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Introduction

Introduction

This is the fourth book of examples from the Theory of Probability. This topic is not my favourite,
however, thanks to my former colleague, Ole Jørsboe, I somehow managed to get an idea of what it is
all about. The way I have treated the topic will often diverge from the more professional treatment.
On the other hand, it will probably also be closer to the way of thinking which is more common among
many readers, because I also had to start from scratch.

The topic itself, Random Variables, is so big that I have felt it necessary to divide it into three books,
of which this is the third one.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series, so I shall refer the
reader to these books, concerning e.g. plane integrals.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
26th October 2009
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1. Some theoretical results

1 Some theoretical results

The abstract (and precise) definition of a random variable X is that X is a real function on Ω, where
the triple (Ω,F , P ) is a probability field, such that

{ω ∈ Ω | X(ω) ≤ x} ∈ F for every x ∈ R.

This definition leads to the concept of a distribution function for the random variable X, which is the
function F : R → R, which is defined by

F (x) = P{X ≤ x} (= P{ω ∈ Ω | X(ω) ≤ x}),

where the latter expression is the mathematically precise definition which, however, for obvious reasons
everywhere in the following will be replaced by the former expression.

A distribution function for a random variable X has the following properties:

0 ≤ F (x) ≤ 1 for every x ∈ R.

The function F is weakly increasing, i.e. F (x) ≤ F (y) for x ≤ y.

limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1.

The function F is continuous from the right, i.e. limh→0+ F (x + h) = F (x) for every x ∈ R.

One may in some cases be interested in giving a crude description of the behaviour of the distribution
function. We define a median of a random variable X with the distribution function F (x) as a real
number a = (X) ∈ R, for which

P{X ≤ a} ≥ 1
2

and P{X ≥ a} ≥ 1
2
.

Expressed by means of the distribution function it follows that a ∈ R is a median, if

F (a) ≥ 1
2

and F (a−) = lim
h→0−

F (x + h) ≤ 1
2
.

In general we define a p-quantile, p ∈ ]0, 1[, of the random variable as a number ap ∈ R, for which

P {X ≤ ap} ≥ p and P {X ≥ ap} ≥ 1 − p,

which can also be expressed by

F (ap) ≥ p and F (ap−) ≤ p.

If the random variable X only has a finite or a countable number of values, x1, x2, . . . , we call it
discrete, and we say that X has a discrete distribution.

A very special case occurs when X only has one value. In this case we say that X is causally distributed,
or that X is constant.
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1. Some theoretical results

The random variable X is called continuous, if its distribution function F (x) can be written as an
integral of the form

F (x) =
∫ x

−∞
f(u) du, x ∈ R,

where f is a nonnegative integrable function. In this case we also say that X has a continuous
distribution, and the integrand f : R → R is called a frequency of the random variable X.

Let again (Ω,F , P ) be a given probability field. Let us consider two random variables X and Y , which
are both defined on Ω. We may consider the pair (X,Y ) as a 2-dimensional random variable, which
implies that we then shall make precise the extensions of the previous concepts for a single random
variable.

We say that the simultaneous distribution, or just the distribution, of (X,Y ) is known, if we know

P{(X,Y ) ∈ A} for every Borel set A ⊆ R
2.

When the simultaneous distribution of (X,Y ) is known, we define the marginal distributions of X
and Y by

PX(B) = P{X ∈ B} := P{(X,Y ) ∈ B × R}, where B ⊆ R is a Borel set,

PY (B) = P{Y ∈ B} := P{(X,Y ) ∈ R × B}, where B ⊆ R is a Borel set.

Notice that we can always find the marginal distributions from the simultaneous distribution, while it
is far from always possible to find the simultaneous distribution from the marginal distributions. We
now introduce
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1. Some theoretical results

The simultaneous distribution function of the 2-dimensional random variable (X,Y ) is defined as the
function F : R

2 → R, given by

F (x, y) := P{X ≤ x ∧ Y ≤ y}.
We have

• If (x, y) ∈ R
2, then 0 ≤ F (x, y) ≤ 1.

• If x ∈ R is kept fixed, then F (x, y) is a weakly increasing function in y, which is continuous from
the right and which satisfies the condition limy→−∞ F (x, y) = 0.

• If y ∈ R is kept fixed, then F (x, y) is a weakly increasing function in x, which is continuous from
the right and which satisfies the condition limx→−∞ F (x, y) = 0.

• When both x and y tend towards infinity, then

lim
x, y→+∞F (x, y) = 1.

• If x1, x2, y1, y2 ∈ R satisfy x1 ≤ x2 and y1 ≤ y2, then

F (x2, y2) − F (x1, y2) − F (x2, y1) + F (x1, y2) ≥ 0.

Given the simultaneous distribution function F (x, y) of (X,Y ) we can find the distribution functions
of X and Y by the formulæ

FX(x) = F (x,+∞) = lim
y→+∞F (x, y), for x ∈ R,

Fy(x) = F (+∞, y) = lim
x→+∞F (x, y), for y ∈ R.

The 2-dimensional random variable (X,Y ) is called discrete, or that it has a discrete distribution, if
both X and Y are discrete.

The 2-dimensional random variable (X,Y ) is called continuous, or we say that it has a continuous
distribution, if there exists a nonnegative integrable function (a frequency) f : R

2 → R, such that the
distribution function F (x, y) can be written in the form

F (x, y) =
∫ x

−∞

{∫ y

−∞
f(t, u) du

}
dt, for (x, y) ∈ R

2.

In this case we can find the function f(x, y) at the differentiability points of F (x, y) by the formula

f(x, y) =
∂2F (x, y)

∂x∂y
.

It should now be obvious why one should know something about the theory of integration in more
variables, cf. e.g. the Ventus: Calculus 2 series.

We note that if f(x, y) is a frequency of the continuous 2-dimensional random variable (X,Y ), then X
and Y are both continuous 1-dimensional random variables, and we get their (marginal) frequencies
by

fX(x) =
∫ +∞

−∞
f(x, y) dy, for x ∈ R,
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and

fY (y) =
∫ +∞

−∞
f(x, y) dx, for y ∈ R.

It was mentioned above that one far from always can find the simultaneous distribution function from
the marginal distribution function. It is, however, possible in the case when the two random variables
X and Y are independent.

Let the two random variables X and Y be defined on the same probability field (Ω,F , P ). We say
that X and Y are independent, if for all pairs of Borel sets A, B ⊆ R,

P{X ∈ A ∧ Y ∈ B} = P{X ∈ A} · P{Y ∈ B},

which can also be put in the simpler form

F (x, y) = FX(x) · FY (y) for every (x, y) ∈ R
2.

If X and Y are not independent, then we of course say that they are dependent.

In two special cases we can obtain more information of independent random variables:

If the 2-dimensional random variable (X,Y ) is discrete, then X and Y are independent, if

hij = fi · gj for every i and j.

Here, fi denotes the probabilities of X, and gj the probabilities of Y .

If the 2-dimensional random variable (X,Y ) is continuous, then X and Y are independent, if their
frequencies satisfy

f(x, y) = fX(x) · fY (y) almost everywhere.

The concept “almost everywhere” is rarely given a precise definition in books on applied mathematics.
Roughly speaking it means that the relation above holds outside a set in R

2 of area zero, a so-called
null set. The common examples of null sets are either finite or countable sets. There exists, however,
also non-countable null sets. Simple examples are graphs of any (piecewise) C1-curve.

Concerning maps of random variables we have the following very important results,

Theorem 1.1 Let X and Y be independent random variables. Let ϕ : R → R and ψ : R → R be
given functions. Then ϕ(X) and ψ(Y ) are again independent random variables.

If X is a continuous random variable of the frequency I, then we have the following important theorem,
where it should be pointed out that one always shall check all assumptions in order to be able to
conclude that the result holds:
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Theorem 1.2 Given a continuous random variable X of frequency f .

1) Let I be an open interval, such that P{X ∈ I} = 1.

2) Let τ : I → J be a bijective map of I onto an open interval J .

3) Furthermore, assume that τ is differentiable with a continuous derivative τ ′, which satisfies

τ ′(x) 	= 0 for alle x ∈ I.

Under the assumptions above Y := τ(X) is also a continuous random variable, and its frequency g(y)
is given by

g(y) =

⎧⎪⎨
⎪⎩

f
(
τ−1(y)

) · ∣∣∣(τ−1
)′ (y)

∣∣∣ , for y ∈ J,

0, otherwise.

We note that if just one of the assumptions above is not fulfilled, then we shall instead find the
distribution function G(y) of Y := τ(X) by the general formula

G(y) = P{τ(X) ∈ ] −∞ , y]} = P
{
X ∈ τ◦−1(] −∞ , y])

}
,

where τ◦−1 = τ−1 denotes the inverse set map.

Note also that if the assumptions of the theorem are all satisfied, then τ is necessarily monotone.

At a first glance it may be strange that we at this early stage introduce 2-dimensional random variables.
The reason is that by applying the simultaneous distribution for (X,Y ) it is fairly easy to define the
elementary operations of calculus between X and Y . Thus we have the following general result for a
continuous 2-dimensional random variable.

Theorem 1.3 Let (X,Y ) be a continuous random variable of the frequency h(x, y).

The frequency of the sum X + Y is k1(z) =
∫ +∞
−∞ h(x, z − x) dx.

The frequency of the difference X − Y is k2(z) =
∫ +∞
−∞ h(x, x − z) dx.

The frequency of the product X · Y is k3(z) =
∫ +∞
−∞ h

(
x ,

z

x

)
· 1
|x| dx.

The frequency of the quotient X/Y is k4(z) =
∫ +∞
−∞ h(zx , x) · |x| dx.

Notice that one must be very careful by computing the product and the quotient, because the corre-
sponding integrals are improper.

If we furthermore assume that X and Y are independent, and f(x) is a frequency of X, and g(y) is a
frequency of Y , then we get an even better result:
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Theorem 1.4 Let X and Y be continuous and independent random variables with the frequencies
f(x) and g(y), resp..

The frequency of the sum X + Y is k1(z) =
∫ +∞
−∞ f(x)g(z − x) dx.

The frequency of the difference X − Y is k2(z) =
∫ +∞
−∞ f(x)g(x − z) dx.

The frequency of the product X · Y is k3(z) =
∫ +∞
−∞ f(x) g

( z

x

)
· 1
|x| dx.

The frequency of the quotient X/Y is k4 =
∫ +∞
−∞ f(zx)g(x) · |x| dx.

Let X and Y be independent random variables with the distribution functions FX and FY , resp.. We
introduce two random variables by

U := max{X,Y } and V := min{X,Y },

the distribution functions of which are denoted by FU and FV , resp.. Then these are given by

FU (u) = FX(u) · FY (u) for u ∈ R,

and

FV (v) = 1 − (1 − FX(v)) · (1 − FY (v)) for v ∈ R.

These formulæ are general, provided only that X and Y are independent.
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If X and Y are continuous and independent, then the frequencies of U and V are given by

fU (u) = FX(u) · fY (u) + fX(u) · FY (u), for u ∈ R,

and

fV (v) = (1 − FX(v)) · fY (v) + fX(v) · (1 − Fy(v)) , for v ∈ R,

where we note that we shall apply both the frequencies and the distribution functions of X and Y .

The results above can also be extended to bijective maps ϕ = (ϕ1 , ϕ2) : R
2 → R

2, or subsets of R
2.

We shall need the Jacobian of ϕ, introduced in e.g. the Ventus: Calculus 2 series.

It is important here to define the notation and the variables in the most convenient way. We start
by assuming that D is an open domain in the (x1 x2) plane, and that D̃ is an open domain in the
(y1 , y2) plane. Then let ϕ = (ϕ1 , ϕ2) be a bijective map of D̃ onto D with the inverse τ = ϕ−1, i.e.
the opposite of what one probably would expect:

ϕ = (ϕ1 , ϕ2) : D̃ → D, with (x1 , x2) = ϕ (y1 , y2) .

The corresponding Jacobian is defined by

Jϕ =
∂ (x1 , x2)
∂ (y1 , y2)

=

∣∣∣∣∣∣∣∣∣

∂ϕ1

∂y1

∂ϕ2

∂y1

∂ϕ1

∂y1

∂ϕ2

∂y2

∣∣∣∣∣∣∣∣∣
,

where the independent variables (y1 , y2) are in the “denominators”. Then recall the Theorem of
transform of plane integrals, cf. e.g. the Ventus: Calculus 2 series: If h : D → R is an integrable
function, where D ⊆ R

2 is given as above, then for every (measurable) subset A ⊆ D,∫
A

h (x1 , x2) dx1dx2 =
∫

ϕ−1(A)

h (x1 , x2) ·
∣∣∣∣∂ (x1 , x2)
∂ (y1 , y2)

∣∣∣∣ dy1dy2.

Of course, this formula is not mathematically correct; but it shows intuitively what is going on:
Roughly speaking we “delete the y-s”. The correct mathematical formula is of course the well-known∫

A

h (x1 , x2) dx1dx2 =
∫

ϕ−1(A)

(ϕ1 (y1 , y2) , ϕ2 (y1 , y2)) ·
∣∣∣Jϕ (y1 , y2)

∣∣∣ dy1dy2,

although experience shows that it in practice is more confusing then helping the reader.
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Theorem 1.5 Let (X1,X2) be a continuous 2-dimensional random variable with the frequency h (x1 , x2).
Let D ⊆ R

2 be an open domain, such that

P {(X1 , X2) ∈ D} = 1.

Let τ : D → D̃ be a bijective map of D onto another open domain D̃, and let ϕ = (ϕ1 , ϕ2) =
τ−1, where we assume that ϕ1 and ϕ2 have continuous partial derivatives and that the corresponding
Jacobian is different from 0 in all of D̃.
Then the 2-dimensional random variable

(Y1 , Y2) = τ (X1 , X2) = (τ1 (X1 , X2) , τ2 (X1 , X2))

has the frequency k (y1 , y2), given by

k (y1 , y2) =

⎧⎪⎪⎨
⎪⎪⎩

h (ϕ1 (y1 , y2) , ϕ2 (y1 , y2)) ·
∣∣∣∣∂ (x1 , x2)
∂ (y1 , y2)

∣∣∣∣ , for (y1 , y2) ∈ D̃,

0, otherwise

We have previously introduced the concept conditional probability. We shall now introduce a similar
concept, namely the conditional distribution.

If X and Y are discrete, we define the conditional distribution of X for given Y = yj by

P {X = xi | Y = yj} =
P {X = xi ∧ Y = yj}

P {Y = yj} =
hij

gj
.

It follows that for fixed j we have that P {X = xi | Y = yj} indeed is a distribution. We note in
particular that we have the law of the total probability

P {X = xi} =
∑

j

P {X = xi | Y = yj} · P {Y = yj} .

Analogously we define for two continuous random variables X and Y the conditional distribution
function of X for given Y = y by

P{X ≤ x | Y = y} =

∫ x

−∞ f(u, y) du

fY (y)
, forudsat, at fY (y) > 0.

Note that the conditional distribution function is not defined at points in which fY (y) = 0.

The corresponding frequency is

f(x | y) =
f(x, y)
fY (y)

, provided that fY (y) = 0.

We shall use the convention that “0 times undefined = 0”. Then we get the Law of total probability,∫ +∞

−∞
f(x | y) · fY (y) dy =

∫ +∞

−∞
f(x, y) dy = fX(x).

We now introduce the mean, or expectation of a random variable, provided that it exists.
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1) Let X be a discrete random variable with the possible values {xi} and the corresponding proba-
bilities pi = P {X = xi}. The mean, or expectation, of X is defined by

E{X} :=
∑

i

xi pi,

provided that the series is absolutely convergent. If this is not the case, the mean does not exists.

2) Let X be a continuous random variable with the frequency f(x). We define the mean, or expectation
of X by

E{X} =
∫ +∞

−∞
x f(x) dx,

provided that the integral is absolutely convergent. If this is not the case, the mean does not exist.

If the random variable X only has nonnegative values, i.e. the image of X is contained in [0,+∞[,
and the mean exists, then the mean is given by

E{X} =
∫ +∞

0

P{X ≥ x} dx.

Concerning maps of random variables, means are transformed according to the theorem below, pro-
vided that the given expressions are absolutely convergent.

Theorem 1.6 Let the random variable Y = ϕ(X) be a function of X.

1) If X is a discrete random variable with the possible values {xi} of corresponding probabilities
pi = P{X = xi}, then the mean of Y = ϕ(X) is given by

E{ϕ(X)} =
∑

i

ϕ (xi) pi,

provided that the series is absolutely convergent.

2) If X is a continuous random variable with the frequency f(x), then the mean of Y = ϕ(X) is
given by

E{ϕ(X)} =
∫ +∞

−∞
ϕ(x) g(x) dx,

provided that the integral is absolutely convergent.

Assume that X is a random variable of mean μ. We add the following concepts, where k ∈ N:

The k-th moment, E
{
Xk

}
.

The k-th absolute moment, E
{|X|k} .

The k-th central moment, E
{
(X − μ)k

}
.

The k-th absolute central moment, E
{|X − μ|k} .

The variance, i.e. the second central moment, V {X} = E
{
(X − μ)2

}
,
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provided that the defining series or integrals are absolutely convergent. In particular, the variance is
very important. We mention

Theorem 1.7 Let X be a random variable of mean E{X} = μ and variance V {X}. Then

E
{
(X − c)2

}
= V {X} + (μ − c)2 for every c ∈ R,

V {X} = E
{
X2

}− (E{X})2 for c = 0,

E{aX + b} = aE{X} + b for every a, b ∈ R,

V {aX + b} = a2V {X} for every a, b ∈ R.

It is not always an easy task to compute the distribution function of a random variable. We have the
following result which gives an estimate of the probability that a random variable X differs more than
some given a > 0 from the mean E{X}.

Theorem 1.8 (Čebyšev’s inequality). If the random variable X has the mean μ and the variance
σ2, then we have for every a > 0,

P{|X − μ| ≥ a} ≤ σ2

a2
.

If we here put a = kσ, we get the equivalent statement

P{μ − kσ < X < μ + kσ} ≥ 1 − 1
k2

.
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These concepts are then generalized to 2-dimensional random variables. Thus,

Theorem 1.9 Let Z = ϕ(X,Y ) be a function of the 2-dimensional random variable (X,Y ).

1) If (X,Y ) is discrete, then the mean of Z = ϕ(X,Y ) is given by

E{ϕ(X,Y )} =
∑
i, j

ϕ (xi , yj) · P {X = xi ∧ Y = yj} ,

provided that the series is absolutely convergent.

2) If (X,Y ) is continuous, then the mean of Z = ϕ(X,Y ) is given by

E{ϕ(X,Y )} =
∫

R2
ϕ(x, y) f(x, y) dxdy,

provided that the integral is absolutely convergent.

It is easily proved that if (X,Y ) is a 2-dimensional random variable, and ϕ(x, y) = ϕ1(x) + ϕ2(y),
then

E {ϕ1(X) + ϕ2(Y )} = E {ϕ1(X)} + E {ϕ2(Y )} ,

provided that E {ϕ1(X)} and E {ϕ2(Y )} exists. In particular,

E{X + Y } = E{X} + E{Y }.

If we furthermore assume that X and Y are independent and choose ϕ(x, y) = ϕ1(x) ·ϕ2(y), then also

E {ϕ1(X) · ϕ2(Y )} = E {ϕ1(X)} · E {ϕ2(Y )} ,

provided that E {ϕ1(X)} and E {ϕ2(Y )} exists. In particular we get under the assumptions above
that

E{X · Y } = E{X} · E{Y },
and

E{(X − E{X}) · (Y − E{Y })} = 0.

These formulæ are easily generalized to n random variables. We have e.g.

E

{
n∑

i=1

Xi

}
=

n∑
i=1

E {Xi} ,

provided that all means E {Xi} exist.

If two random variables X and Y are not independent, we shall find a measure of how much they
“depend” on each other. This measure is described by the correlation, which we now introduce.

Consider a 2-dimensional random variable (X,Y ), where

E{X} = μX , E{Y } = μY , V {X} = σ2
X > 0, V {Y } = σ2

Y > 0,
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all exist. We define the covariance between X and Y , denoted by Cov(X,Y ), as

Cov(X,Y ) := E {(X − μX) · (Y − μY )} .

We define the correlation between X and Y , denoted by �(X,Y ), as

�(X,Y ) :=
Cov(X,Y )
σX · σY

.

Theorem 1.10 Let X and Y be two random variables, where

E{X} = μX , E{Y } = μY , V {X} = σ2
X > 0, V {Y } = σ2

Y > 0,

all exist. Then

Cov(X,Y ) = 0, if X and Y are independent,

Cov(X,Y ) = E{X · Y } − E{X} · E{Y },

|Cov(X,Y )| ≤ σX · σy,

Cov(X,Y ) = Cov(Y,X),

V {X + Y } = V {X} + V {Y } + 2Cov(X,Y ),

V {X + Y } = V {X} + V {Y }, if X and Y are independent,

�(X,Y ) = 0, if X and Y are independent,

�(X,X) = 1, �(X,−X) = −1, |�(X,Y )| ≤ 1.

Let Z be another random variable, for which the mean and the variance both exist- Then

Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z), for every a, b ∈ R,

and if U = aX + b and V = cY + d, where a > 0 and c > 0, then

�(U, V ) = �(aX + b, cY + d) = �(X,Y ).

Two independent random variables are always non-correlated, while two non-correlated random vari-
ables are not necessarily independent.

By the obvious generalization,

V

{
n∑

i=1

Xi

}
=

n∑
i=1

V {Xi} + 2
n∑

j=2

j−1∑
i=1

Cov (Xi,Xj) .

If all X1, X2, . . . , Xn are independent of each other, this is of course reduced to

V

{
n∑

i=1

Xi

}
=

n∑
i=1

V {Xi} .

Finally we mention the various types of convergence which are natural in connection with sequences
of random variables. We consider a sequence Xn of random variables, defined on the same probability
field (Ω,F , P ).
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1) We say that Xn converges in probability towards a random variable X on the probability field
(Ω,F , P ), if

P {|Xn − X| ≥ ε} → 0 for n → +∞,

for every fixed ε > 0.

2) We say that Xn converges in probability towards a constant c, if every fixed ε > 0,

P {|Xn − c| ≥ ε} → 0 for n → +∞.

3) If each Xn has the distribution function Fn, and X has the distribution function F , we say that
the sequence Xn of random variables converges in distribution towards X, if at every point of
continuity x of F (x),

lim
n→+∞Fn(x) = F (x).

Finally, we mention the following theorems which are connected with these concepts of convergence.
The first one resembles Čebyšev’s inequality.

Theorem 1.11 (The weak law of large numbers). Let Xn be a sequence of independent random
variables, all defined on (Ω,F , P ), and assume that they all have the same mean and variance,

E {Xi} = μ and V {Xi} = σ2.

Then for every fixed ε > 0,

P

{∣∣∣∣∣ 1n
n∑

i=1

Xi − μ

∣∣∣∣∣ ≥ ε

}
→ 0 for n → +∞.

A slightly different version of the weak law of large numbers is the following

Theorem 1.12 If Xn is a sequence of independent identical distributed random variables, defined
on (Ω,F , P ) where E {Xi} = μ, (notice that we do not assume the existence of the variance), then
for every fixed ε > 0,

P

{∣∣∣∣∣ 1n
n∑

i=1

Xi − μ

∣∣∣∣∣ ≥ ε

}
→ 0 for n → +∞.

We have concerning convergence in distribution,

Theorem 1.13 (Helly-Bray’s lemma). Assume that the sequence Xn of random variables con-
verges in distribution towards the random variable X, and assume that there are real constants a and
b, such that

P {a ≤ Xn ≤ b} = 1 for every n ∈ N.

If ϕ is a continuous function on the interval [a, b], then

lim
n→+∞E {ϕ (Xn)} = E{ϕ(X)}.

In particular,

lim
n→+∞E {Xn} and lim

n→+∞V {Xn} = V {X}.
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Finally, the following theorem gives us the relationship between the two concepts of convergence:

Theorem 1.14 1) If Xn converges in probability towards X, then Xn also converges in distribution
towards X.

2) If Xn converges in distribution towards a constant c, then Xn also converges in probability towards
the constant c.
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2 Maximum and minimum of random variables

Example 2.1 Lad X1, X2 and X3 be independent random variables of the same distribution function
F (x) and frequency f(x), x ∈ R. The random variables X1, X2 and X3 are ordered according to size,
such that we get three new random variables X�

1 , X�
2 and X�

3 , satisfying X�
1 < X�

2 < X�
3 , and defined

by

X�
1 = the smallest of X1, X2 and X3 (= min {X1,X2,X3}),

X�
2 = the second smallest of X1, X2 and X3,

X�
3 = the largest of X1, X2 and X3 (= max {X1,X2,X3}).

1. Find, expressed by F (x) and f(x), the distribution functions and the frequencies of the random
variables X�

1 and X�
3 .

2. Prove that X�
2 has the distribution function F �

2 (x) given by

F �
2 (x) = 3 {F (x)}2{1 − F (x)} + {F (x)}3, x ∈ R,

and find the frequency f�
2 (x) of X�

2 .

We assume in the following that X1, X2 and X3 are independent and rectangularly distributed over
the interval ]0, a[ (where a > 0).

3. Compute the frequencies of X�
1 , X�

2 and X�
3 .

4. Prove that the three random variables X�
2 ,

1
3

(X1 + X2 + X3) and
1
2

(X�
1 + X�

3 ) all have the same
mean, and find this mean.

5. Which one of the two random variables X�
2 and

1
3

(X1 + X2 + X3) has the smallest variance?

1) It is easily seen that

F �
3 (x) = P {X1 ≤ x ∧ X2 ≤ x ∧ X3 ≤ x} = {F (x)}3.

Then by a differentiation,

f�
3 = 3 {F (x)}2f(x).

Analogously,

F �
1 = 1 − {1 − F (x)}3.

By a differentiation we get

f�
1 (x) = 3{1 − F (x)}2f(x).
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2. Maximum and minimum of random variables

2) An identification of the various possibilities then gives

F �
2 (x) = P {X�

2 ≤ x}
= P {X1 > x ∧ X2 ≤ x ∧ X3 ≤ x}

+P {X1 ≤ x ∧ X2 > x ∧ X3 ≤ x}
+P {X1 ≤ x ∧ X2 ≤ x ∧ X3 > x}

⎫⎬
⎭ two of the variables are ≤ x,

and the remaining one is > x,

+P {X1 ≤ x ∧ X2 ≤ x ∧ X3 ≤ x} All variables are ≤ x,

= 3F (x)2{1 − F (x)} + {F (x)}3 = 3F (x)2 − 2F (x)3.

By a differentiation we obtain the frequency

f�
2 = 6

{
F (x) − F (x)2

}
f(x) = 6F (x) {1 − F (x)} f(x).

3) When X1, X2 and X3 are rectangularly distributed over ]0, a[, then

f(x) =

⎧⎪⎨
⎪⎩

1
a

for x ∈ ]0, a[,

0 otherwise,

and

F (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x ≤ 0,

x

a
for x ∈ ]0, a[,

1 for x ≥ a.

By insertion we get for x ∈ ]0, a[,

f�
1 (x) = 3{1 − F (x)}2f(x) =

3
a

{
1 − x

a

}2

=
3
a3

(a − x)2,

f�
2 (x) =

6
a
· x

a

{
1 − x

a

}
=

6
a3

x(a − x) =
6
a3

(
ax − x2

)
,

f�
3 (x) =

3
a

{x

a

}2

=
3x2

a2
.

All frequencies are 0 for x /∈ ]0, a[.

4) The mean of X�
2 is

E {X�
2} =

6
a3

∫ a

0

(
ax2 − x3

}
dx =

6
a3

(
a4

3
− a4

4

)
=

a

2
.

The mean of
1
3

(X1 + X2 + X3) is

E

{
1
3

(X1 + X2 + X3)
)

=
1
3
· 3E {X1} =

a

2
.
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Since X�
1 + X�

2 + X�
3 = X1 + X2 + X3, we get

1
2

(X�
1 + X�

3 ) =
3
2

{
1
3

(X1 + X2 + X3)
}
− 1

2
X�

2 ,

hence

E

{
1
2

(X�
1 + X�

3 )
}

=
3
2

E

{
1
3

(X1 + X2 + X3)
}
− 1

2
E {X�

2} =
3
2
· a

2
− 1

2
· a

2
=

a

2
,

and the three means are all equal to
a

2
.

5) It is well-known that

V

{
1
3

(X1 + X2 + X3)
}

=
1
9

(V {X1} + V {X2} + V {X3}) =
1
3

V {X1} =
1
3
· a2

12
=

a2

36
.
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Since

E
{

(X�
2 )2

}
=

6
a3

∫ a

0

(
ax3 − x4

)
dx =

6
a3

(
a5

4
− a5

5

)
=

6
20

a2,

we obtain

V {X�
2} = E

{
(X�

2 )2
}
− (E {X�

2})2 =
6
20

a2 − 1
4

a2 =
a2

20
.

It follows that the mean
1
3

(X1 + X2 + X3) has the smallest variance.

Example 2.2 Let X1, X2, X3 and X4 be independent random variables of the same distribution
function F (x) and frequency f(x), x ∈ R, and let the random variables Y and Z be defined by

Y = min {X1,X2,X3,X4} , Z = max {X1,X2,X3,X4} .

1. Find, expressed by F (x) and f(x), the distribution functions and the frequencies of the random
variables Y and Z.

2. Prove that the simultaneous frequency of (Y,Z) is given by

g(y, z) =

⎧⎨
⎩

12 f(y) · f(z) · {F (z) − F (y)}2, y ≤ z,

0, y > z,

Hint: Start by finding P{Y > y ∧ Z ≤ z} for y ≤ z.

We assume in the following that

f(x) =

⎧⎨
⎩

1, x ∈ ]0, 1[,

0, otherwise.

3. Find the frequencies of Y and Z, and the simultaneous frequency of (Y,Z).

4. Find the means E{Y } and E{Z}.
5. Find the variances V {Y } and V {Z}.
We now introduce the width of the variation U by U = Z − Y .

6. Find the mean E{U}.
7. Find the variance V {U}.

1) We see that

FZ(z) = P {X1 ≤ z ∧ X2 ≤ z ∧ X3 ≤ z ∧ X4 ≤ z} = {F (z)}4

and

FY (y) = 1 − {1 − F (y)}4.
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–0.5

0

0.5

1

1.5

2

–0.5 0.5 1 1.5 2

Figure 1: When y < z, the domain of integration is the triangle on the figure, where (y, z) are the
coordinates of the rectangular corner.

By differentiation we get the frequencies

fY (y) = 4{1 − F (y)}3f(y)

and

fZ(z) = 4{F (z)}3f(z).

2) By definition, Y ≤ Z, so clearly g(y, z) = 0 for y > z. If y ≤ z, then

P{Y > y ∧ Z ≤ z} = P {y < X1 ≤ z ∧ y < X2 ≤ z ∧ y < X3 ≤ z ∧ y < X4 ≤ z}
= P {y < X1 ≤ z} · P {y < X2 ≤ z} · P {y < X4 ≤ z}
= {F (z) − F (y)}4,

hence the distribution function of (Y,Z) is for y ≤ z given by

F (y, z) = P{Y ≤ y ∧ Z ≤ z} = P{Z ≤ z}−P{Y > y ∧ Z ≤ z} = P{Z ≤ z}−{F (z)−F (y)}4.

Then

g(y, z) =
∂2G

∂y∂z
= 0 − ∂

∂z

{−4(F (z) − F (y))3f(y)
}

= 12 f(y) · f(z) · {F (z) − F (y)}2,

and the claim is proved.

3) Since F (x) = x for x ∈ ]0, 1[, we get for y, z ∈ ]0, 1[ by insertion,

fY (y) = 4 (1 − y)3 and fZ(z) = 4z3.

and fY (y) = 0 for y /∈ ]0, 1[, and fZ(z) = 0 for z /∈ ]0, 1[.

When 0 < y < z < 1, we get the simultaneous frequency

g(y, z) = 12 · 1 · 1 · (z − y)2 = 12 (z − y)2,

and g(y, z) = 0 otherwise.
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 2: The domain D.

4) The means are given by

E{Y } = 4
∫ 1

0

y(1 − y)3 dy = 4
∫ 1

0

{
(1 − y)3 − (1 − y)4

}
dy = 4

(
1
4
− 1

5

)
=

4
20

=
1
5
,

and

E{Z} = 4
∫ 1

0

z4 dz =
4
5
.

5) We first compute

E
{
Y 2

}
= 4

∫ 1

0

y2(1 − y)3 <, dy = 4
[
−1

4
y2(1 − y)4

]1

0

+ 2
∫ 1

0

y(1 − y)4 dy

= 0 + 2
[
−1

5
y(1 − y)5

]1

0

+
2
5

∫ 1

0

(1 − y)5 dy = 0 +
2

5 · 6 =
1
15

.

The variance is

V {Y } =
1
15

−
(

1
5

)2

=
1
5

(
1
3
− 1

5

)
=

2
75

.

From

E
{
Z2

}
= 4

∫ 1

0

z5 dz =
4
6

=
2
3
.

follows that

V {Z} =
2
3
−

(
4
5

)2

=
2
3
− 16

25
=

50 − 48
75

=
2
75

.

6) The mean is of course

E{U} = E{Z − Y } = E{Z} − E{Y } =
4
5
− 1

5
=

3
5
.
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7) Finally,

E
{
U2

}
= E

{
Z2

}− 2E{ZY } + E
{
Y 2

}
=

2
3

+
1
15

− 2E{ZY },

where

E{ZY } =
∫ ∫

D

yz g(y, z) dy dz = 12
∫ ∫

D

yz(z − y)2 dy dz = 12
∫ 1

0

z

{∫ z

0

y(y − z)2 dy

}
dz

= 12
∫ 1

0

z

{[
1
3

y · (y − z)3
]z

0

− 1
3

∫ z

0

(y − z)3 dy

}
dz

= −4
∫ 1

0

z

[
1
4

(y − z)4
]z

0

dz =
∫ 1

0

z5 dz =
1
6
,

which gives by insertion

E
{
U2

}
=

2
3

+
1
15

− 1
3

=
1
3

+
1
15

=
6
16

=
2
5
.

The variance is

V {U} = E
{
U2

}− (E{U})2 =
2
5
−

(
3
5

)2

=
2
5
− 9

25
=

1
25

.
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Example 2.3 Let X1 and X2 be independent, identically distributed random variables of frequency

f(x) =

⎧⎪⎨
⎪⎩

2x
a2

, 0 < x < a,

0, otherwise,

where a is a positive constant, and let the random variables Y and Z be given by

Y = max {X1,X2} , Z = min {X1,X2} .

1. Compute the mean and the variance of X1.

2. Find the frequency and the mean of Y .

3. Find the frequency and the mean of Z.

4. Prove that the simultaneous frequency of (Y,Z) is given by

g(y, z) =

⎧⎪⎨
⎪⎩

8yz

a4
, 0 < z < y < a,

0, otherwise.

Hint: Start by computing P{Y ≤ y ∧ Z > z} for z < y.

We introduce the width of the variation U by U = Y − Z.

5. Find the mean of U .

6. Find the frequency of U .

1) By the usual computations,

E {X1} =
∫ a

0

x · 2x
a2

dx =
2
3

a,

and

E
{
X2

1

}
=

∫ a

0

x2 · 2x
a2

dx =
1
2

a2,

hence

V {X1} = E
{
X2

1

}− (E {X1})2 =
(

1
2
− 4

9
0
)

a2 =
1
18

a2.

2) Let F (x)
[
=

x2

a2
for 0 < x < a

]
be the distribution function of X1 and X2. Then the distribution

function of Y is in the interval ]0, a[ given by

FY (y) = {F (y)}2 =
y4

a4
,
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so the corresponding frequency is

fY (y) =

⎧⎪⎨
⎪⎩

4
y3

a4
for 0 < y < a,

0 otherwise.

The mean is

E{Y } =
∫ a

0

4y4

a4
dy =

4
5

a.

3) Analogously, the distribution function of Z for 0 < z < a is given by

FZ(z) = 1 − {1 − F (z)}2 = 1 −
(

1 − z2

a2

)2

=
1
a4

(
2a2z2 − z4

)
.

We get the frequency by a differentiation,

fZ(z) =

⎧⎪⎨
⎪⎩

4
a4

{
a2z − z3

}
for 0 < z < a,

0 otherwise.

The mean is

E{Z} =
4
a2

∫ a

0

{
a2z2 − z4

}
dz =

4
a4

(
1
3
− 1

5

)
a5 =

8
15

a.

4) It follows from the definitions of Y and Z that g(y, z) = 0, whenever we do not have 0 < z <
y < a. On the other hand, if these inequalities are fulfilled, then it follows, since X1 and X2 are
independent that

P{Y ≤ y ∧ Z > z} = P {z < X1 ≤ y ∧ z < X2 ≤ y} = P {z < X1 ≤ y} · P {z < X2 ≤ y}
= {F (y) − F (z)}2 =

1
a4

(
y2 − z2

)2
.

Therefore, if 0 < z < y < a, then the simultaneous distribution function is given by

G(y, z) = P{Y ≤ y ∧ Z ≤ z} = P{Y ≤ y} − P{Y ≤ y ∧ Z > z} = FY (y) − 1
a4

(
y2 − z2

)2
,

hence

∂G

∂z
= 0 − 2

a4

(
y2 − z2

) · (−2z) =
4z
a4

(
y2 − z2

)
,

and

g(y, z) =
∂2G

∂y∂z
=

8yz

a4
0 < z < y < a,

and g(y, z) = 0 otherwise.
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5) The mean is of course

E{U} = E{Y − Z} = E{Y } − E{Z} =
4
5

a − 8
15

a =
4
15

a.

6) The frequency of U = Y − Z is given by

fU (u) =
∫ ∞

−∞
g(y, y − u) dy.

The integrand is 	= 0, when 0 < y − u < y < a, so we have the conditions

0 < y < a and 0 < u < y < a.

If u ∈ ]0, 1[, then the domain of integration is u < y < a, hence

fU (u) =
∫ a

u

8y
a4

(y − u) dy =
8
a4

∫ a

u

(yr − yu) dy =
8
a4

[
1
3

y3 − u

2
y2

]a

u

=
8
a4

{
a3

3
− a2

2
u − 1

3
u3 +

1
2

u3

}
=

8
a4

{
a3

3
− a2

2
u +

1
6

u3

}
,

and fU (u) = 0 otherwise.

A weak check:∫ a

0

fU (u) du =
8
a4

{
a3

3
· a − a2

4
· a2 +

1
24

a4

}
= 8

(
1
3
− 1

4
+

1
24

)
=

8
24

(8 − 6 + 1) = 1.
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Example 2.4 An instrument contains two components, the lifetimes of which T1 and T2 are inde-
pendent random variables, both of the frequency

f(t) =
{

a e−at, t > 0,
0, t ≤ 0,

where a is a positive constant.
We introduce the random variables X1, X2 and Y2 by

X1 = min {T1, T2} , X2 = max {T1, T2} , Y2 = X2 − X1.

Here, X1 denotes the time until the first of the components fails, and X2 the time, until the second
component also fails, and Y2 is the time from the first component fails to the second one fails.

1. Find the frequency and the mean of X1.

2. Find the frequency and the mean of X2.

3. Find the mean of Y2.

The simultaneous frequency of (X1,X2) is given by

h (x1, x2) =
{

2a2e−a(x1+x2), 0 < x1 < x2,
0, otherwise.

(One shall not prove this statement.)

4. Find the simultaneous frequency of the 2-dimensional random variable (X1, Y2).

5. Find the frequency of Y2.

6. Check if the random variables X1 and Y2 are independent.

1) Concerning X1,

P {X1 > x1} = P {T1 > x1 ∧ T2 > x1} = P {T1 > x1} · P {T2 > x2} = e−2ax1 ,

thus

P {X1 ≤ x1} = 1 − e−2ax1 , x1 > 0,

and X1 is exponentially distributed of the frequency

fX1 =
{

2a e−2ax1 , x1 > 0,
0, x1 ≤ 0, and mean

1
2a

.

2) Concerning X2,

P {X2 ≤ x2} = P {T1 ≤ x2 ∧ T2 ≤ x2} = P {T1 ≤ x2} · P {T2 ≤ x2}
=

(
1 − e−ax2

)2
, x2 > 0,

thus X2 has the frequency

fX2 (x2) = 2a e−ax2
(
1 − e−ax2

)
= 2a e−ax2 − 2a e−2ax2 for x2 > 0,
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and

fX2 (x2) = 0 for x2 ≤ 0.

The mean is

E {X2} =
∫ ∞

0

x2fX2 (x2) dx2 =
∫ ∞

0

{
2a x2e

−ax2 − 2a x2e
−2ax2

}
dx2 =

2
a
− 1

2a
=

3
2a

.

Additional. The mean of X2 is easily obtained from X1 + X2 = T1 + T2, i.e.

E {X2} = E {T1} + E {T2} − E {X1} =
1
a

+
1
a
− 1

2a
=

3
2a

.

3) This is trivial, because

E {Y2} = E {X2} − E {X1} =
3
2a

− 1
2a

=
1
a
.

4) The simultaneous frequency k (y1, y2) of

(Y1, Y2) = (X1,X2 − X1)

can e.g. be obtained directly by using a formula, where a = 1, b = 0, c = −1 and d = −1,

k (y1, y2) = h

(
dy1 − by2

ad − bc
,
−cy1 + ay2

ad − bc

)
· 1
|ad − bc|

= h (y1, y1 + y2) = 2a2e−a(2y1+y2) for y1 > 0 and y2 > 0,

and

k (y1, y2) = 0 otherwise.

This is also written

k (y1, y2) =
{

2a e−2ay1 · a e−ay2 , for y1 > 0 and y2 > 0,
0, otherwise.

5) (and 6.) It follows immediately from 4. that Y1 (= X1) and Y2 are independent, and that Y2 has
the frequency

kY2 (y2) =
{

a e−ay2 , y2 > 0,
0, y2 ≤ 0.
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Example 2.5 An instrument A contains two components, the lifetimes of which X1 and X2 are
independent random variables, both of the frequency

f(x) =

⎧⎨
⎩

a e−ax, x > 0,

0, x ≤ 0,

where a is a positive constant.
The instrumentet A works as long as at least one of the two components is working, thus the lifetime
X of A is

X = max {X1,X2} .

Another instrument B has the lifetime Y of the frequency

g(y) =

⎧⎨
⎩

a e−ay, y > 0,

0, y ≤ 0.

1) Find the distribution function and the frequency of the random variable X.

2) Find the mean of X.

3) Find the simultaneous frequency of (X,Y ), and find P{Y > X}.
4) Find the frequency of X + Y , and find the mean of X + Y .

1) Since X1 and X2 have the frequency

f(x) = a e−ax, for x > 0,

the distribution function of each of them is

F (x) = 1 − e−ax, for x > 0.

Then by a formula, X = max {X1,X2} has the frequency

FX(x) = FX1(x) · FX2(x) =
{
1 − e−ax

}2 for x > 0,

hence the frequency for x > 0 is given by

fX(x) = F ′
X(x) = 2

(
1 − e−ax

)
a e−ax = 2a e−ax − 2a e−2ax.

2) The mean is

E{X} =
∫ ∞

0

x fX(x) dx = 2a
∫ ∞

0

x e−ax dx − 2a
∫ ∞

0

x e−2ax dx

= 2a
(

1
a2

− 1
4a2

)
= 2a · 3

4a2
=

3
2a

.
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3) In the first quadrant the simultaneous frequency is given by

fX(x) gY (y) = 2a
(
e−ax − e−2ax

) · a e−ay,

hence

P{Y > X} =
∫ ∞

x=0

2a
(
e−ax − e−2ax

){∫ ∞

y=x

a e−ay dy

}
dx =

∫ ∞

0

2a
(
e−ax − e−2ax

)
e−ax dx

=
∫ ∞

0

2a
(
e−2ax − e−3ax

)
dx = 2a

(
1
2a

− 1
3a

)
=

1
3
.

4) The mean of X + Y is of course

E{X + Y } = E{X} + E{Y } =
3
2a

+
1
a

=
5
2a

.

When z > 0, the frequency of X + Y is given by

h(z) =
∫ z

0

fX(x) gY (z − x) dx

=
∫ z

0

2a
(
e−ax − e−2ax

)
a e−a(z−x) dx = 2a2

∫ z

0

(
e−az − e−axe−az

)
dx

= 2a2e−az

∫ z

0

(
1 − e−ax

)
dx = 2a2e−az

{
z − 1

a

(
1 − e−az

)}
= 2a2z e−az − 2a e−az + 2a e−2az = 2a e−az

(
az − 1 + e−az

)
.

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

American online      
LIGS University 

 ▶ enroll by September 30th, 2014 and 

 ▶ save up to 16% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education
 ▶ visit www.ligsuniversity.com to 

      find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc, 

DBA and PhD  programs:

Note: LIGS University is not accredited by any 
nationally recognized accrediting agency listed 
by the US Secretary of Education. 
More info here. 

http://s.bookboon.com/LIGS


Random variables III

 
34 

3. The transformation formula and the Jacobian

3 The transformation formula and the Jacobian

Example 3.1 Let (X1,X2) be a 2-dimensional random variable of the frequency

h (x1, x2) =

⎧⎪⎨
⎪⎩

1
π

, 0 < x2
1 + x2

2 < 1,

0, otherwise.

1. Find the frequencies of the random variables X1 and X2.

2. Find the means and the variances of the random variables X1 and X2.

3. Prove that X1 and X2 are non-correlated, but not independent.

Let (Y1, Y2) be given by

X1 = Y1 cos Y2, X2 = Y1 sinY2,

where 0 < Y1 < 1 and 0 ≤ Y2 < 2π.

4. Find the frequency k (y1, yy) for (Y1, Y2).

Are Y1 and Y2 independent?

–1

–0.5

0.5

1

–1 –0.5 0.5 1

Figure 3: When −1 < x1 < 1, then −
√

1 − x2
1 < x2 <

√
1 − x2

1.

1) It follows immediately that

fX1 (x1) =

⎧⎪⎨
⎪⎩

2
π

√
1 − x2

1, −1 < x1 < 1,

0 otherwise,

and

fX2 (x1) =

⎧⎪⎨
⎪⎩

2
π

√
1 − x2

2, −1 < x21 < 1,

0 otherwise.
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2) It follows from the above that

E {X1} = E {X2} =
2
π

∫ 1

−1

t
√

1 − t2 dt = 0,

and

V {X1} = V {X2} = E
{
X2

1

}
=

2
π

∫ 1

−1

t2
√

1 − t2 dt =
4
π

∫ 1

0

t2
√

1 − t2 dt

=
4
π

∫ π
2

0

sin2 t · cos t · cos t dt =
1
π

∫ π
2

0

sin2 2t dt =
1
4
.

3) The support of the frequency is not a rectangle parallel to the axes. Hence, X1 and X2 cannot be
independent.
It follows from the symmetry that E {X1X2} = 0. Hence

Cov (X1,X2) = E {X1X2} − E {X1} E {X2} = 0,

and X1 and X2 are non-correlated.

4) The map

(x1, x2) = ϕ (y1, y2) = (y1 cos y2, y1 sin y2)

is bijective between the two given domains.
The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣∣∣∣

ddx1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos y2 −y1 sin y2

sin y2 y1 cos y2

∣∣∣∣∣∣ = y1 	= 0.

Then we get the frequency of (Y1, Y2),

k (y1, y2) =

⎧⎪⎨
⎪⎩

1
π

y1, for y1 ∈ ]0.1[ and y2 ∈ [0.2π[,

0 otherwise.

5) It follows from

gY1 (y1) =

⎧⎨
⎩

2y1 for y ∈ ]0, 1[,

0 otherwise,

and

gY2 (y2) =

⎧⎪⎨
⎪⎩

1
2π

for y2 ∈ [0.2π[,

0 otherwise,

that

k (y1, y2) = gY1 (y1) · gY2 (y2) ,

hence Y1 and Y2 are independent.

Download free eBooks at bookboon.com



Random variables III

 
36 

3. The transformation formula and the Jacobian

Example 3.2 Let (X1,X2) have the frequency

h (x1, x2) =

⎧⎨
⎩

e−x1 · λ e−λx2 , x1 > 0, x2 > 0,

0, otherwise,

where λ is a positive constant, and let (Y1, Y
′
2) = τ (X1,X2) be given by

Y1 = X1 + X2, Y2 = X1 − X2.

1) Prove that τ maps ]0,∞[× ]0,∞[ bijectively onto the domain

D′ =
{
(y1, y2) ∈ R

2 | y1 > 0, |y2| < y1

}
.

2) Find the frequency k (y1, y2) of (Y1, Y2).

3) Prove that Y1 and Y2 are non-correlated for precisely one value of λ, and find this value.

4) Prove that Y1 and Y2 are not independent for any choice of λ.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 4: The domain D′ is the angular space in the right half plane (and D is the first quadrant).

1) It follows from

y1 = x1 + x2, y2 = x1 − x2,

that

x1 =
1
2

(t1 + y2) , x2 =
1
2

(y1 − y2) .

Since (x1, x2) is uniquely determined (by an explicit expression as a function) from the given
(y1, y2) and vice versa, the map is bijective.

In order to find the image D′ of the first quadrant D by the map τ we start by determining the
images of the boundary curves:
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• The line x1 = 0 is mapped into y1 + y2 = 0, i.e. into the line y2 = −y1.

• The line x2 = 0 is mapped into y1 − y2 = 0, i.e. into the line y2 = y1.

Since τ is continuous and y1 > 0, it follows from where the boundary curves are lying that the
image is

D′ =
{
(y1, y2) ∈ R

2 | y1 > 0, |y2| < y1

}
,

which has been indicated on the figure.

2) The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣
1
2

1
2

1
2 − 1

2

∣∣∣∣∣∣ = −1
2
.

Hence, if (y1, y2) ∈ D′, then the frequency of (Y1, Y2) is given by

k (y1, y2) =
∣∣∣∣−1

2

∣∣∣∣ · h
(

1
2

(y1 + y2) ,
1
2

(y1 − y2)
)

=
λ

2
exp

(
−1

2
(y1 + y2)

)
· exp

(
−λ

2
(y1 − y2)

)

=
λ

2
exp

(
−λ + 1

2
y1

)
· exp

(
λ − 1

2
y2

)
,

Download free eBooks at bookboon.com
Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/GTca


Random variables III

 
38 

3. The transformation formula and the Jacobian

or more well-organized

k (y1, y2) =

⎧⎪⎪⎨
⎪⎪⎩

λ

2
exp

(
−λ + 1

2
y1

)
· exp

(
λ − 1

2
y2

)
, y1 > 0, |y2| < y1,

0, otherwise.

3) Since X1 and X2 are independent, it follows by a reduction that

Cov (Y1, Y2) = Cov (X1 + X2,X1 − X2) = V {X1} − V {X2} .

It follows from

V {X1} =
∫ ∞

0

x2
1 e−x1 dx1 −

{∫ ∞

0

x1e
−x1 dx1

}2

= 2! − (1!)2 = 1,

and

V {X2} =
∫ ∞

0

x2
2 λ e−λx2 dx2 −

{∫ ∞

0

x2 · λ e−λx2 dx2

}2

=
2
λ2

− 1
λ2

=
1
λ2

,

that Cov(Y1, Y2) = 0, precisely when λ > 0 is equal to λ = 1, hence Y1 and Y2 are non-correlated
precisely when λ = 1.

4) Since D′ is not a domain which is parallel to the axes, Y1 and Y2 cannot be independent for any
choice of λ > 0.
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Example 3.3 A 2-dimensional random variable (X,Y ) has the frequency

h (x1, x2) =

⎧⎨
⎩

1, 0 < x1 < ∞, 0 < x2 < e−x1 ,

0, otherwise.

1. Find the frequencies of the random variables X1 and X2.

2. Find the means E {X1} and E {X2}.
3. Find the variances V {X1} and V {X2}.
4. Find the correlation coefficient � (X1,X2).

Let the 2-dimensional random variable (Y1, Y2) = τ (X1,X2) be given by

Y1 = X2 eX1 , Y2 = e−X1 .

5. Find the frequency of (Y1, Y2).

6. Are Y1 and Y2 independent?

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Figure 5: The domain D, where h (x1, x2) > 0.

1) We get for fixed x1 ∈ R by a vertical integration,

fX1 (x1) =

⎧⎨
⎩

e−x1 for x1 > 0,

0 otherwise.

Then by a horizontal integration for fixed x2,

fX2 (x2) =

⎧⎨
⎩

− ln x2 for 0 < x2 < 1,

0 otherwise.
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2) The means are E {X1} = 1, and

E {X2} = −
∫ 1

0

x2 · lnx2 dx2 = −
[
1
2

x2
2 lnx2

]1

0

+
∫ 1

0

1
2

x2 dx2 =
1
4
.

3) The variance of X1 can be found in a table, V {X1} = 1.
Concerning X2 we first compute

E
{
X2

2

}
= −

∫ 1

0

x2
2 lnx2 dx2 = −

[
1
3

x3
2 lnx2

]1

0

+
∫ 1

0

1
3

x3
2 dx2 =

1
9
.

The variance is

V {X2} = E
{
X2

2

}− (E {X2})2 =
1
9
− 1

16
=

7
144

.

4) It follows from

E {X1X2} =
∫ ∞

0

x1

{∫ exp(x1)

0

x2 dx2

}
dx1 =

1
2

∫ ∞

0

x1 · e−2x1 dx1 =
1
8
,

that

Cov (X1,X2) = E {X1X2} − E {X1} E {X2} =
1
8
− 1 · 1

4
= −1

8
,

hence

� (X1,X2) =
Cov (X1,X2)√
V {X1} V {X2}

=
− 1

8√
1 · 7

144

= − 12
8
√

7
= −3

√
7

14
.

5) It follows from

y1 = x2 ex1 , y2 = e−x1 ,

that

x1 = − ln y2 and x2 = y1y2.

Investigating the boundary we see that

• the curve x2 = 0, x1 > 0 is mapped into y1 = 0 and 0 < y2 < 1,

• the curve x1 = 0, 0 < x2 < 1, is mapped into 0 < y1 < 1 and y2 = 1,

• the curve x2 = e−x1 , x1 > 0 is mapped into y1 = 1 and 0 < y2 < 1.

Finally, it follows from y1, y2 > 0 and y1 = x2 ex1 < 1 that the image is D′ = ]0, 1[× ]0, 1[.

The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣∣
0 − 1

y2

y2 y1

∣∣∣∣∣∣∣ = 1.
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0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2

Figure 6: The image D′.

If (y1, y2) ∈ D′, then k (y1, y2) = 1, hence

k (y1, y2) =

⎧⎨
⎩

1 for 0 < y1 < 1, 0 < y2 < 1,

0, otherwise.

6) Obviously, Y1 and Y2 are independent. In fact,

k1 (y1) =

⎧⎨
⎩

1 for 0 < y1 < 1,

0 otherwise,

and

k2 (y2) =

⎧⎨
⎩

1 for 0 < y2 < 1,

0 otherwise,

and

k (y1, y2) = k1 (y1) · k2 (y2) .
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Example 3.4 A 2-dimensional random variable (X1,X2) has the frequency

h (x1, x2) =

⎧⎨
⎩

4x2
1 i D,

0 otherwise,

where

D =
{
(x1, x2) ∈ R

2 | 0 < x2 < x1 < 1
}

.

1. Find the marginal frequencies of X1 and X2.

2. Compute the means E {X1} and E {X2}.
3. Compute the covariance Cov(X1,X2).

We now define the random variables Y1 and Y2 by

(Y1, Y2) = τ (X1,X2) = (X1,X1 − 2X2) .

4. Prove that the vector function τ given by

τ (x1, x2) = (x1, x1 − 2x2)

maps D bijectively onto

D′ =
{
(y1, y2) ∈ R

2 | 0 < y1 < 1, −y1 < y2 < y1

}
.

5. Find the simultaneous frequency k (y1, y2) of (Y1, Y2).

6. Find the marginal frequencies of Y1 and Y2.

7. Compute the means E {Y1} and E {Y2}.
8. Check if Y1 and Y2 are non-correlated.

9. are Y1 and Y2 independent?

1) It follows by a vertical integration,

fX1 (x1) =

⎧⎨
⎩

4x3
1 for 0 < x1 < 1,

0 otherwise.

Then by a horizontal integration for 0 < x2 < 1,

fX2 (x2) =
∫ 1

x2

4x2
1 dx1 =

4
3

(
1 − x3

2

)
,

hence

fX2 (x2) =

⎧⎨
⎩

4
3

(
1 − x3

2

)
for 0 < x2 < 1,

0 otherwise.
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0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 7: The domain D.

2) The means are

E {X1} =
∫ 1

0

4x4
1 dx1 =

4
5
,

and

E {X2} =
4
3

∫ 1

0

(
x2 − x4

2

)
dx2 =

4
3

(
1
2
− 1

5

)
=

4
3
· 3
10

=
2
5
.
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3) It follows from

E {X1X2} =
∫ 1

0

x1

{∫ x1

0

x2 · 4x2
1 dx2

}
dx1 =

∫ 1

0

4x3
1 ·

1
2

x2
1 dx1 =

2
6

=
1
3
,

that

Cov (X1,X2) = E {X1X2} − E {X1} · E {X2} =
1
3
− 4

5
· 2
3

=
1
3
− 8

25
=

1
75

.

4) By solving the equations

y1 = x1 and y2 = x1 − 2x2

with respect to (x1, x2) we get

x1 = y1 andx2 =
1
2

(t1 − y2) ,

proving that the map is bijective.

–1

–0.5

0

0.5

1

0.2 0.4 0.6 0.8 1

Figure 8: The image D′.

The images of the boundary curves are described by

• The line segment 0 < x1 < 1, x2 = 0, is mapped into

(y1, y2) = (x1, x1) , 0 < x1 < 1.

• The line segment x1 = 1, 0 < x2 < 1, is mapped into

y1 = 1 and y2 = 1 − 2x2, 0 < x2 < 1.

• The line segment (x1, x2) = t(1, 1), 0 < t < 1, is mapped into the line segment

(y1, y2) = (t,−t), 0 < t < 1.

Since a bounded set is mapped into a bounded set, it follows that D′ is the triangle on the figure.
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3. The transformation formula and the Jacobian

5) The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣
1 0

1
2 − 1

2

∣∣∣∣∣∣ = −1
2
.

Then by the transformation formula,

k (y1, y2) =
∣∣∣∣−1

2

∣∣∣∣ · 4y2
1 = 2y2

1 i D′,

and

k (y1, y2) = 0 for (y1, y2) /∈ D′.

6) By a vertical integration,

fY1 (y1) = 2y1 · 2y2
1 = 4y3

1 for 0 < y1 < 1,

and

fY1 (y1) = 0 otherwise.

By a horizontal integration,

fY2 (y2) =
∫ 1

|y2|
2y2

1 dy1 =
2
3

(
1 − |y2|3

)
for − 1 < y2 < 1,

and

fY2 (y2) = 0 otherwise.

7) The means are

E {Y1} = E {X1} =
4
5

and

E {Y2} = E {X1 − 2X2} =
4
5
− 2 · 2

5
= 0.

Concerning E {Y2} one may alternatively apply that fY2 (y2) is an even function over a symmetric
interval. The computations, however, are in this case far bigger.

8) Since y1y2k (y1, y2) is an odd function in y2, it follows by the symmetry with respect to the Y1 axis
that E {Y1Y2} = 0, hence

Cov (Y1, Y2) = E {Y1Y2} − E {Y1} · E {Y2} = 0,

whence Y1 and Y2 are non-correlated.

9) The support D′ of the frequency k (y1, y2) is not rectangular. Hence Y1 and Y2 are not independent.
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Example 3.5 Let (X1,X2) be a 2-dimensional random variable of frequency

h (x1, x2) =

⎧⎨
⎩

3
2 x2, (x1, x2) ∈ D,

0, otherwise.

where

D =
{
(x1, x2) ∈ R

2 | 0 < x2 < 1, −x2 < x1 < x2

}
.

1. Find the marginal frequencies of X1 and X2.

2. Compute the means E {X1} and E {X2}.
3. Prove that X1 and X2 are non-correlated.

4. Are X1 and X2 independent?

We now define the random variables Y1 and Y2 by

(Y1, Y2) = τ (X1,X2) = (−X1 + X2, 2X2) .

Without proof we may use that the vector function τ given by

τ (x1, x2) = (−x1 + x2, 2x2)

maps D bijectively onto

D′ =
(
(y1, y2) ∈ R

2 | 0 < y1 < y2 < 2
}

.

5. Find the simultaneous frequency f (y1, y2) of (Y1, Y2).

6. Find the marginal frequencies of Y1 and Y2.

7. Compute P {Y2 > 2Y1}.
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0.6

0.8

1
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Figure 9: The domain D.
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1) We get by a vertical integration,

fX1 (x1) =
∫ 1

|x1|

3
2

x2 dx2 =
3
4

(
1 − x2

1

)
for − 1 < x1 < 1,

and

fX1 (x1) = 0 otherwise.

Then by a horizontal integration,

fX2 (x2) =
∫ x2

−x2

3
2

x2 dx2 = 3x2
2 for 0 < x2 < 1,

and

fX2 (x2) = 0 otherwise.

2) The means are

E {X1} =
∫ 1

−1

x1 · 3
4

(
1 − x2

1

)
dx1 = 0,

because the integrand is an odd function, and the interval of integration is symmetric with respect
to 0, and

E {X2} =
∫ 1

0

3x3
2 dx2 =

3
4
.
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3. The transformation formula and the Jacobian

3) Now,

E {X1X2} =
∫ 1

0

3
2

x2
2

{∫ x2

−x1

x1 dx1

}
dx2 = 0,

because the integrand is odd in x1, and we integrate it over a symmetric interval with respect to
0 (the dependency of x2 does not matter anything here)- Hence,

Cov (X1,X2) = E {X1X2} − E {X1} · E {X2} = 0,

proving that X1 and X2 are non-correlated.

4) Since D is not a rectangular domain, X1 and X2 are not independent.
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0.5

1

1.5

2

0.5 1 1.5 2

Figure 10: The domain D′ with the cut by the line y2 = 2y1.

5) It follows from

y1 = x1 + x2 and y2 = 2x2

that

x2 =
1
2

y2 and x1 = −y1 + x2 = −y1 +
1
2

y2,

hence the Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣
−1 1

2

0 1
2

∣∣∣∣∣∣ = −1
2
.

If (y1, y2) ∈ D′, i.e. 0 < y1 < y2 < 2, then by the transformation formula,

k (y1, y2) =
∣∣∣∣−1

2

∣∣∣∣ · 3
2
·
(

1
2

y2

)
=

3
8

y2,

and

k (y1, y2) = 0 otherwise.
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3. The transformation formula and the Jacobian

6) Then by a vertical integration,

fY1 (y1) =
∫ 2

y1

3
8

y2 dy2 =
3
16

(
4 − y2

1

)
for 0 < y1 < 2,

and

fY1 (y1) = 0 otherwise.

Horizontal integrations then give

fY2 (y2) =
3
8

y2
2 for 0 < y2 < 2,

and

fY2 (y2) = 0 otherwise.

7) When we write the wanted probability as a planar integral, then

P {Y2 > 2Y1} =
∫ 1

0

{∫ 2

2y1

3
8

y2 dy2

}
dy1 =

∫ 1

0

3
8

[
1
2

y2
2

]2

2y1

dy1 =
3
16

∫ 1

0

{
4 − 4y2

1

}
dy1

=
3
4

∫ 1

0

(
1 − y2

1

)
dy1 =

3
4

(
1 − 1

3

)
=

3
4
· 2
3

=
1
2
.
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Alternatively and somewhat more sophisticated we notice that the line y2 = 2y1 intersects the

triangle D′ into two triangles of the same weight, because k (y1, y2) =
3
8

y2 in D′ only depends on

y2, and because the line y2 = 2y2 intersects every horizontal line segments through D′ into two
line segments of equal length.

Example 3.6 Let (X1,X2) be a 2-dimensional random variable of frequency

h (x1, x2) =

⎧⎨
⎩

4 e−(x1+2x2), (x1, x2) ∈ D,

0, otherwise,

where

D =
{
(x1, x2) ∈ R

2 | 0 < x1 < 2x2 < ∞}
,

and let (Y1, Y2) = τ (X1,X2) be given by

Y1 = X1 + 2X2, Y2 = X1 − 2X2.

1) Prove that τ maps D bijectively onto the domain

D′ =
{
(y1, y2) ∈ R

2 | y2 < 0, y1 + y2 > 0
}

.

2) Find the frequency k (y1, y2) of (Y1, Y2).

3) Find the marginal frequencies of Y1 and Y2.

4) Check if Y1 and Y2 are independent.

5) Find the means of Y1 and Y2.

6) Find the variances of Y1 and Y2.

7) Compute the correlation coefficient � (Y1, Y2).

1) If

y1 = x1 + 2x2, y2 = x1 − 2x2,

then

x1 =
1
2

(y1 + y2) , x2 =
1
4

(y1 − y2) ,

hence the x-s are uniquely determined by the y-s, which proves that the map is bijective.

We shall now describe the domain D′.
The half line x2 =

1
2

x1, x1 > 0, is mapped into y2 = 0, y1 + y2 > 0, i.e. into the positive y1 axis.

The half line x1 = 0, x2 > 0, is mapped into (y1, y2) = (2x2,−2x2), x2 > 0, i.e. into y2 = −y1 and
y1 > 0.
We shall now decide which angular space is the right one. However, since also y′ > 0, it follows that
D′ is uniquely determined as the angular space in the fourth quadrant between the line y2 = −y1

and the y1 axis.
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Figure 11: The domain D lies in the first quadrant above the line x2 = 1
2 x1.
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Figure 12: The domain D′ lies in the fourth quadrant between the oblique line y2 = −y1 and the x
axis.

2) The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣
1
2

1
2

1
4 − 1

4

∣∣∣∣∣∣ = −1
4
.

It follows from the transformation formula that

k (y1, y2) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣−1
4

∣∣∣∣ · 4 · exp (−y1) = e−y1 for (y1, y2) ∈ D′,

0, otherwise.

3) By a vertical integration,

fY1 (y1) =

⎧⎨
⎩

y1 e−y1 for y1 > 0,

0 otherwise.
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3. The transformation formula and the Jacobian

By a horizontal integration,

fY2 (y2) =

⎧⎨
⎩

∫ ∞
−y2

e−y1 dy1 = ey2 for y2 < 0,

0 otherwise.

4) Since D′ is not a rectangle parallel to the axes, Y1 and Y2 ar not independent.

5) The means are

E {Y1} =
∫ ∞

0

y2
1 e−y1 dy1 = 2,

and

E {Y2} =
∫ 0

−∞
y2 ey2 dy2 = −1.

6) It follows from

E
{
Y 2

1

}
=

∫ ∞

0

y3
1 e−y1 dy1 = 3! = 6,

that

V {Y1} = 6 − 22 = 2.

It follows from

E
{
Y 2

2

}
=

∫ 0

−∞
y2
2 ey2 dy2 =

∫ ∞

0

t2e−t dt = 2,

that

V {Y2} = 2 − (−1)2 = 1.

7) We now compute

E {Y1Y2} =
∫ ∞

0

{∫ 0

−y1

y1y2 e−y1 dy2

}
dy1 =

∫ ∞

0

y1 e−y1

[
1
2

y2
2

]0

−y1

dy1

= −1
2

∫ ∞

0

y3
1 e−y1 dy1 = −3.

Then

Cov (Y1Y2) = E {Y1}E {Y2} = −3 − 2(−1) = −1,

and hence

� (Y1, Y2) =
Cov (Y1, Y2)√
V {Y1}V {Y2}

=
−1√
2 · 1 = −

√
2

2
.
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Example 3.7 Let (X1,X2) be a 2-dimensional random variable of the frequency

h (x1, x2) =

⎧⎨
⎩

4 e−(x1+3x2), (x1, x2) ∈ D,

0, otherwise,

where

D =
{
(x1, x2) ∈ R

2 | 0 < x2 < x1 < ∞}
.

1. Find the marginal frequencies of X1 and X2.

2. Find the means E {X1} and E {X2}.
We now define the random variables Y1 and Y2 by

(Y1, Y2) = τ (X1,X2) = (−X1 + X2,X1 + 3X2) .

Without proof we may use that the vector function τ given by

τ (x1, x2) = (−x1 + x2, x1 + 3x2)

maps D bijectively onto

D′ =
{
(y1, y2) ∈ R

2 | y1 + y2 > 0, y1 < 0
}

.

3. Find the simultaneous frequency k (y1, y2) of (Y1, Y2).

4. Find the marginal frequencies of Y1 and Y2.

5. Compute the means E {Y1} and E {Y2}.
6. Are Y1 and Y2 independent?
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Figure 13: The domain D lies in the first quadrant between the oblique line x2 = x1 and the x1 axis.
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1) By a vertical integration for x1 > 0,

fX1 (x1) =
∫ x1

0

4 e−(x1+3x2) dx2 = 4 e−x1

[
−1

3
e−3x2

]x1

0

=
4
3

e−x1
(
1 − e−3x1

)
=

4
3

(
e−x1 − e4−4x1

)
,

and fX1 (x1) = 0 for x1 ≤ 0.

By a horizontal integration for x2 > 0,

fX2 (x2) =
∫ ∞

x2

4 e−(x1+3x2) dx1 = 4 e−3x2
[−e−x1

]∞
x2

= 4 e−4x2 ,

and fX2 (x2) = 0 otherwise.

2) The means are

E {X1} =
4
3

∫ ∞

0

{
x1 e−x1 − x1 e−4x1

}
dx1 =

4
3

{
1 − 1

42

}
=

4
3
· 15
16

=
5
4
,

and

E {X2} = 4
∫ ∞

0

x2 e−4x2 dx2 =
1
4
.
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Figure 14: The domain D′ lies in the second quadrant between the oblique line y2 = −y1 and the
vertical y2 axis.

3) It follows from

y1 = −x1 + x2, y2 = x1 + 3x2,

that

y1 + y2 = 4x2, i.e. x2 =
1
4

y1 +
1
4

y2,

and

x1 = x2 − y1 = −3
4

y1 +
1
4

y2,

i.e.

x1 = −3
4

y1 +
1
4

y2 and x2 =
1
4

y1 +
1
4

y2.

Hence, we get the Jacobian

∂ (x1, x2)
∂ (y1, y2)

=
∣∣∣∣ − 3

4
1
4

1
4

1
4

∣∣∣∣ = −1
4
.

Then by the transformation formula,

k (y1, y2) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣∣∣−1
4

∣∣∣∣ · 4 · e−y2 = e−y2 for (y1, y2) ∈ D′,

0 otherwise.

4) Then by a vertical integration,

fY1 (y1) =

⎧⎨
⎩

∫ ∞
−y1

e−y2 dy2 = ey1 for y1 < 0,

0 for y1 ≥ 0.
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3. The transformation formula and the Jacobian

A horizontal integration gives

fY2 (y2) =

⎧⎨
⎩

∫ 0

−y2
e−y2 dy1 = y2e

−y2 for y2 > 0,

0 for y2 ≤ 0.

5) The means are

E {Y1} = E {−X1 + X2} = −E {X1} + E {X2} = −5
4

+
1
4

= −1,

and

E {Y2} = E {X1 + 3X2} = E {X1} + 3E {X2} =
5
4

+
3
4

= 2.

6) Since D′ is not a rectangle parallel to the axes, Y1 and Y2 are not independent.
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Example 3.8 A rectangle has its side lengths X1 and X2, where X1 and X2 are independent random
variables, and where X1 is rectangularly distributed over ]0, 2[, and X2 is rectangularly distributed over
]0, 1[.

1. Find the mean of the circumference of the rectangle, E {2X1 + 2X2}.
2. Find the mean of the area of the rectangle, E {X1X2}.
Let the 2-dimensional random variable (Y1, Y2) = τ (X1,X2) be given by

Y1 = X1X2, Y2 =
X1

X2
.

3. Prove that τ maps ]0, 2[× ]0, 1[ bijectively onto the domain

D′ =
{

(y1, y2) ∈ R
2 | 0 < y1 < 2, y1 < y2 <

4
y1

}
.

4. Find the frequency k (y1, y2) of (Y1, Y2).

5. Find the marginal frequencies of Y1 and Y2.

6. Check if Y2 = X1/X2 has a mean.

7. Find the probability

P

{
1
3

X1 < X2 < 3X1

}
.
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Figure 15: The domain D.

1) It follows from E {X1} = 1 and E {X2} =
1
2
, that

E {2X1 + 2X2} = 2 (E {X1} + E {X2}) = 3.

2) Since X1 and X2 are independent, we get

E {X1X2} = E {X1} · E {X2} = 1 · 1
2

=
1
2
.
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3) Then solve the equations

y1 = x1x2, y2 =
x1

x2
, 0 < x1 < 2, 0 < x2 < 1,

with respect to x1 and x2. Clearly, 0 < y1 < 2 and y2 > 0, so

x1 =
√

y1y2 and x2 =
√

y1

y2
.

We conclude that the map is bijective.

Then we shall find the image D′ = τ(D).

0

1

2

3

4

y

1 2 3 4

x

Figure 16: The domain D′ lies between the hyperbolic arc and the line y2 = y1, and the vertical y2

axis.

• When x1 = 0 and 0 < x2 < 1, then s y1 = 0 and y2 = 0.

• When x1 = 2 and 0 < x2 < 1, then (y1, y2) =
(

2x2,
2
x2

)
, thus y2 =

4
y1

and 0 < y1 < 2.

• When x2 = 1 and 0 < x1 < 2, then (y1, y2) = (x1, x1), i.e. y2 = y1.

We conclude from the continuity and the claim 0 < y1 < 2 that

D′ =
{

(y1, y2) ∈ R
2 | 0 < y1 < 2, y1 < y2 <

4
y1

}
.

4) Since y2 > 0, the Jacobian becomes

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣∣∣∣∣

1
2

√
y2

y1

1
2

√
y1

y2

1
2

√
1

y1y2
−1

2

√
y1

y2

∣∣∣∣∣∣∣∣∣∣
= −1

4

√
y2

y1
· y1

y3
2

− 1
4

√
y1

y2
· 1
y1y2

= − 1
2y2

.
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3. The transformation formula and the Jacobian

From h (x1, x2) =
1
2

for (x1, x2) ∈ D, follows that

k (y1, y2) =

⎧⎪⎨
⎪⎩

1
4y2

for (y1, y2) ∈ D′,

0 otherwise.

5) When 0 < y1 < 2, we get by a vertical integration

fY1 (y1) =
∫ 4/y1

y1

1
4y2

dy2)
1
4

[ln y2]
4/y1
y1

=
1
4

(
ln

4
y1

− ln y1

)
=

1
2

ln
(

2
y1

)
,

hence

fY1 (y1) =

⎧⎪⎨
⎪⎩

1
2

(ln 2 − ln y1) for 0 < y1 < 2,

0 otherwise.

When 0 < y2 ≤ 2, we get by a horizontal integration,

fY2 (y2) =
y2

4y2
=

1
4
.

If instead y2 > 2, then

fY2 (y2) =
1

4y2
· 4
y2

=
1
y2
2

.

Summing up,

fY2 (y2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
4

for 0 < y2 ≤ 2,

1
y2
2

for 2 < y < ∞,

0 for −∞ < y ≤ 0.

6) The improper integral∫ ∞

2

y2 fY2 (y2) dy2 =
∫ ∞

2

1
y2

dy2 = ∞,

is clearly divergent, hence E {Y2} does not exist.

7) Since X2 > 0, it follows by a small rewriting

P

{
1
3

X1 < X2 < 3X1

}
= P

{
1
3

Y2 < 1 < 3Y2

}
= P

{
1
3

< Y2 < 3
}

=
∫ 3

1
3

fY2 (y2) dy2

=
∫ 2

1
3

1
4

dy2 +
∫ 3

2

1
y2
2

dy2 =
1
4

(
2 − 1

3

)
+

[
− 1

y2

]3

2

=
5
12

− 1
3

+
1
2

=
5 − 4 + 6

12
=

7
12

.
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4 Conditional distributions

Example 4.1 Let (X,Y ) be a 2-dimensional random variable of frequency h(x, y) and marginal fre-
quencies f(x) and g(y), and let f(x | y) be the conditional frequency of X, given Y = y.
Let ϕ be a function : R → R, for which∫ ∞

−∞
|ϕ(x)| f(x | y) dx < ∞ for alle y ∈ R.

In such a case we define the conditional mean of ϕ(X), given Y = y, by

(1)
∫ ∞

−∞
ϕ(x) f(x | y) dx.

The conditional mean of ϕ(X), given Y , is the random variable, which for Y = y has the value of (1).
Hence, the conditional mean is a function in Y , and it is denoted by E{ϕ(X) | Y }.
If ϕ(x) = x, we get in particular the conditional mean of X, given Y , and for ϕ(x) = (x−E{X | Y })2

we get the conditional variance of X, given Y .

1) Assuming that the random variable E{X | Y } has a mean, prove that

E{X} = E{E{X | Y }}.

2) Find an analogous formula which expresses V {X} by means of the conditional mean E{X | Y }
and the conditional variance V {X | Y }.

3) Let Ψ be a function : R → RProve that E{[X − Ψ(Y )]2} has its minimum for Ψ(Y ) = E{X | Y }.

1) We have

h(x, y) = f(x | y) g(y).

If we put Z = ϕ(Y ) = E{X | T}, then Z has the values∫ ∞

−∞
x f(x | y) dx, if g(y) 	= 0,

and 0 otherwise. Hence, the values of Z = E{X | Y } are

z(y) =

⎧⎪⎨
⎪⎩

1
g(y)

∫ ∞
−∞ xh(x, y) dx for g(y) 	= 0,

0 for g(y) = 0.

Since g(y) = 0 implies that h(x, y) = 0 almost everywhere, the mean of Z = E{X | Y } is given by

E{Z} = E{E{X | Y }} =
∫ ∞

−∞
z(y) g(y) dy =

∫
g(y)�=0

1
g(y)

∫ ∞

−∞
xh(x, y) dx · g(y) dy

=
∫ ∞

−∞

∫ ∞

−∞
xh(x, y) dx dy = E{X}.
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Alternatively we may use that E{X | Y } for Y = y has the value∫ ∞

−∞
x f(x | y) dx,

so

E{E{X | Y }} =
∫ ∞

y=−∞

{∫ ∞

−∞
x f(x | y) dx

}
g(y) dy =

∫ ∞

x=−∞
x

{∫ ∞

y=−∞
f(x | y)g(y) dy

}
dx

=
∫ ∞

x=−∞
x

{∫ ∞

y=−∞
f(x, y) dy

}
dx =

∫ ∞

−∞
x f(x) dx = E{X}.

2) Then put ϕ(x) = (x − E{X | Y })2. When g(y) 	= 0 it follows that V {X | Y } has the values

∫ ∞

−∞
(x − E{X | Y = y})2f(x, y) dx

=
1

g(y)

∫ ∞

−∞

[
x2 − 2xE{X | y} + (E{X | y})2] h(x, y) dx,
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thus

E{V {X | Y }} =
∫ ∞

−∞

1
g(y)

∫ ∞

−∞

[
x2 − 2xE{X | y} + (E{X | y})2]h(x, y) dx · g(y) dy

=
∫ ∞

−∞

∫ ∞

−∞

[
x2 − 2xE{X | y} + (E{X | y})2] h(x, y) dx dy

= E
{
X2

}− 2
∫ ∞

−∞
g(y)E{X | y} ·

∫ ∞

−∞
x f(x | y) dx dy

+
∫ ∞

−∞
g(y) (E{X | y})2 dy

= E
{
X2

}− 2
∫ ∞

−∞
g(y) · E{X | y} · E{X | y} dy

+
∫ ∞

−∞
g(y) (E{X | y})2 dy

= E
{
X2

}−
∫ ∞

−∞
(E{X | y})2 g(y) dy

= V {X} + (E{X})2 −
∫ ∞

−∞
(E{X | y})2 g(y) dy

= V {X} + (E{E{X | Y }})2 − E{(E{X | Y })2},

and hence

V {X} = E{V {X | Y }} − (E{E{X | Y }})2 + E
{
(E{X | Y })2} .

Alternatively and more sophisticated we first compute

V {X} = E
{
(X − E{X})2} = E

{
[(X − E{X | Y }) + E{X | Y } − E{XY })]2}

= E
{
(X − E{X | Y })2} + E

{
(E{X | Y } − E{X})2}

+2E{(X − E{X | Y }) · (E{X | Y } − E{X})}
= E

{
(X − E{X | Y })2} + V {E{X | Y }}
+2E{(X − E(X | Y )} · E{X | Y }} = 0.

Then the claim follows if we can prove that the third term above is 0.
We first compute the simpler expression

E{X · E{X | Y }} =
∫ ∫

{x
∫

x f(x | y) dx}h(x, y) dx dy

=
∫ ∫

{x
∫

x f(x | y) dy}f(x | y) g(y) dx dy

=
∫

y

{(∫
x

x f(x | y) dx · g(y)
)
·
∫

x

x f(x | y) dx

}
dy

=
∫

y

g(y) · {x f(x | y) dx}2
dy = E

{
(E{X | Y })2} .

Then

0 = E{X · E{X | Y }} − E
{
(E{X | Y })2} = E{(X − E{X | Y }) · E{X | Y }},
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and we conclude that the third term is indeed 0 as claimed above, and it follows that

V {X} = V {E{X | Y }} + E
{
[X − E{X | Y }]2} .

3) By a small computation,

E
{
[X − Ψ(Y )]2

}
= E

{
[X − E{X | Y } + E{X | Y } + E{X | Y } − Ψ(Y )]2

}
= E

{
[X − E{X | Y }]2} + 2E{[X − E{X | Y }] [E{X | Y } − Ψ(Y )]}
+E

{
[E(X | Y } − Ψ(Y )]2

}
.

Here

2E{[X − E{X | Y }] [E{X | Y } − Ψ(Y )]}
= 2

∫ ∞

−∞
g(y)(E{X | y} − Ψ(Y ))

∫ ∞

−∞
(x − E{X | y}) f(x | y) dx dy

= 2
∫ ∞

−∞
g(y) [E{X | y} − Ψ(y)] [E{X | y} − E{X | y}] dy

= 0.

Hence

E
{
[X − Ψ(Y )]2

}
= E

{
[X − E{X | Y }]2} + E

{
[E{X | Y } − Ψ(Y )]2

}
.

Since E
{
[E{X | Y } − Ψ(Y )]2

} ≥ 0, and E
{
[E{X | Y } − Ψ(Y )]2

}
= 0 imply that Ψ(Y ) = E{X |

Y }, the claim is proved.
Alternatively,

E
{
[X − ψ(Y )]2

}
=

∫
y

g(y)
{∫

x

(x − ψ(y))2f(x | y) dx

}
dy

is smallest, when∫
(x − ψ(y))2f(x | y) dx

is smallest. This is the case, if and only if

ψ(y) =
∫

x

x f(x | y) dx,

hence

ψ(Y ) = E{X | Y }.
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Example 4.2 Let the 2-dimensional random variable (X,Y ) have the frequency

f(x, y) =

⎧⎪⎨
⎪⎩

1
2

x3 e−x(y+1), x > 0 and y > 0,

0, otherwise.

Find the conditional frequencies f(x | y) and f(y | x), and find the conditional means E{X | Y } and
E{Y | X}.

First find the marginal frequencies. When x > 0, then

fX(x) =
1
2

∫ ∞

0

x3e−x(y+1) dy =
1
2

x2 e−x.

When y > 0, then

fY (y) =
1
2

∫ ∞

0

x3 e−x(y+1) dy =
1
2

1
(y + 1)4

∫ ∞

0

t3e−t dt =
3

(y + 1)4
.

Summing up,

fX(x) =

⎧⎪⎨
⎪⎩

1
2

x2 e−x, x > 0,

0, x ≤ 0,

and

fY (y) =

⎧⎪⎨
⎪⎩

3
(y + 1)4

, y > 0,

0, y ≤ 0.

Since

f(x, y) = f(x | y) fY (y) = f(y | x) fX(x)

where f(x | y) = 0 for fY (y) = 0, and analogously, if follows for x, y > 0, that

f(x | y) =
f(x, y)
fY (y)

=
1
2

x3 e−x(y+1)

/
3

(y + 1)4
=

1
6

x3 (y + 1)4e−x(y+1),

and

f(y | x) =
f(x, y)
fX(x)

=
1
2

x3e−x(y+1)

/
1
2

x2e−x = x e−xy,

with the value 0 otherwise.

We get from Example 4.1 for given Y = y > 0, that

E{X | y} =
∫ ∞

0

x f(x | y) dx =
1
6

(y + 1)4
∫ ∞

0

x4e−x(y+1) dx

=
1
6

1
y + 1

∫ ∞

0

t4 e−t dt =
24
6

· 1
y + 1

=
4

y + 1
,
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hence

E{X | Y } =
4

Y + 1
.

Analogously, for given X = x > 0,

E{Y | x} =
∫ ∞

0

y f(y | x) dy =
∫ ∞

0

y x e−xy dy =
1
x

∫ ∞

0

t e−t dt =
1
x

,

hence

E{Y | X} =
1
X

.
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4. Conditional distributions

Example 4.3 Let X1 and X2 be independent random variables of frequency

f(x) =

⎧⎨
⎩

a e−ax, x ≥ 0,

0, x < 0,

where a is a positive constant, and let the random variable Y be given by Y = X1 + X2.

1) Find the conditional frequency f (x1 | y) of X1, for given Y = y.

2) Find the conditional mean E {X1 | Y }.

1) First find the frequency g(y) of Y . Obviously, g(y) = 0 for y ≤ 0. When y > 0 we get

g(y) =
∫ y

0

a e−ax · a e−a(y−x) dx = a2y e−ay.

Let Z = (X1, Y ) = (X1,X1 + X2) have the frequency h (x1, y), and let X = (X1,X2) have the
frequency k (x1, x2). Since X1 and X2 are independent, we get

k (x1, x2) =

⎧⎨
⎩

a2e−a(x1+x2) for x1 ≥ 0 and x2 ≥ 0,

0 otherwise.

Then we derive h (x1, y) from k (x1, x2) in the following way. If we put

(y1, y2) = ψ (x1, x2) = (x1, x1 + x2) [= (x1, y)] ,

then the inverse map is given by

(x1, x2) = ϕ (y1, y2) = (y1, y2 − y1) [= (x1, y − x1)] .

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

Figure 17: The domain D′ is the angular space between the line y2 = y1 and the vertical y2 axis.

The map ψ is bijective from R
2
+ onto the domain

D′ = {(y1, y2) | 0 < y1 < y2} .
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The Jacobian is

∂ (x1, x2)
∂ (y1, y2)

=

∣∣∣∣∣∣
∂x1
∂y1

∂x1
∂y2

∂x2
∂y1

∂x2
∂y2

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 0

−1 1

∣∣∣∣∣∣ = 1,

so by the transformation formula,

h (y1, y2) =

⎧⎨
⎩

f (x1, y − x1) · 1 = a2 e−ay2 for 0 < y1 < y2,

0 otherwise,

thus

h (x1, y) =

⎧⎨
⎩

a2 e−ay for 0 < x1 < y,

0 otherwise.

If y ≤ 0, then f (x1 | y) = 0, and if y > 0, then

f (x1 | y) =
h (x1, y)

g(y)
=

a2e−ay

a2y e−ay
=

1
y

for 0 < x1 < y,

and f (x1 | y) = 0 otherwise.
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2) When Y = y is given, we conclude from Example 4.1,

E {X1 | y} =
1
y

∫ t

0

x1 dx1 =
1
y

[
1
2

x2
1

]y

0

=
1
2

y,

hence

E {X1 | Y } =
1
2

Y.

Example 4.4 Let X1 and X2 be independent random variables med frequency

f(x) =

⎧⎨
⎩

a e−ax, x ≥ 0,

0, x < 0,

where a is a positive constant. Let

(Y1, Y2) =
(
X2

1 ,X1 − X2

)
.

1) Find the frequency of (Y1, Y2).

2) Find the conditional frequency of Y1, given Y2 = y2.

3) Find the conditional mean of Y1, given Y2.

4) Find the correlation coefficient between Y1 and Y2.

–2

–1

0

1

2

1 2 3 4

Figure 18: The domain Ω is that part of the right half plane, which lies below the parabolic arc
y2 =

√
y1, y1 > 0.

1) The function

(y1, y2) = ψ (x1, x2) =
(
x2

1, x1 − x2

)
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maps the first quadrant R
2
+ bijectively into the domain Ω of the figure, given by

Ω = {(y1, y2) | y1 > 0, y2 <
√

y1} .

The inverse map ϕ : Ω → R
2
+ is given by

(x1, x2) = ϕ (y1, y2) = (
√

y1,
√

y1 − y2) .

The Jacobian is∣∣∣∣∣∣∣∣∣

∂x1

∂y1

∂x1
∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

2
√

y1
0

1
2
√

y1
−1

∣∣∣∣∣∣∣ = − 1
2
√

y1
< 0.

If (y1, y2) ∈ Ω, then the frequency of (Y1, y2) is given by

h (y1, y2) = f (
√

y1) · f (
√

y1 − y2) · 1
2
√

y1
= a e−a

√
y1 · a e−a

√
y1+a y2 · 1

2
√

y1
,

thus

h (y1, y2) =

⎧⎪⎪⎨
⎪⎪⎩

a2

2
√

y1
e−2a

√
y1+a y2 for y1 > 0 and y2 <

√
y1,

0 otherwise.

2) First find the marginal frequency of Y2.
If y2 ≤ 0, then we get by a horizontal integration,

fY2 (y2) =
∫ ∞

0

h (y1, y2) dy1 = a2 ea y2

∫ ∞

0

1
2
√

y1
e−2a

√
y1 dy1

= a2ea y2

∫ ∞

0

e−2at dt =
a

2
ea y2 =

a

2
e−a|y2|.

If instead y2 > 0, then by a horizontal integration,

fY2 (y2) = a2ea y2

∫ ∞

y2
2

1
2
√

y1
e−2a

√
y1 dy1 = a2ea y2

∫ ∞

y2

e−2at dt

=
a

2
ea y2 · e−2a y2 =

a

2
e−a y2 =

a

2
e−1|y2|.

Summing up,

fY2 (y2) =
a

2
e−a|y2|, y2 ∈ R.

If (y1, y2) ∈ Ω, i.e. y1 > 0 and y2 <
√

y1, then f (y1 | y2) is given by

f (y1 | y2) =
h (y1, y2)
fY2 (y2)

=
a2

2
√

y1
· e−2a

√
y1+a y2 · 2

a
ea|y2| =

a√
y1

e−2a
√

y1+a(y2+|y2|)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a√
y1

e−2a
√

y1+2a y2 for y2 > 0,

a√
y1

e−2a
√

y1 for y1 ≤ 0.
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3) If y2 > 0, then we get for given Y2 = y2,

E {Y1 | y2} =
∫ ∞

y2
2

y1 · a√
y1

e−2a
√

y1+2ay2 dy1 = e2ay2

∫ ∞

y2

t2 · 2a e−2at dt

=
1

4a2
e2ay2

∫ ∞

2ay2

u2e−u du

=
1

4a2
e2ay2

{[−u2e−u
]∞
2ay2

+ 2
∫ ∞

2ay2

u e−u du

}

=
1

4a2
e2ay2

{
4a2y2

2e−2ay2 + 2
[−u e−u

]∞
2ay2

+ 2
[−e−u

]∞
2ay2

}
=

1
4a2

{
4a2y2

2 + 2 · 2ay2 + 2
}

= y2
2 +

1
a

y2 +
1

2a2
.

On the other hand, if y2 ≤ 0, then for given Y2 = y2,

E {Y1 | y2} =
∫ ∞

0

y1 · a√
y1

e−2a
√

y1 dy1 = 2
∫ ∞

0

a t2e−2at dt =
1

4a2

∫ ∞

0

u2e−u du =
2!

4a2
=

1
2a2

.

Summing up,

E {Y1 | Y2} = (max {Y2, 0})2 +
1
a

max {Y2, 0} +
1

2a2
.

4) Here the easiest method is to go back to the X-s. We get

E {Y1} = E
{
X2

1

}
=

∫ ∞

0

x2
1a e−ax1 dx1 =

1
a2

∫ ∞

0

t2e−t dt =
2
a2

and

E
{
Y 2

1

}
= E

{
X4

1

}
=

∫ ∞

0

x4
1a e−ax1 dx1 =

1
a4

∫ ∞

0

t4e−t dt =
24
a4

,

hence

V {Y1} = E
{
Y 2

1

}− (E {Y1})2 =
20
a4

.

Furthermore,

E {Y2} = E {X1 − X2} = E {X1} − E {X2} = 0,

so

V {Y2} = E
{
Y 2

2

}
= E

{
(X1 − X2)

2
}

= E
{
X2

1 − 2X1X2 + X2
2

}
= E

{
X2

1

}− 2E {X1} · E {X2} + E
{
X2

2

}
= 2

(
E

{
X2

1

}− (E {X1})2
)

= 2V {X1}

= 2

{∫ ∞

0

x2
1a e−ax1 dx1 −

(∫ ∞

0

x1a e−ax1 dx1

)2
}

= 2
(

2
a2

− 1
a2

)
=

2
a2

.
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Finally,

E {Y1Y2} = E
{
X3

1 − X2
1X2

}
=

∫ ∞

0

x3
1a e−ax1 dx1 −

∫ ∞

0

x2
1a e−ax1 dx1 ·

∫ ∞

0

x2a e−ax2 dx2

=
3!
a3

− 2!
a2

· 1
a

=
6 − 2
a3

=
4
a3

,

and we get

Cov (Y1, Y2) = E {Y1Y2} − E {Y1} · E {Y2} =
4
a3

− 0 =
4
a3

,

and

� (Y1, Y2) =
Cov (Y1, Y2)√
V {Y1} · V {Y2}

=
4
a3√

20
a4 · 2

a2

=
4

2
√

10
=

2
√

10
10

=
√

10
5

.
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5 Some theoretical results

Example 5.1 Let X be a random variable, for which P {X > 0} = 1, and for which E{X} and

E

{
1
X

}
exist.

Prove that

1 ≤ E{X} · E
{

1
X

}
.

Hint: One may look at E

{(√
X + t · 1√

X

)2
}

.

Remark 5.1 The proof is similar to the traditional proof of the Cauchy-Schwarz inequality. ♦

Since P{X > 0} = 1, it follows that
√

X is defined.
Then by the rules of computation we get for every t ∈ R that

0 ≤ E

{(√
X + t · 1√

X

)2
}

= E

{
X + 2t + t2 · 1

X

}
= t2E

{
1
X

}
+ 2t + E{X}.

The right hand side is a polynomial of second degree in t. Since it is ≥ 0 for every t ∈ R, it is
well-known from high school that the condition is

0 ≥
(

V

2

)2

− AC = 1 − E{X} · E
{

1
X

}
,

hence by a rearrangement

1 ≤ E{X} · E
{

1
X

}
.

Example 5.2 Let X and Y be random variables where E
{
X2

}
< ∞ and E

{
Y 2

}
< ∞.

Prove that XY has a mean and that

E{|XY |} ≤
√

E {X2} ·
√

E {Y 2}.

We shall apply the same method as in Example 5.1.
For every t ∈ R,

0 ≤ E
{
(|X| + t|Y |)2} = E

{
X2 + 2t |XY | + t2Y 2

}
= t2E

{
Y 2

}
+ 2t E{|XY |} + E

{
X2

}
,

where the right hand side is a non-negative polynomial of second degree in t. Then

|XY | ≤ 1
2
|X|2 +

1
2
|Y |2,
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exists E{|XY |} < ∞, hence E{XY } also exists.
Finally, it follows from the condition of the discriminant that

(E{|XY |})2 ≤ E
{
X2

} · E {
Y 2

}
,

whence

E{|XY |} ≤
√

E {X2} ·
√

E {Y 2}.

Example 5.3 Let (X,Y ) have the frequency

f(x, y) =

⎧⎪⎨
⎪⎩

2
π2 (1 + x2) (1 + y2)

, x > 0,

0, x ≤ 0,

y ∈ R.

Prove that X and Y are independent, though not non-correlated.

If x > 0, then

fX(x) =
∫ ∞

−∞

2
π2 (1 + x2) (1 + y2)

dy =
2
π
· 1
1 + x2

,

and fX(x) = 0 for x ≤ 0.

Analogously we get for every y ∈ R,

fY (y) =
∫ ∞

0

2
π2 (1 + x2) (1 + y2)

dx =
1
π
· 1
1 + y2

.

It follows from

f(x, y) = fX(x) · fY (y),

that X and Y are independent.

The phrase “X and Y are non-correlated” assumes that Cov(X,Y ) exists and is = 0. The existence
of Cov(X,Y ) assumes again that E{XY } exists. In the given situation this is not the case, because∫ ∞

−∞

{∫ ∞

0

2|xy| dx

π2 (1 + x2) (1 + y2)

}
dy =

4
π2

∫ ∞

0

x

1 + x2
dx ·

∫ ∞

0

y

1 + y2
dy = ∞.
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6 The correlation coefficient

Example 6.1 Let X1, X2, . . . , Xn be independent random variables for which

E {Xi} = μ, V {Xi} = σ2, i = 1, 2, . . . , n.

Let X denote the random variable

X =
1
n

{X1 + X2 + · · · + Xn} .

Find the correlation coefficient �
(
X,X1

)
.

Since the covariance is bilinear, and X1, X2, . . . , Xn are independent, it follows that

Cov
(
X,X1

)
= Cov

(
1
n

n∑
i=1

Xi,X1

)
=

1
n

n∑
i=1

Cov (Xi,X1) =
1
n

Cov (X1,X1) =
1
n

V {X1} =
1
n

σ2.

Furthermore,

V {X} = V

{
1
n

n∑
i=1

Xi

}
=

1
n2

n∑
i=1

V {Xi} =
1
n2

· nσ2 =
σ2

n
,

hence

�
(
X,X1

)
=

Cov
(
X,X1

)
√

V {X}V {X1}
=

1
n σ2

1√
n

σ · σ =
1√
n

.

Example 6.2 A random variable X is rectangularly distributed over ] − 1, 1[. Let Y = X2 and
Z = X3. Find �(X,Y ) and �(X,Z).

It follows by the symmetry that

E
{
X2n+1

}
= 0, n ∈ N0.

Furthermore,

E
{
X2n

}
=

∫ 1

−1

1
2

x2n dx =
∫ 1

0

x2n dx =
1

2n + 1
, n ∈ N.

Hence

Cov(X,Y ) = Cov
(
X,X2

)
= E

{
X3

}− E{X} · E {
X2

}
= 0,

and thus

�(X,Y ) = 0.

Download free eBooks at bookboon.com



Random variables III

 
75 

6. The correlation coeffi cient

Furthermore,

Cov(X,Z) = Cov
(
X,X3

)
= E

{
X4

}− E{X} · E {
X3

}
=

1
5
.

Since

V {X} = E
{
X2

}− (E{X})2 = E
{
X2

}
=

1
3
,

and

V {Z} = V
{
X3

}
= E

{
X6

}− (
E

{
X3

})2
= E

{
X6

}
=

1
7
,

we get

�(X,Z) =
Cov(X,Z)√
V {X} · V {Z} =

1
5√
1
3 · 1

7

=
√

21
5

≈ 0.917.
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Example 6.3 Let X and Y be random variables for which

V {X} = 1, V {Y } = 9 and �(X,Y ) =
1
3
.

Let U = X + aY , V = X + Y , where a is a real constant.
Find a, such that U and V become non-correlated.

First we derive the condition,

0 = Cov(U, Y ) = Cov(X + aY,X + Y )
= Cov(X,X) + aCov(Y,X) + Cov(X,Y ) + aCov(Y, Y )
= V {X} + (a + 1)Cov(X,Y ) + aV {Y }
= V {X} + (a + 1)�(X,Y )

√
V {X} · V {Y } + aV {Y }

= 1 + (a + 1) · 1
3

√
1 · 9 + a · 0 = 1 + a + 1 + 9a = 2 + 10 a.

When this equation is solved with respect to a, we get a = −1
5
.

Example 6.4 Let X and Y be independent random variables of the frequency

f(x) =

⎧⎨
⎩

1 − |x|, |x| < 1,

0, |x| ≥ 1.

Put U = X2 + Y 2 and V = X3 + Y . Find the correlation coefficients �(U,X), �(V,X) and �(U, V ).

It follows from the symmetry that E{X} = E{Y } = 0. Hence

V {X} = V {Y } = E
{
X2

}
=

∫ 1

−1

x2(1 − |x|) dx = 2
∫ 1

0

x2(1 − x) dx = 2
(

1
3
− 1

4

)
=

1
6
.

Analogously, E
{
X2n+1

}
= E

{
Y 2n+1

}
= 0, and

E
{
X2n

}
= E

{
Y 2n

}
= 2

∫ 1

0

x2n(1 − x) dx =
2

2n + 1
− 2

2n + 2

=
2

2n + 1
− 1

n + 1
=

1
(2n + 1)(n + 1)

.

Since X and Y are independent, it follows from the above that

Cov(U, V ) = Cov
(
X2 + Y 2,X

)
= Cov

(
X2,X

)
+ Cov

(
Y 2,X

)
= Cov

(
X2,X

)
= E

{
X3

}− E
{
X2

} · E{X} = 0,

so �(U,X) = 0, and U and X are non-correlated.

Analogously;

Cov(V,X) = Cov
(
X3 + Y,X

)
= Cov

(
X3, x

)
= E

{
X4

}− E
{
X2

}
E{X} =

1
5 · 3 =

1
15

.
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6. The correlation coeffi cient

Since

V {V } = V
{
X3

}
+ V {Y } = E

{
X6

}
+ E

{
Y 2

}
=

1
7 · 4 +

1
3 · 2 =

3 + 2 · 7
7 · 4 · 3 =

17
84

,

we get

�(V,X) =
Cov(V,X)√
V {V } · V {X} =

1
15√
17
84 · 1

6

=
6
15

√
14
17

=
2
5

√
14
17

≈ 0, 363.

Finally,

Cov(U, V ) = Cov
(
X2 + Y 2,X3 + Y

)
= Cov

(
X2, x3

)
+ Cov

(
Y 2, Y

)
= E

{
X5

}− E {X} · E {
X3

}
+ E

{
Y 3

}− E
{
Y 2

} · E{Y } = 0,

hence �(U, V ) = 0, and U and V are non-correlated.
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7 Maximum and minimum of linear combinations of random
variables

Example 7.1 1) Let X1 and X2 be two independent random variables, for which

E {X1} = E {X2} = μ 	= 0, V {X1} = σ2
1 > 0 and V {X2} = σ2

2 > 0.

Find the constants a1 and a2, such that

E {a1X1 + a2X2} = μ,

and such that

V {a1X1 + a2X2}
has its smallest value. Then find the corresponding minimum.
What is the minimum, when in particular σ1 = σ2 = σ?

2) Then let X1, X2, . . . , Xn be independent random variables, for which

a) E {X1} = E {X2} = · · · = E {Xn} = μ (	= 0),

b) V {X1} = V {X2} = · · · = V {Xn} = σ > 0.

Find the constants a1, a2, . . . , an, such that

E

{
n∑

i=1

aiXi

}
= μ,

while

V

{
n∑

i=1

aiXi

}

takes its smallest value. Then find this smallest value.

1) It follows by the linearity that

E {a1X1 + a2X2} = a1E {X1} + a2E {X2} = (a1 + a2)μ.

Since μ 	= 0, this expression is = μ, if and only if a1 + a2 = 1.

Put a1 = λ. Then a2 = 1 − λ, and

ϕ(λ) = V {a1X1 + a2X2} = λ2V {X1} + (1 − λ)2V {X2} = λ2σ2
1 + (1 − λ)2σ2

2

where

ϕ′(λ) = 2λσ2
1 + 2(λ − 1)σ2

2 = 0

for

λ =
σ2

2

σ2
1 + σ2

2

, thus 1 − λ =
σ2

1

σ2
1 + σ2

2

.
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7. Maximum and minimum of linier combinations of random variables

On the other hand, we know that there exists a smallest value, and since the computations above
give the coefficients of the only candidate, we must necessarily have

a1 =
σ2

2

σ2
1 + σ2

2

and a2 =
σ2

1

σ2
1 + σ2

2

,

corresponding to

V

{
σ2

2

σ2
1 + σ2

2

X1 +
σ2

1

σ2
1 + σ2

2

X2

}
=

σ4
2σ2

1

(σ2
1 + σ2

2)2
+

σ4
1σ2

2

(σ2
1 + σ2

2)2
=

σ2
1σ2

2

σ2
1 + σ2

2

.

Note that since σ2
1 > 0 and σ2

2 > 0, this variance is < min
{
σ2

1 , σ2
2

}
.

When σ1 = σ2 = σ, then the value of the smallest value is

σ2
1σ2

2

σ2
1 + σ2

2

=
σ4

2σ2
=

1
2

σ2.

2) This is just a generalization. Since the equation

E

{
n∑

i=1

aiXi

}
=

n∑
i=1

aiE {Xi} =
n∑

i=1

aiμ = μ 	= 0,

is only satisfied for

n∑
i=1

ai = 1,

we can eliminate one constant, e.g.

an = 1 −
n−1∑
i=1

ai.

Then the task is reduced to minimize the function

ϕ (a1, . . . , an−1) = V

{
n−1∑
i=1

aiXi +

(
1 −

n−1∑
i=1

ai

)
Xn

}
=

n−1∑
i=1

a2
i V {Xi} +

(
1 −

n−1∑
i=1

ai

)2

V {Xn}

=

⎧⎨
⎩

n−1∑
i=1

a2
i +

(
n−1∑
i=1

ai − 1

)2
⎫⎬
⎭σ2.

The equations of possible stationary points are

∂ϕ

∂ai
=

{
2ai + 2

(
n−1∑
i=1

ai − 1

)}
σ2 = 2σ2 {ai − an} = 0,

for i = 1, . . . , n − 1, thus ai = an for all i. This implies that

n∑
i=1

ai =
n∑

i=1

an = nan = 1,
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hence

an =
1
n

and ai =
1
n

, i = 1, . . . , n − 1.

We have now proved that
(

1
n

,
1
n

, . . . ,
1
n

)
is the only stationary point.

Since ϕ (a1, . . . , an−1) is of class C∞ and is positive, and since ϕ (a1, . . . , an−1) → ∞ for a2
1 + · · ·+

a2
n−1 → ∞, a minimum exists. The only candidate is

(
1
n

,
1
n

, . . . ,
1
n

)
, so this is indeed a minimum.

Finally, by insertion,

ϕ

(
1
n

, . . . ,
1
n

)
= V

{
n∑

i=1

1
n

Xi

}
=

n

n2
V {X1} =

σ2

n
.

Alternatively it is possible here to make some constructive guesses. We must again require

that
∑n

i=1 ai = 1, so getting an inspiration from the first question we guess that all ai =
1
n

.

This can be proved in the following way:
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Let the ai be any such constants of
∑n

i=1 ai = 1. Then

V

{
n∑

i=1

aiXi

}
= σ2

n∑
i=1

a2
i = σ2

n∑
i=1

{(
ai − 1

n

)
+

1
n

}2

= σ2

{
n∑

i=1

(
ai − 1

n

)2

+
n∑

i=1

1
n2

}

= σ2

{
n∑

i=1

(
ai − 1

n

)2

+
1
n

}
.

It follows that the minimum is obtained when the first term in the parenthesis is 0, i.e. when all

ai =
1
n

. With these choices we finally get the minimum
σ2

n
.

Example 7.2 Let X1, X2, . . . , Xn be independent random variables, for which

E {Xi} = μ (	= 0), V {Xi} = σ2
i > 0, i = 1, 2, . . . , n.

Find constants a1, a2, . . . , an, such that

E

{
n∑

i=1

aiXi

}
= μ,

while

V

{
n∑

i=1

aiXi

}

takes on its minimum. Then find this minimum.

Remark 7.1 This example is of course a generalization of Example 7.1. ♦

1) First we compute

E

{
n∑

i=1

aiXi

}
=

(
n∑

i=1

ai

)
μ = μ 	= 0 for

n∑
i=1

ai = 1,

and

V

{
n∑

i=1

aiXi

}
=

n∑
i=1

a2
i V {Xi} =

n∑
i=1

σ2
i a2

i .

Since

an = 1 −
n−1∑
i=1

ai where
∂an

∂ai
= −1,

it follows that we shall minimize the function

ϕ (a1, . . . , an−1) =
n−1∑
i=1

σ2
i a2

i + σ2
n

(
1 −

n−1∑
i=1

ai

)2

, an = 1 −
n−1∑
i=1

ai.
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2) The equations of possible stationary points are

∂ϕ

∂ai
= 2σ2

i ai + 2σ2
nan

∂an

∂ai
= 2

(
σ2

i ai − σ2
nan

)
= 0, i = 1, . . . , n − 1.

They imply that

ai =
σ2

n

σ2
i

an, i = 1, . . . , n − 1.

Then by insertion,

1 =
n∑

i=1

ai =

(
n∑

i=1

σ2
n

σ2
i

)
an = σ2

n

(
n∑

i=1

1
σ2

i

)
· an,

thus

an =
1

σ2
n

∑n
i=1

(
1
σ2

i

) and ai =
1

σ2
i

∑n
i=1

(
1
σ2

i

) , i = 1, . . . , n − 1,

giving us the coordinates of the only stationary point.

3) It follows from

ϕ (a1, . . . , an−1) → ∞ for a2
1 + · · · + a2

n−1 → ∞,

that we get a minimum at this stationary point. Hence, the minimum is given by

(a1, . . . , an) =
1∑n

i=1

(
1
σ2

i

) (
1
σ2

1

,
1
σ2

2

, . . . ,
1
σ2

n

)
.

Here, the value is

V

{
n∑

i=1

aiXi

}
=

1{∑n
i=1

1
σ2

i

}2

n∑
i=1

σ2
i

σ4
i

=
1∑n

i=1

1
σ2

i

.

Alternatively we may pass straight ahead towards the task of finding the ai, such that
∑n

i=1 ai = 1,
and

∑n
i=1 a2

i σ
2
i is as small as possible.

If we put xi = aiσi, i.e. ai =
xi

σi
, we see that we shall find the xi, such that

n∑
i=1

1
σi

xi = 1 and
n∑

i=1

x2
i is as small as possible.

Here the condition
n∑

i=1

1
σi

xi = 1
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describes an hyperplane in R
n with the normed normal vector(

1
σ1

,
1
σ2

, . . . ,
1
σn

)
· 1∑n

i=1

1
σ2

i

.

We obtain the smallest distance to the zero for

xi =

1
σi∑n

j=1

1
σ2

j

, and the distance is
1∑n

j=1

1
σ2

i

.

The conclusion is that

ai =

1
σ2

i∑n
j=1

1
σ2

i

, i = 1, 2, . . . , n,

and that the minimum is
1∑n

i=1

1
σ2

i

.

Alternatively it was proved in Example 7.1, first question that the minimum is obtained for

a1 =
σ2

2

σ2
1 + σ2

2

=

1
σ2

1

1
σ2

1

+
1
σ2

2

and a2 =

1
σ2

2

1
σ2

1

+
1
σ2

2

.

Therefore, we guess that the minimum in the general case is obtained when

ai =

1
σ2

i∑n
j=1

1
σ2

j

, i = 1, . . . , n.

This can be proved in the following way:
Let the ai be any numbers for which

∑n
i=1 ai = 1. Then

V

{
n∑

i=1

aiXi

}
=

n∑
i=1

a2
i σ

2
i =

n∑
i=1

{(
ai − 1/σ2

i∑n
j=1 1/σ2

j

)
+

1/σ2
i∑n

j=1 1/σ2
j

}2

σ2
i

=
n∑

i=1

{
ai − 1/σ2

i∑n
j=1 1/σ2

j

}2

σ2
i +

n∑
i=1

+
n∑

n=1

1/σ2
i{∑n

j=1 1/σ2
j

}2

+2
n∑

i=1

{
ai − 1/σ2

i∑n
j=1 1/σ2

j

}
· 1/σ2

i∑n
j=1 1/σ2

j

· σ2
i

=
n∑

i=1

{
ai − 1/σ2

i∑n
j=1 1/σ2

j

}2

σ2
i +

1∑n
j=1 1/σ2

j

+ 0,
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because it is easily seen that the last sum above is 0.
This implies that the minimum is obtained when all squares in the first sum are equal to 0, thus

ai =
1/σ2

i∑n
j=1 1/σ2

j

, i = 1, 2, . . . , n,

and the minimum is

1∑n
j=1 1/σ2

j

.
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Example 7.3 Let X1, X2, . . . , Xn be independent random variables, for which

E {X1} = E {X2} = · · · = E {Xn} = μ (	= 0),

V {X1} = V {X2} = · · · = V {Xn} = σ2 > 0.

Find constants a1, a2, . . . , an, such that

ai > 0, i = 1, 2, . . . , n,

E

{
n∑

i=1

aiXi

}
= μ,

while at the same time,

V

{
n∑

i=1

aiXi

}

takes its maximum, and find this maximum.

First note that taking the mean is a linear operation, so

n∑
i=1

aiμ = μ 	= 0, thus
n∑

i=1

ai = 1.

Furthermore, all ai ≥ 0, i = 1, 2, . . . , n.

We shall maximize the function

ϕ (a1, a2, . . . , an) = V

{
n∑

i=1

aiXi

}
=

n∑
i=1

a2
i σ

2,

under the conditions above.

Obviously,

1 = (a1 + a2 + · · · + an)2 ≥ a2
1 + · · · + a2

n =
n∑

i=1

a2
i ,

so this maximum must be ≤ 1 · σ2.

On the other hand, this value is obtained, when precisely one ai = 1, and all others are aj = 0, j 	= i.
Thus, the maximum is

V {X1} = V {X2} = · · · = V {Xn} = σ2.
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Example 7.4 Let X1, X2, . . . , Xn be independent Bernoulli distributed random variables of proba-
bilities of success p1, p2, . . . , pn, and let Y =

∑n
i=1 Xi. It is well-known that

E{Y } =
n∑

i=1

pi.

Prove that if E{Y } is a fixed number s, then the variance V {Y } is largest, if p1 = p2 = · · · = pn-
Then find this maximum.

The Bernoulli distribution is given by

P{X = 1} = p and P{X = 0} = q,

where p + q = 1, p, q > 0+. Then E{X} = p and E
{
X2

}
= p, hence

V {X} = E
{
X2

}− (E{X})2 = p − p [= p(p − 1) = pq].

If we assume that 0 < s < n is constant and that

n∑
i=1

pi = s, 0 < pi < 1 for i = 1, . . . , n,

then we shall maximize

V {Y } =
n∑

i=1

V {Xi} =
n∑

i=1

(
pi − p2

i

)
= s −

n∑
i=1

p2
1 = s −

n∑
i=1

{(
pi − s

n

)
+

s

n

}2

= s −
n∑

i=1

(
pi − s

n

)2

− 2
s

n

n∑
i=1

(
pi − s

n

)
−

n∑
i=1

s2

n2

= s −
n∑

i=1

(
pi − s

n

)2

− 2
s

n
·
(
s − n · s

n

)
− s2

n
= s − s2

n
−

n∑
i=1

(
pi − s

n

)2

.

Clearly, this expression is largest, when pi =
s

n
for i = 1, . . . , n, and when this holds, then

V {Y } = s − s2

n
(> 0, because 0 < s < n).

Download free eBooks at bookboon.com



Random variables III

 
87 

7. Maximum and minimum of linier combinations of random variables

Example 7.5 1) Let X be a random variable of mean μ and variance σ2. Prove that E
{
(X − a)2

}
has its minimum at a = μ.

2) Let X1 and X2 be random variables of means μ1, μ2, resp., variances σ2
1, σ2

2, resp., and correlation
coefficient �.
For which pairs of numbers (a, b) does

(2) E
{

[X2 − (aX1 + b)]2
}

obtain its smallest value?
Then find this minimum.
Hint: First keep a fixed and find the value of b, for which the expression (2) is as small as possible-

1) A direct computation gives

E
{
(X − a)2

}
= E

{
[(X − μ) + (μ − a)]2

}
= E

{
(X − μ)2

}
+ E{2(μ − a)(X − μ)} + E

{
(μ − a)2

}
= E

{
(X − μ)2

}
+ 2(μ − a)E{X − μ} + (μ − a)2

= E
{
(X − μ)2

}
+ (μ − a)2,

from which immediately follows that E
{
(X − a)2

}
obtains its minimum for a = μ.

2) Then by a simple reduction,

ϕ(a, b) = E
{

[X2 − a (X1 + b)]2
}

= E
{

[(X2 − aX1) − (μ2 − aμ1) + (μ2 − aμ1) + b]2
}

= E
{

[(X2 − aX1) − (μ2 − aμ1)]
2
}

+2 (μ2 − aμ1 + b) E {(X2 − aX1) − (μ2 − aμ1)}
+(μ2 − aμ1 − b)2

= V {X2 − aX1} + 2 (μ2 − aμ1 − b) [(μ2 − aμ1) − (μ2 − aμ1)]

+ (μ2 − aμ1 − b)2

= V {X2} − 2 aCov (X1,X2) + a2V {X1} + (aμ1 + b − μ2)
2

= (aμ1 + b − μ2)
2 + a2σ2

1 − 2a�σ1σ2 + σ2
2 .

We search possible stationary points of

ϕ(a, b) = (aμ1 + b − μ2)
2 + a2σ2

1 − 2a�σ1σ2 + σ2
2 .

The equations of the stationary points are⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ϕ

∂a
= 2μ1 (aμ1 + b − μ2) + 2aσ2

1 − 2�σ1σ2 = 0,

∂ϕ

∂b
= 2 (aμ1 + b − μ2) = 0.
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By a subtraction,

2aσ2
1 − 2�σ1σ2 = 0,

hence

a =
2�σ1σ2

2σ2
1

=
�σ2

σ1
.

We get by insertion into the latter equation,

b = μ2 − �σ2

σ1
μ1,

so the only stationary point is

(a, b) =
(

�σ2

σ1
, μ2 − �σ2

σ1
μ1

)
.

Since ϕ(a, b) → ∞ for a2 + b2 → ∞, the stationary point must necessarily be a minimum.

Finally the minimum is found to be

E

{[
X2 − �σ2

σ1
X1 − μ2 +

�σ2

σ1
μ1

]2
}

=
�2σ2

2

σ2
1

σ2
1−2

�σ2

σ1
·�σ1σ2+σ2

2 = �2σ2
2−2�2σ2

2+σ2
2 = σ2

2

(
1 − �2

)
.
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Alternatively, if a is given,

E
{

[X2 − (aX1 + b)]2
}

= E
{

[(X2 − aX1) − b]2
}

obtains according to question 1 its minimum for

b = E {X2 − aX1} = μ2 − aμ1,

and it follows that the minimum is

V {X2 − aX1} = σ2
2 + a2σ2

1 − 2a�σ1σ2.

This function in a has its minimum for

a = � · σ2

σ1
,

which either follows from high school mathematics or by noticing that the graph is a parabola.
We conclude that we obtain the minimum for

a = � · σ2

σ1
and b = μ2 − � · σ2

σ1
· μ1,

and the minimum is

σ2
2

(
1 − �2

)
.
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Example 7.6 Let X1, X2, . . . , Xn be independent random variables, where

E {Xi} = μ, V {Xi} = σ2, i = 1, . . . , n,

and let

X =
1
n

n∑
i=1

Xi.

Prove that

E

{
1

n − 1

n∑
i=1

(
Xi − X

)2

}
= σ2.

Hint: Write
n∑

i=1

(
Xi − X

)2
=

n∑
i=1

{
(Xi − μ)2 +

(
μ − X

)2
+ 2 (Xi − μ)

(
μ − X

)}
.

We shall only compute and reduce:

E

{
1

n − 1

n∑
i=1

(
Xi − X

)2

}
=

1
n − 1

E

{
n∑

i=1

[
(Xi − μ)2 +

(
μ − X

)2
+ 2 (Xi − μ)

(
μ − X

)]}

=
1

n − 1
E

{
n∑

i=1

(Xi − μ)2
}

+
1

n − 1
E

{
n
(
X − μ

)2
}

+
2

n − 1
E

{
n∑

i=1

(Xi − μ)
(
μ − X

)}

=
1

n − 1

n∑
i=1

E
{

(Xi − μ)2
}

+
n

n − 1
E

{(
X − μ

)2
}

+
2

n − 1
E

{
n
(
X − μ

) (
μ − X

)}

=
1

n − 1

n∑
i=1

V {Xi} − n

n − 1
E

{(
X − μ

)2
}

=
1

n − 1

n∑
i=1

σ2 − n

n − 1
V

{
X

}

=
n

n − 1
σ2 − n

n − 1
V

{
1
n

n∑
i=1

Xi

}
=

n

n − 1
σ2 − n

n − 1
· 1
n2

V

{
n∑

i=1

Xi

}

=
n

n − 1
σ2 − 1

n − 1
· 1
n

n∑
i=1

V {Xi} =
n

n − 1
σ2 − 1

n − 1
· 1
n
· nσ2

=
n

n − 1
σ2 − 1

n − 1
σ2 = σ2.
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8 Convergence in probability and in distribution

Example 8.1 In this example we use the notation Xn
P→ X, if (Xn) converges in probability towards

X. Recall that Xn
P→ X, if for every ε ∈ R+,

P {|Xn − X| ≥ ε} → 0 for n → ∞.

This can also be written in the following way:

Xn
P→ X, if the following condition is satisfied:

∀ ε ∈ R+ ∀ η ∈ R+ ∃n0 ∈ N∀n ∈ N : n > n0 ⇒ P {|Xn − X| ≥ ε} < η.

1) Prove that if Xn
P→ X, and a is a real constant, then also aXn

P→ aX.

2) Prove that if Xn
P→ X and Yn

P→ Y , then also Xn + Yn
P→ X + Y .

3) Prove that if Xn
P→ X, then also |Xn| P→ |X|.

4) Prove that if Xn
P→ 0, then also X2

n
P→ 0.

5) Prove that if Xn
P→ X, and Y is a random variable, then XnY

P→ XY .
Hint: To every δ ∈ R+ there exists c ∈ R+, such that P{|Y | > c} < δ.

6) Prove that if Xn
P→ X, then also X2

n
P→ X2.

Hint: Write Xn in the form Xn = (Xn − X) + X, and apply some of the results of the previous
questions.

7) Prove that if Xn
P→ X and Yn

P→ Y , then also XnYn
P→ XY .

Hint: Apply the rewriting

XnYn =
1
4

{
(Xn + Yn)2 − (Xn − Yn)2

}
.

1) When a = 0, there is nothing to prove. When a 	= 0, there exists an n1 = n1 (ε, a, η), such that

P {|aXn − aX| ≥ ε} = P

{
|Xn − X| ≥ ε

|a|
}

< η,

for every n > n1(ε, a, η).

2) It follows from

|(Xn + Yn) − (X + Y )| ≤ |Xn − X| + |Yn − Y | ,

that if |(Xn + Yn) − (X + Y )| ≥ ε, then either

|Xn − X| ≥ ε

2
or |Yn − Y | ≥ ε

2
.
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Then

{|(Xn + Yn) − (X + Y )| ≥ ε} �
{
|Xn − X| ≥ ε

2

}
∪

{
|Yn − Y | ≥ ε

2

}
,

hence

P {|(Xn + Yn) − (X + Y )| ≥ ε} ≤ P
{
|Xn − X| ≥ ε

2

}
+ P

{
|Yn − Y | ≥ ε

2

}
< η

for n > n2

(
ε,

η

2
, (Xn) , (Yn)

)
.

3) Analogously, we get from ||Xn| − |X|| ≤ |Xn − X| that

P {||Xn| − |X|| ≥ ε} ≤ P {|Xn − X| ≥ ε} < η,

and the claim is proved.

4) If X = 0, then |Xn| P→ 0 by (3), and

P
{
X2

n ≥ ε
}

= P
{|Xn| ≥

√
ε
}

< η,

and the claim is proved.

5) First we use the hint to estimate in general,

P {|XnY − XY | ≥ ε} = P {|Y | · |Xn − X| ≥ ε}
= P {|Y | · |Xn − X| ≥ ε ∧ |Y | > c} + P {|Y | · |Xn − X| ≥ ε ∧ |Y | ≤ c}
≤ P{|Y | > c} + P {c · |Xn − X| ≥ ε} < δ + P

{
|Xn − X| ≥ ε

c

}
.

Choose δ =
η

2
. In this way we fix the constant c > 0.

Nowchoose n0 ∈ N, such that

P
{
|Xn − X| ≥ ε

c

}
<

η

2
for every n > n0.

Then for n > n0,

P {|XnY − XY | ≥ ε} < δ + P
{
|Xn − X| ≥ ε

c

}
<

η

2
+

η

2
= η.

6) Since Xn = (Xn − X) + X, we get

X2
n − X2 = (Xn − X)2 + 2X (Xn − X) ,

hence by putting Y = X,

P
{∣∣X2

n − X2
∣∣ ≥ ε

} ≤ P
{

(Xn − X)2 ≥ ε

2

}
+ P

{
2 |XXn − XX| ≥ ε

2

}
= P

{
|Xn − X| ≥

√
ε

2

}
+ P

{
|Y Xn − Y X| ≥ ε

4

}
.
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By assumption, Xn
P→ X, so

P

{
|Xn − X| ≥

√
ε

2

}
<

η

2
for n > n1.

Since Y Xn
P→ Y X and Y = X, we get

P
{

2 |XXn − XX| ≥ ε

2

}
<

η

2
for n > n2.

Then put n0 = max {n1, n2}, and we obtain for n > n0 that

P
{∣∣X2

n − X2
∣∣ > ε

}
<

η

2
+

η

2
= η.

7) It follows from

XnYn =
1
4

{
(Xn + Yn)2 − (Xn − Yn)2

}
,

that

|XnYn − XY | =
1
4

∣∣∣{(Xn + Yn)2 − (X + Y )2
}∣∣∣ +

1
4

∣∣∣{(X − Y )2 − (Xn − Yn)2
}∣∣∣ .
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If |XnYb| ≥ ε, then at least one of the two terms on the right hand side is ≥ ε

2
, hence

P {|XnYn − XY | ≥ ε}
≤ P

{
1
4

∣∣∣(Xn + Yn)2 − (X + Y )2
∣∣∣ ≥ ε

2

}
+ P

{
1
4

∣∣∣(Xn − Yn)2 − (X − Y )2
∣∣∣ ≥ ε

2

}

= P
{∣∣∣(Xn + Yn)2 − (X + Y )2

∣∣∣ ≥ 2ε
}

+ P
{∣∣∣(Xn − Yn)2 − (X − Y )2

∣∣∣ ≥ 2ε
}

.

It follows from (2) that Xn ± Yn
P→ X ± Y .

Applying (6) we get (Xn ± Yn)2 P→ (X ± Y )2.
In particular, we can find n1 and n2, such that

P
{∣∣∣(Xn + Yn)2 − (X + Y )2

∣∣∣ ≥ 2ε
}

<
η

2
for n > n1,

and

P
{∣∣∣(Xn − Yn)2 − (X − Y )2

∣∣∣ ≥ 2ε
}

<
η

2
for n > n2.

The claim follows, when n > n0 = max {n1, n2}.

Example 8.2 Let (Xn)∞n=1 be a sequence of random variables, such that (Xn) converges in distribu-
tion towards a constant a.
Prove that (Xn) converges in probability towards the constant a.
Assume furthermore that every Xn has a mean. Is it possible to conclude that E {Xn} → a for
n → ∞?

If Xn
D→ a, then

lim
n→∞Fn(x) = F (x) =

⎧⎨
⎩

0 for x < a,

1 for x ≥ a.

We shall prove that

P {|Xn − a| ≥ ε} → 0 for n → ∞.

We get

P {|Xn − a| ≥ ε} = P {Xn − a ≥ ε} + P {Xn − a ≤ −ε} = P {Xn ≥ a + ε} + P {Xn ≤ a − ε}
= 1 − P {Xn < a + ε} + P {Xn ≤ a − ε} = 1 − F(a + ε−) + Fn(a − ε)
→ 1 − F (a + ε) + F (a − ε) = 1 − 1 + 0 = 0 for n → ∞.

The latter claim is in general not true. Choose e.g.

Fn(x) =

⎧⎪⎨
⎪⎩

1 − n

x2 + n2
for x ≥ 0,

0 for x < 0.
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Then clearly,

Fn(x) → F (x) =

⎧⎨
⎩

1 for x ≥ 0,

0 for x < 0,
for n → ∞,

thus a = 0.
Here,

E {Xn} =
∫ ∞

0

{1 − Fn(x)} dx =
∫ ∞

0

n

x2 + n2
dx =

∫ ∞

0

1

1 +
(x

n

)2 d
(x

n

)
=

π

2
	= a = 0.

Obviously one can modify such examples, so one can expect a lot of unpleasant anomalies.

Example 8.3 A box contains
n(n + 1)

2
slips of paper, of which on slip has the number 1 written on

it, two slips are provided with the number 2, etc. until finally n slips of paper are provided with the
number n. Select at random one slip from the box. Let Xn denote the random variable, which indicates
the number of the selected slip, and let another random variable Yn be defined by

Yn =
1
n

Xn.

1) Find the probabilities P {Xn = k}, k = 1, 2, . . . , n.

2) Find the mean E {Xn}.
3) Prove that the distribution function of Yn on the interval [0, 1] is given by

Fn(y) =
[ny]([ny] + 1)

n(n + 1)
.

(Here [a] denotes the largest integer smaller than or equal to a).

4) Prove that the sequence {Yn} converges in distribution towards a random variable Y , and find the
distribution of Y .

Hint: It may be convenient to use the formula

n∑
k=1

k2 =
1
6

n(n + 1)(2n + 1).

1) Clearly,

P {Xn = k} =
k

1
2 n(n + 1)

=
2k

n(n + 1)
, k = 1, 2, . . . , n.

2) When we insert the result of (1), it follows by the definition,

E {Xn} =
n∑

k=1

k P {Xn = k} =
2

n(n + 1)

n∑
k=1

k2 =
2

n(n + 1)
· n(n + 1)(2n + 1)

6
=

2n + 1
3

.
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3) First note that

P

{
Yn =

k

n

}
= P {Xn = k} =

2k
n(n + 1)

.

Thus the distribution function for Yn is

Fn(y) = P {Yn ≤ y} =
[ny]∑
k=1

P

{
Yn =

k

n

}
=

[ny]∑
k=1

2k
n(n + 1)

=
[ny]([ny] + 1)

n(n + 1)
,

because
∑m

k=1 k =
1
2

m(m + 1) for m ∈ N.

4) It follows from

ny − 1 < [ny] ≤ ny,

that

y − 1
n

<
[ny]
n

≤ y,

and we conclude that

[ny]
n

→ y and
[ny] + 1
n + 1

→ y for n → ∞, y ∈ [0, 1].

It follows that Fn(y) → y2 for n → infty and y ∈ [0, 1].
This means that (Yn) converges in distribution towards a random variable Y , the distribution
function of which is

FY (y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, y < 0,

y2, 0 ≤ y ≤ 1,

1, y ≥ 1.

The corresponding frequency is

fY (y) =

⎧⎨
⎩

2y, 0 ≤ y ≤ 1,

0, otherwise.
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Example 8.4 Let X and Y be independent random variables, both rectangularly distributed over the
interval ]0, 1[.

1) Find the distribution function F (v) and the frequency f(v) of the random variable

V =
Y

X
+ 1.

2) Check if the mean of V exists.

3) Prove that there exists a random variable U , such that

lim
n→∞P

{
n
√

V ≤ v
}

= P{U ≤ v} for all v 	= 1.

1) It is obvious that the values of V lie in ]1,∞[. When v > 1, then

F (v) = P{V ≤ v} = P

{
Y

X
+ 1 ≤ v

}
= P

{
Y

X
≤ v − 1

}
.

The frequency of
Y

X
is given by

k(s) =
∫ 1

0

fX(sx) fY (x)x dx

=

⎧⎪⎪⎨
⎪⎪⎩

∫ 1

0
1 · 1 · x dx =

1
2

for 0 < s < 1,

∫ 1
s

0
1 · 1 · x dx =

1
2s2

for s > 1,

hence

F (v) = P

{
Y

X
≤ v − 1

}

=
∫ v−1

0

k(s) ds =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

(v − 1), 1 < v ≤ 2,

1
2

+
∫ v−1

1

ds

2s2
=

1
2
−

[
1
2s

]v−1

1

= 1 − 1
2(v − 1)

, v > 2,

and we get by a differentiation,

fV (v) = k(v − 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
, for 1 < v ≤ 2,

1
2(v − 1)2

, for v > 2.

2) The mean does not exist. In fact,∫ ∞

1

v fV (v) dv =
∫ 2

1

v

2
dv +

∫ ∞

2

v

2(v − 1)2
dv = ∞.
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3) To any v > 1 there exists an N = N(v), such that v2 > 2 for every n > N , and such that

P
{

n
√

V ≤ v
}

= P {V ≤ vn} = 1 − 1
2 (v2 − 1)

for n > N.

Since V > 1, we have P
{

n
√

V ≤ v
}

= 0 for v ≤ 1. By taking the limit n → ∞ we get

lim
n→∞P

{
n
√

V ≤ v
}

=

⎧⎨
⎩

1 for v > 1,

0 for v ≤ 1.

The right hand side is the distribution function of the causal random variable U , for which

P{U = 1} = 1.
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Example 8.5 A 2-dimensional random variable (X,Y ) has the frequency

h(x, y) =

⎧⎨
⎩

x + y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 otherwise.

1) Find the frequencies of the random variables X and Y .

2) Find the means and the variances of the random variables X and Y .

3) Find the frequency of the random variable X + Y .

4) Find for every n ∈ N the distribution function Fn(x) and the frequency fn(x) of the random
variable Xn and prove that for every ε > 0,

P {Xn > ε} → 0 for n → ∞.

1) If x ∈ [0, 1], then

fX(x) =

⎧⎪⎨
⎪⎩

∫ 1

0
(x + y) dy = x +

1
2
, x ∈ [0, 1],

0 otherwise.

It follows by the symmetry,

fY (y) =

⎧⎪⎨
⎪⎩

∫ 1

0
(x + y) dx = y +

1
2
, y ∈ [0, 1],

0 otherwise.

2) The means exist, and by the symmetry,

E{X} = E{Y } =
∫ 1

0

t

(
t +

1
2

)
dt =

∫ 1

0

(
t2 +

t

2

)
dt =

1
3

+
1
4

=
7
12

.

3) Since the values of X + Y lie in [0, 2], the frequency is for s ∈ [0, 2] given by

g(s) =
∫ 1

0

h(x, s − x) dx.

The integrand is 	= 0, when 0 ≤ s − x ≤ 1, so the domain of integration is determined by
s − 1 ≤ x ≤ s and 0 ≤ 1, hence

g(s) =

⎧⎨
⎩

∫ s

0
s dx = s2 for s ∈ [0, 1],

∫ 1

s−1
s dx = s(2 − s) = 1 − (s − 1)2 for s ∈ [1, 2].

Summing up,

g(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s2 for s ∈ [0, 1],

1 − (s − 1)2 for s ∈ ]1, 2],

0 otherwise.
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4) Since the values of X lie in [0, 1], we get for x ∈ [0, 1] that

Fn(x) = P {Xn ≤ x} = P
{
X ≤ n

√
x
}

=
∫ n

√
x

0

(
t +

1
2

)
dt =

1
2

(
n
√

x2 + n
√

x
)

=
1
2

{
x

2
n + x

1
n

}
,

and

fn(x) =
1
2

{
2
n

x
2
n−1 +

1
n

x
1
n−1

}
=

⎧⎪⎨
⎪⎩

1
2nx

{
2 n
√

x2 + n
√

x
}

for x ∈ [0, 1],

0 otherwise.

Finally,

P {Xn > ε} = 1 − P {Xn ≤ ε} = 1 − 1
2

{
ε

2
n + ε

1
n

}
→ 1 − 1

2
(1 + 1) = 0 for n → ∞.

Example 8.6 Given a sequence of random variables (Xn)∞n=1, where Xn has the frequency

fn(x) =

⎧⎨
⎩

n(n + 1)xn−1(1 − x), x ∈ ]0, 1[,

0, otherwise.

1. Find the mean of Xn.

For every fixed n ∈ N we define a random variable Yn by

Yn = (Xn)n
.

2. Find the distribution function Gn(y) and the frequency gn(y) of Yn.

3. Prove that the sequence (Yn)∞n=1 converges in distribution towards a random variable Y .

4. Finally, find the frequency of Y .

We start by noting that for 0 < x < 1 the distribution function F (x) of X is given by

F (x) =
∫ x

0

fn(t) dt = (n + 1)xn − nxn+1.

1) The mean of Xn is

E {Xn} =
∫ 1

0

x fn(x) dx = n(n + 1)
∫ 1

0

(
xn − xn+1

)
dx = n(n + 1)

(
1

n + 1
− 1

n + 2

)
=

n

n + 2
.

2) The distribution function of Yn = Xn
n for 0 < y < 1 is given by

Gn(y) = P {Yn = Xn
n ≤ y} = P

{
Xn ≤ y

1
n

}
= (n + 1)y − n y1+ 1

n ,
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thus

Gn(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for y ≤ 0,

(n + 1)y − n y1+ 1
n , for 0 < y < 1,

1, for y ≥ 1,

and hence by differentiation,

gn(y) =

⎧⎪⎨
⎪⎩

(n + 1)
(
1 − y

1
n

)
for 0 < y < 1,

0 otherwise.

3) According to l’Hospital’s theorem,

lim
x→0

1 − yx

x
= lim

x→0

− ln y · yx

1
= − ln y.

Put x =
1
n

. Then by insertion and by taking the limit,

lim
n→∞n

(
1 − y

1
n

)
= lim

n→∞
1 − y

1
n

1
n

= − ln y.

Then finally for y ∈ ]0, 1[,

Gn(y) = y + ny
(
1 − y

1
n

)
→ y − y ln y for n → .

Consequently, (Yn) converges in distribution towards a random variable Y of the distribution
function

G(y) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, for y ≤ 0,

y − y ln y, for 0 < y < 1,

1, for y ≥ 1.

4) The frequency of Y is derived by differentiation, g(y) = G′(y), thus

g(y) =

⎧⎨
⎩

− ln y, for 0 < y < 1,

0, otherwise.

Download free eBooks at bookboon.com



Random variables III

 
102 

8. Convergence in probability and in distribution

Example 8.7 We define a sequence of random variables (Xn)∞n=1 by assuming that Xn has the dis-
tribution function

Fn(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x < 0,

xn, x ∈ [0, 1],

1, x > 1.

1) Find the frequency fn(x) of Xn and find the mean and the variance of Xn.

2) Prove that the sequence (Xn) converges in distribution towards a random variable X, and find the
distribution of X.

3) Prove that

E {Xn} → E{X} and V {Xn} → V {X} for n → ∞.

4) Assuming that the variables X2 and X3 above are independent, find the frequency of the random
variable

Z = X2 + X3.

1) The frequency of Xn is obtained from Fn(x) by differentiation

fn(x) =

⎧⎨
⎩

nxn−1 for x ∈ ]0, 1[,

0 otherwise.

The mean is

E {Xn} =
∫ 1

0

nxn dx =
n

n + 1
.

From

E
{
X2

n

}
=

∫ 1

0

nxn+1 dx =
n

n + 2
,

we get the variance

V {Xn} = E
{
X2

n

}− (E {Xn})2 =
n

n + 2
−

(
n

n + 1

)2

=
n

(n + 2)(n + 1)2
{
(n + 1)2 − n(n + 2)

}
=

n

(n + 2)(n + 1)2
.

2) Trivially,

F (x) = lim
n→∞Fn(x) =

⎧⎨
⎩

0 for x < 1,

1 for x > 1,

and F (x) is the distribution function of the causal random variable X, which is given by

P{X = 1} = 1.
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3) We have for the causal distribution X that E{X} = 1 and V {X} = 0, and

lim
n→∞E {Xn} = lim

n→∞
n

n + 1
= 1 = E{X},

and

lim
n→∞V {Xn} = lim

n→∞
n

(n + 2)(n + 1)2
= 0 = V {X}.

4) The values of Z = X2 + X3 clearly lies in ]0, 2[. If s ∈ ]0, 2[, then the frequency of Z is given by
the convolution integral

g(s) =
∫ 1

0

f2(x) f3(s − x) dx.

The integrand is 	= 0 for 0 < x < 1 and 0 < s − x < 1, thus s − 1 < x < s.
Then we must split the investigation into two cases.

a) If s ∈ ]0, 1[, then

g(s) =
∫ s

0

2x · 32(s − x)2 dx = 6
∫ s

0

(s − t)t2 dt = 6
∫ s

0

(
st2 − t3

)
dt = 6

[
1
3

st3 − 1
4

t4
]s

0

= 6
{

1
3
− 1

4

}
s4 =

1
2

s4.
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b) If s ∈ ]1, 2[, then we get instead

g(s) =
∫ 1

s−1

2x · 3(s − x)2 dx = 6
∫ 1

s−1

(s − t)t2 dt = 6
[
1
3

st3 − 1
4

t4
]1

s−1

= 6
(

1
3

s − 1
4
− 1

3
s(s − 1)3 +

1
4

(s − 1)4
)

= 6
(

1
3

s − 1
4
− (s − 1)3

(
1
3

s − 1
4

(s − 1)
))

= 6
(

1
3

s − 1
4
− (s − 1)3

(
1
12

s +
1
4

))
=

6
12

(
4s − 3 − (s + 3)(s − 1)3

)
=

1
2

(
4s − 3 − {

s3 − 3s2 + 3s − 1
} {s + 3})

=
1
2

(
4s − 3 − (

s4 + 3s3 − 3s3 − 9s2 + 3s2 + 9s − s − 3
))

=
1
2

(
4s − 3 − s4 + 6s2 − 8s + 3

)
= −1

2
s4 + 3s2 − 2s.

Summing up,

g(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

s4 for s ∈ ]0, 1],

−1
2

s4 + 3s2 − 2s for s ∈ ]1, 2],

0 otherwise.
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Example 8.8 Three random variables X1, X2, X3 are assumed to be independent, and the distribu-
tion function for each of them is given by

(3) F (x) =

⎧⎨
⎩

0, x < 0,

1 − e−x, x ≥ 0.

We define the random variable U by U = max{X1,X2,X3}.
1. Find the distribution of U .

2. Find the mean of U .

Let (Xn)∞n=1 denote a sequence of independent random variables, each of them given the distribution
function F (x) as in (3).

3. Let the random variables Yn and Zn for n ∈ N be given by

Yn = max {X1,X2, . . . , Xn} and Zn = Yn − lnn.

Prove that the sequence (Zn) converges in distribution towards a random variable Z of the distri-
bution function

FZ(z) = exp
(−e−z

)
, z ∈ R.

1) Since X1, X2, X3 are independent, the distribution function of U = max {X1,X2,X3} is given by

G(u) = P {X1 ≤ u, X2 ≤ u, X3 ≤ u} = P {X1 ≤ u} · P {X2 ≤ u} · P {X3 ≤ u} = {F (u)}3,

i.e.

G(u) =

⎧⎨
⎩

0, u ≤ 0,

(1 − e−u)3 , u > 0.

The corresponding frequency is

g(u) =

⎧⎨
⎩

0, u ≤ 0,

3 (1 − e−u)2 · e−u
[
= 3

(
e−3u − 2e−2u + e−u

)]
, u > 0.

2) The mean is

E{U} =
∫ ∞

0

u g(u) du = 3
∫ ∞

0

u
(
e−3u − 2e−2u + e−u

)
du

= 3
{

1
9

∫ ∞

0

t e−t dt − 2
4

∫ ∞

0

t e−t dt +
∫ ∞

0

t e−t dt

}
= 3

{
1
9
− 1

2
+ 1

}
=

11
6

.

Alternatively,

E{U} =
∫ ∞

0

{1 − G(u)} du =
∫ ∞

0

{
e−3u − 3e−2u + 3e−u

}
du =

1
3
− 3

2
+ 3 =

11
6

.
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Figure 19: The graph of FZ(z) = exp (−e−z).

3) When (1) is generalized we get

P {Yn ≤ y} = F (y)n,

hence

P {Zn ≤ z} = P {Yn ≤ z + lnn} = (F (z + lnn))n,

and whence

FZn
(z) = P {Zn ≤ z} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, z ≤ − lnn,

(
1 − e−(z+ln n)

)n
=

(
1 − 1

n
e−z

)n

z > − lnn.

Then for every fixed z,

lim
n→∞P {Zn ≤ z} = lim

n→∞

(
1 − 1

n
e−z

)n

= exp
(−e−z

)
,

proving that the sequence (Zn) converges in distribution towards a random variable Z of the
distribution function

FZ(z) = exp
(−e−z

)
, z ∈ R.

Remark 8.1 We have above tacitly applied the well-known result

lim
n→∞

(
1 +

a

n

)n

= ea for a ∈ R, ♦

It is easily seen that FZ(z) = exp (−e−z) is increasing and continuous and

lim
z→∞FZ(z) = 0 and lim

z→∞FZ(z) = 1,

so FZ(z) is indeed a distribution function of a random variable Z. ♦
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Example 8.9 Let X1, X2, . . . be independent random variables, all Cauchy distributed of the fre-
quency

f(x) =
1

π (1 + x2)
, x ∈ R.

Let

Yn = max {X1,X2, . . . , Xn} , Zn =
1
n

Yn, n ∈ N.

1) Find the distribution function Gn(z) of the random variable Zn.

2) Prove that (Zn) converges in distribution towards a random variable Z, and find the distribution
function and the frequency of Z.

Hint: It may be convenient to use the formula

Arctan x + Arctan
1
x

=
π

2
· x

|x| , x 	= 0.

1) The distribution function for each Xi is given by

F (x) =
1
π

∫ x

−∞

dt

1 + t2
=

1
π

[Arctan t]x−∞ =
1
π

Arctan x +
1
2
, x ∈ R.

Thus

Gn(z) = P

{
1
n

Yn ≤ z

}
= P {Yn ≤ nz} = P {max {X1, . . . , Xn} ≤ nz}

= (P {X1 ≤ nz})n =
(

1
2

+
1
π

Arctan nz

)n

(> 0).

2) If z ≤ 0, then Arctan nz ≤ 0, hence

Gn(z) =
(

1
2

+
1
π

Arctan nz

)
≤ 1

2n
→ 0 for n → ∞.

If z > 0, then we use

1
π

Arctan(nz) =
1
2
− 1

π
Arctan

1
nz

,

to conclude that

Gn(z) =
(

1 − 1
π

Arctan
1
nz

)n

,

and

lnGn(z) = n ln
{

1 − 1
π

Arctan
1
nz

}
= n

{
− 1

π
Arctan

1
nz

− 1
nz

ε

(
1
nz

)}

= −n

π

{
1
nz

+
1
nz

ε

(
1
nz

)}
= − 1

πz
− 1

πz
ε

(
1
nz

)
→ − 1

πz
for n → ∞.
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8. Convergence in probability and in distribution

The distribution function is

G(z) =

⎧⎪⎪⎨
⎪⎪⎩

exp
(
− 1

πz

)
for z > 0,

0 for z ≤ 0,

and the frequency is

g(z) =

⎧⎪⎪⎨
⎪⎪⎩

1
πz2

exp
(
− 1

πz

)
for z > 0,

0 for z ≤ 0.
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8. Convergence in probability and in distribution

Example 8.10 Let X and Y be independent random variables, where X is exponentially distributed
of the frequency

fX(x) =

⎧⎨
⎩

2 e−2x for x ≥ 0,

0 for x < 0,

and Y is rectangularly distributed over the interval ]0, 3[.

1) Find the mean and the variance for each of the three random variables X, Y and Z = X + Y .

2) Find the frequency of the random variable Z.

3) Now assume that X and Yn are independent random variables, where X has the same distribution

as above, while Yn is rectangularly distributed over the interval
]
0,

1
n

[
, n ∈ N. Find for z >

1
n

,

the distribution function Fn(z) of the random variable Zn = X + Yn.

4) Find limn→∞ Fn(z) for every z ∈ R.

1) Clearly,

E{X} =
∫ ∞

0

x · 2e−2x dx =
1
2

∫ ∞

0

t e−t dt =
1
2
,

and since

E
{
X2

}
=

∫ ∞

0

x2 · 2e−2x dx =
1
4

∫ ∞

0

t2e−t dt =
1
4
· 2! =

1
2
,

it follows that

V {X} = E
{
X2

}− (E{X})2 =
1
2
− 1

4
=

1
4
.

It follows from

fY (y) =

⎧⎪⎨
⎪⎩

1
3

for x ∈ ]0, 3[,

0 otherwise,

that

E{Y } =
1
3

∫ 3

0

y dy =
1
3

[
y2

2

]3

0

=
1
3
· 9
2

=
3
2
,

and

E
{
Y 2

}
=

1
3

∫ 3

0

y2 dy =
1
3

[
y3

3

]3

0

= 3,

hence

V {Y } = E
{
Y 2

}− (E{Y })2 = 3 − 9
4

=
3
4
.
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Remark 8.2 All results above are of course well-known, so the computations are strictly speaking
not necessary. They are given here for completeness. ♦

Finally,

E{Z} = E{X + Y } = E{X} + E{Y } =
1
2

+
3
2

= 2,

and

V {Z} = V {X} + V {Y } =
1
4

+
3
4

= 1.

2) The frequency of Z is 0 for z ≤ 0. When z > 0, then

fZ(z) =
∫ ∞

0

fX(t) gY (z − t) dt.

The integrand is 	= 0, when t > 0 and z − t ∈ ]0, 3[, i.e. when t ∈ ]z − 3, z[.

a) If z ∈ ]0, 3[, then z − 3 < 0, hence

fZ(z) =
∫ z

0

2e−2t · 1
3

dt =
1
3

[−e−2t
]z

0
=

1
3

(
1 − e−2z

)
.

b) If z ≥ 3, then

fZ(z) =
∫ z

z−3

2e−2t · 1
3

dt =
1
3

[−e−1t
]z

z−3
=

1
3

(
e6 − 1

)
e−2z.

Summing up,

fZ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for z ≤ 0,

1
3

(
1 − e−2z

)
for 0 < z < 3,

1
3

(
e6 − 1

)
e−2z for z ≥ 3.

3) The frequency of Yn is

fYn
(y) =

⎧⎪⎪⎨
⎪⎪⎩

n for y ∈
]
0,

1
n

[
,

0 otherwise.

If z >
1
n

, then the frequency of Zn is given by

fn(z) =
∫ ∞

0

fX(t) fYn
(z − t) dt =

∫ z

z− 1
n

2e−2t ndt = n
[−e−2t

]z

z− 1
n

= n
{

e
2
n − 1

}
e−2z.
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We conclude for z >
1
n

that the distribution function is

Fn(z) =
∫ z

−∞
fZn

(t) dt = 1 −
∫ ∞

z

fZn
(t) dt = 1 − n

{
e

2
n − 1

}∫ ∞

z

e−2t dt

= 1 − n
{

e
2
n − 1

}[
−1

2
e−2t

]∞
z

= 1 − n

2

{
e

2
n − 1

}
e−2z.

4) If z < 0, then Fn(z) = 0, hence limn→∞ Fn(z) = 0.

If z > 0, then there exists an N , such that z >
1
n

for every n ≥ N , so

lim
n→∞Fn(z) = lim

n→∞

{
1 − n

2

(
e

2
n − 1

)
e−2z

}
= 1 − e−2z lim

t→∞
n

2

(
e

2
n − 1

)
= 1 − e−2z lim

n→∞

{
n

2

(
1 +

2
n

+
2
n

ε

(
2
n

))
− 1

}
= 1 − e−2z = FX(z).

Example 8.11 Let Xn, n ∈ N, and X be random variables, and let an, n ∈ N, and a be positive
numbers. Prove that if the sequence (Xn) converges in distribution towards X, and the sequence (an)
converges towards a, then the sequence (anXn) converges in distribution towards aX.

Let Fn(x) be the distribution functions of Xn and F (x) the distribution function of X. Let Gn(y) be
the distribution functions of Yn = anXn, and G(y) the distribution function of Y = aX.

The assumptions are that an > 0 and a > 0, and

lim
n→∞Fn(x) = F (x) and lim

n→∞ an = a.

We prove that at any point of continuity y,

lim
n→∞Gn(y) = G(y).

First rewrite in the following way,

Gn(y) = P {Yn ≤ y} = p {anXn ≤ y} = P

{
Xn ≤ y

an

}
= Fn

(
y

an

)

= F
(y

a

)
+

{
Fn

(
y

an

)
− F

(
y

an

)}
+

{
F

(
y

an

)
− F

(y

a

)}

= P
{

X ≤ y

a

}
+

{
Fn

(
y

an

)
− F

(
y

an

)}
+

{
F

(
y

an

)
− F

(y

a

)}

= P{Y ≤ y} +
{

Fn

(
y

an

)
− F

(
y

an

)}
+

{
F

(
y

an

)
− F

(y

a

)}
,

thus

|Gn(y) − G(y)| ≤
∣∣∣∣Fn

(
y

an

)
− F

(
y

an

)∣∣∣∣ +
∣∣∣∣F

(
y

an

)
− F

(y

a

)∣∣∣∣ .
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If
y

a
is a point of continuity of F , then the right hand side will converge towards 0 for n → ∞, and

the claim is proved.

Alternatively we know that at the points of continuity x ∈ R of F (x) we have the limit

lim
n→∞P {Xn ≤ x} = P{X ≤ x} = F (x).

Let an and a be positive numbers, where an → a, and let
x

a
be a point of continuity of F (x). Then

P {anXn ≤ x} = P

{
Xn ≤ x

an

}
.

Choose any ε > 0. If n ≥ n(x, ε),, then

P

{
Xn ≤ x − ε

a

}
≤ P

{
Xn ≤ x

an

}
≤ P

{
Xn ≤ x + ε

a

}
.

Then restrict ε > 0, such that also
x − ε

a
and

x + ε

a
are points of continuity of F . (Here we exploit

that since F is weakly monotonous, F has at most a countably many points of discontinuity, so this
can always be obtained for ε “as small as we want it”). Letting n → ∞, we get

P

{
X ≤ x − ε

a

}
≤ lim inf

n→∞ P

{
Xn ≤ x

an

}
≤ lim sup

n→∞
P

{
Xn ≤ x

an

}
≤ P

{
X ≤ x + ε

a

}
.

If ε → 0, then two of the terms will both tend towards

P
{

X ≤ x

a

}
= P{aX ≤ x},

and we have proved that

lim
n→∞P {anXn ≤ x} = lim

n→∞P

{
Xn ≤ x

an

}
= P{aX ≤ x}.
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frequency, 5, 6

Helly-Bray’s lemma, 16

independent random variables, 7

Jacobian, 10, 32

law of total probability, 11

marginal distribution, 5
marginal frequency, 6
maximum, 18, 76
mean, 11
median, 4
minimum, 18, 76
moment, 12

null-set, 7

probability field, 4

quantile, 4
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simultaneous distribution, 5
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weak law of large numbers, 16
width of variation, 21
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