ρ)
with respect to the underlying dependent variables x, λ, and ω and the
independent variable ρ. Because the equality constraints are affine, a brief
calculation gives

∂x,λ,ωk =

[
d2f(x) + ρ

∑
j∈PI

d2hj(x) +
∑

j∈ZI
ωjd

2hj(x) U∗
Z(x)

UZ(x) 0

]

∂ρk =

[
uZ̄(x)

0

]
.

In view of Proposition 5.2.2, the matrix ∂x,λ,ωk(x,λ,ω, ρ) is nonsingular
when its upper-left block is positive definite and its lower-left block has
full row rank. Given that it is nonsingular, the implicit function theorem
applies, and we can in principle solve for x, λ and ω in terms of ρ. More
importantly, the implicit function theorem supplies the derivative

d

dρ

⎡
⎣ x
λ
ω

⎤
⎦ = −(∂x,λ,ωk)

−1∂ρk, (16.12)

which is the key to path following. We summarize our findings in the next
proposition.

Proposition 16.4.3 Suppose the surrogate function Eρ(y) is strictly
convex and coercive. If at the point ρ0 the matrix ∂x,λ,ωk(x,λ,ω, ρ) is non-
singular and the coefficient of each active constraint occurs on the interior
of its subdifferential, then the solution path x(ρ) and Lagrange multipliers
λ(ρ) and ω(ρ) satisfy the differential equation (16.12) in the vicinity of ρ0.

If one views ρ as time, then one can trace the solution path along the
current time segment until either an inactive constraint becomes active or
the coefficient of an active constraint hits the boundary of its subdifferen-
tial. The earliest hitting time or escape time over all constraints determines
the duration of the current segment. When the hitting time for an inactive
constraint occurs first, we move the constraint to the appropriate active set
ZE or ZI and keep the other constraints in place. Similarly, when the es-
cape time for an active constraint occurs first, we move the constraint to
the appropriate inactive set and keep the other constraints in place. In the
second scenario, if si hits the value −1, then we move i to NE; If si hits the
value 1, then we move i to PE. Similar comments apply when a coefficient
tj hits 0 or 1. Once this move is executed, we commence path following
along the new segment. Path following continues until for sufficiently large
ρ, the sets NE, PE, and PI are exhausted, uZ̄ = 0, and the solution vector
x(ρ) stabilizes.
Path following simplifies considerably in convex quadratic programming

with objective function f(x) = 1
2x

∗Ax + b∗x and equality constraints
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FIGURE 16.1. Left: Unconstrained and constrained estimates for the Iowa GPA
data. Right: Solution paths for the high school rank regression coefficients

V x = d and inequality constraints Wx ≤ e, where A is positive semi-
definite. The exact penalized objective function becomes

Eρ(x) =
1

2
x∗Ax+ b∗x+ ρ

s∑
i=1

|v∗
ix− di|+ ρ

∗∑
j=1

(w∗
jx− ej)+.

Since both the equality and inequality constraints are affine, their second
derivatives vanish. Both UZ and uZ̄ are constant on the current path
segment, and the path x(ρ) satisfies

d

dρ

⎡
⎣ x
λ
ω

⎤
⎦ = −

(
A U∗

Z
UZ 0

)−1(
uZ̄
0

)
. (16.13)

Because the solution path x(ρ) is piecewise linear, it is possible to
anticipate the next hitting or exit time and take a large jump. The ma-
trix inverse appearing in equation (16.13) can be efficiently updated by the
sweep operator of computational statistics [283].

Example 16.4.1 Partial Isotone Regression

Order-constrained regression is now widely accepted as an important
modeling tool in statistics [219, 236]. If x is the parameter vector, monotone
regression includes isotone constraints x1 ≤ x2 ≤ · · · ≤ xm and antitone
constraints x1 ≥ x2 ≥ · · · ≥ xm. In partially ordered regression, subsets
of the parameters are subject to isotone or antitone constraints. As an ex-
ample of partial isotone regression, consider the data from Table 1.3.1 of
the reference [219] on the first-year grade point averages (GPA) of 2397
University of Iowa freshmen. These data can be downloaded as part of
the R package ic.infer. The ordinal predictors high school rank (as a
percentile) and ACT (a standard aptitude test) score are discretized into
nine ordered categories each. It is rational to assume that college perfor-
mance is isotone separately within each predictor set. Figure 16.1 shows
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FIGURE 16.2. Projection to the positive half-disc. Left: Derivatives at ρ = 0 for
projection onto the half-disc. Right: Projection trajectories from various initial
points

the unconstrained and constrained solutions for the intercept and the two
predictor sets and the solution path of the regression coefficients for the
high school rank predictor. In this quadratic programming problem, the
solution path is piecewise linear. In contrast the next example involves
nonlinear path segments.

Example 16.4.2 Projection onto the Half-Disc

Dykstra’s algorithm as explained in Sect. 15.2 projects an exterior point
onto the intersection of a finite number of closed convex sets. The projection
problem also yields to path following. Consider our previous toy example
of projecting a point b ∈ R2 onto the intersection of the closed unit ball
and the closed half space x1 ≥ 0. This is equivalent to solving

minimize f(x) =
1

2
‖x− b‖2

subject to h1(x) =
1

2
‖x‖2 − 1

2
≤ 0, h2(x) = −x1 ≤ 0

with gradients and second differentials

∇f(x) = x− b, ∇h1(x) = x, ∇h2(x) = −
(
1
0

)
,

d2f(x) = d2h1(x) = I2, d2h2(x) = 0.

Path following starts from the unconstrained solution x(0) = b. The left
panel of Fig. 16.2 plots the vector field d

dρx at the time ρ = 0. The right

panel shows the solution path for projection from the points (−2, 0.5),
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(−2, 1.5), (−1, 2), (2, 1.5), (2, 0), (1, 2), and (−0.5,−2) onto the feasible
region. In contrast to the previous example, small steps are taken. In pro-
jecting the point b∗ = (−1, 2) onto (0, 1), our software exploits the ODE45
solver of Matlab. Following the solution path requires derivatives at 19
different time points. Dykstra’s algorithm by comparison takes about 30
iterations to converge.

16.5 Bregman Iteration

We met Bregman functions previously in Sect. 13.3 in the study of adap-
tive barrier methods. If J(u) is a convex function and p ∈ ∂J(v) is any
subgradient, then the associated Bregman function

Dp
J(u | v) = J(u)− J(v)− p∗(u− v)

defines a kind of distance anchored at v [24, 25]. When J(u) is differen-
tiable, the superscript p is redundant, and we omit it. The exercises at the
end of the chapter list some properties of Bregman distances. In general,
the symmetry and triangle properties of a metric fail. Figure 16.3 illustrates
graphically a Bregman distance for a smooth function in one dimension.
Problem 9 lists some commonly encountered Bregman distances.

f(x)

f(y)

Df (y |x)

FIGURE 16.3. The Bregman distance generated by a smooth function f(x)

Example 16.5.1 Kullback–Leibler Divergence

The density function of a random vector Y in a natural exponential family
can be written as

f(y | θ) = g(y)e−h(θ)+y∗θ

for a parameter vector θ. Here Y itself is the sufficient statistic. The
five most important univariate examples are: the normal distribution with
known variance, the Poisson distribution, the gamma distribution with
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known shape parameter, the binomial distribution with known number of
trials, and the negative binomial with known number of required successes.
The analysis of Sect. 10.6 shows that

Eθ(Y ) = ∇h(θ), Varθ(Y ) = d2h(θ).

It follows that h(θ) is convex. The Fenchel conjugate

h�(y) = sup
θ

[y∗θ − h(θ)] = sup
θ

ln f(y | θ)

determines the maximum likelihood estimate θ̂ through the likelihood equa-
tion y = ∇h(θ). The Bregman distance

Dh(θ1, θ0) = h(θ1)− h(θ0)− dh(θ0)(θ1 − θ0)

= Eθ0

[
h(θ1)− h(θ0)− Y ∗(θ1 − θ0)

]

= Eθ0

[
ln
f(Y | θ0)

f(Y | θ1)

]

coincides with the Kullback–Leibler divergence of the densities f(y | θ0)
and f(y | θ1).

Osher [120, 208, 279] and colleagues have pioneered the application of
Bregman iteration in compressed sensing. One of their motivating examples
is to minimize the convex function J(u) = ‖u‖1 subject to the equality
constraint H(u) = minvH(v) for H(u) smooth and convex. In the simple
case of basis pursuit, H(u) equals the sum of squares criterion 1

2‖Au−f‖2.
The next Bregman iterate uk+1 minimizes the surrogate function

G(u | uk) = λH(u) +D
pk

J (u | uk).

Here λ > 0 is a scaling constant determining the relative contribution
of H(u). For the sake of simplicity, we will take λ = 1 by absorbing its
value in the definition of H(u). We will also shift H(u) so that its mini-
mum value is 0. This action does not affect the choice of the update uk+1.
Bregman iteration tries to drive H(u) to 0 and simultaneously minimize
J(u) subject to the constraint H(u) = 0. There are four obvious questions
raised by Bregman iteration. First, does the next iterate uk+1 exist? This
is certainly the case when G(u | uk) is coercive. Second, is uk+1 uniquely
determined? Strict convexity of G(u | uk) suffices. Third, how can one find
uk+1? In sparse problems with J(u) = ‖u‖1, coordinate descent works
well. The fourth question of how to choose the subgradient pk is the most
subtle of all.
The MM principle is the key to understanding Bregman iteration. Both

the objective function H(u) and the Bregman function Dp
J(u | uk) are

convex. Because Dp
J(u | uk) is anchored at uk and majorizes the constant
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0, the surrogate function G(u | uk) majorizes H(u) at uk. Minimizing
the surrogate therefore drives H(u) downhill. The preferred update of the
subgradient is straightforward to explain in this context. The convex sta-
tionarity condition 0 ∈ ∇H(uk+1) + ∂J(uk+1)− pk shows that

pk+1 = pk −∇H(uk+1) ∈ ∂J(uk+1).

Thus, the MM update furnishes a candidate subgradient. Treating the last
equation recursively gives the further identity

pk = p0 −
k∑

i=1

∇H(ui). (16.14)

If J(u) = ‖u‖1, then u0 = p0 = 0 is an obvious starting point for Bregman
iteration.
Fortunately, there is a simple proof that the Bregman iterates as just

defined send H(u) to 0. The argument invokes the identity

Dp
J(u | v)+Dq

J(v | w)−Dq
J(u | w) = (p−q)∗(v−u), (16.15)

which the reader can readily verify. If we suppose that H(u) is coercive,
then it achieves its minimum of 0 at some point û. The identity (16.15)
and the convexity of H(u) therefore imply that

D
pk

J (û | uk)−Dpk−1

J (û | uk−1)

≤ D
pk

J (û | uk) +D
pk−1

J (uk | uk−1)−Dpk−1

J (û | uk−1)

= (pk − pk−1)
∗(uk − û)

= dH(uk)(û − uk) (16.16)

≤ H(û)−H(uk)

= −H(uk).

Summing the extremes of inequality (16.16) from 1 to m produces

m∑
k=1

[D
pk

J (û | uk)−Dpk−1

J (û | uk−1)] = D
pm

J (û | um)−Dp0

J (û | u0)

≤ −
m∑

k=1

H(uk)

≤ −mH(um).

Rearranging this now yields

H(um) ≤ 1

m

[
D

p0

J (û | u0)−Dpm

J (û | um)
]
≤ 1

m
D

p0

J (û | u0).

The convergence of H(um) to 0 is an immediate consequence.
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For the sum of squares criterion H(u) = λ
2 ‖Au−f‖2, Bregman iteration

simplifies considerably. Given the initial conditions u0 = p0 = 0, define
f0 = f and fk = fk−1 +(f −Auk). It then follows from equation (16.14)
and telescoping that

H(u)− p∗
ku = H(u) +

[ k∑
i=1

∇H(ui)
]∗
u

=
λ

2
‖Au‖2 + λ

2
‖f‖2 − λf∗Au+ λ

[ k∑
i=1

A∗(Aui − f)
]∗
u

=
λ

2
‖Au‖2 + λ

2
‖f‖2 − λ

[
f +

k∑
i=1

(f −Aui)
]∗
Au

=
λ

2
‖Au‖2 + λ

2
‖f‖2 − λf∗

kAu

=
λ

2
‖Au− fk‖2 −

λ

2
‖fk‖2 +

λ

2
‖f‖2.

Thus, the Bregman surrogate function becomes

G(u | uk) =
λ

2
‖Au− fk‖2 + J(u) + ck,

where ck is an irrelevant constant. Section 13.5 sketches how to find uk+1

by coordinate descent when J(u) = ‖u‖1.
The linearized version of Bregman iteration [209] relies on the approxi-

mation

H(u) ≈ H(uk) + dH(uk)(u − uk).

Since this Taylor expansion is apt to be accurate only when ‖u − uk‖ is
small, the surrogate function is re-defined as

G(u | uk) = H(uk) + dH(uk)(u − uk) +D
pk

J (u | uk) +
1

2δ
‖u− uk‖2

for δ > 0. The quadratic penalty majorizes 0 and shrinks the next iterate
uk+1 toward uk. Separation of parameters in the surrogate function when
J(u) = ‖u‖1 is a huge advantage in solving for uk+1. Examination of the
convex stationarity conditions then shows that

uk+1,j =

⎧⎪⎨
⎪⎩
u+k+1,j = ukj + δ

[
pkj − ∂

∂uj
H(uk)− 1

]
u+k+1,j > 0

u−k+1,j = ukj + δ
[
pkj − ∂

∂uj
H(uk) + 1

]
u−k+1,j < 0

0 otherwise.

Given that the surrogate function approximately majorizes H(u) in a
neighborhood of uk, one can also confidently expect the linearized Bregman
iterates to drive H(u) downhill.
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FIGURE 16.4. Relative error versus iteration number for basis pursuit

Figure 16.4 plots the results of linearized Bregman iteration for a simple
numerical example. Here the entries of the 102×105 matrixA are populated
with independent standard normal deviates. The generating sparse vector
u has all entries equal to 0 except for

u45373 = −1.162589, u57442 = 2.436616, u81515 = 1.876241.

The response vector f equals Au, and the Bregman constants are δ = 0.01
and λ = 1000. The figure plots the relative error ‖u−uk‖/‖u‖ as a function
of iteration number k. It is remarkable how quickly the true u is recovered in
the absence of noise. As one might expect, lasso penalized linear regression,
also known as basis pursuit denoising, produces solutions very similar to
basis pursuit.

16.6 Split Bregman Iteration

Our focus on the penalty J(u) = ‖u‖1 obscures the fact that many applica-
tions really require J(u) = ‖Du‖1 for a constant matrix D. For instance,
the well-known image denoising model of Rudin, Osher, and Fatemi [224]
minimizes the total variation regularized sum of squares criterion

1

2

∑
i,j

(wij − uij)2 + ρ
∑
i,j

√
(ui+1,j − uij)2 + (ui,j+1 − uij)2,

where wij is the corrupted intensity and uij is the true intensity for pixel
(i, j) of an image. The total variation penalty represented by the second
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sum is intended to smooth the reconstructed image while preserving its
edges. A similar effect can be achieved by adopting the anisotropic penalty

ρ
∑
i,j

(
|ui+1,j − uij |+ |ui,j+1 − uij |

)
,

which has the form J(u) = ρ‖Du‖1 for Du linear.
Split Bregman iteration is intended to handle this kind of situation [106].

Consider minimization of the criterion E(u) + ‖Du‖1, where D is linear
and E(u) is convex and differentiable. In split Bregman iteration the gen-
eral idea is to introduce a new variable d = Du and carry out Bregman
iteration with the objective function H(u,d) = 1

2δ ‖d − Du‖2 modified
by the Bregman function derived from J(u,d) = E(u) + ‖d‖1. Thus, one
selects the pair (uk+1,dk+1) to minimize the criterion

1

2δ
‖d−Du‖2 + E(u) + ‖d‖1 − p∗

k(u− uk)− q∗
k(d− dk) (16.17)

for subgradients pk ∈ ∂E(uk) and qk ∈ ∂‖dk‖1. Once the next iterate
(uk+1,dk+1) is determined, the new subgradients

pk+1 = pk −∇uH(uk+1,dk+1)

qk+1 = qk −∇dH(uk+1,dk+1)

are defined. Block relaxation is the natural method of minimizing the cri-
terion (16.17). If E(u) is well behaved, then one can minimize

1

2δ
‖d−Du‖2 + E(u)− p∗

k(u− uk)

with respect to u by Newton’s method. Minimizing

1

2δ
‖d−Du‖2 + ‖d‖1 − q∗

k(d− dk)

with respect to d can be achieved in a single iteration by the shrinkage rule

dj =

⎧⎨
⎩
d+j = (Du)j + δ(qkj − 1) d+j > 0

d−j = (Du)j + δ(qkj + 1) d−j < 0
0 otherwise

suggested in our discussion of linearized Bregman iteration.

Example 16.6.1 The Fused Lasso

The fused lasso [257] penalty is the �1 norm of the successive differences
between parameters. The simplest possible fused lasso problem minimizes
the penalized sum of squares criterion

E(u) + ‖Du‖1 =
λ

2

n∑
i=1

(yi − ui)2 +
n−1∑
i=1

|ui+1 − ui|. (16.18)
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FIGURE 16.5. Convergence to the objective (16.18) for the fused lasso problem

Note that the matrixD in the penalty ‖Du‖1 is bidiagonal. The differences
ui+1 − ui under the absolute value signs make it difficult to implement
coordinate descent, so split Bregman iteration is an attractive possibility.
An alternative [280] is to change the penalty slightly and minimize the
revised objective function

f(u) =
λ

2

n∑
i=1

(yi − ui)2 +
n−1∑
i=1

[(ui+1 − ui)2 + ε]1/2,

which smoothly approximates the original objective function for small pos-
itive ε. The majorization (8.12) translates into the quadratic majorization

g(u | uk) =
λ

2

n∑
i=1

(yi − ui)2 +
n−1∑
i=1

(ui+1 − ui)2
2[uk,i+1 − uki)2 + ε]1/2

+ c

for an irrelevant constant c. The MM gradient algorithm for updating u is
easy to implement because the second differential d2g(u | uk) is tridiago-
nal and efficiently inverted at u = uk by Thomas’s algorithm [52]. In fact,
one step of Newton’s method minimizes the quadratic g(u | uk). Updat-
ing u in split Bregman iteration also benefits from Thomas’s algorithm.
Observe, however, that the multiple inner iterations of block descent puts
split Bregman iteration at a computational disadvantage.
Figure 16.5 compares the performance of split Bregman iteration and the

MM gradient algorithm on simulated data with independently generated
responses y1, . . . , y1000 sampled from two Gaussian densities. These densi-
ties share a common standard deviation of 0.2 but differ in their means of
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0.6 for 501 ≤ i ≤ 550 and 0 otherwise. Thus, there is a brief elevation in
the signal for a short segment in the middle. Both algorithms commence
from the starting values u0 = y and d0 = 0. For split Bregman itera-
tion p0 = q0 = 0; for the MM gradient algorithm ε = 10−10. The tuning
constant λ = 2.5/

√
ln 1000. The effective number of iterations plotted in

Fig. 16.5 counts the total inner iterations for split Bregman iteration.

16.7 Convergence of Bregman Iteration

Proving convergence of Bregman iteration is difficult [147, 279]. The crux
of the problem is that minimizing J(u) is secondary to minimizing H(u).
Owing to the difficulties, we will only tackle convergence for the special
choices H(u) = λ

2 ‖Au−f‖2 and J(u) = ‖Du‖1 made in image denoising.
If A does not have full column rank, then the purpose of Bregman iteration
is to minimize the secondary criterion J(u) = ‖Du‖1 subject to Au = f .
The first question that comes to mind is whether the minimum exists.
Let K be the kernel of the matrix A and x be a particular solution of
the equation Au = f . This equation’s solution space is simply x + K.
If Dx = 0, then the minimum value of J(u) is achieved at x. If in addition
Dy = 0 for some y ∈ K, then the minimum of 0 is also achieved along the
entire line through x along the direction y.
Now consider whether the function y �→ ‖D(x+ y)‖1 is coercive on K.

Coerciveness implies that the minimum exists. In view of the equivalence
of norms, it suffices to decide whether the function y �→ ‖D(x + y)‖ is
coercive. Proposition 12.3.1 implies that the Euclidean norm is coercive if
and only if

lim
t→∞ ‖D(x+ ty)‖2 = lim

t→∞ ‖Dx‖2 + 2ty∗D∗Dx+ t2y∗D∗Dy = ∞

for all y ∈ K. This is clearly equivalent to the condition Dy �= 0 for all
y ∈ K. Hence, the conditionDy �= 0 for every y ∈ K is necessary and suffi-
cient for coerciveness. According to the discussion following Example 5.5.3,
another equivalent condition is that the matrix A∗A + γD∗D is positive
definite for some γ > 0.
The boundedness of the iterates and subdifferentials plays a key role

in proving convergence. The latter are easy to handle because the chain
rule entails ∂J(u) = D∗∂‖Du‖1. For any v ∈ Rn, ∂‖v‖1 is contained in
the n-dimensional cube [−1, 1]n. Hence, ∂J(u) is contained in the compact
set D∗[−1, 1]n for all u. One can guarantee that the iterates uk are also
bounded whenever H(u) is coercive. Unfortunately, this is not the case for
an under-determined system Au = f . We will simply postulate that the
iteration sequence uk is bounded. We will also assume that J(u) achieves
its constrained minimum at some point w.
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Now suppose some subsequence of the Bregman iterates uk+1 converges
to a cluster point y. To show that y minimizes the criterion J(u) subject
to H(u) = 0, we examine the inequality

H(uk+1) + J(uk+1)− J(uk)− p∗
k(uk+1 − uk)

≤ H(w) + J(w)− J(uk)− p∗
k(w − uk).

By passing to a subsequence if necessary, we can assume that uk converges
to x, uk+1 converges to y, and pk converges to p. If we can show that

p∗(y − x) = p∗(w − x) = 0,

then in the limit the descent property of H(u) implies J(y) ≤ J(w). Thus,
the cluster point y is also optimal.
We now check that p∗(y − x) = 0. The other inner product vanishes

for similar reasons. Recall that we commence with u0 = p0 = 0. Thus,
p0 belongs to the range of A∗. In general, this assertion is true for all pk

because pk+1 = pk − λA∗(Auk+1 − f). Given that the range of A∗ is
closed, there exists a vector z with p = A∗z. Furthermore, Ay = Ax = f
since H(y) = H(x) = 0. It follows that

p∗(y − x) = z∗A(y − x) = 0.

Let us summarize this discussion in a proposition.

Proposition 16.7.1 Consider Bregman iteration for the function choices
H(u) = λ

2 ‖Au − f‖2 and J(u) = ‖Du‖1. The minimum value of J(u)
subject to H(u) = 0 is attained provided Du �= 0 whenever Au = 0. When
the minimum is attained and the Bregman iterates uk remain bounded,
every cluster point of the iterates uk achieves the minimum.

Proof: See the foregoing comments.

For the basis pursuit problem, it is known that Bregman iteration con-
verges in a finite number of steps [279]. Problems 15 and 16 sketch a proof
of this important fact.

16.8 Problems

1. Suppose that the real-valued function f(x) is twice differentiable and
that b = supz ‖d2f(z)‖ is finite. Prove the Lipschitz inequality

‖∇f(y)−∇f(x)‖ ≤ b‖y − x‖
for all x and y. If f(x) satisfies the Lipschitz inequality, then prove
that

g(x | xm) = f(xm) + df(xm)(x− xm) +
b

2
‖x− xm‖2
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majorizes f(x). (Hint: Expand f(x) to first order around xm. Rear-
range the integral remainder and bound.)

2. As described in Problem 1, assume the gradient of f(x) is Lipschitz.
Consider the projected gradient algorithm

xm+1 = PS

[
xm − ρ

b
∇f(xm)

]

for ρ ∈ (0, 2). From the obtuse angle criterion deduce

df(xm)(xm+1 − xm) ≤ − b
ρ
‖xm+1 − xm‖2.

Add this inequality to the majorizing inequality and further deduce

f(xm+1) ≤ f(xm)−
[ b
ρ
− b

2

]
‖xm+1 − xm‖2.

It follows that the sequence f(xm) is decreasing. If f(x) is coercive
or S is compact, then argue that limm→∞ f(xm) exists and that
limm→∞ ‖xm+1 − xm‖ = 0. If we suppose y is a cluster point of the
sequence xm, then the second of these limits shows that

PS

[
y − ρ

b
∇f(y)

]
= y.

Apply the obtuse angle criterion to any z ∈ S, and deduce the nec-
essary condition df(y)(z − y) ≥ 0 for optimality. When f(x) is also
convex, conclude that y provides a global minimum. If f(x) is strictly
convex, then limm→∞ xm exists and furnishes the unique global min-
imum point.

3. Prove that the function Eρ(y) appearing in the exact penalty method
is convex whenever f(y) and the inequality constraints hj(y) are
convex and the equality constraints gi(y) are affine.

4. In the exact penalty method for projection onto the half-disc, show
that the solution path initially: (a) heads toward the origin when
x ∈ {x : ‖x‖2 > 1, x1 > 0} or x ∈ {x : |x2| > 1, x1 = 0}, (b) heads
toward the point (1, 0)∗ when x ∈ {x : ‖x‖2 > 1, x1 < 0}, (c) follows
the unit circle when x ∈ {x : ‖x‖2 = 1, x1 < 0}, and (d) heads
toward the x2-axis when x ∈ {x : ‖x‖2 < 1, x1 < 0}. (Hint: See the
left panel of Fig. 16.2.)

5. Path following can be conducted without invoking the exact penalty
method [31, 46]. Consider minimizing the convex differentiable func-
tion f(x) subject to the standard linear programming constraints
x ≥ 0 andAx = b. Given an initial feasible point x0 > 0, one can de-
vise a differential equation d

dtx(t) = G(x) whose solution x(t) is likely
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to converge to the optimal point. Simply take G(x) = D(x)P (x)v(x),
where D(x) = diag(x) is a diagonal matrix with diagonal entries
given by the vector x and P (x) is orthogonal projection onto the null
space of AD(x). The matrix D(x) slows the trajectory down as it ap-
proaches a boundary xi = 0. The matrix P (x) ensures that the value
of Ax(t) remains fixed at the constant b. Check this fact. Show that
the choice v(x) = −Q(x)P (x)D(x)∇f(x) for Q(x) positive semidef-
inite yields d

dtf [x(t)] ≤ 0. In other words, f(x) is a Liapunov function
for the solution path. For an analogue of steepest descent useful in lin-
ear programming, the choice Q(x) = I is obvious. For an analogue of
Newton’s method, the choice Q(x) = d2f(x)−1 has merit. In a statis-
tical setting where −f(x) is a loglikelihood, x is a parameter vector,
and −∇f(x) is the score, substitution of the expected information
matrix for the observed information matrix is also reasonable.

6. Implement the path following algorithm of Problem 5 for linear pro-
gramming, linear regression, or linear logistic regression. You may use
the differential equation solver of Matlab or Euler’s method. Cheney
[46] mentions some tactics for linear programming that ease the com-
putational burden and make the overall algorithm more stable.

7. Homotopy methods follow solution paths. Suppose you want to solve
the equation f(x) = 0. Choose any point x0 and define the homotopy

h(t,x) = tf(x) + (1− t)[f(x)− f(x0)] = f(x) + (t− 1)f(x0).

Note that h(0,x) = f(x) − f(x0) and h(1,x) = f(x). Furthermore,
h(0,x0) = 0. Path following starts at time t = 0 and x = x0.
Apply the implicit function theorem to the equation h(t,x) = 0,
and demonstrate that a continuously differentiable solution path x(t)
exists satisfying the differential equation

d

dt
x(t) = −df [x(t)]−1f(x0). (16.19)

8. Continuing Problem 7, suppose

f(x) =

(
sinx1 + ex2 − 3

(x2 + 3)2 − x1 − 4

)
.

Numerically integrate the differential equation (16.19) starting at the
point x0 = (5, 3)∗. You should have an approximate zero at the time
t = 1. If necessary, polish this approximate solution by Newton’s
method. The purpose of path following is to reliably reach a neigh-
borhood of a solution.
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9. Show that the four functions J1(u) = ‖u‖2, J2(u) = −∑
i log ui,

J3(u) =
∑

i ui lnui, and J4(u | v) = u∗Au generate the Bregman
distances

DJ1(u | v) = ‖u− v‖2

DJ2(u | v) =
∑
i

[ui
vi
− log

(ui
vi

)
− 1

]

DJ3(u | v) =
∑
i

ui ln
(ui
vi

)
−
∑
i

(ui − vi)

DJ4(u | v) = (u− v)∗A(u− v).

For J4(u) assume A is positive semidefinite.

10. Prove the generalized Pythagorean identity (16.15).

11. The Bregman function Dp
J(u | v) has some of the properties of a

distance. Show that it is 0 when u = v and nonnegative when u �= v.
If J(u) is strictly convex, then show that Dp

J(u | v) is positive when
u �= v. Also prove thatDp

J(u | v) is convex in its argument u. Finally,
prove that Dp

J(u | v) ≥ Dp
J(w | v) when w lies on the line segment

between u and v.

12. For differentiable functions, demonstrate the Bregman identities

DcJ(u | v) = cDJ(u | v) for c ≥ 0

DJ1+J2(u | v) = DJ1(u | v) +DJ2(u | v)
DJ(u | v) = 0 for J(u) affine.

13. Suppose X is a random variable with mean μ and f(x) is a convex
function defined on R. Prove Jensen’s inequality in the form

E[f(X)]− f(μ) = E[Dp
f (X | μ)] ≥ 0,

where p is any subgradient of f(x) at μ.

14. Suppose the convex function f(x) and its Fenchel conjugate f�(y)
are both differentiable. Let u = ∇f�(u�) and v� = ∇f(v). Prove the
duality result

Df (u | v) = Df�(v� | u�).

(Hint: Recall when equality holds in the Fenchel-Young inequality.)

15. Assume the Bregman iterate uk satisfiesH(uk) =
λ
2 ‖Auk−f‖2 = 0.

Prove that uk also minimizes J(u) subject to H(u) = 0. (Hint: Let
û be optimal for J(u) given the constraint H(u) = 0. Note that
J(uk) ≤ J(û)− p∗

k(û− uk) and pk belongs to the range of A∗.)
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16. For the basis pursuit problem, let (Ij+, I
j
−, E

j) be a partition of the
index set {1, 2, . . . , n}, and define

U j = {u ∈ Rn : ui ≥ 0, i ∈ Ij+;ui ≤ 0, i ∈ Ij−;ui = 0, i ∈ Ej}
Hj = inf

{1

2
‖Au− f‖2 : u ∈ U j

}
.

Show that there are a finite number of distinct partitions U j and that
their union equals Rn. At iteration k define

Ik+ = {i : pki = 1}
Ik− = {i : pki = −1}
Ek = {i : pki ∈ (−1, 1)}.

Demonstrate that pk ∈ ∂J(uk) implies uk ∈ Uk and that uk ∈ U j

with Hj > 0 can happen for only finitely many k. Hence, for some k
we have uk ∈ U j with Hj = 0. Show that this entails Auk+1 = f .
Now invoke problem 15 to prove that Bregman iteration converges in
a finite number of steps.

17. In Bregman iteration suppose H(u) achieves its minimum of 0 at the
point û. If H(uk−1) > 0, then prove that

D
pk

J (û | uk) < D
pk−1

J (û | uk−1).

(Hint: Consider inequality (16.16).)

18. Suppose the convex functions H(u) and J(u) in our discussion of
Bregman iteration are differentiable. Prove that the surrogate func-
tion G(u | uk) = H(u) +DJ(u | uk) satisfies

G(u | uk−1) = G(uk | uk−1) +DH(u | uk) +DJ(u | uk).

(Hint: 0 = ∇H(uk) +∇J(uk)−∇J(uk−1).)



17
The Calculus of Variations

17.1 Introduction

The calculus of variations deals with infinite dimensional optimization
problems. Seventeenth century mathematicians and physicists such as New-
ton, Galileo, Huygens, John and James Bernoulli, L’Hôpital, and Leibniz
posed and solved many variational problems. In the eighteenth century
Euler made more definitive strides that were clarified and extended by La-
grange. In the nineteenth and twentieth centuries, the intellectual stimulus
offered by the calculus of variations was instrumental in the development of
functional analysis and control theory. Some of this rich history is explored
in the books [240, 258].
The current chapter surveys the classical and more elementary parts of

the calculus of variations. The subject matter is optimization of functionals
such as

F (x) =

∫ b

a

f [t, x(t), x′(t)] dt (17.1)

depending on a continuously differentiable function x(t) over an interval
[a, b]. Euler and Lagrange were able to deduce that the solution satisfies
the differential equation

d

dt

∂

∂x′
f [t, x(t), x′(t)] =

∂

∂x
f [t, x(t), x′(t)]. (17.2)

K. Lange, Optimization, Springer Texts in Statistics 95,
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If constraints are imposed on the solution, then these constraints enter
the Euler-Lagrange equation via multipliers. Thus, the theory parallels the
finite-dimensional case.
However, as one might expect, the theory is harder. Proof strategies

based on compactness often fail while strategies based on convexity usually
succeed. Much of the theory involving differentials fortunately generalizes.
We tackle this theory for normed vector spaces. Most other introductions
to the calculus of variations substitute a weaker version of differentiation
that relies entirely on directional derivatives. In our view this forfeits the
chance to bridge the gap between advanced calculus and functional analysis.
Having expended so much energy on developing Carathéodory’s version
of the differential, we continue to pursue that definition here. Readers
interested in the more traditional perspective can consult the references
[46, 102, 228, 233, 240]

17.2 Classical Problems

As motivating examples, we briefly discuss some of the classical problems
of the calculus of variations. Finding a solution to one of these problems is
often helped by a judicious choice of a coordinate system.

Example 17.2.1 Geodesics

A geodesic is the shortest path between two points. In the absence of con-
straints, a geodesic is a straight line. Suppose the points in question are
p = 0 and q in Rn. A path is a differentiable curve x from [0, 1] starting
at 0 and ending at q. To prove that the optimal path is a straight line, we
must show that y(t) = tq minimizes the functional

G(x) =

∫ 1

0

‖x′(t)‖ dt.

But this is obvious from the inequality

‖q‖ =

∥∥∥∥
∫ 1

0

x′(t) dt
∥∥∥∥ ≤

∫ 1

0

‖x′(t)‖ dt.

A somewhat harder problem is to show that a geodesic on a sphere follows
a great circle. If the sphere has radius r, then a feasible path x(t) must
satisfy ‖x(t)‖ = r for all t. It is convenient to pass to spherical coordinates
and assume that the sphere resides in ordinary space R3 with its center
at the origin. It is also convenient to take the initial point p as the north
pole and parameterize the azimuthal angle θ(φ) of a path by the polar
angle φ, where φ ∈ [0, π] and θ ∈ [0, 2π]. The path y(φ) = (r, θ(φ), φ)∗
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in spherical coordinates automatically satisfies the radial constraint. The
usual arguments from elementary calculus show that y(φ) has arclength

G(y) = r

∫ φ1

0

√
1 + [θ′(φ) sinφ]2 dφ

between the north pole and q = (r, θ1, φ1). It is clear thatG(y) is minimized
by taking θ(φ) equal to the constant θ1. This implies that the solution is
an arc of a great circle.

Example 17.2.2 Minimal Surface Area of Revolution

In the plane R2, imagine rotating a curve y(x) about the x-axis. This
generates a surface of revolution with area

S(y) = 2π

∫ x1

x0

y(x)
√

1 + y′(x)2 dx.

Here the curve begins at y(x0) = y0 and ends at y(x1) = y1. If it is possible
to pass a catenary curve through these points, then it describes the surface
with minimum area. The calculus of variations offers an easy route to this
conclusion.

Example 17.2.3 Passage of Light through an Inhomogeneous Medium

If we look at an object close to the horizon but well above the earth’s
surface, the light from it will bend as it passes through the atmosphere.
This is a consequence of the fact that the speed of light decreases as it
passes through an increasingly dense medium. If we assume the earth is
flat and the speed of light v(y) varies with the distance y above the earth,
then the ray will take the path y(x) of least time. The total travel time is

T (y) =

∫ x1

x0

√
1 + y′(x)2

v[y(x)]
dx

when the source is situated at (x0, y0) and we are situated at (x1, y1). The
calculus of variations provides theoretical insight into this generalization of
Snell’s problem.

Example 17.2.4 Lagrange’s versus Newton’s Version of Mechanics

The calculus of variations offers an alternative approach to classical me-
chanics. For a particle with kinetic energy T (v) = 1

2m‖v‖2 in a conservative
force field with potential U(x), we define the action integral

A(x) =

∫ t1

t0

{T [x′(t)]− U [x(t)]}dt (17.3)
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on the path x(t) of the particle from time t0 to time t1. The path actually
taken furnishes a stationary value of A(x). One can demonstrate this fact by
showing that the Euler-Lagrange equations coincide with Newton’s equa-
tions of motion.

Example 17.2.5 Isoperimetric Problem

This classical Greek problem involves finding the plane curve of given length
� enclosing the greatest area. The circle of perimeter � is the obvious solu-
tion. If we let a horizontal line segment form one side of the figure, then
the solution is a circular arc. This version of the problem can be formalized
by writing the enclosed area as

A(y) =

∫ x1

x0

y(x) dx

and its length as

L(y) =

∫ x1

x0

√
1 + y′(x)2 dx.

The constrained problem of minimizing A(y) subject to L(y) = � and
y(x0) = y(x1) = 0 can be solved by introducing a Lagrange multiplier.

Example 17.2.6 Splines

A spline is a smooth curve interpolating a given function at specified points.
From the variational perspective, we would like to find the function x(t)
minimizing the curvature

C(x) =

∫ b

a

x′′(t)2dt (17.4)

subject to the constraints x(si) = xi at n+1 points in the interval [a, b]. In
this situation the solution has limited smoothness. The interpolation points
are called nodes and are numbered so that s0 = a < s1 < · · · < sn = b.

17.3 Normed Vector Spaces

In the calculus of variations, functions are viewed as vectors belonging
to normed vector spaces of infinite dimension. The vector space and at-
tached norm vary from problem to problem. Many of the concepts from
finite-dimensional linear algebra extend without comment to the infinite-
dimensional setting. The new concepts that crop up are fairly subtle, so it
is worth spending some time on concrete examples.
For instance, consider the collection C0[a, b] of continuous real-valued

functions defined on a compact interval [a, b]. It is clear that C0[a, b] is closed
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under addition and scalar multiplication and that the function x(t) ≡ 0
serves as the zero vector or origin. The choice of norm is less obvious.
Three natural possibilities are:

‖x‖∞ = sup
t∈[a,b]

|x(t)|

‖x‖1 =

∫ b

a

|x(t)|dt

‖x‖2 =

[∫ b

a

|x(t)|2dt
]1/2

.

It is straightforward to check that ‖x‖∞ and ‖x‖1 satisfy the requirements
of a norm as set down in Chap. 2. To prove that ‖x‖2 qualifies as a norm,
it is best to define it in terms of the inner product

〈x,y〉 =

∫ b

a

x(t)y(t)dt

as

‖x‖2 =
√
〈x,x〉

and invoke the Cauchy-Schwarz inequality.
In contrast to finite-dimensional spaces, not all norms are equivalent on

infinite-dimensional spaces. Consider the sequence of continuous functions

xn(t) =

{
1− nt t ∈ [0, 1/n]
0 t /∈ [0, 1/n]

on the unit interval. It is clear that ‖xn‖∞ = 1 for all n while

‖xn‖1 =

∫ 1/n

0

(1− nt) dt =
1

2n

‖xn‖22 =

∫ 1/n

0

(1− nt)2 dt =
1

3n
.

Thus, xn(t) converges to the origin in two of these norms but not in the
third.
Besides continuous functions, it is often useful to consider continuously

differentiable functions. The vector space of such functions over the interval
[a, b] is denoted by C1[a, b]. The norm

‖x‖∞1 = sup
t∈[a,b]

|x(t)| + sup
t∈[a,b]

|x′(t)| (17.5)
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is fairly natural when one is interested in uniform convergence of a sequence
xn(t) together with its derivatives x′n(t). On the vector space Cm[a, b] of
functions with m continuous derivatives, one can define the similar norm

‖x‖∞m =
m∑

k=0

sup
t∈[a,b]

|x(k)(t)|. (17.6)

In most applications, the completeness of a normed vector space is an
issue. A sequence xn(t) is said to be Cauchy if for every ε > 0 there exists
an integer n such that ‖xj−xk‖ < ε whenever j ≥ n and k ≥ n. A normed
vector space is complete if every Cauchy sequence possesses a limit in the
space. For example, the vector space C0[a, b] is complete under the uniform
norm ‖x‖∞. For a proof of this fact, observe that

|xj(t)− xk(t)| ≤ ‖xj − xk‖∞
for every t ∈ [a, b]. This implies that the sequence xn(t) is Cauchy on the
real line and possesses a limit x(t). Since the convergence to x(t) is uniform
in t, Proposition 2.8.1 can be invoked to finish the proof.
The space C0[a, b] is not complete under either of the norms ‖x‖1 or ‖x‖2.

It is possible to extend C0[a, b] to larger normed vector spaces L1[a, b] and
L2[a, b] that are complete under these norms. The process of completion is
one of the most fascinating parts of the theory of integration. Unfortunately,
the work involved is far more than we can undertake here. Complete normed
vector spaces are called Banach spaces; complete inner product spaces are
called Hilbert spaces.
The space C1[a, b] under the norm (17.5) is also complete. A little thought

makes it clear that a Cauchy sequence xn(t) in C1[a, b] not only converges
uniformly to a continuous function x(t), but its sequence of derivatives
x′n(t) also converges uniformly to a continuous function y(t). Applying the
dominated convergence theorem to the sequence

xn(t) =

∫ t

a

x′n(s)ds

shows that

x(t) =

∫ t

a

y(s)ds.

It now follows from the fundamental theorem of calculus that x′(t) exists
and equals y(t). A slight extension of this argument demonstrates that
Cm[a, b] is complete under the norm (17.6). For this reason, we will tacitly
assume in the sequel that Cm[a, b] is equipped with the ‖x‖∞m norm.
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17.4 Linear Operators and Functionals

Linear algebra focuses on linear maps and their matrix representations. In
infinite-dimensional spaces, linear maps are referred to as linear operators.
When the range of a linear operator is the real line, the operator is said
to be a linear functional. Unfortunately, linear operators on normed vector
spaces are no longer automatically continuous. Continuity is intimately
tied to boundedness. A linear operator A from a normed linear space X
with norm ‖x‖p to a normed linear space Y with norm ‖y‖q is bounded
if there exists a constant c such that ‖A(x)‖q ≤ c‖x‖p for all x ∈ X .
The least such constant c determines the induced operator norm ‖A‖. This
verbal description just recapitulates the definition given in equation (2.2)
of Chap. 2. For linear functionals, mathematicians invariably use the norm
‖y‖q = |y| derived from the absolute value function. It is trivial to check
that the collection of bounded linear operators between two normed vector
spaces is closed under pointwise addition and scalar multiplication. Thus,
this collection is a normed vector space in its own right.
Here are three typical bounded linear functionals:

A1(x) = x(d), A2(x) =

∫ b

a

x(t)dt, A3(x) = x′(d). (17.7)

The first two of these are defined on the space C0[a, b] and the third on the
space C1[a, b]. The evaluation point d can be any point from [a, b]. Straight-
forward arguments show that the induced norms satisfy the inequalities
‖A1‖ ≤ 1, ‖A2‖ ≤ b− a, and ‖A3‖ ≤ 1.
Bounded linear operators are a little more exotic. If y(t) is a monotone

function mapping [a, b] into itself, then the linear operator

A4(x) = x ◦ y
composing x and y maps C0[a, b] into itself. For example, if [a, b] = [0, 1]
and y(t) = t2, then A4(x)(t) = x(t2). The operator A4 has norm ‖A4‖ ≤ 1.
Because integration turns one continuous function into another, the linear
operator

A5(x)(s) =

∫ s

a

x(t)dt

also maps C0[a, b] into itself. This operator has norm ‖A5‖ ≤ b − a. It is a
special case of the linear operator

A6(x)(s) =

∫ b

a

K(s, t)x(t)dt (17.8)

defined by a bounded function K(s, t) with domain the square [a, b]× [a, b].
If |K(s, t)| ≤ c for all s and t, then the inequality
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∣∣∣
∫ b

a

K(s, t)x(t)dt
∣∣∣ ≤

∫ b

a

|K(s, t)||x(t)|dt
≤ c‖x‖∞(b − a),

shows that ‖A6‖ ≤ c(b− a).
For a final example, let us define the injection operator Inj1(x) by the

formula

Inj1(x) =

(
x
x′

)
.

This is a linear operator from the normed vector space C1[a, b] to the vector
space C02 [a, b] of continuous vector-valued functions with two components.
It is easy to check that∥∥∥∥

(
x
y

)∥∥∥∥ = ‖x‖∞ + ‖y‖∞

defines a norm on C02 [a, b]. Furthermore, under this norm and the standard
norm ‖ · ‖∞1 on C1[a, b], the linear operator Inj1(x) has induced operator
norm 1.
The next proposition clarifies the relationship between boundedness and

continuity.

Proposition 17.4.1 The following three assertions concerning a linear
operator A are equivalent:

(a) A is continuous,

(b) A is continuous at the origin 0,

(c) A is bounded.

Proof: Assertion (a) clearly implies assertion (b). Let the domain of A
have norm ‖ · ‖p and the range norm ‖ · ‖q. Assertion (c) implies assertion
(a) because of the inequality

‖A(y)−A(x)‖q = ‖A(y − x)‖q ≤ ‖A‖ · ‖y − x‖p.
To complete the proof, we must show that assertion (b) implies assertion (c).
If A is unbounded, then there exists a sequence xn �= 0 with

‖A(xn)‖q ≥ n‖xn‖p.
If we set

yn =
1

n‖xn‖pxn,

then yn converges to 0, but ‖A(yn)‖q ≥ 1 does not converge to 0.
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17.5 Differentials

Our approach to differentiation is to replace slope matrices by slope opera-
tors. Let F (y) be a nonlinear operator from a normed vector space U with
norm ‖ · ‖p to a normed vector space V with norm ‖ · ‖q. The right-hand
side of the slope equation

F (y)− F (x) = S(y,x)(y − x) (17.9)

now involves a bounded linear operator S(y,x) from U to V operating on
the vector y − x in U . The operator S(y,x) has induced norm

‖S(y,x)‖ = sup
‖u‖p=1

‖S(y,x)u‖q.

The operator F (y) is said to have differential dF (x) at x provided the
slope equation (17.9) holds for all y sufficiently close to x and

lim
y→x

‖S(y,x)− dF (x)‖ = 0.

This last equation implicitly requires dF (x) to be a bounded linear operator
from U to V . Furthermore, the affine map y �→ F (x) + dF (x)(y − x)
uniformly approximates F (y) in the sense that

‖F (y)− F (x)− dF (x)(y − x)‖q = ‖[S(y,x)− dF (x)](y − x)‖q
≤ ‖S(y,x)− dF (x)‖ · ‖y − x‖p

for y close to x. Thus, we arrive at an appropriate extension of Carathéo-
dory’s definition of the differential. It is also possible to define Fréchet’s
differential in this setting. As Proposition 4.4.1 of Chap. 4 shows, the two
definitions are equivalent on inner product spaces. On more general normed
vector spaces, it is unclear whether a Fréchet differentiable function is nec-
essarily Carathéodory differentiable.
The various rules for combining differentials remain in force, and versions

of the inverse and implicit function theorems continue to hold. The proofs
of these theorems must be modified to avoid an appeal to compactness [46].
Rather than concentrate on extending our earlier proofs, we prefer to offer
some concrete examples. The simplest example is a bounded linear operator
F (x). In this case, application of the definition shows that dF (x)u = F (u).
Here are some more subtle examples.

Example 17.5.1 The Squaring Operator

Consider the operator F (y) = y2 on C0[a, b]. The relation

F (y)− F (x) = (y + x)(y − x)
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suggests that we take S(y,x) = y+x. For this to make sense, we reinterpret
each of the symbols y and x as multiplication by the function in question.
Thus, the operator y takes u ∈ C0[a, b] to the function y(t)u(t). The obvious
bound ‖yu‖∞ ≤ ‖y‖∞ ‖u‖∞ says y viewed as a linear operator has induced
norm ‖y‖ ≤ ‖y‖∞. Once we apply y to itself, then it becomes clear that
‖y‖ = ‖y‖∞. Given these preliminaries, the identities

‖S(y,x)− 2x‖ = ‖y − x‖ = ‖y − x‖∞
now demonstrate that dF (x) exists and equals the multiplication
operator 2x.

Example 17.5.2 An Integration Functional

Suppose the continuous function f(t, x) has a continuous partial derivative
∂2f(t, x) =

∂
∂xf(t, x). If we fix t and choose the canonical slope function

s(t, y, x) =

∫ 1

0

∂2f [t, x+ s(y − x)] ds

of f(t, x) as a function of x, then

f(t, y)− f(t, x) = s(t, y, x)(y − x).
Furthermore, this choice ensures that s(t, y, x) is jointly continuous in its
three arguments. Now consider the functional

F (x) =

∫ b

a

f [t, x(t)] dt

on C0[a, b]. The equation

F (y)− F (x) =

∫ b

a

s[t, y(t), x(t)][y(t) − x(t)] dt

suggests the candidate differential

dF (x)u =

∫ b

a

∂2f [t, x(t)]u(t) dt. (17.10)

To prove this contention, we first show that the linear functional

S(y,x)u =

∫ b

a

s[t, y(t), x(t)]u(t) dt

is bounded. Because the interval [a, b] is compact, x(t) is bounded. If we
fix δ > 0 and limit attention to those y with ‖y−x‖∞ < δ, then all values
of x(t) and y(t) occur within an interval [c, d]. For such y we have∣∣∣∣∣

∫ b

a

s[t, y(t), x(t)]u(t) dt

∣∣∣∣∣ ≤
∫ b

a

|s[t, y(t), x(t)]| · |u(t)| dt

≤ k(b− a)‖u‖∞,
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where k is the supremum of |s(t, y, x)| on J = [a, b]×[c, d]×[c, d]. This settles
the question of boundedness. Given the uniform continuity of s(t, y, x) on J ,
if we choose ‖y − x‖∞ small enough, then |s[t, y(t), x(t)] − s[t, x(t), x(t)]|
can be made uniformly smaller than a preassigned ε > 0. For those y it
follows that∣∣∣∣∣

∫ b

a

{s[t, y(t), x(t)]− s[t, x(t), x(t)]}u(t) dt
∣∣∣∣∣ ≤ ε(b− a)‖u‖∞,

and this implies that S(y,x) converges to S(x,x) in the relevant operator
norm.
In the classical theory, equation (17.10) is viewed as a directional deriva-

tion. Fixing the “direction” u(t) in function space, one calculates the di-
rectional derivative

lim
ε→0

F (x+ εu)− F (x)
ε

=

∫ b

a

∂2f [t, x(t)]u(t) dt

by differentiation under the integral sign and the chain rule. This is rigorous
as far as it goes, but it does not prove the existence of the differential.
Having the full apparatus of differentials at our disposal unifies the theory
and eases the process of generalization.

Example 17.5.3 Differentials of More General Functionals

Many of the classical examples of the calculus of variations are slight elab-
orations of the last example. For instance, we can replace the argument
x(t) of F (x) by a continuous vector-valued function on [a, b]. The differen-
tial (17.10) is still valid provided we interpret ∂2f(t,x) as the differential
of f(t,x) with respect to x and assume x(t) belongs to the normed vec-
tor space C0m[a, b] of continuous functions with m components for some m.
Another profitable extension is to consider functionals of the form

G(x) =

∫ b

a

f [t, x(t), x′(t)] dt

depending on x′(t) as well as x(t). Straightforward extension of our previous
arguments yield

dG(x)u =

∫ b

a

{∂2f [t, x(t), x′(t)]u(t) + ∂3f [t, x(t), x
′(t)]u′(t)} dt, (17.11)

where ∂3f(t, x, x
′) = ∂

∂x′ f(t, x, x
′). Now we must assume that both partial

derivatives ∂2f(t, x, x
′) and ∂3f(t, x, x

′) are jointly continuous in all vari-
ables. Alternatively, we can derive this result by noting that G(x) is the
composition of the functional F (x) of the last example with the injection
operator Inj1(x). The differential (17.11) then reduces to the chain rule

dG(x) = dF [Inj1(x)]d Inj1(x).
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This argument remains valid when x(t) is vector-valued provided we
interpret the partial derivatives ∂2f(t,x,x

′) and ∂3f(t,x,x′) as partial dif-
ferentials. Even this formula can be generalized by considering functionals

G(x) =

∫ b

a

f [t, x(t), x′(t), . . . , x(k)(t)] dt

depending on x(t) and its first k derivatives. In this case, the formula

dG(x)u =

∫ b

a

k∑
j=0

∂j+1f [t, x(t), . . . , x
(k)(t)]u(j)(t) dt (17.12)

just summarizes the chain rule

dG(x) = dF [Injk(x)]d Injk(x)

involving the injection operator Injk(x) = (x, x′, . . . , x(k))∗.

17.6 The Euler-Lagrange Equation

In proving the Euler-Lagrange equation (17.2), we assume that the function
x(t) minimizes the functional (17.1) among all competing functions in the
space C1[a, b]. When the boundary values x(a) = c and x(b) = d are fixed,
we consider the revised functional

F (x+ u) =

∫ b

a

f [t, x(t) + u(t), x′(t) + u′(t)] dt (17.13)

defined on the set of continuously differentiable functions u(t) with u(a) = 0
and u(b) = 0. This closed subspace D1[a, b] of C1[a, b] qualifies as a Banach
space in its own right, and if x(t) minimizes the original functional, then
u = 0 minimizes the revised functional (17.13).
Fermat’s principle, which is valid on any normed vector space, requires

the differential of F (x+u) to vanish at u = 0. In view of Example (17.5.3),
this means

dF (x)u =

∫ b

a

{∂2f [t, x(t), x′(t)]u(t) + ∂3f [t, x(t), x
′(t)]u′(t)} dt, (17.14)

must vanish for every u ∈ D1[a, b]. The appearance of u′(t) in addition
to u(t) in this last equation is awkward. We can eliminate it invoking the
integration by parts formula

∫ b

a

∂3f [t, x(t), x
′(t)]u′(t) dt = −

∫ b

a

d

dt
∂3f [t, x(t), x

′(t)]u(t) dt (17.15)
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using the boundary conditions u(a) = u(b) = 0. If we put

v(t) = ∂2f [t, x(t), x
′(t)]− d

dt
∂3f [t, x(t), x

′(t)],

then Fermat’s principle reads

∫ b

a

v(t)u(t) dt = 0

for every u ∈ D1[a, b]. The special case k = 0 of the next lemma completes
the proof of the Euler-Lagrange equation (17.2).

Proposition 17.6.1 (Du Bois-Reymond) Let the function v(t) be con-
tinuous on [a, b] and satisfy

∫ b

a

v(t)u(t) dt = 0

for every u(t) in Ck[a, b] with
u(j)(a) = u(j)(b) = 0 , 0 ≤ j ≤ k.

Then v(t) = 0 for all t.

Proof: Suppose v(t) is not identically 0. By continuity there exists an
interval [c, d] ⊂ [a, b] on which v(t) is either strictly positive or strictly
negative. Without loss of generality, we assume the former case and take
a < c < d < b. It is straightforward to prove by induction that the function

u(t) =

{
(t− c)k+1(d− t)k+1 t ∈ [c, d]
0 t �∈ [c, d]

is continuously differentiable up to order k. Because the continuous function
v(t)u(t) is positive throughout the open interval (c, d) and vanishes outside
it, the integral

∫ b

a

v(t)u(t) dt > 0.

This contradiction proves the claim.

Two cases of the Euler-Lagrange equation (17.2) merit special mention.
First, if f(t, x, x′) does not depend on x, then

d

dt

∂

∂x′
f [t, x(t), x′(t)] = 0,

and

∂

∂x′
f [t, x(t), x′(t)] = c (17.16)
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for some constant c. Second, if f(t, x, x′) does not depend on t, then

x′(t)
∂

∂x′
f [t, x(t), x′(t)]− f [t, x(t), x′(t)] = c (17.17)

is constant. This assertion follows from the identity

d

dt

[
x′∂3f − f

]
= x′′∂3f + x′

d

dt
∂3f − ∂1f − ∂2fx′ − ∂3fx′′

= x′
[ d
dt
∂3f − ∂2f

]
= 0.

In the absence of fixed boundary values x(a) = c and x(b) = d, the
integration by parts argument invoked in deriving the Euler-Lagrange equa-
tions is still valid. However, perturbations with u(a) �= 0 or u(b) �= 0 are
now pertinent. To ensure that the boundary contributions

∂3f [b, x(b), x
′(b)]u(b)− ∂3f [a, x(a), x′(a)]u(a)

to dF (x)u vanish, we must assume that the multiplier ∂3f [a, x(a), x
′(a)]

of u(a) vanishes when x(a) is not fixed and the multiplier ∂3f [b, x(b), x
′(b)]

of u(b) vanishes when x(b) is not fixed. These constraints are referred to as
free or natural boundary conditions.
Some applications involve optimization over multivariate functions x(t).

In this case the Euler-Lagrange equation (17.2) holds component by
component. Derivation of this result relies on considering multivariate per-
turbations u(t) with all but one component identically 0. Our discussion of
Lagrangian mechanics in the next section requires multivariate functions.
Functionals depending on derivatives beyond the first derivative can also
be treated by the methods described in this section as noted in Problem 15.
To derive the appropriate generalization of the Euler-Lagrange equations,
we again use integration by parts and Proposition 17.6.1. Our consideration
of splines provides insight into how one deals with functionals depending
on second derivatives.
The classical theory of the calculus of variations involves only necessary

conditions for an optimum. The modern theory takes up sufficient con-
ditions as well [102, 139]. Although it is impossible to do justice to the
modern theory in a brief exposition, it is fair to point out the important
role of convexity. A functional F (x) is convex if Jensen’s inequality

F [αx+ (1− α)y] ≤ αF (x) + (1 − α)F (y)
holds for all x, y, and α ∈ [0, 1]. Proposition 6.5.2 forges the most helpful
connection between convexity and optimization. When x is a stationary
point of F (x), then the operative inequality dF (x)u ≥ 0 of the proposi-
tion automatically holds for all admissible u. A more crucial point is to
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recognize convexity when it occurs. Fortunately, one simple test works. If
the integrand f(t, x, x′) in the functional (17.1) is convex in its last two
variables x and x′ for each fixed t, then it is trivial to show that F (x) is
convex in x. As pointed out momentarily, this is the case with geodesic
problems.

17.7 Applications of the Euler-Lagrange Equation

To illustrate the solution of the Euler-Lagrange equations, we revisit the
first four examples of Sect. 17.2. None of these examples involves constraints
beyond fixed boundary conditions.

Example 17.7.1 Geodesic on a Cylinder

Without loss of generality, we suppose that the z axis and the central
axis of the cylinder coincide. If the cylinder has radius r, then a curve
on its surface can be represented by the triple [r cos θ, r sin θ, z(θ)] using
cylindrical coordinates (θ, z). The distance connecting the point (θ0, z0) to
the point (θ1, z1) is

G(z) =

∫ θ1

θ0

√
r2 + z′(θ)2 dθ.

Here we assume θ0 < θ1 and z0 �= z1. If θ0 = θ1, then it is clear that the
geodesic is a vertical line on the surface. If z0 = z1, then the geodesic is a
circular arc in a plane perpendicular to the central axis.
Because the function f(θ, z, z′) =

√
r2 + z′2 does not depend on z, the

simplified Euler-Lagrange equation (17.16) applies. This requires

z′√
r2 + z′2

to be constant, which is achieved by taking z′ to be constant. In view of
the constraints z(θ0) = z0 and z(θ1) = z1, we have

z(θ) =
z1 − z0
θ1 − θ0 θ +

θ1z0 − θ0z1
θ1 − θ0 .

To prove that this solution provides the minimum of G(z), it suffices to
note that f(θ, z, z′) =

√
r2 + z′2 is convex in (z, z′). Convexity follows from

the relationship between
√
r2 + z′2 and the Euclidean norm of R2.

Example 17.7.2 Minimal Surface Area of Revolution

Because f(x, y, y′) = 2πy
√
1 + y′2 does not depend on x, the simplified

Euler-Lagrange equation (17.17) requires

y′2y√
1 + y′2

− y
√
1 + y′2 = c
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to be constant. Straightforward algebra now gives y2 = c2(1 + y′2) and

y′ =

[(y
c

)2

− 1

]1/2
=

1

c

√
y2 − c2.

If we rewrite this as

dy√
y2 − c2 =

dx

c
,

then Table 4.1 shows that

arccosh−1 y

c
=

x

c
+ d

for some constant d. It follows that

y(x) = c cosh
(x
c
+ d

)
.

If we take (x0, y0) = (0, a), then we can eliminate the constant c and express

y(x) =
a

coshd
cosh

(
coshd

a
x+ d

)
.

In some cases the adjustable parameter d can be used to match the other
end of the catenary curve y(x) to (x1, y1). In other cases, there is no minimal
surface of revolution in the ordinary sense [15].

Example 17.7.3 Passage of Light through an Inhomogeneous Medium

This is another example of a integrand f(x, y, y′) =
√

1 + y′2/v(y) that
does not depend on x. The quantity (17.17)

y′2

v(y)
√

1 + y′2
−

√
1 + y′2

v(y)
= − 1

v(y)
√
1 + y′2

is constant along the optimal path. If we differentiate the identity

− ln v[y(x)] − ln
√
1 + y′2(x) = ln(−c)

with respect to x, then the formula

y′′(x) = − [
1 + y′(x)2

] v′[y(x)]
v[y(x)]

emerges. Because the speed of light increases with increasing altitude,
v′[y(x)] > 0, and hence y′′(x) < 0. In other words, the path that light
follows toward an observer on the earth is concave and bends downward.
Hence, the setting sun appears higher in the sky than it actually is [240].
Problem 20 considers the special case v(y) = y, where one can explicitly
solve for y(x).
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Example 17.7.4 Lagrange’s versus Newton’s Version of Mechanics

Let x(t) be the path taken in R3 by a single particle with initial and final
values x(t0) = a and x(t1) = b. The Euler-Lagrange equations at the
stationary value of the action integral (17.3) are

0 = − ∂

∂xi
U [x(t)] − d

dt

∂

∂x′i
T [x′(t)]

= − ∂

∂xi
U [x(t)] −mx′′i (t).

These are clearly Newton’s equations of motions in a conservative force
field. The total energy E = T (x′) + U(x) of the particle is conserved
because

d

dt
E(t) = m

3∑
i=1

x′i(t)x
′′
i (t) +

3∑
i=1

∂

∂xi
U [x(t)]x′i(t) = 0.

In many applications we follow several particles. For instance in the n-
body problem, n particles move under the influence of their mutual grav-
itational fields. Let the ith particle have mass mi and position xi(t) in R3

at time t. Assuming the gravitational constant is 1, the potential energy of
the system is given by

U(x) = −
∑
{i,j}

mimj

‖xi − xj‖ ,

where the sum ranges over all pairs {i, j} of particles and x(t) is the vector
constructed by stacking the xi(t). The total kinetic energy of the particles is

T (x′) =
1

2

n∑
i=1

mi‖x′
i‖2.

According to Lagrangian mechanics, the motion of the system yields the
stationary value of the action integral (17.3). The Euler-Lagrange
equations are

0 = − ∂

∂xik
U [x(t)]− d

dt

∂

∂x′ik
T [x′(t)]

= −
∑
j 
=i

mimj

‖xi(t)− xj(t)‖2 ·
xik(t)− xjk(t)
‖xi(t)− xj(t)‖ −mix

′′
ik(t).

In other words, the force exerted on particle i by particle j is given by
Newton’s inverse square law. The total energy E = T (x′) + U(x) of the
system is conserved because

d

dt
E(t) =

n∑
i=1

mi

3∑
k=1

x′ik(t)x
′′
ik(t) +

n∑
i=1

3∑
k=1

∂

∂xik
U [x(t)]x′ik(t)

= 0.
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This result holds for any conservative dynamical system governed by the
Euler-Lagrange equations with potential U(x). Conservation of linear and
angular momentum also hold in the n-body framework as documented in
Problem 21. Dynamical systems with more general potential functions do
not necessarily preserve linear and angular momentum.

17.8 Lagrange’s Lacuna

Let us now expose and correct a deception foisted on the reader in deriving
the Euler-Lagrange equations. At a crucial point in our derivation we in-
voked the integration-by-parts formula (17.15) without proving that the
factor ∂3f [t, x(t), x

′(t)] is continuously differentiable. This gap in Lagrange’s
original treatment was noted by Du Bois-Reymond. His correction is based
on the following variant of Proposition 17.6.1.

Proposition 17.8.1 Let the function v(t) be continuous on [a, b] and
satisfy

∫ b

a

v(t)u(k)(t) dt = 0

for every test function u(t) in Ck[a, b] with

u(j)(a) = u(j)(b) = 0 , 0 ≤ j ≤ k − 1.

Then v(t) is a polynomial of degree k − 1 on [a, b].

Proof: Integration by parts shows that

∫ b

a

p(t)u(k)(t) dt = 0

and therefore that

∫ b

a

[v(t) − p(t)]u(k)(t) dt = 0

for every test function u(t) and polynomial p(t) of degree k − 1. If we can
construct a test function u(t) and a polynomial p(t) of degree k − 1 such
that u(k)(t) = v(t) − p(t), then the identity

∫ b

a

[v(t)− p(t)]2 dt = 0

implies v(t) = p(t). Construction of u(t) involves some technicalities that
we will avoid by focusing on the case k = 2. The proof of the case k = 1 is
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similar but simpler. If we put p(t) = c+ d(t− a), then it seems sensible to
define

u′(t) =

∫ t

a

[v(s) − c− d(s− a)] ds

=

∫ t

a

v(s) ds− c(t− a)− d

2
(t− a)2

u(t) =

∫ t

a

∫ s

a

v(r) dr ds− c
∫ t

a

(s− a) ds− d

2

∫ t

a

(s− a)2 ds

=

∫ t

a

∫ s

a

v(r) dr ds− c

2
(t− a)2 − d

6
(t− a)3.

Because u′(a) = u(a) = 0 is clearly true, the only remaining issue is
whether we can choose c and d so that u′(b) = u(b) = 0. However, this is
possible since the matrix implementing the linear system

0 =

∫ b

a

v(s) ds− c(b − a)− d

2
(b − a)2

0 =

∫ b

a

∫ s

a

v(r) dr ds− c

2
(b− a)2 − d

6
(b − a)3

is invertible. Indeed, invertibility follows from the identity

det

(
(b− a) (b − a)2/2

(b − a)2/2 (b − a)3/6
)

= −(b− a)4/12.

Thus, c and d can be chosen so that u(t) satisfies the requisite boundary
conditions.

To apply Proposition 17.8.1 in the derivation of the Euler-Lagrange equa-
tion, we define the function

g(t) =

∫ t

a

∂2f [s, x(s), x
′(s)] ds.

The fundamental theorem of calculus implies that g(t) is continuously dif-
ferentiable. Hence, integration by parts gives the alternative

dF (x)u =

∫ b

a

{−g(t) + ∂3f [t, x(t), x
′(t)]}u′(t) dt

to equation (17.14). According to Proposition 17.8.1 with k = 1, the func-
tion

−g(t) + ∂3f [t, x(t), x
′(t)] = c

for some constant c. It follows that ∂3f [t, x(t), x
′(t)] = g(t) + c is continu-

ously differentiable as required.
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17.9 Variational Problems with Constraints

The isoperimetric problem requires maximizing the area enclosed by a curve
of fixed perimeter. More generally suppose we wish to maximize a functional
F (y) subject to the equality constraints Gi(y) = 0 for 1 ≤ i ≤ p. If x
furnishes a local maximum, then we can hope that the Lagrange multiplier
rule

dF (x)u +

p∑
i=1

λidGi(x)u = 0 (17.18)

will be valid for all admissible functions u. This turns out to be the case if
the differentials dG1(x), . . . , dGp(x) are linearly independent. Linear inde-
pendence fails whenever there exists a nontrivial vector c with components
c1, . . . , cp such that

p∑
i=1

cidGi(x)u = 0

for all possible u. Such a failure is impossible if there exists a finite sequence
u1, . . . ,up of admissible functions such that the square matrix [dGi(x)uj ]
is invertible. For the sake of simplicity, we will take linear independence to
mean that for some choice of u1, . . . ,up the matrix [dGi(x)uj ] is invertible.
With this stipulation in mind, we now prove the multiplier rule (17.18)
under independence.
Our strategy will be to examine map

H(α) =

⎛
⎜⎜⎝
F (x+ α0u+ α1u1 + · · ·+ αpup)
G1(x+ α0u+ α1u1 + · · ·+ αpup)

...
Gp(x+ α0u+ α1u1 + · · ·+ αpup)

⎞
⎟⎟⎠

defined for the given functions u1, . . . ,up and an arbitrary admissible func-
tion u. Note that H(α) maps Rp+1 into itself. The differential of H(α) at
0 is the Jacobian matrix

dH(0) =

⎛
⎜⎜⎝
dF (x)u dF (x)u1 · · · dF (x)up

dG1(x)u dG1(x)u1 · · · dG1(x)up

...
...

...
...

dGp(x)u dGp(x)u1 · · · dGp(x)up

⎞
⎟⎟⎠ .

Assuming the objective functional F (x) and the constraints Gi(x) are
continuously differentiable in a neighborhood of x, the function H(α) is
continuously differentiable in a neighborhood of 0. Hence, we can invoke the
inverse function theorem, Proposition 4.6.1, provided dH(0) is invertible.
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Assume for the sake of argument that this is the case. Then H(α) maps a
neighborhood of 0 onto a neighborhood of the image

[F (x), G1(x), . . . , Gp(x)]
∗ = [F (x), 0, . . . , 0]∗.

Taking the neighborhood of 0 to be arbitrarily small implies that there are
functions v = x+α0u+α1u1 + · · ·+ cpup arbitrarily close to x satisfying
F (v) > F (x) and Gi(v) = 0 for all i. This contradicts the assumption that
x furnishes a local maximum subject to the constraints. It follows that the
matrix dH(0) must be singular.
The connection of this condition to the multiplier rule (17.18) becomes

less obscure when we exploit the fact that det dH(0) = 0. Expanding this
determinant on the first column of dH(0) leads to the equation

0 = μ0dF (x)u+

p∑
i=1

μidGi(x)u, (17.19)

where the cofactor μ0 = det[dGi(x)uj ] is nonzero by assumption. If we
divide equation (17.19) by μ0, then we arrive at the multiplier rule (17.18)
with λi = μi/μ0.

Example 17.9.1 Isoperimetric Problem

If we assume that the perimeter constraint has a nontrivial differential,
then the combination of the multiplier rule and the Euler-Lagrange equa-
tion (17.2) implies

1− d

dx

[
λ

y′(x)√
1 + y′(x)2

]
= 0.

This forces λ to be nonzero, and integration on x produces

y′(x)√
1 + y′(x)2

= cx+ d

for c = 1/λ and d a constant of integration. This last equation can be
solved for y′(x) in the form

y′(x) =
cx+ d√

1− (cx+ d)2

and integrated to give

y(x) = −1

c

√
1− (cx+ d)2 + e
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for some additional constant e. If we take x0 = −1 and x1 = 1, then
application of the boundary conditions y(−1) = y(1) = 0 yields

e2 =
1

c2
[
1− (−c+ d)2

]

e2 =
1

c2
[
1− (c+ d)2

]
.

It follows that d = 0 and e =
√
c−2 − 1. Finally, the constraint

� =

∫ 1

−1

√
1 + y′(x)2 dx

=

∫ 1

−1

1√
1− c2x2 dx

=
2

c
arcsin c

determines the constant c. More precisely, the line c �→ �c and the convex
increasing curve c �→ 2 arcsin c intersect in a single point in (0, 1] whenever
2 < l ≤ π. Because

[y(x)− e]2 + x2 =
1

c2
,

the function y(x) traces out a circular arc. If � = π, then the arc is a
semicircle with center at the origin 0.
This analysis is predicated on the assumption that there exists a contin-

uously differentiable function u(x) with

dL(y)u =

∫ 1

−1

y′(x)√
1 + y′(x)2

u′(x) dx

=

∫ 1

−1

cxu′(x) dx

�= 0

and u(−1) = u(1) = 0. One obvious choice is u(x) = (1− x2)2.

17.10 Natural Cubic Splines

Our treatment of splines involves functions from the Banach space C2[a, b].
If x(t) minimizes the spline functional (17.4), then the differential

dC(x)u = 2

∫ b

a

x′′(t)u′′(t) dt
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is a special case of equation (17.12) and vanishes for all admissible u(t).
Such functions u(t) satisfy u(si) = 0 at every node si. If we focus on test
functions u(t) that vanish outside a node interval [si−1, si], then we can
invoke Proposition 17.8.1 and infer that x′′(t) is linear on [si−1, si]. This
compels x(t) to be a piecewise cubic polynomial throughout [a, b].
On node interval [si−1, si], integration by parts and the cubic nature of

x(t) yield

∫ si

si−1

x′′(t)u′′(t) dt = x′′(t)u′(t)
∣∣∣si
si−1

− x′′′(t)u(t)
∣∣∣si
si−1

. (17.20)

The constraint u(si−1) = u(si) = 0 forces the boundary terms involving
x′′′(t) to vanish. When we add the contributions (17.20) to form the full

integral
∫ b

a x
′′(t)u′′(t) dt, all of the boundary terms involving x′′(t) cancel

except for x′′(sn)u′(sn)− x′′(s0)u′(s0). If we impose the natural boundary
conditions x′′(sn) = x′′(s0) = 0, then all terms vanish, and we recover the

necessary condition dC(x)u = 2
∫ b

a x
′′(t)u′′(t) dt = 0 for optimality.

It is possible to demonstrate that there is precisely one piecewise cubic
polynomial x(t) from C2[a, b] that interpolates the given values xi at the
nodes si and satisfies the natural boundary conditions x′′(s0) = x′′(sn) = 0.
This exercise in linear algebra is carried out in the reference [166]. It is
shown there that x(t) minimizes C(y) subject to the interpolation con-
straints. The fact that the minimum is unique is hardly surprising given
the convexity of the functional C(y) on C2[a, b].

17.11 Problems

1. Prove that the space C0[a, b] is not finite dimensional. (Hint: The
functions 1, t, . . . , tn are linearly independent.)

2. Prove that the set Pn[0, 1] of polynomials of degree n or less on [0, 1]
is a closed subspace of C0[0, 1].

3. Suppose X is an inner product space. Prove that the induced norm
satisfies the parallelogram identity

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2)

for all vectors u and v. Show that the norm of C0[0, 1] is not induced
by an inner product by producing u and v that fail the parallelogram
identity.

4. Demonstrate that the closed unit ball B = {x : ‖x‖ ≤ 1} in C0[0, 1]
is not compact. (Hint: The sequence 1, t, t2, t3, . . . has no uniformly
convergent subsequence.)
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5. Demonstrate that a closed subset of a Banach space is complete.

6. Let X and Y be normed vector spaces with norms ‖x‖p and ‖y‖q.
The product space X × Y is a vector space if addition and scalar
multiplication are defined coordinatewise. Show that the following
are equivalent norms on X × Y :

‖(x,y)‖∞ = max{‖x‖p, ‖y‖q}
‖(x,y)‖1 = ‖x‖p + ‖y‖q
‖(x,y)‖2 =

√
‖x‖2p + ‖y‖2q.

See Example 2.5.6 for the notion of equivalent norms.

7. Continuing Problem 6, show that X×Y is a Banach space under any
of three proposed norms whenever X and Y are both Banach spaces.

8. Demonstrate that the three linear functionals A1, A2, and A3 defined
in (17.7) actually have the operator norms 1, b − a, and 1 on their
respective normed linear spaces.

9. Suppose the function K(s, t) in equation (17.8) is square-integrable
over [a, b]× [a, b]. Prove that the corresponding operator A6 maps the
Hilbert space L2[a, b] into itself in such a way that

‖A6‖2 ≤
∫ b

a

∫ b

a

K(s, t)2ds dt.

10. Let L(y) be a continuous linear functional on a normed vector space.
Under what circumstances does L(y) have a minimum or a maxi-
mum?

11. On an inner product space prove that the functional ‖x‖2 is dif-
ferentiable with differential dF (x)y = 2〈x,y〉. Deduce from this
fact that the norm G(x) = ‖x‖ is differentiable with differential
dG(x)y = 〈 x

‖x‖ ,y〉 whenever x �= 0.

12. Consider the linear functional F (y) = 〈v,y〉 on an inner product
space. Here the vector v is fixed. Let g(t) be a differentiable function
on the real line, and define G(y) = g ◦ F (y). Show that G(y) has
differential dG(x)u = g′(〈v,x〉)〈v,u〉 at the vector x.

13. Some variational problems have no solution. For instance, show that
the following two functionals have no minimum subject to the given
constraints:

(a) The integral
∫ 1

0

√
1 + y′(x)2 dx subject to the four constraints

y(0) = y(1) = 0 and y′(0) = y′(1) = 1.
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(b) Weierstrass’s integral
∫ 1

−1
x2y′(x)2 dx subject to the constraints

y(−1) = −1 and y(1) = 1.

In each case y(x) can be any piecewise differentiable function on the
given interval.

14. Consider the closed subspace of C1[0, 2π] defined by functions that
are periodic. Wirtinger’s inequality says

∫ 2π

0

f ′(t)2dt ≥
∫ 2π

0

f(t)2dt

for every such function f(t) with equality if and only if

f(t) = a cos t+ b sin t.

Prove this result by considering the functional

W (f ) =

∫ 2π

0

[
f ′(t)2 − f(t)2

]
dt

For the purpose of this problem your may assume that the minimum
of W (f ) is attained.

15. Consider a functional

F (x) =

∫ b

a

f [t, x(t), x′(t), . . . , x(k)(t)] dt

defined on Ck[a, b]. Derive the Euler-Lagrange equation

∂

∂x
f +

k∑
j=1

(−1)j d
j

dtj

[
∂

∂x(j)
f

]
= 0

for the function x(t) optimizing F (x). What assumptions are neces-
sary to justify this derivation?

16. Let y(x) denote a continuously differentiable curve over the interval
[−1, 1] satisfying y(−1) = y(1) = 0. Find y(x) that minimizes the
length

L(y) =

∫ 1

−1

√
1 + y′(x)2 dx.

while enclosing a fixed area

∫ 1

−1

y(x) dx = A ≤ π

2
.
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17. If possible, find the minimum and maximum of the functional

F (y) =

∫ 1

0

[y′(x)2 + x2] dx

over C1[0, 1] subject to the constraints y(0) = 0, y(1) = 0, and∫ 1

0
y(x)2dx = 1. Verify that your minimum solution yields the mini-

mum value.

18. Find the minimum value of the functional

M(y) =

∫ 1

0

xy(x) dx

over C0[0, 1] subject to the constraint

V (y) =

∫ 1

0

y(x)2 dx =
1

12
.

Verify that your solution gives the minimum.

19. Find the minimum value of the functional

F (y) =

∫ π

0

[y′(x)2 + 2y(x) sinx] dx

subject to the single constraint y(0) = 0. How does this differ from
the solution when the constraint y(π) = 0 is added? Verify in each
case that the minimum is achieved.

20. Suppose the speed of light in the upper-half xy-plane is v(y) = y.
Find the path of light connecting (x0, y0) to (x1, y1). Show that the
travel time is infinite if and only if either y0 or y1 equals 0.

21. In the n-body problem, linear and angular momentum are defined by

L(t) =

n∑
i=1

mi x
′
i(t)

A(t) =
n∑

i=1

mi xi(t)× x′i(t).

Prove that these quantities are conserved. (Hints: The force exerted
by i on j is equal in magnitude and opposite in direction to the force
exerted by j on i. The cross product v × v of a vector with itself
vanishes.)
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22. Suppose the integrand L(t,x,v) of the functional

F (x) =

∫ t1

t0

L[t, x(t), x′(t)] dt

is strictly convex in the variable v with continuous second differential
∂23L(t,x,v). In mechanics, L(t,x,v) is called the Lagrangian, and its
Fenchel conjugate

H(t,x,p) = sup
v
[p∗v − L(t,x,v)]

is called the Hamiltonian. According to Proposition 14.3.2, we recover
L(t,x,v) as

L(t,x,v) = sup
p
[v∗p−H(t,x,p)].

Show that v and p determine each other through the equations

∂3L(t,x,v) = p∗

∂3H(t,x,p) = v∗

and that

H(t,x,p) = p∗v − L(t,x,v) (17.21)

when these equations are satisfied. From the expression (17.21) de-
duce that

dH(t,x,p) = −dL(t,x,v) + p∗dv + v∗dp
= −∂1L(t,x,v)dt− ∂2L(t,x,v)dx+ ∂3H(t,x,p)dp.

Compare this to the differential

dH(t,x,p) = ∂1H(t,x,p)dt+ ∂2H(t,x,p)dx+ ∂3H(t,x,p)dp

and conclude that

∂2L(t,x,v) = −∂2H(t,x,p).

Use this result to prove that the Euler-Lagrange equation

∂2L[t, x(t), x′(t)] =
d

dt
∂3L[t, x(t), x′(t)]

is equivalent to the two Hamiltonian equations

d

dt
x(t) = ∂3H[t, x(t), p(t)]∗

d

dt
p(t) = −∂2H[t, x(t), p(t)]∗.
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Thus, the first-order Hamiltonian differential equations can serve as a
substitute for the second-order Euler-Lagrange differential equation
in these circumstances.

23. Continuing Problem 22, show that the Hamiltonian is constant over
time t whenever it does not depend explicitly on time, that is

H(t,x,p) = H(x,p).

24. Continuing Problem 22, suppose L(t,x,v) can be expressed as the
difference between the kinetic energy T (v) = 1

2

∑n
i=1mi‖vi‖2 and the

potential energy U(x). Demonstrate thatH(t,x,p) is the sum T (v)+
U(x) of the kinetic and potential energies. (Hint: See Problem 10 of
Chap. 14.)



Appendix: Mathematical Notes

A.1 Univariate Normal Random Variables

A random variable X is said to be standard normal if it possesses the
density function

ψ(x) =
1√
2π
e−

x2

2 .

To find the characteristic function ψ̂(s) = E(eisX) of X , we derive and
solve a differential equation. Differentiation under the integral sign and
integration by parts together imply that

d

ds
ψ̂(s) =

1√
2π

∫ ∞

−∞
eisxixe−

x2

2 dx

= − i√
2π

∫ ∞

−∞
eisx

d

dx
e−

x2

2 dx

= − i√
2π
eisxe−

x2

2

∣∣∣∞
−∞

− s√
2π

∫ ∞

−∞
eisxe−

x2

2 dx

= −sψ̂(s).
The unique solution to this differential equation with initial value ψ̂(0) = 1

is ψ̂(s) = e−s2/2. The differential equation also yields the moments

E(X) =
1

i

d

ds
ψ̂(0) = 0
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and

E(X2) =
1

i2
d2

ds2
ψ̂(0)

=
1

i2

[
− ψ̂(s) + s2ψ̂(s)

]
s=0

= 1.

An affine transformation Y = σX + μ of X is normally distributed with
density

1

σ
ψ
(y − μ

σ

)
=

1√
2πσ2

e−
(y−μ)2

2σ2 .

Here we take σ > 0. The general identity E
[
eis(μ+σX)

]
= eisμE

[
ei(σs)X

]
permits us to write the characteristic function of Y as

eisμψ̂(σs) = eisμ−
σ2s2

2 .

The mean and variance of Y are μ and σ2.
One of the most useful properties of normally distributed random vari-

ables is that they are closed under the formation of independent linear
combinations. Thus, if Y and Z are independent and normally distributed,
then aY + bZ is normally distributed for any choice of the constants a and
b. To prove this result, it suffices to assume that Y and Z are standard
normal. In view of the form of ψ̂(s), we then have

E
[
eis(aY+bZ)

]
= E

[
ei(as)Y

]
E
[
ei(bs)Z

]
= ψ̂

(√
a2 + b2s

)
.

Thus, if we accept the fact that a distribution function is uniquely defined
by its characteristic function, aY + bZ is normally distributed with mean
0 and variance a2 + b2.
Doubtless the reader is also familiar with the central limit theorem. For

the record, recall that if Xn is a sequence of independent identically dis-
tributed random variables with common mean μ and common variance σ2,
then

lim
n→∞Pr

[∑n
j=1(Xj − μ)√

nσ2
≤ x

]
=

1√
2π

∫ x

−∞
e−

u2

2 du.

Of course, there is a certain inevitability to the limit being standard normal;
namely, if the Xn are standard normal to begin with, then the standardized
sum n−1/2

∑n
j=1Xj is also standard normal.
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A.2 Multivariate Normal Random Vectors

We now extend the univariate normal distribution to the multivariate nor-
mal distribution. Among the many possible definitions, we adopt the one
most widely used in stochastic simulation. Our point of departure will be
random vectors with independent standard normal components. If such a
random vector X has n components, then its density is

n∏
j=1

1√
2π
e−x2

j/2 =
( 1

2π

)n/2

e−x∗x/2.

Because the standard normal distribution has mean 0, variance 1, and
characteristic function e−s2/2, it follows thatX has mean vector 0, variance
matrix I, and characteristic function

E(eis
∗X) =

n∏
j=1

e−s2j/2 = e−s∗s/2.

We now define any affine transformation Y = AX +μ of X to be mul-
tivariate normal [218]. This definition has several practical consequences.
First, it is clear that E(Y ) = μ and Var(Y ) = AVar(X)A∗ = AA∗ = Ω.
Second, any affine transformation BY +ν = BAX +Bμ+ν of Y is also
multivariate normal. Third, any subvector of Y is multivariate normal.
Fourth, the characteristic function of Y is

E(eis
∗Y ) = eis

∗μ E(eis
∗AX) = eis

∗μ−s∗AA∗s/2 = eis
∗μ−s∗Ωs/2.

This enumeration omits two more subtle issues. One is whether Y pos-
sesses a density. Observe that Y lives in an affine subspace of dimension
equal to or less than the rank of A. Thus, if Y has m components, then
n ≥ m must hold in order for Y to possess a density. A second issue is
the existence and nature of the conditional density of a set of components
of Y given the remaining components. We can clarify both of these issues
by making canonical choices of X and A based on the classical QR de-
composition of a matrix, which follows directly from the Gram-Schmidt
orthogonalization procedure [48].
Assuming that n ≥ m, we can write

A∗ = Q

(
R
0

)
,

where Q is an n × n orthogonal matrix and R = L∗ is an m ×m upper-
triangular matrix with nonnegative diagonal entries. (If n = m, we omit
the zero matrix in the QR decomposition.) It follows that

AX = (L 0∗ )Q∗X = (L 0∗ )Z.
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In view of the usual change-of-variables formula for probability densities
and the facts that the orthogonal matrix Q∗ preserves inner products and
has determinant ±1, the random vector Z has n independent standard
normal components and serves as a substitute for X. Not only is this true,
but we can dispense with the last n −m components of Z because they
are multiplied by the matrix 0∗. Thus, we can safely assume n = m and
calculate the density of Y = LZ+μ when L is invertible. In this situation,
Ω = LL∗ is termed the Cholesky decomposition, and the usual change-of-
variables formula shows that Y has density

f(y) =
( 1

2π

)n/2

| detL−1|e−(y−μ)∗(L−1)∗L−1(y−μ)/2

=
( 1

2π

)n/2

| detΩ|−1/2e−(y−μ)∗Ω−1(y−μ)/2,

where Ω = LL∗ is the variance matrix of Y .
To address the issue of conditional densities, consider the compatibly

partitioned vectors Y ∗ = (Y ∗
1,Y

∗
2), X

∗ = (X∗
1,X

∗
2), and μ∗ = (μ∗

1,μ
∗
2)

and matrices

L =

(
L11 0
L21 L22

)
, Ω =

(
Ω11 Ω12

Ω21 Ω22

)
.

Now suppose that X is standard normal, that Y = LX +μ, and that L11

has full rank. For Y 1 = y1 fixed, the equation y1 = L11X1 + μ1 shows
that X1 is fixed at the value x1 = L−1

11 (y1 − μ1). Because no restrictions
apply to X2, we have

Y 2 = L22X2 + L21L
−1
11 (y1 − μ1) + μ2.

Thus, Y 2 given Y 1 is normal with mean L21L
−1
11 (y1−μ1)+μ2 and variance

L22L
∗
22. To express these in terms of the blocks of Ω = LL∗, observe that

Ω11 = L11L
∗
11

Ω21 = L21L
∗
11

Ω22 = L21L
∗
21 +L22L

∗
22.

The first two of these equations imply that L21L
−1
11 = Ω21Ω

−1
11 . The last

equation then gives

L22L
∗
22 = Ω22 −L21L

∗
21

= Ω22 −Ω21(L
∗
11)

−1L−1
11 Ω12

= Ω22 −Ω21Ω
−1
11 Ω12.

These calculations do not require that Y 2 possess a density. In summary,
the conditional distribution of Y 2 given Y 1 is normal with mean and
variance

E(Y 2 | Y 1) = Ω21Ω
−1
11 (Y 1 − μ1) + μ2

Var(Y 2 | Y 1) = Ω22 −Ω21Ω
−1
11 Ω12. (A.1)
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A.3 Polyhedral Sets

A polyhedral set S is the nonempty intersection of a finite number of half-
spaces. Symbolically, S can be represented as

S = {x ∈ Rm : v∗
ix ≤ ci for 1 ≤ i ≤ p} . (A.2)

As previously noted, S is closed and convex. If all ci = 0, then S is said to
be a polyhedral cone. We now prove a sequence of propositions that lay out
the basic facts about polyhedral cones and sets. Consult Examples 2.4.1
and 14.3.7 for background material on convex cones.

Proposition A.3.1 The polar cone of a polyhedral cone is a finitely gen-
erated cone and vice versa. In matrix notation, the cones {x : V ∗x ≤ 0}
and {V a : a ≥ 0} constitute a polar pair.

Proof: Assume the polyhedral set (A.2) is a cone. Let us show that its
polar cone is

T =
{
y ∈ Rm : y =

p∑
i=1

aivi, ai ≥ 0 for all i
}
.

According to Example 2.4.1, the finitely generated cone T is closed and
convex. In view of Example 14.3.7, it therefore suffices to prove that the
polar cone T ◦ coincides with S. But this follows from the simple observation
that x∗vi ≤ 0 for all vi if and only if x∗(

∑p
i=1 aivi) ≤ 0 for all conical

combinations of the vi.

Proposition A.3.2 A cone is polyhedral if and only if it is finitely gener-
ated.

Proof: Consider a cone C generated by the vectors u1, . . . ,up in Rn. Let
us prove by induction on p that C is a polyhedral cone. Suppose p = 1 and
u1 = 0. If e1, . . . , en is the standard basis of Rn, then

C = {0} = {x : e∗ix ≤ 0, (−ei)∗x ≤ 0, for all i}.

If p = 1 and u1 �= 0, then choose an orthogonal basis w1, . . . ,wn with
w1 = −u1. In this basis, we have

C = {x : w∗
1x ≤ 0, w∗

ix ≤ 0, (−wi)
∗x ≤ 0, for all i ≥ 2}.

Now assume p > 1, and let K be the cone generated by u1, . . . ,up−1.
By the induction hypothesis, K has polyhedral representation

K = {x : v∗
ix ≤ 0, 1 ≤ i ≤ q}.
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Furthermore, the cone C generated by u1, . . . ,up satisfies

C = {x : x− tup ∈ K for some t ≥ 0}
= {x : v∗

i (x− tup) ≤ 0 for all i and some t ≥ 0}
= {x : v∗

ix ≤ tv∗
iup for all i and some t ≥ 0}.

To represent C as a polyhedral cone, we eliminate the variable t by the
Fourier–Motzkin maneuver. Accordingly, define the index sets

I− = {i : v∗
iup < 0}, I0 = {i : v∗

iup = 0}, I+ = {i : v∗
iup > 0}.

In this notation x ∈ C if and only if there exists t ≥ 0 with

v∗
ix

v∗
iup

≤ t ≤ v∗
jx

v∗
jup

, v∗
kx ≤ 0

for all i ∈ I+, j ∈ I−, and k ∈ I0. Evidently, an appropriate t ≥ 0 exists if
and only if

max
i∈I+

v∗
ix

v∗
iup

≤ min
j∈I−

v∗
jx

v∗
jup

and min
j∈I−

v∗
jx

v∗
jup

≥ 0.

Because v∗
jup < 0 for j ∈ I−, the second of the last two inequalities is

equivalent to v∗
jx ≤ 0 for all j ∈ I−. It follows that C can be represented

as the polyhedral cone

C =
{
x : v∗

kx ≤ 0,
v∗
ix

v∗
iup

≤ v∗
jx

v∗
jup

, k ∈ I− ∪ I0, i ∈ I+, j ∈ I−
}

involving no mention of the scalar t.
Conversely, if C is a polyhedral cone, then Proposition A.3.1 implies

that C◦ is a finitely generated cone. By the argument just given, C◦ is also
a polyhedral cone. A second application of Proposition A.3.1 shows that
C◦◦ = C is a finitely generated cone.

Proposition A.3.3 (Minkowski–Weyl) A nonempty set S is polyhedral
if and only if it can be represented as

S =
{
x : x =

q∑
i=1

aiui +

r∑
j=1

bjwj ,

r∑
j=1

bj = 1, all ai ≥ 0, bj ≥ 0
}
. (A.3)

In other words, S is the algebraic sum of a finitely generated cone and the
convex hull of a finite set of points.

Proof: Consider the polyhedral set S appearing in equation (A.2), and
define the polyhedral cone

T = {(x, t) : t ≥ 0 and v∗
ix ≤ cit for 1 ≤ i ≤ p}

= {(x, t) : t ≥ 0 and v∗
ix− cit ≤ 0 for 1 ≤ i ≤ p}.
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Proposition A.3.2 implies that T is a finitely generated cone with generators
(ui, 0) and (wj , 1) for 1 ≤ i ≤ q and 1 ≤ j ≤ r. The representation (A.3)
is now a consequence of the fact that S = {x : (x, 1) ∈ T }.
For the converse, suppose S is a set of the form (A.3). Define T to be

the cone generated by the vectors (ui, 0) and (wj , 1) for 1 ≤ i ≤ q and
1 ≤ j ≤ r. Proposition A.3.2 identifies T as a polyhedral cone satisfying

T = {(x, t) : t ≥ 0 and v∗
ix ≤ cit for 1 ≤ i ≤ p}

for appropriate vectors v1, . . . ,vp and corresponding scalars c1, . . . , cp. But
this means that S = {x : (x, 1) ∈ T } is also a polyhedral set.

Proposition A.3.4 The collection of polyhedral sets enjoys the following
closure properties:

(a) The nonempty intersection of two polyhedral sets is polyhedral.

(b) The inverse image of a polyhedral set under a linear transformation
is polyhedral.

(c) The Cartesian product of two polyhedral sets is polyhedral.

(d) The image of a polyhedral set under a linear transformation is poly-
hedral.

(e) The vector sum of two polyhedral sets is polyhedral.

Proof: Assertion (a) is obvious. Consider the polyhedral set (A.2). If M
is a linear transformation from Rn to Rm, then the set equality

M−1(S) = {x ∈ Rn : v∗
i (Mx) ≤ ci for 1 ≤ i ≤ p}

= {x ∈ Rn : (M∗vi)
∗x ≤ ci for 1 ≤ i ≤ p}

proves assertion (b). To verify assertion (c), consider a second polyhedral
set

T =
{
y ∈ Rn : w∗

jy ≤ dj for 1 ≤ j ≤ q
}
.

The Cartesian product amounts to

S × T = {(x,y) : v∗
ix ≤ ci, w

∗
jy ≤ dj for all possible i and j}.

To prove assertion (d), consider the Minkowski–Weyl representation

S =
{
x ∈ Rm : x =

p∑
i=1

civi +

q∑
j=1

djwj

}
,
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where the first sum ranges over all convex combinations and the second
sum ranges over all conical combinations. If N is a linear transformation
from Rm to Rn, then

N(S) =
{
y ∈ Rn : y =

p∑
i=1

ciNvi +

q∑
j=1

djNwj

}

is a Minkowski–Weyl representation of the image. Finally, to prove assertion
(e), note that S+T is the image of the Cartesian product S×T under the
linear map (v,w) �→ v+w. Application of properties (c) and (d) complete
the proof.

Proposition A.3.5 Let f(x) be a convex function with domain a polyhe-
dral set S. If supx∈S f(x) <∞, then f(x) attains its maximum over S at
one of the points wj defining the convex hull part of S.

Proof: Assume that S has Minkowski–Weyl representation (A.3) and that
M = supx∈S f(x). If x ∈ S and ui is one of the vectors defining the conical
part of S, then x+ aiui ∈ S for all ai ≥ 0. Furthermore, for t ≥ 1 we have

f(x+ aiui) ≤
(
1− 1

t

)
f(x) +

1

t
f(x+ taiui)

≤
(
1− 1

t

)
f(x) +

M

t
.

Sending t to∞ shows that f(x+ aiui) ≤ f(x). Hence, we may confine our
attention to those points in the representation (A.3) with all ai = 0. With
this understanding, Jensen’s inequality

f
( r∑

j=1

bjwj

)
≤

r∑
j=1

bjf(wj) ≤ max{f(w1), . . . , f(wr)}

demonstrates that f(x) attains its maximum over S at one of the points
wj defining the convex hull part of S.

A.4 Birkhoff’s Theorem and Fan’s Inequality

Birkhoff’s theorem deals with the set Γn of n× n doubly stochastic matri-
ces. Every matrix M = (mij) in Γn has nonnegative entries and row and
column sums equal to 1. The affine constraints defining Γn compel it to be
a compact polyhedral set with Minkowski–Weyl representation

Γn =
{
x : x =

r∑
j=1

bjwj ,

r∑
j=1

bj = 1, bj ≥ 0
}

(A.4)
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lacking a conical part. See Proposition A.3.3. Compact polyhedral sets are
called convex polytopes and are characterized by their extreme points.
A point x in a convex set S is said to be extreme if it cannot be written

as a nontrivial convex combination of two points from S. It turns out that
the Minkowski–Weyl vectors wi in a convex polytope can be taken to be
extreme points. Indeed, suppose wi can be represented as

wi = α
r∑

j=1

ajwj + (1− α)
r∑

j=1

bjwj

with α ∈ (0, 1). Either ai < 1 or bi < 1; otherwise, the two points on the
right of the equation coincide with wi. Subtracting [αai+(1−α)bi]wi from
both sides of the equation and rescaling give wi as a convex combination∑

j 
=i cjwj . In any convex combination v of the vectors {wj}rj=1, one can
replace wi by this convex combination and represent v by a convex combi-
nation of the remaining vectorswj �= wi. If any non-extreme points remain
after deletion of wi, then this substitution and reduction process can be
repeated. Ultimately it halts with a set of vectors wj composed entirely
of extreme points. In fact, these are the only extreme points of the convex
polytope.
Birkhoff’s theorem identifies the permutation matrices as the extreme

points of Γn. A permutation matrix P = (pij) has entries drawn from the
set {0, 1}. Each of its rows and columns has exactly one entry equal to
1. The permutation matrices do not exhaust Γn. For instance, the matrix
1
n11

∗ belongs to Γn. For another example, take any orthogonal matrix U =
(uij) and form the matrix M with entries mij = u2ij . This matrix resides
in Γn as well.

Proposition A.4.1 (Birkhoff) Every doubly stochastic matrix can be
represented as a convex combination of permutation matrices.

Proof: It suffices to prove that the permutation matrices are the extreme
points of Γn. Suppose the permutation matrix P satisfies

P = αQ+ (1− α)R

for two doubly stochastic matrices Q and R and α ∈ (0, 1). If an entry pij
equals 1, then the two corresponding entries qij and rij of Q and R must
also equal 1. Likewise, if an entry pij equals 0, then the corresponding
entries qij and rij of Q and R must also equal 0. Thus, both Q and R
coincide with P . As a consequence, P is an extreme point.
Conversely, suppose M = (mij) is an extreme point that is not a per-

mutation matrix. Take any index pair (i0, j0) with 0 < mi0j0 < 1. Because
every row sum equals 1, there is an index j1 �= j0 with 0 < mi0j1 < 1.
Similarly, there is index i1 with 0 < mi1j1 < 1. This process of jumping
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along a row and then along a column creates a path from index pair to
index pair. Eventually, the path intersects itself. Take a closed circuit

(ik, jk)→ (ik+1, jk)→ · · · → (il, jl) = (ik, jk)

or

(ik+1, jk)→ (ik+1, jk+1)→ · · · → (il, jl) = (ik+1, jk)

and construct a matrix N whose entries are 0 except for entries along the
path. For these special entries alternate the values 1 and −1. It is clear
that this construction forces N to have row and column sums equal to 0.
Because the entries of M along the path occur in the open interval (0, 1),
there exists a positive constant ε such that A = M+εN and B = M−εN
are both doubly stochastic. The representation

M =
1

2
(A+B)

now demonstrates that M is not an extreme point. Hence, only permuta-
tion matrices can be extreme points.

As a prelude to stating Fan’s inequality, we first prove a classic rear-
rangement theorem of Hardy, Littlewood, and Pólya [118]. Consider two
increasing sequences a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn. If σ is any
permutation of {1, . . . , n}, then the theorem says

n∑
i=1

aibσ(i) ≤
n∑

i=1

aibi. (A.5)

To quote the celebrated trio:

The theorem becomes obvious if we interpret the ai as distances
along a rod to hooks and the bi as weights suspended from the
hooks. To get the maximum statical moment with respect to
the end of the rod, we hang the heaviest weights on the hooks
farthest from the end.

To prove the result, suppose the ai are in ascending order, but the bi are
not. Then there are indices j < k with aj ≤ ak and bj > bk. Because

ajbk + akbj − (ajbj + akbk) = (ak − aj)(bj − bk) ≥ 0,

we can increase the sum by exchanging bj and bk. A finite number of such
exchanges (transpositions) puts the bi into ascending order.

Proposition A.4.2 (von Neumann–Fan) Let A and B be n× n sym-
metric matrices with ordered eigenvalues λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μn.
Then

tr(AB) ≤ λ1μ1 + · · ·+ λnμn. (A.6)
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Equality holds in inequality (A.6) if and only if

A = WDAW
∗ and B = WDBW

∗

are simultaneously diagonalizable by an orthogonal matrix W and diagonal
matrices DA and DB whose entries are ordered from largest to smallest.

Proof: There exists a pair of orthogonal matrices U and V with

A =

n∑
i=1

λiuiu
∗
i and B =

n∑
i=1

μiviv
∗
i .

It follows that

tr(AB) =
n∑

i=1

n∑
j=1

λiμj tr(uiu
∗
i vjv

∗
j ).

The matrix C with entries cij = tr(uiu
∗
i vjv

∗
j ) is doubly stochastic because

its entries cij = (u∗
i vj)

2 are nonnegative and the column sums satisfy

n∑
i=1

tr(uiu
∗
i vjv

∗
j ) = tr

( n∑
i=1

uiu
∗
i vjv

∗
j

)
= tr(Invjv

∗
j ) = v∗

jvj = 1.

Virtually the same argument shows that the row sums equal 1. Proposi-
tion A.3.3 therefore implies that C is a convex combination

∑
k αkP k of

permutation matrices. This representation gives

tr(AB) = λ∗Cμ =
∑
k

αkλ
∗P kμ ≤

∑
k

αk

n∑
i=1

λiμi =

n∑
i=1

λiμi

in view of the Hardy–Littlewood–Pólya rearrangement inequality (A.5).
Equality holds in inequality (A.6) under the stated conditions because

tr(WDAW
∗WDBW

∗) = tr(DADB).

Here we apply the cyclic permutation property of the trace function and
the identity W ∗W = In.
Conversely, suppose inequality (A.6) is an equality. Following Theobald

[254], let E = A+B have ordered spectral decomposition E = WDEW
∗

with ρi the ith diagonal entry of DE . We now show that A and B have
ordered spectral decompositions WDAW

∗ and WDBW
∗, respectively.

The first half of the proposition and the hypothesis imply

tr(WDAW
∗B) ≤

n∑
i=1

λiμi = tr(AB)

tr(AE) ≤
n∑

i=1

λiρi = tr(DADE).
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It follows that

tr(WDAW
∗A) = tr(WDAW

∗E)− tr(WDAW
∗B)

≥ tr(DAW
∗EW )− tr(AB)

= tr(DADE)− tr(AB)

≥ tr(AE)− tr(AB)

= tr(A2).

Since tr(A2) = ‖A‖2F and ‖WDAW
∗‖F = ‖DA‖F = ‖A‖F , the Cauchy-

Schwarz inequality for the Frobenius inner product now gives

‖A‖2F = ‖WDAW
∗‖F‖A‖F ≥ tr(WDAW

∗A) ≥ ‖A‖2F .

Because equality must hold in this inequality, the standard necessary con-
dition for equality in the Cauchy-Schwarz inequality forces WDAW

∗ to
equal cA for some constant c. In fact, c = 1 because WDAW

∗ has the
same norm as A. A similar argument implies that B = WDBW

∗.

Another proof of the sufficiency half of Proposition A.4.2 is possibly more
illuminating [172]. Again let A and B be n × n symmetric matrices with
eigenvalues λ1 ≥ · · · ≥ λn and μ1 ≥ · · · ≥ μn. One can easily show that
the set of symmetric matrices with the same eigenvalues as A is compact.
Therefore the continuous function M �→ tr(MB) achieves its maximum
over the set at some matrix Amax. Now take any skew symmetric matrix C
and consider the one-parameter family of matrices A(t) = etCAmaxe

−tC

similar to Amax. Since C
∗ = −C, the matrix exponential etC is orthogonal

with transpose e−tC . The optimality of Amax implies that

d

dt
tr[A(t)B]

∣∣∣
t=o

= tr{[CAmax −AmaxC]B}
= tr[C(AmaxB −BAmax)]

vanishes. This suggests taking C equal to the skew symmetric commutator
matrix AmaxB −BAmax. It then follows that

0 = tr(CC) = − tr(CC∗) = −‖C‖2F .

In other words C vanishes, and Amax and B commute. Commuting sym-
metric matrices can be simultaneously diagonalized by a common orthog-
onal matrix. Hence,

tr(AB) ≤ tr(AmaxB) =
n∑

i=1

λσ(i)μi

for some permutation σ. Application of inequality (A.5) finishes the proof.
The next proposition summarizes the foregoing discussion.
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Proposition A.4.3 Consider an n× n symmetric matrix B with ordered
spectral decomposition U diag(μ)U∗. On the compact set of n×n symmetric
matrices with ordered eigenvalues λ1 ≥ · · · ≥ λn, the linear function

A �→ tr(AB)

attains its maximum of
∑n

i=1 λiμi at the point A = U diag(λ)U∗.

A.5 Singular Value Decomposition

In many statistical applications involving large data sets, statisticians are
confronted with a large m×n matrix X = (xij) that encodes n features on
each of m objects. For instance, in gene microarray studies xij represents
the expression level of the ith gene under the jth experimental condition
[190]. In information retrieval, xij represents the frequency of the jth word
or term in the ith document [11]. The singular value decomposition (svd)
captures the structure of such matrices. In many applications there are
alternatives to the svd, but these are seldom as informative. From the huge
literature on the svd, the books [64, 105, 107, 136, 137, 232, 249, 260] are
especially recommended.
The spectral theorem for symmetric matrices discussed in Example 1.4.3

states that an m×m symmetric matrix M can be written as M = UΛU∗

for an orthogonal matrix U and a diagonal matrix Λ with diagonal entries
λi. If U has columns u1, . . . ,um, then the matrix product M = UΛU∗

unfolds into the sum of outer products

M =

m∑
j=1

λjuju
∗
j .

When λj �= 0 for j ≤ k and λj = 0 for j > k, M has rank k and only the
first k terms of the sum are relevant. The svd seeks to generalize the spectral
theorem to nonsymmetric matrices. In this case there are two orthonormal
sets of vectors u1, . . . ,uk and v1, . . . ,vk instead of one, and we write

M =

k∑
j=1

σjujv
∗
j = UΣV ∗ (A.7)

for matricesU and V with orthonormal columns u1, . . . ,uk and v1, . . . ,vk,
respectively. If σj < 0, one can exchange −uj for uj and −σj for σj . Hence,
it is possible to take the σj to be nonnegative in the representation (A.7).
For some purposes, it is better to fill out the matrices U and V to full

orthogonal matrices. If M is m × n, then U is viewed as m × m, Σ as
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m× n, and V as n× n. The svd then becomes

M = (u1 . . .uk uk+1 . . .um)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σ2
1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . σ2

k 0 . . . 0
0 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v∗
1
...
v∗
k

v∗
k+1

...
v∗
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

assuming k < min{m,n}. The scalars σ1, . . . , σk are said to be singular val-
ues and conventionally are listed in decreasing order. The vectors u1, . . . ,uk

are known as left singular vectors and the vectors v1, . . . ,vk as right sin-
gular vectors.
To prove that the svd of anm×n matrixM exists, consider the symmet-

ric matrix product M∗M . Let M∗M have spectral decomposition V ΩV ∗

with the eigenvalues σ2
i arranged from greatest to least along the diagonal

of Ω. The calculation

(Mvi)
∗Mvj = v∗

iM
∗Mvj = σ2

jv
∗
i vj =

{
0 i �= j
σ2
i i = j

shows that the vectors Mvi are orthogonal. Furthermore, when σ2
i > 0,

the normalized vector ui = σ−1
i Mvi is a unit vector. If we suppose that

σk > 0 but σk+1 = 0, then the representation (A.7) is valid because(
k∑

j=1

σjujv
∗
j

)
vi = Mvi

for all vectors in the orthonormal basis {vi}ni=1.
Fan’s inequality generalizes to nonsymmetric matrices provided one sub-

stitutes ordered singular values for ordered eigenvalues. Let us first reduce
the problem to square matrices. If M is m × n with n < m, then the svd
M = UΣV ∗ translates into the svd

(M 0 ) = U (Σ 0 )

(
V ∗ 0
0 Im−n

)

preserving the nontrivial singular values. Furthermore, the trace of two
such expanded matrices satisfies

tr
[
(M 0 )

∗
(N 0 )

]
= tr(M∗N).

A similar representation applies when m < n.
We now reduce the problem to symmetric matrices. Suppose M is an

m×m square matrix with svd M = UΣV ∗. The matrix

K =

(
0 M

M∗ 0

)
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is a 2m× 2m symmetric matrix, and the 2m vectors

wi =
1√
2

(
ui

vi

)
and zi =

1√
2

(−ui

vi

)

are orthogonal unit vectors. Because M∗ui = σivi and Mvi = σiui, the
vector wi is an eigenvector of K with eigenvalue σi, and the vector zi is an
eigenvector of K with eigenvalue −σi. Hence, we have found the spectral
decomposition of K.
Now let N be a second m × m matrix with svd PΩQ∗ and a similar

expansion to a 2m×2m symmetric matrixL. Fan’s inequality for symmetric
matrices gives

2 tr(M∗N) = tr(M∗N ) + tr(NM∗)
= tr(M∗N ) + tr(MN∗)
= tr(K∗L)

≤
m∑
i=1

σiωi +
m∑
i=1

(−σi)(−ωi)

= 2

m∑
i=1

σiωi.

Equality occurs in this inequality if and only if P = U and Q = V . Thus,
Fan’s inequality extends to arbitrary matrices if we substitute ordered sin-
gular values for ordered eigenvalues.

A.6 Hadamard Semidifferentials

A function f(y) mapping an open set U of Rp into Rq is said to be
Hadamard semidifferentiable at x ∈ U if for every vector v the uniform
limit

lim
t↓0,w→v

f(x+ tw)− f(x)
t

= dvf(x)

exists [63]. Takingw identically equal to v shows that dvf(x) coincides with
the forward directional derivative of f(y) at x in the direction v. Some
authors equate semidifferentiability at x to the existence of all possible
forward directional derivatives. Hadamard’s definition is more restrictive
and yields a richer theory. For the sake of brevity, we will omit the prefix
Hadamard in discussing semidifferentials. It is also convenient to restate
the definition in terms of sequences. Thus, semidifferentiability requires
the limit

lim
n→∞

f(x+ tnwn)− f(x)
tn

= dvf(x)
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to exist and to be independent of the particular sequences tn ↓ 0 and
wn → v. The relation between differentiability and semidifferentiability is
spelled out in our first proposition.

Proposition A.6.1 A function f(y) differentiable at x is also semidiffer-
entiable at x. If f(y) is semidifferentiable at x, and the map v �→ dvf(x)
is linear, then f(y) is differentiable at x.

Proof: If f(y) differentiable at x, then

f(y)− f(x) = df(x)(y − x) + o(‖y − x‖)

as y approaches x. Choosing y = x+tw for t > 0 and ‖w−v‖ small shows
that the Hadamard difference quotient approaches dvf(x) = df(x)v. To
prove the partial converse, define

g(u) =
f(x+ u)− f(x)− duf(x)

‖u‖ ,

and set c = lim sup‖u‖→0 ‖g(u)‖. It suffices to prove that c = 0. Choose a
sequence un �= 0 such that tn = ‖un‖ converges to 0 and ‖g(un)‖ converges
to c. Because the unit sphere is compact, some subsequence of the sequence
wn = ‖un‖−1un converges to a unit vector v. Without loss of generality,
take the subsequence to be the original sequence. It then follows that

lim
n→∞ g(un) = lim

n→∞
f(x+ tnwn)− f(x)− dtnwnf(x)

tn

= lim
n→∞

[
f(x+ tnwn)− f(x)

tn
− dwn

f(x)

]

= dvf(x)− dvf(x).

The second equality here invokes the homogeneity of the map v �→ dvf(x).
The third equality invokes the continuity of the map, which is a consequence
of linearity. This calculation proves that c = 0.

Our second proposition demonstrates the utility of Hadamard’s definition
of semidifferentiability.

Proposition A.6.2 A function f(y) semidifferentiable at x is continuous
at x.

Proof: Suppose xn tends to x but f(xn) does not tend to f(x). Then there
exists an ε > 0 such that ‖f(xn)−f(x)‖ ≥ ε for infinitely many n. Without
loss of generality, we may assume that the entire sequence possesses this
property. Now write

xn = x+ xn − x = x+ tn
xn − xn

‖xn − x‖
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by taking tn = ‖xn − x‖. Again some subsequence of the sequence

wn =
xn − xn

‖xn − x‖
of unit vectors converges to a unit vector v. Passing to the subsequence
where this occurs if necessary, we have

f(x+ tnwn)− f(x) = tndvf(x) + o(tn), (A.8)

contrary to the assumption that ‖f(xn)− f(x)‖ ≥ ε for all large n.

The approximate equality (A.8) has an important consequence in mini-
mization of real-valued functions. Suppose we can find a direction v with
dvf(x) < 0. Then v is a descent direction from x in the sense that
f(x + tv) < f(x) for all sufficiently small t > 0. Thus, back-tracking is
bound to produce a decrease in f(y).
Here is a simple test for establishing semidifferentiability.

Proposition A.6.3 Suppose f(y) is locally Lipschitz around x and pos-
sesses all possible forward directional derivatives there. Then f(y) is semid-
ifferentiable at x.

Proof: Consider the expansion

f(x+ tw)− f(x)
t

=
f(x+ tw)− f(x+ tv)

t
+
f(x+ tv)− f(x)

t
.

As t ↓ 0, the second fraction on the right of this equation tends to the
forward directional derivative of f(y) at x in the direction v. If c is a
Lipschitz constant for f(y) in a neighborhood of x, then the first fraction
on the right of the equation is locally bounded in norm by c‖w−v‖, which
can be made arbitrarily small by taking w close to v.

Example A.6.1 Convex Functions

Any convex function f(y) is locally Lipschitz and possesses all possible
forward directional derivatives at an interior point x of its essential domain.
Proposition A.6.3 implies that f(y) is semidifferentiable at such points.

Example A.6.2 Norms

A norm ‖x‖† on Rp is convex and therefore semidifferentiable in x. In fact,
a norm is globally Lipschitz because∣∣‖y‖† − ‖x‖†∣∣ ≤ ‖y − x‖† ≤ c‖y − x‖
for some constant c > 0. At the origin the semidifferential reduces to

lim
t↓0,w→v

‖tw‖† − 0

t
= ‖v‖†.
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At other points the semidifferential is more complicated to calculate.

Semidifferentiable functions obey most of the classical rules of differen-
tiation.

Proposition A.6.4 Let f(y) and g(y) be two functions semidifferentiable
at the point x. Then the homogeneity, sum, product, inverse, and chain
rules

dv [cf(x)] = cdvf(x)

dv[f(x) + g(x)] = dvf(x) + dvg(x)

dv [f(x)g(x)] = dvf(x)g(x) + f(x)dvg(x)

dvf(x)
−1 = −f(x)−1dvf(x)f(x)

−1

dvf ◦ g(x) = ddvg(x)f [g(x)]

are valid under the usual compatibility assumptions for vector and matrix-
valued functions.

Proof: These claims follow directly from the definition of semidifferentia-
bility. Consider for instance the quotient rule. We simply write

1

t

[
1

f(x+ tw)
− 1

f(x)

]
= −f(x+ tw)−1 · f(x+ tw)− f(x)

t
· f(x)−1

and take limits, invoking the continuity of f(y) at x in the process. For
the chain rule, set

u =
g(x+ tw)− g(x)

t

and rewrite the defining difference quotient as

f [g(x+ tw)]− f [g(x)]
t

=
f [g(x) + tu]− f [g(x)]

t
.

Since u tends to dvg(x), the limit ddvg(x)f [g(x)] emerges.

Example A.6.3 Semidifferential of ‖x‖r for 1 ≤ r <∞
The sum rule and a brief calculation give

dv‖x‖1 =

p∑
i=1

dv|xi| =

p∑
i=1

{
vi xi > 0
|vi| xi = 0
−vi xi < 0.

Application of the chain and rules shows that the norm

‖x‖r =

(
p∑

i=1

|xi|r
)1/r
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for 1 < r <∞ has semidifferential

dv‖x‖r =
1

r

(
p∑

i=1

|xi|r
) 1

r−1 p∑
i=1

r|xi|r−1dv |xi|

= ‖x‖1−r
r

p∑
i=1

|xi|r−1 sgn(xi)vi.

Note that the semidifferential dv‖x‖r does not necessarily converge to the
semidifferential dv‖x‖1 as r tends to 1.

Example A.6.4 Differences of Convex Functions

If f(y) and g(y) are convex, then the difference h(y) = f(y) − g(y) may
not be convex. However, it is semidifferentiable throughout the intersection
of the interiors of the essential domains of f(y) and g(y).

More surprising than the classical rules are the maxima and minima rules
of the next proposition.

Proposition A.6.5 Assume the real-valued functions f1(y), . . . , fm(y) are
semi-differentiable at the point x. If

I(x) = {i : fi(x) = max
i
fi(x)} and J(x) = {i : fi(x) = min

i
fi(x)},

then maxi fi(y) and mini fi(y) are semidifferentiable at x and

dv max
i
fi(x) = max

i∈I(x)
dvfi(x) and dv min

i
fi(x) = min

i∈J(x)
dvfi(x).

Proof: The general rules follow from the case m = 2 and induction. Con-
sider the minima rule. If f1(x) < f2(x), then this inequality persists in
a neighborhood of x. Hence, the rule follows by taking the limit of the
difference quotient

min{f1(x+ tw), f2(x+ tw)} −min{f1(x), f2(x)}
t

=
f1(x+ tw)− f1(x)

t
.

The case f2(x) < f1(x) is handled similarly. For the case f2(x) = f1(x),
we have

min1≤i≤2 fi(x+ tw)−min1≤i≤2 fi(x)

t
= min

1≤i≤2

fi(x+ tw)− fi(x)
t

.

Taking limits again validates the rule.
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Example A.6.5 Semidifferential of ‖x‖∞
The maxima rule implies

dv‖x‖∞ = max
i∈I(x)

dv |xi| = max
i∈I(x)

{
vi xi > 0
|vi| xi = 0
−vi xi < 0

for I(x) = {i : |xi| = ‖x‖∞}.
Proposition A.6.5 was generalized by Danskin [54]. Here is a convex ver-

sion of Danskin’s result.

Proposition A.6.6 Consider a continuous function f(x,y) of two vari-
ables x ∈ Rp and y ∈ C for some compact set C ⊂ Rq. Suppose f(x,y) is
convex in x for each fixed y. Then the function g(x) = supy∈C f(x,y) is
convex and has semidifferential

dvg(x) = sup
y∈S(x)

dvf(x,y),

where S(x) denotes the solution set of y ∈ C satisfying f(x,y) = g(x).
Finally, if S(x) consists of a single point y and ∇xf(x,y) exists, then
∇g(x) exists and equals ∇xf(x,y).

Proof: The function g(x) is finite by virtue of the continuity of f(x,y) in
y and the compactness of C. It is convex because convexity is preserved
under suprema. It therefore possesses a semidifferential, whose value equals
the forward directional derivative dvg(x). Now select any yn ∈ S(x+ tnv)
and any y ∈ S(x). The inequality

g(x+ tnv)− g(x)
tn

=
f(x+ tnv,yn)− f(x,y)

tn

=
f(x+ tnv,yn)− f(x+ tnv,y)

tn

+
f(x+ tnv,y)− f(x,y)

tn

≥ f(x+ tnv,y)− f(x,y)
tn

implies in the limit that dvg(x) ≥ dvf(x,y) and consequently that

dvg(x) ≥ sup
y∈S(x)

dvf(x,y).

In the process this logic reveals that supy∈S(x) dvf(x,y) is finite.
To prove the reverse inequality, observe that the inequalities

dvg(x) ≤ g(x+ tnv)− g(x)
tn
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≤ f(x+ tnv,yn)− f(x,yn)

tn
≤ dvf(x+ tnv,yn)

for yn ∈ S(x+ tnv) simply reflect the monotonicity relations between dif-
ference quotients and directional derivatives for a convex function discussed
in Sect. 6.4. To complete the proof, it suffices to argue that

lim sup
n→∞

dvf(x+ tnv,yn) ≤ dvf(x,y)

for some point y ∈ S(x). Fortunately, we can identify y as the limit of any
convergent subsequence of the original sequence yn. Without loss of gen-
erality, assume that this subsequence coincides with the original sequence.
Taking limits in the inequality f(x+ tnv,yn) ≥ f(x+ tnv, z) implies that
f(x,y) ≥ f(x, z) for all z; hence, y ∈ S(x). Now for any ε > 0, all suffi-
ciently small t > 0 satisfy

f(x+ tv,y)− f(x,y)
t

≤ dvf(x,y) +
ε

2
.

Hence, for such a t and sufficiently large n, joint continuity and monotonic-
ity imply

dvf(x+ tnv,yn) ≤ f(x+ tnv + tv,yn)− f(x+ tnv,yn)

t

≤ f(x+ tv,y)− f(x,y)
t

+
ε

2
≤ dvf(x,y) + ε

Since ε can be taken arbitrarily small in the inequality

dvf(x+ tnv,yn) ≤ dvf(x,y) + ε,

this completes the derivation of the semidifferential. To verify the last claim
of the proposition, note that dvg(x) = dvf(x,y) = ∇xf(x,y)

∗v.

Danskin’s original argument dispenses with convexity and relies on the
existence and continuity of the gradient ∇xf(x,y). For our purposes the
convex version is more convenient.

Example A.6.6 Orthogonally Invariant Matrix Norms

Let ‖A‖† be a matrix norm on m × n matrices. As pointed out in Exam-
ple 14.3.6, every matrix norm has a dual norm ‖B‖� in terms of which

‖A‖† = sup
‖B‖�=1

tr(B∗A). (A.9)

The semidifferential of the linear map A �→ tr(B∗A) is

dC tr(B∗A) = tr(B∗C),
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and the set {B : ‖B‖� = 1} is compact. Thus, the hypotheses of Propo-
sition A.6.6 are met. Furthermore, representation (A.9) and duality show
that ‖·‖† is orthogonally invariant if and only if ‖·‖� is orthogonally invari-
ant. For an orthogonally invariant pair, the restriction ‖B‖� = 1 can be
re-expressed as ‖DB‖� = 1 using the diagonal matrix DB whose diagonal
entries are the singular values of B.
According to Fan’s inequality, tr(B∗A) ≤∑

i βiαi, where the αi are the
ordered singular values of A and the βi are the ordered singular values of
B. Equality is attained in Fan’s inequality if and only if A and B have
ordered singular value decompositions A = UDAV ∗ and B = UDBV ∗

with shared singular vectors. Let SA be the set of diagonal matrices DB

with ordered diagonal entries βi, ‖DB‖� = 1, and
∑

i βiαi = ‖A‖†. If the
matrix U has columns ui and the matrix V has columns vi, then it follows
that

dC‖A‖† = sup
DB∈SA

A=UDAV ∗

tr(V DBU∗C) = sup
DB∈SA

A=UDAV ∗

∑
i

βiu
∗
iCvi,

where the suprema extend over all singular value decompositions of A.
When the singular values are distinct, the singular vectors of A are unique
up to sign. The singular values are always unique. As an example, consider
the spectral norm ‖B‖ = β1 and its dual the nuclear norm ‖B‖� =

∑
i βi.

The forward directional derivatives dC‖A‖ and dC‖A‖� amount to

dC‖A‖ = sup
A=UDAV ∗

u∗
1Cv1

dC‖A‖� = sup
A=UDAV ∗

(∑
αi>0

u∗
iCvi +

∑
αi=0

sup
βi∈[0,1]

βiu
∗
iCvi

)
.

In the first case we take β1 = 1 and all remaining βi = 0, and in the second
case we take βi = 1 when αi > 0 and βi ∈ [0, 1] otherwise. These directional
derivatives are consistent with the rule (14.5) and the subdifferentials found
in Example 14.5.7 and Problem 38 of Chap. 14.

Example A.6.7 Induced Matrix Norms

Let ‖x‖a and ‖y‖b be vector norms on Rm and Rn, respectively. These
induce a norm on m× n matrices M via

‖M‖a,b = sup
‖x‖a=1

‖Mx‖b.

The chain rule implies dN‖Mx‖b = dNx‖y‖b with y = Mx. Hence,
Proposition A.6.6 gives

dN‖M‖a,b = sup
‖x‖a=1

‖Mx‖b=‖M‖a,b

dNx‖Mx‖b.
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In the special case where the two vectors norms are both �1 norms, one has
‖M‖1,1 = maxj

∑
i |mij |. Suppose this maximum is attained for a unique

index j = k. Then the best vector x is the standard unit vector ek, and
one can show that

dN‖M‖1,1 =
∑
i

{
nik mik > 0
|nik| mik = 0
−nik mik < 0 .

The reader might like to consider the case of two �∞ vector norms.

Example A.6.8 Differentiability of a Fenchel Conjugate

Let f(x) be a strictly convex function satisfying the growth condition
lim inf‖x‖→∞ ‖x‖−1f(x) =∞. The Fenchel conjugate

f�(y) = sup
x

[y∗x− f(x)]

is finite for all y, and the supremum is attained at a unique point x. In
general for any compact set S of points y, the corresponding set C of
optimal points x is compact. If on the contrary C is unbounded, then
there exist paired sequences yn and xn with limn→∞ ‖xn‖ =∞. Given the
boundedness of S and the inequalities

−f(0) ≤ f�(yn) = y∗
nxn − f(xn) ≤ ‖yn‖‖xn‖ − f(xn),

this contradicts the growth condition. The reader can check that C is closed.
Propositions A.6.6 and A.6.1 now imply that dvf

�(y) = x∗v for the opti-
mal x and that f�(y) is differentiable with ∇f�(y) = x.

Example A.6.9 Distance to a Closed Convex Set C

The distance function dist(x, C) is convex and locally constant at an in-
terior point of C. All directional derivatives consequently vanish there. At
an exterior point the identity

∇ dist(x, C)2 = 2[x− PC(x)] (A.10)

involving the projection operator PC(x) shows that dist(x, C) is differen-
tiable. Indeed, because dist(x, C)2 > 0, the chain rule yields

∇ dist(x, C) = ∇
√
dist(x, C)2 =

x− PC(x)

dist(x, C)
.

To prove formula (A.10), set

Δ = dist(x+ y, C)2 − dist(x, C)2.
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In view of the inequality dist(x, C)2 ≤ ‖x−PC(x+y)‖2, one can construct
the lower bound

Δ ≥ ‖x+ y − PC(x+ y)‖2 − ‖x− PC(x+ y)‖2
= ‖y‖2 + 2y∗[x− PC(x+ y)]

= ‖y‖2 + 2y∗[x− PC(x)] + 2y∗[PC(x)− PC(x+ y)] (A.11)

≥ ‖y‖2 + 2y∗[x− PC(x)]− 2‖y‖ · ‖PC(x)− PC(x+ y)‖
≥ ‖y‖2 + 2y∗[x− PC(x)]− 2‖y‖2.

The penultimate inequality here is just the Cauchy–Schwartz inequality.
The final inequality is a consequence of the non-expansiveness of the projec-
tion operator. The analogous inequality dist(x+y, C)2 ≤ ‖x+y−PC(x)‖2
gives the upper bound

Δ ≤ ‖x+y−PC(x)‖2−‖x−PC(x)‖2 = ‖y‖2 +2y∗[x−PC(x)]. (A.12)

The two bounds (A.11) and (A.12) together imply that

Δ = 2y∗[x− PC(x)] + o(‖y‖)
and consequently that ∇ dist(x, C)2 = 2[x−PC(x)] according to Fréchet’s
definition of the differential.
In contrast differentiability of dist(x, C) at boundary points of C is not

assured. To calculate dv dist(x, C), we first observe that dist(x, C) equals
the composition of the functions f(y) = ‖y‖ and g(x) = x−PC(x). Given
that g(x) = 0, the chain rule therefore implies that

dv dist(x, C) = ‖v − dvPC(x)‖.
Thus, we need to evaluate dvPC(x). Without loss of generality, assume
that x = 0, and define T (x) to be the closure of the convex cone ∪t>0

1
tC.

Formally, T (x) is the tangent space of C at the point 0. We now demon-
strate that dvPC(x) = PT (x)(v) is the projection of v onto T (x). The easily
checked identity

PC(0+ tv)− PC(0)

t
= Pt−1C(v)

is our point of departure. We must demonstrate that Pt−1C(v) converges
to PT (x)(v). Because 0 ∈ C, the sets t−1C increase as t decreases. Hence,
the trajectory Pt−1C(v) remains bounded. Let x be any cluster point of
x(t) = Pt−1C(v). The obtuse angle criterion along the converging sequence
x(tn) requires

[v − x(tn)]
∗[z − x(tn)] ≤ 0

for every z ∈ t−1
n C. In the limit the inequality

(v − x)∗(z − x) ≤ 0
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holds for every z ∈ ∪t>0
1
tC and therefore for every z in the closure of this

set. The only point in this closed set that qualifies is PT (x)(v). Thus, all
cluster points of x(t) reduce to PT (x)(v).

A.7 Problems

1. Show that a polyhedral set S is compact if and only if it is the convex
hull of a finite set of points.

2. Prove that a polyhedral set S possesses at most finitely many extreme
points. (Hint: In the representation (A.2), a constraint v∗

ix ≤ ci is
said to be active at x whenever equality holds there. If two points
have the same active constraints, then neither of them is extreme.)

3. Demonstrate that every compact convex set possesses at least one
extreme point. (Hint: The point farthest from the origin is extreme.)

4. Let S = {x1, . . . ,xm} be a set of points in Rn. If the pair {xi,xj}
attains the maximum Euclidean distance between two points in S,
then show that xi and xj are both extreme points of conv(S).

5. Let C1 and C2 be two closed convex sets. Demonstrate that

dist(C1, C2) = inf
x∈C1,y∈C2

‖x− y‖

is attained whenever (a) C1 ∩C2 �= ∅, (b) either C1 or C2 is compact,
or (c) both C1 and C2 are polyhedral.

6. For two sequences a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn,
demonstrate that

n∑
i=1

aibσ(i) ≥
n∑

i=1

aibn−i+1

for every permutation σ.

7. Based on the previous exercise and the proof of Proposition A.4.2,
devise a lower bound on tr(AB) for symmetric matrices A and B.

8. Under the Frobenius inner product 〈M ,N 〉 = tr(M∗N) on square
matrices, show that the subspaces S and A of symmetric and skew-
symmetric matrices are orthogonal complements. Here M ∈ A if and
only if M = −M∗. Find the projection operators PS and PA.
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9. Suppose A and B are two n × n symmetric matrices with ordered
eigenvalues {λi}ni=1 and {μi}ni=1. Prove that

n∑
i=1

(λi − μi)
2 ≤ ‖A−B‖2F .

(Hint:
∑n

i=1 λ
2
i = ‖A‖2F and similarly for B.)

10. The function

f(x) =

{
x6
1

(x2−x2
1)

2+x8
1

x �= 0

0 x = 0

illustrates the difference between Hadamard semidifferentiability at
a point and the mere existence of all forward directional derivatives
at the point. Prove the following assertions:

(a) The forward directional derivative dvf(0) = 0 for all v. (Hint:
Treat the cases v2 = 0 and v2 �= 0 separately.)

(b) f(x) is discontinuous at 0. (Hint: Take the limit of f(t, t2) as
t→ 0.)

(c) The Hadamard semidifferential d(1,0)f(0) does not exist. (Hint:
Contrast the convergence of the relevant difference quotient for
the scalar sequence tn = 1

n → 0 and the two vector sequences
wn = (1, 0)∗ and wn = (1, 1

n )
∗ → (1, 0)∗.)

11. Demonstrate that a real-valued semidifferentiable function f(x) sat-
isfies

dv |f(x)| =

⎧⎨
⎩
dvf(x) f(x) > 0
|dvf(x)| f(x) = 0
−dvf(x) f(x) < 0

and

dv max{f(x), 0} =

⎧⎨
⎩
dvf(x) f(x) > 0
max{dvf(x), 0} f(x) = 0
0 f(x) < 0.

These formulas are pertinent in calculating the directional derivatives
of the exact penalty function Eρ(y) discussed in Sect. 16.3.

12. Suppose the function f(x) is Lipschitz in a neighborhood of the point
y with Lipschitz constant c. Prove the inequality

‖dvf(y)− dwf(y)‖ ≤ c‖v −w‖
assuming the indicated forward directional derivatives exist. The spe-
cial case w = 0 gives ‖dvf(x)‖ ≤ c‖v‖.



References

[1] Acosta E, Delgado C (1994) Fréchet versus Carathéodory. Am Math
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[226] Ruszczyński A (2006) Nonlinear optimization. Princeton University
Press, Princeton

[227] Sabatti C, Lange K (2002) Genomewide motif identification using a
dictionary model. Proc IEEE 90:1803–1810

[228] Sagan H (1969) Introduction to the calculus of variations. McGraw-
Hill, New York

[229] Santosa F, Symes WW (1986) Linear inversion of band-limited re-
flection seimograms. SIAM J Sci Stat Comput 7:1307–1330

[230] Schmidt M, van den Berg E, Friedlander MP, Murphy K (2009) Op-
timizing costly functions with simple constraints: a limited-memory
projected quasi-Newton algorithm. In: van Dyk D, Welling M (eds)
Proceedings of The twelfth international conference on artificial in-
telligence and statistics (AISTATS), vol 5, pp 456–463

[231] Schölkopf B, Smola AJ (2002) Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT, Cambridge

[232] Seber GAF, Lee AJ (2003) Linear regression analysis, 2nd edn. Wiley,
Hoboken

[233] Segel LA (1977) Mathematics applied to continuum mechanics.
Macmillan, New York

[234] Seneta E (1973) Non-negative matrices: an introduction to theory
and applications. Wiley, Hoboken

[235] Sha F, Saul LK, Lee DD (2003) Multiplicative updates for nonnega-
tive quadratic programming in support vector machines. In: Becker
S, Thrun S, Obermayer K (eds) Advances in neural information pro-
cessing systems 15. MIT, Cambridge, pp 1065–1073

[236] Silvapulle MJ, Sen PK (2005) Constrained statistical inference. Wi-
ley, Hoboken

[237] Sinkhorn R (1967) Diagonal equivalence to matrices with prescribed
row and column sums. Am Math Mon 74:402–405

[238] Sion M (1958) On general minimax theorems. Pac J Math 8:171–176

[239] Smith CAB (1957) Counting methods in genetical statistics. Ann
Hum Genet 21:254–276



References 515

[240] Smith DR (1974) Variational methods in optimization. Dover, Mine-
ola

[241] Sorensen DC (1997) Minimization of a large-scale quadratic function
subject to spherical constraints. SIAM J Optim 7:141–161

[242] Srebro N, Jaakkola T (2003) Weighted low-rank approximations.
In: Machine learning international workshop conference 2003. AAAI
Press, 20:720–727

[243] Steele JM (2004) The Cauchy-Schwarz master class: an introduction
to the art of inequalities. Cambridge University Press and the Math-
ematical Association of America, Cambridge

[244] Stein EM, Shakarchi R (2003) Complex analysis. Princeton Univer-
sity Press, Princeton

[245] Stern RJ, Wolkowicz H (1995) Indefinite trust region subproblems
and nonsymmetric eigenvalue perturbations. SIAM J Optim 5:286–
313

[246] Stoer J, Bulirsch R (2002) Introduction to numerical analysis, 3rd
edn. Springer, New York

[247] Strang G (1986) Introduction to applied mathematics. Wellesley-
Cambridge, Wellesley

[248] Strang G (1986) The fundamental theorem of linear algebra. Am
Math Mon 100:848–855

[249] Strang G (2003) Introduction to linear algebra, 3rd edn. Wellesley-
Cambridge, Wellesley

[250] Swartz C, Thomson BS (1988) More on the fundamental theorem of
calculus. Am Math Mon 95:644–648

[251] Tanner MA (1993) Tools for statistical inference: methods for the
exploration of posterior distributions and likelihood functions, 2nd
edn. Springer, New York

[252] Taylor H, Banks SC, McCoy JF (1979) Deconvolution with the �1
norm. Geophysics 44:39–52

[253] Teboulle M (1992) Entropic proximal mappings with applications to
nonlinear programming. Math Oper Res 17:670–690

[254] Theobald CM (1975) An inequality for the trace of the product of
two symmetric matrices. Math Proc Camb Phil Soc 77:265–267



516 References

[255] Thompson HB (1989) Taylor’s theorem using the generalized Rie-
mann integral. Am Math Mon 96:346–350

[256] Tibshirani R (1996) Regression shrinkage and selection via the lasso.
J Roy Stat Soc B 58:267–288

[257] Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity
and smoothness via the fused lasso. J Roy Stat Soc B 67:91–108

[258] Tikhomirov VM (1990) Stories about maxima and minima. American
Mathematical Society, Providence

[259] Titterington DM, Smith AFM, Makov UE (1985) Statistical analysis
of finite mixture distributions. Wiley, Hoboken

[260] Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM,
Philadelphia

[261] Uherka DJ, Sergott AM (1977) On the continuous dependence of the
roots of a polynomial on its coefficients. Am Math Mon 84:368–370

[262] Vandenberghe L, Boyd S, Wu S (1998) Determinant maximization
with linear matrix inequality constraints. SIAM J Matrix Anal Appl
19:499–533

[263] Van Ruitenburg J (2005) Algorithms for parameter estimation in the
Rasch model. Measurement and Research Department Reports 2005–
4. CITO, Arnhem

[264] Vapnik V (1995) The nature of statistical learning theory. Springer,
New York

[265] Vardi Y, Shepp LA, Kaufman L (1985) A statistical model for
positron emission tomography. J Am Stat Assoc 80:8–37

[266] Von Neumann J (1928) Zur theorie der gesellschaftsspiele. Math Ann
100:295–320

[267] Wang L, Gordon MD, Zhu J (2006) Regularized least absolute de-
viations regression and an efficient algorithm for parameter tuning.
In: Proceedings of the sixth international conference on data mining
(ICDM’06). IEEE Computer Society, Washington, DC, pp 690–700

[268] Wang S, Yehya N, Schadt EE, Wang H, Drake TA, Lusis AJ (2006)
Genetic and genomic analysis of a fat mass trait with complex inher-
itance reveals marked sex specificity. PLoS Genet 2:148–159



References 517

[269] Watson GA (1992) Characterization of the subdifferential of some
matrix norms. Linear Algebra Appl 170:1039–1053

[270] Weeks DE, Lange K (1989) Trials, tribulations, and triumphs of the
EM algorithm in pedigree analysis. IMA J Math Appl Med Biol
6:209–232

[271] Weiszfeld E (1937) On the point for which the sum of the distances
to n given points is minimum. Ann Oper Res 167:741 (Translated
from the French original [Tohoku Math J 43:335–386 (1937)] and
annotated by Frank Plastria)

[272] Weston J, Elisseeff A, Schölkopf B, Tipping M (2003) Use of the
zero-norm with linear models and kernel methods. J Mach Learn Res
3:1439–1461

[273] Whyte BM, Gold J, Dobson AJ, Cooper DA (1987) Epidemiology
of acquired immunodeficiency syndrome in Australia. Med J Aust
147:65–69

[274] Wright MH (2005) The interior-point revolution in optimization: his-
tory, recent developments, and lasting consequences. Bull Am Math
Soc 42:39–56

[275] Wu CF (1983) On the convergence properties of the EM algorithm.
Ann Stat 11:95–103

[276] Wu TT, Lange K (2008) Coordinate descent algorithms for lasso
penalized regression. Ann Appl Stat 2:224–244

[277] Wu TT, Lange K (2010) Multicategory vertex discriminant analysis
for high-dimensional data. Ann Appl Stat 4:1698–1721
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ABO genetic locus, 189
Active constraint, 107
Adaptive barrier methods,

318–325
linear programming, 320
logarithmic, 318–320

Admixtures, see EM algorithm,
cluster analysis

Affine function, 108
convexity, 143
Fenchel conjugate, 345
majorization, 208

Allele frequency estimation,
189–191, 225–226

Alternating least squares, 181
Analytic function, 87
ANOVA, 217
Apollonius’s problem, 130
Arithmetic–geometric mean

inequality, 145, 189
Arithmetic-geometric mean

inequality, 2–3, 8

Armijo rule, 303
Attenuation coefficient, 199

Backward algorithm, Baum’s,
235

Ball, 31
Barrier method, 314–317

adaptive, 318–325
Basis pursuit, 416, 433, 440
Baum’s algorithms, 234–236
Bayesian prior, 325, 371
Bernstein polynomial, 169
Binomial distribution, 159

score and information, 257
Birkhoff’s theorem, 481
Bivariate normal distribution

missing data, 239
Block relaxation, 171–183

Bradley-Terry model, 210
canonical correlations, 175
global convergence of,
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Block relaxation (cont.)
iterative proportional

fitting, 177
k-means clustering, 174
local convergence, 296–297,

307
Maher’s sports model, 173
Sinkhorn’s algorithm, 172

Blood type data, 256
Blood type genes, 189, 225, 237
Boundary point, 32
Bounded set, 30
Bradley-Terry model, 193, 210
Bregman distance, 318
Bregman iteration, 432–440

linearized, 435
split, 437

Broyden–Fletcher–Goldfarb–
Shanno update,
282

Canonical correlations, 175–176,
182

Carathéodory’s theorem, 141
Cauchy sequence, 27
Cauchy-Schwarz inequality, 7–8,

159
generalized, 348

Censored variable, 239
Chain rule, 85

for convex functions, 360
for second differential, 123

Characteristic polynomial, 39
Chebyshev’s inequality, 159
Chernoff bound, 169
Cholesky decomposition, 167,

476
Closed function, 342
Closed set, 30
Closure, 33
Cluster analysis, 174–175,

226–228, 325, 334
Coercive function, 297–299, 310

Coloring, 198
Compact set, 33

subdifferential, 354
Complete, 27
Completeness, 27

and existence of suprema,
28

Concave function, 9, 143
constraint qualification, 155

Cone
finitely generated, 31,

477–479
normal, 356
polar, 350, 477–479
polyhedral, 477–479
problems, 378
tangent, 356

Conjugate gradient algorithm,
275–278

Conjugate vectors, 275
Connected set, 44

arcwise, 44
Constrained optimization,

339
Contingency table

three-way, 177
Continuous function, 34
Continuously differentiable

function, 88
Contraction map, 389–393
Convergence of optimization

algorithms
local, 297

Convergent sequence, 26
Convex cone, 31

polar, 350
Convex function, 9, 142

continuity, 149
differences of, 147, 491
differentiation rules,

358–364
directional derivatives, 150
integral, 152
minimization of, 152–158
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Convex hull, 141, 163, 342, 359,
363, 478, 497

Convex programming, 318–325
convergence of MM

algorithm, 321–325
dual programs, see dual

programs
Dykstra’s algorithm,

384–388
for a geometric program,

320
linear classification, 403–406

Convex regression, 386
Convex set, 138–142
Coordinate descent, 328–334
Coronary disease data, 183
Cousin’s lemma, 54
Covariance matrix, 325, 370
Critical point, 3
Cross-validation, 328
Cyclic coordinate descent

local convergence, 296–297
minimum of a quadratic,

182
saddle point, convergence

to, 180

Danskin’s theorem, 492
Davidon’s formula, 281
Davidon-Fletcher-Powell update,

283
De Pierro majorization, 188
Derivative

directional, 80
elementary functions, 76
equality of mixed partials,

80–81
forward directional, 80
partial, 79, 117–123
univariate, 56

Descent direction, 249
Differential, 81–88, 93–98

Carathéodory’s definition,
82–83

Fréchet’s definition, 82

Gâteaux, 102
higher order, 117–123
linear function, 84
matrix-valued functions,

93–98
multilinear map, 84
quadratic function, 84
rules for calculating, 84, 85,

94–98, 122, 123
semidifferential, 487–497
subdifferential, 341

Directional derivative, 80
rules for calculating, 490

Dirichlet distribution
score and information, 265

Dirichlet-multinomial
distribution, 215

Discriminant analysis, 333
Distance to a set, 35, 144

semidifferential, 495
subdifferential, 356

Doubly stochastic matrix, 480
Dual norm, 348
Dual programs, 393–402

Duffin’s counterexample,
401

Fenchel conjugate, 395
geometric programming,

398
linear programming, 396
quadratic programming,

396–397
semidefinite programming,

397
Duality gap, 395
Duodenal ulcer blood type data,

256
Dykstra’s algorithm, 384–388,

399, 410

Edgeworth’s algorithm, 329–330,
335

Eigenvalue, 13
algorithm, 289
block relaxation, 297
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Eigenvalue (cont.)
condition number, 289
continuity, 39
convexity, 146
cyclic coordinate descent,

182
dominant, 25
minimum, 126
Rayleigh quotient, 182, 364
subdifferential, 364

Eigenvector, 13
algorithm, 289

Elsner–Koltracht–Neumann
theorem, 390

EM algorithm, 221–244
allele frequency estimation,

225
ascent property, 222–224
bivariate normal

parameters, 239
cluster analysis, 226–228,

325–334
E step, 222
estimating binomial

parameter, 240
estimating multinomial

parameters, 241
exponential family, 237
factor analysis, 231–234
linear regression with right

censoring, 239
local convergence
sublinear rate, 308

M step, 222
movie rating, 243–244
sublinear convergence rate,

307
transmission tomography,

228–230
zero truncated data,

242–243
Entropy, 236

Fenchel conjugate, 344
Epigraph, 144, 342
Equality constraint, 107

Essential domain, 342
Euclidean norm, 23–24
Exact penalty method, 421–432

convex programming, 424
Expected information, 254

admixture density, 266
exponential families, 257

Exponential distribution
score and information, 257

Exponential family, 224–225,
255–256

EM algorithm, 237
expected information, 256
generalized linear models,

258
natural, 432

Extremal value, 3
distinguishing from a saddle

point, 124
Extreme point, 481, 497

Factor analysis, 231
Factor loading matrix, 232
Fan’s inequality, 365, 371, 483
Farkas’ lemma, 130, 140–141
Feasible point, 107
Fenchel biconjugate, 345
Fenchel conjugate, 6–7, 342–351

�p function, 6
affine function, 345
differentiability, 495
entropy, 344
indicator, 347
log determinant, 351
problems, 375–378
quadratic, 344
subdifferential, 355

Fenchel-Moreau theorem, 345
Fenchel-Young inequality, 344,

345
Fermat’s principle, 9, 83, 341,

355
Fixed point, 292, 389
Fletcher-Reeves update, 277
Forward algorithm, Baum’s, 235
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Forward directional derivative,
80

and subdifferentials,
351–352

as a support function, 354
at a minimum, 153
of a maximum, 86
rules for calculating, 490
semidifferential, 487
sublinearity, 352

Free variable, 108
Frobenius matrix norm, 24
Frobenius norm, 497
Function

affine, 108
closed, 342
coercive, 297–299, 310
concave, 9, 143
continuous, 34
continuously differentiable,

88
convex, 9, 142
differentiable, 81
distance to a set, 35
Gamma, 148
homogeneous, 101, 348
Huber’s, 267
indicator, 347
Lagrangian, 11, 373
link, 258
Lipschitz, 102, 149, 489
log posterior, 201
log-convex, 147
loglikelihood, 12, 156, 237
majorizing, 186
matrix exponential, 29–30
objective, 107
perspective, 346
potential, 201
rational, 35
Riemann’s zeta, 163
Rosenbrock’s, 19, 205
slope, 82
subblinear, 348
sublinear, 352

support, 347–348
uniformly continuous, 39

Fundamental theorem of
algebra, 38

Fundamental theorem of
calculus, 62–64

Fundamental theorem of linear
algebra, 356

Fundamental theorem of linear
programming, 401

Gamma distribution
maximum likelihood

estimation, 271
Gamma function, 148
Gauge function, 54
Gauge integral, 53–54
Gauss-Lucas theorem, 163
Gauss-Newton algorithm, 252

as scoring, 257–258
Gene expression, 331
Generalized linear model,

258–259, 332
Geometric programming,

157–158, 320
dual, 398

Gibbs prior, 201
Gibbs’ lemma, 132, 385
Golden search, 279
Gosper’s formula, 271
Gradient algorithms, 303–306
Gradient direction, 10
Gradient vector, 9

Hadamard semidifferential,
487–497

Hadamard’s inequality, 134
Halfspace, 31
Hardy, Littlewood, and Pólya

inequality, 482
Hardy-Weinberg law, 189
Heine-Borel Theorem, 55
Hermite interpolation, 278
Hessian matrix, 9
Hestenes-Stiefel update, 277
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Hidden Markov chain
EM algorithm, 235

Hidden trials
binomial, 240
EM algorithm for, 241
multinomial, 241
Poisson or exponential, 241

Higher-order differentials,
117–123

Holder’s inequality, 132, 162, 348
Homogeneous function, 101, 348
Huber’s function, 267
Hyperplane, 12, 31

Image denoising, 437
Implicit function theorem, 91–92
Inactive constraint, 107
Indicator function, 347
Induced matrix norm, 25
Inequality

arithmetic-geometric mean,
2–3, 8, 145

Cauchy-Schwarz, 7–8, 159
Chebyshev’s, 159
Fan’s, 365, 371, 483
Fenchel-Young, 345
Hölder’s, 132, 162, 348
Hadamard’s, 134
Hardy, Littlewood, and

Pólya, 482
information, 223
Jensen’s, 160
Lipschitz, 150
Markov’s, 159
Minkowski’s triangle, 170
Schlömilch’s, 161–162
Young’s, 376

Inequality constraint, 107
Infimal convolution, 377
Information inequality, 223
Integration by parts, 65
Interior, 32
Intermediate value theorem, 45,

55
Inverse function theorem, 89–91

Isotone regression, 386, 389, 430
Iterative proportional fitting,

177–178, 183

Jensen’s inequality, 160

K-means clustering, 174–175,
209

K-medians clustering, 183
Karush-Kuhn-Tucker theory

Kuhn-Tucker constraint
qualification, 114–115

multiplier rule, see
Lagrange multiplier
rule

sufficient condition for a
minimum, 125–128

Kepler’s problem, 4
Kullback–Leibler distance, 376
Kullback–Leibler divergence, 432
Kullback-Leibler distance, 165

L’Hôpital’s rule, 99, 135
Lagrange multiplier rule,

109–111, 372–375
Lagrangian function, 11, 373,

393–395
Lasso, 327–334
Least absolute deviation

regression, 192–193,
209, 329–330

Least squares, 9–10, 179, 386
alternating, 181
isotone, 430
nonlinear, 252–253
nonnegative, 182, 210
right-censored data, 239
weighted, 218

Least squares estimation, 330
Leibnitz’s formula, 99
Limit inferior, 28
Limit superior, 28
Line search methods, 278–280
Linear classification, 403–406
Linear convergence, 292
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Linear logistic regression, 194,
211

Linear programming, 108, 112,
320

dual for, 396
fundamental theorem, 401

Linear regression, 179, 315
Link function, 259
Lipschitz inequality, 150
Log posterior function, 201
Log-convex function, 147
Logarithmic barrier method,

318–320
Loglikelihood function, 12, 156,

237
Loglinear model, 177

observed information, 183
Lower semicontinuity, 42–44, 342
Luce’s ranking model, 219

Maehly’s algorithm, 263
Maher’s sport model, 173–174
Majorizing function, 186,

204–206
Mangasarian-Fromovitz

constraint qualification,
108, 116

Markov chain
hidden, 234–236
stationary distribution, 141,

392
Markov’s inequality, 159
Marquardt’s method, 269
Matrix

continuity considerations, 26
covariance estimation, 325,

370
eigenvalues of a symmetric,

13
exponential function, 29
factor loading, 232
Hessian, 9
induced norm, 25
nilpotent, 49
observed information, 13

positive definite, 36
rank semicontinuity, 44
skew-symmetric, 49
square root, 264

Matrix completion problem, 368
Matrix exponential function,

29–30
and differential equations,

77
Matrix logarithm, 78
Maximum likelihood estimation

allele frequency, 189
Dirichlet distribution,

251–252
exponential distribution,

253–254
hidden Markov chains, see

Markov chain
multinomial distribution,

12–13, 235–325
multivariate normal

distribution, 156
Poisson distribution, 253
power series family, for a,

268
Maxwell-Boltzmann distribution,

237
Mean value theorem, 361

failure of, 89
multivariate, 88
univariate, 77

Median, 361
Method of false position, 278
Michelot’s algorithm, 409
Minkowski’s triangle inequality,

170
Minkowski–Weyl theorem, 478
Minorizing function, 187,

204–206
Missing data

EM algorithm, 222, 234, 235
Mixtures, see EM algorithm,

cluster analysis
MM algorithm, 185–219

acceleration, 259–311
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MM algorithm (cont.)
allele frequency estimation,

189
ANOVA, 217
Bradley-Terry model, 193
convergence for convex

program, 321–325
descent property, 186
Dirichlet-multinomial, 215
for discriminant analysis,

334
geometric programming, 194
global convergence of,

299–302
linear logistic regression,

194
linear regression, 191–193
Luce’s model, 219
majorization, 187–189
matrix completion, 368
motif finding, 215
movie rating, 243–244
random multigraph,

202–203
transmission tomography,

see transmission
tomography

zero-truncated data,
242–243

MM gradient algorithm, 250–252
convergence of, 294–295
convex programming, 319
Dirichlet distribution(, 251
Dirichlet distribution), 252

Model selection, 327–334
Moreau-Rockafellar theorem, 360
Motif finding, 215
Movie rating, 243–244
Multilinear map, 41–42, 51

differential, 84
second differential, 120

Multilogit model, 272
Multinomial distribution, 12,

190, 315, 325
score and information, 257

Multivariate normal
distribution, 475–476

maximum entropy, 236
maximum likelihood, 156

Neighborhood, 32
Newton’s method, 245–259

convergence of, 293–294
least squares estimation,

252–253
MM gradient algorithm, see

MM gradient algorithm
quadratic function, for, 265
random multigraph, 249
root finding, 246–248
scoring, see scoring
transmission tomography,

251
Nilpotent matrix, 49
Nonnegative matrix

factorization, 179–180,
337–338

Norm, 23–26
�1, 24, 490
�∞, 24, 492
�1,2, 381, 409
dual, 348
equivalence of, 37
Euclidean, 23–24
Frobenius matrix, 24
induced matrix, 25, 494
nuclear, 350, 381, 494
orthogonally invariant, 493
semidifferentiability,

489–494
spectral, 25, 494
subdifferential, 356
trace, 350

Normal cone, 356
Normal distribution, 473–476

mixtures, 226, 325
multivariate, 475–476
univariate, 473–474

Normal equation, 9
Nuclear norm, 350, 381
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Objective function, 107
Observed information, 245
Observed information matrix, 13
Obtuse angle criterion, 140, 153
Open set, 32
Optimal experimental design,

413
Order statistics, 364
Orthogonal projection, 209

Paracontractive map, 389–393
Partial derivative, 79
Penalized estimation, 327–334
Penalty method, 314–317
Perron-Frobenius theorem, 167
Perspective of a function, 346
Pixel, 200
Poisson admixture model, 238
Poisson distribution

contingency table data,
modeling, 177

score and information, 257
Poisson process, 197
Polak–Ribiére update, 277
Polar cone, 350, 477–479
Polyhedral set, 360, 477–480
Polytope, 497
Pool adjacent violators, 388–389
Population genetics, see allele

frequency estimation
inference of

maternal/paternal
alleles in offspring,
14–16

Positron emission tomography,
214

Posterior mode, 201
Posynomial, 158, 194–196,

211–213
Potential function, 201
Power plant problem, 334, 403
Power series family, 268
Primal program

convex, 395

Projected gradient algorithm,
416–421

Projection operators, 384, 410
Proposition

Birkhoff, 481
Bolzano-Weierstrass, 33
Carathéodory, 141
Cousin, 55
Danskin, 492
Du Bois-Reymond, 457
Ekeland, 115
Fenchel-Moreau, 345
Gordon, 116, 148
Hahn-Banach, 353
Heine, 40
Jensen, 160
Liapunov, 301
Minkowski–Weyl, 478
Moreau-Rockafellar, 360
Ostrowski, 292
von Neumann–Fan, 483
Weierstrass, 37, 55

q quantile, 207, 361
QR decomposition, 475
Quadratic bound principle, 188
Quadratic convergence, 292
Quadratic programming, 113,

114, 386
dual for, 396–397

Quantal response model, 266
Quantile regression, 362
Quasi-convexity, 158
Quasi-Newton algorithms,

281–284
ill-conditioning, avoiding,

288–289

Random multigraph, 202–203,
249

Random thinning, 198
Rate of convergence, 292
Rayleigh quotient, 182, 364
Recurrence relations

hidden Markov chain, 235
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Relative topology, 34
Riemann’s zeta function, 163
Rigid motion, 40–41
Robust regression, 192, 266, 311
Roots of a polynomial, 38
Rosenbrock’s function, 19, 205

Saddle point, 3, 6, 124, 135, 302,
394

Schlömilch’s inequality, 161–162
Score, 245

admixture density, 266
exponential families, 257

Scoring, 254–257, 259
allele frequency estimation,

256
convergence of, 296
Gauss-Newton algorithm,

257–258
Secant condition, 281

inverse, 283
Second differential, 9, 127

chain rule for, 123
in optimization, 123

Semicontinuity, 42–44
Semidifferential, 487–497
Set

arcwise connected, 44
closed, 30
compact, 33
connected, 44
convex, 138
indicator, 347
normal cone, 356
open, 32
polar cone, 350
polyhedral, 360, 477–480
tangent cone, 356

Shadow values, 112
Sherman-Morrison formula, 249,

282
Woodbury’s generalization,

288
Shrinkage, 362
Signomial programming,

196–197, 213

Simultaneous projection, 391
Singular value decomposition,

181
Sinkhorn’s algorithm, 172–173,

181
Skew-symmetric matrix, 49
Slack variable, 108
Slater constraint qualification,

155, 373
Slope function, 82
Snell’s law, 4, 205
Spectral functions, 365–372
Spectral radius, 25
Sphere, 31
Stationary point, 3, 322
Steepest ascent, 254
Steepest descent, 10, 328
Stirling’s formula, 271
Stopping criteria, 280
Subdifferential, 341, 351–375

distance to a set, 356
eigenvalue, 364
Fenchel conjugate, 355
Fermat’s principle, 355
Hahn-Banach theorem, 353
indicator function, 356
Lagrange multiplier rule,

375
mean value theorem, 361
median, 361
norm, 356
nuclear norm, 381
order statistics, 364
problems, 379–380
rules for forming, 358–364

Subgradient, 151, 341
Sublinear function, 348, 352
Support function, 347–348

directional derivative, 354
Survival analysis, 269–271
Sylvester’s criterion, 134

Tangent cone, 356
Tangent vectors and curves, 93
Taylor expansion, 65

multivariate, 117–123



Index 529

Trace norm, 350
Transmission tomography,

198–202, 228–230, 240
Trust region, 285, 413

Uniform convergence, 46
Uniformly continuous function,

40
Univariate normal distribution,

see normal distribution,
univariate

Upper semicontinuity, 42–44

Variance matrix, 325, 370
Von Neumann’s minimax

theorem, 402

Weierstrass approximation
theorem, 160

Weierstrass M-test, 47
Weiszfeld’s algorithm, 209
Woodbury’s formula, 288

Young’s inequality, 376

Zero-truncated data, 242–243
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