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Preface

This book is the long-awaited proceedings of a conference, held at the Santa Fe
Institute in December, 1998, and sponsored by the National Science Foundation.
"New Constructions in Cellular Automata" brought people together to discuss
topics ranging from modeling physics and economics, to reversible computation,
to the latest discoveries of bugs, puffers, and all the flora and fauna of the cellular
automaton world.

The first part of the book focuses on the best-loved CA rule, Conway's
Life, and its variants. In the first chapter, Nick Gotts answers the cosmological
question of what happens in a random low-density initial condition, showing
that a surprising amount can be learned about what structures self-organize in
the early Life universe. In the next chapter, Mark Niemiec shows us the latest
methods of constructing complex objects from collisions of gliders, an essential
engineering skill for Life devotees. David Griffeath and Dean Hickerson answer
one of Life's open questions: whether an initial seed exists that populates the
universe with an irrational density. Matthew Cook shows that telling when a
"still life," a configuration which is stable under the Life rule, can be divided into

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. Xi



XII Preface

separate pieces is an NP-complete problem. Moving on to Life's generalizations,
Kellie Evans introduces Larger than Life and HighLife, and finds many families
of replicators in these rules.

To bring the book alive and to help the reader explore the many open ques-
tions remaining in the field, many of the Life patterns discussed in these chapters
can be downloaded from the book's companion web page,
(http://psoup.math.wisc.edu/NewConstructions).

In the next chapters, we put cellular automata to work as platforms for
simulating phenomena in physics and economics. Janko Gravner introduces us
to the mathematics of growth phenomena and studies the asymptotic shapes
of various rules. Martin Nilsson, Steen Rasmussen, Bernd Mayer, and David
Whitten discuss how to use lattice gases to simulate hydrophobic and hydrophilic
polymers. (In recent work, they have achieved the formation of micelles with this
method, and shown that CAs can reach time-scales several orders of magnitude
longer than standard molecular dynamics (MD) simulations.)

Raissa D'Souza, George Homsy and Norman Margolus then use reversible
CAs to model how an aggregating cluster reaches equilibrium with its environ-
ment, and show that their reversible aggregation (RA) rule can simulate universal
reversible logic. Margolus shows that a soft-sphere model also has this degree of
computational power, and Nienke Oomes rounds out this section by using CAs
to model how economic inequality can persist in emerging markets.

In the concluding chapters, Joy Hughes gives us beautiful examples of how
CAs can be used in art and video, Rudy Rucker extols the virtues of CAs whose
states are continuous rather than discrete, and Gadi Moran shows a phase tran-
sition in majority-voting rules on graphs.

We are deeply indebted to the Santa Fe Institute and Oxford University Press
for making this book possible, and especially to Delia Ulibarri and Ronda K.
Butler-Villa for their tireless work and extraordinary patience. We also thank the
University of Wisconsin, Madison, for hosting the Primordial Soup web page and
the book's companion page, <http://psoup.math.wisc.edu/NewConstructions),
where many patterns and simulations relevant to these chapters can be down-
loaded. Finally, we dedicate this book to Oscar, Rascal, Scurry, and Spootie the
Cat.

Cristopher Moore
Santa Fe Institute and University of New Mexico

David Griffeath
University of Wisconsin



Self-Organized Construction in Sparse
Random Arrays of Conway's Game of Life

Nicholas M. Gotts

1 INTRODUCTION

The construction problems and techniques described in this chapter arose out of
a single problem:

What happens in very low density infinite random arrays of Conway's
Game of Life?

However, the work reported has wider implications, briefly discussed in the final
section.

Conway's Game of Life (henceforth GoL) is a deterministic cellular automa-
ton (CA), which is binary (a cell has two possible states: 0 and 1) and runs
on an infinite two-dimensional grid of cells. A deterministic CA cell's state at

New Constructions in Cellular Automata,
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2 Self-Organized Construction in...Conway's Game of Life

time step t is determined, according to a transition rule,1 by those of a set of
in-neighbors at step t — 1, and its own state at step t — 1 can affect the state of i
out-neighbors at t. In GoL, in-neighbors and out-neighbors coincide, and include
the cell itself. The neighborhood is a 3 x 3 square of cells. GoL's transition rule
specifies that a cell is in state 1 at step t if and only if either of the following
held at t - 1.

1. The cell and either two or three other cells in its neighborhood were in state
1.

2. The cell was in state 0, and exactly three other cells in its neighborhood were
in state 1.

By a random array, I mean one in which the initial probability p of each
cell being in state 1 is the same for all cells, and the initial state is determined
independently for each cell. Of course, we cannot actually construct such an
array, but we can reason about it. Toward the end of the chapter, large finite
random arrays will be considered, but it is simpler to start with the infinite
case. In fact, none of the reasoning used in the infinite case depends upon the
distribution of state 1 cells being strictly random, provided the frequency of all
finite arrangements of cell-states is as expected in a random array with the same
density of state 1 cells. A sparse random array is one in which p is very low (a
more precise definition is given below).

In a popular book on GoL, Poundstone [20] says:

Speculation about "living" Life patterns focuses on infinite, low-density
random fields.... If there are self-reproducing Life patterns, they would
have room to grow in such a field [pp. 175-176].

Poundstone may have drawn on material published in Berlekamp et al. [3], which
claims that self-replicating patterns can be shown to exist in GoL. (Such patterns
are finite arrangements of state 1 cells that produce multiple disjoint copies of
themselves in an otherwise empty—state 0—array.) Berlekamp et al. [3], then
say:

Inside any sufficiently large random broth, we expect just by chance, that
there will be some of these self-replicating creatures.... It's
probable.. .that after a long time, intelligent self-reproducing animals
will emerge and populate some parts of the space [p. 849] (emphasis in
original).

lrThe chapter uses a good deal of CA and Game of Life terminology, some of it novel.
Terms of this kind are italicized when first used, and explained unless their meaning is clear
from context.



Nicholas M. Gotts

Notice that low-density random arrays are not specified. Most studies of
the development of random arrays have been based on simulating finite random
arrays of moderate density; for example, see Bagnoli et al. [I], Garcia et al. [10]
Gibbs and Stauffer [11], and Sales et al. [23]. One simulation study Malarz et
al. [17] has looked at low (and high) as well as moderate densities. However,
very low density random arrays, unlike those of higher density, appear to offer
scope to analytical approaches, for reasons that will appear in the course of the
chapter.

The investigations of GoL reported here are the most developed aspect of
an attempt to answer a broader question:

Are there CA in which self-reproducing entities will emerge from initially
structureless configurations, and evolve to arbitrary levels of behavioral
complexity? If so, what are the simplest transition rules and global net-
work topologies permitting this?

Work by others most obviously relevant to this question includes Chou and
Reggia [5], Langton [16], and Reggia et al. [21].

2 CHUNKS, PATTERNS, AND CLUSTERS IN RANDOM
GAME-OF-LIFE ARRAYS

The term global configuration will be used to refer to a complete assignment
of cell states to the cells of a cellular automaton (CA); array will be used for
the complete set of cells and their neighborhood links itself, or with the same
meaning as "global configuration" when no confusion will arise. Similarly, chunk
will be used either for a finite rectangle of cells within an array of GoL or any
other CA that runs on a two-dimensional square lattice, or for such a set of cells
along with a specific assignment of cell states to all its cells. Considering chunks
with n x m cells in an infinite array of GoL or any other binary square lattice
CA, there will be 2 n m distinct kinds of chunk with those dimensions (i.e., that
many possible arrangements of cell states within such a chunk).

It will be useful to restrict the definition of pattern more than is implied by
the quote from Poundstone [20] in the introduction. Henceforth, the term will
mean a specific arrangement of a finite number of state 1 cells, on an infinite
array otherwise consisting of state 0 cells. The successor of a pattern is always
a pattern, if we include the null pattern: an array consisting only of state 0
cells. Patterns may, however, have predecessor arrays which contain an infinite
number of state 1 cells. Three definitions of what counts as the same pattern can
be given, although it will not always be important to distinguish these:

• If the cells of a GoL array are numbered, we could regard every finite set of
cells as specifying a distinct location-specific pattern.

3



Self-Organized Construction in...Conway's Game of Life

• Next, we could regard translations of a location-specific pattern as instances
of the same translation-defined pattern.

• Third, we could count rotations and reflections of a translation-defined pat-
tern as producing instances of the same automorphism-defined pattern (trans-
lations, rotations, reflections, and compositions of these operations constitute
the automorphisms of the GoL network of cells, and GoL's transition rule is
symmetric under them).

Beyond these three possibilities, if one automorphism-invariant pattern de-
velops into another, they can be described as instances of the same development
class of patterns. It follows that if two automorphism-defined patterns develop
into the same pattern, they are also members of the same development class.

A collection of state 1 cells which may not be a pattern—because the array
is not otherwise empty and/or because the group of state 1 cells is infinite in
number—but which is isolated to some degree from any other state 1 cells in
the array—will be called a cluster. Terminology defined for patterns generally
transfers to clusters.

More precisely, a 0-cluster is a maximal set of state 1 cells such that each
cells (a "neighborhood link path"), that never goes through a state 0 cell. A

cells (a "neighborhood link path"), that never goes through a state 0 cell. A1 ... Cjn, such that cx is a
neighbor of c^, c^ of Cut it another way, there is a path
from any cell in the set to any other, along links between pairs of neighboring
cells (a "neighborhood link path"), that never goes through a state 0 cell. A
1-cluster is a maximal set of state 1 cells such that there is neighborhood link
path between any two members of the set that never goes through two successive
state 0 cells, and a d-cluster is a maximal set of state 1 cells such that there is
neighborhood link path between any two members of the set that never goes
through d + 1 successive state 0 cells. A cluster is then simply a set of state
1 cells forming a d-cluster for some d. Notice that a d-cluster may also be a
(d+ l)-cluster and, indeed, a pattern on an infinite array, as defined above, will
be a d-cluster for all d exceeding some minimum value. The state 1 cells in a
1-cluster will not share a neighbor with any state 1 cells outside the cluster, so
the states of the cluster's cells and their neighbors can be calculated for one step
without considering anything outside the cluster. However, that step may split
a 1-cluster into two or more parts, and/or merge previously distinct 1-clusters.

Some GoL global configurations have no predecessor. There are orphan or
"Garden of Eden" chunks of cell-states which cannot be part of a global con-
figuration with a predecessor [3, p. 829]. An n x m chunk can be shown to be
an orphan by considering all possible (n + 2) x (m + 2) chunks: if none of these
generates the n x m chunk in its n x m cell interior in a single step, it is an
orphan. It is not known whether there are any chunks which can appear after a
single step (at t = 1), but not after more than one.

Patterns which have no predecessor patterns will be called nonconstructable',
any pattern which is not nonconstructable is 1-constructable; any 1-constructable

4



Nicholas M. Gotts

pattern with a 1-constructable predecessor is 2-constructable; and so on. Any pat-
tern with at least one infinite sequence of predecessor patterns is w-constructable.
Any orphan chunk defines a corresponding nonconstructable pattern: just place
the chunk in an otherwise empty array (note that since chunks of different di-
mensions may differ only in whether certain cells are specified as state 0, or are
unspecified—i.e., left out of the chunk—an infinite number of orphan chunks
correspond to the same nonconstructable pattern). The smallest known noncon-
structable pattern (where "smallest" means, as it generally does here, having the
fewest state 1 cells) is of size 143 [25].

Conversely, proof that a pattern is z-constructable implies that all chunks
containing it and otherwise blank will exist at time t = i. However, there may be
nonconstructable GoL patterns without the corresponding chunks being orphans.
For a chunk to be an orphan, it must be impossible to produce that chunk from
any predecessor configuration, irrespective of what the predecessor configuration
produces outside the chunk boundaries, whereas a pattern is nonconstructable
unless there is a configuration (specifically, a pattern) that can produce that
pattern in an otherwise empty array.

In an infinite random array of any binary square lattice CA, with initial
density p of state 1 cells, an n x m chunk of cells including a state 1 cells and
cells (a "neighborhood link path"), that never goes through a state 0 cell. A
in that number of cells would be (say) the top left corner of a chunk of cells
with that arrangement of cell states. The exact density of any type of n x m
chunk can be calculated for any values of p and t: simply enumerate all the
(n + It) x (m + 2£) chunks that give rise to it in t steps, and calculate the
density of each of these at t = 0 using the formula given above. However, the
number of chunks to consider increases ex 2* . Moreover, no finite number of such
calculations would show whether the chunk has a limiting density as t —> oo an
if so, what that density is. In the case of infinite CA, it is reasonable to refer
to the situation after any specific number of steps as belonging to the "short
term," and to restrict "long term" to what happens as t —> oo. Anything w
want to know about "short-term" events is then calculable in principle, but in
practice exact calculation cannot in general take us far. So far as the long term
is concerned, we can say that any chunk containing an o>-constructable pattern
and no other state 1 cells will always be present (i.e., belongs to the limit set of
chunks).

The following patterns are known to be w-constructable:

1. The null pattern is its own predecessor, and hence is w-constructable, so any
chunk consisting entirely of state 0 cells belongs to the limit set.

2. Any still-life (a pattern in which exactly the same cells are in state 1 at step
t +1 as at step t) is w-constructable, being its own n-step predecessor for any
n.

5



Self-Organized Construction in...Conway's Game of Life

3. Any oscillator (a pattern which is the same at t + m as at t for some m)
is cj-constructable: for any n, some phase of the oscillator is the oscillator's
n-step predecessor.

4. Any repeater (a pattern which can be mapped onto its mth successor by a
translation, for some m, the repeater's translation period) is w-constructable:
for any n, some translation of some phase of the repeater is the repeater's
n-step predecessor. As defined here, repeaters include oscillators, oscillators
include still-lifes, and still-lifes include the null pattern. Repeaters which are
not oscillators are spaceships: they move across the array with a characteristic
period and velocity. Any set of repeaters (oscillators) with the same velocity
can be combined (in infinitely many ways) to constitute a compound repeater
(oscillator), provided they are distant enough not to interfere with each other.

5. Anything that can be produced in a collision between two or more repeaters
of different velocities, where those repeaters can initially be placed arbitrarily
far apart, is w-constructable. This case is discussed in more detail below.

Self-replicating patterns are not necessarily w-constructable: there are CA
[20, pp. 136-137] in which all (non-null) patterns self-replicate. All non-null pat-
terns thus increase their number of state 1 cells monotonically, so no such pattern
is w-constructable. Nevertheless, we can say that if a CA supports self-replicating
patterns (a proof that GoL does so, constructed by Conway and others soon after
the discovery of GoL remains unpublished [6]), copies of all the arrangements of
cell-states that define such patterns will occur in a random array of any density
0 < p < 1. Moreover, they will continue to exist, and replicate, indefinitely, as
there will initially be examples of such arrangements surrounded by arbitrarily
large areas devoid of state 1 cells. What happens to the density of these and
other types of arrangement in the long term, however, is unknown. No progress
has been made in determining limiting densities for any particular type of chunk
or cluster in random GoL fields, with the exception of the few chunks known to
be orphans: their density falls to zero at t = 1 and remains zero thereafter.

In sum, both short-term and long-term properties of infinite random GoL
arrays currently appear very resistant to analysis. When we consider arrays of
very low density, however, the short-term situation improves, and it also turns
out that a rather naturally defined "medium term" appears, about which a
reasonable amount can be discovered.

3 SPARSE RANDOM ARRAYS IN CONWAY'S GAME OF LIFE

3.1 INITIAL CONSIDERATIONS

In the analysis of sparse infinite random GoL arrays, the value of p will be taken
to be nonzero but arbitrarily low: whenever the analysis would differ according
to whether p < x for some positive x, it will always be assumed that indeed

6
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p < x. An alternative way of expressing this is to say that the analysis centers
on how infinite random GoL arrays behave as p —> 0.

If the value of p is very close to zero, most state I cells in the initial array will
be isolated. If we consider translation-defined cf-clusters in the initial array for
cells (a "neighborhood link path"), that never goes through a state 0 cell. A
cluster of the same size (with the same number of state 1 cells) occur, approaches
1 as p —> 0. Those consisting of a single cell will be the most common, those 
size 2 will occur at approximately p times their density, and in general those of
cells (a "neighborhood link path"), that never goes through a state 0 cell. A
exact density of a particular type of cluster in the initial array for some specific
p, it would be necessary to take account of the number of cells which must be in
state 0 as well as the number that must be in state 1 to produce such a cluster,
but for any given value of d, the approximations given can be made as close as
required by setting p sufficiently low.

cells (a "neighborhood link path"), that never goes through a state 0 cell. A
will form in an infinite random array. This follows from a result in percolation
theory [24]: given an infinite but locally finite vertex-transitive graph in which
each node has z nonself neighbors, (the GoL array of cells is such a graph,
with z = 8), no infinite 0-clusters will form below a critical value of p, where
P < I/(2 ~ !)• As Stephen Silver has pointed out [26], it follows that there is
some such critical p for every d in an infinite random GoL array, since adding
links between every pair of nodes that are joined by a path of n or fewer links
in a locally finite vertex-transitive graph, produces another locally finite vertex-
transitive graph. In this new graph 0-clusters will correspond to (n — l)-clusters
cells (a "neighborhood link path"), that never goes through a state 0 cell. A
exist —» oo

Thus as p —> 0, clusters corresponding to the smallest patterns with par
ticular dynamic properties become significant. These minimum-size patterns de-
termine how common examples of clusters with that property are in the short
term, and have a crucial influence on medium-term events.

3.2 SMALL GAME-OF-LIFE PATTERNS

This subsection reviews some of what is known about the smallest GoL patterns
with particular dynamic properties.

The smallest GoL patterns that do not disappear in a single step consist of
three state 1 cells. Among these, patterns consisting of three in an orthogonal
row (the blinker), and of an orthogonally oriented "L" shape (the preblock) are
the only ones that do not disappear on the second step. The blinker is a period 2
oscillator, switching from vertical to horizontal orientation and back; the preblock
becomes a 2 x 2 block on the first step, and remains unchanged thereafter.

Four-cell patterns fall into seven development classes. As with three-cell
patterns, the final result may be the null pattern, a block, or a blinker, but it may
also be a tub, a pond, a beehive, or a symmetrical grouping of four blinkers terme

7



8 Self-Organized Construction in...Conway's Game of Life

FIGURE 1 Oscillators derived from four or fewer cells.

traffic lights. These are shown in figure 1, while the developmental paths that
can produce the traffic lights from initial four-cell patterns are shown in figure 2.
Notice that there are twelve translation-defined and three automorphism-defined
four-cell patterns that can lead to the traffic lights.

Five-cell patterns give rise to further kinds of oscillators and, more signif-
icantly, to the smallest non-oscillators. Seven different five-cell automorphism-
defined patterns give rise to the glider: the smallest and most common GoL
spaceship. This translates itself at one cell diagonally in four steps: the max-
imum speed for a diagonally moving spaceship. Over time, a glider-producing
pattern will cause an unbounded number of cells to enter state 1, although all
will shortly revert permanently to state 0. The glider's cumulative cell count thus
grows without bounds, but its current cell count and its diameter (the maximum
number of cells on the shortest path between any two current state 1 cells) do
not: these are always five and three, respectively. However, there are nine other
five-cell automorphism-defined patterns for which diameter does increase with-
out bound. The best known of these is the r-pentomino, and all the rest turn
into this pattern after either one or two steps. After 1103 steps, the r-pentomino
completes the "interesting" part of its development, producing a clump of os-
cillators plus six gliders, receding from the clump in three of the four possible
directions. The seven five-cell patterns that are or become a glider, and the nine
that are or become an r-pentomino, are shown in figure 3.

The smallest patterns to give rise to spaceships other than the glider have
eight cells. One of these is the lightweight spaceship, shown at left in figure 4,
while others produce either this spaceship (alone or with a clump of oscillators),
the middleweight spaceship or heavyweight spaceship (also shown in fig. 4) plus
a clump of oscillators, or in one case two lightweight spaceships traveling in
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FIGURE 2 "Traffic lights" and their four-cell precursors.

FIGURE 3 The "glider," the "r-pentomino," and their five-cell precursors.

9



10 Self-Organized Construction in...Conway's Game of Life

FIGURE 4 The "lightweight," "middleweight," and "heavyweight" spaceships.

opposite directions plus a clump of oscillators. These three spaceships all travel
orthogonally at one cell every two steps, the maximum speed for spaceships.
The eight-cell pattern sending two lightweight spaceships in opposite directions
increases its diameter at one cell per step once the two spaceships have been
produced: the maximum sustainable rate for a finite pattern.

Until 1997, the smallest patterns known to show unbounded growth in cur-
rent cell count contained 11 cells, the first discovered by Charles Corderman [28,
pp. 1-2]. Those known all grow into switch engines: patterns with a generating
"head" that moves diagonally, and an unboundedly growing "tail" of oscillators
which develops a spatial periodicity. The head has, in some phases, only eight
cells, and by itself will move eight cells diagonally every 96 steps, but produces
an additional and unstable clump of state 1 cells, which eventually interacts with
and destroys the head. The head can be stabilized by placing a blinker or preblock
in various positions, producing the 11-cell patterns mentioned. Two fundamen-
tally different stabilizations are known: the block-laying switch engine, the tail
of which consists only of blocks once it has attained periodicity, and the glider-
stream switch engine, which has a more complex tail, and also shoots a stream of
gliders ahead of itself. Paul B. Callahan and I showed by exhaustive testing that
there are no unbounded growth patterns with fewer than ten cells, and he dis-
covered three 10-cell patterns with this property [14]. Two become block-laying
switch engines, and the third, a glider-stream switch engine. All three are in-
cluded in pattern 1 on (http://psoup.math.wisc.edu/NewConstruction). Figure
5 shows the third of these ten-cell patterns (the two 5-cell clusters enclosed in
an irregular curve), and the glider-stream switch engine it produces after 2655
steps (some gliders emitted in various directions early on are not shown).

Exhaustive testing of all possible patterns is straightforward up to five cells;
thereafter, it is necessary to consider patterns consisting of two (or, in the case
of nine cells, three) separate 1-clusters that may later interact. Once patterns
of eight or more cells are considered, one of the clusters may be or become an
r-pentomino, and this can send a glider from any distance (the distance between
two clusters is the minimum number of empty cells traversed along any neighbor-
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FIGURE 5 Glider-stream switch engine from ten-cell pattern.

hood link path between them) toward the other cluster. If the other cluster is a
blinker, it turns out that this reaction can develop in such a way as to send back a
glider that interacts with the clump of oscillators produced by the r-pentomino,
raising the possibility that simply moving an r-pentomino and blinker further
away from each other along a diagonal might generate an infinite set of eight- or
nine-cell patterns, all with fundamentally different histories. As it proved, how-
ever, both eight- and nine-cell two-cluster patterns involving interaction between
an r-pentomino and a distant smaller cluster can be divided into a finite number
of classes such that the members of each class develop in the same way, differing
only in how long gliders spend on their journeys between the distant clusters.

Just as patterns with bounded current cell count may have a cumulative cell
count which grows (linearly) with time, patterns with a linearly growing current
cell count can have a quadratically growing cumulative cell count. The smallest
known have 16 cells: they consist of two switch engine heads, stabilizing each
other in ways that produce "waves" of gliders traveling at right angles to the
head. The first known were again discovered by Corderman soon after GoL's
discovery [28, p. 3]. Their cumulative cell count grows quadratically as each
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glider in a wave follows a different path, and their number grows linearly with
time.2

The smallest known pattern with quadratic growth in current cell count,
which I discovered in 2000, has 52 cells. It is given as pattern 2 on
(http://psoup.math.wisc.edu/NewConstruction). It grows in an irregular fash-
ion. Pictures of the pattern and current cell counts after many steps are available
from Rokicki [22].

Finally, some patterns "fill space" in the sense that there is an integer n such
that, if any cell is selected, there will be a time after which that cell is always
within n links of a state 1 cell. The smallest known spacefillers, discovered by
Tim Coe in 1995, have 187 cells.

3.3 SHORT-TERM, MEDIUM-TERM, AND LONG-TERM EVENTS

The definitions of short-term and long-term events introduced above remain
unchanged in the context of sparse random arrays: the "short term" refers
to what happens in any specific number of steps, the "long term" to what
holds as t —•> oo. In sparse arrays, however, the parameter p (or its recipr
cal, signified N, which is often more convenient to use) make available an in-
termediate timescale: we can ask (and in some cases answer) questions about
what happens when t is approximately equal to some power of N. For ex-
ample, consider the smallest (ten cell) clusters with unbounded current cell
count growth. When t is approximately equal to N, each such cluster present
at t = 0 will have grown to a size of around N cells, unless it has interacted
with some other cluster. Moreover, it will be seen below that very few of them
will have interacted with anything else: only around ~ p2 of them (or 1 in
~ TV2 of them3) will have done so. In the same way that we can define short-,
medium-, and long-term events, we can define local, regional, and global classes
of events, and clusters. A class of local clusters or events is one for which there
is an integer n such that each instance is contained within a chunk of cells of
diameter n: for example, all nine cell 1-clusters, or the process of any such clus-
ter developing into a set of noninteracting repeaters. Regional clusters or events
are those with a spatial scale that must be expressed in terms of powers of N.
Global clusters or events stretch across the entire array.

2There are also ways to construct patterns with bounded current cell count and unbounded
but sublinear cumulative cell-count growth, and patterns with linearly growing current cell
count and superlinear but subquadratic cumulative cell-count growth.

3 Powers of p are used in referring to probabilities and densities, powers of ./V in referring to
distances, sizes, and durations. The notation ~ p, ~ JV2 should be read as "around p," "around
Af2." The formula F(x) ~ xa, for some function F defined over positive values of x, means that
ter developing into a set of noninteracting repeaters. Regional clusters or events
greater than or less than 1. Related terms used are F(x) <g xa, meaning that F(x)/xa —» 0 as
ter developing into a set of noninteracting repeaters. Regional clusters or events
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3.4 THE SHORT TERM

At t = 0, the density of state 1 cells in the array will of course be p: 1 in N cells
will be in state 1. At t = 1, the density falls abruptly. It can be calculated, using
the transition rule, that for any value of p, the exact value of the density in an
infinite GoL array, will be 28(3 — p)p3(l — p)5. As p —> 0, this value approa
84p3. At t = 2, when all initial clusters of size 3 have vanished except blinkers and
those giving rise to blocks, the density falls to a value approaching 22p3 as p —> 
(For a given cell, there are 16 ways that a cluster of three state 1 cells at t = 0 can
make that cell part of a block at t = 2, and six ways three state 1 cells at t = 0
can make it part of a blinker; each of these 22 possibilities has a probability
approaching p3 as p —-> 0, and the probabilities of these 22 arrangements a
asymptotically independent as p —* 0.) The density will remain arbitrarily clos
to this value for any specified time if p is sufficiently low. However, we can
attempt to calculate the density contribution which any class of cluster makes
to the total density in the short term (and, as will be seen below, in the medium
term).

For example, the traffic lights contain 12 cells (in both phases), and can
arise from four cells in 12 ways, so in the short term, from t = 11 onward, traffic
lights make a density contribution approaching 144p4 as p —> 0. The density
of traffic lights themselves (the density of cells which occupy, say, the cell in
the center of a set of traffic lights) then approaches 12p4. The expected distance
ter developing into a set of noninteracting repeaters. Regional clusters or even
the expected distance to the cell in the center of a set of traffic lights along an
ter developing into a set of noninteracting repeaters. Regional clusters or events

For isolated initial clusters of four or fewer state 1 cells, which constitute
the vast majority, all short-term developments are completed by t = 12, when
the last of those clusters producing traffic lights enter their last novel phase: all
those that have not disappeared are still-lifes or period 2 oscillators. Of five-cel
clusters, the gliders continue to occupy fresh cells until they meet an obstruction,
but the translation-defined clusters produced, repeat in a four-phase cycle. The
same does not happen to the r-pentominos and the other five-cell clusters that
become r-pentominos at t = 1 or t = 2: Since these produce gliders going in
three directions, the diameter of the cluster produced increases indefinitely, even
though the current cell count does not. Nevertheless, by t = 1105, the last of them
do, in a real sense, complete their development: each thereafter consists of an
18-cluster of oscillators—making up one larger oscillator—and six gliders, three
forming a 22-cluster and two a 177-cluster. These parts of the complete cluster
will never interact again, so long as no collisions with extraneous clusters occur.
This sense of completed development is captured in the following definition of a
quiet cluster:
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A quiet cluster (or one that has reached quiescence) consists of a set of
repeaters, no two of which would ever overlap the same 1-cluster in an
otherwise empty array.

The repeaters may move relative to one another, but no two will ever interact.
By contrast, an indefinite growth cluster, or IGC, would in time exceed any finite
bound on its current cell count if it were a pattern; this implies that it would
never become quiet. Note that there are clusters which are not IGCs but will
never become quiet: it is possible to set up a pattern made of two clusters, one
of which uses gliders to push the other further and further away, while the whole
pattern remains within a fixed limit on its current cell count.

The smallest IGCs have ten cells. In the short term, their density contribu-
tion, although increasing, will therefore remain ~ p10, and the expected distance
to a state 1 cell belonging to such an IGC, though decreasing, will remain ~ TV5.
Even if there are IGCs with quadratic growth in current cell count (QGCs) and
initial size 10, these statements will also hold for them,

It will be said that two indefinite growth patterns (and by extension clusters)
P I , PI are of the same finite-difference class if and only if there are integers m, n
such that if P I is advanced m steps, and then both are advanced synchronously
by any number of steps; it will always be possible to change the states of < n
cells in P I so that it is congruent to P^ (allowing rotations and reflections).
Intuitively, the patterns grow indefinitely, but the difference between them does
not. All patterns which are not IGCs are in the same finite-difference class.

4 MEDIUM-TERM EVENTS IN SPARSE RANDOM ARRAYS
OF CONWAY'S GAME OF LIFE

4.1 ORIGINAL INDEFINITE GROWTH CLUSTERS

An original cluster is one derived from a local ancestor of the minimum size for
that class (which may be a development class or finite-difference class) at t = 0.

After N steps, any original IGCs with linear growth in current cell count will
have ~ N cells. The density contribution of switch engines derived from 10-cell
initial clusters will be ~ p9, compared to the ~ p10 they contributed initially.
The expected distance to a state 1 cell in one of these IGCs, however, will still be
~ ./V5, as their diameter will be ~ N, and a distance ~ IV5 less a distance ~ ./V is
still ~ ./V5. The expected distance to such a cell along an orthogonal or diagonal
line of cells, on the other hand, will have diminished from ~ ./V10 to ~ JV9.
This is because if the trail produced by a switch engine (or the glider-stream
of the glider-stream switch engine) crosses such a line, there is a probability
independent of p that at least one state 1 cell will fall on the line; and if a switch
engine begins within N cells of such a line, there is a probability asymptotically
independent of p that its trail or glider stream will indeed cross the line.
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More generally, so long as nothing interferes with the growth of these switch
ter developing into a set of noninteracting repeaters. Regional clusters or events
pected distance to a state 1 cell belonging to one along an orthogonal or diagonal
ter developing into a set of noninteracting repeaters. Regional clusters or events
remain ~ N5 until ~ N5 steps had passed, when it would drop to below ~ Nx

for any positive x. Before this, however, the switch engines would have interacted
with other, initially distant clusters. If there are 10-cell QGCs, their density con-
ter developing into a set of noninteracting repeaters. Regional clusters or event
ter developing into a set of noninteracting repeaters. Regional clusters or event
quantity is affected by the diameter of a cluster rather than its cell count (so
long as the cluster forms a d-cluster for some value of d independent of p; i.e., its
state 1 cells are not separated from their nearest cluster mates by increasingly
large gaps as time goes on).

ter developing into a set of noninteracting repeaters. Regional clusters or events

However low the value of p, some pairs of initially distant clusters will eventually
interact. In this subsection, local clusters of different sizes and dynamic proper-
ties, particularly the minimum initial size clusters with various properties, will
be considered from this point of view.

First, consider the (non-null) clusters that can develop from those of initial
size three: blinkers and blocks (collectively blanks from here on). Since these will
not interact with each other if initially distant, they simply wait for some moving
or growing cluster to encounter them. The same is true of all clusters of initial
size four, but at initial size five, the first possibilities for interaction appear.

Consider what will happen to an original glider in an infinite sparse random
GoL array. After ~ iV steps (this will also be expressed by saying "in era 1," and
similarly "after ~ ./V1 steps," for any positive x, may be expressed as "in era x"),
ter developing into a set of noninteracting repeaters. Regional clusters or events
them will have collided with something else instead. To see this, consider what
lies in the path of a glider in the initial array. In order to interact with a glider,
another cluster must occupy a cell sufficiently close to the glider's path, at an
appropriate time. In a sparse random array, the first such object will typically
be a blonk at a distance of ~ N3 cells (the blonk is twice as likely to be a block
as a blinker). This might suggest that interactions between original gliders (and
r-pentominos) and original blonks will become significant in era 3. In fact such
interactions will become significant before that era, as argued below, but setting
that aside, consider what can happen when a lone glider interacts with a block
or blinker.

Specificially consider a glider headed "south-east" ("SE"): toward the lower
right of a screen display.4 If all cells which enter state 1 as the glider moves are
marked (the glider's cumulative image), the result is a diagonal swathe made up

4This will be the default heading for gliders in this chapter. Moreover, it will be assumed
that coordinates on the i-axis (east-west) increase to the east, and those on the y-axis (north-
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FIGURE 6 The glider and its cumulative image.

of four strips of cells (see fig. 6). Within each strip, or half-diagonal, adjacent
cells meet at a corner. It can be seen that if the glider were displaced by one
cell NE, the path generated would shift by two half-diagonals; hence the name.
The paths of two parallel gliders (gliders moving in the same direction), if not
identical, can differ by a minimum of one half-diagonal: consider shifting the
glider in figure 6 one cell east.

Now consider an east-west row of cells crossing the glider's path. In order
for the glider to interact with a block that has its northern cells falling on that
row, the block must occupy at least one cell no more than three half-diagonals
from where the edge of the glider's cumulative image will run. This means it
must be in one of 12 east-west positions (see fig. 7). The resulting collisions, for
a SE-headed glider, will be referred to as glider/block 1 through glider/block 12
(higher-numbered collisions having the block further east). In fact, glider/block
n and glider/block 13 — n, for 1 < n < 6, are mirror images. Glider/block1 
produces a shifted block, 2 and 3 produce clumps of oscillators, 4, 5, and 6 result
in the elimination of both glider and block.

In the blinker's case, matters are complicated by its period two oscillation
between horizontal and vertical. Again, there are 12 possible east-west positions
for the blinker, once the three adjacent rows in which it occupies cells in its verti-
cal phase are determined. However, since the glider has a four-phase cycle, either
the horizontal or the vertical phase of the blinker can coincide with a given phase
of the glider. The collisions where the horizontal blinker phase coincides with the
glider phase shown in figure 7 will be labeled glider/blinker 1 (with the blinker
at the westernmost location) to glider/blinker 12 (blinker at the easternmost lo-
cation), while the others will be glider/blinker 12b to glider/blinker Ib. The "b"

south) increase to the south, contrary to the usual mathematical convention, but in line with
those in the program recommended for the demonstration patterns.
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FIGURE 7 Possible glider/block and glider/blinker collisions.

here can be taken to mean "backward": while all of the collisions glider/blinker
1 through glider/blinker 12 are distinct, glider/blinker nb, with 1 < n < 12 is
a mirror image of glider/blinker n. Glider/blinker 4 and glider/blinker 6 both
generate new gliders: one going NW and one SW from glider/blinker 4, one NW,
two SE, and two NE from glider/blinker 6.

The two going SE ("onward") from glider/blinker 6 both follow the same
path, 52 half-diagonals to the NE of the incoming glider. The first is 1866 steps
ahead of the other: that is, the trailing glider will occupy at step t +1866 exactly
the cells occupied by the leader at step t. Such onward pairs of gliders from
glider/blinker 6, 1866-pairs, will be significant in what follows.

Gliders emitted by a collision between an original glider and blinker (or be-
tween a glider or fleet of gliders from an original r-pentomino, and an original
blonk), may collide with further original blonks, and in some cases emit more
gliders. (A fleet is a finite set of spaceships with a common velocity far enough
apart to travel without mutual interference, that would form a cluster if every-
thing other than spaceships with that velocity were removed from the array. A
subfleet is any non-null set of spaceships forming a part, not necessarily a proper
part, of a fleet.) Gliders emitted from later collisions in a direction opposite to
that of the incoming glider(s) may also hit oscillators left over from previous col-
lisions, or from an original r-pentomino. A standard collision sequence or SCS is
a sequence of collisions involving a single original glider or r-pentomino, and one
or more original blonks distant from it and from each other. There are constraints
on the relationships between the collisions, described below.

Each collision in an SCS involves at least one SCS fleet, and may involve
an SCS oscillator. The original glider, or the three fleets emitted in a different
direction by the original r-pentomino, are the first SCS fleet(s); the original
blonks, and the compound oscillator produced by the original r-pentomino, if
present, are the first SCS oscillators. A collision in an SCS may be primary—
involving a single SCS fleet and an original blonk, or secondary—not involving
an original blonk. Either type may produce nothing, or an SCS oscillator (a
non-null, possibly compound oscillator produced by the collision), and/or one or
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more SCS fleets (each such fleet consisting of all the spaceships that leave the
scene of the collision with a given velocity).

An SCS ends if:

1. The collision product is a cluster, such as an IGC, that would never become
quiet in an otherwise empty array.

2. The collision product interacts with anything else before becoming
quiescent.

3. A secondary collision S occurs which would have happened differently, or
not at all, if the original blonk involved in any primary collision P had been
shifted, parallel to the path of the SCS fleet that hit that blonk, by an amount
which would delay P by the least common multiple of the translation periods
of all the SCS oscillators and SCS fleets generated prior to 5. This condition
serves to rule out collision sequences that depend on special coincidences of
timing. For example, two SCS fleets from a collision A might both collide
with original blonks and send SCS fleets back toward the collision site. For
the two to arrive close together in time would be, in a sparse array, an unlikely
coincidence, dependent on the precise spatial relationships between A and the
two blonks. Such an event, and many more complicated ones involving similar
coincidences, would end the SCS by this condition.

Defining a standard collision sequence correctly suggests there are also non-
standard ones. To understand the name, and to see why collision sequences be-
come significant before era 3, consider once again the possible fates of an original
glider in an infinite sparse random array.

The first obstacle in the path of most original gliders is an original blonk
~ N3 links distant. However, in a proportion ~ p of cases, there is a blonk
at a distance ./V2 or nearer, and in a proportion ~ p2, one at N or nearer.
Furthermore, in ~ p of the total, something other than a blonk (almost always,
one of the oscillators derivable from an original cluster of four cells) is the first
object in the glider's path, and in ~ p3 of the total cases, such a cluster is at a
distance N or less. The same considerations apply to the gliders emitted by an
original r-pentomino.

Of the original gliders that hit an original blonk after ~ ./V2 steps, a propor-
ter developing into a set of noninteracting repeaters. Regional clusters or events
will meet a blinker in a collision that emits more gliders, and in ~ p of those
cases, at least one of these gliders will hit another blonk in a further ~ N2 steps.
Since two lots of ~ TV2 steps sum to ~ N2 steps, we can say that in era 2, ~ p2

of all original gliders will have originated an SCS involving two original blonks.
ter developing into a set of noninteracting repeaters. Regional clusters or events
n original blonks. The same is true of original r-pentominos: the fact that each
emits six gliders in three directions does not affect the exponent of p in these
expressions.
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Notice that, for three reasons, such an SCS may involve more than n in-
stances of a glider crashing into something in its path. First, two or more gliders
may be traveling in a fleet: for example, the fleets of two and three gliders gen-
erated by the r-pentomino, or the two 2-glider fleets (the 1866-pair and the two
gliders emitted NE) from glider/blinker 6. In such a case, one member of the
fleet may hit the cluster produced by another member hitting something—and
this may occur while the latter is still developing, or after it has become quiet. In
either case, the entire event counts as a single collision. Second, as noted above,
gliders emitted backward may hit oscillator clusters already generated in the
course of the SCS. Third, gliders from different collisions may encounter each
other in ways that do not depend on special coincidences of timing (for example,
a glider each from the SE and NE fleets from a glider/blinker 6 can take part
in further collisions of the same kind, giving rise to NE-headed and SE-headed
gliders which collide).

As long as the probability per step of a glider encountering an original blonk
remains at ~ p3, and most original gliders and r-pentominos have encountered no
obstacles, the proportion that will have taken part in SCSs involving b original
ter developing into a set of noninteracting repeaters. Regional clusters or events
the array where the last collision in an order b SCS has occurred (the cumulative

ter developing into a set of noninteracting repeaters. Regional clusters or events
collision sequences, beginning with an original cluster of six or more cells, or
involving the ~ p chance of a fleet encountering an original cluster of more than
three cells, will have a cumulative occurrence density 4C p6.

Figure 8 illustrates how the cumulative occurrence density of various classes
of collision sequences increases over time. Both time and density are logarithmi-
cally scaled. The three bold lines, labeled "5;3," "5;3;3," and
"5;3;3;3" show the cumulative occurrence densities of SCSs of orders one, two,
and three (the labels indicate the sizes of the original clusters taking part in
each type of sequence). Similarly, the line parallel to and just below the "5;3"
line shows the cumulative occurrence density of two classes of collision sequence:
those beginning with a six-cell cluster (there are several of these which emit one
or more gliders) and involving one original blonk, and those beginning with an
original glider or r-pentomino and involving a single cluster which began with
four cells. The line labeled "Three: sum 13" shows the cumulative occurrence
density of collision sequences involving three original clusters with sizes sum-
ming to 13, e.g., "7;3;3" and "5;4;4." The change to broken lines at era 14/5 is
explained below.

The switch engines growing from original ten-cell clusters have roughly the
same expected distance to an obstacle in their path—~ JV3 links—as a glider
does. Unlike glider fleets, however, switch engines leave persistent trails of oscil-
lators, and these may be struck by gliders traveling perpendicular to the trail.
The proportion of original gliders involved in such collisions will be insignificant,
but once an original switch engine reaches diameter and size ~ A/"5/2, in era 5/2,
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FIGURE 8 Collision sequence frequency to era 3.

its probability per step of being struck by such a glider will reach ~ p5/2, and,
therefore, one such collision can be expected in ~ ,/V5/2 steps. As long as most
original gliders have not collided with anything, the nearest original glider mov-
ing toward the head of a switch engine as it grows past a particular point will
usually be ~ N5 links away, but in ~ p5/2 cases it will be close enough to reach
the switch engine's trail after no more than N5/2 steps. The glider-stream switch
engine's growth can be halted by a single glider hitting the forward glider stream
and creating an obstruction the head crashes into. A similar collision creates an
obstruction to the glider stream, found by Tim Coe, that grows backwards and
then causes the switch engine to produce a wave of gliders as the head passes
it. The block-laying switch engine cannot be killed by a single glider, or fleet
from an r-pentomino, but may be vulnerable to multiple collisions of this kind.
If so, both kinds of original switch engines will generally "die" in era 5/2. It is
conceivable that some sequence of collisions with the trail could "ignite" it and
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cause it to disappear completely. Finally, such bombardment by gliders could
cause switch engines to "reproduce" (catalyze the production of more switch
engines), or otherwise acquire a superlinear growth rate, at size ~ JV5/2 cells.

Original local clusters with quadratic growth in their cumulative image
(whether or not this also occurs in their current cell count), will typically in-
teract with their environment in era 3/2, when the growing cluster will have
neighbored ~ iV3 cells. Such a pattern would by then be impinging on ~ JV3/2

previously unvisited cells per step, and could expect to encounter an original
blonk once in ~ JV3/2 steps. There are some quadratic growth patterns (such as
the 187-cell spacefiller mentioned) that would be "killed" by any single encounter
of this kind. Others appear less vulnerable, but none have been proved to survive
unlimited numbers of encounters with isolated blonks. No such encounter could
lead to a faster than quadratic growth rate.

5 STANDARD COLLISION SEQUENCE CONSTRUCTIONS

Figure 8 suggests that in the analysis of medium-term events in sparse random
GoL arrays, SCSs are likely to be of central importance, although original IGCs
and nonstandard collision sequences must also be considered. In investigating
SCSs, and, in particular, the question of what will be constructed by such pro-
cesses before era 3, three approaches suggest themselves:

1. Exhaustive surveys of some class of SCSs—most obviously, all those of order
n or less.

2. Attempts to design SCSs which will produce particular kinds of cluster—most
obviously, IGCs.

3. Attempts to construct proofs that any member of some broad class of cluster
or event can result from an SCS.

All these approaches have been tried, each with some degree of success. The first
two are dealt with in this section; the third, at considerably greater length, in
section 6.

5.1 SURVEY OF ALL STANDARD COLLISION SEQUENCE
CONSTRUCTIONS OF ORDER 1 AND ORDER 2

The exhaustive survey approach has not been taken very far, but has nevertheless
resulted in some progress. In order to carry out a survey of all the SCSs of order
1, it was enough to consider all the ways in which the three fleets emitted by the
r-pentomino (fleets of three and two gliders, and the minimal one-glider fleet)
could encounter a block or blinker at sufficient distance from the r-pentomino
that further increases in distance would make no fundamental difference. (Even if
the collisions involving an original lone glider had not already been investigated,
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the checks on the single glider fleet from the r-pentomino would cover all the
possible cases.)

For each of the six gliders in the r-pentomino fleets, 36 distinct collisions
had to be considered: 12 with blocks and 24 with blinkers. (The number would
have been less if the members of the 2-glider or 3-glider fleets were sufficiently
close for one to preempt some of the collision possibilities involving another.)
Although the 36 constitute 18 mirror-image pairs so far as the glider/blonk
collisions themselves are concerned, the existence of the other gliders and the
oscillator produced by the r-pentomino meant it could not be assumed the
members of these pairs are equivalent, and in some cases they are not. In
some cases involving the 3-glider fleet, a second glider collides with the re-
sult of the first collision. In the majority of the 216 cases, the collision emits
no gliders. In only one case does a glider from the collision, in hitting the
r-pentomino remnant, generate further gliders, and these do not return toward
the collision remnant.

The order 2 SCSs required considerably more effort, although once again
those sequences beginning with a lone glider did not require separate consider-
ation. A full description of the structure of the set of possibilities will not be
attempted here, but it is worth noting that even if the first collision merely pro-
duces a small oscillator as many glider/blonk collisions do, the possibility that
gliders emitted from the second collision might interact with this had to be con-
sidered. So did the possibility, already noted above, that gliders from the two
collisions might collide at a location remote from both the collisions generating
them. Also, if the two collisions involve gliders from the r-pentomino headed
in different directions, and both send gliders back toward the r-pentomino's os-
cillators, the result might depend on which arrives first. (It could be assumed
that they would not arrive close together in time: this would require an unlikely
coincidence in the distances of the two blonks from the r-pentomino, making
the collision sequence nonstandard: such a coincidence, in era E, decreases a
ter developing into a set of noninteracting repeaters. Regional clusters or events

The completed survey showed that no order 1 or 2 SCS gives rise to an IGC.
This has implications for the density of state 1 cells in the medium term. If a
QGC can be produced by an SCS, the SCS must be of at least order 3. As noted,
the cumulative occurrence density of events completing SCSs of order b or higher
by era E (where E < 3) will be ~ p^+b(3-E\ Substituting 3 for b gives ~ p1 4~3 S .
At most (if it produced a QGC that continued to grow quadratically), each of
ter developing into a set of noninteracting repeaters. Regional clusters or events
ter developing into a set of noninteracting repeaters. Regional clusters or events
so it can be concluded that SCSs cannot possibly produce a density contribution
exceeding that of original blonks until the first of these eras, while at any time
before the second, there will always be a positive x such that SCSs' density
contribution is <C px. By a parallel argument, SCSs cannot reduce to < N3 the
expected distance along an orthogonal or diagonal line to a cluster produced by
such processes, until after era 11/4 (the minimum this expected distance could
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ter developing into a set of noninteracting repeaters. Regional clusters or events
one comparable with the distance an original glider will have traveled before era
could be 3> p3, but not the others, might be affected by nonstandard collision = ^yE F r o m t m s e r a oimard, but not before,
it is possible that the rise in cumulative occurrence density of SCSs of each order
could be affected by collisions with the products of IGCs already produced by
SCSs.

The conclusion concerning the earliest era at which the density of state 1 cells
could be 3> p3, but not the others, might be affected by nonstandard collision
sequences. The cumulative occurrence density of the completion of any class of
could be 3> p3, but not the others, might be affected by nonstandard collision
contribution due to QGCs produced in such a way would always, before era 3,
could be 3> p3, but not the others, might be affected by nonstandard collision
by such a process would, before era 3, always be > N3.

The comprehensive survey of order 2 SCSs also had an interesting posi-
tive result: an order 2 SCS that produces a lightweight spaceship. Pattern 3
on (http://psoup.math.wisc.edu/NewConstruction) shows this order 2 SCS (the
r-pentomino and the two blinkers could be arbitrarily distant from each other
along the NE/SW diagonal). The existence of this SCS means that in era 3/2,
the number of SCS-produced lightweight spaceships will be comparable to the
number of original lightweight spaceships, and in later eras (at least prior to era
14/5) will exceed it by a factor that grows without limit as p —> 0.

5.2 AN ORDER 49 STANDARD COLLISION SEQUENCE PRODUCING A
SWITCH ENGINE

An order 49 SCS producing a block-laying switch engine was discovered by the
author in 2001. One starting point for the discovery was an indefinitely extensi-
ble SCS called the lucky rake, described in the next section, which allows fleets
exceeding any specified number of gliders to be constructed. The second was
Callahan's discovery of a considerable number of ways to generate switch engines
by colliding small, precisely timed fleets with a single block or blinker. Pattern 4
on (http://psoup.math.wisc.edu/NewConstruction) illustrates the construction.
It begins with an r-pentomino and 49 blonks, strung out along a NW-SE di-
agonal (the distances between clusters along this diagonal could be increased
indefinitely). Gliders, sent out NW and SE from the r-pentomino, interact with
the blonks in an SCS to produce a block-laying switch engine headed NW. This
would, in time, collide with an earlier collision remnant, but switch engines pro-
duced in this way could still have an important effect on the medium-term dy-
namics of sparse GoL arrays, particularly if it turned out there were no shorter
SCSs that produce IGCs (although this seems unlikely to be the case).
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6 WELL-SPACED GLIDER COLLISIONS AND STANDARD
COLLISION SEQUENCES

6.1 WELL-SPACED GLIDER FLEETS

For two gliders that are on the same path, one must be at least 14 steps ahead of
the other if the two are not to interfere destructively. Visually, it may be clear that
one of a parallel pair of gliders is ahead of the other even if their paths are some
way apart. The number of steps one such glider is ahead of or behind another can
be determined exactly by considering the half-diagonals perpendicular to their
paths. As a glider moves, every alternate step involves the occupation of a cell
in a new half-diagonal; the intermediate steps increase the number of occupied
cells in the most recently occupied half-diagonal to two. Whether two parallel
gliders' paths are the same, or are separated by an even or an odd number of
half-diagonals, we can, therefore, compare the perpendicular half-diagonal each
has most recently occupied (the most south-easterly half-diagonal reached if the
gliders are going SE), check whether each glider occupies one or two cells in that
half-diagonal, and, thence, calculate which leads the other and by how many
steps.

For some purposes, it is also useful to consider which of two parallel gliders is
"leading" the other, and by how many steps in a direction at 45° to that of their
path—i.e., which has traveled either further south or further east in the case of
SE-moving gliders. The same method can be used as when assessing the gliders'
relative position in the direction of movement: As it travels, a glider occupies a
cell in a new row (or column) on every second step, and increases the number of
cells occupied in the most recently reached row (column) on intervening steps.

For a pair of parallel gliders of which neither leads the other, the minimum
difference in paths is seven half-diagonals. As can be seen in figure 9, this sep-
aration can be combined with the minimum forward separation of 14 steps for
two gliders on the same path to give a closely spaced fleets of parallel gliders
of any desired size. Such fleets, of every possible finite number and spacing of
gliders, will of course exist in any random GoL array, and will persist indefinitely,
as there will be instances of every possible type surrounded by arbitrarily large
empty regions in the initial array. All such fleets are repeaters, and, hence, are
w-constructable patterns.

However, it can also be asked how fleets will be produced from predecessors
other than translations of themselves at times after t = 0. Subfleets which cannot
be produced in any other way, if there are any, will decline monotonically in
density in any random array as they encounter obstacles (the same cannot be
said of fleets, as any fleet can be produced from a larger one by collision with a
block which removes a single glider). In the context of sparse random arrays, it
is natural to ask in particular what fleets are SCS-constructable: i.e., can come
into existence as the product of an SCS (not necessarily as the sole product,
but forming a local cluster that can take part in continuing the SCS). Taking
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FIGURE 9 Well-spaced and ill-spaced fleets.

this idea a stage further, we can ask what collisions between glider fleets are
SCS-constructable.

No fleet or fleet collision has been shown to be nonconstructable by a stan-
dard collision sequence. A proof is given here—an outline is also published in
Gotts [13]—that all member of a large class of well-spaced fleets, and all member
of a class of collisions between well-spaced fleets, are SCS-constructable.

A well-spaced fleet is defined as one in which any pair of gliders either have
paths that differ by at least 12 half-diagonals, or have one member of the pair
at least 19 steps ahead of the other. The significance of this class of fleets is
simply that it is the largest class for which detailed SCS-construction methods
have been worked out. The fleet shown at the left of figure 9 is well spaced, while
that shown at right is not, although it can travel without interference between
the gliders.

A well-spaced glider collision is one which begins with between two and
four well-spaced fleets located in separate quadrants of a rectangular part of the
GoL array. More precisely, take any rectangular chunk of cells, and mark two
adjacent rows and two adjacent columns of cells, forming an orthogonal cross
dividing the remainder of the chunk into four quadrants. Each of these quadrants
is either empty, or contains a single well-spaced fleet. If there is a fleet in the
NW quadrant, its gliders are heading SE and, conversely, any gliders in the SE
quadrant are headed NW. The NE quadrant contains nothing or a SW-headed
fleet, and the SW quadrant nothing or a NE-headed fleet. Any such arrangement
of gliders has an infinite set of predecessors which meet the same conditions, and
if any of these predecessors is SCS-constructable, the arrangement of gliders and
all its successors are SCS-constructable. Any such arrangement of glider fleets,
together with its subsequent history (so long as nothing else interferes) will be
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called a well-spaced glider collision. It will be shown that any cluster constituting
any stage of a well-spaced glider collision is SCS-constructable.

6.2 CONSTRUCTING AN ARBITRARY WELL-SPACED GLIDER COLLISION

The proof has three main stages:

1. Any member of a subset of the set of well-spaced fleets, spaced-out fleets, is
SCS-constructable.

2. Any member of the set of well-spaced fleets can be constructed from a finite
sequence of collisions between some spaced-out fleet (or a rotation of such a
fleet), and some set of arbitrarily widely spaced blonks. Hence, any member
of the set of well-spaced fleets is SCS-constructable.

3. Any well-spaced glider collision can be produced by a collision between some
well-spaced glider fleet and a single blinker.

The proof inevitably relies on the properties of a number of specific collisions
between gliders or glider fleets on the one hand, and blocks, blinkers, other small
oscillators and other gliders on the other. Those properties of each such collision
that are important in the proof will be identified, and the collisions themselves
will be described in sufficient detail for any reader with access to a good GoL
simulation program to find or reproduce them. Readers may wish to begin by
reading only the initial paragraphs of the main stages and first-level substages,
following the proof in full detail later if at all.

1. SCSs can construct any SE-headed fleet in which each pair of gliders are on
paths at least 82 half-diagonals apart, and no glider is both on a path to the
SW of another, and (even a single step) behind the other in its west-to-east
progress. Such a fleet is a spaced-out glider fleet.

The definition of a spaced-out glider fleet implies a specific kind of (not nec-
essarily strict) monotonicity in the placing of the gliders. Taking the glider on
the path furthest to the NE (call it glider 1), call the most easterly column of
cells it has reached column C\. As noted above, the glider may occupy either
one or two cells in that column. Moving to the glider on the path nearest to
that of glider 1 (glider 2), the most easterly column of cells it has reached
(column C2), will be either the same as column C\, or to its east. If columns
C\ and C*2 are the same, glider 1 can occupy two cells in that column only if
glider 2 also does so. Numbering the gliders in the fleet in order of their paths
from NE to SW, an analogous relation will hold between gliders i and i + 1.
Hence, an analogous relation will also hold between gliders i and j whenever
i < j . Glider i + 1 will, as a consequence of the definition, also be at least 328
steps (82 rows) south of glider i.
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Another kind of monotonicity, equivalent under reflection about a NW-SE
axis, could be ensured by specifying that no glider is on a path NE of another,
and even a single step behind that other in its north-south progress. The choice
between the two is arbitrary.

a. There is a sequence of collisions, known as the lucky rake,5 beginning
with a collision between a single glider and a blinker, which can generate
a well-spaced fleet exceeding any desired number of gliders. The initial
glider is headed NE, and meets a blinker in an inverted version of the
collision "glider/blinker 6" (collision 1). The two gliders which emerge
perpendicular to the incoming glider's path are headed SE. The paths
of this SE-headed pair are 53 half-diagonals apart. The leading member
of this pair (the path of which is further SW than its partner) enters
collision 2, a glider/blinker 6 collision. The two SE-headed gliders from
this collision have a path 52 half-diagonals NE of the incoming glider
(hence in this context the glider/blinker 6 and glider/blinker 6b collisions
may be called 52-shifts), and thus one half-diagonal SW of the second
glider from collision 1. The delay due to collision 2 puts both of the 1866-
pair behind the collision 1 glider.

Collision 3 initially involves the glider from collision 1 and a block in the
glider/block 11 collision, creating a honey farm (a highly symmetrical
grouping of four beehives). The first of the pair from collision 2 collides
with the honey farm in a reaction that creates nine gliders, three of which
head SE; the second of the pair from collision 2 hits the debris from this
collision, creating no more gliders.

Of the three SE-headed gliders from collision 3, the leader has a path
between the other two: the second glider's path is 30 half-diagonals SW
of the leader's, the third's 29 NE of the leader's. The leader enters colli-
sion 4, another glider/blinker 6 collision, with the other two gliders both
interacting with the collision product before it has reached quiescence.
Collision 4 again produces three SE gliders (plus two others). Two of the
three have paths differing by a single half-diagonal, with the leader on
the path to the NE of the other, while the third is on a path 70 to the NE
of the leader. This is the first of the SE-headed gliders produced by- the
lucky rake that is unaffected by further collisions in the sequence. The
other two, which can be regarded as the engine of the lucky rake, resem-
ble the first two onward gliders from collision 2 in the difference between

A rake in GoL parlance is a type of IGC, a coherent object moving like a spaceship
but producing an evenly spaced sequence of gliders or other spaceships, each following its own
path. The coherent object is often called the engine. The lucky rake behaves in this way, but
only as long as the moving cluster happens to collide with blocks and blinkers in a particular
sequence. In a sparse random array there is no limit to how long its run of luck may continue,
but no guarantee that it will continue at any point.
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their paths, although the leader is further ahead, and the follower is not
the first of a 1866-pair.

From this point on, each pair of collisions produces an additional "tooth"
of the rake, and shifts the path of the engine by 82 half-diagonals NE.6

Collision 5 resembles collision 3, except that there is a longer gap between
the creation of the honey farm and the arrival of the second glider, and
that the third member of the fleet passes by the collision remnant. Col-
lision 6 is exactly like collision 4, creating a second "tooth" for the rake,
and collision 7 exactly like collision 5. A pair of collisions such as collisions
5 and 6 will be called an 82-shift. Each "tooth" glider is 82 half-diagonals
NE of its predecessor, and 1279 steps behind it. This places it 1115 steps
west and 1443 steps north of its predecessor.

b. The lucky rake collision sequence can be modified by introducing sub-
sequences of eight collisions which shift the engine by 229 half-diagonals
NE—hence, these subsequences are 229-shifts—and delay it by 3728 steps,
producing the same lateral gap and delay between adjacent "teeth" of the
rake.

The first two collisions of a 229-shift, in fact, constitute an 82-shift, but
the third removes the new "tooth" glider. This can be achieved by any of a
number of collisions, glider /block 5 being one possibility; if it is not done,
the glider interferes with the process of shifting the engine. The fourth
collision is just like the first collision in an 82-shift, producing the same
engine subfleet of three gliders, but the fifth involves the southwest-most
of these three alone, in a northeast-wards 52-shift. This places a 1866-pair
on a path between the other two members of the engine subfleet. The sixth
collision involves the leading member of the subfleet in a glider/blinker
4 collision. The remaining three members of the engine subfleet crash
into the remnant, producing just two onward gliders, with the leader one
half-diagonal NE of the other. The seventh and eighth collisions are again
effectively the same as those of an 82-shift, the only difference being a
shorter delay between the members of the engine pair as they enter the
seventh.

The effect of introducing 229-shifts is to produce a multipart lucky rake.
The first member of the second and each subsequent part is separated
from the last member of the preceding part by 229 half-diagonals and 3728
forward steps. Pattern 5 on (http://psoup.math.wisc.edu/
NewConstruction) is a demonstration of the first ten collisions in the

6The gliders constituting the engine at any point are destroyed in the next collision en-
tered, and the engine itself has different forms after odd-numbered and even-numbered colli-
sions. It is often convenient to refer to gliders and fleets as having an identity that survives
such events, when there is continuity in terms of relative position within a larger fleet and/or
functional role in a construction.

http://psoup.math.wisc.edu/NewConstruction
http://psoup.math.wisc.edu/NewConstruction
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basic lucky rake sequence, followed by the eight collisions of a 229-shift
(the first two collisions in this being the same as those which would occur
in a further continuation of the basic lucky rake sequence), four further
collisions in the construction of the second part of the rake, and finally,
the removal of the engine, which is done using collision glider/block 12.

c. Once the engine is removed from a multipart lucky rake, what remains is a
spaced-out fleet. Individual gliders can then be removed (using glider/block
5), leaving at least one glider from every third part of the multipart rake
(this is not the only or necessarily the most efficient possible way for SCS-
construction of most spaced-out fleets to proceed, but makes for relatively
easy exposition).

An adjacent pair of gliders in the resulting spaced-out fleet will then have
paths separated by I = 82a with that on the more southwesterly path
/ = 1279a steps ahead of the other (where a is a positive integer), or paths
separated by / = 82a + 229, I = 82a + 458, or / = 82a + 687 half-diagonals,
with that to the SW of the other / = 1279a + 3728, / = 1279a + 7456, or
/ = 1279a + 11184 steps ahead, respectively (a a nonnegative integer). In
all these cases, a = f modulo 2. If I = 82a and / = 1279a, then I can have
only even residues modulo 52, and / is even if and only if / = 0 modulo 4.
Having two 229-shifts between a pair of adjacent surviving gliders gives
values for / and I such that / is even if and only if I = 2 modulo 4, having
one or three 229-shifts between a pair of adjacent surviving gliders makes
it possible to combine all the odd residues modulo 52 for I with either odd
or even / . Adding multiples of 52 82-shifts leaves the relevant residues
unchanged while allowing / to exceed any desired value. By extension,
constructing a multipart lucky rake and then removing gliders from it can
produce a spaced-out fleet in which each adjacent pair of gliders has any
chosen path-difference modulo 52, and a difference of either an odd or
even number of steps in the direction of travel, this difference also being
as large as may be desired.

d. The collision glider/blinker 6b, which produces a pair of gliders going in
the same direction as the incoming glider, both on the same path, 52
half-diagonals SW from the incoming glider's path, can be used to reduce
any of the differences in glider paths by multiples of 52 half-diagonals.

At the end of this stage (which we will assume to take place, involving a
single 52-shift for each glider, even if none of the path differences require
reduction—in order to dovetail with stage le), the fleet will no longer
be a spaced-out fleet of gliders, but can be called a spaced-out fleet of
1866-pairs. In such a fleet, the 1866-pairs are headed SE, the paths of any
two 1866-pairs are separated by at least 82 half-diagonals, and if pair x is
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on a path SW of pair y, the front member of pair y is not even one step
further east than the back member of pair x.

In addition to the onward 1866-pair, glider/blinker 6 or 6b produces a
clump of oscillators, and three additional gliders. One goes NW. The
other two go SW if the onward gliders' path is shifted 52 SW relative to
the incoming glider (glider/blinker 6b); otherwise, they go NE. This stage
of the construction procedure, and the next, require that the additional
gliders and the oscillators produced by a 52-shift do not interact with
other gliders in the developing fleet.

In this stage, that noninteraction can be ensured for a g-glider fleet by
the following procedure:

(1) Put the leading glider (which will be called glider g) through glider-
blinker 6b, resulting in a 1866-pair 52 SW of the original (this ensures
the fleet consists entirely of 1866-pairs at the end of the stage).

(2) Put each of the remaining gliders through the same process, beginning
could be 3> p3, but not the others, might be affected by nonstandard collision
northeastward. (At this point, all gliders in the original fleet have been
replaced by 1866-pairs, and if no path-difference reduction was in fact
required, the process can halt.)

(3) Apply a SW 52-shift to 1866-pairs g — I through 1 in order, as man
times as required to produce the desired difference in paths between
1866-pair g and 1866-pair g — 1 (any number of half-diagonals > 82)
Note that when a 1866-pair is 52-shifted by letting the leading glider
collide with a blinker in glider/blinker 6 or 6b, the second mem-
ber of the pair mutually annihilates with a block left by the initial
glider/blinker 6 collision before the result of that collision has reached
quiescence, but makes no further difference to the result.

(4) Assuming the original fleet contained at least three gliders, reduce the
path difference between 1866-pair g — I and the remaining pairs in th
same way (shifting all the 1866-pairs from g—2 to 1 in turn), continuin
until the gap between 1866-pairs g — 1 and g — 2 is as desired. Appl
the same procedure to adjust each remaining path-difference, ending
with that between 1866-pairs 2 and 1.

If the differences in the forward direction were sufficiently large (which, as
stage Ic showed, can be ensured), the result will be a spaced-out 1866-pair
fleet.

Pattern 6 on (http://psoup.math.wisc.edu/NewConstruction) shows that
if two SE-headed gliders are on paths at least 82 half-diagonals apart,
and that on the path to the SW is at least 2030 steps ahead of the other,
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both can be 52-shifted SW (the one to the SW being shifted first, the
second shift being delayed until the second glider is wholly SE of the most
southeasterly of the oscillators produced by the first), the result being
two 1866-pairs which obey the east-west constraint.7 These can then be
subjected to another 52-shift SW without interference between the pairs,
again shifting the more southwesterly pair first and waiting until clear
of the oscillators produced before shifting the other. If the initial path-
difference and/or forward gap were greater, interference would simply be
avoided by a larger margin.

e. A spaced-out glider fleet can now be reconstituted, while adjusting rela-
tionships in the SE-NW direction. If the appropriate choices have been
made in the preceding stages, this stage can produce any desired spaced-
out glider fleet.

The 52-shift is again the key. This time the 1866-pair on the northeast-
most path goes through all its collisions first, then that on the next north-
eastmost does so, and so forth. Each pair goes through an odd number
of collisions, all but the last of which are performed in pairs, shifting the
1866-pair 52 SW, then back again NE (the minimum path separation of
82 half-diagonals may be violated between the two collisions, although it
will fall no lower than 30). The fact that the previous stage produced a
fleet of 1866-pairs makes it possible to choose either a short-delay 52-shift
or a long-delay 52-shift in each collision. The short-delay 52-shift is the
one described in connection with stage Id: the first of the pair takes part
in a glider/blinker 6 (or 6b) collision, and the second merely removes a
block from the collision remnant left behind. The long-delay 52-shift uses
the second of the 1866-pair to create a glider-blinker 6 (or 6b) collision.
The first of the pair can be removed using glider-block 5, or can hit a
blinker in collision glider-blinker 3b (or 3), which shifts the blinker so
that a second glider on the same path and an even number of steps be-
hind will meet it in a glider-blinker 6 (or 6b) collision. The final collision
is a glider-block 5, removing the front member of the pair.

The short-delay 52-shift retards a glider pair by 374 steps, and the long-
delay 52-shift by 2240 steps. Since the highest common factor of these
numbers is 2, a sequence of shifts exists that will produce any particu-
lar multiple of 2 steps alteration in the relative forward position of two
1866-pairs (and hence of the back members of these pairs)—as long as
the adjustments do not cause interference between the 1866-pairs. By

7If the pattern given by the coordinates is run, it will be noted that the NW-headed glider
from the second collision hits the first collision remnant and generates two SE-headed gliders,
plus one going NE. In the context of a sparse array, the gap between the two collisions would
from the second collision hits the first collision remnant and generates two SE-headed gliders,
would not interfere with the collision sequences discussed in this subsection.
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extension, there exists a sequence of shifts that can produce any set of
relative forward position adjustments by multiples of 2 steps for any fleet
produced by stage Id.

Suppose that the fleet contained only two 1866-pairs. A sequence that
would delay 1866-pair 1 (the rear, and more northeasterly pair) by 2x
steps (where x is a positive or negative integer) relative to 1866-pair 2
could be 3> p3, but not the others, might be affected by nonstandard collision
desired sequence is then:

• If I is positive, / long-delay shifts to 1866-pair 1.
• If s is positive, s short-delay shifts to 1866-pair 1.
• If I is negative, I long-delay shifts to 1866-pair 2.
• If s is negative, s short-delay shifts to 1866-pair 2.

Once 1866-pair 1 has been shifted back and forth, its front member is
removed using a block. Then 1866-pair 2 goes through its back-and-forth
shifts and, so long as the rear member of pair 2 does not end up west of
the remaining (rear) member of pair 1 (i.e., so long as the constraints on
spaced-out glider fleets are respected), removal of its front member will
leave the specified two-glider spaced-out fleet.

In the case of a fleet of g 1866-pairs, the set of shifts that will produce a
specific p-glider spaced-out fleet can be calculated as follows.

• Start by calculating for 1866-pairs 1 and 2 as above, but assigning
the shifts for 1866-pair 2 to all the remaining pairs as well (applying
just these shifts would, in effect, adjust the relationship between two
subfleets, one containing pair 1, the other pairs 2 through g).

• Then calculate the shifts that would need to occur to produce the
specified relationship between pairs 2 and 3, adding the shifts calculated
for pair 2 to the running totals for pairs 1 and 2, the shifts calculated
for pair 3 to the totals for each pair 3 through g.

• Continue the calculation through the fleet in this fashion, ending with
the shifts needed to adjust the relationship between pair g and the rest
of the fleet.

The specified spaced-out fleet will then be produced if pair 1 goes through
all its shifts, followed by the removal of its front member, then pair 2 is
subjected to the same process, and so on through the fleet to pair g—
so long as the rear member of each pair, after its final shift, is not to
the west of its immediate predecessor. At any stage in this procedure,
the single gliders at the rear will form a spaced-out glider fleet. All the
lateral gliders sent SW while a given pair is being shifted cannot affect
either the spaced-out glider fleet to its NE, nor the remaining spaced-
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out 1866-pair fleet to its SW (which will always be to the south of the
shifting pair and, hence, of the lateral gliders). Gliders sent NE during its
shifts in that direction will, when generated, be located well to the east of
the leading member of the growing spaced-out fleet and, hence, of all its
members (and, of course, will remain so, since SB-headed and NE-headed
gliders have the same eastward component to their velocity). Pattern 7 o
(http://psoup.math.wisc.edu/NewConstruction) shows a 1866-pair being
shifted SW and then NE, while sandwiched as closely as possible between
a single glider to its NE and a 1866-pair to its SW.

2. Any well-spaced glider fleet heading SE can be produced by colliding a spaced-
out glider fleet with a sequence of arbitrarily widely spaced blocks and
blinkers.

a. There is a right-angle collision between two gliders (the kickback [3,
p. 837]), which produces a single glider traveling in the opposite direction
to one of the incomers, on a path shifted one half-diagonal in the direc-
tion the other incomer was headed. If a well-spaced fleet is headed SE,
two gliders headed NW and NE can be so placed that they will meet in
a kickback collision, producing a glider forming part of the well-spaced
fleet. The glider produced can occupy any position that is no further back
(i.e., NW) than any glider in the existing fleet. Hence any well-spaced fleet
can be built up from the rear, one glider at a time, using such kickback
collisions.

Consider a well-spaced fleet moving SE, and one NE-headed and one NW-
headed glider on course to collide in the kickback reaction in such a way
as to add another SE-headed glider to the fleet in a position that will
maintain the fleet's well-spaced property. Assume that any other state
1 cells in the array are sufficiently distant to be ignored. Call the state
1 cells contained in the combination of the NW-headed glider and the
NE-headed glider, so long as they are separate, and in the product of the
collision between the two once they have met, the kickback cells. If it ca
be shown that, during the process of adding a glider in such a position,
no state 0 cell neighboring a glider in the original well-spaced fleet can
ever come to have three or more state 1 cell neighbors, with at least one
being a kickback cell, it will follow that the new glider can indeed always
be added without otherwise altering the well-spaced fleet, since no state
1 cells will at any point be added to or subtracted from the sum of those
in the existing fleet and the kickback cells, and the latter will in time
produce a single SE-glider and nothing else.

(1) No two gliders in a well-spaced fleet can neighbor the same cell: figure
10 shows the closest cells to a glider in such a fleet that may be oc-
cupied by another glider, for two of the glider's phases (the other two
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FIGURE 10 Empty space around a glider in a well-spaced fleet.

phases are mirror images of these). Therefore, it need only be shown
that no single glider in the existing fleet can come to share a state 0
neighbor with the kickback cells in such a way that that glider and
the kickback cells together give it three or more state 1 neighbors.

(2) As long as there are three empty half-diagonals between two parts of
a cluster, no empty cell can be next to more than one state 1 cell
in each part. Suppose the half-diagonals run NW-SE, as in figure 11:
the cells in the southwestern half-diagonal cannot have neighbors in
the northeastern part of the cluster, those in the northeastern half-
diagonal cannot have neighbors in the southwestern part of the cluster,
and those in the central half-diagonal can have no more than one
neighbor in each part of the cluster, so no cell in this half-diagonal
can be switched into state 1. Thus the kickback cells and a glider in
the well-spaced fleet cannot interact as long as there are three empty
half-diagonals between them.

(3) There are then three cases to consider (the gliders labeled X, Y, and
Z in each of the three parts of figure 12 are representative of these
three cases); it can be confirmed by inspection that if the claims made
apply to these representative gliders, they would apply to any others
meeting the given conditions, as none could occupy cells separated
from the kickback cells by fewer half-diagonals at any point.

(a) For any glider, such as X, that is at least 19 steps behind (i.e.,
NW) of the expected position of the glider to be produced by the
kickback cells, there will always be at least three NW-SE half-
diagonals between that glider and the kickback cells. As the NE-
headed and NW-headed gliders approach each other, the number
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FIGURE 11 Three empty half-diagonals divide a cluster.

(a)

FIGURE 12 Adding a glider to a well-spaced fleet.

of these half-diagonals falls, and reaches a minimum of three for
the three steps immediately before the kickback cells are reduced
to the new glider and nothing else. At that point, it increases to
six, and, henceforth, alternates between five and six.

(b) For any glider on a path at least 12 half-diagonals NE of the ex-
pected path of the kickback glider, like glider Y, there will always
be at least three NW-SE half-diagonals between that glider and the
kickback cells. Again, the number of these half-diagonals reaches
a minimum of three for the three steps immediately before the
kickback cells are reduced to the new glider and nothing else. The
number then rises to eight and remains there.
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(c) For any glider on a path like that of Z, at least 12 half-diagonals
SW of the expected path of the kickback glider and no further
forward than the kickback glider's expected position (this condi-
tion also applies in case (b) above, but is not needed there), there
will always be either at least three SW-NE half-diagonals or three
SW-NE half-diagonals between the glider and the kickback cells.
Until 22 steps before the kickback cells are reduced to the new
glider and nothing else, there are at least three intervening SW-
NE half-diagonals and from that point (part (a) of the figure),
there will be at least three intervening NW-SE half-diagonals, as
the NE-headed glider moves further NE. Part (b) shows a stage
in the actual collision, part (c) the well-spaced fleet with the new
glider in place.

b. An adjustment pair of NE-headed gliders, so placed that their paths are
2/i half-diagonals apart (where h > 6), the two gliders are in the same
phase, and the glider on the path further to the SE is 3 cells (12 steps)
south of the other, can take part in two successive kickback collisions with
a glider headed SE, the first of which results in a glider headed NW, while
the second is a collision such as that described in 2a. The net result is
that the SE-headed glider's path is shifted two half-diagonals NE, and it
is shifted 8h - 20 steps backward relative to an untouched glider.

c. Such a pair of NE-headed gliders, with h — 351, can itself be produced
from a fleet of six SE-headed gliders (this will be called an adjustment
fleet). Such an adjustment fleet can, by colliding with a blinker, produce
a pair of NE-headed gliders that will shift the target glider two half-
diagonals NE, and 2788 steps backward.

d. The adjustment fleet is not a spaced-out glider fleet, but can be produced,
using only 52-shifts, from a six-glider predecessor so placed that it and
the target together form a spaced-out fleet. No premature interference
with the target will occur in the process. Furthermore, whatever well-
spaced fleet is following the target, the adjustment fleet's predecessor can
be located so the process will not interfere with that well-spaced fleet.

Pattern 8 on (http://psoup.math.wisc.edu/NewConstruction) consists of
10 gliders and 39 blinkers. The fleet of gliders consists of a close three-
glider group at the rear, the target glider whose position relative to this
group is to be adjusted, and the 6-glider predecessor of the adjustment
fleet. The target plus the predecessor fleet constitute a spaced-out fleet.
The target will end up 19 steps directly ahead of one of the three-glider
group, and with the other two 12 half-diagonals to either side. The process
of producing, moving, and using the adjustment fleet will be described,
numbering the gliders from (1)—most SW path—to (6)—most NE path.
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All the shifts involved are long delay 52-shifts once the initial single gliders
are transformed into pairs. There are four stages: initial rearrangement,
SW-move, final rearrangement, and the adjustment itself.

(1) Initial rearrangement. Glider (5) is 52-shifted NE once, then each of
(4), (3), (2), and (1) is shifted NE three times. Then each of (1), (2),
(3), (4), and (5) is shifted SW once. At this point, all the gliders except
(6) have been turned into 1866-pairs. (We could now remove the front
members of pairs, rather than using them to place a blinker in the
right place for the second member of the pair, at the cost of increasing
the number of collisions.)

(2) SW move. 1866-pairs (1), (2), (3), (4), (5), and (6) are each shifted
SW once. This sequence of six collisions could be repeated as many
times as desired, without affecting any gliders on paths sufficiently far
NE of the predecessor fleet. Hence there may be many positions of
the predecessor fleet, differing from each other by multiples of 52 half-
diagonals in the NE/SW direction, and of 2240 steps in the direction
of movement (SE), which produce an adjustment fleet in the same
relation to the target. For any such final position of the adjustment
fleet, however, there are only finitely many such initial predecessor fleet
positions for which target and predecessor fleet constitute a spaced-out
fleet.

(3) Final rearrangement. Gliders (2) through (6) are 52-shifted SW once
(the adjustment subfleet cannot travel SW in its final form—(1) has to
be one shift further SW relative to (2) during the travel process than it
will be just before adjustment). Then the front member of each of the
1866-pairs (1) to (5) is removed, (6) is 52-shifted once more (it has to
lag behind during the SW-move), and the front member of 1866-pair
(6) is removed.

(4) The adjustment itself. Glider (1) hits a blinker in a glider/blinker 4 col-
lision, which produces two gliders, headed NE and NW. Other mem-
bers of the adjustment fleet interact wich these to form the adjustment
pair. The north-south distance between adjustment fleet and target
can be increased (or, up to a point, decreased) by multiples of two
cells without affecting the final position of the target. Hence there are
infinitely many initial positions for the predecessor fleet that make it
plus the target glider a spaced-out fleet, and lead to the same adjust-
ment of the target glider. The predecessor fleet can begin arbitrarily
far east of the target, and can also begin on paths arbitrarily far SW
of the target's path, so long as it produces an adjustment fleet far
enough south of the target.
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Hence, however far east and/or how far SW the well-spaced fleet to which
the target is to be added extends, stage (1) could take place arbitrarily far
to its east and SW, ensuring that oscillators and additional gliders from
the process do not interfere with it: it can be ensured that oscillators and
gliders sent NW and SW are well SW of the following fleet, while gliders
sent NE in stage (1) are well east of it. Furthermore, a target glider and
multiple copies of the predecessor fleet could be so placed, in a spaced-out
fleet, that each predecessor fleet in turn (beginning with that closest to
the target) could be transformed into an adjustment fleet, shifted SW,
and used to move the target—all the while remaining on paths as far as
desired NE of those being used by the remaining predecessor fleets. It is
thus possible to begin with a spaced-out fleet consisting of a target glider,
and n predecessor fleets placed on paths arbitrarily far SW of the target,
and end with a single glider traveling in the same direction, shifted In
half-diagonals NE and 2788n steps backwards relative to the position the
target would have occupied if no collisions had occurred (plus debris left
behind and gliders traveling in other directions).

(e) Given any desired well-spaced SE-headed fleet, it is, therefore, possible
to specify a spaced-out fleet that can produce it through a sequence of
collisions with arbitrarily widely seperated blonks.

(1) Number the gliders in the required fleet, beginning at the rear (NW)
and if two or more are equally far forward (SE), proceeding from SW
to NE along the diagonal (the opposite choice could equally well be
made here). Each of the desired gliders will have a precursor in the
spaced-out fleet (glider 1 being its own precursor).

(2) Glider 2's precursor will be the second rearmost member of the spaced-
out fleet, placed so that it is on a path In half-diagonals SW of glider
2's desired position relative to glider 1, and 2788n steps forward (SE)
from that position, for n sufficient to make its relationship to glider 1
compatible with being part of the same spaced-out fleet. How large n
will be depends on the required final relationship between the two. It
could be zero if the desired relationship between gliders 1 and 2 itself
allows them to be part of a spaced-out fleet.

(3) The next members of the spaced-out fleet, moving to more south-
westerly paths and at the same time further SE along those paths,
will be 6n gliders, making up n copies of the predecessor fleet.

(4) Following these will be the precursor of glider 3, placed on a path
sufficiently far SW that the adjustment fleets for glider 2 will always
be on paths well to the NE of its path. The predecessor fleets necessary
to move glider 3's precursor to its final position, once glider 2 has been



Nicholas M. Gotts 39

placed, will be next. Continuing in this way, a spaced-out predecessor
can be specified for any well-spaced SE-headed fleet.

(f) By symmetry, any well-spaced fleet is SCS-constructable.

3. Any well-spaced glider collision can be produced by a collision between some
well-spaced glider fleet and a single blinker.

a. Any well-spaced fleet headed in a specified direction can be the sole prod-
uct of a collision between some well-spaced fleet headed at right angles
to the specified direction, and a single blinker. Assume the original fleet
is headed SE. It will be shown that an arbitrary well-spaced fleet headed
NE (or, by symmetry, SW) can be created.

(1) Define a nicely ordered fleet as one in which, of any two gliders, one is at
least 19 steps ahead of the other. The g gliders of a nicely ordered fleet
could be 3> p3, but not the others, might be affected by nonstandard collision). Divide the possible
NE-headed nicely ordered fleets into stretch-resistant fleet classes as
follows: two such fleets x, y are in the same stretch-resistant fleet class
if and only if:

(a) They contain the same number g of gliders.

(b) For each pair of pairs of correspondingly numbered gliders
(xi,Xi+i), (yi,i/i+i), the difference in the paths of x^ and Xj+i is
the same as that between the paths of j/j and j/j+i.

(c) For each pair of pairs of correspondingly numbered gliders
(xi,xcould be 3> p3, but not the others, might be affected by nonstandard collision
minus the number of steps separating yi and yi+i gives the same
result, which is a multiple of eight.

Each stretch-resistant fleet class thus has a minimally stretched mem-
ber, in which the number of steps separating at least one pair of ad-
jacent gliders is between 19 and 26, and the members of the class can
be indexed by the minimum number of steps separating any pair of
adjacent gliders. It will be shown that all members of each NE-headed
stretch-resistant fleet class with a sufficiently large index (how large
this is varies from class to class) can be the sole product of a collision
between some well-spaced fleet headed SE, and a single blinker.

(2) There exists a set of related collisions between well-spaced fleets of
nine gliders, and a single blinker, which produce a blinker shifted to
a new position, and a glider traveling at right angles to the incoming
gliders. Assume the fleet to be headed SE.

(a) The first member of the fleet transforms the blinker into a small
still-life, the ship.
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(b) The second turns the ship into a block, and a glider traveling NW.
The number of steps between the first and second can be any
number > 18 (in fact, it could be between 14 and 18, but then the
fleet would not be well spaced as the second glider's path is just
one half-diagonal SW of the first's path).

(c) The third glider collides with the NW glider, creating a pond
(fig. 1). The distance between the second and third gliders de-
termines how far NW of the block this pond is. Increasing the
distance by eight steps shifts the pond one cell NW (any smaller
increase produces the wrong glider collision). The SE-headed glider
may be on a path five half-diagonals NE of the NW-headed glider,
or five diagonals SW of it. If the possible NE-headed paths are
numbered consecutively, one of these alternatives permits the NE-
headed glider eventually produced to be on even-numbered paths
only, while the other permits only odd-numbered paths.

(d) The fourth glider turns the pond into a tub.

(e) The fifth glider turns the tub into yet another small still-life, the
boat.

(f) The sixth glider collides with the boat, resulting in a new glider
going NE (its path determined by how far NW the boat was), and
nothing else.

(g) The last three gliders turn the block back into a blinker.

The result is a blinker shifted somewhat (two cells east, 16 cells south)
from the original position, and a NE-headed glider.

Two examples are given as Patterns 9 and 10 on
(http://psoup.math.wisc.edu/NewConstruction), one using each of the
mirror-image possibilities for the collision between NW-headed and
SE-headed gliders. The gliders in these examples are not bunched as
closely as possible, but the gap after the second glider could be in-
creased by any multiple of eight steps to shift the NE-headed glider
two half-diagonals NW (and four steps backwards), while the gap after
the sixth could be increased by any number of steps to delay recreating
the blinker by the same amount. Other gaps could also be increased,
but it is most convenient here to hold them fixed at the values shown
in the examples. The two examples, along with the possibility of in-
creasing the gap after the second glider, permit the outgoing glider to
be on any SW/NE half-diagonal sufficiently far NW of the blinker's
central cell.
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(3) Now consider how this approach could be used to create a two-glider
fleet going NE. This involves 16 SE-headed gliders. The NE glider
created by the first six SE-headed gliders can travel arbitrarily far
before any further gliders arrive if the gap after the sixth glider is wide
enough, allowing any possible interference to be avoided. The gap after
the ninth glider could also be varied, but will be fixed arbitrarily at 100
steps to aid exposition. Specifically, we can ensure that the new glider's
rearmost cell is at least four half-diagonals NE of the NE edge of the
track of any of the remaining gliders, before the leader among them
advances to within less than four half-diagonals of the new glider's
track (thus ensuring at least three empty half-diagonals between them
at all times). Even if the second NE-headed glider is to follow a track to
the SE of the first, this will ensure noninterference. Since both the first
and second NE gliders can, independently, be produced arbitrarily far
NW of the restored blinker, and since the two ways in which the third
glider can meet the NW glider allow either an odd or an even path-
difference between them, all possible path-differences can result. The
ability to increase the gap between the sixth and seventh gliders by an
arbitrary amount allows the first to lead the second by any amount,
above a minimum which depends on the relationship between their
paths, and therefore by any number of steps modulo 8.

This ensures that, for any two-glider stretch-resistant fleet class, an
index exists such that any member with an index at least that large
can be produced as the sole result of a collision between a blinker
and a sixteen-glider fleet: one nine-glider fleet, and a second modi-
fied to contain a single glider to remove the block (and itself) using
glider/block 5, rather than three gliders to restore the blinker. The
gap before the final glider can be extended to ensure non-interference
with the NE-headed fleet just like that between the first six gliders
and the rest.

(4) Furthermore, the result generalizes to fleets of any number of gliders.
For suppose that for any g-glider stretch-resistant fleet class, there is
an index such that any member with an index at least that large can
be produced as the sole result of a collision between a blinker and a
(9<? — 2)-glider fleet. Given a (g + l)-glider stretch-resistant fleet clas
consider the fleets produced by removing the leading glider. These
will constitute a (not necessarily proper) subset of a g-glider stretch-
resistant fleet class. Beginning with the member of that subset with
the minimum index allowing it to be constructed using the method
described, consider whether a member of either of the sets of two
nine-glider fleets of which examples were given above, can be added to
the front of the fleet used to construct it (with a 100-step gap between
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the existing fleet and the rearmost of the added gliders), to produce
a fleet that can construct the corresponding member of the (0 + 1)-
glider class (this will have the same or a lower index—the latter if, for
members of that class, the gap between the leading and second gliders
is the smallest). Which of the two sets should be considered depends on
the value modulo two of the path-difference required between gliders
g + I and g of the new fleet. The gap required between the second
and third of the nine added SE-headed gliders will be determined
by the exact value of this path-difference. The value of the forward
gap desired between the first and second gliders of the new fleet will
determine the number of steps needed between the sixth and seventh
of the added gliders. If this is not sufficient to ensure that the first
glider travels NE beyond the path of any of the remaining SE-headed
gliders, as described in the two-glider case above, the index can be
increased, together with all gaps between sixth and seventh gliders in
the nine-glider construction subfleets, until this criterion is met.

(5) Any well-spaced NE-headed fleet containing g gliders can be created by
colliding any member of a NE-headed stretch-resistant fleet class with
a sufficiently large index (how large this is depends on the well-spaced
fleet to be created), and a well-spaced SE-headed fleet containing 1(g —
1) gliders.

Adjustment pairs of SE-headed gliders, similar to the NE-headed pairs
described in stage 2, can be used to change the relationships between
the gliders of the NE-headed fleet. As shown in stage 2, such a pair
can add a glider to the front of a well-spaced fleet in any position that
leaves it still well spaced. Starting with the second glider from the
back and moving forward through the fleet, each can be shifted two
half-diagonals to the SE, and 8n — 20 steps backward, where n > 6
For any specified well-spaced NE-headed fleet, it is possible to identify
a stretch-resistant fleet class such that any member of that class with
a sufficiently large index can be used to produce it through collision
with g — 1 adjustment pairs.

could be 3> p3, but not the others, might be affected by nonstandard collision
the rear (SW) and if two or more are equally far forward (NE),
proceeding from NW to SE along the diagonal. Members of the
stretch-resistant class of nicely ordered NE-headed fleets to be
identified will also have g gliders, and the relationships between the
paths they follow will be the same as for the specified well-spaced
fleet, except that glider 1 will be on a path two half-diagonals fur-
ther SE relative to the other gliders than in the well-spaced fleet.
The number of steps between any two gliders in the SW-NE direc-
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tion will be the same modulo eight as in the specified well-spaced
fleet, except for gliders 1 and 2, where it should be four different
modulo 8 (see (b) below).

(b) Take the specified well-spaced fleet and move glider 2 forward
(NE), until it is 28 steps further forward, relative to glider 1, than
it needs to be in the specified well-spaced fleet.

(c) Then, if g > 2, work through gliders 3 through g, placing glider
could be 3> p3, but not the others, might be affected by nonstandard collisio
necessary to be certain of avoiding interference with the collision
between glider i — 1 and the first member of its adjustment pair
that (SE-headed) glider will be 17 steps east of glider i — 1, an
cannot collide with any glider going NE and at least 19 steps to
its east). Each of gliders 3 through g should also be no nearer
its predecessor in the SW-NE direction than the required distance
between the corresponding gliders in the specified well-spaced fleet,
and this number of steps must be correct modulo 8. Subject to
these three conditions, place each glider as close as possible to its
predecessor.

The result is the member of a suitable stretch-resistant class (not the
only such class), with the lowest index possible. Each glider from 2
through g can in turn collide successively with the two members of a
SE-heading adjustment pair, the first turning it to the SW, and the sec-
ond back to the NE. Twenty-eight steps backward is the least adjust-
ment that can be made: the adjustment pair are then on SE-headed
paths differing by 12 half-diagonals. Each successive adjustment will
be at least as large as its predecessor. The successive adjustment pairs
can be arbitrarily far apart, so a well-spaced SE-headed fleet of 2(g — 1
gliders can be used to turn this fleet into the specified well-spaced NE-
headed fleet. Any member of the stretch-resistant class with a larger
index could also be used, by increasing the path-differences within each
adjustment pair: if the index increases by eight (the smallest possible
jump), the paths of the two gliders in the ith adjustment pair must
be set 1i half-diagonals further apart, so that glider i + 1 is shifted
backwards by 8i steps more.

(6) Since 3a(4) shows that any member of any stretch-resistant class of
nicely ordered NE-headed fleets with a sufficiently large index can be
the sole product of colliding a well-spaced SE-headed fleet with a single
blinker, 3a(5) establishes that any well-spaced NE-headed fleet can be
the sole product of colliding some well-spaced SE-headed fleet with
a single blinker, because the adjustment pairs can form part of the
same well-spaced fleet. By symmetry, any well-spaced fleet can be the
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sole product of a collision between a well-spaced fleet headed at right
angles to the fleet produced, and a single blinker.

It is worth noting that any SCS-constructable fleet can therefore be pro-
duced in such a way that no other products of the SCS are located directly
behind it (see section 5.2 and footnote 7).

b. Part of a well-spaced SE-headed fleet can produce a well-spaced NE-
headed fleet by colliding with a blinker, and subsequently (and after an
arbitrarily long time) the fleet can collide with a second well-spaced SE-
headed fleet. Since the two SE-headed fleets can be arbitrarily distant,
they can form part of a single well-spaced fleet. Therefore, any well-spaced
glider collision involving SE-headed and NE-headed fleets, and by sym-
metry any collision between two fleets traveling at right angles can be
created from a collision between some well-spaced glider fleet and a sin-
gle blinker.

c. As the first acts in a well-spaced collision between two fleets traveling
SE and NE, two pairs of gliders can create two blinkers [3, p. 831]. The
northeastern part of the SE-headed fleet can then collide with one of these
two blinkers to create a well-spaced SW-traveling fleet, the southeastern
part of the NE-traveling fleet with the other blinker to create a well-
spaced NW-traveling fleet. One of the blinker-creating collisions can occur
an arbitrarily long time before the other, and the second an arbitrarily
long time before the collisions creating the SW- and NW-headed fleets
begin. The four fleets can be arbitrarily far apart when their construction
is completed, avoiding any possible interference.

Therefore, from stages 1, 2, and 3, any well-spaced glider collision can
be created from a well-spaced glider collision involving two fleets at right
angles.

4. Therefore, any well-spaced glider collision is SCS-constructable.

6.3 SCARCITY-LEVEL-FIVE AND SCARCITY-LEVEL-SIX COLLISION
SEQUENCES

An alternative name for SCSs, suggested by figure 8, would be sequences of
scarcity level five: the cumulative occurrence density of different orders of SCSs
cannot exceed ~ p5. Collision sequences which begin with a six-cell cluster and
otherwise involve only original three-cell clusters, and those that begin with a
five-cell cluster but involve one original four-cell cluster in addition to zero or
more original three-cell clusters, are, analogously, sequences of scarcity level six:
their cumulative occurrence density cannot exceed ~ pe. Similarly, we can define
sequences of scarcity levels seven, eight, and so forth.
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As figure 8 indicates, sequences of any order belonging to scarcity class n
will become more common than those of any order of scarcity class n + 1 at
some point before era 3, if collision processes such as those described continue
effectively unchecked to that point. However, there might be clusters that can
be produced only by sequences of scarcity level greater than five. In general
this possibility remains open, but it can be shown that anything constructable
by sequences of scarcity level six is also constructable by sequences of scarcity
level five—i.e., is SCS-constructable. The most succinct way of showing this
also involves showing that anything SCS-constructable is constructable in a
well-spaced glider-collision—showing that SCS-constructability and well-spaced
glider-collision constructability are equivalent, except that the latter, has been
taken to imply that the object of construction is a pattern—i.e., it is the sole
product of the glider collision—whereas SCS-construction leaves a litter of debris
in its wake.

1. For those sequences of scarcity level six that begin with a glider or
r-pentomino, it needs to be shown that any collision between an SCS-con-
structable fleet and a cluster derivable from a four-cell original is itself SCS-
constructable.

a. Any SCS-constructable fleet is constructable from a well-spaced glider
collision.

Any SCS-constructable fleet is derived from a finite sequence of collisions
beginning with a glider or r-pentomino, and involving a single block or
blinker at a time. While there are constraints on the positions of these
blonks relative to each other, the minimum distance between any two can
be made arbitrarily large in any given SCS.

Given an arrangement of oscillators with minimum distance d\ between
any pair of oscillators and a minimum "safe distance" d?,, it will always b
possible, if d\ is sufficiently greater than cfo, to find a path consisting of
half-diagonal stretches, from outside the arrangement to any point within
it at least d% cells clear of any oscillator, while avoiding all the oscillato
by that amount. From a point directly NW of the desired point, one such
path goes SE until the minimum safe distance is about to be breached.
It then goes SW until it can go SE again, goes SE until clear of the
oscillator in its way, then NE as soon as possible to get back to the
original track, turning SE once more when directly NW of the goal. If the
difference between d\ and d-z is sufficiently great, it will always be possibl
to go around each obstacle in this way and return to the original NW-SE
track. For a path wider than a single half-diagonal, it is only necessary
to increase d\ correspondingly.
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A block, a blinker, and a beehive can each be the sole product of a right-
angled collision between a pair of gliders [18]. An r-pentomino can be
created as the sole product of a collision between a beehive and a glider.
A boat can be constructed by a collision between a fleet of four arbitrarily
widely spaced gliders and a blinker (glider/blinker 1 creates a pond, and
three more gliders turn this into a boat—see section 6.2). Both beehive
and boat can take any of their possible orientations (the beehive has
two, the boat four), whichever two perpendicular directions the gliders
producing it come from.

A boat can turn a glider through a right angle (to left or right, depending
on the boat's orientation), vanishing as it does so. Since all the collisions
referred to in the previous paragraph affect an area of finite diameter,
any arrangement of blonks, beehives, and boats with a sufficient mini-
mum distance between any two can be built up one oscillator at a time
in a well-spaced collision between glider fleets headed SE and NW: the
oscillators are constructed, working from south to north and, where two
are equally far north, from west to east. The boats (if any are needed)
are placed so that they will guide a final glider to the required location
within the arrangement, along a path like that described above. Provided
the minimum spacing between any two oscillators is sufficient, this will
always be possible without interference between glider/boat collisions and
other oscillators. Once guided, the final glider will collide with a beehive,
producing an r-pentomino, or with the first blonk in the desired collision
sequence. (The symmetries of GoL make it sufficient to be able to pro-
duce a glider going in one direction (SE) at the desired location, since the
oscillator arrangement can be built in any orientation.)

b. The traffic lights, pond, and tub (the only non-null oscillators derivable
from four cells other than the block and blinker—see figure 1) can all be
created from blinkers by collisions with either a single glider, or two gliders
with an arbitrarily long gap between their arrival. Hence, any collision
sequence beginning with a five-cell cluster and involving one four-cell
cluster plus any number of three-cell clusters is SCS-constructable using
a simple modification of the above technique in which a set of traffic
lights, a pond, or a tub is substituted for one of the blonks.

2. The other kind of scarcity-level-6 collision sequence begins with a six-cell
cluster and, thereafter, involves only three-cell clusters. It has been shown
by exhaustive survey that there are only five development classes of initial
six-cell patterns that produce gliders, and that all of these are constructable
from a well-spaced glider collision (details available from the author). Hence,
anything constructable by a collision sequence of scarcity level six is also
SCS-constructable.
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7 SCS-CONSTRUCTIONS AND GLOBAL MEDIUM-TERM
EVENTS

The relationship between SCS-constructability and well-spaced glider fleet con-
structability link this work with work described elsewhere in this volume [19],
on constructing GoL patterns by colliding glider fleets. The fleets used in such
constructions are not necessarily well-spaced, but if not can generally be modified
to be so fairly easily. It can be shown that, among others, and in addition to
the lightweight spaceship and block-laying switch engine for which constructions
have been described, the following clusters are SCS-constructable:

• The two next smallest orthogonal spaceships (middleweight and heavyweight).
• The glider-stream switch engine.
• At least one of the minimal known patterns with quadratic growth of its

cumulative image, mentioned in subsection 3.2.
• The minimal known pattern with quadratic growth in its current cell count,

mentioned in subsection 3.2 (more strictly, patterns in the same development
class).

• Bill Gosper's space rake [27, p. 7], the first to be discovered of a class of IGCs
with a moving head that emits spaceships (in this case, gliders) traveling at
an angle to its own path, without leaving a permanent trail of oscillators.

• The glider gun, an IGC consisting of a stationary part that emits a stream of
gliders (one every 30 steps), plus the growing stream of gliders.

• The eater, a small pattern that can be created in a two-glider collision, and
can absorb the glider gun's stream of gliders.

The last three items can be used to construct patterns including infinite
families of more complex guns that fire either gliders, orthogonal spaceships, or
structures such as the space rake itself (giving the pattern quadratic growth in
cell count); and of puffer trains, with moving heads and various products includ-
ing oscillators, spaceships, guns, and other puffer trains. Finally, it is likely that
self-reproducing universal computers of the kinds reportedly shown to exist in
early and unpublished work on GoL [6] would be SCS-constructable, as their re-
productive capability apparently depended on the construction of blocks, eaters,
glider guns and other components in collisions between glider fleets with long
delays between gliders.

Anything which can be constructed by an SCS will be in an infinite random
GoL array of any density. In a sparse random array, any specific structure will be
constructed in this way at a rate determined by the shortest SCS that produces it
(as in the example of the lightweight spaceship given above). The process outlined
in section 6.2 would probably never be anything like the shortest sequence.

As has been argued above, the final collisions in SCSs of order b will attain
cumulative occurrence densities of ~ p5+6(3~£) until the era in which typical
original gliders collide with something in their way. Equivalently, the rate per
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step at which 6th collisions in SCSs will occur will be ~ p8+(b-1)(3-£) until this
era (fleets of gliders—or other spaceships—resulting from order 6—1 SCSs will
could be 3> p3, but not the others, might be affected by nonstandard collisio
such a fleet encountering an original blonk in the 6th collision of the sequence).
The critical era will not be later than era 3—when, if nothing else interferes,
effectively all original gliders will hit original blonks—nor earlier than era 14/5,
as argued in section 5.1. If the shortest SCSs leading to construction of IGCs are
of order 6 (and assuming, as seems likely, that the IGCs concerned show linear
growth in diameter and current cell count, like switch engines, glider guns, and
all others known with fewer than 52 cells), their density contribution would
could be 3> p3, but not the others, might be affected by nonstandard collision
effectively all of them would collide with each other (if they were block-laying
switch engines, by running into each others' trails) in era (36 + 5)/(6 + 2).

However, this overlooks the fact, explained earlier, that IGCs such as switch
engines eventually reach a size (~ JV5/2 cells, ~ TV5/2 steps after their construc-
tion) which makes them liable to bombardment by original gliders and the fleets
from original r-pentominos. In the case of QGCs, after ~ JV3/2 steps, at cell count
~ TV3 but diameter ~ ./V3/2, reactions with original blonks will become significant.
Interactions of these kinds have so far proved analytically intractable—chiefly be-
cause of the unlimited number of (apparently) fundamentally different cases that
need to be considered, and they limit what can be said about the medium-term
history of sparse GoL fields. For example, it has not yet been possible to deter-
could be 3> p3, but not the others, might be affected by nonstandard collision
that can be said is that, if this is the case sometime before era 3, IGCs produced
by collision sequences will have been causally concerned in producing almost all
state 1 cells in the array and, if it is not, SCSs will have produced, at some time
before era 3, the nearest example to almost every cell of every finite-difference
class of IGC which is SCS-constructable (see Gotts [13] for further description
of the current state of knowledge in this regard, and supporting arguments).

Discovery of an order 49 SCS producing a block-laying switch engine, ensures
that in any era later than era 281/96 but sufficiently close to that era, at least
one of the following must be true:

1. "Live" (still growing) IGCs produced by collision sequences outnumber orig-
inal IGCs.

2. State 1 cells belonging to IGCs produced by collision sequences form the vast
majority of those in the array.

The rate of production of block-laying switch engines by the order 49 SCS will
The rate of production of block-laying switch engines by the order 49 SCS will
(for which it is a precondition that the global density of state 1 cells becomes
3> p3). Again assuming that the global density of state 1 cells does not become
3> p3, each will exist (and grow) for at least ~ ./V3/2 steps, so the number in
could be 3> p3, but not the others, might be affected by nonstandard collision
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the density of original indefinite growth clusters, in era 281/96, and exceed it
in subsequent eras (although the number of IGCs may subsequently fall as they
collide with each other).

8 OPEN QUESTIONS AND GENERALIZATIONS

The open questions concerning GoL on infinite arrays raised by this chapter
fall into two main groups, concerning the relations between various types of
constructability, and the medium-term history of sparse random GoL arrays.

It has been shown here that SCS-constructability coincides, in a sense, with
well-spaced glider-fleet constructability. Obvious targets of future work are to
show that well-spaced glider-fleet constructability is (or is not) equivalent to
glider-constructability (constructability from any set of converging glider fleets,
well spaced or not), that the latter is (or is not) equivalent to w-constructability,
and that this is (or is not) equivalent to n-constructability for some finite n; and
to discover the relations between n-constructability and (n — l)-constructability
for n > I. Another obvious aim, more closely related to the work reported here
and linking to questions about the medium-term history of sparse random GoL
arrays, is to show whether SCS-constructability encompasses constructability by
collision sequences of scarcity levels greater than six.

The long-term fate of sparse random GoL arrays remains undetermined, and
the same is true of their medium-term history after era 14/5. This limit could be
pushed back by extending the exhaustive survey of SCSs: showing there are no
order 3 SCSs that generate IGCs, for example, would push the limit of certain
knowledge about the rate at which SCSs of different orders are completed back to
era 17/6, as it would be known that most original gliders, and most gliders from
original r-pentominos, would meet no obstruction before then. The minimum
value of x for which it is not known that the density of the array after Nx steps
—> 0 as N —> oo (i.e., as p —> 0) would also become 17/6: for any lower value
The rate of production of block-laying switch engines by the order 49 SCS will

Depending on the rate at which the number of distinct SCSs grows, the
lowest order of SCS which produces an IGC, and the discovery of efficient ways
of searching the space of SCSs, it may be possible to determine what that low-
est order is, and what class of IGC is produced. Similarly, it is feasible to dis-
cover whether the two finite-difference classes of switch engine are the only such
classes of IGC with 10-cell precursors, and so determine tighter limits on the
medium-term influence of original IGCs. Finally and more speculatively, it may
be possible to prove that there are at least some linear IGCs that will go on
growing past ~ TV5/2 cells despite glider bombardment, or some QGCs that go
on growing past ~ ./V3 cells despite interaction with original blonks.

Looking beyond GoL on infinite arrays, attempts can be made to apply the
concepts and methods described here to other CA. The most obvious targets are
finite (toroidal) arrays of GoL itself. In toroidal sparse random GoL arrays which
are very large in both "north-south" and "east-west" directions we can select,
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for any sufficiently low value of p, dimensions for the toroidal array which will,
for example, make it likely that the original configuration contains many gliders
and r-pentominos, but has no sets of six or more state 1 cells close together. The
probability that this will be so can be pushed arbitrarily close to certainty by
decreasing p and increasing the size of the torus at the same time. IGCs may
then be produced by SCSs in arrays that originally had no IGCs at all, and will
dominate the medium-term dynamics of the array. In the long term, any finite
array will become periodic, but there may be interesting questions about the
kinds of periodicity that result and how long they take to emerge: for example,
what happens to the mean or median period of the array's final state as p and
the dimensions of the array are varied?

Looking beyond GoL, some exploratory attempts have been made to apply
aspects of the approach developed here to the elementary one-dimensional CA
studied by, for example, Wolfram [29], Braga et al. [4], and Dhar et al. [8]—and
to the CA HighLife, which is closely related to GoL [2]. HighLife's transition rule
is identical to that of GoL, except that six state 1 neighbors, as well as three,
turn a state 0 cell into a state 1. The glider (since it always has five state 1 cells)
operates in HighLife as in GoL, but none of the glider/blonk collisions generates
further gliders. There is a six-cell IGC in HighLife, of a kind quite different
to the smallest IGCs in GoL: its current cell count, although unbounded, also
returns an unbounded number of times to a minimum of 22. The initial six-cell
pattern, in fact, becomes an 11-cell self-replicating pattern at t = 2, and the
subsequent 22-cell minima consist of two copies of this, further apart each time.
Between these minima, there are steps at which ever larger numbers of copies
of this subpattern appear in a diagonal row (the pattern does not increase in
could be 3> p3, but not the others, might be affected by nonstandard collisio
significantly slower than a linear increase, and most examples of this IGC in a
sparse random field will run into an original blonk at one end before a glider
runs into them—which would not be the case for an initial six-cell cluster with
a linearly increasing current cell count. Collision with a blonk causes the row of
replicators to be eaten away.

More widely, the concepts developed in order to study sparse random GoL
fields have promise as tools for CA classification. In studying GoL, it has been
important to determine, so far as possible, what are the minimum size patterns,
could be 3> p3, but not the others, might be affected by nonstandard collision
erties such as persistence, affecting an unbounded number of cells over time,
unbounded increase in the current cell count, and so forth. Such a minimal size
cluster profile might be used in classifying CA; it seems reasonable to conjecture
that similarities in profile indicate wider similarities in the dynamics of different
CA. (Classifications in terms of whether there are any finite patterns with partic-
ular dynamic properties are suggested by, for example, Culik et al. [7] and Braga
et al. [4].) The approach is not limited to considering interruptions in completely
uniform configurations. Many CA, such as Wolfram's rule 110 [29, pp. 547-549]
and rule 54 of Hanson and Crutchfield [15], have a strong tendency to produce
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configurations consisting of moving and interacting interruptions or particles on
a nonuniform but strongly patterned background, each stretch between two in-
terruptions having the same kind of spatial and temporal periodicity. It makes
sense to ask of such a background whether, for example, it is sufficiently stable
that any finite interruption in it will remain of bounded size, and if not, what is
the smallest interruption (in terms of cell size or diameter) that does not do so.
The same idea can be applied to classes of configuration which are not periodic
but forbid the appearance of certain sequences (in the one-dimensional case) or
chunks (in the two-dimensional).

A criterion for the boundedness of an interruption that will apply in both
one-dimensional and two-dimensional cases is not obvious. Hamming distance,
for example, would not work well in the rule 110 case mentioned above, as a
small interruption can give rise to two interruptions of bounded size that move
away from each other, with an ever-growing out-of-phase patch of background
between them. This is intuitively an interruption that remains finite, but the
Hamming distance between this configuration and an uninterrupted periodic
sequence grows without bound. The following is one possibility. Define a window
as any finite configuration of cells (e.g., in the one-dimensional case it could be
a single cell, n adjacent cells for any n, six cells in one row of four and one row
of two with TO empty cells between them for any m, etc.). Such a window can
clearly be placed on an infinite array of cells in an infinite number of ways. What
can be seen through the window in a given placement may or may not be one
of the arrangements of cell-states that could appear if the window were placed
over the uninterrupted background. If, for every window, there is a number w
such that the number of placements showing a pattern that could not belong to
the background never exceeds w, the interruption is regarded as bounded.

The work reported casts light on the emergence of complex structures and
behaviors from simple local interactions, and the relationships between events
on different spatial and temporal scales, in a particular CA. However, these are
phenomena with much wider relevance within CA, as the question at the end
of the introduction suggests, and also in the study of real-world examples of
complex, spatially extended systems with discrete aspects (physical, biological,
and social), which CA are well suited to model [9, 12].
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Synthesis of Complex Life Objects from
Gliders

Mark D. Niemiec

1 INTRODUCTION

Life, like many other cellular automata, contains many interesting objects, such
as still lifes, oscillators, spaceships, spaceship guns, puffer trains, breeders, and
the like. While many of these, like blocks, blinkers, and gliders, occur naturally
with great frequency, there are many others that occur infrequently, and countless
others that have never yet been observed in any natural context.

This chapter deals with methods for synthesizing such complex objects from
simple building blocks, such as gliders or other easy-to-synthesize objects. Once
an object can be shown to be built in this manner, the object may be used
as a building block in larger relocatable structures, such as Turing machines
or universal constructors. In addition, the existence of a natural synthesis of
an object from a bounded number of gliders implies that the object will form
naturally in a sufficiently large, sufficiently sparse field [2].

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 55
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FIGURE 1 Some simple objects mentioned in this chapter. Row 1: Spaceships: glider,
lightweight spaceship (LWSS), middleweight spaceship (MWSS), heavyweight space-
ship (HWSS). Row 2: Still lifes: block, tub, boat, beehive, ship, snake, carrier, loaf,
eater. Row 3: Still lifes: pond, tub with tail, hook with tail, 10.16, snakes on bun,
bookend, and house; block on long bookend. Row 4: Flip-flops: blinker, bipole, tripole,
quadpole, traffic-lights. Row 5: Oscillators: cuphook, Hertz oscillator, Hustler, Hustler
II.

Inasmuch as this chapter deals mainly with practical aspects of object syn-
thesis, rather than theoretical ones, it may resemble a talk on chemical engineer-
ing, rather than abstract mathematics.

1.1 FIGURES

All figures shown here, unless otherwise specified, show "before" and "after"
images of collision sequences; the "before" sequences are shown on the left with
dark cells, and the "after" sequences to the right of them in lighter cells. In some
cases, unwanted debris is also generated and must be removed later; this debris
is shown in the lightest color.

2 BASIC SYNTHESIS METHODOLOGIES

There are several basic ways in which objects can be synthesized.

2.1 NATURAL OBJECTS

The most common objects occur in great abundance in nature, so there are many
random collisions of a small number of gliders that will produce them.
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FIGURE 2 Some objects that can be synthesized from two gliders. Row 1: Blinkers.
Row 2: Blocks. Row 3: Blocks, boat, beehive. Row 4: Loaf, eater, ponds. Row 5: Block-
on-block, traffic-lights.

There have been many random broth experiments conducted in Life, in which
fields initialized to random initial configurations have been run until they became
periodic, and then the resulting ash analyzed. The results of two such series of
experiments, performed by Achim Flammenkamp [1] and Heinrich Koenig [3],
are available on the Web.

If the objects are sorted in order of decreasing frequency of natural occur-
rence, the list is also in order of increasing synthesis cost in gliders (with a few
rare objects out of place). Of course, these observations are only approximate,
since they rely on randomly generated fields, and the cost in gliders depends
on known technology that sometimes improves with time. Nevertheless, these
experiments confirm the intuitive notion that rarer objects need more gliders to
synthesize.

Some examples of naturally occurring objects appear in figures 2-4.

2.2 SYMMETRICAL OBJECTS

There are many objects that are normally extremely rare, but that occur with
much greater frequency in highly symmetrical fields, due to the unusual distri-
bution of neighborhoods along lines and points of symmetry.

In figures 5-7 are some more colorful examples, most found by David Buck-
ingham, Dean Hickerson, and the author.
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FIGURE 3 Some objects that can be synthesized from three gliders. Row 1: Space-
ships: LWSS, MWSS, HWSS. Row 2: Oscillators: Beacon, toad, pentadecathlon, pulsar.
Row 3: Still lifes: Tub, ship, barge, long boat. Row 4: Still lifes: Cigar (mango), long
barge, very long boat, hat. Row 5: Still lifes: 14.30 (half-bakery), 14.79 (paperclip).

FIGURE 4 Some objects that can be synthesized from four gliders. Row 1: Oscillators:
Clock, figure-8, Spark-coil. Row 2: Snake, carrier, long snake, long ship. Row 3: Shille-
lagh, tub with tail, canoe, 9.4 (integral). Row 4: 9.5 (up-boat with tail), 9.6 (down-boat
with tail), 10.24 (bowtie), 10.25 (block on table). Row 5: 12.107, 14.507, 14.526, 16.1749
(bi-pond).
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FIGURE 5 Several symmetrical objects, part 1.

2.3 RESCUABLE OBJECTS

Many frequently occurring unstable patterns bear a very close resemblance to
rare objects. By adding small sparks or other alterations, cheap collisions can be
modified to produce more sophisticated objects.

In figure 8 are some examples, most by David Buckingham.
The Hertz oscillator is a prime example of this method. Before Buckingham

generated this synthesis, it was conjectured that billiard-table oscillators (those
with stable outer shells, and variable cells only in the interior) would be difficult,
if not impossible to synthesize. Remarkably, there is a very common object, that
can be made from as few as two gliders, that strongly resembles the interior of a
Hertz oscillator. By adding induction coils on all sides at appropriate times, this
mechanism can be tamed, yielding this extremely unnatural object from a mere
eleven gliders.

The cuphook is another, simpler example, in which a still life is grown into
the oscillator core, while a suitable induction coil is added at the same time (see
fig. 9).

2.4 SIMULTANEOUS SYNTHESES

For many complicated objects, the synthesis task can be made a little easier
by performing the operation in several smaller steps. Unfortunately, for many
oscillators, this is not possible, and the entire obj.ect must be constructed in
such a way that all active components are activated simultaneously. This often
poses great logistical problems, since it is often difficult to bring all the necessary
components to bear within a small area (see fig. 10).
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FIGURE 6 Several symmetrical objects, part 2.

FIGURE 7 Several symmetrical objects, part 3.

2.5 INCREMENTAL SYNTHESES

Fortunately, most objects do not have to be constructed all at once. They can be
built incrementally, starting with simpler objects, and making minor alterations.
For example, of the 1353 fifteen-cell still lifes, around 97% can be built in this
way.

Buckingham developed hundreds of such tools while attempting to synthe-
size all objects up to 14 cells, and many additional tools have been developed
subsequently (see figs. 11-12).
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FIGURE 8 Several rescued objects (gliders performing rescue are shown in lighter
color). Row 1: Bipole, tripole. Row 2: 9.8, 9.9, 10.17, 10.6. Row 3: 10.21, 10.23, 10.25,
13.96.

FIGURE 9 Natural Billiard-Table Oscillators. Row 1: Hertz oscillator: 3 gliders make
core, 2 gliders make inducting house on top, 1 glider makes inducting boat on left,
2 gliders make inducting block on right, 2 gliders make inducting house on bottom.
Row 2: Cuphook with tail: 2 gliders make eater, which 2 more gliders change into claw
with tail; 2 gliders change claw to cuphook and 1 glider adds low inducting block. Row
3: Cuphook with tail: 4 gliders make beehive with tail; 2 gliders change beehive to
cuphook and 1 glider adds high inducting boat. Also, variant of row 2 method also
with high inducting boat.
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FIGURE 10 Simultaneously constructed oscillators. Row 1: Phoenix (period 2), Two
pulsars hassled by 16 blocks (period 10), Achim Flammenkamp's 20-bit period 8. Row
2: A 20-bit period 8, "Biting off more than they can chew" (period 4).

Particularly easy to construct are pseudo-objects, that are aggregates of
two or more objects immediately adjacent to one another that do not touch
or otherwise interact. Normally, constructing two objects in such close quarters
would require special techniques; however, in most cases, it is easy to start with
one object (usually the larger or more complex one), add a small wart such as a
block or boat, and then grow the wart into the second object. Of the over 2734
pseudo-still lifes of 16 cells or smaller, for example, all but one can be synthesized,
and all up to 15 cells can be also built by starting with smaller object and adding
the larger one (see fig. 13).

Occasionally, the standard boiler-plate methods need to be modified because
unwanted protrusions get in the way. Sometimes all that is needed is to adjust
the position of a glider or spark. At other times, a completely different method
must be developed. The following example shows two similar pseudo-objects,
one of which uses a standard method, and the other that uses a heavily modified
version of the same method.

The first pseudo-objects, an up-tripole above 10.16, requires 31 gliders. It
uses the standard method for adding a 10.16 to an existing object (see fig. 14).

The second pseudo-object, a down-tripole above 10.16, requires 49 gliders.
It uses the same method, but it cannot be done in the same order because the
snake cannot be added once the carrier is in place. Instead, the snake must be
added first, and even then an indirect method must be used, due to the snake's
proximity to the tripole. Furthermore, once the snake is in place, the carrier
cannot be added the usual way. The final synthesis uses the method in figure 15.

Perhaps the most complex syntheses ever attempted are of complex
billiard-table oscillators. Unlike the Hertz oscillator mentioned earlier, most bil-
liard tables contain structures that are extremely unnatural, and difficult to
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FIGURE 11 Various tools for expansion or modification of still lifes. Row 1: Shrink
snake by 3 or more, 2, and 1; flip snake and grow by 2. Row 2: Grow barber-pole or
snake by 1; grow snake by 2, and 4; change carrier to canoe. Row 3: Change carrier to
very long snake; change snake to carrier and shillelagh; change eater head to cis-hook.
Row 4: Change eater head to cigar, tub, and claw; shorten tub and add tail.

FIGURE 12 Various tools for adding pieces to still lifes. Row 1: Add Siamese eater,
beehive with tail, carrier, and snake. Row 2: Add corner-connected carrier and snake;
and tail.

synthesize. The following is Buckingham's synthesis of the period 3 Hustler from
89 gliders, and the derivative, period 4 Hustler II from 159 gliders (Hustler plus
70 additional gliders). These syntheses are as complex as they are because they
all operate on an oscillator core that is actually running; this is analogous to
performing open heart surgery to replace a heart valve while the heart is still
beating (see figs. 16 and 17).
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FIGURE 13 Various tools for construction of pseudo-objects. Row 1: Add block, and
add boat in three different ways (to snake, from below, and from above). Row 2: Add
ship, beehive, beacon, and long-boat. Row 3: Add eater, block-on-block; also, add boat
and eater in a difficult geometry (on head of 10.20). Row 4: Convert block(s) to snake,
trans-carrier, cis-carrier, and beacon.

FIGURE 14 Up tripole above 10.16. Step 1. 7 gliders make a tripole. Step 2. 2 gliders
add block to tripole. Step 3. 4 gliders turn the block to a cis-carrier (leaving a spurious
block). Step 4. 1 glider removes spurious block. Step 5. 4 gliders place a nearby snake.
Step 6. 3 gliders place a nearby pond. Step 7. 9 gliders and the pond weld the end of
the snake to the side of the carrier.
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FIGURE 15 Down tripole above 10.16. Step 1. 7 gliders make a tripole. Step 2. 3
gliders add a nearby ship. Step 3. 5 gliders turn the ship into a snake. Step 4. 2 gliders
add a nearby loaf. Step 5. 5 gliders and the loaf attach an eater to the tripole. Step 6.
1 glider turns the eater into block. Step 7. 3 gliders add another block. Step 8. 6 gliders
turn the two blocks into a trans-carrier (this normally takes 4 gliders; the extra ones
are needed to ensure that the resulting explosion bounces harmlessly off the snake).
Step 9. 5 gliders flip the trans-carrier into a cis-carrier (the remainder of the synthesis
is normal). Step 10. 2 gliders place a nearby pond. Step 11. 9 gliders and the pond
weld the end of the snake to the side of the carrier. (As this goes to press, an improved
method has been found that combines steps 2-6; unfortunately, it is too late to include
it here.)

2.6 MYSTERIOUS SYNTHESES

Last, but not least, are those syntheses that defy analysis. These appear to use
principles of black magic, rather than chemistry; various components, none of
which is remotely connected to the final object, all come together at once, and
suddenly, with no warning, cause the object to erupt at once.

Someone like Buckingham who has spent 20 years doing this could probably
explain these; they are still a complete mystery to the author, who has only been
actively working with this technology for around 3 years (see fig. 18).

2.7 COMPUTATIONAL MACHINERY

Life permits computational machinery to be built, using gliders and other space-
ships as signals, and using other active components such as still lifes, oscillators,
glider guns, and puffer trains to create, manipulate, and destroy such signals. In
order to build complex machinery, it is necessary for all such components to be
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FIGURE 16 Hustler from 89 gliders. Row 1: Step 1. 12 gliders make Hertz Oscillator
bounded by two houses and two blocks. Step 2. 3 gliders and one LWSS (that costs 3
more) change top house on one side into a bookend on the other, plus spurious block.
Step 3. 1 glider removes the block. Step 4. 4 gliders turn left block into a snake. Row 
Steps 5 and 6. Like steps 2 and 3 but on bottom. Step 7. 2 gliders turn each of the
bookends into buns. Step 8. 5 gliders turn right block into a snake. Row 3: Step 9.
4 gliders on each side turn bun into bookend facing in opposite direction. Step 10. 2
gliders on each side add a nearby block. Step 11.5 gliders plus the block on each side
puff out the side of the interior and simultaneously lengthen the supporting bookend,
yielding a Hustler supported by two snakes and two long bookends (this is the key
step). Row 4: Step 12. 3 gliders on each side turn the inducting snake into an attached
tail. Step 13. 3 gliders on each side add a nearby boat. Step 14. 8 gliders plus the boat
on each side flip the attached tail to an attached hook, and simultaneously change
the inducting long bookend into a block. (This yields a Hustler with the minimum
population.)

constructable from gliders. Fortunately, the most commonly used components
are extremely easy to construct from gliders (see figs. 19 and 20).

3 DEVELOPMENT OF SYNTHESIS TECHNOLOGIES

As useful as all of the above tools are, they merely provide methods for building
objects from a small number of predefined building blocks. In order to achieve
ever-increasing orders of complexity, it is necessary to have techniques for the
development of new building blocks.
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FIGURE 17 Hustler II from 159 gliders (Hustler plus 70 gliders). Step 1. 89 gliders
make Hustler (fig. 16). Row 1: Step 2, 3 gliders on each side change inducting block
into a boat. Step 3. 5 gliders on bottom change boat into block on opposite side. Step
4. 5 gliders on top change boat into block on opposite side. Row 2: Step 5. 4 gliders
on each side change hook into bit with tail, plus an escaping glider. Step 6. 1 glider on
each side (not shown) removes the escaping glider. Step 7. 3 gliders on each side add
a nearby tub. Row 3: Step 8. 7 gliders and tub on each side change bit with tail into
bookend with Siamese beehive. Step 9. 5 gliders on each side bookend with Siamese
beehive into tail (without the bit) and a spurious block. Row 4: Step 10. 1 glider on
each side removes the spurious block. Step 11. 4 gliders on each side change inducting
block into a snake. Step 12. 2 gliders on each side puff out the corner, yielding a Hustler
II (this is the key step).

3.1 SEARCH FOR PREDECESSORS

The most important step in synthesizing any object is the identification of a
likely predecessor that will evolve into the object, but is also itself possible to
synthesize.

The first example below shows the conversion of a block into a boat, some-
thing that is often done when building induction coils, like those found in pseudo-
objects or billiard-table oscillators. Since all cells in a block are saturated (having
the maximum three living neighbors), and allow no additional neighbors, any-
thing that is attached to the block causes the adjacent block cells to immediately
die. The only way to preserve the inducting front of the block, and to simulta-
neously turn the back into a boat, is to attach a single cell diagonally to a back
corner of the block. Unfortunately, any new cell that provides the necessary ad-
ditional neighbors for the birth will also cause additional births that will kill
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FIGURE 18 Some of Buckingham's more mysterious syntheses. Row 1: 14.95 from
9 gliders (6 gliders plus LWSS). Row 2: 14.35 from 13 gliders, 14.78 from 13 gliders,
14.77 from 7 gliders. (Buckingham referred to 14.35 as "the still life from Hell," since
the previous synthesis required over a hundred gliders, and after optimization was still
a massive 33 gliders before he found the above synthesis.)

FIGURE 19 Some glider guns. Row 1: Period 30 glider gun, period 46 glider gun. Row
2: Buckaroo (period 30 glider-reflector).

the block. The solution to this is to cause a wavefront that will totally induct
the back of the block for the one generation while the "new" cell does its job to
cause the one desired birth. Once this fact is realized, any number of different
implementations can be generated, all of which work in essentially the same way
(see fig. 21).
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FIGURE 20 Some puffer trains. Row 1: Schick Ship (period 12), Tim Coe's
puffer (period 16). Row 2: Buckingham's B-heptomino puffer (period 24), Gosper's
B-heptomino puffer (period 20).

FIGURE 21 Two ways of converting a block to a boat (showing each generation).

3.2 USE OF SPARKS

Many of the simpler methods involve applying one or more simple "sparks." One
of the nice features of Life is that the majority of random patterns, and indeed of
collisions of gliders and small objects, results in small numbers of disconnected
cells that quickly die. This allows for very carefully controlled modifications, like
"increase the neighborhood of this cell by one for just one step" by having a
nearby collision supply an isolated dying cell to appear at the appropriate time.
Due to the large abundance of dying interactions, most of the common sparks
can be made from as few as three gliders in hundreds of different ways, allowing
for great flexibility in mixing of sparks together. In many cases, if a standard tool
fails to work in a particular situation because of an awkward geometry, the same
tool can be made to work by simply generating a vital spark using a different
collision.
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FIGURE 22 Three ways of making Mold. Row 1: Incremental Mold synthesis: Step 1.
Create loaf (or any object with a loaf-like bonding site). Step 2. Two groups of three
gliders each from two sparks that attach a Siamese barge to the loaf. Step 3. Three
gliders change the barge to Mold. Row 2: Atomic synthesis of Mold from 5 gliders,
plus improved incremental Mold synthesis: Step 1: Same as step 1 above (not shown).
Step 2: Groups of two and three gliders add two sparks that attach Jam to the loaf.
Step 3: Three gliders change the Jam into Mold.

3.3 CONTROLLED EXPLOSIONS

One technique that is frequently used is the creation of explosions, or "shaped
charges," that cause a large number of short-lived cells to appear simultaneously.
These are often used to momentarily prevent births (as in the previous block-to-
boat example), or to attach something in an unique way.

For example, Mold is a simple, period 4 oscillator, that grows on a loaf. The
basic oscillator can be built very simply. However, Mold may also grow on many
objects that have loaf-shaped bonding sites. To build such oscillators, a method
is needed to add Mold to an existing loaf. This problem stumped the author
for over a year, until it was noticed that it is not necessary to attach the Mold
directly; and the problem can be broken into two steps: attaching a Siamese
barge to the loaf, and then changing the barge into Mold. The second step is
extremely simple. The first requires adding hinges to the loaf that grab hold of
each other. To this end, two explosions that are one step out of phase do the
trick.

Since this chapter was first written, the author has found an improved Mold
synthesis, based on Buckingham's synthesis of the similar oscillator Jam (another
oscillator that forms on a loaf; see fig. 22).
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FIGURE 23 Tying a bipole. Row 1: Step 1. Create the base object (bipole, not shown).
Step 2. 8 gliders tie a boat (there are many ways to do this). Step 3. 2 gliders turn
boat into long boat. Step 4. 3 gliders turn long boat into snake. Step 5. 6 gliders add
a bookend. Row 2: Step 6. 2 gliders turn bookend into bun. Step 7. 9 gliders turn the
bun into a snake. (This is the most fragile step.) Step 8. 4 gliders remove the "amber,"
yielding a bipole.

FIGURE 24 Two blinkers turn a carrier into a tripole plus a toxic cell.

Another long-unsolved problem was that of tying a bipole to the comer of
an existing object. There was no known method to grow a barber pole from
an existing object. Several years ago, Heinrich Koenig discovered a reaction in
a random broth experiment that yielded a mechanism to turn a ship into a
quadpole. This also yields all larger barber pole oscillators, using Buckingham's
mechanism to grow a barber pole. Unfortunately, the two smallest barber poles
(bipole and tripole) remained elusive.

If one looks at two side-by-side snakes, these resemble a bipole frozen in
amber, so to speak. This suggests a synthesis in which two snakes are added
first, and then the "amber" is removed. It turns out that this can be made
to work; unfortunately, it is not suitable for growing pseudo-objects containing
bipoles (see fig. 23).

Since this chapter was first written, I have also found an extremely simple
way of adding a tripole; this is based on the following observation: two blinkers
can convert a carrier into a tripole; unfortunately there is a single toxic cell
attached (see fig. 24).

By adding a sufficiently convoluted explosion, it is possible to suppress the
formation of this toxic cell, yielding a viable tripole from a carrier. Since a carrier
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FIGURE 25 Up-tripole above 10.16 from 27 gliders. Row 1: Step 1. 2 gliders make an
eater. Step 2. 6 gliders turn the eater into a 10.16. Step 3. 2 gliders add an inducting
block. Step 4. 4 gliders turn the block to a cis-carrier (leaving a spurious block). Row 2:
Step 5. 1 glider removes the spurious block. Step 6. 3 glider add a nearby loaf. Step 7.
9 gliders and loaf turn carrier into tripole.

can easily be tied to another object, or added as an induction coil to another
object (as shown in figs. 14 and 15), it is now possible to likewise add tied and
inducted tripoles. (As this goes to press, a similar method has been found to
change a carrier to a bipole. Unfortunately, it is too late to include it here.)

This required explosion was found by brute-force trial and error. Often, this
is a method of last resort in finding suitable syntheses, and is somewhat analogous
to solving the following problem: There is a broken vase on the floor that must
be reassembled. Find a placement of various sticks of dynamite that will blow
all the pieces together in exactly the right time and position so that the vase will
re-form. Fortunately, in Life one can repeat such experiments multiple times (see
fig. 25).

4 SYNTHESES IN OTHER CELLULAR AUTOMATA

Most of the techniques discussed previously apply to many other cellular au-
tomata as well. The individual details will, of course, vary, but the philosophies
remain similar.

4.1 3-4 LIFE

The 3-4 Life rule is an interesting variant first studied by the MIT AI group in
the 1970s, and described in Lifeline (see issues 4-9 and 11 [5]). It is defined in
a Moore neighborhood, with both birth and survival on 3 or 4. Its most notable
features are the almost total absence of small still lifes, and the fact that random
patterns do not fragment like in Life; instead, many expand randomly, and tend
to grow chaotically without limit.



Mark D. Niemiec 73

FIGURE 26 Various 3-4 Life syntheses. Row 1: The first two are syntheses of two rare
naturally occurring spaceships, in both cases by adding a one-cell spark to a common
object; the next two are rather remarkable natural symmetrical objects. Row 2: A rare
naturally occurring oscillator formed from a common one, and two tools used to attach
a clock to an existing oscillator. Rows 3 + 4: The final step in building Wainwright's
period 3 block-hassler, plus a 6-step synthesis of an extremely rare 8-cell flip-flop.

The lack of survival on 2 makes still lifes other than the block impossible,
except for huge fortress-like objects 36 cells and larger. Instead, the vast majority
of repeating patterns are period 2 oscillators. The inclusion of birth on 4 makes
pseudo-objects impossible.

The major problem with syntheses in 3-4 Life (see fig. 26) is the tendency
for unstable patterns to fulminate rather than fragment as they do in Life. This
often causes unbounded growth, and makes accessible sparks much harder to
come by. Nevertheless, many complex syntheses are still possible.

5 CONCLUSIONS

This technology is still in relative infancy, but it demonstrates that objects of
high complexity could be constructed from machinery, such as puffer trains or
universal constructors. Furthermore, such objects will naturally evolve in a suf-
ficiently large, sufficiently sparse universe [2].
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6 SUGGESTIONS FOR FUTURE WORK

6.1 AUTOMATED SYNTHESIS OF SIMPLE OBJECTS

It should be possible, given some fairly simple pattern matching, to construct an
expert system that would automatically suggest syntheses based on pre-defined
tool templates. This would help pinpoint the deficiencies in the tool set, which
could be supplemented by hand as required. This would quickly yield lists of
objects whose syntheses are yet unknown, allowing energy to be channeled in
the creative areas, instead of being wasted on a lot of redundant bookkeeping,
as is now unfortunately the case.

6.2 AUTOMATED SYNTHESIS OF ALL STILL LIFES

One ultimate goal would be to prove that all still lifes can be synthesized, and
to provide an algorithm for specifying a concrete synthesis recipe for each object
(for example, a set of coordinates for a series of required gliders).

One step in this direction would be to show that all still lifes could be built
by induction.

Starting with a desired still life, draw a horizontal line between two rows
of the still life, so that the cells above the line must exactly match the desired
still life, while the cells below the line may be anything we choose, sufficient to
render the entire object stable. The goal is to weave the still life, so the area
above the line is completed, while the area below the line is under construction
and subject to change.

Typically, the cells below the line will consist of 3-4 rows of stabilizing cells.
The row immediately above the line is in its final form, but is affected by cells
below the line. The row immediately below the line is severely constrained by
the row immediately above the line (see fig. 27).

The first requirement is that this model be proved to be complete; that is,
for every combination of two rows (B+C) above the line, a valid combination of
finite rows of cells below the line exists. Secondly, the model must be modified
slightly, so that the line has a kink in it; given a corner cell (x,y), the line extends
above the cell to the right, and below the cell to the right. This corner cell is
itself considered below the line. This model must also be proven complete (see
fig. 28).

Third, a construction sequence must be found for every possible combination
of cells near the corner cell (*), that inverts the state of the corner cell, but does
not affect any cells above the line.

Once this is done, it will be fairly simple to prove by induction that all finite
still lifes could be synthesized. Starting with the corner square above the top
left edges of the object, the corner advances through the object top-to-bottom,
left-to-right; if the cell at the corner is in the correct state, nothing happens;
otherwise, the appropriate construction is used to invert it. In either case, the
corner square advances until the corner is several rows below the bottom right
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FIGURE 27 Simple "scaffolding" model. Rows A-C are part of the still life to be
constructed; rows D-F are supporting structure. Row A is a completed part of still
that life no longer needs to be considered. Row B is a completed part of the still life
that still contributes to the neighborhood of row C. Row C is a completed part of the
still life that requires external stabilization. Row D is the part of the external scaffolding
which directly supports the outermost layer of the still life, row C. Rows E + F are
whatever it takes to stabilize row D.

corner of the object, and the entire object is within the "completed" area; any
remaining scaffolding could be removed by conventional techniques.

Unfortunately, there appear to be a very large number of possible cell com-
binations, so a formidable number of constructions will be needed. For the time
being, the required technology is beyond the state of the art, but one can hope
that this will not always be the case.
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FIGURE 28 Modified "scaffolding" model.

cell. (Recently discovered bookkeeping errors indicate that one 14-cell still life
costs 15 gliders, and the synthesis of one 14-cell flip-flop has been lost.)

GLOSSARY

The following terms are used in this chapter:

Breeder. A spaceship gun that emits puffers, or a puffer train that emits puffer
trains or spaceship guns.

Constellation. A collection of two or more disconnected objects that all evolve
from a single predecessor.

Flip-flop. An oscillator that alternates between two states.
Glider. Technically, this term refers in general to spaceships that possess glide-

symmetry, but in Life it usually refers to the simplest spaceship. The term
sometimes loosely includes larger spaceships.

Induction coils. Components that are adjacent to one another in such a way
that they suppress all births that would occur between them.

Object. A collection of living cells that are connected, or that affect each other
directly or indirectly. (When referring to syntheses of objects, this term is
sometimes used in a more general sense to also include pseudo-objects or
constellations.)

Oscillator. An object that reforms itself after several generations.
Pseudo-object. Two or more objects that are adjacent, but that are not con-

nected and do not otherwise affect each other.
Pseudo-still life. A pseudo-object that remains stable.
Puffer train. A spaceship that emits still lifes, oscillators, and/or spaceships.
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Spaceship. An object that reforms itself translated in space after several gen-
erations.

Spaceship gun. An oscillator that emits spaceships.
Still life. An object that has neither births nor deaths, hence remains stable.
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A Two-Dimensional Cellular Automaton
Crystal with Irrational Density

David Griffeath
Dean Hickerson

We solve a problem posed recently by Gravner and Griffeath [4]: to find
a finite seed AQ of Is for a simple {0, l}-valued cellular automaton growth
We solve a problem posed recently by Gravner and Griffeath [4]: to findn after n updates spreads
with a two-dimensional asymptotic shape and a provably irrational den-
sity. Our solution exhibits an initial AQ of 2,392 cells for Conway's Game
with a two-dimensional asymptotic shape and a provably irrational den-n covers nT with asymptotic density (3 — \/5)/90,
where T is the triangle with vertices (0,0), ( -1 /4 , -1/4) , and (1/6,0).

1 INTRODUCTION

In "Cellular Automaton Growth on Z2: Theorems, Examples, and Problems"
[4], Gravner and Griffeath recently presented a mathematical framework for the
study of Cellular Automata (CA) crystal growth and asymptotic shape, focusing
on two-dimensional dynamics. For simplicity, at any discrete time n, each lattice
site is assumed to be either empty (0) or occupied (1). Under a wide variety of
study of Cellular Automata (CA) crystal growth and asymptotic shape, focusingn of

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 79
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occupied sites after n updates grows linearly in each dimension, attaining an
asymptotic density p within a limit shape L:

asymptotic density p within a limit shape L:n^p-lL. (I)

This phenomenology is developed rigorously in Gravner and Griffeath [4] fo
Threshold Growth, a class of monotone solidification automata (in which case
p = 1), and for various nonmonotone CA which evolve recursively.

The coarse-grain crystal geometry of models which do not fill the lattice
completely is captured by their asymptotic density, as precisely formulated in
Gravner and Griffeath [4]. It may happen that a varying "hydrodynamic" profile
p(x) emerges over the normalized support L of the crystal. The most common
scenario, however, would appear to be eq. (1), with some constant density p
throughout L.

All the asymptotic densities identified by Gravner and Griffeath are rational,
corresponding to growth which is either exactly periodic in space and time, or
nearly so. For instance, it is shown that Exactly 1 Solidification, in which an
empty cell permanently joins the crystal if exactly one of its eight nearest (Moore)
neighbors is occupied, fills the plane with density 4/9 starting from a singleton.
By contrast, the analogous Exactly 2 solidification rule spreads chaotically from a
dyad (cf. fig. 9 of Gravner and Griffeath [4]). The asymptotic shape is presumably
By contrast, the analogous Exactly 2 solidification rule spreads chaotically from a
density p throughout, but rigorous analysis of this model seems well beyond the
reach of current mathematical techniques. Indeed, for the vast majority of CA
rules satisfying eq. (1), growth seems intractably aperiodic, in which case its
density p is presumably irrational. In this context, Gravner and Griffeath posed
the following

Problem 8: Find an elementary CA on Z2 with a computable asymptotic density
which is irrational.

Shortly thereafter, Dean Hickerson suggested that such an example could
be built in Conway's Game of Life (GoL) by combining two of his creations
from the early 1990s: the IrratS seed [6], which grows linearly with an irrational
multiplier and the Stifled Breeder [7], which produces sporadic two-dimensional
growth controlled by intermittent input signals. Our object here is to present the
detailed solution to Problem 8 in a manner accessible to CA enthusiasts outside
the core of Life experts, thereby illustrating some state-of-the-art constructive
methods for the most thoroughly studied of all cellular automaton rules.

We will assume familiarity with the Game of Life's basic phenomenology and
early history, as beautifully described in Winning Ways for Your Mathematical
Plays [1, vol. 2, ch. 25]. An excellent World Wide Web resource for background
information is Paul Callahan's site, Patterns, Programs, and Links for Conway's
Game of Life [2]. Recall some of the ubiquitous ingredients in Life constructions
(shown in fig. 1), the still lifes (invariant configurations) block and boat, and the
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FIGURE 1 (a) Still lifes, (b) glider gun, and (c) stifled glider gun.

periodic moving patterns glider, LWSS and MWSS. (LWSS and MWSS stand
for lightweight and middleweight spaceships, respectively.) Our construction em-
ploys a fairly elaborate orchestration of collision rules between these stationary
and ballistic structures, along with other more complicated ingredients. But the
overriding strategy is a variant of the earliest approach to quadratic population
growth, based on Gosper's 1970 discovery of the celebrated glider gun (fig. l(b)),
which emits a steady stream of gliders, one every 30 generations (traveling SW in
the case shown). A breeder is any pattern which grows quadratically by creatin
a steady stream of copies of a second object, each of which creates a stream of
a third. In the early 1970s Gosper also exhibited the first breeder, a 4060-cell
traveling "puffer" which deposits a trail of glider guns, each of which then emits
gliders. Several smaller breeder seeds discovered more recently are cataloged in
Callahan [2].

In order to control the density of our two-dimensional crystal An, the idea
is to produce a mix of the glider gun and stifled glider gun (fig. l(c)), this
latter structure differing only by the presence of an eater along the lower left
side which destroys each glider and then restores itself before the next arrives.
Hickerson's original Stifled Breeder contains a puffer which produces a stream of
stifled glider guns, each of which converts to a true glider gun once its eater is
deleted by collision with an appropriate external glider. For our purposes, then,
the strategy is to subject the puffer's stifled breeders to an external source of
gliders with irrational density, thereby producing steady streams of gliders at an
irrational rate. The design of the desired glider source is based on Hickerson's
Irrat5 pattern, and emulates a sequence of 0s and Is known as the golden string

The organization of the remainder of the chapter follows. In section 2 we
offer a self-contained derivation of known recursive and limiting properties of
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the golden string, used to relate the asymptotic density of our Life crystal to the
golden mean <j) = (1 + \/5)/2. Then in section 3 we construct IrratS', a pattern
which emits a stream of gliders at rate (3 — v/5)/240. Section 4 completes th
solution to Problem 8 of Gravner and Griffeath [4] by showing how interaction
between the above glider stream and a stifled breeder gives rise to limit shape T,
the triangle with vertices (0,0), ( — 1/4,—1/4), and (1/6,0), and an asymptoti
population density (3 — \/5)/90 on T. Finally, section 5 describes essential onlin
resources for interactive visualization of our construction. A series of 18 exper-
iments may be downloaded, and executed using one of several public domain
GoL engines for various computer platforms. The first nine demos illustrate key
collisions, subject to suitable positioning in space and time:

(Cl) glider + block = 0

(C2) glider + glider = block

(C3) glider + glider + glider = MWSS

(C4) MWSS + glider = block

(C5) MWSS + glider = 0 (2)

(C6) MWSS + boat = glider

(Cl) glider + glider + glider = LWSS

(C8) LWSS + glider = 0

(C9) glider + stifled glider gun = glider gun

The remaining demos synthesize the initial seed AQ for the solution of Problem
8, beginning with the puffers and guns which combine to form the IrratS' glider
generator, then adding a stifled breeder and additional guns, and culminating in
Seed, the pattern of size 2,392 which grows our desired crystal.

2 THE GOLDEN STRING

Recall that the Fibonc

Produce a sequence of strings by starting with 1 and then repeatedly applying
the mapping T which replaces each 0 by 1, and each 1 by 10:

For n > 1, let /„ = (/«(«)) be the nth string in this sequence. If ® symbolizes
concatenation, evidently /a = /2 © A, and then for n > 3,
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Hence, the recursion gives consistent initial segments of an infinite golden string
(cf. Schroeder [10], or Exercise 36 on p.86 of Knuth [9], or Knott [8])

with Tf = f. Denote by Nn, NQ, and N° the length of /„ , its number of Is, and
its number of Os, respectively. One easily checks by induction that

The Fibonacci numbers satisfy the well-known formula Fn — (<̂>™ — (—</>~1)™)/
\ /5 , where (j> = (\/5 +1) /2 is the Golden Ratio. Since / is "fractal," it splits into
finite blocks having proportions of Is of the form FThe Fibonacci numbers satisfy the well-known formula F
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
and (j)"2 = (3 - A/5)/2 fa 0.382, respectively.

For our purposes, another equivalent recursive development of / is needed.
Write

Thus, i1 = (1,3,4, . . . ) and L° = (2,5,7, . . . ) . If i] = I, then the 1 in the £th place
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place

Moreover, the terms of/ are uniquely determined by L\ = 1, eq. (4), and the pro-
viso that ij is always the smallest integer not previously used in the development
i1 or L°.

In fact, the terms of il or i° are given by the beautiful formulae:

Coxeter [3] relates a nice proof of this fact during his discussion of a two-player
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
i.e., the sequences on the right side of eq. (5) partition the positive integers.
Since <̂>2 = <p + 1, these sequences satisfy the same recursion as eq. (4) with th
same initial conditions, so the formulae hold. They provide another proof that
Thus, i1 = (1,3,4,...) and L° = (2,5,7,...). If i] = I, then the 1 in the £th place
In the next section we will use characterization eq. (4) to produce a stream of
gliders corresponding in a precise way to the Os of the golden string.
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3 A STREAM OF GLIDERS WITH RATE (3 - x/5)/240

The Game of Life pattern IrratS, constructed by Hickerson in 1991 and described
in Callahan's web site [2, p. 6], produces linear population growth with an irra-
tional multiplier. A modification of IrratS better suited to the present context
produces the glider stream with irrational frequency which will ultimately con-
produces the glider stream with irrational frequency which will ultimately con-n • This section details the mechanics of the
output produced by the 693 cells in figure 2, which we call IrratS'.

A puffer is any moving pattern which leaves a trail. Two components on
the right side of IrratS' are puffers which head east at speed 1/2, producing a
westward MWSS, and a (static) boat, respectively, every 60 generations. These
puffers are shown in figures 3 and 4; they are arranged so that the trail of boats
is deposited a suitable distance below the MWSS stream.

F I G U R E  2     I r r a t 5 ' .

FIGURE 3  The MWSS puffer. 
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FIGURE 4 The boat puffer.

FIGURE 5 The glider gun (period 60).

At the top left of IrratS', a period 60 gun (fig. 5) produces gliders heading
SE. (This object is obtained from two period 30 glider guns using reactions (Cl)
and (C2) of eq. (2).) At the bottom left of figure 2 is a period 120 gun (fig.
6) which emits a MWSS stream moving east. (Again, this object is a hybrid of
several smaller guns, using (C3).) If the puffers are removed from IrratS', then
the guns of figures 5 and 6 interact so that half of the gliders and the MWSSs
annihilate, while the remaining gliders escape to the southeast, one every 120
updates.

However, each westward MWSS from the puffer of figure 3 which arrives
within close proximity of the glider gun of figure 5 deletes (or zaps) two con-
secutive gliders, the first by reaction (C4), the second by (Cl). In this manner,
one output of the SE glider stream is suppressed, and then one eastward MWSS
is allowed to escape. Each such spaceship later hits a boat left behind by the
puffer of figure 4, reaction (C6) then creating a NE glider which later deletes a
westward spaceship from the MWSS puffer by (C5). Thus, each westward MWSS

FIGURE 6 MWSS gun 1 (period 120).
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that reaches the SE glider stream causes the deletion of a later westward MWSS.
To quantify this feedback effect, for k > 1 let Wk, gk, ek, bk denote the fcth west-
ward MWSS, glider, eastward MWSS, and boat produced in these respective
streams. Then the initial reactions may be described thus:

w\ stops <7i, which zaps g% e\ hits 61, and then 1̂ 3 dies
w\ stops <7i, which zaps g% e\ hits 61, and then 1^3 dies
wz gone, so #5 escapes, g$ zaps 63 63 gone

Moreover, the recursive development of this sequence is dictated by the fol-
lowing conditions:

Unless already gone, Wk stops g^k-i, which zaps g%k •

Unless already gone, Wk stops g^k-i, which zaps g%k •

If ec is the fcth eastward MWSS not zapped by a glider .

then e( hits bk after which Wk+e+i dies.

The first two assertions of eq. (6) are clear from the preceding description,
but the third requires a little calculation. With respect to a suitable Origin and
with appropriate conventions for the central locations of our various static and
moving GoL objects, since the MWSS puffer moves eastward at speed 1/2 and
produces a new westward spaceship with speed 1/4 about every 60 updates, ship
Wi is at horizontal position 30(i — j) at time 60(i + j) (0 < i < j), until it experi-
ences a collision. Also, since (suitably positioned) MWSS gun 1 produces a speed
1/2 eastward spaceship every 120 generations, and the boat stream has spatial
period 30, ee hits bk at horizontal position 30fc at time 120^ + 60k. Finally, the
vertical distance between the two puffers is arranged so that a (horizontal speed
1/2) NE glider takes 60 generations to travel up from a boat to the westward
stream of spaceships. Choose i = I + k + 1, j = I, to see that wg+k+i dies via
(C5).

The interactions in eq. (6) make it clear that all gliders g^k with even index
die. Calling the remaining gliders odd, let v® and v\ denote the index of the
fcth odd glider which escapes, and which collides with a westward spaceship,
respectively. (For instance, v\ = 2 because #3, the second odd glider, collides
with u>2.) If v\ = I, then k — l odd gliders die and i — k odd gliders escape befor
the collision of 52^-1 with wg. Each of the k — l previously zapped odd gliders
released an eastward MWSS which led to the deletion of a westward MWSS.
Then ee hits bk, after which W(+k+i dies, so the I + k + 1st odd glider is the fcth
to escape. That is, v\ = 1, and for fc > 1,

Let 7 = (7^) be the string of Os and Is determined by eq. (7). Thus, 7^ = 0
if <72fc-i escapes. Form string / by prepending 10 to 7 : / = (1,0,71,72,...),
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FIGURE 7 The stifled breeder.

make the change of variables j = k + 1, and define t° and i1 as in eq. (3). Then
t° = 2 + z'j-i, and tj_1 = 2 + i^j_1 for j > 2, so eq. (7) implies that / satisfies
recursion eq. (4) with L\ = \. Hence, / is the golden string, and for k > 1,

In particular, since odd gliders arise every 120 generations, the density of times
at which an SE glider escapes from  Irratff is equal to l/120y>2  = (3 — \/5)/240,
as claimed.

4 CONSTRUCTION OF THE SEED

A stifled breeder is a flotilla of puffers which produces, every 60 generations,
a stifled glider gun (of the kind shown in the Introduction) and a boat. Such a
structure was devised in 1992 [7] to obtain an example of GoL population growth
at rate en log n. Here, we use the 1,318-cell stifled breeder of figure 7.

If a MWSS is sent along the stifled breeder's trail of boats with the proper
path and timing, then it will hit the first remaining boat, becoming a glider (by
(C6)) that deletes the stifled gun's eater, thereby turning on that gun. In Hick-
erson [7], every gun was turned on eventually. As explained earlier, our strategy
here is to turn on only a subcollection of glider guns corresponding to the irra-
tional density of surviving gliders in the stream of the previous section. To this
end, we place the stifled breeder suitably to the south and east of Irrat5\ and
introduce two additional stationary guns, which produce a LWSS (via (C7)) and
a MWSS (via (C3)), respectively, every 120 generations. (A LWSS is produced
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FIGURE 8 LWSS gun (period 120).

FIGURE 9 MWSS gun 2 (period 120).

every 30 generations, but 3/4 of them are subsequently deleted by interaction
with two oscillators found by Robert T. Wainwright: the period 4 "MW em-
ulator" and the period 8 "blocker.") The two guns, shown in figures 8 and 9,
occupy the SW corner of our complete Seed, with the LWSS gun strategically
placed so that its output can travel east between the halves of MWSS gun 2.
Figure 10 gives the complete 2,392-cell solution to Problem 8 from Gravner and
Griffeath [4].

Each MWSS heading east from the top half of the gun of figure 9 eventually
hits a boat, becoming a glider and heading for a stifled glider gun deposited
by the stifled breeder. Usually a corresponding LWSS from the gun of figure 8
subsequently zaps the glider, leaving that stifled gun inactive. But when a SE
glider from Irrat5' survives as output, it zaps a spaceship from the LWSS gun
near its source (by (C8)), and so the SE glider emanating from a boat reaches
its eater. After reaction (C9) that stifled glider gun becomes active.

Thus, there is a one-to-one correspondence between surviving gliders from
IrratS and activated glider guns in the stifled breeder's trail after the time when
g\ might have reached its target LWSS. In fact, our construction achieves an
exact correspondence with the golden string / by producing first a stifled glider
gun, then an active glider gun before the interaction with IrratS' begins. In this
way, by eq. (5), the fcth gun deposited by the stifled breeder becomes active if k
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FIGURE 10 The entire Seed.

has the form [n^2j for some integer n > 1. In particular, the limiting density of
activated guns is 0~2 = (3 — \/5)/2.

guns are activated advances at the speed with which outputs from MWSS gun 2n is now easy to derive. The eastmost point at which
guns are activated advances at the speed with which outputs from MWSS gun 2
hit boats: 1/6 since the boats are 30 cells apart, and the speed 1/2 spaceships are
60 cells apart. Once a gun is activated, its glider stream proceeds SW at speed
v2/4. Hence, after n generations, the outputs of the guns form a triangular
region Tn with vertices at about (0,0), (—n/4, —n/4), and (n/6,0). Figure 11
shows the growth after 10,000 updates. Hence, eq. (1) holds, in the sense of
weak convergence of measures (cf. Gravner and Griffeath [4]), where L = T: the
triangle with vertices (0,0), (-1/4, -1/4), and (1/6,0).

To compute the asymptotic density p, we note that Tn can be partitioned
naturally into 30 x 30 blocks such that each block covering an active SW stream
contains four gliders (five cells each), while the remaining blocks corresponding
to stifled streams of course contain none. Hence, the density is given by

4 x 5 e , 2 3 - ^ 3 - ^
p =contains  four  gl iders  ( f ive  cel ls  each) ,  whi le  the  remaining blocks  corresponding
Note that since the puffers of our construction all move east at speed 1/2, the

asymptotic shape LH in the sense of Hausdorff convergence (again, see, Gravner
and Griffeath [4]) consists of the triangle T together with a line segment from
(1/6,0) to (1/2,0). Although an example with L — LH would be more aesthetic,
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FIGURE 11 The growth of Seed from afar, after 10,000 updates.

such a construction would require even larger puffers, so the extra effort hardly
seems worthwhile.

Seed grows to occupy 3/8 of the plane: namely, the fourth quadrant and the
lower half of the third. Of course a reflection of Seed about y = x fills the second
quadrant and the upper half of the third. Finally, exactly the first quadrant is
filled by a horizontal reflection of Seed together with a suitable northward eater
puffer to stop gliders which reach its trail. Combining appropriate translations
of these three configurations, we obtain an initial pattern for Life which fills the
whole plane with density (3 — \/5)/90.

In conclusion, a few caveats about our solution to Problem 8 are in order. As
noted in the Introduction, Seed is primarily intended to illustrate various, rather
sophisticated, synthetic techniques whereby Life manifests some of its renowned
complexity. Our crystal's structure is artificial, dimension-dependent, and (as
with almost all GoL structures) extremely sensitive to the smallest perturba-
tions in its initial condition. A more satisfactory answer to the original question
of Gravner and Griffeath [4] would identify some simple CA rule from which most
initial seeds grow with the same lattice symmetric asymptotic shape and char-
acteristic "background ether," where that ether is fundamentally aperiodic in
space and time, and has an irrational density which is nevertheless computable.

5 WEB RESOURCES

In order to thoroughly understand this chapter's construction, a computer sim-
ulator capable of interactive visualization of Life dynamics is indispensable. At
(http://psoup.math.wisc .edu/Irrational/} we have posted a page with links
to several programs capable of evolving Life from patterns in the standard .lif
file format. From that same page the reader can also download configurations



of the available Life engines.

illustrating each of the basic reactions (C1)-(C9) of eq. (1), as well as all the
building blocks of figures 2-10 which contribute to the construction of Seed.
Needless to say, the verbal descriptions of sections 1-5 are much more accessible
if one simultaneously observes the dynamics of those patterns running under one
of the available Life engines.
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Still Life Theory

Matthew Cook

1 INTRODUCTION

In Conway's Game of Life [2], if one starts with a large1 array of randomly2 set
cells, then after around twenty thousand generations one will see that all motion
has died down, and only stationary objects of low period remain, providing a
final density of about .0287. No methods are known for proving rigorously that
this behavior should occur, but it is reliably observed in simulations (see figure

1).
This brings up several interesting related questions. Why does this "freezing"

occur? After everything has frozen, what is the remaining debris composed of?
Is there some construction that can "eat through" the debris? If we start with an
infinitely large random grid, so that all constructions appear somewhere, what

1For example, a torus large enough that even speed-of-light signals are unable to wrap
around the torus during the run.

2 The numbers mentioned above are for initial densities around one half. Much higher or
lower densities will converge more quickly to a sparser result [3].

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 93
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FIGURE 1 (a) After 500 steps, active areas are still common, (b) Eventually all activity
subsides, leaving only debris.

FIGURE 2 Some stable objects.

will the long term behavior be? It seems clear that knowing the composition of
typical debris is central to many such questions.

Much effort has gone into analyzing the objects that occur in such stationary
debris, as well as into determining what stationary objects can exist at all in
Life [4, 8], Both of these endeavors depend on having some notion of what an
"object" is in the first place. One simple notion is that of an island, a maximal
set of live cells connected to each other by paths of purely live cells. But many
common objects, such as the "aircraft carrier," are not connected so strongly.
They are composed of more than one island, but we think of them as a single
object anyway, since their constituent islands are not separately stable.

Any pattern that is stable (has period one, i.e., does not change over time) is
called a still life. Since a collection of stable objects can satisfy this definition, the
term strict still life is used to refer to a single indivisible stable object, and pseudo
still life is used to refer to a stable pattern that is composed of distinct strict still
lifes. For example, the bi-block is a pseudo still life, since it is composed of two
blocks, but the aircraft carrier is a strict still life, since its islands are not stable
on their own. The entirety of figure 2 is stable, but it is clearly a pseudo still
life, since it can be separated into a block, tub, ship, and so on. The distinction
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FIGURE 3 (a) Block on table: The block is stable, but the table alone is not; it is
stabilized by the block, (b) Quad block: If you remove one block, the other three become
unstable. But removing any two preserves stability, (c) Two bookends on coil: The coil
only needs one bookend to be stable, but each bookend needs the coil, (d) Two snakes,
two hats, and a block: Each item is stable alone but, if two object types are present, the
rest must be there too. (e) Enclosed block: One island can be completely surrounded
by another, (f) Switch: The lower island is stabilized if at least one block is present, (g)
Gossamer: If one of the blocks is removed, the other must be removed as well. Compare
to the quad block, (h) Sleigh: Each island alone is stable, but any two require the third.
The middle three columns may be repeated to load more blocks, (i) Fragile four: Each
island alone is stable, but any two require all four, (j) Dog with snake: An overcrowded
cell touching two stable islands might be overcrowded by one island alone, as under the
dog's chin.

between strict and pseudo still lifes is intended to capture the separability of
objects that is usually easy to detect by eye.

After this distinction started being used, in the early 1970s, it was discovered
that things were not as simple as they had appeared. One might have a pattern
such as the "block on table" which consists of two islands, only one of which is
stable alone. Is that one object or two? Or one might have a pattern such as
the "switch" which consists of three islands, of which two are stable and one is
stable only if at least one of the other two is present. How many objects is this?
What are the objects?
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As one looks at more and more patterns (see figure 33), it becomes clear
that a very precise definition is necessary.

Eventually, in the late 1980s, the following became accepted as the standard
definition:

Dsfinition 1 (Pseudo Still Life). A pseudo still life is any stable pattern whose
islands can be partitioned into exactly two nonempty sets, each of which is stable
on its own.4

This definition is mathematically unambiguous, which was a significant im-
provement over previous definitions. But from a computational point of view,
it might be of some concern that the natural algorithm for deciding whether a
pattern is a pseudo still life is exponential in the number of islands (which in
turn can be linear in the amount of input, i.e., the area of the pattern), since
it appears that all possible partitions into two sets must be tried. In practice so
far the definition has not been used in situations with large numbers of islands,
and people have accepted the exponential complexity.

In section 2 we will show that the problem in fact does not have exponential
complexity as previously thought. We give an algorithm that solves it in O(n2)
time.

In section 3 we will propose a natural modification of the definition to allow
partitioning patterns into any number of sets of islands, rather than just two.
We will show that this is equivalent to the definition allowing at most four sets
of islands, due to an application of the four-color theorem.

In section 4 we will show that an intermediate definition, allowing at most
three sets of islands, is NP-complete. This shows that subtle differences in the
problem definition can have drastic consequences on the complexity.

In section 5 we will show that the problem of testing patterns according to
the modified definition proposed in section 3 is, in fact, NP-complete as well.
This is the most complicated proof, but it is greatly simplified by using ideas
from the earlier proofs.

2 FAST STRICTNESS TESTING FOR STILL LIFES

Here we will show that the problem of determining whether a pattern is a strict
or pseudo still life takes only O(n2) time, by giving a decision algorithm which
for the most part takes only linear time, but can take quadratic time in the
number of "switch"-like instances (see figure 4).

3The "enclosed block" was designed (9/13/98) by Noam Elkies as the smallest example of
one island enclosing another, after H. Konig. The "fragile four" is based on a pattern designed
(9/27/98) by Gabriel Nivasch as one of the smallest known of this kind, after the author.
The "switch" was originally found in the early 1970s, either by Peter Raynham or by David
Buckingham.

4This definition was first proposed by Mark D. Niemiec.
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FIGURE 4 Switch.

Note that if we like, we may verify in O(n) time that a pattern is stable by
checking that each live cell has two or three live neighbors, and no empty cell
has three live neighbors.

The algorithm has two main parts: First, we convert the pattern into a
connectivity graph of switches, thereby converting the problem into one we will
call Switch Cycle. Then, we give a simple algorithm for solving the Switch Cycle
problem in quadratic time.

2.1 INFRASTRUCTURE TRANSFORMS THE PROBLEM

Given a pattern, we want to find whether we can decompose its islands into two
stable sets. This is equivalent to finding a boundary that separates the two sets
from each other. If we think of the islands as consisting of "land" cells, and we
think of empty cells as "water" cells, then this boundary must go through the
water, separating the islands in a stable way.

Since stability is a local property, possibilities for the boundary are deter-
mined locally throughout the pattern. All we have to do is figure out whether
there exists a global boundary that divides the islands and is everywhere consis-
tent with the local possibilities.

There are essentially three different kinds of restrictions that can occur lo-
cally. The first is that it may simply not be possible to have a boundary go
through a certain water cell—any such boundary would lead to instability on
one side or the other. On such cells, we will build dams (see figures 5 & 6) so,
if we think of the boundary path as a water route, then the boundary may not
cross a dammed cell any more than water traffic can cross a dam.5

The next kind of infrastructure we will need is aquaducts (see figure 7).
Crossing aquaducts are placed on a cell to prevent the boundary from being able
to make a turn there. The boundary must either go straight east-west, using one
of the aquaducts, or go straight north-south, using the other one, but turning is
not allowed. A cell containing crossing aquaducts is like two different cells: One
that can be used by a north-south boundary, and one that can be used by an

5 Of course, in real life some kinds of water traffic can cross dams. For an example of water
traffic crossing a dam, see: http://www.ils.nwu.edu/~eric/matt.html so the analogy must
not be taken too literally.
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FIGURE 5 The boundaries in the upper pictures divide the patterns into two parts,
shown with — and +, in a locally stable way. The boundaries in the three bottom
pictures, however, would result in instabilities as shown, so they must be prohibited.
Note how the two crossing boundaries in the third picture on the left result in
diagonally opposite blocks belonging to the same group, since each crossing of the
boundary represents switching from one group to the other.

If both aquaducts of an aquaduct crossing are used by the boundary, as
might happen in the first arrangement shown in figure 8, then opposite corners
wind up being in the same set, since crossing the boundary corresponds to
switching from one set to the other, so crossing the boundary twice results
in the original set once again. This corresponds to an "even-odd fill" (or
"winding number parity") of the boundary being used to determine to which
set an island should belong.

The last kind of infrastucture needed is locks. A lock consists of a pair of
gates, each of which may be either open or closed, except that they may not
both be open. If one gate of a lock is open, then the other must be closed. The
boundary path may only pass through an open gate of a lock. It is easy to
see that a lock is exactly what is needed to make sure that any path through
the following arrangement will result in a stable boundary. This is the only
arrangement requiring a lock (see figure 9).

A lock is in some sense the opposite of crossing aquaducts, since locks
only allow boundaries that turn, while aquaducts only allow boundaries that
go straight.
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FIGURE 6 The six local arrangements where a dam is required to prevent the bound-
ary from passing through the center cell, since any such boundary would result in
instability. These are the configurations where a cell touches two stretches of land, one
at three points.

FIGURE 7 The two local arrangements requiring aquaduct crossings, shown as an
east-west aquaduct passing under a north-south aquaduct. In the second arrangement,
the north-south route ends immediately and so cannot be used by a boundary, and the
net effect is the same as if a dam were to be placed between the two southern land
cells.

see that a lock is exactly what is needed to make sure that any path through
the following arrangement will result in a stable boundary. This is the only
arrangement requiring a lock (see figure 9).

A lock is in some sense the opposite of crossing aquaducts, since locks only al-
low boundaries that turn, while aquaducts only allow boundaries that go straight.

These three types of infrastructure correspond to the three types of local
restrictions that can exist for cells on the route of the boundary path. Except
where infrastructure is required, as explained above, there is no restriction on the
water path of a boundary. Any boundary loop that respects the infrastructure
and divides some islands from others will divide the islands into two stable sets,
and if there is a division of islands into two stable sets, then we can draw a
boundary loop around one of them (or around an isolated part of one of them).

Once we have installed all the infrastructure, the problem takes on a much
simpler form if we consider the seas that result as shown in figure 10. A sea is
a bunch of water cells that are connected to each other after the infrastructure
is installed. For the purpose of determining the extents of the seas, all the lock
gates must be closed.

If any sea is not simply connected (that is, there is land both inside and
outside it), then we can draw a boundary loop dividing land through that sea
alone, and so the pattern is a pseudo still life. As we determine the extent of
a sea, we can simultaneously check whether it is simply connected, all in O(s)
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FIGURE 8 A self-crossing boundary path can be used to divide a pattern into two
stable sets, if an "even-odd fill" is used to determine set membership.

FIGURE 9 (a) A lock with both gates closed, (b) A lock with one gate open, allowing
the boundary to pass through, (c) The boundary cannot cross a lock like this since the
gates cannot both be open.

time, where s is the size of the sea. We merely need to "grow" the sea one cell at
a time, keeping a list of neighboring sea cells that need to be added. (Cells with
crossing aquaducts should be treated as two separate cells, one for each crossing
direction.)

To check for simply connectedness, when adding a cell, we first check whether
more than one of its four neighbors has already been added to the sea, and if so,
we check whether they are connected by cells already added to the sea among
just the eight neighbors of the cell being added. If not, then adding this cell could,
for the moment, result in not being simply connected, so instead of adding the
cell to the sea now, we move it to a list of "postponed" cells. Any time a cell is
added to the sea, if any of its eight neighbors are marked as "postponed," they
are moved back to the regular list of cells waiting to be added, so they can be
tried again. Once we have finished processing the regular list, then if any cells
remain in the "postponed" list, the sea is not simply connected.

The "outside sea" requires special treatment during the check for simply
connectedness: Any water cell at the edge of the pattern should be considered
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FIGURE 10 With all lock gates closed, each connected body of water is a sea. If any
sea is not simply connected, then a boundary can be drawn, within that sea alone, as
in sea F, which encloses a block, or H, which has a "figure 8" loop using the aquaduct.
Otherwise, lock gates need to be judiciously opened to allow a boundary if possible.
Note that there are many very small seas of just one or two cells which are not marked
with a letter in this diagram. These seas cannot possibly be used by a boundary, since
they are simply connected and do not touch any locks.

as connected to all other water cells at the edge of the pattern. This "outside
sea" can be thought of as wrapping all the way around the planet. When treated
this way, the above algorithm will work correctly for it, too.

When growing the seas, we must keep track for each sea of what locks it
touches, and whether each sea touches them in the middle or at a side gate. Then,
assuming all of the seas are simply connected, we need to determine whether it
is possible, by opening lock gates, to allow a boundary loop to be drawn.

We will think of the seas and locks as a combinatorial graph [6], with special
vertices for the locks (we will call them "switch" vertices), and edges connecting
the locks through the seas, representing possible routes for a boundary. If a
sea touches more than two locks, we may use any tree of edges and vertices to
represent the sea.

Figure 11 shows how such a graph can easily be turned into one in which
all vertices are switch vertices, in O(n) time, without affecting the question of
whether there is a cycle or not. The question of whether such a graph contains
a cycle is a problem that we will call Switch Cycle.

Everything up to now has only taken O(ri) time, but Switch Cycle will take a
little longer. Fortunately, at this stage of processing, almost all small to medium-
size patterns have already been classified, and only very large patterns full of
switches will present nontrivial questions for Switch Cycle.
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FIGURE 11 (a) Here is a pattern in which all the seas are simply connected. We want
to know if lock gates can be opened so as to permit a boundary that will divide the
pattern into two stable sets of islands, (b) In each sea, we draw lines connecting up
the lock parts it touches. When going through a lock, the boundary must follow one
of the smooth curves rather than passing straight across. Like a train on a track, it
cannot have a cusp in its route, (c) We can convert the graph to a form which only uses
"train track branch" vertices, by first drawing each sea as a trivalent tree connecting its
locks as in the previous diagram, and then replacing each tree vertex with a traiangular
branching arrangement as shown here.

of the available Life engines.

A switch graph is like an ordinary combinatorial graph, but some of its vertices
may be "switches," which are vertices of degree three (touching three edges)
which "prefer" one of their edges. A switch vertex acts like a switch, in that
it can connect its preferred edge to exactly one of the other two edges, leaving
the third edge disconnected. A switch graph specifies the preferred edge for each
switch vertex, but does not specify the settings of the switches, i.e., it does not
specify to which other edge each preferred edge should be connected (see figure
12).

Given a switch graph, we are interested in the following question: Can the
switches be set so that the resulting connections contain a cycle? In other words,
is there a cycle such that for each switch vertex, in the cycle, the preferred edge of
that vertex is also in the cycle? We will call such a cycle a "switch cycle," and we
will call the problem of determining whether such a cycle exists the Switch- Cycle
problem.

We will prove a theorem that will aid us in answering this question: Consider
a switch graph in which every switch is replaced by an ordinary vertex of degree
three. We will call this the normalization of the switch graph. Then, the theorem
is the following:

Theorem 2.1. If the normalization of a switch graph contains no bridges (no cut
edges), then the switch graph contains a switch cycle.
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FIGURE 12 (a) A switch vertex, enlarged here to show hypothetical detail, can be
thought of like a mechanical switch that connects its "preferred edge," shown here
coming in on the left, to exactly one of the other two edges, (b) Another way to think
of a switch is like a branching train track. Just as a train must use the track on the left,
and may not go from the upper right track to the lower right track, a switch cycle's
route must obey the same restriction, (c) The train track version is especially easy to
draw and read, so we will use this approach when drawing a switch graph. At each
branching, a cycle must pass in a smooth, rather than cuspy, manner. So the question
is, is there a smooth loop?

We will accept the theorem without proof for now, postponing its proof to
the end of this section.

A bridge (also known as a cut edge) is an edge of a graph that is "the last
straw" connecting two parts of the graph, meaning that if the edge were to be
removed, the graph would become disconnected. Clearly, such an edge cannot be
part of a cycle, since there would be no way for the rest of the cycle to connect
the two ends of the edge. So if the graph has any bridges, they may be removed
without affecting the question of whether there is a cycle in the graph, or a
switch cycle in the switch graph.

What the above theorem tells us, then, is that if there are no more bridges
to remove, then the graph must contain a switch cycle! So there is a very sim-
ple algorithm for Switch Cycle: As long as there are bridges, remove them. If
anything is left at the end, then there is a switch cycle.

When we remove an edge in a switch graph, we have to look at how it
might have been connected to switches (for example, see figure 13). If it was
the preferred edge of a switch, then without it, the other two edges of that
switch cannot connect to anything, since they could only have connected to the
preferred edge. So in this case, the other two edges should be removed as well.
On the other hand, if it went to a switch but was not a preferred edge, then once
it is gone, there is no reason for the switch not to connect the remaining two
edges, so in this case, the other two edges should be merged into one long edge,
removing the switch. (If the other two edges were, in fact, two ends of the same
edge, then a cycle exists using that edge alone, and we are done.) So in either
case, the switches at the ends of the original edge are removed, and possibly
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FIGURE 13 This graph contains a bridge, shown dashed, that we would like to remove.
After removing it, its three dependent edges, shown in gray, must be removed as well.
Then three of the remaining edges, shown in bold, must be merged into one long edge.
The resulting graph does not have any more bridges, so our theorem tells us that it
must contain a switch cycle.

other edges are removed as well ("dependent edges"), leading in turn to more
switches and edges being removed. All in all, the total amount of time required
is proportional to the number of edges that are removed.

Identifying the bridges in a graph is a well-known problem [5] that takes only
O(n) time using a simple depth-first search strategy. So repeatedly identifying
the bridges and removing them (along with any dependents) can only take at
most O(n2) time.

All that remains is to prove our useful theorem.
We will just consider graphs in which all vertices are switch vertices, since,

as we saw at the end of section 2.1, we can convert any switch graph to such
a form in O(n) time without affecting whether the graph has bridges or has a
switch cycle.

First of all, note that in a graph with no bridges, it cannot be the case that
both ends of an edge meet at the same switch, since then the third edge going
to that switch would be a bridge.

Now, in a graph with no bridges, we will say that a free edge is any edge
which is not the preferred edge for either of the switches it touches. A free
edge is called this because it does not have any dependents, and can be removed
without forcing any other edges to be removed. (Its neighbor edges would merely
be merged.)

Note that every switch graph must have a free edge, as a simple pigeonhole
counting argument shows: If we look at the ends of all the edges, noting which
are and are not preferred, we will of course find that only one third of the edge
ends are preferred, since each switch prefers one of its three edge ends. Since two
thirds of all edge ends are not preferred, there must be some edge for which both
ends are not preferred, i.e., a free edge.

Now, suppose that the theorem is not true. Then there must be some switch
graph which has no bridges, and yet does not contain a switch cycle. Let us
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FIGURE 14 (a) We know that G can be drawn as two components connected only
by e and b. (b) We can cut G up into two smaller graphs, each "short circuiting" the
other component, (c) If only the smaller graphs, but not G, have switch cycles, then
they must be using the short circuits, (d) But then we can reconnect the components
and see that G has a switch cycle too.

consider such a graph G which is minimal, i.e., has at least as few edges as
any other such graph. We will call this graph a minimal counterexample to the
theorem.

Pick a free edge e. If we remove e, then one of two things must happen:
Either we get a smaller switch graph, or, after merging the neighbor edge ends,
we just get a loop with no switches in it at all. In the latter case, the loop is
a cycle which also existed as a switch cycle in the graph before removing e,
contradicting the assumption that G has no switch cycle. So it must be the case
that removing e leads to a smaller switch graph, which we know must have a
bridge 6, since otherwise it would be a smaller counterexample.

So G must consist of two components which are connected only by & and
6 as shown in figure 14. If we look at just one of the components, and attach
its dangling edges e and b to each other to become a single edge, then there
cannot be any bridges, since they would also be bridges in G. Therefore, it must
have a switch cycle, or else it would be a smaller counterexample. If the switch
cycle does not use the merged e-b edge, then G contains the same switch cycle,
contradicting our assumption, so the switch cycle must use the merged e-b edge.

The same must be true for the other component: It must have a switch cycle
using its merged e-b edge. But this means that if we put the two components
back together to form G, then we can merge the two smaller switch cycles along
e and b to form one big switch cycle, again contradicting our assumption that G
has none.

Since the assumption of a counterexample leads in all cases to a contradic-
tion, there must not be any such counterexample, and so the theorem must be
true.

If we want an algorithm to actually find a switch cycle if there is one, rather
than just determining that there must be one, we can use the above proof as a
recursive algorithm: Where the proof appealed to smaller counterexamples, the
algorithm would recurse, finding and using switch cycles present in the smaller
graphs to exhibit an explicit switch cycle in G, again in only O(n2) time.
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3 A MORE INTUITIVE DEFINITION

The conventional definition given in section 1 for a pseudo still life requires that
the pattern be decomposable into exactly two sets, each of which is stable alone.
But it turns out that there are many patterns which do not fit this definition,
even though they are distinctly composed of a collection of still lifes! In the last
figure of section 1, we saw some instances of such patterns: The "sleigh," the
''fragile four," and the "two snakes, two hats, and a block" are all examples of
patterns which cannot be divided into exactly two stable groups of islands, even
though they can be divided into three or four stable groups. We would naturally
like to think of these patterns as being pseudo still lifes, just like the "quad
block," since they are close collections of stable islands. But the conventional
definition classified them as strict still lifes, since it only considered partitions
into exactly two groups.

A more natural definition immediately suggests itself, namely:

Definition 2 (Natural Pseudo Still Life). A natural pseudo still life is any stable
pattern whose islands can be partitioned into two or more nonempty sets, each
of which is stable on its own.

This definition captures the idea that a stable collection of stable objects should
be considered a pseudo still life, and only indivisible collections of islands should
constitute strict still lifes.

One can see that the "sleigh" needs to be divided into three parts in order for
each part to be stable, and the "fragile four" needs to be divided into four parts.
Is there some pattern that requires five or more parts? Perhaps surprisingly,
the answer is no. For suppose you can divide a pattern into five or more stable
subsets. Then the following process will rearrange the islands into just four stable
subsets:

First, enlarge each island by half a cell, so that islands can border each other.
(Any cell with no live neighbors remains "international waters.") Call each group
of contiguous islands of the same set a "country." (Where two enlarged islands
touch only at a point, we do not consider them to be contiguous.) Note that each
country is independently stable. Note also that if two countries meet just at a
point, then they will each be stable regardless of whether their islands are in the
same group or not.

Now we have a map to which the four-color theorem [1, 9] applies. The
four-color theorem guarantees us that we can color the countries with just four
colors so that any two bordering countries are different colors. Given such a four
coloring, we can put each island into a set according to the color of its country.

This means that where two abutting enlarged islands have been in the same
set (and therefore the same country), they will still be in the same set (since
they will both be in the set for that country's color), and where they have been
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in different sets (and thus in different countries), they will still be in different
sets (since neighboring countries get different colors in the four coloring).

In places where the enlarged islands of two countries touch at just a point,
they will be stable regardless of whether the countries wind up having the same
color or not, since the rules for Life are such that it makes no difference to
stability whether diagonally opposite islands are assigned to the same set or not.

So the four-color theorem is sufficient for showing that allowing divisions of
the islands into any number of stable sets is no different from allowing divisions
into at most four stable sets.

So an equivalent form of our more natural definition would be:

Definition 3 (Natural Pseudo Still Life, again). A natural pseudo still life is any
stable pattern whose islands can be partitioned into two, three, or four nonempty
sets, each of which is stable on its own.

The complexity of detecting whether patterns are natural pseudo still lifes
will be left until section 5.

4 NP-COMPLETENESS OF THE "THREE SET" DEFINITION

In the last section, we proposed a definition that concerned partitionability
into two, three, or four proper subsets. The standard definition concerns itself
only with partitionability into exactly two proper subsets. Clearly we could also
have an intermediate definition which considers partitionability into two or three
proper subsets.

Although neither conventional nor intuitive, this intermediate definition does
have an interesting property: We are able to show that the complexity of de-
termining whether a pattern is a strict still life according to this definition is
NP-complete. In other words, this determination requires6 exponential time to
compute.

We will devote the remainder of this section to this proof.
First of all, the problem is clearly in NP, since if we are given a pattern which

is already marked with a proposed partitioning of the islands into two or three
sets, we can easily verify in polynomial time whether the proposed partitions
would be stable. So a nondeterministic computer could, in effect, try all possible
partitioning schemes in parallel (or use an oracle to just try the best one), and
in polynomial time it would know whether there is a stable partition.

To show that the problem is not just in NP, but NP-complete, we will show
that if we could solve this problem in polynomial time, then we could also solve
a known NP-complete problem, CNF Satisfiability, in polynomial time.

6Giveri the current (and, in most people's opinion, any future) state of the art in compu-
tational complexity theory.
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FIGURE 15 (a) Empty space; (b) Straight wire; (c) Turning wire; (d) Wire end; (e)
Wire junction; (f) Wires crossing; (g) Simple switch.

CNF Satisfiability is a well-known problem which asks, given an expression
in "Conjunctive Normal Form" (e.g., (aVbVd) A(oVc) A(6VeV/V<?) A- • -, where
the whole expression is a conjunction of terms, each of which is a disjunction of
variables or their negations), does there exists a set of Boolean values for the
variables which results in the whole expression being true?

Given a CNF Satisfiability problem, we will construct a pattern which is
either a pseudo or strict still life, depending on whether there is a solution to
the CNF Satisfiability problem or not.

We will use simple 20 x 20 building blocks to build our stable Life pattern.
These building blocks will have "wires" of cells, and the "value" of a wire will
be the set that it belongs to. If we like, we can think of each of the (at most)
three sets of islands as having a distinct voltage level, constant along wires and
where switches connect them.

In figure 15 we recognize the last diagram as being the same kind of switch
connection we discussed in section 2.2. In it, the wire arriving from the lower
right must be in the same set as (i.e., connected to) either the upper right or
the upper left, with the other upper wire being free to belong to any set (i.e.,
disconnected).

The second-to-last diagram, of two wires crossing, needs some explanation.
In it, the wires at opposite corners must belong to the same set, and to which
set one pair belongs is independent of to which set the other pair belongs.

To see this, the first notice that if any wire belongs to the same set as the
center block, then the next wire clockwise must also belong to the same set, in
order to stabilize a cell diagonally adjacent to the center block. This, in turn,
will force the next wire after that to belong to the same set, too, and in the end
all four wires together with the center block must belong to the same set.

The other possibility is that the center block does not belong to the same
set as any of the wires. In this case, we notice that two adjacent wires may not
belong to the same set, since then a cell diagonally adjacent to the center block
would be unstable. Since there are only three possible sets, this means that the
center cell must belong to one set, and the wires must then alternate between
the two other sets, so that opposite wires belong to the same set.
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FIGURE 16 A symmetric arrangement. The simple switches are circled. For each of
the four wires coming from the corners, there is a switch that forces it to be in the
same group as at least one of the two corner wires perpendicular to it. For example,
the simple switch on the right says that at least one of P or Q must be in the same
group as the lower right wire.

So in summary we see that no matter what, opposite wires must belong to
the same set. Furthermore, if one pair of opposite wires belongs to set i, and
the other pair belongs to set j , then we can have either i = j (in which case the
center block belongs to the same set, too), or i ^ j (in which case the center
block belongs to the third set, not i or j). So we see that the diagram does indeed
correspond to two independent crossing wires.

What's great about these components is that we can use them to build up
a switch graph. In section 2 the switch graph represented possible routes for a
dividing boundary, but here the switch graph directly represents the islands of
the pattern. Now, if a switch connects two wires of the pattern, it means that
those wires must be assigned to the same stable partition. So for the pattern to
be a pseudo still life, we must be able to set the switches so that the pattern
becomes disconnected, consisting of disjoint pieces not connected by any switch
settings. The question of whether a switch graph can have its switches set so
that it becomes disconnected is a problem that we will call Switch Disconnected.

The first thing we will build out of our 20 x 20 building blocks is the following
symmetrical arrangement of four simple switches (see figure 16):

Say the upper right wire is in set P and the lower left wire is in set Q.
If P and Q are the same set, then the left simple switch forces the upper

left wire to be in this set, too, and the right simple switch forces the lower right
wire to also be in this set, so all four wires must be in the same set.

Now suppose P is different from Q. Consider the upper left and lower right
wires. The upper simple switch says that one of them must be P, while the lower
simple switch says that one of them must be Q. So they must be different, one
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FIGURE 17 The two possible effective connectivities for a Fancy Switch.

FIGURE 18 This diagram is rotated 45 degrees from the previous orientation.

being P and one being Q. But which is which? One can easily check that the
simple switches allow either possibility.

So this is almost the opposite of the "wires crossing" block, in that this forms
nor^crossing connections. This is a essentially a fancy kind of switch, that forces
the four wires to have at least one of the two possible connectivities shown in
figure 17.

Now, with this Fancy Switch, we are ready to start constructing a pattern
for the CNF Satisfiability problem.

We will start by having a row of Fancy Switches (see figure 18), one for each
variable. A bunch of wires will dangle down, where we will add things onto them.

We will name the upper wire "True" and the horizontal wire underneath all
the Fancy Switches "False." True and False might wind up in the same set, or
they might wind up in different sets, when we partition the pattern into stable
sets.

The two wires dropping out from the sides of each Fancy Switch will be
called x and x for the Fancy Switch corresponding to variable x.

If True and False belong to the same set, then all the x and x wires will
also belong to this set. If True and False belong to different sets, then the Fancy
Switch for x either puts x in Tree's set and x in False's set, or else it puts x in
False's set and x in Tree's set.

Now we need to represent the terms of the big conjunctive expression.
This turns out to be very easy: We can use simple switches to build up each

term. As an example, we'll look at the term (a V b V d V e) (see figure 19).
The rightmost simple switch says that either e must be in Tree's set, or

else... the next switch says that either d must be in Tree's set or else... either
b must be in Tree's set or a must be in Tree's set.
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FIGURE 19

In other words, supposing True and False are in different sets, we can think
of each Boolean variable x as being true iff its wire is in the same set as True
(which is the same as the x wire being in the same set as False). So the previous
paragraph is just saying that (a V b V d V e) must be true, and this is exactly th
term we wanted to represent.

We continue down with all the other terms of the big conjunctive expression,
representing them in this way, one after the other, until at the end we just
terminate all the dangling wires, at which point we are done making the pattern.

If we continue supposing that True and False are in different sets, then
we see that a stable partition corresponds perfectly to a solution of the CNF
Satisfiability problem.

If True and False are in the same set, then one can quickly verify that all the
wires in the diagram, and therefore all the islands in the diagram, must belong
to this same set. (Recall that the only islands that are not wires are the blocks at
the middle of wire crossings.) So there is no way to stably partition the islands
into two or three proper subsets if True and False are in the same set.

So, for the definition proposed at the beginning of this section, the pattern
we have constructed is a pseudo still life exactly when there is a solution to
the CNF Satisfiability problem, and it is a strict still life exactly when the CNF
Satisfiability problem has no solution.

And, as a bonus, our method of proving this has also shown that Switch
Disconnected is an NP-complete problem.

5 NP-COMPLETENESS OF THE NATURAL DEFINITION

In this section, we will show that the problem of determining whether a pattern
is a pseudo still life according to the natural definition proposed in section 3 is
an NP-complete problem.

We will use techniques similar to those of section 2 to convert the problem
into a switch graph problem, that of detecting whether a specific layout of a
switch graph in the plane can contain a simple loop that does not cross itself.
We will call this problem Switch-Simple Loop.
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FIGURE 20 (a) This is how we will draw a bend preventer. They will go where ac-
quaducts went, (b) A bend preventer allows a boundary to go straight through it. (c)
It also allows a T junction joining three boundaries, (d) Four boundaries can also meet
at a bend preventer, (e) Bend preventers do not allow a boundary to bend, creating an
unstable set.

Then, using ideas similar to those in section 4, and based on ideas of Mazzoni
and Watkins,7 we will show that Switch-Simple Loop is NP-complete.

5.1 BOUNDARIES BETWEEN STABLE GROUPS

We are faced with the question of whether a given stable pattern can have its
islands partitioned into stable sets. As in section 2, we will look at the boundaries
between islands that are in different sets, and see how these boundaries can be
connected. Since there can be as many sets as we want, rather than just two,
we will be searching not just for a cycle, but for a more general network of
boundaries, dividing the plane into countries like the ones discussed in section 3.
Since countries do not cross each other, our network of boundaries will not need to
have any boundaries crossing any other boundaries, and so instead of the crossing
aquaducts of section 2, in their place we will have a special kind of infrastructure
that allows three or four boundaries to meet, or one to pass through, but will
not let a single boundary make a turn. We will call this piece of infrastructure a
"bend preventer"; see figure 20.

As in section 2, we can determine the seas, making a graph in which bend
preventers and locks are connected to one another via connecting seas. Since we
no longer have crossing aquaducts, the graph will be planar.

Our task will be to see whether our graph can contain a network of bound-
aries subject to the simple constraint that the network must not contain any
bridges (cut edges). The reason bridges are prohibited from the network of

7Dominic Mazzoni and Kevin Watkins wrote a proof that the problem of deciding whether
a position in the game of Twixt is a winning position or not is NP-complete, currently available
at: http://vwu.mathematik.uni-bielef eld. de/~sillke/PROBLEMS/Twixt_Pr oof .Draft. Their
proof effectively showed that the problem of determining whether there is a simple non-crossing
path between two given points in a planar layout of a graph is NP-complete. Their proof very
directly inspired the proof in section 5 of the NP-completeness of Switch-Simple Loop.
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FIGURE 21 (Left) Here is a pattern with some bend preventers, and a graph of sea
connections between the bend preventers. All of the edges except for the circular loops
are bridge edges, and so they cannot be used by a network of boundaries, since they
would be bridges in the boundary network as well, and the land on both sides of a
bridge must belong to the same set. (Right) The pattern of two snakes, two hats, and
a block is just four bend preventers arranged like this. If any of the sides of the square
are used by a boundary, then the next bend preventer going counter-clockwise must
contain a T junction of boundaries. Continuing around the square, we see that all sides
and departing edges must be boundaries. Therefore, if any of the emanating edges is a
boundary, then every one of them must be a boundary.

boundaries is because both sides of the bridge would correspond to the same
country, which means there should not be a boundary there (see figure 21).

Figure 22 shows a wonderful configuration which permits boundaries to come
out of it either along one set of diagonally opposite edges, or along the other set
of diagonally opposite edges, but not in any other way. If we think of this as
two paths crossing, we see that at most one of the two paths may be used. We
will call this a "blocking crossing," since, if it is crossed in one direction, that
effectively blocks its use in the other direction.

Given any planar graph containing only blocking crossings and switches, it
should be clear that we could construct a big stable Life pattern corresponding
to it. Such graphs are like switch graphs, except that they have a specific layout
in the plane, and where edges cross each other, they do it with blocking crossings.
We will call this kind of graph a "switch graph layout"; see figure 23.

We will call the problem of finding a loop in a switch graph layout Switch-
Simple Loop, In section 5.2, we will show that Switch-Simple Loop is NP-complete
by designing a big switch graph layout corresponding to a given CNF Satisfia-
bility problem so that, if there is a solution to the CNF Satisfiability problem,
then there is a loop in the switch graph layout, but, if there is no solution to
the CNF Satisfiability problem, then there is no loop and no stable network of
boundaries in the switch graph layout.



114 Still Life Theory

FIGURE 22 Each of the four edges entering this arrangement can be a boundary if
all four edges emanating from the square it leads to are boundaries. The two upper
squares are connected by a pair of switches that ensures that only one of the squares
may be used by boundaries. The same is true for the two lower squares, so the central
bend preventer cannot have more than two boundaries coming to it, and so it will only
allow boundaries to go straight across it. This means that of the four edges entering
the arrangement, only two opposite edges may have a boundary. We will call this
arrangement a "blocking crossing."

FIGURE 23 Here is an example of a switch graph layout. The question we are inter-
ested in, given such a graph, is whether it contains a loop that does not cross itself. In
the next section, we will show that this is an NP-complete problem.

As it turns out, if there is a boundary loop in the switch graph layout, then
the islands will be partitionable into three stable sets, and a fourth is not needed.
The two main sets are the islands inside and outside the loop, and a third set is
sufficient for keeping blocking crossings stable where they are traversed by the
boundary loop. This fact will not affect the proof, but it means that regarding
still lifes, this proof is stronger than the one in section 4.

5.2 SWITCH-SIMPLE LOOP IS NP-COMPLETE

The basic approach of this section is inspired by a proof of Mazzoni and Watkins (see
footnote 7).

We will show that given a CNF Satisfiability problem, we can make a Switch-
Simple Loop problem which has a solution exactly when there is a solution to
the CNF Satisfiability problem.
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FIGURE 24 We will construct a Switch-Simple Loop problem corresponding to the
CNF Satisfiability problem by creating a switch graph layout whose overall form will
be as shown here. The resulting Switch-Simple Loop problem will only be able to have
a loop if the loop follows this overall path, effectively picking a value for each variable.
We will modify the central dotted portion so as to represent the terms of the CNF
expression.

Our Switch-Simple Loop problem will take the following overall form, in
which choosing a value for a variable is represented by choosing one of two
vertical paths stretching from the top to the bottom of figure 24.

In order to represent the terms of the CNF expression, we will need to
be able to "push" the values of variables horizontally out to the right, where
we can make them interact according to the CNF terms. We can do this by
making the vertical paths protrude slightly out to the right so as to interfere
with neighboring columns. A pair of protrusions will propogate a variable's value:
The upper protrusion will be part of the loop if the variable is true, while the
lower protrusion will be part of the loop if the variable is false.

Once the values of the variables for a CNF term have been propogated all
the way to the right side of figure 25, we can implement the CNF term by ending
those protrusions corresponding to the values appearing in the CNF term, leaving
the negations of those values to play a game of musical chairs, where if there are
n such negations, then they must share n — 1 positions. This is impossible if al
of the negations are part of the loop, but, if any of them are not (that is, if any
of the values in the CNF term are true), then the rest can "lean toward" the
unused negation, and there will be room for all of them to coexist.

In this way, we can represent each CNF term, one after the next, down
through the switch graph layout (see figure 26). When we are done, we have a
switch graph layout with the property that if any part of it is used as a boundary,
then the boundary must follow the overall form that we intended, effectively
choosing values for the variables that solve the CNF Satisfiability problem.

Therefore the Switch-Simple Loop problem has a solution exactly when the
CNF Satisfiability problem has a solution, and these questions are the same as
the problem of determining whether the pattern corresponding to the switch
graph layout is a natural pseudo or strict still life.
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FIGURE 25 (Left) This shows how we can alter the three vertical paths corresponding
to a variable in the previous diagram so that the variable's value is pushed out to the
right. The third vertical path, which is always used by the loop, must use one of two
branches here. If the variable is true, then the loop must use the branch with the upper
right protrusion, since the other branch crosses the first path, which is used by the loop
when the variable is true. Similarly, if the variable is false, the loop must use the lower
protrusion on the right. (Right) This shows how we can keep pushing a variable's value
to the right. If the upper protrusion coming from the left is used by the loop, then the
vertical paths used here will have to swing out to the right to avoid it, and swing left
across the unused protrusion. Since the third vertical path is always used, the upper
right protrusion must be used. Similarly, if the lower protrusion from the left is used,
then the lower protrusion to the right must be used.

FIGURE 26 This shows how we can implement a disjunction of the CNF expression,
such as "a or b or not d or e," after pushing all the relevant variables out to the right.
If one of the terms, say b, is true, then only the stubby path will be used there, and so,
if any of a or not d or e is false, they may use the long path that leans toward b, and
they will not cross each other. But if none of the terms is true, then there will not be
enough room for all the falsehoods to be able to coexist without crossing each other.
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Since both Switch-Simple Loop and the natural pseudo still life question are
problems for which a positive solution can be easily verified, we have proved that
these problems are NP-complete.

6 CONCLUSION

What started out as a practical problem, creating an efficient "object analyzer"
for stable regions in the Game of Life, turned out to be quite a complex prob-
lem, giving rise to new questions, new methods, and, in general, a new area of
investigation: Still Life Theory.

The various Switch-Graph problems are also interesting in their own right,
and one can easily come up with new and interesting problems in this area.

We found that testing patterns under the conventional definition for strict
still lifes turns out to have quadratic complexity rather than exponential com-
plexity as has been assumed by workers in the field. We proposed a more in-
tuitive definition, but unfortunately it turned out to make testing patterns an
NP-complete problem, thus making it unappealing for very large patterns. Since
the definition is trying to capture a distinction that was originally thought to be
obvious, one hopes that, if not quite obvious, the distinction should at least be
a tractable problem! An intermediate definition also resulted in pattern testing
being NP-complete, so we see that the conventional definition is in fact uniquely
amenable to use for testing large complicated patterns.

In a broader perspective, these results show that, in general, questions about
decomposability of stable patterns for a cellular automaton can vary widely in
complexity, and are likely to be very sensitive to the particular details of what
kind of decomposition is required. And, as we have seen, the solutions to such
questions can be very intriguing.

As a final remark, let us note that stable Life patterns are just one instance
of a kind of two-dimensional language called local lattice languages [7], which
are characterized by having a finite set of locally allowable configurations. Con-
versely, for any local lattice language, we can easily construct a cellular automa-
ton whose stable patterns are exactly the members of the local lattice language,
so we see that speaking about the still lifes of a cellular automaton is equivalent
to speaking about a local lattice language.
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Replicators and Larger-than-Life Examples

Kellie Michele Evans

After watching a substantial number of cellular automaton dynamics generated
by rules containing suitable ingredients, eventually a particular time-dependent
pattern catches the eye. A configuration of occupied sites makes copies of itself,
then the copies make copies of themselves, and these copies move toward one
another and also toward the boundaries of the evolution. This continues as long
as there is room for the evolution. When the innermost copies collide, they
annihilate one another. Meanwhile, the outermost copies continue to reproduce,
provided that no occupied sites from the outside impede. The pattern repeats,
ad infinitum.

We first saw this kind of evolution, which we call a replicator, in our studies
of the Larger-than-Life (LtL) family of cellular automaton (CA) rules. The first
replicators we found were all in the same region of LtL space. We thought an
intrinsic property of this specific region was necessary for the existence of a repli-
cator. However, we began seeing similar configurations, with slight variations, in
many different subregions of LtL space. Then we learned of the range 1 HighLife
cator. However, we began seeing similar configurations, with slight variations, in

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 119
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become quite famous. We saw more examples on Christopher Langton's com-
puter at the Santa Fe Institute in 1995; this convinced us that the behavior was
not exclusive to LtL-like rules. Since then, new replicators have been discovered
for a variety of CA rules.

In this chapter, we define a replicator using an axiomatic approach and
prove various theorems that follow from the axioms. We also present a collec-
tion of Larger-than-Life replicator examples, HighLife's famous example, and
propositions that generalize several of the LtL examples.

We will begin by presenting a collection of Larger-than-Life replicator ex-
amples, but first let us define the family of Larger-than-Life update rules.

1 DEFINITION OF LARGER-THAN-LIFE

Larger-than-Life (LtL) is a four-parameter family of two-state cellular automaton
rules. The four parameters are the upper and lower bounds of the birth and
survival intervals. At each time t, each site x £ 1,d is either live or dead. We
think of a live site as being in state 1 and a dead site as being in state 0. At each
time step, each site updates (meaning it switches state or not) according to the
number of Is in its neighborhood. Let us define the rule precisely.

• Let A/", a finite subset of Zd, be the neighborhood of the origin so that the
translate x + A/" is the neighborhood of the site x 6 Zd.

• Let T denote the CA rule. That is, T : {0,1}Z" -> {0,1}2"*.
cator. However, we began seeing similar configurations, with slight variations, in

t.
• Let £t represent the system at time t. The collection of Is in £t comprises some

set A, which is contained in Zd. As is customary in this area, we will confound
this configuration, consisting of all Is on A, with the set A itself. Hence, if
A = {x e 1d : &(z) = 1}, we write £« = A C 1d. We use £t

A = T*(A) = B to
mean that starting with £Q = A and updating t time steps yields a set of Is
that lies on the set B.

• The update rule for Larger than Life is given by:

Translated into words, if a dead site sees between (3\ and /?2 live sites in its
neighborhood at time t, it will become live at time t + l. Otherwise, it will remain
cator. However, we began seeing similar configurations, with slight variations, in
in its neighborhood at time t, it will remain live at time t + l. Otherwise, it will
become dead at time t + l. Thus, if A C Zd is a set of Is (on a background of
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Os), then the mapping T is defined by

T(A) = {x e Ac : A < | (z+AOnA| < /32}U{a; e A : ^ < |(x + AA)nA| <<52}.

cator. However, we began seeing similar configurations, with slight variations, in
generates LtL dynamics. To reiterate, we denote the CA mapping from one time
step to the next by T, and use £^ or T*(A) to denote an LtL rule that has
updated t time steps starting from £o = A.

The LtL cellular automata form a four-parameter family of rules indexed by
the endpoints of the intervals which determine each rule: /3j, /?2, <̂ i, and 8^. As
such LtL can be viewed as a subset of a four-dimensional hyperspace with points
(/̂ ii $2 î i> $2) representing d- dimensional cellular automaton rules.

Most of the examples that follow are two-dimensional LtL rules with range
cator. However, we began seeing similar configurations, with slight variations, in
\U\\oo < p} (p 6 N) (i.e., the neighborhood is a box with side length 2p + 1). I

this framework, The Game of Life is a range 1 LtL rule with parameters

We note that each range p 6 N determines a family of LtL rules. To specify

the range in which the rule exists, we include the range when specifying the
rule. Thus, the range p rule with parameters j3\, {3%, #1, and 6? is denoted by
cator. However, we began seeing similar configurations, with slight variations, in2). For example, the Game of Life is the LtL rule (1,3, 3, 3, 4).

2 LARGER-THAN-LIFE REPLICATOR EXAMPLES:
SPACE-TIME DIAGRAMS

The space-time diagram of a replicator suggests a relationship with Pascal's
Triangle Mod 2 in an appropriate dimension. Before getting into the technical
details, we present a variety of LtL examples that illustrate this connection.

All of the replicators in this section are admitted by range 5 LtL rules. We
present these because range 5 is large enough to provide a glimpse of even larger
ranges yet small enough to allow for graphics that are not too unwieldy. We have
many examples of replicators in other ranges that we save for later sections.

For computer simulations, the states are represented by colors. In what fol-
lows we use black for state 1 and white for state 0.

EXAMPLE 2.1

The space-time diagram depicted in figure 1 suggests a relationship with the
two-dimensional version of Pascal's Triangle Mod 2. That is, every fifth time
step, the rectangles evolve in a manner that is reminiscent of the evolution of
the triangle's Is. To illustrate this connection, we present the space-time diagram
for only times that are multiples of five (see fig. 2).
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FIGURE 1 Space-time diagram for LtL rule (5,15,18,15,26) with £0 = {(21,22) £
Z : 0 < zi < 8, 0 < 22 < 2}. Time moves downward and times 0,1,2, . . . ,20 are
depicted.

Of course, rather than focus on the evolution of the rectangles in this exam-
ple, we could have watched the evolutions of the configurations that appear at
time 1 or 2. Those also replicate every five time steps. It takes ten time steps
for the configurations that appear at times 3 and 4 to replicate. This will be the
case in all of the examples that we present; that is, given a configuration that
replicates under a CA rule, one may find a set of other configurations that also
replicate, perhaps taking longer to do so.

To illustrate that the above is not unique to that example, we provide the
space-time diagrams of several more examples below.

Example 2.2. In figure 3, it takes 11 time steps for the initial seed (depicted in
the top row) to replicate.
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FIGURE 2 Space-time diagram for (5,15,18,15,26) with £0 = {(21,22) 6 Z2 : 0 <
z\ < 8 and 0 < Z2 < 2} depicted in the top row. Time moves downward and times
0, 5,10,15, and 20 are depicted.

FIGURE 3 Space-time diagram for LtL rule (5,27,32,26,44) with £o = {(21,22) E
Z2 : 2 < zi < 4 and z2 = 0 or z2 = 4} U {(21,22) € Z2 : 0 < zi < 6 and 1 < z2 < 3}.
Time moves downward and times 0,1, 2, . . . , 11 are depicted.

Example 2.3. The initial seed in figure 4, which is not symmetrical about the
vertical axis, replicates after eight time steps. One of the replicas is rotated 180
degrees.

Example 2.4. This example (see fig. 5) is distinct from examples 2.1-2.3 because
its space-time diagram is symmetric about the diagonal, rather than the vertical
axis. The example is generalized to other ranges in proposition 7.1.

Example 2.5. This example (see fig. 6), and the next one, have three-dimension-
al space-time diagrams. Their dynamics are similar to the previous examples;
however, the duplication occurs in directions perpendicular to the direction of
the initial seed. This provides a 90-degree rotation each time duplication occurs
and thus enables the seed to propagate in two directions rather than one. In each
case, we depict various cross sections of the space-time diagram.
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FIGURE 4 Space-time diagram for LtL rule (5,11,13,11,14) with £0 = {(zi,z2) e
Z2 : 0 < zi < 6 and 0 < z2 < 3} U {(21, z2) e Z2 : 7 < 21 < 8 and 1 < z2 < 2} depicted
in the top row. Time moves downward and times 0 , 1 , 2 , . . . , 8 are depicted.

FIGURE 5 Space-time diagram for LtL rule (5,3,3, 3, 3). Time moves downward along
the diagonal and times 0,4,8,12, and 16 are depicted.

We are interested in the even times since, as will be illustrated in the next
section, their space-time diagrams have a relationship with the three-dimensional
version of Pascal's Triangle Mod 2. As we discussed in example 2.1, this rela-
tionship is not unique to the configuration that appears at time 0. For example,
times 1 + 4fc, and times 2 + 4k, k = 0,1, 2 , . . . also have a relationship with the
three-dimensional version of Pascal's Triangle.

Example 2.6. This is the most intriguing replicator we have found. Its evolution
takes up a lot of space so we depict only times 0, 35, 140, and 175. As illustrated
in figure 7, after just 35 time steps, two replicas that are perpendicular to the
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FIGURE 6 Cross sections of the space-time diagram for LtL rule (5,5,5,5,5) with
£0 = {(zi,z-2) € Z2 : 0 < zi < 10 and z2 = 0}.

original appear. However, it is not until time 140 that exactly four copies appear.
At times 140£ the spatial orientation is just like that of example 2.5 at times 2t,
t = 0,1,2, 3 , . . . , with larger distances between copies. And at times 140t + 35, the
spatial orientation is just like that of example 2.5 at times 2t +1, t = 0,1, 2, 3 , . . . .
We will discuss this example further in section 5.



126 Replicators and Larger-than-Life Examples

3 PASCAL-GENERATING CA RULE

Before getting into the details of the connection between the replicators' space-
time diagrams and Pascal's Triangle in an appropriate dimension, let us explicitly
state what we mean by the d-dimensional version of Pascal's Triangle Mod 2.
First, we need the following definition.

Definition 3.1. The d-dimensional Pascal-generating CA rule, f : {0,1}Z —>
{0,1}Z has neighbor set A/". The state of the site x = (xi,x%,... ,x,i) £ Zd at
time t is denoted by Ct(2) € {0,1}. The space-time diagram of f is a gener-
alization (that depends on A/") of Pascal's Triangle Mod 2, provided the initial
configuration is Co = 0 (i.e., there is a single 1 at the origin and Os elsewhere)
Let us define f and relate it to Pascal's Triangle, following the d = I example
that Durrett constructed [2, section 5d]. Let A/" be the neighborhood of 0 € TLd.
Define

FIGURE 7 Times 0, 35, 140, and 175 for LtL rule (5,26,36,26,41).
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TABLE 1 From example 3.1, d = 1, N = {±1}.

For x, y G Zd define

Then / generates the (d + l)-dimensional generalization of Pascal's Triangle,
with neighbor set A/", as long as we ignore the Os. Also,

When we refer to the space-time diagram of the d-dimensional Pascal-
generating CA starting from £Q = 0, we mean the above (d + l)-dimensional
generalization of Pascal's Triangle Mod 2. Thus, in visualizing it, we assume
that the Os have been ignored, prior to modding out by 2. Doing this acts like a
shift of the state space at alternate times. Hence, the space-time diagram con-
sists of the space where Ct lives at even times, and the same space shifted at odd
times. For example, in dimension d with

this is equivalent to omitting the values of Q ' (z) for all z = (z\, z % , . . . Zd) such
that t + Zi is odd (for some i G {1, 2 , . . . , d } ) , or \z > t (\z = \z± + . . . + \Zd\).
Hence, (2* C 1d and <2t+i C (Z + l/2)d for t = 0,1,2,.... This is illustrated in
the examples below.

Example 3.1. See table l ; d = l , A / " = { ± l } . A few time steps of the action of
/ (empty sites have not yet seen any occupied sites in their neighborhoods) are
depicted in table 1. The modded out version, which is Pascal's Triangle Mod 2,
is illustrated in table 2.
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FIGURES From example 3.2, d = 2, M = {(zi,z2) € Z2 : z< 6 {!,-!},i = 1,2}.

Example 3.2. Here d = 2, A/" = {(21,22) € Z2 : z, e {! , - !} , i = 1,2}. A few
time steps of the action of / (empty sites have not yet seen any occupied sites in
their neighborhoods) are depicted in figure 8 and the modular version appears
in figure 9.

Now let us make the connection between the Pascal-generating CAs and
our replicator examples. To do this, we must find an appropriate tiling of Z2.
We imagine placing a transparency (that represents R2) with tiles drawn on it
(using lines to represent the boundaries of the tiles) over the space-time diagram
in such a way that at a fixed time each replica is contained inside a distinct
tile. For instance, a rectangular tile satisfies our condition for the replicator in
example 2.1. Since that replicator propagates along only one axis and replicas
appear every five time steps, we may illustrate this using a strip of the tiling at
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each time that is a multiple of five. Let us depict two such strips of the tiling,
one at time 0 and another at time 5.

After five more time steps, the replicas are inside a shift of the tiling:

As can be seen in the space-time diagram, every five time steps the set of live
sites will be contained inside either the tiling or a shift of the tiling.

Once we find the desired tiling, we identify the replicators with the centroids
of the tiles in which they lie and imagine the C A map acting on the "centroids" of
the replicators. This is the sense in which the CA behaves like "addition mod 2."
That is, the CA places a replica inside a shifted tile next time if there are an odd
number of replicas inside the tiles surrounding it this time; otherwise, it places
all Os in the shifted tile.

To further illustrate this idea, let us construct the desired tilings for two
more examples from section 2. Example 2.4 is a one-dimensional replicator, but
propagates along the diagonal. Tiles in the shape of parallelograms satisfy our
requirements. A strip of tiles at time 0 and its shift at time 4 are depicted in
figure 10.

Finally, let us illustrate the relevant tiling for example 2.5, which is a two-
dimensional replicator. In that case, the desired tiles are squares; see figure 11.

We note that a requirement for our tiling is that at any given time either
none of the replicas intersect a boundary of the tiling or all of the replicas
intersect a boundary of the tiling (i.e., they all lie inside a tile, or they all lie
inside a shifted tile). We are only going to use the fact that the tiling is actually
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FIGURE 10 Strip of tiles at time 0 and its shift at time 4.

FIGURE 11 Tiling at time 0 and its shift at time 2 for the two-dimensional replicator
from example 2.5.

of R2 to illustrate the partitioning of space and to keep track of the centroids of
the tiles in which the replicas lie.

4 REPLICATOR AXIOMS

In this section we define a replicator using an axiomatic approach. That is, we
list a set of axioms that one may check to confirm the discovery of a replicator.
Following the axioms are two theorems that connect the axioms with Pascal's
Triangle Mod 2 in an appropriate dimension. Additionally, a theorem that sim-
plifies the work required to check axioms 5 and 6 is provided.

Before stating the axioms, we need a few definitions. The definitions are
necessary to construct a tiling of 1,d that will be used to show that the CA rule
of a replicator behaves like "addition mod 2" when restricted to the tiled space
that has been painted with appropriately oriented copies of the replicator and
Os.
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Definition 4.1. Let X C Rd be a set with dimensions a\ x <72 x • • • x &d in d
mutually orthogonal directions and centroid placed on the origin. Let A be the
mutually orthogonal directions and centroid placed on the origin. Let A be the
a partition for Ed and we may tile Rd with I so that all tiles are identically
oriented and so that the initial tile's centroid coincides with a specified point,
(0:1,0:2,...,Zd) £Md.

In order to make the connection with the Pascal-generating CA rule, we
focus on the centroids of the tiles and their images under the CA rule, T. This
requires more definitions.

Definition 4.2. The centroids of the tiles in definition 4.1 are contained in some
set that we will denote by Z j . Let (Z + l / 2 ) j denote the set containing the
centroids of the shifted tiles. Let {0, A}2^ denote the tiled space where each
translate of I is inscribed with either A sharing its centroid, or all Os. Similarly,
let {0, A}( z + 1 / 2 ^ denote the shifted tiling where each translate of I is inscribed
with either A sharing its centroid, or all Os. Let 2TA e {0, A.}zz denote a tile in
which A is inscribed and 1° a tile containing all Os.

In what follows, we confound the space, consisting of tiles inscribed with
copies of A or all Os, with the set, consisting of the centroids of the tiles inscribed
with letters, I e {0, A} to denote whether the tile is inscribed with A or all Os.
We must do this because the CA rule, T, is a map on the space while the Pascal-
generating CA rule, f, is a map on the image of the set of centroids. We use
the notation {0, A}zz for both cases, the meaning of which will be implied via
context.

Definition 4.3. A A'1-1 -string, £ A C {0, A}z^, is a subset that consists of /» disjoint
translates of Xm, m e {0, A} in direction i, li G Z+, i — 1,2,.. . , a; (ui < d).
In other words, it is an li x /2 x . . . x la configuration of tiles in u> mutually
orthogonal directions. Similarly, £A,2 C {0, A } ^ z + 1 / 2 ^ is a subset that consists
of li disjoint translates of Im, m G {0, A} in direction i, li 6 Z+, i = 1, 2 , . . . , w
(ijj < d). If the configuration consists of infinitely many translates in each of the
w directions, then /j —> oo for each i and we call this a h°°"-string. Since each tile
in the string may be one of two patterns, there are 2'1'2---'*" distinct A'^-strings.

mutually orthogonal directions and centroid placed on the origin. Let A be the
(i-dimensional CA rule T is a quadruplet (A,I, T, v) such that

1. A is a finite configuration of Is.
2. v e Nd, T € N, |T*(A)| < oo for t = 1,2,... ,T and T r(A) consists of exactly

2" or 2v copies of A that propagate in directions 1, 2 , . . . , JA
3. 1 is a set that may be used to partition T r(A) in such a way that each copy

of A is contained in a disjoint and adjacent translate of T.
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mutually orthogonal directions and centroid placed on the origin. Let A be the1/2 : {0, A}( z + 1 /2^ 
{0, l}(z+1/2)"i where the sets {0,A}zx and {0, A}(z+1/2)x represent the cen-
troids of the tiles.

5. If£A C {0,A}zz,thenTT(£A) c {0, A}<z+1/2^ andc/>1/2(T
T(£A)) = -F(>(£A);

where .F is the ^-dimensional Pascal-generating CA rule from definition 3.1
with a suitable neighborhood, A/".

6. If £A
/2 c {0,A}(z+1/2)^ then T r ( £ A

2 ) C {0,A}Z^ and 0(TT(£A
/2)) =

•^r((^)i/2(^-A/2))' where J-" is the ^-dimensional Pascal-generating CA rule from
axiom 5.

We must prove that axioms 5 and 6 are sufficient to show the same for all
times that are multiples of T. We do this in theorems 4.1 and 4.2.

Theorem 4.1. / / £ A C {0,A}zi; then for k = 1,2,...

Proof. First, we use induction to prove part 1. The base case, k = 1, is given

in axiom 5. Let n > 1 be a positive integer. We must show that if part 1

where J"A
2 = T(2 n-1) r(£A) C {0, A}(z+1/2)^ by the induction hypothesis.

Now

where by axiom 6, QA = T T ( J A
2 ) C {0, A}zl Finally, by axiom 5, TT(QA) C

{0,A}(z+1/2)x .

To prove part 2 using induction, first let us check the k = 1 case: T 2 r(£A)
= T- (T^(£ A ) )=T T (Q 1 / 2 ) , where

by axiom 5 and axiom 6 gives TT(Qi/2) C {0,A}Z^, as desired. Let n > 1
be a positive integer and assume that part 2 holds for k = n. Then it also
holds for k = n + l since T2("+1>r(£A) = T2T(T2nr(/:A)) = T 2 T ( J A ) where
J Amutually orthogonal directions and centroid placed on the origin. Let A be the
showed that T 2 r ( J A ) c {0, A}zl •
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Theorem 4.2. / / £ A C {0,A}Z l and T is the v-dimensional Pascal-generating
CA rule from definition 2.1 with a suitable neighborhood, N, then for k — 1,2,...,

Proof. First, we prove part 1 using induction. Let us check the basis case:
mutually orthogonal directions and centroid placed on the origin. Let A be the1/2), where by axiom 5, J 1 / 2 =
7-(£A ) C {0,A}(z+1/2)z and axiom 6 gives </>(TT(J1/2)) = ^1/2(^1/2) ) -
Substitution and axiom 5 yield

as desired. Now let n > 1 be a positive integer.

<KT2("+1)T(£A)) = </)(T2r(T2nT(£A))) = 4>(T2r(JA)),

where J A = T2nT(£A) C {0, A}z^ by theorem 4.1, part 2. By the basis case,
0(T2 T(JA)) = ^2((/)(JA)). Substitution and the induction hypothesis yield

as desired. •

Proof. Now let us do an inductive proof of part 2. The basis case, fc = 1, is
given in axiom 5. Let n > 1 be a positive integer.

where J A
2 = r(2n-1)T(JC

A) C {0, A}(z+1/2)£ by theorem 4.1, part 1. Now

0 1 / 2 (T-(T-(J A
2 ) ) ) = <^1/2(T-(QA)) where QA = T-(JA

/ 2) C {0, A}zz by

axiom 6. Thus, by axiom 5 </>1/2(T
r(QA)) = JF(</>(QA)). Substitution yields

By part 1 of this theorem,

as desired. •
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Corollary 4.1.

1. If the Pascal-generating CA rule Ct ha s Co = 0 and neighborhood Af =
{(2i,zmutually orthogonal directions and centroid placed on the origin. Let A be the
• starting from £0 = 1$, (A, T, r, v) is a sawtooth pattern with fixed low value

2"|A|. This value is obtained at times 2nr, n = 0,1,2,....
• The space-time diagram of (A.,2, r, v~] is self-similar and has fractal dimen-

sion Iog2 (2" + 1).
2. If the Pascal-generating CA rule has J\f = {±6j : i = 1,2,..., d}, then

• starting from £Q = 2^, (A, I , r, z/) is a sawtooth pattern with fixed low value
2f|A|. This value is obtained at times 2nr, n —0,1,2, —

• The space-time diagram of (A, I , T, v) is self-similar and has fractal dimen-
sion Iog2(2i/ + 1).

Proof. The first parts of both 1 and 2 follow from 0 and </>]y2 together
with the proof provided in Lind [8]. For the second parts, see Durrett [2,
section 5d] or Wolfram [9, p. 454].

The next theorem shows that the work we must do to check axioms 5 and Q
may be simplified. In fact, rather than check A'"-strings that are arbitrarily long
in each direction, we need only check that the TAs in strings of length 2fc, + 3 in
the i = 1,2,..., v mutually orthogonal directions do not destroy one another's
evolutions after r time steps. Before stating the theorem we need a definition.

mutually orthogonal directions and centroid placed on the origin. Let A be the
for all i e {0 ,1 , . . . , M}. Let J\f be the neighborhood for the CA rule, ft. Fix
i £ { 1 , . . . , d} and let

Then an occupied site can propagate outward at most s$ sites after one time step
in each of the i mutually orthogonal directions. We call s» the speed of light in
direction i.

Fix x = (xi,x%,..., xj). For each t £ {0 ,1 , . . . , M}, let "H1 be the "hyperrect-
angle" with side of length ItSi + 1 in direction i and whose edges are determined
by the sites xi ± tSi, i = 1,2,..., d. Construct the (d + l)-dimensional configu-
ration that consists of a copy of H* at each time t £ {0 ,1 , . . . , M}. This is the
M-lightcone of x. Observe that after M time steps, the only sites that might feel
the effect from the evolution of x (meaning that their neighbor sets might contain
Is generated by x), are contained in the M-lightcone. Thus, the set of occupied
sites in the space-time diagram generated by x is contained in the M-lightcone
of x.

If fi is a finite configuration of occupied sites, define its M-lightcone to be
the union of the M-lightcones of all of its elements.
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Let J- be the v-dimensional Pascal-generating CA rule with neighborhood J\f. If

1- <t>i/i(TT(^)] = .T^OC*)), for each distinct A2fc-+3-string, £A C {0,A}zz
(on a background of Os) and

2. c/>(TT(£A
/2)) = F(<j>1/2(£*/2)), for each distinct A2fc"+3-string, £A

/ 2 C

{0, A} ( z + 1 / 2) i (on a background of Os),

then axioms 5 and 6 hold. In other words, instead of checking all strings, £A and
£A/2, it suffices to check only strings of length ki, in directions i = 1, 2 , . . . , v, ki
defined above.

Proof. In order for axioms 5 and 6 to hold, parts 1 and 2 must be satisfied
for A00"-strings. We must show that we may restrict our attention to A2/c"+3-
strings.
We begin by showing part 1. Fix TA £ {0, A}zz, a translate of I that is
inscribed with A sharing its centroid. Compute the maximum number, ki,
of translates of I painted with all Os, that may be placed between I A and
another translate of T that is inscribed with A in direction i, so that the
evolutions of the copies of A might intersect by time T. Since Z comprises
CTJ sites in direction i, there will be at least (fcj + l)<7j — A» Os in directioi
between these copies of A.
The evolutions in direction i of the A's might interact by time T if their
respective r-lightcones intersect in direction i. The fastest each evolution
can propagate is the speed of light, or s^r sites every T time steps. Since
these evolutions are moving toward one another, the only way they can
interact by time T is if they were separated by fewer than or equal to 2s^T
Os, at time 0. Thus, the T-lightcones will intersect if and only if 2sjT >
(ki + l)ffi — A;. Solving the inequality yields [2s;T — (<TJ — AJ)]/<TJ > ki a

Example 4.1. T is a ^-dimensional LtL rule and A/" is the range p box neighbor-
hood. Then p is the speed of light in every direction (so Sj = p Vi) and 7i* is
the d-dimensional hyper cube with side length 2tp + I and edges determined by
Xi±tp,i-l,2,...,d.

Theorem 4.3. Suppose we are given the d-dimensional CA rule, T, and the
quadruplet, (A, J , r,v), v < d. Let \i be the number of sites in direction i required
for the smallest hyperrectangle in which A may be inscribed. Let o~i be the max-
imum number of sites in direction i that T comprises and let Sj be the speed of
light in direction i, i = 1, 2 , . . . , v (the v directions must be mutually orthogonal).
Let



5 CONSTRUCTION OF THE SET, A TILING, AND THE
BIJECTIONS FOR A SPECIFIC CLASS OF REPLICATORS

In this section we find the set 2 and construct the bijections, (j> and </>i/2,n 
axiom 4 for replicators for which the neighborhood, A/", of the relevant Pascal-
mutually orthogonal directions and centroid placed on the origin. Let A be the
{—1,1}, i = 1,2, . . . ,d}. For these replicators 2" copies of A appear at time r.
The entire discussion generalizes to replicators that have different neighborhoods
provided an appropriate set I and mappings can be found. We discuss one such
example in section 6.

In order to find X and construct the bijections, we must define precise pa-
rameters Afc, 7fc, and <jfc, k = 1,2, . . . ,d that we will use to tile and map the
space accordingly. We begin with A&, but first need the following.

mutually orthogonal directions and centroid placed on the origin. Let A be then] for some n < oo,
mutually orthogonal directions and centroid placed on the origin. Let A be thejl,zj2, zj3, . . . , zjd), j = 1, 2, 3, . . . , n. By axiom 2, T r (A) | < oo for
t = 0, 1, . . . , T; thus, after t <r time steps, the configuration of Is that represents
mutually orthogonal directions and centroid placed on the origin. Let A be thet}, for some nt < oo.
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By symmetry, the same number of tiles painted with all Os can be placed
between the original J A and another copy, on the opposite side, in direction
i. Thus, we may restrict our attention to subsets of {0, A}zz that consist of
2fc; + 3 disjoint translates of T in direction i in which are inscribed with copies
of A or all Os. For each such configuration in {0, A } Z I , we must run the rule
for r time steps and check that part 1 holds. This will ensure that the J A s
do not destroy one another's evolutions. Since the rule and neighborhood
are symmetric, we need only check unique cases modulo translation and
symmetry.
mutually orthogonal directions and centroid placed on the origin. Let A be the

• Let

Translated into words, for k = 1,2,3,... ,v, X^ represents the number of
sites in direction k required for the smallest hyperrectangle S C ((l/2)Z)d in
which A may be inscribed. For k — v + 1, v + 2 , . . . , d, X^ represents the number
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of sites in direction k required for the smallest hyperrectangle S C ((l/2)Z)d in
which T*(A) may be inscribed, where t (0 < t < T) represents the time for which
this number is the largest.

• Let S C ((l/2)Z)d be a AI x A2 x AS x . . . x A<2 hyperrectangle oriented so that it
mutually orthogonal directions and centroid placed on the origin. Let A be the
mutually orthogonal directions and centroid placed on the origin. Let A be the2 , . . . , zj) &
((l/2)Z)d : 0 < zmutually orthogonal directions and centroid placed on the origin. Let A be the
centroid of A (which does not necessarily lie on A) coincides with the centroid,
((Ai - l ) /2 , (A2 - l ) /2 , (A3 - l ) / 2 , . . . , (Xd - l) /2), of S.

For instance, in example 2.1, A = {(21,22) e Z2 : 0 < zi < 8,0 < z2 < 2}
so AI — 9. To compute A2 we use the space-time diagram which shows that the
length in direction 2 is largest when t — 4. The maximum length in direction 2
of the rectangle required to contain T4(A) is A2 = 25. Thus, S = {(21,22) G
((1/2)Z)2 : 0 < xi < 8 and 0 < x2 < 24} and we embed A in S by placing the
centroid, (4,1), of A on the centroid, (4,12), of S.

Let 7fc be the number of sites in direction k, k = 1, 2 , . . . , v between the 2"
copies of A that axiom 2 gives at time r. The 1V copies of A are translations (and
possibly rotations) of A = {z\, z 2 , . . . , zn} and propagate in directions 1,2,. . . , v.
Write each of the 2" copies as Am = {zi<m, z 2 , m , . . . , zn<m], m = 1,2, . . . ,2 I / ,
where zj<rn ^ (zji,m, Zj2,m, z^m,... ,jjd,m), j = 1,2,3,... ,n. Then

Let us compute 7 .̂ explicitly.

• Let

In directions i/ + l,i/ + 2 , . . . ,d , there are no additional copies of A (since it is
a ^-dimensional replicator) so we use 7^ = 2/o + 1. This provides a band of Os of
width p + (1/2) on each side of S in the additional directions. The band of Os is
included to prevent interaction among disjoint replicators in adjacent subspaces.
It is necessary because axiom 4 requires that (j) and 0!/2 be defined on {0, A } Z I

and {0, A}(z+(1//2)):z:, respectively but the ^-dimensional replicator propagates in
only v directions.
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For instance, in example 2.1, v = 1 and T5(A) = {(^1,^2) G Z2 : —12 <
zi < -4 ,0 < z2 < 2}U{(z!,z2) £ Z2 : 12 < zl < 20,0 < z2 < 2}. Thus, 71 = 15,
ai = 24, and 172 =36.

• Let T C Rd be a set that comprises cr̂  sites of 1d in direction fc.

Ti/e Md with T (as described in definition 4.1) so that all of the tiles are
identically oriented and the initial tile's centroid coincides with the centroid
((Ai - l)/2, (A2 - l ) / 2 , . . . , (Xd - l)/2) of S. Then each tile's centroid is in the
set Zf = aiZ x cj2Z x . . . x ad1 + ((Ai - l)/2, (A2 - l ) / 2 , . . . , (Xd - l)/2). The
centroids of the shifted tiles are in the set (Z+(l/2))£ = al(Z + (l/2)) x cr2(Z +
(1/2)) x . . . x ad(1 + (1/2)) + ((A! - l)/2, (A2 - l ) / 2 , . . . , (Xd - l)/2).

• Since each tile's centroid has the form (cr\ni + (X\ — !)/2,<72n2 + (A2 —
l)/2,...,adnd + (\d - l)/2) € Zf U (Z + (l/2))f, let I[n j in2 i . . . ,nd) £

{0,A}zi U {0, A} ( z + ( 1 / 2 ) ) i denote ezifter the tile or its centroid, whichever
is appropriate in the given context, inscribed with / € {0, A} ({0, A } Z I and
{0, A}(z+(1/2))i are defined in definition 4.1).

• If I1,is appropriate in the given context, inscribed with / € {0, A} ({0, A}ZI and
CA rule after rt time steps, TT ' ( J ' is appropriate in the given context,  inscribed with /  € {0, A} ({0, A}ZI and
and in { ( U } ^ 1 ^ if H S odd.

. Define 0 : {0, A} z- - {0, 1}Z" by </>( îs appropriate in the given context, inscribed with / € {0, A} ({0, A}ZI a

mutually orthogonal directions and centroid placed on the origin. Let A be theis appropriate in the given context, inscribed with / € {0, A} ({0, A}ZI and
( n i , n 2 ) . . . , n d ) ^ / ^ ' \ where

We prove that </> and $1/2 are bijections in the appendix.

Definition 5.1. The projection maps,

are defined by

respectively, where I £ {0,1}.
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Proposition 5.1 . Suppose the quadruplet (A, I , T, v) is a replicator under the CA
rule, T, with relevant ^-dimensional Pascal-generating CA, f, that has neigh-
Proposition 5.1 . Suppose the quadruplet (A, I, T, v) is a replicator under the CA2, ...,zv):zi£ {-I, l},i = 1,2, . . . ,i/} and I, </>, and <j>i/
constructed as above and TT and 7r]/2 from definition 5.1.

1. If ;y — I and I comprises a\ sites in the direction along which A propagates,
then the following diagram illustrates the locations of the centroids of the tiles
under the map TT and the connection via <p and 4>\ii with .T7, which generat
Pascal's Triangle Mod 2.

2. If v = 2 and I comprises o\ sites in direction 1 and a% sites in direction 2
(where A propagates along these mutually orthogonal directions), then the
following diagram illustrates the locations of the centroids of the tiles under
the map Tr and the connection with J-, which generates the three-dimensional
version of Pascal's Triangle Mod 2.

Proof. Both parts 1 and 2 follow by construction of T, 0, and <j>i/'2
axioms 5 and 6.

Revisiting Example 2.6. We may use part 2 of proposition 5.1 with CTI = cr2 = 144,
and T = 140 to compute the distances between the copies of the replicator at
each time that is a multiple of 140 (also note that A! = 72, A2 = 32).
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Corollary 5.1. For k — 0 ,1 ,2 , . . . ,$ and $1/2 restricted to v dimensions and
followed by the projection maps TT and vrj/2 from definition 5.1 (i.e.,

and

Translated into words, there is a one-to-one correspondence between the space-
time diagram of the replicator starting on a background of Os and the space-time
diagram of the Pascal-generating CA rule starting with a single live site at the
origin, provided we ignore the zeros prior to modding out in the latter case (see
definition 3.1).

Proof. Both parts 1 and 2 follow from proposition 5.1 and theorems 4.1 and
4.2.

Revisiting Example 2.1. Let us show that example 2.1 is a one-dimensional repli-
cator. We have already shown that axioms 1-4 hold. Recall that the LtL rule is
(5,15,18,15, 26) and A is a 9 x 3 rectangle. In section 5 we computed AI = 9,
A2 = 25, and T = 5. We also found a\ = 24 and 172 = 36, the dimensions of the
rectangle I used for the tiling depicted in section 2 and we constructed the maps
(j> and 0i/2-

Begin with a single copy of A inscribed in the tile T whose centroid,
(23/2,35/2) is placed on the "center" (4,12) of the evolution of A. Denote this
by (0,0)A. By construction of T we may apply proposition 5.1, part 1, to see that
the first parts of axioms 5 and 6 hold.

To check the remaining parts of axioms 5 and 6, we need only check A5-strings
since theorem 4.3 gives

Let us do the required checking. Since relevant configurations are strings of
length 5, there are at most 25 cases that must be checked. However, in the set of
such possibilities many of the cases are irrelevant or redundant. First of all, fei = 1
means that tiles inscribed with copies of A which are separated by 2 or more
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FIGURE 12 The relevant A5-strings for example 2.1.

other tiles consisting only of Os will not feel the effects of one another's evolutions
by time 5. This restriction eliminates six of the cases. Identifying configurations
which are equivalent, either mod translation or via a 180-degree rotation, elim-
inates another 16 cases. Hence, only the ten cases depected in figure 12 require
checking. The checking consists of showing that each configuration (assuming
there are tiles consisting of only Os surrounding those that are depicted) satisfies
parts 1 and 2 of theorem 4.3.

In order to do this checking, we ran the above rule on each of the first six
distinct initial states, for r — 5 time steps each. See figure 13 for the resulting
diagrams, shown actual size.

The last space-time diagram is actually the union of two copies of the first
since the copies do not interact by time 5. This shows that the evolutions of the
copies of A do not interact unless they are contained in adjacent tiles. Thus, the
remaining four cases evolve as disjoint unions of the cases already checked and,
hence, it is not necessary to recheck them.

We have already seen that the CA map, T5, shifts the locations of the cen-
troids of the tiles. And since the replicators' dynamics will be the same on the
shifted tiling as they were on the original tiling (since the replicators themselves
remain in Z2), we may use the work done to check axiom 5 to determine that
axiom 6 holds as well.

6 MORE REPLICATOR EXAMPLES

In this section we present a variety of examples for which the constructions in sec-
tion 5 apply. In each case, we present the replicator as a quadruplet, (A, J , is, r) ,
along with its CA rule. Proposition 5.1, part 1, applies to all but the last two
examples in this section. We leave it to the reader to verify that the other parts
of axioms 5 and 6 also hold. This may be done with the assistance of WinCA
which may be downloaded from Griffeath's site [7].
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FIGURE 13 Space-time diagrams for the LtL rule (5,15,18,15, 26).

We begin with the famous HighLife replicator (which is a range 1, non-
LtL rule that was discovered by Nathan Thompson in 1994). Each of the other
examples is admitted by an LtL rule.

Example 6.1. Bow tie pasta (A,J, 12,1), where A is the configuration in fig-
ure 14(a) and I is a rectangular tile oriented along the diagonal that comprises
CTI = 4 and a^ = 10 sites (see fig. 14(b)). This replicator is admitted by HighLife
which is a variant of Life (see Bell [1]). As in the Game of Life, Os become Is
next time if they see three Is in their range 1 box neighborhood this time, and
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FIGURE 14 Bow tie pasta (A,1,12,1). (a) Lambda configuration, (b) A portion of
the tiled space, with evolution along the diagonal, (c) Space-time diagram of replicator
for HighLife rule. Time moves downward along the diagonal and times 0,1,2, . . . ,12
are depicted.

Is remain Is if they see three or four Is (including themselves) in their neigh-
borhoods this time. However, in HighLife, a 0 can also become a 1 next time if
it sees six Is in its neighborhood this time, and, hence, HighLife is not an LtL
rule. The additional possibility for birth yields the bow tie pasta, which is not
admitted by Life.

As in example 2.4 the bow tie pasta's evolution occurs along the diagonal.
This is depicted in figure 14(c).

Example 6.2. (A,1,14,1,) admitted by LtL rule (2,5,6,5,7), where A is the
configuration in figure 15(a), and I is a rectangle with parameters CTI = 24 and
<72 = 23. Let us present 32 rows of the space-time diagram (fig. 15(b)) so that
the reader may see the "bigger picture."

The next example is admitted by an LtL rule that is "Life-like" in the sense
that when started from a random initial configuration, various local configura-
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FIGURE 15 (A,1,14,1,) admitted by LtL rule (2, 5, 6, 5, 7). (a) Lambda configuration,
(b) Space-time diagram of replicator. Times 14/c, k — 0,1, 2,. . . , 31 are depicted.

FIGURE 16 (A, J,8,1) admitted by LtL rule (3,6,6,6,6). (a) Lambda configuration,
(b) Space-time diagram. Times 0,1,2,. . . , 8 are depicted.

tions such as bugs, which are analogs to Life's gliders, and bug makers, analogs
to Life's glider guns, emerge and are viable, while aperiodicity is not viable (see
Evans [4, 5]). The replicator also emerges from a random initial state. There are
no such replicators known for the Game-of-Life rule.

Example 6.3. (A,1,8,1) admitted by LtL rule (3,6,6,6,6), where A is the con-
figuration in figure 16(a), and 1 is a rectangle with parameters a\ = 32 and
era = 17. Let us depict times 0-8 of the space-time diagram generated by A (see
fig. 16(b)).

Example 6.4. (A,1,14,1) admitted by LtL rule (4, 8,9, 8,12), where J is a rect-
angle with parameters a\ = 68 and a2 = 51. While A is too large to depict here,



it can be generated by running the rule for seven time steps starting from the
seed in figure 17(a).

The next example illustrates that in the region of LtL space where the rule's
parameters, /3i, 02, 5i, and 5?, are near p, it is easy to construct new replicators
from those that are known. This is also the region in which replicators seem to
be most abundant.

Example 6.5. Arrow Replicator (A,1,4,1) admitted by LtL rule (5,3,3,3,3),
where A is the configuration in figure 18(a), and I is a rectangular tile oriented
along the diagonal that comprises a\ = 32 and 172 = 53 sites. This range 5
replicator combines copies of that from example 2.4 (and generalized in propo-
sition 7.1) to form a new replicator that also propagates along the diagonal axis
(see fig. 18(b)).

The replicator in example 6.6 (see fig. 19) is generalized to other ranges in
the next section (proposition 7.2).

Example 6.6. (A,I, 4,1) admitted by LtL rule (6,12,13,12,13), where A is the
configuration in figure 19(a), and I is a square with parameters a\= o-i — 28.

Example 6.7. (A,!, 22,1) admitted by LtL rule (7,14,14,14,14), where A is the
configuration in figure 20, and I is a rectangle with parameters a\ = 154 and
CT2 = 3 5 .

The next example is a range 7 replicator-maker. That is, it is a finite con-
figuration that periodically generates a copy of the seed for the replicator from
example 6.7.

Example 6.8. LtL rule (7,14,14,14,14). This rule admits the previous example
and the replicator-maker, depicted in figure 21 at time 0, that generates a copy
of the replicator every 32 time steps.
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FIGURE 17 (A,!, 14,1) admitted by LtL rule (4,8,9,8,12). (a) Lambda configuration,
(b) Space-time diagram. Times 0,14,28,42, and 56 are depicted.
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FIGURE 18 Arrow Replicator. (A,I, 4,1) admitted by LtL rule (5,3,3,3,3).
(a) Lambda configuration, (b) Space-time diagram. Time moves downward along the
diagonal and times 0,4,8,12, and 16, are depicted.

FIGURE 19 (A,1,4,1) admitted by LtL rule (6, 12, 13, 12, 13). (a) Lambda configu-
ration, (b) Space-time diagram. Times 0,1,2,3, and 4 are depicted.

FIGURE 20 Lambda configuration for (A,1,22,1) admitted by LtL rule
(7,14,14,14,14).

FIGURE 21 LtL rule (7,14,14,14,14), at time 0.
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FIGURE 22 Space-time diagram of example 6.9, showing action of / .

The last LtL example is a two-dimensional replicator from range 3 that
propagates along the diagonals. We present this example because the requisite
Pascal-generating CA in axioms 5 and 6 has neighborhood A/" = {±e, : i = 1,2},
even though the LtL rule has a box neighborhood. This is different from the
other examples we have presented. Let us present that Pascal-generating CA
before the LtL example.

Example 6.9. This is the Pascal-generating CA rule with d = 1 and J\f =
{±ei : i = 1,2}. The space-time diagram (fig. 22) of this CA is another three-
dimensional generalization of Pascal's Triangle Mod 2. A few time steps of the
action of / (empty sites have not yet seen any occupied sites in their neighbor-
hoods) are depicted in figure 22 and the modular version is figure 23.

Example 6.10. (A,I, 4, 2) admitted by LtL rule (3,3,3,5,5), where A is the con-
figuration in figure 24(a). The cross sections of this replicator's three-dimensional
space-time diagram are depicted in figure 24(b).
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FIGURE 23 Constructed from figure 22 by ignoring the Os and modding out by 2.

The tile for this replicator is a rhombus with dimensions a\ = a% = 16 in the
directions along which it propagates. Times 0,4,8,12, and 16 of the replicator
in the tiled space are depicted in figure 25. As usual, every four time steps
the replicas are contained inside a shift of the tiled space. For this CA and tiling
depicted in figure 25, the centroids are in the set (criZx<72Z)U((<7i/2)Zx (<72/2)Z)
at even times and in the shifted set, ((<7i/2)Z x o^Z) U (a\L x (a2/2)Z) at odd
times. Note that here the shifting occurs in each direction separately since that
is how the Pascal-generating CA neighborhood is defined. </> and (f>i/2 are denned
as in section 5; however, proposition 5.1 does not apply. Instead, the diagram on
page 146 applies.

We note that we have many more LtL replicator examples in a variety of
ranges. These are best introduced in an animation fashion so we refer the reader
to the collection of replicator experiments at Evans [6].

7 GENERALIZED REPLICATORS

In this section we show that for LtL rules with box neighborhoods, there exist
one-dimensional replicators for all ranges p > 3 and two-dimensional replicators
for ranges p>\. We do this by generalizing several replicators in the following
propositions.
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FIGURE 24 (A,1,4, 2) admitted by LtL rule (3,3,3,5,5). (a) Lambda configuration,
(b) Cross sections of the space-time diagram for this replicator.

FIGURE25 (A,J,4,2) depicted in the tiled space at times 0,4,8,12,16.
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FIGURE 26 (A,J,T, 1) admitted by LtL rule (,0,3,3,3,3).

In the previous section we showed that there exists a one-dimensional repli-
cator admitted by a range 2 LtL rule. We have not yet found a one-dimensional
replicator admitted by a range 1 LtL rule (though we do most of our work in
ranges larger than 1). We have, however, found many two-dimensional replicators
admitted by range 1 LtL rules. We have also learned of many one-dimensional
replicators admitted by range 1 non-LtL rules [3].

The range 5 version of the following generalization appears in example 2.4.

Proposition 7.1. For two-dimensional LtL rules with range p box neighborhoods
such that p = 3 + i, i — 0,1, 2 , . . . , A consists of the sites on the boundary of a
1p x 2/9 box with the two sites at the northeast and southwest corners deleted,
tile 1 that comprises a\ = 16 + 8i, and a? — 24 + 9i sites along the diagonal, and
r = 4, (A,I,r, 1) is a one-dimensional replicator with respect to the rule with
parameters /3j = fa — 5\ = 62 = 3.

Proof. This family of replicators propagate along the diagonal as shown in
figure 26. For each distinct range p € {3 + i : i = 0,1, 2 , . . .} , the spatial
configurations of live sites are identical, except the blocks that appear at
time 2 and the distances along the diagonal between the configurations of
live sites vary as the range does. These variations are as follows.
The side length of the blocks that appear in the northwest and southeast
corners at time 2 is 5 + 1i.
The number of dead sites along the diagonals between the configurations of
live sites is: 4 + 1i at time 0; 8 + 4i at time 1; 4 + 2i at time 2; 16 + 8i
at time 3; and 12 + 6i at time 4. We use this information to construct the
tile, 2, with a\ — 16 + 8i representing the number of sites it comprises in
direction 1 along the diagonal where propagation occurs and a^ = 24 + 9z
its analog in the mutually orthogonal direction 2. Z2 is tiled as illustrated
in figure 27.
Since 2" is a rectangular tile, we may use the constructions from section 5 to
yield the following.
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FIGURE 27 Z2 is tiled at times 0 and 4.

This table shows that the first parts of axioms 5 and 6 hold; therefore, all
that must be checked are properties 1 and 2 of theorem 4.3, where

There are eight distinct strings of length 3. However, we already checked the
case consisting of exactly one tile inscribed with A. The case consisting of
all Os is trivial and, since fci = 0 and two of the remaining four cases are
equivalent mod translation, we need only check the two cases in figure 28,
consisting of two and three adjacent tiles inscribed with A, respectively.
(Distances between sites scale with the range as described above.) •

The range 6 version of the following generalization appeared in
example 6.6.

Proposition 7.2. For two-dimensional LtL rules with range p box neighborhoods
such that p 6 U^3{3/ -3,31- 2}, A = {(21,22) € Z2 : 0 < zl < 1p - (I - 1) and
0 < 22 < 2}, rectangular tile T with dimensions a\ = 2/9 + 2 and a^ = 4/3 + 4,



FIGURE 28 Space-time diagrams starting from 2 and 3 copies of A in adjacent tiles,
respectively. Time moves downward along the diagonal and times 0,1,2,3,4 are de-
picted.

As discussed before, this gives us ten distinct cases to check, one of which
we just did. Let us check the remaining cases. We begin with two copies of
A separated by a tile painted with all Os, illustrated in figure 30(a).
In figure 30(a), the numbers of live sites are as in the case with only one copy
of A (depicted in gory detail in fig. 29). The number of dead sites between
the copies at time 0 is 19/ — 12; at time 1, 171 — 12; at time 2, 13Z - 8; 
time 3, 111 — 8; and at time 4, 71 — 4. Thus, at time 4 all four copies a
separated by the same number of dead sites, as required. Observe that the
copies of A do not interact by time 4. Thus, as in example 2.1, we have only
four cases left to check. These are illustrated in figure 30(b).
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and T = 4, (A,I, 2,1,) is a one-dimensional replicator with respect to the rule
with parameters /3i = 5i = 2p, fa = 2p + I < 52 < 3p + 2.

Proof. Case 1: p = 31 — 3. Let us check that axioms 1-6 hold. We do this b
illustrating the evolution of A under T. In all of the illustrations in figures 29
and 30, A has height 3, width 51 — 4, and the centroid of the evolution is the
centroid of A.
Figure 29 shows that v = 1 and axiom 2 will be satisfied with either T = 2,
or T = 4. Axioms 5 and 6 will yield r = 4 so let us use that. We may use
the construction of the tile I and the maps 0 and </>i/2 from section 5. Thus,
CTI = 121 — 8 and cr2 = 121 — 10. Since the speed of light in direction 
p = 31 — 3, theorem 4.3 gives
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FIGURE 29 Space-time diagram illustrating in detail times 0,1,2,3, and 4, starting
from A.

In order to describe the numbers of dead sites between the various configura-
tions of live sites at each time step, we depict in detail (fig. 31) the space-time
diagram starting from three adjacent tiles inscribed with copies of A. In that
case, for axiom 5 to hold, two copies of A must appear at time 4 with two
tiles inscribed with all Os between them. Thus, there should be 31/ — 20 dead
sites between the copies of A.
At time 4, we see that there are 311 — 20 dead sites between the copies, a
required. Figure 31 captures the scale of other space-time diagrams as well.
Thus each of the required configurations satisfy axiom 5. The checking for
axiom 6 is identical and, thus, by construction of the tile, I, the replicator
satisfies the axioms. •

Case 2: p = 31 — 2. This example is just like the previous example, with 
slight variation. We illustrate in figure 32 the variation in the first four time
steps and leave it to the reader to fill in the remaining details.
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FIGURE 30 (a) Two copies of A separated by a tile painted with all Os. (b) Space-time
diagrams starting from 2,3,4, and 5 copies of A in adjacent tiles.

Proposition 7.3. For two-dimensional LtL rules with range p box neighborhoods,
FIGURE 30 (a) Two copies of A separated by a tile painted with all Os. (b) Space-time2) e Z2 : 0 < z\ < 2/9 and z% = 0} square tile T with side length
2(p + k + 1) and r = 2, (A, I , T, 2) is a two-dimensional replicator with respect
to the exactly 0 rule (p, 6, 9,9, 9), for 9 = p - k, k e {0,1, 2 , . . . , p - I}.

Proof. We leave it to the reader to check that axioms (l)-(6) from defini-
tion 4.4 hold.

Proposition 7.4. For two-dimensional LtL rules with range p box neighborhoods,
Proposition 7.4. For two-dimensional LtL rules with range p box neighborhoods,2 = 0} I is a square with
a two-dimensional replicator with respect to the exactly theta rule, (p, 0, 9,9, 92 = [2 + 2(p mod 2)}p, and r = 2 + 2(/> mod 2) (A, J , r, 2) is
a two-dimensional replicator with respect to the exactly theta rule, (p, 0, 9,9, )
for 9 = p+l.

Proof. We leave it to the reader to check that axioms (l)-(6) from defini-
tion 4.4 hold.

There are many other generalizations of replicators as well; we provide only
a few to illustrate that there are numerous examples.
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FIGURE 31 Space-time diagram illustrating in detail times 0,1,2,3, and 4, starting
from three copies of A in adjacent tiles.

8 APPLICATIONS TO THE INFINITE SYSTEM

Up to now we have focused on the local aspects of replicators. Do replicators im-
pact the global dynamics of the rules that admit them? We will show that, when
restricted to particular initial states, the rules have well-understood stationary
distributions. To do this, we use the ideas in Durrett [2, section 5d]. He does this
for the case of the one-dimensional Pascal-generating CA with TV" = {±1}.

Let T be a d-dimensional CA rule and assume that it admits the replicator,
(A,Z, T, i/). Let TT be the restriction of T to A°°"-strings (i.e., configurations
that consist of infinitely many disjoint translates of TA in each of the i mutually
orthogonal directions (i = 1, 2, . . . ,v) with each translate inscribed with a copy
of A or all Os) at times tr, t = 0,1, 2, . . . .

Let 770 = product measure with density 0. That is, at time 0 each tile is
independently inscribed with a copy of A with probability 6, and all Os otherwise.
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FIGURE 32 Space-time diagram illustrating in detail times 0,1,2,3, and 4, starting
from A.

Proposition 8.1. The measure 771/2 is a stationary distribution for TT. That is,
starting from 771/2, the IA ' s in the image under TT are independent and identi-
cally distributed.

Proof. Let 771/2 be the initial configuration. It suffices to show that the
measure that gives equal mass to every configuration is invariant under TT.
In other words, it suffices to show that the mapping

is one to one and onto. And, since the infinite system is the limit of processes
on strings of finite length, it suffices to show that the mapping

is 2t("+1)'/-"I to 1 and onto, where n £ Z+. This will yield the desired
outcome since there are 2(n+l*> possible preimages and only 2" images.
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then

Using the inductive hypothesis and the Binomial Theorem, the above is equal

Us

as desired. •

Let

so that s is a string that has length n in each of the v directions. Consider the
possible preimages for s. The sites in v of the hyperfaces (these are edges
in two dimensions and faces in three dimensions) of the preimage can be
whatever we like and then each of the remaining sites in the configuration
can take on only one possible value in order for the image to be s. Thus, we
need only count the number of possible configurations for the hyperfaces.
There are (n + I )"" 1 sites in the first hyperface, n(n + 1)"~2 sites in the
second (that have not already been counted), n2(n + 1)"~3 in the third, and
so on. Thus, the total number of sites in all of the relevant hyperfaces is

There are (n + I)""1 sites in the first hyperface, n(n + 1)"~2 sites in the

First, use the Binomial Theorem to get

Now we induct on v so want to show that

Since
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where v is a vector in I , and 9V is the shift operator which translates the
entire tiling by v. Then, by construction, p, is translation invariant. Also fj,
consists of independent copies of the A'^"-strings described in proposition 8.1.
Thus, the probability that any tile in fj, contains a copy of A is 1/2. Therefore,
fj, is a nontrivial invariant measure for T. m

What happens starting from product measure with density 6 if 9 ^ 1/2?
The reader is referred to Dur [2, section 5d] for this, as well as other properties
for the v = 1 case. As D. Lind (whose approach Durrett follows in section 5d)
says, "Extensions to higher ranges should be clear" (see Lind [8, p. 36]).

Corollary 8.1. If a CA rule, T, admits a (/-dimensional replicator, then it has a
nontrivial invariant measure.

Proof. By definition, we have a tile, T, and a finite configuration of Is,
A. Now let us construct an invariant measure. We work in the tiled space,
{0, A } Z I (see definition 4.1). With probability 1/2, place a copy of A inside
each tile. Call the resulting tiling X. There are \X\ distinct shifts of I. Form
the average over all of the shifts,

APPENDIX

Let us prove that the maps cj> and </>j/2 defined in section 5 are bijections.

Let us prove that the maps cj> and </>j/2 defined in section 5 are bijections.2,... ,nd

6 {0, l}z< i , (TO 6 {0,1}), there exists an x = Il
(ni n^ rarf) € {0, A}2? such that

4>(x) = ( n i , n2 , . . . , nd )0 ( ( ) = ( n i , n 2 , . . . , n d ) m by taking

The proof that 0 1 / 2 maps {0, A}(z+1/2)z onto {0, l}(z+V2)d
 i s identical with

0 replaced by 0 1 / 2 , Z^ replaced by (Z + l/2)f, and Zd replaced by (Z + l/2)d.

In order to prove that cf> is one to one, let a,b £ {0, A}zz with a ^ 6. Then a 

^(m,^,...,^) a n d 6 = Il(1/2, Z^ replaced by (Z + l/2)f, and Zd replaced by (Z + l/2)d.
2 d , j , ^ G {0, A}. Since a ^ b, either n/t ^ TO/; for some k e {1, 2 , . . . , d} or j ^ I.
Now <f>(a) = (n\, HZ, • • •, nd)^^ and 0(6) = (TOI, 7712,..., rrid)^^ so in either ca
0(a) ^ 0(6), as desired.

The proof that $1/2 is one to one, is identical with 0 replaced by 0i / 2 , Z j
replaced by (Z + l/2)£, and Zd replaced by (Z + l /2) d •



Kellie Michele Evans 159

REFERENCES

[1] Bell, D. "HighLife—An Interesting Variant of Life," 1994.
(http: //www.tip.net.au/~dbell/).

[2] Durrett, R. Lecture Notes on Particle Systems and Percolation. Pacific
Grove, CA: Wadsworth & Brooks Cole, 1988.

[3] Eppstein, D. Personal communication, 1999.
{http: //www. i c s . uc i . edu/~eppstein/ca/repl icators) .

[4] Evans, K. "Larger than Life: It's So Nonlinear." Ph.D. diss., University of
Wisconsin-Madison, Ann Arbor, MI, 1996.

[5] Evans, K. "Larger-than-Life: Digital Creatures in a Family of Two-
Dimensional Cellular Automata." Discrete Math. & Theor. Comp. Sci.
(2001). (h t tp : / /dmtcs . lor ia . f r ) .

[6] Evans, K. "Replicators and Larger-than-Life Examples—Experiments."
1999. {http: /V/www. csun. edu/~kme52026/replicators . html).

[7] Griffeath, D. "Primordial Soup Kitchen."
{http: //psoup.math.wise.edu/kitchen.html).

[8] Lind, D. A. "Applications of Ergodic Theory and Sofic Systems to Cellular
Automata." Physica D 10 (1984): 36-44.

[9] Wolfram, S. Cellular Automata and Complexity. Menlo Park, CA: Addison-
Wesley, 1994.



This page intentionally left blank 



Growth Phenomena in Cellular Automata

Janko Gravner

We illustrate growth phenomena in two-dimensional cellular automata
(CA) by four case studies. The first CA, which we call Obstacle Course,
describes the effect that obstacles have on such features of simple growth
models as linear expansion and coherent asymptotic shape. Our next
CA is random-walk-based Internal Diffusion Limited Aggregation, which
spreads sublinearly, but with a shape which can be explicitly computed
due to hydrodynamic effects. Then we propose a simple scheme for char-
acterizing CA according to their growth properties, as indicated by two
Larger than Life examples. Finally, a very simple case of Spatial Pris-
oner's Dilemma illustrates nucleation analysis of CA.

1 INTRODUCTION

In essence, analysis of growth models is an attempt to study properties of physi-
cal systems far from equilibrium (e.g., Meakin [34] and more than 1300 references
cited in the latter). Cellular automata (CA) growth models, by virtue of their

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 161
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simplicity and amenability to computer experimentation [25], have become par-
ticularly popular in the last 20 years, especially in physics research literature
[40, 42]. Needless to say, precise mathematical results are hard to come by, and
many basic questions remain completely open at the rigorous level. The purpose
of this chapter, then, is to outline some successes of the mathematical approach
and to identify some fundamental difficulties.

We will mainly address three themes which can be summarized by the terms:
aggregation, nucleation, and constraint-expansion transition. These themes also
provide opportunities to touch on the roles of randomness, monotonicity, and
linearity in CA investigations. We choose to illustrate these issues by particular
CA rules, with little attempt to formulate a general theory. Simplicity is often,
and rightly, touted as an important selling point of cellular automata. We have,
therefore, tried to choose the simplest models which, while being amenable to
some mathematical analysis, raise a host of intriguing unanswered questions.
The next few paragraphs outline subsequent sections of this chapter.

Aggregation models typically study properties of growth from a small initial
seed. Arguably, the simplest dynamics are obtained by adding sites on the bound-
ary in a uniform fashion. In fact, such examples were among the first studied.
It soon became clear that they expand linearly in time and, properly rescaled,
obtain a characteristic limiting shape. What if the space over which such growth
spreads is not uniform, but instead contains a field of obstacles? Stationary ob-
stacles do not complicate the analysis much, but the situation becomes murkier
once one allows the obstacles to move. In fact, the literature appears to contain
conflicting claims in the case of moving obstacles. Section 2 presents a detailed
discussion of this class of models, including some rigorous results and conjectures.

Properties of asymptotic shape for linearly spreading growth can be notori-
ously hard to elucidate. By contrast, symmetric random walks progress through
space more slowly (diffusing as the square root of time), and have an isotropic
continuum space-time limit. For these reasons, growth models based on such
walks often yield sublinear growth and circular asymptotic shape. One such ex-
ample is presented in section 3.

Section 4 is more theoretical in nature. It proposes a general classification
scheme which, simply put, provides a precise way to divide CA into those which
grow and those which do not. This taxonomy may be viewed as a simple alterna-
tive to Langton's approach based on the frequency of transitions to nonquiescent
states (the A parameter, see Langton [31]). Especially for CA which depend on
a parameter, it provides a strategy to search for complex rules on the boundary
between qualitatively distinct regimes. Section 5 then provides two illustrative
examples from a four-parameter rule space of general Life-like nonmonotone
rules.

If the initial state is disordered, how do droplets which generate persistent
growth emerge from random "soup" and with what frequency? Nucleation anal-
ysis addresses such questions. Nucleation effects can sometimes be very tricky to
discern by computer, but we will show in section 6 how a mathematical analysis
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with an essential experimental component aids in understanding self-organization
of a simple competition model.

2 OBSTACLE COURSE

Before describing our first models, let us emphasize that in this section and the
next, the neighborhood of a site consists of its nearest four points. To define
the Obstacle Course (OC) CA, start by assuming that the state of every site
in Z2 can be either 0 (empty), 1 (occupied), or 2 (an obstacle). In the simplest
version of the OC rule, called static OC, Is never change, a point in state 0
changes to 1 as soon as some neighbor is in state 1, and finally a site in state
2 with a neighboring 1 changes to 0 with a fixed probability q € [0,1]. (In
epidemics terms, Is, Os, and 2s could be interpreted as infected, and more and
less susceptible individuals, respectively.) This rule is applied synchronously and
independently at all sites in Z2 at every step of discrete time t = 0,1,2,.. . . As
for the initial state, we assume that the origin contains the only 1, while every
other site is independently 2 with probability p and 0 with probability I—p. Our
attention will focus on the set At of Is at time t.

Say that Lptq is the (linear) asymptotic shape of At if

as t —> oo. It is easiest to define this convergence in terms of the Hausdorff
metric. That is, define the e-fattening of a set B C R2 to be B6 = S + 52(0, e) =
UzeB-B2(z,e)- Then say that eq. (1) holds if, for any e > 0,

for a large enough t.
The case p = 0 is simple: At is merely the diamond {(x, y) e Z2 : x + \y\ <

t}. Therefore, we can explicitly compute

Equally clearly, L^i = Lo,q/2.
Assume now that p > 0 and q G (0,1]. This model fits into a general class of

dynamics known as first passage percolation (FPP). To explain the correspon-
dence, we assign to every site x G Z2 an independent random variable £x with
P(£x = 1) = 1 -p and P(£x = k)= p(l - q)k~lq for k = 2, 3 , . . . . Assuming only
x is initially occupied by a 1, the time Tx<y when y becomes occupied is given by
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If £r is interpreted as the time needed for x to become 1 after it has a neighboring
1, then a short induction gives At = {x : T0jX < t}. The next crucial observation
is subadditivity: TXiy < TXiZ + Tz,y. A fair amount of mathematical theory and
technical machinery [8, 29] then yields existence of a deterministic convex set
LP!CI C Lo,9 with nonempty interior, such that At/t —» Lp>9 almost surely.

The q = 0 case is similar, but we need to allow for the possibility that the
set AOQ , consisting of the origin and any sites with state 0. to which the origin is
connected (by a nearest-neighbor path), is finite. This happens with probability
1 if P > 1 — PC ~ 0.407 and otherwise with probability strictly less than 1. (Here
pc is the critical density for site percolation in the plane.) Thus, Lpt0 is a random
set if p < 1 — pc: there exists a nontrivial deterministic convex set L'p 0 such that
Lp>o equals {0} on {lA^l < 00} and L'pfl on {|Aoo| — oo}. The top left frame
of figure 1 provides an example with p = 0.3. Sites in At are gray and obstacles
black in all four frames.

FIGURE 1 Growth in the static and moving OC dynamics.
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Thus, the existence of I/P)? is established, but what more can we say about
these sets? It is possible to show that Lpi9 —> Lo,g as p —> 0, and that Z/ii9 —> L
as q —> 1 (using techniques from Durrett and Liggett [12]), but more detailed as
pects of Lptq are not easy to discern. For instance, there are presently no rigorous
methods available to show that Lp<q is never a circle. More discussion on exis-
tence and properties of asymptotic shapes appears in Bohman and Gravner [5]
and Gravner and Griffeath [17], while Gravner and McDonald [23] addresses a
combination of bootstrap percolation [1] and OC rules.

A more complex CA called moving OC results if we allow the obstacles to
diffuse. The easiest way to achieve this effect is to view 2s as particles which
move freely on Os and are forbidden to jump onto a 1. More precisely, the state
of the CA consists of sites in state 1, sites in state 0, and sites containing one or
more "2-particles." The following steps are then performed in succession:

1. Every 2-particle randomly and independently chooses a neighbor. If the cho-
sen neighbor is not a 1, it jumps onto it. If the chosen neighbor is a 1, the
jump is suppressed and the particle is killed (removed from the system) with
probability q.

2. Every 0 with a neighboring 1 becomes a 1.

As before, start with a single 1 at the origin, surrounded by sites filled
independently with a random number of particles from a distribution which is
the same for all sites. We will also assume that this random number is bounded.
Let p stand for the initial density of 2-particles, that is, the average number of
2s per site.

We should mention that, alternatively, one could restrict the number of
2s to at most 1. In this case, 2s would perform simple exclusion outside At,
in which case synchronous dynamics would require a scheme such as Margolus
neighborhood updating [40]. Phenomenologically, there should be little difference
between our moving OC and the exclusion OC; this is easy to believe when p
is small, while exclusion effects for p w 1 should correspond to those for p « oo
in the version above. Furthermore, simple exclusion outside At ensures that Os
perform the same dynamics there as 2s, so the exclusion OC rule with q = 0
is a variant of lattice gas DLA [40, 41, 43]. One motivation for the agenda of
this section is to take a step toward rigorous study of that still-mysterious rule.
Additional details will appear in Gravner and Griffeath [21].

In what follows, we will say that a sequence At, t = 0,1, 2 , . . . of subsets of
Z2 expands linearly if there exists an open ball G ^ 0 and a po > 0 such that,
for every open ball B C G,

hence, Athis section is to take a step toward rigorous study of that still-mysterious rule.
at the origin.



1 6 6 Growth Phenomena in Cellular Automata

As with the static OC, let us start with the simpler case q > 0 and outline the
this section is to take a step toward rigorous study of that still-mysterious rule.t expands linearly, almost surely. Linear expansion implies that the
number of particles in At is on the order of the square of its diameter, eliminating
the possibility that At is fractal (as extensive experimental evidence suggests to
be the case in "ordinary" DLA, to which much of Meakin [34] is devoted). The
top right frame of figure 1 is a snapshot of At with q = 0.1 and an initial
set consisting of three 2-particles per site. In light of this picture, eq. (2) is no
surprise. In fact, At/t seems to converge to a deterministic limit, but techniques
for investigating this issue are completely lacking.

To prove eq. (2), attach to every 2-particle w a random variable £w, which
simply measures the number of times w attempts to jump onto At. Thus, for
example, (w — 1 if the particle is killed on its first attempt. It is also clear that
Cu, are independent geometric random variables with mean l/q. Moreover, the
position of w at any time t before extinction is, in ^-distance, at most (w from
where w would be if it moved freely. A standard computation with random walks
then shows that the density (i.e., the expected number of 2-particles) is bounded
uniformly in space and time. After a substantial extra argument, this property
ultimately suffices to establish eq. (2). It is also worth noting that at every time
t a particle w which has come in contact with At is either killed, in which case
it contributes nothing to the total density, or else is still alive, in which case it
contributes at most 1C^ + 2£w + 1 to the density. Hence the density is always
bounded by p if q is sufficiently close to 1.

What happens with eq. (2) in the most interesting case q — 0? For p £ (0,1),
there could conceivably be three scenarios: either linear expansion persists for
all values of p, or there is no linear expansion for any p, or there is a phase
transition at some value of p. (Recall that this last is the state of affairs in the
case of static OC.) The empirical literature on exclusion OC concurs that the
second scenario is impossible, but there appear to be conflicting claims about
linear expansion for high p [41, 43].

In fact, it seems natural to conjecture that, for very small p, the density of
obstacles which remain active, in the sense that they are not captured within
Aobstacles which remain active, in the sense that they are not captured within
sion eq. (2). At present, a rigorous argument still appears elusive, so we simply
illustrate the result by means of the bottom left frame of figure 1 (which has
p — 0.3). If p is high, however, judging from computer simulations, the density
p — 0.3). If p is high, however, judging from computer simulations, the densityt increases substantially above p, and the pos-
sibility that it increases without bounds cannot be eliminated. See Uwaha and
Saito [41] for more discussion on this thorny issue, and the bottom right frame
of figure 1, where p = 3, for an illustration.
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3 INTERNAL DIFFUSION LIMITED AGGREGATION

The Internal Diffusion Limited Aggregation (IDLA) rule with continuous source,
considered in this section, was introduced in Lawler et al. [32] where its basic
asymptotic shape theory was developed. For a, different perspective, see Moore
and Machta [35] which contains an analysis of complexity properties of this rule.
The synchronous version we present is specified by the occupied set At and the
behavior of a collection of random walks. Initially, AQ = {0}. At every time
£ = 1,2,..., each site in At contains one or more particles. To get At+i, together
with a new particle configuration, execute (in succession) the following three
steps:

1. One particle at each site is frozen, while the others execute one step of a
symmetric nearest-neighbor random walk.

2. At+i is obtained by adjoining to At all sites which are being visited by a
particle for the first time.

3. One particle is added at the origin.

To understand the behavior of this process, one approximates it by a con-
tinuum-valued CA on Z2. This CA, determined by ut • Z2 —> R+, t = 0 ,1 , . . . , is
obtained by simply replacing the true particle configuration at time t + I by the
expected number of particles at every site. If we set X(u) = max{u — 1,0} and

In either eqs. (3) or (4), the occupied set is given simply by {u > I}.
Although not obvious at first glance, it turns out that eq. (3) is equivalent

(in the proper weak interpretation), to the famous Stefan problem, a model for
ice melting in the presence of heat sources. It is also true that eq. (3) has an

(where 9{x} is the set of nearest neighbors of x), we obtain

To get the diffusion scaling limit, one defines, for x' € R2 and t' > 0, u'(x', t1} =
u(e~lx', e~2t'), writes eq. (3) in terms of the new variables t',x',u', then divides
it by e2, and computes the limit as e -> 0 by (formal) Taylor expansion to obtain
(omitting primes)
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FIGURE 2 A snapshot of IDLA at a large time.

explicit unique solution given in polar coordinates by A(-u) = v(rt 1 '2), where

Hence, At/Vt converges to a circle with radius K « 0.498, and the proportion
of nonfrozen particles is 1 — nK2 w 0.22. Figure 2 gives a snapshot of an IDLA
simulation at t w 38,000 on a 200 x 200 array. For many more details, and
to see how the above heuristic can be turned into a proof for the very similar
asynchronous version of this model, see Gravner and Quastel [27].

Assume now that one adds c(t) particles at the origin at time t, where c(t) is
no longer 1, but an increasing function of t. An interesting question is how quickly
c must increase for the shape of the occupied set to no longer be circular. Since
the normal approximation for binomial probability (£)2~™ holds up to k — o(n),
one would expect that the set At needs to expand linearly. Furthermore, during
the time interval [0, t], a random walk started at 0 will visit sites of distance order
t from the origin with exponentially small probability. We, therefore, expect that
c(t) must increase exponentially fast to initiate the transition away from circular



Janko Gravner 169

FIGURE 3 The continuum-valued CA eq. (5) with 7 = 0.1 and 7 = 6.

shape. More precisely, let us assume that c(t) = e7*, and write

Then we conjecture that L7 exists almost surely, and approaches a circular shape
as 7 —> 0, while as 7 —> oo it approaches the unit diamond {(x,y) : \x\ + \y\ < 1
In general, the shapes L7 should be determined by large deviation rates; this
model is, therefore, similar in spirit to branching random walks [3].

An exponentially increasing number of particles makes verification of the
above conjecture by direct simulation of the particle system prohibitively slow.
On the other hand, the continuum-valued CA eq. (3) simply becomes

The two frames in figure 3 show the resulting growths for 7 = 0.1 and
7 = 5, both stopped when they reached a radius of about 50. (Gray shading
is logarithmic to make the density profile visible.) A more general discussion on
applications of continuum-valued CA may be found in Rucker [37].

4 GROWTH PROPERTIES OF CA: A GENERAL
FRAMEWORK

The setup we now introduce is essentially the same as in Gravner and Grif-
feath [18]. Let us start by describing the neighborhoods we most often consider.
The neighborhood for the origin will be a finite set denoted by A/", its translation
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x + A/" then being the neighborhood of the point x. By convention, we assume
that N contains the origin. Most typical is the range p Box neighborhood, in
which case J\f is the (2/9+1) x (2/9+ 1) box centered at the origin, and the range
p Diamond neighborhood, when N = {(x,y) £ Z2 : \x + \y\ < p}. In particular,
range 1 Diamond and Box neighborhoods are also known as von Neumann and
Moore neighborhoods, respectively.

Let £t be a general probabilistic CA, which, for simplicity, only has states 0
and 1. By this we mean first that £t : Z2 —> {0,1} describes the configuration
at time t; as usual, Is will be thought of as occupied sites, and £t and the set
of occupied sites {£t = 1} will be identified. Moreover, the synchronous transi-
tion rule is given by a neighborhood J\f and a set of probabilities ?r(5) e [0,1],
S c A/", specifying that £ t+1(x) = 1 with probability 7r((£t — x) n A/") indepen-
dently at every time t and every spatial location x. Such CA rules are called
monotone (or attractive) if 5i C 62 implies Tr(S'i) < 7r(S2). Deterministic CA,
of course, have 7r(5) only 0 or 1. Finally, in solidification CA every set S which
contains 0 has 7r(5) = 1.

Assume that a two-state CA fixes the all Os state, that is, ?r(0) = 0. Let Bn

be the (In + 1) x (In + 1) box around the origin, and construct initial state £o
by filling Bn with density 1/2 product measure, and B% with Os.

We will call a CA expansive if P(£t expands linearly) —> 1 as n —* oo (reca
the definition of linear expansion from section 2). On the other hand, we say that
a CA is constrained if there exist positive constants c\ and c% so that P(BCi

ever includes an occupied site) < exp(—c^ri). Finally, we classify as equivocal
those CA which do not fit into either previous category. (Various subcategories
of equivocal may also be of interest, e.g., CA in which the number of occupied
sites is likely to grow without limit, those in which linear spread occurs along a
subsequence of times, and so on.)

The main motivation for these definitions comes from oriented percolation,
in which A/" is, say, the von Neumann neighborhood, and the monotone rule
declares that 7r(5) = p > 0 as soon as S ^ 0. Then there exists a critical
probability pc 6 (0,1) such that £t is expansive in the supercritical regime (that
is, when p > pc). On the other hand, P(£t — 0 f°r some t) — 1 for every n as soon
as p < pc, and the subcritical (p < pc) regime leads to a constrained dynamics,
while the critical (p = pc) oriented percolation is equivocal [2, 10].

Assume now that a CA rule is monotone and deterministic, and, for the sake
of simplicity, that vr(5) does not change if S is reflected around either coordinate
axis. It can then be proved that the model is expansive if and only if it enlarges
every half-plane Hu = {x 6 Z2 : (x, u) < 0} (u € R2 is an arbitrary unit vector):

One direction is easy: if this last condition is violated, then the CA is con-
strained, so, in fact, there are no equivocal CA in this class. (For much more on
monotone CA growth, see Gravner and Griffeath [15, 17, 19, 22].)
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FIGURE 4 A linear CA and its random perturbation.

Outside the realm of monotonicity, there are very few available rigorous
techniques [17], but it is worth mentioning a few. First, it is not hard to prove that
any linear deterministic CA, where ?r(S) = \S\ mod 2, is equivocal: it grows, but
also repeatedly collapses to a set of \J\f\ • |£o points at exponentially spaced tim
(For a discussion of the replication properties of such rules, see the July 15-
21, 1996, recipe at Griffeath [25].) This example also illustrates how equivocal
dynamics are typically fragile—by analogy with the one-dimensional case [7],
one expects the random perturbation ir(S) = p • (\S\ mod 2) to be expansive fo
p < 1, as is strongly suggested by simulations. Figure 4 provides a range 1 Box
example with n = 20 at time t = 64 with p = 1 and p = 0.999. By contrast,
expansive dynamics typically seem to be robust with respect to small changes in
P-

Some CA growth models can be analyzed by finding an embedded one-
dimensional linear rule [20]. One such case is Exactly 1 solidification with von
Neumann neighborhood M and -rr(S) — l\s\=i if 0 ^ 5. To see how this works, fi
a site x at distance exactly t +1 from the initial seed. (This distance is measured
in "light speed," in this case via the il, metric.) The state of x at time t + 1
is obtained by an XOR of the states at time t of its two neighbors at distance
t. While not immediate, it is possible to use this property to prove that this
system is expansive, and, in fact, show that the final density of occupied sites is
2/3 starting from any finite initial seed.

Finally, the "edge of the light cone" technique described above, in conjunc-
tion with analysis of one-dimensional random CA from Bramson and
Neuhauser [7], shows that, for example, random Exactly 1 solidification, where
7r(S) = p • l|s|=i if 0 ^ S, is expansive when p < 1 and AA is either the von
Neumann or Moore neighborhood.
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For the vast majority of CA, however, one must resort to computer simula-
tion to get an indication of their growth properties. Deterministic Moore neigh-
borhood Exactly 1 solidification, for instance, is evidently expansive, although
no rigorous argument for this is known at present.

In any case, one must be very cautious about conclusions from simulation,
since it is always possible that a very large n (corresponding to a very large
initial random set) is necessary before limiting behavior as n —> oo kicks in. Fo
example, it is easy to convince oneself that Life is equivocal, as gliders are likely
to emerge from initial soup, while the rest apparently settles into a periodic state.
In fact, it seems more likely that Life is expansive, since a large box will likely
contain space-filling structures on its boundary. But none of these structures is
known to have appropriate self-defense properties against destabilizing influences
from outside. Despite the spectacular advances in understanding the mechanisms
of Life's growth, as described elsewhere in this volume, prospects for proving its
expansiveness still seem quite remote.

Problems with simulation notwithstanding, one can use the computer to
look for interesting CA rules on the border between "metastably" expansive
and constrained cellular automata. If a CA depends on a parameter, and is
apparently expansive for one value but constrained for another, then the values
near the transition offer prospects not only for equivocal dynamics, but also for
signature properties of complex dynamics. For example, one-dimensional objects
such as gliders, bugs, and ladders (see next section for the meaning of last two
terms) typically cannot persist in "robust" expansive rules, as they "explode"
into growth in all directions. (See Bohman and Gravner [5] and Bohman [4] for
some rigorous results in this direction.)

5 LARGER THAN LIFE

This rule was introduced in Griffeath [24] and studied in Evans [13]. Assume
that the neighborhood M is a range p box. The deterministic Larger than Life
(LtL) rule is given by

In words, birth of a 1 occurs at a site if the number of occupied neighbors i
between Pi and fa , while for survival of a 1 this number must be between Si and
<52. For example, Life is given by p = 1 and (Pi, fa, Si, $2) = (3,3,3,4).

Of particular interest is the threshold-range regime, when p is large and
(Pi, P2, Si, 82) = p2 • (Pi, fa, Si, $2). Two reasons for significance of this regime
are outlined below.

Assume that space is scaled by I /p. As p — > oo, the LtL rule converges to a
analogous Euclidean rule in which cardinalities are replaced by areas. This leads
to limiting geometry of various objects of interest, such as bugs, which are finite
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FIGURE 5 Exactly 0 CA with 0 = 2 and 9 = 3.

sets with the property that the dynamics exactly translates them in finitely many
steps—large-range versions of gliders, in short. Moreover, the boundary between
expansive and constrained dynamics appears to form a three-dimensional sub-
set of the four-dimensional parameter space {£ = (/?j,/?2, <5i, 82)} C [0,4]4. In
other words, if a one-parameter subfamily Eg experiences a transition between
expansive and constrained dynamics, then it is very likely (unless Ea happens
to move on the critical surface) to experience a sharp transition: for some ac,
the dynamics is expansive if a < ac and p is large enough, and constrained if
a > ac and p is large enough.

The study of phase transition in deterministic CA is generally hampered by
the fact that the rule space is inherently discrete. But in models such as LtL with
intrinsic threshold-range scaling, there is a natural way to introduce continuously
varying rules. Excitable media modeling provides other examples [11, 14].

An example in which sharp transition can be proved is monotone LtL, that
intrinsic threshold-range scaling, there is a natural way to introduce continuouslyintrinsic threshold-range scaling, there is a natural way to introduce continuously
to as monotone Biased Voter Automata (BVA). In the threshold-range regime,
expansive BVA dynamics are characterized by f3\ < 2, and constrained by (3\ > 2
[15].

Typically, one does not need to go all the way to the limit p = oo to ex-
perience interesting phenomena near critical points [11, 13]. Fairly small neigh-
borhoods may already contain some ingredient of critical behavior. For example,
a variety of interesting scaling phenomena occur in monotone BVA rules with
81 = 0 near (3\ = 2 [19]. Two nonmonotone examples are given below. In the
simulations of figures 5 and 6 we have chosen n = 100, on a 400 x 400 array.

The first example is range 1 Exactly 6 solidification: p = 1 and 7r(5) = l|S|=e
if 0 0 S. Note that this rule is obviously constrained for 6 — 4; in fact, nothing
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FIGURE 6 LtL with 52 = 22, 23, and 24.

outside the initial box Bn gets occupied. On the other hand, overwhelming ex-
perimental evidence (e.g., see fig. 5) suggests that the 9 = 1 rule is expansive.
The 9 = 3 case, called Life without Death, also seems supercritical, but close
enough to critical for existence of ladders. These objects, which grow but are
restricted to a strip, actually appear quite frequently within the chaotic spread.
Papers by Griffeath and Moore [26] and Gravner and Griffeath [17] analyze this
rule in some detail, proving its P-completeness [26], and showing that its growth
is sensitive to small perturbations of the initial seed [17].

Our second example is from Evans [13]. Consider range 3 LtL with param-
eters (14,19,14, 62). This rule seems constrained for 62 < 22 (the periodic state
in figure 6 was achieved by t = 40) and expansive for <52 > 24 (although the
growth at 62 = 24 is slow, the state in figure 6 was achieved at t — 300). The
intermediate case 82 = 23 is not so easy to decipher; in fact, it gives rise to a rich
menagerie of bugs, and is otherwise remarkably similar to Life. (Note also that
the proportions of neighborhood size, [14,19,14, 23]/49 and [3, 3, 3,4]/9, are not
too far apart, suggesting an interesting threshold-range critical point nearby.)
The snapshot in figure 6 was taken at t = 1000, by which time the dynamics
have neither settled into a periodic state, nor conquered much space.

In light of this last example, it is an interesting open question whether one
might devise a general scheme to design gliders guns and other fundamental
building blocks of universal computation for large-range LtL in some parameter
regime.

6 SPATIAL PRISONER'S DILEMMA

Prisoner's Dilemma is a game in which either player chooses strategy 1 (cooper-
ation) or 0 (defection), and the player with strategy i receives payoff â - when
playing against a player who chooses strategy j .
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The basic assumption aoi > a n > OQO > aio leads to a well-known paradox:
the defection strategy is clearly the optimal choice for either player, but making
this choice leaves them with lower payoffs than mutual cooperation. This has
led to a large number of papers investigating strategies in tournaments with
repeated rounds between players (see Grim [28] and other papers in the same
volume of BioSystems); in this case, one usually makes the additional assumption
that aio + &oi < 2an to make the cooperating strategy better than out-of-phase
nip-flopping by two players.

As an alternative approach, Nowak and May [6, 36] investigated self-orga-
nizing properties of the spatial version of the game above. A later paper with a
point of view somewhat similar to ours is Lindgren and Nordahl [33]. A version
of the Nowak-May Spatial Prisoner's Dilemma (SPD) rule is as follows. Start
with a configuration of Os and Is on Z2. The player at each site x plays against
every player in its neighborhood x + N (excluding itself). After all payoffs are
computed, the player at each site x changes its state to the state associated with
the largest total payoff in z-KA/". Moreover, with mutation probability p the player
adopts a random state. Under indefinite iteration of this rule, let rjt : Z2 —> {0,1}
be the state of the system at time t.

Without loss of generality, we will assume that ai0 = 0 and ago = 1. There-
fore, the SPD parameters are A/", p, and the two remaining payoffs.

Clearly, the most interesting issue is how regions of substantial cooperation
may emerge from a sea of defectors in this rule. Let us start with the observation
that if p — 0, then all Os is a fixed state, and then investigate what happens
under a small p perturbation.

To reiterate, we will assume r]0 ~0 from now on. Also, for simplicity, let us
assume, unless specified otherwise, that A/" is the von Neumann neighborhood.
This makes SPD a CA with range 2 Diamond neighborhood, although writing
out the associated IT by hand would take some time.

If aoi + 3 > 3an, then every 1 with a neighboring 0 changes into 0 with
probability 1 — p, so the set of Os compares favorably to supercritical oriented
percolation CA (see section 4). Thus,

and there is a very low level of cooperation.
In fact, simulation suggests that eq. (8) persists when a0i + 3 > 2 a u , but

the situation changes when a0i + 3 < Ian. In the language of section 4, when
p — 0 the SPD is constrained in the former case, and expansive in the latter case.
According to the general (though unproved) principle that expansiveness is ro-
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bust under small random permutations, we conjecture that cooperation emerges
when CQI + 3 < 2an, to the extent that

The right frame in figure 7 gives a snapshot of these dynamics at p = 0.01 at the
time substantial cooperation (black) has started to emerge. In our simulations
we have chosen a0i = 4.2 and a u = 4.

As an interesting aside, figure 8 provides a plot of the equilibrium density
limt_,oo -P(7?t(0) = 1) (assuming it exists) versus p in our case of SPD (diamonds)
and the range 1 Box case with api = 10 and an — 7.5 (pluses). To estimate the
densities, we made every initial state contain a 30 x 30 square of Is (surrounded
by Os) to speed up emergence of cooperation. Simulations were run on squares
of various sizes and up to various times, depending on the speed of convergence.
As a result, we estimate pe K 0.62. Moreover, as in many artificial life models
(and also, presumably, in the real-life counterparts), a high level of mutation
makes coherent self-organization impossible, so beyond a critical p K 0.14 the
equilibrium density is driven purely by noise. Note also that the Box neighbor-
hood example suggests a second-order phase transition exactly at the minimal
density, which is rather mysterious and merits further study.

In view of eq. (9), it is natural to ask how long it takes for the cooperating
region to reach a typical point if p is small. This is the statistic which measures
nucleation of the SPD. To be more precise, call T the first time the box Bp-\/3

(of (2p~1/3 + I)2 sites) around the origin contains 2/9ep~2/3 Is. The choice of
p-l/3 r e g e c t s thg trivial lower bound on the order of T obtained by assuming

FIGURE? SPD withp = 0 and with p = 0.01.
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FIGURE 8 Equilibrium density vs. p in two SPD models.

that a single 1 generates growth which spreads with the speed of light (cf. the
derivation of eq. (10) to see how this would yield p"1 /3) .

Nucleation questions are connected to studying the smallest seeds which
grow, as those are likely to be the first which affect the origin. Again, assume
for a moment that p = 0. Then a single 1 dies, and so does any pair of Is. Three
Is may form blinkers:

A 2 x 2 square of Is expands linearly (the left frame in figure 7 is a snapsho
growth from this initial state), and this property apparently persists for small
enough p > 0. (In fact, positive p seem to make the resulting shape convex.)

To estimate the order of T for small p, we now need to make a few estimates.
In the discussion of the next paragraph, all times and probabilities are to be
interpreted within the order of the quantity given.

Imagine space-time as embedded in R3, with the xy plane containing Z2 and
time being the positive z-axis. Form a cone Ct with apex at (0,0,t), height t,
and circular base of radius t. Then cooperation is likely to reach the origin at
time t if Ct contains at least one 2 x 2 square of Is. At any fixed time, such a
square appears by itself with probability p*. However, the first type of blinker
above appears with a much higher probability p3 and creates a square by time
l/p with a probability which is bounded below (by 0.2, say). Since there are t3
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FIGURE 9 Nucleation in EVA.

sites in Ct, T must satisfy

We can therefore, with some confidence, conjecture that T is on the order of p"1

as p —> 0.
Quite formidable obstacles would need to be overcome before our last con

jecture could be proved. In fact, there are no rigorous results whatsoever on
nucleation in nonmonotone dynamics. On the other hand, quite a lot is known
about this aspect of monotone CA [1, 9, 15, 16, 19, 39]. As one illustration,
consider the BVA (introduced in section 5) and assume for simplicity that ran-
domness is confined to initial states with density p of Is. In such cases, a rather
general nucleation theory is possible, leading sometimes to power laws in p, and
sometimes to exponential metastability. To explain the latter, we consider a spe-
cific example with range 2 Box neighborhood and (3\ = 11, 61 = 3. In this case, 
can be simply the first time the origin becomes occupied, although the definition
given above also works. Then, it can be proved [22, 38] that every site eventu-
ally becomes permanently occupied. Thus the limiting equilibrium density pe of
eq. (7) equals 1. On the other hand, there exist constants C\ and C^ such that

as p —> 0, so it takes a long while to be occupied when p is small. Simulations wi
very low p are therefore not feasible. Nevertheless, figure 9 depicts a 400 x 400
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system with p = 0.13 at an intermediate time t = 117; occupied sites at different
times are periodically shaded to give a basic impression of nucleation and growth
in this CA.
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1 INTRODUCTION

1.1 CONSTRUCTIVE DYNAMICAL SYSTEMS

Living systems, perhaps the ultimate constructive dynamical systems, is the
motivation for this work and our focus is a study of the dynamics of molecular
self-assembly and self-organization.

In living systems, matter is organized such that it spontaneously constructs
intricate functionalities at all levels from the molecules up to the organism and
beyond. At the lower levels of description, chemical reactions, molecular self-
assembly and self-organization are the drivers of this complexity.

We shall, in this chapter, demonstrate how molecular self-assembly and self-
organization processes can be represented in formal systems. The formal systems
are to be denned as a special kind of lattice gas and they are in a form where an
obvious correspondence exists between the observables in the lattice gases and
the experimentally observed properties in the molecular self-assembly systems.
This has the clear advantage that by using these formal systems, theory, simula-
tion, and experiment can be conducted in concert and can mutually support each
other. However, a disadvantage also exists because analytical results are difficult
to obtain for these formal systems due to their inherent complexity dictated by
their necessary realism.

The key to novelty in molecular systems is their ability to generate ag-
gregates that carry functionalities that cannot be observed at the level of the
objects that make up these aggregates. As aggregates aggregate to yet higher-
order aggregates, perhaps including simpler molecules (from lower levels), dy-
namical hierarchies are formed [2, 3]. Dynamical hierarchies are characterized by
distinct observable functionalities at multiple levels of description. Since these
higher-order structures are generated spontaneously due to the physico-chemical
properties of their building blocks, complexity can come for free in molecular self-
assembly systems. Through such processes, matter apparently can program itself
into structures that constitute living systems [11, 27, 30]. Once a self-sustaining,
self-reproducing molecular aggregate has been assembled, evolution can engage,
which is the other powerful, natural complexity-creating mechanism. Note the
order: first self-assembly, then evolution.

1.2 MOLECULAR SELF-ASSEMBLY AND DYNAMICAL HIERARCHIES

Molecular self-assembly is characterized by organizing a large amount of (hetero-
geneous) chemical entities and the driving forces of this process are solely denned
by minimizing Gibbs free energy AG. However, the macroscopic structure is de
fined by the molecular interaction or recognition between single molecules (ob-
jects) on the microscopic scale. Local interactions generate mesoscale structures
with unique functionalities.

Among the most prominent examples of molecular self-assembly is the for-
mation of biological membranes composed of lipids characterized by their dual
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(amphiphilic) nature [32], but a variety of recently described, manmade self-
assembly products have opened new directions in the field of biomolecular ma-
terials design [15, 37]. Examples include the formation of cyclic peptide tubes
[13] as well as of artificial membranes composed of synthetic polymers [1]. The
emergent functionalities carried by the structure are as important as structural
aspects of such assemblies. A beautiful example of such emergent functionalities
is described by Luisi et al. [5, 6, 23]: Membraneous surfaces define a unique in-
terface to the environment (water) which may lead to novel chemical reactivity.
Luisi's group performed a sequence of studies on the increased hydrolysis rate
of oleic acid anhydride at the interface of oleic acid membranes. In this partic-
ular example the emergent function (hydrolysis) of the higher-order aggregate
(membrane) leads to the formation of the constituents of the membrane itself,
which ultimately results in the autocatalytic self-reproduction of the catalytic
interface.

This example clearly illustrates constructive molecular dynamics spanning
various levels of complexity: molecular objects (first level); water, and hydrophilic
and hydrophobic monomers, which may partly polymerize, e.g., into an am-
phiphilic string (second level); then self-assembly into aggregates, e.g., micelles
or vesicles (third level) which are able to self-reproduce. At each of these levels we
can observe emergent properties as pair distribution within water, between water
and monomers (level 1), elasticity of the polymer (level 2), and inside/outside,
permeability, or reactive surface at the aggregate level (level 3). The aggregate
may even, as described above, self-reproduce which ultimately gives a third level,
self-sustaining dynamical hierarchy in a chemical system [19].

It should be stressed that the functional properties of the basic, first-order
objects, both the real water molecules and monomers as well as the formal models
of these—which we shall define a little later—do not change during the process. It
is only the context within which these objects are arranged that changes. Thus,
the operational semantics of the information, the forces each object receives
from its environment, is context sensitive. For example, the accessible states for
a hydrophobic monomer in bulk polar phase (water) are distinctively different
from the respective states in a nonpolar phase and again different from the states
of a hydrophobic monomer in an amphiphilic polymer [17, 29]. This fact defines
a downward causality as the higher-order structures modulate or restrict the
dynamics of the lower-order structures which comprise them. This phenomenon
of observed downward causality in dynamical hierarchies is related to the "slaving
principle" as suggested by Haken [14].

There are two significant reasons why it is not trivial to generate such a
dynamical hierarchy in a model of physico-chemical systems (or any other sys-
tem for that matter): (i) It involves multilevel dynamics—that is simultaneous
dynamics on many times—and length scales, which requires large computational
resources, (ii) Also, the natural, conceptual framework for such a system seems to
be a set of interacting objects and not a closed form model, such as a differential
equation system. However, to form the higher-order structures from the bottom
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up becomes very simple once the systems are composed of interacting objects.
For example, starting with objects that are models of monomers it is trivial that
the monomer objects can form polymers as they are combined into a string. Now
the polymers can form membranes as they are aggregated in a particular fashion,
and so forth. It turns out that a formulation of a dynamical hierarchy can be
made conceptually as well as computationally simple if the interacting objects
are defined on a lattice. Furthermore, other groups have obtained promising re-
sults by modeling macroscopic effects in chemical systems based on a fine-grained
system representation using lattice-type simulation methods [8,9, 24] and hybrid
methods [16].

1.3 CELLULAR AUTOMATA AND LATTICE GASES

Lattice gases are a particular kind of cellular automata which allow particles to
propagate on the lattice in a natural manner. The original lattice gas automata
(LGA) [12, 38] are nice examples of how it is possible to simulate macroscopic
effects (fluid flow) based on microscopic rules of interaction between the lat-
tice particles. For a more general introduction to lattice gases, see for exam-
ple Boghosian [7] and Doolen [10]. Our molecular dynamics (MD) lattice gases
[17, 18, 28] are a natural extension of the classical lattice gases, and the basic
idea behind this discrete field automaton is (i) to model both matter and fields
as mediating information particles, as well as (ii) to allow particles to polymerize
and the polymers (and monomers) to aggregate. The description of the physics
within these formal systems is the topic of the next section.

2 PHYSICS

2.1 REPRESENTATION

The fundamental concept in our representation is that information particles rep-
resent both matter and interaction (force) fields. The presence of a particular in-
formation particle at a lattice point defines a particular kind of molecule currently
present at this site. Propagated to neighboring lattice sites, information particles
also represent a specific electromagnetic field from this particular molecule. Every
type of interaction is associated with a separate field. Each molecular potential is
thus decomposed into a set of repelling and attracting particles of varying value
depending on molecular interaction type and position. At any lattice point the
resulting field influences the residing molecule and determines where it moves in
the future. If no molecule is present at a lattice site, obviously no force fields
will be propagated from that site. However, fields will reach nonoccupied sites
as well as being influenced (partially shielded) by the presence of molecules.

Molecules have excluded volumes. Only one molecule can reside at each site
at any given time. The molecules' orientation determines the structure of the
associated field. Thus rotations resulting in lower potential energy may occur as
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neighboring molecules interact. Bonds between monomers in polymers may also
be viewed in this picture: Bond information (particles) needs to be propagated
between the monomers to insure that a polymer does maintain its configuration
as it moves around on the lattice. Only local rules for the molecules are used
to move extended objects such as polymers and aggregates around [18]. Finally,
each molecule has an associated kinetic energy and a certain direction which is
modified, e.g., in collisions.

Three main steps determine the molecular dynamics: (i) rules that propa-
gate field-information particles, (ii) rules that evaluate the received information
together with the local state, and (iii) rules that move molecules on the lattice
and transform the system into the next time step. Since our system contains
several different information particles the update cycle is a bit more complicated
than the well-known cycles of the cellular automata and lattice gases. The clock
for the update cycle for a traditional cellular automata goes tac, tac, as each cell
is updated in parallel. For a traditional lattice gas the clock goes tic-tac, tic-tac,
as the fluid particles move and scatter. For the MD lattice gas the update clock
goes tic-tic-.. .tic-tac, tic-tic-.. .tic-tac, as the field particles are propagated over
the lattice (this happens at light speed in the physical system), which may result
in rotation of a molecule, a molecular collision, and/or a molecular move (at a
different physical time scales). The reason why we use this formulation is because
of its simplicity (modulatity and parallizability) and because each part of the
dynamics has a clear physical interpretation.

It should be noticed that all the interaction rules are based on first princi-
ples. These microscopic interactions are deterministic and reversible, and mass,
momentum and total energy all (= kinetic + potential + internal) are conserved.
The overall setup corresponds to a microcanonical ensemble. In the next section
we shall make all of the above precise.

2.2 LATTICE, DATA STRUCTURES, AND UPDATE FUNCTIONAL

The formal system is defined on a three-dimensional (cubic) lattice, or more
precisely on two connected three-dimensional lattices. One of the lattices, Cm

(N3), has a one-dimensional data structure associated with each lattice point.
It represents the possible location of a molecule and it carries part of the molec-
ular object properties: x\ the molecular type (including no molecule present =
vacuum; for vacuum the following variables are also zero), x% the molecular ori-
entation, £3 the kinetic energy, as well as variable £4 which is used to collect the
local potential energy information from the field lattice £ / . This other lattice,
entation, £3 the kinetic energy, as well as variable £4 which is used to collect the
each lattice point as there are field interaction types (d = 9), which we shall dis-
cuss in the next section (section 2.3). These are all propagated from the position
lattice £ m , and define the repulsive/attractive field information. Note that not
all sites on this lattice are accessable. The fields are only defined at the sites that
intersect the "midpoints" of the lattice edges that connect the molecular position
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FIGURE 1 The two three-dimensional (cubic) lattices, the molecular lattice Cm (JV3)
and the field lattice £ / ((27V)3). (a) The field lattice (grey) is face centered with the
molecular lattice (black) at the center of the cube, (b) A two-dimensional projection
of the two lattices showing their data structures, (xi,... ,Xk) and (yi , . . . , j/d) for Cm

and £ / , respectively.

lattice. Please see figure 1. As an example of how a water molecule is represented
on the lattice using these structures please see figure 2(a), (b), and (c). Lattice
definitions of monomers, polymers, and aggregates are given in figure 3.

The dynamical system that defines our lattice gas is of the form
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FIGURE 2 Representation of water on the lattice, (a) Note the four hydrogen bond
sites, (b) The zy-projection of (force) field from water, (c) Representation of the po-
tential energy of the water molecule along the re-axis.

where

denotes the interacting molecular objects (and vacuum) denned on the three-
dimensional, cubic lattices Cm and £/ . Each object has an internal state xr,
neighboring molecular and field states ys, an object-object interaction function
frs (which has its own state xr as an argument together with the field state (s)
from the object(s) that it is interacting with ys,s — 1, . . . 2g), and a local time
rr. To generate the dynamics the object-object interactions have to be scheduled
by an update functional U, which is random sequential for this version of our
MD lattice gas. And q denotes the nearest neighborhood of each of the lattices,
which is 12 (2 times 6) when both lattices are taken into account.

The system update consists of three principal parts: (i) field propagation, (ii)
evaluation of local fields, molecular reorientation, and (iii) molecular movement.
For the field propagation steps (i) we have

where / defines the interaction neighborhood where to the molecule irradiates
(propagates) its field and where FI is an only implicitly given function. The

A data structure M.t at the £ m lattice location (i,j, h), at time t, denot-
ing an object Sr—e.g., vacuum if it is empty and a molecule if it is occupied—is
given by

The field lattice at time t is similarly given by
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FIGURE 3 Representation of water, monomers, polymers, and aggregates on the lat-
tice, (a) Water (black), hydrophilic monomer (dark grey), and hydrophobic monomer
(light grey), (b) Hydrophobic polymers: a trimer and a pentamer. (c) Amphiphilic
pentamer. (d) Small aggregate of hydrophobic trimers. It should be noted that each
hydrophobic monomer object in a polymer can represent two CHi groups. See discus-
sion in section 2.4.

evaluation of local fields, molecular reorientation (ii), and molecular movement
(iii) on the lattice is given by

where the other data structures are located at the q — 6 neighboring lattice
Lm and £/ positions (please recall fig. 1). Again F2 is only an implicitly given
function.

However, the detailed structure of each step in the update cycle may in fact
be a composition of eqs. (5) and (6). Thus, the general form of the update of an
individual data structure element xp at (i,j,h) at the molecular lattice can be
expresses as
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where "o" denotes function composition. This means that the new value of a
given variable at a given molecular lattice site is a composed function of the
variables at the site (i,j, h) itself and of the variables at the neighboring molec-
ular and field sites (each in the six principal directions). An example of such a
step is a molecular rotation due to the local force field.

For a more detailed discussion of the formal properties of such a dynamical
system we refer to Baas et al. [3], and technical details of the formulation of the
individual steps in the update are given in Mayer and Rasmussen [18].

2.3 INTERACTIONS

A Boltzmann distribution of kinetic energies together with potential energies
(based on discrete force fields) are implemented to drive the molecular dynamics.
Kinetic energies are distributed between colliding molecules following a hard
sphere model conserving the momentum. The total potential energy Kotai of
our lattice system with n molecules on a lattice each with q = 6 neighbors is
described by:

These potential energy terms are implemented to account for specific physico-
chemical properties of our molecular species as, e.g., dipoles, induced dipoles,
hydrogen bond donor and acceptor sites, or polarizability volumes, all crucial
parameters for the generation of molecular self-assembly in a polar environment
[17, 25]. This set of weak intermolecular interactions given in the above equation
is commonly summarized as Van der Waals forces.

The lattice gas interactions conserve mass, energy, and momentum in the
interactions. Mass conservation is trivially fulfilled as no fundamental molecular
objects are created or destroyed as a result of the interactions. The momentum
conservation is guaranteed through an exchange of kinetic energy in the direc-
tion of the collision. An example of a collision between two neutral molecules
(no attracting or repelling forces) along the x-direction is given in figure 4(a)
and a collision between two water molecules with attracting/repelling hydrogen
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bond interaction sites is given in figure 4(b). Note how the water-water collision
temporally results in a hydrogen bond between the two water molecules and the
kinetic energy of the molecules temporally may be interpreted as internal energy
(e.g., vibrational energy) of these molecules. As other molecules at some later
point interact with this water-water cluster it may break up and the internal
energy is again transformed or released into kinetic energy. Note how in figure
4(b) part of the update dynamics also involves a molecular rotation to find a
local, potential energy minimum.

The relative values of the different interaction terms in eq. (9) together with
the mean of the used Boltzmann distributed kinetic energies are important for
the dynamics. In table 1 the different interaction values are listed.

Intermolecular interactions naturally play an essential role in defining molec-
ular self-assembly, considering first the intramolecular structure of solute mole-
cules as, e.g., polymers (their conformation); second denoting solute-solute in-
teractions; and third, solute-solvent interactions. This last type of interaction
is considered as decisive for molecular self-assembly, especially denoting the hy-
drophobic effect in a polar solvent, as described in more detail in section 4.

To represent the key feature of a polar solvent like water with its local and
distant order (see section 3), the capability of hydrogen bond formation has to be
represented. Formally the hydrogen bond has to be treated as a combination of
a dipole-dipole interaction and a charge transfer reaction, and this type of non-
covalent donor-hydrogen-acceptor bond is commonly represented via a Lennard
Jones potential in force fields.

One important aspect of hydrogen bonds is their strictly defined poten-
tial energy surface where the optimum geometry is given by a donor-hydrogen-
acceptor-oxygen angle of 180 degrees and a donor-acceptor distance of around 3 A
(Angstr0ms). In this optimum configuration the hydrogen bond contributes with
1-2 kcal/mol to the total potential energy. However, variation of this optimum
geometry is immediately followed by an increase in potential energy. Hydrogen
bonds are among the strongest intermolecular interactions, but their ideal ge-
ometry is highly constrained. In the simulation water molecules and hydrophilic
monomers shield for the hydrogen bond fields (see also the Coulomb interactions
below).

Another aspect of hydrogen bonds in liquid water is their cooperativity. A
single water molecule in bulk water is in a tetrahedral arrangement defined via
four hydrogen bonds (recall figure 2). However, the formation of hydrogen bonds
is cooperative, i.e., the single interaction strength of a formed hydrogen bond
increases if an additional hydrogen bond is formed. The implementation of these
important cooperative phenomena for hydrogen bond networks, and also for in-
duced dipoles as described below, is straightforward in our lattice gas, whereas
these features are commonly neglected in traditional force-field calculations as
they compute potential energies only on the basis of pair potentials, which nat-
urally do not take into account many-body properties as cooperativity. In the
present model, hydrogen bonds are implemented to characterize water structure
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FIGURE 4 Examples of collisions, (a) Collision of two neutral molecules, (b) Col-
lision of two water molecules. In this situation the potential energy of the formed
hydrogen bond exceeds the kinetic energy of either of the two molecules so they main-
tain bonded after the collision. Assuming that b is updated first (random sequen-
tial update) note how b rotates (recall update dynamics) and finds local potential
minimum.
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(i.e., water-water interactions) as well as to define hydrophilic monomer units
(e.g., a COOH group).

A Coulomb potential is used to model charge-charge interactions. The rela-
tive scale is comparable (here chosen identical) to hydrogen bonds. What differs
is the lack of geometric constraint that is present in the hydrogen bond interac-
tions. One important aspect for this type of interaction as well as for the hydrogen
bond interaction is the relative dielectric constant er, which reflects the shield-
ing of charge fields by a polar environment like water. The relative scale of this
shielding is implemented in the course of the charge propagation in our lattice
gas: water strongly shields the propagation of the field (er around 80), whereas
field propagation is less constrained when the charge is in an apolar environment
as, for example, given by hydrophobic monomers (er around 10). This partial
schielding of field propagation is also implemented for the propagation of force
fields representing hydrogen bonds to again reflect the high relative dielectric
constant in bulk water. Both water molecules and hydrophilic monomers shield
the Coulomb in the simulation.

The following interactions represent potentials based on dipoles and induced
dipoles, which are commonly about one order of magnitude weaker compared to
the interaction strength of hydrogen bonds: Molecules or molecular groups with
a permanent dipole moment stabilize respective assemblies via dipole-dipole in-
teractions, which are again modeled via a Coulomb potential. Water and hy-
drophilic monomer pairs as well as mixed pairs of those two show this dipole
interaction. Another interaction for these molecular types is based on dipole-
induced dipoles. This effect is based on spatial distortion of the electron distribu-
tion on molecular surfaces, which is, for example, caused by a permanent dipole
in close proximity to this molecular surface. The strength of this dipole-induced
dipole interaction is based on the polarizability volume of the respective molecu-
lar surface, which is in general inversely proportional to the electronegativity of
the respective atom. Carbon surfaces are therefore more highly polarizable than
oxygen surfaces, which results in a stronger interaction of water-hydrophobic
monomers and hydrophilic monomers-hydrophobic monomers compared to the
interaction between groups holding more electronegative elements (see table 1).

The last type of intermolecular interaction is induced dipole-induced dipole,
commonly called dispersion, or London forces. Molecules involved in this inter-
action are uncharged compounds with no permanent dipole and the interaction
is, therefore, solely attributed to spatial fluctuations of the electron distribution
on the respective molecular surfaces. We use this potential to model interactions
between hydrophobic monomers. Again a cooperativity term is implemented to
reflect the cooperativity of induced dipole-induced dipole interactions in bulk
apolar phase.

Intramolecular potentials for angles and dihedral angles are not explicitly
encoded but are expressed via the intermolecular terms. This approach is also
applied in common force fields used for the calculation of potential energies of
macromolecules as, for example, the empirical conformational energy program
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TABLE 1 Molecular interactions encoded in the MD lattice gas. The description of
molecular units on a monomer level depicts the polar solvent water, w; hydrophilic,
hphil; and hydrophobic, hphob, and monomers. NHl and NH2 denotes the neighbor-
hood 1 and 2 on the lattice, the parametrization gives site interactions. The bond
energy values in the table can, e.g., be translated into eV by multiplying by —2. For
example, the hydrogen bond energy between two water molecules at lattice distance
one is ~ —18 eV.

Intermolecular Interaction

bond stretching,
in-diagonal

hydrogen bond
cooperativity increment,

hydrogen bonds
charge-charge
dipole-dipole
dipole-ind. dipole
dipole-ind. dipole
ind. dipole-ind. dipole
cooperativity increment,

ind. dipole-ind. dipole

Molecular Pairs

monomer-monomer
bonds

w-w, phil-w, phil-phil
w-w, phil-w, phil-phil

phil-phil
w-w, phil-w, phil-phil
w-w, phil-w, phil-phil
w-hphob, hphil-hphob
phob-phob
phob-phob

N H l
Pair

5

9
2

9
2
1
3
4
1

NH2r
Pair

00

3
0

3
0
0
0
2
0

for peptides, ECEPP/3 [22]. The only intramolecular energy term implemented
in the MD lattice gas is bond stretching, which allows monomers within polymers
under certain energetic conditions to access in-diagonal lattice points on the cubic
lattice.

2.4 PHYSICAL SCALES AND CONSTANTS

To establish a tighter correspondence between the simulated physics in the MD
lattice gas and the physics of the experimental systems, we need to define how the
physical scales and constants in the two systems correspond to each other. This
involves identification of the lattice size, the modeled molecular bond lengths,
the force fields, the update steps, the molecular weights, the temperature, and
the pressure.

Since H^O has a molecular weight of about ( 2 x 1 g/mol+16 g/mol) =
18 g/mol, it has a density of about lkg/1, each 1 contains about 55.6 mols of
water molecules which corresponds to about 3.3 x 1028 molecules per m3. In a
203 lattice simulation of water we typically have 0.75 x 203 = 6, 000 molecules
which correspond to a volume of 182 x 10~27 m3 which yields a cube side of 5.7
nm. Thus our 203 lattice is about 6 nm on each side. This is in good agreement
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with the 3 A oxygen-oxygen distance between two water molecules (recall section
2.3 about the hydorgen bonds) which also yields a cube size of 6 nm.

However, there is an inconsistency between the water-water distance of 3 A
and the CH2-CH2 distance in the hydrocarbons as the C-C bond distance in the
polymers is about 1.5 A if we assume that each monomer contains only one CH2
group. Assuming instead that each monomer object contains two CH.2 groups re
solves this problem, but it raises a question about the monomer-monomer and the
monomer-water field interaction values. The simulation does not easily produce
the same dynamics as the experimental systems without a slight modification.
The simulations indicate that the hydrophobic monomer-object-monomer-object
field interaction needs to be increased a little compared to observed values for
the induced dipole-induced dipole interaction between two single CH2 monomers
located in two different polymers.

The individual force field interactions in the simulation (see table 1) can
be calculated from the hydrogen bond strength of about 1.5 kcal/mol which
corresponds to a potential energy of about —10~20 J/bond ~ —18 eV/bond.
Thus, for example, the dipole-dipole interaction energy at distance 1 corresponds
to about —1/9 x 18 eV/bond = —2 eV/bond. For simplicity, we have assumed
that all fields are local only to lattice distance two. To propagate the fields to any
other lattice neighborhood can be implemented without any change of concepts,
only with the expense of (a linear) run-time complexity for the field propagation
steps.

The molecular mass of all interacting molecular objects are assumed to be
identical. This is, of course, a simplification and the masses could easily be dis-
aggregated to fit each of the different molecular types, but given the level of
aggregation in the current PLG we have not experimented with this possibility.

A discussion of the molecular lattice occupation (the pressure) and average
value for the used Boltzmann distribution (the temperature) is given in sec-
tion 3.1 where the fundamental properties of the simulated water dynamics is
presented. The update cycle (the physical time) is discussed in section 3.2 and
Mayer and Rasmussen [17].

2.5 OBSERVABLES

The main observables used to characterize the lattice gas dynamics over time
are the average potential energy per molecule, the average number of hydrogen
bonds per water molecule, the average moving rate per update for water and
monomers, as well as the pair correlations for water-water, water-hydrophilic
monomers, water-hydrophobic monomers, water-hydrophobic monomers at ends
of polymers, and monomers-monomers. That these observables all are relevant for
a detailed understanding of the dynamics was not clear to us from the beginning.
However, each of these observables tells a particular part of the story and we shall
refer to them in the sections to follow. It should be noted that the signature of the
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dynamics is quite different moving from two-dimensional to three-dimensional
space.

2.6 IMPLEMENTATION AND GRAPHICS

The MD lattice gas is implemented in plain C and has been developed in a UNIX
environment.1 The simulations are performed on a SUN Ultra 5 workstation
where a typical run on a 203 lattice for 20,000 updates takes about three hours.
For the three-dimensional graphics we have used Mathematica. A listing of the
main structure of the code is given in the appendix.

3 MOLECULAR DYNAMICS AND SELF-ASSEMBLY

3.1 WATER (H20)

The two most fundamental parts of the dynamics for this lattice gas is (i) the
balance between the kinetic—and the potential energy for the molecules—and
(ii) an appropriate molecular density on the lattice. Obviously, if the kinetic en-
ergy is too low relative to the potential energy, the system freezes up and no
self-assembly is possible. If the kinetic energy is too high compared to the po-
tential energy, no bonds can form and no self-assembly is possible either. It is
also clear that, as the molecular occupation number on the lattice approaches
1.0, the description breaks down as the dynamics is inhibited. As the molecular
occupation becomes too sparse, the description also breaks down because the
dynamics no longer describes a liquid. The details of these phase transitions in
this system are not yet clear to us and will be discussed in a forthcoming publi-
cation. In the following simulations we use a mean value (T) for the Boltzmann
distribution of the kinetic energies between 10 and 15 which balances well with
the potential energies given in table 1. These T values may be interpreted to
correspond to "room" temperature. The molecular lattice occupation is between
0.6 and 0.8 in the reported simulations which may correspond to the usual 1
atm pressure in the corresponding experimental systems. These relations yield
an average moving rate of about 0.1 for each water molecule per update and
a little higher moving rate for hydrophobic monomers. A further discussion of
these basic issues can also be found in Mayer et al. [17].

In addition to these fundamental properties, the polar solvent (water) is
characterized by an extended hydrogen bond network resulting in local and dis-
tant order which is, for example, reflected in the radial distribution function of
water and which is the basis for the hydrophobic effect [17]. Different examples
of radial distribution functions (correlation functions) are discussed in figure 5.

The hydrophobic effect, describing phase separation of apolar compounds
in a polar environment, is generated as a result of the relative balance between

1The source code may be obtained from the corresponding author, Steen Rasmussen.
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FIGURE 5 Pair correlation functions starting at lattice distance 1 (all identical to 1 at
distance 0) for water-water (cross) in pure water at lattice occupation 0.5; water-water
(diamonds) in the presence of bicontinous amphiphilic phases in water at lattice occu-
pation 0.75 (0.5 water and 0.25 amphiphilic pentamers); monomer-monomer (boxes)
in the same situation. Note the increased local ordering of water in the presence of
cosolvents.

the water-water interactions, the water-monomer interactions, and the monomer-
monomer interactions. If water likes water much more than water likes monomers
and monomers like each other and water about equally well, there is an energetic
gain from isolating the hydrophobic monomers from the water so that the water
molecules can be in proximity to each other and participate in the hydrogen
bond network.

3.2 HYDROCARBONS (CH3[CH2]NCH3)

The biological solvent, water, is characterized by an extended hydrogen bond
network which results in ordered clusters that constantly form and break up,
as discussed in section 3.1. The enthalpic and entropic balance, which results
in an optimum free energy for liquid water, is crucially affected by solvating
hydrophobic (apolar) compounds which ultimately may result in positive changes
in the free energy of solvation processes in the course of solvating apolar surfaces.
Surprisingly, this effect is not based on a net loss of enthalpic contributions,
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as experimental data on transfer experiments of apolar compounds from vapor
phase to water give AH values around zero [26].

Mainly two contributions compensate the energetic loss of hydrogen
donor—and acceptor sites in mixtures of hydrophobic compounds in water com-
pared to pure bulk water. First, cooperative intermolecular interactions between
hydrophobic objects of the induced dipole type result in low energetic minima
for such separated phases, although the single pair interactions are comparably
weak. Another, less obvious cause for the isoenthalpic situation is the additional
stabilization of the remaining hydrogen bond forming water molecules in the
mixture [17]. This additional "freezing" of water molecules, especially in the
innermost solvation shells around a hydrophobic cluster points toward the en-
tropy as a central element in controlling solvation. The changes of TAS are
also strongly negative for solvating hydrophobic compounds in water, which ul-
timately results in a positive change of the free Gibbs energy AG for the overall
solvation process of apolar compounds in water [26].

Earlier, we performed a variety of lattice gas simulations in two-dimensions
[17, 18] and implemented these experimental findings by realizing a net isoen-
thalpic situation comparing pure water and water-hydrophobic monomer mix-
tures, which results in AH ~ 0 for the solvation process in the simulation.
However, phase separation of hydrophobic compounds in aqueous solution is
still realized in our simulations via the entropy-driven hydrophobic effect. Phase
separation is observed both for water-hydrophobic monomer as well as for water-
hydrophobic polymer situations and both processes are characterized by AH ~ 0
although the pairwise interaction between two hydrophobic monomers and be-
tween water and a hydrophobic monomer is roughly kept isoenthalpic. However,
organizing the hydrophobic monomers in polymers enhances their capability to
phase-separate and the longer the polymers, the easier they will separate in
water.

In the following two examples, both the hydrophobic effect and a slight
monomer-monomer preference over a monomer-water interaction drive the phase
separation processes (see table 1). Typical chemical analogs to our model
monomers are acetonitrile and propionitrile, which show weak interactions with
water, but an increased tendency to self-associate.

In figure 6, hydrophobic trimers (3-mers) are initially randomly placed on a
203 lattice with the parameters as discussed in section 2.4. The approximate side
length of the cube is about 6 nm. The molecular (object) density on the lattice
is 0.75 with 66% water and 33% hydrophobic monomers (~ 11% trimers). The
simulation time between start and finish is 20,000 updates which corresponds to
about 20 x 10~6 sec = 20 microseconds, physical time.

In figure 7 32,000 water molecules and 3,200 hydrophobic pentamers
(5-mers) are randomly placed on the lattice and simulated for 50,000 time steps
(~ 12 ,us) on a 403 lattice (~ 12 nm). To better show the structure of the
separation only the hydrophobic polymers are plotted. A rough estimate of the
"cluster" size in this system yields less than a thousand pentamers per cluster.
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FIGURE 6 (a) Random, initial distribution of hydrophobia trimers (3-mers) and water
and (b) phase separation after 20,000 updates (about 20 x 10~6 sec = 20 microseconds,
physical time) on a 203 lattice (about 6-nm cube side = 6 x 10~9 m). Water shown in
blue and hydrophobic monomers shown in yellow. Parameters: T = 13, p = 0.74, and
monomer concentration 33% (4,000 water molecules and 666 hydrophobic trimers).

This is about the same cluster size as for the trimers in figure 6 where only a
single cluster is formed due to the smaller lattice size. Thus, we do not observe
much difference in the phase separation dynamics as we vary the hydrocarbon
chain length between three and five.

The potential energy as a function of time for the phase separation is shown
in figure 8 where the transition dynamics is clearly reflected.

3.3 AMPHIPHILES (COOH[CH2]NCH3)

The simplest form for ordered aggregates that assemble in water are built by
amphiphilic polymers which are polymers with a hydrophilic head and a hy-
drophobic tail. Hydrotopes [34] and lipids [32] are typical representatives for thi
type of polymer and their interaction dynamics in polar solvents results in self-
assembly products with characteristic morphology as, for example, hydrotope
aggregates, micelles, and membranes. The mechanism for organized self-assembly
is attributed to the hydrophobic effects in which an entropically favored release
of interfacial water provides the driving force for such a process [4, 21, 35]. The
additional (object) complexity given by the dual functionality within the poly-
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FIGURE 7 Water and hydrophobia pentamers on a 403 lattice (12-nm cube side),
(a) Random, initial distribution of hydrophobic pentamers (5-mers) and water (water
molecules not shown) and (b) phase separation after 50,000 updates (about 50 x 10~
sec physical time). Parameters: T = 13, p = 0.75, and monomer concentration 33%
(32,000 water molecules and 3,200 hydrophobic pentamers). Typical "cluster" size is
500-1,000 pentamers.

FIGURE 8 Total potential energy as a function of time for the phase separation dy-
namics of hydrocarbons in water also shown in figure 7. Compare with amphiphilic
dynamics in figure 10.
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FIGURE 9 Water and high concentration of amphiphilic pentamers on a 203 lattice (6-
nm cube size), (a) Random, initial distribution of amphiphilic pentamers and water, and
(b) bicontinous (wormlike) phases after 20,000 updates (~ 20 microseconds physical
time). Hydrophobic monomers shown in yellow and hydrophilic monomers shown in
green. Water not shown. Parameters: T = 15, p = 0.75, and monomer concentration
33% (4,000 water molecules and 400 amphiphilic pentamers).

mer affords the formation of more order structures compared to the unstructured
polymer clusters composed solely of hydrophobic polymers. In the one hand, such
ordered structures can be demonstrated by the experimental data. For example,
amphiphiles containing stilbene or azobenzene chromophore can form highly or-
dered structures such as large ( > 100 nm in length) plates, long tubules or
spherical vesicles in water which can be directly detected by cryo-transmission
electron microscopy (cryo-TEM) [33]. On the other hand, formation of such
ordered structures resulting from the self-assembly of amphiphiles can also be
simulated. Figures 9 and 11 show initial and end snapshots of the simulated
amphiphilic polymer self-assembly process in an aqueous environment which re-
sults in the formation of bicontinous (wormlike) and micellar structures respec-
tively. Water not shown, hydrophilic head groups are green and the hydrophobic
tail monomers are yellow. Both structures are characterized by a hydrophobic
core and a well-solvated hydrophilic surface. The only difference between these
two simulations is the concentration of amphiphiles which is higher in figure 9
(10% amphiphiles) than in figure 11 (2% amphiphiles). It should be noted that
these amphiphilc polymer concentrations are about five times higher than the
corresponding experimental concentrations that generate the same mesoscopic
structures.
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FIGURE 10 Total potential energy as a function of time for the dynamics resulting
in bicontinous phases also shown in figure 9. Compare with hydrocarbon dynamics in
figure 8 and see discussion in text. Potential energy shows a "compromise" between
minimizing hydrocarbon-water contact and solvating hydrophilic head groups in water.

FIGURE 11 Water and low concentration of amphiphilic pentamers on a 203 lattice (6-
nm cube size), (a) Random, initial distribution of amphiphilic pentamers (hydrophilic
head groups green and hydrophobic monomers yellow) and water (water not shown)
and (b) micelle formation after about 7,000 updates. Parameters: T = 13, p = 0.75,
and monomer concentration 10% ~ 2% polymer (volume) concentration (5,500 water
molecules and 100 amphipilic pentamers). These small micelles (15-40 amphiphiles
each) are very dynamics and "fluid" structures as they form and disassociate continu-
ously.
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For both figure 9 and 11 it is clear that virtually all head groups are ex-
posed to the water phase (none or only very few headgroups are "buried" in
the hydrocarbon environment). As a consequence the cluster size or worm thick-
ness is correspondingly small compared to the hydrocarbon clusters in figures 6
and 7. Thus, the global potential bond energy gain from this process is much
less pronounced than in the corresponding phase separation process involving
hydrocarbons, as seen in figure 10. The resulting structures are an energy "com-
promise" in this situation as there is still a lot of hydrocarbon-water contact in
figures 9 and 11 compared to figures 6 and 7.

We again note that this assembly process is not driven by the enthalpic
contributions, for example, coming from specific interactions between hydropho-
bic monomers. Mainly entropic contributions based on solvating the accessible
hydrophobic surfaces guide the formation of the self-assembly products.

Also note that this mesoscopic self-assembly product represents a higher-
(third) order structure generated by the dynamics at the microscopic level [3,
18, 29]. This is true as the micelle obviously has, for example, a surface, an in-
side and an outside as well as a lifetime (all polymers exchanged), which can
neither be observed at the level of the individual polymer (second-order struc-
ture) that make up the micelle, nor at the level of the individual water molecules
or monomers (first-order structures) which make up the polymers.

4 DISCUSSION

The ansatz we have developed for generated higher-level structures and novel
functionalities simply by increasing the object complexity of the interacting lat-
tice gas objects does not seem to have any principal limitations. Our ansatz is
in the same spirit as when the experimental chemist introduces more complexity
among the basic molecular building blocks (e.g., more variety) used in a single
experiment and thereby enables the experimental system to assemble into more
intricate structures with multilevel, novel properties. In this chapter we repre-
sent and discuss three different levels of description within the MD lattice gas:
the water and monomer level, the hydrocarbon and amphipilic polymer level,
and the aggregate level consisting of polymer self-assembled structures. Earlier
we have demonstrated how micellar self-reproduction is possible in simulation
[18, 20] and how fifth-order emergent properties can be generated in simulation
[30] although the latter is not yet implemented.

We have set out to construct a lattice gas simulation that is able to ad-
dress both microscopic and mesoscopic questions that confront the experimental
chemist when studying molecular self-assembly. This has unfortunately resulted
in a formal system where the general level of complexity is high. It is not a sim-
ple "toy" lattice gas from which it is easy to obtain analytical results. A very
interesting theoretical question is how a toy model can be constructed which is
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able to generate higher-order structures and functionalities as found in both in
real molecular self-assembly and in the MD lattice gas.

As we use a cellular automata approach—discrete space and discrete time—
we gain a number of conceptual and computational advantages, but at the same
time we create a number of other problems for our description. The advantages
are mainly given by conceptual and computational ease by which new higher-
order structures can be autonomously constructed. The main disadvantages fol-
low from the nature of the lattice which restricts the degrees of freedom so much
that the representation in some situations looses its beauty. Molecules can only
move in six different directions, as can force fields, and diverse molecular bond
sizes are difficult to implement. These lattice imposed restrictions are perhaps
clearest for the polymer dynamics.

As an explicit representation of the polymers is made to obtain realism a
nontrivial problem arises concerning how to move an extended object (a polymer)
only using local rules. This problem can be solved in a variety of ways and our
use of a random sequential update simplifies the problem. This problem can
be completely bypassed by representing the polymers as first-order objects as,
for example, in Conveney et al. [9]. Although such a representation allows a
generation of mesoscopic structures, most microscopic issues are lost.

Another well-known problem stems from the (realistic) assumption that at
most one molecule can reside on a single lattice site. In two dimensions this turns
out to be a major problem which easily causes "traffic jams" (lattice dynamics
freeze up locally) when assemblies are formed. Thus the description breaks down
unless, for example, a boundary layer or some other action is taken. However,
this problem is virtually gone in three dimensions. We are currently studying
(bilayer) membrane stability and this lattice gas even works for that purpose
[36]. However, an obvious future extention of the MD lattice gas could, in a
natural manner, consist of a higher (say, double) lattice resolution which should
remove this traffic jam problem completely as well as give us a more precise field
description.

A higher velocity (kinetic energy) resolution is also desirable. For example,
two (or more) classes of kinetic energy which result in an update where molecules
with different kinetic energy can be propagated zero, one, two, or more lattice
sites in a single update as opposed to only zero or one in the current formulation.
Besides a more realistic detailed dynamics this should also give more realistic
phase transitions for the ice-liquid-gas transitions than we currently have.

Also a longer range field propagation is desirable, such as, in situations where
charged surfaces are formed. Without shielding, a charged, planar surface will
have a very long range mesoscopic field which we cannot model with only a field
propagation to neighborhood distance two. Note, however, that it is a trivial
extention to include this feature in the dynamics.

The observed differences between the simulated and the experimental micel-
lation concentrations of amphiphiles can presumably be corrected by modifying
the parameters in table 1.
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Finally we must remember that as we increase the realism the complexity
goes up as well as does the simulation time and for the very detailed questions at
the ps-ns and A-nm scales the long tradition of molecular dynamics simulations
should be consulted. Of most interest is perhaps to formalize an up-and-down
scaling that allows a "linking" of simulations at these two different levels of
description.

5 CONCLUSION

The ultimate constructive dynamical systems are found in natural molecular
self-assembly and self-organization processes. These systems can obviously gener-
ate successive levels of higher-order emergent properties (dynamical hierarchies)
without any apparent limit.

A MD lattice gas simulation is denned to produce realistic water dynamics,
polymer water phase separation, as well as molecular self-assembly and self-
organization dynamics in three dimensions. This system demonstrates a third-
order dynamical hierarchy, but the ansatz used is applicable for the generation
of any order of emergence.

The presented MD lattice gas fills a modeling gap between traditional MD
and lattice gas methods. It thus offers unique computational capabilities for
studying complex molecular interactions on nanometer to micrometer length
scales and over time scales of nanoseconds to milliseconds on modern worksta-
tions.

The gist of the formal representation is that matter and (force) fields can
be represented as information particles residing and propagating on a lattice.
The local cellular automaton rules define the polymer lattice automaton. All in-
teractions are derived from Newton's laws and the corresponding microscopic
and mesoscopic experimental observables can be compared in a direct man-
ner. The details of the phase separation dynamics for hydrocarbons in water
is demonstrated, and bicontinuous (wormlike) phase generation and micellation
is demonstrated for amphiphiles in water. The physical observables are identified
and discussed.
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APPENDIX

A listing of the main structure of the code is given below. The arrays
random_coord [i] [k] define the next lattice point to update in the random-
ized sequence generated by randomize_update(). The structure of main should
be self-explanatory. For more details please contact corresponding author.

int main(void)

initialize_rotation_matrices();
make_molecules();
number_of_niQlecules ();
initialize_arrays();
initialize_lattioe();
create_readme_file();
initialize _flies();
rotate_fields();

for(time=0; time<time_steps; time++)
{
print_to_files();
randomize_update();
set_fields_to_zero();

for(x=0; x<lattioe_size; x+ + )
for(y=0; y<lattice_size; y++)
for(z=0; z<lattice_size; z++)
propagate_field(x,y,z);

for(x=0; x<lattioe_size; x++)
for(y=0; y<lattice_size; y++)
for(z=0; z<lattice_size; z++)
rotate_molecule(random_coord[0][x],

random_coord[l][y],random_coord[2][z]) ;

for(x=0; x<lattice_size; x++)
for(y=0; y<lattice_size; y++)
for(z=0; z<lattice_size; z++)
elastic_collision(random_coord[0][x],

random_coord[1][y],random_coord[2][z]);

for(x=0; x<lattice_size; x++)
for(y=0; y<lattice_size; y++)
for(z=0; z<lattioe_size; z++)

move_molecule(random_coord[0][x],random_ooordt1][y],

random_coord[2][z]);
}

olose_files();
return 0;
);
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We are concerned with understanding the implicit computation occur-
ring in a physical model of crystal growth, the Reversible Aggregation
(RA) model. The RA model is a lattice gas model of reversible cluster
growth in a closed two-dimensional system, which captures basic prop-
erties of physics such as determinism, locality, energy conservation, and
exact microscopic reversibility. There are three species of particles in the
RA model: gas, heat, and crystal. A diffusing gas particle may aggre-
gate when contacting the boundary of a crystal cluster. Latent heat is
released during each aggregation event and is explicitly modeled by in-
troducing a heat particle into a diffusing heat bath. Conversely a cluster
member at the boundary of the crystal may absorb a heat particle and
evaporate, becoming a diffusing gas particle.

Allowing ourselves complete control over all the initial conditions of
the model, we show that the RA model can simulate any logic circuit,
and, hence, perform any computation. The mobile gas and heat particles
are used as logic signals. The paths these particles take are the wires.
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Sequences of conditional crystallization events form the basis of the logic
gates. We show how to embed a universal single use gate into the dynam-
ics of the model, then show how to construct a reusable universal gate,
showing the system is capable of space-efficient computation. We show
how to build arbitrary logic circuits by interconnecting gates. This re-
quires steering and routing the signals, delaying them, and letting them
cross. Finally, we briefly discuss the relationship of computation in the
RA model to computation in real physical systems.

1 OVERVIEW

We examine the computational capabilities of a physical model of crystal growth,
the Reversible Aggregation (RA) model [3], which captures basic properties of
physics such as determinism, locality, energy conservation, and exact microscopic
reversibility. The RA model is a lattice gas model of reversible cluster growth in a
closed two-dimensional system. It was introduced as a microscopically reversible
physical model for studying the thermodynamics of crystal growth and pattern
formation. By microscopically reversible we mean that from any state in the
system we can recover the previous state exactly. There are three species of
particles in the RA model: gas, heat, and crystal. A diffusing gas particle may
aggregate at the boundary of a crystal cluster; if it lands next to a single nearest-
neighbor crystal particle, it may become a crystal particle, enlarging the cluster.
Latent heat is released during each aggregation event and is explicitly modeled
by introducing a heat particle into a diffusing heat bath. Conversely if a heat
particle contacts a singly connected cluster member, it may be absorbed and that
crystal particle will "evaporate" from the cluster, becoming a gas particle. When
started with a dilute gas and a single crystal seed particle the model exhibits
an initial regime of rapid nonequilibrium growth followed by a slow quasistatic
regime with a well-defined temperature. In the first regime the crystal rapidly
grows, in the second the crystal slowly anneals.

The present study showing a construction for computational universality in
the RA cellular automaton seems fitting for these proceedings of a workshop on
"Constructive Cellular Automata." The mobile gas and heat particles are the
logic signals used in the computation. The paths these particles take are the
wires. We show how to steer and route the signals, how to delay them, and how
to allow signals to cross each other. Crystallization events occur only at sites
with one nearest neighbor which is already a crystal. By routing a control signal
through a potential crystallization site we can conditionally create new potential
crystallization sites. Such sequences of conditional crystallization events are the
basis of our logic gates. We show how to embed into the dynamics of the RA
model a universal single use gate, and then how to embed a reusable univer-
sal gate. We show how to interconnect gates and thus how to build arbitrary



Raissa M. D'Souza et al. 2 1 3

digital logic circuits, proving that the RA model is capable of space-efficient
computation.

In this chapter we take a microscopic perspective; that is we give ourselves
control over all of the microscopic degrees of freedom, namely the initial positions
of all the gas, crystal, and heat particles, and detailed control over the micro-
scopic parameters controlling the pseudorandom motion of the gas and heat par-
ticles. With microscopic control and synchronous time evolution we can compute
with this discrete lattice system. A more general issue is understanding computa-
tion in real physical systems where we have control only over macroscopic degrees
of freedom and where we cannot depend on perfect synchronization. In the final
section we will address issues of whether we have abstracted concepts from our
microscopic dynamics which apply to computation in real physical systems.

2 THE REVERSIBLE AGGREGATION MODEL

The RA model is a reversible, deterministic model of cluster growth in a closed
two-dimensional lattice system. It extends the canonical Diffusion Limited Ag-
gregation (DLA) model of cluster growth on a lattice [13]. The DLA model is
an irreversible, deterministic model with two particle species: gas and crystal.
The gas particles follow a pseudorandom walk along the lattice sites, resulting
in diffusive behavior at the scale of several lattice sites. If a diffusing gas particle
contacts a stationary cluster member, it aggregates, itself becoming a stationary
cluster member. DLA is a serial model: Only one gas particle diffuses at a time.
A few parallel versions of DLA, with multiple particles diffusing at once, have
been considered [5, 10, 11, 12]. The parallel model we will extend begins with
a uniform dilute configuration of gas particles. They aggregate, but no more
are ever added to the system. Before a substantial fraction of the particles ag-
gregate, this parallel version of DLA is equivalent to the serial version [11, 12].
When a large cluster has formed, the simulated structure can be compared to
structures found in nature, typically by comparing the fractal dimensions. DLA
is not a thermodynamic model: Particles stick irreversibly, so there is no notion
of detailed or semi-detailed balance.

The RA model extends the DLA model by placing a parallel DLA model in
contact with a heat bath, implemented as a field of diffusing heat particles, or
"tokens," on a superimposed lattice. Both gas and heat particles diffuse through-
out the system independently, each on their own lattice, under pseudorandom
dynamics. They diffuse freely over the crystal and through empty space. The gas
and heat particles interact through crystallization and evaporation events along
the boundary of the crystal.

A potential crystallization site for a gas particle is a site unoccupied by crys-
tal, with exactly one nearest neighbor occupied by crystal. Upon reaching such
a site a gas particle will aggregate, becoming a crystal particle and releasing a
heat particle, which represents the latent heat of crystallization. This interaction
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is contingent on there being room locally in the heat bath to accept the heat
particle. Explicitly modeling the latent heat released upon aggregation provides
a mechanism for modeling the inverse process of evaporation. Similarly, a poten-
tial evaporation site is a site occupied only by a singly connected crystal particle.
A heat particle arriving at such a site is absorbed by the crystal particle which
evaporates, becoming a gas particle. This is contingent on there being no gas
particle already at that site.

The model is implemented with a two phase rule. Diffusion steps, in which
the particles move, alternate with interaction steps in which the gas, heat, and
crystal interact, allowing aggregation and evaporation. The interaction rule is as
given above. The details of the diffusion implementation are given in section 4.1.
In order to facilitate a parallel updating of the space, we divide the system into
checkerboard sublattices. Since our interaction range is nearest neighbor, we can
update all the even parity sites while holding the odd parity sites fixed and vice
versa.

In our cluster growth simulations, we begin with an empty heat bath, thus
only crystallization can occur. We observe rapid, nonequilibrium growth of the
cluster and concomitant increase in the population of the heat bath. The occu-
pancy of the heat bath (hence, also the mass of the cluster) quickly reaches steady
state, meaning evaporation and crystallization events are equally likely. At this
point the system has attained a single well-defined temperature, despite the fact
it has not yet reached thermodynamic equilibrium. During the subsequent slow
approach to thermodynamic equilibrium we observe a quasistatic annealing of
the cluster. The cluster morphology, as quantified by the fractal dimension, un-
dergoes a transition from the typical ramified pattern observed for irreversible
models of diffusive cluster growth (resembling frost on a window pane), to the
highest entropy macrostate allowed for a connected cluster in a finite volume: a
branched polymer. Figure 1 shows the typical cluster morphology in each of the
two regimes. The small grey dots also shown are the gas particles.

The dynamics of the RA model captures a number of properties of realistic
microscopic physical dynamics such as locality, conservation of energy, determin-
ism, and microscopic reversibility. Since crystallization and evaporation are both
allowed and heat is explicitly modeled, any transition between two states may
occur in either direction. This gives us a realistic thermodynamics: When started
from a low entropy state (e.g., with an empty heat bath), entropy increases and
the system approaches a state of detailed balance, or thermodynamic equilib-
rium. Since we realistically model thermodynamic variables—local heat flow and
the creation of entropy—we can do more than study simulated structures: We
have a laboratory for studying nonequilibrium thermodynamic behavior of grow-
ing crystals. For a detailed discussion of the thermodynamics, the temperature,
and the evolution of the growth morphology see D'Souza and Margolus [3],

Until now we have been discussing a closed two-dimensional system with
periodic boundary conditions. If we modify the boundary conditions of the heat
bath lattice from being periodic to open, we essentially place the heat bath in
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FIGURE 1 (a) An RA cluster of approximately 8270 particles, pictured at the time
t = Tf, which is when the heat bath and the gas-aggregate system first reached the
same temperature. Note the grey dots represent the diffusing gas particles, (b) An
RA cluster with the same number of particles pictured at time t = 80rp. The fractal
dimension for this cluster (dj = 1.63 ± 0.02) has apparently reached the asymptotic
value, and is equivalent to the fractal dimension for a quenched branched polymer.

contact with a reservoir at zero temperature and release the heat particles into
this reservoir once they reach the edges of the heat bath. We can control the
relative speed with which this happens through independent control of the heat
and gas diffusion lengths and thus control the effective temperature in which the
aggregate grows. The relative tunability of the two diffusion fields allows us to
observe a rich variety of growth structures ranging from uniform growth, through
invasion percolation, to classical DLA growth.

3 COMPUTATION IN REVERSIBLE SYSTEMS

Computation was long considered to be an inherently dissipative process, re-
quiring the "decision of a two-way alternative and elementary transmittal of one
unit of information" (von Neumann as quoted in Bennett [2]). A quantitative
understanding of the mechanism of dissipation came with Landauer's work on
erasing a bit of information [7]. Erasure requires the transfer of information from
computational to other degrees of freedom and normally ultimately to thermal
degrees of freedom. The lower bound on the heat produced by erasing one bit is
fcTln2. More than a decade later Bennett showed that erasure is not necessary:
Computation can in principle be performed with no dissipation (i.e., no loss of
information) [2]. Bennett's proof was based on an abstract Turing machine. He
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suggested RNA transcription (in the limit where the rate of transcription ap-
proaches zero), as a possible example of a dissipationless digital process. Interest
in physical models of computation began around this same time, focusing on
prototype Brownian motion computers such as Bennett's RNA model [2, 6].

After yet another decade, Fredkin introduced the concept of conservative
logic and introduced a universal conservative logic gate [4]. His goal was to
formulate laws of computation more like the laws of microscopic physics, with
particular emphasis on microscopic reversibility and exact conservation laws.
Conservative logic gates are reversible, and the total number of one's on the
wires of a closed system is conserved. The output of each gate is a permutation
of its inputs. The Fredkin gate is a three-input, three-output conservative logic
gate which implements a conditional swap. A schematic is shown in figure 2. The
standard logical primitives ("and," "not," and "fanout") can easily be built out
of a Fredkin gate by supplying some constant inputs. The existence of a universal,
reversible logic gate means it is possible to implement any digital computation
out of these gates without ever erasing information. Moreover it makes reversible
computation and circuit design look very similar to conventional computation
and circuit design (but using different primitive logic elements).

Fredkin was also interested in embedding his conservative logic computa-
tions into realistic physical systems. In Fredkin's Billiard Ball Model (BBM)
of computation [4], finite-diameter moving balls are the signals. Collisions be-
tween balls implement logic gates. The trajectories of the balls are the wires.
Strategically placed mirrors reflect the balls, implementing bends in the wires.
The initial positions of the mirrors and the balls must be carefully chosen to
allow for precise control and synchronization of signals. The BBM Cellular Au-
tomaton (BBMCA) is a universal, reversible CA modeled after the BBM [8].

FIGURE 2 The Fredkin gate: a conservative logic gate which performs a conditional
swap. If the value of the signal C is true, signals A and B are interchanged; otherwise
A and B go straight through. This is a reversible operation which conserves ones: the
number of ones entering and leaving the gate is the same.
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It uses pairs of particles as the "balls," with the spacing between particles cor-
responding to the finite diameter of the balls.

4 COMPUTATION IN THE RA MODEL

The scheme proposed for computation in the RA model is similar to that for
the Billiard Ball Model. They both use conserved particles as signals and timing
and synchronization are crucial. The conditional crystallization events in the
RA model are sufficiently complicated that we expect a priori that the model
is capable of computation. We can show this capability if we allow ourselves to
explicitly specify the initial state of all the microscopic degrees of freedom of the
system. We must specify the initial positions of all of the gas, crystal, and heat
particles, the positions of the "mirrors" which control the diffusion (as discussed
below), and the parameters controlling the motion of these mirrors (as discussed
in section 4.3.6).

We will first show how to implement wires and delays, and how to route
signals. Using these elements and the RA model interaction we show the structure
of a simple one-time-use logic gate, and thus prove the system is capable of
computing combinatorial logic functions. However, we are interested in more
general circuits: those with reusable gates, feedback, and memory elements. To
this end we introduce a more complicated dyadic signaling implementation and
describe a reusable universal logic gate. We then discuss issues of interconnection
and signal crossing. With these in hand, we can build a simulator for any digital
logic computer. We demonstrate the construction technique for a simple example
circuit.

4.1 SIGNAL ROUTING AND DELAY

In the RA model the gas and heat particles undergo pseudorandom walks, im-
plemented using a lattice gas transport algorithm. For each particle species (gas
and heat), there are two transport channels moving in opposite directions along
one of the principle lattice directions. At consecutive updates of the system, we
alternate between lattice directions (i.e., transport is along the +x and — x di
rections on odd time steps and along the +y and — y directions on even tim
steps). This scheme can be extended to arbitrary dimensions by introducing ad-
ditional substeps along each additional lattice direction. A particle remaining in
one channel exclusively will follow a diagonal path through the lattice as shown
in figure 3(a).

To simulate diffusion we cause the particle to switch between the two chan-
nels at random. We include a pseudorandom number field: a "random" binary
variable at each site at each time r)(x,t). If ri(x,t) = 1, the particle switches
channels. At the end of each update we spatially permute the r\ values in a de
terministic and invertible manner so as to have fresh random bits at each site,
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FIGURE 3 (a) Streaming in channel 1 and channel 2. (b) A mirror, (c) A delay loop
of eight time steps.

while maintaining constant the probability that r\ = 1. The permutation must
be deterministic, so we can invert the dynamics when running the model in re-
verse. This allows us to recover the data used to make switching decisions so we
can unswitch the particles and invert the "random" walks. If we use the identity
permutation, the 77 values remain fixed and so does the particle motion (whic
depends on these values).

If the pseudorandom bit fields are initially filled randomly or pseudoran-
domly with ones and zeros, the gas and heat particles switch between channels
in an unbiased manner and simulate large scale diffusion (c.f. D'Souza and Mar-
golus [3] for a quantitative discussion of diffusion coefficients and a comparison
of theoretical and empirical results). If, instead, the r)(x,t) bits and their motion
are precisely controlled, the one bits act as deliberately placed mirrors, switching
the gas and heat particles between transport channels at determined locations.
An example with fixed mirrors is shown in figure 3(b). Between encounters with
mirrors, the particles "stream" along a given channel uninterrupted. The gas and
heat particles are controlled by separate r\ bits, so the gas and heat particles are
reflected by separate mirrors.

Timing and synchronization are crucial to our logic scheme. To adjust tim-
ing, we can use delay loops. A delay loop can be constructed from a collection
of mirrors, placed to implement a sequence of reflections. Using the transport
algorithm described above, each particle takes a step in the horizontal and then
the vertical directions. Since it takes at least four steps for a particle to return
to its original location, delays must be a multiple of four. Figure 3(c) shows a
delay loop of eight time steps.

4.2 UNIVERSALITY: A SIMPLE GATE

Consider a simple gate, as shown in figure 4. If we count only gas and heat
particles entering and exiting at A, B, C, and D (i.e., not counting crystal
particles), this gate conserves particle number. The shaded squares represent
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crystal, and positions of the mirrors are implied by the particle paths. Signal A
must precede B in time. This gate has the following truth table:

A
gas
gas
heat
heat

B || C | D
gas
heat
gas
heat

heat
heat
gas
gas

heat
gas
heat
heat

If we take the signal convention that a gas particle represents one logical
truth value, and a heat particle the other, then clearly this gate is universal. Say,
for instance, gas represents true and heat represents false. Then C — A, and
D — AB. So, if we can build arbitrary networks of gates such as this, then we
can build arbitrary logic circuits.

There is a subtlety here, however. This gate is universal, yet it is not reusable.
So, in fact, we may only build combinatorial logic circuits, and not those with
feedback. If we wish to simulate the operation of a universal Turing machine,
we must "unroll" the operation of the TM. That is, we simulate the time evo-
lution of the machine's state by computing each state combinatorially from the
previous state. This spreads the time progress of the computation out spatially,
requiring more logic levels for each step we wish the machine to execute. So
with a polynomial amount of space, we may simulate the machine's action for a
polynomial number of steps.

We can go further, though. We wish to simulate normal reusable digital
logic, so that we can build arbitrary logic circuits, with feedback, memory, etc.
To this end, we propose a scheme for reusing gates which utilizes matched pairs
of crystallization and evaporation events. It is a dyadic signaling scheme in which
pairs of particles, appropriately delayed, are routed through the same gate so as
to clean up after the computation (i.e., remove the state from the gate) leaving
the gate ready for reuse.

4.3 A REUSABLE GATE, GATE INTERCONNECTION, AND CIRCUITS

The gate we choose to implement is the "switch gate": a two-input, three-output
conservative logic gate which is universal [4]. It has a control input, which we will
call B, and a switched input, which we will call A. The B input passes through
the gate unchanged. The A input is routed to one of two outputs, conditional on
the state of B. A schematic is shown in figure 5.

4.3.1 Summary of the Gate Implementation. Our first consideration in implement-
ing such a gate is that the gate must be reusable, or stateless, as mentioned above.
To realize this, we adopt a dyadic signaling convention, in which the presence of
a "one" is represented not by arrival of a single particle, but by a gas particle
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FIGURE 4 A simple, non-reusable, universal logic gate. Crystal is shown by shaded
squares. Signal paths are shown as wiggly arrows. Mirror locations are implied by the
paths. A and B enter as shown, with A preceding B in time. If A is gas, it crystallizes at
XI, releasing heat. If A is heat, it evaporates XO, becoming gas. If A has crystallized at
XI, then if B is gas it crystallizes at X2, yielding heat, and if B is heat, it re-evaporates
XI, yielding gas. If A has evaporated XO and B is gas, B re-crystallizes XO yieldin
heat, and if B is heat, it does not interact and remains heat. Recall both gas and heat
particles diffuse freely over the crystal.

followed four time steps later by a heat particle. This allows us to use crystalliza-
tion events to implement interactions without leaving permanent changes in the
structure of the gate: If a gas particle enters an input and leaves a crystal bit be-
hind, then the corresponding heat particle follows, cleaning up the crystallization
event, and leaving the gate in its original state.

We implement a switch gate in the RA model as follows. We first set up an
initial condition with a few crystal bits forming a simple aggregate, with only
one potential crystallization site, XI. A second site, X2, will become a potential
crystallization site if and only if XI becomes occupied by crystal. There are input
paths for signals A and B. The path for signal B is routed through XI, and that
for A through X2.

The action of the gate is as follows: We route the gas particle of B through
XI, and delay the heat particle of B for now. If B is true (that is, the gas and
heat portions of B are indeed present), the gas crystallizes at XI, and X2 now
becomes a potential crystallization site. If B is false, nothing happens and X2
is not a potential crystallization site. Now we arrange, by appropriate choice of
delays, for both particles of A to pass through X2 while XI is (in the B = 1
case) occupied by crystal. If B is false, A passes through X2 unchanged (i.e.,
with its heat portion following its gas portion). If B is true, the gas portion of A
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FIGURE 5 The schematic diagram of a switch gate. If the input B is true, the signal
A exits the top output. If B is false, A exits the middle output.

crystallizes at X2 yielding heat, and the heat portion of A evaporates the crystal
at X2, yielding gas again. Thus, B being true essentially reverses the order of
gas and heat particles exiting X2. When both the gas and heat portions of A
have had a chance to interact at X2, we send the heat portion of the B signal
through XI. If B is a one, the heat signal encounters the crystal particle at XI
and evaporates it, thus restoring the crystal aggregate to its original state and
leaving the gate ready for reuse. Note if B is false nothing happens, which also
leaves the gate ready for reuse.

The particles for A exit X2 in the same direction regardless of the state of
B, but in different temporal orders. To obtain the two outputs AB and AB on
different spatial paths, we use 77 fields which change with time to switch the ga
and heat particles onto two different paths according to their timing. We then
delay the heat on the AB output path, to conform with our dyadic signaling
convention that heat follows gas. A schematic diagram of this interdependence
of events is shown in figure 6.

4.3.2 Interconnect and Parity. There are some subtleties involved in being able
to route any output of any gate to any input of any other gate. In particular,
there is a parity defined on particles: Since they are constrained to move alter-
nately vertically and horizontally, we may draw a checkerboard on our lattice
and separate the particles into those starting at time zero on a red square ("red"
particles), and those starting on a black square ("black" particles).1 Since the
first move is horizontal for all particles, any red particle will move horizontally
off its red square, and will always move horizontally off any red square. Similarly
any black particle will always move horizontally off a black square. These types
of particles cannot be interconverted, and a path followed by one type cannot be
followed by the other. Each gate input follows a specific path, thus requiring a

1Note, this discussion is independent of the checkerboard updating scheme discussed in
section 2.
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FIGURE 6 A schematic representation of the switch gate. Arrows indicate signal paths
for heat and gas particles, with delays annotated. Signals A and B enter simultaneously
from the left at time zero. The heat particle for each signal trails the gas particle by
four time steps. If B is true, XI is occupied from time three through time 11. In this
case, A crystallizes and evaporates from site X2 at times six and ten, respectively. The
signal paths are indicated by the top two lines in X2. If B is false, XI is never occupied.
In this case, both A and its cleanup signal pass through without interacting, and exit
at the appropriate times on a different path. The signal paths in this case are indicated
by the bottom two lines in X2. Output delays are chosen to place the signals at the
gate outputs at a time independent of input values and signal path. Note that all paths
have an identical length of 20.

particular color particle. Likewise, each gate output produces a particular color
particle. So if we had a gate output producing a black particle and another gate's
input expecting a red particle, there would be no way of directly connecting that
input to that output. To solve this, we constrain all our inputs and outputs to
be on black squares of the checkerboard.

Even with all inputs and outputs on black squares, we have a synchroniza-
tion problem: Our gates require synchronous signal arrivals, so sometimes we
need to delay individual signals to satisfy this requirement. Note delay loops are
only available in multiples of four time steps (see fig. 3). Consider any two input
signals to our circuit. If they are ever to interact in any gate, they must not only
start on the same color square, but they must also be routable to each other in a
multiple of four time steps; otherwise they will never be able reach the inputs of
the gate simultaneously. So we introduce an additional constraint that all inputs
to our circuit be routable to each other in multiples of four time steps. This
constraint can be met simply by placing all inputs at time zero on a sublattice
of a checkerboard: a square sublattice with separation distance two (see fig. 7).
All inputs are now separated by paths whose lengths are multiples of four, and
in fact particles can travel.from one site of the sublattice to an adjacent one
in exactly four time steps. This also guarantees that all outputs of our circuit
will be routable to each other in multiples of four time steps (since gate departure
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FIGURE 7 The RA lattice, with the circuit input/output sublattice shown in shaded
squares. A particle is shown traveling from one sublattice site to an adjacent one in
four time steps.

times as well as arrival times are synchronous). Note that by restricting our
inputs to be on this sublattice, we have somewhat reduced the usable volume
of space. This simplifies our discussion, however, and introduces only a constant
factor slowdown and size increase.

4.3.3 Details of the Switch Gate Implementation. The details of the RA model
switch gate are shown in figure 8, which depicts the initial state of the lattice and
the paths taken by the signals. As mentioned above we set up an initial condition
with a few crystal bits forming a simple aggregate. XI and X2 are indicated by
heavy dashed lines. One can see that XI is initially a potential crystallization
site, whereas X2 is a potential crystallization site if and only if XI is occupied
by crystal. The "extra" crystal bits prevent spurious crystallization at undesired
locations.

The paths taken by the particles are shown as the wavy lines, and are de-
termined by the placement of mirrors (indicated by the various shades of gray
as shown in the legend). At the left are the two input signal paths; at the right
are the three outputs. Note that all inputs and outputs lie on the sublattice
described in section 4.3.2, thus guaranteeing routability.
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One can verify by "walking through" the paths by hand, that the actual
delay times are as specified in figure 6. If B is true, XI is occupied between
times three and 11. In this case, if A is also true, a heat particle exits X2 at time
six, and a gas at time ten. If B is false and A is true, a gas particle exits X2 at
time six and a heat at time ten. The gas and the heat so produced travel to a
toggling mirror, arriving at times 10 and 14, respectively. The toggling mirror
begins by deflecting gas in the down direction and heat in the up direction at
time zero, and toggling gas and heat directions every four steps thereafter. Hence,
if B is true and a heat arrives at time 10 and a gas at time 14, they are both
deflected in the up direction, since the mirror toggles in between them at time
12. Conversely, if B is false, the gas arriving at time ten and the heat arriving
at time 14 are both deflected downward, again since the mirror toggles at time
12. The extra eight steps of heat delay in the upper exit path are to delay the
heat so that it follows the gas, in accordance with our signaling convention.

The longest path through the gate requires 16 time steps, so we have imposed
extra delay on some signal paths so that the propagation delay through the gate
is exactly 16 on all paths. This will be convenient when building more complex
circuits, since we will not have to worry about delaying signals to compensate
for differences in gate delay. The paths in the figure are longer than the gate
propagation time so that both the gas and heat particles can be shown entering
and exiting the gate.

4.3.4 The Reverse Switch Gate. In order to build general logic circuits we will
need to use switch gates in both the forward and reverse directions [4]. The switch
gate used in reverse is a three-input two-output gate which performs the inverse
logic operation. The three inputs must of course be appropriately correlated
for this to be possible. Since the dynamics of the RA model is reversible, we
can build the reverse gate by sending the signals through the outputs of the
original gate, but with the opposite signaling convention: heat preceding gas.
Converting between forward and reverse signaling conventions is simple: We
need only impose an extra delay of eight steps on the gas so that it follows the
heat by four time steps. We may convert back to the forward signaling convention
by similarly delaying the heat.

4.3.5 Crossing Wires. We showed above that, observing parity constraints in
gate placement, any output can be connected to any input. However, we have
yet to show that signals can cross—a necessary detail for connecting any output
to any input. Consider two signals, one traveling in a diagonal downward and
to the right, the other traveling in a diagonal upward and to the right. The first
signal will travel purely in one channel (channel 1 in fig. 3(a)), encountering
no mirrors. The second signal must flip channels at each time step and thus
encounter a mirror at every site. Thus, for these signals to cross there must both
be mirrors and be no mirrors at the two lattice sites they will both encounter.
A way to implement this is to delay one signal by four time steps, allowing the
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first signal to propagate past the relevant two sites, then toggle the mirrors. The
second signal now encounters the correct mirror configuration when it occupies
the relevant two sites. A "cross gate" so constructed is shown in figure 9. The
shaded sites are the ones where the mirrors are toggled. Note that we have
delayed the first signal by four time steps after its encounter with the toggling
sites, so that both signals leave the cross gate synchronously.

4.3.6 A Sample Circuit. The RA model has been implemented on a special-
purpose cellular automata machine, the CAMS [9]. A detailed description of this
implementation can be found in D'Souza and Margolus [3]. For constructing the
logic gates we have discussed in this chapter, we use the CAMS implementation
of the RA model, but with the modification that the initial state and the dynam-
ics of the pseudorandom bits are precisely specified. In the original model the
permutation of the rj bit fields was simply a displacement (shift) in x and y by
a prespecified amount at each update step. Here, where we wish to exercise de-
tailed control over the microscopic dynamics, we choose the displacements more
restrictively. We displace the r\ bit fields for both gas and heat by half the size
of the space in the horizontal direction only. Further, this displacement occurs

FIGURE 8 A detailed picture of an RA switch gate. Signal entry and exit times are
given in parentheses after the signal name.
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FIGURE 9 A "cross gate." The signal traveling upward is delayed by four time steps
while the signal traveling downward passes through the two shaded lattice sites. The
mirrors at the shaded sites are then toggled. The upward signal now encounters the
correct mirror configuration to pass through as indicated. The first signal is delayed by
four steps after passing through the shaded sites so that both signals leave this gate
synchronously.

only on every fourth time step. This allows us to implement the toggling mirrors
easily. We place all the circuitry and one set of mirrors in the left half of the
space and place a second set of mirrors, with the toggling mirrors complemented,
in the right half. Note that since the shifts of the pseudorandom bit planes are
specified as part of the initial condition, we are still just manipulating our initial
condition in order to effect computation in the RA model.

To see the detailed action in the CAMS simulation, consider a single switch
gate. The operation of this gate in three of the four input cases is shown in
figure 10. Note that A takes the topmost output path if and only if B = I.

We have shown how to implement a reusable, universal logic gate, how to
route and delay signals, and how to let signals cross so that output from any can
serve as input to any other gate. Thus, we can build any Boolean logic circuit we
wish. As a simple example of connecting gates together we construct an identity
circuit from two back to back switch gates, the second running in reverse, followed
by a cross gate. The schematic of the circuit is shown in figure 11. The CAMS
implementation is pictured in figure 12. The black squares are the stationary
crystal bits. The lightly shaded squares mark the trace of where the signals have
traveled (the wires). The signals (heavily shaded squares) exit the gate at the
right. Note that in the space between the two switch gates, the gas particles are
delayed by eight so the signals enter the reverse gate with the opposite signal
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FIGURE 10 Three cases in the operation of a switch gate, (a) A = 0, B = 1. (b) A = I,
B = 0. (c) A = 1, B = 1. Particles are heavily shaded, crystal is black, and paths are
lightly shaded. The path shading is only for every alternate time step, to make it simpler
to resolve distinct paths by eye. The null case, A = 0, B = 0 is omitted.

FIGURE 11 A circuit composed of two switch gates—one forward, one reverse
followed by a signal crossover.

FIGURE 12 A CAMS implementation of an identity gate (composed of two switch
gates back to back) and a crossover. The shaded squares are the wires, visualized every
other time step. The signals have exited the circuit at the right.
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convention. In order not to clutter the figure we did not reinvert the signals, so
they leave with the inverse signal convention of heat first.

5 DISCUSSION AND CONCLUSIONS

5.1 SUMMARY

We have investigated the computational capabilities of a specific physical model
of cluster growth, where we have control over all of the microscopic degrees of
freedom. The dynamics can compute any sequence of digital logic operations if
the system is initialized to a precisely specified state. Thus the RA model can
simulate any other digital dynamics.

The moving particles are the logic signals, the paths they take are the wires.
Synchronization of signal arrival times at specific sites requires careful layout
of mirrors which route and delay signals. By routing particles through specified
interaction sites, we can build logic gates from conditional crystallization and
evaporation events. These constructs are relatively straightforward to implement,
allowing us to build a simple logic gate as shown in section 4.2. This gate is
changed by the interaction—it can be used only once. Showing that the RA
model can support reusable gates adds complication. We have many degrees of
freedom; choosing an appropriate signaling convention is crucial. We choose a
dyadic signaling convention which allows us to construct reusable logic gates, as
discussed in section 4.3.3.

5.2 COMPUTATION IN REAL PHYSICAL SYSTEMS

We have exhibited computations in a discrete lattice system that depend on
exactly synchronous updating and complete control of all microscopic degrees of
freedom. Have we abstracted anything useful for computation in real physical
systems?

The RA model captures some essential aspects of real crystallization. Per-
haps the most relevant to computation is the conditional nature of crystallization
(i.e., the presence of nucleation sites only at the perimeter of a growing crys-
tal along with the absence of heat in the local environment). This conditional
interaction allows us to build logical primitives that do not depend on exact
synchroniz ation.

Computation in the RA model can be accomplished with exact control of
the microscopic degrees of freedom. However, in real physical systems, including
electronic computers, we typically have control only of the macroscopic degrees
of freedom. For the macroscopic dynamics of a system to be universal, the mi-
croscopic dynamics must necessarily be universal: If we cannot compute with
complete control over the system, we cannot hope to compute with less control.
Thus we can consider the construction given in this chapter as a "warmup" for
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addressing the "larger" issue of macroscopic universality. The analogy to ther-
modynamics is straightforward. A gas can do mechanical work moving a piston
despite the fact we know nothing of the individual gas particles; We know only
aggregate quantities. The question then is, can we get computational work out of
a system with control only of the macroscopic degrees of freedom? With this type
of understanding we might be able to compute with a growing bacterial colony
or a growing crystal aggregate, and exert detailed control over the structures
produced [1].

A first step in understanding macroscopic computation in the RA model is
to test the robustness of the system's ability to compute when it is subjected to
an actual stochastic dynamics. For instance, we can study the situation where
the particles follow truly random walks or where the interactions are probabilis-
tic, yet we maintain control over the other degrees of freedom. If we replace each
single gas and heat particle with a dilute cloud of particles we may be able to
conditionally crystallize and uncrystallize with high probability. Directing the
macroscopic motion of clouds of particles may require us to add momentum con-
servation to the RA model, making it even more realistic. Even so restoring the
gates and signals to their starting state would require some dissipative cleanup
process. This would entail a constant throughput of "power" (i.e., the addition
and removal of particles).

ACKNOWLEDGMENTS

This work was supported by DARPA under contract number DABT63-95-C-
0130, and by the Merck/MIT Graduate Research Fellowship Program. We wish
to thank the organizers of the SFI Constructive CA workshop, which provided
inspiration for this work. We also thank Jeremy Zucker for a careful reading of
this manuscript.

REFERENCES

[1] Abelson, H., T. F. Knight, Jr., G. J. Sussman, and
friends. "Amorphous Computing." MIT AI Laboratory.
(http://swissnet.ai .mit.edu/projects/amorph-new/
amorph-new. html), 1995-present.

[2] Bennett, C. H. "Logical Reversibility of Computation." IBM J. Res. & Dev.
17 (1973): 525-532.

[3] D'Souza, R. M., and N. H. Margolus. "A Thermodynamically Reversible
Generalization of Diffusion Limited Aggregation." Phys. Rev. E. 60(1)
(1999): to appear.

[4] Fredkin, E., and T. Toffoli. "Conservative Logic." Intl. J. Theor. Phys.
21(3/4) (1982): 219-253.

http://swissnet.ai.mit.edu/projects/amorph-new/amorph-new. html
http://swissnet.ai.mit.edu/projects/amorph-new/amorph-new. html


2 3 0 Simulating Digital Logic...

[5] Kaufman, H., A. Vespignani, B. B. Mandelbrot, and L. Woog. "Parallel
Diffusion Limited Aggregation." Phys. Rev. E 52 (1995): 5602-5609.

[6] Keyes, R. W., and R. Landauer. "Minimal Energy Dissipation in Logic."
IBM J. Res. & Dev. 14 (1970): 152-157.

[7] Landauer, R. "Irreversibility and Heat Generation in the Computing
Process." IBM J. Res. & Dev. 3 (1961): 183-191.

[8] Margolus, N. H. "Physics-Like Models of Computation." Physica D 10
(1984): 81-95.

[9] Margolus, N. H. "CAM-8: A Computer Architecture Based on Cellular
Automata." In Pattern Formation and Lattice-Gas Automata, edited by
A. Lawniczak and R. Kapral. Providence, RI: American Mathematical So-
ciety, 1996.

[10] Moriarty, K., J. Machta, and R. Greenlaw. "Parallel Algorithm and
Dynamic Exponent for Diffusion-Limited Aggregation." Phys. Rev. E 55(5)
(1997): 6211-6218.

[11] Nagatani, T. "Unsteady Diffusion-Limited Aggregation." J. Phys. Soc. Jpn.
61(5) (1992): 1437-1440.

[12] Voss, R. F. "Multiparticle Fractal Aggregation." J. Stat. Phys. 36(5/6)
(1984): 861-872.

[13] Witten, T. A., and L. M. Sander. "Diffusion-Limited Aggregation, a Kinetic
Critical Phenomenon." Phys. Rev. Lett. 47(19) (1981): 1400-1403.



Universal Cellular Automata Based on the
Collisions of Soft Spheres

Norman Margolus

Copyright © 2001 by Norman Margolus. Reprinted by permission.

Fredkin's Billiard Ball Model (BBM) is a continuous classical me-
chanical model of computation based on the elastic collisions of identical
finite-diameter hard spheres. When the BBM is initialized appropriately,
the sequence of states that appear at successive integer time steps is
equivalent to a discrete digital dynamics.

Here we discuss some models of computation that are based on the
elastic collisions of identical finite-diameter soft spheres: spheres which
are very compressible and hence take an appreciable amount of time to
bounce off each other. Because of this extended impact period, these
Soft Sphere Models (SSMs) correspond directly to simple lattice gas
automata—unlike the fast-impact BBM. Successive time steps of an SSM
lattice gas dynamics can be viewed as integer-time snapshots of a con-
tinuous physical dynamics with a finite-range soft-potential interaction.
We present both two-dimensional and three-dimensional models of uni-
versal CAs of this type, and then discuss spatially efficient computation
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using momentum conserving versions of these models (i.e., without fixed
mirrors). Finally, we discuss the interpretation of these models as rel-
ativistic and as semiclassical systems, and extensions of these models
motivated by these interpretations.

1 INTRODUCTION

Cellular automata (CA) are spatial computations. They imitate the locality and
uniformity of physical law in a stylized digital format. The finiteness of the
information density and processing rate in a CA dynamics is also physically
realistic. These connections with physics have been exploited to construct CA
models of spatial processes in Nature and to explore artificial "toy" universes.
The discrete and uniform spatial structure of CA computations also makes it
possible to "crystallize" them into efficient hardware [17, 21].

Here we will focus on CAs as realistic spatial models of ordinary (non-
quantum-coherent) computation. As Fredkin and Banks pointed out [2], we can
demonstrate the computing capability of a CA dynamics by showing that certain
patterns of bits act like logic gates, like signals, and like wires, and that we can
put these pieces together into an initial state that, under the dynamics, exactly
simulates the logic circuitry of an ordinary computer. Such a CA dynamics is
said to be computation universal. A CA may also be universal by being able to
simulate the operation of a computer in a less efficient manner—never reusing
any logic gates for example. A universal CA that can perform long iterative com-
putations within a fixed volume of space is said to be a spatially efficient model
of computation.

We would like our CA models of computation to be as realistic as possible.
They should accurately reflect important constraints on physical information
processing. For this reason, one of the basic properties that we incorporate into
our models is the microscopic reversibility of physical dynamics: there is always
enough information in the microscopic state of a physical system to determine
not only what it will do next, but also exactly what state it was in a moment ago.
This means, in particular, that in reversible CAs (as in physics) we can never
truly erase any information. This constraint, combined with energy conservation,
allows reversible CA systems to accurately model thermodynamic limits on com-
putation [3, 8]. Conversely, reversible CAs are particularly useful for modeling
thermodynamic processes in physics [4]. Reversible CA "toy universes" also tend
to have long and interesting evolutions [5, 17].

All of the CAs discussed in this chapter fall into a class of CAs called lattice
gas automata (LGA), or simply lattice gases. These CAs are particularly well
suited to physical modeling. It is very easy to incorporate constraints such as
reversibility, energy conservation, and momentum conservation into a lattice gas.
Lattice gases are known which, in their large-scale average behavior, reproduce
the normal continuum differential equations of hydrodynamics [11, 12]. In a
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lattice gas, particles hop around from lattice site to lattice site. These models
are of particular interest here because one can imagine that the particles move
continuously between lattice sites in between the discrete CA time steps. Using
LGAs allows us to add energy and momentum conservation to our computational
models, and also to make a direct connection with continuous classical mechanics.

Our discussion begins with the most realistic classical mechanical model of
digital computation, Fredkin's Billiard Ball Model [10]. We then describe related
classical mechanical models which, unlike the BBM, are isomorphic to simple
lattice gases at integer times. In the BBM, computations are constructed out of
the elastic collisions of very incompressible spheres. Our new two-dimensional
and three-dimensional models are based on elastically colliding spheres that are
instead very compressible, and hence take an appreciable amount of time to
bounce off each other. The universality of these soft sphere models (SSMs) de-
pends on the finite extent in time of the interaction, rather than its finite extent
in space (as in the BBM). This difference allows us to interpret these models as
simple LGAs. Using the SSMs, we discuss computation in perfectly momentum-
conserving physical systems (cf. Moore and Nordahl [20]), and show that we can
compute just as efficiently in the face of this added constraint. The main diffi-
culty here turns out to be reusing signal-routing resources. We then provide an
alternative physical interpretation of the SSMs (and of all mass and momentum
conserving LGAs) as relativistic systems, and discuss some alternative relativistic
SSM models. Finally, we discuss the use of these kinds of models as semiclassical
systems which embody realistic quantum limits on classical computation.

2 FREDKIN'S BILLIARD BALL MODEL

In figure 1, we summarize Edward Fredkin's classical mechanical model of com-
putation, the Billiard Ball Model. His basic insight is that a location where balls
may or may not collide acts like a logic gate: we get a ball coming out at certain
places only if another ball didn't knock it away! If the balls are used as signals,
with the presence of a ball representing a logical "1" and the absence a logical
"0," then a place where signals intersect acts as a logic gate, with different logic
functions of the inputs coming out at different places. Figure l(a) illustrates
the idea in more detail. For this to work right, we need synchronized streams
of data, with evenly spaced time slots in which a 1 (ball) or 0 (no ball) may
appear. When two Is impinge on the collision "gate," they behave as shown in
the figure, and they come out along the paths labeled AB. If a 1 comes in at A
but the corresponding slot at B is empty, then that 1 makes it through to the
path labeled AB (A and not B). If sequences of such gates can be connected
together with appropriate delays, the set of logic functions that appear at the
outputs in figure l(a) is sufficient to build any computer.
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FIGURE 1 The Billiard Ball Model. Balls are always found at integer coordinates at
integer times, (a) A collision that does logic. Two balls are initially moving toward
each other to the right. Successive columns catch the balls at successive integer times.
The dotted lines indicate paths the balls would have taken if only one or the other had
come in (i.e., no collision), (b) Balls can collide at half-integer times (gray), (c) Billiard
balls are routed and delayed by carefully placed mirrors as needed to connect logic-gate
collisions together. Collisions with mirrors can occur at either integer or half-integer
times, (d) Using mirrors, we can make two signal paths cross as if the signals pass right
through each other.

In order to guarantee composability of these logic gates, we constrain the
initial state of the system. All balls are identical and are started at integer
coordinates, with the unit of distance taken to be the diameter of the balls. This
spacing is indicated in the figure by showing balls centered in the squares of a
grid. All balls move at the same speed in one of four directions: up-right, up-left,
down-right, or down-left. The unit of time is chosen so that at integer times, all
freely moving balls are again found at integer coordinates. We arrange things so
that balls always collide at right angles, as in figure l(a). Such a collision leaves
the colliding balls on the grid at the next integer time. Figure l(b) shows another
allowed collision, in which the balls collide at half-integer times (shown in gray)
but are still found on the grid at integer times. The signals leaving one collision
gate are routed to other gates using fixed mirrors, as shown in figure l(c). The
mirrors are strategically placed so that balls are always found on the grid at
integer times. Since zeros are represented by no balls (i.e., gaps in streams of
balls), zeros are routed just as effectively by mirrors as the balls themselves are.
Finally, in figure l(d), we show how two signal streams are made to cross without
interacting—this is needed to allow wires to ,cross in our logic diagrams. In the
collision shown, if two balls come in, one each at A and B, then two balls come
out on the same paths and with the same timing as they would have if they had
simply passed straight through. Needless to say, if one of the input paths has
no ball, a ball on the other path just goes straight through. And if both inputs
have no ball, we will certainly not get any balls at the outputs, so the zeros go
straight through as well.
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Clearly any computation that is done using the BBM is reversible, since if
we were to simultaneously and exactly reverse the velocities of all balls, they
would exactly retrace their paths, and either meet and collide or not at each
intersection, exactly as they did going forward. Even if we don't actually reverse
the velocities, we know that there is enough information in the present state to
recover any earlier state, simply because we could reverse the dynamics. Thus, we
have a classical mechanical system which, viewed at integer time steps, performs
a discrete reversible digital process.

The digital character of this model depends on more than just starting all
balls at integer coordinates. We need to be careful, for example, not to wire two
outputs together. This would result in head-on collisions which would not leave
the balls on the grid at integer times! Miswired logic circuits, in which we use a
collision gate backward with the four inputs improperly correlated, would also
spoil the digital character of the model. Rather than depending on correct logic
design to assure the applicability of the digital interpretation, we can imagine
that our balls have an interaction potential that causes them to pass through
each other without interacting in all cases that would cause problems. This is a
bit strange, but it does conserve energy and momentum and is reversible. Up to
four balls, one traveling in each direction, can then occupy the same grid cell as
they pass through each other. We can also associate the mirror information with
the grid cells, thus completing the BBM as a CA model. Unfortunately this is a
rather complicated CA with a rather large neighborhood.

The complexity of the BBM as a CA rule can be attributed to the nonlocality
of the hard-sphere interaction. Although the BBM interaction can be softened—
with the grid correspondingly adjusted—this model depends fundamentally upon
information interacting at a finite distance. A very simple CA model based on
the BBM, the BBMCA [13, 17] avoids this nonlocality by modeling the front
and back edges of each ball, and using a sequence of interactions between edge
particles to simulate a billiard ball collision. This results in a reversible CA with
just a four-bit neighborhood (including all mirror information!), but this model
gives up exact momentum conservation, even in simulating the collision of two
billiard balls.

In addition to making the BBMCA less physical, this loss of conservation
makes BBMCA logic circuits harder to synchronize than the original BBM. In the
BBM, if we start a column of signals out, all moving up-right or down-right, then
they all have the same horizontal component of momentum. If all the mirrors
they encounter are horizontal mirrors, this component remains invariant as we
pass the signals through any desired sequence of collision "gates." We don't have
to worry about synchronizing signals—they all remain in a single column moving
uniformly to the right. In the BBMCA, in contrast, simulated balls are delayed
whenever they collide with anything. In a BBMCA circuit with only horizontal
mirrors (or even without any mirrors), the horizontal component of momentum
is not conserved, the center of mass does not move with constant horizontal
velocity, and appropriate delays must be inserted in order to bring together
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FIGURE 2 A soft sphere model of computation, (a) A BBM-like collision using very
compressible balls. The springiness of the balls is chosen so that after the collision, the
balls are again at integer sites at integer times. The logic is just like the BBM, but
the paths are deflected inward, rather than outward, (b) Arrows show the velocities of
balls at integer times. During the collision, we consider the pair to be a single mass,
and draw a single arrow, (c) We can route and delay signals using mirrors, (d) We can
make signals cross.

signals that have gotten out of step. The BBMCA has energy conservation, but
not momentum conservation.

It turns out that it is easy to make a model which is very similar to the
BBM, which has the same kind of momentum conservation as the BBM, and
which corresponds isomorphically to a simple CA rule.

3 A SOFT SPHERE MODEL

Suppose we set things up exactly as we did for the BBM, with balls on a grid,
moving so that they stay on the grid, but we change the collision, making the
balls very compressible. In figure 2(a), we illustrate the elastic collision of two
balls in the resulting Soft Sphere Model (SSM). If the springiness of the balls is
just right (i.e., we choose an appropriate interaction potential), then the balls
find themselves back on the grid after the collision. If only one or the other ball
cornes in, they go straight through. Notice that the output paths are labeled
exactly as in the BBM model, except that the AB paths are deflected inwards
rather than outwards (cf. Appendix to Margous [13]). If we add BBM-style hard-
collisions with mirrors,1 then this model can compute in the same manner as the
BBM, with the same kind of momentum conservation aiding synchronization.

1 All of the 90° turns that we use in our SSM circuits can also be achieved by soft mirrors
placed at slightly different locations.
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In figure 2(b), we have drawn an arrow in each grid cell corresponding to
the velocity of the center of a ball at an integer time. The pair of colliding
balls is taken to be a single particle, and we also draw an arrow at its center.
We've colored the arrows alternately gray and black, corresponding to successive
positions of an incoming pair of logic values. We can now interpret the arrows
as describing the dynamics of a simple lattice gas, with the sites of the lattice
taken to be the corners of the cells of the grid.

In a lattice gas, we alternately move particles and let them interact. In this
example, at each lattice site we have room for up to eight particles (Is): we can
have one particle moving up-right, one down-right, one up-left, one down-left, one
right, one left, one up, and one down. In the movement step, all up-right particles
are simultaneously moved one site up and one site to the right, while all down-
right particles are moved down and to the right, etc. After all particles have been
moved, we let the particles that have landed at each lattice site interact—the
interaction at each lattice site is independent of all other lattice sites.

In the lattice gas pictured in figure 2(b), we see on the left particles coming
in on paths A and B that are entering two lattice sites (black arrows) and the
resulting data that leaves those sites (gray arrows). Our inferred rule is that
single diagonal particles that enter a lattice site come out in the same direction
they came in. At the next step, these gray arrows represent two particles entering
a single lattice site. Our inferred rule is that when two diagonal particles collide
at right angles, they turn into a single particle moving in the direction of the
net momentum. Now a horizontal black particle enters the next lattice site, and
our rule is that it turns back into two diagonal particles. If only one particle
had come in, along either A or B, it would have followed our "single diagonal
particles go straight" rule, and so single particles would follow the dotted path
in the figure. Thus our lattice gas exactly duplicates the behavior of the SSM at
integer times.

From figure 2(c) we can infer the rule with the addition of mirrors. Along
with particles at each lattice site, we allow the possibility of one of two kinds
of mirrors—horizontal mirrors and vertical mirrors. If a single particle enters
a lattice site occupied only by a mirror, then it is deflected as shown in the
diagram. Signal crossover takes more mirrors than in the BBM (fig. 2(d)). Our
lattice gas rule is summarized in figure 3(a). For each case shown, 90° rotations
of the state shown on the left turn into the same rotation of the state shown
on the right. In all other cases, particles go straight. This is a simple reversible
rule, and (except in the presence of mirrors) it exactly conserves momentum. We
will discuss a version of this model later without mirrors, in which momentum
is always conserved.

The relationship between the SSM of figure 3(a) and a lattice gas can also
be obtained by simply shrinking the size of the SSM balls without changing
the grid spacing. With the right time constant for the two-ball impact process,
tiny particles would follow the paths indicated in figure 3(b), interacting at grid-
corner lattice sites at integer times. The BBM cannot be turned into a lattice
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FIGURE 3 (a) A simple lattice gas rule captures the dynamics of the soft sphere
collision. Two particles colliding at right angles turn into a single new particle of twice
the mass for one step, which then turns back into two particles. A mirror deflects a
particle through 90°. In all other cases, particles go straight, (b) A soft sphere collision
on a triangular lattice.

gas in this manner, because the BBM depends upon the finite extent of the
interaction in space, rather than in time.

Notice that in establishing an isomorphism between the integer-time dynam-
ics of this SSM and a simple lattice gas, we have added the constraint to the
SSM that we cannot place mirrors at half-integer coordinates, as we did in order
to route signals around in the BBM model in figure 2. This means, in particular,
that we can't delay a signal by one time unit—as the arrangement of mirrors in
figure 3(c) would if the spacing between all mirrors were halved. This doesn't
impair the universality of the model, however, since we can easily guarantee that
all signal paths have an even length. To do this, we simply design our SSM cir-
cuits with mirrors at half-integer positions and then rescale the circuits by an
even factor (four is convenient). Then all mirrors land at integer coordinates. The
separation of outputs in the collision of figure 3(b) can be rescaled by a factor of
four by adding two mirrors to cause the two AB outputs to immediately collide
a second time (as in the bottom image of fig. 3(d)). We will revisit this issue
when we discuss mirrorless models in section 5.

4 OTHER SOFT SPHERE MODELS

In figure 3(b), we show a mass- and momentum-conserving SSM collision on a
triangular lattice, which corresponds to a reversible lattice gas model of compu-
tation in exactly the same manner as discussed above. Similarly, we can construct
SSMs in three dimensional. In figure 4(a), we see a mass and momentum con-
serving SSM collision using the face diagonals of the cubes that make up our
three-dimensional grid. The resulting particle (gray) carries one bit of informa-
tion about which of two possible planes the face diagonals that created it resided
in. In a corresponding diagram showing colliding spheres (a three-dimensional
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FIGURE 4 Three-dimensional Soft Sphere Models, (a) Collisions using cube edges and
cube-face diagonals. Each edge particle carries one bit of information about which of
two planes the diagonal particles that created it were in. (b) Collisions using face and
body diagonals. Two body-diagonal particles collide only if they are both coplanar with
a face diagonal. The resulting face-diagonal particle doesn't carry any extra planar
information, since there is a unique pair of body-diagonal particles that could have
produced it. (c) Collisions using only face diagonals, with two speeds. If particles are
confined to a single plane, this is equivalent to the triangular lattice model of figure 3(b).
Again the slower particle must carry an extra bit of collision-plane information.

version of fig. 3(a)), we would see that this information is carried by the plane
along which the spheres are compressed. This model is universal within a single
plane of the three-dimensional space, since it is just the two-dimensional square-
lattice SSM discussed above. To allow signals to get out of a single plane, mirrors
can be applied to diagonal particles to deflect them onto cube-face diagonals out-
side of their original plane.

A slightly simpler three-dimensional scheme is shown in figure 4(b). Here we
only use body and face diagonals, and body diagonals only collide when they
are coplanar with a face diagonal. Since each face diagonal can only come from
one pair of body diagonals, no collision-plane information is carried by face-
diagonal particles. For mirrors, we can restrict ourselves to reflecting each body
diagonal into one of the three directions that it could have been deflected into by
a collision with another body diagonal. This is an interesting restriction, because
it means that we can potentially make a momentum-conserving version of this
model without mirrors, using only signals to deflect signals.

Finally, the scheme shown in figure 4(c) uses only face diagonals, with the
heavier particle traveling half as fast as the particles that collide to produce it.
As in figure 4(a), the slower particle carries a bit of collision-plane information.
To accommodate the slower particles, the lattice needs to be twice as fine as
in figures 4(a) and 4(b), but we've only shown one intermediate lattice site for
clarity. Noting that three coplanar face diagonals of a cube form an equilateral
triangle, we see that this model, for particles restricted to a single plane, is ex-
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actly equivalent to the triangular-lattice model pictured in figure 3(b). As in the
model pictured in figure 4(b), the deflection directions that can be obtained from
particle-particle collisions are sufficient for three-dimensional routing, and so this
model is also a candidate for mirrorless momentum-conserving computation in
three dimensions.

5 MOMENTUM CONSERVING MODELS

A rather unphysical property of the BBM, as well as of the related soft sphere
models we have constructed, is the use of immovable mirrors. If the mirrors
moved even a little bit, they would spoil the digital nature of these models. To
be perfectly immovable, as we demand, these mirrors must be infinitely massive,
which is not very realistic. In this section, we will discuss SSM gases which
compute without using mirrors, and hence are perfectly momentum conserving.

The issue of computation universality in momentum-conserving lattice gases
was discussed in Moore and Nordahl [20], where it was shown that some two-
dimensional LGAs of physical interest can compute any logical function. This
paper did not, however, address the issue of whether such LGAs can be spatially
efficient models of computation, reusing spatial resources as ordinary computers
do. There is also a new question about the generation of entropy (undesired infor-
mation) which arises in the context of reversible momentum conserving compu-
tation models, and which we will address. With mirrors, any reversible function
can be computed in the SSM (or BBM) without leaving any intermediate results
in the computer's memory [10]. Is this still true without mirrors, where even the
routing of signals requires an interaction with other signals? We will demonstrate
mirrorless momentum-conserving SSMs that are just as efficient spatially as an
SSM with mirrors, and that don't need to generate any more entropy than an
SSM with mirrors. In the process we will illustrate some of the general physical
issues involved in efficiently routing signals without mirrors.

5.1 REFLECTIONS WITHOUT MIRRORS

We begin our discussion by replacing a fixed mirror with a constant stream of
particles (ones), aimed at the position where we want a signal reflected. This is
illustrated in figure 5(a). Here we show the two-dimensional square-lattice SSM
of figure 3(a), with a signal A being deflected by the constant stream. Along with
the desired reflection of A, we also produce two undesired copies of A (one of
them complemented). This suggests that perhaps every bend in every signal path
will continuously generate undesired information that will have to be removed
from the computer.

Figure 5(b) shows a more promising deflection. The only thing that has
changed is that we have brought in A along with A, and so we now get a 1
coming out the bottom regardless of what the value of A was. Thus signals
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FIGURE 5 Using streams of balls as mirrors, (a) A stream of Is (balls) diverts a signal
A, but also makes two copies of the signal, (b) If dual-rail (complementary) signaling
is used, signals can be cleanly reflected.

that are represented in complementary form (so-called "dual rail" signals) can
be deflected cleanly. This makes sense, since each signal now carries one unit
of momentum regardless of its value, and so the change of momentum in the
deflecting mirror stream can now also be independent of the signal value.

5.2 SIGNAL CROSSOVER

An important use of mirrors in the BBM and in SSMs is to allow signals to
cross each other without interacting. While signals can also be made to cross by
leaving regular gaps in signal streams and delaying one signal stream relative to
the other, this technique requires the use of mirrors to insert compensating delays
that resynchronize streams. If we're using streams of balls to act as mirrors, we
have a problem when these mirror streams have to cross signals, or even each
other.

We can deal with this problem by extending the noninteracting portion of
our dynamics. In order to make our SSMs unconditionally digital, we already
require that balls pass through each other when too many try to pile up in one
place. Thus it seems natural to also use the presence of extra balls to force signals
to cross. The simplest way to do this is to add a rest particle to the model—a
particle that doesn't move. At a site "marked" by a rest particle, signals will
simply pass through each other. This is mass and momentum conserving, and is
perfectly compatible with continuous classical mechanics. Notice that we don't
actually have to change our SSM collision rule to include this extra noninteracting
case, since we gave the rule in the form, "these cases interact, and in all other
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FIGURE 6 Signals that cross, (a) The circle indicates a rest particle. Two signals cross
at a rest particle without interacting, (b) Signals can also cross between lattice sites,
where no interaction is possible.

cases particles go straight." Figure 6(a) shows an example of two signal paths
crossing over a rest particle (indicated by a circle).

Figure 6(b) shows an example of a signal crossover that doesn't require a rest
particle in the lattice gas version of the SSM. Since LGA particles only interact
at lattice sites, which are the corners of the grid, two signals that cross as in
this figure cannot interact. Such a crossover occurs in figure 5(b), for example.
Without the LGA lattice to indicate that no interaction can take place at this
site, this crossover would also require a rest particle. To keep the LGA and the
continuous versions of the model equivalent, we will consider a rest particle to
be present implicitly wherever signals cross between lattice sites.

5.3 SPATIALLY EFFICIENT COMPUTATION

With the addition of rest particles to indicate signal crossover, we can use the
messy deflection of figure 5 (a) to build reusable circuitry and so perform spatially
efficient computation. The paths of the incoming "mirror streams" can cross
whatever signals are in their way to get to the point where they are needed,
and then the extra undesired "garbage" output streams can be led away by
allowing them to cross any signals that are in their way. Since every mirror
stream (which brings in energy but no information) and every garbage stream
(which carries away both energy and entropy) crosses a surface that encloses
the circuit, the number of such streams that we can have is limited by the
area of the enclosing surface. Meanwhile, the number of circuit elements (and
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FIGURE 7 A signal routing constraint, (a) When signal pairs are deflected by a stream
of Is, each component of the pair remains on the same checkerboard region of the space.
(b) If we spread the signals so that pairs are twice as far apart, we can also rescale
the mirror collision, (c) After rescaling, we can move the "mirror" to what would have
originally been a half-integer position, and so avoid this constraint.

hence also the demand for mirror and garbage streams) grows as the volume of
the circuit [3, 8, 10]. This is the familiar surface to volume ratio problem that
limits heat removal in ordinary heat-generating physical systems: the rate of
heat generation is proportional to the volume, but the rate of heat removal is
only proportional to the surface area. We have the same kind of problem if we
try to bring free energy (i.e., energy without information) into a volume.

Using dual-rail signaling, we've seen that we have neat collisions available
that don't corrupt the deflecting mirror streams. We do not, however, avoid
the surface to volume problem unless these clean mirror streams can be reused:
otherwise each reflection involves bringing in a mirror stream all the way from
outside of the circuit, using it once, and then sending the reflected mirror stream
all the way out of the circuit. Thus if we can't reuse mirror streams, the max-
imum number of circuit elements we can put into a volume of space grows like
the surface area rather than like the volume! We will show that (at least in
two-dimensional) mirror streams can be reused, and consequently momentum
conservation doesn't impair the spatial efficiency of computations.

5.4 SIGNAL ROUTING

Even though we can reflect dual-rail signals and make them cross, we still have a
problem with routing signals (actually two problems, but we'll discuss the second
problem when we confront it). Figure 7(a) illustrates a problem that stems from
not being able to reflect signals at half-integer locations. Every reflection leaves
the top A signal on the dark checkerboard we've drawn—it can't connect to
an input on the light checkerboard. We can fix this by rescaling the circuit,
spreading all signals twice as far apart (fig. 7(b)). Now the implicit crossover in
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FIGURE 8 A switch gate using dual-rail signaling, (a) The general case. The A signal
either deflects B and B or not, doing most of the work. We've highlighted the constant
stream of ones by using dotted lines, (b) The case A=l . B and B are reflected down,
and the one is reflected the opposite way. (c) The case A=0. There is no interaction
with B or B, and they go straight.

the middle of figure 7(a) must be made explicit. Notice also that the horizontal
particle must be stretched—it too goes straight in the presence of a rest particle.
Now we can move the reflection to a position that was formerly a half-integer
location (fig. 7(c)), and the A signal is deflected onto the white checkerboard.

5.5 DUAL-RAIL LOGIC

We've seen that dual-rail signals can be cleanly routed. In order to use such sig-
nals for computation, we need to be able to build logic with dual-rail inputs and
outputs. We will now see that if we let two dual-rail signals collide, we can form
a switch gate [10], as shown in figure 8(a). The switch gate is a universal logic
element that leaves the control input A unchanged, and routes the controlled
input B to one of two places, depending on the value of A. Since each dual-rail
signal contains a 1, and since all collisions conserve the number of Is, all dual-rail
logic gates need an equal number of inputs and outputs. Thus our three-output
switch gate needs an extra input which is a dual-rail constant of 0.

The switch gate (fig. 8(a)) is based on a reflection of the type shown in
figure 5(b). If A=l (fig. 8(b)), the B and B pair are reflected downward; if A=0
there is no reflection and they go straight. The A signal reflects off the constant-
one input as in figure 5(a), to regenerate the A and A outputs. Notice that if a
rest particle were added in figure 8(a) at the intersection of the A and B signals,
the switch would be stuck in the off position: B and B would always go straight
through, and A and A would get reflected by the constant one, and come out
in their normal position.



Norman Margolus 245

FIGURE 9 (a) A Fredkin gate. We construct a Predkin gate out of four switch gates,
two used forward, and two backward. Constant Is are drawn in lightly using dotted
arrows. The path of the control signal A is shown in solid gray. If we added constant
streams of Is along the four paths drawn as dotted lines without arrows, then the con-
stant streams would be symmetrical about diagonal axes, (b) Because of the diagonal
symmetry of this Predkin gate construction, we can make an array of them, as indicated
here, and reuse the constant streams of Is that act as signal mirrors. The upside down
Fredkin gates are also Fredkin gates, but with the sense of the control inverted.

5.6 A FREDKIN GATE

In order to see that momentum conservation doesn't impair the spatial efficiency
of SSM computation, we first illustrate the issues involved by showing how mirror
streams can be reused in an array of Fredkin gates [10].

A Fredkin gate has three inputs and three outputs. The A input, called the
control, appears unchanged as the A output. The other two inputs either appear
unchanged at corresponding outputs (if A=l) , or appear interchanged at the
corresponding outputs (if A=0). We construct a Fredkin gate out of four switch
gates, as shown in figure 9(a). The first two switch gates are used forward, the
last two switch gates are used backward (i.e., flipped about a vertical axis). The
control input A is colored in solid gray, and we see it wend its way through the
four switch gates. Constant Is are shown using dotted gray arrows. In the case
A=0, all four switch gates pass their controlled signals straight through, and so
B and C interchange positions in the output. In the case A=l , all four switch
gates deflect their controlled signals, and so B and C come out in the same
positions they went in.

Now notice the bilateral symmetry of the Fredkin gate implementation. We
can make use of this symmetry in constructing an array of Fredkin gates that
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FIGURE 10 Emulating the BBMCA using an SSM. (a) The BBMCA can be imple-
mented as a two-dimensional array of identical blocks of logic, each of which processes
four bits at a time. The bits that are grouped together in one step go to four different
diagonally adjacent blocks in the next step, (b) We construct a circuit out of switch
gates to implement the BBMCA logic block. The first half of the circuit (F) produces
a set of outputs that are each one only if the four BBMCA bits have some particular
gates to implement the BBMCA logic block. The first half of the circuit (F) produces
that interchange are wired to each other.

reuse the constant 1 signals. If we add an extra stream of constant Is along
the four paths drawn as arrowless dotted lines (making these lie on the lattice
involves rescaling the circuit), then the set of constant streams coming in or
leaving along each of the four diagonal directions is symmetric about some axis.
This means that we can make a regular array of Fredkin gates and upside-down
Fredkin gates, as is indicated in figure 9(b), with the constants all lining up.
These constants are passed back and forth between adjacent Fredkin gates, and
so don't have to be supplied from outside of the array. Since an upside-down
Fredkin gate is still a Fredkin gate, but with the sense of the control inverted,
we have shown that constant streams of ones can be reused in a regular array of
logic.

We still have not routed the inputs and outputs to the Fredkin gates, and
so we have another set of associated mirror streams that need to be reused. The
obvious approach is to create a regular pattern of interconnection, thus allowing
us to again solve the problem globally by solving it locally. But a regular pattern
of interconnected logic elements that can implement universal computation is
just a universal CA: we should simply implement a universal CA that doesn't
have momentum conservation!

5.7 IMPLEMENTING THE BBMCA

The BBMCA is a simple reversible CA based on the BBM, with fixed mir-
rors [13, 15, 17]. It can be implemented as a regular array of identical logic
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FIGURE 11 Symmetrizing signal paths so that adjacent BBMCA logic blocks can
share their mirror constants, (a) The BBMCA block circuit is bilaterally symmetric,
with an equal number of constants flowing in or out along each of the four diagonal
directions, (b) Symmetric pairs of constant Is can be shifted vertically in order to align
the "mirror streams" so that the blocks can be arrayed, (c) The wiring of the four
BBMCA signal inputs (and outputs) to each block is also bilaterally symmetric, so the
same alignment techniques should apply.

blocks, each of which takes four bits of input, and produces four bits of output
(fig. 10(a)). Each logic block exchanges one bit of data with each of the four
blocks that are diagonally adjacent. The four bits of input can be thought of as
a pattern of data in a 2x2 region of the lattice, and the four outputs are the
next state for this region. According to the BBMCA rule, certain patterns are
turned into each other, while other patterns are left unchanged. This rule can
be implemented by a small number of switch gates, as is indicated schematically
in figure 10(b). We first implement a demultiplexer F, which produces a value
of 1 at a given output if and only if a corresponding 2x2 pattern appears in the
inputs. Patterns that don't change under the BBMCA dynamics only produce Is
in the outputs labeled "other." The demultiplexer is a combinational circuit (i.e.,
one without feedback). The inverse circuit F~l is simply the mirror image of F,
obtained by reflecting F about a vertical axis. In between F and F~l we wire
together the cases that need to interchange. This gives us a bilaterally symmetric
circuit which implements the BBMCA logic block in the same manner that our
circuit of figure 9(a) implemented the Fredkin gate. Note that the overall circuit
is its own inverse, as any bilaterally symmetric combinational SSM circuit must
be.

Now we would like to connect these logic blocks in a uniform array. We will
first consider the issue of sharing the mirror streams associated with the individ-
ual logic blocks, and then the issue of sharing the mirror streams associated with
interconnecting the four inputs and outputs. In figure 11 (a) we see a schematic
representation of our BBMCA block. It is a combinational circuit, with signals
flowing from left to right. The number of signal streams flowing in along one
diagonal direction is equal to the number flowing out along the same direction—
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this is true overall because it's true of every collision! In particular, since the four
inputs and outputs are already matched in the diagram, the mirror streams must
also be matched—there are an equal number of streams of constant Is coming
in and out along each direction. The input streams will not, however, in general
be aligned with the output streams. If we can align these, then we can make a
regular array of these blocks, with mirror-stream outputs of one connected to
the mirror-stream inputs of the next.

In figure ll(b) we show how to align streams of ones. Due to the bilateral
symmetry of the BBMCA circuit, every incoming stream that we would like to
shift up or down on one side is matched by an outgoing stream that needs to
be shifted identically on the other side. Thus we will shift streams in pairs. To
understand the diagram, suppose that A and B are constant streams of ones,
with B going into a circuit below the diagram, and A coming out of it. Now
suppose that we would like to raise A and B to the positions labeled A' and
B'. If a constant stream of horizontal particles is provided midway in between
the two vertical positions, then we can accomplish this as shown. The constant
horizontal stream splits at the first position without a rest particle. It provides
the shifted A' signal, and a matching stream of ones collides with the original A
signal. The resulting horizontal stream is routed straight across until it reaches B,
where an incoming stream of ones is needed. Here it splits, with the extra stream
of ones colliding with the incoming B ' signal to restore the original horizontal
stream of ones, which can be reused in the next block of the array of circuit
blocks to perform the same function. The net effect is that the mirror streams
A and B coming out of and into a circuit have been replaced with new streams
that are shifted vertically. By reserving some fraction of the horizontal channels
for horizontal constants that stream across the whole array, and reserving some
channels for horizontal constants that connect pairs of streams being raised, we
can adjust the positions of the mirror streams as needed. Note that a mirror
pair can be raised by several smaller shifts rather than just one large shift, in
case there are conflicts in the use of horizontal constants. Exactly the same
arrangement can be used to lower A' and B' going into and out of a circuit
above the diagram. If we flip the diagram over, we see how to handle pairs of
streams going in the opposite directions.

Now we note that the wiring of the four signal inputs and outputs in our
BBMC A array also has bilateral symmetry, about a horizontal axis (fig. ll(c)).
Thus it seems that we should be able to apply the same technique to align the
mirror streams associated with this routing, in order to complete our construc-
tion. But there is a problem.

5.8 SIGNAL ROUTING REVISITED

So far, we have only constructed circuits without feedback—all signal flow has
been left to right. Because of the 90° rotational symmetry of the SSM, we might
expect that feedback isn't a problem. When we decided to use dual-rail signaling,
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FIGURE 12 Reflecting signals back, (a) Dual rail pairs that are synchronized by col-
umn only reflect correctly off "horizontal mirrors." If we try to bounce them off a
"vertical mirror," signals from different times interact, (b) This can be fixed by provid-
ing a way to slow down a signal. The rule for adding slower particles involves refining
the lattice to admit a half-speed double-mass diagonal particle, and adding a single-
mass rest particle (square block in the diagram). When a soft sphere collides with an
equally massive sphere at rest, the first slows down as the second speeds up (giving a
net speed of 1/2), and then the sphere that was at rest proceeds, (c) Using our "non-
interaction" rest particle to extend the lifetime of the half-speed diagonal particle, we
can change a column-synchronized pair into a row-synchronized pair, and then back.

however, we broke this symmetry. The timing of the dual-rail signal pairs is
aligned vertically and not horizontally. In figure 12(a), we see the problem that we
encounter when we try to reflect a right-moving signal back to the left. A signal
that passed the input position labeled A at an even time step collides with an
unrelated signal that passed input A at an odd time step. These two signals need
to be complements of each other in order to reconstitute the reflecting mirror
stream. Thus we only know how to reflect signals vertically, not horizontally!

We will discuss two ways of fixing this problem. Both involve using additional
collisions in the SSM. The first method we describe is more complicated, since
it adds additional particles and velocities to the model, but is more obvious.
The idea is that we can resynchronize dual-rail pairs by delaying one signal. We
do this by introducing an interacting rest particle (distinct from our previously
introduced noninteracting rest particle) with the same mass as our diagonally
moving particles. The picture we have in mind is that if there is an interacting rest
particle in the path of a diagonally moving particle, then we can have a collision
in which the moving particle ends up stationary, and the stationary particle ends
up moving. During the finite interval while the particles are colliding, the mass is
doubled and so (from momentum conservation) the velocity is halved. By picking
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the head-on impact interval appropriately, the new stationary particle can be
deposited on a lattice site, so that the model remains digital. This is illustrated
in figure 12(b). Here the square block indicates the interacting rest particle.
This is picked up in a collision with a diagonal-moving particle to produce a
half-speed double-mass particle indicated by the short arrow. Note that adding
this delay collision requires us to make our lattice twice as fine to accommodate
the slower diagonal particles. It adds five new particle states to our model (four
directions for the slow particle, and an interacting rest particle). The model
remains, however, physically "realistic" and momentum conserving.

Figure 12(c) illustrates the use of this delay to reflect a rightgoing signal
leftward. We insert a delay in the A path both before the mirror-stream collision
and afterward, in order to turn the plane of synchronization 180°, turning it 90°
at a time. Notice that we use a noninteracting rest particle (round) to extend
the lifetime of the half-speed diagonal particle.

In addition to complicating the model, this delay technique adds an extra
complication to showing that momentum conservation doesn't impair spatial
efficiency. Signals are delayed by picking up and later depositing a rest particle.
In order to reuse circuitry, we must include a mechanism for putting the rest
particle back where it started before the next signal comes through. Since we
can pick this particle up from any direction, this should be possible by using a
succession of constant streams coming from various directions, but these streams
must also be reused. We won't try to show that this can be done here—we will
pursue an easier course in the next section.

It would be simpler if the moving particle was deposited at the same position
that the particle it hit came from, so that no cleanup was needed. Unfortunately,
this necessarily results in no delay. Since the velocity of the center of mass of
the two particles is constant, if we end up with a stationary particle where we
started, the other particle must exactly take the place of the one that stopped.

5.9 A SIMPLER EXTENSION

We can complete our construction without adding any extra particles or velocities
to the model. Instead, we simply add some cases to the SSM in which our normal
soft-sphere collisions happen even when there are extra particles nearby. The
cases we will need are shown in figure 13. In this diagram, we show each forward
collision in one particular orientation—collisions in other orientations and the
corresponding inverse collisions also apply. The first case is the SSM collision
with nothing else around. The second case is a forward and backward collision
simultaneously—this will let us bounce signals back the way they came. The
third case has at least two spectators, and possibly a third (indicated by a dotted
arrow). The collision proceeds normally, and all spectators pass straight through.
This case will allow us to separate forward and backward moving signals. As
usual, all other cases go straight. In particular, we will depend for the first time



Norman Margolus 251

FIGURE 13 A two-dimensional square-lattice SSM. Particles go straight unless they
interact. One sample orientation is shown for each interacting case. The inverse cases
also apply, (a) Basic collision, (b) Same collision and its inverse operating in two oppo-
site directions simultaneously, (c) Same collision as (a), but with "spectator particles"
present. The dotted-arrow particle may or may not be present, and may come from
below instead (i.e., flipped orientation). Spectators go straight.

on head-on colliding particles going straight. We have not used any head-on
collisions in our circuits thus far, and so we are free to define their behavior here.

Figure 14(a) shows how two complementary sets of dual-rail signals can be
reflected back the way they came. We show the signals up to the moment where
they come to a point where they collide with the two constant streams. In the case
where A=l , we have four diagonal signals colliding at a point, and so everything
goes straight through. In particular, the constant streams have particles going
in both directions (passing through each other), and the signal particles go back
up the A paths without interacting with oncoming signals. In the case where
A=0, we use our new "both directions" collision, which again sends all particles
back the way they came. Thus we have succeeded in reversing the direction of a
signal stream.

Figure 14(b) shows a mirror with all signals moving from left to right. We've
added in vertical constant streams in two places, which don't affect the operation
of the "mirror." These paths have a continual stream of particles in both the up
and down directions, and so these particles all go straight (head-on collisions). In
figure 14(c), we've just shown signals coming into this mirror backward (with the
forward paths drawn in lightly). This mirror doesn't reflect these backward-going
signals, and so they go straight through. The vertical constants were needed to
break the symmetry, so that it's unambiguous which signals should interact.
This separation uses the extra spectator-particle cases added to our rule in fig-
ure 13(c). As we will discuss, in a triangular-lattice SSM the separation at mirrors
doesn't require any vertical constants at the mirrors (see section 5.10).

Finally, figure 15 shows how we can arrange to always have two comple-
mentary dual-rail pairs collide whenever we need to send a signal backward.
Figure 15(a) shows an SSM circuit with some number of dual-rail pairs. In each
pair, the signals are synchronized vertically, with the uncomplemented signal
on top. Figure 15(b) shows the same gate flipped vertically. The collisions that
implement the circuit work perfectly well upside down, but both the inputs and
the outputs are complemented by this inversion. For example, in figure 15(c),
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FIGURE 14 A way to reflect signals back, without refining the lattice or adding extra
particles, (a) If we have two dual-rail signal pairs (one the complement of the other),
then they can be bounced straight backward along the same paths they came in on
by bringing all the signals to one point at which two mirror signals impinge. In either
case (A=0 and A=l) , the constant Is that reflect these signals are also reversed along
their paths, (b) The thick vertical dotted line segments indicate constants of one that
are moving in both directions at the indicated locations. This is otherwise a normal
reflection of a signal—the extra vertical streams don't interfere with the operation of
the "mirror." (c) If a backward propagating signal comes in from the right (B and B),
then it is not reflected by this forward mirror—such a mirror separates the backward
moving stream from the forward stream.

FIGURE 15 DeMorgan inversion, (a) A logic circuit with dual-rail inputs. In each
input pair, the complemented signal lies below the uncomplemented one. (b) If this
circuit is flipped vertically, the operation of the circuit is unchanged, but it operates
upon inputs that are complemented (according to our conventions) and produces out-
puts that are also complemented, (c) The switch gate of figure 8(a), flipped vertically.
Inputs and outputs have been relabeled to call the top signal in each dual-rail pair
"uncomplemented." (d) The BBMCA logic circuit of figure 10(b) has been mirrored
vertically to produce a vertically symmetric circuit which has complementary pairs of
dual-rail pairs.
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FIGURE 16 An SSM gas on the triangular lattice which allows signal feedback.
(a) Two speed-2 particles collide and turn into a speed-1 particle with twice the mass.
This decays back into two speed-2 particles. If an extra "spectator" speed-2 particle
comes in as shown with a dotted arrow (or the flip of these cases), it passes straight
through. Collisions can happen both forward and backward simultaneously. In all other
cases, particles go straight, (b) Constants act as mirrors for dual-rail signals, (c) This
is a switch gate. Other combinational circuits from the square-lattice SSM can be sim-
ilarly stretched vertically to fit onto the triangular lattice, (d) The third collision case
in the rule makes signals bounce back the way they came. Backward-going signals will
separate at a mirror such as is shown in (b).

we have turned a switch gate upside down. If we relabel inputs and outputs in
conventional order, then we see that this gate performs a logical OR where the
original gate performed an AND. In figure 15(d), we take our BBMCA logic block
of figure 10(b) and add a vertically reflected copy. This pair of circuits, taken to-
gether, has both vertical and horizontal symmetry. Given quad-rail inputs (dual
rail inputs along with their dual-rail complements), it produces corresponding
quad-rail outputs, which can be reflected backward using the collision of fig-
ure 14(a), and separated at mirrors, as shown in figure 14(c). Now note that
the constant-lifting technique of figure ll(b) works equally well even if all of the
constant streams have Is flowing in both directions simultaneously, by virtue of
the bidirectional collision case of figure 13(b). Thus we are able to apply the
constant-symmetrizing technique to mirror streams that connect the four signals
between our BBMCA logic blocks (fig. ll(c)), and complete our construction.

5.10 OTHER LATTICES

All of this works equally well for an SSM on the triangular lattice, and is even
slightly simpler, since we don't need to add extra constant streams at mirrors
where forward and backward moving signals separate (as we did in fig. 14(c)).
The complete rule is given in figure 16(a): the dotted arrow indicates a position
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where an extra "spectator" particle may or may not come in. If present, it passes
straight through and doesn't interfere with the collision. In figures 16(b) and
16(c), we see how mirrors and switch gates (and similarly any other square-
lattice SSM combinational circuit) can simply be stretched vertically to fit onto
the triangular lattice. A back reflection, where signals are sent back the way the
came, is shown in figure 16(d).

This of course also means that the corresponding three-dimensional model
(fig. 4(c)) can perform efficient momentum-conserving computation, at least in
a single plane. If we have a dual-rail pair in one plane of this lattice, and its
dual-rail complement directly below it in a parallel plane, this combination can
be deflected cleanly in either of two planes by a pair of constant mirror streams.
Thus it seems plausible that this kind of discussion may be generalized to three
dimensions, but we won't pursue that here.

6 RELATIVISTIC CELLULAR AUTOMATAS

We have presented examples of reversible lattice gases that support universal
computation and that can be interpreted as a discrete-time sampling of the
classical-mechanical dynamics of compressible balls. We would like to present
here an alternative interpretation of the same models as a discrete-time sam-
pling of relativistic classical mechanics, in which kinetic energy is converted by
collisions into rest mass and then back into kinetic energy.

For a relativistic collision of some set of particles, both relativistic energy
and relativistic momentum are conserved, and so:

where the unprimed quantities are the values for each particle before the colli-
sion, and the primed quantities are after the collision. These equations are true
regardless of whether the various particles involved in the collision are massive
or massless. Now we note that for any mass- and momentum-conserving lattice
gas,

and so we need only reinterpret what is normally called "mass" in these models
as relativistic energy in order to interpret the collisions in such a lattice gas as
being relativistic. If all collisions are relativistically conservative, then the over-
all dynamics exactly conserves relativistic energy and momentum, regardless of
the frame of reference in which the system is analyzed. Normal nonrelativistic
systems have separate conservations of mass and nonrelativistic energy—a prop-
erty that the collisions in most momentum-conserving lattice gases lack. Thus
we might argue that the relativistic interpretation is more natural in general.
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In the collision of figure 3(b), for example, we might call the incoming pair
of particles "photons," each with unit energy and unit speed. The two photons
collide, and the vertical components of their momenta cancel, producing a slower
moving (v = l/\/2) massive particle (m — \/2) with energy 2 and with the same
horizontal component of momentum as the original pair. After one step, the
massive particle decays back into two photons. At each step, relativistic energy
and momentum are conserved.

As is discussed elsewhere [16, 17], macroscopic relativistic invariance could
be a key ingredient in constructing CA models with more of the macroscopic
richness that Nature has. If a CA had macroscopic relativistic invariance, then
every complex macroscopic structure (assuming there were any!) could be set
in motion, since the macroscopic dynamical laws would be independent of the
state of motion. Thus complex macroscopic structures could move around and
interact and recombine.

Any system with macroscopic relativistic symmetry is guaranteed to also
have the relativistic conservations of energy and momentum that go along with
it. As Fredkin has pointed out, a natural approach to achieving macroscopic
symmetries in CAs is to start by putting the associated microscopic conservations
directly into the CA rule—we certainly can't put the continuous symmetries
there! Momentum and mass-conserving LGA models effectively do this.

Of course, merely reinterpreting the microscopic dynamics of lattice gases
relativistically doesn't make their macroscopic dynamics any richer. One addi-
tional microscopic property that we can look for is the ability to perform compu-
tation, using space as efficiently as is possible: this enables a system to support
the highest possible level of complexity in a finite region. Microscopically, SSM
gases have both a relativistic interpretation and spatial efficiency for computa-
tion. What we would really like is a dynamics in which both of these properties
persist at the macroscopic scale.

If we are trying to achieve macroscopic relativistic invariance along with effi-
cient macroscopic computational capability, we can see that one potential prob-
lem in our "bounce back" SSM gases (figs. 13 and 16) is a defect in their discrete
rotational symmetry. Dual-rail pairs of signals aligned in one orientation can't
easily interact with dual-rail pairs that are aligned in a 60° (triangular lattice) or
90° (square lattice) rotated orientation. If this causes a problem macroscopically,
we can always try adding individual signal delays to the model, as in figure 12(b).
This may have macroscopic problems as well, however, since turning signals with
the correct timing requires several correlated interactions. Of course the reason
we adopted dual-rail signaling to begin with was to avoid mixing logic-value
information with signal momentum—every dual-rail signal has unit momentum
and can be reflected without "measuring" the logic value. Perhaps we should
simply decouple these two quantities at the level of the individual particle, and
use some other degree of freedom (other than presence or absence of a particle) to
encode the logic state (e.g., angular momentum). An example of a model which
decouples logic values and momentum is given in figure 17.
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FIGURE 17 A computation-universal LGA in which ones and zeros have the same mo-
mentum, (a) We use three kinds of particles that interact. The three cases shown, plus
rotations, inversions and the time reversal of these cases, are all of the interactions. In

'all other cases, particles don't interact, (b) We use the solid-black particles to represent
"ones" and the dotted particles to represent "zeros." If only a single one comes into a
"collision," none of the interaction cases applies, and so everything goes straight, (c) If
two ones collide, they turn into a third kind of particle (shown as a wavy arrow), which
is deflected by a zero (and deflects the zero). The inverse interaction recreates the two
ones, displaced inwards from their original paths (as in an SSM collision), (d) The wavy
particle also deflects (and is deflected by) a one.

In figure 17(a), we define a rule which involves three kinds of interacting
particles. Figures 17(b) and 17(c) show how an SSM-style collision gate can be
realized, using one kind of particle to represent an intermediate state. Single
ones go straight, whereas pairs of ones are displaced inwards. Both ones and
zeros are deflected by the wavy "mirror" particles, which can play the role of the
mirror streams in our earlier constructions. Deflecting a binary signal conserves
momentum without recourse to dual rail logic, and without contaminating the
mirror stream. Adding rest particles to this model allows signals to cross (since
the rule is, "in all other cases particles don't interact"). Models similar to this
"proto-SSM" would be interesting to investigate on other lattices, in both two
dimensions and three dimensions.

The use of rest particles to allow signals to cross in this and earlier rules
raises another issue connected with the macroscopic limit. If we want to support
complicated macroscopic moving structures that contain rest particles, we have
to have the rest particles move along with them! (Or perhaps use moving signals
to indicate crossings.) If we want to make rest particles "move," they can't
be completely noninteracting. Thus we might want to extend the dynamics so
that rest particles can both be created and destroyed. This could be done by
redefining some of the noninteracting collision cases that have not been used in
our constructions—we have actually used very few of these cases. These collisions
would be different from the springy collision of figure 3(a). Even a single-particle
colliding with a rest particle can move it (as in fig. 12(b) for example).
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These are all issues that can be approached both theoretically, and by study-
ing large-scale simulations [17].

7 SEMICLASSICAL MODELS OF DYNAMICS

The term semiclassical has been applied to analyses in which a classical physics
model can be used to reproduce properties of a physical system that are funda-
mentally quantum mechanical. Since the finite and extensive character of entropy
(information) in a finite physical system is such a property [1], all CA models
can in a sense be considered semiclassical. It is interesting to ask what other
aspects of quantum dynamics can be captured in classical CA models.

One such aspect is the relationship in quantum systems between energy and
maximum rate of state change. A quantum system takes a finite amount of time
to evolve from a given state to a different state (i.e., a state that is quantum
mechanically orthogonal). There is a simple relationship between the energy of
a quantum system in the classical limit and the maximum rate at which the
system can pass through a succession of distinct (mutually orthogonal) quantum
states. This rate depends only on how much energy the system has. Suppose that
the quantum mechanical average energy E (which is the energy that appears in
the classical equations of motion) is measured relative to the system's ground-
state energy, and in units where Planck's constant h is one. Then the maximum
number of distinct changes that can occur in the system per unit of time is
simply 2E, and this bound is always achieved by some state [18].

Now suppose we have an energy-conserving LGA started in a state with total
energy E, where E is much less than the maximum possible energy that we can
fit onto the lattice. Suppose also that the smallest quantity of energy that moves
around in the LGA dynamics is a particle with energy "one." Then with the
given energy E, the maximum number of spots that can possibly change on the
lattice in one time step is IE (just as in the quantum case): E smallest energy
particles can each leave one spot and move to another, each causing two changes
if none of them lands on a spot that was just vacated by another particle. Since
the minimum value of A £ is 1 in this dynamics, and the minimum value of At
is 1 since this is our integer unit of time, it is consistent to think of this as a
system in which the minimum value of AEAt is 1 (which for a quantum system
would mean h = I). Thus simple LGAs such as the SSM gases reproduce the
quantum limit in terms of their maximum rate of dynamical change.

This kind of property is interesting in a physical model of computation, since
simple models that accurately reflect real physical limits allow us to ask rather
sharp questions about quantifying the physical resources required by various
algorithms (cf. Frank [8]).
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8 CONCLUSION

We have described soft sphere models of computation, a class of reversible and
computation-universal lattice gases which correspond to a discrete-time sampling
of continuous classical mechanical systems. We have described models in both
two dimensions and three dimensions that use immovable mirrors, and provided a
technique for making related models without immovable mirrors that are exactly
momentum conserving while preserving their universality and spatial efficiency.
In the context of the two-dimensional momentum-conserving models, we have
shown that it is possible to avoid entropy generation associated with routing
signals. For all of the momentum conserving models we have provided both a
nonrelativistic and a relativistic interpretation of the microscopic dynamics. The
same relativistic interpretation applies generally to mass and momentum con-
serving lattice gases. We have also provided a semiclassical interpretation under
which these models give the correct physical bound on maximum computation
rate.

It is easy to show that reversible LGAs can all be turned into quantum
dynamics which reproduce the LGA state at integer times [14]. Thus SSM gases
can be interpreted not only as both relativistic and nonrelativistic systems, but
also as both classical and as quantum systems. In all cases, the models are
digital at integer times, and so provide a link between continuous physics and
the dynamics of digital information in all of these domains, and perhaps also a
bridge linking informational concepts between these domains.
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Emerging Markets and Persistent Inequality
in a Nonlinear Voter Model

Nienke A. Oomes

1 INTRODUCTION

Since it is one of the few spin systems that can be studied analytically, the Voter
Model has been extensively discussed in the interacting particle systems litera-
ture.1 In the original interpretation of this model, voters choose their political
positions with probabilities equal to the voting frequency of their "friends." One
of the main results is that, in one and two dimensions, the system clusters—i.e.,
converges to a homogeneous steady state—while heterogeneity can persist only
in dimensions higher than two.

This chapter develops an economic model that is similar to the Voter Model,
in that agents decide between "economic positions," conditional on the economic
choices of their trade partners. The choices considered here are market produc-
tion and nonmarket production, where the payoffs associated with market pro-
duction for a given agent are a function of the amount of market goods produced
by others. Intuitively, the more people are producing for the market, the more

'For an overview, see Liggett [14, ch. V] and Durrett [9, ch. III].

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 2 6 1
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potential trade partners exist, hence the higher the expected payoff associated
with market production. Similarly, the smaller the extent of the market, the
lower the expected gains from trade, hence the smaller the incentive to produce
for the market.2

When each agent is assumed to have an equal probability of trading with
any other agent in his or.her trade network, the payoffs associated with market
production are linearly increasing in the network's total market output. However,
this linearity in payoffs does not necessarily imply that the conditional probability
of working for the market is linearly increasing in total market production, as
the Voter Model would have it. As it turns out, this follows only if agents believe,
mistakenly, that their trade partners will decide to work for the market with a
probability that is exactly proportional to their current market output.

Clearly, a more general approach is obtained by allowing for different types
of expectations agents may have about the production decisions of their trade
partners. A model that allows for such an approach is the so-called Nonlinear
Voter Model (NLVM), studied by Molofsky et al. [15]. An interesting aspect
of this model is that, unlike the Voter Model, it is able to generate persistent
heterogeneity even in two dimensions.

In an economic context, this result is relevant both for studying emerging
markets, and for analyzing the persistence of inequality. Will markets eventually
take over all types of nonmarket production, or can both forms of production
coexist? Is it possible for a "culture of poverty" to persist in the midst of plenty?
While the model presented here is obviously a considerable simplification of any
real economy, it might give us some insight into these questions.

The remainder of this chapter is organized as follows. First, the underlying
assumptions of the model, along with its game-theoretical representation, are
presented in sections 2 and 3. Then, in section 4, the NLVM is discussed, with a
focus on the conditions under which it generates persistent inequality. The major
finding here is that the parameter values that allow for this to happen are no
realistic from an economic point of view. Finally, in section 5, it is demonstrated
that, in a more general NLVM that includes the Ising model as a special case,
persistent inequality may arise for more realistic economic parameter values.
Section 6 concludes, and suggests some directions for future research.

2 DESCRIPTION OF THE MODEL

Consider an artificial economy that is inhabited by N agents. The agents live on a
two-dimensional lattice S C Z2, and are indexed by their coordinates x = (i,j).
Each period, they independently decide whether or not to engage in market
production. Decisions depend on endowments, technology, trade structure, and
preferences, which are described below.

2This is essentially the argument put forward by Adam Smith in the first three chapters
of his Wealth of Nations (1776).
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2.1 ENDOWMENTS

Each agent is endowed with one homogeneous unit of labor time per period,
of which r]t(x) is allocated to market production, and 1 — rjt(x) is allocated to
nonmarket activities. The latter might be thought of as farming, household work,
voluntary work, or even crime. What is important, however, as will be described
below, is that the payoffs associated with nonmarket production are assumed
to be independent of the production decisions of other agents, and that these
payoffs should be high enough so as to allow agents to be self-sufficient, i.e., to
survive outside the market.

The variable 771(2:) is assumed to have binary support £1 — {0,1}, implying
that agents specialize in either market or nonmarket production.3 This assump-
tion is less restrictive than it may appear at first, since t may be thought of as
a relatively short period of time, such as a day. In that sense, part-time work
is possible, for instance, by allowing agents to switch every other day between
market and nonmarket work. At any given moment in time, however, the state
of the economy rjt is a binary configuration with state space {0,1}N.

2.2 TECHNOLOGY

The production processes for both market and nonmarket activities are constant
returns to scale, with market production assumed to be twice as efficient. Nor-
malizing the marginal productivity of market work to one, this gives a pair of
production functions for each site x:

where yt(x) is the amount of market goods produced at site x, and ht(x) is the
amount of nonmarket goods produced and consumed at site x during period t.

2.3 TRADE STRUCTURE

The trade structure between agents is represented as a doubly stochastic matrix
P, the elements p(x, y) of which denote the probability that x trades with y. The
trade structure is exogenous, and is assumed to satisfy the restriction that each
agent x trades, on average, an equal amount of her market goods with any other
agent within her "trade network" Nx e 5. This implies that, within a given trade
network, all agents have an equal probability of trading with each other:

3 A more general setup is discussed in Oomes [16].
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TABLE 1 Payoff Matrix for the Two-Player Game.

2.4 PREFERENCES

From the perspective of the consumer, market and nonmarket goods are consid-
ered perfect substitutes, meaning that they yield an equal amount of utility per
unit consumed. These preferences can be represented by a linear utility function:

where ht(x) is the amount of nonmarket goods, and ct(x] the amount of market
goods consumed at site x during period t.

Since nonmarket goods, by definition, have no market value, market goods
can only be obtained when they are exchanged for other market goods. Therefore,
the amount of market goods an agent is able to consume depends, first of all,
on whether this agent is producing market goods herself, and secondly, on the
amount of market production by her trade partners:

Combined with the production function for nonmarket goods, this gives a
mapping from the production configuration 774 to the welfare distribution Ut,
where, for each agent x, utility is defined as

3 GAME-THEORETICAL REPRESENTATION

The assumption that each agent trades an equal amount of her market goods
with any other agent in her trade network can be alternatively interpreted so
as to mean that, in each period, each agent x is matched with a random trade
partner y. These trade partners, then, can be considered to play a "game," the
payoff matrix of which is represented in table 1. This game has the structure
of a "coordination game," which Cooper [5] describes as having the following
characteristics:
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1. The actions of players are "strategic complements," implying that an increase
in the level of activity of one agent creates an incentive for increased activity
by the other agent.4

2. The existence of multiple, Pareto-ranked Nash equilibria, which implies that
self-fulfilling pessimistic beliefs may give rise to a Pareto-suboptimal equilib-
rium outcome, the realization of which is termed a coordination
failure.5

3. The equilibria are regular in that small variations in the payoffs of the game
do not result in large changes in the number of equilibria.

It is important to realize that the two-player game is, in fact, an evolutionary
game, in which N agents have to choose their optimal strategies simultaneously
and independently, without knowing in advance who their "opponent" is going
to be. A strategy pgame, in which N agents have to choose their optimal strategies simultaneously
interpreted as a belief on the part of agent x concerning the probability of being
matched with some y e Nx who is engaged in market production and, therefore,
is able to trade.

Given that the random opponent y plays strategy py, the expected payoffs
for agent x are:

where Utio(x) denotes the payoff associated with strategy r]t(x) — 0 and [7tii(x)
denotes the expected payoff associated with strategy ?7t(x) = 1. Letting px =
Pr (774(0;) = 1) denote the strategy of agent x, this gives as the expected utility
for x:

3.1 NASH EQUILIBRIUM

Since the model has the structure of a game, it seems appropriate to use the
notion of a Nash equilibrium as the solution concept for this model. Before
denning a Nash equilibrium; however, we first need to define the notion of a
"best response."

Definition 1 . A best response for x is the strategy py. A best response correspondence for x is
conditional on y playing strategy py. A best response correspondence for x is
a mapping from py. A best response correspondence for x is
Py

4On the notion of "strategic complements," see Cooper and John [6]. In Molofsky et
al. [15], this characteristic is referred to as "positive frequency dependence."

5An allocation is Pareto optimal if no other feasible allocation exists that would make at
least one agent better off, without making any other agent worse off. The notion of a Nash
equilibrium is defined below.
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Given the utility function above, the best response for x in this model is:

Since the game is symmetric, the best response correspondence for y is of the
same form.

Since the game is symmetric, the best response correspondence for y is of thex,p*y}, such that p*
and Py are mutual best responses.

When p*x,p*y € {0,1} (i.e., agents choose one action or another with prob-
ability one), this is called a Nash equilibrium in pure strategies, or "pure Nash
equilibrium." Similarly, whenp*,p* e (0,1) (i.e., agents randomize between ac-
tions; or believe each other to randomize), we have a Nash equilibrium in mixed
strategies, also called a "mixed Nash equilibrium."

For the static two-player game above, it can easily be checked that the strat-
egy profiles {0,0} and {1,1} each constitute a Nash equilibrium in pure strate-
gies: if an opponent is expected to produce for the market, the best response is
to produce for the market as well; and vice versa for nonmarket production. The
equilibrium {0,0} is Pareto suboptimal, since by moving to {1,1} both agents
would be better off. There also exists a (weak) Nash equilibrium in mixed strate-
gies, where both players randomize between market and nonmarket production
with probability one half.6

3.2 BEST RESPONSE DYNAMICS

The concept of a best response appears to presuppose that agents know the
probability with which their random trade partners make choices. However, while
it is true that expectations should be correct in a Nash equilibrium, outside of
equilibrium they may be right or wrong, rational or irrational, optimistic or
pessimistic. Without further assumptions on expectations formation, the model
does not say anything about the way in which agents come to learn others'
best responses. What is missing is a theory of equilibrium selection, and an
explanation of how it is possible that a large number of agents could possibly
coordinate on any given equilibrium.

As evolutionary game theorists have pointed out,7 the strict rationality as-
sumptions that might be reasonable consistency requirements in one-shot 2-by-2
games, or economies with a small number of "representative agents," become
quite untenable when applied to games with a large number of players. If players
repeatedly encounter similar situations, it might be more reasonable to assume

6To see that this constitutes a Nash equilibrium, observe that, when one agent randomizes
(or is believed to randomize) with probability 0.5, the expected payoff for the other agent is
the same whatever her response; hence, randomizing with probability 0.5 is one of many best
responses.

7For example, Samuelson [17].



that agents are myopic', i.e., they base their expectations of others' behavior on
the immediate past.

This implies that the Nash equilibrium can be interpreted as the steady state
(fixed point) of a Markov random field, which must satisfy, V x, y £ S,

where

is simply the average amount of market production in the trade network. Since
agents are homogeneous with respect to their endowments, technologies, and
preferences, it seems natural to assume that they also form their expectations in
the same way, hence $(•) should be the same for all agents.8

An interesting question that arises in this case is whether, in spite of the
assumed homogeneity of agents, it is possible for asymmetric outcomes to persist.
That is, even though the model predicts that any Nash equilibrium of the two-
player game must be symmetric (i.e., p* — p*), is it possible in an ./V-player game
for different subsets of the population to consistently coordinate on different
equilibria? In other words, is it possible for market and nonmarket modes of
production to coexist in an economy, or will one of the two eventually take over?

This question is relevant, not just in light of the problems faced by emerging
market economies and economies in transition, but also given the fact that an
unequal distribution of market and nonmarket work implies persistent inequality
between agents. That is, since each equilibrium is associated with different levels
of "utility," corresponding to different levels of consumption, agents who manage
to coordinate on the market equilibrium are clearly better off than agents who
coordinate on the nonmarket equilibrium.

In order to explore the implications of different assumptions on $(•) for the
existence, uniqueness, and stability of steady states, the next section will present
a nonparametric approach, based on the Nonlinear Voter Model (NLVM) studied
by Molofsky et al. [15]. While this model, unlike the Voter Model, is able to
generate persistent inequality in two dimensions, the conditions under which this
is possible are argued not to be economically plausible. In section 5, however, a
slightly modified NLVM will be presented for which inequality can persist under
more reasonable conditions.

8An interesting direction for future work would be to endogenize the choice of $(•), for
instance, along the lines of Crutchfield [7]. In this chapter, however, expectations will be taken
as exogenous.
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TABLE 2 LVM and MVM as Special Cases of the NLVM.

k
0
1
2
3
4
5

Pk
Po
Pi
P2

P3

P4

PS

NLVM
0

Pi
P2

1 - Pi

1 -Pi

1

LVM
0.0
0.2
0.4
0.6
0.8
1.0

MVM
0
0
0

1
1
1

4 THE NONLINEAR VOTER MODEL

The Nonlinear Voter Model (NLVM) is a nonparametric approach and, as such,
very well suited for studying the implications of different expectational assump-
tions, without requiring us to specify a functional form for $(•).

An economic interpretation of the NLVM is as follows. At the beginning of
each period, each agent judges the state of the economy by counting the number
of market workers in a random sample of size K. It then uses the decision rule:
hire with probability p^ if the sample contains k market workers, where

In order to reduce the parameter space, Molofsky et al. [15] propose to impose
two restrictions. First of all, they impose a symmetry restriction:

Secondly, it is assumed that po = 0; i.e., if no one in the sample is currently
involved in market production, the percentage of market workers in one's trade
network is predicted to be below 50%, and so the best response is to stay out of
the market. By the symmetry restriction, this also implies p\ = 1.

Together, the two restrictions imply that the model has (K — l)/2 free pa-
rameters. In order to be able to represent this space in a two-dimensional graph, it
is assumed that K — 5. The resulting probabilities are given in
table 2. As this table shows, two special cases of the NLVM are the Linear
Voter Model (LVM) and the Majority Voter Model (MVM), both of which also
have parametric representations. The LVM, which was introduced independently
by Clifford and Sudbury [4] and by Holley and Liggett [13], assumes that

A well-known property of this model is that, in one and two dimensions, it
converges to steady states with all zeros or all ones (i.e., the pure Nash equilibria)
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FIGURE 1 Best Response Correspondences for the Majority Voter Model.

while, in infinite spaces with three or more dimensions, additional steady states
(i.e., mixed Nash equilibria) exist.9 This result applies to any trade network
structure, finite or infinite, that constitutes a connected graph.10

The MVM, on the other hand, assumes that agents will produce for the mar-
ket if the majority of their trade partners was involved in market production in
the previous period, and will remain autarkic if the majority of their trade part-
ners was autarkic in the previous period. If there is a match, agents randomize
with probability one half. This gives as the best response correspondence:

As figure 1 shows, the best response correspondences of any two agents intersect
in three places, implying that there are three symmetric Nash Equilibria: two
pure and one mixed. However, since agents respond myopically to each other,
only the pure Nash equilibria can be stable steady states of the system (this is
explained in more detail below). Hence, it is impossible for inequality to persist
in both the LVM and the MVM.

9For proofs, see Liggett [14, ch. V] and Durrett [9, ch. III].
10More specifically, the proofs generalize to any model in which x adopts the position of y

with some probability p(y,x), in which case mixed strategy equilibria exist when the random
walk with kernel p is recurrent, and do not exist when it is transient.
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4.1 NLVM WITH GLOBAL TRADE

When trade networks are "global," i.e., Nx = S, each agent has an equal prob-
ability to trade with any other agent. Assuming that the lattice is infinite, then
the law of large numbers implies that the unconditional probability of being a
market worker, Pr(??t(:r) = 1), identically equals the percentage of market work-
ers in the entire economy, rjt. Given that the number of possible ways in which
k market workers can be distributed over a sample of size k equals (^), this
implies that the expected amount of market production in the next period is

For the linear voter model, (pi,p2) = (0.2,0.4), it can be checked that this
function reduces to fft+i — fjt, and, hence, coincides with the 45-degree line.
This implies that, in a perfectly globalized, infinite economy, any production
level T] constitutes a steady state.

The linear case, however, is a rather special case. It can be verified analyt-
ically that all other, nonlinear models have either three or five steady states,
which may or may not be stable. The three steady states common to all models
are the pure Nash equilibria 17 — 0 and rj = 1, and the mixed Nash equilibrium
fj = 0.5. To check for stability of these steady states, define

Evaluated at the steady states, this gives the eigenvalues

Stability requires |7(7y)| < 1. This implies that rj — 0 and rj = 1 are stable for
pi < 0.2, while rj = 0.5 is stable for {pi,pz-7< 15pi + 10p2 < 23}.

As | J(fj) | > 1, the steady states lose stability and additional steady states
may emerge. As Molofsky et al. [15] show, this implies that there are five possible
"regimes," which are plotted in the phase diagram of figure 2, and which are
labeled as follows:
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FIGURE 2 Phase Diagram for NLVM with Global Trade. (A) clustering,
(B) ergodicity, (C) multiple outcomes, (D) phase separation, and (E) periodicity.

(A) clustering: only {0} and {1} are stable;
(B) ergodicity: only {0.5} is stable;
(C) multiple outcomes: {0}, {0.5}, {1} are all stable;
(D) phase separation: {0}, {0.5}, {1} are all unstable, but there exist

two additional steady states;
(E) periodicity: {0}, {0.5}, {1} are all unstable, but there exist stable

periodic solutions.

Figures 3 and 4 illustrate the dynamics of the different regimes, which may
be interpreted as the best response of the average agent to the average amount
of market goods produced during the previous period.

As figure 3 shows, the Majority Voter Model, for which (pi,pi) = (0,0),
provides an example of the "clustering" regime, in that it converges to one of
the pure Nash equilibria. The case (pi,p2) — (0.5,0.5), on the other hand, whic
might be called the Random Voter Model, provides an example of the "ergodic"
regime in which only the mixed strategy Nash equilibrium is stable. Finally,
(pi>P2) = (1,1) illustrates the possibility of a periodic steady state.

Figure 4 shows the existence of nontrivial steady states. In a case such as
(piiPi] = (0,1), it is possible for both pure and mixed Nash equilibria to be
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0.5 1 fjt

FIGURE 3 NLVM examples with three steady states.

stable (the "multiple outcome regime"), with probability one half. This gives as the best response correspondence:
example of "phase separation."

4.2 NLVM WITH LOCAL TRADE

The analytical results above are based on the assumption that trade networks
are global, i.e., that geography does not matter. Even in today's "global village,"
however, geographic proximity is still an important determinant of trade flows.11

The usual explanation for this fact is in terms of transportation costs, although
there may be other explanations such as cultural barriers, political constraints,
or, as Eichengreen and Irwin [11] suggest, path dependency in the selection of
one's trade partners. Whatever the cause, however, it is interesting to explore the
consequences of "localized trade" for the spatiotemporal distributions of market
and nonmarket work.

To focus on an extreme case, we will replace the random sampling assump-
tion by the assumption that each agent "samples" her nearest neighbors only.
Technically, a "nearest neighborhood," or "local trade network," may be defined

11This is true even when one controls for spatial correlations in income. As Deardorff [8]
notes, for instance: "It has long been recognized that bilateral trade patterns are well described
empirically by the so-called gravity equation, which relates trade between two countries pos-
itively to both of their incomes and negatively to the distance between them, usually with
a functional forin that is reminiscent of the law of gravity in physics" (p. 7). For empirical
evidence, see, e.g., Bergstrand [2] and the multiple articles in Frankel [12].
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FIGURE 4 NLVM examples with five steady states.

as Nx = {y : \y — x < e}, where \y ~ x denotes the distance of the shortest path
between y and x. Following Molofsky et al. [15], we will consider the case where
e = I. The resulting trade network is sometimes referred to as a "Von Neumann
neighborhood" or "common border neighborhood."12 On a lattice this implies
that every agent has five potential trade partners, including herself.13

While the local NLVM cannot, in general, be solved analytically, it was
implemented by David Griffeath on his WinCA software, as well as on Norm
Margolis' Cellular Automata Machine (CAMS) at the Santa Fe Institute. Grif-
feath's experiments, reported in the Molofsky paper, took place on a 640-by-480
lattice, starting from an initial configuration with all ones (market workers) on
the West side, and all zeros (nonmarket workers) on the East side. This allowed
for a relatively quick assessment of whether the pure Nash equilibria were stable
or, in case they were unstable, how fast they would break down.

In order to focus on the interactions around the East/West border, a mixed
boundary condition was imposed, which wraps the top edge to the bottom but

12Although this is obviously an extreme assumption, it is interesting to note that common
borders are often found to be highly significant in explaining trade patterns (e.g., Balassa [1]).

13One may wonder whether it is necessary or realistic to assume that agents are consumers
of their own goods. This is partly an empirical issue, which could be adjudicated, for instance,
by measuring the fraction of a country's GDP, or of an industry's output, that is consumed by
this country or industry itself. It is to be expected that this fraction is not only positive, but
might in fact be larger than the fraction consumed by each given trade partner, especially at
the country level. The implications of this are discussed in section 5.
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disables interaction between the left and right edges. Following the suggestion
by Durrett and Levin [10], the global trade case (which can be regarded as a
"mean field approximation") was used as "simulation guide." This suggested
that a phase separation regime could be found by setting pi = 0, and varying pi
between 0 and 1. The results are reported in Molofsky et al. [15] and illustrated
in figure 5.

The pure Nash equilibria appear to be stable for values of pi as high as
0.27, instead of the threshold 0.2 suggested by the global trade case. For these
parameter values, the NLVM essentially behaves like a local Majority Voter
Model with (pi, p^) = (0, 0), which is known to evolve by what is called curvature-
driven surface tension. This means that, when two clusters are separated by
some curved boundary, the one with the highest frequency continues to grow
at a rate which decreases with the curvature of the boundary. In other words,
pockets of nonmarket production which are completely surrounded by market
production gradually disappear, and vice versa. Started from a vertical boundary,
this implies that, for a long time, neither type of economy is able to grow.
Panel (a) portrays the situation after 5,000 updates. Eventually, however, one
type must become predominant by chance, and will take over the entire lattice.
Therefore, inequality cannot persist.

When pi is large enough, on the other hand, each of the two halves "invades"
the other at a linear rate, and the agents quickly converge to the mixed Nash
equilibrium, where everyone essentially flips a coin every period. This is shown
in panel (b), for the case pi = 0.35 after 1,000 updates. Since the lattice is finite,
the pure Nash equilibria {0} and {1} are still the only absorbing states, and
therefore must be reached eventually. However, since {0} or {1} are unstable,
even the slightest deviation from these steady states will push the system towards
the metastable mixed Nash equilibrium {0.5}, where it will remain for eons of
time. In this sense, the system can be called "ergodic." While random noise does
imply "inequality," this inequality is not spatially persistent.

The analogue to the phase separation regime, with two nontrivial steady
states, is found for 0.27 < pi < 0.35. Panel (c) shows the case of p\ = 0.31
after 2,000 updates. As in the "ergodic" case, market and nonmarket workers
are quickly mixed, but this time a predominant market equilibrium emerges in
the West, and a predominant nonmarket equilibrium in the East. Started from
more general initial configurations, the economy converges to a steady state
with about 75 to 80 percent of workers engaged in market production if mar-
ket workers initially dominated, and vice versa for nonmarket workers. Started
from symmetric randomness (Bernouilli product measures with density 0.5), the
system self-organizes into clusters of these two nontrivial steady states, which
themselves appear to evolve by curvature-driven surface tension. This is shown
in panel (d) after 5,000 updates.

In contrast with what the global trade model (mean field approximation)
suggested, Griffeath found no evidence of a multiple outcome regime. However,
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FIGURE 5 Phase Transition of the NLVM for p2 = 0. (a) pi = 0.27; (b) pi = 0.35;
(c) pi =0.31; (d)pi =0.31.

he did find a tiny area in the upper right corner of the phase space corresponding
to a (quasi-)periodic regime.14

Based on detailed simulation of the entire (pl,p2) parameter space, Griffeath
estimated that the boundary separating the clustering and ergodic regions runs
from about (0.024,1) down to the linear voter point (0.2, 0.4), after which a bifur-
cation encloses the tiny phase separation region. On the basis of his simulations,
however, he was unable to find the exact bifurcation point.15

In my view, the most mathematically as well as economically plausible can-
didate is the point on the phase boundary for which pi = pi. This point is
critical in that, as p2 falls below pi, the probability of working for the market
is no longer monotonically increasing in the amount of market production in
the neighborhood. Intuitively, when the probability of working for the market

14See Molofsky et al. [15] for a description of this regime.
15As Griffeath wrote in an early summary of his findings: "A particularly subtle issue

is whether the boundary bifurcation occurs at (0.2,0.4), as in the mean-field model, or for a
smaller value of p2- In spite of the mathematical plausibility of the former alternative, our
simulation data would seem to indicate the latter. As we move away from the lower edge,
the discernible width of the phase separation region decreases at a rate which precludes any
detectable instance of this phase with p2 > 0.3, say. Assuming the boundaries vary smoothly,
it, is hard to see how this triangle could extend all the way to the linear voter point."
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FIGURE 6 Estimated Phase Diagram for the NLVM with Local Trade.

increases as the amount of market production in the neighborhood grows from
0 to 20 percent, but then decreases as neighborhood market production grows
further from 20 to 40 percent, it should not be too much of a surprise that
distributions with market production around 20 percent can be metastable.

If it is true that the transition occurs at the onset of nonmonotonicity, then,
assuming the estimate of (0.024,1) is correct, this would imply that the bifur-
cation occurs at (14/55,14/55), or approximately (0.25,0.25).16 This point is
plotted in figure 6.

5 THE ISING MODEL

Economically speaking, it seems plausible that expectations on future production
levels should be monotonically increasing in current production levels. That is,
the more agents are producing for the market today, the larger the expected
probability that at least half of them are producing for the market tomorrow.
If this is accepted, an important implication of the above analysis is that there
exist no economically plausible parameters in the NLVM that allow for persistent

16Interestingly, the point (0.25, 0.25) lies on the line p% = 1 — 3pi, which is the prediction
generated by a "dyad approximation" (see Molofsky et al. [15]). However, the dyad approxi-
mation itself is falsified by Griffeath's observation that the process is nonergodic for p% = 1
and pi slightly above 0, as well as for p2 = 0 and pi slightly above 1/3.
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inequality. In the long run, the economy must be either completely "marketized,"
or must be fully "autarkic."

Note, however, that the NLVM was initially restricted by assuming that
Po = 0 and pi = 1. Clearly, a more general NLVM would be obtained by drop-
ping this assumption. On the other hand, in order to increase economic plausi-
bility, it might be reasonable to restrict the NLVM to cases where ^(rjt(y)) is
monotonically increasing in rjt(y)-

As an example of such a case, consider the following type of expectations:

This specification says that agents expect average market production to remain
the same, while allowing for unpredictable deviations to occur in the form of some
mean zero noise, measured by the term et(x). The parameter ^ is introduced to
allow for variations in the impact of this noise term on agent's decisions.

To further study this model, we need to specify a specific distribution for
tt(x). In order to preserve symmetry, this distribution would have to be symmet-
ric around zero. In discrete choice econometrics, two common distributions used
in such cases are the normal distribution ("probit") and the logistic distribution
("logit"). For our purposes, the latter assumption is the more interesting one,
since it yields a best response function that is equivalent to another well-known
spin system, called the Ising model:

where /3 = y-.17 In statistical mechanics, /? is usually interpreted as the "inverse
temperature." As Brock and Durlauf [3] suggest, in a socio-economic context it
may be interpreted as the "intensity of choice": as (3 increases, agents' behavior
is determined more by their intentions to behave optimally, and less by noise. In
the limit, as /? —> oo, this implies that the best response function reduces to the
equilibrium strategy of the Majority Voter Model, which assumes that there is
no noise.

5.1 ISING MODEL WITH GLOBAL TRADE

As before, the behavior of the model under global trade (the "mean field approx-
imation") can be used as simulation guide. Assuming that Pr(rjt+]_(x) = 1) =
Tjt+i, the evolution of the system is given by the difference equation

17In the Ising model, the states of "agents" are typically denoted by wt(x) € { —!,+!},
as opposed to Tjt(x) 6 {Oil}- Hence, in order to see that the two models are equivalent, a
transformation a; = 2(?j — 0.5) is needed.
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FIGURE 7 Best Response Functions for the Ising Model with Global Trade.

It can be easily checked that fj — 0.5 constitutes a steady state of this model,
whereas fj = 0 or 17 = 1 do not. The first derivative is given by:

Evaluated at fj = 0.5, this yields ] J(0.5)| = /3/2, implying that this steady state
becomes unstable for /3 > 2. As shown in figure 7, at this point two additional
steady states emerge, which are stable. In terras of the NLVM, this corresponds
to a phase transition from "ergodicity" to "clustering."

Apart from the fact that the steady states fj = 0 and 17 — 1 no longer exist in
this model, the mean field approximation of the /3 = 3 case is qualitatively simi-
lar to that of the (j>i,p2) = (0.3,0.1) case in the NLVM. In both models, 77 = 0.5
is an unstable steady state, but there exist two additional stable steady states,
corresponding to a "largely market" and a "largely nonmarket" equilibrium. Fol-
lowing this analogy, this suggests that it may be possible for a phase separation
regime to exist at the boundary between "clustering" and "ergodicity."

5.2 ISING MODEL WITH LOCAL TRADE

To test the hypothesis above, the Ising model was simulated on the Cellular
Automata Machine (CAMS) at the Santa Fe Institute. Various numerical exper-
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iments were carried out on a 512-by-512 square lattice, starting from symmetric
random initial configurations.

As figure 8 illustrates, there does indeed exist a phase transition from "er-
godicity" to "clustering," but not at (3 = 2, as predicted by the mean field
approximation. As panel (a) shows, for /? as high as 2.8, the system still looks
essentially "ergodic," in the sense of being very close to random noise (even
though, upon close inspection, tiny clusters can be detected). As /? increases,
signs of persistent inequality emerge. For (3 = 3, the clusters are small, but quite
discernable and highly persistent (panel b). For (3 — 3.1, however, which is dis-
played in panel (c) after only 100 periods, the clusters eventually disappear, due
to a process of surface-tension clustering which is shown in panels (d) through
(f), for /? = 3.5. For larger values of /?, the system behaves increasingly more like
the Majority Voter Model, as predicted by the mean field approximation.

While the behavior of the local trade model is thus qualitatively similar to
that of the global trade model, the question remains as to why the critical value
of j3 appears to be so much larger in the local case. One suggestion is that it is
due to the fact that each agent is treated as her own "neighbor," implying that
each period, an agent has at least a 20-percent chance of continuing to produce
as before. It seems likely that this decreases the probability of clustering (since
agents are less sensitive to the behavior of their neighbors), and hence a larger
/? is needed in order for to occur.

To capture the more general case where agents consume some fraction a of
their own goods, the local trade structure may be redefined as a matrix P with
elements

In any steady state, it must be true that r]t(x) = r)t. Plugging this into the
equation above, it can be seen that, in the global trade model, the steady state
is independent of a. However, the global trade model is only a "first order" mean
field approximation, in that it does not condition on each agent's current state.
Taking this into account, the following "second order" approximation can be
obtained:

This gives the following best response function:
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FIGURE 8 Phase Transition in the Ising Model, (a) /3 = 2.8, t = 30,000; (b) (3 = 3,
t = 50, 000; (c) /3 = 3.1,t = 100; (d) ft = 3.5, t = 100; (e) ft = 3.5, t = 500; (f) ft = 3.5,
t = 3,000.
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FIGURE 9 Phase Diagram for the Ising Model.

A phase transition now requires

which reduces to

This inequality confirms our intuition that, as a increases, larger values of /?
are required for clustering to occur. Moreover, as figure 9 shows, the second-
order mean field approximation (MFA) is indeed quite close to the actual phase
boundary estimated on the basis of numerical experiments.

These numerical experiments show that, for instance, for a around 0.5, the
phase transition occurs around /3 = 3.9. Two examples of this are given in
figure 10. Just as in the phase separation regime found by Molofsky et al. [15],
the clusters that emerge here can become quite large, but they never take over
the entire lattice.

The intuition behind this is as follows: While the probability of working for
the market conditional on living in a nonmarket neighborhood is very small,
occasionally agents do decide to take a chance (when they draw a large noise
term) and start producing for the market. Once they do so, this increases the
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FIGURE 10 Persistence of Inequality in the Ising Model, (a) a = 0.5, /3 = 3.9; (b) a =
0.51, /3 = 3.9.

incentive of their neighbors to do the same. And once those neighbors become
involved in market production, the neighbors of those neighbors are more likely
to do so. Thus it is possible in principle for a cluster of market workers to develop
within a nonmarket economy.

Of course, the probability that this happens in any given location is ex-
tremely small, since agents who become market producers by chance will tend
to fall back to nonmarket production as soon as they find out that there are
no trade partners. However, the probability that it happens somewhere within a
nonmarket cluster increases with a (which makes agents fall back less quickly),
and increases with the size of the cluster. This implies that, when f3 is large
enough (relative to a) to produce large clusters, but small enough to allow for
a reasonable amount of noise, it should be possible for the process to continue
indefinitely, growing clusters within clusters within clusters.

6 CONCLUSION

The requirement that the probability for a given agent to be of a certain type
is monotonically increasing in the frequency of this type, whether it be local or
global frequency, seems to be a reasonable restriction in any model with positive
frequency dependence. As has been shown in this chapter, under this restriction
it is impossible for inequality to persist in the NLVM studied by Molofsky et
al. [15]. However, persistent inequality was shown to arise in a more general
NLVM that satisfies the restriction, and includes the Ising model as a special
case.
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So far, the analysis has been constrained to the two extreme cases of per-
fectly global and perfectly local trade. Plans for future work include the study
of more general trade networks, the structure of which may be estimated on the
basis of actual bilateral trade flow data, as well as exploring the implications of
"globalization" for the persistence of inequality both in space and in time.

On the basis of results by Watts and Strogatz [18] it is to be expected that the
marginal effects of globalization on "efficiency" are much higher than its marginal
effects on reducing inequality. The reason for this is that, in a system with a
regular and local interaction topology, the number of "degrees of separation"
between agents (which could be interpreted as a measure of efficiency) grows
linearly in the number of agents, while for a random and global topology this
growth is only logarithmic. This suggests that adding only a few global traders to
an initially localized economy is enough to obtain near-efficiency results, but not
sufficient to eliminate locally persistent inequality. This hypothesis still remains
to be tested.
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Cellular Automata for Imaging, Art, and Video

Joy V. Hughes

1 INTRODUCTION

The techniques known as Cellular Automata (CA) can be used to create a variety
of visual effects. As the state space for each cell, 24-bit photo realistic color was
used. Several new state transition rules were created to produce unusual and
beautiful results, which can be used in an interactive program or for special
effects for images or videos.

This chapter presents a technique for applying CA rules to an image at
several different levels of resolution and recombining the results. A "soft" artistic
look can result.

The concept of "targeted" CAs is introduced. A targeted CA changes the
value of a cell only if it approaches a desired value using some distance metric.
This technique is used to transform one image into another, to transform an
image to a distorted version of itself, and to generate fractals.

The author believes that the techniques presented can form the basis for a
new artistic medium that is partially directed by the artist and partially emer-

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 285
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gent. Images and animations from this work are posted on the World Wide Web
at (http://www.scruznet.com/~hughes/CA.html).

2 24-BIT COLOR SPACE

All cellular automata (CA) operate on a space of discrete states. The simplest
CAs, such as the Game of Life, use a 1-bit state space. Most modern personal
computers represent color as a 24-bit value, allowing for approximately 16 million
possible colors. The work presented in this chapter uses a 24-bit color space that
is represented in a 32-bit-long integer.

This color space can be conceptualized as a three-dimensional bounded con-
tinuous vector space.

Often, it is desirable to work with in the HSV (Hue, Saturation, Value)
color space. Some of the rules encode the value (luminance) of a cell in the
otherwise unused 8 high-order bits of a 32-bit word. The hue and saturation can
be estimated "on the fly" with simple, fast algorithms. The hue is represented
as an angle on the color wheel.

For some rules, it is necessary to know the "distance" between two colors.
Estimating the distance in perceptual space would be a difficult problem, as it
would be dependent on the monitor used and the gamma exponent applied for a
particular setup. In practice, a "Color Manhattan Distance" is used, where sum
of the absolute values of differences between each component is used.

Color Manhattan Distance : |r2 - r l | + \g1 - gl\ + |62 - bl\.

This metric can be calculated very efficiently, without the need for a square
root.

3 24-BIT RULES

Several new C A rules were created to take advantage of the huge range of possible
rules over a 24-bit color space. A few selected rules are reviewed below.

3.1 BOX BLUR AND DIAGONAL BOX BLUR

The "Box Blur" is a 3 x 3 neighborhood rule that blurs pixels in either the hor-
izontal or the vertical direction. The right and left neighbors are compared, and
the color Manhattan distance between them is computed. The same calculation
is performed for the top and bottom neighbors. The pair of pixels that are clos-
est in color space are averaged, and the value of the center pixel is set to this
average. The effect is to blur regions either horizontally or vertically, depending
on their local color gradient. Areas that are blurred in one direction tend to be
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blurred in the same direction again, as application of the rule tends to decrease
the local gradient in the preferred direction, making it more likely that the same
direction will be selected again.

"Diagonal Box Blur" works like "Box Blur," but blurs on the left and right
diagonals instead of horizontally and vertically. This rule creates a checkerboard
arrangement of colors, since information travels like a bishop in the game of chess,
which cannot move from white squares to black squares or vice versa (Plate 1).

3.2 HUE BOIL

"Hue Boil" is a rule that selects two random pixels from a 2 x 2 (Margolis)
neighborhood. The hue angles of the two pixels are compared, and the one with
a hue angle less than 180 degrees to the right of the other copies the color of the
other. This is a very high energy rule, as colors will change constantly anywhere
the color is not constant. The visual effect is that of a roiling sea of colors.
Zhabotinskyesque spirals can result (Plate 2).

3.3 MEDIAN MANHATTAN MOLD

"Median Manhattan Mold" operates over a 3 x 3 neighborhood. Three randomly
selected neighbors of the center pixel are chosen, and their color Manhattan
distances to the center pixel are computed. The color of the pixel with the median
distance is copied to the center. The term "mold" is applied as this rule tends
to result in irregularly shaped domains of color.

3.4 MUTANT CRYSTAL MOLD AND MUTANT CRYSTAL SMOKE

"Mutant Crystal Mold" is a relative of "Median Manhattan Mold." This rule was
the result of a software bug, and as such its internal workings are not completely
understood by the author. It is also the author's favorite visual effect. The scene
tends to break up into small domains of color with smooth edges. In areas of
sharp contrast, the colors tend to change to ones not found in the original image.
Black-and-white or grayscale colors will not be transformed into saturated color's;
however, a small region of color will expand across an otherwise monochrome
image (Plate 3).

"Mutant Crystal Smoke" uses the same algorithm as "Mutant Crystal Mold,"
but is restricted to modify pixels only in the vertical direction. The effect resem-
bles crystals growing underwater.

4 MULTIRESOLUTION CA

Most cellular automata operate over a fixed neighborhood of cells within a dis-
crete space. The author has borrowed from the field of imaging to create a



288 Cellular Automata for Imaging, Art, and Video

multiresolution representation, or mip-map, of the grid of cells. The image is
resized using a pyramidal resampling kernel to create a subimage at half the size
of the original. The filter is applied recursively to give a series of subimages at
one-quarter, one-eighth, and other integer powers of two. Because this step must
be done at each time step, the implementation of the filter must be very fast.
The coefficients of the kernel are all powers of two, so that bit shifting can be
used to implement such a kernel efficiently.

Here is a pyramidal resampling kernel (weights shown are 16 times actual
values):

1 2 1
2 4 2
1 2 1

When the resampled images are available, a CA rule is run on a specified number
of levels. The same rule can be used on different levels, or different rules may be
used. For example, a blur filter can be used on the highest resolution level, while
sharpen is used on lower resolutions (Plate 4). The user has control over how
many levels the rule or rules are applied to. The subimages prior to the iteration
are stored using a double-buffering technique to be used in the recombination
calculation.

A multiresolution CA rule is calculated as follows: The rule is applied first
to the lowest-resolution (smallest) subimage. The image before iteration is sub-
tracted from the image after iteration, giving the amount of change for each
pixel (the "delta image"). The delta image is resampled to twice its size and
added to the next higher-resolution subimage. The results of the iteration are
thus "smoothed," while higher-resolution details are preserved. The rule is then
applied to the result, and a new delta image calculated. These steps are repeated
until the full-resolution image has been processed.

The entire process can be accomplished quite quickly, but, of course, the
result will be slower than the simple application of a CA rule to an image. The
rule must be iterated over the resampled hierarchy of images, which imposes a
penalty of up to 33% in speed. The recombination calculations add a constant
overhead as well (about 1/10 second on a 300 MHz PowerPC for a 400 x 400
pixel image). While this overhead is significant, interactive speed can still be
achieved.

When multiresolution rules are applied to an image, a number of things can
happen. Some rules generate a "softened" version of the single-resolution rule,
while others display emergent properties that don't resemble the single-resolution
rule at all.

5 TARGETED CAs

A CA can be constrained in its behavior to produce interesting visual effects.
Each pixel in the image has a "target" color. When a rule is iterated over the im-
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age, only those pixels with values that are closer to the target by some metric are
updated. The target values are generally stored in a "target image," which may
be the starting image, another image chosen by the user, or the image under-
going iteration. The target image may be modified using a "target transform,"
which causes each pixel in the iterating image to target a pixel in the target
image whose coordinates are determined by some mathematical function.

If the target value for a given pixel does not change over time, the CA will
eventually fall into a steady state, where repeated application of the rule does
not alter the image. The result is often something close in appearance to the
target image, but with visible differences depending on the rule, metric, and
starting image. If the target value changes over time, or is dependent on the
values of pixels within the image being iterated, the image may continue to
change indefinitely.

5.1 TARGET METRICS

To determine the distance to a target color, a number of different metrics can be
used, each of which produces its own unique visual effects. One simple metric is to
use the luminance value of the pixel (a weighted average of 60% red, 30% green,
and 10% blue). Use of this metric will result in an approximation of the target
image with colors of the appropriate brightness, but possibly wildly different
hues. Hue can be used, or hue can be offset by some desired angle. The result
will be an image with the appropriate colors (or with a different "tint" if an offset
is used), but with variable brightness. Another useful metric is the Manhattan
color distance, which takes into account all three components of a color.

One metric that is quite useful for artistic effects is to try to approximate
the inverse of a color, where each component of the original color is subtracted
from the maximum possible value (255). This can produce particularly striking
effects when self-targeting.

5.2 CA RULES FOR IMAGE TARGETING

Any of the rules described in section 4 can be used to approach a target, and
some can be quite visually interesting (Mutant Crystal Mold is a favorite of the
author). There are some rules that are only useful when trying to approach a
target.

5.2.1 Random Neighbor Copy. One simple method is to choose a random pixel
from the eight neighboring pixels, and copy its color into the center pixel if closer
to the target color, using the target metric. If this rule is used, the result often
appears to be a "posterized" version of the target, where single pixels expand to
cover larger regions. The target image is approximated, but an exact match is
not possible, since the colors are not modified, only copied (Plates 5 and 6).
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A more accurate result can be obtained by choosing two or more neighboring
pixels at random, averaging their values, and determining if the result is closer
to the target.

5.2.2 Error Diffusion. Another rule specific to image targeting is error diffusion.
The image is divided into pairs of pixels. A 2 x 2 (Margolis) neighborhood is
used, and each 2 x 2 block is divided into two pairs of pixels. The blocks are
offset by one pixel both horizontally and vertically every other time step, to
allow a pixel to pair with all its neighbors. A horizontal, vertical, or diagonal
arrangement of pixel pairs is chosen at random. For each pixel in a pair, the per
component difference between the pixel color and the target color is determined.
These "error values" are equalized between the two pixels by increasing the value
of a component in one pixel while decreasing the value of the same component
in the other by the same amount. For example, if one pixel is five units of red
above its target value, and the other pixel is one unit of red above its target
value, the red value of the first pixel will be decreased by two units while the red
value of the second pixel will be increased by two units. The red values of both
pixels will then both be three units above their target values.

Repeated application of error diffusion causes colors to appear to "flow,"
approximating the target image. High-frequency details appear first, then the
image gradually approaches the colors of the target image. An exact match
usually will not occur, since the total amount of each color in the image is
conserved. There just might not be enough red to go around (Plate 7).

5.2.3 Color Mating. To calculate the new pixel value, two neighboring pixels
are chosen. The red, green, and blue components of each pixel are mixed at
random, and the recombined color is compared with the target value. This is
a crude simulation of biological sexual reproduction. A "mutation" parameter
can also be included, which randomly perturbs the pixel values by some amount.
A target image can be approximated much better than with random neighbor
copying, as many more colors can be constructed with recombination. If mutation
is included, a target image can be reached with complete accuracy (although this
might take an extremely long time) (Plate 8).

5.3 TARGET TRANSFORMS

The target color of a given pixel is assigned to the color of some pixel in the target
image. The target image can be the original image at the start of iteration, a
separate target image selected by the user, or the iterating image itself. The
coordinates of the target pixel are chosen using the target transform, which
is some mathematical function. The transform is represented by an image of
pointers to target pixels, so the target function does not need to be recalculated
each frame (unless it is time dependent).
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The simplest target transform is the identity transform, where the coordi-
nates of a target pixel are the same as those of the iterating pixel. The identity
transform can be used for image transitions. Reflection or rotation can be used
as a target transform. Rotation can be applied in a time-dependent manner,
where the rotation angle changes overtime. This gives two distinct domains of
behavior in the image. Near the center, the target pixels are changing slowly,
and information can travel between pixels that have the same target values in
different frames. Farther from the center, the speed of rotation of the target im-
age exceeds the speed of light, and information cannot travel to pixels with the
same target value.

Nonlinear functions can also be used, such as a spiral-type function, where a
rotation angle is applied, and the angle increases with distance from the center.
Turbulence is another interesting nonlinear function, where a number of small
vortices are summed together, giving a wavy appearance (Plate 6).

A pixel's coordinates can be mapped to a value in the complex plane, and
complex functions used to determine the target pixel's coordinates. Polynomial,
exponential, and trigonometric functions have been used. These can produce
strangely warped versions of the target image and, when self-targeting, fractals
emerge.

5.4 APPLICATIONS OF TARGETED CA

5.4.1 Pseudo-Morphing. If the original image is used as the target image, and
a target transform applied, the image will appear to change to a transformed
version of itself. This can produce interesting artistic effects, such as a face
transforming into a mirror image of itself, or a warped version of itself. While
not technically the same as morphing, the visual effect can be similar (Plate 6).

5.4.2 Image Transitions. To accomplish an image transition, a target image is
chosen which is different from the original image. As the CA iterates, the iterating
image will appear more similar to the target image. This can be very interesting
visually, as old forms seem to dissolve and new forms emerge (Plate 5).

5.4.3 Self-Targeting. A variety of interesting effects can result from setting the
iterating image as a target. If reflection is used as a target transform, a sym-
metrical image will result. A rotation transform will result in an image with
rotational symmetry. Angles which do not evenly divide the circle will produce
a "resonance," which may produce regions of different symmetries. For instance,
a ring of 13-fold symmetry might surround a central region of 5-fold symmetry.
Sometimes different symmetries will alternate in an unstable way, with 3-fold
and 4-fold symmetries dominating at different times (Plate 9).

An interesting result was obtained using a rotated target transform and the
hue metric with an offset in the hue "angle." A resonance will occur in color
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space and anglular space, and symmetries as high as 27-fold have been observed
(Plate 10).

If a complex plane function is used for the target transform, Julia Sets (see
fractals) will arise while self-targeting. Painting on the fractals will make the
paint marks "echo" in other parts of the image (Plates 7 and 11).

5.4.4 False Color. The original image can be used as a target with no target
transform. In this case, no change will be observed until the image is modified
using paint tools. Then, the image will appear to "heal" the marks made on it.
Paint will appear to flow into areas where the image has similar colors, leaving
behind a false-colored image (Plate 12).

6 INTERACTION WITH THE CA

Mark Zimmer at Meta Creations developed an interactive program which allows
the user to modify many of the internal properties of CA rules using sliders and
buttons. Each rule has different properties which may be changed by the user,
so a particular control may have different effects depending on the active rule.
Images may be loaded in, or the current image may be saved out. The user may
select from a table of possible rules and target transforms, and select the number
of levels of resolution to which the rule should be applied.

The user can "paint" into the CA using a brush tool. This allows an artist
to use the CA as an artistic tool that is partially directed and partially emergent
(Plate 12).

7 VIDEO PROCESSING

The CA software developed at Meta Creations allows the user to save a sequence
of images as a compressed digital movie. The frame rate is reduced significantly
during storage, but playback can occur at full speed, possibly even faster than
the CA rule iterates.

CA rules can be applied to each frame of a video. The user selects a movie,
a rule, and the number of iterations that should be applied to each frame. The
software automatically loads each frame, applies the appropriate number of it-
erations, and saves the result into a new movie.

8 CONCLUSION

Cellular automata can be used to create visual art which can be both strange and
beautiful. A new artistic medium has been demonstrated that is neither totally
directed by the artist nor totally algorithmic. 24-bit color spaces with new CA
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rules, interactive tools, multiresolution modifications to rules, and the concept
of targeted CAs are all ways of exploring the vast and visually fascinating world
of cellular automata.
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Continuous-Valued Cellular Automata in Two
Dimensions

Rudy Rucker

We explore a variety of two-dimensional continuous-valued cellular au-
tomata (CAs). We discuss how to derive CA schemes from differential
equations and look at CAs based on several kinds of nonlinear wave equa-
tions. In addition we cast some of Hans Meinhardt's activator-inhibitor
reaction-diffusion rules into two dimensions. Some illustrative runs of
CAPOW, a. CA simulator, are presented.

1 INTRODUCTION

A cellular automaton, or CA, is a computation made up of finite elements called
cells. Each cell contains the same type of state. The cells are updated in parallel,
using a rule which is homogeneous, and local.

In slightly different words, a CA is a computation based upon a grid of
cells, with each cell containing an object called a state. The states are updated
in discrete steps, with all the cells being effectively updated at the same time.
Each cell uses the same algorithm for its update rule. The update algorithm

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 2 9 5
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computes a cell's new state by using information about the states of the cell's
nearby space-time neighbors, that is, using the state of the cell itself, using the
states of the cell's nearby neighbors, and using the recent prior states of the cell
and its neighbors.

The states do not necessarily need to be single numbers, they can also be
data structures built up from numbers. A CA is said to be discrete valued if its
states are built from integers, and a CA is continuous valued if its states are
built from real numbers.

As Norman Margolus and Tommaso Toffoli have pointed out, CAs are well
suited for modeling nature [7]. The parallelism of the CA update process mirrors
the uniform flow of time. The homogeneity of the CA update rule across all
the cells corresponds to the universality of natural law. And the locality of CAs
reflect the fact that nature seems to forbid action at a distance.

The use of finite space-time elements for CAs are a necessary evil so that
we can compute at all. But one might argue that the use of discrete states is
an unnecessary evil. In the old days, speed and storage considerations made it
impractical to carry out large CA computations using real numbers as the cell
states, but today's desktop machines no longer have these limitations. The author
and his students have developed a shareware software package for Windows called
CAPOW, which we have used for exploring continuous-valued CAs [6]. The paper
by Ostrov and Rucker [5] contains information about our investigations of one-
dimensional continuous-valued CAs, and the present chapter presents some of
the phenomena found in two-dimensional continuous-valued CAs.

In the CAs we have been investigating, we take "real number" to mean IEEE
single-precision floating-point number, what the C language terms a float rather
than a double. We have experimented with double-precision floating-point num-
bers, but their use does not seem to change the qualitative features of our simu-
lations. Double-precision floating-point numbers have the drawback of requiring
larger memory buffers and of cutting simulation speed. Because of considerations
of speed and memory, we have been looking at relatively small two-dimensional
CAs, with a dimension of 120 cells wide by 90 cells high.

In section 2 of this chapter we discuss how we derive CA schemes from sets
of differential equations and section 3 presents some material relating to our
specific methods of simulation. In section 4 we discuss some two-dimensional
continuous-valued CAs that are based on reaction-diffusion systems that use an
activator-inhibitor reaction. In section 5 we look at CAs based on linear and
nonlinear wave equations and in section 6 we briefly consider the possibility of
developing some "reaction wave" CAs. And section 7 suggests some paths for
further investigations.

Before proceeding, let us confront three possible objections to the study of
continuous-valued cellular automata.
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TABLE 1 The longevity of a linear wave scheme using varying minimum sizes of real
number.

Coarseness of "Reals" Number of updates
until a waves dies out

0.1 50 updates
0.01 200 updates
0.001 800 updates

Objection 1. Since you are. running your computation on a digital machine, your
so-called continuous values are really discrete numbers, so you are doing nothing
new.

Over typical lab scales of minutes and hours, there is a qualitative difference
between a CA whose state is only a few bits, and a CA whose state is a floating-
point number. You can indeed simulate crude things like heat flow with only a
few hundred discrete states, but numerical viscosity kills off subtler continuum
behaviors like wave motion. With states that are single-precision floating-point
numbers, simulation of a one- or two-dimensional wave will persist through mil-
lions of updates, but if we coarsen the grain down to something like ten bits
of state, a wave simulation quickly dies out. Table 1 shows results obtained by
simulating a one-dimensional wave with the CAPOW software, which contains
a "State Grain" control for altering the coarseness of the real numbers used.

Objection 2. When you use floating-point numbers, computational round-off de-
stroys the possibility of having time-reversible rules.

This issue was raised by Norman Margolus during the "Constructive CAs"
conference. Margolus reasons that since physics is reversible, the CAs we use
conference. Margolus reasons that since physics is reversible, the CAs we use
that its use of floating-point numbers for its "real numbers" would make the
rules irreversible due to computational round-off.

Tests conducted since the conference reveal that the computational round-off
is not noticeable enough to destroy the possibility of rule reversibility over the
simulation runs that we use, typically on the order of a thousand to a hundred-
thousand updates. Figure 1 shows an example of a one-dimensional wave equa-
tion rule being reversed.

Of course our rules can only be reversible when they are based on a reversible
scheme such as the Wave Scheme introduced in section 3. The Diffusion Scheme
which we use is inherently irreversible. Although it is possible to model diffusion
in terms of the reversible motions of a deterministic gas of "heat particles," such
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FIGURE 1 A one-dimensional wave schema being run with a Wave constant of 0.694.
The rule was seeded with a single triangular spike and was time-reversed twice. The
figure shows an instantaneous snapshot of the cells' intensity values at the bottom,
while the upper part shows a space-time diagram of the intensity patterns, with the
earlier times at the top and the later times at the bottom. This simulation was "time
reversed" by exchanging the "past" and "future" cell buffers.

a strategy would seem to limit us to simulating systems much smaller and simpler
than those investigated here.

Objection 3. To study continuous-valued CAs is to repeat existing work in nu-
merical analysis and finite element simulations.

Finite element methods are indeed an inspiration for continuous-valued CAs.
But the CA approach has a different mindset and leads to different kinds of
investigations. The CA approach involves: an emphasis on experiment and ob-
servation rather than on theory and proof; an artificial life orientation in which
one is actively on the lookout for unexpected and emergent properties of the sim-
ulation; and the use of genetic algorithm methods for effectively searching the
large phase spaces of the rules. A historical distinction between CA work and
finite element simulations is that the latter tend to be run on supercomputers,
while CA programs are usually rapidly running, attractive, interactive shareware
graphics programs for desktop machines. It is our hope that thinking in terms of
continuous-valued CAs can lead to a productive unification of work from diverse
fields.
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2 CONTINUOUS-VALUED CAs AND DIFFERENTIAL
EQUATIONS

Most of the continuous-valued rules we have investigated so far have been inspired
by systems of differential equations. These include one- and two-dimensional
forms of equations based on diffusion, wave motion, oscillators, activator-inhibitor
reactions, and various combinations of these equations.

Our cell states typically include a real-number value u, and our CA update
scheme typically has the form uNew = Update (u,...). Various neighbor-state
values can appear as arguments to the Update rule. We write uNew rather than
u on the left because in order to preserve parallelism we think in terms of first
computing the uNew values for every cell before then starting to view these as
the current u values.

In working with CA schemes of this nature, one needs to worry both about
the numerical accuracy of a scheme and about its stability [5]. The accuracy
relates to how well the CA is simulating an actual differential equation. The sta-
bility relates to whether or not the CA simulation goes completely out of control.
When a rule enters an unstable regime it will generally produce arbitrarily large
and small values. A good heuristic in seeing if a scheme is likely to be stable is
that it should set uNew to something the size of u plus something the size of a
constant times the difference between two cell values.

In order to discuss our practices in converting systems of equations into
schemes for CA rules, let us suppose we are looking for a scheme to be used at a
given cell C. In one-dimensional rules, we call the cells left and right neighbors
L and R. In two-dimensional rules, we call the cell's neighbors E, NE, N, NW,
W, SW, S, and SE. In two dimensions we distinguish between the Moore neigh-
borhood of all eight neighbors, and the von Neumann neighborhood of only the
four neighbors E, N, W, and S.

Table 2 lists some symbols we will use for various cell neighborhood values.
We will use uPast and uNew for the value in the cell at, respectively, the prior
and the following update. It is going to be useful to use the term uTimeAvg for
the average of these two "time neighbors." And we will use uNabeAvg for the
average state values in C"s immediate neighbors, excluding C itself. In addition,
we use uR and uL for the u values in the cell's right and left neighbors R and
L, and use uE, uN, uW, and uS for the intensity values of the update cell's four
von Neumann neighbors, and so on.

In a one-dimensional case where we only look at nearest neighbors,
uNabeAvg is (uL + uR)/2. In a two-dimensional case where we use the von
Neumann neighborhood, uNabeAvg is (uE + uN + uW + uS)/'4. And in the two-
dimensional Moore neighborhood case, we choose to weight the corner cells a bit
less, and use a uNabeAvg of ((uE + uN + uW + uS) x 0.75 + (uNE + uNW +
uSW + uSE))/7.
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TABLE 2 Notation for cell neighborhood values.

Symbol Meaning Compute as:
u Current value of

cell state
uPast Prior value of

cell state
uNew Next value of

cell state
uNabeAvg Average of space

neighbors (uL + uR)/1 or
(uE + uN + uW + u5)/4 or
((uE + uN + uW + uS) x 0.75+
(uNE + uNW + uSW + uSE))/7

uTimeAvg Average of time
neighbors (uPast + uNew)/2

TABLE 3 Some CA approximations.

Ut uNew — u
uit uTimeAvg — u
V2u uNabeAvg - u

To convert a differential equation into a CA scheme, we write the equation
in a form that uses expressions of the form ut or uu as opposed to expressions
of the form du/dt or d2u/dt2. And we use the dimension-independent V2u for,
in one dimension, uxx or d2u/dx2, and for, in two dimensions, uxx + uyy or
(d2u/dx2 + 82u/dx2). And then we use the substitutions in table 3. Note that
we do not worry about putting in any Ax, Ay, or At terms because values
for these terms can end up being incorporated into one of the CA scheme's
parameters.

Consider a diffusion equation with a parameter called Diffusion.

becomes (Diffusion Scheme)

Note that this scheme satisfies the stability heuristic mentioned at the start of
this section; that is, uNew is u plus something the order of a difference between
the u values of two neighbors.
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The Diffusion Scheme can be thought of as taking a weighted average of the
cell and its neighbors. That is, we can write the Diffusion Scheme as uNew =
(I — Diffusion) x u + Diffusion x uNabeAvg. As the Diffusion parameter range
from zero and unity, the weight shifts from the cell to its neighbors. If the number
of neighbor cells is fc, then using a Diffusion value of k/(k + 1) makes a straight
average of the cell and its neighbors.

One should not use a Diffusion value greater than one, as this leads to
instability. The reason for this becomes clear if we consider a situation where the
uNabeAvg is zero. In this case, if Diffusion were greater than one, then a single
update would change a positive uto a negative uNew.

Now consider a wave equation with a parameter called Wave.

becomes (Wave Scheme)

uNew = (2 x u — uPast) + 2 x Wave x (uNabeAvg - u).

Our stability heuristic is satisfied because the first term on the right side
is of the order of u, while the second term is the order of a difference in the u
values of two neighbors.

In terms of the differential equations, the Wave parameter is actually (c x
At/ Ax)2, or the square of the speed of the wave in the medium times the square of
the time step divided by the square of the space step [5]. For a cellular automatist
it is more practical to just think of the single parameter Wave.

One significant thing to notice about the Wave Schema is that it is time
reversible. As already mentioned in section 1, we can swap the positions of uNew
and uPast to get a scheme that retrodicts the past instead of predicting the
future. In practice, we reverse a running Wave Schema CA by exchanging the
roles of the buffers that hold the cells' past values and the cells' future values.

We can also think of the right-hand side of the Wave Scheme as being two
times a weighted average of the cell and its neighbors with the old value of the
cell being subtracted off. That is, we can write the Wave Scheme as uNew =
2 x ((1 — Wave) x u + Wave x uNabeAvg) — uPast. As the Wave paramet
ranges from zero to one, the weight shifts from the cell to its neighbors, and
values greater than one give instability.

Instead of deriving our schemes for continuous-valued C A rules from differen-
tial equations, it is also possible to develop new CA rules simply by playing with
the schemes. Fermi et al. [3, 9] describe an early computer experiment in which
they changed the one-dimensional wave equation rule by adding a Nonlinearity
parameter and a factor that involves the squares of the differences between the
neighboring cell values to produce this scheme. (See Weissert [10] for a history
of the Fermi-Pasta-Ulam work through the mid 1970s.) As mentioned above, we
write uR and uL to stand for the u values in the cell's right and left neighbors
R and L.
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(One-dimensional Quadratic Wave Scheme)

An analysis in Ostrov [5] establishes that in one dimension, this scheme
corresponds to a nonlinear wave equation of the following form.

We will say more about nonlinear waves in section 6.

3 INVESTIGATING CONTINUOUS-VALUED CAs

As with other CAs, we simulate parallelism by maintaining separate buffers to
hold the current cell values and the new cell values being computed. Since the
Wave Schema CAs compute the future on the basis of values both from the
present and the past cell values, we actually need to maintain three buffers for
these rules.

In running CAs with continuous-valued state variables, one needs to prevent
the state values from taking on unreasonably large values that can produce
floating-point overflow. A simple way to do this is to pick a range of values that
you will allow the variables to lie in, and to then clamp them to stay in this
range, where to "clamp" a variable u to a range (Min, Max) means that if u is
less than Min we set it to Min, and if u is greater than Max we set it to Max.
The brute-force clamping approach protects the integrity of the simulation in
times when the rules have no physical analog.

As an alternate approach to keeping variable values in range, one can "wrap"
them instead of clamping them. That is, if u is slightly larger than Max, one
changes it to u — Max, and so on. Although this approach has the virtue o
preserving more information about the value of u, it seems in some cases to have
the disadvantage of excessively churning things up, and we have not used it very
much. As a matter both of elegance and of physical verisimilitude, one usually
tries to design the rules and their parameters so that no special measures are
needed to keep the variables in range.

In order to display our CAs, we pick one of the state variables to be the
display variable u. We then use a map called Band to map u's range onto the
integers up to some largish number MaxColorlndex (typically 1000). We have
been using simple linear maps for Band, although other kinds of maps could be
useful, for instance to exaggerate the color changes near some critical value. We
use a Palette array of MaxColorlndex of RGB color values and we display u as
Palette[Band(u)].

Our standard design for Palette is to randomly choose some "anchor colors"
for some of the Palette entries, and then to use linear interpolation in RGB space
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to ramp the entries whose indices lie between the indices of the anchor colors.
This produces a smoothly shaded effect. When generating monochrome images,
we simply alternate white and black for the anchor colors, producing a Palette
which is a shaded series of gray-tone stripes.

We have experimented with a variety of possible boundary conditions for our
CAs. The most commonly used is the periodic boundary condition, in which a
one-dimensional CA space is treated as a circle and a two-dimensional CA space
is treated as a torus. This is the only boundary condition used in the examples
discussed in this chapter.

There are various possible ways to seed the continuous-valued CAs. Among
them are: a constant starting value at all cells, a two-dimensional sine-wave
pattern, a single tentlike spike, multiple spikes that the user can place with the
mouse, and a fully randomized initial state.

Finding the best set of parameter values for a given rule is difficult. The
search spaces are, after all, very large and perhaps chaotically organized. We have
used an evolutionary search strategy that seems to have first been introduced
by Richard Dawkins in his classic Blind Watchmaker program [2]. Like Blind
Watchmaker, CAPOW allows the user to view nine rules at once, to select a
visually appealing rule by clicking on it, and to thereby have the other eight
rules become mutations of the chosen rule. The mutation rate is user-selectable,
and there are other kinds of randomization options as well. In other words, many
of the rules discussed here have been found by directed search methods. Color
plate 13 shows an image of the CAPOW window with nine different CA rules
active.

In searching for interesting rules, we use a refinement of Stephen Wolfram's
familiar classification of one-dimensional CAs into four kinds: (I) those that die,
(II) those that repeat, (III) those with nonrepeating persistent structures, and
(IV) pseudorandom (see table 4). If we view this classification as a spectrum
of increasing complexity, it seems logical to have the pseudorandom rules come
last, even though Wolfram chose to list the last two classes in the opposite
of the expected order. It is useful to distinguish between spatial and temporal
periodicity in type II. In two dimensions we have a special kind of complex
rule that, rather than exhibiting discrete gliders, shows the self-organizing scroll
patterns identified with the Belousov-Zhabotinsky reactions in chemistry. With
this in mind, we distinguish between two cases of type III as well.

4 REACTION-DIFFUSION SYSTEMS

Some of the most interesting patterns in nature come from reaction-diffusion
systems in which a chemical reaction is taking place while the components of
the reaction are being diffused. Much of the research in this area has focused on
reactions which involve two substances: an autocatalyzing activator which also
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TABLE 4 The complexity types of two-dimensional CAs.

Complexity
type

I
Ha
lib
Ilia
1Kb
IV

Wolfram
type

1
2
2
4
4
3

Attractor

Point
Cycle
Cycle
Strange
Strange
Pseudorandom

Behavior

Dies out
Fixed space pattern
Periodic cycle
Self-organizing scrolls
Moving gliders or globs
Chaotic seething

produces an inhibitor substance. (See the classic Alan Turing paper [8] and the
recent nontechnical survey [1].)

Hans Meinhardt [4] formulates several differential equation schemes for
reaction-diffusion systems based on activator-inhibitor reactions. This book also
includes a disk with the executable and the BASIC source code for Meinhardt's
SP program, which displays continuous-valued one-dimensional CAs based on
a wide range of activator-inhibitor-diffusion systems. Meinhardt's work was the
major inspiration for our development of the CAPOW software.

The work in this section is based on Meinhardt's differential equation scheme
for an activator-inhibitor diffusion rule with activator saturation. Depending on
how the parameters are set, we can get every possible CA complexity type with
the exception of Illb.

We can easily find rules of type I, which rush to take on the maximum or
minimum value for all cells, and remain frozen there.

The rules of type Ila are of particular interest. These rules converge to static-
appearing patterns resembling the coats of animals such as leopards and zebras.
These kinds of reaction-diffusion patterns are often called Turing patterns, as
Turing's motivation for considering these rules was indeed to find ways to gener-
ate stable patterns which emerge in morphogenesis. The rules of type lib show
a uniform oscillation up and down. If these rules oscillate wildly enough to hit
the maximum values and experience "clamping," then recurrent dot patterns are
introduced by the clamping process.

The rules of type Ilia are those in which certain wavelike structures form
and move about. Among these traveling wave patterns; of particular significance
are those in which scrolls self-organize. The scroll-forming patterns are instances
of the ubiquitous two-dimensional CA rules sometimes called Zhabotinsky rules.
None of the rules of this kind investigated so far seem to show stable moving
patterns that characterize complexity type Illb.

And finally it is always easy to find a settings that produce type IV patterns
which seethe wildly.
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Meinhardt formulates these rules in terms of two real number variables a and
b which represent the intensity of, respectively, the activator and the inhibitor.
In our simulations we have typically let a and b range from 0 to 4, focusing on
rules in which the a and b values never actually approach the maximum value of
4 closely enough to require clamping. We use a helper variable bSafe to prevent
division by zero, along with a number of parameters that are named in table 5.

Meinhardt's activator-inhibitor equations have this form.
(Activator)

(Inhibitor)

To model these as CA schemes, we treat the time step as 1 and use updates of
the form aNew = a + at. The full activator-inhibitor CA rule takes the following
form.

(Avoid division by 0) IF (b > bMin) THEN bSafe = b ELSE bSafe = bMin.
(Activator)

(Inhibitor)

(Clamp) Clamp both a and b to be in the range [0, abMax].

Figure 2 shows an example of one of the self-organizing scroll CAs of type
Ilia called Zhabo Worms, while color plates 2 and 3 show examples of stable
Turing pattern CAs of type Ha called Turing Leopard and Turing Stripes. The
parameter values used for these three rules appear in table 6.

5 WAVE EQUATIONS

The two-dimensional wave equation rules give patterns very similar to the surface
of pan of water, although our use of periodic boundary conditions means that
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TABLE 5 The variables and parameters for the activator-inhibitor-diffusion rule.

Symbol Meaning Comment
Variables:

Safety
Variables:
bSafe

Equation
Parameters:
sdensity

aDiffuse

bDiffuse

dBase

bBase

aDecay

bDecay

aSaturation

Concentration of the
activator.
Concentration of the
inhibitor.

Concentrartion of the
inhibitor, corrected to be
above bMin.

Source density, akin to a
reaction rate.

Diffusion rate of the
activator.

Diffusion rate of the
inhibitor.

Basic activator production
rate.
Basic inhibitor production
rate.
Activator removal rate.

Inhibitor removal rate.

Slows down the rate of
activator production as
a increases.

Typical range 0 to 4.

Typical range 0 to 4.

Typical range 0.001
to 4. Use to avoid
division by 0.

Range 0 to 1. Small
0.01 Turing, medium
0.5 for for Zhabo.
Range 0 to 1. Needs
to be close to bDiffuse
for Zhabo.
Range 0 to 1. Needs to
be much larger than
aDiffuse for Turing.
Small 0.01 for Turing,
medium 0.3 for Zhabo.
Small, about 0.004.

Large 0.5 for Zhabo,
small 0.01 for Turing.
Large 0.3 for Zhabo,
small 0.01 for Turing.
Need this to get good
Turing patterns. Low
values like 0.04 give
dots, high values like
0.2 give stripes.

a

b
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TABLE 5 Continued.

Symbol Meaning
Simulation
Parameters:
Neighborhood Dimensionality and

Comment

In two dimensions
neighborhood.

bMin

abMax

Minimum inhibitor in rule.

Maximum value of activator
or inhibitor in rule.

we get the best-
looking, smoothest
results with a Moore
neighborhood with
edges weighted
slightly more than
corners.
Small 0.001 for Turing,
medium 0.5 for Zhabo.
4 works well.

the waves do not reflect off the edges. Figure 3 shows an image of a randomly
perturbed two-dimensional wave schema rule.

One might be tempted to say that the wave-based rules have complexity
type Illb, in that the individual wave patterns behave somewhat like gliders
that move around. On the other hand, since the wave equation is linear, the
wave crests cross each other without interacting. And the interaction of gliders
is really the essence of what we think of as complexity type Illb, for one expects
a complexity type Illb rule to appear as if it may be capable of simulating a
universal computer.

In order to have wavelike rules in which the individual wave-patterns inter-
act, we need a nonlinear wave equation along the lines mentioned in section 2. We
have worked with three nonlinear two-dimensional wave schemes. Two are fairly
straightforward: a quadratic and a cubic nonlinear wave. The third is more com-
plicated, it is a cubic nonlinear wave that has a "homeostatic" tweak designed
to prevent it from becoming unstable.

The first quadratic and cubic wave rules are based on a von Neumann neigh-
borhood. The homeostatic cubic wave rule uses the von Neumann neighborhood
for the "wave mode" of its updates and uses the Moore neighborhood when it
enters an "averaging mode" to smooth out instabilities. Recalling that we use
uE, uN, uW, and uS to stand for the intensity values of the update cell's four
von Neumann neighbors, we can write the quadratic and cubic wave schemes as
follows:
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FIGURE 2 Zhabo Worms. This is an activator-inhibitor diffusion rule. It slowly self-
organizes scrolls from a random start.

FIGURE 3 A two-dimensional wave schema being run with a Wave constant of 0.694
and a uMax of 3.0. The pattern started as a two-dimensional sine wave and was re-
peatedly perturbed with random conical "dings." It will continue sloshing around like
this indefinitely.

(Two-Dimensional Quadratic Wave Scheme)

(Two-Dimensional Cubic Wave Scheme)
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TABLE 6 The parameters for the three activator-inhibitor-diffusion rules of figure 2,
color plate 14, and color plate 15.

Neighbors
Complexity
sDensity
aDiffuse
b Diffuse
dBase
bBase
aDecay
bDecay
aSaturation
bMin
abMax

Zhabo
Worms

2D Moore
Ilia

0.52
0.0975
0.04375
0.256
0.004
0.52
0.3
0.0
0.52
4.0

Turing
Leopard
2D Moore

Ha
0.011
0.0399
0.99995
0.01
0.0055
0.015
0.01
0.04
0.001
4.0

Turing
Stripes

2D Moore
Ha

0.015
0.049
0.99995
0.01
0.0055
0.01
0.015
0.2
0.001
4.0

(Clamp) Clamp u to be in the range [—uMax,uMax\.

The third nonlinear wave is a "homeostatic cubic wave" scheme which we
will discuss below. In figure 4 we show our four kinds of waves side by side.

The nonlinear wave schemes easily go unstable, especially the cubic one. In
these waves, instability will mean that the intensity values grow without bound.
Thanks to the clamping step, the values then get stuck at a maximum or a
minimum value. In the case of the two-dimensional quadratic wave, instability
can lead to a certain kind of interesting structures. But in the cubic case, an
instability is typically a checkerboard of alternating maximum and minimum-
valued cells which grows to fill the simulation space.

Our "homeostatic cubic" rule has an ad hoc technique for taming the cubic
instabilities. The idea is to run an unstable cubic wave, and to let the nonlin-
earity of the wave be determined locally. This gives an interesting effect showing
Zhabotinsky patterns moving about in a wave medium.

For the homeostatic cubic wave, each cell holds an intensity u and a non-
linearity multiplier called LocalNonlinearity. In addition the rules use a helper
variable TooBig and some additional parameters as shown in table 7.

The update process for this rule has two parts: the computation of the uNew
value and the computation of the LocalNonlinearity New value.

At the first stage of the update, we compute the uNew value in one of two
possible ways, depending on the size of the LocalNonlinearity variable. If Lo-
calNonlinearity is small, that is an indication that we are in a zone that was
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TABLE 7 The variables and parameters for the homeostatic cubic wave scheme, along
with the values used for the Homeostatic Cubic Zhabo in color plate 16.

Symbol Comments Homeostatic
Cubic Zhabo

Variables:
u

Localnonlinearity

TooBig

Parameters:
wave

MaxNonlinearity

GrowFactor

MinNonlinearity

WaveThreshold

j.Max

Intensity. Ranges from 0 to
uMax.
Each cell has its own value for
this; it starts at MinNonlinearity
and drifts up toward
MaxNonlinearity.
Boolean helper variable to signal
when the rule has become unstable
at a given cell.

Normally ranges from 0 to 1, 0.5
although could be larger as we
expect this rule to become unstable
anyway.
The LocalNonlinearity values in 100.0
the individual cells move toward
this. Can be any positive value.
The multiplier which moves the 1.05
cells' Local Nonlinearity value
toward MaxNonlinearity.
Should be slightly larger than 1.
This needs to be larger than 0 0.01
because we increase the
Local Nonlinearity by repeated
multiplications by GrowFactor.
This should be bigger than 0.015
MinNonlinearity. When the
Local Nonlinearity lies between
MinNonlinearity and
WaveThreshold we update u with
an averaging rule, otherwise we use
a cubic wave rule.
We clamp u to be in the symmetric 1.0
range (—uMax, uMax).
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FIGURE 4 A view of four kinds of two-dimensional waves. Prom the left, the to
row has a linear wave and a quadratic wave, and the bottom row has a cubic wave
and a homeostatic cubic wave. Each rule was seeded with a four full cycles of a sine-
wave pattern and was run for about 500 updates. In the linear wave this pattern
simple oscillates forever, making "sushi" patterns that are displayed by showing the
intensities in different shades of black and white. In the quadratic wave, the peaks
become asymmetric, and in the cubic wave the peaks become more angular. The flaw
on the cubic homeostasis wave are locations where the wave has become unstable and
has intensity values that are being clamped to the maximum or minimum allowable
value. All the rules are being run with a Wave constant of 0.694 and a uMax of 3.0
The Nonlinearity values of the quadratic and cubic, waves are, respectively 0.5, 3. The
Nonlinearity in the homeostatic cubic wave varies from cell to cell, ranging from 0.001
to 1000.

recently unstable, and we update uNew by a simple averaging scheme. If Lo-
calNonlinearity is larger, we update uNew by a cubic wave scheme, and we us
the LocalNonlinearity as the cubic wave's Nonlinearity parameter. Finally, after
updating uNew, we clamp uNew to lie in the range (—uMax, uMax). If uNew
was indeed out of range, we set my TooBig helper variable to true, otherwise we
set TooBig to false.

At the second stage of the update, we compute the LocalNonlinearity New
value in one of two possible ways, depending on whether TooBig is true or false.
In the TooBig case, we let LocalNonlinearity New collapse to MinNonlinearity.
This has the dual effect of damping the unstable cubic rule and of signaling
the cell to use an averaging rule for its next update. When TooBig is false, we
multiply LocalNonlinearity New by GrowFactor and clamp LocalNonlinearity Ne
to lie in the range (MinNonlinearity, MaxNonlinearity).

The uNew update:
(Cubic Wave Option)

IF (LocalNonlinearity > WaveThreshold) THEN uNew
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FIGURE 5 A quadratic wave scheme with Wave of 0.25, Nonlinearity of 0.15, and
uMax of 3.0. The pattern was seeded with all u values of 1.5 with a conical bump in
one location. The cone tip produced an instability which propagated along a closed
"fault line." (Recall that this is a toroidal space.) The pattern is now stable and will
remain like this indefinitely. Note that small structures are able to move along within
the "wave guide" pieces of the fault.

(Averaging Option)

IF (LocalN onlinearity < WaveThreshold) THEN uNew = uNabeAvg;

(Clamp and set TooBig)
Clamp uNew to lie in the range (—uMax,uMax). If uNew was outside the

range set TooBig to true, otherwise set TooBig to false.
The LocalNonlinearityNew update:

(Collapse option)

The LocalNonlinearityNew update:

(Growth option)

IF (NOTTooBig) THEN LocalN onlinearity New

(Clamp)
Clamp LocalN onlinearity New to be in the range (MinNonlinearity, MaxNonlin-
earity).
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This rule readily falls into a Zhabotinsky-style pattern of complexity type
Ilia. The Zhabotinsky spirals are driven by the behavior of the LocalNonlinearity
parameter, which grows to a maximum value and then drops abruptly.

6 REACTION WAVE SYSTEMS

We have also done some preliminary work in trying to put a wave term in place of
the diffusion term in one or both of the two equations in our activator-inhibitor
systems. We have tried various ways of doing this, but none has been an out-
standing success in terms of producing really interesting behaviors. A typical
scheme we have tried has the following form. In this scheme we do not use an
aSaturation term.
(Avoid division by 0)

scheme we have tried has the following form. In this scheme we do not use an

(Activator)

(Inhibitor)

(Clamp) Clamp both a and b to be in the range — abMax,abMax}.
This rule produces patterns resembling clouds that continually form and

dissolve (see fig. 6 and table 8).

7 SUGGESTIONS FOR FURTHER WORK

Meinhardt [4] investigates other, more complicated, kinds of one-dimensional
activator-inhibitor systems, and it would be interesting to cast more of these into
two-dimensional form. It would be of particular interest to see Turing patterns
which move about; that is, it would be nice to see crawling dots and writhing
stripes. One result of this might be that our CAs could begin to model the
motions of extended objects.

Another, related, goal is to find some continuous-valued CAs with more
purely type Illb behaviors. That is, one would like to see gliderlike patterns
moving about and interacting.
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FIGURE 6 A cloudlike pattern formed by an activator inhibitor rule with wave terms
in place of the customary diffusion terms. This rule converges quickly to this behavior
from a random start. The rule is shown using only one band of color, that is, black in
the minimum intensity and white is the maximum. See table 8 for the parameter values
used.

TABLE 8 The parameter values used for the Cloud rule in figure 6.

Name
Neighbors
Complexity
Wave
aDensity
aBase
bBase
aDecay
bDecay
bMin
abMax

Clouds
2-D Von Neumann

IV
0.25
0.01
0.01
0.0055
0.01
0.015
0.001

32.0
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It might also be useful to base some rules on third-order differential equa-
tions; presumably using something like a uSecondNabeAvg — 2 x uNabeAvg + u
term, where the uSecondNabeAvg would be computed from neighbors two cells
away. Perhaps some of these rules could exhibit solitons that might play the role
of information-bearing gliders.

Finally, there is still the open frontier of three-dimensional CAs. Certainly
it would be nice to generalize the simple activator inhibitor schemes to three-
dimensions so as to produce three-dimensional Turing patterns.
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Phase Transition via Cellular Automata

Gadi Moran

The dynamics of unit-charged graphs under iterated local majority rule
observed in Moran [2] strongly suggested to me a phase-transition phe-
nomenon. In a correspondence with D. Ruelle on this matter in late
1993, he expressed his feelings that the connection was too vague and
that temperature was absent in it. This note is a reproduction of my
1993 response, where I try to force my suggestive feelings into a bit
more formal frame.

A recent work of Yuval Ginosar and Ron Holzman [1], which extends
Moran [2], allows us to replace the definition of a solid, given in section
4, by a sharper one, namely that of a "puppet" in their terminology.
This means that in section 4 we may define a G 6 Y to be a solid if
every initial charge upon it decays under these dynamics—possibly in
infinite time—into a time-periodic charging of a time period not longer
than two.

New Constructions in Cellular Automata,
edited by David Griffeath and Cristopher Moore, Oxford University Press. 3 1 7
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1 INTRODUCTION

This note suggests an approach to the phenomenon of phase transition based on
the behaviour of some cellular automata on infinitely countable nets, as noted
recently in Moran [2]. Specifically, we use a majority automaton operating simul-
taneously on a countably infinite graph as a test device determining its "phase."
Results in Moran [2] suggest some sharp partition of a configuration space made
up of the totality of such graphs into "solids," where the only periods allowed for
the automaton are 1 or 2, versus the others. Results in Moran [2] allow also the
introduction of a "temperature" functional—a numerical parameter defined for
each configuration, with the property that a configuration is "solid" whenever
its "temperature" is negative.

We first describe a possible physical interpretation of such a model, taking
the nodes of a graph to be "particles" (stars, electrons, ions, atoms, molecules,
radicals—as the case may be) in some Riemannian manifold. Our interpretation
is obviously open to a wide diversity of modifications. It is hoped that in spite
of its admittedly speculative nature, it may invoke a novel approach to the
theoretical treatment of phase transition.

2 THE MODEL

Let V denote a countable infinite collection of "particles" situated in some Rie-
mannian manifold. Assume for simplicity that the particles are balls, whose radii
range between pi and p2, 0 < pi < p2- The particles may be static, may oscillate
around some fixed position or may move freely around.

Fix a positive number r. At a given time to we consider our system of
particles V and follow the individual motion of each v € V. Let p < r be a fixe
positive number, and let Bv denote a ball of radius r around the center of the
particles V and follow the individual motion of each v € V. Let p < r be a fixe
around, with the Bv's moving with them. We associate a graph Gto = (V,Nto)
with our system (at time to) by making v and v' joined by an edge if and only
if Bv and Bv> intersect while moving during the period [to, to + r}. Formally we
put:

1. N(v, v') — N(v', v) — I if and only if: v ^ v' and for some t, t0 < t < t0 + T,
Bl

v n £?*, ^ <f> (where obviously, 5* is the space occupied by Bv at time t);

2. N(v,v') = N(v',v) — 0, otherwise.

REMARKS:

1. Notice that Gto is independent of to for a system made of static particles,
or when the intersections Bv n Bv> are "large" relative to the motions of the
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particles around fixed positions. It is time dependent for a general system of
freely moving particles.

2. Our condition that all particles are balls at least as big as a ball of radius
pi > 0 combined with a universal bound SM on the speed of particles (e.g.,
the speed of light) imply that the graph Gta is locally finite, and often that
there is a uniform finite bound on the degrees in Gta (namely, the maximal
number of disjoint balls of radius pi that can enter in the region covered by
a ball of radius 2r moving at speed 2SrM over a period T).

3. When the particles are static and far apart (more than 2r from each other)
Gto is discrete graph (this should correspond to O°K).

For a system of particles that are moving or close together, Gto will consist
of connected components with possibly infinitely many particles in some. By
choosing r and t large enough, we can justify the assumption made below (needed
for applying Moran [2]) that Gto is a connected graph.

3 THE CONFIGURATION SPACE (PHASE SPACE)

We take for a configuration space Y the totality of all connected graphs on a
fixed set of vertices V possessing a uniform finite bound on the degrees (i.e.,
the number of neighbours a vertex v e V may have). Some justification for the
two restrictions—connectedness and uniform-degree-boundedness—is suggested
in remarks 2 and 3 of section 2.

4 SOLIDS VERSUS FLUIDS

We test a graph G G Y for solidity by its response to "shocks." Solids are
expected to absorb shocks. Fluids let them through. A "shock" is any initial
{+,—}-"charge" of the particles v in V. By saying that "a shock is applied t
G" we mean that a unit charge was placed at each vertex v of G. Applying a
shock to G we obtain a charged graph G°, which is subjected to iterations of a
transformation we shall call local majorization, applicable to an arbitrary charge
transformation we shall call local majorization, applicable to an arbitrary charged
The transition from Gk to Gk+l is made by recharging v G V by the charge of
the majority of its neighbours in Gk, leaving u's charge unchanged in case of a
tie.

A shock may or may not lead to an ultimately periodic sequence
(Gk)k=o,i,2,...- We are interested in the possible periods that may occur in the
first case. If any periodic sequence that occurs as a result of a shock has a period
of length < 2 , we say that G has the Period Two Property (p2p). We choose the
pip as our test for solidity.
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Definition G e Y is solid if and only if G has the pip. Otherwise we call G fluid.

5 THEOREM

We restate a result in Moran [2] pertaining to our subject in the present glossary:

Theorem Let G e Y and let D(G) denote the maximum degree of some v £ V.
Let d denote the maximal even integer strictly smaller than D(G). Also, let g(G)
denote the growth of G. Then:

(Moran [2], Theorem 2).
Two remarks are in order:

1. d = 0 is possible. Then 2/d is to be interpreted as oo. (This is a trivial
case — the graph G is a chain. It is always a solid.)

2. The growth g(G) mentioned in the Theorem is a real number satisfying: 1 <
g(G) < D(G) — 1. It is defined as follows. Choose VQ € V, and for n = 1, 2, 3, 2
let bn denote the number of vertices v G V whose G-distance from v0 is at
most n (i.e., who can be joined to VQ by a path in G of length < n). Then:
g(G] := Iimsup6n .

Example 2 in Moran [2] presents a fluid Gd 6 Y with g(Gd) = 1 + (2/d),
D(Gd) = d + 1, for each even number d > 0.

6 TEMPERATURE

Let G e Y. Define

where g(G), d are given in section 5. (Again, d = 0 requires special care. We put
then 9 = — oo, T = 0). By section 5 we have (Moran [2] Theorem 2, Example 2):

2. For every positive even integer d there is a Gj € Y" such that Gd is fluid,
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We refer to 0(G) as the Celsius temperature of G and to T(G) as the kelvin
temperature of G.
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activator-inhibitor diffusion systems,
305

adjustment fleets, 36
aggregation models

Diffusion Limited Aggregation
model, 211

growth properties, 160, 162-164,
165-167

See also molecular self-assembly;
Reversible Aggregation model

amphiphilic polymers, 182, 193,
198-202

aquaducts, 97-98
arrow replicator, 145
asymptotic densities

Exactly 1 solidification rule, 80
Exactly 2 solidification rule, 80
golden string, 82-83
IrratS' pattern, 87
irrational asymptotic densities,

80-81
Seed construction, 87-90

asymptotic shapes
exclusion Obstacle Course models,

163-164
Internal Diffusion Limited

Aggregation models, 165-167
moving Obstacle Course models,

163-164
Seed construction, 88-89
spatial Prisoner's Dilemma models,

172-177
static Obstacle Course models,

161-164
attractive cellular automata, 168
automated synthesis of Game of Life

objects, 74-75
automorphism-defined patterns, 4
axiomatic definitions of replicators,

130-136

BBMCA, 233-235, 244-247
See also Billiard Ball Model

bend preventers, 112
Bennet, C. H., 213-214

323
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best response dynamics, 265, 266-267
Biased Voter Automata rules, 171, 176
bicontinuous structures, 199-200
bijections for replicators, 132, 158
Billiard Ball Model, 214, 231-235

See also Soft Sphere Model
billiard-table oscillators, 59, 61
bipoles, tying, 71
black-and-white images. See image

manipulation
blinkers, 15-17, 21-23, 26-30, 39-40

See also oscillators
blocking crossings, 114
blocks, 15-17, 21-23, 64, 66, 82
blurring colors, 286-287
boats, 64, 66, 82, 85
boundaries between still life subsets,

97-101, 106-107, 112-114
bow tie pasta replicator, 143
Box Blur rule, 286-287
breeder (denned), 76, 81
bridges in switch graphs, 102-103, 104
Buckingham, D, 75
bugs, 170
BVA. See Biased Voter Automata

rules

C
CAMS

Nonlinear Voter Model
implementation, 273

Reversible Aggregation model
implementation, 222-224

CAPOW, 296, 303
cellular automata

attractive, 168-169
computation. See universal

computation in cellular automata
continuous-valued. See

continuous-valued cellular
automata

crystal growth. See Reversible
Aggregation model

deterministic, 168-169
discrete-valued, 296-297
economic models. See economic

models

cellular automata (cont'd)
expansion. See expansion properties

of cellular automata
Game of Life. See Game of Life
growth. See growth phenomena in

cellular automata
lattice gases. See lattice gas

automata
monotone, 168
objects. See object synthesis
patterns. See patterns
probabilistic, 167-168
relativistic, 255-256
rules. See cellular automata rules
solidification, 169-170
visual effects. See image

manipulation
cellular automata rules

Biased Voter Automata rules, 171,
176

Box Blur rule, 286-287
color mating rule, 290
cubic wave rules, 309
deriving from differential equations,

299-301
Diagonal Box Blur rule, 286-287
error diffusion rule, 290
Exactly 1 solidification rule, 80
Exactly 2 solidification rule, 80
Game of Life rule, 2
homeostatic cubic wave rules,

309-312
Hue Boil rule, 289
Larger-than-Life rules, 120-121,

170-172
Life without Death rule, 172
Median Manhattan Mold rule, 287
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
particle movement rules, Soft

Sphere Model, 235-237, 240
Pascal-generating cellular automata

rules, 126-130, 132-134, 140, 147
quadratic wave rules, 308
random neighbor copy rule, 289-290
reaction-diffusion rules, 303-307
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cellular automata rules (cont'd)
reaction wave rules, 313
3-4 Life rule, 73
two-dimensional wave rules, 305-307

centroids of replicator tiles, 129, 130,
131

charge-charge interactions, 192
chunks, 3, 4, 5
circuits. See logic gates
clamping variable values, 302
classification frameworks

continuous-valued cellular automata
rules, 305

growth models, 167-168
clusters

cluster-size frequencies in sparse
arrays, 7

defined, 4
growth patterns, 12-14, 14-15
indefinite growth clusters, 14-15
quiet clusters, 14
See also collisions; patterns

CNF Satisfiability problem, 108-111,
114-115

collision sequences
lucky rake sequence, 26-29
nonstandard collision sequences, 19
scarcity classes, 44-46
standard collision sequences, 17-21,

21-23, 44-46
collisions

blinkers, 15-17, 21-23, 26-30, 39-40
blocks, 15-17, 21-23, 82, 85
boats, 82, 85
controlled explosions, 72-74
cumulative occurrence densities,

19-21, 47
gliders with gliders, 33-37, 56-57,

82, 85, 87
gliders with other objects, 15-17,

18-20, 23, 26-30, 82, 85, 86, 87,
88

intermolecular interactions,
187-189, 192
See also molecular self-assembly

light-weight spaceships, 81-82, 88

collisions (cont'd)
medium-weight spaceships, 81-82,

85, 86, 88
nonstandard collision sequences, 19
r-pentominos, 17-21, 21-23
SCS-constructable collisions, 25-44,

44-46
sparks, 66-67
standard collision sequences, 17-21,

21-23, 44-46
stifled glider guns, 82, 88
switch engines, 19-21
synthesis of Game of Life objects,

56-57, 66-67
well-spaced glider collisions, 25-26,

38-44, 45-46
See also logic gates

color display in continuous-valued
cellular automata, 302-303

Color Manhattan Distance metric, 286
color mating rule, 290
color space, 24-bit, 286
color transformations. See image

manipulation
complex image transforms, 291
complexity classification,

continuous-valued cellular
automata rules, 301-303

compound objects, synthesis of, 59
computation. See universal

computation
computational machinery, 65-66

See also universal computation
computational round-off in

continuous-valued cellular
automata, 297

conservative logic gates, 212
conservative models of computation,

237-238, 255-256, 257
constellation (defined), 76
constrained growth cellular automata,

168
constraint-expansion transition

models, 170-172
constructability

i-constructable patterns, 5
nonconstructable patterns, 4
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constructability (cont'd)
w-constructable patterns, 5-6
SCS-constructability in sparse

Game of Life arrays, 47-49
SCS-constructable collisions, 25-44,

44-46
SCS-constructable fleets, 25, 26-32,

45
See also synthesis

constructive dynamical systems, 182
See also molecular self-assembly

continuous-valued cellular automata
approximating Internal Diffusion

Limited Aggregation models, 165
boundary conditions, 302
classification of rules, 303
computational round-off in, 297
deriving from differential equations,

299-301
diffusion equations, 300, 303-307
displaying, 302
finite-element methods vs., 298
floating-point numbers, 296-297,

302
reaction wave equations, 313
reversibility, 297, 301
seeding, 302
stability of rules, 299
wave equations, 300-301, 307-313

controlled explosions, 68-69, 72
Cooper, R., 264
cooperation, in spatial Prisoner's

Dilemma models, 172-173
coordination games, 264—265
Coxeter, H. S. M., 83
cross gates, 223
crystallization, 210, 211-213

See also Reversible Aggregation
model

cubic wave equations, 308-310
cubic wave rules, 308
cuphooks, 59
curvature-driven surface tension, 274
cycles in switch graphs, 104-105

D
dams, 97
d-clusters, 4

decision making. See economic models
demultiplexers, 244
densities

of chunks, 5
cumulative occurrence densities, 19,

20,47

density contributions of clusters, 13
See also asymptotic densities;

equilibrium densities
deterministic cellular automata,

168-170
Diagonal Box Blur rule, 286-287
differential equations

deriving cellular automata rules
from, 298-301

diffusion equations, 300, 303-307
reaction wave equations, 313
wave equations, 300-301, 307-313

Diffusion Limited Aggregation model,
211

See also Reversible Aggregation
model

diffusion schemes
deriving cellular automata rules

from differential equations, 300
reaction-diffusion rules, 303-307
See also continuous-valued cellular

automata
dimensions of replicators, 131-133,

140-141, 149-150, 151-152, 153
dipole-dipole interactions, 192
dipole-induced dipole interactions, 192
discrete-valued cellular automata,

296-297
See also continuous-valued cellular

automata
dispersion forces, 192
displaying continuous-valued cellular

automata, 302
distances between colors, 287
double-precision floating-point

numbers, 296
D'SOUZA, R. M., 299
dual-rail signals, 239, 242-243, 256
Durrett, R, 155
dynamical hierarchies, 182-183

See also molecular self-assembly
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dynamical systems, 181-183
dynamics

best response, 265, 266-267
molecular, 195-196
semi-classical, 257

E
economic models

best response dynamics, 265,
266-267

endowment variables, 262
expectations of agents' behaviors,

265, 266, 277
game theory, correspondence to,

264-267
global trade models, 270-271,

277-278
inequality in, 262, 267, 274, 278,

281-282
Ising model, 276-282
Linear Voter Model, 268-269, 270
local trade models, 272-276,

278-282
Majority Voter Model, 268-269, 271
market vs. nonmarket production,

261-262, 267, 274-276, 278,
281-282

multiple equilibria, coexistence of,
267

Nash equilibria, 265-266
Nonlinear Voter Model, 262,

268-276
payoff structure, 264-265
persistent inequality, 262, 267, 274,

278, 281-282
preference variables, 264
production strategies, 264-265
technology variables, 263
trade structure variables, 263

eight-cell Game of Life patterns, 10
electromagnetic fields. See force-field

interactions
eleven-cell Game of Life patterns, 10
endowment variables, 263
energy-conserving models of

computation, 257
equilibria in economic models

global trade models, 270-271, 278

equilibria in economic models (cont'd)
Ising model, 278, 279-280, 281-282
Linear Voter Model, 269, 270
local trade models, 274-275,

279-280, 281-282
Majority Voter Model, 269, 271
multiple equilibria, coexistence of,

267

Nash equilibria, 265-266
Nonlinear Voter Model, 270-272,

274-275
See also economic models

equilibrium densities
Biased Voter Automata, 176
spatial Prisoner's Dilemma models,

173-175
See also asymptotic densities

equivocal growth cellular automata,
168

error diffusion rule, 290
EVANS, K. M., 119
Exactly 1 Solidification rule, 80
Exactly 2 Solidification rule, 80
excluded volumes of molecules, 184,

202

exclusion Obstacle Course models, 163
expansion properties of cellular

automata
aggregation models, 160, 161-164,

165-167
Biased Voter Automata rules, 171,

176
classification framework, 167-168
constrained growth cellular

automata, 168
constraint-expansion transition

models, 170-172
deterministic cellular automata,

168-169
equivocal growth cellular automata,

168
exclusion Obstacle Course models,

163
expansive growth cellular automata,

168
Game of Life, 169-170
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expansion properties of cellular
automata (cont'd)

Internal Diffusion Limited
Aggregation models, 164-167

Larger-than-Life rules, 170-172
monotone cellular automata, 168
moving Obstacle Course models,

163-164
nucleation models, 160, 172-176
probabilistic cellular automata,

167-168
solidification cellular automata, 169
spatial Prisoner's Dilemma models,

172-176
static Obstacle Course models,

161-163
expansive growth cellular automata,

168
expectations in economic models, 265,

266, 277
explosions, controlled, 72-74

F
false-color images, 291-292
Fibonacci numbers, and golden string,

82-83
finite-difference classes, 14
finite-element methods, 297-298
first-passage percolation models, 161
five-cell Game of Life patterns, 8-10
fleets

adjustment fleets, 36-37
nicely ordered fleets, 39
production of, 24-25
spaced-out glider fleets, 26-32
standard collision sequences, 17
stretch-resistant fleets, 39, 41, 42-43
well-spaced glider fleets, 24-26,

32-44
flip-flop (defined), 76
floating-point numbers, 297-288, 302
fluids, phase transition model, 319-320
force-field interactions

intermolecular interactions,
188-193, 194-200

intramolecular potentials, 193
kinetic energies, 194-195
potential energies, 194-195

force-field interactions (cont'd)
representation in polymer lattice gas

automata, 184, 185, 188, 193-194
four-cell Game of Life patterns, 7-9
four-color theorem, 106-107
Fredkin, E., 214, 231
Fredkin gates, 214, 243-244

G
Game of Life

collisions between objects, 56-57,
67-68
See also collisions

computational machinery, building,
65-66

eight-cell patterns, 8, 10
eleven-cell patterns, 10
five-cell patterns, 7-9
four-cell patterns, 7
Game of Life programs (Web site),

90
Game of Life rule, 2
glider guns, 82, 85-87, 88
gliders. See gliders
growth models, 169-170
growth patterns. See growth

patterns, Game of Life
Irrat5 pattern, 84
IrratS' pattern, 84-90
Larger-than-Life rule, 120-121
mysterious synthesis of objects,

61-62
natural objects, 56-57
Pascal-generating cellular automata

rules, 125-129, 131-133, 139, 146
predecessor objects, 64, 66
rescuable objects, 57, 59
seed with irrational asymptotic

density, 79-80, 87-90
sparks, 66-67
still lifes, 74-75
symmetrical objects, 57
synthesis of objects. See object

synthesis
ten-cell patterns, 10
3-4 Life objects, 73
three-cell patterns, 7
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Game of Life (cont'd)
See also replicators; sparse Game of

Life arrays; still lifes
game theory, correspondence to

economic models, 264-267
gas particles

logic gates, 216-220, 221-222, 223
logic signals, 215-216, 223
Reversible Aggregation model, 209,

211-213
gates. See logic gates
glider (defined), 76
glider guns

producing gliders with irrational
frequency, 85-87

stifled glider guns, 82, 88
See also gliders

gliders
collisions between gliders, 33-36,

56-57, 82, 85, 87
collisions with other objects, 15-17,

18-20, 23, 26-30, 82, 85, 86, 87,
88

growth characteristics, 8
producing with irrational frequency,

85-87
spaced-out glider fleets, 26-32
standard collision sequences, 17-21,

21-23
synthesis of other Game of Life

objects, 57
well-spaced glider collisions, 25-26,

38-44, 45-46
well-spaced glider fleets, 23-25,

32-38, 38-43, 43-44
See also glider guns; spaceships

global configurations, 3
global dynamics of replicators,

155-156
global trade models

Ising model, 277-278
Nonlinear Voter Model, 270-271

GoL. See Game of Life
golden string, 82-83
GOTTS, N. M., 1
graphics. See image manipulation
GRAVNER, J, 159

grayscale images. See image
manipulation

GRIFFEATH, D., 79, 273-275
growth patterns, Game of Life

collisions between Game of Life
clusters, 15-21

small Game of Life patterns, 7-12
sparse Game of Life arrays, 12-14,

14-15
standard collision sequences. See

standard collision sequences
3-4 Life, 73
See also constructability; replicators

growth phenomena in cellular
automata

aggregation models, 160, 161-164,
164-167

Biased Voter Automata rules, 171,
175-176

classification framework, 167-168
constrained growth, 168
constraint-expansion transition

models, 170-172
deterministic cellular automata,

168-169
equivocal growth, 168
exclusion Obstacle Course models,

163
expansive growth, 168
Game of Life, 169-170
Internal Diffusion Limited

Aggregation models, 164-167
Larger-than-Life rules, 170-172
monotone cellular automata, 168
moving Obstacle Course models,

163-164
nucleation models, 160, 172-176
probabilistic cellular automata,

167-168
solidification cellular automata, 169
spatial Prisoner's Dilemma models,

172-176
static Obstacle Course models,

161-163

H
heat particles

logic gates, 216-220, 221-222, 223
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heat particles (cont'd)
logic signals, 215-216, 223
Reversible Aggregation model, 210,

211-213
Hertz oscillator, 59
HlCKERSON, D., 79, 81
homeostatic cubic wave equations,

309-312
homeostatic cubic wave rules, 309-312
HOMSY, G. E., 209
Hue Boil rule, 286
Hue, Saturation, Value (HSV) color

space, 286
HUGHES, J. V., 285
hydrocarbons, 195-197

See also hydrophobic compounds
hydrogen bonds, 191-193, 195-196
hydrophilic compounds

intermolecular interactions, 192
molecular dynamics, 197-200

hydrophobic compounds
intermolecular interactions, 192-193
molecular dynamics, 195-197

i-constructable patterns, 5
identity image transforms, 290
IDLA. See Internal Diffusion Limited

Aggregation models
IGCs. See indefinite growth clusters
image manipulation

Box Blur rule, 286
color mating rule, 290
colors, working with, 286
Diagonal Box Blur rule, 286
error diffusion rule, 289-290
false-color images, 291-292
image transitions, 291
Median Manhattan Mold rule, 287
metrics for targeting pixels, 289
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
pseudo-morphing images, 291
random neighbor copy rule, 289
self-targeting images, 290

software for image manipulation,
292

image manipulation (cont'd)
target transforms, 290-291
targeting images, 288-292

image transitions, 291
incremental synthesis of Game of Life

objects, 59-61
indefinite growth clusters

defined, 14-15
finite-difference classes, 14
growth patterns, 14-15
original indefinite growth clusters,

14
standard collision sequences and,

22-23
induced dipole-induced dipole

interactions, 194
induction coils (defined), 76
inequality in economic models, 262,

267, 274, 278, 280-282
interacting rest particles, 249
interaction fields. See force-field

interactions
interconnected logic gates, 219-220,

243-244, 246-247, 250-251
intermolecular interactions, 188-193,

194-200
Internal Diffusion Limited

Aggregation models, 165-167
Irrat5pattern, 84
Irrat5' pattern

glider production with irrational
frequency, 84-87

in Seed construction, 87-90
irrational asymptotic densities

of golden string, 82-83
overview, 79-80
of Seed construction, 87-90

Ising model

global trade models, 277-278
local trade models, 278-282
Nonlinear Voter Model vs., 276-277

K
kinetic energies, 187-189, 194-195

labor. See economic models; market
vs. nonmarket production

L
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ladders, 172
Larger-than-Life rules, 122-123,

170-172
See also replicators

lattice gas automata
Billiard Ball Model, 214, 231-233
polymer lattice gas automata,

184-188
relativistic cellular automata,

255-256
Reversible Aggregation model,

211-213
semi-classical dynamics, 257
Soft Sphere Model, 235-237

Life without Death rule, 172
lightweight spaceships, 23, 82, 88
limiting densities

Biased Voter Automata, 176
spatial Prisoner's Dilemma models,

173-175
See also asymptotic densities

linear asymptotic shapes. See
asymptotic shapes

Linear Voter Model, 268-269, 271
lipid membranes

amphiphilic polymers, modeling,
197-200

emergent properties, 182
local lattice languages, 117
local trade models

Ising model, 278-282
Nonlinear Voter Model, 272-276

location-specific patterns, 3
locks, 97-99
logic gates

Billiard Ball Model, 231-233
conservative, 214
cross gates, 223
Fredkin gates, 214, 243-244
interconnected gates, 219-220,

243-244, 246-247, 250-251
reusable gates, 217-219, 240-241
Reversible Aggregation model,

216-219, 221-222
simple gates, 216-217
Soft Sphere Model, 240-241, 242,

243-244, 246-247

logic gates (cont'd)
switch gates, 221-222, 223, 242

logic signals
Billiard Ball Model, 231-233
dual-rail signals, 239, 242-243, 256
Reversible Aggregation model,

215-216, 223
reversing signal direction, 250-251
signal crossover, 223, 232-233,

239-240
signal delay loops, 216, 237, 249
Soft Sphere Model, 235-237, 239,

241, 242-243, 247-249, 256
See also universal computation

London forces, 192
LtL replicators. See replicators
lucky rake sequence, 26-29
LWSS, 23, 82, 88

M
macroscopic relativistic invariance,

255-256
Manhattan Distance metric, 286
Majority Voter Model, 268-276, 282
MARGOLUS, N. H., 209, 229

See also CAM8 market vs. nonmarket production
economic models, 261-262, 267, 277
global trade models, 270-271,

277-278, 282-283
Ising model, 276-282
Linear Voter Model, 268-269, 270
local trade models, 272-276,

278-282, 283
Majority Voter Model, 268-269, 271
model parameters, 262-264
Nonlinear Voter Model, 268-276,

282
marketplace. See economic models
mass-conserving models of

computation, 237-238, 255-256
MAYER, B., 181
Median Manhattan Mold rule, 287
medium-term events in sparse Game

of Life arrays
collisions between clusters, 15-21
indefinite growth clusters, 14-15
SCS-constructable objects, 46-48
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medium-weight spaceships, 82, 85, 86,
87

Meinhardt, H., 304
membranes

amphiphilic polymers, modeling,
197-200

emergent properties, 182
Meta Creations, 292
micellar structures, 199-200
mirror streams, 239
mirrors

Billiard Ball Model, 232
mirror streams, 239
Reversible Aggregation model, 216,

222
reversing signal direction, 250-251
Soft Sphere Model, 236-237, 239
See also universal computation

models
Billiard Ball Model, 214, 231-234
constraint-expansion transition

models, 170-172
continuous-valued cellular

automata, 298-302
Diffusion Limited Aggregation

model, 211
exclusion Obstacle Course models,

163
Internal Diffusion Limited

Aggregation models, 164-167
Ising model, 276-282
lattice gas automata, 184-193
molecular. See molecular models
momentum-conserving models,

238-254
moving Obstacle Course models,

163-164
Nonlinear Voter Model, 268-276
nucleation models, 160, 172-176
Obstacle Course models, 161-163,

163-164
phase transition model, 318-319
Prisoner's Dilemma models,

172-176
reaction-diffusion systems, 303-306
relativistic cellular automata,

255-256

models (cont'd)
Reversible Aggregation model,

211-213
Soft Sphere Models, 235-238
Voter Model, 261-264
wave equations, 307-313

Mold, 68-69
molecular models

excluded volumes of molecules, 184,
202

intermolecular interactions, 189-193
intramolecular potentials, 193
molecular dynamics, 194-200
See also molecular self-assembly;

polymer lattice gas automata
molecular self-assembly

amphiphilic polymers, 197-200
constructive dynamical systems,

181-182
dynamical hierarchies, 182-183
examples of, 183
hydrocarbon molecules, 195-197
intermolecular interactions, 188-193
intramolecular potentials, 193
kinetic energies, 188-189, 194-195
micellar structures, 199-200
molecular dynamics, 184-185
polymer lattice gas automata, 183,

184-188, 201-202
potential energies, 188-189, 194-195
water molecules, 194-195

Molofsky, J. R., 268, 270, 272, 274
momentum-conserving models of

computation, 237-238, 255-256
monotone cellular automata, 168
MORAN, G., 317
morphing images, 291
moving Obstacle Course models,

163-164
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
MWSS, 82, 85, 86, 87
myopic agents, 266
mysterious synthesis of Game of Life

objects, 61
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N
Nash equilibria, 265-266
nicely-ordered fleets, 39
NlEMIEC, M. D., 55
NlLSSON, M., 181
nonconstructable patterns, 4

See also constructability
nonlinear image transforms, 291
Nonlinear Voter Model

economic interpretation, 268-269
global trade models, 270-271
implementation using CAM8, 273
Ising model vs., 276-277
Linear Voter Model, 268-269, 270
local trade models, 272-276
Majority Voter Model, 268-269, 271
See also economic models; Ising

model
nonlinear wave equations, 308,

309-311
nonmarket production. See market vs.

nonmarket production
nonstandard collision sequences, 19
NP-completeness, 108-111, 114-115
nucleation models, 160, 172-176
null patterns, 3
numerical analysis vs.

continuous-valued cellular
automata, 297-298

O
object (defined), 76
object synthesis

automated synthesis, 74-75
building computational machinery,

64
collisions between objects, 56-57,

66-67
See also collisions

controlled explosions, 72-73
incremental synthesis, 60
mysterious synthesis, 65
natural objects, 56-57
predecessor objects, 65, 67
rescuable objects, 57, 59
simultaneous synthesis, 57, 59
sparks, 66-67
still lifes, 74-75

object synthesis (cont'd)
symmetrical objects, 57
3-4 Life objects, 73
See also constructability; patterns;

replicators; still lifes
Obstacle Course models, 161-163,

163-164
w-constructable patterns, 4, 5-6
one-dimensional replicators, 140-141,

149-150, 151-152
OOMES, N. A., 261
oriented percolation, 168
original indefinite growth clusters, 14
orphan chunks, 4
oscillator (defined), 77
oscillators

billiard-table oscillators, 59, 61
constructability of, 5
Hertz oscillator, 59
Mold, 68-69
See also repeaters

P
parity of particles in Reversible

Aggregation models, 219-220
particle movement rules, Soft Sphere

Model, 235-237, 240
particles. See Reversible Aggregation

model; Soft Sphere Model
Pascal-generating cellular automata

rules, 125-129, 131-133, 139, 146
patterns

automorphism-defined patterns, 3
collisions between. See collisions
constructability of. See

constructability
defined, 3-4
eight-cell Game of Life patterns, 10
eleven-cell Game of Life patterns, 10
finite-difference classes, 14
five-cell Game of Life patterns, 7-9
four-cell Game of Life patterns, 7
glider guns. See glider guns
gliders. See gliders
growth characteristics of small

patterns, 7-12
i-constructable patterns, 5
IrratB pattern, 84
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patterns (cont'd)
IrratS' pattern, 84-90
location-specific patterns, 3
medium-term growth patterns,

14-15
nonconstructable patterns, 4
null patterns, 3
u;-constructable patterns, 4, 5-6
self-replicating patterns, 6
Stifled Breeder pattern, 81
synthesis. See object synthesis
ten-cell Game of Life patterns, 10
three-cell Game of Life patterns, 7
translation-defined patterns, 3
traveling wave patterns, 304
Turing patterns, 304
Zhabotinsky patterns, 304, 309
See also clusters; growth patterns;

object synthesis; replicators;
specific patterns

percolation, 168
percolation models, 163
persistent inequality in economic

models, 262, 267, 274, 278,
281-282

phase transitions, 170-172, 317-320
photons, 255
pixel manipulation. See image

manipulation
polymer lattice gas automata

amphiphilic polymers, modeling,
182, 192, 197-200

consistency of model with
experimental systems, 193-194

hydrocarbons, modeling, 195-199
implementation, 185-188
intermolecular interactions, 184,

185, 188-193
modeling molecular self-assembly,

183, 184-188, 201-202
molecular dynamics, 184, 185-188
molecular lattice, 188
molecules, representation of,

185-186
update cycle, 188
water, modeling, 194-195

polymers, modeling, 192, 197-200, 202
See also molecular self-assembly;

polymer lattice gas automata
potential energies, 188-189, 194-195
predecessor objects, 64, 66
preference variables, 264
Prisoner's Dilemma models, 172-176
probabilistic cellular automata,

167-168
production strategies, 264-265
projection maps, 138, 146, 148
pseudo-morphing images, 291
pseudo-object (defined), 77
pseudo-objects, 60
pseudo-still life (defined), 77
pseudo-still lifes

boundaries between subsets, 97-101,
106-107, 112-114

complexity of strictness testing, 96,
107, 111, 117

definitions of, 94-96, 106, 107
NP-completeness of strictness

testing, 97-101, 107-111, 112-114
number of subsets, 107-111

puffer train (defined), 77
puffers, 84

Q
QGCs. See quadratic growth clusters
quadratic growth clusters, 14, 22
quadratic wave equations, 308
quadratic wave rules, 308
quantum dynamics of cellular

automata, 257
quiet clusters, 14

R
rakes, 26-29
random neighbor copy rule, 289
range 1 replicators, 142, 149
range 2 LtL replicators, 142
range 3 LtL replicators, 142, 145-146
range 4 LtL replicators, 142
range 5 LtL replicators, 121-125, 139,

140, 143
range 6 LtL replicators, 143
range 7 LtL replicators, 145
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range independence of LtL replicators,
149-154

RASMUSSEN, S., 181
reaction wave equations, 312-313
reaction wave rules, 312-313
reaction-diffusion systems, 303-307
real numbers, 296-297, 302
reflecting logic signals. See mirrors
reflection image transforms, 290, 291
relativistic cellular automata, 255-256
repeaters, 5-6

See also oscillators
replicator-makers, 145
replicators

arrow replicator, 143
axiomatic definitions of replicators,

130-135
bijections for replicators, 131,

157-158
bow tie pasta replicator, 142
dimensions of replicators, 131-133,

140-141,149-150,151-152, 153
distances between replicas, 139
global dynamics, 154-157
Larger-than-Life rule, 120-121
one-dimensional replicators,

140-141, 149-150, 151-152
Pascal-generating cellular automata

rules, 125-129, 131-133, 139, 146
projection maps, 138, 146, 148
range 1 replicators, 142, 149
range 2 LtL replicators, 142
range 3 LtL replicators, 142,

145-146
range 4 LtL replicators, 142
range 5 LtL replicators, 121-125,

139, 140, 143
range 6 LtL replicators, 143
range 7 LtL replicators, 145
range independence of LtL

replicators, 149-154
replicator-maker, 145
sets containing replicator sites, 130,

131, 137-138
stationary distributions, 154-157
tilings for replicators, 128-129, 130,

137

replicators (cont'd)
two-dimensional replicators, 153

rescuable objects, 57, 59
resizing images, 287-288
rest particles, 240, 249, 256
reusable logic gates, 217-219, 240-241
Reversible Aggregation model

circuit example, 223-224
computational capabilities, 210-211,

226-227
Diffusion Limited Aggregation

model, 211
gas particles, 210, 211-212
heat particles, 210, 211-212
implementation, 211-213
logic gates, 216-220, 221-222, 223
logic signals, 215-216, 223
mirrors, 216, 222
parity of particles, 219-220
signal crossover, 223
signal delay loops, 216
See also lattice gas automata; Soft

Sphere Model
reversible systems

Billiard Ball Model, 233
computation in, 213-215
continuous-valued cellular

automata, 297, 301
See also polymer lattice gas

automata; Reversible Aggregation
model; Soft Sphere Model

rotation image transforms, 290, 291
round-off in continuous-valued cellular

automata, 297
r-pentominos, 9, 10, 17-21, 21-23
RUCKER, R., 295
rules

Biased Voter Automata rules, 169,
173-174

Box Blur rule, 286
color mating rule, 290
cubic wave rules, 308
deriving from differential equations,

298-300
Diagonal Box Blur rule, 286
error diffusion rule, 289-290
Exactly 1 solidification rule, 80



336 Index

rules (cont'd)
Exactly 2 solidification rule, 80
Game of Life rule, 2
homeostatic cubic wave rules,

309-312
Hue Boil rule, 289
Larger-than-Life rules, 120-121,

170-172
Life without Death rule, 172
Median Manhattan Mold rule, 287
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
particle movement rules, Soft

Sphere Model, 235-237, 240
Pascal-generating cellular automata

rules, 125-129, 131-133, 139, 146
quadratic wave rules, 308
random neighbor copy rule, 289
reaction wave rules, 312-313
reaction-diffusion rules, 303-307
3-4 Life rule, 73
two-dimensional wave rules, 307

S
scarcity classes, 44-46
SCS-constructability

SCS-constructable clusters, 46-47
SCS-constructable collisions, 25-44,

44-46
SCS-constructable fleets, 25, 26-32,

45
in sparse Game of Life arrays, 47-48

SCSs. See standard collision sequences
Seed pattern, 87-90
seeds. See nucleation models
self-assembly. See molecular

self-assembly
self-organization

cooperation in spatial Prisoner's
Dilemma models, 173

Game of Life patterns. See patterns
molecular. See molecular

self-assembly
objects. See object synthesis

self-replicating patterns, 6
See also replicators

self-targeting images, 291

semi-classical dynamics of cellular
automata, 257

sequences. See collision sequences
sets containing replicator sites, 130,

131, 137-138
shifted replicator tiles, 129, 130
short-term events in sparse Game of

Life arrays, 12-14
signal crossover

Billiard Ball Model, 232-233
Reversible Aggregation model, 223
Soft Sphere Model, 239-240

signal delay loops
Reversible Aggregation model, 216
Soft Sphere Model, 237, 249

signal mirrors. See mirrors
signal wires, 215-216, 223

See also logic signals
signals. See logic signals
simultaneous synthesis of Game of

Life objects, 59
single-precision floating-point

numbers, 296-297, 302
Soft Sphere Model

BBMCA implementation, 244-247
dual-rail signals, 239, 242-243, 256
energy-conserving models, 257
interacting rest particles, 249
logic gates, 240-241, 242, 243-244,

246-247
logic signals, 235-237, 239, 241,

242-243, 247-249, 256
mass- and momentum-conserving

models, 237-238, 255-256
mirror streams, 239
mirrors, 236-237, 239
particle movement rules, 235-237,

240
relativistic cellular automata,

255-256
rest particles, 240, 249, 256
reversing signal direction, 250-251
semi-classical dynamics, 257
signal crossover, 239-240
signal delay loops, 237, 249
spectator particles, 250, 253
three-dimensional models, 237-238
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Soft Sphere Model (cont'd)
triangular lattices, 237, 253-254
See also lattice gas automata;

Reversible Aggregation model
solidification cellular automata

asymptotic densities, 80
growth properties, 169

solidification rules, 80
solids, phase transition model,

319-320
spaced-out glider fleets, 26-32
spaceship (defined), 77
spaceship gun (defined), 77
spaceships

constructability of, 5-6
growth characteristics of, 9
light weight, 82, 88
medium weight, 82, 85, 86, 87
production by standard collision

sequences, 23
See also gliders

sparks, 66-67
sparse Game of Life arrays

initial arrays, 6-7
medium-term events, 12, 14-21,

46-48
SCS-constructable structures, 47-48
short-term events, 12-14
small Game of Life patterns, 7-12
standard collision sequences, 21-23,

46-48
well-spaced glider collisions, 25-26,

38-44, 45-46
See also Game of Life

spatial Prisoner's Dilemma models,
174-178

spatially efficient computation
Reversible Aggregation model,

217-219
Soft Sphere Model, 240-241

spectator particles, 250, 253
stable patterns. See still lifes
standard collision sequences

cumulative occurrence densities, 19,
20, 47-48

defined,17-19
impacts on growth rates, 19-20

standard collision sequences (cont'd)
order 1 standard collision sequences,

21-22
order 2 standard collision sequences,

22-23
SCS-constructability, 47-48
SCS-constructable clusters, 46-47
SCS-constructable collisions, 25-44,

44-46
SCS-constructable fleets, 25

static Obstacle Course models,
161-163

stationary distributions of replicators,
154-157

Stefan problem, 165
Stifled Breeder pattern, 81
stifled breeders, 87
stifled glider guns, 82, 88
still life (defined), 77
still lifes

boundaries between subsets, 97-101,
106-107, 112-114

complexity of strictness testing, 96,
107, 111, 117

constructability of, 5
equivalence to CNF Satisfiability

problem, 110-111, 114-115
equivalence to switch graphs,

97-101, 108-110, 112-114
equivalence to wire diagrams,

108-110
local lattice languages, 117
NP-completenss of strictness

testing, 107, 115, 117
pseudo still lifes (defined), 94-96,

106, 107
strict still lifes (defined), 94
strictness testing, 96, 111, 115, 117
synthesis of, 60, 74-75

strategies in economic models,
265-266

stretch-resistant fleets, 39, 41, 42-43
strict still lifes, 94, 117
strictness testing for still lifes

complexity of, 96, 107, 111, 117
NP-completeness of, 107, 115, 117
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strictness testing for still lifes (cont'd)
using CNF Satisfiability problem,

110-111, 114-115
using switch graphs, 101-105,

109-111, 112-115
using wire diagrams, 108-109

subfleets of spaceships, 17
Switch Disconnected problem, 109-111
switch engines

collisions with other objects, 19-20
growth characteristics of, 9-10
medium-term growth patterns,

14-15
production by standard collision

sequences, 23
switch gates, 221-222, 242
switch graphs

bridges in, 102-102, 104
cycles in, 102-103
equivalence to still lifes, 97-101,

109, 112-114
overview, 101
strictness testing for still lifes,

101-105, 110-111, 114-115
Switch-Cycle problem, 102-105
Switch-Simple Loop problem, 111,

114-115
symmetrical objects, 57
synthesis of Game of Life objects

automated synthesis, 74-75
building computational machinery,

64
collisions between objects, 56-57,

66-67
See also collisions

controlled explosions, 68-69, 72
incremental synthesis, 59-61
mysterious synthesis, 61
natural objects, 56-57
predecessor objects, 64, 66
rescuable objects, 57, 59
simultaneous synthesis, 57, 59
sparks, 66-67
still lifes, 74-75
symmetrical objects, 57
3-4 Life objects, 73

synthesis of Game of Life objects
(cont'd)

See also constructability;
replicators; still lifes

targeted images
color mating rule, 290
error diffusion rule, 289-290
false-color images, 291-292
image manipulation, 286-287
image transitions, 291
metrics for targeting pixels, 289
pseudo-morphing images, 291
random neighbor copy rule, 289
self-targeting images, 291

technology variables, 263
temperature, phase transition model,

320
ten-cell Game of Life patterns, 10
3-4 Life rule, 73
three-cell Game of Life patterns, 7
threshold-range regime, 170
tilings for replicators, 128-129, 130,

137
trade. See economic models
trade structure variables, 263
transforming images. See image

manipulation
transition rules

Biased Voter Automata rules, 169,
173-174

Box Blur rule, 286
color mating rule, 290
cubic wave rules, 308
deriving from differential equations,

298-300
Diagonal Box Blur rule, 286
error diffusion rule, 289-290
Exactly 1 solidification rule, 80
Exactly 2 solidification rule, 80
Game of Life rule, 2
homeostatic cubic wave rules,

309-312
Hue Boil rule, 285
Larger-than-Life rules, 120-121,

170-172
Life without Death rule, 172

T
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transition rules (cont'd)
Median Manhattan Mold rule, 287
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
particle movement rules, Soft

Sphere Model, 235-237, 240
Pascal-generating cellular automata

rules, 125-129, 131-133, 139, 146
quadratic wave rules, 308
random neighbor copy rule, 289
reaction wave rules, 312-313
reaction-diffusion rules, 303-307
3-4 Life rule, 73
two-dimensional wave rules, 307

translation-defined patterns, 4
traveling wave patterns, 304
triangular lattices, 237, 253-254
tripoles, tying, 69
Turing patterns, 304
24-bit color space, 286
two-dimensional replicators, 153
two-dimensional wave rules, 307

U
universal computation in cellular

automata
energy-conserving models, 257
logic gates, 216-220, 221-222, 223,

240-241, 242, 243-244, 246-247
logic signals, 215-216, 223, 235-237,

239, 241, 242-243, 247-249, 256
mass- and momentum-conserving

models, 237-238, 255-256
mirrors, 216, 222, 236-237, 239
models vs. physical systems, 226,

255-256, 257
parity, 219-220
in reversible systems, 213-215
reversing signal direction, 250-251
signal crossover, 223, 239-240
signal delay loops, 216, 237, 249
spatially efficient computation,

217-219, 240-241
See also Reversible Aggregation

model
universal logic gates. See logic gates

V
video processing, 292

See also image manipulation
visual effects

Box Blur rule, 286
color mating rule, 290
colors, working with, 286
Diagonal Box Blur rule, 286
error diffusion rule, 289-290
false-color images, 291-292
Hue Boil rule, 287
image transitions, 291
Median Manhattan Mold rule, 287
metrics for targeting pixels, 289
multiresolution image rules, 287-288
Mutant Crystal Mold rule, 287
Mutant Crystal Smoke rule, 287
pseudo-morphing images, 290
random neighbor copy rule, 289
self-targeting images, 291
software for image manipulation,

292
target transforms, 290-291
targeting images, 288-292

Voter Model, 261-262
See also Nonlinear Voter Model

W
water molecules

intermolecular interactions, 191-192
molecular dynamics, 194-200

wave equations, 300-301 307-313
wave schemes

cubic wave rules, 308
deriving cellular automata rules

from differential equations,
300-301

homeostatic cubic wave rules,
309-312

quadratic wave rules, 307-308
reaction wave rules, 312-313
two-dimensional wave rules, 307
See also continuous-valued cellular

automata
Web site, Game of Life programs, 90
well-spaced fleets

adding gliders to, 33-35
overview, 24-26



well-spaced fleets (cont'd)

well-spaced fleets (cont'd)
production of, 32-38, 38-43, 43-44

well-spaced glider collisions, 25-26,
38-44, 45-46

WHITTEN, D., 181
wire diagrams, 108-109
wires, 215-216, 222-223

See also logic signals
wormlike structures, 199-200
wrapping variable values, 302

Z
0-clusters, 4
Zhabotinsky patterns, 304, 309
Zimmer, M., 293




