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Preface

Wireless Sensor Networks (WSNs) are rapidly becoming a technological corner-
stone for modern societies. These collections of autonomous and distributed nodes
capable of sensing, communication, processing, and even self-organization con-
tinue to earn notoriety as they serve as the backbone of emerging intelligent
information-driven paradigms such as the Internet of Things [7, 12, 22], Vehicular
Clouds [6, 19], or Cyber-Physical Systems [2, 4]. Over the last two decades, we
have witnessed a plethora of developments related to theoretical innovations in
WSNs that touch all aspects of their multilayered design, from more robust physical
and medium access layers [23] to more efficient energy conservation [15, 18, 21]
and self-organization protocols [5, 25]. The number of published surveys reporting
successful WSN applications to dissimilar domains [1, 8–10, 20] is frankly
overwhelming.

Computational Intelligence (CI) is a very active research discipline that
encompasses a plethora of methodologies that draw inspiration from natural and
social processes to model and solve a variety of challenging real-world problems
[11, 13]. The appeal behind CI techniques revolves around the fact that they take
into account the imprecise, vague, and uncertain knowledge that is often present in
any realistic world model. Through the abstraction and simulation of intelligent
systems such as bird flocks, fish schools, ant colonies, immune system cells, neural
connections, and other highly parallel and distributed processes, the overhead
imposed by the computational intractability of NP-hard optimization problems and,
more recently, the emergence of Big Data [16], has been reasonably alleviated. The
term CI is not indicative of a single methodology; rather, it describes a large
umbrella under which several biologically and socially motivated techniques have
emerged [11]. The CI field has outgrown its traditional foundations (centered
around artificial neural networks, fuzzy systems and evolutionary computation) to
embrace other related approaches that also pursue the same goals of tractability,
robustness, and low solution cost [11, 13], including but not limited to: rough sets,
multi-valued logic, connectionist systems, swarm intelligence, artificial immune
systems, granular computing, game theory, deep learning, and the hybridization
of the aforementioned systems.
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CI techniques have much to offer to WSN in terms of the realization of peri-
odical yet vital tasks such as sensor node localization, data collection and
aggregation, energy-aware routing/broadcasting, and sensor relocation [14]. The
interplay between both fields of study is growing in vitality and spills over other
closely related areas such as bio-inspired computing, robotics and vehicular sys-
tems, thus crystallizing the foundations of an exciting multidisciplinary arena.
Bio-inspired networking [3, 24] is a recently coined term that attempts to capture
the impact of a large subset of CI methodologies to interconnected systems.

This volume is another initiative undertaken to emphasize the increasingly
important role that CI methods are playing in solving a myriad of entangled
WSN-related problems. The book serves as a guide for surveying several
state-of-the art WSN scenarios in which CI approaches have been employed. The
chapters in this volume do not offer an exhaustive picture of the rich landscape of
CI-WSN applications given the breadth and depth of this interplay, with many
problems rapidly arising as the pace of technology accelerates. The reader will find
in this book how CI has contributed to solve a wide range of challenging problems,
ranging from balancing the cost and accuracy of heterogeneous sensor deployments
to recovering from real-time sensor failures to detecting attacks launched by
malicious sensor nodes and enacting CI-based security schemes. Network man-
agers, industry experts, academicians and practitioners alike (mostly in computer
engineering, computer science, or applied mathematics) will benefit from the
spectrum of successful applications reported in this volume. Senior undergraduate
or graduate students may discover in this volume some problems well suited for
their own research endeavors.

Volume Organization

Chapter 1 entitled “A Genetic Programming Approach to Cost-Sensitive Control in
Wireless Sensor Networks” employs Genetic Programming (GP) to find suitable
sensor control strategies that balance the accuracy of the measurements needed to
monitor a certain region and the cost of powering these devices. In networks
supporting multiple sensor types (a.k.a. heterogeneous WSNs), it is therefore
desirable to develop cost-sensitive control algorithms that sample more expensive
sensors only when necessary. The proposed solution has a twofold nature. First, a
hierarchical method is proposed where GP solutions are sorted in a hierarchy of
layers based on the cost of the sensors they use. Switching to the next more
expensive layer takes place only if the prediction variance indicates uncertainty at
lower layers. Second, the authors introduce non-hierarchical models that automat-
ically select sensors based on both cost and accuracy. In experiments using a
synthesized dataset and ten real datasets, the hierarchical method is shown to have
significantly lower prediction costs than the non-hierarchical method.

Wireless Mesh Networks (WMNs) are a particular type of WSN whose topology
can vary from a simple star network to an advanced multi-hop one. The main
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topological feature is that nodes are organized in a mesh topology, thus making
WMNs a reliable infrastructure through the redundancy of multi-hop communications.
In Chapter 2 “A Study on Performance of Hill Climbing Heuristic Method for Router
Placement in Wireless Mesh Networks”, the authors put forth an approach based on
Hill Climbing (HC), a simple local search method, to quickly identify near-optimal
router locations in a WMN so as to improve its Quality of Service (QoS) in terms of
maximizing the network connectivity and client coverage. The ensuing bi-objective
optimization problem is tackled via the HC heuristic method, whose performance is
investigated under different distributions of client mesh nodes.

Chapter 3 titled “An Automated Irrigation System Based on a Low-Cost
Microcontroller for Tomato Production in South India” introduces a practical result
on a fuzzy logic-based irrigation controller for growing vegetables. The system consists
of a feedback fuzzy logic controller that records key parameters with sensors,
ZigbeeGPRS remote monitor, and a database. Based on the crop yield, the fuzzy logic
controller acquires data from the sensors and applies fuzzy rules to determine a suitable
irrigation time. A MaxMin inference engine and a Mamdani-type fuzzy inference
systemwere adopted in order to make the best decision for each situation. The proposed
systemwas developed and tested for the growth of tomato plants. It saves 50–60%of the
water utilization as well as the energy generation cost.

Chapter 4 “Artificial Neural Network Based Real-Time Urban Road Traffic State
Estimation Framework” unveils a methodology that utilizes the existing cellular
network infrastructure for road traffic data collection with a three-layer neural
network model to estimate the complete link traffic state. The inputs to the neural
network (NN) model include the probe vehicle's position, timestamps, and speeds.
The framework integrates different modules that resort to different models in the
process of traffic state estimation. Real A-GPS data gathered using A-GPS mobile
phone on a moving vehicle on the set of chosen roads is used to evaluate the NN
model. The trained NN is also used to estimate the road link speeds and compares
them with ground truth speed (aggregate edge states) on a 10-min interval per hour.
The estimation accuracy indicated that reliable link speed estimation can be gen-
erated and used to determine real-time urban road traffic conditions.

WSNs are subject to an ample range of potential attacks originated by malicious
sensors. These attacks range from passive eavesdropping to active interfering and
tampering of the communication. Chapter 5 “Attack Detection Using Evolutionary
Computation” is concerned with the detection of such active attacks using the
restricted capabilities of the sensor nodes. The underlying idea is that each sensor node
is equipped with a simple intrusion detection system (IDS), hence an entire area can be
monitored for malicious behavior in a distributed fashion. The automatic configuration
of the IDS parameters is entrusted to Multi-Objective Evolutionary Algorithms
(MOEAs) and illustrated via the selective forwarding attack and the delay attack. The
proposed optimization framework provides Pareto front approximations consisting of
different IDS settings with respect to three objectives, i.e., false positives, false neg-
atives, and memory consumption. Furthermore, the authors discuss various attacker
strategies and the robustness of the IDS settings found for a specific attacker strategy
in cases where another attacker strategy is enacted.

Preface vii



Chapter 6 “Computational Intelligence Based Security in Wireless Sensor
Networks: Technologies and Design Challenges” reviews the application of CI
techniques to developing security schemes for WSNs. Fuzzy sets, rough sets,
neurocomputing and evolutionary approaches are among the formalisms that have
been proposed to enable WSNs with security features. There is broad uncharted
territory when it comes to designing CI-based security systems for WSNs.

Wireless Visual Sensor Networks (WVSNs) are a type of WSNs that are heavily
used for sensitive applications such as video surveillance and monitoring. To
overcome the typical constraints of a WVSN in terms of its limited memory,
energy, and bandwidth, Compressed Sensing (CS) techniques are brought into
place with the aim of reconstructing sparse signals using very few measurements.
Anomaly detection can then be accomplished in a more efficient manner using CS.
Chapter 7 “Efficient Anomaly Detection System for Video Surveillance Application
in WVSN with Particle Swarm Optimization” employs the popular Particle Swarm
Optimization (PSO) metaheuristic algorithm to optimize the minimum number of
compressed measurements and the routing of the information towards the desti-
nation. The proposed system is capable of detecting targets with fewer measure-
ments and transmitting the required compressive measurements for reconstruction
with less energy, thereby increasing the network lifetime.

Mobile robots are brought into a WSN to perform a wide range of tasks that
optimize the WSN operation and extend its lifetime. One example of this is the
replacement of damaged sensors with other functional, passive ones already
deployed in the monitoring region. This problem has been recently studied under
the name of Robot-Assisted Sensor Relocation (RASR) and cast as a combinatorial
optimization problem. Chapter 8 entitled “Planning Robust Sensor Relocation
Trajectories for a Mobile Robot with Evolutionary Multi-objective Optimization”
extends the previous RASR formulation by actively considering the current energy
levels of the participating passive sensors as well as the ideal locations for their
deployment as additional decision objectives. This results in more robust sensor
relocation trajectories to be pursued by the mobile robot. The authors explore six
prominent MOEA implementations and discuss their performance with WSNs of
varying sizes, inflicted damage levels, and passive sensor densities. They also tailor
a recently proposed Risk Management Framework to proactively detect sensors that
are at a high risk for failure and replace them before any network coverage is lost.

Future Challenges

The new generation of wireless networking involving the Internet of Things, Cyber
Physical Systems etc., will result in higher rate integrated communications.
Understanding and managing the complexity of such networks’ bandwidth,
capacity, security and Quality of Service (QoS) requirements will all be significant
research challenges.
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Currently we are also experiencing an explosion of mobile data traffic, charac-
terized by the 4 V’s Big Data vector: volume, velocity, variety, and veracity [16].
So, designing suitable frameworks to handle such Big Data in a wireless envi-
ronment using appropriate Computational Intelligence tools will be a real challenge.
Important aspects revolve around real-time distributed control, processing and
visualization of these data streams in order to generate actionable intelligence that
can better assist the decision-making process. A risk-aware view [17] of the
WSN-monitored environment is not only beneficial but necessary in order to
emphasize on the events of interest and declutter the operator’s workspace.

We hope that the suite of technical contributions gathered in this book help drive
further momentum into many theoretical and practical aspects of the wonderful
synergy between CI methods and the WSN realm. Enjoy the reading!

Auburn, USA Ajith Abraham
Ottawa, Canada Rafael Falcon
Kyushu, Japan Mario Koeppen
May 2016
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A Genetic Programming Approach to
Cost-Sensitive Control in Wireless Sensor
Networks

Afsoon Yousefi Zowj, Josh C. Bongard and Christian Skalka

Abstract In some wireless sensor network applications, multiple sensors can be
used tomeasure the same variable, while differing in their sampling cost, for example
in their power requirements. This raises the problem of automatically controlling
heterogeneous sensor suites in wireless sensor network applications, in a manner
that balances cost and accuracy of sensors. We apply genetic programming (GP)
to this problem, considering two basic approaches. First, we construct a hierarchy
of models, where increasing levels in the hierarchy use sensors of increasing cost.
If a model that polls low cost sensors exhibits too much prediction uncertainty, the
burden of prediction is automatically transferred to a higher level model using more
expensive sensors. Second, we train models with cost as an optimization objective,
called non-hierarchical models, that use conditionals to automatically select sensors
based on both cost and accuracy.We compare these approaches in a setting where the
available budget for sampling is considered to remain constant, and in a settingwhere
the system is sensitive to afluctuatingbudget, for example available battery power.We
show that in both settings, for increasingly challenging datasets, hierarchical models
makes predictions with equivalent accuracy yet lower cost than non-hierarchical
models.

1 Introduction

Wireless SensorNetworks (WSNs) have revolutionized environmentalmonitoring by
combining low cost with flexibility in sensor capabilities [31]. They have been used
in diverse environmental monitoring applications and continue to be adapted in new
fields. Because WSNs are often, even typically, deployed in remote locations, and
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thus rely on combinations of battery power and energy harvesting, a major challenge
in WSN design is to minimize system power consumption.

Minimizing power consumption can be accomplished in a variety of ways, in
particular by adapting sensor control strategies that optimize the balance between
measurement accuracy and the cost of powering sensors [30]. In this paper, we
propose new sensor control algorithms for WSNs with heterogeneous sensor suites
that balance cost and accuracy, obtained using genetic programming (GP) techniques.

By “heterogeneous sensor suite”, wemeanWSNs equippedwithmultiple types of
sensors for prediction of the same phenomena. Each of these sensors is characterized
by its accuracy in relation to the phenomena, and a cost of usewhich is oftenmeasured
by its power consumption. Such systems support multi-modal sensor fusion, a well-
studied technique where data frommultiple sensor modalities (types) is combined to
predict a single variable [30]. The contribution of our work is a consideration of cost
in multi-modal sensor fusion, and the development and testing of associated control
algorithms. These algorithms will call upon particular sensors only when needed,
and otherwise rely on the cheapest available sensors at any given time. Our problem
is distinguished from adaptive sampling [30] in that the latter is concerned with
optimally modulating sampling frequency of a given sensor, not choosing between
a suite of possible sensors.

While various multi-modal sensor fusion applications exist, we are especially
interested in the Snowcloud system which combines snow density telemetry with
snow depth and air temperature sensors to predict areal snowwater equivalent (SWE)
[24]. We envision extending Snowcloud to incorporate ground based light detection
and ranging (LIDAR) scanning [5] to be used for SWE estimation as part of its sensor
suite. However, while LIDAR yields more accurate data than existing Snowcloud
telemetry, it does so at significant additional power cost. Thus, the challenge is
to commit these resources only at optimal times. It is also a refinement of multi-
modal sensor fusion, since we are mainly interested in settings where available data
gathering techniques differ in accuracy, with less accurate sensors being cheaper than
more accurate ones.

A fundamental component of our approach is the use of prediction uncertainty to
drive sensor usage. We propose a scheme whereby predictions are attempted using
lower-cost sensors at first. If uncertainty is below an acceptable threshold, then the
prediction is used.Otherwisewe switch to higher-cost sensors,make a newprediction
based on those inputs, evaluate uncertainty again, and continue tomove the burden of
prediction tomore accurate and costly sensors as needed. This scheme is discussed in
detail in Sect. 2.4 and described graphically in Fig. 2. Note that while the Snowcloud
system is an intended application of this scheme, it can be generalized to any WSN
application using heterogeneous sensor suites comprising sensors with varying cost
and accuracy.

To quantify uncertainty we are aided by machine learning ensemble methods—
we use entropy in ensemble predictions as a proxy for uncertainty [23]. To obtain
predictive models themselves, in this work we use genetic programming (GP) [14].
This is largely due to characteristics of our intended application space. Previous work
has demonstrated that the relationships between snow cover and the topographic and
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meteorological factors that influence it include non-linearities [26], while the spatial
distribution of SWE is nonlinear because it is influenced simultaneously by vari-
ous forcing effects [27]. Nonlinear predictors are therefore desirable. Furthermore,
recent results [7] show that GP has advantages over other approaches (such as deci-
sion trees) due to associated techniques for preventing overfitting, e.g. treatingmodel
size minimization as an objective [12]. Although C4.5 only supports classification,
sufficiently fine classification granularity can achieve competitive performance on
regression problems, and this approach is popular in the environmental science com-
munity [7]. Finally, GP is appealing due to its white-box nature: it can potentially
provide physical insights into modeled phenomena.

An alternative approach to our problem is to not rely on external measures of
entropy to switch between sensors, but to treat cost as an additional objective in a
multi-objective optimization problem. We explore this option in our work, in direct
comparison to the hierarchical approach. However, due to the “curse of dimension-
ality”, adding another optimization dimension may have deleterious effects on pre-
diction performance, especially since selection for size to avoid overfitting already
imposes a multi-objective optimization regime [6]. We therefore hypothesize that a
hierarchical approach will outperform a non-hierarchical approach in settings with
multiple sensors of differing predictive abilities, and we explore this comparison in
our experiments.

In our initial comparison of these two approaches—hierarchical and non-
hierarchical—our regime is not concerned with the available budget. However, in
real deployments, budget levels can have significant impacts on what sensors are
chosen. For example, if battery levels are low, expensive sensors should probably be
avoided regardless of prediction uncertainty, both to reduce system downtime and
sensor noise. Therefore, we also consider a comparison of the hierarchical and non-
hierarchical approaches in a setting where models are sensitive to dynamic budget
fluctuations. As for the basic setting, we hypothesize that the hierarchical approach
will perform better than the non-hierarchical.

1.1 Related Work

Previous work on adaptive sampling [30] has aimed to reduce sampling rates in
Resource Constrained Sensor Systems (RCSS) applications to balance sensor cost
and accuracy. In particular, Alippi et al. [4] have tried to find the optimal adaptive
frequency of sampling for avalanche monitoring. It has further been claimed that
compressed sensing—sending aggregated data instead of raw data—performs better
in conjunction with reducing sampling rates, rather than just reducing the sampling
rate alone [17]. A variety of methods for compressed sensing [8] have been proposed.
Although these methods have achieved cost reduction in monitoring, they are not
applicable to our problem since we intend not to change the rate of sampling of
one sensor type, but rather to reduce sampling cost by switching between available
sensors of different type and accuracy.
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Another line of work focuses on finding the optimal location for sensors in dis-
tributed deployments, in order to maximize accuracy while minimizing deployment
densities. Krause et al. [15] have used a probabilistic method to predict the communi-
cation cost for a given deployment topology. Papadimitriou et al. [19] have employed
GP and a Bayesian statistical method to minimize entropy over a set of sensor loca-
tions. In contrast, our work is concerned with reducing the cost of sampling from an
available set of sensors at any given time, not with reducing the densities of sensor
topologies.

In work on so-called multi-modal sensor fusion, data from multiple sensors in
a potentially heterogeneous suite are aggregated to monitor a specific measurement
application [9, 28]. Thismethod has beenwidely used, for example in visualmonitor-
ing [18, 20] and target tracking [21, 25]. Data fusion focuses on sensor applications
that need to compute the correlation between multiple sensor modules and cannot be
measured by a single sensor. However, these works do not consider the cost of using
different sensors, or minimizing cost.

Cost sensitivemulti-modal sensor fusionmethods have been developed to balance
cost against accuracy, with an eye towards providing fault tolerance [13]. However,
we are not concerned with fault tolerance, but strictly between selecting sensors from
heterogeneous suites. Willett et al. [30] use a small number of sensors to send their
readings to a fusion center, and based on the correlation among the sensed data,
the fusion center decides which additional sensors should be activated. The same
concept has also been tried in a distributed fashion [16]. However, sensing costs in
these cases are a function of the number of sensors sampled, not their type.

Perhaps most related to our work is that of Wang et al. [29]. They propose a
method to find the optimal set of sensors to be polled, using a hybrid tree, where
non-leaf nodes act as a decision tree and leaves are standard regression models using
a subset of sensors. However, these trees support decision making based on external
constraints, i.e., which sensors to use depending on an organization’s goals and
resources. In contrast, our models are intended to support automated sensor control
in WSNs during deployments.

Outside of the adaptive sampling and sensor fusion fields, multi-objective opti-
mization has been used for cost-sensitive modeling. For example Kim [12] sets error
as one objective and tree size as another, as we do here. Zhao [32] sets the false
negative rate and false positive rate as the two objectives. However, these works do
not consider the hierarchical approach that we do.

1.2 Organization of the Chapter

The remaining text is organized as follows. In Sect. 2 we formalize our basic prob-
lem description, and explain how hierarchical and non-hierarchical models are
constructed. In Sect. 3 we describe the experiments we perform to compare these
two approaches, and the quantitative results from those experiments. In Sect. 4 we
describe an extension where dynamically changing budget information can be taken
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into account, and reformulate a problem formalization, as well as a description of
methods, experiments, and quantitative results in this extended setting. In Sect. 5
we discuss and reflect on our quantitative results for all experiments. In Sect. 6 we
conclude with remarks on future work.

2 Methods

This section provides a formalization of the problem, how genetic programming is
applied to solve it, and the two variants of genetic programming that we compare
in this work. All of the material for replicating the work described here is available
online [1].

2.1 Problem Formalization

Let us assume that t values of some environmental phenomenon g (the ground truth)
are known at time steps 1, . . . t . These values are stored in g = g1, . . . gt . Let us
further assume there are k sensors s1, . . . sk available that can be used to predict g.
Let r (t)i denote the reading of sensor i taken at time t . Moreover, let s(t) and r (t)

denote a subset of sensors, and readings taken from them, at time t . We denote the
amount of variance of g explained by sensor i as v(g)ri . This value is determined by
linearly regressing only ri against g. Finally, let ei = 100(1 − v

(g)
ri ) and ci represent

the prediction error and cost of using sensor i respectively. Using this formulation,
ei represents the percentage of prediction error incurred by just using sensor i to
predict g.

The cost of a sensor ci is usually inversely proportional to its error ei , so for the
work reported below, we set ci = v

(g)
ri for each sensor. In certain sensor deployments

there may be other factors that affect ci such as power consumption, market price,
effort required to collect a sensor’s reading, proprietary issues, and so on. In any case
it is important to clarify that in this work we only consider costs of sensor sampling,
not operational costs of the platform, e.g. the cost of post-sampling data processing.

We suppose that an ordering of sensors exists such that s1 is the least expensive
sensor with the highest error and sk is the most expensive sensor with the lowest
error. Formally,

∀i, j . 1 ≤ i < j ≤ k → ei > e j ∧ ci < c j .

Let us denote the prediction of a model using a subset of sensors at time t by p(t),
i.e., p(t) is a function on r(t). Then, the error of each sampling e(t) would be

e(t) � |p(t) − g(t)|.
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The cost of each sampling, c(t) is the cumulated cost of all sensors si ∈ s(t) that
were polled for that sampling:

c(t) �
∑

j∈{i |si∈s(t)}
c j .

It is desired that each sampling s(t) entails low error and cost. That is, the following
equality is desirable:

argmin
s(t)

e(t) = argmin
s(t)

c(t).

Our goal is to design models which combine and transform sensor readings to
accurately predict the outcome measure, but can also intelligently determine which
sensors to poll when cheap, less accurate sensors exhibit uncertainty about the current
prediction.

2.2 General Genetic Programming Approach

Genetic programming has widely been employed for regression tasks in which the
functional form of the equations relating inputs to outputs is unknown [14]. Here,
inputs are sensor values and the output is a prediction for a given outcome measure-
ment.

Although many recent improvements have been proposed for GP, here we have
kept the genetic programming algorithm simple and instead focused on comparing
GP-generated hierarchical and non-hierarchical models. Thus, GP is restricted to
the four simple algebraic operators, and each evolutionary trial is initialized with a
fixed-sized population of 100 randomly-generated solutions containing three nodes.
Maximum tree depth is not set since the tree size is considered as an objective in
multi-objective optimization. The crossover rate is set to 0.2 and no fitness stall is
considered. If the number of non-dominated solutions reaches 50% of the population
size, the training restarts. At the conclusion of each generation, four values are
computed for each solution: (1) error on training data as defined below, (2) the
combined cost of the sensors used to make the prediction, (3) the size of the solution,
and (4) the age of the solution. We now discuss each in turn.

Error Let n be the population size and j range over {1, . . . , n}. Let t j be some
solution tree. We represent the error of sampling at time t using solution t j with e

(t)
t j .

Moreover, d (train) and d (test) denote the training dataset and testing dataset, respec-
tively. Then, we define the error on training data using solution t j by e(train)t j and as

the average of e(t)t j on all samples in d (train), i.e.,

e(train)t j �
∑

g(t)∈d (train)

e(t)t j
|d (train)| . (1)
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Each solution t j was allowed to use a subset (possibly empty) of available sensors.
The cost of each solution depends on the sensors that are employed and the sampling.

Cost As described in the following sub-sections, current sensor readings may
trigger readings from additional sensors. Thus, different r (t)i may cause t j to need
different s(t). The average cost of a tree on training data c(train)t j is thus defined as the
cost of all of the sensors that have been used to predict the outcome for each training
instance, averaged over all instances in the training dataset:

c(train)t j �
∑

r(t)∈d (train)

∑

l∈{i |si∈s(t)}

cl
|d (train)| . (2)

If a solution uses a sensor more than once, no extra cost is incurred: because the
sensor has already been polled, its output is already available and can thus be re-used
as often as required.

Size To avoid bloat, solution size, defined as the number of nodes in the tree, was
incorporated into the fitness objectives during the optimization process [11].

Age We employed the Age-Fitness Pareto Optimization (AFPO) method [22],
which injects a new randomly-generated solution into the population at each gener-
ation and compares the solutions with same age in an effort to guard against conver-
gence. Each solution’s age is defined as the number of generations since its oldest
ancestor was injected into the population. A new solution produced by mutating an
existing solution inherits the same age as its parent. If two existing parents are crossed
to produce two new offspring, the offspring inherit the age of the older of the two
parents. AFPO is a multiobjective optimization method as solution age is used as an
additional fitness objective during optimization.

OptimizationAt the end of each generation, the Pareto front is computed according
to the objectives used, and the dominated solutions are discarded. Multi-objective
optimization with all four objectives described above could easily lead to population
collapse in the sense that allmembers of the population could becomenon-dominated.
To guard against this eventuality, one possibility is to restart the evolutionary runwith
new solutions if no dominated solutions are detected in the population at the end of
a given generation. Alternatively, a very large population size can be employed.
However, both of these solutions greatly increase the computational effort required
to obtain satisfactory solutions to the given problem. To avoid this situation, different
multi-objective optimization approaches has been proposed. One of the simplest non-
parametric approaches is to reduce the number of objectives bymultiplying objectives
together andusing the result in the optimization process [10]. In this experiment, since
error is the most important outcome, error is used for the primary objective and the
second objective is the result of multiplying cost, size and age together.

Once the dominated solutions are deleted, the empty slots in the population are
then filled by mutating and crossing copies of the non-dominated solutions. Tourna-
ment selection is used to select parents from the front for these operations. After the
last generation, age is discarded when computing members of the Pareto front, since
the goal is to use only small, accurate and cost-effective solutions for prediction,
regardless of their age.
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Fig. 1 a Non-hierarchical
framework. b A
non-hierarchical sample
solution

2.3 Non-hierarchical GP

A naive approach to cost-sensitive modeling using GP would be to evolve individual
trees that add conditional and comparative operators to the base set of operators, and
allow the tree to poll the values of all sensors if desired, as shown in Fig. 1a. In this
way, different parts of the solution treewill be visited depending on the current values
of the sensors. If less expensive sensors report a certain combination of values which
in the current circumstances is unlikely to provide a good prediction, successful
solutions may evolve that visit nodes containing references to expensive sensors.

Figure1b shows an hypothetical example of a GP solution t j that has evolved to
encode a useful conditional. In this example, an inexpensive sensor s1 is first polled.
If its reported value r (t)1 is below some threshold, the reading of a more expensive
sensor s2 will be used. It is assumed here that s1 leads to making poor predictions
of the outcome if its reading is below 1.43. If this threshold is exceeded, r (t)1 is then
used to predict the outcome.

Conditional operators should, indirectly, encode the differential effects on the
available sensors, and the relative costs of those sensors. Note that this is possible
even if GP does not have direct access to these differential effects and costs, as
they are indirectly reflected in the errors and costs incurred when each solution is
evaluated. This issue isworthmentioning in that these effects are complex, non-linear
and noisy, and even field experts cannot define them precisely.

2.4 Hierarchical GP

An alternative approach to reconciling prediction error and prediction cost is to build
a hierarchy of models: models in the lower layers only have access to inexpensive
sensors, while models in the upper layers have access to a greater subset of the
sensors, including more expensive ones. When deployed, the overall model returns
a prediction from a lower layer if the inexpensive sensors are confident of their
combined prediction. If they are not, predictions are drawn from a higher layer.
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Fig. 2 Hierarchical
framework (a). Using the
difference between training
data prediction variance and
test data prediction variance
as the condition for
switching between model
layers (b)

Briefly, constructing such a model proceeds in two phases:

1. Build a set of k layers, one for each sensor modality. For each layer i , run GP to
find a set of accurate and low-cost solutions that use one or more sensors from
the set s1, s2, . . . si .

2. Define conditions which determine which layer should be allowed to provide the
prediction, given the current environmental conditions.

Figure2 illustrates what such a hierarchical model looks like. At the outset of
attempting to provide a prediction for the current environmental conditions, the
models stored in the lowest layer are evaluated, which only have access to the least
expensive sensor s1. If the certainty of their combined predictions is acceptable,
return the combined prediction of these models. Otherwise, evaluate the models at
the next layer, which have access to s1 and the next least expensive sensor s2. If these
models are acceptably confident in the prediction, return their combined prediction;
otherwise, evaluate the solutions at the next layer, and so on. If the top layer is
reached, the combined predictions of the models found there are returned as the
overall prediction, regardless of their level of certainty. The incremental construction
of these models is described next.

Starting with the least expensive sensor s1, GP is used to find the best models for
converting r (t)1 to g(t). When GP terminates, the final non-dominated solutions are
then organized as a group named layer L1. The same process is repeated for s2, except
for the fact that since s1 is already polled in L1, it may be incorporated into models
during evolution without incurring an extra cost for the solution tree that makes use
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of it. Similarly, for each sensor si , a separate GP run is performed with sensors s1
to si available as input to construct layer Li . These layers are then organized in a
hierarchical fashion. The order of layers is based on the cost of the most expensive
sensor they are representing, from L1 to Lk . Suppose each layer Li consists of ni
solutions and the j th solution t j in Li is denoted as ti, j . Let p

(t)
ti, j denote the prediction

of g(t) that ti, j provides. Then, the final prediction of layer Li for g(t) is

p(t)Li
�

ni∑

j=1

p(t)ti, j
ni

.

The error that corresponds to p(t)Li
is

e(t)Li
� |p(t)Li

− g(t)|.

In the second phase, a conditional must be formulated to determine whether the
current layer should return its prediction, or whether the burden of prediction should
be passed up to the next layer. One common method for measuring how confident an
ensemble ofmodels is, is to compute the variance in their predictions [23]: if variance
is low, and those models are sufficiently independent of one another, there is a greater
likelihood that their combined predictions can be trusted. If variance is high, this is
likely the result of differing assumptions encoded in the models, which cannot all
be true reflections of the hidden relationship being modeled. Note the assumption
here that the models are relatively independent: a set of identical models will never
exhibit a variance in their predictions, regardless of how accurate the individual
models are. We can be somewhat confident of the independence of our models, as
they are produced by the AFPO algorithm: models with differing ages are likely to
arrive on the final Pareto front used to build each layer, and such differently-aged
genomes are likely to be independent because of their different genetic origins.

Formally: Let ptrain(t)Li
and etrain(t)Li

denote p(t)Li
and e(t)Li

using r(t) on d train, respec-

tively. Similarly, ptest(t)Li
and etest(t)Li

respectively denote p(t)Li
and e(t)Li

using r(t) on d test.

Moreover, assume vtrain(t)i and v
test(t)
i are the variances of all p(t)ti, j s on d train and d test.

Also, vtraini denotes vtrain(t)i averaged over all the samplings in d train.
To determine whether the burden of prediction should remain with the current

layer or passed off to a higher layer, we measure the difference in prediction variance
between the models when presented with the training data (vtraini ) or with the testing
data, i.e. the current environmental conditions (vtest(t)i ). When v

test(t)
i is almost the

same as vtraini , there is a high probability that etest(t)Li
is an approximation of etrain(t)Li

,
and we can be relatively confident that these models will yield a good collective
prediction of g(t). When the variance of test data prediction is significantly higher
than prediction on the training data, this signals that the solutions in that layer are
exhibiting increased disagreement regarding the current environmental conditions.
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This could be due to the fact that a specific sensor is not physically able to predict
under the current conditions, or the solutions have not been trained for the current
situation. In such an eventuality it would be advantageous to switch to the next layer,
in the hope that its models will exhibit more confidence in their ability to predict the
current conditions. In this paper, the variance is considered as a proxy for entropy,
but any other entropy related metric could be used instead. Figure2 illustrates how
this intuition is encoded into the switching condition in the hierarchy of layers.

By considering the amount of difference between prediction variance on training
and testing data, we can dynamically tune how conservative or liberal the overall
hierarchical model is: if little difference is tolerated, the burden of prediction will
often be passed to higher layers, resulting in expensive yet accurate predictions;
if much difference is tolerated, lower levels will tend to predict, resulting in less
expensive and less accurate predictions. The advantage of this approach is that the
amount of tolerance could be dynamically tuned based on the current available budget
for sensing.

For example, for larger budgets, more cost could be expended in order to obtain
more accurate results. In this regard, the tolerance of the difference between variances
could be decreased, transferring the burden of prediction to higher layers. Similarly
for small budgets, the tolerance would be increased. Through this adjustment, more
disagreement would be tolerated and less accurate predictions would be obtained for
lower cost. To implement this dynamic tuning given a fluctuating budget, a tolerance
parameter τ ∈ [0, 1] is defined, reflecting the tolerance of disagreement between the
solutions of a given layer. Equation (3) demonstrates how this parameter is used to
determine which level should be activated for prediction.

p(t) =
{
p(t)Li

if vtraini > |1 − τ | · vtest(t)i

p(t)Li+1
otherwise

(3)

It should be noted that in the present work, the same value for τ is used at the
interstices between each pair of layers. However, different values for τ could be
employed between different layers to enable the model to respond better to changes
in the overall available budget. The extreme cases occur when τ = 0 or τ = 1. The
former case ensures that the condition in Eq.3 holds when the prediction variance
on the testing data is greater than the prediction variance on the training data. This
occurs with high probability, so setting τ = 0 tends to extract the predictions from
solutions on the uppermost layer. Setting τ = 1 ensures that the first layer always
provides the prediction since variance on the testing data will always be finite. Values
greater than τ = 1 are not investigated in this work, but are possible. Greater τ value
increases the probability of the condition to be true. τ = ∞ causes the condition to
always be true, thus the method always collects predictions from the last layer.
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3 Results

The proposedmethods are evaluated over two set of experiments, using a synthesized
dataset and ten actual datasets. This section summarizes these datasets, experimental
setups, and quantitative results. These results were also reported in a preliminary
version of the work reported here [33].

3.1 Synthesized Data

In these experiment, the proposedmethods have been evaluated on a synthetic system
monitored by three different sensors. Table1 shows these three sensors, their readings
in relation to g(t), and their cost.

To create the training and testing datasets, at first coefficients in the equations
of the sensor relations, i.e., bi, j , were randomly selected in the range [0, 1]. Then,
random numbers were generated for g(t) in the range [0, 3], and used to calculate the
sensor readings based on the given template and selected coefficients. The training
and testing dataset sizes were 150 and 50, respectively, and each experiment was
repeated 40 times.

Non-hierarchical setup The population size is 100 and is trained for 300 genera-
tions. The optimization process during the last generation does not consider age as an
objective and the Pareto front is selected using error and cost × size as two separate
objectives. After training, the knee of the non-dominated solutions is selected and
tested using the testing dataset. In order to select the knee, the euclidean distance of
each solution on the Pareto front is calculated from the ideal model. The ideal model
is a solution with no error and zero cost. This is defined as follows:

tknee = argmin
t j∈Pareto front

√
(et j − 0)2 + (ct j − 0)2.

Hierarchical setup The population size for each layer is 100 and each layer was
trained for 100 generations to equalize the total computational effort applied in both
methods. Similarly to the non-hierarchical setup, during the last generation, age is
not considered in the Pareto optimization process, and non-dominated solutions are
selected based on error and cost × size as two separate objectives. After training, for

Table 1 Available sensors and their features

Name Equation template of r (t)i Cost

s3 g(t) 0.3

s2 b2,1g(t) + b2,2 0.2

s1 b1,1(g(t))
2 + b1,2g(t) + b1,3 0.1
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Fig. 3 Average error (a) and average cost (b) on the test data for the non-hierarchical and the
hierarchical methods with different tolerance parameters. Statistical significance of these results
are reported in Table2

each layer Li , the variance of the solutions output on training data vtraini is computed
and stored as the threshold of switching to the next layer Li+1. This variance is not
computed for the layer corresponding to the most expensive sensor, i.e., L3, since
there are no more sensors to be called. The experiment was repeated 40 times for
each of the different tolerance parameters τ = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8.

Results onSynthesizedDataWenowconsider average error and cost of the different
modeling approaches on synthesized data and report P-values for two tailed t-tests
where α = 0.5.

Average error The average error of the non-hierarchical method is etestt j , where t j is
the final selected solution. The average error of the hierarchical method is the average
of etestLi

, where Li is the last layer reached in the hierarchy, during the sampling. As
can be seen in Fig. 3, the largest difference in error occurs at maximum tolerance
i.e. τ = 0.8 where the error of the hierarchical method is 1.34% higher than the non-
hierarchical method. The hierarchical method tends to achieve lower average error
when the tolerance parameter is τ < 0.4. P-values obtained for different tolerance
parameters are represented in Table2a and show that τ = 0.4 is the boundary where
the hierarchical method begins to outperform the non-hierarchical method.

Average cost Byconsidering t j as the final selected solution in the non-hierarchical
method, the average cost is ctestt j . The average cost of the hierarchical method is the

average of
∑i

j=1 c
test
L j

, where the last layer reached during the sampling is Li . In
order to compare both methods and understand how much of the potential cost each
method uses, the cost of eachmethod is represented as the percentage of cost of using
all available sensors. Figure3 shows that the average cost of the hierarchical method
is significantly lower than the non-hierarchical method (at most 54.88% and at least
33.81% lower cost). Table2b summarizes the p-values to show how significantly
the cost of the hierarchical method is lower than the non-hierarchical method.
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Table 2 (a) P-values considering error of the non-hierarchical and the hierarchical methods with
different tolerance parameters. (b) P-values considering cost of the non-hierarchical and the hier-
archical methods with different tolerance parameters

a P-values b P-values

τ = 0.8 0.013414 τ = 0.8 �0.001

τ = 0.6 0.046626 τ = 0.6 �0.001

τ = 0.4 0.635566 τ = 0.4 �0.001

τ = 0.2 0.001309 τ = 0.2 �0.001

τ = 0.1 �0.001 τ = 0.1 �0.001

τ = 0.0 �0.001 τ = 0.0 �0.001

3.2 Actual Data

In this experiment, ten datasets are selected from the UCI database repository [2]
based on the number of instances and features from the regression section. Table3
summarizes these datasets and their features. For these datasets, we partition each
into two halves for training and testing, and treat the individual features as individual
sensors. Each experiment in this section was repeated 30 times.

In order to determine the accuracy of each sensor si in predicting g(t), the value
of v(g)ri is calculated for each available sensor of each dataset, using linear regression.
The greater v(g)ri is, the better that sensor can predict g(t). Table4 summarizes the
values of v(g)ri for all of the sensors of the Auto MPG dataset, as an example. We
define the cost of each sensor in these datasets as v(g)ri (Table 5).

Table 3 Used UCI datasets

DS no. DS name No. of instances No. of sensors g(t) Average

DS1 Auto MPG 398 7 23.51457

DS2 Housing 506 13 22.53281

DS3 Forest fires 517 12 0.031663

DS4 Energy efficiency 768 8 22.3072

DS5 Concrete
compressive
strength

1030 8 35.81796

DS6 Solar flare 1389 9 0.300188

DS7 Airfoil self-noise 1503 5 124.8359

DS8 SkilCraft1 master
table dataset

3395 19 4.184094

DS9 Wine quality 4898 11 5.877909

DS10 Parkinson’s
telemonitoring

5875 17 29.01894
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Table 4 Value of v(g)ri for all of the sensors of Auto MPG dataset

DS no. s1 s2 s3 s4 s5 s6 s7

Auto
MPG

0.1766 0.3175 0.3356 0.5951 0.6012 0.6467 0.6918

Table 5 Minimum and maximum amount of variance a sensor accounts for and the order of their

difference
max v(g)ri

min v(g)ri

, in each dataset

DS no. min v(g)ri max v(g)ri Difference ratio

DS1 0.1766 0.6918 3.92

DS2 0.0307 0.5441 17.72

DS3 0.0002 0.2578 1289

DS4 0.0076 0.7911 104.10

DS5 0.0112 0.2478 22.13

DS6 0.000 0.096 96

DS7 0.0157 0.1527 9.73

DS8 0.0005 0.4542 908.40

DS9 0.0001 0.1897 1897

DS10 0.0037 0.0263 7.11

Non-hierarchical setup The population size is 200 and for each dataset with k
features, it is trained for 200 × k generations.

Hierarchical setupThepopulation size for each layer is 200. Similar to synthesized
data experiments, in order to equalize search effort in both methods, each layer was
trained for 200 generations. After training, a subset of the non-dominated solutions
with least error are selected and organized in the corresponding layer. The cardinality
of this subset is 2% of the population size. This experiment was conducted for
tolerance parameter τ = 0.1. This value is selected based on the results in Sect. 3.1
and will be discussed in more detail in Sect. 5.1.

Results on Actual Data We now consider average error and cost of the different
modeling approaches on actual data obtained from UCI data repository.

Average error The average error for the non-hierarchical and the hierarchical
methods are etestt j and etestLi

respectively, where t j is the final selected solution in the
non-hierarchical method and Li is the last layer reached during the sampling in the
hierarchical method. Table6 summarizes the average error of both methods on all of
the datasets as a percentage of error. It can be seen that for 6 datasets, the average error
of the hierarchical method is higher than the average error of the non-hierarchical
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Table 6 Average error (L) and cost (R) percentages and the corresponding P-values for the hier-
archical and the non-hierarchical methods

DS no. NH: error % H: error % P-value NH: cost % H: cost % P-value

DS1 20.85 25.81 �0.001 38.89 12.33 0.022

DS2 25.90 28.93 �0.001 23.18 1.26 �0.001

DS3 126.49 202.12 0.565 6.83 15.81 �0.001

DS4 29.19 36.70 �0.001 32.90 4.18 �0.001

DS5 35.29 39.68 0.393 53.63 28.63 0.004

DS6 110.63 111.08 0.223 0.00 0.98 0.040

DS7 0.00 0.00 0.082 11.58 7.35 0.005

DS8 37.59 28.65 0.194 2.55 0.00 �0.001

DS9 10.79 10.67 0.197 0.02 0.00 �0.001

DS10 32.11 29.88 0.423 20.62 3.88 0.009

method. However, the p-value for the two-tailed t-test shows that for 3 datasets, this
difference is not significant. There are three cases where the difference is significant
i.e., DS1, DS2 and DS4.

Average cost Similar to Sect. 3.1, the average cost is represented as the percentage
of themaximum possible cost. Table6 summarizes the percentage of the average cost
each method uses for prediction. The cost of the hierarchical method is significantly
lower in all cases except for DS3 and DS6.

4 Adapting to Dynamic Budgets

In remote sensor deployments, the cost associated with sensor sampling may have
an effect on the budget available. Budget fluctuations can be due to various reasons,
depending on the network and the particular definition of the budget. For example,
if the budget is defined to be the capacity of a solar rechargeable battery powering
the sensor system, the budget may increase on a sunny day, regardless of sampling
frequencies, and may decrease on a cloudy day or at night due to sensor usage and
battery draw-down. In fact, battery power levels in systems with solar recharging
often exhibit a consistently diurnal pattern.

Since it is possible for budgets to fluctuate, a cost-sensitive approach to sensor
sampling will ideally adapt to changing budget levels, in order to extend deployment
lifetimes. In particular, as budgets decrease, models should be biased more towards
use of less-costly sensors, to preserve the existing budget and prevent using the
entire budget. In the case where the budget is taken to be the battery power level,
complete use of the budget corresponds to complete battery drawdown—apotentially
catastrophic situation that generally should be avoided.
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In this section we reconsider the hierarchical and non-hierarchical methods
described previously, with modifications to adapt to fluctuating budgets. In the case
of the hierarchicalmethod, we adaptmodels by allowing the threshold τ to be dynam-
ically tuned in proportion to the remaining budget. In the case of the non-hierarchical
method, we add the remaining budget as an input parameter to training and testing.
Our main goal is to explore the relative performance of models generated by these
respective methods. All of the material for replicating the work described here is also
available online [1].

A crucial element of this investigation is the concept of noise. Active sensors
typically have thresholds for reliable use, and as power levels drop near and then
below these levels, sensor noise increases. We observe that this phenomena actually
benefits adaptation to budget levels in model training, since increased noise increases
error and hence discourages sampling. We consider in particular the scenario where
more expensive sensors experience more noise as sensor levels drop—this scenario
has an empirical basis in the experience of the authors [3], and has the added benefit
(as we will show) of greater bias towards less expensive sensors as budget levels
decrease.

Summary of Training and Testing Regimes To encourage adaptation to fluctuating
budgets, during training each model is exposed to two different environments: one
with a “high” budget and the other with a “low” budget, relative to a posited lower
threshold for sensor inputs. Note that only the non-hierarchical models will use the
budget level as an input parameter, but predictions of models generated by both
methods experience noise proportional to the budget level and the cost of sensors
used in the prediction. The optimization objectives for both the hierarchical and
non-hierarchical regimes remain the same as in the preceding experiments.

After training, the resultant models are tested on four conditions: each condition
takes one of two different initial budgets—high and low—and one of two different
budget behaviors: one that stays constant until drawn downby sensor use, and another
that has an underlying sinusoidal pattern that simulates diurnal replenishing from
solar recharging. Models that exhibit low error and cost in all four situations are
considered most desirable.

4.1 Problem Formalization

Let B(t) be a real number defining the amount of the available budget at time t if
none of the sensors is polled from the first sampling S(1) to the last sampling before
now S(t−1). Then, B is the vector of the available budget for all of the sampling times
without any sensor being polled.

Let BH and BL be the vectors reporting the currently available budget if none
of the sensors are polled, where the budget was initially ‘high’ or ‘low’. We denote
individual budget values in these vectors as B(t)

H or B(t)
L , respectively. The initial

budget is considered to be high if the model has enough of a budget to poll two thirds
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of the available sensors for each sampling,

B(1)
H � |dtrain|(2

3

|S|∑

i=1

ci )

The average cost of the hierarchical and the non-hierarchical models reported in
Sect. 3 are all less than BH . That is the reason we believe this is a good threshold
for the high budget level. If the budget is not enough to poll at least one third of the
available sensors for each sampling, then it is considered to be low:

B(1)
L � |dtrain|(1

3

|S|∑

i=1

ci )

Let c(t)t j ,B denote the cost of evaluating solution tree t j at time t , considering the

available budget B, which could in turn be drawn from BL or BH . Note that c(t)t j ,B
depends on the particular solution tree t j and the sensors used by that model, as
explained in Sect. 4. This cost should be deducted from the currently available budget.

Let R(t)
t j ,B then denote the amount of remaining budget at time t , considering budget

B for each solution tree t j . Then, R
(t)
t j ,B can be defined as

R(t)
t j ,Bb

= B(t) −
t−1∑

l=1

c(l)t j ,Bb
, b ∈ {H, L , ε}

We define R(t)
t j ,BH

and R(t)
t j ,BL

as the remaining budgets when the budget B being
used is either the high budget BH or the low budget BL .

It is notable that, as explained in Sect. 4, the accuracy of sensors is affected by
the level of the remaining budget. By decreasing the amount of the available budget,
the error of a sensor Si and the amount of noise in its reading ri will increase.
Moreover, we consider a noise model in which different sensors may be affected by
a reading differently: we assume that less expensive sensors become less noisy as
the level of the remaining budget drops, since they are less costly and thus reduce
the budget less than expensive sensors. This behaviour is modelled as follows, where
U (min(ri ),max(ri )) is a uniform random number from the ri domain:

r ′(t)
i (t j ,B) = ( R(t)

t j ,B

B(t)

)ci r (t)i + (
1 − ( R(t)

t j ,B

B(t)

)ci )U (min(ri ),max(ri ))

In this manner, by decreasing the available budget, the accuracy of the sensor
readings will decrease and the noise in the sensor readings will increase. This effect
is proportionate to the cost. Figure4 shows the rate of noise as the available budget
level drops for three sensors in the synthesized dataset introduced in Sect. 3.1. As
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Fig. 4 The noise rate for different sensors with different cost from synthesized dataset

shown there, the cheapest sensor S1 becomes less noisy with decreasing budget,
whereas the most expensive sensor S3 suffers a greater noise increase as the budget
decreases.

This noise model should encourage the selection of models that make use of
less expensive sensors for predictions for two reasons. First, less expensive sensors
become less noisywhen the available budget level drops, compared tomore expensive
sensors. Second, using less expensive sensors keeps the cost of each prediction low.
Since the prediction cost has to be paid for from the available budget, low cost models
cause a slower decrease in the budget and thus retain more accurate sensor readings.

When the accuracy of a sensor si is affected by the available budget, then the
accuracy of the solution tree t j that makes use of si also suffers. Let e

(t)
t j ,B denote the

error of solution tree t j at time t , and where the available budget is B.

4.2 Methods

In order for the models to adapt to a changing budget, both the hierarchical and
non-hierarchical methods described in Sect. 2 should be able to alter their prediction
strategies, given the current budget.

Non-hierarchical GP In order to enable the non-hierarchical models to modify their
prediction strategy given the current budget, we include the currently remaining
budget R(t)

t j ,B as an additional ‘sensor’ that can be incorporated into solution trees
during model training. This is realistic since budget information such as power level
data is frequently accessible in WSN systems. If this sensor is incorporated into a
model, it can read the level of the remaining budget at no cost, when it is needed.

The solution trees are trained in the same way described in Sect. 2.3, except for
how the trees are evaluated. Each solution tree t j is evaluated twice, once using BH

and once using BL , to encourage model robustness. These two budget distributions
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are considered to be flat, without any budget harvesting: that is, the overall budget
does not increase or decrease over time if no sensors are polled.

Let e(t)t j ,BH
and e(t)t j ,BL

denote the error of a solution tree t j at time t when the budget

level was either high or low. The error of a solution tree t j at time t , denoted as e(t)t j ,
can then be computed as

e(t)t j = e(t)t j ,BH
+ e(t)t j ,BL

2
(4)

Similarly, the cost of a solution tree at time t , c(t)t j , is computed as

c(t)t j = c(t)t j ,BH
+ c(t)t j ,BL

2
(5)

With this formulation, the average error of a solution tree etraint j , and the overall

cost of a tree etraint j , can be calculated based on Eqs. 1 and 2 given in Sect. 2.2.

HierarchicalGPThehierarchicalmethod is trained the sameas described inSect. 2.4
except that, like the non-hierarchical method, models in the hierarchical method are
trained on both BH and BL , and their respective costs and errors are computed as the
average cost and error incurred in these two budget regimes (Eqs. 4 and 5). In this
manner, each layer Li consists of models with high robustness over different budget
distributions.

In Sect. 2.4 the tolerance parameter τ is statically defined and does not change
during model execution. Here however, as the budget is dynamic, the tolerance para-
meter should change accordingly. Therefore, τ is defined as

τ ′ = 1 − R(t)
t j ,B

B(t)

This balances which layer of the model hierarchy provides predictions, given the
currently remaining budget. When the remaining budget is high, the threshold for
disagreement between models of a given layer is low, so predictions tend to be drawn
from higher layers which have high accuracy. A low remaining budget means that the
threshold for disagreement between models of a given layer is high, thus relegating
predictions to lower levels of the model hierarchy. This has the effect of causing the
overall hierarchical model to become increasingly conservative in its use of sensors
as the budget decreases.

Substituting the tolerance parameter τ with this new τ ′ in Eq.3 given in Sect. 2.4
thus results in a new condition for switching between layers:

p(t) =

⎧
⎪⎨

⎪⎩
p(t)Li

if vtraini >
R(t)
t j ,B

B(t)
· vtest(t)i

p(t)Li+1
otherwise



A Genetic Programming Approach to Cost-Sensitive Control in … 21

4.3 Results

These altered methods for training models were evaluated against two sets of data:
a synthesized dataset and ten actual datasets, as described in Sect. 3. This section
summarizes the results from training with these datasets.

Each model is trained with given fixed budgets BH and BL . These budget distri-
butions are defined such that for all times t we have:

B(t)
b = |dtrain|(α

|S|∑

i=1

ci ) where

{
α = 1/3 if b = L

α = 2/3 if b = H.

After training models for each dataset, they are tested on four budget distributions
BH , BL , BH,sin and BL ,sin. Budget distributions BH and BL are flat and the same as
training datasets. Budget distributions BH,sin and BL ,sin were constructed to simulate
diurnal replenishing of solar powered sensors. This was accomplished by adding a
sinusoidal pattern to BH and BL . The amplitude of the sine wave is set to 2% of the
high budget level. We let B(t)

b,sin for b ∈ {H, L} denote the budget value at time t in a
given sinusoidal distribution BH,sin and BL ,sin. We define the latter such that for any
time t we have:

B(t)
b,sin = B(t)

b + sin
( t


B(t)
H ∗ 0.02�

)
b ∈ {ε, H, L}

Synthesized Data In these experiments, the synthesized data described in Sect. 3.1
is used to evaluate the proposed methods. The training and testing datasets are the
same, except that budget is also included as an extra sensor. The training and testing
datasets both contain 150 samples, and each experiment is repeated 30 times for each
budget distribution.

Non-hierarchical model training The population size is set to 100, and models
are trained for 600 generations, or more precisely 200 generations multiplied by the
number of available sensors, 3 in this case. The budget sensor is available to the non-
hierarchical model. The rest of the settings are the same as described in Sect. 3.1.
After training, the selected model is tested on all four different budget distributions.

Hierarchical model training The population size for each layer is set to 100, and
each of the three layers are trained for 200 generations. For training each layer Li ,
the corresponding sensor Si and the less expensive ones {Sj | j < i} are provided as
input. Models do not have access to the remaining budget level as an extra feature in
training. The rest of model training is as described in Sect. 3.1. During testing, the
dynamic tolerance parameter τ ′ is used.

Results on Synthesized Data If the non-hierarchical model selected for testing is
t j , the average cost of the non-hierarchical model is equal to c(t)t j ,B averaged over the
testing dataset d test. The average error of the non-hierarchical model is also equal to
the error of each sampling e(t)t j ,B averaged over the testing dataset d test. The budget
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Fig. 5 Average error (a) and
cost (b) on the test data for
the non-hierarchical and the
hierarchical models with
different budget
distributions. Statistical
significance of these results
are reported in Table7

distribution B could be one of the four given distributions. The sensor readings are
denoted as r ′

i , which reflect the noise considering the remaining budget level as
described in Sect. 4.1.

Let L(t) denote the layer in the hierarchical method that the prediction is drawn
from at time t . Then, the average cost of the hierarchical model at time t is equal to
c(t)L(t),B, averaged over the testing dataset d test. The average error of the hierarchical

method is equal to the error of layer L(t) averaged over the testing dataset. The error
of a layer Li is equal to

e(t)ti, j ,B = 1

|Li |
|Li |∑

j=1

e(t)i, j

where |Li | defines the number of solution trees in layer Li and e
(t)
i, j is the error of the

j th solution in layer Li when sensor readings are r ′
i .

As can be seen in Fig. 5, the error rates between both methods over all four budget
distributions are not significantly different (at most 0.32%). Table7a makes clear
that there are no statistically significant differences in errors across methods when
the initial budget is low. Figure5 also shows that the average cost of hierarchical
models is significantly lower than non-hierarchical models (at most 7.3%). Table7b
summarizes the statistical significance of these differences.
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Table 7 (a) P-values considering error of the non-hierarchical and the hierarchical methods with
different budget distribution. (b) p-values considering cost of the non-hierarchical and the hierar-
chical methods with different budget distribution

(a) p-values (b) p-values

BH �0.001 BH �0.001

BH,sin �0.001 BH,sin �0.001

BL 0.612857 BL �0.001

BL ,sin 0.590440 BL ,sin �0.001

Actual Data In these experiments, datasets from the UCI repository, as described in
Sect. 3.2, are used to evaluate the two new proposed methods. As in Sect. 3.2, each
dataset is divided into two equal training and testing portions. The budget feature
is also included in the datasets when training the non-hierarchical models. Each
experiment is repeated 30 times. For each iteration, a model is selected and tested
on the test data four times, each time with a different budget distribution.

Non-hierarchical model training The population size is set to 100, and for each
datasets with k available sensors, models are trained for 200 × k generations. The
non-hierarchical models have access to the B feature during training. The rest of the
settings are the same as they are reported in Sect. 3.2. After training, the selected
model is tested on all four different budget distributions.

Hierarchical model training The population size for each layer is set to 100, and
for each dataset, each of the layers are trained for 200 generations. Models do not
have access to the remaining budget level as an extra feature in training. The rest
of model training is as described in Sect. 3.2. During testing, the dynamic tolerance
parameter τ ′ is used.

Table 8 Error percentages of the methods on actual data considering different budget distributions

Datasets BH BH,sin BL BL ,sin

non-H H non-H H non-H H non-H H

DS1 22.03 27.95 21.97 27.94 23.29 29.17 23.30 29.41

DS2 32.14 31.13 32.19 31.08 32.51 31.21 32.54 31.16

DS3 99.61 99.67 99.61 99.68 99.61 99.66 99.61 99.67

DS4 39.63 43.18 39.71 43.19 43.79 43.03 43.72 43.01

DS5 40.59 49.50 40.64 49.48 42.26 49.51 42.32 49.49

DS6 99.81 101.2 99.91 101.2 99.94 101.2 99.91 101.2

DS7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DS8 36.55 42.50 36.55 42.45 36.89 42.49 36.93 42.50

DS9 11.60 11.57 11.60 11.57 11.60 11.57 11.60 11.57

DS10 37.83 37.78 37.82 37.77 37.83 37.91 37.83 37.84

The smallest of the non-hierarchical and the hierarchical methods are indicated in bold
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Table 9 P-values for actual data comparing the error of the hierarchical and non-hierarchical
method considering different budget distributions

Datasets BH BH,sin BL BL ,sin

DS1 �0.001 �0.001 �0.001 �0.001

DS2 0.005 0.003 0.012 0.008

DS3 0.310 0.314 0.312 0.313

DS4 0.002 0.002 0.486 0.511

DS5 �0.001 �0.001 �0.001 �0.001

DS6 0.003 0.003 0.004 0.007

DS7 1.00 1.00 1.00 1.00

DS8 �0.001 �0.001 �0.001 �0.001

DS9 0.680 0.689 0.709 0.695

DS10 0.950 0.937 0.899 0.990

Results on Actual Data Table8 reports the average prediction errors for all of the
actual datasets, for both the hierarchical and non-hierarchicalmethods. The statistical
significance of the difference in errors between these two methods is reported in
Table9. The average cost of models trained on the actual datasets for the hierarchical
and non-hierarchical methods can be seen in Table10. Table11 reports the statistical
signficance of the cost differences between the two methods.

Table 10 Cost percentages of the methods on actual data considering different budget distributions

Datasets BH BH,sin BL BL ,sin

non-H H non-H H non-H H non-H H

DS1 15.23 8.84 15.23 8.80 15.23 8.30 15.23 8.27

DS2 9.08 1.84 9.09 1.85 9.08 1.74 9.09 1.76

DS3 0.031 0.018 0.030 0.017 0.031 0.017 0.031 0.017

DS4 30.21 0.631 30.23 0.631 30.06 0.587 30.04 0.597

DS5 46.93 3.17 46.93 3.18 46.93 3.06 46.93 3.04

DS6 0.412 0.001 0.412 0.001 0.412 0.001 0.412 0.001

DS7 1.02 2.73 1.02 2.73 1.02 2.65 1.02 2.67

DS8 0.176 0.00 0.176 0.00 0.176 0.00 0.176 0.00

DS9 0.076 0.00 0.076 0.00 0.076 0.00 0.076 0.00

DS10 8.00 1.39 8.00 2.21 8.00 2.06 7.99 2.06

The smallest of the non-hierarchical and the hierarchical methods are indicated in bold
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Table 11 P-values for actual data comparing the cost of the hierarchical and non-hierarchical
method considering different budget distributions

Datasets BH BH,sin BL BL ,sin

DS1 �0.001 �0.001 �0.001 �0.001

DS2 �0.001 �0.001 �0.001 �0.00086

DS3 �0.001 �0.001 �0.001 �0.001

DS4 �0.001 �0.001 �0.001 �0.001

DS5 �0.001 �0.001 �0.001 �0.001

DS6 0.024 0.024 0.025 0.024

DS7 0.513 0.515 0.618 0.585

DS8 �0.001 �0.001 �0.001 �0.001

DS9 0.164 0.164 0.164 0.164

DS10 0.019 0.019 0.016 0.016

5 Discussion

In this section we reflect on the reason for and meaning of our quantitative results
described in Sects. 3 (basic results) and 4.3 (results with a dynamic budget). Overall,
our experimental results show that in any case, sampling costs of models generated
by the hierarchical method are significantly lower than models generated by the
non-hierarchical method. Non-hierarchical modes use more expensive sensors with
higher frequency. Results also show that hierarchical models achieve similar error
rates as those incurred by non-hierarchical models as datasets grow larger, though
non-hierarchical models do achieve lower error for small datasets especially when
a dynamic budget is considered. Also notable is that results in Sect. 4.3 suggest that
the hierarchical method obtains models that are more effectively sensitive to noise
thanmodels generated by the non-hierarchical method, when the budget level shrinks
from high to low.

5.1 Basic Results with a Static Budget

The results presented in Sect. 3 suggest that the hierarchical method is better at
balancing cost and accuracy than the non-hierarchical approach. We believe this
is because meaningful sensor control conditions for managing cost are complex
and require considerable computational effort to be discovered. Using hand-tuned
prediction uncertainty to drive sensor control is more effective. As mentioned in
Sect. 2.2, in these experiments a basic genetic programming approach was deployed.
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We anticipate that if we were to use a more powerful underlying GP approach, the
error of both hierarchical and non-hierarchical models would be reduced.

Synthesized Data The hierarchical method achieved significantly better accuracy
and significantly lower cost than the non-hierarchical using synthesized data.

Average error As can be seen in Fig. 3, the hierarchical method achieved sig-
nificantly better accuracy than the non-hierarchical method for τ < 0.4. In general,
results show that higher tolerance allows the algorithm to accept more uncertainty in
the prediction and rely on less expensive sensors which are less accurate. This avoids
the use of more expensive sensors, but causes average error to rise. A tolerance of
τ < 0.4 is apparently the threshold where average error in the hierarchical method
exceeds that of the non-hierarchical method, when analysing results for different
values of tolerance included in this study.

Average cost Results reported in Fig. 3 show that the hierarchical method signifi-
cantly outperforms the non-hierarchical method with regard to cost on this dataset,
even when tolerance is low. This suggests that the use of variance in ensemble pre-
dictions to serve as a proxy for prediction uncertainty is not easy to learn, and serves
as a good mechanism for control. Results suggest that τ = 0.1 is a “sweet spot” for
balancing cost and accuracy, though the value could be increased or decreased if
greater frugality or accuracy were needed, respectively.

Actual Data For testing on actual data, we fixed τ = 0.1 due to results on synthetic
data demonstrating a good balance between cost and accuracy with this tolerance
level.

Average error Table6 shows that the average error of the hierarchical and the
non-hierarchical methods were not significantly different, except for datasets DS1,
DS2 and DS4 where the latter method achieves better prediction accuracy. This is
probably due to the characteristics of these datasets, where the difference between the
least prediction variances v(g)ri s and the greatest ones is large. The majority of sensors
in these datasets are not informative but have low costs and the remaining sensors
are more informative but come with higher costs. Thus, lower levels of the hierarchy
“struggle” compared to upper ones in terms of accuracy. Nevertheless, accuracy
rate with the hierarchical method is still competitive even in these cases, and cost
reduction is significant. Also, it can be seen that as the size of the datasets grows,
the difference between the error rate of the non-hierarchical and the hierarchical
methods decreases, and in the three largest datasets the hierarchical method also
achieves lower error rates.

Average cost The hierarchical method achieved significantly lower cost than the
non-hierarchical method on all of the real world datasets, as shown in Table6, except
for DS3 and DS6. As represented in Table5, in these two datasets, just a small subset
of sensors are relatively informative. Since the tolerance parameter for the hierarchi-
cal method is low, the hierarchical method employs more informative sensors. Taken
together, results shown in Table6 clearly indicates an advantage of the hierarchical
method for balancing cost and accuracy.
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5.2 Results with a Dynamic Budget

Now we consider the results provided in Sect. 4.3 on synthesized data and ten actual
datasets when a possibly dynamic budget is taken in to account. The results obtained
from the experiments in Sect. 4.3 suggest that the hierarchical method is more suc-
cessful in balancing cost and prediction accuracy compared to the non-hierarchical
method as the number of observations in the dataset grows. The hierarchical method
produces much less costly models, which results in less noise accumulating on the
sensors. This conservation can be crucial to reduce system down time if longer time
periods are required to replenish the budget.

It also can be seen in Table10 that the hierarchical method produces models that
adapt their sensor sampling strategy based on the current budget, since they reduce
their costs when the budget level goes from high to low. In contrast, models pro-
duced by the non-hierarchical method do not change their cost when the models are
presented with the low budget level. The reason why the non-hierarchical method
does not make use of the remaining budget to change its behaviour is at the moment
unclear. Models produced by the hierarchical method incur lower cost when the bud-
get level is low than when the budget level is high. The dynamic tolerance parameter
employed in the hierarchical method successfully balances the cost of the hierar-
chical method to the remaining budget considering the results reported in Fig. 5 and
Table10.

Synthesized Data The results using synthesized data (Fig. 5) demonstrate that the
hierarchical method adapts to the changing budget better than the non-hierarchical
method. The hierarchical models obtain about the same prediction accuracy as the
non-hierarchical models, but with significantly lower cost.

Average error As can be seen in Fig. 5, the difference between the error rate of the
hierarchical and non-hierarchical methods is low. The p-values reported in Table7a
suggest that this difference is insignificant when the budget level is low. When the
hierarchical method must work within the confines of a low budget, it produces
models that only infrequently poll high-cost sensors. In this manner, the hierarchical
models keep the overall cost of prediction low, which results in a higher remain-
ing budget for the remainder of the period during which predictions are requested.
Keeping the budget high in turn results in sensor readings with higher accuracy.

The non-hierarchical models however maintain high accuracy by polling themore
accurate sensors more frequently, which incurs a higher cost. This approach even-
tually causes prediction accuracy to suffer, since it increases the noise in sensor
readings as the budget decreases. As can be seen in Table7a, when the budget is low,
the non-hierarchical models are not able to maintain their superior accuracy rates.

Average cost Figure5 shows that the hierarchical method generates significantly
lower cost models compared to the non-hierarchical method, for all of the budget
distributions considered. The hierarchical method keeps cost low in two ways. First,
the model hierarchy is constrained by design in the sensors it samples, depending
on the hierarchy level. Second, the certainty threshold can be tuned to become more
restrictive as the budget drops.
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If the budget is low, then the dynamic tolerance parameter forces the hierarchical
model to tolerate more uncertainty in its predictions. In contrast, the non-hierarchical
method generates models that tend to use more expensive sensors more frequently.
The results shown in Table7b support this claim. As in the basic setting with a static
budget, the non-hierarchicalmethod has difficulties discovering the proper conditions
for sampling various sensors, that can bemanually tuned into the threshold parameter
for the hierarchical method.

Actual Data With actual data, the hierarchical models are able to adapt to budget
fluctuations better than the non-hierarchical models, but the non-hierarchical models
achieve higher accuracy on smaller datasets.

Average error Table8 shows that the non-hierarchicalmethod achieves better error
rates compared to the hierarchical method on datasets for which most of the sensors
are non informative, but a few are with very high cost. For example, as shown in
Table5, in dataset DS8 with 19 sensors, the difference in accuracy and cost between
the most informative and the least informative sensors is on the order of 103. The
most informative sensor is able to explain 45.42% of the output variance while the
least informative sensor explains just 0.05% of the output variance. The difference
in accuracy and cost between the other sensors and the most informative sensor are
almost the same, except for the four most informative sensors. In this case, the non-
hierarchical method uses the informative sensors in order to achieve high accuracy,
whereas the hierarchical method tries to find a model with less cost. The order of
difference for the most informative and the least informative sensors in DS3 and DS9
is high, but this difference order reduces for the other sensors in those datasets and
also the most informative sensor in these datasets are not that informative (25.89%
and 18.97% respectively). For the rest of the datasets, the order of difference is not
that high compared to DS8.

Also, in the non-hierarchical method, amodel and its descendants could have been
refined through the entire training period, whereas in the hierarchical method the
training effort is distributed among the hieararchy layers. This means that individual
model lineages have much less time to be improved, compared to non-hierarchical
model lineages. Even so, Tables8 and 10 show that when the budget level drops from
high to low, the cost of the hierarchical models drops further than the drop observed
in the non-hierarchical models. In this way the budget is better conserved during
deployment and sensor noise is ameliorated.

As can be seen in Table8, the error rates of the non-hierarchical models grow
more than the error rates of the hierarchical models when the budget level decreases.
Moreover, as the sizes of the datasets grow (from DS1 to DS10), the differences
between the error rates of the hierarchical and non-hierarchical models decrease. For
the two largest data sets (DS9 and DS10), the average error rate of the hierarchical
and the non-hierarchical models are not statistically significantly different.
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Average cost As can be seen in Table10, the hierarchical models always achieve
lower cost compared to the non-hierarchicalmodels, except for DS7.Data set DS7 has
five sensors which all explain a small amount of the outcome variance. Hierarchical
models attempt to predict the outcome using these sensor readings, but the non-
hierarchical models rarely employ any of those sensors since they have so little
predictive value. Instead the hierarchical models use the training effort to find a
constant that predicts the outcome, at no cost.

Otherwise, as seen in Table10, hierarchical models generally reduce cost more
than non-hierarchical models when initial costs go from high to low, as is the case
for synthesized data and for the same reasons (or so we hypothesize).

6 Conclusion and Future Work

Wireless sensor networks often face a trade-off between measurement accuracy and
the cost of sensor sampling. In networks supporting multiple sensor types, it is
therefore desirable to develop cost-sensitive control algorithms that sample more
expensive sensors only when necessary. In this chapter, a hierarchical method is
proposed where GP solutions are sorted in a hierarchy of layers based on the cost of
the sensors they use. Switching to the next more expensive layer takes place only if
the prediction variance indicates uncertainty at lower layers.We compare thismethod
to a non-hierarchical GP method where cost is treated as an additional optimization
objective in fitness selection. In experiments using a synthesized dataset and ten real
datasets, the hierarchicalmethod is shown to have significantly lower prediction costs
than the non-hierarchical method. As the datasets grow larger and more complex,
competitive and sometimes lower error rates are achieved by the hierarchical method.
In a second set of experiments, we consider a more sophisticated setting where the
current budget level (e.g. power levels) is available as a sensor reading, and lower
budgets have a direct impact on sensor accuracy. The non-hierarchical method in this
case uses the remaining budget level in order to induce a model that adapts to the
budget and sensor noise. In the hierarchical method the remaining budget is used in
the decision to switch between layers. The results from experiments show that when
the methods are altered to dynamically tune the balance of cost and accuracy based
on available energy and budget in the presence of noise, the hierarchical method
achieves significantly lower cost. As datasets grow larger, the hierarchical method
achieves a competitive error rate as compared to the non-hierarchical method. Future
work includes a consideration of methods for online learning to support adaptation
of control algorithms to particular deployments, and the application of hierarchical
control algorithms in real wireless sensor network deployments.
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Abstract Wireless Mesh Networks (WMNs), also referred to as a form of wireless
ad hoc network are in fact one particular type of Wireless Sensor Networks (WSNs),
whose topology can vary from a simple star network to an advanced multi-hop
wireless mesh network. The main topological feature in this case is that nodes are
organized in amesh topology,makingWMNs a reliable infrastructure through redun-
dancy of multi-hop communications. Themain issue ofWMNs is to achieve network
connectivity and stability as well as Quality of Service (QoS) in terms of user cover-
age. This problem is very closely related to the family of node placement problems in
WMNs, among them, themesh routermesh nodes placement. In this workwe present
some optimization problems inWMNs and Hill Climbing (HC) heuristic method for
solving mesh router node placement near-optimally. We formulate the optimization
problems using bi-objective optimization models. Thus, for the mesh router nodes
placement, the bi-objective optimization problem is obtained consisting in the maxi-
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1 Introduction

WirelessMeshNetworks (WMNs) [1, 2] are gaining a lot of attention because of their
low cost nature that makes them attractive for providing wireless Internet connectiv-
ity. AWMN is dynamically self-organized and self-configured, with the nodes in the
network automatically establishing andmaintaining mesh connectivity among them-
selves (creating, in effect, an ad hoc network). This feature bringsmany advantages to
WMNs such as low up-front cost, easy networkmaintenance, robustness, and reliable
service coverage. Moreover, such infrastructure can be used to deploy community
networks, metropolitan area networks, municipal and corporative networks, and to
support applications for urban areas, medical, transport and surveillance systems.
The main issue of WMNs is to achieve network connectivity and stability as well
as Quality of Service (QoS) in terms of user coverage. This problem is very closely
related to the family of node placement problems in WMNs, among them, the mesh
router mesh nodes placement. Node placement problems have been long investigated
in the optimization field due to numerous applications in location science (facility
location, logistics, services, etc.) and classification (clustering) [1, 3–6].

WMNs (also referred to as a form of wireless ad hoc network) are in fact one
particular type of Wireless Sensor Networks (WSNs) [7], whose topology can vary
from a simple star network to an advanced multi-hop wireless mesh network. The
main topological feature in this case is that nodes are organized in a mesh topology,
making WMNs a reliable infrastructure through redundancy of multi-hop commu-
nications.

Different optimization problems can be formulated based on the objectives to
optimize and a set of different constraints, such as topological restrictions, battery
restrictions, QoS requirements, etc. Some optimization problems are related to min-
imize the cost of the WMN, such as minimizing the number of mesh router nodes
to deploy, while others focus on the WMN performance, such as computing opti-
mal placement of an a priori fixed number of mesh router nodes. The presence of
many objectives is in fact a main challenge. These objectives include minimizing the
number of mesh routers, maximizing network connectivity, maximizing user cover-
age, minimizing energy consumption (especially in wireless and mobile networks),
minimizing communication delay, maximizing throughput, minimizing deployment
cost, etc. And, additionally, there could be certain constraints to take into account
such as topological restrictions of the geographical area, interference model, etc. It
should also be noted that some of the objectives are contradicting, in the sense that
trying to optimize some objective goes in detriment to the optimization of another
objective.

Several optimization problems are showing their usefulness to the efficient design
of WMNs. These problems are related, among others, to optimizing network con-
nectivity, user coverage and stability. The resolution of these problems turns out to
be crucial for optimized network performance. Most important optimization prob-
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lems inWMNs deal with computing optimal placement of nodes (mesh router nodes,
gateways and distribution of mesh client notes), so that network performance is opti-
mized. However, node placement problems are known for their hardness to solve
to optimality and therefore heuristics methods are used to nearoptimally solve such
problems [8–12].

Given the complexity of node placement problems, most authors have proposed
the use of simple heuristicmethods ormore advanced searchmethods such asGenetic
Algorithms (GAs). So far, only single optimization versions have been considered
for the problem. We have considered the bi-objective case, and plan to extend the
model to integrate more objectives resulting in a multi-objective optimization model
where different objectives could as well be contradicting ones.

In this work, we use HC heuristic method for solving node placement problems in
WMNs. We exemplify the applicability of heuristic methods for the case of solving
mesh router nodes problem near-optimally.

The rest of the chapter is organized as follows. In Sect. 2 are presented the appli-
cation scenarios of WMNs. The mesh router nodes placement problem is defined in
Sect. 3. In Sect. 4 are described resolutionmethods for solving nodes placement prob-
lem and an introduction of Hill Climbing (HC) algorithm for mesh router placement.
In Sect. 5 is described theWeb Interface for simulatingmesh router nodes placement.
The simulation results are given in Sect. 6. In Sect. 7, we give conclusions and future
work.

2 Application Scenarios of WMNs

There are a number of application scenarios for which the use of WMNs is a very
good alternative to offer connectivity at a low cost.

2.1 Neighboring Community Networks

In a community, the usual solution is to deploy ADSL or cable. However, there are
a number of limitations that WMNs can improve as shown in following.

• A large percentage of areas between the houses could not receivewireless services.
• A broadband gateway between different houses could not be shared and wireless
services should be established individually.

• A single path to each neighbor can communicate with the rest of neighbors or with
the outside.
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2.2 Corporative Networks

This scenario corresponds to having a small network for an office or a medium sized
network for all offices of a building or even a network to communicate offices located
in different buildings. Other similar scenarios include airports, hotels, shopping cen-
ters or sports centers.

2.3 Metropolitan Area Networks

Deploying WMNs in metropolitan areas has a number of advantages. The physical
layer provides a higher average transmission to any cellular network and need not
depend on a wiring. Also, deploying such infrastructure is much cheaper than cable
or fiber and can be easily and rapidly deployed in areas with few resources, which
have never had any network before.

2.4 Other Scenarios

There are many more scenarios for which WMNs can be used. We mention some of
them in following [3].

• Transportation Systems Provide information services to passengers, remote mon-
itoring of vehicle safety and communications by the driver.

• Automatic Control Buildings In buildings there are several electrical devices to be
controlled, including light, elevator, air conditioning, and so on.

• Medical and Health Systems In a hospital information monitoring and diagnosis
must be transmitted from one room to another.

• Surveillance In corporate buildings, shopping malls and stores need broadband
data transmission (images and videos basically) for monitoring and surveillance
purposes.

3 Mesh Router Nodes Placement Problem in WMNs

Different optimization problems can be formulated based on the objectives to opti-
mize and a set of different constraints, such as topological restrictions, battery restric-
tions, QoS requirements, etc. Some optimization problems are related to minimize
the cost of theWMN, such asminimizing the number of mesh router nodes to deploy,
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while others focus on theWMN performance, such as computing optimal placement
of an a priori fixed number of mesh router nodes [13–15].

The presence of many objectives is in fact a main challenge. These objectives
include minimizing the number of mesh routers, maximizing network connectivity,
maximizing user coverage, minimizing energy consumption (especially in wireless
and mobile networks), minimizing communication delay, maximizing throughput,
minimizing deployment cost, etc. And, additionally, there could be certain con-
straints to take into account such as topological restrictions of the geographical area,
interference model, etc. It should also be noted that some of the objectives are con-
tradicting, in the sense that trying to optimize some objective goes in detriment to
the optimization of another objective.

In our work, we consider the optimization of mesh router nodes placement in
WMNs. In this problem, we are given a grid area arranged in cells where to distribute
a number of mesh router nodes and a number of mesh client nodes of fixed positions
(of an arbitrary distribution) in the grid area. The objective is to find a location
assignment for the mesh routers to the cells of the grid area that maximizes the
network connectivity and client coverage. Network connectivity is measured by the
size of the giant component of the resulting WMN graph, while the user coverage
is simply the number of mesh client nodes that fall within the radio coverage of at
least one mesh router node.

An instance of the problem consists as follows.

• N mesh router nodes, each having its own radio coverage, defining thus a vector
of routers.

• An areaW × H where to distribute N mesh routers. Positions of mesh routers are
not pre-determined, and are to be computed.

• M client mesh nodes located in arbitrary points of the considered area, defining a
matrix of clients.

It should be noted that network connectivity and user coverage are among most
important metrics in WMNs and directly affect the network performance.

In this work, we have considered a bi-objective optimization in which we first
maximize the network connectivity of the WMN (through the maximization of the
size of the giant component) and then, the maximization of the number of the user
coverage.

For optimization problems having two or more objective functions, two settings
are usually considered: the hierarchical and simultaneous optimization. In the former,
the objectives are classified (sorted) according to their priority. Thus, for the bi-
objective case, one of the objectives, say f 1, is considered as a primary objective and
the other, say f2, as secondary one. The meaning is that we first try to optimize f1,
and then when no further improvements are possible, we try to optimize f2 without
worsening the best value of f2. In the case of WMNs, the hierarchical approach
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is used due achieving network connectivity is considered more important than user
coverage. It should be noted that due to this optimization priority, some client nodes
may not be covered due the user coverage is less optimized.

4 Resolution Methods for Solving Nodes Placement
Problem

Given the complexity of node placement problems, most authors have proposed the
use of simple heuristic methods or more advanced search methods such as Genetic
Algorithms [6, 14, 16–21]. We exemplify the applicability of heuristic methods for
the case of solving mesh router nodes problem. We have considered a local search
method, HC.

4.1 Exact Algorithms

Brute force algorithms These algorithms, also known as enumerative algorithms,
can be used to find the optimal solutions (e.g. [14]); however, the solution space of
the problem is in general exponentially large and such methods fail to find a solution
in reasonable time as they make an exhaustive search of the solution space.
Integer Linear Programming Mathematical programming has been among most
used methods in combinatorial optimizations. Its version of integer variables (Inte-
ger Linear Programming ILP) has shown useful in modelling and resolution of
node placement problems in general and that of node placement in WMN (see e.g.
[3, 13]). The main drawback again is that solving an ILP is intractable and can be
solved only for small or moderate size instances of the problem.

4.2 Local Search Algorithms

Local Search (LS) algorithms are among the best candidates for solving mesh node
placement problems due to their efficiency and simplicity. LS has been used in [16]
for the mesh node placement. We present next the application of HC for solving
mesh router nodes problem.

Hill Climbing Algorithm for Mesh Router Node Placement We present here the
particularization of theHill Climbing algorithm (seeAlgorithm1) for themesh router
node placement problem in WMNs.
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Algorithm 1: Hill Climbing algorithm for maximization of f (fitness function).
1: Start: Generate an initial solution s0;
2: s = s0; s∗ = s0; f ∗ = f (s0);
3: repeat
4: Movement Selection: Choose a movement m = select_movement (s);
5: Evaluate & Apply Movement:
6: if δ(s,m) ≥ 0 then
7: s′ = apply(m, s);
8: s = s′;
9: end if
10: Update Best Solution:
11: if f (s′) > f (s∗) then
12: f ∗ = f (s′);
13: s∗ = s′;
14: end if
15: Return s∗, f ∗;
16: until (stopping condition is met)

Initial solution The algorithms starts by generating an initial solution either random
or by ad hoc methods [22].

Evaluation of fitness function An important aspect is the determination of an appro-
priate objective function and its encoding. In our case, the fitness function follows a
hierarchical approach in which the main objective is to maximize the size of giant
component in WMN.

Neighbor selection and movement types The neighborhood N (s) of a solution s
consists of all solutions that are accessible by a localmove from s.Wehave considered
three different types of movements. The first, called Random, consists in choosing
a router at random in the grid area and placing it in a new position at random. The
second move, called Radius, chooses the router of the largest radio and places it at
the center of the most densely populated area of client mesh nodes (see Algorithm 2).
Finally, the third move, called Swap, consists in swapping two routers: the one of
the smallest radio situated in the most densely populated area of client mesh nodes
with that of largest radio situated in the least densely populated area of client mesh
nodes. The aim is that largest radio routers should serve to more clients by placing
them in more dense areas.

We also considered the possibility to combine the above movements in sequences
of movements. The idea is to see if the combination of these movements offers
some improvement over the best of them alone. We called this type of movement
Combination:

<Rand1, . . . , Randk; Radius1, . . . , Radiusk;
Swap1, . . . , Swapk>,

where k is a user specified parameter.
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Acceptability criteria The acceptability criteria for newly generated solution can be
done in different ways (simple ascent, steepest ascent, or stochastic). In our case, we
have adopted the simple ascent, that is, if s is current solution and m is a movement,
the resulting solution s ′ obtained by applying m to s will be accepted, and hence
become current solution, iff the fitness of s ′ is at least as good as fitness of solution
s. In terms of δ function, s ′ is accepted and becomes current solution if δ(s,m) ≥ 0.
It should be noted that in this definition we are also accepting solutions that have the
same fitness as previous solution. The aim is to give chances to the search to move
towards better solutions in solution space. A more strict version would be to accept
only solutions that strictly improve the fitness function (δ(s,m) > 0).

Algorithm 2: Radius movement.
1: Input: Values Hg and Wg for height and width of a small grid area.
2: Output: New configuration of mesh nodes network.
3: Compute the most dense Hg × Wg area and (xdense, ydense) its central cell point.
4: Compute the position of the router of largest radio coverage (xlargest_cov, ylargest_cov).
5: Move router at (xlargest_cov, ylargest_cov) to new position (xdense, ydense).
6: Re-establish mesh nodes network connections.

5 Web Interface for Simulating Mesh Router Nodes
Placement

TheWeb application [23] follows a standard Client-Server architecture and is imple-
mented using LAMP (Linux + Apache + MySQL + PHP) technology (see Fig. 1).
Remote users (clients) submit their requests by completing first the parameter set-
ting. The parameter values to be provided by the user are classified into three groups,
as follows.
Parameters related to the problem instance These include parameter values that
determine a problem instance to be solved and consist of number of router nodes,
number of mesh client nodes, client mesh distribution, radio coverage interval and
size of the deployment area.
Parameters of the resolution method Each method has its own parameters. For
instance, Simulated annealing has a starting temperature while Genetic Algorithm
has population size, etc.
Execution parameters These parameters are used for stopping condition of the
resolution methods and include number of iterations and number of independent
runs. The former is provided as a total number of iterations and depending on the
method is also divided per phase (e.g., number of iterations in a exploration). The later
is used to run the same configuration for the same problem instance and parameter
configuration a certain number of times.
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Fig. 1 Web application architecture

5.1 Use Cases

Simulation of different mesh client node positions Client mesh node positions
can be chosen from different probability distributions so as to simulate different
cases in real life. For instance, positions of stationary client mesh nodes distributed
along roadside can be generated using the Exponential distribution while positions
of stationary client mesh nodes concentrated at different points in the area can be
generated from Weibull distribution.

Simulation of different radio coverage for mesh router nodesMesh router nodes
can have different coverage. The interface allows to select an interval for radio
coverage and radio coverage are generated for each router uniformly at random
from that interval.

Simulation of different number of mesh routers The number of mesh router nodes
is an input to resolution methods. Their positions in the deployment area are to be
computed by the resolution methods subject to optimizing WMN metrics.

Simulation of different number ofmesh clientsThe number ofmesh client nodes is
introduced in input as well. Once this number is provided, the simulator generates the
positions of themesh client nodes using one of the probability distributions (uniform,
normal, exponential, Weibull).
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6 Simulation Results

The simulation parameters and their values are shown in Table1. In this work, we
considered a small grid area with size (32 × 32). The number of mesh routers is
considered 16 and the number of mesh clients 48. We used Normal, Uniform, Expo-
nential and Weibull distribution of mesh clients. For the simulations we used the
combination method. The total number of iterations is considered 5000 and the iter-
ations per phase is considered 100. We carried out many simulations to evaluate the
performance of WMNs.

In Fig. 2 are shown the computational results for Normal distribution. In Fig. 2a
are shown the simulation results for size of giant component versus number of gen-
erations. After few generations, HC algorithm achieved to establish a network of all
routers connected.

The number of coveredmesh routers versus the number of generations is shown in
Fig. 2b. In Normal distribution, mesh clients are concentrated at the center of the grid
area and the position ofmesh routers becomes easy to calculate. Themaximal number
of covered mesh clients is 43. Figure2c visualize the position of mesh routers, mesh
clients, their connectivity and coverage.

For the Uniform distribution (see Fig. 3), mesh clients are scattered inside the
grid area and the positioning of mesh routers becomes difficult. The size of giant
component is not maximized and the number of covered mesh clients is 27. In order
to cover more mesh clients, the number of mesh routers should be increased.

The simulation results for exponential distribution are shown inFig.4.Exponential
distribution of mesh clients is similar with a real scenario where stationary mesh
clients are distributed along the roadside. For this scenario, all 16 mesh routers are
connected with each other and 37 mesh clients are covered.

For Weibull distribution (see Fig. 5) the giant component is maximal and the
covered mesh clients are 42.

Table 1 Simulation parameters and their values

Parameters Values

Clients distribution Normal, uniform, exponential, Weibull

Number of mesh clients 48

Number of mesh routers 16

Grid size 32 × 32

Router radius 2

Iterations per phase 100

Total number of iterations 5000

Number of generations 50

Apply method Combination
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Fig. 2 Simulation results for
normal distribution

 0

 5

 10

 15

 20

 0  10  20  30  40  50
S

iz
e 

of
 g

ia
nt

 c
om

po
ne

nt
Number of generations

Normal Distribution
grid size 32x32

(a) Size of Giant Component

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

 0  10  20  30  40  50

C
ov

er
ed

 m
es

h 
cl

ie
nt

s

Number of generations

Normal Distribution
grid size 32x32

(b) Number of covered mesh clients

(c) Visualization



44 E. Spaho et al.

Fig. 3 Simulation results for
uniform distribution
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Fig. 4 Simulation results for
exponential distribution
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Fig. 5 Simulation results for
Weibull distribution
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From the computational results we can see the performance of HC for different
distributions of client mesh nodes. Best performance was achieved for instances
with Normal distributions of clients. In particular, we can observe that the uniform
distribution causes premature convergence. Finally, it’s worth observing that the
results corresponding to theWeibull and Exponential distributions are rather similar,
which is reasonable since Weibull generalizes the Exponential distribution.

7 Conclusions

This work reveals and stresses the need to consider a plethora of resolution methods,
such as exact methods, local search methods and population-based methods, to take
advantage of their distinguished features such as exploitation versus exploration of
solution space to efficiently solve the optimization problems in WMNs.

In this work we present some optimization problems inWMNs and HC algorithm
for solving the problem of mesh router nodes placement in Wireless Mesh Networks
(WMNs). In this problem, we are given a number of client mesh nodes a priori
distributed in a grid area and a given number of mesh router nodes are to be deployed
in the grid area. We formulate the problem as bi-objective optimization problem
consisting in the maximization of the size of the giant component in the mesh routers
network (formeasuring network connectivity) and that of user coverage.Wehave also
presented some experimental results from the HC method using a WMN simulator
for small grid area size using different distributions of mesh node clients (Uniform,
Normal, Exponential and Weibull). The main challenge identified here is the multi-
objective nature of the node placement problems in WMNs. So far, only single
optimization versions have been considered for the problem.We have considered the
bi-objective case, and plan to extend the model to integrate more objectives resulting
in a multi-objective optimization model where different objectives could as well be
contradicting ones.
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An Automated Irrigation System Based
on a Low-Cost Microcontroller
for Tomato Production in South India

Prabu Mohandas, Arun Kumar Sangaiah, Ajith Abraham
and Jerline Sheebha Anni

Abstract Agriculture plays amajor role in Indiawhich is required for growth of food
crops, intensive farming and rotation of crops. About 70% of people are involved
in agriculture. Since, substantial irrigation is necessary for better production in arid
regions, reduce the water loss via evapotranspiration is a key to reach sustainable
irrigation. This chapter presented a practical result on irrigation controller for the
cultivation of vegetable plants (such as tomato) based on fuzzy-logic approaches.
The system consists of a feedback fuzzy logic controller that records key parameters
with sensor, Zigbee–GPRS remote monitor and a database. The system is simple to
install in existing micro irrigation systems without modifying the existing. Based on
the crop yield, the fuzzy logic controller acquires data from the sensors and applies
fuzzy rules to acquire suitable time for irrigation. All variables are fuzzified using
trapezoidal and triangular membership functions in MATLAB. In this fuzzification,
a Max–Min inference engine and a Mamdani-type rule base was adopted in order
to make the best decision for each situation. Thus by preventing needless irrigation,
not only water demand is reduced, but it is also possible to ensure the protection of
freshwater resources. The system is developed and tested with growth of vegetable
plants (tomato). It saves 50–60% water utilization as well as the energy generation
cost. A local farmer (through mobile) saves real-time data received from the field
controller via wireless Zigbee protocol and transmit the collected data to a remote
station via a GPRS link. This enhancement enables tracking analysis and improve-
ment of system performance in real time. The deployment of fuzzy control combined
with remote data logging would foster better management of irrigation in arid lands

P. Mohandas
Department of Computer Science and Engineering,
Adhiyamaan College of Engineering, Hosur, India

A.K. Sangaiah (B)
School of Computing Science and Engineering, VIT University, Vellore, India
e-mail: arunkumarsangaiah@gmail.com

A. Abraham
Machine Intelligence Research Labs (MIR Labs), Auburn, WA, USA

J.S. Anni
BTI College of Engineering, Bangalore, India

© Springer International Publishing AG 2017
A. Abraham et al. (eds.), Computational Intelligence in Wireless Sensor Networks,
Studies in Computational Intelligence SCI 676, DOI 10.1007/978-3-319-47715-2_3

49



50 P. Mohandas et al.

such as hill stations of Hosur. Through this method, it is possible to reduce the power,
water demand, the total power, the battery and power control unit costs.

Keywords Evapotranspiration · Fuzzy logic controller · Irrigation controller ·
GPRS remote monitoring · Remote data logging

1 Introduction

Irrigation systems were used by the Egyptians and it is in the history of records. The
idea of automated irrigation system is an older technique, human kind has identified
to supply water among large areas of foliage through the usage of automated and
drip irrigation systems. Automated irrigation systems are efficient to irrigate plants
to an appropriate level for a normal growth of plants. These systems can reduce the
wastage of water. The irrigation controller is used to monitor the entire irrigation
system. It observes the supply of water and provides fertilizer to plants. Therefore
the farmer can be able to achieve the optimum quantity of water and fertilizer during
the growth. The green house irrigation controller controls the supply of water through
computerized controller. Most of the conventional methods are not preferred since
it is based on the on-off control methods and proportional control methods. This
method results in the reduction of productivity and energy. This chapter presents
a practical result on irrigation controller depending on the fuzzy-logic concept. It
can be given in two ways. First, it identifies the overall problem of irrigation and it
recognizes the physical controlmodel. The Fuzzy Logic Controller (FLC) is based on
the Mamdani controller and is developed using MATLAB. The formal presentation
of the fuzzy logic controller provides simple construction of system and advantages
of using fuzzy in the feedback control.

The fuzzy logic controller which is developed can determine the quantity of water
required by plants in well defined depth using evapotranspiration functions, green
house environmental conditions, type of soil, plant type and other factors affecting
the green house irrigation. Many technologies are developed in the agriculture field
such as automatic crop monitoring systems, automatic irrigation scheduling systems
and automatic data-acquisition system. Automatic crop monitoring system reaches
temperature and moisture level more quickly than the manual system. Automatic
irrigation scheduling system can be used to supply the water automatically based on
themeasurements specified through sensors. Automatic data-acquisition systems can
be used to collect information such as condition of soil moisture, soil temperature,
irrigation duration and air temperature. There are many advantages in these systems.
Sensors fixed in the crop fields are used to ensure thewater level in the soil. A solution
to the problem of excessive supply of water can prevent damage of crops. Data can
be collected continuously during the cropping season. Manual irrigation does not
provide these benefits.

In this section, we review the earlier work on the various irrigation systems imple-
mented in different applications using diverse algorithms. Javadi et al. [10] have
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proposed a system for irrigation based on control system of fuzzy methodology. The
FLC model estimates effectively the quantity of water required by plants in well
defined depth using good irrigation model evapotranspiration functions, green house
environmental conditions, type of soil, plant type and other factors which affects
the green house irrigation. Sabrine et al. [16] have presented a thorough irrigation
result to the farmers depending on WSN. An automated irrigation system using
sensor nodes of lower cost with lower power consumption can reduce water waste
and is cost effective. A node is deployed using telosb mote and sufficient sensors.
Field nodes can be used to determine the moisture and temperature level in the soil.
Weather nodes can be used to monitor climatic changes, and nodes connected to
actuators can be used to control the valve when needed.

The literature Survey on water irrigation is discussed in the following section and
shown in Table1.

Table 1 Earlier studies in the context of proposed research

Author’s name
Name of the article and year of
publication

Methodology Attainment

Genghuang et al. [8]
Automation irrigation system
based on wireless network,
2010

GSM (Global System Mobile)
network and radio
communication

Orders can be sent to the
controller and the information
are sampled by the controller
can also be sent to the cell
phone by GSM message

Guang et al. [9]
Growth and Comprehensive
Quality index of tomato under
Rain Shelters in Response to
Different Irrigation and
Drainage Treatments, 2014

Underground sensors Drainage treatments increased
the average yield

Javadi et al. [10]
Intelligent Control based
Fuzzy logic for Automation of
Greenhouse Irrigation system
and evaluation in Relational to
conventional systems, 2009

Fuzzy Logic Controller (FLC)
prototype is based Mamdani
controller using MATLAB

It can save a lot of water, very
cheap to Implement the water
irrigation system

Joaquin et al. [11]
Automated Irrigation System
using a wireless sensor
network and GPRS Module,
2014

Photovoltaic panels and duplex
communication link based on
cellular-Internet

Feasible and cost effective for
optimizing water resources,
used for agricultural
production

Robert et al. [15]
Wireless sensor Network with
irrigation valve control
Computers and Electronics in
Agriculture, 2013

Valve Actuation System: Time
based and schedule based
irrigation systems

A web based interface was
used for manual control of
irrigation valves and displayed
the status of all actuators in the
network

Sabrine et al. [16]
Precision irrigation based on
wireless sensor network, 2014

low-cost sensor nodes having
reduced power consumption
able to realize necessary
requirement

Recorded in base station and
sent to the farmer’s PC just in
time to allow him to take the
proper action
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The earlier studies in the context of proposed research are presented in Table1 as
illustrated in the following section.

Robert et al. [15] promoted a commercial wireless sensor and control network
using hardware and software to control valve. The valve positioning sensor system
includes custom node firmware, sensor hardware and firmware, control for Internet
gateway and communication software for web interface. The system uses radio range
of single hop using a mesh network with 34 valve sensors, controlling the valves and
water meters. Christos et al. [2] explained the design of an adaptable support system
and its integration with wireless sensor network to implement autonomous closed-
loop zone-specific irrigation. Ontology can be used to define application logic sys-
tem’s flexibility, adaptability and its supports the application of automatic inferential
and validation mechanisms.

Evans [6] focused on the data acquisition and control mechanism for automatic
irrigation of central pivot and linear move systems. The implementation of Power
Line Carrier (PLC) provides low cost communication among distributed control sys-
tems. The various sensor types (tensiometers and GMS (Granular Matrix Sensors),
switching tensiometers, dielectric probe which uses a voltage signal) to obtain auto-
matic irrigation control was discussed by Rafael et al. [14]. They found that a 70%
reduction in water use in automatic irrigation when compared to manual irrigation
practices.

Daniel et al. [3] developed low cost micro controller based system to maintain
the crop condition by examining the parameters such as canopy temperature, soil
temperature, soil moisture and air temperature. This system is used to provide auto-
mated measurement with valid performance. The user can be able to download the
data from the Internet. Shaughnessy et al. [17] proposed a TTT (Time Temperature
Threshold) algorithm for auto irrigation scheduling. They have used this algorithm to
an automated center point irrigation system and they analyzed it both manually and
automatically. Manually scheduled irrigation was based on neutron probe readings.
They have also analyzed the crop yields and water use efficiency for manually and
automatically irrigated cotton plots in 2007 and 2008.

Kati et al. [12] developed an experimental method for irrigation scheduling sys-
tem. The volume of water, measurements of plants and fruits are measured in South
Florida. Set schedule irrigation system requires more amount of water when com-
pared to the other systems such as evapotranspiration and soil water sensor based
irrigation system. The amount of water vapor, transpiration, efficient usage of water
and evapotranspiration has been reviewed. The fruit measurements are also reviewed
through plant fruit number and weight per harvest in response to irrigation treatment.
Finally they have identified 65% of water can be saved through evapotranspiration
or soil water sensor based sensor scheduling.

Genghuang et al. [8] and Guang et al. [9] illustrated automated irrigation system
has three levels such as pc control platform, controller and action unit. Irrigation plan
to the controller can be transmitted throughmobile phone and pc controller platform.
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Using mobile phone we can access the information such as time, temperature, soil
moisture, air humidity. To open or close the valve of nozzle the controller sends the
control command to action unit based on the irrigation plan.

Xiaohong et al. [18] described a system which contains sensor node, coordinator
node and irrigation controller node. Sensor node is fixed in the crop field to collect
data about temperature of soil and humidity. The collected data will be transmitted
to the coordinator node which contains fuzzy controller. Temperature of soil and
humidity is given as the input to the fuzzy controller. The output will be given to
an irrigation controller node which supplies water to the crop field. By using fuzzy
logic controller the system saves water for irrigation purpose.

Model Predictive Control (MPC) technique to compute optimal control strategies
for actuators was proposed by Yang et al. [20]. The actuators were controlled by a
remote station according to the measurements of sensors. The proposed technique
optimizes the system performance by reducing cost, maintaining water storage levels
in dams and reservoirs, quality management etc. Joaquin et al. [11] proposed an auto-
mated irrigation system using low cost microelectronic components. The automation
of watering depends on the measurement of soil moisture and temperature. This sys-
tem consists of a GPRS module that uploads the information about soil moisture,
temperature and water supplied.

A system is needed for ongoingmonitoring to prevent crop damage and to improve
crop yield. The objective is to construct an inexpensive microcontroller system for
measuring soil moisture and temperature in crop fields. A system is built and tested in
plotted plants to evaluate the performance. This design standard includes automated
measurements of substrate water content in the plotted plants and the measurements
are automated to the web page through GPRS. Irrigation systems such as sprinkler,
drip, center-pivot etc. Can be easily automated if, these systems incorporate new
sensor technologies and latest microelectronic components.

Section1 describes the automated irrigation system discussed by various authors,
fuzzy logic Controller based on irrigation systemwere discussed. Section2 discusses
the sensing and control unit and Fuzzy logic control unit.

Section3 demonstrates the experimental setup. Section4 explains the result and
discussion. Conclusion and future enhancements of this work were discussed in
Sect. 3.

2 System Design

The system structure of Automatic Irrigation System consists of two main systems,

(i) Sensing and control
(ii) Fuzzy logic control
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2.1 Sensing and Control

The controller consists of specific field sensors, an FLC-embedded data logging and
wireless communication board, a flow sensor and power supply system.

2.1.1 Field Sensors and Calibrations

Three sensors are used for monitoring the environment, the microcontroller, soil
moisture (VG400RevD), and Temperature sensor (DS18B20). These sensors are
considered most critical in the irrigation process and their readings are used by the
FLC to devise the different fuzzy rules. The other available parameters like relative
humidity in arid lands have little effect.

2.1.2 Soil Moisture (VG400RevD) and Temperature Sensor (DS18B20)

The VG400RevD sensor delivers a maximum of 3V for 100% moisture when pow-
ered with 5V. The soil moisture sensor is inserted in the root zone of the plotted
plants to estimate the soil moisture. The threshold value is set in the soil moisture,
when the soil humidity exceeds D0 (digital output interface) output is low. When the
soil humidity drops below threshold value, D0 output is high [7].

In order to get the precise value of soil moisture, an analog output A0 and AD
(analog-to-digital) module is connected through an AD converter. The sensor is
monitored by a microcontroller through an ADC port and powered at 3V. The digital
thermometer, model DS18B20 (maxim integrated) is used for obtaining air tem-
perature measurements. The DS18B20 supports 9-bit to 12-bit Celsius temperature
measurements, 1-wire bus protocol. The thermometer has ±0.5 ◦C accuracy on a
range from −10 to +8 ◦C temperature range and a unique 64-bit serial code. The
sensor converts the temperature to 12-bit digital word in 750ms.

2.1.3 Micro Controller (LPC 2148)

LPC2148, 32-bit microcontroller with 64-pins operates in a range 3.0–3.6V at
30MHZwith internal oscillator. It has 45 digital input/output ports, 10-bit analog-to-
digital converters, multiple serial interfaces which include two UARTS (16C550),
two fast I2C-bus (400 kbit/s), two 32-bit timers, low power Real-Time Clock (RTC),
512KB flash memory, 32KB of static RAM. It supports both the idle mode and
power-down mode.
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2.1.4 XBee Radio Transceiver (XB24-Z7WIT-004)

The ZigBee device used in this system is XBee (Digi International Inc. [4], Xin [19]).
It is based on IEEE802.15.4 standard (Wireless Personal Network). It supports low-
power Wireless Sensor Networks and operate up to a distance of 120m line-of-sight
with 250 kbps RF (Radio Frequency) data rate. It is powered at 2–6V and interfaced
to the microcontroller through serial port. Xbee radio device operates at 2.4GHz
frequency.

2.1.5 Microcontroller/Microprocessor Interface (LCD HD44780)

The microcontroller/microprocessor interface to HD44780 LCD modules (hereafter
generically referred to as character LCD modules) is almost always 14 pins. Some
displays have additional pins for backlighting or other purposes, but the first 14 pins
still serve as the interface. The first three pins provide power to the LCDmodule. Pin
1 is GND and should be grounded to the power supply. Pin 2 is VCC and should be
connected to +5V power. Pin 3 is the LCD Display bias. By adjusting the voltage or
duty cycle of pin 3, the contrast of the display can be adjusted. Most character LCDs
can achieve good display contrast with a voltage between 0 and 5V on pin 3.

2.2 FLC Based Data Logging and Wireless Controller

The board is constructed around the microcontroller (LPC 2148) which makes the
system compact, deployable, adaptive, and scalable. The main tasks of this board are
data acquiring, processing logging, and transmitting. An application-specific FLC
is devised and loaded to the microcontroller. MAT LAB simulations and system
reduction are performed on the FLC beforehand.

Fuzzy sets and logic can handle real-life uncertainties, hence it is ideal for such
nonlinear, time-varying and hysteretic control system in Bellazzi et al. [1], Do Guen
et al. [5]. A detailed description of the FLC is given in the subsection below. Also,
the board is enhanced with Zigbee modem for short-range wireless connectivity. In
this application, the board is configured to transmit all sensors’ reading to the local
station every 30min. The local station saves and in turn transmits processed data to
the remote station. This feature enables remote monitoring and creation of database
for irrigation parameters, environmental conditions, and system performance for
analysis and better management. In this application to schedule irrigation, the FLC
uses threshold moisture of 30% (see Fig. 1), which is within the sensor range.

Figure 1 explains the structure of the FLC implemented here. All variables are
fuzzified using trapezoidal and triangular membership functions. The membership
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Fig. 1 System flow: FLC based data logging and wireless controller

functions are distributed according to the possible value of each variable after fuzzi-
fication. The Fuzzification process, Max–Min inference engine and Mamdani-type
rule base produce the required decision for each situation. After application of a
centroid defuzzification, the controller produces the desired output.

2.3 Fuzzy Experts and Interference System

Human reasoning can grasp uncertain concepts appropriately. However, it cannot be
expressed in precise terms. Fuzzy logic provides a methodology to model uncertain
and human way of thinking reasoning and perception. In Boolean logic, there are
two concepts ‘true’ and ‘false’, which are represented by 1 and 0 respectively. This
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means any proposition can be true or false. Fuzzy logic is an extension of Boolean
logic that allows intermediate values between these two extremes.

Fuzzy systems provide the means for presenting the expert knowledge of humans
about the process in terms of fuzzy rules (IF THEN). A fuzzy rule is the basic unit for
capturing knowledge in fuzzy systems. Fuzzy inference is the process of mapping
from a given input to an output using fuzzy logic. The goal is to obtain a conclusion
consisting of one or more consequents from a premise consisting of one or more
antecedents. Bymapping, decisions can be made or patterns recognized. The process
of fuzzy inference involves membership functions, fuzzy logic operators, and if then
rules. There are two types of fuzzy inference systems that can be implemented in the
fuzzy logic toolbox: Mamdani-type and sugenotype. These two types vary in their
output. A fuzzy rule, like a conventional rule has two components: an ‘if part and
a ‘then’ part which are referred to as antecedent and consequent, respectively. The
main structure of fuzzy rule is given in Eq.1

IF<antecedent>THEN<consequent> (1)

The predecessor of fuzzy logic has condition that should be satisfied by a degree.
Typically, the antecedent of a fuzzy logic can merge multiple single condition into
complex condition using logic gates such as AND, OR and NOT logical operators.
The resultants of fuzzy logic are classified into two major categories: Fuzzy conse-
quent (Eq.3, in which C is a fuzzy set), functional consequent (Eq.3, in which p,
q and r are constants). Fuzzy Interference System (FIS) integrate an expert’s affair
to form a system design. They can be comprised of four blocks. A FIS consists of
a fuzzifier which will transform the ‘crisp’ inputs into fuzzy inputs through mem-
bership functions which constitute fuzzy sets of input vectors, a knowledge-base
which encompass the related information which is given by the expert in the form
of linguistic fuzzy rules, an interference system (Engine) which uses them together
with knowledge-base for inference by a method of reason and a defuzzifier that mod-
ifies the fuzzy results of the interference into a crisp output through defuzzification
method.

The knowledge-base consists of two components: a data-base,which defines fuzzy
set membership functions which is used in the fuzzy rules, and a rule-base encom-
passing a collection of linguistic rules that can be joined by some specific operator.
Depending on the resulting method of fuzzy rules, there are two common types of
FIS, which may change based on the differences between the specifications of the
resulting part (Eqs. 2 and 3). The first fuzzy system uses the inference method pro-
posed by Mamdani in which the rule consequence is defined by fuzzy sets and has
the following structure [13].

IF x is A and y is THEN f is C (2)

The second fuzzy system proposed by Takagi, Sugeno and Kang (TSK) has an
inference engine in which the conclusion of a fuzzy rule comprises a weighted linear
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combination of the crisp inputs rather than a fuzzy set. The TSK system has the
following structure.

Fx is A and y is B THEN px + qy + r (3)

Here p, q and rare constant parameters. TSKmodels are suitable for approximat-
ing a large class of non-linear systems. The knowledge-base containing the database
and rule-base of an FIS can be constructed from an expert’s knowledge. Fuzzy Inter-
ference System (FIS) is the main component of fuzzy logic controller, which consists
of five processing parts:

• Linguistic variables can be generated depending on crisp information inputs from
sensor subsystem through Fuzzification interface

• Crisp control outputs to the actuators can be generated by defuzzification interface
• Interface operations can be generated based on predefined control logic through
decision making unit

• Fuzzy sets and membership functions which is used in fuzzy rules can be provided
by database process

• Sufficient number of fuzzy rules can be comprised by rule base unit.

Based on considered membership functions for inputs, the Mamdani fuzzy rule
based system has 3 × 3 = 9 rules. The system is implemented using the following
FIS properties:

Type: ‘Mamdani’
Decision method for fuzzy logic operators AND (intersection): ‘MIN’
Decision method for fuzzy logic operators OR (union): ‘MAX’
Implication method: ‘MIN’
Aggregation method: ‘MAX’
Defuzzification: ‘CENTROID’ (center of gravity)

2.3.1 Fuzzy Rules Determination

Many investigators have examined the technique for formatting the rules and skilled
person’s knowledge is the one most commonly used. The expert is asked to recap
the familiarity about the system in the form of a basis and outcomes. The rules and
rule determinations are based on fuzzy classifier techniques. The irrigation system
of fuzzy model was deliberated by a set of rules based on the expert knowledge. For
the input, the Member Function Interference System (MFIS) used here has 3×3 = 9
rules based on the membership functions. An example of rule description is if Soil
Moisture is “Cold” then Water Flow is “Low”. The description of the rules is shown
in Tables2, 3 and 4.
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Table 2 Rules for duration of irrigation

Soil moisture
Condition/status

Temperature sensor (C)

Dry Medium Wet

Cold
√

Medium
√

Hot
√

Table 3 Rules for duration of irrigation

Soil moisture
Condition/status

Water flow

High Medium Low

Cold
√

Medium
√

Hot
√

Table 4 Rules for duration of irrigation

Temperature sensor
Condition/status

Water flow

High Medium Low

Dry
√

Medium
√

Wet
√

3 Experimental Setup

The experimentwas carried out inHosur during January 2015. The experimental field
was previously platedwith tomato crop. The experimental areawas extended over 1.5
ha. The experimental area was irrigated and left to attain moisture level ranges of 10–
15 db. Different field practices were applied in this research. End to end transmission
of data was censured by a Zigbee–GPRS platform. The communication between the
field controller and local station was done over a short range (100 m line of sight).
IEEE 802.15.4 compliant zigbee protocol (Xbee Series 1 Chip) by virtue of its-low
power feature. (The rest of the activity is described in the present tense).

In addition, IEEE 802.15.4 compliant chips present unique features for conven-
tional and precision agriculture. The local stations receives, process and saves data
from f ield and then routes this data to a remote station (i.e. PC) via wise coverage
GPRS modules on both sides.
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Fig. 2 Irrigation system deployed in Wireless Sensor Networks

TheGPRSmodule interfaces to the remote station viamicrocontroller overUART.
All data are saved and displayed in real-time at the remote station. This experiment
consists of two types of sensors such as (1) temperature sensor and (2) moisture
sensor. The main objective of this research is to find the water flow to the plant using
Moisture sensor. The water flow of the soil is purely equivalent to the moisture. The
three main steps are included in the experiment such as follows:

• If the temperature is high, it defines the moisture level of the soil is low i.e., the
soil is dry and the plant needs water.

• If the temperature is medium, it is indicates the moisture of the soil is medium,
and the plants need no water.

• If the temperature is low, it indicates the soil is wet and there is no need for water
until it reaches the dry state.

Here the threshold for moisture of the soil is considered as 30. The moisture
above 30 indicates dry condition of the soil. The moisture is medium when the value
is between 25–30, and wet when the value is less than 20. The sensor is placed at a
distance of 9cm from the plant. The message/notification from the sensor is passed
to the IEEE 802.15.4 which uses to transfer the message to the mobile and also
saves the moisture value and time in the database. The overall irrigation systems
with deployed roles are shown in Fig. 2.

3.1 Components and Usages

An automated irrigation system acts according to the information read from soil
moisture sensors and temperature sensors, which was controlled by the microcon-



An Automated Irrigation System Based on a Low-Cost … 61

troller. Sensors, XBee devices and external components are connected as a circuit and
controlled by the programmable microcontroller. Based on the application, the com-
ponents were selected. The circuit affords reliable performance, if the components
provide desired functions, incorporated easilywith themicrocontroller, power supply
for the entire circuitry, inexpensive and low power microelectronic components. An
efficient automated irrigations system was constructed based on two important com-
ponents. The components are (1) server unit and (2) sensor unit. Both the units are
connected by the radio transceivers (XBee), which is used to transfer the recording
information from soil moisture sensor and temperature sensor. The GPRS module
is used to forward the real time information to a webpage through mobile network
located on server unit. This enables remote monitoring of the current status of field’s
moisture level and crop fields temperature through Internet.

3.2 Design and Operation of Sensor Unit

The sensor units consist of microcontroller, temperature sensor, soil moisture, sensor
LCD, XBee, water motor and SPDT relay. The circuit design is based on some other
design but modified to have more powerful microcontroller. A photograph of the
completed circuit board of sensor node and server node were shown in Figs. 3 and
4. For the real time resistant, the sensors are designed to transmit the current date
and time via XBee radio modem through two digital transmitters (TR) and receiver
(RX). The list of circuits and components are shown in Table5.

The electromagnetic switch is used to control the water pump pour level for
automatic irrigation, and the irrigation systems carried through SPDT (Single Pole
Double Throw) relay operates at 5V. The Single Pole Double throw enumerates the
coil, a common terminal, a closed terminal and an open terminal. The operations are
based on the coil aspects.

Fig. 3 Circuit board and sensor node component
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Fig. 4 Circuit board and server node components

Table 5 List of circuit components and sensors

Description Model number

Microcontroller LPC2148

Soil moisture sensor FC-28

Temperature sensor DS18B20

XBee radio modem XB24-Z7WIT-004

SPDT relay JZC-11F

9V DC water pump EWP-7L9

SIM900 GPRS/modem TW161

Miscellaneous (oscillator, resistors, capacitors, sockets, cables, batteries, etc.)

The operations are

• If the coil is not energized then the common terminal and the closed terminal have
connection.

• If the coil is energized, the common terminal and the open terminal have connec-
tion.

A water pump pour level was controlled by SPDT relay, which was connected to a
microcontroller. Two different irrigation events are implemented in the sensor unit.

The events are,

• When the soil moisture sensor fall below the threshold level.
• When the temperature sensor go above the threshold level.

For displaying the current status of irrigation (soil moisture level) and the tem-
perature values, LCD is used. An Alphanumeric LCD controller (HD44780) is used
with the specification of 20× 4 display, 16 pins in all, made up of power control
pins, display control pins, data pins, LED+ anode, and LED− cathode.
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3.3 Design and Operation of Server Unit

The server node enumerates of an XBee radio modem, LCD, memory (24FC1025)
GPRS module (SIM900) and a microcontroller (LPC2148). The distance between
the server node and the sensor node is 120m line-of-sight and the server node is
located away from the plotted plants. The server node figure is shown in Fig. 6. The
server node microcontroller receives the information regarding the moisture level
and current field temperature along with date and time and is stored in the memory
(24FC1025). The recorded information is transferred to a web server through GPRS
Module.

The SIM900 module is used to transfer the data from field report to the web page.
This module will operate at the range of 3.2–4.8V. The roles of downlink and uplink
ranges are 85.6 and 42.8kbps respectively. It consists of a serial port with control
lines and status of modem interface. It creates the connection to URL of the web
server to upload and download the recorded data.

Characterizing the Input in Fuzzy Set
For the declaration of inputs, triangular membership function types are used. There
are threemembership functions used in Temperature variable. Themembership func-
tions are “Cold”, “Medium”, and “Hot”, which is plotted in MATLAB fuzzy logic
tool box and shown in Fig. 5.

There are three membership functions used in Soil Moisture variable. The mem-
bership functions are “Dry”, “Medium”, and “Wet”, which is plotted in MATLAB
fuzzy logic tool box and is shown in Fig. 6.

“High”, “Medium” and “Low” are used to show the various ranges of input fuzzy
variable “Water Irrigation” in a plot consisting of three regions as shown in Fig. 7.

Number of rules = m n

Where m = maximum number of overlapped fuzzy sets

n = number of inputs

Total number of rules is equal = product of number of functions.

Fig. 5 Temperature
membership function

Temperature (oC)
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Fig. 6 Soil moisture
membership function

Moisture (%)

Fig. 7 Water (irrigation)
flow membership function

Flow (%)

For this fuzzy based irrigation design, m = 3 and n = 3, so the total number of
rules are 09.

The two input variables described here consist of three membership functions.
Thus, 3 × 3 = 09 rules were required as shown in Tables2, 3 and 4.

Figure8 shows the output as (simulated results) very near to estimated value. The
results have been inveterate for all possible simulated value of input variables i.e.
Temperature level and soil moisture level.

The irrigation system is organized according to soil moisture and Temperature
Sensors are obtained by the Fuzzy logic is controlled according to the data coming
from the sensors. The surface viewdistribution is obtained using this kind of irrigation
can be seen in Fig. 9.

4 Results and Discussion

The automated irrigation systemwas tested in a small tomato greenhouse production
field of about 500m, located near Hosur, Krishnagiri district, Tamil Nadu, India in
the year 2015.

Before going to field implementation, the sensor (soil moisture and temperature
sensors) ranges, measurements and accuracy were tested and examined. Normally,
the ranges of the sensors are specified by manufacturers. The sensors are placed
in the root zone of the plants. Based on the threshold range, the irrigation system
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Fig. 8 Fuzzy rule viewer

Fig. 9 Surface viewer for the irrigation system

was executed. The horizontal lines are shows that the threshold levels for both the
temperature and soil moisture.

The threshold ranges are,
Volumetric Water Content for the soil = 2.5% (minimum value)
Temperature = 30 ◦C as threshold level.
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Fig. 10 Gathered data of sensor unit 1 and sensor unit 2 of the automated irrigation system:
temperature and soil moisture

(Note: X-axis: 1–13→ Jan 3, 2015; 13–25→ Jan 4, 2015; 25–37→ Jan 5, 2015;
37 to 49 → Jan 6, 2015)

The server unit was placed about 120m line of sight from the sensor units. These
estimated/recorded results were uploaded automatically to the webpage (website) at
intervals of two hours for remote monitoring. For occurrence, four days recorded
temperature and moisture information of two sensor units are shown in the Tables6
and 7 respectively.

Four days field soil moisture level and temperature levels are monitored and rep-
resented in graphical manner, which are shown in Fig. 10. In Fig. 10, the horizontal
bar represents the threshold level of temperature and soil moisture of sensor units.
The recorded temperature and soil moisture information from sensor unit 1 is repre-
sented as a graph and shown in Fig. 11. The recorded temperature and soil moisture
information from sensor unit 2 is represented as a graph and shown in Fig. 12. The
vertical bars are represented as threshold level, which was designed and assigned
based on current temperature and soil moisture on field.

Typical real-time data collected remotely at two different locations are illustrated
in Figs. 10, 11 and 12 for examining the system’s behavior. The reliability of these
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Fig. 11 Automated irrigation (vertical bars) activated by the temperature threshold ≤30 ◦C and
soil moisture threshold ≤2.5% in sensor unit 1

Fig. 12 Automated irrigation (vertical bars) activated by the temperature threshold ≤30 ◦C and
soil moisture threshold ≤2.5% in sensor unit 2
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datawas verified by comparing them to on-site and local station data. This contributes
in reduction of evapotranspiration losses for the entire day. Also, the FLC selects the
appropriate time and duration by referring to the base of fuzzy rules (Tables6 and
7 shows the actual soil moisture tracking the desired value (30%) with non-abrupt
oscillations as compared to traditional feedback systems).

Overall, the above results show that the fuzzy control-based irrigation system
developed here compensate efficient water losses in arid regions like Hosur for a
well- systematic activity to grow the crop. The system enables predicting futurewater
needs and hence fosters a better irrigation management. The current system saves
up to 70% of water consumption, when compared to existing irrigation techniques.

5 Conclusion

In this paper, an automated fuzzy controller based water irrigation system was pre-
sented with regular monitoring of temperature level and soil moisture level, which
helps water conservation, reduce the unnecessary utilization of water and efficient
irrigation system in hill station like, Hosur. The irrigation system was efficiently
designed and executed according to crop field’s nature. The system developed is a
fuzzy logic controller based on Mamdani fuzzification using triangular and trape-
zoidal membership functions. The execution is based on the field’s temperature and
soil moisture level. This information is received from the sensors. The system briefly
analyzes various level of soil moisture and temperature with different climate and
dissimilar water pour level. Thus, the system enables predict the future irrigation
needs.

In order to evaluate the performance of irrigation system in real time all the data
are transmitted through GPRS-Zigbee based wireless system. All the information,
such as climate condition, soil moisture level along with time, duration of irrigation
and utilized water level is stored in database. This information will help in future for
the farmers, to react with raising ground water level. Last but not least, an efficient
automated irrigation system was implemented for the tomato plants and hopefully
the cost-benefit analysis is justifiable.
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Artificial Neural Network Based Real-Time
Urban Road Traffic State Estimation
Framework

Ayalew Belay Habtie, Ajith Abraham and Dida Midekso

Abstract With the rapid increase of urban development and the surge in vehicle
ownership, urban road transport problems like traffic accident and congestion caused
huge waste of time, property damage and environmental pollution in recent years.
To address these problems, use of information communication technology-based
transport systems that can support maximum utilization of the existing road transport
infrastructure has been proposed by different researchers. Road monitoring systems
are one of these solutions which support road users to make informed decisions.
However, the current road traffic monitoring systems use road side infrastructures
for road traffic data collection and these technologies lack accurate and up-to-date
traffic data covering the whole road network. By comparison, cellular networks are
already widely deployed and can provide large road network coverage. Besides,
3G and 4G cellular networks provide mobile phone positioning facility with better
performance accuracy and this opportunity can help to obtain accurate traffic flow
information in cost effective manner on the entire road networks. The purpose of
this chapter is to present our approach for real-time road traffic state estimation
framework using the existing cellular network for road traffic data source and a
neural network state estimation model. To evaluate the performance of the Artificial
Neural Network model (ANN) both simulation and real world data is applied. The
estimation accuracy using MAE and estimation availability indicated that reliable
link speed estimation can be generated using this model and the estimated data can
help to indicate real-time urban road traffic condition.
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1 Introduction

Road traffic flow information is essential for the development of efficient traffic con-
trol and management systems. Real-time road traffic flow information is utilized for
various purposes such as dynamic route guidance, incident detection, vehicle emis-
sion monitoring and is also useful for successful deployment of Intelligent Trans-
port System (ITS) applications-Advanced TrafficManagement Systems (ATMS) and
Advanced Traveller Information Systems (ATIS). Particularly, ATMS andATIS need
accurate real-time road traffic flow information and short term traffic state estimation
of the future for smooth traffic flow [1] and to deliver integrated road traffic flow
information to road users.

Road traffic state estimation comprises different activities, road traffic data col-
lection is the primary step. Traffic flow information can be obtained using different
road traffic surveillance technologies. Fixed sensor technologies like inductive loop
detectors, Video Image Processing (VIP), etc. are the current state-of-the-practice
road traffic data collection tools to gather information about traffic flow in most part
of the world [2]. But, these technologies don’t cover wide scale of urban road net-
work due to high deployment and maintenance cost. Moreover, with fixed sensors,
it is possible to gather spot road traffic data which can’t reflect road traffic flow of
the entire road network.

Mobile probe-based road traffic surveillance technologies are alternatives to this
luxury, fixed road side infrastructures. Mobile probe-based road traffic surveillance
systems collect and process road traffic data locating the vehicle via GPS or mobile
phones over the entire road network [3]. Floating vehicle technologies or dedicated
vehicle probes are one category in mobile probe-based traffic monitoring systems
which totally depend on GPS to localize the vehicle and its trajectory.

To have sufficient sensing capability utilizing floating vehicle technologies, sig-
nificant percentage of vehicles should be equipped with GPS device and this mass
deployment of GPS is expensive. Besides, automobile owners should also agree
to share their location information to the traffic system. Furthermore, due to sig-
nal multipath and urban canyon obstruction, GPS doesn’t work well in urban areas
[4]. Hence, these traffic data collection technologies provide limited sample size [5]
and the data collected can’t be a representative for all vehicles on the entire road
network [6].

Contrary to fixed sensor technologies and floating vehicle technologies, using
the existing cellular network infrastructure to gather road traffic data offers large
coverage capability as traffic data can be obtained continuously and also it is faster to
set up, easier to install and needs less maintenance [7]. Here, vehicles on the road are
assumed to have one or more turned onmobile phones (could be GPS-enabled or not)
and information about the vehicle (location, speed, time-stamp) can be gathered using
the positioning technology supported by the specific cellular network generation.

Mobile positioning technologies which aim to collect road traffic data in cellular
networks can be either Handset-based or Network-based. In handset-based position-
ing methods, the mobile itself computes the position of the subscriber mobile phone
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and it is highly secured, can support gathering more measurements but demands high
power consumption and also may need to incorporate special software and hardware
in the handset as well as on the network [8]. Network-based positioning methods
determine the location of mobile phones using the mobile network and services
utilizing these positioning technology can support legacy mobile phones without
upgrading, reduces power consumption, can initiate mobile phone positioning with-
out any intervention but require software and hardware change on the infrastructure
[8]. Individually, each of these positioning technologies can’t provide wider area
coverage and improved positioning accuracy simultaneously [9].

To improve positioning accuracy, coverage and communication latency of posi-
tioning technologies, combination of Handset-based and Network-based positioning
techniques has been proposed [10, 11]. Combination of the measurements of these
technologies is generally performed by either measure fusion algorithm or state vec-
tor algorithm. It was shown that measurement fusion algorithm outperforms state
vector fusion algorithm particularly for tracking and localizing a moving vehicle
[12].

In line with this, different researchers conducted field experiment to show the
feasibility of using mobile phones as road traffic probes [13–15]. However, most of
the experiments were done in estimating road traffic states on freeways and only few
trials attempted monitoring traffic flow on arterial roads. According to Bacchus et
al. [13] recommendation, future research effort should be done on gathering traffic
data for arterials where no data is available. But road traffic state estimation on
arterials is more difficult than estimation on freeways as arterials have low traffic
volume, variable vehicle speed on different road networks and at road intersections
it is common to get traffic lights for controlling purpose [14, 16]

Among previous deployments, most employed network-basedmobile positioning
methods which use network signal information like handoff, Angle of Arrival and
Time of Arrival. Few of these deployments applied handset-basedmobile positioning
method to estimate road traffic flow. For example, Mobile Millennium [17] and
Tao et al. [18] employed the handset-based (GPS-enabled mobile phone) method in
experimenting the use of cellular network for road traffic flow estimation. From field
evaluation, due to additional complexities of arterial vehicle roads, network-based
methods can’t provide sufficient amount of traffic data for traffic state estimation.
ThoughGPS enabledmobile phones provided successful road traffic state estimation,
additional communication cost and slow uptake of smart phones are mentioned as
success obstacles [19]. But these can’t be problems any more as UMTS networks
havewide bandwidth for communication and according to Chi andXavier [20], GPS-
enabled Smartphone is expected to grow to 65.1%, which is 2.6 billion units, in 2016
worldwide. Particularly in Africa and Middles East, GPS-enabled Smartphone sales
volume rate rises to 56% in 2013 where in Africa it is almost two times higher than
the global average growth rate [21].

Once traffic data about vehicles on arterial roads is gathered and processed, the
next step is the estimation of road traffic flow status for every road link on the entire
road network. Over the years, variety of traffic state like travel time and traffic flow
estimation models have been developed. But considering offline online applicability,
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existing road traffic state estimation techniques can be either model based or data
driven based approach [22]. Although current practices on urban road traffic state
estimation applied data driven approaches, no single predictor had yet been devel-
oped that presented itself to be universally accepted as the best, and proved to be a
consistent and effective traffic state forecasting model for real-time traffic operation.
But from all data driven traffic state estimation models, Artificial Neural Networks
are very flexible in producing accuratemultiple step-ahead estimationwith less effort
and are chosen to be best traffic modeling tool [23].

Recently, to overcome limitation of a single traffic state estimation model by
advantage of another, hybrid models (combining parametric and non-parametric
or model based and data driven method) drew much attention. For example, Yin
et al. [24] developed fuzzy-neural model (FNM) to predict the traffic flows in an
urban street network. Alescsandru and Ishak [25] also presented a model-based and
memory-based hybrid system to improve performance of freeway speed forecasting
systems. Zheng et al. [26] developed a Combined Neural Network Model (CNNM)
for short-term freeway trafficflowprediction andVanLint et al. [27] applied aKalman
filter neural network to forecast short-term travel time on freeways. Anderson and
Bell [28] used themodel basedmicroscopic trafficflowVISSIMwithNeuralNetwork
for traffic state estimation techniques and a queuing model for travel-time prediction
in urban road networks. The work of Tao et al. [18] also presented the use of Kalman
filtering integrated with a microscopic simulation model SUMO in urban traffic state
estimation using A-GPS based vehicle location data.

In this chapter a real-time road traffic state estimation framework that utilizes the
existing cellular network infrastructure for road traffic data collection with a neural
network model estimator is discussed. The framework integrates different modules
at which different models are proposed to be used in the process of traffic state
estimation. To evaluate the framework, a hybrid method of combining a three-layer
Artificial Neural Network model and the microscopic simulation model SUMO is
used. The chapter describes the proposed framework and its applications in detail
based on our work [29–32].

The rest of this chapter is organized as follows: Sect. 2 describes the proposed
road traffic state estimation system. Section3 discusses the framework application,
Sect. 4 presents the road link estimates and the summary is depicted in Sect. 5.

2 Road Traffic State Estimation System

The core milestones of real-time Road Traffic State Estimation based on cellular
network signaling include location data collection, Mobile phone mobility classifi-
cation, map matching and route determination, road traffic condition estimation and
dissemination of traffic information to road users [32]. These activities are comprised
in a three layer architecture: data collection layer, traffic state estimation layer and
database server layer [2, 33, 34]. The data collection layer is responsible to collect
real-time location data of vehicles on the road and send the data to the next layer-
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Fig. 1 General framework for short term arterial traffic state estimation

estimation server. The road traffic state estimation layer does the data preprocessing,
updates data to the database server, estimates real-time traffic flow and provide the
information to road users on mobiles or on to the Internet. The third layer, data-
base server, stores digital map which is used for road traffic state estimation and
information dissemination processes.

Considering the detail activities we have done in our work [29] while using the
cellular network for real-time road traffic data collection, the proposed real-time road
traffic state estimation framework is depicted in Fig. 1. The proposed framework,
depicted in Fig. 1, has five basic components.

2.1 Traffic Data Collection Component

This component represents the data sources which provide real-time road traffic
measurements on the basis of which real-time road traffic flow condition is estimated.
As it is indicated in the framework, the cellular network is used as road traffic data
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source where road traffic data can be gathered. For example, in our research [29], the
UMTS cellular network positioning standards, Assisted Global Positioning System
(A-GPS) and Uplink Time Difference of Arrival (U-TDOA) were used to gather
real-time road traffic data like speed, location and time-stamp of a moving vehicle
on a traffic road.

The A-GPS based traffic data measurement is gathered utilizing Java Specifica-
tion Request 179 (JSR 179) Location Application Programming Interface (API) to
periodically request location updates from A-GPS mobile phone moving along all
journey of the vehicle. The location updates of the mobile sent to java application on
the central server include latitude and longitude coordinates with their accuracy, the
timestamp and speed of the moving vehicle.

Unlike A-GPS which is a handset based positioning method, Uplink Time Dif-
ference Of Arrival (U-TDOA) poisoning method is considered as network based
poisoning system that can provide positioning service to all kind of mobiles (legacy
or modern) supported by the operator. The U-TDOA based moving vehicle data is
collected using a simulation environment on the same traffic road A-GPS measure-
ment is gathered.

After cleaning and preprocessing of the collected road traffic data, measurement
fusion algorithm, which is found to be superior from state vector fusion particularly
to combine measurements of vehicles on the road [12], is employed to get hybrid
based measurement and the experiment done on the positioning accuracy of the
cellular network revealed that reliable road traffic data with acceptable accuracy (i.e.,
with in the E-911 requirement) can be gathered using the existing cellular network
infrastructure as road traffic data source.

2.2 Data Cleaning and Preprocessing

Usually, the raw traffic sensor data is not good enough to use it directly for road traffic
management activity. Primarily data cleaning activities enable to remove abnormal
data including abnormal velocity, wrong direction and time duplication. Then other
preprocessing activities like data checking, data completion and data correction will
be performed [34]. Besides, when In-vehiclemobile phones are used as traffic probes,
activities like mobility classifications and map matching are done during preprocess-
ing. For example, in our work [29] where traffic data is collected based on the UMTS
cellular network positioning method of A-GPS and U-TDOA, preprocessing activi-
ties like coordinate transformation of A-GPSmeasurements, linearization of U-DOA
based traffic data, classification, map matching and fusion of the measurements were
done as it is depicted in Fig. 2.
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Fig. 2 Preprocessing activities on fusion based A-GPS, U-TDOA traffic data

2.3 Data Analysis

This component of the framework represents the statistical activities performed for
data sampling from raw traffic sensor data whichwas cleaned and preprocessed using
appropriate techniques/procedures. For acceptable quality of urban road traffic state
estimationwith probe basedmonitoring, the percentage of vehicles/mobile serving as
traffic probe, i.e. penetration rate is with high concern [35, 36]. Accordingly, mobile
probe based urban freeway traffic monitoring can provide sufficient data when the
penetration rate is from 3 to 5%. Though the minimum sample size of probe vehicles
is dependent to factors like road type, link length and sample frequency [35], for
reliable speed estimation of arterial roads, a minimum penetration rate of 7%, i.e.
at least 10 probe vehicles traversing a road section (every road link) successfully is
required [35–37].

Theother crucial issue in road traffic state estimationusingmobile phones as traffic
probes is the sampling frequency. For example, A-GPS mobile phones receive loca-
tion updates at every 1–3s and collection of data from large number of mobile probes
may cause network carrier congestion. To solve this problem three approaches are
proposed: temporal (report vehicle information at prescribed time), spatial (probes
send information when passing predefined location) and pinpoint method (report
based on vehicle velocity change rate) [33].

The above sampling frequency approaches, temporal and spatial can’t necessarily
help to collect useful data for traffic state estimation as the collection is dependent on
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a predefined time and location Pinpoint method is useful in addressing problem of
these methods but it may not enable to collect sample size data as the probe is forced
to report vehicle information only when the velocity change rate is big. Hence,
to address the problem of sampling frequency approaches we propose a dynamic
“Pinpoint-Temporal” sampling frequencymethodwhich is a combination of Pinpoint
and Temporal. In this method the required sample size data incorporating vehicle
information at change of state points with variable initial time-stamp is collected.

During sampling, to avoid road traffic state estimation biases, the initial sampling
time-stamp is not taken to be fixed as the vehicle could be anywhere while sampling.
Figure3 explains Pinpoint-Temporal sampling strategy. For instance, if the initial
sampling time-stamp is i, and sampling time-stamp interval is 10 s then the next
temporal sampling frequencieswill be i + 10, i + 20, i + 30 etc. Combining Pinpoint
with this temporal strategy, the points where the data recording takes place is depicted
in Fig. 3.

As it is indicated in Fig. 3, different combinations of temporal sampling frequen-
cies with different initials like i, i + 1, i + 2, etc. could improve road traffic state
estimation accuracy [38]. In the process, the vehicle change state points, p1, p2 and
p3 unless repeated, will be considered in the sample.

Fig. 3 Pinpoint-temporal sampling based vehicle information recording at different links
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2.4 Model Identification and Optimization

This component of the proposed real-time road traffic state estimation framework
represents appropriate approaches used to estimate road traffic sate with accept-
able accuracy. Current practices of road traffic state estimation techniques applied
either model based or data driven approaches [22]. Model based traffic state esti-
mation approaches use the analytical traffic model Lighthill–Whitham–Richards
(LWR) model or simulation based models which are more suitable to model com-
plex road traffic flows [40]. The data driven approaches are data intensive and com-
monly applied for real-time traffic state estimations. These models include statistical
parametric and non-parametric techniques [23]. Different studies demonstrate non-
parametric real-time traffic state estimation techniques performing well due to the
ability to capture non deterministic and complex non linearity of traffic flow series
[41]. Particularly, Artificial Neural Networks have been applied extensively in short
term traffic forecasting field and acknowledged to be a promising approach because
of its superiority in modeling complex nonlinear relationships [42, 43]. However,
no single predictor had yet been developed that presented itself to be universally
accepted as the best and effective traffic state forecasting model for real-time traffic
operation [44]. Hence, selection of appropriate methodological approach is a major
issue in traffic state estimation. In our work [45], hybrid method of combining Arti-
ficial Neural Network (data driven approach) and the microscopic simulation model
(model based approach) is found to be better when mobile phones are used as traffic
probes.

Artificial Neural Network Model for Urban Arterial Road Traffic State Esti-
mation Different types of artificial neural networks (ANN) have been proposed in
the past few years for estimation purpose. The most popular connected multilayer
perceptron (MLP) neural network architecture is chosen in this study as it is exten-
sively applied in transportation applications, has very good capability, and easy to
implement so long as there are enough neurons in the hidden layer [46]. The archi-
tecture of ANN is composed of set of nodes and connections organized in layers.
In this work a three layer ANN is used: input layer, hidden layer and output layer.
The input layer enables to receive external information and the output layer is the
layer where problem solution is acquired. Usually one or two hidden layers are used
between the aforementioned layers but single hidden layer is proved to be enough
for ANNs to estimate nonlinear functions [46]. It is the hidden nodes in the hidden
layer that allow the neural network to detect the feature to capture the pattern in the
data, to perform nonlinear mapping between input and output variables.

As it is discussed in Sect. 2.1, the cellular network is used as road traffic data
source and the data collected based on mobile phones as probes contain vehicle
position, time stamp and vehicle speed on the road link. Hence position, time stamp
and speeds are used as input data in the ANN model. The structure of the ANN
model, which is experimentally proved with different traffic demand including 20%
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Fig. 4 Artificial Neural Network for link traffic flow estimation

demand increase, 50%demand increase and 100%demand increase, is adapted from
Zheng and Zuylen [39] as shown in Fig. 4. According to this author, the accuracy of
the ANN model is sensitive to position input whereas the speed input is not crucial
factor influencing the ANN performance.

The mathematical model for the input layer, hidden layer and output layer is given
as follows.
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Input layer

x(i) =
⎡
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...
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⎤

⎥⎦ =

⎡

⎢⎢⎣

p(i)
r(i)
t(i)
v(i)

⎤

⎥⎥⎦ , p(i) =
⎡

⎢⎣
p1(i)

...

pn(i)

⎤

⎥⎦ , r(i) =
⎡

⎢⎣
r1(i)

...

rn(i)

⎤

⎥⎦ ,

t(i) =
⎡

⎢⎣
t1(i)

...

tn(i)

⎤

⎥⎦ , v(i) =
⎡

⎢⎣
v1(i)

...

vn(i)

⎤

⎥⎦ , (1)

where p(i) is position vector, r(i) is link id vector, t(i) is time stamp vector and v(i)
is speed vector

Hidden layer

H(i) =
⎡
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h1(i)

...

hm(i)

⎤

⎥⎦ =
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⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(

N∑

j=1

wj,1xj(i) + b1)

...
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wj,mxj(i) + bm)

⎤
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, (2)

where hm(i) denotes the value of the mth hidden neuron, wj,m represent the weight
connecting the jth input neuron and the mth hidden neuron, bm is bias with fixed
value for the mth hidden neuron and ϕ is the transfer function.

Output layer

y(i) = TF(i) = ϕ(

m∑

k=1

wkhk(i) + b), (3)

where y(i) and TF(i) denote estimated traffic speed of probe vehicle i on the link
under consideration, wk represent the weight connecting the kth hidden neuron and
the output neuron, b is bias for the output and ϕ is the transfer function.

2.5 Road Traffic State Estimation

This component of short term arterial traffic state estimation framework represents
techniques/procedures employed to estimate traffic flow at every link of vehicles
route. Theoretically, road traffic state can be calculated without using any estimation
models when all the vehicles travelling on the road are used to collect traffic data
[47]. However, it is difficult due to some factors like public’s awareness of privacy
protection [48] and some information sharing problems [49].
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Road traffic state estimation is performedbasedon transforming criteria (methods)
on the calculated average speed of vehicles on the road links [47]. Basically there are
three ways of calculating road traffic speed of vehicles: Average Method, Integral
Method and Fitting Method.

Average Method (AM) This method is the simplest one where road traffic speed of
vehicles is calculated using arithmetic mean of vehicle location points [49]. For a set
of vehicle localization points with speed(V r

t = {v r
i,t }, (i = 1, 2 . . . .n)), on segment

r at an interval time (t), the average road traffic speed is given by:

V r
t = avg n

i=1 (v r
i,t ) (4)

To avoid biases, the data need to satisfy requirements of statistics. The average
method has been applied in different studies for road traffic state estimation activity,
Tao et al. [18], Chen et al. [50] are some of them.

Integral Method (IM) This method determines traffic speed as traveled distance
(D) divided by the time (T) spent on the distance. If a vehicle (m) is traveling on a
road segment (r) at time interval (t), the vehicle mean speed using integral is given
as:

V r,m
t = D/T =

∫ t+1

t
vdt/T (5)

According to Quiroga [51], it may be necessary to approximate equation (5) as
speed and time of a vehicle traveling on a road will not have relationship and the
approximation is given as:

vr,mt ≈ 1

T
{vr,m0,t (

t1 − t0
2

) +
N−1∑

n−1

vr,mn,t (
tn+1 − tn−1

2
) + vr,mN−1,t(

tN − tN−1

2
)} (6)

where n is the point index of one vehicle, if multiple vehicles (m>1) are passing on
the segment at time t the calculation is done by averaging vr,mt .

Fitting Method (FM) This method uses the position information of the vehicle.
According to Kong et al. [52], if L is the total length of road r, the speed of a vehicle
during an interval time (T) on the whole segment is given by:

vrt =
[∫ KT

(k−1)T
vrt dt

]
/T (7)

Most studies, for example Qiankun et al. [53], Kong et al. [54], Tao et al. [18],
which were conducted on road traffic state estimation employed the AverageMethod
(AM) to estimate traffic flow on road links. However, an experimental evaluation on
the performance of these methods revealed that as the number of vehicles on arterial
road becomes seven or more, the performance of Integral Method (IM) is better
than the other two [47]. Thus, we propose to use IM method in the road traffic state
estimation process.
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2.6 Results and Evaluation

This component of the framework evaluates and disseminates road traffic flow infor-
mation to road users on their mobile phones or on the Internet for universal access.
During evaluation, comparison of road traffic state estimation model result and
ground truth based traffic state data is done and if accuracy and coverage of estima-
tion result is not acceptable, optimization of the identified road traffic state estimation
framework is done with different techniques like improved probe penetration rate
and sampling frequency [18], special point elimination method, dynamic boundary
method and IM–FM fusion method [47]. However, evaluation of the results from
field tests is not suitable for statistical analysis particularly for arterial roads [18].
Hence simulation based individual vehicle tracks and aggregate traffic states can be
used as ground truth during evaluation [15].

3 Framework Application

In Sect. 2.1, it was discussed that the UMTS cellular network is used as road traffic
data source. For the application of the framework, real-world data was gathered
based on a java application utilizing JSR 179 API on A-GPS mobile phone. But,
due to security reason, it was impossible to get U-TDOA based traffic measurements
on a traffic road. Hence, to model the arterial road traffic, a microscopic simulation
package “Simulation of UrbanMobility” (SUMO) [55, 56] is employed. The SUMO
packages NETCONVERT and DFROUTER are used to generate road network and
vehicle route. From simulation, aggregated speed information for each road link
named “aggregate edge states” and floating car data (FCD) export file are generated
for further analysis. The information on aggregate edge states include road edge IDs,
time intervals, mean speeds, etc. The aggregate speeds are used to determine ground
truth of traffic flow. Whereas the FCD output file records the location coordinates
of every moving vehicle on the sample road at every time-stamp, vehicle speed,
edge IDs and this data file is used as simulation for in-vehicle mobile based traffic
information system.

The generated vehicle location data is firstly preprocessed to reflect “realistic”
location sample that A-GPS mobiles may provide in real world situation. Next, Data
analysis activities like penetration rate, sampling frequency algorithms are employed
on the preprocessed location data. Using appropriate proportion of the data, training
of Artificial Neural Network (ANN) model of the selected road network is done.
Then speed estimates of the trained ANN are allocated to each of the sample road
links and aggregated on predefined time interval. For performance assessment of the
identified state estimation model, accuracy of speed estimation is evaluated using
Mean Absolute Error (MAE) as well as comparison with the “ground truth” speed
value of SUMO aggregate state. Finally, estimated speed values are classified in to
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different traffic flow conditions using threshold techniques and presented as colored
road segments on road users’ mobile phones or on the Internet.

3.1 Test Urban Road Network

As it is shown in Fig. 5, part of Addis Ababa city road network is chosen as simulation
case study. TheOpenStreetMap (OSM) xml file of the selected road network is edited
using Java OpenStretMap (JOSM) [57] to remove road edges that can’t be used by
vehicles like road ways to pedestrian etc., and also for simplicity all road edges are
set to one-way.

The simplified form of the road network consists of 13 nodes, 12 links with length
ranging from169 to 593mand 4 traffic lights as shown in Fig. 6.OnSUMOcommand
window, network file encoding traffic light logic, speed limit of road links and road
link priorities are generated from the OSM file using NETCONVERT.

Fig. 5 Sample road network from OpenStreetMap

Fig. 6 Simplified diagram
from SUMO
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Fig. 7 Real A-GPS based moving vehicle location data

Then using DUAROUTER random routes of vehicles traveling on the road net-
work, number of vehicles to be emitted to the road, start and end of traffic flow are
determined. These randomly generated vehicles and their routes are run on SUMO
and as a result of 3600-s interval, 718 probe vehicles are generated with random
trips. In order to mimic the real traffic situation on this road, free flow traffic demand
is used with maximum speed 30km/h, which is the speed limit in the real situation.
Besides, the data sets from the simulated network, real data set was collected by a
car with A-GPS device driving on the sample road networks and location updates in
terms of longitude and latitude, time stamp and speed were recorded for every 3 s.
The real A-GPS location data collected within 45min is depicted in Fig. 7.

3.2 Data Preparation

The SUMO simulation is conducted for 1-h without incident. Data from the first
15 s of simulation were considered to be warm-up period and were not used in the
analysis. Every second, position, time stamp and speeds of vehicles were recorded.
The output files “aggregate edge states” and FCD output, before used for further
analysis, data screening and preprocessing is performed.

Data Screening andPreprocessing:The first challenge in using the cellular network
based mobile probe system is distinguishing non-valid probes (pedestrians etc.). But
probe data in this system come from our service subscribers and validity of traffic
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probes is not an issue. Other criteria considered in the screening and preprocessing
include:

• Speed estimates greater than 13.89m/s of speed limit are eliminated as the speed
limit in Addis Ababa city vary from 8.3 m/s (30km/h) to 13.89m/s (53km/h).

• Location estimates with distance to nearest link larger than 20m is eliminated. As
the positioning accuracy of A-GPS positioning method is maximum of 20m [58]
and also to differentiate closely spaced parallel urban roads, an accuracy of 20m
is expected [59].

• In-vehicle mobile location estimate with coordinate (0, 0) and with zero speed are
eliminated.

Aggregation of link speeds:FromSUMOsimulation conducted for 1h, to character-
ize traffic flow condition on every road link of the sample road networks, aggregation
of link speed estimates over a specific time interval is performed. Previous works on
road traffic state estimation [13, 35] discussed a 10min aggregation time is a rea-
sonable choice considering real-time requirement and data availability. The average
speed along road link r during the time interval

[
tk,tk+�T

]
is given as:

V r
av

(
tk,tk+�T

) = 1

nrtk,tk+�T

tk+�T∑

k=tk

vr(k) (8)

where vr(k) is the available speed estimate on link r and 1
nrtk, tk+�T

is total number of

available speed estimates. The mean traveling speed of the road links on a 10-min
time interval is recorded in the “aggregated edge states “and it is depicted in Fig. 8.
From the figure, all road links except link 1 and link 5 are expected to have smooth
traffic flow as their speed is above 7m/s (link speed limit is 30km/h). However, link
5 has medium traffic flow and link 1 is with medium traffic flow from 10 to 20 and
50 to 60min. From 20 to 50min the traffic flow on this road link is improved.

Fig. 8 Aggregated road link speeds—“ground truth speed”
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Data Sampling Process From the 1h SUMO simulation, the simulation output file,
FCD output, generates large amount of simulated mobile probes at real time. At
every second, location updates (in terms of x, y or longitude, latitude) for the mobile
probes are recorded. There are in total 437 probes and the time they spent range
from 10 to 202s. Figure9 shows location data collected from these probes, which
are aggregated in 10min. The FCD output file contains detail information of each
vehicle/mobile and grows extremely large. Hence, converting this location data in to
more compressed one is necessary [18]. Accordingly, to degrade location data, one
can set up a specified percentage of simulated vehicles/mobiles to be traffic probe.
As it is discussed in Sect. 2.3, previous studies suggest that for arterial roads reliable
speed estimation, a minimum penetration rate of 7%, i.e. at least 10 probe vehicles
traversing a road section (every road link) successfully is required [35–37] although
factors like road type, link length and sample frequency affect the minimum sample
size.

In this research work, the sample is taken considering the road link length as it is
indicated in Table1 and sampling frequency is based on “Pinpoint-Temporal” which
is elaborated in Sect. 2.3.

As it is presented in Table1, for road link length 300m and below 10 probes
are taken (which is the minimum recommended in the literature), 300 to 600m 15
probes andmore than 600m link length 20 probes and totally 165 probes (37.6%) are
considered in the sample. The sampling frequency employed is “Pinpoint-Temporal”
with 10s time interval and 15 location updates of each probe is collected including

Fig. 9 Probe location data generated from FCD output file aggregated at every 10-min
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Table 1 Number of probes taken for the sample from the FCD output based on road link length

Link # (street name) Link length (m) Number of sample
probes

Number of location
updates per probe

1 (Tesema Aba
Wekaw Street)

274.6 10 15

2 (Tesema Aba
Wekaw Street)

233.4 10 15

3 (Tesema Aba
Wekaw Street)

258.8 10 15

4 (Tesema Aba
Wekaw Street)

194.2 10 15

5 (Sudan Street) 194.2 10 15

6 (Sudan Street) 695.8 20 15

7 (Churchill Avenue) 593.9 15 15

8 (Churchill Avenue) 233.3 10 15

9 (Churchill Avenue) 531.4 15 15

10 (Zambia Street) 484.3 15 15

11(Nigeria Street) 69.5 10 15

12 (Yared Street) 601.7 20 15

13 (Ras Damtew
Street)

214.6 10 15

the first and last probe information as the proposed state estimation method, which
is discussed in Sect. 2.5 is integral method (IM). Figure10 plots location data of the
sample probes aggregated in 10 min.

Data for Training and Evaluation After the sampling process, the extracted data
were used for training the neural network and estimating the link travel speed.
A total of 165 probe data were simulated and using random approach of divid-
ing the available dataset for ANN development [60], 110 probe data (two-third of
the data) were used for training process and the other 55 probe data (one-third of the
data) were used for performance evaluation.

3.3 Neural Network Training

A training process is needed before the ANNmodel can be applied to estimate traffic
state. In the process, three procedures including training, testing and validation were
conducted. The total training data set (110 probe data)were divided in to three subsets
[61] which are 88 probe data (80%) for training, 11 probe data (10%) for testing
and 11 probe data (10%) for validation. During the training process, different hidden
neurons like 10, 15, 20, 25 were chosen. During testing the performance in terms of
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Fig. 10 Sample probe location data aggregated at every 10-min

Mean square error (MSE) for the case of 10, 15, 20 and 25 neurons is compared and
15 hidden neurons were used to build the network. Levenberg-Marquardt algorithm
(Trainlm) [62] was chosen so that the over fitting phenomenon can be avoided.
Moreover, the algorithm can provide fast convergence even for large networks with
few hundred weights. The trained ANNmodel is applied to estimate link traffic state
under free flow but proved even in over saturated condition [38].

3.4 Evaluation

To evaluate how the ANN model performs, the performance indicators Root Mean
Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) are used and
defined as follows.

RMSE =
√√√√1

n

n∑

k=1

(vpv,k − vtrue,k)2, (9)

MAPE = 100 ∗1
n

n∑

k=1‘

∣∣∣∣
vpv,k − vtrue,k

vtrue,k

∣∣∣∣, (10)

where vpv,k is the estimated travel speed of the kth probe vehicle and vtrue,k is the true
link speed of the kth probe vehicle recorded by data collection points.
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Fig. 11 Correlation between
estimated link travel speed
and true link travel speed

3.5 Results Based on Simulation Data

The trained ANN model is used to estimate link travel speed with a simulation data
input. A correlation between the estimated link travel speed based on ANN model
and the true link travel speed which is computed from the simulation data using the
integration method (IM) of calculating vehicle speed is performed. As it is depicted
in Fig. 11, the estimated link travel speed has very high correlation with the true
link travel speed (R2 > 99%). The linear regression between the estimated and true
(simulated) link speed that predicts the best performance among these values has an
equation y = 0.997∗x + 0 indicating the trained ANN model performs reasonably
well, where x represents true speed and y estimated link travel speed.

The performance of the estimation method in terms of RMSE and MAPE is
0.029325 and 0.127% respectively with average speed of 7.191m/s.

3.6 Results Based on Real A-GPS Data

The trained ANN model was also applied to estimate travel speed based on real A-
GPSdata.A carwithA-GPSbasedmobile phone traveled on the sample road network
and location updates in terms of longitude, latitude, time-stamp, speed and accuracy
is recorded at every 3 s for about 45min (see Fig. 7). A sample using “Pinpoint-
Temporal” method with 10s time interval is taken and at every road link, 15 location
points i.e. total of 195 A-GPS based vehicle location points are taken. The estimation
result is shown in Fig. 12. Each point represents travel speed on each trip i.e. at every
road link. From the regression formula in the figure, it can be seen that the trained
ANNmodel performs very good. The RMSE andMAPE are 0.101034 and 1.1877%
respectively which show the possible application of theANNmodel to real link travel
speed measurements.
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Fig. 12 Correlation between
estimated link travel speed
and true link travel speed
using real A-GPS data

4 State Estimates of Road Links

As it is presented in Sects. 3.5 and 3.6, the trained ANN model provides a very good
link travel speed estimation using both simulated as well as real A-GPS data. In
this section, the trained ANN model is applied to estimate sample road link states
using link travel speeds and a comparison is made against the ground truth speed
estimates named as “aggregated edge states”. For this analysis, a sample of 195 probe
vehicle points are taken from SUMO FCD output file based on “Pinpoint-Temporal”
sampling frequency method with a 10min time interval. The result of the analysis is
shown in Table2.

Two performance indicators Mean Absolute Error (MAE) and Estimation Avail-
ability are used to evaluate the ANNmodel estimation accuracy and system coverage
respectively.MAE is defined asmean of absolute difference between the ground truth
speed on a link and the estimated speed. The estimation speed availability is the frac-
tion of links having speed estimation in the time interval considered.

Considering the state-of-the-art traffic speed classification in urban areas [50],
speed thresholds are employed to classify the estimated road traveling speed.Accord-
ingly, three traffic condition levels: Green,Yellow andRedwhere green level (smooth
traffic) if link speed is above 7m/s, yellow level (medium traffic condition) when
link speed is between 4 and 7m/s and red level (congested traffic condition) when
link speed is below 4m/s are used as it is shown in Table2. From the table, it is
shown that medium traffic condition is detected on link 5 and partly on link 1. The
average estimation accuracy based onMAE is 0.28m/s and all sample road networks
have link speed estimation using the trained ANNmodel. Moreover, these estimated
traffic conditions will be color-coded on the road network and presented on road
users’ mobile display for real-time analysis.
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Table 2 Ground truth versus ANN model based average link speeds

5 Summary

In this chapter, a method of real-time urban traffic state estimation is presented. A
three-layer Artificial Neural Network model is proposed to estimate complete link
traffic state. The inputs to the ANN model include probe vehicle’s position, time
stamps and speeds. Based on the microscopic traffic simulation SUMO, “aggregate
edge state” which is the ground truth link travel speed and FCD output data is
generated. From the FCD output, a sample based on “Pinpoint-Temporal” method
is extracted and the dataset is divided to train as well as evaluate the ANN model.
Besides, real A-GPS data gathered using A-GPS mobile phone on a moving vehicle
on the sample roads is used to evaluate the ANN model. The performance of the
ANNmodel is evaluated using the performance indicators RMSE andMPAE and on
average, the MPAE is less than 1.2%.

The trained ANN model is also used to estimate the sample road link speeds and
compared with ground truth speed (aggregate edge states) on a 10-min interval for
1h. The estimation accuracy using MAE and estimation availability indicated that
reliable link speed estimation can be generated and used to indicate real-time urban
road traffic condition.
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Attack Detection Using Evolutionary
Computation

Martin Stehlik, Vashek Matyas and Andriy Stetsko

Abstract Wireless sensor networks (WSNs) are often deployed in open and poten-
tially hostile environments. An attacker can easily capture the sensor nodes or replace
them with malicious devices that actively manipulate the communication. Several
intrusion detection systems (IDSs) have been proposed to detect different kinds of
active attacks by sensor nodes themselves. However, the optimization of the IDSs
w.r.t. the accuracy and also sensor nodes’ resource consumption is often left unre-
solved. We use multi-objective evolutionary algorithms to optimize the IDS with
respect to three objectives for each specific WSN application and environment. The
optimization on two detection techniques aimed at a selective forwarding attack and
a delay attack is evaluated. Moreover, we discuss various attacker strategies ranging
from an attacker behavior to a deployment of themalicious sensor nodes in theWSN.
The robustness of the IDS settings optimized for six different attacker strategies is
evaluated.

Keywords Attacker strategy ·Evolutionary algorithm · Intrusion detection system ·
Multiobjective optimization · Wireless sensor network

1 Introduction

Wireless Sensor Networks (WSNs) are highly distributed networks often deployed
in open or even hostile environments. Sensor nodes are usually small low-cost and
resource constrained devices with no tamper resistance employed and can be eas-
ily captured by an attacker. Furthermore, malicious devices considered as benign
by other sensor nodes can be deployed in the network. Possible attacks on WSNs
range from passive eavesdropping where an attacker listens on the ongoing traffic in
promiscuous mode to active interfering and manipulating of the communication.
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In this chapter, we aim at the detection of such active attacks by sensor nodes
themselves with respect to restricted capabilities of the sensor nodes. Each sen-
sor node can be equipped with an intrusion detection system (IDS) [1]. Thus, an
entire network area can be monitored for malicious behavior in a distributed manner.
Several detection techniques have been proposed to detect various kinds of attacks
on WSNs. Unfortunately, many of them are proposed for a specific case or their
optimization is left unresolved. Moreover, incorporating an IDS brings necessary
additional demands on sensor nodes’ resources. In our work, we aim at automatic
configuration of these detection techniques for a specific application scenario, topol-
ogy and environment, using evolutionary computation having both the IDS accuracy
and resource consumption in mind.

In this work, we demonstrate the functionality of our optimization framework
consisting of a simulator and an optimization engine utilizing multi-objective evo-
lutionary algorithms on two detection techniques proposed in [2]. The detection
techniques are aimed at two kinds of active attacks—the selective forwarding attack
and the delay attack. Our optimization framework provides Pareto front approxi-
mations consisting of different IDS settings with respect to three objectives—false
positives, false negatives and memory consumption. We elaborate on these IDS set-
tings found by evolution. Furthermore, we discuss various attacker strategies that
can be used by an attacker and discuss the robustness of the IDS settings found for
a specific attacker strategy in cases where another attacker strategy is used.

The contributions of this work are the following:

1. We provide a complex optimization framework for optimization of IDSs for
WSNs. Various multi-objective evolutionary algorithms (NSGA-II, SPEA2,
IBEA) can be used for optimization. The optimization framework can be eas-
ily extended to solve another optimization issue in WSNs.

2. We demonstrate the functionality of the optimization framework through exten-
sive experiments on detection techniques detecting two different attacks—
selective forwarding and delay attack.

3. We discuss and evaluate various attacker strategies. The IDS is optimized for six
different attacker scenarios. Robustness of optimized IDS settings for each of the
attacker strategy is evaluated on every other attacker strategy.

The chapter is organized as follows. In Sect. 3, we present our intrusion detection
system and describe detection techniques used to detect the selective forwarding
attack and the delay attack. Our optimization framework utilizing evolutionary algo-
rithms and the metrics we use to compare resulting populations are described in
Sect. 4. Various attacker strategies that can be used by an attacker are discussed in
Sect. 5. In Sect. 6, we specify the settings of the evaluated IDS and of the experi-
ments. Also, our test caseWSN is presented. Experiment results are elaborated upon
in Sect. 7. Related work is discussed in Sect. 2 and the chapter is concluded in Sect. 8.
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2 Related Work

The related work is divided into two parts. First, we discuss related detection tech-
niques for WSNs. Second, we discuss computational intelligence-based solutions
for IDSs in WSNs.

2.1 Selective Forwarding and Delay Attacks

Selective forwarding attack has been among the most discussed attacks in WSNs
during recent period. Karlof and Wagner [3] introduced selective forwarding attack
in WSNs and discussed the possibilities of an attacker to place a malicious sensor
node on a path between data source and base station. da Silva et al. [1] defined a
“retransmission rule” as listening to a packet by an IDS whether it was forwarded
by monitored sensor node or not. Krontiris et al. [4] set a threshold value for the
percentage of packets dropped to 20%. Another proposals of detection techniques
for selective forwarding attack where the parameter setting is left unresolved can
be found, e.g., in [5, 6]. To the best of our knowledge, no work has been published
on such a complex parameter optimization for collaborative detection of selective
forwarding attack.

The delay attack detection has not been discussed very much. da Silva et al. [1]
defined a “delay” rule as a timeout beforewhich a retransmission bymonitored sensor
node has to occur. Liu et al. [7] used the forwarding delay timemeasurement for their
complex insider detection technique but its parametrization was left unresolved. To
the best of our knowledge, we are the first who present a complex collaborative
detection technique aimed at the delay attack detection.

2.2 Computational Intelligence-Based Solutions

A fewpapers utilize computational intelligence-based solutions to secureWSNswith
IDSs.

Khanna et al. used single-objective evolutionary algorithms for several optimiza-
tion issues inWSNs [8–10]. In [8], the authors aimed at minimizing power consump-
tionwhilemaximizing the coverage and exposure by switching the sensor nodes to the
following states: (1) inactive sensor node; (2) active sensor node; (3) cluster-head;
and (4) inter-cluster router. In [9], Khanna et al. presented an approach on a WSN
deployment how it can be optimized dynamically and considered from the security
point of view as well. The authors considered deployment of cluster-heads and inter-
cluster routers allowing encryption and authentication, respectively. Finally, in [10],
Khanna et al. incorporated local monitoring nodes into the network that observed
suspicious behavior like data message patterns, message collisions and sensor
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positioning in their neighborhood. An IDS placement problem was addressed by
adding evaluation of local monitoring nodes to the fitness function used in [9]. In all
papers [8–10], all the objectives were blended into a single fitness function.

To the best of our knowledge, Heady et al. were the first introducing
evolutionary algorithms to the area of IDSs for wired networks and the work of
Khanna et al. [10] is the only work on optimization of IDSs [11] using evolutionary
algorithms for WSNs except of our IDS optimization framework. We introduced
multi-objective evolutionary algorithms to IDS in WSNs in [12].

Several works on another metaheuristics utilized for IDSs inWSNs can be found.
Banerjee et al. [13, 14] used swarm intelligence—ant colony—for localization of
the source of intrusion. The ants traverse the sensor nodes via edges that connect
the neighboring sensor nodes. Adjacent sensor nodes with maximum number of
violations represented as pheromone are preferred. When an ant visits an edge, the
application of the local update rule makes the edge pheromone level diminish to
the edge becoming less attractive. Mukherjee and Sen [15] detect intentionally sent
erroneous data on the base station using neural networks. A hierarchical network is
assumed where non-leaf sensor nodes aggregate data from their descendants. The
neural networks predict the sensed data of a node N , provided the data reported by
neighbors of the node N are given.

3 Intrusion Detection

Sensor nodes are vulnerable devices given by the nature of wireless communication
and because of other limitations. They are usually deployed in open or even hostile
environments where they can be easily manipulated or even stolen by an attacker. In
order to keep their price low and to consume little energy, the nodes consist usually of
a simple hardware where some conventional security countermeasures are unusable.
Furthermore, a typical sensor node is not tamper resistant.

Attackers on WSNs can be categorized into two following classes [3, 16]:

1. Passive attacker uses his own device to listen on the ongoing communication to
obtain sensitive data without any manipulation of the traffic within the WSN.

2. Active attacker uses his own device to disrupt the functionality of the WSN,
manipulates the content of the ongoing packets, drops the packets, presents a
fake identity to other sensor nodes or jams legitimate transmissions.

While passive attacks can be prevented by encryption, intrusion detection systems
(IDSs) are used to detect some kinds of active attacks. In this chapter, we focus on
distributed IDSs [1] where sensor nodes themselvesmonitor the overall network area
by promiscuous listening on the transmissions among their neighbors.

We demonstrate the usability and benefits of IDS optimization using evolutionary
computation forWSNs to detect selective forwarding and delay attacks. The descrip-
tion of these attacks and of our detection techniques proposed to detect these attacks
follows.
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3.1 Selective Forwarding Attack

Selective forwarding is one of themostwidely discussed attack inWSNs [1, 3–7, 17].
When performing a selective forwarding attack, an attacker inserts amalicious sensor
node into a WSN, where this node is believed as legitimate by the other (benign)
sensor nodes. Once becoming a participant in packet routing, such amalicious sensor
node can easily drop all the packets routed via itself (blackhole attack [3]) or can
forward them selectively based on their contents, sensor measurements, source IDs
or just randomly. Various attacker strategies are discussed in Sect. 5.

3.2 Delay Attack

The prerequisites for the delay attack are similar as for the selective forwarding
attack—a malicious sensor node has to become a member of a routing tree in a
WSN. Consequently, instead of dropping, the packets are intentionally delayed but
finally forwarded. This kind of attack is aimed at time sensitive applications for
WSNs where the delivery time of the packets to the BS is of a crucial importance.
Such applications involve fire detection, people or animal movement detection and
others. The same attacker strategies as for the selective forwarding attack can be
applied for the delay attack.

3.3 Detection Techniques

We use distributed detection [1] where the IDS runs on each sensor node deployed in
a WSN. Thus, the entire network area can be monitored to detect malicious behavior
by sensor nodes themselves. However, this approach requires additional resources
(e.g., memory and energy).

We provide two approaches of distributed detection:

1. Non-collaborative detection—noadditional communication among the IDSnodes
is required.

2. Collaborative detection—IDS nodes collaborate on the decision about monitored
sensor nodes using exchange of voting packets.

We use the following notations to explain the functionality of the IDS [18]:

Notation 1 The set A = {a1, . . . , anm } is a set of all malicious nodes in a network.

Notation 2 The set C = {c1, . . . , cnb } is a set of all benign nodes in a network.

Notation 3 The function x :N → N takes a sensor node index as an argument, and
returns a number of the neighbors that consider this node benign.
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Notation 4 The function y :N → N takes a sensor node index as an argument, and
returns a number of the neighbors that consider this node malicious.

Notation 5 The function n :N → N takes a sensor node index as an argument, and
returns a number of the neighbors of this node.

Notation 6 The function m :N → N takes a sensor node index as an argument, and
returns the amount of memory (in bytes) used by an IDS on this node.

Neighbor bk ∈ C ∪ A of a node c j ∈ C is each node such that c j overheard at
least one packet from bk since the beginning of the WSN operation time.

Monitored neighbor bl ∈ C ∪ A of a node c j ∈ C is such a neighbor of the node c j
that the IDS running on the node c j collects the statistics of the packet forwarding of
the node bl . The selection process for the set of the monitored neighbors is described
in Sect. 3.4.

Solution s is a specific configuration of the IDS in a form of a detection technique
and specific values given to each of the parameters used by that technique.

Ranges of values of IDS parameters discussed in the following text are then
discussed in more detail in Sect. 6.3.

3.4 Non-collaborative Detection of Selective Forwarding
Attack

In [12], we evaluated multi-objective evolutionary algorithms (MOEAs) on a simple
IDS detecting selective forwarding attack. An IDS was running on each sensor node
and continuously monitoring its own sent and also overheard packets addressed
to all monitored sensor nodes whether they were forwarded or dropped by those
monitored sensor nodes. Since the collaborative version used for the experiments is
an extension of the non-collaborative version, we first describe the functionality of
the non-collaborative version.

The basic principle is illustrated in Fig. 1. The black dots represent sensor nodes
that are placed within communication range of sensor node bi ∈ C ∪ A and, thus,
can monitor bi for selective forwarding attack. However, the number of monitored
neighbors is limited to p1 (max monitored nodes), not only due to memory reasons—
the IDS can have incomplete information about furthest neighbors (the IDS nodes
can be interfered, far from the monitored node or hidden behind an obstacle) causing
additional false positives. Thus, each IDS monitors at most p1 nearest neighbors
(according to received signal strengths). The arrows represent routing directions of
the packets—bi forwards all received packets to a parent node b j ∈ C ∪ A. The IDS
maintains a table, where each of p1 rows corresponds to a certain monitored node.
The table contains the number of packets received (PR) and forwarded (PF) by each
monitored node.

The IDS stores all overheard packets addressed to all monitored neighbors in a
single buffer limited to p2 packets (buffer size). Each time a packet P addressed to
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Fig. 1 Non-collaborative
intrusion detection

a monitored node bi is overheard by the IDS, the PR counter of bi is incremented
and packet P stored in the buffer. Once the node bi forwards the packet P , the IDS
increments PF of the node bi and packet P is removed from the buffer. In case the
packet P is being the oldest one and the buffer is full, it is removed from the buffer
without incrementing the PF counter.

Finally, during the evaluation phase, a sensor node bi is considered as attacker by
the IDS node if two following conditions hold:

1. The IDS node has overheard (or sent) at least p3 packets (min received packets)
addressed to bi .

2. The ratio of forwarded and received packets (PF/PR) is lower than p4 (detection
threshold).

Objective function 1The number of false negatives ( f n) of a solution s is calculated
as follows:

f n(s) = 1

|A| ∗
∑

ai∈A

x(ai )

n(ai )
. (1)

The values of f n range from 0 to 1. If every malicious node in the network is
correctly detected by all its neighbors, f n is equal to 0 and if none of malicious
nodes is detected by any of its neighbors, f n equals to 1.

Objective function 2 The number of false positives ( f p) of a solution s is calculated
as follows:

f p(s) = 1

|C | ∗
∑

ci∈C

y(ci )

n(ci )
. (2)

The values of f p range from 0 to 1. If every benign node in the network is
considered benign by all its neighbors, f p is equal to 0 and if all benign nodes are
considered malicious by all its neighbors, f p equals to 1.

Objective function 3 The consumed memory (mem) in a solution s is calculated as
follows:
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mem(s) = 8 ∗ p1 + 16 ∗ p2, (3)

8bytes are required for every monitored neighbor (4 bytes for node ID, 2 bytes
for PR counter and 2 bytes for PF counter) and 16 bytes are required for one slot
in the buffer (4 bytes for source address, 4 bytes for receiver address, 4 bytes for
destination address in a case of multiple base stations in the WSN and 4 bytes
for unique ID of a packet). The memory demands come from our real security
middleware (“WSNProtectLayer” for WSN [19]).

The values ofmem range from 0, where the IDS is potentially switched off, to 288
bytes for our upper bounds of p1 = 30 and p2 = 3 used for the selective forwarding
attack. For the delay attack, the upper bounds of p1 = 30 and p2 = 10 results in
the maximum memory consumption of 400 bytes. The upper bound of p1 (max
monitored nodes) is based on our experiments. There is no significant improvement
of any of the objectives with p1 higher than 30. See Sect. 7 for more details. The
upper bounds of p2 (buffer size) are based on throughput analysis in the simulator.

3.5 Collaborative Detection of Selective Forwarding Attack

Collaborative detection of the selective forwarding attack that we first presented in
[2] is an extended version of the non-collaborative detection discussed in Sect. 3.4.
The idea behind the collaborative approach basically comes from [4] regarding to
voting scheme and time windows. However, we enriched the collaborative approach
presented in [4] by parameters “voting threshold” and “minimum received votes”.

The monitored nodes are not evaluated by the IDS nodes at the end of the simula-
tion. Instead, the simulation time is divided into windows of size p5 (time window).
The time windows are of the same fixed size among all the IDS nodes, but they are
asynchronous—the first window of each IDS node is started randomly within the
time interval of p5. At the end of each time window, all monitored neighbors are
evaluated by the IDS node and if an attack was detected, a voting process can be
executed.

An example situation is depicted in Fig. 2. IDS node ck monitors (among others)
node bi and detected too many packets dropped by bi in a time window marked
as “Attack!” in Fig. 3. This decision is based on the same principle as for the non-
collaborative IDS discussed in Sect. 3.4. Since this time, IDS node ck considers a
node bi malicious “locally”—still no alert is produced.

Then, the decision of the node ck is checked with all neighbors of ck . Thus,
ck broadcasts a voting request to its neighbors (arrows from ck in Fig. 2 point the
neighbors of ck that can also monitor node bi ). Each of the asked nodes that also
monitors node bi answers at the end of its own time window. If an asked IDS node
considerbi an attacker (either just locally or globally), it answers positively, otherwise
negatively. Node ck waits the following timewindow to collect the responses. Finally,
the monitored node bi is considered an attacker “globally” by ck and ck produces an
alert if two following conditions hold:
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Fig. 2 Collaborative intrusion detection

Fig. 3 Time windows. Since the end of the window in which the attack was detected, node ck
always votes positively about node bi . Node bi can be globally considered malicious by ck since
the end of window following the one in which the attack was detected if the voting result is positive

(i) At least p6 votes (min votes received) were received.
(ii) The ratio of positive and all responses is at least p7 (voting threshold).

Malicious nodes can falsely report to the IDS nodes to defend another malicious
node. We consider this to be an specific attacker strategy that is discussed in Sect. 5.

Objectives We use the same three objectives as in Sect. 3.4.

3.6 Collaborative Detection of Delay Attack

Time related attacks result in long delays and traffic imbalance [20]. We believe that
a WSN should guarantee the delivery time for some applications (e.g., movement
monitoring or fire detection). In [1], the delay detection rule is defined as follows:
“The transmission of a message by a monitor’s neighbor must occur before a defined
timeout”. We adapt this rule to our IDS detecting delay attack.

A technique that is similar to that one used for the selective forwarding attack can
be extended to detect intentional delays. Using the buffering technique discussed
above, a packet can finally be considered forwarded even though some malicious
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node delayed its transmission. If the size of the buffer is not exhausted, the monitored
packet can be stacked in the buffer for a long time and finally forwarded by the
monitored neighbor with a big delay before being removed from the buffer by the
IDS. Thus, such a packet is undetected for selective forwarding attack, yet useless
for a base station if real-time sensing is required.

An important issue to consider is how long the IDS should wait until the packet is
considered delayed and howmany packets have to be delayed to consider amonitored
neighbor as a delay attacker. We suggest to assign a time attribute to each of the
buffered packets. If a predefined timeout passes, the packet is considered delayed.
As for the selective forwarding attack, an alert is produced when p5 time units pass
and the ratio of delayed packets is higher than p4. In such a case, themajority voting
scheme is applied for a decision about the delay attack.

Our detection technique of the delay attack was proposed in [2] and is evaluated
thoroughly in this chapter. The detection technique extends the selective forwarding
attack detection specified in Sects. 3.4 and 3.5. Aswe focus on collaborative detection
in this chapter, we do not consider non-collaborative detection of the delay attack.
We incorporate another parameter p8 (delay timeout) that is a timeout when a packet
in the IDS buffer is marked as delayed.

Objectives We use the same three objectives as in Sect. 3.4.

4 Computational Intelligence-Based Optimization

In this section, we present our optimization framework that was designed in [18].
The optimization framework consists of two main components: a network simulator
and an optimization engine. The simulator is used for evaluation of the candidate
solutions (in a form of IDS configurations) that were designed by the optimization
engine. Based on the simulation results in a form of metrics described in Sect. 3.4
(false positives, false negatives, memory), the optimization engine produces a new
generation of solutions.

We enhance the optimization framework to easily distribute the computation of the
individuals in each generation to multiple computers using BOINC (Berkeley Open
Infrastructure for Network Computing) distributed computing platform [21] and to
use MOEAs. The efficiency of MOEAs for the problem of IDS optimization for the
WSNs was evaluated in [12]. Also the MOEAs configuration issue was addressed
there. The findings are utilized in this work.

4.1 Simulator

We use the MiXiM simulator [22] that is based on OMNeT++ simulation platform
[23]. The selection of the simulator is based on our previous results on the comparison
of various simulators with the reality [24].MiXiM is a discrete event simulator with a
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good support of wireless channel modeling and support of all communication layers
of the current sensor nodes.

However, as we showed in a previous work [24], a proper calibration of all the
models is required to obtain sufficiently accurate results. The wireless channel model
is based on a log normal shadowing [25] that is widely used for wireless communi-
cation modeling. Two parameters of the model has to be set up according to modeled
environment. The values of the parameters can be either based on measurements of
wireless signal propagation in the target area or based on recommended values for
target environment type [25]. For experiments in this chapter, we use recommended
values for an outdoor environment (path loss exponent equals to 2 and standard devi-
ation of the attenuation equals to 2). All simulated sensor nodes transmit packets with
power equals to −25dBm (transmission level 3 of TelosB [26] sensor nodes). See
[24] for more information about our calibration approach or [25] for the theoretical
background.

4.2 Evolutionary Algorithms

We found evolutionary algorithms to be a very efficient metaheuristic solving opti-
mization of the IDS forWSNs. As we showed in [12], optimal or near-optimal results
can be found in a feasible time. For a problem solved in this chapter, we are not able to
compute exhaustive search even with the computational grid we have at our disposal.
Thus, we compare the results found by evolution with much more time demanding
sampling.

In our early work [18], we used single-objective evolutionary algorithms, where
a fitness function blending all three objectives with user-specified weights had to be
defined. The main disadvantage was the amount of required experience in weight
definition. If the network operator wanted to change the weights, the optimization
process had to run again. Thus, based on [12], we recommend to use multi-objective
evolutionary algorithms (MOEAs) that eliminate the mentioned problem.

Using MOEAs, the network operator can choose any IDS setting from the Pareto
front1 [27] approximation and change the selection to another optimized one any time
according to current requirements. Based on results from [12], where we evaluated
48 different MOEA’s configurations for two widely used algorithms—NSGA-II [28]
andSPEA2 [29],we configure the evolution as follows in this chapter: The population
consists of 200 individuals, 200 generations are computed, probability of multi-point
crossover is 0.5 for all experiments. Mutation probability of each parameter is 0.01
or 0.25 for results marked as “Evo #1” and “Evo #2”, respectively. If mutation is

1Pareto front is a set of non-dominated solutions with respect to all objectives. Thus, a network
operator can easily choose between a solution A with a better IDS accuracy but higher resource
consumption or solution B with a worse IDS accuracy but lower resource consumption. Solution
C, that is dominated by A and B in all objectives is dominated and, thus, is not a member of the
Pareto front.
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performed, the value is shifted randomly within the interval of 10% of the overall
parameter range. NSGA-II is used in all experiments.

Performance Metrics Since we are not able to compare the Pareto front approxi-
mations found either by sampling or by evolution with the true Pareto front, we use
two metrics to mutually compare the different optimization strategies. These metrics
are also used to compare the IDS performances across different attacker strategies.

1. Hyper-volume indicator [27, 30]—Hyper-volume indicator is given by the cal-
culation of a volume of the objective space that is dominated by evaluated Pareto
front approximation. A reference point R that is dominated by each solution in
the Pareto front approximation has to be established—as an upper bound of each
of the objectives. The reference point serves as an upper bound of the dominated
objective space for the volume calculation. Minimal values of the coordinates of
the point R are maximal values of each of the objectives across the population of
the evaluated Pareto front approximation.
In all our experiments where the hyper-volume indicator is calculated, we nor-
malize the objective functionmemory dividing its output by its upper bound (288
for the selective forwarding attack and 400 for the delay attack). The results of the
normalized memory function range from 0 to 1. The value of the reference point
is established to: R = [1, 1, 1] for all calculations of the hyper-volume indicator
in this work to enable mutual comparisons.
The value of the hyper-volume indicator ranges between 0 (potential unrealistic
worst single solution of the IDS setting in the Pareto front approximation consum-
ing all possible memory in spite of evincing the values of false positives and false
negatives equal to 1) and 1 (potential unrealistic ideal single solution of the IDS
setting in the Pareto front approximation consuming no memory and evincing the
values of false positives and false negatives equal to 0).
We use the software presented in [31] to calculate the hypervolume-indicator.

2. Coveragemetric [32]—Coveragemetric enablesmutual comparisonof twodiffer-
ent Pareto front approximations. It is used to calculate the percentage of solutions
found in the Pareto front approximation A that are not dominated by any solution
found in the Pareto front approximation B, and vice versa.
The value of the coverage metric when calculating percentage of solutions in A
dominated by solutions in B ranges from 0% when none of the solutions in A is
dominated by any solution in B to 100% when each solution in A is dominated
by at least one solution in B. Note that if a mutual comparison is required, we
also have to calculate the percentage of solutions in B dominated by solutions in
A resulting in two numbers all together as the coverage metric output.

3. Number of simulations—Since the evaluation of each individual by simulator is
time demanding (approx. 5–8min), we also provide a number of simulation runs
needed within the whole optimization process.

4. Number of non-dominated solutions—This metric denotes the number of non-
dominated solutions in the resulting Pareto front approximation.
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5 Attacker Strategies

The aim of this section is to elaborate on the strategies an attacker can take to
efficiently selectively forward or drop the packets. We also discuss the impact of
each of the strategy on the IDS performance. Furthermore, we provide a set of
recommendations with respect to corresponding attacker strategies for a network
operator before setting up the IDS optimization process.

We divide the concepts of attacker strategies into the three following categories:

1. Attacker behavior—content-based selection, ratio of dropped and all received
packets by a malicious node, malicious voting.

2. Deployment of malicious nodes—strategy of malicious sensor nodes deployment
in a WSN.

3. Number of deployed malicious nodes—ratio of malicious and all sensor nodes in
a WSN.

Note that if only the selective forwarding attack is discussed in the following text,
the attacker strategy for the delay attack would be equivalent. The only difference
would be that selected packets on malicious nodes are delayed instead of being
dropped.

5.1 Attacker Behavior

A malicious sensor node can take various strategies w.r.t. the decision whether a
packet should be forwarded or not. In the ultimate case, all the packets can be dropped
by a malicious node ai ∈ A, effectively changing the selective forwarding attack to
a blackhole attack [3]. However, the blackhole attack can be easily detected either
by our distributed IDS running on the neighboring sensor nodes (dropping ratio
higher than any value of the detection threshold p4 is detected). Furthermore, the
base station not receiving any packets from such sensor node ai and also from all the
descendants of the ai can easily detect the attack.

We discuss different approaches of the selection of the packets to be dropped that
an attacker can use to decrease the probability of being detected. Furthermore, we
discuss impacts of malicious voting.

DroppingRatioRandomdroppingwith a given ratio is probably themost simpleway
of selective forwarding attack. The attacker specifies the percentage s1 of dropped
packets by a malicious node ai ∈ A as the only parameter for the random dropping.
Consequently, the packets that should be forwarded by ai are dropped with the
probability s1.

Recommendation for the IDS We recommend usage of the collaborative version of
the IDS optimized for a target WSN as discussed in Sect. 3. A network operator



112 M. Stehlik et al.

decides carefully on the minimum percentage s1 of the packets dropped by the sen-
sor nodes that is considered unacceptable. Such a dropping rate is to be set up for all
the simulated malicious sensor nodes. The optimization process adapts all the IDS
parameters, particularly the parameter p4 (detection threshold), taking into account
also packet losses caused by interference, congestion and other aspects of the unre-
liable wireless communication. When such an optimized IDS is used in a real WSN
and any malicious (or malfunctioning) sensor node drops packets with even a higher
frequency, then such sensor node is detected even more reliably. In the other case, if
the dropping ratio of a monitored node is lower, the selective forwarding attack may
not be detected because such a behavior is considered acceptable.

Dropping in Bulk Another behavior of a malicious node ai ∈ A can be dropping
the packets in a bulk. It means that all or some percentage s1 of the packets can be
dropped by ai , but only within specific time intervals with a minimum length of s2
seconds for each of them. This strategy can be used to suppress transmitted packets
during some specific sensitive period (e.g., dropping packetswhile a physical attacker
is approaching the area of a WSN that detects people movement and protects some
environment against unauthorized access).

Recommendation for the IDS We recommend to set up the parameter p5 (time win-
dow) of the IDS to the length of s2

2 at maximum for theminimum length of the interval
s2 seconds that is considered unacceptable. This countermeasure ensures that all the
IDSs in the neighborhood of the malicious sensor node ai have a chance to detect
dropping (if it is higher than p4—detection threshold) within a single timewindow—
not decreased by a non-attacking phase of the malicious node ai . If such an upper
bound for the parameter p5 is set up during the optimization, the other IDS parame-
ters are optimized accordingly—particularly the parameter p3 (minimum received
packets) depends on the length of the time window. Note that both recommendations
for the dropping ratio and the dropping in bulk complement each other.

Content Based Dropping A malicious node ai ∈ A can drop the packets based
on their contents distinguishing important and non-important packets. To give an
example of such a situation, the important packets can inform the base station about
the presence of an intruder while the non-important packets can be periodically
sent “still-alive” packets informing the base station that the sensor nodes are in an
operation mode.

Recommendation for the IDSWe recommend to extend the IDS by a separate buffer
and table for such important packets—a monitoring node will separately monitor
important and non important packets. This would mean additional requirements
on the amount of memory consumed by the IDS (approx. doubled). However, the
optimization process is analogous for both types of the packets. The definition of
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the malicious behavior in the context of the dropping ratio and the dropping in bulk
discussed above is left to the network operator for both types of the packets.

Source Based Dropping A malicious node ai ∈ A can drop the packets based on
their source addresses in order to drop packets from, e.g., some specific location.

Recommendation for the IDS In some cases, we believe that such a selective dropping
based on the source address can be detected without any changes of the IDS func-
tionality. However, the network operator should consider the impact of the selective
forwarding based on the source address on the overall percentage of dropped packets
by the monitored sensor node. Maintaining separated IDS buffers and tables for each
source address can increase the sensitivity of the IDS on such source based dropping
at the cost of increased memory consumption.

Delay IntervalWhen a delay attack is executed, a malicious node ai ∈ A can delay
the packets (by any strategy discussed above) for a fixed timeout d1 seconds or
randomly within interval 〈d2, d3〉 seconds.
Recommendation for the IDS A network operator should decide carefully on the
minimum timeout d1 of packets delayed by the sensor nodes that is considered
unacceptable. Such a delay timeout is to be set up for all the simulated malicious
sensor nodes. The optimization process adapts all the IDS parameters, particularly
the parameter p4 (detection threshold) and the parameter p8 (delay timeout), taking
into account also packet losses caused by interference, congestion and other aspects
of unreliable wireless communication. When such an optimized IDS is used in a
real WSN and any malicious (or malfunctioning) sensor node delays packets with
even a higher frequency or a longer timeout, then such sensor node is detected even
more reliably. In the other case, if the dropping ratio of a monitored node is lower
or the delay timeout is shorter, the delay attack may not be detected because such a
behavior is considered acceptable.

Malicious Voting A malicious node(s) can falsely vote for benignity in order to
defend another malicious node.

Recommendation for the IDSConsidering such attack on the IDS, a network operator
should adjust p7 (voting threshold). For example, if it is assumed that up to 20% of
neighbors can be malicious, the voting threshold should be lower than 0.8 because
up to 20% neighbors vote falsely for benignity. The precise value of the voting
threshold is subject of the optimization and consequently preferences—there is a
trade-off between false positives and false negatives.

5.2 Deployment of Malicious Nodes

An attacker can deploy malicious sensor nodes into a WSN in specific “patterns”
[33, 34]. However, in most papers, the deployment strategy of the sensor nodes into a
WSN is left unresolved [5, 17] or the placement of malicious sensor nodes is selected
randomly [4, 6, 7].
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Fig. 4 Topology of the
evaluated WSN for the
random attacker strategy.
The sensor nodes are
represented by circles while
the base station is
represented by the red
diamond. The black circles
represent malicious sensor
nodes for the scenario with
2% malicious sensor nodes
and together with the gray
circles for the scenario with
10% malicious sensor nodes
(color figure online)

Influence of several realistic malicious nodes deployment strategies on the IDS
performance is discussed in this subsection. It might be impossible for the network
operator to predict the attacker deployment strategy. Thus, the impact of all discussed
attacker strategies on the IDS parametrization is evaluated in Sect. 7 to give a clue
how themalicious sensor nodes can be deployed in the simulations to obtain as robust
IDS parameters as possible.

Random Attacker Strategy The random attacker strategy is the most widely con-
sidered strategy by IDSs for WSNs [4, 6, 7]. In this approach, the malicious sensor
nodes are inserted into the WSN on random positions. However, we assume this
attacker strategy being far from the behavior of a real attacker in most cases. An
attacker can have access to or may be interested in only a specific part of the envi-
ronment. However, this attacker strategy can be utilized for IDS optimization. If a
sufficient number of sensor nodes is considered, the random deployment can cover
different places (close or far from the base station, with sparsely or densely deployed
sensor nodes, etc.) at the same time.

We parameterize this attacker strategy by a percentage of nodes controlled by an
attacker by s3. In Fig. 4, we give an illustration of the random attacker strategy that
we evaluate in Sect. 7.

Center Drop Attacker Strategy The goal of an attacker within this strategy is to
compromise sensor nodes surrounding the base station. Alternatively, an attacker can
choose an arbitrary target place in the WSN and compromise its surrounding sensor
nodes.
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Fig. 5 Topology of the
evaluated WSN for the center
drop attacker strategy. The
sensor nodes are represented
by circles while the base
station is represented by the
red diamond. The black
circles represent malicious
sensor nodes for the scenario
with 2% malicious sensor
nodes and together with the
gray circles for the scenario
with 10% malicious sensor
nodes (color figure online)

In this chapter, we evaluate a situation where the sensor nodes surrounding the
base station are malicious. We parameterize this attacker strategy by s4—percentage
of themalicious sensor nodes in theWSNordered by a distance from the base station.
In Fig. 5, we give an illustration of the random topology that we evaluate in Sect. 7.

Direct Center Attacker Strategy In the direct centre attacker strategy, we consider
an attacker passing through the WSN along a line segment, reaching the base sta-
tion and leaving the WSN on the opposite direction. We assume an attacker can
compromise the sensor nodes located nearby his or her trajectory.

The percentage sensor nodes ordered by distance to the trajectory is parameterized
by s5. Our test case and an example of an attacker passing through the WSN from
left side to the right side through the base station is depicted in Fig. 6.

5.3 Number of Deployed Malicious Nodes

The number of malicious sensor nodes in the WSN can vary—based on the options
of an attacker—for each deployment strategy. In fact, parameters s3–s5 reflect the
percentage of deployed malicious sensor nodes for each of the deployment strategy.
We analyze the influence of the changed percentage of present malicious sensor
nodes from the situation during the optimization in Sect. 7.
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Fig. 6 Topology of the
evaluated WSN for the direct
center attacker strategy. The
sensor nodes are represented
by circles while the base
station is represented by the
red diamond. The black
circles represent malicious
sensor nodes for the scenario
with 2% malicious sensor
nodes and together with the
gray circles for the scenario
with 10% malicious sensor
nodes

5.4 Robustness Evaluation of Optimized Solutions
on Different Attacker Strategies

One of the contributions of this chapter is an optimization of the IDS parameters
for different attacker strategies. The problem is that the concrete malicious node
deployment cannot be reliably predicted in advance. In order to discuss the robustness
of the found optimized solutions, we evaluate the performance of optimized IDS for
a given attacker strategy against other attacker strategies in Sect. 7. We use two
approaches of the evaluation of the impact of changes in the attacker strategy on the
IDS performance, the description of which follows.

We use the following notation to explain the evaluations we performed to compare
IDSs optimized for various attacker strategies:

Notation 7 The set AS = {as1, . . . , asnas } is a set of all nas attacker strategies
evaluated in this chapter.

Notation 8 The set PF = {p f1, . . . , p fnas } is a set of all Pareto front approxima-
tions. Each Pareto front approximation p fi ∈ PF where 1 ≤ i ≤ nas was optimized
for an attacker strategy asi .

Single Pareto Front Approximation Evaluation onMultiple Attacker Strategies
For each Pareto front approximation p fi ∈ PF optimized for an attacker strategy
asi , we compute the performance of each IDS setting from p fi for all other attacker
strategies as j ∈ AS \ {asi }. This way, we evaluate the changes of the IDSs perfor-
mances optimized for a specific attacker strategy in a situationwhere another attacker
strategy operates.
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Multiple Pareto Front Approximations Evaluation on Single Attacker Strategy
For each attacker strategyasi ∈ AS, we compare the performances of the IDS settings
in all Pareto front approximations p f j ∈ PF \ {p fi } with the performances of the
IDS settings in Pareto front approximation p fi . This way, we evaluate how the IDSs
performs in a situation where another strategy operates comparing to the IDSs that
were optimized for that situation.

6 Experiment Settings

In this section, we describe experiment settings and optimization scenarios that we
use for evaluation of our IDSs. We also present the ranges of IDS parameters.

6.1 Application

The simulated WSN that we evaluate in this work is inspired by the police unit
scenario in [19]. Each sensor node sends “still alive” packets every second. These
packets can be either dropped or delayed bymalicious sensor nodes. Themain goal of
our optimization framework is to optimize the IDS for a given scenario (application,
topology, environment, etc.) and to be robust for various attacker strategies in that
environment. We do not aim to provide general IDS setting for any WSN.

One hour of the WSN operation time is simulated in all evaluations.

6.2 Topology and Routing

We build on the topology and routing same as in [12], so that we are able to com-
pare the collaborative and non-collaborative IDS results. The network consists of
250 uniformly distributed sensor nodes deployed in an area of 200m × 200m. The
average area for one node is 160m2 and the distance between two nearest neighbors
is 12.65m on average. During the simulation, a node b j ∈ C ∪ A has 41 neighbors
(nodes from which b j heard at least one packet during the simulation) on average.

The routing tree is static with longest branches of 8 hops. The topology and the
routing tree are depicted in Figs. 4, 5 and 6.

6.3 IDS Parameters and Sampling

In Table1, we summarize all eight parameters of the IDS presented in Sects. 3.4–
3.6, their maximum and minimum values. Steps and sampling values are used for
a time demanding sampling that we computed to compare the results found by the
evolution.
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Table 1 The list of IDS parameters

Name Description Range Step Sampling

p1 Maximum
monitored nodes

〈1, 30〉 1/3 3, 9, 27

p2 Buffer size 〈1, 3〉/〈1, 10〉 1 1, 2, 3/3, 6, 9

p3 Minimum
received packets

〈1, 30〉 1/5 1, 15, 30

p4 Detection
threshold

〈0.05, 0.95〉/〈0.1, 0.9〉 0.05/0.1 0.25, 0.5, 0.75

p5 Time window 〈10, 300〉 10/30 10, 150, 300

p6 Minimum
received votes

〈1, 10〉 1/2 1, 5, 10

p7 Voting threshold 〈0.1, 1〉 0.1 0.25, 0.5, 0.75

p8 Delay timeout 〈1, 5〉 1 1, 3, 5

If multiple values are presented and divided by “/”, the first values were used for the detection of
the selective forwarding attack and the second values then for the delay attack detection

Sampling In order to show that evolution can find good enough results in reasonable
time, we compared the results found by MOEAs with a true Pareto front found
using exhaustive search on multiple computers in [12]. However, we are not able to
compute all possible settings for this more complex IDS with additional parameters
even if we can run about 200 simulations in parallel in our computational cluster.
The exhaustive search would require 148,770,000 simulation runs for the scenario
with the selective forwarding attack and 2,479,500,000 for the scenario with the
delay attack if all possible settings would be evaluated. One simulation takes approx.
5–8min.

We decided to sample the search space in the following way. For each parame-
ter pi , where i ∈ {1, . . . , 7} for the selective forwarding attack and i ∈ {1, . . . , 8}
for the delay attack, we choose three carefully considered “sampling” values pre-
sented in Table1. The selection is based on experience and results obtained during
early experiments. Then, we iterate over all parameters p1, . . . , p7 for the selective
forwarding attack, respective p1, . . . , p8 for the delay attack. For each of the para-
meters, we evaluate all settings within their ranges using steps provided in Table1.
For each value of each parameter pi , we evaluate all “sampling” settings of all other
parameters. Using this approach, we reduce the number of simulations to 84,564 for
the selective forwarding attack and to 122,472 for the delay attack.

Having the set of solutions obtained from the aforementioned sampling,we extract
only those solutions that are not strictly dominated by any other solutions within this
set. We call this extracted set the Sampling Pareto front approximation. This set
is compared to Pareto front approximations found by evolutions. Note that finding
the Sampling Pareto front approximation is much more computationally demanding
than finding Pareto front approximations using evolution as discussed in Sect. 7. We
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computed the sampling for an attacker strategy with randomly deployed 5 (2%)
malicious sensor nodes for both selective forwarding and delay attacks.

6.4 Evaluated Attacker Strategies

In all experiments, the malicious sensor nodes drop randomly 50% of packets that
should be forwarded for the selective forwarding attack. For evaluation of the delay
attack, the malicious sensor nodes delay all packets within interval of 〈0, 5〉 s.
Deployment ofMalicious NodesWe optimize the IDS for six different deployments
of malicious sensor nodes for the selective forwarding attack. For each deployment
strategy (random, center drop and direct centre), we evaluate two cases: with 5
malicious sensor nodes (2%) andwith 25malicious sensor nodes (10%). All attacker
strategies are illustrated in Figs. 4, 5 and 6.

For the delay attack, we evaluate only the case with 5 (2%) randomly deployed
malicious sensor nodes due to computational time restrictions. However, the charac-
teristics that are related to overhearing the communication and to the collaborative
decision are equivalent to the selective forwarding attack that we evaluated thor-
oughly.

No “leaf” sensor node (a node that has no descendant) is malicious within the
experiments. These sensor nodes can neither perform efficiently the selective for-
warding or the delay attack (no packets are forwarded by them), nor can be detected
by any IDS node (no packets addressed to them can be overheard).

7 Experiment Results

In this section, all experiment results are presented and discussed. First, we show the
increased accuracy of the collaborative IDS in comparisonwith the non-collaborative
IDS, in the case of detecting the selective forwarding attack. Then we compare
evolution performance for selective forwarding and delay attacks with much more
time demanding sampling. Finally, we provide a mutual comparison of IDS settings
optimized for various attacker strategies.

7.1 Selective Forwarding Attack

First, we briefly compare the Pareto front approximation found by sampling for the
collaborative IDSwith a true Pareto front found for the non-collaborative IDS in [12].
Both detection techniques are evaluated in the same WSN and attacker strategy—
randomdeployment of 2%malicious sensor nodes. In Fig. 7, we showdifferent views
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Fig. 7 Sampling Pareto front approximation for the collaborative selective forwarding attack detec-
tion compared to the true Pareto front for the non-collaborative selective forwarding attack detection.
All the solutions found by sampling for the collaborative detection dominate the solutions found
by exhaustive search for the non-collaborative detection

of the optimized solutions for both detection techniques in the three-dimensional
objective space.

In Fig. 7a, we show that all sampled non-dominated solutions found for collabo-
rative IDS dominate the Pareto optimal solutions found for non-collaborative IDS.
Measuring the dominated volume of the objective space by the hyper-volume indi-
cator, we obtain 0.525 for the non-collaborative IDS and 0.5742 for the collaborative
IDS. In Fig. 7b, we show that the collaboration among the IDS nodes can significantly
decrease the number of false positives—a consensus has to be made to label a node
as attacker. A decrease of false negatives is caused by dividing the monitoring time
into smaller windows, where, in each of them, a potential dropping can be detected.
In Fig. 7c, d, we can see that higher memory consumption caused particularly by a
higher number of monitored neighbors decreases false negatives on one hand (more
neighbors being monitored means also higher number of truly recognized malicious
nodes), but increases false positives on the other hand (if a neighbor is not monitored,
it can neither be labeled as malicious one truly, nor falsely).

As we shown, the collaborative approach provides better IDS results even though
we are not able to evaluate the whole search space. However, the collaborative IDS

2As shown below, evolution can improve the results farther.
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requires a communication overhead. Nevertheless, we would like to emphasize that
the overhead is not significant—at least for our simulated application. Each sensor
node ck ∈ C initiates the voting scheme at most once for each monitored neighbor
bl ∈ A ∪ C during the whole WSN operation time. Each neighbor ci ∈ C of the ck
has to answer to the voting request if the bl is also monitored by the ci . Sensor
nodes monitor 30 neighbors at most and are monitored by at most 30 neighbors on
average. That means that ck initiates 30 voting request at most in case all monitored
neighbors are suspicious. The average sensor node ck has to answer on 30 voting
requests (but only in the unrealistic worst case—only if it also monitors the sensor
node in the request) on average for each of 41 neighbors (see Sect. 6.2 for more
details). The overall overhead would be 1260 packets sent by each IDS node in such
very unrealistic worst case. Note that the sensor nodes in a distance of one hop from
the base station forward approx. 2500 packets during only one hour of the operation
time of the WSN.

Evolution can speedup the process of finding solutions that are similar or even
dominate the solutions found by the sampling. We present results of two multiob-
jective evolution runs (marked as “Evo #1” and “Evo #2”). The evolution settings
are described in Sect. 4.2. The solutions found by the evolution compared to those
found by sampling are depicted in Fig. 8.

In Table2, we present results of all four metrics for each of the optimization
process. We can see that both evolution runs outperforms the sampling according to
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Table 2 Performance metrics of the optimization of the selective forwarding attack

Hyper-
volume

Coverage Simulations Solutions

Evo #1 Evo #2 Sampling

Evo #1 0.577 – 65% 100% 13,502 144

(94/144) (144/144)

Evo #2 0.583 82% – 98% 23,558 153

(126/153) (150/153)

Sampling 0.574 22% 19% – 84,564 201

(45/201) (39/201)

Hyper-volume indicator—result of the hyper-volume indicator for each optimization process. Cov-
erage metric—for each Pareto front approximation in a row, the values specify the number of found
solutions that are not dominated by any solution within the result set of Pareto front approxima-
tion specified in the column. Number of simulations—number of simulation runs within the whole
optimization process. Number of non-dominated solutions—number of resulting non-dominated
solutions

the hyper-volume indicator. Measuring the performance by mutual coverage of the
solutions, we can see that solutions found by the evolution runs dominate nearly all
solutions found by the sampling. However, we were able to find several solutions that
have a lower number of false negatives using the sampling than any solution found
by the evolution (see Fig. 8b). The process of optimization by the evolution was less
timedemanding as declare the numbers of required simulations.More non-dominated
solutions were found by the sampling. We recommend to use a larger population size
to obtain higher number of non-dominated solutions, if needed. However, since the
solutions are well spread through the objective space (see Fig. 8), we do not consider
the lower number of found non-dominated solutions as an important disadvantage.

IDS Parameters Discussion We discuss the IDS parameters of the solutions found
by “Evo #2” as its Pareto front approximation evinces best performance.

In the resulting set of solutions, we can find nearly all possible settings of the p1
(max monitored nodes) equally distributed. The values absolutely correlate with the
objective function 3—memory consumption, since all solutions found use a buffer
size (p2) equaled to 1.No other parameter influences thememory consumption. Thus,
the impact of the maximum number of monitored neighbors on the IDS performance
can be directly observed in Fig. 8 (the axis “Memory”). W.r.t. the buffer size—we
can find several solutions having the buffer size equaled to 2 in all attacker strategies
except for the random one (see Sect. 7.3 for other evaluated strategies). Some of
the malicious sensor nodes requires bigger buffer size due to being close to the BS
encountering higher traffic.

The values of the min received packets (p3) varies between 1 and 11 (5.07 on
average). The values of the detection threshold (p4) varies between 0.45 and 0.55
(0.504 on average), the time window (p5) between 43 and 294 s (210 s on average),
the minimum received votes (p6) between 1 and 7 (2.79 on average) and the voting
threshold between 0.28 and 0.99 (0.86 on average).
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7.2 Delay Attack

In this section, we present non-dominated results for the detection of the delay attack
found both by the sampling and evolution. In Fig. 9, we compare the performance of
the IDS settings found by both the evolution and the sampling in the objective space.
The number of non-dominated solutions found by sampling is reduced comparing to
the selective forwarding attack. It may be caused by the fact that we are not able to
compute such “dense” sampling—the search space ismuch larger (see Table1). Since
the basic principle of the delay attack detection is similar to the selective forwarding,
we can observe similar patterns of the Pareto front approximations. Main difference
is higher memory consumption needed to obtain comparable false negatives. This is
caused by a need of storing the packets in the IDS buffer for longer time.

In Table3, we can see that the evolution provides better results than the sampling
w.r.t all the metrics—similarly to the selective forwarding attack.

IDS Parameters Discussion Such as for the selective forwarding attack, results
found by “Evo #2” are discussed for the delay attack.

The number of max monitored nodes (p1) varies between 1 and 24 (15.9 on
average). The buffer size (p2) varies between 1 and 9 (2.3 on average) and only the
solutionswith p1 higher than18 requiresmore than3 slots in the buffer. Theparameter
min received packets p3 evinces values between 1 and 8 (2.2 on average). The values
of the detection threshold (p4) varies between 0.07 and 0.64 (0.38 on average).
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Table 3 Performance metrics of the optimization of the delay attack

Hyper-
volume

Coverage Simulations Solutions

Evo #1 Evo #2 Sampling

Evo #1 0.604 – 61% 97% 13,539 118

(72/118) (115/118)

Evo #2 0.625 79% – 99% 23,953 141

(112/141) (139/141)

Sampling 0.582 22% 14% – 122,472 139

(30/139) (19/139)

Hyper-volume indicator—result of the hyper-volume indicator for each optimization process. Cov-
erage metric—for each Pareto front approximation in a row, the values specify the number of found
solutions that are not dominated by any solution within the result set of Pareto front approxima-
tion specified in the column. Number of simulations—number of simulation runs within the whole
optimization process. Number of non-dominated solutions—number of resulting non-dominated
solutions

Note that the behavior of the malicious nodes is different to the selective forwarding
attack—the malicious nodes delay randomly all packets within the interval 〈0, 5〉.
The values of time window (p5) varies between 55 and 295s (131s on average),
the minimum received votes (p6) varies between 1 and 2 (1.23 on average) and the
voting threshold varies between 0.17 and 0.99 (0.77 on average). The delay timeout
(p8) was set to 1 s in each solution—packets forwarded by benign node are usually
transmitted within this timeout in our test case.

7.3 Robustness Evaluation

Various attacker strategies discussed in Sect. 5 are evaluated in this section. Their
settings was presented in Sect. 6.4. We label each of the evaluated case “Random
2%/10%”, “Centre 2%/10%” and “Line 2%/10%” for the random, the center drop
and the direct centre attacker strategy, respectively. The numbers denote the per-
centage of malicious nodes in the network. All Pareto front approximations were
computed using NSGA-II set up according to “Evo #2”. We compare all the results
using hyper-volume indicator.

Single Pareto Front Approximation Evaluation onMultiple Attacker Strategies
Table4 summarizes all performances of the IDS settings in Pareto front approxima-
tion p fi optimized for an attacker strategy asi specified in a row in another attacker
strategy as j specified in a column j .

We can see that any IDS settings in the case with 2% randomly deployed mali-
cious sensor nodes evince the best hyper-volume indicator comparing to the other
attacker strategies, while the case with 2% malicious sensor nodes surrounding the
BS evinces the worst hyper-volume indicator. We found out that while the memory
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Table 4 Hyper-volume indicator results for various deployment strategies

R 2% R 10% C 2% C 10% L 2% L 10% Average
diff

Random 2% 0.583 0.520 0.453 0.487 0.534 0.462 0.0277

Random
10%

0.567 0.555 0.465 0.510 0.540 0.504 0.0107

Centre 2% 0.562 0.539 0.485 0.507 0.539 0.495 0.0130

Centre 10% 0.565 0.539 0.473 0.515 0.533 0.499 0.0135

Line 2% 0.565 0.494 0.461 0.473 0.554 0.406 0.0420

Line 10% 0.567 0.545 0.466 0.510 0.537 0.513 0.0112

Average 0.568 0.532 0.467 0.500 0.540 0.480

For each strategy A in a row, the values specify the hyper-volume indicator of the IDS settings
optimized for A in another deployment strategy B specified in a column. Looking to the table from
the other perspective, for each strategy A in a column, the values specify the hyper-volume indicator
of the IDS settings optimized for a strategy B specified in a row but evaluated in the strategy A.
The values in bold states for the best results for each of the strategy—IDS settings optimized and
evaluated in the same deployment strategy. The last column specifies the average difference of an
IDS optimized for an attacker strategy in a row to the best result achieved for each of the strategy
in the column

consumption is constant and the number of false positives do not change signifi-
cantly, more significant changes in the number of false negatives can be observed.
This is caused by the placement of malicious nodes—it is more difficult to detect a
malicious sensor node surrounded by other malicious sensor nodes or a malicious
node close to the edge of the WSN receiving packets from only one descendant.3

See Fig. 10 for an example of IDS optimized for Random 2% in the attacker
strategy Random 10% (a–c) and vice versa (d–f). While the memory consumption
is constant and the number of false positives do not change significantly, we can see
more significant changes in the number of false negatives due to higher number of
“close-to-edge” sensor nodes.

Multiple Pareto Front Approximations Evaluation On Single Attacker Strategy
In Table4, we can see for any attacker strategy as j in a column j how each hyper-
volume indicator of the IDS settings p fi optimized for each strategy asi in a row
i differs to the hyper-volume indicator of the IDS settings p f j evaluated (and also
optimized) in the as j . In the last column of the Table4, we present the average
difference to the best value for each Pareto front approximation p fi across all attacker
strategies. The lower the average difference, the more robust is the Pareto front
approximation in another attacker strategies.

We can see that Pareto front approximation of IDS settings optimized for attacker
strategy “Random 10%” performs the best across all other strategies followed by

3Such traffic can be overheard by less (if any) number of neighbors comparing to a sensor node
placed closer to the BS receiving packets from several directions.
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Fig. 10 Influence of changed percentages of malicious sensor nodes on performance of each
optimized IDS setting in the random attacker strategy. Green crosses represent IDS performance
in an environment for which the IDS was optimized (2% for Figures (a–c) and 10% for Figures
(d–f)). Red circles represent IDS performance in an environment with increased [Figures (a–c) and
decreased (Figures (d–f)] percentage of malicious sensor nodes. Lines connect equal IDS settings

“Line 10%”. On the other hand, the solutions found for the attacker strategy “Line
2%” performs the worst on average in the other strategies.

8 Conclusion

We proposed and implemented a complex optimization framework consisting of an
optimization engine and a simulator. The simulations can be executed on multiple
computers in a distributed manner. This optimization framework is aimed at but not
limited to optimization of intrusion detection systems to detect different types of
active attacks on a WSN. In the simulator, the target WSN can be specified in details
including the environment, topology, physical properties of the sensor nodes, routing
and application.

In this work, we demonstrated usability of the optimization framework on the
selective forwarding attack and the delay attack detection. We have shown that effi-
cient Pareto front approximation can be found using multi-objective evolutionary
algorithm in a reasonable time. Four different metrics were used to evaluate the
optimization processes. The diversity of the non-dominated solutions can provide a
network operator with an option to choose any solution according to requirements
that can be changed during the WSN operation time.
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We discussed thoroughly attacker strategies of the selective forwarding and the
delay attack as well as usability of our detection techniques for each variation of any
attacker strategy. The IDS was optimized to six different deployments of malicious
sensor nodes and the resulting non-dominated IDS solutions were evaluated for
robustness on each of the deployment.

The optimization framework can be used directly for, e.g., IDS that we imple-
mented within our security middleware for WSNs—“WSNProtectLayer” [19].
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Computational Intelligence Based Security
in Wireless Sensor Networks: Technologies
and Design Challenges

Pratik Ranjan and Hari Om

Abstract The wireless sensor networks (WSNs) are emerging as a fast moving
technology for future computing solutions. However, there is a major issue related
to security in WSN environments. The application of intelligent computing works
efficiently for many computing and scientific problems; but, the computational intel-
ligence (CI) based security schemes have not been properly explored. Here, we
explore the CI-based approach for scientific computing problems and try to find
the recent challenges and future opportunities for developing the CI-based security
schemes for WSNs.

Keywords Computational intelligence · Fuzzy logic ·Neural networks · Security ·
Wireless sensor networks

1 Introduction

The wireless sensor networks (WSNs) are event-monitoring and data collecting
devices, which work as an interface between a physical environment and a com-
puter system. They play a major role in gathering the data from environment where
the pure wired connection is not so easy to establish and communicate that data to a
centre where it can proceed further. The sensor networks are generally deployed for
periodic reporting and event detection in an environment [35]. However, the sensor
nodes in a WSN have limited battery power, less storage capacity and less computa-
tion capacity, which may lead to node failure. Apart from the limited capabilities of
sensor nodes, there are numerous challenges in aWSN like design and deployment of
sensor nodes, mobility and topology changes, localization and physical distribution,
clustering, data aggregation, security, and quality of service management. The secu-
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rity is a very important factor in any communication or network device. In case of
the WSNs, it is more demanding and challenging because of the constrained battery
and memory capacity. There are many security issues that need to be addressed in
WSNs like discovery and verification of nodes, key establishment, secure routing,
node authentication, secure groupmanagement and secure data aggregation [29, 64].

The policy-based approach in a network handles the challenges quite well in a sta-
tic environment, but the sensor nodes are deployed in dynamic environments where
an intelligent-based approachworksmore efficiently than the policy-based approach.
The intelligence enables each host to learn new states, events, and actions so that
the optimal or near-optimal action can be decided. The most common computational
intelligence (CI) paradigms are fuzzy systems, artificial neural networks, evolution-
ary computation, swarm intelligence, and artificial immune systems. Researchers
have proposed many CI-based schemes to resolve the challenging issues in WSNs
like node coverage and energy management [20, 25], localization and optimiza-
tion [22], but the CI-based security schemes are not so popular especially for WSNs.
The fuzzy based security schemes in WSNs have been presented in [30, 81]; how-
ever, the other approaches like genetic algorithm [6, 83], swarm intelligence, and
artificial neural network based security schemes for WSNs are in their infancy stage
of development.

This leads to motivate us to study the current trends in CI-based schemes in differ-
ent areas includingWSNs and try to figure out the challenges and future opportunities
for the development of CI-based secure schemes for WSNs. This work will help to
find the CI-based security challenges and their probable solutions for dynamic as
well as infrastructure-less network environments.

2 Wireless Sensor Networks

A wireless sensor network (WSN) is a collection of sensor nodes that collectively
work for some particular task like weather forecasting, event detection, intrusion
detection, health and areamonitoring, etc. In aWSN, each sensor node consists of one
ormore sensing devices that communicate to fewother local sensor nodes viawireless
channels. There are three major limitations in a sensor node, namely, battery power,
communication bandwidth, and storage capacity. The WSNs support a number of
real-world applications that lead to a challenging research and engineering problem
because of the flexibility and dynamic property of sensor nodes. Accordingly, there
is no single set of requirements that clearly classifies all WSNs, and also there is not
a single technical solution that encompasses the entire design space. Many of these
applications share some basic characteristics. In most of the WSNs, the sources of
data are the actual nodes that sense the data and the sink nodes are the delivery nodes
of final data.
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2.1 Types of WSNs

Different types of Wireless Sensor Networks (WSNs) as listed in [1] are:

(i) Terrestrial WSNs The terrestrial WSNs consist of huge collection of sensor
nodes either in an unstructured or a structured manner for efficient communica-
tion with the base station. In unstructured mode, the sensor nodes are randomly
distributed within the target/monitoring area. The pre-planned or structured
mode considers optimal placement of the sensor nodes.

(ii) Underground WSNs The underground WSNs are more expensive than the
terrestrial WSNs in terms of deployment, maintenance, and planning. These
WSNs are hidden in ground to monitor the underground conditions. Additional
sink nodes are located on or above the ground to relay the information from the
sensor nodes to the base station. The underground environment makes wireless
communication a challenge due to high level of attenuation and signal loss.

(iii) UnderwaterWSNsThe underwaterWSNs consist of a number of sensor nodes
and vehicles deployed under thewater. The autonomous underwater vehicles are
used for gathering the data from these sensor nodes. A challenge of underwater
communication is long propagation delay, bandwidth, and node failures. The
issue of energy conservation for underwater WSNs involves the development
of underwater communication and networking techniques.

(iv) Multimedia WSNs The objective of these WSNs is to enable tracking and
monitoring of events in the form of multimedia data. These networks consist of
low-cost sensor nodes equippedwithmicrophones and cameras.These nodes are
interconnectedwith each other over awireless connection for data compression,
data retrieval, and correlation. The challenges in the multimedia WSNs include
high energy consumption, high bandwidth requirements, data compression, and
data processing.

(v) MobileWSNsThemobileWSNs consist of a collection of sensor nodes that can
move their own and they can be interacted with the physical environment. The
mobile nodes have an ability to sense, compute, and communicate the data.
The mobile WSNs are much more versatile than the static sensor networks.
The advantages of these sensors over the static one include better and improved
coverage, better energy efficiency, and superior channel capacity.

2.2 Applications of WSNs

There are several applications of the WSNs like industrial control systems, event
detection, health monitoring, environmental monitoring, battlefield surveillance,
object monitoring including tracking the movements and patterns of objects, insects,
or animals. TheWSNs can be deployed in mission critical applications such as secu-
rity of key land marks, surveillance of buildings and bridges, etc. Depending on



134 P. Ranjan and H. Om

the application challenges and constraints, the WSNs can adopt different forms, use
different technologies, and communicate through different network topologies [3].

2.3 Security Issues in WSNs

The WSNs have many security challenges due to their inherent limitations in com-
munication bandwidth. The hardware and software developments have addressed
these issues to some extent, but a complete secure sensor network requires deploy-
ment of countermeasures such as node authentication, secure routing, secure key
management, and lightweight encryption techniques [11, 51].

The common attacks in WSNs [8, 18, 51, 58] are as follows:

• Spoofed Attack It is a kind of replay routing or altering attack where an adversary
may send a false errormessage, create routing loops or change the routes for packet
delivery.

• Selective Forwarding Attack This is a black hole type of attack where an adver-
sary gets the control of communication channel and may drop the packet or refuse
to forward any particular packet to the next node.

• SinkholeAttack In this attack, an imaginary high quality route is advertised by the
adversary on which all the nodes start routing. Because of this sinkhole formation,
all nodes start routing through a compromised node.

• Sybil Attack In this attack, an adversary presents his identity in multiple forms so
that it appears and functions as multiple distinct nodes. After becoming a part of
the network, the adversary node may overhear the communications or may control
the network traffic.

• Wormhole Attack In this type of attack, an adversary collect the packets at one
point, tunnel them to some other point and further replay those packets into net-
works. Through wormhole attack, without any knowledge of the secret key, the
attacker can relay the authentication exchanges to gain access.

• Hello Flood Attack A sensor node uses Hello message for detecting the neigh-
bouring nodes. The same strategy is used by an adversary by sending the fake
Hello message to a number of nodes. The motive of the attacker in this type of
attack is to compromise every neighbouring node.

• Denial of Service (DoS) Attack In this type of attack, an adversary sends a
number of false packets to a particular network with an objective to create a
flood of messages in the network. For WSNs that have limited battery and storage
capacity, the DoS attack creates a shortage of both the constraints and makes the
system inactive or out-of-order.

• Acknowledge Spoofing Attack In this type of attack, an adversary acts as a man-
in-the-middle and sends the false acknowledgmentmessage to the sender on behalf
of a genuine receiver node.

The challenges for information processing in WSNs are design methodologies
and tools to support distributed signal processing, secure data processing, network-



Computational Intelligence Based Security in Wireless Sensor… 135

ing, information storage and management, and application development. The key
management and secure routing protocols are the resilient solutions for the attacks
identified so far. However, the research towards a complete secure sensor network
is still in its development stage. For designing a new security scheme, the battery
energy, memory space, and the cost of sensor nodes must be considered appropri-
ately by the researchers. These parameters (battery energy, memory space, and cost
of sensor node) lead the researchers to develop a new scheme that will be secure and
efficient enough to implement in sensor nodes.

3 Computational Intelligence

Computational Intelligence (CI) is a study of adaptive mechanisms to enable or
facilitate intelligent behavior in complex and changing environments [19]. It is a
sub-branch of Artificial Intelligence (AI) that mainly focuses on those AI paradigms
that exhibit an ability to learn and adapt to new situations, to generalize, abstract,
and discover [5].

3.1 Types of Computational Intelligence Techniques

There are several computational intelligence (CI) paradigms based on which differ-
ent CI techniques may be classified. The neural networks, genetic algorithms, fuzzy
systems, evolutionary computing and artificial life are the five basic building blocks
of CI [49]. The early definition of CI included fuzzy sets, neural networks, genetic
algorithms, and probabilistic reasoning. The modern definition of CI [32] includes
biologically inspired model of machine intelligence like granular computing, evolu-
tionary computing and their interactionswith artificial life, chaos theory, etc. Figure1
presents a list of modern CI techniques.

3.1.1 Granular Computing

The granular computing (GC) is a new paradigm of information processing that deals
with collection of entities arranged together according to their similarity, functional
adjacency, indistinguishability, coherency or alike [4]. Formation of information
granules can be done by two processes: (i) data abstraction, and (ii) derivation of
knowledge from information. Information granulation supports communications at
different levels: between humans, humans and computers, computers and computers.
Numerical computing is data-oriented whereas the GC is knowledge-oriented. The
most popular models for granular computing are as follows:
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Fig. 1 Modern
Computational Intelligence
Paradigms

• Fuzzy Sets Classical set theory allows an element to be either included in a set or
excluded, whereas the fuzzy sets allow an object to be a partial member of a set.
The fuzzy rules are of general form as if antecedent(s) then consequent(s), where
antecedents and consequents are propositions containing linguistic variables. The
antecedent of a fuzzy rule forms a combination of fuzzy sets using logic operations.
So, the fuzzy sets and fuzzy rules together form the knowledge base of a rule-based
inference system [35].

• Rough Sets Rough set theory [60] has been conceived as a tool to conceptualize,
organize, and analyze various types of data to deal with inexact, uncertain or vague
knowledge in applications related to artificial intelligence [33]. It is a framework
in which we represent the concepts in the setting of indiscernibility relations. The
application of rough set theory is to learn classification rules.
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Though the fuzzy sets and rough sets both use membership functions, yet they are
different in implementation. In rough sets, the lower and upper approximation of
the rough set is determined. The lower approximation consists of all elements that
belong with full certainty to the corresponding set whereas the upper approxima-
tion consists of elements that may possibly belong to the set [19]. The rough sets
are frequently used in machine learning as classifier and in extracting knowledge
from the incomplete data.

• Shadowed Sets Shadowed sets are directly induced by the fuzzy membership
functions and they are designed to conserve the amount of uncertainty in the orig-
inal fuzzy sets. They reveal interesting conceptual and algorithmic relationships
existing between rough sets and fuzzy sets. In shadowed sets, three quantification
levels describing the elements of the set 0, 1, and [0, 1] are used to simplify the
fuzzy relation. Conceptually, the shadowed sets are close to rough sets even though
their mathematical foundations are very different [62]. The concepts of negative
region, lower bound, and boundary region in rough set theory correspond to three-
logical values 0, 1 and [0, 1]. These values are named as excluded, included, and
uncertain, respectively. The shadowed sets can be considered as a bridge between
the fuzzy and rough sets [85].

• Probabilistic Reasoning “Probability is not really about numbers; it is about the
structure of reasoning” [61]. Themotive of probability theory is to provide a logical
view on uncertain and partial information. The probabilistic relationships can be
represented by Bayesian Networks that provide a clear visual representation for
many independent relationships embedded in a probabilistic model.

3.1.2 Neuro Computing

It is a branch of computing in which we study the biological neural networks and
try to construct a similar framework with some mathematical model for machine
learning applications. The Artificial Neural Networks (ANN) are electrical analogue
of the biological nervous system [32]. The five popular ANN basedmachine learning
techniques are given below:

• SupervisedLearning It is a training-based learningmethod inwhich the algorithm
adapts the weights or thresholds of the neurons to produce the desired output
instances on a given input instance of the network. Here the algorithm is initialized
with a random set of weights and thresholds. After each iteration, the algorithm
evaluates the errors at the output of eachof the neurons and tries to adapt theweights
that minimize the error. Some of the popular models of supervised learning are
McCulloch and Pitts Model [52], PerceptronModel [53, 72] and Backpropagation
Method [12].

• Unsupervised Learning It does not require any trainer and has no fixed target
output. It uses a feature selection based classification technique for selecting the
objects. Unlike supervised learning which is based on the feed forward geome-
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try, the unsupervised learning allows propagation of signal both in forward and
backward directions.

• Competitive Learning Competitive learning is a kind of learning in which the
neurons compete to each other on a combination network of feed-forward and
feedback for the desire output.

• Reinforcement Learning It is a neurodynamic-programming model which is
neither supervised nor purely unsupervised. It is a CI based approach in which
a system learns to choose optimal actions in a dynamic environment [78]. Here
an agent acts on the environment to cause a transition of environmental state and
receives an immediate reward for its action [26, 77].

3.1.3 Evolutionary Computing

Evolutionary computing (EC) is based on the concept of “survival of the fittest: the
weak must die”. Engelbrecht [19] describes the evolutionary algorithms as follows:

It uses a population of individuals known as a chromosome that defines the characteristics
of individuals in the population. Each characteristic is referred to as a gene and the value
of a gene is referred to as an allele. For each generation, individuals compete to reproduce
offspring. Those individuals with the best survival capabilities have the best chance to repro-
duce. Offspring are generated by combining parts of the parents, a process referred to as
crossover. Each individual in the population can also undergo mutation which alters some
of the allele of the chromosome. The survival strength of an individual is measured using
a fitness function which reflects the objectives and constraints of the problem to be solved.
After each generation, individuals may undergo culling, or individuals may survive to the
next generation (referred to as elitism).

The most popular techniques of evolutionary computing are given below:

• Genetic Algorithm Genetic algorithm (GA) is a heuristic approach on the evo-
lutionary ideas of natural selection and genetics. The three basic rules used for
creation of next generation are selection of population rule, crossover rule, and
mutation rule.

• Genetic Programming Genetic programming (GP) is an automated method for
creating a working computer program from a high-level problem statement. It
starts from a high-level statement of “what needs to be done” and automatically
creates a computer program to solve the problem. It is a specialization of the
genetic algorithms (GA) where each individual is a computer program. It is a
machine learning technique used to optimize a population of computer programs
to perform a given computational task.

• Swarm Intelligence Swarm Intelligence (SI) is mainly concerned with the design
of intelligent multi-agent systems whose inspiration is taken from the collective
behavior of social and eusocial insects and other animal populations [7]. The
popular algorithms based on SI are Particle Swarm Optimization (PSO) [38, 66],
Ant Colony Optimization, Artificial Bee Colony Algorithm, etc.
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3.1.4 Artificial Life

Artificial Life are the human-made systems to understand the nature through mod-
elling and simulation. The artificial life models offer the advantage of coding an
organism’s behavior explicitly as a program, rather than implicitly as the solution
to equations that must be integrated. These models are preferred for studying the
dynamics of natural evolution.

• Artificial Immune Systems As the name suggests, the Artificial Immune System
(AIS) is an abstract or artificial component of the natural immune system. The
AIS is a powerful information processing and problem-solving paradigm in both
the scientific and engineering fields. It possesses nonlinear classification properties
alongwith the biological properties such as self identification, positive andnegative
selection, clonal selection, etc. The most useful application of AIS is the computer
security through detecting viruses and trojans. The other applications are abnormal
detection, fault detection, learning and optimization of system.

3.2 Applications of CI

There are several applications of computational intelligence in modeling and design-
ing intelligent systems and solving the real-world problems. The genetic algo-
rithm [20, 25] can be applied to routing optimization in telecommunications net-
works. The genetic programming can be used in symbolic function identification,
empirical discovery, solving systems of equations, concept formation, automatic pro-
gramming, pattern recognition, game-playing strategies, and neural network design.
The application of evolutionary programming [75] is to evolve finite-state machines,
optimize a continuous function, and train a neural network (NN). The real-world
applications of evolutionary programming are in controller design, robotics, video
games, image processing, power systems, scheduling and routing, model selection,
design etc. The differential evolution has mostly been applied to optimize the func-
tions defined over continuous-valued landscapes. It can also be applied to train
neural networks. The PSO [38] has been used mostly to optimize the functions
with continuous-valued parameters. The Artificial Immune Systems (AIS) [55] have
been successfully applied to many problem domains. Some of these domains are net-
work intrusion and anomaly detection to data classification models, virus detection,
concept learning, data clustering, robotics, pattern recognition and data mining. The
AIS has also been applied to initialization of feed-forward neural network weights,
initialization of centers of a radial basis function neural network, and optimization
of multi-modal functions.
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Fig. 2 Combination of three
key terms WSNs, CI and
Security

4 CI-Based Secure Schemes for WSNs

To study the existing CI-based security schemes forWSNs, we need to consider three
key terms i.e., WSNs, CI, and Security, and their all possible combinations.

From Fig. 2 we can draw all possible combination of schemes for further study
as shown in Table1. Due the focus on this current study, we will mainly concentrate
on the CI-based secure schemes for WSNs which is the first combination i.e., type
(i) in table. But, as we have already discussed above that this type of schemes are
still under development stage and we have not found more research on this particular
type. So, we will try to discuss some more related schemes of other types [mainly
type (ii), (iv), and (vi)] along with type (i).

Table 1 Various schemes with different combinations

Types Possible combinations Representation of possible
combinations

i. CI-based secure schemes for WSNs (WSNs + C I + Securi t y)

ii. CI-based secure schemes for other than
WSNs

(−WSNs + C I + Securi t y)

iii. CI-based schemes without any security
issue for other than WSNs

(−WSNs + C I − Securi t y)

iv. CI-based schemes without any security
issue for WSNs

(WSNs + C I − Securi t y)

v. Non CI-based security schemes for
other than WSNs

(−WSNs − C I + Securi t y)

vi. Non CI-based schemes with security
issues for WSNs

(WSNs − C I + Securi t y)

vii. Non CI-based schemes without any
security issue for WSNs

(WSNs − C I − Securi t y)
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4.1 Existing CI-Based Secure Schemes for WSNs

4.1.1 Granular Computing

• Fuzzy Sets Based Secure Schemes for WSNs Nghiem and Cho [57] have pro-
posed a multi-hop authentication scheme based on fuzzy logic techniques like
fuzzification, fuzzy inference, and defuzzification. They try to address the fol-
lowing problems: (i) wastage of energy during authentication and transmission
phases, (ii) key-sharing mechanism among nodes, and (iii) false positive attacks.
The claims made in this paper are: (i) by introducing the forwarding and skip-
ping nodes, the wastage of memory is minimized, (ii) a hash-based key sharing
method is used for protected key-sharing, and (iii) probabilistic voting-based fil-
tering scheme (PVFS) [43] is used to resist the scheme against the false positive
attacks.
The fuzzy logic system used in this scheme have input parameters as REMAIN-
ING_ENERGY, HOP_COUNT and FALSE_MAC_COUNT, each having three
labels small(S), medium(M) and large(L). The output value, i.e. VERIFICA-
TION_INTERVAL also has three labels {S,M,L}. During fuzzy if-then rule, the
three input variables and their labels produce total 27(=33) rules. The centroid
average method have been used for defuzzification to get the crisp value from the
fuzzy output facts. From security analysis, it has been observed that this scheme is
resilient against the cluster insider attacks, en-route insider attacks, false negative
and false positive attacks. Though this scheme provides network security, resists
against several attacks and saves up to 13% of total energy consumption, but it has
enough space for further modification in initialization and key assignment mech-
anism. The hash function based key generation from associated nodes can further
be modified to an independent key generation process.
Zou and Liu [86] have proposed amodel for evaluating the security ofWSNs. They
have proposed an interval-valued intuitionistic fuzzy hybrid geometric (IVIFHG)
operator to the multiple attribute decision making (MADM) problems for evaluat-
ing the network security with interval-valued intuitionistic fuzzy information. In
interval-valued intuitionistic fuzzy set (IVIFS) [2], the values of its membership
and non-membership functions are intervals, not the exact numbers. The score
function (S) and the accuracy function (H) are the difference and the sum of mem-
bership and non-membership functions, respectively. It calculates the score S(r̃i )
of the collective overall interval-valued intuitionistic fuzzy preference values (r̃i )
to rank all alternative networks systems Ai . The one which has least difference
between S(r̃i ) and S(r̃ j ) is selected. Then it calculates the degrees of accuracy
H(r̃i ) and H(r̃ j ) and ranks the alternatives Ai and A j accordingly. It ranks all the
alternatives Ai and finally selects the best network system in accordance with S(r̃i )
and H(r̃i ), where i = 1, 2, . . . ,m. This scheme is an innovative one to select the
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best network, but is not practically implemented in dynamic adaptive environment
where the number of sensor nodes are not fixed.
Mishra et al. [54] have proposed an energy efficient packet loss preventive routing
protocol based on fuzzy logic. This protocol selects energy-efficient routes to a
destination that ensures congestion control, less packet loss, and security. This
scheme consists of two phases, route discovery and choice of route. It gives better
throughput as compared to the dynamic source routing (DSR) and Ad hoc On
Demand Distance Vector Routing (AODV).
Some other fuzzy based secure schemes for WSNs have been proposed by
Bolourchi et al. [10], Cheng et al. [13], Choia et al. [14], Fu et al. [21], Huang et
al. [24], Lee [41], Li et al. [44], Ren et al. [69], Renubala et al. [71] and Sakthidevi
et al. [73].

• Rough Sets Based Secure Schemes for WSNs Lin et al. [46] have proposed
a scheme for fault diagnosis for WSNs based on rough set theory. Rough set
theory deals with the problem having less or incomplete information and can easily
resolve the fault diagnosis consuming low energy using datum reduction theory.
Even though some redundant attributes have few information, fault of nodes in
WSNs can also be accurately diagnosed. This scheme improves the robustness of
fault diagnosis of nodes in WSNs with very limited energy consumption.
Some rough set based secure schemes forWSNs have been proposed by Hai-Yang
et al. [23], Li et al. [45] and Zhi-Feng et al. [84].

4.1.2 Neuro-Computing

• Neural Network Based Secure Schemes for WSNs Kulkarni et al. [36] have
proposed a neural network based secure media access control protocol for WSNs.
It is a multilayer perceptron (MLP) based media access control (MAC) protocol
to secure WSNs. For training the MLP, the backpropagation and particle swarm
optimization (PSO) algorithms are used.
The multilayer perceptron (MLP) used in this scheme has three inputs X1, X2, X3

with a constant bias θ (which is set to unity) as shown in Fig. 3. These inputs
along with bias are weighted and aggregated in neurons in the hidden layer. The
two neurons in hidden layer aggregate the weighted inputs to produce aggregation
outputs ai where i = 1, 2 as follows:

ai =
3∑

j=1

X j ·Wi j + θ ·Wi4 (1)

The decision vector di which is the set of output of hidden layer is calculated as
follows:

di = 1

1− e−ai
(2)
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Fig. 3 Structure of multilayer perceptron used in secure MAC [36]

The above outputs then act as inputs to the output layer through a weighted vector
V = {V11, V12} and produce a final output y as follows:

y = d1 · V11 + d2 · V12 (3)

From the above training process the difference between actual output and the
desired output is recorded as an error and it is modified until the desired mean
square error is achieved. When the output of the MLP exceeds a preset threshold
level, the physical layer of node is switched off. This scheme results in saving the
power that would have been wasted in retransmission of collided packets.
Some other Neural Network based secure schemes for WSNs have been proposed
byBokareva et al. [9], Kiani et al. [28], Kim et al. [31], Kulakov et al. [34], Kulkarni
et al. [37], Padmavathi et al. [59], Ramesh et al. [68] and Ren et al. [70].

• ReinforcementLearningBasedSecure Schemes forWSNsUsaha andManeenil
[78] have proposed a Reinforcement Learning (RL) to identify themalicious nodes
in a network, which is based on the on-policy Monte Carlo (ONMC) method to
characterize the reputation values among the nodes and to find a rule for selecting
the neighboring nodes based on reputation values which optimizes some perfor-
mance criterion. Since the nodes have finite buffer to store the arriving packets
which are yet to be processed, they follow M/M/1/K queueing discipline in which
the good nodes have large buffer to receive and forwardmore packets, but themali-
cious nodes have smaller buffers resulting in frequent packet drop. The simulation
result show that the ONMC scheme gives better packet arrival rate as compared to
other existing schemes. The throughput increases up to 71% for static and 61%
for the dynamic topology.
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Some other Reinforcement Learning based secure schemes for WSNs have been
proposed by Lee et al. [42], Liu et al. [47], Maneenil et al. [48] and Yau et al. [82].

4.1.3 Evolutionary Computing

• Genetic Algorithm Based Secure Schemes for WSNs Shanthini and Swamy-
nathan [76] have proposed a genetic algorithm based biometric security system
for secure healthcare system. This scheme provides privacy, confidentiality using
fingerprint key based encryption and key revocability using genetic function for
healthcare applications in wireless environment. Concho et al. [15] have proposed
a scheme using evolutionary algorithm for port-of-entry security optimization. It
uses a decision-tree model with motive to use evolutionary algorithm for finding
the optimal threshold values for every sensor and the optimal configuration of
the inspection strategy. The result of probabilistic solution discovery algorithm
(PSDA) indicates that it reduces the cost while providing the optimal threshold
value. It can further be improved by introducing multi-objective functionality to
reduce the cost, time, and to provide the best threshold value for each sensor node.
Some Genetic Algorithm based secure schemes for WSNs have been proposed by
Lai et al. [40], Shahabadkar et al. [75], Vyas et al. [79] and Zhang et al. [83].

• Swarm Intelligence Based Secure Schemes for WSNs Kassabalidis et al. [27]
have proposed a particle swarm optimization (PSO) based scheme to identify
points on the security border of a power system. To identify the security border,
the original feature is tested by selecting the feature set as input to PSO. The PSO
uses the neural network for security index (SI) and finally the SI compares it with
the desired SI. If the difference is small, the algorithm terminates after providing
the point on the border; otherwise, loop continues until the difference comes at
satisfactory level or the number of iterations reaches the maximum limit. This
technique can be applicable wherever a desired border is required.
Mármol et al. [50] have proposed a bio-inspired technique for providing trust in
WSNs. The main aim of this model is to help a node requesting a certain service
to the network to find the most trustworthy route leading to a node providing the
right requested service. A node can be untrustworthy if it intentionally provides
fraudulent or wrong service due to hardware failures or the performance deteri-
orates. It performs very well when the malicious servers are less than 90% and
beyond that it does not provide better chance to select the trustworthy server.
Some Swarm Intelligence based secure schemes have been proposed by Dhurand-
her et al. [16], Dressler et al. [17], Muraleedharan et al. [56], Periyanayagi et
al. [63], Qureshi et al. [67] and Xi et al. [80].
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Table 2 Existing CI-based secure schemes for WSNs

CI Paradigms Research papers Techniques used Remarks

Granular computing Nghiem and Cho [57] Fuzzy logic techniques
like fuzzification,
fuzzy inference and
defuzzification

Resists the proposed
scheme against false
positive attacks

Zou and Liu [86] Interval-valued
intuitionistic fuzzy set

An innovative scheme
to choose best network
but is not practically
implemented in
dynamic adaptive
environment where the
number of sensor node
are not fixed

Mishra et al. [54] Routing protocol
based on fuzzy logic

The proposed scheme
gives better throughput
than DSR and AODV

Lin et al. [46] Rough Sets based fault
diagnosis for WSNs

Resolve the problem
of fault diagnosis of
nodes in WSN more
accurately with using
limited energy

Neuro-Computing Kulkarni et al. [36] Neural Network based
secure scheme for
WSNs

This multilayer
perceptron (MLP)
based research helps in
extending the lifetime
of the WSN. The
proposed scheme
provides distributed
security against the
collision attacks.
Based on this research
an energy model can
be built with proper
simulation

Usaha and Maneenil
[78]

Reinforcement
Learning based secure
scheme

On-policy Monte
Carlo (ONMC)
method along with a
reputation scheme
select cooperative
nodes as well as
avoiding malicious
nodes with high
throughput. This can
further gives an idea
that reinforcement
learning with
reputation values can
lead to better decision
rules for neighboring
node selection
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Table 2 (continued)

CI Paradigms Research papers Techniques used Remarks

Evolutionary
computing

Shanthini and
Swamynathan [76]

Genetic Algorithm
based biometric
security for secure
health care system

The fingerprint based
cryptographic key is
randomized using a
genetic operator and
provides
confidentiality and key
revocability for
healthcare applications
in wireless sensor
environments

Concho et al. [15] A decision-tree model
with use of
evolutionary algorithm

Finding the optimal
threshold values for
every sensor which
can further be
improved by
introducing
multi-objective
functionality that may
reduce the cost and
time

Kassabalidis et al. [27] Particle Swarm
Optimization (PSO)
based scheme to
identify points on the
security border of the
power system

This technique can be
used further where
desire border is
required

Mármol et al. [50] A bio-inspired
technique for
providing trust in
WSNs

The proposed model
performs well only
when the malicious
servers are less than
90%

Artificial life Kumar et al. [39] Artificial Immune
Systems based secure
schemes for detecting
spoofing attacks in
WSNs

The scheme is more
energy efficient than
RSA and ECC based
schemes that can be
used in future sensor
networks

4.1.4 Artificial Life

• Artificial Immune Systems Based Secure Schemes forWSNsKumar et al. [39]
have proposed a random key distribution based Artificial Immune System (AIS)
for detecting the spoofing attacks in WSNs. This scheme is proved to be secure
with detection rate above 90%. The simulation results also prove that it is more
energy efficient than the RSA and ECC based schemes and can be used in future
sensor networks.
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Some Artificial Immune Systems based secure schemes for WSNs have been
proposed by Morteza et al. [55], Phogat et al. [65] and Salam et al. [74].

5 Results and Discussions

From reviews and analysis of various existing schemes and Table2, it is evident
that the computational intelligence (CI) based schemes are being used for solving
many complex problems of computing. The biologically inspired techniques give
us an idea to take steps for finding the solution of complex problem just like nature
has been doing for last several years. Many challenges in computer science have
also been solved by researchers by applying CI paradigms. The wireless sensor
networks (WSNs) is one areawhere the CI techniqueswork verywell and solvemany
challenging problems. Security is one of the major issues in any area of computer
science. But, very surprisingly, the CI based secure schemes are not so popular and
hence have not much been developed so far. From this chapter, we can observe that
most of the CI paradigms are not popular for the development of security schemes for
WSNs. This systematic study of each and every paradigm of CI can help a researcher
to go through all the research works on CI paradigms in one pass.

6 Conclusions and Future Research Directions

In this chapter we have first discussed the WSNs with their types, applications, and
security challenges. Then we have presented the CI and its paradigms in brief. There-
after, we have presented a systematically review of the CI based secure schemes for
WSNs.We have analyzed the CI based secure schemes forWSNs. From this study, it
is clear that the CI based schemes can help to solve many complex problems. Secu-
rity is itself a challenging problem. For wireless medium the security has become
an essential factor to be considered for any new research or development. Unfortu-
nately, the CI is not a very popular technique in security field. In this chapter, we
have tried to present the current state-of-the-art of security related research using
CI. With this study, a researcher can proceed further to do research on the CI based
security schemes to solve the complex problems of WSNs.
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Efficient Anomaly Detection System
for Video Surveillance Application
in WVSN with Particle Swarm Optimization

S. Radha, S. Aasha Nandhini and R. Hemalatha

Abstract Wireless sensor networks consist of several tiny low cost sensor nodes
that are deployed for many applications such as military, civil, industrial, health-
care, home automation, etc. Recent technological developments have enabled the
use of wireless visual sensor networks (WVSNs) for sensitive applications such as
video surveillance and monitoring applications. Limited memory, energy and band-
width are the major constraints in WVSN that can be simplified by the use of com-
pressed sensing (CS), which asserts that sparse signals can be reconstructed from
very few measurements. CS a computational intelligence solution is about acquiring
and recovering the signal in the most efficient manner possible using incoherent pro-
jection basis. In the case of video surveillance applications, the entire video may not
be useful hence, with the help of efficient algorithms the presence of the anomalies
can be detected and transmitted to help user at the monitoring site to take necessary
action. In this chapter, particle swarm optimization (PSO) based efficient anomaly
detection system (EADS) is proposed which will detect the presence of anomalies
and transmit the required measurements via TelosB nodes to the network opera-
tor. This system adopts the concept of CS to obtain the compressive measurements
so that the object detection algorithm can be applied to the measurements rather
than samples. PSO is employed for optimizing compressive measurements while a
mean basedmeasurement differencing approach is used for detecting the object. This
proposed efficient system has the intelligence of detecting targets with fewer mea-
surements and transmit the required compressive measurements for reconstruction
with less energy, thereby increasing the network lifetime. PSO is used to optimize the
transmission distance with minimum number of hops towards destination, to achieve
reduced energy consumption. However, the lifetime of the network is still bounded
by batteries, the sole source of energy in WVSNs. Alternative energy utilization can
be effectively included to recharge the batteries on-board and extend the lifetime of
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the network. Solar energy harvesting forms an effective resource due to its ambient
presence. Hence, solar energy harvester is incorporated in the proposed EADS to
extend its lifetime.

Keywords WVSN · Compressed sensing · PSO · Solar harvester · Network
lifetime · Video surveillance

1 Introduction

A video surveillance system consists of cameras that can monitor secured areas and
transmit the captured video to a monitoring site where the network operator analyses
the video on occurrence of an event such as assault or robbery, etc. Most of the
time the video captured by the surveillance camera keeps unvarying and thereby
transmitting the entire video consumes more energy and bandwidth. An efficient
video surveillance system should have the ability to detect the dubious activity with
less energy and bandwidth by transmitting the data that are pertinent for surveillance.

In a wireless video surveillance system the captured video is pre-processed and
compressed before transmission, and analyzed at the receiving end [1]. Video Sur-
veillance over wireless sensor networks (WSNs) has been widely adopted in various
fields such as traffic monitoring, healthcare, public safety, environmental monitoring
and anomaly detection. However, the transmission process at each sensor node is
still a challenging job for real time video surveillance applications, as it deals with
voluminous video data. The process of video analysis can be done at the transmitter
or receiver. However, in this work the analysis is performed at the transmitter side
to detect the anomaly. The remote control unit at the receiver end can retrieve the
information and take necessary action based on such information. The surveillance
video with static background is best suited for object detection applications and the
commonly used technique is background subtraction. For obtaining the background
modeled image, the background must be dynamically updated based on different
background models. Object detection and object tracking are the two commonly
studied applications of the advanced video surveillance system. In order to process
the video in a resource constrained environment like WSN, a promising technique
called compressed sensing can be exploited thereby reducing the energy, complexity
and bandwidth.

Compressive sensing is an emerging field that reconstructs the original signal from
small number of measurements using sub-Nyquist sampling rates [2, 3]. The CS the-
ory shows that a signal can be reconstructed from a small set of random projections,
provided the signal is sparse in some basis, e.g., wavelets. CS has been widely used
for many resource constraint applications [4–7]. Compressive measurements require
less bandwidth and complexity compared to transform coding of the raw data. Once
the signal is reduced to few compressive measurements, background subtraction can
be carried out for obtaining the foreground measurements. In conventional back-
ground subtraction, the subtraction is performed on each pixel resulting in higher
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computational complexity, whereas in CS based background subtraction, the process
is carried out on compressive measurements. CS based background subtraction can
also be performed by applying CS directly to the differenced image. The main idea
is that the background subtracted images can be represented sparsely in the spatial
image domain. Hence, the CS reconstruction theory should be applicable for direct
recovery of the foreground. The CS measurements play a major role in determining
detection accuracy and transmission energy, hence it is necessary to find the optimal
measurements that yields higher detection accuracy with a less energy requirement.
Computational intelligence (CI) solution can be used for optimizing the measure-
ments and routing distance for achievement of better detection accuracy and optimum
shortest distance towards the destination respectively.

CI is one of the rapidly growing fields for many years attracting a large num-
ber of researchers and practitioners working in the area of neural networks, fuzzy
logic, evolutionary computing and swarm intelligence. There are many successful
applications of CI such as image processing or retrieval, audio processing and text
processing [8]. Multimedia communication needs advanced and efficient computa-
tional methodologies for dealing with the huge volume of data generated by these
applications.

Researchers have used potential CI methods for overcoming the challenges in
WSN [9]. There are different CI based solutions for WSN such as evolutionary algo-
rithm for network design, fuzzy logic for network deployment, swarm intelligence
for localization and neural networks for security [9]. In [10] the authors have inte-
grated PSO as a robust solution to sensor networks to produce low energy sensor
nodes. A PSO based simulator called as PSO SIMSSENS to find the optimal path of
the sink node is also proposed. Sequential PSO (S-PSO), a modification of the PSO
is used for reducing the dimensionality issues in distributed sonar sensor placement.
S-PSO uses fewer particles to solve the low dimensional problem thereby reducing
the computational complexity [11]. Available literature shows that PSO has higher
flexibility and optimalitywith less complexity andmemory requirements. Thismakes
it ideally suited for addressing energy related issues in WSN compared to other CI
solutions. Hence PSO is adopted in this work as it provides optimization solutions
to WSN which in turn solves the energy, memory and bandwidth problems in an
efficient way.

The objective of this work is to design an efficient anomaly detection system that
can detect the object in the video and transmit the required foregroundmeasurements
for reconstruction and further analysis. This system is developed targeting the video
surveillance application in WVSN by adopting CI solutions. PSO is employed for
the optimization of the measurements and distance towards destination to improve
the network lifetime. CS is applied to the video frames for obtaining the compres-
sive measurements, the number of measurements is decided with the help of PSO
and a mean measurement differencing approach is used to obtain the differenced
measurements. The foreground measurements are extracted from the differenced
measurements using a threshold strategy. PSO is employed for optimization of the
measurements in order to achieve maximum detection accuracy with less energy.
Moreover, the transmission distance is also optimized using PSO to enhance the life-
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time as the energy consumption and lifetime is mainly dependent on the transmission
energy.

Lifetime is bounded by the batteries-the sole source of energy, despite reduction in
energy consumption. It is also hard to replace or recharge nodes battery once they are
deployed. Energy harvesting can be used for achieving lasting operational lifetime.
Solar energy is a natural resource available in abundance. The power conversion
efficiency of solar energy harvestersmainly depends on the variation of themaximum
power point of the photovoltaic panel due to the temperature or irradiance level
change in the environment. Hence, it is essential to use a maximum power point
tracker (MPPT) [12] and a suitable converter to track the power changes and extract
maximumpossible energy from the sun. Though there are several PSObasedMPPT’s
available in literature, they are widely used for partially shaded conditions, hence in
this work normal MPPT is used for power tracking [13, 14]. The harvested energy
forms the additional resource and helps in improving the entire system lifetime.

The rest of the chapter is organized as follows: Sect. 2 provides an overview of the
system model, Sect. 3 explains in detail about the anomaly detection framework for
WVSN with solar harvester and the proposed PSO based object detection approach.
Section4 provides the detailed description of the designed solar harvester, Sect. 5
provides the performance evaluation of the entire framework with and without solar
harvester. Section6 gives the conclusion and scope for future work.

2 System Model

Consider an indoor surveillance scenario as shown in Fig. 1 where a network is
deployed using wireless sensor nodes for transmission of the information obtained
from the EADS system to the network operator. For efficient processing of the video
and transmitting the required information with less complexity and energy, CS tech-
nique is adopted. PSO is used to optimize the CS measurements and a simple mean
measurement differencing approach is proposed for this system for detection of the
objects using optimized compressive measurements. The optimized routing path is
also obtained by using PSO, to reduce the communication energy. This efficient
system is implemented in the camera motes and the foreground measurements are
transmitted through relay nodes (via the optimal path) to the network operator. This
system mainly targets the indoor surveillance applications as sensor nodes have lim-
ited energy. This system can be used to detect the presence of an intruder in a highly
secured indoor environment. The camera node must be associated with a passive
infrared sensor which can trigger the camera when there is a movement. The cap-
tured video is reduced to a low dimensional signal by exploiting the CS technique
and then the object detection algorithm is used for extracting the foreground mea-
surements. These measurements are alone transmitted via solar energy harvester
equipped relay nodes. At the monitoring site the network operator will reconstruct
the object using an efficient CS recovery algorithm.
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Indoor environment

Network 

Fig. 1 Indoor surveillance system

3 Efficient Anomaly Detection System

In this framework, EADS system is used for extraction of the foreground measure-
ments and transmits it via TelosB nodes [15]. The mean based differencing approach
performed on the compressive measurements reduces the complexity as subtraction
is performed on the measurements rather than on all the pixels. PSO is adopted for
the optimization of the compressed measurements such that the proposed approach
yields better detection accuracy with less energy. The routing path towards the des-
tination is also optimized using PSO to consume lesser energy for transmitting the
compressive measurements. A solar harvester is incorporated in the TelosB node for
ensuring further increase in the lifetime of the nodes. The block diagram of the PSO
based anomaly detection framework is shown in Fig. 2. The captured video is given
as input to the background modeling block in which the background is modelled for
further processing. The PSO based mean measurement differencing approach yields
optimized differenced measurements from which the foreground measurements are
extracted using a thresholding strategy. A CS recovery algorithm is used for recon-
struction of the compressed measurements. The processes involved are explained in
detail below.

3.1 Background Modelling

The frames of sizeN×Nare extracted from the video and the background ismodelled
using a running averagemodel [16] which can be efficiently used for sensor networks
as it has low computational complexity [16].
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Fig. 2 Block diagram of proposed PSO based object detection approach

The background is modelled as shown in Eq. (1).

Bt+1(x, y) = βBt(x, y) + αCt(x, y) (1)

where α is the learning rate, β = 1 − α, Bt is the initial background frame at time t
and Ct is the current input video frame at time t [16]. The first frame is considered
as the background frame and Bt+1 is used as the updated background frame at time
t+1.

3.2 Compressed Sensing

CS is a signal processing technique which asserts that the signal can be reconstructed
from a far few measurements (M) rather than N samples. CS can be applied only to
sparse signals and all natural signals are compressible in some form or the other. The
signal is said to be compressible in any transform domain such as DCT, DWT etc.
The background frame Bt and current frame Ct in sparse domain are represented as
in Eqs. (2) and (3)

Bt = ψsb (2)

Ct = ψsc (3)



Efficient Anomaly Detection System for Video Surveillance… 159

The measurement vector of the background frame and current frame are obtained
by applying the measurement matrix to the input frame as represented in Eqs. (4)
and (5)

yb = �Bt (4)

yc = �Ct (5)

where yb and yc represents themeasurement vector of sizeM × 1, sb and sc represents
the sparse vector of background frame and current frame respectively, � denotes
the measurement matrix of size M × N, � represents the basis matrix, Bt and Ct

represent the background frame and current frame respectively [17]. Subsequent to
sparsification of the frames, an efficient measurement matrix is applied for obtaining
the measurements. The minimum number of measurements ‘M’ required for perfect
reconstruction depends on the sparsity level.

In order to achieve perfect recovery the measurement matrix must satisfy the
incoherent property and restricted isometry property. There are many CS recovery
algorithms such as basis pursuit [18], orthogonal matching pursuit [19] and iterative
algorithms [20–22] that aid in the perfect recovery of the signal.However, in thiswork
OrthogonalMatching Pursuit (OMP) algorithm is utilized. It is a fast and inexpensive
algorithm that constructs the estimated sparse vector using iteration process and the
number of iterations depends on the sparsity level of the signal [19].

3.3 Particle Swarm Optimization

PSO [23, 24] is a population based stochastic optimization technique developed
by Edward and Kennedy in 1995. It is based on bird flocking or fish schooling.
PSO shares many similarities with Genetic Algorithms (GA), however PSO has no
evolution operators such as crossover and mutation. Initially the PSO system is set
with a population of random solutions and converges towards the optima by updating
generations. In PSO, the particles move towards the current optimum particles for
achievement of the best local and global solution which is explained in detail in
Algorithm 1. The PSO is very easy to implement and the parameters to be adjusted
are less, which requires reduced computation time and memory [25]. PSO has been
successfully applied in many areas: function optimization, artificial neural network
training, fuzzy system control and other areas where GA can be applied [26]. The
basic steps of the PSO algorithm [27, 28] are given in Algorithm 1.
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The PSO is used for optimizing the minimum number of compressive measure-
ments and the distance of the routing path, which will improve the lifetime of relay
nodes by reducing the communication significantly. The number of foreground mea-
surements required to be transmitted for detection of objects is based on the PSO
and adaptive threshold.

3.4 Mean Measurement Differencing Approach

This approach is applied on the optimized compressive measurements of the back-
ground frame and current frame. Initially the mean of the background measurements
is computed and subtracted from the measurements of the current frame resulting
in CS differenced measurements. An adaptive threshold is designed based on the
standard deviation of the differenced measurements to extract the required fore-
ground measurements. The mean of the background measurements are computed
using Eq. (6).

μB = 1

M1

M1∑

i=1

yb(i) (6)

where M1 represents the number of measurements of a block and yb represents
the measurements of the background frame. The differenced measurements ‘yd’ are
obtained using Eq. (7)

yd = yc − μB × U (7)

where yc represents the current frame measurements, U represents an M1 × 1 matrix
with unit entries and μB represents the mean of the background measurements.
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The threshold (Z) is designed based on the standard deviation of the differenced
measurements as shown in Eq. (10).

μ = 1

M1

M1∑

i=1

yd(i) (8)

σd =
√√√√ 1

M1

M1∑

i=1

(yd(i) − μ)2 (9)

Z = σd (10)

where μ and σd represents the mean and standard deviation of the differenced mea-
surements respectively. The threshold is computed for each block using Eq. (10)
and gets adapted based on the difference measurements. The differenced measure-
ments are compared with the adaptive threshold, if the measurements exceed the
threshold, they are then transmitted for reconstruction else the measurements are
dropped. These transmitted measurements denoted as ‘yf ’ are called as foreground
measurements, with which the object is reconstructed. In this system the foreground
measurements are alone transmitted for detection of objects. These foreground mea-
surements are extracted with the help of an adaptive threshold. In order to minimize
the foreground measurements, the number of measurements must be minimized at
the CS process. Theminimum number of measurements computed by the CS process
is optimized using PSO such that the object detection algorithm yields maximum
detection accuracy with less number of measurements. The objective function that
minimizes the measurements is given in Eq. (11)

f = min (yf) (11)

where f represents the optimized foreground measurements and yf represents the
extracted foreground measurements. PSO provides the best minimummeasurements
for which the detection accuracy is higher resulting in reduced transmission energy.
The OMP algorithm is used at the receiver side for reconstruction of the foreground
object.

It is sufficient to transmit the foreground measurements extracted from the frame-
work to detect the object. Hence the communication energy is reduced to a great
extent, thereby increasing the lifetime of the network. The optimized foreground
measurements have to be transmitted efficiently to the destination. The routing path
and the energy resource form the major metrics that affects the system lifetime.
Hence, PSO is used for optimization of the routing path and solar harvester is used
to boost up the energy resource. The energy harvester designed is explained in the
following section.
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4 Solar Energy Harvester

A simple photovoltaic energy harvesting (PVEH) system is designed as shown in
Fig. 3. It consists of the WSN mote as the load.

The energy generated by the solar PV panel is efficiently stored in the battery with
the boost converter and the MPPT in action. The duty cycle of the converter is varied
using the direct control method based on the output from the MPPT. Compensator
circuit is included to ensure stability in the system. As the battery supplies power
to the load, to get a voltage level (2.7–3.3V) suitable for the mote operation, buck
regulator is used. Battery charge control is included to avoid over charging and
draining of the battery.

4.1 PV Panel Modeling

TheBlue Solar SL8585mmPVpanel is used for theMATLABsimulationmodel. The
panel provides 950mW of nominal maximum power. It is of monocrystalline type
and well suited to the requirement range of WSN. The simple one diode model [29]
is used for modeling the PV panel in simulation.

The voltage–current and voltage–power characteristics of the PV panel at
T=25 ◦C and varying irradiance levels are shown in Fig. 4. The V–I and
voltage–power characteristics of the PV panel at G=1000W/m2 and varying
temperature levels are shown in Fig. 5. Irradiance variation is considered upto
G=1000W/m2 as per the standard test conditions. From the Figs. 4 and 5, it is evi-
dent that the irradiance change introduces a considerable change in the peak power,
whereas the change in temperature does not produce any drastic variation in the
peak power. Moreover in Indian scenario the temperature profile during a day does
not experience a wide variation, excluding the exceptions on a few rare occasions.
Hence the temperature is kept constant for further analysis. However when temper-
ature varying locations are chosen, the effect of temperature must also be analyzed
and included.

Fig. 3 Block diagram of the proposed PV energy harvesting system
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Fig. 4 Simulated V–I and Voltage Power characteristics of the PV panel for varying irradiance at
T=25 ◦C

Fig. 5 Simulated V–I and Voltage Power characteristics of the PV panel for varying temperature
at G=1000W/m2

4.2 MPPT Converter

Boost converter is used asMPPT. The converter is chosen on the basis of the required
battery voltage (4.8–5.6V) and the available PV voltage level (Vm=4.5V). The
inductor and capacitor values are designed by considering the operation of converter
in continuous conduction mode (CCM). The values of L and C are calculated with
voltage and current ripple of 5%. The ripple percentage is calculated with respect
to the expected steady state DC component. The obtained values are L≥107mH
and C≥123.29μF with switching frequency, fs=10kHz. Hence to ensure CCM,
L=200mH and C=200μF have been used in simulation.

MPPT controller is used for matching the source resistance to load resistance as
seen by the PV panel (source) to extract maximum power. The duty cycle is set to its
optimal value corresponding to the optimal operating point (Vm, Im) using MPPT.
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Fig. 6 Incremental conductance algorithm over the moving averaged input

A simple moving averaged incremental conductance (MAIC) algorithm has been
employed as shown in Fig. 6. When there is a sudden change in the environment or
the climatic condition around the PVEH system over a short duration of time, there
is a chance of erroneous result in the maximum power point. A third order moving
average filter is included for overcoming this problem. It calculates the average
of consecutive three samples of current and voltage of the PV panel. The moving
averages are used to calculate the differential voltage and current values, from which
the conductance value will be calculated and based on that the panel voltage, will be
either increased or decreased. Marginal error (E) of 0.002 is included in this work.
Panel voltage determines the duty cycle of the converter.

Moving average filter is implemented in recursive fashion using Eqs. (12) and (13)
as it has faster implementation, reduced complexity (one addition and one subtraction
after the calculation of thefirst average) and integer based implementation. Thevalues
of p and q are taken as 1 and 2 respectively.
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maV(i) = maV(i − 1) + V(i + p) − V(i − q) (12)

maI(i) = maI(i − 1) + I(i + p) − I(i − q) (13)

NiMH battery is used in the PVEH system. Dynamic modeling of the battery
is performed in MATLAB by considering both the charging and discharging states
[30]. The battery used has a nominal voltage of 4.8V and fully charged voltage of
5.62V. The battery state of charge is controlled by two switches and a charge control
algorithm, providing series charge regulation of the PVEH system. Whenever the
battery terminal voltage is higher than the upper limit of the charging cycle (80%
State of Charge) the switch S1 in Fig. 3 is opened and prevents the overcharging of
the battery and increases its lifetime. If the battery voltage is less than the lower
critical limit (20% State of Charge) and there is no power available from the solar
panel the switch S2 in Fig. 3 is opened to avoid the deep discharge of the battery. As
the battery full charge voltage is 5.62V, to make it suitable for the operating range
of the mote (2.7–3.3V) step down converter is used after the battery. The duty cycle
of the buck converter is adjusted using the voltage mode controller to set the output
voltage to approximately 2.7V. The output voltage can also be fixed for any range
between (2.7–3.3V).

4.3 Simulation Results of PVEH

The simulation schematic of the entire PVEH system is shown in Fig. 7. The PVEH
system has been tested with the mote of interest under two different scenarios. In the
first test scenario the irradiance level (G) is kept as 1000W/m2 and the temperature
(T) is taken as 25 ◦C for the entire simulation duration. Mote is assumed to be in
sleep state for the first half of the duration and in active state for the next half. The
initial state of charge of the battery is taken as 50%. Second test scenario has the
parameters as G=500W/m2 for the first 0.5 s and G=1000W/m2 during the next
0.5 s, T=25 ◦C and the mote state is assumed to have a duty cycle of 1% as most

Fig. 7 Schematic of the PVEH system
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Fig. 8 Input and output power of the converter for the different test scenarios

of the WSN applications have a duty cycle <1%. The input and output power of
the converter is observed under these conditions and shown in Fig. 8. The output
tracks the corresponding changes in the input, the output and the input power are
approximately the same due to the usage of MAIC algorithm.

During the initial 0.5 s the mote is in sleep state, consuming nearly (43–45)μW.
During the last 0.5 s themote is in active state consuming nearly 95–98mW. Similarly
the mote current consumption in sleep state is nearly 16μA and during active state
it consumes nearly 33–36mA. The power consumption of the mote is as shown in
the Fig. 9. The mote power consumption also varies according to changes in the duty
cycle.

Fig. 9 Power consumption of the mote
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Fig. 10 State of charge of the battery

Fig. 11 Battery current

The battery State of Charge (SOC) in both scenarios is shown in Fig. 10.
It shows that the linear increase in SOC till 0.5 s, then as the mote becomes active,

current consumption increases and the battery current reduces accordingly. Hence,
the rate of change in SOC decreases after 0.5 s. In Fig. 9 SOC increases linearly upto
0.5 s, at 0.5 s irradiance level change occurs so the current entering the battery is
increased. Hence, the rate of increase of SOC also increases. After 0.9 s the mote
becomes active so the rate of increase in the SOC decreases. The corresponding
change in the battery current is shown in Fig. 10.

The comparison of the output power obtained, with the conventional direct cou-
pling method and the PVEH method is carried out and the results are shown in
Fig. 11.

The analysis is carried out under different illumination conditions. The results
shown in Fig. 12 are for the irradiance levels 1000 and 800W/m2 at 25 ◦C respec-
tively. Direct coupling of the mote with solar panel yields very less amount of power
conversion due to impedance mismatch. The proposed PVEH produces 85% of the
theoretical maximum power with 87% efficiency converter on an average. PVEH
has a better energy conversion efficiency under varying irradiance and temperature
too.
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Fig. 12 Comparative analysis of the output maximum power harvested at 1000W/m2, 25 ◦C and
800W/m2, 25 ◦C.

4.4 Energy Harvested by PVEH

The energy harvestable using PVEH in a day is calculated by considering the illumi-
nation variations in Chennai region provided by National Renewable Energy Lab-
oratory (NREL) in the renewable resource data centre [31]. Based on the power
conversion efficiency of the PVEH and the sample irradiance values as provided in
Table1, energy harvested in a single day is calculated as 186.40 J/h. After including a
conversion loss of 20% the energy obtained is found to be 149.19 J/h. Hence energy
harvested per day is calculated as 1193.536J.

Table 1 Irradiance values for
a sample day in Chennai
region

Sample irradiance

Time Measured irradiance (W/m2)

7.00a.m. 1

8.00a.m. 165

9.00a.m. 454

10.00a.m. 702

11.00a.m. 889

12.00noon 1004

1.00p.m. 1037

2.00p.m. 987

3.00p.m. 858

4.00p.m. 657

5.00p.m. 400

6.00p.m. 110
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With the efficient design of the energy harvester, it is evident that the harvester is
capable of harvesting 1193.5636J/day on an average. This additional energy can be
added with the battery resource to calculate the lifetime.

5 Performance Evaluation

The performance of the anomaly detection framework and the impact of the EADS
in WSN are evaluated in terms of detection accuracy, communication energy and
network lifetime. A network of sensor nodes was formed using TelosB nodes as the
relay nodes and PC was used at the source as well as the destination. The PC at
the transmitter side acts as the source node in which the EADS was implemented
for detection of the object from the captured video. The foreground measurements
extracted were transmitted via TelosB nodes to the destination PCwhere the object is
reconstructed using OMP algorithm. The source PC implements the PSO along with
the object detection algorithm for optimization of the measurements and distance
(with reduced hops) towards destination. The measurements are transmitted in a
multihop manner through the sensor nodes. The object detection algorithm and PSO
are implemented in MATLAB software in PC and the measurements are transmitted
in real time under ContikiOS platform [32]. The EADS is analyzed for conventional
CS based background subtraction and proposed mean measurement differencing
approaches.

The proposed framework has been tested using two videos, namely, corridor
sequence which is captured and lena walk sequence taken from database [33]. Two
frames from each sequence are shown to demonstrate the effect of the framework.
The frames of size 288×352 are extracted from the video and are divided into blocks
of size 8×8. CS is applied to each block to obtain the compressive measurements.
A simple and novel matrix called hybrid matrix is used for the CS process using a
combination of multiple matrices. Hybrid matrix which is designed by augmenting
toeplitz matrix with entries (−1,+1) and binarymatrix with entries (0, 1) reduces the
storage and energy complexity while maintaining an acceptable range of PSNR [5].
The optimized measurements that maximize the detection accuracy are computed
using PSO. The values of the parameters employed in PSO are provided in Table2.

In conventional CS based background subtraction, the compressive measure-
ments of the background frame and current frame are subtracted for obtaining the

Table 2 Parameters
employed in PSO

Parameters PSO value

Population size 12

Number of generations 10

C1 2

C2 2
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Table 3 Simulation
parameter table

Frame resolution: 288×352

Block size N: 8

K1: 5 sparsity level

t = 1/250 s for transmit/receive

It: 19.8mA for transmission

Ir : 23mA for reception

V: 3V

differenced measurements. The background subtraction process is represented as
yd = yc − yb, where yd, yc and yb represents the differenced measurements, cur-
rent frame measurements and background measurements respectively [34]. These
differenced measurements are transmitted to the monitoring site. In the proposed
approach the differenced measurements and foreground measurements are obtained
using Eqs. (6) and (9). The object is reconstructed from the foregroundmeasurements
by employing OMP algorithm which is a fast and less expensive algorithm. The pro-
posed object detection approach is compared with the CS based object detection
approach in terms of detection accuracy and communication energy. The parameters
for simulation are provided in Table3.

Figure13a, b shows the input frames, ground truths for corridor sequence and lena
walk sequence respectively where the ground truth is generated manually. Figures14
and 15 shows the reconstructed frames using CS based background subtraction and
proposed object detection approach for corridor sequence and lena walk sequence
respectively.

Fig. 13 Original frames and its corresponding ground truth of Video sequence 1. a Corridor
sequence 1 and, b lena walk
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Fig. 14 Object detected
using a CS based
background subtraction and
b proposed MMD approach
with threshold strategy for
corridor video sequence

Fig. 15 Object detected
using a CS based
background subtraction and
b proposed MMD approach
with threshold strategy for
lena walk video sequence

From Figs. 14 and 15 it is clearly seen that the proposed object detection algo-
rithm achieves better detection accuracy compared with the CS based background
subtraction algorithm.
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5.1 Detection Accuracy

The F1 score metric is used to evaluate the detection accuracy of the object detection
algorithm which is given in Eq. (14). F1 score is defined as the weighted harmonic
mean of recall and precision where recall represents the fraction of the detected
foreground pixels to the total number of foreground pixels in the ground truth and
precision represents the fraction of the correctly detected foreground pixels to the
total number of foreground pixels detected [35].

F1 score = 2 ∗ Recall ∗ Precision

Recall + Precision
(14)

5.2 Energy Analysis

Energy consumption in a WSN node has two components: communication energy
and computation energy. Communication energy forms the major contributor of the
total energy consumption. Hence, in this work communication energy consumption
analysis is performed. Communication energy is the sum of transmission energy and
reception energy which is computed using Eqs. (15) and (17). The communication
energy for the foreground measurements are computed in real time using powertrace
tool in ContikiOS [36].

Transmission energy
Energy for transmitting the foreground measurements through TelosB nodes are
calculated theoretically using Eq. (15)

Etx = (t∗It ∗ V) /1024 J (15)

where t represents the time to transmit a 128byte packet, which is approximately
1/250s, It represents the current, which is 19.5mA, and V represents the voltage,
which is 3V. The current and voltage values are taken from the TelosB datasheet [37].
TelosB has a MSP 430f1611 processor with 10K RAM, 48K FLASH and 1MB
external flash [37]. The transmission energy per frame Ef is calculated using Eq. (16).

Ef = BM ∗Etx (16)

where BM represents the number of bits to be transmitted and Etx = 0.23 μJ is
calculated using (15) [5].

Reception energy
Energy for receiving per bit in TelosB mote is computed using Eq. (17)

Erx = (t ∗ Ir ∗ V) /1024 J (17)
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Table 4 Comparison of proposed approach with existing approach in terms of detection accuracy
and energy

Approaches Foreground
measurements

Detection
accuracy

Communication energy per frame (mJ)

Theoretical Practical

CS based
background
subtraction

36,432 0.35 146 166.4

Mean
measurement
differencing with
threshold
strategy

11,077 0.83 44.4 50.6

where the values of t, Ir, and V are taken from the TelosB datasheet. The energy for
receiving per bit is calculated as 0.27μJ. Table4 shows the theoretical and practical
computation of communication energy for proposed approachwith threshold strategy
and CS based background subtraction approach.

Table4 shows PSO based EADS with the proposed object detection approach
achieving 70% reduction in communication energy compared to the existing CS
based background subtraction approach. The mean measurement differencing
approach yields 58%higher detection accuracy and 89% reduction in samples which
in turn increases the network lifetime.

5.3 Network Lifetime

Network lifetime is analyzed for CS based background subtraction with PSO and
the proposed mean measurement differencing with PSO methods by assuming a
random network deployment. Communication energy alone is used for the analysis.
The source node is chosen to be at the centre and the destination node is chosen
randomly. The routing path is calculated using PSO with the parameters given in
Table2 and a suitable objective function is given in Eq. (18)

Pathopt = min(energy) (18)

Communication Energy (ECOM)
The energy consumed for ‘per bit’ transmission and the energy consumed for ‘per
bit’ reception are given in Eqs. (19) and (20), respectively.

ETX = εe + εad
α (19)

ERX = εe (20)
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Fig. 16 Simulation scenario
for network lifetime

where εe = 100 × 10−12 is the energy dissipated per bit per m2, εa = 50 × 10−9 is
the energy consumed by the circuit per bit, d is the distance between a wireless
transmitter and a receiver and α = 2 is the path loss parameter [38].

The communication energy per bit is calculated as.

ECOM = ETX + ERX (21)

The total energy consumption in multihop transmission is given below,

ETOT1 = ECOM_path × Bitstot (22)

The communication energy per bit for the entire path is multiplied by the total
bits transmitted (Bitstot) to get the total transmission energy.

For a sample scenario, nodes are randomly placed in a square area of 56m×56m
with an average node degree of 10. The number of nodes used is 100. The node
closest to the centre of the field is chosen as the source node and the destination node
is chosen randomly. The destination nodes are chosen such that there are four hops
between the source and destination. The optimal path obtained using PSO is shown
in Fig. 16.

The parameters of the simulated network are given in Table5.
Each node in the network is provided with 10,800J of energy initially as provided

by the battery. Transmission of an image from the source to destination is considered
as a session. The simulation ends when anyone of the nodes in the network is drained.
The system lifetime is measured in terms of the number of sessions for the raw frame
transmission, CS based background subtraction with PSO method and proposed
mean measurement differencing with PSO method. Lifetime is also calculated by
including the PVEH into account. The relay nodes are assumed to have an initial
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Table 5 Simulated network parameters

Parameter Value

Network size 56m×56m

Number of nodes 100

Initial energy of nodes

Without harvester 10,800 J

With harvester 11,993.536J

Table 6 Network lifetime analysis

Method Lifetime without harvester
(sessions)

Lifetime with harvester
(sessions)

Mean measurement
differencing with threshold
strategy

1,071,373 1,189,720

CS based background
subtraction

344,274 382,303

Raw frame transmission 123,724 137,391

energy of 11,993.536 (battery+harvester energy). The lifetime is calculated in terms
of sessions for all the methods and the results are listed in the Table6.

Table6 shows that the proposed method have 67.9 and 88.45% increased lifetime
when compared to CS based background subtraction and raw frame transmission
respectively.With solar energy harvester the proposedmethod achieves 10% increase
in the lifetime for a single recharge cycle. Considering the number of recharge cycles
throughout entire lifetime of the battery, the batteries would achieve an everlasting
lifetime with solar energy harvester.

6 Conclusion and Scope for Future Work

An efficient anomaly detection system is proposed for WVSN which can detect the
presence of an anomaly and alert the network operator. CS is used for addressing
the energy and bandwidth constraints of the sensor nodes and PSO is used to opti-
mize the minimum number of CS measurements which in turn reduces the memory,
energy and bandwidth to a great extent while preserving detection accuracy. A mean
based differencing approach has been proposed for EADS to obtain the differenced
measurements from the background and current frames. A threshold is designed
for extraction of the foreground measurements from the differenced measurements.
These measurements are transmitted via TelosB nodes through the optimized routing
path obtained from PSO. The performance of the EADS shows that the proposed
differencing approach yields better detection accuracy compared to the existing CS
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based background subtraction approach. The proposed method has 67.9 and 88.45%
increased lifetime when compared to CS based background subtraction and raw
frame transmission respectively. To improve the network lifetime a solar harvester is
designed which when used with TelosB nodes increases the network lifetime up to
10% for a single recharge cycle. Considering the number of recharge cycles through-
out entire lifetime of the battery, the batteries would achieve an everlasting lifetime
with solar energy harvester.

In future the PC at the transmitter side will be replaced by camera capable sensor
mote with higher processing capability to implement the PSO based EADS system
alongwith the optimized network analyzed in this work to transmit the information to
the network operator. The latency involved in the transmission will also be analyzed.
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Planning Robust Sensor Relocation
Trajectories for a Mobile Robot with
Evolutionary Multi-objective Optimization

Benjamin Desjardins, Rafael Falcon, Rami Abielmona and Emil Petriu

Abstract Wireless sensor networks provide a method for monitoring a region of
interest. Incorporating a mobile robot within the sensor network allows various types
of functionality to be added. One example of this is the replacement of risky and/or
damaged sensors with other functional, passive ones. Using a specially designed risk
management framework (RMF), we can proactively detect sensors that are at a high
risk for failure and replace them before any network coverage is lost. The problem
of optimizing the robot trajectory while picking up passive sensors and dropping
them at the locations of the damaged sensors in the field has been studied as the
“Robot-Assisted Sensor Relocation” (RASR) problem. One shortcoming of existing
RASR methods is that the chosen robot trajectory is the one with the shortest length;
however, no regards as to the durability of the passive sensors in the relocation chain
are taken into consideration. We propose a more robust manner to come up with
these trajectories by taking into account the current energy levels of the participating
passive sensors as well as the ideal locations for their deployment.We resort to multi-
objective optimization (MOO) to handle the tradeoffs among the different decision
objectives that are part of this new formulation, named here as “Reliable Robot-
Assisted Sensor Relocation”. We outline the RRASR problem as well as the RMF
used for detecting risky sensors in the wireless sensor network before the calculation
of the sensor relocation trajectory takes place. We also evaluate the performance
of six state-of-the-art evolutionarymulti-objective optimization (EMOO) algorithms
with sensor networks of varying sizes, inflicted damage levels, and passive sensor
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densities. The empirical results confirm the feasibility of utilizing EMOOapproaches
to suggest multiple sensor relocation trajectories to the network manager.

Keywords Sensor relocation ·Wireless sensor and robot networks ·Multi-objective
optimization · Wireless sensor networks · Genetic algorithms

1 Introduction

A wireless sensor is a device that is equipped with monitoring hardware, a battery,
and some form of wireless communication [1]. A group of these wireless sensors
is referred to as a Wireless Sensor Network (WSN) and is deployed in a region of
interest (ROI) [1]. WSNs gather low-level information about a ROI for high-level
applications in various domains, including medicine, defense, and agriculture [1].
As many of these domains are information-critical, the sensors must be deployed
in such a way to provide complete sensing coverage over the ROI with no internal
sensing holes.

WSNs can be functionally expanded with the addition of a mobile robot. This
robot, or group of robots, perform some sensing or actuation task that is related to
the WSN. This is referred to as a Wireless Sensor and Robot Network (WSRN) [2].
The robots add aflexibility not present in aWSNas they are generallymobile andhave
fewer or no resource restrictions and are designed to maintain, assist, or optimize
the sensor network. Falcon explains in [2] that WSRNs can be divided into two
categories: robot-dependent WSNs, and robot-assisted WSNs. In a robot-dependent
WSN, the robot(s) are integral to the functionality of the network. However, robot-
assisted WSNs do not require the functionality of robot(s), instead only relying on
them to improve the performance of the network.

Robot-Assisted Sensor Relocation (RASR) is a specific WSRN-related problem
wherein a robot is responsible for maintaining the coverage of the network. RASR
is also referred to as “carrier-based coverage repair” [3] in the literature. This
problem is defined by having a common base station where one or more robots are
on standby. These robots are responsible for relocating and/or replacing sensors in
order to maximize network performance. RASR assumes that there are additional
sensors in the ROI not currently being used by the network to achieve maximum
coverage. These extra sensors do not actively collect information and will be referred
to as passive sensors. The robot(s) use these sensors to replace damaged sensors in
the network, viz. by leaving the base station, picking up some passive sensors and
dropping them at the locations of the damaged sensors to reconfigure the network
when there has been enough degradation of the coverage area.

This chapter builds upon the early work done by Desjardins et al. [4] in defining
Reliable Robot-Assisted Sensor Relocation (RRASR). The original work defines
RRASR as a specific version of RASRwherein there is a single mobile robot that has
a limited carrying capacity and our objective is to find an optimal sensor relocation
trajectory. RRASR differs from RASR in that there are additional objectives of
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importance beyond trajectory length. These additional objectives are representative
of the fact that when only considering the distance that the mobile robot travels, we
ignore the quality of the sensors that are being placed. In the worst case scenario, a
passive sensor with very little remaining battery life could be used to fill a sensing
hole. This is a poor solution as it will require the robot to redeploy in a short amount
of time to fix the same sensing hole. Due to these additional objectives, RRASR
was formulated as a multi-objective optimization (MOO) problem and as such we
use evolutionary multi-objective optimization (EMOO) algorithms to solve it. The
decision to solve the problem as an explicit multi-objective problem stems from the
desire to provide a decision maker with a variety of good solutions so that they may
choose one based on the situation at hand.

In the original RRASR problem [4], robots are deployed when there are sensing
holes already in the network. In this chapter, we present a method for identifying
sensors that are likely to fail, and replacing them before a sensing hole occurs. This
is essential for operations in critical systems where complete sensing coverage of
an ROI is always required. We rely on the Risk Management Framework (RMF),
described in [5] to support the risk-aware analysis of which sensors become damage
at a certain point in time.Our tailoredRMF formulation allows proactive replacement
of sensors that are deemed at risk of failing or being faulty in order to try andminimize
any lack of coverage in the ROI.

We expand on the original work in [4] with the following contributions: (1) we
review the literature on three fronts: sensor relocation bymobile robots, the optimiza-
tion problem that stems from it, and the use of risk-driven schemes; (2) we propose
a proactive replacement methodology using an RMF-based approach that monitors
several key factors to ensure proper sensor functioning; (3) we modify one of the
existing RRASR objectives proposed in [4] to more accurately reflect the importance
of network connectivity when selecting what passive sensor to deploy at a certain
spot; (4) we solve this problem using a set of state-of-the-art algorithms, including
the newer AGE-I [6] and AGE-II [7] algorithms; (5) we use parametric tuning to
ensure each algorithm is providing a set of good solutions; (6) we discuss on our
statistically validated empirical results, giving insight into the EMOO algorithms’
performance, in experiments dealing with various sizes of sensor networks, inflicted
damage levels, and distribution density of passive sensors.

The remainder of the chapter is structured as follows: Sect. 2 briefly reviews rel-
evant works. Section3 details our proposed RMF formulation for determining the
damaged sensors, Sect. 4 formalizes the RRASR problem and Sect. 5 elaborates on
the algorithmic components for the EMOO techniques under consideration. Section6
contains the empirical evaluation of the proposed methodology. Finally, Sect. 7 con-
cludes the chapter.
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2 Related Work

This section provides a brief overview of related studies regarding robot-assisted
sensor relocation and its underlying optimization problem as well as the risk
management framework.

2.1 Robot-Assisted Sensor Relocation

RASR has been studied in various forms using different methodologies, as summa-
rized in Table1. In addition to what method is used to solve the problem, there are
two other categories that define an approach to RASR: the architecture, centralized
or localized, and the number of robots being one or many. The formalizations pro-
vided in [3, 8, 9, 13] use a centralized architecture, wherein a central server or base
is responsible for determining the deployment and trajectory of the robot(s). In the
centralized scenario, the robot(s) are stored in the base station until they are needed.
Multiple-robot solutions are described in [9, 11, 14] and use different methods for
determining trajectories of the robots. All of the literature examined provided solu-
tions where the robot has a limited carrying capacity. Uniquely, the solution provided
by Li et al. [14] uses a method where the sensors themselves play a role in helping
the robot to identify sensing holes in the network. Fletcher et al. [12] use a strictly
programmatic approach to replacement whereby one or many robots will wander a
WSN and replace sensors as necessary. They provide two variants of their method:
grid-based and non-grid-based.

Within the RASR space, themethod closest to the onewe propose is found in [13].
Coincidentally, it also differs the most from the others as it proposes a method where
only the batteries of the sensors are replaced, rather than the sensors themselves. It
uses a genetic algorithm (GA) to solve a two objective MOO problem wherein one
objective is favoured over the other. One of the objectives represents the portion of
damaged sensors that are in the current solution. This acts as a driving factor for
all damaged sensors to be included in the solutions, but does not add depth to the
problem.

Our method provides more depth to the problem by more realistically modeling
it. We do this by incorporating an MOO approach that stems from the considera-
tion given to other facets of the problem. We extend the problem solved in [3] by
including additional decision objectives for determining the optimal sensor relocation
trajectories.We set ourselves apart from traditional RASR solutions by incorporating
additional decision objectives that provide a more realistic view of RASR.



Planning Robust Sensor Relocation Trajectories for a Mobile ... 183

Table 1 Related RASR literature

Ref. Architecture Number
of robots

Methodology Assumptions

[3] Centralized One Ant Colony System Robot has no battery
constraints
Robot can only carry
a limited number of
sensors

[8] Centralized One Ant Colony System
+ Constrained
Neighbourhood
Mutation
(ACS+CNM)

Robot has no battery
constraints
Robot can only carry
a limited number of
sensors

[9] Centralized Many Firefly Algorithm
and Harmony Search

Robot has no battery
constraints.
Robot can only carry
a limited number of
sensors

[10] Localized One Proactive and
reactive replacement
algorithms

Robot may only
carry one sensor
Robot has battery
life
Robot wanders when
not recharging

[11] Localized Many Localized Ant-based
Sensor Relocation
Algorithm with
Greedy Walk
(LASR-G)

Robot may only
carry one sensor
Maximizes coverage
in any situation be it
node failure or poor
deployment

[12] Localized One or
Many

Randomized
Robot-assisted
Relocation of Static
Sensors (R3S2) and
grid variant
(G-R3S2)

Robot has no battery
constraints
Robot wanders when
not actively
replacing nodes

[13] Centralized One Dual-objective
genetic algorithm

No relocation of
nodes, only
replacing batteries
Batteries deplete
over the course of
replacement

[14] Localized One or
Many

Market-based Sensor
Relocation (MSR)

Robot may only
carry one sensor
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Table 2 Related optimization literature

Ref. Optimization
problem

Optimization
algorithm

Objective Assumptions

[15] Selective Pickup
and Delivery
Problem (SPDP)

Genetic
Algorithm (GA)

Minimize route
length

No maximum
vehicle load

[16] Multi-vehicle
SPDP

GA with path
relinking

Minimize sum of
route lengths

All vehicles are
used in each
instance

[17]-1 SPDP GA with adaptive
mutation

Minimize route
length

No maximum
vehicle load

[17]-2 SPDP GA with local
search and
adaptive mutation

Minimize route
length

No maximum
vehicle load

[18] Single Vehicle
Routing Problem
with Deliveries
and Selective
Pickups
(SVRPDSP)

GA with variable
neighbourhood
search

Minimize route
length

Multiple visits to
delivery location
is valid
Allows pickup
and delivery from
same location

[19] SVRPDSP Evolutionary
algorithm with
variable
neighbourhood
descent

Minimize route
length

Multiple visits to
delivery location
is valid
Allows pickup
and delivery from
same location

[20] SPDP GA with local
search

Minimize route
length

No maximum
vehicle load

[21] Multiple Vehicle
Routing Problem
with Delivery and
Selective Pickups
(MVRPDSP)

Hybrid
metaheuristic

Minimize sum of
route lengths

Allows pickup
and delivery from
same location

2.2 Related Optimization Problems

RASR can be generalized into versions of classical optimization problems: the Trav-
elling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). The ver-
sions of these problems that most closely model RASR are selective pickup and
delivery problem (SPDP) [15] and the Single Vehicle Routing Problem with Deliver-
ies and Selective Pickups (SVRPDSP) [18]. The defining difference between TSP/
VRP and SPDP/ SVRPDSP is that all delivery requests must be satisfied, but not
all pickup locations need to be visited. Table2 gives an overview of some of the
approaches to these problems. As a note, since TSP and VRP are known to be NP-
hard, we can infer that RASR is NP-hard as well.
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These problems have been approached in different ways, but of interest to us are
approaches using evolutionary and genetic algorithms. Liao and Ting use a standard
GA approach in [15]. An important feature of this work is that they incorporate a
repair function in order to guarantee the feasibility of their solutions. This approach is
expanded upon in [20] where they use a memetic algorithm in order to improve their
results. In [17], Liao and Ting employ both a standard GA approach and a memetic
approach with adaptive mutation to enhance solution quality. In [18], Bruck et al. use
a GA with variable neighbourhood search. This is further developed in [21] where
a multi-vehicle version of the problem is examined. The multi-vehicle problem is
also examined by Huang and Ting in [16]. The approach in [18] is broadened on by
Bruck and dos Santos in [19] where they explore a different gene representation as
well as incorporate data mining techniques in order to improve their mutation and
crossover operators.

Our approach diverges from the ones mentioned above due to the addition of
multiple decision objectives. As the methods relating to this problem in the literature
only address a single objective, we unveil a new avenue to the problem. As we
consider using EMOO algorithms to solve our problem, the genetic representations
found in [15–20] can still be deemed relevant as it is possible to use them in an
EMOO algorithm.

2.3 Risk-Driven Detection of Damaged Sensors

The original RMF was proposed by Falcon et al. [5]; the authors outlined a multi-
modular architecture comprising: (a) a risk feature extraction module that generates
a parallel risk stream from the incoming raw data features; (b) a risk visualization
module, allowing the user tomonitor the system’s risk landscape in real time and (c) a
risk assessment module that evaluates local and global risk dimensions of any system
unit at any point in time. In [22], a response selection module was added in order to
automatically determine a small set of the most promising responses to a risky event
that are to be presented to an operator for further analysis. McCausland et al. give in
[23, 24] two implementations of an RMF for maintaining perimeter coverage of an
ROI. This is similar to our proposed RMF as we too are trying to preserve maximum
coverage across our ROI. Falcon et al. augment the original risk feature extraction
module in [25] by integrating hard-soft information fusion in order to extract risk
features from a variety of sources such as radar, Automatic Identification System
(AIS), intelligence reports, and historical data. More recently, the generation of an
object’s intent in a risk-aware fashion using anomaly detectors has been the subject
of discussion in [26].
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3 RMF for Sensor Fault Detection

In the originalwork [4] the robotwas only deployedwhen the sensing holes in theROI
had formed due to sensor failure caused by battery depletion or otherwise. Here, we
outline outline an implementation of the Risk Management Framework introduced
in [5] that aims at detecting damaged sensors early on so they could be appropriately
replaced with passive sensors. to maintain a maximal amount of sensor coverage
over the ROI. We incorporate elements of the RMF proposed in [22] including risk
feature extraction and the risk assessment module.

Risk feature extraction works by identifying the underlying data features of our
system and providing a transformation into risk features used by the risk assessment
module. This is done by creating a set of linguistic terms for each linguistic variable.
Each linguistic term is modeled as a fuzzy set with a corresponding membership
function. We use a Mamdani fuzzy inference system [27] for our implementation of
the risk assessment module.

3.1 Data Features

We use the following four data features as the basis for our RMF:

Battery Level A value reported from the sensor, in the range [0, 100] representing
the percentage of battery power remaining.

Data Fault Detection A nominal value representing the quality of data being trans-
mitted by a sensor. It is determined by the method proposed by Chen et al. [28].
The nominal value has four possibilities: possibly normal (LG), possibly faulty (LT),
normal (GD), or faulty (FT). GD and FT indicate sensors that are positively normal
or faulty respectively whereas LT and LG indicate the lack of required information
to place the sensor into either the GD or FT categories.

Transmission Reliability Used to measure if the frequency at which data is period-
ically sent by a sensor is acceptable. This is represented by the following function:

f (r) = r/Tmin (1)

where r is the current transmission rate based on a sliding time window, in packets
per second, and Tmin is the minimum acceptable transmission rate. If f (r) >= Texp,
where Texp = ρTmin, the expected transmission rate, and ρ is a predetermined con-
stant based on the hardware used, then the transmission rate is deemed to be normal.
If 1 < f (r) < (ρ + 1) then the transmission rate is acceptable.
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Physical Reliability Represents the likelihood of a failure occurring due to the
age of the sensor or its components. We represent this with the exponential failure
distribution function:

F(t) = 1 − e−λt (2)

where t is the usage time of the sensor and λ is a constant that is determined by the
make and model of the sensor.

3.2 Risk Features

Each of the data features described in Sect. 3.1 corresponds to a risk feature. This
gives us the following risk features:

1. Battery Risk (R1)
2. Data Fault Risk (R2)
3. Transmission Reliability Risk (R3)
4. Physical Reliability Risk (R4)

Each of the risk features is treated as a linguistic variable with three linguistic
terms: LOW ,MED, andHIGH to indicate the level of risk that the data feature entails.
Using the functions described for each data feature, we assign a risk value for each
of the risk features by using trapezoidal membership functions. These functions are
detailed in Table3 for R1, R3, and R4. These functions are designed as a proof-of-
concept and serve to provide a basis for experimentation. R2 is a unique case as it

Table 3 Trapezoidal membership functions

Battery risk

A B C D

High −∞ 0 15 30

Med 20 30 60 70

Low 60 75 100 ∞
Transmission reliability risk

High −∞ 0 1 1 + 0.25(ρ − 1)

Med 1 + 0.1(ρ − 1) 1 + 0.6(ρ − 1) 1 + 0.75(ρ − 1) 1 + 0.85(ρ − 1)

Low 1 + 0.75(ρ − 1) 1 + ρ ∞ ∞
Physical reliability risk

High 0.6 0.85 1 ∞
Med 0.3 0.5 0.6 0.8

Low −∞ 0 0.33 0.5
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is defined by four nominal values; as such, we assign the value of the risk features
according to the following:

Possibly Normal (LG) �→ LOW
Normal (GD) �→ LOW
Possibly Faulty (LT) �→ MED
Faulty (FT) �→ HIGH

Using themembership values for the three numerical risk features and the nominal
value for the only nominal risk feature, we are able to determine an overall risk value
for each active sensor in the network. This process is outlined in the following section.

3.3 Risk Assessment Module

The assessment module of the RMF aggregates the risk features into an overall risk
value for each sensor. Our RMF uses the following rules for aggregation:

• IF R1 isHIGH or R2 isHIGH or R3 isHIGH or R4 isHIGH then SensorRisk isHIGH
• IF R1 isMED and R2 isMED and R3 isMED then SensorRisk is HIGH
• IF R1 isMED or R2 isMED or R3 is MED or R4 isMED then SensorRisk isMED
• IF R1 is LOW and R2 is LOW and R3 is LOW and R4 is LOW then SensorRisk is
LOW

If a sensor belongs to HIGH with membership greater than 0.6 a replacement
operation is triggered. Any sensor with membership to MED ≥ 0.6 or HIGH ≥
0.6 is flagged for replacement by the mobile robot. We replace sensors with high
membership to MED in order to reduce the number of relocation tours required by
the robot to maintain network coverage. Note that some of the risk features do not
increase monotonically, so threshold values for flagging must be carefully tuned to
avoid replacing sensors that do not necessarily require replacement. The rules given
here have been designed in order to reduce the amount of coverage loss to aminimum
(Fig. 1).

4 RRASR: A Multi-objective RASR Formulation

RRASR can be expressed as a combinatorial optimization problem by representing
our sensor network as a complete undirected graph G = (V,E) with vertex set V =
{v0, . . . , vn} and edge set E = {eij = (vi, vj)|vi, vj ∈ V, vi �= vj} in which each edge
eij has a cost dij > 0 representing the Euclidean distance between vi and vj.

Each vertex represents either a passive sensor or a sensing hole and has an asso-
ciated unitary demand qi(1 for passive sensors and −1 for sensing holes). The base
station is denoted as v0 with q0 = 0. Therefore, we can say that any other vertex
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Fig. 1 An outline of the steps of the RMF for RRASR

either belongs to the set of passive sensors S = {vi|vi ∈ V, qi = 1} or the set of
sensing holes H = {vi|vi ∈ V, qi = −1}. This implies that V = {S ∪ H ∪ v0}.

Each sensor has an associated battery level denoted by:

pi =
⎧
⎨

⎩

0 if vi ∈ H
−1 if i = 0
∼ U(0, 100) if vi ∈ S

(3)

Note that ∼ U(0, 100) refers to a random number uniformly distributed in the
specified interval of 1 and 100.

There is a unique commodity (sensors) to be transported by the robot from one
place to another. The robot can carry at mostQmax sensors and leaves the base station
with an initial cargo Q0, 0 ≤ Q0 ≤ Qmax. The robot always drops the most recently
picked up sensor when it reaches a sensing hole due to simulated design constraints
on the robotic arm and mobile platform.

We also consider the set of all active nodes A = {a0, . . . , am, v0} that form the
WSRN deployed in the ROI, although these do not become part of the network graph
G for optimization purposes. This is an essential consideration to our problem as
it allows us to determine the importance of a node in the WSRN with regards to
maintaining network connectivity. v0 is specially included in A to account for those
sensing holes only known to the base station.

All passive and damaged sensors vi ∈ V, 1 < i < n have a communication radius
of R. We use the edge set E′ = {e′

ij = (ai ∈ A, vj ∈ H)} to find the active node
degree gj of each sensing hole vj ∈ H defined as the number of active sensors
within communication distance of the sensing hole. This is formally defined as:
gj = |{ai ∈ A : d′

ij ≤ R}| and d′
ij stands for the Euclidean distance between ai and vj

where ai ∈ A, vj ∈ H.
We want to find a feasible sensor relocation trajectory, ϕ = (

vγ1 , vγ2 , . . . , vγ|ϕ|
)

where γ : [1; |V | − 1] → {γi}, v /∈ V {v0} is an injective function, that starts and
ends at the base station. As stated by Falcon et al. [3], a sensor relocation trajectory
is said to be feasible if it has no repeated nodes (other than the base station as its
first and last element), repairs all sensor holes (i.e., drops a passive sensor at the
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location of each sensing hole), and never violates the robot’s capacity constraint,
Qmax. The quality of ϕ will be evaluated according to the following optimization
objectives:

Minimize Trajectory Length ∑

eij∈ϕ

dij (4)

Maximize Trajectory Robustness

∑

vi∈ϕ∩S,vj∈ϕ∩H
pigjδij (5)

Maximize Trajectory Lifetime

min{pi}, vi ∈ ϕ ∩ S (6)

The trajectory robustness is representative of how likely a sensor hole would be
to cause a disconnect in the WSN. It is expressed as a value based on the battery
power of a given sensor and its score, gj. This score is determined using the concept
of vertex separation and the following equation:

gj = 1 +
∑

a∈A

∑

vj �=a,vj �=vi,vj∈Cabi

1/|Cabi|, vj ∈ A (7)

where Cabi is the ith ab-separator [29], a ∈ A, and b = v0 the depot.
The function δij is evaluated as follows:

δij =
{
1 if vi ∈ ϕ ∩ S will be dropped off at the location of vj ∈ ϕ ∩ H
0 otherwise

(8)

The trajectory lifetime shows the worst passive sensor power level in a sensor
relocation trajectory. We want the selected passive sensors to have enough battery
power so they can sustain operational demands without being depleted in a short
period of time, hence becoming damaged nodes themselves.

5 EMOO Algorithms for RRASR

This section is devoted to outlining the different components of the multiobjective
optimizers under consideration to tackle the RRASR problem.
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5.1 Solution Encoding

We use a modified version of a permutation-based solution representation seen in
[15]. For a problem instance with a set of n nodes we will create a permutation of size
n − 1; we do not include the base station, v0, in our permutation as it is assumed to
be the beginning and end of every tour. Each solution will have the form (v1, . . . , vn)

to represent the order in which the nodes are visited. As not all nodes are required
to be visited, we will represent the unvisited nodes by marking them as negative
integers. For example, the permutation (6, 2, −4, 1, 3, −5) indicates that the robot
will visit nodes 6, 2, 1, and 3, in order while ignoring the others. Since RRASRmust
have solutions computed quickly in order to act upon them in the WSN, we adopted
this representation as it ensures higher computational efficiency at the expense of
requiring greater memory capacity.

5.2 Objective Functions

As we are using an MOO approach to the problem, we use (4–6) as the fitness
functions. As a result each solution is evaluated in terms of three different (and
conflicting) objectives.

5.3 Population Initialization

The population is initialized by creating three heuristically determined individuals
and randomly initializing the remainder of the population. The heuristically deter-
mined individuals are based on the three objective functions. For trajectory length
(4) we use a nearest neighbour heuristic in which the shortest feasible edge is always
taken. For trajectory robustness (5) we select the pickups and deliveries such that the
best sensors are always delivered to the sensing hole with the highest score. For tra-
jectory lifetime (6) we pickup the sensors with the highest battery levels, regardless
of location. The random initialization of the remainder of the population is done by
creating a permutationwith no duplicate elements, with the sign (positive or negative)
of each element being decided with equal probability.

5.4 Evolutionary Operators

Selection Operator We use a binary tournament as our selection operator, as it is
the standard in the library used for implementation, the MOEA Framework.1 This

1http://moeaframework.org/.

http://moeaframework.org/
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works by randomly selecting two individuals from the population and then selecting
the best of the two. As this is an MOO problem, we use the non-domination rank
[30] of a given solution rather than its fitness function values. In the case that the
selected solutions share the same rank either solution is chosenwith equal probability.

Crossover Operator Partially-mapped crossover (PMX) [31], as the default in our
implementation framework, is used as the crossover operator. This type of crossover
builds offspring solutions by selecting a subsequence from one of the parents and
inserting it into the other parent, preserving the original order of as many points as
possible, as demonstrated in Fig. 2.

Mutation Operator We include two mutation operators in our implementation:
insert and swap. Each offspring has a chance to undergo a mutation. The insert
operator works by selecting an element of the permutation and inserting it at another
random location in the permutation and is illustrated in Fig. 3. The swap operator
works by randomly selecting two elements of the permutation and switching their
values and is illustrated in Fig. 4.

These mutations would have no or little effect if they were to only affect the
negative elements of the permutation. As such, any element that is affected by a

Fig. 2 Example of
partially-mapped crossover
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Fig. 3 Example of the insert
mutation operator

Fig. 4 Example of the swap
mutation operator

mutation also has its sign flipped. This causes the mutations to have a guaranteed
effect on both the genotype and phenotype of the solution.

5.5 Infeasibility Handling

Solutions will be repaired if, upon evaluation, they violate any constraints. This is
done so that the solution satisfies all of the problem constraints. Our proposed repair
methodology can be broken down into two parts: content repair and order repair,
which are completed in that order.

Content Repair In the case that the solution does not contain the appropriate number
of passive sensors or does not contain all of the damaged sensors we use the following
procedure:

Fig. 5 In the first example
there are not enough passive
sensors in the relocation
trajectory. We add passive
sensors from right to left
until we have enough. In the
second example there are too
many passive sensors in the
relocation trajectory. We
remove passive sensors from
left to right
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• In the case H ⊆ ϕ is not true, we add the remaining elements of H to ϕ. We do
this by making all elements belonging toH in the encoded solution positive if they
are not already.

• If |ϕ| > 2|H| − Q0, remove vi ∈ S ∩ ϕ from right to left until |ϕ| = 2|H| − Q0.
Going from right to left prevents us from collecting passive sensors after the last
sensing hole is visited. We iterate through the permutation from n to 1 and flip the
sign of those vi from positive to negative until the condition is satisfied.

• If |ϕ| < 2|H| − Q0, add vi ∈ S, vi /∈ ϕ from left to right until |ϕ| = 2|H| − Q0.
Going from left to right prevents us from removing passive sensor collections that
are being used as part of the solution. We iterate through the permutation from 1
to n and flip the sign of those vi from negative to positive until the condition is
satisfied.

This portion of the repair function can be seen in Fig. 5.

Order Repair The ordering constraint dictates that: at all points inϕ, 0 ≤ Q ≤ Qmax

must hold. We must consider the two infeasible cases for repair:

• IfQ > Qmax at some point inϕ, the offending vi ∈ ϕ ∩ S is moved after the nearest
right vi ∈ ϕ ∩ H in ϕ. To do this we insert the element in which the issue appears
after the rightmost element of H that appears in the permutation.

• If Q < 0 at some point in ϕ, the offending vi ∈ ϕ ∩ H is moved after the nearest
right vi ∈ ϕ ∩ S in ϕ. To do this we insert the element in which the issue appears
after the rightmost element of S that appears in the permutation.

This portion of the repair function is illustrated in Fig. 6.

Fig. 6 Examples of sensor
relocation trajectory ordering
repair for Qmax = 2. In the
first example the robot
attempts to place a sensor
when it is not carrying one.
We swap the offending
sensing hole with the next
passive sensor. In the second
example the robot attempts
to collect a passive sensor
when it is already carrying a
full load. We swap the
offending passive sensor
with the next sensing hole
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5.6 Stop Criteria

The algorithms will be terminated after they have undergone a maximum number of
objective function evaluations (NFE). In a real-world deployment, it would be more
appropriate to use a time-based stop criteria as RRASR applications will generally
be time-constrained. We use objective function evaluations as our stop criteria as it
gives us a larger view of algorithm performance independent of time, which is used
as an evaluation metric.

6 Experimental Results

This section elaborates on the empiricalmethodology and evaluation for our proposed
MOO methodology for the RRASR problem.

6.1 Experimental Setup

Synthetic Scenario Generation The scenarios used for experimentation have been
generated under the control of various problem parameters such as: the total number
of sensorsN , ratio of sensing holes to passive sensorsRHS , and the distribution density
of the passive sensors. In order to simulate an appropriate RRASR scenario, we
generate aWSN by first mapping a grid of active sensors to a ROI.We then randomly
select a subset of the active sensors to act as sensing holes. Finally, we randomly
distribute the passive sensors using theMAX_DPA algorithm adapted from [32] with
the distribution density parameter. The resulting collection of passive sensors, active
sensors, and sensing holes provides the scenario used for experimentation.

We generated 110 scenarios in total: 50 scenarios for varyingN from 10 to 1000 in
increasing steps, 10 using varying distribution density values in MAX_DPA and 50
for differing RHS values from 1 to 50%.

Benchmark EMOO Algorithms We examine the performance of six different
EMOO algorithms on our problem. We include NSGA-II [30], which is based upon
Pareto dominance and a crowding distance operator, and its successor NSGA-III
[33] which follows the same framework as NSGA-II, but also uses reference planes
to drive towards good solutions. SPEA2 [34] uses a strength function that is based
on the number of dominated solutions of the non-dominated set. PESA-II [35] uses
a region-based approach whereby the solution space is broken up into regions and
solutions are chosen in order to keep the best and maintain a healthy spread across
regions. The newer AGE-I [6] and AGE-II [7] algorithms are included in our bench-
mark group and use amethod that aims to have the populationmodel approximate the
solution space called approximation-guided evolution. AGE-II sets itself apart from
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AGE-I by incorporating ε-dominance [36] and is stated to increase performance in
regards to both solution quality and runtime.

Performance Metrics The performance metrics used in this study are outlined in
Table4.These arewell-knownMOOindicators that judge thegoodness of anobtained
Pareto approximation set from different angles. The reported metric values are the
averages, over each synthetic RRASR scenario, of the means of 30 independent runs
of an algorithm upon a scenario.

Algorithm and Parameter Configurations In order to provide a fair comparison of
the algorithms we are testing, we must use the most appropriate parameters for each
algorithm. To do this we conduct parametric tuning on each algorithm to determine
the best parameter values, within a set range, for each algorithm. The parameters
and their ranges are listed in Table5. We generated 240 parameters vectors using
the Saltelli method [39] and each algorithm was run 15 times for each vector, with

Table 4 Algorithm performance metrics

Name References Goal Description

Hypervolume [37] Max Represents the volume
of the objective space
dominated by
solutions in the
approximation set

Max Pareto front error [37] Min Represents the
maximum distance
from solutions in an
approximation set to
the nearest solution in
the reference set

Spacing [37] Max Represents the spread
of the Pareto
approximation set

Generational distance [37] Min Represents average
distance from
solutions in the
approximation set to
the nearest solution in
the reference set.

Inverted generational
distance

[38] Min Represents the average
distance from
solutions in the
reference set to the
nearest solution in the
approximation set

Elapsed time N/A Min The runtime (in
seconds) of the
algorithm
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Table 5 Algorithm parameter ranges

Parameter Min. value Max. value

Number of function
evaluations

50,000 200,000

Population size 50 500

Swap mutation rate 0.0 0.5

Insertion mutation rate 0.0 0.5

Crossover rate 0.5 1.0

Table 6 Tuned algorithm parameter values

Algorithm NFE Pop. size Swap rate Insert rate Crossover rate

AGE-I 143,880 55 0.3716 0.2349 0.8628

AGE-II 172,040 110 0.4966 0.1099 0.9878

NSGA-II 195,545 185 0.0747 0.1255 0.9097

NSGA-III 181,390 110 0.3687 0.1353 0.9878

PESA-II 195,365 205 0.3843 0.4634 0.9097

SPEA2 195,545 185 0.3843 0.4634 0.7651

the results being averaged across all executions. We conducted this test over 14 of
our synthetic data files that are representative of the set of problem instances under
study.

To determine the best vector out of the available selection for each algorithm we
collected the metrics listed in Table4 and gave each vector a ranking from one (best)
to 240 (worst) for each metric, then took the average of those ranks. The vector with
the highest average rank across all metrics was deemed the best set of parameters for
a given instance file. We then took the highest average vector from across all of the
instance files. We did this by taking the average rank of each vector across all 14 data
files. These parameter sets are used for the experiments detailed in Sects. 6.2–6.4 and
are reported in Table6.

Statistical Validation To confirm whether or not the differences in observed perfor-
mance are statistically significant, we rely on nonparametric tests as suggested by
[40]. We use 5% significance for all tests.

Due to the novelty of our problem, we do not have a control algorithm. There-
fore, we must first establish or reject statistically significant differences within the
whole group of algorithms using the Friedman N × N procedure. In the case that a
comparison yields a rejection of the null hypothesis (i.e. there exists a statistically
significant difference), then a set of comparisons is done using the following post-hoc
procedures: Bergmann et al. [40]. We first rely on the Bergmann procedure given its
robustness and reliable adjustment of p-value. If the Bergmann procedure does not
reject a hypothesis we will defer to the other post-hoc methods.
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The algorithm performance data used for the statistical validation procedure was
collected at 25, 50, 75, and 100% of the number function evaluations across each of
the scenarios.

6.2 Experiment 1: Scalability Analysis

This experiment examines the effect the size of the WSN has on the performance
of the algorithms with regards to RRASR solutions. For this experiment we set the
number of sensing holes to be 15% of the total nodes.

Figures7, 8 and 9 show the runtime (in seconds), hypervolume, and spacing met-
rics respectively against the size of the sensor network. Looking at the runtime we
can see that as the size of the WSN and the solution space gets bigger the runtime
increases as expected. It is important to note the difference in runtime for SPEA2, and
to a lesser extent AGE-II. Unlike the other algorithms, SPEA2 and AGE-II have an
uncharacteristically large runtimewhen the solution space is small. Looking at Fig. 8,
we can see that this increase in runtime does not have a negative impact on solution
quality. For SPEA2 this is likely the result of many duplicate solutions appearing
in the archive it uses for the selection of parents, causing many unnecessary com-
parisons. AGE-II uses an approximative archive that contains only non-dominated
solutions.As there are a finite number of non-dominated solutions, it is likely that they
will quickly find their way into the archive causing many domination comparisons
to be made to ensure that the archive only contains appropriate solutions.

Fig. 7 Final execution results for time elapsed, in seconds, across all generated scenarios for the
scalability analysis experiment
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Fig. 8 Final execution results for hypervolume, across all generated scenarios for the scalability
analysis experiment

Fig. 9 Final execution results for spacing, across all generated scenarios for the scalability analysis
experiment

In regards to overall algorithm performance we can see in Fig. 8 that PESA-II and
NSGA-III consistently give the best solutions, in terms of hypervolume. The only
downside to these solutions is that they may not have much variety, as we can see
in Fig. 9 that these algorithms underperform the others in terms of spacing. While
AGE-II has the most diverse set of solutions, they are also markedly the worst. This
may be due to an increased focus on exploration of the solution space preventing
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Fig. 10 Average results, across all generated scenarios, for the inverted generational distance for
the scalability analysis experiment

Table 7 Experiment 1: Friedman N × N test results

Algorithm rank

Metric NSGA-II NSGA-III SPEA2 PESA-II AGE-I AGE-II p-value

Hypervolume 3.3175 2.0125 4.615 2.015 4.19 4.85 2.0159E−10

Spacing 4.7575 4.04 2.005 5.14 3.5225 1.535 1.9077E−10

Max Pareto
front error

4.3375 3.1025 3.56 2.215 3.91 3.875 1.0060E−10

Generational
distance

3.2475 1.955 5.06 1.89 3.6175 5.23 1.9471E−10

Inverted gener-
ational distance

3.0375 1.86 4.975 1.97 4.0725 5.085 2.2732E−10

Runtime 2.81 3.335 4.27 1.19 4.005 5.39 2.2589E−10

The best-performing algorithm in each metric is highlighted in bold

the solutions from converging to something good. Worth noting is that there is no
apparent correlation between the size of the network and the hypervolume. This
indicates that the network size alone is not a factor that allows us to predict the
quality of the approximation sets.

Figure10 shows the mean inverted generational distance achieved by each algo-
rithm throughout its execution across all generated scenarios. It is interesting to note
that while all of the algorithms are initialized with specifically tuned parameters they
start and end at very similar values. Between 0 and 30% of function evaluations
there is the largest disparity between algorithms, but after that they seem to converge
towards a small set of desirable distance values.
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Table7 gives an overview of the statistical analysis carried out for each of the
recorded metrics. The small p-values indicate that the results of the analysis are
statistically significant for the group of algorithms under eachmetric. For eachmetric
the following null hypothesis are not rejected:

Hypervolume: SPEA2 vs. AGE-II, NSGA-III vs. PESA-II
Max Pareto Front Error: AGE-I vs. AGE-II, SPEA2 vs. AGE-II, SPEA2 vs.

AGE-I, NSGA-II vs. AGE-I, NSGA-III vs. SPEA2, NSGA-II vs. AGE-II
Generational Distance: NSGA-III vs. PESA-II, SPEA2 vs. AGE-II, NSGA-II vs.

AGE-I
Inverted Generational Distance: NSGA-III vs. PESA-II, SPEA2 vs. AGE-II
Runtime: SPEA2 vs. AGE-I

It is important to note that while the metrics show that either NSGA-III or PESA-
II is the best, except for max Pareto front error and runtime, none of the post-hoc
procedures are able to reject the NSGA-III vs. PESA-II null hypothesis. Therefore,
we are unable to definitively say whether one algorithm has performed better than the
other. However, we are able to state that both NSGA-III and PESA-II outperformed
the other algorithms.

6.3 Experiment 2: Inflicted Damage Analysis

In this experiment we examine the performance of the selected EMOO algorithms
in a WSN comprised of 200 static nodes where an increasing number of them are
labelled for replacement, e.g., in case of a malicious attack.

Concerning runtime, we can see a similar trend in Fig. 11 as the one depicted in
Experiment 1. As the solution space increases in size we observe a smooth linear
dependency between the percentage of nodes flagged for replacement and the time
taken to compute a solution. SPEA2 and, to a much lesser extent, AGE-II suffers
in terms of runtime when the solution space is small. This is likely due to the same
reasons mentioned in our runtime discussion in Experiment 1.

Figure12 shows that all of the algorithms perform similarly when a lower percent-
age of sensors needs to be replaced, but as that percentage increases the disparity
of performance between algorithms appears. At damage levels above 20% it can
be seen that NSGA-III and PESA-II identify themselves as frontrunners for perfor-
mance. This is likely due to the region-based selection method used by PESA-II
and the method of selecting reference lines to drive intelligent exploration used by
NSGA-III.

The results in terms of spacing are shown in Fig. 13. We can see that AGE-II and
SPEA2 perform the best in terms of the variety of solutions that they present. The
issue is that the quality of those solutions is not as high as those produced by other
algorithms; this is especially true of AGE-II when comparing its results in Figs. 12
and 13. All of the other algorithms seem to have a similar amount of diversity among
their resulting solutions which is interesting given their various selection methods.
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Fig. 11 Final execution results for time elapsed, in seconds, across all generated scenarios for the
inflicted damage analysis experiment

Fig. 12 Final execution results for hypervolume, across all generated scenarios for the inflicted
damage analysis experiment

Figure14 shows a snapshot of algorithm performance at various percentages of
the execution budget, expressed as an average of the number of objective function
evaluations across all scenarios. We can see that the majority of difference in per-
formance comes before 30% of function evaluations. It is interesting that each of



Planning Robust Sensor Relocation Trajectories for a Mobile ... 203

Fig. 13 Final execution results for spacing, across all generated scenarios for the inflicted damage
analysis experiment

Fig. 14 Average results, across all generated scenarios, for the inverted generational distance for
the inflicted damage analysis experiment
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Table 8 Experiment 2: Friedman N × N test results

Algorithm rank

Metric NSGA-II NSGA-III SPEA2 PESA-II AGE-I AGE-II p-value

Hypervolume 3.8375 2.0425 4.55 1.8825 4.035 4.6525 1.6168E−10

Spacing 4.485 4.465 1.99 5.285 3.595 1.18 2.8214E−10

Max Pareto
front error

4.1575 2.905 3.4775 2.44 3.16 4.86 9.6999E−11

Generational
distance

3.075 1.9125 4.9 2.0475 3.24 5.825 2.6979E−10

Inverted gener-
ational distance

3.65 1.905 4.82 1.885 3.845 4.895 1.9804E−10

Runtime 3.075 3.875 5.825 1.03 3.315 3.88 2.0301E−10

The best-performing algorithm in each metric is highlighted in bold

the algorithms converge at close to the same narrow interval of inverted generational
distance values. These results are near identical to those observed in Experiment 1.

Table8 gives an overview of the statistical analysis found for each of the recorded
metrics. The small p values indicate that the results of the analysis are statistically sig-
nificant for the group of algorithms under each metric. For each metric the following
null hypothesis are not rejected by any post-hoc procedure:

Hypervolume: SPEA2 vs. AGE-II, NSGA-III vs. PESA-II, NSGA-II vs. AGE-I
Spacing: NSGA-II vs. NSGA-III
Max Pareto Front Error: NSGA-III vs. AGE-I, SPEA2 vs. AGE-I
Generational Distance: NSGA-III vs. PESA-II, NSGA-II vs. AGE-I
Inverted Generational Distance: NSGA-III vs. PESA-II, SPEA2 vs. AGE-II,

NSGA-II vs. AGE-I
Runtime: NSGA-III vs. AGE-II, NSGA-II vs. AGE-I

The important hypotheses that are not rejected are NSGA-III vs. PESA-II for
any metric. As these two algorithms are the best performing overall, it is difficult to
identify a single algorithm that is superior. Additional experimentation and execu-
tions would be needed to identify definitively which algorithm performs better in the
RRASR problem space.

6.4 Experiment 3: Network Density Analysis

In this experiment we examine the effects of WSN topology on algorithm perfor-
mance. To do this we generated solutions using the MAX_DPA method from [32].
We use distribution values ranging from 0 to 10 representing the minimum number
of neighbors a sensor can have. We are interested in assessing the behaviour of the
EMOO algorithms in both sparse and dense networks.
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Fig. 15 Final execution results for time elapsed, in seconds, across all generated scenarios for the
network density analysis experiment

Fig. 16 Final execution results for hypervolume, across all generated scenarios for the network
density analysis experiment

Figure15 shows the runtime for each of the algorithms. This indicator remains
similar across all network density values, therefore any disparity between algorithms
is also highlighted. The same can be said for Fig. 16 where we examine the hyper-
volume of the EMOO algorithms at each network density value. We again see that
the algorithms tend to perform similarly across each network density value.
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Fig. 17 Final execution results for spacing, across all generated scenarios for the network density
analysis experiment

When considering spacing, Fig. 17 shows a different trend for AGE-II. While all
the other algorithms tend to perform the same across node density values, AGE-II
sets itself apart by having an upward trend as the node density value increases. This
is an important find as it may indicate that the topology of the WSN has an effect on
algorithm performance rather than just the size of the solution space, as demonstrated
by Experiments 1 and 2. This is especially interesting as the EMOO algorithms have
no way of noticing differences in network topology.

Looking at themean inverted generational distance across all executions in Fig. 18
we see resultsmuch the same as Experiments 1 and 2. The algorithms showdifference
up to about 30% of function evaluations and then trend towards the same point. This
shows that each algorithm had managed to discover at least a few solutions that can
be considered objectively good.

An overview of the statistical analysis for Experiment 3 is given in Table9. We
can see by the very small p-values that all of the results are statistically significant at
the 5% level. For each metric the following null hypothesis are not rejected by any
post-hoc procedure:

Hypervolume: NSGA-III vs. PESA-II, AGE-I vs. AGE-II, NSGA-II vs. SPEA2,
SPEA2 vs. AGE-II

Spacing: SPEA2 vs. AGE-II, NSGA-II vs. PESA-II, NSGA-III vs. AGE-I
Max Pareto Front Error: NSGA-III vs. AGE-II, NSGA-II vs. AGE-I, SPEA2 vs.

PESA-II,NSGA-III vs. SPEA2,AGE-I vs.AGE-II, SPEA2vs.AGE-II,NSGA-III
vs. AGE-I, NSGA-II vs. AGE-II

Generational Distance: NSGA-III vs. PESA-II
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Fig. 18 Average results, across all generated scenarios, for the inverted generational distance for
the network density analysis experiment

Table 9 Experiment 3: Friedman N × N test results

Algorithm rank

Metric NSGA-II NSGA-III SPEA2 PESA-II AGE-I AGE-II p-value

Hypervolume 3.4875 1.775 3.925 2 5.0875 4.725 8.1971E−11

Spacing 5.45 3.9 1.8 5.025 3.3 1.525 1.1685E−10

Max Pareto
front error

4.7 3.375 2.7 2.2 4.375 3.65 5.0325E−10

Generational
distance

2.75 1.675 4.925 1.75 3.9 6 9.3480E−10

Inverted
generational
distance

3.45 1.8 4.5 1.625 4.8 4.825 6.2807E−11

Runtime 2.1 3.25 6 1 3.675 4.975 1.0208E−10

The best-performing algorithm in each metric is highlighted in bold

Inverted Generational Distance: AGE-I vs. AGE-II, NSGA-III vs. PESA-II,
SPEA2 vs. AGE-I, SPEA2 vs. AGE-II

Runtime: NSGA-III vs. AGE-I

We can notice some cases a null hypothesis with regards to the best performing
algorithm is not rejected. This is the case for NSGA-III vs. PESA-II for hypervolume,
generational distance, and inverted generational distance, for SPEA2 vs. AGE-II
for spacing, and SPEA2 vs. PESA-II for max Pareto front error. In these cases we
cannot definitively say that one algorithm has performed the best, only that some
have performed better than others. We can also see that PESA-II always performed
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the best in terms of runtime, and that SPEA2 always performed the worst. AGE-II
also always performed the worst in terms of generational distance.

7 Conclusions

In this chapter we have further defined the RRASR problem as a more robust ver-
sion of the RASR problem, so that we can generate more reliable trajectories for a
mobile robot. We also proposed a risk-centric modeling of the sensor units in order
to identify problematic sensors so that they can be pro-actively replaced in order
to maximize network coverage. RRASR was updated from its original version so
that its trajectory robustness function was more accurate in identifying nodes that
were important to network connectivity. Six state-of-the-art EMOO algorithms were
evaluated with respect to RRASR. The three experiments examined algorithm per-
formance over networks of various sizes, inflicted damage, and sensor densities.
We found that while network size and inflicted damage had a noticeable effect on
algorithm performance, network density did not. This is likely due to the stochastic,
general nature of the selected algorithms as they do not make any changes based
on network topography. Our results show that PESA-II and NSGA-III performed
better than the other algorithms for all experiments. In the original work [4], it was
found that PESA-II has the best performance. The presence of NSGA-III as a well
performing algorithm is new, and likely due to the inclusion of parametric tuning,
which has a better chance of giving all algorithms a suitable set of parameters as
compared to a single set used for all algorithms. AGE-I and AGE-II were surpris-
ing in their poor performance given their success against the other algorithms using
reference problems.

In the future we would like to expand problem to include solutions with multiple
robots as well as relaxing hard constraints, such as the number of sensors that a robot
can carry. We would also like to examine higher fidelity risk features such as battery
risk which is represented by a simplistic model in our work but that could use more
extensive models to describe such time-varying phenomena. In addition to higher
fidelity risk features we would also like to examine higher fidelity data features such
as transmission reliability modeled by the transmission rate as well as other factors
(e.g. noise, interference, line of sight, environment) as well as physical reliability
which can be modeled by age as well as other factors (e.g. Mean Time To Failure
(MTTF), defect probability, harsh/extreme environments) and characteristics (e.g.
accuracy, response time, precision).
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