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Preface to the Second Edition

My original intent in writing Applied Probability was to strike a balance
between theory and applications. Theory divorced from applications runs
the risk of alienating many potential practitioners of the art of stochastic
modeling. Applications without a clear statement of relevant theory drift
in a sea of confusion. To a lesser degree I was also motivated by a desire to
promote the nascent field of computational probability. Current students of
the mathematical sciences are more computer savvy than ever. Putting the
right computational tools in their hands is bound to advance probability
and the broader good of science.

The second edition of Applied Probability remains true to these aims. I
have added two new chapters on asymptotic and numerical methods and
an appendix that separates some of the more delicate mathematical theory
from the steady flow of examples in the main text. In addition to these
major changes, there is now a much more extensive list of exercises. Some
of these are trivial, but others will challenge even the best students. Finally,
many errors, both large and small, have been corrected.

Chapter 4 on combinatorics includes new sections on bijections, Catalan
numbers, and Faà di Bruno’s formula. The proof of the inclusion-exclusion
formula has been clarified. Chapter 7 on Markov chains contains new mate-
rial on rates of convergence to equilibrium in reversible finite-state chains.
This discussion draws on students’ previous exposure to eigenvalues and
eigenvectors in linear algebra. Chapter 9 on branching processes features
a new section on basic reproduction numbers. Here the idea is to devise
easy algebraic tests for deciding when a process is subcritical, critical, or
supercritical. Chapter 11 on diffusion processes gives better coverage of
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Brownian motion. The last two sections of the chapter have been moved to
the new Chapter 13 on numerical methods. The orphan material on con-
vergent sequences of random variables in Chapter 1 has been moved to the
new Chapter 12 on asymptotic methods.

Once again I would like to thank the students of my UCLA biomathe-
matics classes for their help. Particularly noteworthy are David Alexander,
Kristin Ayers, Forrest Crawford, Kate Crespi, Gabriela Cybis, Lewis Lee,
Sarah Nowak, John Ranola, Mary Sehl, Tongtong Wu, and Jin Zhou. I owe
an especially heavy debt to Hua Zhou, my former postdoctoral fellow, for
suggesting many problems and lecturing in my absence. I also thank my
editor, John Kimmel, for his kind support. Finally, I am glad to report that
my mother, to whom both editions of this book are dedicated, is alive and
well. If I can spread even a fraction of the cheer she has spread, then I will
be able to look back over a life well lived.
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Despite the fears of university mathematics departments, mathematics ed-
ucation is growing rather than declining. But the truth of the matter is
that the increases are occurring outside departments of mathematics. En-
gineers, computer scientists, physicists, chemists, economists, statisticians,
biologists, and even philosophers teach and learn a great deal of mathemat-
ics. The teaching is not always terribly rigorous, but it tends to be better
motivated and better adapted to the needs of students. In my own experi-
ence teaching students of biostatistics and mathematical biology, I attempt
to convey both the beauty and utility of probability. This is a tall order,
partially because probability theory has its own vocabulary and habits of
thought. The axiomatic presentation of advanced probability typically pro-
ceeds via measure theory. This approach has the advantage of rigor, but
it inevitably misses most of the interesting applications, and many applied
scientists rebel against the onslaught of technicalities. In the current book, I
endeavor to achieve a balance between theory and applications in a rather
short compass. While the combination of brevity and balance sacrifices
many of the proofs of a rigorous course, it is still consistent with supplying
students with many of the relevant theoretical tools. In my opinion, it is
better to present the mathematical facts without proof rather than omit
them altogether.

In the preface to his lovely recent textbook [209], David Williams writes,
“Probability and Statistics used to be married; then they separated; then
they got divorced; now they hardly see each other.” Although this split
is doubtless irreversible, at least we ought to be concerned with properly
bringing up their children, applied probability and computational statistics.
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If we fail, then science as a whole will suffer. You see before you my attempt
to give applied probability the attention it deserves. My other recent book
[122] covers computational statistics and aspects of computational proba-
bility glossed over here.

This graduate-level textbook presupposes knowledge of multivariate cal-
culus, linear algebra, and ordinary differential equations. In probability
theory, students should be comfortable with elementary combinatorics, gen-
erating functions, probability densities and distributions, expectations, and
conditioning arguments. My intended audience includes graduate students
in applied mathematics, biostatistics, computational biology, computer sci-
ence, physics, and statistics. Because of the diversity of needs, instructors
are encouraged to exercise their own judgment in deciding what chapters
and topics to cover.

Chapter 1 reviews elementary probability while striving to give a brief
survey of relevant results from measure theory. Poorly prepared students
should supplement this material with outside reading. Well-prepared stu-
dents can skim Chapter 1 until they reach the less well-known material
of the final two sections. Section 1.8 develops properties of the multivari-
ate normal distribution of special interest to students in biostatistics and
statistics. This material is applied to optimization theory in Section 3.3
and to diffusion processes in Chapter 11.

We get down to serious business in Chapter 2, which is an extended essay
on calculating expectations. Students often complain that probability is
nothing more than a bag of tricks. For better or worse, they are confronted
here with some of those tricks. Readers may want to skip the final two
sections of the chapter on surface area distributions on a first pass through
the book.

Chapter 3 touches on advanced topics from convexity, inequalities, and
optimization. Besides the obvious applications to computational statistics,
part of the motivation for this material is its applicability in calculating
bounds on probabilities and moments.

Combinatorics has the odd reputation of being difficult in spite of rely-
ing on elementary methods. Chapters 4 and 5 are my stab at making the
subject accessible and interesting. There is no doubt in my mind of combi-
natorics’ practical importance. More and more we live in a world dominated
by discrete bits of information. The stress on algorithms in Chapter 5 is
intended to appeal to computer scientists.

Chapters 6 through 11 cover core material on stochastic processes that
I have taught to students in mathematical biology over a span of many
years. If supplemented with appropriate sections from Chapters 1 and 2,
there is sufficient material here for a traditional semester-long course in
stochastic processes. Although my examples are weighted toward biology,
particularly genetics, I have tried to achieve variety. The fortunes of this
book doubtless will hinge on how compelling readers find these examples.

ii
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You can leaf through the table of contents to get a better idea of the topics
covered in these chapters.

In the final two chapters, on Poisson approximation and number theory,
the applications of probability to other branches of mathematics come to
the fore. These chapters are hardly in the mainstream of stochastic pro-
cesses and are meant for independent reading as much as for classroom
presentation.

All chapters come with exercises. (In this second printing, some addi-
tional exercises are included at the end of the book.) These are not graded
by difficulty, but hints are provided for some of the more difficult ones. My
own practice is to require one problem for each hour and a half of lecture.
Students are allowed to choose among the problems within each chapter
and are graded on the best of the solutions they present. This strategy
provides an incentive for the students to attempt more than the minimum
number of problems.

I would like to thank my former and current UCLA and University of
Michigan students for their help in debugging this text. In retrospect, there
were far more contributing students than I can possibly credit. At the
risk of offending the many, let me single out Brian Dolan, Ruzong Fan,
David Hunter, Wei-hsun Liao, Ben Redelings, Eric Schadt, Marc Suchard,
Janet Sinsheimer, and Andy Ming-Ham Yip. I also thank John Kimmel of
Springer–Verlag for his editorial assistance.

Finally, I dedicate this book to my mother, Alma Lange, on the occasion
of her 80th birthday. Thanks, Mom, for your cheerfulness and generosity
in raising me. You were, and always will be, an inspiration to the whole
family.

x
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1
Basic Notions of Probability Theory

1.1 Introduction

This initial chapter covers background material that every serious student
of applied probability should master. In no sense is the chapter meant
as a substitute for a previous course in applied probability or for a future
course in measure-theoretic probability. Our comments are merely meant as
reminders and as a bridge. Many mathematical facts will be stated without
proof. This is unsatisfactory, but it is even more unsatisfactory to deny
students the most powerful tools in the probabilist’s toolkit. Quite apart
from specific tools, the language and intellectual perspective of modern
probability theory also furnish an intuitive setting for solving practical
problems. Probability involves modes of thought that are unique within
mathematics. As a brief illustration of the material reviewed, we derive
properties of the multivariate normal distribution in the final section of this
chapter. Later chapters will build on the facts and vocabulary mentioned
here and provide more elaborate applications.

1.2 Probability and Expectation

The layman’s definition of probability is the long-run frequency of success
over a sequence of independent, identically constructed trials. Although this
law of large numbers perspective is important, mathematicians have found
it helpful to put probability theory on an axiomatic basis [24, 53, 60, 80,

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_1, © Springer Science+Business Media, LLC 2010



2 1. Basic Notions of Probability Theory

166, 171, 208]. The modern theory begins with the notion of a sample space
Ω and a collection F of subsets from Ω subject to the following conventions:

(1.2a) Ω ∈ F .

(1.2b) If A ∈ F , then its complement Ac ∈ F .

(1.2c) If A1, A2, . . . is a finite or countably infinite sequence of subsets
from F , then

⋃
i Ai ∈ F .

Any collection F satisfying these postulates is termed a σ-field or σ-algebra.
Two immediate consequences of the definitions are that the empty set ∅ ∈ F
and that if A1, A2, . . . is a finite or countably infinite sequence of subsets
from F , then

⋂
iAi = (

⋃
iA

c
i )

c ∈ F . In probability theory, we usually
substitute everyday language for set theory language. Table 1.1 provides a
short dictionary for translating equivalent terms.

TABLE 1.1. A Brief Dictionary of Set Theory and Probability Terms

Set Theory Probability Set Theory Probability

set event null set impossible event
union or universal set certain event
intersection and pairwise disjoint mutually exclusive
complement not inclusion implication

The axiomatic setting of probability theory is completed by introducing
a probability measure or distribution Pr on the events in F . This function
should satisfy the properties:

(1.2d) Pr(Ω) = 1.

(1.2e) Pr(A) ≥ 0 for any A ∈ F .

(1.2f) Pr(
⋃

iAi) =
∑

i Pr(Ai) for any countably infinite sequence of
mutually exclusive events A1, A2, . . . from F .

A triple (Ω,F ,Pr) constitutes a probability space. An event A ∈ F is said
to be null when Pr(A) = 0 and almost sure when Pr(A) = 1.

Example 1.2.1 Discrete Uniform Distribution

One particularly simple sample space is the set Ω = {1, . . . , n}. Here the
natural choice of F is the collection of all subsets of Ω. The uniform distribu-
tion (or normalized counting measure) attributes probability Pr(A) = |A|

n
to a set A, where |A| denotes the number of elements of A. Most of the
counting arguments of combinatorics presuppose the discrete uniform dis-
tribution.
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Example 1.2.2 Continuous Uniform Distribution

A continuous analog of the discrete uniform distribution is furnished by
Lebesgue measure on the unit interval [0, 1]. In this case, the best one
can do is define F as the smallest σ-algebra containing all closed subin-
tervals [a, b] of Ω = [0, 1]. The events in F are then said to be Borel sets.
Henri Lebesgue was able to show how to extend the primitive identifica-
tion Pr([a, b]) = b − a of the probability of an interval with its length to
all Borel sets [171]. Invoking the axiom of choice from set theory, one can
prove that it is impossible to attach a probability consistently to all sub-
sets of [0, 1]. The existence of nonmeasurable sets makes the whole enter-
prise of measure-theoretic probability more delicate than mathematicians
anticipated. Fortunately, one can ignore such subtleties in most practical
problems.

The next example is designed to give readers a hint of the complexities
involved in defining probability spaces.

Example 1.2.3 Density in Number Theory

Consider the natural numbers Ω = {1, 2, . . .} equipped with the density
function

den(A) = lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

.

Clearly, 0 ≤ den(A) ≤ 1 whenever den(A) is defined. Some typical densities
include den(Ω) = 1, den({j}) = 0, and den({j, 2j, 3j, 4j, . . .}) = 1/j. Any
σ-algebra F containing each of the positive integers {j} fails the test of
countable additivity stated in postulate (1.2f) above. Indeed,

den(Ω) �= 0 =

∞∑

j=1

den({j}).

Note that den(A) does satisfy the test of finite additivity. Of course, it is
possible to define many legitimate probability distributions on the positive
integers.

In practice, most questions in probability theory revolve around random
variables rather than sample spaces. Readers will doubtless recall that a
random variable X is a function from a sample space Ω into the real line R.
This is almost correct. To construct a consistent theory of integration, one
must insist that a random variable be measurable. This technical condition
requires that for every constant c, the set {ω ∈ Ω : X(ω) ≤ c} be an event in
the σ-algebra F attached to Ω. Measurability can also be defined in terms
of the Borel sets B of R, which comprise the smallest σ-algebra containing
all intervals [a, b] of R. With this definition in mind, X is measurable if and
only if the inverse imageX−1(B) of every Borel set B is an event in F . This
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is analogous to but weaker than defining continuity by requiring that the
inverse image of every open set be open. Almost every conceivable function
X : Ω �→ R qualifies as measurable. Formal verification of measurability
usually invokes one or more of the many closure properties of measurable
functions. For instance, measurability is preserved under the formation of
finite sums, products, maxima, minima, and limits of measurable functions.
For this reason, we seldom waste time checking measurability.

Measurable functions are candidates for integration. The simplest mea-
surable function is the indicator 1A of an event A. The integral or expec-
tation E(1A) of 1A is just the corresponding probability Pr(A). Integration
is first extended to simple functions

∑n
i=1 ci1Ai

by the linearity device

E

( n∑

i=1

ci1Ai

)

=

n∑

i=1

ci E(1Ai
)

=
n∑

i=1

ci Pr(Ai)

and from there to the larger class of integrable functions by appropriate
limit arguments. Although the rigorous development of integration is one of
the intellectual triumphs of modern mathematics, we record here only some
of the basic facts. The two most important are linearity and nonnegativity:

(1.2g) E(aX + bY ) = aE(X) + bE(Y ).

(1.2h) E(X) ≥ 0 for any X ≥ 0.

From these basic properties, a host of simple results flow. As one example,
the inequality |E(X)| ≤ E(|X |) holds whenever E(|X |) < ∞. As another
example, taking expectations in the identity 1A∪B = 1A + 1B − 1A∩B

produces the identity Pr(A ∪B) = Pr(A) + Pr(B)−Pr(A ∩B). Of course,
one can prove this and similar equalities without introducing expectations,
but the application of the expectation operator often streamlines proofs.

One of the most impressive achievements of Lebesgue’s theory of inte-
gration is that it identifies sufficient conditions for the interchange of limits
and integrals. Fatou’s lemma states that

E
(

lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn)

for any sequence X1, X2, . . . of nonnegative random variables. Recall that
lim infn→∞ an = limn→∞ inf{ak}k≥n for any sequence an. In the present
case, each sample point ω defines a different sequence an = Xn(ω).

If the sequence of random variables Xn is increasing as well as nonneg-
ative, then the monotone convergence theorem

lim
n→∞

E(Xn) = E
(

lim
n→∞

Xn

)
(1.1)
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holds, with the possibility E(limn→∞Xn) = ∞ included. Again we need
look no further than indicator functions to apply the monotone convergence
theorem. Suppose A1 ⊂ A2 ⊂ · · · is an increasing sequence of events with
limit A∞ = ∪∞

n=1An. Then the continuity property

lim
n→∞

Pr(An) = Pr(A∞)

follows trivially from the monotone convergence theorem. Experts might
rightfully object that this is circular reasoning because the continuity of
probability is one of the ingredients that goes into constructing a rigorous
theory of integration in the first place. However, this misses the psycholog-
ical point that it is easier to remember and apply a general theorem than
various special cases of it.

Example 1.2.4 Borel-Cantelli Lemma

Suppose a sequence of events A1, A2, . . . satisfies
∑∞

i=1 Pr(Ai) < ∞. The
Borel-Cantelli lemma says only finitely many of the events occur. To prove
this result, let 1Ai

be the indicator function of Ai, and let N be the infinite
sum

∑∞
i=1 1Ai

. The monotone convergence theorem implies that

E(N) =

∞∑

i=1

Pr(Ai).

If E(N) <∞ as assumed, then N <∞ with probability 1. In other words,
only finitely many of the Ai occur.

The dominated convergence theorem relaxes the assumptions that the
sequenceX1, X2, . . . is monotone and nonnegative but adds the requirement
that all Xn satisfy |Xn| ≤ Y for some dominating random variable Y
with finite expectation. Assuming that limn→∞Xn exists, the interchange
(1.1) is again permissible. If the dominating random variable Y is constant,
then most probabilists refer to the dominated convergence theorem as the
bounded convergence theorem. Our next example illustrates the power of
the dominated convergence theorem.

Example 1.2.5 Differentiation Under an Expectation Sign

Let Xt denote a family of random variables indexed by a real parameter
t such that (a) d

dtXt(ω) exists for all sample points ω and (b) | d
dtXt| ≤ Y

for some dominating random variable Y with finite expectation. We claim
that d

dt E(Xt) exists and equals E( d
dtXt). To prove this result, consider the

difference quotient

E(Xt+Δt) − E(Xt)

Δt
= E

(
Xt+Δt −Xt

Δt

)

.
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For any sample point ω, the mean value theorem implies that
∣
∣
∣
∣
Xt+Δt(ω) −Xt(ω)

Δt

∣
∣
∣
∣ =

∣
∣
∣
d

ds
Xs(ω)

∣
∣
∣

≤ Y (ω)

for some s between t and t+ Δt. Because the difference quotients converge
to the derivative in a dominated fashion as Δt tends to 0, application of
the dominated convergence theorem finishes the proof.

As a straightforward illustration, consider the problem of calculating
the first moment of a random variable Z from its characteristic function
E(eitZ). Assuming that E(|Z|) is finite, define the family of random vari-
ables Xt = eitZ . It is then clear that the derivative d

dtXt(ω) = iZ(ω)eitZ(ω)

exists for all sample points ω and that Y = |iZeitZ | = |Z| furnishes an
appropriate dominating random variable. Hence, E(Z) equals the value of
−i d

dt E(eitZ) at t = 0.

1.3 Conditional Probability

Constructing a rigorous theory of conditional probability and conditional
expectation is as much a chore as constructing a rigorous theory of integra-
tion. Fortunately, most of the theoretic results can be motivated starting
with the simple case of conditioning on an event of positive probability. In
this case, we define the conditional probability

Pr(B | A) =
Pr(B ∩A)

Pr(A)

of any event B relative to A. Because the conditional probability Pr(B | A)
is a legitimate probability measure, it is possible to define the conditional
expectation E(Z | A) of any integrable random variable Z. Fortunately,
this boils down to nothing more than

E(Z | A) =
E(Z1A)

Pr(A)
. (1.2)

Definition (1.2) has limited scope, and probabilists have generalized it by
conditioning on a random variable rather than a single event. If X is a
random variable taking only a finite number of values x1, . . . , xn, then
E(Z | X) is the random variable defined by E(Z | X = xi) on the event
{X = xi}. Obviously, the conditional expectation operator inherits the
properties of linearity and nonnegativity in Z from the ordinary expectation
operator. In addition, there is the further connection

E(Z) =

n∑

i=1

E(Z | X = xi) Pr(X = xi)

= E[E(Z | X)] (1.3)
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between ordinary and conditional expectations. The final property worth
highlighting,

E[f(X)Z] = E[f(X) E(Z | X)], (1.4)

is a consequence of equation (1.3) and the obvious identity

E[f(X)Z | X ] = f(X) E(Z | X).

Example 1.3.1 The Hypergeometric Distribution

Consider a finite sequence X1, . . . , Xn of independent Bernoulli random
variables with common success probability p. Here Pr(Xj = 1) = p and
Pr(Xj = 0) = 1 − p, and the sum Sn = X1 + · · · +Xn follows a binomial
distribution. The hypergeometric distribution can be recovered in this set-
ting by conditioning. Form < n, define the shorter sum Sm = X1+· · ·+Xm

and calculate

Pr(Sm = j | Sn = k) =

(
m
j

)
pj(1 − p)m−j

(
n−m
k−j

)
pk−j(1 − p)n−m+j−k

(
n
k

)
pk(1 − p)n−k

=

(
m
j

)(
n−m
k−j

)

(
n
k

) .

The mean of this hypergeometric distribution is just the conditional ex-
pectation E(Sm | Sn = k). Using symmetry and the additivity of the
conditional expectation operator, we find that

E(Sm | Sn = k) =

m∑

i=1

E(Xi | Sn = k)

= mE(X1 | Sn = k)

=
m

n
E(Sn | Sn = k)

=
mk

n
.

It is noteworthy that the identity E(Sm | Sn) = m
n Sn does not require the

Xj to be Bernoulli.

At the highest level of abstraction, we define conditional expectation
E(Z | G) relative to a sub-σ-algebra G of the underlying σ-algebra F . Here
it is important to bear in mind that Z must be integrable and that in
most cases G is the smallest σ-algebra making a random variable X or a
random vector (X1, . . . , Xn) measurable. The technical requirement that
E(Z | G) be measurable with respect to G then means that E(Z | G) is a
function ofX or (X1, . . . , Xn). Because G may have an infinity of events, we
can no longer rely on defining E(Z | G) by naively conditioning on events
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of positive probability. The usual mathematical trick of turning a theorem
into a definition, however, comes to the rescue. Thus, E(Z | G) is defined as
the essentially unique integrable random variable that is measurable with
respect to G and satisfies the analog

E[1CZ] = E[1C E(Z | G)] (1.5)

of equation (1.4) for every event C in G. Hidden in this definition is an
appeal to the powerful Radon-Nikodym theorem of measure theory. The
upshot of these indirect arguments is that the conditional expectation op-
erator is perfectly respectable and continues to enjoy the basic properties
mentioned earlier.

In our study of martingales in Chapter 10, we will encounter increasing
σ-algebras. We write F ⊂ G if every event of F is also an event G. In other
words, F is less informative than G. The “tower property”

E[E(Z | G) | F ] = E(Z | F) (1.6)

holds in this case because equation (1.5) implies

E[1C E(Z | G)] = E[E(1CZ | G)]

= E(1CZ)

= E[1C E(Z | F)]

for every C in F .

1.4 Independence

Two events A and B are independent if and only if

Pr(A ∩B) = Pr(A) Pr(B).

This definition is equivalent to Pr(B | A) = Pr(B) when Pr(A) > 0. A
finite or countable sequence A1, A2, . . . of events is independent provided

Pr

( n⋂

j=1

Aij

)

=
n∏

j=1

Pr(Aij
)

for all finite subsequences Ai1 , . . . , Ain
. Pairwise independence is insuffi-

cient to imply independence. A sequence of random variables X1, X2, . . .
is independent whenever the sequence of events Ai = {Xi ≤ ci} is inde-
pendent for all possible choices of the constants ci. In practice, one usually
establishes the independence of two random variables U and V by exhibit-
ing them as measurable functions U = f(X) and V = g(Y ) of known
independent random variables X and Y .
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If X and Y are independent random variables with finite expectations,
then Fubini’s theorem implies E(XY ) = E(X) E(Y ). If X and Y are non-
negative, then equality continues to hold even when one or both random
variables have infinite expectations. From equality (1.5), one can deduce
that E(Y | X) = E(Y ) whenever Y is independent of X . This result ex-
tends to conditioning on a σ-algebra G when Y is independent of the events
in G.

1.5 Distributions, Densities, and Moments

The distribution function F (x) of a random variable X is defined by the
formula F (x) = Pr(X ≤ x). Readers will recall the familiar properties:

(1.5a) 0 ≤ F (x) ≤ 1,

(1.5b) F (x) ≤ F (y) for x ≤ y,

(1.5c) limx→y+ F (x) = F (y),

(1.5d) limx→−∞ F (x) = 0,

(1.5e) limx→∞ F (x) = 1,

(1.5f) Pr(a < X ≤ b) = F (b) − F (a),

(1.5g) Pr(X = x) = F (x) − F (x−).

A random variable X is said to be discretely distributed if its possible
values are limited to a sequence of points x1, x2, . . .. In this case, its discrete
density f(xi) = Pr(X = xi) satisfies:

(1.5h) f(xi) ≥ 0 for all i,

(1.5i)
∑

i f(xi) = 1,

(1.5j) F (x) =
∑

xi≤x f(xi).

Example 1.5.1 The Inverse Method

The inverse method is one of the simplest and most natural methods of
simulating random variables [7]. It depends on the second of the following
two properties of a distribution function F (x).

(a) If F (x) is continuous, then U = F (X) is uniformly distributed on
[0, 1].

(b) If F [−1](y) = inf{x : F (x) ≥ y} for any 0 < y < 1, and if U is uniform
on [0, 1], then F [−1](U) has distribution function F (x).
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Note that the quantile function F [−1](u) is the functional inverse of F (x)
when F (x) is continuous and strictly increasing. As a preliminary to proving
properties (a) and (b), let us demonstrate that

Pr[F (X) ≤ F (t)] = F (t). (1.7)

To prove this assertion, note that {X > t} ∩ {F (X) < F (t)} = ∅ and
{X ≤ t} ∩ {F (X) > F (t)} = ∅ together entail

{F (X) ≤ F (t)} = {X ≤ t} ∪ {F (X) = F (t), X > t}.

However, the event {F (X) = F (t), X > t} maps under X to an interval of
constancy of F (x) and therefore has probability 0. Equation (1.7) follows
immediately.

For claim (a) let u ∈ (0, 1). Because F (x) is continuous, there exists t
with F (t) = u. In view of equation (1.7),

Pr[F (X) ≤ u] = Pr[F (X) ≤ F (t)] = u.

Claim (b) follows if we can show that the events u ≤ F (t) and F [−1](u) ≤ t
are identical for both u and F (t) in (0, 1). Assume that F [−1](u) ≤ t.
Because F (x) is increasing and right continuous, the set {x : u ≤ F (x)}
is an interval containing its left endpoint. Hence, u ≤ F (t). Conversely, if
u ≤ F (t), then F [−1](u) ≤ t by definition. This completes the proof.

Because it is easy to generate uniform random numbers on a computer,
the inverse method is widely used. For instance, if X is exponentially dis-
tributed with mean μ, then F (x) = 1− e−x/μ and F [−1](u) = −μ ln(1−u).
In view of the symmetry of U and 1 − U , both of the random variables
−μ ln(1−U) and −μ lnU are distributed as X . The major drawback of the
inverse method in other examples is the difficulty of computing the quantile
function F [−1](u).

A continuously distributed random variable X has density f(x) defined
on the real line and satisfying:

(1.5k) f(x) ≥ 0 for all x,

(1.5l)
∫ b

a
f(x) dx = F (b) − F (a),

(1.5m) d
dxF (x) = f(x) for almost all x.

One of the primary uses of distribution and density functions is in cal-
culating expectations. If h(x) is Borel measurable and the random variable
h(X) has finite expectation, then we can express its expectation as the
integral

E[h(X)] =

∫

h(x) dF (x).
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One proves this result by transferring the probability measure on the un-
derlying sample space to the real line viaX . In this scheme, an interval (a, b]
is assigned probability F (b)−F (a). In practice, we replace dF (x) by count-
ing measure or Lebesgue measure and evaluate E[h(X)] by

∑
i h(xi)f(xi)

in the discrete case and by
∫
h(x)f(x)dx in the continuous case.

Counting measure and Lebesgue measure on the real line have infinite
mass. Such infinite measures share many of the properties of probability
measures. For instance, the dominated convergence theorem and Fubini’s
theorem continue to hold. We will use such properties without comment,
relying on the student’s training in advanced calculus to lend an air of
respectability to our invocation of relevant facts.

The most commonly encountered expectations are moments. The nth
moment of X is μn = E(Xn). If we recenter X around its first moment
(or mean) μ1, then the nth central moment of X is E[(X − μ1)

n]. As
mentioned earlier, we can recover the mean of X from its characteristic
function E(eitX) by differentiation. In general, if E(|X |n) is finite, then

E(Xn) = (−i)n d
n

dtn
E(eitX)|t=0. (1.8)

The characteristic function of a random variable always exists and uniquely
determines the distribution function of the random variable [60, 117]. If X
has density function f(x), then E(eitX) coincides with the Fourier trans-

form f̂(t) of f(x) [54]. When f̂(t) is integrable, f(x) is recoverable via the
inversion formula

f(x) =
1

2π

∫ ∞

−∞
e−itxf̂(t) dt. (1.9)

Appendix A.4 derives formula (1.9) and briefly reviews other properties of
the Fourier transform.

For a random variable X possessing moments of all orders, it is usually
simpler to deal with the moment generating function E(etX). For a nonneg-
ative random variable X , we occasionally resort to the Laplace transform
E(e−tX). (If X possesses a density function f(x), then E(e−tX) is also the
ordinary Laplace transform of f(x) as defined in science and engineering
courses.) When X is integer-valued as well as nonnegative, the probability
generating function E(tX) for t ∈ [0, 1] also comes in handy. Each of these
transforms M(t) possesses the multiplicative property

MX1+···+Xm
(t) = MX1(t) · · ·MXm

(t)

for a sum of independent random variablesX1, . . . , Xm. The simplest trans-
forms involve constant random variables. For instance, the Laplace trans-
form of the constant c is just e−ct; the probability generating function of the
positive integer n is tn. Chapter 2 introduces more complicated examples.
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The second central moment of a random variable is also called the vari-
ance of the random variable. Readers will doubtless recall the variance
formula

Var

( m∑

j=1

Xj

)

=

m∑

j=1

Var(Xj) +

m∑

j=1

∑

k �=j

Cov(Xj , Xk) (1.10)

for a sum of m random variables. Here

Cov(Xj , Xk) = E(XjXk) − E(Xj) E(Xk)

is the covariance between Xj and Xk. Independent random variables are
uncorrelated and exhibit zero covariance, but independence is hardly nec-
essary for two random variables to be uncorrelated. For random variables
with zero means, the covariance function serves as an inner product and
lends a geometric flavor to many probability arguments. For example, we
can think of uncorrelated, zero-mean random variables as being orthog-
onal. Calculation of variances and covariances is often facilitated by the
conditioning formulas

Var(X) = E[Var(X | Z)] + Var[E(X | Z)]

Cov(X,Y ) = E[Cov(X,Y | Z)] + Cov[E(X | Z),E(Y | Z)] (1.11)

and by the simple formulas Var(cX) = c2 Var(X) and Var(X+c) = Var(X)
involving a constant c.

Example 1.5.2 Best Predictor

Consider a random variable X with finite variance. If Y is a second random
variable defined on the same probability space, then it makes sense to
inquire what function f(Y ) best predicts X . If we use mean square error as
our criterion, then we must minimize Var[X−f(Y )]. According to equation
(1.11),

Var[X − f(Y )] = E{Var[X − f(Y ) | Y ]} + Var{E[X − f(Y ) | Y ]}
= E[Var(X | Y )] + Var[E(X | Y ) − f(Y )].

The term E[Var(X | Y )] does not depend on the function f(Y ), and the
term Var[E(X | Y )−f(Y )] is minimized by taking f(Y ) = E(X | Y ). Thus,
E(X | Y ) is the best predictor.

Table 1.2 lists the densities, means, and characteristic functions of some
commonly occurring univariate distributions. Restrictions on the values
and parameters of these distributions are not shown. Note that the beta
distribution does not possess a simple characteristic function. The version
of the geometric distribution given counts the number of Bernoulli trials
until a success, not the number of failures.
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TABLE 1.2. Common Distributions

Name Density Mean Transform

Binomial
(
n
x

)
px(1 − p)n−x np (1 − p+ peit)n

Poisson λx

x! e
−λ λ eλ(eit−1)

Geometric (1 − p)x−1p 1
p

peit

1−(1−p)eit

Uniform 1
b−a

a+b
2

eitb−eita

it(b−a)

Normal 1√
2πσ2

e−(x−μ)2/2σ2

μ eitμ−σ2t2/2

Exponential λe−λx 1
λ

λ
λ−it

Beta Γ(α+β)xα−1(1−x)β−1

Γ(α)Γ(β)
α

α+β

Gamma λαxα−1

Γ(α) e−λx α
λ

(
λ

λ−it

)α

In statistical applications, densities often depend on parameters. The
parametric families displayed in Table 1.2 are typical. Viewed as a function
of its parameters, a density f(x), either discrete or continuous, is called a
likelihood. For purposes of estimation, one can ignore any factor of f(x)
that depends only on the data x and not on the parameters. In maximum
likelihood estimation, f(x) is maximized with respect to its parameters.
The parameters giving the maximum likelihood are the maximum likeli-
hood estimates. These distinctions carry over to multidimensional densi-
ties.

1.6 Convolution

If X and Y are independent random variables with distribution functions
F (x) and G(y), then F ∗ G(z) denotes the distribution function of the
sum Z = X + Y . Fubini’s theorem permits us to write this convolution of
distribution functions as

F ∗G(z) =

∫ ∫

1{x+y≤z} dF (x) dG(y)

=

∫

F (z − y) dG(y).

If the random variableX possesses density f(x), then executing the change
of variables w = x+ y and interchanging the order of integration yield

F ∗G(z) =

∫ ∫ z−y

−∞
f(x) dx dG(y)
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=

∫ ∫ z

−∞
f(w − y) dw dG(y)

=

∫ z

−∞

∫

f(w − y) dG(y) dw.

Thus, Z = X + Y has density
∫
f(z − y) dG(y). When Y has density g(y),

this simplifies to the convolution f ∗ g(z) =
∫
f(z − y)g(y) dy of the two

density functions.
Other functions of X and Y produce similar results. For example, if we

suppose that Y > 0, then the product U = XY and ratio V = X/Y
have distribution functions

∫∞
0 F (uy−1) dG(y) and

∫∞
0 F (vy) dG(y), re-

spectively. Differentiation of these by u and v leads to the corresponding
densities

∫∞
0
f(uy−1)y−1 dG(y) and

∫∞
0
f(vy)y dG(y). Problem 17 asks the

reader to verify these claims rigorously. Example 1.7.2 treats a ratio when
the denominator possesses a density.

1.7 Random Vectors

Random vectors with dependent components arise in many problems. Tools
for manipulating random vectors are therefore crucially important. For
instance, we define the expectation of a random vector X = (X1, . . . , Xn)t

componentwise by E(X) = [E(X1), . . . ,E(Xn)]t. Linearity carries over from
the scalar case in the sense that

E(X + Y ) = E(X) + E(Y )

E(AX) = AE(X)

for a compatible random vector Y and a compatible constant matrix A.
Similar definitions and results come into play for random matrices when
we calculate the covariance matrix

Cov(X,Y ) = E{[X − E(X)][Y − E(Y )]t}
= E(XY t) − E(X) E(Y )t

of two random vectors X and Y . The covariance operator is linear in each
of its arguments and vanishes when these arguments are independent. Fur-
thermore, one can readily check that

Cov(AX,BY ) = ACov(X,Y )Bt

for compatible constant matrices A and B. The variance matrix of X is
expressible as Var(X) = Cov(X,X) and is nonnegative definite.

We define the distribution function F (x) of X via

F (x) = Pr (∩n
i=1{Xi ≤ xi}) .
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This function is increasing in each component xi of x holding the other
components fixed. The marginal distribution function of a subvector of X
is recoverable by taking the limit of F (x) as the corresponding components
of x tend to ∞. The components of X are independent if and only if F (x)
factors as the product

∏n
i=1 Fi(xi) of the marginal distribution functions.

In many practical problems, X possesses a density f(x). We then have

Pr(X ∈ C) =

∫

C

f(x) dx

for every Borel set C. Here the indicated integral is multidimensional. The
distribution and density functions are related by

F (x) =

∫ x1

−∞
· · ·
∫ xn

−∞
f(y) dy1 · · · dyn.

The marginal density of a subvector of X is recoverable by integrating f(x)
over the components of x corresponding to the complementary subvector.
Furthermore, the components of X are independent if and only if f(x)
factors as the product

∏n
i=1 fi(xi) of the marginal densities. For discrete

random vectors, similar results hold provided we interpret f(x) as a discrete
density and replace multiple integrals by multiple sums.

Conditional expectations are often conveniently calculated using condi-
tional densities. Consider a bivariate random vector X = (X1, X2) with
density f(x1, x2). The formula

f2|1(x2 | x1) =
f(x1, x2)

f1(x1)

determines the conditional density of X2 given X1. To compute the condi-
tional expectation of a function h(X) of X , we form

E[h(X) | X1 = x1] =

∫

h(x1, x2)f2|1(x2 | x1) dx2.

This works because

E[1C(X1)h(X)] =

∫

C

∫

h(x1, x2)f2|1(x2 | x1) dx2f1(x1) dx1

= E{1C(X1) E[h(X) | X1]}

mirrors equation (1.5).

Example 1.7.1 Bayes’ Rule

In many statistical applications, it is common to know one conditional
density f2|1(x2 | x1) but not the other f1|2(x1 | x2). Since

f2(x2) =

∫

f(x1, x2) dx1

=

∫

f1(x1)f2|1(x2 | x1) dx1,
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it follows that

f1|2(x1 | x2) =
f(x1, x2)

f2(x2)

=
f1(x1)f2|1(x2 | x1)

f2(x2)

=
f1(x1)f2|1(x2 | x1)∫
f1(x1)f2|1(x2 | x1) dx1

.

Variants of this simple formula underlie all of Bayesian statistics.

Often probability models involve transformations of one random vector
into another. Let T (x) be a continuously differentiable transformation of
an open set U containing the range of X onto an open set V . The density
g(y) of the random vector Y = T (X) is determined by the standard change
of variables formula

Pr(Y ∈ C) =

∫

T−1(C)

f(x) dx

=

∫

C

f ◦ T−1(y)| det dT−1(y)| dy (1.12)

from advanced calculus [97, 173]. Here we assume that T (x) is invertible
and that its differential (or Jacobian matrix)

dT (x) =
[ ∂

∂xj
Ti(x)

]

of partial derivatives is invertible at each point x ∈ U . Under these circum-
stances, the chain rule applied to T−1[T (x)] = x produces

dT−1(y)dT (x) = I

for y = T (x). This permits us to substitute | detT (x)|−1 for | det dT−1(y)|
in the change of variables formula.

Example 1.7.2 Density of a Ratio

Let X1 and X2 be independent random variables with densities f1(x1) and
f2(x2). The transformation

T

(
x1

x2

)

=

(
x1/x2

x2

)

=

(
y1
y2

)

has inverse

T−1

(
y1
y2

)

=

(
y1y2
y2

)

=

(
x1

x2

)
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and differential and Jacobian

dT (x) =

(
1/x2 −x1/x

2
2

0 1

)

det dT (x) = 1/x2.

The fact that T (x) is undefined on {x : x2 = 0} is harmless since this closed
set has probability 0. The change of variables formula (1.12) implies that
Y1 = X1/X2 and Y2 = X2 have joint density

f1(y1y2)f2(y2)|y2|.

Integrating over y2 gives the marginal density
∫ ∞

−∞
f1(y1y2)f2(y2)|y2| dy2

of Y1.
As a concrete example, suppose that X1 and X2 have standard normal

densities. Then the ratio Y1 = X1/X2 has density

1

2π

∫ ∞

−∞
e−(y1y2)

2/2e−y2
2/2|y2| dy2 =

1

π

∫ ∞

0

e−y2
2(y2

1+1)/2y2 dy2

= − 1

π(y2
1 + 1)

e−y2
2(y2

1+1)/2
∣
∣
∣
∞

0

=
1

π(y2
1 + 1)

.

This is the density of a Cauchy random variable. Because X1/X2 and
X2/X1 are identically distributed, the reciprocal of a Cauchy is Cauchy.

To recover the moments of a random vector X , we can differentiate its
characteristic function s �→ E(eistX). In particular,

E(Xj) = −i ∂
∂sj

E(eistX)|s=0

E(X2
j ) = − ∂2

∂s2j
E(eistX)|s=0

E(XjXk) = − ∂2

∂sj∂sk
E(eistX)|s=0.

The characteristic function of X uniquely determines its distribution.

1.8 Multivariate Normal Random Vectors

As an illustration of the material reviewed, we now consider the multivari-
ate normal distribution. Among the many possible definitions, we adopt
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the one most widely used in stochastic simulation. Our point of departure
will be random vectors with independent standard normal components. If
such a random vector X has n components, then its density is

n∏

j=1

1√
2π
e−x2

j/2 =
( 1

2π

)n/2

e−xtx/2.

As demonstrated in Chapter 2, the standard normal distribution has mean
0, variance 1, and characteristic function e−s2/2. It follows thatX has mean
vector 0, variance matrix I, and characteristic function

E(eistX) =

n∏

j=1

e−s2
j /2 = e−sts/2.

We now define any affine transformation Y = AX + μ of X to be mul-
tivariate normal [164]. This definition has several practical consequences.
First, it is clear that E(Y ) = μ and Var(Y ) = AVar(X)At = AAt = Ω.
Second, any affine transformationBY +ν = BAX+Bμ+ν of Y is also mul-
tivariate normal. Third, any subvector of Y is multivariate normal. Fourth,
the characteristic function of Y is

E(eistY ) = eistμ E(eistAX) = eistμ−stAAts/2 = eistμ−stΩs/2.

This enumeration omits two more subtle issues. One is whether Y pos-
sesses a density. Observe that Y lives in an affine subspace of dimension
equal to or less than the rank of A. Thus, if Y has m components, then
n ≥ m must hold in order for Y to possess a density. A second issue is
the existence and nature of the conditional density of a set of components
of Y given the remaining components. We can clarify both of these issues
by making canonical choices of X and A based on the classical QR de-
composition of a matrix, which follows directly from the Gram-Schmidt
orthogonalization procedure. See Problem 22 or reference [39].

Assuming that n ≥ m, we can write

At = Q

(
R
0

)

, (1.13)

where Q is an n × n orthogonal matrix and R = Lt is an m ×m upper-
triangular matrix with nonnegative diagonal entries. (If n = m, we omit
the zero matrix in the QR decomposition.) It follows that

AX = (L 0t )QtX = (L 0t )Z.

In view of the change of variables formula (1.12) and the facts that the
orthogonal matrix Qt preserves inner products and has determinant ±1,
the random vector Z has n independent standard normal components and
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serves as a substitute for X . Not only is this true, but we can dispense
with the last n −m components of Z because they are multiplied by the
matrix 0t. Thus, we can safely assume n = m and calculate the density of
Y = LZ + μ when L is invertible. In this situation, Ω = LLt is termed the
Cholesky decomposition, and the change of variables formula (1.12) shows
that Y has density

f(y) =
( 1

2π

)n/2

| detL−1|e−(y−μ)t(L−1)tL−1(y−μ)/2

=
( 1

2π

)n/2

| detΩ|−1/2e−(y−μ)tΩ−1(y−μ)/2,

where Ω = LLt is the variance matrix of Y . In this formula for the density,
the absolute value signs on detΩ and detL−1 are redundant because these
determinants are positive.

To address the issue of conditional densities, consider the compatibly
partitioned vectors Y t = (Y t

1 , Y
t
2 ), Xt = (Xt

1, X
t
2), and μt = (μt

1, μ
t
2) and

matrices

L =

(
L11 0
L21 L22

)

Ω =

(
Ω11 Ω12

Ω21 Ω22

)

.

Now suppose that X is standard normal, that Y = LX + μ, and that L11

has full rank. For Y1 = y1 fixed, the equation y1 = L11X1 + μ1 shows that
X1 is fixed at the value x1 = L−1

11 (y1 − μ1). Because no restrictions apply
to X2, we have

Y2 = L22X2 + L21L
−1
11 (y1 − μ1) + μ2.

Thus, Y2 given Y1 is normal with mean L21L
−1
11 (y1 −μ1)+μ2 and variance

L22L
t
22. To express these in terms of the blocks of Ω = LLt, observe that

Ω11 = L11L
t
11

Ω21 = L21L
t
11

Ω22 = L21L
t
21 + L22L

t
22.

The first two of these equations imply that L21L
−1
11 = Ω21Ω

−1
11 . The last

equation then gives

L22L
t
22 = Ω22 − L21L

t
21

= Ω22 − Ω21(L
t
11)

−1L−1
11 Ω12

= Ω22 − Ω21Ω
−1
11 Ω12.

These calculations do not require that Y2 possess a density. In summary, the
conditional distribution of Y2 given Y1 is normal with mean and variance

E(Y2 | Y1) = Ω21Ω
−1
11 (Y1 − μ1) + μ2

Var(Y2 | Y1) = Ω22 − Ω21Ω
−1
11 Ω12.
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1.9 Problems

1. Let Ω be an infinite set. A subset S ⊂ Ω is said to be cofinite when
its complement Sc is finite. Demonstrate that the family of subsets

F = {S ⊂ Ω : S is finite or cofinite}

is not a σ-algebra. What property fails? If we define P(S) = 0 for S
finite and P(S) = 1 for S cofinite, then prove that P(S) is finitely
additive but not countably additive.

2. The symmetric difference A�B of two events A and B is defined as
(A ∩ Bc) ∪ (Ac ∩ B). Show that A�B has indicator |1A − 1B|. Use
this fact to prove the triangle inequality

Pr(A�C) ≤ Pr(A�B) + Pr(B�C).

It follows that if we ignore events of probability 0, then the collection
of events forms a metric space.

3. Suppose A, B, and C are three events with Pr(A ∩ B) > 0. Show
that A and C are conditionally independent given B if and only if
the Markov property Pr(C | A ∩B) = Pr(C | B) holds.

4. Suppose Xn is a sequence of nonnegative random variables that con-
verges pointwise to the random variable X . If X is integrable, then
Scheffe’s lemma declares that limn→∞ E(|Xn −X |) = 0 if and only if
limn→∞ E(Xn) = E(X). Prove this equivalence. (Hints: Let An and
Bn be the events Xn −X > 0 and Xn −X ≤ 0. Write

E(Xn −X) = E[1An
(Xn −X)] + E[1Bn

(Xn −X)]

E(|Xn −X |) = E[1An
(Xn −X)] − E[1Bn

(Xn −X)]

and apply the dominated convergence theorem to the rightmost ex-
pectations.)

5. Consider a sequence of independent events A1, A2, . . . satisfying

∞∑

i=1

Pr(Ai) = ∞.

As a partial converse to the Borel-Cantelli lemma, prove that in-
finitely many of the Ai occur. (Hints: Express the event that in-
finitely many of the events occur as ∩∞

n=1 ∪∞
i=nAi. Use the inequality

1 − x ≤ e−x to bound an infinite product by the exponential of an
infinite sum.)
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6. Use Problem 5 to prove that the pattern SFS of a success, failure,
and success occurs infinitely many times in a sequence of Bernoulli
trials. This result obviously generalizes to more complex patterns.

7. Consider a sequenceX1, X2, . . . of independent random variables that
are exponentially distributed with mean 1. Show that

1 = lim sup
n→∞

Xn

lnn

1 = lim sup
n→∞

Xn − lnn

ln lnn

1 = lim sup
n→∞

Xn − lnn− ln lnn

ln ln lnn
.

(Hints: Use the sums

∞ =
∞∑

n=1

1

n

∞ =

∞∑

n=1

1

n lnn

∞ =
∞∑

n=1

1

n(lnn)(ln lnn)

from pages 54 and 55 of [173], and apply Problem 5.)

8. Discuss how you would use the inverse method of Example 1.5.1 to
generate a random variable with (a) the continuous logistic density

f(x|μ, σ) =
e−

x−μ
σ

σ[1 + e−
x−μ

σ ]2
,

(b) the Pareto density

f(x|α, β) =
βαβ

xβ+1
1(α,∞)(x),

and (c) the Weibull density

f(x|δ, γ) =
γ

δ
xγ−1e−

xγ

δ 1(0,∞)(x),

where α, β, γ, δ, and σ are taken positive.

9. Let the random variable X have distribution function F (x). Demon-
strate that

E{h[F (X)]} =

∫ 1

0

h(u) du

for any integrable function h(u) on [0, 1].
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10. Let the random variable X have symmetric density f(x) = f(−x).
Prove that the corresponding distribution function F (x) satisfies the
identity

∫ a

−a
F (x) dx = a for all a ≥ 0 [183].

11. Suppose X has a continuous, strictly increasing distribution function
F (x) and Y = −X has distribution function G(y). Show that X
is symmetrically distributed around some point μ if and only if the
function x �→ x−G−1[F (x)] is constant, where G−1[G(y)] = y for all
y.

12. Prove the two conditioning formulas in equation (1.11) for calculating
variances and covariances.

13. If X and Y are independent random variables with finite variances,
then show that

Var(XY ) = Var(X)Var(Y ) + E(X)2 Var(Y ) + E(Y )2 Var(X).

14. Suppose X and Y are independent random variables with finite vari-
ances. Define Z to be either X or Y depending on the outcome of a
coin toss. In other words, set Z = X with probability p and Z = Y
with probability q = 1−p. Find the mean, variance, and characteristic
function of Z.

15. Let Sn = X1+· · ·+Xn be the sum of n independent random variables,
each distributed uniformly over the set {1, 2, . . . ,m}. For example,
imagine tossing an m-sided die n times and recording the total score.
Calculate E(Sn) and Var(Sn).

16. Suppose Y has exponential density e−y with unit mean. Given Y ,
let a point X be chosen uniformly from the interval [0, Y ]. Show
that X has density E1(x) =

∫∞
x e−yy−1 dy and distribution function

1 − e−x + xE1(x). Calculate E(X) and Var(X).

17. Validate the formulas for the distribution and density functions of
the product XY and the ratio X/Y of independent random variables
X and Y > 0 given in Section 1.6. (Hint: Mimic the arguments used
in establishing the convolution formulas.)

18. Suppose X and Y are independent random variables concentrated on
the interval (0,∞). If E(X) <∞ and Y has density g(y), then show
that the ratio X/Y has finite expectation if and only if

∫ 1

0

y−1g(y)dy < ∞.
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19. Let X1 and X2 be independent random variables with common ex-
ponential density λe−λx on (0,∞). Show that the random variables
Y1 = X1 + X2 and Y2 = X1/X2 are independent, and find their
densities.

20. Let X1, . . . , Xn be a sequence of independent standard normal ran-
dom variables. Prove that χ2

n = X2
1 + · · · +X2

n has a gamma distri-
bution. Calculate the mean and variance of χ2

n.

21. Continuing Problem 20, let X be a multivariate normal random vec-
tor with mean vector μ and invertible variance matrix Ω. If X has n
components, then show that the quadratic form (X−μ)tΩ−1(X−μ)
has a χ2

n distribution.

22. For n ≥ m, verify the QR decomposition (1.13). (Hints: Write

At = (a1, . . . , am)

Q = (q1, . . . , qn)

R = (r1, . . . , rm).

The Gram-Schmidt orthogonalization process applied to the columns
of At yields orthonormal column vectors q1, . . . , qm satisfying

ai =

i∑

j=1

qjrji.

Complete this orthonormal basis by adding vectors qm+1, . . . , qn.)

23. The Hadamard product C = A ◦ B of two matrices A = (aij) and
B = (bij) of the same dimensions has entries cij = aijbij . If A and B
are nonnegative definite matrices, then show that A ◦ B is nonnega-
tive definite. If in addition A is positive definite, and B has positive
diagonal entries, then show that A ◦ B is positive definite. (Hints:
Let X and Y be multivariate normal random vectors with mean 0
and variance matrices A and B. Show that the vector Z with entries
Zi = XiYi has variance matrix A ◦B. To prove that A ◦B is positive
definite, demonstrate that vtZ has positive variance for v �= 0. This
can be done via the equality Var(vtZ) = E[(v ◦ Y )tA(v ◦ Y )] based
on formula (1.11).)



2
Calculation of Expectations

2.1 Introduction

Many of the hardest problems in applied probability revolve around the
calculation of expectations of one sort or another. On one level, these are
merely humble exercises in integration or summation. However, we should
not be so quick to dismiss the intellectual challenges. Readers are doubt-
less already aware of the clever applications of characteristic and moment
generating functions. This chapter is intended to review and extend some
of the tools that probabilists routinely call on. Readers can consult the
books [34, 59, 60, 78, 80, 166] for many additional examples of these tools
in action.

2.2 Indicator Random Variables and Symmetry

Many counting random variables can be expressed as the sum of indicator
random variables. If S =

∑n
i=1 1Ai

for events A1, . . . , An, then straightfor-
ward calculations and equation (1.10) give

E(S) =

n∑

i=1

Pr(Ai) (2.1)

Var(S) =

n∑

i=1

Pr(Ai) +

n∑

i=1

∑

j �=i

Pr(Ai ∩Aj) − E(S)2. (2.2)

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_2, © Springer Science+Business Media, LLC 2010
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Example 2.2.1 Fixed Points of a Random Permutation

There are n! permutations π of the set {1, . . . , n}. Under the uniform dis-
tribution, each of these permutations is equally likely. If Ai is the event
that π(i) = i, then S =

∑n
i=1 1Ai

is the number of fixed points of π. By
symmetry, Pr(Ai) = 1

n and

Pr(Ai ∩Aj) = Pr(Aj | Ai) Pr(Ai)

=
1

(n− 1)n
.

Hence, the formulas in (2.2) yield E(S) = n
n = 1 and

Var(S) =
n

n
+

n∑

i=1

∑

j �=i

1

(n− 1)n
− 12

= 1.

The equality E(S) = Var(S) suggests that S is approximately Poisson
distributed. We will verify this conjecture in Example 4.3.1.

Example 2.2.2 Pattern Matching

Consider a random string of n letters drawn uniformly and independently
from the alphabet {1, . . . ,m}. Let S equal the number of occurrences of a
given word of length k ≤ n in the string. For example, with m = 2 and
n = 10, all strings have probability 2−10. The word 101 is present in the
string 1101011101 three times. Represent S as

S =

n−k+1∑

j=1

1Aj
,

where Aj is the event that the given word occurs beginning at position j
in the string. In view of equation (2.1), it is obvious that

E(S) =

n−k+1∑

j=1

Pr(Aj) = (n− k + 1)pk

for the choice p = m−1. Calculation of Var(S) is more subtle. Equation
(2.2) and symmetry imply

Var(S) = (n− k + 1)Var(1A1) + 2

l∑

j=2

(n− k − j + 2)Cov(1A1 , 1Aj
),

where l = min{k, n−k+1}, the multiplier 2(n−k− j+2) of Cov(1A1 , 1Aj
)

equals the number of pairs (r, x) with |r − s| = j − 1, and the events Ar

and As are independent whenever |r − s| ≥ k. Although it is clear that

Var(1A1) = pk − p2k,
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the covariance terms present more of a challenge because of the possibility
of overlapping occurrences of the word. Let εl equal 1 or 0, depending on
whether the last l letters of the word taken as a block coincide with the
first l letters of the word taken as a block. For the particular word 101,
ε = 1 and ε2 = 0. With this convention, we calculate

Cov(1A1 , 1Aj
) = εk−j+1p

k+j−1 − p2k

for 2 ≤ j ≤ k.

Both of the previous examples exploit symmetry as well as indicator ran-
dom variables. Here is another example from sampling theory that depends
crucially on symmetry [40].

Example 2.2.3 Sampling without Replacement

Assume that m numbers Y1, . . . , Ym are drawn randomly without replace-
ment from n numbers x1, . . . , xn. It is of interest to calculate the mean and
variance of the sample average S = 1

m

∑m
i=1 Yi. Clearly,

E(S) =
1

m

m∑

i=1

E(Yi) = x̄,

where x̄ is the sample average of the xi. To calculate the variance of S, let
s2 = 1

n

∑n
i=1(xi − x̄)2 denote the sample variance of the xi. Now imagine

filling out the sample to Y1, . . . , Yn so that all n values x1, . . . , xn are ex-
hausted. Because the sum Y1 + · · · + Yn = nx̄ is constant, symmetry and
equation (1.10) imply that

0 = Var(Y1 + · · · + Yn)

= ns2 + n(n− 1)Cov(Y1, Y2).

In verifying that Cov(Yi, Yj) = Cov(Y1, Y2), it is helpful to think of the
sampling being done simultaneously rather than sequentially. In any case,

Cov(Y1, Y2) = − s2

n−1 , and the formula

Var(S) =
1

m2

[
ms2 +m(m− 1)Cov(Y1, Y2)

]

=
1

m2

[

ms2 − m(m− 1)s2

n− 1

]

=
(n−m)s2

m(n− 1)

follows directly.

The next problem, the first of a long line of problems in geometric prob-
ability, also yields to symmetry arguments [116].
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Example 2.2.4 Buffon Needle Problem

Suppose we draw an infinite number of equally distant parallel lines on the
plane R

2. If we drop a needle (or line segment) of fixed length randomly
onto the plane, then the needle may or may not intersect one of the parallel
lines. Figure 2.1 shows the needle intersecting a line. Buffon’s problem is to
calculate the probability of an intersection. Without loss of generality, we
assume that the spacing between lines is 1 and the length of the needle is d.
Let Xd be the random number of lines that the needle intersects. If d < 1,
then Xd equals 0 or 1, and Pr(Xd = 1) = E(Xd). Thus, Buffon’s problem
reduces to calculating an expectation for a short needle. Our task is to
construct the function f(d) = E(Xd). This function is clearly nonnegative,
increasing, and continuous in d.

�
�

��
��

FIGURE 2.1. Diagram of the Buffon Needle Problem

Now imagine randomly dropping two needles simultaneously of lengths
d1 and d2. The expected number of intersections of both needles obviously
amounts to E(Xd1) + E(Xd2). This result holds whether we drop the two
needles independently or dependently, as long as we drop them randomly.
We can achieve total dependence by welding the end of one needle to the
start of the other needle. If the weld is just right, then the two needles will
form a single needle of length d1 + d2. This shows that

f(d1 + d2) = f(d1) + f(d2). (2.3)

The only functions f(d) that are nonnegative, increasing, and additive in
d are the linear functions f(d) = cd with c ≥ 0. To find the proportionality
constant c, we take the experiment of welding needles together to its logical
extreme. Thus, a rigid wire of welded needles with perimeter p determines
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on average cp intersections. In the limit, we can replace the wire by any
reasonable curve. The key to finding c is to take a circle of diameter 1.
This particular curve has perimeter π and either is tangent to two lines
or intersects the same line twice. Figure 2.1 depicts the latter case. The
equation 2 = cπ now determines c = 2/π and f(d) = 2d/π.

2.3 Conditioning

A third way to calculate expectations is to condition. Two of the next
three examples use conditioning to derive a recurrence relation. In the
family planning model, the recurrence is difficult to solve exactly, but as
with most recurrences, it is easy to implement by hand or computer.

Example 2.3.1 Beta-Binomial Distribution

Consider a random variable P with beta density

fαβ(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1 − p)β−1

on the unit interval. In Section 2.9, we generalize the beta distribution
to the Dirichlet distribution. In the meantime, the reader may recall the
moment calculation

E[P i(1 − P )j ] =

∫ 1

0

pi(1 − p)jfαβ(p) dp

=
Γ(α+ β)

Γ(α)Γ(β)

Γ(α+ i)Γ(β + j)

Γ(α + β + i+ j)

∫ 1

0

fα+i,β+j(p) dp

=
(α+ i− 1) · · ·α(β + j − 1) · · ·β
(α+ β + i+ j − 1) · · · (α+ β)

invoking the factorial property Γ(x + 1) = xΓ(x) of the gamma function.
This gives, for example,

E(P ) =
α

α+ β

E[P (1 − P )] =
αβ

(α + β)(α+ β + 1)
(2.4)

Var(P ) =
αβ

(α + β)2(α+ β + 1)
.

Now suppose we carry out n Bernoulli trials with the same random suc-
cess probability P pertaining to all n trials. The number of successes Sn

follows a beta-binomial distribution. Application of equations (1.3) and
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(1.11) yields

E(Sn) = nE(P )

Var(Sn) = E[Var(Sn | P )] + Var[E(Sn | P )]

= E[nP (1 − P )] + Var(nP )

= nE[P (1 − P )] + n2 Var(P ),

which can be explicitly evaluated using the moments in equation (2.4).
Problem 4 provides the density of Sn.

Example 2.3.2 Repeated Uniform Sampling

Suppose we construct a sequence of dependent random variables Xn by
taking X0 = 1 and sampling Xn uniformly from the interval [0, Xn−1]. To
calculate the moments of Xn, we use the facts E(Xk

n) = E[E(Xk
n | Xn−1)]

and

E(Xk
n | Xn−1) =

1

Xn−1

∫ Xn−1

0

xkdx

=
xk+1

Xn−1(k + 1)

∣
∣
∣
Xn−1

0

=
1

k + 1
Xk

n−1.

Hence,

E(Xk
n) =

1

k + 1
E(Xk

n−1) =
( 1

k + 1

)n

.

For example, E(Xn) = 2−n and Var(Xn) = 3−n − 2−2n. It is interesting
that if we standardize by defining Yn = 2nXn, then the mean E(Yn) = 1 is
stable, but the variance Var(Yn) = (4

3 )n − 1 tends to ∞.
The clouds of mystery lift a little when we rewrite Xn as the product

Xn = UnXn−1 =

n∏

i=1

Ui

of independent uniform random variables U1, . . . , Un on [0, 1]. The product
rule for expectations now gives E(Xk

n) = E(Uk
1 )n = (k + 1)−n. Although

we cannot stabilize Xn, it is possible to stabilize lnXn. Indeed, Problem
5 notes that lnXn =

∑n
i=1 lnUi follows a − 1

2χ
2
2n distribution with mean

−n and variance n. Thus for large n, the central limit theorem implies that
(lnXn + n)/

√
n has an approximate standard normal distribution.



2.4 Moment Transforms 31

Example 2.3.3 Expected Family Size

A married couple desires a family consisting of at least s sons and d daugh-
ters. At each birth, the mother independently bears a son with probability
p and a daughter with probability q = 1−p. They will quit having children
when their objective is reached. Let Nsd be the random number of children
born to them. Suppose we wish to calculate the expected value E(Nsd).
Two cases are trivial. If either s = 0 or d = 0, then Nsd follows a neg-
ative binomial distribution. Therefore, E(N0d) = d/q and E(Ns0) = s/p.
When both s and d are positive, the distribution of Nsd is not so obvious.
Conditional on the sex of the first child, the random variable Nsd − 1 is
either a probabilistic copy N∗

s−1,d of Ns−1,d or a probabilistic copy N∗
s,d−1

of Ns,d−1. Because in both cases the copy is independent of the sex of the
first child, the recurrence relation

E(Nsd) = p[1 + E(Ns−1,d)] + q[1 + E(Ns,d−1)]

= 1 + pE(Ns−1,d) + qE(Ns,d−1)

follows from conditioning on this outcome.
There are many variations on this idea. For instance, suppose we wish to

compute the probability Rsd that they reach their quota of s sons before
their quota of d daughters. Then the Rsd satisfy the boundary conditions
R0d = 1 for d > 0 and Rs0 = 0 for s > 0. When s and d are both positive,
we have the recurrence relation

Rsd = pRs−1,d + qRs,d−1.

2.4 Moment Transforms

Each of the moment transforms reviewed in Section 1.5 can be differentiated
to capture the moments of a random variable. Equally important, these
transforms often solve other theoretical problems with surprising ease. The
next seven examples illustrate these two roles.

Example 2.4.1 Characteristic Function of a Normal Density

To find the characteristic function ψ̂(t) = E(eitX) of a standard normal

random variable X with density ψ(x) = 1√
2π
e−x2/2, we derive and solve a

differential equation. Differentiation under the integral sign and integration
by parts together imply that

d

dt
ψ̂(t) =

1√
2π

∫ ∞

−∞
eitxixe−

x2

2 dx
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= − i√
2π

∫ ∞

−∞
eitx d

dx
e−

x2

2 dx

=
−i√
2π
eitxe−

x2

2

∣
∣
∣
∞

−∞
− t√

2π

∫ ∞

−∞
eitxe−

x2

2 dx

= −tψ̂(t).

The unique solution to this differential equation with initial value ψ̂(0) = 1

is ψ̂(t) = e−t2/2.
If X is a standard normal random variable, then μ + σX is a nor-

mal random variable with mean μ and variance σ2. The general identity
E[eit(μ+σX)] = eitμ E[ei(σt)X ] permits us to express the characteristic func-
tion of the normal distribution with mean μ and variance σ2 as

ψ̂μ,σ2(t) = eitμψ̂(σt) = eitμ− σ2t2

2 .

The first two derivatives

d

dt
ψ̂μ,σ2(t) = (iμ− σ2t)eitμ− σ2t2

2

d2

dt2
ψ̂μ,σ2(t) = −σ2eitμ−σ2t2

2 + (iμ− σ2t)2eitμ−σ2t2

2

evaluated at t = 0 determine the mean μ and second moment σ2 + μ2 as
indicated in equation (1.8).

Example 2.4.2 Characteristic Function of a Gamma Density

A random variable X with exponential density λe−λx1{x>0} has character-
istic function

∫ ∞

0

eitxλe−λxdx =
λ

it− λ
e(it−λ)x

∣
∣
∣
∞

0

=
λ

λ− it
.

An analogous calculation yields the Laplace transform λ/(λ+ t). Differen-
tiation of either of these transforms produces

E(X) =
1

λ

Var(X) =
1

λ2
.

The gamma density λnxn−1e−λx1{x>0}/Γ(n) is the convolution of n ex-
ponential densities with common intensity λ. The corresponding random
variable Xn therefore has

E(Xn) =
n

λ
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Var(Xn) =
n

λ2

E(eitXn) =
( λ

λ− it

)n

E(e−tXn) =
( λ

λ+ t

)n

.

Problem 16 indicates that these results carry over to non-integer n > 0.

Example 2.4.3 Factorial Moments

Let X be a nonnegative, integer-valued random variable. Repeated differ-
entiation of its probability generating function G(u) = E(uX) yields its

factorial moments E[X(X − 1) · · · (X − j + 1)] = dj

dujG(1). The first two
central moments

E(X) = G′(1)

Var(X) = E[X(X − 1)] + E(X) − E(X)2

= G′′(1) +G′(1) −G′(1)2

are worth committing to memory. As an example, suppose X is Poisson
distributed with mean λ. Then

G(u) =
∞∑

k=0

λk

k!
e−λuk = e−λ(1−u).

Repeated differentiation yields dj

dujG(1) = λj . In particular, E(X) = λ and
Var(X) = λ. For another example, letX follow a binomial distribution with
n trials and success probability p per trial. In this case G(u) = (1−p+pu)n,
E(X) = np, and Var(X) = np(1 − p).

Example 2.4.4 Random Sums

Suppose X1, X2, . . . is a sequence of independent identically distributed
(i.i.d.) random variables. Consider the random sum SN =

∑N
i=1Xi, where

the random number of terms N is independent of the Xi, and where we
adopt the convention S0 = 0. For example in an ecological study, the num-
ber of animal littersN in a plot of land might have a Poisson distribution to
a good approximation. The random variable Xi then represents the num-
ber of offspring in litter i, and the compound Poisson random variable SN

counts the number of offspring over the whole plot.
If N has probability generating function G(u) = E(uN), then the char-

acteristic function of SN is

E(eitSN ) =

∞∑

n=0

E(eitSN | N = n) Pr(N = n)
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=

∞∑

n=0

E(eitX1)n Pr(N = n)

= G[E(eitX1 )].

This composition rule carries over to other moment transforms. For in-
stance, if the Xi are nonnegative and integer-valued with probability gen-
erating function H(u), then a similar argument gives E(uSN ) = G[H(u)].

We can extract the moments of SN by differentiation. Alternatively, con-
ditioning on N produces

E(SN ) = E[N E(X1)] = E(N) E(X1)

and

Var(SN ) = E[Var(SN | N)] + Var[E(SN | N)]

= E[N Var(X1)] + Var[N E(X1)]

= E(N)Var(X1) + Var(N) E(X1)
2.

For instance, if N has a Poisson distribution with mean λ and the Xi have
a binomial distribution with parameters n and p, then SN has

E(uSN ) = e−λ[1−(1−p+pu)n]

E(SN ) = λnp

Var(SN ) = λnp(1 − p) + λn2p2

as its probability generating function, mean, and variance, respectively.

Example 2.4.5 Sum of Uniforms

In Example 2.3.2, we considered the product of n independent random
variables U1, . . . , Un uniformly distributed on [0, 1]. We now turn to the
problem of finding the density of the sum Sn = U1 + · · ·+Un. Our strategy
will be to calculate and invert the Laplace transform of the density of Sn,
keeping in mind that the Laplace transform of a random variable coincides
with the Laplace transform of its density. Because the Laplace transform

of a single Ui is
∫ 1

0
e−txdx = (1 − e−t)/t, the Laplace transform of Sn is

(1 − e−t)n

tn
=

1

tn

n∑

k=0

(
n

k

)

(−1)ke−kt.

In view of the linearity of the Laplace transform, it therefore suffices to
invert the term e−kt/tn. Since multiplication by e−kt in the transform do-
main corresponds to an argument shift of k in the original domain, all we
need to do is find the function with transform t−n and shift it by k. We
now make an inspired guess that the function xn−1 is relevant. Because
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the Laplace transform deals with functions defined on [0,∞), we exchange
xn−1 for the function (x)n−1

+ , which equals 0 for x ≤ 0 and xn−1 for x > 0.
The change of variables u = tx and the definition of the gamma function
show that (x)n−1

+ has transform
∫ ∞

0

xn−1e−txdx =
1

tn

∫ ∞

0

un−1e−udu

=
(n− 1)!

tn
.

Up to a constant, this is just what we need. Hence, we conclude that Sn

has density

f(x) =
1

(n− 1)!

n∑

k=0

(
n

k

)

(−1)k(x− k)n−1
+ .

The corresponding distribution function

F (x) =
1

n!

n∑

k=0

(
n

k

)

(−1)k(x− k)n
+

emerges after integration with respect to x.

Example 2.4.6 A Nonexistence Problem

Is it always possible to represent a random variable X as the difference
Y −Z of two independent, identically distributed random variables Y and
Z? The answer is clearly no unless X is symmetrically distributed around
0. For a symmetrically distributed X , the question is more subtle. Suppose
that Y and Z exist for such an X . Then the characteristic function of X
reduces to

E[eit(Y −Z)] = E(eitY ) E(e−itZ)

= E(eitY ) E(eitY )∗

= |E(eitY )|2,

where the superscript ∗ denotes complex conjugation. (It is trivial to check
that conjugation commutes with expectation for complex random variables
possessing only a finite number of values, and this property persists in the
limit for all complex random variables.) In any case, if the representation
X = Y − Z holds, then the characteristic function of X is nonnegative.
Thus, to construct a counterexample, all we need to do is find a symmet-
rically distributed random variable whose characteristic function fails the
test of nonnegativity. For instance, if we take X to be uniformly distributed
on [− 1

2 ,
1
2 ], then its characteristic function

∫ 1
2

− 1
2

eitxdx =
eitx

it

∣
∣
∣
1
2

− 1
2

=
sin( t

2 )
t
2
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oscillates in sign.

Example 2.4.7 Characterization of the Standard Normal Distribution

Consider a random variable X with mean 0, variance 1, and characteristic
function ψ̂(t). If X is standard normal and Y is an independent copy of
X , then for all a and b the sum aX + bY has the same distribution as√
a2 + b2X . This distributional identity implies the characteristic function

identity

ψ̂(at)ψ̂(bt) = ψ̂
(√

a2 + b2t
)

(2.5)

for all t.
Conversely, suppose the functional equation (2.5) holds for a random

variable X with mean 0 and variance 1. Let us show that X possesses a
standard normal distribution. The special case a = −1 and b = 0 of equa-
tion (2.5) amounts to ψ̂(−t) = ψ̂(t), from which it immediately follows that

ψ̂(t)∗ = ψ̂(−t) = ψ̂(t). Thus, ψ̂(t) is real and even. It is also differentiable

because E(|X |) < ∞. Now define g(t2) = ψ̂(t) for t > 0. Setting t = 1 and
replacing a2 by a and b2 by b in the functional equation (2.5) produce the
revised functional equation

g(a)g(b) = g(a+ b). (2.6)

Taking f(t) = ln g(t) lands us right back at equation (2.3), except that it
is no longer clear that f(t) is monotone. Rather than rely on our previous
hand-waving solution, we can differentiate equation (2.6), first with respect
to a ≥ 0 and then with respect to b ≥ 0. This yields

g′(a)g(b) = g′(a+ b) = g(a)g′(b). (2.7)

If we take b > 0 sufficiently small, then g(b) > 0, owing to the continuity of
g(t) and the initial condition g(0) = 1. Dividing equation (2.7) by g(b) and
defining λ = −g′(b)/g(b) leads to the differential equation g′(a) = −λg(a)
with solution g(a) = e−λa. To determine λ, note that the equality

g′′(t2)4t2 + g′(t2)2 = ψ̂′′(t)

yields −2λ = −1 in the limit as t approaches 0. Thus, ψ̂(t) = e−t2/2 as
required.

2.5 Tail Probability Methods

Consider a nonnegative random variableX with distribution function F (x).
The right-tail probability Pr(X > t) = 1 − F (t) turns out to be helpful
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in calculating certain expectations relative to X . Let h(t) be an integrable
function on each finite interval [0, x]. If we define H(x) = H(0)+

∫ x

0 h(t) dt

and suppose that
∫∞
0 |h(t)|[1−F (t)] dt <∞, then Fubini’s theorem justifies

the calculation

E[H(X)] = H(0) + E

[∫ X

0

h(t) dt

]

= H(0) +

∫ ∞

0

∫ x

0

h(t) dt dF (x)

= H(0) +

∫ ∞

0

∫ ∞

t

dF (x)h(t) dt (2.8)

= H(0) +

∫ ∞

0

h(t)[1 − F (t)] dt.

If X is concentrated on the integers {0, 1, 2, . . .}, the right-tail probability
1 − F (t) is constant except for jumps at these integers. Equation (2.8)
therefore reduces to

E[H(X)] = H(0) +
∞∑

k=0

[H(k + 1) −H(k)][1 − F (k)]. (2.9)

Example 2.5.1 Moments from Right-Tail Probabilities

The choices h(t) = ntn−1 and H(0) = 0 yield H(x) = xn. Hence, equations
(2.8) and (2.9) become

E[Xn] = n

∫ ∞

0

tn−1[1 − F (t)] dt

and

E[Xn] =

∞∑

k=0

[(k + 1)n − kn][1 − F (k)],

respectively. For instance, if X is exponentially distributed, then the right-
tail probability 1 − F (t) = e−λt and E(X) =

∫∞
0 e−λtdt = λ−1. If X is

geometrically distributed with failure probability q, then 1 − F (k) = qk

and E(X) =
∑∞

k=0 q
k = (1 − q)−1.

Example 2.5.2 Laplace Transforms

Equation (2.8) also determines the relationship between the Laplace trans-
form E(e−sX) of a nonnegative random variableX and the ordinary Laplace
transform F̃ (s) of its distribution function F (x). For this purpose, we
choose h(t) = −se−st and H(0) = 1. The resulting integral H(x) = e−sx
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and equation (2.8) together yield the formula

E(e−sX) = 1 − s

∫ ∞

0

e−st[1 − F (t)] dt

= s

∫ ∞

0

e−stF (t) dt

= sF̃ (s).

For example, if X is exponentially distributed with intensity λ, then the
Laplace transform E(e−sX) = λ/(s+ λ) mentioned in Example 2.4.2 leads
to F̃ (s) = λ/[s(s+ λ)].

2.6 Moments of Reciprocals and Ratios

Ordinarily we differentiate Laplace transforms to recover moments. How-
ever, to recover an inverse moment, we need to integrate [43]. Suppose X
is a positive random variable with Laplace transform L(t). If n > 0, then
Fubini’s theorem and the change of variables s = tX shows that

∫ ∞

0

tn−1L(t) dt = E

(∫ ∞

0

tn−1e−tXdt

)

= E

(

X−n

∫ ∞

0

sn−1e−sds

)

= E
(
X−n

)
Γ(n).

The formula

E
(
X−n

)
=

1

Γ(n)

∫ ∞

0

tn−1L(t) dt (2.10)

can be evaluated exactly in some cases. In other cases, for instance when
n fails to be an integer, the formula can be evaluated numerically.

Example 2.6.1 Mean and Variance of an Inverse Gamma

Because a gamma random variableX with intensity λ and shape parameter
β has Laplace transform L(t) = [λ/(t+ λ)]β , formula (2.10) gives

E
(
X−1

)
=

∫ ∞

0

( λ

t+ λ

)β

dt

=
λ

β − 1

for β > 1 and

E
(
X−2

)
=

∫ ∞

0

t
( λ

t+ λ

)β

dt
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=

∫ ∞

0

λ
( λ

t+ λ

)β−1

dt−
∫ ∞

0

λ
( λ

t+ λ

)β

dt

=
λ2

β − 2
− λ2

β − 1

for β > 2. It follows that Var(X−1) = λ2/[(β − 1)2(β − 2)] for β > 2.

To calculate the expectation of a ratio Xm/Y n for a positive random
variable Y and an arbitrary random variable X , we consider the mixed
characteristic function and Laplace transform M(s, t) = E(eisX−tY ). As-
suming that E(|X |m) <∞ for some positive integer m, we can write

∂m

∂sm
M(s, t) = E

[
(iX)meisX−tY

]

by virtue of Example 1.2.5 with dominating random variable |X |ke−tY for
the kth partial derivative. For n > 0 and E(|X |mY −n) <∞, we now invoke
Fubini’s theorem and calculate

∫ ∞

0

tn−1 ∂
m

∂sm
M(0, t) dt =

∫ ∞

0

tn−1 E
[
(iX)me−tY

]
dt

= E

[∫ ∞

0

tn−1(iX)me−tY dt

]

= E

[
(iX)m

Y n

∫ ∞

0

rn−1e−rdr

]

= E

[
(iX)m

Y n

]

Γ(n).

Rearranging this yields

E

(
Xm

Y n

)

=
1

imΓ(n)

∫ ∞

0

tn−1 ∂
m

∂sm
M(0, t) dt. (2.11)

Example 2.6.2 Mean of a Beta Random Variable

If U and V are independent gamma random variables with common inten-
sity λ and shape parameters α and β, then the ratio U/(U +V ) has a beta
distribution with parameters α and β. The reader is asked to prove this
fact in Problem 32. It follows that the mixed characteristic function and
Laplace transform

MU,U+V (s, t) = E
[
eisU−t(U+V )

]

= E
[
e(is−t)U

]
E
[
e−tV

]

=
( λ

λ− is+ t

)α( λ

λ+ t

)β

.
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Equation (2.11) consequently gives the mean of the beta distribution as

E

(
U

U + V

)

=
1

i

∫ ∞

0

αi
λα

(λ+ t)α+1

( λ

λ+ t

)β

dt

= − αλα+β

(α+ β)(λ + t)α+β

∣
∣
∣
∞

0

=
α

α+ β
.

2.7 Reduction of Degree

The method of reduction of degree also involves recurrence relations. How-
ever, instead of creating these by conditioning, we now employ integration
by parts and simple algebraic transformations. The Stein and Chen lemmas
given below find their most important applications in the approximation
theories featured in the books [18, 187].

Example 2.7.1 Stein’s Lemma

Suppose X is normally distributed with mean μ and variance σ2 and g(x)
is a differentiable function such that |g(X)(X − μ)| and |g′(X)| have finite
expectations. Stein’s lemma [187] asserts that

E[g(X)(X − μ)] = σ2 E[g′(X)].

To prove this formula, we note that integration by parts produces

1√
2πσ2

∫ ∞

−∞
g(x)(x − μ)e−

(x−μ)2

2σ2 dx

= lim
an→−∞ lim

bn→∞

[
−σ2g(x)e−

(x−μ)2

2σ2

√
2πσ2

∣
∣
∣
∣
∣

bn

an

+
σ2

√
2πσ2

∫ bn

an

g′(x)e−
(x−μ)2

2σ2 dx

]

=
σ2

√
2πσ2

∫ ∞

−∞
g′(x)e−

(x−μ)2

2σ2 dx.

The boundary terms vanish for carefully chosen sequences an and bn tend-

ing to ±∞ because the integrable function |g(x)(x− μ)| exp[− (x−μ)2

2σ2 ] can-
not be bounded away from 0 as |x| tends to ∞. To illustrate the repeated
application of Stein’s lemma, take g(x) = (x−μ)2n−1. Then the important
moment identity

E[(X − μ)2n] = σ2(2n− 1)E[(X − μ)2n−2]

= σ2n(2n− 1)(2n− 3) · · · 1

follows immediately.
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Example 2.7.2 Reduction of Degree for the Gamma

A random variable X with gamma density λαxα−1e−λx/Γ(α) on (0,∞)
satisfies the analogous reduction of degree formula

E[g(X)X ] =
1

λ
E[g′(X)X ] +

α

λ
E[g(X)].

Provided the required moments exist and limx→0 g(x)x
α = 0, the integra-

tion by parts calculation

λα

Γ(α)

∫ ∞

0

g(x)xxα−1e−λxdx

=
λα

Γ(α)λ

[

− g(x)xxα−1e−λx

∣
∣
∣
∣
∣

∞

0

+

∫ ∞

0

g′(x)xxα−1e−λxdx

+

∫ ∞

0

g(x)αxα−1e−λxdx

]

is valid. The special case g(x) = xn−1 yields the recurrence relation

E(Xn) =
(n− 1 + α)

λ
E(Xn−1)

for the moments of X .

Example 2.7.3 Chen’s Lemma

Chen [36] pursues the formula E[Zg(Z)] = λE[g(Z + 1)] for a Poisson
random variable Z with mean λ as a kind of discrete analog to Stein’s
lemma. The proof of Chen’s result

∞∑

j=0

jg(j)
λje−λ

j!
= λ

∞∑

j=1

g(j)
λj−1e−λ

(j − 1)!

= λ

∞∑

k=0

g(k + 1)
λke−λ

k!

is almost trivial. The choice g(z) = zn−1 gives the recurrence relation

E(Zn) = λE[(Z + 1)n−1]

= λ
n−1∑

k=0

(
n− 1

k

)

E(Zk)

for the moments of Z.
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2.8 Spherical Surface Measure

In this section and the next, we explore probability measures on surfaces.
Surface measures are usually treated using differential forms and manifolds
[185]. With enough symmetry, one can dispense with these complicated
mathematical objects and fall back on integration on R

n. This concrete
approach has the added benefit of facilitating the calculation of certain
expectations.

Let g(‖x‖) be any probability density such as e−π‖x‖2

on R
n that depends

only on the Euclidean distance ‖x‖ of a point x from the origin. Given a
choice of g(‖x‖), one can define the integral of a continuous, real-valued
function f(s) on the unit sphere Sn−1 = {x ∈ R

n : ‖x‖ = 1} by

∫

Sn−1

f(s) dωn−1(s) = an−1

∫

f

(
x

‖x‖

)

g(‖x‖) dx (2.12)

for a positive constant an−1 to be specified [16]. It is trivial to show that
this yields an invariant integral in the sense that

∫

Sn−1

f(Ts) dωn−1(s) =

∫

Sn−1

f(s) dωn−1(s)

for any orthogonal transformation T . In this regard note that | det(T )| = 1
and ‖Tx‖ = ‖x‖. Taking f(s) = 1 produces a total mass of an−1 for the
surface measure ωn−1.

Of course, the constant an−1 is hardly arbitrary. We can pin it down by
proving the product measure formula

∫

h(x) dx =

∫ ∞

0

∫

Sn−1

h(rs) dωn−1(s) r
n−1 dr (2.13)

for any integrable function h(x) on R
n. Formula (2.13) says that we can

integrate over R
n by cumulating the surface integrals over successive spher-

ical shells. To prove (2.13), we interchange orders of integration as needed
and execute the successive changes of variables t = r‖x‖−1, z = tx, and
t = ‖z‖r−1. These maneuvers turn the right-hand side of formula (2.13)
into

∫ ∞

0

∫

Sn−1

h(rs) dωn−1(s) r
n−1 dr

= an−1

∫ ∞

0

∫

h(rx/‖x‖)g(‖x‖) dx rn−1 dr

= an−1

∫ ∫ ∞

0

h(rx/‖x‖) rn−1 dr g(‖x‖) dx

= an−1

∫ ∫ ∞

0

h(tx)(t‖x‖)n−1‖x‖ dt g(‖x‖) dx
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= an−1

∫ ∞

0

∫

h(tx)‖x‖ng(‖x‖) dx tn−1 dt

= an−1

∫ ∞

0

∫

h(z)(‖z‖/t)ng(‖z‖/t) t−n dz tn−1 dt

= an−1

∫ ∫ ∞

0

(‖z‖/t)n−1g(‖z‖/t)‖z‖t−2 dt h(z) dz

= an−1

∫ ∞

0

rn−1g(r) dr

∫

h(z) dz.

This establishes equality (2.13) provided we take an−1

∫∞
0 rn−1g(r) dr = 1.

For the choice g(r) = e−πr2

, we calculate
∫ ∞

0

rn−1e−πr2

dr =

∫ ∞

0

( t

π

)(n−2)/2

e−t 1

2π
dt =

Γ(n
2 )

2πn/2
. (2.14)

Thus, the surface area an−1 of Sn−1 reduces to 2πn/2/Γ(n
2 ). Omitting the

constant an−1 in the definition (2.12) yields the uniform probability distri-
bution on Sn−1.

Besides offering a method of evaluating integrals, formula (2.13) demon-
strates that the definition of surface measure does not depend on the choice
of the function g(‖x‖). In fact, consider the extension

h(x) = f

(
x

‖x‖

)

1{1≤‖x‖≤c}

of a function f(x) on Sn−1. If we take c = n
√
n+ 1, then

∫ c

1
rn−1 dr = 1,

and formula (2.13) amounts to
∫

Sn−1

f(s) dωn−1(s) =

∫
h(x) dx

∫ c

1
rn−1dr

=

∫

h(x) dx,

which, as Baker notes [16], affords a definition of the surface integral that
does not depend on the choice of the probability density g(‖x‖). As a by-
product of this result, it follows that the surface area an−1 of Sn−1 also
does not depend on g(‖x‖).

Example 2.8.1 Moments of ‖x‖ Relative to e−π‖x‖2

Formula (2.13) gives
∫

‖x‖ke−π‖x‖2

dx =

∫ ∞

0

∫

Sn−1

rke−πr2

dωn−1(s)r
n−1dr

= an−1

∫ ∞

0

rn+k−1e−πr2

dr

=
an−1

an+k−1
.

Negative as well as positive values of k > −n are permitted.
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Example 2.8.2 Integral of a Polynomial

The function f(x) = xk1
1 · · ·xkn

n is a monomial when k1, . . . , kn are non-
negative integers. A linear combination of monomials is a polynomial. To
find the integral of f(x) on Sn−1, it is convenient to put k =

∑n
j=1 kj and

use the probability density g(‖x‖) = an+k−1‖x‖ke−π‖x‖2

/an−1. With these
choices,

∫

Sn−1

f(s) dωn−1(s) = an−1
an+k−1

an−1

∫
xk1

1 · · ·xkn
n

‖x‖k
‖x‖ke−π‖x‖2

dx

= an+k−1

∫

xk1
1 · · ·xkn

n e−π‖x‖2

dx

= an+k−1

n∏

j=1

∫ ∞

−∞
x

kj

j e
−πx2

jdxj .

If any kj is odd, then the corresponding one-dimensional integral in the
last product vanishes. Hence, the surface integral of the monomial vanishes
as well. If all kj are even, then the same reasoning that produced equation
(2.14) leads to

∫ ∞

−∞
x

kj

j e
−πx2

jdxj = 2

∫ ∞

0

x
kj

j e
−πx2

jdxj

=
Γ(

kj+1
2 )

π(kj+1)/2
.

It follows that

∫

Sn−1

xk1
1 · · ·xkn

n dωn−1(s) =
2π(n+k)/2

Γ(n+k
2 )

n∏

j=1

Γ(
kj+1

2 )

π(kj+1)/2

=
2
∏n

j=1 Γ(
kj+1

2 )

Γ(n+k
2 )

when all kj are even.

2.9 Dirichlet Distribution

The Dirichlet distribution generalizes the beta distribution. As such, it lives
on the unit simplex Tn−1 = {x ∈ R

n
+ : ‖x‖1 = 1}, where ‖x‖1 =

∑n
j=1 |xj |

and

R
n
+ = {x ∈ R

n : xj > 0, j = 1, . . . , n}.
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By analogy with our definition (2.12) of spherical surface measure, one can
define the simplex surface measure μn−1 on Tn−1 through the equation

∫

Tn−1

f(s) dμn−1(s) = bn−1

∫

Rn
+

f

(
x

‖x‖1

)

g(‖x‖1) dx (2.15)

for any continuous function f(s) on Tn−1. In this setting, g(‖x‖1) is a
probability density on R

n
+ that depends only on the distance ‖x‖1 of x

from the origin.
One can easily show that this definition of surface measure is invariant

under permutation of the coordinates. One can also prove the product
measure formula

∫

Rn
+

h(x) dx =
1√
n

∫ ∞

0

∫

Tn−1

h(rs) dμn−1(s) r
n−1 dr. (2.16)

The appearance of the factor 1/
√
n here can be explained by appealing to

geometric intuition. In formula (2.16) we integrate h(x) by summing its
integrals over successive slabs multiplied by the thicknesses of the slabs.
Now the thickness of a slab amounts to nothing more than the distance
between two slices (r + dr)Tn−1 and rTn−1. Given that the corresponding
centers of mass are (r + dr)n−11 and rn−11, the slab thickness is dr/

√
n.

The proof of formula (2.16) is virtually identical to the proof of formula
(2.13). In the final stage of the proof, we must set

bn−1√
n

∫ ∞

0

rn−1g(r) dr = 1.

The choice g(r) = e−r immediately gives
∫∞
0
rn−1e−rdr = Γ(n). It follows

that the surface area bn−1 of Tn−1 is
√
n/Γ(n). Omitting the constant bn−1

in the definition (2.15) yields the uniform probability distribution on Tn−1.
As before we evaluate the moment

∫

Rn
+

‖x‖k
1e

−‖x‖1dx =
1√
n

∫ ∞

0

∫

Tn−1

rke−rdμn−1(s)r
n−1dr

=
bn−1√
n

∫ ∞

0

rn+k−1e−rdr

=
Γ(n+ k)

Γ(n)
.

For the multinomial f(x) = xk1
1 · · ·xkn

n with k =
∑n

j=1 kj , we then evaluate

∫

Tn−1

f(s) dμn−1(s) = bn−1
Γ(n)

Γ(n+ k)

∫

Rn
+

xk1

1 · · ·xkn
n

‖x‖k
1

‖x‖k
1e

−‖x‖1dx

= bn−1
Γ(n)

Γ(n+ k)

∫

Rn
+

xk1
1 · · ·xkn

n e−‖x‖1dx
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= bn−1
Γ(n)

Γ(n+ k)

n∏

j=1

Γ(kj + 1)

using the probability density

g(‖x‖1) =
Γ(n)

Γ(n+ k)
‖x‖k

1e
−‖x‖1

on R
n
+. This calculation identifies the Dirichlet distribution

Γ(k)

bn−1Γ(n)
∏n

j=1 Γ(kj)

n∏

j=1

s
kj−1
j

as a probability density on Tn−1 relative to μn−1 with moments

E
(
sl1
1 · · · sln

n

)
=

Γ(k)
∏n

j=1 Γ(kj + lj)

Γ(k + l)
∏n

j=1 Γ(kj)
,

where l =
∑n

j=1 lj . Note that kj > 0 need not be an integer.

2.10 Problems

1. Let X represent the number of fixed points of a random permutation
of the set {1, . . . , n}. Demonstrate that X has the falling factorial
moment

E[X(X − 1) · · · (X − k + 1)] = k! E

[(
X

k

)]

= 1

for 1 ≤ k ≤ n. (Hints: Note that
(

X
k

)
is the number of ways of choosing

k points among the available fixed points. Choose the points first, and
then calculate the probability that they are fixed.)

2. In a certain building, p people enter an elevator stationed on the
ground floor. There are n floors above the ground floor, and each is
an equally likely destination. If the people exit the elevator indepen-
dently, then show that the elevator makes on average

n
[
1 −
(
1 − 1

n

)p]

stops in discharging all p people.

3. Numbers are drawn randomly from the set {1, 2, . . . , n} until their
sum exceeds k for 0 ≤ k ≤ n. Show that the expected number of
draws equals

ek =
(
1 +

1

n

)k

.

In particular, en ≈ e. (Hint: Show that ek = 1 + 1
n [e0 + · · · + ek−1].)
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4. Show that the beta-binomial distribution of Example 2.3.1 has dis-
crete density

Pr(Sn = k) =

(
n

k

)
Γ(α+ β)Γ(α + k)Γ(β + n− k)

Γ(α)Γ(β)Γ(α + β + n)
.

5. Prove that the lnXn =
∑n

i=1 lnUi random variable of Example 2.3.2
follows a − 1

2χ
2
2n distribution.

6. A noncentral chi-square random variable X has a χ2
n+2Y distribution

conditional on a Poisson random variable Y with mean λ. Show that
E(X) = n+ 2λ and Var(X) = 2n+ 8λ.

7. Consider an urn with b ≥ 1 black balls and w ≥ 0 white balls. Balls
are extracted from the urn without replacement until a black ball is
encountered. Show that the number of balls Nbw extracted has mean
E(Nbw) = (b+w+1)/(b+1). (Hint: Derive a recurrence relation and
boundary conditions for E(Nbw) and solve.)

8. Give a recursive method for computing the second moments E(N2
sd)

in the family planning model.

9. In the family planning model, suppose the couple has an upper limit
m on the number of children they can afford. Hence, they stop when-
ever they reach their goal of s sons and d daughters or m total chil-
dren, whichever comes first. Let Nsdm now be their random number
of children. Give a recursive method for computing E(Nsdm).

10. In table tennis suppose that player B wins a set with probability p
and player A wins a set with probability q = 1 − p. Each set counts
1 point. The winner of a match is the first to accumulate 21 points
and at least 2 points more than the opposing player. How can one
calculate the probability that player B wins? Assume that A has
already accumulated i points and B has already accumulated j points.
Let wij denote the probability that B wins the match. Let tij denote
the corresponding expected number of further points scored before
the match ends. Show that these quantities satisfy the recurrences

wij = pwi,j+1 + qwi+1,j

tij = 1 + pti,j+1 + qti+1,j

for i and j between 0 and 20. The first recurrence allows one to com-
pute w00 from the boundary values wi,21 and w21,j , where i ≤ 21
and j ≤ 21. In these situations, the quota of 21 total points is irrel-
evant, and only the excess points criterion is operative. The second
recurrence has similar implications for the tij . On the boundary, the
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winning probability reduces to either 0 or 1 or to the hitting proba-
bility considered in Problem 38 of Chapter 7. Using the results stated
there, tabulate or graph w00 and t00 as a function of p.

11. Consider the integral

I(a, p, y) =

∫ y

−∞

1

(a+ x2)p
dx

for p > 1
2 and a > 0. As an example of the method of parametric

differentiation [29], prove that

I(a, p+ n, y) =
(−1)n

p(p+ 1) · · · (p+ n− 1)

dn

dan
I(a, p, y).

In the particular case p = 3
2 , show that

I
(
a,

3

2
, y
)

=
y

a
√
a+ y2

+
1

a
.

Use these facts to show that the t-distribution with 2m degrees of
freedom has finite expansion

Γ(m+ 1/2)√
2πmΓ(m)

∫ y

−∞

(

1 +
x2

2m

)−m−1/2

dx

=
1

2
√

2m

⎡

⎣ y√
π

m−1∑

j=0

Γ(j + 1/2)

j!

(

1 +
y2

2m

)−j−1/2

+
√

2m

⎤

⎦ .

(Hints: For the case p = 3
2 apply the fundamental theorem of calculus.

To expand the t-distribution, use Leibniz’s rule for differentiating a
product.)

12. Let X be a nonnegative integer-valued random variable with proba-
bility generating function Q(s). Find the probability generating func-
tions of X + k and kX in terms of Q(s) for any nonnegative integer
k.

13. Let Sn = X1 + · · · + Xn be the sum of n independent random vari-
ables, each distributed uniformly over the set {1, 2, . . . ,m}. Find the
probability generating function of Sn, and use it to calculate E(Sn)
and Var(Sn).

14. Let X1, X2, . . . be an i.i.d. sequence of Bernoulli random variables
with success probability p. Thus, Xi = 1 with probability p, and
Xi = 0 with probability 1 − p. Demonstrate that the infinite series
S =

∑∞
i=1 2−iXi has mean p and variance 1

3p(1 − p). When p = 1
2 ,
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the random variable S is uniformly distributed on [0, 1], and Xi can
be interpreted as the ith binary digit of S [192]. In this special case
also prove the well-known identity

sin θ

θ
=

∞∏

j=1

cos
( θ

2j

)

by calculating the characteristic function of S − 1
2 in two different

ways.

15. Consider a sequence X1, X2, . . . of independent, integer-valued ran-
dom variables with common logarithmic distribution

Pr(Xi = k) = − qk

k ln(1 − q)

for k ≥ 1. Let N be a Poisson random variable with mean λ that is
independent of the Xi. Show that the random sum SN =

∑N
i=1Xi

has a negative binomial distribution that counts only failures. Note
that the required “number of successes” in the negative binomial need
not be an integer [59].

16. Suppose X has gamma density λβxβ−1e−λx/Γ(β) on (0,∞), where β
is not necessarily an integer. Show that X has characteristic function
( λ

λ−it )
β and Laplace transform ( λ

λ+t )
β . Use either of these to calculate

the mean and variance of X . (Hint: For the characteristic function,
derive and solve a differential equation. Alternatively, calculate the
Laplace transform directly by integration and show that it can be
extended to an analytic function in a certain region of the complex
plane.)

17. Let X have the gamma density defined in Problem 16. Conditional
on X , let Y have a Poisson distribution with mean X . Prove that Y
has probability generating function

E(sY ) =
( λ

λ+ 1 − s

)β

.

18. Show that the bilateral exponential density 1
2e

−|x| has characteristic
function 1/(1 + t2). Use this fact to calculate its mean and variance.

19. Example 2.4.6 shows that it is impossible to write a random variable
U uniformly distributed on [−1, 1] as the difference of two i.i.d. ran-
dom variables X and Y . It is also true that it is impossible to write
U as the sum of two i.i.d. random variables X and Y . First of all it is
clear that X and Y have support on [−1/2, 1/2]. Hence, they possess
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moments of all orders, and it is possible to represent the characteristic
function of X by the series

E
(
eitX

)
=

∞∑

n=0

E(Xn)
(it)n

n!
.

If one can demonstrate that the odd moments of X vanish, then it
follows that its characteristic function is real and that

E
(
eitU
)

=
[
E
(
eitX

) ]2

can never be negative. This contradicts the fact that t−1 sin t oscillates
in sign. Supply the missing steps in this argument. (Hints: Why does
E(X) = 0? Assuming this is true, take n odd, expand E[(X + Y )n]
by the binomial theorem, and apply induction.)

20. Calculate the Laplace transform of the probability density

1 + a2

a2
e−x[1 − cos(ax)]1{x≥0}.

21. Card matching is one way of testing extrasensory perception (ESP).
The tester shuffles a deck of cards labeled 1 through n and turns
cards up one by one. The subject is asked to guess the value of each
card and is told whenever he or she gets a match. No information
is revealed for a nonmatch. According to Persi Diaconis, the optimal
strategy the subject can adopt is to guess the value 1 until it turns
up, then guess the value 2 until it turns up, then guess the value 3
until it turns up, and so forth. Note that this strategy gives a single
match if card 2 is turned up before card 1. Show that the first two
moments of the number of matches X are

E(X) =
n∑

j=1

1

j!
≈ e− 1

E(X2) = 2

n∑

j=1

1

(j − 1)!
− E(X) ≈ e+ 1.

(Hint: Why does the tail probability Pr(X ≥ j) equal 1
j!?)

22. Suppose the right-tail probability of a nonnegative random variable
X satisfies |1−F (x)| ≤ cx−n−ε for all sufficiently large x, where n is
a positive integer, and ε and c are positive real numbers. Show that
E(Xn) is finite.

23. Let the positive random variable X have Laplace transform L(t).
Prove that E[(aX + b)−1] =

∫∞
0 e−btL(at) dt for a ≥ 0 and b > 0.
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24. Let X be a nonnegative integer-valued random variable with proba-
bility generating function G(u). Prove that

E

[
1

(X + k + j)(X + k + j − 1) · · · (X + k)

]

=
1

j!

∫ 1

0

uk−1(1 − u)jG(u) du

by taking the expectation of
∫ 1

0 u
X+k−1(1 − u)j du.

25. Suppose X has a binomial distribution with success probability p over
n trials. Show that

E
( 1

X + 1

)
=

1 − (1 − p)n+1

(n+ 1)p
.

26. Let χ2
n and χ2

n+2 be chi-square random variables with n and n + 2
degrees of freedom, respectively. Demonstrate that

E[f(χ2
n)] = nE

[
f(χ2

n+2)

χ2
n+2

]

for any well-behaved function f(x) for which the two expectations
exist. Use this identity to calculate the mean and variance of χ2

n [34].

27. Suppose X has a binomial distribution with success probability p over
n trials. Show that

E[Xf(X)] =
p

1 − p
E
[
(n−X)f(X + 1)

]

for any function f(x). Use this identity to calculate the mean and
variance of X .

28. Consider a negative binomial random variable X with density

Pr(X = k) =

(
k − 1

n− 1

)

pnqk−n

for q = 1 − p and k ≥ n. Prove that for any function f(x)

E[qf(X)] = E

[
(X − n)f(X − 1)

X − 1

]

.

Use this identity to calculate the mean of X [100].

29. Demonstrate that the unit ball {x ∈ R
n : ‖x‖ ≤ 1} has volume

πn/2/Γ(n/2 + 1) and the standard simplex {x ∈ R
n
+ : ‖x‖1 ≤ 1} has

volume 1/n!.
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30. An Epanechnikov random vector X has density

f(x) =
n+ 2

2vn

(
1 − ‖x‖2

)

supported on the unit ball {x ∈ R
n : ‖x‖ ≤ 1}. Here vn is the volume

of the ball as given in Problem 29. Demonstrate that X has mean
vector 0 and variance matrix 1

n+4I, where I is the identity matrix.
(Hint: Use equation (2.13) and Example 2.8.2.)

31. Suppose the random vector X is uniformly distributed on the unit
simplex Tn−1. Let m be a positive integer with m < n and v be a
vector in R

n with positive components. Show that the expected value
of (vtX)−m is

E[(vtX)−m] = m

(
n− 1

m

)∫ ∞

0

tm−1
n∏

i=1

1

tvi + 1
dt.

See the article [158] for explicit evaluation of the last one-dimensional
integral. (Hints: Show that

E[(vtX)−m] =
Γ(n)

Γ(n−m)

∫

Rn
+

(vtx)−m‖x‖m
1

1

‖x‖m
1

e−‖x‖1dx.

Then let sn−1 =
∑n

i=2 vixi, and demonstrate that

∫ ∞

0

1

(v1x1 + sn−1)m
e−x1dx1 =

1

Γ(m)

∫ ∞

0

tm−1

tv1 + 1
e−tsn−1dt

by invoking equation (2.10).)

32. One can generate the Dirichlet distribution by a different mechanism
than the one developed in the text [114]. Take n independent gamma
random variables X1, . . . , Xn of unit scale and form the ratios

Yi =
Xi∑n

j=1Xj
.

Here Xi has density xki−1
i e−xi/Γ(ki) on (0,∞) for some ki > 0.

Clearly, each Yi ≥ 0 and
∑n

i=1 Yi = 1. Show that (Y1, . . . , Yn)t follows
a Dirichlet distribution on Tn−1.

33. Continuing Problem 32, calculate E(Yi), Var(Yi), and Cov(Yi, Yj) for
i �= j. Also show that (Y1 + Y2, Y3, . . . , Yn)t has a Dirichlet distribu-
tion.
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34. Continuing Problem 32, prove that the random variables

X1

X1 +X2
,

X1 +X2

X1 +X2 +X3
, . . . ,

X1 + · · · +Xn−1

X1 + · · · +Xn
, X1 + · · · +Xn

are independent. What distributions to these random variables fol-
low? (Hints: Denote the random variables Z1, . . . , Zn. Make a multi-
dimensional change of variables to find their joint density using the
identities X1 =

∏n
i=1 Zi and Xj = (1 − Zj−1)

∏n
i=j Zi for j > 1.)



3
Convexity, Optimization, and
Inequalities

3.1 Introduction

Convexity is one of the key concepts of mathematical analysis and has
interesting consequences for optimization theory, statistical estimation, in-
equalities, and applied probability. Despite this fact, students seldom see
convexity presented in a coherent fashion. It always seems to take a back-
seat to more pressing topics. The current chapter is intended as a partial
remedy to this pedagogical gap.

Our emphasis will be on convex functions rather than convex sets. It is
helpful to have a variety of tests to recognize such functions. We present
such tests and discuss the important class of log-convex functions. A strictly
convex function has at most one minimum point. This property tremen-
dously simplifies optimization. For a few functions, we are fortunate enough
to be able to find their optima explicitly. For other functions, we must
iterate. Section 3.4 introduces a class of optimization algorithms that ex-
ploit convexity. These algorithms are ideal for high-dimensional problems
in statistics.

The concluding section of this chapter rigorously treats several inequal-
ities. Our inclusion of Bernstein’s proof of Weierstrass’s approximation
theorem provides a surprising application of Chebyshev’s inequality and
illustrates the role of probability theory in illuminating problems out-
side its usual sphere of influence. The less familiar inequalities of Jensen,
Schlömilch, and Hölder find numerous applications in optimization theory
and functional analysis.

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_3, © Springer Science+Business Media, LLC 2010
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FIGURE 3.1. Plot of the Convex Function ex + x2

3.2 Convex Functions

A set S ⊂ R
m is said to be convex if the line segment between any two points

x and y of S lies entirely within S. Formally, this means that whenever
x, y ∈ S and α ∈ [0, 1], the point z = αx + (1 − α)y ∈ S. In general, any
convex combination

∑n
i=1 αixi of points x1, . . . , xn in S must also reside

in S. Here, the coefficients αi must be nonnegative and sum to 1.
Convex functions are defined on convex sets. A real-valued function f(x)

defined on a convex set S is convex provided

f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y) (3.1)

for all x, y ∈ S and α ∈ [0, 1]. Figure 3.1 depicts how in one dimension
definition (3.1) requires the chord connecting any two points on the curve
x �→ f(x) to lie above the curve. If strict inequality holds in (3.1) for every
x �= y and α ∈ (0, 1), then f(x) is said to strictly convex. One can prove
by induction that inequality (3.1) extends to

f

( n∑

i=1

αixi

)

≤
n∑

i=1

αif(xi)

for any convex combination of points from S.
Figure 3.1 also illustrates how a tangent line to the curve lies below the

curve. This property characterizes convex functions. In stating and proving
the property, we will deal with differentiable functions. Recall that f(x) is
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differentiable at x if there exists a row vector df(x) satisfying

f(y) = f(x) + df(x)(y − x) + r(y − x)

for all y near x and a remainder r(y − x) that is o(‖y − x‖) [39, 97]. Here
o(t) denotes a quantity such that limt→0+ o(t)t

−1 = 0. If the differential
df(x) exists, then the first partial derivatives of f(x) exist at x as well, and
we can identify df(x) with the row vector of these partials.

Proposition 3.2.1 Let f(x) be a differentiable function on the open, con-
vex set S ⊂ R

m. Then f(x) is convex if and only if

f(y) ≥ f(x) + df(x)(y − x) (3.2)

for all x, y ∈ S. Furthermore, f(x) is strictly convex if and only if strict
inequality holds in inequality (3.2) when y �= x.

Proof: If f(x) is convex, then we can rearrange inequality (3.1) to give

f [αx+ (1 − α)y] − f(x)

1 − α
≤ f(y) − f(x).

Letting α tend to 1 proves inequality (3.2). To demonstrate the converse,
let z = αx + (1 − α)y. Then with obvious notational changes, inequality
(3.2) implies

f(x) ≥ f(z) + df(z)(x− z)

f(y) ≥ f(z) + df(z)(y − z).

Multiplying the first of these inequalities by α and the second by 1−α and
adding the results produce

αf(x) + (1 − α)f(y) ≥ f(z) + df(z)(z − z) = f(z),

which is just inequality (3.1). The claims about strict convexity are left to
the reader.

Example 3.2.1 Linear Functions

For a linear function f(x) = atx+b, both of the inequalities (3.1) and (3.2)
are equalities. Thus, a linear function is convex.

Example 3.2.2 Euclidean Norm

The Euclidean norm f(x) = ‖x‖ =
√∑m

i=1 x
2
i satisfies the standard trian-

gle inequality and the homogeneity condition ‖cx‖ = |c| ‖x‖. Thus,

‖αx+ (1 − α)y‖ ≤ ‖αx‖ + ‖(1 − α)y‖ ≤ α‖x‖ + (1 − α)‖y‖

for any α ∈ [0, 1]. It is noteworthy that ‖x‖ = |x| is not differentiable at
x = 0 when m = 1. However, closer examination of the proof of Proposition
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3.2.1 makes it clear that f(x) is convex throughout S if and only if the
“supporting hyperplane” condition

f(y) ≥ f(x) + c(x)t(y − x)

holds for all y and x, where c(x) is a vector depending on x. For example
when f(x) = |x|, any scalar c(0) satisfying |c(0)| ≤ 1 works at x = 0.

It is useful to have simpler tests for convexity than inequality (3.1) or
(3.2). One such test involves the second differential d2f(x) of a function
f(x). We can view d2f(x) as the Hessian matrix of second partial deriva-
tives of f(x).

Proposition 3.2.2 Consider a twice continuously differentiable function
f(x) on the open, convex set S ⊂ R

m. If its second differential d2f(x) is
positive semidefinite, then f(x) is convex. If d2f(x) is positive definite, then
f(x) is strictly convex.

Proof: Note that f(z) is a twice continuously differentiable function of the
real variable α along the line z = αx+ (1 − α)y. Executing a second-order
Taylor expansion around α = 1 therefore gives

f(y) = f(x) + df(x)(y − x) +
1

2
(y − x)td2f(z)(y − x)

for some z on the line between x and y. The claim follows directly from
this equality and Proposition 3.2.1.

Example 3.2.3 Arithmetic-Geometric Mean Inequality

The second derivative test shows that the function ex is strictly convex.
Taking yi = exi ,

∑n
i=1 αi = 1, and all αi ≥ 0 produces the generalized

arithmetic-geometric mean inequality

n∏

i=1

yαi

i ≤
n∑

i=1

αiyi. (3.3)

Equality holds if and only if all yi coincide.

Example 3.2.4 Positive Definite Quadratic Functions

If the matrix A is positive definite, then Proposition 3.2.2 implies that the
quadratic function f(x) = 1

2x
tAx + btx+ c is strictly convex.

Even Proposition 3.2.2 can be difficult to apply. The next proposition
helps us to recognize convex functions by their closure properties.

Proposition 3.2.3 Convex functions satisfy the following:

(a) If f(x) is convex and g(x) is convex and increasing, then the functional
composition g ◦ f(x) is convex.
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(b) If f(x) is convex, then the functional composition f(Ax + b) of f(x)
with an affine function Ax + b is convex.

(c) If f(x) and g(x) are convex and α and β are nonnegative constants,
then αf(x) + βg(x) is convex.

(d) If f(x) and g(x) are convex, then max{f(x), g(x)} is convex.

(e) If fn(x) is a sequence of convex functions, then limn→∞ fn(x) is convex
whenever it exists.

Proof: To prove assertion (a), we calculate

g ◦ f [αx+ (1 − α)y] ≤ g[αf(x) + (1 − α)f(y)]

≤ αg ◦ f(x) + (1 − α)g ◦ f(y).

The remaining assertions are left to the reader.

Part (a) of Proposition 3.2.3 implies that ef(x) is convex when f(x) is
convex and that f(x)α is convex when f(x) is nonnegative and convex
and α > 1. One case not covered by the proposition is products. The
counterexample x3 = x2x shows that the product of two convex functions
is not necessarily convex.

Example 3.2.5 Differences of Convex Functions

Although the class of convex functions is rather narrow, most well-behaved
functions can be expressed as the difference of two convex functions. For
example, consider a polynomial p(x) =

∑n
m=0 pmx

m. The second derivative
test shows that xm is convex whenever m is even. If m is odd, then xm is
convex on [0,∞), and −xm is convex on (−∞, 0). Therefore,

xm = max{xm, 0} − max{−xm, 0}

is the difference of two convex functions. Because the class of differences
of convex functions is closed under the formation of linear combinations, it
follows that p(x) belongs to this larger class.

A positive function f(x) is said to be log-convex if and only if ln f(x)
is convex. Log-convex functions have excellent closure properties as docu-
mented by the next proposition.

Proposition 3.2.4 Log-convex functions satisfy the following:

(a) If f(x) is log-convex, then f(x) is convex.

(b) If f(x) is convex and g(x) is log-convex and increasing, then the func-
tional composition g ◦ f(x) is log-convex.

(c) If f(x) is log-convex, then the functional composition f(Ax + b) of
f(x) with an affine function Ax+ b is log-convex.
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(d) If f(x) is log-convex, then f(x)α and αf(x) are log-convex for any
α > 0.

(e) If f(x) and g(x) are log-convex, then f(x) + g(x), f(x)g(x), and
max{f(x), g(x)} are log-convex.

(f) If fn(x) is a sequence of log-convex functions, then limn→∞ fn(x) is
log-convex whenever it exists and is positive.

Proof: Assertion (a) follows from part (a) of Proposition 3.2.3 after com-
posing the functions ex and ln f(x). To prove that the sum of log-convex
functions is log-convex, let h(x) = f(x) + g(x) and apply Hölder’s inequal-
ity (Example 3.5.3) to random variables U and V defined on the sample
space {0, 1} with the uniform distribution. At the point 0, U equals f(x)α

and V equals f(y)1−α, and at the point 1, U equals g(x)α and V equals
g(y)1−α. These considerations imply

h[αx+ (1 − α)y] = f [αx+ (1 − α)y] + g[αx+ (1 − α)y]

≤ f(x)αf(y)1−α + g(x)αg(y)1−α

≤ [f(x) + g(x)]α[f(y) + g(y)]1−α

= h(x)αh(y)1−α.

The remaining assertions are left to the reader.

Example 3.2.6 Gamma Function

Gauss’s representation of the gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)

shows that it is log-convex on (0,∞) [95]. Indeed, one can easily check that
nz and (z + k)−1 are log-convex and then apply the closure of the set of
log-convex functions under the formation of products and limits. Note that
invoking convexity in this argument is insufficient because the set of convex
functions is not closed under the formation of products. Alternatively, one
can deduce log-convexity from Euler’s definition

Γ(z) =

∫ ∞

0

xz−1e−xdx

by viewing the integral as the limit of Riemann sums, each of which is
log-convex.

Example 3.2.7 Log-concavity of detΣ for Σ Positive Definite

Let Ω be an m×m positive definite matrix. According to Section 1.7, the
function

f(y) =
( 1

2π

)m/2

| detΩ|−1/2e−y∗Ω−1y/2
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is a probability density. Integrating over all y ∈ R
m produces the identity

| detΩ|1/2 =
1

(2π)m/2

∫

e−y∗Ω−1y/2dy.

We can restate this identity in terms of the inverse matrix Σ = Ω−1 as

ln detΣ = m ln(2π) − 2 ln

∫

e−y∗Σy/2dy.

By the reasoning of the last example, the integral on the right is log-convex.
Because Σ is positive definite if and only if Ω is positive definite, it follows
that ln detΣ is concave in the positive definite matrix Σ.

3.3 Minimization of Convex Functions

Optimization theory is much simpler for convex functions than for ordinary
functions [89, 140, 155]. For instance, we have the following:

Proposition 3.3.1 Suppose that f(x) is a convex function on the convex
set S ⊂ R

m. If z is a local minimum of f(x), then it is also a global
minimum, and the set {x : f(x) = f(z)} is convex.

Proof: If f(x) ≤ f(z) and f(y) ≤ f(z), then

f [αx+ (1 − α)y] ≤ αf(x) + (1 − α)f(y)

≤ f(z) (3.4)

for any α ∈ [0, 1]. This shows that the set {x : f(x) ≤ f(z)} is convex.
Now suppose that f(x) < f(z). Strict inequality then prevails between the
extreme members of inequality (3.4) provided α > 0. Taking y = z and α
close to 0 shows that z cannot serve as a local minimum. Thus, z must be
a global minimum.

Example 3.3.1 Piecewise Linear Functions

The function f(x) = |x| on the real line is piecewise linear. It attains its
minimum of 0 at the point x = 0. The convex function f(x) = max{1, |x|}
is also piecewise linear, but it attains its minimum throughout the interval
[−1, 1]. In both cases the set {y : f(y) = minx f(x)} is convex. In higher
dimensions, the convex function f(x) = max{1, ‖x‖} attains its minimum
of 1 throughout the closed ball ‖x‖ ≤ 1.

Proposition 3.3.2 Let f(x) be a convex, differentiable function on the
convex set S ⊂ R

m. If the point z ∈ S satisfies

df(z)(x− z) ≥ 0

for every point x ∈ S, then z is a global minimum of f(x). In particular,
any stationary point of f(x) is a global minimum.
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Proof: This assertion follows immediately from inequality (3.2) character-
izing convex functions.

Example 3.3.2 Minimum of x on [0,∞).

The convex function f(x) = x has derivative df(x) = 1. On the convex set
[0,∞), we have df(0)(x− 0) = x ≥ 0 for any x ∈ [0,∞). Hence, 0 provides
the minimum of x.

Example 3.3.3 Minimum of a Positive Definite Quadratic Function

The quadratic function f(x) = 1
2x

tAx+ btx+ c has differential

df(x) = xtA+ bt

for A symmetric. Assuming that A is also invertible, the sole stationary
point of f(x) is −A−1b. This point furnishes the minimum of f(x) when A
is positive definite.

Example 3.3.4 Maximum Likelihood for the Multivariate Normal

The sample mean and sample variance

ȳ =
1

k

k∑

j=1

yj

S =
1

k

k∑

j=1

(yj − ȳ)(yj − ȳ)t

are also the maximum likelihood estimates of the theoretical mean μ and
theoretical variance Ω of a random sample y1, . . . , yk from a multivariate
normal. To prove this fact, we first note that maximizing the loglikelihood
function

−k
2

ln detΩ − 1

2

k∑

j=1

(yj − μ)tΩ−1(yj − μ)

= −k
2

ln detΩ − k

2
μtΩ−1μ+

( k∑

j=1

yj

)t

Ω−1μ− 1

2

k∑

j=1

yt
jΩ

−1yj

= −k
2

ln detΩ − 1

2
tr

[

Ω−1
k∑

j=1

(yj − μ)(yj − μ)t

]

constitutes a special case of the previous example with A = kΩ−1 and
b = −Ω−1

∑k
j=1 yj . This leads to the same estimate, μ̂ = ȳ, regardless of

the value of Ω.
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To estimate Ω, we invoke the Cholesky decompositions Ω = LLt and
S = MM t under the assumption that both Ω and S are invertible. Given
that Ω−1 = (L−1)tL−1 and detΩ = (detL)2, the loglikelihood becomes

k ln detL−1 − k

2
tr
[
(L−1)tL−1MM t

]

= k ln det
(
L−1M

)
− k

2
tr
[
(L−1M)(L−1M)t

]
− k ln detM

using the cyclic permutation property of the matrix trace function. Because
products and inverses of lower triangular matrices are lower triangular, the
matrix R = L−1M ranges over the set of lower triangular matrices with
positive diagonal entries as L ranges over the same set. This permits us to
reparameterize and estimate R = (rij) instead of L. Up to an irrelevant
constant, the loglikelihood reduces to

k ln detR− k

2
tr(RRt) = k

∑

i

ln rii −
k

2

∑

i

i∑

j=1

r2ij .

Clearly, this is maximized by taking rij = 0 for j �= i. Differentiation of
the concave function k ln rii − k

2r
2
ii shows that it is maximized by taking

rii = 1. In other words, the maximum likelihood estimator R̂ is the identity
matrix I. This implies that L̂ = M and consequently that Ω̂ = S.

3.4 The MM Algorithm

Most practical optimization problems defy exact solution. In this section
we discuss a minimization method that relies heavily on convexity argu-
ments and is particularly useful in high-dimensional problems such as im-
age reconstruction [128]. We call this method the MM algorithm; the first
M of this two-stage algorithm stands for majorize and the second M for
minimize. When it is successful, the MM algorithm substitutes a simple
optimization problem for a difficult optimization problem. Simplicity can
be attained by (a) avoiding large matrix inversions, (b) linearizing an opti-
mization problem, (c) separating the variables of an optimization problem,
(d) dealing with equality and inequality constraints gracefully, and (e) turn-
ing a nondifferentiable problem into a smooth problem. The price we pay
for simplifying the original problem is that we must iterate.

A function g(x | xn) is said to majorize a function f(x) at xn provided

f(xn) = g(xn | xn) (3.5)

f(x) ≤ g(x | xn) x �= xn.

In other words, the surface x �→ g(x | xn) lies above the surface x �→ f(x)
and is tangent to it at the point x = xn. Here xn represents the current
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iterate in a search of the surface x �→ f(x). In the MM algorithm, we
minimize the surrogate function g(x | xn) rather than the actual function
f(x). If xn+1 denotes the minimum of g(x | xn), then we can show that the
MM procedure forces f(x) downhill. Indeed, the inequality

f(xn+1) = g(xn+1 | xn) + f(xn+1) − g(xn+1 | xn)

≤ g(xn | xn) + f(xn) − g(xn | xn) (3.6)

= f(xn)

follows directly from the fact g(xn+1 | xn) ≤ g(xn | xn) and definition (3.5).
The descent property (3.6) lends the MM algorithm remarkable numerical
stability. When f(x) is strictly convex, one can show with a few additional
mild hypotheses that the iterates xn converge to the global minimum of
f(x) regardless of the initial point x0.

With obvious changes, the MM algorithm applies to maximization rather
than minimization. To maximize a function f(x), we minorize it by a surro-
gate function g(x | xn) and maximize g(x | xn) to produce the next iterate
xn+1. In this case, the letters MM stand for minorize/maximize rather
than majorize/minimize. Chapter 6 discusses an MM algorithm for maxi-
mum likelihood estimation in transmission tomography. Here is a simpler
example relevant to sports.

Example 3.4.1 Bradley-Terry Model of Ranking

In the sports version of the Bradley and Terry model [28, 109], each team
i in a league of teams is assigned a rank parameter ri > 0. Assuming ties
are impossible, team i beats team j with probability ri/(ri + rj). If this
outcome occurs yij times during a season of play, then the probability of
the whole season is

L(r) =
∏

i,j

( ri
ri + rj

)yij

,

assuming the games are independent. To rank the teams, we find the values
r̂i that maximize f(r) = lnL(r). The team with the largest r̂i is considered
best, the team with the smallest r̂i is considered worst, and so forth. In
view of the fact that − lnu is convex, inequality (3.2) implies

f(r) =
∑

i,j

yij

[
ln ri − ln(ri + rj)

]

≥
∑

i,j

yij

[

ln ri − ln(rn
i + rn

j ) −
ri + rj − rn

i − rn
j

rn
i + rn

j

]

= g(r | rn),

where the superscript n indicates iteration number. Equality occurs in this
minorizing inequality when r = rn. Differentiating g(r | rn) with respect
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to ri and setting the result equal to 0 produces the next iterate

rn+1
i =

∑
j �=i yij

∑
j �=i(yij + yji)/(rn

i + rn
j )
.

Because L(r) = L(cr) for any c > 0, we constrain r1 = 1 and omit the
update rn+1

1 . In this example, the MM algorithm separates parameters
and allows us to maximize g(r | rn) parameter by parameter. The values
r̂i are referred to as maximum likelihood estimates.

Example 3.4.2 Least Absolute Deviation Regression

Statisticians often estimate parameters by the method of least squares.
This classical method suffers from the fact that it is strongly influenced
by observations far removed from their predicted values. To review the
situation, consider p independent experiments with outcomes y1, . . . , yp.
We wish to predict yi from q covariates xi1, . . . , xiq known in advance.
For instance, yi might be the height of the ith child in a classroom of p
children. Relevant covariates might be the heights xi1 and xi2 of i’s mother
and father and the sex of i coded as xi3 = 1 for a girl and xi4 = 1 for a boy.
Here we take q = 4 and force xi3xi4 = 0 so that only one sex is possible.
If we use a linear predictor

∑q
j=1 xijθj of yi, it is natural to estimate the

regression coefficients θj by minimizing the sum of squares

f(θ) =

p∑

i=1

(

yi −
q∑

j=1

xijθj

)2

.

Differentiating f(θ) with respect to θj and setting the result equal to 0
produce

p∑

i=1

xijyi =

p∑

i=1

q∑

k=1

xijxikθk.

If we let y denote the column vector with entries yi and X denote the
matrix with entry xij in row i and column j, these q normal equations can
be written in vector form as

Xty = XtXθ

and solved as

θ̂ = (XtX)−1Xty.

In the method of least absolute deviation regression, we replace f(θ) by

h(θ) =

p∑

i=1

∣
∣
∣yi −

q∑

j=1

xijθj

∣
∣
∣.
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Traditionally, one simplifies this expression by defining the residual

ri(θ) = yi −
q∑

j=1

xijθj .

We are now faced with minimizing a nondifferentiable function. Fortu-
nately, the MM algorithm can be implemented by exploiting the convexity
of the function −

√
u in inequality (3.2). Because

−
√
u ≥ −

√
un − u− un

2
√
un

,

we find that

h(θ) =

p∑

i=1

√
ri(θ)2

≤ h(θn) +
1

2

p∑

i=1

r2i (θ) − r2i (θn)
√
r2i (θn)

= g(θ | θn).

Minimizing g(θ | θn) is accomplished by minimizing the weighted sum of
squares

p∑

i=1

wi(θ
n)ri(θ)

2

with ith weight wi(θ
n) = |ri(θn)|−1. A slight variation of the above argu-

ment for minimizing a sum of squares leads to

θn+1 = [XtW (θn)X ]−1XtW (θn)y,

where W (θn) is the diagonal matrix with ith diagonal entry wi(θ
n). Un-

fortunately, the possibility that some wi(θ
n) = ∞ cannot be ruled out.

Problem 13 suggests a simple remedy.

3.5 Moment Inequalities

Inequalities give important information about the magnitude of proba-
bilities and expectations without requiring their exact calculation. The
Cauchy-Schwarz inequality |E(XY )| ≤ E(X2)1/2 E(Y 2)1/2 is one of the
most useful of the classical inequalities. It is also one of the easiest to re-
member because it is equivalent to the fact that a correlation coefficient
must lie on the interval [−1, 1]. Equality occurs in the Cauchy-Schwarz
inequality if and only if X is proportional to Y or vice versa.
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Markov’s inequality is another widely applied bound. Let g(x) be a non-
negative, increasing function, and let X be a random variable such that
g(X) has finite expectation. Then Markov’s inequality

Pr(X ≥ c) ≤ E[g(X)]

g(c)

holds for any constant c for which g(c) > 0. This result follows upon taking
expectations in the inequality g(c)1{X≥c} ≤ g(X). Chebyshev’s inequality
is the special case of Markov’s inequality with g(x) = x2 applied to the
random variable X − E(X). In large deviation theory, we take g(x) = etx

and c > 0 and choose t > 0 to minimize the right-hand side of the inequality
Pr(X ≥ c) ≤ e−ct E(etX) involving the moment generating function of X .
As an example, suppose X follows a standard normal distribution. The
moment generating function et2/2 of X is derived by a minor variation of
the argument given in Example 2.4.1 for the characteristic function of X .
The large deviation inequality

Pr[X ≥ c] ≤ inf
t
e−ctet2/2 = e−c2/2

is called a Chernoff bound. Problem 19 discusses another typical Chernoff
bound.

Our next example involves a nontrivial application of Chebyshev’s in-
equality.

Example 3.5.1 Weierstrass’s Approximation Theorem

Weierstrass showed that a continuous function f(x) on [0, 1] can be uni-
formly approximated to any desired degree of accuracy by a polynomial.
Bernstein’s lovely proof of this fact relies on applying Chebyshev’s inequal-
ity to a binomial random variable Sn with n trials and success probability
x per trial [60]. The corresponding candidate polynomial is defined by the
expectation

E
[
f
(Sn

n

)]
=

n∑

k=0

f
(k

n

)(n

k

)

xk(1 − x)n−k.

Note that E(Sn/n) = x and Var(Sn/n) = x(1− x)/n ≤ 1/(4n). Now given
an arbitrary ε > 0, one can find by the uniform continuity of f(x) a δ > 0
such that |f(u) − f(v)| < ε whenever |u − v| < δ. If ||f ||∞ = sup |f(x)| on
[0, 1], then Chebyshev’s inequality implies

∣
∣
∣E
[
f
(Sn

n

)]
− f(x)

∣
∣
∣

≤ E
[∣
∣
∣f
(Sn

n

)
− f(x)

∣
∣
∣
]

≤ εPr
(∣
∣
∣
Sn

n
− x
∣
∣
∣ < δ

)
+ 2||f ||∞ Pr

(∣
∣
∣
Sn

n
− x
∣
∣
∣ ≥ δ

)
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≤ ε+
2||f ||∞x(1 − x)

nδ2

≤ ε+
||f ||∞
2nδ2

.

Taking n ≥ ||f ||∞/(2εδ2) then gives
∣
∣
∣E
[
f
(

Sn

n

)]
− f(x)

∣
∣
∣ ≤ 2ε regardless

of the chosen x ∈ [0, 1].

Proposition 3.5.1 (Jensen’s Inequality) Let the values of the random
variable W be confined to the possibly infinite interval (a, b). If h(w) is
convex on (a, b), then E[h(W )] ≥ h[E(W )], provided both expectations exist.
For a strictly convex function h(w), equality holds in Jensen’s inequality if
and only if W = E(W ) almost surely.

Proof: For the sake of simplicity, suppose that h(w) is differentiable. If we
let v = E(W ), then Jensen’s inequality follows from Proposition 3.2.1 after
taking expectations in the inequality

h(W ) ≥ h(v) + dh(v)(W − v). (3.7)

If h(w) is strictly convex, and W is not constant, then inequality (3.7) is
strict with positive probability. Hence, strict inequality prevails in Jensen’s
inequality.

Jensen’s inequality is the key to a host of other inequalities. Here are two
nontrivial examples.

Example 3.5.2 Schlömilch’s Inequality for Weighted Means

If X is a positive random variable, then we define the weighted mean func-

tion M(p) = E(Xp)
1
p . For the sake of argument, we assume that M(p)

exists and is finite for all real p. Typical values of M(p) are M(1) = E(X)
and M(−1) = 1/E(X−1). To make M(p) continuous at p = 0, it turns
out that we should set M(0) = eE(lnX). The reader is asked to check this
fact in Problem 24. Here we are more concerned with proving Schlömilch’s
assertion that M(p) is an increasing function of p. If 0 < p < q, then the
function x �→ xq/p is convex, and Jensen’s inequality says

E(Xp)q/p ≤ E(Xq).

Taking the qth root of both sides of this inequality yields M(p) ≤ M(q).
On the other hand if p < q < 0, then the function x �→ xq/p is concave,
and Jensen’s inequality says

E(Xp)q/p ≥ E(Xq).

Taking the qth root reverses the inequality and again yields M(p) ≤ M(q).
When either p or q is 0, we have to change tactics. One approach is to
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invoke the continuity of M(p) at p = 0. Another approach is to exploit the
concavity of lnx. Jensen’s inequality now gives

E(lnXp) ≤ ln E(Xp),

which on exponentiation becomes

ep E(ln X) ≤ E(Xp).

If p > 0, then taking the pth root produces

M(0) = eE(ln X) ≤ E(Xp)
1
p ,

and if p < 0, then taking the pth root produces the opposite inequality

M(0) = eE(ln X) ≥ E(Xp)
1
p .

When the random variableX is defined on the space {1, . . . , n} equipped
with the uniform distribution, Schlömilch’s inequalities for p = −1, 0, and
1 reduce to the classical inequalities

1

1
n

(
1
x1

+ · · · 1
xn

) ≤
(
x1 · · ·xn

) 1
n ≤ 1

n

(
x1 + · · · + xn

)

relating the harmonic, geometric, and arithmetic means.

Example 3.5.3 Hölder’s Inequality

Consider two random variables X and Y and two numbers p > 1 and q > 1
such that p−1 + q−1 = 1. Then Hölder’s inequality

|E(XY )| ≤ E(|X |p)
1
p E(|Y |q)

1
q (3.8)

generalizes the Cauchy-Schwarz inequality whenever the indicated expec-
tations on its right exist. To prove (3.8), it clearly suffices to assume that X
and Y are nonnegative. It also suffices to take E(Xp) = E(Y q) = 1 once we
divide the left-hand side of (3.8) by its right-hand side. Now set r = p−1,
and let Z be a random variable equal to u ≥ 0 with probability r and equal
to v ≥ 0 with probability 1− r. Schlömilch’s inequality M(0) ≤ M(1) for Z
says

urv1−r ≤ ru + (1 − r)v.

If we substitute Xp for u and Y q for v in this inequality and take expecta-
tions, then we find that E(XY ) ≤ r + 1 − r = 1 as required.
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3.6 Problems

1. On which intervals are the following functions convex: ex, e−x, xn,
|x|p for p ≥ 1,

√
1 + x2, x ln x, and coshx? On these intervals, which

functions are log-convex?

2. Show that Riemann’s zeta function

ζ(s) =

∞∑

n=1

1

ns

is log-convex for s > 1.

3. Demonstrate that the function f(x) = xn−na lnx is convex on (0,∞)
for a > 0. Where does its minimum occur?

4. Prove the strict convexity assertions of Proposition 3.2.1.

5. Prove parts (b), (c), and (d) of Proposition 3.2.3.

6. Prove the unproved assertions of Proposition 3.2.4.

7. Suppose that f(x) is a convex function on the real line. If a and y
are vectors in R

m, then show that f(aty) is a convex function of y.
For m > 1 show that f(aty) is not strictly convex.

8. Let f(x) be a continuous function on the real line satisfying

f
[1

2
(x+ y)

]
≤ 1

2
f(x) +

1

2
f(y).

Prove that f(x) is convex.

9. If f(x) is a nondecreasing function on the interval [a, b], then show
that g(x) =

∫ x

a f(y) dy is a convex function on [a, b].

10. Heron’s classical formula for the area of a triangle with sides of length
a, b, and c is

√
s(s− a)(s− b)(s− c), where s = (a+ b+ c)/2 is the

semiperimeter. Using inequality (3.8), show that the triangle of fixed
perimeter with greatest area is equilateral.

11. Let Hn = 1+ 1
2 + · · ·+ 1

n . Using inequality (3.8), verify the inequality

n n
√
n+ 1 ≤ n+Hn for any positive integer n (Putnam Competition,

1975).

12. Show that the loglikelihood L(r) in Example 3.4.1 is concave under
the reparameterization ri = eθi .
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13. Suppose that in Example 3.4.2 we minimize the function

hε(θ) =

p∑

i=1

⎧
⎨

⎩

[

yi −
q∑

j=1

xijθj

]2
+ ε

⎫
⎬

⎭

1/2

instead of h(θ) for a small, positive number ε. Show that the same
MM algorithm applies with revised weights wi(θ

n) = 1/
√
ri(θn)2 + ε.

14. Let X1, . . . , Xn be n independent random variables from a common
distributional family. Suppose the variance σ2(μ) of a generic member
of this family is a function of the mean μ. Now consider the sum
S = X1 + · · · + Xn. If the mean ω = E(S) is fixed, it is of some
interest to determine whether taking E(Xi) = μi = ω/n minimizes
or maximizes Var(S). Show that the minimum occurs when σ2(μ) is
convex in μ and the maximum occurs when σ2(μ) is concave in μ
[148]. What do you deduce in the special cases where the family is
binomial, Poisson, and exponential?

15. Suppose the random variables X and Y have densities f(u) and g(u)
such that f(u) ≥ g(u) for u ≤ a and f(u) ≤ g(u) for u > a. Prove
that E(X) ≤ E(Y ). If in addition f(u) = g(u) = 0 for u < 0, show
that E(Xn) ≤ E(Y n) for all positive integers n [60].

16. If the random variable X has values in the interval [a, b], then show
that Var(X) ≤ (b − a)2/4 and that this bound is sharp. (Hints: Re-
duce to the case [a, b] = [0, 1]. If E(X) = p, then demonstrate that
Var(X) ≤ p(1 − p).)

17. Let X be a random variable with E(X) = 0 and E(X2) = σ2. Show
that

Pr(X ≥ c) ≤ a2 + σ2

(a+ c)2
(3.9)

for all nonnegative a and c. Prove that the choice a = σ2/c minimizes
the right-hand side of (3.9) and that for this choice

Pr(X ≥ c) ≤ σ2

σ2 + c2
.

This is Cantelli’s inequality [60].

18. Suppose g(x) is a function such that g(x) ≤ 1 for all x and g(x) ≤ 0
for x ≤ c. Demonstrate the inequality

Pr(X ≥ c) ≥ E[g(X)] (3.10)
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for any random variable X [60]. Verify that the polynomial

g(x) =
(x− c)(c+ 2d− x)

d2

with d > 0 satisfies the stated conditions leading to inequality (3.10).
If X is nonnegative with E(X) = 1 and E(X2) = β and c ∈ (0, 1),
then prove that the choice d = β/(1 − c) yields

Pr(X ≥ c) ≥ (1 − c)2

β
.

Finally, if E(X2) = 1 and E(X4) = β, show that

Pr(|X | ≥ c) ≥ (1 − c2)2

β
.

19. Let X be a Poisson random variable with mean λ. Demonstrate that
the Chernoff bound

Pr(X ≥ c) ≤ inf
t>0

e−ct E(etX)

amounts to

Pr(X ≥ c) ≤ (λe)c

cc
e−λ

for any integer c > λ.

20. Let Bnf(x) = E[f(Sn/n)] denote the Bernstein polynomial of degree
n approximating f(x) as discussed in Example 3.5.1. Prove that

(a) Bnf(x) is linear in f(x),

(b) Bnf(x) ≥ 0 if f(x) ≥ 0,

(c) Bnf(x) = f(x) if f(x) is linear,

(d) Bnx(1 − x) = n−1
n x(1 − x).

21. Suppose the function f(x) has continuous derivative f ′(x). For δ > 0
show that Bernstein’s polynomial satisfies the bound

∣
∣
∣E
[
f
(Sn

n

)]
− f(x)

∣
∣
∣ ≤ δ||f ′||∞ +

||f ||∞
2nδ2

.

Conclude from this estimate that

∣
∣
∣
∣
∣
∣E
[
f
(Sn

n

)]
− f
∣
∣
∣
∣
∣
∣
∞

= O(n− 1
3 ).
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22. Let f(x) be a convex function on [0, 1]. Prove that the Bernstein
polynomial of degree n approximating f(x) is also convex. (Hint:
Show that

d2

dx2
E
[
f
(Sn

n

)]
= n(n− 1)

{
E
[
f
(Sn−2 + 2

n

)]

−2 E
[
f
(Sn−2 + 1

n

)]
+ E

[
f
(Sn−2

n

)]}

in the notation of Example 3.5.1.)

23. Suppose 1 ≤ p < ∞. For a random variable X with E(|X |p) < ∞,

define the norm ||X ||p = E(Xp)
1
p . Now prove Minkowski’s triangle

inequality ||X+Y ||p ≤ ||X ||p+||Y ||p. (Hint: Apply Hölder’s inequality
to the right-hand side of

E(|X + Y |p) ≤ E(|X | · |X + Y |p−1) + E(|Y | · |X + Y |p−1)

and rearrange the result.

24. Suppose X is a random variable satisfying 0 < a ≤ X ≤ b < ∞. Use

l’Hôpital’s rule to prove that the weighted mean M(p) = E(Xp)
1
p is

continuous at p = 0 if we define M(0) = eE(ln X).



4
Combinatorics

4.1 Introduction

Combinatorics is the bane of many a student of probability theory. Even
elementary combinatorial problems can be frustratingly subtle. The cure
for this ill is more exposure, not less. Because combinatorics has so many
important applications, serious students of the mathematical sciences ne-
glect it at their peril. Here we explore a few topics in combinatorics that
have maximum intersection with probability. Our policy is to assume that
readers have a nodding familiarity with combinations and permutations.
Based on this background, we discuss bijections, inclusion-exclusion (sieve)
methods, Catalan numbers, Stirling numbers of the first and second kind,
and the pigeonhole principle. Along the way we meet some applications
that we hope will whet readers’ appetites for further study. The books
[21, 22, 26, 59, 78, 139, 207] are especially recommended.

4.2 Bijections

Many combinatorial identities can be derived by posing and answering
the same counting problem in two different ways. The bijection method
consists in constructing a one-to-one correspondence between two sets, both
of which we can count. The correspondence shows that the sets have the
same cardinality. This idea is more fertile than it sounds. For instance, it

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_4, © Springer Science+Business Media, LLC 2010
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forms the basis of many recurrence relations for computing combinatorial
quantities.

Example 4.2.1 Pascal’s Triangle

Let
(
n
k

)
be the number of subsets of size k from a set of size n. Pascal’s

triangle is the recurrence scheme specified by

(
n+ 1

k

)

=

(
n

k − 1

)

+

(
n

k

)

(4.1)

together with the boundary conditions
(
n
0

)
=
(
n
n

)
= 1. To derive equation

(4.1) we take a set of size n+ 1 and divide it into a set of size n and a set
of size 1. We can either choose k − 1 elements from the n-set and combine
them with the single element from the 1-set or choose all k elements from
the n-set. The first choice can be made in

(
n

k−1

)
ways and the second in

(
n
k

)
ways.

As indicated by its name, we visualize Pascal’s triangle as an infinite
lower triangular matrix with n as row index and k as column index. The
boundary values specify the first column and the diagonal as the constant
1. The recurrence proceeds row by row. If one desires only the binomial
coefficients for a single final row, it is advantageous in coding Pascal’s
triangle to proceed from right to left along the current row. This minimizes
computer storage by making it possible to overwrite safely the contents
of the previous row with the contents of the current row. Pascal’s triangle
also avoids the danger of computer overflows caused by computing binomial
coefficients via factorials.

Example 4.2.2 Even and Odd Parity Subsets

There are a host of identities connecting binomial coefficients. Here is one

j∑

i=0

(−1)i

(
k

i

)

= (−1)j

(
k − 1

j

)

(4.2)

that has an interesting relationship to subset parity. Let ej (oj) denote the
number of subsets of the set S = {1, . . . , k} with even (odd) cardinality not
exceeding j. Equation (4.2) can be restated as the two equations

e2j = o2j +

(
k − 1

2j

)

o2j+1 = e2j+1 +

(
k − 1

2j + 1

)

.

The bijection method provides an easy proof of these identities. Suppose
T is a subset of S that contains k and has cardinality |T | ≤ j. Then we



4.2 Bijections 77

map T to T \ {k}. If T does not contain k and has cardinality |T | < j,
then we map T to T ∪ {k}. This construction maps subsets with even
cardinality not exceeding j into subsets with odd cardinality not exceeding
j and vice versa. The subsets not containing k with cardinality exactly j are
not taken into account in this partial correspondence. There are

(
k−1

j

)
such

subsets, and they each have the same parity as j. The binomial coefficient(
k−1

j

)
provides the correction term to the partial correspondence. As an

alternative to this combinatorial proof, the reader can verify equation (4.2)
algebraically by induction on j. The right-tail identity

k∑

i=j+1

(−1)i

(
k

i

)

= (1 − 1)k −
j∑

i=0

(−1)i

(
k

i

)

= (−1)j+1

(
k − 1

j

)

(4.3)

is a direct consequence of equation (4.2) and will prove useful later.

Example 4.2.3 Bell Numbers and Set Partitions

The Bell number Bn denotes the number of partitions of a set with n
elements. By a partition we mean a division of the set into disjoint blocks.
A partition induces an equivalence relation on the set in the sense that two
elements are equivalent if and only if they belong to the same block. Two
partitions are the same if and only if they induce the same equivalence
relation.

Starting with B0 = 1, the Bn satisfy the recurrence relation

Bn+1 =

n∑

k=0

(
n

k

)

Bn−k =

n∑

k=0

(
n

k

)

Bk.

The reasoning leading to equation (4.4) is basically the same as in Example
4.2.1. We divide our set with n+ 1 elements into an n-set and a 1-set. The
1-set can form a block by itself, and the n-set can be partitioned in Bn

ways. Or we can choose k ≥ 1 elements from the n-set in
(
n
k

)
ways and

form a block consisting of these elements and the single element from the
1-set. The remaining n−k elements of the n-set can be partitioned in Bn−k

ways.

Example 4.2.4 Fibonacci Numbers

Let sn be the number of subsets of {1, . . . , n} that do not contain two
consecutive integers. Because the empty set is a valid subset, it is obvious
that s1 = 2 and s2 = 3. The recurrence sn = sn−1 + sn−2 generates the
remaining elements of the sequence. To verify the recurrence, consider such
a subset S. If n is not a member of S, then the other elements of S can
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S D D S S D

0 1 2 3 4 5 6 7 8 9

FIGURE 4.1. A Tiling of a 9-Row with 3 Square Pieces and 3 Dominoes

be chosen in sn−1 ways. If n is an element of S, then n − 1 cannot be an
element of S, and the other elements of S can be chosen in sn−2 ways.

The same recurrence relation fn = fn−1+fn−2 generates the well-known
Fibonacci sequence with initial conditions f1 = 1 and f2 = 2. The Fibonacci
number fn counts the number of tilings of a single row of an extended
checkerboard by square pieces and dominoes. The row in question has n
squares to be filled. The initial condition f2 = 2 is true because a board with
two squares can be filled by two consecutive square pieces or by one domino.
The truth of the Fibonacci recurrence can be checked by conditioning on
whether a square piece or a domino occupies square n.

The common recurrence and the shifted initial conditions s1 = f2 and
s2 = f3 demonstrate that sn = fn+1. We can also prove this assertion by
constructing a bijection between the collection of subsets of {1, . . . , n} with
no consecutive integers and the collection of tilings of a row consisting of
n+1 squares. A row with n+1 squares has n+2 boundaries, which we label
0, 1, . . . , n+ 1. Boundary 0 lies to the left of square 1, and boundary n+ 1
lies to the right of square n+1. Now consider a subset S of {1, . . . , n} with
no consecutive elements. If i is in S, we insert a domino in the row so that it
straddles boundary i. We fill the remaining squares of the row with square
pieces. Figure 4.1 depicts a tiling constructed from the set {2, 4, 8} along
a row with n+ 1 = 9 squares. Square pieces are labeled “S” and dominoes
“D.” This construction creates the desired one-to-one correspondence.

4.3 Inclusion-Exclusion

The simplest inclusion-exclusion formula is

Pr(A1 ∪A2) = Pr(A1) + Pr(A2) − Pr(A1 ∩A2). (4.4)

The probability Pr(A1 ∩ A2) is subtracted from the sum Pr(A1) + Pr(A2)
to compensate for double counting of the intersection A1 ∩A2. As pointed
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out in Chapter 1, we can derive formula (4.4) by taking expectations of
indicator random variables. In general, let 1A1 , . . . , 1An

be the indicators of
n events A1, . . . , An. We are interested in the probability p[k] that exactly
k of these events occur. To track which events participate in the joint
occurrence, we record the relevant event indices in a set R with cardinality
k. The probability that the events indexed by R occur and no other events
occur can be written as the expectation

E

[
∏

i∈R

1Ai

∏

i∈Rc

(1 − 1Ai
)

]

,

where Rc is the set complement {1, . . . , n} \ R. Applying the distributive
rule and the linearity of expectation, we find that

E

[
∏

i∈R

1Ai

∏

i∈Rc

(1 − 1Ai
)

]

=

n∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

Pr

( ⋂

i∈S

Ai

)

.

With this notation in hand, we calculate

p[k] =
∑

|R|=k

E

[
∏

i∈R

1Ai

∏

i∈Rc

(1 − 1Ai
)

]

=
∑

|R|=k

n∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

Pr

( ⋂

i∈S

Ai

)

=

n∑

j=k

(−1)j−k
∑

|R|=k

∑

S⊃R
|S|=j

Pr

( ⋂

i∈S

Ai

)

(4.5)

=

n∑

j=k

(−1)j−k

(
j

k

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

.

The last equality in this string of equalities reflects the fact that there are(
j
k

)
subsets R of size k contained within a given set S of size j.

With a slight elaboration of this argument, we can calculate the prob-
ability p(k) that at least k of the events A1, . . . , An occur. Indeed, this
probability is

n∑

l=k

p[l] =

n∑

l=k

n∑

j=l

(−1)j−l

(
j

l

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

=

n∑

j=k

j∑

l=k

(−1)j−l

(
j

l

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

(4.6)
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=

n∑

j=k

(−1)j−k

(
j − 1

k − 1

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

,

where the last equality in this string of equalities invokes the identity (4.3).
In many practical examples, the events A1, . . . , An are exchangeable in

the sense that

Pr

( ⋂

i∈S

Ai

)

= Pr
(
A1

⋂
· · ·
⋂
Aj

)

for all subsets S of size j. (A similar definition holds for exchangeable ran-
dom variables.) Because there are

(
n
j

)
such subsets, formula (4.5) reduces

to

p[k] =

n∑

j=k

(−1)j−k

(
j

k

)(
n

j

)

Pr
(
A1

⋂
· · ·
⋂
Aj

)
(4.7)

in the presence of exchangeable events. Formula (4.6) for p(k) likewise sim-
plifies to

p(k) =

n∑

j=k

(−1)j−k

(
j − 1

k − 1

)(
n

j

)

Pr
(
A1

⋂
· · ·
⋂
Aj

)

in the presence of exchangeable events.

Example 4.3.1 Fixed Points of a Random Permutation

Resuming our investigation of Example 2.2.1, let us find the exact distri-
bution of the number of fixed points X of a random permutation π. The
pertinent events Ai = {π : π(i) = i} for 1 ≤ i ≤ n are clearly exchangeable.
Furthermore, Pr(A1

⋂
· · ·
⋂
Aj) = (n− j)!/n! because the movable integers

{j+1, . . . , n} can be permuted in (n− j)! ways. Hence, formula (4.7) gives

p[k] =

n∑

j=k

(−1)j−k

(
j

k

)(
n

j

)
(n− j)!

n!

=
1

k!

n∑

j=k

(−1)j−k 1

(j − k)!

=
1

k!

n−k∑

i=0

(−1)i 1

i!
.

For n − k reasonably large, the approximation p[k] ≈ e−1/k! holds, and
this validates our earlier claim that X follows an approximate Poisson
distribution with mean 1.
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Example 4.3.2 Euler’s Totient Function

Let n be a positive integer with prime factorization n = pm1
1 · · · pmq

q . (See
Appendix A.1 and the introduction to Chapter 15 for a brief review of
number theory.) For instance, if n = 20, then n = 22 · 5. If we impose
the uniform distribution on the set {1, . . . , n}, then it makes sense to ask
for the probability p[0] that a random integer N shares no common prime
factors with n. Euler considered this problem and gave a lovely formula for
his totient function ϕ(n) = np[0]. To calculate ϕ(n) via inclusion-exclusion,
let Ai be the set of integers between 1 and n divisible by the ith prime pi

in the prime decomposition of n. A little reflection shows that Pr(Ai) = 1
pi

and that in general

Pr

( ⋂

i∈S

Ai

)

=
∏

i∈S

1

pi
.

Hence, equation (4.5) implies

ϕ(n)

n
= 1 −

∑

i

1

pi
+
∑

i<j

1

pipj
−
∑

i<j<k

1

pipjpk
+ · · ·

=

(

1 − 1

p1

)(

1 − 1

p2

)

· · ·
(

1 − 1

pq

)

.

Example 4.3.3 0-1 Matrices

Consider an m× n random matrix M with entries restricted to the values
0 and 1 [139]. Each entry is determined by flipping an unbiased coin. If
the coin lands heads up, then the entry is set to 1; otherwise, it is set to
0. We now ask for the probability p[0] that M possesses no row or column
filled entirely with 0’s. This problem yields to inclusion-exclusion if we let
Ri be the event that row i consists entirely of 0’s and Cj be the event
that column j consists entirely of 0’s. When we intersect s different Ri

with t different Cj , the resulting event has probability 1/2sn+tm−st. Note
in this regard that s rows and t columns overlap in st entries; therefore,
we must subtract st from sn+ tm to avoid double counting of entries. The
inclusion-exclusion formula (4.5) now boils down to

p[0] =

m∑

s=0

n∑

t=0

(−1)s+t

(
m

s

)(
n

t

)
1

2sn+tm−st

=
1

2mn

m∑

s=0

(−1)s

(
m

s

) n∑

t=0

(
n

t

)

(−1)t2(m−s)(n−t)

=
1

2mn

m∑

s=0

(−1)s

(
m

s

)(
2m−s − 1

)n
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because s events Ri can be chosen in
(
m
s

)
ways and t events Cj can be

chosen in
(
n
t

)
ways.

In practice, it is often cumbersome to calculate all of the terms in the
alternating series (4.5). Fortunately, the partial sums

k+m∑

j=k

(−1)j−k

(
j

k

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

overestimate p[k] form even and underestimate p[k] form odd. When k = 0,
the first two of these Bonferroni inequalities are

Pr

( n⋃

i=1

Ai

)

= 1 − p[0] ≤
n∑

i=1

Pr(Ai)

and

Pr

( n⋃

i=1

Ai

)

≥
n∑

i=1

Pr(Ai) −
∑

i<j

Pr
(
Ai

⋂
Aj

)
. (4.8)

In exactly the same manner, the partial sums

k+m∑

j=k

(−1)j−k

(
j − 1

k − 1

) ∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

overestimate p(k) for m even and underestimate p(k) for m odd [59, 67].
To prove these claims, let us re-examine the derivation (4.5). Suppose

that all of the events Ai occur for i ∈ R and q > 0 of the events Ai occur
for i ∈ Rc. If we truncate the expanded product

∏

i∈R

1Ai

∏

i∈Rc

(1 − 1Ai
) = 1 −

(
q

1

)

+

(
q

2

)

−
(
q

3

)

+ · · ·

after its first m+ 1 terms, identity (4.3) implies that the error committed
is

q∑

i=m+1

(−1)i

(
q

i

)

= (−1)m+1

(
q − 1

m

)

.

For m even we therefore find that

n∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

∏

i∈S

1Ai
≤

k+m∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

∏

i∈S

1Ai
,
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and for m odd that

n∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

∏

i∈S

1Ai
≥

k+m∑

j=k

(−1)j−k
∑

S⊃R
|S|=j

∏

i∈S

1Ai
.

These inequalities are preserved by the expectation operator. If none of the
events Ai with i ∈ Rc occurs, then

∏
i∈R 1Ai

∏
i∈Rc(1 − 1Ai

) is perfectly
approximated by any of its truncated expansions. The remaining steps in
the derivations of p[k] and p(k) are valid provided we replace equalities by
inequalities throughout.

4.4 Applications to Order Statistics

In many practical problems, it is convenient to rearrange n random vari-
ables X1, X2, . . . , Xn so that they appear in increasing order. Understand-
ing the marginal distributions and moments of the resulting order statistics
X(1) ≤ X(2) ≤ · · · ≤ X(n) is difficult even when the original random vari-
ables are independent and identically distributed. Surprisingly, the princi-
ple of inclusion-exclusion sheds considerable light on the subject [9, 17, 45].
To make this claim precise, we need some notation. Denote the distribu-
tion function of X(i) by F(i)(t). For an arbitrary subset S ⊂ {1, 2, . . . , n},
let XS = min{Xj : j ∈ S} and XS = max{Xj : j ∈ S}, and designate
the corresponding distribution functions FS(t) and FS(t), respectively. The
following proposition is then true.

Proposition 4.4.1 The distribution functions of the order statistics X(i)

can be expressed as

F(i)(t) =

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

FS(t) (4.9)

F(n−i+1)(t) =
n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

FS(t), (4.10)

where the sum on S extends over all subsets of {1, 2, . . . , n} with j elements.
Consequently, if each Xj possesses a kth absolute moment, then

E
[
Xk

(i)

]
=

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

E[(XS)k] (4.11)

E
[
Xk

(n−i+1)

]
=

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

E[(XS)k]. (4.12)

All of these formulas simplify in the obvious manner if the Xi are exchange-
able random variables.
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Proof: If we define the events Aj = {Xj ≤ t}, then F(i)(t) is the probability
that at least i of the n events Aj occur. Hence, equation (4.9) is just a
restatement of equation (4.6). To prove equation (4.10), let Yj = −Xj and
note that Y(i) = −X(n−i+1). Now apply equation (4.6) to the events

Aj = {Yj < −t} = {Xj > t}

and deduce that

Pr(X(n−i+1) > t) = Pr(Y(i) < −t) (4.13)

=

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

Pr
(

max
k∈S

−Yk < −t
)

=

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

Pr
(

min
k∈S

Xk > t
)
.

Subtracting the extreme sides of this equation from the constant

1 =

n∑

j=i

(−1)j−i

(
j − 1

i− 1

) ∑

|S|=j

1 (4.14)

gives the final result (4.10). Note that equation (4.14) follows from equation
(4.9) by sending t to ∞.

The two moment identities (4.11) and (4.12) are valid because two finite
measures that share an identical distribution function also share identical
moments. (Problem 12 asks the reader to check that all moments in sight
exist.) Alternatively, if the Xj are nonnegative, then we can prove identity
(4.12) by multiplying both sides of equality (4.13) by ktk−1 and integrating
as discussed in Example 2.5.1. Finally, identity (4.11) is proved in similar
fashion.

4.5 Catalan Numbers

The Catalan numbers cn have numerous combinatorial interpretations [78,
119, 177, 207]. One of the most natural involves consistent arrangements of
parentheses. Consider a string of n open parentheses and n closed parenthe-
ses. In the string each open parenthesis is paired with a closed parenthesis
on its right. Thus, as one scans from left to right, the count of closed paren-
theses always trails or equals the corresponding count of open parentheses.
By definition the number of such strings is cn. For instance with n = 3, the
c3 = 5 possible strings are

()()(), ()(()), (())(), (()()), ((())).
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Direct enumeration of legal strings soon becomes tedious. Fortunately un-
der the convention c0 = 1, the recurrence relation

cn+1 =

n∑

k=0

ckcn−k (4.15)

enables straightforward evaluation of cn for all n of moderate size. The ra-
tionale for equation (4.15) requires noting the position of the closed paren-
thesis balancing the first open parenthesis. For instance with the string
(())(), balance is achieved at position 4 from the left. Stripping off the first
open parenthesis and its corresponding closed parenthesis leaves a left le-
gal substring of length 2k and a right legal substring of length 2(n− k) for
some k between 0 and n. The product ckcn−k counts the number of such
legal pairs for a given k. Summing on k then gives the total number of legal
strings of length 2n+ 2.

The recurrence (4.15) yields the generating function c(x) =
∑∞

n=0 cnx
n.

Indeed, if we multiply the recurrence by xn+1 and sum on n, then we get

c(x) − 1 = x

∞∑

n=0

n∑

k=0

ckx
kcn−kx

n−k = xc(x)2.

This quadratic can be solved in the form

c(x) =
1 −

√
1 − 4x

2x
. (4.16)

The other root is rejected because it has a singularity at x = 0 where
c(x) has the well-behaved value 1. Extracting the nth coefficient of the
expression (4.16) by Newton’s binomial formula leads to

cn = −1

2

( 1
2

n+ 1

)

(−4)n+1 =
1

n+ 1

(
2n

n

)

. (4.17)

As a check on this calculation, observe that

1

n+ 1

(
2n

n

)

=

(
2n

n

)

−
(

2n

n− 1

)

.

is a positive integer.
A simple random walk offers another interpretation of the Catalan num-

bers. Such a walk begins at 0 and moves up (+1) or down (−1) at each
step with equal probability. If we identify an open parenthesis with +1 and
a closed parenthesis with −1, then cn counts the number of walks with 2n
steps that end at 0 and remain at or above level 0 over all steps. Because
there are 22n possible walks, the probability of a random walk satisfying
these conditions is cn2−2n.
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4.6 Stirling Numbers

There are two kinds of Stirling numbers [22, 26, 78, 139, 167, 207]. Stirling
numbers

{
n
k

}
of the second kind count the number of possible partitions

of a set of n objects into k disjoint blocks. For instance,
{

3
2

}
= 3 because

the set {1, 2, 3} can be partitioned into two disjoint blocks in the three
ways {1, 2}∪{3}, {1, 3}∪{2}, and {2, 3}∪{1}. The identity Bn =

∑
k

{
n
k

}

connects the Stirling numbers
{

n
k

}
to the Bell number Bn.

We can generate the numbers
{

n
k

}
recursively from the boundary condi-

tions
{

n
1

}
= 1 and

{
n
k

}
= 0 for k > n and the recurrence relation

{
n

k

}

=

{
n− 1

k − 1

}

+ k

{
n− 1

k

}

. (4.18)

To prove the recurrence (4.18), imagine adding n to an existing partition of
{1, . . . , n−1}. If the existing partition has k−1 blocks, then we must create
a new block for n in order to achieve k blocks. If the existing partition has
k blocks, then we must add n to one of the k existing blocks. This can be
done in k ways. Since none of the other partitions of {1, . . . , n− 1} can be
successfully modified to form k blocks, formula (4.18) is true.

As an application of Stirling numbers of the second kind, consider the
problem of throwing n symmetric dice with r faces each. To calculate the
probability that k different faces appear when the n dice are thrown, we
must first take into account the number of ways

{
n
k

}
that the n dice can

be partitioned into k blocks. Once these blocks are chosen, then top-side
faces can be assigned to the k blocks in r(r − 1) · · · (r− k+ 1) ways. Thus,
the probability in question amounts to r−n

{
n
k

}
r(r−1) · · · (r−k+1), which

vanishes when k > min{n, r}.
In the dice problem, the possible probabilities sum to 1. This establishes

the polynomial identity

n∑

k=1

{
n

k

}

x(x − 1) · · · (x− k + 1) = xn (4.19)

for all positive integers x = r and therefore for all real numbers x. Substi-
tuting −x for x in (4.19) gives the similar identity

n∑

k=1

(−1)n−k

{
n

k

}

x(x+ 1) · · · (x+ k − 1) = xn. (4.20)

Finally, substituting a random variable X for x in equations (4.19) and
(4.20) and taking expectations leads to the relations

n∑

k=1

{
n

k

}

E[X(X − 1) · · · (X − k + 1)] = E(Xn)
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n∑

k=1

(−1)n−k

{
n

k

}

E[X(X + 1) · · · (X + k − 1)] = E(Xn) (4.21)

connecting falling and rising factorial moments to ordinary moments. The
former relation is obviously pertinent when we calculate moments by dif-
ferentiating a probability generating function.

We now turn to Stirling numbers
[
n
k

]
of the first kind. These have a com-

binatorial interpretation in terms of the cycles of a permutation. Consider
the permutation π of {1, . . . , 6} that carries the top row of the matrix

(
1 2 3 4 5 6
3 6 5 4 1 2

)

(4.22)

to its bottom row. We can also represent π by the cycle decomposition
(1, 3, 5), (2, 6), (4). The first cycle (1, 3, 5) indicates that π satisfies π(1) = 3,
π(3) = 5, and π(5) = 1; the second cycle that π(2) = 6 and π(6) = 2; and
the third cycle that π(4) = 4. Note that the order of the cycles is irrelevant
in representing π. Also within a cycle, only rotational order is relevant.
Thus, the three cycles (1, 3, 5), (5, 1, 3), and (3, 5, 1) are all equivalent. In the
preferred or canonical cycle representation of a permutation, the first entry
of each cycle is the largest entry of the cycle. The cycles are then ordered
so that the successive first entries appear in increasing order. For example,
the canonical representation of our given permutation is (4), (5, 1, 3), (6, 2).

The Stirling number
[
n
k

]
counts the number of permutations of {1, . . . , n}

with k cycles. These numbers satisfy the boundary conditions
[
n
k

]
= 0 for

k > n and
[
n
1

]
= (n − 1)!. The former condition is obvious, and the latter

condition follows once we recall our convention of putting n at the left of
the cycle in the canonical representation. All remaining numbers

[
n
k

]
can

be generated via the recurrence relation
[
n

k

]

=

[
n− 1

k − 1

]

+ (n− 1)

[
n− 1

k

]

. (4.23)

The proof of (4.23) parallels that of (4.18). The first term on the right
counts the number of ways of adding n as a separate cycle to a permutation
π of {1, . . . , n− 1} with k − 1 cycles. The second term on the right counts
the number of ways of adding n to an existing cycle of a permutation π of
{1, . . . , n−1} with k cycles. If π is such a permutation, then we extend π to
n by taking π(n) = i for 1 ≤ i ≤ n− 1. This action conflicts with a current
assignment π(j) = i, so we have to patch things up by defining π(j) = n.
The cycle containing i and j is left intact except for these changes.

We now investigate the number of cycles Yn in a random permutation π
of {1, . . . , n}. Clearly, Y1 is identically 1. If we divide the recurrence (4.23)
by n!, then we get the recurrence

Pr(Yn = k) =
1

n
Pr(Yn−1 = k − 1) +

(
1 − 1

n

)
Pr(Yn−1 = k).



88 4. Combinatorics

This convolution equation says that Yn = Yn−1 +Zn, where Zn is indepen-
dent of Yn−1 and follows a Bernoulli distribution with success probability
1/n. Proceeding inductively, we conclude that in a distributional sense Yn

can be represented as the sum Z1+ · · ·+Zn of n independent Bernoulli ran-
dom variables with decreasing success probabilities. Problem 20 provides a
concrete interpretation of Zk.

We are now in a position to extract useful information about Yn. For
example, the mean number of cycles is

E(Yn) =

n∑

k=1

1

k
≈ lnn+ γ,

where γ ≈ .5772 is Euler’s constant. Because the probability generating
function of Zn is E(xZn) = 1− 1

n + x
n = x+n−1

n , the probability generating
function of Yn is

E(xYn) =
1

n!
x(x + 1) · · · (x + n− 1). (4.24)

In view of the definition of Yn, we get the interesting identity

n∑

k=1

[
n

k

]

xk = n! E(xYn) = x(x + 1) · · · (x+ n− 1). (4.25)

This polynomial identity in x ∈ [0, 1] persists for all real x. Substituting
−x for x in equation (4.25) yields the dual identity

n∑

k=1

(−1)n−k

[
n

k

]

xk = x(x − 1) · · · (x− n+ 1). (4.26)

Finally, substituting a random variable X for x in equations (4.25) and
(4.26) and taking expectations lead to the relations

n∑

k=1

[
n

k

]

E(Xk) = E[X(X + 1) · · · (X + n− 1)]

n∑

k=1

(−1)n−k

[
n

k

]

E(Xk) = E[X(X − 1) · · · (X − n+ 1)]

connecting ordinary moments to rising and falling factorial moments.
We close this section by giving another combinatorial interpretation of

Stirling numbers of the first kind. This interpretation is important in the
theory of record values for i.i.d. sequences of random variables [5]. A permu-
tation π is said to possess a left-to-right maximum at i provided π(j) < π(i)
for all j < i. The Stirling number

[
n
k

]
also counts the number of permu-

tations of {1, . . . , n} with k left-to-right maxima. To prove this assertion,
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it suffices to construct a one-to-one correspondence between permutations
with k cycles and permutations with k left-to-right maxima. The canonical
representation of a permutation achieves precisely this end since the leading
number in each cycle is a left-to-right maximum. For example, the permuta-
tion (4.22) with canonical representation (4), (5, 1, 3), (6, 2) and three cycles
is mapped to the permutation

(
1 2 3 4 5 6
4 5 1 3 6 2

)

with three left-to-right maxima.

4.7 Application to an Urn Model

The family planning model discussed in Example 2.3.3 is a kind of urn
model in which sampling is done with replacement. In other models, sam-
pling without replacement is more appropriate. Such sampling can be re-
alized by starting with n urns and bj balls in urn j. At each trial a ball is
randomly selected from one of the balls currently available and extracted.
Under sampling without replacement, this process gradually depletes the
supply of balls within the urns. By analogy with the family planning model,
it is interesting to set a quota for each urn. When qj balls from urn j have
been drawn, then urn j is said to have reached its quota. Sampling con-
tinues until exactly i urns reach their quotas. The trial Ni at which this
occurs is a waiting time random variable. Calculation of the moments Ni

is challenging. Fortunately, we can apply Proposition 4.4.1 and the magical
method of probabilistic embedding [25].

As a concrete example, consider laundering n pairs of dirty socks. Sup-
pose one removes clean socks from the washing machine one by one. If
each pair of socks is distinguishable, let N1 be the number of clean socks
extracted until a pair is found. Blom et al. [26] compute the mean of N1,
a problem originally posed and solved by Friedlen [66]. In the current con-
text, pairs of socks correspond to urns and socks to balls. The quota for
the jth pair of socks is qj = 2.

The embedding argument works by imagining the balls in urn j as drawn
in turn at times determined by a random sample of size bj from the uniform
distribution on [0, 1]. We will refer to such a sample as a uniform process.
If the uniform processes for the n different urns are independent, then
superimposing them creates a uniform process of size b =

∑n
j=1 bj on [0, 1].

The original discrete-time urn sampling process is said to be embedded in
the superposition process.

It is helpful to retain the source of each point in the superposition process.
This preserves the time Xi at which the quota qi for the ith urn is reached.
The independence of these attainment times can be used to good effect. In
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the superposition process, the order statistic X(i) is the waiting time until
i urns reach their quotas. If Ni is the number of trials until the occurrence
of this event, then we need to relate the moments of Ni and X(i). The order
statistic X(i) can be represented as

X(i) =

Ni∑

j=1

Yj ,

where Y1, Y2, . . . , Yb+1 are the spacings between adjacent points in the su-
perposition process.

It is straightforward to show that the random distance Zm =
∑m

j=1 Yj to
the mth point in the superposition process follows a beta distribution with
parameters m and b−m+1. Indeed, Zm is found in the interval (z, z+dz)
when one of the b points falls within (z, z + dz), m− 1 random points fall
to the left of z, and b−m random points fall to the right of z + dz. This
composite event occurs with approximate probability

b

(
b− 1

m− 1

)

zm−1(1 − z)b−m+1−1dz.

Dividing this probability by dz and letting dz tend to 0 gives the requisite
beta density. In view of this fact, conditioning and Example 2.3.1 yield

E[Xk
(i)] = E(Zk

Ni
)

= E
[
E
(
Zk

Ni
| Ni

)]

=
1

(b+ 1) · · · (b+ k)
E[Ni · · · (Ni + k − 1)]. (4.27)

Equation (4.27) gives, for instance, E(Ni) = (b + 1)E[X(i)]. Furthermore,

we can recover all of the ordinary moments E(Nk
i ) from the ascending

factorial moments E[Ni · · · (Ni + k − 1)] via equation (4.21).
Formula (4.12) provides a means of computing E[Xk

(i)] exactly. The in-
dependence of the urn-specific uniform processes implies

Pr(XS > t) =
∏

l∈S

[
ql−1∑

ml=0

(
bl
ml

)

tml(1 − t)bl−ml

]

.

To calculate the expectations E[(XS)k] required by formula (4.12), we de-
fine m = (ml) to be a multi-index ranging over the Cartesian product set
R = {m : 0 ≤ ml ≤ ql − 1, l ∈ S}. Then with |m| =

∑
l∈S ml, it follows

that

E[(XS)k] = k

∫ ∞

0

tk−1 Pr(XS > t) dt
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= k
∑

m∈R

∏

l∈S

(
bl
ml

)∫ 1

0

tk+|m|−1(1 − t)b−|m| dt (4.28)

= k
∑

m∈R

∏

l∈S

(
bl
ml

)
Γ(k + |m|)Γ(b− |m| + 1)

Γ(k + b+ 1)
,

where Γ(u) is the gamma function. In the socks in the laundry problem,
formula (4.12) for E(Xk

(1)) reduces to the single term E[(XS)k] with S

equal to the full set {1, . . . , n}. Equation (4.28) therefore produces the
exact solution

E[Xk
(1)] = k

1∑

m1=0

· · ·
1∑

mn=0

n∏

l=1

(
2

ml

)
(k + |m| − 1)!(2n− |m|)!

(k + 2n)!

= k

n∑

i=0

2i

(
n

i

)
(k + i− 1)!(2n− i)!

(k + 2n)!
, (4.29)

which is most useful for small n. We will revisit this problem from an
asymptotic perspective later in Example 12.3.4.

4.8 Application to Faà di Bruno’s Formula

Faà di Bruno’s formula is an explicit expression for the nth derivative of a
composite function f ◦ g(t). The formula reads

[f ◦ g](n)(t) =
∑ n!

b1! · · · bn!
f (k)[g(t)]

[
g(1)(t)

1!

]b1

· · ·
[
g(n)(t)

n!

]bn

,

where the sum ranges over all solutions to the equations
∑n

m=1mbm = n
and

∑n
m=1 bm = k in nonnegative integers. For instance, the formula

[f ◦ g](3)(t) = f (3)[g(t)]g(1)(t)3 + 3f (2)[g(t)]g(1)(t)g(2)(t)

+ f (1)[g(t)]g(3)(t)

involves the possible values (3, 0, 0), (1, 1, 0), and (0, 0, 1) for the triple
(b1, b2, b3). It turns out that Faà di Bruno’s formula can be easily deduced
by considering the partitions of the set {1, . . . , n} [63]. As we have seen,
the Stirling number

{
n
k

}
counts the number of possible partitions of this set

into k disjoint blocks. Let us ask the more nuanced question of how many
partitions have exactly b1 blocks of size 1, b2 blocks of size 2, and so forth
down to bn blocks of size n. We can relate this problem to permutations π
presented in the form [π(1), . . . , π(n)] by dividing each such sequence into
blocks defined from left to right, with smaller blocks coming before larger
blocks. The value n! for the number of permutations overcounts the number
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of partitions with the given block sizes in two senses. First, the order of
the bm blocks with m integers each is immaterial. Second, the order of the
integers within each block is also immaterial. Hence, the total number of
partitions with bm blocks of size m, 1 ≤ m ≤ n, is

n!

b1!(1!)b1 · · · bn!(n!)bn
, (4.30)

which is precisely the mysterious coefficient appearing in Faà di Bruno’s
formula.

We now prove Faà di Bruno’s formula by induction on n. It sharpens
our argument to omit the coefficient (4.30) and extend the sum over all
possible set partitions. With this change, the formula becomes

[f ◦ g](n)(t) =
∑

partitions

f (k)[g(t)]g(1)(t)b1 · · · g(n)(t)bn . (4.31)

Because it obviously holds for n = 1, suppose it is true for n−1. The recur-
rence (4.18) depended on constructing an arbitrary partition of {1, . . . , n}
by appending n to an arbitrary partition of {1, . . . , n−1}. Let us exploit the
same reasoning here. The induction hypothesis implies that each partition
of {1, . . . , n − 1} corresponds to a term in Faà di Bruno’s formula for the
derivative [f◦g](n−1)(t). With this fact in mind, we apply the product rule of
differentiation. Appending n as a singleton block to a given partition corre-
sponds to differentiating the factor f (k)[g(t)]. The result f (k+1)[g(t)]g(1)(t)
increases the number of blocks of size 1 by 1. Appending n to an existing
block of size m corresponds to differentiating the factor g(m)(t)bm . The re-
sult bmg

(m)(t)bm−1g(m+1)(t) decreases the number of blocks of size m by 1
and increases the number of blocks of size m+ 1 by 1. The factor bm takes
into account the bm possible blocks of size m to which n can be appended.
Thus, the correspondence between partitions and terms in the derivative
formula (4.31) carries over from n− 1 to n.

As an example of Faà di Bruno’s formula, let us take f(t) = eθt and
g(t) = − ln(1− t). It follows that h(t) = g ◦ f(t) = (1− t)−θ. Furthermore,
straightforward calculations show that

f (n)(t) = θneθt

g(n)(t) =
(n− 1)!

(1 − t)n

h(n)(t) =
θ(θ + 1) · · · (θ + n− 1)

(1 − t)θ+n
.

Substitution in Faà di Bruno’s formula therefore yields

θ(θ + 1) · · · (θ + n− 1)

(1 − t)θ+n
=

∑ n!

b1! · · · bn!

θk

(1 − t)θ

n∏

i=1

[ 1

i(1 − t)i

]bi

.
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This can be rearranged to give the suggestive identity

1 =
∑ n! θk

θ(θ + 1) · · · (θ + n− 1)

n∏

i=1

1

ibibi!

connecting Faà di Bruno’s formula to Ewens’ sampling distribution in pop-
ulation genetics. The reader can consult the article of Hoppe [98] for full
details.

4.9 Pigeonhole Principle

The pigeonhole principle is an elementary technique of great beauty and
utility [32]. In its simplest form, it deals with p pigeons and b boxes (holes),
where p > b. If we assign the pigeons to boxes, then some box gets more
than one pigeon. A stronger form of the pigeonhole principle deals with n
numbers r1, . . . , rn. If the sum of r1 + · · · + rn > mn, then at least one of
the ri satisfies ri > m.

Example 4.9.1 Longest Increasing Subsequence

As an application of the principle, consider a sequence a1, . . . , amn+1 of
mn+1 distinct real numbers. We claim that ai contains an increasing sub-
sequence of length n+ 1 or a decreasing subsequence of length m + 1. To
apply the pigeonhole principle, we suppose the contrary and label each ai

by the length li of the longest increasing subsequence commencing with ai.
For example, if 8, 1, 6, 2, 5, 4, 3 is the sequence, then a longest increasing
subsequence beginning with 1 is 1, 2, 5. Thus, we label 1 with the number
l2 = 3. By assumption, no label can exceed n. Let rl be the number of
li satisfying li = l. Because r1 + · · · + rn = mn + 1, at least one of the
n summands rl must exceed m. If rl = s > m, then there are s numbers
ai1 , . . . , ais

such that each aij
is the start of a maximal increasing sub-

sequence of length l. Now suppose that aij
< aij+1 for some j. If this is

the case, then by appending aij
to a maximal increasing subsequence be-

ginning with aij+1 , we get an increasing subsequence of length l + 1. This
contradicts the label of aij

. Thus, the s > m numbers ai1 , . . . , ais
are in

decreasing order. In other words, if an increasing subsequence of length
n+ 1 does not exist, then a decreasing subsequence of length m+ 1 does.

We can put this result to good use in a probabilistic version of the longest
increasing subsequence problem. Let X1, . . . , Xn be independent random
variables uniformly distributed on the interval [0,1]. Let In and Dn be the
random lengths of the longest increasing and decreasing subsequences of
X1, . . . , Xn. These random variables satisfy

√
n ≤ max{In, Dn} ≤ In +Dn.
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Because E(In) = E(Dn), we therefore conclude that E(In) ≥
√
n/2.

To show that this lower bound is of the correct order of magnitude, we
supplement it by a comparable upper bound. We first observe that

Pr(In ≥ k) ≤
(
n
k

)

k!
.

Indeed, there are
(
n
k

)
subsequences of length k of X1, . . . , Xn, and each has

probability 1/k! of being increasing. This inequality comes in handy in the
estimate

E(In) ≤ k + nPr(In ≥ k)

≤ k +
n
(
n
k

)

k!
(4.32)

≤ k +
nk+1

(k!)2
.

The latter estimate can be improved by employing Stirling’s approximation

k! �
√

2πkk+1/2e−k

and choosing k appropriately. The good choice k = α
√
n yields

k +
nk+1

(k!)2
≈ k +

nk+1

(
√

2πkk+1/2e−k)2

= α
√
n+

e2α
√

n√n
2πα2(α

√
n+1/2)

(4.33)

= α
√
n+

e−2α
√

n(lnα−1)√n
2πα

.

If we take α > e, then lnα > 1, and inequality (4.32) and approximate
equality (4.33) together produce E(In) ≤ c

√
n for some c > α. Thus, E(In)

is on the order of
√
n in magnitude. Refinements of these arguments show

that E(In)/
√
n tends to a limit as n tends to ∞ [186].

4.10 Problems

1. Prove the following binomial coefficient identities by constructing an
appropriate bijection:

(
n

k

)

=

(
n

n− k

)

k

(
n

k

)

= n

(
n− 1

k − 1

)
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(
n

k

)(
k

m

)

=

(
n

m

)(
n−m

k −m

)

(
m+ n

k

)

=

k∑

j=0

(
m

j

)(
n

k − j

)

n∑

k=0

(
n

k

)

= 2n

n∑

k=0

k

(
n

k

)

= n2n−1.

Avoid algebra as much as possible, but impose reasonable restrictions
on the integers k, m, and n. (Hint: Think of forming a committee of
a given size from a class of a given size. You may have to select a
subcommittee or committee chair.)

2. Prove the identity

n−1∑

m=1

mm! = n! − 1

by a counting argument. (Hint: Let n − m be the first integer not
fixed by a permutation π. Thus, π(i) = i for 1 ≤ i ≤ n−m− 1.)

3. Suppose you select k balls randomly from a box containing n balls
labeled 1 through n. Let Xnk be the lowest label selected and Ynk be
the highest label selected. Demonstrate the mean recurrences

E(Xnk) =
k

n
E(Xn−1,k−1) +

(
1 − k

n

)
E(Xn−1,k)

E(Ynk) = k +
(
1 − k

n

)
E(Yn−1,k)

and initial conditions E(Xkk) = 1 and E(Ykk) = k. Prove that these
recurrences have the unique solutions

E(Xnk) =
n+ 1

k + 1
, E(Ynk) =

k(n+ 1)

k + 1
.

4. Prove Pascal’s identity

n∑

j=1

l−1∑

k=0

(
l

k

)

bl−k[a+ (j − 1)b]k = (a+ nb)l − al
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for a and b positive reals and l and n positive integers. Note that the
special case a = b = 1 amounts to

l−1∑

k=0

(
l

k

) n∑

j=1

jk = (n+ 1)l − 1.

(Hints: Drop l random points on the interval [0, a + nb]. Divide the
interval into n+ 1 subintervals, the last n of which have length b. If
at least one random point falls outside the first subinterval, then let
j be the last subinterval of length b containing a random point.)

5. You have 10 pairs of shoes jumbled together in your closet [59]. Show
that if you reach in and randomly pull out four shoes, then the prob-
ability of extracting at least one pair is 99/323.

6. Prove that there are 8!
∑8

k=0
(−1)k

k! ways of placing eight rooks on a
chessboard so that none can take another and none stands on a white
diagonal square [59]. (Hint: Think of the rook positions as a random
permutation π, and let Ai be the event {π(i) = i}.)

7. A permutation that satisfies the equation π(π(i)) = i for all i is called
an involution [139]. Prove that a random permutation of {1, . . . , n}
is an involution with probability

�n
2 �∑

k=0

1

2kk!(n− 2k)!
.

(Hint: An involution has only fixed points and two-cycles. Count the
number of involutions and divide by n!.)

8. Define qr to be the probability that in r tosses of two dice each pair
(1, 1), . . . , (6, 6) appears at least once [59]. Show that

qr =
6∑

k=0

(
6

k

)

(−1)k
(36 − k

36

)r

.

9. Calculate the probability p[k] that exactly k suits are missing in a
poker hand [59]. To a good approximation p[0] = .264, p[1] = .588,

p[2] = .146, and p[3] = .002. (Hint: Each hand has probability 1/
(
52
5

)
.)

10. Give an inclusion-exclusion proof of the identity

{
n

k

}

=
1

k!

k∑

j=0

(−1)j

(
k

j

)

(k − j)n.

What is the probability measure and what are the events? (Hint:
Consider n labeled balls falling into k labeled boxes.)
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11. Let C1, . . . , Cn be independent events. Define Am
n to be the event that

at least m of these events occur and Bm
n be the event that exactly m

of these events occur. Demonstrate the recurrence relations

Pr(Am
n ) = Pr(Bm−1

n−1 ) Pr(Cn) + Pr(Am
n−1)

Pr(Bm
n ) = Pr(Bm−1

n−1 ) Pr(Cn) + Pr(Bm
n−1)[1 − Pr(Cn)]

for m < n and Pr(An
n) = Pr(Bn

n) = Pr(Bn−1
n−1) Pr(Cn), starting from

Pr(A1
1) = Pr(B1

1) = Pr(C1), Pr(A0
1) = 1, and Pr(B0

1) = 1 − Pr(C1).
These recurrences provide an alternative to the method of inclusion-
exclusion [157]. Show how they can be applied to find the distribution
function of the order statistic X(m) from a sample X1, . . . , Xn of in-
dependent, not necessarily identically distributed, random variables.

12. Suppose that each of the random variables X1, . . . , Xn of Proposi-
tion 4.4.1 satisfies E(|Xi|k) < ∞. Show that all of the expectations
E(|X(i)|k), E(|XS |k), and E(|XS |k) are finite. (Hints: Bound each

random variable in question by (
∑n

j=1 |Xj |)k and apply Minkowski’s
inequality given in Problem 23 of Chapter 3.)

13. Suppose the n random variables X1, . . . , Xn are independent and
share the common distribution function F (x). Prove that the jth
order statistic X(j) has distribution function

F(j)(x) =

n∑

k=j

(
n

k

)

F (x)k[(1 − F (x)]n−k.

If F (x) has density f(x), then show that X(j) has density function

f(j)(x) = n

(
n− 1

j − 1

)

F (x)j−1[1 − F (x)]n−jf(x).

(Hint: The event X(j) ≤ x occurs if and only if at least j of the Xi

satisfy Xi ≤ x while the remaining Xi satisfy Xi > x.)

14. Show that the Catalan numbers satisfy the recurrence

cn+1 =
2(2n+ 1)

n+ 2
cn,

which is consistent with expression (4.17).

15. Consider a simple random walk of 2n steps. Conditional on the event
that the walk returns to 0 at step 2n, show that this is the first
return with probability 1/(2n−1). (Hint: The first and last steps are
in opposite directions. Between these two steps, the walk stays at or
above 1 or at or below −1.)
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16. List in canonical form the 11 permutations of {1, 2, 3, 4} with 2 cycles.

17. Show that
[
n
n

]
=
{

n
n

}
= 1,

[
n

n−1

]
=
{

n
n−1

}
=
(
n
2

)
, and

{
n
2

}
= 2n−1−1.

18. Demonstrate that the harmonic number Hn = 1+ 1
2 + · · ·+ 1

n satisfies

Hn = 1
n!

[
n+1

2

]
. (Hint: Apply equation (4.23) and Hn = Hn−1 + 1

n .)

19. Prove the inequality
[
n
k

]
≥
{

n
k

}
for all n and k by invoking the defi-

nitions of the two kinds of Stirling numbers.

20. In our discussion of Stirling numbers of the first kind, we showed that
the number of left-to-right maxima Yn of a random permutation has
the decomposition Yn = Z1 + · · ·+Zn, where the Zk are independent
Bernoulli variables with decreasing success probabilities. Prove that
Zk can be interpreted as the indicator of the event that position
n−k+1 is a left-to-right maximum. In other words, Zk is the indicator
of the event {π(n − k + 1) > π(j) for 1 ≤ j < n − k + 1}. Why are
the Zk independent [26]?

21. Suppose the random variable X is nonnegative, bounded, and integer
valued. Show that the probability generating function G(u) = E(uX)
of X can be expressed as

G(u) =

∞∑

j=0

E

[(
X

j

)]

(u− 1)j

using the binomial moments

E

[(
X

j

)]

=
1

j!
E[X(X − 1) · · · (X − j + 1)] =

1

j!

dj

duj
G(1).

Now consider the special case where X = 1A1 + · · ·+ 1An
is a sum of

indicator random variables. In view of the trivial identity

u1Ai = 1 + 1Ai
(u − 1),

demonstrate that

G(u) =

n∑

j=0

∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

(u− 1)j ,

where |S| is the number of elements of the subset S of {1, . . . , n}.
Equating coefficients of (u− 1)j in these two representations of G(u)
yields the identity

E

[(
X

j

)]

=
∑

|S|=j

Pr

( ⋂

i∈S

Ai

)

. (4.34)
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22. Let X be the number of fixed points of a random permutation of
{1, . . . , n}. Demonstrate that

E(Xj) =

min{j,n}∑

k=1

{
j

k

}

.

(Hint: Find the binomial moments of X via equation (4.34), con-
vert these to factorial moments, and then convert these to ordinary
moments [139].)

23. Suppose π is a random permutation of {1, . . . , n}. Show that

E

{ n−1∑

j=1

[π(j) − π(j + 1)]2
}

=

(
n+ 1

3

)

.

(Hint: Each term has the same expectation [139].)

24. Balls are randomly extracted one by one from a box containing b black
balls and w white balls. Show that the expected number of black balls
left when the last white ball is extracted equals b

w+1 . (Hint: Let the
extraction times of the black balls and the white balls constitute two
independent uniform processes on [0, 1]. Condition on the time when
the last white ball is extracted.)

25. Consider a random graph with n nodes. Between every pair of nodes,
we independently introduce an edge with probability p. A trio of
nodes forms a triangle if each of its three pairs is connected by an
edge. If N counts the number of triangles, then demonstrate that
E(N) =

(
n
3

)
p3 and Var(N) =

(
n
3

)
p3(1 − p3) +

(
n
3

)
3(n− 3)(p5 − p6).

26. Consider the n-dimensional unit cube [0, 1]n. Suppose that each of
its n2n−1 edges is independently assigned one of two equally likely
orientations. Let S be the number of vertices at which all neighboring
edges point toward the vertex. Show that S has mean E(S) = 1
and variance Var(S) = 1 − (n + 1)2−n. When n is large, S follows
an approximate Poisson distribution. (Hint: Let Xα be the indicator
that vertex α has all of its edges directed toward α. Note that Xα is
independent of Xβ unless α and β share an edge. If α and β share an
edge, then XαXβ = 0.)

27. Let X be a random variable with moment generating function

M(t) = E
(
etX
)

=

∞∑

n=0

μn

n!
tn
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defined in some neighborhood of the origin. Here μn = E(Xn) is the
nth moment of X . The function

lnM(t) =

∞∑

n=1

κn

n!
tn

is called the cumulant generating function, and its nth coefficient κn

is called the nth cumulant. Based on Faà di Bruno’s formula, show
that

μn =
∑ n!
∏n

m=1 bm!(m!)bm
κb1

1 · · ·κbn
n

κn =
∑ n!(−1)k−1(k − 1)!

∏n
m=1 bm!(m!)bm

μb1
1 · · ·μbn

n ,

where the sum ranges over solutions to the equations
∑n

m=1mbm = n
and

∑n
m=1 bm = k in nonnegative integers. In particular verify the

relationships

μ1 = κ1

μ2 = κ2 + κ2
1

μ3 = κ3 + 3κ1κ2 + κ3
1

μ4 = κ4 + 4κ1κ3 + 3κ2
2 + 6κ2

1κ2 + κ4
1

and

κ1 = μ1

κ2 = μ2 − μ2
1

κ3 = μ3 − 3μ1μ2 + 2μ3
1

κ4 = μ4 − 4μ1μ3 − 3μ2
2 + 12μ2

1μ2 − 6μ4
1.

28. Continuing Problem 27, show that cX has nth cumulant cnκn and
that X+ c has first cumulant κ1 + c and subsequent cumulants κn. If
Y is independent of X and has nth cumulant ηn, then demonstrate
that X + Y has nth cumulant κn + ηn.

29. Five points are chosen from an equilateral triangle with sides of length
1. Demonstrate that there exist two points separated by a distance
of at most 1/2.

30. Suppose n+ 1 numbers are chosen from the set {1, 2, . . . , 2n}. Show
that there is some pair having no common factor other than 1. Show
that there is another pair such that one member of the pair is divisible
by the other.
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31. Consider a graph with more than one node. Let di be the degree of
node i. Prove that at least two di coincide.

32. Given n integers a1, . . . , an, demonstrate that there is some sum∑k
i=j+1 ai that is a multiple of n. (Hint: Map each of the n+1 partial

sums sj =
∑j

i=1 ai into its remainder after division by n.)



5
Combinatorial Optimization

5.1 Introduction

Combinatorial averaging is a supple tool for understanding the solutions of
discrete optimization problems. Computer scientists have designed many
algorithms to solve such problems. Traditionally, these algorithms have
been classified by their worst-case performance. Such an analysis can lead
to undue pessimism. The average behavior of an algorithm is usually more
relevant. Of course, to evaluate the average complexity of an algorithm,
we must have some probability model for generating typical problems on
which the algorithm operates. The examples in this chapter on sorting,
data compression, and graph coloring illustrate some of the underlying
models and the powerful techniques probabilists have created for analyzing
algorithms.

Not only is combinatorial averaging helpful in understanding the com-
plexity of algorithms, but it can also yield nonconstructive existence proofs
and verify that a proposed solution of a discrete optimization problem is
optimal [1, 4, 78, 206]. The former role is just the probabilistic method of
combinatorics initiated by Erdös and Rényi. In the probabilistic method,
we take a given set of objects, embed it in a probability space, and show
that the subset of objects lacking a certain property has probability less
than 1. The subset of objects possessing the property must therefore be
nonempty. Alternatively, if the property is determined by some number X
assigned to each object, then we can view X as a random variable and
calculate its expectation. If the property holds for X ≤ c and E(X) ≤ c,

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_5, © Springer Science+Business Media, LLC 2010
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then some object with the property exists. Our treatment of Sperner’s the-
orem illustrates the role of probability in discrete optimization. Finally, we
discuss in the current chapter subadditive and superadditive sequences and
their application to the longest common subsequence problem. The linear
growth in complexity seen in this problem does not always occur, as our
concluding example on the Euclidean traveling salesman problem shows.

5.2 Quick Sort

Sorting lists of items such as numbers or words is one of the most thoroughly
studied tasks in computer science. It is a pleasant fact that the fastest
sorting algorithm can be explained by a probabilistic argument [206]. At
the heart of this argument is a recurrence relation specifying the average
number of operations encountered in sorting n numbers. In this problem,
we can explicitly solve the recurrence relation and estimate the rate of
growth of its solution as a function of n.

The quick sort algorithm is based on the idea of finding a splitting entry
xi of a sequence x1, . . . , xn of n distinct numbers in the sense that xj < xi

for j < i and xj > xi for j > i. In other words, a splitter xi is already
correctly ordered relative to the rest of the entries of the sequence. Finding
a splitter reduces the computational complexity of sorting because it is
easier to sort both of the subsequences x1, . . . , xi−1 and xi+1, . . . , xn than
it is to sort the original sequence. At this juncture, one can reasonably
object that no splitter need exist, and even if one does, it may be difficult
to locate. The quick sort algorithm avoids these difficulties by randomly
selecting a splitting value and then slightly rearranging the sequence so
that this splitting value occupies the correct splitting location.

In the background of quick sort is the probabilistic assumption that all
n! permutations of the n values are equally likely. The algorithm begins
by randomly selecting one of the n values and moving it to the leftmost
or first position of the sequence. Through a sequence of exchanges, this
value is then promoted to its correct location. In the probabilistic setting
adopted, the correct location of the splitter is uniformly distributed over
the n positions of the sequence.

The promotion process works by exchanging or swapping entries to the
right of the randomly chosen splitter x1, which is kept in position 1 until
a final swap. Let j be the current position of the sequence as we examine
it from left to right. In the sequence up to position j, a candidate position
i for the insertion of x1 must satisfy the conditions xk < x1 for 1 < k ≤ i
and xk > x1 for i < k ≤ j. At position j = 1, we are forced to put i = 1.
This choice works because then the set {k : 1 < k ≤ i or i < k ≤ j} is
empty. Now suppose we have successfully advanced to a general position j
and identified a corresponding candidate position i. To move from position
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j to position j+1, we examine xj+1. If xj+1 > x1, then we keep the current
candidate position i. On the other hand, if xj+1 < x1, then we swap xi+1

and xj+1 and replace i by i+ 1. In either case, the two required conditions
imposed on i continue to hold in moving from position j to position j + 1.
It is now clear that we can inductively march from the left end to the
right end of the sequence, carrying out a few swaps in the process, so that
when j = n, the value i marks the correct position to insert x1. Once this
insertion is made, the subsequences x1, . . . , xi−1 and xi+1, . . . , xn can be
sorted separately by the same splitting procedure.

Now let en be the expected number of operations involved in quick sorting
a sequence of n numbers. By convention e0 = 0. If we base our analysis
only on how many positions j must be examined at each stage and not on
how many swaps are involved, then we can write the recurrence relation

en = n− 1 +
1

n

n∑

i=1

(ei−1 + en−i)

= n− 1 +
2

n

n∑

i=1

ei−1 (5.1)

by conditioning on the correct position i of the first splitter.
The recurrence relation (5.1) looks formidable, but a few algebraic ma-

neuvers render it solvable. Multiplying equation (5.1) by n produces

nen = n(n− 1) + 2

n∑

i=1

ei−1.

If we subtract from this the corresponding expression for (n−1)en−1, then
we get

nen − (n− 1)en−1 = 2n− 2 + 2en−1,

which can be rearranged to give

en

n+ 1
=

2(n− 1)

n(n+ 1)
+
en−1

n
. (5.2)

Equation (5.2) can be iterated to yield

en

n+ 1
= 2

n∑

k=1

(k − 1)

k(k + 1)

= 2

n∑

k=1

( 2

k + 1
− 1

k

)

= 2

n∑

k=1

1

k
− 4n

n+ 1
.
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Because
∑n

k=1
1
k approximates

∫ n

1
1
x dx = lnn, it follows that

lim
n→∞

en

2n lnn
= 1.

Quick sort is, indeed, a very efficient algorithm on average. Press et al.
[163] provide good computer code implementing it.

5.3 Data Compression and Huffman Coding

Huffman coding is an algorithm for data compression without loss of infor-
mation [163, 168, 177]. In this section we present the algorithm and prove
its optimality in an average sense. To motivate Huffman coding, it is useful
to think of an alphabet A with typical letter l ∈ A. From previous expe-
rience with the alphabet, we can assign a usage probability pl to l. Inside
a computer, we represent l using a bit string sl, each bit having the value
0 or 1. One possibility is to use bit strings of fixed length to represent all
letters. This is an inefficient allocation of memory if there is wide variation
in the probabilities pl. Huffman coding uses bit strings of varying length,
with frequent letters assigned short strings and infrequent letters assigned
long strings.

In addition to the obvious requirement that no two assigned bit strings
coincide, we require instantaneous decoding. This is motivated by the ne-
cessity of recording words and a sequence of words. Words are separated
by spaces, so we enlarge our alphabet to contain a space symbol if neces-
sary. Thus, if we want to encode a message, we do so letter by letter and
concatenate the corresponding bit strings. This tactic leads to confusion
if we fail to design the bit strings properly. For example, if the alphabet
is the ordinary alphabet, we could conceivably assign the letter e the bit
string 111 and the letter a the bit string 1110. When we encounter the three
bits 111 in the encoded message, we then face the ambiguity of whether
we have an e or the start of an a. Consequently, we impose the further
constraint that no prefix of a bit string representing a letter coincides with
a bit string representing a different letter. We interpret “prefix” to mean
either a beginning portion of a bit string or the whole bit string.

Huffman coding solves the instantaneous decoding problem by putting
all letters at the bottom of a binary tree. For example, Figure 5.1 shows
the Huffman tree corresponding to the alphabet A = {a,e,i,o,u} consisting
of the vowels. To construct the bit string for a given letter, we just traverse
the tree from the root at its top to the corresponding letter node at its
bottom. Each new edge encountered adds a 0 or 1 to the bit string for the
letter. Every left edge taken adds a 0, and every right edge taken adds a 1.
Thus, we represent the letter o by the bit string 00 and the letter u by the
bit string 100 in Figure 5.1.
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FIGURE 5.1. The Huffman Vowel Tree

In an arbitrary encoding of the alphabet A, we also assign each letter l
a bit string. The number of bits (or length) in a bit string s is denoted by
len(s). We can view a code S as a random map taking the random letter l
to its bit string sl. Huffman coding minimizes the average letter length

E[len(S)] =
∑

l∈A
len(sl)pl.

A Huffman code is constructed recursively. Consider an alphabet An of
n letters l1, . . . , ln arranged so that pl1 ≥ · · · ≥ pln . In the event of one
or more ties pm = pm+1, there will be multiple Huffman codings with the
same average length. Because we want the most infrequent letters to reside
at the bottom of the tree, we build a minitree by joining ln on the left and
ln−1 on the right to a parent node above designated mn−1 = {ln, ln−1}.
To node mn−1 we attribute probability pln + pln−1 . We then proceed to
construct the Huffman tree for the alphabet An−1 = {l1, . . . , ln−2,mn−1}.
At the final stage of the Huffman algorithm, we have a single node, which
becomes the root of the tree.

For example, the vowels have approximate usage probabilities pa = .207,
pe = .332, pi = .185, po = .203, and pu = .073 in English [168]. Huffman
coding first combines u on the left with i on the right into the node {u, i}
with probability .258. Second, it combines o on the left with a on the right
into the node {o, a} with probability .410. Third, it combines {u, i} on the
left with e on the right into the node {u, i, e} with probability .590. Finally,
it combines {o, a} on the left with {u, i, e} on the right into the root.

In proving that Huffman coding is optimal, let us simplify notation by
identifying the n letters of the alphabet An with the integers 1, . . . , n.
Under the innocuous assumption p1 ≥ · · · ≥ pn, there are two general
methods for improving any instantaneous coding S. First, we can assume
that len(sj) ≤ len(sk) whenever j < k. If this is not the case, then we can
improve S by interchanging sj and sk. Second, we can represent any bit
string sj in S by sj = (x, y), where x is the longest prefix of sj coinciding
with a prefix of any other bit string sk. If y contains more than just its
initial bit y1, then we can improve S by truncating sj to (x, y1).
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String truncation has implications for the length of the longest bit string
sn. Suppose that sn = (x, y) and len(sn) > len(sn−1). The longest match-
ing prefix x satisfies len(x) < len(sn−1); otherwise, x coincides with sn−1 or
some other bit string having the same length as sn−1. Once we replace sn

by (x, y1), then we can assume that len(sn) ≤ len(sn−1). If strict inequality
prevails, then we interchange the new sn with sn−1. If we continue truncat-
ing the longest bit string, eventually we reach the point where sn = (x, y1)
and len(sn) = len(sn−1). By definition of x, the bit string (x, y1 +1 mod 2)
also is in S. Performing a final interchange if necessary, we can consequently
assume that sn and sn−1 have the same length and differ only in their last
bit.

Now consider the Huffman coding Hn of An with hm denoting the bit
string corresponding to m. Huffman’s construction replaces the letters n
and n−1 by a single letter with probability pn+pn−1. If we let h denote the
bit string assigned to this new letter, then len(h)+1 = len(hn) = len(hn−1).
The old and new Huffman trees therefore satisfy

E[len(Hn)] = E[len(Hn−1)] − len(h)(pn + pn−1)

+ [len(h) + 1]pn + [len(h) + 1]pn−1 (5.3)

= E[len(Hn−1)] + (pn + pn−1).

Now consider an alternative coding Sn of An. As just demonstrated, we
can assume that sn and sn−1 have the same length and differ only in their
last bit. The changes necessary to achieve this goal can only decrease the
average length of Sn. Without loss of generality, suppose that sn = (x, 0)
and sn−1 = (x, 1). This assumption places n− 1 and n next to each other
at the bottom of the tree for Sn. Assigning the amalgamation of n and
n− 1 the bit string x and the probability pn + pn−1 leads to a code Sn−1

on An−1 satisfying

E[len(Sn)] = E[len(Sn−1)] − len(x)(pn + pn−1)

+ [len(x) + 1]pn + [len(x) + 1]pn−1 (5.4)

= E[len(Sn−1)] + (pn + pn−1).

If we assume by induction on n that E[len(Hn−1)] ≤ E[len(Sn−1)], then
equations (5.3) and (5.4) prove that E[len(Hn)] ≤ E[len(Sn)]. Given the
obvious optimality of Huffman coding when n = 2, this finishes our induc-
tive argument that Huffman coding minimizes average code length.

5.4 Graph Coloring

In the graph coloring problem, we are given a graph with n nodes and
asked to color each node with one color from a palette of k colors [207].
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Two adjacent nodes must be colored with different colors. For the sake of
convenience, let us label the nodes 1, . . . , n and the colors 1, . . . , k. The
solution to the well-known four-color problem states that any planar graph
can be colored with at most four colors. Roughly speaking, a graph is
planar if it can be drawn in two dimensions in such a way that no edges
cross. For example, if we wish to color a map of contiguous countries, then
countries are nodes, and edges connect adjacent countries. In the general
graph coloring problem, the graphs need not be planar.

It turns out that a standard computer science technique called back-
tracking will solve every graph coloring problem. The catch is that back-
tracking is extremely inefficient for large n on certain worst-case graphs.
Nonetheless, the average behavior of backtracking is surprisingly good as
n increases. The reason for this good performance is that we can reject the
possibility of k-coloring most graphs with n nodes.

To illustrate the backtracking algorithm, consider the simple graph of
Figure 5.2 with n = 4 nodes. This graph can be colored in several ways
with three colors. For instance, one solution is the coloring 1213 that assigns
color 1 to node 1, color 2 to node 2, color 1 to node 3, and color 3 to
node 4. If carried to completion, the backtracking algorithm will construct
all possible colorings. To commence the backtracking algorithm, we assign
color 1 to node 1. We then are forced to assign colors 2 or 3 to node 2
to avoid a conflict. In the former case, we represent the partial coloring
of the first two nodes by 12. In backtracking we keep growing a partial
solution until we reach a full solution or a forbidden color match between
two neighboring nodes. When either of these events occur, we backtrack
to the first available full or partial solution that we have not previously
encountered.

1 2

4 3

� �

� �

FIGURE 5.2. A Graph with Four Nodes

In our simple example, we extend the partial solution 12 to the larger
partial solution 121 by choosing the first available color (color 1) for node 3.
From there we extend to the full solution 1212 by choosing the first available
color (color 2) for node 4. We then substitute the next available color (color
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3) for node 4 to reach the next full solution 1213. At this point, we have
exhausted full solutions and are forced to backtrack to node 3 and assign
the next available color (color 3) to it. This gives the partial solution 123,
which can be grown to the full solution 1232 before backtracking. Figure 5.3
depicts the family of partial and full solutions generated by backtracking
with color 1 assigned to node 1. The full backtracking tree with node 1
assigned any of the three available colors is similar to Figure 5.3 but too
large to draw.
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FIGURE 5.3. A Backtracking Tree

In summary, we can depict the functioning of the backtracking algorithm
by drawing a backtracking tree with n + 1 levels. Level 0 (not shown in
Figure 5.3) is a root connected to the k partial solutions 1, . . . , k involving
node 1 at level 1. Level l of the backtracking tree contains partial solutions
involving nodes 1 through l. Each partial solution is a sequence of length
l with entries chosen from the integers 1 to k. The backtracking algorithm
finds at least one full solution if and only if the backtracking tree descends
all the way to level n.

We now assess the average computational complexity of the backtrack-
ing algorithm. To do so, we set up a simple probability model for random
graphs with n nodes. There are

(
n
2

)
possible edges in a graph with n nodes

and a total of 2(n
2) possible graphs. The uniform distribution on this sample

space can be achieved by considering each pair of nodes in turn and inde-
pendently introducing an edge between the nodes with probability 1

2 . For
each given graph G with n nodes, we imagine constructing the correspond-
ing backtracking tree and recording the number Xl(G) of partial solutions
at level l. (If l = n, the partial solutions are full solutions.) The amount of
work done in backtracking is proportional to

∑n
l=1Xl. With this notation,

our goal is to demonstrate the remarkable fact that
∑n

l=1 E(Xl) is bounded
above by a constant that does not depend on n.
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To prove this claim, we need to bound E(Xl). Now each partial solution
in the backtracking tree at level l represents a proper coloring of the first l
nodes of G. There are, of course, kl possible colorings of l nodes. Instead of
trying to estimate the number of colorings compatible with each subgraph
on l nodes, let us try to estimate the probability that a random subgraph
on l nodes is compatible with a given coloring of the l nodes. Under the

uniform distribution, each of the 2(
l
2) possible subgraphs on l nodes is

equally likely. Many subgraphs can be eliminated as inconsistent with the
given coloring because they involve forbidden edges.

Suppose mi nodes have color i. Because we can draw an edge only be-
tween nodes of different colors, the total number of permitted edges is

∑

i<j

mimj =
1

2

k∑

i=1

∑

j �=i

mimj

=
1

2

( k∑

i=1

mi

)2

− 1

2

k∑

i=1

m2
i . (5.5)

The variance inequality 1
k

∑k
i=1m

2
i −
(

1
k

∑k
i=1mi

)2

≥ 0 and the counting

identity
∑k

i=1mi = l together imply −
∑k

i=1m
2
i ≤ − l2

k . Substituting this
inequality in equation (5.5) produces the upper bound

∑

i<j

mimj ≤ l2

2
− l2

2k

on the total number of possible edges. Thus, the maximum number of
graphs compatible with a given coloring is 2l2/2−l2/(2k), and the probability
that a random graph is compatible is at most

2
l2

2 − l2

2k

2(l
2)

= 2
l
2− l2

2k . (5.6)

We now write

Xl =
∑

c

1Ac
,

where c is a coloring of the first l nodes and Ac is the event that the
underlying random graph is consistent at the first l nodes with the coloring.
Taking expectations in this identity and invoking inequality (5.6) yield

E(Xl) ≤ kl2
l
2− l2

2k

and therefore the upper bound

n∑

l=1

E(Xl) ≤
n∑

l=1

kl2
l
2− l2

2k (5.7)
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on the average number of partial solutions in the backtracking tree. The
limit of the series on the right-hand side of inequality (5.7) exists as n tends
to ∞ by the ratio test. Indeed, the ratio of term l + 1 to term l is

kl+12
l+1
2

− (l+1)2

2k

kl2
l
2− l2

2k

= k2
1
2− 2l+1

2k , (5.8)

which tends to 0 as l tends to ∞. When k = 3, the limit of the series (5.7)
is about 197. In other words, the average backtracking tree contains fewer
than 197 partial solutions regardless of the size n of the graph. Once again,
let us stress that this result is simply a manifestation of the fact that most
graphs with n nodes are quickly eliminated as colorable with k colors.

5.5 Point Sets with Only Acute Angles

Consider a finite set of points S in some Euclidean space R
d. Any three

points x, y, z ∈ S determine three angles, depending on which point is taken
as apex. For example, taking x as apex produces two vectors y−x and z−x
with an angle between them that is obtuse, right, or acute when the inner
product (y− x)t(z − x) is negative, zero, or positive, respectively. It seems
likely that at least some of these angles will be obtuse if the number of
points is large. For example, Problem 13 asks the reader to check that
any five noncollinear points in the plane determine at least one obtuse
angle. Asking for only acute angles would seem to diminish the possibilities.
Nonetheless, for high-dimensional spaces, it is possible to construct large
sets of points with only acute angles [55].

In approaching this problem, we will limit ourselves to sets S contained in
the vertex set {0, 1}d of the d-dimensional unit cube. This has the advantage
of eliminating the possibility of obtuse angles. Indeed, if we express

(y − x)t(z − x) =

d∑

i=1

(yi − xi)(zi − xi),

then all of the products in the indicated sum are 0 or 1 because the co-
ordinates xi, yi, zi are chosen from {0, 1}. When we take S = {0, 1}d, we
attain a set of maximal size with no obtuse angles [1]. However, many of the
angles are right. Let us consider smaller sets S ⊂ {0, 1}d of size m, where
m is to be decided later. Instead of picking S directly, we first construct
a set T containing 2m random points chosen independently and uniformly
from {0, 1}d. Some of these points may coincide.

Now consider three points x, y, z ∈ T . Let us call the triple (x, y, z) with
apex x a bad triple whenever (y−x)t(z−x) = 0. What is the probability of
this happening? For each coordinate i we must have (yi − xi)(zi − xi) = 0.
This occurs if either yi = xi or zi = xi and therefore has probability
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3
4 . Because the coordinates are chosen independently, the inner product
(y−x)t(z−x) vanishes with probability (3

4 )d. We now calculate the expected

number of bad triples. The total number of triples is
(
2m
3

)
. Each triple has

three possible choices for its apex. Thus the expected number of bad triples
is

3

(
2m

3

)(3

4

)d

< m(2m)2
(3

4

)d

.

We now choose m so that the right-hand side of this inequality is less than
m. For example, we can take

m =
⌊1

2

( 2√
3

)d⌋
.

With this choice, there must be at least one configuration T with m or
fewer bad triples. For such a T , we throw out the apex of any bad triple.
This creates a set S with m or more points and no bad triples. The points
of S define only acute angles, no right angles. For example, if d = 35, then
there is some set S with at least m = 76 points defining only acute angles.

5.6 Sperner’s Theorem

For a positive integer n, consider a family F of nonempty subsets of the
set {1, . . . , n}. In Sperner’s theorem, we impose the condition that two
distinct subsets A and B in F satisfy neither A ⊂ B nor B ⊂ A. With this
restriction, how many subsets can F contain?

One extreme case is to take F to consist of all subsets of {1, . . . , n}
having exactly �n

2 � elements. Because two subsets of the same size either
coincide or satisfy the Sperner restriction, it is clear that F qualifies as a
Sperner family. This family contains

|F| =

(
n

�n
2 �

)

subsets. Following Lubell [139], we now show that this special family con-
tains the maximum possible number of subsets.

Our line of attack proceeds through random permutations. To a given
permutation π of {1, . . . , n}, there correspond n subsets of the form

S(π, k) = {π(1), π(2), . . . , π(k)}.

These satisfy S(π, k) ⊂ S(π, k + 1) for 1 ≤ k ≤ n − 1. Now consider the
random variable

X(π) =
n∑

k=1

1{S(π,k)∈F}
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defined relative to a Sperner family F . Because at most one of the events
{S(π, k) ∈ F} can occur, X must equal either 0 or 1, and 0 ≤ E(X) ≤ 1.

In view of the fact that X(π) counts the number of S(π, k) in F , we can
also write

X(π) =
∑

A∈F
1{S(π,|A|)=A},

where |A| denotes the number of elements of A. Taking into account the
facts that each S(π, |A|) is a randomly chosen subset of size |A| and that(
n
k

)
is maximized by k = �n

2 �, we calculate

E[X ] =
∑

A∈F
Pr[S(π, |A|) = A]

=
∑

A∈F

1
(

n
|A|
)

≥ |F|
(

n
�n

2 �
) ,

where |F| is the size of F . Combining this inequality with our earlier in-
equality E(X) ≤ 1 leads to the desired conclusion |F| ≤

(
n

�n
2 �
)
.

5.7 Subadditivity and Expectations

Many solutions to hard discrete optimization problems involve complicated
random variables whose distributions and moments are nearly impossible to
calculate exactly. In such situations, probabilists attempt to pin down the
asymptotic behavior of the random variables as the problem size increases.
The theory of subadditive sequences constitutes one of the most powerful
tools for understanding mean behavior.

A sequence {an}n≥1 is said to be subadditive if

am+n ≤ am + an (5.9)

for all positive integers m and n [53, 130, 186]. If the opposite inequality

am+n ≥ am + an

holds, then the sequence is superadditive. Subadditive and superadditive
sequences arise in many combinatorial optimization problems. For example,
let Xn denote the minimum effort it takes to solve a random problem of size
n. Now suppose that we can decompose a problem of size m+ n into two
subproblems of size m and n and patch together optimal solutions of these
to derive a suboptimal solution of the problem of size m+ n. If the effort
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for the concatenated solution is the sum of the efforts for the subsolutions,
then the minimal efforts satisfy

Xm+n ≤ Xm +Xn. (5.10)

In other words, the random sequence Xn is subadditive. Taking expecta-
tions in inequality (5.10) demonstrates that the sequence E(Xn) is also
subadditive, provided the expectations exist.

We now prove the remarkable fact that inequality (5.9) implies that

lim
n→∞

an

n
= inf

n

an

n
= γ. (5.11)

The possibility γ = −∞ is not ruled out. Consider first the case γ > −∞,
and set a0 = 0. For any ε > 0, we can find a k such that ak ≤ (γ + ε)k.
Because any m > 0 can be written as m = nk+ j with 0 ≤ j < k, it follows
that

am = ank+j ≤ nak + aj ≤ (γ + ε)nk + max
0≤l<k

al

and consequently that

lim sup
m

am

m
≤ γ + ε ≤ lim inf

m

am

m
+ ε.

By virtue of the arbitrariness of ε, this shows that the limit (5.11) exists.
The easier case of γ = −∞ is left to the reader. A similar result holds for
a superadditive sequence.

Example 5.7.1 Longest Common Subsequence

A string is a finite sequence of letters taken from some alphabet. For in-
stance in DNA sequence analysis, the relevant alphabet consists of the four
letters A, C, T , and G. Two DNA strings sharing an evolutionary history
will have long subsequences in common. If we represent two strings of length
n by u1, . . . , un and v1, . . . , vn, then the subsequences ui1 , ui2 , . . . , uim

and
vj1 , vj2 , . . . , vjm

are shared provided uik
= vjk

for 1 ≤ k ≤ m. Now con-
sider two random strings whose letters are independently and identically
distributed. It is important to characterize the random length Mn = m of
the longest common subsequence.

Considerable effort has gone into finding E(Mn). We now show that
E(Mn) � γn for large n and a constant γ ∈ [0, 1] depending on the letter
distribution imposed on the alphabet [186]. This follows readily from the
superadditivity property Mr+s ≥ Mr + M∗

s derived by concatenating a
longest common subsequence drawn from the first block of r pairs of letters
with a longest common subsequence drawn from the last block of s pairs of
letters. Since Ms and M∗

s have the same distribution, the mean inequality
E(Mr+s) ≥ E(Mr) + E(Ms). Unfortunately, this argument fails to identify
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the constant γ. This difficulty plagues all applications of subadditivity and
superadditivity. Further problem-specific information must be brought to
bear to find γ [186]. For example, Problem 20 provides bounds on γ for the
problem of calculating self-avoidance probabilities in a symmetric random
walk.

Example 5.7.2 Euclidean Traveling Salesman Problem

The average complexity of many combinatorial optimization problems grows
at a slower than linear rate, thus falling outside the domain of application
of subadditivity. A probabilistic version of the traveling salesman problem
furnishes a case in point. In the classical version of the traveling sales-
man problem, the salesman must visit n towns, starting and ending in his
hometown. To minimize his travel time and expense, the salesman takes
an optimal route. We defer to Example 7.8.1 the question of how to find
such a route.

In the Euclidean, probabilistic version of the problem, n points (sites)
Y1, . . . , Yn are drawn uniformly and independently from the unit square
[186]. The shortest circuit that the salesman can make through the points
is given by the random variable

Dn = min
σ

n∑

i=1

‖Yσ(i) − Yσ(i+1)‖,

where σ denotes a generic permutation of {1, . . . , n}, σ(n+ 1) = σ(1), and
‖ · ‖ is the Euclidean norm. We now demonstrate that the average distance
E(Dn) the salesman travels is roughly proportional to

√
n.

One obvious upper bound on E(Dn) is furnished by Mn = supDn. It
is difficult to calculate Mn, so we will be content with bounding it. We
can attack this easier problem by choosing m = max{k ≥ 1 : k2 < n} and
dividing the unit square into m2 nonoverlapping subsquares having sides of
length 1/m. Any two points within one of these subsquares are separated
by a distance of at most

√
2/m. Furthermore,

√
2/m ≤ 2/

√
n, as Problem

21 asks the reader to check. Because m2 < n, the pigeonhole principle
requires that two of the points, say Yj and Yk, fall in the same subsquare.
Now consider a minimum-length tour of the n − 1 points excluding Yk. If
Yi → Yj in this tour, then we can extend the tour to a tour of all n points
by replacing the path Yi → Yj by the two paths Yi → Yk and Yk → Yj . In
view of the triangle inequality

||Yi − Yk|| + ||Yk − Yj || ≤ ||Yi − Yj || + 2||Yk − Yj || (5.12)

≤ ||Yi − Yj || +
4√
n
,

the bounds

Dn ≤ Dn−1 +
4√
n
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and

Mn ≤ Mn−1 +
4√
n

hold. If we iterate the last bound and employ M0 = 0, then it is clear that

Mn ≤
n∑

i=1

4√
i

≤ 4

∫ n

0

1√
x
dx = 8

√
n

and therefore that E(Dn) ≤ 8
√
n.

One can supplement this upper bound with a lower bound of the same
order of magnitude. In this case we begin with

E(Dn) ≥
n∑

i=1

E
(

min
j �=i

||Yj − Yi||
)

= nE
(

min
j �=n

||Yj − Yn||
)

= nE
[
E
(

min
j �=n

||Yj − y|| | Yn = y
)]
.

To calculate the conditional expectation

E
(

min
j �=n

||Yj − y|| | Yn = y
)

= E
(

min
j �=n

||Yj − y||
)
,

we use the right-tail probability bound

Pr
(

min
j �=n

||Yj − y|| ≥ r
)

≥ (1 − πr2)n−1

valid for any y in the unit square. Thus, Example 2.5.1 implies that

E(min
j �=n

||Yj − y||) ≥
∫ 1√

π

0

(1 − πr2)n−1dr

≈
∫ 1√

π

0

e−π(n−1)r2

dr

≈ 1

2

∫ ∞

−∞
e−π(n−1)r2

dr

=
1

2
√
n− 1

.

In summary, we conclude that E(Dn)/
√
n ≥

√
n/(2

√
n− 1) ≈ 1/2 to a

good approximation for large n. A combination of further theoretical work
and numerical experimentation [186] suggests that limn→∞Dn/

√
n → γ

for some constant γ ∈ [0.70, 0.73].
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5.8 Problems

1. What is the probability that a random permutation of n distinct
numbers contains at least one preexisting splitter? What are the mean
and variance of the number of preexisting splitters?

2. Show that the worst case of quick sort takes on the order of n2 oper-
ations.

3. Consider the problem of finding an order statistic x(k) from an un-
sorted array {x1, . . . , xn} of n distinct numbers. This can be accom-
plished in O(n) operations based on the quick sort strategy. After
the initial partitioning step, one can tell which of the two subarrays
contains x(k) just by looking at their sizes. If the left array has k− 1
entries, then the splitting value is x(k). If the left array has k or more
entries, then it contains x(k). Otherwise, the right array contains x(k).
Now let Tnk denote the expected number of operations to find x(k),
and put Tn = maxk Tnk. One can prove that Tn ≤ 4n. In view of
the fact that it takes n − 1 comparisons to create the left and right
subarrays, show that

Tn ≤ n− 1 +
2

n

n−1∑

k=�n
2 �
Tk,

and argue by induction that Tn ≤ 4n.

4. Consider the uniform distribution pl = n−1 on an alphabet A with
n letters. Let len(sl) be the number of bits in the bit string sl repre-
senting l under Huffman coding. If m = max{len(sl) : l ∈ A}, then
show that len(sl) = m or m − 1 for all l. If n = α2k for 1 < α ≤ 2,
then determine the number of letters l with len(sl) = j for j = m− 1
and j = m. Use these numbers to calculate E[len(H)], where H is a
random Huffman bit string.

5. A sequence X1, . . . , Xn of independent random variables uniformly
distributed over the set Sn = {1, 2, . . . , n} defines a random function
from Sn into itself. Prove that the number Fn =

∑n
j=1 1{Xj=j} of

fixed points satisfies E(Fn) = 1, Var(Fn) = 1 − 1
n , and

E
(
eitFn

)
=
(
1 − 1

n
+

1

n
eit
)n

.

Use the last identity in conjunction with Proposition 12.6.1 to show
that Fn is approximately Poisson distributed with mean 1.

6. Read Example 4.2.4 on Fibonacci numbers. Consider a probability
model whose sample space is the collection of tilings of a checkerboard
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row by square pieces and dominoes. If we assign equal probability to
each of the fn possible tilings of a row of length n, then the most
pertinent random variable is the number of dominoesDn in a random
tiling. Prove that

E(Dn) =
1

fn

n−1∑

i=1

fi−1fn−i−1

=
1

fn

∑

j

fjfn−2−j

using the conventions f0 = 1 and fi = 0 for i < 0 and the represen-
tation

Dn =

n−1∑

i=1

Ci,

where Ci is the indicator of the event that a domino occupies squares
i and i+ 1. Similarly prove that

Var(Dn) =
2

fn

∑

j

∑

k

fjfkfn−4−j−k + E(Dn) − E(Dn)2.

How can you use E(Dn) and Var(Dn) to calculate the mean and
variance of the number of square pieces used?

7. Continuing Problem 6, show that the Fibonacci sequence has gener-
ating function

F (s) =

∞∑

n=0

fnx
n =

1

1 − x− x2
.

Use this to prove the convolution identity

n∑

k=0

fkfn−k =
(n+ 1)fn+1 + 2(n+ 2)fn

5

leading to the simplification

E(Dn) =
(n− 1)fn−1 + 2nfn−2

5fn
.

8. Consider a probability model under which all partitions of a set with
n elements are equally likely. Let Xn be the number of blocks in a
random partition of the n-set. Show that

E(Xn) =
Bn+1

Bn
− 1

Var(Xn) =
Bn+2

Bn
−
(Bn+1

Bn

)2

− 1
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using the Bell numbers. (Hint: Review Example 4.2.3 and apply re-
currence relation (4.18).)

9. Let Yn be the number of cycles in a random permutation. Demon-
strate that

Var(Yn) =
n∑

k=1

1

k
−

n∑

k=1

1

k2

≈ lnn+ γ − π2

6
.

(Hint: Equation (4.24) provides the generating function of Yn.)

10. Euler’s combinatorial number enk denotes the number of permuta-
tions π of {1, . . . , n} with k ascents π(j) < π(j + 1). Prove that

enk = en,n−1−k

enk = (k + 1)en−1,k + (n− k)en−1,k−1.

11. Continuing Problem 10, let An be the number of ascents in a random
permutation of {1, . . . , n}. Show that

E(An) =
n− 1

2

Var(An) =
n− 1

4
+ 2(n− 2)

(1

6
− 1

22

)
1{n≥2}

=

{
n+1
12 n ≥ 2

0 n = 1 .

(Hint: Write An as a sum of indicator random variables.)

12. Consider the set of n× n matrices M whose entries are drawn inde-
pendently and uniformly from the set {−1, 1}. Thus, each such matrix

has probability 2−n2

. Show that E(detM) = 0 and Var(detM) = n!.
It follows that some matrix exists in the set with | detM | ≥

√
n!.

The maximum value of | detM | is unknown [205]. (Hint: Express
detM =

∑
π sgn(π)m1π(1) · · ·mnπ(n) as a sum over all permutations

π of {1, . . . , n}.)

13. Check that any five noncollinear points in the plane R
2 determine at

least one obtuse angle.

14. Let ‖x‖ be the standard Euclidean norm of a vector x ∈ R
n. A vector

x with ‖x‖ = 1 is said to be a unit vector. For any sequence x1, . . . , xn

of n unit vectors from R
n, it is possible to find n numbers ε1, . . . , εn

drawn from {−1, 1} such that ‖ε1x1 + · · ·+ εnxn‖ ≤
√
n. A different

choice of ε1, . . . , εn yields the reverse inequality [4]. Prove this striking
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result by setting up a simple probability model. (Hints: Choose the εi
independently from {−1, 1} in such a way that E(εi) = 0. Now show
that the random variable X = ‖ε1x1 + · · · + εnxn‖2 has expectation
E(X) = n.)

15. Exactly 10% of the surface of a sphere in R
3 is colored black, and

90% is colored white. Show that it is possible to inscribe a cube in
the sphere with all of its vertices colored white [80].

16. Consider a graph with m nodes and n edges. For any set of nodes
S, let X(S) be the number of edges with exactly one endpoint in
S. Show that maxS X(S) ≥ n/2. (Hints: Generate S randomly by
independently sampling each node with probability 1/2. Decompose
X as a sum of indicators indexed by the edges.)

17. Consider a family of subsets F of a set S with the property that each
A ∈ F has exactly d elements. The family F is said to be 2-colorable if
we can assign one of two colors, say black and white, to each element
of S in such a manner that each A ∈ F possesses at least one element
of each color. Prove that F is 2-colorable if it contains fewer than
2d−1 subsets [1]. (Hints: Randomly color each element of S with one
of the two equally likely colors black and white. Let CA be the event
that all elements of A ∈ F receive the same color. Show that ∪ACA

has probability strictly less than 1.)

18. Let f(t) be a nonnegative function on (0,∞) with limt→0 f(t) = 0.
If f(t) is subadditive in the sense that f(s+ t) ≤ f(s) + f(t) for all
positive s and t, then show that

lim
t↓0

f(t)

t
= sup

t>0

f(t)

t
= q.

(Hint: Demonstrate that

p ≤ lim inf
t↓0

f(t)

t
≤ lim sup

t↓0

f(t)

t

for all p ∈ [0, q).)

19. A random walk Xn on the integer lattice in R
m is determined by the

transition probabilities Pr(Xn+1 = j | Xn = i) = qj−i and the initial
value X0 = 0. Let pn be the probability that Xi �= Xj for all pairs
0 ≤ i < j ≤ n. In other words, pn is the probability that the walk
avoids itself during its first n steps. Prove that either pn = 0 for all
sufficiently large n or limn→∞ 1

n ln pn = γ for some γ ≤ 0. (Hint:
Argue that pm+n ≤ pmpn.)
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20. Continuing Problem 19, suppose the random walk is symmetric in
the sense that qi = 1/(2m) if and only if ‖i‖ = 1. Prove that

mn

(2m)n
≤ pn ≤ 2m(2m− 1)n−1

(2m)n
.

Use these inequalities to prove that the constant γ of Problem 19
satisfies ln(1/2) ≤ γ ≤ ln[1− 1/(2m)]. (Hints: A random walk is self-
avoiding if all its steps are in the positive direction. After its first
step, a self-avoiding walk cannot move from its current position back
to its previous position.)

21. Suppose m = max{k ≥ 1 : k2 < n}. Prove that
√

2/m ≤ 2/
√
n for

all sufficiently large n.



6
Poisson Processes

6.1 Introduction

The Poisson distribution rivals the normal distribution in importance. It
occupies this position of eminence because of its connection to Poisson
processes [59, 60, 80, 96, 106, 114, 170]. A Poisson process models the for-
mation of random points in space or time. Most textbook treatments of
Poisson processes stress one-dimensional processes. This is unfortunate be-
cause many of the important applications occur in higher dimensions, and
the underlying theory is about as simple there. In this chapter, we empha-
size multidimensional Poisson processes, their transformation properties,
and computational tools for extracting information about them.

The number of applications of Poisson processes is truly amazing. To
give just a few examples, physicists use them to describe the emission of
radioactive particles, astronomers to account for the distribution of stars,
communication engineers to model the arrival times of telephone calls at
an exchange, radiologists to reconstruct medical images in emission and
transmission tomography, and ecologists to test for the random location of
plants. Almost equally important, Poisson processes can provide a theo-
retical perspective helpful in complex probability calculations that have no
obvious connection to random points. We will visit a few applications of
both types as we proceed.

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_6, © Springer Science+Business Media, LLC 2010
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6.2 The Poisson Distribution

It is helpful to begin our exposition of Poisson processes with a brief re-
view of the Poisson distribution. Readers will recall that a Poisson random
variable Z ≥ 0 has discrete density Pr(Z = k) = e−μ μk

k! with mean and

variance μ and probability generating function E(tZ) = eμ(t−1). Further-
more, if Z1, . . . , Zm are independent Poisson random variables, then the
sum Z =

∑m
k=1 Zk is also a Poisson random variable. Less well known is

the next proposition.

Proposition 6.2.1 Suppose a Poisson random variable Z with mean μ
represents the number of outcomes from some experiment. Let each outcome
be independently classified in one of m categories, the kth of which occurs
with probability pk. Then the number of outcomes Zk falling in category
k is Poisson distributed with mean μk = pkμ. Furthermore, the random
variables Z1, . . . , Zm are independent. Conversely, if Z =

∑m
k=1 Zk is a

sum of independent Poisson random variables Zk with means μk = pkμ,
then conditional on Z = n, the vector (Z1, . . . , Zm) follows a multinomial
distribution with n trials and cell probabilities p1, . . . , pm.

Proof: If n = n1 + · · · + nm, then

Pr(Z1 = n1, . . . , Zm = nm) = e−μμ
n

n!

(
n

n1, . . . , nm

) m∏

k=1

pnk

k

=

m∏

k=1

e−μk
μnk

k

nk!

=

m∏

k=1

Pr(Zk = nk).

To prove the converse, divide the last string of equalities by the probability
Pr(Z = n) = e−μ μn

n! .

In practice, it is useful to extend the definition of a Poisson random
variable to include the limiting casesX ≡ 0 andX ≡ ∞ with corresponding
means 0 and ∞.

6.3 Characterization and Construction

A Poisson process involves points randomly scattered in some measurable
region S of m-dimensional space R

m. To formalize the notion that the
points are completely random but concentrated on average more in some
regions rather than in others, we introduce four postulates involving an
intensity function λ(x) ≥ 0 on S. Postulate (d) in the following list uses

the notation o(μ) to signify a generic error term satisfying limμ→0
o(μ)

μ = 0.



6.3 Characterization and Construction 125

(a) There exists a sequence of disjoint subregions Sn satisfying S =
⋃

n Sn

and
∫

Sn
λ(x) dx <∞ for all n.

(b) The probability pk(μ) that a region T ⊂ S contains k random points
depends only on the mass μ =

∫
T λ(x) dx of T . If μ = ∞, then all

pk(μ) = 0, and the given region possesses an infinite number of points.

(c) The numbers of random points in disjoint regions are independent.

(d) The first two probabilities p0(μ) and p1(μ) have the asymptotic values

p0(μ) = 1 − μ+ o(μ)

p1(μ) = μ+ o(μ) (6.1)

as μ tends to 0. Thus, pk(μ) = o(μ) for all k > 1.

Proposition 6.3.1 Based on postulates (a) through (d), the number of
random points in a region with mass μ has the Poisson distribution

pk(μ) = e−μμ
k

k!
.

Proof: We first remark that for any region T with
∫

T λ(x) dx < ∞ and
any μ in the interval [0,

∫
T
λ(x) dx], there exists a region R ⊂ T with mass

μ =
∫

R
λ(x) dx. To verify this assertion, we need only consider regions of

the form R = T ∩ Bt, where Bt is the ball {x ∈ R
m : ‖x‖ ≤ t}. The

function t �→
∫

T∩Bt
λ(x) dx is continuous from the right by the dominated

convergence theorem. It is continuous from the left because the surface of
Bt has volume 0 and therefore

∫
{x:‖x‖=t} λ(x) dx = 0. The intermediate

value theorem now gives the desired conclusion.
Let μ and dμ represent the masses of two nonoverlapping regions. By the

preceding comments, dμ can be made as small as we please. The equality

p0(μ+ dμ) = p0(μ)p0(dμ)

= p0(μ)[1 − dμ+ o(dμ)]

follows immediately from the postulates and can be rearranged to give the
difference quotient

p0(μ+ dμ) − p0(μ)

dμ
= −p0(μ) + o(1).

Taking limits as dμ tends to 0 produces the ordinary differential equation
p′0(μ) = −p0(μ) with solution p0(μ) = e−μ satisfying the initial condition
p0(0) = 1.
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For k ≥ 1, we again invoke the postulates and execute the expansion

pk(μ+ dμ) = pk(μ)p0(dμ) + pk−1(μ)p1(dμ) +

k∑

j=2

pk−j(μ)pj(dμ)

= pk(μ)[1 − dμ+ o(dμ)] + pk−1(μ)[dμ+ o(dμ)]

+
k∑

j=2

pk−j(μ)o(dμ).

Rearrangement of this approximation yields the difference quotient

pk(μ+ dμ) − pk(μ)

dμ
= −pk(μ) + pk−1(μ) + o(1)

and ultimately the ordinary differential equation p′k(μ) = −pk(μ)+pk−1(μ)
with initial condition pk(0) = 0. The transformed function qk(μ) = pk(μ)eμ

satisfies the simpler ordinary differential equation q′k(μ) = qk−1(μ) with

initial condition qk(0) = 0. If the pk(μ) are Poisson, then qk(μ) = μk

k!
should hold. This formula is certainly true for q0(μ) = 1. Assuming that it
is true for qk−1(μ), we see that

qk(μ) =

∫ μ

0

qk−1(u) du

=

∫ μ

0

uk−1

(k − 1)!
du

=
μk

k!

has the necessary value to advance the inductive argument and complete
the proof.

At this junction, several remarks are in order. First, the proposition is
less than perfectly rigorous because we have only considered derivatives
from the right. A better proof under less restrictive conditions is given in
reference [114]. Second, μ =

∫
T
λ(x) dx is the expected number of ran-

dom points in the region T . Third, only a finite number of random points
can occur in any Sn. Fourth, if

∫
T λ(x) dx = ∞, then an infinite num-

ber of random points occur in T . Fifth, because every y ∈ S has mass∫
{y} λ(x) dx = 0, the probability that a random point coincides with y is

0. Sixth, no two random points ever coincide. Seventh, the approximations

(6.1) are consistent with the final result pk(μ) = e−μ μk

k! . Eighth and finally,
if the intensity function λ(x) is constant, then the Poisson process is said
to be homogeneous.

We now turn the question of Proposition 6.3.1 around and ask how one
can construct a Poisson process with a given intensity function λ(x). This
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question has more than theoretical interest because we often need to sim-
ulate a Poisson process on a computer. Briefly, we attack the problem by
independently generating random points in each of the disjoint regions Sn.
The number of points NSn

to be scattered in Sn follows a Poisson distribu-
tion with mean μn =

∫
Sn
λ(x) dx. Once we sample NSn

, then we indepen-
dently distribute the corresponding NSn

points Xni one by one over the
region Sn according to the probability measure

Pr(Xni ∈ R) =
1

μn

∫

R

λ(x) dx.

This procedure incorporates the content of Proposition 6.2.1. The resulting

union of random points Π =
⋃

n

⋃NSn

i=1 {Xni} constitutes one realization
from the required Poisson process.

6.4 One-Dimensional Processes

When a Poisson process occurs on a subset of the real line, it is often
convenient to refer to time instead of space and events instead of points.
Consider a homogeneous Poisson process on [0,∞) with intensity λ. Let
Tk be the waiting time until the kth event after time 0. The interarrival
time between events k − 1 and k equals Wk = Tk − Tk−1 for k > 1. By
convention W1 = T1.

Proposition 6.4.1 The random waiting time Tk has a gamma distribu-

tion with density λ (λt)k−1

(k−1)! e
−λt. Furthermore, the interarrival times Wk are

independent and exponentially distributed with intensity λ.

Proof: The event Tk > t is equivalent to the event that k − 1 or fewer
random points fall in [0, t]. Hence,

Pr(Tk ≤ t) = 1 − Pr(Tk > t) = 1 −
k−1∑

j=0

e−λt (λt)
j

j!
.

Differentiating this distribution function with respect to t gives the density
function

−
k−1∑

j=0

jλe−λt (λt)
j−1

j!
+

k−1∑

j=0

λe−λt (λt)j

j!
= λ

(λt)k−1

(k − 1)!
e−λt.

This proves the first claim.
Assume for the moment that the second claim is true. Because the matrix

of the linear transformation

T1 = W1
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T2 = W1 +W2

...

Tn = W1 +W2 + · · · +Wn

taking (W1, . . . ,Wn) to (T1, . . . , Tn) is lower triangular with 1’s down its
diagonal, it has Jacobian 1. The change of variables formula (1.12) therefore
implies that the random vector (T1, . . . , Tn) has density

fn(t1, . . . , tn) =

n∏

i=1

λe−λwi = λne−λtn

on the region Γn = {0 ≤ t1 ≤ · · · ≤ tn}. Conversely, if (T1, . . . , Tn) pos-
sesses the density fn(t1, . . . , tn), then applying the inverse transformation
shows that the Wk are independent and exponentially distributed with
intensity λ.

Now let Fn(t1, . . . , tn) be the distribution function corresponding to
fn(t1, . . . , tn). Integrating the obvious identity

fn(s1, . . . , sn) = λne−λsn

= λe−λs1fn−1(s2 − s1, . . . , sn − s1)

over the intersection Γn ∩ {s1 ≤ t1, . . . , sn ≤ tn} yields the identity

Fn(t1, . . . , tn) =

∫ t1

0

λe−λs1Fn−1(t2 − s1, . . . , tn − s1) ds1 (6.2)

recursively determining the distribution functions Fn(t1, . . . , tn) starting
with F1(t1) = 1 − e−λt1 . If Gn(t1, . . . , tn) denotes the actual distribution
function of (T1, . . . , Tn), then our strategy is to show that Gn(t1, . . . , tn)
satisfies identity (6.2). Given the fact that G1(t1) = 1 − e−λt1 , induction
on n then shows that Gn(t1, . . . , tn) and Fn(t1, . . . , tn) coincide.

To verify that Gn(t1, . . . , tn) satisfies identity (6.2), we first note that

Pr (T1 ≤ t1, . . . , Tn ≤ tn) = Pr (∩n
i=1{Nti

≥ i}) . (6.3)

We also note the identity

(λt)j

j!
e−λt =

λj

(j − 1)!
e−λt

∫ t

0

sj−1ds

=
λj

(j − 1)!
e−λt

∫ t

0

(t− s)j−1ds

=

∫ t

0

λe−λs [λ(t− s)]j−1

(j − 1)!
e−λ(t−s)ds.
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Consequently, if 1 ≤ j1 ≤ · · · ≤ jn, then

Pr(∩n
i=1{Nti

=ji}) = Pr(Nt1 =j1) Pr(∩n
i=2{Nti

−Nti−1 = ji − ji−1})

=

∫ t1

0

λe−λs [λ(t1 − s)]j1−1

(j1 − 1)!
e−λ(t1−s)

× Pr(∩n
i=2{Nti

−Nti−1 = ji − ji−1}) ds

=

∫ t1

0

λe−λs [λ(t1 − s)]j1−1

(j1 − 1)!
e−λ(t1−s)

× Pr(∩n
i=2{Nti−s −Nti−1−s = ji − ji−1}) ds

=

∫ t1

0

λe−λs Pr(∩n
i=1{Nti−s = ji − 1}) ds.

Summing this equality over the intersection of the sets {j1 ≤ · · · ≤ jn} and
{j1 ≥ 1, . . . , jn ≥ n} produces

Pr(∩n
i=1{Nti

≥ i}) =

∫ t1

0

λe−λs Pr(∩n
i=2{Nti−s ≥ i− 1}) ds (6.4)

because the event Nt1 ≥ 0 is certain. Taking into account representation
(6.3), identity (6.4) is just a disguised form of identity (6.2).

This proposition implies that generating a sequence of exponentially dis-
tributed interarrival times W1,W2, . . . and extracting the corresponding
waiting times Tk =

∑k
j=1Wj from it provides another method of con-

structing a homogeneous Poisson process on [0,∞).
The exponential distribution has an important “lack of memory” prop-

erty. If X is exponentially distributed with intensity λ, then

Pr(X > t+ h | X > t) =
Pr(X > t+ h)

Pr(X > t)

=
e−λ(t+h)

e−λt

= e−λh

= Pr(X > h).

Lack of memory characterizes the exponential.

Proposition 6.4.2 Suppose X is a random variable with values in (0,∞)
and satisfying Pr(X > t+h) = Pr(X > t) Pr(X > h) for all positive h and
t. Then X is exponentially distributed.

Proof: If we let g(t) = Pr(X > t), then g(0) = 1 and g(t) satisfies the
familiar functional equation (2.6). Given differentiability of g(t), the rea-
soning in Example 2.4.7 leads to the solution g(t) = e−λt. Here λ > 0
because g(t) tends to 0 as t tends to ∞.
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Example 6.4.1 Waiting Time Paradox

Buses arrive at a bus stop at random times according to a Poisson process
with intensity λ. I arrive at time t and ask how much time E(W ) on average
I will have to wait for the next bus. To quote Feller [60], there are two
mutually contradictory responses:

(a)“The lack of memory of the Poisson process implies that the distri-
bution of my waiting time should not depend on the epoch of my
arrival. In this case, E(W ) = 1/λ.”

(b)“The epoch of my arrival is chosen at random in the interval between
two consecutive buses, and for reasons of symmetry my expected wait-
ing time should be half the expected time between two consecutive
buses, that is E(W ) = 1/(2λ).”

Answer (a) is correct; answer (b) neglects the fact that I am more likely to
arrive during a long interval than a short interval. This is the paradox of
length-biased sampling. In fact, the random length of the interval captur-
ing my arrival is distributed as the sum of two independent exponentially
distributed random variables with intensity λ. This assertion is clear if I
arrive at time 0, and it continues to hold for any other time t because a
homogeneous Poisson process is stationary and possesses no preferred time
origin.

Example 6.4.2 Order Statistics from an Exponential Sample

The lack of memory property of the exponential distribution makes possible
an easy heuristic derivation of a convenient representation of the order
statistics X(1) ≤ · · · ≤ X(n) from an independent sample X1, . . . , Xn of
exponentially distributed random variables with common intensity λ [60].
From the calculation Pr(X(1) ≥ x) =

∏n
j=1 Pr(Xj ≥ x) = e−nλx, we

find that X(1) is exponentially distributed with intensity nλ. Because of
the lack of memory property of the exponential, the n− 1 random points
to the right of X(1) provide an exponentially distributed sample of size
n− 1 starting at X(1). Duplicating our argument for X(1), we find that the
difference X(2) −X(1) is independent of X(1) and exponentially distributed
with intensity (n − 1)λ. Arguing inductively, we now see that Z1 = X(1)

and the differences Zk = X(k) − X(k−1) are independent and that Zk is
exponentially distributed with intensity (n−k+1)λ. Problem 5 proves the

representation X(j) =
∑j

k=1 Zk rigorously by transforming the relevant
probability densities; Problem 6 provides the moments of X(j) based on it.
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FIGURE 6.1. Cartoon of Transmission Tomography

6.5 Transmission Tomography

The purpose of transmission tomography is to reconstruct the local atten-
uation properties of the object being imaged. Attenuation is to be roughly
equated with density. In medical applications, material such as bone is
dense and stops or deflects X-rays better than soft tissue. With enough
radiation, even small gradations in soft tissue can be detected. The tradi-
tional method of image reconstruction in transmission tomography relies
on Fourier analysis and the Radon transform [88]. An alternative to this
deterministic approach is to pose an explicitly Poisson process model that
permits parameter estimation by maximum likelihood [125]. The MM al-
gorithm presented in Chapter 3 immediately suggests itself in this context.

The stochastic model depends on dividing the object of interest into
small nonoverlapping regions of constant attenuation called pixels. Typi-
cally the pixels are squares. The attenuation attributed to pixel j consti-
tutes parameter θj of the model. Since there may be thousands of pixels,
implementation of maximum likelihood algorithms such as scoring or New-
ton’s method is out of the question. Each observation Yi is generated by
beaming a stream of X-rays or high-energy photons from an X-ray source
toward some detector on the opposite side of the object. The observation
(or projection) Yi counts the number of photons detected along the ith
line of flight. Figure 6.1 shows one such projection line beamed through a
cartoon of the human head. Naturally, only a fraction of the photons are
successfully transmitted from source to detector. If lij is the length of the
segment of projection line i intersecting pixel j, then we claim that the
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probability of a photon escaping attenuation along projection line i is the
exponentiated line integral exp(−

∑
j lijθj).

This result can be demonstrated by considering a Poisson process along
projection i, starting with the source as origin. Each random point corre-
sponds to a possible attenuation event. The first attenuation event encoun-
tered stops or deflects the photon and thus prevents it from being detected.
The intensity of the attenuation process is determined locally by the at-
tenuation coefficient of the surrounding pixel. It follows that a photon es-
capes attenuation with Poisson probability exp(−

∑
j lijθj). Example 8.7.2

continues this discussion from the perspective of continuous-time Markov
chains.

Of course, a second Poisson process is lurking in the background. In the
absence of the intervening object, the number of photons generated and
ultimately detected follows a Poisson distribution. Let the mean of this
distribution be di for projection line i. Since Proposition 6.2.1 implies that
random thinning of a Poisson random variable gives a Poisson random vari-
able, the number Yi is Poisson distributed with mean di exp(−

∑
j lijθj).

Owing to the Poisson nature of X-ray generation, the different projections
will be independent even if collected simultaneously. This fact enables us
to write the loglikelihood of the observed data Yi = yi as the finite sum

L(θ) =
∑

i

[

− die
−
∑

j
lijθj − yi

∑

j

lijθj + yi ln di − ln yi!

]

. (6.5)

Omitting irrelevant constants, we can rewrite the loglikelihood (6.5) more
succinctly as

L(θ) = −
∑

i

fi(l
t
iθ),

where fi(s) = die
−s + yis and ltiθ =

∑
j lijθj is the inner product of the

attenuation parameter vector θ and the vector of intersection lengths li for
projection i.

Following the lead of De Pierro [47] in emission tomography, one can
devise an MM algorithm based on a convexity argument [126]. First define
admixture constants

αij =
lijθ

n
j

ltiθ
n
. (6.6)

Since
∑

j αij = 1 and each fi(s) is strictly convex, the inequality

L(θ) = −
∑

i

fi

(∑

j

αij
θj

θn
j

ltiθ
n

)

≥ −
∑

i

∑

j

αijfi

(
θj

θn
j

ltiθ
n

)

(6.7)

= Q(θ | θn)
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holds. Furthermore, equality occurs when θj = θn
j for all j. Thus, the

surrogate function Q(θ | θn) minorizes L(θ). By construction, maximizing
Q(θ | θn) separates into a sequence of one-dimensional maximization prob-
lems, each of which can be solved approximately by one step of Newton’s
method as noted in Problem 13.

The images produced by maximum likelihood estimation in transmission
tomography look grainy. Geman and McClure [72] recommend incorporat-
ing a Gibbs prior that enforces image smoothness. A Gibbs prior π(θ) can
be written as

lnπ(θ) = −γ
∑

{j,k}εN

wjkψ(θj − θk),

where γ and the weights wjk are positive constants, N is a set of unordered
pairs {j, k} defining a neighborhood system, and ψ(r) is called a potential
function. For instance, if the pixels are squares, we might define the weights
by wjk = 1 for orthogonal nearest neighbors and wjk = 1/

√
2 for diagonal

nearest neighbors. The constant γ scales the overall strength assigned to
the prior. To achieve a smooth image with good resolution, we maximize
the log posterior function L(θ) + lnπ(θ) rather than L(θ).

Choice of the potential function ψ(r) is the most crucial feature of the
Gibbs prior. It is convenient to assume that ψ(r) is even and strictly con-
vex. Strict convexity leads to strict concavity of the log posterior function
L(θ)+ lnπ(θ) and permits simple modification of the MM algorithm based
on the Q(θ | θn) function defined by inequality (6.7). Many potential func-
tions exist satisfying these conditions. One simple example is ψ(r) = r2.
Because this choice tends to deter the formation of boundaries, Green [79]
has suggested the gentler alternative ψ(r) = ln[cosh(r)], which grows lin-
early for large |r| rather than quadratically.

One adverse consequence of introducing a prior is that it couples the
parameters in the maximization step of the MM algorithm for finding the
posterior mode. One can decouple the parameters by exploiting the con-
vexity and evenness of the potential function ψ(r) through the inequality

ψ(θj − θk) = ψ
(1

2

[
2θj − θn

j − θn
k

]
+

1

2

[
− 2θk + θn

j + θn
k

])

≤ 1

2
ψ(2θj − θn

j − θn
k ) +

1

2
ψ(2θk − θn

j − θn
k ),

which is strict unless θj + θk = θn
j + θn

k [47]. This inequality allows us to
redefine the minorizing function as

Q(θ | θn) = −
∑

i

∑

j

αijfi

(
θj

θn
j

ltiθ
n

)

−γ
2

∑

{j,k}εN

wjk[ψ(2θj − θn
j − θn

k ) + ψ(2θk − θn
j − θn

k )],
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where fi(s) = die
−s + yis and the admixture constants aij are given by

equation (6.6). The parameters are once again separated in the M step, and
maximizing Q(θ | θn) drives the logposterior uphill and eventually leads to
the posterior mode (maximum).

6.6 Mathematical Applications

Poisson processes not only offer realistic models for scientific phenomena,
but they also provide devices for solving certain problems in combinatorics
and probability theory [2, 15, 18, 26]. The Poisson strategies at the heart
of the next two examples succeed by replacing dependent random variables
by closely related independent random variables.

Example 6.6.1 Schrödinger’s Method

Schrödinger’s method is a technique for solving occupancy problems in
multinomial sampling. Consider a multinomial sample withm equally likely
categories and n trials. If we desire the probability of the event An that
all m categories are occupied, then we can use an inclusion-exclusion argu-
ment. Alternatively in Schrödinger’s method, we assume that the number
of trials N is a Poisson random variable with mean λ. According to Propo-
sition 6.2.1, this assumption decouples the categories in the sense that the
numbers of outcomes falling in the different categories are independent
Poisson random variables with common mean λ/m. In the Poisson setting,
the probability of the event A that all m categories are occupied satisfies

eλ Pr(A) = eλ
(
1 − e−

λ
m

)m

=
(
e

λ
m − 1

)m

=
m∑

j=0

(
m

j

)

(−1)je(m−j)λ/m

=
m∑

j=0

(
m

j

)

(−1)j
∞∑

n=0

(
1 − j

m

)nλn

n!
(6.8)

=

∞∑

n=0

λn

n!

m∑

j=0

(
m

j

)

(−1)j
(
1 − j

m

)n

.

On the other hand, conditioning on N produces

Pr(A) =

∞∑

n=0

Pr(An)e−λ λ
n

n!
. (6.9)
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We now multiply equation (6.9) by eλ and equate the result to equation
(6.8). Because the coefficients of λn must match, the conclusion

Pr(An) =

m∑

j=0

(
m

j

)

(−1)j
(
1 − j

m

)n

(6.10)

follows immediately. This Poisson randomization technique extends to more
complicated occupancy problems [15].

Despite the beauty of equation (6.10), it does not yield much insight
into the size of the probability Pr(An). In statistical contexts, one is of-
ten interested in finding upper bounds on small probabilities. Thus, the
inequality

Pr(An) ≤ 2 Pr(A) = 2
(
1 − e−

n
m

)m

with λ = n is relevant. This bound is a special case of a more general result.
Let Xi be the number of outcomes that fall in category i under multinomial
sampling with n trials and Ni be the number under Poisson sampling with
mean number of trials λ = n. If f(x1, . . . , xm) is a nonnegative function
such that E[f(X1, . . . , Xm)] is monotonically increasing or decreasing in n,
then Problem 18 asks the reader to prove that

E[f(X1, . . . , Xm)] ≤ 2 E[f(N1, . . . , Nm)]. (6.11)

Because Pr(An) is obviously increasing in n, the bound applies in the cur-
rent setting.

Example 6.6.2 Poissonization in the Family Planning Model 2.3.3

Poisson processes come into play in this model when we embed the births
to the couple at the random times determined by a Poisson process on
[0,∞) of unit intensity. Hence on average, n births occur during [0, n] for
any positive integer n. When births are classified by sex, then as suggested
by Proposition 6.2.1 and discussed in more detail in the next section, male
births and female births form two independent Poisson processes. Let Ts

and Td be the continuously distributed waiting times until the birth of s
sons and d daughters, respectively. The waiting time until the quota of
at least s sons and d daughters is reached is Tsd = max{Ts, Td}. Now
independence of Ts and Td and Example 2.5.1 entail

E(Tsd) =

∫ ∞

0

[1 − Pr(Tsd ≤ t)] dt

=

∫ ∞

0

[1 − Pr(Ts ≤ t) Pr(Td ≤ t)] dt

=

∫ ∞

0

{1 − [1 − Pr(Ts > t)][1 − Pr(Td > t)]} dt (6.12)
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=

∫ ∞

0

Pr(Ts > t) dt+

∫ ∞

0

Pr(Td > t) dt

−
∫ ∞

0

Pr(Ts > t) Pr(Td > t) dt.

Proposition 6.4.1 implies that Pr(Ts > t) =
∑s−1

k=0
(pt)k

k! e−pt and similarly
for Pr(Td > t). Combining these facts with the identity

∫ ∞

0

tne−rtdt =
n!

rn+1

and equation (6.12) leads to the conclusion that

E(Tsd) =

∫ ∞

0

s−1∑

k=0

(pt)k

k!
e−ptdt+

∫ ∞

0

d−1∑

l=0

(qt)l

l!
e−qtdt

−
∫ ∞

0

s−1∑

k=0

d−1∑

l=0

pk

k!

ql

l!
tk+le−tdt (6.13)

=

s−1∑

k=0

pk

pk+1
+

d−1∑

l=0

ql

ql+1
−

s−1∑

k=0

d−1∑

l=0

(
k + l

k

)

pkql

=
s

p
+
d

q
−

s−1∑

k=0

d−1∑

l=0

(
k + l

k

)

pkql.

Having calculated E(Tsd), we now show that E(Nsd) = E(Tsd) by con-
sidering the random sum

Tsd =

Nsd∑

k=1

Wk,

where the Wk are the independent exponential waiting times between suc-
cessive births. Because E(W1) = 1 and Nsd is independent of the Wk,
Example 2.4.4 implies E(Tsd) = E(Nsd) E(W1) = E(Nsd). Alternatively,
readers can check the equality E(Nsd) = E(Tsd) by verifying that formula
(6.13) for E(Tsd) satisfies the same boundary conditions and the same re-
currence relation as E(Nsd).

6.7 Transformations

In this section, we informally discuss various ways of constructing new
Poisson processes from old ones. (Detailed proofs of all assertions made
here can be found in reference [114].) For instance, suppose Π is a Poisson
process on the region S ⊂ R

m. If T is a measurable subset of S, then the
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random points ΠT falling in T clearly satisfy the postulates (a) through (d)
of a Poisson process. The Poisson process ΠT is called the restriction of Π
to T . Similarly, if Π1 and Π2 are two independent Poisson processes on S,
then the union Π = Π1

⋃
Π2 is a Poisson process called the superposition

of Π1 and Π2. The intensity function λ(x) of Π is the sum λ1(x)+λ2(x) of
the intensity functions of Π1 and Π2.

In some circumstances, one can create a new Poisson process T (Π) from
an existing Poisson process by transforming the underlying space U ⊂ R

m

to a new space V ⊂ R
n via a measurable map T : U �→ V . In this paradigm,

a random point X ∈ Π is sent into the new random point T (X). To pre-
vent random points from piling up on one another, we must impose some
restriction on the map T (x). We can achieve this goal and avoid certain
measure-theoretic subtleties by requiring the existence of an intensity func-
tion λT (y) such that

∫

A

λT (y) dy =

∫

T−1(A)

λ(x) dx (6.14)

for all measurableA ⊂ V . Equality (6.14) is just another way of stating that
the expected number E(NA) of transformed random points on A matches
the expected number of random points E(NT−1(A)) on the inverse image
T−1(A) = {x ∈ S : T (x) ∈ A} of A. Because the inverse image operation
sends disjoint regions B and C into disjoint inverse regions T−1(B) and
T−1(C), the numbers of transformed random points NB and NC in B and
C enjoy the crucial independence property of a Poisson process. A possible
difficulty in the construction of λT (y) lies in finding a sequence of subregions
Vn such that V =

⋃
n Vn and

∫
Vn
λT (y) dy < ∞. The broader definition of

a Poisson process adopted in reference [114] solves this apparent problem.
Two special cases of formula (6.14) cover most applications. In the first

case, the transformation T (x) is continuously differentiable and invertible.
When this is true, the change of variables formula (1.12) implies that

λT (y) = λ ◦ T−1(y)| det dT−1(y)|.

Of course, invertibility presupposes that the dimensions m and n match.
In the second case, suppose that U = R

m and V = R
n with n < m.

Consider the projection T (x1, . . . , xm) = (x1, . . . , xn) of a point x onto its
first n coordinates. If a Poisson process on R

m has the intensity function
λ(x1, . . . , xm), then the projected Poisson process on R

n has the intensity
function

λT (x1, . . . , xn) =

∫

· · ·
∫

λ(x1, . . . , xm) dxn+1 · · ·dxm

created by integrating over the last m−n variables. Note that the multidi-
mensional integral defining λT (x1, . . . , xn) can be infinite on a finite region
A ⊂ R

n. When this occurs, the projected Poisson process attributes an
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infinite number of random points to A. This phenomenon crops up when
λ(x) ≡ 1.

Example 6.7.1 Polar Coordinates

Let T (x1, x2) be the map taking each point (x1, x2) ∈ U = R
2 to its polar

coordinates (r, θ). The change of variables formula

∫ ∫

A

λ(r cos θ, r sin θ)r dr dθ =

∫ ∫

T−1(A)

λ(x1, x2) dx1 dx2

shows that the intensity function λ(x1, x2) is transformed into the intensity
function λ(r cos θ, r sin θ)r. If λ(x1, x2) is a function of r =

√
x2

1 + x2
2 alone

and we further project onto the r coordinate of (r, θ), then the doubly
transformed Poisson process has intensity 2πrλ(r) on the interval [0,∞).
Readers can exploit this fact in solving Problem 3.

6.8 Marking and Coloring

Our final construction involves coloring and marking. In coloring, we ran-
domly assign a color to each random point in a Poisson process, with prob-
ability pk attributed to color k. Expanding on Proposition 6.2.1, we can
assert that the random points of different colors form independent Pois-
son processes. If λ(x) is the intensity function of the overall process, then
pkλ(x) is the intensity function of the Poisson process for color k.

In marking, we generalize this paradigm in two ways. First, we replace
colors by points y in some arbitrary marking spaceM . Second, we allow the
selection procedure assigning a mark y ∈M to a point x ∈ S to depend on
x. Thus, we select y according to the probability density p(y | x), which we
now assume to be a continuous density for the sake of consistency with our
slightly restricted definition of a Poisson process. Marking is still carried
out independently from point to point. The marking theorem [114] says
that the pairs (X,Y ) of random points X and their associated marks Y
generate a Poisson process on the product space S × M with intensity
function λ(x)p(y | x). Thus, the expected number of pairs falling in the
region R ⊂ S ×M is

∫ ∫
Rλ(x)p(y | x) dy dx. If we combine marking with

projection onto the marking space, then we can assert that the random
marks Y constitute a Poisson process with intensity

∫
λ(x)p(y | x) dx.

Example 6.8.1 New Cases of AIDS

In a certain country, new HIV viral infections occur according to a Poisson
process on (−∞,∞) with intensity λ(t) that varies with time t. Given
someone is infected at t, he or she lives a random length of time Yt ≥ 0
until the onset of AIDS. Suppose that the latency period (mark) Yt has a
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density function p(y | t). If the Yt are assigned independently from person to
person, then the pairs (T, YT ), of random infection times T and associated
latency periods YT constitute a Poisson process concentrated in the upper-
half plane of R

2. The intensity function of this two-dimensional Poisson
process is given by the product λ(t)p(y | t).

If we apply the mapping procedure to the function f(t, y) = t + y = u,
then we infer that the random onset times U = T +YT of AIDS determine
a Poisson process. It follows immediately that the numbers of new AIDS
cases arising during disjoint time intervals are independent. The equation

∫ ∫

{t+y∈A}
λ(t)p(y | t) dt dy =

∫

A

∫ u

−∞
λ(t)p(u − t | t) dt du

identifies
∫ u

−∞ λ(t)p(u − t | t) dt as the intensity function of the Poisson
process. It is of some interest to calculate the expected number E(N[c,d])
of AIDS cases during [c, d] given explicit models for λ(t) and p(y | t).
Under exponential growth of the HIV epidemic, λ(t) = αeβt for positive
constants α and β. The model p(y | t) = γe−γ(y−δ)1{y≥δ} incorporates an
absolute delay δ during which the immune system weakens before the onset
of AIDS. After this waiting period, there is a constant hazard rate γ for
the appearance of AIDS in an infected person. With these assumptions

∫ u

−∞
λ(t)p(u − t | t) dt =

∫ u−δ

−∞
αeβtγe−γ(u−t−δ)dt

=
αγ

β + γ
eβ(u−δ),

and

E(N[c,d]) =
αγ

β + γ

∫ d

c

eβ(u−δ)du

=
αγ

β(β + γ)
[eβ(d−δ) − eβ(c−δ)].

Fortunately, HIV infections are no longer automatically lethal.

6.9 Campbell’s Moment Formulas

In many Poisson process models, we are confronted with the task of eval-
uating moments of random sums of the type

S =
∑

X∈Π

f(X), (6.15)

where X ranges over the random points of a process Π and f(x) is a
deterministic measurable function. Campbell devised elegant formulas for
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precisely this purpose [114]. It is easiest to derive Campbell’s formulas when
f(x) =

∑m
j=1 cj1Aj

is a simple function defined by a partition A1, . . . , Am

of the underlying space. If NAj
counts the number of random points in Aj ,

then by virtue of the disjointness of the sets Aj , we can write

S =
m∑

j=1

cjNAj
.

This representation makes it clear that

E(S) =

m∑

j=1

cj E(NAj
)

=

m∑

j=1

cj

∫

Aj

λ(x) dx (6.16)

=

∫

f(x)λ(x) dx,

where λ(x) is the intensity function of Π.
Similar reasoning leads to the formulas

E(eitS) = exp

{∫

[eitf(x) − 1]λ(x) dx

}

(6.17)

E(uS) = exp

{∫

[uf(x) − 1]λ(x) dx

}

(6.18)

for the characteristic function of S and for the probability generating func-
tion of S when f(x) is nonnegative and integer valued. The special value

Pr(S = 0) = exp

{

−
∫

{x:f(x)>0}
λ(x) dx

}

(6.19)

of the generating function is important in many applications. To prove for-
mula (6.18), let f(x) =

∑m
j=1 cj1Aj

be a simple function with nonnegative
integer values. The steps

E(uS) =
m∏

j=1

E
(
ucjNAj

)

=
m∏

j=1

exp

[

−
∫

Aj

λ(x) dx (1 − ucj)

]

= exp

[ m∑

j=1

∫

Aj

(
ucj − 1

)
λ(x) dx

]

= exp

{∫

[uf(x) − 1]λ(x) dx

}
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validate the result.
If we have a second random sum T =

∑
X∈Π g(X) defined by a simple

function g(x) =
∑n

k=1 dk1Bk
, then it is often useful to calculate Cov(S, T ).

Toward this end, note that

NAj
= NAj\Bk

+NAj∩Bk

NBk
= NBk\Aj

+NAj∩Bk
.

Because the numbers of random points occurring on disjoint sets are inde-
pendent and Poisson distributed, these decompositions produce

Cov(NAj
, NBk

) = Var(NAj∩Bk
) = E(NAj∩Bk

) =
∫

Aj∩Bk
λ(x) dx.

It follows that

Cov(S, T ) =
m∑

j=1

n∑

k=1

cjdk Cov(NAj
, NBk

)

=

m∑

j=1

n∑

k=1

cjdk

∫

Aj∩Bk

λ(x) dx (6.20)

=

∫

f(x)g(x)λ(x) dx.

The special choice g(x) = f(x) yields

Var(S) =

∫

f(x)2λ(x) dx. (6.21)

Campbell’s formulas (6.16), (6.17), (6.18), (6.20), and (6.21) extend to more
general functions f(x) and g(x) by passing to appropriate limits [114].

Example 6.9.1 An Astronomical Application

Suppose stars occur in the universe U ⊂ R
3 according to a Poisson process

with intensity function λ(x). Furthermore, assume each star radiates light
at a level y chosen independently from a probability density p(y). The
marked Poisson process Π of pairs (X,Y ) of random locations and radiation
levels has intensity function λ(x)p(y). At the center of the universe, the
incoming radiation has level

S =
∑

(X,Y )∈Π

Y

‖X‖2
,

where ‖x‖ is the Euclidean distance of x from the origin, and where we
assume that the light radiated by different stars acts additively. Campbell’s
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formula (6.16) implies

E(S) =

∫

U

∫
y

‖x‖2
λ(x)p(y) dy dx

=

∫

yp(y) dy

∫

U

1

‖x‖2
λ(x) dx.

Given this naive physical model and a constant λ(x), passage to spheri-
cal coordinates shows that it is possible for the three-dimensional integral∫

U
‖x‖−2λ(x) dx to diverge on an unbounded set such as U = R

3. The
fact that we are not blinded by light on a starlit night suggests that U is
bounded.

6.10 Problems

1. Suppose the random variables X and Y have the joint probability
generating function

E(uXvY ) = eα(u−1)+β(v−1)+γ(uv−1)

for positive constants α, β, and γ. Show that X and Y are Poisson
distributed but X + Y is not Poisson distributed [80].

2. Consider a Poisson distributed random variable X whose mean λ is
a positive integer. Demonstrate that

Pr(X ≥ λ) ≥ 1

2
, Pr(X ≤ λ) ≥ 1

2
.

(Hints: For the first inequality, show that

Pr(X = λ+ k) ≥ Pr(X = λ− k − 1)

when 0 ≤ k ≤ λ− 1. For the second inequality, show that

Pr(X ≤ λ) =

∫ ∞

λ

yλ

λ!
e−ydy

and argue that the integrand f(y) satisfies f(λ + y) ≥ f(λ − y) for
y ∈ [0, λ].)

3. Consider a Poisson process in the plane with constant intensity λ.
Find the distribution and density function of the distance from the
origin of the plane to the nearest random point. What is the mean of
this distribution?
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4. Let X1, Y1, X2, Y2, . . . be independent exponentially distributed ran-
dom variables with mean 1. Define

Nx = min{n : X1 + · · · +Xn > x}
Ny = min{n : Y1 + · · · + Yn > y}.

Demonstrate that

Pr(Nx ≤ Ny) = 1 − e−y

∫ x

0

I0(2
√
yt)e−tdt,

where

I0(z) =

∞∑

n=0

1

(n!)2

(z

2

)2n

is a modified Bessel function of order 0. This problem can be moti-
vated in various ways. For instance, two people X and Y take turns
in drawing lengths Xk and Yk. Person X starts the process and wins
if his or her sum exceeds x before person Y ’s sum exceeds y. Alter-
natively, a particle travels at unit speed punctuated by random stops
and starts at the times of a Poisson process of unit intensity. In this
setting Pr(Nx ≤ Ny) is the probability that the particle travels a
distance x in time less than x+ y [190]. (Hints: First show that

Pr(Nx ≤ Ny) = 1 −
∞∑

n=1

Pr(Ny = n) Pr(X1 + · · · +Xn ≤ x).

Then simplify and invoke the Bessel function.)

5. Let X1, . . . , Xn be independent exponentially distributed random
variables with common intensity λ. Define the order statistics X(i)

and the increments Zi = X(i) −X(i−1) and Z1 = X(1). Show that the
region x1 < x2 < · · · < xn contributes the amount

f(z1, . . . , zn) =

n∏

i=1

λe−(n−i+1)λzi

to the joint density of the Zi. Since the same result holds when col-
lectively X(i) = Xπ(i) for any permutation π, conclude that the Zi

have joint density n!f(z1, . . . , zn). Hence, the Zi are independent and
exponentially distributed with the given intensities.

6. In the context of Example 6.4.2, show that the order statistics X(j)

have means, variances, and covariances

E(X(j)) =

j∑

k=1

1

λ(n− k + 1)
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Var(X(j)) =

j∑

k=1

1

λ2(n− k + 1)2

Cov(X(j), X(k)) =

min{j,k}∑

i=1

1

λ2(n− i+ 1)2
.

7. Continuing Problem 6, prove that X(j) has distribution and density
functions

F(j)(x) =
n∑

k=j

(
n

k

)

(1 − e−λx)ke−(n−k)λx

f(j)(x) = n

(
n− 1

j − 1

)

(1 − e−λx)j−1e−(n−j)λxλe−λx.

(Hint: See Problem 13 of Chapter 4.)

8. Let X1, . . . , Xn be independent exponentially distributed random
variables with intensities λ1, . . . , λn. If λj �= λk for j �= k, then show
that S = X1 + · · · +Xn has density

f(t) =

n∑

j=1

cjλje
−λjt

cj =
∏

k �=j

λk

λk − λj

for t > 0. In the particular case λj = jλ, show that S has density

f(t) = nλ

n∑

j=1

(−1)j−1

(
n− 1

j − 1

)

e−jλt.

How does this result relate to Example 6.4.2? (Hint: Decompose the
Laplace transform of S by partial fractions.)

9. In the context of Example 6.4.2, suppose you observe X(1), . . . , X(r)

and wish to estimate λ−1 by a linear combination S =
∑r

i=1 αiX(i).
Demonstrate that Var(S) is minimized subject to E(S) = λ−1 by
taking αj = 1/r for 1 ≤ j < r and αr = (n− r + 1)/r [60].

10. Let X1, X2, . . . be an i.i.d. sequence of exponentially random variables
with common intensity 1. The observation Xi is said to be a record
value if either i = 1 or Xi > max{X1, . . . , Xi−1}. If Rj denotes
the jth record value and Ij the jth record index, then Ij equals

min{i : Xi > Rj−1}. Argue that Rj has the gamma density rj−1

(j−1)!e
−r
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on the interval (0,∞). Using this fact, prove that

Pr(Ij+1 − Ij > k) =

∫ ∞

0

(1 − e−r)k rj−1

(j − 1)!
e−rdr

E(Ij+1 − Ij) =
∞∑

k=0

Pr(Ij+1 − Ij > k)

=

∫ ∞

0

rj−1

(j − 1)!
dr

= ∞

for j ≥ 1. Also show that

Pr(Ij = n) =
1

n!

[
n− 1

j − 1

]

,

where
[
n−1
j−1

]
is a Stirling number of the first kind. Why do the formu-

las for Ij+1 − Ij and Ij generalize to any i.i.d. sequence X1, X2, . . .
with a continuous distribution function? (Hints: To derive the distri-
bution of Rj , invoke the lack of memory property of the exponential
distribution. To find Pr(Ij = n), consider permutations of {1, . . . , n}.)

11. For a fixed positive integer n, we define the generalized hyperbolic
functions [146] nαj(x) of x as the finite Fourier transform coefficients

nαj(x) =
1

n

n−1∑

k=0

exuk
nu−jk

n ,

where un = e2πi/n is the nth principal root of unity. These func-
tions generalize the hyperbolic trigonometric functions cosh(x) and
sinh(x). Prove the following assertions:

(a) nαj(x) = nαj+n(x).

(b) nαj(x+ y) =
∑n−1

k=0 nαk(x)nαj−k(y).

(c) nαj(x) =
∑∞

k=0
xj+kn

(j+kn)! for 0 ≤ j ≤ n− 1.

(d) d
dx

[
nαj(x)

]
= nαj−1(x) .

(e) limx→∞ e−x
nαj(x) = 1

n .

(f) In a Poisson process of intensity 1, e−x
nαj(x) is the probability

that the number of random points on [0, x] equals j modulo n.

(g) Relative to this Poisson process, let Nx count every nth random
point on [0, x]. Then Nx has probability generating function

P (s) = e−x
n−1∑

j=0

s−
j
n nαj(s

1
n x).
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(h) Furthermore, Nx has mean

E(Nx) =
x

n
− e−x

n

n−1∑

j=0

jnαj(x).

(i) limx→∞
[
E(Nx) − x

n

]
= −n−1

2n .

12. Show that the loglikelihood (6.5) for the transmission tomography
model is concave. State a necessary condition for strict concavity in
terms of the number of pixels and the number of projections. Prove
that the sufficient conditions mentioned in the text guarantee that
the logposterior function L(θ) + lnπ(θ) is strictly concave.

13. In the absence of a Gibbs smoothing prior, show that one step of
Newton’s method leads to the approximate MM update

θn+1
j = θn

j

∑
i lij [die

−ltiθn

(1 + ltiθ
n) − yi]

∑
i lij l

t
iθ

ndie
−lt

i
θn

in the transmission tomography model.

14. Under the assumptions of Problem 13, demonstrate that the exact
solution of the one-dimensional equation

∂

∂θj
Q(θ | θn) = 0

exists and is positive when
∑

i lijdi >
∑

i lijyi. Why would this con-
dition usually obtain in practical implementations of transmission
tomography?

15. Prove that the function ψ(r) = ln[cosh(r)] is even, strictly convex,
infinitely differentiable, and asymptotic to |r| as |r| → ∞.

16. Suppose you randomly drop n balls into m boxes. Assume that a
ball is equally likely to land in any box. Use Schrödinger’s method to
prove that each box receives an even number of balls with probability

en =
1

2m

m∑

j=0

(
m

j

)(
1 − 2j

m

)n

and an odd number of balls with probability

on =
1

2m

m∑

j=0

(
m

j

)

(−1)j
(
1 − 2j

m

)n

.

(Hint: The even terms of et sum to 1
2 (et + e−t) and the odd terms to

1
2 (et − e−t).)
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17. Continuing Problem 16, show that the probability that exactly j
boxes are empty is

(
m

j

)m−j∑

k=0

(
m− j

k

)

(−1)m−j−k
( k

m

)n

.

18. Prove the upper bound (6.11) by calculating E[f(N1, . . . , Nm)]. In
the process, condition on the number of Poisson trials N , invoke the
assumptions on f(x1, . . . , xm), and apply the bounds of Problem 2
[144].

19. In the family planning model of Example 2.3.3, we showed how to
compute the probability Rsd that the couple reach their quota of s
sons before their quota of d daughters. Deduce the formula

Rsd =

d−1∑

k=0

(
s+ k − 1

s− 1

)

psqk

by viewing the births to the couple as occurring at the times of a
Poisson process with unit intensity. Can you also derive this formula
by counting all possible successful sequences of births? (Hint: The
final birth in a successful sequence is a son.)

20. In the family planning model of Example 6.6.2, letMsd be the number
of children born when the family first attains either its quota of s sons
or d daughters. Show that

E(Msd) = E(min{Ts, Td}) =

s−1∑

k=0

d−1∑

l=0

(
k + l

k

)

pkql.

Note that the formulas for E(max{Ts, Td}) and E(min{Ts, Td}) to-
gether yield

E(min{Ts, Td}) + E(max{Ts, Td}) = E(Ts) + E(Td). (6.22)

Prove the general identity

E(min{X,Y }) + E(max{X,Y }) = E(X) + E(Y )

for any pair of random variables X and Y with finite expectations.
Finally, argue that

E(Msd) = d

s−1∑

k=0

(
d+ k

k

)

pkqd + s

d−1∑

l=0

(
s+ l

l

)

psql (6.23)



148 6. Poisson Processes

by counting all possible successful sequences of births that lead to
either the daughter quota or the son quota being fulfilled first. Com-
bining equations (6.22) and (6.23) permits us to write

E(Nsd) =
s

p
+
d

q
− d

s−1∑

k=0

(
d+ k

k

)

pkqd − s

d−1∑

l=0

(
s+ l

l

)

psql,

replacing a double sum with two single sums.

21. The motivation for the negative-multinomial distribution comes from
multinomial sampling with d + 1 categories assigned probabilities
p1, . . . , pd+1. Sampling continues until category d + 1 accumulates
β outcomes. At that moment we count the number of outcomes xi

falling in category i for 1 ≤ i ≤ d. Demonstrate that the count vector
x = (x1, . . . , xd) has probability

Pr(X = x) =

(
β + |x| − 1

|x|

)(
|x|

x1 . . . xd

) d∏

i=1

pxi

i pβ
d+1

=
β(β + 1) · · · (β + |x| − 1)

x1! · · ·xd!

d∏

i=1

pxi

i pβ
d+1. (6.24)

This formula continues to make sense even if the positive parameter
β is not an integer. For arbitrary β > 0, the most straightforward way
to construct the negative-multinomial distribution is to run d inde-
pendent Poisson processes with intensities p1, . . . , pd. Wait a gamma
distributed length of time with shape parameter β and intensity pa-
rameter pd+1. At the expiration of this waiting time, count the num-
ber of random events Xi of each type i among the first d categories.
The random vector X has precisely the discrete density (6.24). Cal-
culate the moments

E(Xi) = β
pi

pd+1

Var(Xi) = β
pi

pd+1

(
1 +

pi

pd+1

)

Cov(Xi, Xj) = β
pi

pd+1

pj

pd+1
, i �= j.

based on this Poisson process perspective.

22. Suppose we generate random circles in the plane by taking their cen-
ters (x, y) to be the random points of a Poisson process of constant
intensity λ. Each center we independently mark with a radius r sam-
pled from a probability density g(r) on [0,∞). If we map each random
triple (X,Y,R) to the point U =

√
X2 + Y 2 −R, then show that the
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random points so generated constitute a Poisson process with inten-
sity

η(u) = 2πλ

∫ ∞

0

(r + u)+g(r) dr.

Conclude from this analysis that the number of random circles that
overlap the origin is Poisson with mean λπ

∫∞
0
r2g(r) dr [196].

23. Continuing Problem 22, perform the same analysis in three dimen-
sions for spheres. Conclude that the number of random spheres that
overlap the origin is Poisson with mean 4λπ

3

∫∞
0 r3g(r) dr [196].

24. Consider a homogeneous Poisson process with intensity λ on the set
{(x, y, t) ∈ R

3 : t ≥ 0}. The coordinate t is considered a time coordi-
nate and the coordinates x and y spatial coordinates. If (x, y, t) is a
random point, then a disc centered at (x, y) starts growing at position
(x, y) at time t with radial speed v. Thus, at time t+ u, the disc has
radius uv. As time goes on more and more such discs appear. These
discs may overlap. This process is called the Johnson-Mehl model.
One question of obvious interest is the fraction of the (x, y) plane
that is covered by at least one disc at time t. Show that this fraction
equals the Poisson tail probability 1− e−λv2πt3/3. (Hint: It suffices to
consider the origin 0 in R

2. The region in R
3 that gives rise to circles

overlapping 0 at time t is a cone.)

25. A one-way highway extends from 0 to ∞. Cars enter at position 0
at times s determined by a Poisson process on [0, t] with constant
intensity λ. Each car is independently assigned a velocity v from a
density g(v) on [0,∞). Demonstrate that the number of cars located
in the interval (a, b) at time t has a Poisson distribution with mean

λ
∫ t

0
[G( b

t−s) −G( a
t−s )] ds, where G(v) is the distribution function of

g(v) [170].

26. A train departs at time t > 0. During the interval [0, t], passengers
arrive at the depot at times T determined by a Poisson process with
constant intensity λ. The total waiting time passengers spend at the

depot is W =
∑

T (t− T ). Show that W has mean E(W ) = λt2

2 and

variance Var(W ) = λt3

3 by invoking Campbell’s formulas (6.16) and
(6.21) [170].

27. Claims arrive at an insurance company at the times T of a Poisson
process with constant intensity λ on [0,∞). Each time a claim arrives,
the company pays S dollars, where S is independently drawn from a
probability density g(s) on [0,∞). Because of inflation and the ability
of the company to invest premiums, the longer a claim is delayed, the
less it costs the company. If a claim is discounted at rate β, then show
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that the company’s ultimate liability L =
∑

T Se
−βT has mean and

variance

E(L) =
λ

β

∫ ∞

0

sg(s) ds

Var(L) =
λ

2β

∫ ∞

0

s2g(s) ds.

(Hints: The random pairs (T, S) constitute a marked Poisson process.
Use Campbell’s formulas (6.16) and (6.21).)

28. If f(x) is a simple function and Π is a Poisson process with intensity
function λ(x), then demonstrate formula (6.17) for the characteristic
function of the random sum S.

29. A random variable S is said to be infinitely divisible if for every
positive integer n there exist independent and identically distributed
random variables X1, . . . , Xn such that the sum X1+ · · ·+Xn has the
same distribution as S. Show that Campbell’s sum (6.15) is infinitely
divisible. (Hint: Superimpose independent Poisson processes.)

30. Consider a homogeneous Poisson process Nt on [0,∞) with intensity
λ. Assign to the ith random point a real mark Yi drawn indepen-
dently from a density p(y) that does not depend on the location of the

point. The random sums St =
∑Nt

i=1 Yi constitute a compound Pois-
son process. Use Campbell’s formulas to calculate the mean, variance,
and characteristic function of St and the covariance Cov(St1 , St2) for
t1 �= t2.



7
Discrete-Time Markov Chains

7.1 Introduction

Applied probability thrives on models. Markov chains are one of the rich-
est sources of good models for capturing dynamical behavior with a large
stochastic component [23, 24, 59, 80, 106, 107, 118]. In this chapter we give
a few examples and a quick theoretical overview of discrete-time Markov
chains. The highlight of our theoretical development, Proposition 7.4.1, re-
lies on a coupling argument. Because coupling is one of the most powerful
and intuitively appealing tools available to probabilists, we examine a few
of its general applications as well. We also stress reversible Markov chains.
Reversibility permits explicit construction of the long-run or equilibrium
distribution of a chain when such a distribution exists. Chapter 8 will cover
continuous-time Markov chains.

7.2 Definitions and Elementary Theory

For the sake of simplicity, we will only consider chains with a finite or
countable number of states [23, 59, 80, 106, 107]. The movement of such
a chain from epoch to epoch (equivalently generation to generation) is
governed by its transition probability matrix P = (pij). This matrix is
infinite dimensional when the number of states is infinite. If Zn denotes
the state of the chain at epoch n, then pij = Pr(Zn = j | Zn−1 = i). As a
consequence, every entry of P satisfies pij ≥ 0, and every row of P satisfies

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_7, © Springer Science+Business Media, LLC 2010
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∑
j pij = 1. Implicit in the definition of pij is the fact that the future of the

chain is determined by its present regardless of its past. This Markovian
property is expressed formally by the equation

Pr(Zn = in | Zn−1 = in−1, . . . , Z0 = i0) = Pr(Zn = in | Zn−1 = in−1).

The n-step transition probability p
(n)
ij = Pr(Zn = j | Z0 = i) is given

by the entry in row i and column j of the matrix power Pn. This follows
because the decomposition

p
(n)
ij =

∑

i1

· · ·
∑

in−1

pii1 · · · pin−1j

over all paths i → i1 → · · · → in−1 → j of n steps corresponds to n − 1
matrix multiplications. If the chain tends toward stochastic equilibrium,

then the limit of p
(n)
ij as n increases should exist independently of the

starting state i. In other words, the matrix powers Pn should converge to
a matrix with identical rows. Denoting the common limiting row by π, we
deduce that π = πP from the calculation

⎛

⎝
π
...
π

⎞

⎠ = lim
n→∞

Pn+1

=
(

lim
n→∞

Pn
)
P

=

⎛

⎝
π
...
π

⎞

⎠P.

Any probability distribution π on the states of the chain satisfying the
condition π = πP is termed an equilibrium (or stationary) distribution of
the chain. The jth component

πj =
∑

i

πipij (7.1)

of the equation π = πP suggests a balance between the probabilistic flows
into and out of state j. Indeed, if the left-hand side of equation (7.1) rep-
resents the probability of being in state j at the current epoch, then the
right-hand side represents the probability of being in state j at the next
epoch. At equilibrium, these two probabilities must match. For finite-state
chains, equilibrium distributions always exist [59, 80]. The real issue is
uniqueness.

Probabilists have attacked the uniqueness problem by defining appropri-
ate ergodic conditions. For finite-state Markov chains, two ergodic assump-
tions are invoked. The first is aperiodicity; this means that the greatest
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common divisor of the set {n ≥ 1 : p
(n)
ii > 0} is 1 for every state i. Aperiod-

icity trivially holds when pii > 0 for all i. The second ergodic assumption
is irreducibility; this means that for every pair of states (i, j), there ex-

ists a positive integer nij such that p
(nij)
ij > 0. In other words, every state

is reachable from every other state. Said yet another way, all states com-
municate. For a finite-state irreducible chain, Problem 4 states that the
integer nij can be chosen independently of the particular pair (i, j) if and
only if the chain is also aperiodic. Thus, we can merge the two ergodic
assumptions into the single assumption that some power Pn has all entries
positive. Under this single ergodic condition, we show in Proposition 7.4.1

that a unique equilibrium distribution π exists and that limn→∞ p
(n)
ij = πj .

Because all states communicate, the entries of π are necessarily positive.
Equally important is the ergodic theorem [59, 80]. This theorem permits

one to run a chain and approximate theoretical means by sample means.
More precisely, let f(z) be some real-valued function defined on the states
of an ergodic chain. Then given that Zi is the state of the chain at epoch
i and π is the equilibrium distribution, we have

lim
n→∞

1

n

n−1∑

i=0

f(Zi) = Eπ[f(Z)] =
∑

z

πzf(z).

This result generalizes the law of large numbers for independent sampling
and has important applications in Markov chain Monte Carlo methods as
discussed later in this chapter. The ergodic theorem generalizes to periodic
irreducible chains even though limn→∞ Pn no longer exists. Problem 9 also
indicates that uniqueness of the equilibrium distribution has nothing to do
with aperiodicity.

In many Markov chain models, the equilibrium distribution satisfies the
stronger condition

πjpji = πipij (7.2)

for all pairs (i, j). If this is the case, then the probability distribution π
is said to satisfy detailed balance, and the Markov chain, provided it is
irreducible, is said to be reversible. Summing equation (7.2) over i yields
the equilibrium condition (7.1). Thus, detailed balance implies balance. Ir-
reducibility is imposed as part of reversibility to guarantee that π is unique
and has positive entries. Given the latter condition, detailed balance implies
that pij > 0 if and only if pji > 0.

If i1, . . . , im is any sequence of states in a reversible chain, then detailed
balance also entails

πi1pi1i2 = πi2pi2i1

πi2pi2i3 = πi3pi3i2

...
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πim−1pim−1im
= πim

pimim−1

πim
pimi1 = πi1pi1im

.

Multiplying these equations together and canceling the common positive
factor πi1 · · ·πim

from both sides of the resulting equality give Kolmogorov’s
circulation criterion [111]

pi1i2pi2i3 · · · pim−1im
pimi1 = pi1im

pimim−1 · · · pi3i2pi2i1 . (7.3)

Conversely, suppose an irreducible Markov chain satisfies Kolmogorov’s
criterion. One can easily demonstrate that pij > 0 if and only if pji > 0.
Indeed, if pij > 0, then take a path of positive probability from j back
to i. This creates a circuit from i to i whose first step goes from i to j.
Kolmogorov’s criterion shows that the reverse circuit from i to i whose last
step goes from j to i also has positive probability. We can also prove that
the chain is reversible by explicitly constructing the equilibrium distribu-
tion and showing that it satisfies detailed balance. The idea behind the
construction is to choose some arbitrary reference state i and to pretend
that πi is given. If j is another state, let i → i1 → · · · → im → j be any
path leading from i to j. Then the formula

πj = πi
pii1pi1i2 · · · pimj

pjim
pimim−1 · · · pi1i

(7.4)

defines πj . A straightforward application of Kolmogorov’s criterion (7.3)
shows that definition (7.4) does not depend on the particular path chosen
from i to j. To validate detailed balance, suppose that k is adjacent to j.
Then i → i1 → · · · → im → j → k furnishes a path from i to k through j.
It follows from (7.4) that

πk = πi
pii1pi1i2 · · · pimjpjk

pjim
pimim−1 · · · pi1ipkj

= πj
pjk

pkj
,

which is obviously equivalent to detailed balance. In general, the value of
πi is determined by the requirement that

∑
j πj = 1. For a chain with a

finite number of states, we can guarantee this condition by replacing π by
π̃ with components

π̃j =
πj∑
k πk

.

In practice, explicit calculation of the sum
∑

k πk may be nontrivial. For a
chain with an infinite number of states, in contrast, it may be impossible
to renormalize the πj defined by equation (7.4) so that

∑
j πj = 1. This

situation occurs in Example 7.3.1 in the next section.
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7.3 Examples

Here are a few examples of discrete-time chains classified according to the
concepts just introduced. If possible, the unique equilibrium distribution is
identified. For some irreducible chains, note that Kolmogorov’s circulation
criterion is trivial to verify. If we put an edge between two states i and
j whenever pij > 0, then this construction induces a graph. If the graph
reduces to a tree, then it can have no cycles, and Kolmogorov’s circulation
criterion is automatically satisfied.

Example 7.3.1 Random Walk on a Graph

Consider a connected graph with node set N and edge set E. The number
of edges d(v) incident on a given node v is called the degree of v. Owing
to the connectedness assumption, d(v) > 0 for all v ∈ N . Now define the
transition probability matrix P = (puv) by

puv =

{
1

d(u) for {u, v} ∈ E

0 for {u, v} �∈ E.

This Markov chain is irreducible because of the connectedness assumption.
It is also aperiodic unless the graph is bipartite. (A graph is said to be
bipartite if we can partition its node set into two disjoint subsets F and
M , say females and males, such that each edge has one node in F and the
other node in M .) If E has m edges, then the equilibrium distribution π of

the chain has components πv = d(v)
2m . It is trivial to show that this choice

of π satisfies detailed balance.
One hardly needs this level of symmetry to achieve detailed balance.

For instance, consider a random walk on the nonnegative integers with
neighboring integers connected by an edge. For i > 0 let

pij =

⎧
⎪⎨

⎪⎩

qi, j = i− 1
ri, j = i
pi, j = i+ 1
0, otherwise.

At the special state 0, set p00 = r0 and p01 = p0 for p0 + r0 = 1. With state
0 as a reference state, Kolmogorov’s formula (7.4) becomes

πi = π0

i∏

j=1

pj−1

qj
.

This definition of πi satisfies detailed balance because the graph of the chain
is a tree. However, because the state space is infinite, we must impose the
additional constraint

∞∑

i=0

i∏

j=1

pj−1

qj
< ∞
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to achieve a legitimate equilibrium distribution. When this condition holds,
we define

πi =

∏i
j=1

pj−1

qj

∑∞
k=0

∏k
j=1

pj−1

qj

(7.5)

and eliminate the unknown π0. For instance, if all pj = p and all qj = q,
then p < q is both necessary and sufficient for the existence of an equilib-

rium distribution. When p < q, formula (7.5) implies πi = (q−p)pi

qi+1 .

Example 7.3.2 Wright-Fisher Model of Genetic Drift

Consider a population of m organisms from some animal or plant species.
Each member of this population carries two genes at some genetic locus,
and these genes take two forms (or alleles) labeled a1 and a2. At each
generation, the population reproduces itself by sampling 2m genes with
replacement from the current pool of 2m genes. If Zn denotes the number
of a1 alleles at generation n, then it is clear that the Zn constitute a Markov
chain with binomial transition probability matrix

pjk =

(
2m

k

)( j

2m

)k(
1 − j

2m

)2m−k

.

This chain is reducible because once one of the states 0 or 2m is reached,
the corresponding allele is fixed in the population, and no further variation
is possible. An infinity of equilibrium distributions π exist. Each one is
characterized by π0 = α and π2m = 1 − α for some α ∈ [0, 1].

Example 7.3.3 Ehrenfest’s Model of Diffusion

Consider a box with m gas molecules. Suppose the box is divided in half by
a rigid partition with a very small hole. Molecules drift aimlessly around
each half until one molecule encounters the hole and passes through. Let
Zn be the number of molecules in the left half of the box at epoch n. If
epochs are timed to coincide with molecular passages, then the transition
matrix of the chain is

pjk =

⎧
⎨

⎩

1 − j
m for k = j + 1

j
m for k = j − 1
0 otherwise.

This chain is a random walk with finite state space. It is periodic with
period 2, irreducible, and reversible with equilibrium distribution

πj =

(
m

j

)(1

2

)m

.

The binomial form of πj follows from equation (7.5).



7.3 Examples 157

Example 7.3.4 Discrete Renewal Process

Many treatments of Markov chain theory depend on a prior development
of renewal theory. Here we reverse the logical flow and consider a discrete
renewal process as a Markov chain. A renewal process models repeated
visits to a special state [59, 80]. After it enters the special state, the process
departs and eventually returns for the first time after j > 0 steps with
probability fj. The return times following different visits are independent.
In modeling this behavior by a Markov chain, we let Zn denote the number
of additional epochs left after epoch n until a return to the special state
occurs. The renewal mechanism generates the transition matrix with entries

pij =

{
fj+1, i = 0
1, i > 0 and j = i− 1
0, i > 0 and j �= i− 1.

In order for
∑

j p0j = 1, we must have f0 = 0. If fj = 0 for j > m, then the
chain has m states; otherwise, it has an infinite number of states. Because
the chain always ratchets downward from i > 0 to i−1, it is both irreducible
and irreversible. State 0, and therefore the whole chain, is aperiodic if and
only if the set {j : fj > 0} has greatest common divisor 1. This number
theoretic fact is covered in Appendix A.1.

One of the primary concerns in renewal theory is predicting what frac-
tion of epochs are spent in the special state. This problem is solved by
finding the equilibrium probability π0 of state 0 in the associated Markov
chain. Assuming the mean μ =

∑
i ifi is finite, we can easily calculate the

equilibrium distribution. The balance conditions defining equilibrium are

πj = πj+1 + π0fj+1.

One can demonstrate by induction that the unique solution to this system
of equations is given by

πj = π0

(

1 −
j∑

i=1

fi

)

= π0

∞∑

i=j+1

fi

subject to

1 =

∞∑

j=0

πj = π0

∞∑

j=0

∞∑

i=j+1

fi = π0μ.

Here we assume an infinite number of states and invoke Example 2.5.1. It
follows that π0 = μ−1 and πj = μ−1

∑∞
i=j+1 fi.

Since the return visits to a specific state of a Markov chain constitute
a renewal process, the formula π0 = μ−1 provides an alternative way of
defining the equilibrium distribution. For a symmetric random walk on
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the integers, the mean first passage time μ from any state back to itself
is infinite. Problems 36 and 37 ask the reader to check this fact as well
as the fact that the return probabilities fn sum to 1. These observations
are obviously consistent with the failure of Kolmogorov’s formula (7.4) to
deliver an equilibrium distribution with finite mass. Markov chains with
finitely many states cannot exhibit such null recurrent behavior.

Example 7.3.5 Card Shuffling and Random Permutations

Imagine a deck of cards labeled 1, . . . ,m. The cards taken from top to
bottom provide a permutation σ of these m labels. The usual method of
shuffling cards, the so-called riffle shuffle, is difficult to analyze probabilis-
tically. A far simpler shuffle is the top-in shuffle [3, 49]. In this shuffle,
one takes the top card on the deck and moves it to a random position in
the deck. Of course, if the randomly chosen position is the top position,
then the deck suffers no change. Repeated applications of the top-in shuffle
constitute a Markov chain. This chain is aperiodic and irreducible. Aperi-
odicity is obvious because the deck can remain constant for an arbitrary
number of shuffles. Irreducibility is slightly more subtle. Suppose we follow
the card originally at the bottom of the deck. Cards inserted below it oc-
cur in completely random order. Once the original bottom card reaches the
top of the deck and is moved, then the whole deck is randomly rearranged.
This argument shows that all permutations are ultimately equally likely
and can be reached from any starting permutation. We extend this anal-
ysis in Example 7.4.3. Finally, the chain is irreversible. For example, if a
deck of seven cards is currently in the order σ = (4, 7, 5, 2, 3, 1, 6), equating
left to top and right to bottom, then inserting the top card 4 in position 3
produces η = (7, 5, 4, 2, 3, 1, 6). Clearly, it is impossible to return from η to
σ by moving the new top card 7 to another position. Under reversibility,
each individual step of a Markov chain can be reversed.

7.4 Coupling

In this section we undertake an investigation of the convergence of an er-
godic Markov chain to its equilibrium. Our method of attack exploits a
powerful proof technique known as coupling. By definition, two random
variables or stochastic processes are coupled if they reside on the same
probability space [134, 136]. As a warm-up, we illustrate coupling argu-
ments by two examples having little to do with Markov chains.

Example 7.4.1 Correlated Random Variables

Suppose X is a random variable and the functions f(x) and g(x) are
both increasing or both decreasing. If the random variables f(X) and
g(X) have finite second moments, then it is reasonable to conjecture that
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Cov[f(X), g(X)] ≥ 0. To prove this fact by coupling, consider a second
random variable Y independent of X but sharing the same distribution.
If f(x) and g(x) are both increasing or both decreasing, then the product
[f(X) − f(Y )][g(X) − g(Y )] ≥ 0. Hence,

0 ≤ E{[f(X)− f(Y )][g(X) − g(Y )]}
= E[f(X)g(X)] + E[f(Y )g(Y )] − E[f(X)] E[g(Y )] − E[f(Y )] E[g(X)]

= 2 Cov[f(X), g(X)].

When one of the two functions is increasing and the other is decreasing, the
same proof with obvious modifications shows that Cov[f(X), g(X)] ≤ 0.

Example 7.4.2 Monotonicity in Bernstein’s Approximation

In Example 3.5.1, we considered Bernstein’s proof of the Weierstrass ap-
proximation theorem. When the continuous function f(x) being approxi-
mated is increasing, it is plausible that the approximating polynomial

E
[
f
(Sn

n

)]
=

n∑

k=0

f
(k

n

)(n

k

)

xk(1 − x)n−k.

is increasing as well [136]. To prove this assertion by coupling, imagine
scattering n points randomly on the unit interval. If x ≤ y and we interpret
Sn as the number of points less than or equal to x and Tn as the number
of points less than or equal to y, then these two binomially distributed
random variables satisfy Sn ≤ Tn. The desired inequality

E
[
f
(Sn

n

)]
≤ E

[
f
(Tn

n

)]

now follows directly from the assumption that f is increasing.

Our coupling proof of the convergence of an ergodic Markov chain de-
pends on quantifying the distance between the distributions πX and πY of
two integer-valued random variables X and Y . One candidate distance is
the total variation norm

‖πX − πY ‖TV = sup
A⊂Z

|Pr(X ∈ A) − Pr(Y ∈ A)|

=
1

2

∑

k

|Pr(X = k) − Pr(Y = k)|, (7.6)

where A ranges over all subsets of the integers Z [49]. Problem 28 asks the
reader to check that these two definitions of the total variation norm are
equivalent. The coupling bound

‖πX − πY ‖TV = sup
A⊂Z

|Pr(X ∈ A) − Pr(Y ∈ A)|
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= sup
A⊂Z

|Pr(X ∈ A,X = Y ) + Pr(X ∈ A,X �= Y )

− Pr(Y ∈ A,X = Y ) − Pr(Y ∈ A,X �= Y )| (7.7)

= sup
A⊂Z

|Pr(X ∈ A,X �= Y ) − Pr(Y ∈ A,X �= Y )|

≤ sup
A⊂Z

E(1{X �=Y }|1A(X) − 1A(Y )|)

≤ Pr(X �= Y )

has many important applications.
In our convergence proof, we actually consider two random sequences Xn

and Yn and a random stopping time T such that Xn = Yn for all n ≥ T .
The bound

Pr(Xn �= Yn) ≤ Pr(T > n)

suggests that we study the tail probabilities Pr(T > n). By definition,
a stopping time such as T relies only on the past and present and does
not anticipate the future. More formally, if Fn is the σ-algebra of events
determined by the Xi and Yi with i ≤ n, then {T ≤ n} ∈ Fn. In the setting
of Proposition 7.4.1,

Pr(T ≤ n+ r | Fn) ≥ ε (7.8)

for some ε > 0 and r ≥ 1 and all n. This implies the further inequality

Pr(T > n+ r) = E(1{T>n+r})

= E(1{T>n}1{T>n+r})

= E[1{T>n} E(1{T>n+r} | Fn)]

≤ E[1{T>n}(1 − ε)]

= (1 − ε) Pr(T > n),

which can be iterated to produce

Pr(T > kr) ≤ (1 − ε)k. (7.9)

In the last step of the iteration, we must take F0 to be the trivial σ-algebra
consisting of the null event and the whole sample space. From inequality
(7.9) it is immediately evident that Pr(T <∞) = 1.

With these preliminaries out of the way, we now turn to proving conver-
gence based on a standard coupling argument [134, 169].

Proposition 7.4.1 Every finite-state ergodic Markov chain has a unique
equilibrium distribution π. Furthermore, the n-step transition probabilities

p
(n)
ij satisfy limn→∞ p

(n)
ij = πj .
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Proof: Without loss of generality, we identify the states of the chain with
the integers {1, . . . ,m}. From the inequality

p
(n)
ij =

∑

k

pikp
(n−1)
kj

≤ max
l
p
(n−1)
lj

∑

k

pik

= max
l
p
(n−1)
lj

involving the n-step transition probabilities, we immediately deduce that

maxi p
(n)
ij is decreasing in n. Likewise, mini p

(n)
ij is increasing in n. If

lim
n→∞

|p(n)
uj − p

(n)
vj | = 0

for all initial states u and v, then the gap between limn→∞ mini p
(n)
ij and

limn→∞ maxi p
(n)
ij is 0. This forces the existence of limn→∞ p

(n)
ij = πj , which

we identify as the equilibrium distribution of the chain.
We now construct two coupled chains Xn and Yn on {1, . . . ,m} that

individually move according to the transition matrix P = (pij). The X
chain starts at u and the Y chain at v �= u. These two chains move inde-
pendently until the first epoch T = n at which Xn = Yn. Thereafter, they
move together. The pair of coupled chains has joint transition matrix

p(ij),(kl) =

{
pikpjl if i �= j
pik if i = j and k = l
0 if i = j and k �= l .

By definition it is clear that the probability that the coupled chains occupy
the same state at epoch r is at least as great as the probability that two
completely independent chains occupy the same state at epoch r. Invoking
the ergodic assumption and choosing r so that some power P r has all of
its entries bounded below by a positive constant ε, it follows that

Pr(T ≤ r | X0 = u, Y0 = v) ≥
∑

k

p
(r)
uk p

(r)
vk ≥ ε

∑

k

p
(r)
vk = ε.

Exactly the same reasoning demonstrates that at every rth epoch the two
chains have a chance of colliding of at least ε, regardless of their starting
positions r epochs previous. In other words, inequality (7.8) holds.

Because Pr(T > n) is decreasing in n, we now harvest the bound

Pr(T > n) ≤ (1 − ε)�
n
r
�

from inequality (7.9). Combining this bound with the coupling inequality
(7.7) yields

1

2

∑

j

|p(n)
uj − p

(n)
vj | = ‖πXn

− πYn
‖TV
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≤ Pr(Xn �= Yn)

≤ Pr(T > n) (7.10)

≤ (1 − ε)�
n
r
�.

In view of the fact that u and v are arbitrary, this concludes the proof that

the limn→∞ p
(n)
ij = πj exists.

In the next example, we concoct a different kind of stopping time T <∞
connected with a Markov chain Xn. If at epoch T the chain achieves its
equilibrium distribution π and XT is independent of T , then T is said to
be a strong stationary time. When a strong stationary time exists, it gives
considerable insight into the rate of convergence of the underlying chain
[3, 49]. In view of the fact that Xn is at equilibrium when T ≤ n, we
readily deduce the total variation bound

‖πXn
− π‖TV ≤ Pr(T > n). (7.11)

Example 7.4.3 A Strong Stationary Time for Top-in Shuffling

In top-in card shuffling, let T −1 be the epoch at which the original bottom
card reaches the top of the deck. At epoch T the bottom card is reinserted,
and the deck achieves equilibrium. For our purposes it is fruitful to view T
as the sum T = S1 +S2+ · · ·+Sm of independent geometrically distributed
random variables. If T0 = 0 and Ti is the first epoch at which i total cards
occur under the bottom card, then the waiting time Si = Ti − Ti−1 is
geometrically distributed with success probability i

m . Because E(Si) = m
i ,

the strong stationary time T has mean

E(T ) =

m∑

i=1

m

i
≈ m lnm.

To exploit the bound (7.11), we consider a random variable T ∗ having the
same distribution as T but generated by a different mechanism. Suppose
we randomly drop balls into m equally likely boxes. If we let T ∗ be the
first trial at which no box is empty, then it is clear that we can decompose
T ∗ = S∗

m+S∗
m−1+ · · ·+S∗

1 , where S∗
i is the number of trials necessary to go

from i empty boxes to i−1 empty boxes. Once again the S∗
i are independent

and geometrically distributed. This perspective makes it simple to bound
Pr(T > n). Indeed, if Ai is the event that box i is empty after n trials, then

Pr(T > n) = Pr(T ∗ > n)

≤
m∑

i=1

Pr(Ai)

= m

(

1 − 1

m

)n

(7.12)

≤ me−
n
m .
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Here we invoke the inequality ln(1 − x) ≤ −x for x ∈ [0, 1).
Returning to the top-in shuffle problem, we now combine inequality

(7.12) with inequality (7.11). If n = (1 + ε)m lnm, we deduce that

‖πXn
− π‖TV ≤ me−

(1+ε)m ln m

m =
1

mε
,

where π is the uniform distribution on permutations of {1, . . . ,m}. This
shows that if we wait much beyond the mean of T , then top-in shuffling will
completely randomize the deck. Hence, the mean E(T ) ≈ m lnm serves as
a fairly sharp cutoff for equilibrium. Some statistical applications of these
ideas appear in reference [131].

7.5 Convergence Rates for Reversible Chains

Although Proposition 7.4.1 proves convergence to equilibrium, it does not
provide the best bounds on the rate of convergence. Example 7.4.3 is in-
structive because it constructs a better and more natural bound. Unfor-
tunately, it is often impossible to identify a strong stationary time. The
best estimates of the rate of convergence rely on understanding the eigen-
structure of the transition probability matrix P [49, 169]. We now discuss
this approach for a reversible ergodic chain with equilibrium distribution
π. The inner products

〈u, v〉1/π =
∑

i

1

πi
uivi, 〈u, v〉π =

∑

i

πiuivi

feature prominently in our discussion.
For the chain in question, detailed balance translates into the condition

√
πipij

1
√
πj

=
√
πjpji

1
√
πi
. (7.13)

If D is the diagonal matrix with ith diagonal entry
√
πi, then the validity

of equation (7.13) for all pairs (i, j) is equivalent to the symmetry of the
matrix Q = DPD−1. Let Q = UΛU t be its spectral decomposition, where
U is orthogonal, and Λ is diagonal with ith diagonal entry λi. One can
rewrite the spectral decomposition as the sum of outer products

Q =
∑

i

λiu
i(ui)t

using the columns ui of U . The formulas (ui)tuj = 1{i=j} and

Qk =
∑

i

λk
i u

i(ui)t
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follow immediately. The formula for Qk in turn implies

P k =
∑

i

λk
iD

−1ui(ui)tD =
∑

i

λk
iw

ivi, (7.14)

where vi = (ui)tD and wi = D−1ui.
Rearranging the identity DPD−1 = Q = UΛU t yields U tDP = ΛU tD.

Hence, the rows vi of V = U tD are row eigenvectors of P . These vectors
satisfy the orthogonality relations

〈vi, vj〉1/π = viD−2(vj)t = (ui)tuj = 1{i=j}

and therefore form a basis of the inner product space �21/π. The identity

PD−1U = D−1UΛ shows that the columns wj of W = D−1U are column
eigenvectors of P . These dual vectors satisfy the orthogonality relations

〈wi, wj〉π = (wi)tD2wj = (ui)tuj = 1{i=j}

and therefore form a basis of the inner product space �2π. Finally, we have
the biorthogonality relations

viwj = 1{i=j}

under the ordinary inner product. The trivial rescalings wi = D−2(vi)t and
(vi)t = D2wi allow one to pass back and forth between row eigenvectors
and column eigenvectors.

The distance from equilibrium in the �21/π norm bounds the total varia-
tion distance from equilibrium in the sense that

‖μ− π‖TV ≤ 1

2
‖μ− π‖1/π. (7.15)

Problem 34 asks for a proof of this fact. With the understanding that
λ1 = 1, v1 = π, and w1 = 1, the next proposition provides an even more
basic bound.

Proposition 7.5.1 An initial distribution μ for a reversible ergodic chain
with m states satisfies

‖μP k − π‖2
1/π =

m∑

i=2

λ2k
i [(μ− π)wi]2 (7.16)

≤ ρ2k‖μ− π‖2
1/π, (7.17)

where ρ < 1 is the absolute value of the second-largest eigenvalue in mag-
nitude of the transition probability matrix P .
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Proof: Proposition A.2.3 of Appendix A.2 shows that ρ < 1. In view of
the identity πP = π, the expansion (7.14) gives

‖μP k − π‖2
1/π = ‖(μ− π)P k‖2

1/π

= (μ− π)

m∑

i=1

λk
iw

iviD−2
m∑

j=1

λk
j (vj)t(wj)t(μ− π)t

= (μ− π)

m∑

i=1

λ2k
i wi(wi)t(μ− π)t

=
m∑

i=1

λ2k
i

[
(μ− π)wi

]2
.

The two constraints
∑

j πj =
∑

j μj = 1 clearly imply (μ − π)w1 = 0.
Equality (7.16) follows immediately. Because all remaining eigenvalues sat-
isfy |λj | ≤ ρ, one can show by similar reasoning that

m∑

j=2

λ2k
j

[
(μ− π)wi

]2 ≤ ρ2k
m∑

j=1

[
(μ− π)wi

]2

= ρ2k‖μ− π‖2
1/π.

This validates inequality (7.17).

7.6 Hitting Probabilities and Hitting Times

Consider a Markov chain Xk with state space {1, . . . , n} and transition
matrix P = (pij). Suppose that we can divide the states into a transient
set B = {1, . . . ,m} and an absorbing set A = {m + 1, . . . , n} such that
pij = 0 for every i ∈ A and j ∈ B and such that every i ∈ B leads to
at least one j ∈ A. Then every realization of the chain starting in B is
eventually trapped in A. It is often of interest to find the probability hij

that the chain started at i ∈ B enters A at j ∈ A. The m× (n−m) matrix
of hitting probabilities H = (hij) can be found by solving the system of
equations

hij = pij +

m∑

k=1

pikhkj

derived by conditioning on the next state visited by the chain starting from
state i. We can summarize this system as the matrix equation H = R+QH
by decomposing P into the block matrix

P =

(
Q R
0 S

)

,
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where Q is m×m, R is m× (n−m), and S is (n−m)× (n−m). If I is the
m×m identity matrix, then the formal solution of our system of equations
is H = (I −Q)−1R. To prove that the indicated matrix inverse exists, we
turn to a simple proposition.

Proposition 7.6.1 Suppose that limk→∞Qk = 0, where 0 is the m ×m
zero matrix. Then (I −Q)−1 exists and equals liml→∞

∑l
k=0Q

k.

Proof: By assumption limk→∞(I − Qk) = I. Because the determinant
function is continuous and det I = 1, it follows that det(I −Qk) �= 0 for k
sufficiently large. Taking determinants in the identity

(I −Q)(I +Q+ · · · +Qk−1) = I −Qk

yields

det(I −Q) det(I +Q+ · · · +Qk−1) = det(I −Qk).

Thus, det(I −Q) �= 0, and I −Q is nonsingular. Finally, the power series
expansion for I −Q follows from taking limits in

I +Q+ · · · +Qk−1 = (I −Q)−1(I −Qk).

This completes the proof.
To apply Proposition 7.6.1, we need to interpret the entries of the matrix

Qk = (q
(k)
ij ). A moment’s reflection shows that

q
(k)
ij =

m∑

l=1

q
(k−1)
il plj

is just the probability that the chain passes from i to j in k steps. Note

that the sum defining q
(k)
ij stops at l = m because once the chain leaves

the transient states, it can never reenter them. This fact also makes it

intuitively obvious that limk→∞ q
(k)
ij = 0. To verify this limit, it suffices

to prove that the chain leaves the transient states after a finite number
of steps. Suppose on the contrary that the chain wanders from transient
state to transient state forever. In this case, the chain visits some transient
state i an infinite number of times. However, i leads to an absorbing state
j > m along a path of positive probability. One of these visits to i must
successfully take the path to j. This argument can be tightened by defining
a first passage time T to the transient states and invoking inequalities (7.8)
and (7.9).

In much the same way that we calculate hitting probabilities, we can
calculate the mean number of epochs tij that the chain spends in transient
state j prior to absorption starting from transient state i. These expecta-
tions satisfy the system of equations

tij = 1{j=i} +

m∑

k=1

piktkj ,
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which reads as T = I+QT in matrix form. The solution T = (I−Q)−1 can
be used to write the mean hitting time vector t with ith entry ti =

∑
j tij

as t = (I − Q)−11, where 1 is the vector with all entries 1. Finally, if fij

is the probability of ever reaching transient state j starting from transient
state i, we can rearrange the identity tij = fijtjj for i �= j to yield the
simple formula fij = tij/tjj for fij . The analogous identity tii = 1 + fiitii
gives fii = (tii − 1)/tii.

1

healthy

2

cancerous
	

p12



p21

�

p13

�

p24

3

death from
other causes

4

death from
cancer

FIGURE 7.1. An Illness-Death Markov Chain

Example 7.6.1 An Illness-Death Cancer Model

Figure 7.1 depicts a naive Markov chain model for cancer morbidity and
mortality [62]. The two transient states 1 (healthy) and 2 (cancerous) lead
to the absorbing states 3 (death from other causes) and 4 (death from
cancer). A brief calculation shows that

Q =

(
p11 p12

p21 p22

)

, R =

(
p13 0
0 p24

)

,

and

(I −Q)−1 =
1

(1 − p11)(1 − p22) − p12p21

(
1 − p22 p12

p21 1 − p11

)

.

These are precisely the ingredients necessary to calculate the hitting prob-
abilities H = (I −Q)−1R and mean hitting times t = (I −Q)−11.
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7.7 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) revolution sweeping statistics
is drastically changing how statisticians perform integration and summa-
tion. In particular, the Metropolis algorithm and Gibbs sampling make it
straightforward to construct a Markov chain that samples from a compli-
cated conditional distribution. Once a sample is available, then according
to the ergodic theorem, any conditional expectation can be approximated
by forming its corresponding sample average. The implications of this in-
sight are profound for both classical and Bayesian statistics. As a bonus,
trivial changes to the Metropolis algorithm yield simulated annealing, a
general-purpose algorithm for solving difficult combinatorial optimization
problems.

Our limited goal in this section is to introduce a few of the major MCMC
themes. One issue of paramount importance is how rapidly the underlying
chains reach equilibrium. This is the Achilles heel of the whole business and
not just a mathematical nicety. Unfortunately, probing this delicate issue is
scarcely possible in the confines of a brief overview. We analyze one example
to give a feel for the power of coupling and spectral arguments. Readers
interested in further pursuing MCMC methods and the related method of
simulated annealing will enjoy the pioneering articles [69, 71, 85, 115, 142],
the elementary surveys [35, 37], and the books [70, 73, 194].

7.7.1 The Hastings-Metropolis Algorithm

The Hastings-Metropolis algorithm is a device for constructing a Markov
chain with a prescribed equilibrium distribution π on a given state space
[85, 142]. Each step of the chain is broken into two stages, a proposal
stage and an acceptance stage. If the chain is currently in state i, then
in the proposal stage a new destination state j is proposed according to
a probability density qij = q(j | i). In the subsequent acceptance stage, a
random number is drawn uniformly from [0, 1] to determine whether the
proposed step is actually taken. If this number is less than the Hastings-
Metropolis acceptance probability

aij = min

{
πjqji

πiqij
, 1

}

, (7.18)

then the proposed step is taken. Otherwise, the proposed step is declined,
and the chain remains in place. Problem 41 indicates that equation (7.18)
defines the most generous acceptance probability consistent with the given
proposal mechanism.

Like most good ideas, the Hastings-Metropolis algorithm has undergone
successive stages of abstraction and generalization. For instance, Metropolis
et al. [142] considered only symmetric proposal densities with qij = qji. In
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this case the acceptance probability reduces to

aij = min
{πj

πi
, 1
}
. (7.19)

In this simpler setting it is clear that any proposed destination j with
πj > πi is automatically accepted. In applying either formula (7.18) or
formula (7.19), it is noteworthy that the πi need only be known up to a
multiplicative constant.

To prove that π is the equilibrium distribution of the chain constructed
from the Hastings-Metropolis scheme (7.18), it suffices to check that de-
tailed balance holds. If π puts positive weight on all points of the state
space, then we must require the inequalities qij > 0 and qji > 0 to be si-
multaneously true or simultaneously false if detailed balance is to have any
chance of holding. Now suppose without loss of generality that the fraction

πjqji

πiqij
≤ 1

for some j �= i. Then detailed balance follows immediately from

πiqijaij = πiqij
πjqji

πiqij
= πjqji

= πjqjiaji.

Besides checking that π is the equilibrium distribution, we should also be
concerned about whether the Hastings-Metropolis chain is irreducible and
aperiodic. Aperiodicity is the rule because the acceptance-rejection step
allows the chain to remain in place. Problem 42 states a precise result and
a counterexample. Irreducibility holds provided the entries of π are positive
and the proposal matrix Q = (qij) is irreducible.

Example 7.7.1 Random Walk on a Subset of the Integers

Random walk sampling occurs when the proposal density qij = qj−i for
some density qk. This construction requires that the sample space be closed
under subtraction. If qk = q−k, then the Metropolis acceptance probability
(7.19) applies.

Example 7.7.2 Independence Sampler

If the proposal density satisfies qij = qj , then candidate points are drawn
independently of the current point. To achieve quick convergence of the
chain, qi should mimic πi for most i. This intuition is justified by intro-
ducing the importance ratios wi = πi/qi and rewriting the acceptance
probability (7.18) as

aij = min
{wj

wi
, 1
}
. (7.20)
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It is now obvious that it is difficult to exit any state i with a large impor-
tance ratio wi.

7.7.2 Gibbs Sampling

The Gibbs sampler is a special case of the Hastings-Metropolis algorithm for
Cartesian product state spaces [69, 71, 73]. Suppose that each sample point
i = (i1, . . . , im) has m components. The Gibbs sampler updates one com-
ponent of i at a time. If the component is chosen randomly and resampled
conditional on the remaining components, then the acceptance probability
is 1. To prove this assertion, let ic be the uniformly chosen component, and
denote the remaining components by i−c = (i1, . . . , ic−1, ic+1, . . . , im). If j
is a neighbor of i reachable by changing only component ic, then j−c = i−c.
For such a neighbor j, the proposal probability

qij =
1

m
· πj∑

{k:k−c=i−c} πk

satisfies πiqij = πjqji, and the ratio appearing in the acceptance probability
(7.18) is 1.

In contrast to random sampling of components, we can repeatedly cycle
through the components in some fixed order, say 1, 2, . . . ,m. If the tran-
sition matrix for changing component c while leaving other components
unaltered is P (c), then the transition matrices for random sampling and
sequential (or cyclic) sampling are R = 1

m

∑
c P

(c) and S = P (1) · · ·P (m),

respectively. Because each P (c) satisfies πP (c) = π, we have πR = π and
πS = π as well. Thus, π is the unique equilibrium distribution for R or S
if either is irreducible. However as pointed out in Problem 43, R satisfies
detailed balance while S ordinarily does not.

Example 7.7.3 Ising Model

Consider m elementary particles equally spaced around the boundary of
the unit circle. Each particle c can be in one of two magnetic states—spin
up with ic = 1 or spin down with ic = −1. The Gibbs distribution

πi ∝ eβ
∑

d
idid+1 (7.21)

takes into account nearest-neighbor interactions in the sense that states
like (1, 1, 1, . . . , 1, 1, 1) are favored and states like (1,−1, 1, . . . , 1,−1, 1) are
shunned for β > 0. (Note that in equation (7.21) the index m+ 1 of im+1

is interpreted as 1.) There is no need to specify the normalizing constant
(or partition function)

Z =
∑

i

eβ
∑

d
idid+1
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to carry out Gibbs sampling. If we elect to resample component c, then the
choices jc = −ic and jc = ic are made with respective probabilities

eβ(−ic−1ic−icic+1)

eβ(ic−1ic+icic+1) + eβ(−ic−1ic−icic+1)
=

1

e2β(ic−1ic+icic+1) + 1

eβ(ic−1ic+icic+1)

eβ(ic−1ic+icic+1) + eβ(−ic−1ic−icic+1)
=

1

1 + e−2β(ic−1ic+icic+1)
.

When the number of particles m is even, the odd-numbered particles
are independent given the even-numbered particles, and vice versa. This
fact suggests alternating between resampling all odd-numbered particles
and resampling all even-numbered particles. Such multi-particle updates
take longer to execute but create more radical rearrangements than single-
particle updates.

7.7.3 Convergence of the Independence Sampler

For the independence sampler, it is possible to give a coupling bound on
the rate of convergence to equilibrium [137]. Suppose that X0, X1, . . . rep-
resents the sequence of states visited by the independence sampler starting
from X0 = x0. We couple this Markov chain to a second independence sam-
pler Y0, Y1, . . . starting from the equilibrium distribution π. By definition,
each Yk has distribution π. The two chains are coupled by a common pro-
posal stage and a common uniform deviate U sampled in deciding whether
to accept the common proposed point. They differ in having different ac-
ceptance probabilities. If Xn = Yn for some n, then Xk = Yk for all k ≥ n.
Let T denote the random epoch when Xn first meets Yn and the X chain
attains equilibrium.

The importance ratios wj = πj/qj determine what proposed points are
accepted. Without loss of generality, assume that the states of the chain
are numbered 1, . . . ,m and that the importance ratios wi are in decreasing
order. If Xn = x �= y = Yn, then according to equation (7.18) the next
proposed point is accepted by both chains with probability

m∑

j=1

qj min

{
wj

wx
,
wj

wy
, 1

}

=
m∑

j=1

πj min

{
1

wx
,

1

wy
,

1

wj

}

≥ 1

w1
.

In other words, at each trial the two chains meet with at least probability
1/w1. This translates into the tail probability bound

Pr(T > n) ≤
(

1 − 1

w1

)n

. (7.22)
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By the same type of reasoning that led to inequality (7.10), we deduce the
further bound

‖πXn
− π‖TV ≤ Pr(Xn �= Yn)

= Pr(T > n) (7.23)

≤
(

1 − 1

w1

)n

on the total variation distance of Xn from equilibrium.
It is interesting to compare this last bound with the bound entailed by

Proposition 7.5.1. Based on our assumption that the importance ratios are
decreasing, equation (7.20) shows that the transition probabilities of the
independence sampler are

pij =

{
qj j < i
πj/wi j > i .

In order for
∑

j pij = 1, we must set pii = qi + λi, where

λi =

m∑

k=i

(

qk − πk

wi

)

=

m∑

k=i+1

(

qk − πk

wi

)

.

With these formulas in mind, one can decompose the overall transition
probability matrix as P = U + 1q, where q = (q1, . . . , qm) and U is the
upper triangular matrix

U =

⎛

⎜
⎜
⎜
⎝

λ1
q2(w2−w1)

w1
· · · · · · qm−1(wm−1−w1)

w1

qm(wm−w1)
w1

...
...

...
. . .

...
...

0 0 0 · · · λm−1
qm(wm−wm−1)

wm−1

0 0 0 · · · 0 λm

⎞

⎟
⎟
⎟
⎠
.

The eigenvalues of U are just its diagonal entries λ1 through λm.
The reader can check that (a) λ1 = 1 − 1/w1, (b) the λi are decreasing,

and (c) λm = 0. It turns out that P and U share most of their eigenvalues.
They differ in the eigenvalue attached to the eigenvector 1 since P1 = 1
and U1 = 0. Suppose Uv = λiv for some i between 1 and m − 1. Let
us construct a column eigenvector of P with the eigenvalue λi. As a trial
eigenvector we take v + c1 and calculate

(U + 1q)(v + c1) = λiv + qv1 + c1 = λiv + (qv + c)1.

This is consistent with v+ c1 being an eigenvector provided we choose the
constant c to satisfy qv + c = λic. Because λi �= 1, it is always possible to
do so. The combination of Proposition 7.5.1 and inequality (7.15) gives a
bound that decays at the same geometric rate λ1 = 1−w−1

1 as the coupling
bound (7.23). Thus, the coupling bound is about as good as one could
hope for. Problems 44 and 45 ask the reader to flesh out our convergence
arguments.
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7.8 Simulated Annealing

In simulated annealing we are interested in finding the most probable state
of a Markov chain [115, 163]. If this state is k, then πk > πi for all i �= k.
To accentuate the weight given to state k, we can replace the equilibrium
distribution π by a distribution putting probability

π
(τ)
i =

π
1/τ
i

∑
j π

1/τ
j

on state i. Here τ is a positive parameter traditionally called temperature.

With a symmetric proposal density, the distribution π
(τ)
i can be attained

by running a chain with Metropolis acceptance probability

aij = min
{(πj

πi

)1/τ

, 1
}
. (7.24)

In simulated annealing, the chain is run with τ gradually decreasing to
0 rather than with τ fixed. If τ starts out large, then in the early stages
of simulated annealing, almost all proposed steps are accepted, and the
chain broadly samples the state space. As τ declines, fewer unfavorable
steps are taken, and the chain eventually settles on some nearly optimal
state. With luck, this state is k or a state equivalent to k if several states are
optimal. Simulated annealing is designed to mimic the gradual freezing of a
substance into a crystalline state of perfect symmetry and hence minimum
energy.

Example 7.8.1 The Traveling Salesman Problem

As discussed in Example 5.7.2, a salesman must visit m towns, starting
and ending in his hometown. Given fixed distances dij between every pair
of towns i and j, in what order should he visit the towns to minimize the
length of his circuit? This problem belongs to the class of NP-complete
problems; these have deterministic solutions that are conjectured to in-
crease in complexity at an exponential rate in m.

In the simulated annealing approach to the traveling salesman problem,
we assign to each permutation σ = (σ1, . . . , σm) a cost cσ =

∑m
i=1 dσi,σi+1 ,

where σm+1 = σ1. Defining πσ ∝ e−cσ turns the problem of minimizing the
cost into one of finding the most probable permutation σ. In the proposal
stage of simulated annealing, we randomly select two indices i < j and re-
verse the block of integers beginning at σi and ending at σj in the current
permutation (σ1, . . . , σm). Thus, if (4, 7, 5, 2, 3, 1, 6) is the current permu-
tation and indices 3 and 6 are selected, then the proposed permutation is
(4, 7, 1, 3, 2, 5, 6). A proposal is accepted with probability (7.24) depending
on the temperature τ . In Numerical Recipes’ [163] simulated annealing al-
gorithm for the traveling salesman problem, τ is lowered in multiplicative
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decrements of 10% after every 100m epochs or every 10m accepted steps,
whichever comes first.

7.9 Problems

1. Take three numbers x1, x2, and x3 and form the successive running
averages xn = (xn−3 + xn−2 + xn−1)/3 starting with x4. Prove that

lim
n→∞

xn =
x1 + 2x2 + 3x3

6
.

2. A drunken knight is placed on an empty chess board and randomly
moves according to the usual chess rule. Calculate the equilibrium dis-
tribution of the knight’s position [152]. (Hints: Consider the squares
to be nodes of a graph. Connect two squares by an edge if the knight
can move from one to the other in one step. Show that the graph is
connected and that 4 squares have degree 2, 8 squares have degree 3,
20 squares have degree 4, 16 squares have degree 6, and 16 squares
have degree 8.)

3. Suppose you repeatedly throw a fair die and record the sum Sn of
the exposed faces after n throws. Show that

lim
n→∞

Pr(Sn is divisible by 13) =
1

13

by constructing an appropriate Markov chain [152].

4. Demonstrate that a finite-state Markov chain is ergodic (irreducible
and aperiodic) if and only if some power Pn of the transition matrix
P has all entries positive. (Hints: For sufficiency, show that if some
power Pn has all entries positive, then Pn+1 has all entries positive.

For necessity, note that p
(r+s+t)
ij ≥ p

(r)
ik p

(s)
kk p

(t)
kj , and use the number

theoretic fact that the set {s : p
(s)
kk > 0} contains all sufficiently large

positive integers s if k is aperiodic. See Appendix A.1 for the requisite
number theory.)

5. Consider the Cartesian product state space A×B, where

A = {0, 1, . . . , a− 1}, B = {0, 1, . . . , b− 1},

and a and b are positive integers. Define a Markov chain that moves
from (x, y) to (x+1 mod a, y) or (x, y+1 mod b) with equal probability
at each epoch. Show that the chain is irreducible. Also show that it
is aperiodic if and only if the greatest common divisor of a and b is
1. (Hints: It helps to consider the special state (0, 0). See Proposition
A.1.4 of Appendix A.1.)
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6. Prove that every state of an irreducible Markov chain has the same
period.

7. Suppose an irreducible Markov chain has period d. Show that the
states of the chain can be divided into d disjoint classes C0, . . . , Cd−1

such that pij = 0 unless i ∈ Ck and j ∈ Cl for l = k+1 modd. (Hint:

Fix a state u and define Cr = {v : p
(nd+r)
uv > 0 for some n ≥ 0}.)

8. The transition matrix P of a finite Markov chain is said to be doubly
stochastic if each of its column sums equals 1. Find an equilibrium
distribution in this setting. Prove that symmetric transition matrices
are doubly stochastic. For a nontrivial example of a doubly stochastic
transition matrix, see Example 7.3.5.

9. Demonstrate that an irreducible Markov chain possesses at most one
equilibrium distribution. This result applies regardless of whether the
chain is finite or aperiodic. (Hints: Let P = (pij) be the transition
matrix and π and μ be two different equilibrium distributions. Then
there exist two states j and k with πj > μj and πk < μk. For some

state i choose m and n such that p
(m)
ji > 0 and p

(n)
ki > 0. If we define

Q = 1
2P

m + 1
2P

n, then prove that π = πQ and μ = μQ. Furthermore,
prove that strict inequality holds in the inequality

‖π − μ‖TV =
1

2

∑

i

∣
∣
∣
∑

l

(πl − μl)qli

∣
∣
∣

≤ 1

2

∑

l

|πl − μl|
∑

i

qli

= ‖π − μ‖TV.

This contradiction gives the desired conclusion. Observe that the
proof does not use the full force of irreducibility. The argument is
valid for a chain with transient states provided they all can reach the
designated state i.)

10. Show that Kolmogorov’s criterion (7.3) implies that definition (7.4)
does not depend on the particular path chosen from i to j.

11. In the Bernoulli-Laplace model, we imagine two boxes with m par-
ticles each. Among the 2m particles there are b black particles and
w white particles, where b + w = 2m and b ≤ w. At each epoch one
particle is randomly selected from each box, and the two particles are
exchanged. Let Zn be the number of black particles in the first box.
Is the corresponding chain irreducible, aperiodic, and/or reversible?
Show that its equilibrium distribution is hypergeometric.

12. In Example 7.3.1, show that the chain is aperiodic if and only if the
underlying graph is not bipartite.
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13. A random walk on a connected graph has equilibrium distribution

πv = d(v)
2m , where d(v) is the degree of v and m is the number of

edges. Let tuv be the expected time the chain takes in traveling from
node u to node v. If the graph is not bipartite, then the chain is aper-
iodic, and Example 7.3.4 shows that tvv = 1/πv. Write a recurrence
relation connecting tvv to the tuv for nodes u in the neighborhood of
v, and use the relation to demonstrate that tuv ≤ 2m− d(v) for each
such u.

14. Consider the n! different permutations σ = (σ1, . . . , σn) of the set
{1, . . . , n} equipped with the uniform distribution πσ = 1/n! [49].
Declare a permutation ω to be a neighbor of σ if there exist two
indices i �= j such that ωi = σj , ωj = σi, and ωk = σk for k �∈ {i, j}.
How many neighbors does a permutation σ possess? Show how the
set of permutations can be made into a reversible Markov chain using
the construction of Example 7.3.1. Is the underlying graph bipartite?
If we execute one step of the chain by randomly choosing two indices
i and j and switching σi and σj , how can we slightly modify the chain
so that it is aperiodic?

15. Consider a set of b light bulbs. At epoch n, a random subset of s light
bulbs is selected. Those bulbs in the subset that are on are switched
off, and those bulbs that are off are switched on. Let Xn equal the
total number of on bulbs just after this random event.

(a) Show that the stochastic process Xn is a Markov chain. What
is the state space? (Hint: You may want to revise your answer
after considering question (c).)

(b) Demonstrate that the transition probability matrix has entries

pjk = Pr(Xn+1 = k | Xn = j) =

(
j
i

)(
b−j
s−i

)

(
b
s

) .

where i = (s + j − k)/2 must be an integer. Note that pjk > 0
if and only if pkj > 0.

(c) Verify the following behavior. If s is an even integer and X0 is
even, then all subsequent Xn are even. If s is an even integer
and X0 is odd, then all subsequent Xn are odd. If s is an odd
integer, then the Xn alternate between even and odd values.
What is the period of the chain when s is odd? Recall that
the period of state i is the greatest common divisor of the set

{n ≥ 1 : p
(n)
ii > 0}, where p

(n)
ii is an n-step transition probability.

If all states communicate, then every state has the same period.

(d) If s is odd, then prove that all states communicate. If s is even,
then prove that all even states communicate and that all odd
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states communicate. (Hints: First, show that it is possible to
pass in a finite number of steps from any state j to some state
k with k ≤ s. Second, show that it suffices to assume b = s+ 1.
Third, consider the paths

0 ↔ s↔ 2 ↔ s− 2 ↔ 4 ↔ · · · ↔ � s
2�

s+ 1 ↔ 1 ↔ s− 1 ↔ 3 ↔ s− 3 ↔ · · · ↔ � s
2� + 1.

Every state between 0 and s + 1 is visited by one of these two
paths. When s is odd, the transition � s

2� ↔ � s
2�+1 is possible. If

this reasoning is too complicated, show how states communicate
for a particular choice of s, say 4 or 5.)

(e) Verify that the unique stationary distribution π of the chain has
entries

πj =

(
b
j

)

2b
or πj =

(
b
j

)

2b−1
.

(Hints: Check detailed balance. For the normalizing constant
when s is even, suppose that X follows the equilibrium distri-
bution π. If X is concentrated on the even integers, then it has
generating function

E(uX) =
(1

2
+
u

2

)b

+
(1

2
− u

2

)b

,

and if X is concentrated on the odd integers, then it has gener-
ating function

E(uX) =
(1

2
+
u

2

)b

−
(1

2
− u

2

)b

.

Evaluate when u = 1.)

(f) Suppose that X follows the equilibrium distribution. Demon-
strate that X has mean E(X) = b

2 . If s is even and X is con-
centrated on the even integers, then show that X has falling
factorial moments

E[(X)k] =

⎧
⎨

⎩

(b)k

2k 0 ≤ k < b
b!
2b [1 + (−1)b] k = b
0 k > b.

If s is even and X is concentrated on the odd integers, these
factorial moments become

E[(X)k] =

⎧
⎨

⎩

(b)k

2k 0 ≤ k < b
b!
2b [1 − (−1)b] k = b
0 k > b.
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Let Y be binomially distributed with b trials and success prob-
ability 1

2 . It is interesting that E[(X)k] = E[(Y )k] for k < b.
This fact implies that X and Y have the same ordinary mo-
ments E(Xk) = E(Y k) for k < b. (Hint: See the hint to the last
subproblem.)

16. In Example 7.4.1, suppose that f(x) is strictly increasing and g(x)
is increasing. Show that Cov[f(X), g(X)] = 0 occurs if and only if
Pr[g(X) = c] = 1 for some constant c. (Hint: For necessity, examine
the proof of the example and show that Cov[f(X), g(X)] = 0 entails
Pr[g(X) = g(Y )] = 1 and therefore Var[g(X) − g(Y )] = 0.)

17. Consider a random graph with n nodes. Between every pair of nodes,
independently introduce an edge with probability p. If c(p) denotes
the probability that the graph is connected, then it is intuitively clear
that c(p) is increasing in p. Give a coupling proof of this fact.

18. Consider a random walk on the integers 0, . . . ,m with transition prob-
abilities

pij =

{
qi j = i− 1
1 − qi j = i+ 1

for i = 1, . . . ,m − 1 and p00 = pmm = 1. All other transition proba-
bilities are 0. Eventually the walk gets trapped at 0 or m. Let fi be
the probability that the walk is absorbed at 0 starting from i. Show
that fi is an increasing function of the entries of q = (q1, . . . , qm−1).
(Hint: Let q and q∗ satisfy qi ≤ q∗i for i = 1, . . . ,m − 1. Construct
coupled walks Xn and Yn based on q and q∗ such that X0 = Y0 = i
and such that at the first step Y1 ≤ X1. This requires coordinating
the first step of each chain. If X1 > Y1, then run the Xn chain until
it reaches either m or Y1. In the latter case, take another coordinated
step of the two chains.)

19. Suppose that X follows the hypergeometric distribution

Pr(X = i) =

(
r
i

)(
n−r
m−i

)

(
n
m

) .

Let Y follow the same hypergeometric distribution except that r + 1
replaces r. Give a coupling proof that Pr(X ≥ k) ≤ Pr(Y ≥ k) for all
k. (Hint: Consider an urn with r red balls, 1 white ball, and n− r−1
black balls. If we draw m balls from the urn without replacement,
then X is the number of red balls drawn, and Y is the number of red
or white balls drawn.)

20. Let X be a binomially distributed random variable with n trials and
success probability p. Show by a coupling argument that Pr(X ≥ k)
is increasing in n for fixed p and k and in p for fixed n and k.
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21. Let Y be a Poisson random variable with mean λ. Demonstrate that
Pr(Y ≥ k) is increasing in λ for k fixed. (Hint: If λ1 < λ2, then
construct coupled Poisson random variables Y1 and Y2 with means
λ1 and λ2 such that Y1 ≤ Y2.)

22. Let Y follow a negative binomial distribution that counts the number
of failures until n successes. Demonstrate by a coupling argument that
Pr(Y ≥ k) is decreasing in the success probability p for k fixed.

23. Let X1 follow a beta distribution with parameters α1 and β1 and X2

follow a beta distribution with parameters α2 and β2. If α1 ≤ α2 and
α1 + β1 = α2 + β2, then demonstrate that Pr(X1 ≥ x) ≤ Pr(X2 ≥ x)
for all x ∈ [0, 1]. How does this result carry over to the beta-binomial
distribution? (Hint: Construct X1 and X2 from gamma distributed
random variables.)

24. The random variable Y stochastically dominates the random variable
X provided Pr(Y ≤ u) ≤ Pr(X ≤ u) for all real u. Using quantile
coupling, we can construct on a common probability space probabilis-
tic copies Xc of X and Yc of Y such that Xc ≤ Yc with probability
1. If X has distribution function F (x) and Y has distribution func-
tion G(y), then define F [−1](u) and G[−1](u) as instructed in Example
1.5.1 of Chapter 1. If U is uniformly distributed on [0, 1], demonstrate
that Xc = F [−1](U) and Yc = G[−1](U) yield quantile couplings with
the property Xc ≤ Yc. Problems 19 through 23 provide examples of
stochastic domination.

25. Continuing Problem 24, suppose that X1, X2, Y1, and Y2 are random
variables such that Y1 dominates X1, Y2 dominates X2, X1 and X2

are independent, and Y1 and Y2 are independent. Prove that Y1 + Y2

dominates X1 +X2.

26. Suppose that the random variable Y stochastically dominates the
random variable X and that f(u) is an increasing function of the real
variable u. In view of Problem 24, prove that

E[f(Y )] ≥ E[f(X)]

whenever both expectations exist. Conversely, if X and Y have this
property, then show that Y stochastically dominates X .

27. Suppose the integer-valued random variable Y stochastically domi-
nates the integer-valued random variable X . Prove the bound

‖πX − πY ‖TV ≤ E(Y ) − E(X)

by extending inequality (7.7). Explicitly evaluate this bound for the
distributions featured in Problems 19 through 23. (Hint: According
to Problem 24, one can assume that Y ≥ X .)
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28. Show that the two definitions of the total variation norm given in
equation (7.6) coincide.

29. LetX have a Bernoulli distribution with success probability p and Y a
Poisson distribution with mean p. Prove the total variation inequality

‖πX − πY ‖TV ≤ p2 (7.25)

involving the distributions πX and πY of X and Y .

30. Suppose the integer-valued random variables U1, U2, V1, and V2 are
such that U1 and U2 are independent and V1 and V2 are independent.
Demonstrate that

‖πU1+U2 − πV1+V2‖TV ≤ ‖πU1 − πV1‖TV + ‖πU2 − πV2‖TV. (7.26)

31. A simple change of Ehrenfest’s Markov chain in Example 7.3.3 renders
it ergodic. At each step of the chain, flip a fair coin. If the coin lands
heads, switch the chosen molecule to the other half of the box. If the
coin lands tails, leave it where it is. Show that Ehrenfest’s chain with
holding is ergodic and converges to the binomial distribution π with
m trials and success probability 1

2 . The rate of convergence to this
equilibrium distribution can be understood by constructing a strong
stationary time. As each molecule is encountered, check it off the list
of molecules. Let T be the first time all m molecules are checked off.
Argue that T is a strong stationary time. If π(n) is the state of the
chain at epoch n, then also show that

‖π(n) − π‖TV ≤ m
(
1 − 1

m

)n

and therefore that

‖π(n) − π‖TV ≤ e−c

for n = m lnm+ cm and c > 0.

32. Suppose in the Wright-Fisher model of Example 7.3.2 that each sam-
pled a1 allele has a chance of u of mutating to an a2 allele and that
each sampled a2 allele has a chance of v of mutating to an a1 allele,
where the mutation rates u and v are taken from (0, 1). If the num-
ber Zn of a1 alleles at generation n equals i, then show that Zn+1 is
binomially distributed with success probability

pi =
i

2m
(1 − u) +

2m− i

2m
v.

Also prove:
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(a) The pi are increasing in i provided u+ v ≤ 1.

(b) The chain is ergodic.

(c) When u+ v = 1, the chain is reversible with equilibrium distri-
bution

πj =

(
2m

j

)

vju2m−j.

(d) When u+ v �= 1, the chain can be irreversible. For a counterex-
ample, choose m = 1 and consider the path 0 → 1 → 2 → 0 and
its reverse. Show that the circulation criterion can fail.

Although it is unclear what the equilibrium distribution is in general,
Hua Zhou has constructed a coupling that bounds the rate of conver-
gence of the chain to equilibrium. Assume that u+ v < 1 and fix any
two initial states x < y in {0, 1, . . . , 2m}. Let Xn be a realization of
the chain starting from x and Yn be a realization of the chain start-
ing from y. We couple the chains by coordinated sampling of the 2m
replacement genes at each generation. For the kth sampled gene in
forming generation n+ 1, let Uk be a uniform deviate from (0, 1). If
Uk ≤ pXn

, then declare the gene to be an a1 allele in the X process.
If Uk ≤ pYn

, then declare the gene to be an a1 allele in the Y process.
Why does this imply that Xn+1 ≤ Yn+1? Once Xn = Yn for some n,
they stay coupled. In view of Problem 27, supply the reasons behind
the following string of equalities and inequalities:

‖πXn
− πYn

‖TV ≤ E(Yn −Xn)

= (1 − u− v) E(Yn−1 −Xn−1)

= (1 − u− v)n(y − x)

≤ 2m(1 − u− v)n.

Since x and y are arbitrary, this implies that the mixing time for the

chain is on the order of O
(

ln(2m)
u+v

)
generations.

33. As another example of a strong uniform time, consider the inverse
shuffling method of Reeds [49]. At every shuffle we imagine that each
of c cards is assigned independently and uniformly to a top pile or a
bottom pile. Hence, each pile has a binomial number of cards with
mean c

2 . The order of the two subpiles is kept consistent with the
order of the parent pile, and in preparation for the next shuffle, the
top pile is placed above the bottom pile. To keep track of the process,
one can mark each card with a 0 (top pile) or 1 (bottom pile). Thus,
shuffling induces an infinite binary sequence on each card that serves
to track its fate. Let T denote the epoch when the first n digits
for each card are unique. At T the cards reach a completely random
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state where all c permutations are equally likely. Let π be the uniform
distribution and πXn

be the distribution of the cards after n shuffles.
The probability Pr(T ≤ n) is the same as the probability that c balls
(digit strings) dropped independently and uniformly into 2n boxes
all wind up in different boxes. With this background in mind, deduce
the bound

‖πXn
− π‖TV ≤ 1 −

c−1∏

i=1

(
1 − i

2n

)
.

Plot or tabulate the bound as a function of n for c = 52 cards. How
many shuffles guarantee randomness with high probability?

34. Prove inequality (7.15) by applying the Cauchy-Schwarz inequality.
Also verify that P satisfies the self-adjointness condition

〈Pu, v〉π = 〈u, Pv〉π,

which yields a direct proof that P has only real eigenvalues.

35. Let Z0, Z1, Z2, . . . be a realization of a finite-state ergodic chain. If
we sample every kth epoch, then show (a) that the sampled chain
Z0, Zk, Z2k, . . . is ergodic, (b) that it possesses the same equilibrium
distribution as the original chain, and (c) that it is reversible if the
original chain is. Thus, based on the ergodic theorem, we can estimate
theoretical means by sample averages using only every kth epoch of
the original chain.

36. Consider the symmetric random walk Sn with

Pr(Sn+1 = Sn + 1) = Pr(Sn+1 = Sn − 1) =
1

2
.

Given S0 = i �= 0, let πi be the probability that the random walk
eventually hits 0. Show that

π1 =
1

2
+

1

2
π2

πk = πk
1 , k > 0.

Use these two equations to prove that all πi = 1. (Hint: Symmetry.)

37. Continuing Problem 36, let μk be the expected waiting time for a
first passage from k to 0. Show that μk = kμ1 and that

μk = 1 +
1

2
μk−1 +

1

2
μk+1

for k ≥ 2. Conclude from these identities that μk = ∞ for all k ≥ 1.
Now reason that μ0 = 1 + μ1 and deduce that μ0 = ∞ as well.
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38. Consider a random walk on the integers {0, 1, . . . , n}. States 0 and
n are absorbing in the sense that p00 = pnn = 1. If i is a transient
state, then the transition probabilities are pi,i+1 = p and pi,i−1 = q,
where p+ q = 1. Verify that the hitting probabilities are

hin = 1 − hi0 =

{
( q

p
)i−1

( q
p
)n−1

, p �= q

i
n , p = q

and the mean hitting times are

ti =

{
n

p−q

( q
p
)i−1

( q
p
)n−1 − i

p−q , p �= q

i(n− i), p = q.

(Hint: First argue that

ti = 1 +

m∑

k=1

piktk

in the notation of Section 7.6.)

39. Arrange n points labeled 0, . . . , n− 1 symmetrically on a circle, and
imagine conducting a symmetric random walk with transition prob-
abilities

pij =

{
1
2 j = i+ 1 mod n or j = i− 1 mod n
0 otherwise .

Thus, only transitions to nearest neighbors are allowed. Let ek be
the expected number of epochs until reaching point 0 starting at
point k. Interpret e0 as the expected number of epochs to return to
0. In finding the ek, argue that it suffices to find e0, . . . , em, where
m = �n

2 �. Write a system of recurrence relations for the ek, and show
that the system has the solution

ek =

{
n k = 0
k(n− k) 1 ≤ k ≤ m.

Note that the last recurrence in the system differs depending on
whether n is odd or even.

40. In the context of Section 7.6, one can consider leaving probabilities
as well as hitting probabilities. Let lij be the probability of exiting
the transient states from transient state j when the chain starts in
transient state i. If xi =

∑n
k=m+1 pik is the exit probability from

state i and X = diag(x) is the m×m diagonal matrix with xi as its
ith diagonal entry, then show that L = (I −Q)−1X , where L = (lij).
Calculate L in the illness-death model of Section 7.6.
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41. An acceptance function a : (0,∞) �→ [0, 1] satisfies the functional
identity a(x) = xa(1/x). Prove that the detailed balance condition

πiqijaij = πjqjiaji

holds if the acceptance probability aij is defined by

aij = a

(
πjqji

πiqij

)

in terms of an acceptance function a(x). Check that the Barker func-
tion a(x) = x/(1 + x) qualifies as an acceptance function and that
any acceptance function is dominated by the Metropolis acceptance
function in the sense that a(x) ≤ min{x, 1} for all x.

42. The Metropolis acceptance mechanism (7.19) ordinarily implies ape-
riodicity of the underlying Markov chain. Show that if the proposal
distribution is symmetric and if some state i has a neighboring state
j such that πi > πj , then the period of state i is 1, and the chain,
if irreducible, is aperiodic. For a counterexample, assign probability
πi = 1/4 to each vertex i of a square. If the two vertices adjacent to
a given vertex i are each proposed with probability 1/2, then show
that all proposed steps are accepted by the Metropolis criterion and
that the chain is periodic with period 2.

43. Consider the Cartesian product space {0, 1} × {0, 1} equipped with
the probability distribution

(π00, π01, π10, π11) =
(1

2
,
1

4
,
1

8
,
1

8

)
.

Demonstrate that sequential Gibbs sampling does not satisfy detailed
balance by showing that π00s00,11 �= π11s11,00, where s00,11 and s11,00

are entries of the matrix S for first resampling component one and
then resampling component two.

44. In our analysis of convergence of the independence sampler, we as-
serted that the eigenvalues λ1, . . . , λm satisfied the properties: (a)
λ1 = 1 − 1/w1, (b) the λi are decreasing, and (c) λm = 0. Verify
these properties.

45. Find the row and column eigenvectors of the transition probability
matrix P for the independence sampler. Show that they are orthog-
onal in the appropriate inner products.

46. It is known that every planar graph can be colored by four colors
[32]. Design, program, and test a simulated annealing algorithm to
find a four coloring of any planar graph. (Suggestions: Represent the
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graph by a list of nodes and a list of edges. Assign to each node a color
represented by a number between 1 and 4. The cost of a coloring is the
number of edges with incident nodes of the same color. In the proposal
stage of the simulated annealing solution, randomly choose a node,
randomly reassign its color, and recalculate the cost. If successful,
simulated annealing will find a coloring with the minimum cost of 0.)

47. A Sudoku puzzle is a 9× 9 matrix, with some entries containing pre-
defined digits. The goal is to completely fill in the matrix, using the
digits 1 through 9, in such a way that each row, column, and sym-
metrically placed 3×3 submatrix displays each digit exactly once. In
mathematical language, a completed Sudoku matrix is a Latin square
subject to further constraints on the 3 × 3 submatrices. The initial
partially filled in matrix is assumed to have a unique completion. De-
sign, program, and test a simulated annealing algorithm to solve a
Sudoku puzzle.



8
Continuous-Time Markov Chains

8.1 Introduction

This chapter introduces the subject of continuous-time Markov chains [23,
52, 59, 80, 106, 107, 118, 152]. In practice, continuous-time chains are more
useful than discrete-time chains. For one thing, continuous-time chains
permit variation in the waiting times for transitions between neighbor-
ing states. For another, they avoid the annoyances of periodic behavior.
Balanced against these advantages is the disadvantage of a more complex
theory involving linear differential equations. The primary distinction be-
tween the two types of chains is the substitution of transition intensities
for transition probabilities. Once one grasps this difference, it is straight-
forward to formulate relevant continuous-time models. Implementing such
models numerically and understanding them theoretically then require the
matrix exponential function. Kendall’s birth-death-immigration process,
treated at the end of the chapter, involves an infinite number of states and
transition intensities that depend on time.

8.2 Finite-Time Transition Probabilities

Just as with a discrete-time chain, the behavior of a continuous-time chain
is described by an indexed family Zt of random variables giving the state
occupied by the chain at each time t. Now, however, the index t ranges over
the nonnegative real numbers rather than the nonnegative integers. Of fun-

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_8, © Springer Science+Business Media, LLC 2010
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damental theoretical importance are the finite-time transition probabilities
pij(t) = Pr(Zs+t = j | Zs = i) for all s, t ≥ 0. We shall see momentar-
ily how these probabilities can be found by solving a matrix differential
equation.

The perspective of competing risks sharpens our intuitive understanding
of how a continuous-time chain operates. Imagine that a particle executes
a Markov chain by moving from state to state. If the particle is currently in
state i, then each neighboring state independently beckons the particle to
switch positions. The intensity of the temptation exerted by state j is the
constant λij . In the absence of competing temptations, the particle waits
an exponential length of time Tij with intensity λij before moving to state
j. Taking into account competing independent temptations, the particle
moves at the moment Ti = minj �=i Tij , which is exponentially distributed
with intensity λi =

∑
j �=i λij . Of course, exponentially distributed waiting

times are inevitable in a Markovian model; otherwise, the intensity of leav-
ing state i would depend on the history of waiting in i. Once the particle
decides to leave i, it moves to j with probability qij = λij/λi.

An important consequence of these assumptions is that the destination
state Di is chosen independently of the waiting time Ti. Indeed, condition-
ing on the value of Tik gives

Pr(Di = k, Ti ≥ t) = Pr(Tik ≥ t, Tij > Tik for j �= k)

=

∫ ∞

t

λike
−λiks Pr(Tij > Tik for j �= k | Tik = s) ds

=

∫ ∞

t

λike
−λiks

∏

j �∈{i,k}
e−λijsds

=

∫ ∞

t

λike
−λisds

= qike
−λit

= Pr(Di = k) Pr(Ti ≥ t).

Not only does this calculation establish the independence of Di and Ti, but
it also validates their claimed marginal distributions. If we ignore the times
at which transitions occur, the sequence of transitions in a continuous-time
chain determines a discrete-time chain with transition probability matrix
Q = (qij).

At this juncture, it is helpful to pause and consider the nature of the
finite-time transition matrix P (t) = [pij(t)] for small times t > 0. Suppose
the chain starts in state i at time 0. Because it will be in state i at time t
if it never leaves during the interim, we have

pii(t) ≥ e−λit = 1 − λit+ o(t).

The chain can reach a destination state j �= i if it makes a one-step tran-
sition to j sometime during [0, t] and remains there for the duration of the
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interval. Given that λiqij = λij , this observation leads to the inequality

pij(t) ≥ (1 − e−λit)qije
−λjt = λijt+ o(t).

If there are only a finite number of states, the sum of these inequalities
satisfies

1 =
∑

j

pij(t) ≥ 1 + o(t),

and therefore equality must hold in each of the participating inequali-
ties to order o(t). In view of the approximations embodied in the formula
pij(t) = λijt+ o(t), the transition intensities λij are also termed infinitesi-
mal transition probabilities.

8.3 Derivation of the Backward Equations

We now show that the finite-time transition probabilities pij(t) satisfy a
system of ordinary differential equations called the backward equations.
The integral form of this system amounts to

pij(t) = 1{j=i}e
−λit +

∫ t

0

λie
−λis

∑

k �=i

qikpkj(t− s) ds. (8.1)

The first term on the right of equation (8.1) represents the probability
that a particle initially in state i remains there throughout the period
[0, t]. Of course, this is only possible when j = i. The integral contribution
on the right of equation (8.1) involves conditioning on the time s of the
first departure from state i. If state k is chosen as the destination for this
departure, then the particle ends up in state j at time t with probability
pkj(t− s).

Multiplying equation (8.1) by eλit yields

eλitpij(t) = 1{j=i} +

∫ t

0

λie
λi(t−s)

∑

k �=i

qikpkj(t− s) ds

= 1{j=i} +

∫ t

0

λie
λis
∑

k �=i

qikpkj(s) ds (8.2)

after an obvious change of variables. Because all of the finite-time transi-
tion probabilities satisfy |pik(s)| ≤ 1 and all rows of the matrix Q satisfy∑

k �=i qik = 1, the integrand λie
λis
∑

k �=i qikpkj(s) is bounded on every
finite interval. It follows that both its integral and pij(t) are continuous
in t. Given continuity of the pij(t), the integrand λie

λis
∑

k �=i qikpkj(s) is
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continuous, being the limit of a uniformly converging series of continu-
ous functions. The fundamental theorem of calculus therefore implies that
pij(t) is differentiable. Taking derivatives in equation (8.2) produces

λie
λitpij(t) + eλitp′ij(t) = λie

λit
∑

k �=i

qikpkj(t).

After straightforward rearrangement using λii = −λi, we arrive at the
differential form

p′ij(t) =
∑

k

λikpkj(t) (8.3)

of the backward equations.
For a chain with a finite number of states, the backward equation (8.3)

can be summarized in matrix notation by introducing the two matrices
P (t) = [pij(t)] and Λ = (λij). The backward equations in this notation
become

P ′(t) = ΛP (t) (8.4)

P (0) = I,

where I is the identity matrix. The solution of the initial value problem
(8.4) is furnished by the matrix exponential [94, 118]

P (t) = etΛ =
∞∑

k=0

1

k!
(tΛ)k. (8.5)

One can check this fact formally by differentiating the series expansion (8.5)
term by term. Probabilists call Λ the infinitesimal generator or infinitesimal
transition matrix of the process. Because λii = −

∑
j �=i λij , all row sums

of Λ are 0, and the column vector 1 is an eigenvector of Λ with eigenvalue
0. The latter fact implies that the row sums of P (t) are identically 1.

8.4 Equilibrium Distributions and Reversibility

A probability distribution π = (πi) on the states of a continuous-time
Markov chain is a row vector whose components satisfy πi ≥ 0 for all i and∑

i πi = 1. If

πP (t) = π (8.6)

holds for all t ≥ 0, then π is said to be an equilibrium distribution for
the chain. Written in components, the eigenvector equation (8.6) reduces
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to
∑

i πipij(t) = πj . For small t and a finite number of states, the series
expansion (8.5) implies that equation (8.6) can be rewritten as

π(I + tΛ) + o(t) = π.

This approximate form makes it obvious that πΛ = 0t is a necessary condi-
tion for π to be an equilibrium distribution. Here 0t is a row vector of zeros.
Multiplying equation (8.5) on the left by π shows that πΛ = 0t is also a
sufficient condition for π to be an equilibrium distribution. In components
this necessary and sufficient condition is equivalent to the balance equation

∑

j �=i

πjλji = πi

∑

j �=i

λij (8.7)

for all i.
In some chains it is easy to find an equilibrium distribution. For instance,

when all column sums of the infinitesimal generator of a finite-state Markov
chain vanish, the uniform distribution is stationary. If all of the states of
a chain communicate, then the chain is said to be irreducible, and there is
at most one equilibrium distribution π. If in addition the chain has a finite
state space, π exists, and each row of P (t) approaches π as t tends to ∞.

One particularly simple method of proving convergence to the equilib-
rium distribution is to construct a Liapunov function. A Liapunov function
steadily declines along a trajectory of the chain until reaching its minimum
at the equilibrium distribution. Let q(t) = [qj(t)] denote the distribution
of the chain at time t. The relative information

H(t) =
∑

k

qk(t) ln
qk(t)

πk
=
∑

k

πk
qk(t)

πk
ln
qk(t)

πk

furnishes one Liapunov function exploiting the strict convexity of the func-
tion h(u) = u lnu [111]. Proof that H(t) is a Liapunov function hinges on
the Chapman-Kolmogorov relation

qk(t+ d) =
∑

j

qj(t)pjk(d)

for t and d nonnegative. This equation simply says that the process must
pass through some intermediate state j at time t en route to state k at
time t+ d.

We now fix d and define αkj = πjpjk(d)/πk. Because each αjk is non-
negative and

∑
j αkj = 1, we deduce that

H(t+ d) =
∑

k

πkh

[
qk(t+ d)

πk

]



192 8. Continuous-Time Markov Chains

=
∑

k

πkh

[∑
j qj(t)pjk(d)

πk

]

=
∑

k

πkh

[
∑

j

αkj
qj(t)

πj

]

≤
∑

j

∑

k

πkαkjh

[
qj(t)

πj

]

(8.8)

=
∑

j

∑

k

πjpjk(t)h

[
qj(t)

πj

]

= H(t),

with strict inequality unless q(t) = π. Note here the implicit assumption
that all entries of π are positive. This holds because all states communicate.

To prove that limt→∞ q(t) = π, we demonstrate that all cluster points of
the trajectory q(t) coincide with π. Certainly at least one cluster point ex-
ists when the number of states is finite because then q(t) belongs to a com-
pact (closed and bounded) set. Furthermore, H(t) monotonically decreases
to a finite limit c by the argument just presented. If limn→∞ q(tn) = ν,
then the equality

qk(tn + d) =
∑

j

qj(tn)pjk(d)

implies that limn→∞ q(tn + d) = ω exists as well. We now take limits in
inequality (8.8) along the sequence tn. In view of the continuity of H(t)
and its convergence to c, this gives

c =
∑

k

πkh

(
ωk

πk

)

≤
∑

k

πkh

(
νk

πk

)

= c. (8.9)

Rederivation of inequality (8.8) with ωk substituted for qk(t + d) and νj

substituted for qj(t) shows that strict inequality holds in (8.9) whenever
ν �= π, contradicting the evident equality throughout. It follows that ν = π
and that π is the limit of q(t). For other proofs of convergence to the
equilibrium distribution, see the references [118, 152].

Fortunately as pointed out in Problem 5, the annoying feature of period-
icity present in the discrete-time theory disappears in the continuous-time
theory. The definition and properties of reversible chains carry over directly
from discrete time to continuous time provided we substitute transition in-
tensities for transition probabilities [111]. For instance, the detailed balance
condition becomes

πiλij = πjλji (8.10)
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for all pairs i �= j. Kolmogorov’s circulation criterion for reversibility con-
tinues to hold. When it is true, the equilibrium distribution is constructed
from the transition intensities exactly as in discrete time, substituting tran-
sition intensities for transition probabilities.

It helps to interpret equations (8.7) and (8.10) as probabilistic flows.
Imagine a vast number of independent particles executing the same Markov
chain. If we station ourselves at some state i, particles are constantly enter-
ing and leaving the state. Viewed from a distance, this particle swarm looks
like a fluid flowing into and out of i. If we let the ensemble evolve, then it
eventually reaches an equilibrium where the flows into and out of i match.
Equation (8.7) is the quantification of this balance. With a reversible pro-
cess, the flow from state i to state j must eventually match the flow from j
to i; otherwise, the process reversed in time could be distinguished from the
original process. Equation (8.10) is the quantification of detailed balance.

8.5 Examples

Here are a few examples of continuous-time Markov chains.

Example 8.5.1 Oxygen Attachment to Hemoglobin

A hemoglobin molecule has four possible sites to which oxygen (O2) can at-
tach. If the concentration so of O2 is high compared to that of hemoglobin,
then we can model the number of sites occupied on a single hemoglobin
molecule as a continuous-time Markov chain [172]. Figure 8.1 depicts the
model. In the figure, each arc is labeled by a transition intensity and each
state by the circled number of O2 molecules attached to the hemoglobin
molecule. The forward rates sok+j incorporate the concentration of O2.
The higher the concentration of O2, the more frequently successful colli-
sions occur between O2 and the hemoglobin attachment sites. Because this
chain is reversible, we can calculate its equilibrium distribution starting
from the reference state 0 as πi = π0s

i
o

∏i
j=1 k+j/k−j . If each site operated

independently, then we could postulate per site association and disassoci-
ation intensities of soc+ and c−, respectively. Under the independent-site
hypothesis, sok+j = so(4 − j + 1)c+ and k−j = jc−.

Example 8.5.2 Kimura’s DNA Substitution Model

Kimura has suggested a model for base-pair substitution in molecular evolu-
tion [113, 133]. Recall that DNA is a long double polymer constructed from
the four bases (or nucleotides) adenine, guanine, cytosine, and thymine.
These bases are abbreviated A, G, C, and T, respectively. Two of the bases
are purines (A and G), and two are pyrimidines (C and T). The two strands
of DNA form a double helix containing complementary hereditary informa-
tion in the sense that A and T and C and G always pair across strands.



194 8. Continuous-Time Markov Chains

��
	


0 ��
	


1 ��
	


2 ��
	


3 ��
	


4
	

sok+1



k−1

	
sok+2



k−2

	
sok+3



k−3

	
sok+4



k−4

FIGURE 8.1. A Markov Chain Model for Oxygen Attachment to Hemoglobin

For example, if one strand contains the block –ACCGT– of bases, then
the other strand contains the complementary block –TGGCA– of bases
taken in reverse order. Thus, one is justified in following the evolutionary
development of one strand and ignoring the other strand.

Kimura defines a continuous-time Markov chain with the four states A,
G, C, and T that captures the evolutionary history of a species at a single
position (or site) along a DNA strand. Mutations occur from time to time
that change the base at the site. Let λij be the intensity at which base
i mutates to base j. Kimura radically simplifies these intensities. Let us
write i � j if i and j are both purines or both pyrimidines and i �� j if one
is a purine and the other is a pyrimidine. Then Kimura assumes that

λij =

{
α i � j
β i �� j.

These assumptions translate into the infinitesimal generator

Λ =

⎛

⎜
⎜
⎝

A G C T

A −(α+ 2β) α β β
G α −(α+ 2β) β β
C β β −(α+ 2β) α
T β β α −(α+ 2β)

⎞

⎟
⎟
⎠.

Kimura’s chain is reversible with the uniform distribution as its equilibrium
distribution.

Example 8.5.3 Incidence and Prevalence

The distinction between the epidemiological terms “incidence” and “preva-
lence” can be illustrated by constructing a continuous-time Markov chain
that records the numbers (M,N) of healthy and sick people traversing the
diagram in Figure 8.2. The states H , S, and D correspond to a person
being healthy, sick, or dead. New healthy people enter the process accord-
ing to a Poisson process with rate β. Each healthy person has a rate α of
converting to a sick person and a rate μ of dying. Sick people die at rate
ν. In this model, prevalence is equated to E(N), and incidence is equated
to the rate of conversion of healthy people to sick people.
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FIGURE 8.2. A Markov Chain Model for Incidence and Prevalence

The continuous-time Markov chain summarized by Figure 8.2 is irre-
versible. Indeed, the single-step transition from state (m + 1, n − 1) to
state (m,n) is possible while the reverse single-step transition is impossi-
ble. Nonetheless, we can write down the balance equations

πmn[β +m(α+ μ) + nν] = πm−1,nβ + πm+1,n−1(m+ 1)α (8.11)

+ πm+1,n(m+ 1)μ+ πm,n+1(n+ 1)ν

for the equilibrium distribution by equating the probabilistic flow out of
state (m,n) to the probabilistic flow into state (m,n). (Here we assume for
the sake of simplicity thatm > 0 and n > 0.) Although it is far from obvious
how to solve this system of equations, it is clear on probabilistic grounds
that the marginal distribution ωm of the number of healthy people does
not depend on the parameter ν. Furthermore, a little reflection suggests
the balance equation

ωmm(α+ μ) = ωm−1β.

From this it is trivial to deduce the Poisson distribution

ωm =
λm

H

m!
e−λH , λH =

β

α+ μ
.

At equilibrium, people in state H transfer to state S at rate (incidence)

∞∑

m=0

λm
H

m!
e−λHmα = αλH .

If we take the leap of faith that M and N are independent at equilib-
rium, then the equilibrium distribution φn of N should satisfy the balance
equations

φnnν = φn−1αλH

with Poisson solution

φn =
λn

S

n!
e−λS , λS =

αβ

ν(α+ μ)
.
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The skeptical reader can now check that πmn = ωmφn furnishes a solu-
tion to the balance equations (8.11). This model allows one to calculate at
equilibrium the mean number of healthy people E(M) = λH and the mean
number of sick people E(N) = λS . The model also permits us to recover
the classical equation

prevalence = λS = αλH
1

ν
= incidence × disease duration

relating prevalence and incidence. This conservation equation from queuing
theory generalizes to a broader epidemiological context [110]. Problem 18
provides an alternative method for finding the equilibrium distribution of
M and N in the spirit of Example 6.8.1.

Example 8.5.4 Circuit Theory

Interesting but naive models of electrical circuits can be constructed using
continuous-time Markov chains. Consider a model with m+1 nodes labeled
0, . . . ,m. Nodes 0 and 1 correspond to the terminals of a battery. Node 0 has
potential 0 and node 1 has potential 1. Each of the nodes can be occupied by
electrons. For the sake of simplicity in discussing potential differences, we
assume that an electron carries a positive rather than a negative charge.
Suppose node j has a capacity of ej electrons. The number of electrons
present at node j is given by a random variable nj(t) at time t. At nodes
0 and 1 we assume that n0(t) = 0 and n1(t) = e1. Provided we define
appropriate infinitesimal transition probabilities, the random count vector
n(t) = [n0(t), n1(t), . . . , nm(t)] constitutes a continuous-time Markov chain
[111].

Transitions of this chain correspond to the transfer of electrons between
pairs of nodes from 2, . . . ,m, the absorption of an electron at node 0 from
one of the nodes 2, . . . ,m, and the introduction of an electron into one of the
nodes 2, . . . ,m from node 1. Electrons absorbed by node 0 are immediately
passed to the battery so that the count n0(t) remains at 0 for all time.
Likewise, electrons leaving node 1 are immediately replaced by the battery
so that n1(t) remains at e1 for all time. Provided we refer to electron
absorptions and introductions as transfer events, we can devise a useful
model by giving the infinitesimal transfer rates between states. These will
be phrased in terms of the conductance cjk = ckj between two nodes j and
k. The reciprocal of a conductance is a resistance. If we imagine the two
nodes connected by a wire, then conductance indicates the mobility of the
electrons through the wire. In the absence of a wire between the nodes,
the conductance is 0. The transfer rate λjk between nodes j and k should
incorporate the conductance cjk, the possible saturation of each node by
electrons, and the fact that electrons repel. The particular choice

λjk = cjk
nj

ej

ek − nk

ek
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succinctly captures these requirements.
To monitor the mean number of electrons at node j, we derive a differen-

tial equation involving the transfer of electrons during a short time interval
of duration s. Conditioning on the electron counts at time t, we find that

E[nj(t+ s) − nj(t)]

= E{E[nj(t+ s) − nj(t) | n(t)]}

=
∑

k �=j

E
{

E
[
ckj

(ej − nj(t)

ej

nk(t)

ek
− nj(t)

ej

ek − nk(t)

ek

)
s
∣
∣
∣ n(t)

]}
+ o(s)

=
∑

k �=j

E
[
ckj

(nk(t)

ek
− nj(t)

ej

)]
s+ o(s).

Forming the corresponding difference quotient and sending s to 0 give
the differential equation

d

dt
E[nj(t)] =

∑

k �=j

ckj [pk(t) − pj(t)],

where pj(t) = E[nj(t)/ej] and pk(t) = E[nk(t)/ek] are the potentials at
nodes j and k. The term ckj [pk(t)− pj(t)] represents the current flow from
node j to node k and summarizes Ohm’s law. At equilibrium, the mean
number of electrons entering and leaving node j is 0. This translates into
Kirchhoff’s law

0 =
d

dt
E[nj(t)] =

∑

k �=j

ckj(pk − pj),

where pk(t) = pk and pj(t) = pj are constant. An alternative Markov chain
model for current flow is presented in reference [52].

8.6 Calculation of Matrix Exponentials

From the definition of the matrix exponential eA, it is easy to deduce that
it is continuous in A and satisfies eA+B = eAeB whenever AB = BA. It is
also straightforward to check the differentiability condition

d

dt
etA = AetA = etAA.

Proofs of these facts depend on the introduction of vector and matrix
norms. Of more practical importance is how one actually calculates etA

[145]. In some cases it is possible to do so analytically. For instance, if u
and v are column vectors with the same number of components, then

esuvt

=

{
I + suvt if vtu = 0

I + esvtu−1
vtu uvt otherwise.



198 8. Continuous-Time Markov Chains

This follows from the formula (uvt)i = (vtu)i−1uvt. The special case where
u = (−α, β)t and v = (1,−1)t permits explicit calculation of the finite-time
transition matrix

P (s) = exp

[

s

(
−α α
β −β

)]

for a two-state Markov chain.
If A is a diagonalizable n×n matrix, then we can write A = TDT−1 for

D a diagonal matrix with ith diagonal entry ρi. Here ρi is an eigenvalue of
A with eigenvector equal to the ith column of T . Because A = TDT−1, we
find that A2 = TDT−1TDT−1 = TD2T−1 and in general Ai = TDiT−1.
Hence,

etA =

∞∑

i=0

1

i!
(tA)i

=

∞∑

i=0

1

i!
T (tD)iT−1 (8.12)

= TetDT−1,

where

etD =

⎛

⎝
eρ1t · · · 0

...
. . .

...
0 · · · eρnt

⎞

⎠ .

Equation (8.12) suggests that the behavior of etA is determined by its
dominant eigenvalue. This is the eigenvalue with largest real part. Suppose
for the sake of argument that a dominant eigenvalue exists and is real. If
the dominant eigenvalue is negative, then etA will tend to the zero matrix
as t tends to ∞. If the dominant eigenvalue is positive, then usually the
entries of etA will diverge. Finally, if the dominant eigenvalue is 0, then etA

may converge to a constant matrix. As demonstrated in Section 8.4, the
infinitesimal generator of an irreducible chain falls in this third category.
Appendix A.2 develops these ideas rigorously.

Even if we cannot calculate etA analytically, we can usually do so numer-
ically [92]. For instance when t > 0 is small, we can approximate etA by the
truncated series

∑n
i=0(tA)i/i! for n small. For larger t such truncation can

lead to serious errors. If the truncated expansion is sufficiently accurate for
all t ≤ c, then for arbitrary t one can exploit the property e(s+t)A = esAetA

of the matrix exponential. Thus, if t > c, take the smallest positive integer

k such that 2−kt ≤ c and approximate e2
−ktA by the truncated series. Ap-

plying the multiplicative property, we can compute etA by squaring e2
−ktA,

squaring the result e2
−k+1tA, squaring the result of this, and so forth, a

total of k times.
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Problem 3 features a method of computing matrix exponentials specifi-
cally tailored to infinitesimal generators. This uniformization technique is
easy to implement numerically. The uniformization formula of the prob-
lem also demonstrates the obvious fact that all entries of the finite-time
transition matrix P (t) = etΛ are nonnegative.

Example 8.6.1 Application to Kimura’s Model

Because the infinitesimal generator Λ in Kimura’s model is a symmetric
matrix, it has only real eigenvalues. These are 0, −4β, −2(α + β), and
−2(α+ β). The reader can check that the four corresponding eigenvectors

1

2

⎛

⎜
⎝

1
1
1
1

⎞

⎟
⎠ ,

1

2

⎛

⎜
⎝

−1
−1
1
1

⎞

⎟
⎠ ,

1√
2

⎛

⎜
⎝

0
0
−1
1

⎞

⎟
⎠ ,

1√
2

⎛

⎜
⎝

−1
1
0
0

⎞

⎟
⎠

are orthogonal unit vectors. Therefore, the matrix T constructed by con-
catenating these vectors is orthogonal with inverse T t. Equation (8.12)
gives

etΛ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
2 − 1

2 0 − 1√
2

1
2 − 1

2 0 1√
2

1
2

1
2 − 1√

2
0

1
2

1
2

1√
2

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 e−4βt 0 0

0 0 e−2(α+β)t 0

0 0 0 e−2(α+β)t

⎞

⎟
⎟
⎟
⎟
⎟
⎠

×

⎛

⎜
⎜
⎜
⎜
⎝

1
2

1
2

1
2

1
2

− 1
2 − 1

2
1
2

1
2

0 0 − 1√
2

1√
2

− 1√
2

1√
2

0 0

⎞

⎟
⎟
⎟
⎟
⎠
.

From this representation, we can calculate typical entries such as

pAA(t) =
1

4
+

1

4
e−4βt +

1

2
e−2(α+β)t

pAG(t) =
1

4
+

1

4
e−4βt − 1

2
e−2(α+β)t

pAC(t) =
1

4
− 1

4
e−4βt.

In fact, all entries of the finite-time transition matrix take one of these
three forms.
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8.7 Kendall’s Birth-Death-Immigration Process

In this section we tackle a continuous-time Markov chain important in bi-
ological and chemical applications. This chain has nonconstant transition
intensities and an infinite number of states. As a preliminary to understand-
ing Kendall’s birth-death-immigration process, we derive nonrigorously the
forward equations governing such a chain Xt. Let pij(t) be the probability
that the chain is in state j at time t given it was in state i at time 0. Our
point of departure is the Chapman-Kolmogorov relation

pij(t+ h) = pij(t) Pr(Xt+h = j | Xt = j)

+
∑

k �=j

pik(t) Pr(Xt+h = j | Xt = k). (8.13)

We now assume that

Pr(Xt+h = j | Xt = j) = 1 − λj(t)h+ o(h)

Pr(Xt+h = j | Xt = k) = λkj(t)h+ o(h) (8.14)

for continuous intensities λkj(t), that only a finite number of the λjk(t)
differ from 0 for a given j, and that λj(t) =

∑
k �=j λjk(t). Inserting the

approximations (8.14) into the time-inhomogeneous Chapman-Kolmogorov
relation (8.13) and rearranging terms yields the difference quotient

pij(t+ h) − pij(t)

h
= −pij(t)λj(t) +

∑

k �=j

pik(t)λkj(t) +
o(h)

h
.

Sending h to 0 therefore gives the system of forward equations

d

dt
pij(t) = −pij(t)λj(t) +

∑

k �=j

pik(t)λkj(t) (8.15)

with the obvious initial conditions pij(0) = 1{i=j}.
In Kendall’s birth-death-immigration process, Xt counts the number of

particles at time t. Particles are of a single type and independently die
and reproduce. The death rate per particle is μ(t), and the birth rate per
particle is α(t). Reproduction occurs throughout the lifetime of a particle,
not at its death. A Poisson process with intensity ν(t) feeds new particles
into the process. Each new immigrant starts an independently evolving clan
of particles. If there are initially i particles, then the forward equations can
be summarized as

d

dt
pi0(t) = −ν(t)pi0(t) + μ(t)pi1(t)

and

d

dt
pij(t) = −[ν(t) + jα(t) + jμ(t)]pij(t) + [ν(t) + (j − 1)α(t)]pi,j−1(t)

+ (j + 1)μ(t)pi,j+1(t)
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for j > 0. Note here the assumption that each birth involves a single daugh-
ter particle.

To better understand this infinite system of coupled ordinary differential
equations, we define the generating function

G(s, t) =
∞∑

j=0

pij(t)s
j

for s ∈ [0, 1]. If we multiply the jth forward equation by sj and sum on j,
then we find that

∂

∂t
G(s, t) =

∞∑

j=0

d

dt
pij(t)s

j

= −ν(t)
∞∑

j=0

pij(t)s
j − [α(t) + μ(t)]s

∞∑

j=1

jpij(t)s
j−1

+ ν(t)s

∞∑

j=1

pi,j−1(t)s
j−1 + α(t)s2

∞∑

j=1

(j − 1)pi,j−1(t)s
j−2

+ μ(t)
∞∑

j=0

(j + 1)pi,j+1(t)s
j

= −ν(t)G(s, t) − [α(t) + μ(t)]s
∂

∂s
G(s, t) + ν(t)sG(s, t)

+ α(t)s2
∂

∂s
G(s, t) + μ(t)

∂

∂s
G(s, t).

Collecting terms yields the partial differential equation

∂

∂t
G(s, t) = [α(t)s− μ(t)](s− 1)

∂

∂s
G(s, t) + ν(t)(s− 1)G(s, t) (8.16)

with the initial condition G(s, 0) = si.
Before solving equation (8.16), it is worth solving for the mean number

of particles mi(t) at time t. In view of the fact that mi(t) = ∂
∂sG(s, t)|s=1,

we can differentiate equation (8.16) and derive the ordinary differential
equation

d

dt
mi(t) =

∂2

∂s∂t
G(1, t)

= [α(t) − μ(t)]
∂

∂s
G(1, t) + ν(t)G(1, t)

= [α(t) − μ(t)]mi(t) + ν(t)

with the initial condition mi(0) = i. To solve this first-order ordinary dif-
ferential equation, we multiply both sides by ew(t), where

w(t) =

∫ t

0

[μ(τ) − α(τ)] dτ.
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This action produces

d

dt

[
mi(t)e

w(t)
]

= ν(t)ew(t).

Integrating and rearranging then yields the solution

mi(t) = ie−w(t) +

∫ t

0

ν(τ)ew(τ)−w(t) dτ.

The special case where α(t), μ(t), and ν(t) are constant simplifies to

mi(t) = ie(α−μ)t +
ν

α− μ

[
e(α−μ)t − 1

]
. (8.17)

When α < μ, the forces of birth and immigration eventually balance the
force of death, and the process reaches equilibrium. The equilibrium distri-
bution has mean limt→∞mi(t) = ν/(μ− α).

Example 8.7.1 Inhomogeneous Poisson Process

If we take i = 0, α(t) = 0, and μ(t) = 0, then Kendall’s process coincides
with an inhomogeneous Poisson process. The reader can check that the
partial differential equation (8.16) reduces to

∂

∂t
G(s, t) = ν(t)(s− 1)G(s, t)

with solution

G(s, t) = e
−(1−s)

∫
t

0
ν(τ)dτ

.

From G(s, t) we reap the Poisson probabilities

p0j(t) =

( ∫ t

0 ν(τ) dτ
)j

j!
e
−
∫

t

0
ν(τ)dτ

.

Example 8.7.2 Inhomogeneous Pure Death Process

When i > 0, α(t) = 0, and ν(t) = 0, Kendall’s process represents a pure
death process. The partial differential equation (8.16) reduces to

∂

∂t
G(s, t) = −μ(t)(s− 1)

∂

∂s
G(s, t)

with solution

G(s, t) = 1 − e
−
∫

t

0
μ(τ) dτ

+ se
−
∫

t

0
μ(τ) dτ
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if i = 1. In other words, a single initial particle is still alive at time t
with probability exp[−

∫ t

0 μ(τ) dτ ]. Another interpretation of this process
is possible if t is taken as the distance traveled by a particle through some
attenuating medium with attenuation coefficient μ(t). Death corresponds
to the particle being stopped. The solution for general i > 0 is given by the
binomial generating function

G(s, t) =
[
1 − e

−
∫

t

0
μ(τ) dτ

+ se
−
∫

t

0
μ(τ) dτ

]i

because all i particles behave independently.

Example 8.7.3 Inhomogeneous Pure Birth Process

When i > 0, μ(t) = 0, and ν(t) = 0, Kendall’s process represents a pure
birth process. The partial differential equation (8.16) becomes

∂

∂t
G(s, t) = α(t)s(s− 1)

∂

∂s
G(s, t)

with solution

G(s, t) =

⎧
⎪⎨

⎪⎩

se
−
∫

t

0
α(τ) dτ

1 − s
[
1 − e

−
∫

t

0
α(τ) dτ

]

⎫
⎪⎬

⎪⎭

i

,

which is the generating function of a negative binomial distribution with
success probability exp[−

∫ t

0 α(τ) dτ ] and required number of successes i.
When i = 1,

p1j(t) = e
−
∫

t

0
α(τ)dτ

[
1 − e

−
∫

t

0
α(τ) dτ

]j−1

is just the probability that a single ancestral particle generates j−1 descen-
dant particles. If we reverse time in this process, then births appear to be
deaths, and p1j(t) coincides with the probability that all j − 1 descendant
particles present at time t die before time 0 and the ancestral particle lives
throughout the time interval.

8.8 Solution of Kendall’s Equation

Remarkably enough, the dynamics of Kendall’s birth-death-immigration
process can be fully specified by solving equation (8.16). Let us begin by
supposing that the immigration rate ν(t) is identically 0 and that X0 = 1.
In this situation, G(s, t) is given by the formidable expression

G(s, t) =
ew(t) − (s− 1)[

∫ t

0 α(τ)ew(τ)dτ − 1]

ew(t) − (s− 1)
∫ t

0 α(τ)ew(τ)dτ
(8.18)
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= 1 +
1

ew(t)

s−1 −
∫ t

0 α(τ)ew(τ)dτ
,

where w(t) =
∫ t

0
[μ(τ) − α(τ)] dτ . It follows from (8.18) that G(s, 0) = s,

consistent with starting with a single particle.
To find G(s, t), we consider a curve s(t) in (s, t) space parameterized by

t and determined implicitly by the relation G(s, t) = s0, where s0 is some
constant in [0,1]. Differentiating G(s, t) = s0 with respect to t produces

∂

∂t
G(s, t) +

∂

∂s
G(s, t)

ds

dt
= 0.

Comparing this equation to equation (8.16), we conclude that

ds

dt
= (αs− μ)(1 − s) = [α− μ+ α(s− 1)](1 − s), (8.19)

where we have omitted the dependence of the various functions on t.
If we let u = 1− s and r = μ−α, then the ordinary differential equation

(8.19) is equivalent to

du

dt
= (r + αu)u.

The further transformation v = lnu gives

dv

dt
= r + αev,

which in turn yields

d

dt
(v − w) = αev = αev−wew

for w(t) =
∫ t

0
r(τ) dτ . Once we write this last equation as

d

dt
e−(v−w) = −αew,

the solution

e−v(t)+w(t) − e−v(0)+w(0) = −
∫ t

0

α(τ)ew(τ)dτ

is obvious. When we impose the initial condition s(0) = s0 and recall the
definitions of v and u, it follows that

ew(t)

1 − s
− 1

1 − s0
= −

∫ t

0

α(τ)ew(τ)dτ.
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A final rearrangement now gives

s0 = 1 +
1

ew(t)

s−1 −
∫ t

0 α(τ)ew(τ)dτ
,

which validates the representation (8.18) of G(s, t) = s0.
Before adding the complication of immigration, let us point out that

the generating function (8.18) collapses to the appropriate expression for
G(s, t) when the process is a pure birth process or a pure death process.
It is also noteworthy that G(s, t)i is the generating function of Xt when
X0 = i rather than X0 = 1. This is just a manifestation of the fact that
particles behave independently in the model.

The key to including immigration is the observation that when an im-
migrant particle arrives, it generates a clan of particles similar to the clan
of particles issuing from a particle initially present. However, the clan orig-
inating from the immigrant has less time to develop. This suggests that
we consider the behavior of Kendall’s birth-death process starting with a
single particle at some later time u > 0. Denote the generating function
associated with this delayed process by G(s, t, u) for t ≥ u. Our discussion
above indicates that G(s, t, u) is given by formula (8.18), provided we re-
place 0 by u in the lower limits of integration in the formula and in the
definition of the function w(t).

If we now assume X0 = 0, then the generating function H(s, t) of Xt in
the presence of immigration is given by

H(s, t) = exp

{∫ t

0

[G(s, t, u) − 1]ν(u) du

}

. (8.20)

We will prove this by constructing an appropriate marked Poisson pro-
cess and appealing to Campbell’s formula (6.18). Recall that immigrant
particles arrive according to a Poisson process with intensity ν(t). Now
imagine marking a new immigrant particle at time u by the size of the clan
y it generates at the subsequent time t. The random marked points (U, Y )
constitute a marked Poisson process Π with intensity p(y | u)ν(u), where
p(y | u) is the conditional discrete density of Y given the immigration
time u. Thus, formula (6.18) implies that Xt =

∑
(u,y)∈Π y has generating

function

H(s, t) = exp

{∫ ∑

y

(sy − 1)p(y | u)ν(u) du

}

.

In view of the identities
∑

y p(y | u) = 1 and
∑

y s
yp(y | u) = G(s, t, u), this

proves equation (8.20). Because particles behave independently, if initially
X0 = i instead of X0 = 0, then the generating function of Xt is

E(sXt) = G(s, t, 0)i exp

{∫ t

0

[G(s, t, u) − 1]ν(u) du

}

. (8.21)
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In the special case where birth, death, and immigration rates are con-
stant, the above expression fortunately simplifies. Thus, the two explicit
formulas

∫ t

u

(μ− α) dτ = (μ− α)(t− u)

∫ t

u

αe

∫
τ

u
(μ−α)dη

dτ =
α

μ− α
[e(μ−α)(t−u) − 1]

lead to

G(s, t, u) = 1 +
1

e(μ−α)(t−u)

s−1 − α
μ−α [e(μ−α)(t−u) − 1]

= 1 +
(s− 1)(μ− α)e(α−μ)(t−u)

μ− αs+ α(s− 1)e(α−μ)(t−u)
,

which in turn implies

exp

{∫ t

0

[G(s, t, u) − 1]ν du

}

= e
ν
α

∫
t

0

d
du

ln(μ−αs+α(s−1)e(α−μ)(t−u)) du

=

(
μ− α

μ− αs+ α(s− 1)e(α−μ)t

) ν
α

.

From these pieces the full generating function (8.21) can be assembled.

8.9 Problems

1. Let U , V , and W be independent exponentially distributed random
variables with intensities λ, μ, and ν, respectively. Consider the ran-
dom variables X = min{U,W} and Y = min{V,W}. Demonstrate
that X and Y are exponentially distributed. What are their means?
The bivariate distribution of (X,Y ) is interesting. Prove that its right-
tail probability satisfies

Pr(X ≥ x, Y ≥ y) = e−λx−μy−ν max{x,y}.

By invoking the notion of competing risks, show that

Pr(X < Y ) =
λ

λ+ μ+ ν

Pr(Y < X) =
μ

λ+ μ+ ν

Pr(X = Y ) =
ν

λ+ μ+ ν
.
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The bivariate distribution of (X,Y ) possesses a density f(x, y) off the
line y = x. Show that

f(x, y) =

{
λ(μ + ν)e−λx−(μ+ν)y x < y
μ(λ + ν)e−(λ+ν)x−μy x > y.

Finally, demonstrate that

Cov(X,Y ) =
ν

(λ+ ν)(μ + ν)(λ+ μ+ ν)
.

(Hint: For the covariance, it helps to condition on W and use the
identity E(X |W ) = (1 − e−λW )/λ.)

2. Let Λ = (λij) be an m × m matrix and π = (πi) be a 1 × m row
vector. Show that the equality πiλij = πjλji is true for all pairs
(i, j) if and only if diag(π)Λ = Λtdiag(π), where diag(π) is a di-
agonal matrix with ith diagonal entry πi. Now suppose Λ is an in-
finitesimal generator with equilibrium distribution π. If P (t) = etΛ

is its finite-time transition matrix, then show that detailed balance
πiλij = πjλji for all pairs (i, j) is equivalent to finite-time detailed
balance πipij(t) = πjpji(t) for all pairs (i, j) and times t ≥ 0.

3. Suppose that Λ is the infinitesimal generator of a continuous-time
finite-state Markov chain, and let μ ≥ maxi λi. If R = I+μ−1Λ, then
prove that R has nonnegative entries and that

S(t) =

∞∑

i=0

e−μt (μt)
i

i!
Ri

coincides with P (t). Conclude from this formula that all entries of
P (t) are nonnegative. (Hint: Verify that S(t) satisfies the same defin-
ing differential equation and the same initial condition as P (t).)

4. Consider a continuous-time Markov chain with infinitesimal generator
Λ and equilibrium distribution π. If the chain is at equilibrium at
time 0, then show that it experiences t

∑
i πiλi transitions on average

during the time interval [0, t], where λi =
∑

j �=i λij and λij denotes
a typical off-diagonal entry of Λ.

5. Let P (t) = [pij(t)] be the finite-time transition matrix of a finite-state
irreducible Markov chain. Show that pij(t) > 0 for all i, j, and t > 0.
Thus, no state displays periodic behavior. (Hint: Use Problem 3.)

6. Let Xt be a finite-state reversible Markov chain with equilibrium
distribution π and infinitesimal generator Λ. Suppose {wi}i is an
orthonormal basis of column eigenvectors of Λ in �2π and {vi}i is the
corresponding orthonormal basis of row eigenvectors in �21/π. Arrange
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the eigenvalues γ1 = 0, γ2, . . . of Λ so that their real parts decline.
Demonstrate that

etΛ =
∑

i

eγitwivi =
∑

i

eγitwi(wi)t diag(π)

and that

‖μetΛ − π‖2
1/π =

∑

j≥2

e2γjt〈μ− π, vj〉21/π

=
∑

j≥2

e2γjt[(μ− π)wj ]2

≤ e2γ2t‖μ− π‖2
1/π

for any initial distribution μ. (Hints: Verify that the matrix exponen-
tial satisfies its defining differential equation, and see Section 7.5.)

7. A village with n+1 people suffers an epidemic. Let Xt be the number
of sick people at time t, and suppose that X0 = 1. If we model
Xt as a continuous-time Markov chain, then a plausible model is to
take the infinitesimal transition probability λi,i+1 = λi(n+ 1 − i) to
be proportional to the number of encounters between sick and well
people. All other λij = 0. Now let T be the time at which the last
member of the village succumbs to the disease. Since the waiting time
to move from state i to state i+1 is exponential with intensity λi,i+1,
show that E(T ) ≈ 2(lnn+ γ)/[λ(n+ 1)], where γ ≈ .5772 is Euler’s
constant. It is interesting that E(T ) decreases with n for large n.

8. Show that eA+B = eAeB = eBeA when AB = BA. (Hint: Prove
that all three functions et(A+B), etAetB, and etBetA satisfy the ordi-
nary differential equation P ′(t) = (A+B)P (t) with initial condition
P (0) = I.)

9. Consider a square matrixM . Demonstrate that (a) e−M is the inverse
of eM , (b) eM is positive definite when M is symmetric, and (c) eM is
orthogonal when M is skew symmetric in the sense that M t = −M .
(Hint: Apply Problem 8.)

10. Let A and B be the 2 × 2 real matrices

A =

(
a −b
b a

)

, B =

(
λ 0
1 λ

)

.

Show that

eA = ea

(
cos b − sin b
sin b cos b

)

, eB = eλ

(
1 0
1 1

)

.
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(Hints: Note that 2× 2 matrices of the form
(

a −b
b a

)
are isomorphic

to the complex numbers under the correspondence
(

a −b
b a

)
↔ a + bi.

For the second case write B = λI + C.)

11. Define matrices

A =

(
a 0
1 a

)

, B =

(
b 1
0 b

)

.

Show that AB �= BA and that

eAeB = ea+b

(
1 1
1 2

)

eA+B = ea+b

[

cosh(1)

(
1 0
0 1

)

+ sinh(1)

(
0 1
1 0

)]

.

Hence, eAeB �= eA+B. (Hint: Use Problem 10 to calculate eA and eB.
For eA+B write A+B = (a+ b)I +R with R satisfying R2 = I.)

12. Prove that det(eA) = etr(A), where tr is the trace function. (Hint:
Since the diagonalizable matrices are dense in the set of matrices
[94], by continuity you may assume that A is diagonalizable.)

13. Verify the Duhamel-Dyson identity

et(A+B) = etA +

∫ t

0

e(t−s)(A+B)BesAds

for matrix exponentials. (Hint: Both sides satisfy the same differential
equation.)

14. Consider a random walk on the set {0, 1, . . . , n} with transition in-
tensities

λij =

{
αi j = i+ 1
βi j = i− 1
0 otherwise

for 1 ≤ i ≤ n− 1. Let hk be the probability that the process hits the
absorbing state n before the absorbing state 0 starting from state k.
Demonstrate that

hk =

∑k−1
i=1

∏i
j=1

βj

αj

∑n−1
i=1

∏i
j=1

βj

αj

.

Simplify this expression when all αi = α and all βi = β. (Hints: Write
a difference equation for hk by conditioning on the outcome of the first
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jump. Rewrite the equation in terms of the differences dk = hk+1−hk

and solve in terms of d0 = h1. This gives hk = dk−1+· · ·+d0 up to the
unknown h1. The value of h1 is determined by the initial condition
hn = 1.)

15. In the random walk of Problem 14, suppose that escape is possible
from state 0 to state 1 with transition intensity α0 > 0. No other
transitions out of state 0 are permitted. Let tl be the expected time
until absorption by state n starting in state l. Show that

tl =

n−1∑

k=l

k∑

j=0

1

αk

k∏

i=j+1

βi

αi−1
.

(Hints: Write a difference equation for tl by conditioning on the out-
come of the first jump. Rewrite the equation in terms of the differ-
ences dl = tl − tl+1 and solve. Finally, invoke the telescoping series
hl = dl + · · · + dn−1.)

16. In our discussion of mean hitting times in Section 7.6, we derived the
formula t = (I−Q)−11 for the vector of mean times spent in the tran-
sient states {1, . . . ,m} en route to the absorbing states {m+1, . . . , n}.
If we pass to continuous time and replace transition probabilities pij

by transition intensities λij , then show that the mean time ti spent
in the transient states beginning at state i satisfies the equation

ti =
1

λi
+

∑

{j:j �=i,1≤j≤m}

λij

λi
tj .

Prove that the solution to this system can be expressed as

t = (I −Q)−1ω = −Υ−11,

where ω is the m× 1 column vector with ith entry λ−1
i and Υ is the

upper left m×m block of the infinitesimal generator Λ = (λij).

17. In Kimura’s model, suppose that two new species bifurcate at time 0
from an ancestral species and evolve independently thereafter. Show
that the probability that the two species possess the same base at a
given site at time t is

1

4
+

1

4
e−8βt +

1

2
e−4(α+β)t.

(Hint: By symmetry this formula holds regardless of what base was
present at the site in the ancestral species.)
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18. Recall from Example 7.3.3 that Ehrenfest’s model of diffusion involves
a box with n gas molecules. The box is divided in half by a rigid
partition with a very small hole. Molecules drift aimlessly around and
occasionally pass through the hole. Here we consider the continuous
version of the process. During a short time interval h, a given molecule
changes sides with probability λh+o(h). Show that a single molecule
at time t > 0 is on the same side of the box as it started at time
0 with probability 1

2 (1 + e−2λt). Now consider the continuous-time
Markov chain for the number of molecules in the left half of the box.
Given that the n molecules behave independently, prove that finite-
time transition probability pij(t) amounts to

pij(t) =
(1

2

)n
min{i,j}∑

k=max{0,i+j−n}

(
i

k

)(
n− i

j − k

)(
1 + e−2λt

)n−i−j+2k

×
(
1 − e−2λt

)i+j−2k

.

(Hint: The summation index k is the number of molecules initially in
the left half that end up in the left half at time t.)

19. Continuing Problem 18, it is possible to find a strong stationary time.
For a single particle imagine a Poisson process with intensity 2λ. At
each event of the process, flip a fair coin. If the coin lands heads, move
the particle to the other half of the box. If the coin lands tails, leave
the particle where it is. Why is this more elaborate process consistent
with the original process? Why does the particle reach equilibrium
at the moment Ti of the first event of the new process? Why do all
particles reach equilibrium at the random time T = maxi Ti? Let πt

be the distribution of the chain at time t, and let π be the equilibrium
distribution. Deduce the total variation bound

‖πt − π‖TV ≤ 1 −
(
1 − e−2λt

)n ≈ 1 − e−ne−2λt

.

Why does this imply that equilibrium is reached shortly after the
time ln n

2λ ?

20. A chemical solution initially contains n/2 molecules of each of the four
types A, B, C, and D. Here n is a positive even integer. Each pair of A
and B molecules collides at rate α to produce one C molecule and one
D molecule. Likewise, each pair of C and D molecules collides at rate
β to produce one A molecule and one B molecule. In this problem, we
model the dynamics of these reactions as a continuous-time Markov
chain Xt and seek the equilibrium distribution. The random variable
Xt tracks the number of A molecules at time t [15].
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(a) Argue that the infinitesimal transition rates of the chain amount
to

λi,i−1 = i2α

λi,i+1 = (n− i)2β.

What about the other rates?

(b) Show that the chain is irreducible and reversible.

(c) Use Kolmogorov’s formula and calculate the equilibrium distri-
bution

πk = π0

(
β

α

)k (
n

k

)2

for k between 0 and n.

(d) For the special case α = β, demonstrate that

πk =

(
n
k

)2

(
2n
n

) .

To do so first prove the identity

n∑

k=0

(
n

k

)2

=

(
2n

n

)

.

(e) To handle the case α �= β, we revert to the normal approximation
to the binomial distribution. Argue that

(
n

k

)

pkqn−k = qn

(
n

k

)(
p

q

)k

≈ 1√
2πnpq

e−
(k−np)2

2npq

for p+ q = 1. Show that this implies
(
n

k

)2(
p2

q2

)k

≈ 1

2πnpq2n+1
e−

(k−np)2

npq .

Now choose p so that p2/q2 = β/α and prove that the equi-
librium distribution is approximately normally distributed with
mean and variance

E(X∞) =
n
√

β
α

1 +
√

β
α

Var(X∞) =
n
√

β
α

2

(

1 +
√

β
α

)2 .
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21. Let n indistinguishable particles independently execute the same con-
tinuous-time Markov chain with infinitesimal transition probabilities
λij . Define a new Markov chain called the composition chain for the
particles by recording how many of the n total particles are in each
of the s possible states. A state of the new chain is a sequence of
nonnegative integers (k1, . . . , ks) such that

∑s
i=1 ki = n. For instance,

with n = 3 particles and s = 2 states, the composition chain has
the four states (3, 0), (2, 1), (1, 2), and (0, 3). Find the infinitesimal
transition probabilities of the composition chain. If the original chain
is ergodic with equilibrium distribution π = (π1, . . . , πs), find the
equilibrium distribution of the composition chain. Finally, show that
the composition chain is reversible if the original chain is reversible.

22. Apply Problem 21 to the hemoglobin model in Example 8.5.1 with the
understanding that the attachment sites operate independently with
the same rates. What are the particles? How many states can each
particle occupy? Identify the infinitesimal transition probabilities and
the equilibrium distribution based on the results of Problem 21.

23. The equilibrium distribution of the numbers (M,N) of healthy and
sick people in Example 8.5.3 can be found by constructing a marked
Poisson process. The time X at which a random person enters state
H is determined by a homogeneous Poisson process. Let Y be the
time he spends in state H and Z be the time he spends in state S.
If we mark each X by the pair (Y, Z), then we get a marked Poisson
process on R

3. Here we suppose for the moment that all healthy
people get sick before they eventually die of the given disease. Show
that the random variables M and N at a given time, say t = 0, count
the number of points in disjoint regions of R

3. Hence, these random
variables are independent and Poisson distributed. Finally, prove that
you can correct for our incorrect assumption by randomly thinning
some of the points corresponding to N . What thinning probability
should you use to get the correct mean E(N) = αβ

ν(α+μ)?

24. Cars arrive at an auto repair shop according to a Poisson process
with intensity λ. There are m mechanics on duty, and each takes an
independent exponential length of time with intensity μ to repair a
car. If all mechanics are busy when a car arrives, it is turned away.
Let Xt denote the number of mechanics busy at time t. Show that
the equilibrium distribution π of Xt has components

πk =

(
λ
μ

)k
1
k!

∑m
j=0

(
λ
μ

)j
1
j!

.
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25. Consider a pure birth processXt with birth intensity λj when Xt = j.
Let Tj denote the waiting time for a passage from state j to state
j + 1. The random variable T =

∑
j Tj is the time required for the

population to reach infinite size. If the series
∑

j λ
−1
j converges, then

demonstrate that Pr(T <∞) = 1. If the series
∑

j λ
−1
j diverges, then

demonstrate that Pr(T = ∞) = 1. (Hints: Show that E(T ) =
∑

j λ
−1
j

and that the Laplace transform E(e−T ) =
∏

j(1+λ−1
j )−1. The infinite

product converges to 0 if and only if the series diverges.)

26. On the lattice {0, 1, 2, . . . , n}, particles are fed into site 0 according to
a Poisson process with intensity λ. Once on the lattice a particle hops
one step to the right with intensity β and evaporates with intensity
μ. Show that a particle eventually reaches site n with probability
βn/(β+μ)n. Further demonstrate that, conditional on this event, the
corresponding waiting time follows a gamma distribution Fn,β+μ(t)
with shape parameter n and intensity β + μ. Finally, let Nt denote
the number of particles that reach site n by time t ≥ 0. Prove that
Nt is Poisson distributed with mean

E(Nt) = λ
( β

β + μ

)n
∫ t

0

Fn,β+μ(s) ds.

See the reference [182] for a list of biological applications and further
theory. (Hint: If a particle arrives at site 0 at time X and ultimately
reaches site n, then mark it by the corresponding waiting time Y .
The pairs (X,Y ) constitute a marked Poisson process.)

27. Prove that G(s, t) defined by equation (8.18) satisfies the partial
differential equation (8.16) with initial condition G(s, 0) = s and
ν(t) = 0.

28. In the homogeneous version of Kendall’s process, show that

Var(Xt) =
ν

(α− μ)2

[
αe(α−μ)t − μ

][
e(α−μ)t − 1

]

+
i(α+ μ)e(α−μ)t

α− μ

[
e(α−μ)t − 1

]

when X0 = i.

29. Continuing Problem 28, demonstrate that

Cov(Xt2 , Xt1) = e(α−μ)(t2−t1) Var(Xt1)

for 0 ≤ t1 ≤ t2. (Hints: First show that

Cov(Xt2 , Xt1) = Cov[E(Xt2 | Xt1), Xt1 ].

Then apply Problem 28.)
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30. In the homogeneous version of Kendall’s process, show that the gen-
erating function G(s, t) of Xt satisfies

lim
t→∞

G(s, t) =

(
1 − α

μ

)ν/α

(
1 − αs

μ

)ν/α
(8.22)

when α < μ.

31. Continuing Problem 30, prove that the equilibrium distribution π has
jth component

πj =
(
1 − α

μ

)ν/α(
− α

μ

)j
(
− ν

α

j

)

.

Do this by expanding the generating function on the right-hand side
of equation (8.22) and also by applying Kolmogorov’s method to
Kendall’s process. Note that the process is reversible.

32. Consider a time-homogeneous Kendall process with no immigration.
Show that the generating function G(s, t) of Xt satisfies the limit

lim
t→∞

G(s, t) −G(0, t)

1 −G(0, t)
=

s(μ− α)

μ− αs

when α < μ. Prove that this limit entails the geometric probability

lim
t→∞

Pr(Xt = k | Xt > 0) =
(α

μ

)k−1(
1 − α

μ

)

for each k > 0.

33. Consider the time averages

Yt =
1

t

∫ t

0

Xs ds

of a nonnegative stochastic process Xt with finite means and vari-
ances. Prove that

E(Yt) =
1

t

∫ t

0

E(Xs) ds

Var(Yt) =
2

t2

∫ t

0

∫ r

0

Cov(Xs, Xr) ds dr.

In particular for a time-homogeneous Kendall process with X0 = 0,
show that

E(Yt) =
ν

t(α− μ)2

[
e(α−μ)t − 1

]
− ν

α− μ
.

Under the same circumstances, calculate Var(Yt) using Problems 28
and 29. (Hint: Apply Fubini’s theorem to the first and second mo-
ments of Yt.)



9
Branching Processes

9.1 Introduction

A branching process models the reproduction of particles such as human
beings, cells, or neutrons. In the simplest branching processes, time is mea-
sured discretely in generations, and particles are of only one type. Each
particle is viewed as living one generation; during this period it produces
offspring contributing to the next generation. The key assumption that
drives the theory is that particles reproduce independently according to
the same probabilistic law. Interactions between particles are forbidden.
Within this context one can ask and at least partially answer interesting
questions concerning the random number Xn of particles at generation n.
For instance, what are the mean E(Xn) and the variance Var(Xn)? What
is the extinction probability Pr(Xn = 0) on or before generation n, and
what is the ultimate extinction probability limn→∞ Pr(Xn = 0)?

Probabilists have studied many interesting elaborations of the simple
branching process paradigm. For example, in some applications it is natu-
ral to include immigration of particles from outside the system and to in-
vestigate the stochastic balance between immigration and extinction. The
fact that branching processes are Markov chains suggests the natural gen-
eralization to continuous time. Here each particle lives an exponentially
distributed length of time. Reproduction comes as the particle dies. We
have already met one such process in the guise of the time-homogeneous
Kendall process. A final generalization is to processes with multiple particle
types. In continuous time, each type has its own mean lifetime and own

K. Lange, Applied Probability,
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reproductive pattern. Particles of one type can produce both offspring of
their own type and offspring of other types.

The theory of branching processes has a certain spin that sets it apart
from the general theory of Markov chains. Our focus in this chapter is on
elementary results and applications to biological models. We stress com-
putational topics such as the finite Fourier transform and the matrix ex-
ponential function rather than asymptotic results. Readers interested in
pursuing the theory of branching processes in more detail should consult
the references [13, 14, 51, 59, 80, 84, 103, 106, 170]. Statistical inference
questions arising in branching processes are considered in reference [81].

9.2 Examples of Branching Processes

We commence our discussion of branching processes in discrete time by
assuming that all particles are of the same type and that no immigration
occurs. The reproductive behavior of the branching process is encapsulated
in the progeny generating function Q(s) =

∑∞
k=0 qks

k for the number of
progeny (equivalently, offspring or daughter particles) born to a single par-
ticle. If the initial number of particles X0 = 1, then Q(s) is the generating
function of X1. For the sake of brevity in this chapter, we refer to probabil-
ity generating functions simply as generating functions. Before launching
into a discussion of theory, it is useful to look at a few concrete models of
branching processes.

Example 9.2.1 Cell Division

A cell eventually either dies with probability q0 or divides with probability
q2. In a cell culture, cells can be made to reproduce synchronously at dis-
crete generation times. Starting from a certain number of progenitor cells,
the number of cells at successive generations forms a branching process.
The progeny generating function of this process is Q(s) = q0 + q2s

2.

Example 9.2.2 Neutron Chain Reaction

In a fission reactor, a free neutron starts a chain reaction by striking and
splitting a nucleus. Typically, this generates a fixed number m of secondary
neutrons. These secondary neutrons are either harmlessly absorbed or strike
further nuclei and release tertiary neutrons, and so forth. The progeny
generating functionQ(s) = q0+qms

m of the resulting branching process has
mean μ = mqm. The chain reaction environment is said to be subcritical,
critical, or supercritical depending on whether μ < 1, μ = 1, or μ > 1. A
nuclear reactor is carefully modulated by drawing off excess neutrons to
maintain the critical state and avoid an explosion.
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Example 9.2.3 Survival of Family Names

In most cultures, family names (surnames) are passed through the male
line. The male descendants of a given man constitute a branching process to
a good approximation. Bienaymé, Galton, and Watson introduced branch-
ing processes to study the phenomenon of extinction of family names. We
will see later that extinction is certain for subcritical and critical processes.
A supercritical process either goes extinct or eventually grows at a ge-
ometric rate. These remarks partially explain why some long-established
countries have relatively few family names.

Example 9.2.4 Epidemics

The early stages of an epidemic are well modeled by a branching process.
If the number of infected people is small, then they act approximately
independently of each other. The coefficient qk in the progeny generating
function Q(s) =

∑∞
k=0 qks

k is the probability that an infected individual
infects k further people before he or she dies or recovers from the infection.
The extinction question is of paramount importance in assessing the efficacy
of vaccines in preventing epidemics.

Example 9.2.5 Survival of Mutant Genes

If a dominant deleterious (harmful) mutation occurs at an autosomal ge-
netic locus, then the person affected by the mutation starts a branching
process of mutant people. (An autosomal locus is a gene location on a non-
sex chromosome.) For instance, a clan of related people afflicted with the
neurological disorder Huntington’s disease can be viewed from this per-
spective [165]. Instead of sons, we follow the descendants, male and female,
carrying the mutation. Because a deleterious gene is rare, we can safely
assume that carriers mate only with normal people. On average, half of
the children born to a carrier will be normal, and half will be carriers. The
fate of each child is determined independently. Usually the reproductive
fitness of carriers is sufficiently reduced so that the branching process is
subcritical.

9.3 Elementary Theory

For the sake of simplicity, we now take X0 = 1 unless noted to the contrary.
To better understand the nature of a branching process, we divide the Xn

descendants at generation n into X1 clans. The kth clan consists of the
descendants of the kth progeny of the founder of the process. Translating
this verbal description into symbols gives the representation

Xn =

X1∑

k=1

Xnk, (9.1)
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where Xnk is the number of particles at generation n in the kth clan. The
assumptions defining a branching process imply that the Xnk are inde-
pendent, probabilistic replicas of Xn−1. Our calculations in Example 2.4.4
consequently indicate that E(Xn) = E(X1) E(Xn−1). If we let μ be the
mean number E(X1) = Q′(1) of progeny per particle, then this recurrence
relation entails E(Xn) = μn.

Calculation of the variance Var(Xn) also yields to the analysis of Exam-
ple 2.4.4. If σ2 is the variance of X1, then the representation (9.1) implies

Var(Xn) = μVar(Xn−1) + σ2 E(Xn−1)
2

= μVar(Xn−1) + σ2μ2(n−1). (9.2)

We claim that this recurrence relation has solution

Var(Xn) =

{
nσ2, μ = 1
μn−1(1−μn)σ2

1−μ , μ �= 1
(9.3)

subject to the initial condition Var(X0) = 0. The stated formula obviously
satisfies the recurrence (9.2) for μ = 1. When μ �= 1 and n = 0, the formula
also holds. If we assume by induction that it is true for n − 1, then the
calculation

Var(Xn) = μ
μn−2(1 − μn−1)σ2

1 − μ
+ σ2μ2(n−1)

= μσ2μ
n−2(1 − μn−1) + μ2n−3(1 − μ)

1 − μ

=
μn−1(1 − μn)σ2

1 − μ

combining equations (9.2) and (9.3) completes the proof for μ �= 1.
Finally, the representation (9.1) implies that Xn has generating function

Qn(s) = Q(Qn−1(s)), which is clearly the n-fold functional composition of
Q(s) with itself. The next example furnishes one of the rare instances in
which Qn(s) can be explicitly found.

Example 9.3.1 Geometric Progeny Distribution

In a sequence of Bernoulli trials with success probability p and failure
probability q = 1− p, the number of failures Y until the first success has a
geometric distribution with generating function

Q(s) =

∞∑

k=0

pqksk =
p

1 − qs
.

The mean and variance of Y are

μ =
pq

(1 − qs)2

∣
∣
∣
s=1

=
q

p
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and

σ2 =
2pq2

(1 − qs)3

∣
∣
∣
s=1

+ μ− μ2 =
q

p2
.

We can verify inductively that

Qn(s) =

{
n−(n−1)s
n+1−ns , p = q

p qn−pn−(qn−1−pn−1)qs
qn+1−pn+1−(qn−pn)qs , p �= q .

(9.4)

When n = 1, the second of these formulas holds because

p(q − p)

q2 − p2 − (q − p)qs
=

p(q − p)

(q + p)(q − p) − (q − p)qs

=
p

1 − qs
.

Assuming that the second formula in (9.4) is true for n− 1, we reason that

Qn(s) = Q(Qn−1(s))

=
p

1 − qp
qn−1 − pn−1 − (qn−2 − pn−2)qs

qn − pn − (qn−1 − pn−1)qs

= p
qn − pn − (qn−1 − pn−1)qs

qn(1 − p) − pn(1 − q) − qn−1(1 − p)qs+ pn−1(1 − q)qs

= p
qn − pn − (qn−1 − pn−1)qs

qn+1 − pn+1 − (qn − pn)qs
.

The inductive proof of the first formula in (9.4) is left to the reader.

9.4 Extinction

Starting with a single particle at generation 0, we now ask for the probabil-
ity s∞ that a branching process eventually goes extinct. To characterize s∞,
we condition on the number of progenyX1 = k born to the initial particle. If
extinction is to occur, then each of the clans emanating from the k progeny
must go extinct. By independence, this event occurs with probability sk

∞.
Thus, s∞ satisfies the functional equation s∞ =

∑∞
k=0 qks

k
∞ = Q(s∞),

where Q(s) is the progeny generating function.
One can find the extinction probability by functional iteration starting

at s = 0. Let sn be the probability that extinction occurs in the branching
process at or before generation n. Then s0 = 0, s1 = q0 = Q(s0), and, in
general, sn+1 = Q(sn) = Qn+1(0). This recurrence relation can be deduced
by conditioning once again on the number of progeny in the first generation.
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FIGURE 9.1. Extinction Iterates in a Supercritical Branching Process

If extinction is to occur at or before generation n+1, then it must occur in
n additional generations or sooner for each clan emanating from a daughter
particle of the founding particle.

On probabilistic grounds it is obvious that the sequence sn increases
monotonically to the extinction probability s∞. To understand what is
happening analytically, we need to know the number of roots of s = Q(s)
and which of these roots is s∞. Because Q′′(s) =

∑∞
k=2 k(k−1)qks

k−2 ≥ 0,
the curve Q(s) is convex. It starts at Q(0) = q0 > 0 above the diagonal
line t = s in Figure 9.1. (Note that if q0 = 0, then the process can never go
extinct.) On the interval [0, 1], the curve Q(s) and the line t = s intersect in
either one or two points. The point s = 1 is certainly an intersection point
because Q(1) =

∑∞
k=0 qk = 1. When the progeny mean μ = Q′(1) > 1,

the curve Q(s) intersects t = s at s = 1 from below, and there is a second
intersection point to the left of s = 1. When μ < 1, the second intersection
point occurs to the right of s = 1.

The cobweb diagram in Figure 9.1 following the progress of the iterates
sn makes it clear that they not only monotonically increase, but they are
also bounded above by the smaller of the two roots. Thus, the limit s∞ of
the sn exists and is bounded above by the smaller root. Taking limits in the
recurrence sn+1 = Q(sn) demonstrates that s∞ coincides with the smaller
root of s = Q(s). In other words, extinction is certain for subcritical and
critical processes and uncertain for supercritical processes.
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TABLE 9.1. Functional Iteration for an Extinction Probability

Iteration n Iterate sn Iteration n Iterate sn

0 .000 10 .847
1 .498 20 .873
2 .647 30 .878
3 .719 40 .879
4 .761 50 .880
5 .788

Example 9.4.1 Lotka’s American Surname Data

As a numerical example, consider the data of Lotka [138, 159] on the ex-
tinction of surnames among white males in the United States. Using 1920
census data, he computed the progeny generating function

Q(s) = .4982 + .2103s+ .1270s2 + .0730s3 + .0418s4 + .0241s5

+ .0132s6 + .0069s7 + .0035s8 + .0015s9 + .0005s10

for the number of sons of a random father. Because the average number
of sons per father μ = Q′(1) > 1, we anticipate an extinction probability
s∞ < 1. Table 9.1 lists some representative functional iterates. Convergence
to the extinction probability .880 is slow but sure.

Example 9.4.2 Extinction Probability for the Geometric Distribution

Consider once again the geometric distribution of Example 9.3.1. The two
roots of the equation s = p

1−qs are 1 and p
q = 1

μ . When μ > 1, the extinction

probability is s∞ = p
q . When μ < 1, the root p

q lies outside the interval

[0, 1], and the extinction probability is s∞ = 1. Finally, when μ = 1, the two
roots coincide. Thus, extinction is certain if μ ≤ 1 and uncertain otherwise.

The same conclusions can be reached by considering the behavior of
sn = Qn(0) as suggested by formula (9.4). If p < q, then

lim
n→∞

Qn(0) = lim
n→∞

p

q

1 −
(

p
q

)n

1 −
(

p
q

)n+1 =
p

q
.

If p > q, then

lim
n→∞

Qn(0) = lim
n→∞

1 −
(

q
p

)n

1 −
(

q
p

)n+1 = 1.

Finally, if p = q, then

lim
n→∞

Qn(0) = lim
n→∞

n

n+ 1
= 1.
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The rate of convergence in this critical case is very slow.
If T denotes the generation at which extinction occurs in a subcritical

process, then Pr(T > n) = 1−Qn(0) = 1−sn. The tail-probability method
of Example 2.5.1 therefore implies

E(T ) =

∞∑

n=0

(1 − sn)

E(T 2) =
∞∑

n=0

(2n+ 1)(1 − sn). (9.5)

Truncated versions of these sums permit one to approximate the first two
moments of T . Problem 10 develops practical error bounds on this proce-
dure. Finally, it is useful to contrast the critical case to the subcritical case.
For instance, with a critical geometric generating function, we find that

E(T ) =

∞∑

n=0

(1 − sn) =

∞∑

n=0

(
1 − n

n+ 1

)
= ∞.

Now let Yn = 1 +
∑n

k=1Xk be the total number of descendants up to
generation n. The limit Y∞ = limn→∞ Yn exists because the Yn form an
increasing sequence. The next proposition collects pertinent facts about
this interesting random variable.

Proposition 9.4.1 If rk = Pr(Y∞ = k) and R(s) =
∑∞

k=1 rks
k, then the

following hold:

(a) The extinction probability s∞ = Pr(Y∞ < ∞) =
∑∞

k=1 rk. Therefore,
in a supercritical process Y∞ = ∞ occurs with positive probability.

(b) The generating function R(s) satisfies R(s) = sQ(R(s)).

(c) For μ < 1, the mean and variance of Y∞ are E(Y∞) = 1
1−μ and

Var(Y∞) = σ2

(1−μ)3 .

(d) If the power Q(s)j has expansion
∑∞

k=0 qjks
k, then rj = 1

j qj,j−1.

Proof: To prove part (a), note that there is at least one particle per gen-
eration if and only if the process does not go extinct. Hence, Y∞ is finite
if and only if the process goes extinct. For part (b), note that we have by
analogy to equation (9.1) the representation

Y∞ = 1 +

X1∑

k=1

Y∞k, (9.6)

where the Y∞k are independent, probabilistic replicas of Y∞. The generat-
ing function version of this representation is precisely R(s) = sQ(R(s)) as
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described in Example 2.4.4. To verify part (c), observe that equation (9.6)
implies

E(Y∞) = 1 + μE(Y∞)

Var(Y∞) = μVar(Y∞) + σ2 E(Y∞)2.

Assuming for the sake of simplicity that both E(Y∞) and Var(Y∞) are finite,
we can solve the first of these equations to derive the stated expression for
E(Y∞). Inserting this solution into the second equation and solving gives
Var(Y∞). Proof of part (d) involves the tricky Lagrange inversion formula
and is consequently omitted [42].

Example 9.4.3 Total Descendants for the Geometric Distribution

When Q(s) = p
1−qs , application of part (b) of Proposition 9.4.1 gives the

equation R(s) = ps/[1−qR(s)] or qR(s)2−R(s)+ps = 0. The smaller root

R(s) =
1 −

√
1 − 4pqs

2q

of this quadratic is the relevant one. Indeed, based on the representation

1 +
√

1 − 4pq

2q
=

p+ q +
√

(p+ q)2 − 4pq

2q

=
p+ q + |p− q|

2q
,

taking the larger root produces the contradictory results R(1) > 1 in the
subcritical case where q < p and R(1) = 1 in the supercritical case where
q > p. In the subcritical case, Proposition 9.4.1 or differentiation of R(s)
shows that E(Y∞) = p

p−q and Var(Y∞) = pq
(p−q)3 .

9.5 Immigration

We now modify the definition of a branching process to allow for immi-
gration at each generation. In other words, we assume that the number
of particles Xn at generation n is the sum Un + Zn of the progeny Un of
generation n−1 plus a random number of immigrant particles Zn indepen-
dent of Un. To make our theory as simple as possible, we take the Zn to be
independent and identically distributed with common mean α and variance
β2. If the process without immigration is subcritical (μ < 1), then parti-
cle numbers eventually reach a stochastic equilibrium between extinction
and immigration. The goal of this section is to characterize the equilibrium
distribution.
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Our point of departure in the subcritical case is the representation

Un =

Xn−1∑

k=1

Vn−1,k (9.7)

of the progeny of generation n − 1 partitioned by parent particle k. From
this representation it follows by the usual conditioning arguments that

E(Xn) = E(Xn−1) E(Vn−1,1) + E(Zn)

= μE(Xn−1) + α (9.8)

Var(Xn) = E(Xn−1)Var(Vn−1,1) + Var(Xn−1) E(Vn−1,1)
2 + Var(Zn)

= σ2 E(Xn−1) + μ2 Var(Xn−1) + β2.

If we assume limn→∞ E(Xn) = E(X∞) and limn→∞ Var(Xn) = Var(X∞)
for some random variable X∞, then taking limits on n in the two equations
in (9.8) yields

E(X∞) = μE(X∞) + α

Var(X∞) = σ2 E(X∞) + μ2 Var(X∞) + β2.

Solving these two equations in succession produces

E(X∞) =
α

1 − μ

Var(X∞) =
ασ2 + β2(1 − μ)

(1 − μ)2(1 + μ)
. (9.9)

It is interesting that E(X∞) is the product of the average number of im-
migrants α per generation times the average clan size 1

1−μ per particle

identified in part (c) of Proposition 9.4.1.
Our next aim is to find the distribution of X∞. Let Pn(s) be the gener-

ating function of Xn and R(s) be the common generating function of the
Zn. Then the decomposition Xn = Un + Zn and equation (9.7) imply

Pn(s) = Pn−1(Q(s))R(s), (9.10)

where Q(s) is the progeny generating function. Iterating equation (9.10)
yields

Pn(s) = P0(Qn(s))

n−1∏

k=0

R(Qk(s)), (9.11)

where Qk(s) is again the k-fold functional composition of Q(s) with itself.
The finite product (9.11) tends to the infinite product

P∞(s) =

∞∏

k=0

R(Qk(s)) (9.12)
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representation of the generating function of X∞. Observe here that the
leading term P0(Qn(s)) on the right of equation (9.11) tends to 1 because
Qn(0) tends to the extinction probability 1 and Qn(0) ≤ Qn(s) ≤ 1 for all
s ∈ [0, 1].

The problem now is to recover the coefficients pk of P∞(s) =
∑∞

k=0 pks
k.

This is possible using the values of P∞(s) for s on the boundary of the
unit circle. Once we reparameterize by setting s = e2πit for t ∈ [0, 1] and
i =

√
−1, we recognize pk as the kth Fourier series coefficient of the periodic

function P∞(e2πit) =
∑∞

k=0 pke
2πikt. Obviously,

pk =

∫ 1

0

P∞(e2πit)e−2πiktdt

can be approximated by the Riemann sum

1

n

n−1∑

j=0

P∞
(
e

2πij
n

)
e−

2πijk
n (9.13)

for n large. The n sums in (9.13) for 0 ≤ k ≤ n − 1 collectively define
the finite Fourier transform of the sequence of n numbers P∞(e2πij/n) for
0 ≤ j ≤ n − 1. To compute a finite Fourier transform, one can use an
algorithm known as the fast Fourier transform [87, 117]. This material is
reviewed in Appendix A.4 and Section 13.3.

In summary, we can compute the pk by

(a) choosing n so large that all pk with k ≥ n can be ignored,

(b) approximating P∞(e2πij/n) by the finite product

m∏

k=0

R(Qk(e2πij/n))

with m large,

(c) taking finite Fourier transforms of the finite product.

To check the accuracy of these approximations, we numerically compute
the moments of X∞ from the resulting pk for 0 ≤ k ≤ n− 1 and compare
the results to the theoretical moments [120].

Example 9.5.1 Huntington’s Disease

Huntington’s disease is caused by a deleterious dominant gene cloned in
1993 [198]. In the late 1950s, Reed and Neil estimated that carriers of
the Huntington gene have a fitness f ≈ 0.81 [165]. Here f is the ratio of
the expected number of offspring of a carrier to the expected number of
offspring of a normal person. In a stationary population, each person has
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FIGURE 9.2. Equilibrium Distribution Pr(X∞ = n) for Huntington’s Disease

on average one daughter and one son. Each carrier produces on average
0.81×2× 1

2 = 0.81 carrier children. If we let the progeny generating function
Q(s) be Poisson with mean μ = 0.81, then the ultimate number of people
Y∞ affected starting from a single mutation has mean and variance

E(Y∞) =
1

1 − μ
= 5.24

Var(Y∞) =
σ2

(1 − μ)3
= 118.09

based on part (c) of Proposition 9.4.1 with σ2 = μ. The generation T at
which extinction of the mutation occurs has mean E(T ) = 3.01 and variance
Var(T ) = E(T 2) − E(T )2 = 11.9 [127].

Let us also assume that the surrounding normal population exhibits a
mutation rate of ν = 2 × 10−6 and contains r = 237,500 females. Immigra-
tion into the branching process occurs whenever a parental gene mutates
just prior to transmission to a child. By the “law of rare events” explained in
Example 14.3.1, the number of new mutants at each generation is approx-
imately Poisson with mean α = 2r2ν = 4rν. Here 2r is the total number
of births per generation, and 2ν is the probability that either of the two
parental genes contributed to a child mutate. According to equation (9.9),
the mean and variance of the equilibrium distribution are

E(X∞) =
4rν

1 − μ



9.6 Multitype Branching Processes 229

= 10

Var(X∞) =
4rνσ2 + 4rν(1 − μ)

(1 − μ)2(1 + μ)

= 29.08.

Figure 9.2 depicts the equilibrium distribution as computed by the Fourier
series method.

9.6 Multitype Branching Processes

In a multitype branching process, one follows a finite number of indepen-
dently acting particles that reproduce and die. Each particle is classified in
one of n possible categories. In a continuous-time process, a type i particle
lives an exponentially distributed length of time with death intensity λi.
At the end of its life, a type i particle reproduces both particles of its own
type and particles of other types. Suppose that on average it produces fij

particles of type j.
We would like to calculate the average number of particles mij(t) of type

j at time t ≥ 0 starting with a single particle of type i at time 0. Since
particles of type j at time t+ s either arise from particles of type j at time
t that do not die during (t, t+s) or from particles of type k that die during
(t, t+ s) and reproduce particles of type j, we find that

mij(t+ s) = mij(t)(1 − λjs) +
∑

k

mik(t)λkfkjs+ o(s).

Forming the corresponding difference quotients and sending s to 0 yield
the system of differential equations

m′
ij(t) =

∑

k

mik(t)λk(fkj − 1{k=j}),

which we summarize as the matrix differential equation M ′(t) = M(t)Ω
for the n × n matrices M(t) = [mij(t)] and Ω = [λi(fij − 1{i=j})]. The
solution is provided by the matrix exponential M(t) = etΩ subject to the
initial condition M(0) = I [14].

The asymptotic behavior of M(t) is determined qualitatively by the
eigenvalue ρ of Ω with largest real part. As shown in Appendix A.2, a
dominant eigenvalue exists and is real for an irreducible process. In such a
process, a particle of one type can ultimately produce descendants of every
other type. A descendant may be a granddaughter, great granddaughter,
and so forth rather than a daughter directly. Irreducibility can be checked
by examining the off-diagonal elements of Ω. When a process is irreducible,
it is said to be subcritical, critical, or supercritical according as ρ < 0, ρ = 0,
or ρ > 0, respectively.
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The assignment of a chain to one of these three categories can be based
entirely on the reproduction matrix F . Proposition A.2.5 of the Appendix
demonstrates this fact. The components of M(t) tend to zero for a sub-
critical process and to infinity for a supercritical process. To gain insight
into this claim, consider the vector function M(t)v, where v is the unique
positive eigenvector corresponding to the dominant eigenvalue ρ. Differen-
tiation of M(t)v gives the vector differential equation

d

dt
M(t)v = M(t)Λv = ρM(t)v

with initial condition M(0)v = v. The solution M(t)v = eρtv exhibits the
claimed behavior of convergence to 0 or divergence.

To investigate the phenomenon of extinction, let ei(t) be the probability
that the process is extinct at time t given that it begins with a single
particle of type i at time 0. We can characterize the ei(t) by deriving a
system of nonlinear ordinary differential equations. In almost all cases, this
system must be solved numerically. In deriving the system of differential
equations, suppose a type i particle produces d1 type 1 daughter particles,
d2 type 2 daughter particles, and so on, to dn type n daughter particles,
with probability pi,(d1,...,dn). To ease the notational burden, we write

d = (d1, . . . , dn)

pid = pi,(d1,...,dn)

e(t)d =

n∏

i=1

ei(t)
di .

Given these conventions, we contend that

ei(t+ s) = (1 − λis)ei(t) + λis
∑

d

pide(t)d + o(s). (9.14)

The logic behind this expression is straightforward. Either the original par-
ticle does not die during the time interval (0, s), or it does and leaves behind
a vector of d daughter particles with probability pid. Each of the clans ema-
nating from one of the daughter particles goes extinct independently of the
remaining clans. Rearranging expression (9.14) into a difference quotient
and sending s to 0 yield the differential equation

e′i(t) = −λiei(t) + λi

∑

d

pide(t)d.

The probabilities ei(t) are increasing because once extinction occurs, it is
permanent. To find the limit of ei(t) as t tends to infinity, we set e′i(t)
equal to 0. This action determines the ultimate extinction probabilities
e = (e1, . . . , en) through the algebraic equations

ei =
∑

d

pide
d. (9.15)
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It is noteworthy that these equations do not depend on the average life
expectancies of the different particle types but only on their reproductive
patterns. For subcritical and critical irreducible processes, all extinction
probabilities are 1; see Problem 17 for the subcritical case. For supercritical
irreducible processes, all extinction probabilities are strictly less than 1
[13, 14, 84, 106].

9.7 Viral Reproduction in HIV

As an illustration of the above theory, consider the following branching pro-
cess model of how the HIV virus infects CD4 cells of the immune system in
the first stage of an HIV infection [156]. Particles in this simplified model
correspond to either virus particles (virions) in plasma or two types of in-
fected CD4 cells. Virions are type 1 particles, latently infected CD4 cells
are type 2 particles, and actively infected CD4 cells are type 3 particles.
In actively infected CD4 cells, HIV is furiously replicating. As a first ap-
proximation, we will assume that replicated virions are released in a burst
when the cell membrane ruptures and a large number of virions spill into
the plasma. HIV does not replicate in latently infected cells. Therefore, a
latently infected cell either converts to an actively infected cell or quietly
dies without replenishing the plasma load of virus.

Let us now consider the fate of each type of particle. Type 1 particles
or virions die or are eliminated from plasma at rate σ. A virion enters
and infects an uninfected CD4 cell at rate βR, where β is the infection
rate per CD4 cell, and where R is the fixed number of uninfected CD4
cells in plasma. (A defect of the model is that as time progresses R should
decline as more and more CD4 cells are infected. In the earliest stage of an
infection, we can ignore this effect.) Let θ be the probability that a CD4 cell
commences its infection in a latent rather than in an active state. In the
branching process paradigm, we interpret death broadly to mean either
natural virion death, virion elimination, or virion removal by infection.
Thus, our verbal description translates into the quantitative assumptions
λ1 = σ + βR and

f11 = 0, f12 =
θβR

λ1
, f13 =

(1 − θ)βR

λ1
.

Latently infected cells are eliminated at rate μ or convert to actively
infected cells at rate α. Again broadly interpreting death in the branching
process sense, we take λ2 = μ+ α and

f21 = 0, f22 = 0, f23 =
α

λ2
.

Finally, actively infected CD4 cells are eliminated at rate μ or burst due
to viral infection at rate δ. When an actively infected CD4 cell bursts, it
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dumps an average π virions into the plasma. These new virions start the
cycle anew. For type 3 particles we have λ3 = μ+ δ and

f31 =
δπ

λ3
, f32 = 0, f33 = 0.

The Ω matrix determining the mean behavior of the model therefore re-
duces to

Ω =

⎛

⎝
−σ − βR θβR (1 − θ)βR

0 −μ− α α
δπ 0 −μ− δ

⎞

⎠ .

It is impossible to calculate extinction probabilities in this model without
specifying the model more fully. One possibility is to make the somewhat
more realistic assumption that reproduction of virions by an actively in-
fected cell occurs continuously rather than as a gigantic burst. If the cell
sheds single virions with a steady intensity γ, then we need to adjust γ so
that the expected number of virions produced continuously over the cell’s
lifetime matches the expected number of virions produced instantaneously
by bursting. This leads to the condition γ/μ = δπ/λ3 determining γ. We
also must adjust our conception of death. The branching process model
requires that reproduction occur simultaneously with death. Hence, in our
revised model, an actively infected cell dies with rate μ+γ. At its death, it
leaves behind no particles with probability μ/(μ+γ) or an actively infected
cell and a virion with probability γ/(μ+ γ).

With these amendments, the system of extinction equations (9.15) be-
comes

e1 =
σ

λ1
+
θβR

λ1
e2 +

(1 − θ)βR

λ1
e3

e2 =
μ

λ2
+

α

λ2
e3

e3 =
μ

μ+ γ
+

γ

μ+ γ
e1e3.

This system of equations reduces to a single quadratic equation for e1 if
we (a) substitute for e2 in the first equation using the second equation, (b)
solve the third equation for e3 in terms of e1, and (c) substitute the result
into the modified first equation. We leave the messy details to the reader.

9.8 Basic Reproduction Numbers

The reproduction number R0 of an irreducible continuous-time branching
process is defined by focusing on a single particle and calculating the av-
erage number of offspring of the same type it generates in one cycle of
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the process [102, 200]. Without loss of generality, we will take the refer-
ence type to be type 1. This arbitrary choice is made merely for the sake
of convenience. We then define di to be the expected number of particles
of type 1 produced in one cycle starting with a single particle of type i.
This definition is vague because the term cycle is undefined. In addition to
counting a type i particle’s immediate daughters of type 1, we count type
1 particles that ultimately issue from her daughters of type j �= 1. These
considerations can be summarized by the system of equations

di = fi1 +

n∑

j=2

fijdj . (9.16)

The system (9.16) is recursive in the sense that the implied enumeration
takes into account every chain of particles starting with the founding type i
particle and ending with the first type 1 particle encountered. Furthermore,
every nonnegative solution vector d = (d1, . . . , dn)t is nontrivial because
irreducibility forces at least one reproductive value fi1 to be positive.

It is straightforward to generate the vector d. The last n − 1 equations
of the system (9.16) do not involve d1 and can be solved in the form

⎛

⎝

d2
...
dn

⎞

⎠ = (In−1 −G)−1

⎛

⎜
⎝

f21
...
fn1

⎞

⎟
⎠ , (9.17)

where In−1 is the n − 1 dimensional identity matrix and G is the corre-
sponding lower-right submatrix of F . Once d2 through dn are calculated,
it is trivial to recover d1 via

d1 = f11 +

n∑

j=2

f1jdj . (9.18)

When the process is subcritical, we will show that we can solve for d in
this fashion and that all components di are nonnegative. Given that d is
properly defined with nonnegative entries, we further demonstrate that d1

is less than 1, equal to 1, or greater than 1, depending on whether the
process is, respectively, subcritical, critical, or supercritical.

As an illustration of the above theory, consider the HIV model. If we
take type 1 (virions) as the reference type, then the system (9.16) becomes

d1 =
θβR

σ + βR
d2 +

(1 − θ)βR

σ + βR
d3

d2 =
α

μ+ α
d3

d3 =
δπ

μ+ δ
.
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In this case there is a single solution vector (d1, d2, d3), and its entries are
clearly positive. Simple algebra shows that the expected number of virions
produced in one cycle is

d1 =
δπβR[α+ (1 − θ)μ]

(σ + βR)(μ+ α)(μ + δ)
.

This basic reproduction number determines the qualitative behavior of the
branching process. When the reproduction number d1 < 1, virus numbers
keep dropping until extinction. When d1 > 1, extinction is uncertain and
virus numbers may grow exponentially.

The reader is urged to consult Appendix A.2 for the details omitted in the
following proofs. Consider first the existence of the subvector (d2, . . . , dn)t.
This is tied to the convergence of the series

(In−1 −G)−1f−1 =

∞∑

k=0

Gkf−1, (9.19)

where f−1 denotes the first column of F with entry f11 removed. The
series expansion of the inverse (In−1−G)−1 is valid whenever the dominant
eigenvalue ρ(G) < 1. Now ρ(F − I) < 0 entails ρ(F ) < 1, which is sufficient
to prove ρ(G) < 1. Indeed, suppose that Gv = rv for some vector v �= 0
and scalar r with |r| > ρ(F ). If we define the vector w to have entries
wi = |vi|, then Gw ≥ |r|w. Since all entries of F are nonnegative, it follows
that

F

(
0
w

)

≥
(

0
|r|w

)

= |r|
(

0
w

)

.

Definition (A.1) of Appendix A.2 now yields the contradiction |r| ≤ ρ(F ).
Given that the geometric series (9.19) converges, it is straightforward to
prove that it solves the equation d−1 = f−1 + Gd−1. The representation
(9.18) shows that d1 is nonnegative as well.

Assuming that the system (9.16) possesses a nonnegative solution d, we
now undertake the task of classifying the behavior of the branching process
based on the entry d1. If d1 ≥ 1, then

di ≤ fi1d1 +

n∑

j=2

fijdj =

n∑

j=1

fijdj

for all i. In view of Proposition A.2.2, we find ρ(F ) ≥ 1. On the other hand,
if d1 ≤ 1, then for all i

di ≥ fi1d1 +

n∑

j=2

fijdj =

n∑

j=1

fijdj ,
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and Proposition A.2.4 implies ρ(F ) ≤ 1. This settles the case d1 = 1
because the only possibility is ρ(F ) = 1. To clarify what happens when
d1 < 1 or d1 > 1, we note that either situation leads to the inequality
Fd �= d since at least one entry fi1 > 0. Application of Propositions A.2.1,
A.2.2, and A.2.4 now completes the proof.

9.9 Problems

1. If p and α are constants in the open interval (0, 1), then show that
Q(s) = 1 − p(1 − s)α is a generating function with nth functional
iterate

Qn(s) = 1 − p1+α+···+αn−1

(1 − s)αn

.

Remember to check that the coefficients of Q(s) are nonnegative and
sum to 1.

2. Let Xn be the number of particles at generation n in a supercritical
branching process with progeny mean μ and variance σ2. If X0 = 1
and Zn = Xn/μ

n, then find limn→∞ E(Zn) and limn→∞ Var(Zn).
The fact that these limits exist and are finite when μ > 1 correctly
suggests that Zn tends to a limiting random variable Z∞.

3. Consider a supercritical branching process Xn with progeny generat-
ing function Q(s) and extinction probability s∞. Show that

Pr(1 ≤ Xn ≤ k)sk
∞ ≤ Q′

n(s∞)

for all k ≥ 1 and that

Q′
n(s∞) = Q′(s∞)n.

Use these results and the Borel-Cantelli lemma to prove that

Pr
(

lim
n→∞

Xn = ∞
)

= 1 − s∞.

4. Continuing Example 9.2.5, let P (s) be the generating function for
the total number of carrier and normal children born to a carrier of
the mutant gene. Express the progeny generating function Q(s) of
the mutant-gene branching process in terms of P (s). Find the mean
μ and variance σ2 of Q(s) in terms of the mean α and variance β2 of
P (s). How small must α be in order for extinction of the mutant-gene
process to be certain?
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5. Continuing Problem 36 of Chapter 7, let T = min{n : Sn = 0} be the
epoch of the first visit to 0 given S0 = 1. Define Z0 = 1 and

Zj =

T−1∑

n=0

1{Sn=j, Sn+1=j+1}

for j ≥ 1. Thus, Zj is the number of times the random walk moves
from j to j + 1 before hitting 0. Demonstrate that

Pr(Z1 = k) =
(1

2

)k+1

.

Given Zj−1 = i, also prove that Zj can be represented as the sum
of i independent copies of Z1. Therefore, Zj is a branching process
with progeny distribution equal to the distribution of Z1. What is the
generating function of Z1? How can this be applied to yield the gener-
ating function of Zj for j > 1? (Hints: First calculate the probability
Pr(Z1 = 0). Then observe that each return to state 1 is followed by a
step to 0 or an excursion from state 1 back to itself passing through
state 2. To calculate the distribution of Zj for j > 1, note that each
of the Zj−1 steps from j − 1 to j is followed by an excursion from
state j back to state j − 1. These arguments rely on the fact that
the random walk is certain to visit any state starting from any other
state.)

6. The generating function p
1−qs is an example of a fractional linear

transformation αs+β
γs+δ [93]. To avoid trivial cases where the fractional

linear transformation is undefined or constant, we impose the condi-
tion that αδ−βγ �= 0. The restricted set of fractional linear transfor-
mations (or Möbius functions) forms a group under functional compo-
sition. This group is the homomorphic image of the group of invertible
2 × 2 matrices under the correspondence

(
α β
γ δ

)

−→ αs+ β

γs+ δ
. (9.20)

A group homomorphism is a function between two groups that pre-
serves the underlying algebraic operation. Show that the correspon-
dence (9.20) qualifies as a group homomorphism in the sense that if
fi(s) = αis+βi

γis+δi
for i = 1, 2, then

(
α1 β1

γ1 δ1

)(
α2 β2

γ2 δ2

)

−→ f1(f2(s)).

The homomorphism (9.20) correctly pairs the two identity elements(
1 0
0 1

)
and f(s) = s of the groups.
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7. Suppose Q(s) is a generating function with mean μ and variance σ2.
If μ − 1 is small and positive, then verify that Q(s) has approxi-

mate extinction probability e−2(μ−1)/σ2

. Show that this approxima-
tion equals 0.892 for Lotka’s demographic data. (Hints: Put t = ln s
and L(t) = lnQ(s). Expand L(t) in a second-order Taylor series
around t = 0.)

8. Let s∞ be the extinction probability of a supercritical branching pro-
cess with progeny generating function Q(s) =

∑∞
k=0 qks

k. If the mean
μ of Q(s) is fixed, then one can construct counterexamples showing
that s∞ is not necessarily increasing as a function of q0. As a case in

point, let Q(s) = P
(

1
2 + 1

2s
)

and consider

P (s) =
1

6
+

5

6
s3

P (s) =
3

32
+

15

24
s2 +

5

32
s4 +

3

24
s5.

Check numerically that these two choices lead to the extinction prob-
abilities s∞ = 0.569 and s∞ = 0.594 and coefficients q0 = 0.271 and
q0 = 0.264.

9. Newton’s method offers an alternative method of finding the extinc-
tion probability s∞ of a supercritical generating function Q(s). Let
s0 = 0 and t0 = 0 be the initial values in the iteration schemes

sn+1 = Q(sn), tn+1 = tn +
Q(tn) − tn
1 −Q′(tn)

.

Prove that tn is an increasing sequence satisfying sn ≤ tn ≤ s∞ for
all n ≥ 0. It follows that limn→∞ tn = s∞ and that Newton’s method
converges faster than functional iteration.

10. In a subcritical branching process, let T be the generation at which
the process goes extinct starting from a single particle at generation
0. If sk = Pr(T ≤ k) and Q(s) is the progeny generating function,
then prove the error estimates

Q′(sn)

1 −Q′(sn)
(1 − sn) ≤ E(T ) −

n∑

k=0

(1 − sk)

≤ Q′(1)

1 −Q′(1)
(1 − sn)

for E(T ). (Hint: Use the first equation in (9.5).)

11. In a branching process, let R(s) =
∑∞

k=0 rks
k be the generating func-

tion of the total number of particles Y∞ over all generations starting
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from a single particle. If the progeny generating function is Q(s), find
rk and the mean and variance of Y∞ in each of the cases

Q(s) = eλ(s−1)

Q(s) = (q + ps)n

Q(s) =
( p

1 − qs

)n

,

where q = 1 − p. Furthermore, show that the Poisson, binomial, or
negative binomial form of each of these progeny generating functions
is preserved when we substitute 1

2 + 1
2s for s. Comment on the rele-

vance of this last result to Problem 4.

12. Suppose Xn denotes the number of particles in a branching process
with immigration. Let μ be the mean number of progeny per parti-
cle and α the mean number of new immigrants per generation. An
ordinary branching process corresponds to the case α = 0. For k > j
show that

E(Xk | Xj) =

{
(k − j)α+Xj , μ = 1
α(1−μk−j)

1−μ + μk−jXj, μ �= 1

Cov(Xk, Xj) = μk−j Var(Xj).

13. In a subcritical branching process with immigration, let Q(s) be the
progeny generating function and R(s) the generating function of the
number of new immigrants at each generation. If the equilibrium
distribution has generating function P∞(s), then show that

P∞(s) = P∞(Q(s))R(s).

For the choices Q(s) = 1 − p+ ps and R(s) = e−λ(1−s), find P∞(s).
(Hint: Let P∞(s) be a Poisson generating function.)

14. Branching processes can be used to model the formation of polymers
[154]. Consider a large batch of identical subunits in solution. Each
subunit has m > 1 reactive sites that can attach to similar reac-
tive sites on other subunits. For the sake of simplicity, assume that a
polymer starts from a fixed ancestral subunit and forms a tree struc-
ture with no cross linking of existing subunits. Also assume that each
reactive site behaves independently and bonds to another site with
probability p. Subunits attached to the ancestral subunit form the
first generation of a branching process. Subunits attached to these
subunits form the second generation and so forth. In this problem we
investigate the possibility that polymers of infinite size form. In this
case the solution turns into a gel. Show that the progeny distribution
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for the first generation is binomial with m trials and success proba-
bility p and that the progeny distribution for subsequent generations
is binomial with m−1 trials and success probability p. Show that the
extinction probability t∞ satisfies

t∞ = (1 − p+ ps∞)m

s∞ = (1 − p+ ps∞)m−1,

where s∞ is the extinction probability for a line of descent emanating
from a first-generation subunit. Prove that polymers of infinite size
can occur if and only if (m− 1)p > 1.

15. Yeast cells reproduce by budding. Suppose at each generation a yeast
cell either dies with probability p, survives without budding with
probability q, or survives with budding off a daughter cell with prob-
ability r. In the ordinary branching process paradigm, a surviving cell
is considered a new cell. If we refuse to take this view, then what is
the distribution of the number of daughter cells budded off by a single
yeast cell before its death? Show that the extinction probability of a
yeast cell line is 1 when p ≥ r and p

r when p < r [68].

16. At an X-linked recessive disease locus, there are two alleles, the nor-
mal allele (denoted +) and the disease allele (denoted −). Construct
a two-type branching process for carrier females (genotype +/−) and
affected males (genotype −). Calculate the expected numbers fij of
offspring of each type assuming that carrier females average 2 chil-
dren, affected males average 2f children, all mates are +/+ or +, and
children occur in a 1:1 sex ratio. Note that a branching process model
assumes that all children are born simultaneously with the death of a
parent. In a continuous-time model, the sensible choice for the death
rate λ of either type parent is the reciprocal of the generation time,
say about 1

25 per year in humans.

17. Let e(s) be the vector of extinction probabilities defined in Section
9.6. If the dominant eigenvalue ρ of the matrix Ω has row eigenvector
wt with positive entries and norm ‖w‖1 = 1, then demonstrate that
wt[1 − e(s)] ≤ eρs. In the subcritical case with ρ < 0, this inequality
implies that lims→∞ e(s) = 1. It also has consequences for the mean
time to extinction. If Ti is the time to extinction starting from a single
particle of type i, then show that E(Ti) ≤ −(ρwi)

−1. (Hints: Write

d

ds
[1 − ei(s)] = −λi[1 − ei(s)] + λi

∑

d

pid

[
1 − e(s)d

]
,

and apply the bound

∑

d

pid[1 − e(s)d] ≤
n∑

j=1

fij [1 − ej(s)]
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based on the mean value theorem. Multiply the resulting inequality
by wi and sum on i. When you invoke the mean value theorem, it is
helpful to view fij as a partial derivative of the multivariate gener-
ating function Pi(t, z) introduced in Problem 22.)

18. Consider a continuous-time branching process with two types. If the
process is irreducible and has reproduction matrix F = (fij), then
demonstrate that comparison of the criterion

R0 = f11 + f22 + f12f21 − f11f22

to the number 1 determines whether the process is subcritical, critical,
or supercritical, subject to either side condition f22 < 1 or f11 < 1.
Show that the criterion R0 arises regardless of whether you use type
1 or type 2 as the reference type.

19. Consider a multitype branching process with immigration. Suppose
that each particle of type i has an exponential lifetime with death
intensity λi and produces on average fij particles of type j at the
moment of its death. Independently of death and reproduction, im-
migrants of type i enter the population according to a Poisson process
with intensity αi. If the Poisson immigration processes for different
types are independent, then show that the mean number mi(t) of
particles of type i satisfies the differential equation

m′
i(t) = αi +

∑

j

mj(t)λj(fji − 1{j=i}).

Collecting the mi(t) and αi into row vectors m(t) and α, respectively,
and the λj(fji − 1{j=i}) into a matrix Ω, show that

m(t) = m(0)etΩ + αΩ−1(etΩ − I),

assuming that Ω is invertible. If we replace the constant immigration
intensity αi by the exponentially decreasing immigration intensity
αie

−μt, then verify that

m(t) = m(0)etΩ + α(Ω + μI)−1(etΩ − e−tμI).

20. In a certain species, females die with intensity μ and males with in-
tensity ν. All reproduction is through females at an intensity of λ per
female. At each birth, the mother bears a daughter with probability
p and a son with probability 1−p. Interpret this model as a two-type,
continuous-time branching process with Xt representing the number
of females and Yt representing the number of males, and show that

E(Xt) = E(X0)e
(λp−μ)t
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E(Yt) = E(X0)
λ(1 − p)

λp+ ν − μ
e(λp−μ)t

+

[

E(Y0) − E(X0)
λ(1 − p)

λp+ ν − μ

]

e−νt.

21. In some applications of continuous-time branching processes, it is
awkward to model reproduction as occurring simultaneously with
death. Birth-death processes offer an attractive alternative. In a birth-
death process, a type i particle experiences death at rate μi and repro-
duction of daughter particles of type j at rate βij . Each reproduction
event generates one and only one daughter particle. Thus, in a birth-
death process each particle continually buds off daughter particles
until it dies. In contrast, each particle of a multitype continuous-time
branching process produces a burst of offspring at the moment of its
death. This problem considers how we can reconcile these two modes
of reproduction. There are two ways of doing this, one exact and one
approximate.

(a) Show that in a birth-death process, a particle of type i produces
the count vector d = (d1, . . . , dn) of daughter particles with
probability

pid =
μi

(μi + βi)|d|+1

(
|d|

d1 . . . dn

) n∏

k=1

βdk

ik ,

where βi =
∑n

j=1 βij and |d| = d1+· · ·+dn. (Hint: Condition on
the time of death. The number of daughter particles of a given
type produced up to this time follows a Poisson distribution.)

(b) If we delay all offspring until the moment of death, then we get
a branching process approximation to the birth-death process.
What is the death rate λi in the branching process approxima-
tion? Show that the approximate process has progeny generating
function

Pi(s) =
∑

d

pids
d

=

∞∑

m=0

μi

(μi + βi)m+1

⎛

⎝
n∑

j=1

βijsj

⎞

⎠

m

=
μi

μi + βi −
∑n

j=1 βijsj

for a type i particle.

(c) In the branching process approximation, demonstrate that a
type i particle averages fij = ∂

∂sj
Pi(1) = βij/μi type j daughter

particles.
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(d) Explain in laymen’s terms the meaning of the ratio defining fij .

(e) Alternatively, we can view the mother particle as dying in one of
two ways. Either it dies in the ordinary way at rate μi, or it dis-
appears at a reproduction event and is replaced by an identical
substitute and a single daughter particle. Eventually one of the
substitute particles dies in the ordinary way before reproduc-
ing, corresponding to death in the original birth-death process.
What is the death rate λi in this exact branching process analog
of the birth-death process? Justify in words the progeny gener-
ating function

Pi(s) =
μi

μi + βi
+

r∑

k=1

βik

μi + βi
sisk.

(f) We can turn the approximate correspondence discussed in parts
(b) and (c) around and seek to mimic a branching process by a
birth-death process. The most natural method involves match-
ing the mean number of daughter particles fij in the branching
process to the mean number of daughter particles budded off in
the birth-death process. Given the λi and the fij , what are the
natural values for the death rates μi and the birth rates βij in
the birth-death approximation to the branching process?

22. Consider a multitype continuous-time branching process with n par-
ticle types. Let Xit be the number of particles of type i at time t.
Section 9.6 derives a system of ordinary differential equations de-
scribing the extinction probabilities at time t starting from a single
particle of any type at time 0. It is possible to derive a similar system
of ordinary differential equations describing each of the multivariate
generating functions Pi(t, z) = E(zXt) for the full distribution of the
random vector Xt = (X1t, . . . , Xnt) starting from a single particle of
type i. In the notation of Section 9.6, show that

∂

∂t
Pi(t, z) = −λiPi(t, z) + λi

∑

d

pidP (t, z)d, (9.21)

where P (t, z) = [P1(t, z), . . . , Pn(t, z)]. (Hints: Write the generating
function Pi(t, z) as the expectation E(zXt | X0 = ei), where ei is the
usual ith unit vector. The ancestral particle either lives throughout
the short time interval (0, s) or dies and reproduces. In the latter
case, each daughter particle initiates an independent clan that evolves
according to the rules governing the clan issuing from an ancestral
particle of the same type.)

23. Continuing Problem 22, consider calculation of the variance Var(Xt)
for a single-type process starting from a single particle. Suppose that
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the progeny generating function
∑∞

d=0 pdz
d has mean μ and variance

σ2 and the death intensity is λ. (Note here that we drop the subscript
from pd denoting the beginning particle type.) If m1(t) and m2(t) are
the first and second factorial moments of Xt, then derive the ordinary
differential equations

d

dt
m1(t) = −λm1(t) + λμm1(t)

d

dt
m2(t) = −λm2(t) + λ(σ2 + μ2 − μ)m1(t)

2 + λμm2(t).

by differentiating equation (9.21) with respect to z and setting z = 1.
What are the initial values m1(0) and m2(0)? Solve these differential
equations, and demonstrate that

Var(Xt) =

{
σ2+μ2−2μ+1

μ−1

[
e2λ(μ−1)t − eλ(μ−1)t

]
, μ �= 1

σ2λt, μ = 1.

What is Var(Xt) starting from j > 1 particles?

24. Continuing Problem 22, consider a single-type process starting from
a single particle. Suppose that the progeny generating function is∑∞

d=0 pdz
d = zk for some k ≥ 2 and the death intensity is λ. Show

that the ordinary differential equation

∂

∂t
P (t, z) = −λP (t, z) + λP (t, z)k

for the generating function of Xt has solution

P (t, z) = ze−λt
[
1 − zk−1 + e−λ(k−1)tzk−1

]−1/(k−1)

.

Also check the initial condition P (0, z) = z. What is P (t, z) if you
start from j > 1 particles?

25. In the cancer model of Coldman and Goldie [41], cancer cells are of
two types. Type 1 cells are ordinary cancer cells. Type 2 particles
are cancer cells with resistance to an anti-cancer chemotherapeutic
agent. In culture, particles of both types live an exponential length
of time of average duration λ−1 and then divide. Type 2 cells always
produce type 2 cells, but type 1 cells produce two cells of type 1 with
probability 1−α or the combination of one cell of type 1 and one cell
of type 2 with probability α. The process commences with a single
type 1 cell. One can make considerable progress understanding this
system using the notation and results of Problem 22.
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(a) Show that the multivariate generating functions characterizing
this process satisfy the differential equations

∂

∂t
P1(t, z) = −λP1(t, z) + λ(1 − α)P1(t, z)

2

+λαP1(t, z)P2(t, z)

∂

∂t
P2(t, z) = −λP2(t, z) + λP2(t, z)

2.

(b) Subject to the initial conditions P1(0, z) = z1 and P2(0, z) = z2,
demonstrate that these equations have solutions

P1(t, z) =
z1e

−λt(e−λtz2 + 1 − z2)
−α

1 + z1[(e−λtz2 + 1 − z2)1−α − 1]z−1
2

P2(t, z) =
z2

z2 + (1 − z2)eλt
.

(Hints: Solve for P2(t, z) first. Use the solution

f(t) =
f(0)e

∫
t

0
g(s)ds

1 − cf(0)
∫ t

0 e

∫
s

0
g(r)dr

ds
(9.22)

to the Riccati differential equation f ′(t) = g(t)f(t) + cf(t)2 to
solve for both P2(t, z) and P1(t, z).

(c) Derive the solution to the Riccati equation (9.22) by writing a
linear differential equation for h(t) = 1/f(t).

(d) Prove that the probability of no type 2 particles at time t is

P1[t, (1, 0)] =
1

1 − α+ αeλt
.

(e) Find the value of t such that P1[t, (1, 0)] = 1/2. Note that this
time is relatively short. Thus, therapy should be as prompt and
as radical as possible.

26. Although null and deleterious mutations commonly occur in human
cells, cancer initiation and progression is driven by mutations that
increase cell fitness. These fitness advantages take the form of higher
than normal birth rates and/or lower than normal death rates (apop-
tosis). In practical terms the cascade of mutations involves activation
of oncogenes, disabling of tumor suppressor genes, and enhancement
of chromosome instability. Multitype branching processes can be used
to model the evolution of a cancer cell line. For the sake of simplicity,
suppose that a cell can accumulate anywhere from 1 to n mutations
and that the number of mutations is the sole determinant of fitness.
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A cell is labeled by the number of mutations it carries. Assume a
type k cell dies at rate δk, splits into two daughter cells of type k at
rate βk, and splits into one daughter cell of type k and one daughter
cell of type k + 1 at rate μk. To keep the number of cell types finite,
take μn = 0. All other rates are positive. Show that the n×n matrix
Ω = (ωkl) determining the mean behavior of the process has entries

ωkl =

{
βk − δk, l = k
μk, l = k + 1
0, otherwise.

Is Ω irreducible? What are its eigenvalues? State conditions under
which the mean population size will tend to 0 or grow explosively.
You may assume that the process starts with at least one cell of
type 1. The most subtle behavior occurs when βk ≤ δk for all k and
βk = δk for some k. Prove that the mean number of cells of type k
never decreases when βk = δk.

Now let ek be the extinction probability of the cancer line starting
from a single cell of type k. Show that these probabilities satisfy the
equations

en =
βn

λn
e2n +

δn
λn

ek =
βk

λk
e2k +

μk

λk
ekek+1 +

δk
λk
, 1 ≤ k < n,

where λk = βk + δk + μk. Argue that the ek can be calculated recur-
sively starting with

en =

{
1, βn ≤ δn
δn

βn
, βn > δn.

In solving the various quadratics, why should one always take the left
root?



10
Martingales

10.1 Introduction

Martingales generalize the notion of a fair game in gambling. Theory to
the contrary, many gamblers still believe that they simply need to hone
their strategies to beat the house. Probabilists know better. The real pay-
off with martingales is their practical value throughout probability theory.
This chapter introduces martingales, develops some relevant theory, and
delves into a few applications. As a prelude, readers are urged to review
the material on conditional expectations in Chapter 1. In the current chap-
ter we briefly touch on the convergence properties of martingales, the op-
tional stopping theorem, and large deviation bounds via Azuma’s inequal-
ity. More extensive treatments of martingale theory appear in the books
[23, 24, 53, 80, 106, 118, 208]. Our other referenced sources either pro-
vide elementary accounts comparable in difficulty to the current material
[129, 170] or interesting special applications [4, 134, 186, 201].

10.2 Definition and Examples

A sequence of integrable random variables Xn forms a martingale relative
to a second sequence of random variables Yn provided

E(Xn+1 | Y1, . . . , Yn) = Xn (10.1)

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_10, © Springer Science+Business Media, LLC 2010
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for all n ≥ 1. In many applicationsXn = Yn. It saves space and is often con-
ceptually simpler to replace the collection of random variables Y1, . . . , Yn by
the σ-algebra of events Fn that it generates. Note that these σ-algebras are
increasing in the sense that any A ∈ Fn satisfies A ∈ Fn+1. This relation-
ship is written Fn ⊂ Fn+1, and the sequence Fn is said to be a filter. This
somewhat odd terminology is motivated by the fact that the Fn contain
more information or detail as n increases. In any case, we now rephrase the
definition of a martingale to be a sequence of integrable random variables
Xn satisfying

E(Xn+1 | Fn) = Xn (10.2)

relative to a filter Fn. Readers who find this definition unnecessarily ab-
stract are urged to fall back on the original definition (10.1).

Before turning to specific examples, let us deduce a few elementary
properties of martingales. First, equation (10.2) implies that the random
variable Xn is measurable with respect to Fn. When Fn is generated by
Y1, . . . , Yn, then Xn is expressible as a measurable function of Y1, . . . , Yn.
Second, iteration of the identity

E(Xn+1) = E[E(Xn+1 | Fn)]

= E(Xn)

leads to E(Xn) = E(X1) for all n > 1. Third, an obvious inductive argu-
ment using the tower property (1.6) gives

E(Xn+k | Fn) = E[E(Xn+k | Fn+1) | Fn]

= E(Xn+1 | Fn)

= Xn

for all k > 0. Fourth, if the Xn are square-integrable and i ≤ j ≤ k ≤ l,
then

E[(Xj −Xi)(Xl −Xk)] = E{E[(Xj −Xi)(Xl −Xk) | Fj ]}
= E{(Xj −Xi) E[(Xl −Xk) | Fj]}
= E[(Xj −Xi)(Xj −Xj)]

= 0.

In other words, the increments Xj −Xi and Xl −Xk are orthogonal. This
fact allows us to calculate the variance of

Xn = X1 +

n∑

i=2

(Xi −Xi−1)

via

Var(Xn) = Var(X1) +

n∑

i=2

Var(Xi −Xi−1), (10.3)
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exactly as if we were dealing with sums of independent random variables.
The fact that Var(Xn) is increasing in n follows immediately from the
decomposition (10.3). Finally, the special case

Var(Xm+n −Xm) = Var(Xm+n) − Var(Xm) (10.4)

of the orthogonal increments property is worth highlighting.

Example 10.2.1 Sums of Random Variables

If Yn is a sequence of independent random variables with common mean
μ = 0, then the partial sums Sn = Y1 + · · · + Yn constitute a martingale
relative to the filter Fn generated by {Y1, . . . , Yn}. The martingale property
(10.2) follows from the calculation

E(Sn+1 | Fn) = E(Yn+1 | Fn) + E(Sn | Fn)

= E(Yn+1) + Sn

= Sn.

When μ �= 0, the modified sequence Sn − nμ forms a martingale. If the Yn

are dependent random variables, then the sequence

Sn =
n∑

i=1

[Yi − E(Yi | Fi−1)]

= Sn−1 + Yn − E(Yn | Fn−1)

provides a zero-mean martingale because

E(Sn+1 | Fn) = Sn + E(Yn+1 | Fn) − E(Yn+1 | Fn)

= Sn.

Example 10.2.2 Products of Independent Random Variables

Similarly if Yn is a sequence of independent random variables with common
mean μ = E(Y1) = 1, then the partial products Xn =

∏n
i=1 Yi constitute

a martingale relative to the filter Fn generated by {Y1, . . . , Yn}. The mar-
tingale property (10.2) follows from the calculation

E

(
n+1∏

i=1

Yi

∣
∣
∣ Fn

)

= E(Yn+1 | Fn)

n∏

i=1

Yi

=

n∏

i=1

Yi.

When μ �= 1, the modified sequence μ−nXn is a martingale.
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This martingale arises in Wald’s theory of sequential testing in statistics.
Let Z1, Z2, . . . be an i.i.d. sequence of random variables with density f(z)
under the simple null hypothesis Ho and density g(z) under the simple
alternative hypothesis Ha. Both of these densities are relative to a common
measure μ such as Lebesgue measure or counting measure. If Ho is true,
then

∫
g(z)

f(z)
f(z) dμ(z) =

∫

g(z) dμ(z) = 1.

It follows that the likelihood ratio statistics

Xn =

n∏

i=1

g(Zi)

f(Zi)

constitute a martingale.

Example 10.2.3 Martingale Differences

If Xn is a martingale with respect to the filter Fn, then the difference
sequence {Xm+n − Xm}n≥1 is a martingale with respect to the shifted
filter {Fm+n}n≥1. This assertion is a consequence of the identity

E(Xm+n −Xm | Fm+n−1) = Xm+n−1 −Xm.

Example 10.2.4 Doob’s Martingale

Let Z be an integrable random variable and Fn be a filter. Then the se-
quence Xn = E(Z | Fn) is a martingale because of the tower property

E[E(Z | Fn+1) | Fn] = E(Z | Fn).

In many examples, Fn is the σ-algebra defined by n independent random
variables Y1, . . . , Yn. If the random variable Z is a function of Y1, . . . , Ym

alone, then Xm = Z, and for 1 ≤ n < m

Xn(y1, . . . , yn) = E(Z | Y1 = y1, . . . , Yn = yn) (10.5)

=

∫

· · ·
∫

Z(y1, . . . , ym) dFn+1(yn+1) · · · dFm(ym),

where Fk(yk) is the distribution function of Yk. In other words, the con-
ditional expectation Xn is generated by integrating over the last m − n
arguments of Z. This formula for Xn is correct because Fubini’s theorem
gives

E[1A(Y1, . . . , Yn)Z]

=

∫

· · ·
∫

1A(y1, . . . , yn)Xn(y1, . . . , yn) dF1(y1) · · · dFn(yn)
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for any event A depending only on Y1, . . . , Yn. In some applications, mar-
tingales of finite length appear. If X1, . . . , Xm is a finite martingale relative
to the filter F1 ⊂ · · · ⊂ Fm, then Z = Xm satisfies Doob’s requirement
Xn = E(Z | Fn) for every n ≤ m.

Example 10.2.5 Branching Processes

Suppose Yn counts the number of particles at generation n in a discrete-
time branching process. (Here the index n starts at 0 rather than 1.) Let
Fn be the σ-algebra generated by Y0, . . . , Yn, and let μ be the mean of the
progeny distribution. We argued in Chapter 9 that

E(Yn+1 | Yn) = E(Yn+1 | Fn) = μYn.

It follows that Xn = μ−nYn is a martingale relative to the filter Fn.

Example 10.2.6 Wright-Fisher Model of Genetic Drift

In the Wright-Fisher model of Example 7.3.2, the proportion Xn = 1
2mYn

of a1 alleles at generation n provides a martingale relative to the filter Fn

determined by the random counts Y1, . . . , Yn of a1 alleles at generations 1
through n. Indeed,

E(Xn+1 | Fn) =
1

2m
E(Yn+1 | Yn)

= Xn

is obvious from the nature of the binomial sampling with success probability
Xn in forming the population at generation n+ 1.

10.3 Martingale Convergence

Our purpose in this section is to inquire when a martingale Xn possesses
a limit. The theory is much simpler if we stipulate that the Xn have fi-
nite second moments. This condition is not sufficient for convergence as
Example 10.2.1 shows. However, if the second moments E(X2

n) are uni-
formly bounded, then in general we get a convergent sequence. The next
proposition paves the way by generalizing Chebyshev’s inequality.

Proposition 10.3.1 (Kolmogorov) Suppose that relative to the filter Fn

the square-integrable martingale Xn has mean E(Xn) = 0. The inequality

Pr(max{|X1|, . . . , |Xn|} > ε) ≤ Var(Xn)

ε2
(10.6)

then holds for all ε > 0 and n ≥ 1.
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Proof: For the purposes of this proof, we can reduce Fn to the σ-algebra
of events generated by X1, . . . , Xn. Let M = m be the smallest subscript
between 1 and n such that |Xm| > ε. If no such subscript exists, then set
M = 0. The calculation

E(X2
n) = E(X2

n1{M=0}) +

n∑

m=1

E(X2
n1{M=m})

≥
n∑

m=1

E(X2
n1{M=m}) (10.7)

follows because the events {M = 0}, . . . , {M = n} are mutually exclusive
and exhaustive. In view of the fact that the event {M = m} ∈ Fm, we have

E(X2
n1{M=m}) = E[1{M=m} E(X2

n | Fm)]

= E{1{M=m} E[(Xn −Xm)2 +X2
m | Fm]}

≥ E[1{M=m} E(X2
m | Fm)] (10.8)

= E(1{M=m}X2
m)

≥ ε2 Pr(M = m).

In this derivation, we have employed the identities

E[Xm(Xn −Xm) | Fm] = Xm(Xm −Xm) = 0

and

E[Xn(Xn −Xm) | Fm] = E[X2
n | Fm] −X2

m.

Combining inequality (10.8) with inequality (10.7) yields

E(X2
n) ≥ ε2

n∑

m=1

Pr(M = m) = ε2 Pr(M > 0),

which is clearly equivalent to inequality (10.6).

Proposition 10.3.2 Suppose the martingale Xn relative to the filter Fn

has uniformly bounded second moments. Then X∞ = limn→∞Xn exists
almost surely and

lim
n→∞

E[(X∞ −Xn)2] = 0. (10.9)

Proof: To prove that X∞ exists almost surely, it suffices to show that the
sequence Xn is almost surely a Cauchy sequence. Let Akm be the event
{|Xm+n − Xm| > 1

k for some n ≥ 1}. On the complement of the event
A =

⋃
k≥1

⋂
m≥1Akm, the sequence Xn is Cauchy. The inequality

Pr(A) ≤
∑

k≥1

inf
m≥1

Pr(Akm)
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suggests that we verify lim infm→∞ Pr(Akm) = 0. To achieve this goal, we
apply Proposition 10.3.1 to the difference Xm+n−Xm, taking into account
Example 10.2.3 and equality (10.4). It follows that

Pr(Akm) = lim
l→∞

Pr
(

max
1≤n≤l

|Xm+n −Xm| > 1

k

)

≤ lim
l→∞

k2 Var(Xm+l −Xm)

= lim
l→∞

k2[Var(Xm+l) − Var(Xm)].

Because the sequence Var(Xn) is increasing and uniformly bounded, this
last inequality yields

0 ≤ lim inf
m→∞

Pr(Akm)

≤ k2 lim inf
m→∞

lim
l→∞

[Var(Xm+l) − Var(Xm)]

= 0,

which finishes the proof that Xn converges almost surely.
To establish the limit (10.9), we note that Fatou’s lemma and equality

(10.4) imply

0 ≤ lim
m→∞

E[(X∞ −Xm)2]

= lim
m→∞E

[
lim

n→∞(Xm+n −Xm)2
]

≤ lim
m→∞ lim inf

n→∞ E[(Xm+n −Xm)2]

= lim
m→∞

lim inf
n→∞

[Var(Xm+n) − Var(Xm)]

= 0.

This completes the proof.

Example 10.3.1 Strong Law of Large Numbers

Let Yn be a sequence of independent random variables with common mean
μ and variance σ2. According to the analysis of Example 10.2.1, the sums
Xn =

∑n
i=1 i

−1(Yi − μ) constitute a martingale. Because E(Xn) = 0 and
Var(Xn) = σ2

∑n
i=1 i

−2, this martingale has uniformly bounded second
moments and therefore converges almost surely by Proposition 10.3.2. In
view of the identity Yi − μ = i(Xi −Xi−1), we can write

1

n

n∑

i=1

(Yi − μ) =
1

n

( n∑

i=1

iXi −
n∑

i=1

iXi−1

)

= Xn − 1

n

n∑

i=1

Xi−1 (10.10)

with the convention X0 = 0. Because limn→∞Xn = X∞ exists, it is easy
to show that

lim
n→∞

1

n

n∑

i=1

Xi−1 = X∞



254 10. Martingales

as well. In conjunction with equation (10.10), this yields

lim
n→∞

1

n

n∑

i=1

(Yi − μ) = X∞ −X∞ = 0 (10.11)

and proves the strong law of large numbers. Other proofs exist that do not
require the Yn to have finite variance.

Example 10.3.2 Convergence of a Supercritical Branching Process

Returning to Example 10.2.5, suppose that the process is supercritical.
Taking into account that E(Xn) = 1 by design, we can invoke Proposi-
tion 10.3.2 provided the variances Var(Xn) = μ−2n Var(Yn) are uniformly
bounded. If σ2 is the variance of the progeny distribution, then equation
(9.3) indicates that

Var(Xn) =
σ2(1 − 1

μn )

μ(μ− 1)

≤ σ2

μ(μ− 1)

for μ > 1. Thus, Proposition 10.3.2 implies that limn→∞Xn = X∞ exists.
Finding the distribution ofX∞ is difficult. For a geometric progeny gener-

ating function Q(s) = p
1−qs , progress can be made by deriving a functional

equation characterizing the Laplace transform L∞(t) = E(e−tX∞). If Qn(s)
is the probability generating function of Yn, then the Laplace transform of
Xn can be expressed as

Ln(t) = E(e−
tYn
μn ) = Qn(e−

t
μn ).

In view of the defining equation Qn+1(s) = Q(Qn(s)), this leads directly
to Ln+1(μt) = Q(Ln(t)), which produces the functional equation

L∞(μt) = Q(L∞(t)) (10.12)

after taking limits on n. Straightforward algebra shows that the fractional
linear transformation

L∞(t) =
pt− p+ q

qt− p+ q

solves equation (10.12) when Q(s) = p
1−qs and μ = q

p . To identify the

distribution with Laplace transform L∞(t), note that

pt− p+ q

qt− p+ q
= re0 + (1 − r)

∫ ∞

0

e−tx(1 − r)e−(1−r)xdx (10.13)

for r = p
q . In other words, X∞ is a mixture of a point mass at 0 and an

exponential distribution with intensity 1 − r. The total mass r at 0 is just
the extinction probability in this case.
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10.4 Optional Stopping

Many applications of martingales involve stopping times. A stopping time
T is a random variable that is adapted to a filter Fn. The possible values
of T are ∞ and the nonnegative integers. The word “adapted” here is a
technical term meaning that the event {T = n} is in Fn for all n. In less
precise language, a stopping time can only depend on the past and present
and cannot anticipate the future. A typical stopping time associated with
a martingale Xn is TA = min{n : Xn ∈ A}, the first entry into a Borel
set A of real numbers. The next proposition gives sufficient conditions for
the mean value of the stopped process XT to equal the martingale mean
E(Xn).

Proposition 10.4.1 (Optional Stopping Theorem) Let Xn be a mar-
tingale with common mean μ relative to the filter Fn. If T is a stopping
time for Xn satisfying

(a) Pr(T <∞) = 1,

(b) E(|XT |) <∞,

(c) limn→∞ E(Xn1{T>n}) = 0,

then E(XT ) = μ. Condition (c) holds if the second moments E(X2
n) are

uniformly bounded.

Proof: In view of the fact that the event {T = i} ∈ Fi, we have

E(XT ) = E(XT 1{T>n}) +

n∑

i=1

E(XT 1{T=i})

= E(XT 1{T>n}) +
n∑

i=1

E(Xi1{T=i})

= E(XT 1{T>n}) +

n∑

i=1

E[E(Xn | Fi)1{T=i}]

= E(XT 1{T>n}) +

n∑

i=1

E(Xn1{T=i})

= E(XT 1{T>n}) + E(Xn1{T≤n}).

Subtracting μ = E(Xn1{T>n}) + E(Xn1{T≤n}) from this identity yields

E(XT ) − μ = E(XT 1{T>n}) − E(Xn1{T>n}). (10.14)

The dominated convergence theorem implies limn→∞ E(XT 1{T>n}) = 0.
This takes care of the first term on the right-hand side of equation (10.14).
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The second term tends to 0 by condition (c). Owing to the Cauchy-Schwarz
inequality

E(Xn1{T>n})
2 ≤ E(X2

n) Pr(T > n), (10.15)

condition (c) holds whenever the second moments E(X2
n) are uniformly

bounded.

Example 10.4.1 Wald’s Identity and the Sex Ratio

Consider Example 10.2.1 with the understanding that σ2 = Var(Yn) is
finite, μ = E(Yn) is not necessarily 0, and the Yn are independent. If T is a
stopping time relative to the filter Fn generated by Y1, . . . , Yn, then Wald’s
identity says that the stopped sum ST has mean E(ST ) = μE(T ) provided
E(T ) < ∞. We have already visited this problem when T is independent
of the Yn. To prove Wald’s identity in general, we apply Proposition 10.4.1
to the martingale Rn = Sn − nμ.

Part (b) of the proposition requires checking that E(|RT |) < ∞. This
inequality follows from the calculation

E(|RT |) ≤ E

( T∑

i=1

|Yi − μ|
)

= E

( ∞∑

n=1

n∑

i=1

|Yi − μ|1{T=n}

)

= E

( ∞∑

i=1

|Yi − μ|1{T≥i}

)

=

∞∑

i=1

E(|Yi − μ|) Pr(T ≥ i)

≤ σE(T ).

Here we have used Schlömilch’s inequality E(|Yi − μ|) ≤ σ and the fact
that 1{T≥i} = 1{T>i−1} depends only on Y1, . . . , Yi−1 and consequently is
independent of Yi. Part (c) of Proposition 10.4.1 is validated by noting that
inequality (10.15) can be continued to

E(Rn1{T>n})2 ≤ E(R2
n) Pr(T > n)

= nσ2 Pr(T > n)

≤ σ2
∞∑

i=n+1

iPr(T = i).

Because E(T ) < ∞ by assumption, limn→∞
∑∞

i=n+1 iPr(T = i) = 0. This
completes the proof.
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The family planning model discussed in Examples 2.3.3 and 6.6.2 in-
volves stopping times T = Nsd that could conceivably change the sex ratio
of females to males. However, Wald’s identity rules this out. If Yi is the in-
dicator random variable recording whether the ith birth is female, then ST

is the number of daughters born to a couple with stopping time T . Wald’s
identity E(ST ) = qE(T ) implies that the proportion of daughters

E(ST )

E(T )
= q

over a large number of such families does not deviate from q.

Example 10.4.2 Hitting Probabilities in the Wright-Fisher Model

Because the proportion Xn = 1
2mYn of a1 alleles at generation n is a mar-

tingale, Proposition 10.4.1 can be employed to calculate the probability of
eventual fixation of the a1 allele. Condition (a) of the proposition holds
because the underlying Markov chain must reach one of the two absorbing
states 0 or 2m. Conditions (b) and (c) are trivial to verify in light of the
inequalities 0 ≤ Xn ≤ 1. If T is the time of absorption at 0 or 1 and Y1 = i,
then Proposition 10.4.1 implies

i

2m
= E(X1)

= E(XT )

= 0 · Pr(XT = 0) + 1 · Pr(XT = 1).

Thus, the a1 allele is eventually fixed with probability i
2m .

In many cases checking the conditions of Proposition 10.4.1 is onerous.
Hence, the following alternative version of the optional stopping theorem
is convenient [209].

Proposition 10.4.2 In Proposition 10.4.1, suppose that the stopping time
T is finite with probability 1 and that for n ≤ T we can write either

Xn = Bn + In or Xn = Bn − In,

where |Bn| ≤ d and 0 ≤ In−1 ≤ In. In other words for all times up to T ,
the B process is bounded and the I process is increasing. Then the identity
E(XT ) = μ holds without making assumptions (b) and (c) of the proposi-
tion.

Proof: We first note that T ∧m = min{T,m} is a stopping time because
the event {T ∧m ≤ n} = {T ≤ n} ∪ {m ≤ n} is certainly in Fn. For this
stopping time, condition (a) of the proposition is obvious, condition (b)
follows from the inequality |XT∧m| ≤ |X1| + · · · + |Xm|, and condition (c)
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is a consequence of the fact that 1{T∧m>n} = 0 for n > m. The proposition
therefore yields

E(XT∧m) = E(BT∧m) ± E(IT∧m) = μ.

Since T ∧m increases to its limit T , the monotone convergence theorem
implies that E(IT ) exists. To rule out an infinite value for the limit, we
simply observe that the inequality

|E(IT∧m) ∓ μ| ≤ d

holds for all m. To conclude the proof, it suffices to apply the dominated
convergence theorem to the sequence XT∧m with dominating random vari-
able d+ IT .

Example 10.4.3 Gambler’s Ruin Problem

Consider a random walk that takes steps of −1 and +1 with probabilities
p and q = 1 − p, respectively. If we start the walk at 0, then it is of
considerable interest to calculate the probability rab that the walk reaches
−a before it reaches b, where a and b are nonnegative integers. In the
equivalent gambler’s ruin problem, one starts at a and conducts the walk
until it reaches 0 (ruin of the gambler) or a+ b (ruin of the house). Let Xi

denote the outcome of trial i. The associated random variable Yi = (q/p)Xi

has mean 1. According to Example 10.2.2, the sequence

Zn =

n∏

i=1

Yi =

n∏

i=1

(q

p

)Xi

is a martingale. Let T be the random epoch at which the random walk hits
−a or b. If we assume that p �= q and apply the strong law of large numbers
to the sequence Xi, then it is obvious that the barrier −a is eventually hit
when p < q and the barrier b is eventually hit when p > q. Therefore, T is
finite, and Proposition 10.4.2 with In = 0 implies

rab

(p

q

)a

+ (1 − rab)
(q

p

)b

= 1.

Trivial algebra now yields

rab =
1 −
(

q
p

)b

(
p
q

)a

−
(

q
p

)b
. (10.16)

Except for notational differences, this reproduces the solution found in
Problem 38 of Chapter 7. Problem 16 of this chapter treats the symmetric
case p = q using a different martingale. Problems 16 and 17 calculate the
mean number of steps until ruin.
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Example 10.4.4 Successive Random Permutations

Consider the following recursive construction. Let Y1 be the number of
matches in a random permutation π1 of the set {1, . . . ,m}. Throw out
each integer i for which π1(i) = i, and relabel the remaining integers
1, . . . ,m − Y1. Let Y2 be the number of matches in an independent ran-
dom permutation π2 of the set {1, . . . ,m − Y1}. Throw out each integer i
for which π2(i) = i, and relabel the remaining integers 1, . . . ,m− Y1 − Y2.

Continue this process N times until
∑N

i=1 Yi = m.
We now calculate the mean of the random variable N by exploiting the

martingale

Xn =

n∑

i=1

[Yi − E(Yi | Fi−1)]

=
n∑

i=1

(Yi − 1)

relative to the filter Fn generated by Y1, . . . , Yn. Example 10.2.1 establishes
the martingale property, and Example 2.2.1 proves the identity

E(Yi | Fi−1) = 1.

This is a perfect situation in which to apply Proposition 10.4.2. We merely
observe that the sequence Xn = Bn − In is a difference of a bounded se-
quence Bn =

∑n
i=1 Yi of random variables with bound m and an increasing

sequence In = n of constants. Proposition 10.4.2 therefore permits us to
conclude that

0 = E(XN )

= E
( N∑

i=1

Yi

)
− E(N)

= m− E(N),

which obviously entails E(N) = m.

Example 10.4.5 Sequential Testing in Statistics

Consider Wald’s likelihood ratio martingale of Example 10.2.2. Suppose we
quit sampling at the first epoch T with either XT ≥ α−1 or XT ≤ β. In
the former case, we decide in favor of the alternative hypothesis Ha, and
in the latter case, we decide in favor of the null hypothesis Ho. We claim
that the type I and type II errors satisfy

Pr(rejectHo | Ho) ≤ α (10.17)

Pr(rejectHa | Ha) ≤ β.
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To prove this claim, we follow the arguments of Williams [209], taking for
granted that Pr(T < ∞) = 1. If we set T ∧ n = min{T, n} and assume
Ho, then applying Proposition 10.4.1 to T ∧n and invoking Fatou’s lemma
yield

α−1 Pr(XT ≥ α−1) ≤ E(XT )

= E
(

lim
n→∞

XT∧n

)

≤ lim inf
n→∞

E(XT∧n)

= E(X1)

= 1.

The extremes of this last string of inequalities produce inequality (10.17).
In general, sequential testing is more efficient in reaching a decision than
testing with a fixed sample size.

10.5 Large Deviation Bounds

In Chapter 1 we investigated various classical inequalities such as Cheby-
shev’s inequality. For well-behaved random variables, much sharper results
are possible. The next proposition gives Azuma’s tail-probability bound for
martingales with bounded differences. Hoeffding originally established the
bound for sums of independent random variables.

Proposition 10.5.1 (Azuma-Hoeffding) Suppose the sequence of ran-
dom variables Xn forms a martingale with mean 0 relative to the filter Fn.
If under the convention X0 = 0 there exists a sequence of constants cn such
that Pr(|Xn −Xn−1| ≤ cn) = 1, then

E
(
eβXn

)
≤ e(β

2/2)
∑

n

k=1
c2

k (10.18)

for all β > 0. Inequality (10.18) entails the further inequalities

Pr(Xn ≥ λ) ≤ e−λ2/(2
∑

n

k=1
c2

k) (10.19)

and

Pr(|Xn| ≥ λ) ≤ 2e−λ2/(2
∑

n

k=1
c2

k) (10.20)

for all λ > 0.

Proof: Because the function eu is convex, eαu+(1−α)v ≤ αeu + (1 − α)ev

for any α ∈ [0, 1] and pair u and v. Putting u = −βc, v = βc, and α = c−x
2c

for x ∈ [−c, c] therefore yields

eβx ≤ c− x

2c
e−βc +

c+ x

2c
eβc.
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If we substitute Xn −Xn−1 for x and cn for c in this inequality and take
conditional expectations, then the hypothesis |Xn − Xn−1| ≤ cn and the
fact E(Xn −Xn−1 | Fn−1) = 0 imply

E
(
eβXn

)
= E

[
E
(
eβXn | Fn−1

)]

= E
{
eβXn−1 E

[
eβ(Xn−Xn−1) | Fn−1

]}

≤ E
(
eβXn−1

)(cn − 0

2cn
e−βcn +

cn + 0

2cn
eβcn

)

= E
(
eβXn−1

)e−βcn + eβcn

2
.

Induction on n and the convention X0 = 0 now prove inequality (10.18)
provided we can show that

eu + e−u

2
≤ e

u2

2 . (10.21)

However, inequality (10.21) follows by expanding its right and left sides in
Taylor’s series and noting that the corresponding coefficients of u2n satisfy

1
(2n)! ≤ 1

2nn! . Of course, the coefficients of the odd powers u2n+1 on both

sides of inequality (10.21) vanish.
To prove inequality (10.19), we apply Markov’s inequality in the form

Pr(Xn ≥ λ) ≤ E
(
eβXn

)
e−βλ

≤ e(β
2/2)
∑

n

k=1
c2

k−βλ (10.22)

for an arbitrary β > 0. The particular β minimizing the exponent on the
right-hand side of (10.22) is clearly β = λ/(

∑n
k=1 c

2
k). Substituting this

choice in inequality (10.22) yields inequality (10.19). Because −Xn also
fulfills the hypotheses of the proposition, inequality (10.20) follows from
inequality (10.19).

In applying Proposition 10.5.1 to a martingale Xn with nonzero mean
μ, we replace Xn by the recentered martingale Xn − μ. Recentering has
no impact on the differences (Xn − μ) − (Xn−1 − μ) = Xn −Xn−1, so the
above proof holds without change.

Example 10.5.1 Tail Bound for the Binomial Distribution

Suppose Yn is a sequence of independent random variables with common
mean μ = E(Yn). If |Yn − μ| ≤ cn with probability 1, then Proposition
10.5.1 applies to the martingale Sn − nμ =

∑n
i=1 Yi − nμ. In particular,

when each Yn is a Bernoulli random variable with success probability μ,
then cn = 1 and

Pr(|Sn − nμ| ≥ λ) ≤ 2e−
λ2

2n . (10.23)
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Inequality (10.23) has an interesting implication for the sequence of Bern-
stein polynomials that approximate a continuous function f(x) satisfying
a Lipschitz condition |f(u)− f(v)| ≤ d|u− v| for all u, v ∈ [0, 1] [82]. As in
Example 3.5.1, we put μ = x and argue that

∣
∣
∣E
[
f
(Sn

n

)]
− f(x)

∣
∣
∣

≤ d
λ

n
Pr
(∣
∣
∣
Sn

n
− x
∣
∣
∣ <

λ

n

)
+ 2||f ||∞ Pr

(∣
∣
∣
Sn

n
− x
∣
∣
∣ ≥

λ

n

)
.

Invoking the large deviation bound (10.23) for the second probability gives
the inequality

∣
∣
∣E
[
f
(Sn

n

)]
− f(x)

∣
∣
∣ ≤ d

λ

n
+ 4||f ||∞e−

λ2

2n .

For the choice λ =
√

2n lnn, this yields the uniform bound

∣
∣
∣E
[
f
(Sn

n

)]
− f(x)

∣
∣
∣ ≤ d

√
2 lnn

n
+

4||f ||∞
n

= O

(√
lnn

n

)

.

This is an improvement over the uniform bound O(n−1/3) for continuously
differentiable functions noted in Problem 21 of Chapter 3. It is worse than
the best available uniform bound O(n−1) for functions that are twice con-
tinuously differentiable rather than merely Lipschitz [162].

Many applications of Proposition 10.5.1 involve a more complicated com-
bination of independent random variables Y1, . . . , Yn than a sum. If Z is
such a combination and Fi is the σ-algebra generated by Y1, . . . , Yi, then
Example 10.2.4 implies that the conditional expectations Xi = E(Z | Fi)
constitute a finite-length martingale with Xn = Z. To apply Proposition
10.5.1, we observe that equation (10.5) implies

Xi(y1, . . . , yi)

=

∫

· · ·
∫

Z(y1, . . . , yi−1, yi, vi+1, . . . , vn) dωi(vi) · · · dωn(vn)

Xi−1(y1, . . . , yi−1) (10.24)

=

∫

· · ·
∫

Z(y1, . . . , yi−1, vi, vi+1, . . . , vn) dωi(vi) · · · dωn(vn),

where ωk is the multivariate distribution of Yk. Obviously, the extra inte-
gration on ωi introduced in the multiple integral defining Xi has no effect.
Taking differences in (10.24) produces an integral expression for Xi −Xi−1

whose integrand is

Zi − Zi−1 (10.25)

= Z(y1, . . . , yi−1, yi, vi+1, . . . , vn) − Z(y1, . . . , yi−1, vi, vi+1, . . . , vn).
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If |Zi−Zi−1| ≤ ci for some constant ci, then the inequality |Xi−Xi−1| ≤ ci
follows after integration against the independent probability distributions
ωi, . . . , ωn. These considerations set the stage for applying Proposition
10.5.1 to Z = Xn.

Example 10.5.2 Longest Common Subsequence

In the longest common subsequence problem considered in Example 5.7.1,
we can derive tail-probability bounds for Mn. Let Yi be the random pair
of letters chosen for position i of the two strings. Conditioning on the σ-
algebra Fi generated by Y1, . . . , Yi creates a martingale Xi = E(Mn | Fi)
with Xn = Mn. We now bound |Xi −Xi−1| by considering what happens
when exactly one argument of Mn(y1, . . . , yn) changes. If this is argument
i, then the pair yi = (ui, vi) becomes the pair y∗i = (u∗i , v

∗
i ). In a longest

common subsequence of y = (y1, . . . , yn), changing ui to u∗i creates or
destroys at most one match. Likewise, changing vi to v∗i creates or destroys
at most one match. Thus, the revised string y∗ has a common subsequence
whose length differs from Mn(y) by at most 2, and the pertinent inequality
Mn(y) − 2 ≤ Mn(y∗) follows. By the same token, Mn(y∗) − 2 ≤ Mn(y).
Hence |Mn(y) −Mn(y∗)| ≤ 2, and Proposition 10.5.1 yields

Pr[|Mn − E(Mn)| ≥ λ
√
n] ≤ 2e−

λ2

8 .

Further problems of this sort are treated in the references [186, 201].

Example 10.5.3 Euclidean Traveling Salesman Problem

In some cases it is possible to calculate a more subtle bound on the mar-
tingale differences Xi+1 − Xi. The Euclidean traveling salesman problem
is typical in this regard. In applying Proposition 10.5.1 to Example 5.7.2,
we take Z to be Dn({Y1, . . . , Yn}) and Fi to be the σ-algebra generated
by Y1, . . . , Yi. Consider the integrand (10.25) determining the martingale
difference Xi −Xi−1. If S denotes the set S = {y1, . . . , yi−1, vi+1, . . . , vn},
then the reasoning that produces inequality (5.12) in Example 5.7.2 also
leads to the inequalities

Dn−1(S) ≤ Dn(S ∪ {yi}) ≤ Dn−1(S) + 2 min
w∈S

||w − yi||

Dn−1(S) ≤ Dn(S ∪ {vi}) ≤ Dn−1(S) + 2 min
w∈S

||w − vi||

involving Zi = Dn(S ∪ {yi}) and Zi−1 = Dn(S ∪ {vi}). It follows that

|Zi − Zi−1| ≤ 2 min
w∈S

||w − yi|| + 2 min
w∈S

||w − vi||

≤ 2 min
j>i

||vj − yi|| + 2 min
j>i

||vj − vi||

and consequently that

|Xi −Xi−1| ≤ 2 E
(

min
j>i

||Yj − yi||
)

+ 2 E
(

min
j>i

||Yj − Yi||
)
.
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We now estimate the right-tail probability Pr(minj>i ||Yj − y|| ≥ r) for
a generic point y representing either yi or Yi. The smallest area of the unit
square at a distance of r or less from y is a quarter-circle of radius r. This
extreme case occurs when y occupies a corner of the square. In view of this
result and the inequality (1− x)k ≤ e−kx for x ∈ (0, 1) and k > 0, we have

Pr
(

min
j>i

||Yj − y|| ≥ r
)

≤
(
1 − πr2

4

)n−i

≤ e−
(n−i)πr2

4 .

Application of Example 2.5.1 therefore yields

E
(

min
j>i

||Yj − y||
)

≤
∫ ∞

0

e−
(n−i)πr2

4 dr

=
1

2

∫ ∞

−∞
e−

(n−i)πr2

4 dr

=
1√
n− i

and

|Xi −Xi−1| ≤ 4√
n− i

.

The case i = n must be considered separately. If we use the crude inequality

|Xn −Xn−1| = |Dn −Xn−1| ≤ 2
√

2,

then the sum
∑n

i=1 c
2
i figuring in Proposition 10.5.1 can be bounded by

n∑

i=1

c2i ≤ (2
√

2)2 + 42
n−1∑

i=1

1

n− i
≤ 8 + 16(lnn+ 1).

This in turn translates into the Azuma-Hoeffding bound

Pr[|Dn − E(Dn)| ≥ λ] ≤ 2e−
λ2

48+32 ln n .

Problem 25 asks the reader to check some details of this argument.

10.6 Problems

1. Define the random variables Yn inductively by taking Y0 = 1 and
Yn+1 to be uniformly distributed on the interval (0, Yn). Show that
the sequence Xn = 2nYn is a martingale.

2. An urn contains b black balls and w white balls. Each time we ran-
domly withdraw a ball, we replace it by c+ 1 balls of the same color.
Let Xn be the fraction of white balls after n draws. Demonstrate that
Xn is a martingale.
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3. Let Y1, Y2, . . . be a sequence of independent random variables with
zero means and common variance σ2. If Xn = Y1 + · · · + Yn, then
show that X2

n − nσ2 is a martingale.

4. Let Y1, Y2, . . . be a sequence of i.i.d. random variables with common
moment generating function M(t) = E(etY1). Prove that

Xn = M(t)−net(Y1+···+Yn)

is a martingale whenever M(t) <∞.

5. Let Yn be a finite-state, discrete-time Markov chain with transition
matrix P = (pij). If v is a column eigenvector for P with nonzero
eigenvalue λ, then verify that Xn = λ−nvYn

is a martingale, where
vYn

is coordinate Yn of v.

6. Suppose Yt is a continuous-time Markov chain with infinitesimal gen-
erator Ω. Let v be a column eigenvector of Ω with eigenvalue λ. Show
that Xt = e−λtvYt

is a martingale in the sense that

E(Xt+s | Yr, r ∈ [0, t]) = Xt.

Here vYt
is coordinate Yt of v.

7. Let {Xn}n≥0 be a family of random variables with finite expectations
that satisfy

E(Xn+1 | X1, . . . , Xn) = αXn + (1 − α)Xn−1

for n ≥ 1 and some constant α �= 1. Find a second constant β so
that the random variables Yn = βXn + Xn−1 for n ≥ 1 constitute a
martingale relative to {Xn}n≥0.

8. Suppose Yn is the number of particles at the nth generation of a
branching process. If s∞ is the extinction probability, prove that
Xn = sYn∞ is a martingale. (Hint: If Q(s) is the progeny generating
function, then Q(s∞) = s∞.)

9. Let Nt denote the number of random points that occur by time t in
a Poisson process on [0,∞) with intensity λ. Show that the following
stochastic processes

Xt = Nt − λt

Xt = (Nt − λt)2 − λt

Xt = e−θNt+λt(1−e−θ)

enjoy the martingale property E(Xt+s| Nr, r ∈ [0, t]) = Xt for s > 0.
(Hint: Nt+s −Nt is independent of Nt and distributed as Ns.)



266 10. Martingales

10. In Example 10.3.2, show that Var(X∞) = σ2

μ(μ−1) by differentiating

equation (10.12) twice. This result is consistent with the mean square
convergence displayed in equation (10.9).

11. In Example 10.3.2, show that the fractional linear transformation

L∞(t) =
pt− p+ q

qt− p+ q

solves equation (10.12) when Q(s) = p
1−qs and μ = q

p . Also verify

equation (10.13).

12. In Example 10.2.2, suppose that each Yn is equally likely to assume
the values 1

2 and 3
2 . Show that

∏∞
i=1 Yi ≡ 0 but

∏∞
i=1 E(Yi) = 1 [24].

(Hint: Apply the strong law of large numbers to the sequence lnYn.)

13. Given X0 = μ ∈ (0, 1), define Xn inductively by

Xn+1 =

{
α+ βXn, with probability Xn

βXn, with probability 1 −Xn ,

where α, β > 0 and α+β = 1. Prove that Xn is a martingale with (a)
Xn ∈ (0, 1), (b) E(Xn) = μ, and (c) Var(Xn) = [1−(1−α2)n]μ(1−μ).
Also prove that Proposition 10.3.2 implies that limn→∞Xn = X∞
exists with E(X∞) = μ and Var(X∞) = μ(1 − μ). (Hint: Derive a
recurrence relation for Var(Xn+1) by conditioning on Xn.)

14. In Proposition 10.3.2, prove that Xn = E(X∞ | Fn). If Xn is defined
by Xn = E(X | Fn) to begin with, then one can also show that
X∞ = E(X | F∞), where F∞ is the smallest σ-algebra containing
∪nFn. Omit this further technicality. (Hint: For C ∈ Fn take the
limit of E(Xn+m1C) = E(Xn1C) as m tends to ∞.)

15. Let Y1, Y2, . . . be a sequence of independent random variables. The tail
σ-algebra T generated by the sequence can be expressed as T = ∩nTn,
where Tn is the σ-algebra generated by Yn, Yn+1, . . .. It is easy to con-
struct events in T . For instance in an infinite sequence of coin tosses,
the event that a finite number of heads occurs belongs to T . The
zero-one law says that any C ∈ T has Pr(C) = 0 or Pr(C) = 1.
Use Proposition 10.3.2 and Problem 14 to prove the zero-one law.
(Hints: Let Fn be the σ-algebra generated by Y1, . . . , Yn. The mar-
tingale Xn = E(1C | Fn) is constant and converges to X∞, which is
measurable with respect to F∞. But C is a member of F∞.)

16. Let Sn = X1 + · · ·+Xn be a symmetric random walk on the integers
{−a, . . . , b} starting at S0 = 0. For the stopping time

T = min{n : Sn = −a or Sn = b},
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prove that Pr(ST = b) = a/(a+ b) by considering the martingale Sn

and that E(T ) = ab by considering the martingale S2
n − n. (Hints:

Apply Proposition 10.4.2 and Problem 3.)

17. Continuing Problem 16, assume that the random walk is asymmet-
ric and moves to the right with probability p and to the left with
probability q = 1 − p. Show that the stopping time T has mean

E(T ) =
1

p− q
[(1 − rab)b− raba] ,

where rab is the ruin probability (10.16). (Hint: Apply Proposition
10.4.2 to the martingale Sn − n(p− q).)

18. In the Wright-Fisher model of Example 10.2.6, show that

Zn =
Xn(1 −Xn)
(
1 − 1

2m

)n

is a martingale. Assuming that limn→∞ Zn = Z∞ exists, we have

Xn(1 − Xn) ≈
(
1 − 1

2m

)n

Z∞ for n large. In other words, Xn ap-

proaches either 0 or 1 at rate 1 − 1
2m .

19. Continuing Problem 18, let T be the time of absorption at 0 or 1
starting from Y0 = i copies of the a1 allele. Demonstrate that

Pr(T > n) ≤ i(2m− i)
(
1 − 1

2m

)n

≤ ε

for ε ∈ (0, 1) and n = 2m ln[i(2m− i)] − 2m ln ε.

20. Continuing Problem 9, let Tn be the time at which Nt first equals
the positive integer n. Assuming the optional stopping theorem holds
for the stopping time Tn and the martingales identified in Problem
9, show that

E(Tn) =
n

λ

Var(Tn) =
n

λ2

E
(
e−βTn

)
=
( λ

λ+ β

)n

for β > 0. These results agree with our earlier findings concerning the
mean, variance, and Laplace transform of Tn. (Hints: Use NTn

= n
and set β = −λ(1 − e−θ) for the third equality.)
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21. Let Y1, . . . , Yn be independent Bernoulli random variables with suc-
cess probability μ. Graphically compare the large deviation bound
(10.23) to Chebyshev’s bound

Pr(|Sn − nμ| ≥ λ) ≤ nμ(1 − μ)

λ2

when μ = 1/2. Which bound is better? If neither is uniformly better
than the other, determine which combinations of values of n and λ
favor Chebyshev’s bound.

22. Suppose that v1, . . . , vn ∈ R
m have Euclidean norms ‖vi‖2 ≤ 1. Let

Y1, . . . , Yn be independent random variables uniformly distributed on
the two-point set {−1, 1}. If Z = ‖Y1v1 + · · · + Ynvn‖2, then prove
that

Pr[Z − E(Z) ≥ λ
√
n] ≤ e−

λ2

8 .

23. Consider a random graph with n nodes. Between every pair of nodes,
independently introduce an edge with probability p. The graph is
said to be k colorable if it is possible to assign each of its nodes one
of k colors so that no pair of adjacent nodes share the same color.
The chromatic number X of the graph is the minimum value of k.
Demonstrate that Pr[|X − E(X)| ≥ λ] ≤ 2e−λ2/(2n). (Hint: Consider
the martingale Xi = E(X | Y1, . . . , Yi), where Yi is the random set of
edges connecting node i to nodes 1, . . . , i− 1.)

24. Consider a multinomial experiment with n trials, m possible cells,
and success probability pi for cell i. Let Sk be the number of cells
with exactly k successes. Show that

E(Sk) =

m∑

i=1

(
n

k

)

pk
i (1 − pi)

n−k.

Apply the Azuma-Hoeffding theorem and prove that

Pr[|S0 − E(S0)| ≥ λ] ≤ 2e−λ2/(2n)

Pr[|Sk − E(Sk)| ≥ λ] ≤ 2e−λ2/(8n), k > 0.

(Hint: Let Xi be the martingale E(Sk | Y1, . . . , Yi), where Yi is the
outcome of trial i.)

25. Example 10.5.3 relies on some unsubstantiated claims. Prove that:
(a) (1−x)k ≤ e−kx for x ∈ (0, 1) and k > 0, (b) |Dn −Xn−1| ≤ 2

√
2,

and (c) 1 + · · · + 1
n−1 ≤ lnn+ 1.



11
Diffusion Processes

11.1 Introduction

Despite their reputation for sophistication, diffusion processes are widely
applied throughout science and engineering. Here we survey the theory at
an elementary level, stressing intuition rather than rigor. Readers with the
time and mathematical inclination should follow up this brief account by
delving into serious presentations of the mathematics [80, 107]. A good
grounding in measure theory is indispensable in understanding the theory.
At the highest level of abstraction, diffusion processes can be treated via
the Ito stochastic integral [30, 38]. As background for this chapter, the
reader is advised to review the material in Section 1.8 on the multivariate
normal distribution.

Because of the hard work involved in mastering the abstract theory, there
is a great deal to be said for starting with specific applications and heuristic
arguments. Brownian motion is the simplest and most pervasive diffusion
process. Several more complicated processes can be constructed from stan-
dard Brownian motion. The current chapter follows a few selected appli-
cations from population biology, neurophysiology, and population genetics.
These serve to illustrate concrete techniques for calculating moments, first
passage times, and equilibrium distributions. Ordinary and partial differ-
ential equations play a prominent role in these computations.

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_11, © Springer Science+Business Media, LLC 2010
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11.2 Basic Definitions and Properties

A diffusion process Xt is a continuous-time Markov process with approx-
imately Gaussian increments over small time intervals. Its sample paths
t �→ Xt are continuous functions of t over a large interval I, either finite or
infinite. The process Xt is determined by the Markovian assumption and
the distribution of its increments. For small s and Xt = x, the increment
Xt+s −Xt is nearly Gaussian (normal) with mean and variance

E(Xt+s −Xt | Xt = x) = μ(t, x)s+ o(s) (11.1)

E[(Xt+s −Xt)
2 | Xt = x] = σ2(t, x)s+ o(s). (11.2)

The functions μ(t, x) and σ2(t, x) ≥ 0 are called the infinitesimal mean
and variance, respectively. Here the term “infinitesimal variance” is used
rather than “infinitesimal second moment” because the approximation

Var(Xt+s −Xt | Xt = x)

= E[(Xt+s −Xt)
2 | Xt = x] − [μ(t, x)s+ o(s)]2

= E[(Xt+s −Xt)
2 | Xt = x] + o(s)

follows directly from approximation (11.1). If the infinitesimal mean and
variance do not depend on time t, then the process is time homogeneous.
The choices μ(t, x) = 0, σ2(t, x) = 1, and X0 = 0 characterize standard
Brownian motion.

To begin our nonrigorous, intuitive discussion of diffusion processes, we
note that the normality assumption implies

E(|Xt+s −Xt|m | Xt = x) = E

(∣
∣
∣
∣
Xt+s −Xt

σ(t, x)
√
s

∣
∣
∣
∣

m ∣
∣
∣Xt = x

)[
σ(t, x)

√
s
]m

= o(s) (11.3)

for m > 2. (See Problem 1.) This insight is crucial in various arguments
involving Taylor series expansions. For instance, it allows us to deduce how
Xt behaves under a smooth, invertible transformation. If Yt = g(t,Xt)
denotes the transformed process, then

Yt+s − y =
∂

∂t
g(t, x)s+

∂

∂x
g(t, x)(Xt+s − x) +

1

2

∂2

∂t2
g(t, x)s2

+
∂2

∂t∂x
g(t, x)s(Xt+s − x) +

1

2

∂2

∂x2
g(t, x)(Xt+s − x)2

+O[(|Xt+s − x| + s)3]

for Xt = x and y = g(t, x). Taking conditional expectations and invoking
equation (11.3) produce

E(Yt+s − Yt | Yt = y) =
∂

∂t
g(t, x)s+

∂

∂x
g(t, x)μ(t, x)s

+
1

2

∂2

∂x2
g(t, x)σ2(t, x)s+ o(s).
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Similarly,

Var(Yt+s − Yt | Yt = y) =

[
∂

∂x
g(t, x)

]2
σ2(t, x)s + o(s).

It follows that the transformed diffusion process Yt has infinitesimal mean
and variance

μY (t, y) =
∂

∂t
g(t, x) +

∂

∂x
g(t, x)μ(t, x) +

1

2

∂2

∂x2
g(t, x)σ2(t, x)

σ2
Y (t, y) =

[
∂

∂x
g(t, x)

]2
σ2(t, x) (11.4)

at y = g(t, x).
In many cases of interest, the random variable Xt has a density function

f(t, x) that depends on the initial pointX0 = x0. To characterize f(t, x), we
now give a heuristic derivation of Kolmogorov’s forward partial differential
equation. Our approach exploits the notion of probability flux. Here it
helps to imagine a large ensemble of diffusing particles, each independently
executing the same process. We position ourselves at some point x and
record the rate at which particles pass through x from left to right minus
the rate at which they pass from right to left. This rate, normalized by the
total number of particles, is the probability flux at x. We can express the
flux more formally as the negative derivative − ∂

∂t Pr(Xt ≤ x).
To calculate this time derivative, we rewrite the difference

Pr(Xt ≤ x) − Pr(Xt+s ≤ x)

= Pr(Xt ≤ x,Xt+s > x) + Pr(Xt ≤ x,Xt+s ≤ x)

−Pr(Xt ≤ x,Xt+s ≤ x) − Pr(Xt > x,Xt+s ≤ x)

= Pr(Xt ≤ x,Xt+s > x) − Pr(Xt > x,Xt+s ≤ x).

The first of the resulting probabilities, Pr(Xt ≤ x,Xt+s > x), can be
expressed as

Pr(Xt ≤ x,Xt+s > x) =

∫ ∞

0

∫ x

x−z

f(t, y)φs(y, z) dy dz,

where the increment Z = Xt+s−Xt has density φs(y, z) when Xt = y. The
limits on the inner integral reflect the inequalities x ≥ y and y + z > x. In
similar fashion, the second probability becomes

Pr(Xt > x,Xt+s ≤ x) =

∫ 0

−∞

∫ x−z

x

f(t, y)φs(y, z) dy dz,

producing overall

Pr(Xt ≤ x) − Pr(Xt+s ≤ x) =

∫ ∞

−∞

∫ x

x−z

f(t, y)φs(y, z) dy dz. (11.5)
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For small values of s, only values of y near x should contribute to the
flux. Therefore, we can safely substitute the first-order expansion

f(t, y)φs(y, z) ≈ f(t, x)φs(x, z) +
∂

∂x

[
f(t, x)φs(x, z)

]
(y − x)

in equation (11.5). In light of equations (11.1) and (11.2), this yields

Pr(Xt ≤ x) − Pr(Xt+s ≤ x)

≈
∫ ∞

−∞

∫ x

x−z

{
f(t, x)φs(x, z) +

∂

∂x

[
f(t, x)φs(x, z)

]
(y − x)

}
dy dz

=

∫ ∞

−∞

{
zf(t, x)φs(x, z) −

z2

2

∂

∂x

[
f(t, x)φs(x, z)

]}
dz

≈ μ(t, x)f(t, x)s − 1

2

∂

∂x

[∫ ∞

−∞
z2φs(x, z) dzf(t, x)

]

≈ μ(t, x)f(t, x)s − 1

2

∂

∂x

[
σ2(t, x)f(t, x)

]
s.

Using equation (11.3), one can show that these approximations are good
to order o(s). Dividing by s and sending s to 0 give the flux

− ∂

∂t
Pr(Xt ≤ x) = μ(t, x)f(t, x) − 1

2

∂

∂x

[
σ2(t, x)f(t, x)

]
.

A final differentiation with respect to x now produces the Kolmogorov
forward equation

∂

∂t
f(t, x) = − ∂

∂x

[
μ(t, x)f(t, x)

]
+

1

2

∂2

∂x2

[
σ2(t, x)f(t, x)

]
. (11.6)

As t tends to 0, the density f(t, x) concentrates all of its mass around the
initial point x0.

11.3 Examples Involving Brownian Motion

Example 11.3.1 Standard Brownian Motion

If μ(t, x) = 0 and σ2(t, x) = 1, then the forward equation (11.6) becomes

∂

∂t
f(t, x) =

1

2

∂2

∂x2
f(t, x).

For X0 = 0 one can check the solution

f(t, x) =
1√
2πt

e−
x2

2t
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by straightforward differentiation. Thus, Xt has a Gaussian density with
mean 0 and variance t. As t tends to 0, Xt becomes progressively more
concentrated around its starting point 0. Because Xt and the increment
Xt+s−Xt are effectively independent for s > 0 small, and because the sum
of independent Gaussian random variables is Gaussian, Xt and Xt+s −Xt

are Gaussian and independent for large s as well as for small s. Of course,
rigorous proof of this fact is more subtle. In general, we cannot expect a
diffusion process Xt to be normally distributed just because its short-time
increments are approximately normal.

The independent increments property of standard Brownian motion fa-
cilitates calculation of covariances. For instance, writing

Xt+s = Xt+s −Xt +Xt

makes it clear that Cov(Xt+s, Xt) = Var(Xt) = t. We will use this formula
in finding the infinitesimal mean and variance of the Brownian bridge dif-
fusion process described in Example 11.3.4. The independent increments
property also shows that a random vector (Xt1 , . . . , Xtn

) with t1 < · · · < tn
is multivariate normal. For example when n = 3, the representation

Y = c1Xt1 + c2Xt2 + c3Xt3

= c3(Xt3 −Xt2) + (c2 + c3)(Xt2 −Xt1) + (c1 + c2 + c3)Xt1

demonstrates that the arbitrary linear combination Y is univariate normal.
Although the sample paths of Brownian motion are continuous, they are

extremely rough and nowhere differentiable [106]. Nondifferentiability is
plausible because the difference quotient at any time t satisfies

Var
(Xt+s −Xt

s

)
=

1

s
,

which tends to ∞ as s tends to 0. The lack of smoothness of Brownian
paths makes stochastic integration such a subtle subject.

Example 11.3.2 The Dirichlet Problem

The Dirichlet problem arises in electrostatics, heat conduction, and other
branches of physics. In two dimensions, it involves finding a function u(x, y)
that satisfies Laplace’s equation

∂2

∂x2
u(x, y) +

∂2

∂y2
u(x, y) = 0

on a bounded open domain Ω and that has prescribed values

u(x, y) = f(x, y)

on the boundary ∂Ω of Ω. The function f(x, y) is assumed continuous. In
the heat conduction setting, u(x, y) represents steady-state temperature.
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A solution to the Dirichlet problem is said to be a harmonic function.
Harmonic functions are characterized by the averaging property

u(z) =
1

2π

∫ 2π

0

u[z + reiθ] dθ, (11.7)

where z = (x, y) and r is the radius of the circle centered at z. This property
must hold for all circles contained in Ω.

Although it took a long time for scientists to make the connection with
Brownian motion, the basic idea is fairly simple. Two independent copies
Xt and Yt of standard Brownian motion define a curve Zt = (Xt, Yt) in
the plane. This bivariate Brownian process is isotropic, that is, exhibits
no preferred direction of motion. At each point z in Ω ∪ ∂Ω, we define a
stopping time Tz measuring how long it takes the process Zt to reach ∂Ω
starting from z. The solution to Dirichlet’s problem can then be written as
the expected value

u(z) = E[f(ZTz
)]

of f(w) at the exit point. For a point z on ∂Ω, Tz = 0 and u(z) = f(z). For z
in Ω, the averaging property (11.7) is intuitively clear once we condition on
the first point reached on the boundary of the circle. The books [118, 160,
189] tell the whole story, including necessary qualifications on the nature
of Ω and extensions to more than two dimensions.

Example 11.3.3 Transformations of Standard Brownian Motion

The transformed Brownian process Yt = σXt + αt + x0 has infinitesimal
mean and variance μY (t, x) = α and σ2

Y (t, x) = σ2. It is clear that Yt

is normally distributed with mean αt + x0 and variance σ2t. The further
transformation Zt = eYt leads to a process with infinitesimal mean and
variance μZ(t, z) = zα+ 1

2zσ
2 and σ2

Z(t, z) = z2σ2. Because Yt is normally
distributed, Zt is lognormally distributed.

Example 11.3.4 Brownian Bridge

To construct the Brownian bridge Yt from standard Brownian motion Xt,
we restrict t to the interval [0, 1] and condition on the event X1 = 0.
This ties down Xt at the two time points 0 and 1. The Brownian bridge
diffusion process is important in evaluating the asymptotic distribution of
the Kolmogorov-Smirnov statistic in nonparametric statistics [23].

To find the infinitesimal mean and variance of the Brownian bridge, we
note that the vector (Xt, X1, Xt+s) follows a multivariate normal distribu-
tion with mean vector 0 = (0, 0, 0) and covariance matrix

⎛

⎝
t t t
t 1 t+ s
t t+ s t+ s

⎞

⎠ .
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If Yt equals Xt conditional on the event X1 = 0, then Yt+s conditional on
the event Yt = y is just Xt+s conditional on the joint event Xt = y and
X1 = 0. It follows from the conditioning formulas in Section 1.8 that Yt+s

given Yt = y is normally distributed with mean and variance

E(Yt+s | Yt = y) = (t, t+ s)

(
t t
t 1

)−1(
y − 0
0 − 0

)

+ 0

Var(Yt+s | Yt = y) = t+ s− (t, t+ s)

(
t t
t 1

)−1(
t

t+ s

)

.

In view of the matrix inverse

(
t t
t 1

)−1

=
1

t(1 − t)

(
1 −t
−t t

)

,

straightforward algebra demonstrates that

E(Yt+s | Yt = y) = y − ys

1 − t

Var(Yt+s | Yt = y) = s− s2

1 − t
. (11.8)

It follows that the Brownian bridge has infinitesimal mean and variance
μ(t, y) = −y/(1 − t) and σ2(t, y) = 1.

Example 11.3.5 Bessel Process

Consider a random process Xt = (X1t, . . . , Xnt) in R
n whose n components

are independent standard Brownian motions. Let

Yt =

n∑

i=1

X2
it

be the squared distance from the origin. To calculate the infinitesimal mean
and variance of this diffusion process, we write

Yt+s − Yt =
n∑

i=1

[
2Xit(Xi,t+s −Xit) + (Xi,t+s −Xit)

2
]
.

It follows from this representation, independence, and equation (11.3) that

E(Yt+s − Yt | Xt = x) = ns

E[(Yt+s − Yt)
2 | Xt = x] =

n∑

i=1

4x2
i E[(Xi,t+s −Xit)

2 | Xt = x] + o(s)

= 4ys+ o(s)
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for y =
∑n

i=1 x
2
i . Because

E(Yt+s − Yt | Yt = y) = E[E(Yt+s − Yt | Xt = x) | Yt = y]

Var(Yt+s − Yt | Yt = y) = E[(Yt+s − Yt)
2 | Yt = y] + o(s)

= E{E[(Yt+s − Yt)
2 | Xt = x] | Yt = y} + o(s),

we conclude that Yt has infinitesimal mean and variance

μY (t, y) = n

σ2
Y (t, y) = 4y.

The random distance Rt =
√
Yt is known as the Bessel process. Its in-

finitesimal mean and variance

μR(t, r) =
n− 1

2r

σ2
R(t, r) = 1

are immediate consequences of formula (11.4).

11.4 Other Examples of Diffusion Processes

Example 11.4.1 Diffusion Approximation to Kendall’s Process

Suppose in Kendall’s model that the birth, death, and immigration rates
α, δ, and ν are constant. (Here we have substituted δ for μ to avoid a
collision with the symbol for the infinitesimal mean.) Given x particles
at time t, there is one birth with probability αxs during the very short
time interval (t, t+ s), one death with probability δxs, and one immigrant
with probability νs. The probability of more than one event is o(s). These
considerations imply that

μ(t, x) = (α− δ)x+ ν

σ2(t, x) = (α+ δ)x+ ν.

This diffusion approximation is apt to be good for a moderate number of
particles and poor for a small number of particles.

Example 11.4.2 Neuron Firing and the Ornstein-Uhlenbeck Process

Physiologists have long been interested in understanding how neurons fire
[108, 199]. Firing involves the electrical potentials across the cell membranes
of these basic cells of the nervous system. The typical neuron is composed
of a compact cell body or soma into which thousands of small dendrites feed
incoming signals. The soma integrates these signals and occasionally fires.
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When the neuron fires, a pulse, or action potential, is sent down the axon
connected to the soma. The axon makes contact with other nerve cells or
with muscle cells through junctions known as synapses. An action potential
is a transient electrical depolarization of the cell membrane that propagates
from the soma along the axon to the synapses. In a neuron’s resting state,
there is a potential difference of about −70 mV (millivolts) across the
soma membrane. This is measured by inserting a microelectrode through
the membrane. A cell is said to be excited, or depolarized, if the soma
potential exceeds the resting potential; it is inhibited, or hyperpolarized,
in the reverse case. When the soma potential reaches a threshold of from
10 to 40 mV above the resting potential, the neuron fires. After the axon
fires, the potential is reset to a level below the resting potential. An all
or nothing action potential converts an analog potential difference into a
digital pulse of information.

To model the firing of a neuron, we let Xt be the soma membrane po-
tential at the time t. Two independent processes, one excitatory and one
inhibitory, drive Xt. The soma receives excitatory pulses of magnitude ε
according to a Poisson process with intensity α and inhibitory pulses of
magnitude −δ according to an independent Poisson process with intensity
β. The potential is subject to exponential decay with time constant γ to
the resting value xr . When Xt reaches the fixed threshold s, the neuron
fires. Afterwards, Xt is reset to the level x0.

Because typical values of ε and δ range from 0.5 to 1 mV, a diffusion
approximation is appropriate. In view of the Poisson nature of the inputs,
we have

μ(t, x) = αε− βδ − γ(x− xr)

σ2(t, x) = αε2 + βδ2.

The transformed process Yt = Xt − η/γ with η = αε− βδ + γxr is known
as the Ornstein-Uhlenbeck process. It has infinitesimal mean and variance

μY (t, y) = −γ
(
y +

η

γ

)
+ η

= −γy
σ2

Y (t, y) = αε2 + βδ2

= σ2

and is somewhat easier to study.
Fortunately, it is possible to relate the Ornstein-Uhlenbeck process to

Brownian motion. Consider the complicated transformation

Yt = νe−γt
(
Weζt −W1 + ν−1y0

)

of standard Brownian motion Wt. If we write

Yt+s − Yt = νe−γ(t+s) [Weζ(t+s) −Weζt ]

+
(
e−γs − 1

)
νe−γt

(
Weζt −W1 + ν−1y0

)
,
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then it is clear that this increment is Gaussian. Furthermore, setting ζ = 2γ
gives

E [Yt+s − Yt | Yt = y] =
(
e−γs − 1

)
y

= −γys+ o(s)

Var [Yt+s − Yt | Yt = y] = ν2e−2γ(t+s)
[
eζ(t+s) − eζt

]

= ν2
[
1 − e−2γs

]

= 2ν2γs+ o(s).

Therefore, if we define ν so that σ2 = 2ν2γ, then the infinitesimal mean
−γy and variance σ2 of Yt coincide with those of the Ornstein-Uhlenbeck
process. One interesting dividend of the definition of Yt and the assumption
ζ = 2γ is that we can immediately conclude that Yt is Gaussian with mean
and variance

E(Yt) = y0e
−γt

Var(Yt) = ν2e−2γt
(
e2γt − 1

)
(11.9)

=
σ2

2γ

(
1 − e−2γt

)
.

These are clearly compatible with the initial value Y0 = y0.

Example 11.4.3 Wright-Fisher Model with Mutation and Selection

The Wright-Fisher model for the evolution of a deleterious or neutral gene
postulates (a) discrete generations, (b) finite population size, (c) no im-
migration, and (d) random sampling from a gamete pool. In assumption
(d), each current population member contributes to the infinite pool of
potential gametes (sperm and eggs) in proportion to his or her fitness.

Mutation from the normal allele A2 to the deleterious allele A1 takes
place at this stage with mutation rate η; back mutation is not permitted.
Once the pool of potential gametes is formed, actual gametes are sampled
randomly. In the neutral model introduced in Examples 7.3.2, 10.2.6, and
10.4.2, we neglect mutation and selection and treat the two alleles symmet-
rically.

The population frequencies (proportions) p and q of the two alleles A1

and A2 are the primary focus of the Wright-Fisher model [44, 56, 107].
These frequencies change over time in response to the forces of mutation, se-
lection, and genetic drift (random sampling of gametes). Selection operates
through fitness differences. Denote the average fitnesses of the genotypes
A1/A1, A1/A2, and A2/A2 by wA1/A1

, wA1/A2
, and wA2/A2

, respectively.
Because only relative fitness is important in formulating the dynamics of
the Wright-Fisher model, for a recessive disease we set wA1/A1

= f < 1
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and wA1/A2
= wA2/A2

= 1. Similarly for a dominant disease, we set
wA1/A1

= wA1/A2
= f < 1 and wA2/A2

= 1.
In a purely deterministic model, the frequency pn = 1− qn of the disease

allele A1 for a dominant disease satisfies the recurrence

pn+1 =
fp2

n + (1 + η)fpnqn + ηq2n
fp2

n + f2pnqn + q2n
. (11.10)

Here individuals bearing the three genotypes contribute gametes in propor-
tion to the product of their population frequencies and relative fitnesses. Be-
cause gametes are drawn independently from the pool at generation n, the
three genotypes A1/A1, A1/A2, and A2/A2 occur in the Hardy-Weinberg
proportions p2

n+1, 2pn+1qn+1, and q2n+1, respectively, at generation n+ 1.
Given that we expect pn to be of order η, equation (11.10) radically

simplifies if we expand and drop all terms of order η2 and higher. The
resulting linear recurrence

pn+1 = η + fpn (11.11)

can be motivated by arguing that A1 genes at generation n+ 1 arise either
through mutation (probability ν) or by descent from an existing A1 gene
(probability fpn under reduced fitness). The recurrence (11.11) has fixed
point p∞ = η

1−f . Furthermore, because pn+1 − p∞ = f(pn − p∞), the
iterates pn converge to p∞ at linear rate f .

In contrast, the frequency pn of the disease alleleA1 for a recessive disease
satisfies the deterministic recurrence

pn+1 =
fp2

n + (1 + η)pnqn + ηq2n
fp2

n + 2pnqn + q2n
.

Now we expect pn to be of order
√
η. Expanding the recurrence and drop-

ping all terms of order η3/2 and higher yields the quadratic recurrence

pn+1 = η + pnqn + fp2
n. (11.12)

In this case, A1 genes arise from mutation (probability ν), transmission
by a normal heterozygote (probability 1

22pnqn), or transmission from an
affected homozygote (probability fp2

n). The recurrence (11.12) has fixed
point p∞ =

√
η/(1 − f). To determine the rate of convergence, we rewrite

equation (11.12) as

pn+1 − p∞ = [1 − (1 − f)(pn + p∞)](pn − p∞).

This makes it clear that pn converges to p∞ at linear rate

1 − (1 − f)2p∞ = 1 − 2
√
η(1 − f).

These two special cases both entail a disease prevalence on the order
of η, which typically falls in the range 10−7 to 10−5. The two cases differ
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markedly in their rates of convergence to equilibrium. A dominant disease
reaches equilibrium quickly unless the average fitness f of affecteds is very
close to 1. By comparison, a recessive disease reaches equilibrium extremely
slowly.

Random fluctuations in the frequency of the disease allele can be large
in small populations. Let Nn be the size of the surrounding population
at generation n. In some cases we will take Nn constant to simplify our
mathematical development. In the stochastic theory, the deterministic fre-
quency pn of allele A1 at generation n is replaced by the random frequency
Xn of A1. This frequency is the ratio of the total number Yn of A1 alleles
present to the total number of genes 2Nn. The Wright-Fisher model speci-
fies that Yn is binomially distributed with 2Nn trials and success probability
p(Xn−1) determined by the proportion p(Xn−1) of A1 alleles in the pool of
potential gametes for generation n. In passing to a diffusion approximation,
we take one generation as the unit of time and substitute

μ(n, xn) = E(Xn+1 −Xn | Xn = xn) (11.13)

= p(xn) − xn

σ2(n, xn) = Var(Xn+1 −Xn | Xn = xn) (11.14)

=
p(xn)[1 − p(xn)]

2Nn+1

for the infinitesimal mean μ(t, x) and variance σ2(t, x) of the diffusion pro-
cess evaluated at time t = n and position x = xn.

Under neutral evolution, the gamete pool probability p(x) = x. This
formula for p(x) entails no systematic tendency for either allele to expand at
the expense of the other allele. For a dominant disease, p(x) = η+fx, while
for a recessive disease, p(x) = η+x−(1−f)x2. Most population geneticists
substitute p(x) = x in formula (11.14) defining the infinitesimal variance
σ2(t, x). This action is justified for neutral and recessive inheritance, but
less so for dominant inheritance, where the allele frequency x is typically
on the order of magnitude of the mutation rate η. It is also fair to point out
that in the presence of inbreeding or incomplete mixing of a population,
the effective population size is less than the actual population size [44]. For
the sake of simplicity, we will ignore this evolutionary fact.

11.5 Process Moments

Taking unconditional expectations in expression (11.1) gives

E(Xt+s) = E(Xt) + E[μ(t,Xt)]s+ o(s).
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Forming the obvious difference quotient and sending s to 0 therefore provide
the ordinary differential equation

d

dt
E(Xt) = E[μ(t,Xt)] (11.15)

characterizing E(Xt). In the special case μ(t, x) = αx + β, it is easy to
check that equation (11.15) has solution

E(Xt) = E(X0)e
αt +

β

α

(
eαt − 1

)
(11.16)

unless α = 0, in which case E(Xt) = E(X0) + βt.
Taking unconditional variances in expression (11.2) yields in a similar

manner

Var(Xt+s) = E[Var(Xt + ΔXt | Xt)] + Var[E(Xt + ΔXt | Xt)]

= E[σ2(t,Xt)s+ o(s)] + Var[Xt + μ(t,Xt)s+ o(s)]

= E[σ2(t,Xt)]s+ Var(Xt) + 2 Cov[Xt, μ(t,Xt)]s+ o(s)

for ΔXt = Xt+s−Xt. In this case taking the difference quotient and sending
s to 0 give the ordinary differential equation

d

dt
Var(Xt) = E[σ2(t,Xt)] + 2 Cov[Xt, μ(t,Xt)] (11.17)

rigorously derived in reference [58].

Example 11.5.1 Moments of the Wright-Fisher Diffusion Process

In the diffusion approximation to the Wright-Fisher model for a dominant
disease, equation (11.13) implies

μ(t, x) = η − (1 − f)x.

It follows from equation (11.16) that

E(Xt) =

[

x0 −
η

1 − f

]

e−(1−f)t +
η

1 − f

for X0 = x0. The limiting value of η/(1−f) is the same as the deterministic
equilibrium. In the case of neutral evolution with f = 1 and η = 0, the
mean E(Xt) = x0 is constant. With constant population size N , equations
(11.14) and (11.17) therefore yield the differential equation

d

dt
Var(Xt) =

E(Xt) − E(X2
t )

2N

=
x0 − x2

0 − Var(Xt)

2N
,
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with solution

Var(Xt) = x0(1 − x0)
[
1 − e−

t
2N

]
.

This expression for Var(Xt) tends to x0(1 − x0) as t tends to ∞, which is
the variance of the limiting random variable

X∞ =

{
1 with probability x0

0 with probability 1 − x0 .

Fan and Lange [57] calculate Var(Xt) for the dominant case. In the recessive
case, this approach to E(Xt) and Var(Xt) breaks down because μ(t, x) is
quadratic rather than linear in x.

Example 11.5.2 Moments of the Brownian Bridge

For the Brownian bridge, equation (11.15) becomes

d

dt
E(Xt) = − 1

1 − t
E(Xt).

The unique solution with E(X0) = 0 is E(Xt) = 0 for all t. Equation (11.17)
becomes

d

dt
Var(Xt) = 1 − 2

1 − t
Var(Xt).

This has solution

Var(Xt) = t(1 − t)

subject to the initial value Var(X0) = 0. These results match the results in
formula (11.8) if we replace y by 0, s by t, and t by 0.

11.6 First Passage Problems

Let c < d be two points in the interior of the range I of a diffusion process
Xt. Define Tc to be the first time t that Xt = c starting from X0 ≥ c. If
eventually Xt < c, then the continuity of the sample paths guarantees that
Xt = c at some first time Tc. It may be that Tc = ∞ with positive probabil-
ity. Similar considerations apply to Td, the first time t that Xt = d starting
from X0 ≤ d. The process Xt exits (c, d) at the time T = min{Tc, Td}.
We consider two related problems involving these first passage times. One
problem is to calculate the probability u(x) = Pr(Td < Tc | X0 = x) that
the process exits via d starting from x ∈ [c, d]. It is straightforward to de-
rive a differential equation determining u(x) given the boundary conditions
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u(c) = 0 and u(d) = 1. With this end in mind, we assume that Xt is time
homogeneous.

For s > 0 small and x ∈ (c, d), the probability that Xt reaches either c
or d during the time interval [0, s] is o(s). Thus,

u(x) = E[u(Xs) | X0 = x] + o(s).

If we let ΔXs = Xs−X0 and expand u(Xs) in a second-order Taylor series,
then we find that

u(Xs) = u(x+ ΔXs)

= u(x) + u′(x)ΔXs +
1

2

[
u′′(x) + r(ΔXs)

]
ΔX2

s , (11.18)

where the relative error r(ΔXs) tends to 0 as ΔXs tends to 0. Invoking
equations (11.1), (11.2), and (11.18) therefore yields

u(x) = E[u(Xs)] + o(s)

= u(x) + μ(x)u′(x)s +
1

2
σ2(x)u′′(x)s+ o(s),

which, upon rearrangement and sending s to 0, gives the differential equa-
tion

0 = μ(x)u′(x) +
1

2
σ2(x)u′′(x). (11.19)

It is a simple matter to check that equation (11.19) can be solved explic-
itly by defining

v(x) =

∫ x

l

e
−
∫

y

l

2μ(z)

σ2(z)
dz
dy

and setting

u(x) =
v(x) − v(c)

v(d) − v(c)
. (11.20)

Here the lower limit of integration l can be any point in the interval [c, d].
This particular solution also satisfies the boundary conditions.

Example 11.6.1 Exit Probabilities in the Wright-Fisher Model

In the diffusion approximation to the neutral Wright-Fisher model with
constant population size N , we calculate

v(x) =

∫ x

l

e
−
∫

y

l
0 dz

dy = x− l.
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Thus, starting at a frequency of x for allele A1, allele A2 goes extinct before
allele A1 with probability

u(x) = lim
c→0, d→1

x− l − (c− l)

d− l − (c− l)
= x.

This example is typical in the sense that u(x) = (x − c)/(d − c) for any
diffusion process with μ(x) = 0.

Example 11.6.2 Exit Probabilities in the Bessel Process

Consider two fixed radii 0 < r0 < r1 in the Bessel process. It is straightfor-
ward to calculate

v(x) =

∫ x

l

e
−
∫

y

l

n−1
z

dz
dy

=

∫ x

l

ln−1

yn−1
dy

= − ln−1

(n− 2)xn−2
+

ln−1

(n− 2)ln−2

for n > 2. This yields

u(x) =
r−n+2
0 − x−n+2

r−n+2
0 − r−n+2

1

,

from which it follows that u(x) tends to 1 as r0 tends to 0. This fact is
intuitively obvious because the Brownian path Xt is much more likely to
hit the surface of a large outer sphere of radius r1 before it hits the surface
of a small inner sphere of radius r0. In R

2 we have

u(x) =
lnx− ln r0
ln r1 − ln r0

,

and the same qualitative comments apply.

Another important problem is to calculate the expectation

w(x) = E[g(T ) | X0 = x]

of a function of the exit time T from [c, d]. For instance, g(t) = tn gives the
nth moment of T , and g(t) = e−θt gives the Laplace transform of T . We
again derive an ordinary differential equation determining w(x), but now
the pertinent boundary conditions are w(c) = w(d) = g(0). To emphasize
the dependence of T on the initial position x, let us write Tx in place of T .

We commence our derivation with the expansion

w(x) = E[g(Tx) | X0 = x]
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= E[g(TXs
+ s) | X0 = x] + o(s)

= E[g(TXs
) + g′(TXs

)s | X0 = x] + o(s)

= E{E[g(TXs
) | Xs] | X0 = x} + E[g′(TXs

) | X0 = x]s+ o(s)

= E[w(Xs) | X0 = x] + E[g′(Tx) | X0 = x]s+ o(s).

Employing the same reasoning used in deriving the differential equation
(11.19) for u(x), we deduce that

E[w(Xs) | X0 = x] = w(x) + μ(x)w′(x)s+
1

2
σ2(x)w′′(x)s + o(s).

It follows that

w(x) = w(x) + μ(x)w′(x)s+
1

2
σ2(x)w′′(x)s

+ E[g′(Tx) | X0 = x]s+ o(s).

Rearranging this and sending s to 0 produce the differential equation

0 = μ(x)w′(x) +
1

2
σ2(x)w′′(x) + E[g′(Tx) | X0 = x].

The special cases g(t) = t and g(t) = e−θt correspond to the differential
equations

0 = μ(x)w′(x) +
1

2
σ2(x)w′′(x) + 1 (11.21)

0 = μ(x)w′(x) +
1

2
σ2(x)w′′(x) − θw(x), (11.22)

respectively. The pertinent boundary conditions are w(c) = w(d) = 0 and
w(c) = w(d) = 1.

Example 11.6.3 Mean Exit Times in the Wright-Fisher Model

In the diffusion approximation to the neutral Wright-Fisher model with
constant population size N , equation (11.21) becomes

0 =
x(1 − x)

4N
w′′(x) + 1. (11.23)

If we take c = 0 and d = 1, then w(x) represents the expected time until
fixation of one of the two alleles. To solve equation (11.23), observe that

w′(x) = −4N

∫ x

1
2

1

y(1 − y)
dy + k1

= −4N

∫ x

1
2

[
1

y
+

1

(1 − y)

]

dy + k1

= −4N [lnx− ln(1 − x)] + k1
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for some constant k1. Integrating again yields

w(x) = −4N

∫ x

1
2

[ln y − ln(1 − y)] dy + k1x+ k2

= −4N [x lnx+ (1 − x) ln(1 − x)] + k1x+ k2

for some constant k2. The boundary condition w(0) = 0 implies k2 = 0,
and the boundary condition w(1) = 0 implies k1 = 0. It follows that

w(x) = −4N [x lnx+ (1 − x) ln(1 − x)] .

This is proportional to N and attains a maximum of 4N ln 2 at x = 1/2.

Example 11.6.4 Mean Exit Times in the Bessel Process

Again fix two radii 0 < r0 < r1. If we let v(x) = w′(x), then equation
(11.21) becomes

0 =
n− 1

2x
v(x) +

1

2
v′(x) + 1

for the Bessel process. This inhomogeneous differential equation has the
particular solution v(x) = −2x/n. The general solution is the sum of the
particular solution and an arbitrary multiple of a solution to the homoge-
neous differential equation

0 =
n− 1

2x
v(x) +

1

2
v′(x).

This makes it clear that the general solution is

v(x) = −2x

n
+ ax−n+1

for an arbitrary constant a. Integrating the general solution for v(x) pro-
duces the general solution

w(x) = −x
2

n
− ax−n+2

n− 2
+ b

for w(x) when n > 2.
The arbitrary constants a and b are determined by the boundary condi-

tions w(r0) = w(r1) = 0. Thus,

0 = w(r1) − w(r0)

=
r20 − r21
n

+
a(r−n+2

0 − r−n+2
1 )

n− 2

gives

a =
(n− 2)(r20 − r21)

n(r−n+2
1 − r−n+2

0 )
,
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FIGURE 11.1. Reflection of Xt around the Level b = 30.

which tends to 0 as r0 tends to 0. For x fixed and r0 = 0, it follows that

b =
r21
n
.

This gives the expected time

w(x) =
r21 − x2

n
(11.24)

to reach the surface of the sphere of radius r1 starting from the surface
of the sphere of radius x. This formula for w(x) also holds in R

2, but the
derivation is slightly different.

11.7 The Reflection Principle

For standard Brownian motion, we can find the entire distribution of the
first passage time Tb to level b > 0 when no lower exit level comes into
play. The reflection principle operates by reflecting part of a Brownian path
crossing the horizontal line of height b. Figure 11.1 depicts a Brownian path
from t = 0 to t = 2000 crossing the level b = 30 at about t = 1532. After
the crossing, the path and its reflection diverge. The principle establishes a
one-to-one correspondence between paths that exceed b at time t and paths
that exceed b at some time before t but fall below b at time t. The event
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{Tb > t} is the union of these two kinds of events. By symmetry a reflected
path is as likely to be taken as an original path. Hence,

Pr(Tb < t) = Pr(Xt > b) + Pr(Tb < t,Xt ≤ b)

= 2 Pr(Xt > b)

=
2√
2πt

∫ ∞

b

e−
x2

2t dx

=

√
2

π

∫ ∞

b/
√

t

e−
y2

2 dy.

Sending t to ∞ shows that Pr(Tb < ∞) = 1. However, the mean of Tb is
infinite as verified by the calculation

E(Tb) =

∫ ∞

0

Pr(Tb > t) dt

=

∫ ∞

0

√
2

π

∫ b/
√

t

0

e−
y2

2 dy dt

=

√
2

π

∫ ∞

0

∫ b2/y2

o

dt e−
y2

2 dy

=

√
2

π

∫ ∞

0

b2

y2
e−

y2

2 dy

= ∞.

It is possible to extend the reflection principle to the transformed Brow-
nian process Yt = σXt +αt with infinitesimal mean α > 0 and infinitesimal
variance σ2 [203]. Although a path and its reflection are no longer equally
likely, they occur in predictable ratios. Consider a path executed by Yt

that crosses the barrier b and terminates at the point x > b. If we parti-
tion the interval [Tb, t] into the points Tb = t0 < t1 < · · · < tn = t, then
reflection replaces every increment Δyi = Yti+1 −Yti

by its negative −Δyi.
Because the two increments are approximately normally distributed with
mean αΔti and variance σ2Δti with Δti = ti+1 − ti, their likelihood ratio
is approximately

Ri =
e
− (−Δyi−αΔti)

2

2σ2Δti

e
− (Δyi−αΔti)

2

2σ2Δti

= e−
2αΔyi

σ2 .

In view of the independent increments property of Brownian motion, the
likelihood ratio for the reflected path versus the original path is

R(x) =

n−1∏

i=0

Ri = e−
2α(x−b)

σ2 ,
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which does not depend on the particular partition.
As with standard Brownian motion, we have

Pr(Xt > b) =
1√

2πσ2t

∫ ∞

b

e−
(x−αt)2

2σ2t dx.

This is one of the two probabilities needed for the distribution function
of the first passage time Tb. To find the other probability, we exploit the
likelihood ratio R(x) in the calculation.

Pr(Tb < t,Xt ≤ b) =
1√

2πσ2t

∫ ∞

b

R(x)e−
(x−αt)2

2σ2t dx

=
e

2αb

σ2

√
2πσ2t

∫ ∞

b

e−
(x+αt)2

2σ2t dx.

It follows that

Pr(Tb < t) =
1√

2πσ2t

∫ ∞

b

e−
(x−αt)2

2σ2t dx+
e

2αb

σ2

√
2πσ2t

∫ ∞

b

e−
(x+αt)2

2σ2t dx.

The first passage time Tb is said to have an inverse Gaussian distribution.
Problem 10 supplies its mean and variance. Straightforward differentiation
of the distribution function provides the density function. In addition to
its obvious application to the neuron-firing model, the inverse Gaussian
distribution appears in many statistical models involving waiting time data.

11.8 Equilibrium Distributions

In certain situations, a time-homogeneous diffusion process will tend to
equilibrium. To find the equilibrium distribution, we set the left-hand side
of Kolmogorov’s equation (11.6) equal to 0 and solve for the equilibrium
distribution f(x) = limt→∞ f(t, x). Integrating the equation

0 = − d

dx

[
μ(x)f(x)

]
+

1

2

d2

dx2

[
σ2(x)f(x)

]
(11.25)

once gives

k1 = −μ(x)f(x) +
1

2

d

dx

[
σ2(x)f(x)

]

for some constant k1. The choice k1 = 0 corresponds to the intuitively
reasonable condition of no probability flux at equilibrium. Dividing the no
flux equation by σ2(x)f(x) yields

d

dx
ln[σ2(x)f(x)] =

2μ(x)

σ2(x)
.
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If we now choose l in the interior of the range I of Xt and integrate a
second time, then we deduce that

ln[σ2(x)f(x)] = k2 +

∫ x

l

2μ(y)

σ2(y)
dy,

from which Wright’s formula

f(x) =
k3e

∫
x

l

2μ(y)

σ2(y)
dy

σ2(x)
(11.26)

for the equilibrium distribution emerges. An appropriate choice of the con-
stant k3 = ek2 serves to make

∫
I
f(x) dx = 1 when the equilibrium distri-

bution exists and is unique.

Example 11.8.1 Equilibrium for the Ornstein-Uhlenbeck Process

Wright’s formula (11.26) gives

f(y) =
k3e

−
∫

y

0

2γz

σ2 dz

σ2

=

√
γ

πσ2
e−γy2/σ2

for the Ornstein-Uhlenbeck process. This is exactly the normal density one
would predict by sending t to ∞ in the moment equations (11.9). The
neuron firing process Xt = Yt + η/γ has the same equilibrium distribution
shifted by the amount η/γ.

Example 11.8.2 Equilibrium for a Recessive Disease Gene

Equilibrium for a disease gene is maintained by the balance between selec-
tion and mutation. To avoid fixation of the deleterious allele and to ensure
existence of the equilibrium distribution, back mutation of the deleterious
allele to the normal allele must be incorporated into the model. In reality,
the chance of fixation is so remote that back mutation does not enter into
the following approximation of the equilibrium distribution f(x). Because
only small values of the disease gene frequency are likely, f(x) is concen-
trated near 0. In the vicinity of 0, the approximation x(1 − x) ≈ x holds.
For a recessive disease, these facts suggest that we use

2μ(y)

σ2(y)
=

2[η − (1 − f)y2]
y(1−y)

2N

≈ 4N

[
η

y
− (1 − f)y

]

in Wright’s formula (11.26) when the surrounding population size N is
constant.



11.9 Problems 291

With this understanding,

f(x) ≈ 2Nk3

x
e4Nη ln(x/l)−2N(1−f)(x2−l2)

= k4x
4Nη−1e−2N(1−f)x2

for some constant k4 > 0. The change of variables z = 2N(1 − f)x2 shows
that the mth moment of f(x) is
∫

I

xmf(x) dx ≈ k4

∫ 1

0

xm+4Nη−1e−2N(1−f)x2

dx

=
k4

4N(1 − f)

∫ 1

0

xm+4Nη−2e−2N(1−f)x2

4N(1 − f)xdx

=
k4

4N(1 − f)

∫ 2N(1−f)

0

[
z

2N(1 − f)

]m+4Nη−2
2

e−zdz

≈ k4

2[2N(1 − f)]
m
2 +2Nη

∫ ∞

0

z
m
2 +2Nη−1e−zdz

=
k4Λ(m

2 + 2Nη)

2[2N(1 − f)]
m
2 +2Nη

.

Taking m = 0 identifies the normalizing constant

k4 =
2[2N(1 − f)]2Nη

Γ(2Nη)
.

With this value of k4 in hand, the mean of f(x) is
∫

I

xf(x) dx ≈
Γ(2Nη + 1

2 )
√

2N(1 − f)Γ(2Nη)
.

When Nη is large, application of Stirling’s formula implies that the mean
is close to the deterministic equilibrium value

√
η/(1 − f). In practice, one

should be wary of applying the equilibrium theory because the approach
to equilibrium is so slow.

11.9 Problems

1. Assuming that the increment Xt+s −Xt is normally distributed with
mean and variance given by equations (11.1) and (11.2), check the
approximation (11.3) by taking conditional expectations in the in-
equality

∣
∣
∣
∣

Y

σ(t, x)
√
s

∣
∣
∣
∣

m

≤
m∑

i=1

(
m

i

) ∣
∣
∣
∣
Y − ω

σ(t, x)
√
s

∣
∣
∣
∣

i ∣∣
∣
∣

ω

σ(t, x)
√
s

∣
∣
∣
∣

m−i

for Y = Xt+s −Xt and ω = E(Xt+s −Xt | Xt = x).
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2. Demonstrate that standard Brownian motion is a Markov process. It
suffices to check that

Pr(Xtn
≤ un | Xt1 = u1, . . . , Xtn−1 = un−1)

= Pr(Xtn
≤ un | Xtn−1 = un−1)

for any two sequences 0 ≤ t1 < · · · < tn and u1, . . . , un. (Hint: Use
the independent increments property.)

3. Let Xt be standard Brownian motion. Calculate the mean and vari-
ance functions of the stochastic processes |Xt| and eXt .

4. Standard Brownian motion Xt can be characterized by four postu-
lates: (a) E(Xt) = 0, (b) Var(Xt) = t, (c) Cov(Xs, Xt) = min{s, t},
and (d) the random vector (Xt1 , . . . , Xtn

) is multivariate normal for
every finite collection t1 < · · · < tn. Prove that conditions (c) and (d)
can be replaced by (e) for s < t the difference Xt −Xs is univariate
normal and (f) for every finite collection t1 < · · · < tn, the random
variables Xt1 , Xt2 −Xt1 , . . . , Xtn

−Xtn−1 are independent.

5. For standard Brownian motion Xt, prove that the stochastic process

Yt =
{
tX1/t t > 0
0 t = 0

also furnishes a version of standard Brownian motion. (Hint: Demon-
strate that Yt satisfies either set of postulates mentioned in Problem
4.)

6. For standard Brownian motion Xt, it makes sense to define the inte-
gral Yt =

∫ t

0
Xsds because sample paths are continuous functions of

the time parameter. Argue that the stochastic process Yt satisfies

E(Yt) = 0 and Cov(Ys, Yt) = s2
( t

2
− s

6

)

for 0 ≤ s ≤ t. Also show the random vector (Yt1 , . . . , Ytn
) is multi-

variate normal for every finite collection t1 < · · · < tn. (Hint: Ap-
proximate integrals by finite Riemann sums and pass to the limit.)

7. Let Tb be the first passage time to level b > 0 for standard Brownian
motion. Verify that Tb and b2T1 have the same distribution.

8. For standard Brownian motionXt, show that the stochastic processes
Yt = Xt and Yt = X2

t − t enjoy the martingale property

E(Yt+s| Xr, r ∈ [0, t]) = Yt

for s > 0. (Hint: Xt+s −Xt is independent of Xt and distributed as
Xs.)
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9. Continuing Problem 8, let T be the first time at which Xt attains
the value −a < 0 or the value b > 0. Assuming the optional stopping
theorem holds for the stopping time T and the martingales identified
in Problem 8, demonstrate that

Pr(XT = −a) =
b

a+ b
and E(T ) = ab.

10. Continuing Problem 8, let Yt = σXt + αt. Prove that Yt − αt and
(Yt − αt)2 − σ2t are martingales. Let Tb be the first passage time to
level b > 0 for α > 0. Assuming that the optional stopping theorem
holds for Tb and these martingales, demonstrate that

E(Tb) =
b

α
and Var(Tb) =

bσ2

α3
.

11. Consider a diffusion process Xt with infinitesimal mean μ(t, x) and
infinitesimal variance σ2(t, x). If the function f(t) is strictly increas-
ing and continuously differentiable, then argue that Yt = Xf(t) is a
diffusion process with infinitesimal mean and variance

μY (t, y) = μ[f(t), y]f ′(t)

σ2
Y (t, y) = σ2[f(t), y]f ′(t).

Apply this result to the situation where Yt equals y0 at t = 0 and
has μY (t, y) = 0 and σ2

Y (t, y) = σ2(t). Show that Yt is normally
distributed with mean and variance

E(Yt) = y0

Var(Yt) =

∫ t

0

σ2(s) ds.

(Hint: Let Xt be standard Brownian motion.)

12. Show that

Cov(Yt+s, Yt) =
σ2e−γs(1 − e−2γt)

2γ

in the Ornstein-Uhlenbeck process when s and t are nonnegative.

13. In the diffusion approximation to a branching process with immi-
gration, we set μ(t, x) = (α − δ)x + ν and σ2(t, x) = (α + δ)x + ν,
where α and δ are the birth and death rates per particle and ν is the
immigration rate. Demonstrate that

E(Xt) = x0e
βt +

ν

β

[
eβt − 1

]

Var(Xt) =
γx0(e

2βt − eβt)

β
+
γν(e2βt − eβt)

β2

− γν(e2βt − 1)

2β2
+
ν(e2βt − 1)

2β
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for β = α − δ, γ = α + δ, and X0 = x0. When α < δ, the process
eventually reaches equilibrium. Find the limits of E(Xt) and Var(Xt).

14. In Problem 13 suppose ν = 0. Verify that the process goes ex-

tinct with probability min{1, e−2α−δ
α+δ

x0} by using equation (11.20)
and sending c to 0 and d to ∞.

15. Consider the transformed Brownian motion with infinitesimal mean
α and infinitesimal variance σ2 described in Example 11.3.3. If the
process starts at x ∈ [c, d], then prove that it reaches d before c with
probability

u(x) =
e−βx − e−βc

e−βd − e−βc
for β =

2α

σ2
.

Verify that u(x) reduces to (x − c)/(d − c) when α = 0. As noted
in the text, this simplification holds for any diffusion process with
μ(x) = 0.

16. Suppose the transformed Brownian motion with infinitesimal mean α
and infinitesimal variance σ2 described in Example 11.3.3 has α ≥ 0.
If c = −∞ and d < ∞, then demonstrate that equation (11.22) has
solution

w(x) = eγ(d−x) for γ =
α−

√
α2 + 2σ2θ

σ2
.

Simplify w(x) when α = 0, and show by differentiation of w(x) with
respect to θ that the expected time E(T ) to reach the barrier d is
infinite. When α < 0, show that

Pr(T <∞) = e
2α

σ2 (d−x).

(Hints: The variable γ is a root of a quadratic equation. Why do we
discard the other root? In general, Pr(T <∞) = limθ↓0 E

(
e−θT

)
.)

17. In Problem 16 find w(x) and E(T ) when c is finite. The value α < 0
is allowed.

18. Show that formula (11.24) holds in R
2.

19. Consider a diffusion process Xt with infinitesimal mean

μ(t, x) =

{ 1, x < 0
0, x = 0

−1, x > 0

and infinitesimal variance 1. Find the equilibrium distribution f(x)
of Xt.
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20. In Problem 13 suppose ν > 0 and α < δ. Show that Wright’s formula
leads to the equilibrium distribution

f(x) = k [(α+ δ)x + ν]
4νδ

(α+δ)2
−1
e

2(α−δ)x
α+δ

for some normalizing constant k > 0 and x > 0.

21. Use Stirling’s formula to demonstrate that

Γ(2Nη + 1
2 )

√
2N(1 − f)Γ(2Nη)

≈
√

η

1 − f

when N is large in the Wright-Fisher model for a recessive disease.

22. Consider the Wright-Fisher model with no selection but with muta-
tion from allele A1 to allele A2 at rate η1 and from A2 to A1 at rate
η2. With constant population size N , prove that the frequency of the
A1 allele follows the beta distribution

f(x) =
Γ[4N(η1 + η2)]

Γ(4Nη2)Γ(4Nη1)
x4Nη2−1(1 − x)4Nη1−1

at equilibrium. (Hint: Substitute p(x) = x in formula (11.14) defining
the infinitesimal variance σ2(t, x).)



12
Asymptotic Methods

12.1 Introduction

Long before computers revolutionized numerical analysis, applied mathe-
maticians devised many clever techniques for finding approximate answers
to hard problems. Because approximate solutions focus on dominant con-
tributions, they often provide more insight than exact solutions. In this
chapter we take up the subject of asymptotic analysis. Although this ma-
terial is old, dating back centuries in some cases, it still has its charms and
utility. Our choice of topics differs from the typical syllabus of mathemati-
cal statistics, where the emphasis is on large sample theory and convergence
in distribution [61, 132, 181]. Here we stress advanced calculus and combi-
natorics.

The next section begins by reviewing order relations and asymptotic
equivalence. The basic definitions are then illustrated by some concrete
examples involving Taylor expansions, summation by parts, and integra-
tion by parts. Laplace’s method and Watson’s lemma are more subtle and
demanding subjects. These two pillars of asymptotic analysis seek to ap-
proximate otherwise intractable integrals. Our examples include Stirling’s
formula, the birthday problem, the socks in the laundry problem, and ap-
proximation of Catalan numbers. The Euler-Maclaurin summation formula
bridges the gap between series and integrals of the same function. In prac-
tice, integrals are usually easier to evaluate. The section on generating
functions and partial fraction decompositions hints at the wider applica-
tion of analytic function theory in deriving asymptotic expansions. Our

K. Lange, Applied Probability,
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concluding section mentions a few highlights of large sample theory and
more general forms of the central limit theorem.

To keep the chapter within reasonable bounds, we have moved some of
the theoretical background to Appendices A.5 and A.6. Our diluted discus-
sion of analytic functions is adequate for our limited needs. Readers who
seriously want to pursue asymptotic methods should study analytic func-
tion theory (complex variables) in greater depth. Two readable accounts
are [93, 188], but there are a host of other good choices. For follow-up on
asymptotic methods, the books [19, 20, 46, 50, 78, 147, 207] are excellent.

12.2 Asymptotic Expansions

Asymptotic analysis is the branch of mathematics dealing with the order
of magnitude and limiting behavior of functions, particularly at boundary
points of their domains of definition [19, 20, 46, 78, 147]. Consider, for
instance, the function

f(x) =
x2 + 1

x+ 1
.

It is obvious that f(x) resembles the function x as x → ∞. However, one
can be more precise. The expansion

f(x) =
x2 + 1

x(1 + 1
x)

=
(
x+

1

x

) ∞∑

k=0

(−1

x

)k

= x− 1 − 2

∞∑

k=1

(−1

x

)k

indicates that f(x) more closely resembles x− 1 for large x. Furthermore,
f(x) − x + 1 behaves like 2/x for large x. We can refine the precision of
the approximation by taking more terms in the infinite series. How far we
continue in this and other problems is usually dictated by the application
at hand.

12.2.1 Order Relations

Order relations are central to the development of asymptotic analysis. Sup-
pose we have two functions f(x) and g(x) defined on a common interval
I, which may extend to ∞ on the right or to −∞ on the left. Let x0 be
either an internal point or a boundary point of I with g(x) �= 0 for x
close, but not equal, to x0. Then the function f(x) is said to be O(g(x))
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if there exists a constant M such that |f(x)| ≤ M |g(x)| as x → x0. If
limx→x0 f(x)/g(x) = 0, then f(x) is said to be o(g(x)). Obviously, the re-
lation f(x) = o(g(x)) implies the weaker relation f(x) = O(g(x)). Finally,
if limx→x0 f(x)/g(x) = 1, then f(x) is said to be asymptotic to g(x). This
is usually written f(x) � g(x). In many problems, the functions f(x) and
g(x) are defined on the integers {1, 2, . . .} instead of on an interval I, and
x0 is taken as ∞.

For example, on I = (1,∞) one has ex = O(sinh x) as x→ ∞ because

ex

ex − e−x

2

=
2

1 − e−2x
≤ 2

1 − e−2
.

On (0,∞) one has sin2 x = o(x) as x→ 0 because

lim
x→0

sin2 x

x
= lim

x→0
sinx lim

x→0

sinx

x
= 0 × 1.

On I = (0,∞), our initial example can be rephrased as (x2 +1)/(x+1) � x
as x→ ∞.

If f(x) is bounded in a neighborhood of x0, then we write f(x) = O(1)
as x → x0, and if limx→x0 f(x) = 0, we write f(x) = o(1) as x → x0. The
notation f(x) = g(x)+O(h(x)) means f(x)−g(x) = O(h(x)) and similarly
for the o notation. For example,

x2 + 1

x+ 1
= x− 1 +O

( 1

x

)
.

If f(x) is differentiable at point x0, then

f(x0 + h) − f(x0) = f ′(x0)h+ o(h).

There are a host of miniature theorems dealing with order relations. Among
these are

O(g) +O(g) = O(g)

o(g) + o(g) = o(g)

O(g1)O(g2) = O(g1g2)

o(g1)O(g2) = o(g1g2)

|O(g)|λ = O(|g|λ), λ > 0

|o(g)|λ = o(|g|λ), λ > 0.

12.2.2 Finite Taylor Expansions

One easy way of generating approximations to a function is via finite Taylor
expansions. Suppose f(x) has n + 1 continuous derivatives near x0 = 0.
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Then

f(x) =

n∑

k=0

1

k!
f (k)(0)xk +O(xn+1)

as x→ 0. This order relation is validated by l’Hôpital’s rule applied n+ 1
times to the quotient

f(x) −
∑n

k=0
1
k!f

(k)(0)xk

xn+1
.

Of course, it is more informative to write the Taylor expansion with an
explicit error term; for instance,

f(x) =

n∑

k=0

1

k!
f (k)(0)xk +

xn+1

n!

∫ 1

0

f (n+1)(tx)(1 − t)ndt. (12.1)

This integral xn+1

n!

∫ 1

0
f (n+1)(tx)(1−t)ndt form of the remainder Rn(x) after

n terms can be derived by noting the recurrence relation

Rn(x) = −x
n

n!
f (n)(0) +Rn−1(x)

and the initial condition

R0(x) = f(x) − f(0),

both of which follow from integration by parts. One virtue of formula (12.1)
emerges when the derivatives of f(x) satisfy (−1)kf (k)(x) ≥ 0 for all k > 0.
If this condition holds, then

0 ≤ (−1)n+1Rn(x)

=
xn+1

n!

∫ 1

0

(−1)n+1f (n+1)(tx)(1 − t)ndt

≤ xn+1

n!
(−1)n+1f (n+1)(0)

∫ 1

0

(1 − t)ndt

=
xn+1

(n+ 1)!
(−1)n+1f (n+1)(0)

for any x > 0. In other words, the remainders Rn(x) alternate in sign
and are bounded in absolute value by the next term of the expansion.
As an example, the function f(x) = − ln(1 + x) satisfies the inequalities
(−1)kf (k)(x) ≥ 0 and consequently also an infinity of Taylor expansion
inequalities beginning with

−x ≤ − ln(1 + x) ≤ −x+ x2/2.

Another appropriate function is e−x. The analogous inequalities are now

1 − x ≤ e−x ≤ 1 − x+ x2/2

for x > 0.
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12.2.3 Exploitation of Nearby Exact Results

One of the tactics of asymptotic analysis is to evaluate nearby exact ex-
pressions and then estimate the error of the difference.

Example 12.2.1 Right-Tail Probability of the Logarithmic Distribution

Suppose we want to estimate the right-tail probability

rn = − 1

ln(1 − θ)

∞∑

k=n

θk

k

of a logarithmic distribution, where n > 1 and 0 < θ < 1. Fortunately, the
exact geometric sum

∞∑

k=n

θk

n
=

θn

n(1 − θ)

is available. To take advantage of this result, we employ the easily checked
summation by parts formula

m∑

k=n

akbk =

m−1∑

k=n

ck(bk − bk+1) + cmbm, (12.2)

where ck =
∑k

j=n aj . If ck converges and bk converges to 0, then equation
(12.2) implies

∞∑

k=n

akbk =

∞∑

k=n

ck(bk − bk+1),

provided either side converges. Now set ak = θk and bk = k−1. With these
choices

ck =
θn − θk+1

1 − θ

and
∞∑

k=n

θk

k
=

∞∑

k=n

θn − θk+1

1 − θ

(1

k
− 1

k + 1

)

=
θn

n(1 − θ)
−

∞∑

k=n

θk+1

1 − θ

1

k(k + 1)
.

This representation makes it obvious that

rn = − 1

ln(1 − θ)

θn

n(1 − θ)

[
1 +O

( 1

n

)]

since the series
∑∞

k=0 θ
k converges absolutely and the factor [k(k + 1)]−1

is bounded above by n−2 for k ≥ n.
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12.2.4 Expansions via Integration by Parts

Integration by parts often works well as a formal device for generating
asymptotic expansions. Here are two examples.

Example 12.2.2 Exponential Integral

Suppose Y has exponential density e−y with unit mean. Given Y , let a
point X be chosen uniformly from the interval [0, Y ]. Then it is easy to
show that X has density E1(x) =

∫∞
x
e−yy−1dy and distribution function

1− e−x + xE1(x). To generate an asymptotic expansion of the exponential
integral E1(x) as x→ ∞, one can repeatedly integrate by parts. This gives

E1(x) = −e
−y

y

∣
∣
∣
∞

x
−
∫ ∞

x

e−y

y2
dy

=
e−x

x
+
e−y

y2

∣
∣
∣
∞

x
+ 2

∫ ∞

x

e−y

y3
dy

...

= e−x
n∑

k=1

(−1)k−1 (k − 1)!

xk
+ (−1)nn!

∫ ∞

x

e−y

yn+1
dy.

This is emphatically not a convergent series in powers of 1/x. In fact, for
any fixed x, we have limk→∞ |(−1)(k−1)(k − 1)!/xk| = ∞.

Fortunately, the remainders Rn(x) = (−1)nn!
∫∞

x e−yy−n−1dy alternate
in sign and are bounded in absolute value by

|Rn(x)| ≤ n!

xn+1

∫ ∞

x

e−ydy

=
n!

xn+1
e−x,

the absolute value of the next term of the expansion. This suggests that
we truncate the expansion when n is the largest integer with

n!

xn+1 e
−x

(n− 1)!

xn e−x

≤ 1.

In other words, we should choose n ≈ x. If we include more terms, then
the approximation degrades. This is in striking contrast to what happens
with a convergent series.

Table 12.1 illustrates these remarks by tabulating a few representative
values of the functions

I(x) = xexE1(x)

Sn(x) =

n∑

k=1

(−1)k−1 (k − 1)!

xk−1
.
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TABLE 12.1. Asymptotic Approximation of the Exponential Integral

x I(x) S1(x) S2(x) S3(x) S4(x) S5(x) S6(x)
1 0.59634 1.0 0.0 2.0 -4.0
2 0.72266 1.0 0.5 1.0 0.25 1.75
3 0.78625 1.0 0.667 0.8999 0.6667 0.9626 0.4688
5 0.85212 1.0 0.8 0.88 0.8352 0.8736 0.8352

For large x, the approximation noticeably improves. Thus, I(10) = 0.91563
while S10(10) = 0.91544, and I(100) = 0.99019 = S4(100).

Example 12.2.3 Incomplete Gamma Function

Repeated integration by parts of the right-tail probability of a gamma
distributed random variable produces in the same manner

1

Γ(a)

∫ ∞

x

ya−1e−ydy

= xae−x
n∑

k=1

1

xkΓ(a− k + 1)
+

1

Γ(a− n)

∫ ∞

x

ya−n−1e−ydy.

If a is a positive integer, then the expansion stops at n = a with remainder
0. Otherwise, if n is so large that a−n− 1 is negative, then the remainder
satisfies

∣
∣
∣
∣

1

Γ(a− n)

∫ ∞

x

ya−n−1e−ydy

∣
∣
∣
∣ ≤

∣
∣
∣
∣

1

Γ(a− n)

∣
∣
∣
∣x

a−n−1e−x.

Reasoning as above, we deduce that it is optimal to truncate the expansion
when |a− n|/x ≈ 1. The right-tail probability

1√
2π

∫ ∞

x

e−
y2

2 dy =
1

2Γ(1
2 )

∫ ∞

x2

2

z
1
2−1e−zdz

of the standard normal random variable is covered by the special case
a = 1/2 for x > 0; namely,

1√
2π

∫ ∞

x

e−
y2

2 dy =
e−

x2

2

x
√

2π

(
1 − 1

x2
+

3

x4
− 3 · 5

x6
+ · · ·

)
.

Problem 14 bounds these right-tail probabilities.

The previous examples suggest Poincaré’s definition of an asymptotic ex-
pansion. Let φn(x) be a sequence of functions such that φn+1(x) = o(φn(x))
as x → x0. Then

∑∞
k=1 ckφk(x) is an asymptotic expansion for f(x) if
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f(x) =
∑n

k=1 ckφk(x) + o(φn(x)) holds as x → x0 for every n ≥ 1. The
constants cn are uniquely determined by the limits

cn = lim
x→x0

f(x) −
∑n−1

k=1 ckφk(x)

φn(x)

taken recursively starting with c1 = limx→x0 f(x)/φ1(x). Implicit in this
definition is the assumption that φn(x) �= 0 for x close, but not equal, to
x0.

12.3 Laplace’s Method

Laplace’s method gives asymptotic approximations for integrals

∫ d

c

f(y)e−xg(y)dy (12.3)

depending on a parameter x as x→ ∞. Here the boundary points c and d
can be finite or infinite. There are two cases of primary interest. If c is finite,
and the minimum of g(y) occurs at c, then the contributions to the integral
around c dominate as x→ ∞. Without loss of generality, let us take c = 0
and d = ∞. (If d is finite, then we can extend the range of integration by
defining f(x) = 0 to the right of d.) Now the supposition that the dominant
contributions occur around 0 suggests that we can replace f(y) by f(0) and
g(y) by its first-order Taylor expansion g(y) ≈ g(0) + g′(0)y. Making these
substitutions leads us to conjecture that

∫ ∞

0

f(y)e−xg(y)dy � f(0)e−xg(0)

∫ ∞

0

e−xyg′(0)dy

=
f(0)e−xg(0)

xg′(0)
. (12.4)

In essence, we have reduced the integral to integration against the ex-
ponential density with mean [xg′(0)]−1. As this mean approaches 0, the
approximation becomes better and better. Under the weaker assumption
that f(y) � ayb−1 as y → 0 for b > 0, the integral (12.3) can be replaced
by an integral involving a gamma density. In this situation,

∫ ∞

0

f(y)e−xg(y)dy � aΓ(b)e−xg(0)

[xg′(0)]b
(12.5)

as x→ ∞.
The other case occurs when g(y) assumes its minimum at an interior

point, say 0, between, say, c = −∞ and d = ∞. Now we replace g(y) by its



12.3 Laplace’s Method 305

second-order Taylor expansion g(y) = g(0) + 1
2g

′′(0)y2 + o(y2). Assuming
that the region around 0 dominates, we conjecture that

∫ ∞

−∞
f(y)e−xg(y)dy � f(0)e−xg(0)

∫ ∞

−∞
e−

xg′′(0)y2

2 dy

= f(0)e−xg(0)

√
2π

xg′′(0)
. (12.6)

In other words, we reduce the integral to integration against the normal
density with mean 0 and variance [xg′′(0)]−1. As this variance approaches
0, the approximation improves. The asymptotic equivalences (12.5) and
(12.6) and their generalizations constitute Laplace’s method. Appendix A.6
rigorously states and proves the second of these conjectures.

Laplace’s method has some interesting applications to order statistics.
Let X1, . . . , Xn be i.i.d. positive random variables with common distribu-
tion function F (x). We assume that F (x) � axb as x→ 0. Now consider the
first order statistic X(1) = min1≤i≤n Xi. One can express the kth moment
of X(1) in terms of its right-tail probability

Pr(X(1) > x) = [1 − F (x)]n

as

E(Xk
(1)) = k

∫ ∞

0

xk−1[1 − F (x)]ndx

= k

∫ ∞

0

xk−1en ln[1−F (x)]dx

=
k

b

∫ ∞

0

u
k
b
−1en ln[1−F (u

1
b )]du,

where the last integral arises from the change of variable u = xb. Now the
function g(u) = − ln[1 − F (u

1
b )] has its minimum at u = 0, and an easy

calculation invoking the assumption F (x) � axb yields g(u) � au as u→ 0.
Hence, the first form (12.5) of Laplace’s method implies

E(Xk
(1)) �

kΓ(k
b )

b(na)
k
b

. (12.7)

Example 12.3.1 Asymptotics of the Birthday Problem

This result has an amusing consequence for a birthday problem. Suppose
that people are selected one by one from a large crowd until two of the
chosen people share a birthday. We would like to know how many people
are selected on average before a match occurs. One way of conceptualizing
this problem is to imagine drawing people at random times dictated by a
Poisson process with unit intensity. The expected time until the first match
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then coincides with the expected number of people drawn [26]. Example
6.6.2 takes this Poissonization approach in studying the family planning
model. Since the choice of a birthday from the available n = 365 days of the
year is made independently for each random draw, we are in effect watching
the evolution of n independent Poisson processes, each with intensity 1/n.

LetXi be the time when the second random point happens in the ith pro-
cess. The time when the first birthday match occurs in the overall process
is X(1) = min1≤i≤n Xi. Now Xi has right-tail probability

Pr(Xi > x) =
(
1 +

x

n

)
e−

x
n

because zero or one random points must occur on [0, x] in order for Xi > x.
It follows that Xi has distribution function

Pr(Xi ≤ x) = 1 −
(
1 +

x

n

)
e−

x
n

� x2

2n2
,

and according to our calculation (12.7) with a = 1/(2n2), b = 2, and k = 1,

E(X(1)) �
Γ(1

2 )

2(n 1
2n2 )

1
2

=
1

2

√
2πn.

For n = 365 we get E(X(1)) ≈ 23.9, a reasonably close approximation to
the true value of 24.6.

12.3.1 Stirling’s Formula

The behavior of the gamma function

Γ(λ) =

∫ ∞

0

yλ−1e−ydy

as λ → ∞ can be ascertained by Laplace’s method. If we define z = y/λ,
then

Γ(λ+ 1) = λλ+1

∫ ∞

0

e−λg(z)dz

for the function g(z) = z− ln z, which has its minimum at z = 1. Applying
Laplace’s second approximation (12.6) at z = 1 gives Stirling’s asymptotic
formula

Γ(λ+ 1) �
√

2πλλ+ 1
2 e−λ

as λ→ ∞. We will rederive Stirling’s formula in the next section using the
machinery of the Euler-Maclaurin summation technique.



12.3 Laplace’s Method 307

Example 12.3.2 Asymptotics of Socks in the Laundry

In the socks in the laundry problem introduced in Section 4.7, the inde-
pendence of the uniform processes entails

Pr[X(1) > t] = Pr
(

min
1≤i≤n

Xi > t
)

= (1 − t2)n

because any given pair of socks arrives after time t with probability 1− t2.
Integrating this tail probability with respect to t produces

E[X(1)] =

∫ 1

0

(1 − t2)ndt

=

∫ 1

0

en ln(1−t2)dt (12.8)

�
∫ ∞

0

e−nt2dt

=

√
π

2
√
n

and therefore E(N1) = (2n + 1)E[X(1)] �
√
πn, where N1 is the number

of socks extracted until the first matching pair. The essence of Laplace’s
approximation is simply the recognition that the vast majority of the mass

of the integral
∫ 1

0 (1 − t2)n dt occurs near t = 0, where ln(1 − t2) ≈ −t2.
Similar reasoning leads to

Var(N1) = (2n+ 1)(2n+ 2)E[X2
(1)] − E(N1) − E(N1)

2

� (4 − π)n

for the variance.

12.3.2 Watson’s Lemma

Watson’s lemma is a valuable addition to Laplace’s method. Suppose the
continuous function f(x) defined on [0,∞) possesses the asymptotic expan-
sion

f(x) �
∞∑

k=0

akx
λk−1

as x → 0 and f(x) = O(ecx) as x → ∞. The sequence λk is taken to be
positive and strictly increasing. Then the Laplace transform f̃(t) exists for
t > c, and f̃(t) has the asymptotic expansion

f̃(t) �
∞∑

k=0

an
Γ(λk)

tλk

as t→ ∞. This expansion is validated in Appendix A.6.
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Example 12.3.3 Beta Normalizing Constant

The beta distribution normalizing constant is defined by

B(α, β) =

∫ 1

0

xα−1(1 − x)β−1dx =
Γ(α)Γ(β)

Γ(α + β)
.

If we restrict α to be an integer, then B(α, β) � Γ(β)α−β for α large. It
is reasonable to conjecture that this relation continues to hold for all large
α. If we make the change of variables x = e−y, then

B(α, β) =

∫ ∞

0

e−αy(1 − e−y)β−1dy =

∫ ∞

0

e−αyyβ−1
∞∑

k=0

aky
kdy

for some sequence of coefficients ak with a0 = 1. The first term of Watson’s
expansion says B(α, β) � Γ(β)α−β for β fixed. Obviously this also entails
the relation Γ(α)/Γ(α + β) � α−β .

Example 12.3.4 Catalan Asymptotics

The Catalan numbers cn introduced in Section 4.5 have generating function

c(x) =
1 −

√
1 − 4x

2x

= − 1

2x

∞∑

n=1

(1
2

n

)

(−4x)n

=
∞∑

n=1

(n− 3
2 ) · · · 1

2

n!
4n−1xn−1

=

∞∑

n=1

Γ(n− 1
2 )

Γ(1
2 )Γ(n+ 1)

4n−1xn−1.

Because Γ( 1
2 ) =

√
π and Γ(n− 1

2 )/Γ(n+ 1) � n−3/2, it follows that

cn � 4nn−3/2

√
π

for large n.

12.4 Euler-Maclaurin Summation Formula

We now turn to the Euler-Maclaurin summation formula [27, 78, 101, 204],
another useful tool in asymptotic analysis. The summation formula and
its proof depend on the Bernoulli numbers Bn, the Bernoulli polynomials
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Bn(x), and the periodic Bernoulli functions bn(x). The first few Bernoulli
numbers Bn = Bn(0) are B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, and
B4 = −1/30. The odd terms B2n+1 vanish for n ≥ 1. Example A.5.1 derives
the Bernoulli polynomials from the three simple properties displayed in
equation (A.10). The first two Bernoulli polynomials are B0(x) = 1 and
B1(x) = x − 1

2 . The Bernoulli functions periodically extend the Bernoulli
polynomials beyond the base domain [0,1]. Although B1(x) does not satisfy
the periodic property Bn(0) = Bn(1), all subsequent Bn(x) do. Problems
19 through 25 explore further aspects of this fascinating nook of calculus.
The next proposition presents one form of the Euler-Maclaurin summation
formula based on this background material.

Proposition 12.4.1 Suppose f(x) has 2m continuous derivatives on the
interval [1, n] for some positive integer n. Then

n∑

k=1

f(k) =

∫ n

1

f(x)dx+
1

2

[
f(n) + f(1)

]
+

m∑

j=1

B2j

(2j)!
f (2j−1)(x)

∣
∣
∣
n

1

− 1

(2m)!

∫ n

1

b2m(x)f (2m)(x)dx, (12.9)

where Bk is a Bernoulli number and bk(x) is a Bernoulli function. The
remainder in this expansion is bounded by

∣
∣
∣
∣

1

(2m)!

∫ n

1

b2m(x)f (2m)(x)dx

∣
∣
∣
∣ ≤ C2m

∫ n

1

|f (2m)(x)|dx, (12.10)

where

C2m =
2

(2π)2m

∞∑

k=1

1

k2m
.

Proof: Consider an arbitrary function g(x) defined on [0, 1] with 2m con-
tinuous derivatives. In view of the property d

dxBn(x) = nBn−1(x), repeated
integration by parts gives

∫ 1

0

g(x)dx =

∫ 1

0

B0(x)g(x)dx

= B1(x)g(x)|10 −
∫ 1

0

B1(x)g
′(x)dx

=

2m∑

i=1

(−1)i−1Bi(x)

i!
g(i−1)(x)

∣
∣
∣
1

0

+
(−1)2m

(2m)!

∫ 1

0

B2m(x)g(2m)(x)dx.
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This formula can be simplified by noting that (a) B2m(x) = b2m(x) on
[0, 1], (b) B1(x) = x − 1/2, (c) Bi(0) = Bi(1) = Bi when i > 1, and (d)
Bi = 0 when i > 1 and i is odd. Hence,

∫ 1

0

g(x)dx =
1

2

[
g(1) + g(0)

]
−

m∑

j=1

B2j

(2j)!
g(2j−1)(x)

∣
∣
∣
1

0

+
1

(2m)!

∫ 1

0

b2m(x)g(2m)(x)dx.

If we apply this result successively to g(x) = f(x+ k) for k = 1, . . . , n− 1
and add the results, then cancellation of successive terms produces formula
(12.9). The bound (12.10) follows immediately from the Fourier series rep-
resentation (A.13) of b2m(x).

Example 12.4.1 Harmonic Series

The harmonic series
∑n

k=1 k
−1 can be approximated by taking f(x) to be

x−1 in Proposition 12.4.1. For example with m = 2, we find that

n∑

k=1

1

k
=

∫ n

1

1

x
dx+

1

2

[
1

n
+ 1

]

+
B2

2

[

1 − 1

n2

]

+
B4

4!

[

3! − 3!

n4

]

− 1

4!

∫ n

1

b4(x)
4!

x5
dx

= lnn+ γ +
1

2n
− 1

12n2
+

1

120n4
+

∫ ∞

n

b4(x)
1

x5
dx

= lnn+ γ +
1

2n
− 1

12n2
+O

( 1

n4

)
,

where

γ =
1

2
+

1

12
− 1

120
−
∫ ∞

1

b4(x)
1

x5
dx (12.11)

≈ 0.5772

is Euler’s constant.

Example 12.4.2 Stirling’s Formula Again

If we let f(x) be the function lnx = d
dx [x lnx−x] and m = 2 in Proposition

12.4.1, then we recover Stirling’s formula

lnn! =

n∑

k=1

ln k

=

∫ n

1

lnxdx +
1

2
lnn+

B2

2

[
1

n
− 1

]



12.5 Asymptotics and Generating Functions 311

+
B4

4!

[
2!

n3
− 2!

]

+
1

4!

∫ n

1

b4(x)
3!

x4
dx

= n lnn− n+
1

2
lnn+ s+

1

12n
− 1

360n3
− 1

4

∫ ∞

n

b4(x)
1

x4
dx

=
(
n+

1

2

)
lnn− n+ s+

1

12n
+O

( 1

n3

)
,

where

s = 1 − 1

12
+

1

360
+

1

4

∫ ∞

1

b4(x)
1

x4
dx (12.12)

= ln
√

2π

was determined in Section 12.3.1.

12.5 Asymptotics and Generating Functions

For the most part we have considered generating functions to be clothes-
lines on which to hang discrete probability densities and combinatorial
sequences. In addition to this purely formal role, generating functions are
also often analytic functions of a complex variable. This second perspec-
tive forges deep connections to classical mathematical analysis and helps
in deriving asymptotic expansions and bounds.

Recall that an analytic function f(x) can be expanded in a power series
f(x) =

∑∞
n=0 an(x − y)n around every point y in its domain, an open

subset of the complex plane. For our purposes, the point y = 0 is the most
pertinent. Convergence of the series expansion of f(x) is absolute in the
open disc around y of radius

R =
1

lim supn→∞ |an|1/n
;

note that the value R = ∞ is possible. If R is finite, then one or more
singularities must occur on the circle {x : |x − y| = R}. These are points
where f(x) lacks a derivative or blows up in some sense. It follows from
the definition of R that whenever r > R, the strict inequality |an|rn > 1
holds for infinitely many n. Hence, the series defining f(x) locally around
y = 0 cannot converge at the real number r. On the other hand, if r < R,
then |an|rn < 1 for all but finitely many n. In fact, if r < s < R, then
|an|rn < (r/s)n for all but finitely many n. It follows that f(x) converges
absolutely and uniformly within the disc {x : |x| ≤ r} with derivative
f ′(x) =

∑∞
n=1 nanx

n.
The most important asymptotic lesson learned from this exposition is

that the radius of convergence around the origin bounds the rate of growth
of the coefficients in the expansion of f(x). To repeat, if r < R, then
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|an| ≤ r−n for all but finitely many n. If r > R, then |an| ≥ r−n for
infinitely many n.

Example 12.5.1 Asymptotics of the Fibonacci Numbers

The Fibonacci sequence fn discussed in Example 4.2.4 is determined by the
two initial values f0 = f1 = 1 and the recurrence fn+1 = fn + fn−1. Let
F (x) =

∑∞
n=0 fnx

n denote the corresponding generating function. Multi-
plying the recurrence by xn+1 and adding over the index set n = 1, 2, . . .
produces the equation

F (x) − x− 1 = x[F (x) − 1] + x2F (x)

with solution

F (x) =
1

1 − x− x2
.

The singularities of F (x) occur at the roots

r± =
−1 ±

√
5

2

of the quadratic x2 + x − 1 = 0. The singularity r+ is closer to the origin.
Hence, the coefficient fn is O(r−n) for any r < |r+| = r+. In fact, the
partial fraction decomposition

F (x) =
1

r+ − r−

( 1

x− r−
− 1

x− r+

)

implies

fn =
1√
5

(
r−n−1
+ − r−n−1

−
)

� 1√
5
r−n−1
+ .

Thus, the order of magnitude and the asymptotic expression agree.

Partial fraction decompositions can be generalized to more complicated
rational functions. Let f(x) equal the ratio of two polynomials p(x) and
q(x), with p(x) of lower degree than q(x). If r is a root of q(x) of order d,
then there is a polynomial t(x) such that q(x) = (x− r)dt(x). Furthermore
for any constant a,

f(x) =
p(x)

q(x)
=

a

(x− r)d
+
p(x) − at(x)

(x− r)dt(x)
. (12.13)

Choosing

a =
p(r)

t(r)
= lim

x→r
(x − r)df(x) =

d! p(r)

q(d)(r)
(12.14)
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makes the numerator p(x) − at(x) of the second fraction on the right of
equation (12.13) vanish at r. Hence, it can be written as (x− r)p1(x) for a
polynomial p1(x) of lower degree than the degree of (x−r)d−1t(x). Nothing
prevents us from attacking the remainder

f1(x) = f(x) − a

(x− r)d
=

p1(x)

(x − r)d−1t(x)

in exactly the same manner. The complete expansion

f(x) =
∑

j

dj∑

k=1

ajk

(x− rj)k

over all roots rj of q(x) exhausts the rational function because the degree of
the denominator keeps dropping, and the degree of the numerator always
trails the degree of the denominator. Here we assume that q(x) resolves
into a product

∏
j(x − rj)

dj . If q(x) has leading coefficient 1, then the
fundamental theorem of algebra guarantees such a factorization.

Example 12.5.2 Making Change

In a certain country there are m different types of coins with relative values
d1, . . . , dm. For the sake of simplicity, assume that integers d1, . . . , dm have
greatest common divisor 1. For instance, the value d1 could be 1. Let cn
denote the number of ways of paying a bill of amount n. Thus, cn counts
the number of vectors (s1, . . . , sm) with nonnegative integer entries such
that n =

∑m
j=1 sjdj . Because (1 − x)−1 =

∑∞
j=0 x

j , the sequence cn has
generating function

C(x) =
∞∑

n=0

cnx
n =

1

(1 − xd1)(1 − xd2) · · · (1 − xdm)
.

The identity

1 − xd = (1 − x)(1 + x+ · · · + xd−1)

implies that 1 is a root of the denominator q(x) of C(x) of multiplicity m.
It is clear that every other root r of q(x) coincides with a root of unity
e2πik/s, where i =

√
−1 and s and k are relatively prime positive integers.

The factor 1 − xdj vanishes at r if and only if s divides djk. Because s
and k are relatively prime, this condition holds if and only if s divides
dj . Because the d1, . . . , dm are relatively prime, the multiplicity of r is
accordingly strictly less than m.

The dominant contribution to cn in the partial fraction decomposition

C(x) =
∑

j

dj∑

k=1

ajk

(x − rj)k
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=
∑

j

dj∑

k=1

(−1)kajk

rk
j

(
1 − x

rj

)k

=
∑

j

dj∑

k=1

(−1)kajk

rk
j

∞∑

n=0

(
n+ k − 1

n

)( x

rj

)n

is clearly identifiable in this problem. All of the roots rj have absolute value
1, so everything hinges on the magnitude of

(
n+ k − 1

n

)

� nk−1

(k − 1)!
.

The index k assumes its greatest value m for the choice r = 1. Hence, cn
satisfies

cn � a(−1)m nk−1

(k − 1)!
,

where according to equation (12.14)

a = lim
x→1

(x − 1)m 1

(1 − xd1)(1 − xd2) · · · (1 − xdm)
= (−1)m

m∏

j=1

1

dj
.

The lovely asymptotic formula

cn �
m∏

j=1

1

dj
· nk−1

(k − 1)!

of Schur implies that it is possible to make change for every large bill even
when dj = 1 is not among the available coins.

12.6 Stochastic Forms of Convergence

Probabilists entertain many notions of convergence [24, 208]. The simplest
of these is the pointwise convergence of a sequence of random variables Xn

to a limit X . Because this form of convergence is allowed to fail on an event
of probability 0, it is termed almost sure convergence. The usual calculus
rules for dealing with limits apply to almost surely convergent sequences.
The most celebrated almost sure convergence result is the strong law of
large numbers. We refer readers to Example 10.3.1 for the statement and
proof of one version of the strong law of large numbers.

More generally, a sequence Xn is said to converge to X in probability if
for every ε > 0

lim
n→∞

Pr(|Xn −X | > ε) = 0.
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One can prove that Xn converges to X in probability if and only if every
subsequence Xnm

of Xn possesses a subsubsequence Xnml
converging to X

almost surely. (See Problem 31.) This characterization makes it possible to
generalize nearly all theorems involving almost surely convergent sequences
to theorems involving sequences converging in probability. For instance, the
dominated convergence theorem generalizes in this fashion. Convergence in
probability can be deduced from the mean square convergence condition

lim
n→∞

E(|Xn −X |2) = 0

via Chebyshev’s inequality, which is reviewed in Chapter 3.
Convergence in distribution is a very different matter. The underlying

random variables need not even live on the same probability space. What
is crucial is that the distribution functions Fn(x) of the Xn converge to the
distribution function F (x) of X at every point of continuity x of F (x). In
other words, the way that the Xn attribute mass comes more and more to
resemble the way X attributes mass. Besides this intuitive definition, there
are other equivalent definitions useful in various contexts.

Proposition 12.6.1 The following statements about the sequence Xn and
its potential limit X are equivalent:

(a) The sequence of distribution functions Fn(x) converges to F (x) at
every continuity point x of F (x).

(b) The sequence of characteristic functions E(eisXn) converges to the
characteristic function E(eisX) for every real number s.

(c) The sequence of expectations E[f(Xn)] converges to E[f(X)] for every
bounded continuous function f(x) defined on the real line.

(d) There exist random variables Yn and Y defined on a common proba-
bility space such that Yn has distribution function Fn(x), Y has dis-
tribution function F (x), and Yn converges to Y almost surely.

The deep Skorokhod representation theorem mentioned in property (d)
brings us full circle to almost sure convergence. It also enables us to prove
some results with surprising ease. For instance, any continuous function
g(Xn) of a sequence converging in distribution also converges in distribu-
tion. This result follows trivially from applying g(x) to the almost surely
converging sequence Yn. For another example, suppose f(x) is a nonnega-
tive continuous function. Then Fatou’s lemma implies

E[f(X)] = E[f(Y )]

≤ lim inf
n→∞

E[f(Yn)]

= lim inf
n→∞

E[f(Xn)].

The choices f(x) = |x| and f(x) = x2n are the most important in practice.
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Example 12.6.1 Binary Expansions

Let X1, X2, . . . be an i.i.d. sequence of Bernoulli random variables with
success probability 1

2 . It is obvious that the finite sums Sn =
∑n

i=1 2−iXi

converge almost surely to the infinite sum S =
∑∞

i=1 2−iXi. If we interpret
Xi as the ith binary digit of the random number S [192], then S should be
uniformly distributed on [0, 1]. To make this insight rigorous, let us prove
that Sn converges in distribution to the uniform distribution. According to
part (c) of Proposition 12.6.1, it suffices to prove that

lim
n→∞E[f(Sn)] =

∫ 1

0

f(x)dx

for every bounded continuous function f(x). Now a little reflection shows
that

E[f(Sn)] =
1

2n

2n−1∑

m=0

f
(m

2n

)
.

But the Riemann sum on the right of this equality converges to the integral
∫ 1

0
f(x)dx.

Doubtless the reader is already familiar with the central limit theorem.
The simplest version deals with a sequence Xk of i.i.d. random variables
with common mean μ and common variance σ2. In this setting the normal-
ized sums

Zn =
1√
nσ2

n∑

k=1

(Xk − μ)

converge in distribution to a standard normal deviate. These hypotheses
can be weakened in various ways. The next proposition of Lindeberg rep-
resents the most general version of the central limit theorem retaining the
assumption of independent summands.

Proposition 12.6.2 Consider a sequence Xk of independent random vari-
ables with means μk = E(Xk) and variances σ2

k = Var(Xk). Suppose that
s2n =

∑n
k=1 σ

2
k tends to ∞ and that

lim
n→∞

1

s2n

n∑

k=1

E[1{|Xk−μk|>εsn}(Xk − μk)2] = 0 (12.15)

for every ε > 0. If Sn =
∑n

k=1Xk and mn =
∑n

k=1 μk, then the normalized
sums

Zn =
1

sn

(
Sn −mn

)

converge in distribution to a standard normal deviate.
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Lindeberg’s condition (12.15) is trivial to check in the classical central
limit theorem. It is also obvious if the random variables Xn are uniformly
bounded. Here are two combinatorial examples of the central limit theorem
featured by Feller [59].

Example 12.6.2 A Central Limit Theorem for Permutation Cycles

Section 4.6 introduced Stirling numbers of the first kind. These count the
permutations of {1, . . . , n} with various numbers of cycles. In discussing
this material, we found there that the total number of cycles Sn in a ran-
dom permutation could be represented as the sum Sn = X1 + · · · +Xn of
independent Bernoulli random variables Xk with success probabilities k−1.
It follows that μk = k−1, σ2

k = k−1(1 − k−1), and that

mn =

n∑

k=1

1

k
� lnn+ γ

s2n =

n∑

k=1

1

k

(
1 − 1

k

)
� lnn+ γ − π2

6
,

where γ is Euler’s constant. Because the random variablesXk are uniformly
bounded, Proposition 12.6.2 applies. Thus, (Sn −mn)/sn is approximately
standard normal for large n.

Example 12.6.3 A Central Limit Theorem for Permutation Inversions

Two values πi and πj of a permutation π constitute an inversion if i < j and
πi > πj . Let Sn count the number of inversions of a random permutation
of {1, . . . , n}. For example, S6 = 8 for the permutation π = (3, 6, 1, 5, 2, 4)
of {1, . . . , 6} because the numbers 3, 6, 1, 5, 2, and 4 induce two inver-
sions, four inversions, no inversions, two inversions, no inversions, and no
inversions, respectively. The inversion count Xk induced by the number k
depends solely on the relative order of the numbers 1, . . . , k in the per-
mutation. Hence, Xk is uniformly distributed between 0 and k − 1 and
independent of X1, . . . , Xk−1. The ingredients of the central limit theorem
are μk = (k − 1)/2, σ2

k = (k2 − 1)/12, and

mn =
1

2

n∑

k=1

(k − 1) =
n(n− 1)

4
� n2

4

s2n =
1

12

n∑

k=1

(k2 − 1) =
2n3 + 3n2 − 5n

72
� n3

36
.

For any ε > 0, the condition |Xk − μk| > εsn fails for all k ≤ n when
n is sufficiently large because Xk − μk is O(n) and sn � n3/2/6. Hence,
Lindeberg’s condition (12.15) is valid, and the central limit theorem holds
for the sequence (Sn −mn)/sn.
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12.7 Problems

1. Prove the following order relations:

a) 1 − cos2 x = O(x2) as x→ 0

b) lnx = o(xα) as x→ ∞ for any α > 0

c) x2

1+x3 + ln(1 + x2) = O(x2) as x→ 0

d) x2

1+x3 + ln(1 + x2) = O(ln x) as x→ ∞.

2. Show that f(x) � g(x) as x → x0 does not entail the stronger
relation ef(x) � eg(x) as x→ x0. However, argue that the condition
f(x) = g(x) + o(1) is sufficient to imply ef(x) � eg(x).

3. For two positive functions f(x) and g(x), prove that f(x) � g(x)
as x → x0 implies ln f(x) = ln g(x) + o(1) as x → x0. Hence,
limx→x0 ln f(x) �= 0 entails ln f(x) � ln g(x) as x→ x0.

4. Demonstrate that
(
1 +

1√
x

)x

� e
√

x−1/2

as x→ ∞.

5. Find an asymptotic expansion for
∫∞

x e−y4

dy as x→ ∞.

6. Suppose that 0 < c < ∞ and that f(x) is bounded and continuous
on [0, c]. If f(c) �= 0, then show that

∫ c

0

xnf(x)dx � cn+1

n
f(c)

as n→ ∞.

7. Let F (x) be a distribution function concentrated on [0,∞) with mo-
ments mk =

∫∞
0 ykdF (y). For x ≥ 0 define the Stieltjes function

f(x) =
∫∞
0

1
1+xydF (y). Show that

∑∞
k=0(−1)kmkx

k is an asymp-

totic expansion for f(x) satisfying

f(x) −
n∑

k=0

(−1)kmkx
k = (−x)n+1

∫ ∞

0

yn+1

1 + xy
dF (y).

Argue, therefore, that the remainders of the expansion alternate in
sign and are bounded in absolute value by the first omitted term.

8. Show that
∫∞
0

e−y

1+xydy � ln x
x as x→ ∞. (Hints: Write

∫ ∞

0

e−y

1 + xy
dy =

1

x

∫ ∞

0

d

dy
ln(1 + xy)e−ydy,
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and use integration by parts and the dominated convergence theo-
rem.)

9. Prove that

∫ π
2

0

e−x tan ydy � 1

x
∫ π

2

−π
2

(y + 2)e−x cos ydy � 4

x

as x→ ∞.

10. For 0 < λ < 1, demonstrate the asymptotic equivalence

n∑

k=0

(
n

k

)

k!n−kλk � 1

1 − λ

as n→ ∞. (Hint: Use the identity k!n−k−1 =
∫∞
0 yke−nydy.)

11. Demonstrate the asymptotic equivalence

n∑

k=0

(
n

k

)

k!n−k �
√
πn

2

as n→ ∞. (Hint: See Problem 10.)

12. The von Mises density

eκ cos(y−α)

2πI0(κ)
, −π < y ≤ π,

is used to model random variation on a circle. Here α is a location
parameter, κ > 0 is a concentration parameter, and the modified
Bessel function I0(κ) is the normalizing constant

I0(κ) =
1

2π

∫ π

−π

eκ cos ydy.

Verify that Laplace’s method yields

I0(κ) � eκ

√
2πκ

as κ → ∞. For large κ it is clear that the von Mises distribution is
approximately normal.
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13. Suppose the continuous function f(t) on [0,∞) is O(ect) for some
c ≥ 0 as t → ∞. For t positive use Laplace’s method to prove Post’s
inversion formula [161]

f(t) = lim
k→∞

(−1)k

k!

(k

t

)k+1

f̃ (k)
(k

t

)

for the Laplace transform f̃(s) of f(t). Here f̃ (k)(s) is the kth deriva-
tive of the transform. (Hint: Consult Section 12.3.1.)

14. Let φ(x) and Φ(x) be the standard normal density and distribution
functions. Demonstrate the bounds

x

1 + x2
φ(x) ≤ 1 − Φ(x) ≤ 1

x
φ(x)

for x > 0. (Hints: Exploit the derivatives

d

dx
e−x2/2 = −xe−x2/2

d

dx

(
x−1e−x2/2

)
= −

(
1 + x−2

)
e−x2/2

and simple inequalities for the integral 1 − Φ(x).)

15. Prove the elementary inequalities

lnn! − lnn

2
≤
∫ n

1

ln t dt = n lnn− n+ 1 ≤ lnn!

that point the way to Stirling’s formula. (Hint: Using the concavity
of ln t, verify the inequality

ln(m− 1) + lnm

2
≤

∫ m

m−1

ln t dt . )

16. In the socks in the laundry problem, demonstrate that

E(N1) =
(2nn!)2

(2n)!
.

Conclude from this and Stirling’s formula that E(N1) �
√
πn. (Hint:

Change variables in the first integral of equation (12.8).)

17. Let f(x) be a periodic function on the real line whose kth derivative
is piecewise continuous for some positive integer k. Show that the
Fourier coefficients cn of f(x) satisfy

|cn| ≤
∫ 1

0
|f (k)(x)|dx
|2πn|k

for n �= 0.
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18. Suppose that the periodic function f(x) is square-integrable on [0, 1].
Prove the assertions: (a) f(x) is an even (respectively odd) function
if and only if its Fourier coefficients cn are even (respectively odd)
functions of n, (b) f(x) is real and even if and only if the cn are real
and even, and (c) f(x) is even (odd) if and only if it is even (odd)
around 1/2. By even around 1/2 we mean f(1/2 + x) = f(1/2− x).

19. Demonstrate that

π2

12
=

∞∑

k=1

(−1)k+1

k2
,

π4

90
=

∞∑

k=1

1

k4
.

20. Show that the even Bernoulli numbers can be expressed as

B2n = (−1)n+1 2(2n)!

(2π)2n

[

1 +
1

22n
+

1

32n
+

1

42n
+ · · ·

]

.

Apply Stirling’s formula, and deduce the asymptotic relation

|B2n| � 4
√
πn
( n

πe

)2n

.

21. Show that the Bernoulli polynomials satisfy the identity

Bn(x) = (−1)nBn(1 − x)

for all n and x ∈ [0, 1]. Conclude from this identity that Bn(1/2) = 0
for n odd.

22. Continuing Problem 21, show inductively for n ≥ 1 that B2n(x) has
exactly one simple zero in (0, 1/2) and one in (1/2, 1), while B2n+1(x)
has precisely the simple zeros 0, 1/2, and 1.

23. Demonstrate that the Bernoulli polynomials satisfy the identity

Bn(x+ 1) −Bn(x) = nxn−1.

Use this result to verify that the sum of the nth powers of the first
m integers can be expressed as

m∑

k=1

kn =
1

n+ 1

[
Bn+1(m+ 1) −Bn+1(0)

]
.

(Hint: Prove the first assertion by induction or by expanding Bn(x)
in a Taylor series around the point 1.)
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24. As an alternative definition of the Bernoulli polynomials, consider the
bivariate exponential generating function

f(t, x) =
tetx

et − 1
=

∞∑

n=0

Bn(x)

n!
tn.

Check the defining conditions (A.10) of the Bernoulli polynomials

by evaluating limt→0 f(t, x),
∫ 1

0
f(t, x) dx, and ∂

∂xf(t, x). Hence, the
coefficients Bn(x) are the Bernoulli polynomials. The special case

f(t, 0) =
t

et − 1
=

∞∑

n=0

Bn

n!
tn (12.16)

gives the exponential generating function of the Bernoulli numbers.

25. Verify the identities

t coth t =
2t

e2t − 1
+ t =

∞∑

n=0

4nB2n

(2n)!
t2n

using equation (12.16). Show that this in turn implies

t cot t =

∞∑

n=0

(−1)n4nB2n

(2n)!
t2n.

The Bernoulli numbers also figure in the Taylor expansion of tan t
[78].

26. Verify the asymptotic expansion

n∑

k=1

kα = Cα +
nα+1

α+ 1
+
nα

2
+

m∑

j=1

B2j

2j

(
α

2j − 1

)

nα−2j+1

+O(nα−2m−1)

for a real number α �= −1 and some constant Cα, which you need not
determine.

27. Find asymptotic expansions for the two sums
∑n

k=1(n
2 + k2)−1 and∑n

k=1(−1)k/k valid to O(n−3).

28. Suppose f(x) is continuously differentiable and monotone on the in-
terval [m,n]. Prove that

∣
∣
∣
∣

n∑

k=m

f(k) −
∫ n

m

f(x) dx − 1

2
[f(m) + f(n)]

∣
∣
∣
∣ ≤ 1

2
|f(n) − f(m)|
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and that
∣
∣
∣
∣

n∑

k=m

f(k) −
∫ n

m

f(x) dx

∣
∣
∣
∣ ≤ max{|f(m)|, |f(n)|}.

If in addition
∫∞

m
f(x) dx is finite, then show that

∣
∣
∣
∣

∞∑

k=m

f(k) −
∫ ∞

m

f(x) dx− 1

2
f(m)

∣
∣
∣
∣ ≤ 1

2
|f(m)|.

Use the second of these inequalities to prove that Euler’s constant
γ = limn→∞(

∑n
k=1

1
k − lnn) exists. (Hint: In the spirit of Proposition

12.4.1, expand
∑n

k=m f(k) so that the remainder involves an integral
of f ′(x).)

29. The function

f(x) =
ex

1 − x
=

∞∑

n=0

anx
n

has a pole (singularity) at x = 1. Show that an = e+O(rn) for every
r > 0 based on this fact. (Hint: Consider f(x) − e/(1 − x).)

30. Let qn be the probability that in n tosses of a fair coin there are no
occurrences of the pattern HHH [59]. Derive the recurrence relation

qn =
1

2
qn−1 +

1

4
qn−2 +

1

8
qn−3

for n ≥ 3 and use it to calculate the generating function

Q(s) =

∞∑

n=0

qns
n =

2s2 + 4s+ 8

8 − 4s− 2s2 − s3
.

Show numerically that the denominator has the real root

r1 = 1.0873778

and two complex roots r2 and r3 satisfying |r2| > r1 and |r3| > r1.
Deduce the asymptotic relation qn � cr−n−1

1 for the constant

c = 1.236840.

(Hints: The n trials produce no HHH run only if they begin with T ,
HT , or HHT . The inequality

|4s+ 2s2 + s3| < 4r1 + 2r21 + r31 = 8

holds for all |s| ≤ r1 except s = r1. Finally, apply equations (12.13)
and (12.14) to find c.)
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31. Suppose a sequence of random variables Xn converges to X in prob-
ability. Use the Borel-Cantelli lemma to show that some subsequence
Xnm

converges to X almost surely. Now prove the full claim that Xn

converges to X in probability if and only if every subsequence Xnm
of

Xn possesses a subsubsequence Xnml
converging to X almost surely.

32. Suppose Xn converges in probability to X and Yn converges in proba-
bility to Y . Show thatXn+Yn converges in probability toX+Y , that
XnYn converges in probability to XY , and that Xn/Yn converges in
probability to X/Y when Y �= 0 almost surely.

33. Consider two sequences Xn and Yn of random variables. Suppose
that Xn converges in distribution to the random variable X and the
difference Xn − Yn converges in probability to the constant 0. Prove
that Yn converges in distribution to X . (Hints: For one possible proof,
invoke part (b) of Proposition 12.6.1. The inequality

|eisb − eisa| =
∣
∣
∣is

∫ b−a

0

eist dt
∣
∣
∣

≤ |s(b− a)|

will come in handy.)

34. Let X1, X2, . . . and Y1, Y2, . . . be two independent i.i.d. sequences of
Bernoulli random variables with success probability 1

2 . Show that the
random variable Zn = 2Yn +Xn is uniformly distributed over the set
{0, 1, 2, 3}, that Z =

∑∞
i=1 4−iZi is uniformly distributed over the

interval [0, 1], and that

(
X
Y

)

=

(∑∞
i=1 2−iXi∑∞
i=1 2−iYi

)

is uniformly distributed over the square [0, 1]× [0, 1]. Finally, demon-
strate that the map Z �→ (X,Y )t preserves probability in the sense
that every interval [i4−n, (i + 1)4−n] of length 4−n with 0 ≤ i < 4n

is sent into a square of area 4−n. Note that the Borel-Cantelli lemma
implies that Z almost surely determines its digits Zn.

35. As a follow-up to Problems 10 and 11 of Chapter 5, let An be the
number of ascents in a random permutation of {1, . . . , n}. Demon-
strate that An has the same distribution as �U1 + · · · + Un�, where
�z� is the integer part of z and U1, . . . , Un are independent random
variables with uniform distribution on [0, 1]. Use Problem 33 and the
central limit theorem to show that (An−n/2)/

√
n/12 has an approx-

imate standard normal distribution [195]. (Hints: The distribution of
An is the same as the distribution of Dn = n− 1 − An, the number
of descents. Now let Vj = (U1 + · · · + Uj) mod 1. Demonstrate that
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V1, . . . , Vn are independent random variables with uniform distribu-
tion on [0, 1] and that �U1+ · · ·+Un� provides the number of descents
in the sequence V1, . . . , Vn. Finally, argue that the number of descents
in the sequence V1, . . . , Vn is distributed as Dn.)



13
Numerical Methods

13.1 Introduction

Stochastic modeling relies on a combination of exact solutions and numer-
ical methods. As scientists and engineers tackle more realistic models, the
symmetries supporting exact solutions fade. The current chapter sketches
a few of the most promising numerical techniques. Further improvements
in computing, statistics, and data management are bound to drive the
rapidly growing and disorganized discipline of computational probability
for decades to come.

Our first vignette stresses iterative methods for finding the equilibrium
distribution π of a discrete-time Markov chain. The alternative algebraic
methods such as Gaussian elimination solve the balance equation for π in
a single step. However, Gaussian elimination requires on the order of m3

arithmetic operations form states. With a large, sparse transition probabil-
ity matrix, a good iterative method can be much faster. The block versions
of the Jacobi and Gauss-Seidel algorithms fall into this category.

We have already encountered the finite Fourier transform in our discus-
sion of branching processes. We revisit the subject in the current chapter.
Fresh examples from renewal theory and jump counting in continuous-time
Markov chains reinforce the importance of Fourier analysis in dealing with
discrete distributions. Although classical probability theory depends heav-
ily on Fourier analysis, its emergence as a numerical tool has been slow.

Simulation is now thoroughly entrenched in statistics, particularly in
Bayesian analyses. The development of MCMC techniques has gone hand

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_13, © Springer Science+Business Media, LLC 2010
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in hand with advances in Markov chain theory. However, simulation as a
modeling tool rather than a statistical tool has lagged. The introduction of
τ -leaping methods discussed in continuous-time Markov chains is therefore
a welcome development. We summarize a step anticipation improvement
that renders τ -leaping even more effective. Even if simulation is eventually
replaced by exact methods in a given stochastic model, a good simulation
tool is indispensable in rapidly implementing the model and suggesting
mathematical conjectures.

Our final topic shows how one can bridge the gap between an exact
discrete-state process and its diffusion approximation. Among other things,
the methods applied lead to a better understanding of the phenomenon of
extinction in the Wright-Fisher genetics model. How much of this analysis
carries over to other models is unclear, but the problem is generic. Before
moving on to specifics, let us recommend to readers the books [12, 149, 191]
for further study.

13.2 Computation of Equilibrium Distributions

Suppose π is the equilibrium distribution of the ergodic transition proba-
bility matrix P = (pij). One way of using Gaussian elimination to solve for
π is to rewrite the vector balance equation π = πP as the system

m∑

i=1

πi(1{i=j} − pij) = 0.

Adding the quantity pmj

∑m
i=1 πi = pmj to both sides produces the equiv-

alent system

m∑

i=1

πi(1{i=j} − pij + pmj) = pmj ,

whose first m − 1 equations do not depend on πm [153]. Hence, if the
truncated m− 1 ×m− 1 matrix

R = (1{i=j} − pij + pmj) (13.1)

is invertible, then one can solve for the first m− 1 entries of π by Gaussian
elimination and set πm = 1−

∑m−1
i=1 πi. Problem 1 asks the reader to check

that R−1 exists.
The power method is the simplest iterative method of computing the

equilibrium distribution π of a discrete-time Markov chain. Under the hy-
pothesis of ergodicity, the iterates π(n+1) = π(n)P are guaranteed to con-
verge to π from any starting distribution π(0). For a reversible ergodic chain,
Proposition 7.5.1 shows that the total variation distance from π(n) to π is
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O(ρn), where ρ < 1 is the absolute value of the second-largest eigenvalue
in magnitude of P . For a nonreversible chain, the corresponding bound is
O(nkρn) for some integer k ≥ 0. The extra factor of nk adjusts for the
possible failure of P to be diagonalizable [169]. If ρ is close to 1, then the
power method can be very slow to converge. One can accelerate conver-
gence by computing P 2, P 4, P 8, and so forth by repeated squaring and
waiting for the rows of the corresponding matrices to stabilize. The proof
of Proposition 7.4.1 shows that

min
i
p
(2n)
ij ≤ πj ≤ max

i
p
(2n)
ij ,

where p
(2n)
ij is a typical entry of P 2n

. Unfortunately, when there are m

states, each squaring requires on the order of O(m3) arithmetic operations.
Furthermore, any initial sparsity of P is lost in repeated squaring. This
puts repeated squaring in the same league as Gaussian elimination. In its
defense, repeated squaring suffers less from roundoff error.

The classical iterative schemes of Jacobi and Gauss and Seidel start from
the rearrangement

πj =
1

1 − pjj

∑

i�=j

πipij

of the equilibrium equation. The Jacobi updates

π
(n+1)
j =

1

1 − pjj

∑

i�=j

π
(n)
i pij

can be computed in parallel; in contrast, the Gauss-Seidel updates

π
(n+1)
j =

1

1 − pjj

(∑

i<j

π
(n+1)
i pij +

∑

i>j

π
(n)
i pij

)

must be computed sequentially from the first state 1 to the last state m.
Because the Gauss-Seidel algorithm uses each update as soon as it is gen-
erated, it typically converges in fewer iterations than the Jacobi algorithm.

Table 13.1 compares the performance of the four iterative algorithms on
a simple random walk problem with m = 50 states. Here all entries pij of
the transition probability matrix P are 0 except for p12 = pm,m−1 = 1 and

pk,k−1 =
1

2
√
k
, pkk =

1

2
, pk,k+1 =

1

2

(
1 − 1√

k

)

for 2 ≤ k ≤ m. Most of the probability mass piles up near state m. Starting
from the uniform distribution, the table compares the largest entry of the
nth iterate π(n) to the largest entry of π. In the case of squaring, we choose
the largest entry in the first row of the appropriate power of P . The power
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method is the slowest to converge, followed by the Jacobi algorithm, the
Gauss-Seidel algorithm, and repeated squaring, in that order. The true
value for the maximum coincides with the converged value under repeated
squaring. As a safeguard for each of the first three methods, the vector π(n)

is replaced by the normalized vector (π(n)1)−1π(n) as soon as all entries
are computed. Likewise, the rows of P 2, P 4, and so forth are normalized
under repeated squaring. The initial distribution π(0) is random.

TABLE 13.1. Comparison of Various Equilibrium-Seeking Algorithms

n Power Jacobi Gauss-Seidel Squaring

0 0.020 0.020 0.020 1.000
10 0.073 0.091 0.219 0.614
20 0.116 0.162 0.386 0.614
40 0.199 0.304 0.514 0.614
60 0.277 0.428 0.563 0.614
80 0.350 0.505 0.589 0.614

100 0.415 0.543 0.601 0.614
120 0.470 0.565 0.608 0.614
140 0.511 0.580 0.611 0.614
160 0.539 0.590 0.612 0.614
180 0.558 0.597 0.613 0.614
200 0.570 0.602 0.613 0.614

For very large systems, block Gauss-Seidel is one of the more competitive
algorithms. Here we divide π and Q = I − P into compatible contiguous
blocks πJ andQIJ . The balance equation πQ = 0t then becomes the system
of equations

πJ = −
(
∑

I �=J

πIQIJ

)

Q−1
JJ . (13.2)

The reasoning employed in Section 7.6 demonstrates that the inverse Q−1
JJ

exists. To turn equation (13.2) into an algorithm, we label the index sets
I1, . . . , Ib and cycle through the block updates

π
(n+1)
Ik

= −
(

k−1∑

j=1

π
(n+1)
Ij

QIjIk
+

b∑

j=k+1

π
(n)
Ij
QIjIk

)

Q−1
IkIk

(13.3)

in sequence. The block Gauss-Seidel algorithm (13.3) converges in fewer
iterations than the univariate Gauss-Seidel algorithm because no approx-
imations are made within a block. Precomputing and storing the inverse
matrices Q−1

IkIk
is advisable. As Problem 2 shows, all entries of the up-

dated block πIk
remain nonnegative. The article [193] highlights necessary
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and sufficient conditions for convergence. The corresponding block Jacobi
algorithm

π
(n+1)
Ik

= −
(∑

j �=k

π
(n)
Ij
QIjIk

)

Q−1
IkIk

is inherently parallel but tends to take more iterations to converge. The
book [191] discusses other methods for computing π.

Finding the equilibrium distribution of a continuous-time Markov chain
reduces to finding the equilibrium distribution of an associated discrete-
time Markov chain. Consider a continuous-time chain with transition in-
tensities λij and infinitesimal generator Λ. If we collect the off-diagonal
entries of Λ into a matrix Ω and the negative diagonal entries into a di-
agonal matrix D, then equation (8.7) describing the balance conditions
satisfied by the equilibrium distribution π can be recast as

πD = πΩ.

Close examination of the matrix P = D−1Ω shows that its entries are
nonnegative, its row sums are 1, and its diagonal entries are 0. Further-
more, P is sparse whenever Ω is sparse, and all states communicate under
P when all states communicate under Λ. Nothing prevents the transition
probability matrix P from being periodic, but aperiodicity is irrelevant in
deciding whether a unique equilibrium distribution exists. Indeed, for any
fixed constant α ∈ (0, 1), one can easily demonstrate that an equilibrium
distribution of P is also an equilibrium distribution of the aperiodic tran-
sition probability matrix Q = αI + (1 − α)P and vice versa.

Suppose that we compute the equilibrium distribution ν of P by some
method. Once ν is available, we set ω = νD−1. Because the two equations

ν = νP, ωD = ωΩ

are equivalent, ω coincides with π up to a multiplicative constant. In other
words, Λ has equilibrium distribution π = (ω1)−1ω. Hence, trivial adjust-
ment of the equilibrium distribution for the associated discrete-time chain
produces the equilibrium distribution of the original continuous-time chain.

13.3 Applications of the Finite Fourier Transform

As mentioned in Section 9.5, the finite Fourier transform can furnish ap-
proximations to the Fourier coefficients of a periodic function f(x). We now
explore these ideas more systematically. Appendices A.3 and A.5 provide
a brief overview of the elementary theory. Here we focus on applications.
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Our first application of the finite Fourier transform is to computing the
convolution of two sequences cj and dj of finite length n. Close inspection
of Proposition A.3.1 suggests the following procedure. Compute the trans-
forms ĉk and d̂k via the fast Fourier transform, multiply pointwise to form
the product transform nĉkd̂k, and then invert the product transform via
the fast inverse Fourier transform. This procedure requires on the order of
O(n lnn) operations, whereas the naive evaluation of a convolution requires
on the order of n2 operations unless one of the sequences is sparse. Here is
a prime example where fast convolution is useful.

Example 13.3.1 Multiplication of Generating Functions

One can write the generating function R(s) of the sum X + Y of two
independent, nonnegative, integer-valued random variables X and Y as
the product R(s) = P (s)Q(s) of the generating function P (s) =

∑∞
j=0 pjs

j

of X and the generating function Q(s) =
∑∞

j=0 qjs
j of Y . The coefficients

of R(s) are given by the convolution formula

rk =
k∑

j=0

pjqk−j .

Assuming that the pj and qj are 0 or negligible for j ≥ m, we can view the
two sequences as having period n = 2m provided we set pj = qj = 0 for
j = m, . . . , n− 1. Introducing these extra 0’s makes it possible to write

rk =

n−1∑

j=0

pjqk−j (13.4)

without embarrassment. The rj returned by the suggested procedure are
correct in the range 0 ≤ j ≤ m−1. Clearly, the same process works if P (s)
and Q(s) are arbitrary polynomials of degree m− 1 or less.

We now turn to infinite sequences and Fourier series approximation. If
f(x) is a function defined on the real line with period 1, then its kth Fourier
series coefficient ck can be approximated by

ck =

∫ 1

0

f(x)e−2πikxdx ≈ 1

n

n−1∑

j=0

f
( j

n

)
e−2πi jk

n = b̂k,

where i =
√
−1, bj = f(j/n), n is some large positive integer, and b̂k is

the finite Fourier transform of the sequence bj evaluated at the integer k.

Because the transformed values b̂k are periodic, only n of them are distinct,
say b̂−n/2 through b̂n/2−1 for n even.

An important question is how well b̂k approximates ck. To assess the er-
ror, suppose that

∑
k |ck| <∞ and that the Fourier series of f(x) converges
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to f(x) at the points j/n for j = 0, . . . , n− 1. The calculation

b̂k =
1

n

n−1∑

j=0

e−2πi jk
n f
( j

n

)

=
1

n

n−1∑

j=0

e−2πi jk
n

∑

m

cme
2πi jm

n

=
∑

m

cm
1

n

n−1∑

j=0

e2πi j(m−k)
n

=
∑

m

cm

{
1 m = k mod n
0 m �= k mod n

implies that

b̂k − ck =
∑

l�=0

cln+k. (13.5)

If the Fourier coefficients cj decline sufficiently rapidly to 0 as |j| tends to

∞, then the error b̂k − ck will be small for −n/2 ≤ k ≤ n/2 − 1. Problems
11, 12, and 13 explore this question in more depth.

Example 13.3.2 Fast Solution of a Renewal Equation

The discrete renewal equation

un = an +
n∑

m=0

fmun−m (13.6)

arises in many applications of probability theory [59]. Here an and fn are
known bounded sequences with f0 = 0. Beginning with the initial value
u0 = a0, it takes on the order of n2 operations to compute u0, . . . , un

recursively via the convolution equation (13.6). Alternatively, if we multiply
both sides of (13.6) by sn and sum on n, then we get the equation

U(s) = A(s) + F (s)U(s), (13.7)

involving the generating functions

U(s) =
∞∑

n=0

uns
n, A(s) =

∞∑

n=0

ans
n, F (s) =

∞∑

n=0

fns
n.

The explicit form of the solution

U(s) =
A(s)

1 − F (s)
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suggests that we can recover the coefficients un of U(s) by the Fourier series
method. For this tactic to work, the condition limn→∞ un = 0 must hold.

One of the aims of renewal theory is to clarify the nature of recurrent
events. In Section 7.3.4 we introduced the first passage distribution fn

characterizing the number of epochs until the next occurrence of a recurrent
event. If we let un be the probability of the recurrent event at epoch n,
then we can write the renewal equation

un = 1{n=0} +

n∑

m=0

fmun−m.

Because the process starts with an occurrence, the choice A(s) = 1 is
appropriate. In this setting the solution

U(s) =
1

1 − F (s)

has a singularity at the point s = 1. If this is the only singularity on the
unit circle, then we can adopt the strategy of Section 12.5 and try to show
that the coefficients un tend to a nontrivial limit c. Fortunately, there is
a simple necessary and sufficient condition for s = 1 to be the only root
of the equation F (s) = 1 on the unit circle |s| = 1. Problem 15 asks the
reader to prove that the relevant condition requires the set {n: fn > 0} to
have greatest common divisor 1.

These observations suggest that it would be better to estimate the coef-
ficients vn = un − c of the generating function

V (s) = U(s) − c

(1 − s)

for the choice

c = lim
s→1

(1 − s)U(s) = lim
s→1

1 − s

1 − F (s)
=

1

μ
,

where μ is the mean recurrence time F ′(1). Provided F (s) satisfies the
greatest common divisor hypothesis, we can now recover the better-behaved
coefficients vn by the approximate Fourier series method. The advantage of
this oblique attack on the problem is that it takes on the order of only n lnn
operations to compute v0, . . . , vn and hence u0, . . . , un. Finally, note that
Section 7.3.4 reaches the same conclusion limn→∞ un = μ−1 by invoking
the ergodic theorem. To avoid such strong machinery here, we must assume
that F (s) has a radius of convergence around the origin strictly greater than
1.

As a concrete illustration of the proposed method, consider a classical
coin tossing problem. Let un be the probability of a new run of r heads end-
ing at toss n. In contrast to the pattern matching assumptions in Example
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2.2.2, we adopt the simplifying convention that no segment of a current
run of r heads can be counted as a segment of the next run of r heads.
To calculate the generating function of the un, we take u0 = 1 and set
u1 = u2 = · · · = ur−1 = 0. For n ≥ r and head probability p = 1 − q, the
probability that all r trials n− r + 1, . . . , n− 1, n are heads satisfies

pr = un + pun−1 + · · · + pr−1un−r+1. (13.8)

On the right-hand side of this identity, we segment the coin tossing history
up to epoch n by the epoch of the last new run.

If we define

an =

{
pn 0 ≤ n ≤ r
pr n > r,

gn =

{
−pn 1 ≤ n ≤ r − 1
0 n = 0 or n ≥ r,

then equation (13.8) is a disguised form of the renewal equation (13.6) with
gn replacing fn. The special cases u0 = p0 = 1 and un = pn − pn = 0 for
1 ≤ n ≤ r−1 constitute the initial conditions. Straightforward calculations
show that

1 −G(s) = 1 + ps+ · · · + (ps)r−1 =
1 − (ps)r

1 − ps

and

A(s) =
1 − (ps)r+1

1 − ps
+
prsr+1

1 − s
=

1 − s+ qprsr+1

(1 − s)(1 − ps)
.

It follows that

U(s) =
A(s)

1 −G(s)
=

1 − s+ qprsr+1

(1 − s)[1 − (ps)r]

and

c = lim
s→1

(1 − s)U(s) =
qpr

1 − pr
.

In this problem it is easier to calculate U(s) directly and avoid the first
passage probabilities altogether.

As a toy example, let us take r = 2 and p = 1/2. Fourier transforming
n = 32 values of V (s) on the boundary of the unit circle yields the renewal
probabilities displayed in Table 13.2. In this example, convergence to the
limiting value occurs so rapidly that the value of introducing the finite
Fourier transform is debatable. Other renewal equations exhibit less rapid
convergence.
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TABLE 13.2. Renewal Probabilities in a Coin Tossing Example

n un n un n un

0 1.0000 5 0.1563 10 0.1670
1 0.0000 6 0.1719 11 0.1665
2 0.2500 7 0.1641 12 0.1667
3 0.1250 8 0.1680 13 0.1666
4 0.1875 9 0.1660 ∞ 0.1667

13.4 Counting Jumps in a Markov Chain

Let Xt be a continuous-time Markov chain with n states, transition inten-
sities λij , and infinitesimal generator Λ. Recall that the ith diagonal entry
of Λ is −λi = −

∑
j �=i λij . For a set of donor states A and a set of recipient

states B, we wish to characterize the random number of jumps Nt from
A to B during [0, t] [121, 143]. As a form of shorthand, we write k → l
whenever k ∈ A and l ∈ B. Our attack on this problem proceeds via the
expectations

fij(t, u) = E(uNt1{Xt=j} | X0 = i)

for |u| ≤ 1. Except for omission of the normalizing constant

Pr(Xt = j | X0 = i) = (etΛ)ij ,

the function fij(t, u) serves as the generating function of Nt conditional on
the events X0 = i and Xt = j. The sum fi(t, u) =

∑
j fij(t, u) represents

the generating function of the number of jumps conditional only on the
event X0 = i. If we take A = B = {1, . . . , n}, then we track all jumps. If
we take A = {1, . . . , n} and B = {k}, then we track only jumps into state
k. The opposite choice A = {k} and B = {1, . . . , n} tracks jumps out of
state k.

The convolution equation

fij(t, u) = e−λit1{i=j} +

∫ t

0

e−λis
∑

k �=i

λiku
1{i→k}fkj(t− s, u)ds (13.9)

is our departure point for calculating fij(t, u). In equation (13.9) the term
e−λit1{i=j} covers the event that the process never leaves state i, in which
case Nt = 0 and u0 = 1. The integral covers the possibility of the pro-
cess leaving at some time s ≤ t and moving to the intermediate state k.
The exponential factor e−λis is the probability that the departure occurs
after time s, and the factor λikds is the infinitesimal probability that the
chain jumps to state k during the time interval (s, s + ds). Finally, the
factor u1{i→k}fkj(t − s, u) summarizes the expected value of uNt1{Xt=j}
conditional on this jump.
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Any convolution equation invites the Laplace transform. If we let

ĝ(θ) =

∫ ∞

0

e−θtg(t) dt

denote the Laplace transform of g(t), then taking transforms of equation
(13.9) produces

f̂ij(θ, u) =
1

θ + λi
1{i=j} +

1

θ + λi

∑

k �=i

λiku
1{i→k} f̂kj(θ, u).(13.10)

To make further progress, we collect the transforms f̂ij(θ, u) into a matrix

F̂ (θ, u) and write the system of equations (13.10) as the single matrix
equation

F̂ (θ, u) = D(θ) +D(θ)C(u)F̂ (θ, u),

where D(θ) is the diagonal matrix with ith diagonal entry (θ + λi)
−1

and C(u) is the matrix with diagonal entries 0 and off-diagonal entries
λiku

1{i→k}.
Arranging things in this manner allows us to solve for F̂ (θ, u) in the form

F̂ (θ, u) = {I −D(θ)C(u)}−1D(θ)

= {D−1(θ) − C(u)}−1

= {θI − diag(Λ) − C(u)}−1 (13.11)

= (θI −M)−1,

where M = diag(Λ) + C(u). The matrix θI −M is invertible because it is
strictly diagonally dominant. (See Problem 18.) Fortunately, we can invert
the Laplace transform (13.11). Indeed, the fundamental theorem of calculus
implies that

∫ ∞

0

e−θtetMdt =

∫ ∞

0

e−t(θI−M)dt

= −(θI −M)−1e−t(θI−M)
∣
∣
∣
∞

0

= (θI −M)−1.

It follows that

F (t, u) = etM = et[diag(Λ)+C(u)]. (13.12)

Note that F (t, u) satisfies the necessary initial condition F (0, u) = I.
If all λi = λ are equal, then diag(Λ) is a multiple of the identity matrix,

and

F (t, u) = e−λtetC(u) =

∞∑

l=0

e−λt t
l

l!
C(u)l.
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If in addition A = B = {1, . . . , n}, then C(u) = u[Λ−diag(Λ)], and we can
equate the joint probability Pr(Nt = l, Xt = j) to the entry in row i and

column j of the matrix e−λt tl

l! [Λ − diag(Λ)]l.
In general, we can always compute the joint probabilities by extending

the matrix-valued function F (t, u) =
∑∞

l=0 u
lFl(t) to the unit circle and

extracting its Fourier coefficient

Fl(t) =

∫ 1

0

F (t, e2πiθ)e−2πilθdθ.

As usual, we approximate the integral in question by a Riemann sum and
calculate the Riemann sum entry by entry by applying the fast Fourier
transform. This procedure is obviously dependent on accurate evaluation
of the matrix exponential (13.12).

We can also recover the unnormalized moments of the random variables
Nt by evaluating the derivatives of the solution (13.12) with respect to u
at u = 1. For example, Et = ∂

∂uF (t, u)|u=1 equals the matrix of expected
jumps up to a normalizing constant. The function Et satisfies the differen-
tial equation

d

dt
Et =

∂

∂u

∂

∂t
F (t, u)|u=1

=
∂

∂u

{
[diag(Λ) + C(u)]et[diag(Λ)+C(u)]

}∣
∣
∣
u=1

= [C(1) − C(0)]etΛ + ΛEt

because d
duC(u) = C(1) − C(0) and diag(Λ) + C(1) = Λ. The solution of

this system is

Et = etΛ

∫ t

0

e−sΛ[C(1) − C(0)]esΛds

=

∫ t

0

e(t−s)Λ[C(1) − C(0)]esΛds

subject to the initial condition E(0) = 0. For the mean number of jumps
of any type, C(1)−C(0) = Λ−diag(Λ). If in addition all λi coincide, then
Λ and diag(Λ) commute, and Et reduces to tetΛ[Λ − diag(Λ)].

More generally, suppose SDS−1 is a diagonalization of Λ. If we define
R = S−1[C(1) − C(0)]S, then

Et = S

∫ 1

0

e(t−s)DResDds S−1

= S

∫ t

0

[
e(t−s)dirije

sdj

]
ds S−1

= S(qij)S
−1,
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where rij is a typical entry of R, di is a typical diagonal entry of D, and

qij =

{ rij

dj−di
(etdj − etdi) di �= dj

tetdirij di = dj .

This result is a special case of a generic formula for the derivative of a
matrix exponential with respect to a parameter [176].

As an illustration of these methods in action, consider Kimura’s nu-
cleotide evolution chain as sketched in Example 8.5.2 and Section 8.6. If
we set α = 1, β = 2, and let the chain progress to time t = 1

2 , then Ta-
ble 13.3 shows the expected number of jumps conditional on all possible
starting states i and ending states j. Each value in the table represents the
ratio of an entry of Et to the corresponding entry of etΛ. Here we have
computed Et exactly by the formulas tetΛ[Λ−diag(Λ)] and S(qij)S

−1 and
numerically by

∑
l lPr(Nt = l, Xt = j | X0 = i). All three methods give

the same result.

TABLE 13.3. Expected Number of Nucleotide Substitutions in Kimura’s Chain

j = 1 j = 2 j = 3 j = 4

i = 1 2.1672 2.7454 2.5746 2.5746
i = 2 2.7454 2.1672 2.5746 2.5746
i = 3 2.5746 2.5746 2.1672 2.7454
i = 4 2.5746 2.5746 2.7454 2.1672

13.5 Stochastic Simulation and Intensity Leaping

Many chemical and biological models depend on continuous-time Markov
chains with a finite number of particle types [91]. The particles interact via
a finite number of reaction channels, and each reaction destroys and/or cre-
ates particles in a predictable way. In this section, we consider the problem
of simulating the behavior of such chains. Before we launch into simulation
specifics, it is helpful to carefully define a typical process. If d denotes the
number of types, then the chain follows the count vectorXt whose ith com-
ponent Xti is the number of particles of type i at time t ≥ 0. We typically
start the system at time 0 and let it evolve via a succession of random
reactions. Let c denote the number of reaction channels. Channel j is char-
acterized by an intensity function rj(x) depending on the current vector
of counts x. In a small time interval of length s, we expect rj(x)s + o(s)
reactions of type j to occur. Reaction j changes the count vector by a fixed
integer vector vj . Some components vj

k of vj may be positive, some 0, and
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some negative. From the wait and jump perspective of Markov chain the-
ory, we wait an exponential length of time until the next reaction. If the
chain is currently in state Xt = x, then the intensity of the waiting time
is r0(x) =

∑c
j=1 rj(x). Once the decision to jump is made, we jump to the

neighboring state x+ vj with probability rj(x)/r0(x).
Table 13.4 lists typical reactions, their intensities r(x), and increment

vectors v. In the table, Si denotes a single particle of type i. Only the
nonzero increments vi are shown. The reaction intensities invoke the law
of mass action and depend on rate constants ai. Each discipline has its
own vocabulary. Chemists use the name propensity instead of the name
intensity and call the increment vector a stoichiometric vector. Physicists
prefer creation to immigration. Biologists speak of death and mutation
rather than of decay and isomerization. Despite the variety of processes
covered, the allowed chains form a subset of all continuous-time Markov
chains. Chains with an infinite number of reaction channels or random
increments are not allowed. For instance, many continuous-time branching
processes do not qualify. Branching processes that grow by budding serve
as useful substitutes for more general branching processes.

TABLE 13.4. Some Examples of Reaction Channels

Name Reaction r(x) v

Immigration 0 → S1 a1 v1 = 1
Decay S1 → 0 a2x1 v1 = −1
Dimerization S1 + S1 → S2 a3

(
x1

2

)
v1 = −2, v2 = 1

Isomerization S1 → S2 a4x1 v1 = −1, v2 = 1
Dissociation S2 → S1 + S1 a5x2 v1 = 2, v2 = −1
Budding S1 → S1 + S2 a6x1 v2 = 1
Replacement S1 + S2 → S2 + S2 a7x1x2 v1 = −1, v2 = 1
Complex S1 + S2 → S3 + S4 a8x1x2 v1 = v2 = −1
Reaction v3 = v4 = 1

The wait and jump mechanism constitutes a perfectly valid method of
simulating one of these chains. Gillespie first recognized the practicality of
this approach in chemical kinetics [74]. Although his stochastic simulation
algorithm works well in some contexts, it can be excruciatingly slow in
others. Unfortunately, reaction rates can vary by orders of magnitude, and
the fastest reactions dominate computational expense in stochastic sim-
ulation. For the fast reactions, stochastic simulation takes far too many
small steps. Our goal is to describe an alternative approximate algorithm
that takes larger, less frequent steps. The alternative is predicated on the
observation that reaction intensities change rather slowly in many models.
Before describing how we can take advantage of this feature, it is worth
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mentioning the chemical master equations, which is just another name for
the forward equations of Markov chain theory.

Let pxy(t) denote the finite-time transition probability of going from
state x at time 0 to state y at time t. The usual reasoning leads to the
expansions

pxy(t+ s) = pxy(t)

[

1 −
c∑

j=1

rj(y)s

]

+

c∑

j=1

px,y−vj(t)rj(y − vj)s+ o(s).

Forming the corresponding difference quotient and sending s to 0 produce
the master equations

d

dt
pxy(t) =

c∑

j=1

[
px,y−vj (t)rj(y − vj) − pxy(t)rj(y)

]

with initial conditions pxy(0) = 1{x=y}. Only in special cases can the master
equations be solved. In deterministic models where particle counts are high,
one is usually content to follow mean particle counts. The mean behavior
μ(t) = E(Xt) is then roughly modeled by the system of ordinary differential
equations

d

dt
μ(t) =

c∑

j=1

rj [μ(t)]vj .

This approximation becomes more accurate as mean particle counts in-
crease.

For the sake of argument, suppose all reaction intensities are constant.
In the time interval (t, t+ s), reaction j occurs a Poisson number of times
with mean rjs. If we can sample from the Poisson distribution with an
arbitrary mean, then we can run stochastic simulation accurately with s
of any duration. If we start the process at Xt = x, then at time t + s
we have Xt+s = x +

∑c
j=1Njv

j , where the Nj are independent Poisson
variates with means rjs. The catch, of course, is that reaction intensities
change as the particle count vector Xt changes. In the τ -leaping method of
simulation, we restrict the time increment τ > 0 to sufficiently small values
such that each intensity rj(x) suffers little change over (t, t+ τ) [33, 75].

Before we discuss exactly how to achieve this, let us pass to a more
sophisticated update that anticipates how intensities change [178]. Assume
that Xt is a deterministic process with a well-defined derivative. Over a
short time interval (t, t+τ), the intensity rj(Xt) should then change by the
approximate amount d

dtrj(Xt)τ . Reactions of type j now occur according
to an inhomogeneous Poisson process with a linear intensity. Thus, we
anticipate a Poisson number of reactions of type j with mean

ωj(t, t+ τ) =

∫ τ

0

[

rj(Xt) +
d

dt
rj(Xt)s

]

ds
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= rj(Xt)τ +
d

dt
rj(Xt)

1

2
τ2.

At time t+τ , we putXt+τ = Xt+
∑c

j=1Njv
j , where theNj are independent

Poisson variates with means ωj(t, t + τ). This is all to the good, but how
do we compute the time derivatives of rj(Xt)? The most natural approach
is to invoke the chain rule

d

dt
rj(x) =

d∑

k=1

∂

∂xk
rj(x)

d

dt
xk

and set

d

dt
xk =

c∑

j=1

rj(x)v
j
k

as dictated by the approximate mean growth of the system. In most models
the matrix dr(x) = [ ∂

∂xk
rj(x)] is sparse, with nontrivial entries that are

constant or linear in x.
This exposition gives some insight into how we choose the increment τ in

the τ -leaping method. It seems reasonable to take the largest τ such that

∣
∣
∣
d

dt
rj(x)

∣
∣
∣τ ≤ εrj(x)

holds for all j, where ε > 0 is a small constant. If rj(x) = 0 is possible,
then we might amend this to

∣
∣
∣
d

dt
rj(x)

∣
∣
∣τ ≤ εmax{rj(x), aj},

where aj is the rate constant for reaction j. In each instance in Table
13.4, aj is the smallest possible change in rj(x). In common with other τ -
leaping strategies, we revert to the stochastic simulation update whenever
the intensity r0(x) for leaving a state x falls below a certain threshold δ.

As a test case, we apply the above version of τ -leaping to Kendall’s
birth, death, and immigration process. In the time-homogeneous case, this
Markov chain is governed by the birth rate α per particle, the death rate μ
per particle, and the overall immigration rate ν. Equation (8.17) provides
the mean number of particles mi(t) at time t starting with i particles at
time 0. This exact expression permits us to evaluate the accuracy of τ -
leaping. For the sake of illustration, we consider t = 4, i = 5, and average
particle counts over 10,000 simulations. Table 13.5 lists the exact value
of m5(4) and the average particle counts from τ -leaping for two methods.
Method 1 ignores the derivative correction, and method 2 incorporates it.
The table also gives for method 2 the time in seconds over all 10,000 runs
and the fraction of steps attributable to stochastic simulation (SSA) when
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TABLE 13.5. Mean Counts for α = 2, μ = 1, and ν = 1

2
in Kendall’s Process

ε Average 1 Average 2 Predicted Time SSA Fraction

1.0000 153.155 251.129 299.790 0.781 0.971
0.5000 195.280 279.999 299.790 0.875 0.950
0.2500 232.495 292.790 299.790 1.141 0.909
0.1250 261.197 297.003 299.790 1.625 0.839
0.0625 279.176 301.671 299.790 2.328 0.726
0.0313 286.901 298.565 299.790 3.422 0.575
0.0156 297.321 301.560 299.790 4.922 0.405
0.0078 294.487 300.818 299.790 7.484 0.256

the threshold constant δ = 100. Although the table makes a clear case for
the more accurate method 2, more testing is necessary. This is an active
area of research, and given its practical importance, even more research is
warranted.

13.6 A Numerical Method for Diffusion Processes

It is straightforward to simulate a diffusion process Xt. The definition tells
us to extend Xt to Xt+s by setting the increment Xt+s−Xt equal to a nor-
mal deviate with mean μ(t, x)s and variance σ2(t, x)s. The time increment
s should be small, and each sampled normal variate should be independent.
Techniques for generating random normal deviates are covered in standard
texts on computational statistics and will not be discussed here [112, 122].
Of more concern is how to cope with a diffusion process with finite range
I. Because a normally distributed random variable has infinite range, it is
possible in principle to generate an increment that takes the simulated pro-
cess outside I. One remedy for this problem is to take s extremely small. It
also helps if the infinitesimal variance σ2(t, x) tends to 0 as x approaches
the boundary of I. This is the case with the neutral Wright-Fisher process.

Simulation offers a crude method of finding the distribution of Xt. Sim-
ply conduct multiple independent simulations and compute a histogram
of the recorded values of Xt. Although this method is neither particu-
larly accurate nor efficient, it has the virtue of yielding simultaneously the
distributions of all of the Xt involved in the simulation process. Thus, if
1000 times are sampled per simulation, then the method yields all 1000
distributions, assuming that enough computer memory is available. Much
greater accuracy can be achieved by solving Kolmogorov’s forward equa-
tion. The ideal of an exact solution is seldom attained in practice, even
for time-homogeneous problems. However, Kolmogorov’s forward equation
can be solved numerically by standard techniques for partial differential
equations. Here we would like to discuss a nonstandard method for finding
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the distribution of Xt that directly exploits the definition of a diffusion
process.

This method recursively computes the distribution of Xti
at n time

points labeled 0 < t1 < · · · < tn = t. In the diffusion approximation to
Markov chain models such as the Wright-Fisher model, it is reasonable to
let δti = ti+1 − ti be one generation. It is also convenient to supplement
these points with the initial point t0 = 0. For each ti, we would like to com-
pute the probability thatXti

∈ [aij , ai,j+1] for ri+1 points ai0 < · · · < ai,ri
.

We will say more about these mesh points later. In the meantime let pij de-
note the probability Pr(Xti

∈ [aij , ai,j+1]) and cij the center of probability
E(Xti

| Xti
∈ [aij , ai,j+1]). Our method carries forward approximations to

both of these sequences starting from an arbitrary initial distribution for
X0.

In passing from time ti to time ti+1, the diffusion process redistributes
a certain amount of probability mass from the interval [aij , ai,j+1] to the
interval [ai+1,k, ai+1,k+1]. Given the definition of a diffusion process and the
notation m(i, x) = x + μ(ti, x)δti and s2(i, x) = σ2(ti, x)δti, the amount
redistributed is approximately

pij→i+1,k

=

∫ ai,j+1

aij

1
√

2πs2(i, x)

∫ ai+1,k+1

ai+1,k

e
− [y−m(i,x)]2

2s2(i,x) dyf(ti, x) dx

=

∫ ai,j+1

aij

1√
2π

∫ ai+1,k+1−m(i,x)

s(i,x)

ai+1,k−m(i,x)

s(i,x)

e−
z2

2 dzf(ti, x) dx. (13.13)

(Here and in the remainder of this section, the equality sign indicates ap-
proximate equality.) Similarly, the center of probability cij→i+1,k of the
redistributed probability approximately satisfies

cij→i+1,kpij→i+1,k

=

∫ ai,j+1

aij

1
√

2πs2(i, x)

∫ ai+1,k+1

ai+1,k

ye
− [y−m(i,x)]2

2s2(i,x) dyf(ti, x) dx (13.14)

=

∫ ai,j+1

aij

1√
2π

∫ ai+1,k+1−m(i,x)

s(i,x)

ai+1,k−m(i,x)

s(i,x)

[m(i, x) + s(i, x)z]e−
z2

2 dzf(ti, x) dx.

Given these quantities, we calculate

pi+1,k =

ri−1∑

j=0

pij→i+1,k

ci+1,k =
1

pi+1,k

ri−1∑

j=0

cij→i+1,kpij→i+1,k , (13.15)
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assuming that Xti
is certain to belong to one of the intervals [aij , ai,j+1].

To carry out this updating scheme, we must approximate the integrals
pij→i+1,k and cij→i+1,kpij→i+1,k . If the interval [aij , ai,j+1] is fairly narrow,
then the linear approximations

m(i, x) = μij0 + μij1x

s2(i, x) = σ2
ij (13.16)

f(ti, x) = fij0 + fij1x

should suffice for all x in the interval. The first two of these linear approx-
imations follow directly from the diffusion model. The constants involved
in the third approximation are determined by the equations

pij =

∫ ai,j+1

aij

(fij0 + fij1x) dx

= fij0(ai,j+1 − aij) +
1

2
fij1(ai,j+1 + aij)(ai,j+1 − aij)

cijpij =

∫ ai,j+1

aij

x(fij0 + fij1x) dx

=
1

2
fij0(ai,j+1 + aij)(ai,j+1 − aij)

+
1

3
fij1(a

2
i,j+1 + ai,j+1aij + a2

ij)(ai,j+1 − aij)

with inverses

fij0 =
2pij(2a

2
ij + 2aijai,j+1 + 2a2

i,j+1 − 3aijcij − 3ai,j+1cij)

(ai,j+1 − aij)3

fij1 =
6pij(2cij − aij − ai,j+1)

(ai,j+1 − aij)3
. (13.17)

Problem 22 asks the reader to check that the linear density fij0 + fij1x is
nonnegative throughout the interval (aij , ai,j+1) if and only if its center of
mass cij lies in the middle third of the interval.

Given the linear approximations (13.16), we now show that the double
integrals (13.13) and (13.14) reduce to expressions involving elementary
functions and the standard normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−y2/2dy.

The latter can be rapidly evaluated by either a power series or a continued
fraction expansion [122]. It also furnishes the key to evaluating the hierarchy
of special functions

Φk(x) =
1√
2π

∫ x

−∞
yke−y2/2dy
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through the integration-by-parts recurrence

Φk(x) = − 1√
2π
xk−1e−x2/2 + (k − 1)Φk−2(x) (13.18)

beginning with Φ0(x) = Φ(x). We can likewise evaluate the related integrals

Ψjk(x) =

∫ x

−∞
yjΦk(y) dy

via the integration-by-parts reduction

Ψjk(x) =
1

j + 1
xj+1Φk(x) − 1

j + 1
Φj+k+1(y). (13.19)

Based on the definition of Φ(x), the integral (13.13) becomes

pij→i+1,k =

∫ ai,j+1

aij

Φ
(z − μij0 − μij1x

σij

)∣
∣
∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx,

and based on the recurrence (13.18), the integral (13.14) becomes

cij→i+1,kpij→i+1,k

=

∫ ai,j+1

aij

(μij0 + μij1x)Φ
(z − μij0 − μij1x

σij

)∣
∣
∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx

− σij√
2π

∫ ai,j+1

aij

e−(z−μij0−μij1x)2/(2σ2
ij)
∣
∣
∣
ai+1,k+1

ai+1,k

(fij0 + fij1x) dx.

To evaluate the one-dimensional integrals in these expressions for pij→i+1,k

and cij→i+1,kpij→i+1,k, we make appropriate linear changes of variables so

that e−x2/2 and Φ(x) appear in the integrands and then apply formu-
las (13.18) and (13.19) as needed. Although the details are messy, it is
clear that these maneuvers reduce everything to combinations of elemen-
tary functions and the standard normal distribution function.

To summarize, the algorithm presented approximates the probability pij

and center of probability cij of each interval [aij , ai,j+1] of a subdivision
of the range I of Xt. Equation (13.17) converts these parameters into a
piecewise linear approximation to the density of the process in prepara-
tion for propagation to the next subdivision. The actual propagation of
probability from an interval of the current subdivision to another inter-
val of the next subdivision is accomplished by computing pij→i+1,k and
cij→i+1,kpij→i+1,k based on elementary functions and the standard normal
distribution function. The pieces pij→i+1,k and cij→i+1,k are then reassem-
bled into probabilities and centers of probabilities using equations (13.15).

The choice of the mesh points ai0 < · · · < ai,ri
at time ti is governed by

several considerations. First, the probability Pr(Xti
�∈ [ai0, ai,ri

]) should be
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negligible. Second, σ2(ti, x) should be well approximated by a constant and
μ(ti, x) by a linear function on each interval [aij , ai,j+1]. Third, the density
f(ti, x) should be well approximated by a linear function on [aij , ai,j+1] as
well. This last requirement is the hardest to satisfy in advance, but nothing
prevents one from choosing the next subdivision adaptively based on the
distribution of probability within the current subdivision. Adding more
mesh points will improve accuracy at the expense of efficiency. Mesh points
need not be uniformly spaced. It makes sense to cluster them in regions
of high probability and rapid fluctuations of f(t, x). Given the smoothness
expected of f(t, x), rapid fluctuations are unlikely.

Many of the probabilities pij→i+1,k are negligible. We can accelerate the
algorithm by computing pij→i+1,k and cij→i+1,k only for [ai+1,k, ai+1,k+1]
close to [aij , ai,j+1]. Because the conditional increment Xti+1 −Xti

is nor-
mally distributed, it is very unlikely to extend beyond a few standard de-
viations σij given Xti

is in [aij , ai,j+1]. Thus, the most sensible strategy is
to visit each interval [aij , ai,j+1] in turn and propagate probability only to
those intervals [ai+1,k, ai+1,k+1] that lie a few standard deviations to the
left or right of [aij , ai,j+1].

13.7 Application to the Wright-Fisher Process

We now apply the numerical method just described to the Wright-Fisher
process. Our application confronts the general issue of how to deal with a
diffusion approximation when it breaks down. In the case of the Wright-
Fisher Markov chain, the diffusion approximation degrades for very low
allele frequencies. Because of the interest in gene extinction, this is re-
grettable. However, in the regime of low allele frequencies, we can always
fall back on the Wright-Fisher Markov chain. As population size grows,
the Markov chain updates become more computationally demanding. The
most pressing concern thus becomes how to merge the Markov chain and
diffusion approaches seamlessly into a single algorithm for following the
evolution of an allele. Here we present one possible algorithm and apply it
to understanding disease-gene dynamics in a population isolate.

The algorithm outlined in the previous section has the virtue of being
posed in terms of distribution functions rather than density functions. For
low allele frequencies, discreteness is inevitable, and density functions are
unrealistic. In adapting the algorithm to the regime of low allele frequencies,
it is useful to let

aij =
j − 1

2

2Ni

for 0 ≤ j ≤ q and some positive integer q. The remaining aij are distributed
over the interval [aiq, 1] less uniformly. This tactic separates the possibility
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of exactly j alleles at time ti, 0 ≤ j ≤ q, from other possibilities. For
0 ≤ j ≤ q, binomial sampling dictates that

pij→i+1,k =
∑

l

(
2Ni+1

l

)

pl(1 − p)2Ni+1−l

cij→i+1,k =
1

pij→i+1,k

∑

l

(
2Ni+1

l

)
l

2Ni+1
pl(1 − p)2Ni+1−l

where p = m(i, x) is the gamete pool probability at frequency x = j/(2Ni)
and the sums occur over all l such that l/(2Ni+1) ∈ [ai+1,k, ai+1,k+1). When
0 ≤ k ≤ q, it is sensible to set cij→i+1,k = k/(2Ni+1). For j > q, we revert
to the updates based on the normal approximation.
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FIGURE 13.1. Density of the Frequency of a Recessive Gene

To illustrate this strategy for a recessive disease, we turn to Finland, a rel-
atively isolated population of northern Europe. We assume that the Finnish
population has grown exponentially from 1000 founders to 5,000,000 con-
temporary people over a span of 80 generations. Our hypothetical recessive
disease has mutation rate η = 10−6, fitness f = 0.5, and a high initial
gene frequency of X0 = 0.015. The slow deterministic decay to the equi-
librium gene frequency of

√
η/(1 − f) = 0.0014 extends well beyond the

present. Figure 13.1 plots the density of the frequency of the recessive gene
from generation 7 to generation 80. The figure omits the first seven gen-
erations because the densities in that time range are too concentrated for
the remaining densities to scale well. The left ridge of the gene density sur-
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face represents a moderate probability mass collecting in the narrow region
where the gene is either extinct or in danger of going extinct.
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FIGURE 13.2. Extinction Probability of a Recessive Gene

As a technical aside, it is interesting to compare two versions of the algo-
rithm. Version one carries forward probabilities but not centers of proba-
bilities. Version two carries both forward. Version one is about twice as fast
as version two, given the same mesh points at each generation. In Figure
13.1, version two relies on 175 intervals in the continuous region. With 2000
intervals in the continuous region, version one takes 25 times more com-
puting cpu time and still fails to achieve the same accuracy at generation
80 as version two. Needless to say, version one is not recommended.

Gene extinction is naturally of great interest. Figure 13.2 depicts the
probability that the recessive gene is entirely absent from the population.
This focuses our attention squarely on the discrete domain where we would
expect the diffusion approximation to deteriorate. The solid curve of the
graph shows the outcome of computing directly with the exact Wright-
Fisher chain. At about generation 60, the matrix times vector multiplica-
tions implicit in the Markov chain updates start to slow the computations
drastically. In this example, it took 14 minutes of computing time on a
desktop PC to reach 80 generations. The hybrid algorithm with q = 40
intervals covering the discrete region and 500 intervals covering the con-
tinuous region takes only 11 seconds to reach generation 80. The resulting
dashed curve is quite close to the solid curve in Figure 13.2, and setting
q = 50 makes it practically identical.
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13.8 Problems

1. Prove that the matrix R defined by equation (13.1) is invertible.
(Hints: Apply Proposition 7.6.1 and the Sherman-Morrison formula

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

for the inverse of a rank-one perturbation of an invertible matrix.)

2. Show that the entries of the block Gauss-Seidel update (13.3) are
nonnegative.

3. Suppose you are given a transition probability matrix P and desire
the n-step transition probability matrix Pn for a large value of n.
Devise a method of computing Pn based on the binary expansion of
n that requires far fewer than n − 1 matrix multiplications. Do not
assume that P is diagonalizable.

4. Assume X and Y are independent random variables whose ranges are
the nonnegative integers. Specify a finite Fourier transform method
for computing the discrete density of the differenceX−Y . Implement
the method in computer code and apply it to Poisson deviates with
means λ and μ. For several choices of λ and μ, check that your code
yields nonnegative probabilities that sum to 1 and the correct mean
and variance.

5. Explicitly calculate the finite Fourier transforms of the four sequences
cj = 1, cj = 1{0}, cj = (−1)j, and cj = 1{0,1,...,n/2−1} defined on
{0, 1, . . . , n− 1}. For the last two sequences assume that n is even.

6. Show that the sequence cj = j on {0, 1, . . . , n− 1} has finite Fourier
transform

ĉk =

{
n−1

2 k = 0

− 1
2 + i

2 cot kπ
n k �= 0.

7. For 0 ≤ r < n/2, define the rectangular and triangular smoothing
sequences

cj =
1

2r + 1
1{−r≤j≤r}

dj =
1

r
1{−r≤j≤r}

(
1 − |j|

r

)

and extend them to have period n. Show that

ĉk =
1

n(2r + 1)

sin (2r+1)kπ
n

sin kπ
n
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d̂k =
1

nr2

(sin rkπ
n

sin kπ
n

)2

.

8. Prove parts (a) through (c) of Proposition A.3.1.

9. Consider a power series f(x) =
∑∞

m=0 cmx
m with radius of conver-

gence r > 0. Prove that

∞∑

m=k mod n

cmx
m =

1

n

n−1∑

j=0

u−jk
n f(uj

nx)

for un = e2πi/n and any x with |x| < r. As a special case, verify the
identity

∞∑

m=k mod n

(
p

m

)

=
2p

n

n−1∑

j=0

cos
[ (p− 2k)jπ

n

]
cosp

[jπ

n

]

for any positive integer p.

10. From a periodic sequence ck with period n, form the circulant matrix

C =

⎛

⎜
⎜
⎝

c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
...

...
...

...
cn−1 cn−2 cn−3 · · · c0

⎞

⎟
⎟
⎠ .

For un = e2πi/n and m satisfying 0 ≤ m ≤ n − 1, show that the

vector (u0m
n , u1m

n , . . . , u
(n−1)m
n )t is an eigenvector of C with eigen-

value nĉm. From this fact deduce that the circulant matrix C can be
written in the diagonal form C = UDU∗, where D is the diagonal
matrix with kth diagonal entry nĉk−1, U is the unitary matrix with

entry u
(j−1)(k−1)
n /

√
n in row j and column k, and U∗ is the conjugate

transpose of U .

11. For 0 ≤ m ≤ n − 1 and a periodic function f(x) on [0,1], define the

sequence bm = f(m/n). If b̂k is the finite Fourier transform of the

sequence bm, then we can approximate f(x) by
∑�n/2�

k=−�n/2� b̂ke
2πikx.

Show that this approximation is exact when f(x) is equal to e2πijx,
cos(2πjx), or sin(2πjx) for j satisfying 0 ≤ |j| < �n/2�.

12. Continuing Problem 11, let ck be the kth Fourier series coefficient of
a general periodic function f(x). If |ck| ≤ ar|k| for constants a ≥ 0
and 0 ≤ r < 1, then verify using equation (13.5) that

|b̂k − ck| ≤ arn r
k + r−k

1 − rn
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for |k| < n. Functions analytic around 0 automatically possess Fourier
coefficients satisfying the bound |ck| ≤ ar|k|.

13. Continuing Problems 11 and 12, suppose a constant a ≥ 0 and posi-
tive integer p exist such that

|ck| ≤ a

|k|p+1

for all k �= 0. Integration by parts shows that this criterion holds if
f (p+1)(x) is piecewise continuous. Verify the inequality

|b̂k − ck| ≤ a

np+1

∞∑

j=1

[
1

(
j + k

n

)p+1 +
1

(
j − k

n

)p+1

]

when |k| < n/2. To simplify this inequality, demonstrate that

∞∑

j=1

1

(j + α)p+1
<

∫ ∞

1
2

(x+ α)−p−1dx

=
1

p
(

1
2 + α

)p

for α > −1/2. Finally, conclude that

|b̂k − ck| <
a

pnp+1

[
1

(
1
2 + k

n

)p +
1

(
1
2 − k

n

)p

]

.

14. For a complex number c with |c| > 1, show that the periodic func-
tion f(x) = (c − e2πix)−1 has the simple Fourier series coefficients
ck = c−k−11{k≥0}. Argue from equation (13.5) that the finite Fourier

transform approximation b̂k to ck is

b̂k =

{
c−k−1 1

1−c−n 0 ≤ k ≤ n
2 − 1

c−n−k−1 1
1−c−n −n

2 ≤ k ≤ 0.

15. Let F (s) =
∑∞

n=1 fns
n be a probability generating function. Show

that the equation F (s) = 1 has only the solution s = 1 on |s| = 1 if
and only if the set {n: fn > 0} has greatest common divisor 1.

16. In the coin tossing example, prove that the probabilities un satisfy

un =
qpr

1 − pr
+O(r−n)

for any r < p−1. (Hint: Identify the singularity of U(s) − c/(1 − s)
closest to the origin.)
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17. Consider n equally spaced points on the boundary of a circle. Tur-
ing suggested a simple model for the diffusion of a morphogen, a
chemical important in development, that involves the migration of
the morphogen from point to point. In the stochastic version of his
model, we follow a single morphogen particle. At any time the par-
ticle has the same intensity λ of jumping to the neighboring points
on its right and left. Let pj(t) be the probability that the morphogen
occupies point j at time t, where j = 0, . . . , n− 1. One can solve for
these n probabilities using the finite Fourier transform on periodic
sequences cj of period n.

(a) Show that p′j(t) = λ[pj−1(t) − 2pj(t) + pj+1(t)].

(b) If a ∗ bk =
∑n−1

j=0 ak−jbj denotes the convolution of two periodic
sequences of period n, then express the differential equation in
part (a) as p′j(t) = p(t) ∗ dj for p(t) = [pj(t)] and an appropriate
sequence d = (dj) of period n.

(c) Prove that the finite Fourier transform maps the convolution

a ∗ bj into the pointwise product nâkb̂k.

(d) Solve the transformed equations p̂′k(t) = np̂k(t)d̂k.

(e) Inverse transform to find the solutions pj(t).

(f) Compute d̂k, and show that d̂0 = 0 and all other d̂k are negative.

(g) Deduce that limt→∞ pj(t) = p̂0(0) = 1/n for all j.

18. A square matrix M = (mij) is said to be diagonally dominant if it
satisfies |mii| >

∑
j �=i |mij | for all i. Demonstrate that a diagonally

dominant matrix is invertible. (Hint: Suppose Mx = 0. Consider the
largest entry of x in magnitude.)

19. In counting jumps in a Markov chain, it is possible to explicitly calcu-
late the matrix exponential (13.12) for a two-state chain. Show that
the eigenvalues of the matrix diag(Λ) +C(u) are

ω± =
−(λ12 + λ21) ±

√
(λ12 − λ21)2 + 4u2λ12λ21

2

when the donor and recipient subsets A and B equal {1, 2}. Argue
that both eigenvalues are real and negative when u ∈ [0, 1). One
is 0 and the other is negative when u = 1. Find the corresponding
eigenvectors of the matrix diag(Λ) + C(u) for all u ∈ [0, 1]. What
happens if A = {1} and B = {2} or vice versa?

20. In Moran’s population genetics model, n genes evolve by substitution
and mutation. Suppose each gene can be classified as one of d alleles,
and let Xti denote the number of alleles of type i at time t. The
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count process Xt moves from state to state by randomly selecting
two genes, which may coincide. The first gene dies, and the second
gene reproduces a replacement. If the second gene is of type i, then
its daughter gene is of type j with probability pij . The replacement
times are independent and exponentially distributed with intensity λ.
Reformulate Moran’s model to proceed by reaction channels. What
are the intensity and the increment of each channel?

21. Consider a continuous-time branching process in which the possible
number of daughter particles is bounded above a common integer b
for all particle types. Show how the process can be identified with a
continuous-time Markov chain with a finite number of reaction chan-
nels. No approximation is necessary.

22. Prove that the linear density fij0 + fij1x is nonnegative throughout
the interval (aij , ai,j+1) if and only if its center of mass cij lies in the
middle third of the interval. (Hint: Without loss of generality, take
aij = 0.)



14
Poisson Approximation

14.1 Introduction

In the past few years, mathematicians have developed a powerful tech-
nique known as the Chen-Stein method for approximating the distribution
of a sum of weakly dependent Bernoulli random variables [11, 18, 187]. In
contrast to many asymptotic methods, this approximation carries with it
explicit error bounds. Let Xα be a Bernoulli random variable with success
probability pα, where α ranges over some finite index set I. As a general-
ization of the law of rare events discussed in Example 14.3.1, it is natural
to speculate that the sum S =

∑
α∈I Xα is approximately Poisson with

mean λ =
∑

α∈I pα. The Chen-Stein method estimates the error in this ap-
proximation using the total variation distance introduced in equation (7.6)
of Chapter 7.

The coupling method is one technique for explicitly bounding the total
variation distance between S =

∑
α∈I Xα and a Poisson random variable Z

with the same mean λ [18, 136]. In many concrete examples, it is possible
to construct for each α a random variable Vα on a common probability
space with S such that Vα is distributed as S − 1 conditional on the event
Xα = 1. The bound

‖πS − πZ‖TV ≤ 1 − e−λ

λ

∑

α∈I

pα E(|S − Vα|) (14.1)

then applies, where πS and πZ denote the distributions of S and Z. The
size of this bound depends on how tightly S and each Vα are coupled. If

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_14, © Springer Science+Business Media, LLC 2010
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S ≥ Vα for all α, then the simplified bound

‖πS − πZ‖TV ≤ 1 − e−λ

λ
[λ− Var(S)] (14.2)

holds. Not only is the upper bound (14.2) easier to evaluate than the upper
bound (14.1), but it also makes it clear that the approximate equality
Var(S) ≈ E(S) is nearly a sufficient as well as a necessary condition for S
to be approximately Poisson.

The neighborhood method of bounding the total variation distance ex-
ploits certain neighborhoods of dependency Nα associated with each α ∈ I
[10]. Here Nα is a subset of I containing α such that Xα is independent
of those Xβ with β �∈ Nα. In this situation of short-range dependency, the
total variation distance between S and its Poisson approximate Z satisfies

‖πS − πZ‖TV ≤ 1 − e−λ

λ

(∑

α∈I

∑

β∈Nα

pαpβ +
∑

α∈I

∑

β∈Nα\{α}
pαβ

)

, (14.3)

where again λ = E(S) = E(Z) and

pαβ = E(XαXβ) = Pr(Xα = 1, Xβ = 1).

The neighborhood method works best when each Nα is taken as small as
possible.

Both Chen-Stein methods are well adapted to solving a myriad of prac-
tical problems. The next few sections present a few typical examples. The
chapter ends with a mathematical proof of the Chen-Stein bounds. Read-
ers primarily interested in applications can skip this theoretical section. A
more comprehensive development of theory and further examples can be
found in the references [11, 18, 136].

14.2 Applications of the Coupling Method

Example 14.2.1 Ménage Problem

In the classical ménage problem of combinatorics, n married couples are
seated around a circular table [22]. If men and women alternate, but hus-
bands and wives are randomly scrambled, then the number of married
couples S seated next to each other is approximately Poisson distributed.
Given that Xα is the indicator of the event that seats α and α+ 1 contain
a married couple, we can write

S =

2n∑

α=1

Xα,
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where X2n+1 = X1. Symmetry dictates that pα = 1
n and λ = E(S) = 2.

The total variation distances between S and a Poisson random variable Z
with mean λ can be estimated by the coupling method.

To construct the coupled random variable Vα, we exchange the person
in seat α + 1 with the spouse of the person in seat α and then count the
number of adjacent spouse pairs, excluding the pair now occupying seats
α and α + 1. It is clear that Vα so constructed is distributed as S − 1
conditional on Xα = 1. One can also show that this construction entails
|S − Vα| ≤ 1. Indeed, suppose the spouse of the person in seat α occupies
seat β. If β = α+ 1, then Xα = 1 and Vα = S − 1. If β �= α + 1, then the
gain of a matched couple in the pair {α, α+ 1} does not contribute to Vα.
The other possible gains and losses of matched couples occur in the three
pairs {α + 1, α + 2}, {β − 1, β}, and {β, β + 1}. Although some of these
pairs may coincide, it is not hard to see that at most one of the three pairs
can suffer a loss and at most one of the three pairs can reap a gain.

We now appeal to the Chen-Stein bound (14.1). To avoid a messy con-
sideration of special cases in calculating E(|S − Vα|), we will bound the
probability Pr(Vα = S). The dominant contribution to the event {Vα = S}
arises when β �∈ {α − 1, α + 1, α + 3} and the person in seat α + 1 is not
the spouse of any of the people in seats α + 2, β − 1, and β + 1. Careful
consideration of this special case leads to the inequality

Pr(Vα = S) ≥ n− 3

n

(
1 − 3

n− 1

)

and therefore to the further inequality

E(|S − Vα|) = Pr(S �= Vα)

≤ 1 − n− 3

n

(
1 − 3

n− 1

)

=
6n− 12

n(n− 1)
.

The Chen-Stein bound (14.1) now reduces to

‖πS − πZ‖TV ≤ 2(1 − e−λ)(6n− 12)

λn(n− 1)
,

which decreases in n for n ≥ 3.

Example 14.2.2 Birthday Problem

Consider a multinomial experiment with m categories. The statistic Wd

denotes the number of categories with d or more successes after n trials.
For example, each category might be a day of the year, and each trial might
record the birthday of another random person. If we let qα be the success
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rate per trial for category α, then this category accumulates d or more
successes with probability

pα =

n∑

k=d

(
n

k

)

qk
α(1 − qα)n−k.

The coupling method provides a bound on the total variation distance
between Wd and a Poisson random variable with mean λ =

∑m
α=1 pα.

To validate the coupling bound (14.2) with S = Wd, we must construct
the coupled random variable Vα. If the number of outcomes Yα falling in
category α satisfies Yα ≥ d, then Xα = 1, and we set Vα =

∑
β �=αXβ . If

Yα < d, then we resample from the conditional distribution of Yα given the
event Yα ≥ d. This produces a random variable Y ∗

α > Yα, and we redefine
the outcomes of the first Y ∗

α − Yα trials falling outside category α so that
they now fall in category α. If we let Vα be the number of categories other
than α that now exceed their quota d, it is obvious that Vα is distributed
as S − 1 conditional on the event Xα = 1. Because of the redirection
of outcomes, it is also clear that S ≥ Vα. Thus, the conditions for the
Chen-Stein bound (14.2) apply. Unfortunately, the variance Var(Wd) is
not entirely trivial to calculate. In the special case d = 1, we have

E(W1) =

m∑

α=1

[1 − (1 − qα)n]

Var(W1) =

m∑

α=1

Var(1{Yα≥1}) +

m∑

α=1

∑

β �=α

Cov(1{Yα≥1}, 1{Yβ≥1})

=
m∑

α=1

Var(1{Yα=0}) +
m∑

α=1

∑

β �=α

Cov(1{Yα=0}, 1{Yβ=0})

=

m∑

α=1

(1 − qα)n[1 − (1 − qα)n]

+

m∑

α=1

∑

β �=α

[(1 − qα − qβ)n − (1 − qα)n(1 − qβ)n],

which are certainly easy to evaluate numerically. Readers can consult ref-
erence [18] for various approximations to E(Wd) and Var(Wd).

Example 14.2.3 Biggest Random Gap

Questions about the spacings of uniformly distributed points crop up in
many application areas [124, 184]. If we scatter n points randomly on the
unit interval [0,1], then it is natural to ask for the distribution of the largest
gap between two adjacent points or between either endpoint and its nearest
adjacent point. We can attack this problem by the coupling method of
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Chen-Stein approximation. Corresponding to the order statistics Y1, . . . , Yn

of the n points, define indicator random variables X1, . . . , Xn+1 such that
Xα = 1 when Yα − Yα−1 ≥ d. At the ends we take Y0 = 0 and Yn+1 = 1.
The sum S =

∑n+1
α=1Xα gives the number of gaps of length d or greater.

Because we can circularize the interval, all gaps, including the first and
the last, behave symmetrically. Just think of scattering n + 1 points on
the unit circle and then breaking the circle into an interval at the first
random point. It therefore suffices in the coupling method to consider the
first Bernoulli variable X1 = 1{Y1≥d}. If Y1 ≥ d, then define V1 to be the
number of gaps other than Y1 that exceed d. If, on the other hand, Y1 < d,
then resample Y1 conditional on the event Y1 ≥ d to get Y ∗

1 . For α > 1,
replace the gap Yα − Yα−1 by the gap (Yα − Yα−1)(1 − Y ∗

1 )/(1 − Y1) so
that the points to the right of Y1 are uniformly chosen from the interval
[Y ∗

1 , 1] rather than from [Y1, 1]. This procedure narrows all remaining gaps
but leaves them in the same proportion. If we now define V1 as the number
of remaining gaps that exceed d in length, it is clear that V1 has the same
distribution as S−1 conditional onX1 = 1. Because S ≥ V1, the Chen-Stein
inequality (14.2) applies.

To calculate the mean λ = E(S), we again focus on the first interval.
Clearly, Pr(X1 = 1) = Pr(Y1 ≥ d) = (1 − d)n implies that

λ = (n+ 1)(1 − d)n.

In similar fashion, we calculate

Var(S) = (n+ 1)Var(X1) + (n+ 1)nCov(X1, Xn+1)

= (n+ 1)(1 − d)n − (n+ 1)(1 − d)2n

+ (n+ 1)nE(X1Xn+1) − (n+ 1)n(1 − d)2n.

To calculate E(X1Xn+1) = Pr(X1 = 1, Xn+1 = 1) when 2d < 1, we
simply observe that X1 = Xn+1 = 1 if and only if all n random points are
confined to the interval [d, 1 − d]. It follows that E(X1Xn+1) = (1 − 2d)n

and therefore that

Var(S) = (n+ 1)(1 − d)n − (n+ 1)(1 − d)2n

+ (n+ 1)n(1 − 2d)n − (n+ 1)n(1 − d)2n.

If d is small and n is large, then one can demonstrate that Var(S) ≈ E(S),
and the Poisson approximation is good [18].

It is of some interest to estimate the average number of points required
to reduce the largest gap below d. From the Poisson approximation, the
median n should satisfy e−(n+1)(1−d)n ≈ 1

2 . This approximate equality can
be rewritten as

n ≈ − ln(n+ 1) + ln ln 2

ln(1 − d)
(14.4)
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and used iteratively to approximate the median. If one chooses evenly
spaced points, it takes only 1

d random points to saturate the interval [0, 1].
For the crude guess n = 1

d , substitution in (14.4) leads to the improved
approximation

n ≈
− ln( 1

d + 1) + ln ln 2

ln(1 − d)

≈ 1

d
ln

1

d
.

In fact, a detailed analysis shows that the average required number of
points is asymptotically similar to 1

d ln 1
d for d small [64, 184]. The factor

ln 1
d summarizes the penalty exacted for selecting random points rather

than evenly spaced points.

14.3 Applications of the Neighborhood Method

Example 14.3.1 The Law of Rare Events

Suppose that X1, . . . , Xn are independent Bernoulli random variables with
success probabilities p1, . . . , pn. If the pα are small and λ =

∑n
α=1 pα is

moderate in size, then the law of rare events declares that the random sum
S =

∑n
α=1Xα is approximately Poisson distributed. The neighborhood

method provides an easy verification of this result. If we let Nα be the
singleton set {α} and Z be a Poisson random variable with mean λ, then
inequality (14.3) reduces to

‖πS − πZ‖TV ≤ 1 − e−λ

λ

n∑

α=1

p2
α

because the sum
∑

β∈Nα\{α} pαβ is empty.

Example 14.3.2 Construction of Somatic Cell Hybrid Panels

Prior to the sequencing of the human genome, somatic cell hybrids were
routinely used to assign particular human genes to particular human chro-
mosomes [48, 202]. In brief outline, somatic cell hybrids are constructed
by fusing normal human cells with permanently transformed rodent cells.
The resulting hybrid cells retain all of the rodent chromosomes while los-
ing random subsets of the human chromosomes. A few generations after
cell fusion, clones of cells can be identified with stable subsets of the hu-
man chromosomes. All chromosomes, human and rodent, normally remain
functional. With a broad enough collection of different hybrid clones, it is
possible to establish a correspondence between the presence or absence of
a given human gene and the presence or absence of each of the 24 distinct
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0 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 1 1
1 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1
0 1 1 1 1 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1
1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1 0 1
0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 0 1 1 0
0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 0 1

FIGURE 14.1. A Somatic Cell Hybrid Panel

human chromosomes in each clone. From this pattern one can assign the
gene to a particular chromosome.

For this program of gene assignment to be successful, certain critical as-
sumptions must be satisfied. First, the human gene should be present on a
single human chromosome or on a single pair of homologous human chro-
mosomes. Second, the human gene should be detectable when present in a
clone and should be distinguishable from any rodent analog of the human
gene in the clone. Genes are usually detected by electrophoresis of their
protein products or by annealing an appropriate DNA probe directly to
part of the gene. Third, each of the 24 distinct human chromosomes should
be either absent from a clone or cytologically or biochemically detectable
in the clone. Chromosomes can be differentiated cytologically by size, by
the position of their centromeres, and by their distinctive banding patterns
under appropriate stains. It is also possible to distinguish chromosomes by
in situ hybridization of large, fluorescent DNA probes or by isozyme assays
that detect unique proteins produced by genes on the chromosomes.

In this application of the Chen-Stein method, we consider the informa-
tion content of a panel of somatic cell hybrids [77]. Let n denote the number
of hybrid clones in a panel. Since the Y chromosome bears few genes of in-
terest, hybrids are usually created from human female cells. This gives a
total of 23 different chromosome types—22 autosomes and the X chromo-
some. Figure 14.1 depicts a hybrid panel with n = 9 clones. Each row of
this panel corresponds to a particular clone. Each of the 23 columns cor-
responds to a particular chromosome. A 1 in row i and column j of the
panel indicates the presence of chromosome j in clone i. A 0 indicates the
absence of a chromosome in a clone. An additional test column of 0’s and
1’s is constructed when each clone is assayed for the presence of a given
human gene. Barring assay errors or failure of one of the critical assump-
tions, the test column will uniquely match one of the columns of the panel.
In this case the gene is assigned to the corresponding chromosome.

If two columns of a panel are identical, then gene assignment becomes
ambiguous for any gene residing on one of the two corresponding chromo-
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somes. Fortunately, the columns of the panel in Figure 14.1 are unique.
This panel has the unusual property that every pair of columns differs in
at least three entries. This level of redundancy is useful. If a single assay
error is made in creating a test column for a human gene, then the gene can
still be successfully assigned to a particular human chromosome because it
will differ from one column of the panel in one entry and from all other
columns of the panel in at least two entries. This consideration suggests
that built-in redundancy of a panel is desirable. In practice, the chromo-
some constitution of a clone cannot be predicted in advance, and the level
of redundancy is random. Minimum Hamming distance is a natural mea-
sure of the redundancy of a panel. The Hamming distance ρ(cs, ct) between
two columns cs and ct is just the number of entries in which they differ.
The minimum Hamming distance of a panel is defined as min{s,t} ρ(cs, ct),
where {s, t} ranges over all pairs of columns from the panel.

When somatic cell hybrid panels are randomly created, it is reasonable to
make three assumptions. First, each human chromosome is lost or retained
independently during the formation of a stable clone. Second, there is a
common retention probability p applying to all chromosome pairs. This
means that at least one member of each pair of homologous chromosomes
is retained with probability p. Rushton [175] estimates a range of p from .07
to .75. The value p = 1

2 simplifies our theory considerably. Third, different
clones behave independently in their retention patterns.

Now denote column s of a random panel of n clones by Cn
s . For any two

distinct columns Cn
s and Cn

t , define Xn
{s,t} to be the indicator of the event

ρ(Cn
s , C

n
t ) < d, where d is some fixed Hamming distance. The random

variable Y n
d =

∑
{s,t}X

n
{s,t} is 0 precisely when the minimum Hamming

distance equals or exceeds d. There are
(
23
2

)
pairs α = {s, t} in the index

set I, and each of the associated Xn
α has the same mean

pα =

d−1∑

i=0

(
n

i

)

qi(1 − q)n−i,

where q = 2p(1 − p) is the probability that Cn
s and Cn

t differ in any entry.
This gives the mean of Y n

d as λ =
(
23
2

)
pα.

The Chen-Stein heuristic suggests estimating Pr(Y n
d > 0) by the Poisson

tail probability 1− e−λ. The error bound (14.3) on this approximation can
be computed by defining the neighborhoods Nα = {β : |β| = 2, β∩α �= ∅},
where vertical bars enclosing a set indicate the number of elements in the
set. It is clear that Xn

α is independent of those Xn
β with β outside Nα.

Straightforward counting arguments give

∑

α∈I

∑

β∈Nα

pαpβ =

(
23

2

)

|Nα|p2
α
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TABLE 14.1. Chen-Stein Estimate of Pr(Y n

d > 0)

d n Estimate Lower Bound Upper Bound

1 10 0.2189 0.1999 0.2379
1 15 0.0077 0.0077 0.0077
1 20 0.0002 0.0002 0.0002
1 25 0.0000 0.0000 0.0000
2 10 0.9340 0.0410 1.0000
2 15 0.1162 0.1112 0.1213
2 20 0.0051 0.0050 0.0051
2 25 0.0002 0.0002 0.0002
3 10 1.0000 0.0410 1.0000
3 15 0.6071 0.4076 0.8066
3 20 0.0496 0.0487 0.0505
3 25 0.0025 0.0025 0.0025

and

|Nα| =

(
23

2

)

−
(

21

2

)

= 43.

Since the joint probability pαβ does not depend on the particular column
pair β ∈ Nα\{α} chosen, we also deduce that

∑

α∈I

∑

β∈Nα\{α}
pαβ =

(
23

2

)

(|Nα| − 1)pαβ.

Fortunately, pαβ = p2
α when p = 1/2. Indeed, upon conditioning on the

value of the common column shared by α and β, it is obvious in this
special case that the events Xn

α = 1 and Xn
β = 1 are independent and

occur with constant probability pα. The case p �= 1/2 is more subtle, and
we defer the details of computing pαβ to Problem 10. Table 14.1 provides
some representative estimates of the probabilities Pr(Y n

d > 0) for p = 1/2.
Because the Chen-Stein method also provides upper and lower bounds on
the estimates, we can be confident that the estimates are accurate for large
n. In two cases in Table 14.1, the Chen-Stein upper bound is truncated to
the more realistic value 1.

14.4 Proof of the Chen-Stein Estimates

Verification of the Chen-Stein estimates depends on forging a subtle con-
nection between Chen’s lemma in Example 2.7.3 and the definition of the
total variation norm in equation (7.6). If the sum S =

∑
αXα were actually
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Poisson, then Chen’s lemma of Example 2.7.3 would entail the identity

λE[g(S + 1)] − E[Sg(S)] = 0

for every bounded function g(s). To the extent that S is approximately
Poisson, the left-hand side of this equality should be approximately 0. The
total variation distance between S and a Poisson random variable Z with
the same mean λ is given by

‖πS − πZ‖TV = sup
A⊂Z

∣
∣
∣
∣Pr(S ∈ A) −

∑

j∈A

e−λλ
j

j!

∣
∣
∣
∣.

The key to proving the Chen-Stein estimates is to concoct a particular
bounded function g(s) satisfying

λE[g(S + 1)] − E[Sg(S)] = Pr(S ∈ A) −
∑

j∈A

e−λλ
j

j!
(14.5)

and then to bound the difference in expectations on the left-hand side of
this equality.

The easiest way of securing equality (14.5) is to force g(s) to satisfy the
identity

λg(s+ 1) − sg(s) = 1A(s) −
∑

j∈A

e−λλ
j

j!
(14.6)

for all nonnegative integers s. Indeed, if equation (14.6) holds, then we
simply substitute the random variable S for the integer s and take expec-
tations. Fortunately, equation (14.6) can be viewed as a recurrence relation
for calculating g(s+ 1) from g(s). The value g(0) is irrelevant in determin-
ing g(1), so we adopt the usual convention g(0) = 0. One can explicitly
solve the difference equation (14.6) by multiplying it by e−λλs−1/s! and
defining the new function f(s) = e−λλsg(s+ 1)/s!. These maneuvers yield
the difference equation

f(s) − f(s− 1) = e−λλ
s−1

s!
1A(s) − e−λλ

s−1

s!

∑

j∈A

e−λλ
j

j!

with the initial condition f(−1) = 0. One can now find f(s) via the tele-
scoping sum

f(s) =

s∑

k=0

[f(k) − f(k − 1)]

= λ−1

⎡

⎣
s∑

k=0

e−λ λ
k

k!
1A(k) −

s∑

k=0

e−λλ
k

k!

∑

j∈A

e−λλ
j

j!

⎤

⎦ .
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This translates into the solution

g(s+ 1) =
eλs!

λs+1

⎡

⎣
s∑

k=0

e−λλ
k

k!
1A(k) −

s∑

k=0

e−λλ
k

k!

∑

j∈A

e−λλ
j

j!

⎤

⎦ (14.7)

for g(s+1). Although it is not immediately evident from formula (14.7), we
will demonstrate that g(s) is bounded and satisfies the Lipschitz inequality
|g(s+ 1) − g(s)| ≤ (1 − e−λ)/λ for all s.

Before attending to these important details, let us return to the main
line of argument. We first note that for any random variable T

E(ST ) =
∑

α

E(XαT )

=
∑

α

pα E(XαT | Xα = 1) (14.8)

=
∑

α

pα E(T | Xα = 1).

We now apply this identity to T = g(S) and invoke the coupling-method
premise that Vα +1 has the same distribution as S conditional on the event
Xα = 1. These considerations imply that

E[Sg(S)] =
∑

α

pα E[g(S) | Xα = 1]

=
∑

α

pα E[g(Vα + 1)]. (14.9)

We also observe that the Lipschitz condition on g(s) can be extended to

|g(t) − g(s)| ≤
t−1∑

j=s

|g(j + 1) − g(j)|

≤ 1 − e−λ

λ
|t− s|

for any t > s. Mindful of these facts, we infer from equality (14.5) that
∣
∣
∣
∣Pr(S ∈ A) −

∑

j∈A

e−λλ
j

j!

∣
∣
∣
∣ = |λE[g(S + 1)] − E[Sg(S)]|

=

∣
∣
∣
∣

∑

α

pα{E[g(S + 1)] − E[g(Vα + 1)]}
∣
∣
∣
∣

≤
∑

α

pα E[|g(S + 1) − g(Vα + 1)|]

≤ 1 − e−λ

λ

∑

α

pα E(|S − Vα|).
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Taking the supremum over A now yields the Chen-Stein bound (14.1).
If S ≥ Vα for all α, then equation (14.8) with T = S implies

∑

α

pα E(|S − Vα|) =
∑

α

pα E(S) + λ−
∑

α

pα E(Vα + 1)

= λ2 + λ−
∑

α

pα E(S | Xα = 1)

= λ2 + λ− E(S2)

= λ− Var(S).

This establishes the Chen-Stein bound (14.2).
In the neighborhood method, it is convenient to define the random vari-

able Uα =
∑

β /∈Nα
Xβ , which is independent of Xα. Because

g(S −Xα + 1) =

{
g(S + 1), Xα = 0
g(S), Xα = 1,

we have

λE[g(S + 1)] − E[Sg(S)]

=
∑

α

E[pαg(S + 1) −Xαg(S)]

=
∑

α

E[pαg(S + 1) − pαg(S −Xα + 1)]

+
∑

α

E[pαg(S −Xα + 1) −Xαg(S)] (14.10)

=
∑

α

E{pαXα[g(S + 1) − g(S)]}

+
∑

α

E{(pα −Xα)[g(S −Xα + 1) − g(Uα + 1)]}

+
∑

α

E[(pα −Xα)g(Uα + 1)].

We will bound each of the sums defining the final quantity in the string of
equalities (14.10). The third sum equals 0 since E[(pα −Xα)g(Uα +1)] = 0
by independence. The first sum is bounded in absolute value by

∑

α

E[pαXα|g(S + 1) − g(S)|] ≤ 1 − e−λ

λ

∑

α

pα E(Xα)

=
1 − e−λ

λ

∑

α

p2
α (14.11)

owing to the Lipschitz property of g(s). The middle sum is bounded in
absolute value by

∑

α

E[(pα +Xα)|g(S −Xα + 1) − g(Uα + 1)|]
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≤ 1 − e−λ

λ

∑

α

∑

β∈Nα\{α}
E[(pα +Xα)Xβ ] (14.12)

=
1 − e−λ

λ

∑

α

∑

β∈Nα\{α}
(pαpβ + pαβ)

based on the extended Lipschitz property. Combining inequalities (14.11)
and (14.12) with equalities (14.5) and (14.10) now produces the Chen-Stein
bound (14.3).

Returning now to the question of whether g(s) is a bounded function,
we rearrange equation (14.7) by subtracting and adding the same quantity

eλs!λ−s−1
∑s

k=0 e
−λ λk

k! 1A(k)
∑s

j=0 e
−λ λj

j! . This tactic gives

g(s+ 1) = eλs!λ−s−1
s∑

k=0

e−λλ
k

k!
1A(k)

∞∑

j=s+1

e−λλ
j

j!

− eλs!λ−s−1
∞∑

k=s+1

e−λλ
k

k!
1A(k)

s∑

j=0

e−λλ
j

j!
.

From this representation and Proposition 4.3, we deduce the integral bound

|g(s+ 1)| ≤ eλs!λ−s−1
∞∑

k=s+1

e−λλ
k

k!

= eλs!λ−s−1

∫ λ

0

e−r r
s

s!
dr

= λ−1

∫ λ

0

eλ−r
( r

λ

)s

dr

≤ λ−1

∫ λ

0

eλ−rdr.

Finally, let us tackle the delicate issue of proving that g(s) is Lipschitz.
We first note that g(s) can be decomposed as the sum g(s) =

∑
j∈A gj(s)

of solutions gj(s) to the difference equation (14.6) with the singletons {j}
substituting for the set A. This fact is immediately obvious from formula
(14.7). Furthermore, the function gj(s) can be expressed as

gj(s+ 1) =

⎧
⎪⎨

⎪⎩

0, s = −1

− s!
λs+1−jj!

∑s
k=0 e

−λ λk

k! , 0 ≤ s < j
s!

λs+1−jj!

∑∞
k=s+1 e

−λ λk

k! , s ≥ j .

(14.13)

Problem 14 asks the reader to check this solution. For s < j the difference
gj(s+ 1) − gj(s) ≤ 0 because

s

λ

s∑

k=0

e−λλ
k

k!
≥

s−1∑

k=0

e−λλ
k

k!
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owing to the inequality λk/k! ≥ λk/[(k − 1)!s] for k = 1, . . . , s. For s > j
again the difference gj(s+ 1) − gj(s) ≤ 0 because

s

λ

∞∑

k=s+1

e−λλ
k

k!
≤

∞∑

k=s

e−λλ
k

k!

owing to the opposite inequality λk/k! ≤ λk/[(k− 1)!s] for k ≥ s+ 1. Only
the difference gj(j + 1) − gj(j) ≥ 0, and this difference is bounded above
by

gj(j + 1) − gj(j) =
1

λ

∞∑

k=j+1

e−λλ
k

k!
+

1

j

j−1∑

k=0

e−λλ
k

k!

=
e−λ

λ

⎡

⎣
∞∑

k=j+1

λk

k!
+

j∑

k=1

λk

k!

k

j

⎤

⎦

≤ e−λ

λ
(eλ − 1)

=
1 − e−λ

λ
.

This upper-bound inequality carries over to

g(s+ 1) − g(s) =
∑

j∈A

[gj(s+ 1) − gj(s)]

since only one difference on its right-hand sum is nonnegative for any given
s. Finally, inspection of the solution (14.7) makes it evident that the func-
tion h(s) = −g(s) solves the difference equation (14.6) with the complement
Ac replacing A. It follows that

g(s) − g(s+ 1) = h(s+ 1) − h(s) ≤ 1 − e−λ

λ
,

and this completes the proof that g(s) satisfies the Lipschitz condition.

14.5 Problems

1. Verify that λ−1(1 − e−λ) ≤ min{1, λ−1} for all λ > 0.

2. For a random permutation σ1, . . . , σn of {1, . . . , n}, let Xα = 1{σα=α}
be the indicator of a match at position α. Show that the total number
of matches S =

∑n
α=1Xα satisfies the coupling bound

‖πS − πZ‖TV ≤ 2(1 − e−1)

n
,

where Z follows a Poisson distribution with mean 1.
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3. In Problem 2 prove that the total variation inequality can be im-
proved to

‖πS − πZ‖TV ≤ 2n+1 + e−1

(n+ 1)!
.

This obviously represents much faster convergence. (Hints: Use the
exact probability of k matches p[k] from Example 4.3.1 and the second
definition of the total variation norm in (7.6). Combine these with the
binomial expansion of (1 + 1)n+1 and the bound

∞∑

j=k

1

j!
≤ 2

k!

for k ≥ 1.)

4. In the ménage problem, prove that Var(S) = 2 − 2/(n− 1).

5. In certain situations the hypergeometric distribution can be approx-
imated by a Poisson distribution. Suppose that w white balls and b
black balls occupy a box. If you extract n < w + b balls at random,
then the number of white balls S extracted follows a hypergeometric
distribution. Note that if we label the white balls 1, . . . , w, and let
Xα be the random variable indicating whether white ball α is chosen,
then S =

∑w
α=1Xα. One can construct a coupling between S and Vα

by the following device. If white ball α does not show up, then ran-
domly take one of the balls extracted and exchange it for white ball
α. Calculate an explicit Chen-Stein bound, and give conditions under
which the Poisson approximation to S will be good.

6. In the context of Example 14.3.1 on the law of rare events, prove the
less stringent bound

‖πS − πZ‖TV ≤
n∑

α=1

p2
α

by invoking Problems 29 and 30 of Chapter 7.

7. Consider the n-dimensional unit cube [0, 1]n. Suppose that each of
its n2n−1 edges is independently assigned one of two equally likely
orientations. Let S be the number of vertices at which all neighboring
edges point toward the vertex. The Chen-Stein method implies that
S has an approximate Poisson distribution Z with mean 1. Use the
neighborhood method to verify the estimate

‖πS − πZ‖TV ≤ (n+ 1)2−n(1 − e−1).
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(Hints: Let I be the set of all 2n vertices,Xα the indicator that vertex
α has all of its edges directed toward α, and Nα = {β : ‖β−α‖ ≤ 1}.
Note that Xα is independent of those Xβ with ‖β − α‖ > 1. Also,
pαβ = 0 for ‖β − α‖ = 1.)

8. A graph with n nodes is created by randomly connecting some pairs
of nodes by edges. If the connection probability per pair is p, then all
pairs from a triple of nodes are connected with probability p3. For p
small and λ =

(
n
3

)
p3 moderate in size, the number of such triangles

in the random graph is approximately Poisson with mean λ. Use the
neighborhood method to estimate the total variation error in this
approximation.

9. Suppose n balls (people) are uniformly and independently distributed
into m boxes (days of the year). The birthday problem involves find-
ing the approximate distribution of the number of boxes that receive
d or more balls for some fixed positive integer d. This is a special case
of the Poisson approximation treated in Example 14.2.2 by the cou-
pling method. In this exercise we attack the birthday problem by the
neighborhood method. To get started, let the index set I be the col-
lection of all sets of trials α ⊂ {1, . . . , n} having |α| = d elements. Let
Xα be the indicator of the event that the balls indexed by α all fall
into the same box. If S =

∑
αXα, then argue that the approximation

Pr(S = 0) ≈ e−λ is plausible when

λ =

(
n

d

)
1

md−1
.

Now define the neighborhoods Nα so that Xα is independent of those
Xβ with β outside Nα. Demonstrate that

∑

α∈I

∑

β∈Nα

pαpβ =

(
n

d

)[(
n

d

)

−
(
n− d

d

)](
1

m

)2d−2

∑

α∈I

∑

β∈Nα\{α}
pαβ =

(
n

d

) d−1∑

i=1

(
d

i

)(
n− d

d− i

)(
1

m

)2d−i−1

.

When d = 2, calculate the total variation bound

‖πS − πZ‖TV ≤ 1 − e−λ

λ

(
n
2

)
(4n− 7)

m2
.

10. In the somatic cell hybrid model, suppose that the retention probabil-
ity p �= 1

2 . Define wn,d12,d13 = Pr[ρ(Cn
1 , C

n
2 ) = d12, ρ(C

n
1 , C

n
3 ) = d13]

for a random panel with n clones. Show that

pαβ =

d−1∑

d12=0

d−1∑

d13=0

wn,d12,d13 ,
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regardless of which β ∈ Nα\{α} is chosen [76]. Setting r = p(1 − p),
verify the recurrence relation

wn+1,d12,d13 = r(wn,d12−1,d13 + wn,d12,d13−1 + wn,d12−1,d13−1)

+ (1 − 3r)wn,d12,d13 .

Under the natural initial conditions,w0,d12,d13 is 1 when d12 = d13 = 0
and 0 otherwise.

11. In the somatic cell hybrid model, suppose that one knows a priori that
the number of assay errors does not exceed some positive integer d.
Prove that assay error can be detected if the minimum Hamming
distance of the panel is strictly greater than d. Prove that the locus
can still be correctly assigned to a single chromosome if the minimum
Hamming distance is strictly greater than 2d.

12. Consider an infinite sequence W1,W2, . . . of independent, Bernoulli
random variables with common success probability p. Let Xα be the
indicator of the event that a success run of length t or longer begins
at position α. Note that X1 =

∏t
k=1Wk and

Xj = (1 −Wj−1)

j+t−1∏

k=j

Wk

for j > 1. The number of such success runs starting in the first n po-
sitions is given by S =

∑
α∈I Xα, where the index set I = {1, . . . , n}.

The Poisson heuristic suggests the S is approximately Poisson with
mean λ = pt[(n−1)(1−p)+1]. Let Nα = {β ∈ I : |β−α| ≤ t}. Show
that Xα is independent of those Xβ with β outside Nα. In the Chen-
Stein bound (14.3), prove that

∑
α∈I

∑
β∈Nα\{α} pαβ = 0. Finally,

show that b1 =
∑

α∈I

∑
β∈Nα

pαpβ ≤ λ2(2t+ 1)/n+ 2λpt. (Hint:

b1 = p2t + 2tp2t(1 − p)

+ [2nt− t2 + n− 3t− 1]p2t(1 − p)2

exactly. Note that the pairs α and β entering into the double sum for
b1 are drawn from the integer lattice points {(i, j) : 1 ≤ i, j ≤ n}. An
upper-left triangle and a lower-right triangle of lattice points from
this square do not qualify for the double sum defining b1. The term
p2t in b1 corresponds to the lattice point (1, 1).)

13. In the coupling method demonstrate the bound

Pr(S > 0) ≥
∑

α∈I

pα

1 + E(Vα)
.

See reference [170] for some numerical examples. (Hints: Choose T
appropriately in equality (14.8) and apply Jensen’s inequality.)
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14. Verify formula (14.13) by induction on s.



15
Number Theory

15.1 Introduction

Number theory is one of the richest and oldest branches of mathematics. It
is notable for its many unsolved but easily stated conjectures. The current
chapter touches on issues surrounding prime numbers and their density.
In particular, the chapter and book culminate with a proof of the prime
number theorem. This highlight of 19th century mathematics was surmised
by Legendre and Gauss, attacked by Riemann and Chebyshev, and finally
proved by Hadamard and de la Valléé Poussin. These mathematicians cre-
ated a large part of analytic function theory in the process. In the mid-20th
century, Erdös and Selberg succeeded in crafting a proof that avoids an-
alytic functions. Even so, their elementary proof is longer and harder to
comprehend than the classical proofs. Our treatment follows the recent
trail blazed by Newman [150] and Zagier [211] that uses a minimum of an-
alytic function theory. We particularly stress the connections and insight
provided by probability.

In our exposition, we will take several mathematical facts for granted.
For example provided no an = −1, the absolute convergence of the infinite
product

∏∞
n=1(1 + an) to a nonzero number is equivalent to the absolute

convergence of the infinite series
∑∞

n=1 an. Absolute convergence of either
an infinite series or an infinite product implies convergence of the corre-
sponding series or product [6, 97].

The necessary background in number theory is even more slender [8, 83,
104, 151]; Appendix A.1 covers the bare essentials. Multiplicative number

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4_15, © Springer Science+Business Media, LLC 2010
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theory deals with the set of positive integers (or natural numbers). The
integer a divides the integer b, written a | b, if b = ac for some integer c.
A natural number p > 1 is said to be prime if its only positive divisors
are 1 and itself. Thus, 2, 3, 5, 7, 11, 13, 17, 19, and so forth are primes; 1
is not prime. The number of primes is infinite. The classical proof of Eu-
clid proceeds by contradiction. Suppose p1, . . . , pn is a complete list of the
primes. Then the number 1 +

∏n
i=1 pi is not divisible by any of the primes

in the list and consequently must itself be prime. Equally important is the
fundamental theorem of arithmetic. This theorem says that every natural
number can be factored into a product of primes. Such a representation
is unique except for the order of the factors. For example, the composite
number 60 = 223151. Two integers are said to be relatively prime if they
possess no common factors.

15.2 Zipf’s Distribution and Euler’s Theorem

Riemann’s zeta function ζ(s) =
∑∞

n=1 n
−s converges for s > 1. Thus, Zipf’s

probability measure

ωs(A) =
1

ζ(s)

∑

n∈A

n−s

on the natural numbers makes sense. It obviously puts more weight on
small numbers than on large numbers. If p �= q are prime numbers, then
one can also show by direct calculation that the sets Dp = {kp : k ≥ 1}
and Dq = {kq : k ≥ 1} of integers divisible by p and q are independent
under ωs.

It is more illuminating to reverse the process, start from independence,
and construct ωs indirectly. Toward this end, consider a sequence of in-
dependent, geometrically distributed random variables Xp indexed by the
prime numbers p. Here Xp counts the number of failures until success in
a sequence of Bernoulli trials with failure probability p−s. Straightforward
calculations demonstrate that Xp has mean

p−s

1 − p−s
=

1

ps − 1

and that the event Ap = {Xp > 0} has probability p−s. Because

∑

p

Pr(Ap) =
∑

p

p−s <

∞∑

n=1

n−s < ∞,

the Borel-Cantelli lemma implies that only finitely many of the Ap occur.
This means that all but a finite number of the factors of the infinite product
N =

∏
p p

Xp reduce to 1.
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We now claim that N has Zipf’s distribution. Indeed, if the integer n has
unique prime factorization n =

∏
p p

xp , then the continuity of probability
on a decreasing sequence of events implies

Pr(N = n) =
∏

p

Pr(Xp = xp)

=
∏

p

(
1 − p−s

)
p−xps

= n−s
∏

p

(
1 − p−s

)
.

The equation

∏

p

(
1 − p−s

)
=

1

ζ(s)
(15.1)

identifying the normalizing constant figures in the proof of Proposition
15.2.1. More to the point, independence of the events Dp and Dq is now
trivial because in this setting Dp reduces to Ap and Dq to Aq.

Number theory, like many branches of mathematics, has its own jargon.
A real or complex-valued function defined on the natural numbers is called
an arithmetic function. From our perspective, an arithmetic function is a
random variable Y = f(N) with value f(n) at the sample point n. To avoid
confusion, we will subscript our expectation signs by the parameter s so
that

Es(Y ) =

∫

f(n) dωs(n) = ζ(s)−1
∞∑

n=1

f(n)n−s.

The best behaved arithmetic functions Y are completely multiplicative in
the sense that f(mn) = f(m)f(n) for all m and n. The arithmetic function
f(n) = nr furnishes an example. A multiplicative function f(n) is only
required to satisfy f(mn) = f(m)f(n) when m and n are relatively prime.
Excluding the trivial case f(n) ≡ 0, both definitions require f(1) = 1.
Indeed, if f(n) �= 0 for some n, then the equation f(n) = f(n)f(1) is
only possible if f(1) = 1. The sets of completely multiplicative and mul-
tiplicative functions are closed under the formation of pointwise products
and, provided division by 0 is not involved, pointwise quotients. A random
variable Y defined by a multiplicative function f(n) splits into a product
Y =

∏
p f(pXp) of independent random variables depending on the prime

powers Xp. With probability 1 only a finite number of factors of the in-
finite product

∏
p f(pXp) differ from 1. The importance of multiplicative

functions stems from the following result.
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Proposition 15.2.1 (Euler) Suppose the multiplicative arithmetic func-
tion Y = f(N) has finite expectation. Then

Es(Y ) =
∏

p

Es

[
f
(
pXp
)]
, (15.2)

where p extends over all primes. If f(n) is completely multiplicative, then

Es

[
f
(
pXp
)]

= Es

[
f(p)Xp

]
=

1 − p−s

1 − f(p)p−s
. (15.3)

Proof: In view of equation (15.1), it suffices to prove

∞∑

n=1

f(n)

ns
=
∏

p

[

1 +
∞∑

m=1

f(pm)

pms

]

.

If we let g(n) = f(n)n−s, then g(n) is multiplicative whenever f(n) is
multiplicative. In other words, it is enough to prove that

∞∑

n=1

g(n) =
∏

p

[

1 +
∞∑

m=1

g(pm)

]

(15.4)

for g(n) multiplicative. The infinite sum on the left of equation (15.4) con-
verges absolutely by assumption. The infinite product on the right is well
defined and converges absolutely because

∑

p≤q

∣
∣
∣
∣
∣

∞∑

m=1

g(pm)

∣
∣
∣
∣
∣

≤
∑

p≤q

∞∑

m=1

|g(pm)|

≤
∞∑

n=1

|g(n)|

for all primes q. Therefore, both sides of the proposed equality (15.4) make
sense.

We can rearrange the terms in the finite product

πq =
∏

p≤q

[

1 +
∞∑

m=1

g(pm)

]

of absolutely convergent series without altering the value of the product.
Exploiting the multiplicative nature of g(n), we find that

πq =
∑

n∈Bq

g(n),
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where Bq consists of all natural numbers having no prime factor strictly
greater than q. It follows that

∣
∣
∣
∣
∣

∞∑

n=1

g(n) − πq

∣
∣
∣
∣
∣

≤
∑

n�∈Bq

|g(n)|

≤
∑

n>q

|g(n)|.

This last sum can be made arbitrarily small by taking q large enough. This
proves identity (15.2).

To verify identity (15.3), we calculate

Es

[
f
(
pXp
)]

= Es[f(p)Xp ]

=

∑∞
m=0 f(p)mp−ms

∑∞
m=0 p

−ms

=
1 − p−s

1 − f(p)p−s

by summing the indicated geometric series.

Example 15.2.1 A Scaled Version of Euler’s Totient

Euler’s totient function ϕ(n), mentioned in Example 4.3.2, counts the num-
bers between 1 and n that are relatively prime to n. Because ϕ(n) satisfies

ϕ(n)

n
=

∏

p

(

1 − 1

p

)1{xp>0}

, (15.5)

we have

Es

[
ϕ(N)

N

]

=
∏

p

Es

[(
1 − p−1

)1{Xp>0}
]

=
∏

p

[(
1 − p−s

)(
1 − p−1

)0

+ p−s
(
1 − p−1

)1
]

=
∏

p

(
1 − p−s−1

)

=
1

ζ(s + 1)
.

It is noteworthy that this expectation tends to the limit ζ(2)−1 = 6/π2 as s
tends to 1. Section 15.5 and Problem 17 explore this phenomenon in more
detail.
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Example 15.2.2 Expected Number of Divisors

A moment’s reflection shows that the number of divisors of a random nat-
ural number N can be expressed as τ(N) =

∏
p(1 +Xp). Euler’s formula

(15.2) and equation (15.1) give

Es[τ(N)] =
∏

p

Es(1 +Xp)

=
∏

p

(

1 +
1

ps − 1

)

=
∏

p

1

1 − p−s

= ζ(s).

This pleasant surprise should not lull the reader into thinking that other
relevant expectations yield so easily.

Example 15.2.3 Evaluation of Es(lnN)

To avoid the impression that Euler’s formula is the only method of calcu-
lating expectations, consider

− d

ds
ln ζ(s) = −ζ(s)−1ζ′(s)

= ζ(s)−1
∞∑

n=1

lnn

ns

= Es(lnN).

Symbolic algebra programs such as Maple are capable of numerically eval-
uating and differentiating ζ(s). The accurate bounds

ln 2

2s−1 − 1

[

1 − 1

2ζ(s)

]

≤ Es(lnN) ≤ ln 2

2s−1 − 1
(15.6)

derived in Problem 8 are more enlightening because they clarify the order
of magnitude of Es(lnN).

15.3 Dirichlet Products and Möbius Inversion

Many of the arithmetic functions pursued in analytic number theory are
multiplicative. A few examples are

δ(n) =
{

1 n = 1
0 n > 1
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1(n) = 1

id(n) = n

ϕ(n) = n
∏

p|n

(

1 − 1

p

)

σk(n) =
∑

d|n
dk.

In this list, n is any natural number, p any prime, and k any nonnegative
integer. We have already met the two arithmetic functions τ(n) = σ0(n)
and ϕ(n). The sum of the divisors of n has the alias σ(n) = σ1(n). One
of the goals of this section is to prove that all of the arithmetic functions
σk(n) are multiplicative. The von Mangoldt function

Λ(n) =
{

ln p if n = pm for some prime p
0 otherwise

is a prominent arithmetic function that fails to be multiplicative. Its rele-
vance arises from the representation

lnn =
∑

d|n
Λ(d). (15.7)

To recognize multiplicative functions, it helps to define a convolution
operation sending a pair of arithmetic functions f(n) and g(n) into the
new arithmetic function

f ∗ g(n) =
∑

d|n
f(d)g(n/d)

termed their Dirichlet product. Among the virtues of this definition are the
formulas

f ∗ δ(n) = f(n)

f ∗ g(n) =
∑

ab=n

f(a)g(b)

= g ∗ f(n)

f ∗ (g ∗ h)(n) =
∑

abc=n

f(a)g(b)h(c)

= (f ∗ g) ∗ h(n).

Except for the existence of an inverse, these are precisely the axioms
characterizing a commutative group [8]. Because δ serves as an identity
element, the inverse f [−1] of an arithmetic function f must satisfy the
equation f ∗ f [−1] = δ. In particular, 1 = f ∗ f [−1](1) = f(1)f [−1](1).
Thus, we must restrict our attention to arithmetic functions with f(1) �= 0
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to achieve a group structure. With this proviso, it remains to specify the
inverse f [−1] of f . Fortunately, this is accomplished inductively through the
formula

f [−1](n) = −f(1)−1
∑

d|n;d>1

f(d)f [−1](n/d),

beginning with f [−1](1) = f(1)−1.
The multiplicative functions form a subgroup of this group. To prove part

of this assertion, consider two such functions f and g and two relatively
prime natural numbers m and n. In the expression

f ∗ g(mn) =
∑

d|mn

f(d)g
(mn

d

)
,

simply observe that every divisor d of mn can be expressed as a product
d = ab of two relatively prime numbers a and b such that a | m, b | n, and
m/a and n/b are relatively prime. It follows that

∑

d|mn

f(d)g
(mn

d

)
=

∑

a|m; b|n
f(a)f(b)g(m/a)g(n/b)

=
∑

a|m
f(a)g(m/a)

∑

b|n
f(b)g(n/b)

= f ∗ g(m)f ∗ g(n),

completing the proof that f ∗g is multiplicative. Problem 9 asks the reader
to check that f [−1] is multiplicative whenever f is multiplicative.

The forgoing is summarized by the next proposition.

Proposition 15.3.1 The set of arithmetic functions f(n) with f(1) �= 0
forms a commutative group. The subset of multiplicative functions consti-
tutes a subgroup of this group.

Proof: See the above arguments.

Example 15.3.1 The Möbius Function μ(n)

The Möbius function μ(n) is the inverse of 1(n). We claim that

μ(n) =

{ 1, n = 1
(−1)k, n = p1 · · · pk

0, otherwise,

where p1, . . . , pk are distinct primes. It suffices to verify that μ∗1(n) = δ(n).
This is clear for n = 1, and for n = pe1

1 · · · pek

k > 1 we have

∑

d|n
μ(d) = μ(1) +

∑

i

μ(pi) +
∑

i<j

μ(pipj) + · · · + μ(p1 · · · pk)
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=

k∑

i=0

(
k

i

)

(−1)i

= (1 − 1)k

= 0.

The logical equivalence of the Möbius relations

g(n) =
∑

d|n
f(d)

f(n) =
∑

d|n
μ(d)g(n/d)

just restates the equivalence of the relations g = 1 ∗ f and f = μ ∗ g.

Example 15.3.2 Examples of Möbius Inversion

Applying the identity μ ∗ 1(n) lnn = 0, we find that equation (15.7) has
inverse

Λ(n) =
∑

d|n
μ(d) ln(n/d)

= −
∑

d|n
μ(d) ln d.

Euler’s totient satisfies the pair of relations

n =
∑

d|n
ϕ(d)

ϕ(n) =
∑

d|n
μ(d)

n

d
.

To prove the first of these, note that n is obviously multiplicative and that
1 ∗ ϕ(n) =

∑
d|n ϕ(d) is multiplicative by virtue of Proposition 15.3.1. If

n = pk is a power of a prime, then equation (15.5) yields

∑

d|n
ϕ(d) =

k∑

l=0

ϕ(pl)

= 1 +

k∑

l=1

pl(1 − p−1)

= 1 +

k∑

l=1

(pl − pl−1)

= pk.
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Since n and
∑

d|n ϕ(d) agree for every power of a prime, they agree for
every natural number n.

If f(n) and g(n) are two arithmetic functions for which Es[f(N)] and
Es[g(N)] exist, then

[ ∞∑

l=1

f(l)

ls

][ ∞∑

m=1

g(m)

ms

]

=

∞∑

n=1

1

ns

∑

lm=n

f(l)g(m) =

∞∑

n=1

f ∗ g(n)

ns
.

Here all series converge absolutely. This result can be restated as

Es[f ∗ g(N)] = ζ(s) Es[f(N)] Es[g(N)].

For instance, Example 15.2.3 and equation (15.7) together imply

− d

ds
ln ζ(s) = Es(lnN)

= ζ(s) Es[Λ(N)] Es(1)

=

∞∑

n=1

Λ(n)

ns
(15.8)

=
∑

p

∞∑

k=1

ln p

(pk)s

=
∑

p

ln p

ps − 1
,

where the index p represents a generic prime.

15.4 Averages of Arithmetic Functions

Most questions in analytic number theory involve number density rather
than Zipf probability. This is certainly the case for the prime number the-
orem [105, 197]. The Zipf distribution is easier to work with than number
density because it is countably additive. Fortunately, the two notions are
intimately connected. The connections can best be exposed by defining the
long-run average

A(f) = lim
n→∞

1

n

n∑

m=1

f(m)

of an arithmetic function f(n) and contrasting it to lims→1 Es[f(N)]. It
turns out that in many cases these two limits coincide. When f(n) is the
indicator function of a set of natural numbers, this surprising insight helps
in computing the number density of the set.
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Before tackling this issue and how it bears on the prime number theorem,
some preliminary spadework is needed. Our first result is Abel’s summation
formula.

Proposition 15.4.1 (Abel) Suppose f(n) is an arithmetic function and

g(t) is a continuously differentiable function. If F (t) =
∑[t]

n=1 f(n), then

n∑

m=1

f(m)g(m) = F (n)g(n) −
∫ n

1

F (t)g′(t) dt.

Proof: With the convention F (0) = 0, the fundamental theorem of calculus
implies

n∑

m=1

f(m)g(m) =
n∑

m=1

[F (m) − F (m− 1)]g(m)

=
n∑

m=1

F (m)g(m) −
n−1∑

m=1

F (m)g(m+ 1)

= F (n)g(n) −
n−1∑

m=1

F (m)[g(m+ 1) − g(m)]

= F (n)g(n) −
n−1∑

m=1

F (m)

∫ m+1

m

g′(t) dt

= F (n)g(n) −
n−1∑

m=1

∫ m+1

m

F (t)g′(t) dt

= F (n)g(n) −
∫ n

1

F (t)g′(t) dt.

This completes the proof.

It is fairly obvious that Riemann’s zeta function ζ(s) can be extended to
the complex domain Re(s) > 1. However, as s tends to 1 along the real axis,
ζ(s) tends to ∞. Our next result says that this singularity is removable and
the domain can be enlarged to Re(s) > 0.

Proposition 15.4.2 The difference ζ(s) − (s − 1)−1 can be analytically
continued to the domain Re(s) > 0. Consequently, lims→1(s− 1)ζ(s) = 1.

Proof: Let us write the difference as

ζ(s) − 1

s− 1
=

∞∑

n=1

1

ns
−
∫ ∞

1

1

ts
dt

=

∞∑

n=1

∫ n+1

n

(
1

ns
− 1

ts

)

dt.
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For each n the integral

gn(s) =

∫ n+1

n

(
1

ns
− 1

ts

)

dt = s

∫ n+1

n

∫ t

n

1

us+1
du dt

is clearly analytic in s. The estimate

|gn(s)| ≤ |s|
2

sup
n≤u≤n+1

∣
∣
∣

1

us+1

∣
∣
∣ =

|s|
2

1

nRe(s)+1

shows that the series
∑∞

n=1 gn(s) converges uniformly and absolutely on
every compact set of the domain Re(s) > 0. Therefore, its limit is an
analytic function throughout this domain.

We are now in position to establish one connection between A(f) and
the Es[f(N)].

Proposition 15.4.3 Let f(n) be an arithmetic function such that A(f)
and all Es[f(N)] exist. Then lims→1 Es[f(N)] exists and equals A(f).

Proof: Let F (t) =
∑[t]

n=1 f(n) and G(t) = t−1F (t). Abel’s summation
formula gives

n∑

m=1

f(m)

ms
=

1

ns−1

F (n)

n
+

∫ n

1

F (t)

t

s

ts
dt.

=
G(n)

ns−1
+ s

∫ n

0

G(t)

ts
dt.

Taking limits on n and invoking the existence of A(f) therefore imply

∞∑

m=1

f(m)

ms
= s

∫ ∞

0

G(t)

ts
dt

for each s > 1. In view of Proposition 15.4.2, it now suffices to prove that

lim
s→1

(s− 1)

∞∑

m=1

f(m)

ms
= lim

s→1
(s− 1)s

∫ ∞

0

G(t)

ts
dt = A(f).

To achieve this end, we exploit the integral (s − 1)
∫∞
1 t−sdt = 1 and the

inequality

∣
∣
∣
∣(s− 1)s

∫ ∞

0

G(t)

ts
dt− sA(f)

∣
∣
∣
∣ =

∣
∣
∣
∣(s− 1)s

∫ ∞

0

G(t) −A(f)

ts
dt

∣
∣
∣
∣

≤ (s− 1)s

∫ ∞

1

∣
∣
∣
∣
G(t) −A(f)

ts

∣
∣
∣
∣ dt.
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For ε > 0 small, choose δ ≥ 1 so that |G(t) − A(f)| < ε for t ≥ δ. This
permits us to form the bound

(s− 1)s

∫ ∞

1

∣
∣
∣
∣
G(t) −A(f)

ts

∣
∣
∣
∣ dt ≤ (s− 1)s

∫ δ

1

∣
∣
∣
∣
G(t) −A(f)

ts

∣
∣
∣
∣ dt

+ε(s− 1)s

∫ ∞

δ

1

ts
dt

= (s− 1)s

∫ δ

1

∣
∣
∣
∣
G(t) − A(f)

ts

∣
∣
∣
∣ dt+ εsδ−s+1.

For s sufficiently close to 1, this bound can be made less than 2ε. To finish
the proof, we merely note that lims→1(s− 1)A(f) = 0.

Example 15.4.1 Periodic Arithmetic Functions

A periodic arithmetic function f(n) satisfies f(n+ r) = f(n) for all n and
some fixed r. A brief calculation shows that

A(f) =
1

r

r∑

n=1

f(n).

Proposition 15.4.3 guarantees that lims→1 Es[f(N)] = A(f). We can also
deduce this result by bringing in Hurwitz’s zeta function

ζ(s, a) =

∞∑

n=0

1

(n+ a)s

for a > 0. The techniques of Proposition 15.4.2 demonstrate that

ζ(s, a) − 1

(s− 1)as−1
(15.9)

is analytic throughout Re(s) > 0 and satisfies lims→1(s − 1)ζ(s, a) = 1. It
follows that

1

ζ(s)

∞∑

n=1

f(n)

ns
=

1

ζ(s)

r∑

n=1

f(n)

∞∑

m=0

1

(mr + n)s

=
1

(s− 1)ζ(s)

r∑

n=1

f(n)
s− 1

rs
ζ(s, n/r).

Setting a = n/r and sending s to 1 now produce the desired limit A(f).

The Riemann hypothesis, arguably the most famous unsolved problem
in mathematics, says all zeros of ζ(s) lie on the line Re(s) = 1

2 . For our
purposes, the following simpler result suffices.
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Proposition 15.4.4 The line Re(s) = 1 contains no zeros of ζ(s).

Proof: We present the clever proof of Mertens, which hinges on the trigono-
metric identity

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0.

Equation (15.1) yields

ζ(s) = e
−
∑

p
ln(1−p−s)

= e

∑
p

∑∞
k=1

k−1p−ks

,

so if s = a+ bi, then

|ζ(s)| = e

∑
p

∑∞
k=1

k−1p−ka cos(kb ln p)
.

Hence,

|ζ(a)|3|ζ(a+ bi)|4|ζ(a+ 2bi)|

= e

∑
p

∑∞
k=1

k−1p−ka[3+4 cos(kb ln p)+cos(2kb ln p)]

≥ 1.

Dividing this inequality by a− 1 produces

|(a− 1)ζ(a)|3
∣
∣
∣
∣
ζ(a+ bi)

a− 1

∣
∣
∣
∣

4

|ζ(a+ 2bi)| ≥ 1

a− 1
.

If we suppose that ζ(1 + bi) = 0 with b �= 0, then the left-hand side of this
inequality approaches 1 · |ζ′(1 + bi)|4|ζ(1 + 2bi)| as a tends to 1 while the
right-hand side approaches ∞. This contradiction proves that ζ(1+ bi) = 0
is impossible.

15.5 The Prime Number Theorem

Let π(n) be the number of primes less than or equal to n. The prime number
theorem says

lim
n→∞

π(n) lnn

n
= 1.

We would like to rephrase this celebrated result as a long-run arithmetic
average involving the summatory function ϑ(t) =

∑
p≤t ln p. Here p denotes

a generic prime, and noninteger values of t are permitted. On one hand, it
is clear that

ϑ(t) ≤
∑

p≤t

ln t = π(t) ln t.



15.5 The Prime Number Theorem 387

On the other hand for any ε ∈ (0, 1),

ϑ(t) ≥
∑

t1−ε≤p≤t

ln p

≥
∑

t1−ε≤p≤t

(1 − ε) ln t

= (1 − ε) ln t[π(t) +O(t1−ε)].

These two estimates make it evident that the prime number theorem is
equivalent to the equality A(Λ) = limn→∞ n−1ϑ(n) = 1.

The proof of the prime number theorem depends on several technical
propositions.

Proposition 15.5.1 The function ϑ(t) =
∑

p≤t ln p satisfies the inequality
0 ≤ ϑ(t) ≤ ct for c = 4 ln 2.

Proof: For each positive integer n, the binomial coefficient
(
2n
n

)
is divisible

by all primes p on the interval (n, 2n]. It follows that

∏

n<p≤2n

p ≤
(

2n

n

)

< 22n.

For the choice 2n = 2k, this implies

∑

2k−1<p≤2k

ln p ≤ 2k ln 2.

Summing this inequality on k produces

∑

p≤2k

ln p ≤ (2k + 2k−1 + · · · + 1) ln 2 < 2k+1 ln 2.

If 2k−1 < t ≤ 2k, then the inequalities

1

t

∑

p≤t

ln p ≤ 1

2k−1

∑

p≤2k

ln p ≤ 1

2k−1
2k+1 ln 2

complete the proof.

The prime number theorem can be deduced from a more general proposi-
tion giving a sufficient condition for the existence of an arithmetic average
A(f). In deriving this result, we will rely on an expanded definition of the
integral on the real line known as the gauge integral or generalized Riemann
integral [141, 210]. The gauge integral subsumes both the Lebesgue inte-
gral and the improper integrals met in advanced calculus. The integrands
of the gauge integral are not necessarily absolutely integrable. An integral
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of a function g(t) over an infinite interval such as [0,∞) exists if and only
if
∫ u

0 g(t) dt exists for all finite u ≥ 0 and

lim
u→∞

∫ u

0

g(t) dt =

∫ ∞

0

g(t) dt.

We will employ the following Tauberian result on Laplace transforms.

Proposition 15.5.2 Let the bounded function g(t) be integrable over every
finite interval [0, u]. If its Laplace transform

ĝ(s) =

∫ ∞

0

g(t)e−stdt

exists for all s > 0, is analytic throughout the domain Re(s) > 0, and can
be continued analytically to a neighborhood of every point on the imaginary
axis Re(s) = 0, then the integral

∫∞
0
g(t) dt also exists and equals ĝ(0).

Proof: Appendix A.7 reproduces the proof given in the references [150,
211].

With these preliminaries under our belt, we state our general proposition.

Proposition 15.5.3 Suppose f(n) is a nonnegative arithmetic function
such that Es[f(N)] exists for all s > 1, the averages 1

n

∑n
m=1 f(m) are

bounded in n, and for some constant a

h(s) =
1

s

∞∑

n=1

f(n)

ns
− a

s− 1
(15.10)

is analytic throughout the domain Re(s) > 1 and can be continued analyti-
cally to a neighborhood of every point on the vertical line Re(s) = 1. Then
both lims→1 Es[f(N)] and A(f) exist and equal a.

Proof: The identity

h(s) =
1

s(s− 1)

[

(s− 1)

∞∑

n=1

f(n)

ns
− a

]

− a

s

and the continuity of h(s) at s = 1 jointly show that

lim
s→1

(s− 1)
∞∑

n=1

f(n)

ns
= a.

Hence, Proposition 15.4.2 implies

lim
s→1

Es[f(N)] = lim
s→1

s− 1

(s− 1)ζ(s)

∞∑

n=1

f(n)

ns

= lim
s→1

a

(s− 1)ζ(s)
= a.
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Now let F (t) =
∑[t]

m=1 f(m). For s > 1 Abel’s summation formula implies

n∑

m=1

f(m)

ms
=

F (n)

ns
+ s

∫ n

1

F (t)

ts+1
dt.

Because the averages 1
nF (n) are bounded, this gives in the limit

∞∑

m=1

f(m)

ms
= s

∫ ∞

1

F (t)

ts+1
dt.

Dividing by s and subtracting a
∫∞
1
t−sdt = a(s− 1)−1 therefore yield

1

s

∞∑

n=1

f(n)

ns
− a

s− 1
=

∫ ∞

1

[
1

t
F (t) − a

]
1

ts
dt

=

∫ ∞

0

[
e−uF (eu) − a

]
e−(s−1)u du

We now apply Proposition 15.5.2 to the function g(u) = e−uF (eu) − a,
which is bounded by assumption. The proposition guarantees the existence
of the integral

∫∞
1

[
t−1F (t) − a

]
t−1dt.

To use this conclusion, suppose that u−1F (u)− a ≥ δ > 0 for arbitrarily
large u. Then with λ > 1 chosen so that aλ ≤ a+ δ, we have for such u

∫ λu

u

[
1

t
F (t) − a

]
1

t
dt =

∫ λu

u

1

t2
[F (t) − at] dt

≥
∫ λu

u

1

t2
[F (u) − at] dt

≥
∫ λu

u

1

t2
[au+ δu− at] dt

=

∫ λ

1

1

(ur)2
[au+ δu− aur]u dr

=

∫ λ

1

1

r2
[a+ δ − ar] dr

> 0.

The fact that
∫ λu

u

[
t−1F (t) − a

]
t−1dt does not converge to 0 as u tends to

∞ contradicts the existence of
∫∞
1

[
t−1F (t) − a

]
t−1dt. Hence, the inequal-

ity u−1F (u) − a < δ must hold for all sufficiently large u.
One can likewise demonstrate that u−1F (u) − a > −δ for all large u by

assuming the contrary. If u is a point where u−1F (u)−a ≤ −δ, then choose
0 < θ < 1 so that a− δ < aθ. The inequality

∫ u

θu

[
1

t
F (t) − a

]
1

t
dt ≤

∫ 1

θ

1

r2

[
a− δ − ar

]
dr
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for arbitrarily large u again contradicts the existence of the integral
∫ ∞

1

[
1

t
F (t) − a

]

t−1dt

and completes the proof of the proposition.

Example 15.5.1 Application to the Prime Number Theorem

Let us verify that the assumptions of Proposition 15.5.3 hold for the func-
tion

f(n) =
{

lnn n is prime
0 otherwise.

This function is clearly nonnegative, and according to Proposition 15.5.1
its running averages n−1ϑ(n) are bounded. The remaining hypothesis is
more delicate. The key to its verification is to write

∑

p

ln p

ps
=

∑

p

ln p

ps − 1
−
∑

p

ln p

ps(ps − 1)

= −ζ
′(s)
ζ(s)

−
∑

p

ln p

ps(ps − 1)

using equation (15.8). The comparisons

∑

p

∣
∣
∣
∣

ln p

ps(ps − 1)

∣
∣
∣
∣ ≤

∑

p

ln p

pRe(s)(pRe(s) − 1)
≤

∞∑

n=2

lnn

nRe(s)(nRe(s) − 1)

show that the series
∑

p ln p/[ps(ps − 1)] is analytic for Re(s) > 1
2 .

Consider the difference

1

s

∑

p

ln p

ps
− 1

s− 1
= − ζ′(s)

sζ(s)
− 1

s− 1
− 1

s

∑

p

ln p

ps(ps − 1)
,

and set η(s) = ζ(s) − (s− 1)−1. It suffices to demonstrate that

− ζ′(s)
sζ(s)

− 1

s− 1
= − (s− 1)ζ′(s) + sζ(s)

s(s− 1)ζ(s)

= − (s− 1)η′(s) + sη(s) + 1

s(s− 1)ζ(s)

is analytic in a neighborhood of any point s with Re(s) = 1. According to
Proposition (15.4.2), both the numerator and the denominator are analytic
for Re(s) > 0. The denominator is nonzero on the point s = 1 because
of Proposition 15.4.2. At all other points of the vertical line Re(s) = 1,
Proposition 15.4.4 guarantees that ζ(s) �= 0. This completes the proof of
the prime number theorem.
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15.6 Problems

1. Demonstrate that

∞∏

n=2

(

1 − 1

n2

)

=
1

2

∞∏

n=0

(
1 + z2n

)
=

1

1 − z
, |z| < 1.

2. Show that the gap g between successive prime numbers can be arbi-
trarily large. (Hint: Consider the sequence of numbers beginning with
(g + 1)! + 2.)

3. Let N follow Zipf’s distribution. Demonstrate that

Es(N
k) =

ζ(s− k)

ζ(s)

Es(N
k | q divides N) =

qkζ(s− k)

ζ(s)

Es(N
k | N prime) =

∑
p p

k−s

∑
p p

−s

for k a natural number with s > k + 1.

4. Choose two independent random numbers M and N according to
Zipf’s distribution. Prove that M and N are relatively prime with
probability ζ(2s)−1. (Hints: Let Xp and Yp be the powers of the prime
p occurring in M and N , respectively. Calculate Es(

∏
p 1Bp

), where
Bp is the event {XpYp = 0}.)

5. Suppose the arithmetic function Y = f(N) satisfies Es(Y ) = 0 for all
s ≥ r > 1. Show that Y ≡ 0. (Hint: Prove that f(n) = 0 for all n by
induction and sending s to ∞ in the equation ns Es(Y ) = 0.)

6. Let N1, . . . , Nm be an i.i.d. sample from the Zipf distribution with
values n1, . . . , nm. If at least one ni > 1, then prove that the maxi-
mum likelihood estimate of s is uniquely determined by the equation

− d

ds
ln ζ(s) = Es(lnN) =

1

m

m∑

i=1

lnni.

What happens in the exceptional case when all ni = 1?

7. Suppose the independent realizations M and N of Zipf’s distribution
generate arithmetic functions Y = f(M) and Z = g(N) with finite
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expectations. Show that the random variables L = MN andW = Y Z
satisfy

Pr(L = l) =
τ(l)

lsζ(s)2

Es(W | L = l) = τ(l)−1f ∗ g(l).

Recall that τ(l) is the number of divisors of l. Use these results to
demonstrate that Es(W ) = Es(Y ) Es(Z) entails

∞∑

l=1

f ∗ g(l)
ls

=

[ ∞∑

m=1

f(m)

ms

][ ∞∑

n=1

g(n)

ns

]

.

8. Prove the two inequalities (15.6). (Hints: Show that the function
f(t) = t−s ln t is decreasing on the interval [e1/s,∞). Use this to
prove that

2
ln(2n)

(2n)s
≤ ln(2n− 1)

(2n− 1)s
+

ln(2n)

(2n)s

2
ln(2n)

(2n)s
≥ ln(2n+ 1)

(2n+ 1)s
+

ln(2n)

(2n)s
(15.11)

for appropriate values of n and s. Use these to prove that

∞∑

n=1

lnn

ns
≥ 2

∞∑

n=1

ln(2n)

(2n)s
− ln 2

2s

∞∑

n=1

lnn

ns
≤ 2

∞∑

n=1

ln(2n)

(2n)s
.

Note that the second inequality in (15.11) can fail when n = 1 and
s < 1/ ln 2. In this special case, apply the more delicate inequality

ln 1

1s
+

ln 2

2s
+

ln 3

3s
+

ln 4

4s
+

ln 5

5s
+ ≤ 2

(
ln 2

2s
+

ln 4

4s

)

,

which can be demonstrated by showing that

g(s) =
ln 2

2s
− ln 3

3s
+

ln 4

4s
− ln 5

5s

is positive. For this purpose, write g(s) in the equivalent form

g(s) =
1

(s− 1)2

(∫ 3

2

1 + ln ts−1

ts−1
dt−

∫ 5

4

1 + ln ts−1

ts−1
dt

)

and prove that the indicated integrand is decreasing in t.)



15.6 Problems 393

9. Check that the Dirichlet inverse f [−1] of a multiplicative arithmetic
function f is multiplicative. (Hints: Assume otherwise, and consider
the least product mn of two relatively prime natural numbers m
and n with f [−1](mn) �= f [−1](m)f [−1](n). Now apply the inductive
definition of f [−1](mn).)

10. Verify that the identities

1 =
∑

d|n
μ(d)τ(n/d)

n =
∑

d|n
μ(d)σ(n/d)

hold for all natural numbers n.

11. Demonstrate that neither ϕ(n) nor μ(n) is completely multiplicative.
Show that the Dirichlet convolution of two completely multiplicative
functions need not be completely multiplicative. (Hint: σ = id ∗ 1.)

12. Liouville’s arithmetic function is defined by

λ(n) =

{
1, n = 1
(−1)e1+···+ek , n = pe1

1 · · · pek

k .

Prove that
∑

d|n
λ(d) =

{
1 if n is a square
0 otherwise.

13. Suppose q is a positive integer and cm is a sequence of numbers with
cm+q = cm for all m. Prove that the series

∑n
m=1

cm

m converges if and
only if

∑q
m=1 cm = 0. (Hint: Apply Proposition 13.4.1.)

14. If limn→∞ f(n) = c, then demonstrate that

A(f) = lim
s→1

Es[f(N)] = c.

15. Derive formula (15.9).

16. In Proposition 15.5.3, show that the assumption that f(n) is nonneg-
ative can be relaxed to infn f(n) > −∞ or supn f(n) <∞.

17. Apply Proposition 15.5.3 and prove that A[ϕ(N)/N ] = ζ(2)−1.
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A.1 Elementary Number Theory

Our first result is the standard division algorithm.

Proposition A.1.1 Given two integers a and b with b positive, there is a
unique pair of integers q and r such that a = qb+ r and 0 ≤ r < b.

Proof: Consider the set S = {a − nb : n an integer}. This set contains
nonnegative elements such as a+|a|b, so there is a least nonnegative element
r = a− qb. If r ≥ b, then r − b = a− (q + 1)b is nonnegative and belongs
to S, contradicting the choice of r. Hence, 0 ≤ r < b. If a = q′b + r′ is
a different representation of a, then r − r′ = (q′ − q)b. But this is absurd
because |r − r′| < b while |q′ − q|b > q.

The next proposition refers to an additive group. This is just a nonempty
set of integers closed under both addition and subtraction. An additive
group contains 0 and possibly other elements as well.

Proposition A.1.2 An additive group G of integers can be represented as
G = {nd : n is an integer} for some nonnegative integer d.

Proof: If G consists of 0 alone, then take d = 0. Otherwise, consider g �= 0
in G. Because either g or −g is positive, G contains at least one positive
element. Let d be the smallest positive element. Given that G is closed
under addition and subtraction, all multiples of d belong to G. It remains
to prove that every element g of G is a multiple of d. This follows from the
representation g = qd + r, where 0 ≤ r < d. If r = 0, then we are done. If

K. Lange, Applied Probability,
DOI 10.1007/978-1-4419-7165-4, © Springer Science+Business Media, LLC 2010



396 Appendix: Mathematical Review

r > 0, then the equation r = g − qd identifies r as a positive element of G
less than d, contradicting the choice of d.

The integer d is said to be a divisor of the integer a if a = qd for some
integer q.

Proposition A.1.3 The greatest common divisor d of a set of integers
{n1, . . . , nm} can be expressed as a linear combination d =

∑m
k=1 cknk with

integer coefficients c1, . . . , cm.

Proof: The set G of such linear combinations clearly forms an additive
group. Let e be the generator of G identified in Proposition A.1.2. On the
one hand, because e equals a linear combination of the nk, the greatest
common divisor d divides e. On the other hand, because each nk belongs
to G, e divides d. It follows that e = d.

Proposition A.1.4 Suppose S is an infinite set of positive integers closed
under addition. If d is the greatest common divisor of S, then S contains
all but a finite number of positive multiples of d.

Proof: Note that S is not a group because it is not closed under sub-
traction. We can assume that d = 1 by dividing all elements of S by d if
necessary. Given the assumption that d = 1, take integers n1, . . . , nm from
S lacking any common factor. According to Proposition A.1.3, there exists
integer coefficients c1, . . . , cm such that 1 =

∑m
k=1 cknk. The two integers

p =
∑

k:ck>0

cknk, q = −
∑

k:ck<0

cknk

clearly belong to S, and 1 = p−q. Let us show that any number r ≥ q(q−1)
belongs to S. If we write r = aq + b, where 0 ≤ b < q, then it follows that
a ≥ q − 1 ≥ b. The representation

r = aq + b(p− q) = (a− b)q + bp

now expresses r as an element of S.

An integer p > 1 is said to be prime if the only positive divisors of p are
1 and p itself.

Proposition A.1.5 If a prime p divides the product ab, then p divides a
or b.

Proof: Suppose that p does not divide a. Then the greatest common divisor
of p and a is 1. According to Proposition A.1.3, there exist integers c and d
such that 1 = ca+dp. Multiplying this equality by b produces b = cab+dpb.
Since p divides both cab and dpb, it must divide b.

Our final result is the well-known fundamental theorem of arithmetic.
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Proposition A.1.6 Every integer n > 1 has a prime power factorization

n = pm1
1 · · · pmk

k ,

where p1 through pk are prime numbers and m1 through mk are positive
integers. This factorization is unique up to permutation of the factors.

Proof: The proof is by induction on n. The assertion is obvious for n = 2.
Therefore consider a general n > 2, and assume the assertion is true for
all positive integers between 2 and n− 1. If n is prime, then we are done.
Otherwise, n = ab for a > 1 and b > 1. By the induction hypothesis, a and
b can both be represented as a product of primes. It follows that n can be
so represented. To prove uniqueness, suppose

n = p1p2 · · · ps = q1q2 · · · qt

are two prime factorizations of n. According to Proposition A.1.5, p1 either
divides q1 or the product q2 · · · qt. In the former case, p1 = q1 because
both are primes. Otherwise, p1 divides q2 · · · qt. Again either p1 equals
q2 or divides q3 · · · qt. Eventually we exhaust the partial products in the
second factorization. Thus, p1 = qk for some k, and reordering the primes
in the second factorization if necessary, we can take k = 1. If we apply the
uniqueness part of the induction hypothesis to

n

p1
= p2 · · · ps = q2 · · · qt,

then we can conclude that s = t and the remaining prime factors agree up
to order.

A.2 Nonnegative Matrices

In this section we survey the theory of nonnegative matrices and prove
the celebrated Perron-Frobenius theorem [99, 106, 179, 180]. This theorem
deals with matrices M = (mij) that are square, nonnegative, and irre-
ducible. Irreducibility means that given any two indices i and j, there is a
path k1, . . . , km from k1 = i to km = j such thatmk1k2 · · ·mkm−1km

> 0. Ir-
reducibility has some immediate consequences. For example, the transpose
M t of M ≥ 0 is irreducible whenever M is irreducible. Somewhat more
useful is the fact that the sum of powers S =

∑q
k=1M

k has all entries
positive when q is large enough.

Most of the theory erected by Perron and Frobenius carries over to ma-
trices whose off-diagonal entries are nonnegative but whose diagonal en-
tries may have either sign. A square matrix M is said to be a Metzler-
Leontief matrix if M +μI is nonnegative and irreducible for some constant
μ ≥ 0. The modern extensions of the Perron-Frobenius theorem assert
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that a Metzler-Leontief matrix has a dominant eigenvalue with an essen-
tially unique eigenvector having positive entries. By dominant eigenvalue
we mean an eigenvalue with largest real part.

It turns out that the dominant eigenvalue ρ of a Metzler-Leontief n× n
matrix M is given by the formula

ρ = sup{λ : Mv ≥ λv, for some v ≥ 0, v �= 0} (A.1)

= sup{λ : Mv ≥ λv, for some v ∈ Tn−1},

where all vector inequalities are interpreted entry by entry and the set
Tn−1 = {v ∈ R

n
+ : ‖v‖1 = 1} is the unit simplex equipped with the stan-

dard �1 norm ‖v‖1 =
∑n

i=1 |vi| =
∑n

i=1 vi. The formula (A.1) is stated
for column vectors. It can be restated for row vectors, and all subsequent
theoretical results are valid under this substitution. Observe that the row
version of ρ and the column version of ρ coincide because M and M t share
all eigenvalues.

We will prove the next few propositions under the assumption that the
matrix M is nonnegative and irreducible. The general case is recovered by
adding a large enough positive multiple μI of the identity to M so that
M+μI is nonnegative and irreducible. All but one claim of the propositions
deduced for M + μI remain true for M since ρ(M) = ρ(M + μI) − μ and
inequalities such as Mv ≥ λv and (M+μI)v ≥ (λ+μ)v are equivalent. The
exception is the claim in Proposition A.2.3 that the dominant eigenvalue
also dominates all other eigenvalues in absolute value.

Our first proposition highlights the importance of irreducibility.

Proposition A.2.1 Let M be a Metzler-Leontief matrix. Suppose that
Mv ≥ λv and Mv �= λv, where v ≥ 0 and v �= 0. Then there exists a
number γ > λ and a vector w with w ≥ 0 and w �= 0 such that Mw ≥ γw.
Similarly, if Mv ≤ λv and Mv �= λv, then there exists a number γ < λ
and an appropriate vector w such that Mw ≤ γw.

Proof: Assume that M is nonnegative. If Mv ≥ λv and Mv �= λv, then
we multiply the vector Mv − λv ≥ 0 by the sum S =

∑q
k=1M

k chosen
so that S has all entries positive. The vector w = Sv satisfies the strict
inequality Mw > λw, and we can choose ε > 0 sufficiently small so that
Mw > (λ+ ε)w. The second assertion is demonstrated similarly.

Proposition A.2.2 Suppose M is a Metzler-Leontief matrix. Then the
real number ρ defined by formula (A.1) is an eigenvalue of M with a cor-
responding eigenvector v having positive entries. When M is nonnegative,
ρ is positive. Furthermore, any other eigenvector u associated with ρ is a
multiple of v.

Proof: Under the assumption that M is nonnegative, the set

A = {λ : Mv ≥ λv, for some v ∈ Tn−1}
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clearly contains the number 0. Let

‖M‖1 = max
1≤j≤n

n∑

i=1

mij

denote the matrix norm induced by the �1 vector norm. If Mv ≥ λv and
λ ≥ 0, then the inequality

λ‖v‖1 ≤ ‖M‖1‖v‖1

shows that λ ≤ ‖M‖1. Hence, A is bounded above by ‖M‖1, and its supre-
mum ρ exists. Let λn be a sequence of scalars and vn a sequence of vectors
in Tn−1 such that λn tends to ρ and Mvn ≥ λnvn. Since Tn−1 is compact,
by passing to a subsequence if necessary, we can assume that vn converges
to a vector v in Tn−1. An appeal to continuity shows that Mv ≥ ρv. If
Mv �= ρv, then application of Proposition A.2.1 produces a substitute vec-
tor w with Mw ≥ γw for γ > ρ. But this contradicts the definition of ρ, and
we are forced to conclude that Mv = ρv. Finally, the equality Mkv = ρkv,
valid for all positive integers k, demonstrates that (ρ+ · · ·+ρq)v = Sv > 0
and therefore that ρ and all entries of v are positive.

Consider another eigenvector u �= v associated with ρ. If u is complex,
then the real and imaginary parts of u are also eigenvectors associated with
ρ. To prove that u is a multiple of v, it suffices to prove that both of these
are real multiples of v. Thus, we take u to have real entries and define
the eigenvector w = v − tu for a scalar t. Given that the entries of v are
positive, we can take t �= 0 so that w ≥ 0 and at least one entry wi is 0.
If w = 0 we are done; otherwise applying the matrix S to w leads to the
strict inequality (ρ + · · · + ρq)w = Sw > 0, contradicting the assumption
wi = 0. Hence, w = 0 and u = t−1v.

Proposition A.2.3 The eigenvalue ρ discussed in Proposition A.2.2 dom-
inates all other eigenvalues in the sense of having largest real part. If M
is nonnegative and some power Mk of M has all entries positive, then ρ
dominates all other eigenvalues in absolute value as well.

Proof: Assuming M is nonnegative and taking absolute values entry by
entry in the equality Mu = λu produce the inequality |λ|w ≤ Mw for the
vector w with entries wi = |ui|. In view of the definition (A.1) of ρ, this
inequality implies that |λ| ≤ ρ. Unless λ = ρ, the real part of λ must be
strictly less than ρ. This demonstrates the first claim.

For the second claim, assume that |λ| = ρ. If |λ|w �= Mw, then Propo-
sition A.2.1 proves that |λ| < ρ. Thus, suppose Mw = |λ|w. Successive
multiplications of this equality by M yield Mkw = |λ|kw. Comparison to
the similar equality Mku = λku shows that

n∑

j=1

mk
ij |uj | =

∣
∣
∣
∣

n∑

j=1

mk
ijuj

∣
∣
∣
∣ (A.2)
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for all i, where Mk has entries mk
ij > 0. Equation (A.2) involving the

complex entries of u can only be true if all uj are positive multiples of the
same complex number. Dividing Mu = λu by this complex number shows
that w is an eigenvector of both λ and |λ|. This can occur for w �= 0 only
if λ = |λ| = ρ. In other words, an eigenvalue λ either coincides with ρ or
has absolute value |λ| < ρ.

There is also a dual characterization of the dominant eigenvalue.

Proposition A.2.4 The dominant eigenvalue ρ of a Metzler-Leontief ma-
trix M satisfies

ρ = inf{λ : Mv ≤ λv, for some v ≥ 0, v �= 0}
= inf{λ : Mv ≤ λv, for some v ∈ Tn−1}.

Proof: According to Propositions A.2.2 and A.2.3, the dominant eigenvalue
ρ is a real number possessing row and column eigenvectors ut and w with
positive entries. Clearly, ρ and w satisfy Mw ≤ ρw. If λ and v ∈ Tn−1

satisfy Mv ≤ λv, then multiplying both sides of this inequality by ut yields
ρutv ≤ λutv. Because utv is positive, division by it produces ρ ≤ λ.

As an example of the theory just developed, consider a continuous-time
branching process with n types. The generator Ω of the mean matrix for
the process can be written as the product Ω = Λ(F − I), where F is the
reproduction matrix, Λ is the diagonal matrix with inverse life expectancies
λi along its diagonal, and I is the n-dimensional identity matrix.

Proposition A.2.5 The dominant eigenvalues ρ(Ω) and ρ(F − I) are si-
multaneously strictly less than 0, equal to 0, or strictly greater than 0.

Proof: The inequality vtΩ ≥ 0t is valid if and only if the inequality
wt(F − I) ≥ 0t is valid, where wt = vtΛ. Similarly, the conditions v ≥ 0
and w ≥ 0 are equivalent, and the conditions v �= 0 and w �= 0 are equiv-
alent. Proposition A.2.2 therefore implies that if either ρ(Ω) or ρ(F − I)
is nonnegative, then the other is also nonnegative. Similarly, if either is
nonpositive, then Proposition A.2.4 implies that the other is also nonpos-
itive. We complete the proof by excluding the possibility that one of ρ(Ω)
and ρ(F − I) equals zero but the other is nonzero. Suppose for the sake
of argument that ρ(Ω) > 0 while ρ(F − I) = 0. Then there exist λ > 0
and v ≥ 0 with v �= 0 and vtΩ ≥ λvt. But this means wt(F − I) ≥ 0t and
wt(F −I) �= 0t. Proposition A.2.1 now forces ρ(F −I) > 0, a contradiction.
Other cases where one dominant eigenvalue is zero and the other is nonzero
are handled similarly.
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A.3 The Finite Fourier Transform

Periodic sequences {cj}∞j=−∞ of period n constitute the natural domain of
the finite Fourier transform. The transform of such a sequence is defined
by

ĉk =
1

n

n−1∑

j=0

cje
−2πi jk

n . (A.3)

From this definition it follows immediately that the finite Fourier transform
is linear and maps periodic sequences into periodic sequences with the same
period. The inverse transform turns out to be

ďj =

n−1∑

k=0

dke
2πi jk

n . (A.4)

It is fruitful to view each of these operations as a matrix times vector
multiplication. Thus, if we let un = e2πi/n denote the principal nth root
of unity, then the finite Fourier transform represents multiplication by the
matrix (u−kj

n /n) and the inverse transform multiplication by the matrix
(ujk

n ). To warrant the name “inverse transform,” the second matrix should
be the inverse of the first. Indeed, we have

n−1∑

l=0

ujl
n

1

n
u−kl

n =
1

n

n−1∑

l=0

u(j−k)l
n

=

{
1
n

1−u(j−k)n
n

1−uj−k
n

j �= k mod n
1
nn j = k mod n

=

{
0 j �= k mod n
1 j = k mod n.

More symmetry in the finite Fourier transform (A.3) and its inverse (A.4)
can be achieved by replacing the factor 1/n in the transform by the factor
1/

√
n. The inverse transform then includes the 1/

√
n factor as well, and

the matrix (u−kj
n /

√
n) is unitary.

We modify periodic sequences of period n by convolution, translation,
reversion, and stretching. The convolution of two periodic sequences cj and
dj is the sequence

c ∗ dk =

n−1∑

j=0

ck−jdj =

n−1∑

j=0

cjdk−j

with the same period. The translate of the periodic sequence cj by index r
is the periodic sequence Trcj defined by Trcj = cj−r. Thus, the operator Tr
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translates a sequence r places to the right. The reversion operator R takes
a sequence cj into Rcj = c−j . Finally, the stretch operator Sr interpolates
r − 1 zeros between every pair of adjacent entries of a sequence cj . In
symbols,

Srcj =

{
c j

r
r | j

0 r � | j,

where r | j indicates r divides j without remainder. The sequence Srcj has
period rn, not n. For instance, if n = 2 and r = 2, the periodic sequence
. . . , 1, 2, 1, 2 . . . becomes . . . , 1, 0, 2, 0, 1, 0, 2, 0, . . . .

Proposition A.3.1 The finite Fourier transform satisfies the rules:

(a) ĉ ∗ dk = nĉkd̂k

(b) T̂rck = u−rk
n ĉk

(c) R̂ck = Rĉk = ĉ∗
∗
k

(d) Ŝrck = ĉk

r .

In (d) the transform on the left has period rn.

Proof: To prove rule (d), note that

Ŝrck =
1

rn

rn−1∑

j=0

Srcju
−jk
rn

=
1

rn

n−1∑

l=0

c lr
r
u−lrk

rn

=
1

rn

n−1∑

l=0

clu
−lk
n

=
ĉk
r
.

Verification of rules (a) through (c) is left to the reader.

The naive approach to computing the finite Fourier transform (A.3) takes
3n2 arithmetic operations (additions, multiplications, and complex expo-
nentiations). The fast Fourier transform accomplishes the same task in
O(n logn) operations when n is a power of 2. Proposition A.3.1 lays the
foundation for deriving this useful and clever result.

Consider a sequence cj of period n, and suppose n factors as n = rs.
For k = 0, 1, . . . , r − 1, define related sequences ckj according to the recipe

ckj = cjr+k. Each of these secondary sequences has period s. We now argue
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that we can recover the primary sequence through

cj =

r−1∑

k=0

TkSrc
k
j . (A.5)

In fact, TkSrc
k
j = 0 unless r | j−k. The condition r | j−k occurs for exactly

one value of k between 0 and r − 1. For the chosen k,

TkSrc
k
j = ckj−k

r

= c j−k
r

r+k

= cj .

In view of properties (b) and (d) of Proposition A.3.1, taking the finite
Fourier transform of equation (A.5) gives

ĉj =

r−1∑

k=0

u−kj
n Ŝrckj =

r−1∑

k=0

u−kj
n

1

r
ĉkj . (A.6)

Now let Op(n) denote the number of operations necessary to compute a
finite Fourier transform of period n. From equation (A.6) it evidently takes

3r operations to compute each ĉj once the ĉkj are computed. Since there
are n numbers ĉj to compute and r sequences ckj , it follows that

Op(n) = 3nr + rOp(s). (A.7)

If r is prime but s is not, then the same procedure can be repeated on each
ckj to further reduce the amount of arithmetic. A simple inductive argument
based on (A.7) that splits off one prime factor at a time yields

Op(n) = 3n(p1 + · · · + pd),

where n = p1 · · · pd is the prime factorization of n. In particular, if n = 2d,
then Op(n) = 6n log2 n. In this case, it is noteworthy that all computa-
tions can be done in place without requiring computer storage beyond that
allotted to the original vector (c0, . . . , cn−1)

t [31, 87, 163, 206].

A.4 The Fourier Transform

The Fourier transform can be defined on a variety of function spaces [54,
65, 117, 135, 174]. For our purposes, it suffices to consider complex-valued,
integrable functions whose domain is the real line. The Fourier transform
of such a function f(x) is defined according to the recipe

f̂(y) =

∫ ∞

−∞
eiyxf(x)dx
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for all real numbers y. By integrable we mean

∫ ∞

−∞
|f(x)|dx < ∞.

In the sequel we usually omit the limits of integration. If f(x) is a probabil-

ity density, then the Fourier transform f̂(y) coincides with the characteristic
function of f(x).

Table A.1 summarizes the operational properties of the Fourier trans-
form. In the table, a, b, x0, and y0 are constants, and the functions f(x),
xf(x), d

dxf(x), and g(x) are assumed integrable as needed. In entry (g),
f(x) is taken to be absolutely continuous. This is a technical condition per-
mitting integration by parts and application of the fundamental theorem
of calculus.

TABLE A.1. Fourier Transform Pairs

Function Transform Function Transform

(a) af(x) + bg(x) af̂(y) + bĝ(y) (e) f(x)∗ f̂(−y)∗

(b) f(x− x0) eiyx0 f̂(y) (f) ixf(x) d
dy f̂(y)

(c) eiy0xf(x) f̂(y + y0) (g) d
dxf(x) −iyf̂(y)

(d) f(x
a ) |a|f̂(ay) (h) f ∗ g(x) f̂(y)ĝ(y)

The next two propositions present deeper properties of the Fourier trans-
form.

Proposition A.4.1 (Riemann-Lebesgue) If the function f(x) is inte-

grable, then its Fourier transform f̂(y) is bounded, continuous, and tends
to 0 as |y| tends to ∞.

Proof: The transform f̂(y) is bounded because

|f̂(y)| =
∣
∣
∣

∫

eiyxf(x)dx
∣
∣
∣

≤
∫

|eiyx||f(x)|dx (A.8)

=

∫

|f(x)|dx.
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To prove continuity, let limn→∞ yn = y. Then the sequence of functions
gn(x) = eiynxf(x) is bounded in absolute value by |f(x)| and satisfies

lim
n→∞

gn(x) = eiyxf(x).

Hence the dominated convergence theorem implies that

lim
n→∞

∫

gn(x)dx =

∫

eiyxf(x)dx.

To prove the last assertion, we use the fact that the space of step functions
with bounded support is dense in the space of integrable functions. Thus,
given any ε > 0, there exists a step function

g(x) =

m∑

j=1

cj1[xj−1,xj)(x)

vanishing off some finite interval and satisfying
∫
|f(x) − g(x)|dx < ε. The

Fourier transform ĝ(y) has the requisite behavior at ∞ because the indica-
tor function 1[xj−1,xj)(x) has Fourier transform

∫ xj

xj−1

eiyx)dx = ei 1
2 (xj−1+xj)y

sin[12 (xj − xj−1)y]
1
2y

.

This allows us to calculate

ĝ(y) =

m∑

j=1

cje
i 1
2 (xj−1+xj)y

sin[12 (xj − xj−1)y]
1
2y

,

and this finite sum clearly tends to 0 as |y| tends to ∞. The original trans-

form f̂(y) exhibits the same behavior because the bound (A.8) entails the
inequality

|f̂(y)| ≤ |f̂(y) − ĝ(y)| + |ĝ(y)|
≤ ε+ |ĝ(y)|.

This completes the proof.

Proposition A.4.2 Let f(x) be a bounded, continuous function. If f(x)

and f̂(y) are both integrable, then

f(x) =
1

2π

∫

e−iyxf̂(y)dy. (A.9)
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Proof: Consider the identities

1

2π

∫

e−iyxe−
y2

2σ2 f̂(y)dy =
1

2π

∫

e−iyxe−
y2

2σ2

∫

eiyuf(u)du dy

=

∫

f(u)
1

2π

∫

eiy(u−x)e−
y2

2σ2 dy du

=

∫

f(u)
σ√
2π
e−

σ2(u−x)2

2 du

=
1√
2π

∫

f
(
x+

v

σ

)
e−

v2

2 dv,

which involve Example 2.4.1 and the change of variables u = x + v/σ. As
σ tends to ∞, the last integral tends to

1√
2π

∫

f(x)e−
v2

2 dv = f(x),

while the original integral tends to

1

2π

∫

e−iyx lim
σ→∞

e−
y2

2σ2 f̂(y)dy =
1

2π

∫

e−iyxf̂(y)dy.

Equating these two limits yields the inversion formula (A.9).

A.5 Fourier Series

The space L2[0, 1] of square-integrable functions on [0,1] is the prototype
for all Hilbert spaces [54, 174, 189]. The structure of L2[0, 1] is determined
by the inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)∗dx

and its associated norm ‖f‖ = 〈f, f〉1/2. It is well known that the com-
plex exponentials {e2πinx}∞n=−∞ provide an orthonormal basis for L2[0, 1].
Indeed, the calculation

∫ 1

0

e2πimxe−2πinxdx =

{
1 m = n
e2πi(m−n)x

2πi(m−n)

∣
∣
∣
1

0
m �= n

=

{
1 m = n
0 m �= n

shows that the sequence is orthonormal. Completeness is essentially a con-
sequence of Fejér’s theorem [54], which says that any periodic, continuous
function can be uniformly approximated by a linear combination of sines
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and cosines. (Fejér’s theorem is a special case of the more general Stone-
Weierstrass theorem [90].) The Fourier coefficients of f(x) are computed
according to the standard recipe

cn =

∫ 1

0

f(x)e−2πinxdx.

The Fourier series
∑∞

n=−∞ cne
2πinx is guaranteed to converge to f(x) in

mean square. The more delicate issue of pointwise convergence is partially
covered by the next proposition. In the proposition and subsequent discus-
sion, we implicitly view every function f(x) defined on [0,1] as extended
periodically to the whole real line via the equation f(x+ 1) = f(x).

Proposition A.5.1 Assume that the square-integrable function f(x) on
[0,1] is continuous at x0 and possesses both one-sided derivatives there.
Then

lim
m→∞

m∑

n=−m

cne
2πinx0 = f(x0).

Proof: Extend f(x) to be periodic, and consider the associated periodic
function

g(x) =
f(x+ x0) − f(x0)

e−2πix − 1
.

Applying l’Hôpital’s rule yields

lim
x→0+

g(x) =
d
dxf(x+

0 )

−2πi
,

where d
dxf(x+

0 ) denotes the one-sided derivative from the right. A similar
expression holds for the limit from the left. Since these two limits are finite

and
∫ 1

0 |f(x)|2dx <∞, we have
∫ 1

0 |g(x)|2dx <∞ as well.
Now let dn be the nth Fourier coefficient of g(x). Because

f(x+ x0) = f(x0) + (e−2πix − 1)g(x),

it follows that

cne
2πinx0 =

∫ 1

0

f(x)e−2πin(x−x0)dx

=

∫ 1

0

f(x+ x0)e
−2πinxdx

= f(x0)1{n=0} + dn+1 − dn.
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Therefore,

m∑

n=−m

cne
2πinx0 = f(x0) +

m∑

n=−m

(dn+1 − dn)

= f(x0) + dm+1 − d−m.

To complete the proof, observe that

lim
|m|→∞

dm = lim
|m|→∞

∫ 1

0

g(x)e−2πimxdx

= 0

by Proposition A.4.1.

Example A.5.1 Bernoulli Functions

To derive the Euler-Maclaurin summation formula, one must introduce
Bernoulli polynomials Bn(x) and periodic Bernoulli functions bn(x). Let
us start with the Bernoulli polynomials. These are defined by the three
conditions

B0(x) = 1

d

dx
Bn(x) = nBn−1(x), n > 0 (A.10)

∫ 1

0

Bn(x)dx = 0, n > 0.

For example, we calculate recursively

B1(x) = x− 1

2

B2(x) = 2
(x2

2
− x

2
+

1

12

)
.

The Bernoulli function bn(x) coincides with Bn(x) on [0, 1). Outside [0, 1),
bn(x) is extended periodically. In particular, b0(x) = B0(x) = 1 for all x.
Note that b1(x) is discontinuous at x = 1 while b2(x) is continuous. All
subsequent bn(x) are continuous at x = 1 because

Bn(1) −Bn(0) =

∫ 1

0

d

dx
Bn(x)dx = n

∫ 1

0

Bn−1(x)dx = 0

by assumption.
To compute the Fourier series expansion

∑
k cnke

2πikx of bn(x) for n > 0,

note that cn0 =
∫ 1

0 Bn(x)dx = 0. For k �= 0, we have

cnk =

∫ 1

0

bn(x)e−2πikxdx
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= bn(x)
e−2πikx

−2πik

∣
∣
∣
1

0
+

1

2πik

∫ 1

0

d

dx
bn(x)e−2πikxdx (A.11)

= bn(x)
e−2πikx

−2πik

∣
∣
∣
1

0
+

n

2πik

∫ 1

0

bn−1(x)e
−2πikxdx.

From the integration-by-parts formula (A.11), we deduce that b1(x) has
Fourier series expansion

− 1

2πi

∑

k �=0

e2πikx

k
.

This series converges pointwise to b1(x) except at x = 0 and x = 1. For
n > 1, the boundary terms in (A.11) cancel, and

cnk =
ncn−1,k

2πik
. (A.12)

Formula (A.12) and Proposition A.5.1 together imply that

bn(x) = − n!

(2πi)n

∑

k �=0

e2πikx

kn
(A.13)

for all n > 1 and all x.
The constant term Bn = Bn(0) is known as a Bernoulli number. One can

compute Bn−1 recursively by expanding Bn(x) in a Taylor series around
x = 0. In view of the defining properties (A.10),

Bn(x) =
n∑

k=0

1

k!

dk

dxk
Bn(0)xk

=

n∑

k=0

1

k!
nkBn−kx

k

=
n∑

k=0

(
n

k

)

Bn−kx
k,

where

nk = n(n− 1) · · · (n− k + 1)

denotes a falling power. The continuity and periodicity of bn(x) for n ≥ 2
therefore imply that

Bn = Bn(1) =

n∑

k=0

(
n

k

)

Bn−k.
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Subtracting Bn from both sides of this equality gives the recurrence relation

0 =

n∑

k=1

(
n

k

)

Bn−k

for computing Bn−1 fromB0, . . . , Bn−2. For instance, starting fromB0 = 1,
we calculate B1 = −1/2, B2 = 1/6, B3 = 0, and B4 = −1/30. From the
expansion (A.13), evidently Bn = 0 for all odd integers n > 1.

A.6 Laplace’s Method and Watson’s Lemma

Here we undertake a formal proof of the second Laplace asymptotic formula
(12.6). Proof of the first formula (12.4) is similar.

Proposition A.6.1 If the conditions

(a) for every δ > 0 there exists a ρ > 0 with g(y) − g(0) ≥ ρ for |y| ≥ δ,

(b) g(y) is twice continuously differentiable in a neighborhood of 0 and
g′′(0) > 0,

(c) f(y) is continuous in a neighborhood of 0 and f(0) > 0,

(d) the integral
∫∞
−∞ f(y)e−xg(y)dy is absolutely convergent for x ≥ x1,

are satisfied, then the asymptotic relation (12.6) obtains.

Proof: By multiplying both sides of the asymptotic relation (12.6) by
exg(0), we can assume without loss of generality that g(0) = 0. Because g(y)
has its minimum at y = 0, l’Hôpital’s rule implies g(y)− 1

2g
′′(0)y2 = o(y2)

as y → 0. Now let a small ε > 0 be given, and choose δ > 0 sufficiently
small so that the inequalities

(1 − ε)f(0) ≤ f(y)

≤ (1 + ε)f(0)
∣
∣
∣g(y) −

1

2
g′′(0)y2

∣
∣
∣ ≤ εy2

hold for |y| ≤ δ. Assumption (a) guarantees the existence of a ρ > 0 with
g(y) ≥ ρ for |y| ≥ δ.

We next show that the contributions to the Laplace integral from the
region |y| ≥ δ are negligible as x→ ∞. Indeed, for x ≥ x1,

∣
∣
∣
∣

∫ ∞

δ

f(y)e−xg(y)dy

∣
∣
∣
∣ ≤

∫ ∞

δ

|f(y)|e−(x−x1)g(y)e−x1g(y)dy

≤ e−(x−x1)ρ

∫ ∞

δ

|f(y)|e−x1g(y)dy

= O(e−ρx).
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Likewise,
∫ −δ

−∞ f(y)e−xg(y)dy = O(e−ρx).
Owing to our choice of δ, the central portion of the integral satisfies

∫ δ

−δ

f(y)e−xg(y)dy ≤ (1 + ε)f(0)

∫ δ

−δ

e−
x
2 [g′′(0)−2ε]y2

dy.

Duplicating the above reasoning,

∫ −δ

−∞
e−

x
2 [g′′(0)−2ε]y2

dy +

∫ ∞

δ

e−
x
2 [g′′(0)−2ε]y2

dy = O(e−ωx),

where ω = 1
2 [g′′(0) − 2ε]δ2. Thus,

(1 + ε)f(0)

∫ δ

−δ

e−
x
2 [g′′(0)−2ε]y2

dy

= (1 + ε)f(0)

∫ ∞

−∞
e−

x
2 [g′′(0)−2ε]y2

dy +O(e−ωx)

= (1 + ε)f(0)

√
2π

x[g′′(0) − 2ε]
+O(e−ωx).

Assembling all of the relevant pieces, we now conclude that

∫ ∞

−∞
f(y)e−xg(y)dy ≤ (1 + ε)f(0)

√
2π

x[g′′(0) − 2ε]

+O(e−ρx) +O(e−ωx).

Hence,

lim sup
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≤ (1 + ε)f(0)

√
2π

[g′′(0) − 2ε]
,

and sending ε→ 0 produces

lim sup
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≤ f(0)

√
2π

g′′(0)
.

A similar argument gives

lim inf
x→∞

√
x

∫ ∞

−∞
f(y)e−xg(y)dy ≥ f(0)

√
2π

g′′(0)

and proves the proposition.
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Proof of Watson’s lemma in Section 12.3.2 is easier to sketch. The asymp-
totic expansion for f(x) entails the bound

∣
∣
∣
∣f(x) −

n−1∑

k=0

akx
λk−1

∣
∣
∣
∣ ≤ bxλn−1

for some b > 0 and x close to 0. Together with the assumption that f(x)
is O(ecx) as x → ∞, this implies the existence of another constant d such
that

∣
∣
∣
∣f(x) −

n−1∑

k=0

akx
λk−1

∣
∣
∣
∣ ≤ decxxλn−1

for all x. Taking Laplace transforms now gives

∣
∣
∣
∣f̃(t) −

n−1∑

k=0

ak
Γ(λk)

tλk

∣
∣
∣
∣ ≤ d

Γ(λn)

(t− c)λn
� d

Γ(λn)

tλn

as t→ ∞.

A.7 A Tauberian Theorem

In this section we prove Proposition 15.5.2 using Cauchy’s integral formula.
For T > 0 set

ĝT (s) =

∫ T

0

g(t)e−stdt.

This function is entire, that is analytic throughout the complex plane, and
the proposition asserts that limT→∞ ĝT (0) = ĝ(0). The assumption that
ĝ(s) can be continued to the imaginary axis guarantees that ĝ(0) exists.

To apply Cauchy’s formula, we let R be a large positive radius and define
the contour C as the boundary of the region {s : |s| ≤ R,Re(s) ≥ −δ} in the
complex plane. Here δ > 0 is chosen small enough so that ĝ(s) is analytic
inside and on C. In general, δ will depend on R. Now Cauchy’s theorem
implies that

ĝ(0) − ĝT (0) =
1

2πi

∫

C

[ĝ(s) − ĝT (s)]esT

(

1 +
s2

R2

)
1

s
ds. (A.14)

On the semicircle C+ = C ∩ {Re(s) > 0}, the integrand is bounded by
2B/R2, where B = supt≥0 |g(t)|. This bound follows from the inequality

∣
∣
∣ĝ(s) − ĝT (s)

∣
∣
∣ =

∣
∣
∣

∫ ∞

T

g(t)e−stdt
∣
∣
∣
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≤ B

∫ ∞

T

e−Re(s)tdt

=
Be−Re(s)T

Re(s)

and the equality

∣
∣
∣
∣e

sT

(

1 +
s2

R2

)
1

s

∣
∣
∣
∣ = eRe(s)T

∣
∣
∣
∣
1

s
+

s

|s|2

∣
∣
∣
∣

= eRe(s)T

∣
∣
∣
∣
s∗ + s

|s|2

∣
∣
∣
∣ (A.15)

= eRe(s)T 2|Re(s)|
|R|2 ,

with the understanding that |s| = R on C+ and s∗ is the complex conjugate
of s. Because the length of C+ equals πR, the contribution of C+ to the
integral (A.14) is dominated by B/R.

For the integral over C− = C ∩ {Re(s) < 0}, we deal with the terms
involving ĝ(s) and ĝT (s) separately. Since ĝT (s) is an entire function, we
can deform the contour C− to the semicircle {s : |s| = R,Re(s) ≤ 0}
without changing the value of the integral. With this change in mind,

∣
∣
∣ĝT (s)

∣
∣
∣ =

∣
∣
∣

∫ T

0

g(t)e−stdt
∣
∣
∣

≤ B

∫ T

0

e−Re(s)tdt

≤ B

∫ T

−∞
e−Re(s)tdt

=
Be−Re(s)T

|Re(s)| .

Because equality (A.15) is still valid, the integrand is again bounded by
2B/R2 and the integral along the semicircle by B/R.

If we can show that the integral along C− involving ĝ(s) tends to 0 as T
tends to ∞, then it is clear that lim supT→∞ |ĝ(0)− ĝT (0)| ≤ 2B/R. Hence,
sending R to ∞ gives the desired conclusion. Therefore, consider the final
integral. Its integrand is the product of the function ĝ(s)(1 + s2/R2)/s,
which does not depend on T , and the function esT , which converges expo-
nentially fast to 0 along C− as T tends to ∞. Thus for any fixed R, the
integral along C− involving ĝ(s) tends to 0 as T tends to ∞.
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Abel’s summation formula, 383
Absorbing state, 165
Acceptance function, 184
Adapted random variable, 255
Aperiodicity, 152
Arithmetic function, 375

periodic, 385
Arithmetic-geometric mean inequal-

ity, 58
Asymptotic expansions, 298

incomplete gamma function,
303

Laplace’s method, 304–308,
410–411

order statistic moments, 305
Poincaré’s definition, 303
Stieltjes function, 318
Stirling’s formula, 306
Taylor expansions, 299

Asymptotic functions, 299
examples, 318–320

Azuma-Hoeffding bound, 264
Azuma-Hoeffding theorem, 260

Backtracking, 109

Backward equations, 189
Balance equation, 191
Barker’s function, 184
Bayes’ rule, 15
Bell numbers, 77, 119
Bernoulli functions, 308–310, 408–

410
Bernoulli numbers, 409

Euler-Maclaurin formula, in,
309

Bernoulli polynomials, 308–310, 321,
408–410

Bernoulli-Laplace model, 175
Bernstein polynomial, 67, 72
Bessel process, 275, 284
Beta distribution, 12, 90, 179

asymptotics, 308
mean, 39

Beta-binomial distribution, 29, 47
Biggest random gap, 358
Binary expansions, 316
Binomial distribution, 12, 51, 178

factorial moments, 33
Biorthogonality, 164
Bipartite graph, 155
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Birthday problem, 305, 357
Block matrix decomposition, 166
Bonferroni inequality, 82
Borel sets, 3
Borel-Cantelli lemma, 5, 324

partial converse of, 20
Bradley-Terry ranking model, 64
Branching process, 217, 340

convergence, 254
criticality, 229
irreducible, 229
martingale, 251
multitype, 229–231

Brownian motion, 270, 272–275
Buffon needle problem, 28

Campbell’s moment formulas, 139–
142

Cancer models, 167, 243–245
Cantelli’s inequality, 71
Catalan numbers, 84–85

asymptotics, 308
Cauchy distribution, 17
Cauchy-Schwarz inequality, 66, 256
Cell division, 218
Central limit theorem, 316
Change of variables formula, 16
Chapman-Kolmogorov relation, 191
Characteristic function, 6

example of oscillating, 35
table of common, 12

Chebyshev’s bound, 268
Chebyshev’s inequality, 67
Chen’s lemma, 41
Chen-Stein method, 355

proof, 363–368
Chernoff’s bound, 67, 72
Chi-square distribution, 47, 51
Cholesky decomposition, 19
Circuit model, 196
Circulant matrix, 351
Cofinite subset, 20
Coin tossing, waiting time, 352
Compact set, 192
Composition chain, 213

Conditional probability, 6
Connected graph, 155
Convergence

almost sure, 314, 324
in distribution, 315, 324
in probability, 314, 324

Convex functions, 56–60
minimization, 61–63

Convex set, 56
Convolution

finite Fourier transform, 401
integral equation, 336

Coupling, 158–163
applications, 178–179
independence sampler, 171

Covariance, see Variance

Density
as likelihood, 13
conditional, 15
marginal, 15
table of common densities, 12

Detailed balance, 153, 192
Hasting-Metropolis algorithm,

in, 169
Diagonally dominant matrix, 337,

353
Differentiable functions, 57
Differential, see Jacobian
Diffusion process, 270–272

first passage, 282
moments, 280
numerical method, 343–347

Dirichlet distribution, 44
as sum of gammas, 52
variance and covariance, 52

Dirichlet product, 379
Distribution, 9

and symmetric densities, 22
continuous, 10
convolution of, 13
discrete, 9
marginal, 15
of a random vector, 14
of a transformation, 16
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table of common, 12
DNA sequence analysis, 115
Doob’s martingale, 250

Ehrenfest diffusion, 156, 180, 211
Eigenvalues and eigenvectors, 163–

165, 172, 207
Epidemics, 219
Equilibrium distribution, 152, 190

existence of, 160
Ergodic theorem, 153
ESP example, 50
Euclidean norm, 57
Euler’s constant, 88, 310
Euler’s totient function, 81, 377
Euler-Maclaurin formula, 308–311
Eulerian numbers, 120, 324
Ewens’ sampling distribution, 91
Exchangeable random variable, 80
Expectation, 4

and subadditivity, 114–117
conditional, 6, 29–31

sum of i.i.d. random vari-
ables, 7

differentiation and, 5
of a random vector, 14

Exponential distribution, 12
bilateral, 49
convolution of gammas, 32
lack of memory, 129

Exponential integral, 302
Extinction, 221
Extinction probability, 217, 224

geometric distribution, 223

Faà di Bruno’s formula, 91
Family name survival, 219
Family planning model, 31, 135
Fast Fourier transform, 402–403

applications, 331–335
Fatou’s lemma, 4
Fejér’s theorem, 406
Fibonacci numbers, 77, 119

asymptotics, 312
Filter, 248

Finite Fourier transform
computing, see Fast Fourier

transform
definition, 401
examples, 350–353
inversion, 401
properties, 402

Finnish population growth, 348
Flux, 271
Formation of polymers, 238
Forward equations, 200
Four-color theorem, 184
Fourier coefficients, 320–321, 407
Fourier inversion, see Inversion for-

mula
Fourier series, 332, 406

Bernoulli polynomials, 408
pointwise convergence, 407

Fourier transform
definition, 403
function pairs, table of, 404
inversion, 405
Riemann-Lebesgue lemma, 405

Fractional linear transformation,
236

Fubini’s theorem, 9
Fundamental theorem of arithmetic,

374, 397

Gambler’s ruin, 258
Gamma distribution, 12, 49, 91

as convolution, 32
characteristic function, 32
inverse, 38

Gamma function, 60
asymptotic behavior, 306

Gauss-Seidel algorithm, 329–331
block version, 331

Gaussian, see Normal distribution
Gaussian elimination, 328
Generalized hyperbolic functions,

145
Generating function, see Progeny

generating function
coin toss wait time, 352
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convolution, 332
jump counting, 336

Genetic drift, see Wright-Fisher
model

Geometric distribution, 12
Geometric progeny, 220
Gibbs prior, 133
Gibbs sampling, 170
Gillespie’s algorithm, 340
Graph coloring, 108–112
Group homomorphism, 236

Hölder’s inequality, 69
Hadamard product, 23
Hamming distance, 362
Harmonic series, 310
Hastings-Metropolis algorithm, 168–

171
aperiodicity, 184
Gibbs sampler, 170
independence sampler, 169

convergence, 171–172
random walk sampling, 169

Heron’s formula, 70
Hessian matrix, 58
Hitting probability, 165

matrix decomposition, 166
Hitting time, 165–167

expectation, 166
HIV

new cases of AIDS, 138
viral reproduction, 231

Huffman bit string, 106
Huffman coding, 106–108

string truncation, 108
vowel tree, 106

Huntington’s disease, 227
Hurwitz’s zeta function, 385
Hyperbolic trigonometric functions,

146
Hypergeometric distribution, 7, 178

Immigration, 225–229
Importance ratio, 169, 171
Inclusion-exclusion formula, 78–83

Incomplete gamma function, 303
Independence, 8
Independence sampler, 169

convergence, 171–172
Indicator random variable, 4

sums of, 25
Inequality, 66–69

arithmetic-geometric mean, 58
Cantelli’s, 71
Cauchy-Schwarz, 66
Chebyshev’s, 67
Hölder’s, 69
Jensen’s, 68
Markov’s, 66
Minkowski’s, 73
Schlömilch’s, 68

Infinitesimal generator, 190
Infinitesimal mean, 270
Infinitesimal transition matrix, see

Infinitesimal generator
Infinitesimal transition probabil-

ities, see Transition in-
tensity

Infinitesimal variance, 270
Inner product in Rn, 112
Integrable function, 404
Integration by parts, 302–303
Intensity, 188
Intensity leaping, 339–343
Inversion formula, 11
Involution, 96
Irreducibility, 153
Ising model, 170

Jacobi algorithm, 329–331
block version, 331

Jacobian, 16
Jensen’s inequality, 68

Kendall’s birth-death-immigration
process, 200–206, 215, 276,
342

Kimura’s model of DNA substitu-
tion, 193, 199, 210, 339

Kirchhoff’s laws, 197
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Kolmogorov’s circulation criterion,
154

Kolmogorov’s forward equation, 272,
344

Laplace transform, 34, 37, 254, 320,
337, 388

Laplace’s method, 304–308, 320,
410–411

Law of rare events, 360
Least absolute deviation, 65
Left-to-right maximum, 88
Liapunov function, 191
Light bulb problem, 176
Likelihood, 13
Lindeberg’s condition, 316
Liouville’s arithmetic function, 393
Lipschitz condition, 262
Logarithmic distribution, 301
Logistic distribution, 21
Longest common subsequence, 115,

263
Longest increasing subsequence, 93
Lotka’s surname data, 223

Möbius function, 236, 380
Ménage problem, 356
Marking and coloring, 138–139
Markov chain, 151–154

continuous time
equilibrium distribution, 328

counting jumps, 336–339
ergodic assumptions, 152, 174
intensity leaping, 339
stationary distribution, 152

finite state, 160
transition matrix, 151

Markov chain Monte Carlo, 168–
172

Gibbs sampling, 170
Hastings-Metropolis algorithm,

168–170
simulated annealing, 173–174

Markov property, 20
Markov’s inequality, 66, 261

Martingale, 247–251
convergence, 251
large deviations, 260

Master equations, 341
Matrix exponentials, 197–199
Maximum likelihood estimates, 13,

65
MCMC, see Markov chain Monte

Carlo
Median finding, 118
Minkowski’s triangle inequality, 73
MM algorithm, 63–66
Moment, 11

asymptotics, 305, 318
factorial, 33
generating function, 11
polynomials on a sphere, 43

Moment inequalities, 66–69
Monotone convergence theorem,

4
Moran’s genetics model, 353
Multinomial sampling, 134
Mutant gene survival, 219

Negative binomial distribution, 31,
51, 179

Negative multinomial distribution,
148

Neuron firing, see Ornstein-Uhlenbeck
Neutron chain reaction, 218
Newton’s method, 237
Normal distribution, 12

affine transforms of, 18
characteristic function, 31
characterization of, 36
distribution function

asymptotic expansion, 303
multivariate, 17

maximum likelihood, 62
NP-completeness, 173
Null recurrence, 158
Number-theoretic density, 3

O-notation, see Order relations
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Optional stopping theorem, 255,
257

Order relations, 298–299
examples, 318

Order statistics, 83–84
distribution function of, 83
from an exponential sample,

130
moments, 305–306

Ornstein-Uhlenbeck process, 277,
290

Oxygen in hemoglobin, 193

Pareto distribution, 21
Pascal’s triangle, 76
Pattern matching, 26
Permutation cycles, 87, 317
Permutation inversions, 317
Pigeonhole principle, 93–94
Planar graph, 109
Point sets with acute angles, 112–

113
Poisson distribution, 12, 124, 179

birthday problem, 305
factorial moments, 33

Poisson process, 124
from given intensity function,

126
inhomogeneous, 202–206, 341
one-dimensional, 127
restriction, 137
superposition, 137
transformations, 136–138
transformed expectations, 137
waiting time, 127
waiting time paradox, 130

Polar coordinates, 138
Polya’s model, see Urn model
Polynomial

multiplication, 332
Polynomial on Sn−1, 44
Positive definite quadratic forms,

58
Power method, 328–331
Powers of integers, sum of, 322

Prime integer, 374
Prime number theorem, 386
Probabilistic embedding, 89
Probability measure, 2
Probability space, 2
Product measure formula, 42
Progeny generating function, 218
Proposal distribution, 168

QR decomposition, 18
Quick sort, 104–106

average-case performance, 105
median finding, 118
promotion process, 104

Random circles
in R2, 148
in R3, 149

Random deviates, generating
logistic, 21
Pareto, 21
Weibull, 21

Random permutation, 26
and card shuffling, 158
and Poisson distribution, 80
and Sperner’s theorem, 113
cycles in, 87
fixed points, 46, 80
successive, 259

Random sums, 33, 49
Random variables

correlated, coupling, 158
definition, 3
measurability of, 3

Random walk, 85
as a branching process, 236
coupling, 178
equilibrium, 156, 330
eventual return, 182
first return, 97
hitting probability, 183, 210,

267
hitting time, 183, 210, 267
martingales, 258, 267
on a graph, 155, 176
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renewal theory, 158
sampling, 169
self avoiding, 121

Reaction channel, 340
Recessive gene equilibrium, 290
Recurrence relations, 31

average-case quick sort, 105
Bernoulli numbers, 409
Bernoulli polynomials, 408
family planning model, 47

Relatively prime integers, 374
Renewal equation, 333–335
Renewal process, 157
Repeated uniform sampling, see

Uniform distribution
Residual, 66
Reversion of sequence, 402
Riemann’s zeta function, 70, 374
Riemann-Lebesgue lemma, 404
Right-tail probability, 36
Runs in coin tossing, 323, 335

Sampling without replacement, 27
Scheffe’s lemma, 20
Schlömilch’s inequality, 68, 256
Schrödinger’s method, see Multi-

nomial sampling
Self-adjointness condition, 182
Self-avoiding random walk, 121
Sequential testing, 259
Simulated annealing, 173–174
Skorokhod representation theorem,

315
Smoothing, 350
Socks in the laundry, 89–91

asymptotics, 307
Somatic cell hybrid panels, 360
Sperner’s theorem, 113–114
Splitting entry, 104
Squares of integers, sum of, 322
Starlight intensity, 141
Stationary distribution, see Equi-

librium distribution
Stein’s lemma, 40
Stieltjes function

asymptotic expansion, 318
Stirling numbers, 86–89

first kind, 87
second kind, 86

Stirling’s formula, 94, 306
Euler-Maclaurin formula, de-

rived from, 310
Stochastic domination, 178–179
Stochastic simulation, 339–343
Stone-Weierstrass theorem, 407
Stopping time, 255
Stretching of sequence, 402
Strong law of large numbers, 253
Strong stationary time, 162
Subadditive sequence, 114
Sudoku puzzle, 185
Summation by parts, 301, 383
Superadditive sequence, 114
Superposition process, 90
Surface integral, 42
Surrogate function, 64
Symmetric difference, 20

Tauberian lemma, 412
Taylor expansion, 299–300
Temperature, 173
Top-in shuffling, 162
Total variation norm, 159

binomial-Poisson, 180
Chen-Stein method, 355–356
Ehrenfest process, 211
stopping time, 162

Tower property, 8, 248, 250
Transient state, 165
Transition intensity, 188
Transition probabilities, 188
Translation of sequence, 401
Transmission tomography, 131–134

loglikelihood, 146
Traveling salesman problem, 116,

173, 263
Triangle

in random graph, 99
random points on, 100

Turing’s morphogen model, 353
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Uniform distribution, 12
continuous, 3
discrete, 2
on surfaces, 43
products of, 30
sums of, 34

Uniform process, 89
Uniformization, 199
Urn model, 89–91

Variance, 12
as inner product, 12
of a product of independent

random variables, 22
von Mangoldt function, 379
Von Mises distribution, 319

Waiting time
insurance claim, 149
paradox, 130
train departures, 149

Wald’s identity, 256
Watson’s lemma, 307–308, 412
Weibull distribution, 21
Weierstrass’s approximation the-

orem, 67
and coupling, 159

Weighted mean, 68, 73
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