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Stochastic Processes 1 Introduction

Introduction

This is the eighth book of examples from the Theory of Probability. The topic Stochastic Processes
is so huge that I have chosen to split the material into two books. In the present first book we shall
deal with examples of Random Walk and Markov chains, where the latter topic is very large. In the
next book we give examples of Poisson processes, birth and death processes, queueing theory and other
types of stochastic processes.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series and the Ventus:
Complex Function Theory series, and all the previous Ventus: Probability c1-c7.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
27th October 2009
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Stochastic Processes 1 1. Stochastic process; theoretical background

1 Stochastic processes; theoretical background

1.1 General about stochastic processes

A stochastic process is a family {X(¢) | ¢ € T} of random variables X (t), all defined on the same
sample space 2, where the domain T of the parameter is a subset of R (usually N, Ny, Z, [0, +oo] or
R itself), and where the parameter ¢t € T is interpreted as the time.

We note that we for every fixed w in the sample space € in this way define a so-called sample function
T(-,w):T — R on the domain T of the parameter.

In the description of such a stochastic process we must know the distribution function of the stochastic
process, i.e.

P{X(t1)§x1 N X(tg)gl’z JANERE /\X(tn) an}
for every tq1, ..., t, € T, and every z1, ..., x, € R, for every n € N.

This is of course not always possible, so one tries instead to find less complicated expressions connected
with the stochastic process, like e.g. means, which to some extent can be used to characterize the
distribution.

A very important special case occurs when the random variables X () are all discrete of values in Ng.
If in this case X (t) = k, then we say that the process at time t is at state Ej. This can now be further
specialized.
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Stochastic Processes 1 1. Stochastic process; theoretical background

A Markov process is a discrete stochastic process of values in Ny, for which also
P{X (tn+1) = knt1 | X(tn) =kn Ao A X(tl) - kl} = P{X (tn+1) = kn+1 | X(tn) = kn}
for any k1,..., kn41 in the range, for any t1 <ty < -+ <t 41 from T, and for any n € N.

We say that when a Markov process is going to be described at time ¢,, 1, then we have just as much
information, if we know the process at time t,,, as if we even know the process at the times ¢1, ...,
t,, provided that these times are all smaller than ¢,,41. One may coin this in the following way: If
the present is given, then the future is independent of the past.

1.2 Random walk

Consider a sequence (Xj) of mutually independent identically distributed random variables, where
the distribution is given by

P{X,=1}=p and P{X,=-1}=q, p, ¢ >0 and p+ q = landk € N.

We define another sequence of random variables (S,,) by

So =0 and Sn:S0+ZXk, for n € N.
k=1

In this special construction the new sequence (Sn)zi% is called a random walk. In the special case of

1
p=q=3, we call it a symmetric random walk.

An outcome of Xy, Xo, ..., X, is a sequence 1, xo, ..., T,, where each x is either 1 or —1.
A random walk may be interpreted in several ways, of which we give the following two:

1) A person walks on a road, where he per time unit with probability p takes one step to the right
and with probability ¢ takes one step to the left. At time 0 the person is at state Ey. His position
at time n is given by the random variable .S,,. If in particular, p = ¢ = %, this process is also called
the “drunkard’s walk”.

2) Two persons, Peter and Paul, are playing a series of games. In one particular game, Peter wins
with probability p, and Paul wins with probability ¢q. After each game the winner receives 1 $
from the loser. We assume at time 0 that they both have won 0 $. Then the random variable S,,
describes Peter’s gain (positive or negative) after n games, i.e. at time n.

‘We mention

Theorem 1.1 (The ballot theorem). At an election a candidate A obtains in total a votes, while
another candidate B obtains b votes, where b < a. The probability that A is leading during the whole
a—>b
a+b

of the counting is equal to

Let Peter and Paul be the two gamblers mentioned above. Assuming that Peter to time 0 has 0 $,
then the probability of Peter at some (later) time having the sum of 1 § is given by

a:min{l,z—)},
q
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Stochastic Processes 1 1. Stochastic process; theoretical background

hence the probability of Peter at some (later) time having the sum of N $, where N > 0, is given by

o ()

The corresponding probability that Paul at some time has the sum of 1 $ is

ﬁ:min{l, g},
p

and the probability that he at some later time has a positive sum of N § is

e (3) )

Based on this analysis we introduce

pr, := P{return to the initial position at time n}, n €N,

fn := P{the first return to the initial position at time n}, n €N,
+oo

f := P{return to the initial position at some later time} = Z fn-
n=1

Notice that p, = f,, = 0, if n is an odd number.

We shall now demonstrate how the corresponding generating functions profitably can be applied in
such situation. Thus we put

“+oo “+o0
P(s) = an s" and F(s) = Z fns™,
n=0

n=0

where we have put pg = 1 and fy = 0. It is easily seen that the relationship between these two
generating functions is

b
P(s)

F(s)=
Then by the binomial series
1
V1= dpgs?’
so we conclude that

400
PO =Y g () s,

k=1

P(s) =

which by the definition of F(s) implies that

_ 1 2k ko P2k
=g () ot = 5
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Stochastic Processes 1 1. Stochastic process; theoretical background

Furthermore,
2 f < !
or -
P, p 9’
. 1
f= hr{l_F(s):1—\/1—4pq:1—|1—2p|: 1, forpzi’
2q, forp > =

1
In the symmetric case, where p = > we define a random variable T' by

T =n, if the first return occurs at time n.
Then it follows from the above that 7" has the distribution
P{T =2k} = for and P{T =2k—-1} =0, for k£ € N.

The generating function is

F(s)=1—+1-s2,

hence
E{T} = lir{l F(s) = +o0,

which we formulate as the expected time of return to the initial position is +o0.

1.3 The ruin problem

The initial position is almost the same as earlier. The two gamblers, Peter and Paul, play a series of
games, where Peter has the probability p of winning 1 $ from Paul, while the probability is ¢ that
he loses 1 $ to Paul. At the beginning Peter owns k $, and Paul owns N — k $, where 0 < k < N.
The games continue, until one of them is ruined. The task here is to find the probability that Peter
is ruined.

Let ay be the probability that Peter is ruined, if he at the beginning has k $, where we allow that
k=0,1,..., N. If k =0, then ag = 1, and if kK = N, then ay = 0. Then consider 0 < k < N, in
which case

al = Pagy1 +qag—1.
We rewrite this as the homogeneous, linear difference equation of second order,
pag+1 —akp +qag—1 =0, k=1,2,..., N —1.

Concerning the solution of such difference equations, the reader is referred to e.g. the Ventus: Calculus
Jseries. We have two possibilities:
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Stochastic Processes 1 1. Stochastic process; theoretical background

1
1) Ifp # 3 then the probability for Peter being ruined, if he starts with k $, is given by

k N
) -G
ak:%, fork=0,1,2,..., N.
- (3)
p
. 1
2) If instead p = ¢ = 2 then

_N-—k

ar = N fork=1,2,..., N.

‘We now change the problem to finding the expected number of games 5, which must be played before
one of the two gamblers is ruined, when Peter starts with the sum of & $. In this case,

:uk::pﬂ‘k#*l—’—q/j/kfl—i_lv fOI'k:].,2,...,N—]..

360°
thinking.
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Stochastic Processes 1 1. Stochastic process; theoretical background

We rewrite this equation as an inhomogeneous linear difference equation of second order. Given the
boundary conditions above, its solution is

1
1) For p # 5 we get

k
k N 1<g)
: p for k=0,1,2,..., N.

1
2) Forp=q= 5 we get instead

wr = k(N — k), for k=0,1,2,..., N.

1
In the special case, where we consider a symmetric random walk, i.e.. p = 3 we sum up the results:

Let (X%) be a sequence of mutually independent identically distributed random variables of distribu-
tion given by
1
P{szl}:P{Xk:—l}:§, for n € N.
In this case, the random variables Sy = 0 and Sy, = Sy + Zi’;l X have the distribution given by
2n

pQ"’QT:P{SQ"%}(n—i—r)Q%’ forr=-n,—n+1,...,n, n € N.

In particular,

2n on 1
U2y = P2n,0 = n )€ ~ N for large n | .

Then we define a random variable T by

T=n, if the first return to Ey occurs to time n.
This random variable has the values 2, 4, 6, ..., with the probabilities
,7 _ w1 2n Con
fgn.P{TQn}Qn_12n_1<n>2 , for n € N,
where
E{T} = +oc.

For every N € 7Z there is the probability 1 for the process reaching state En to some later time.

Finally, if the process is at state Fy, 0 < k < N to time 0, then the process reaches state Fy before
k k

En with the probability 1 — N and it reaches state Ey before Ey with the probability N The

expected time for the process to reach either Ey or Ey from Ej is k(N — k).
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Stochastic Processes 1 1. Stochastic process; theoretical background

Theorem 1.2 (The Arcus sinus law for the latest visit). The probability that the process up to
time 2n the last time is in state Ey to time 2k, is given by

Q2K 2n = Uk * U2n—2k,
where we have put us, = P {Sa, = 0}.

The distribution which has the probability s 2, at the point 2k, where 0 < k < n, is also called the
discrete Arcus sinus distribution of order n. The reason for this name is the following: If 5 and v are
given numbers, where 0 < 8 < v < 1, then

P {last visit of Ey is between 20n and 2yn} = Z Uoj * Uy —2k

Bn<k<yn
1 1 /FY 1 2 2
~ e ———dx = = Arcsin — — Arcsin ,
zk: n k k s my/a(l—x) ™ VI n Ve
ﬁSgS’Y T — (]_ — _>
n n

where we recognize the sum as a mean sum of the integral of Arcsin. This implies that
2
P {last visit of Ey before 2nx} ~ = Arcsin v/, for z €]0, 1].
T

One interpretation of this result is that if Peter and Paul play many games, then there is a large
probability that one of them is almost all the time on the winning side, and the other one is almost
all the time on the losing side.

1.4 Markov chains

A Markov chain is a (discrete) stochastic process { X (t) | t € No}, which has a finite number of states,
e.g. denoted by Fy, Fs, ..., E,,, and such that for any 1 < kg, k1, ..., k, < m and every n € N,

P{X(n)=k,| X(n=1)=kn1 A ANX0)=ko}=P{X(n)=ky,| X(n—1)=k,_1}.
If furthermore the Markov chain satisfies the condition that the conditional probabilities

pij = P{X(n) =j | X(n - 1) =i}
do not depend on n, we call the process a stationary Markov chain.

We shall in the following only consider stationary Markov chains, and we just write Markov chains,
tacitly assuming that they are stationary.

A Markov chain models the situation, where a particle moves between the m states 1, Es, ..., En,
where each move happens at discrete times ¢ € N. Then p;; represents the probability that the particle
in one step moves from state I; to state ;. In particular, p;; is the probability that the particle stays
at state Fj;.

We call the p;; the transition probabilities. They are usually lined up in a stochastic matriz:

P11 P12 - Pim

P21 P22 - P2m
P= . . .

Pm1  Pm2 e Pmm
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Stochastic Processes 1 1. Stochastic process; theoretical background

In this matrix the element p;; in the i-th row and the j-th column represents the probability for the
transition from state Ej; to state Ej.

For every stochastic matrix we obviously have

pij >0 for every i and j,

Z pij =1 for every i, thus all sums of the rows are 1.

J

The probabilities of state pgn) are defined by

pE") = P{X(n) =i}, fori=1,2..., mogn e Ny.
The corresponding vector of state is

p™ = (pgn) , pén) ey p;g”) , for n € Ny.

In particular, the initial distribution is given by

P = (1" " s pl).

Then by ordinary matrix computation (note the order of the matrices),
p™ =pr-Hp, hence by iteration p™ =p® pn,

proving that the probabilities of state at time ¢ = n is only determined by the initial condition p(®)
(n)

and the stochastic matrix P, iterated n timers. The elements p;;” in P™ are called the transition

probabilities at step n, and they are given by

P = P{X(k+n)=j| X(k) =i}

We define a probability vector o = (a1, e, . .., ) as a vector, for which
m
a; >0, fori=1,2,...,m, and Zaizl.
i=1
A probability vector « is called invariant with respect to the stochastic matrix P, or a stationary
distribution of the Markov chain, if
aP =a.

The latter name is due to the fact that if X (k) has its distribution given by «, then every later
X(n+ k), n € N has also its distribution given by a.

In order to ease the computations in practice we introduce the following new concepts:

13

Download free eBooks at bookboon.com



Stochastic Processes 1 1. Stochastic process; theoretical background

1) We say that a Markov chain is irreducible, if we to any pair of indices (4, j) can find an n = n;; € N,
such that that pj; > 0. This means that the state E; can be reached from state E;, no matter the
choice of (i,j). (However, all the n;; € N do not have to be identical).

2) If we even can choose n € N independently of the pair of indices (4, j), we say that the Markov
chain is regular.

Remark 1.1 Notice that stochastic reqularity has nothing to do with the concept of a regular matriz
known from Linear Algebra. We must not confuse the two definitions. ¢
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We will turn your CV into
an opportunity of a lifetime

2= ok I
/}Zf/.f../ 4
g N £

& =

. "ﬁ () = ﬁ=

D [ B = ity
- s Sl el 1]

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

14

Click on the ad to read more

Download free eBooks at bookboon.com



http://www.employerforlife.com

Stochastic Processes 1 1. Stochastic process; theoretical background

Theorem 1.3 Let P be an m x m regular stochastic matrix.
1) The sequence (P™) converges towards a stochastic limit matrix G for n — +o0.

2) Every row in G has the same probability vector

g=1(91,92, -+ gm) s where g; > 0 for every i =1,2, ..., m.

3) If p is any probability vector, then

pP" —¢ for n — +o0.

4) The regular matriz P has precisely one invariant probability vector, g.

The theorem shows that for a reqular stochastic matrix P the limit distribution is uniquely determined
by the invariant probability vector.

It may occur for an irreducible Markov chain that P™ diverges for n — +oc0. We have instead

Theorem 1.4 Let P be an m x m irreducible stochastic matriz.

1 ,
1) The sequence (— Dy Pl) converges towards a stochastic limit matrix G for n — +o0.
n

2) Every row in G is the same probability vector

g=1(91, 92, -+, gm) where g; > 0 for ethvert i =1, 2, ..., m.

3) Given any probability vector p, then
P e g
— — or n — +00.
Pl 2 g

4) The irreducible matriz P has precisely one invariant probability vector, namely g.

Given a Markov chain of the m states Fy, Fs, ..., E,, with the corresponding stochastic matrix P.
A subset C of the states Ey, Fo, ..., E,, is called closed, if no state outside C can be reached from
any state in C. This can also be expressed in the following way: A subset C of the m states is closed,
if for every E; € C and every E; ¢ C we have p;; = 0.

If a closed set only contains one state, C = {E;}, we call E; an absorbing state. This is equivalent to
pii = 1, so we can immediately find the absorbing states from the numbers 1 in the diagonal of the
stochastic matrix P.

The importance of a closed set is described by the following theorem, which is fairly easy to apply in
practice.

Theorem 1.5 A Markov chain is irreducible, if and only if it does not contain any proper closed
subset of states.

A necessary condition of irreducibility of a Markov chain is given in the following theorem:

15
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Stochastic Processes 1 1. Stochastic process; theoretical background

Theorem 1.6 Assume that a Markov chain of the m states Ey1, Es, ..., E,, is irreducible. Then to

every pair of indices (i,7), 1 <1, j < m there exists an n = n;;, such that 1 <n <m and pg;l) > 0.

Concerning the proof of regularity we may use the following method, if the matrix P is not too
complicated: Compute successively the matrices P?, until one at last (hopefully) reaches a number
i = n, where all elements of P" are different from zero. Since we already know that all elements are
> 0, we can ease the computations by just writing * for the elements of the matrices, which are # 0.
We do not have to compute their exact values. But we must be very careful with the zeros. This
method is of course somewhat laborious, and one may often apply the following theorem instead.

Theorem 1.7 If a stochastic matriz P is irreducible, and there exists a positive element in the diag-
onal p;; > 0, then P is regular.

It is usually easy to prove that P is irreducible. The difficult part is to prove that it is also regular.
We give here another result:

We introduce for every m x m irreducible stochastic matrix P the following numbers

(n)

d; := largest common divisor of all n € N, for which p;;” > 0.

It can be proved that dy = dy = -+ = d,;, := d, so we only have to find one single of the d;-erne. (For
one’s own convenience, choose always that d;, which gives the easiest computations).

Theorem 1.8 An irreducible Markov chain is reqular, if and only if d = 1.
If d > 1, then the Markov chain is periodic of period d.

One may consider a random walk on the set {1, 2,3, ..., N} as a Markov chain of the transition
probabilities
Dii—1=¢q and P41 =D, fori=2,3,..., N —1, where p, g >0o0gp+q=1.

1) If p11 = pyn = 1, then we have a random walk of two absorbing barriers.

2) If p1o = py.n—1 = 1, then we have a random walk of two reflecting barriers. In this case the
corresponding Markov chain is irreducible.
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Stochastic Processes 1 2. Random walk

2 Random walk

1
Example 2.1 Consider a ruin problem of total capital N $, where p < 3"

In every game the loss/gain is only 50 cents. Is this game more advantageous for Peter than if the
stake was 1 § (i.e. a smaller probability that Peter is ruined)?

We have 2N + 1 states Ey, E1, ..., Eon, where state E; means that A has — $. If A initially has k

i
2
$, then asy = 0 and ag = 1.
We get for the values in between,

ar = pag+1 +qag—1, 0<k<2N,
which we rewrite as

plags1 —ar) = q(ar —ag—1).

Hence by recursion,

k—1
q q
ar —ag—1 =~ (ap—1 —ap_2) = = (—) (a1 —ao),
p p
and we get
ar = (ar —ap—1) + (ar—1 —ag—2) + -+ (a1 — ag) + ap

()0 e (@)t}
() (@

= 14(] (al—ao)+a0: q 1 (a17a0)+ao.
p p
Now, ag = 1, so we get for k = 2N that
2N 2N 2N
DRI
O:a2N=pq4(a1—1)+1=a1 pq +1-— pq R
= -1 =—-1 = -1
p p p

hence by a rearrangement,

2N 2N—-1
[ )L
p p _ p

7 -1 .

p
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Stochastic Processes 1 2. Random walk

These expressions should be compared with

GING)
()

from the ruin problem with 1 $ at stake in each game. Notice the indices aj and as, because 1 $
= 250 cents. It clearly follows from g > % > p, that

Aok > Q.

Since the a indicate the probability that Peter is ruined, if follows that there is larger probability that
he is ruined if the stake is 50 cents than if the stake is 1 $.

Find out more and apply

redefining / standards M
f E by

Click on the ad to read more
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Stochastic Processes 1 2. Random walk

Example 2.2 Peter and Paul play in total N games. In each game Peter has the probability % for
winning (in which case he recewes 1 $ from Paul) and probability % for losing (in which case he
delivers 1 $ to Paul). The games are mutually independent of each other. Find the probability that
Peter’s total gain never after the start of the games is 0 $.

The probability that Peter’s gain is never 0 $, is

N
1 — P{return to the initial position at some time} =1 — Z I

n=1

where
fn = P{first return is to time n}.

The parity assures that fop_1 = 0, because we can only return to the initial position after an even
number of steps. It follows from p = ¢ = % that

=g () oot = () (3)

By insertion we get the probability

ey () 6) - 3w ()6

n=1 k=1 k:[%]—i—l

ALTERNATIVELY, we may use the following considerations which somewhat simplify the task.

1) If N =2n is even, then the wanted probability is
P{S1#0 A Sy #0A -+ A Sy, #0}.

This expression is equal to us,, which again is equal to

— 2n —2n 1
we(2) ()
2) If N =2n+ 1 is odd, then So,1 is always # 0. Hence, the probability is

P{S1750/\Sz7é0/\-'-/\SQH#O/\SQTL+17£0}
:P{51¢0A527A0A...A52n7é0}—<2”)22n <NL>

n

according to the first question.
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3 Markov chains

Example 3.1 Let P be a stochastic matriz for a Markov chain of the states Ev, Fa, ..., E,,.
1) Prove that

+no+
B 2 a0l

for

1<, 5, k<m, n1, No, n3g € Np.

2) Prove that if the Markov chain is irreducible and p;; > 0 for some i, then the Markov chain is
reqular.

1) Since PM1tn2tns — PriPn2Pnsand since all matrix elements are > 0, it follows that

+nat
) 33 ) > ) i) i),
k=1/¢=1

2) Assume that the Markov chain is irreducible and that there is an 7, such that p;; > 0.

Since p( " > (pii)" < 0, we must have pgz) > 0 for all n € Ny.
Now, P is irreducible, so to every j there exists an nq, such that

[19¢2)

(nl) O

Dji [index “” as above],

and to every k there exists an ns, such that also

pEZ"’) > 0.
Then follow this procedure on all pairs of indices (7, k).
If we choose NV as the largest of the possible n, and N5 as the largest of the possible no, then it
follows from 1. that
(N1+N2) >p§nl)p§,?2)p§fvl n1+No—n—2) >0,
where n1 = n1(j) and ny = ny(k) depend on j and k, respectively.
Hence all elements of PN1+¥N2 are > 0, so the stochastic matrix P is regular.

20
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Stochastic Processes 1 3. Markov chains

Example 3.2 Let P be an irreducible stochastic matriz. We introduce for every i the number d; by

)

d; = largest common divisor of all n, for which pgf > 0.

1) Prove that d; does not depend on i. We denote the common value by d.
2) Prove that if P is regular, then d = 1.

1) If we use Example 3.1 with j = i, we get

piprtratn) > i) pin)pine),

and analogously

pi ) >

Using that P is irreducible, we can find n; and ng, such that pgzl) > 0 and p](;” > 0.
Let n; and ng be as small as possible. Then

pE?*”” > szl) >0 and pl(;]zl*”@ > Pgﬁl)p;(ﬁs) < 0.

Hence, d;|n; + ns and dg|n; + ns, where “a |b” means that a is a divisor in b.

By choosing ny = mdg, such that p,(;;?) > 0, we also get

plprtnatne) 5 plnnn2),ns) 0, thus dy|ng + na + ns.

We conclude that d;|ny = m - d.

If no = nd; is chosen, such that pg;:) > (, then analogously

dk|n1 + ng + na, thus dk|n . dz

It follows that d; is divisor in all numbers no = m - dj, for which pg;f)AO. Since dj, is the largest

common divisor, we must have d;|d.

Analogously, dg|d;, hence di = d;.

Since i and k are chosen arbitrarily, we have proved 1..
2) If P is regular, there exists an n € N, such that all pl(-?)
the largest common divisor is clearly 1, hence d = 1.
The proof that conversely d = 1 implies that P is regular is given in Example 3.3.

> 0. Then also p(-mrm)

i > 0, m € Ny, and
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Example 3.3 . Let P be a stochastic matrixz of an irreducible Markov chain E,, Es, ..., E,, and
assume that d =1 (c¢f. Example 3.2).

Prove that there exists an N € N, such that we for alln > N and all i and j have pl(»?) > 0 (which
means that the Markov chain is regular).

HINT: One may in the proof use without separate proof the following result from Number Theory: Let
ai, as, ..., ax € N have the largest common divisor 1. Then there exists an N € N, such that for all

n > N there are integers c1(n), ca(n), ..., cp(n) € N, such that
k
n= Z ¢j(n) aj.
=1

Since P is irreducible, we can to every pair of indices (4, j) find n;; € N, such that pg”j )
Since d = 1, we have for every index “i” a finite sequence a;1, a;o, ... a;n, € N, such that the largest

common divisor is 1 and pgfij ) > 0.

Then by the result from Number Theory mentioned in the hint there exists an N;, such that one to

every n > N; can find ¢;1(n), ..., ¢in,(n) € N, such that
n= Z cij(n) ag;
=1
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Then let N > max {n;;} + max {N;}. If n > N, then
p’g}) > pl(;wj)p;?*pw).

Since n — n;; > N;, it follows that

j
n—mni; =Y _&un)aj,
k=1
and we conclude that
y s - ) ik
P = p w2 ) [m (055) T > 0.
k=1
This is true for every pair of indices (i, j), thus we conclude that P is regular.

Example 3.4 Let P be an m x m stochastic matriz.
1) Prove that if P is regular, then P? is also regular.

2) Assuming instead that P is irreducible, can one conclude that P? is also irreducible?

1) If P is regular, then there is an N € N, such that pl(?) > ( for all n > N and all 4, j. In particular,

pz(-?N) > 0 for all (4,7). Now, pl(?N) are the matrix elements of P2V = (PQ)N, thus P? is also

regular.

2) The answer is “no”! In fact, ( (1) (1) ) is irreducible, while

Example 3.5 Let P be an m x m stochastic matriz. Assume that P is irreducible, and that there is
an i, such that

@ >0 and PP 0.
Prove that P is reqular.
The result follows immediately from Example 3.3, because the largest common divisor for 3 and 5 is

d; =1.

Notice that
3 2 30 2
pl(-?) > pg’) -pgf’) >0, pE?) = (pf)) >0, pgiw) = (pg?) >0, pz('l-ll) = pl(?) (pg)) >0,

(n)

hence the succeeding p;;” > 0, n > 12, because one just multiply this sequence successively by P3.
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Example 3.6 Let P be an m x m irreducible matriz. Prove for every pair (i,j) (where 1 <i, j <m)
that there exists an n, depending on i and j, such that 1 <n < m and pl(-?) > 0.

When P is irreducible, we can get from every state F; to any other state. When we sketch the graph,
we see that it must contain a cycle,

E

- E, - - = E_

i - By,

where (i1, ia, ..., i) is a permutation of (1, 2, ..., m). It follows that we can get from every E;

to any other F; in n steps, where 1 < n < m. This means that the corresponding matrix P" has

p > 0.

Example 3.7 Let P be a stochastic matriz for an irreducible Markov chain of the states E1, Es, ...,
E,,. Given that P has the invariant probability vector

Prove that P is double stochastic.
The condition g P = g is written
1 & 1 -
- Zpij = thus Zpij =1
Jj=1 j=1
This proves that the sum of every column is 1, thus the matrix is double stochastic.
Example 3.8 Given a regular Markov chain of the states E1, Es, ..., E,, and with the stochastic

matriz P. Then

(n)

hm pi] = g’i7
n—oo
where g = (g1, g2, - -, gm) 1S the uniquely determined invariant probability vector of P. Prove that

there exist a positive constant K and a constant a €0, 1], such that

pE?)fgjnga" fori,j=1,2 ..., m andn € N.

If P is regular, then there is an ng, such that pi?) >0foralln>ngandalli, j=1,2, ..., m. Let
0; be the column vector which has 1 in its row number j and 0 otherwise. Then

T

If

ij

n 1
0<e:= minp( o) {clearly < 5}
i
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and
mj = min (n) and M] = Imax (n)

then

M} —mi < (1-2¢)" =a" for all j,

and

ml < M for n > nyg.

(n)
D;;

Thus

PE;)_QJ‘ gMTJ;—lega" for all 7, j and all n > ng.
Now, pl(;l) —gj| <1 for all n € N. We therefore get the general inequality if we put

1\
K=(1-2¢g) ™ =|- .
1-297 = (%)

1
Notice that since 0 < € < 5 e have a =1 —2¢ €]0, 1].

Example 3.9 Given a stochastic matrixz by

0 0 1
P=[(o0 01

1 2

3 3 0

Prove that P is trreducible, but not regular.

Find the limit matriz G.

Compute P? and find all invariant probability vectors for P2.
We conclude from the matrix that

Ey < E3 < Es,

thus P is irreducible. We conclude from

0 0 1 0 0 1 %%0
P2=( 0 0 1 001 ])=1%1 20
L 2 9 L 2 9 881
3 3 3 3
and
%%0 0 0 1 0 0 1
PP=| 1 2 0 0 01 )]=[001]=P,
881 L2 9 12 9
3 3 3 3
25
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that
Pt =P and P =P~
Since every P™ contains zeros, we conclude that P is not regular.

The solution of gP =g, g1 + g2 + g3 = 1, is the solution of

1 2
393 =91, 398 =92 g1+ 92 = g3, g1+g2+g3=1,
thus

(111
g_ 67372’

and the limit matrix is

11 1
6 2
G = 1 i 1
6 2
1 % 1
6 3 2
ALTERNATIVELY,
G = lim lEn:Piznmi iPQi‘l+iP” ~_lpylp
noeen =1 n—2n =1 =1 2 2
12 4 11 1
S A T I O O
2\ ¢ 3, o1
3 3 6 3 2

Clearly, P2 is not irreducible (E3 < E3
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The probability vectors for P? are the solutions of
gP’=g,  gitgta=1 g>0,

thus

1 1 2 2
g =59+ 30, g2 = 391+ 392, g3 = g3, g1t+92+93=1,

and hence
1
g = (z,2x,1 — 3x), T € [0’5}

Remark 3.1 We see that in P? we have the closed set {E1, Ex}, and {E3} is another closed set. ¢

Example 3.10 A Markov chain of three states Ev, Eo and E3 has the stochastic matrix

e,

I
W= O =
W b= O
O W= O

Prove that the state Ey is absorbing, and prove that the only invariant probability vector for P is
g =(1,0,0). Prove for any probability vector p that pP™ — g for n — oo.

Obviously FE; is an absorbing state.
We get the equations for the probability vectors from g = gP, i.e.

1 1 2 1

912914-593, 92=§g2+§g37 932592-

It follows from the former equation that g3 = 0, which by insertion into the latter one implies that
g2 =0, s0 g = (1,0,0) is the only invariant probability vector.

Let p be any probability vector. We put
pP" = (pﬁ”%pé"),pé")) :
Then

(pﬁnﬂ),pé”“),pg"“)) = (p§”>,p§”>,p§,”>) P,

implies that

2 (n) (n+1) _ 1

1 n n+1 1 n
) pg ):—p§)+§p3, Ps3 :2

n+1 n
pU Y = p 4 Ll 5

3 ps".

In particular, (p(ln)) is (weakly) increasing, and since the sequence is bounded < 1, we get

lim pln) =p < 1.

n—oo
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By taking the limit of the first coordinate it follows that (pgn)> is also convergent, and that

lim pén) = lim p§n+1) — limpgn) =p1 —p1 =0.
n—oo n—o0 n—

Finally we get from the third coordinate that (pén)> is convergent,

lim p(Qn) =2 lim p
n—oo n—oo

n+1
& =0,

Then p; = 1, and we have proved that

pP" — (1,0,0) =g for n — oo.

Example 3.11 1) Find for every a € [0,1] the invariant probability vector(s) (g1,92,93) of the
stochastic matriz

0 1 0
P= 0 a 1—a

1 2

3 03

2) Prove for every a €10, 1] that

Il
O O W=
BlwQ OO
O O wihal=
o o

IS

is a regular stochastic matriz, and find the invariant probability vector (g1, g2, gs, g4) of Q.

1) We write the equation g P = g as the following system of equations,

g1 = %gdv
g2 = g1 + a gz
g3 = (1-a)g2 + 2gs.

Thus g3 =3¢ and g1 =1 —a, so
l+g1+92+93=0{1+1-a+3—-3a} =g2(5—4a).

If a € [0, 1], then

1 1
— 1 f 1
go 5_4(16{5, ] or a € [0,1],

and the probability vector is

(1-a 1 3-3a
= \5-4a’'5—4da’ 5—4a )"
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2) When 0 < a < 1, it follows from

1 a 11

% 0 % 0 % 0 % 0 i 2 1 3(l-a)
a —a a Ta 2 3(1-a) %24 1(1-a)
3 1 3 1 1 3 1

U B AN B I %5 % T

that all elements of Q2 are > 0, hence Q is regular.
Then g = g Q implies that

no= 30 + 30
g = ags  + 3aga,
g3 = %91 + %92
g1 = (1-a)gs + }9a

We get from the first equation that % g1 = % go, hence go = % g1.
By adding the first and the third equation we get g1 + g3 = g1 + g2, SO g2 = ¢3.
Finally, we conclude from the fourth equation that % g4 = (1 —a)gs, thus

4 3
(1—-a)gs = 5(1 —a)§ g1 =2(1—a)g1,

Q| e~

g4 =

and

3 3
1=gl+92+93+g4=91{1+—+—+2(1—a)}291{44‘2(1—@)}:91(6—2@)7

2 2
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hence

1
91_6_20/7

and the invariant probability vector is

AR 3 3 1-a
€= 620" 12-4a'12—4a’3—-a )"

Example 3.12 Given a Markov chain of four states E,, Es, E3 and E4 and with the stochastic
matrix

O O ORI
O ONI=R|-
(e P NSRS
e N

1. Find for P its invariant probability vector(s).

2. Prove for a randomly chosen initial distribution

p(O) = (a07 507’7(% (50)
for the distribution p™ = (aun, B, Yn,0n) that

an+ﬁn + VY = (%) (0404‘@0""}’0)-

3. Let p(» = (1,0,0,0). Find p®V, p@® and p®.

Given a sequence of random variables (Yn)f;o by the following: The possible values of Yy, are 1, 2, 3,
4, and the corresponding probabilities are au,, Bn, Yn and 0y, resp. (as introduced above).

Prove for any initial distribution p®) = (v, Bo,Y0,00) that the sequence (Yy,) converges in probability
towards a random variable Y. Find the distribution of Y .

1) The last coordinate of the matrix equation g = g P with g = («, 3,7, ) is given by

1
5:Z(a+ﬁ+7)+5, thus a+pB+~=0.
Now «, 3,7 > 0,s0 a =3 =+ =0, and hence § = 1. The only invariant probability vector is
(0,0,0,1).
2) Consider again the last coordinate,

1
Op = Z (an—l + ﬂn—l + ’Yn—l) + 6p—1.

We have in general 6 =1 — (o + S+ 7), so

(an—l + ﬁn—l + ’Yn—l) + 1- (an—l + ﬁn—l + ’yn—l) 5

o] =

1_(a+6n+7n):
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thus

3
n (anfl + ﬁnfl + 'Ynfl) )

an+ﬁn+7n:4

and hence by recursion,

an + Bn 4+ = (%) (a0 + Bo + 7o) -

3) In general,

1
(077 - 4an 1,
1 1
Bn — 4an 1+2ﬂn 1,
1 1 3
Yn = Z Q1+ — 6n 1+4'7n 1,
1
677, == Z(Oén 1+ﬁn 1+'Yn 1)+5n 1-
Put
p(O) = (OCOaﬂOv’yO) - (170,070)7
then
1111
m _ (L1
p (474)4)4)7
@ _ (L1, 11 133 1y (135 7Y
p o 16’16 8’16 616164_6666
® ii+ii+i+159 7 19 37
P = 64764 732764 " 64 64764 64 647 64° 64

4) A qualified guess is that Y;, — Y in probability, where
Py =4} =1 and PY=j}=0 forj=1,2 3
We shall prove that
P{|lY,-Y|>e} -0 forn— oo forevery fixed € > 0.

If £ €]0, 1], then

P{Ya—Y|>c} = 1-P{Vy—Y|<c}=1-P{V,—Y =0}
3 n
= 1_5n—an+ﬂn+7n—(z> (a0+60+’70>

= (Z) (1-=60)—0 for n — oo,

and the claim is proved.
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Example 3.13 Five balls, 2 white ones and 3 black ones, are distributed in two boxed A and B, such
that A contains 2, and B contains 3 balls. At time n (where n =0, 1, 2, ... ) we choose at random
from each of the two boxes one ball and let the two chosen balls change boxes. In this way we get a
Markov chain with 8 states: Eo, E1 and Es, according to whether A contains 0, 1 or 2 black balls.

1. Find the corresponding stochastic matrix P.

2. Prove that it is reqular, and its invariant probability vector.

We let in the following p™ = (ny By Yn) denote the distribution immediately befor the interchange
at time t = n.

3. Given the initial distribution p(®) = (1,0,0), find the probabilitics of state,

p® = (a3, 45,73) and P = (au, B4, 74)

and prove that

V(@5 — @) + (B — B1)° + (5 — 4)* < 0,07.

X & XOO

Figure 1: The two boxes with two black balls in A to the left and 1 black ball in B to the right.

1) Since p;; = P{X(n) =j | X(n — 1) = i}, the stochastic matrix is with ¢ as the row number and j
as the column number,

0 1 0 01 0

p—| 1.1 1 1.2 | _[ 1 1 1

- 2 3 % 213 - 6 % %

0 3 3 0 3 3

2) All elements of

0 1 0 0 1 0 i 11
p2_ | 1 1 1 IR N A
W g 2 1) ¢ v
303 3 3 9 9 3
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are > 0, thus P is regular.

We imply from g = gP, i.e.

1 R 1 n 2 1 n 1
91—692, g2 =01 292 393, 93—392 3937
that
4
(1) g2 =691, 9222914-5937 295 = g9,
hence g3 = %92 = 3 g1, and thus by insertion,
G1+92+93=91+691+391=10g, = 1.
The probability vector is
(1 6 3
&= \101010)
3) From (1) follows
1 1 2 1 1
Op = gﬂn—la ﬂn:an—1+§ﬂn—1+§'}%—1; Yn = gﬂn—1+§7n—1-
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Put p(» = (a0, Bos7v0) = (1,0,0). Then

p(l) = (alaﬂh’yl) = (07170)7
111
(2) = = -, =, =
P (a2aﬂ2772) <6a2a3)7
1 23 5
(3) = = _— —, —
p (043a537’73) (127 367 18) )

23 127 11)

@ — =\ 2167216’ 36
p (ova, Ba,7v4) (216’ 216’ 36

Then by insertion,

Vias — a0 + (8 — B2 + (35 — )
1 23\% /23 127\2 5 11\2
=== ) 4 (== (= - =
12 216 36 216 18 36
18— 23\? /138 —127\2 10— 11\2
= + (=== 462
216 216 216
1
_ = 2 2 2 _ _—
S1g VR 11246 216\/25+121+36
Vis2 14 7

=— < — =—<0.07.
216 216 108
Example 3.14 Consider a Markov chain of the states Ey, Fn, ..., E,, and transition probabilities
Dii+1 = 1—1, 1=0,1,2,...,m—1;
m

i
Piji-1 = ) 1= 17 21 , T

m

pij = 0 otherwise.

Prove that the Markov chain is irreducible, and find its invariant probability vector.

(This Markov chain is called Ehrenfest’s model: There are in total m balls in two boxes A and B; at
time n we choose at random one ball and mowve it to the other box, where E; denotes the state that
there are i balls in the box A).

The stochastic matrix is

0 1 0 0 0 0

Lo 1-L 0 0 0

o 2 0o 1-2 0 0
P= . :

0 0 0 0 0o L

0 0 0 0 10
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We get from the second oblique diagonal the diagram
Ey - By - -+ — E,4 — E,,

and similarly from the first oblique diagonal,
E, - E,1 — -+ — E — E.

Hence P is irreducible.

The first and last coordinate of g = g P give

1 1
go=—g1 and  gm=—gm-1.
m m
For the coordinates in between, i.e. for i =1, ..., m — 1, we get

1—14 i+ 1
gi—1+ —— Gi+1-
m m

9i = Gi—1Pi—1,i t git1Pi+1,4 = <1 —

Hence, g1 = mgg. If i = 1, then
2 m(m —1 m
91 = go + — g2, thus g2 = ggoz 9o-
m 2 2
A qualified guess is that

o m
gl - 'L gO'

This is obviously true for ¢ = 0 and ¢ = 1. Then a check gives

S ()5 ()

m+1—1 m! 1 +i—|—1 m!
m (m+1-=4)! (@—1)! m @+ 1D(m—1—19)!

)= (1),

and we have tested the claim. The rest then follows from that the solution is unique and from the

fact that g; = ( TZn > go solves the problem. Therefore,

gi:<’l’,l>go, i=0,1,2,...,m.

We conclude that
m m m
> ZQOZ( ; )111m_1 =go-2" =1,
i=0 i=0

thus go = 27™, and

1 m .
9222—"’(1)7 1=0,1,2,...,m,
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corresponding to the probability vector
1 m m m
s= (1) (5) - (20))

Example 3.15 (CONTINUATION OF EXAMPLE 3.14).

Let Y(n) =2X(n) —m, and let e, = E{Y (n)}, n € Np.

Find e, 41 expressed by e, and m.

Find e,,, assuming that the process at time t = 0 is in state F;.

If we put pin) = P{X(n) =i}, then (cf. Example 3.14),

n n n 1 n
Pé ) ZP;(L )pl 0= —pg ) and pm(n+1) :pgn)_lpmil’m = _pfn) s
and
pz(_ Jd):(l——Z )p§)1+z pl(.Jr)l, 1=1,...,m—1.
m m
Furthermore,
en = BE{Y(n)} =2B{X(n)} —m =2 ip" —m.
i=1
Hence
m m—1
enp1 = B{Y(n+1)} =2B{X(n+1)}—m=2> ip"V —m=23"ip!"* +2mp{ith —m
i=1 i=1
m—1
S (B IR o e
i=1
m—2 i ( )
= 2 ‘_O(i-i-l){l—a}pi")—i-QZ + 2mpth) —m
m—2 m—2 i ( )
= 2 - " — (n+1) _
Z(z—i— 2Zmz+1 +QZ (t—1)p +2mp m
=0 i=0
= 2Z(z+1) (n) 2mp( ) 2(m+1)p(")—2z (i+1)p (")+2— mpg,?),l
i=0 i=0 "
+2- —(m+ )PP +23 " — (i — 1)p™ +2mpli*) —m,
i=0
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and thus
ent1 = 222’1)2(- )—m+22pi )—2ZE{2+1—1+1}pi )
i=0 j

+2(m —1)p,, (m ) —omp™ |+ 2(m + 1)p) — 2(m + 1)p{) + 2m p{nth)

m—1

1
- €"+2__Zzpzn m 1+2m pgg)l

n 2 2 2

Then by recursion,

2 n
en <1 — —) eg,
m

where
e = 1{(j—1)~%+(j+1)-(1—%)}—m:2{i(j—1—j—1)+j+l}
= 2j+2%m2j(1%>m<1%)(2jm)<1%),
hence

en = (1 - %)nﬂ (2 —m).
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Example 3.16 Consider a Markov chain of the states Fy, Fq, ...

Pii+1 = D,
Pii-1 = G,
P2 = 1,
pi; = 0

Hererp>0,¢g>0,p+q=1.

1=2,3,....,m—1;
1=2,3,...,m—1;
Pmm—1 = 1;
otherwise.

;Em

and transition probabilities

1) Prove that the Markov chain is irreducible, and find its invariant probability vector.

2) Is the given Markov chain reqular?

1) The stochastic matrix is

0 1
q 0
0 ¢q
P=| .
0 0
0 0

The first oblique diagonal gives

o3

0
0

Em - m—1

and the last oblique diagonal gives the diagram

Ey — Fy

—

o O

—

[ev i)

Ey

m—1

- E07

— B,

It is therefore possible to come from every state to any other by using these diagrams. Hence, the

Markov chain is irreducible.

The equations of the invariant probability vector are

go =491,

g1 = go + 492,

and for the coordinates in between,

9 =PGgj—1 +qGj+1,

1
It follows from the first equation that g1 = — go.
q

Similarly, from the second equation,

qggzgl—90=590—90:

thus

92 = = 9o
pe

1—gq

gm—1 =P Im—2 T Gm,

i=2,3.4,...,m—2.

p
9o = — 9o,
q

9m = PYGm—1,
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A qualified guess is

1/p it
(2) gj:&(&) 90, forj > 1and j <m—1.

It follows from the above that this formula is true for j =1 and j = 2.
Then we check for j =2, 3,4, ..., m—2, ie.

p (p\ a(pY 1 /p\'™ p
pgj—1+qgj+1=—'<—) 90+—(—> 90=-(-> {CH-L]'—}:gj-
q q qa \4q q \q q
If j =m —1, then
_ _ : _p
Im—-1=PGm-2+9m =P9Im—-2 +DPGm-1, L€ gm—1 = agm—Qa
proving that (2) also holds for j = m — 1. Finally,

m—2 m—1
p (P p
9m =PIm-1 = — | — go =1\~ 9o-
q \q q

Summing up we get

1 p 1 P m—2 p m—1
(3)g:g0 1aa7q_2a"'aa a B a .

1
Ifp#gq,ie p# 3 then we get the condition

e o e O O 0 e

pm—l pm—l
O el [0
S U T 7 A ) VA PO A (4
q 1—= q q—p q
q

which is inserted into (3).

1
When p=qg= 2 formula (3) is reduced to

g=90(1,2,2,---,2,1), where 1 = go{1 4+ 2(m — 1) + 1} = 2m gy,
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1
SO go = o and

(11 11
E=\am m m’ "m’2m )’

2) The Markov chain is not regular. In fact, all P™ contain zeros. This is easily seen by an example.
Let m = 3, and let * denote any number > 0. Then

P’ =

O O * O
O X O X
*x O X* O
O X O O
O X O x
* O X O
O X O x
* O X O
X O x O
O X O X
*x O X O
O X O

and we see that P? has zeros at all places where i + j is odd, and P? has zeros at all places, where
1+ 1 is even.

This pattern is repeated, so P2" has the same structure as P2, and P?"*! has the same structure
as P3, concerning zeros.

40
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Example 3.17 A circle is divided into m arcs E1, Fo, ..., Fpy,, where m > 3.

A particle moves in the following way between the states Eq, Eo, ... , E,:

There is every minute the probability p €10, 1] that it moves from a state to the neighbouring state in
the positive sense of the plane, and the probability g = 1 — p that it moves to the neighbouring state in
the negative sense of the plane, i.e-

Dii+1 = D, i=1,2,...,m—1;
Pii-1 = (, 1 =2,3, ..., m;
Pma = D3 Pim = ¢q;
pi; = 0 otherwise.

1) Find the stochastic matriz.
2) Prove that the Markov chain is irreducible.
3) Prove that the Markov chain is double stochastic, and find the invariant probability vector.

4) Prove that if the particle at time t = 0 is in state E;, then there is a positive probability that it is
in the same state to all of the timest =2, 4, 6, 8, ....

5) Prove that if the particle at time t = 0 is in state F;, then there is a positive probability that the
particle is in the same state at time t = m.

6) Find the values of m, for which the Markov chain is reqular.

1) The stochastic matrix is

Op 00 --- 0 0 ¢
qg 0 p 0O --- 0 0 O
0

0O g 0O p -+ 00

e}
S
e}
o
=}
o3

41
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2) It follows from
Ey - E — -+ — E, — L,
that P is irreducible.

3) The sum of each column is p + ¢ = 1, hence the Markov chain is double stochastic. Since P is
irreducible,

1 1 1
e

is the only invariant probability vector.

4) This is obvious from the parity. (The same number of steps forward as backward, hence in total
an even number).

5) This is also obvious, because the probability is > p™ 4 ¢, because p™ is the probability of m
steps forward, and ¢ is the probability of m steps backward.

6) It follows from 4. and 5. that if m is odd, then there is a positive probability to be in any given
state, when t > 3m is even, thus the Markov chain is regular, when m is odd.

If m is even, then the Markov chain is not regular, because the difference of the indices of the
possible states must always be an even number. We shall therefore have zeros in every matrix P™.

sesssssssrssssessansansrssrsarsansarsarsassrssrnssnnsrnsssssssssessesessfilCcate]-Lucent @
www.alcatel-lucent.com/careers
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N
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Example 3.18 Given a Markov chain of the states Ey, Fq, Fa, ..

transition probabilities

pO,j Qg 7= 1, 2, . ,m,
Pii—1 ]-7 1= 1; 27 e, M,
pi; = 0, otherwise,
where
m
a; >0, i=1,2, ,m—1, Ay, > 0,

Z a; = 1.
i=1

1) Prove that the Markov chain is irreducible.

.y Ep (where m > 2) and the

2) Assume that the process at time t = 0 is at state Eg; let Ty denote the random variable, which
indicates the time of the first return to Ey.

Find the distribution of T.
Compute the mean of T} .

3)

4) Let Tl, TQ, ..

e >0 that
T,

P{ % u’ > s} —0
HINT: Apply that

To=T1+ (To —T1) + -

for k — oo.

4 (T — Th—q) -

Am—1  am
0 0
0 0
0 0 )
1 0

., Ty denote the times of the first, second, ..., k-th return to Ey. Prove for every

From this we immediately get the diagram (cf. the oblique diagonal in the matrix consisting of

—

1) The corresponding stochastic matrix is

0 ay asg
1 0 0
0 1 0

P=fo0o 0o 1
0 0 O

only ones)
Em - m—1

Now a,,, > 0, hence also

Ey

- Em7

E1 — Eo.

and we conclude that we can get from any state to any other state, so P is irreducible.
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2) The probability is a; for getting from Ey to E;. We shall use j steps in order to move from E;
back to Ey, so

P{T\ =j+1} = aj, j=1,2,...,m.

3) The mean is

m

p=E{T} =3 (+Da; =143 jaj

j=1
4) Clearly,
To=T1+ (T —T1)+ -+ (T — Th-1) .

Furthermore, X; = T; — T;_; has the same distribution as 77, and 77 and the X; are mutually
independent.
Using V {T1} = 0% < o0, it follows from Chebyshev’s inequality that

"

T 2
f—u‘Zs}ﬁ%ﬁO for k — oo.

/
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Example 3.19 Given a Markov chain of the states Eqy, E1, ..

probabilities
Piit1 =D, 1=0,1,2,...,m—1,
Pio =4, 1=0,1,2,... m—1,
Pm,o = 17
pij =0 otherwise,

(where p>0,q¢>0,p+qg=1).
The above can be considered as a model of the following situation:

., By (where m > 2) and transition

A person participates in a series of games. He has in each game the probability p of winning and
probability q of losing; if he loses in a game, he starts from the beginning in the next game. He does
the same after m won games in a row. The state E; corresponds fori =1, 2, ..., m to the situation

that he has won the latest i games.

1) Find the stochastic matriz.

2) Prove that the Markov chain is irreducible.
3) Prove that the Markov chain is regular.

4) Find the stationary distribution.

5) Assume that the process at time t = 0 is in state Eg; let Ty denote the random variable,

indicagtes the time of the first return to Ey. Find

P{T,=k+1}, k=0,1,2...,m.
1) The stochastic matrix is
qg p 0 O 0 0
qg 0 p O 0 0
q 0 0 »p 0 0
P=1 . . .o
qg 0 0 O 0 p
1 000 0 0

2) The Markov chain is irreducible, because we have the transitions

Fy — Ei — FEy — — FE, —

Ey.

3) Since the Markov chain is irreducible, and pgg = ¢ > 0, it is also regular.

4) The matrix equation g P = g, where g = (g0, 91, - -, 9m), 1S written

go = (904 -+ 9m-1)q+ gm,
91 = 4go-D

92 = 91D

9m = 9m-1"D,

which
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hence
ge=g0-0"  k=0,1,..., m.

It follows from

L= gk=g0) P =00 — =go -
k=0 k=0 P q

that

pk

gk:q.—l—pm‘f‘l’ k=0,1,...,m.

5) If k < m — 1, then

P{Ty =k+1}

= P{k games are won successively, and the (k + 1)-th game is lost}

=pFq.

If K = m, then

P{Ty =m+ 1} = P{m games are won successively} = p™.
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Example 3.20 Given a Markov chain of states E1, Es, E3, E4 and Es and of its stochastic matriz
P given by

v,

I
O O ow— O
O Owr O
QWi Owin O
= oOwno O
Quwivo O O

1. Prove that the Markov chain is irreducible, and find its invariant probability vector.

A Markov chain of the states Eq, Es, E3, Ey and Es has its stochastic matriz Q given by

4
0400
L0000 1L
Q=0 010 0
00010

1 4
1490 0

2. Find all probability vectors which are invariant with respect to Q.

3. Assume that an initial distribution is given by
a'” = (1,0,0,0,0).

Prove that lim,_.. q") ezists and find the limit vector.

1) The two oblique diagonals next to the main diagonal give
Es — By — B3 — Ey — E
and
Ey - E; — E3 — E4 — Es,
so we can get from any state to any other one, hence P is irreducible.

The equations of the invariant probability vector are

1
P = §p27
1
p2 = p1+§p3,
_ 2 +1
ps = 3172 3p4,
2
Py = §p3+P5,
2
ps = §P4,
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thus
p2 = 3p1,
p3 =
i = 2p3=12py,
ps = 8p1.
We get

3p2 — 3p1 = 9p1 — 3p2 = 6p1,

1=pi+p2+ps+ps+ps =p1{l+3+6+12+8} =30p,

thus
1
pP1 = 307
and hence

(11124
T \30°10°5°5715)

2) The equations of the probability vectors are

_ 4 n 1
g1 = 5 q2 5 g5,
_ 1 n 4
qQ2 = 5 q1 5 g5,
q = (43,
q4 = (44,
_ 4 n 1
q5 = 5 q1 5 q2,

from which it is seen that ¢3 and ¢4 can be chosen arbitrarily, if only

q3 > 0, g2 >0 and g3+q <1.

The remaining equations are

5q1 — 4q2 g5,
—q1 +5q2 = 4gs.

thus  ¢1 = q2 = ¢5.

The invariant probability vectors of Q are given by

q=(z,z,y,2,x), z,y,z>0and 3x +y+2z=1.

3) We have for every n that qén) =q

Q(l) —

ol O
Utk O ol
O vt

(

4n) =0, so it suffices to consider
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Now QMWQM contains only positive elements, so Q(!) is regular.
The equations of the corresponding simplified invariant probability vector are

- 4 +1
G = 5¢]2 5(15,

- 1 +4
q2 = 5¢11 5(15,

- 4 +1
q5 = 5(11 5(12-

1
There are the same equations as in 2., and since q1 + ¢2 + ¢5 = 1, we have q1 = ¢ = q5 = 3" It
follows that

11 1

Example 3.21 Given a Markov chain of the 5 states Fy, Es, Fs, E4 and Es and the transition
probabilities
i 2

) pi,1:i+27

Piji+1 = 1o 1=1, 2,3, 4
ps1 = 1; pi,j =0 otherwise.
1) Find the stochastic matriz.
2) Prove the Markov chain is irreducible.
3) Prove that the Markov chain is regular.
4) Find the stationary distribution (the invariant probability vector).

5) Assume that the process at time t = 0 is in state Ey. Denote by T the random variable, which
indicates the time of the first return to F1.
Find P{T =k}, k=1, 2, 3, 4, 5, and compute the mean and variance of T.

1) The matrix P is given by

2]

I
= QO U BN [ o N
O O O OoOwl
O O OO
O Oulw O O
Qwhn o O O

2) It follows from the diagram
E1—>E2—>E3—>E4—>E5—>E1,

that P is irreducible.
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2
3) Since p11 = 3 > 0, and P is irreducible, we conclude that P is regular.

4) The equations of the invariant probability vector are

—2 —l—l +2 —i—l +
P1—3P1 21?2 5103 3104 Ps,

1 1 3 2

gpl, P3=§p% P4=gp3, p5=§]94-

We get successively,

p2 =

- 3
P4 = 2}?5,
- 5 B 5
ps = 31?4 = 2]957
p2 = 2p3 = 9ps,
p1 = 3p2 = 15ps,
)
1 = pi+p2+p3+ps+ps
3 5
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Thus
1 3 1 1 and 3
= — = — = — = — 1 = —
Ps 257 y2 50a P3 10’ P2 5 P1 57
and hence
(31 1 3 1
P= 155105025
5) We immediately get,
2 1
We are in the latter case in state E5, so
1 1 1 1
P{T=2}=-.-=— d P{T > 2} = —.
In the latter case we are in state E3, so
1 2 1 1 3 1
P{T =3} = — d P{T =_ .- =
T=3=515-15 =™ >3 =551
In the latter case we are in state Fj, so
1 1 1 2 1 1
PT=4}=- . — = — d PlYy=5}=-.—=—.
T=d=3-5=5 ™ V=s=5%"1
Summing up,
P{T—l}—2 P{T—Z}—1 P{T—3}—1
B 3 e 1y
PT=4}=2  pir=s5y=2
30 15
The mean is
2 1 1 1 1 1 1 5
E{T}=-+2-=+3-—+4-—+5-—=1+-+-=—.
{r} 3+ 6+ 5+ 30+ 15 +3—’_3 3
Then we get
2 1 1 1 1
E{T? = Z44.2 16 — 492
{ } 3+ 6+9 15+630+515
— g+g+§+§+§—3 17 @
3 3 5 15 3 15 15
hence
62 25 1 61
V{T}=FE{T?} — (E{T — - = 186 — 12 :
{T} = B{T*} = (B{T})? = 1z = 5 = 5 (186 —125) = =
51

Download free eBooks at bookboon.com



Stochastic Processes 1 3. Markov chains

Example 3.22 Consider a Markov chain of the m states Eq1, Es, ... , E,, (where m > 3) and the
transition probabilities
! ! 1,2 1
R S T i = ) m—
Piji+1 Z+Z+2, Pin Z+2’ ) &y ’ )
Pma =1, pi,; = 0 otherwise.

1) Find the stochastic matriz.

2) Prove that the Markov chain is irreducible.
3) Prove that the Markov chain is regular.

4) Find the stationary distribution.

5) Assume that the process at time t = 0 is in state Ey. Let T denote the random variable, which
indicates the time of the first return to Eq. find

P{T =k}, kE=1,2,...,m.

6) Find the mean E{T}.

1) The stochastic matrix is

2 1
s 3 0 0 0 0
2002 0
1 1
= 00 2 0 0

P= . . .
S 000 0
1 0 0 0 -~ 0 O

2) We get immediately the diagram
FEF, — Ey — E3 — -+ — FE,.

Since also F,, — FEi, we conclude that the Markov chain is irreducible.
3) We have proved that P is irreducible, and since p 1 = % > 0, it follows that P is regular.

4) The equations of the stationary distribution are

= 2 +2 +2 + + 2 +
g = 391 492 593 m+19m71 9m,
1
go = §g17
- 2
g3 = 492,
m—2
I9m—-1 = ———— 9m—-2,
m
B m—1
Im = m+1gm—la

52

Download free eBooks at bookboon.com



Stochastic Processes 1

3. Markov chains

thus
3
g = ) g2,
4
g2 = 5 93,
m
Im—-2 = m Im—1,
m—+1
I9m—-1 = ——F 9m-
m—1
Since

J+2
g; = ng+17

it follows by recursion for j < m — 2 that

42 _J+2 j43 j+4 m-—1 m

m+1

m(m + 1)

9; =~ gj+1 =

J g J+1 j+2..m—3'm—2'm—1gm_

i@ +1)

A check shows that this is also true for j = m — 1 and 7 = m, so in general,

m(m + 1) .
95 = —7 1 9m> ]:172,...,771.
TG+
Then
m m 1
1—Zg]—m(m—|—1)gmz — :m(m—i—l){l——
— — j(j+1)
J j=
i.e.
1 m+1 1
m = 5 d = v ) :]—,
T T TR R
Clearly,
2
P{T =1} = -,
r=1}=:
so by inspecting the matrix we get
2 1
P{Tr=2}y=---=-
{ t=3 7%
and
1 2 2 1
P{T=3}==----= = —.
{ 3 3 4 5 15

Im-

In order to compute P{T = k} we must in step number m — 1 be on the oblique diagonal, so

k—1 2 1-2-2

Tkl k+2 k(k+1)(k+2)

k(k+1)(k+2)
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A small check shows that this result is correct for k =1, 2, 3.
Finally,

12 m-1_ 2

34 m+1 mm+1)

P{T =n} =

6) The mean is

3
L

4 2

foe PAT =k} = G+ D)k+2) "Tmr1

NE

B{T} =

=~
Il

1

o

=1

(1 Ll,2 o1
< k+1  k+2 m+1 12 m+1 m+1

1 1 _ 2m
m+1] m+1

3

Il
M

|
[N}
—

[ ]
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Example 3.23 Given a Markov chain of the m states Fq, Eo, ... , E,, (where m > 3) and the
transition probabilities

Dii = 1-2p, 1=1,2,...,m,

Pii—1 = Dii+1 =P 1=2...,m-1 where p € 0,1 .
P2 = DPmm—1=2p, 2
Dij =0 otherwise,

1) Find then stochastic matriz.
2) Prove that the Markov chain is irreducible.

3) Find the invariant probability vector.
o 1 1
4) Prove that the Markov chain is reqular for p € |0, 3| and not reqular for p = 3"

5) Compute pﬂ .

1
6) In the case of m =5 and p = 3 one shall compute

lim pf?_l) and lim pffb).
1) The stochastic matrix is
1—-2p 2p 0 0 --- 0 0 0
P 1-2p P 0 --- 0 0 0
0 » 1-2p p -+ 0 0 0
P = . . . . . . .
0 0 0 0 p 1=2p p
0 0 0 0 0 2p 1—2p
2) It follows from the diagram
E — FEF —- -+ —- FE, — E,1 — - — Fi
that P is irreducible.
3) The equations are
p1 = (1—2p)p1+p-p2,
p2 = 2p-p1+(1—2p)p2+p-ps,
pi = p-pic1+(1-2p)pi+p-pit1, i=3,4,...,m—2,
Pm-1 = P Pm-2+ (1 =2p)pm—1+2p- pm,
Pm = P Pm-1+(1—2p)pm.
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They are reduced to

p2 = 2p1,
ps = 2p2—2p1,
Pit1 = 2pi —Dpi-1, 1=3,4,...,m—2,
Pm—2 = 2Dm-1— Pm,
Pm-1 = 2Dm.
Hence

p2 = 2p1, p3 = 2p2 — 2p1 = 4p1 — 2p1 = 2py,

and

Pit1 —Pi =Pi —Pi—1 =+ =DpP3 — P2 = 2p1 —2p1 =0,
thus

Pm—-1 =Pm-2 =" =P3 = P2.

Finally, p,,—1 = 2py,. Summing up we get

Pm = P1 and P2 ="' =pm-1=2p1,

whence

1= pp=p{l+2(m—2)+1} =2(m—1)py,
n=1
i.e.
1
p1 = 2(m_ 1)a

and the invariant probability vector is

B 1 1 | | |
P=em—1)m-—TUm-1" "m-12m-1)"

1
4) It p # 2’ then all p; ; # 0. Since P according to 2. is irreducible, P is regular.

1
pr:i,then
01 00 00 0
%(1)%(1) 000
0 3 0 3 00
P=1 Co
0 0 10 3
00 00 010

It follows that if pg) # 0 then i — j is an even integer, and if pggj) # 0, then i — j is an odd integer,
etc.. It therefore follows that P™ will always contain zeros, and we conclude that P is not regular
for p = %
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5) The element pﬁ of P? is

Pl =(1-2p)(1—2p) +2p-p=1—4p+6p°.

1
6) If we put m =5 and p = o then we get the stochastic matrix

01 0 0 O
1 1
5 05 00
P=|0 35 0 3 0
00 % 0 3
00 0 1 0
Since i = j = 1, clearly ¢ — j = 0 is an even integer, so it follows immediately from 4. that
pff_l) = 0 for all n, and hence
lim p?ffl) =0.
n—oo ’

In the computation of pﬂ we consider instead qﬂ) iQr = (Pg)n, where

1 1

1o 2 0 o0

2 2

032 0 ;1 0
_ P2 _ 1 1 1
Q=P"=1 1 0 5 03

0 ;03 0

o0 5 o 3

By 3. the invariant probability vector is given by

11111
8474’48 )"
and

1 n
—E P - G, for n — oo,
n

i=1

where each row in G is (§, 3,4, 1, 5)- From pﬁ_l) — 0 follows that
2n n
1 i 1 97 1
%;pg,)l = %j_lpg,f) — g1 = 3 for n — oo.

)

If lim,_ o pﬁl exists, then this will imply that

1 w1 . ny 1
3 ) = g ence i pi = g
Now, since
1 1
n+1 2n+2 2n 2n 2n n
q§,1 : =p§,1 = §p§,1) + Zpg,za) <p§71) = q§,1)v

the sequence (pgnl)) is decreasing and bounded from below, hence convergent. We therefore con-

clude that

1
lim pf{l) = -

n—oo
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Example 3.24 A Markov chain has its stochastic matriz Q given by

Q=

W= O
Wi O W=
O W[

1. Prove that the Markov chain is reqular, and find the invariant probability vector.

Another Markov chain with 5 states has its stochastic matriz P given by

O W= Ol
O O Owlhaol—=
xlwo—= O O O
o= O O O

D00 | = = O

2. Prove that this Markov chain is not irreducible.

3. Prove for any initial distribution
p¥ = (p§0),p§0),péo),pio),péo))
that
" +p{” < % {pi"_l) +p§,"_1)} ,  neN,

and then prove that

n n 1 "
pi)+pé)<(§> . neN.

4. Prove that the limit lim,,_,o. p'™ exists and find the limit vector.

1) It follows from

0 1 1 111
23 3 4 3

1 2 11
= 1 0 2 that =z 4 1
=l g R
3 3 9 6 18

All elements of Q2 are positive, thus Q is regular.

The invariant probability vector g = (g1, g2, g3) satisfies
i) 91,92,9320, i) gi+gt+gs=1 i) gQ=g.

The latter condition iii) is written

g1 = ) %92 + 5937 (1)

g2 = ?91 , + 393, (2)

g3 = 591 + 392 (3)
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When we insert (1) into (2), we get

= 1 + ! + 2 th =
— — — us .
92 6 92 6 gs 3 gs, g2 = g3

Then it follows from (1) that g, = % g2. Furthermore, ii) implies that

2 8
§g2+92 +g92=592=1,

3
thus

I
Wl o
ol w
(e \V)

3
g2=g=9s and g1

_(233\_(133
€= \s'ss) \183)

2) We notice that Q is included in P as the upper (3 x 3) sub-matrix

SO

0§§|oo
Lo 2 ] o0
Py 3
p_| 3 3 0 [ 0
11 9 11
i3 § 9
2 00 8 s

hence {Fy, Es, E5} is a proper closed subset. Then P is not irreducible.
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3) Tt follows from p(™ = p(»~1 P that

1 —1 3 —1
pin) — 6 pz(Ln ) + gpén )7
n 1 n—1 1 n—1
Pé )= épz(i )+ gpé )7

hence by addition,

I Tt R
§)=§p§ Vg spil <

P +p 5

When this inequality is iterated, we get

n n 1 n— n— 1 " 1 "
P+ < o {p T 4 1)}<~-~<<§> {p§°)+pé°’}<<§) .

4) Tt follows from 3. that

pi") — 0 and pgn) —0 for n — oo,
so we end in the closed subset {F1, Eq, E3}. Inside this closed subset the behaviour is governed

by the stochastic matrix Q, the probability vector of which was found in 1.. Hence it also follows
for P that

1
p™ — <Z’§’§’O7O) for n — oo.
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Example 3.25 Given a Markov chain of 5 states E1, Fo, Es, E4 and E5 and transition probabilities

1)
2)
3)
4)

5)

6)

pi1 = pss =1,
2
P23 = P34 = P45 = g,
1
P21 = P32 = P43 = 37
pi; = 0 otherwise.

Find the stochastic matriz P.

Find all invariant probability vectors of P.
Compute the matriz P2.

Prove for any initial distribution

p© — (pgmvpém,péO)vpff)),PéO))

that
2
p(2n+2) +p§"+2) +pi"+2) < 3 {pé") +p§”) + pin)} ) n € Ny,

and then prove that

) )

lim pén

= lim pi" = lim pfln) =0.
n—oo n—o0 n—oo

Let the initial distribution be given by
a'” =(0,1,0,0,0).

Find lim,, o, q™.

We assume that the process at time t = 0 is in state E5. Let T denote the random variable, which
indicates the time when the process for the first time gets to either the state E, or the state Es.

Find the mean E{T}.

The stochastic matrix is

)

Il
O O Owl= =
O OowR O O
Swl= Owho O
O Owhh O O
—won O O O

Remark 3.2 We notice that the situation can be interpreted as a random walk on the set

{1,2,3,4,5} with two absorbing barriers. ¢
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2) The equations of the invariant probability vectors are

1
g1 = 91+§g2,
1

g2 = 593,

2 1
gs = 592+§g47
2

g4 = 593
2
g5 = 594-1-95,

from which it is immediately seen that
gz:ov 93207 g4:O7

so the only constraint on g1 > 0 and g5 > 0 is that g1 + g5 = 1. Putting ¢1 = « € [0, 1], it follows
that all invariant probability vectors are given by

g, = (2,0,0,0,1 — z), x €10,1].
Remark 3.3 We note that we have a single infinity of invariant probability vectors. ¢

3) By a simple computation,

1 00 00 1 00 0 0O 1 00 0 0
1 2 1 2 1 2 4
10200 10 2 0 0 12 9 4 9
2| 0 1 o 2 010 2 N I T
P2=| 0 1 0 2 0 005 030 =5 0§03
00 5 0 2 00 3 0 2 0 5 0 2 2
00 0 0 1 00 0 0 1 00 0 0 1
4) Tt follows from p("+2) = p(™ P2 that
p + 1 pl 4 LplY
) 3 é")+%p§”)
plr2) = ] ,
%pén JF%IL(;”)
s+ 2p{" +pl”
hence
n 2 1 4 4 2
p 2 4 py e p P = (ol o) opd (58 + S el
9 9 9 9 9
(2 4 A (12 )
- <9+9)p2 tgbs T gty )n
2 4 1 2
= gp;n)+§p;(3n)+§pz(;n)Sg{pén)JFpgn)+pz(1n)}-
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6)

Since p(n) > 0, this implies that

i
n n n 2 "
0 gpgz )"‘175(32 )+P4(;2 )S (§> {péo) +p§,0) —|—p4(10)} —0 for n — oo,

and

n n n 2 "
0< Pg2 Y +P:(),2 = +p512 < (§> {Pél) +pgl) -l-pz(kl)} — 0 for n — oo,

thus

lim {pé") +pi —i—pfl")} = 0.

n—oo
Now, p§”> > 0, so we conclude that

lim pgn) = lim pgn) = lim pfln) =0.

Let us rename the states to £, Ef, E5, B3, E}. Let us first compute the probability of starting
at BT and then ending again in E. The parameters are here

1 2

’ ’ q 37 p 37

so this probability is given by some known formula,
AR
\2) \2) _ T
(1)4 15
1 (=
4

It follows from the first results of the example that the structure of the limit vector is (z,0,0,0,1—
x). Hence

7 8
(n) —.0,0,0, — | .
q - (157 b 9 ?15

Here it is again advantageous to use the theory of the ruin problem. We get
1
() :
1 4 2 2 32 17
3 3 1- (5) 16

1
so the mean is 5

Remark 3.4 The questions 5 and 6 can of course also be solved without using the theory of the ruin
problem. ¢
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Example 3.26 Given a Markov chain of the states Ey, Fo, ..., E,, where m > 3, and of the

transition probabilities

pi,i:1_2p7 Z:23 m;
Pii+1 = D, i:1727"'7m
Piji—-1 =D, i=2,3 m
pia1=1-—p;

Pmm—-1 = 2p;

pi;j =0 otherwise,

g ey

g ey

(here p is a number in the interval |0, 3]).

1. Find the stochastic matriz.

2. Prove that the Markov chain is irreducible.
3. Prove that the Markov chain is regular.

4. Find the invariant probability vector of P.

If the process to time t = 0 is in state Ey, then the process will with probability 1 pa reach either state

FEq or E,, at some time.

Let ay, denote the probability of getting to Ey before E,,, when we start at Ey, for k=1, 2, ..., m.

In particular, a1 =1 and a.,, = 0.

5. Prove that
(4) ap =pag+1 + (1 —2plag +pag-1, k=23,...,m—1

6. Apply (4) to find the probabilities a, k=2, 8, ..., m — 1.

1) The stochastic matrix is

1—p P 0 0o --- 0 0 0
P 1-2p P 0o --- 0 0 0
0 D 1-2p p - 0 0 0
P=| o s : z
0 0 0 0 -~ 1-2p P 0
0 0 0 o .- 14 1-2p P
0 0 0 0 - 0 2p 1—-2p

2) Since p # 0, it follows by the two oblique diagonals that we have the following transitions

v - F — -~ - E, 4w — E, — Ey -+ — FE — I,

proving that P is irreducible.

3) It follows from P being irreducible, and py1 =1—p >0 for p € ]0, %], that P is regular.
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4) The equations of the invariant probability vector are

g1 = (1-=pg1+pgo,
gi = pgi1+(1-2p)gj+pgjy1, forj=2,3,...,m-2
gm—1 = DPgm—2+ (1 —2D)gm-1+ 2D Gm,
Gm = DGm—-1+ (1 —2p)gm,
thus
g2 = 41,
29] = gj71+gj+17 fOI‘j:2, 37"'7m_2’
2gm—1 = gm-2+t+ 29m7
20m = Gm-1-

| want to do”?

Vowo Toucxs | Rewanr Tovcks | Macx Touews | Wowo Buses | Vowo Coxseucrion Ecuesent | Wowo Pesm | Vowo Aeso | Vowo IT
Vowo Fimskcer Sepaces | Vowo 3P | Vowo Powemream | Vowo Pasrs | Vowo Tecsmowoey | Vowo Loasncs | Busieess Anes Asie
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We get by a backwards recursion that

2gmgm—1 =9m-2 =" =02 = Ji1,

SO
1= ng = 2(m - 1)gm + gm = (2m - 1)gm;
k=1

and the invariant probability vector is

2 2 2 1
E=\am—12m-1""""2m—1'2m—-1)"

If the process starts at state Ey, k = 2, 3, ..., m — 1, we end after 1 step with probability p in
state Ej_1, with probability 1 — 2p in Ej, and with probability p in Fxi1. If aj is defined as
above, this gives precisely (4), so

ar = pags1 + (1 = 2p)ag +pag_1, k=2,3,...,m-1
A reduction of (4) gives
2a = apy1 + ag—1, k=2,3,...,m—1,

or more convenient

Ag—1 — A = A — k41, k:2,3,...,m—1.
Hence
l—ax=a1—ax=a2—a3=""=an_1—An =0n-1—0=an_1,

SO
1=as+ am_1.
On the other hand,
as = (az —a3) + (ag —aq) + -+ (am—1 — am) = (M — 2)ay_1,

hence by insertion

1
l=as+ am_1=m—1ay_1, thus U] = ————.
m—1
In general,
ap = (ax —agy1) + (g1 — agg2) + -+ (@Gm-1 — am)
—k
= (m—k’)am,lzm— fork=2,...,m—1.
m—1

A simple check shows that this is also true for £k =1 and k& = m, so

m—k
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Example 3.27 A circle is divided into 5 arcs E1, FEo, E3, E4 and Es.

A particle moves in the following way between the 5 states:

At every time unit there is the probability p €10, 1[ of walking two steps forward in the positive direction,
and the probability ¢ = 1 — p of walking one step backwards, so the transition probabilities are

P13 = P24 =DP35=P41 =P52 =D,
P15 = P21 =P3,2=DP43 =P54 = (,
pij = 0 otherwise.

1) Find the stochastic matriz P of the Markov chain.
2) Prove that the Markov chain is irreducible.
3) Find the invariant probability vector.

4) Assume that the particle at t =0 is in state Ej.
Find the probability that the particle is in state F1 for t = 3, and find the probability that the
particle is in state Ey for t = 4.

5) Check if the Markov chain is regular.

1) The stochastic matrix is

0 0 p 0 ¢
q 0 0 p O
P=]0 ¢ 0 0 p
p 0 g 0 O
0 p 0 q O

2) The oblique diagonal in the stochastic matrix below the main diagonal gives the transitions
E5—>E4—>E3—>E2—>E1.

Since also £; — Ej5, we conclude that P is irreducible.
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3) Since the matrix is double stochastic, the invariant probability vector is

il
55555)

4) Let the particle start at F7. Then we have the tree

B 5 B 2 B 5 Ey & E,
ql ql ql ql

Es 5% By & B B B

ql ql ql

E4 — E1 — E3

ql ql

Ey L Es

ql

Ey

probability p - ¢,

probability p - ¢,
probability p - ¢,

SO

EXPERIENCE THE POW
FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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Analogously we reach F; in four steps along four paths, all of probability p3g, so
P{T = 4} = 4p°q.
5) It follows from the tree that we from E; with positive probability can reach any other state in 4

steps. It follows by the symmetry that this also holds for any other initial state Ej, so P* has
only positive elements, so we have that P is regular.

Example 3.28 Given a Markov chain with 5 states Ey, E1, Eo, F3 and E4 and the transition prob-
abilities

Po2 = Pa2=1,
_ _ 1
Prz = P23 =P34 =
3
Pro = P21=P32=
pi; = 0 otherwise.

This can be considered as a model of the following situation:
Two gamblers, Peter and Poul, participate in a series of games, in each of which Peter wins with the

1
probability 1 and loses with the probability i if Peter wins, he receives 1 $§ from Paul, and if he loses,

he gives 1 $§ to Paul.

The two gamblers have in total 4 $, and the state E; corresponds to that Peter has i $ (and Paul has
4—14 8). To avoid that the game stops, because one of the gamblers has 0 $, they agree that in that
case the gambler with 0 $ then receives 2 $ from the gambler with 4 $.

1) Find the stochastic matriz.

2) Prove that the Markov chain is irreducible.
3) Find the invariant probability vector.

4) Compute p%) and pg).

5) Check if the Markov chain is reqular.

6) At time t = 0 the process is in state Eg. Find the probability that the process returns to Eq, before
it arrives at By.

1) The stochastic matrix is

001 0 0
501 00
P=|0 2 0 %0
00 2 0 1
001 00

2) An analysis of P provides us with the diagram

Ey <~ I < Ey « E3 — F

| I |
By = By = Es
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It follows from this diagram that we can come from any state E; to any other state Ej;, so the

Markov chain is irreducible.

3) The equations of the invariant probability vector are

_ 3
go = 4917
3
g1 = 1927
= +1 +3 +
g2 = 4Jo 491 493 94,
1
gz = 1927
1
g4 = 193,
thus

93 = 494, g2 = 1644, g1 = 12¢4, go = 0ga,
and
l=go+g1+92+93+94=(9+12+ 16+ 4+ 1)gs = 4294,

hence

32821)

g = (90791792,93794) = <ﬁv ? 21’21’ 42

4) Tt follows from

00 1 00 00 1 00 0
, 20 7 00 20 4 00 0
PP=|[ 0 2 0f 0 0 3 0t 0 = &

00 3 0 ; 00 5 0 ;% 0
00 1 00 00 1 00 0
3

that pg) =3 (Notice that the indices start at 0). Hence

@) 3 1 331 9 1 5
=(0,2,0,>.0)-(0,2,2.20) == + = =2,
P22 (’4”4’) (’4’8’4’ 616 8

5) From P? we get
EO — E1 — E2 and E2 — l;‘()7
thus

EO — El s EQ.

Bl O 5wk

O oLk |w O

G| O 5l-ei-

o oo o
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In this case we get the diagram

Ey
!
E3 - El — E47
[
Es

and P? is seen to be irreducible.
Since pg) > 0, it follows that P2, and hence also P, is regular.

6) When ¢ = 0 we are in state Ey.
When ¢t =1 we are with probability 1 in state Eo
If ¢ > 1 we denote by aj the probability that we can get from Ej to Ey before F,. Since t > 0, it
follows that ag = 1 and a4 = 0, and

1
az = Zal"‘za&
ap = §OL + —a —§+la
1 — 4 0 4 2—4 4 25
3
a3 = 1(12-}-1(14:1‘12'

This e-book Y o N
ismadewith SETASIGN

SetaPDF h Y 4
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When the latter two equations are inserted into the first one, we get

(3 L N L3, 9 3, 3,
274 \4 " 4™?) T 47 16 "1t 16 Y

thus
9

16as = 9 + 6as or as = 10

The wanted probability is as = 0’ because we might as well start from E5 as from Ej.

Example 3.29 Given a Markov chain of 5 states Ev, FEo, E3, Ey and Es and the transition proba-
bilities

P12 = Pi1,3=DP14=P15— 1
1
P23 = P24 =P25 = g,
1
P34 = P35 =3 pas =1,
ps1 = 1 pi,j =0 otherwise.

1) Find the stochastic matriz.

2) Prove that the Markov chain is irreducible.
3) Find the invariant probability vector.

4) Check if the Markov chain is regular.

5) To time t = 0 the process is in state Ey. Denote by Ty the random variable, which indicates the
time of the first return to Fy.
Compute

P{T, =k}, k=2,3,4,5,
and find the mean of T .

1) The stochastic matrix is

",

I
— o ooo
o oo one
O O Owinlm
O Owolrolil
O oIl

2) It follows from the diagram
Es — By — E» — E3 — E; — Es,

that the Markov chain is irreducible.
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3)

The equations of the invariant probability vector are

g1 = Gs;
1
g2 = Zgla
1 +1 1
gs = 491 392—391,
1 1 1 1
g = -1+ 592+ 593= =091,

4 3 2 6

where

1 1 1
l=g1+g2+g9s+gst+95s=xn (1+Z+§+§+1>

12
thus g1 = 37 and

1
= —(12,3,4,6,12).
g 37( ; )

It follows from the computation

0 1 1 1 1 0 1 1 1 1
o 111 o 111
S IR T I IO A
PP=| 000 1 1 ]]looo0 I 1]=
0 0 0 0 1 0 0 0 0 1
1 0 0 0 O 1 0 0 0 O
that we have in P2,
FEy Fs
N /!
k3 — By — Ey
/! N
E, Es,

i.e.

E1<—>E3<—>E4 and E2—>E1—>E5

and we can get from any state F; to any other state £}, so P2 is irreducible.

(2) _

37

:Eglv

O = N[0 s =
RO O O O

- E27

BRSO O ORl-

Bl O OolRo

"
=

1\]
Bl Ol

1
Now, pi’y = 1 > 0, so P2 is regular, which implies that also P is regular, because there is an n,

such that P2 has only positive elements.
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5) In this case we have the tree

Es L E;
./
i i 1 1
E2 N E3 i> E4 — E5—> E]_
i/ 3\ 3\
1 1
B % B % B, Y B L E
% 1
N\ 3\
E,2 & E L E
1
4 1
E5 — E]_.

We conclude from an analysis of this tree that P {77 = 1} = 0, and

1 1
P{T1:2} = Z.]_:Z7

1/1 1 11

1/1 1 1 1 1/1 1 1\ 1
P{Ty=4} = —(z-=+4--14=-1)-1=-(=+-4=)=-
=4 4(3 23 ) ) 4<6+3+2) 4

11 1 1
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The mean is

1 11 1 11 74 37
E{T)V=2--43.-—44.-4+5. — = —(124334+24+5) = — = >,
{1} 1T T T gy 24( +3342445) 2 12

Example 3.30 Given a Markov chain of 4 states and the transition probabilities

pn = l—a pi2 = a,
1
P23 = P34 = P21 = P32 = 2
pas = 1, pij =0  otherwise.

(Here a is a constant in the interval [0,1]).

1. Find the stochastic matrixz P.

2. Prove that the Markov chain is irreducible for a €10,1], though not irreducible for a = 0.

Find for a € [0,1] the invariant probability vector.
Find all values of a for which the Markov chain is reqular.

Assume in the following that a = 0.
5. Prove that pg) > %, 1=1, 2,3, 4.
6. Let

p¥ = (pgo),péo),péo),pio))

be any initial distribution.

Prove that
n n n 3 n n n
p(2 +3) erg +3) eri +3) < 1 (pé )eré ) +p51 )>, for allen € N,

and then find

lim p® P".

n—oo

1) The stochastic matrix is

l1—-a a 0 O
1 1
= 0 = 0
P= 2 2
0 5 03
0 0 1 0

2) If a > 0, then
E1—>E2—>E3—>E4—>E3—>E2—>E1,

so the Markov chain is irreducible.
If @ = 0, then E; is an absorbing state, so the Markov chain is not irreducible for a = 0.
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3) The equations of the invariant probability vector are

g1=(1—a)g1 + 3 go, Le. go =2ag
go=ag1 + %gg, i.e. g3 = 2ag;,
g3 = %92 + g4,

g4 = 35 93, i.e. g4 = 4ag;.

It follows from

1=g1+g2+ 93+ 94 =9g(142a+2a+4a) = (1+8a)g,
1
+ 8a

that g1 = 1 , and

g (1,2a,2a,4a).

- 1+ 8a

Since the Markov chain is irreducible, we must at least require that a €10, 1].

If a < 1, then p1; =1 —a > 0, so the Markov chain is regular for a €0, 1].
If a =1, then

O OoONE O
o O
= oN~ O

0
0
1
2
0
and it is obvious that P"
fora=1.
Summing up, the Markov chain is regular, if and only if @ €10, 1].

If a = 0, then

100 0 10 0 0 1

1 1 1 1 1 5

1o 1o 119 1 5

P=| 3 1 23 1| P=|14 3 5| P=|i
2 2 4 1 41 411

00 1 0 0 1 ok 1

Owlw O O

=W D wlw O

Owlw O O

contains zeros for every n € N. Hence the Markov chain is not regular

(It is not necessary to compute the full matrix P3; however, the alternative proof is just as long

as the above).
It follows that pz(-:f) >tfori=1,2 3 4.

By 5.,

n n n n 1 n n n
P g T 1T < (1_ Z) (P57 + 5" + 6.

Hence by recursion,

3 P
0< p(2n+3p) er:(jn-‘r?)l)) +pé(;m-i—&la) < <_> (pgn) er:(jn) +p51n)> -0 for p — 00,

4
SO
(n)

hmn—»oo P2

04 tmucepy” o< lim (74287 +p07) =0,
limy,— oo py"
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and

lim p{"” =1 lim (p” +p{" +p{) =1-0=1.

n—oo oo

Therefore,

lim p® P" = (1,0,0,0).

n—oo

Example 3.31 Given a Markov chain of 5 states Ey, Ev, Es, E5 and E4, and transition probabilities

1
Po1r = DPo,1 = Po,3 = P04 = 1

3
P11 = P22 =DP33=DP44 = 1

1
P1,0 = P21 =P32=P43 = 1
pij = 0 otherwise.

1. Find the stochastic matriz.

2. Prove that the Markov chain is irreducible.
3. Prove that the Markov chain is regular.

4. Find the invariant probability vector.

Fort =0 the process is at state E1. We denote by Ty the stochastic variable, which indicates the time,
when process for the first time is in state E.

5. Find P{Ty =k}, k € N, and the mean of Ty (i.e. the expected time of getting from Ey to Ey).
6. Find fori =2, 3, 4, the expected time for getting from E; to Ey.
When t = 0, the process is in state Ey. Let T denote the time of the first return to Ey.

7. Find the mean of T.

1) The stochastic matrix is

e}

Il
O O ORI O
O Okl =
O =W O k=
B O ORIl
Bl O O Okl

2) Tt follows from the diagram
Ey - E4 — B3 — Ey — E1 — E,

that the Markov chain is irreducible.
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3) Since e.g. poo = % > 0, and the Markov chain is irreducible, it is also regular.

4) The equations of the invariant probability vector are

go = %91, , X thus g1 = 4go,

91:%90+§91+%927 thus go = 491 — go — 391 = 91 — 9o = 390,
92:%90+—92+—937 thus g3 = 492 — go — 392 = g2 — go = 2o,
93:%90+—y3+1947

g4 = 790 + % 94, thus g4 = go,

SO
l=go+91+g2+93+9s=g0(1+4+3+2+1)=1lgo,

and

1
g= (90791792793794) = ﬁ (1a4a3725 1)

5) It follows from the matrix that

1
P{Ti=1} =7 and P{T1=2}=

()

A~ =

www.sylvania.com
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Stochastic Processes 1 3. Markov chains

and in general,

3

P{T = k) = i (-)H with E{Tj}—+. 1

Z'@

6) Let Tl denote the random variable, which gives the time when the process is at state E;_; for the
first time when we start at F;. Then

. 1 /3\* 1 .
P{Ti - k} =3 (Z) with E{Ti} — 4

Let T; denote the time, when the process for the first time is in state Ey, when we start at F;.
Then

=4.
4

Ty =T+ Tioy + - + T,
hence

E{T,} =4, i=1,2,3, 4.
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7) In the first step we get to one of the states F1, Eo, E3, Fy4, each of the probability i, hence

1
B{T} =1+ -4{1+2+3+4} =11

Example 3.32 Given a Markov chain of 7 states Ey, E1, Es, Fs, FEy, Es, Eg, and the transition
probabilities

Do = %, 1 =1,2,3,4,5, 6,
pPio = T, i=1,2,3,4,5,6,
Dii+1 = D, i=1,2,3,4,5,
Dii—1 = D, 1=2,3,4,5, 6,
P16 =Ps1 = D, pi; =0 otherwise,

where p >0, r >0 and 2p+1r = 1.

1. Find the stochastic matriz P.

2. Prove that the Markov chain is irreducible.

3. Prove that the Markov chain is regular, if p € ]O, % [, but not regular for p = 0.

4. Find the value of v, for which the invariant probability vector g is given by

(1111111
g_ 7777777’7’777 *

At time t = 0 the process is in state Eg. Let Ty denote the time of the first return to FEy.
5. Find for every value of p € [O, % [4,

P{Ty=k}, k=234, ...

6. Find the mean of Ty.

1) The stochastic matrix is

FEERRE

r0 p 0 0 0 »p

rp 0 p 0 0 O

P=|» 0 p 0 p 0 0

r 0 0 p 0 p O

r0 0 0 p 0 »p

rp 0 0 0 p O
2) Tt follows from the first row that Fy — F; for alli =1, ..., 6. It follows from the first column
that F; — FEgforalli=1,...,6. Thus £y < E; foralli=1,... 6, and we can via Fy

always get from any F; to any other £, and the Markov chain is irreducible.
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3)

6)

Ifo<p < , then clearly p( )= 0 for all (4,7), and the Markov chain is regular.

If p=0, then p(-.) =0fori, j=1,...,6, and hence also for p(-?)

ij 1
contains zeros, and the Markov chain is not regular for p = 0.

, which means that every P"

If the vector

(1111111
E=\rvrrrrTry

so r = ¢ is the only possibility. In this case,

1 )

_(177,):57

p:2

and it follows that the matrix is double stochastic for this value, and the given vector is indeed an
invariant probability vector.

Due to the extreme symmetry we may introduce the new state
E=F,UFE,UFE;UEFE;UFE; U Eg.

Then we have a new stochastic matrix for Fy and E alone,
QZ(S 21p>:<102p 22)'

It follows that
P{Ty=2}=1-2p and P{To=3}=(1-2p) (2p)",

and in general,

P{Ty =k} =(1-2p)-(2p)F2, k> 2.

The mean is

E{To} = (1-2p)) k(2p)**=(1-2p)) (k+1)(2p)*"
k=2 k=1

1 1 1 1—p
= 1—2 = 1=2———-.
( p){(l—Qp)2+1—2p} 1—2p " 1—2p
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Example 3.33 Given a Markov chain of 5 states Ey, E1, Ey, Es and E4 and transition probabilities

pog1 = 1,
2
P12 = P23=DP34= 73,
3
1
P10 = P21 =DP32= 35,
3
1
Pa2 = Pa3 = 2
pij = 0 otherwise.

1) Find the stochastic matriz P.

2) Prove that the Markov chain is irreducible.
3) Check if the Markov chain is reqular.

4) Find the invariant probability vector.

5) Find p(QZ%

6) At time t = 0 the process is in state Es. Find for every n € N the probability that the process is in
state Eqy to time 2n without in the meantime having been in any of the states Ey or Ey.

1) The stochastic matrix is

el

I
O O oOw=O
O oW O =
== O Wiy O
V= Owhn O O
Qwhn o O O

2) We obtain from the oblique diagonals the transitions
Ey - Ev — By - E3 — Ei — E3 — E — Ei — E,
so we conclude that the Markov chain is irreducible.

3) We get by a computition,

01 0 0 0 01 0 0 0 10 200

0 200 £ 0 2 00 0 20 5 0

3 3 3 3 9 9
PP=| 0 4+ 0 2 0 0 3 02 01|=|404350 3
1 2 1 2 11

00 5 0% 0.0 5 0 3 0 5 390
00 5 3 0 00 5 3 0 0 5 5 35 3

The elements of the diagonal of P? are > 0, so we shall only check if P? is irreducible. We have
the transitions

EO <~ EQ, E1 — E3 and E2 <~ .E47
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so we can get from any “even” state to any other “even” state, and from any “odd” state to any
other “odd” state. Since also

E, — E and Es < FEs,

we have also a connection in both directions between “even” and “odd” states, so P? is irreducible,

and hence also regular, because pﬂ > 0. Then also P is regular.

4) The equations of the invariant probability vector are

9o =391, thus g1 = 3go,

91 =90+ 3% 92, thus go = 3g1 — 3go = 690,
922391+193+%94, thus 6go = 2o + % g3 + 3 9a,
93=§92+594, thus gs = 4go + 3 ga,

94 = 393,

so in particular,

1

4 _1 +1 _1 n _2
90—390 294—393 393—3937

and

2
g3 = 6go and g4 = 398 = 4go.

360°
thinking.

Deloitte.
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Stochastic Processes 1 3. Markov chains

It follows from
l=go+g1+92+93+91=g0(1 +3+6+6+4) =20g0

that gy = % and

» (L3330
g = (90,91,92,93,94) = 2072071071075 .

5) According to the computation in 3. we have pg) = %.
6) Starting at E2 we get in the first step either to E; or to Ej, thus neither to Ey nor to Fy. It
follows from the matrix of P? that

P {Ey after 2 steps} =
P {E after 2 steps} =
P {Ey after 2 steps} =

)

)

OO O~

Then the process can be iterated,

1 4 n—1
P {Ey after 2n steps without passing Eq or E,} = 3 <—) .
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Example 3.34 Given a Markov chain of 2 states E1 and Ey and of the stochastic matrix

(1 1)

1. Prove that Q is regular, and find the invariant probability vector.

[SIEEENON

DO [ =

Another Markov chain with 6 states, Ev, Eo, E3, Ey4, Es and Eg, has the stochastic matriz

1320 0 0 0
tt g 00 0
21 2
ong(l)g(z)o
00 35 0 20
000 3 0 2
0000 0 1

2. Prove that P is not irreducible, and find all closed subsets.
3. Find all invariant probability vectors of P.
4. Prove for any initial distribution

p©® — (pgo)7pg0)7pgo)jpio)méo)’péo))

that
2
pg”+2) +pi"+2) +pé"+2) < 3 (p;(g") +p4(1n) + pén)) , n 3 Ny,

and then prove that
(n) (n)

. . n
lim py’ = lim py
n—oo n—oo

= nan;opén) =0.
5. Let the initial distribution be given by
q® =(0,1,0,0,0,0).
Find lim,, .o, q™.
Then let the initial distribution be given by
r® =1(0,0,0,1,0,0).

Prove that lim,_, r™.

1) All elements of Q are > 0, so Q is regular.
The equation of the invariant probability vector is

1 1 3

= - — th = —
g1 491+292 us g2 5

so the probability vector is

_ (23
E=\55)"

91,
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2) Obviously, {E1, E2} and {Es} are closed subsets. Since we from Fs can get to both E; and
Fg, from E4 can reach both E3 and Fs5, and from F3 get to both Es and E4, we have — with
the exception of the union {E;, E2, Fg} — no other possibility of closed subsets. Since we have
non-trivial closed subsets, the Markov chain is not irreducible.

3) The equations of the invariant probability vectors are

912%914—%92, 92=§g1+%92+3g37
9323947 g1 = 393 + 3 95,
95 = 3 G4, 96 = 5 95 + go-

When we solve these equations backwards, we obtain successively,
g5 =0, gs=0, and g3=0.

The closed system {E1, E2} corresponds to the matrix Q, so the invariant probability vectors are
2 3
g:(ggc,goc,0,0,0,1—96>7 0<z< 1.

4) Tt follows from

1 3 1 3 7 9
2200 0 0 2200 0 0 L 2 0 0 0 0
t 19000 tt o 00 0 2% 0000
;1 51 2 S G 4
pz_| 0 3 0 3 00 003035001 | 35 g 350350
oo 10 20 00+ 0 201( | 0 5 0430 § ’
000 1 0 2 000 & 0 2 0o 0 & 0 2 =
000 0 0 1 000 0 0 1 0 0 0 0 0 1
that
n n n 2 n 4 n ]. 2 n
P gD = (24 YR 4 S (52 ) el
9" 9 9 9
2
< 2 {r (")+p§")+p§”)}-

This estimate gives by recursion,

Since all pgn) >0, we get

lim pén)

n—00

= lim pfln) = lim pgn) =0.
n—oo n—oo

5) If q(® = (0,1,0,0,0,0), we are in the closed set { F1, F5}, which actually is described by the matrix
Q given in 1.. Then

2
11mq<">:(ggoooo>
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6) If r(® = (0,0,0,1,0,0), then we start in E,. Hence by 4.,

1 4 4
@ —(0.2.02.02
r <03970’97079)?

so & reaches the closed set {E1, E>}, and § reaches the closed set {Eg}.

The rest, 9’ lies again in Ey, and the process is repeated.

) 1 4
In total, — disappears in each step, where 5 goes to {F1, E»}, and = goes to Fg. Hence we

conclude that

2 3 4
lim r™ = (=, =.0,0,0, - | .
ni}II;Or <257257 b b 75

ALTERNATIVELY we may apply the theory of the ruin problem. We first re-numerate the states to
Fy={Ey, Es}, Py = FEj3, Fy = Ey, F3=FEs, and F,= Eg.

Then we get the diagram
Fo— Fy «— Fy «— F3 — F}.

Starting at E4(= F»), the parameters of the ruin problem in order to reach Fy = {Ey, Es} before
Fy = Eg is given by

1 2
) ) q 37 p 37
hence the probability is
(1>2 (1>4 1 1
CLQ: 2 2 = 1_1—6 :—:1
1\* 17i 15 5
=17 16

Once one has arrived to Fy = {E, E2}, one stays there forever, an we approach the stationary
distribution of (1). This gives

1 21 3 4 2 3 4
(n) (2.2 2.2 =2 = =
r —>(5 5a5 570a0a075> <2572570707075>
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Example 3.35 Given a Markov chain of 5 states E1, Fo, Es, E4 and E5, and transition probabilities

P11 = a, pi2=1—a,

1
D31 =D35 = 5, D23 = P45 = Psa = 1,
pij =0 otherwise.

(Here a is a constant in the interval [0,1]).

1) Find the stochastic matriz P.

2) Prove that the Markov chain is irreducible for a < 1, and not irreducible for a = 1.
3) Find for every a them invariant probability vector.

4) Find the values of a, for which the Markov chain is regular.

5) To time t = 0 the process is in state E5. Denote by T the time when the process for the first time
is in state Ey.
Find the distribution of the random variable T'.

6) Find the mean of T.

1) The stochastic matrix is

a 1—a 0 0 O
0 0 100
P=|3 0 00 3
0 0 100
0 0 010
SIMPLY CLEVER SKODA
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- ’I.’.

" *}gw 3

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

88

Click on the ad to read more

Download free eBooks at bookboon.com


http://www.employerforlife.com

Stochastic Processes 1

3. Markov chains

2) For a < 1 we get the diagrams

E1 - E2 - Ela

and

Es — FEs5 — Ey — Es,

so we can get from any state IJ; to any other state F;, thus the Markov chain is irreducible.
If @ = 1, then E; is absorbing, and the Markov chain is not irreducible.

3) The equations of the invariant probability vectors are

g1 :agl+%gg, thus g3 =2(1 —a)gy,

g2 = (1 —a)g1, thus g2 = (1 —a)g,

g3 = g2 + gu,

94 = 95,

g5 = % g3, thus g4 =g5 = (1 —a)g:.
We now get

l=g1+g+g+uteps=n{l+l—-a+2-2a+1—-a+1—a}=¢g1(6—5a).

Since 6 — 5a > 0 for a € [0, 1], we get g1 = , and

6 — ba
1

g:m(1,17@,2(2/1*&),1*@,1*@).

4) Now, P is irreducible for a € [0,1], and p11 = a > 0 for a €]0,1[, hence the Markov chain is (at

least) regular for a €10,1[. When a = 0, then

01000 01000 0 0
00100 00100 10
PP=| 1 000 % ;000 5 |=]0 1
00100 00100 10
00010 00010 0 0
and
0100 0 00100 5
00100 100 0 3 0
PP=| 3 000 5 [=]024 03 0f=]o0
00100 100 0 % 0
00010 00100 3

_ o o o

ONI- ONI= O

O OO O

SO =OO

ON= o= O

ON= ON= O

V= O O oM

It follows that Es is an absorbing state for P3, hence the Markov chain corresponding to P3 is not

irreducible. In particular, P is not regular.
5) We derive from the diagram
Elv

N [=

/
N

N[

E57
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that
1
P{T=1}=P{T=2}=0 and P{T:3}:§,
and the process is repeated from Fs. Hence

k
P{T =3k} = (%) and  P{T=j}=0 forj+# 3k

6) The mean is

Po,i = %7 L= la 27 35 45
Dii— 1:_1%7 Z: la 27 37 45
Pii = —> L= 73a4;
pi; =0 ellers.

1. Find the stochastic matriz P.
2. Prove that the Markov chain is irreducible.
3. Check if the Markov chain is reqular.

Find the invariant probability vector.

At time t = 0 the process is in state F;, where i is one of the numbers 1, 2, 8, 4. Let T; denote the
random variable, which indicates the time, when the process for the first time is in state E;_q.

5. Find for i = 1, 2, 3, 4, the probabilities P{T; =k}, k € N, and find the mean of T; (i.e. the
expected time for getting from E; to E;_1 ).

6. Find fori=1, 2, 3, 4, the expected time for getting from E; to Ey.
Let the process at time t = 0 be in state Ey. Denote by T the time of the the first return to Ey.

7. Find the mean of T.

1) The stochastic matrix is

",

I
[Nl =]
O ON= Oki=
QW= Okl
Wy O Okl
B=lw O O Ok

3. Markov chains
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2) It follows from the diagram
Ey, - E3 — E — K — Ey — Ly,
that the Markov chain is irreducible.

1
3) Since e.g. pao = 3 > 0, and the Markov chain is irreducible, it is also regular.

4) The equations of the invariant probability vectors are

9o = 91 thus g1 = go,
91 =790+ 392 thus g2 = 3 go,
922%90-1—2924-%%7 thus g3 =3(392—390) =3 go.
g3 = 3790+ 3593+ 7 9a,
g4 =590+ 7 94, thus g4 = go.

Hence

3 3
l=go+g1+92+93+94s=go0 (1+1+§+§+1>_6g0,

1
from which gy = 6’ and

g8 = (90,91, 92,93, 92) = (6’6’1’1’6)'
5) Clearly,
P{Ty=1}y=1, P{I1=k}=0 fork>2, and E{Th}=1.

We get for T,

k
1
P{TQ:]C}: (5) s kEN, and E{TQ}:2
We get for 15,
1 /2\F1
P{TSZk}:g (§> N kEN, and E{T3}:3

We get for Ty,

1/3\"!
P{T4 = k} = Z (Z) 5 ke N, and E{T4} =4.

6) Let T; denote the time when the process of initial state E; for the first time is in Fy. Then
E{Ti} = B{T}=1,

E{ } = E{L}+E{T\}=2+1=3,

E{g} - E{T3}+E{T2} —3+3=06,

E{T)

- E{T4}+E{T3} = 4+46=10.
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1
7) In the first step we get to one of the states Ey, Fa, E3, Ey4, each of probability T Then we shall
move back to Eqy, so

B = 1 (sfn) e p () s )

1 1
= 1+Z(1+3+6+10):1+Z'20:6'

Find out more and apply

redefining / standards M
f E by

Click on the ad to read more

92

Download free eBooks at bookboon.com


http://s.bookboon.com/AXA

Stochastic Processes 1 3. Markov chains

Example 3.37 Given a Markov chain of 4 states E1, Es, F3 and Ey, and transition probabilities

P11 = a, P12 = 1- a,

2 1
P23 =P32 =3, P2,1 =P34 = 3,
pa3z =1, pi,; = 0 otherwise.

(Here a is a constant in the interval [0,1]).

1) Find the stochastic matriz P.

2) Find the values of a, for which the Markov chain is irreducible.
3) Find the values of a, for which the Markov chain is regular.

4) Find for every a the invariant probability vector.

(2n)

5) Find for every a the limit lim,_ o Psq

6) Put a =1, and assume that the process at time t = 0 is in state Ey. Find the probability that the
process at any later time reaches state E,.

1) The stochastic matrix is

—_

owiv O |
Q

O oOwi
— owNn O
ow— O O

2) When a € [0, 1], we have the diagram
Ey - Ey — E3 — By — E3 — E; — E,

and we conclude that the Markov chain is irreducible.
If @ = 1, then E; is absorbing, and the Markov chain is not irreducible for a = 1.

3) When we check the possible regularity we shall only consider a € [0, 1].
If a €]0, 1], then py 1 = a > 0, and the Markov chain is regular for a €10, 1[.
If a = 0, then every second element of P™ is 0 for every n € N, thus the Markov chain is not
regular for a = 0.

4) The equations of the invariante probability vector are

g1 =ag1+ 359, thus gy = 3(1 —a)gi,
go=(1—a)g1+ 3593 thus g3=3503-3a—1+a)g =3(1-a)g,
93 = 3 92+ g4, thus g4 = (1 —a)g1.

It follows from

l=g1+g2+g3+g9a=g{1+3(1—a)+3(1—a)+(1—a)} =(8—-"Ta)g

1
and 7a <7 < 8 that g; = g <1, hence

Ta

1
T 8—Ta

g (1,3(1 —a),3(1 —a),1 —a).
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5) If a €]0,1[, the Markov chain is regular, so P" konverges, hence P (") also converges towards G,
where each row of g is the invariant probability vector found in 4.. Hence

. 3(1—a
Jim ) =0 = o

If a = 0, the Markov chain is irreducible, but not regular.
Then compute

P? =

O Owli Q
Cwn O |
= OoOwihn O
Qwi= O O
O OwiQ
Cwn o |
— Owh O
owr o O
|
O Ul O wl
whhn Ol O
S olot O win
W= oo O

It follows that {Fs, E4} is a closed system. The corresponding stochastic sub-matrix

=(1 1)

is regular, and the equations of the invariant probability vector are

wWInxo |~
WO N

92:1924—%94,

thus =3
94 = 992"’594; 92 g

hence
31 . 2 3
(92794) = (Z, Z) ) and nlgrolopé’g) = 13
(and not %, which we get by inserting a = 0 into the formula of 4..
This result is in agreement with the theoretical result, because pgzg ) 0, so
1 2n 1 n 1 n
—> P=—) P4+ NPl .G f .
If a =1, then
1 0 0 O 1 0 0 O
1 0 0 0
tozo) [sozo| (19008
P2 _ 2 N — 2 1 — 3 9 7 9
03053 05 05 o 9 v 0
00 1 0 00 1 0 03 0 3
Thus
7
95" 95" 10" < (987 + g8 +4i),

and hence g§2”) — 0 for n — oo, and in particular, pgg) — 0.

6) Let a = 1. If the proces at time ¢ = 0 starts in Eq, we get P{T' =1} = 0.
2 4 1
If t = 2, then P{T =2} = 9’ while 9 of the “mass” lies in Fs, and 3 is “lost” in the absorbing
state E/;. Thus

P{T=2k+1}=0 for k€ Ny,
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and

9 4 k—1

Finally, by a summation, the wanted probability is

oo

T2 (T8 2
9 \9 C1-4 5

k=1

Example 3.38 Given a Markov chain of 5 states Ey, F1, Es, Es and Ey, and transition probabilities

pi,i:%a 221, 2a 37 47
Diji—1 = %, 1= 1a 27 37 4a
Po2 = Poa = po,o = 1—2a,
pi1 =0 otherwise.

Here a is a constant in the interval [O, %]

1. Find the stochastic matriz P.
2. Find the values of a, for which the Markov chain is irreducible.
3. Find for every a the invariant probability vector.

Ay time t = 0 the process is in state E;, where i is one of the numbers 1, 2, 3, 4.
Let T; denote the random variable, which indicates the time when the process for the first time is in
state Ey.

4. Find P{To =k}, k=2, 3, 4, ..., and the mean of Ty (i.e. the expected time for getting from Es
to Eo)

5. Find the mean of Ty.

Now put a = %, and assume that the process to time t = 0 is in state Ey. Let T denote the time of

the first return to Ey.
6. Find the mean of T.

1) The stochastic matrix is

1—2a 0 a 0 a

1 4
1 20 0 0

_ 0 1 1
P= 0 5 % 0 0
4

0 0 i ; 0
o 0 0 ; %

2) When a = 0, we see that Ey is absorbing, and the Markov chain is not irreducible.
For0<a< % we get the diagram

Ey — Ey — FE3 — Ey — FEy — Ky,

proving that the Markov chain is irreducible, and even regular, because e.g. p11 = % > 0.
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3) The equations of the invariant probability vector are

go=(1-2a)go+ £t g1, thus g1 =10ago,

n=1q0 +§gz, thus g2 = g1 = 10a go,
g2=ago+ 292+ tgs, thus g3 =10ago — 5ago = 5ago,
g3 =293+ = g thus g4 = g3 = 5a go,
ga=ago+ 5 g4, thus g4 = Sa go.

It follows that

l=go+ g1+ 92+ 93+ 9s=go(l+10a+ 10a + 5a + 5a) = (1 + 30a) go,

, and therefore

thus gg = ;
9= 177304

g = (90,91,92,93,94) = (1,10a, 10a, 5a, 5a).

1+ 30a

4) Let T; denote the random variable, which indicates the first time, when the process is in state
FE;_1, when we start in E;. Then

. 1 /4\F1 .
P{Ti:k}:g-<g> . keN, medE{:n}:5.
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It follows from Ty = Ty + T} for k > 2 that
k—1 k— j—1 k—j—1
. . , 1 /4N 1 /4\"
P Jz_lp{TQ—J}'P{Tl—k—J}— 1%(5) '5(5)

k—2
= e (3) . k22
25

—

<.
Il

The mean is
E{Ty) :E{TQ} +E{T1} —=5+5=10.

ALTERNATIVELY,

oo k—2
E{Tﬂ:%Zk(lﬂ—l)(%) S T
k=2

5) The mean of Ty is

B} =E{Ti}+ E{T} + E{D} + E{Ti} =4-5=20.

6) Let a = %, and assume that we at time ¢ = 0 are in state Ey. Then we are to time ¢ = 1 either in

FEs or in Ey, each of probability % This gives

1 1 1 1
E{T}:1+§E{TQ}+§E{T4 =1+510+5-20=16.
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Example 3.39 Given a Markov chain of the states F1, Es, ..., E,. We assume that
{E1, Ea, ..., E.} is a closed subset C, and that we from any other of the states Ery1, Eryo, ..., Ep,
have positive probability eventually of reaching the closed subset. Thus, the stochastic matriz looks like
S | o
P=| - + - |,
R [ Q

where S is an r X r stochastic matriz, Q is an (m —r) X (m — r)-matriz, 0 is an r X (m — r)-matriz
consisting of zeros, and R is an (m — r) X r-matriz.
(n)

1. Prove for every pair (i,7) with r +1 <, j < m that p;;

Q" — 0 for n — oo.

— 0 for n — oo, and conclude that

2. Prove that there are constants b > 0, ¢ €]0,1[, such that pE;l) < bc" for every pair (i,j) with
r+1<14, j <m and every n € N, and conclude that for every (i,j) as above, the infinite series

ZZOZO pz(-?) 18 convergent.

3. Prove that the matriz I — Q has the reciprocal matrix

N=> Q"
k=0
We define for every j € {r +1, ..., m} a random variable X; by

X; =k, if the process is in state E; in total k times.

Forie{r+1,..., m} welet E;{X,} denote the expected number of times the process is in state Ej,
if the processen at time t = 0 is in state E;.

4. Prove that
EA{Xy=>"p.
n=0
5. Prove that E; {X;} can be found as the (i, j)-th element of the matriz N = (I —Q)~!.

We denote fori € {r+1,...,m} and j € {1,2, ..., r} by b;; the probability that the process by
starting in F; reachers state IJ; before any of the states in C.

6. Prove that b;; is equal to the (i, j)-th element of the matriz B = NR.

1) For every fixed i € {r+ 1, ..., m} there exists an n;, such that the i-th row in P™ contains
elements. Then

m m
Z pz(.g7“+"i) < Z PEZ) < ay, where 0 < o; < 1,
j=r+1 J=r+1
hence
m
Z pl(z+sni) <af—0 for s — co.
Jj=r+1

We conclude that pgz) — 0 forn — ooand i, j =r+1, ..., m. This implies precisely that Q™ — 0
for n — co.
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2)

6)

It follows from 1. that
) ) _ ) ) 1 )
n-+sn; s s sng n/mng (o, n+sn; s n+sn;
Py = af = (/a)™ = (y/a)™t < = ()™
3
(with a trivial modification for a; = 0).

1
If we choose b; = — and ¢; = ~/ay, then we get the estimate
&%)

pz(-z) <b;-cp.

Then choose b = max; b; > 0 and ¢ = max; ¢; < 1, and we get the inequality

nz:;)piz Sbnz:%c": 1_C<oo.

If we put N(™) =37 Q", then
NWI-Q) =(0-QNM=1-Q™ -1  forn— oo,

hence
I-Q'=N=> Q"
k=0

Since pgz) is the probability that we are in state F; after n steps, when we start in £;, then the

expected number of times, the process is in state £, is the sum of all these probabilities, thus
N, m
E; {Xj} = Zpi,j :
n=0
The claim follows from that
(n)
Ei{X;} = Z piz
n=0

is the (7, j)-th element of the matrix

> Q'=N=1-Q.

n=0
We can only reach a state Ej, j € {1, 2, ..., r}, through the matrix R, i.e. through one of the
possibilities

Q°R, Q'R, ..., Q"R, ....

An addition of these gives precisely B = N R, where the (i, j)-th element b;; is the probability
that we end in E; € C, without (by the construction) being in any state earlier from C.
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Example 3.40 Given an irreducible Markov chain F1, Es, .

imwvariant probability vector

a=(ar,ag,...,0q),

where a; # 0 for every j.

.., E,, with the stochastic matriz P and

1. Prove that if the process to time t = 0 is in state E;, then for every j € {1, 2, ..., m}, the process

reaches eventually with probability 1 the state I;.

We define for every j an random variable T; by putting T; = n, if the process is in state E; for the
first time after the time 0 to the time n.

Denote for every i by my; the mean of T}, if the process to time t = 0 is in state Ej.

2.
3.

Prove that m;j is finite for every (i, j).

Prove by a convenient splitting of what happens in the first step,

(5) my; = Zpikmkj —piymg; +1 for every (i, j).
%

Prove that the mean of the time of return m;; is given by

1 .
miy; = —, 1=1,2,...,m.
&7}

HINT: Multiply the i-th equation of (5) by «;, and then sum over i.

This follows from the fact that the Markov chain is irreducible, so F; is transferred into E}, after

some steps.

When the Markov chain is irreducible, it follows by considering the graph that there exists a
transition diagram of M transitions, by which one comes from any FE; back to E; through all the

other states in at most M steps. Hence there exists an a €]0, 1[, such that

1
- E k _
mg; < a_lfa'
k=0

If we start in FE;, then after the first step the one on the right hand side of (5) is in state Ej of

probability p; , hence

m
Zpikmkj + 1.
k=1

However, if we end in the state E;, we count p;jm;; too much, so

mij = Zpikmkj —piymj; +1 for every (i, j).
k
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4) By using the hint and that « is invariant, we get

Zaimij = Z (Z aipik) Mij — (Z aipij) mjj + ZO&Z’

k

E QpMmpg; — 0mg; + 1.
k

The two sums are equal, hence by a rearrangement,
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Example 3.41 Given a Markov chain of the states 0, 1, 2, ..., and transition probabilities
Dijit1 = Ds Pio =¢q, 1€ Ny, pij =0  otherwise,
(where p >0, ¢ >0, p+qg=1).

Prove that the Markov chain is reqular, and find its stationary distribution.

The corresponding stochastic matrix is

)

I
LR R
oo
oo O©
oy o o
LN oo o

We have trivially the transitions
EiHEOHElHEQH"', iGN,

so we can get from any state £; to any other state £;. This shows that the Markov chain is irreducible.
From pg o = ¢ > 0 follows that d = 1, and the Markov chain is regular.

A possible stationary distribution g must fulfil the equations
oo
Jdo =4 Z gj (convergent series),
§=0

and

In = PGn—-1, n € Np.

When we divide the recursion formula by p™ > 0, we get

1 1
ﬁgnzzﬁgn—lz"':g(”
hence
9n :png07 n e N07

is the only possibility. We see by insertion that the series Z;io g; is in fact convergent and

1= "gi=g> p =90 7 =90 o
=0

Jj=0

from which we conclude that gy = ¢q. Therefore, the Markov chain has a stationary distribution, which
is given by the coordinates

gn =qp", n € Np.
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Example 3.42 A Markov chain has the countably many states E1, Es, Es, ..., and transition prob-
abilities
7 2 . .
Piji+l = i1 Pi1 = T i €N, pij =0  otherwise.

1) Prove that the Markov chain is regular.
2) Prove that there exists a stationary distribution, and then find it.

3) Assume that the process at time t = 0 is in state Fq. Let T denote the random variable, which
indicates the time of the first return to Ey. Find P{T =k}, k € N.

4) Find the mean E{T}.

5) Prove that T does not have a variance.

1) The infinite stochastic matrix is

2 1
£ 2 0 0
10 2
P = % 0 6 3
5 5
We conclude from
Ei — Ey — E3 — «+ — E, — o,

and
E, — E; for alle n,

that the Markov chain is irreducible.
Since d; = 1, the Markov chain is regular.

2) The equations of a possible invariant probability vector are

i
it1 = ——= Gi» ;i € N.
gz+l Z + 2 g 1
Then by recursion,

2

;€ N.

9 = T

Using that the sectional series is telescopic we conclude from

(1 1
- =2,
Z (t+ 1) Z (Z 1+ 1)
i=1 i=1
that the stationary distribution exists and that its coordinates are given by
1
= , € N.
=Gry
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3) It follows that

Rt 2 2 kLo 9
P{T =k} = 1— L 2
ren = (- s) s
o2k 4
(k+2)! (k+2)(k+ Dk

4) The mean is

E{T} =14
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5) Now
4

K (k+2)(k+ 1k

4
~Y E’
and the series ) % = oo is divergent, hence the variance does not exist.

Example 3.43 Given a Markov chain of the states Ev, FEs, E3, E4 and Es and with the stochastic
matric

w

Il
S cooco
o OO orw
O O Cwhorlm
O OvlIw= O
—N=0O O

1—a

where a is a constant in the interval [0, 1].

1) Find the values of a, for which the Markov chain is irreducible.
2) Find the values of a, for which the Markov chain is reqular.

3) Find for every a the invariant probability vector.

4) At time t = 0 the process is in state Ey. Let T denote the time when the process for the first time
is in state F5. Find the distribution of the random variable T

5) Find the mean and variance of T.

6) Assume that a = 0. Prove that all the matrices P™ for n > 4 are equal to the same matriz Q, and

find Q.

1) If a = 0, then Ej5 is absorbing, and the Markov chain is not irreducible.
If a €]0,1], then we get the transitions

Es — By — Ey — E3 — FE;y — FEj
proving that the Markov chain is irreducible for a €]0, 1].

2) If a €]0,1], then the diagonal element ps5 = 1 — a > 0, hence the Markov chain is regular.
On the other hand, if a = 1, then

o 2 1 o o0 o o 1 3 1
0 21 o 1 B
00 5 3 0 000 3 3
P=(oo0oo0o 3 L |, P=]21 000 %],
0000 1 1 00 0 O
a 00 0 1-a 0 3 4 00
and
5 3 1 1
2 =2 = () =
32 32 4
%floo
P4:0§giL
8%]3616
00 5 g
1
s 0 0 7 3§
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Since P* has the transitions
Es — BE1 — FEy — E3 — E; — Es,

the corresponding Markov chain is irreducible.
Furthermore, all elements of the diagonal are > 0, so the Markov chain corresponding to the matrix
P* is regular. This implies that the original Markov chain is also regular.

3) The equations of the invariant probability vector are

g1 = ags,
3
g2 = 1917
1 +2
gz = 491 392,
1 +1
g4 = 392 292,
1
g5 = §g3+94+(1—a)95,
thus
g1 = ags,
3
g2 = Zags,
1 +1 _3
gz = 4(195 2ag5—4ag5,
1 +3 5
= —Q —a = —aQa .
g4 4 gs 3 gs 3 gs

A check gives
3 5
ags =595 + g 495 = ags,
so it is OK.
Furthermore,

1+§a
] 95,

3 3 5
l=g1+g2+93+gs+95=9s a—i—Za—FZa—kga—i—l

, and thus

8
f hich g5 = ———
rom which g5 = 2 +95a

g (8a, 6a, 6a, 5a, 8).

~ 8+ 25a

4) Here a consideration of the graph is the easiest method:

3 2 1
E 5 B % E 2 B 5 Es

N N3 N\ 3

1

Es % B, 5 Es
N3
Es
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It follows that

11 1
P{T=1}=0 d P{T=2}=---=—-.
T=1}=0 and PT=2}= ;=<
To time t = 3 we get the paths
2 1 1
F, — Ey — FE3 — Fs, sandsynlighed: %55:1,
. 31 1
EF — E, — Ey — Fs, sandsynlighed: Z-§~1:Z,
. 11 1
EF — FE3 — Ey — FEs, sandsynlighed: 1.5.1257
hence
1 1 1 5
P{T=3}=-+-4+-=-.
{ } 4+4+8 8
Finally,
3 21 1
P{T=4}=----= =-
{ } 4 3 2 4
hence, summing up,
P{T*Q}*1 P{T*B}*5 P{T*él}*1
) Sy o
5) The mean is
1 5 1 25
E{T}=2-- =44 =
{r} 8—’—3 8+ 4 8
Furthermore,
1 5 1 81
EIT2V —=4.-4+9.2 4116. - = ==
{ } 8+ 8+ 4 8’
SO
81 625 648 —625 23
Vil =———=——=—.
{r 8 64 64 64
6) If a =0, then
0 2 % 0 0 00 1 % % 00001
0 0 % % 0 000 § = 00001
P=(o0oo0o0 4 s ]|, PP=[0000O0T1], P=[000O0O0°1
0 00 0 1 00 0 0 1 0 00 01
0 00 0 1 00 0 0 1 0 0 0 01

Then it is obvious that P® = P P* = P*, because the sums of the rows of P are 1. We conclude
that

P" = P*, for n > 4.
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Example 3.44 Given a Markov chain of 5 states Eq, FEo, E3, Ey and Es, and transition probabilities

pii = 1—4a, P12 =P13=P14a=D15 =0,

1
P21 = P22 =P32 =P33 =P4,3 = P44 = P54 = P55 = 57
P; =0 otherwise.

1
Here a is a constant in the interval [07 ﬂ .

1. Find the stochastic matriz P.

2. Find the values of a, for which the Markov chain is irreducible.
3. Find the values of a, for which the Markov chain is regular.

4. Find for every a the invariant probability vector.

At time t = 0 the process is in state Eo. Let Ty denote the random variable, which indicates the time,
when the process for the first time is in state F-.

5. Find P{Ty =k}, k € N, and compute the mean of Ts.

1
Then put a = 1 and assume that the process at time t = 0 is in state F1, and let T denote the time
of its first return to E;.

6. Find the mean of T.

1) The stochastic matrix is

l1—4a a a a a

- % 0 0 0

P= 0 L % 0 0
0 0 % % 0

o 00 5 %

2) If a = 0, then E; is clearly an absorbing state, so P is not irreducible for a = 0.

When 0 < a < i we notice the oblique diagonal below the main diagonal. All elements of this
diagonal are %, so we have always the flow

Es —- Ey — E3 — Ey — FEj.
Now a > 0 implies that also E; — Ej5, so we get e.g.

E1—>E5—>E44>E34>E24>E1,

proving that P is irreducible for 0 < a <

-

1
3) Ifa € }07 1}7 then P is irreducible. Since there exist positive elements in the diagonal (e.g.

1
D22 = %), it follows that P is regular for every a € }O, ﬂ
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4) The system of equations g P = g is written

(1—-4a)g1 = %92 = 01
agr = 392 = %93 ) = 92
ag + 5093 + ?94 ) = g3,
agn + 394 = 395 = 9
a g1 + 395 = s,

from which clearly

g2 = 8a g1 and g5 = 2a g1.
Then by insertion of these values,

gs = 6a g1 and gs =4ag;.

Finally,

5

1= gi=g1(1+8a+6a+4a + 2a) = (20a + 1)g1,
i=1

SO

1

&= S0u+1

(1,8a, 6a, 4a, 2a).

In particular, g = (1,0,0,0,0) for a = 0.
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5) We note that T3 is geometrically distributed, so

\F
P{Tg_k}_<§) 5 IfGN,
and we have E{Ty} = 2.

1
6) Starting at E; we reach in the first step one of the states Es, E3, F4 or Es, all of probability 1
From these states it takes in average 2, 4, 6 or 8 steps to get back to ;. Consequently

1
B{T} =1+ [ {2+4+6+8} =6.

Example 3.45 Given a Markov chain of 5 states Ey, Fr, Es, E5 and E4, and transition probabilities

2
Poa1 = P43z =1, P32 =P21=PLo = 3
_ _ 1 _a _ 1—a
P12 = P34= 3’ P23 = 3’ P24 = 3
pij = 0 otheruwise.

Here a is a constant in the interval [0, 1]

1. Find the stochastic matriz P.

2. Prove that the Markov chain is irreducible for every a € [0,1].

3. Find for a € [0, 1] the invariant probability vector.

4. Prove that the Markov chain is reqular for a € [0,1], but not for a = 1.
We assume in the following that the process at time t = 0 is in state Es.

5. Find for a =1 the probability that the process gets to the state E4 before the state Ey.
HINT: One may apply results concerning the ruin problem.

6. Find for a = 0 the probability that the process gets to state E4 before to state Ey-

7. Find for every a € [0,1] the probability that the process reaches state E4 before state Ey.

1) The stochastic matrix is

01 00 0
2 1
2040 0
P=]0 2 0 ¢ ?—a , ac|01].
2
00 2 0 3
000 1 0
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2) When a €]0,1], then we have the transitions
FEy«—— E| «— FEy «—— E3 «—— Fy,
and when a € [0, 1], then we have the transitions
Ey «— E1 +— Es «— E3,
Nod
E47

and it follows that the chain is irreducible.
One might e.g. split into the three cases

a=0: FEy+— Fy «— FEy +«— Fjs,
N ]

E47

a=1: FEy+— FEy «— Fy «+— Fjs,
)

E47

0<a<l: FEy+— Fy «— Fy <+«—— Fjs,
N ]

E47

from which one also derives the irreducibility.

3) The system of equations g P = g is written

301 ) = 9go;
g0 + 302 = g1,
301 + 393 = 92,
g g2 +g1 = g3,
S5 + 393 = g4,
thus
3
g = 5907
- S
g2 = 9 g1 — 9o —490,
3 1 3
gz = 9 g2 391 —890,
- a 3 a
g4 = g3 392— 8 1 Jo-

Recalling that

4

3 3 3 3 a a 16 —a

125 gi:90{1—§+—+—+———}290{4——}:—90»
i=0
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we conclude that

R
90716—(1’
and hence
4 3333 a 1
g = 16—CL (175717§7§_Z) —m(8,12,6,3,3—2a)

4) If a = 1, then we have a random walk {Fy, E1, Eo, F3, E4}. Tt follows from the diagram
Ey+— FEy «— Fy «— FE3 «—— Fy,

that it is only possible to get from Fy back to Ey through an even number of steps. Hence the
Markov chain is periodic of period 2, and it is not regular.
If a < 1, then it was mentioned previously that we have the diagram

EO «— El — E2 «—> E’37

N
Es.

The chain Fy — FE3 — F4 shows that pﬁ) > 0, and thus pﬁn) > 0.

The chain £y, — F3 — Ey — FE, shows that pﬁ) > (. By a composition with the first chain it

follows that pzﬁnﬂ) > 0, thus pfﬁ) >0 for n > 2.
Since P is irreducible, we conclude that P is regular.
ALTERNATIVELY we compute P”, and it is easily seen that all elements of P% are > 0, and the

claim is proved-
5) We now return to the diagram for ¢ =1, i.e.
Ey+— FE «— Eg «— E3 +— Fy,

where E» is the initial state.
This can be interpreted as a ruin problem, where we shall get to 4 before Ey.
The interpretation gives

1 2

) ) p 37 q 37

so we are in case b) with 4 _ 2, hence the probability of reaching E\ before Ej, is

_22-2t 12 4
“PTT T5TE

Thus the wanted probability (of the complementary event) is
1
b2 =1- a9 = g

ALTERNATIVELY. Let by denote the probability that we by starting in E} reaches FE4 before Ej.
When we split the investigation according to what happens after one step, we get

1 2
bk = g bk:-‘rl + g bk—l? k= 1) 27 37 and bO = O’ b4 = 1’
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thus
1 2
—bgr1—0 —br_1 =0.
3 Ukt K+ 3 Ok—1

The complete solution is

bk201~1+02~2k.

We get
kE=0: c1+ e =byg =0,
k=4: c1 4+ 16¢co = by = 1,
hence
- 1
TS
_ 1
T
and whence
: 3 1
b = ' (2’C -1), and in particular by = =5
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ALTERNATIVELY. We can reach Fy without passing Fy by either

1
go directly to Ey (in two steps), probability 9
or

be back at Fo after two steps,
2 1 2 2 1 4

PR3 3%33 0
and then go directly to Fy,
or
be back at F5 after 2 - 2 steps etc..
Summing up we get the probability
1§i4 "1 1 19 1
9 9) 9 49 5 5
n=0 1—-—
9
6) If @ = 0, then we have the diagram

Ey«— F| «— Eg «—— FEj,

which again may be interpreted as a ruin problem. The probability of reaching Ey before F, is for

1 P
N=3 k=2 _— ==
P=3 173
given by
2o 4
“@ET e T

The wanted probability (of the complementary event) is

4 3
by=1— - =2,
2 77

ALTERNATIVELY this question can also be solved by the two alternatives described in 5..

7) THE GENERAL CASE. Let ¢ denote the probability when starting in Fj to reach E4 before Ejy.
We get by the usual splitting

co = 0,
Cy = 1,

1
1 = 502,

+1—a+a

o = =—c¢ —c3,
2 3ty T3
c3 = —+=-cC
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When we insert the expressions of ¢; and c¢3 into the equations of ¢y, we get

lc —|—1_—a—|—g 1—|—gc —gc +2ac +l_ﬂ+
372773 "3 3737 979" 23 3

o2 a
2—3 97

which is reduced to

3 1
CHECK. If a = 0, then ¢o = —, cf. 6., and if « = 1, then ¢y = —, cf. 5.
ALTERNATIVELY we split according to when we last time were in state E5,

2 2
S0 +a).
3 9(+a)
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The probability of going from Fs to E4 in one or two steps is

1+1—a 1 2 3—2a
3 3 3 9 9

wl e

Example 3.46 A Markov chain of the states E1, Eo, E3 and E4 has the stochastic matrizx

Q O OO
O O Ow
(e SIS
| o= O

—_

a

where a is a constant in the interval [0, 1].

1. Find the values of a, for which the Markov chain is irreducible, and the values of a, for which it is
reqular.

2. Find for every a the invariant probability vector.

A particle moves between the states Ev, Eo, E3 and E4 of the given transition probabilities. At time
t = 0 the particle is in state E1. Let T denote the random wvariable, which indicates the time, when
the particle for the first time is in state E,.

3. Find P{T = 2}.
HiNT: Split the investigation according to whether the particle is passing through state Eo or state
Es.

4. Find P{T =n} forn=2,3, 4, ....

5. Find the mean of T.

6. Ezplain why we have in the case a = 0 that
0

P" — forn — oc.

o O OO
OO OO
[ e = T

o O O

1) If @ = 0, then Ej is absorbing, and the Markov chain is neither irreducible nor regular for a = 0.
If a €]0, 1], then we have the transitions

E, — Ey — E3 — Ey — Iy,

and the Markov chain is irreducibel.
Since ps 3 = 3> 0, it is also regular for a €]0,1].
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2) The equations of the invariant probability vector are

g1 = aga, thus g1 = a ga,

92:%91, thus go = % agu,

g =10 +30+1gs, thus g5 = g1 + g2 = 5 ¢ ga,
hence

2 2

1 3
l=g1+g2+93+92=94 (a+—a+—a+1

The invariant probability vector is

B
g_1+3a 72a27 .

3) We derive from the matrix the tree

E1 — E2 — E3

N N
Ry — Eyu

N
Es

1
where all arrows have the weight 3’ thus

+1 11
2 2 2

P{T =2} =

N
N |

>)(1 —3a)g4.

4) We have at step n = 2 only the possibilities E3 and E,. Hence

n—1
1
P{T =n} = (5) for n > 2.

5) The mean is

£ ()50 0)”

n=2 n=1
6) If a =0, then
0o+ Lo
0 (2) i 1
P = t 1.
0 0 5 5
0 0 0 1
thus
pitY =0,
1
n+1 n
5,2 ) = §pg,i) =0,
1 1
n+1 n n n
s = (o6 o2 i} = 282
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and hence pgnj) = pénj) =0, and

1
n+1 n+1 n+1 n n n
pi(%,l ) pl(%,Q ) p§’>73 )= 9 {pi(’ul) pi(’>72) pé,??} .

This shows that
p =0 forn—oo, ifi=1,23dandj=1,2,3,
and we get
(n)

D4 —1 for n — oo,

and the claim is proved.

Example 3.47 A Markov chain of the states E1, Es, E3, E4 and Es5 has the stochastic matrix

w

Il
S cooco
o oo ouwlke
o O ovlwl-
O Ol
s O O

—_
|
IS

where a is a constant in the interval [0, 1].
1. Find the values of a, for which the Markov chain is irreducible.
2. Find the values of a, for which the Markov chain is reqular.

3. Find for every a the invariant probability vector.

1
Assume in the following that a = 3"

At time t = 0 the process is in state Ey. Let T denote the random wvariable, which indicates the
time, when the particle for the first time is in state Es5, and let U denote the random variable, which
indicates the time, when the particle for the first time returns to the state E;.

4. Find P{T =k} for k=2, 3, 4, and the mean of T.
5. Find P{U = 3} and P{Y = 4}.

6. Find P{U =k} fork=5,6, ....
HiNT: Split into the cases T =2, T =3 or T = 4.

1) When a = 0, then Ej is absorbing, and the Markov chain is not irreducible.
If a €]0, 1], then we have the transitions

Ey — Ey — B3 — Ey — E5 — Ly,

and the Markov chain is irreducible for a €]0,1].
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2) If a €]0,1[, then the element of the diagonal ps5 = 1 —a > 0, and since the Markov chain is
irreducible for a €]0,1[, it is also regular for a €]0, 1].
If a =1, then

",
I
—_— oo oo
S OO OoOwie
O O Ol
O O NN
O RO O
)
o
|
O =R O O
w—oOoO O O O
W= O O ool
Wi O O klFwl—
O O Nl=kluaol—
el
w
I
O O W=
O wiFaI= O O
O—WIFDIIR O O
W] |~ = C)B|>—A
i~ O O%I»—Ekﬂ

The Markov chain corresponding to P3 has the transitions
E1 —>E5—>E4—>E3—>E2—>E1,
1
so it is irreducible. Since the element of the diagonal pﬂ =3 > 0, it is also regular. Hence the

original Markov chain is also regular for a = 1, so the Markov chain is regular for a €]0, 1].

3) The equations of the invariant probability vector are

g1 = ags, thus g1 = ags,

g2 = % g1, thus 92=§a95,

93 =391+ 3 92, thusgsZ—gzzéags),
ga=3%5g1+ 3592+ 393 thus g4 = 3 g3 = $ ags.
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Hence
1 1 3 31
l=gi+gtgstgrtg=gs(atgatgatatl)=(1+5a)gs,

and the invariant probability vector is

_ 12 (,ea3
T 12310 \P37272 %)

4) We have the tree

t=20 t=1 t=2 t=3 t=4
1 1 1
B 2 B 2 B, 2 B 5 Es
I N3 N 3 \ 3 1
1
o Es 2 B, X Es
\ 3 \ 3 /3
1

E4 — E5

When we compute P{T = 2} we have the paths

By — E3 — FEs probability: % . % = %,
F, — Ey — E5 probability: 3-1= %,
thus
1 1 1
P{T=2}=-+4+-=—.
{ } 6 + 3 2
When we compute P{T = 3} we have the paths
E, — Ey — E3 — Es, probability: % : % A= 111—2
E1 — E2 — E4 — E5, probablhty ? . ? 1= §,
E1 — E3 — E4 — E5, probability: 3°%° 1= 6
hence
1 1 1 b)
PT=3t=5+5+6 =12
When we compute P{T = 4} we shall only consider the path
L1101 1
i — Ey — F3 — By — B, probability: 3°3°3 = 2

1
5) It is only possible to reach E; via E5. Since a = ok we have

1

?

I
N | =
N |

P{U =3} P{T =2}-P{E; — By} =

111 5 1 3+5 1

222+122 24 3

P{U =4}
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6) When k > 5, we shall find how much “mass”, which is collected in total in E5 at ¢t = 4. This mass
of probability is

1 1 5 1 10 5

P T:2 . = — = .
{ } 8§ 24 12 24 12

N =
N |

In every one of the following steps, half of it remains in E5, and the other half is transferred to
FE1, so

5 1 k—4

/
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Example 3.48 A Markov chain of 2 states F1 and Es has the stochastic matrixz

ol w ot =
Tl N Ot

1. Prove that Q is reqular, and find the invariant probability vector.

Another Markov chain of 4 states E1, Es, E3 and E4 has the stochastic matrix

",

Il
O ol =
U= O Ot Ut
gy O O

gy O O

2. Prove that P is not irreducible, and find its closed subsets.
3. Prove for every initial distribution

p¥ = (p§0),p§0),p§0)7p§0))

that

n A (e e
p§)+p§)=5{p§ 1)+pfl 1)}7 neN,

and then prove that

lim pgn) = lim pfln) = 0.

n—oo

4. Show that lim,_.. p\"™ exists and find the limit vector.

5. At time t = 0 the process is in state E3. Find for every n € N the probability that the process for
t = n for the first time is in state Fy without previously having been in state Es.

1) All elements of Q are > 0, so the Markov chain is regular. The equations of the invariant probability
vector are

91:%91+%92, thusQQZ%glv

1:91+g2:(1+%)91:%917

SO

(34
E=\77)"

2) Clearly, {E1, E2} is a closed subset, and there is no other proper closed subset. However, since
there exists a proper closed subset, the Markov chain is not irreducible.
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3) It follows immediately that

n 2 n—1 2 n—1
W= 2y 2
and
n 2 n—1 2 n—1 n
W0 = 200 2y =l
hence
n n 4 n— n—
p§)+p§):5{p§ Y ps ”}, neN.

Then by iteration,

n n 4 "
p:(),)‘f'pz(;):(g) {pg(»,o)+p§0)}—>0 for n — oo,

SO

0= tim {p{" +p{"

n—oo

} =2 lim pgn) =2 lim pfln).

4) Tt follows from 3. that the latter two coordinates tend towards 0 for n — oo. The former two
coordinates are governed by the matrix Q, so we conclude from 1. that

3 4
; n) — (2 =
nlgréop (7,7,0,0).

1 1 1
5) The two states F3 and E, occur in every step of the same weight, thus = - — = — of the total

2 5 10
1 1 1
weight goes to Fq, and 2 5= 10 of the total weight goes to Fs. Then we have the diagram
Es
5/ /
4 4
Es 1L> {E3, B4} 1i> {E3,Es}  —,
5 0\ N
E; Eq
hence
1 4 1 14\
P{T=1}=-, P{T=2}=-.—, ..., P{T=n}=— (-
(T=0=F PT=2=% 5 - PT=0}=3(3)

which can also be written

2n—3 n
P{T:n}:25n %(g) for n > 2,

together with

1
P{Tzl}:g forn =1.
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Example 3.49 A Markov chain of the states E1, Es, E3, E4 and Es has the stochastic matrix

)

I
QOO OO
O O O OoOwl
O O O ~wi
O OO O

== O Wl

—
\
S|

where a is a constant in the interval [0, 1].

1. Find the values of a, for which the Markov chain is irreducible.
2. Find the values of a, for which the Markov chain is reqular.

3. Find for every a the invariant probability vector.

The process is at time t = 0 in the state E1. Let T denote the random wvariable, which indicates the
time when the process for the first time is in state Ej.

4. Find P{T =k} for k=1, 2, 8, 4, and then the mean of T.

Assume that a > 0 and that the process at time t = 0 is in state Fy. Let U denote the random variable,
which indicates the time when the process for the first time returns to E.

5. Find the mean of U.

1) If a = 0, then Ej is absorbing, and the Markov chain is not irreducible.
If a €]0, 1], then we have the transitions

Es — Ey — Ey — B3 — Ey — Es,
and the Markov chain is irreducible for ¢ €]0,1].

2) We have proved for a €]0,1[ that the Markov chain is irreducible, and since the element of the
diagonal ps 5 = 1 — a > 0, we conclude that the Markov chain is regular for every a €10, 1].
If @ = 1, and we let x denote elements > 0, then

0 ~ x 0 =% 0 x = 0 « * 0 * * %
00 x 0 0 0 0 x 0 O 0 0 0 %= =«
P2=| 00 0  «|[=]000 % % |=]%000 %
00 0 0 = 0 0 0 0 % * 0 0 0 O
* 0 0 0 O * 0 0 0 0 0 ~ « 0 =%

The Markov chain corresponding to P? has the transitions
Ey — FE3 — Es — Ey — Ey — Ey,

from which follows that it is irreducible. Furthermore, P2 has elements in its diagonal which are
> 0, hence it is also regular. This implies again that the original Markov chain is regular for
a €]0,1].
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3) The equations of the invariant probability vector are

g1 = ags, thus g1 = ags,

1 1
g2:§g1, thus 92:§ag5
1 2
g3 = 5 g1+ g2, thus g3 = ~ ags,
3 3

_ 1 th _ 1
g4 = 293, us g4 = 30957

where the latter equation is used as a check:

1

1
gs=§gl+593+g4+(1—a)gs.

We have furthermore the condition

1 2 1 7
l=g1+92+93+92+95=95 (a+—a+—a+—a+1) = g5 (ga—i-l),

3 3 3
hence —L and
g5_7a+37
1 30.0,200.3)
g_7a+3 aaa7 a7a7 .

g
1 /
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4) If to t = 0 we start in E4, then we have the tree

3 1
E1 i> EQ —
I 3

1
jop By >

From this we infer that

PIT=1} = &

P{T=2) = %%:
P{T=3) = %-%-1
PT =4} — %1%

The mean of T is

1 1 1 1 1 2
E{T}=1-2+42-2+3 - =+44-—=-4-+1+-=~—.
{7} gtegto gt g=grgtis

5) We first notice that we can

1
E3 i E4 — E5
N3
E, 5 Es
E;
t=2 t=3 t=4
1
6’
11 1
Z.1.- ==
tylg Ty
1
==

1
3 3

only reach E; via Ej.

If the process is in Ej5, then we have the probability a of in the next step to be in E1, and probability

1 — a of to remain in Fs5. This gives a geometric distribution Pas(1,a) of mean —. Then finally,
a

E{U} = B{T} + % =

Wl

SHN

+
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Example 3.50 A Markov chain of states E1, Es, E3 and E4 has the stochastic matrix

O O O
QOO
O OwnI= O

where a is a constant in the interval [0, 1].

1. Find the values of a, for which the Markov chain is irreducible.

2. Find the values of a, for which the Markov chain is reqular.

3. Find for every a the invariant probability vector.

At t =0 the process is in state E5. Let T denote the random variable, which indicates the time, when

the process for the first time is in state Ej.
4. Find the probabilities P{T = 1} and P{T = 2}.
5. Prove that for every k € Ny,
P{T =2k + 1} = P{T = 2k + 2},
and find these probabilities.

6. Find the mean of the random variable T.

1) By analyzing the stochastic matrix we obtain the diagram

E1 — E2 — E3 — E4 Ol—a

| la
E4 E2

If @ = 0, then the Markov chain is absorbing with F, as absorbing state.

If a > 0, then clearly the Markov chain is irreducible.

2) The Markov chain is not irreducible, and therefore not regular either for a = 0.

If a > 0, then pg? >0 and pg?;) > 0, and the Markov chain is regular.
ALTERNATIVELY one may prove that all elements of P® are > 0.

ALTERNATIVELY we have for 0 < a < 1 that pyy > 0, and we shall only investigate the case a = 1

separately.

3) Ligningerne g P = g for sandsynlighedsvektoren skrives

1
392 =91, thus g2 = 2¢g1,

g1+ ags=ga, thus a ga = g1,

1
- 92 = g3,
4
1
g3 = 5917

1
1924-934‘(1—@)94:94-
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If a =0, then g; = 0, hence

g = (07 O’ 0’ 1)'

1
If a # 0, then g4 = — g1, hence
a

4
1 1 Ta+ 2
1= g=g{1+2+-+-}= ,
;g gl{ + +2+a} T

from which

- 2a
91*701_’_23
and
= ——(2a,4 2).
g 7a+2(a7 a7a7 )

4) The event {T = 1} can only occur by the transition EFy — Fy, so

1
PIT =1} = 1.
The event {1 = 2} can only occur by the process
Ey — E3 — Ey,
thus

P{T =2} = i.

5) We can only obtain E4 to time 2k + 1 by repeating Fy — E; — F» in total k times, follows by
Eg i E4.
Analogously for 2k 4 2, with the modicication that we at last replace Fo — FEy4 by Fy — E3 —
E,. Tt follows (cf. 4.) that

k
P{T2k+1}i~<%> _P{T=2k+2}), keN.

When we compare with 4., we see that this is also true for k = 0.
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6) Using the results of 5. it follows by straightforward computations that

E{T} = i P{T,} = Z (2k + 1)P{T = 2k + 1} + (2k + 2)P{T = 2k +2})
n=1 k=0
- G () Eiwea )
Rl OReC O 0]
) l%%i_%—%-h[%(l S
1
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Example 3.51 A Markov chain of states E1, Es, E3, E4 and Es5 has the stochastic matrix

a 0 0 0 1-a
1 000 O
P=| 31 200 0 |,
0010 0
0+ 04 0

where a is a constant in the interval [0,1].

1. Find the values of a, for which the Markov chain is irreducible.
2. Find the values of a, for which the Markov chain is reqular.

3. Find for every a the invariant probability vector.

At time t = 0 the process is in state E5. Let T denote the random variable, which indicates the time,
when the process for the first time is in state F

4. Find P{T =k} for k =2, 3, 4, and then the mean and variance of T.

Then assume that a < 1, and that the process att = 0 is in state EJ.
Let U denote the random variable, which indicates the time when the process for the first time returns
to E5.

5. Find the mean of U.

1) If @ = 1, then F; is absorbing, and the Markov chain is not irreducible.
If a € [0,1], then we have the transitions

E1—>E5—>E4—>E3—>E2—>E1,
and the Markov chain is irreducible for a € [0, 1.

2) If a € [0,1], then e.g.

E1—>E5—>E4—>E3—>E2—>E1, 5St€pS,
and
E]_ — E5 I E4 — E3 I El, 4 steps.

The largest common divisor for 4 and 5 is 1, so the Markov chain is regular.

ALTERNATIVELY, let x denote that p;, ; > 0, and let A denote that a is a factor (so A = 0 for
a =0, and A =« for a €]0,1[). Then successively,

A 0 0 0 «x A x 0 « A
* 0 0 0 0 A 0 0 0 «
P=] x » 0 0 0 [, P2=| «» 0 0 0 % [,
0 0 ~ 0 O * « 0 0 0
0 0 O * 0 x 0 O
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Pt = P8 =

N
* ook ks
O O o
* ook ok o
R NN
* ook ok oF
* ook ok ok
* ok ok o
* ook ok b
* ook ok ok

*
and we see that all elements of e.g. P'6 are > 0, so the Markov chain is regular for a € [0,1].

3) The equations of the invariant probability vector are

1
p1 = api +p2+§1037
!
P2 = 5Pt ops,
b3 = D4,
1
Ps = 5195,
ps = (1—a)p.

Then we get, expressed by p1,

ps = (1—a)p,
1 1
p3 = p4:§p5:§(1—a)p1,
1 1 3
p2 = §P3+§P521(1_G)P1~
thus
3 1 1 11
l=p1+p2+p3+ps+ps=p1+ 1+§+§+1 (1—a)pr=p 1+z(1*a) ;
hence
B 4 31 —a) 21 —a) _ 4(1—a)
=1 PP -1 PTPT o0 PP o1

and the invariant probability vector is

1

= =11 43(1-0),2(1 — ), 2(1 - a), 4(1 - 0)).

p

4) We have here the tree

1

E5 i) E2 L> E1 E2 — El,
1 \, 1
2 2
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from which we conclude that

1 1
1 1 1
1 1

Notice that the sum is 1, so there is no other possibility.
The mean is

E{T}=2-

N =

It follows from
1 1 1
E{T?}=4--+9 - - +16-—=—
2 4
that the variance is

4

33 11\? 132-121 11
Vi{Ty =22 — e
{3 4 ( ) 16 16
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5) We can only reach Ej5 via Fj, and since
P{E, —>E5iksteps}:P{E1 LI AN RN IR ) 1;“>E5} — 11— a),

we get
o~ b1 11
E{U} = E{T}+) ka (l-a)=—F+0-0a) 7
k=1
11 1 15-1la 1

I 41—a)  ps

Example 3.52 Given a Markov chain of 5 states Ev, Es, Es, E4 and E5 and transition probabilities

2 1

P11 = P22 = P33 = §7 P12 = P23 = 57
_a _ 1—a _ _q
P34 = 3’ P35 = 3 Pas =pPs51 = L,

and p; j = 0 oherwise.
Here a is a constant in the interval [0, 1].

1. Find the stochastic matriz P.

2. Find the values of a, for which the Markov chain is irreducible.
3. Find the values of a, for which the Markov chain is regular.

4. Find for every a the invariant probability vector.

We assume that the process at time t = 0 is in state Ey. Let T denote the random variable, which
indicates the time, when the process for the first time is in state Es.

5. Find the probabilities P{T =k}, k € N, and then the mean E{T}.

Then assume instead that the process at time t = 0 is in state Fz. Let U denote the random variable,
which indicates the time, when the process for the first time is in state Es.

6. Find the mean E{U}.

1) If a € [0, 1], then

)

Il
— O O oOwliv
O O Owhwl-
O Owhhwl= O
O Owe © O

=

| © O

S}

o Hw‘

2) We shall consider three cases:

(@) a=0, b) a=1, (¢) 0<a<l
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a) If a =0, then we get the matrix

2 L o o0 0
8 31 0 0

33 1
P=[00 5 0 %
00 0 0 1

1 0 0 00

We notice that the fourth column is the zero column, so we can never get to F4 from any FE;,
hence the Markov chain is not irreducible for a = 0.

b) If a = 1, then we get the matrix

)

Il
— O O oOwiv
O O Owlhw|=
O Owhhwl= O
O ow O O
o= O OO

Then we have in particular the diagram
E1—>E2—>E3—>E4—>E5—>E1,

and the Markov chain is irreducible for a = 1.

¢) If 0 < a < 1, then we have in particular the diagram
E, — FEy — E3 — E; — E5 — Ey,
and the Markov chain is irreducible for 0 < a < 1.

Summing up, the Markov chain is irreducible for 0 < a < 1.

2
3) Since the Markov chain is irreducible for 0 < a < 1, and py; = 3 > 0, it follows that the Markov

chain is also regular for 0 < a < 1.
4) The equation of the invariant probability vector g is
gP =g,

which we expand as

P1=3p1+0ps, p1 = 3ps,

p2=§p1+2p2, D2 = P1,

p3 = 3p2+ 5 D3, thus P3 = P2,

p4=%p3, Pa = 5 D3,

s = <3 p3 + pa, pPs = —3°p3+pa
When p1, ..., ps are expressed by ps, then

a
P1 = p2 = p3 = 3ps and  py= 3 Ps = aps,

thus

g=D5 (373737(1’ 1)
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where we have the condition

l=pi+p2+p3s+ps+ps=ps3+3+3+a+1)=(10+a)ps,

SO
1
b5 = 0+a’
and
g = L (3,3,3,a,1).
104+ a

5) We start for ¢ = 0 at Ey, corresponding to the diagram

2 2 2 2
IO = B =  E = B - B —

It follows that

1 /9\ k1
P{T=k}=-|<= keN
w-n-3(3) . ,

. . o 1 1

thus T' is geometrically distributed, T' € Pas (1, §>, =3

The mean is

1
E{T}=-=3.
p
ALTERNATIVELY,

E{T}:IikP{T:k}: %§k<§)kl :%ﬁ —3
3

6) Here we get the diagram

Es £y — Es Ey, —
5/ 5/ = 3/ /
B - By % B, 5 By s By —
N3 \ B § 5 \
E, % E; E, % E;

A simple counting gives

1—
P{U=1} = 3“,
B g 1—a+g 1_2—2a+g_2—|—a
3 3 379 39
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Now P{U = 3} is obtained by the paths

l—a

2 2 1a
E3 — E3 — E3 —> Ej,

probability
Es i FEs i Ey SN Es, probability
SO
pU—3y=2.210_ (2>1~P{U:2}.
3 9 3

Then repeat the pattern

P{U=4} = P{F; — B3} -P{U=3} = (;) P{U =2},

and in general

P{U=k}= G)“ P{U =2} =

2+a (2

9 3

The mean is

1—a 1+2+a
3 9

E{U} = ikP{U:k}:
k=1

k—1
l—a 2+4a 2
= kE+1)( =
3 + 9 Z( + )<3)

k=1

e} k—1
l1—-a 2+4a 2 2+a
- T3 Ty Z(§> Ty

k=1

“
k=1

1

1—a+2+a 1 +2+a
3 9 1 2 9 (
-3 1

B 1—a+2+a
3 3

+(2+a)=3+a.

2

k—2
—> for k > 2.
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Markov process, 5

outcome, 5

periodic Markov chain, 14
probability of state, 11
probability vector, 11

random walk, 5, 14, 15

random walk of reflecting barriers, 14

random walk with absorbing barriers, 14

regular Markov chain, 12, 18-23, 36, 39, 43, 47,
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regular stochastic matrix, 26, 30, 120

ruin problem, 7

sample function, 4
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