k company

The eBoo

bookboo



Leif Mejlbro

Probability Examples c-6
Continuous Distributions

2

Download free eBooks at bookboon.com



Probability Examples c-6 — Continuous Distributions
© 2009 Leif Mejlbro & Ventus Publishing ApS
ISBN 978-87-7681-522-6

3

Download free eBooks at bookboon.com



Continuous Distributions Contents

Contents

Introduction 6
1 Some theoretical background 7
11 The exponential distribution 7
1.2 The normal distribution 8
1.3 2-dimensional normal distributions 9
1.4 Conditional normal distribution 10
1.5 Sums of independent normal distributed random variables 11
1.6 The Central Limit Theorem 11
1.7 The Maxwell distribution 13
1.8 The Gamma distribution 13
1.9 The 2 distribution 14
1.10  The tdistribution 15
1.11  The F distribution 17
1.12  Estimation of parameters 17
2 The Exponential Distribution 20
3 The Normal Distribution 31
4 The Central Limit Theorem 46
5 The Maxwell distribution 80
6 The Gamma distribution 83
7 The normal distribution and the Gamma distribution 117
8 Convergence in distribution 122

Free eBook on

Learning & Development
By the Chief Learning Officer of McKinsey

Prof. Dr. Nick H.M, van Dam

21st Century Corporate
Learning & Development

4

Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/Download_Free

Continuous Distributions CHAPTER
9 The 2 distribution 126
10 The F distribution 127
1 The F distribution and the t distribution 130
12 Estimation of parameters 131
Index 167

www.sylvania.com

5

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

o
)

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

Continuous Distributions Introduction

Introduction

This is the sixth book of examples from the Theory of Probability. This topic is not my favourite,
however, thanks to my former colleague, Ole Jorsboe, I somehow managed to get an idea of what it is
all about. The way I have treated the topic will often diverge from the more professional treatment.
On the other hand, it will probably also be closer to the way of thinking which is more common among
many readers, because I also had to start from scratch.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series, so I shall refer the
reader to these books, concerning e.g. plane integrals.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
27th October 2009
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Continuous Distributions 1. Some theoretical background

1 Some theoretical background

1.1 The exponential distribution

A random variable X follows an exponential distribution with parameter a > 0, if its distribution
function F(z) is given by

for z > 0,
0, for x < 0.
The corresponding frequency f(z) is given by
ae %, for z > 0,
0, for z < 0.

We have for an exponentially distributed random variable X with parameter a > 0,

E{X}:é and V{X}:ai?.

In general, if X is exponentially distributed, then
P{X>s+t|X>s}=P{X >t} for s, t >0,
which is equivalent with the formula
P{X >s+1t} =P{X >s} P{X >t} for s, t > 0.
We say that the exponential distribution is forgetful.

In practice, the exponential distribution often occurs as a distribution of lifetimes, which is in particular
the case in queuing theory. In this case the forgetfulness is of paramount importance.

An exponentially distributed random variable X with parameter a > 0 is a special gamma distribution
(cf. the following), so one also writes,

X€F<1,l>
a

for the exponential distribution.

Another type of generalized exponential distributions is the Weibull distribution with parameters a,
b > 0. This is given by the distribution function

1—exp (—axb) , for z > 0,
0, for z < 0.

We note that we get the exponential distribution for b = 1. The Weibull distribution is used in
connection with the theory of reliability.

7
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Continuous Distributions 1. Some theoretical background

1.2 The normal distribution

A random variable X is following a normal distribution with mean 0 and variance 1, and we write
X € N(0,1), if its frequency ¢(x) is given by

72

1
p(r) = Nir exp (—7) , for z € R.

Its distribution function is traditionally denoted by ®(x). It is given by

O(x) = / (t) dt, for z € R,

— 00
which cannot be expressed simpler by elementary functions.

We notice that if X € N(0,1), then
E{X}=0 and V{X} =1,
and ®(—z) =1 — ®(z), and
1—®(z) ~ %cp(x) for © — +oo,

or more precisely,

{l _ i}(p(x) <1-®(z) < %(P(I)-

x a3

360°
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Continuous Distributions 1. Some theoretical background

A random variable X is following a normal distribution with mean p and variance o2, and we write
X €N (u, 0?), if its frequency f(x) is given by

flx) = ! Xp (—M) , forzeR.

o 27re 202

The normal distribution is also called the Gaufian distribution. It plays a central role in the theory
of probability.

Let X; and X3 be two independent N(0,1) distributed random variables, and let a, b be two real
constants. Then the linear combination is normally distributed with mean 0 and variance ¢? = a? +b2,
i.e.

aXi+bXs €N(0,a*+17).

1.3 2-dimensional normal distributions

A 2-dimensional random variable (7, Z5) is normally distributed with the parameters 1, ps € R, and
02,02 >0 and p € [0, 1], if its frequency is given by

2 2
1 1 21— 21—p1 22— 2 09— 2
flz,20) = ———————exp| — ( > —20 . + )
(21, 22) 2ro1094/1 — 02 2(1- 0% o1 o1 02 02

In this case we write (271, Z2) € N(uhug, 0%, 03, g).

If (Z1,Z5) € N(p1, p2,0%,03, 0), then we have for the marginal random variables that
Zy €N (p1,07) and Zy € N (p2,03),

and
E{Z\} =m, V{Z}=o0f, og  E{Z}=ps, V{Z}=o03,

and concerning the correlation coefficient between them,

0(Z1,Z3) = o.

In general, if two random variables are independent, then they are also non-correlated, while the
converse does not need to be true. However, if (Z7, Z5) is following a 2-dimensional normal distribution,
where Z; and Zs are non-correlated, then Z; and Zs are in fact also independent, so we obtain a
stronger result in this case.

Let (Z1, Z5) follow a 2-dimensional normal distribution, and let a, b, ¢ and d be real constants, which
satisfy the condition (of the determinant) ad — bc # 0. Then the 2-dimensional random variable

(Ul, UQ) = (aZ1 + bZQ, CZ1 + dZQ)

is again following a 2-dimensional normal distribution.

9
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Continuous Distributions 1. Some theoretical background

The theory above has a ring of geometry, and one may get a better description by using matrices
for the more general n-dimensional normal distribution. We introduce for a general n-dimensional
random variable

X =(X1,X2,...,Xn)
the corresponding mean vector,
p=(E{X1},E{Xs},...,E{X,}),

and its covariance matriz,

V{Xl} COV(Xl,XQ) COV(Xl,Xn)
COV(X27X1) V{XQ} COV(XQ,Xn)
C= )
Cov (X, X7) Cov (X, X2) VA{X,}

provided that they exist.

Then the frequency of X € N(u, 0%, 03, g) is written

1 1 _
[ p— e (<5 (x-0Cx- ), xeR2
(\/ 27 ) Vdet C
where
1 4
(7% 00109 1 O’% 0109
C= and Cil = ﬁ
00102 o3 -0 o 1
01092 O'%
This leads to the following generalization: An n-dimensional random variable X = (X1, Xs,..., X,,)

is a non-singular normal distribution with mean vector p and a positive definite covariance matriz C,
if the corresponding frequency fx) is given in the form

1
(757 vae |

£ = 0 (5= € x-T),  xeR"
1.4 Conditional normal distribution

Let (X.,Y) € N(,up%, o3, g) denote a 2-dimensional normal distribution. Then the conditional fre-
quency f(z | y) for X, for given Y =y, is defined as

1 1 o1 °
f($|y):mexp<—m{$—m—ga—2 (y—HQ)} )

10
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Continuous Distributions 1. Some theoretical background

It follows that the conditional distribution of X, given Y = v, is a normal distribution with
mean: (41 + 0 7 (y — p2) and variance: a% (1 — 92) .
02
This is exploited, whenever one wants to estimate Y as a linear function Y = aX + b of X, where we
shall find the constants a and b, such that V {[Y — (aX + b)]*} becomes as small as possible. This is
the case, when we choose
a:g2 and b:,ugfgﬂ,ul.
01 01
The line
o2
y=ar+b=ps+o0— (v — )
01
is called the regression line of Y with respect to X. Analogously, the line
01
r=pto— (y—p2)
02
is the regression line of X with respect to Y. Summing up, they are of course written

T Y= he

01 g2

which is easier to remember in practice.

1.5 Sums of independent normal distributed random variables

The main result is that if the normal distributed random variables X, Xo, ..., X,, are mutually inde-
pendent and normally distributed with X; € N(ui, Uf), then the sum ) X; also normally distributed
with

iXi eN (iui’i(j?) .
i=1 i=1 i=1

We express this result by saying that the normal distribution is reproductive with respect to the pa-
rameters p and o2,

1.6 The Central Limit Theorem

The normal distribution is of paramount importance for the Theory of Probability, in particular
because we have the following result, which shows that we can approximate a distribution of sums of
independent identically distributed random variables by ®(z).

We assume that a sequence of random variables {X;} are all mutually independent and identically
distributed of mean p and variance o? > 0. If we put

n

Vo=Xi+Xo+ -+ Xo=) X,

11
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Continuous Distributions 1. Some theoretical background

then
Y, —nu
oyn '

converges in distribution towards ®(z) for n — 400, i.e.

n €N,

Y, —nu
< = .
nl{r—ir-loop{ e x} D (z) for every z € R

This means, roughly speaking, that

Y,, is almost normally distributed N (n,u, 7’L02) for large values of n.
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Continuous Distributions

1. Some theoretical background

1.7 The Maxwell distribution

A random variable X is Mazwell distributed, if it has a frequency of the form

11 2
;;xz exp (%), for z > 0,
flz) =

0, for z <0,

where the parameter o > 0. For such a distribution,

B{X}= 2\/;; and  V{X}= {3 — %} o’

The Maxwell distribution occurs typically, when three given independent random variables X1, X3,

X3, are all N(O, 02) distributed. Then the random variable

X =\/X}+X3+X;

is Mazwell distributed of parameter o > 0.

Conversely, if X1, X5 and X, are mutually independent identically distributed random variables of a
ball symmetrically distribution of the 3-dimensional random variable (X1, X, X3), i.e. the distribution
depends only on the radius r := \/z% + 23 + 23, then X;, X5 and X3 are all normally distributed

random variables of the same type, X; € N(0,0?).

1.8 The Gamma distribution

It is well-known that the Gamma function is given by
+oo
D(p) = / th=le~tat, for p >0,
0

with the properties

T(u+1)=pT(u) for u>0, in particular, T'(n + 1) = n! for n € N,.

Note also that

()

In connection with the Gamma function we also mention the Beta function, which is defined by

r (Ml) r (Mz)

, for pq, > 0.
F(H1+ﬂ2) M1, 12

1
B (1, p2) = / (1 -t dt =
0

A random variable X is Gamma distributed with form parameter p > 0 and scale parameter a > 0,

if its frequency is given by

1
Ta)ar 2# 1 exp (—g) , for x > 0,
flx) =

0, for x <0.

13
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Continuous Distributions 1. Some theoretical background

We write X € I'(i1, «). Note that
E{X}=au and V{X}=a?pu.

1
It was mentioned previously that the exponential distribution is a special Gamma distribution, I' (1 , —) ,
a
of the frequency

ae ", for z > 0,

0, for z <0.

If Xy € T'(p11,0) and Xy € T (p2, ) are independent Gamma distributed random variables of the
same scale parameter, then the sum X; + X is also Gamma distributed, X7 + Xo € ' (1 + po, @).
We say that the Gamma distribution is reproductive in the form parameter for fized scale parameter.

If more generally, X1, X5, ..., X,, are independent Gamma distributed random variables with the
same scale parameter, X; € I' (u;, ), then their sum is also Gamma distributed,

1.9 The y? distribution

Let X1, X5, ..., X, be identically distributed independent normal distributed random variables, thus
X, € N(u,o2). Then

where we call a distribution from T’ (g ,2) = x%(n) a x? distribution with n degrees of freedom. Tt

follows immediately that if X, Xo, ...,
then for the sum

ZXZ‘ S X2 (Zn,) .
i=1 i=1
If X € x?(n), then
E{X}=n and V{X} =2n.

SN—

P

» are independent random variables, where X; € x? (n;),

Given a sequence {X,,} of random variables, where
X, € x2(n), for every n € N.

Then it follows from the Central Limit Theorem that

X,—n
lim P<{ =2 <zy=>(x for every = € R.
n—-+o00 { V2n } ( ) y

In particular, X,, € x?(n) is approximatively normal distributed N(n, 2n) for large n € N .

Notice that if the random variable X is x?(3) distributed then the random variable Y = VX is a
Maxwell distribution.

14
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Continuous Distributions 1. Some theoretical background

1.10 The ¢ distribution

A random variable X is t-distributed, or following a Student distribution, with n degrees of freedom,
if its frequency is given by

) T <n;L1)
 (3)

We write X € t(n).

/(@)

We obtain a Student distribution in the following way:

Let Y € N(0,1) and Z € x?(n) be independent random variables. If

R
Z7
\;n

then X € t(n) is Student distributed with n degrees of freedom.

X = n €N,

If n =1 we get the Cauchy distribution of the frequency

1

= eR.
(14 22)’ *

f(z)
We notice that this distribution does not have a mean.

In general, the ¢ distribution is symmetric with respect to 0, and if n > 1, then its mean is E{X} = 0.

When n is large, then the N(0, 1) distribution is a fair approximation of the ¢ distribution. (In practice
usually for n > 25).

We mention that the ¢ distribution is important because we often consider n independent identically
normal distributed random variables X, X5, ..., X,,, where we know neither the mean nor the
variance. Using X1, X, ..., X,, we want to estimate the mean z and the variance o2. We assume of
course that n > 1.

As an estimator of the mean p we use the normal distributed random variable

Since the variance decreases, when n increases, it follows immediately that the estimator becomes
better, the larger n.

2

As an estimator of the variance o we use the random variable

1 =\ 2
52:n_1Z(XZ-—X) ,
i=1

where it is only for technical reasons that we use the denominator n — 1. This trick assures that
E {S 2} =02,

15
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Continuous Distributions 1. Some theoretical background

It can be proved that

SQ
(n—1) 52

1 ¢ —
=Sy (Xi-X) ex’(n-1).
=1

The “loss” of one degree of freedom is due to the fact that we have used one degree of freedom to
estimate .

It follows after some computations that the random variable

X —p
52

n

€tin—1)

is Student distributed with n — 1 degrees of freedom.

Find out more and apply

redefining / standards M
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Continuous Distributions 1. Some theoretical background

1.11 The F distribution.

A random variable Z is F' distributed, or Fisher distributed with the degrees of freedom ni and ns, if
its frequency is given in the following way, using the Beta function,

n1 %nl
()
B (E E) | ny 3(mtna)’
272 <1 + — z>

n2

f(z) = z > 0.

We write Z € F (n1,n2). When ny > 2, the mean is given by

n2

E{Z} =
(7y= "2,

while it does not exist for ny < 2.

The Fisher distribution occurs in the following casw: If X1 € x?(n1) and Xy € x? (ng) are two x?
distributed independent random variables, then

Xy
L
Xs
ny

EF(’I’Ll,TLQ)

is F' distributed with the degrees of freedom n; and ns. We notice that the random variable Z is used

1 1
to compare the normed random variables — X; and — Xo.
n n2

1.12 Estimation of parameters

We shall shortly describe Fisher’s mazimum method.

Let X be a random variable with distribution function F' (z;aq, aa,. .., ar) and with k independent
parameters «;, ¢ = 1,..., k. The task is from n independent observations X1, ..., X, of the random
variable X with the results of the observations z1, ..., x, to estimate these unknown parameters.

1. The discrete case. We consider the function
n
h(on,...oop) =P{X1 =21 A+ A Xy =a,} = P{X1 =a1} - P{X, = a0} = [[ P{Xi = i}
i=1

in the parameters aq, ..., ag.

Using methods known from e.g. Ventus: Calculus 2 series we find the values of af, ..., aj, for which
the function h(«) has its maximum, i.e. the values of the parameters, for which

P{Xlle AR /\Xn:.lfn}

is largest. These values o, ..., ajf are called estimates of the parameters.
We notice that o is dependent on the observations z1, ..., zy,
of =g (1, ..., 2,), i=1,...,n.
17
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Continuous Distributions 1. Some theoretical background

The corresponding random variables
gi ()(17 - ,Xn)

are called estimators of the parameters aq, ..., ax. We emphasize that we distinguish between an
estimate, which is a number, and an estimator, which is a random variable.

2. The continuous case. In this case the random variable X is given by the frequency
f(x) = f(x;alv'“uak)v

which depends on the k& unknown parameters oy ..., ar. Let Xy, ..., X, denote n independent
observations of X with the results of the observations x1, ..., x,. Then like in the discrete case we
introduce the function

h(al,...,am:f<x1>~~~f<xn>:_Hf<xi>,

1=1
where the results of the observations x1, ..., x, are given, while the parameters «ay, ..., aj are the
unknowns. We shall find the values oF, ..., af of a1, ..., ay, for which the function h(c) has its

maximum. This is again a task, which has been described elsewhere, e.g. in the Ventus: Calculus 2
series.

Using methods of this type we usually obtain estimates (i.e. numbers)
af =g (x1,...,2,), 1=1, ..., k,

of the parameters ayq, ..., ag, with corresponding estimators in the same parameters,
gi (X1,...,Xn), i=1,...,k,

which are random variables.

3. Estimators in general. Let Y = g (X3,...,X,,) be an estimator for some parameter o. We say
that the estimator is central, if

E{Y} =aq,
or roughly speaking that Y has the “right mean”.

That an estimator is central means that if we by some samples get some estimates (i.e. numbers) of
a, then these estimates will close in on a.

If in particular X is normal distributed, then

zn:Xia
i=1

is a central estimator of the mean, and

X =

S|

n

$ = LS (- X)

n —
i=1

18
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Continuous Distributions 1. Some theoretical background

is a central estimator of the variance 2. We note that
1 — — n—1
S ex (=)
n 4 n
2

is not a central estimator of the variance o~.

In general,

is always a central estimator of the mean y, provided that the distribution has a mean! Note, however,
that one does not always get X as an estimator by Fisher’s maximum method.

A sequence of estimators Y,, = g, (X1,...,X,,) for a parameter « is called consistent, if for every
e >0,

P{lY,—a|>¢c}—0 for n — +o0.

It follows from the Weak Law of Large Numbers that if the distribution has a mean u, then the
sequence of estimators

n
DX
i=1

is a consistent sequence of estimators for the mean p.

X, =

S|

Let
Y=9g(X1,....,Xn) and Z =99 (X1,...,Xpn)

be two central estimators for the same parameter ov. Then Y is said to be more efficient than Z, if
V{Y} < V{Z} for every value of a.

If Y is more efficient than Z, then Y has a smaller variance, so roughly speaking, Y will have “more
estimates” lying close to o than Z. Therefore, one prefers Y as a (central) estimator in such a case.

19
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Continuous Distributions 2. The Exponential Distribution

2 The Exponential Distribution

Example 2.1 Let Y, X1, Xo be independent positive random variables, all with a continuous distri-
bution, and let Y be exponentially distributed. It is well-known that for all s, t € R,

(1) P{Y > s+t} = P{Y > s} - P{Y > t},
(the property of forgetfulness).
1) Prove by using (1) that we have the following generalization

(2) P{Y > X1+ X} =P{Y > X1} -P{Y > X5}.

2) Is (2) also true, if X1 and X5 are mutually dependent, while they are both independent of Y ¢

3) LetY, X1, Xo,k ..., X, be independent positive variables, all with a continuous distribution, and
let Y be exponentially distributed.
Prove that

n
P{Y > X1+ Xo 4+ X} = [[P{Y > X1}
=1

1) Let f1 (z1) and f5 (22) denote the frequencies of X7 and Xs, resp.. Since X7 and X5 are indepen-
dent and positive, we conclude that the frequency of Z = X; + X, for z > 0 is given by
() 96) = | fi@al=)ds (and g(z) =0 for 2 <0)
0

Let a be the parameter for Y. The frequency h(t) of Y — Z is for t > 0 (note the the frequency is
of no interest for ¢ < 0) given by

h — > —ay _ dy =a - —at > —az d
(t) a/o e Ygly—t)dy=a-e /O e “g(z)dz
= ae*“t/ eaz{ fi(x) fa(z — ) d:c} dz
0 0
= ae_at/ e~ fi(x) {/ e =) fo (2 — 1) dz}dx
0 x

- aeat'/ooo e fi(z) d“”'/oc><> e” " fa(y) dy,

SO
P{Y>X1+X2}:P{Y—Z>O}:/Ooh(t)dt:/Ooe’“fl(x)dx-/Ooe’“yfg(y)dy.
0 0 0

Analogously, the frequency of Y — X is given by

hi(t) = a/o e YWfi(y—t)dy = a/t e Wfily—t)dy = aef’”/o e fi(x) dx,

20
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Continuous Distributions 2. The Exponential Distribution

hence

P{Y >X,}=P{Y - X, >0} = /Ooohi(t)dt = /Oooe_‘“”fi(x)dx, i=1, 2,
and it follows that

P{Y > X+ Xo}=P{Y > X 1} - P{Y > X,}.

2) Formula (2) has been proved under the assumption of (3), which again presupposes that X; and
X, are independent. We may therefore expect that the answer is “no”.

An explicit example, which shows that the answer in general is “no” is given by Xo = 1 — X7,
where X is uniformly distributed over [0,1]. In this case,

P{Y >X,+ X5} =P{Y >1} = / ae”Wdy=e "
1
It follows that the frequency hq(t) of Y — X is given by

1
hi(t) = ae_“t/ e dr=e"(1-e%) for t > —1,
0

hence
> 1
P{Y > X} = / h)dt =~ (1—e%).
0
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Continuous Distributions 2. The Exponential Distribution

Since
{Y>X2:1—X1}:{Y+X1>1},

we first find the frequency of Y + X, i.e. for ¢ > 0,

o] t
k(t) = / ae” W fi(t—y)dy = / ae " dy = exp(—a max{0,t — 1}) — e~ %,
0

max{0,t—1}

thus

P{T > X,}

P{Y+X1>1}:/ k(t)dt:/ {e "ea—e "} dt
1 1

1 (e“—1)~e_“:l~(1—1_“):P{Y>X2},
a a

which of course also can be seen directly by an argument of symmetry.
We finally get

1—e ¢

P{Y>X1}-P{Y>X2}:< )Q#e‘“:P{Y>X1+X2},

and it follows from this example that the claim does not hold in general.

3) If we put Z; = Xy +--- 4+ X, then we get by recursion and (2),
PV >X +Xo4 -+ X} =P{Y>Z,}=P{Y > Zy_1 + Xn}

:P{Y>Zn_l}-P{Y>Xn}:~--:ﬁP{Y>Xi}.
?3%
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Continuous Distributions 2. The Exponential Distribution

Example 2.2 Assume that X1 and X5 are independent random variables of the frequencies

1.
2.

441 x> 0, e’2, T < 0,

fX1 (xl) = fX2 (xQ) =
0, x10, 0, To > 0.

Find the means E{X1} and E {X2}.
Find the variances V{X1} and V {Xa}.

Let the two-dimensional random variable (Y1,Y2) = 7 (X1, X3) be given by

g4 o oA

Y =4X, — Xo, Yy =4X, + Xo.

. Prove that 7 maps Ry x R_ bijectively onto

D' ={(y1,y2) €R* |51 > 0,1 <y2 <wn}.

. Find the simultaneous frequency k (y1,y2) of (Y1,Y2).
. Find the marginal frequencies of Y1 and of Ys.
. Prove that Y1 are Y5 are non-correlated.

. Check if Y1 and Yy are independent.

. and 2. Since X is exponentially distributed, a = 4, and —X5 is exponentially distributed with

a =1, we get

1 1
E{Xl}:Z, V{X1}=E7

and

E{Xo}=-1, V{Xs}=1.

. It follows from y; = 4x1 — x5 and ys = 421 + x2 that

1 1
xlzg (y1 +y2) and $2:§ (Y2 — y2) -

Since y; = 4x1 —x9 > 0 and 8z1 = y1 +y2 > 0, 222 = yo — y1 < 0, we get

D' ={(y1,y2) €R* |1 >0 A —y1 <ya <1 }.

. The Jacobian is

ol

1
a(.’L‘l,.Z’Q) _ 8 _ 1 _ 1
3(y1,y2)

1 1
2 2
Since the simultaneous frequency of (X1, X2) is

4 exp (—4x1 + 22) for 1 > 0 og x4 < 0,

g (56‘1, w2) =
0 ellers,

23

Download free eBooks at bookboon.com



Continuous Distributions 2. The Exponential Distribution

the simultaneous frequency k (y1,y2) of (Y1, Ys) is given by

% exp (—y1) iD,
k(yi,y2) =

0 otherwise.

5. The marginal frequency of Y7 for y; > 0 is given by

Y1
/ k(y1,y2) dy2 = y1 exp (—y1),
it
thus
y1 exp (—y1) for y; > 0,
hYl (yl) =
0 otherwise.

The marginal frequency of Y5 is given by

1 1
b= [ Sen(u)dn = genln),  meR
Y2

2
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Continuous Distributions 2. The Exponential Distribution

6. Since X; and X are independent, and Cov(-,-) is bilinear, we get

1
COV(Yl,YQ) = COV(4X1 —X2,4X1 +X2) = 16V{X1} - V{X2} =16- E —1= 0,

hence Y7 and Y5 are non-correlated.

7. Since D' is not an axes parallel domain, Y7 and Y5 cannot be independent.

ALTERNATIVELY it follows immediately that

h(y1) - by, (y2) # K (y1,92) -

Example 2.3 Assume that X1, Xo, X3, ... are independent random variables, such that Xy for
every k € N has the frequency

ke ke, x>0,

0, x < 0.

Furthermore, let

Y, =>" and  Zp,=Y,—Inn, neN.
k=1

1) Find mean and variance of Xy, and mean and variance of Yy,.
2) Find the frequency of Ys.
3) Prove for every n € N that the frequency g, (y) of Yy is given by

1

ne ¥ (1—e¥)" ' =ne (¥ —1)""", y >0,

gn(y) =
0, y < 0.

HiNT: Use e.g. induction; the essential step is to prove that if the formula is true for some given
value of ng € N, then it also holds for the following value ng + 1.

4) Find the distribution function G, (y) for Y.
5) Find the distribution function H,(z) for Z,.

6) Prove that the sequence (Z,,),., converges in distribution towards a random variable Z, and find
the distribution function and the frequency of Z.

1) Every X is exponentially distributed with a = k, so

1 1
E{Xe}=1 o V{Xi}=,5.
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Continuous Distributions 2. The Exponential Distribution

Since the X} are mutually independent, we get
n n 1
BV} =Y E{X} =) 1,
k=1 k=1
and

VI =Y Vi =Y
k=1 k=1

2) Since Yo = X; + X only has positive values, we have go(y) =0 for y < 0. If y > 0, then

[ee) Y Yy
92(y) / fi(@) foly — ) dx = / e 2e7 2y = 272 / e“dr=2e" % (e¥ — 1)
0 0 0

= 2¢Y (1 - efy) .

3) It is obvious that the formula is true for n = 1 and n = 2, ¢f. 2. Then assume that the formula
holds for some n € N. Since Y,,41 only has positive values, we have g,1+1(y) = 0 for y < 0. If
y > 0, then

Y Yy
gnt1(y) = / gn () - fria(y — x)de = / ne " (e —1)" e (n4 1) e (YT gy
0 0

y
n(n+1) e*("ﬂ)y/ (e® —1)" ' e® du, t=c¢e"
0

(n+ 1)e*<n+1>y/ nt—1)""1dt = (n+1)e" ™Y (¥ —1)",
1

which is the formula under consideration with n replaced by n + 1, and the formula follows by
induction.

4) The distribution function of Y;, is G, (y) =0 for y < 0. If y > 0, then

Gn(y) = /Ogn(t) dt = /Oynet (1 _ e—t)n—l dt — [(1 _ 6725)”}3 _ (1 _ e,y)n7

hence

(1—ev)" for y > 0,

Gn(y) =
1 for y < 0.

5) By a rearrangement,
H,(2)=P{Z,<z}=P{Y,—-Inn<z}=P{Y, <z+Inn}.

If 2 < —1Inn, we get H,(2) = 0. If 2z > —Inn, then instead

Ho(2) = Go(z +1nn) = {1 — exp(—z — Inp)}" = (1 1 e—Z)n,

n
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SO

1 n
<1 - — eZ> for z > —Inn,
H,(z) = "

0 for z < —Inn.

6) To any z € R there exists an ng € N, such that z > —Inn for every n > ng. Then for such n > ny,

Hn(z):{l—e } —exp (—e %), for n — oo,

n
hence (Z,,) converges in distribution towards a random variable Z, the distribution function of
which is

H(z) = exp (—e %), zeR.

The frequency is obtained by a differentiation,

h(z) =e *-exp(—e %) =exp(—z—e 7), z eR.
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Continuous Distributions 2. The Exponential Distribution

Example 2.4 An instrument A contains two components of lifetimes X1 and Xs, which are assumed
to be independent random variables, both of the frequency

ae” ", x>0,

fz) =

0, xz <0,

where « is a positive constant. The instrument A can only operate if both components work, so the
lifetime X for A is X = min {X, Xo}.
Another instrument B also contains two components, the lifetimes of which, Y1 and Ys, are independent
random variables, both of the frequency

dae 4oy, y >0,

g(y) =
0, y < 0.

Instrument B first uses one component, and when it breaks down, one immediately changes to the
other component, so the lifetime Y of BisY =Y, + Y5.

1) Find frequency, mean and variance of X.

2) Find frequency, mean and variance of Y.

X
3) Find the frequency and the distribution function of the random variable U = v

4) Check if U has a mean, and if this is the case find it.
5) Find P{Y > X}.

It is immediately seen that X; and X5 are exponentially distributed with parameter a = « and the
distribution function

1—e " for z > 0,
Fx, =

0 for x < 0.

Analogously, Y7 and Y, are exponentially distributed with a = 4«a; however, in this case we do not
need to indicate the distribution function.

1) The distribution function of X = min {X;, Xo} is

1 — e 20@ for x > 0,
Fx(z)=1-(1-Fx,(z)) (1 - Fx,(z)) =
0 for z <0,

hence X is exponentially distributed with a = 2« so

20 g2 for z > 0,
fx(@) =
0 for z <0,
and
B{X} =~  and V{X}=-1.
200 42
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Continuous Distributions 2. The Exponential Distribution

2) Since Y only has positive values, gy (y) =0 for y < 0. If y > 0, then

Y Y
gv(y) = / 9(t) gly — ) dt = 160” / e7tr- et dt = 16a’y e,
0 0

1
soY el (2, E) is Gamma distributed, and
1 1 1 1
Elyl=2.— = — Vivi=e - .9—_—_.
vy o 20 B ¥y 1602 8a?

At this stage we cannot assume that the Gamma distribution is known, so we have ALTERNATIVELY
by direct computations,

v 1 o 2 1
E{Y) = 160> 2‘40‘yd:_/ Petgr = 2 — —
v} “ /0 ve V" 1 o ¢ 4o 20’
and
e 1 o 6 3
E{Y? :162/ StV dy = / et dt = =_—
{7} =160 . 1e Y 1602 ), V€ 1602~ 8a2’
thus

VIV =E{(Y?} - (BIYY = 5~ 1 = 5o

X
3) Since U = — only has positive values, the frequency is h(u) = 0 for u < 0.
Since X and Y are stochastically independent, we get u > 0,

hw = [ Fxt)ovl)-ldy= [ 2ae e 16atye o ydy
0 0
o 3203 o
= 32a° 2 -2 2 dzi/ﬁ_tdt
a/o y~ exp(—2a(u + 2)y) dy awrp J, L€
B 3202 9l 8
8a3(u+2)3 T (u+2)¥
hence
8
for u >0
3 )
h(u) = (u+2)
0 for u < 0.

The distribution function is then obtained by an integration,

4

11— — for u >0
2 )

H(u) = (u+2)

0 for u < 0.
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4) Tt follows by an explicit computation that

/_O;ulh(u)du:/_o:ouh(u)du:/Ooouh(u)du: /000121;-722_)32%
:8/0 {(u—i2)2_(u—:2)3}du:8 [_Ui2+(u-&2)2h :8<%—i>=2:E{U},

hence the mean ezists and it is equal to E{U} = 2.

ALTERNATIVELY, it follows that

1 < q o0 1602
EL =% = - dy = 16a2e 4 dy = =4
{Y} /O yfv(y) Yy /0 a‘e V= a,

from which

E{U} E{X}oE{%} =2

X
5) From U = v follows that

P{Y>X}:P{U<1}:H(1):17ﬁ:g.
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Continuous Distributions 3. The Normal Distribution

3 The Normal Distribution

Example 3.1 Given a random variable X, which is normally distributed of mean 2.12. Given that
P{X >3} =0.324,

find the variance of X.

If follows from

0-324P{X23}P{Xu20.88}1P{X__“<@}1@(@»
g

o o
that
0.88
i} (—) =1-10.324 = 0.676 ~ ©(0.4567),
o
thus
@ = 0.4567,
o
and hence
0.88 7
X =02=(—x) =3.713.
ViX}=o (0.4567) 3113

Example 3.2 Given a normally distributed random variable X, for which
P{X <3} =0.9087 and P{X <2} =0.6030.

Find mean and variance of X .

First rearrange the given data in the following way

X — _ _
O.9087P{X§3}P{ O_“g?’ “}@(3 “)

g g

and

X—p _2- 2 -
0.6030:P{X§2}:P{ E< “}:cb( “).
(o)

o o
Using a table we get the inverse of @,

3—p

®1(0.9087) = 1.333, thus 3 — u = 1.333 0,
o

and

2—p

=& (0 -6030) =0.261,  thus 2 —u = 0.2610.
ag
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Hence, 1.0710 =1, so 0 = 0.934, and
V{X}=o0?=0.872,
and

E{X}=p=3-13330=1.7555.

Example 3.3 As usual, p(z) and ®(x) denote the frequency and the distribution function, resp. in
an N(0,1)-distribution. Obviously, we have the inequality for every x > 0,

/;go(y) <1 %) dy</:o<P(y)dy</:os0(y) <1+%> dy.

1) Apply this inequality to prove that for x > 0 we have the inequality

1 1 1
s (1 5) 0 <1- 00 < S el
and prove that

1-9
lim —(1:)
2) Prove that

d(1=®@)) _ 12
dx< (@) > e

=0.

3) Prove that
lim 4 (1=2() =0.

1) Clearly,

/OO p(y)dy =1— @(z).

From z > 0 we immediately get the right hand side of the inequality, because 1 < y for y > x,
x

/Do ) dy < %/OOW@)@: i oz = 22,

where ¢'(y) = =y o(y).
Furthermore, by a partial integration,

/:Ow(y) <1—%> dy = [so(y) <y+yi3>]j—/jw’(y) <y+;—3) dy

= [ e (y+yi> dy — o) @ — o) - =

T

%(1—%)¢(gg)+/:o¢(y) (y2+yi2> dy — () (H%)
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and thus

1—<I>(90)>/:Oso(y) (1—%> dy:é(1—;—2>w(9€)+0=§<1—$)w($),

and we have proved the inequalities.
Now, ¢(x) > 0, so it follows from the former result that

Both limits tend towards 0 for x — oo, hence

lim 1-%@) o(z)

=0.

2) Tt follows from ®'(z) = ¢(x), and ¢'(x) = —z p(z) that

(1) | V@) 1@ el 1o
dx( w(x)> S R C C A PSS oo CR A A
I 125
= 1+ go(x) .

3) If we again use the inequalities proved in (1), we get
x 1 1 d (1—d(x) x 1
1. (1= - S e
o a () < () < e

hence by a reduction,

Both limits tend towards 0 for x — oo, so

lim L (LM)) 0.

o()
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Example 3.4 Let X € N(0,1). Compute for every n € N the moments

E{X"}  and E{X|"}.

If n =2m + 1 is an odd number, then
E{IX]m1y = 2 /OO 22 exp _lxz 2 /OO 22" exp _11,2 da
vV 2 0 2 2 0 2

2 oS} 2\ ™ 1 2m+1 e} 2m+1 !
= —/ (296—) exp (— ) d(x > ye Vdy = e
V21 Jo 2 2 2 vV 27r 0 V2T

It follows in particular that all moments exist.

If n =2m + 1 is odd, then the integrand is odd, and it follows by the symmetry that

1 o 1
E {X2m+1} = — 22" lexp (== 2% ) dx = 0.
V21 ) o 2
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Continuous Distributions 3. The Normal Distribution

If n = 2m is even, then

E{XQ’"} = %/ 2™ exp (—%.132) dx

T J—00
1 [ ax?mtt AN 1 [ gmtl 1,
= I [2m+1 exp <—§x )}OO—I— \/%/_OC o 1" P (—533 ) dx
_ 2m1+ - \/LQ_W OOO 222 gy, (—% m2) dz = 2m1+ - B {x*m2},
thus
E{X™2) — (m+ 1) B {x*"],
and hence by a change of variable,
E{X*"} =(2m-1)E{X*"?}.
Then by recursion,
E{X*} = E{XP"}=m-1)E{X*"?}=02m-1)2m-3)---3-1

2m(2m —1)(2m —2)---3-2-1  (2m)!
(2-m)-(2(m—1))---(2-1)  2m.m!’

Example 3.5 Let X1 and Xo be independent random variables, X; € N (0,02), i =1, 2. Find the
distribution function and the frequency of the random variable

Y =/X{+ X3

Find also the mean and the variance of Y.
The distribution of Y is called the Rayleigh distribution.

If y <0, then P{Y <y} = 0. If instead y > 0, then we apply that X; and X5 are independent and
identically distributed, and use polar coordinates,

1 1
P{Y <y} = P{X{+X;<y’}= 27702/{ o 2}exp (_F (3 +x§)> dzy dry
TITI3SY

1 Y 7"2 y2
= 5.3 -27r/0 T exp <_ﬁ) dr =1—exp (—F> .

Here we have used that the simultaneous frequency of (X1, X3) is ¢ (z1) - ¢ (22).
Summing up,

0 for y <0,

Fy(y) = y2
1—exp (—F) for y > 0,
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and
0 for y < 0,
fy(y) = y 2
= exp (ﬁ) for y > 0.
The mean is
oo .2 2 [e's} 2
. Y Y _ 2 Z _ 4
E{Y}—/O o2 exp <_F> dy—o/o 2” exp (_E> dz=o0 5

Since
E{Y*} =E{X{}+E{X3} = 20",
we get the variance

V{Y}=E{Y?} — (E{Y})* =20"— 0"

b))

T
2

Example 3.6 Let X1 and X5 be independent and identically distributed random wvariables of the

frequency
1 ( x) <0
exp(—=]), x ,
flay=Q VI
0, <0

1) Find the frequency of Y = X1 + Xo.

2) Prove that if Z is normally distributed of mean 0 and variance 1, then Z2 has the frequency f(x).

3) Find mean and variance of Y.

1) If s > 0, then the frequency of Y = X7 + X5 is

o /Os\/%exp(@,mexp(%(sz)) do
“new() ] G e ()] A
< 3o g aee () e

because [, h(s)ds =1, so C = 1. Hence

(+3)

0

1
— exp

5 for s > 0,

h(s) =
for s <0,

and it follows that Y = X7 + X5 is exponentially distributed.
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2) Clearly, Fz2(z) =0 for x < 0. If x > 0, then

Fpa(z) = P{Z? <a} = P{—z < Z < Va} = ®(Vz) — ®(—a).

When z > 0, the frequency is obtained by a differentiation,

2 = 9VA) 5 = V) (52 ) = el = o= e (5 0).

and it follows from fz2(z) = 0 for x <0, that fz2(z) = f(x).

1
3) Since Y is exponentially distributed with a = g0 e get

1 1
E{Y}=-=2 d V{iY}=— =4
V== and  V{Y}=
Remark 3.1 Since X; and X are independent and identically distributed, we have
E{Y}=E{X1}+ E{X2} og V{YV}=V{Xi}+V{Xs},

hence

E{X\}=E{Xo}=1 og V{X;}=V{Xs}=2 0

Example 3.7 Let (X1, X2) be a two-dimensional random variable of the frequency

1 1
h(xy,20) = 3 &XP <—§ (27 +:c§)> .

Let the two-dimensional random variable (Y1,Y2) be given by

X =+/—2InY; - cos (2nY5), Xy =+/—2InY) -sin (27Y3),

where 0 <Yy <1,0< Yy < 1.
Find the frequency of (Y1,Y2).
Are Y7 and Ys independent?

The Jacobian is

1 1 2
5 T {——} cos (2my2) —2my/—2Iny; - sin (27y9)

8(3:1,3:2) n

3(2/1792)

2T
Y1 .

1 1 2
[ E— i 2 2 _21 * 2
> g { yl}sm( TY2) mv—2Iny; - cos (2mys)

We get from 2% + 23 = —2Iny; that the frequency of (Y7, Y3) is

1 27
k(y1,y2) = 5 &XP (Inyy) - ‘_y_1

=1 for (y1,y2) €10,1[x]0,1].
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It follows immediately that the marginal frequencies are
KYi (yz) =1 for Yi 6]07 1[3 i = 13 23
and ky, (y;) = 0 otherwise. Hence

k (y17y2) =ky, (yl) - ky, (y2>7

so Y7 and Y5 are independent.

Example 3.8 A random variable U € N(0,1) is normally distributed of mean 0 and variance 1.

1. Prove that E {U4} =3.

A two-dimensional random variable (X,Y") is following a two-dimensional normal distribution with
B{X}=EBE{Y}=0, V{X}=V{¥}=0°>0, oX.Y)=0 (lo<1),

i.e. (X,Y) €N (0,0,06% 0% 0).

2. Compute the real constant a, such that the random variables X — aY and Y are non-correlated.

3. Explain why the random variables X — aY and Y are stochastically independent for the value of a
found in 2.

4. Compute E {X2Y2} by using that X = (X —aY) 4+ aY.

1) Since ¢'(u) = —up(u), we get by partial integration,

E{U'} = /OO uo(u) du = —/OO w3y (u) du

— 00 — 00

[—up(u)] = +3 /

— 00 — 00

oo o0

u?p(u) du = 0—3/ u- ' (u) du

[—3u p(u)] >, +3/oo 1-p(u)du=0+3=3.

— 00
2) Then by a direct computation,

Cov(X —aY,Y) = Cov(X,Y) —aV{Y}=o/V{X}V{Y} —aV{YV} = (0—a)s’
This expression is equal to 0 for a = p.
3) From E{X} = E{Y'} follows that
VX —0oY} = E{(X—-0Y)*}=FE{X?} —20E{XY}+E{Y?}
= V{X}—20 Cov(X,Y) +V{Y}=0?+0? —20%?
= 2 (1 — 92) o2,
so the covariance matrix of (X — oY,Y) is given by

02(2(1g2)02 02 >

0 o
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and the frequency is

N =

2
f(z.y) 1 e = + (y)2
9 = X - T < -
Y 274/2 (1 — ¢%) 02 P V2(1—9%)0o 0
The structure of the frequency shows that X — oY and Y are independent.
4) By using the given trick,
E{X?Y?} = E{[(X-oY)+oY]?Y?}
= E{(X—0Y)’Y?+20(X — oY)Y? + 0°Y*}
E{(X - oY)’} E{Y?} +20E{X — oY} E{Y?} + 0’E{Y*}
= {0%+ 0% —20 00"} 0® + 0+ o* - 30"
= ot (1 — g2) +30%0* = o (1 =+ 292) .
Here we have applied that X — oY and Y are independent ant that

E{Y?} =0 and E{Y'}=30"
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www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status que:

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".
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Continuous Distributions 3. The Normal Distribution

Example 3.9 Let X1, Xs, ..., X, be mutually independent N(0,1)-distributed random wvariables,
and let Sy, = Ele X, k<n.

1) Find the distribution of S,,.

2) Find the simultaneous distribution of (Sy,, Sy), when m < n.

1) From S, € N(0,n) follows that the distribution function is

Fo(s) = ® <%> .

2) Analogously we get S,, € N(0,m). The covariance matrix is

VS Cov (S, Sh)
C= ( Cov (Sp, S) V{S.} >

where V {S,,} =m and V {S,,} = n, and

Cov (Sm, Sp) = Cov (Sm,sm+ > Xi> =V{Sn}=m,

i=m-+1

thus

C:(E ZZ), det C = m(n —m),
and hence

ol 1 n —m

“m(n—m)\ —-m m )’
0
1 X 1 2 2
- - —9
(z,y)C (y) i —m) (na may + my?)

This result corresponds to

m
0—1:\/Ea 0—2:\/5 0og Q:Hgv

so the distribution is

(S, Sn) €N <0,0,m,n,,/%> ,

and the frequency is

flany) = 1 ox (anmey+my2>
S 27y /m(n —m) P 2m(n —m)

- e (G {E) A E A )
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Continuous Distributions 3. The Normal Distribution

Example 3.10 Let (X7, X2) follow the two-dimensional normal distribution
(Xla X2) eEN (Oa 07 U%? U%v Q) )
and let the random variable Y be given by Y = X1 /X5.
Prove that Y is Cauchy distributed of median o a1

o2
Find in particular the frequency in the case o1 = 02, 0 = 0.

Since (X1,X5) € N (O, 0,0%, 03, Q), we immediately get the frequency,

1 1 Il>2 Tr1 g (mg)Q
T1,¥p) = ——————— -Xp | — v —) —20— =+ (= )
J (@1, 22) 2mo1094/1 — 02 l 2(1—0?) {(01 01 02 lop)

Then by a known formula, the frequency of Y = X; /X5 is given by

s = [ " fyea) - Jo|do

1 /°° { 1 {y2 2 oy o 1 zH
e exp|l————= {5 2° -2 "2+ Sz x| dx
mo109v/1 — 02 Jo 2(1—¢?) o3 0102 o3 21

= ;-/O@exp __ (i— — | xvdx
Wdldgm 0 1—0? o1 02 P 2
_ 1 1—o?
) ﬂ<y g)Z(m)?
o1 09 o2
_ Lo g p. 1 JER,

™ 02 001 2 o1 5 2
vyt 0—2\/1—Q

2

a
which is the frequency of a Cauchy distribution of median o -1
02

If o=0and o0y = 09 = o, then

1
1+92’

3=

9(y) = yeR.
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Continuous Distributions 3. The Normal Distribution

Example 3.11 Let X; and Xs be independent N (0, 1)-distributed random variables, i.e. (X1, Xs)
has the two-dimensional frequency

1 1
h(xy,z0) = 3 P <§ (3 +x§)> , (z1,29) € R%

Let the random variables Y1 and Yo be given by

X
Y, = Yl Yo = /X2 + X3.
2

1) Find frequency and distribution function of Yi.

2) Find frequency and distribution function of Ys.

3) Compute for y; € R and ya > 0 the probability
P{Y1 <y, Yo <o}

HiNT: Express the probability as a plane integral of h over a suitable set, and then compute the
integral by using polar coordinates.

4) Find the simultaneous frequency of (Y1,Y2).

1) By a standard formula the frequency of X/Y is given by

flz) = i/OoeXp —1(224—1)1:2 -|x|dl‘:l/ooexp —(22+1)z—2 - zdx
27 ) 2 T Jo 2
1 1

T 2241
thus we have a Cauchy-distribution, and the distribution function is
F(z) 1 [Arctan t]® 1 Arct + !
z) = — [Arctan = — Arctan z + —.
T o 2

2) The distribution function of Y3 is 0 for » < 0. If r > 0, then

1 1
G = P{Y,<r}= — —— (22 +22) | da1 d
(r) { o T} {V/zi4+z3<r} 2m =P ( 2 ($1 erz)) Lo

1 " 1 1 " 1
o 27r/0 exp (—5 92) odo = [—exp (—5 Q2>:|O =1—exp (—5 r2> ,

so the distribution function is
0 for r <0,

G(r) = B 1,
1 —exp 57 for r > 0.

The corresponding frequency is
0 for r <0,

g(r) = 1
r exp (—5 7“2) for r > 0.
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Continuous Distributions 3. The Normal Distribution

05

Figure 1: When y; = 2, the domain of integration is the union of two circular sections of the comple-
mentary angle ¢g = Arccot y;.

3) It follows by a geometrical analysis that P {Y7 < y1, Yo < 2} is the integral of h (x1,x2) over the
union of two circular sections of the same angle. The upper circular section has a part of the
negative xj-axis as part of its boundary, and the complementary angle is

wo = Arccot y;.
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Continuous Distributions 3. The Normal Distribution

We get by using polar coordinates

oY 1
P{Y1 <y, Ya<yo} = 2/ {/ Q—GXP(—QQ)QdQ}dQO
0 0 s 2
1, 1
1—exp|—cwy; <91 —— Arccot y1 ¢ .
2 T

4) The simultaneous frequency of (Y7, Ys) is

2

1 1 1
k(yi,y2) = P{v; §y17Y2§y2}:;' Y2 exp <§y§>

0y10y2 14 yi

It follows that Y7 and Y5 are stochastically independent.

Example 3.12 Give an example of a two-dimensional random variable (X, y) which has the following
three properties:

1) X is normally distributed, X € N(0,1),
2) Y is normally distributed, Y € N(0,1),
3) (X,Y) does not follow a two-dimensional normal distribution.

HINT: Try to find a frequency f(x,y), which is 0, if zy < 0.

If we put

1 1
—exp|—= (m2 + y2) for xy > 0,
fly) =4 " 2

0 for xy < 0,

then all three conditions are satisfied.

Example 3.13 Let X and Y be independent random wvariables of the same frequency f, which is
positive and continuously differentiable, and assume that

@) f@) fly)=g(®+y*)  for every (z,y).

(The meaning of (4) is that the distribution of (X,Y) is rotational invariant).
Prove that

£o) =~z exp (o
p— X —_——
V2mo? P 202 )
hence, X and Y are normally distributed.
HINT: Differentiate (4) with respect to x and derive that

f'(x)
f(x)

= constant - x.
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Continuous Distributions 3. The Normal Distribution

When (4) is differentiated with respect to = and y, resp., we get
@) fly) =2xg (2> +y*) and [f(2)f'(y) =249 (2 +4°).

If x # 0 and y # 0, we get

7 @+ 9) = 5 F@0) = 5 FOF @),

Since f(z) - f(y) # 0, it follows by separating the variables that

1f(x) 11 ()
z f(z) y fly)’

The left hand side only depends on z, and the right hand side only depends on ¥, and since they are
equal, they must be equal to a constant ¢, thus

f@ _d
flx) dx

and whence by integration,

F(z) = k- exp (%ﬁ) — k- exp <% {;}2> — \/%U exp <% {§}2> .

In fact,

In f(z)=c-x,

1
1) since [7°_ f(z)dx < oo, we see that ¢ = ——5 must be negative, and
o

1

2) since [ f(x)dx =1, we have k =
) since [, f(2) N

, and

3) f(0) = by an continuous extension.

V2t o
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Continuous Distributions 4. The Central Limit Theorem

4 The Central Limit Theorem

Example 4.1 Prove that

"k 1
e*"ZﬁHE for n — oc.
k=0

HINT: Apply the Central Limit Theorem on a sequence of independent Poisson distributed random
variables.

Let X,,, n € N be independent Poisson distributed random variables with A =1, i.e.

)\k —A 1 —1
P{Xn:k}:ﬁe :y'e 5 kENo

The Poisson distribution is reproductive, so Y,, = Xj + --- + X, is also Poisson distributed, and
Y, € P(1+4---4+1) = P(n). This means that the distribution function of Y;, is
k

n " k € Ny,

P{)/n:kf}zﬁe_ ’

hence
E{V,} =X, =n and s2=V{Y,}=n.
Then by the Central Limit Theorem,

Y, — E{Y,} <

Sn

lim P{

n—oo

} =®(x) for every z € R.

This means that

Y. —n n+[zy/n]
nILH;oP{ N a:} Jim P {Y, <n+avn} Jim. Z P{Y, =k}
k=0
n+[z\/n] n+[zy/n] nk
= lim Y P{Y,=k}= lim > e =)
k=0 k=0

If we choose x = 0, then

li - —=®(0) = .
Jm e G =20 =3
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Continuous Distributions 4. The Central Limit Theorem

Example 4.2 A coin is thrown 10,000 gange, where we get the result head in 4979 of the throws.
Using this information one wants to judge if the coin may be considered as “honest” (i.e. the probability
18 % for heads). One may follow the following procedure:

1) Assuming that the coin is honest, apply the Central Limit Theorem to find the probability that the
number of heads, X, lies between 4979 and 5021 (both numbers included).

2) Accepting the hypothesis that the coin is honest if the probability above is < 0.95, check if the coin
can be considered as honest.

3) Repeat the test with another coin, in which case we get 5000 — N heads among the 10,000 throws.
Find the largest number N, for which the hypothesis that this coin is honest will be accepted by the
method described above.

1) When we assume that the coin is “honest”, then the number X of heads is binomially distributed,
XeB <10,000, %) with

E{X}=5000 and V{X} =10,000- = 2500 = 502.

1
2

DO | =

By the Central Limit Theorem X is approximated by
Y € N (5000, 50%),
thus

P{4979 < X < 5021}

Q

P{4978.5 <Y <5021.5} = P{—21,5 <Y — 5000 < 21.5}
Y — 5000
50

P {0.43 < < 0.43} =2®(0.43) — 1 = 0.3328.
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4. The Central Limit Theorem

2) Since 0.3328 < 0.95, we shall accept the hypothesis that the coin is honest.

3) We find in the same way as in (1) that

1 1
P{5000—N§X§5000+N}%P{5000—N—§§Y§5000+N+§}

Y — 5000
50

N+ 3
50

+
50

- o ()

We shall find the largest integer N, for which

N+ 1
2@( +2>—1g0%,
thus
N+13
@( 2)309%.

By using tables we get

1
N 2 ie.

1
< 1.96, N+ <98

the largest integer N, for which the hypothesis is accepted

, 18 97.
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Continuous Distributions 4. The Central Limit Theorem

Example 4.3 Given the random variables X1, Xo, ..., Xogoo, which are mutually independent of the
distribution
P{X;=1}= i, P{X;=0}= 37 i=1,2,...,900.
10 10
Put
900

X = ZXZ-.
=1

1) Find the distribution of X.
2) Find mean and variance of X.
3) Apply the Central Limit Theorem to find the largest integer M, for which

P{90 — M < X <90+ M} < 0.95.

4) In a given table of “random numbers” there is a page of 900 numbers, of which 70 are zeros, which
apparently gives a too small number of zeros, if the numbers should have been chosen “randomly”
(because we would have expected a number close to 90).

Ezpain why it is reasonable to reject the hypothesis of randomness if the number 70 does not belong
to the interval [90 — M, 90 + M], where M is given by (3).
Shall one in the present case reject the hypothesis of randomness?

1) Clearly,
900 1
x=S"x,eB(90,—].
> o (s0.5)

2) Since the distribution is known, it follows immediately that
E{X} =90, V{X}=81=09%

3) Choosing Y € N (90, 92), cf. (2), it follows from the Central Limit Theorem that
P{90— M < X <90+ M}

is approximately equal to

1 1 Y — M+ M4l
P{90—M—§SY§9O+M+§}:P{‘ 90’§ +2}:2¢( +2)—1.

9 9 9

This is again smaller than or equal to 0.95, if
M+1L M+1L
o ( 9+ 2) <0.975, i.e. 9+ 2 <1.96,

hence M < 17.
Thus the largest integer is M = 17.
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Continuous Distributions 4. The Central Limit Theorem

4) If we have randomness, then the probability of being outside the interval [90 — M, 90 4+ M| smaller
than 0.05.

Since one does not believe in an event of so small probability, the hypothesis is rejected.

‘We have in the case under consideration that
[90 — M, 90 + M| = [73,107].

Since 70 does not lie in this interval, we reject the hypothesis of randomness.

Example 4.4 A schoolteacher wants to demonstrate to his pupils that one by throwing a coin many
times will obtain heads in approximately half of the throws. They agree to throw the coin 100 times
and consider the result as acceptable if the number of heads, X, satisfies the inequalities 48 < X < 52.
Considering results obtained by an application of the Central Limit Theorem one shall

1) Compute P{48 < X < 52}.
2) Find the smallest integer M, such that

P{50 — M < X <50+ M} > 0.95.

3) They then decide to throw the coin 50N times and consider the result as acceptable if the number
of heads, Y, satisfies

24N <Y < 26N.

Find by using the Central Limit Theorem the smallest integer for which the probability of the event
above 1s > 0.95.

1
1) Since X € B (1007 5), we see that X can be approximated by N(50,25), so

(o) r ()=o) () -22)

2-0.6915 — 1 = 0.3830.

P{48 < X < 52}

Remark 4.1 We get by using a pocket calculator
100 100 100 100 100 1
LR ) () (50 )+ (57)+ (52 am
100 100 100 1
(0 o2 (90) ()] ks - osem

so we see that the approximation above is indeed a good one. ¢

P{48 < X < 52}
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2) Since ®(1.96) = 0.975, and

M+ 1 M+1 OM +1
P{50—M§X§50+M}zq>( ;2>—q><_ ;2>:2¢>( 1(;’ )-120.95

for

2M +1
10

>1.96, ie. M >09.3,
we conclude that M = 10 is the smallest integer for which

P{50 — M < X <50+ M} > 0.95.

1 N
3) Since Y € B <50N, 5) can be approximated by an N (25N, 25 - ?>—distribution with sy =

|N
5 5 it follows that

1 1 2N +1
P{24N§Y§26N}:F<26N+—>—F<24N——>%2@( + )—1.
2 2 5V2N

We get in the same way as in (2) the condition

2N +1
5V2N

which can also be written as an inequality containing a polynomial of second order in 2N,

> 1.96,

(Vﬁ)2 —9.8V2N +1>0.

The roots of the equation 22 —9.82+1 =0 are z = 4.9+ V4 — 92 — 1. Now,

4.9 —/4.92-1=0.10313 < 1,
so only + can be used. Hence,
ON > 22 =4.92449% - 142494 —-92-1=2-49>—1+9.8y/4.92 -1,

from which

N >4.9%2 —0.5+4.9v/4.92 — 1 = 47.015.

The smallest integer, which fulfils this condition is N = 48.
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Continuous Distributions 4. The Central Limit Theorem

Example 4.5 Let X1, X5, ... be independent identically distributed random variables of mean p and
positive variance o2, and let

Y,=Y Xi neN
Find for every x > 0 by using the Central Limit Theorem
Y, —nu

Y, — 2
nler;OP{ N Sx} and nlin;op{( ﬁ"“) Sx}.

The results shall be expressed in the distribution function ®(z).

It follows from

E{Y,} = ZE{Xz} =np

i=1

and
n
V{Yn} = Z V{Xz} = ng"’ ie. Sp = g\/ﬁ’
i=1
by the Central Limit Theorem that

Y, —nu

lim P{

n—oo

SJ}}: lim P{—ES
o

n—oo

n
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Continuous Distributions 4. The Central Limit Theorem

Now,

Y —np\ > Y,—n
i (B772) s o} = {2 < 2}

so it follows from the above that

2
lim P M <z =
n—oo \/ﬁ

2<I><@)—1, for z > 0,
o

0, for z <0.

Example 4.6 Given a roulette, where the possible event of each game is either red, black or green of
the probabilities v, b and g, where

r>0, b>0, g>0 and r+b+g=1.
When we continually play on this roulette we assume that the games are independent.

Let n € N be a fivred number, and let X,,, Y, and Z,, denote the number of games among the n games
which results in either red, black or green.

1) Find the distribution functions of X,, Y, and Z,.
2) Find the variances V{X,}, V{Y,} and V{Z,}.
3) Find, e.g. by using that X,, +Y,, + Z, = n, the variance V{X,, + Y, }.

4) Compute the correlation o(X,,Y,).

1
5) Allowing n to vary, we shall prove that the sequence (— Xn> for n — oo converges in probability
n

1
towards the constant r, and that the sequence (— Yn> converges towards the constant b.
n

1
6) Prove for any e € Ry and any a > 3

P{|X, —nr| <en® and |Y, —nb| <en®} —1 for n — occ.

1) Clearly, X,, € B(n,r), Y, € B(n,b) and Z,, € B(n,g) are all binomially distributed with

P{Yn_k}_<z>bk(1—b)”k, E=0,1,2,...,n,

P{ank}=<2>g’c<1—g>”-k7 k=0,1,2...n
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2) The variance of U € B(n,p) is V{U} = np(1 — p), hence
V{Xn}:nr(lir)a V{Yn}:nb(lib% V{Zn}:ng(lfg)
3) It follows from X,, +Y,, + Z,, = n that

V{Xn+Yn} = V{n_Zn}:V{n}+V{Zn}:0+ng(1_g)
= ng(l—g)=n(l—7r—>0)(r+0).

4) From
_ l 2\ _ Ly 2 o o
XY, = 2{X 1Y) Yn}—z{(n Zn)? — X2 Yn}
1
- 5{ Z:—2mZ,+n®—X2-Y?},
follows that
Cov(X,,Y,) = E{X,Y,}-E{X,}E{Y,}

- 1E{Zz}an{Xm”—QféE{Xz}f%E{Yi}fE{Xn}E{Yn}
_ [E{z2} (B{Za})’] + ! > [(B{Z.))? — 2 B {20} +

-5 B - @, })2} -5 (B

5 B2 - B - B - B BV
5 (B (X))

_% V{v,)— % (E{V,})? - B{X,} E{Y.}

1 1 1
= 5V{Zn}+5 (n—E{Zn})2—§V{Xn}—

1 1 1
= §V{Zn}_§V{Xn}_§V{Yn}

by (= B{Z))7 — 5 (B (X} + B {Ya))?

1 1 1
= §V{Z5’n}— §V{X"}_ §V{Yn}

= Dol —g) (L)~ b1~ b))
= g {7“+b—7“2—b2—2rb—r—|—r2—b+b2}
= —nrb.
Since
VVA{X,} VA{Y,} =nyrb(l —r)(1 —b),
the correlation is

—nrb r-b

- ny/rb(1 —r)(1 =) N (L=r)(1-0)
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ALTERNATIVELY it is immediately seen that
1
Cov (X,,Y,) = 3 (V{X,+Y,} - V{X,} - V{Y,})
= g{gr—i—gb—rb—rg—br—bg} = —nrb.

1
5) It suffices to prove that <— Xn> Ly (in distribution), because the proof for
n

1
(— Yn) Lobis analogous.
n

Since
1 1 1—
E{—Xn}zr and V{—Xn}:r( T)Zsm
n n n
it follows from the Central Limit Theorem that
. 1 Xn —-r .
lim P n(—)Sy = lim P{Xn—nrﬁx/ﬁ-\/r(l—r)'y}.
n—oo r(l—r n—oo

n

Now,
1
F,(z) = P{EXN Sx} = P{X,, —nr <nz—nr}
= P Xn—nrg\/ﬁ.,/r(l_fr).w .
Vr(l—r)
hence
0 for x < r,
lim F,(z) = lim ® (l (x — 7“)) =
e e r(l—r) 1 for x >,

and the claim follows.

ALTERNATIVELY one may use Chebyshev’s inequality. We have
nr(b+
- E} (b+9)

- X, —r
n2e2

p{l

n

P{|X, —nr|>ne} <

1 1
= —rlb+tg)- 5 —0 forn— oo,
n 5

1
proving that (— Xn> converges in probability towards r.
n

1
It follows similarly that (— Yn) converges in probability towards b.
n
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1
6) Ifa>§and5>0,then

3 1
n

P, = < et = P X, — ] < Vi VAT =7 et

1
~P| ————n""2 | =1 for n — oo.

r(l—r)
Analogously,

NG

Hence, for every § > 0 there is an ng, such that

5
P{X,—nrl<en®}>1- 5

_1
a—3

P{lY, —nb| <en}~® —1 for n — oo.

[ ]
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Continuous Distributions 4. The Central Limit Theorem

and

P{|Y, —nb| <en} > 1—;

for n > ng. Then

P{|X, —nr| <en® and |Y,, —nb| <en®}
>P{X,—nrl<en®}t—(1—-P{|Y, —nbl <en®})
§y 0

>1—-—-=1-§

, for n > ng.
2 2

This holds for every d > 0, so by taking the limit,
lim P{|X, —nr| <en®and |Y,, —nb] <en} =1.

ALTERNATIVELY we may also here apply Chebyshev’s inequality. The complementary event has
the probability

P{{|X, —nr| >en®} U {|Y, —nb| > en}} < P{|X, —nr| >en®} + P{|Y, —nb| > en®}
- VA{X,.} N V{Y,} nr(b+g)  nb(r+g) 1 o

= + < -—=n — 0 for n — oo
£2p2a £2p2a £2p2a e2p2a £2 )

(because a > %) Hence, we find the probability of the event,

P{|X,, —nr| <en® A |Y,, —nb|] <en®} -1 forn— oo.
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Example 4.7 In an experiment an event S (success) occurs with the probability p, where 0 < p < 1,
and the complementary event F (failure) occurs with the probability ¢ = 1 — p. The experiment is
repeated under identical conditions and such that the events are mutually independent. We define for
every r € N the random variable Y, by

Y, =k, if we have had precisely k failures before the r-th success.
1) Prove that Y7 has its distribution given by

P{Yi =k} = pq", k € Ng.

2) Prove that 'Y, has its distribution given by

E+r—1) ,
Pﬂ@=k}=( Z >pq? k € No.

3) Ezxplain why Y, can be written in the form

Y, = Zr: Xi,
i=1

where the X; are independent, identically distributed random variables.

1
4) Prove by applying Chebyshev’s inequality that for every e > 0 and every a > 3

MHP{K—rqgsW}:L

r—00 q

5) Prove by applying the Central Limit Theorem that for every e > 0,
mnP{n—rqgsw}:f@,
T—00 p

where 0 < f(e) < 1.

1) The event {Y; = k} means that we have had precisely k failures before the first success, i.e. in
totally k 4+ 1 experiments, so

k4+1-1
PHGZk}=< f )p%k=pf, k € No.

2) The event {Y; = k} means that we have had k failures and r — 1 successes in the first k +r — 1
experiments, at that the (k + r)-th experiment is a success. The occurrences of the k failures can

be chosen in < K +]: -1 ) ways, SO

Pﬂ;:ky:(k+;_l>pwh k € No.

This describes a negative binomial distribution, Y,. € NB(r, p).
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3) Since Y7 = X; has the distribution
P{X,=k}=P{Y1=k}=p¢", keN,
we see that
P{X,=k—-1}=P{X; + 1=k} =p¢" ", k€N,

is geometrically distributed. Then Y, 4 r is Pascal distributed,

r

Y, +r= Z(Xl +1) € Pas(r,p),

i=1

provided that all X; + 1 are independent and identically distributed, thus
Y, => Xi;,  X;€NB(Lp), ie. P{X; =k} =p¢", keN,
i=1

and the negative binomial distribution is reproductive in the form parameter.

4) By Chebyshev’s inequality,

o2

P{Y =l >0} < 45, where p = E{Y} and o® = V{Y}.

It follows from (3) and a formula that

T 1—p q
r=E{Y,}=E{Y,+r}—-r=—-—r=r =r--,
1 {v;} = E{ ¥ ’ ) )
and
rq
af:V{YT}:V{Yl—i—r}:]?.
Then by insertion into Chebyshev’s inequality,
q rq
6 p{jr-rgl2o) < g
Choosing b = er%, where a > —, we get by (5),
q 1
0<P|Y,—r—|>er® <=5 —0 for r — o0,
pe r2a-l
thus
lim P{Yr—rg’gera}zl— lim P{Yr—rg'>€ra}:1.
r—00 p r—00 p

5) By the Central Limit Theorem,

Y, —ri Y, —ri
) q ) T " e\ . T " Ep
lim PL|Y, —r=|<eyrpy= lim P < = lim P{|———| < —
i {i o< evi - iy {‘ oG mﬁ} A { G \/6}
p
(ﬁ) ©
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Continuous Distributions 4. The Central Limit Theorem

Here we have used that

Y, = ZXi and F{X;}= 9 and o? = dfracgp®.

=1 p

If Z is N(0, 1)-distributed, then clearly,

fle) =20 <s%) 1_P{|Z| §5%} €10,1].

Example 4.8 Let X1, X5, ... be independent random variables, all rectangularly distributed over the
interval |0, 1[.
Introduce for every n € N the random variables

Yn:ZXi, anzn:XE.
L i=1

1) Compute the means E{Y,} and E{Z,}.
2) Compute the variances V {Y,} and V{Z,}.
3) Compute for j =1, 2, ..., n, the covariance Cov (Yn,X]z).

4) Compute the correlation o (Yy, Zy,), and prove that it does not depend on n.

1
5) Let n vary. Prove for every e € Ry and every a > 3 that

P

and

Ynfg‘<5n“}al forn — oo,

P{‘Zn—g‘<ana}—>1 n — oo.

6) Find
Jim P{‘Zn . ﬁ‘ < @}

(8 decimals).

1) Obviously, E{Y,} = g Furthermore,

n n 1
E{Z,} =Y E{X}?} = Z/O o2 do; = g
i=1 i=1
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2) Clearly, V {V, } = 1"—2 Since

1
E{(Xg)z}:/o dhdri=g  ad  B{X?}=g.

we get
1 1 4
ViXtt=5-9=m
SO
in

3) A direct computation gives

1 11 1
Cov (Xn,X7) = Cov (X;,X7) =E{X}} - E{X;} E{X}} = 133" 1o

4) By (3),

n
Cov (Y, Zy,) = Z Cov (Yn,X?) = %,
j=1

TURN TO THE EXPERTS FOR
SUBSCRIPTION CONSULTANCY

Subscrybe is one of the leading companies in Europe when it comes to innovation
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Learn more at linkedin.com/company/subscrybe or contact
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thus

n 1 15 5 1
Y,z )=t 222
o ) =% T o ) 16 4

12 45
independently of n.

5) By Chebyshev’s inequality,

for n — oo,

for n — oo,

n N % 1
P{ Yo — 5‘ ZEen } = g2p2a  12¢2p2e-1 -0
SO
. n
lim P{Yn—§‘<5n“}:1—021.
It follows in the same way that
4n
P{‘Z" B g‘ Zgna} = £2p2a  45e2  p2a—1 -0
SO
. n
lim P{Zn—§‘<5n“}:1—0:1.
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6) By the Central Limit Theorem,

= P

flns1<)

n
4

—>2<D<§\/5>—1

55
BlE “>|:

= 2®(0.83853) —1~2-0.799 — 1 =0 — 598.

Example 4.9 Let Uy and Uy be two mutually independent random variables of the means j1 and pio,
resp., and the variances o3 and o3, resp., and let U = Uy - Us.

1. Prove that the variance of U is 0303 + p3o3 + pio?.

A rectangle has the edges X1 and X, where X1 and X5 are independent, identically distributed random
variables of frequency

f($>:{2x, O<z<l,

0, otherwise.
Let Y = X1 - X5 denote the area of the rectangle.
2. Find, by e.g. using the result of 1., the mean and variance of Y .

Let Y1, Ys, ... be a sequence of mutually independent random variables, all following the same distri-
bution as 'Y, and let

3. Find, by means of Chebyshev’s inequality a positive constant a, such that

4
P{‘Zn——n v

9 <T}Za for every n € N.

4. Find by means of the Central Limit Theorem,

lim P{‘Zn _dn \/ﬁ}, (3 decimals).

< —_

1) Tt follows from
E{U?} = E{U}}- E{U3} = (o1 +u1}) - (03 + 13) ,
that
V{U} = E{U*} — (BE{U})* = 0103 + pios + p3of + pipd — (mpe)® = 0703 + pios + p3o?.

2) In this case we have (at least) two variants.
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a) First compute

! 2 ! 1
E{Xl}:/ 22%de = = and E{Xf}:/ 223 do = =,
0 3 0 2
thus
1
V{Xl}:E{Xf}—(E{Xl})in—

We obtain the same results for Xs.

Then
4
E(v} = E{X1} E{X:} = 5,
and by 1.,
1 1 4 1 17
Yie — — 2. — =
Vivi 18 18+ 9 18 324

b) ALTERNATIVE SOLUTION. First find the frequency of Y = X3 - X5. If 0 < y < 1, then

fy(y)/:_yfxl(as)fx,z (%)édx:/m zx.ggédx:zly/

=y
Hence

1 1
—dx = —4y Iny.
x

=Y

2

' y? Y by
E{Y}:_4/O yInydy = —4 [3 hly—/gdy} -
0

! y* ys 101
E{Y2}=—4/ Plnydy = —4 {Z 1ny—/fdy] =7
0 0

SO
1 /4\* 1 16 17
Y = - — — = - — — = —
Vivi =4 (9) 4781 214
3) Put
Zn:ZYi.
i=1
Then
4 17
E Z == = Z = - —_
{Z,}=n 5 and V{Z.,} =n 391

It follows from Chebyshev’s inequality that

P P A

9|~ 4 324 n 81
hence
4n vn 68 13
- ~ 3> - — = — =~ .
P{Zn 9 < 1 }_1 51 8l (= 0,160)
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4) Obviously, the assumptions of the Central Limit Theorem are satisfied, so

in| 18  Z,—4-% 18 ( 18 )
pllz, - vl _pl_ < 9 o 20 (—o_) —1
{‘ 9 4} { WIT  n VI 4\/17}_) AT

=2®(1.0914) —1=2-0.8624 — 1 = 0.7248.

Hence, with 3 decimals,

Jim P{‘Zn _dn) 4} — 0.725.

n—oo 9

Example 4.10 Let X; and Xo be independent random variable of the frequencies

e "2, zo > 0,

le (301) = e—2|3?1|) T € R’ sz (([;2) =
0, ) § 0.

1. Find the means E{X;1} and E {Xs}.

2. Find the variances V{X1} and V {Xs3}.

3. Prove that the random variables X1 + X5 and 2X1 — X5 are non-correlated.
4. Compute the frequency of the random variable X1 + Xs.

Let Uy, Us, ..., Usgg be mutually independent random variables, all following the same distribution
as X1, and let

200

V=>"U.
=1

5. Find by using the Central Limit Theorem an approzimate expression of

P{—20 <V < 20}.

1) The integral ffooo |z1| e=21*1l dzy < 0o is convergent, and the integrand z;e~21*1l is odd. Thus

E{X} = / e 27l gz = 0.

—00

Furthermore, by using a I'-integral,

E{Xs} = / Toe T2 dry = 1.
0
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2) From E {X;} = 0 follows that

V{X,}=E{X7} :/ ale Al dpy = 2/0 2™ dpy = 1 S2l=—.
o0

Since
oo
E {X%} = / r2e™ "2 day = 2,
0
we get
V{Xo}=2-1=1.
3) Now, X; and X are independent, and Cov(+,-) is bilinear, hence
Cov (Xl +X2,2X1 - Xg) = 2Cov (Xl,XQ) — Cov (X27X2) = 2V{X1} - V{X2} =0.

This shows that X; + X5 and 2X; — X, are non-correlated (though they are not independent.)

4) Since X; and X, are independent, the frequency of Y = X; + X5 is given by the convolution
integral

9(y) = /:’O Ix, (@) fx,(y — x) dx.

ant to do?

Vowo Toucxs | Rewanr Tovcks | Macx Touews | Wowo Buses | Vowo Coxseucrion Ecuesent | Wowo Pesm | Vowo Aeso | Vowo IT
Vowo Fimskcer Sepaces | Vowo 3P | Vowo Powemream | Vowo Pasrs | Vowo Tecsmowoey | Vowo Loasncs | Busieess Anes Asie
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Continuous Distributions 4. The Central Limit Theorem

The integrand is positive, if y > x. We split the investigation according to whether y < 0 or y > 0.

a) If y <0, then

Y Y 1
g(y) = / X~ W= dy = e_y/ 3 dy = - e,
. 3

— 00

b) If instead y > 0, then

0 y 0 Y
gly) = / e W) dy 4 / e 2= W=) g = e_y/ e dr + e_y/ e Tdx
e 0

0 —o0
1 4
= 3 e Y+ (1 — efy) e Y= 3 eV —e %,
Summing up we get

1
3 ey, for y <0,

9(y) = A
3 eV —e %, for y > 0.

5) It follows from the Central Limit Theorem that V is almost normally distributed with mean 0 and
variance 100 = 102. When we put W € N (0, 102), the wanted probability is almost equal to

P{—20 < W < 20} :P{—zg % g2} =20(2)—1=2-09772 — 1 = 0.9544.
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Example 4.11 An instrument A contains two components, the lifetimes of which, X1 and Xo, are
independent random variables, both of frequency

ae x>0,
0, xz <0,

where « is a positive constant. The instrument A does only work, when at least one of the two com-
ponents operates, i.e. the lifetime X of A is X = max {X1, Xo}.

Another instrument B also contains two components, the lifetimes of which, Y1 and Y, are indepen-
dent random variables, both of frequency

(@] «
- eXp(——y), y >0,
3 3
9(y) =
0, y <0.

The instrument B is only working, if both components are working, i.e. the lifetime Y of B is Y =
min {Y7,Y52}.

1) Find the frequency of X.

2) Find mean and variance of X.

3) Find frequency, mean and variance of Y.

4) Find the simultaneous frequency of (X,Y), and then find P{Y > X}.

5) Consider 180 instruments of the same type as A. The random variable Z denotes the sum of
the lifetimes of the 180 instrument. Find by using the Central Limit Theorem an approximate
expression of

24
P{—O < zZ< —300}.
(0% (6%

1) According to a known formula, X = max {X;, X2} has the distribution function

( ) FX1($> 'FX2<:E) = (1 _e—aw)z for z > 0,
FX xXr) =
0 for x <0,

so the frequency is

207 (1 — e7%) = 20~ % — 2 e~ 29% for x > 0,
f(z) =
0 for x <0.
2) The mean is
E{X} :/ 20¢xe*‘3“’”dﬂ?*/ daze T dr =2 11— 1=
; 0 o 2c 2
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Since

E{XQ} = / 20¢x2670“rdx—/ 200 x%e 29 dg;
0 0

2 2 1 1 14
R B )
a? (2a)? a2< 4> 402’

we get the variance

3) Tt follows by a formula that ¥ = min {Y7, Y2} has the distribution function

Fy(y) = 1-(1-Fn()(1-Fn)=1-(1-Fny)’

2
1exp<§ozy>, for y > 0,

0, for y <0.

The frequency is obtained by a differentiation,

2 2
- exp (__a y) for y > 0,

fy(y) = ’ ’
0 for y <0,
proving that Y is exponentially distributed with
B{Y}= 2  and V{V}=-—L.
2a 42

4) Since X and Y are stochastically independent, the frequency of (X,Y) is given by

40 2
% e~ (1 —e %) exp <_?a y) for x > 0 and y > 0,
h(z,y) = fx(z)- fy(y) =
0 otherwise.
Hence
P{Y > X}

_ /w{[fﬁd@~ﬁ%wdx}@/.AMU&@N3ﬁ4wdy

200 [ 2a S5a S8a
= ?/0 {exp(—?y)—2eXp(—?y)+exp(—?y)}dy
I RE IS Y

3 |2« ba = 8« 312 5 8 5 4
1,19
- 5717w
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5) Since
2
= B{Z} =180 B{X} = 210,
«
and
225  [15\°
2_vizyv =1 D '@ U ini
o? = V{Z} =180V{X} = = (a)

it follows by the Central Limit theorem that

P{@<Z<@}P{@<Zu<@}P{2<Z“<2}
« « « (0% (o

~20(2) —1=12-0.9772 — 1 = 0.9544.

Example 4.12 Let X7, Xo, X3, ... be mutually independent random variables with their distribution
given by
1

and let

Y,=Y Xi neN

1 1
1) Prove that if U; is Bernoulli distributed with the probability parameter 2 U, e B (1, 5), then
2U; — 1 has the same distribution as X;.

2) Find by e.g. applying the result of 1., the distribution of the random variable Ys.

3) Find the characteristic function of X;, and then find the characteristic function of Y.

4) Prove that the sequence (— Yn> converges in distribution towards a random variable Y, and find

Vn
the distribution of Y.
HINT: One may either use the Central Limit Theorem, or the result of 3.).

5) Find an approzimate expression of P{—30 < Yi9 < 30}.

1) When U; € B (17 %), then

P{Ui:O}:P{2Ui—1:1}:%:P{Uizl}:P{2Ui—1:1},

hence 2U — i — 1 has the same distribution as X;.
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2) Tt follows that

where

5
1
U=ZUi€B<5,§>
i=1

is binomially distributed, hence

|
P{U:k}:<5> k=0,1,2,3 4, 5.

E ) 95’
Then
P{Ys=-5} = P{U=0} = 4,
P{Ys=-3) = PlU=1} = =
P{Ys=-1} = PlU=2} - =
P{Y;=1} = P{U=3} = g,
P{Y;=3} = P{U=4} = 3,
P{Ys=5} = P{U=5} = L.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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3) The characteristic function of X is
wX; 1 iw 1 —iw
kx,(w)=E{e ‘}256 +§e = cosw.

The characteristic function of Y,, = Zle X is then

ky, = H kx,(w) = cos" w.
i=1

1
4) FIRST VARIANT. The characteristic function of —Y,, = Z,, is

\/ﬁ n

kz,(w) = cos" d 1 Wt + ! € N e W for n — oo
w) = — | = - — =+ — — —exp | —— — 0.
Zn vn 2 n n \n P 2

1
The limit function exists and is continuous at 0, hence the sequence (— Yn) of random variables
n

converges in distribution towards a random variable Y with the characteristic function

ky (w) = exp <—%2> ;

and we conclude that Y € N(0,1) is normally distributed.
SECOND VARIANT. Now

E{%}:j%E:E{&}:Q

and

V{Zn}:%-n-V{Xl}:V{2U1—1}:4V{U1}:4-

N | =
N[ =

it follows by the Central Limit Theorem that

Z, — E{Z,)}
VVAZn}

proving that Z, — Y in distribution, where Y € N (0, 1) is normally distributed.

FZn(z):P{anz}:P{ Sz}—ﬂb(z) for n — oo,

1
5) Since Yoo = 20 Z400, it follows from the SECOND VARIANT in 4. above that

3 3 3
P{—30 < Y00 < 30} = P{—E < Zago < 5} ~ 2P <§> —1~2-0.9332 -1 =0.8664.

Here, it is however easier to apply the continuity correction, so we get the interval | — 30.5, 30.5].
In this case we have the approximation

T200 < 7100 < 900

29(1.525) — 1 = 2 0.9364 — 1 = 0.8728.

305 305
P{—30.5 < Yipo < 305} = P{ }

Q
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Example 4.13 A random variable X has the frequency

1—— 0<z <2,

0, otherwise.
1) Prove that E{X} = E {X?}.
2) Find the variance V{X}.
3) Let X1, Xo, ..., X450 be mutually independent random variables, all distributed like X above, and
et Y = 50

1=

Find by using the Central Limit Theorem a number x, such that
P{300 —z <Y < 300+ «}
is (almost) 0.95.

1) By some simple computations,

2 2 1 1 1,17 2
E{XQ}Z/x2f(x)dx:/ (m2—§x3> da::{gaz‘g—gx‘l] 22—2257
0 0 0

hence
2
BE{X}=E{X?} ="-.
(X} =E{x?} =2
2) Another simple computation gives

Vix} = B{X?} - (B{X})* =

Wl
|
NoTRTN
|

3) IfY =370 X, then
2 2
E{Y} =450 5 =300 and V{Y} =450 5 = 100= 102,
IfZeN (300, 102), it follows by the Central Limit Theorem that

P{300 —z <Y < 300+ 2} ~ P{300 — z < Z < 300 + x}

x Z — 300 T T
{ 0° 10 ° 10} (45)

From
2P (ﬁ
10

follows that

) —1=0,95, dvs. @ (1%) — 0,975,

1””—0 =196, thus = 19.6.
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Example 4.14 Let X1, Xo, X3, ... be mutually independent random variables, all of the distribution
given by

1 2
P{Xi:2}:§, P{Xi=—1}=§, i €N,
and let

Y, => X neN.

1) Find mean and variance of X;.
2) Ezplain why Y, only takes values in the interval [—n,2n].

3) Find by means of Chebyshev’s inequality a positive constant a, such that

P{|Y,| <3vn} >a for every n € N.

4) Find by means of the Central Limit Theorem

lim P{|Y,| < 3vn} (3 decimals).

5) Find the distribution of Yy.

1
The simplest method is to introduce Z; € B (1, §>, which is Bernoulli distributed, and then note
that Xz = 3Zl — 1.

1) The mean is
1
E{X;}=3E{Z}-1=3-3-1=0.

ALTERNATIVELY,

1 2
E{X;}=2---1-2=0.
{Xi} 3 3

2) The variance is

1 2
V{X;}=9V{Z}=9----=2.
3 3
ALTERNATIVELY we get from F {X;} = 0 that
) 12

3) Since —1 < X; <2 for all 4, we get

—ngiXi:Yngm.

i=1
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4) Since E{Y,} =0 and 02 = V {Y,,} = 2n, it follows by Chebyshev’s inequality that

2

2
on 2
P{|)n_0|23\/ﬁ}S%_97

hence

PV, <3y} 212 =1 =a

5) According to the Central Limit Theorem,

lim P{ng}z lim P{Yngx-\/Q—}:(I’(x).

n—o00 \V2n n—oo
If we ut:z:—i then
p _\/ﬁ,
3 3
P{|Y,|<3V/n} = P —2-\/211 -P Yn<—ﬁ-\/2n

%

o
o
©
0
&
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6) Since
4
Yy =3 Zi—4,
i=1
where

- 1
;ZieB<4,§)

is binomially distributed, we get

1 k 9 4—k
P{n3k4}<i>~(§> <§) . k=0,1,2, 3,4,
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hence
16
P{Y4 — —4} — 8—1,
32
P{Y4 == —1} == 8—17
24 8
POG=2 = 5 =a
8
P{Y4 = 5} = 8—17
1

Example 4.15 Let X7, Xo, X3, ... be mutually independent random variables, all of the distribution
given by

3 1

and let

1) Find mean and variance of X;.

2) Find by means of the Central Limit Theorem,

lim P{-2yn <Y, <2Vn} (3 decimals).

n—oo

3) Ezxplain why X; has the same distribution as 4Z; — 3, where Z; is Bernoulli distributed,

1
P{Zi=1}=%  PiZi=0)=1

and find by means of this for every n € N the probabilities

P{Y, =4k — 3n}, k=0,1,2,..., n.

1) The mean is
3 1
E{X)=1-2-3.-=o.

Hence the variance

3+9

3.
3

VXi} = B{X?} -~ (B{X})*1-5 491 0=
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2) The mean is
E{Y,} =) E{X}=0,
i=1

and the variance is V {Y,,} = 3n.
It follows from the Central Limit Theorem that

n—oo n—oo

lim P{-2y/n <Y, <2y/n} = lim P{

2

= 20 =
<\/§
2.0.876 — 1 = 0.752.

Q

3) This follows from 4., so we just indicate that

Piv—o) = L
pon=s - (3) 3 h-d
s - (3 43

4) Tt is obvious that if Z; is Bernoulli distributed,
3 1

P{Z =1}=Z2, P{Z, =0} = -,
Zi=1}=3 P{Zi=0l=,

then

Y, —0 <l}
Van | V3
)—1:2@(1.1547)—1

P{Xizl}:P{4Zi—3:1}:P{Zizl}:%,

and

P{X,= -3} = P{4Z—3= -3} = P{Z =0} = -

hence X; and 47; — 3 have same distribution.
If we allow X; =47, — 3, then

n n
Y, :ZX,» :4ZZi—3n,
i=1 =1

where

ZE:L;ZZ 63(%,%)

47
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is binomially distributed.
Then

P{Y, =4k —3n} = P{4ZZi—3n:4k—3n} :P{ZZi:k}
=1

i=1

k n—k
n 3 1
CE) )T ernn

Putting n = 3 we get question 3., cf. the above.
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5 The Maxwell distribution
Example 5.1 1) Prove that the function

i x2 exp (—xQ) , x>0,

flay=14 VT
0, z <0,
is the frequency of a random variable X .

2) Find mean and variance of the random variable X .

1
3) Find the frequency of the random variable Y = 3 X2,

4) Find the mean of the random variable Y .

1) Obviously, f(x) > 0 everywhere. Since

/Z f(x)dx

S 5=

it follows that f(x) is the frequency of a random variable X.
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Continuous Distributions 5. The Maxwell distribution

2) The mean is

4/°° 9 9 2 /°° _ 1 2
E{X}=— x-zexp(—z°) de = — ye Ydy=—- 1= —.
=0, ) e =2 ), T
Furthermore,
E{Xz} = —/ exp dx:i/ooxBexp(fo)Qxd:v
\/_ \/_

= — [-23exp / z? exp dx

_ 3 2 oy 3 . _ 3

= 2\/7_7/0 xexp( )dx—2 1—2,
hence

V{X}=E{X?} - (BE{X})* =

1
3) Since y = 3 z? is a bijective map R, — R, with the inverse z = /2y, the frequency of Y for
y > 0 is given by

1 2 4 1 4
= €)= = e W=~ /9 —2y
9(y) f(\/y)2\/@ﬁye \/@ﬁ\/ye,
hence
4 -2
T\/@'@ Y fOI‘y>O7
T
9(y) =
0 for y <0.
4) Then by 2.
1 3 3
o 2 2 -2z
E{Y}—E{ X} E{X}—2 5 =1

1
Example 5.2 Define a random variable Z by Z = 3 mY?, whereY is Maxwell distributed. Find the
frequency of Z, and find mean and variance of Z. Which distribution has Z ¢

1
The random variable Z = 3 mY? represent the kinetic energy. Clearly, Z has only positive values.
The frequency of Y is

/T 1 , y?
;~Fy exp(—ﬁ for y > 0,

0 for y <0,
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[2
hence Y > 0. Therefore, Y = {/ — - v/ Z, so when z > 0, the distribution function of Z is given by
m

FZ(Z)ZP{Zgz}ZP{Y<,/2z} Fy<\/22>.
m m
By differentiation we get the frequency of Z for z > 0,
f2(2) s [22 2 1 11 \/5 2 12z
= N == Zex
7 Y m m 2z 2m \z 3 m TP AT o
_ 1 <
r(3)

L2, 1 22 2:\*' 1 1 22\ 2
= — - — Vz-exp|—= . - ex .
VT mo? P mo?2 22 TP\ 73 et ) o2

Since fz(z) = 0 for z < 0, it follows that we have a y2-distribution in the new random variable,

2 o2m

27 3
X = , or more precisely, X € x2( = .
mo? 2
2
o?m’

d
Notice that @ _
dz

The mean is found by using the change of variable ¢ = E7
o

B{Z} = mE{Y2}—T\ﬁ/m%y%ﬂexp (—y—22> dy
— mo® \/7/ exp(——)Oo ng \/7/ exp( >tdt
— m; \/;H t?’exp<%ﬂ0 +3/0 t exp( 2> dt}gmUQ.
Furthermore,

m Y
2,4
- \/7/ t% exp (——) dt = 40 —
™ Jo
m2ot [2 5 n m2ot
= — . to - tdt: —
1 - 5/0 exp( 2>

hence

V{zZ}=E{Z*} - (E{Z})* = (Z - Z) miot = gm204.
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6 The Gamma distribution

Example 6.1 Let X; be a non-negative random variable of frequency fi(x), mean 1 and variance
0%, and let the function fy be defined by

1
— x f1(x), x> 0,
falx)=¢ M
0, z < 0.
1. Prove that fo(x) is the frequency of a random variable Xs.

2. Compute the mean ps of Xo (expressed by py and o?).

Let Xy be exponentially distributed with parameter o and frequency f1(x), and let the functions f,(x),
n € N, be defined recursively by

1

fn(x) _ Hn—1

x fo_1(x), x>0,

0, <0,

(where pu,—1 is the mean corresponding to the frequency fn_1(x)).

3. Prove that f, is the frequency of a gamma distribution of form parameter n and scale parameter
1

a

1) Since fi(z) > 0 and g1 > 0, we have fo(z) > 0 and
| p@dr= o [Tep@de= DB} = Lo =
r)ar = — x xr)dr = — = . =1,

—oo ’ H1 Jo ' M1 ' M1 "

thus fs is the frequency of a random variable Xo.

2) Then by a straightforward computation,

o 1 & 1 1 o2
E{X>} :/ z fo(x) do = — 2? fi(x) dx = —E{Xz} = (V{X} +#%) =+,
0 M1 Jo M1 M1 M1
3) If
ae for x > 0,
fi(z) =
0 for x < 0,
then
. T e % for z > 0,
Py = M
0, for x < 0.
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This is a constant times the frequency of a I (27 —)—dlstrlbutlon. Since fa(z) itself is a frequency,
a

the constant is 1.

Then assume that

a’l’L

folz) = ['(n)

2" exp(—aw) for z > 0,

0 for x < 0.

It follows by this construction that

1 n
— % 2" exp(—ax) for = > 0,
,f’n+1(‘7") = fon

0 for x <0,

and we conclude that

1 an an+1

pn T(n) T(n+1)

1
and that X, 1, €T <n + 1, ), and the claim follows by induction.
a
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Continuous Distributions 6. The Gamma distribution

Remark 6.1 It follows from the above that

_JtD

0 otherwise,

where u and v denote positive constants, and where B(u,v) denotes the Beta function.
Find mean and variance of the random variable X .
The distribution of X is called the Beta distribution of form parameters u and v (this is written

1
X € Be(u,v)). If in particular u = v = 3 then we get the Arcussinus distribution, and if u =v =1,

then we get the uniform distribution over ]0, 1].

The Beta function is defined by

B(u,v)z/o z“l(l—z)vldz:%, u, v e Ry,

The mean is

1 195“ et m_B(u—i—l,v)_F(u—l—l)F(v).F(u-i—v)_ w
B{X}= B(u,v)/o (1—2)" dz = B(u,v)  Tw+v+1) T(wIl(w) u+v
Analogously,
E{XQ}:B(U+270)_ (u+1)u

B(u,v)  (u+v+1D(u+0v)’

so the variance is given by

V{X} u u+1 o u 1_ v (- v
u+v lu+v+1 u+wv U+ v u+v+1 u+v

- uv 1 1 uv
 utv lutv utovtl (u+v)2(u+v+1)

1
Ifu:vzg,then

B{X} =2 and V{X}=1.
2 8
If u=v=1, then
B{X} = 2 d V{x}=-
= B an = 12

85

Download free eBooks at bookboon.com



Continuous Distributions 6. The Gamma distribution

Example 6.3 A two-dimensional random variable (X,Y) has the frequency

——— Ny —z) eV, O0<z<y,
flay) = LTV

0, otherwise,
where p and v denote positive constants.
1) Find the marginal frequencies of the random variables X and Y .
2) Find mean and variance of the random variables X and Y.

3) Compute the correlation coefficient o(X,Y).

1) When z > 0, then

ah=1

INDINGD
so X is Gamma distributed, X € T'(y, 1).

fx(a) = [ oty = pa
Yy

o 1 1
e T dt = e,
I(w) I'() /0

L'(p)

When y > 0, then

_ y )
fr(y) = #I?T(l/)/o ey —2) rde = me_y-y#—w_l/o 1 =) dt
1 R
B C(p+v) ye

so Y is also Gamma distributed, Y € I'(u + v, 1).
2) Since o = 1 in both cases, it follows by a known formula that

E{X}=V{X}=p and E{Y}=V{Y}=p+r

3) Compute,

E{XY} m/oooye_y {/ny“(y—m)”_ldx}dy
— m/owye—y yr Y {/Olt“(l —t)”_ldt}dy

- 1 Tp+1)-Iv) [~ ptv+l =y
= ot T ), W
_ K _

= W'F(M+V+2)—M(M+V+1)-

It follows that
Cov(X,Y) =p(p+v+1) —plp+v)=p,

hence

wrv) Vwtv
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Example 6.4 Let X1 and Xs be mutually independent random variables,

Xier(luiva)a i:1727
and let
X
A —
X1+ Xo

Compute the frequency of Z
1) by finding the frequency of Y = X1/Xs and then use that

Y
C14Y

2) by finding the frequency of the two-dimensional random variable (Z, X1 + Xa).

1) In general, the frequency of ¥ = X /X5 is given by

Ty(y) = /_Oo f1(yx) fo(x) |x| da.

Since X7 and X5 are positive, Y is also positive. Then for y > 0,

1 1

O = g e, 00 e () o e (<3 e

_ yul_l /OO xul-l-,uz—lexp _y +1 x| dx
L (p1) T (p2) aratr - Jo o

yﬂl*l o p1tpz—1 o /oo t#1+#271 » it
= - —_— e
[ () T () aratrz \ y + 1 y+1Jo

I (p1 + po2) yrrt

U ()T (p2) (y+ 1)patue’

Now, consider the mapping

Y 1
— :—:1——7 :R 071
z=(y) Tty Tty Ry —10,1]

Its inverse is given by

1 z 1
= = ——]_
y=¢ (2)=1— +1—

from which we in particularly derive that

1 dy 1
y‘i’lim and Eim, ZG]O,].[
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Hence, for z €10, 1],

p p1—1
_ -1 g~y _ D(p+p2) (1_Z> . 1
fa) = B 6T |6 O = FTe 7T e T
=
D +p2) 4o ey —1)— T (1 + p2) _ _
— =1 _ pymtpe—(p—1)=2 _ P NG A 17
I R T () 77
and fz(z) = 0 otherwise.
2) Alternatively, consider the mapping
x
T (21, 20) = <x1 _l_lxz,ml —l—xg) = (z1,22), (x1,29) € Rﬁ_.

It follows that
21 =21 (x1 +@2) = 2120 and @9 = 20 — w1 = 29 (1 — 21),
hence

T = 2129 and xo =23 (1 —21).

360°
thinking.
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Continuous Distributions 6. The Gamma distribution

The image of 7 is 7 (R%) =]0,1[ xR,
The Jacobian is

6(3:1,1‘2) 22 21 Z2 21

= = :2;2>07
02) | ) 12 0 1

thus the frequency of (Z1,Z2) = (Z, X1 + X3) for (z1,22) €]0,1[ xR, is given by

f(z1,22) = fi(z1z2) fa(22(1 = 21)) - 22

1 1 -1 ( 2’122)
= . . AR
Ty a2 e (7,
1 1 _ 2o — 217
) B pi—1 22— 1%
X ) (22 (1 —21)) exp ( Y > Zo
1

1 - z
= . =l pi—1  _p1—ltps—1+1 22
=TT () amrm (=272 e ()

D +p2) a1 1 - 2
f— A, 1 1 — 2 . Z}L1+}L2 1 ex <_
T T ) T ¢ ) e P

X
hence Zs is T (u1 + pe, «) distributed, and Z = — 21 has the frequency
X1+ Xy

T+ p2) 1] _ yyua-1 o 2
T8 = Ty = 7P Torzein

which is seen by integrating with respect to zo and then putting z; = z, and of course fz(z) =0

for z ¢10,1].
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Example 6.5 Let X1, Xo, ... be mutually independent random variables, all of the frequency
re ¥, x>0,
fz) =
0, <0,

and let S, = > X;, n €N, and Sy = 0.

1. Find the distribution of S,.

Let t be a fixed positive number. We define a random variable N of values in Ny by
N=mn, ifS,<tand Spi1 >t

2. Prove that
t2’n+1e—t t2n€7t

PN =n) =G+ e

n € Np.

3. Compute the mean E{N}.

1) Every X; is I'(2,1) distributed, so S, is I'(2n, 1) distributed, and S,, has the frequency
1

2n — 1)!
fuls) =4 7Y e

0 for x <0,
If n = 0, then Sy is causally distributed.

2) We see that

gn—lemx for x > 0,

P{NZO} = P{SoSt,Sl>t}:P{Sl>t}

oo
/ re Tdr = [fxef‘” — efﬂoo =te t4e?,
t

t

in agreement with the formula.

If n € N, then
PIN=n} = P{Sy<tASu1>t)=P{Sp<t}—P{Sy<tASni <t}
t 1'277‘71 t x2n+1
= P{Su<t}—P{Sps<tl=[ ——eTdr— | ——— e "da,
{Sn st} = P{Snir <t} /O(zn—l)!6 v /0(2n+1)!6 v
thus
PIN — B t .TQn_l _:Bd t x2n+1 _xd
{ _”}_/O(anl)!e x_/0(2n+1)!6 *

t

_/t xQn—l —rcd N x2n+1 ., /t xQn —zd
“Jo Cn—11 Y T @nr” |, )y @t

t p2n—l1 2n+1 . 22n t t p2n—1
T — S e | 2 g
/O -0 ¢ T anr© +{(2n)!6 ]0 /0 @n—1n1°
t2n+1 t2n
—t

Tl T e e
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and the claim is proved.

3) The mean is

ot ot n- th
BN} = Z (2n+1)! Z

00 $2n+1 > p2ntl © $2n
- ; @t D) i ;(2n+1)! +Zl(2nfl)'
420 t2n 1 X y2ntl }
_ +1
{z D
I T B s G . 11 o
= 5@ {tnz_%n' Gn s 1 {te —blnht}—§t—1(1 e )

Example 6.6 Given a sequence of random variables (X,), where X,, has the frequency

1

m atz"lemar for x>0,

Jn(z) =
0 for x <0,

where a denotes a positive constant.

1) Find the mean E{X,} and the variance V {X,} of the random variable X,,.
2) Compute the probability P{X, > E{X4}}.

3) Assuming that Xo and X,, are independent, find the frequency of X, + Xo.

4) Assuming that Y1, Ya, ..., Y, are mutually independent random variables, all of the same distri-
bution as Xo, prove that the frequency of the random variable

Zn=Y1+Yo+---4+Y,

is given by fon.

5) Apply the Central Limit Theorem to prove that

P{Xoy, > E{Xon}} — % for n — oo.

1) It follows from X,, € T (n, l) that
a

E{X,} = Z and  V{X,}= aﬁz
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2) By a computation,

I
Y

P{X,> E{X4}}

4 *1 1 [
Xy>—7 = / —a*rPe ™ dy = —/ tBetdt
a 4 3' 6 4

1 s o Lo 6444842446 , 71,
= 6[_(t +3t2+6t+6) e '] = ¢ t=gt
1
3) Now, X,, + X, €T <n + 2, —), so the frequency is
a
L attgntlemaw for z >0
F#) = fasalr) = Y |
0 for z <0.

1
4) Since every Y3, € T (2, —), we have
a
1
Zn:Y1+Y2++Yn€F 271,— s
a
and the frequency is again fo,(x), thus Z,, = Xs,.
5) Now,
X2n:Zn:}/1+Y2++Yn;

and all the Y; have the same distribution and are mutually independent. Hence, we can apply the
Central Limit Theorem,

P{Xgn >E{X2n}} :1—P{X2n—E{X2n} SO}
:1_P{M

vV V {X2n}

<o}—>1—q>(0):1—%:—,

for n — oo.
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Example 6.7 We assume that the lifetime of an instrument is exponentially distributed of parameter
a. If the instrument is Tuined, it is repaired, and the lifetime of the repaired instrument is assumed
to have the same distribution as the lifetime of a new instrument. When the instrument is ruined for
the k-th time, it is rejected. We assume that the lifetimes of the k periods of function are mutually
independent random variables, thus they are all exponentially distributed of parameter a.

Let Yy, denote the total lifetime of the instrument.

1) Find py = E{Yy} and 0} =V {Y;}.

2) Prove that for every e > 0,
{‘——1‘ }—>O for k — oo.
3) What is the distribution of Yy ¢

The Gamma distribution is reproductive in the form parameter, when the scale parameter is kept

1
fixed. It therefore follows that Y, € T’ (k, 5). Hence
1)

k k
wr = E{Y}} = ~ and ol =V{V} = o
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2) We get by Chebyshev’s inequality,

Y;
YT 2 eh = Pvi -l 2 ) < 5 =
k

2 2
o ka

2l a?e?k?

1
3) This has already been proved: Y, € T <k, —>.
a

Example 6.8 Let Xq, Xo, ..

As usual we introduce the random variables

— 1
X:E;Xi, S? =

Find the variance of S>.

n—

1

1i(Xi‘7)2'

=1

HINT: Apply properties of the x? distribution.

Let

T €%k

hence
E{Y,}=n and VA{Y,} =2n
Then
1 - 2 1 - =\ 2
S = n_lg(xﬁx) —n_lg(xﬁuﬂh){)
1 < s 2 & — 1 <
= HZ(XI—M) +mZ(Xz—M) (H—X)+m
1=1 i=1 =1
P 5 G RIS G
n—1." a 1 =0

1

(X—n)’

n —

— 0

for k — oo.

., Xy, be mutually independent random variable, all N (,u, 02) -distributed.

(X"
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and
2 2 n
9 o [ —) o 1
= Y, — X =—Y, — -
o2 1 1<
= Yn - C X2 2 X
n—1 n—1 n Z + Z
1<i<j<n
o? o? 1
n—1 n—1 n Z
1<1<]<n
o2 2
Yo - =1 Di<ici<n XiXj,
1, 9 2
E Zi:l Xi - (n — 1)n Z1§i<j§n Xina

where we shall use both expressions in the following.
First consider
Cov iXiz, Z X; X
i=1 1<j<k<n
Since
Cov (X2, X,Xi) = E{XPX;Xi} - (B{X?} B{X;X:})"
= B{X}- - (B{X?} E{X;} E{X:))" =0,

where ¢ = j or £ =k, and E{X,,} = p = 0, the covariance is zero.
This implies that

ot 2
V{52}:EV{Yn}+(ﬁ> Ve Y XX

1<i<j<n
Analogously,
n j—1 n k—1 n j—1 n k-1
1% Z X;X;p = Cov Z XlXj,ZZXng :Z Cov (Xin,Z Xng)
1<i<j<n j=2i=1 k=2 =1 j=2i=1 k=2 (=1
n j—1 n j—1
= D) Cov(XiX;, XiX;) = > Y V{X;X;},
j=2 i=1 j=2 i=1
where
V{X:X;} = E{X!X?}} - (B{X;}E{X;})?=E{X}} E{X}} -0

— V{X} V{X;}=o"

1
The sum contains in total 5 n(n — 1) terms, hence by insertion,

2 1 204 1 204
2V=2_.2 — = ). Z(n-Dnot=" (1 = .
Vst = n+<(n1)n) 2(n Jno n ( +n1> n—1

95

Download free eBooks at bookboon.com



Continuous Distributions

6. The Gamma distribution

ALTERNATIVELY (and somewhat easier) we see that

n—1 1 — 2
i=1
hence
n—1
V{ > 52}:2(n—1)
Then

9 ot 204
V{S }:2(n—1)~ CEE =7

Example 6.9 Let X1 and X5 be independent random variables of the frequencies

1
T1e” ", x>0, —x3e %2, 9 > 0,
fX1 (1’1) = fX2 ($2) =
0, 1 <0, 0, z9 < 0.

1. Find the means E{X;,} and E {X,}.
2. Find the variances V{X1} and V {Xs}.
Let the two-dimensional random variable (Y1,Y2) = 7 (X1, X3) be given by

X

=21 Y, =X, +Xo.
X1+X2 2 1 2

Vi

Prove that T maps Ry x Ry bijectively onto |0, 1] xR .
Find the simultaneous frequency k (y1,y2) of (Y1,Y2).
Find the marginal frequencies of Y1 and Y.

Check if Y1 and Ys are independent.

Find the means E{Y1} and E{Ys}.

S A

Find P{V1Ys < 1}.

It is obvious that X; € I'(2,1) and X, € I'(3,1) are Gamma distributed.
1. and 2. It is immediately seen that
E{Xi} =2

E{Xo}=3 and V{X;}=2 V{Xy}=3.
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Continuous Distributions 6. The Gamma distribution

3. When the equations are solved with respect to (z1,x3), we get
21 =y1y2 and xo =yo —x1 = (1 —y1) ya.
The image is
{(1,92) [ 9192 > 0, 1 >0, (1 = y1) y2 > 0},

i.e. ]0,1[ xRy after a reduction.
The Jacobian is

a(xth) Y2 1
ﬁ = = Y2 > 0.
Y1,Y2 _y2 1 _yl
4. If 0 <y; <1 and yo > 0, then
E(yi,y2) = fxo (n1y2) fxo (Y2 — y1y2) - 42
1 2 1 2 _
= y1y2exp (—y1y2) - 595 (1 =y1)"exp (—y2 + v1y2) - Y2 = S0 (1—y1)" - yge
1 _
= 12y (1—y1)2~ﬂy§e v

and k (y1,y2) = 0 otherwise.

Find out more and apply

redefining / standards M
f E by

Click on the ad to read more
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Continuous Distributions 6. The Gamma distribution

5., 6. and 7. Clearly, Y; € Be(2,3) is Beta distributed, and Ys € I'(5, 1) is Gamma distributed, and
Y1 and Y5 are independent, and finally,

2 2

8. It follows from Y7Y5 = X that

1
P{YiYQ < 1} = P{Xl < 1} Z/ rie “tdr = [— (331 + 1) B_II]; =1-
0

Example 6.10 Let X1 and X5 be independent random variables of the frequencies
1 3, —x —x2
61'16 L, T >O7 € ) 1'2>07
fx, (21) = fx, (@2) =
0, 1 < O7 O7 €To < 0.
1. Find the means E{X1} and E{Xs}.

Let the two-dimensional random variable (Y1,Ys) = 7 (X1, X2) be given by

V=X, + Xy, Yo— %
Prove that T maps Ry x Ry bijectively onto Ry x |0, 2].
Find the simultaneous frequency k (y1,y2) of (Y1,Ys).
Find the marginal frequencies of Y1 and Ys.

Check if Y1 and Ys are independent.

® sk » N

Find the means E{Y1} and E {Y3}.

1. Since X; € T'(4,1) and X5 € I'(1,1), we get

E{X;} =4 and E{X,} =1

2. The equations are solved,

1
Y1 = 21 + T2, w1:y1(1—§yz>,
9229 fas
Y2 = ) 1
1+ o T2 = 5 Yi1Yy2,

and we see that 7 is injective, and that 7 maps R, x R, onto

1
{(ylyyz) | 1 (1 - 5312) >0, y1y2 > 0} ={(y1,¥2) | y1 > 0,0 < ya < 2},
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Continuous Distributions 6. The Gamma distribution

thus
T:Ry xRy — Ry x 10,2 bijectively.

The corresponding Jacobian is

1-2ys —1m
2 2
8(I1,LE2) o 1

0 (y1,v2) 1 1 27!
2y2 2y1

3. It follows from the preparations in 2. that the simultaneous frequency k (y1,y2) of (Y1,Y3) for
(yla y2) € R+X ]072[a is given by

kE(y,y2) = fx, <y1 (1 - %y2)> - fx, <%y1y2) . %yl

Loaf, 1 K - 1 1
— —_—— .e — —_—— oe —_—— « —

6 Y1 B Y2 Xp U1 5 Y2 XP 5 Y1Yy2 B Y1

1 4 1 °?

= —yre o2 1—§y2 , y1 > 0,0 <ys <2,

and k (y1,y2) = 0 otherwise.

4. and 5. Here 3. immediately implies that Y; and Y5 are independent random variables of the

frequencies
i yile_y17 Y1 > 07
ky, (y1) = ie. Y;e€Tl(51),
0> Y1 < Oa
and
2{17%y2}*37 0<y2<27
kYQ (y2) =

0, otherwise.

6. Clearly, E{Y1} =5.
Furthermore,

EA{Y2}

| Il Il
o I \
<)
S— S— N
) o <
—N— [\;?.
— — =
= | —~
| P NS
@ | S
<
v N | = v
S Il
[\v]
~__ [N
S—
()
<
[\v)
7N
[
|
NN
N
V)
~__
w
Q
<
[\v)
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6. The Gamma distribution

ALTERNATIVELY, 2X5 = Y1Y5. Since Y7 and Y5 are independent, we get
2E{Xz} = E{Y1}  E{Ya},

hence

2E{X,} 2
PR =Ty T

Example 6.11 Let (X7, X2) be a two-dimensional random variable of frequency
1
5 (z1 + xg) e~ (T1+22) x1 >0 og o > 0,
h (1‘1, 1?2) =
0, ellers.
1. Find the marginal frequencies of X1 and X5.
2. Compute mean and variance of X;.
Define the random variables Y1 and Yy by
X7 — Xg)

(Y1,Y2) =7 (X1, X2) <1+ 2’X1+X2

One may use without proof that the vector function T given by

Tr1 — T2
T (r1,22) = <I1+$27x pe >7
1 2

maps Ry x Ry bijectively onto
D' ={(y1,12) ER* |y1 >0 A -1 <yp <1}.

. Find the simultaneous frequency k (y1,y2) of (Y1,Y32).

. Compute mean and variance of Yi.

3
4. Find the marginal frequencies of Y1 and Ys, and check if Y1 and Yo are independent.
5
6

. Compute Cov(Xy, X3).

1) We may without loss of generality restrict ourselves to the case where 1 > 0 and x2 > 0. Then

1 [ 1 e 1 e
Fxi@) = 3 / (21 + 22) e~ 3 dary = oy / e " dry + g e / wpe” " dig
0 0 0
1
= 5 (xl + 1) €_x17
thus
1 .
§(x1+1)e o1 for 1 > 0,
fX1 (‘Tl) =

0 for z1 <0.
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Continuous Distributions 6. The Gamma distribution

By the symmetry,

1
5 (xa+1) e 2 for x5 > 0,

fX2 (I2) =
0 for zo < 0.
2) The mean is
1 [ _ 1 [ _ 1 3
E{Xl}zi/o xf@ xld.’b1+§/0 xrie xldm1:1+§:§.

Now,
1>, 1, 3 2
E{Xf}:§/o e 1‘“‘”5/0 et =5 45 =4,

so the variance is

VX =4 (§>2=M=Z.

Ijoined MITAS because L
I wanted real responsibility www.discovermitas.com

TR T S
8By o T
i e s
T

I'was a construction
SUPErvisor in

the North Sea
advising and

e Lelping foremen
% solve problems
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Continuous Distributions 6. The Gamma distribution

3) From

Tl — T2

y1=21+2x2 and yp = )
T+ o

i.e. y1y2 = 1 — T2, follows that

1 1
o1 =5 (Y1 +yiy2) = 5y (14 42)
and
1 1
ro== (11 =) = sy (1 —2).
2 2
The Jacobian is
1 1
0 (z1,22) a(l+1e)  am 1 T+y, 1 1
T =50 =5
0 (y1, 4 2
(y1,92) %(1_312) —%y1 11—y —1
thus if y; > 0 and —1 < y < 1, then
1 1 _ 1 1 _
k(y1,y2) = h(z1(y), z2(y)) - 591 = 55‘}%6 yr. 2 = Z?er YL

4) Tt follows immediately from the result of 3. that Y7 and Y3 are independent and that Y; € I'(3,1),
and Y5 is uniformly distributed over | — 1, 1].
The marginal frequencies are

1
3 yie v for 41 > 0,

9y, (1) =
0 for y1 <0,
and
— for —1<yy <1,
gY2 (yQ) -

0 ellers.

5) From Y; € I'(3,1) follows that E{Y;} =3 and V {¥;} = 3.

6) The covariance can be found in several ways. We have e.g.

1 1
X1Xa = {(Xl +X0) - (X1 - X2)2} =1 (VP =YYy,
hence
1 3 3
Cov(XiX) = BIX\Xa)~ B (X)) B} = LB 02} (- B {2)) - 3.

(Vo + B?) - (1-V (%) - (B - |

1 9 12 1\ 9 8 9 1
343)d1 22202 =" (1--) - =--Z=__
(3+ ){ 2 } 474 ( 3) 44 4 4

B
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Continuous Distributions 6. The Gamma distribution

ALTERNATIVELY,

1 [ [ 9

Cov (X1, X2) = 5/ / z1 (21 4 o) e~ @1H2) dypy day — 1
o Jo

1 I 2 2\ ,—(z14z2) 9

= = (371.’)32 + 331952) e Ty drg — —

1 [ [ 9
2. 5/0 /0 x?acge_zl_” dxidzo — 1

o0 9 9 1
_ 201 g - Ty — 2 = 9.1 2 = 1
/0 e xl/o r2e Ty 1- 1

Example 6.12 Let X1 and X5 be independent random variables of the frequencies

2
Ew?e*zl, x1 >0, §(3—x2), 0< g <3,
fX1 (1’1) = fX2 (:L'Q) =

0, otherwise. 0 otherwise.

1. Find the means E{X1} and E{Xs}.
Let the two-dimensional random variable (Y1,Y2) = 7 (X1, X3) be given by

1 1
Y1:§X1X2, Y2:§X1(3_X2).

2. Prove that T maps Ry x 0, 3] bijectively onto Ry x R..
3. Find the simultaneous frequency k (y1,y2) of (Y1,Y3).
4. Find the marginal frequencies of Y1 and Ys.

5. Check if Y1 and Ys are independent.

6. Find the means E{Y1} and E{Y>}.

1) Clearly, X; is I'(4, 1)-distributed, so F {X;} = 4. Furthermore,

2 [? 2 13 1.8
E{XQ}:Q/O (3$2—$§)d$2:§|:5xg—§x§] =3-2=1
0

2) Tt follows from
*lxx and *lz(Sf:c)*xf—:cx
y17312 y2f31 2) =21 3T
that
3y1 3 3y2

1 =y1+y2 and xo= =3- ;
Y1+ Y2 Y1+ Y2
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Continuous Distributions 6. The Gamma distribution

whence 1 = y1 + y2 > 0, and thus y; > 0 (because z2 > 0), and yo > 0 (because g1 < 1),
Y1 T Y2

so 7 (Ryx10,3)) =Ry xRy
The Jacobian is

1 1
8(131,£E2) o

3
= = (1 +y2) =~
9 (y1,v2) 3y2 __n (y1 + y2)2 ( ) Y1+ Y2

(y1 + y2)2 (y1 + y2)2

< 0.

3) The simultaneous frequency of (Y7,Y3) is for y; > 0 and y5 > 0 given by

3
1+ Y2

3y1 >
k s = 1 + 2 :
(yl y2) fx (yl yz) Ix <y1+y2 v

3 2 < 3y1 > 3
+ exp (— + B .
(yl ’yQ) P( (yl yz)) 9 v+ v2 v+ v2

1
6
1
392 (Y1 +y2) exp (— (y1 +y2))
for y; > 0 and y2 > 0, and k (y1, y2) = 0 otherwise.

4) When y; > 0 and y > 0 the marginal frequencies are given by

1 o0
ky, (y1) = 3 e /0 (yay1 +y3) e dya = - (y1 +2) e ¥,

Wl =

and

1 o _ 1 -
b () = e [ (n ) €% i = o (14 9m)

and = 0 otherwise.

5) Since ky, (y1) kv, (y2) # k (y1,y2), it follows that Y7 and Y3 are not independent.

6) The means are

1 [ 4
E{Yl}:§/0 (7 +201) ey = 5 (21 +2- 1) = 2

1
3

and

1 [~ _ 8
E{Yz}zg/o (43 +y3) e 2 dys = (2!+3!):§'

w| =

104

Download free eBooks at bookboon.com



Continuous Distributions 6. The Gamma distribution

Example 6.13 A shop is visited by both male and female customers, mutually independent of each
other. The arrival times are measured from t =0 (the opening time). Let

X1, X1+ Xo, Xi + Xo+ X5, ..,
denote the arrival times of the first, the second, the third, ... of the male customers, and let analogously
Yi,Vi+Ye, Yi+Ya+7Ys, ...

denote the arrival times of the first, the second, the third ... of the female customers. We assume that
the random variables X;, i € N, are mutually independent and identically distributed of the frequency

Ae x>0,

0, r <0,

and that the random variables Y;, i € N, are mutually independent and identically distributed of the
frequency

pe Hr, y >0,

0, y <0,

(here X and u are positive constants).
We furthermore assume that the Y; are independent of the X;.

1) Find the frequency f2(x) of X1 + Xa.
2) Find the frequency fs(x) of X1 + X2 + X3.

3) Express by means of the random variables X1, Xo and Yy the event that at least two male customers
arrive before the first female customer, and find the probability of this event.

4) Express by means of the random variables X1, Xo, X3 and Yy the event that at least three male
customers arrive before the first female customer, and find the probability of this event.

5) Find the probability that precisely two male customers arrive before the first female customer.
6) Find the frequency of the random wvariable

X1+ X
-y

Z

7) Check if Z has a mean.

1
1. and 2. Since X; € T’ (1, X) is exponential and Gamma distributed, we have

1 1
X1+X2€F<2,X> og X1+X2+X3€F<3,X>,
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Continuous Distributions 6. The Gamma distribution

and
Age for z > 0,
faz) =
0 for x <0,
and
Ls 2
3 APxer” for z > 0,
fa(x) =

0 for x < 0.

3. and 6. and 7. The event is expressed by

X X
gd}’

Xi+Xo<Y ) =
{X1+ X5 <Y1} { Y

because X7, X and Y7 only have positive values. When z > 0, then the frequency of

_Xi+ X

Z
Y
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Continuous Distributions 6. The Gamma distribution

is given by

o0 o0
fz(2) / fa(zx) - g(x)|x| dx = / Nzze M. e g dr = )\Q,uz/ z2e M=) dy
0 0

o Nz / 2ot gy = 2Nz
NG ENE Az +p)*

2u 1 1
Since z fz(z) ~ mlay —, and fooo —dz is divergent, Z does not have a mean.
z z

Finally,

1 2 1

2\ pz Az+p—p

P{Xi+Xo<Vi}=P{Z<1 :/—d:Q)\/—d
e s =PI = e B e @

1 1
1 L 1 1 L }

=2\ - dz=2p |- + =
“/0 {<Az+u>2 (/\z+u)3} : [ Nt 2 et a2,

11 p 1 1y p po\’
=244 - + = -5 t=2—"—+(—) +1
u{ Adp o 2(A+p)?  p 2u2} At <A+u>

Analogously,

X X X
Md},

{Xi1+Xo+ X3} = {
Y

The frequency of

X1+ X+ X3

U =
Y1

for w > 0 is given by

/ f3(ux) )-xdwz/ ;/\Suxe e M rdr
0

1 )\3 2 o] 3)\3 2
)\ nu / ale” Atz gg — = #/ e tdt = %.
2 0 2 (Au+p)* Jo (Au+ p)

fu(u)
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The probability of this event is

1 3 2
3N p
P{Xi+Xo+ X Yil=P 11 = b il
{X1+Xo+ X3 <Y1} {U <1} /o()\U—FM)
(A 2 -2
3 H{Ou At p) —p)? — ey 3/\/ (Au+p)? = 2p(Au + p) + g du
(Au+ p)t (Au + p)*

=3u/0 {(/\Ujru) (AuQJ/:u) +(/\uﬂ+u) })\du

2 1
et bt
a M+p o Au+p)2 3 Au+p)?

1 p I

I
o

1 1 1 1p}

3 — + = -— LS+

u{ Adp o (A+p)? 3 A+p)? MR
L 2 u 3 " 3 A 3
=1-3 3 (=) =(1- .
/\+u+ (/\ﬂt) (Aﬂb) ( Aﬂt) (/\ﬂt)

The wanted probability is

P{X1+X2<}/1<X1+X2+X3}
=P{Xi+Xo <V} -P{X1 +Xo <Y1 A X1 + X0+ X3 <Y1}
=P{X1+Xo <YV} -P{X1 +Xo+X3<Y1}

() - G) - G-t
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Continuous Distributions 6. The Gamma distribution

Example 6.14 There are two telephone booths in a waiting room. At a given time three persons A,
B and C arrive, all of them wanting to telephone. A and B go immediately into each their booth and
start their call, while C is waiting, until either A or B has finished his call. We shall in the following
assume that the length of the telephone calls are mutually of each other, and that this length is a
random variable, which is exponentially distributed of the frequency

0, <0,
flz) =

Ae AT x> 0,

where A is a positive constant.
Let X4, Xp and X¢ denote the lengths of the telephone calls of A, B and C, respectively.

1) Find the frequency and the distribution function of the random variable Y = X /Xp, and find
P{X,< Xp}.

2) Check if Y has a mean.
3) Find the distribution of the waiting time Z for C, and find the mean of Z.
4) Find the distribution of the random variable X 4 + X¢.

5) Find the probability that A terminates his call before B, and that also C terminates his call before
B, i.e. find

P{XA—I-XC <XB}.

6) Find the probability that C is not the last one to terminate his call.

1) The frequency of Y = X4 /X for y > 0 is given by

9v (y) /0Oo fa(yz)fp(x)de = /OOO Ae ™ ME N e A g dy

oo
= )\2/ ze MNIFVT o —
0

b > 07
(1+y)? Y

and gy (y) = 0 for y < 0.

If y <0, we get the distribution function G(y) = 0. If y > 0, then

It follows by the symmetry that
1
P {XA < XB} = 5

ALTERNATIVELY,

P{Xs< Xg}=P{Y <1} =G(1) = %
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2) Since

o0
[
o (1+y)

it follows that the mean of Y does not exist.

ALTERNATIVELY,
1 <1
E{—}:/ “Xe M = oo,
XB 0 x
hence

E{Y} = E{XA}-E{XLB} = 0.

3) Clearly, Z = min {X 4, Xp}. We get for z > 0,
P{Z >z} =P{Xa>z} -P{Xp>z}=e 2

This implies that Z is exponentially distributed of parameter 2, i.e.

2\ e 22, z >0,
fz(z) =
0, 2z <0.
Consequently,
1
E{Z}=—.
{2} =55

4) According to the properties of the Gamma distribution, X 4 + X¢ has the frequency

Nz e A7, x>0,
0, z < 0.

5) Since X 4 + X¢ has the frequency h(x), and X has the frequency f5(y), we get

P{XA+XC < XB} = /OO {/Do h(x)fB(y)dy} dr = /OO)\Qxe_MT {/OO )\e—)\ydy} dx
x=0 y=x 0 y=x

oo
Nre M. ey = / Nge 2 dr =
0

1
0 4
6) If C is not the last one to terminate his call, then
either X4+ X¢o < Xp or Xp + X < X4,

hence

pZP{XA+XC<XB}+P{XB+X0<XA}: +

=~ =
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Example 6.15 In a shop one first serves one customer with a serving time X1 which is a random
variable of frequency

2e7 271, x1 >0,
0, ] < 0.

Then a family of 8 members is served, and the total serving time Xo of this family is a random variable
of frequency

43 e 272, z9 > 0,

f2 (22) =

0, X9 S 0.
We assume that the random variables X1 and Xo are independent.
1. Find the means E{X,} and E{Xs,}.

Define the random variables Y1 and Yy by

X

Yi=X+X Y, = )
1 1+ Xo, 2 X,

Here, Y7 is the total serving time of all 4 customers, and Yy is the quotient between the serving times
of the single customer and the family. One may use without proof that the vector function T given by

x
T (r1,22) = <$1 + z2, —1>

1)
maps Ry x Ry bijectively onto itself.
2. Find the simultaneous frequency k (y1,y2) of (Y1,Y2).

3. Find the marginal frequencies of Y1 and Y. (This question may be answered with and without
using the answer of 2.).

4. Check if Y1 and Ys are independent.
5. Find the means E{Y1} and E {Y>}.
6. Find the median of Y.

1 1
1. It follows from X; € T’ (1, 5) and Xy € T (3, 5) that

1 3
E{Xl}:§ and E{XQ}:§

2. It follows from
1

y1=z1+z2 and  ys = o Le. T1 = yYoa,
2
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that y1 = yaxe + 2 = (y2 + 1) 2, thus 29 = y1/ (y2 + 1), and hence

£, = Y1Yy2 — gy — Y1 and mQ:L.
y2 +1 y2 +1 y2 + 1
The Jacobian is
Y2 Y1
Dy | 2TL 2 1)? o w2 1] "
Oye) | 1y e+’ 1 | e+

Y2 +1 (y2 +1)°

If therefore (y1,y2) € Ry x Ry, then
Y1y2 i U1
h <y2+1>f2 <y2+1> (y2 + 1)?
2y, no\’ 2y, Y1
2exp | —2y1 + 4| ——— ) exp| — .
p( . yz+1> (y2+1> p( yz+1> (y2 +1)°

_ gy L lons e 3

(y2+1)* 3 ' (y2 +1)*

E(y1,v2)
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Continuous Distributions 6. The Gamma distribution

3. and 4. It follows immediately from the expression of k (y1,y2) that Y7 and Y, are independent
1
and that Y; € T’ (4, 5), hence

1
3 24y e~ for 31 > 0,
le (yl) =
0 for y; <0,
and
3
714 for Yo > 07
by, (o) = 4 2T
0 for yo < 0.
5. Clearly,
1
E{vi}=4-5=2.
Furthermore,
i 1-1 i 1 1
E{Y,} = 3/ yﬁﬁdygzg/ - _Vdy
o (y2+1) o ((p+1)" (y2+1)

I IR U S S
2 (1 +1)° 3 (g2 + 1)

= 11\ 1
0

6. The distribution function of Y5 for yo > 0 is given by

(12) v2 3 1 v 1
SPRIRY G N S S
R AR CriPl, ~ ary
Hence the median is given by
1 1
l——— =,
(yo+1)° 2

ie (y2+1)° =2, 50

(Ya) =V2-1
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Continuous Distributions 6. The Gamma distribution

Example 6.16 An instrument A contains two components, the lifetimes of which X1 and Xo are
independent random variables, both of frequency

2aq e—20%, x>0,
f(I) - { 07 T S 0,

where a 1s a positive constant.

We first use one of the components in the instrument A, and when this component is worn out, we
shift immediately to the other component, thus the lifetime of A is X = X7 + Xo.

Another instrument B only contains one component, the lifetime of which (which is also the lifetime
of B) is a random variable Y of frequency

o ae™, y > 0,
g(y) - { 0’ Y < 0.

1) Find mean and variance of Y.
2) Find frequency, mean and variance of X.
X . L ) .
3) Let U = v denote the quotient between the lifetimes of the two instruments. Find the frequency
of U.

4) Given 200 instruments of the same type as A. Let the random variable Z denote the sum of the
lifetimes for all 200 instruments. Use the Central Limit Theorem to find an approximate expression

of

1 21
P{§<Z<—5}.
a a

1
1) Since Y €T [ 1, —) is exponentially distributed, it follows by e.g. using a table that
a

SR N

and V{Y}= 1

a2

E{Y} =
. 1 ; .
2) Since X; €T (1, %>, i =1, 2, are independent, the sum

1
X=X1+X2€F<2,—)
2a

is Gamma distributed, hence (e.g. by using a table)

Fx(z) = 402z e 20 for x > 0,
X\ = 0, for z <0,
and
1\* 1
F{X}=2-—=-— d ViX}=2-(—| =—.
X3 an X3 (2a> 2a?
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Continuous Distributions

ALTERNATIVELY, the frequency of X (for z > 0) is

fx(z) / fx, (O fx,(x—t)dt = / 2ae72 . 2 720 =) gt
—o0 0
= 4&26_2ax/ 1dt = 4a’ze 29",
0

Then it follows that s

e e 1 [ 1 1
E{X}Z/O fo(x)dJCZ/O 4a2x26_2‘”d9&=%/0 uQe_“du:2—-2=—’

and

oo oo 1 oo . 1
E {X2} = / 2’ fx(z)do = / 4a’zPe 2" dy = @/ ude™"du = T2 6= %,
0 0 0

hence

V{X}=E{X?} - (E{X})? = % - i2 =_—.

X
The frequency of U = v is 0 for u < 0. We get for u > 0,

oo
hy(u) = / [x (ux)g(x)|z| de —/ da’ux e 2T g e . p dy
0
3 oo
— 4q u/ P2e—all+2w)e g 34au 3/ 2ot g — Su N
0 a’(1+42u)? Jy (1 + 2u)
Summing up,
Su
— for u >0
3 )
hy (u) = (1+2u)
0, for u < 0.

ALTERNATIVELY, one may for u > 0 start with computing the distribution function K (u) of U.
This is given by

P{5 <uf= [ onwasi= [ e {/io fy(y)dy}dx
4 —2ax > —ay dr = > 4 2 —2ax —aug
/zoaxe {/y_% y}l‘ /mzoaxe (& X

> 1 1
/ 4a’x - exp (—aa: <2 + >) dx, v=a <2 + —) x
=0 u
> 1 4 4u?
= 4a? e Vdy = =
/ a~v - < 1)2 (& v < 1>2 (2u+1)2

k]

2+ =
u
2 1
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Continuous Distributions 6. The Gamma distribution

The we get the frequency (for u > 0) by differentiation,

B 4 B 4 B .(2u+1)*17 8u
T= sy Gy~ e ?  Gur

4) Since Z = Zfﬂq X;, where the X; are mutually stochastically independent, we get

1 1
E{Z}:? and V{Z}:%, ie. /V{Z}:—O

a .

Then it follows by the Central Limit Theorem that

a a

Lz 151\ [1z-Ez) s
‘P{ L %}‘P{ Nigvs <2}

3 3 3 3
Pl ) —-D|—=|=2P(-)—-1=2P( =] —-1=2-0.9332 -1 = 0.8664.
(3)-2(-3)-22(3) (3) 0.9332 — 1 = 0.866

Q
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Continuous Distributions 7. The normal distribution and the Gamma distribution

7 The normal distribution and the Gamma distribution

Example 7.1 Assume that (X1, X2) has the frequency

1 1
h(z1,22) = g2 P <—ﬁ (=} +$§)> ) (z1,22) € R?,

(i.e. X1 and X5 are independent, N (0,02) distributed random variables), and let (X7, X3) be given

by
X7 =min (X1, X2), X7 =max (X1, Xa).
1. Prove that (X7, X3) has the frequency
2h (z1,z2) , r1 < Tg,

h* (x171'2) =
0, X1 Z Z9.

Define random variables Y1 and Yy by

1 1
i—g (G+X) =g (X)),

Yy = & (xF - X3)? {: % (X5 — Xl)ﬂ .

| =

2. Prove that the vector function T, given by

T (01, 22) = <% (21 + 22) , % (2 — x1)2> ,

maps
D= {(.Tl,xg) S R? | r1 < .%‘2}
bijectively onto

D' ={(y1,y2) € R?* | yo > 0}.

Find the simultaneous frequency k (y1,y2) of (Y1,Y2).
Find the marginal frequencies of Y1 and Ys.

Are Y1 and Ys independent?

S ok w

Find the means and variances of Y1 and Ys.

1. If 1 < To, then

P{XT>LL'1 /\X;S‘TQ}ZP{.T] <X1§£L’2/\1‘1<X2§$2}={F(£L’2)—F(1‘1)}2,
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Continuous Distributions 7. The normal distribution and the Gamma distribution

where I is the distribution function of an N (0, 02)—distribution. This implies that

H*(Jﬁh.’l/‘g) = P{ng.’lfl AN X; §$2}:P{X5§$2}_P{Xf>xl N X; SZ‘Q}
{F (22)}* —{F (2) = F (11)}" = =F (21)* + 2F (1) F (2) .

Then by differentiation,

W (21, 22) = ﬁ {—F (21)° + 2F (z1) - F(xg)} = 2h (x1,x2) .

If 9 < x4, then of course h* (z1,22) = 0.

2. Clearly, Y5 > 0. If y; € R and yo > 0, then it follows from

1 1
n=y (x1+22) and y2 = 3 (w2 —1)* and @y > @1,
that
1 / 1
y1:§ (xl —|—$2) and %25 ($2_I1) [>0}7
hence

$1=y1—\/% and $2=y1+\/y2—2-

The solution is unique, and since the equation can always be solved, we find that

D" = {(y1,y2) € R* | yo > 0}.

The Jacobian is

1 1 1
8 (LEl,[Ez) - 2 2y2 o 1 <0
9 (y1,v2) 1 1 2y2 .
2 2y,
3. The simultaneous frequency of (Y7,Y3) for y2 > 0 is given by
) = b (/2 m+,/2) .
Y1, Y2 1 5 Y1 B NeTS
Y2 Y2 1
= 2h —\ /= =]
(=5 V%)
2 1 (22 + 1) 1
= E— X _—— .
902 O P\ g2 VML T2 N
1 ( Y1 ) 1 1 1 ( Y2 )
— ex R — — . ——— . X [,
wo? P\T202) m a2 s P\ 207
If yo <0, then k (y1,y2) = 0.
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Continuous Distributions 7. The normal distribution and the Gamma distribution

4. and 5. It follows immediately from 3. that Y7 and Y5 are independent and that

1 1, o2
ky, (y1) = mfz'exp —ﬁyl , neR, YN 0,7 ,
and
1 1 1 Yo
ES N SRS S
2 2 1
ky, (y2) = VT Vet ViR 20 Yo el (5 ; 202> .
07 Y2 < 03
6. Then obviously,
o2
E{Yl}:(), V{Yl}:77
1
E{Y;} =02, VA{Ys} = 3 (202) = 20",

Remark 7.1 We shall in the following Example 7.2 treat this problem in an alternative way. ¢

Example 7.2 Let X; and X5 be independent N (0,02)—distributed random wvariables, and let the
random variables Y1 and Ya be given by

1 1
Yi=g (X1 + X5), Yy = (X2 — X1)%.

1) Prove that the random variables X1 + Xo and Xo — X1 are independent, e.g. by first finding the
simultaneous frequency.

2) Prove that the random variables Y1 and Ys are independent.
3) Find the frequencies of Y1 and Ys.
4) Find the simultaneous frequency of (Y1,Y2).

5) Find the means and variances of Y1 and Ys.

1) From z; = 21 + 22 and 29 = x9 — a7 follows that

1

1
T = 5 (21 —2z2) and 9= 5 (21 + 22)
of the Jacobian
1 _1
8(.1‘1,332) 2 2 - 1
0 (21, 22) 101 2
2 2
Since
1 1 1
x?—l—xg =- (= —22)24—— (z1+zQ)2 = - (zf—l—zg),
4 4 2
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Continuous Distributions 7. The normal distribution and the Gamma distribution

the simultaneous frequency of (71, Zs) = (X1 + X2, Xo — X1) is given by
2 2
- 1 1 z1 Z9 1
Tz (21,22) = 902 P ( 202 {(\/5) " <\/§> }) 2
Lo A L 1 2\’
xp | —= . xp [ —= .

ovre S\ T2 \Vao S ) avme TP\ T2\ Vae
It follows immediately that Z; and Z5 are independent and that

2
. i) = —F— — = I} i Ra :1?2
Iz, () 2\/%Ue}cp( 2{\/50}) 2z € i

1 1
2) Since Y7 = 3 Z1 and Yy = 3 222, and Z; and Z5 are independent, we conclude that Y; and Y5 are
also independent.

1 d
3) Tt follows from y; = 520 that z9 = 2y, and d—zl =2, 80
Y1

2
fyl(y1)=le(2y1)'2=\/%1.aeXp —%{\/zyl} , meER
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Continuous Distributions 7. The normal distribution and the Gamma distribution

1
From yo = 3 23 > 0 follows that |22| = /2y, thus

Fy, (y2) = P{|ZQ|§\/@}:P{ \/Z;o S\/0_?72}
() () ()

If y2 > 0, then by differentiation,

_ VY2 1 1 Yo
sz(yz)—2~<,0<0).2@0_0\/@.\/%@@(— 02>7

and fy, (y2) = 0 for yo <0, i.e.

! ! e ( Y2 fo >0
= ——xp |~ ryz >0,
Jams 7 o (o2)
fry (y2) = SR 7
0 for yo < 0.

4) The simultaneous frequency is given by

h( — . o )
y1,y2) = fvy (y1) - fro (92) = NPT exp (=5 = 5

for y; € R and yo > 0, and h (y1,y2) = 0 for y2 < 0.
5) The mean and variance of Y; are

o2

E{Yl}:() and V{Yl}:?

For Y, we get by the substitution > = y—z that
o

1 = Yo 1 2 [ 5, 1, )
B0 = o ) e (Cap) =z ), e gf) di=ot

and

2 [ 1
E{Yf}:\/;/o ottt exp <—2t2) dt=3-1-0%

sa

V{Ys} = E{Y?} — (B{Y2})* = 30* — o = 20™.
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Continuous Distributions 8. Convergance in distribution

8 Convergence in distribution

Example 8.1 Given a sequence of random variables (U, )., which converges in distribution towards
a random variable U of distribution function Fy(u) and frequency fu(u).

1. Prove that the sequence (U,Ql) converges in distribution towards U? of distribution function

Fo (Vi) ~ Fir (~)

and frequency
s Vo (Vi) + o (va)y, w0

We perform a series of throws with an (honest) coin, where we assume that the throws are mutually
independent. Define the random variables X1, Xo, ... by

1, if the i-th throw results in i heads,
X, =
0, if the i-th throw results in i tails,
and the random variables K1, Ko, ... by

K, = number of heads in the first n throws.
2. Ezpress K, by means of the X; and find mean and variance of K, .

2
3. Prove that the sequence (T {Kn - g}) converges in distribution towards a normally distributed
n

random variable.

4. Define the random variables Yy, by

Yn:%(mﬁgf, n e N.

Prove that the sequence (Y,,) converges in distribution towards a random variable Y, and find the
distribution of Y.

1) It is given that
Fy, (u) — Fy(u) for n — oo,
and that for u > 0,
Fya(u) = P{U* <u} = P{~Vu<U < Vu} = F (Vu) = F (V).
If w > 0, then

Fyz (u)

P{U; <u} = P{—vu<U, < Vu}
= Fu, (Vu) = Fu, (=Vu) = Fu (Vu) = Fo (=Va)

= Fya(u) for n — oo,
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8. Convergance in distribution

SO (Uﬁ) converges in distribution towards UZ.

The frequency is found by differentiation,

fus() = o {Fo (Vi) = Fo (=vi)} = 5= {fo (Vi) + fu (V).

2) Clearly, K,, = ", X;, so

n

5 = Hn:

n
1
E{K,} :;E{Xi} =n- 5=
Since the X; are mutually independent, we get
n 1 1 2 n
VK, =) V{X}=n-{-— (= = =352
{}g{}n{2 (2)} o
3) It follows from the Central Limit theorem that

2

P{i (Knﬁ)gx}P{ng}aé(x) for n — oo

NG

Sn

sesssssssrssssessansansrssrsarsansarsarsassrssrnssnnsrnsssssssssessesessfilCcate]-Lucent @

www.alcatel-lucent.com/careers

2%
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Continuous Distributions 8. Convergance in distribution

4) According to 1. and 3. the sequence (Y,,) converges for x > 0 in distribution towards a random
variable Y of the distribution function

1 1 1
375 (20) — ()} = 5o (20(0) ~1) = () — 5

and = 0 for x < 0.
The corresponding frequency for = > 0 is given by

s (o (V) o (v = 2,

and = 0 for < 0.

Example 8.2 Given a series of throws with an (honest) coin, where we assume that the throws are
mutually independent. Define the random variables X1, Xo, ... and K,, and P, by

1, if the i-th throw results in a head,
X, =

0, if the i-th throw results in a tail,
K, = number of heads in the first n throws,
P, = number of tails in the first n throws.

1. Prove that K,, and P,, both have the mean g

Define Z,, by

Z,,:% {(Kn—g)er(Pn—gf}, neN.

2. FEzpress Zy by the X;.
3. Find the mean of Z,,.

4. Prove that the sequence (Z,) converges in distribution towards a random variable Z, and find the
distribution of Z.

1) We put
0, if the i-th throw results in a head,
YVi=1-X; =
1, if the i-th throw results in a tail.
Then
K, = ZXi and P, = ZYi =n— in,
i=1 i=1 i=1
hence

E{Kn}:ZE{Xi}:g and E{Pn}:anE{Xi}:g.
1=1 i=1
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Continuous Distributions 8. Convergance in distribution

2) It follows from the above that

Z, =

IS
—
—
&
|
|
~——
[\
+
—
v
|
N |
~——
n
——
Il
| Do
.
|M:
>
|
o |
N———
[\
+
/N
3
|
(]
>
|
|3
N——
[\

S{u-il) i (eed) 2 5 (D) ()

1<i<j<n

I
S|
z A

Il

1
3) Now, E{X;} = 3 and the X; are mutually independent. Hence

s = oS (i)} os 3 efneiben-d)

i=1 1<i<j<n
4 & 1\’ 4 & 4 1
= N"Bl(X,— = == Xl=2".n.-=1.
s e{ () pro-tS v -1
4) Since
- 1 - n
X,__ — = — = 2
V{v ( 2)} ZV{Xz} L=
=1 i=1
we get for x > 0 be the Central Limit Theorem that
4 [ & n\ ST (-1
< = — i — = < = _Jr< &=t 2) o
P{Z, <z} P n(;{x 2}) <z vz < NG <z
2

— @(\/E)—@(—\/E):2<I>(\/§)—l for n — oo.
When instead x < 0, then
P{Z,<z}=0—-0 for n — oo.
Consequently, (Z,) converges in distribution towards a random variable Z, where
20 (y/z)—1 for z > 0,
Fp(z) =
0 for z < 0.

If z > 0, then the corresponding frequency is given by

F2l2) = F(e) = J= 0 (V3) = o= 2= e (=3).

1
and Z is Gamma distributed of form parameter p = 3 and scale parameter oo = 2.
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Continuous Distributions 9. The X2 Distribution

9 The y? distribution
Example 9.1 Let X € x?(n). Find the frequency of VX, and find the mean and variance of VX.
From X € x%(n) =T (%, 2), follows that X has the frequency

n__ —_z
cxz7lem2 for x > 0,

0 for x < 0.

The map y = 1/ is bijective Ry — R with the inverse x = y?, so if Y = VX, then the frequency
fy(y) for Y, when y > 0, is given by

de(y)| 1 1 2 1
dy _F(

M

Iy () = fx(x(y)) -

|3
SN—
o]
3
~
[\v]
)
o]
)
N
Il
=
/
|3
~——
N
©[3
|
—
<
3
|
—
o]
B
o
/T\
NS,
~_

and fy,(y) =0 for y <O0.

The mean is given by

0 1"(—)-2% 0
2
r n+1
r(egt)es /°° 1 . :
= o — X 2 e de:\/i
r(3)2% Jo r(%H)2 3 F(g)
Using
2{(vX)'} =By
we get

V{x/?}zE{X}—(E{\/)?})an—z u .
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10 The F distribution

1
Example 10.1 Let X € F (n1,n2). Prove that ¥ € F (ng,nq).

If X € F (n1,n2), then fx(z) =0 for x <0, and if = > 0, then the frequency is

1

5N
niy 2™
— [
no rzm—l

ni may Futna)”
B(2’2> (1—}-&%)
n2

fx(z) =

/
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Continuous Distributions

10. The F distribution

dx 1

1 1 1
The map w = —, x = —, is bijective, R, — R, with o wr If we put W = X’ then fy(w) =0
w

T w
for w < 0. If w > 0, then

1
1 R
n2

w?

1 %nl—l
(&) 1

fww) =

5(35) (
l7L1
1 2
(i)

P L

w% (n1+n2)

ng w

1 ) F(nitn2) 2

w—% ni+1-2

ny nyy Tniting L(n1+n2)
255 () z
272 (ﬂ) 1+ 2
N9 ni
no %ng
ny

B (@’ E) | N2 3(mtna)’
22 1+ —w
ni

w% ’I’szl

1
and we conclude that W = <€ F (ng,nq).

ALTERNATIVELY, an F (n1,ns)-distribution occurs as the distribution of

where X € x? (n1) and X5 € x? (n2),

1
— X5
1_m € F(n2,nq)
X_l 2,701
— X,
ni

Example 10.2 Let X € F (n1,n2). Prove that E{X} =

n
2 for ng > 2.
n272

Let ny > 2. Introduce the change of variable

1
$:%<_—1>, ye]()?l[a

ny \Yy
i.e.
ny
UP)
= n og l—y= i
14— 1+
no T2
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10. The F distribution

We get

(n]) é n1
n2
dx

pixy = [
J B (1), G

N2
1 1
n1 3 N1 5 n2
= i
B(E,@> 0 1—|—ﬂx 1+ﬂ$
2 2 no N9
1 ! 1 %) 1
= 1—qy)2™Myzn2. 2. (g
B(ﬂ,@>/o( R e
272
= ;@ 1y%(n2—2)—1(1_y)%(n1+2)—1dy
272
m ni no ny o N
B( 1——1) 1“(— 1)1“(——1) r<_ _)
_om 25 Ty _me 5 F 2 . 2 5
nTR) T (e ) r (D)
ny ny no
Cw a5 TE) w1 w
nRG) GG e
2 2 2 2
ALTERNATIVELY,
X
X:n2 ! WhereX1€X2(n1) andXQEXQ(nQ)7
ny Xy

and where X; and X, are independent. Then for ny > 2,

1 1
E{X} = Z2.E{X}- E{XQ}an-E{E}
1 1
_ n2/ Loyt L
o < F(—)2"2/2
2
e 1
= n g2/ 2@/ Dy r=2
2/{; (@) 2n2/2 ( y)
2
o) 2(n2/2)—1
— / Y 12/D=20u g o B
0 n2
(5) 2
no 1 1 n9
= el (2 1)~y =2 = :
2 N2y n2 _ ng —2
r(Z)e o (Y2

It follows form the computations above that E{X} does not exist for ny < 2.
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11 The F distribution and the ¢ distribution

Example 11.1 Let X € t(n). Prove that X* € F(1,n). Prove that the mean E{X} ezists, if and
only if n > 1, and find E{X} forn > 1.
Prove that the variance V{X} exists, if and only if n > 2, and find V{X} for n > 2.

The random variable X € t(n) has the frequency

f(z)

F(n—H> 9 _n+1

2 x 2

:4H<1+;> y r €R.
virr (3)
nTm B)

Let Y = X2 have the frequency g(y). Then g(y) = 0 for y < 0. For y > 0 we obtain the distribution
function

Gly) = P{Y <leqy} = P{X? <y} =P{—\y <legX <y}
P{X <yt = P{X <=yt = F(Vy) — F (=),

hence
r n+1

o) = G =TV g~ () ;yzf(mﬁf(n)) ( ;>_ =
nrl'(5 144

as required.

If n =1, then

/_o:o \/;(1()%) 1|+$‘x2 de = oo,

and the mean does not exist.

If n > 1, then

2 _n+1
x 2 _
(1+ —) al ~ Je ",
n
2

22\ T
and [ |z|~™dx is convergent. The integrand (1 + —) z is an odd function, hence the mean is
n

n+1

B{X}=0.
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12 Estimation of parameters

Example 12.1 A random variable X has its distribution function F(x) given by
1(2)"‘ for x> 2,
F(zx) = t
0 forx <2,
where a is a positive constant.
1) Find all values of «, for which E{X} exists, and find E{X} in these cases.
2) Find all values of «, for which V{X} exists and find V{X} in these cases.

3) Given n observations x1, a2, ..., T, of the mutually independent random variables X1, Xo, ...,
X, all distributed as X above. Use the mazimum method to find the best estimate of the parameter

Q.

The distribution is called a Pareto distribution.

1) The corresponding frequency is found by differentiation,

.9
(j;aﬁ for x > 2,
flx) =
0 for z < 2.

Since z - f(z) ~ x~, the mean exists, if and only if & > 1. When this is the case, then

° 2¢ 2a ° 201 2a
B{X} = - dr — —1). dy = .
X /2 T e T /2 (@=1) w1 T T

2) Analogously, V{X} exists if and only if @ > 2. If so, we first compute

e 2% 4o o 202 4o
21 2 _ —
B = [ i [T gt

hence
X} = B{X) - ()2 = -
4o 4o
T (a2 (a_1)7 {a=1)*~ala-2)} = (@ —1)2(a—2)

3) We shall find the maximum in « of the function

2a
h(a):Ha~— a>0, z>2,
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i.e. for
n
hi(a) = lnh(a)zZ{lna+aln2—(a+l)ln:z:i}
i=1
= nlna+a~nln2—(a+1)Zlnxi.
i=1
Since

n
hi(a) = g +n IHQ—Zlnxi =0

i=1

for
1 1 1 « ;
—:—Zlnzi—ln2:—Zln<m—),
« n n 2

the estimate of « is given by

1 n

Thn(3) wmn(3)

«

where we check that h(a) — 0 for & — 04 and for o — oo, if z; > 2.

-~
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Continuous Distributions 12. Estimation of parameters

Example 12.2 1) Let a > 0 be a positive constant. Prove that the function

T x?
gexp 5 ) x>0,
f(z) =

0, <0,
can be considered as a frequency of a random variable X .
2) Find mean and variance of the random variable X .

3) Assuming that n observations of the mutually independent random variables X1, Xa, ..., Xy,
all distributed like X above, have given the results x1, x2, ..., x,, we shall apply the marimum
method to find the best estimate of a and thus the best estimate of V{X}.

4) Prove that the estimator corresponding to the estimate of V{X} is a central estimator, and then
prove that the corresponding sequence of estimators is a consistent sequence.

1) Since a > 0, we have f(z) > 0, and

o0 © r .172 .%‘2 [eS)
/_Oof(x)dx:/o a exp (—£> dr = {—exp (_%ﬂo =1,

hence f(z) is the frequency of a random variable X.

2) The mean is

> x? 22\ 17 o 52
E{X} = i ) de= |- - ——
{X} /0 x ; exp( 2a> dx [ x exp( 2@)]0 —I—/O exp( Qa) dx

7.
Using that
o0 T .,L,2 o
E{XQ} :/ z? - = exp (——) dx = 2a/ ye Ydy = 2a,
0 a 2(1 0
we get

V{X} = E{X?} - (B{X})? = 2a - % - (2 - g) a.

3) We shall find the maximum of the function (in a)

n

T; xf 1 = 1 — 9
h(a):Hz exp(—%>_a_n.il:[lzi~exp<—%;xi>, a > 0.

i=1

Since x; > 0, we have h(a) — 0 for a — 0+ and for a — oo, so we shall find the maximum for
a > 0 of the auxiliary function

n 1 n
hi(a) =Inh(a) = —nlna+ Zlnxi ~ 5 Zw?
i=1 i=1
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1 n
O {a+ %ng}.
=1

this maximum is attained for the estimate

corresponding to the estimator

™ 1 —
Yn:(l——)— X2
1) X

i=1
for V{X}.

We shall finally prove that E {Y,,} = (2 - g) a. We get

E{Yn}:(l——) ZE{C2 (1-F) B{x?=(1-F) 2

from which we conclude that Y, is a central estimator.

Since

T L S S P
V{Yn}_(l 4) SV{XT ==

I
—
[\
|
|5
~
L

where ¢ > 0 is some constant, which we do not need to find, it follows by Chebyshevs inequality

that

P

proving that (Y;,) is a consistent sequence of estimators.

3

2

3 n

2
1
(2——) ‘>6}<sg:£~—HO for n — oo,
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Example 12.3 A random variable X has its distribution given by

where p >0, ¢ >0 and p+q=1. The mean of X is given by
59
(7) E{X}=pn= s

(The proof is not required.)

1) Assuming that n observations of the mutually independent random variables X1, Xa, ..., X,, all
distributed like X above, have given the results x1, T2, ..., Tn, apply the maximum method to find
the best estimates of p and q, by also using (7) an estimate of p.

2) Prove that the estimator corresponding to the estimate of p is a central estimator.
3) Find for a distribution of the type (6) above with =5,

P{X <5}, P{X=5} and P{X >5}.

1) We shall maximize the function (in p)
o - €T + 4 5 i
wo =I1( "7 " )ra-om pepil

Since h(0) = h(1) = 0, this corresponds to an investigation of the solutions of the equation
Ri(p) =0,0 < p <1, where

m) =) =3t () g+ Y e - )
1=1

i=1

By differentiation,
5n 1 o 1 E
Rilp) = ————> z;=——<5n—5np—p Y
1) P l-pZ p(1-p) { 2

1 n

= o corresponding to ¢* = M
Sn+ Yo @ Sn+ Y i @

thus
p
Using (7) we get the estimate of the mean

n
E Z;.
i=1

pw=>5

S|

q*
v
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2) Clearly,

is a central estimator, because

E{ib= 1Y B{Xi} = B{X} = p.

1
3) fu=5 :5,erp:q:§,then

P{X =k} = ( k:‘l){%}w, k € No.

hSRES
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Then
P{X <5} = P{X=0}+P{X=1}+P{X=2}+P{X=3}
+P{X =4}
4 1 1 7\ 1 8\ 1
) (3)ee (1) (G5 (3)z
1y 5 65 5, T7-6-5 8:7-6-5
B 29{2 o +1 22 T3t Tasa
1
= 55 {24527 +15-22 43524352}
1
= 55 {24527 41522435 2%}
1 64 1
= = {22+5.2+1 =— ==
27{ +5-2+15+ 35} 55 = 3
and
9\ 1 9876 1 63
P{X_5}_<4>ﬁ_1234 1024~ 512
and
1 63 193
P{X =1-P{X —P{X=5}=1-2-——"=_"—.
X>5) (X <5) - PAX =5} 2 512 512

Example 12.4 A random variable X has the frequency

k-x97 ! exp (—bax?) forz >0,
fx (@) =
0 for x > leqO,

where a and b are positive constants.

1. Find, expressed by a and b, the constant k.

2. Find the median of X.

We assume in the following two questions that a = 4.
3. Find the mean E {X4} and the variance V {X4}.

4. Assuming that n observations of the mutually independent random variables X1, Xo, ..., Xy, all
distributed like X above, have given the results x1, xa, ..., Tn, apply the maximum method the
best estimate of the parameter b.

1) It is obvious that fx(x) > 0 for £ > 0. Then we get the condition

1—/ fx(z dsr:—k/ Vexp (=ba®) dx = ﬁ/ exp (—bz?) d(z%) = o
0

a

from which we derive that k = ab.
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2)

4)

Clearly, > 0. The condition of the median z is

1 €T €T
5= Fx(z) = / fx(t)dt = ab/ t* L exp (=bt®) dt =1 —exp (—ba?),
0 0
hence
exp (bz®) = 2,

so bx® =1In2, and the median is

- {22}

If a = 4, then by the change of variable t = x*,

E{X4}:4b/ z*z® exp (—bat) dx:b/ te*btdtzl/ ue*“duzl,
0 0 b 0 b

and

E{X8}=b/ t2e b qt = L /OOuQe_“du:z
0 v J b2’
hence

VXY = (X} - (B = - =

‘We shall maximize the function

ﬁ (zk *4"b”kaeXp( b:z:k = <ﬁ > exp (bimi>,

k=1 k=1
i.e.
hl(b):1nh(b):1n{4”Hxi}+n1nb—be§,
k=1 k=1
where
M®d) n n n
h (b — 4 — for b =
0 =30~ 5 2 Ry

Since h(b) > 0 for b > 0, and h(b) — 0 for b — 0+ and for b — oo, we conclude that
"
k=1 Th

is the best estimat of b.

b=
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Example 12.5 Let (X,Y) be a two-dimensional random variable, where X and 'Y are independent,
and where X and'Y have the same distribution, given by

P{X =n}=P{Y =n} =pq" ", neN,
where p >0, ¢ >0 andp+q=1.
1) Find everyone of the following probabilities
P{Y =X}, P{Y <X}, P{Y>X} and P{Y =2X}

2) The random variables U and V are given by
(U, V)= (X +aY, X —aY),

where a is a real constant.
Find the correlation coefficient o(U, V).

3) Assuming that m observations of the mutually independent random variables X1, Xo, ..., Xpm,
all distributed like X above, have given the results x1, T, ..., Tm, apply the mazrimum method to
find the best estimate of the parameter p.

4) Assuming that m observations of the mutually independent two-dimensional random variables
(X1,Y1), (X2,Y2), ..., (Xin,Yi), all distributed like (X,Y") above, have given the results (x1,y1),

(.’L‘g,yz), ) (xmaym)'
What is a reasonable estimate of p?

1) A straightforward summation gives

0 o0 2 o0
PV =X} = Y PIX=n} P(Y=n} =Y p¢" =25 3 (1-¢) ()"
n=1 n=1 n=1
pr P’ p p

1-¢ (I+q(l-q) 14q 2-p
By the symmetry, P{Y < X} = P{X < Y}. We then conclude from
1=P{Y =X} +P{Y < X}+P{X <Y} =P{Yy =X} +2P{Y < X},

that
1 1 P 1 1—g¢q
P{Y <X} = P X<Y}=-(1-P{Y=X})=={1—-—"——1t=2-21-"~
rexy = pxevy-ja-py-xp-p -2 tho ol
_ 1 I+gq-14q ¢
2 1+¢q 1+q
Finally,
P{Y _ 2X} — ZP{X — ’I’L} . P{Y = 2n} = Zpan—l ,pq2n—1 :p2 Zq3n—2
n=1 n=1 n=1
0 2
. 2 377,71: pq _ pq
pq;(q) 1-¢ @rg+l
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2) It follows from

S -l —p. L1
E{X}zgpnq =P g
that
B{U} = B{X} + a B{Y} = (1 + o) B{X} = - 1¢
and

1—a

B{V}=E{X}—aB{Y} = (1 - a)B{X} =

Since X and Y are independent, and V{X} = %, we get
p

A
3

V{U}=V{V} =V{X} +a®V{Y} = (1+a°) V{X} = (1+d?)

(=

[ ]
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Finally,
Cov(U,V) = E{UV}-FE{U}-E{V}= (E {X*-a’Y} - 1;—2“2)
} [V{X} HBX)? = a® (VTV} + (BY))?) - }
_ 5 5 1y 9 q 1 1
= (l—a ) (V{X}+(E{X}) —E> = (1—(1 ) (F—’_E—?)
- -k
hence
__Cov(UV) _Cov(U.V) _q oy P 1-d
oU,V) = v{uy-v{vy  V{U} = p? (1 ) qg(14+a?) 1+a*

3) Using that ¢ =1 — p, it follows that we shall maximize the function

hp) =[] pe™ " =p™ [J(L-p)" ",
k=1 k=1

or equivalently,

Inh(p) =mlnp+ {ka —m}ln(l - D).

k=1
Now
d M(p) m 1 “
— Inh(p) = = — - — Ty —m
dp ) hp) p 1-p ,; ’
is zero for
i f$e )
k=1
i.e. for

m
p E TR =m,
k=1

and h(p) — 0 for p — 0 or for p — 1 [provided that at least one z; > 1]. We therefore conclude
that the estimate of p is

. m 1 I
== = -, Wlthx:—sz.
D1 Tk T m =

4) Using the same method as in 3., it follows from the independency of X and Y that (z1,y1), (22, y2),
.+y (Tm,ym) can be considered as 2m observations of X1, Xs, ..., X;n, Mymy1, - .., Xom, where
Y; = Xyp4j. Then by 3. the estimate becomes

- 2m 2m
p = m m = m =
Doke1 Tt Dy Yk Dope (T Yk)

2
T4y
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Example 12.6 A random variable X has the frequency

1
PR — x>0,

2z’
fla)= v
0, <0,
where a 1s a positive constant.

1) Find E{X} and E {\/Y}

2) Assuming that n observations of the mutually independent random variables X1, Xo, ..., Xp, all

distributed like X above, have given the results x1, xa, ..

., T, apply the mazimum method to find
the best estimate of a and hence the best estimate of E {\/Y}

3) Prove that the estimator corresponding to the estimate of E {\/Y} is a central estimator.

1) We get by the substitution ¢ = \/,

oo 1 oo
E{X}:a/ x~67“ﬁ~—d:17:a/ t?e " dt = —
0

0 2\/x

and

E{\/X}:a/oo\/ff_aﬁ-de:a/oote_atdt—
0 2\/x 0

2) We shall maximize the function

i=1%i

where we see that it suffices to maximize the function

hl(a)zlnh(a):n-lna—az\/x_i—ln 2" Hml ,

i=1

I
! = = — — - 1 f =
hi(a) o) " a Z Vo, =0, only for a

follows that the best estimate of a is given by

ot = n _ 1

2lic1 VT ﬁ

SV
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3) The estimator of {\/)_(} is

i=1

Its mean is

n

P - A5V} - 18- p ().

a a
i=1

hence Y,, is a central estimator of F/ {\/Y}

Example 12.7 A random variable X has the frequency

Nze ™™ >0,
flx) =
0, <0,

where A is a positive constant.

1. Compute the mean p.

A Geiger counter is only recording every second particle, which arrives to the counter. The particles
arrive according to a Poisson process of an (unknown) intensity \. The difference in time between
two successive recorded arrivals has the frequency f(x) given above (this shall not be proved), and the
difference in time between the first and the second recorded particle, between the second and the third

recorded particle ... are mutually independent random variables X1, Xo, ...

, all of frequency f(x).

2. Given the observed differences in time x1, T2, ..., Ty, find by means of the maximum method the
best estimate X\ of the parameter X\, and hence the best estimate pY, of the mean p.

3. Prove that the estimator Y, corresponding to the estimate p), of i is a central estimator.

4. Allowing n to vary, prove that the sequence of estimators (Yn)ff=1 of i is a consistent sequence.

1 2
1) Since X € T (2, A)’ the mean is p = X

2) We shall find the maximum of the function

h(X\) = ﬁ Nz e M = (ﬁ :EZ> A2 exp (—)\zn:mi> ,
i=1 i=1

i=1

which is equivalent to finding the maximum of the function

hi(A) = Ah(A) =20 I A=A 2+ Inz;.
i=1 i=1
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It follows from x; > 0 that h(\) — 0 for A — 0+ and for A — oo. Since

Moy = 25

is only zero for

2n 2
A==m— =12,
2im®i T
where T as usual denotes the mean, this corresponds to our maximum. Hence the best estimate
of \ is given by

2n 2
)\* = —_—— = —

2
and the best estimate of y = X is

2 1
n i=1
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3) The estimator Y,, corresponding to u} is

Since

BV} ==Y B{Xi} =

the estimator is central.

4) Finally,

V)= L V(X}= o=

hence by Chebyshev’s inequality,

2

P{Y,—plzep <=

2

2_

)\_/1‘7

_53“

2 1

W.E_)O for n — oo.

It follows that the sequence of estimators is consistent.
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Example 12.8 A random variable X has its distribution given by
P{X =k} = (k—1)p*¢"2, k=2 3,4,...,

where p >0, ¢ >0 and p+ q =1, thus X € Pas(2,p).

1. Find mean p and variance 0% of X.

2. Assuming that n observations of the mutually independent random variables X1, Xo, ..., X,, all
distributed like X above, have given the results x1, xo, ..., x, (where not all x; are equal to 2),
apply the mazimum method the best estimate of p and the best estimate of p.

3. Prove that the corresponding estimator of v is

SN

and that this is a central estimator.

SIP—‘

We now perform m observations of the mutually independent random variables Y1, Yo, ..., Y,,, all
distributed like X above and furthermore all independent of the X;. The results are called vy, ya, ...,
Ym (where not all y; are equal to 2). We denote by Y,, the estimator of i which has been found by the
mazimum method from Yy, Yo, ..., Y,,. Based on the two estimators Xn and ffm we form another
two estimators of 1, namely

Y.

1 /-~ -
7= (Xn+Ym) og U= "X, +
2 n+m n+m
4. Prove that Z and U are both central estimators of p.

5. Prove for m # n that the estimator U is more efficient than the estimator Z.

1) When X € Pas(2, u), then

2 2(1 -
B{X}=p=> and V{X}=02= #.
p p
2) We shall maximize the function
_ H (.’E o 2 wb—2 H ) . 2n . (1 _p)zzlzl wi—2n’

i=1
which is equivalent to maximizing the function
n
hi(p) =Inh(p Zln i—1)+2n- lnp+{2xz—2n}ln(1— D).
=1

Since not every x; is 2, we have h(0) = h(1) = 0, and h(p) > 0 for 0 < p < 1. Since
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for

n

(1—p)-2n—p{2xi—2n}:(1—p)~2n—pn(f—2):0,

i=1
i.e. for
n
271—pr¢ =n(2—-pT) =0,
i=1
we obtain the maximum (i.e. the best estimate for p),
2n 2
*
P=cr— ==
Z?:1 T T

2
Since p = —, the best estimate of y is given by
p

S|

pr=

n
E €Tr; = f,
i=1

i.e. by the mean of the observations.

3) The estimator corresponding to p* is precisely

- 1 <&
X,=-> X,

ni=

It follows from

- 1 & 1 2
E{Xn}:— E{X}=-n-=p,
n; ap = =n

that Xn is a central estimator.

4) Since both E {Xn} =pand E {?m} = u, we get
E{rf(n—l—(l—r)f’m} —u,  TER,

hence r X,, + (1 — r)Y,, is central for every r € R. By choosing r = 2, we get Z. By choosing

r= , we get U.
n—+m
5) Since
_ 2 _ 2
V{Xn}z"— og V{Ym}:"—,
n m

and since X,, and Y,, are independent, we get

V{r}?n+(1—r)ffm}=02 (ﬁ+w)

n m
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If we put
2 (1-7r)?
f(?") - E m )
then
2r  2(1—r) 2 2
! - - = - 1 - = — — = O
Py === 2 o = e n(l =) = — (r(m+n) — )
for r = n , corresponding to a minimum. Hence the variance er is smallest for U, i.e. U is the
n4+m

most efficient estimator in the family.

Example 12.9 A random variable X € N(0,a) is normally distributed of mean 0 and variance a.
1) Compute E {X*}.

2) Assuming that n observations of the mutually independent random variables X1, Xo, ..., Xp, all
distributed like X above, have given the results x1, x2, ..., Tyn, apply the mazimum method in
order to find the best estimate of a.

3) Prove that the corresponding estimator Y, of a is a central estimator.

4) Compute the variance of Yy,.

5) Prove that the corresponding sequence of estimators (Yn)ff:1 is a consistent sequence.

1) By a small computation,

2

1 > T 1 > 1
E{x* = / ztex (—> dt:az—/ t* ex <—t2) dt
{ } Vora J_s P 2a V2T s P 2
2 Rl 1 2 > 1
2 3 2 2 2 2
= a°— t?exp| —=t° | tdt =3a° - — t“exp | —=t° ) dt
\/27T/0 p< 2 ) \/27T/0 p( 2 >
2

= 3a”.
2) Since
0=z o (5)
a = X — 5 |
7 2ma P 2a

h(a) :iljl%z(a?i) = {\/%}n-a_% - exp (—% . %iﬁ) ,

which is equivalent to finding the maximum of the function

hi(a) = Inh(a) = In ({\/%}n) . g Ina— % : ézn:x?

i=1
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Clearly, h(a) — 0 for @ — oco. If not all the z; are 0, then h(a) — 0 for a — 0+ due to to rule of
magnitudes. From

no11 1<,
h'l(a)z—— 5—22 =0 forazEZwi,
i=1 i=1

follows that the maximum is attained at the estimate

3) The estimator corresponding to a* is
1 n
iy
i

From X2 € T (% 2), follows that

n

1 a

i=1

and Y,, is a central estimator of a.
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4) Since the X; are mutually independent, the variance is
V)= LS vixy = o
n_nzizl Yoo

5) By Chebyshev’s inequality,

2
1
P{|Yn—a|25}§8—gzg~——>0 for n — oo,
5

and the sequence is consistent.

Example 12.10 A random variable X has the frequency

)\e_/\(‘”_l), z>1

flz) = ’
0, r<l1,

where A is a positive constant.

1. Find the mean p of X.

2. Assuming n observations of the mutually independent random variables X1, Xs, ..., X,, all
distributed like X above, of the results x1, x2, ..., Tn, use the mazimum method to find the best

estimate N}, of A and hence also the best estimate p}, of p.

The estimator corresponding to the estimat A}, is denoted by Y,,, and the estimator corresponding to

the estimate p}, is denoted by Z,,.
3. Prove that Z, is a central estimator of p.
4. Find the frequency of Z,.

HiNT: Start by computing the frequency of

U =

i

(X;—1).

n
=1

5. Check if Y, is a central estimator of \.
1) Omne may either translate X, or compute directly,

(o) oo 1
E{X}-:)\/l xe—)\(x—l)dm:)\/(; (-’L"*'l)e_)\xdx: X‘i‘l

2) We shall maximize the function

h(A) = [ f (i) = A" exp (—A (Z z; — n>> :

i=1
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where h(X) — 0 for A — 0+ and for A — oo. We get from the equation

W\ :h()\){g - (;x—n>} =0

the estimate

o n B 1 - 1
n Zl*l €Z; n l Z:-L:l T 1 T 1
n
Hence
L1 1 _
n i=1
3) If
1 1 «
Yo = and Z,=-> X
n <
n Y Xi—1 =t
then

E{Z,} = %ZE{X&zE{X}z%Jrlzu,
i=1

and Z,, is central.

1
4) FromU; = X; —1€T (1, X)’ follows that

UiUiGF(n,%>,
=1

thus
A" n—1
( CR=] u™t exp(—Au) for u > 0,
fo(u) = )
0 for u < 0.
From

1 — 1
Zp==Y X;=-U+1,

1
and a = — and b = 1 follows for z > 1 that the frequency of Z,, is given by
n

fz.(2) = n-fun(z—1)=n- % otz — 1) e A

n2

_ " yn(, _1\n—1_—Xn(z—-1)
= won A(z—=1)"""e ,

and of course fz, (z) =0 for z < 1.
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1
5) Since Y, = %, where U € T’ (m X)’ we get for n > 1,

E{Y, = ElL =\ = - n, n—1_—Au
Y.} n {U} n/o " (n—l)!Au e "du

= ﬁ/ u"72>\"67)‘“du (t = /\U)
-1/,
n > n—2 _—t n
= — = “A(n —2)!
=) /\/0 t"ceT " dt =1 Aln —2)
= a2
n—1

proving that Y,, is not a central estimator of A.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
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152

Click on the ad to read more
Download free eBooks at bookboon.com



http://s.bookboon.com/Gaiteye

Continuous Distributions

12. Estimation of parameters

Example 12.11 A random variable X has the frequency

1
2 Az2e AT, x>0,
flz) =

0, <0,

where A is a positive constant.

1.

Compute the mean p.

Customers arrive to a shop according to a Poisson process of (unknown) intensity A\. One day a shop
assistant has been asked to write down all the arrival times of the customers, but due to his laziness he
18 only recording the arrival times of every third customer. The time difference between two successive
recorded arrivals has the frequency f(x) given above (a proof of this claim is not required), and the
time differences between the first and the second recorded arrival, between the second and the third

recorded arrival etc. are mutually independent random variables X1, Xo, ...

2.

, all of frequency f(z).

Assuming that the time differences x1, x2, ..., T, have been recorded, use the mazximum method
based on these observations to find the best estimate A}, of A, and hence the best estimate of the

mean [i.

. Prove that the estimator Y,, corresponding to the estimate u) of u is a central estimator.

Allowing n to vary, prove that the sequence of estimators (Y,) —, is a consistent sequence.

. Find for every value of n the distribution of Y.

1 3
Since X € T (3, X)’ we have p = I

‘We shall maximize the function

n) =TT @) = 5 T[22 3 e (—Azzi) :

i=1 i=1

where clearly h(\) — 0 for A — 0+ and for A — co. Since

for
3n 3
A= ==
Z:‘L:l i, T
we get
3n 3 1 —
A= =— and pu=-— T =T.
D DR T "on4
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3) It follows from

that

B{Yah =3 Y B{X}=B{(X)=p=3,

hence Y,, is a central estimator.

4) Now,
1 9 5
VIV = V(X) = e,

so it follows by Chebyshev’s inequality that

2
1
Sn_ 9 = =0 for n — oo,

P{|Yn—#|25}§€2 % n

and the sequence (Y},) is consistent.

1
5) Since X € T (3, X)’ We get

ZniXiEF(?m,%).

i=1

1 d
Since Y,, = — Z,, and d—z =n for z = ny, we get for y > 0 that
n Y

3n
Fro () = fz.(ny) -n = ﬁ 3L (< Any) - n =

1
thus ¥,, e I’ (3717 —)
An

! exp(—)\ny),
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Example 12.12 A random variable X has the frequency

where a 1s a positive constant.
1) Compute E{X}, E{|X|} and E {X?}.

2) Assuming that n observations of the mutually independent random variables X1, Xo, ..., X, all
distributed like X above, have given the results x1, xa, ..., x, (where not all the x; are equal to
0), apply the mazimal method to give the best estimate a}, of a and the corresponding estimator
Y, of a.

3) Prove that Y, is a central estimator of a.

4) Check if the corresponding sequence of estimators (Yy,).~ | is a consistent sequence.

1) Clearly, E{X}, E{|X|} and E {X?} all exist, and E{X} = 0. It follows by the symmetry that

1 oo o0
E{\XH}:%-Q/O x~exp(—§) dxza/o tetdt=a

and
2 1 . x 2 [T 2
E{X}:—~2/ xexp(f—>dz:a/ tee” " dt = 2a”.
2a 0 a 0
2) We shall maximize the function
h(a):ﬁiexp _ Izl a>0
41 2a a )’ '

Since not all x; are 0, we have h(a) — 0 for a — 0 and for a — co. It therefore suffices to find the
maximum of

1
h =Inh(a)=-—nln2—-nlna— — il -
1(a) =Inh(a) nln2—nlna aé ||
Since
’ _n 1 - _
hi(a) = ——+— E_l |s] =0

1
only for a = = Y1 | |z, we get
n

1 n
ap = n Z |zil,
i=1

with the corresponding estimator

1 n
YH:E;\XA.
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3) Since

1 — 1 —
E{Y,} = EZE{|X1|}: EZa:a,
=1 =1

it follows that Y;, is a central estimator.
4) Since

V{IX|} = E{X*} - (B{|X|})* = 20” — a® = a”,

and all the X; are mutually independent, we get

1 — a?
VA{Y,} = EZVHXH} ==
i=1

52,
It follows from Chebyshev’s inequality that

2

2 a
P{lY, —a|>¢} < E—g:

S|

5 —0 for n — oo,
€

thus the sequence of estimators (Y;,) is consistent.
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Example 12.13 Let X1, Xo, ..., Xopy1 be mutually independent random wvariables of the same
distribution function F(x) and frequency f(x), x € R. The random variables X1, Xs, ..., Xopt1 are
sorted according to size, defining new random variables X{, X5, ..., X3, ., which satisfy

X <Xy << X5
(i.e. X7 is the smallest one, X3 the second smallest one, etc.).

1. Find, expressed by means of F(x) and f(x), the distribution functions and frequencies of the random
variables X{ and X3, ;.

2. Find, for u < w,
P{X}{>u N X3, <v},
and then derive the simultaneous frequency of (Xf,X;‘n_H).

3. Prove that X, (the “middle one”) has the frequency

2n n n
fro= o) (0 ) F@P L F@) @), sek
We assume in the following that X1, Xa, ..., Xopn+1 are mutually independent and rectangularly

distributed over the interval |0,a] (where a > 0).

4. Prove that the three random variables

2n+1
* 1 1 * *
Yonir =Xii1, Zonir =5 ?:1 Xi, Uznyr =3 (X + X5}

a
are all central estimators of the mean 3

5. Prove that Zay+1 is more efficient than Yo, 11, and that Usy,11 is more efficient than Z,41.

1) Tt follows from

Fx:(x) = P{X] Sx}:P{i_l?igln+1Xi Sx} =1-P{X; >z, ..., Xopt1 > x}

1= {1 - Fx(a)}"",
that the frequency is given by

fxp(@) = @n+ 1 {1 = Fx ()} fx ().
Analogously,

FXg*nJrl(x) = P{Xl < T, ..., X2n+1 < Z‘} — {FX(Z‘)}Qn+1 :

thus

Fxz, (@) = @n+ 1) - {Fx (@)} fx ().
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2) If u < v, then

P{X{>u A X3, ., <v}=P{u<minX; A maxX; < v}
=P{lu<X;j<v,u<Xg<u,...,u< Xopt1 <v}
=P{u<X;<v} -P{lu< Xy <wv}---P{u< Xopt1 <v}
= {Fx(v) = Fx(u)}™"*,

and the distribution function of (X . X3, +1) for u < v is given by

G(u,v) = P{X{<un X}, <v}
P{X}, 1 <v}—P{X{>un X3}, 4 <v}
{Fx ()" = {Fx(v) = Fx(u)}*"*,

and G(u,v) =0 for u > v.
The simultaneous frequency g(u,v) for u < v is given by

gugu - % {+(2” +1) {Fx(v) - Fx(u)}™" - fx(u)}

(2n +1) - 2n{Fx (v) = Fx (@)} fx(u) fx(v),

g(“? U) =

and g(u,v) = 0 for u > v.
3) The distribution function of the “middle” random variable is

FX;H(x) = P{n+1 of the X; <z and the rest > z}.

2n+1

We can choose n + 1 variables X; < x in (
n+1

) ways. If we consider a fixed set

U = (Xi(1)s-- - Xi(nt1))
among these without caring about the remaining n variables, then we get by 1. that
Fy(z) = {Fx(@)}"""  with fu(e) = (n+ 1) {Fx()}" fx ().

For the full system we get a conditional frequency (conditional, because the remaining n variables
are > ),

fo(x) = fulz) {1 = F(z)}".
Notice that U and CU play different roles; only U is referring directly to < .
When we collect all contributions, we get

froal@ = (7)) (@) sx@) - (- Fe@)

*
n+41

= ot (2 ) (Pe@ (- @) fxo) aeR
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ALTERNATIVELY, start by isolating X, ;. This random variable can be chosen in 2n + 1 ways.

2 .
There are ( 7? ) ways to choose X7, ..., X, and then X ,, ..., X5, ., are given. Thus

2n

fxs,, (2)do =~ P{Xr  €lz,z+dz]} = (2n+1) < N

) (Fx(@)" {1 - Fx(@)}" fx(x) dz.

and the result follows.

By isolating z < X}, < x + dr it becomes more clear what in the first version is meant by
“conditional probability”.

4) When X is rectangularly distributed over |0, a[, then

1
- for x €]0,al,
fx(@) =4 ¢
0 ellers,
and
0 for z <0,
€
Fx(z) = - for 0 <z < a,

1 for z > a.

Let 0 < z < a. By insertion,

Fronin (@) = fxz, (@)= (2n+1)< 2: > {E}"{lf ﬁ}",l

a a a
- l{f}n{l,f}n
~ Bn+1,n+1) ala al ’

(a Beta distribution), so

1 AN xzyn 1
Fl) = o[
RSy B(n+1,n+1)/0 “1a a o™
1
a
= — | A —pndt
B(n—i—l,n—i—l)/o ( )
Bn+2,n+1) (n+Dn! 2n+1)! a
g a.— a. . - —
Bn+1,n+1) (2n + 2)! nln! 2’

proving that Y,y is central.
Then we get that Z, 11 is central, because

1 2n+1

a
E{Zapy1} = 1 Y E{X;}= 3"
=1
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Finally,

E {U2n+1}

1 1
5 BAXT}+ 5 B {Xgn}

1 “ xy 2 1 1 ¢ rxyn 1
~(on+1 -2 2 Z(2n+1 Sl
(2n + )/0 w{ a} adw—i—Q(n—I— )/0 x{a} adaz
1 1
(2n+1){/ t(1—t)2"dt+/ t2”+1dt}
0 0
1 1
(2n+1) {/ (1—u)u2”du—|—/ t2"+1dt}
0 0

! a
(2n+1)/ u? du = —,
O 2

NI NI NI N

proving that Us, 41 is also central.
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5) We shall compute V{Ysn11}, V{Zoni1} and V {Uspi1}, and compare these expressions. The
easiest computation is

R 1 a
Zomi1} = X; 4= iy
ViZonsa} V{2n+1; } m+1 12

Then

E{YZ,,} = (2n—|—1)<2:)/0{1352{%}”{1—2}”2@5
_ (2n+1)< 2: )cﬂ/lt"“a—t)”dt

0
5 (2n+1)! 5 2n+1)! (n+2)n!
— AP B 1) =a2- )
@ Bl ) =t o e )

5 (M+2)(n+1) a? n+2

2n+3)(2n+2) 2 2n+3

implies that

a? n+2 a? a? 1
vV {V- c . 2re 2
Vi) 2 2m+3 4 4 2m+3
From
1 a? 1 a? 1 a?
VA{Zsy, = . = < =V {Ys, ’
il =g 0 5 603 7 “mis 4 RERRY

follows that Zs, 11 is more efficient than Y5, 1.

We still have to compute V {Us,,41}. It follows from
1 * * * *
U22n+1 =1 {X12 + X2EL+1 +2X7X3, 0},

and

(B {Uzi1}) = T

that
1
V{Uzns1} = 1 (B{X{?} + B{Xsn 1} +2E{X{ X501} —a®).

The former two terms are simplest, cf. 1.,

E{X{?} = (2n+1)/0ax2{1—5}2n-1dx

a a
1
= a’(2n+ 1)/ t2(1 —t)*"dt = a*(2n +1)B(3,2n + 1)
0

B 2!(2n)! a?
= ) G N = G R
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and

¢ 2n 1 ! 2n+1
E{X3} 4 :(2n+1)/ mZ{E} de:a2(2n+l)/ t2"+2dt:%a2.
0

O a
According to 2., the simultaneous frequency of (X{ , X3, +1) is

2n—1 1
2n(2n+1){g—g} 5 for0<u<v<a,
— a a a

g(u,v) =

0 otherwise.

Then

a v _ 2n—1
E{X{X}, .} = /0 {/O 2n(2n+1){vau} .uv-a%du}dv
1 v
= a2/ {/ 2n(2n + 1) (v —u)?" 1 - uv du} dv
0 0

_ a22n(2n+1)/olv{/0v fo(v — w)> — (0 — u)?"} du}d
1 v

= a’2n(2n+ 1)/0 v{/o (vt?" 1 —¢2) dt} dv

) 1 ,U2n+1 ,UZn+1
= 2n(2 1 —
a’2n(2n + )/0 v { 5 o E J

1 a2
a2/ VAT dy = .
0 2n+3

By insertion,

a2 1 2n+1 2
V{U = o !
{ 2n+1} 4 {(2n+3)(n+1) +2n+3+2n+3 }

Since
(2n+3)(n+1)=2n>+5n+3>6n+3=302n+1),

we get V {Uzpt1} <V {Zani1}, hence Usy,iq is more efficient than Zo,,11.
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Example 12.14 A random variable X has the frequency

_ =l ||
f(z) = 57 CXP L) z € R,

where a 1s a positive constant.
1) Compute E{X} and E{|X|}.

2) Assuming that n observations of the mutually independent random variables X1, Xs, ..., X, all
distributed like X above, have given the results x1, 2, ..., x, (where all x; are different from 0),
apply the mazimum method to find the best estimate a}, of a and hence also the best estimate b},
of E{|X1}.

3) Prove that the estimator Y, corresponding to the estimate b}, is a central estimator.
4) We perform 10 observations. The results are
-3.3, -26, -3.6, 3.0, 3.2, =31, 3.5, =27, 26, -24.

What is the best estimate of E{|X|} in this case?

1) Tt follows by the symmetry that E{X} = 0, and

1 o0 o0
E{|X|}:2~—/ x? exp (—g) dx:a/ t?e~! dt = 2a.
0 0

2a?

2) We shall maximize

O |l lz\ 1 1 1<
hn(a)—EQag exp |\ =7~ —Q—n'aﬁgﬂﬂ'exp —5;|$i| :

Clearly, hy,(a) > 0, and hy,(a) — 0 for a — 0+, and for a — cc.
We conclude from

n 1 n
Inh,(a) =-nln2— E In|z;| —2n Ina — — E ||,
a
i=1 i=1

that

h! (a) m 1< 1 [ &
=t il=— il —2 ;
he(a) - +a2;|x| . {Zw na}

i=1

so the unique maximum (the best estimate of a) is

1 n
a, = m Z |2i] .
i=1

The best estimate b} of E{|X|} = 2a is

*71 - )
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3) The estimator corresponding to b} for E{|X|} is

n

1

i=1

We get from
1 — 1
E{Y.} =~ S E{Xi|} = —one B{IX|} = E{IX]},
i=1

that Y,, is a central estimator.
4) With the given measurements, the best estimate of E{|X]|} is

1 30.0
f0= g {33+ 264+36+30+32+314+35+27+26+24) =" =3

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.

Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

OSRAM
Light is OSRAM SYLVANIA

0

164

Download free eBooks at bookboon.com


http://s.bookboon.com/osram

Continuous Distributions 12. Estimation of parameters

Example 12.15 A random variable X has its distribution given by
P{X:k}:(k+1)p2(lfp)k, kGNOa
where p is a constant, 0 < p < 1, i.e. X € NB(2,p).

1) Find the mean p and variance o* of the random variable X.

2) Assuming that n observations of the mutually independent random variables X1, Xa, ...
distributed like X above, have given the results x1, xo, ..., x, (where not all x; are equal to 0),

apply the maximal method to find the best estimate of p and the best estimate (), of p.

3) Prove that the estimator Y, corresponding to the estimate p is a central estimator of .

4) We perform 10 observations of the results
4, 5, 1, 7, 0, 4, 2, 10, 3, 4.

What is the best estimate of p in this case?

1) Since X € NB(2,p), we get from a table that

1 11
M:Q-gzz(——q) and o%=2-L (:2(—5——)>.
p p p P p

2) We shall maximize the function
p)=[IP{Xi=z}=][@+1)p*Q-p"
i=1 i=1
Clearly,

hn(p) >0 for 0 <p <1,

and h,(p) — 0 for p — 0+, and for p — 1—, where we have assumed that not every x; is 0.

It follows from

In Ay, ( Zln (x; +1)4+2n Inp+In(l — p) sz,

=1

ho(p) _2n 1

ho(fp)  p 1-p

i=1

This expression is equal to 0 for

2n (1 —p}) anw“
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thus for

S+ > 247

o,

1
where 7 = — Y7 | 2.

The best estimate of y is

1 1<
u;=2<ﬁ—1>=2+gzxi—2:f.

n i=1

The estimator Y,, is

and it is obvious that
1 n
B{Y,} = Y B{Xi} = B{x},
i=1

hence the estimator is central.

Since

10

the best estimate of p is given by
2 2 1

210 214 3

i=11

pn=
n T
2 .
10

1 10 1 40
EZ:&:—(4+5+1+7+0+4+2+10+3+4):_:47
i=1

10
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Arcussinus distribution, 82
arrival time, 102, 150

Bernoulli distribution, 67, 71, 74
Beta distribution, 82, 95, 156

Beta function, 10, 14, 82

binomial distribution, 44, 46, 50, 68

Cauchy distribution, 12, 38

causal distribution, 87

central estimator, 15, 130, 132, 139, 140, 143,
145, 147, 150, 152, 154, 160, 162

Central Limit Theorem, 8, 11, 43, 88, 111, 120,
122

characteristic function, 67, 69 item Chebyshev’s
inequality, 52, 54, 55, 5,6, 59-61, 69,
71, 131, 142, 147, 151, 153

conditional normal distribution, 7

consistent sequence, 130, 140, 145, 150, 152

consistent sequence of estimators, 16

convergence in distribution, 9, 67, 119

convergence in probability, 52

covariance matrix, 7

efficient central estimator, 16

efficient estimator, 143, 154

estimate, 14, 128, 130, 134, 136, 139, 143, 145,
147, 150, 152, 160, 162

estimation, 14

estimation of parameters, 128

estimator, 12, 15, 139, 140, 145, 147, 150, 152,
160, 162

exponential distribution, 4, 17, 80, 90

F distribution, 14, 124, 127
Fisher distribution, 14, 124
forgetfulness, 4, 17

Gamma distribution, 4, 10, 26, 80, 83, 114, 122
Gamma function, 10

Gauflian distribution, 6

geometrical distribution, 56

kinetic energy, 78

lifetime, 4, 25, 65, 90, 111

maximum method, 128, 130, 132, 134, 136, 139,
140, 143, 145, 147, 150, 152, 160, 162

Maxwell distribution, 10, 77

mean vector, 7

moment, 31

negative binomial distribution, 55, 162
non-singular normal distribution, 7
normal distribution, 5, 28, 91, 114, 119, 145

Pareto distribution, 128
Pascal distribution, 56, 143
Poisson distribution, 43
Poisson process, 140, 150
polar coordinates, 32, 41

Rayleigh distribution, 32
rectangular distribution, 57, 154
regression line, 8

serving time, 108
Student distribution, 12

telephone call, 106
time difference, 150

uniform distribution, 82, 99

waiting time, 106
Weibull distributions, 4

I'-function, 62

x? distribution, 11, 91, 123
n-dimensional normal distribution, 7
t distribution, 12, 127

2-dimensional normal distributions, 6
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