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Random variables 111 Introduction

Introduction

This is the fourth book of examples from the Theory of Probability. This topic is not my favourite,
however, thanks to my former colleague, Ole Jorsboe, I somehow managed to get an idea of what it is
all about. The way I have treated the topic will often diverge from the more professional treatment.
On the other hand, it will probably also be closer to the way of thinking which is more common among
many readers, because I also had to start from scratch.

The topic itself, Random Variables, is so big that I have felt it necessary to divide it into three books,
of which this is the third one.

The prerequisites for the topics can e.g. be found in the Ventus: Calculus 2 series, so I shall refer the
reader to these books, concerning e.g. plane integrals.

Unfortunately errors cannot be avoided in a first edition of a work of this type. However, the author
has tried to put them on a minimum, hoping that the reader will meet with sympathy the errors
which do occur in the text.

Leif Mejlbro
26th October 2009
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Random variables 111 1. Some theoretical results

1 Some theoretical results

The abstract (and precise) definition of a random variable X is that X is a real function on 3, where
the triple (2, F, P) is a probability field, such that

{lweQ| X(w)<z}eF for every z € R.

This definition leads to the concept of a distribution function for the random variable X, which is the
function F': R — R, which is defined by

F(z) = P{X <z} (= Plwe Q| X(w) <z},

where the latter expression is the mathematically precise definition which, however, for obvious reasons
everywhere in the following will be replaced by the former expression.

A distribution function for a random variable X has the following properties:

0<F(z)<1 for every z € R.

The function F' is weakly increasing, i.e. F(z) < F(y) for x < y.

lim, o F(z) =0 and lim, 400 F(z) = 1.

The function F is continuous from the right, i.e. limj, oy F(z + h) = F(x) for every z € R.
One may in some cases be interested in giving a crude description of the behaviour of the distribution

function. We define a median of a random variable X with the distribution function F'(z) as a real
number a = (X) € R, for which

P{X <a} > and P{X >a} >

N | —
DO |

Expressed by means of the distribution function it follows that a € R is a median, if

1

F(Q)Z§

DN | =

and F(a—) = hli%l Fx+h) <

In general we define a p-quantile, p €10, 1[, of the random variable as a number a, € R, for which
P{X <ap}>p and P{X >ap}>1—-p,
which can also be expressed by

F(ap)>p and  F(ap—) <p.

If the random variable X only has a finite or a countable number of values, x1, zo, ..., we call it
discrete, and we say that X has a discrete distribution.

A very special case occurs when X only has one value. In this case we say that X is causally distributed,
or that X is constant.
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Random variables 111 1. Some theoretical results

The random variable X is called continuous, if its distribution function F'(x) can be written as an
integral of the form

F(x):/f f(u) du, z €R,

where f is a nonnegative integrable function. In this case we also say that X has a continuous
distribution, and the integrand f : R — R is called a frequency of the random variable X.

Let again (2, F, P) be a given probability field. Let us consider two random variables X and Y, which
are both defined on 2. We may consider the pair (X,Y) as a 2-dimensional random variable, which
implies that we then shall make precise the extensions of the previous concepts for a single random
variable.

We say that the simultaneous distribution, or just the distribution, of (X,Y") is known, if we know
P{(X,Y) € A} for every Borel set A C R?,

When the simultaneous distribution of (X,Y) is known, we define the marginal distributions of X
and Y by

Px(B)=P{X € B} .= P{(X,Y) € B xR}, where B C R is a Borel set,

Py(B)=P{Y € B} :== P{(X,Y) e Rx B}, where B C R is a Borel set.

Notice that we can always find the marginal distributions from the simultaneous distribution, while it
is far from always possible to find the simultaneous distribution from the marginal distributions. We
now introduce

360°
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Random variables 111 1. Some theoretical results

The simultaneous distribution function of the 2-dimensional random variable (X,Y") is defined as the
function F : R? — R, given by

F(z,y) =P{X <az ANY <y}
We have
o If (z,y) € R? then 0 < F(z,y) < 1.

o If v € R is kept fixed, then F(x,y) is a weakly increasing function in y, which is continuous from
the right and which satisfies the condition lim, . F(z,y) = 0.

If y € R is kept fixed, then F(z,y) is a weakly increasing function in z, which is continuous from
the right and which satisfies the condition lim,_, - F(z,y) = 0.

When both z and y tend towards infinity, then

lim F(z,y) =1.

T, y—+o0

If x1, x9, y1, yo € R satisfy z1 < x5 and y; < ys, then
F(z2,y2) — F(21,y2) — F (22,91) + F (21,92) > 0.

Given the simultaneous distribution function F(z,y) of (X,Y’) we can find the distribution functions
of X and Y by the formulee

Fx(z) = F(z,+00) = ygrfoo F(x,y), for z € R,

Fy(z) = F(+oo,y) = lim F(z,y), foryeR.

The 2-dimensional random variable (X,Y") is called discrete, or that it has a discrete distribution, if
both X and Y are discrete.

The 2-dimensional random variable (X,Y") is called continuous, or we say that it has a continuous
distribution, if there exists a nonnegative integrable function (a frequency) f : R? — R, such that the
distribution function F'(x,y) can be written in the form

F(z,y) = /; {/: ft,u) du} dt, for (z,y) € R?.

In this case we can find the function f(z,y) at the differentiability points of F(z,y) by the formula

0%F(x,

It should now be obvious why one should know something about the theory of integration in more
variables, cf. e.g. the Ventus: Calculus 2 series.

We note that if f(z,y) is a frequency of the continuous 2-dimensional random variable (X,Y), then X
and Y are both continuous 1-dimensional random variables, and we get their (marginal) frequencies
by

+o00
Ix(x) = / f(z,y) dy, for v € R,

— 00

8

Download free eBooks at bookboon.com



Random variables 111 1. Some theoretical results

and

+oo
fy(y) = / f(z,y)dz, for y € R.

— 00

It was mentioned above that one far from always can find the simultaneous distribution function from
the marginal distribution function. It is, however, possible in the case when the two random variables
X and Y are independent.

Let the two random variables X and Y be defined on the same probability field (Q, F, P). We say
that X and Y are independent, if for all pairs of Borel sets A, B C R,

P{XeANY eB}=P{X e A} - P{Y € B},

which can also be put in the simpler form
F(z,y) = Fx(z) - Fy(y) for every (z,y) € R%

If X and Y are not independent, then we of course say that they are dependent.

In two special cases we can obtain more information of independent random variables:

If the 2-dimensional random variable (X,Y) is discrete, then X and Y are independent, if
hij = fi-g; for every i and j.

Here, f; denotes the probabilities of X, and g; the probabilities of Y.

If the 2-dimensional random variable (X,Y) is continuous, then X and Y are independent, if their
frequencies satisfy

flzy) = fx(z) - fy(y) almost everywhere.

The concept “almost everywhere” is rarely given a precise definition in books on applied mathematics.
Roughly speaking it means that the relation above holds outside a set in R? of area zero, a so-called
null set. The common examples of null sets are either finite or countable sets. There exists, however,
also non-countable null sets. Simple examples are graphs of any (piecewise) C'l-curve.

Concerning maps of random variables we have the following very important results,

Theorem 1.1 Let X and Y be independent random variables. Let ¢ : R — R and ¢ : R — R be
given functions. Then o(X) and (YY) are again independent random variables.

If X is a continuous random variable of the frequency I, then we have the following important theorem,
where it should be pointed out that one always shall check all assumptions in order to be able to
conclude that the result holds:

9
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Random variables 111 1. Some theoretical results

Theorem 1.2 Given a continuous random variable X of frequency f.
1) Let I be an open interval, such that P{X € I} = 1.
2) Let 7 : I — J be a bijective map of I onto an open interval J.

3) Furthermore, assume that 7 is differentiable with a continuous derivative T/, which satisfies

') #£0  forallex € I.

Under the assumptions above Y := 7(X) is also a continuous random variable, and its frequency g(y)
s given by

W), fory € J,

0, otherwise.

We note that if just one of the assumptions above is not fulfilled, then we shall instead find the
distribution function G(y) of Y := 7(X) by the general formula

Gly) = P{r(X) €] o0, yl} = P{X € 7°7'(] = o0, y])},

1

where 7°71 = 77! denotes the inverse set map.

Note also that if the assumptions of the theorem are all satisfied, then 7 is necessarily monotone.

At afirst glance it may be strange that we at this early stage introduce 2-dimensional random variables.
The reason is that by applying the simultaneous distribution for (X,Y") it is fairly easy to define the
elementary operations of calculus between X and Y. Thus we have the following general result for a
continuous 2-dimensional random variable.

Theorem 1.3 Let (X,Y) be a continuous random variable of the frequency h(x,y).

The frequency of the sum X +Y is ki(z) = fjof h(z,z — x)dz.
The frequency of the difference X —Y 1is kao(z) = fj;f hz,z — z)dx.

. +oo z 1
The frequency of the product X - Y 1is ks(z) = ["_h (m, ;) . Tl dz.
The frequency of the quotient X/Y is ky(2) = fj;: h(zx, z) - |z|d.

Notice that one must be very careful by computing the product and the quotient, because the corre-
sponding integrals are improper.

If we furthermore assume that X and Y are independent, and f(x) is a frequency of X, and g(y) is a
frequency of Y, then we get an even better result:
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Random variables 111 1. Some theoretical results

Theorem 1.4 Let X and Y be continuous and independent random wvariables with the frequencies
f(x) and g(y), resp..

The frequency of the sum X +Y is ki(z) = fj;:) f(x)g(z — ) dx.
The frequency of the difference X —Y is ko(z) = fj;f f(@)g(z — 2) dx.
The frequency of the product X Y is ks(z) = fj;: flx)g (%) m dx.
The frequency of the quotient X/Y is ky = f+:: fzz)g(x) - |x| da.

Let X and Y be independent random variables with the distribution functions F'x and Fy, resp.. We
introduce two random variables by

U:=max{X,Y} and V :=min{X,Y},

the distribution functions of which are denoted by Fy and Fy, resp.. Then these are given by
Fy(u) = Fx(u) - Fy (u) for u € R,

and
Fy(v)=1—(1-Fx(v))- (1 - Fy(v)) for v e R.

These formulee are general, provided only that X and Y are independent.
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Random variables 111 1. Some theoretical results

If X and Y are continuous and independent, then the frequencies of U and V are given by
fu(u) = Fx(u)- fy(u) + fx(u) - Fy(u),  foru€R,
and
fr(v) =1 —Fx(v)) - fy(v)+ fx(v) - (1 = Fy(v)), for v € R,
where we note that we shall apply both the frequencies and the distribution functions of X and Y.

The results above can also be extended to bijective maps ¢ = (@1, 2) : R? — R?, or subsets of R?.
We shall need the Jacobian of ¢, introduced in e.g. the Ventus: Calculus 2 series.

It is important here to define the notation and the variables in the most convenient way. We start
by assuming that D is an open domain in the (1 z3) plane, and that D is an open domain in the
(y1, y2) plane. Then let ¢ = (@1, @2) be a bijective map of D onto D with the inverse 7 = ¢!, i.e.
the opposite of what one probably would expect: N

e=(p1,92):D—D,  with (z1,22) =9y, y2)-

The corresponding Jacobian is defined by

91 Opa
J _ 8(1'1 , 1'2) _ ayl ayl
R T
oy 0y2

where the independent variables (yi, y2) are in the “denominators”. Then recall the Theorem of
transform of plane integrals, cf. e.g. the Ventus: Calculus 2 series: If h : D — R is an integrable
function, where D C R? is given as above, then for every (measurable) subset A C D,

8(1‘1,332)
h(xy, x9) dridry = h(x1, z3) | ———=
/A (w1, x2) dridrs LI(A) (w1, 22) ‘3(y1,y2)

dy1dys.

Of course, this formula is not mathematically correct; but it shows intuitively what is going on:
Roughly speaking we “delete the y-s”. The correct mathematical formula is of course the well-known

/ h(zy, x2) dridxs =/ (o1 (Y1, y2) 5 w2 (Y1, y2)) - ‘Jw (y1, y2)‘ dydyo,
A p1(A) =

although experience shows that it in practice is more confusing then helping the reader.
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Random variables 111 1. Some theoretical results

Theorem 1.5 Let (X1, X2) be a continuous 2-dimensional random variable with the frequency h (x1, z2).
Let D C R? be an open domain, such that

P{(Xy, X;) e D} = 1.

Let 7 : D — D bea bijective map of D onto another open domain D, and let p = (o1, p2) =

771, where we assume that v, and 2 _have continuous partial derivatives and that the corresponding
Jacobian is different from 0 in all of D.

Then the 2-dimensional random wvariable
(Y1, Ys) =7(X1, Xo) = (1 (X1, X2), 72 (X1, X2))
has the frequency k (y1, y2), given by

0 (1, x2)
d(y1, y2)

) for (y1,y2) € D,

h(e1(yis y2) 5 w2 (Y1, y2)) - ’
k(yi,y2) =

0, otherwise

We have previously introduced the concept conditional probability. We shall now introduce a similar
concept, namely the conditional distribution.

If X and Y are discrete, we define the conditional distribution of X for given' Y =y; by

P{X=x|Y =y} = = —.
{ ¢ o} PLY =y;} 9j
It follows that for fixed j we have that P{X =x, | Y =y;} indeed is a distribution. We note in
particular that we have the law of the total probability

P{X:xi}:ZP{X:mi|Y:yj}~P{Y:yj}.

Analogously we define for two continuous random variables X and Y the conditional distribution
function of X for given Y =y by

JE o fluy) du
Iy () 7

Note that the conditional distribution function is not defined at points in which fy (y) = 0.

P{X<z|Y=y}= forudsat, at fy (y) > 0.

The corresponding frequency is

provided that fy(y) = 0.

We shall use the convention that “0 times undefined = 0”. Then we get the Law of total probability,

+o0 oo
/ fx ) fy(y)dy = / Fa,y)dy = fx (o).

— 00 — 00

We now introduce the mean, or expectation of a random variable, provided that it exists.
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Random variables 111 1. Some theoretical results

1) Let X be a discrete random variable with the possible values {z;} and the corresponding proba-
bilities p; = P {X = z;}. The mean, or expectation, of X is defined by

E{X}:= Zﬂfz‘pz’,

provided that the series is absolutely convergent. If this is not the case, the mean does not exists.

2) Let X be a continuous random variable with the frequency f(x). We define the mean, or ezpectation
of X by

+oo
B} = [ e f@d

provided that the integral is absolutely convergent. If this is not the case, the mean does not exist.

If the random variable X only has nonnegative values, i.e. the image of X is contained in [0, 400,
and the mean exists, then the mean is given by

E{X}= /O+OO P{X > z}dx.

Concerning maps of random variables, means are transformed according to the theorem below, pro-
vided that the given expressions are absolutely convergent.

Theorem 1.6 Let the random variable Y = ¢(X) be a function of X.
1) If X is a discrete random variable with the possible values {x;} of corresponding probabilities

p; = P{X = x;}, then the mean of Y = p(X) is given by
E{p(X)} =) ¢ (zi)pi,

provided that the series is absolutely convergent.
2) If X is a continuous random variable with the frequency f(x), then the mean of Y = p(X) is
given by
+oo

E{p(X)} = / (@) g(z) dz,

—00

provided that the integral is absolutely convergent.

Assume that X is a random variable of mean p. We add the following concepts, where k € N:

The k-th moment, E {X”“} .

The k-th absolute moment, E{|X|*}.

The k-th central moment, E{(X —p)k}.

The k-th absolute central moment, E{|X —pl*}.

The variance, i.e. the second central moment, VIX}=E{(X —p)?},
14
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Random variables 111 1. Some theoretical results

provided that the defining series or integrals are absolutely convergent. In particular, the variance is
very important. We mention

Theorem 1.7 Let X be a random variable of mean E{X} = p and variance V{X}. Then

E{(X —¢)*} = V{X} + (1 — ¢)? Jor every ¢ € R,
V{X}=E{X?} - (B{X})? for =0,

E{aX +b}=aFE{X}+Db for every a, b € R,
V{aX +b} = a®V{X} for every a, b € R.

It is not always an easy task to compute the distribution function of a random variable. We have the
following result which gives an estimate of the probability that a random variable X differs more than
some given a > 0 from the mean E{X}.

Theorem 1.8 (Cebyéev’s inequality). If the random variable X has the mean p and the variance
o2, then we have for every a > 0,
o2
PX > a}y < %5,

If we here put a = ko, we get the equivalent statement

1
P{y—ka<X<u+ka}Zl—ﬁ.

’ntiia iA)gx Graduate

b
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Random variables 111 1. Some theoretical results

These concepts are then generalized to 2-dimensional random variables. Thus,
Theorem 1.9 Let Z = p(X,Y) be a function of the 2-dimensional random variable (X,Y).
1) If (X,Y) is discrete, then the mean of Z = (X,Y) is given by

E{o(X,Y)} =) @i, y)  P{X =a; AY =y},

4]
provided that the series is absolutely convergent.

2) If (X,Y) is continuous, then the mean of Z = p(X,Y) is given by

E{p(X,Y)} = /R2 o(z,y) f(x,y) dzdy,

provided that the integral is absolutely convergent.

Tt is easily proved that if (X,Y) is a 2-dimensional random variable, and ¢(x,y) = ¢1(x) + v2(y),
then

E{o1(X) +92(Y)} = E{e1(X)} + E{pa(Y)},
provided that E {1(X)} and E {2(Y)} exists. In particular,
BE{X +Y} = B{X} + E{Y}.

If we furthermore assume that X and Y are independent and choose ¢(z,y) = ¢1(x) - p2(y), then also

E{p1(X) - 02(Y)} = E{pi(X)} - E{pa(Y)},

provided that F {p1(X)} and E {¢2(Y)} exists. In particular we get under the assumptions above
that

B{X .Y} = B{X} E{v},
and
E{(X - E{X})- (Y - E{Y})} =0.

These formulae are easily generalized to n random variables. We have e.g.

E {ZX} => E{Xi},
i=1 i=1
provided that all means F {X,} exist.

If two random variables X and Y are not independent, we shall find a measure of how much they
“depend” on each other. This measure is described by the correlation, which we now introduce.

Consider a 2-dimensional random variable (X,Y), where

B{X} = ux, B{Y} = uy, V{X}=0% >0, V{Y}=0% >0,

16
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Random variables 111 1. Some theoretical results

all exist. We define the covariance between X and Y, denoted by Cov(X,Y), as
Cov(X,Y) == E{(X — px) - (Y — py)}.
We define the correlation between X and Y, denoted by o(X,Y), as

o(X,Y) = COV(X,Y).

ox "0y

Theorem 1.10 Let X and Y be two random variables, where
E{X}=px, E{Y}=py, V{X}=0%>0, V{Y}=0y>0,

all exist. Then

Cov(X,Y) =0, if X and Y are independent,

Cov(X,Y)=FE{X-Y} - E{X} E{Y},

|Cov(X,Y)| <ox -0y,

Cov(X,Y) = Cov(Y, X),

V{IX+Y}=V{X}+V{Y}+2Cov(X,Y),

VIX+Y}=V{X}+V{Y}, if X andY are independent,

o(X,Y) =0, if X and Y are independent,

oX, X) =1, oX,=X)=-1,  [e(X,Y)[<1.
Let Z be another random variable, for which the mean and the variance both exist- Then
Cov(aX 4+0bY,Z) =aCov(X,Z) + bCov(Y, Z), for every a, b € R,
and if U =aX +b and V = c¢Y +d, where a > 0 and ¢ > 0, then
o(U, V) =p(aX +b,cY +d) = o(X,Y).

Two independent random variables are always non-correlated, while two non-correlated random vari-
ables are not necessarily independent.

By the obvious generalization,
n n n j—1
14 {ZX} =D V{Xi}+2> > Cov(X; X;).
i=1 i=1 j=2i=1

If all X1, X, ..., X, are independent of each other, this is of course reduced to
v {ZXZ} =Y V{X}.
i=1 i=1

Finally we mention the various types of convergence which are natural in connection with sequences
of random variables. We consider a sequence X,, of random variables, defined on the same probability
field (Q, F, P).

17
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Random variables 111 1. Some theoretical results

1) We say that X,, converges in probability towards a random variable X on the probability field
(Q,F,P),if

P{X,—X|>e}—0 for n — +o0,
for every fixed € > 0.
2) We say that X,, converges in probability towards a constant c, if every fixed € > 0,

P{|X, —¢c>ec}—0 for n — +o0.

3) If each X, has the distribution function F,, and X has the distribution function F', we say that
the sequence X,, of random variables converges in distribution towards X, if at every point of
continuity x of F(x),

lim F,(z) = F(x).

n—-+4oo

Finally, we mention the following theorems which are connected with these concepts of convergence.
The first one resembles Cebysev’s inequality.

Theorem 1.11 (The weak law of large numbers). Let X,, be a sequence of independent random
variables, all defined on (Q, F, P), and assume that they all have the same mean and variance,

E{X;} =pn and Vi{X;} =%

Then for every fived € > 0,
N
"= o

A slightly different version of the weak law of large numbers is the following

>5}—>0 for n — +oo0.

Theorem 1.12 If X, is a sequence of independent identical distributed random variables, defined
on (0, F,P) where E{X;} = p, (notice that we do not assume the existence of the variance), then
for every fized e > 0,

1 n
P{E;Xi—u

We have concerning convergence in distribution,

25}—>0 forn — +o0.

Theorem 1.13 (Helly-Bray’s lemma). Assume that the sequence X,, of random variables con-
verges in distribution towards the random variable X, and assume that there are real constants a and
b, such that

Pla<X,<b}=1 for every n € N.

If ¢ is a continuous function on the interval [a,b], then
Jm E{p (Xa)} = E{e(X)}.

In particular,

lim E{X,} and lim V{X,}=V{X}.

n—-+oo n—-+o0o
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Random variables 111 1. Some theoretical results

Finally, the following theorem gives us the relationship between the two concepts of convergence:

Theorem 1.14 1) If X,, converges in probability towards X, then X,, also converges in distribution
towards X .

2) If X,, converges in distribution towards a constant ¢, then X,, also converges in probability towards
the constant c.
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Random variables 111 2. Maximum and minimum of random variables

2 Maximum and minimum of random variables

Example 2.1 Lad X1, X5 and X3 be independent random variables of the same distribution function
F(z) and frequency f(x), x € R. The random variables X1, X2 and X3 are ordered according to size,
such that we get three new random variables X7, X3 and X3, satisfying X7 < X3 < X3, and defined

by

X7 = the smallest of X1, X2 and X3 (= min{X;, Xo, X3}),
X5 = the second smallest of X1, Xo and X3,

X% = the largest of X1, X5 and X3 (= max {Xy, X2, X3}).

1. Find, expressed by F(x) and f(x), the distribution functions and the frequencies of the random
variables X{ and X3.

2. Prove that X} has the distribution function F3(x) given by
Fy(x) = 3{F(2)}*{1 - F(x)} + {F(2)}*, zeR,
and find the frequency f3(x) of X3.

We assume in the following that X1, Xo and X3 are independent and rectangularly distributed over
the interval ]0,a[ (where a > 0).

3. Compute the frequencies of X7, X3 and X3.

1 1
4. Prove that the three random variables X3, 3 (X1 4+ X2+ X3) and 5 (X7 4+ X3) all have the same

mean, and find this mean.

1
5. Which one of the two random variables X3 and 3 (X1 + X2 + X3) has the smallest variance?

1) It is easily seen that
Fi(x)=P{X1 <z A Xy <z A X3<z}={F(2)}>
Then by a differentiation,
f3 = 3{F(@)}*f ().
Analogously,
Ff=1-{1-F(2)}.
By a differentiation we get

fi(@) = 3{1 = F(2)}*f ().
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2) An identification of the various possibilities then gives

Fir) = P{Xj<u)
P{X1>Z‘/\X2§$/\X3§1‘}
+P{X; <a AN Xo>a A X3<ua}
+P{X1§ZL’/\X2§£L’/\X3>£L’}

+P{X; <z AXy<zAX3<az} All variables are < =z,
= 3F(@)*{1-F(2)} + {F(2)}® =3F(x)> - 2F(z).

two of the variables are < x,
and the remaining one is > x,

By a differentiation we obtain the frequency
f3 =6{F(x) = F(2)*} f(2) = 6 F(x){1 - F(x)} f(2).

3) When X7, Xo and X3 are rectangularly distributed over ]0, a[, then

1

- for x €10, al,
fl@y=19 ¢

0 otherwise,

and

0 for z <0,

x
F(z) = . for x €]0, al,

1 for z > a.

By insertion we get for x €]0, al,

fi@) = 30-F@yY @ =2{1-21 = 3o,
f5lx) = g-%{l—g}:a%x(a—x):%(ax—x2),
o - 1EY-%

All frequencies are 0 for = ¢]0, af.
4) The mean of X7 is

N 6 [, 5 3 6 (a* a* a
1 .
The mean of 3 (X1 +Xo+ X3) is

1 1
E{g (X1+X2+X3)> =3 3B {X1) = %
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Since X7 + X5 + X3 = X5 + X2 + X3, we get

1, 3 (1 1,
§(X1+X§):§{g(X1+X2+X3)}—§X2a
hence
1 * * _3 1 L * _§ g_l g—g
E{z(X1+X3)}—2E{3(X1+X2+X3)} s ElXit=5-5-5 55

a
and the three means are all equal to —.

5) It is well-known that

V{% (X1 + X +X3)} = - (V{X1} +V{Xo} +V{X3}) = %V{Xl} =

O =

93%
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Random variables 111 2. Maximum and minimum of random variables

Since

6 [ 6 (a® a 6
E{(X5)2}:$/O (a$3_$4) d.ﬁ:g (Z—€> :%CLQ’

we obtain

CL2
VX5 = B{(X3) - (BIX3) = goa? - o= o

1
It follows that the mean 3 (X1 + X5 + X3) has the smallest variance.

Example 2.2 Let X1, Xo, X3 and X4 be independent random variables of the same distribution
function F(z) and frequency f(z), x € R, and let the random variables Y and Z be defined by

)f:Hlill{,Xh)(2,)(3,)(4}7 szax{Xl,Xg,X3,X4}.

1. Find, expressed by F(x) and f(x), the distribution functions and the frequencies of the random
variables Y and Z.

2. Prove that the simultaneous frequency of (Y, Z) is given by

12f(y) - f(2) {F(z) - F(y)}*, y<z
g(y,z) =
0, y >z,

HINT: Start by finding P{Y >y N Z < z} fory < z.
We assume in the following that

1, x €]0,1],
flz) =

0, otherwise.
3. Find the frequencies of Y and Z, and the simultaneous frequency of (Y, Z).
4. Find the means E{Y'} and E{Z}.
5. Find the variances V{Y'} and V{Z}.
We now introduce the width of the variation U by U = Z — Y.
6. Find the mean E{U}.
7. Find the variance V{U}.

1) We see that
Fz(z)=P{X1 <z AN X3<z /\ngz/\X4§z}={F(z)}4
and

Fy(y)=1-{1-F(y}"
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0.5

-05

Figure 1: When y < z, the domain of integration is the triangle on the figure, where (y, z) are the
coordinates of the rectangular corner.

By differentiation we get the frequencies

fr(y) =41-Fy)}Yfy)

and
fz(2) = H{F ()}’ f(2).
2) By definition, Y < Z, so clearly g(y,z) =0 for y > z. If y < z, then

PlY>yANZ<z} = Ply<Xi1<zANy<Xo<zAy<Xs<zAy<Xy<z}
=P{y<Xi <z} Ply<Xo <z} Ply< Xy <z}
={F(2) = F(y)}*,
hence the distribution function of (Y, Z) is for y < z given by
Fy,2) =P{Y <yANZ<z2}=P{Z<z2}-P{Y >yANZ<z}=P{Z<z}—{F(2)-F(y)}*
Then

90:9) = g5 =0 5L {-AFE) - F)*T)} =12£() - 1() - (F(:) = F)

and the claim is proved.
3) Since F(z) = x for z €]0, 1], we get for y, z €]0, 1] by insertion,
fry) =41 -y)° and  fz(z) = 42"
and fy(y) =0 for y ¢]0,1[, and fz(z) =0 for z ¢]0, 1].
When 0 < y < z < 1, we get the simultaneous frequency
9(y,2) =12-1-1- (2 —y)* = 12(z — y)*,

and ¢(y, z) = 0 otherwise.
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Figure 2: The domain D.

4) The means are given by

1
E{Y} =4/ y(l—y)3dy=4/
0 0
and

! 4

E{Z} :4/ 2dz = .

0 )

5) We first compute

E{Y?} = 4/011/2(1—1/)3 <, dy =4 [—in(l—y)4]0+2/oly(1—y)4dy

= 0+2 1(1 )? +2/1(1 )>dy =0+ 2 _
- R A 50,0 VY TETE S T 15

0

The variance is
2
1 1 1 /1 1 2
VIiY}=— (=) == ([=-—=] ==
v} 15 (5) 5 (3 5) 75
From
! 4
E{Z2}:4/ Pdz=— =
0 6
follows that

2 4\? 2 16 50—48 2
V{Z}3(> S _2

|
[SURI )

25 75 75
6) The mean is of course

E{U}=E{Z—Y}:E{Z}—E{Y}:§_
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7) Finally,

E{U?} =E{Z*} —2BE{ZY}+ E{Y?} == + B —2E{ZY},

// yzgyzdydz-l2//yzz— dydz—12/ z{/ozy(y—z)gdy}dz
= 12/0 z{[é.u-(y—z)?’]o—g/o( )dy}dz
_ _4/012E(y_z)‘*}:dzz/olfdz:%

which gives by insertion

where

E{ZY}

1 1 6 2

1
337516 5

2 1
E{U2}=§+B—

The variance is

V{U}=E{U?} — (E{U})* :%—(%) :%—2%:%.
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Example 2.3 Let X1 and X5 be independent, identically distributed random variables of frequency

2x

pok 0<z<a,
flz) =

0, otherwise,

where a is a positive constant, and let the random variables Y and Z be given by
Y = max {X, X}, Z =min{Xy, Xs}.

1. Compute the mean and the variance of X1.

Find the frequency and the mean of Y.

Find the frequency and the mean of Z.

Ll A

Prove that the simultaneous frequency of (Y, Z) is given by

Syz

?, 0<Z<y<a7

9(y,2) =
0, otherwise.

HINT: Start by computing P{Y <y A Z > z} for z < y.
We introduce the width of the variation U by U =Y — Z.
5. Find the mean of U.

6. Find the frequency of U.

1) By the usual computations,

¢ 2 2
E{Xl}:/(; l"ﬁd.’ﬂ:ga,
and
@ 2w 1
2\ _ 2 _ 2
E{Xl}—/o T -pdx—§a,
hence

V{Xi}=E{X}} - (E{X1})’ = (5 - §0) a? = 5

2
2) Let F(x) [ :c_2 for0 <z < a] be the distribution function of X; and X,. Then the distribution
a
function of Y is in the interval ]0, a[ given by

Frly) = (F)) = &,
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so the corresponding frequency is

Y3
4= for 0 <y <a,

fr(y) = at

0 otherwise.

The mean is

@ 4ot 4

3) Analogously, the distribution function of Z for 0 < z < a is given by

z

Fz(z)=1-{1-F(2)}*=1- (1 - a—z) = % (2222 — 2*) .

We get the frequency by a differentiation,

4 2 3
—4{az—z} for0< z < a,
fz(z) =4 ¢

0 otherwise.

The mean is

4 (¢ 4 /1 1 8
E{Z}:;/o {a222724} dz:g (§g>a51—5a.

4) Tt follows from the definitions of Y and Z that g(y,z) = 0, whenever we do not have 0 < z <
y < a. On the other hand, if these inequalities are fulfilled, then it follows, since X; and X, are
independent that

PlY<yANZ>z} = P{z<X1<yAz<Xo<y}=P{z<X;<y} P{z<X;<y}

= (Fly) - FEY = o (7 -

Therefore, if 0 < z < y < a, then the simultaneous distribution function is given by

Gly2) =P(Y <yAZ<z}=P(Y <y}~ P{Y <y A Z>z}=Fr(y) - — (v* - 2%)%,

pr
hence
oG 2 5, 4z , 5 4
EZO_E (y —z)-(—2z)=¥ (y* —2%),
and
0*G _ 8yz

g(y’Z):ayaz_? O0<z<y<a,

and ¢(y, z) = 0 otherwise.
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5) The mean is of course

E{U}:E{Y-Z}:E{Y}-E{Z}:ga—ﬁazia.

6) The frequency of U =Y — Z is given by

fu(u) = /oo 9(y,y —u)dy.

— 00

The integrand is # 0, when 0 < y — u < y < a, so we have the conditions
0<y<a and O<u<y<a.
If u €]0, 1], then the domain of integration is u < y < a, hence

— a8_y_ _ﬁa _ _§l3_22a
fu(u) = /ua4(y U)dy—a4/u(yr yu) dy = [331 21/}

at
8 a®  a? 1 3_~_1 3 8 a® a2 +1 3
—— ——Uu——-u —ulr=—< — — —u+-u
at | 3 2 3 2 at | 3 2 6 ’

and fy(u) = 0 otherwise.
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Random variables 111 2. Maximum and minimum of random variables

Example 2.4 An instrument contains two components, the lifetimes of which Ty and T are inde-
pendent random variables, both of the frequency

ae %, t>0,
where a 1s a positive constant.
We introduce the random variables X1, Xo and Yy by
X1 :min{T17T2}7 Xg:maX{T17T2}7 YQZXQ—Xl.

Here, X1 denotes the time until the first of the components fails, and Xo the time, until the second
component also fails, and Ys is the time from the first component fails to the second one fails.

1. Find the frequency and the mean of X;.
2. Find the frequency and the mean of X.
3. Find the mean of Y.

The simultaneous frequency of (X1, X2) is given by

2a26—a(:p1+zz), 0 <21 <2,
h(xy,22) = { 0, otherwise.

(One shall not prove this statement.)
4. Find the simultaneous frequency of the 2-dimensional random variable (X1,Ys).
5. Find the frequency of Ys.

6. Check if the random variables X1 and Yy are independent.

1) Concerning X1,
P{X, >z} =P{Ty>x1 ATy >z} =P{T1 >z}  P{Th > x5} = e 291,
thus
P{X)<x}=1—e?%1, x1 >0,

and X is exponentially distributed of the frequency

fxi =

2ae”2em, z1 >0, and mean L
0, 1 <0, 2a°

2) Concerning X,

P{XQS.TQ} = P{TlSZEQ/\TQSl'Q}:P{TlS[EQ}P{TQSZCQ}

= (1767(”2)2, x2 > 0,

thus X5 has the frequency

fx, (x2) =2ae7%% (1 — e %") =2ae ¥ — 2q e~ 2" for g > 0,
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and
fx, (x2) =0 for o < 0.

THE MEAN is

E{Xs} = /OOO xafx, (x2) dxg = /000 {ange_‘wz — 2ax26_2‘”2} dxy = % — % = %.
ADDITIONAL. The mean of X5 is easily obtained from X; + Xo =T} + T5, i.e.
E{Xo} = BT} + E{I} ~E{X\} =+ 4+ — =
a a 2a 2a
3) This is trivial, because
B{%} = B{X;} - B{Xi} = o — 5=
4) The simultaneous frequency k (y1,y2) of
(Y1,Y2) = (X1, Xo — X1)
can e.g. be obtained directly by using a formula, where a =1, b=0,c= —1 and d = —1,
Flyye) = h (dayiz_léiz ’ fiiljbim) ' |ad1—bc|

= h(y,y1 +1y2) = 202 (2y1+y2) for y; > 0 and yo > 0,
and
k(y1,y2) =0 otherwise.

This is also written
2q e 2W . g e W2, for y; > 0 and yo > 0,
k(Y v2) = { 0, otherwise.

5) (and 6.) It follows immediately from 4. that Y7 (= X;) and Y5 are independent, and that Y5 has
the frequency

ae_ay27 Y2 > 0,
kv, (v2) = { 0 yo < 0.
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Example 2.5 An instrument A contains two components, the lifetimes of which X1 and X5 are
independent random variables, both of the frequency

ae %, x> 0,
0, z <0,

where a 1s a positive constant.
The instrumentet A works as long as at least one of the two components is working, thus the lifetime

X of A is
X = max {X1, Xo}.
Another instrument B has the lifetime Y of the frequency
ae” Y, y >0,
0, y <0.

1) Find the distribution function and the frequency of the random variable X .
2) Find the mean of X.
3) Find the simultaneous frequency of (X,Y), and find P{Y > X}.

4) Find the frequency of X +Y, and find the mean of X +Y.

1) Since X7 and X» have the frequency
f(z) =ae ", for = > 0,
the distribution function of each of them is
Fz)=1—-e", for z > 0.
Then by a formula, X = max {X;, X2} has the frequency
Fx(z) = Fx,(z) - Fx,(z) = {1 - 67”}2 for z > 0,
hence the frequency for = > 0 is given by

fx(@)=Fi(z)=2(1—e *)ae ™ =2ae " —2ae "

2) The mean is
o0 fo%s) 0o
E{X} = / l’fX(.’l?)d.ﬁ:Qa/ Qfe_axdx—Za/ Tz e 20T gy

1 1 3 3
2 (= - ) =2¢. -2 =2
a((ﬂ 4a2> “4a2 T 2a
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3) In the first quadrant the simultaneous frequency is given by

fX(SC) gY(y) = 2a (efaz _ e*Qaa:) . ae,ay,

hence

P{Y > X} — e ) em M dy

I
S~
JIR.
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—
ml
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8
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| —
I
OJ| —_
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4) The mean of X + Y is of course

3 1 5
E{X+Y}:E{X}+E{Y}=%+E=%.

When z > 0, the frequency of X + Y is given by
z
Mo = [ @iz - o
0
— / 2a (e—aw o e—2aw) ae—a(z—m) dr = 2(12/ (e—az o e—aaze—az) dz
0 0

= QaQe_az/ (1 - e_‘“”) dx = 2a%e™ % {z — l (1 — e_az)}
O a

= 2d%ze ¥ —2ae ¥ + 206 2% =2qe ¥ (az — 1+ 67“2) .
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Random variables 111 3. The transformation formula and the Jacobian

3 The transformation formula and the Jacobian

Example 3.1 Let (X1, X32) be a 2-dimensional random variable of the frequency

1
—, 0<a?+a3<1,
h(l’l,l‘g): &

0, otherwise.
1. Find the frequencies of the random variables X1 and Xs.
2. Find the means and the variances of the random variables X1 and X5.
3. Prove that X1 and Xs are non-correlated, but not independent.
Let (Y1,Y3) be given by
X1 =Y cosYs, Xy =Y sinYs,
where 0 <Y; <1 and 0 < Y5 < 27.
4. Find the frequency k (y1,vy) for (Y1,Y2).
Are Y1 and Ys independent?

Figure 3: When —1 < xy < 1, then —/1 — 27 < x5 < /1 — 2%.

1) It follows immediately that

2
=/1—2a3 1<z <1,
fX1 (ml) - T
0 otherwise,
and
2 2
— /1 —23, -l<221 <1,
fX2 (xl) = T
0 otherwise.
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2) It follows from the above that
1

E{X,} =E{Xy} = %/ t\/1—12dt =0,

and

VA{Xi} =V {Xa}

1 1
E{Xf}:%/th\/l—tht:é/ /1 — 12 dt

_ T Jo

4 (% 1 [2 1

= —/ sin2t~cost-costdt=—/ sin? 2tdt = ~.
i 0 v 0 4

3) The support of the frequency is not a rectangle parallel to the axes. Hence, X; and X5 cannot be
independent.
It follows from the symmetry that £ {X; X5} = 0. Hence

Cov (X1, X0)=E{X1 X2} — E{X;} E{X5} =0,
and X; and X5 are non-correlated.
4) The map
(z1,22) = ¢ (y1,92) = (y1 cOS Y2, Y1 5iny)

is bijective between the two given domains.
The Jacobian is

ddxy Oz
0(x1,22) _ %1 Ope = R T =y #0
0 (y1,92) % % sinys Y1 COSYs

Oy1  Oyo

Then we get the frequency of (Y7, Ys),

1
—uL for y; €]0.1] and y2 € [0.27],

k (yb y2) =
0 otherwise.

5) It follows from

2y for y €10, 1],

)% (yl) =
0 otherwise,
and
1
o for yo € [0.27],
gy, (y2) = ¢ 77
0 otherwise,
that

k(y1,92) = gvi (Y1) - 9y, (¥2)

hence Y7 and Y5 are independent.
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Example 3.2 Let (X1, X2) have the frequency
e "1 ')\e”‘z?, z1 >0, o >0,
h(xy,29) =
0, otherwise,
where \ is a positive constant, and let (Y1,Yy) =7 (X1, X2) be given by
Yi= X, 4+ Xo,  Yo=X, - Xo.
1) Prove that T maps ]0, 00| x ]0, 0o[ bijectively onto the domain
D' = {(y1,y2) €R* |51 >0, |2 <1}
2) Find the frequency k (y1,y2) of (Y1,Y2).
3) Prove that Y1 and Ya are non-correlated for precisely one value of \, and find this value.

4) Prove that Y1 and Ya are not independent for any choice of .

00z 04 06 08 1

05

Figure 4: The domain D’ is the angular space in the right half plane (and D is the first quadrant).

1) Tt follows from

Y1 =1 + T2, Y2 = X1 — T,
that
1 1
$1=§(f1+y2), $2=§(Z/1—y2)-

Since (x1,x2) is uniquely determined (by an explicit expression as a function) from the given
(y1,y2) and vice versa, the map is bijective.

In order to find the image D’ of the first quadrant D by the map 7 we start by determining the
images of the boundary curves:
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e The line z; = 0 is mapped into y; + y2 = 0, i.e. into the line yo = —y;.

e The line o = 0 is mapped into y; — y2 = 0, i.e. into the line y5 = y;.

Since 7 is continuous and y; > 0, it follows from where the boundary curves are lying that the
image is

D' = {(y1,y2) €R* | y1 >0, |yo| <wn},
which has been indicated on the figure.

2) The Jacobian is

(SIS
N

8(,’131,‘%2)
0 (y17y2)

1
= =3

(SIS
N

Hence, if (y1,y2) € D', then the frequency of (Y7,Y2) is given by
1 1 1
k(yr,y2) = ‘—5' -h <§ W1 +y2), 5 (0 —y2)>
1 A
oxp (=5 (y1+y2) ) -exp (=5 (41— y2)

A+1 A—1
exp | — B Y1 | - €xp B Y2 1,

N>

| >
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or more well-organized

A A+1 A1
e |~y e | 52 ) n >0, ly2| < y1,

k’(yl,yz) =

0, otherwise.

3) Since X; and X, are independent, it follows by a reduction that
Cov (Y17Y2) = Cov (Xl + X9, X7 — XQ) = V{Xl} -V {XQ} .

It follows from

2

V{Xi} = / 2 e day — {/ r1e” d:cl} =2 — (1?2 =1,
0 0

and

2

o0 o0 2 1 1
V{X5} = Zxe M2 —/ “Ae A2 g =5 5=
{Xa2} /0932 € T2 {O T2 A€ T2 A2 a2 )2

that Cov(Y7,Ys) = 0, precisely when A > 0 is equal to A = 1, hence Y7 and Y5 are non-correlated
precisely when A = 1.

4) Since D’ is not a domain which is parallel to the axes, Y7 and Y3 cannot be independent for any
choice of A > 0.
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Example 3.3 A 2-dimensional random variable (X,Y) has the frequency

1, 0<xy <00, 0< e <€ ™1
h (1’1,$Q) =
0, otherwise.

1. Find the frequencies of the random variables X1 and Xs.

2. Find the means E{X1} and E {Xs}.

3. Find the variances V{X1} and V {Xs}.

4. Find the correlation coefficient o (X1, X2).

Let the 2-dimensional random variable (Y1,Y2) = 7 (X1, X2) be given by
Y, = XoeX1, Y, = e X1,

5. Find the frequency of (Y1,Y2).

6. Are Y1 and Yy independent?

Figure 5: The domain D, where h (z1,2z2) > 0.

1) We get for fixed x1 € R by a vertical integration,

e Tt for z; > 0,

fx, (z1) =

0 otherwise.
Then by a horizontal integration for fixed z,

—Inxzy for 0 < z9 < 1,

fX2 (1'2) =

0 otherwise.
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2) The means are E{X;} =1, and

! 1 ! 1 1
E{Xg}z—/0 x2~lnm2dx2:—[§x§ lnxg] —l—/o §x2d:c2:1
0

3) The variance of X; can be found in a table, V {X;} = 1.
Concerning Xo we first compute

1

! 1
E{X%}:—/O 3 lnxzdxgz—[gxg lnxg] +/0 §x§dw2:§'
0

The variance is

V{Xo}=E{X2} — (E{X2})’=-— = = —

1
16 144"

O =

4) It follows from

0o exp(z1) 1 o 1
E{Xng} = / xr1 / Todry pdry = —/ € - e 271 dri = —,
0 0 2 0 8

that
1 1 1
COV(Xl,XQ) = E{XlXQ} - E{Xl} E{XQ} = é —1- Z = 7§,
hence
Cov (X1, X. . 12 37
Q(leXQ): ( L 2) = 8 = — = — .
VVAXE VXL \/1 T 8VT 14
144
5) It follows from
Y1 = X2 elﬂl’ Y2 = eiajla
that
r1=—Inyy and w3 =yiyo.

Investigating the boundary we see that

e the curve x5 =0, 1 > 0 is mapped into y; =0 and 0 < yo < 1,
e the curve 1 =0, 0 < x5 < 1, is mapped into 0 < y; < 1 and yo = 1,

e the curve o = e~ ™', 1 > 0 is mapped into y; =1 and 0 < yo < 1.

Finally, it follows from y1, y2 > 0 and y; = 22 €™ < 1 that the image is D" =]0,1[ x ]0, 1[.

The Jacobian is

8(3:1,:62): 0 Y2 | _q

9 (y1,v2)
Y2 Y1
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o 02 04 0% 08 12

Figure 6: The image D’.

If (y1,y2) € D', then k (y1,y2) = 1, hence
1 forO0<y; <1,0<ys <1,

k (yl, yz) =
0, otherwise.

6) Obviously, Y7 and Y> are independent. In fact,

1 for 0 <yp <1,

ki (y1) =
0 otherwise,
and
1 for 0 < yo < 1,
ka (y2) =
0 otherwise,
and

k(y1,y2) = k1 (y1) - k2 (y2) -
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Example 3.4 A 2-dimensional random variable (X1, X2) has the frequency

427 i D,
h (xl, (EQ) =
0 otherwise,

where

D:{($1,$2)€R2|0<(L‘2<1‘1<1}.
1. Find the marginal frequencies of X1 and X5.
2. Compute the means E{X1} and E{X5}.
3. Compute the covariance Cov(Xy, Xs).

We now define the random variables Y1 and Y3 by
(Y1,Y2) =7 (X1, Xo) = (X1, X1 — 2X5).
4. Prove that the vector function T given by
7 (21,22) = (21,21 — 229)

maps D bijectively onto

DIZ{(?J17:U2>€R2|0<Z/1 <1, —y1<y2<y1}.

Find the marginal frequencies of Y1 and Y.
Compute the means E{Y1} and E {Y>}.

Check if Y1 and Ys are non-correlated.

© ® N = o

are Y1 and Yy independent?

1) Tt follows by a vertical integration,

4x:{’ for 0 <z <1,

fX1 (1’1) -

0 otherwise.

Then by a horizontal integration for 0 < x5 < 1,

1
4
fx, (x2) z/ 433% dr, = 3 (1 — J:‘;) ,
T2
hence
3 (1—23) for 0 < 2o < 1,
Ix, (x2) =

0 otherwise.

Find the simultaneous frequency k (y1,y2) of (Y1,Y2).
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Figure 7: The domain D.

2) The means are

1

4

E{X1} :/ 4ot dry = 5
0

and

sesssssssrssssessansansrssrsarsansarsarsassrssrnssnnsrnsssssssssessesessfilCcate]-Lucent @
www.alcatel-lucent.com/careers

2%

One generation’s transformation is the next’s status que:

In the near future, people may soon think it's strange that
devices ever had to be “plugged in.” To obtain that status, there
needs to be “The Shift".

N

Click on the ad to read more
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3) It follows from

! 1 ! 1 2 1
E{X; X5} :/ 1 / Ty - 422 dry p dry = / 4o - —atdry = = = -,

that

1 4 2 1 8 1
COV(XhXQ):E{XlXQ}—E{Xl}E{XQ}:E—ggzg—%:%

4) By solving the equations
yr=21 and Yy =z — 212
with respect to (21, z2) we get
Ty =y  andzp = % (t1 —y2),

proving that the map is bijective.

0.5

O 02 04 o6 08

05

Figure 8: The image D’.

The images of the boundary curves are described by

e The line segment 0 < x7 < 1, x5 = 0, is mapped into
(y1,92) = (z1,21), 0<x; <1.

e The line segment 1 = 1, 0 < x5 < 1, is mapped into
y1 =1 and Yo =1—2x9, 0< g <1.

e The line segment (z1,22) =t(1,1), 0 <t < 1, is mapped into the line segment
(y1,92) = (t, —1), 0<t<l1.

Since a bounded set is mapped into a bounded set, it follows that D’ is the triangle on the figure.
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5) The Jacobian is

8@1@2) _ _
9 (y1,v2) 1
2

Then by the transformation formula,
k’(yl,yz):’—%"‘ly%:%% iD,
and
k(y1,y2) =0 for (y1,92) ¢ D".
6) By a vertical integration,
fi (1) =2y1 - 297 =4y for 0<yi <1,
and

fvy (y1) =0 otherwise.

By a horizontal integration,

W o

1
Iva (2) =/ 2y7 dyy = (1 - |y2|‘3) for —1 <yp <1,
ly2|
and

fv, (y2) =0 otherwise.
7) The means are
4
E{MWM}=E{Xi}= -

and

4 2
E{YQ}:E{X1—2X2}25_2520

Concerning E {Y3} one may alternatively apply that fy, (y2) is an even function over a symmetric
interval. The computations, however, are in this case far bigger.

8) Since y1y2k (y1,y2) is an odd function in y9, it follows by the symmetry with respect to the Y7 axis
that F {Y1Y5} = 0, hence

COV (Y17Y2) = E{Ylifg} —F {Yl} - B {}/2} = 0,
whence Y7 and Y5 are non-correlated.

9) The support D’ of the frequency k (y1,y2) is not rectangular. Hence Y7 and Y3 are not independent.
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Example 3.5 Let (X1, X2) be a 2-dimensional random variable of frequency

%‘r% (‘rlaxQ) GD,

h(zy,29) =
0, otherwise.
where
D:{(x1,$2)€R2|0<x2<1, fx2<:c1<x2}.
1. Find the marginal frequencies of X1 and X5.
2. Compute the means E{X1} and E{Xs}.
3. Prove that X; and Xs are non-correlated.
4. Are Xy and Xs independent?
We now define the random variables Y1 and Yy by
(Y1,Y2) =7 (X1, Xo) = (X1 + X5,2X5).
Without proof we may use that the vector function T given by
T (21, 29) = (—21 + X2, 229)
maps D bijectively onto
D' = ((y1,y2) €ER* |0 < y1 <ya <2}.
5. Find the simultaneous frequency f (y1,y2) of (Y1,Y3).
6. Find the marginal frequencies of Y1 and Ys.
7. Compute P{Yy > 2Y1}.

0.8

0.6

04

0.2

Figure 9: The domain D.
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1) We get by a vertical integration,

1
3 3
le(ml):/I §x2dx221(1—m%) for —1<x <1,

ml\

and
fx, (z1) =0 otherwise.

Then by a horizontal integration,

T2
X, (x2) = = o dxe = 3a2 for 0 <zg <1,
2 2 2

s

and

Ix, (x2) =0 otherwise.

2) The means are

> w

1
E{Xl}z/ Ty - (1—1‘%) d.’L’1:O,

—1

because the integrand is an odd function, and the interval of integration is symmetric with respect
to 0, and

1
E{XQ} :/ 337% dl‘g = Z
0

/
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3) Now,

1 x
3 2
E{X, Xy} :/ _:cg{/ T dxl}dxg =0,
0 2 —xI1

because the integrand is odd in z1, and we integrate it over a symmetric interval with respect to
0 (the dependency of x5 does not matter anything here)- Hence,

Cov (X17X2) =F {X1X2} - F {Xl} . E{Xz} == 0,
proving that X; and X5 are non-correlated.

4) Since D is not a rectangular domain, X; and X5 are not independent.

Figure 10: The domain D’ with the cut by the line yo = 2y;.

5) Tt follows from

Y1 =21 + T2 and Yo = 29
that
1 1
T2 =5 U2 and x1=—y1+x2:—y1+§yz,

hence the Jacobian is

—1

N[—=

(9(3?1,172) _ _
9 (y1,92) 0

1
5"

N[=

If (y1,92) € D', ie. 0 < y1 < yo < 2, then by the transformation formula,
1 3
9 Y2 | = 3 Y2,

k(yi1,y2) =0 otherwise.

1
k‘(yl,y2) = ‘5’ :

and
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6) Then by a vertical integration,

2
3 3
le(lh):/ gyadyzzﬁ(4—yf) for 0 <y, < 2,
Y1
and
fvi (1) =0 otherwise.

Horizontal integrations then give

fva (y2) = §y§ for 0 < yp < 2,
and
fva (y2) =0 otherwise.

7) When we write the wanted probability as a planar integral, then

P{Yé > 2Y1}

JAL Smanfan= ]

— o d

8y2 Y2

3 [t 3

—/ (1—yf)dy121(
0

4

1

'3

8

1- =
3

1,7

3 1
- dyp = — 4— 42 d
|:2y2:|2y1 Y1 16/0{ yi} dy
_3.2_1
T4 3

Iy
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ALTERNATIVELY and somewhat more sophisticated we notice that the line yo = 2y, intersects the

3
triangle D’ into two triangles of the same weight, because k (y1,y2) = 3 12 in D’ only depends on

12, and because the line y, = 2y, intersects every horizontal line segments through D’ into two

line segments of equal length.

Example 3.6 Let (X1, X3) be a 2-dimensional random variable of frequency

4 e~ (@1+222) (x1,22) € D,
h (!L‘l, 162) =
0, otherwise,

where
D:{($17$2)€R2|0<{L’1<2{E2<OO},
and let (Y1,Ys) = 7 (X1, X2) be given by
Y = X1 +2X,, Yo = X1 —2X5.
1) Prove that T maps D bijectively onto the domain

D' ={(y1,92) €R® | y2 <0, y1 +y2 > 0} .

2) Find the frequency k (y1,y2) of (Y1,Y2).

3) Find the marginal frequencies of Y1 and Y.
4) Check if Y1 and Yz are independent.

5) Find the means of Y1 and Ys.

6) Find the variances of Y1 and Ys.

7) Compute the correlation coefficient o (Y1,Y2).

1) 1t
Y1 = 21 + 212, Yo = x1 — 2T2,
then
1 1
$1:§(yl+y2), Iz:z(yl—yz)a

hence the x-s are uniquely determined by the y-s

We shall now describe the domain D’.

, which proves that the map is bijective.

The half line x5 = 3 x1, v1 > 0, is mapped into yo = 0, y1 + y2 > 0, i.e. into the positive y; axis.

The half line £ = 0, z2 > 0, is mapped into (y1,y2) = (2x2, —2x2), x5 > 0, i.e. into yo = —y; and

y1 > 0.

We shall now decide which angular space is the right one. However, since also 3" > 0, it follows that
D' is uniquely determined as the angular space in the fourth quadrant between the line yo = —y;

and the y; axis.
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08

0.6

0.4

0.2

-0.2

-04

-06

-0.8

Figure 12: The domain D’ lies in the fourth quadrant between the oblique line y5 = —y; and the x
axis.

2) The Jacobian is

1 1
0 (z1,22) 2 20 1
9 (y1,92) 11 4’
4 4

It follows from the transformation formula that

1
H Aeexp(—y) =e ™ for (y1,42) € D,
o 4
k(y1,y2) =

0, otherwise.

3) By a vertical integration,

yre ¥t for y; > 0,
fY1 (yl) =

0 otherwise.
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By a horizontal integration,

ff; eV dy; = e¥? for y5 < 0,

fyz (y2) =

0 otherwise.

4) Since D’ is not a rectangle parallel to the axes, Y7 and Y5 ar not independent.

5) The means are

E{v) = / e dy, =2,
0

and

0
E{YQ}:/ y26y2 dygz—l.

— 0o

6) Tt follows from

B2y = [ e man=3=s
that

V{vi}=6-2%=2.
It follows from

E{Yf}/o y%e”dyzfoootzetdtz
that

V{Va}=2—-(-1)*=1.

7) We now compute

o] 0 %) 0
_ _ 1
E{Yy} = / {/ yiya e N dyz}dylz/ yre [593} dy
0 —Y1 0 —Y1
1/00 3 -y
= —= yr e Ydy, = —3.
2 Jo
Then

Cov (V1Y) = E{Y1} E{Y2} = -3 —2(-1) = —1,
and hence

Cov (Y1, Y- -1 V2
Q(Y17Y2): V( 1 2) — = _1-

VV IV V21 2
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Example 3.7 Let (X1, X2) be a 2-dimensional random variable of the frequency

4 e~ (@1t3z2) (x1,22) € D,
h (1'1, xg) =
0, otherwise,

where
D:{(xl,xg)G]Rz|0<x2<:£1<oo}.
1. Find the marginal frequencies of X1 and X5.

2. Find the means E{X1} and E {X2}.

We now define the random variables Y1 and Y3 by
(Y1,Y2) =7(X1, Xo) = (= X1 + X0, X1 + 3X0).

Without proof we may use that the vector function T given by
7 (x1,22) = (—21 + 22, 21 + 322)

maps D bijectively onto

D' ={(y1,y2) €ER* | y1 +y2 >0, y1 <0}.

Find the simultaneous frequency k (y1,y2) of (Y1,Ys).

Find the marginal frequencies of Y1 and Ys.

Compute the means E{Y1} and E{Y>}.

A O s

Are Y1 and Ys independent?

0.8

0.6

04

0.2

Figure 13: The domain D lies in the first quadrant between the oblique line x5 = 21 and the z; axis.

53

Download free eBooks at bookboon.com



Random variables 111 3. The transformation formula and the Jacobian

1) By a vertical integration for z:y > 0,

€Ty 1 Z1
0 3 0
4 4
= 3 e 1 (1 — e_?’xl) =3 (e_g”1 — 64_4””1),

and fx, (1) =0 for 2y <0.

By a horizontal integration for xzo > 0,

o

fx, (x2) = / 4o~ (@14322) g — g e~ 32 [—e_““]“ =412,
x2

and fx, (z2) = 0 otherwise.

2) The means are

4 [ 4 1 4 15 5
E{X} =~ et dp = {1 - b =2 =1
)= [Tmem caetmyan =g hi- gl =305

and

o 1
E{X,} = 4/ Tye 12 dyy = =
0 4

Need help with your
dissertation?

Get in-depth feedback & advice from experts in your
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the quality of your dissertation!
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Figure 14: The domain D’ lies in the second quadrant between the oblique line yo = —y; and the
vertical yo axis.

3) It follows from

Y1 = —x1 + X2, Yo = T1 + 372,

that
+ 4 i L + L
= .e. = - -
Y1 T Y2 Z2, 1 T2 42/1 4y23
and
n 1
T1=To— Y1 = —— -
1 2 — W 4yl 492,
i.e.
3 1 1 1
w1:—1y1+1y2 and x2:1y1+1y2.

Hence, we get the Jacobian

8(1'171'2) ’ _3 1 ‘1
9 (y1,Y2) % % 4

Then by the transformation formula,

1
‘4‘ eV = V2 for (y1,y2) € D',

0 otherwise.

4) Then by a vertical integration,

fix;l e7Y2 dyy = eht for y; < 0,

le (yl) =
0 for y; > 0.
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A horizontal integration gives
f_0y2 e Y2 dyy = yae™ V2 for yo > 0,

sz (y?) =
0 for y2 <0.

5) The means are
5 1
EVi} =E{-X1+Xo} = -E{Xi} + E{Xp} = —3t7="1
and

+S =2

| Ot
e~ w

E{Yo) = E{X, +3Xo) = E{X,} + 3B {X,} =

6) Since D’ is not a rectangle parallel to the axes, Y7 and Ys are not independent.

[ ]
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Example 3.8 A rectangle has its side lengths X1 and Xo, where X1 and X5 are independent random
variables, and where Xy is rectangularly distributed over |0, 2], and Xo is rectangularly distributed over
10, 1.

1. Find the mean of the circumference of the rectangle, E {2X1 + 2X5}.
2. Find the mean of the area of the rectangle, E {X1X2}.

Let the 2-dimensional random variable (Y1,Y2) = 7 (X1, Xs) be given by

Yi=X1X Yo = —.
1 142, 2=y,

3. Prove that T maps ]0,2[ x |0, 1] bijectively onto the domain
/ 2 4
D'=1{(yi,52) €R |0<y1<2,y1<y2<y— :

1

4. Find the frequency k (y1,y2) of (Y1,Ya).

5. Find the marginal frequencies of Y1 and Y.
6. Check if Yo = X1/X5 has a mean.

7. Find the probability

1
P{§X1<X2<3X1}.

Figure 15: The domain D.

1
1) Tt follows from E{X;} =1 and E{X>} = 2 that
E{2X, +2X5} =2(E{X1} + E{X2}) =3.

2) Since X; and X, are independent, we get

E{X\Xo) = B{X\} B{X2} =17 =.
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3) Then solve the equations

T
Y1 = T1T2, y2=—1, O0<a1 <2, 0<zy <1,
€2

with respect to 1 and x5. Clearly, 0 < y; < 2 and y2 > 0, so

Y1
T1 = /Y12 and To = y_
2

We conclude that the map is bijective.

Then we shall find the image D’ = 7(D).

Figure 16: The domain D’ lies between the hyperbolic arc and the line yo = y1, and the vertical g
axis.

e When z1 =0 and 0 < 5 < 1, then s y; = 0 and y» = 0.
2 4

e When 1 =2 and 0 < 2o < 1, then (y1,y2) = <2x2, —), thus yo = — and 0 <y < 2.
T2 Y1

e When zo =1 and 0 < 21 < 2, then (y1,y2) = (1, 21), i.e. y2 = 1.

We conclude from the continuity and the claim 0 < y; < 2 that
! 2 4
D'=q(y1,y2) ERT[0<y1 <2, 11 Syr<oq
1

4) Since yo > 0, the Jacobian becomes

Ly 1y
2 2
d(wr,z) | "V Pt w1 fp T 1
9 (y1,92) 1 \/T 1 [ AV 3 4Vy nye 2y
2V yiy2 2V y2
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1
From h (z1,x2) = 3 for (x1,x2) € D, follows that

1
T for (y1,y2) € D',
k (yla y2) = Y2
0 otherwise.

5) When 0 < y; < 2, we get by a vertical integration
Yo 1 1(, 4 1 2
- —dy)~ [In 4/y1:—(1n——ln ):-m(-),
v (1) /y1 ”m y2); [y, ™ =7 " y) =gl

hence

1
— (In2—1Inyy) for 0 <y <2,
_ 2

le (yl) -

0 otherwise.

When 0 < y5 < 2, we get by a horizontal integration,

v 1

fve (2) = b, 1

If instead yo > 2, then
1 4 1
Folm) =g =
’ dya Y2 Y3

Summing up,

for 0 < yo < 2,

|

Ivs (yz) =

for 2 < y < o0,

<
o] F

0 for —oco <y <0.
6) The improper integral
o0 o0 1
/ Y2 fy, (y2) dy2 = / — dyp = o0,
2 2 Y2

is clearly divergent, hence F {Y5} does not exist.

7) Since X5 > 0, it follows by a small rewriting

1 1 1 3
P{3X1<X2<3X1} = P{3}/2<1<3Y2}—P{3<Y2<3}—/fYZ(y2)dy2
1
3
2 3 3
1 1 1 1 1 5 1 1
= =d —dyp==-(2-2 - ==—-Z4=
/§4y2+/2 2 4( 3)+[y2]2 2 373
_ 5—446 T
- 12 12
59

Download free eBooks at bookboon.com



Random variables 111 4, Conditional distributions

4 Conditional distributions

Example 4.1 Let (X,Y) be a 2-dimensional random variable of frequency h(x,y) and marginal fre-
quencies f(x) and g(y), and let f(x | y) be the conditional frequency of X, given' Y =y.
Let ¢ be a function : R — R, for which

| @i pde <o for altey e ®
In such a case we define the conditional mean of ¢(X), given Y =y, by
(o]
W [ e@ ]y i
— 00

The conditional mean of ¢(X), given Y, is the random variable, which for Y =y has the value of (1).
Hence, the conditional mean is a function in'Y, and it is denoted by E{p(X) | Y}.

If o(z) = z, we get in particular the conditional mean of X, given Y, and for p(z) = (z—E{X | Y})?
we get the conditional variance of X, given Y.

1) Assuming that the random variable E{X | Y} has a mean, prove that

BE{X}=E{E{X |Y}}.

2) Find an analogous formula which expresses V{X} by means of the conditional mean E{X | Y}
and the conditional variance V{X | Y'}.

3) Let U be a function : R — RProve that E{[X — W(Y)]?} has its minimum for ¥(Y) = E{X | Y}.

1) We have

h(z,y) = f(z [y)g(y).

If we put Z = o(Y) = E{X | T}, then Z has the values

/oo xf(x|y)de,  ifg(y) #0,

o0

and 0 otherwise. Hence, the values of Z = E{X | Y} are

1

» 70 [ xh(z,y)de  for g(y) # 0,
z(y) =

0 for g(y) = 0.
Since g(y) = 0 implies that h(z,y) = 0 almost everywhere, the mean of Z = E{X | Y} is given by

oo

E{Z}

BlE(X | V) = |

— 00

2(y) 9(y) dy =/ L/Oo rh(z,y)dr - g(y)dy

g(y)#0 g(y) —o0

/_Z/_th(x,y)dmdy:E{X}.
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ALTERNATIVELY we may use that E{X | Y} for Y =y has the value

/_ v f(x | y)de,

SO

e vy = [ [ ereinabama= [T {7 reingmang
/ﬂ:_ooaz{/:_oof(m,y)dy} dx = /_O;If(x)dm — B{X}.

2) Then put ¢(x) = (x — E{X | Y})2. When g(y) # 0 it follows that V{X | Y} has the values

[ @B |y =iy

= gt [ 2B ) B )] s
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thus
Bvx vy = [ o /m [0 — 20 E{X | g} + (B(X | y})?] Ao, y) do - g(y) dy
= [ B+ (B0 D] e dedy
= B2 [ B [ eflidedy
e B P
= B2 ) BIX |0 BX ) dy
[ o B 07
= B0 - [ B P i
= VI EED - [ EE 0P )y
VX (BBLX | Y3D? - B{(BLX | Y)2),
and hence

V{X}=EB{V{X |Y}} - (B{E{X | Y}})* + E{(B{X | Y})?}.
ALTERNATIVELY and more sophisticated we first compute

V{x}

E{(X — B{X})?} = E{[(X ~ B{X | Y}) + E{X | Y} - E{XY})]}
= B{(X - B{X|Y}?}+E{(B{X | Y} - B{X})}

12 B{(X — E{X | Y})- (B{X | Y} - B{X})}
E{(X — B{X | Y})?} + V{E{X | V}}

R2FE{(X-E(X|Y)} -E{X|Y}}=0.

Then the claim follows if we can prove that the third term above is 0.
We first compute the simpler expression

BX-EX VY = [ [to [eren by dedy

_ //{x/xf(x|y)dy}f(x|y)g(y)dxdy
J{([zreinazaw)- [osw i) iy

/ o) - {x f(x | y) dey>dy = B {(E{X | Y})?} .

Then
0=E{X B{X|Y}}-E{(B{X|Y})’} = E{(X - B{X |Y}) - E{X | Y}},
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and we conclude that the third term is indeed 0 as claimed above, and it follows that

V{X}=V{E{X |Y}}+E{[X - E{X | Y}]*}.
3) By a small computation,

E{[X -¥(Y)P?} = E{[X - B{X | Y} + B{X | Y} + B{X | Y} - ¥(Y)]"}
= E{X -B{X|Y}’} +2B{[X - B{X | Y}][E{X | Y} - ¥(Y)]}
+E{[B(X | Y} - ¥(Y)P}.
Here
2E{[X — E{X | Y}][E{X | Y} - ¥(Y)]}

oo

= 2/_00 9(y)(E{X [y} —\I’(Y))/ (x — E{X | y}) f(z | y)dzdy

—00

= 2 [ dWIEC [} - WIEX |9} - BX | )]dy
= 0.
Hence
E{IX W)} = B{[X - B{X |Y}2} + B {[E{X |V} - w(V)]*}.
Since E {[E{X | Y} = ¥(Y)]2} >0, and E {[E{X | Y} — ¥(Y)]2} = 0 imply that ¥(Y) = E{X |

Y}, the claim is proved.
ALTERNATIVELY,

B =02} = [ o0 { [ o= v rte 1 nas fay
is smallest, when |

[ o) sa ) ds
is smallest. This is the case, if and only if

v = [ =1

hence

P(Y) = E{X | Y}.
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Example 4.2 Let the 2-dimensional random variable (X,Y) have the frequency

1
5 23 e~ rwtl) >0 andy >0,

f(:zr,y) =

0, otherwise.

Find the conditional frequencies f(x | y) and f(y | x), and find the conditional means E{X | Y} and
E{Y | X}.

First find the marginal frequencies. When x > 0, then

1

o 1
fx(x) = —/ e Wt gy = g2 7",
2 /s 2

When y > 0, then

L[ 5 st L1 /003—t 3
— | Bt gy — = e tdt =
frlw) 2/0 YTl (y+1)*
Summing up,
1
5:32 e7, x>0,
fx(z) =
0, z <0,
and
3
s y>0,
+1)4
fy(y) = < )
0, y < 0.
Since

flay)=fly) fy(y) = flylz) fx (@)
where f(z | y) =0 for fy(y) = 0, and analogously, if follows for x, y > 0, that

o) = o = gt e [t = g e o,
and
flylx) = J;f(,g; = %J;geﬂ(y“) /% e =gxe ™,

with the value 0 otherwise.
We get from Example 4.1 for given Y =y > 0, that

oo 1 oo
| etelnde=g et [Cateri i
0 0

1 1 Rl 24 1 4
= - — ttetdl = — - —— = ——
6y+1J 6 y+1 wy+1

E{X |y}
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hence
4
F{IX|Y}= ——.
Xy Y+1

Analogously, for given X =z > 0,
oo ') . 1 00 » 1
E{Y |z2}= [ yflyla)dy= | yae ™dy=— [ te'dt=-—,
0 0 T Jo x
hence

E{Y|X}:%.

Vowo Toucxs | Rewanr Tovcks | Macx Touews | Wowo Buses | Vowo Coxseucrion Ecuesent | Wowo Pesm | Vowo Aeso | Vowo IT
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Example 4.3 Let X1 and X5 be independent random variables of frequency

—ax

ae , x>0,

0, z <0,
where a is a positive constant, and let the random variable Y be given by Y = X1 + X5.
1) Find the conditional frequency f (x1 | y) of X1, for given Y =y.
2) Find the conditional mean E{X;|Y}.

1) First find the frequency ¢(y) of Y. Obviously, g(y) = 0 for y < 0. When y > 0 we get
y
g(y) = / ae . qe W) dy = q?ye W,
0

Let Z = (X31,Y) = (X1, X1 + X3) have the frequency h(x1,y), and let X = (X3, X5) have the
frequency k (21, 22). Since X7 and X, are independent, we get

a2e~o(@1+a2) for 1 > 0 and x5 > 0,
k (.’131, 1‘2) =
0 otherwise.
Then we derive h (x1,y) from k (1, x2) in the following way. If we put
(Y1,92) = ¥ (21, 22) = (z1, 71 + T2) [= (z1,9)],

then the inverse map is given by

(z1,72) = @ (y1,42) = (Y1, 92 — Y1) [= (21,9 — 21)].

0.8

0.6

0.4

0.2

Figure 17: The domain D’ is the angular space between the line 1 = y; and the vertical yo axis.

The map 1 is bijective from Ri onto the domain

D' ={(y1,2) |0 <y1 <ya}.
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The Jacobian is

Oz Oz
3(%1,262): dy1 2 _ 10 _,
6(91,212) dxzy  Odza -1 1 ,
Oyr  Oyz

so by the transformation formula,
flzy—a1)-1=a?e 2 for 0 < y1 < yo,
h(y1,92) =
0 otherwise,
thus
a’e” W for 0 < z1 <y,
h(xy,y) =
0 otherwise.
If y <0, then f(z1 | y) =0, and if y > 0, then

h(z1,y) a’e~w 1
f(z1]y) = = = - for 0 < 1 <,
@) gly)  aPye y

and f (21 | y) = 0 otherwise.

EXPERIENCE THE POW

FULL ENGAGEMENT...

RUN FASTER.
RUN LONGER..
RUN EASIER...
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2) When Y = y is given, we conclude from Example 4.1,

1 [t 171 ,1Y 1
E{X:i |y :—/x dry = — [—$2] =35Y
{X1 |y} gy D=2 T

hence

1
E{X,|Y}=Y.

Example 4.4 Let X1 and X5 be independent random variables med frequency

where a is a positive constant. Let
(Y1,Ys) = (X7, X1 — Xo).
1) Find the frequency of (Y1,Y5).
2) Find the conditional frequency of Y1, given Yo = ys.
3) Find the conditional mean of Y1, given Ys.

4) Find the correlation coefficient between Yy, and Ys.

Figure 18: The domain € is that part of the right half plane, which lies below the parabolic arc

Y2 = /y1, y1 > 0.

1) The function

(y1,92) = ¢ (21, 22) = (27,21 — x2)
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maps the first quadrant Ri bijectively into the domain 2 of the figure, given by

Q={(y1,y2) | y1 >0, y2 < /y1}.

The inverse map ¢ : Q — Ri is given by

(z1,22) = ¢ (y1,92) = (VY1, VY1 — ¥2) -
The Jacobian is

8$1

011 oy o

o || 1,
dzs Do 1 VT
gtz g% PN

Oy O0ya

If (y1,92) € Q, then the frequency of (Y7,ys2) is given by

h(r,u) = 1 (Vi) - F (VT — o) -

thus

291

a2

291

0 otherwise.

e 2aV/y1tay: for 4, > 0 and ¥z < /71,

h(y1,y2) =

First find the marginal frequency of Y.
If yo <0, then we get by a horizontal integration,

& oo
1
fre (y2) = / h(y1,y2) dyr = a® eayZ/ — e 20V gy,
) 0 0o 2Vwn
— 2092 /OO e—2at gy — geayz _ ﬁe—a\yz\_
0

If instead y2 > 0, then by a horizontal integration,

. = qge @I ,ae—a\/y1+a Y2,

2001

[eS) 1 I
ng (yg) = a26ay2/ e—2a\/y7 dyl — g2e V2 e—2at gy
2\/y1
y% Y2
_ ¢ ay2 —2ay2 __ a —ays _ a —1]ya]|
= 5€e 7€ =-e " =—e .
2 2
Summing up,
a _
fra (y2) = 3¢ alvzl, y2 € R.

If (y1,92) € Q,ie. y1 > 0 and yo < /Y1, then f (y1 | y2) is given by

CL2

f(yrly2) hluiv) Ce—2avitay: 2 alyl — @
fra (y2) 2/ a N
@ 2ayFr+2ay
e ! 2 for yo > 0,
VY1
L e—2a\/y_1 fOT i S 0.

4TS

e 2avyrtalyz2+ly2|)
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If yo > 0, then we get for given Y5 = yso,

E{Y1 |y} = Yy - —— e 2aVVIt2az gy, — 2ay2 / t2 - 2a e 2% dt
Y3 \/— o
1 oo
= —5 e2ay2 / u267u du
4da 2ays
1 2a 2 —u o _u
= 12 yz{[ u-e ]2ay2+2/2ay2ue du}
1 2a —2a —q ] —_u]oe
= 1ac Y2 {4a Y2 192 [—ue ]2ay2 +2 [_e ]QGyz}
1 2 2 5 1 1
= M{4a/y2+2'2ay2+2}:y2+ay2+ﬁ
On the other hand, if y» < 0, then for given Y5 = yo,
E 1Y, = . —2a/y1 g :2/ t2—2atdt:_/ 2-u gy = 2L
el /0 . \/y_le N 0 “re 4a? J, e T e T a2

Summing up,

1 1
E{Y; | Y3} = (max {Y2,0})* + - max {Y,0} + o

Here the easiest method is to go back to the X-s. We get

(o] 1 [ee]
E{Yl}zE{Xf}:/ e dx1:—2/ e tdt = =
0 a= Jo
and

{2y =B {xt) = [ oteeeman = o [Teeta= 2,

hence

V) =E{7) - (BMh =5

Furthermore,
E{Y2} =E{X; - Xs} =F{X1} —E{X2} =0,
SO

V{Yz}

E{vi} = B{(Xi - X2’} = E{X} - 2X, X, + X3}

E{X}}-2E{X:} - E{X:} + B{X}} =2 (B {X}} - (B{X1})") =2V {X3}

2
0 > 2 1 2
2 2 —az1 g o —ar1 g =2 = — = | = —.
U o= ([Taweman) b2 (- 3) =
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Finally,
E{MYa} = B{X]-X{Xs}
= / x‘;’ae_”l da:l—/ x%ae“““ dxl-/ roae 2 dxgy
0 0 0
_s 21 6-2 4
add a® a  dd @
and we get
4 4
Cov(Y1,Y2) = E{"1Ys} — E{W1} - E{Ys} = e —-0= prx
and
Cov (Y1, Y- 4 2v/10 /10
o(Y1,Y2) = %) __ =

4
ad _ _ ‘
VV Y}V {Ya} \/Z_g 2 2 10 5
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5 Some theoretical results

Example 5.1 Let X be a random variable, for which P{X >0} = 1, and for which E{X} and

1
E {Y} exist.

Prove that

1§E{X}-E{%}.

1 \2
HINT: One may look at E { (\/Y—i—t- \/—Y> }

Remark 5.1 The proof is similar to the traditional proof of the Cauchy-Schwarz inequality. ¢

Since P{X > 0} = 1, it follows that v/X is defined.
Then by the rules of computation we get for every ¢t € R that

0<E{<\/§+t~\/%>2}zE{X+2t+t2~%}:t2E{%}+2t+E{X}.

The right hand side is a polynomial of second degree in ¢. Since it is > 0 for every ¢t € R, it is
well-known from high school that the condition is

0> (%)2—AC:1—E{X}-E{%},

hence by a rearrangement

1§E{X}~E{%}.

Example 5.2 Let X and Y be random variables where E {XZ} < oo and E {YQ} < 00.
Prove that XY has a mean and that

B{IXY|} < VE{X?} - VE{V2).

We shall apply the same method as in Example 5.1.
For every t € R,

0<E{(X|+t|Y])*} = E{X*+2t|XY|+t*Y*} =’E{Y?} + 2t E{|XY |} + E{X"*},

where the right hand side is a non-negative polynomial of second degree in ¢. Then

1 1
| XY| < 3 X%+ 3 Y2,
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exists E{|XY|} < oo, hence E{XY} also exists.
Finally, it follows from the condition of the discriminant that

(B{|XY[})* < E{X?}- E{Y?},

whence

B{IXY|} < VE{X?} - VE{V?).

Example 5.3 Let (X,Y) have the frequency

2
x>0
2(1+22) (1 +y?)’ ’
fay=4 ™ ) (1+5%) yER
0, r <0,

Prove that X and Y are independent, though not non-correlated.

If x > 0, then

o 2 2 1
fX(“"”):/_ww2(1+x2)(1+y2)dy:E' ’

and fx(z) =0 for x <0.
Analogously we get for every y € R,

> 2 1
fY(y):/o AT A T T Tr e

It follows from

flzy) = fx (@) fy(y),
that X and Y are independent.

The phrase “X and Y are non-correlated” assumes that Cov(X,Y") exists and is = 0. The existence
of Cov(X,Y) assumes again that E{XY} exists. In the given situation this is not the case, because

/Oo /Oo 2ley| dv d—i/m—m dz /Oo Yy =
ol A+ 1+ Y T2 )y 11227 )y 12T
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6 The correlation coefficient

Example 6.1 Let X1, Xo, ..., X, be independent random variables for which
E{X;}=pu, VI{X;}=0? i=1,2,...,n.

Let X denote the random variable

- 1
X:E { X1+ X0+ +X,}.

Find the correlation coefficient o (7, Xl).

Since the covariance is bilinear, and X1, X5, ..., X,, are independent, it follows that
Cov (X, X;) = Cov lixi X, | = licov(xi X)) = lCov(Xl,Xl) = lV{Xl} 1l
’ ni n ’ n n n
Furthermore,
— 1 & 1 & 1 o2
VIX}=VIi=> X;p=—=) V{X;}=— no* = —,
@ -v{I3 - LS v - ot -
hence
_ Cov (X, X, 152 1
Q(X’Xl): _( ) :ig.a_%.
YVAXPV{XLE e

Example 6.2 A random variable X is rectangularly distributed over | — 1,1[. Let Y = X? and
Z = X3. Find o(X,Y) and o(X, Z).

It follows by the symmetry that

E{X*"t'} =0, neN,.

Furthermore,
i ! 1
E{XQ"}:/ —3?2”61.’17:/ 2" dx = , n € N.
-1 2 0 2TL + 1
Hence

Cov(X,Y) = Cov (X,X?) =E{X°’} - B{X} - E{X*} =0,
and thus

o(X,Y)=0.
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Furthermore,

Cov(X,Z) = Cov (X,X?) = E{X'} - E{X} - E{X®} = ;)

Since
V{X}=E{X*’} - (BE{X})*=E{X*} = %

and
VIZ)=V{X*} = B{X"} - (B{x*})* = B (X"} =,

we get
1 V/
Cov(X.2) _ 5 _ V2 _ o
1
3

X,Z) = —
olX.2) VVIXT - V{Z} \/.% 5
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Example 6.3 Let X and Y be random variables for which

V{X} =1, V{Y}=9 and Q(X,Y):%.

Let U =X +aY,V =X +Y, where a is a real constant.
Find a, such that U and V' become non-correlated.

First we derive the condition,

0 = Cov(l,Y)= Cov(X +aY, X +Y)
= Cov(X,X)+aCov(Y,X)+ Cov(X,Y)+aCov(Y,Y)
= V{X}+(a+1)Cov(X,Y)+aV{Y}

= V{X}+(a+1)o(X,V)/VIX} VY +aV{Y}
= 1—|—(a+1)-é\/1-9+a-021+a+1+9a:2+10a.

1
When this equation is solved with respect to a, we get a = —F

Example 6.4 Let X and Y be independent random variables of the frequency
L—lzf, |z <1,
0, |z| > 1.

PutU=X?+Y? and V = X3 +Y. Find the correlation coefficients o(U, X), o(V, X) and o(U,V).

It follows from the symmetry that E{X} = F{Y'} = 0. Hence

1 1

V{X}V{Y}E{Xz}/llx2(lx|)dx2/01x2(1o:)dx2<§z> =_.

Analogously, E {X?" "1} = E{y?"*1] =0, and

1
2 2
E{xX*"} =E{y*} = 2/ "1 —x)de = -
(X} =E{y"} ey = o o
2 1 1
2n+1 n+1 (2n+1)(n+1)

Since X and Y are independent, it follows from the above that
Cov(U,V) = Cov(X*+Y? X)= Cov(X? X)+ Cov(Y?X)
= Cov(X®X)=E{X’} -E{X*} E{X}=0,
so o(U,X) =0, and U and X are non-correlated.
Analogously;

Cov(V,X) = Cov (X’ +Y,X) = Cov (X’ 2)=E{X"'} - E{X*} E{X} = % = %
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Since

VIV = VX e vy =B {x) y By = L L 32T 1T

1
7.4 3.2 7-4-3 84’

we get

oV, X) = \/% F 15\/> \/>~o 363.

Finally,
Cov(U.V) = Cov(X*+Y%X?+Y) = Cov (X a®) + Cov (YY)
X}~ B{X} E{X*} + B{¥y*} - F{¥*} . B{Y} =0,

hence o(U,V) =0, and U and V are non-correlated.
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Random variables 111 7. Maximum and minimum of linier combinations of random variables

7 Maximum and minimum of linear combinations of random

variables

Example 7.1 1) Let X1 and X5 be two independent random variables, for which

E{X1}=E{Xo}=u#0, V{Xi}=01>0 and V{Xp}=03>0.

Find the constants a1 and as, such that
E{a1 Xy + ax Xo} = p,

and such that
Vi{a1 X1+ a2 X2}

has its smallest value. Then find the corresponding minimum.
What is the minimum, when in particular o1 = 0o = o ¢

2) Then let Xy, Xs, ..., X, be independent random variables, for which
a) E{X1} = E{Xp} = =E{Xp}=p (#0),
b)) V X1} =V{Xp}=---=V{X,}=0>0.
Find the constants ay, as, ..., an, such that
E {Z%‘Xi} = i,
i=1
while

takes its smallest value. Then find this smallest value.

1) It follows by the linearity that
E{a1X1 + (ZQXQ} = alE{Xl} + CLQE{XQ} = (a1 + (12) M.

Since u # 0, this expression is = p, if and only if a; + ay = 1.

Put a; = A. Then as =1 — A, and

P\ = V{ar X1 + a2 Xo} = NV {X1} + (1 = NV {Xo} = Nof + (1 - 2)°

where

¢'(N) =2 o +2(\—1)o5 =0

for
2 2
o o
A= — 2 55 thus 1-A=— ! 5
o1 +03 o1 + 03

2
02
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On the other hand, we know that there exists a smallest value, and since the computations above
give the coefficients of the only candidate, we must necessarily have

o3 o2
a =5 and 4=,
o1 + 03 o1 + 03
corresponding to
2 2 4 2 4 2 2 2
% % _x 91y, L 7201 9192 _ 0193
21 52 1+2+22_2 22+2 22 g2+ g2
oy T 03 o1 T 03 (634 03)" (07 +03) oy T 03

Note that since 02 > 0 and 03 > 0, this variance is < min {0%, ag}.

When o1 = 05 = o, then the value of the smallest value is

oo3 ot 1

o?+o03 202

This is just a generalization. Since the equation

E {zn:ain} = zn:aiE{Xi} = z":am =pu#0,
i=1 i=1 i—1

is only satisfied for

n
E a; = ].,
i=1

we can eliminate one constant, e.g.

n—1

anzl—Zai.

i=1

Then the task is reduced to minimize the function

n—1 n—1 n—1 n—1 2
ap(al,...7an,1) =V {ZaiXi + (1 — Zai> Xn} = ZG?V{XZ} + (1 - ZCLZ'> V{Xn}
i=1 i=1 i=1 i=1
n—1 n—1 2
Za?—!—(Zai—l) o?.
i=1 i=1

The equations of possible stationary points are

Op — 2 _ o 2 _
8ai—{2al+2<;al—1>}0 =20 {az_an}_ov

fori=1,..., n—1, thus a; = a,, for all . This implies that

n n
E aizg ap, =nay, =1,
i=1 i=1
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hence
1 1
anp = — and ai=—, i=1,...,n—1.
n n
11 1Y . . .
We have now proved that | —, —,..., — | is the only stationary point.
n'n n
Since ¢ (a1, ..., an_1) is of class C™ and is positive, and since ¢ (a1, ...,a,_1) — oo for a2 +--- +
1 1
a?_, — 0o, a minimum exists. The only candidate is <—, — ey —) , so this is indeed a minimum.
n'n n

Finally, by insertion,

1 1 "1 n o2
== —Xip =5 V{Xij=—.
w(n’ ’n> V{;n } n2v{ i n

ALTERNATIVELY it is possible here to make some constructive guesses. We must again require

that 7" | a; = 1, so getting an inspiration from the first question we guess that all a; = —.
n

This can be proved in the following way:

360°
thinking.
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Random variables 111 7. Maximum and minimum of linier combinations of random variables

Let the a; be any such constants of Y .- | a; = 1. Then
n n n 1 1 2 n 1 2 n 1
Vv iXi ? i=0" i— = -t =0’ i— = —

ALl

It follows that the minimum is obtained when the first term in the parenthesis is 0, i.e. when all
2
o
a; = —. With these choices we finally get the minimum —.
n n

Example 7.2 Let X1, Xo, ..., X,, be independent random variables, for which
E{X;}=p (#0), V{X;}=07>0  i=12 ..., n

Find constants a1, asz, ..., a,, such that
n
E;{EE:Q¢X}} = U,
i=1
while

takes on its minimum. Then find this minimum.

Remark 7.1 This example is of course a generalization of Example 7.1. ¢

1) First we compute

E{Zn:aiXi}—<zn:ai>,u—u7éO for Zaizl,
i=1 i=1 j

and
v {zx} S VX =Y el
i=1 i=1 i=1
Since
n—1 aa
anp =1— ; a; where 8@? =1,

it follows that we shall minimize the function

n—1 n—1 2
cp(al,...,an,l):ZUEa?—i—ai (1—2%) , anzl—Zai.
i=1 i=1 ;
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2) The equations of possible stationary points are

0 0
azf——2a$ai4-2aian-5%2 —2(c%a; —02a,) =0, i=1,....n—1
7 K3
They imply that
2
aiza—gan, 1=1,...,n—-1
g;

Then by insertion,

1:Zai= ZF an = o, Za_f Qs
i=1 i

=1

thus
1 1

— 7y ™ ey
5 () 5 ()

K3
giving us the coordinates of the only stationary point.

Ap =

3) It follows from

2 2
wlar,...,an—1) — 00 for ai+---+a;_; — o0,

that we get a minimum at this stationary point. Hence, the minimum is given by

( ) 1 1 1 1

A1,...,0p) = —————F— | 5,555 | -

R O R A
i=1 0_1_2

Here, the value is

g 1 o7 1
i=1 i

2
{Z"-—} =
i=1 2
0;

ALTERNATIVELY we may pass straight ahead towards the task of finding the a;, such that Z?:l a; =1,
and Y., a?0? is as small as possible.

x
If we put x; = a0, i.e. a; = =, we see that we shall find the z;, such that
i

n 1 n
Z —x; =1 and Z x? is as small as possible.
o

i=1 i=1

Here the condition
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describes an hyperplane in R™ with the normed normal vector
( 1 1 1 ) 1
— 3 — PEEIEIEITY — - 71.
g1 g9 ag.
" Z?:l 2
g;

We obtain the smallest distance to the zero for
1

. 1
x; = Ll’ and the distance is —

J 1

The conclusion is that

and that the minimum is
1
1
n
Zi:l 0—1‘2

ALTERNATIVELY it was proved in Example 7.1, first question that the minimum is obtained for

1 1
o3 o2 o3
a; = — 5 = and ay = —=—.
o7 + o 1 1 1 1
1 2 — + — — + —
o2 o2 o2 o2
1 2 1 2

Therefore, we guess that the minimum in the general case is obtained when

1

o?
— 1 A
a; = 1 1=1,...,n.

Z?:l o2
J

This can be proved in the following way:
Let the a; be any numbers for which >_"" ; a; = 1. Then

n n n 2
1/0? 1/0?
V CL'X' = a20.2: a; — = ? + - 1 0,2
{Zi_l ’ } 2ol _{( O w;) S 1o

2
- 1/a? 2, N~V 1/0?
- {W} I e
1 J i=1 n=1 {Zj:l 1/Uj}

1=1 j=1 j=1
2
= 1/o? ) 1
= Q; n ;i + n + 07
; { 2]71 1/%2' Zj:l 1/%2'
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because it is easily seen that the last sum above is 0.
This implies that the minimum is obtained when all squares in the first sum are equal to 0, thus

1)o7
Z?=1 1/ ‘7]2' ,
and the minimum is

1
S

ai: i:1,2’...,n,
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Random variables 111 7. Maximum and minimum of linier combinations of random variables

Example 7.3 Let X1, Xo, ..., X, be independent random variables, for which
E{X\}=E{Xp} = =E{X,)}=p (£0),
ViXi}=V{Xol==V{X,} =0>>0.

Find constants a1, as, ..., a, such that
a; > 0, 1=1,2,...,n,

F {zn: azXz} = W,
i=1

while at the same time,

|4 {i a,»XZ}
i=1

takes its mazximum, and find this mazimum.

First note that taking the mean is a linear operation, so
n n
Zaiu:u;&@, thus Zaizl.
i=1 1=1
Furthermore, all a; > 0,i=1,2, ..., n.

We shall maximize the function

n

plar,ag,...,a,) = V{iain} = Za?az,
i=1

i=1
under the conditions above.

Obviously,
n
1=(a14as+-+an)’ zaf—i-“-—l-aizza?,
i=1

so this maximum must be < 1 - ¢2.

On the other hand, this value is obtained, when precisely one a; = 1, and all others are a; = 0, j # 1.
Thus, the maximum is

V{X1} =V{Xs} = =V {X,} =0
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Example 7.4 Let X1, X, ..
bilities of success p1, pa, - ..

E{Y} = Zpi-

., X, be independent Bernoulli distributed random variables of proba-
. P, and let Y =31 X;. It is well-known that

Prove that if E{Y'} is a fixed number s, then the variance V{Y'} is largest, if p1 = pa = -+ = Dp-

Then find this mazimum.

The Bernoulli distribution is given by

P{X=1}=p and

P{X =0} =g,

where p+ ¢ =1, p, ¢ > 0+. Then F{X} =p and E{XQ} = p, hence

V{X}=E{X*} - (B{X})*=p-p

[=p(p—1) = pql.

If we assume that 0 < s < n is constant and that

n
Zpi:s, 0<pi<l for i=1,...,n,
i=1

then we shall maximize

vy}t = Z;V{Xi}—z;(pipf)—s2?%—52{(;01'E)+E}
S S R 3l S Bt
s Z(p n) nz Py n2
i=1 i=1 i=1
n 9 2 2 2
O S (Er) NEr T (R ) IR o
pat n n n n n n
Clearly, this expression is largest, when p; = 2 fori= 1, ..., n, and when this holds, then
n
§2
V{Y}=s—— (>0, because 0 < s < n).
n
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Example 7.5 1) Let X be a random variable of mean u and variance o*. Prove that E {(X — a)2}
has its minimum at a = L.

2) Let Xy and X5 be random variables of means pi1, ji2, Tesp., variances o3, o5, resp., and correlation
coefficient o.
For which pairs of numbers (a,b) does

2) E{[Xz - (aXy + 1)’}

obtain its smallest value?
Then find this minimum.
HINT: First keep a fized and find the value of b, for which the expression (2) is as small as possible-

1) A direct computation gives

E{(X-a)’} = E{[(X-m+(u-a)’}

(X = 1)} + EQ2(n — a)(X = )} + E{(n~ 0)*}
E{(X —p)?} +2(p—a) E{X — p} + (p — a)?

= E{(X -’} +(n—a)

from which immediately follows that E {(X — a)?} obtains its minimum for a = p.

2) Then by a simple reduction,

elat) = E{[X:—a(X1+v)]}

= FE {[(X2 —aXy) = (p2 —apr) + (p2 — apr) + b]2}

= E {[(Xz —aXy) — (p2 — aﬂl)]Q}
+2 (p2 — apy +b) E{(X2 —aXy) — (p2 — ap)}
+ (u2 — apy — b)?

= V{Xy—aXi1}+2(u2 —apr —b) (2 — apr) — (p2 — apa)]
+ (2 — apy — b)?

= V{Xg} —2aCov (Xl,Xg) + GJQV {Xl} + (a,ul + b— /,1/2)2

= (ap +b— p2)2 + a2af — 2ap0109 + 05.

We search possible stationary points of
_ 2 2 2 2
o(a,b) = (apy + b — p2)” + a“of — 2ap0109 + 03.

The equations of the stationary points are

0

a—j =21 (ap1 + b — p2) + 2a0% — 200102 = 0,
e

92 _ o b— i) = 0.

% (apr +b— p2)
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By a subtraction,
2acrf — 200102 = 0,

hence

_ 200102 _ 002

20?2 o1
We get by insertion into the latter equation,
002
b=p2 ——m,
g1
so the only stationary point is

o o
(a,b): (Q 27/12— 0 2/”).
g1

Since ¢(a,b) — oo for a® + b? — oo, the stationary point must necessarily be a minimum.

Finally the minimum is found to be

2 2 2
002 002 oo 002
E{ |:X2 I Xl — U2 4+ — /u,l:| } = 22 0’%—2 —~£)0‘10’2+0’§ = 9203—292034—03 = O'S (1 — Q2) .
o1 o1 o1 g1
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ALTERNATIVELY, if a is given,
E{[X: - (aXi + )"} = E{[(X: —ax1) - 0"}
obtains according to question 1 its minimum for
b=FE{Xys—aXi}=ps—au,
and it follows that the minimum is
V{Xs—aX,} =05+ d’0} — 2a00,0.
This function in a has its minimum for
g2

=90 —,
01

which either follows from high school mathematics or by noticing that the graph is a parabola.
We conclude that we obtain the minimum for

2
a=9¢-— and  b=pp—0-—pu,

() g
g1 g1

and the minimum is

ag (1— 92).
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Example 7.6 Let X1, Xo, ..., X, be independent random variables, where

E{X;}=p, V{Xi}=0? i=1,...,n,

and let

1 <&
X:EZXZ-.

i=1

Prove that

E{nlli:(Xi—Y)Q}:aQ.

e !
:nilE{Z(Xl—uﬁ}+nilE{n(Y—uy}jL%E{Z(Xl_u)(M_X)}
:nil;E{(XZ_N)Q}+—1E{(X_M)2}+_E{n(X_/l)(/L—X)}
v (- e S v

n 2 n 1 & n 5 n 1 n
n o o, 1 1 noo, 1 1
Tn-17 T a—1 E;V{Xz}: 19 =1 5"
— n 2 1 2_72
_n—la _n—la =0
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8 Convergence in probability and in distribution

Example 8.1 In this example we use the notation X, it X, if (X)) converges in probability towards
X. Recall that X, Kt X, if for every e € Ry,

P{|X,—-X|>e}—0 for n — oo.
This can also be written in the following way:
X, Lt X, if the following condition is satisfied:

Vee R VpeR Ing e NVneN:n>ny= P{|X, — X|>¢c} <n.

1) Prove that if X, Lt X, and a is a real constant, then also aX,, £ aX.
2) Prove that if X, = X and Y, =Y, then also X, +Y, > X +Y.

3) Prove that if X, L X, then also | X,,] £l | X].

4) Prove that if X, Lt 0, then also X?2 £o.

5) Prove that if X, Lt X, and Y is a random variable, then X, Y 2 xy.
HINT: To every § € Ry there exists ¢ € Ry, such that P{|Y| > c} <.

6) Prove that if X,, = X, then also X2 5 X2,
HINT: Write X,, in the form X,, = (X, — X) + X, and apply some of the results of the previous
questions.

7) Prove that if X,, > X and Y,y 5 Y, then also XY, = XY.
HiINT: Apply the rewriting

X, Y, = i {(Xn 1Y% - (X, — Yn)z} .

1) When a = 0, there is nothing to prove. When a # 0, there exists an ny = ny (¢, a,n), such that

P{|aXn—aX25}:P{Xn—X|Z i} <,

|al
for every n > nq(e, a,n).
2) It follows from
[(Xn +Yn) = (X +Y)] < [ X — X[+ [V, = YT,
that if [(X,, + Y5,) — (X +Y)| > ¢, then either
| X, — X| > or Y, =Y|>

Do ™
Do ™
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Then
(X +Ya) = (X +Y) 2} S {IXu - X|2 S} U {Wa-VI2 0},
hence

PUXa+Y0) = (X +Y)| 2} < P{IXa = X| 2 S} + P{ Y= Y]2 S} <

for n > no (6, g, (X,), (Yn))
3) Analogously, we get from || X,,| — | X|| < |X,, — X| that
P{||Xal = |X]| 2 £} < P{|X0 — X| 2 e} <1,
and the claim is proved.
4) If X =0, then |X,,| Lo by (3), and
PIX2>c} = P{IX.l > V&) <,
and the claim is proved.

5) First we use the hint to estimate in general,

P{XnY = XY| > e} = P{[Y]- |X,, - X| > ¢}
— P{Y]- Xy = X| 22 A V] > ch+ P{Y]- X0 — X| 22 A Y] < ¢}
< P{Y|>c}+ Ple |Xa—X| 2 e} <o+ P{|X, - X| 2 °}.

Choose & = . In this way we fix the constant ¢ > 0.
Nowchoose ng € N, such that

P{|Xn—X|2§}<g for every n > ny.
c
Then for n > ng,

P{|XnY—XY|25}<5+P{\Xn—X|2 Z}<

N3

6) Since X,, = (X,, — X) + X, we get
X2 -X?=(X, - X)*+2X (X, — X),

hence by putting ¥ = X,

P{|x2 - x| 25}gP{(Xn—X)22§}+P{2|XXn—XX|2§}

g 13
= — > - - > = .
P{|Xn X|_\/;}+P{|YXn YX\_4}
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By assumption, X,, 2 x , SO

P{|Xn—X|2\/§}<g for n > n;.

Since YX,, 5> YX and Y = X, we get

P{2|XXn—XX|2§}<g for n > na.

Then put ng = max {n;,ns}, and we obtain for n > ng that

2 y2 non_
P{IX; - X?|>el <o+ 5=

7) It follows from

1 2 2
XaYn = 7 {0 +70)" = (X0 Vo))
that
_xy|=1 2_ 21, ! Y2 (X, Y,
XaYa = XY] = 1 {0+ 1) = (X + V2| + 7 {(X =702 = (X - v}
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If | X,,Y,| > €, then at least one of the two terms on the right hand side is > %, hence
P{{X,Yy — XY| >}
1 1
gp{Z ](Xn+Yn)2 - (X+Y)2‘ > g} +P{Z \(anyn)Q - (X—Y)Q‘ > g}
= P{|(X0+Y2)" = (X + V)| 2 2} + P[0 - Va)? = (X = V)| 2 26}
It follows from (2) that X, £V, - X £ Y.

Applying (6) we get (X, £V,)> 5 (X £ V)2
In particular, we can find n; and ns, such that

P{‘(Xn—i—Yn)Q . (X+Y)2‘ > 25} < g for n > n,
and

P{‘(XH—KL)Q—(X—Y)2‘225}< for n > na.

N3

The claim follows, when n > ng = max {n, na}.

Example 8.2 Let (X,,) 2, be a sequence of random variables, such that (X,) converges in distribu-
tion towards a constant a.

Prove that (X,,) converges in probability towards the constant a.

Assume furthermore that every X,, has a mean. Is it possible to conclude that E{X,} — a for
n— o0o?

If X, 5, a, then

0 for z < a,
lim F,(z) = F(x) =

n—oo

1 for x > a.
We shall prove that
P{|X,—a|>ec}—0 for n — oo.

We get,

P{|X,—a|>e}=P{X,,—a>c}+P{X,,—a<—¢e}=P{X, >a+e}+P{X, <a-—c}
=1-P{X,<a+e}+P{X,<a—-c}=1-Fa+e-)+F,(a—¢)
—1—-—Fla+e)+Fla—e)=1-14+0=0 for n — oo.

The latter claim is in general not true. Choose e.g.

n

1>
z2 4+ n?

for z > 0,
F(z) =

0 for x < 0.
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Then clearly,

1 for z > 0,
F,(z) — F(z) = for n — oo,
0 for z < 0,

thus a = 0.
Here,

E{Xn}:/ooou_Fn(x)}dm:/omﬁdmz/om;d(g):%;Aa:o.

()

Obviously one can modify such examples, so one can expect a lot of unpleasant anomalies.

n(n+1)

it, two slips are provided with the number 2, etc. until finally n slips of paper are provided with the
number n. Select at random one slip from the box. Let X, denote the random variable, which indicates
the number of the selected slip, and let another random variable Y, be defined by

1
Y, =

n

1) Find the probabilities P{X,, =k}, k=1, 2, ..., n.

Example 8.3 A box contains slips of paper, of which on slip has the number 1 written on

Xn.

2) Find the mean E{X,}.

3) Prove that the distribution function of Y, on the interval [0, 1] is given by

nyl([ny] + 1
Fo(y) — (0 + 1)
nn+1)
(Here [a] denotes the largest integer smaller than or equal to a).

4) Prove that the sequence {Y,,} converges in distribution towards a random variable Y, and find the
distribution of Y.

HINT: It may be convenient to use the formula

> k= %n(n +1)(2n+1).
k=1

1) Clearly,

k 2k
{ n k} %n(n_'_l) n(n+1)7 k bl bl 7”

2) When we insert the result of (1), it follows by the definition,

E{Xn}:ZkP{Xn:k}:ﬁ SR = 2 nn+)@n+l) 2+l
k=1 k

n(n+1) 6 3

=1
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3) First note that

P{Y,LS}P{Xnk}n(ji]j_l).

Thus the distribution function for Y,, is

_ [yl([ny] +1)

o) [ny]
AW =pi s =3 P (=T} =3 o
k=1

k=1
because > -, k= %m(m +1) for m € N.
4) It follows from
ny — 1< [ny] <ny,
that

1
1. [ny] <y,
n n

and we conclude that

[ny] +1
n-+1

[ny]

—y and — Yy for n — oo,

It follows that F,(y) — y? for n — infty and y € [0, 1].

n+1)

)

 n(n+1)

y € [0,1].

This means that (Y;,) converges in distribution towards a random variable Y, the distribution

function of which is

0, y <0,
FY(y): yQa O<y§17
L, y=>1

The corresponding frequency is

2y, 0<y<1,
fY(y) =

0, otherwise.
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Example 8.4 Let X and Y be independent random variables, both rectangularly distributed over the
interval |0, 1.

1) Find the distribution function F(v) and the frequency f(v) of the random variable

Y
V=—=+1
X+

2) Check if the mean of V exists.

3) Prove that there exists a random variable U, such that

lim P{ng}:P{Ugv} for allv # 1.

n—oo

1) Tt is obvious that the values of V' lie in ]1, 00[. When v > 1, then

F(U)ZP{VSU}:P{§+1SU}:p{%qu}.

Y
The frequency of X is given by
1
k(s) = / fx(sz) fy(z)xdx
0
1 1
fol-l-xdzzi for 0 < s <1,

1 1
f031-1-xdx=2—2 for s > 1,
s

—(U*l), 1<U§25

11! 1
A [ R

and we get by a differentiation,

%, for 1 <v <2,
fv(v) =k(v—-1) = .
—_— fi 2.
2(1}_1)2, or v >

2) The mean does not exist. In fact,

00 2U 00 v
[ va(v)dv—/l §dU+L mdv—oo
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3) To any v > 1 there exists an N = N(v), such that v? > 2 for every n > N, and such that

. . 1

Since V' > 1, we have P { YV < v} =0 for v < 1. By taking the limit n — oo we get

1 for v > 1,

Jm PV <0} =

0 for v <1.
The right hand side is the distribution function of the causal random variable U, for which

P{U=1}=1.
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Example 8.5 A 2-dimensional random variable (X,Y) has the frequency

z+y foro<zxz <1, 0<y<l,

h(z,y) =
0 otherwise.

1) Find the frequencies of the random variables X and Y .
2) Find the means and the variances of the random variables X and Y .
3) Find the frequency of the random variable X +Y .

4) Find for every n € N the distribution function F,(x) and the frequency fn(xz) of the random
variable X™ and prove that for every e > 0,

P{X">e}—0 for n — oco.

1) If z € [0,1], then

Fe(@) fol($+y)dy=x+%, z €0,1],
x(x) =

0 otherwise.

It follows by the symmetry,

o etyde=y+y,  yeb]
y\y) =

0 otherwise.

2) The means exist, and by the symmetry,

! 1 Ly, ot 1 1 7
E{X}—E{Y}—/Ot(t+§)dt—/o (t +§)dt—§+1—ﬁ.

3) Since the values of X + Y lie in [0, 2], the frequency is for s € [0, 2] given by

g(s) = /Olh(a:,s ~ 2)da.

The integrand is # 0, when 0 < s — x < 1, so the domain of integration is determined by
s—1<x<sand0<1, hence
Jy sdx = s for s € [0,1],
9(s) =9 |
[, sde=52—s)=1—(s—1) for s € [1,2].

Summing up,

52 for s € [0,1],
g(s)=¢ 1—(s—1)2  forse]l,2],
0 otherwise.
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4) Since the values of X lie in [0, 1], we get for = € [0,1] that

Fo(z)=P{X"<a2}=P{X < W}Z/()%(t+%) dt:% <"x2+ \/E):%{x+mﬁ}

and
1
/2 | .
12 2.4 1 1, %{2 z "‘\/5} for z € [0,1],
fn(x):_ —xn + —xn =
2 n n
0 otherwise.
Finally,
1 2 1 1
P{Xn>€}:1—P{XnS€}:1—§ {5n +5n}_>1_§(1+1)20 for n — oo.

Example 8.6 Given a sequence of random variables (X,),—,, where X,, has the frequency
nn+1) 2" 1(1 - x), x €10,1],
fn(x) =

0, otherwise.

1. Find the mean of X,.

For every fited n € N we define a random variable Y,, by
Y, = (X,)".
2. Find the distribution function G, (y) and the frequency g, (y) of Ya,.
3. Prove that the sequence (Y,).., converges in distribution towards a random variable Y .

4. Finally, find the frequency of Y.
We start by noting that for 0 < & < 1 the distribution function F(z) of X is given by
F(z) = / fu)dt = (n+1)z" —na™tL,
0

1) The mean of X, is

E{Xn}:/lefn(x)dx:n(n—i—l)/ol (" —2™) de =n(n+1) (n—lkl _n—lk2> :nZZ'

2) The distribution function of Y,, = X for 0 < y < 1 is given by

Gu(y) = P{Y, = X}, Sy}:P{XnSy%}:(n+1)y*ny”%,
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thus
0, for y <0,
Gn(y) =< (n+1)y—ny'ts, for 0 <y <1,
1, fory > 1,

and hence by differentiation,

(n—|—1)<1—y%> for 0 <y <1,
gn(y) =
0 otherwise.

3) According to I'Hospital’s theorem,

T 71 T
lim Y~ — lim HllJ 4 =—Iny.

x—0 x x—0

1
Put & = —. Then by insertion and by taking the limit,
n

1

1—yn
lim n(l—y%) = lim 1y = —Iny.

Then finally for y €10, 1],

Gn(y)=y+ny(1—y%)—>y—ylny for n — .

Consequently, (Y;,) converges in distribution towards a random variable Y of the distribution

function
0, for y <0,
Gly) =< y—ylny, for0 <y <1,
1, for y > 1.

4) The frequency of Y is derived by differentiation, g(y) = G’(y), thus

—Iny, for 0 <y <1,

9(y) =
0, otherwise.

101

Download free eBooks at bookboon.com



Random variables |11 8. Convergence in probability and in distribution

Example 8.7 We define a sequence of random variables (X,,),—, by assuming that X,, has the dis-
tribution function

0, x <0,
Fo.(x)=< a", z € 10,1],
1, x> 1.

1) Find the frequency f,(x) of X,, and find the mean and the variance of X,,.

2) Prove that the sequence (X,,) converges in distribution towards a random variable X, and find the
distribution of X.

3) Prove that
E{X,} — E{X} and V{X,} - V{X}  forn— cc.

4) Assuming that the variables Xo and X3 above are independent, find the frequency of the random
variable

7 = Xy + Xs.

1) The frequency of X, is obtained from Fj,(z) by differentiation

na™ ! for z €10, 1],

fn(x) =

0 otherwise.

The mean is

! n
E{Xn}:/ na" dx = .
0 n+1
From
! n
E{Xfl}:/ na"de = ,
0 n—|—2

we get the variance

V{Xn} = E{X’?L}i(E{Xn})2: n:L_2 - (nj—l)

ez (T = G

2) Trivially,
0 for x < 1,
F(z) = lim F,(z) =

n—oo

1 for x > 1,

and F'(x) is the distribution function of the causal random variable X, which is given by

P{X=1}=1

102

Download free eBooks at bookboon.com



Random variables |11 8. Convergence in probability and in distribution

3) We have for the causal distribution X that E{X} =1 and V{X} =0, and

n
lim E{X,}= lim —— =1=B{X},
im E{Xa}=lim o {X}

n—oo

and

n
lim V{X,}= lim ———— =0=V{X).
Jm VAXa} = i Ty X3

4) The values of Z = X5 + X3 clearly lies in ]0,2[. If s €]0,2[, then the frequency of Z is given by
the convolution integral

g(s) = /0 Fo(@) fals — 2) da.

The integrand is ZO0 for0 <z <land 0 <s—axz < 1,thuss— 1<z <s.
Then we must split the investigation into two cases.

a) If s €]0, 1], then

s S s 1 1 s
g(s) = / 2x~32(8—3:)2dx=6/ (s—t)thtzﬁ/ (s> —¢*) dt =6 [— st3 — —tﬂ
0 0 0 3 4 o
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8. Convergence in probability and in distribution

b) If s €]1,2[, then we get instead

g(s) =

a—

(=)
O-’)Ib—‘ O-’)H—‘ )—‘

(=}

N =N =N

4s —

4s —

(=
(3"
(
(
(

Summing up,

9(s)

1 1 R
2x-3(s—m)2dx:6/ (S—t)t2dt:6[—st3——t4]
s—1

3 4 1
_% 5—1)+i(s—1)> 6(%5—%—(8—1)3(%8-%(8—1)»

3—{s®—3s>+3s—1}{s+3})

»Jkli—‘ »Jkl’—‘

3—(8 + 353 333—952+332+98—8—3))

1
4s — 3 — s* + 652 —88+3)——§S4+382—28.

— s for s €]0, 1],

1
—5544—352—25 for s €]1, 2],

0 otherwise.
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Example 8.8 Three random variables X1, Xo, X3 are assumed to be independent, and the distribu-
tion function for each of them is given by

0, x <0,

1—e™7, x> 0.
We define the random variable U by U = max{ X1, Xo, X3}.
1. Find the distribution of U.
2. Find the mean of U.

Let (X,,),2, denote a sequence of independent random variables, each of them given the distribution
function F(z) as in (3).

3. Let the random variables Y, and Z, for n € N be given by
Y, =max{Xy,Xs,..., X} and Z,=Y,—Ilnn.

Prove that the sequence (Z,) converges in distribution towards a random variable Z of the distri-
bution function

Fz(z) = exp (—e™7), zeR.

1) Since X1, X3, X3 are independent, the distribution function of U = max { X1, Xa, X3} is given by
Gu) =P{X; <u, Xo <u, X3 <u}=P{X; <u} -P{Xy <u} P{X3 <u}={F(u)}?
ie.

0, u <0,
Glu) = 3
(1—e"")", u > 0.

The corresponding frequency is

0, u <0,

g(u) = ,
3(l—e ™) e [=3(eP—2e 2 e, u > 0.

2) The mean is

E{U} = /o ug(u)du = 3/0 u(e™ =27 +e7) du

1 [ 2 [ o0 1 1 11
= 3<{= te tdt— = te tdt / te ldty =30 —-41p =",
{9/0 ¢ 4/0 ¢ db e 9 2t 6

ALTERNATIVELY,

E{U} = /000{1 —G(u)}du = /Ooo {e73" — 372 4 3¢} du = % -
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08
0.6
0.4
0.2

—

1

Figure 19: The graph of F;(z) = exp (—e™?).

3) When (1) is generalized we get
P{Y, <y} =F(y)",

hence

P{Z,<z}=P{Y,<z+Inn} = (F(z+1Inn))",

and whence

0,

FZn(Z):P{ZnSZ}: (1_6*(z+lnn))": (

Then for every fixed z,

1
1- =
n

1 n
lim P{Z, <z} = lim (1 - — ez> = exp (—efz) ,
n

n—oo n—oo

z < —Inn,

n
ez> z > —Inn.

proving that the sequence (Z,) converges in distribution towards a random variable Z of the

distribution function

Fz(z) = exp (—e™7), zeR.

Remark 8.1 We have above tacitly applied the well-known result

lim (1+ﬁ) =e® for a € R,
n

n—oo

O

It is easily seen that Fz(z) = exp (—e™?) is increasing and continuous and

lim Fz(z) =0 and lim Fz(z) =1,

Z—00 Z— 00

so Fz(z) is indeed a distribution function of a random variable Z. ¢
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Example 8.9 Let X;, Xo, ... be independent random wvariables, all Cauchy distributed of the fre-
quency
flo) =~ €R
al- (14 22)’ * '
Let
1

Y, =max{X1,Xo,.... X,,}, Z,=-Y,, n € N.
n

1) Find the distribution function G,(z) of the random variable Z,,.

2) Prove that (Z,) converges in distribution towards a random variable Z, and find the distribution
function and the frequency of Z.

HINT: It may be convenient to use the formula

1
Arctan x 4+ Arctan — = g C— x # 0.
x

|z|”

1) The distribution function for each X; is given by

1 [ dt 1 1 1
F(ac):;/_oolJr—tZ:;[Arctant]’ﬁm:;Arctanac—l—§7 z e R.

Gn(z) = P{%Yn SZ} = P{Y, <nz}=P{max{Xy,...,X,} <nz}

= (P{X;<nz})" = (% + %Arctan nz)n (> 0).

2) If 2 <0, then Arctan nz <0, hence

1 1 1
Gn(z) = (5 + = Arctan nz) < on = 0 for n — oo.

If z > 0, then we use
1 1 1 1
— Arctan(nz) = = — — Arctan —,
T 2 7 nz

to conclude that

Gn(z) = (1 1 Arctan i) ,
T

nz

and

1 1 1 1 1 1
InG,(z) = nln{l——Arctan —}zn{——Arctan———e(—)}
77 nz 7r nz nz \nz

n{l 1 (1)} 1 1 (1) 1
—— < — 4+ —c| — = —¢|—) = - for n — oo.
™ nz nz \nz Tz Tz \nz TZ
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The distribution function is

1
exp (——) for z > 0,

0 for z <0,

and the frequency is

1 1
—5 exp <—> for z > 0,
Tz T2

0 for z < 0.

9(z) =
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Random variables |11 8. Convergence in probability and in distribution

Example 8.10 Let X and Y be independent random variables, where X is exponentially distributed
of the frequency

2e % for x >0,

fx (@) =
0 for x <0,

and Y is rectangularly distributed over the interval ]0, 3].

1) Find the mean and the variance for each of the three random variables X, Y and Z = X +Y.

2) Find the frequency of the random variable Z.

3) Now assume that X andY,, are independent random variables, where X has the same distribution
as above, while Yy, is rectangularly distributed over the interval ]0, l [, n € N. Find for z > l,
the distribution function Fy,(z) of the random variable Z, = X + YT;L !

4) Find lim,, .o F,,(z) for every z € R.

1) Clearly,

° 1 [ 1
E{X}= r-2e" 2 dr = = te tdt = =,
2 2

0 0

and since

E{X2}:/ x2-26*21dx21/ t267tdt21.2!:§’
0 0

it follows that

1 1 1
VIXy =Xt -y = -t o
It follows from
1
3 forazel0d],
fr(y) =
0 otherwise,
that
’ 17421 19 3
E{Y} = - dy = = | = = — == =
v} 3/oyy 3[ ]0 322
and
1 3 1 yg 3
{v?} 3/01/ Y 3[3}0 3,
hence
2 2 9 3
VY}=E{Y?} - (B{Y})?=3- ="
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Remark 8.2 All results above are of course well-known, so the computations are strictly speaking
not necessary. They are given here for completeness. ¢

Finally,
1 3
BE{Z}=E{X +Y}=B{X}+B{Y} =5+ =2,
and
1 3
V{Z} =V{X}+V{Y} = 1t 1.

2) The frequency of Z is 0 for z < 0. When z > 0, then

fz(z) = /OOO fx(t) gy (z —t)dt.

The integrand is # 0, when ¢ > 0 and z — t €]0, 3[, i.e. when ¢ €]z — 3, z[.

a) If z €]0,3[, then z — 3 < 0, hence

ey =5 (1-e7).

W =

fz(z) = / 2e 2. 1dt =
0 3

b) If z > 3, then

Summing up,

0 for z <0,

(1 — e’zz) for 0 < z < 3,

Wl

fz(2) =

é (66 — 1) e?? for z > 3.

3) The frequency of Y, is
1
n for y € ]0, — {,
n
fr.(y) =

0 otherwise.

1
If z > —, then the frequency of Z,, is given by
n

fulz) = /000 fx(@) fy, (z=t)dt = /:l 2e 2t ndt =n [—e_Qt];l = n{e% — 1}6_2z.
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1
We conclude for z > — that the distribution function is
n

Fo(z) = / fo (O)dt=1— Oofzn(t)dt1n{ei1}/:oe%dt

— 00 z

Il
—
|
S
=
[
3o
|
—
——
|
N| =
m|
[\~
=
[ S
o 3
I
—
|
|3
—
)
Sl
—_
——
Ch|
[
I3

4) If z < 0, then F,(z) = 0, hence lim,, ., F,,(z) = 0.
If z > 0, then there exists an N, such that z > — for every n > N, so
n

lim F,,(z) = lim {1 — g (e% — 1) 6722} =1—¢"% lim g (e% - 1)

n—oo n— 00 t—oo

2 2 (2
- 162zn1Ln;O{Z<1+n+ns<n)>1}1622Fx(z).

Example 8.11 Let X,,, n € N, and X be random variables, and let a,,, n € N, and a be positive
numbers. Prove that if the sequence (X,,) converges in distribution towards X, and the sequence (ay)
converges towards a, then the sequence (a,X,,) converges in distribution towards aX .

Let F,,(x) be the distribution functions of X,, and F(x) the distribution function of X. Let G,,(y) be
the distribution functions of Y,, = a,,X,,, and G(y) the distribution function of ¥ = aX.

The assumptions are that a, > 0 and a > 0, and

lim F,(z)=F(z) and lim a, = a.

n—oo n— 00

We prove that at any point of continuity vy,

lim G,(y) = G(y).

n—oo

First rewrite in the following way,

Guty) = P i) =planXesoy=P{x < L} -5 (L)
0 {n(2) ()]
- rlxs{n(2)-r(2)

P s (m () - (2))

=
N
S
SIS
~~_
I
eS|
/—\
ISR
~—
—

+ —
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Y isa point of continuity of F, then the right hand side will converge towards 0 for n — oo, and
a

the claim is proved.

ALTERNATIVELY we know that at the points of continuity = € R of F'(x) we have the limit

lim P{X, <z} =P{X <z} =F(x).

n—oo

x
Let a,, and a be positive numbers, where a,, — a, and let — be a point of continuity of F'(x). Then
a

PlanX, <z} :P{Xn < i}.
a.

n

Choose any € > 0. If n > n(z,¢),, then

P{Xn<x_€}<P{Xn<i}<P{Xn<“€}.
a an a

— € xr+e
and

a a
that since F' is weakly monotonous, F' has at most a countably many points of discontinuity, so this
can always be obtained for ¢ “as small as we want it”). Letting n — oo, we get

P{X< m_g} <1imian{Xn< i} <limsupP{Xn< i} <P{X< ””“}.

a n—0oo (07 n—oo Gnp a

X
Then restrict € > 0, such that also

are points of continuity of F. (Here we exploit

If ¢ — 0, then two of the terms will both tend towards
x
P{X < —} — P{aX <),
a
and we have proved that

lim P{a,X, <z} = lim P{X, < i} — P{aX < z}.

n— o0 n— o0 { Up
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continuous distribution, 5, 6
continuous random variable, 5, 6
convergence i probability, 89
convergence in distribution, 16, 89
convergence in probability, 16
correlation, 15

correlation coefficient, 72
covariance, 15

discrete distribution, 4, 6
discrete random variable, 4, 6
distribution function, 4

expectation, 11
exponential distribution, 107

frequency, 5, 6
Helly-Bray’s lemma, 16
independent random variables, 7
Jacobian, 10, 32

law of total probability, 11
marginal distribution, 5
marginal frequency, 6
maximum, 18, 76

mean, 11

median, 4

minimum, 18, 76

moment, 12

null-set, 7

probability field, 4

quantile, 4

random variable, 4

rectangular distribution, 19, 72, 95, 107

simultaneous distribution, 5
simultaneous distribution function, 6

transformation formula, 32
transformation theorem, 8

weak law of large numbers, 16
width of variation, 21
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