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Preface

Optimization problems commonly found in engineering are divided into three
categories. These categories are briefly mentioned next, in order of increasing
complexity.

The simplest type of optimization problem asks to find the values of independent
variables, which minimizes or maximizes a function of those variables. This first
category of problems consists of usual extreme problems. They are commonly
solved by using methods of differential and integral calculus.

A more complicated category of problems requires to finding a function that
makes an expression that contains that function (and possibly derivatives of that
function) to reach an extreme. Essential for this category of problems is the notion
of functional, which is defined as a function that depends on the whole variation of
one or more functions (and, possibly, directly depends on a number of independent
variables). The domain of a functional is a set of admissible functions that belong to
a space or a class of functions (and not to a domain in the space of coordinates). The
problems in the second category are solved by using methods of variational cal-
culus, originally developed by Euler and Lagrange.

For defining the third category of optimization problems, one should notice that
there are applications in engineering where functions of independent variables are
involved, some of these functions satisfying, in addition, a number of differential
equations. The functions appearing in differential equations under the form of time
derivatives are called state variables, while the “free” functions (i.e. those functions
that can be modified over time, according to engineer’s will) are called control
functions (or, in short, controls). The fundamental issue in this case of optimization
is to determine the control functions which extremize some defined functional
depending on the state variables, under some additional boundary conditions.
Problems in the third category are optimal control problems. They are solved by
using specific methods, which are presented in this book:
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• the principle of maximum (or principle of Pontryagin);
• the gradient method;
• the dynamic programming (or Bellman method).

The optimal control problems first appeared in engineering in connection with
attempts to improve the operation of aircrafts, the first large-scale applications
referring to the optimization of aircraft and missiles trajectories. From this point of
view one may say that the optimal control applications in mechanical engineering
have a relatively old tradition, and an already rich literature.

The purpose of this book is the short presentation of the first two categories of
optimization problems and the exposure in more detail of the methods used to
solving optimal control problems. Applications considered here mainly refer to
non-mechanical problems (defined here as problems where the second law of
dynamics is not of special importance) with emphasize on situations of interest in
thermal engineering. This area of the optimal control applications is less covered by
books and this aspect makes the present book, to our knowledge, a first event in the
international literature.

The book is organized in three parts, as follows. The first part consists of two
chapters and includes a brief presentation of theoretical results which should be
known in the next chapters. Thus, Chap. 2 briefly covers the methods of solving
usual unconstrained and constrained optimization problems while Chap. 3 refers to
the variational calculus, showing the main concepts, the traditional notations and
the methods used to solve optimization problems involving functionals.

The second part consists of four chapters and presents a summary of the optimal
control theory. Chapter 4 shows the classifications of optimal control methods and
some criteria for choosing between these methods, analyzed in function of specific
applications. Chapters 5–7 separately expose three of the most commonly used
optimal control methods: the maximum principle (Chap. 5), the gradient method
(Chap. 6) and the Bellman method (Chap. 7).

The third part consists of 17 chapters and describes several applications of
optimal control theory in solving various thermal engineering problems. These
applications are grouped in four sections: heat transfer and thermal energy storage,
solar thermal engineering, heat engines and lubrication.

The manner of presentation used throughout the book is adapted for ease of
access of readers with engineering education. Thus, most mathematical demon-
strations of theoretical results with higher degree of difficulty are omitted, and
reference to relevant literature is provided.

Bucharest, Romania Viorel Badescu
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Chapter 1
Introduction

1.1 Control of Systems

Control means changing the time behaviour of a system in a desired manner.
Control can be achieved using devices, or other means of different nature (me-
chanical, electrical, electronics, etc.), in concordance with the specificity of the
controlled system. All these devices have in common the fact that their action on
the system must take place without direct human supervision or intervention.
Control theory is a relatively new field, in development, which is still far from being
reached its definitive form. However, some general concepts apply to most cases.
Some of these notions are presented below (Lapidus and Luus 1967).

In general, a control problem should be solved by taking into account the fol-
lowing four requirements imposed by practical considerations, at least.

1. Measurements. One must specify which of the dynamic variables of the system
can be measured, the measurement accuracy and the measurements rate.

2. Description of system dynamics. Quantities should be defined, helping to
describe the time behavior of the system states, as well as the future effect of
stimuli applied to the system at the present time.

3. The choice of performance criteria. Criteria (or indicators) of performance are
quantities used to describe the desired time behavior of the system and the
condition in which the system provides satisfactorily response.

4. Ensuring a stable operation. Notions and quantities should be defined allowing
to determine whether the system operates or not in a stable way. A stable
operation involves a predictible reaction of the system, regardless of the applied
control.

A few comments on thermal engineering applications would better outline the
above issues. For example, the problem of measurements (1) involves proper
determination of fluids temperatures and mass flow rates. For physical and eco-
nomic reasons only a few of them can usually be measured.
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System dynamics (2) depends significantly on the problem. In thermal engi-
neering, heat transfer is always present, being accompanied in some cases by mass
transfer. Both processes should be described in a clear and specific way, using, for
example, ordinary differential equations. These equations are not always obtained
from physics laws and basic principles; sometimes they are derived empirically.
However, it is imperative that, regardless of how the equations have been obtained,
a similarity should exist between their solutions and the behavior of the system, at
least in terms of the quantities that needs to be controlled.

The performance criteria (3) that can be adopted in practice are diverse. For
example, for heat engines control one usually tries to maximize the thermal and/or
exergy efficiencies. In other situations the aim is to maximize the output power (in
case of direct heat engines) or minimizing the power consumption (in case of
inverse heat engines, operating on reverse cycles). In aerospace applications the aim
is to maximize the ratio between the output power and the weight (or mass) of the
engine. An engine weight as reduced as possible is preferable in these cases. In
more complex situations economical criteria may arise, such as the cost of fuel and
the cost of materials embedded in the equipment. There are applications where
several performance criteria provide contradictory information. Then, a hierarchy
among those criteria and a way of weighting them should be established, in order to
make a compromise possible. In all situations, a clear strategy has to be finally
chosen, allowing an unequivocal definition of the desired mode of operation. In
complex applications, this is a particularly difficult task, which involves collabo-
ration between engineers, economists and policy makers. To decrease the difficulty,
the actual achievement of the desired performance is not compulsory, but only the
designation of targets towards which to strive, using proper control.

Stability of operation (4) has at least two implications. First, there are situations
where there are several possible modes of stationary operation. In this case, stability
means maintaining the required operating regime. If the system can be maintained
in this state whatever the applied control, one says that it is stable. If, for some
control inputs, the system switches to another steady state, one says that it is an
unstable system, even if that last operating state is stable. Thus, the notion of
“stability domain”, becomes important; it refers to those values of the control
parameters which make the system to be stable. Secondly, the stability can be seen
from a purely physical point of view. The control requirements to be imposed
should not be exaggerated, exceeding the limits of the present-day technology.

The main problem in control theory is to determine how to use the information
available to changing in the right direction the free variables of the system. In other
words, the problem is to calculate the optimal control parameters, using data pro-
vided by measurements.

In the simplest control systems, this task is accomplished by making the control
signal equal to the error signal (i.e. the difference between the desired and actual
output parameter). This is the so-called feedback control, in its simplest form. More
generally, when the control is determined by taking into account the actual output
signal from the system, the control system is called feedback control. This means
that the information received via the output parameters of the system is introduced
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again into the system via the control signal. Feedback control is especially attractive
because the parameters that characterize the real systems are hardly known exactly,
and are characterized, in addition, by fluctuations. In more complicated feedback
control systems, the error signal is processed by mathematical operations (differ-
entiation, integration) before being converted into the control signal. In very large
control systems based on the use of computers, measurement data can be processed
by more complicated operations.

Finally, it is important to recall briefly about the issue of identification. This
concerns the determination of the explicit form of the equations that describe
physical processes. In this book, these equations are usually obtained from basic
principles (e.g. first and second laws of thermodynamics, equation of mass conti-
nuity). In many practical problems, however, identify the laws of evolution of the
system may be as important, if not more important, than the control itself of the
evolution.

1.2 Optimization Classes

Optimization problems commonly found in engineering are divided into three
categories. These categories are briefly mentioned, in order of increasing
complexity.

The simplest type of optimization problem consists in finding the values of the
independent variables which minimize or maximize a function of those variables.
For example, find the value of the independent variable t for which:

f tð Þ ¼ max or minf g ð1:2:1Þ

Solving this problem means finding the stationary values of functions with one
or more variables, and in particular, the extremes of these functions (i.e. their
maxima and/or minima).

A more complicated category of problems requires to finding a function that
makes an expression that contains that function (and possibly derivatives of that
function) to reach an extreme. Essential for this category of problems is the notion
of functional, which is defined as a function that depends on the whole variation (in
other words, it depends on the chart, or the map) of one or more functions (and,
possibly, it depends directly on a number of independent variables). The definition
domain of a functional is a set of admissible functions that belong to a space or a
class of functions (in other words, it is not a domain in the space of coordinates).
For example, find the value of yðtÞ for which:

J �
ZtE

tA

L t; yðtÞ; y0ðtÞ½ �dt ¼ max or minf g ð1:2:2Þ
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with the conditions:

y tAð Þ ¼ A y tEð Þ ¼ E ð1:2:3Þ

where A and E are given numbers. In Eq. (1.2.3) J is a functional. The sign � has
the meaning of “equal by definition”.

For defining the third category of optimization problems, one should notice that
there are applications in engineering involving functions of independent variables,
some of these functions satisfying, in addition, a number of differential equations.
In the following, xi tð Þ denotes the functions appearing in differential equations
under the form of time derivatives. They will be called state variables. Also, ul tð Þ
denote the “free” functions (i.e. those functions that can be modified over time,
according to engineer’s will). They will be called control functions (or, in short,
controls). The fundamental issue in this case of optimization is to determine the
control functions ul tð Þ which extremize some defined functional (denoted here P):

P �
ZtE

tA

Lðt; xjðtÞ; ulðtÞÞdt ¼ fmax or ming ð1:2:4Þ

with constraints:

_xj ¼ gj t; xj tð Þ; ul tð Þ
� �

j ¼ 1; . . .;m; l ¼ 1; . . .; kð Þ ð1:2:5Þ

and boundary conditions:

xj tAð Þ ¼ Aj; xj tEð Þ ¼ Ej ðj ¼ 1; 2; . . .;mÞ ð1:2:6Þ

Here _xðtÞ denotes the temporal derivative dx=dt and Aj and Ej are given numbers.
The first category of problems consists of usual extreme problems. They are

solved by using methods of differential and integral calculus.
The problems in the second category are solved by using methods of variational

calculus, originally developed by Euler and Lagrange.
Problems in the third category are optimal control problems. They are solved by

using specific methods, of which in this book will be presented:

• the principle of maximum (also called the principle of Pontryagin)
• the gradient method
• the dynamic programming (or Bellman method)

Note that the optimal control problems first appeared in engineering in con-
nection with attempts to improve the operation of aircrafts; the first large-scale
applications refer to the optimization of the trajectories of aircrafts and missiles.
From this point of view one may say that the applications of optimal control in
mechanical engineering have a relatively old tradition, with an already rich
literature.
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This book contains a short presentation of the first two categories of optimization
problems and a more detailed exposure of the methods used to solving optimal
control problems. Applications considered here mainly refer to non-mechanical
problems (defined here as problems where the second law of dynamics is not of
special importance) with emphasize on situations of interest in thermal engineering.
This area of optimal control applications is less covered by books and this aspect
makes the present work, to our knowledge, one of the first publications in the
literature.

The book is organized in three parts, of which the first two parts have a tutorial
character, as follows.

Part I consists of two chapters and includes a brief presentation of theoretical
results which should be known when reading the next chapters. Thus, Chap. 2
briefly covers the methods of solving usual unconstrained and constrained opti-
mization problems while Chap. 3 refers to the variational calculus, showing the
main concepts, the traditional notations and the methods used to solve optimization
problems involving functionals.

Part II consists of four chapters and presents a summary of the optimal control
theory. Chapter 4 shows the classifications of optimal control methods and some
criteria for choosing between these methods, analyzed in function of specific
applications. Chapters 5, 6 and 7 separately expose three of the most commonly
used optimal control methods: the maximum principle (Chap. 5), the gradient
method (Chap. 6) and the Bellman method (Chap. 7).

Parts III to VI consist of sixteen chapters and describe several applications of
optimal control theory in solving various thermal engineering problems. These
applications are as follows:

Part III. Heat transfer and thermal energy storage,
Part IV. Solar thermal engineering,
Part V. Heat engines and
Part VI. Lubrication.

Thus, Part III is devoted to specific problems of heat exchange and storage of
thermal energy. Many heating or cooling industrial processes are subjected to
restrictions. The main requirement which occurs in practice is the need for the
processes to be ended in a given time interval. In other cases, though, the intensity
of the heat transfer is required to be constant. For a given amount of energy
consumed for heating and cooling, different processes generate different amounts of
entropy. Although minimizing the entropy generation is less important from the
point of view of the small energy consumer, it can be a useful tool for the analysis
of the performance of processes when large consumers or producers are concerned,
either they are using cogeneration technologies (i.e. simultaneous production of
mechanical work and heat), or they are using heat flows at “waste” low temperature
(produced during technological processes). Therefore, the method of minimizing
the entropy production has become in the last fourty years a design criteria often

1.2 Optimization Classes 5

http://dx.doi.org/10.1007/978-3-319-52968-4_2
http://dx.doi.org/10.1007/978-3-319-52968-4_3
http://dx.doi.org/10.1007/978-3-319-52968-4_4
http://dx.doi.org/10.1007/978-3-319-52968-4_5
http://dx.doi.org/10.1007/978-3-319-52968-4_6
http://dx.doi.org/10.1007/978-3-319-52968-4_7
http://dx.doi.org/10.1007/978-3-319-52968-4_5
http://dx.doi.org/10.1007/978-3-319-52968-4_6
http://dx.doi.org/10.1007/978-3-319-52968-4_7


used in engineering (Bejan 1988). In close connection with this method is the
exergetic method (Gaggioli 1980; Moran 1982). In the same context it can be
mentioned the analysis of the effects due to the finite time duration of the processes,
or to the small size of the systems, covered by the so-called finite time thermo-
dynamics [which can be cataloged as an interdisciplinary theory, a hybrid of
thermodynamics, fluid mechanics and heat and mass transfer (Bejan 1982, 1988;
Andresen et al. 1984)]. The focus of Part III is on the characteristics of various heat
transfer mechanisms (conduction, convection, radiation) (Chap. 8), operation
regimes of heat exchangers (Chap. 9), optimal exploitation of heat storage units
(Chap. 10), optimal heating and cooling processes (Chap. 11), optimization of
thermal insulation (Chap. 12) and optimal design of pin fins (Chap. 13).

Part IV refers to the optimization of solar thermal collectors design and opera-
tion. Using solar energy is becoming more common, because of the perspectives
concerning the depletion of conventional energy sources and because it is a clean
source of energy. Although the number of published papers on the methods of
converting solar energy into thermal energy (briefly called photothermal conver-
sion) is very high, relatively few approaches are using the mathematical methods of
calculus of variations and optimal control. In Part IV a few such examples will be
presented. They mainly refer to the design and operation of flat-plate solar col-
lectors. For a good introduction to the theory of operation of solar collectors
without concentration, the classic work of Duffie and Beckman (1974) is recom-
mended. Methods of optimizing the structure of solar energy collection systems are
presented in Chap. 14. The optimization of the geometry of solar collectors is
treated in Chap. 15 while the time-dependent optimal operation of solar heaters is
described in Chap. 16. Chapter 17 deals with the optimization of fluid flow while
optimal controllers are theorized in Chap. 18.

Part V presents several applications of optimal control in the field of heat
engines. Traditional thermodynamics (which only admits processes taking place
infinitely slowly) allows setting upper limits for the performance of thermal engine.
However, these limits are too high compared to the performance observed during
the operation of real systems, working at non-zero speed. By including terms that
take into account the time variation of the speed, one can set more realistic upper
limit for engine performance. The presence of such terms allows, in addition,
finding the trajectories of the processes involved. Part V addresses the operation of
heat engines by taking into consideration some issues that are neglected when using
the methods of equilibrium thermodynamics. The models include various sources of
mechanical work dissipation. Moreover, the solutions obtained are always
time-dependent, in contrast with the traditional approach, which leads to stationary
solutions. Endoreversibile engines, Diesel engines and cam engines are treated in
Chaps. 19, 20 and 21, respectively. A method of optimizing a heat engine driven by
the photochemical conversion of solar energy is presented in Chap. 22.

Part VI consists of Chap. 23 which shows how optimal control methods may be
used to solve lubrication problems.

6 1 Introduction
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The manner of presentation used throughout the book is adapted for ease of
access of readers with engineering education. Thus, most demonstrations of theo-
retical results with higher degree of difficulty are omitted, and reference to relevant
literature is provided.
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Part I
Introductory Elements

Part I consists of two chapters and includes a brief presentation of the theoretical
results which should be known in the next chapters. Thus, Chap. 2 briefly covers
the methods of solving usual unconstrained and constrained optimization problems,
while Chap. 3 refers to the variational calculus, showing the main concepts, the
traditional notations and the methods used to solve optimization problems involving
functionals.
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Chapter 2
Functions Optimization

Natural and exact sciences are based on functional relationships between different
variables. If these functional relationships meet certain criteria, they can be studied
by using procedures developed and systematized under the framework of ordinary
differential and integral calculus. In essence, these procedures allow emphasizing
properties common to many types of functions such as continuity, monotony or
differentiability.

This chapter reminds a number of concepts and methods of differential calculus
which are important by themselves, being, however, applicable both in variational
calculus and in optimal control theory (Forray 1975). Only the case of functions of
real variables is considered here.

2.1 Weierstrass Theorem

A theoretical result often used in practice is the Weierstrass theorem. This theorem
states that if a function f xð Þ of a single real variable is definite and continuous in
every point on a closed finite interval a� x� b, then, on that interval f xð Þ reaches
its absolute maximum and absolute minimum values.

If an absolute extreme value is reached in an internal point of the interval, it is
also a relative (or local) extreme value.

If a function is continuous on the closed interval a; b½ � and differentiable on the
open interval a; bð Þ, except for a finite number of points (which may be zero), a
simple method for determining the absolute extremes is as follows. The point where
the absolute extreme is reached can be one of the following:

1. A point where f 0ðxÞ ¼ 0. A point where the first derivative is canceled is called
stationary point or critical point. The values of the function f ðxÞ in such points
are called stationary values.

2. A point at one end of the interval.
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3. A point where the function f ðxÞ is not differentiable.
If a function has a continuous first derivative, the absolute minimum and

maximum are found by comparing the points that satisfy the conditions 1–3. As a
particular case, if the first derivative of the function f ðxÞ does not cancel on the
open interval a; bð Þ, then the extreme values are reached at the ends of the
interval.

2.2 Conditions of Extreme

2.2.1 Real Functions of One Variable

If y ¼ f ðxÞ is a function of real variable with a continuous first derivative f 0ðxÞ on
a; bð Þ, then a necessary condition for the existence of a relative extreme in a point
x0; a\x0\b is f 0 x0ð Þ ¼ 0. This is not, however, a sufficient condition for an
extreme in x0.

A sufficient condition for the function f ðxÞ to have a relative extreme in point x0
(i.e. to have maximum or minimum values in the neighboring of x0) is that, apart
from f 0 x0ð Þ ¼ 0, the second derivative of the function, f 00ðxÞ, does not cancel in x0.
Thus, if f 00 x0ð Þ\0, the function has a relative maximum in x0 and if f 00 x0ð Þ[ 0 the
function has a relative minimum.

If f 00 x0ð Þ ¼ 0, in deciding whether there is a relative extreme in x0, one has to
study the sign of the successive derivatives (i.e. derivatives of order three, four, etc.)
in x0, so:

1. if the first nonzero derivative is of odd order, then the function does not have an
extreme in x0.

2. if the first nonzero derivative is of even order, then the function has in x0 a
relative extreme, and this extreme is:

• a maximum, if the derivative sign is negative, or
• a minimum, if the derivative is positive.

Example
Find the absolute maximum and minimum of the function f ðxÞ ¼ x4 � x5 for
�2� x� 2.

Solution

f 0ðxÞ ¼ 4x3 � 5x4

To find the stationary values, f 0ðxÞ ¼ 0; therefore x3ð4� 5xÞ ¼ 0. Stationary
values are x ¼ 0 (triple roots) and x ¼ 4=5.

f 00ðxÞ ¼ 12x2 � 20x3. Therefore, f 00ð0Þ ¼ 0 and f 00ð4=5Þ\0
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For x ¼ 4=5, the function has a local maximum, which is f ð4=5Þ ¼ 44=55. For
x ¼ 0, since f 00ð0Þ ¼ 0, higher order derivatives should be evaluated:

f ð3ÞðxÞ ¼ 24x� 60x2; f ð3Þð0Þ ¼ 0

f ð4ÞðxÞ ¼ 24� 120x; f ð4Þð0Þ ¼ 24

Since the first non-zero derivative is of even order, and it is positive, the function
has a relative minimum in x ¼ 0, namely f ð0Þ ¼ 0.

Are the maximum f ð4=5Þ and the minimum f ð0Þ absolute or relative? The values
of f ðxÞ at the extremities of the interval are compared. Then, f ð2Þ ¼ �16 and
f ð�2Þ ¼ 48. Therefore, in x ¼ �2 the function has an absolute maximum and in
x ¼ 2 the function has an absolute minimum.

2.2.2 Functions of Several Variables

Finding the extreme values of functions of several variables is more complicated.
The Weierstrass theorem can be applied in this situation, too; an extended version
of this theorem says that a continuous function in a closed domain D of the
variables reaches a maximum value and a minimum value within the domain or on
the boundary of the domain.

Consider the case of a differentiable function f x1; x2; . . .; xnð Þ in a domain D.
Then, the necessary condition for an extreme in a point P within the domain is:

@f
@x1

¼ @f
@x2

¼ � � � ¼ @f
@xn

¼ 0 ð2:2:1Þ

in P. Consequently, the differential of the function f in point P is canceled:
df �Pn

i¼1 fxidxi ¼ 0. Here the common notation fxi � @f =@xi has been used.
Sufficiency conditions for the existence of the extreme are more complicated.

They are treated in the following.

2.2.2.1 Functions of Two Variables

First, the case of a function of two variables will be considered. Such a function has
a maximum in a point P if:

fx ¼ fy ¼ 0 ; fxx\0 and fxxfyy � f 2xy [ 0 ð2:2:2Þ

The function has a minimum if:

2.2 Conditions of Extreme 13



fx ¼ fy ¼ 0 ; fxx [ 0 and fxxfyy � f 2xy [ 0 ð2:2:3Þ

If fxxfyy � f 2xy\0, the function does not have a maximum or a minimum. If

fxxfyy � f 2xy ¼ 0, another method has to be used to find the extreme (if any).
The previous conditions have a simple geometric interpretation. The necessary

conditions for a stationary value (fx ¼ fy ¼ 0 in point (x0; y0)) assume that the tangent
plane to the surface z ¼ f x; yð Þ in that point is horizontal (i.e. parallel to the plane
Oxy). If the point is an extreme point (either maximum or minimum), then in its
proximity the tangent plane does not intersect the surface. In case of a saddle point (in
which, although the first derivative is canceled, there is no minimum or maximum)
the plane cuts the surface after a curve which has several branches in that point.

Example
Find the size of a paralellepipedic open box of volume 4 dm3, whose surface area is
minimum.

Solution
Denote by x; y; z the length, width and height of the box, respectively, all of them
being positive. The surface area is:

A ¼ xyþ 2xzþ 2yz
The volume is xyz ¼ 4 so that z ¼ 4=ðxyÞ. Therefore:

A ¼ xyþ 8
y
þ 8

x

To obtain the stationary values:

Ax ¼ y� 8
x2

¼ 0; Ay ¼ x� 8
y2

¼ 0

One finds x ¼ y ¼ 2 and A ¼ 12. Then, z ¼ 1.
The derivatives of second order in the point ð2; 2Þ are:

Axx ¼ 16
x3

¼ 2; Ayy ¼ 16
y3

¼ 2; Axy ¼ 1

so that AxxAyy � A2
xy ¼ 4� 1[ 0. Since Axx [ 0, the function has a relative min-

imum in the point ð2; 2Þ. It can be shown that it is an absolute minimum.

2.2.2.2 Functions with Arbitrary Finite Number of Variables

The sufficient condition for the extreme of a function depending on many variables
can be conveniently expressed by using the matrix of the attached quadratic form,
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as shown below. A quadratic form is a homogeneous polynomial of degree two in
many variables. Such a form is represented as follows:

Fðx1; x2; . . .; xnÞ ¼ a11x21 þ a12x1x2 þ � � � þ a1nx1xn þ
a21x2x1 þ a22x22 þ � � � þ a2nx2xn þ

. . .
an1xnx1 þ an2xnx2 þ � � � þ annx2n

ð2:2:4Þ

where the coefficients aij i; j ¼ 1; 2; . . .; nð Þ are arbitrary real numbers. A quadratic
form can always be arranged so that aji ¼ aij. Therefore, the matrix of the quadratic
form is symmetrical and has the form:

A ¼
a11 a12 . . . a1n
a21 a22 . . . a2n

. . .
an1 an2 . . . ann

��������

��������
ð2:2:5Þ

Consequently, each quadratic form is associated with a single symmetric matrix,
and vice versa.

A quadratic form can be written in abbreviated matrix notation as follows:

Fðx1; x2; . . .; xnÞ ¼ x0 � A � x ð2:2:6Þ

where x0 ¼ x1 x2 . . . xnj j is a row matrix, the transposed of the column matrix

x ¼
x1
x2
� � �
xn

��������

��������
ð2:2:7Þ

A real quadratic form is positive definite if, for real values of the variables, it
always has a positive value, except when x1 ¼ x2 ¼ � � � ¼ xn ¼ 0. This allows to
extend the term “positive definite” for the case of symmetric matrices. Thus, a real
symmetric matrix A½ � ¼ aij

� �
is positive definite if the attached quadratic form

F x1; x2; . . .; xnð Þ ¼
Xn
i¼1

Xn
j¼1

aijxixj ð2:2:8Þ

is positive definite. For example, the unit matrix is positive definite since the
attached quadratic form is positive definite.

A quadratic form F is negative definite if �F is positive definite. Similarly, a
matrix A½ � is negative definite if the matrix �A½ � is positive definite. A quadratic
form is indefinite if it is neither positive nor negative definite.

The next theorem due to James Joseph Sylvester is useful for defining the
necessary and sufficient conditions for the extreme of functions of n variables: A
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quadratic form
Pn

i¼1

Pn
j¼1 aijxixj is positive definite if and only if all the principal

minors of the attached matrix are positive:

D1 � a11j j[ 0;D2 � a11 a12
a21 a22

����
����[ 0; � � �Dn �

a11 a12 . . . a1n
. . .

an1 an2 . . . ann

������
������[ 0

ð2:2:9Þ

Consider the function f ðx1; x2; . . .; xnÞ with third-order derivatives continue in
the neighboring of the stationary point P specified by the coordinates
xi ¼ x0i i ¼ 1; 2; . . .; nð Þ, where fx1 ¼ fx2 ¼ � � � ¼ fxn ¼ 0. For brevity one says that
the point P has the coordinate x0. The total second order differential in x0 is:

d2f 0 ¼
Xn
i¼1

Xn
j¼1

f 0xixjdxidxj ð2:2:10Þ

This differential is a quadratic form in the variables dx1; dx2; . . .; dxn and,
therefore, can be: (i) positive definite, (ii) negative definite or (iii) indefinite. Using
Taylor’s theorem one can show that in case (i) the function f has a minimum, in
case (ii) the function f has a maximum and in case (iii) the function f has no
maximum nor minimum, but only if, in addition:

D �
f 0x1x1 f 0x1x2 . . . f 0x1xn

. . .
f 0xnx1 f 0xnx2 . . . f 0xnxn

������
������ 6¼ 0 ð2:2:11Þ

If D ¼ 0, another method has to be used for specifying the type of the extreme.

2.2.2.3 Examples

(1) Show that the quadratic form:

F ¼ x21 þ 2x22 þ 5x23 � 2x1x2 þ 4x1x3 � 4x2x3

is positive definite.

16 2 Functions Optimization



Solution
The determinant of the form is

aij
�� �� ¼ 1 �1 2

�1 2 �2
2 �2 5

������
������

and

D1 ¼ 1j j ¼ 1; D2 ¼ 1 �1
�1 2

����
���� ¼ 1; D3 ¼

1 �1 2
�1 2 �2
2 �2 5

������
������ ¼ 1

Since all the principal minors are positive, according with Sylvester theorem F is
positive definite.

(2) Show that the following quadratic form is not definite:

F ¼ x21 þ 2x22 þ 2x23 � 4x1x2 þ 2x1x3 � 4x2x3

Solution
The determinant of the form is

aij
�� �� ¼ 1 �2 1

�2 2 �2
1 �2 2

������
������

The principal minors are:

D1 ¼ 1j j ¼ 1; D2 ¼ 1 �2
�2 2

����
���� ¼ �2; D3 ¼

1 �2 1
�2 2 �2
1 �2 2

������
������ ¼ 2

According with Sylvester theorem, F is not definite.

(3) Find the relative maximum and minimum of the function

f ðx; y; zÞ ¼ x2 þ y2 þ 3z2 � xyþ 2xzþ yz

Solution

fx ¼ 2x� yþ 2z

fy ¼ 2y� xþ z

fz ¼ 6zþ 2xþ y
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To find the stationary values, one computes:

fx ¼ fy ¼ fz ¼ 0

and the solution is x ¼ y ¼ z ¼ 0.
In order to find if in this point the function has a maximum or a minimum, the

method of the principal minors is used:

fxx ¼ 2[ 0;
fxx fxy
fyx fyy

����
���� ¼ 3[ 0;

fxx fxy fxz
fyz fyy fyz
fzx fzy fzz

������
������ ¼ 4[ 0

Since f ðx; y; zÞ� f ð0; 0; 0Þ ¼ 0 it comes out that ð0; 0; 0Þ is a point of relative
minimum.

2.3 Constrained Optimization

Many practical situations, both in life and in engineering applications, require
solving optimization problems under additional constraints (also called links or
restrictions).

For example, determine the shortest arc of the curve joining two points on the surface
of a sphere. That arc of curve is an implicit function of the spatial coordinates x; y; z. In
addition, the equation of the sphere is a constraint (link) for those coordinates.

Another example, which is considered to be classic, requires to find among all
(plane) closed curves of given length, that curve closing the maximum surface area.
The fixed length of the curve is the additional constraint that must be met by all
plane curves that constitute the solution of the problem.

2.3.1 Functions of Two Variables

For a gradual introduction, consider first the problem of finding the stationary
values of a function of two variables, f x; yð Þ, which are related by the additional
constraint g x; yð Þ ¼ 0. From the geometric point of view, g x; yð Þ ¼ 0 is a curve in
the plane Oxy (Fig. 2.1).

Consider now the equation f x; yð Þ ¼ c, which is a family of curves of the real
parameter c, which, when this parameter varies (taking the values c1; c2; . . .; ck; . . .),
covers part of the plane Oxy.

Of all the curves f x; yð Þ ¼ c that intersect the curve g x; yð Þ ¼ 0, one searches for
that curve whose parameter c takes the smallest or the largest value. In general, the
curves f x; yð Þ ¼ c intersect the curve g x; yð Þ ¼ 0 in two points, in a single point or it
does not intersect it. Since the parameter c increases or decreases monotonously, its
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lowest (or highest) value is to be found when changing from two points of inter-
section, to zero points of intersection (i.e. in the point of tangency). This point will
be denoted a; bð Þ. In the point of tangency, the slopes of the tangents at the curves
g x; yð Þ ¼ 0 and f x; yð Þ ¼ c, respectively, are equal, so that one can write:

fx
gx
¼ fy

gy
ð� �kÞ ð2:3:1Þ

if gxgy 6¼ 0 in a; bð Þ. This yields the following two equations:

fx þ kgx ¼ 0 fy þ kgy ¼ 0 ð2:3:2Þ

Together with the equation g x; yð Þ ¼ 0, they constitute a system of three equa-
tions. Solving this system, one finally find the unknowns a; bð Þ (i.e. the coordinates
of the tangent point) and the parameter k.

This result becomes invalid if the curve g x; yð Þ ¼ 0 has in x ¼ a; y ¼ b a sin-
gular point (i.e. a point where both partial derivatives gx and gy are null).

The above intuitive study constitutes the essential of a classical procedure to
finding the extreme of a function under additional constraints, which is called the
Lagrange multipliers method. In this case, the parameter k is a multiplier. As
already seen, the method does not apply in singular points. The recipe of method
application is:

(i) The following function is built:

F x; y; kð Þ ¼ f x; yð Þþ kg x; yð Þ ð2:3:3Þ

(ii) The following system of three equations is solved for the three unknowns
x; y; kð Þ:

@F
@x

¼ 0
@F
@y

¼ 0
@F
@k

¼ 0 ð2:3:4Þ

It is immediately apparent that this system yields the Eq. (2.3.2) and the con-
straint g x; yð Þ ¼ 0.

Fig. 2.1 Calculation of the
constrained extreme of a
function of two variables
(adapted from Forray 1975)
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Example
Determine the rectangle of given perimeter length L whose surface area is a
maximum.

Solution
Denote by x; y the lengths of the sides of the rectangle ðx[ 0; y[ 0Þ. The surface
area of the rectangle is:

f ðx; yÞ ¼ xy

The constraint is:

gðx; yÞ ¼ 2xþ 2y� L ¼ 0

The function f should be maximized, by taking into account this constraint.
The following system of equations with three unknown is to be solved:

fx þ kgx ¼ 0
fy þ kgy ¼ 0
gðx; yÞ ¼ 0

After some computations, one finds:

yþ 2k ¼ 0; xþ 2k ¼ 0; 2xþ 2y� L ¼ 0

The solution is as follows:

x ¼ a ¼ L=4; y ¼ b ¼ L=4 k ¼ �L=4

For given perimeter length, the rectangle of maximum surface area is a square.

2.3.2 Functions with Arbitrary Finite Number of Variables

Consider the problem of finding the extreme of a function f x1; . . .; xnð Þ of n vari-
ables under k constraints k\nð Þ:

gj x1; . . .; xnð Þ ¼ 0 j ¼ 1; . . .; kð Þ ð2:3:5Þ

In principle, the method of solving this problem is as follows. The equations of
the k constraints (2.3.5) can be solved to find k of the n unknown, as functions of
the other n� k variables. Then, replacing the expressions just found for these k
unknowns, into the expression of the function f, one finds a function of n� k
independent variables, whose extremization can be treated as a common problem of
maximum or minimum, by using the methods previously presented. This method is
typically used when the number of constraints is small, allowing to find the explicit
solution of the k unknowns.
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Another, more general method of solving the problem, relies on the fact that
when the extreme of the function f is reached, the differential df is canceled:

df ¼
Xn
i¼1

@f
@xi

dxi ¼ 0 ð2:3:6Þ

The n variables are not independent, since they are under the constraints
Eq. (2.3.5). It follows that the n differentials dxi obey k constraints; therefore only
n� k differentials among them are independent. The differentials dxi should fulfill
the k constraints, i.e.:

Xn
i¼1

@gj
@xi

dxi ¼ 0 j ¼ 1; � � � ; kð Þ ð2:3:7Þ

One multiplies each equation j of the equations system (2.3.7) by a parameter kj
and the next operation is summing up in respect with j, from j ¼ 1 to j ¼ k.
Combining the result obtained with Eq. (2.3.6), one finds:

Xn
i¼1

@f
@xi

þ
Xk
j¼1

kj
@gj
@xi

 !
dxi ¼ 0 ð2:3:8Þ

The coefficients kj are chosen so that k of the n expressions in parentheses are
canceled. Then, the rest of n� k expressions in parentheses should always be zero,
since the remaining n� k differentials dxi are arbitrary (being independent). The
conclusion is that for a relative extreme, the necessary conditions are:

@f
@xi

þ Pk
j¼1

kj
@gj
@xi

¼ 0 i ¼ 1; � � � ; nð Þ
gj x1; . . .; xnð Þ ¼ 0 j ¼ 1; � � � ; kð Þ

ð2:3:9Þ

The system (2.3.9) of nþ k equations must be solved for the same number of
unknowns, specifically for x1; . . .; xn; k1; . . .; kk.

This optimization method naturally carries again the name Lagrange multipliers
method, being an extension of the method shown in the case of functions with two
variables. The method is more compactly and elegantly formulated as follows:

(i) Build the function

F x1; . . .; xn; k1; . . .; kkð Þ ¼ f x1; . . .; xnð Þþ
Xn
j¼1

kjgj x1; . . .; xnð Þ ð2:3:10Þ
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(ii) solve the following system of nþ k (generally nonlinear) equations for the
unknowns x1; . . .; xn; k1; . . .; kk:

@F
@xi

¼ 0 i ¼ 1; . . .; nð Þ
@F
@kj

¼ 0 j ¼ 1; . . .; kð Þ
ð2:3:11Þ

Note that this procedure leads to the system of Eq. (2.3.9).

Example
Find the largest and smallest values of z placed on the ellipse formed by the
intersection of the plane xþ yþ z ¼ 1 and the ellipsoid 16x2 þ 4y2 þ z2 ¼ 16.

Solution
The function to be extremized is:

f ðx; y; zÞ ¼ z

The constraints are:

g1ðx; y; zÞ ¼ xþ yþ z� 1 ¼ 0

g2ðx; y; zÞ ¼ 16x2 þ 4y2 þ z2 � 16 ¼ 0

The following function is built:

Fðx; y; z; k1; k2Þ ¼ zþ k1ðxþ yþ z� 1Þþ k2ð16x2 þ 4y2 þ z2 � 16Þ

The following system is then solved for the unknowns ðx; y; z; k1; k2Þ:

Fx ¼ Fy ¼ Fz ¼ Fk1 ¼ Fk2 ¼ 0

The maximum and minimum values of z are:

zmax ¼ 8=3; zmin ¼ �8=7:

Reference

Forray, M.: Calculul variational in stiinta si tehnica. Editura Tehnica, Bucuresti (1975)
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Chapter 3
Elements of Variational Calculus

3.1 Short History

It is believed that the first problem of variational calculus has been proposed in
antiquity. That is the so-called problem of Dido, who asked to determine a closed
plane curve of given length which delimitates a surface of maximum area. The
solution is a circle, but the demonstration is far from being simple (Forray 1975,
p. 45).

In early modern times, research on the calculus of variations is due to Jean
Bernoulli, who proposed the brachistochrone problem in 1696: Of all the curves
situated in a vertical plane and passing through two fixed points, P0 0; 0ð Þ and
P1 x1; y1ð Þ (situated lower than point P0), determine the curve for which the
descending time of a material point from P0 to P1 (without friction) is minimal. The
curve is a cycloid (Dragos 1976, p. 303). Solutions were published independently
by the two Bernoulli brothers, Jacques Bernoulli (1654–1705) and Jean Bernoulli
(1667–1748), who used different methods to solve it. The rivalry between the two
brothers has spurred concerns particularly in the calculus of variations, solutions for
the brachistochrone problem being given by Isaac Newton (1642–1727), Gottfried
Wilhelm von Leibniz (1646–1716) and Guillaume Francois Antoine de L’Hospital
(1661–1704). The two articles by Jacques Bernoulli, published in 1697 and 1701,
were the starting point of research for Leonhard Euler (1707–1783), although he
was a disciple of Jean Bernoulli (Forray 1975, p. 47).

Decisive contributions to the development of the classical formulation of the
calculus of variations were made by Euler (1744) and especially by Joseph-Louis
Lagrange (1760), who developed the general methods of the discipline and applied
them rigorously in mechanics.

© Springer International Publishing AG 2017
V. Badescu, Optimal Control in Thermal Engineering, Studies in Systems,
Decision and Control 93, DOI 10.1007/978-3-319-52968-4_3
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3.2 Preliminary Issues

Variational calculus (also called calculus of variations) deals with extremization of
those maps whose definition domain is a space of infinite size, sometimes called
curves space or functions space (for the level of mathematical rigor of this book, the
two names may be assumed as synonyms). The maps of this type are called
functionals. In general, functional is called any mapping of the functions space on
the real straight line. In engineering applications, the space of admissible functions
is usually the set of all continuous real functions with piecewise continuous
derivative.

A simple example of functional is the length L of a curve y ¼ y xð Þ, defined on
the closed interval x0; x1½ �: It can be calculated by using the relation
L y0ð Þ ¼ R x1x0 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dx. In this example, L indirectly depends on the shape of the
function y xð Þ, which is called argument function.

3.2.1 Necessary Conditions for Extremization
of Functionals

A short introduction to the main concepts used in the calculus of variations is made
by considering a simple problem. This section follows the approach originally
proposed by Caratheodory (1935) and summarized and simplified by Tolle (1975).

The question is to move, by finding a proper direction y0 tð Þ, from an arbitrary
point on a curve T (see Fig. 3.1) to a given point P t1; y1ð Þ, so that the integral

J ¼
Zt1
tA

L t; y tð Þ; y0 tð Þ½ �dt ð3:2:1Þ

have a minimum value. That minimum value, whose existence is assumed to be
proven, is denoted S � S t1; y1ð Þ. This notation shows that the minimum value
depends on the choice of the point P t1; y1ð Þ. The curve which provides the mini-
mum value of the integral is called extremal curve (or, in short, extremal). It is also
assumed that there is only one extremal curve for each point P in a certain region
around the starting curve T. The set of these extremal curves (denoted by C)
associated with all points P is called regular field of extremal curves.

Fig. 3.1 Regular field of
extremal curves (adapted
from Tolle 1975)
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In addition, assume that L t; y; y0ð Þ and S t1; y1ð Þ are twice differentiable. S t1; y1ð Þ is
a function of position in the plane t; yð Þ. Accordingly, for each curve C one can write:

S ¼
Z

dS ¼
Z

Stdtþ Sydy
� � ¼ Z

t

tA

St þ Syy
0� �
dt ð3:2:2Þ

From the definition of S, as a minimum value of J, and using Eqs. (3.2.1) and
(3.2.2), one finds:

J � S ¼
Z t

tA

L t; y; y0ð Þ � St � Syy
0� �
dt� 0 ð3:2:3Þ

where J � S vanishes if, and only if, the Eq. (3.2.3) corresponds to an extremal
curve. However, when inequality (3.2.3) is true, the following inequality is valid for
the integrand in Eq. (3.2.3):

E � L t; y; y0ð Þ � St � Syy
0 � 0 ð3:2:4Þ

This can be proved by reductio ad absurdum, as follows (see Fig. 3.2). Make the
assumption that there is an element t�; y�; y0�ð Þ of the curve associated with the path
of integration in Eq. (3.2.3) for which the relationship (3.2.4) is not true. Assume a
direction given by y0 � on the point P� t�; y�ð Þ and notice that, due to the already
accepted continuity of L; St and Sy, the expression E in Eq. (3.2.4) is also contin-
uous. Therefore, the expression E is smaller than zero over a certain distance, for
example between the points P� and Q. Denote Q0 the initial point of the extremal
curve that starts, as previously accepted, on the curve T. Then, the value of the
expression Eq. (3.2.3) on the path Q0Q is zero, since J reaches its minimum on the
extremal curve. But, because on that part QP� of curve the relationship E\0 is
fulfilled, and, consequently, J � S\0, then the value of the relationship (3.2.3) on
the path Q0QP� will be less than zero, which contradicts the hypothesis.

If one interprets the expression E in Eq. (3.2.4) as a function of the direction y0,
then, according to the usual rules for calculating the extremes of functions, one can
determine the optimum value of y0, which will be denoted p t; yð Þ, by using the
necessary condition:

Fig. 3.2 Demonstration of
the relationship (3.2.4)
(adapted from Tolle 1975)
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@E
@y0

¼ 0 ð3:2:5Þ

The conditions associated with the determination of the minimum value from
this relationship were discussed in Chap. 2, and are presumed to be met here. From
Eqs. (3.2.4) and (3.2.5) one finds:

Sy � Ly t; y; p t; yð Þ½ � ¼ 0 ð3:2:6Þ

From Eq. (3.2.6) one extracts Sy, which is next replaced in the expression E in
Eq. (3.2.4) which becomes, in case of reaching the minimum value (i.e. zero)

St � L t; y; p t; yð Þ½ � þ p t; yð ÞLy0 t; y; p t; yð Þ½ � ¼ 0 ð3:2:7Þ

The existence of the minimum value of E is now studied. First, one needs the
relationship (3.2.5). Second, the fulfillment of the following condition is needed
(see Chap. 2):

@2E
@y02

¼ Ly0y0 t; y; p t; yð Þ½ � � 0 ð3:2:8Þ

In conclusion, the necessary condition for the extremum consists of the mixed
system of differential Eqs. (3.2.6) and (3.2.7). This is a mixed system since both
ordinary and partial derivatives appear in those equations.

Besides these equations, two inequalities, which represent necessary conditions,
have to be met to achieve the minimum. They are the condition (3.2.8), called the
Legendre condition, and the condition (3.2.4), called the Weierstrass condition. The
latter condition can be rewritten using St and Sy extracted from Eqs. (3.2.6) and
(3.2.7) as follows:

E t; y; p; y0ð Þ ¼ L t; y; y0ð Þ � L t; y; pð Þ � y0 � pð ÞLy0 t; y; pð Þ� 0 ð3:2:9Þ

Here one has to take into account that, in general, y0 differs from its optimal
value P .

3.2.2 Dual Methods in Variational Calculus

As is well known, there are a number of traditional methods of solving systems of
ordinary differential equations and systems of partial differential equations. The
mixed system of differential Eqs. (3.2.6) and (3.2.7) does not allow the direct use of
these methods. Therefore, it is customary to remove from this system either the
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partial derivatives or the ordinary derivatives. Both procedures will be treated next
and finally it is shown that the results are equivalent.

First, the method of removing the partial derivatives will be considered. Due to
the hypothesis that S t; yð Þ is twice differentiable, one can differentiate the
Eq. (3.2.6) with respect to t and Eq. (3.2.7) with respect to y; next S is eliminated,
by using the fact that Syt ¼ Sty. One obtains:

Ly0t þ ptLy0y0 ¼ Ly þ Ly0py � Ly0py � pLy0y � ppyLy0y0 ð3:2:10Þ

By rearranging terms in Eq. (3.2.10) one finds

Ly0y0 pt þ ppy
� �þ Ly0t þ Ly0yp� Ly ¼ 0 ð3:2:11Þ

Note that, because y0 ¼ p t; yð Þ, the second derivative of y can be written as:

y00 ¼ pt þ pyp ð3:2:12Þ

By using Eq. (3.2.12), Eq. (3.2.11) becomes:

Ly0y0y
00 þ Ly0yy

0 þ Ly0t � Ly ¼ 0 ð3:2:13Þ

This relationship can be rewritten in a more compact way:

d
dt
Ly0 � Ly ¼ 0 ð3:2:14Þ

Equation (3.2.14), which comes from the mixed system of differential
Eqs. (3.2.6) and (3.2.7), is a second order differential equation. It is called the
Euler-Lagrange equation. By solving this equation one finds the extremal y tð Þ that
provides the maximum or minimum of the functional J.

Second, the method of removing the ordinary derivatives from the mixed system
of Eqs. (3.2.6) and (3.2.7) is considered. To eliminate y0 � p t; yð Þ one assumes, in
order to simplify the exposition, that Ly0y0 t; y; p t; yð Þ½ �[ 0. Then, p t; yð Þ may be
found by solving Eq. (3.2.6). The solution is not always unique. Here it is supposed
that the solution is unique and can be put under the form:

p t; yð Þ ¼ w t; y; Sy
� � ð3:2:15Þ

This solution can be substituted in Eq. (3.2.7). The following function will be
defined:

H t; y; Sy
� � � L t; y;wð Þ � wLy0 t; y;wð Þ ð3:2:16Þ

which is called Hamiltonian. With this notation, Eq. (3.2.7) becomes:

3.2 Preliminary Issues 27



St � H t; y; Sy
� � ¼ 0 ð3:2:17Þ

This partial differential equation, which comes from the mixed system of
Eqs. (3.2.6) and (3.2.7), is called the Hamilton-Jacobi equation. By solving this
equation, the extremum S of the functional J can be found.

Depending on the application, one of two methods outlined above is used in
practice. When the main interest is in finding the optimal curves, the method based
on the Euler-Lagrange Eq. (3.2.14) is used. In contrast, when the value of the
extremum is of greater interest, one prefers the method based on solving the
Hamilton-Jacobi Eqs. (3.2.17).

To show the equivalence of the two methods, some results from the theory of
first order partial differential equations will be used. It is known that any first-order
differential equation:

F t; y; S; St; Sy
� � ¼ 0 ð3:2:18Þ

corresponds to a system of ordinary differential equations:

dt
dr

¼ FSt
dy
dr

¼ FSy
dS
dr

¼ StFSt þ SyFSy

dSt
dr

¼ � StFS þFtð Þ dSy
dr

¼ � SyFS þFy
� � ð3:2:19Þ

which are the characteristic equations, used to construct the solutions of
Eq. (3.2.18). The Hamilton-Jacobi partial differential equations are a special case
among the equations of the form (3.2.18), since the associated Eqs. (3.2.19) are
degenerate. Therefore, the first Eq. (3.2.19) yields dt ¼ dr while the remaining
Eqs. (3.2.19) become:

dy
dt

¼ �HSy t; y; Sy
� � dSy

dt
¼ Hy t; y; Sy

� �
dSt
dt

¼ Ht t; y; Sy
� � dS

dt
¼ St � SyHSy t; y; Sy

� � ð3:2:20Þ

These are the characteristic equations of the Hamilton-Jacobi Eq. (3.2.17). The
two top Eqs. (3.2.20) may be used to determine y tð Þ and Sy tð Þ while St and S are
obtained by integrating the two bottom Eqs. (3.2.20).

Therefore, solving a partial differential equation may be replaced by solving a
system of two first-order differential equations. Since such a system is equivalent to
a second order differential equation, one may conclude that the Euler-Lagrange
equation corresponds to the main part of the characteristic equations of the
Hamilton-Jacobi partial differential equations. In other words, the Euler-Lagrange
equations and Hamilton-Jacobi are equivalent.
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Equation (3.2.16), from which the function L [which constitutes the core of the
Euler-Lagrange Eq. (3.2.14)], is transformed into the function H [which is the core
of the Hamilton-Jacobi Eq. (3.2.17)] is called the Legendre transform.

Addressing variational calculation problems has the dual character previously
presented. Thus, one can use either ordinary differential equations (Euler-Lagrange
method) or partial differential equations (Hamilton-Jacobi method). Solving prob-
lems of constrained optimization is usually performed by using the first method,
which provides more direct physical interpretation and offers the possibility of
simpler numerical calculations. Consequently, this method will be preferred in the
following.

3.3 Euler Extremization Procedure

As seen in Sect. 3.2, the necessary conditions to obtain a stationary value are more
complex for functionals than for functions. To illustrate the practical application of
the Euler extremization procedure (leading to Euler-Lagrange ordinary differential
equations), consider now the case of a functional which is a bit more complicated
than that of Eq. (3.2.1):

VðyÞ ¼
Zx1
x0

Fðx; y; y0; y00Þdx ð3:3:1Þ

In this case, the kernel of the integral in Eq. (3.3.1) contains the second
derivative of the function y. One searches for the function y xð Þ which yields the
extremum of V (i.e. the extremal function), knowing, in addition, that the values of
y and y0 are given in the points x ¼ x0 and x ¼ x1 which are the extremities of the
interval.

The Euler procedure for functional extremization is significantly different from
the procedure used by Caratheodory (summarized in Sect. 3.2). Euler method
examines the effect that a variation dy of y has on the functional V(dy being a small

Fig. 3.3 The variation of the
extremal function with fixed
values at the ends of the
interval (adapted from Forray
1975)
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quantity). In addition, in this section one assumes that the variations of the function
y and its first derivatives are zero at the ends of the interval (dy ¼ dy0 ¼ 0 in x ¼ x0
and x ¼ x1) (see Fig. 3.3).

If V reaches the extreme value, then:

dV ¼
Zx1
x0

ð@F
@y

dyþ @F
@y0

dy0 þ @F
@y00

dy00Þdx ¼ 0 ð3:3:2Þ

dV is called the first variation of the functional. To filter out from Eq. (3.3.2) the
variations of the first two derivatives of the function y (labeled dy0 and dy00) one
integrates by parts the terms two and three of the integral which appears in dV :

Zx1
x0

@F
@y0

� dy0dx ¼ @F
@y0

dy x1
x0

�� �
Zx1
x0

d
dx

@F
@y0

� 	
� dydx ð3:3:3Þ

Zx1
x0

@F
@y00

� dy00dx ¼ @F
@y00

dy0 x1
x0

�� � d
dx

� @F
@y00

� 	
� dy


 �
x1
x0

�� þ
Zx1
x0

d2

dx2
@F
@y00

� 	
� dy � dx

ð3:3:4Þ

Substituting Eqs. (3.3.3) and (3.3.4) in Eq. (3.3.2) of dV one obtains:

dV ¼
Zx1
x0

@F
@y

� d
dx

� @F
@y0

þ d2

dx2
� @F
@y00

� 	

� dydxþ @F
@y0

� d
dx

� @F
@y00

� 	
dy


 �x1
x0

þ @F
@y00

dy0

 �x1

x0
¼ 0 ð3:3:5Þ

If one takes account of the boundary conditions (dy ¼ dy0 ¼ 0 in x ¼ x0 and
x ¼ x1), from Eq. (3.3.5) one obtains:

dV ¼
Zx1
x0

@F
@y

� d
dx

@F
@y0

þ d2

dx2
@F
@y00

� 	
dydx ¼ 0 ð3:3:6Þ

The integral in Eq. (3.3.6) must cancel for all admissible variations dy, which
requires the expression in brackets to cancel, i.e.:

@F
@y

� d
dx

@F
@y

� 	
þ d2

dx2
@F
@y00

� 	
¼ 0 ð3:3:7Þ
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This comes out from the fundamental lemma of the variational calculus, which
will be presented in Sect. 3.4. Equation (3.3.7) is the Euler-Lagrange differential
equation, corresponding to the functional V specified by Eq. (3.3.1). This equation,
together with the boundary conditions for y and y0, determines y xð Þ.

Remove now the requirement that the values of the functions y and y0 are known
at the ends of the interval. Then, in order for the variation dV to cancel (or, in other
words, the functional V to reach its extreme), it is sufficient that, in addition to the
Euler-Lagrange Eq. (3.3.7), the following relationships apply:

@F
@y0

� d
dx

@F
@y00

¼ 0 ð3:3:8Þ

@F
@y00

¼ 0 ð3:3:9Þ

for x ¼ x0 and x ¼ x1. These two last relationships are seen as the natural boundary
conditions, because, if they are met, Eq. (3.3.5) turns into Eq. (3.3.6) [which finally
leads to the Euler-Lagrange Eq. (3.3.7)], without requiring fixing the values of y
and y0 at the ends of the interval.

One concludes that, in general, the functional V reaches its extreme if the
differential Eq. (3.3.7) is satisfied and, in addition, at both ends of the interval, x0
and x1, the next conditions are met:

1. the value of y is specified, or Eq. (3.3.8) is fulfilled;
2. the value of y0 is specified, or Eq. (3.3.9) is fulfilled.

3.4 The Basic Lemma

The Euler procedure of functionals extremization relies significantly on the fun-
damental lemma of the variational calculus (already used in Sect. 3.3). For a better
understanding of the importance of this lemma, a particular case is considered.
Thus, the necessary conditions are obtained in the following for the extremization
of the functional

I ¼
Zx1
x0

Fðx; y; y0Þdx ð3:4:1Þ

with the boundary conditions y x0ð Þ ¼ y0 and y x1ð Þ ¼ y1. In addition, it is assumed
that the function F has continuous second order derivatives with respect to the three
arguments and the second derivative y00 is continuous on the whole interval. The
purpose is to find out the particular function (denoted u) which determines the
extreme of I. For this one builds a new function
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y xð Þ ¼ u xð Þþ eg xð Þ ð3:4:2Þ

where the function g is differentiable, its derivative g0 is continuous, g x0ð Þ ¼
g x1ð Þ ¼ 0 and the parameter e does not dependent on x. Note that in this case dy
from Sect. 3.3 was replaced with eg xð Þ. It is assumed that both dy and dy0 have
small variations (sometimes called weak variations). By replacing Eq. (3.3.2) in
Eq. (3.3.1) one obtains:

I ¼ IðeÞ ¼
Zx1
x0

Fðx; uþ eg; u0 þ eg0Þdx ð3:4:3Þ

In order for I, seen as a common function of parameter e, has an extreme for
e ¼ 0, it is necessary that

dI
de

����
e¼0

¼ 0 ð3:4:4Þ

The derivative of I with respect to e is:

dI
de

¼
Zx1
x0

½ @F
@ðuþ egÞgþ

@F
@ðu0 þ eg0Þg

0�dx ð3:4:5Þ

and its value in the point e ¼ 0 is:

dI
de

���
e¼0

¼
Zx1
x0

ð@F
@u
gþ @F

@u0
g0Þdx ð3:4:6Þ

which, by using Eq. (3.4.2), makes the function F to depend on u and its derivative:

F ¼ Fðx; u; u0Þ ð3:4:7Þ

Integration by parts of the second term in Eq. (3.4.6) gives:

Zx1
x0

@F
@u0

g0dx ¼ @F
@u0

g

����
x1

x0

�
Zx1
x0

ð @
@x

@F
@u0

Þdx ¼ �
Zx1
x0

gð @

@x
@F
@u0

Þdx ð3:4:8Þ

because, as already accepted, g is zero at the ends of the interval. Substituting
Eq. (3.4.8) in Eq. (3.4.7) yields:
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dI
de

���
e¼0

¼
Zx1
x0

ð@F
@u

� d
dx

@F
@u0

Þgdx ¼ 0 ð3:4:9Þ

But the function g is arbitrary (except for the boundary conditions and the
derivability conditions). In this case one applies again the fundamental lemma of
the variational calculus (which is demonstrated below) and from Eq. (3.4.9) one
finds that:

@F
@u

� d
dx

@F
@u0 ¼ 0 ð3:4:10Þ

This is the Euler-Lagrange equation, which is used to solve the variational
problem associated with the functional in Eq. (3.4.1). Note that Eq. (3.4.10) is
identical to Eq. (3.2.14), which was obtained in Sect. 3.2 by using the procedure
proposed by Caratheodory. This was expected since the functionals to be extrem-
ized are identical (Eq. (3.2.1) and Eq. (3.4.1), respectively).

Equation (3.4.10) is a second order differential equation which must fulfill the
boundary conditions u x0ð Þ ¼ y0 and u x1ð Þ ¼ y1. As outlined in Sect. 3.2, the
Euler-Lagrange equation is a necessary condition for the extreme. Sufficient con-
ditions for the extremization of functionals are more difficult to tackle, and are not
studied here.

Example
Find the plane curve which connects two points on the shorter path.

Solution
The length of a curve is given by

L ¼
Zx1
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx x0\x1

Thus, Fðx; y; y0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
and Fðx; u; u0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p

By differentiation, one finds:

Fu ¼ 0 Fu0 ¼ u0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p

The Euler-Lagrange equation is:

@F
@u

� d
dx

ð@F
@u0

Þ ¼ 0 or
d
dx

ð u0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p Þ ¼ 0

By integration, one obtains

3.4 The Basic Lemma 33



u0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p ¼ ct and u0 ¼ ct

By integration, one finds that the curve has the form u ¼ axþ b. It is a straight
line.

3.4.1 The Statement and Proof of the Fundamental Lemma

The fundamental Lemma (Paul du Bois-Reymond) of the variational calculus states
that, if a function u xð Þ, continuous on the closed interval x0; x1½ �, satisfies the
relationship:

Zx1
x0

g xð Þu xð Þdx ¼ 0 ð3:4:11Þ

where g xð Þ is an arbitrary function so that

g x0ð Þ ¼ g x1ð Þ ¼ 0 ð3:4:12Þ

and g0 xð Þ is continuous on x0; x1½ �, then

u xð Þ � 0; x0 � x� x1 ð3:4:13Þ

The demonstration of the lemma is performed by reductio ad absurdum. It is
assumed therefore, by absurd, that u xð Þ 6¼ 0 in a point x ¼ n, where x0 � n� x1.
Then, since u xð Þ is continuous, there is an open interval V containing n (i.e. a
neighborhood of n) where u xð Þ is not zero. This neighborhood is denoted
n0\n\n1. Without loss of generality, it is assumed that u xð Þ is positive in V . One
has to find an admissible function (i.e. a function that satisfies both the boundary
conditions and the continuity conditions), for which Eq. (3.4.11) is not satisfied.
For this one defines:

g xð Þ ¼
0 x0 � x� n0
x� n0ð Þ2 x� n1ð Þ2 n0 � x� n1
0 n1 � x� x1

8<
: ð3:4:14Þ

The function g xð Þ given by Eq. (3.4.14) is an admissible function since it is
differentiable, has continuous derivative and satisfies the boundary conditions
Eq. (3.4.12). Note that:
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Zx1
x0

u xð Þg xð Þdx ¼
Zn1
n0

u xð Þ x� n0ð Þ2 x� n1ð Þ2dx[ 0 ð3:4:15Þ

The positive value of the integral in Eq. (3.4.15) is ensured by the fact that
u xð Þ[ 0 on the interval n0; n1ð Þ. Since Eq. (3.4.15) is positive, it follows that the
assumption Eq. (3.4.11) is not fulfilled, and this constitutes a contradiction.
A similar contradiction would result under the hypothesis that u xð Þ\0. Therefore,
the only possibility is that u xð Þ ¼ 0, which proves the lemma.

It can be demonstrated that the fundamental lemma is still valid in more
restrictive conditions concerning the functions derivability, as well as in case of the
functions of several variables.

3.5 The Euler-Lagrange Equation for Other Cases
of Practical Interest

It has been already presented the case when the integrand of the functional to be
extremized depends on a single dependent variable. Further results will be gener-
alized in several directions, namely: (i) for integrands containing more functions;
(ii) for integrands containing higher order derivatives of the function and (iii) for
integrands containing more independent variables.

3.5.1 Integrands Depending on Several Functions

Assume n functions yi xð Þ; i ¼ 1; . . .; nð Þ and the functional:

I ¼
Zx1
x0

Fðx; y1; . . .; yn; y01; . . .; y0nÞdx ð3:5:1Þ

One makes the assumption that both the functions yi and their derivatives have
second order derivatives continuous in the interval that defines the functional in
Eq. (3.5.1) and, in addition, the values of the functions yi are known in the points x0
and x1. The purpose is to find the functions yi xð Þ ¼ ui xð Þ that yield the extremum of
I. In many cases the extremum is an absolute minimum or an absolute maximum.

Consider the family of functions

yi xð Þ ¼ ui xð Þþ egi xð Þ i ¼ 1; . . .; nð Þ ð3:5:2Þ

where e is a real parameter and the functions gi have continuous first order
derivatives, satisfying the condition that:
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gi x0ð Þ ¼ gi x1ð Þ ¼ 0 i ¼ 1; . . .; nð Þ ð3:5:3Þ

but otherwise they are arbitrary. Substituting Eq. (3.5.2) in Eq. (3.5.1) one obtains

IðeÞ ¼
Zx1
x0

Fðx; u1 þ eg1; . . .; un þ egn; u
0
1 þ eg01; . . .; u

0
n þ eg0nÞdx ð3:5:4Þ

The necessary condition for the extreme of the functional I, seen as a function of
the parameter e is:

dI
de

����
e¼0

¼ 0 ð3:5:5Þ

One can assume that g1 xð Þ 6¼ 0 and gi xð Þ ¼ 0 i ¼ 2; . . .; nð Þ. Then, Eq. (3.5.5) is
reduced to:

IðeÞ ¼
Zx1
x0

Fðx; u1 þ eg1; . . .; un; u
0
1 þ eg01; . . .; u

0
nÞdx ð3:5:6Þ

Repeating the procedure applied in the case of the extremization of a functional
depending on one function, which was studied in Sect. 3.4, one obtains:

dI
de

���
e¼0

¼
Zx1
x0

ð@F
@u1

� d
dx

@F
@u01

Þg1dx ¼ 0 ð3:5:7Þ

which, after applying the fundamental lemma of the calculus of variations
(Sect. 3.4.1) leads to:

@F
@ui

� d
dx

@F
@u0i

¼ 0 ð3:5:8Þ

The procedure can be repeated for other values of i (i ¼ 2; . . .; n). Finally, one
obtains:

@F
@ui

� d
dx

@F
@u0i

¼ 0 ði ¼ 1; . . .; nÞ ð3:5:9Þ

This is the system of Euler-Lagrange differential equations (of second order in
respect with the n extremal functions ui) associated with the variational problem. It
is solved by using boundary conditions imposed to the functions yi. In total there
are n second order differential equations with 2n boundary conditions.
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Example
Extremize the functional:

I ¼
Zx1
x0

2y1y2 � 2y21 þ y021 � y022
� �

dx

Solution
Then

Fðx; u1; u2; u01; u02Þ ¼ 2u1u2 � 2u21 þ u021 � u022

So

@F
@u1

¼ 2u2 � 4u1;
@F
@u01

¼ 2u01

The first Euler-Lagrange equation is:

@F
@u1

� d
dx

@F
@u01

¼ 2u2 � 4u1 � 2u002 ¼ 0 ðaÞ

• Similarly

@F
@u2

¼ 2u1;
@F
@u02

¼ �2u02

• The second Euler-Lagrange equation is:

@F
@u2

� d
dx

@F
@u02

¼ u1 þ u002 ¼ 0 ðbÞ

This is a system of two equations (a) and (b) with two unknown (u1 and u2).
Equation (a) is differentiated twice. The result is combined with Eq. (b) and u2 is
eliminated. One obtains:

uiv1 þ 2u001 þ u1 ¼ 0 ðcÞ

• Substitution of u1 ¼ ekx in Eq. (c) leads to the characteristic equation:

k2 þ 1
� �2¼ 0
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whose roots are k ¼ 	i0 	 i. The result is:

u1 ¼ c1xþ c2Þ cos xþ c3xþ c4Þ sin xðð ðdÞ

Then, Eqs. (d) and (a) are calculated and one finds:

u2 ¼ c1 �2 sin xþ x cos xÞþð c2 cos xþ c3 2 cos xþ xsixÞþ c4 sin xð

• The constants c1; c2; c3; c4 are found by using the boundary conditions for u1
and u2.

3.5.2 Integrands Containing Higher Order Derivatives

In Sect. 3.3 it has been studied the case where the kernel of the integral is
dependent on the second derivative of a function. More generally, the form of the
integral may be:

I ¼
Zx1
x0

F x; y; y0; y00; . . .; y nð Þ
� 


dx ð3:5:10Þ

It is believed that the function values y; y0; . . .; y nð Þ are given at the ends of the
interval and that one complies with the requirements of Sect. 3.2 concerning the
derivability. The usual procedure is used. First, one builds the function

y xð Þ ¼ u xð Þþ eg xð Þ ð3:5:11Þ

where u xð Þ is the function that extremizes Eq. (3.5.10), e being an arbitrary
parameter and g xð Þ being an arbitrary function (except for the need to fulfill some
boundary and derivability conditions similar to those specified in Sect. 3.2). One
replaces Eq. (3.5.11) in Eq. (3.5.10) and one uses the extremization condition with
respect to e:

dF
de

����
e¼0

¼ 0 ð3:5:12Þ

Next, one uses integration by parts to eliminate g0; g00; . . .. Finally, one obtains:

Fu � d
dx

Fu0 þ d2

dx2
Fu00 � d3

dx3
Fuð3Þ þ � � � þ ð�1Þn dn

dxn
FuðnÞ ¼ 0 ð3:5:13Þ
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This is the Euler-Lagrange equation attached to the variational problem. It is a
differential equation of order 2n, whose solution must satisfy 2n boundary
conditions.

Example
Extremize the following functional:

I ¼
Zx1
x0

16y2 � y002 þuðxÞ� �
dx

where uðxÞ is arbitrary.
Solution
The integrand is

Fðx; y; y0; y00Þ ¼ 16y2 � ðy00Þ2 þuðxÞ

and

Fðx; u; u0; u00Þ ¼ 16u2 � ðu00Þ2 þuðxÞ

Therefore,

Fu ¼ 32u; Fu0 ¼ 0; Fu00 ¼ �2u00

The Euler-Lagrange equation is

Fu � d
dx

Fu0 þ d2

dx2
Fu000 ¼ 0

After computations one finds

32u� 2uiv ¼ 0 ðaÞ

In Eq. (a) one uses the substitution u ¼ ekx. The characteristic equation is:

k4 � 16 ¼ 0

whose solutions are k ¼ 	2; 	2i. The general solution of the differential equation
is

u ¼ c1e
2x þ c2e

�2x þ c3 cos 2xþ c4 sin 2x

The constants c1; c2; c3; c4 are found by using the boundary conditions for u and
u0:
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3.5.3 Integrands Depending on Several Independent
Variables

The Euler’s method of extremization can be applied in the case of multiple inte-
grals. For illustration, consider the case of a double integral. D is a given domain in
the plane Oxy, bordered by a piecewise smooth curve C. The functional that must
be extremized is:

I ¼
ZZ
D

Fðx; y;w;wx;wyÞdxdy ð3:5:14Þ

where F is a function with continuous second order derivatives with respect to the
five arguments and the boundary conditions are that the function w x; yð Þ is pre-
scribed on the curve C.

To determine the extremum of the functional in Eq. (3.5.14), the sample function
of parameter e is introduced:

wðx; yÞ ¼ uðx; yÞþ egðx; yÞ ð3:5:15Þ

where u x; yð Þ is the function that ensures the extremum of I and g x; yð Þ has con-
tinuous derivatives up to second order and is smooth on the curve of contour C. By
using Eq. (3.5.15), the integral in Eq. (3.5.14) becomes a function of e:

I eð Þ ¼
ZZ
D

F x; y;w;wx;wy
� �

dxdy ð3:5:16Þ

which, in order to achieve stationary values, must fulfill the condition:

dI
de

����
e¼0

¼ 0 ð3:5:17Þ

i.e., after some algebra:

I 0 0ð Þ ¼
ZZ
D

ð@F
@u

gþ @F
@ux

gx þ
@F
@uy

gyÞdxdy ¼ 0 ð3:5:18Þ

To remove the terms containing gx and gy from Eq. (3.5.18), one integrates the
first term with respect to x and the last term with respect to y. One uses the Green’s
theorem in plane, yielding:

ZZ
D

gð@F
@u

� d
dx

@F
@ux

� d
dy

@F
@uy

Þdxdyþ
Z
C

gð@F
@ux

@y
@s

� @F
@uy

dx
ds
Þds ¼ 0 ð3:5:19Þ
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the integral
R
C meaning that moving on the curve C is made in the positive sense

(i.e. the interior of the domain D remains to the left during the contour browsing).
Here ds is the element of arc on the curve C. Since the values of the function w is
given on the contour, it follows that g ¼ 0 on C; therefore, the second integral of
Eq. (3.5.19) is canceled. By using Eq. (3.5.19) one obtains:ZZ

D

gð@F
@u

� d
dx

@F
@ux

� d
dy

@F
@uy

Þdxdy ¼ 0 ð3:5:20Þ

By applying the fundamental lemma of the calculus of variations, Eq. (3.5.20)
reduces to:

@F
@u

� d
dx

@F
@ux

� d
dy

@F
@uy

¼ 0 ð3:5:21Þ

This is the Euler-Lagrange equation attached to the variational problem. One
sees that this time Eqs. (3.5.21) is an Euler-Lagrange equation with partial
derivatives.

3.6 Analytical Solutions of Euler-Lagrange Equations

In general, an equation of Euler-Lagrange type does not have analytical solution
(i.e. it does not allow explicit integration), even when it is attached to some of the
simplest variational calculus problems. However, there are certain situations in
which such an equation can be integrated analytically. As an example, consider an
Euler-Lagrange equation which arises very often in practical applications. It is
Eq. (3.4.10), for which some particular cases, that allow analytical solution, will be
presented.

3.6.1 The Case When F ¼ F x; u0ð Þ

If the integrand does not depend on the optimal function u, the derivative of the
integrand with respect to the optimal function is canceled:

Fu ¼ 0 ð3:6:1Þ

and the Euler-Lagrange Eq. (3.4.10) becomes:
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d
dx
ðFu0 Þ ¼ 0 ð3:6:2Þ

By integrating Eq. (3.6.2) one finds:

Fu0 ¼ c ¼ const ð3:6:3Þ

Thus, the problem reduces to solving a first-order differential equation. If
Eq. (3.6.3) can be solved with respect to u0 in such way that an expression u0 ¼
Gðx; cÞ is obtained, then the extremal function u is found through a simple
integration:

u ¼
Zx
0

Gðz; cÞdzþ k ð3:6:4Þ

The constants c and k appearing in Eq. (3.6.4) are determined by using condi-
tions at the ends x0 and x1 of the interval.

Assume now that, in addition, the integrand does not depend on the independent
variable x (i.e. F ¼ F u0ð Þ). The function depends on one variable (that is u0);
therefore, its partial derivative with respect to u0 is reduced to an ordinary
derivative:

@F
@u0

¼ dF
du0

¼ c ð3:6:5Þ

It follows that the solution of Eq. (3.6.3) is not of the form u0 ¼ Gðx; cÞ but of
the simpler form u0 ¼ GðcÞ, i.e.:

u0 ¼ k ¼ const k � G cð Þ ð3:6:6Þ

Further integration of Eq. (3.6.6) leads to

u ¼ kxþ k1 k1 ¼ const ð3:6:7Þ

Consequently, the functions u which extremize F ¼ F u0ð Þ are linear functions in
x (that is, geometrically speaking, they represent some straight lines).

Example
Assume the functional to be minimized is:

IðyÞ ¼
Zx1
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
x

dx x[ 0

Solution
The Euler-Lagrange equation reduces to:
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Fu0 ¼ u0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p ¼ c ¼ const

One uses

u0 ¼ tgt � p
2
\t\

p
2

Then

x ¼ u0

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p ¼ tgt
c sec t

¼ sin t
c

¼ c1 sin t ðc1 � 1
c
Þ ðaÞ

du
dt

¼ u0
dx
dt

¼ tgt � c1 cos t ¼ c1 sin t

By integration one obtains:

u ¼ �c1 cos tþ c2 ðbÞ

One removes t between Eqs. (a) and (b):

x2 þðu� c2Þ2 ¼ c21

This is a families of circles with the centres on the axis Ou.

3.6.2 The Case When F ¼ F u; u0ð Þ

When the integrand does not depend on the independent variable x, one can use the
(less evident) fact that the total derivative of the function

G ¼ u0
@F
@u0

� F ð3:6:8Þ

with respect to x leads, successively, to the following results:

dG
dx

¼ u0
d
dx

@F
@u0

þ u00
@F
@u0

� @F
@x

� @F
@u

u0 � @F
@u0

u00 ¼ �u0ð@F
@u

� d
dx

@F
@u0

Þ � @F
@x
ð3:6:9Þ

Since F ¼ F u; u0ð Þ, it follows that
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@F
@x

¼ 0 ð3:6:10Þ

Substituting Eq. (3.6.10) in Eq. (3.6.9) one finds:

dG
dx

¼ d
dx

u0
@F
@u0

� F

� 	
¼ @F

@u
� d
dx

@F
@u0

ð3:6:11Þ

Note that the last member of Eq. (3.6.11), if it were zero, would represent the
Euler-Lagrange Eq. (3.4.10). Consequently, when performing the extremization,
the Euler-Lagrange Eq. (3.4.10) being fulfilled, from Eq. (3.6.11) one obtains:

d
dx

u0
@F
@u0

� F

� 	
¼ 0 ð3:6:12Þ

i.e., after integration of Eq. (3.6.12):

u0
@F
@u0

� F ¼ c ¼ const ð3:6:13Þ

where c is an arbitrary constant. Thus, the extremal function u can be obtained as a
solution of a first order differential equation containing only u and u0; this equation
is usually easier to solve than the initial Euler-Lagrange equation.

Example
Find a curve yðxÞ with fixed values at the extremities of the definition interval, so
that rotating that curve around the axis Ox a surface of minimum area is obtained.
The integral to be minimized is:

I ¼ 2p
Zx1
x0

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx

Solution

F u; u0ð Þ ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
It has been shown that, when F ¼ Fðu; u0Þ, the extremal function verifies:

u0
@F
@u0

� F ¼ C1

or

u0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
� uu02ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p ¼ C1

After simplifications:
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uffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p ¼ C1 ða1Þ

The parameter t is introduced by u0 ¼ sht so that u ¼ C1cht (from Eq. (a1)). But

dx ¼ du
u0

¼ C1
sht � dt
sht

¼ C1dt

By integration, it is found that

x ¼ C1tþC2

u ¼ C1cht

This is the parametric representation of a family of catenaries. The constants
C1;C2 are found by using the condition that the curve passes through the given
points at the extremities of the definition interval.

3.6.3 The Case When F x; y; y0ð Þ Is Total Derivative

Assume that the integrand function F x; y; y0ð Þ of Eq. (3.4.10) is the total derivative
with respect to x of a function G x; yð Þ, i.e.

Fðx; y; y0Þ ¼ dGðx; yÞ
dx

ð3:6:14Þ

Then, it follows that by integration of F x; y; y0ð Þ one obtains:

Zx1
x0

Fðx; y; y0Þdx ¼
Zx1
x0

dG ¼ Gðx1; y1Þ � Gðx0; y0Þ ð3:6:15Þ

This means that the integral which is to be extremized depends only on the
values at the ends of the interval. Thus, all admissible functions y xð Þ lead to
extreme values for the integral, the Euler-Lagrange Eq. (3.4.10) degenerating into
an identity.
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3.7 Boundary Conditions

3.7.1 Natural Boundary Conditions

In Sect. 3.4 the following problem has been considered: obtain the necessary
conditions for a function y ¼ u xð Þ to achieve the extremum of the functional

I ¼
Zx1
x0

Fðx; y; y0Þdx ð3:7:1Þ

by fulfilling the boundary conditions y x0ð Þ ¼ y0 and y x1ð Þ ¼ y1. In this section, the
extremization of the integral in Eq. (3.7.1) is reconsidered, without specifying the
values of y xð Þ at the ends of the interval. One uses the construct y xð Þ ¼
u xð Þþ eg xð Þ and one builds the function:

IðeÞ ¼
Zx1
x1

Fðx; uþ eg; u0 þ eg0Þdx ð3:7:2Þ

for which the extremization condition is:

dI
de

� 	
e¼0

¼
Zx1
x0

FugþFu0g
0ð Þdx ¼ 0 ð3:7:3Þ

Integration by parts of the second term of the integrand ultimately makes
Eq. (3.7.3) looking like this:

dI
de

� 	
e¼0

¼ Fu0gjx1x0 þ
Zx1
x0

Fu � d
dx

Fu0

� 	
gdx ¼ 0 ð3:7:4Þ

Note that one can no longer apply the fundamental lemma of the calculus of
variations, as was done previously, since the right member of Eq. (3.7.4) contains
two terms, each of them being either positive or negative. However, if the first term
of the right member of Eq. (3.7.4) is canceled, then the fundamental lemma can be
applied to the second term, yielding the usual Euler-Lagrange equation:

Fu � d
dx

Fu0 ¼ 0 ð3:7:5Þ

As long as the functions g xð Þ are arbitrary, not necessarily being null at the ends
of the interval, canceling the first term of Eq. (3.7.4), i.e.:
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Fu0gjx1x0¼ 0 ð3:7:6Þ

requires the achievement of the equalities:

Fu0 jx¼x1¼ Fu0 jx¼x0¼ 0 ð3:7:7Þ

So, if the values of the extremal function u xð Þ are not prescribed at the ends of
the interval, the integrand must comply with necessity a relationship of type
Eq. (3.7.7) at each end. Equations (3.7.7) are called natural boundary conditions.

3.7.2 Transversality Conditions

Another type of boundary condition consists in letting free one or both coordinates
x0 and x1, the curve y xð Þ having its extremities on two prescribed curves. For
simplicity it is assumed that x ¼ x0 is fixed and the value y x0ð Þ of the function at the
left end of the interval is given. The prescription is that at the right end of the
interval, the value of the function is y x1ð Þ ¼ g x1ð Þ, where g xð Þ is a given function
(Fig. 3.4).

Let y ¼ u xð Þ be the extremal function. Write, as usual, y xð Þ ¼ u xð Þþ eg xð Þ,
while the variation g xð Þ at the left end being null: g x0ð Þ ¼ 0. The given curve is put
under parametric form:

x ¼ x1 eð Þ y ¼ g x1ð Þ ¼ g x1 eð Þð Þ ð3:7:8Þ

The functional is:

I eð Þ ¼
Zx1 eð Þ

x0

F x; y; y0ð Þdx ð3:7:9Þ

Fig. 3.4 Extremal function
ending on a given curve
(adapted from Forray 1975)
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To achieve the extremum of this functional the next condition is required:

dI
de

����
e¼0

¼ 0 ð3:7:10Þ

The usual procedure is applied, yielding:

dI
de

����
e¼0

¼
Zx1 0ð Þ

x0

FugþFu0g
0½ �dxþF x; u; u0ð Þjx¼x1 0ð Þ _x1 0ð Þ ¼ 0 ð3:7:11Þ

In Eq. (3.7.11), _x1 means the derivative dx1=de . Since the right end of the
extremal curve ends of the curve g xð Þ, the next equalities are valid:

y x1 eð Þð Þ ¼ g x1 eð Þð Þ ¼ u x1 eð Þð Þþ eg x1 eð Þð Þ ð3:7:12Þ

By differentiation of both members of Eq. (3.7.12) in respect to parameter e and
by putting e ¼ 0 in the expression obtained by differentiation, one finds:

_x1 0ð Þ ¼ g x1 0ð Þð Þ
g0 x1 0ð Þð Þ � u0 x1 0ð Þð Þ ð3:7:13Þ

where g0, for example, designates the derivative dg=dx1. Substituting Eq. (3.7.13)
in Eq. (3.7.11) and integrating by parts, one obtains:

Zx1ð0Þ
x0

Fu � d
dx

Fu0

� 	
gdxþ Fu0 þ F

g0 � u0

� 	
g


 �
x1 0ð Þ

¼ 0 ð3:7:14Þ

So, in the case of the problem analyzed in this section, the extremal function
must satisfy (i) the ordinary Euler-Lagrange equation, (ii) a boundary condition of
the type u ¼ u x0ð Þ at the left end of the interval and, in addition, the following
condition (iii) at the other end:

Fu0 þ F
g0 � u0

¼ 0 for x ¼ x1 ð3:7:15Þ

This latter condition is called the transversality condition. It reduces to the
natural boundary condition Eq. (3.7.7) inferred in Sect. 3.7.1, if the right end of the
interval, x1, is fixed, because in that case the prescribed curve is x ¼ x1 ¼ const so
the derivative g0 x1ð Þ tends to infinity, and Eq. (3.7.15) becomes:

Fu0 jx¼x1¼ 0 ð3:7:16Þ

And this means that it is one of the Eqs. (3.7.7).
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If both ends of the extremal curve must be located on prescribed curves, e.g.
y ¼ f xð Þ at the left end and y ¼ g xð Þ at the right end, then transversality conditions
must be met at both ends, i.e.:

Fþ f 0 � u0ð ÞFu0 ¼ 0 for x ¼ x0 ð3:7:17Þ

Fþ g0 � u0ð ÞFu0 ¼ 0 for x ¼ x1 ð3:7:18Þ

It is easy to check that Eqs. (3.7.17) and (3.7.18) reduce to Eq. (3.7.7) in the
case of fixing the two ends of the interval.

3.8 Extremals and Isoextreme Curves

The curves of the same extreme value (denoted by S) are referred as isoextreme
curves.

3.8.1 Another Interpretation of the Transversality Condition

The transversality condition can be formulated in a different way, which starts from
the relationship between the isoextreme curves and the extremal curves (denoted by
y xð Þ). If one takes the case of the Euclidean metric L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
as an example,

then:

I ¼
Z

Ldt ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

dt ¼
Z

ds ð3:8:1Þ

is the arc length of the curve, the extremals are straight lines and S x; yð Þ is the
distance between the point P x; yð Þ and a “starting” curve T (to which S ¼ 0). By
analogy, for an arbitrary expression of L, S is called geodesical distance and the
extremals will be the lines of the shortest distance in the metric attached to L. The
family of curves S ¼ const represents the family of curves of equal geodesic dis-
tance with respect to the curve T . When a point moves in an optimal way on the
extremal curve, the curves S ¼ const represent the positions of the wavefront of a
“disturbance” originating on the starting curve T . Therefore, the extremals and the
curves S ¼ const constitute two different representations of the same process. The
relative position of the two families of curves (given by the slope of their tangents
to one another) is called “transversal” as a generalization of the notion of orthog-
onality, which appears in the particular case of Euclidean metrics.

The relationship between the tangent to the curve of the same extreme value:
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S x; yð Þ ¼ a ð3:8:2Þ

and the tangent to extremals that intersect S x; yð Þ ¼ a can be found easily. The
direction of the tangent dy=dx to S x; yð Þ ¼ 0 is obtained by the differentiation of
Eq. (3.8.2):

Sx þ Sy
dy
dx

¼ 0 ð3:8:3Þ

The values Sx and Sy are related to the direction of the tangent to the extremal
curve, denoted in Sect. 3.2.1 by p, through Eqs. (3.2.6) and (3.2.7) (remember that
in Sect. 3.2.1 the independent variable is t, and not x as it is in this section) so that
Eq. (3.8.3) becomes:

L x; y; pð Þ � pLy0 x; y; pð Þ� �þ Ly0 x; y; pð Þ dy
dx

¼ 0 ð3:8:4Þ

Equation (3.8.4), which connects p and dy=dx, represents a new form of the
transversality relationships. Its importance is that it provides the boundary values
p xAð Þ; p xEð Þ (where xA; xE are the end values of the independent variable) necessary
for solving the Euler-Lagrange equation, when no ending point but an ending curve
is given, as was the case of the curve T above. It should be noted, however, that
both the Euler-Lagrange equations and the Hamilton-Jacobi equations characterize
the behavior of the extremal curves, or of the function of position S x; yð Þ, in a way
which does not depend on the assumption made on the boundary conditions.

In order to obtain a solution of the Euler-Lagrange equation, which is a second
order differential equation, one must provide two end values for the independent
variable and two boundary values for the dependent variable.

Thus, the necessary conditions to solve a problem with boundary conditions are
directly provided if the values xA; xE and y xAð Þ; y xEð Þ are fixed. This is the so-called
case of “fixed” boundary conditions.

Another case corresponds to “mobile” boundary conditions. An example is the
case treated in the previous subsection, where at one end not a fixed point but a
curve has been provided. If that curve is, for example, the “starting” curve, denoted
y� xð Þ, then by solving Eq. (3.8.4) (where the function dy�=dx is known on the
starting curve), one finds:

p xð Þ ¼ y0 xð Þ ¼ f x; y� xð Þ; dy
�

dx
xð Þ


 �
¼ f � xð Þ ð3:8:5Þ

Therefore, instead of the values x ¼ xA; y ¼ yA, the two boundary conditions at
the starting end are as follows:
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y ¼ y� xð Þ y0 ¼ f � xð Þ ð3:8:6Þ

The “free” boundary values, that are often used in the practice, involve either
fixing x ¼ xA with arbitrary y, either fixing y ¼ yA with arbitrary x. It is easy to
show that they are particular cases of the previous more general case. Indeed, in the
coordinate system x; yð Þ, the previous conditions mean prescribing either the
straight line y� yA ¼ 0 or the straight line x� xA ¼ 0, parallel with the coordinate
axes, the tangent directions being dy ¼ 0, dx being arbitrary and, respectively,
dx ¼ 0, dy being arbitrary. Therefore, from Eq. (3.8.4) one obtains the next
Eq. (3.8.7) for arbitrary y, and the next Eq. (3.8.8) for arbitrary x:

Ly xA; y; pð Þdy ¼ 0 ð3:8:7Þ

L x; yA; pð Þ � pLy0 x; yA; pð Þ� �
dt ¼ 0 ð3:8:8Þ

Since dy or dx are arbitrary, the factors which multiply these differentials in
Eqs. (3.8.7) and (3.8.8) must be zero. The resulting equations can be resolved in the
unknown p, yielding the following boundary conditions Eq. (3.8.9) for arbitrary y,
and Eq. (3.8.10) for arbitrary x, respectively:

x ¼ xA p ¼ f � xA; yð Þ ð3:8:9Þ

y ¼ yA p ¼ f � yA; xð Þ ð3:8:10Þ

If instead of the “starting” curve, the “closing” curve is known, similar rela-
tionships are obtained.

3.8.2 The Regularity Assumption

In obtaining the necessary conditions for the existence of the extreme, it has been
always assumed that the set of extremals is regular, i.e. through each point passes a
single extremal. Mathematical details are omitted here, but an example is given in
which this assumption is not valid. The fact that the extremals can be interpreted as
geodesic lines of the smallest distance will be used.

Consider a sphere. The lines of shortest distance are great circles (those circles
whose cross section contains the center of the sphere). In case of the extremization
problem with “fixed” boundary values, the shortest distance is unique, provided that
the end point is not a point diammetrally opposite to the starting point. However, if
this happens, there will be an infinity of extremals of the same length. A point
where the extremals originating from the same starting point P intersect each other
is called the conjugate of point P.

For problems with “mobile” boundary values (where a starting curve exists), as a
counterexample for the assumption of regularity one may consider the case when
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the starting curve is a circle on the sphere while the end point is the pole of the
spherical cap determined by the starting curve. In this case the distances between
the end point and any point on the starting curve have the same value.

3.8.3 Obtaining Extremals from Isoextreme and Vice Versa

Extremals and isoextremes can be obtained from each other. Since y xð Þ is obtained
by solving a second-order differential equation, the extremals are families of curves
with two free parameters (denoted a and b).

Calculation of the extreme values when the extremals are known can be done
directly by using the above formula. Knowing y a; bð Þ, the derivative p � dy=dx can
be first determined and then Sy and Sx are obtained by using Eqs. (3.2.6) and
(3.2.7). Next, the extreme value S � S x; yð Þ is obtained from:

S ¼
Z

ds ¼
Z

Sydyþ Sxdx
� � ð3:8:11Þ

Due to the existence of two free parameters, Eq. (3.8.11) determines the whole
family of curves S ¼ const.

Conversely, knowledge of the isoextreme curves allows obtaining the extremals
if one takes into account the main theorem of the Hamilton-Jacobi theory (which is
not demonstrated here). This theorem states that from a complete integral of the
Hamilton-Jacobi differential equation

S x; y; að Þ ¼ a S2xa þ S2ya 6¼ 0
� 


ð3:8:12Þ

where a is a constant, the family of extremals y a; bð Þ can be calculated, if one uses
the second parameter, b, as follows:

@S x; y; að Þ
@a

¼ b ð3:8:13Þ

By solving Eq. (3.8.13) in the unknown y one determines the family of extre-
mals y x; a; bð Þ.

3.8.4 Example

To fix the ideas, a more elaborated example will be presented, showing how the
isoextremes and the extremals are calculated, by using both the approach based on

52 3 Elements of Variational Calculus



the partial differential equation Hamilton-Jacobi equation and the method based on
the ordinary derivatives equation Euler-Lagrange.

Consider the following problem. One knows two points, PA xA; yAð Þ and
PE xE; yEð Þ in the plane x; yð Þ. These points are joined by a smooth curve C. It is
necessary to find the curve C, which, by rotation around the axis Ox, determines a
body of revolution having the smallest lateral surface area. If the elemental arc of
the curve C is denoted by ds, then the lateral surface area S is given by:

S ¼ 2p
ZxE
xA

yds ¼ 2p
ZxE
xA

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
dx ¼ 2p

ZxE
xA

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx ð3:8:14Þ

By using common definitions, the functional to be extremized is:

J ¼
ZxE
xA

L x; y; y0ð Þdx ð3:8:15Þ

L � 2py
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
: ð3:8:16Þ

3.8.4.1 Euler-Lagrange Approach

The Euler-Lagrange differential equation is Ly � d=dx Ly0
� � ¼ 0, i.e.:

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p ���
y0¼p

� d
dx

ð2py � y0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
�����
y0¼p

Þ ¼ 0 ð3:8:17Þ

Equation (3.8.17) can be integrated by using known methods. The next method
is easier. Because L does not depend directly on y (i.e. L x; y; y0ð Þ � L x; y0ð Þ), the
Euler-Lagrange equation reduces to:

d
dx

Ly0 ¼ 0 ð3:8:18Þ

from which the first integral is obtained, i.e. Ly0 ¼ const. By interchanging the
variables one can immediately get a first integral for L y; y0ð Þ. In more details, one
can write:

S ¼ 2p
ZxE
xA

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
dx ¼ 2p

ZyE
yA

y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p
dy ð3:8:19Þ

Thus:

3.8 Extremals and Isoextreme Curves 53



d
dt
Lx ¼ d

dy
ð2py � x0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x02
p

����
x0¼1

p

Þ ¼ d
dy

2pyffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p
 !

¼ 0 ð3:8:20Þ

hence the first integral is obtained:

2pyffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 1

p ¼ const ¼ a� ð3:8:21Þ

Solving Eq. (3.8.21) in the unknown p one finds:

p ¼ y0 ¼ 2p
a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p2

r
ð3:8:22Þ

dx ¼ a�

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p2

r !�1

dy ð3:8:23Þ

The family of extremals with two parameters is obtained by integration of
Eq. (3.8.23)

x ¼ a�

2p
arccos h

2py
a�

� 	
þ b� ð3:8:24Þ

Determination of the parameters a�; b� can be done by knowing the values
y xAð Þ; y xEð Þ. The curves of constant extreme value (the isoextremes) are obtained
by using Eqs. (3.2.6) and (3.2.7):

Sy ¼ Ly0
��
p¼ 2py � y0ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
p

�����
y0¼p

¼ 2py � pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ð3:8:25Þ

Sx ¼ L� pLy0
� ���

p¼ 2py
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p
� 2py

p2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ¼ 2ppffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

p ð3:8:26Þ

which are, after replacing the value of p from Eq. (3.8.22):

Sy ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p2

r
ð3:8:27Þ

Sx ¼ a� ð3:8:28Þ

Finally, the extreme value S is obtained by using Eqs. (3.8.11), (3.8.27) and
(3.8.28):

54 3 Elements of Variational Calculus



S ¼
Z

a�dxþ
Z

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p2

r
dy ¼ a�x

þ py

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p2

r
� a�2

2p
ln yþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a�2

4p

r ! ð3:8:29Þ

The isoextreme family, which is the transversal of the extremals family, is
obtained according to Eqs. (3.8.13), extracting y from the equation
@S x; y; a�ð Þ=@a� ¼ b�, where S is given by Eq. (3.8.29).

3.8.4.2 Hamilton-Jacobi Approach

When trying to solve the problem by using the Hamilton-Jacobi Eqs. (3.2.17), first
one has to represent p x; yð Þ by a function w x; y; Sy

� �
. This function can be obtained

from the relationship Sy ¼ Ly0
��
p. By using Eq. (3.8.25) one finds:

p2 ¼ w2 ¼ S2y
4p2y2 � S2y

ð3:8:30Þ

Using Eq. (3.2.17) (where the independent variable t is now denoted by x) and
Eq. (3.2.16) for the Hamiltonian definition, one finds:

Sx � L x; y;wð ÞþwLy0 x; y;wð Þ ¼ 0 ð3:8:31Þ

Substituting Eq. (3.8.26) in Eq. (3.8.31) and considering Eq. (3.8.30), one
obtains:

Sx � 2py
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw2

q
� 2py

w2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þw2

q
0
B@

1
CA ¼ Sx � 2pyffiffiffiffiffiffiffiffiffiffiffiffiffi

1þw2
q ¼ 0 ð3:8:32Þ

If one uses Eq. (3.8.30) again, Eq. (3.8.32) becomes:

Sx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2y2 � S2y

q
¼ 0 ð3:8:33Þ

This is the Hamilton-Jacobi equation. To solve it, one takes into account the fact
that Schwartz’s theorem gives:

@Sx
@y

¼ @Sy
@x

ð3:8:34Þ
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One denotes Sx ¼ a, and by resolving Eq. (3.8.33) in respect to Sy, one finds:

Sy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2y2 � a2

p
ð3:8:35Þ

The variables y and x are separable, which allows to writing:

@Sx
@y

¼ 0 ð3:8:36Þ

and:

@Sx
@y

¼ @a
@y

¼ 0 ¼ @Sy
@x

¼ @

@x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2y2 � a2

p
ð3:8:37Þ

When a ¼ a�, Eq. (3.8.37) is identical to Eq. (3.8.29) of the extremals obtained
by using the Euler-Lagrange method. The extremals are now obtained from
Eqs. (3.8.21) and (3.8.13), denoting @S=@a � b:

Z
dx�

Z
a
2p

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � a2

4p2

q ¼ b ð3:8:38Þ

i.e., after integration

t ¼ a
2p

Z
dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � a2
4p2

q þ b ð3:8:39Þ

Equation (3.8.39) is identical to Eq. (3.8.24), if a ¼ a�; b ¼ b�.

3.8.5 Corner Conditions (Erdmann-Weierstrass)

In obtaining the necessary conditions for the existence of the extremum it has been
assumed that the extreme value S x; yð Þ is a twice differentiable function. A case
frequently appearing in practice is considered now, in which an extremal curve is
composed of several arcs, each particular curve associated with these arcs being
twice differentiable.

For simplicity, consider an extremal curve composed of two arcs. The contact
point between the two arcs (also called corner) is denoted K. The extreme values
corresponding to the two arcs are denoted S1 and S2, respectively. The absolute
extreme value (assumed to be a minimum), which corresponds to the whole
extremal, is:
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S ¼ S1 xA; yA; xK ; yKð Þþ S2 xK ; yK ; xE; yEð Þ ð3:8:40Þ

The purpose is to determine the position of the point K xK ; yKð Þ so that S
becomes minimal. This involves, in the usual way, canceling the derivatives:

@S
@xK

¼ @S1
@xK

þ @S2
@xK

¼ 0 ð3:8:41Þ

@S
@yK

¼ @S1
@yK

þ @S2
@yK

¼ 0 ð3:8:42Þ

Note that until now S x; yð Þ was an abbreviated notation for S xA; yA; x; yð Þ (thus,
taking into account the integration path starting from the initial point xA; yAð Þ to the
current point x; yð Þ). In case the group of variables of S is reversed, there is a
reversal of the integration path, i.e. a change of sign in the integral. Thus:

@S1
@xK

¼ @S1
@x

����
xK

@S2
@xK

¼ �@S2
@x

����
xK

@S1
@yK

¼ @S1
@y

����
yK

@S2
@yK

¼ �@S2
@y

����
yK

ð3:8:43Þ

Taking into account Eqs. (3.8.41) and (3.8.42), from Eq. (3.8.43) one sees that
@S=@x and @S=@y are continuous in the corner K. Taking into account Eqs. (3.2.6)
and (3.2.7), it comes out that the following conditions of continuity should be
fulfilled at the corner:

L� p � Ly0
� ���

1¼ L� p � Ly0
� ���

2 ð3:8:44Þ

Ly0
� ���

1¼ Ly0
� ���

2 ð3:8:45Þ

Equations (3.8.44) and (3.8.45) are called Erdmann-Weierstrass corner
conditions.

3.9 Variational Notation

The notions presented so far in this chapter allow establishing an analogy between
the differential calculus and the calculus of variations. For this, it is useful to define
the notion of variation. In this regard consider the functional:

I yð Þ ¼
Zb
a

F x; y; y0ð Þdx ð3:9:1Þ
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where the function y xð Þ is defined on the closed interval a; b½ �. Assume that y xð Þ
obeys all the necessary conditions of continuity and differentiability. Also, assume
that the values y að Þ and y bð Þ are prescribed. A function y xð Þ that satisfies these last
two conditions is called admissible function.

Integration of Eq. (3.9.1) can be done either analytically or numerically, the
result always being a number. To each admissible function y xð Þ corresponds, by
Eq. (3.9.1), a different number, so that the right member of Eq. (3.9.1) can be
denoted by I ¼ I yð Þ, as already done in Eq. (3.9.1).

Note that, for a fixed value of x, the integrand F depends on both the function
y xð Þ and its derivative y0 xð Þ. Now, examine what happens if, following the pro-
cedure used previously several times, y xð Þ is replaced by the new function
y xð Þþ eg xð Þ, where e is a parameter independent of x.

The variation of y is defined as the growth of y xð Þ for a fixed value of x. The
variation of y is denoted dy. In relation with the previous notation it is found that:

dy � eg xð Þ ð3:9:2Þ

Similarly, the variation of the derivative y0 of the function y is noted dy0; the
following correspondence with the previous notation exists:

dy0 � eg0 xð Þ ð3:9:3Þ

The above definitions allow the assessment of the change of the integrand F
(denoted by DF), which is associated with a change of y. At first, the change DF is
represented as follows:

DF ¼ F x; yþ eg; y0 þ eg0ð Þ � F x; y; y0ð Þ ð3:9:4Þ

Expand the second member of Eq. (3.9.4) in Taylor series after the powers of e,
for two variables (y and y0):

DF ¼ @F
@y

egþ @F
@y0

eg0 þ ðterms of higher powers of eÞ ffi @F
@y

dyþ @F
@y0

dy0 ð3:9:5Þ

One reminds that the definition of the differential of F, denoted dF, is:

dF ¼ @F
@x

dxþ @F
@y

dy ð3:9:6Þ

Similarly, the variation of the functional F, noted dF, is defined as:

dF ¼ @F
@y

dyþ @F
@y0

dy0 ð3:9:7Þ

From Eqs. (3.9.2) and (3.9.3) it follows that:
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d
dx

dyð Þ ¼ d
dx

eg xð Þð Þ ¼ eg0 ¼ d
dy
dx

ð3:9:8Þ

One concludes from Eqs. (3.9.8) that, when x is the independent variable, the
operators d and d=dx commute. Note that dx ¼ 0, since the independent variable is
kept fixed during the variation of the function.

It is also seen from Eq. (3.9.1) and from the definition Eq. (3.9.7) of the func-
tional variation that:

dIðyÞ ¼ d
Zb
a

Fðx; y; y0Þdx ¼
Zb
a

dFðx; y; y0Þdx ð3:9:9Þ

equation (3.9.9) shows that the variation is commutative with the integration in
respect with the independent variable.

One easily finds that a necessary condition for the functional I defined by
Eq. (3.9.1) to be extreme is dI ¼ 0. This comes from the variation of Eq. (3.9.1):

dI ¼
Zb
a

dFðx; y; y0Þdx ¼
Zb
a

@F
@y

dyþ @F
@y0

� 	
dx ð3:9:10Þ

Here Eq. (3.9.7) was used. But:

dy0 ¼ d
dx

dy ð3:9:11Þ

and by integration by parts of Eq. (3.9.1) one obtains:

dI ¼
Zb
a

@F
@y

� d
dx

@F
@y0


 �
dydx ð3:9:12Þ

Here it was taken into account that dy að Þ ¼ 0; dy bð Þ ¼ 0, since the values of the
function at the ends of the interval are given. Applying the fundamental lemma of
the calculus of variations, from Eq. (3.9.12) one obtains:

@F
@y

� d
dx

@F
@y0

¼ 0 ð3:9:13Þ

This is the Euler-Lagrange equation attached to the extremization of the func-
tional in Eq. (3.9.1). So, indeed, dI ¼ 0 is a necessary condition of extreme.

The notation introduced in this section can be extended directly in case of
functionals that depend on several dependent variables and more independent
variables. The properties previously deducted remain valid.
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3.10 Constrained Extremization

There are situations in practice when one wants, for example, the extremization of
the functional:

I ¼
Zt1
t0

Fðt; x; y; z; _x; _y; _zÞdt ð3:10:1Þ

(where _x designates, as usual, the derivative dx=dt), under the constraint:

G x; y; zð Þ ¼ 0 ð3:10:2Þ

In Eqs. (3.10.1) and (3.10.2) the functions x tð Þ; y tð Þ; z tð Þ have prescribed values
at t0 and t1.

One way to solve the problem lies in the explicitation of z from Eq. (3.10.2), in
respect with the other two dependent variables, x and y. It is followed by the
replacement of z ¼ z x; yð Þ in Eq. (3.10.1), which becomes function only of t; x; y; _x
and _y. Therefore, the extremization of Eq. (3.10.1) is reduced to the usual problems
of unconstrained maximization or minimization.

Next, another method will be used, that is applicable in situations often
encountered in practice, in which constraints of the kind of Eq. (3.10.2) do not
allow explicitation of one of the dependent variables in respect with the other two.
Let xopt ¼ u tð Þ; yopt ¼ v tð Þ; zopt ¼ w tð Þ be the three optimal functions. The fol-
lowing notations are used:

x ¼ uþ e1g1 y ¼ vþ e2g2 z ¼ wþ e3g3 ð3:10:3Þ

where ei i ¼ 1; 2; 3ð Þ are parameters independent of t and the functions
gi i ¼ 1; 2; 3ð Þ are arbitrary. Substituting Eq. (3.10.3) in Eq. (3.10.1) one obtains:

IðeÞ ¼
Zt1
t0

Fðt; uþ eg1; vþ eg2;wþ eg3; _uþ e _g1; _vþ e _g2; _wþ e _g3Þdt ð3:10:4Þ

Achieving the extremum of the functional I, seen as a function of e, is performed
when the following necessary condition is fulfilled:

dI
de

����
e¼0

¼ 0 ð3:10:5Þ

or, which is equivalent, when:
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Zt1
t0

Fug1 þF _u _g1ð Þe1 þ Fvg2 þF_v _g2ð Þe2 þ Fwg3 þF _w _g3ð Þe3½ �dt ¼ 0 ð3:10:6Þ

To remove the temporal derivatives _gi i ¼ 1; 2; 3ð Þ from Eq. (3.10.6), one
integrates by parts and then one uses the boundary conditions (i.e. gi t0ð Þ ¼ gi t1ð Þ ¼
0 i ¼ 1; 2; 3ð Þ). Equation (3.10.6) becomes:

Zt1
t0

Fu � d
dt
F _u


 �
e1g1 þ Fv � d

dt
F _v


 �
e2g2 þ Fw � d

dt
F _w


 �
e3g3

� �
¼ 0 ð3:10:7Þ

From Eq. (3.10.7) one cannot obtain the Euler-Lagrange equations in the usual
way, because the variations gi i ¼ 1; 2; 3ð Þ are not independent. Indeed, these
variations must satisfy the constraint:

Gðuþ eg1; vþ eg2;wþ eg3Þ ¼ 0 ð3:10:8Þ

By differentiation of Eq. (3.10.8) one obtains, in a less rigorous notation:

dG ¼ Guðu; v;wÞe1g1 þGvðu; v;wÞe2g2 þGwðu; v;wÞe3g3 ¼ 0 ð3:10:9Þ

Note that e1g1, for example, takes place for the infinitesimal amount du, because
the parameter e1 is assumed to be small, as usual. The same reasoning applies for
the products e2g2 and e3g3. By multiplying Eq. (3.10.9) with an arbitrary function
k tð Þ and by integrating from t0 to t1, one finds:

Zt1
t0

kdG ¼
Zt1
t0

ðkGue1g1 þ kGve2g2 þ kGwe3g3Þdt ¼ 0 ð3:10:10Þ

By summing Eq. (3.10.10) with Eq. (3.10.7), one finds

Zt1
t0

Fu � d
dt
F _u þ kGu

� 	
e1g1dt

þ
Zt1
t0

Fv � d
dt
F_v þ kGv

� 	
e2g2dtþ

Zt1
t0

Fw � d
dt
F _w þ kGw

� 	
e3g3dt ¼ 0

ð3:10:11Þ

Normally, on the surface G x; y; zð Þ ¼ 0 the relationships Gx ¼ 0; Gy ¼ 0 and
Gz ¼ 0 are not simultaneously satisfied. If, for example, Gz 6¼ 0, one can choose the
function k tð Þ, which until now was arbitrary, in such a way that
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Fw � d
dt
F _w þ kGw ¼ 0 ð3:10:12Þ

On the other hand, taking into account of the relationship G x; y; zð Þ ¼ 0, only
two variations eigi i ¼ 1; 2; 3ð Þ are independent. It is assumed that they are, for
example, e1g1 and e2g2. Then, in order for the sum of the two integrals of
Eq. (3.10.11), remained after the usage of Eq. (3.10.12), to be null, it is necessary
that:

Fu � d
dt
F _u þ kGu ¼ 0 ð3:10:13Þ

Fv � d
dt
F_v þ kGv ¼ 0 ð3:10:14Þ

Equations (3.10.12), (3.10.13) and (3.10.14) together with the condition
G x; y; zð Þ ¼ 0 are sufficient to determine the four unknown functions, i.e. u; v;w and k.

Example
Find the form of geodesics on a sphere (geodesics are curves of shortest distance on
a given surface).

Solution
The distance between two points in space is given parametrically by

I ¼
Zt1
t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2 þ _z2

p
dt ðaÞ

Assume that the arc of curve is placed on the surface

Gðx; y; zÞ ¼ 0 ðbÞ

A geodesic on the surface G yields the extreme of Eq. (a).
The integrand is F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2 þ _y2 þ _z2

p
(which does not depend on x, y, z)

The Euler-Lagrange equations are:

� d
dt

_x
F

� 	
þ kGx ¼ 0

� d
dt

_y
F

� 	
þ kGy ¼ 0
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� d
dt

_z
F

� 	
þ kGz ¼ 0

Elimination of k gives:

d
dt

_x
F

� �
Gx

¼
d
dt

_y
F

� �
Gy

¼
d
dt

_z
F

� �
Gz

ða’Þ

Assume that the surface G is a sphere of equation

G x; y; zð Þ ¼ x2 þ y2 þ z2 � R2 ¼ 0

Therefore:

Gx ¼ 2x; Gy ¼ 2y; Gz ¼ 2z ðb’Þ

Replace Eq. (b’) in Eq. (a’) and finds

F€x� _x _F
2xF2 ¼ F€y� _y _F

2yF2 ¼ F€z� _z _F
2zF2

Thus

y€x� x€y
y _x� x _y

¼ z€y� y€z
z _y� y_z

¼
_F
F

The equality of the first two members gives

d
dt ðy_x� x_yÞ
y _x� x _y

¼
d
dt ðz _y� y_zÞ
z _y� y_z

Since
R

du
u ¼ ln uj j þ const, direct integration gives

y _x� x _y ¼ Aðz _y� y _zÞ with A ¼ const:

or

_xþA_z
xþAz

¼ _y
y

After integration
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xþAz ¼ By B ¼ const

This is the equation of a plane passing through the center of the sphere (which is
the origin of the coordinate system). But the intersection of this plane (containing
the two given points and the center of the sphere) with the sphere is an arc of a great
circle. Thus, great circles are geodesics on a sphere.

3.11 Isoperimetric Problems

By definition, all the problems where an integral is extremized, under the constraint
that an additional integral has a fixed value, are called isoperimetric problems. The
explanation is that the first issue of this type (the so-called Dido problem, which
was already mentioned) was that of finding a closed curve of given length for which
the delimited surface area is a maximum.

In the following, consider the extremization of the functional:

I ¼
Zx1
x0

F x; y; y0ð Þdx ð3:11:1Þ

It is assumed that the functions y xð Þ are differentiable, and the first order
derivatives are continuous, and they have given values at the ends x0 and x1 of the
interval. The extremization must be made so that the integral:

K ¼
Zx1
x0

G x; y; y0ð Þdx ð3:11:2Þ

has a given value. One assumes, furthermore, that on the whole interval,F andG have
second order derivatives continuous with respect to all their arguments x; y; y0. Let
denote the function that makes the extreme by yopt ¼ u xð Þ. Note that the procedure
that was used in previous sections, to express y under the form y xð Þ ¼ u xð Þþ eg xð Þ,
with e being a small parameter and g xð Þ an arbitrary function, can not be used. Indeed,
for any change in the value of the parameter e, x; y; y0 will produce a change in the
value of the integral K in Eq. (3.11.2) (which should be constant).

To get out of this difficulty, one introduces a family of functions with two small
parameters, e1 and e2:

y xð Þ ¼ u xð Þþ e1g1 xð Þþ e2g2 xð Þ ð3:11:3Þ

where the functions g1 and g2 have continuous derivatives which cancel at the ends
of the interval:
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g1 x0ð Þ ¼ g1 x1ð Þ ¼ 0 g2 x0ð Þ ¼ g2 x1ð Þ ¼ 0 ð3:11:4Þ

From Eqs. (3.11.3) and (3.11.4) it follows that both y xð Þ and u xð Þ have fixed
values at the ends of the interval, that is:

y x0ð Þ ¼ u x0ð Þ ¼ y0 y x1ð Þ ¼ u x1ð Þ ¼ y1 ð3:11:5Þ

where y0 and y1 are given numbers. Substituting Eq. (3.11.3) in Eqs. (3.11.1) and
(3.11.2) one obtains the following relationships:

I e1; e2ð Þ ¼
Zx1
x0

F x; y; y0ð Þdx ð3:11:6Þ

K e1; e2ð Þ ¼
Zx1
x0

G x; y; y0ð Þdx ¼ const ð3:11:7Þ

This is actually the problem of a common functions of two variables, I e1; e2ð Þ,
which must be extremized for e1 ¼ e2 ¼ 0, under the constraint K e1; e2ð Þ ¼ const.
The problem can be solved by using the method of Lagrange multipliers, as
described in Chap. 2. For this, one defines the following function:

H e1; e2ð Þ ¼ I e1; e2ð Þþ kK e1; e2ð Þ ð3:11:8Þ

From Eqs. (3.11.1) and (3.11.2) it follows that:

H e1; e2; kð Þ ¼
Zx1
x0

u x; y; y0ð Þdx ð3:11:9Þ

where k is a multiplier, and the function u is defined as follows:

u x; y; y0; kð Þ ¼ F x; y; y0ð Þ þ kG x; y; y0ð Þ ð3:11:10Þ

By using the multipliers method, the following relationships must be satisfied for
the extremization of the function H:

@H
@e1

¼ @H
@e2

¼ 0 for e1 ¼ e2 ¼ 0 ð3:11:11Þ

If one performs the differentiation of the Eqs. (3.11.9) and (3.11.3) inside the
integral, according with the rule of the differentiation of functions of function, one
obtains (for i ¼ 1; 2):
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@H
@ei

¼
Zx1
x0

@u
@y

@y
@ei

þ @u
@y0

@y0

@ei

� 	
dx ¼

Zx1
x0

@u
@y

gi þ
@u
@y0

g0i

� 	
dx ð3:11:12Þ

Using Eq. (3.11.12), the extremum condition becomes:

@H
@ei

����
e1¼e2¼0

¼
Zx1
x0

@u
@u

gi þ
@u
@u0

g0i

� 	
dx ¼ 0 ð3:11:13Þ

One integrates Eq. (3.11.13) by parts, taking into account the boundary condi-
tions Eq. (3.11.4), and one finds:

Zx1
x0

@u
@u0

g0idx ¼
@u
@u0

gi


 �x1
x0

�
Zx1
x0

gi
d
dx

@u
@u0

� 	
dx ¼ �

Zx1
x0

gi
d
dx

@u
@u0

� 	
dx ð3:11:14Þ

Using Eqs. (3.11.14) and (3.11.13), one obtains:

@H
@ei

����
e1¼e2¼0

¼
Zx1
x0

@u
@u

� d
dx

@u
@u0

� 	
gidx ¼ 0 ð3:11:15Þ

Since gi are differentiable functions, the fundamental lemma of the variational
calculus can be applied to Eq. (3.11.15), leading to:

@u
@u

� d
dx

@u
@u0

¼ 0 ð3:11:16Þ

This is the Euler-Lagrange equation attached to the isoperimetric problem
defined by Eqs. (3.11.1) and (3.11.2).

Examples
(a) Find the form of a curve of given length L, for which I ¼ R x1x0 ydx is maximum
and y x0ð Þ ¼ y0; y x1ð Þ ¼ y1:

Solution
The functional to be extremized is

I ¼
Zx1
x0

ydx
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and the constraint is

L ¼
Zx1
x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p
dx

Also:

y x0ð Þ ¼ y0; y x1ð Þ ¼ y1:

Build the function:

uðu; u=Þ ¼ uþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
Then, the new functional to be extremized is

H ¼
Zx1
x0

yþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

p� 

dx

Since the integrand does not explicitly depend on x, then, instead of using the
Euler-Lagrange equation:

@u
@u

� d
dx

� @u
@u0

¼ 0

one uses its first integral

u� u0uu0 ¼ c1

or

uþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
� ku02ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u02
p ¼ c1

which gives

u� c1 ¼ � kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p

Define the parameter t by

u0 ¼ tgt;�p=2\t\p=2:

It comes out:
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u� c1 ¼ �kffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p ¼ �kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tg2t

p ¼ �k cos t

This means that

dx ¼ du
tgt

¼ k sin t
tgt

dt ¼ k cos tdt

By integration, one finds:

x ¼ k sin tþ c2

So, the parametric representation of the extremal is:

u� c2 ¼ k sin t

u� c1 ¼ �k cos t

To remove t, one raises to the square power and add. One obtains:

x� c2ð Þ2 þ u� c1ð Þ2¼ k2

which is a family of circles with the center in c1; c2ð Þ and the radius equal to k. The
boundary conditions to find the constants c1; c2 and k are:

u x0ð Þ ¼ y0

u x1ð Þ ¼ y1Z x1

x0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u02

p
dx ¼ L

(b) Find the closed plane curve of given length including a maximum surface
area.

Solution
The curve has the parametric form

x ¼ xðtÞ y ¼ yðtÞ t0 � t� t1
Denote by I the surface area of the curve and by L the given length of the curve.

Green theorem states that:
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I ¼ 1
2

Zt1
t0

ðx _y� y_xÞdt

and the curve length is given by

L ¼
Zt1
t0

ð _x2 þ _y2Þ1=2dt

Build the integral

H ¼
Zt1
t0

½1
2
ðx_y� y_xÞþ kð _x2 þ _yÞ1=2�dt

so that:

uðx; y; _x; _yÞ ¼ 1
2
ðx _y� y _xÞþ kð _x2 þ _yÞ1=2

By partial differentiation:

@u
@x

¼ _y
2

@u
@y

¼ � _x
2

@u
@ _x

¼ � y
2
þ k _x

ð _x2 þ _y2Þ1=2

@u
@ _y

¼ x
2
þ k_y

ð _x2 þ _y2Þ1=2

The Euler-Lagrange equations are:

@u
@x

� d
dt
@u
@ _x

¼ 0

@u
@y

� d
dt
@u
@ _y

¼ 0

They become:
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_y
2
� d
dt

� y
2
þ k _x

ð _x2 þ _y2Þ12

" #
¼ 0

� _x
2
� d
dt

x
2
þ k _y

ð _x2 þ _y2Þ12

" #
¼ 0

One choses the length s of the arc along the curve as a parameter. Then

_x2 þ _y2ð Þ12¼ 1 and the Euler-Lagrange equations reduce to:

_y� k€x ¼ 0 _xþ k€y ¼ 0

By integration, one obtains:

y� k_x ¼ C1 xþ k _y ¼ C2 ðaÞ

Elimination of y gives:

k2€xþ x ¼ C2

which has the general solution

x ¼ a � sin s
k
þ b � cos s

k
þC2

where a, b are arbitrary constants. From the first Eq. (a) one finds:

y ¼ a � cos s
x
� b � sin s

k
þC1

The solution can be written as follows:

x ¼ C sin
s
k
þ a

� 

þC2

y ¼ C cos
s
k
þ a

� 

þC1

where C1;C2;C; a are arbitrary constants. These are the parametric equations of a
circle of radius C and center ðC1;C2Þ. Obviously, C ¼ L=ð2pÞ. By replacing the
solution into the integral giving L, and taking the limit of s as s0 and s0 þ 2pC, one
finds that k ¼ C ¼ L=ð2pÞ. The quantities C1;C2; a can be obtained by using
additional information, for instance fixing the coordinates of a point and the slope
of the tangent in that point.
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3.11.1 Extreme with More Constraints

The approach will be generalized in this section for the case when there are more
constraints. In essence, the procedure is similar to the previous one. Therefore the
deduction of the results is only sketched. Assume the extremization of the integral:

I ¼
Zx1
x0

Fðx; y; y0Þdx ð3:11:17Þ

Here the functions y xð Þ are differentiable and have continuous derivatives and
they must satisfy N additional conditions:

Kj ¼
Zx1
x0

Gjðx; y; y0Þdx ¼ const ðj ¼ 1; . . .;NÞ ð3:11:18Þ

as well as the boundary conditions:

y x0ð Þ ¼ y0 y x1ð Þ ¼ y1 ð3:11:19Þ

As usual, one denotes by u xð Þ the extremal function. One builts the family of
function with N þ 1 parameters ei:

yðxÞ ¼ uðxÞþ
XNþ 1

i¼1

eigiðxÞ ð3:11:20Þ

where the arbitrary functions gi have continuous derivatives and fulfil the boundary
conditions:

gi x0ð Þ ¼ gi x1ð Þ ¼ 0 i ¼ 1; . . .;Nþ 1ð Þ ð3:11:21Þ

Then, the following function is built:

u x; y; y0; kð Þ ¼ F x; y; y0ð Þ þ
XN
j¼1

kjGj x; y; y
0ð Þ ð3:11:22Þ

where kj are Lagrange multipliers. One builds the functional:

H e1; e2; . . .; eNþ 1ð Þ ¼
Zx1
x0

u x; y; y0ð Þdx ð3:11:23Þ
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It thus comes to finding the extremum of the function H with respect to the
parameters ei i ¼ 1; . . .;Nþ 1ð Þ in points ei ¼ 0. Thus

@H
@ej

����
0

¼ 0 j ¼ 1; . . .;Nþ 1ð Þ ð3:11:24Þ

The sign |0 designates the fact that after the derivation, all the parameters ei will
be canceled. But:

@H
@ej

¼
Zx1
x0

@u
@y

@y
@ej

þ @u
@y0

@y0

@ej

� 	
dx ¼

Zx1
x0

@u
@y

gj þ
@u
@y0

g0j

� 	
dx ð3:11:25Þ

and after calculations one obtains:

@H
@ej

����
0

¼
Zx1
x0

@u
@u

gj þ
@u
@u0

g0j

� 	
dx ¼ 0 j ¼ 1; . . .;N þ 1ð Þ ð3:11:26Þ

One integrates Eq. (3.11.26) by parts, by using the boundary conditions
Eq. (3.11.21), and one finds

@H
@ej

����
0

¼
Zx1
x0

@u
@u

� d
dx

@u
@u0

� 	
gjdx ¼ 0 j ¼ 1; . . .;Nþ 1ð Þ ð3:11:27Þ

Since the functions gi are differentiable, in Eq. (3.11.27) one can apply the
fundamental lemma of the variational calculus, and the following Euler-Lagrange
equation is obtained:

@u
@u

� d
dx

@u
@u0

¼ 0 ð3:11:28Þ

This is a second order differential equation, which, after solving, introduces two
constants of integration. As a result, there will be Nþ 2 unknowns, i.e.
ki i ¼ 1; . . .;Nð Þ and the two constants of integration. These unknowns can be
determined from the Nþ 2 equations [i.e. Eqs. (3.11.18) and (3.11.19)].

3.11.2 The Case of Multiple Dependent Variables

Consider the extremization of the next integral, whose integrand contains several
functions depending on only one independent variable:
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I ¼
Zt1
t0

F x; y; . . .; z; _x; _y; . . .; _z; tð Þdt ð3:11:29Þ

The dot over a letter designates, as usual, the derivative with respect to the
independent variable t. The extremization is performed with respect to the functions
x tð Þ; y tð Þ; . . .; z tð Þ, which (in addition to the differentiability conditions and some
boundary conditions) should fulfill the next N constraints expressed as integrals:

Kj ¼
Zt1
t0

Gj x; y; . . .; z; _x; _y; . . .; _z; tð Þdt ¼ const j ¼ 1; . . .;Nð Þ ð3:11:30Þ

The system of equations that arises after using the usual procedure is:

@u
@x � d

dt
@u
@x ¼ 0

@u
@y � d

dt
@u
@y ¼ 0

� � �
@u
@z � d

dt
@u
@ _z ¼ 0

ð3:11:31Þ

where the new function / is defined by means of the Lagrange multipliers as
follows:

uðx; y; . . .; z; _x; _y; . . .; _z; kÞ ¼ Fðx; y; . . .; z; _x; _y; . . .; _zÞþ
XN
j¼1

kjGjðx; y; . . .; z; _x; _y; . . .; _z; kÞ

ð3:11:32Þ

Equations (3.11.31) are solved so that all boundary conditions and the con-
straints Eq. (3.11.30) are satisfied.
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Part II
Theory

Part II consists of four chapters and presents a summary of the optimal control
theory. Chapter 4 shows the classifications of optimal control methods and some
criteria for choosing between these methods, analysed in terms of specific appli-
cations. Chapters 5–7, respectively, treat three of the most commonly used optimal
control methods: the maximum principle (Chap. 5), the gradient method (Chap. 6)
and the Bellman method (Chap. 7).
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Chapter 4
Generalities Concerning the Optimal
Control Problems

4.1 Variational Problems with Differential Equations
as Constraints

Since optimal control constitutes a generalization of the classical variational cal-
culus, it is useful to briefly review some basic facts, which are common to both
approaches. All formulas are given here without demonstration.

4.1.1 Generalization of Some Notions
of Variational Calculus

The problem addressed here consists of the extremization of an integral under
m constraints, which can be either differential or algebraic equations. The integral is:

J ¼
ZtE
tA

L t; yi; y
0
i

� �
dt i ¼ 1; � � � ; nð Þ ð4:1:1Þ

where the functions yi ¼ yi tð Þ fulfill, as been said, the constraints (or auxiliary
conditions) of the form of Eqs. (4.1.2)–(4.1.4) below:

ZtE
tA

c
_

j t; yi; y
0
i

� �
dt ¼ 0 ĉj t; yið Þ ¼ 0 ~cj t; yi; y

0
i

� � ¼ 0 ð4:1:2; 3; 4Þ

The conditions Eq. (4.1.2) are integral conditions while those of the type
Eqs. (4.1.3) and (4.1.4) are ordinary equations and ordinary differential equations,
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respectively. In the general case, these m constraints can be all of the same type, or
of different types. The number m must be strictly smaller than n; otherwise the
functions yi would be obtained by simply resolving the constraints.

The boundary conditions consist of k additional relationships:

xk tA; yi tAð Þ; tE; yi tEð Þ½ � ¼ 0 k ¼ 1; � � � ; r� 2mþ 2 ð4:1:5Þ

The problem consisting of Eqs. (4.1.1)–(4.1.4) may be regarded as a constrained
extreme problem and can be solved by using the method of the Lagrange multi-
pliers. For brevity, the notation cj is used either for c_j; ĉj or ~cj. One defines the new
function:

~L � �k0Lþ
Xm
j¼1

ki tð Þcj t; yi; y0i
� � ð4:1:6Þ

where ki i ¼ 0; � � � ;mð Þ are multipliers. The necessary extreme conditions are
obtained by replacing the function ~L in the Euler-Lagrange equations:

~L
��
yi

h i
¼ ~Lyi �

d
dt
~Ly0i ¼ 0 i ¼ 1; � � � ; nð Þ ð4:1:7Þ

Legendre’s condition implies the inequality (4.1.8, 9) below, under the condition
that Eq. (4.1.9) is fulfilled:

Xn
i¼1

Xn
k¼1

~Ly0iy0k dyidyk � 0
Xn
j¼1

@cj
@c0i

dyi ¼ 0 ð4:1:8; 9Þ

and the Weierstrass condition is

E � ~L t; ŷi; y
0
î

� �� ~L t; ŷi; p̂i
� ��Xn

i¼1

y0i � pi
� �

~Ly0i t; ŷi; p̂i
� �� 0 ð4:1:10Þ

Equations (4.1.8, 9) and (4.1.10) are valid when Eq. (4.1.1) reaches its mini-
mum, and the index î is used in Eq. (4.1.10) to make distinction from the sum-
mation index. The Weierstrass-Erdmann corner condition has the form:

~L�
Xn
i¼1

pi~Ly0i

 !
t�
¼ ~L�

Xn
i¼1

pi~Ly0i

 !
tþ

~Lyi
� �

t�¼ ~Lyi
� �

tþ ð4:1:11; 12Þ

where t�; tþ designate the direction in which the corner is browsed, and the
condition of transversality is described as:
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~L�
Xn
i¼1

pi~Ly0i

 !
dtþ

Xn
i¼1

~Ly0i dyi ¼ 0 ð4:1:13Þ

The partial differential equation Hamilton-Jacobi is given by:

St � H t; yi; Syi
� � ¼ 0 ð4:1:14Þ

where the Hamiltonian H is defined by using the function ~L, given by Eq. (4.1.6), as
follows:

H t; yi; Syi
� � � ~L t; yi;wið Þ �

Xn
k¼1

wk
~Lyk t; yi;wið Þ ð4:1:15Þ

The multipliers k have the following properties: k0 ¼ const� 0, kj ¼ const, for
integral conditions and kj ¼ kj tð Þ for conditions expressed as algebraic equations
and ordinary differential equations.

4.1.2 Differential Equations Acting as Constraints.
Consequences

The results of Sect. 4.1.1 are difficult to be proved when the constraints are dif-
ferential equations (Tolle 1975, p. 30). The following simple example shows the
cause of the difficulties, which arise when the differential equations which serve as
constraints are under-determined (i.e. there are more dependent variables yi than
differential equations). This is actually the case of Sect. 4.1, since m\n.

Consider in the three-dimensional space t; y1; y2ð Þ the following
under-determined differential equation:

y02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y021

q
ð4:1:16Þ

The solution of Eq. (4.1.16) is an expression of the type f t; y1; y2ð Þ ¼ 0. From
the geometric point of view it is a curve C in that three-dimensional space. The
projection C� of the curve on the plane t; y1ð Þ is given by the equation
f t; y1; y2 ¼ 0ð Þ ¼ 0, which can be put under the form y1 ¼ y1 tð Þ. The length of the
arc ds� of the curve C� is given by:

ds� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dt2 þ dy21

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y021

q
dt ð4:1:17Þ

On the other hand, from Eq. (4.1.16) one finds:
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dy02 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y021

q
dt ð4:1:18Þ

By integrating Eq. (4.1.18) one obtains, by using Eq. (4.1.17):

y2 tð Þ � y2 tAð Þ ¼
Z t

tA

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y021

q
dt ¼

Z
C�

ds� ¼ l� tA; y1 tAð Þ½ �; t; y1 tð Þ½ �f g ð4:1:19Þ

where l� tA; y1 tAð Þ½ �; t; y1 tð Þ½ �f g represents the length of arc of the curve C� between
the two extremities (denoted PA and P), of the integration path. But the length of
this arc is always greater than, or equal to, the distance d tA; y1 tAð Þ½ �; t; y1 tð Þ½ �f g
between points PA and P, so:

l� tA; y1 tAð Þ½ �; t; y1 tð Þ½ �f g� d tA; y1 tAð Þ½ �; t; y1 tð Þ½ �f g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tAð Þ2 þ y1 tð Þ � y1 tAð Þ½ �2

q
ð4:1:20Þ

From Eqs. (4.1.19) and (4.1.20) it follows that:

y2 tð Þ� y2 tAð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tAð Þ2 þ y1 tð Þ � y1 tAð Þ½ �2

q
ð4:1:21Þ

The main consequence of Eq. (4.1.21) is that there are restrictions imposed to
the curves y2 t; y1ð Þ which can be solutions of Eq. (4.1.16). In other words, it should
be considered the possibility that the set of extremal curves has a bounded rather
than an arbitrary codomain. This is the essential reason which makes difficult the
demonstration of the results in Sect. 4.1.

The restriction imposed to the set of solutions of the under-determined differ-
ential Eq. (4.1.16) corresponds virtually to an extremality condition, as explained
below. If, for the problem of constrained optimization:

ZtE
tA

L t; y; y0i
� �

dt ¼ min ~cj t; yi; y
0
i

� � ¼ 0 ð4:1:22; 23Þ

the following function is defined:

y0 tð Þ �
Z t

tA

L s; yi; y
0
i

� �
ds ð4:1:24Þ

then Eqs. (4.1.22) and (4.1.23) become the under-determined system of differential
equations:
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y00 � L t; yi; y
0
i

� � ¼ 0 ð4:1:25Þ

~cj t; yi; y
0
i

� � ¼ 0 ð4:1:26Þ

If one denotes by n tð Þ the minimum value of Eq. (4.1.24), then:

y0 tð Þ� n tð Þ ð4:1:27Þ

i.e. the minimum value of Eq. (4.1.23) is the limit solution of the system of
Eqs. (4.1.25), (4.1.26), as in the previous example

y2 tAð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tAð Þ2 þ y1 tð Þ � y1 tAð Þ½ �2

q
ð4:1:28Þ

was the limit solution of Eq. (4.1.16).
Consequently, it was emphasized a characteristic property of an

under-determined system of differential equations acting as a constraint, namely
that it admits, on one hand, solutions with extremality properties that do not refer to
the integral which is to be minimized (or maximized) and, on the other hand,
solutions that constitute extremal curves (or arcs) only for the integral in
Eq. (4.1.22).

The limit solutions (or arcs) of the system, because of their extremality property,
should obey the Euler-Lagrange equations:

@

@yi

Xm
j¼1

kj~cj �
d
dt

@

@y0i

Xm
j¼1

kj~cj

 !
¼ 0 ð4:1:29Þ

When these equations are used together with Eq. (4.1.6), one obtains:

k0
@L
@yi

� d
dt

@L
@y0i

� �
¼ 0 ð4:1:30Þ

Since not all functions yi can be chosen arbitrarily, the bracket in Eq. (4.1.30)
does not generally cancel, which lead to the need that k0 ¼ 0.

In conclusion, in the case of solving a general optimization problem of type
Eq. (4.1.1) with differential equations acting as constraints, one may obtain, in
some cases, arcs which are characterized by extremality conditions of the integral,
and for which, consequently, the so-called normal solution k0 6¼ 0 must be valid. In
other cases, arcs are obtained which represent the limit of the solution curves of the
differential equations system. These are called abnormal arcs, which are indepen-
dent of the integral to be extremized and for them the relationship k0 ¼ 0 have to be
accomplished. Both types of solutions (or arcs) satisfy the Euler-Lagrange
equations.
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4.1.3 Problems of Type Lagrange, Mayer and Bolza

The problem of constrained optimization:

ZtE
tA

L t; y; y0i
� �

dt ¼ min ~cj t; yi; y
0
i

� � ¼ 0 ð4:1:31; 32Þ

where the extreme of Eq. (4.1.31) is determined by finding some functions yi
satisfying, in addition, certain boundary conditions, is called the Lagrange problem.

The particular case of the extremization of Eq. (4.1.31) in which one neglects the
constraints Eq. (4.1.32) is a common problem of classic variational calculus. Under
the conditions of this particular case, the problem has no solution when L is an exact
total differential:

L t; yi; y
0
i

� � ¼ @P t; yið Þ
@t

þ
Xm
k¼1

@P t; yið Þ
@yk

y0k ð4:1:33Þ

because the integral in Eq. (4.1.31) does not depend on trajectory (i.e. it is no longer
dependent on the functions yi, which actually determine the extreme).

However, the situation when L is an exact total differential leads to solutions,
when the problem of Eqs. (4.1.31) and (4.1.32) is considered (i.e. when the con-
straints are taken into account). Indeed, if the method of Lagrange multipliers is
applied, by introducing the function ~L given by Eq. (4.1.6), the necessary extreme
condition is:

@

@yi
�k0Lþ

Xm
j¼1

kj~cj

 !
� d
dt

@

@y0i
�k0Lþ

Xm
j¼1

kj~cj

 !

¼� k0
@2P
@t@yi

þ
Xm
k¼1

@2P
@yi@yk

yk � d
dt
@P
@yi

 !
þ @

@yi

Xm
j¼1

kj~cj �
d
dt

@

@yi

Xm
j¼1

kj~cj

 !
¼ 0

ð4:1:34Þ

Since a total differential equation exactly satisfies the Euler-Lagrange equations,
as it can be verified by performing the calculations, Eq. (4.1.34) reduces to
Eq. (4.1.29). Therefore, all comments at the end of Sect. 4.1.2 are still valid. The
solutions of the problem of Eqs. (4.1.31) and (4.1.32) when L is total exact dif-
ferential are the limit arcs of the system of differential Eq. (4.1.32). In the particular
case considered here, these solutions are the only extremal curves, while in the
general case they are added to the extremal curves associated with the integral in
Eq. (4.1.31).
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From the integral in Eq. (4.1.31) one finds that:

J ¼
ZtE
tA

@P
@t

þ
Xm
k¼1

@P
@yk

y0k

 !
dt ¼

ZtE
tA

dP ¼ P tE; yi tEð Þ½ � � P tA; yi tAð Þ½ � ð4:1:35Þ

Since the initial values are usually fixed, the problem of Eqs. (4.1.31) and
(4.1.32) reduces to the following problem of constrained optimization:

P ¼ P tE; yi tEð Þ½ � ¼ min ~cj t; yi; y
0
i

� � ¼ 0 ð4:1:36; 37Þ

where the extremum of Eq. (4.1.36, 37) is determined again by finding some
functions yi that satisfy, in addition, certain boundary conditions. The optimization
problem of Eqs. (4.1.36) and (4.1.37) is called the Mayer problem. In the simplest
case, P ¼ tE. Then the Mayer problem means simply the minimization of the
process length.

The specific feature of the Mayer problem is that the extremal trajectories (or
curves) are independent of the final state of the quantity to be extremized, that is P.

The comments in the preceding paragraphs show that the Mayer problem is a
particular case of the Lagrange problem. If one returns to the discussion on the limit
arcs, one sees that the Mayer problem of Eqs. (4.1.25), (4.1.26) (in which P is
easily identified as P ¼ y0 tEð Þ) was solved by using the Lagrange problem of
Eqs. (4.1.22) and (4.1.23) and the definition Eq. (4.1.24). Therefore, any Lagrange
problem can be seen, by a certain extension of the coordinates, as a particular case
of the Mayer problem.

The optimization problem with constraints of the type:

J ¼ P tE; yi tEð Þ½ � þ
ZtE
tA

L t; y; y0i
� �

dt ¼ min ~cj t; yi; y
0
i

� � ¼ 0 ð4:1:38; 39Þ

where the extreme of Eq. (4.1.38) is determined by finding some functions yi
satisfying, in addition, certain boundary conditions, is called the Bolza problem. It
can be shown that a Bolza problem can be turned either into a Lagrange problem or
a problem Mayer.

4.2 Solving Optimal Control Problems

Before going into the details of optimal control problems it is a useful to present an
overview of the main features of the different optimization methods studied so far.
Similarities and differences between them will be emphasized. In this book the
following problems are treated in order of increasing complexity, (i) extremization
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of real functions, (ii) extremization of functionals, by using the calculus of varia-
tions and (iii) optimal control problems.

4.2.1 Constraints on the Solutions

The classic approach of a mathematical problem is by using analytical methods. In
other words, it is thought that only the formulation and the analytical solution of the
problem can provide the required rigor. In this respect, the traditional variational
calculus provides the analytical conditions which must be satisfied by any opti-
mization problem. Usually there are four basic aspects: (1) formulate the necessary
conditions imposed to the solution of the problem, (2) formulate the sufficient
conditions that must be satisfied by the solution, (3) formulate and verify the
conditions that ensure the existence of the solution and (4) formulate and test the
conditions that ensure the uniqueness of the solution.

Only the necessary conditions of existence of the solution are discussed in this
book. Two are the reasons for this approach. First, treating the other three aspects
requires using a special mathematical apparatus, whose presentation is far beyond
the scope of this work. Second, answers to the other questions are often obtained in
practice during the physical formulation of the problem. Note, however, that
although the aspects of existence and uniqueness of the solution are not specifically
treated, most of the problems provide answers to these questions. Appropriate
reference to literature will cover in part this omission.

It is essential, however, to note that the necessary conditions, which usually have
the appearance of ordinary differential equations, do not always directly provide the
desired solution. The simplest case is considered as an example, i.e. searching the
absolute maximum of a real function f xð Þ of one variable. The necessary extreme
condition consists of canceling the first derivative of the function df =dx ¼ 0ð Þ. It is
easy to see that this condition is met, besides the absolute maximum or minimum
points, by the points of relative maximum or minimum, and by the stationary
points. The conclusion is that studying the necessary conditions allows to obtaining
a list of possible solutions, from which, by using other methods, the effective
solution to the problem is to be found.

An important feature of the calculus of variations, which was mentioned, is that
it may represent the necessary conditions in two different but equivalent ways. For
example, consider the issue of finding that function y tð Þ for which

J ¼
ZtE
tA

L t; y tð Þ; y0 tð Þ½ �dt ¼ max or minf g ð4:2:1Þ

by ensuring the boundary conditions:
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y tAð Þ ¼ A y tEð Þ ¼ E ð4:2:2Þ

where A and E are given numbers. It is obvious that, for a given time tA, the extreme
value of the functional J is generally uniquely determined for any endpoint tE; yEð Þ
(this is ensured by a suitable choice of the derivative y0 tð Þ). The exception consists
of the singularity cases, which are not considered here. If one denotes the extreme
of J by S, it will only depend on the end point; thus, it can be represented as a
function of two variables S tE; yEð Þ. Then, one can write:

S ¼
Z

dS ¼
Z

@S
@t

dtþ @S
@y

dy

� �
¼
Z

@S
@t

þ @S
@y

dy
dt

dy

� �
dt ð4:2:3Þ

One sees that in the integral of Eq. (4.2.3) there are partial derivatives of Sand
the derivative of y with respect to the independent variable t. One concludes that, if
the extreme value S is searched, the result consists of partial differential equations
(i.e. Hamilton-Jacobi equations), and if one searches for optimal trajectory (or
extremal curve) y tð Þ, the result consists of ordinary differential equations (i.e.
Euler-Lagrange equations).

However, the variational calculation procedure that uses ordinary differential
equations to formulate the necessary conditions is more often used in engineering
practice, since it is easier associated with numerical evaluations and direct physical
interpretations.

Generally, the optimal control problems lead to ordinary differential equations.
They differ from the constrained classical variational calculus problems in that:

(a) one distinguishes between control functions and state variables.
(b) the control functions can have a finite application codomain (i.e. the domain of

their values). This extends the classic variational calculus, where an unbounded
domain of values is usually assumed for the dependent variables.

Note that the feature (b) is typical for most applications of engineering interest.
They usually have control parameters (e.g., speed, acceleration, flow, etc.) that can
vary between zero and a maximum value.

4.2.2 The Principle of Optimality for Parts
of the Optimal Trajectory

An assumption often used when solving optimal control problems is the principle of
optimality for the parts of the optimal trajectory. This principle states that, when the
optimization is performed only for the control functions, not only the “final” path is
optimal, but each portion of it is optimal. Indeed, if it were not so, one could replace
the portion that is not optimal with an optimal portion and would thus obtain a
better final trajectory, which contradicts the hypothesis.
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4.2.3 Direct and Indirect Methods

One method often used for solving optimal control problems is based on the
principle of Pontryagin (or the maximum principle) (Pontryagin et al. 1962).
Similar to calculus of variations, this method expresses the necessary conditions
imposed to the solution by means of a (generally nonlinear) system of first order
ordinary differential equations. To find the extremal curves (sometimes called
optimal trajectories), it should be clarified, as usual, the boundary conditions
specific to the problem. Solving the system of equations is usually possible only by
numerical methods.

So, the following question naturally arises: is it possible to find direct numerical
methods for solving optimal control problems (instead of starting by formulating
necessary conditions for the analytical solutions, which finally lead to equations that
can be solved only by numerical methods—as does the method based on the
principle of Pontryagin)? The answer is that such methods do exist. Among them,
in this book one shall present the gradient method and the dynamic programming
(or the Bellman method). It is to be noted, however, that the principle of Pontryagin
leads, as in the case of classical variational calculus, to general formulations, which
refer to the complete set of solutions, while using direct numerical methods can
provide only one particular solution of the problem.

The gradient method has as starting point a specific solution of the differential
equations that act as constraints for the state variables. To find this solution, trial
expressions of the control functions are used, under the implicit assumption that
they are close to reality. The control functions so selected, and the resulting state
variables, are introduced in the functional to be extremized, which is thus trans-
formed into a function depending only on the value of the state variables at the end
of the time period (or, more generally, on the values of the state variables at the
right end of the independent variable). One then tries to observe the effect that a
change of the control functions has on the value of the functional as well as on the
values of the state variables calculated at the end of the time period. The latter are
compared with those prescribed by the boundary conditions. One develops an
iterative procedure (i.e. step-by-step), which is seeking that the difference between
the calculated values and those prescribed to be diminished as quickly as possible.
The iterative procedure is stopped when the difference falls below a value con-
sidered acceptable and the value which extremizes the functional can not be
improved by changes to the control functions. This method yields only local
optimum values. On the other hand, the shape of the optimal curves depends on the
shape of the trial curves chosen as first guess of the control functions, because the
procedure only changes those parts of the control functions that significantly
influence the value of the functional to be extremized. A positive aspect of this
method is that each iteration gets and improved value of the functional, which
allows visualization of those parts of the optimal curves that have the stronger effect
on the optimization process. This is particularly important when imposed restric-
tions on admissible solutions exist. The above, combined with a certain freedom for
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implementing the procedure, make from the gradient method a very attractive
optimization tool for engineers.

One of the limits of the gradient method is that it finds local extremes only. Thus,
in situations where there are more local extremes, the solution obtained depends on
the choice of the starting point. The obtained extreme will typically be the nearest
local extreme.

The main difference between the gradient method and Pontryagin’s maximum
principle is that the first method allows finding a single solution, which is part of the
set of solutions that can be found by using the second method.

At first glance, the connection between dynamic programming and other opti-
mization methods does not appear to be obvious. The essence of dynamic pro-
gramming consists, as with other numerical methods, in meshing the relationship
deducted based on some assumptions of continuity (such as, for example, the
ordinary differential equations). For example, consider the problem of finding in a
plane of coordinates x1; x2ð Þ an optimal curve (or optimal path) that connects the
starting point A x1A; x2Að Þ to the end point E x1E; x2Eð Þ so that a certain functional
reaches a maximum on that path. It is assumed that the optimal trajectory exists.

The simplest method of solving the problem, but also the least effective, means
creating a two-dimensional grid between points A and E and trying all possible
routes on the grid that connect the two points. For each route, the value of the
functional is computed, and on one of those paths (the optimal path) this value will
be a maximum. By creating a new grid, finer than the first, and repeating the
procedure, a new path and a new optimal value for the functional will be found. The
difference between the two optimal trajectories and the two maximum values may
not be significant if the two grids differ little in terms of smoothness. This method
(also called the grid method) has the advantage of finding global solutions, because
the whole region is investigated between starting and end points. This eliminates
the need to perform difficult mathematical analysis, concerning the sufficient con-
ditions, the existence and the uniqueness of the solution. Furthermore, the con-
straints that the solution must fulfill do not increase the difficulty of solving the
problem but they make it easier, because they are limiting the domain where the
optimal trajectory is found. The weakness of the grid method consists in the amount
of time spent to search for the optimal route, which is growing fast with increasing
the problem size. For example, a problem whose constraints consists of six first
order differential equations, solved by using a grid of 10 divisions, involves
investigating all connections between 106 points. If the grid increases, with one
order of magnitude only, that it has 100 divisions, the solution requires to inves-
tigate all the connections between 1012 points, that is a number of points with six
orders of magnitude greater than in the first case.

Bellman’s essential contribution was to apply the grid method and the systematic
use of the fact that for an optimal curve, every portion of it is also optimal (Lapidus
and Luus 1967). Thus, the search time can be reduced significantly. The idea,
though simple, can not always be applied easily in automatic search processes
(using, for example, a computer) of the optimal path. Bellman and collaborators’
merit consisted precisely in developing an elegant general search method,
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subsequently called dynamic programming. Note that dynamic programming can
be equally well used to solve other problems than optimal control. It should also be
noted that although the dynamic programming greatly reduces the search time
compared to the grid method, the difficulties related to the large amount of cal-
culations are maintained, especially for large-scale problems.

It can be concluded that the methods for solving optimal control problems fall
into two categories:

• indirect methods (in which the optimal solution is first subjected to a set of
necessary conditions). In this book indirect methods will be exemplified by
shortly treating the principle of Pontryagin.

• direct methods (which directly determine the optimal solution, i.e. without
specifying some necessary conditions). Here, the gradient method and the
dynamic programming will be briefly presented.

Any optimal control problem is introduced, in accordance with the commonly
accepted mathematical model, by specifying the equations of motion and associated
boundary conditions, which describe the system’s behavior. In the equations of the
problem one can always separate a group of dependent variables that describe the
behavior of the system and a group of control functions, accessible to be changed
from the exterior of the system, that have values belonging to a given domain of
available controls. The optimal control problem consists of finding, from the set of
available controls, those which provide the extreme (minimum or maximum) value
of a given functional (which depends in the general case both on the solution of the
dynamic equations and on the controls).

It should be noted that besides the issues presented in this book, the optimal
control theory studies other types of problems, such as, for example, delays or
optimal control problems whose constraints are partial differential equations.
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Chapter 5
The Maximum Principle (Pontryagin)

As has been already mentioned, the usage of the classic variational calculus faces
conceptual difficulties if the values of the dependent variables are bounded. This
situation is common in engineering. As a result, a general method able to meet the
technical requirements of the process control has been developed between 1956 and
1960. The method, known as the “Maximum Principle” is due to L.S. Pontryagin
and his collaborators (Pontryagin et al. 1962). The theory developed on the base on
this method is presently considered the most powerful mathematical tool that can be
used to solve optimal control problems with constraints expressed by ordinary
differential equations.

Basic results of the Pontryagin theory are briefly presented in the following.
Demonstrations are mostly based on the Lebesque measure theory and are omitted
here. They can be found in the book already cited.

5.1 Preliminaries

Pontryagin and collaborators have observed that many kinds of constraints can be
put in the form of first-order differential equations, such as:

y0j ¼ gjðt; yjÞ ð5:1:1Þ

Also, they observed that a clear separation between variables whose derivative y0

is given by Eq. (5.1.1) and other variables is very useful. The variables entering
Eq. (5.1.1) are named state variables. In the following they are denoted u tð Þ. The
variables whose derivatives do not appear in the constrains Eq. (5.1.1) can actually
be used for optimization. They are called control functions (or, for short, controls),
being denoted u tð Þ.

With these notations, the constraints are written as
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_uj ¼ fjðui; ulÞ i; j ¼ 1; . . .;m; l ¼ 1; . . .; k ð5:1:2Þ

Here the explicit dependence on time of the functions fi was omitted. The control
functions ul l ¼ 1; . . .; kð Þ can take values in a closed domain.

In many cases, the integral to be extremized has the form:

J ¼
ZtE
tA

f0½ujðtÞ; ulðtÞ�dt ð5:1:3Þ

Here only the functions ul can be directly controlled. Note that the function f0 in
the integrand of Eq. (5.1.3) does not depend explicitly on the parameter t (which
usually is the time). In this case it is said that the function f0 is autonomous. The
situation when the function f0 depends explicitly on time (i.e., it is a
non-autonomous function) is also found in practice.

Different boundary conditions are used in practice. The simplest case corre-
sponds to the situation in which both the starting point and the end point of the state
variable interval are fixed. This corresponds to:

uj tAð Þ ¼ Aj uj tEð Þ ¼ Ej j ¼ 1; . . .;mð Þ ð5:1:4Þ

where Aj and Ej are given numbers. The final time tE is not stated from the very
beginning, but it is implicitly set by the last Eq. (5.1.4).

Next, a generalization of the boundary conditions based on fixed end points is
presented. First, several useful notions are defined.

In a space of dimension m, a hypersurface of dimension m (or, in other words, a
m—hypersurface) can be defined by specifying an equation of the form:

g x1; . . .; xmð Þ ¼ 0 ð5:1:5Þ

It is said that the hypersurface is smooth if the function is differentiable and the
vector of the normal at the surface defined by Eq. (5.1.5), given by:

grad g � @g
@x1

; . . .;
@g
@xm

� �
ð5:1:6Þ

does not cancel somewhere. Consider r hypersurfaces of dimension m, given by the
system of equations:

g1 x1; . . .; xmð Þ ¼ 0
. . .
gr x1; . . .; xmð Þ ¼ 0

ð5:1:7Þ

The intersection M of all these hypersurfaces, i.e. the set of all points that satisfy
Eq. (5.1.7), is called manifold of dimension m-r, provided the vectors of the
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normals at the r hypersurfaces, grad g1; . . .; grad gr, are linearly independent at any
point. Thus, a z-dimensional manifold is defined by m-z equations and a manifold of
dimension m-1 is a hypersurface of dimension m.

Consider now the case in which one or both ends of the optimal trajectory must
end on a given z-dimensional manifold z\mð Þ, for example on the zE-dimensional
manifold ME. Therefore, m end conditions should be found, to replace the fixed end
conditions uj tEð Þ ¼ Ej. It is immediately apparent that m-z conditions are obtained
from the fact that uj tEð Þ must be found on the manifold ME [which is specified by
m-z equations like Eq. (5.1.7)].

For completeness, it is stated, without demonstration, how the other z end
conditions can be obtained. They come from the requirement that a certain vector w
(which is defined in the next Sect. 5.2), of components

w tEð Þ � w1 tEð Þ; . . .;wm tEð Þf g ð5:1:8Þ

must coincide with the vector of the normals to the manifold. In other words, this
vector must be perpendicular on z independent directions in the tangent plane to the
manifold ME.

5.2 The Fundamental Theorem

The main theorem of the Pontryagin theory is presented now (Marciuk 1983
p. 507). To simplify notation, the case tA ¼ 0 and tE ¼ T is considered in this
section, without any prejudice to the generality.

Consider a dynamic system whose evolution in time is described by the fol-
lowing system of ordinary differential equations (also called dynamic equations or
equations of motion):

du
dt

¼ f ðu; uÞ; 0� t� T ; ð5:2:1Þ

with boundary conditions

uð0Þ 2 S0; uðTÞ 2 S1; ð5:2:2Þ

where u ¼ ðu1; . . .;umÞ; f ¼ ð f1; . . .; fmÞ; u ¼ ðu1; . . .; ukÞ, S and S0 are given
manifolds which, in particular, may degenerate independently into a point or may
coincides with the whole m-dimensional Euclidean space Em. Assume U � Ek is a
given closed set; it is required to find a time moment T and a piecewise continuous
control u ¼ uðtÞ 2 U, so that the trajectory associated with u ¼ uðu; tÞ must satisfy
the conditions Eqs. (5.2.1), (5.2.2) and, in addition, to ensure the next extreme:
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J u½ � ¼
ZT
0

f0ðu; uÞdt ¼ min
u2U

ð5:2:3Þ

Assume that the functions fiðu; uÞ are defined and continuous on the assembly of
the variables ðu; uÞ, together with their partial derivatives @fi=@uj, i ¼ 0; 1; . . .;m,
j ¼ 1; . . .;m and the manifolds S0 and S1 are given by the relations

S0 ¼ u : uið0Þ ¼ u0
i ; i ¼ 1; 2; . . .;m

� �
; ð5:2:4Þ

S1 ¼ u : hlðuðtÞÞ ¼ 0; l ¼ 1; 2; . . .; k; k�mf g; ð5:2:5Þ

Note that the situation corresponds to the left end fixed. Instead, the right end
may obey a multitude of conditions. For this, it is necessary that hlðxÞ are functions
with continuous partial derivatives, the vector system

@hlðxÞ
@x

� grad hlðxÞ; l ¼ 1; 2; . . .; k; ð5:2:6Þ

being linearly independent for any x 2 S1. In particular, in the case when k ¼ m,
from the system of Eq. (5.2.5) one may obtain the isolated points u ¼ ðu1; . . .;umÞ
that can be the coordinates of the right end of the path. Therefore it makes sense to
consider that the case k ¼ m corresponds to the optimal control problem of
Eqs. (5.2.1)–(5.2.3) with fixed right end. In the following, if S1 ¼ En one speaks
about the optimization problem of Eqs. (5.2.1)–(5.2.3) with free right end. Finally,
for 0\k\m one speaks about mobile right end. Under these assumptions, the
dimension of the manifold S1 equals m� 1, regardless the problem of Eqs. (5.2.1)–
(5.2.3) is considered with the right end being fixed, mobile or free.

Theorem 1 (the maximum principle or the fundamental theorem). It is assumed
that for the next controlled system

du
dt

¼ f ðu; uÞ; u 2 U; S0 ¼ fuð0Þ ¼ u0g; ð5:2:7Þ

S1 ¼ hlðuðTÞÞ ¼ 0; l ¼ 1; 2; . . .; kf g; ð5:2:8Þ

all above assumptions are met. Assume u tð Þ; u tð Þf g − 0� t� T is the optimal
process which brings the system from the given state u0 into the state u1 2 S1 and
consider an auxiliary function—called Hamilton function (or Hamiltonian)

Hðu;w; uÞ ¼
Xm
i¼0

wi fiðu; uÞ; ð5:2:9Þ

Then, there is a vector function, non-trivial (i.e. not all its components are
simultaneously zero)
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wðtÞ ¼ fw0;w1ðtÞ; . . .;wmðtÞg; w0 ¼ const� 0; ð5:2:10Þ

which satisfies the system of equations

@wi

@t
¼ � @H u tð Þ;w; u tð Þð Þ

@ui
; i ¼ 1; 2; . . .;m; ð5:2:11Þ

with boundary conditions

wiðTÞ ¼
Xk
l¼1

cl
@hl u Tð Þð Þ

@ui
; i ¼ 1; 2; . . .;m; ð5:2:12Þ

where c1; c2; . . .; ck are such numbers that for any time t; 0� t� T , the condition for
maximum Hamiltonian is fulfilled:

H u tð Þ;w tð Þ; u tð Þð Þ ¼ max
u2U

H u tð Þ;w tð Þ; uð Þ; ð5:2:13Þ

and, in addition, if the final time T is not fixed, the following relationship takes
place

HT ¼ H u Tð Þ;w Tð Þ; u Tð Þð Þ ¼ 0: ð5:2:14Þ

The functional of Eq. (5.2.3) which is extremized is called cost function or
objective function (or, in short, objective). The functions wi are called adjoint
functions and Eq. (5.2.11) are called adjoint equations, or associated equations.
Equations (5.2.12) and (5.2.14) are called transversality conditions, similarly to the
case encountered in the classical variational calculus.

This theorem is the core of the optimal control theory. From it, variants of the
maximum principle can be obtained, for different ways of defining the boundary
conditions and the functionals to be extremized. One could easily notice that the
case of a mobile left end would require the use of similar relationships with the
boundary conditions Eq. (5.2.12) from the right end.

The problems of optimal rapid response involve finding the shortest period of
time during which a given process can be achieved. Such problems, which are
common in technical applications, represent a particular case of the problem of
Eqs. (5.2.1)–(5.2.3), corresponding to f0ðu; uÞ ¼ 1. Next, the Theorem 1 is refor-
mulated for this particular case. Note that in this situation the Hamilton’s function
takes the form

H ¼
Xm
i¼1

wifiðu; uÞþw0�1 ¼ Ĥþw0: ð5:2:15Þ

Since @H=@ui ¼ @Ĥ=@ui, the adjoint system looks like this:
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dw
dt

¼ � @Ĥ
@u

; i ¼ 1; 2; . . .;m; Ĥ ¼
Xm
i¼1

wi fiðu; uÞ: ð5:2:16Þ

The transversality conditions Eqs. (5.2.12) and (5.2.14) do not change:

wiðTÞ ¼
Xk
l¼1

cl
@hl u Tð Þð Þ

@ui
; i ¼ 1; 2; . . .;m; ð5:2:17Þ

HT ¼ ĤT þw0 ¼ 0: ð5:2:18Þ

Since w0 � 0, the last condition can be written as an inequality

Ĥ u Tð Þ;w Tð Þ; u Tð Þð Þ� 0: ð5:2:19Þ

Finally, the maximum condition for the function H ¼ Ĥþw0 [i.e.
Equation (5.2.13)] may be rewritten in the following way:

Ĥ u tð Þ;w tð Þ; u tð Þð Þ ¼ max
u2U

Ĥ u tð Þ;w tð Þ; uð Þ: ð5:2:20Þ

As a result, it comes to the next theorem, which again is given without
demonstration.

Theorem 2 If fuðtÞ; uðTÞg; 0� t� T is the optimal rapid response solution of
the problem of Eqs. (5.2.1)–(5.2.3) (here f0ðu; uÞ ¼ 1), then there is also a
non-trivial vector function w ¼ ðw1; . . .;wmÞ satisfying the system of Eq. (5.2.16)
and the conditions Eqs. (5.2.17)–(5.2.19), so that at any time t the maximum
condition Eq. (5.2.20) takes place.

The non-triviality of the vector ðw1; . . .;wmÞ is demonstrated on the basis of
simple reasoning, which is not exposed here.

In concluding this section, is noticed that the classical variational problem,
which consists of minimizing the functional

J ¼
ZT
0

f0 u;
du
dt

; t

� �
dt ð5:2:21Þ

on the class of smooth piecewise functions that satisfy the boundary conditions

u t0ð Þ 2 S0; u Tð Þ 2 S1; ð5:2:22Þ

is a simple particular case of the problem of Eqs. (5.2.1)–(5.2.3), namely the
problem requiring to find the minimum of the functional
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J ¼
ZT
to

f0 u; u; tð Þdt; ð5:2:23Þ

with conditions

du
dt

¼ u; u 2 U � Em: ð5:2:24Þ

By using the maximum principle, one may find all the necessary conditions for
this problem which are known in the classical variational calculus, namely the Euler
conditions, the Weierstrass-Erdmann conditions that occur in the “corners” (the
break points) of the extremal, the Legendre condition and the Weierstrass condition.

5.3 Comments on the Fundamental Theorem

5.3.1 Strategies of Using the Necessary Conditions

To simplify the presentation, the case in which both interval extremities are fixed is
now considered. Then, the boundary conditions are as follows:

ui tAð Þ ¼ Ai ui tEð Þ ¼ Ei i ¼ 1; . . .;m ð5:3:1Þ

There are 2m boundary conditions which must be satisfied and k control func-
tions ulðtÞ which must be determined. In addition, the end time of the process, tE, is
unknown. There are 2m differential Eqs. (5.2.7) and (5.2.11) for the state functions
u1ðtÞ. . .umðtÞ and for the auxiliary functions w1ðtÞ; . . .;wmðtÞ. In addition, there is
the “free” constant w0, the maximum condition Eq. (5.2.13) and the condition
Eq. (5.2.14).

Usually, the maximum condition Eq. (5.2.13) allows the unknown functions
ulðtÞ to be expressed as functions of uj;wj;w0. For example, if the Hamilton
function is differentiable with respect to ul, then, for points within the domain U, the
following k relationships must be fulfilled for this maximum to take place:

@H
@ul

¼ 0 l ¼ 1; . . .; k ð5:3:2Þ

From Eq. (5.3.2) the functions ul may generally be expressed under the form
ul ¼ ulðui;wi;w0Þ. For points on the border of the domain U, analytical repre-
sentation of this border is considered, for instance q ulð Þ ¼ 0. The functions ul must
satisfy the equation q ulð Þ ¼ 0 and the maximum of H is obtained as in the usual
case of constrained optimization, by using the method of Lagrange multipliers. The
maximum condition is:
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@H
@ul

þ m
@q
@ul

¼ 0 l ¼ 1; . . .; k

q ulð Þ ¼ 0
ð5:3:3Þ

Here m is a Lagrange multiplier. There are k + 1 Eq. (5.3.3) from which the
k functions ul and m can be determined. However, ulðxi; kj; k0Þ are not necessarily
uniquely determined.

If ulðui;wi;w0Þ are replaced in Eqs. (5.2.7) and (5.2.11), one obtains only
2m differential equations, for 2m functions (i.e. ui and wi) with 2m boundary
values. It is also noticed that the initial value tA of the independent variable t can be
chosen arbitrarily, since f and f0 do not depend explicitly on t.

Since Eqs. (5.2.11) and (5.2.13) are homogeneous in wi, then w0 and wi[ 0 are
determined up to a multiplicative constant, and for w0 6¼ 0 one can always put
w0 ¼ �1. Then the condition Eq. (5.2.14), i.e. HtE¼T ¼ 0, can be used, for
example, to fix one of the initial conditions wiðtAÞ. This can be used as the basis of
the next iterative procedure of solving optimal control problems. One integrates the
differential Eq. (5.2.7) by using m − 1 estimates for the other values wiðtAÞ, the
value already fixed wiðtAÞ and the given values at the left end, until there are
satisfied either the known values uiðtEÞ at the right end, or a combination of the
values uiðtEÞ. Choosing the condition for stopping the iteration of the integration
process is doing so that this condition is specified (if possible) by a monotonous
relationship in its variables. Thus, after each integration, one obtains a set of
m values ~uiðtEÞ, which are different from the known values uiðtEÞ at the right end,
until the stop condition is fulfilled. The prerequisite for stopping the iterative
procedure can be achieved by systematic variation of the available m − 1 initial
values wiðtAÞ.

Finally, it is noticed that the differential Eqs. (5.2.7) and (5.2.11) that appear in
the fundamental theorem can be presented under the compact form:

_ui ¼
@H
@wi

_wi ¼ � @H
@ui

i ¼ 1; . . .;m ð5:3:4Þ

The similarity between Eq. (5.3.4) and the Hamilton equations of mechanics is
obvious. This justifies the name of Hamilton function given to H (or to Ĥ).

5.3.2 The Case of Non-autonomous Systems

A generalization of the maximum principle (which was stated for autonomous
systems) is its application to non-autonomous systems. The fundamental theorem
can be used in the latter case, too, if an additional state function umþ 1 is defined,
which is the time. This function should obey:
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dumþ 1

dt
¼ _umþ 1 ¼ 1 umþ 1 tAð Þ ¼ tA ð5:3:5Þ

In the particular case of the fundamental theorem stated in Sect. 5.2, tA ¼ 0.
Equation (5.3.5) may be added to the m differential equations which are the con-
straints. This allows the analysis of an autonomous system, but this time with mþ 1
variables.

5.3.3 Functionals Depending on Parameters

Next is treated briefly the case when both the function f0 u; uð Þ in the integral of the
functional to be minimized in Eq. (5.2.3) and the differential Eq. (5.2.1), which
constitute the constraints, depend on several parameters, denoted for example
x � x1; . . .;xq

� 	
. The goal is to find out the optimal values of these parameters

(Tolle 1975, p. 43).
The additional q conditions needed to determine the most advantageous values

x1; . . .;xq are determined by the integration of the Hamilton function containing
the optimal control functions ul:

H ¼ w0f0 u;w;xð Þþ
Xm
j¼1

wj tð Þfj u;w;xð Þ ð5:3:6Þ

from tA to tE and by subsequent partial differentiation with respect to x1; . . .;xq.
Explicitly, these conditions look like this:

w0

ZtE
tA

@f0
@xz

dtþ
Xm
j¼1

ZtE
tA

w tð Þ @fj
@xz

dt ¼ 0 z ¼ 1; . . .; q ð5:3:7Þ

Here the integration corresponds to the situation when x does not depend on
time; therefore, the optimal value averaged on the integration path should be
considered. The main consequence is that the principle of the optimality of the
trajectory parts does not apply in case of the optimization of the parameters (which
are constant over time). For example, it is possible that the optimal value of a
parameter is 0 for the entire trajectory, while the optimum of the same parameter
determined for a part of the trajectory is 1.

Note that Eq. (5.3.7) are of interest especially when the number of parameters is
one or two; but, in general, they do not allow to find by analytical treatment the
optimum values of the parameters; they can only be verified by using iterative
procedures. Even for a single parameter, it is often more convenient to plot the
functional to be minimized as a function of that parameter. This procedure directly
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highlights the optimal value of the parameter. If more parameters exist, then solving
Eq. (5.3.7) by using numerical methods is necessary.

5.4 Other Useful Theorems

Two theorems of the Pontryagin theory were presented in Sect. 5.2. They concern
the autonomous systems evolving for unspecified duration and the optimal fast
reaction of autonomous systems, respectively. Other three theorems are presented
next. Together with the two theorems already mentioned they constitute the core of
the results obtained by Pontryagin and collaborators. As before, demonstrations are
not presented. The three theorems can be obtained by applying the fundamental
theorem. As usual, the vector u of the state variables belong to an unbound set and
the vector u of the control functions belongs to a set which is either bounded or
unbounded and is continuous piecewise.

5.4.1 Non-autonomous Systems: Processes with Unspecified
Duration

The constraints on the non-autonomous system are the dynamic equations:

du
dt

¼ f u; uð Þ; tA � t� tE; ð5:4:1Þ

the final time tE being not specified. The functional to be minimized is

J u½ � ¼
ZtE
tA

f0ðu; uÞdt ¼ min
u2U

ð5:4:2Þ

Theorem 3 The necessary conditions for achieving the minimum Eq. (5.4.2)
consists in the existence of a nonzero vector function,

wðtÞ ¼ fw0;w1ðtÞ; . . .;wmðtÞg; w0 ¼ const� 0; ð5:4:3Þ

satisfying the system of equations

@wi

@t
¼ � @H u tð Þ;w; u tð Þð Þ

@ui
; i ¼ 0; 1; 2; . . .;m; ð5:4:4Þ

in which the Hamilton function H, which is given by:
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Hðu;w; uÞ ¼
Xm
i¼0

wifiðu; uÞ; ð5:4:5Þ

must be a maximum with respect to u. If this maximum value of H is denoted by
M w;u; tð Þ, then:

M tð Þ ¼
Xm
j¼1

wj tEð Þqj þ
Z t

tE

w0
@f0
@t

þ
Xm
j¼1

wj
@fj
@t

 !
dt ð5:4:6Þ

The significance of the quantities qj is specified when the boundary conditions
are presented. Equation (5.4.6) must be verified by a single value of t, for example
t ¼ tA.

The boundary conditions are usually of three types, denoted (i) to (iii) below.

(i) The values of state functions at the beginning and end of the process are known
and constant in time. Note that this does not involve knowledge of the moments
of the beginning and end of the process. Mathematically, this boundary con-
dition is written in the known manner:

u tAð Þ ¼ Aj ¼ const u tEð Þ ¼ Ej ¼ const ð5:4:7Þ

In this case, the values of qi in Eq. (5.4.6) are zero:

qi ¼ 0 i ¼ 1; . . .;m ð5:4:8Þ

(ii) The values of the state functions at the beginning of the process are known and
those at the end depend on time:

u tAð Þ ¼ Aj ¼ const u tEð Þ ¼ Ej tð Þ ð5:4:9Þ

The functions qi in Eq. (5.4.6) are then given by:

qi ¼ dEi

dt






t¼tE

i ¼ 1; . . .;m ð5:4:10Þ

(iii) The values of the state functions at the beginning and end of the process
constitute a manifold G of order r, given by:

gp u1; . . .;um; tð Þ ¼ 0 p ¼ 1; . . .; m� rð Þ ð5:4:11Þ

In this case, for each fixed time t1 there is a tangent plane F to the manifold G.
For t ¼ t1, the vector w tð Þ is orthogonal to F (the transversality condition). When t1
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varies, the point of intersection between w tð Þ and F determines a curve. The
components of the vector tangent to that curve, corresponding to the time t1, is
denoted q1; . . .; qmð Þ. These components must be used in M tð Þ in Eq. (5.4.6). In
addition, Eq. (5.4.11) have to be fulfilled.

5.4.2 Non-autonomous Systems: Optimal Rapid Reaction

The constraints put on non-autonomous system are given by the dynamic equations:

du
dt

¼ f ðu; uÞ; tA � t� tE; ð5:4:12Þ

the final time tE not being specified. One asks to minimize the time during which
the process takes place:

J u½ � ¼ tE � tA ¼ min
u2U

ð5:4:13Þ

Theorem 4 The necessary condition for achieving the minimum Eq. (5.4.13) is the
existence of a nonzero vector function,

w tð Þ ¼ w0;w1 tð Þ; . . .;wm tð Þf g; ð5:4:14Þ

satisfying the system of equations

@wi

@t
¼ � @Ĥ u tð Þ;w; u tð Þð Þ

@ui
; i ¼ 1; 2; . . .;m; ð5:4:15Þ

in which Hamilton function Ĥ, which is given by:

Ĥðu;w; uÞ ¼
Xm
i¼1

wifiðu; uÞ; ð5:4:16Þ

must be a maximum with respect to u. If this maximum value of Ĥ is denoted
M w;u; tð Þ, then:

M tð Þ�
Xm
j¼1

wj tEð Þqj þ
Z t

tA

Xm
j¼1

wj
@fj
@t

 !
dt ð5:4:17Þ

The boundary conditions, and the procedure to determine the values of qj in
Eq. (5.4.17) are similar to those presented in Theorem 3.
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5.4.3 Processes with Specified Duration

The constraints put on the non-autonomous system are given by the dynamic
equations:

du
dt

¼ f ðu; uÞ; tA � t� tE; ð5:4:18Þ

Both the initial time tA and the final time tE are specified. There is no need for the
time t to appear explicitly in fi i ¼ 0; . . .;mð Þ. The functional to be minimized is

J u½ � ¼
ZtE
tA

f0ðu; uÞdt ¼ min
u2U

ð5:4:19Þ

Theorem 5 The necessary condition for achieving the minimum Eq. (5.4.19) is the
existence of a nonzero vector function,

wðtÞ ¼ fw0;w1ðtÞ; . . .;wmðtÞg; w0 ¼ const� 0; ð5:4:20Þ

satisfying the system of equations

@wi

@t
¼ � @H u tð Þ;w; u tð Þð Þ

@ui
; i ¼ 0; 1; 2; . . .;m; ð5:4:21Þ

in which the Hamilton function H, which is given by:

Hðu;w; uÞ ¼
Xm
i¼0

wifiðu; uÞ; ð5:4:22Þ

must be a maximum with respect to u. This maximum value of H is denoted, as
usual, with M w;u; tð Þ. There is no need for M to satisfy a condition similar to those
found in Theorems 3 and 4 [Eq. (5.4.6) and inequality (5.4.17), respectively].
Removing this condition corresponds to the fact that in this case the number of
parameters to be determined is smaller with 1, because tE � tA is known.

The boundary conditions are of three types, denoted (i)–(iii) below.

(i) Both the start and the end times, and the values of the state functions at the
beginning and end of the process, are known:

u tAð Þ ¼ Aj ¼ const u tEð Þ ¼ Ej ¼ const ð5:4:23Þ
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(ii) uj tAð Þ and uj tEð Þ, respectively, belong to the smooth manifold G of order r,
given by:

gp u1; . . .;um; tA resp tEð Þ ¼ 0 p ¼ 1; . . .; m� rð Þ ð5:4:24Þ

In this case, the vector w tAð Þ (or w tEð Þ) is orthogonal on G (the transversality
condition). In addition, the functions u must obey Eq. (5.4.24).

(iii) There is no assumption concerning one or more functions ui in tA or tE, for
the other components of u being available a boundary condition of the type
(i). At the end tA (or tE), wj is transversal to all directions (i.e. wi ¼ 0). This is
because a free value uj means that the extremal value of the functional
(denoted S) is optimal in relation to ui tAð Þ (or ui tEð Þ), i.e.

S uj

� 	


tA
¼ 0 or S uj

� 	


tE
¼ 0 ð5:4:25Þ

Most situations encountered in technical applications belong to the
category (iii).

5.5 Linear Rapid Reaction Systems

Solving optimal control problems is much easier when the dynamic Eq. (5.2.1) and
the function f0 that occurs in the functional to be minimized, Eq. (5.2.3), dependent
linearly on the state variables ui. The control functions ul do not appear in the
coefficients that multiply ui. Then, the adjoint equations for wj do not depend on ui

and ul, and the functions wj can be found through direct integration. A particular
linear system is examined in the following. It is a rapid optimal process (for which
f0 ¼ 1), with the following linear dynamical equations acting as constraints:

_uj ¼
Xm
m¼1

ajm tð Þum tð Þþ
Xk
q¼1

bjq tð Þuq tð Þþ fj tð Þ ð5:5:1Þ

The control domain is represented by a convex bounded polyhedron �U, i.e. the
parallelepiped

�1\aq � uq � bq\þ1 ð5:5:2Þ

The necessary conditions for the existence of the minimum of the functional can
be easily found by using Theorem 2 of Sect. 5.2. They are:
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_wi ¼ �
Xm
j¼1

ajq tð Þwj tð Þ

Ĥ ¼
Xm
j¼1

Xm
m¼1

ajm tð Þumwj þ
Xm
j¼1

Xm
q¼1

bjq tð Þuqwj þ
Xm
j¼1

fj tð Þwj ¼ max
u2�U

ð5:5:3; 4Þ

Note that the functions wj can be directly calculated, since the differential
Eq. (5.5.3) do not depend on the unknown functions uj tð Þ and uq tð Þ.

It is also seen that the Hamiltonian Ĥ reaches its maximum in relation to uq tð Þ
exactly where the second term of the right member of Eq. (5.5.4) reaches its
maximum in relation to uq tð Þ, i.e. when:

Xm
j¼1

Xm
q¼1

bjq tð Þuqwj ¼ max
u2�U

ð5:5:5Þ

This is because in Eq. (5.5.4) only the term Eq. (5.5.5) contains the functions
uq tð Þ. In the above conditions, the following important theorem takes place.

Theorem. For any nonzero solution w1 tð Þ; . . .;wm tð Þð Þ of Eq. (5.5.3), an optimal
control u1 tð Þ; . . .; u2 tð Þð Þ can be determined from Eq. (5.5.5); u1 tð Þ; . . .; u2 tð Þð Þ are
piecewise constant and take the values corresponding to the corners of the poly-
hedron �U, provided that the following condition is fulfilled.

For the mathematical formulation of the condition, which is presented without
proof, the coefficients in Eq. (5.5.4) are written under matrix form:

A tð Þ � ajm tð Þ� 	
B tð Þ � bjq tð Þ� 	 ð5:5:6Þ

Also, the following operators are defined:

B1 tð Þ � B tð Þ

Bn tð Þ � �A tð Þ � Bn�1 tð Þþ dBn�1 tð Þ
dt

n ¼ 2; � � � ;m
ð5:5:7Þ

Then, the necessary condition for the validity of the theorem is stated as follows:
at any time t, the vectors B1 tð Þx; . . .;Bm tð Þx must be linearly independent in the
space of the state variables uj, for each edge x � x1; . . .;xmð Þ of the polyhedron
�U. Moreover, the definition Eq. (5.5.7) includes the requirement that ajm tð Þ and
bjm tð Þ possess m − 2 and m − 1 piecewise continuous derivatives, respectively.
Instead, fj tð Þ only needs to be piecewise continuous.

It should be noted that when the functions ajm tð Þ and bjm tð Þ are constant, the
previous condition reduces to the requirement that the vectors
Bx;ABx;A2Bx; . . .;Am�1Bx are linearly independent in the space of the state
variables. The jump from one corner to another corner of the polyhedron, which is
possible under the above theorem, corresponds to the time dependence of the
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coefficients of uq in Eq. (5.5.5), which occurs even if ajm tð Þ and bjm tð Þ are constant,
because the functions w always depend on time.

Switching from the value ei in the corner of a polyhedron to the value ej in another
corner, which occurs in points of discontinuity of the control functions
u t � 0ð Þ ¼ ei; u tþ 0ð Þ ¼ ej
� 	

is called “switching” or “jump” and the associated
time t is called “switching point”. Since the polyhedron has a finite number of corners,
the previous theorem is called “the theorem of the finite number of switchings”.

The geometrical interpretation of the theorem and its validity condition is as
follows. Since Eq. (5.5.5) is linear in uq tð Þ, each possible value of the right member
of Eq. (5.5.5) specifies a plane in the space of the variables uq. Three cases exist as

far as the planes
Pm
j¼1

Pm
q¼1

bjq tð Þuqwj ¼ const are concerned:

(i) the planes are not parallel to any one of the edges of a polyhedron. Then, the
maximum value may occur, according to the theorem, only in a corner of the
polyhedron.

(ii) the planes are parallel to one edge of the polyhedron. Then the maximum
may occur along that edge.

(iii) the planes are parallel to two of the edges of the polyhedron. Then the
maximum may occur on the surface caused by those two edges.

Because the theorem is related only to the case (i), which guarantees the
uniqueness of the optimal control, an additional hypothesis is required. It is suffi-
cient to ensure that the planes are not parallel to any edge, that is to exclude the case
(ii), since then the planes cannot be parallel to two edges. In this way the case (iii) it
automatically excluded.

In the general case it has been stated that the number of switchings is limited
only by the condition of being finite. For a particular case of Eq. (5.5.1), charac-
terized by ajm ¼ const; bjm ¼ const; fj ¼ 0, the is limited by the following theorem
due to A.A. Feldbaum (Tolle 1975, p. 59), which essentially states that when the
matrix of the coefficient ajm

� �
has real eigenvalues, the number of switchings is

restricted by the number of dynamic equations.
Theorem. If all eigenvalues of matrix ajm

� �
are real and the control parameters

are independent of each other (i.e. aq � uq � bq, or, in other words, �U is a paral-
lelepiped) then at most m − 1 switchings may occur for each control function,
where m is the number of dynamic Eq. (5.5.1).

To complete this section devoted to optimization problems for which linear
dynamical equations act as constraints, it worth to state that such problems can not be
solved by using the classic variational calculus. In variational calculus, the necessary
conditions characterize a local extreme value, which does not exist for the problems
treated in this section. The extreme for these problems occurs only because the
control functions have a limited range of values. It is thus seen that the principle of
Pontryagin, besides the fact that it allows the exact definition of issues of engineering
interest, extends the limit of applicability of the calculus of variations.
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5.6 The Synthesis Problem

Solving an optimal control problem consists of two distinct phases: (i) determina-
tion of the extreme values of a functional and (ii) determination of the control
functions ul tð Þ, i.e. determination of the best control strategy. Usually, in practice,
the specificity of the problem makes one of these two steps to be more important
than the other. The second phase, sometimes called “the synthesis phase”, shows
some particular aspects which are reviewed briefly in the following.

The synthesis consists in finding a direct representation for the control functions
ul � ul uð Þ. The procedure involving the usage of the maximum principle does not
help in this case, because from the adjoint equations one can determine the
dependencies wi � wi tð Þ but not the dependencies wi � wi uð Þ. In principle, the
functions wi can be eliminated through repeated differentiation and using the adjoint
equations and the dynamic equations. This however leads to higher order differ-
ential equations for ul, which are difficult to solve.

In case of rapid reaction optimal problems for autonomous systems (which do
not depend explicitly on time), one can use the fact that the path in the space t;uið Þ
is arbitrarily translatable along the time axis. Assume that different possible paths
are considered that, starting at the same time, lead, from different “points” /A in the
same end “point” /E. Then the time tA is the same, but the differences tE � tA varies
from path to path, as well as the final moment tE. Due to the possibility of arbitrary
displacement mentioned above, all paths can be translated along the time axis, so
they end at the same time, denoted tE	. Then, the paths are completely determined
by the process duration, tE	 � tA, and the path projection in the plane tE	;uið Þ. If,
for example, it is assumed that the projection of the optimal paths in this plane is
given by the function:

R u1; . . .;umð Þ ¼ 0 ð5:6:1Þ

and there is only one control function, then, by the differentiation of Eq. (5.6.1) one
obtains:

dR
dt

¼
Xm
j¼1

@R
@uj

duj

dt
¼
Xm
j¼1

@R
@uj

fj u; uð Þ � r ui; uð Þ ¼ 0 ð5:6:2Þ

Equation (5.6.2) is the direct connection between ui and u that was searched.
However, it is not yet known a general simple analytical procedure for the

synthesis of the optimal control problem of an autonomous system. Moreover, in
the case of non-autonomous systems, it is not expected that a representation of the
type ul � ul uð Þ would exist.

In Chap. 3, dedicated to the calculus of variations, it was seen that the formu-
lation of the necessary optimum conditions is dual, meaning that it may have either
the form of a differential equation [i.e. the Euler-Lagrange Eq. (3.2.14)]:
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d
dt
Ly0 � Ly ¼ 0 ð5:6:3Þ

or the form of a partial differential equation [i.e. the Hamilton-Jacobi Eq. (3.2.17)]:

St � H t; y; Sy
� 	 ¼ 0 ð5:6:4Þ

In case of the representation of the optimization conditions through the differ-
ential Eq. (5.6.3), the existence of derivative d=dt usually makes that the appear-
ance of the time t as a parameter can not be avoided. If the partial differential
Eq. (5.6.4) is used, the solution does not depend explicitly on t in the autonomous
case. Therefore, it appears possible to obtain a representation of the form
ul � ul uð Þ, if the Hamilton-Jacobi equations can be generalized in the same sense
in which the theory of Pontryagin generalizes the Euler-Lagrange equations. This is
done by the dynamic programming (Bellman’s method), which is presented in
Chap. 7. The dynamic programming is the supplement of the Pontryagin maximum
principle and, in a sense, a possible answer to the synthesis problem.

5.7 Example

The principle of maximum gives the necessary conditions for optimality and, in
combination with various numerical methods that allow finding the paths and
controls, is one of the most important methods of solving various practical optimal
control problems.

To fix ideas, a simple example is analyzed in the following (Marciuk 1983).
Consider a controlled system obeying the following dynamic equation:

d2u
dt2

¼ u ð5:7:1Þ

with the constraint

�1� u� 1; ð5:7:2Þ

If the next state (or phase) variables are introduced

u1 ¼ u; u2 ¼
du
dt

; ð5:7:3Þ

then a system of equations equivalent to Eq. (5.7.1) is obtained:
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du1

dt
¼ u2;

du2

dt
¼ u ð5:7:4Þ

The problem is to find the fastest way of arriving in the origin of the phase space
u1 ¼ 0; u2 ¼ 0, starting from an arbitrary point ðu0

1; u
0
2Þ. In other words, the

system of Eq. (5.7.1) should arrive in the origin in the shortest time, and stop there.
To find the solution, the Theorem 2 of Sect. 5.2 is used. The Hamilton function

has the form

Ĥ ¼ w1u2 þw2u; ð5:7:5Þ

and the adjoint system of equations is:

dw1

dt
¼ � @Ĥ

@u1
¼ 0;

dw2

dt
¼ � @Ĥ

@u2
¼ �w1 ð5:7:6Þ

Hence, by integration one finds

w1 ¼ d1; w2 ¼ �d1 � tþ d2 ð5:7:7Þ

where d1; d2 are constants of integration. From the maximum condition
Eq. (5.2.12) it follows that

u ¼ þ 1; if w2 [ 0;

�1; if w2\0;

(
ð5:7:8Þ

and, because the function w2 is linear, i.e. it changes its sign only once, then the
control uðtÞ has only one switching point.

Consider first the case when u ¼ þ 1. The integration of Eq. (5.7.4) yields

u2 ¼ c2 þ t; u1 ¼
1
2
ðc2 þ tÞ2 þ c1; ð5:7:9Þ

or, by removing t between the two Eq. (5.7.9):

u1 ¼
1
2
u2
2 þ c1: ð5:7:10Þ

Under the action of the control u ¼ þ 1, the movement takes place on the
parabolas of Eq. (5.7.10), shown on the left of Fig. 5.1, bottom up, because
du2=dt ¼ þ 1, and that means that u2 increases. Similar reasoning regarding the
case u ¼ �1, leads to the conclusion that the movement must follow the parabolas
of form

5.7 Example 107



u2 ¼ � 1
2
u2
2 þ c11; ð5:7:11Þ

shown in the right side of Fig. 5.1.
Further, consider that the system must reach the origin of coordinates in the final

moment, i.e. to move on the parabola

u1 ¼
1
2
u2
2; or u2 ¼ � 1

2
u1; ð5:7:12Þ

Then, the possible movements are shown in Fig. 5.2.
So, if the initial point ðu1; u2Þ is above the curve AOB, then the system must

move under the action of the control u ¼ �1 until it reaches the parabola
u1 ¼ 1=2u2

2; next the control is switched to u ¼ þ 1 and the movement continues
on the parabola u1 ¼ �1=2u2

2 until the system reaches the origin. The case when
the initial position is under the curve AOB is treated in a similar way.

In conclusion, the optimal control can only have the following aspect:

Fig. 5.1 System evolution. Intermediate stage of interpretation. Left u ¼ þ 1; Right u ¼ �1
(adapted from Marciuk 1983)

Fig. 5.2 System evolution.
Final interpretation (adapted
from Marciuk 1983)

108 5 The Maximum Principle (Pontryagin)



u ¼
þ 1 under the curve AOB and on parabolau1 ¼

1
2
u2
2

�1 above the curve AOB and on parabolau1 ¼ � 1
2
u2
2

8><
>: : ð5:7:13Þ

From the above reasoning it is easy to obtain the paths of the state (phase)
variables, the motion time and the time of switching the control from an extreme
value to the other extreme value, if the coordinates of the initial point are known.

So, it was shown that if the optimal solution exists, it should have the aspect
shown in Fig. 5.2, since the maximum principle is the necessary condition of
optimization. It can be demonstrated that these paths are indeed optimal.
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Chapter 6
The Gradient Method

The gradient method belongs to the direct optimization methods, characterized by
the fact that the extreme is found without any prior indication of the necessary
existence conditions. Eminent precursors of the method are Augustin-Louis Cauchy
(1789–1857) (research around 1847) and Jacques Hadamard (1865–1963) (con-
tributions in 1908). The method has been used in a systematic way to solve
engineering problems especially after 1960, when several remarkable developments
were proposed (for a brief history of the method see Tolle (1975, p. 108)).

The gradient method is not used to solve optimal control problems only. It can
be used as a general optimization tool. Several results which refer to the first order
approximation of the gradient method are presented in this chapter. The complexity
of the treatment is gradually increased, starting with common extreme applications,
continuing with issues regarding the usage of the method to solve problems of
classical variational calculus and finishing with proper optimal control applications.

6.1 Common Extreme Problems

6.1.1 Unconstrained Optimization

To understand the basic ideas of the method, a simple problem is analyzed.
Consider a surface in the three-dimensional space R3, represented under the usual
form:

z ¼ F y1; y2ð Þ ð6:1:1Þ

The problem consists of finding the lowest (or highest) points on the surface [in
the plane Oy1y2ð Þ]. For convenience, assume that all differentiability conditions are
fulfilled. To ensure a more intuitive character, assume that the function in
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Eq. (6.1.1) has two variables. The treatment can be easily generalized to the case of
a function of several variables F y1; y2; . . .; ynð Þ.

An iterative technique is used to solve the problem, by choosing a starting point

P y 0ð Þ
1 ; y 0ð Þ

2

� �
and searching for the variation dF of the function F for different

directions specified by the infinitesimal two-dimensional vector:

dy ¼ dy1; dy2f g ð6:1:2Þ

The differential of the function F is given by:

dF ¼ @F
@y1

dy1 þ @F
@y2

dy2 ð6:1:3Þ

Define the gradient of F as:

grad F ¼ @F
@y1

;
@F
@y2

� �
ð6:1:4Þ

The function F can be represented in the plane y1; y2ð Þ by the lines of constant
value (also called isolines) F ¼ const (see Fig. 6.1).

Then, grad F is perpendicular to these isolines, since the direction d�yt of the
tangent to F ¼ const fulfils the following relationship:

dF ¼ gradF � dyt ¼ 0 ð6:1:5Þ

On the other hand, from the definition of the scalar product
�a � �d ¼ a � d � cos �a; �dð Þ, one finds that gradF � dy reaches its maximum when the
two vectors are parallel (i.e. when gradF / dy), because this is the condition for
cos grad F; dy
� �

to reach its maximum value (that is, to become equal to unity).

Fig. 6.1 Orthogonality
between the tangent to a
contour line and the gradient
direction (adapted from Tolle
1975)
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This property of dF (i.e., to achieve extreme values in the direction of the
gradient grad F) is demonstrated again by using the common procedures of
function optimization. The main purpose of this repetition is to introduce a method
that is used to determine the direction of the largest variation of F in more com-
plicated constrained optimization situations, when that direction is usually not so
evident.

Assume that an infinitesimal movement in any direction is performed by
advancing with the same length, denoted by tradition with ds:

dy
�� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dy21 þ dy22

q
¼ ds ð6:1:6Þ

Finding the largest variation of F means solving the following extreme problem:
find the maximum value of the variation dF given by:

dF ¼
X2
i¼1

@F
@yi

� dyi ð6:1:7Þ

If the unknowns dyi must fulfil the constraint Eq. (6.1.6) (squared)

N � ds2 �
X2
i¼1

dy2i ¼ 0 ð6:1:8Þ

Solving this problem corresponds to finding the optimal values of the variables
dyi. The solution is based on the method of Lagrange multipliers. The necessary
conditions that must be met by the solution are:

@ dFþ kNð Þ
@dyi

¼ 0 i ¼ 1; 2ð Þ ð6:1:9Þ

Substituting Eqs. (6.1.7) and (6.1.8) into Eq. (6.1.9) yields

@F
@yi

� 2kdyi ¼ 0 ð6:1:10Þ

which gives the optimal value of the variables dyi:

dyi ¼ 1
2k

@F
@yi

i ¼ 1; 2ð Þ ð6:1:11Þ

From Eq. (6.1.11) is can be seen that the optimal direction dy1; dy2ð Þ is parallel
to the direction of the gradient of F, which has the components specified by
Eq. (6.1.4). The Lagrange multiplier k is determined by replacing dyi from
Eq. (6.1.11) in the constraint Eq. (6.1.8):
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N ¼ ds2 � 1

4k2
X2
i¼1

@F
@yi


 �2

¼ 0 ð6:1:12Þ

This gives:

k ¼ � 1
2ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2
i¼1

@F
@yi


 �2
vuut ð6:1:13Þ

To find the largest variation of F, the optimal values dyi given by Eq. (6.1.11)
are replaced now in Eq. (6.1.7). Replace k given by Eq. (6.1.13) in the resulting
expression. It is seen that the positive direction of the gradient [the + sign in
Eq. (6.1.13)] corresponds to the growth of F (that is, to positive values of dF).
Also, the negative direction of the gradient [sign − in Eq. (6.1.13)] corresponds to a
decreasing function F.

The previous example allows highlighting how the gradient method is applied to
common extreme problems. So, it starts from an arbitrary point in the direction of
the gradient, in order to reach the extreme point as quickly as possible. In practice
there are two procedures of implementing this method, denoted (a) and (b) below.

(a) Start from P y 0ð Þ
1 ; y 0ð Þ

2

� �
and go on a certain distance Ds in the direction of the

gradient. Then, recalculate the gradient direction. Advance on a distance Ds in
the new direction, and so on. The following formula is obtained:

�y pþ 1ð Þ ¼ �y pð Þ � gradF �y pð Þ � Ds
��� ð6:1:14Þ

where p represents the number of the iteration. Depending on components,
Eq. (6.1.14) is written as follows:

y pþ 1ð Þ
i ¼ y pð Þ

i � @F
@yi y pð Þ

i
� Ds

��� ð6:1:15Þ

(b) If @F=@y is difficult to calculate, the following procedure is used. One goes in

the direction of the gradient calculated in y pð Þ
i , not only on a distance Ds, but

until F reaches the extreme value corresponding to that direction. Then, one
calculates again the gradient direction. One goes on that direction to reach a
new extreme, and so on.

The procedures (a) and (b) are shown in Fig. 6.2 for the case when the function
F has a maximum. Procedure (a) corresponds to the curve approximated by a
straight line joining the starting point to the extreme point. In reality, the curve
consists of a sequence of line segments, each trying to be closer to local gradient
direction. Procedure (b) corresponds to a sequence of line segments perpendicular
each other.
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In the two-dimensional case, i.e. that of F y1; y2ð Þ, one can skip the computation
of @F=@y1. The explanation is as follows. Normally, a given straight line cuts the
isolines of the plane y1; y2ð Þ twice. The two points coincide (i.e. they reduce to a
single point) only in the case of the extreme value of F on that straight line.
Therefore, in that point, the straight line is tangent to the isoline corresponding to
the extreme value of F on that straight line. If one starts perpendicularly on the
given straight line (the direction of moving on that perpendicular is found by trials),
then one automatically go in the direction of the gradient, because the gradient is
perpendicular to the tangent at the isoline. This way of reasoning does not require
that the tangent to the isoline coincides with the gradient direction in the starting
point. Therefore, the original direction can be chosen arbitrarily, and that direction
is followed until the extreme is achieved. Then, one goes perpendicularly on that
direction until a new extreme is reached, and so on.

The convergence of the above procedure can be accelerated near the extreme
values, if one takes into account that:

(i) For a second order surface, the tangents to the projection of the isolines, at the
intersection point between the projections of these isolines and a line passing
through the projection of the extreme point, are parallel to each other (here the
projection on a plane is considered, and the line is contained in that plane).

(ii) Any surface F y1; y2ð Þ can be expanded in series around the extreme points and
through this procedure the surface can be approximated by a second order
surface.

The two previous observations allow to increasing the convergence speed of the
gradient method, in the following way. One starts in the direction of an arbitrary
straight line, finding the extreme value on that line. Then, one sets the perpendicular
in that extreme point (marked with A) on the initial line. One moves on that
perpendicular until one reaches a new extreme point (marked with B) and there one
builds a new perpendicular, which is parallel to the first perpendicular. Now, the

Fig. 6.2 Two procedures of
using the gradient method
(adapted from Tolle 1975)
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above procedure is not continued, but the reasoning is like this: two points have
been found on different isolines, having parallel tangents. Then, it is better to move
directly on the line joining the two points (A and B), to reach the extreme point
(relative or absolute). This procedure, which has become very popular, is due to
Powell (1962). In the multidimensional case, the gradient directions must be
calculated, because for the same line more perpendiculars to the same point may be
built.

6.1.2 Constrained Optimization

A more complicated problem involves the extremization of a function of several
variables:

Fðy1; . . .; ynÞ ¼ extreme ð6:1:16Þ

constrained by r relationships:

Gj y1; . . .; ynð Þ ¼ 0 j ¼ 1; . . .; r\nð Þ ð6:1:17Þ

If r of the n variables yi can be expressed by using the r constraints, as a function
of the remaining n� r variables, then they can be replaced in Fðy1; y2; . . .; ynÞ,
which becomes a function of n� r independent variables. Then, F can be
extremized as an ordinary function of n� r variables.

However, in many cases this is not possible, or too complicated expressions are
obtained. Then, the above problem can be replaced with another problem, following
a suggestion by Courant (1943). To make clear the ideas, assume that the extreme
of F is a minimum. Then, instead of the function F specified by Eq. (6.1.16), the
next function F� is used:

F� y1; . . .; ynð Þ � F y1; . . .; ynð Þþ
Xr
j¼1

Kj � G2
j y1; . . .; ynð Þ ¼ min ð6:1:18Þ

where Kj ¼ const[ 0.
The essential idea of the method is to add to the function F a strictly positive

function, which is minimum when Gj ¼ 0. The new function, denoted F�, does not
reach a relative minimum at the same point where F ¼ min. But increasing the values
Kj, the minimum point of F� moves to the minimum point of F, which is touched
strictly when Kj ! 1, as is shown in the following (see Eq. (6.1.22) and the fol-
lowing comments). In practice it is sufficient that the values Kj are big “enough”. The
magnitude of “enough” is usually estimated by performing calculations with the set
of values Kj as well as the set of values 2Kj. When the two sets of results differ “by a
small amount”, one may assume that the initial values Kj are big “enough”.

116 6 The Gradient Method



The relatively arbitrary choice of the values Kj allows setting different weights to
each of the r constraints. The method of using the function F� allows moving from
common extreme problems to constrained extreme problems, without changing the
gradient method itself. Only the number of calculations increases in the latter case.
This makes the Eq. (6.1.18) being often used together with the gradient method.

It may be shown that using the function F� is equivalent with the usage of the
method of Lagrange multipliers. For this, one starts from the following mini-
mization problem (in which, to simplify the explanation, the case of a single
constraint is considered, G y1; . . .; ynð Þ ¼ 0, that is r ¼ 1):

Fþ kG ¼ min ð6:1:19Þ

The necessary condition for the minimum is

@F
@yi

þ k
@G
@yi

¼ 0 i ¼ 1; . . .; nð Þ ð6:1:20Þ

and the multiplier k is determined by replacing the solution of Eq. (6.1.20) into the
constraint G ¼ 0. When using the function F�, the necessary conditions of extreme
are:

@F�

@yi
¼ @F

@yi
þ 2KG

@G
@yi

¼ 0 i ¼ 1; . . .; nð Þ ð6:1:21Þ

Equations (6.1.20) and (6.1.21) are identical if the following condition is
fulfilled:

K ¼ k
2G

ð6:1:22Þ

It is noticed that from the condition G ¼ 0, the consequence K ! 1 comes as a
result, and this closes the demonstration.

6.2 Simple Variational Problems

In this section the gradient method is applied for problems of classic variational
calculus. Consider the problem of finding a function y tð Þ that has fixed values:

y tAð Þ ¼ A y tEð Þ ¼ E ð6:2:1Þ

all values tA; tE;A;E being known. As usual, the function should minimize the
integral:
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J ¼
ZtE
tA

L t; y; y0ð Þdt ð6:2:2Þ

The gradient method provides a solution to this problem in the following way.
Choose a “starting” function y 0ð Þ tð Þ which, for simplicity, satisfies both boundary
conditions Eq. (6.2.1) (the exponent 0 corresponds to the start of an iterative pro-
cess). In the beginning, one has to find the variation of the function y 0ð Þ tð Þ for which
the functional J has the largest variation. Then, one applies step by step the pro-
cedure of the gradient method. For convenience, the function corresponding to a
specific step is denoted by y. What follows corresponds to an arbitrary step.

For a variation dy, the function is transformed into a new function:
y tð Þ ! y tð Þþ dy tð Þ. Consequently, the functional Eq. (6.2.2) changes:

Jþ dJ ¼
ZtE
tA

L t; yþ dy; y0 þ dy0ð Þdt ¼
ZtE
tA

Ldtþ
ZtE
tA

Lydyþ Ly0dy
0� �
dtþ � � �

ð6:2:3Þ

The first approximation of the variation of J is obtained from Eq. (6.2.3):

dJ ¼
ZtE
tA

Lydydtþ
ZtE
tA

Ly0dy
0dt

¼
ZtE
tA

Lydydtþ Ly0dy
��tE
tA
�
ZtE
tA

d
dt
Ly0

� �
dydt ¼

ZtE
tA

Ly � d
dt
Ly0

� �
dydt ð6:2:4Þ

Here it has been taken into account that for t ¼ tE; tA the variation is null
(dy ¼ 0).

Following the basic idea of the gradient method, the total variation of y tð Þ
(denoted ds) is fixed. Following the approach of Sect. 6.1, the square of this
variation is considered, i.e.:

N � Ds2 �
ZtE
tA

dy2 tð Þdt ¼ 0 ð6:2:5Þ

The result is a common extreme problem for the variation of the functional dJ,
given by Eq. (6.2.4), under the constraint Eq. (6.2.5), the unknown being the
variation of the function, dy. The solution is obtained by using the common method
of the Lagrange multipliers. The necessary condition for the existence of the
minimum is given by:
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@ dJþ kNð Þ
@dy

¼
ZtE
tA

Ly � d
dt
Ly0


 �
� 2kdy

� 

dt ¼ 0 ð6:2:6Þ

where k is a multiplier. Following the tradition, one denotes,

L½ � � Ly � d
dt
Ly0 ð6:2:7Þ

It is seen that the integral in Eq. (6.2.6) is canceled if the variation of the
function, dy, is proportional to L½ �:

dy / L½ � ð6:2:8Þ

Equation (6.2.8) is therefore sufficient to ensure the extreme of the variation dJ
of J.

Equation (6.2.8) can be compared with Eq. (6.1.11) obtained by applying the
gradient method to usual extreme problems. One can see that in case of the classical
variational calculus, the partial derivatives @F=@yi, used in the calculation of
common extremes, are replaced by the differential L½ �, which constitutes the
Euler-Lagrange equation. Consequently, the gradient method, generalized for
variational problems, leads to a relationship similar to Eq. (6.1.15), where the term
@F=@yi is replaced by L½ �:

y pþ 1ð Þ tð Þ ¼ y pð Þ tð Þ � L½ � tð Þ y pð Þ
�� � Ds ð6:2:9Þ

The procedures for implementing the gradient method comply with the rules set
at the end of Sect. 6.1. In certain cases it is more useful if the term L½ � in Eq. (6.2.9)
is replaced by an equivalent integral (Tolle 1975, p. 119).

6.3 Optimal Control Problems

As shown in Chap. 4, the problems of variational calculus constrained by differ-
ential equations are divided into three categories, which became known as Lagrange
problems, Mayer problems and Bolza problems, respectively. It was also shown
that the Lagrange and Bolza problems can be transformed, by a convenient pro-
cedure, into Mayer problems. Therefore, in this and next sections the focus is on
how to apply the gradient method for solving optimal control problems of Mayer
type.

Consider a set of first order differential equations (called, as usual, dynamic
equations):
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_uj ¼ fj t;ui; ulð Þ i; j ¼ 1; . . .;mð Þ; l ¼ 1; . . .; kð Þ ð6:3:1Þ

The equations deal with the variation of the state variables ujðtÞ. One searches
for those control functions ul tð Þ that minimize (or maximize) the function

P uj tEð Þ; tE
� � ð6:3:2Þ

which depends on the final values of the state variables and the final time tE (or only
on some of these values). The initial conditions are given:

ujðtAÞ ¼ Aj ð6:3:3Þ

(where tA is the initial time and Aj are known values). Also, several final con-
ditions are given:

Qr uj tEð Þ; tE
� � ¼ 0 r ¼ 1; � � � ; q\mð Þ ð6:3:4Þ

The final time tE is determined from the stop condition, which is assumed to be
known:

R ujðtEÞ; tE
� � ¼ 0 ð6:3:5Þ

In the simplest case, the stop condition Eq. (6.3.5) is the relationship tE � T ¼ 0
(where T is a given value).

6.3.1 The Fundamental Equation

The gradient method is an iterative procedure, as was already seen. It begins by

choosing an arbitrary starting “solution” u 0ð Þ
l tð Þ, (where the exponent shows the

number of the iteration), followed by the integration of Eq. (6.3.1), by using this

“solution” and the initial conditions. Then, one searches to find how u 0ð Þ
l tð Þ must be

changed in order to reach the minimum of Eq. (6.3.2) in an as small as possible
number of iterations, with concomitant verification of the final conditions
Eq. (6.3.4), which were not necessarily satisfied by the arbitrary initial “solution”.
To do this, first it must be observed how the functions in Eqs. (6.3.2), (6.3.4),
(6.3.5) are affected by the variation

ulðtÞ ! ulðtÞþ dulðtÞ ð6:3:6Þ

Here the number of the iteration (i.e. the exponent of ul tð Þ) is not indicated since
the next reasoning are the same regardless of the number of the iteration.
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One can see that, formally, the functions in Eqs. (6.3.2), (6.3.4) and (6.3.5) are
identical and any of them can be represented by the generic function:

F xj tEð Þ; tE
� �

F ¼ P;Qr;R ð6:3:7Þ

Also, it is seen that during the time interval from tA to tE, the transformation
ulðtÞ ! ulðtÞþ dul has the effect of changing the trajectory (i.e. it changes the
functions uj tð Þ), and the modification, at the end of the trajectory, of the values
uj tEð Þ and tE. From Eq. (6.3.7), it is inferred that the variation of the generic
function F is given by:

dFjtE¼
Xm
j¼1

@F
@uj

�����
tE ;ul tð Þ

�duj tEð Þþ @F
@t

����
tE ;ul tð Þ

�dtE ð6:3:8Þ

In the second term of the right hand side member of Eq. (6.3.8), the only
consequence of the variation of tE is the direct variation of F. The variation of the
end of the process (or, in other words, the variation of the path end), as a conse-
quence of the variation of the time variable, is indirectly contained in duj.
Therefore, one can write:

duj

��
tE
¼ duj

��
tE
þ _uj

��
tE ;ulðtÞ�dtE ð6:3:9Þ

where duj

��
tE
gives the variation of the trajectory for a fixed time tE and for various

control functions ul tð Þ, while

_uj

��
tE ;ulðtÞ�dtE ¼ fj

��
tE ;ulðtÞ�dtE ð6:3:10Þ

gives the variation of the trajectory for fixed ul tð Þ and varied tE. In writing
Eq. (6.3.10), the Eq. (6.3.1) was used. Further defines:

dF
dt

����
tE

� _F
��
tE
¼

Xm
j¼1

@F
@uj

fj

 !
tE;ulðtÞ

þ @F
@t

����
tE ;ulðtÞ

ð6:3:11Þ

Using Eqs. (6.3.8), (6.3.9), (6.3.10) and (6.3.11) one obtains:

dFjtE¼
Xm
j¼1

@F
@uj

�����
tE ;ulðtÞ

duj

��
tE
þ _F

��
tE ;ul

dtE ð6:3:12Þ

In Eq. (6.3.12) all quantities are known, except the variations duj

��
tE
, which can

not be identified yet, because the variation of the state variables cannot be per-
formed directly, but only through the variations of the control functions ul tð Þ. Next,
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this dependence of the variation of the state variables on the control functions is
determined.

The variations of the state variables can be transformed into variations of the
control functions by using the dynamic equation (6.3.1). So, after replacing these
variations in Eq. (6.3.1) one obtains:

d
dt

uj þ duj

� � ¼ _uj þ d _uj ¼ fj t;ui þ dui; ul þ dulð Þ ð6:3:13Þ

The last term of Eq. (6.3.13) is expanded in Taylor series, resulting:

fj t;uj þ duj; ul þ dul
� � ¼ fj t;uj; ul

� �þ Xm
i¼1

@fj
@ui

dui þ
Xk
l¼1

@fj
@ul

dul þ � � � ð6:3:14Þ

Substituting Eq. (6.3.14) in Eq. (6.3.13) and considering again Eq. (6.3.11) one
concludes that, in the first approximation:

d _uj ¼
Xm
i¼1

@fj
@ui

dui þ
Xk
l¼1

@fj
@ul

dul j ¼ 1; . . .;mð Þ ð6:3:15Þ

Equation (6.3.15) constitute an inhomogeneous linear system of m differential
equations, in which the unknowns are the variations duj of the state functions. The
general solution is achieved essentially through a procedure that starts by the cal-
culation of m independent solutions of the homogeneous system obtained from
Eq. (6.3.15) by removing the left hand side member. Because in Eq. (6.3.12) only
the connection between the final values du tEð Þ and dul tð Þ is of interest, another
method is used in the following, best suited for this purpose. This method begins by
writing the system of differential equations which is adjoint to Eq. (6.3.15):

_wj ¼ �
Xm
i¼1

@fi
@uj

wi j ¼ 1; . . .;mð Þ ð6:3:16Þ

First, Eq. (6.3.15) is multiplied bywj and a sum is performed after the index j; then
Eq. (6.3.16) is multiplied by d/j and a sum in performed after the index j. Finally, the
two resulting differential equations are added. One obtains:

Xm
j¼1

d _ujwj þ
Xm
j¼1

_wjduj ¼
Xm
j¼1

Xm
i¼1

@fj
@ui

duiwj þ
Xm
j¼1

Xk
l¼1

@fj
@ul

dulwj

�
Xm
j¼1

Xm
i¼1

@fi
@uj

widuj ð6:3:17Þ
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In the right hand side member of Eq. (6.3.17), the first and third terms cancel
each other. Moreover, there is the relationship:

Xm
j¼1

d _ujwj þ
Xm
j¼1

_wjduj ¼
d
dt

Xm
j¼1

wjduj ð6:3:18Þ

Therefore, integrating Eq. (6.3.17) from tA to tE and taking into account
Eq. (6.3.18), one obtains:

Xm
j¼1

wj tEð Þduj tEð Þ ¼
Xm
j¼1

wj tAð Þduj tAð Þþ
ZtE
tA

Xm
j¼1

Xk
l¼1

@fj
@ul

dulwj

 !
dt ð6:3:19Þ

To solve the system of differential equations (6.3.16) there is a need to specify
the boundary conditions, which, in this case, can be chosen arbitrarily. The fol-
lowing boundary condition is used:

wj tEð Þ ¼ @F
@uj

tE ;ul tEð Þ
�� ð6:3:20Þ

Then, if Eq. (6.3.20) is introduced in the left hand side member of Eq. (6.3.19),
the first term of Eq. (6.3.12) is obtained. By using this procedure, Eq. (6.3.19) can
be written as:

dF tE ¼
Xm
j¼1

wj tAð Þduj tAð Þþ
ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wj

 !
dul tð Þdtþ _F tEj dtE

������ ð6:3:21Þ

Choosing Eq. (6.3.20) as a boundary condition, allows to obtaining wjðtÞ from
Eq. (6.3.16), by backward integration, i.e. from tE to tA, by using Eq. (6.3.20) as
initial values.

The coefficients occurring in the three terms of the right hand side member of
Eq. (6.3.21) can be interpreted as follows:

• wjðtAÞ—describes the effect of a variation in the initial values uj tAð Þ ¼ Aj

(which are generally assumed fixed) on FjtE .
• wul �

Pm
j¼1

@fj
@ul
wj—these functions, called influence functions, describe the effect

of the variation dulðtÞ on FjtE .
• _F

��
tE
¼Pm

j¼1
@F
@uj

fj
���
tE ;ul tð Þ

þ @F
@t

��
tE ;ul tð Þ—describes the effect of the variation of the

final moment on FjtE .

6.3 Optimal Control Problems 123



Since Eq. (6.3.21) applies both for the variation of the function to be extremized,
P uj tEð Þ; tE
� �

, and for the variation of the final conditions Qr uj tEð Þ; tE
� �

and of the
stop condition R uj tEð Þ; tE

� �
, it represents the fundamental equation of the gradient

method applied to optimal control problems.
In the following it is shown how this fundamental equation is used to solve some

particular types of problems.

6.3.2 Process with Specified Duration but Without Final
Conditions

First, the simplest case is considered. Find the minimum of P tE;uj tEð Þ� �
, for a

given final moment tE, without specified final conditions Qr tE;uj tEð Þ� �
, with one

single control function u tð Þ and a starting “solution” u 0ð Þ
j tð Þ; u 0ð Þ tð Þ

n o
chosen

arbitrarily, which has to satisfy the initial conditions uj tAð Þ ¼ Aj. This starting

“solution” involves actually only the choice of the starting control function u 0ð Þ,
because the variation of the starting state variables / 0ð Þ

i tð Þ can be subsequently
calculated by integrating the dynamic equations

_uj ¼ fjðt;ui; uÞ ð6:3:22Þ

using u 0ð Þ tð Þ and the initial conditions ujðtAÞ ¼ Aj.
With given tE and duj tAð Þ ¼ 0 (since the initial values of the state variables are

known), from Eq. (6.3.21) is obtained:

dPjtE¼
ZtE
tA

wuðtÞduðtÞdt ð6:3:23Þ

This is the only equation that is considered further. The task is to find the
variation of the control function, du tð Þ, which maximizes dPjtE given by
Eq. (6.3.23), provided the additional condition specific to the gradient method, i.e.
the total variation of the unknown (in this case, the momentary variation du tð Þ) has
a fixed value (denoted, e.g., Ds):

N �
ZtE
tA

du2ðtÞdt � Ds2 ¼ 0 ð6:3:24Þ

As usual, the square of the momentary variation du has been used in
Eq. (6.3.24), in order that its integral is always positive. Observe that this is a
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common maximum problem with just one constraint [i.e. Eq. (6.3.24)], which can
be solved in two ways.

First, the Lagrange multipliers method can be used. In this case, the necessary
extreme condition is given by the equation:

@ dPjtE þ k Ds2 � RtE
tA

du2dt

 !" #

@du
¼ 0 ð6:3:25Þ

In Eq. (6.3.25), k is the Lagrange multiplier corresponding to the constraint
Eq. (6.3.24). Solving Eq. (6.3.35) is similar with solving Eq. (6.2.6).

A second method consists of taking into account that the integral in Eq. (6.3.23),
which is of the form

R
�a�cdt, reaches its maximum when the two vectors, �a and �c, are

parallel.
In both cases, the result is that dPjtE has a maximum value when the variation of

the control function is proportional with wu:

du tð Þ / wu ð6:3:26Þ

The analogy with the way of using the gradient method to solve common
optimization problems, which was treated in Sect. 6.1, shows that instead of the
variations of the independent variables, dyi, and of the components of the gradient,
@F=@yi (see Eq. 6.1.11), the variation of the control function du and the function
wu tð Þ [which appears in Eq. (6.3.23)], should be used in Eq. (6.3.26). The con-
clusion is that the recurrence formula Eq. (6.1.14) used in Sect. 6.1 to implement
the gradient method, is replaced by the relationship:

u pþ 1ð Þ ¼ u pð Þ þwu u pð ÞDsj ð6:3:27Þ

The exponents in Eq. (6.3.27) show, as usual, the number of the iteration.
It was previously seen that the gradient direction is always related to a condition

of optimality. For example, in the simple variational problem analyzed in Sect. 6.2,
the necessary condition for the existence of an optimum was L½ � ¼ 0 ( L½ � is defined
by Eq. (6.2.7)) and the relationship dy� L½ � was the condition of stationarity of the
solution. By analogy, it is expected from Eq. (6.3.26) that

wu �
Xm
j¼1

@fj
@u
wj ¼ 0 ð6:3:28Þ

[where the functions wj obey the system of adjoint equations (6.3.16)] to rep-
resent the condition of optimality for the problem treated in this section. But
Eq. (6.3.16) are the Euler-Lagrange equations attached to the Pontryagin problem.
This observation can be considered as an intuitive proof of the equivalence between
the gradient method and the Pontryagin’s maximum principle.
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6.3.3 Process with Specified Duration and One Final
Condition

A more complicated case is considered in this section. The hypotheses adopted in
Sect. 6.3.2 is kept but, in addition, a final condition should be satisfied, represented
by the function Q uj tEð Þ; tE

� �
. The “solution” chosen to start the procedure may

satisfy the equation Q ¼ 0, but this is not necessary.
The fundamental Eq. (6.3.21) is now applied both for the function to be

extremized, P, and for the function that gives the final condition, Q:

dPjtE¼
ZtE
tA

wP
ududt dQjtE¼

ZtE
tA

wQ
u dudt ð6:3:29; 30Þ

where the exponents P and Q show that the influence functions wu were calculated
using Eq. (6.3.16), with the initial conditions dPjtE (for the function wP

u ) and the

initial conditions dQjtE (for the function wQ
u ). Remember that the integration of

Eq. (6.3.16) takes place in the opposite direction, i.e. from tE to tA.
In Sect. 6.3.2 it was seen that the optimal variation of the control function was

proportional with the influence function (Eq. 6.3.16). Because here two influence
functions exist, it is expected that the optimal variation of the control function has a
linear form:

du ¼ k0w
P
u þ k1w

Q
u ð6:3:31Þ

where the coefficients k0 and k1 have to be determined. The next definition is used:

Jij �
ZtE
tA

wi
u tð Þw j

u tð Þdt i; j ¼ P;Qð Þ ð6:3:32Þ

Substituting Eq. (6.3.31) in Eq. (6.3.29) and Eq. (6.3.30) and using the notation
Eq. (6.3.32) one finds:

dPjtE¼ k0JPP þ k1JPQ dQjtE¼ k0JPQ þ k1JQQ ð6:3:33; 34Þ

Equations (6.3.33) and (6.3.34) can be solved for the unknowns k0 and k1, with
the following results:

k0 ¼
dPjtE JPP � dQjtE JPQ

JPPJQQ � J2PQ
k1 ¼

dQjtE JPP � dPjtE JPQ
JPPJQQ � J2PQ

ð6:3:35; 36Þ
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The practical application of the gradient method consists in choosing some finite
variations DP and DQ as approximations for the quantities dPjtE and dQjtE (e.g. one
may assume that DP is about 1% of the current value of P and a similar value for
DQ). Entering these values in Eqs. (6.3.35) and (6.3.36) yields the values of the
constants k0 and k1. Now, the right hand side member of Eq. (6.3.31) is fully
determined, and represents a first approximation for the optimal variation du that
allows to achieve the variations DP and DQ initially chosen.

6.3.4 Process with Unspecified Duration and Without
Final Conditions

It is now considered that no final condition Q ¼ 0 exists and the final time tE is not
specified but can be calculated from a relationship of the type R uj tEð Þ; tE

� � ¼ 0. In
this case the relationship dtE ¼ 0 is no longer valid. Since for each iteration R ¼ 0,
it follows that dR ¼ 0. Under these circumstances, using the fundamental
Eq. (6.3.21) for functions P and R leads to:

dPjtE¼
ZtE
tA

wP
ududtþ _P

��
tE
dtE dRjtE¼ 0 ¼

ZtE
tA

wR
ududtþ _R

��
tE
dtE ð6:3:37; 38Þ

From Eq. (6.3.38) dtE can be obtained:

dtE ¼ � 1
_R
��
tE

ZtE
tA

wR
ududt ð6:3:39Þ

By replacing Eq. (6.3.39) in Eq. (6.3.37) one finds:

dPjtE¼
ZtE
tA

wP
u �

_P
_R

����
tE

wR
u

( )
dudt ð6:3:40Þ

Observe that this relationship is similar to Eq. (6.3.29) of Sect. 6.3.2, if wP
u is

replaced with wP
u � _P

_R

���
tE
wR
u . Therefore, the optimal variation du of the control

function is given by:

du�wPR
u tð Þ � wP

u tð Þ �
_P
_R

����
tE

wR
u tð Þ ð6:3:41Þ
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It is concluded that the recurrence formula Eq. (6.3.27) used to implement the
gradient method in Sect. 6.3.2 is replaced here by the relationship:

u pþ 1ð Þ ¼ u pð Þ þwPR
u u pð ÞDsj ð6:3:42Þ

The exponents in Eq. (6.3.42) show, as usual, the number of the iteration.
Since _P

_R

��
tE
is a constant, the accolade of Eq. (6.3.40) is a linear combination between

wP
u and wR

u . Therefore, integration in respect to time of the differential equations
(6.3.16) should not be performed twice (i.e. once for wP

u (with the initial condition
@P=@uj

� ���
tE
) and once for wR

u [with the initial condition @R=@uj

� ���
tE
)]. The inte-

gration can be performed once, from tE to tA, by starting from the initial value:

wPR
u

��
tE
¼ @P

@uj

�����
tE

�
_P
_R

����
tE

@R
@uj

�����
tE

ð6:3:43Þ

and obtaining

wPR
u tð Þ ¼

Xm
j¼1

@fj
@u

wP
j tð Þ �

_P
_R

����
tE

�
Xm
j¼1

@fj
@u

wR
j tð Þ ð6:3:44Þ

If one wants to minimize the length of the process, that means tE � tA, one can
use directly Eq. (6.3.39), resulting that the optimal variation of the control function
is given by:

du�wR
u ð6:3:45Þ

Due to the additional stop condition R = 0, the strategy of Eq. (6.3.45) is applied
if Eq. (6.3.39) yields dtE\0.

6.4 Constraints for the Control Functions and State
Variables

A simple method to take into account the constraints imposed to the control
functions and state variables is presented in the following.

6.4.1 Constraints for the Control Functions

Usually, the values of the control functions are restricted. Here a simple case
is considered, which is often encountered in practice. The control functions
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have a lower limit u1 and an upper limit u2, both limits being constant in
time:

u1 	 u tð Þ	 u2 ð6:4:1Þ

This inequality can be actually broken down into two inequalities:

u1 � u tð Þ	 0 u tð Þ � u2 	 0 ð6:4:2; 3Þ

To address the relationships (6.4.2) and (6.4.3), a slightly more general model is
developed.

It is assumed that the starting control function, u 0ð Þ tð Þ, for the beginning of the
iterative process used by the gradient method, obeys the inequalities (6.4.2), (6.4.3).
If, during one iteration (denoted by p), for a period of time denoted by t�; t��ð Þ, the
control function u pð Þ tð Þ[ u2, but in the next iteration, for the same period of time,
u pð Þ tð Þ[ u2, then on the interval t�; t��ð Þ, du is either equal to zero or equal to
u2 � u pð Þ tð Þ.

This procedure corresponds to the introduction of a new control function u� tð Þ,
which must not satisfy restrictions of the type (6.4.2), (6.4.3), and with which u tð Þ
can be defined as follows:

u ¼ u1 for u� 	 0

u ¼ u1 þ u� u2 � u1ð Þ for 0	 u� 	 1

u ¼ u2 for 1	 u�
ð6:4:4Þ

The gradient method can be now applied to the function u�, by calculating the
variation du� instead of the variation du. The formulas obtained in Sect. 6.3 can be
used directly, if one takes into account that:

du ¼ du
du�

du� ð6:4:5Þ

In addition, values must be assigned to du=du� in the points u� ¼ 0; u� ¼ 1,
because du=du� is not defined in those points (for example, one can put: du=du� ¼
0 for u� ¼ 0; u� ¼ 1). From Eq. (6.4.5) it follows that:

du� ¼ du for u1\u\u2
du� ¼ 0 for u ¼ u1; u ¼ u2

ð6:4:6Þ

In other words, when the extremes of the interval of the definition of the control
function are reached, the variation of this function is equal to zero.
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6.4.2 Constraints for the State Variables

Consider the case when the state variables must check the following inequalities

Ŝ uj tð Þ; t
� �	 0 ð6:4:7Þ

In this situation, it is customary to introduce a new state variable, herein denoted
uŜ, which is defined as:

_uŜ ¼ Ŝ2# Ŝ
� �

uŜ tAð Þ ¼ 0 ð6:4:8; 9Þ

where # Ŝ
� �

is the Heaviside step function, with the usual definition:

# Ŝ
� � ¼ 0 for Ŝ\0

1 for Ŝ
 0

(
ð6:4:10Þ

Assume Eq. (6.4.8) is integrated with the initial condition Eq. (6.4.9). Then,
possible violations of Eq. (6.4.7) are allowed in

uŜ tEð Þ ¼
ZtE
tA

Ŝ2# Ŝ
� �

dt ð6:4:11Þ

Assume an additional final condition is prescribed, i.e.:

Qqþ 1 uj tEð Þ; tE
� � � uŜ tEð Þ ð6:4:12Þ

Then, the restriction (6.4.7) is taken into account.
Consequently, the gradient method can be applied in normal conditions, if an

extended vector of state variables u � u1; . . .;um;uŜ

� �
is used (i.e. uŜ is intro-

duced as an additional state variable) and Eq. (6.4.12) is used as an additional final
condition. Since uŜ is not included in the dynamic equations (6.3.1), an additional
adjoint equation appears, according to Eq. (6.3.16):

_wŜ ¼ 0 ð6:4:13Þ

Depending on situation, there are other procedures to address the constraints
imposed to the states variables. For example, assume that the constraint has the
particular form:

u1 	 e1 ð6:4:14Þ
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where the value e1 is known. Then, instead of inequality (6.4.7) an additional state
variable can be defined as follows

umþ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � e1

p ð6:4:15Þ

Usage of Eq. (6.4.15) allows write:

_umþ 1 ¼
1

2umþ 1
_u1 ¼

1
2umþ 1

f1 t;uj; ul
� �

umþ 1 tAð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 tAð Þ � e1

p
ð6:4:16; 17Þ

Since only real values are considered, the constraint (6.4.14) is automatically
taken into account by using Eqs. (6.4.16) and (6.4.17).

6.5 General Approach

Simple, particular optimal control problems were treated in Sect. 6.3. Here, a more
complicated problem is considered. Simultaneously with the minimization
requirement P uj tEð Þ; tE

� � ¼ min, q final conditions Qr uj tEð Þ; tE
� � ¼ 0 and a stop

condition R uj tEð Þ; tE
� � ¼ 0 must be satisfied. By using these requirements and the

fundamental Eq. (6.3.21), one finds:

dPjtE ¼
Xm
j¼1

wP
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wP
j duldtþ _P

��
tE
dtE

dQrjtE ¼
Xm
j¼1

wQr
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wQr
j duldtþ _Qr

��
tE
dtE

ð6:5:1a; bÞ

dRjtE¼
Xm
j¼1

wR
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wR
j duldtþ _R

��
tE
dtE ¼ 0 ð6:5:1cÞ

dtE is extracted from the last Eq. (6.5.1c):

dtE ¼ � 1
_R
��
tE

Xm
j¼1

wR
j tAð Þduj tAð Þ �

ZtE
tA

1
_R
��
tE

Xk
l¼1

Xm
j¼1

@fj
@ul

wR
j duldt ð6:5:2Þ

6.4 Constraints for the Control Functions and State Variables 131



Since 1= _R
��
tE
6¼ 0, dividing Eq. (6.5.2) by this quantity is allowed. Canceling of

that term would mean that when t is varying in the neighboring of tE, R does not
change. Therefore, the stopping condition R = 0 could not be used for the deter-
mination of tE.

The method used in Sect. 6.3.4, Eq. (6.3.44), is used here to define:

wFR
j tð Þ � wF

j tð Þ �
_F
_R

����
tE

wR
j tð Þ F ¼ P;Qrð Þ ð6:5:3Þ

With the help of Eq. (6.5.3), the first two Eq. (6.5.1a, b) become:

dPjtE ¼
Xm
j¼1

wPR
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wPR
j duldt

dQrjtE ¼
Xm
j¼1

wQrR
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wQrR
j duldt

ð6:5:4; 5Þ

One sees that the initial problem was reduced to a problem which is similar to
the problem treated in Sect. 6.3.3 [Eqs. (6.3.29) and (6.3.30)] but with q constraints
and k control functions. In Eqs. (6.5.4) and (6.5.5) the functions wFR

j F ¼ P;Qrð Þ
must be calculated directly, by integrating the adjoint equations (6.3.16), using the
initial conditions obtained with the help of Eqs. (6.5.3) and (6.3.20).

According to Eq. (6.3.31), the simplest solution for this problem can be for-
mulated as a linear superposition, as follows:

dul ¼ k0w
PR
ul þ

Xq
r¼1

krw
PQr
ul ð6:5:6Þ

where the notations wul were used to represent the influence functions, as explained
at the end of Sect. 6.3.4.

Equation (6.5.6) is now replaced in Eqs. (6.5.4) and (6.5.5), yielding a linear
system of algebraic equations in the unknown k0; k1; . . .; kq. Solving this system is
performed by assigning some approximate values (denoted DP;DQr) to the left
hand side of Eqs. (6.5.4) and (6.5.5) and continuing through an iterative process, in
a manner similar to that described at the end of Sect. 6.3.3. By using this procedure
one sees that the total variation:

ZtE
tA

Xk
l¼1

du2l dt ð6:5:7Þ
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has different values at different iterations. If the values DP;DQr chosen initially are
too high, the linearization condition Eq. (6.5.6) can be violated. This means that
when calculations are performed by using dul obtained by applying Eq. (6.5.6), the
results are some values (denoted D~P;D~Qr) which differ very much (all or part of
them) from the initial values DP;DQr. Approaching the extreme is emphasized by
the fact that the determinant of the linear system of equations tends towards zero.

Another method of finding the optimal variation of the control functions is based
on the idea of keeping a constant value at each iteration for the total variation
Eq. (6.5.7) of dul, in order to ensure linearity. For simplicity, consider further a
single control function, u tð Þ. Formulas which correspond to the situation with
several control functions are easily obtained through the same procedure. Fix, as
has been said, the value of the total variation (denoted Ds):

Ds2 ¼
ZtE
tA

~W tð Þdu2 tð Þdt ð6:5:8Þ

In Eq. (6.5.8) ~W tð Þ is an arbitrary weighting function, which allows either to
take into account the sensitivity of the system controlled at some time moments,
either to keep constant the control function u tð Þ during some periods of time. To
determine the optimal variation du tð Þ of the control function one shall use the
method of Lagrange multipliers, in a manner similar to that of Sect. 6.3.2. The
necessary condition for the existence of the extreme, corresponding to the qþ 1
constraints, is given by:

@

@du
dPjtE þ

Xq
r¼1

~mr DQr �
ZtE
tA

wQrR
u dudt

0
@

1
Aþ ~l Ds2 �

ZtE
tA

~W tð Þdu2dt
0
@

1
A

8<
:

9=
; ¼ 0

ð6:5:9Þ

Here ~mr and ~l denote multipliers. By solving Eq. (6.5.9), the variation du tð Þ that
causes the maximum variation of dPjtE is obtained, with concomitant fulfilment of
the q prescribed values DQr and Eq. (6.5.8). If in Eq. (6.5.9) one replaces dPjtE
given by Eq. (6.5.4) and the derivative is computed, one obtains:

wPR
u �

Xq
r¼1

~mrw
QrR
u � 2~l ~W tð Þdu ¼ 0 ð6:5:10Þ

from which the optimal variation of the control function is obtained:

du tð Þ ¼ 1

2~l ~W tð Þ wPR
u �

Xq
r¼1

~mrw
QrR
u

( )
ð6:5:11Þ
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The multipliers ~mr and ~l can be found by replacing Eq. (6.5.11) in Eq. (6.5.8)
and in DQr ffi dQrjtE , where dQrjtE is given by Eq. (6.5.5). For brevity, the fol-
lowing notation is used (where fg corresponds to the matrix notation):

D�b � DQr �
Xm
j¼1

wQrR
j tAð Þd/j tAð Þ

 !( )
JFG �

ZtE
tA

wFR
u tð ÞwGR

u
~W tð Þ dt

�JPQ � JPQr
� �� �

J
�Q�Q � JQrQs

� �� �
F;G ¼ P;Qr r; s ¼ 1; . . .; q

ð6:5:12Þ

Using Eq. (6.5.12), the expressions of the multipliers are:

2~l ¼ � JPP � �JPQ
T
J �Q�Q
� ��1�JPQ

Ds2 � D�bT J �Q�Q
� ��1

D�b

" #�1
2

~mT �
~m1
� � �
~mq

0
B@

1
CA ¼ �2~l J

�Q�Q
� ��1

D�bþ J
�Q�Q

� ��1
�JPQ

ð6:5:13; 14Þ

where the exponent T refers to the transposed matrix. The sign of ~l in Eq. (6.5.13)
depends on the type of the extreme of P (i.e. maximum or minimum).

The procedure for the application of the method is as follows. Estimate u 0ð Þ tð Þ
and, using this estimate, calculate a starting solution u 0ð Þ

j tð Þ by integrating the
dynamic equations (6.3.1). This solution determines the initial values for the
backwards integration process (from tE to tA) and, in general, the deviations in
respect with the final conditions Qr ¼ 0. Upon the backwards integration of the
adjoint equation (6.3.16), wFR

j is directly obtained and, as a consequence, the

influence function wFR
u [by using Eq. (6.5.3)] and, from Eq. (6.5.12), JFR is sub-

sequently determined. Next, one chooses the value Ds of the total variation of du in
such a way that the linearity conditions are not breaked. If not enough details are
known about the process, one uses ~W tð Þ ¼ 1. Then a set of values is fixed for DQr,
in such a way that, by using the procedure, Qr ! 0 is obtained. It must take into
account that, for a given total variation Ds, one can not accept any value DQr. If
DQr is too high, then in the subsequent calculation of ~l using Eq. (6.5.13), the
quantity under the square root may become negative. Once ~l is calculated, ~m is
determined by using Eq. (6.5.14) and then the optimal start variation of the control
function, du 0ð Þ tð Þ, is computed by using Eq. (6.5.11). Next, the new expression of
the control function is estimated, by using the equation:

u 1ð Þ tð Þ ¼ u 0ð Þ tð Þþ du 0ð Þ tð Þ ð6:5:15Þ

The procedure is repeated from the beginning, using u 1ð Þ tð Þ instead of u 0ð Þ tð Þ.
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Following the above procedure, one determines the largest variation of
P corresponding to the chosen value Ds, by obtaining simultaneously the variations
DQr. More specifically, one obtains the maximum growth of P for the + sign in
Eq. (6.5.13), and the maximum decrease of P for the sign − in the same equation.
The end of the process occurs when, for two consecutive iterations, the modifica-
tions of P corresponding to DQr ¼ 0 are no longer significant. One must take into
account that the condition DQr ¼ 0 is necessary, because when DQr 6¼ 0 relatively
significant changes of P can occur, the optimization process actually leading in this
case to those variations du tð Þ which ensure those non-zero values of DQr.

Also note that in both the case of the first method, based on the specification of
DP and DQr, and in the case of the second method, in which Ds and DQr are
specified, considering the constraints Qr ¼ 0 requires solving linear algebraic
systems of equations. In some cases these systems may have large size, leading to
time-consuming calculations. The situation can be avoided by using a third method,
which is similar to the method described in Sect. 6.1.2 dedicated to ordinary
constrained optimization. Thus, similarly to Eq. (6.1.18), instead of the problem
P ¼ min, the following problem is solved:

P� ¼ Pþ
Xq
r¼1

KrQ
2
r ¼ min ð6:5:16Þ

by reducing step by step the deviations DQr with respect to Qr ¼ 0. The coefficients
Kr are arbitrarily chosen. The effect of the values Kr on P� is determined by
performing a new calculation, using other values Kr. Usually, all values Kr are
increased simultaneously (usually by doubling the values) until the deviations in
respect to Qr ¼ 0, and the variations of P� between two consecutive iterations, are
small enough, under the desired calculation accuracy. Giving different values to
various coefficients Kr, one can induce different degrees of importance among the
constrains Qr ¼ 0.

Using Eq. (6.5.16) one obtains a single relationship instead of Eqs. (6.5.4) and
(6.5.5):

dP�jtE¼
Xm
j¼1

wP�R
j tAð Þduj tAð Þþ

ZtE
tA

Xk
l¼1

Xm
j¼1

@fj
@ul

wP�R
j duldt ð6:5:17Þ

The difference from the previous situation [described by Eqs. (6.5.4) and
(6.5.5)], which allows the elimination of Eq. (6.5.5) attached to the quantities dQr,
is found in the influence functions wP�R

j . These influence functions differ from the

old influence functions wPR
j in that the backwards integration (from tE to tA) starts

from initial values of the form:
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wP�
j

���
tE
¼ @P

@uj

�����
tE

þ
Xq
r¼1

Kr
@Q2

r

@uj

�����
tE

2
4

3
5�

_Pþ Pq
r¼1

2KrQr _Qr

� 

_R

��������
tE

�@R
@uj

�����
tE

ð6:5:18Þ

Therefore, using Eq. (6.5.16) leads to considerable simplification of the whole
procedure. In particular, it enables a computer program initially written for solving
unconstrained optimization problems, to be easily developed to cover the case of
constrained optimization.

It is not easy to decide which of the three methods is the most useful. The answer
depends significantly on the problem to be solved. However, the first and third
methods are simpler, and between them, the latter is easier to apply.
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Chapter 7
Dynamic Programming (Bellman Method)

Dynamic programming is one of the most popular optimization methods. Its wide
usage is explained by the fact that it can be used to solve a large diversity of
prob-lems, ranging from common optimization problems to complex optimal
control problems. A brief introduction into dynamic programming is presented in
the following (see Tolle 1975).

7.1 Common Optimization Problems

7.1.1 The Grid Method

Any numerical method determines the solution of a problem only in a finite number
of “points”. Therefore, the simplest method to find the extreme of a function f xð Þ or
f x; yð Þ is the grid method (Fig. 7.1). In each of the grid points the values f xið Þ or
f xi; yj
� �

are calculated.
These values are compared each other and the absolute extreme value in the region

is obtained, provided that the grid is fine enough to capture all significant variations of
the function. The grid method is simple but extremely laborious in some cases.
However, a significant reduction in the number of calculations may be obtained by
using additional information about the function or more elaborate techniques such as
the dynamic programming method (also called the Bellman method).

7.1.2 The Bellman Method

The method has as starting point the idea of transforming the particular optimization
problem into a stage of a sequence of optimization problems. The fact that the
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method treats a succession of problems that change with every step led to the name
“dynamic programming”, sometimes used as a synonym for the Bellman’s method.

The basic problem where the Bellman method is commonly used can be
described as follows. Extremize:

Fp Cð Þ ¼
Xp
k¼1

fk ykð Þ ¼ f1 y1ð Þþ f2 y2ð Þþ � � � þ fp yp
� � ð7:1:1Þ

with the constraints:

C ¼
Xp
k¼1

yk ¼ const yk [ 0 ð7:1:2Þ

Essential in Eq. (7.1.1) is that it allows to discern a last step of the calculation
(which consists in assessing fp yp

� �
and addition of this quantity to the previous

sum). Because of this, despite Eq. (7.1.1) appears as a particular type of relation-
ship, it is still representative of the kind of problems that can be solved by using
dynamic programming. As mentioned, the basic idea of the method is to create a
sequence of steps, based on the extremization of a general function:

Fp Cð Þ ¼
Xp
k¼1

fk ykð Þ ð7:1:3Þ

with constraints

C ¼
Xp
k¼1

yk yk � 0 p ¼ 1; 2; . . .p; pþ 1; . . .ð Þ ð7:1:4Þ

where the functions fpþ 1 are defined in some way. Denote the extreme (here
assumed to be a minimum) in the following way:

Fig. 7.1 Usage of the grid method to finding the maximum of a function. Left Function depending
on one variable. Right Function depending on two variables (adapted from Tolle 1975)
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�Fp Cð Þ ¼ Min
yk

Fp Cð Þf g ð7:1:5Þ

A recurrence formula for the step-by-step calculation of the steps of
F1ðCÞ;F2ðCÞ; . . . may be found, by noting that the solution:

�Fp Cð Þ ¼
Xp
k¼1

fk ykð Þ ¼
Xp�1

k¼1

fk ykð Þþ fp ykð Þ ¼ Min ð7:1:6Þ

C ¼
Xp
k¼1

�yk ¼
Xp�1

k¼1

�yk þ�yp �yk � 0 ð7:1:7Þ

contains

Fp�1 C � ypð Þ ¼
Xp�1

k�1

fkð�ykÞ ð7:1:8Þ

with

C � yk ¼
Xp�1

k¼1

yk �yk � 0 ð7:1:9Þ

This means that if the relationship (7.1.5) is true, then the following statement
must be true:

Fp�1 C � ypð Þ ¼ �Fp�1 C � �ypð Þ ¼ Min ð7:1:10Þ

i.e. partial optimization must be ensured. Indeed, if Eq. (7.1.10) is not true, then in
(7.1.6) the true extreme value �Fp�1 C � �ypð Þ is introduced, and a value Fp Cð Þ lower
than the minimum accepted by Eq. (7.1.5) is obtained, which contradicts the
hypothesis. It is thus achieved a recurrence formula for calculating any optimal
value yp:

�Fp Cð Þ ¼ min
yp

�Fp�1 C � ypð Þþ fp ypð Þf g ð7:1:11Þ

The first �F of the recurrence formula to compute �Fp from �Fp�1 is obtained
directly from:

�F1 �y1ð Þ ¼ f1 y1ð Þ ð7:1:12Þ

because, for a sum of functions consisting of just one function, the minimum of the
sum of functions equals the value of that function.
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In practice, Eq. (7.1.11) is used as follows. Define nþ 1 points on the interval
0; . . .;C, depending on the desired calculation accuracy: 0; h; 2h; . . .; nh ¼ C.

Next, calculate the functions F1;F2; . . .;Fn for all points 0; h; 2h; . . .; nh. The
explanation is that when yp takes all values 0; h; 2h; . . .; nh, the function
�Fp�1 C � ypð Þ goes through all values, �Fp�1 nhð Þ, �Fp�1 n� 1ð Þhð Þ,. . .; �Fp�1 0ð Þ.

So, first determine all values �F1ð0Þ; �F1ðhÞ; . . .; in which the optimal value �y1 is
equal to a single value: 0; h; . . .. Then, calculates �F2ðcÞ, finding the minimum of
�F1ðc� y2Þþ f2ðy2Þ in relation to y2, for all admissible ranges 0; 0ð Þ, 0; hð Þ,
0; 2hð Þ; . . .. Here c represents different possible values of the end of the interval,
ranging from 0 up to C. The minimum in every interval is found by simply
comparing the function values, and denoting the associated value �y2 � y2optim.
Applying this procedure repeatedly one gets a table similar with Table 7.1.

From Table 7.1 one can extract the optimal strategy for �FpðcÞ, first reading the
value corresponding to �FpðcÞ. C � �yp is the rank which is then associated with
�Fp�1ðc� �ypÞ: The procedure continues up to �F1;�y1. No recalculation of fpð�ypÞ is
required since this value is obtained directly from �FpðCÞ � �Fp�1ðC � �ypÞ, accord-
ing to Eq. (7.1.11). The same is true for fp�1 �yp�1

� �
, etc.

7.1.3 Example

To clarify the application of the dynamic programming method, the following
simple problem is solved. It is required to minimize the function

F ¼ y1 þ y22 þ y33 ð7:1:13Þ

with the constraints

y1 þ y2 þ y3 ¼ 1:5 y1; y2; y3 [ 0 ð7:1:14Þ

The problem can be solved analytically by using the common procedure for
constrained optimization. The values k of the Lagrange multiplier values and the
values of the unknowns y2 and y3 are obtained successively:

Table 7.1 Application of
dynamic programming (Tolle
1975)

0 �F1ð0Þ … �yp �Fpð0Þ … �yp �Fpð0Þ
h �F1ðhÞ … �yp �FpðhÞ … �yp �FpðhÞ
2h �F1ð2hÞ … �yp �Fpð2hÞ … �yp �Fpð2hÞ
… … … … … … … …

nh �F1ðnhÞ … �yp �FpðnhÞ … �yp �FpðnhÞ
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@

@y1
½F � kðy1 þ y2 þ y3 � 1:5Þ� ¼ 1� k ¼ 0 ) k ¼ 1

@

@y2
½F � kðy1 þ y2 þ y3 � 1:5Þ� ¼ 2y2 � k ¼ 0 ) y2 ¼ 0:5

@

@y3
½F � kðy1 þ y2 þ y3 � 1:5Þ� ¼ 3y23 � k ¼ 0 ) y3 ¼ 0:576

Using the constraint Eq. (7.1.14), the value of the unknown y1 is determined:

1:5 ¼ y1 þ y2 þ y3 ) y1 ¼ 0:424

Then, by replacing the optimal values of the unknowns, the extreme value of the
function F is determined (it is easy to show that the extreme is indeed a minimum):

�F ¼ minF ¼ 0:424þ 0:25þ 0:192 ¼ 0:866

To solve this problem by using the method of Bellman, first divide the range
0;C½ � i.e. [0, 1.5] in nþ 1 equal subintervals. The method is applied for n ¼ 6 and
the possible values of the variables y1; y2; y3 consist of the next set of values: 0;
0.25; 0.5; 0.75; 1.0; 1.25; 1.5. Using Eqs. (7.1.12) and (7.1.11) leads to:

�F1 cð Þ ¼ y1jc �F2 cð Þ ¼ Min
y2

F1 c� y2ð Þþ y22
� �

�F3 cð Þ ¼ Min
y3

F2 c� y3ð Þþ y33
� �

Using these relations, the following results are obtained (the minimum values
are underlined):

�F2 0ð Þ ¼ Min �F1 0ð Þþ 02
� � ¼ 0

�F2ð0:25Þ ¼ Min
�F1 0:25ð Þþ 02 ¼ 0:25

�F1 0ð Þþ 0:252 ¼ 0:0625

( )

�F2 0:5ð Þ ¼ Min

�F1 0:5ð Þþ 02 ¼ 0:5

�F1 0:25ð Þþ 0:252 ¼ 0:3125

�F1 0ð Þþ 0:52 ¼ 0:25

8>><
>>:

9>>=
>>;

�F2 0:75ð Þ ¼ Min

�F1 0:75ð Þþ 02 ¼ 0:75

�F1 0:5ð Þþ 0:252 ¼ 0:5625

�F1 0:25ð Þþ 0:52 ¼ 0:5

�F1 0ð Þþ 0:752 ¼ 0:5625

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
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�F2 1:0ð Þ ¼ Min

�F1 1:0ð Þþ 02 ¼ 1:0
�F1 0:75ð Þþ 0:252 ¼ 0:8125

�F1 0:5ð Þþ 0:52 ¼ 0:75
�F1 0:25ð Þþ 0:752 ¼ 0:8125

�F1 0ð Þþ 12 ¼ 1:0

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

�F2 1:25ð Þ ¼ Min

�F1 1:25ð Þþ 02 ¼ 1:25
�F1 1:0ð Þþ 0:252 ¼ 1:0625

�F1 0:75ð Þþ 0:52 ¼ 1:0
�F1 0:5ð Þþ 0:752 ¼ 1:0625

�F1 0:25ð Þþ 1:02 ¼ 1:25
�F1 0ð Þþ 1:252 ¼ 1:5625

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�F2 1:5ð Þ ¼ Min

�F1 1:5ð Þþ 02 ¼ 1:5
�F1 1:25ð Þþ 0:252 ¼ 1:3125

�F1 1:0ð Þþ 0:52 ¼ 1:25
�F1 0:75ð Þþ 0:752 ¼ 1:3125

�F1 0:5ð Þþ 1:02 ¼ 1:5
�F1 0:25ð Þþ 1:252 ¼ 1:8125

�F1 0ð Þþ 1:52 ¼ 2:25

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

To compute F3, one needs F3 1:5ð Þ, i.e. the optimal value for the entire range,
because, according to the way of formulating the problem, the sequence of extreme
values must end with F3. Using the results previously obtained for �F2 one finds:

�F3 1:5ð Þ ¼ Min

�F2 1:5ð Þþ 03 ¼ 1:25þ 0 ¼ 1:25
�F2 1:25ð Þþ 0:253 ¼ 1:0þ 0:0156 ¼ 1:0156

�F2 1:0ð Þþ 0:53 ¼ 0:75þ 0:125 ¼ 0:875
�F2 0:75ð Þþ 0:753 ¼ 0:5þ :4219 ¼ 0:9219

�F2 0:5ð Þþ 1:03 ¼ 0:25þ 1:0 ¼ 1:25
�F2 0:25ð Þþ 1:253 ¼ 0:0625þ 1:9521 ¼ 2:0146

�F2 0ð Þþ 1:53 ¼ 0þ 3:375 ¼ 3:375

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

Finally, the results can be grouped in a way similar to Table 7.1. Table 7.2 is
obtained, where the values corresponding to the last two columns have not been
completed because they are not of interest.
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Note that the minimum value is 0.875 (under the adopted accuracy). The optimal
values �y1;�y2;�y3 are determined by using Table 7.2, using the following procedure:

�y3 ¼ 0:5 ) C � 0:5 ¼ 1:0 ) �F2ðcÞ ¼ �F2ð1:0Þ ) �y2 ¼ 0:5 )
�y1 ¼ 0:5

Therefore, optimum values obtained by using the method of Bellman are:

�y1 ¼ �y2 ¼ �y3 ¼ 0:5

These values may be compared with the values obtained by using the exact
method presented at the beginning of the section. The accuracy of Bellman’s
method can be increased by increasing the number of intervals n.

7.2 Problems of Variational Calculus

By increasing the degree of difficulty, in the following it is shown how dynamic
programming can be used to solve problems of classical variational calculus.
Consider, for example, minimization of the functional

J ¼
ZtE
0

L t; y tð Þ; y0 tð Þ½ �dt ð7:2:1Þ

with boundary conditions:

y 0ð Þ ¼ 0 y tEð Þ ¼ C ð7:2:2Þ

where tE and C have given values. Like in the case of common optimization
problems, the dynamic programming approach is trying to make the optimization
problem a part of a wider series of optimization problems. Thus, the problem
described by Eqs. (7.2.1), (7.2.2) is replaced by the following problem: find the
function y tð Þ that minimizes the functional

Table 7.2 Results
corresponding to the case
analyzed here (adapted from
Tolle 1975)

c ¼ �y1 �F1ðcÞ �y2 �F2ðcÞ �y3 �F3ðcÞ
0 0 0 0 0 0

0.50 0.50 0.5 0.25 – –

1.00 1.0 0.5 0.75 – –

1.50 1.5 0.5 1.25 0.50 0.875
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J ¼
Zt�E
0

L t; y; y0ð Þdt ð7:2:3Þ

with boundary conditions

y 0ð Þ ¼ 0 yðt�EÞ ¼ C ð7:2:4Þ

One searches, as in Sect. 7.1, to get a recurrence relation, by using the principle
of the optimality of the optimal trajectory parts. One writes:

Zt�E
0

L t; y; y0ð Þdt ¼
Zt�E�Dt

0

L t; y; y0ð Þdtþ
Zt�E

t�E�Dt

L t; y; y0ð Þdt ð7:2:5Þ

Note that, for the case when the minimum (J � S) is obtained, the first term in
the right hand side of Eq. (7.2.5), on the interval 0; t�E � Dt

� �
, with boundary

conditions 0 and yðt�E � DtÞ ¼ C � Dy, must be in turn a minimum. Otherwise, by
replacing this first term by its true minimal value, one gets J\S, which contradicts
the hypothesis.

Taking into account that for fixed initial values, S depends only on the final
values tE; y tEð Þ, from Eq. (7.2.5) the following recurrence formula can be inferred:

S t �E ;C
� � ¼ Min

y0 in interval
t�E � Dt; t�E
� � S t�E � Dt;C � Dy

� �þ Zt�E
t�E�Dt

L t; y; y0ð Þdt

8><
>:

9>=
>; ð7:2:6Þ

Numerical computation of an integral requires the decomposition of a continu-
ous integration process into a discrete process. The integral appearing in Eq. (7.2.6)
can be approximated in different ways. The following way is used here:

Zt�E
t�E�Dt

L t; y; y0ð Þdt ¼ L t�E; y t�E
� �

; y0 t�E
� �� �

Dt ð7:2:7Þ

i.e. the integral is approximately equal with the product between the length of the
time Dt and the core of the integral, assessed at the right end of the interval. Using
the same idea, the following approximation can be used:

Dy ¼ y0ðt�EÞDt ð7:2:8Þ

Replacing these two relationships in Eq. (7.2.6) one finds:
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S t�E;C
� � ¼ Min

y0ðt�EÞ
S t�E � Dt;C � y0 t�E

� �
Dt

� �þ L t�E; y t�E
� �

; y0 t�E
� �� �

Dt

� 	
ð7:2:9Þ

Now, the interval Dt is defined by dividing the interval 0; . . .; tE into p equal
parts. Then, Eq. (7.2.9) can be applied in stages, starting with t�E ¼ Dt up to
p � Dt ¼ tE. However, during the search of a minimum (i.e. during one of the stages)
y0ðtEÞ cannot be varied continuously.

In general, the optimal trajectory between 0; 0ð Þ and tE;Cð Þ may have an arbi-
trary form, which is not limited to the shaded rectangle in Fig. 7.2.

Therefore, to find the minimum, the whole interval �1\yðpDtÞ\þ1 should
be swept, with a choice of y0ðpDtÞ for each step Dt ðp ¼ 0; 1; 2; 3. . .; pÞ. So, y0ðpDtÞ
takes a series of discrete values from �1 to þ1 and, consequently, the same
happens with C � y0ðt�E ¼ pDtÞ � Dt (see Fig. 7.3).

Therefore, instead of the optimization problem defined by Eqs. (7.2.1), (7.2.2), a
series of optimization problems must be solved, on the intervals Dt; 2Dt; . . ., etc.,
determining the optimal value y0 t�E

� �
for the boundary condition y t�E

� � ¼ C, by
replacing a number of discrete values y0 t�E

� � ¼ y01 in the recurrence formula
Eq. (7.2.9) and comparing the values of the function. Because during this search of

Fig. 7.2 Optimal trajectory
of arbitrary form (adapted
from Tolle 1975)

Fig. 7.3 Discretization of the
allowed values of y0 (adapted
from Tolle 1975)
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S pDt; cð Þ, the quantity S p� 1ð ÞDt;C � y0 pDtð ÞDt½ � in the right hand side of
Eq. (7.2.9) is evaluated for all admissible discrete values c ¼ C � y0iDt (due to the
variation of y0 t�E

� �
), S pDt; cð Þ must generally be calculated every step.

In the first step, the integral J is uniquely defined, because
J ¼ L Dt; y

0
iDt; y

0
i

� � � Dt ¼ S. Consequently, a starting solution is known for the
formula Eq. (7.2.9). The complete solution can be put in the form of Table 7.3,
where, again, the optimum �y

0 ¼ y0ðt�EÞ is inserted before the extreme value S. Note
that c ¼ C � y

0
iDt. From this table one can extract the optimal path, if one takes for

the beginning �y0 tEð Þ ¼ y0optim tEð Þ, corresponding to S tE;Cð Þ. Then, one makes
C � �y0 tEð ÞDt ¼ C�, one finds S tE � Dt;C�ð Þ, one extracts �y0 tE � Dtð Þ from
Table 7.3 for this S tE � Dt;C�ð Þ and one continues in the same way until the
beginning of Table 7.3.

If there is an upper limit for y0 (denoted y0max), then, instead of Table 7.3 a
smaller table is obtained, since the sweeping limits are not �1 and þ1, but
�y0max and y0max. This reduces the search effort when using the table. The same
happens for any other additional restriction. Finally it is necessary to calculate in the
last column of Table 7.3 only S tE;Cð Þ but not all values S tE; cð Þ.

7.3 Optimal Control Problems

This section shows how to apply the dynamic programming to solving optimal
control problems. First, it is shown how the method developed in Sect. 7.2 for
classical variational calculus problems may be extended to the case when the
constraints have the form of ordinary differential equations. At the end of the
section the Bellman equation is deduced and it is indicated how to use it.

7.3.1 Extension of the Variational Calculus Method

Bellman’s method is applied first in the simplest case, when both the moment of the
process end and the end conditions are fixed. Consider the case of minimizing the
integral

Table 7.3 The complete solution of the problem of variational calculus (Tolle 1975)

�y0 Dtð Þ S Dt; cð Þ … �y0 pDtð Þ S pDt; cð Þ … �y0 pDt; cð Þ S pDt; cð Þ
�1 L Dt; þ1;�1ð ÞDt … �y0 pDtð Þ S pDt; þ1ð Þ … �y0 tEð Þ S tE; þ1ð Þ
… … … … …

0 L Dt;C; 0ð ÞDt … �y0 pDtð Þ S pDt;Cð Þ … �y0 tEð Þ S tE;Cð Þ
… … … …. …

þ1 L Dt; þ1;�1ð ÞDt … y0 �pDtð Þ S pDt;�1ð Þ … �y0 tEð Þ S tE;�1ð Þ
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P ¼
ZtE
tA

L /j tð Þ; ul tð Þ
� �

dt j ¼ 1; . . .;mð Þ l ¼ 1; . . .; kð Þ ð7:3:1Þ

through a suitable choice of the control functions ul tð Þ in a closed domain �U. The
functions of state /i must obey the dynamic equations:

_/j ¼ fjð/i; ulÞ ð7:3:2Þ

and at given times t ¼ tA and t ¼ tE the next boundary conditions are satisfied:

/i tAð Þ ¼ Ai /i tEð Þ ¼ Ei ð7:3:3Þ

The only change to the formula of recurrence Eq. (7.2.9) is that _/jðtÞ replaces
y0 tð Þ and instead of the minimum in respect to y0 t�E

� �
, the minimum in respect to the

free functions ul t�E
� �

is searched. Lowercase letters is used to draw attention to the
fact that the final conditions is searched by scanning the entire domain �U. Then
Eq. (7.2.9) becomes:

S t�E; ej
� � ¼ Min

ul t�Eð Þ
S t�E � Dt; ej � _/j t

�
E

� �
Dt

h i
þ L ej; ul t

�
E

� �� �
Dt

n o
ð7:3:4Þ

One must find the function _/j t
�
E

� �
which makes that Eq. (7.3.4) can be written

as:

S t�E; ej
� � ¼ Min

ul t�Eð Þ
S t�E � Dt; ej � fj ej; ul t

�
E

� �� �
Dt

� �þ L ej; ul t
�
E

� �� �
Dt

� � ð7:3:5Þ

Formally, this is the only change. The constraint ul 2 �U is advantageous,
because it makes the area to be scanned to reduce, since not all possible values
�1\ul\þ1 have to be considered. As a consequence, not all values
ej �1\ej\1� �

are available in this case.
In more general cases, when the final values of the state functions are free, or the

final time value is free, there is no single starting point in Table 7.3, from which the
process can start in reverse order to determine the optimal path. Note that in those
cases the new table, corresponding to Table 7.3, is multi-dimensional. Since all
prescribed final values are multiply satisfied in this new table, the extremized value
of S should be found through comparison between different variants.
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7.3.2 Bellman Equation

As already mentioned, in case of optimal control applications, Bellman’s method is
the dual approach in respect with that of Pontryagin. In this context, it was shown
that the maximum principle is an extension of the Euler-Lagrange method of the
classical calculus of variations. It is expected, therefore, that the dynamic pro-
gramming constitutes an extension of the Hamilton-Jacobi method (which is the
dual of the Euler-Lagrange approach in the variational calculus). This is proved in
the following. Consider the case of a system whose behavior is described by the
usual system of differential equations:

d/
dt

¼ f ð/; uÞ; 0� t� T ð7:3:6Þ

where

/ ¼ f/1; . . .;/ng; f ¼ ff1; . . .; fng; u ¼ fu1; . . .; ung ð7:3:7Þ

Admissible controls are the functions u ¼ uðtÞ, piecewise continuous, which
takes values in the closed domain U 	 Em:

In the class of admissible controls one must find a function uðtÞ, and the solution
of the problem Eq. (7.3.6) associated with this function, that yields the minimum of
the functional

J u½ � ¼
ZT
0

f0 /; uð Þdt ¼ min:
u2U

ð7:3:8Þ

This implies that each admissible control determines a unique solution of the
problem Eq. (7.3.6). The following notation is introduced

Q /; tð Þ ¼ min
u

ZT
t

f0 /; uð Þds ð7:3:9Þ

Then, from the principle of the optimality of the parts of the optimal path one
finds:

Q / tð Þ; tð Þ ¼ min
u

ZtþDt

t

f0 /; uð Þdsþ min
u

ZT
tþDt

f0 /; uð Þds
8<
:

9=
;: ð7:3:10Þ

The second term in the brackets is, by definition
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min
u

ZT
tþDt

f0 /; uð Þds ¼ Qð/þD/; tþDtÞ; ð7:3:11Þ

where the increase of the vector function / in the time interval Dt is given, by using
Eq. (7.3.6), by:

D/ ¼
ZtþDt

t

d/ ¼
ZtþDt

t

@/
@s

ds ¼
ZtþDt

t

f /; uð Þds: ð7:3:12Þ

Denote:

a #ð Þ ¼
Z#
t

f0 /; uð Þds ð7:3:13Þ

Then a tþDtð Þ can be expanded in Taylor series, keeping the term of first order,
resulting:

a tþDtð Þ ¼ a tð Þþ @a
@t

Dt ¼ f0 /; uð ÞDt ð7:3:14Þ

Here Eq. (7.3.13) was used and the fact that a tð Þ ¼ 0. Next, Q /þD/; tþDtð Þ
is expanded in a Taylor series, by keeping the terms of first order:

ði ¼ 0; 1; . . .;N � 1Þ: ð7:3:15Þ

Replace Eqs. (7.3.13) and (7.3.15) in Eq. (7.3.10), resulting

Q /; tð Þ ¼ f0 /; uð ÞDtþQ /; tð Þþ @Q
@/

D/þ @Q
@t

Dt ð7:3:16Þ

Divide Eq. (7.3.16) by Dt and compute the limit Dt ! 0, taking into account
that, from Eq. (7.3.6):

lim
Dt!0

D/
Dt

¼ d/
dt

¼ f /; uð Þ ð7:3:17Þ

Finally, one gets:

� @Q
@t

¼ min f0 /; uð Þþ f /; uð Þ � dQ
d/


 �
ð7:3:18Þ
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If one takes into account that both f and dQ=d/ are vectors, one sees that the
second term of the bracket in Eq. (7.3.18) is just the scalar product of the two
quantities, denoted f ; dG=d/ð Þ. With this notation, Eq. (7.3.18) becomes:

� @Q
@t

¼ min f0ð/; uÞþ ððf ð/; uÞ; dQ
d/

Þ

 �

; Qð/; TÞ ¼ 0 ð7:3:19; 20Þ

Relation (7.3.19) is the Bellman equation. Being a partial differential equation, it
is a natural extension of the Hamilton-Jacobi equation.

We assume now that the minimum of the right hand side member of Eq. (7.3.19)
is achieved only in a single point u� 2 U. Then u� is a function of / and @Q=@/:

u� ¼ u� /;
@Q
@/

� 

ð7:3:21Þ

Entering this function in Eq. (7.3.20) leads to a nonlinear system

� @Q
@t

¼ f0 /; u� /;
@Q
@/

� 
� 

þ f /; u� /;

@Q
@/

� 
� 

;
@Q
@/

� 

: ð7:3:22Þ

Assume u� is a function of / and t. Then, Eq. (7.3.22) constitute a hyperbolic
system of equations.

The rigorous treatment of the dynamic programming method applied to con-
tinuous optimal control problems was developed by Bolteanski (1973), who
obtained the necessary and sufficient conditions of optimality.

The core of the dynamic programming method is the idea of sinking the specific
problem into a family of simpler problems. This idea is well illustrated by showing
the way of deducing the equations of dynamic programming for processes
described by a system of finite difference equations

/iþ 1 ¼ gð/i; uiÞ ði ¼ 0; 1; . . .;N � 1Þ: ð7:3:23Þ

Here /l 2 En is the n-dimensional vector of state, and ui 2 E is the
m-dimensional vector of controls.

The finite difference Eqs. (7.3.23) can occur both in the physical description of
the process and in the discretization of the system of Eqs. (7.3.22). In the set of the
solutions of the Eqs. (7.3.23) one wants to minimize a functional of the following
type

JðuÞ ¼
XN�1

i¼0

f0ð/i; uiÞ ! min
fu0;...;uN�1g

ð7:3:24Þ

From the problem formulation it is seen that the extreme value of the functional,
i.e. the solution of the problem Eqs. (7.3.23), (7.3.24), exists and depends on the
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initial state /0 and the number N of steps. The extreme value is denoted QNð/0Þ
and the minime problem is written as follows:

QNð/0Þ ¼ min
u0

min
fu1;...;uN�1g

f0ð/0; u0Þþ
XN�1

i¼1

f0ð/i; uiÞ
" #

ð7:3:25Þ

Because, due to the structure of the system of Eqs. (7.3.23), the changes
ðu1; . . .; uN�1Þ have no effect on / and on the choice of u0, then Eq. (7.3.25) can be
transcribed as follows:

QNð/0Þ ¼ min
u0

f0ð/0; u0Þþ min
fu1;...;uN�1g

XN�1

i¼1

f0ð/i; uiÞ
" #

ð7:3:26Þ

By definition, the second term in the bracket is QN�1ð/1Þ and so

QNð/0Þ ¼ min
u0

f0ð/0; u0ÞþQN�1ð/1Þ½ �: ð7:3:27Þ

Reasoning in a similar manner leads to the following recurrence relations:

/0 � given ð7:3:28Þ

QN�jð/jÞ ¼ min
uj2U

f0ð/j; ujÞþQN�j�1ð/jþ 1Þ
� �

j ¼ 0; . . .;N � 2ð Þ ð7:3:39Þ

/jþ 1 ¼ gð/j; ujÞ ð7:3:30Þ

Q1ð/N�1Þ ¼ min
uN�12U

f0ð/N�1; uN�1Þ½ � ð7:3:31Þ

/N�1 ¼ gð/N�2; uN�2Þ: ð7:3:32Þ

From the system of Eqs. (7.3.28)–(7.3.32) one finds that, by assuming the
function /N�1 as being known, and solving the relatively simple problem of
minimizing a function of m variables, one can be found successively from
Eq. (7.3.29) uN�2; . . .; u0 and QNð/0Þ. But, since the system of Eqs. (7.3.23) suc-
cessively determines /1;/2; . . .;/N�1, then, in fact, a problem with the imposed
boundary values in two points is obtained, which is typical for optimal control.
Equations (7.3.29), (7.3.31), which give the sufficient and necessary conditions for
the optimality of the control ðu1; . . .; uN�1Þ, are consequences of the structure of the
system of Eq. (7.3.23) (when /j; uj are known). Note that the solution of the system
of Eq. (7.3.23) does not depend on /j�1; uj�1; . . .: and on the additivity of the
functional Eq. (7.3.24).
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7.3.3 Example

How to use the dynamic programming to solving optimal control may become
clearer by using a simple example. Assume a process described by a single dynamic
equation:

_/ ¼ u ð7:3:33Þ

/ð0Þ ¼ /0; uj j � 1 ð7:3:34Þ

The following functional is to be minimized

J½u� ¼
ZT
0

/2dt ! min
u

: ð7:3:35Þ

In this case the Bellman’s Eq. (7.3.19) is written as follows

� @Q
@t

¼ min
uj j � 1

/2 þ u
@Q
@/


 �
ð7:3:36Þ

Since a linear function reaches its extreme (in this case, the minimum) at the
boundary of the definition domain, while u ranges between −1 and +1, then

u� ¼ sign
@Q
@/

� 

ð7:3:37Þ

The problem defined by Eqs. (7.3.33), (7.3.34) is discretized in the following
way (T = 5, N = 5, s ¼ T=N ¼ 1):

/iþ 1 ¼ /i þ sui i ¼ 0; 1; :::;N � 1ð Þ; uij j � 1 ð7:3:38; 39Þ

J ¼
XN�1

i¼0

s/2
i ! min

fu0;...uN�1g
ð7:3:40Þ

The expression for Q1ð/N�1Þ may be written as follows

Q1ð/4Þ ¼ min
u4j j � 1

s/2
4 ¼ s/2

4 ð7:3:41Þ

The value of u�4 is arbitrary; thus u�4
�� ��� 1. The equation for Q2ð/3Þ is written:
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Q2ð/3Þ ¼ min
u3j j � 1

/2
3 þQ1 /3 þ u3ð Þ� � ð7:3:42Þ

The values of /i (i = 3,2,1,0) are changed from / ¼ þ 5 to / ¼ �5 with a step
of −1. For each /3, the value of u�3 is obtained from Eq. (7.3.42) and the corre-
sponding value Q3ð/3Þ. In an analogous way, the values �FpðnhÞ and Q5�ið/iÞ are
obtained for i = 2,1,0. These values are presented in Table 7.4.

As an example, the solution of the problem defined by Eqs. (7.3.38), (7.3.39) is
found for the initial value /0 ¼ 3. From Table 7.4 one gets Q5ð3Þ ¼ 14,
u�0ð/0 ¼ 3Þ ¼ �1. Next, /1 ¼ /0 þ u�0 ¼ 3� 1 ¼ 2 and using Table 7.4 one finds
u�1ð/1 ¼ 2Þ ¼ �1. Further calculation gives: /2 ¼ 1, u�2 /2 ¼ 1ð Þ ¼ �1, /3 ¼ 0,
u�3 /3 ¼ 0ð Þ ¼ 0, /4 ¼ 0, u�4 /4 ¼ 0ð Þ ¼ 0.

Table 7.4 has the advantage that it allows the simultaneous presentation of the
solution of the problem defined by Eqs. (7.3.38), (7.3.39) for several initial values,
namely /0 ¼ þ 5; . . .;�5.

7.4 Linear Processes and Quadratic Objective Functions

In Sect. 7.3, general issues concerning the usage of dynamic programming to
solving optimal control have been treated. A particularly interesting case is treated
now, which allows to obtaining both a numerical solution and an analytical
solution.

Consider an objective function whose integrand of the control function appears
to the second power:

P ¼ a
ZtE
0

Xk
l¼1

u2l dt ð7:4:1Þ

This objective function must be minimized by choosing convenient control
functions ul tð Þ. In addition, the evolution of the system is described by dynamic
equations which are linear in the state variables c:

Table 7.4 Results obtained (adapted from Tolle 1975)

/ Q5ð/0Þ u�0 Q4 /1ð Þ u�1 Q3ð/2Þ u�2 Q2ð/N�2Þ u�N�2 Q1ð/N�1Þ
5 55 −1 54 −1 50 −1 41 −1 25

3 14 −1 14 −1 14 −1 13 −1 9

1 1 −1 1 −1 1 −1 1 −1 1

−1 1 1 1 1 1 1 1 1 1

−3 14 1 14 1 14 1 13 1 9

−5 55 1 54 1 50 1 41 1 25

7.3 Optimal Control Problems 153



_/j ¼
Xm
i¼1

aij/j þ
Xk
l¼1

bljul ð7:4:2Þ

with the following boundary conditions at the end of the time interval:

/j tEð Þ ¼ cj ð7:4:3Þ

In the above relations, a, aij,C and cj are known.
For greater generality, an objective function that extends Eq. (7.4.1) is consid-

ered, namely:

P̂� ¼
Xm
j¼1

/j

��
tE
�cj

� �2
þK�

ZtE
0

Xk
l¼1

u2l dt K� [ 0 ð7:4:4Þ

The form Eq. (7.4.4) of the objective function allows, through the value of K�,
to tackle the problem from different perspectives. Thus, when K� ! 1, one sees
from Eq. (7.4.4) that the objective is to minimize the function defined by
Eq. (7.4.1). On the other hand, when K� ! 0, the fulfillment of the final boundary
conditions result is more important. Intermediate values of K� can be used, of
course.

Solving the problem in the general case can be found in Smith (1964). Next the
solution of the following simpler problem is shown:

P̂� ¼ /2 tEð ÞþK�
ZtE
0

u2dt ð7:4:5Þ

_/ ¼ a/þ u ð7:4:6Þ

which is obviously a special case of the problem Eqs. (7.4.2)–(7.4.4). The time
interval 0; hð Þ is divided into N intervals of length Dt. The following notation is
used:

û � uDt K̂ � K�

Dt
â � aDtþ 1 P̂ � P̂�

Dt
ð7:4:7Þ

In these circumstances, the problem can be formulated in discretized form in
respect to time:

P̂N ¼ /2
N þ K̂

XN�1

i¼0

û2i

/kþ 1 ¼ â/k þ ûk k ¼ 0; . . .;N � 1

ð7:4:8; 9Þ
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if it is considered that for a given time interval, the function u has constant value,
equal to the value at the left end of the interval. Equation (7.4.8) can be rewritten in
a form that allows the usage of the Bellman method:

P̂N /0ð Þ ¼ /2
N þ K̂

XN�1

i¼1

û2i þ K̂û20 ¼ P̂N�1 /1ð Þþ K̂û20 ð7:4:10Þ

If one denotes by S the extreme value of the objective function, then, by
applying the principle of optimality of the parts of trajectory, Eq. (7.4.10) becomes:

S NDt;/0ð Þ ¼ min
û0

S N � 1ð ÞDt; â/0 þ û0½ � þ K̂û20
� � ð7:4:11Þ

When writing Eq. (7.4.11), the Eq. (7.4.9) has been used.
The solution procedure begins with the application of Eqs. (7.4.10) and (7.4.11)

on the first time interval:

S Dt;/0ð Þ ¼ min
û0

/2
1 þ K̂û20

� � ¼ min
û0

â/0 þ û0ð Þ2 þ K̂û20
n o

ð7:4:12Þ

Finding the extreme of Eq. (7.4.12) in relation with û0, implies canceling the
first derivative with respect to this variable:

0 ¼ 2â/0 þ 2û0 1þ K̂
� � ð7:4:13Þ

resulting in:

û0 ¼ � â/0

1þ K̂
ð7:4:14Þ

From Eq. (7.4.14) it is seen that the optimal value of the control function on the
first time interval, û0, is proportional to the initial value /0 of the state variable.
Using Eqs. (7.4.12) and (7.4.14) one finds:

S Dt;/1ð Þ ¼ â/0 1þ K̂
� �
1þ K̂

� â/0

1þ K̂

 !2

þ K̂
â2/2

0

1þ K̂
� �2 ¼ â2K̂

1þ K̂
/2
0 ð7:4:15Þ

Note that the extreme value of the functional on the first time interval, S Dt;/1ð Þ,
is proportional to the square of the initial value of the state variables on that time
interval, /0. For other intervals, an analysis that is omitted here suggests the fol-
lowing recurrence relationship:
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S kDt; zð Þ ¼ kkz
2 k ¼ 2; . . .;Nð Þ ð7:4:16Þ

where z is the value of the state function at the left end of the range (i.e. z ¼ /k�1
for the interval k) and the numbers kk have to be determined. This relationship is
further verified by complete induction. Using Eq. (7.4.16) at the right end of the
interval k, of coordinate âzþ uk , it follows that:

S kDt; âzþ ûkð Þ ¼ kk â2z2 þ 2âzûk þ û2k
� � ð7:4:17Þ

But it is seen from Eq. (7.4.11) that in case of the interval kþ 1:

S kþ 1ð ÞDt; z½ � ¼ min
ûk

S kDt; âzþ ûk½ � þ K̂û2k
� � ð7:4:18Þ

The minimum value of S kþ 1ð ÞDt; zð Þ is obtained by canceling the derivative of
the right hand side member of Eq. (7.4.18) in relation to ûk:

d
dûk

S kDt; âzþ ûkð Þþ K̂û2k
� � ¼ 0 ð7:4:19Þ

Substituting Eq. (7.4.17) in Eq. (7.4.19) yields:

2âkkzþ 2ûk kk þ K̂
� � ¼ 0 ð7:4:20Þ

Solving the algebraic Eq. (7.4.20) one finds the optimal value of the control on
the interval �F2ðcÞ:

ûk ¼ � âkkz

kk þ K̂
ð7:4:21Þ

Replacing Eq. (7.4.21) in Eq. (7.4.17) one obtains:

S kþ 1ð ÞDt; z½ � ¼ â2K̂

kk þ K̂
kkz

2 ¼ kkþ 1z
2 ð7:4:22Þ

Equation (7.4.22) certifies the hypothesis implicitly adopted by using
Eq. (7.4.16) and allows, on the other hand, the recurrence calculation of the
quantities kk. It can be concluded that the solution of the optimal control problem is
as follows:

k0 ¼ 1

kkþ 1 ¼ â2K̂kk
kk þ K̂

S kDt; zð Þ ¼ kkz
2 ¼ S kDt;/k�1ð Þ ¼ kk/

2
k�1

� �
k ¼ 1; . . .;Nð Þ

ð7:4:23Þ
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Equations (7.4.22) allow to solve the problem by recurrence, the optimal con-
trols on each time interval being given by Eq. (7.4.16).

7.5 Comments

Based on the previous theoretical considerations and examples, one can draw some
conclusions about the practical application of the Bellman method.

Using dynamic programming, at least in its simplest form, involves covering by
a mesh the range of all possible values of the state variables. The control functions
are determined each time by sweeping the mesh in all directions.

The optimal path is selected from the possible paths, by comparing the effects
that they have on the values of the functional to be extremized. Using an iterative
procedure, based on the principle of the optimality of the parts of the optimal
trajectory, the number of computations is reduced from a value that grows expo-
nentially with the number of mesh points (like in case of the grid method) to a value
that increases multiplicatively with that number.

The Bellman method directly calculates the extreme value of the functional.
Therefore, if an analytical method can be created based on that method (by a
process of transition to the limit), partial differential equations (of Hamilton-Jacobi
type) are obtained and not ordinary differential equations (of Euler-Lagrange type).

Dynamic programming requires a formulation that allows obtaining a solution in
the phase space of the state variables /i. One of the consequences is that when the
state values are known, the optimal strategy is also known, as usually required for a
process which is univocally controlled. In case of the Pontryagin principle, an
optimal strategy for the control functions is determined in the first instance, and the
time evolution of the state variables is obtained later, by the synthesis procedure,
that involves removing the adjoint variables.

As in other areas of numerical analysis, when solving problems by using the
Bellman method, questions arise regarding the degree of approximation, the sta-
bility of the solutions and the convergence of the algorithms. The complexity of the
equations that arise during the implementation of the dynamic programming
method and the significant computational effort required to solve them, often
hamper its practical use.

References

Bolteanski, V.G.: Optimalnoe upravlenie diskretnimi sistemami. Nauka, Moskva (1973)
Smith, F.T.: The application of dynamic programming to orbit transfer processes.

AGARD-Tagung, Dusseldorf (1964)
Tolle, H.: Optimization methods. Springer-Verlag, New York (1975)

7.4 Linear Processes and Quadratic Objective Functions 157



Part III
Applications: Heat Transfer and Storage

Applications consist of 16 chapters and presents several applications of optimal
control theory in solving various thermal engineering problems. These applications
are grouped in four parts:

III Heat transfer and thermal energy storage,

IV Solar thermal engineering,

V Heat engines,

VI Lubrication.

This part III consists of six chapters and covers specific problems of heat transfer
and storage of thermal energy. The focus is on the characteristics of various heat
transfer mechanisms (conduction, convection, radiation) (Chap. 8), operation
regimes of heat exchangers (Chap. 9), optimal exploitation of heat storage units
(Chap. 10), optimal heating and cooling processes (Chap. 11), optimization of
thermal insulation (Chap. 12) and optimal design of pin fins (Chap. 13).
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Chapter 8
Heat Transfer Processes

8.1 Optimal Strategies for Common Heat Transfer
Processes

The method of entropy generation minimization has become a popular tool for the
design of thermal plants and installations. It consists of a mixture of classical
thermodynamics, heat and mass transfer, and fluids mechanics (Bejan 1982). For
pioneering studies see e.g. Bejan (1978), Salamon et al. (1980). For more detailed
results see for example Sieniutycz (1999), Salamon et al. (2002), Schaller et al.
(2002). A number of good reviews are available, as Bejan (1988), Bejan and Mamut
(1999), Wu et al. (1999) to quote a few.

In this section the time-dependent operation of several simple heating and
cooling processes is optimized (Andresen and Gordon 1992). The optimization is
designed for minimizing the entropy generation. A system (at uniform space
temperature, denoted by T), heated by a heat source of variable but controllable
temperature T0 tð Þ, is considered. This latest temperature is the control function.

8.1.1 Determination of Optimal Strategies

The system is presented in Fig. 8.1. The only thermal resistance is at the interface
between the system and the heat source (the reservoir). The conductance of this
interface is assumed to be known and is denoted by k. The temperature T0 tð Þ can be
adjusted as desired, for heating or cooling the system of time-dependent tempera-
ture T tð Þ.

There is no restriction or constraint for the temperature T0 tð Þ. In practice, it can
be controlled through proper design of heat exchangers, usually through a
non-uniform distribution of the heat transfer surface area. Note, however, that the
heat source (reservoir) routinely treated in textbooks has a constant (in time)
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temperature. In this section, the last situation (reservoir of constant temperature) is
considered, as well as the situation, common in the teaching practice, when the heat
flux transferred between the system and the source is constant in time. For clarity,
only the heating process is treated here, T0 [ Tð Þ. Solutions corresponding to the
cooling process are obtained by simply changing the sign.

The heat flux density transferred to the system has the general form:

q ¼ knðTn
0 � TnÞ ð8:1:1Þ

where kn is a generalized conductance. The cases of practical interest correspond to
n ¼ þ 1 (Newtonian convection), n ¼ �1 (conduction in some materials (for
example metals) which shows a temperature dependence of the thermal conduc-
tivity) and n ¼ þ 4 (radiative heat transfer). For consistency, kn is negative for
negative values of n.

The entropy source (also called entropy generation or production of entropy) is
denoted Su. Then, the speed (or rate) of entropy generation is:

dSu

dt
¼ q

1
T
� 1
T0

� �
¼ kn Tn

0 � Tn
� � 1

T
� 1
T0

� �
� 0 ð8:1:2Þ

Here it was taken into account that the entropy flux that enters the system is q=T ,
while the flux which leaves the heat source is q=T0. The inequality arises from the
second law of thermodynamics, which says that the entropy source is always
non-negative, being zero only in the case of reversible processes.

The variation of system temperature is obtained by applying the first law of
thermodynamics (i.e. by performing an energy balance for the system):

q ¼ knðTn
0 � TnÞ ¼ C

dT
dt

ð8:1:3Þ

where C is the thermal capacity of the system, assumed constant over time.
It is now assumed that in a given interval of time, s, the system must be heated

from an initial known temperature T 0ð Þ to a known final temperature T sð Þ. The

Fig. 8.1 System changing
heat with a source (reservoir)
of time-dependent but
controllable temperature
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objective is to minimize the generation (production) of entropy Su ¼ R s
0 ðdSu=dtÞdt,

taking into account the restriction (constraint) Eq. (8.1.3). This actually means to
extremize a functional, under a single constraint. Therefore, methods of classic
variational calculation can be used. The Lagrange multiplier k tð Þ is introduced and
the following Lagrangian is built:

L ¼ knðTn
0 � TnÞ 1

T
� 1
T0

� �
� kðtÞ knðTn

0 � TnÞ � C
dT
dt

� �
ð8:1:4Þ

The dependent variables are T and k. The Euler-Lagrange equations that
determine the optimal strategy are:

@L
@T

� d
dt

@L

@ dT
dt

� � ¼ 0
@L
@k

¼ 0 ð8:1:5; 6Þ

As seen, the value of the parameter n varies from one to another heat transfer
mechanism. Further optimal heating strategies is discussed, depending on the value
of the parameter n.

8.1.2 The Case When the Value of n Is Arbitrary

When the value of n is arbitrary, there is no analytic solution of the problem (8.1.5;
8.1.6), with the Lagrangian given by (8.1.4). The common way of solving this
problem is by using numerical methods. Equations (8.1.3)–(8.1.6) reduce to two
coupled equations for T tð Þ and T0 tð Þ, respectively:

Tn
0 � Tn ¼ aT

nþ 1
2

0
dT0
dt

¼
nkna
C T

nþ 1
2

0 Tn
0 � aT

nþ 1
2

0

� 	n�1
2

nTn�1
0 � aðnþ 1Þ

2 T
n�1
2

0

ð8:1:7; 8Þ

where a is a constant which can be determined by knowing T 0ð Þ and T sð Þ. The
solutions of Eqs. (8.1.7) and (8.1.8) (obtained by numerical methods) are used
during the numerical integration of the entropy generation Su, according to the
relationship:

Su ¼ kn

Zs

0

ðTn
0 � TnÞ 1

T
� 1
T0

� �
dt ð8:1:9Þ

Further analysis of the case of an arbitrary value of the parameter n has the
disadvantage of a less obvious connection with cases of practical interest.
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Therefore, the following sections refer to the most important particular applications
(i.e. n = +1, −1, 4).

8.1.3 The Case When n = 1

As mentioned, n = 1 corresponds to convection heat transfer. The Euler-Lagrange
Eqs. (8.1.5), (8.1.6) allow an analytical solution:

T0ðtÞ ¼ bTðtÞ TðtÞ ¼ T0e
k1ðb�1Þt

C


 �
ð8:1:10; 11Þ

where the constant b is easily found, knowing T 0ð Þ and T sð Þ:

b ¼ 1þ C
k1s

ln
T sð Þ
T 0ð Þ ð8:1:12Þ

The optimal heating strategy corresponds to Eq. (8.1.10), constituting the
extremal curve (or path). The variation of the source temperature (which is the
control variable) is controlled in such a way to comply with Eqs. (8.1.10)–(8.1.12).
The entropy production which corresponds to this optimal heating strategy is
obtained by integrating Eq. (8.1.9), and using Eqs. (8.1.10)–(8.1.12):

Sumin ¼
k1ðb� 1Þ2s

b
ð8:1:13Þ

The solution in which the generation of entropy is canceled (Su ¼ 0) corresponds
to equilibrium, i.e. to the situation when b ¼ 1 and T0 tð Þ ¼ T tð Þ. But this solution
does not satisfy the requirement that the process be conducted in a given and finite
time.

The two methods currently used in modeling the heating processes are compared
with results obtained by using the optimal strategy.

8.1.3.1 Source Temperature Constant in Time

If the assumption is that the temperature T0 of the heat source is fixed, Eq. (8.1.3)
solved using the boundary conditions for T, requires that:

T tð Þ ¼ T0 � T0 � T 0ð Þ½ �e�k1s=C T0 ¼ T sð Þ � T 0ð Þe�k1s=C

1� e�k1s=C
ð8:1:14; 15Þ

Equation (8.1.15), which was obtained by applying Eq. (8.1.14) at time t ¼ s,
shows the necessary fixed value of the source temperature. The given difference of
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temperature can be defined as DT � T sð Þ � T 0ð Þ. Then, the entropy generation
corresponding to a source of constant temperature can be found by the integration
of dSu=dt given by Eq. (8.1.9):

SuT0¼ct ¼ C ln
T sð Þ
T 0ð Þ �

DT
T0

� �
ð8:1:16Þ

It can be easily checked by using Eqs. (8.1.3) and (8.1.9) that Eq. (8.1.16) is
valid not only in the case n = 1 but for any value of the parameter n.

8.1.3.2 Thermal Flux Constant in Time

In case the heat flow q does not change in time, the solution of Eqs. (8.1.3) and
(8.1.1) is:

T tð Þ ¼ T 0ð Þþ DT
s

t T0 tð Þ ¼ T 0ð Þþ CDT
k1s

þ DT
s

t ð8:1:17; 18Þ

and the entropy production is obtained by the integration of Eq. (8.1.9), after
replacing Eqs. (8.1.17) and (8.1.18):

Suq¼ct ¼ C ln
T sð Þ
T 0ð Þ � C ln

T0 sð Þ
T0 0ð Þ ð8:1:19Þ

Equations (8.1.16) and (8.1.19) can not be compared directly, but only after
some specific numerical applications, which are presented next.

8.1.3.3 Comparison

For a quantitative assessment of the performance of the three heating strategies, two
particular cases are considered: a moderate heating process DT ¼ 100 Kð Þ and a
process of more intensive heating DT ¼ 600 Kð Þ. In both cases the initial tem-
perature of the system is T 0ð Þ ¼ 300 K. Table 8.1 shows the ratio of the entropy

Table 8.1 Ratio between the
entropy generation values
corresponding to three heating
strategies, for different values
of the parameter n

n DT Kð Þ Suq¼ct

Sumin

SuT0¼ct

Sumin

1 100 1.00 1.08

600 1.02 1.08

−1 100 1.00 1.20

600 1.00 1.55

4 100 1.00 1.02

600 1.01 1.05
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generation in case of the two “standard” heating processes, and the minimum
entropy generation, associated with the optimized process, given by Eq. (8.1.13).
The conclusion is that providing a constant heat flux q always leads to results closer
to the optimal strategy.

The results presented in Table 8.1 correspond to some particular situations.
Other results, obtained by Andresen and Gordon (1992), show that the differences
between the heating strategies become more important by increasing the ratio
k1s=C. For example, in the limit k1s=C ! 1, the entropy generation corre-
sponding to the source of constant temperature remains constant, while the same
quantity associated with the optimized process, or with the heating at constant heat
flux, is canceled.

The optimal heating strategy corresponds to a monotonous and continuous
increase of the temperature of the heat source, which appears to be relatively easy to
implement in practice. But the most difficult problem is to ensure the opportunity to
cover a broader range of values for the source temperature, than in the case of the
two “standard” strategies. Generally, this requires larger installed capacities. It can
be concluded that the possible practical application of an optimal strategy depends
on the ratio between the financial savings associated with the decrease in the
entropy generation and the additional cost needed to installing the supplementary
capacity.

8.1.4 The Case When n = −1

When n ¼ �1, Eqs. (8.1.7) and (8.1.8), valid for the optimal strategy, lead, in case
of heating, to analytical solutions, if a constant parameter c is defined, whose value
is determined later. The definition and the optimal evolution of the system tem-
perature are given by:

c � 1
T
� 1
T0

T tð Þ ¼ T 0ð Þþ k�1j jc
C

t ð8:1:20; 21Þ

As already defined, the parameter k�1 is negative. The value of c is determined
by using the fact that the quantity DT is known:

c ¼ CDT
k�1j js ð8:1:22Þ

It is immediately apparent from Eq. (8.1.20) that the optimal solution is the same
as when heating at a constant heat flux. The entropy generated in case of the optimal
strategy is determined by integrating Eq. (8.1.9), using Eqs. (8.1.20)–(8.1.22):
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Sumin ¼
C2DT2

s k�1j j ð8:1:23Þ

When operating with a constant temperature heat source, the value of T0 can be
determined by solving the differential Eq. (8.1.3), from which the following tran-
scendental equation is obtained:

T2
0 ln

T0 � T sð Þ
T0 � T 0ð Þ

� �
þ T0DT ¼ � k�1j js

C
ð8:1:24Þ

Then, the value of T0 is obtained by solving numerically Eq. (8.1.24). As
mentioned previously, the generation of entropy in this case does not depend on the
parameter n and is given by Eq. (8.1.16).

Table 8.1 shows the results obtained for the generation of entropy, for the three
heating strategies considered. Again, heating the system by using a constant heat
flux is preferable to that when the source temperature is constant.

8.1.5 The Case When n = 4

The case n ¼ 4 corresponds to the radiative heat transfer. Unlike previous cases,
there is no analytical solution for the optimization problem. Therefore, for the
determination of the optimal strategy, Eqs. (8.1.7) and (8.1.8) must be solved
numerically. The result should then be introduced in Eq. (8.1.9) where, through
integration, the minimum amount of entropy generation Sumin is obtained. The two
“standard” heating strategies lead to the following results.

If the source temperature is constant, the value T0 is obtained by solving the
differential Eq. (8.1.3), leading to the following transcendental equation:

4k4T3
0 s

C
¼ ln

T0 þ T sð Þ½ � T0 � T 0ð Þ½ �
T0 þ T 0ð Þ½ � T0 � T sð Þ½ �

� 

þ 2arctg

T sð Þ
T0

� 2arctg
T 0ð Þ
T0

ð8:1:25Þ

T0 is then determine numerically, by solving Eq. (8.1.25).
If the heat flux is constant in time, the solutions for T tð Þ and T0 tð Þ are obtained

by solving Eq. (8.1.3):

T tð Þ ¼ T 0ð Þþ DT
s

t T0 tð Þ ¼ T 0ð Þþ DT
s

t

� �4
þ CDT

k4s

( )1=4

ð8:1:26; 27Þ

In both previous cases, the relationships obtained for T tð Þ and T0 tð Þ are replaced
in Eq. (8.1.9), which is then numerically integrated to find the values of the entropy
generation, SuT0¼ct and Suq¼ct, respectively. Results are shown in Table 8.1. Again,
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the strategy which involves maintaining a constant heat flux is closer to the optimal
strategy. However, the differences between the values of entropy generation asso-
ciated with the three heating strategies are lower than in the case of the heat transfer
mechanisms discussed above (i.e. n ¼ þ 1 and n ¼ �1).

8.1.6 The Case of Entropy Generation at Constant Speed

Salamon et al. (1980) showed that for any linear process with finite speed, the
optimal strategy that minimizes the generation of entropy is that corresponding to
entropy generation at constant speed. The proof is true in the case previously
denoted by n ¼ þ 1. This can be checked by replacing the optimal solution [given
by Eq. (8.1.10)] in Eq. (8.1.2), which is equivalent to a constant speed of entropy
production.

Next, it is shown that the result of Salamon et al. (1980) does not apply for
nonlinear heat transfer processes. Note that, in the general case, the optimal strategy
fulfils Eq. (8.1.7), i.e.:

T ¼ Tn
0 � aT

nþ 1
2

0

h i1
n ð8:1:28Þ

where a is a constant. Substituting Eq. (8.1.28) in Eq. (8.1.2), it is obtained:

dSu

dt
¼ knaT

n�1
2

0 �1þ 1� aT
1�n
2

0

h i�1
n

� 

ð8:1:29Þ

The rate of entropy generation Eq. (8.1.29) is constant only for the particular
cases n ¼ �1. It can be concluded that in nonlinear heat transfer problems, the
generation of entropy at constant speed does not correspond to the optimal strategy.

8.2 Optimal Paths for Minimizing Lost Available Work

8.2.1 Introduction

In many situations of practical interest, the minimum of entropy generation during a
process is associated with a minimum of the lost available work. There are, how-
ever, other cases where the two minima do not coincide. For a study on this subject
see Salamon et al. (2001) where various examples are given, including devices
operating from a heat reservoir and solar and geothermal power plants.

This section focuses on a particular case where minimization of entropy gen-
eration is not equivalent to minimization of lost available work. Badescu (2004)
examined the following simple optimal control problem previously analyzed by
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Andresen and Gordon (1992) (see also Sect. 8.1) by using the method of minimum
entropy generation. The problem is shortly described and the main results of
Badescu (2004) are presented in the following.

A system of uniform temperature is heated in a fixed amount of time between
given initial and final temperatures by a heat reservoir whose temperature is con-
trollable. Here this problem is considered from the point of view of minimum lost
available work. Several ways of defining the lost available work are shortly pre-
sented. A few usual heat transfer mechanisms are envisaged, including Newtonian
convection and radiative heat transfer.

8.2.2 Theory

Many authors have dealt with optimal heating and cooling strategies. For example,
in an early study by Bejan (1978) an energy storage unit was analyzed to find
the optimal duration or charging time that minimizes total entropy generation, under
the constraint of constant flow rate. The sources of irreversibility were the
reservoir-system heat transfer and the dumping of the used stream into the envi-
ronment. Also, Bejan and Schultz (1982) determined the minimum amount of fluid
required during a fixed time interval to accomplish a given heating task.

8.2.2.1 Model

A system of uniform time dependent temperature T2 tð Þ and constant heat capacity
C is surrounded by a heat reservoir of temperature T1 tð Þ that can be varied in time at
will (Fig. 8.2).

The heat reservoir is a particular kind of bath, which is defined in Hoffmann et al.
(1989) as a fully controllable environment. A heat flux q is transferred (by different

Fig. 8.2 A simple system
receives heat from a thermal
bath
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mechanisms such as conduction, convection or radiation) between the heat reservoir
and the system. Only the case T1 [ T2 is explicitly considered here (i.e., the system 2
is heated). System cooling involves a change of sign for the heat flux q.

The energy transport coefficient between heat reservoir and system (sometime
called thermal conductance or heat transfer coefficient) is denoted by kn, where n is
a short-hand for the mechanism of heat transfer. One assumes that kn is constant in
time and the heat flux q is taken to have the general form:

q ¼ kn Tn
1 � Tn

2

� � ð8:2:1Þ

Here kn is negative for negative n for consistency of notation. For n ¼ 1 and
n ¼ 4, Eq. (8.2.1) corresponds to Newtonian convection (or conduction with
constant thermal conductivity) and radiative heat transfer, respectively. Other cases
are also possible, such as n ¼ �1 (see Sect. 8.1) or n ¼ 2 (for propagation of
radiation along transmission lines, see De Vos 1985).

The change of the system temperature T2 tð Þ is governed by:

C
dT2
dt

¼ q ¼ kn Tn
1 � Tn

2

� � ð8:2:2Þ

which is a simple application of the first law of thermodynamics.

8.2.2.2 Measures of Dissipation

A common measure of dissipation is entropy generation. The entropy generation
rate associated with the heat flux q is denoted _S12 and is given by:

_S12 ¼ q
1
T2

� 1
T1

� �
ð8:2:3Þ

The entropy generation S12 is obtained by integrating Eq. (8.2.3) for the duration
s of the heating process:

S12 ¼
Zs

0

_S12dt ð8:2:4Þ

In this section additional dissipation measures are considered. They have in
common the notion of lost (available) work. Note that “lost available work is a
relative quantity that depends on our choice of reference heat reservoir. The ref-
erence heat reservoir is the one whose heat transfer interaction floats (changes) as
the irreversibility and work output of the system changes” (Bejan 1982).

The analysis is more involved than in the case of entropy generation, because at
least one additional system (the work reservoir) must be considered. This increases
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the number of possible cases and only two situations are shortly described here.
First, the meta-system consists just of systems 1, 2 and the work reservoir. Second,
an environment is added to the previous three systems. A number of examples are
presented.

In the first case, three sub-cases denoted (a), (b) and (c), respectively, could be
envisaged.

(a) One could ask what is the rate of work _Wl provided by a reversible heat engine
when q is transferred between T1 and T2. Use of Eq. (8.2.3) allows the
formulation:

_Wl ¼ q 1� T2
T1

� �
¼ T2 _S12 ð8:2:5Þ

Since no part of this work rate is captured during the heat transfer process
analyzed here, it is reasonable to take _Wl as one measure of dissipation, representing
the loss of available work associated to the heat flux q.

(b) One could ask what is the lost work rate _Wl in case of cooling the system 2 at a
heat flux q. This implies using a reversible refrigeration engine whose coef-
ficient of performance is COP ¼ T2= T1 � T2ð Þ. Then:

_Wl ¼ q=COP ¼ T1 _S12 ð8:2:6Þ

Here Eq. (8.2.3) was used.

(c) Finally, one asks what is the lost work rate _Wl in case of heating the heat reservoir
1 at a heat flux q. This implies using a reversible heat pump whose coefficient of
performance is COP ¼ T1= T1 � T2ð Þ. By using Eq. (8.2.3) one finds:

_Wl ¼ q=COP ¼ T2 _S12 ð8:2:7Þ

In practice, choosing between sub-cases (a), (b) and (c), respectively, depends on
the future usage of the energy stored by system 1 after the heating process is
completed.

In the second case, one denotes by T0 the environment (constant) temperature.
A more involved analysis shows that the lost available work rate _Wl is given by
Eq. (8.A.8) of Appendix 8A:

_Wl ¼ a0 þ a1
T0
T1

þ a2
T0
T2

� �
T0 _S12 ð8:2:8Þ

The meaning of the coefficients ai and other details can be found in Appendix
8A.
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Equations (8.2.5)–(8.2.8) connect the rate of lost available work _Wl with the
entropy generation rate _S12. In all these equations the expression multiplying _S12 is
generally a time dependent quantity. As a consequence, one shall see that the
minimum of the lost available work does not always coincide with the minimum of
the entropy generation.

Which of these ways of defining the lost available work is to be used depends on
the practical application. Only details about the sub-case (b) are presented here.
Thus, the rate of lost available work during system heating, _Wl, is given by the
following relation:

_Wl ¼ T1 _S ¼ kn Tn
1 � Tn

2

� � T1
T2

� 1
� �

ð8:2:9Þ

In obtaining Eqs. (8.2.9), (8.2.1) and (8.2.3) were used. The lost available work
Wl is obtained by integrating Eq. (8.2.9) during the heating process:

Wl ¼
Zs

0

_Wldt ð8:2:10Þ

Note that the absolute value of the rate of lost available work is considered here.

8.2.2.3 Optimization Problem

The optimization problem is defined now. First, by varying the reservoir temper-
ature T1 tð Þ the system must be heated in a given time interval s from a known initial
temperature T2 0ð Þ to a known final temperature T2 sð Þ. There is an infinite number
of functions T2 tð Þ which make this possible.

Second, one looks about the particular time evolution of heat reservoir tem-
perature [say T1;opt tð Þ] which allows a certain optimization criterion to be fulfilled.
The optimization criterion envisaged by Andresen and Gordon (1992) (see
Sect. 8.1) was the minimum entropy generation. Consequently, S12 given by
Eq. (8.2.4) was minimized by taking into account Eqs. (8.2.1)–(8.2.3). For reader
convenience the main results are summarized in Appendix 8B.

Badescu (2004) envisaged another objective function, namely the lost available
work. Details follow: The optimization problem consists in minimization of Wl by
taking into account the constraint Eq. (8.2.2). One uses a Lagrange multiplier k tð Þ
to define the Lagrangian L as:

L � kn Tn
1 � Tn

2

� � T1
T2

� 1
� �

� k tð Þ kn Tn
1 � Tn

2

� �� C
dT2
dt

� �
ð8:2:11Þ
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The independent variables are T2, dT2=dt and T1. The Euler-Lagrange equations
to determine the optimal path are:

@L
@T2

� d
dt

@L
@ dT2=dtð Þ ¼ 0 ð8:2:12Þ

@L
@T1

¼ 0 ð8:2:13Þ

From Eqs. (8.2.11) and (8.2.12) one obtains:

kn 1� nð ÞT1Tn�2
2 þ 1þ kð ÞnTn�1

2 � Tnþ 1
1 T�2

2

� �� C
dk
dt

¼ 0 ð8:2:14Þ

Use of Eqs. (8.2.11) and (8.2.13) yields:

k ¼ nþ 1
n

T1T�1
2 � 1

n
T1�n
1 Tn�1

2 � 1 ð8:2:15Þ

k given by Eq. (8.2.15) can be replaced in Eq. (8.2.14). On the other hand,
Eq. (8.2.15) can be differentiated with respect to time, obtaining an expression
containing dk=dt, dT2=dt and dT1=dt. From that expression one replaces dk=dt
in Eq. (8.2.14), which becomes a function of dT2=dt and dT1=dt. Finally,
dT2=dt is replaced in that function by using Eq. (8.2.2). After some algebra the
result is:

dT1
dt

¼ kn
C
2 n� 1ð ÞT1Tn�1

2 þ Tnþ 1
1 T�1

2 � 2n� 1ð ÞT1�n
1 T2n�1

2

nþ 1þ n� 1ð ÞT�n
1 Tn

2
ð8:2:16Þ

One divides Eq. (8.2.16) by Eq. (8.2.2) and one finds:

dT1
dT2

¼ 2 n� 1ð ÞT1Tn�1
2 þ Tnþ 1

1 T�1
2 � 2n� 1ð ÞT1�n

1 T2n�1
2

nþ 1ð ÞTn
1 � 2Tn

2 � n� 1ð ÞT�n
1 T2n

2
ð8:2:17Þ

The optimal paths can be obtained by solving Eqs. (8.2.2) and (8.2.17).

8.2.2.4 Dimensionless Formulation

The following dimensionless variables are defined:
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x � t
s

z � T2
T2 0ð Þ u � T1

T2
y � zu ¼ T1

T2 0ð Þ ð8:2:18Þ

Also, the following dimensionless constants are defined:

zf � T2 sð Þ
T2 0ð Þ An � knsTn�1

2 0ð Þ
C

ð8:2:19Þ

The initial dimensionless state variable is zi � T2 0ð Þ=T2 0ð Þ ¼ 1 and An is neg-
ative for negative n. The next relationships are fulfilled by the independent and
dependent dimensionless variables:

0�x� 1 1� z� zf z� u� y ð8:2:20Þ

By using the notation Eqs. (8.2.18) and (8.2.19), one defines the dimensionless

entropy generation rate ~_S and the entropy generation ~S, respectively:

~_S �
_S

knTn�1
2 0ð Þ ¼

zn�1

u
un � 1ð Þ u� 1ð Þ ð8:2:21Þ

~S � S
knTn�1

2 0ð Þs ¼
Z1

0

zn�1

u
un � 1ð Þ u� 1ð Þdx ð8:2:22Þ

Equations (8.2.3) and (8.2.4) were used here. Now, the dimensionless rate of lost

available work ~_Wl and the lost available work ~Wl are defined, respectively:

~_Wl �
_Wl

knTn
2 0ð Þ ¼ zn un � 1ð Þ u� 1ð Þ ð8:2:23Þ

~Wl � Wl

knTn
2 0ð Þs ¼

Z1

0

zn un � 1ð Þ u� 1ð Þdx ð8:2:24Þ

Equations (8.2.9), (8.2.10), (8.2.18) and (8.2.19) were used here.
By using the notation Eqs. (8.2.18) and (8.2.19), the new form of Eqs. (8.2.2)

and (8.2.17) is, respectively:

dz
dx

¼ Anz
n un � 1ð Þ ð8:2:25Þ
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nþ 1ð Þun þ n� 1ð Þ
u un � 1ð Þ du ¼ �n

dz
z

ð8:2:26Þ

Equation (8.2.26) gives through integration:

zn un � 1ð Þ2�CWu
n�1 ¼ 0 ð8:2:27Þ

Here CW is an integration constant.
The presence of both dependent variables z and u makes the integration of

Eq. (8.2.25) difficult. The following procedure is adopted. First, zn is obtained
from Eq. (8.2.27) and replaced in Eq. (8.2.25). Second, after differentiation of
Eq. (8.2.27) with respect to x, one replaces dz=dx in Eq. (8.2.25) as a function of
du=dx. After some algebra, Eq. (8.2.25) becomes:

du
dx

¼ �AnC
n�1
n
W

u
n2�nþ 1

n un � 1ð Þ2n
nþ 1
n un þ n�1

n

ð8:2:28Þ

The optimal heating paths are obtained by solving Eqs. (8.2.27) and (8.2.28).
Inputs are the values of n, An and zf . Analytical solutions exist for several particular
cases, but generally a numerical approach is necessary. Examples are given in
Sect. 8.2.3.

8.2.3 Results

This section focuses on optimal heating paths associated with the minimization of
lost available work. Comparisons are made with other three known heating
strategies, namely (i) heating at constant reservoir temperature, (ii) heating at
constant heat flux and (iii) heating with minimum entropy generation. The heating
paths for these three strategies are summarized in Appendix 8B. The dimensionless
lost available work ~Wl associated with the three strategies was computed for the first
time in Badescu (2004) and is presented in Table 8.2.

They were computed by using the definition Eq. (8.2.24) and the time evolution
of z and u shown in Tables 8.3, 8.4 and 8.5. For simplicity, the suffix “opt” to
denote optimal paths is omitted.

The optimal paths associated with minimum lost available work were obtained
by solving Eqs. (8.2.27) and (8.2.28), taking into account that z x ¼ 0ð Þ ¼ 1 and
z x ¼ 1ð Þ ¼ zf . First, analytical solutions have been searched. However, when a
numerical approach was necessary, the following procedure was adopted (with n,
An and zf being inputs). A trial value for the integration constant CW was chosen.
For that trial value, the next steps were performed. First, one adopt x ¼ 0 (i.e.
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Table 8.2 Dimensionless lost available work ~Wl for various heat transfer processes and different
heating strategies (Badescu 2004)

Heating strategy Heat transfer process

a. Convection heat transfer (n = 1)

Minimum entropy
generation

~Wl ¼ zf�1ð Þ ln zf
A2
1

Constant reservoir
temperature

~Wl ¼ zf�1ð Þ e�A1�1ð Þþ ðzf�e�A1 Þ ln zf
A1 1�e�A1ð Þ

Constant heat flux As in case of minimum entropy generation

b. Particular conduction case (n = −1)

Minimum entropy
generation

~Wl ¼ zf�1
�A�1

þ 1
zf�1 ln

A�1�zf þ z2f
A�1 þ zf�1

Constant reservoir
temperature

~Wl ¼ y
A�1

ln zf � zf�1
y

� 	
with y ¼ const obtained by solving equation

in Table 8.4b4

Constant heat flux As in case of minimum entropy generation

c. Radiative heat transfer (n = 4)

Minimum entropy
generation

~Wl computed numerically by using Eq. (8.2.24) and the numerical
solutions for z and u (see Table 8.5a1, a2)

Constant reservoir
temperature

~Wl ¼ y
A4

ln zf � zf�1
y

� 	
with y ¼ const obtained by solving equation

in Table 8.5b4

Constant heat flux ~Wl is computed numerically by using Eq. (8.2.24) and equations in
Table 8.5c1, c2

Table 8.3 Various heating strategies for Newtonian convection heat transfer (n ¼ 1)

a. Entropy generation minimization

1 z xð Þ ¼ zxf
2 u xð Þ ¼ 1þ ln zf

A1
¼ const

3 ~Smin ¼ ln2 zf
A1 A1 þ ln zfð Þ

b. Constant reservoir temperature

1 z xð Þ ¼ zf e�A1x�1ð Þ�e�A1x þe�A1

e�A1x�1

2 u xð Þ ¼ e�A1x�zf
zf e�A1x�1ð Þ�e�A1x þe�A1

3 ~S ¼ 1
A1

ln zf � zf�1ð Þ 1�e�A1xð Þ
zf�e�A1

� �

c. Constant heat flux

1 z xð Þ ¼ 1þ zf � 1
� �

x

2 u xð Þ ¼ 1þ zf�1

A1 1þ zf�1ð Þx½ �
3 ~S ¼ 1

A1
ln

zf zf þA1�1ð Þ
zf A1 þ 1ð Þ�1

The notation Eqs. (8.2.18), (8.2.19) and (8.2.22) has been used
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Table 8.4 Various heating strategies for a particular case of heat conduction (n ¼ �1)

a. Entropy generation minimization

1 z xð Þ ¼ 1þ zf � 1
� �

x

2 u xð Þ ¼ A�1

A�1 þ zf�1þ zf�1ð Þ2x
3 ~Smin ¼ zf�1ð Þ2

A2
�1

b. Constant reservoir temperature

1 z xð Þ is obtained by solving the equation y2 ln y�z xð Þ
y�1 þ y z xð Þ � 1½ � � A�1x ¼ 0

with y ¼ const obtained by solving equation in panel b4

2 u xð Þ ¼ y
z -ð Þ

with y ¼ const obtained by solving equation in panel b4 and z xð Þ obtained by solving
equation in panel b1

3 ~S ¼ 1
A�1

ln zf � zf�1
y

� 	
with y ¼ const obtained by solving equation in panel b4

4 y2 ln y�zf
y�1 þ y zf � 1

� �� A�1 ¼ 0

c. Constant heat flux

1 z xð Þ is given by equation in panel a1

2 u xð Þ is given by equation in panel a2

3 ~S is given by equation in panel a3

The notation Eqs. (8.2.18), (8.2.19) and (8.2.22) has been used

Table 8.5 Various heating strategies for radiative heat transfer (n ¼ 4)

a. Entropy generation minimization

1 z xð Þ is obtained by solving numerically Eqs. (8.B.1) and (8.B.2)

2 u xð Þ is obtained by Eq. (8.B.4) after solving numerically Eqs. (8.B.1) and (8.B.2)

3 ~Smin is computed numerically by using Eq. (8.2.22). For z xð Þ and u xð Þ see panel a1, a2

b. Constant reservoir temperature

1 z xð Þ is obtained by solving the equation

ln y�z xð Þ½ � yþ 1ð Þ
yþ z xð Þ½ � y�1ð Þ þ 2 tan�1 1

y � 2 tan�1 z xð Þ
y þ 4A4y3x ¼ 0

with y ¼ const obtained by solving equation in panel b4

2 u xð Þ ¼ y
z -ð Þ

with y ¼ const obtained by solving the equation in panel b4 and z xð Þ obtained by solving
equation in panel b1

3 ~S ¼ 1
A4

ln zf � zf�1
y

� 	
with y ¼ const obtained by solving equation in panel b4

4 ln
y�zfð Þ yþ 1ð Þ
yþ zfð Þ y�1ð Þ þ 2 tan�1 1

y � 2 tan�1 zf
y þ 4A4y3 ¼ 0

c. Constant heat flux

1 z xð Þ ¼ 1þ zf � 1
� �

x

2
u xð Þ ¼ 1þ zf�1

A4 1þ zf�1ð Þx½ �
� 
1

4

3 ~S is computed numerically by using Eq. (8.2.22) and equations in panel c1, c2

The notation Eqs. (8.2.18), (8.2.19) and (8.2.22) has been used
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z x ¼ 0ð Þ ¼ 1) and Eq. (8.2.27) was solved numerically to find a guess for the
value u x ¼ 0ð Þ. This was subsequently used as an initial value for Eq. (8.2.28).
Numerical integration of Eq. (8.2.28) allowed to obtaining u x ¼ 1ð Þ. This last
value was replaced in Eq. (8.2.27), which was solved in the unknown z x ¼ 1ð Þ.

Finally, the following quantity was evaluated:

F CWð Þ � zf � z x ¼ 1ð Þ� �2 ð8:2:29Þ

F CWð Þ vanishes for the right choice of CW . In case of a significantly large value
of F CWð Þ, another value of CW is chosen and the procedure is repeated. In practice,
F CWð Þ was minimized by using the routine FMIN of Kahaner et al. (1989). Once
the appropriate value of the integration constant CW was determined, Eqs. (8.2.27)
and (8.2.28) are solved for the optimal paths of z and u.

Three common heat transfer mechanisms are considered in the following.

8.2.3.1 Newtonian Heat Convection (n ¼ 1)

The optimal paths allowing minimum lost available work can be obtained analyt-
ically in the case n ¼ 1. From Eqs. (8.2.27) and (8.2.28) one finally finds:

z xð Þ ¼ 1þ z1=2f � 1
� 	

x
h i2

ð8:2:30Þ

u xð Þ ¼ 1þ
2 z1=2f � 1
� 	

A1

1

1þ z1=2f � 1
� 	

x
ð8:2:31Þ

The dimensionless entropy generation ~S is obtained by integration of
Eq. (8.2.22) with the solution of Eqs. (8.2.30) and (8.2.31), yielding

~S ¼ 2
A1

ln
z1=2f 2z1=2f � 2þA1

� 	

z1=2f 2þA1ð Þ � 2
ð8:2:32Þ

The minimum dimensionless lost available work ~Wl;min allows an analytic
solution, obtained by using Eqs. (8.2.30), (8.2.31) and (8.2.24):

~Wl;min ¼
4 z1=2f � 1
� 	2

A2
1

ð8:2:33Þ

Simple examination of Eq. (8.2.30) and Table 8.3 shows that both optimal paths
of z xð Þ (i.e. for minimum entropy generation and minimum lost available work) do
not depend on A1. This also applies to the constant flux heating, but not to the
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strategy of keeping constant the heat reservoir temperature. The most abrupt vari-
ation of z xð Þ at the starting time corresponds to the latter strategy (Fig. 8.3a). It is
associated with the highest rate of entropy generation (results not shown here). The
other three strategies show an almost linear increase of system temperature over
time.

The minimum entropy generation strategy leads to a constant u xð Þ (Fig. 8.3b).
This means that the speed of increasing the heat reservoir temperature is equal to

Fig. 8.3 Dependence of
various quantities on the
dimensionless time x in case
of Newtonian heat convection
(n ¼ 1). a Dimensionless
system 2 temperature z xð Þ;
b dimensionless heat reservoir
temperature u xð Þ;
c dimensionless rate of lost

available work ~_Wl. For
definitions see Eqs. (8.2.18)
and (8.2.23). Computations
performed for A1 ¼ 10 and
zf ¼ 2. Four heating strategies
were considered: constant
heat reservoir temperature
(T1 = const), constant heat
flux (q = const); minimum
entropy generation (S = min)
and minimum lost available
work (W = min) (adapted
from Badescu 2004)
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that of increasing the temperature of system 2 [see the definition Eq. (8.2.18)]. The
other strategies, including the minimization of the lost available work, show a
function u xð Þ decreasing over time. The difference between the heat reservoir
temperature and the temperature of system 2 is rather small during the whole
heating process, when the two optimal strategies and the strategy based on a
constant heat flux are considered. Keeping a constant heat reservoir temperature
implies a large temperature difference between reservoir and system at the begin-
ning of the heating process.

The rate of lost available work associated with a constant reservoir temperature
is very high when heating starts (Fig. 8.3c).

The optimum rate of lost available work is constant over time in the case of the
minimum lost available work strategy. The same property was found for the
optimum entropy generation rate in the case of the minimum entropy generation
strategy (see Salamon et al. 1980; Andresen and Gordon 1992).

At first sight, the increase over time of the lost available work rate associated
with the minimum entropy generation strategy looks rather unexpected. However,
from equation in Table 8.3a2 one sees that u xð Þ � 1 is a constant. This makes the

definition of ~_Wl [i.e., Eq. (8.2.23)] to depend just on z xð Þ, which is a time
increasing function (see equation in Table 8.3a1).

Also, note that the different relationships of ~_Wl for constant heat flux strategy
and minimum entropy generation strategy, respectively, lead to the same relation-
ship of the lost available work ~Wl (see equations in Table 8.2a).

8.2.3.2 Special Conduction Case (n ¼ �1)

For n ¼ �1 the governing Eqs. (8.2.27) and (8.2.28) do not allow closed-form
solutions for the optimal strategy in the sense of minimum lost available work. One
denotes

a�1 �
4 z3=2f � 1
� 	

3 1� z2f � A�1

� 	 ð8:2:34Þ

One recalls that A�1\0 since k�1\0, by definition [see Eq. (8.2.19)]. Then,
usage of Eqs. (8.2.27) and (8.2.28) leads to the following implicit equation in the
unknown z xð Þ:

2
3

z3=2 xð Þ � 1
h i

þ a�1

2
z2 xð Þ � 1
� �þ a�1A�1x ¼ 0 ð8:2:35Þ

Once z xð Þ is found from Eq. (8.2.35), u xð Þ is given by
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u xð Þ ¼ 1þ a�1z
1=2 xð Þ ð8:2:36Þ

Both dimensionless entropy generation and minimum lost available work can be
obtained by integrating numerically Eqs. (8.2.22) and (8.2.24), respectively, with
the solution Eqs. (8.2.35) and (8.2.36).

Graphs related to the time variation of the quantities z, u and ~_Wl for n ¼ �1 are
not shown here. The results are identical in the case of constant heat flux and
minimum entropy generation, respectively, as the equations of Table 8.3c. The time
variation of z is similar to that shown in Fig. 8.3a for n ¼ 1. u xð Þ decreases over
time for a constant heat reservoir temperature but increases for the other three
strategies (the time increasing is slower in case of minimum lost available work).

The time variation of ~_Wl is similar to that shown in Fig. 8.3c for n ¼ 1, with two
exceptions. First, the path for constant heat flux increases, since it is identical to that
corresponding to minimum entropy generation. Second, the optimal path associated
with minimum lost available work decreases slightly.

Keeping a constant reservoir temperature is the worst strategy as far as lost
available work is concerned (Fig. 8.4). The other three strategies lead to quite
similar results for low values of zf � T2 sð Þ=T2 0ð Þ. However, the minimum entropy
production strategy leads to rather large lost available work at higher values of zf .

8.2.3.3 Radiative Heat Transfer (n ¼ 4)

Closed-form solutions do not emerge for z xð Þ and u xð Þ in the case n ¼ 4. One
must solve Eqs. (8.2.27) and (8.2.28) numerically, according to the procedure
described in the beginning of this section and then integrate Eqs. (8.2.22) and/or

Fig. 8.4 Dependence of the
dimensionless lost available
work ~Wl on the dimensionless
system 2 final temperature zf
in case of a special heat
conduction case (n ¼ �1).
For definitions see
Eqs. (8.2.19) and (8.2.24).
Computations performed for
A�1 ¼ �10. The four heating
strategies of Fig. 8.3 were
considered (adapted from
Badescu 2004)
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(8.1.23) numerically to obtain the dimensionless entropy generation and/or the
minimum lost available work.

The time variation of z, u and ~_Wl depends on the heating strategy (Fig. 8.5), but
the differences between strategies is smaller than for the cases n ¼ 1 and n ¼ �1.
Generally, the variation of heat reservoir temperature between the beginning and
the end of a radiative heating process is higher than for other heat transfer mech-
anisms (compare, for example, Figs. 8.5a and 8.3b). Note the slow and almost

linear time variation of ~_Wl in the case of minimum lost available work (Fig. 8.5b).
The constant reservoir temperature strategy leads to the largest lost available

work, as expected (Fig. 8.6). The optimal paths of both minimum entropy
generation and minimum lost available work yield to similar results (for the values
adopted here for A4 and zf ). The constant heat flux strategy performs very well, too.

Fig. 8.5 Dependence of
several quantities on the
dimensionless time x in case
of radiative heat transfer
(n ¼ 4). a Dimensionless heat
reservoir temperature u xð Þ;
b dimensionless rate of lost

available work ~_Wl. For
definitions see Eqs. (8.2.18)
and (8.2.23). Computations
performed for A4 ¼ 0:025 and
zf ¼ 2. Four heating strategies
were considered (see Fig. 8.3)
(adapted from Badescu 2004)
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8.2.4 Conclusions

The industrial tradition usually refers to heating/cooling at constant heat reservoir
temperature or at constant heat flux. Optimization of heating/cooling processes can
yield, however, a variety of answers, depending not only on the objective of the
optimization but also on the constraints that define the problem (Salamon et al.
2001).

Several ways of defining the lost available work associated with the heating
process were presented in Badescu (2004) for two cases and they were presented in
details in this chapter. First, the meta-system consisted of a work reservoir, a heat
reservoir and a body to be heated. Second, an environment was added to these three
systems. The lost available work was evaluated for four sub-cases, involving
reversible heat engines, refrigeration machines and heat pumps. A particular heating
strategy that minimizes the lost available work was proposed here as a second
example of optimal strategy.

Choosing between the two optimum criteria (i.e., minimum entropy generation
and minimum lost available work) depends on the particular implementation of the
heating/cooling process. The method based on the entropy generation minimization
could be used for example in case of a chemical factory that delivers various
products and secondary utilities as flows of heat and power. The entropy generation
should be seen in this case as a common measure for the cost of production of all
these outputs of different nature, allowing an overall optimization. The method
based on lost available work minimization could be used for example during the
design of some power plants or in those cases where the main interest is in
delivering a maximum output power (or, equivalently, consuming a minimum
amount of work). Note, however, that in this section T1 has been used as a reference
state while the approach of usual power plants normally requires as reference the
environment temperature T0. The additional assumption T0 ¼ const makes of
course the two methods equivalent.

Fig. 8.6 Dependence of the
dimensionless lost available
work ~Wl on the dimensionless
final temperature zf of the
system 2 in case of radiative
heat transfer (n ¼ 4). For
definitions see Eqs. (8.2.19)
and (8.2.24). Computations
performed for A4 ¼ 0:025.
Four heating strategies were
considered (see Fig. 8.3)
(adapted from Badescu 2004)
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Various heat transfer mechanisms were considered here, among which
Newtonian heat convection and radiative heat transfer. The two optimal strategies
lead to different results. The differences increase by increasing the final temperature
of the heating process.

The results of both optimal procedures are considerably different from those
associated to the usual heating strategy that keeps a constant heat reservoir tem-
perature. Much better results are obtained by using another rather simple heating
procedure, namely the constant heat flux strategy.

The detailed analytical expressions of the optimal paths are shown here in
dimensionless form. This makes the approach more flexible, increases the gener-
ality of the results and allows easy implementation.

Appendix 8A

A procedure to relate the lost available work with the entropy generation in case of
a more complex model has been proposed by Badescu (2004) and is presented here.
It follows the main ideas of Hoffmann et al. (1989). The meta-system consists of
four systems. They are the heat reservoir 1, the system 2, a work reservoir (denoted
by 1) and an environment (i.e., a thermodynamic system whose constant inten-
sities, the temperature T0 and the pressure p0, define the availability scale). Note
that the heat reservoir 1 is a particular kind of thermodynamic bath (i.e. a fully
controllable environment). Only the case T1 [ T2 [ T0 is considered here.

In order to evaluate the loss of availability during the heat transfer process one
recalls that for closed systems the availability A is defined as:

A � U � T0Sþ p0V ð8:A:1Þ

Here U;V denote internal energy and volume, respectively. Small changes in
internal energy and availability at constant volume are defined as:

dUi ¼ TidSi � pidVi ¼ TidSi;

dAi ¼ Ti � T0ð ÞdSi � pi � p0ð ÞdVi ¼ Ti � T0ð ÞdSi; i ¼ 0; 1; 2;1:
ð8:A:2a; bÞ

In deriving Eqs. (8.A.2b), (8.A.1) and (8.A.2a) were used. One uses Eq. (8.A.2b)
for a time interval dt. Then, the heat transfer process between systems 1 and 2
determines the availability changes:

dA1 ¼ T1 � T0ð ÞdS1 ¼ T1 � T0ð Þ qdt=T1ð Þ;
dA2 ¼ T2 � T0ð ÞdS2 ¼ T2 � T0ð Þ qdt=T2ð Þ; ð8:A:3a; bÞ

and dA0 ¼ dA1 ¼ 0.
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The maximum available work dWl;max lost during the time interval dt is defined
as the total availability loss associated to the heat transfer process:

dWl;max � _Wl;maxdt ¼
X
i

�dAið Þ ¼ T0 _S12dt ð8:A:4Þ

Here Eqs. (8.A.3a), (8.A.3b) and (8.2.3) were used.
A more involved treatment should take into account that the hypothetical process

of generating the work dWl;max is irreversible. Then, (eventually) part of dWl;max

goes to the work reservoir and the remaining part is degraded into heat, that is
transferred to the other three systems. A vector a ¼ a0; a1; a2; a1ð Þ, P ai ¼ 1 is
used to indicate which fraction of dWl;max is transmitted to each system. The last
component of a shows the fraction of dWl;max that goes to the work reservoir. Note
that some of the systems where part of dWl;max is transferred as heat appear at
temperatures different from the temperature T0 of the environment. Therefore, the
transferred heat also transfers residual availability (defined as the work produced by
an engine while letting that heat move to the environment). From this perspective it
is allowed that not all of the availability be lost during the heat transfer process
envisaged here. Consequently, different degrees of availability loss are possible.
The maximum availability loss is sometime called “work deficiency”. It is defined
as the total loss of availability which would have resulted if all the available work
were lost to the environment (Hoffmann et al. 1989).

Some of the work dWl;max is degraded into heat and fractions ai are transferred to
each of the four systems. The entropy changes are then:

dSi ¼ ai
dWl;max

Ti
; i ¼ 0; 1; 2;1: ð8:A:5Þ

Note that no entropy is transferred to the work reservoir (i.e. dS1 ¼ 0) and the
associated temperature T1 is taken to be infinite. The corresponding availability
changes are obtained using Eqs. (8.A.2b) and (8.A.5):

dAi ¼ 1� T0
Ti

� �
aidWl;max; i ¼ 0; 1; 2;1: ð8:A:6Þ

One can easily see that dA0 ¼ 0. The total available work lost during the time
interval dt is given by:

dWl �
X
i

�dAið Þ ¼ a0 þ a1
T0
T1

þ a2
T0
T2

� �
dWl;max ð8:A:7Þ
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One divides Eq. (8.A.7) by dt and one finds:

_Wl ¼ a0 þ a1
T0
T1

þ a2
T0
T2

� �
T0 _S12 ð8:A:8Þ

Here Eq. (8.A.4) was used. Various particular cases can be obtained from
Eq. (8.A.8), depending on the values of the time-dependent coefficients
ai i ¼ 0; 1; 2;1ð Þ. They include the common case a0 ¼ 1, a1 ¼ a2 ¼ a1 ¼ 0,
when _Wl ¼ _Wl;max ¼ T0 _S12.

Appendix 8B

Results presented in Badescu (2004) are summarized here for different heat transfer
mechanisms in case of three heating strategies, namely minimum entropy genera-
tion, constant heat reservoir temperature and constant heat flux. With two excep-
tions, these results were also presented in Andresen and Gordon (1992).

For arbitrary n the paths associated to minimum entropy generation are given by
Eqs. (7) and (8) of Andresen and Gordon (1992). In the dimensionless form
adopted in Sect. 8.2 they are given by:

yn � CSy
nþ 1
2 � zn ¼ 0 ð8:B:1Þ

dy
dx

¼ nCSAny
nþ 1
2

yn � CSy
nþ 1
2

� 	n�1
n

nyn�1 � nþ 1
2 CSy

n�1
2

ð8:B:2Þ

where CS is an integration constant.
Equations (8.B.1) and (8.B.2) were solved with values for n, An and zf as input,

taking into account that z x ¼ 0ð Þ ¼ 1 and z x ¼ 1ð Þ ¼ zf . First an analytical
solution was looked for. When a numerical approach was necessary the following
procedure was adopted. A trial value for the integration constant CS was chosen.
For that trial value the next steps were performed. First, one assumed x ¼ 0 (i.e.
z x ¼ 0ð Þ ¼ 1) and Eq. (8.B.1) was solved numerically to find a guess for the value
y x ¼ 0ð Þ. This was subsequently used as an initial value for Eq. (8.B.2). Numerical
integration of (8.B.2) allowed to obtaining y x ¼ 1ð Þ. This last value was replaced
in Eq. (8.B.1), which was solved in the unknown z x ¼ 1ð Þ. Finally, the following
quantity was evaluated:

F CSð Þ � zf � z x ¼ 1ð Þ� �2 ð8:B:3Þ

F CSð Þ vanishes for the right choice of CS. In case of a significantly large value of
F CSð Þ, another value of CS is chosen and the procedure is repeated. F CSð Þ was
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minimized by using the routine FMIN of Kahaner et al. (1989). Once the appro-
priate value of the integration constant CS was determined, Eqs. (8.B.1) and (8.B.2)
are solved for the optimal paths of z and y. The optimal path for u are then obtained
as:

u ¼ y=z ð8:B:4Þ

The results are presented in Tables 8.3, 8.4 and 8.5 by using the dimensionless
notation of Eqs. (8.2.18), (8.2.19) and (8.2.22).
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Chapter 9
Heat Exchangers

9.1 Simple Approach

Heat exchangers are important components of large industrial units producing or
consuming energy, such as thermal power plants or chemical plants. The method of
entropy generation minimization has become an important tool for the design of
heat exchangers. Generally it consists of a mixture of classical thermodynamics,
heat and mass transfer and fluid mechanics (Bejan 1982). Thus, a main concept
used in the engineering literature for heat exchangers optimization is the entropy
generation number [see e.g. Chap. 11 of Bejan (1988)].

It is known that the generation of entropy in irreversible processes is propor-
tional to the loss of mechanical power (this result is called the Gouy-Stodola
theorem). Thus, improving the operation of heat exchangers (in the sense of
diminishing the entropy generation) actually saves mechanical work, which
becomes available for other processes, taking place in other components of the
installations. In the particular case of thermal power plants, minimizing the entropy
production in the heat exchangers, eventually lead to the increase of the mechanical
(or electric) output power.

In the usual design of heat exchangers, the value of the transferred heat flux is
fixed, while the production of entropy depends on how the heat transfer process
takes place (mainly, it depends on the value of the temperature gradient). It is
natural to try to see if the techniques currently used in industrial practice are close to
the best way to transfer heat. It is known that there are three common types of heat
exchangers with one pass of the working fluids: (i) exchangers with parallel flow,
(ii) exchangers with one fluid changing its phase and (iii) exchangers with counter
flow. The counter flow technical solution is usually preferred, due primarily to the
fact that it has a higher thermal efficiency (in this case the thermal efficiency is
defined as the ratio of the actual transferred heat flux and the maximum transferable
heat flux). At the same time, the counter flow heat exchangers operate with
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temperature gradients lower than other exchangers, and this operation produces less
entropy. Next, the performance of the three usual types of heat exchangers is
compared with the optimal mode of operation (Andresen and Gordon 1992).

9.1.1 Usual and Optimized Operation Strategies

Assume that the temperature gradient is the only source of irreversibility in the heat
exchanger. Furthermore, only one direction temperature gradients are considered.
Although this approach neglects friction within the fluid, it captures the essence of
the thermal transfer processes. The simple linear model of heat transfer developed
in Chap. 8 (case n ¼ 1) is adapted for analyzing operation of heat exchangers. For
brevity, only the heating case is considered (i.e. the heat reservoir temperature T0 tð Þ
is higher than the temperature of the system T tð Þ).

Denote by _m the mass flow of the system (i.e. the fluid which is heated) and by
_m0 the mass flow rate of the heat reservoir (i.e. the fluid which provides heat). The
independent variables are the current position (space) x, or the current time t, of a
particle of fluid inside the exchanger (see Fig. 9.1). The exchanger length is denoted
by L and the total time in which a particle passes through the exchanger fluid is
denoted s. Specifying any of these two quantities is sufficient to determine the

Fig. 9.1 The dependence of
the fluid temperature on time
or space (position) in the heat
exchanger. The arrows show
the flow direction. Heat
exchanger a with parallel
flow, b with phase change,
c with counter flow
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other. The results of Chap. 8 were obtained for the case of a closed system, while
the situation analyzed here corresponds to an open (flowing) system. Therefore, the
heat transfer optimality condition (Eq. 8.1.10) must be satisfied at each point x
along the heat exchanger

T0 xð Þ ¼ bT xð Þ b � 1þ _m~c
~kL

ln
T Lð Þ
T 0ð Þ

� �
ð9:1:1; 2Þ

where ~c is the specific heat of the fluid system and ~k is the thermal conductance per
unit length of the exchanger. The symbol *placed above a symbol denotes a
specific quantity, i.e. a quantity that is reported either to the unit mass or to the unit
length, as required by that relationship.

Energy conservation at the interface between fluids requires that in every point x
the heat flux density received by the system, ~q, is equal to the density of the heat
flux transferred by the heat reservoir:

~q ¼ ~kðT0 � TÞ ¼ _m~c
dT
dx

¼ � _m0~c0
dT0
dx

ð9:1:3Þ

where ~c0 is the specific heat of the heat reservoir fluid. From Eq. (9.1.3) it is found
that:

T0 xð Þ ¼ �T xð Þ _m~c
‘

_m0~c0
þ a a ¼ constð Þ ð9:1:4Þ

It is immediately apparent that the heat exchanger with phase change (case (b) in
Fig. 9.1, which corresponds to T0ðxÞ ¼ const:) is not compatible with the opti-
mality condition Eq. (9.1.1) since the fluid temperature is not constant, neither in
time nor in space.

It is also observed that, from the point of view of the sign taken by the fluid flow
rates, the other two types of heat exchangers have the following characteristics
[see Fig. 9.1, cases (a) and (c)]: (i) parallel flow heat exchangers correspond to
_m[ 0; _m0 [ 0 (ii) counter-flow heat exchangers correspond to _m[ 0; _m0\0.
The energy conservation (Eq. 9.1.4) and the optimality condition (Eq. 9.1.1) can

be simultaneously satisfied if:

a ¼ 0 b ¼ � _m~c
_m0~c0

ð9:1:5; 6Þ

The material and device properties ~c;~c0; ~k; L and the variables which charac-
terize the process, T 0ð Þ; T Lð Þ and _m, are usually given through the design theme.
The only control variable is the fluid flow of the source of heat, _m0. The magnitude
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of this variable can be set in such a way that the heat exchanger operation is
optimal. From Eqs. (9.1.2) and (9.1.6) it is found that the optimal strategy for
source fluid flow is:

_moptim
0 ¼ � 1

~c0

1
m~c

þ 1
~kL

ln
T Lð Þ
T 0ð Þ

� ��1

ð9:1:7Þ

Since the term in the square brackets is always positive, the optimal value of _m0

(that leads to the minimization of the entropy production) is always negative.
Therefore, parallel flow heat exchangers (where _m0 is always positive) can never be
optimized. Heat exchangers in counter flow can be optimized, since the sign of _m0

and _m is different. The optimal operation is achieved only for certain features of the
exchanger, which verify Eq. (9.1.7). From Eq. (9.1.7) one sees that the so-called
“balanced” flow, characterized by _m~c ¼ _m0~c0, can not be optimal.

The heat exchangers used in practice, although not always optimized, usually
have the design parameters near the optimum. A heat exchanger with “balanced”
flow _m~c ¼ _m0~c0 is considered. [By its nature, this kind of heat exchanger is not
optimal]. The design parameters are as follows: _m ¼ 6:3 kg/s, _m0 ¼ 6:923 kg/s,
~kL ¼ 23; 515 W, ~c0 ¼ 3810 J/(kgKÞ, ~c ¼ 4187 J/(kgK), T 0ð Þ ¼ 283 K,
T Lð Þ ¼ 309:2 K, T0 0ð Þ ¼ 312:4K, T0 Lð Þ ¼ 338:6 K.

Although the ratio T0=T is not constant, it varies by only �0:4% along the
exchanger length. The exchanger produces entropy at the average rate
dSu=dt ¼ 212 W=K. This value is very close to the minimum speed of entropy
generation dSumin=dt ¼ 211 W=K, which corresponds to an optimal fluid mass flow
rate mopt

0 ¼ 6:298 kg=s.

9.2 Optimal Strategies for Steady State Heat
Exchanger Operation

9.2.1 Introduction

Heat exchanger operation is traditionally characterized by various performance
indicators, such as the thermal efficiency, the second law efficiency and the effec-
tiveness. Badescu (2004b) showed that the optimization of heat exchanger opera-
tion can be performed on the basis of other objective functions than entropy
generation. A new method to find the optimum steady-state operation regime has
been also proposed. It can be applied in principle for any objective function. Two
dissipation measures were used as examples, namely the entropy generation and the
lost available work. The main results of Badescu (2004b) are presented in the
following.
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9.2.2 Optimal Heating/Cooling Strategies

A system of (uniform in space) time dependent temperature T2 tð Þ and constant heat
capacity C is surrounded by a heat reservoir of temperature T1 tð Þ that can be varied
in time at will (Fig. 9.2).

The heat reservoir is a particular kind of “bath”, which is defined by Hoffmann
et al. (1989) as a fully controllable environment. A heat flux q is transferred by
convection between the heat reservoir and the system. The case T1 [ T2 is con-
sidered here (i.e., the system 2 is heated). System cooling involves a change of sign
for the heat flux q. The (constant in time) heat transfer coefficient between heat
reservoir and system is denoted by k. The heat flux q is taken to have the usual
Newtonian form. Then, usage of the first law of thermodynamics in case of system
2 yields

C
dT2
dt

¼ q ¼ k T1 � T2ð Þ ð9:2:1Þ

A number of dissipation measures associated to the heat transfer process were
identified by Badescu (2004a) (see Chap. 8 in this book). Two of them are used
here. The first one is the entropy generation rate _S12, given by:

_S12 ¼ q
1
T2

� 1
T1

� �
ð9:2:2Þ

The entropy generation S12 is obtained by integrating Eq. (9.2.2) for the duration
s of the heating process:

S12 ¼
Zs

0

_S12dt ð9:2:3Þ

Fig. 9.2 A simple system
receives heat from a thermal
bath (i.e. a heat reservoir with
controllable temperature)
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The second dissipation measure is the lost available work. The analysis is more
involved than in the case of entropy generation, since a work reservoir must be
considered. Also, sometimes an environment is added to the other systems.
Different cases were presented by Badescu (2004a) and just one of them is used
here. In this case, the lost available work rate _Wl is given by

_Wl ¼ T1 _S12 ¼ kn T1 � T2ð Þ T1
T2

� 1
� �

ð9:2:4Þ

It represents the work rate required by a reversible refrigeration engine to cool
the system 2 at a heat flux q. Note that normally T1 is a time dependent quantity and
the minimum of the lost available work does not coincide with the minimum of the
entropy generation. The lost available work Wl is obtained by integrating
Eq. (9.2.4) during the heating process:

Wl ¼
Zs

0

_Wldt ð9:2:5Þ

The absolute value of the rate of lost available work is considered here.
The system must be heated in a given time interval s from a known initial

temperature T2 0ð Þ to a known final temperature T2 sð Þ. Two optimization criteria are
considered here: minimum entropy generation and minimum lost available work.
They should take into account the constraint Eq. (9.2.1). In both cases one uses a
Lagrange multiplier kS W½ � tð Þ to define a Lagrangian LS W½ � which is explicitly
given by:

LS � k T1 � T2ð Þ 1
T2

� 1
T1

� �
� kS tð Þ k T1 � T2ð Þ � C

dT2
dt

� �
ð9:2:6aÞ

LW � k T1 � T2ð Þ T1
T2

� 1
� �

� kW tð Þ k T1 � T2ð Þ � C
dT2
dt

� �
ð9:2:6bÞ

The independent variables are T2, dT2=dt and T1. The Euler-Lagrange equations
used to determine the optimal paths are:

@LS W½ �
@T2

� d
dt

@LS W½ �
@ dT2=dtð Þ ¼ 0 ð9:2:7Þ

@LS W½ �
@T1

¼ 0 ð9:2:8Þ
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Solutions of Eqs. (9.2.7) and (9.2.8) for various heat transfer mechanisms were
first given by Andresen and Gordon (1992) in case of entropy generation mini-
mization and by Badescu (2004a) in case of lost available work minimization.
Results referring to convection heat transfer are summarized in Table 9.1 in
dimensionless notation.

9.2.3 Optimization of Heat Exchanger Operation Based
on Minimum Entropy Generation

The space variation of temperatures inside two usual types of heat exchangers of
length L is shown in Fig. 9.3. Figure 9.3a refers to a parallel flow heat exchanger,
where the heating fluid 1 and the heated fluid 2 enter the same side of the equipment
(i.e. at x ¼ 0). Figure 9.3b refers to a counter-flow heat exchanger, where the two
fluids enter different sides. Counter-flow design is the usual choice in industry,
mainly because its effectiveness is highest and its lower-temperature gradients
produce less entropy (see e.g. Chap. 11 of Bejan 1988).

Using the first law of thermodynamics for a length dx of heat exchanger yields

kldx T1 � T2ð Þ ¼ � _m1cp1dT1 ¼ _m2cp2dT2 ð9:2:9a; bÞ

where kl is the heat transfer coefficient per unit length of heat exchanger while
cp1; cp2 are the constant pressure specific heats of the two fluids. Keeping the right
sign in Eq. (9.2.9) requires _m2 [ 0 for parallel heat exchangers dT1\0; dT2 [ 0ð Þ

Table 9.1 Various heating strategies for Newtonian convection heat transfer. Results of Badescu
(2004a) were used

Dimensionless notation

1 x � t
s z � T2

T2 t¼ 0ð Þ u � T1
T2

y � zu ¼ T1
T2 t¼ 0ð Þ zf � T2 t¼sð Þ

T2 t¼ 0ð Þ A � ks
C

Entropy generation minimization

1 z xð Þ ¼ zxf
2 u xð Þ ¼ 1þ ln zf

A ¼ const

Lost available work minimization

1
z xð Þ ¼ 1þ z1=2f � 1

� �
x

h i2
2

u xð Þ ¼ 1þ 2 z1=2f �1ð Þ
A

1
1þ z1=2f �1ð Þx
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and _m2\0 for counter-flow heat exchangers dT1\0; dT2\0ð Þ. Here the dT 0s are
temperature variations reported to the positive x-axis. Integration of Eq. (9.2.9b)
yields

T1 ¼ � 1
l12

T2 þ a ð9:2:10Þ

where a is an integration constant and l12 is given by

l12 �
_m1cp1
_m2cp2

ð9:2:11Þ

Andresen and Gordon (1992) suggested that the optimal temperature trajectories
shown in Table 9.1b can be directly used to derive appropriate optimal strategies
for steady state heat exchanger operation. A procedure to transform the
time-dependent model of Table 9.1 into a space-dependent model was proposed by
Badescu (2004b) (see also Fig. 9.3).

The systems 1 and 2 in Fig. 9.2 should be identified in this case with the heating
fluid 1 and the heated fluid 2, respectively, in Fig. 9.3. One denotes by m2 � m a
mass of fluid 2 entering the heat exchanger at time t ¼ 0 and leaving it at time t ¼ s.
The velocity of fluid 2 is of course w2 ¼ L=s. The temperature T2 tð Þ ¼
z t ¼ xsð ÞT2 t ¼ 0ð Þ of mass m2 gradually increases from T2;in � T2 t ¼ 0ð Þ to
T2;out � T2 t ¼ sð Þ. The model of Sect. 9.2.2 requires m2 be at any time t in thermal
contact with a fluid 1 mass m1 of temperature T1 tð Þ ¼ u t ¼ xsð Þz t ¼ xsð Þ
T2 t ¼ 0ð Þ. Of course, the mass m1 must enter the heat exchanger at time t ¼ 0 and
must leave it at time t ¼ s. Therefore, its velocity must be w2 ¼ L=s ¼ w1ð Þ.

Fig. 9.3 Space and time variation of temperature in a parallel flow heat exchangers and
b counter-flow heat exchangers. The arrows show mass flow direction
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The minimum entropy generation strategy of Sect. 9.2.2 could be used to find
the optimal heat exchanger operation. This was first done by Andresen and Gordon
(1992) by identifying Eq. (9.2.10) and Eq. Table 9.1b2. The following two con-
ditions were obtained:

� 1
l12

¼ 1þ ln zf
A

ð9:2:12Þ

a ¼ 0 ð9:2:13Þ

Equation (9.2.12) cannot be fulfilled by parallel heat exchangers (where
l12 [ 0) but can be fulfilled by counter-flow heat exchangers (where l12\0). In
this latter case the optimum flow rates ratio lopt12 is given by:

lopt12

�� �� ¼ 1þ ln zf
A

� ��1

¼ 1þ _m2j jcp2
klL

ln
T2 x ¼ 0ð Þ
T2 x ¼ Lð Þ

� ��1

ð9:2:14Þ

Equation (9.2.14b) takes account that T2 x ¼ 0ð Þ ¼ T2 t ¼ sð Þ,
T2 x ¼ Lð Þ ¼ T2 t ¼ 0ð Þ, ks ¼ klLs, while the fluid 2 heat capacity is given by
C ¼ _m2j jcps.

Why the space-dependent Eq. (9.2.10) (with the additional assumption
Eq. 9.2.13) can be identified with the time-dependent Eq. Table 9.1b2 in case of the
minimum entropy generation strategy? The answer is as follows. First, in both cases
the temperature ratio T2=T1 is a constant (i.e. it depends neither on space nor on
time). Second, in both cases the entropy generation rate does not depend on T1 and
T2 taken separately but just on the temperature ratio T2=T1 (see for example
Eq. (21) in Badescu (2004a) and Eq. (9.2.17) and notation Table 9.1a in the present
book, respectively). Generally, this situation does not happen for other optimization
criteria.

In fact, the second comment is true just in case of linear heat transfer processes,
like the convection process envisaged here. In the general case the entropy gen-
eration rate for the time dependent process depends separately on T1 and T2,
respectively (see Eq. (21) of Badescu (2004a) and Chap. 8 in this book).

Now, one have to decide whether the lost available work minimization strategy
of Sect. 9.2.2 could be used to define an optimal steady-state heat exchanger
operation. Note that in this case the temperature ratio T2=T1 in Eq. Table 9.1c2
depends on time. Equation Table 9.1c2 and Eq. (9.2.10) are not compatible, when
parallel flow heat exchangers are considered (l12 [ 0). Consequently, the lost
available work minimization procedure of Sect. 9.2.2 cannot be used in this case to
define an optimal steady-state heat exchanger operation. The same conclusion
applies to counter-flow heat exchangers, too, because in this case the fluid 1 at
temperature T1 tð Þ is in thermal contact with the fluid 2 at temperature T2 s� tð Þ (see
Fig. 9.3b). Therefore, the procedure proposed here to transform the optimized time
dependent heating model into an optimized space dependent heating model does
not generally apply.
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9.2.4 Optimization of Steady-State Heat Exchanger
Operation for Arbitrary Criteria

The simple procedure proposed in Sect. 9.2.3 allows to derive the optimal
steady-state heat exchanger operation only for the case of the minimum entropy
generation strategy. A procedure to derive the optimal steady-state heat exchanger
operation for a larger class of optimization criteria is used in this section. One could
start of course by solving two space-dependent Euler-Lagrange equations similar to
the time-dependent Euler-Lagrange Eqs. (9.2.7) and (9.2.8), this time with the
Eqs. (9.2.9a) and (9.2.1) acting as constraints. However, a simpler way is as fol-
lows. First, one solves Eq. (9.2.1) with the appropriate boundary conditions shown
in Fig. 9.3a. Solutions can be found in literature (see e.g. Carabogdan et al. 1978)
and Table 9.2 presents the results in dimensionless form for both types of heat
exchangers. The temperature distributions are then replaced in the objective func-
tion and the optimization reduces to finding the minimum of a single independent
variable function.

The same dissipation measures such as those of Sect. 9.2.2 are used now. They
are the entropy generation rate S12 and the lost available work _Wl, given by

Table 9.2 Dimensionless notation (a) and the space variation of temperatures inside a parallel
flow and a counter-flow heat exchanger [(b) and (c), respectively]

(a) Dimensionless notation

n � x
L ~z � T2

T2;in
~u � T1

T2
~y � ~z~u ¼ T1

T2;in

~zf � T2;out
T2;in

j � klL
_mcp2

l12 � _m1cp1
_m2cp2

(b) Parallel flow heat exchanger T2;in � T x ¼ 0ð Þ; T2;out � T x ¼ Lð Þ	 

1 J nð Þ � 1

1þ l12
1� exp � 1þ l12

l12
jn

� �h i

2 ~u0 � 1þ ~zf�1
l12J n¼1ð Þ

3 ~z nð Þ ¼ 1þ ~u0 � 1ð Þl12J nð Þ
4 ~y nð Þ ¼ ~u0 � ~u0 � 1ð ÞJ nð Þ
5 ~u nð Þ ¼ ~y nð Þ=~z nð Þ

(c) Counter flow heat exchanger T2;in � T x ¼ Lð Þ; T2;out � T x ¼ 0ð Þ	 

1

K nð Þ � 1� exp � 1� l12j j
l12j j jn

� �h i
� 1� l12j j exp � 1� l12j j

l12j j jn
� �h i�1

2
L nð Þ � 1� exp � 1� l12j j

l12j j j 1� nð Þ
� �h i

� 1� l12j j exp � 1� l12j j
l12j j j 1� nð Þ

� �h i�1

3 ~u0 � 1þ ~zf�1
l12j jL n¼0ð Þ

4 ~z nð Þ ¼ 1þ ~u0 1�K nð Þ½ ��1f g l12j jL nð Þ
1� l12j jK nð ÞL nð Þ

5 ~y nð Þ ¼ 1þ 1�~u0ð Þ K nð Þ�1½ �
1� l12j jK nð ÞL nð Þ

6 ~u nð Þ ¼ ~y nð Þ=~z nð Þ
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Eqs. (9.2.2) and (9.2.4), respectively. The entropy generation S and the lost available
work Wl are obtained by integration, this time along heat exchanger length L:

S ¼
ZL

0

_S12dx ð9:2:15Þ

Wl ¼
ZL

0

_Wldx ð9:2:16Þ

By using Eqs. (9.2.2), (9.2.15) and the notation Table 9.2a, one defines the

dimensionless entropy generation rate ~_S12 and entropy generation ~S, respectively:

~_S12 �
_S12
k

¼ ~u� 1ð Þ2
~u

ð9:2:17Þ

~S � S
kL

¼
Z1

0

~u� 1ð Þ2
~u

dn ð9:2:18Þ

Similarly, the dimensionless rate of lost available work ~_Wl and the lost available
work ~Wl are defined, respectively, by:

~_Wl �
_Wl

kT2;in
¼ ~z ~u� 1ð Þ2 ð9:2:19Þ

~Wl � Wl

kT2;inL
¼

Z1

0

~z ~u� 1ð Þ2dn ð9:2:20Þ

Here, Eqs. (9.2.4), (9.2.16) and the notation Table 9.2a were used.
The dissipation measures ~S and ~Wl were minimized numerically in respect with

the flow rates ratio l12, with j and ~zf defined in Table 9.2a as given constraints. No
interior minimum was found in case of parallel flow heat exchangers. This is in
agreement with the conclusion drawn in Sect. 9.2.3 and with well known results
from engineering literature [see e.g. Chap. 11 of Bejan (1988)]. Counter flow heat
exchangers allow an optimal operation for both strategies (i.e. minimum entropy
generation and minimum lost available work).

Figure 9.4 shows a typical dependence of the dimensionless lost available work
~Wl on l12j j. Note the shallower minimum of ~Wl. This allows a rather large range of
variation for the mass flow rates, with nearly optimal operation. This also explains
in part the fact that conventionally designed heat exchangers are rather close to the
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theoretical optimum results. Note that the so-called “equilibrated” (or “balanced”)
operation ( l12j j ¼ 1) is not optimal but is rather close to the optimal operation, in
agreement with Bejan (1988), Andresen and Gordon (1992), Badescu (2004a).

The contour diagram of Fig. 9.5 shows the optimum values of the flow rates
ratio, lopt12

�� ��, for values of j and ~zf covering almost all usual applications. The
minimum lost available work strategy was considered. The optimum values
increase by increasing j and ~zf . All these values are under-unitary. Therefore, the
“equilibrated” operation is always to the right side of the optimum and allows a
nearly optimal performance (see Fig. 9.6). It might be emphasized that the differ-
ence between the results obtained for lopt12

�� �� with the two optimization criteria (i.e.
minimum lost available work and minimum entropy generation, respectively)
becomes smaller when the temperature drop ~zf across the heat exchanger is
diminished.

The space dependence of the dimensionless temperatures ~y;~z and ~u for optimum
operation is shown in Fig. 9.6. Both optimization criteria were considered. The

Fig. 9.4 Dependence of
dimensionless entropy
generation ~S and lost available
work ~Wl (Eqs. (9.2.17) and
(9.2.20), respectively) on the
dimensionless flow rate
parameter l12j j (Eq. 9.2.10)
in case of counter flow heat
exchangers. ~zf ¼ 1:85 and
j ¼ 1:1 (for definitions see
Table 9.2a)

Fig. 9.5 Contour diagram
showing the dependence of
the optimum dimensionless
flow rates ratio lopt12

�� �� on the
dimensionless parameters ~zf
and j (for definitions see
Eq. (9.2.10) and Table 9.2a).
A counter-flow heat
exchanger and the strategy of
minimum lost available work
were considered
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differences between them are small for the input values used here. All space dis-
tributions are almost linear. Note that the optimal distribution of ~u in case of the
minimum entropy generation strategy is practically constant, in concordance with
conclusions drawn in Sect. 9.2.3. The optimum values of the flow rates ratio lopt12

�� ��
predicted by Eq. (9.2.14) and by the model of this section, respectively, are
(almost) identical (Fig. 9.7). This is not a surprise since both values refer to the

Fig. 9.6 Optimum space distribution of the dimensionless temperatures z; y; u for both strategies
(i.e. minimization of entropy generation (Smin) and minimization of lost available work (Wl;min).
A counter-flow heat exchanger with ~zf ¼ 1:85 and j ¼ 1:1 was considered. For notations see
Table 9.2a

Fig. 9.7 The optimum dimensionless flow rates ratio computed by using Eq. (9.2.14)
[lopt12 , Eq. (9.2.14)] and corresponding to the minimum lost available work (lopt;W12 ), respectively,
versus the optimum dimensionless flow rates ratio corresponding to the minimum entropy
generation (lopt;S12 ). Range of variation for the dimensionless parameters ~zf and j as in Fig. 9.5. For
definitions see Table 9.2a
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minimum entropy generation strategy and the computation method is the only
difference. Figure 9.7 shows that the optimum values lopt;W12

�� ��, which minimize the

lost available work, systematically exceed the optimum values lopt;S12

���
���, which

minimize the entropy generation. Taking into account Fig. 9.4 one concludes that a
safe operation strategy covering both cases would be to operate at lopt;W12

�� ��. Also,
Figs. 9.4 and 9.7 prove that the “equilibrated” operation is usually not too far from
the optimum.

9.3 Conclusions

The steady state heat exchanger operation model of Sect. 9.2.4 can be used in
principle for any optimization criterion. Here the entropy generation and the lost
available work are chosen as examples of objective functions. Parallel flow heat
exchangers can not be optimal but counter-flow devices can be.

The optimum flow-rate parameter lopt12

�� �� is always smaller in case of minimum
entropy generation than in case of minimum lost available work. For both opti-
mization criteria the range of nearly-optimal flow rates ratio is large enough. For
instance, the usual “equilibrated” operation is in many cases rather close to the
optimum. This confirms the empirical wisdom embodied in conventional
counter-flow heat exchanger design.

Choosing between the two optimum criteria (i.e., minimum entropy generation
and minimum lost available work) depends on the particular utilization of the heat
exchanger. The method based on the entropy generation minimization could be
used for example in case of heat exchangers in a chemical factory that delivers
various products and secondary utilities such as flows of heat and power. The
entropy generation should be seen in this case as a common measure for the cost of
production of all these outputs of different nature, allowing an overall optimization.
The method based on lost available work minimization could be used for heat
exchangers operation in power plants or in those applications where the main
interest is in delivering a maximum output power (or, equivalently, consuming a
minimum amount of work). Note, however, that in this section we used T1 as a
reference state while the approach of usual power plants normally requires as
reference the environment temperature T0 (for details see Badescu 2004a and
Chap. 8 in this book). The additional assumption T0 ¼ const makes the two
methods equivalent.
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Chapter 10
Storage of Thermal Energy and Exergy

Some aspects of charging (heating) and discharging (cooling) the thermal energy
storage units are treated in this chapter. Charging occurs frequently in thermal
engineering, especially in the field of energy recovery and renewable energy
sources. One example is photothermal conversion, where the energy supplied by
solar collectors can be stored temporarily by heating an amount of water or porous
rock. Also, there are suggestions that during the time periods with reduced con-
sumption, the heat produced by power plants to be stored in large tanks of water or
oil, in view of its usage during peak loads. Cooling is often used in metallurgy,
chemical industry and for improving the performance of semiconductor and
superconducting devices. The essential feature of these processes is that they
depend on time; therefore, the time becomes an important design parameter (Bejan
1982).

Further emphasis is put on the storage of thermal energy and exergy, respec-
tively. This latter process allows to establish an optimization criterion for the
operation of storage units.

10.1 Unsteady Operation of Storage Elements

Consider the thermal energy storage system of Fig. 10.1a. The system consists of a
large mass M of water with specific heat C, placed inside an insulated vessel.
A mass flow rate _m of air enters through the left side, with constant temperature
T1 ¼ const, passes through a heat exchanger (of length L) immersed in the water
and comes out at a variable temperature Te tð Þ. The momentary temperature of water
(assumed to be well mixed) is T tð Þ. In time, the values of the temperatures Te tð Þ and
T tð Þ grow, gradually approaching T1 (Fig. 10.1b). The water temperature at the
beginning of the process is equal to the ambient temperature T0.
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For an element of length dx of the heat exchanger with perimeter p, one can
write the energy balance:

Updx Tg � T
� �þ _mcpdTg ¼ 0 ð10:1:1Þ

where Tg is the local gas temperature and cp is its specific heat at constant pressure.
U is the global heat exchange coefficient between the mass of liquid and the flowing
gas. The first term of Eq. (10.1.1) is the heat flux transferred from liquid to gas and
the second term describes the increase of the internal gas energy.

Equation (10.1.1) is integrated from x ¼ 0 (corresponding to Tg ¼ T1) to x ¼ L
(where Tg ¼ Te):

Te tð Þ � T tð Þ
T1 � T tð Þ ¼ e�Ntu ð10:1:2Þ

where the number of thermal units Ntu is, by definition:

Ntu � UpL
_mcp

ð10:1:20Þ

Applying the first law of thermodynamics to the liquid mass M, one finds:

MC
dT
dt

¼ _mcp T1 � Teð Þ ð10:1:3Þ

Te tð Þ is extracted from Eq. (10.1.2) and is replaced in Eq. (10.1.3), which remains
function only of T tð Þ. One integrates from the initial time T tð Þ (when T ¼ T0) up to
a certain moment t. Then, one replaces the solution T tð Þ just obtained in
Eq. (10.1.2), which is later solved for the unknown Te tð Þ. One obtains:

T tð Þ � T0
T1 � T0

¼ 1� e�yh Te tð Þ � T0
T1 � T0

¼ 1� ye�yh ð10:1:4; 5Þ

where the following notations have been used:

y � 1� e�Ntu h � _mcp
MC

t ð10:1:6; 7Þ

Fig. 10.1 a Liquid bath used
as storage element for
sensible thermal energy;
b time evolution of
temperatures during the
heating process
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The solution just obtained states, as expected, that both T and Te tend asymp-
totically towards T1. The convergence is faster when Ntu has higher values. The
capacity to store thermal energy increases by increasing the dimensionless storage
time h (given by Eq. (10.1.7)) and the number of transfer units Ntu.

10.2 The Exergy Loss During the Storage Process

The process of heating by immersion in a bath is characterized by two sources of
irreversibility (Fig. 10.2). First, there is the heat transfer between gas and liquid,
which takes place at finite temperature difference DT . Second, the gas that leaves
the system entering the atmosphere cools until reaches the ambient temperature T0,
as a result of another heat transfer process at finite temperature difference. A third
source of irreversibility, which is neglected here, is the static pressure loss due to
friction in the gas inside the heat exchanger.

The rate of entropy generation in the area framed in Fig. 10.2 is:

_Sgen ¼ _mcp ln
T0
T1

þ Q0

T0
þ d

dt
MC ln Tð Þ ð10:2:1Þ

The first term in Eq. (10.2.1) corresponds to cooling the gas from the temper-
ature T1 to T0. The second term corresponds to the heat flux _Q0 ¼ _mcp Tout � T0ð Þ
transferred to the gas leaving the storage unit, which ultimately reaches the ambient
temperature. The last term corresponds to warming the mass of water.

The entropy generated in the time interval 0� t is of interest. One integrates
Eq. (10.2.1) by taking into account Eqs. (10.1.4) and (10.1.5), resulting in:

1
MC

Z t

0

_Sgendt ¼ h ln
T0
T1

þ T1 � T0
T0

� �

þ ln 1þ T1 � T0
T0

ð1� e�yhÞ
� �

� T1 � T0
T0

ð1� e�yhÞ
ð10:2:2Þ

Fig. 10.2 The heating
process and sources of
irreversibility
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Now, define the exergy destroyed in the process, Exdis, and the total exergy
content of the gas, extracted from the exergy of the hot gas supplied, Extot, as follows:

Exdis � T0

Z t

0

_Sgen
:

dt Extot ¼ _mcpt T1 � T0 � ln
T1
T0

� �
ð10:2:3Þ

The ratio of these quantities is called the entropy generation number (or, more
properly, the number of exergy loss). It is denoted NS and it is obtained by using the
definition and Eqs. (10.2.2) and (10.2.3):

NS � Exdis
Extot

¼ 1� sð1� e�yhÞ � ln 1þ sð1� e�yhÞ� 	
h s� lnð1þ sÞ½ � ð10:2:4Þ

where the notation s � T1 � T0ð Þ=T0 was used.
As shown in Eq. (10.2.4) and Fig. 10.3, NS depends on the dimensionless time

of loading h, the heat transfer surface area (through the quantity y, which depends
on the number of thermal units Ntu), and the dimensionless temperature s.

For given values of the parameters Ntu and s, there is an optimal time hoptim,
which minimizes the irreversibilities fraction NS. Far from this minimum, NS tends
towards unity. In the limit h ! 0, the entire exergy content of the gas flow is
destroyed during the heat transfer to the liquid bath, which is initially at the
atmospheric temperature T0. In the limit h ! 1, the place where the irreversibil-
ities become significant is out of the liquid bath. Indeed, the hot gas leaves the heat
exchanger as hot as at input, which makes its entire content of exergy being
destroyed by the heat transfer to the atmosphere.

Next, the particular case s ! 0 is briefly examined. This case allows to compute
the optimal time of charging the storage element. The entropy generation number
Eq. (10.2.4) becomes

Ns
s!0

¼ 1� 1
h

1� e�yh
� �2 ð10:2:5Þ

Fig. 10.3 The fraction of
exergy destroyed during the
storage process for a specific
value of the dimensionless
temperature s
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To determine the optimal storage time, one solves the equation @NS=@h ¼ 0,
which is the necessary condition of extreme. Using a numerical method one finds:

hopt ¼ 1:256
1� e�Ntu

ð10:2:6Þ

Substituting Eq. (10.2.6) in Eq. (10.2.5), the minimum entropy generation
number is obtained:

NS;min ffi 0:593þ 0:407e�Ntu ð10:2:7Þ

Equation (10.2.6) suggests that for all heat exchangers with Ntu [[ 1, the optimum
charging time topt is approximately equal with MC= _mcp

� �
. In other words, the

heating process must be completed when the thermal inertia of the hot gas (that is
_mcptopt) becomes equal to the thermal inertia of the bath liquid, MC.
In the general case, when s is finite, the optimum charging time depends on Ntu

but also on s. More details can be found in Bejan (1982).

10.3 Thermal Energy Storage in Stratified and Fully
Mixed Water Tanks

10.3.1 Introduction

The operation of a thermal energy storage (TES) unit is similar to that of a common
heat exchanger. However, the TES unit is either being charged or discharged at a
given time so that its operation is essentially unsteady. TES units are traditionally
designed and rated on the basis of the first and second laws (Bejan 1978, 1982). Bejan
focused on TES optimum design and operation parameters by analyzing the energy
storage stage. Krane (1989) extended Bejan’s work by considering the entire energy
charging-discharging cycle. Badar et al. (1993) developed a second-law-based
thermo-economic analysis of TES units. An early review has been prepared by Bejan
(1997).

All the above studies refer to fully mixed liquid-based TES units. Also, the
above studies are using a standard approach based on the number of thermal units
(Ntu) concept, that assumes the overall heat transfer coefficient U between the
thermal agent and the storage medium is a constant. In fact U depends on the
thermal agent mass flow rate and various temperatures involved. Badescu (2004)
treated both stratified and fully mixed TES units. The dependence of U on the
thermal agent mass flow rate has been taken into account and the limits of the
standard approach were briefly outlined. The main advantage of using the Ntu

concept is that analytical results are obtained. Most results of Badescu (2004) were
derived by using numerical procedures. They are presented in the following.
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10.3.2 Stratified Liquid Storage Tanks

The TES unit analyzed here consists of an insulated tank containing a large mass of
liquid (water) (Fig. 10.4). A hot gas (air) enters (and leaves) the system through a
heat exchanger immersed in the liquid. In time, the liquid and the gas outlet tem-
peratures gradually approach the gas inlet temperature. It is assumed that initially
the liquid temperature equals the ambient temperature. It is required that the inlet
gas pressure is slightly above the atmospheric pressure and the gas stream is able to
overcome the pressure drop in the heat exchanger. The charging stage is considered
in this section.

10.3.2.1 Model

Figure 10.4 shows a sensible thermal energy storage system having parallel circular
tubes, first modeled by Mathiprakasam and Beeson (1983) for the case of a solid
storage medium. The model was further developed by Badescu (2003), where
partial differential equations were used to describe the heat conduction in both the
thermal agent (air) and the thermal energy storage medium. Badescu (2004) adapted
the models proposed by Mathiprakasam and Beeson (1983) and Badescu (2003) for
the case of water storage tanks.

Fig. 10.4 Thermal energy
storage unit analyzed here
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The main assumptions are as follows. (i) The thermal conductivity of the storage
medium is finite and different from zero in the flow direction of the heat transfer
fluid (i.e. x-direction) and infinite in the direction perpendicular to the flow direction
(i.e. y-direction). (ii) The water tank walls are perfectly thermally insulated.

Note that Badescu (2003) assumed that the system is operating at constant
pressure, and the properties of both the heat transfer fluid and storage medium (such
as density, specific heat and thermal conductivity) are constant. Here the air pres-
sure loss in the TES is taken into consideration while the material properties are
allowed to be temperature dependent. However, all results presented in this section
refer to material properties evaluated at room temperature (293 K), to facilitate
comparison with some popular simple models.

The unsteady energy balance per unit length of storage medium (i.e. water) is
(see Fig. 10.5):

c�
m�

L
@T�

@t
¼ k�

m�
q�

L
@2T
@x2

þ h2
A2

L
ð~T � T�Þ ð10:3:1Þ

Here T*, m*, c*, q� and k� are the temperature, total mass, specific heat, density and
thermal conductivity of the storage medium, respectively, while ~T is wall pipe
temperature. Also, L and A2 are the storage unit length and the total heat transfer
area between storage medium and heat transfer fluid, respectively, while h2 is the
coefficient of heat transfer between pipe and water (see Fig. 10.5b). Note that h2
depends on the local heat transfer process, as shown below. The l.h.s. of
Eq. (10.3.1) denotes the thermal energy accumulation in the storage medium. The
first member in the r.h.s. of Eq. (10.3.1) takes into account the heat flux by con-
duction on x-direction while the second r.h.s. member is the heat flux transferred by
convection between the storage medium and the fluid inside the tubes.

The unsteady energy balance per unit length of heat transfer fluid (temperature
T) is:

_mcp
DT
Dt

¼ wA1

L
h1ðT � ~TÞ ð10:3:2Þ

Here _m, w and cp are the mass flow rate of the heat transfer fluid, fluid speed and
fluid specific heat, respectively. Also, A1 and h1 are the total heat transfer surface
area and heat transfer coefficient between air and pipe wall. The total temperature
derivative is given by:

DT
Dt

¼ @T
@t

þ @T
@x

@x
@t

¼ @T
@t

þw
@T
@x

ð10:3:3Þ

Denote by np and a1ð¼ pd2=4Þ the number of identical pipes and the inner cross
section area of one pipe, respectively. Note that the term in Eq. (10.3.3) containing
w was neglected in the early approach (Mathiprakasam and Beeson 1983). The
mass conservation and Fig. 10.5b allow to write:
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_m ¼ npa1qw ð10:3:4Þ

The perfect gas state equation for the heat transfer fluid is:

q ¼ p
RairT

ð10:3:5Þ

where Rair is air constant while p is the pressure. One replaces Eqs. (10.3.3)–
(10.3.5) into Eq. (10.3.2) and one finds:

@T
@t

þ Rair

npa1
_m
T
p
@T
@x

¼ A1

L
Rairh1
cpnpa1

T
p
ðT � ~TÞ ð10:3:6Þ

The total heat transfer surface areas A1 and A2 and the storage medium mass m*
are computed as follows (see Figs. 10.4 and 10.5):

A1 ¼ Lnpð4a1pÞ
1
2 ¼ Lnppd A2 ¼ Lnpp dþ 2Drð Þ

m� ¼ L Ain � np
p dþ 2Drð Þ2

4

 !
q�

ð10:3:7–9Þ

The unsteady thermal energy balance per unit length of pipe wall is:

Fig. 10.5 Details about the
system studied here. a Ain

denotes the flow surface area
before the air enters the pipes.
b Details about pipe geometry
and the heat transfer between
air flow, pipe wall and the
storage medium (water)
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~q~c
p
4

dþ 2Drð Þ2�d2
h i @~T

@t
¼ ~k

p
4

dþ 2Drð Þ2�d2
h i @2~T

@x2

þ h1pd T � ~T
� �� h2p dþ 2Drð Þ ~T � T�� � ð10:3:10Þ

Here ~q;~c and ~k are the mass density, specific heat and thermal conductivity of
wall pipe material, respectively. The l.h.s of Eq. (10.3.10) denotes the thermal
energy accumulation in the pipe wall. The first term in the r.h.s. corresponds to the
heat conduction in pipe wall while the second and third terms denote the heat fluxes
received from air and transferred to water, respectively.

Solving the balance Eqs. (10.3.1), (10.3.6) and (10.3.10) with appropriate initial
and boundary conditions gives the unknown temperature distributions T�ðx; tÞ,
~T x; tð Þ and Tðx; tÞ. The boundary conditions are as follows. Since the walls of TES
device and pipes are perfectly thermal insulated, then:

@T�

@x






x¼0

¼ @T�

@x






x¼L

¼ 0
@~T
@x






x¼0

¼ @~T
@x






x¼L

¼ 0 ð10:3:11; 110Þ

Also, the heat transfer fluid enters the TES device with known temperature Tin:

T jx¼0¼ Tin ð10:3:1100Þ

The initial temperature distributions equals the (constant in time) ambient tem-
perature T0:

T�
initðx; t ¼ 0Þ ¼ ~Tinit x; t ¼ 0ð Þ ¼ Tinit x; t ¼ 0ð Þ ¼ T0 ð10:3:12Þ

Details about the computation of air pressure loss and heat transfer coefficients
can be found in the Appendices 10A and 10B, respectively. The following
dimensionless notations are used:

u � T
Tin

u� ¼ T�

Tin
~u �

~T
Tin

u0 � T0
Tin

uout � T x ¼ Lð Þ
Tin

w xð Þ ¼ 1� p xð Þ
pin

x � t
s

v � x
L

l � _mcps
m�c�

ð10:3:13Þ

Here pin is air pressure at TES inlet and s denotes an arbitrary time interval used to
define the dimensionless time x. Note that all temperature ratios as well as the
dimensionless space variable v in Eq. (10.3.13) are normally less than unity. The
dimensionless time x and the flow rate parameter l are allowed to exceed unity.

Use of notation Eq. (10.3.13) and Eqs. (10.3.1), (10.3.6) and (10.3.10) leads to,
respectively
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@u�

@x
¼ Fo�

@2u
@v2

þK�
1 ~u� u�ð Þ

@u
@x

þK1
u

1� w
@u
@v

¼ K2
u

1� w
~u� uð Þ

@~u
@x

¼ ~Fo
@2~u
@v2

þ ~K1 u� ~uð Þ � ~K2 ~u� u�ð Þ

ð10:3:14–16Þ

The detailed expressions of the dimensionless parameters entering Eqs. (10.3.14–
16) are given in Table 10.1.

The dimensionless boundary conditions are obtained by using Eq. (10.3.11) and
notation Eq. (10.3.13):

@u�

@v






/¼0

¼ @u�

@v






v¼1

¼ 0
@~u
@v






v¼0

¼ @~u
@v






v¼1

¼ 0 ð10:3:17Þ

In the dimensionless notation of Eq. (10.3.13) the boundary condition
Eq. (10.3.11′) and the initial conditions Eqs. (10.3.11′′) become, respectively:

ujv¼0¼ 1 ð10:3:18Þ

u�initðv;x ¼ 0Þ ¼ ~uinit v;x ¼ 0ð Þ ¼ uinit v;x ¼ 0ð Þ ¼ u0 ð10:3:19Þ

The three nonlinear partial differential equations (10.3.14–16) with the initial
and boundary conditions Eqs. (10.3.17–19) were solved by using the software
package PDECOL (Madsen and Sincovec 1979). The code is based on a
method-of-lines approach, with collocation in the space variable to reduce the
problem to a system of ordinary differential equations. The Algorithm TOMS 540
was implemented in the computer code (Hopkins 2001).

Table 10.1 Detailed
expressions for various
dimensionless parameters
entering Eqs. (10.3.14–16)
and (10.3.43)

Parameter Equation number

Fo� ¼ k�
q�c�

s
L2

(10.3.14)

K�
1 ¼ p dþ 2Drð ÞnpLsh2

m�c�
(10.3.14)

~Fo ¼ ~k
~q~c

s
L2

(10.3.16)

~K1 ¼ d
Dr dþDrð Þ

sh1
~q~c

(10.3.16)

~K2 ¼ dþ 2Drð Þ
Dr dþDrð Þ

sh2
~q~c

(10.3.16)

K1 ¼ 4s
pnpd2L

_mRairTin
pin

(10.3.15)

K2 ¼ 4sh1
d

RairTin
cppin

(10.3.15)

K�
2 ¼ _mcp

p dþ 2Drð ÞnpLh2
(10.3.43)
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10.3.2.2 Performance Indicator

During the charging period the temperature and the pressure of the hot air entering
the TES unit are decreasing while the temperature of the water and of the pipe walls
are increasing. The processes leading to increasing temperature are associated to
exergy input while those where the temperature or pressure is diminishing are
associated to exergy destruction. An overall rate of exergy input/destruction could
be defined as the sum of the rates of exergy input/destruction for all the particular
processes. The performance indicator adopted in this chapter is the minimum
exergy destruction.

Figure 10.6 allows to define the thermodynamic system. The rate of air exergy
entering the storage unit, _Exair;in, is given by the standard relationship (Bejan 1982):

_Exair;in ¼ _mcpT0 Tin � T0 � ln
Tin
T0

þ Rair

cp
ln
pin
p0

� �
ð10:3:20Þ

Both the thermal and mechanical contributions were considered in Eq. (10.3.20).
Two situations could be envisaged. In the first case (say A) the TES unit is

placed at the beginning of a series of devices through which the air flow is passing,
and where the air flow exergy content could increase or decrease. In this case the
variation of air exergy content inside the TES unit should be evaluated. In the
second case (say B) the TES unit operates alone and the air flow temperature and
pressure equal the ambient temperature and pressure at the boundary of a larger
system containing the TES unit (see Fig. 10.6). This case B was previously con-
sidered by Bejan (1978) and Badar et al. (1993). The exergy destruction associated
to the air mass flow is evaluated now for both cases A and B above.

In the case A, the rate of air flow exergy _Exair;out leaving the TES unit at
temperature Tout and pressure pout is:

_Exair;out ¼ _mcpT0 Tout � T0 � ln
Tout
T0

þ Rair

cp
ln
pout
p0

� �
ð10:3:21Þ

In case B, the rate of air flow exergy _Exair;0 leaving the system defined in
Fig. 10.6 at ambient temperature T0 and pressure p0 is _Exair;0 ¼ 0. Consequently, in
case A the rate of air flow exergy destruction inside the TES unit, D _Exair;TES, is

D _Exair;TES � _Exair;in � _Exair;out ¼ _mcpT0 Tin � Tout � ln
Tin
Tout

þ Rair

cp
ln

pin
pout

� �
ð10:3:22Þ

while in case B the rate of air flow exergy destruction inside the system of
Fig. 10.6, D _Exair;0, is given by
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D _Exair;0 � _Exair;in � _Exair;0 ¼ _mcpT0 Tin � T0 � ln
Tin
T0

þ Rair

cp
ln
pin
p0

� �
ð10:3:23Þ

In case A, the air flow exergy, DExair;TES tð Þ, dissipated inside the TES unit from
the process beginning ðt ¼ 0Þ until the moment t is obtained through the integration
of Eq. (10.3.23):

DExair;TES tð Þ ¼
Z t

0

D _Exair;TESdt
0

¼ _mcpT0

Z t

0

Tin � Tout t
0ð Þ � ln

Tin
Tout t0ð Þ þ

Rair

cp
ln

pin
pout t0ð Þ

� �
dt0

ð10:3:24Þ

In case B, the air flow exergy, DExair;0 tð Þ, dissipated inside the system of
Fig. 10.6 from (t ¼ 0) to t is given by:

DExair;0 tð Þ ¼
Z t

0

D _Exair;0dt
0 ¼ _mcpT0t Tin � T0 � ln

Tin
T0

þ Rair

cp
ln
pin
p0

� �
ð10:3:25Þ

Note that DExair;0 tð Þ equals the exergy Exair;in tð Þ of the air flow entering the TES
unit during the time 0� t:

Exair;in tð Þ ¼ DExair;0 tð Þ ð10:3:26Þ

The exergy Exwater tð Þ of the water at moment t, when its average temperature is
T� tð Þh i, is given by

Exwater tð Þ ¼ m�c�T0 T� tð Þh i � T0 � T0 ln
T� tð Þh i
T0

� �
T� tð Þh i � 1

L

ZL
0

T� xð Þdx

ð10:3:27; 28Þ

Fig. 10.6 Places for various
exergy losses
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where m�ð¼ ðAin � npp dþ 2Drð Þ2Lq�=4ÞÞ is the mass of water in the TES unit.
Similarly, the exergy Expipes tð Þ of pipes wall material at average temperature ~T tð Þ� �
is given by

Expipes tð Þ ¼ ~m~cT0 ~T tð Þ� �� T0 � T0 ln
~T tð Þ� �
T0

 !
~T tð Þ� � � 1

L

ZL
0

~T xð Þdx

ð10:3:29; 30Þ

where ~mð¼ np p
4 ½ dþ 2Drð Þ2�d2�L~qÞ is the mass of the pipe walls.

In case A, the number of exergy destruction, Ns;TES tð Þ, inside the TES unit is
defined as

Ns;TES tð Þ � DExair;TES tð Þ � Exwater tð Þ � Expipes tð Þ
Exair;in tð Þ ð10:3:31Þ

Use of notation Eq. (10.3.22) allows to write the number of exergy destruction
Ns;TES tð Þ given by Eq. (10.3.31) as:

Ns;TES xð Þ

¼ 1�

Zx
0

l
uout x0ð Þ � u0

u0
� ln

uout x0ð Þ
u0

� �
dx0 þ u� xð Þh i � u0

u0
� ln

u� xð Þh i
u0

þ ~m~c
m�c�

~u xð Þh i � u0
u0

� ln
~u xð Þh i
u0

� �
dx0

Zx
0

l
uout x0ð Þ � u0

u0
� ln

uout x0ð Þ
u0

þ Rair

cp
ln

pin
pout x0ð Þ

� �
dx0

ð10:3:32Þ

where

u� xð Þh i �
Z1
0

u� v;xð Þdv ~u xð Þh i �
Z1
0

~u v;xð Þdv ð10:3:33; 34Þ

are the values of u� and ~u averaged over TES unit length. In case B, the number of
exergy destruction, Ns tð Þ, for the system of Fig. 10.6 is defined as

Ns tð Þ � DExair;0 tð Þ � Exwater tð Þ � Expipes tð Þ
Exair;in tð Þ ¼ 1� Exwater tð ÞþExpipes tð Þ

Exair;in tð Þ
ð10:3:35Þ
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Use of notation Eq. (10.3.13) allows to write the number of exergy destruction
Ns tð Þ given by Eq. (10.3.35) as:

Ns xð Þ ¼ 1�
u� xð Þh i�u0

u0
� ln u� xð Þh i

u0
þ ~m~c

m�c�
~u xð Þh i�u0

u0
� ln ~u xð Þh i

u0


 �
lx 1�u0

u0
þ ln u0 þ Rair

cp
ln pin

p0


 � ð10:3:36Þ

In the particular case Tout ¼ T0; pout ¼ p0, Eq. (10.3.32) reduces to Eq. (10.3.36)
and the two cases A and B coincides.

To allow comparison with previous studies, a TES unit operating alone (i.e. the
case B above) is envisaged in the following. Therefore, the parameter Ns is used as
a performance indicator.

10.3.2.3 Results and Discussion

A number of design and operation parameters are kept constant in this section (see
Table 10.2). All computations show that the exergy destruction by fluid friction is
two orders of magnitude lower at least than the other terms entering the expression
of Ns, Eq. (10.3.36). Also, the exergy accumulation in pipe walls material is one or
two orders of magnitude smaller than the exergy accumulated in the water. These
results justify in part the approximations used in earlier approaches (Bejan 1978;
Badar et al. 1993).

A number of preliminary tests were run with Fo� ¼ 0 in Eq. (10.3.14). The aim
was to simulated a hypothetical “fully” stratified TES unit, where the thermal
diffusion process is avoided by certain, unspecified, techniques. The results are
slightly different from those where the real value Fo� was used. This proves that the
stratification can be destroyed only by convection, as already known.

The dependence of the number of exergy destruction Ns on time is shown in
Fig. 10.7 for various air mass flow rates _m and inlet air temperatures Tin. For given
_m, the number of exergy destruction Ns increases by decreasing Tin. At large
operation time x and smaller mass flow rates (i.e. 0.2 and 2 kg/s) the Ns values
associated with the two inlet temperatures Tin tend to become equal each other. This
is not the case at a larger mass flow rate (e.g. _m ¼ 20 kg/s). Every operation regime
_m; Tinð Þ has an optimum charging time.
The optimum charging time increases by decreasing the air mass flow rates and

the air inlet temperature (see Fig. 10.8; Table 10.3). The range of variation of the
dimensionless optimum charging time xopt in Table 10.3 is a consequence of the
limited precision of the numerical procedure used to integrate Eqs. (10.3.14–16).
Table 10.3 shows that for Tin ¼ 373K the dependence of Ns;min on _m is not
monotonous. Therefore, there is an optimum air mass flow rate (say _mopt) that
makes Ns;min a minimum minimorum. This is shown more clearly in Fig. 10.9. In
case of Tin ¼ 573K, from Table 10.3 one learns that the optimum air flow rate
exceeds 20 kg/s.
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The dependence of the optimum dimensionless charging time xopt on the air
mass flow parameter l is shown in Fig. 10.8 for different values of the inlet air
temperature Tin. The dependence of xopt on Tin is rather weak (see also Table 10.3).
The decrease of xopt is stronger at smaller flow rates.

It is important to know how much energy is stored in the TES unit at the
optimum charging time. One defines the ratio R between the actual thermal energy
stored in the TES unit and the maximum possible storable energy. At the optimum
charging time, the optimum ratio Ropt is given by:

Table 10.2 Design and
operation parameters kept
constant

TES unit design
Thermal agent Air

Storage medium Water

Pipe wall material Steel

TES unit length L ¼ 5m

Air inlet surface area Ain ¼ 1m2

Number of pipes np ¼ 100

Pipe inner diameter d ¼ 0:05m

Pipe wall thickness Dr ¼ 0:001m

Operation
Ambient temperature T0 ¼ 293K

Air inlet pressure pin ¼ 1:2� 105 Pa

Scaling time interval s ¼ 36;000 s

Fig. 10.7 Dependence of the
number of exergy destruction
Ns on the dimensionless time
x for various air mass flow
rates _m and inlet air
temperatures Tin. A stratified
TES unit is considered
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Ropt ¼
T� topt
� �� �� T0
Tin � T0

¼ u� xopt
� �� �� u0
1� u0

ð10:3:37Þ

The dependence of Ropt on the mass flow parameter l is shown in Fig. 10.9, for
different values of the air inlet temperature. The case Tin ¼ 373K is of especial
interest. It shows that Ropt riches a maximum value (say Ropt;max) for an optimum
dimensionless mass flow (say lopt). The numerical values are Ropt;max ¼ 0:718 and
lopt ¼ 17:22� 19:22 (this range of variation of lopt is a consequence of the
numerical procedure precision). For higher values of Tin the optimum value lopt
exceeds the upper limit l ¼ 30 adopted here.

Fig. 10.8 Dependence of
optimum dimensionless
charging time xopt on air
mass flow parameter l for
different values of inlet air
temperature Tin. A stratified
TES unit is considered

Table 10.3 Stratified TES unit at optimum operation

Air mass
flow _m (kg/s)

Air inlet
temperature Tin
(K)

Optimum dimensionless
charging time xopt

Minimum exergy
destruction number Ns;min

0.2 1.918–2.115 0.563

2 373 0.278–0.325 0.678

20 0.042–0.052 0.632

0.2 1.837–1.919 0.523

2 573 0.250–0.274 0.650

20 0.036–0.043 0.737

The optimum charging time (in seconds) is topt ¼ sxopt (s ¼ 36;000 s)
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10.3.3 Fully Mixed Liquid Storage Tanks

10.3.3.1 Model

In a fully mixed water storage tank, the water temperature T� is constant in space.
Consequently, a popular simple heat transfer approach could be adapted as follows.
Usage of the dimensionless variables in Eq. (10.3.13) allows to write the equations
given by Badar et al. (1993) for example, as:

u� ¼ u0 þ 1� u0ð Þ 1� exp �lyxð Þ½ � uout ¼ u0 þ 1� u0ð Þ 1� y exp �lyxð Þ½ �
ð10:3:38; 39Þ

where

y � 1� exp �Ntuð Þ Ntu � Uh iA
_mcp

� �
ð10:3:40; 41Þ

Equation (10.3.41) shows that the number of thermal units Ntu is a function of
the space averaged overall heat transfer coefficient Uh i between air and water. Note
that in this section a space averaged value should be considered for U (and for other
heat transfer coefficients), in order to allow the usage of the definition Eq. (10.3.41).
Appendix 10B shows how the local U-value can be computed as a function of the
local values of h1 and h2. The same procedure could be used, with U; h1 and h2
replaced by the space averaged values Uh i; h1h i and h2h i, respectively. Generally,
h1h i and h2h i depend on the time variable temperatures T ; T� and ~T . Consequently,
both Uh i and Ntu depend on time.

The standard approach assumes Ntu is constant in time (see e.g. Badar et al.
1993). An improved model with Ntu depending on time is used here. Note that the

Fig. 10.9 Dependence of the
ratio of stored thermal energy
Ropt (Eq. (10.3.37)) on the
mass flow parameter l for
several values of the air inlet
temperature Tin. A stratified
TES unit is considered
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time-dependence of Ntu should be weak, in order to allow the results
Eqs. (10.3.38,39) to be valid (see for example Bejan (1982) for the way of deriving
these two equations). When the details of Appendix 10B are taken into consider-
ation, one can see that the two Eqs. (10.3.38,39) contain in fact three unknowns,
namely u�; uout and ~uh i. An additional equation is therefore required. Here one shall
use the energy conservation during the heat transfer in the TES unit:

_mcp Tin � Toutð Þ ¼ npLp dþ 2Drð Þh2 ~T
� �� T�� � ð10:3:42Þ

The l.h.s. of Eq. (10.3.42) is the energy flux extracted from the air flow inside the
TES unit while the r.h.s. is the heat flux transferred from the pipe wall to the water.
Use of the dimensionless notation Eq. (10.3.13) allows to write Eq. (10.3.42) as:

~uh i ¼ u� þK�
2 1� uoutð Þ ð10:3:43Þ

where the detailed expression of the dimensionless coefficient K�
2 is given in

Table 10.1. Equations (10.3.38), (10.3.39) and (10.3.43) are solved simultaneously
in the dimensionless unknowns u�; uout and ~uh i.

10.3.3.2 Indicator of Performance

The definition Eq. (10.3.31) of the number of exergy destruction is used here.
Usage of Eqs. (10.3.27), (10.3.29), (10.3.38) and (10.3.39) yields (see Bejan 1982):

Ns xð Þ ¼ 1�
1�u0
u0

1� e�lyxð Þ � ln 1þ 1�u0
u0

1� e�lyxð Þ
h i

lx 1�u0
u0

þ ln u0 þ Rair
cp

ln pin
p0


 � ð10:3:44Þ

For consistence with previous standard approaches, the exergy content in the
pipe walls was neglected in Eq. (10.3.44) as compared to the exergy content of
water. This is a good approximation, since the first quantity is one or two order of
magnitude smaller than the second quantity.

10.3.3.3 Results

The dependence of Ns on the operation time in case of fully mixed TES units shows
almost the same qualitative features as in the case of stratified storage tanks
(compare Figs. 10.10 and 10.7, respectively). Note, however, the difference
between the behavior of v at large operation times for _m ¼ 20 kg/s in the two cases
(for fully mixed TES units, Ns does not depend on the air inlet temperature Tin).

Table 10.4 shows details associated to the optimum operation of fully mixed
TES units. Note that the dependence of Ns;min on the mass flow rate _m is
monotonous. An optimum mass flow rate should be found outside the interval
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0.2–20 kg/s. Further comparison with results given in Table 10.3 shows that both
the optimum dimensionless operation time xopt and the minimum number of exergy
destruction Ns;min are smaller in case of the stratified storage tanks. This is not
surprising since the mixing processes are accompanied by entropy generation and
this leads to loss of exergy (according to Gouy-Stodola theorem). More than that, a
further increase of Ns would occur in case of fully mixed TES units, if the work
necessary to mix the storage medium would be taken into account. One concludes
that the stratified TES units are more effective than the fully mixed units from the
point of view of exergy conservation.

It is interesting to evaluate the accuracy of the standard approach (see
Eqs. (10.3.38), (10.3.39)) when used for the two types of TES units (i.e. stratified
and fully mixed). Note that the standard model assumes a given, constant in time,
number of thermal units Ntu. This is an approximation, of course. Indeed, the model
developed in Sect. 10.3.3.1 shows how a time-dependent overall heat transfer
coefficient Uh i and an ad hoc time-dependent number of thermal units can be
defined for a fully mixed TES unit (see Eq. (10.3.41)). In case of the stratified TES
unit, the overall heat transfer coefficient obviously depends on time and space. Here
just two local values of U are used: those from the inlet and outlet of the stratified
TES unit, respectively. They are used to compute two ad hoc values of Ntu through
the definition Eq. (10.3.41). The time dependence of the three ad hoc Ntu values is
shown in Fig. 10.11. The Ntu value associated to the stratified TES unit inlet has a
stronger time variation, as expected. Indeed, the difference between air and water
temperature decreases more rapidly at the inlet of a stratified unit. Therefore, the
heat transfer diminishes and both U and the ad hoc Ntu decrease more rapidly than
at stratified TES unit outlet.

What is the right value of Ntu to be used with the standard approach
Eqs. (10.3.38), (10.3.39)? As the user of the standard approach has not access to the
time variation of U and various temperatures, the first choice is to evaluate the
overall heat transfer coefficient and the associated Ntu according with the inlet

Fig. 10.10 Dependence of
the number of exergy
destruction Ns on the
dimensionless time x for
various air mass flow rates _m
and inlet air temperatures Tin.
A fully mixed TES unit is
considered
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parameters of the TES unit. In case of the results of Fig. 10.11 this means
Ntu � 1:24. However, in case of using the standard approach of Eqs. (10.3.38),
(10.3.39) for fully mixed TES units a better choice would be Ntu � 1:18, which is a
rough time averaged value obtained by using the model developed in
Sect. 10.3.3.1.

Figure 10.12 shows that the values of the minimum number of exergy
destruction Ns;min are rather close each other in the two cases. In case of using the
standard approach Eqs. (10.3.38), (10.3.39) of the stratified TES units, one can use
for Ntu the average between inlet and exit (which decreases in time to about 1.05 in
Fig. 10.11) or even the inlet value (with a minimum of about 0.95 in Fig. 10.11).
Using these two values as input in the standard approach leads to higher values of
both Ns;min and the optimum dimensionless operation time xopt. Table 10.5 shows
the results with more accuracy. One concludes that the standard approach is very
sensitive to the input value of Ntu. Also, it tends to estimate lower values of Ns;min,
(i.e. better performances) for the TES units. However, its predictions are better in
case of fully mixed TES units, as expected.

10.3.4 Conclusions

The TES unit analyzed in this chapter consists of a large mass of water placed
inside an insulated tank. A hot air flow enters the system through a heat exchanger
immersed in the liquid. In time, the water and air outlet temperatures gradually
approach the air inlet temperature. The results shown here refer either to fully mixed
or to stratified liquid storage tanks. In practice the TES unit operation should lye
between these two cases since convection normally occur unless special design
solutions are used.

The stratified TES unit was modeled by means of three partial differential
equations governing the time and space dependence of various temperatures
involved. The performance indicator adopted here is the minimum exergy

Table 10.4 Fully mixed TES unit at optimum operation

Air mass
flow _m (kg/s)

Air inlet
temperature Tin
(K)

Optimum dimensionless
charging time xopt

Minimum exergy
destruction number Ns;min

0.2 2.500a 0.628a

2 373 0.308–0.311 0.700

20 0.043–0.046 0.805

0.2 2.136–2.198 0.597

2 573 0.262–0.267 0.672

20 0.038–0.039 0.778

The optimum charging time (in seconds) is topt ¼ sxopt (s ¼ 36;000 s)
aThe optimum value is found at the end of the computing time interval
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destruction within appropriately defined systems. All relevant irreversibility sources
were considered, namely the spatial and temporal temperature and pressure varia-
tions for the hot air and the increase in temperature for the storage medium and pipe
wall material. Two cases were considered. In the first case (A) the system is the
TES unit itself. To allow comparison with previous analyses, a larger system
containing the TES unit was also considered, and this is the case B (see Fig. 10.6).
Every operation regime has an optimum charging time, which increases by

Fig. 10.11 Time dependence of three ad hoc approaches of the number of thermal units Ntu. The
“inlet” and “outlet” curves correspond to the model of Sect. 10.3.2.1. The overall heat transfer
coefficient at the inlet and outlet of the TES unit and the Ntu definition Eq. (10.3.41) are used. The
“fully mixed” curve corresponds to the model developed in Sect. 10.3.3.1. Air mass flow rate
_m ¼ 2 kg/s and air inlet temperature Tin ¼ 373K

Fig. 10.12 The number of
exergy destruction Ns

(Eq. (10.3.44)) as a function
of dimensionless operation
time x for several values of
Ntu. Air inlet temperature
Tin ¼ 373K
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decreasing the air mass flow rates and the air inlet temperature. Also, there is an
optimum air mass flow rate that makes the exergy destruction number a minimum
minimorum.

Generally, the dependence of the exergy destruction number on the operation
time in case of fully mixed TES units show rather similar qualitative features with
the case of stratified storage tanks. However, the stratified TES units are normally
more effective than the fully mixed units from the point of view of exergy
conservation.

The standard approach is very sensitive to the input value of the number of
thermal units. Also, it tends to overestimate the performance of the TES units. Its
accuracy is better in case of fully mixed units.

Appendix 10A

The total air pressure loss consists of local and linear losses. The local air pressure
loss is associated with the air inlet in the TES unit. The air flow section area
suddenly changes from the surface area Ain to the surface area nppd2=4. The local
pressure loss coefficient floc is given by Danescu et al. (1985):

floc ¼
1
2

1� nppd2=4
Ain

� �
ð10:A:1Þ

and the associated pressure loss is:

Dploc ¼ floc
w2

q
q ð10:A:2Þ

The linear pressure drop Dplin corresponds to the air flow inside the TES and is
given by the usual relationship:

Dplin xð Þ ¼ f
x
d
w2

2
q ð10:A:3Þ

Table 10.5 Fully mixed TES unit at optimum operation as obtained by using the standard model
Eqs. (10.3.38) and (10.3.39) for several values of the numbers of thermal units

Number of thermal
units Ntu

Optimum dimensionless
charging time xopt

Minimum exergy destruction
number Ns;min

1.24 0.300–0.313 0.697

1.05 0.328–0.342 0.723

0.95 0.347–0.364 0.738
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where x is the distance from TES inlet and the friction factor f is computed with
(Ionescu 1977):

f ¼
0:3164Re�0:25 3000\Re\105

0:0054þ 0:3964Re�0:3 105\Re\2� 106

0:0032þ 0:221Re0:237 Re[ 2� 106

8<
: ð10:A:4Þ

Here the Reynolds number Re is defined as:

Re � wd
m

ð10:A:5Þ

where m is air cinematic viscosity and the air velocity w is computed with:

w ¼ _m

np pd2
4 q

ð10:A:6Þ

The total pressure loss Dp is given by

Dp xð Þ ¼ Dploc þDplin xð Þ ð10:A:7Þ

Computation of air pressure p xð Þ at distance x from TES inlet is made with

p xð Þ ¼ pin � Dp xð Þ ð10:A:8Þ

where pin is the air pressure at TES inlet. Note that computation of p xð Þ requires an
iterative procedure since the above formulas are functions of air density q which in
turn depends on air pressure (i.e. q ¼ p=ðRairTÞ).

Appendix 10B

Computation of the forced convection heat transfer coefficient h1 between air and
wall pipe is based on the following usual relationship (see Danescu et al. 1985,
p. 304)

Nu ¼ 0:021Re0:8Pr0:43 ð10:B:1Þ

Here the Nusselt, Reynolds and Prandtl numbers are evaluated by, respectively:

Nu � h1d
k

Re � wd
m

Pr � cpqm
k

ð10:B:2–4Þ

All air properties are evaluated at local air temperature T and h1 is the single
unknown of Eq. (10.B.1).
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Computation of the natural convection heat transfer coefficient h2 between wall
pipe and water is based on the relationship (Carabogdan et al. 1978):

Nu ¼ 0:5 Grf 	 Prf
� �0:25 Prf

Prp

� �0:25

103\Grf 	 Prf\108 ð10:B:5Þ

Here the Prandtl number is defined by Eq. (10.B.4) while the Nusselt and Grashoff
numbers, Nu and Gr, respectively, are given by:

Nu � h2 dþ 2Drð Þ
k

Gr � g dþDrð Þ3b ~T � T�� �
m2

ð10:B:6; 7Þ

In Eq. (10.B.7) g and b are gravitational acceleration and thermal expansion
coefficient, respectively. The indexes f and p in Eq. (10.B.5) means that the water
properties are evaluated at fluid (i.e. water) temperature T� and pipe temperature ~T ,
respectively.

Once T� and ~T are known, h2 can be found from Eq. (10.B.5). In practice this
requires an iterative procedure since h2, T� and ~T should be evaluated together.

The local linear overall heat transfer coefficient Ulin (units: W/(mK)) between the
thermal agent (i.e. air) and the storage medium (i.e. water) is given by the usual
relationship specific to cylindrical pipes:

1
Ulin

¼ 1
pdh1

þ 1
2pkwall

ln
dþ 2Dr

d
þ 1

p dþ 2Drð Þh2 ð10:B:8Þ

The local overall heat transfer coefficient U (units: W/(m2K)) between air and
water can be computed with:

U ¼ Ulin

pd
ð10:B:9Þ

Space averaged values of h1; h2 and U are defined as:

h1h i � 1
L

ZL
0

h1dx; h2h i � 1
L

ZL
0

h2dx; Uh i � 1
L

ZL
0

Udx ð10:B:10–12Þ

References

Badar, M.A., Zubair, S.M., Al-Farayedhi, A.A.: Second law based thermoeconomic optimization
of a sensible heat thermal energy storage system. Energy 18(6), 641–649 (1993)

Badescu, V.: Model of a thermal energy storage device integrated into a solar assisted heat pump
system for space heating. Energy Convers. Manage. 44, 1589–1604 (2003)

228 10 Storage of Thermal Energy and Exergy



Badescu, V.: Optimal operation of thermal energy storage units based on stratified and fully mixed
water tanks. Appl. Therm. Eng. 24, 2101–2116 (2004)

Bejan, A.: Two thermodynamic optima in the design of sensible heat units for energy storage.
ASME J. Heat Transfer 100, 708 (1978)

Bejan, A.: Entropy generation through heat and fluid flow. Wiley, New York (1982)
Bejan, A.: Advanced Engineering Thermodynamics, 2nd edn. Interscience, New York (1997)
Carabogdan, I.G., Badea, A., Ionescu, L., Leca, A., Ghia, V., Nistor, I., Cserveny, L.: Instalatii

termice industriale, p. 52. Editura Tehnica, Bucuresti (1978)
Danescu, A., Popa, B., Radcenco, V., Carbunaru, A., Iosifescu, C., Marinescu, M., Petrescu, S.,

Silasi, C., Stefanescu, D., Aradau, D., Dinache, P., Madarasan, T.: Termotehnica si masini
termice, p. 225. Editura Didactica si Pedagogica, Bucuresti (1985)

Hopkins, T. (ed.): ACM Collected Algorithms (CALGO). Computing Laboratory, The University
of Kent, Canterbury, UK (2001)

Ionescu, D.G.: Introducere in hidraulica, p. 224. Editura Tehnica, Bucuresti (1977)
Krane, R.J.: Second law analysis of thermal energy storage systems: fundamentals and sensible

heat systems. In: Kilkis, B., Kakac, S. (eds.) Energy Storage Systems, pp. 37–67. Kluwer
Academic Publishers, Dordrecht (1989)

Madsen, N.K., Sincovec, R.F.: PDECOL, general collocation software for partial differential
equations (D3). ACM-TOMS 5(3), 326–351 (1979)

Mathiprakasam, B., Beeson, J.: Second law analysis of thermal energy storage devices. AIChE
Symposium Series, Seattle, pp. 161–168 (1983)

References 229



Chapter 11
Heating and Cooling Processes

Cooling processes are wildly used in metallurgy, chemical industry and other
activities traditionally covered by thermal engineering, but also in electronics (see
e.g. Min et al. 2004; Zhao and Lu 2002). The “cool-down” problem is of significant
importance for example in cryogenics, where large-scale superconducting windings
must first be cooled to liquid—helium temperature before they can be operational
(Bejan 1988, p. 651).

11.1 Optimization of Heating and Cooling Processes
by Variational Calculus

In many heating and cooling processes, the working fluid is expensive. For
example, the working fluid in the steam generator of a thermal power plant carries
the cost of the fuel. Similarly, there is a limited amount of fluid in a solar collector,
given the relatively high initial cost of the solar installation. Finally, the cryogenic
agent (liquid helium) used to cool superconducting devices is very expensive, if one
takes into account the limit temperatures of the liquefaction process, that occurs
between 300 and 4.2 K.

In this section, the problem of cooling or warming a body to a desired temperature
by using a minimal amount of working fluid is studied. For clarity, the ideas are
presented for cooling. The warming problem leads to similar relationships and can
be found in the article that serves as a basic material (Bejan and Schultz 1982).

11.1.1 Cooling Process Without Time Limitation

Consider a body of mass M and specific heat C, being at the time-dependent (but
uniform in space) temperature TðtÞ. The uniform temperature assumption is well

© Springer International Publishing AG 2017
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verified in case of superconducting porous structures. Indeed, besides the multi-
directional microchannels through which the coolant is circulating, the structure
itself is largely composed of copper, a material with very good thermal conductivity
properties. In case of liquid storage tanks, assuming a uniform temperature corre-
sponds to very good mixing (by free or forced convection, for instance).

The body is cooled from the initial temperature Tinit to a lower temperature Tfin,
by using a fluid mass flow rate _m. The fluid has the specific heat at constant pressure
cp. The contact surface area between the body and the cooling fluid is A. The fluid is
supplied from a tank having a constant temperature T0, which is lower than Tfin.
Inside the body that needs to be cooled, the refrigerant is well mixed, having a
uniform temperature, which varies over time, Tf ;outðtÞ (Fig. 11.1).

The flux of heat _Q transferred from the body to the cooling fluid is given by
Newton’s law:

Q ¼ UA T � Tf ;out
� � ð11:1:1Þ

where, in general, the overall coefficient of heat transfer U is a function of
temperature.

The duration of the cooling process is denoted by tc and the fluid flow rate may
vary over time. The amount of cooling fluid consumed from the tank, m0�tc , is
given by:

m0�tc ¼
Ztc
0

_mðtÞdt ð11:1:2Þ

The objective is to minimize m0�tc , finding the optimum time variation of the
mass flow rate _mðtÞ. In practice, such a minimization may be appropriate because,
on one hand, cooling the fluid costs, the cost being lower when cooling a smaller
amount of fluid, and on the other hand, the fluid circulation costs, its cost being
lower at a lower fluid mass rate.

To have a basis of comparison, the usual case is considered, i.e. the fluid flow is
constant over time, being denoted by _mc. In addition, a global heat transfer

Fig. 11.1 Cooling a body of massM, specific heat C and temperature T. The mass flow rate of the
cooling fluid is _m while its isobaric specific heat is cp. The fluid comes from the reservoir at
temperature T0 and leaves the body at temperature Tf ;out . The heat transfer surface area between
body and cooling fluid is A
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coefficient independent of temperature (denoted U0) is considered. The time vari-
ation of the body temperature is achieved in this case by using Eqs. (11.1.7) and
(11.1.8) below. After the removal of Tf ;out, it is found that:

T tð Þ � T0
Tinit � T0

¼ exp �U0A
MC

t
1þNtu0

� �
Ntu0 �

U0A
_mccp

� �
ð11:1:3; 30Þ

Applying Eq. (11.1.3) for the case of cooling the body between Tðt ¼ 0Þ ¼ Tinit
and T tcð Þ ¼ Tfin, one finds the duration tc of the cooling process:

tc ¼ MC
1

U0A
þ 1

_mccp

� �
ln
Tinit � T0
Tfin � T0

ð11:1:4Þ

By integrating Eq. (11.1.2) from t ¼ 0 to t ¼ tc (where tc is given by
Eq. (11.1.4)), one finds the total mass of fluid consumed during the cooling process:

m ¼ MC
cp

_mccp
U0A

þ 1
� �

ln
Tinit � T0
Tfin � T0

ð11:1:5Þ

Equation (11.1.5) shows that the mass m of fluid decreases monotonically when
the mass fluid flow rate _mc decreases. In the limit _mc ! 0, the minimum necessary
mass is obtained:

mmin ¼ MC
cp

ln
Tinit � T0
Tfin � T0

ð11:1:6Þ

Although the process that consumes the minimum amount of fluid mmin is
appealing in terms of saving cooling agent, it can not be used in practice, because in
this case the required cooling time tc (given by Eq. (11.1.4)) would be infinitely
long. Real heating and cooling processes need finite values of tc. A good example
from this point of view is the storage of the thermal energy obtained from solar
energy conversion, which occurs in a determined time interval during the day.

11.1.2 Cooling Process in Limited Time

In the general case, consider that the fluid mass flow rate _m depends on time and the
global heat exchange coefficient U may depend on temperature. Assume that all the
heat extracted per unit time from the body of mass M is transferred to the fluid, i.e.

Qextracted from body ¼ Qreceived by fluid ð11:1:60Þ

11.1 Optimization of Heating and Cooling Processes by Variational Calculus 233



The two heat fluxes are given by the obvious relationships:

Qextracted from body ¼ UA TðtÞ � Tf ;outðtÞ
� 	

Qreceived by fluid ¼ _mðtÞcp Tf ;outðtÞ � T0
� 	 ð11:1:600; 6″′Þ

Also, the time variation of the internal energy Eint of the body to be cooled is:

dEint

dt
¼ �Qextracted from body ð11:1:7Þ

Using Eqs. (11.1.6′′) and (11.1.7) one obtains

MC
dT
dt

¼ �UA TðtÞ � Tf ;outðtÞ
� 	 ð11:1:8Þ

Elimination of Tf ;out between Eqs. (11.1.6′), (11.1.6′′), (11.1.6′′′) and (11.1.8)
gives the following expression for the instantaneous mass flow rate of cooling fluid

_m ¼ MC
cp

T0 � T �MC
UA

dT
dt

� ��1dT
dt

ð11:1:9Þ

Substituting Eq. (11.1.9) in Eq. (11.1.2) one obtains the total necessary mass of
fluid:

m0�tc ¼
ZTfin
Tinit

MC
cp

T0 � T �MC
UA

dT
dt

� ��1

dT ð11:1:10Þ

When writing Eq. (11.1.10) it was taken into account that Tðt ¼ 0Þ ¼ Tinit and
T t ¼ tcð Þ ¼ Tfin. The integrand of Eq. (11.1.10) has the form F y; y0ð Þ, where y � t

and y0 � dt=dT ¼ dT=dtð Þ�1. Note that in this formulation, the temperature T is the
independent variable and the time t is the dependent variable (i.e. t ¼ t Tð Þ). The
extremization of the functional in Eq. (11.1.10) is performed by using the following
Euler-Lagrange equation:

@F
@y

� d
dT

@F
@y0

� �
¼ 0 ð11:1:11Þ

By solving Eq. (11.1.11), it is obtained, after performing intermediate calcula-
tions, the optimum speed for the time variation of the body temperature:

dT
dt

� �
opt
¼ UA

MC
T0 � T

1þ
ffiffiffiffiffiffiffiffiffi
C�UA
cp

q ð11:1:12Þ
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where the integration constant C�, that depends on the value of tc, is determined by
integrating Eq. (11.1.12) from t ¼ 0 to t ¼ tc, assuming that U is a known function
of the temperature T. Substituting Eq. (11.1.12) in Eq. (11.1.9), one determines the
optimal evolution of the mass flow rate of cooling fluid:

_mopt ¼ UðTÞA
C�cp

� �1
2

ð11:1:13Þ

This result has an interesting physical interpretation. Considering that U changes
while the body temperature becomes lower, it is observed that, when the heat
transfer conditions are unfavorable (i.e. there is a small value of U), the fluid flow
should decrease, this decrease being necessary to avoid the decrease of Te and the
corresponding decreasing of the heat exchanger efficiency. If, during the same
cooling process, the specific heat of the fluid increases, then _mopt needs to decrease
again, to avoid a new reduction of the heat exchange efficiency.

Note that, generally, _mopt is time-dependent. This is because the optimal flow
rate depends indirectly (through U and possibly through cp) on the body temper-
ature T, which depends on time. If U and cp do not depend on temperature, then
_mopt is constant over time. The actual value of _mopt depends in this case on C�,
which in turn depends on the duration tccontact with the body is denoted allocated
to the cooling process.

11.2 Optimal Control of Forced Cool-Down Processes

11.2.1 Introduction

The cooling process optimization is treated in this section by using the optimal
control theory developed by Pontryagin et al. (1962). The optimal control theory
was mainly developed and used in the past for mechanical applications (e.g. for
aircraft and spacecraft operation). It is sometimes used in thermal engineering (see
e.g. Huang and Yeh (2003); Kim et al. (2003) and the excellent review by
Sieniutycz (2002)).

The forced cooling processes was optimized by Badescu (2004a) on the basis of
three dissipation measures, namely the entropy generation and two other measures
associated to the lost available work. Further details are shown in the following.

11.2.2 Forced Cooling Processes with Minimization
of Cooling Fluid Mass

The cooling process is presented in Fig. 11.1. The heat flux transferred by
Newtonian convection from the body to the fluid is denoted Qb!f and the thermal
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energy flux received by the fluid while in contact with the body is denoted Qf ;in!out.
These two fluxes are given by the following simple relationships:

Qb!f ¼ UA T tð Þ � Tf ;out tð Þ
� 	

Qf ;in!out ¼ _mcp Tf ;out tð Þ � T0
� 	 ð11:2:1; 2Þ

No energy loss is considered during the heat transfer process. Then, use of
Eqs. (11.2.1), (11.2.2) and the first law yields

MC
dT
dt

¼ �Qf ;in!out ¼ �Qb!f ¼ �UA TðtÞ � Tf ;outðtÞ
� 	 ð11:2:3Þ

The mass m0!tc of fluid consummated from the reservoir during the cooling
process is given by Eq. (11.1.2):

m0!tc ¼
Ztc
0

_mðtÞdt ð11:2:4Þ

Now, the optimization problem is presented. One looks about that particular time
evolution of the cooling fluid mass flow rate (say _moptðtÞ) which makes m0!tc given
by Eq. (11.2.4) to be a minimum. The constraints Eqs. (11.2.1)–(11.2.3) should
also be taken into account.

A dimensionless formulation is convenient. The dimensionless variables are first
defined:

x � t
tc

zðxÞ � T
T0

yðxÞ � Tf ;out
T0

_lðxÞ � _mcp
UA

ð11:2:5Þ

Also, dimensionless constants are defined:

zinit � Tinit
T0

zfin � Tfin
T0

sc � UAtc
MC

ð11:2:6Þ

The following relationships exist for the independent and dependent dimen-
sionless variables:

0�x� 1 zfin � z� zinit yðxÞ� zðxÞ ð11:2:7Þ

Use of Eqs. (11.2.1)–(11.2.7) allows to write the relationships which give the
time dependence of the dimensionless temperatures z and y

dz
dx

¼ � sc _l
1þ _l

z� 1ð Þ y ¼ zþ _l
1þ _l

ð11:2:8; 9Þ

The ordinary differential Eq. (11.2.8) must be solved by using the following
boundary conditions:
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zðx ¼ 0Þ ¼ zinit zðx ¼ 1Þ ¼ zfin ð11:2:10Þ

The dimensionless objective function l is defined by using Eq. (11.2.4) as
follows:

l � m0!tc cp
MC

¼ sc

Z1
0

_ldx ð11:2:11Þ

The optimization problem consists in the minimization of l given by
Eq. (11.2.11), by taking into account the boundary conditions Eq. (11.2.10) and the
constraint Eq. (11.2.8).

A good introduction to optimal control theory may be found in several books
(see e.g. Boltyanskii (1971)). The theory is applied here with the dimensionless
mass flow rate _l as the control function. Two adjunct functions (say w0ðxÞ and
w1ðxÞ) are used. Equations (11.2.8) and (11.2.11) allow to define the Hamiltonian
H as follows:

H � w0ðsc _lÞþw1 � sc _l
1þ _l

ðz� 1Þ
� �

ð11:2:12Þ

The values of the unknown function zðxÞ at the end-points of the integration
interval (i.e. at x ¼ 0 and x ¼ 1) are known (they are given by Eqs. (11.2.10)).
According to Pontryagin’s theory one can use in this case w0 ¼ �1 (see e.g. Tolle
(1975) and Chap. 5 in this book). The adjunct function w1 obeys the equation
dw1=dx ¼ �@H=dz. Use of Eq. (11.2.11) yields:

dw1

dx
¼ sc _l

1þ _l
w1 ð11:2:13Þ

One eliminates _l between the two ordinary differential Eqs. (11.2.8) and
(11.2.13). Solving the resulting equation yields:

�w1ðz� 1Þ ¼ C0 ¼ ct ð11:2:14Þ

where C0 is an integration constant.
The optimal control function (say loptðxÞ) can be obtained by solving the

equation @H=@ _l ¼ 0. Taking into account Eq. (11.2.11) one finds, after some
algebra:

_lopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�w1ðz� 1Þ

p
� 1 ¼

ffiffiffiffiffi
C0p

� 1 ¼ ct ð11:2:15Þ

Here Eq. (11.2.14) was also used. From Eq. (11.2.15) one learns that the opti-
mum mass flow rate is constant in time. Use of Eq. (11.2.15) allows to solve
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Eq. (11.2.8) for the unknown function zðxÞ. In addition, taking into account the
boundary conditions Eq. (11.2.10), one can obtain the integration constant C0,
which in turn yields the optimum mass flow rate from Eq. (11.2.15). The result is:

_lopt ¼
ln zinit�1

zfin�1

sc � ln zinit�1
zfin�1

ð11:2:16Þ

The optimum time distributions of the dimensionless temperatures are found
from Eqs. (11.2.8) and (11.2.9). They are:

zopt xð Þ ¼ 1þ zinit � 1ð Þ exp � sc _lopt
1þ _lopt

x

 !
yopt xð Þ ¼ zopt xð Þþ _lopt

1þ _lopt

ð11:2:17; 18Þ

The minimum dimensionless cooling fluid mass is easily found from
Eqs. (11.2.11) and (11.2.16):

lmin ¼
sc ln zinit�1

zfin�1

sc � ln zinit�1
zfin�1

ð11:2:19Þ

A few comments follow. The minimum cooling fluid mass given by
Eq. (11.2.19) increases by increasing the cooling time interval sc. However, this
increasing is not linear in sc as one might expect from a cooling process with
constant mass flow rate. The reason is as follows. The cooling fluid mass is, indeed,
linear in the mass flow rate but the last quantity is not linear in sc, as Eq. (11.2.16)
shows. For an infinitely long cooling process the mass flow rate vanishes, but the
cooling fluid mass is still finite:

lim
sc!1

_lopt ¼ 0 lim
sc!1l ¼ ln

zinit � 1
zfin � 1

ð11:2:20; 21Þ

Here Eqs. (11.2.16) and (11.2.19) were used. The result Eq. (11.2.21) was
obtained by Bejan and Schultz (1982) by using a different approach (see Sect. 11.1
in this book).

There is a minimum time interval s0c;min needed by the optimum cooling process.
It is obtained from Eq. (11.2.16)

s0c;min ¼ ln
zinit � 1
zfin � 1

ð11:2:22Þ

One needs sc [ sc;min in order to have a finite, positive, optimum mass flow rate.
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11.2.3 Forced Cooling Processes with Minimization
of Dissipation Measures

11.2.3.1 Dissipation Measures

A wildly used measure of dissipation is entropy generation. The entropy generation
rate associated to the heat flux Qb!f transferred from the cooled body to the cooling
fluid is denoted _Sgen and is given by:

_Sgen ¼ Qb!f
1

Tf ;out
� 1
T

� �
ð11:2:23Þ

The entropy generation Sgen is obtained by integrating Eq. (11.2.23) for the
duration tc of the cooling process:

Sgen ¼
Ztc
0

_Sgendt ð11:2:24Þ

Two additional dissipation measures are considered now. They have in common
the notion of lost (available) work. The analysis is more involved than in case of
entropy generation because at least one additional system (the work reservoir) must
be considered. This increases considerably the number of possible cases and two
classes of cases were described by Badescu (2004b). In the first class (say A), the
meta-system consists of three systems (to be more specific, these systems are: the
cooled body, the cooling fluid and the work reservoir). In the second class (B), an
environment is added to the previous three systems. What of these ways of defining
the lost available work is to be used depends of course on the practical application.
A number of examples were presented by Badescu (2004b) but only two of them
(denoted (a) and (b), respectively) are used in the following. They belong to the
class A above.

(a) One could ask what is the lost work rate (say _WlðaÞ) in case the body looses the
heat flux Qb!f . This implies using a reversible refrigeration engine whose
coefficient of performance is COP ¼ Tf ;out= T � Tf ;out

� �
. Then, usage of

Eq. (11.2.23) yields:

_WlðaÞ ¼ Qb!f =COP ¼ T _Sgen ð11:2:25Þ

(b) One could ask what is the work rate (say _WlðbÞ) to be lost in case of heating the
cooling fluid by a heat flux Qb!f . This implies using a reversible heat pump
whose coefficient of performance is COP ¼ T= T � Tf ;out

� �
. By using

Eq. (11.2.23) one finds:
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_WlðbÞ ¼ Qb!f =COP ¼ Tf ;out _Sgen ð11:2:26Þ

In practice, choosing between cases (a) and case (b) depends on the usage of the
energy stored by the cooling fluid, after the cooling process is completed.
Equations (11.2.25) and (11.2.26) connect the rates of lost available work, _WlðaÞ
and _WlðbÞ, respectively, with the entropy generation rate _Sgen. In both equations the

temperature multiplying _Sgen is generally a time dependent quantity. As a conse-
quence, the minimum of the lost available work does not normally coincide with the
minimum of the entropy generation.

The lost available work for both above cases, WlðaÞ and WlðbÞ, respectively, is
obtained by integrating Eqs. (11.2.25) and (11.2.26) for the whole cooling process:

WlðaÞ ¼
Ztc
0

_WlðaÞdt WlðbÞ ¼
Ztc
0

_WlðbÞdt ð11:2:27; 28Þ

Note that the absolute value of the lost available work is considered here.
Appropriate dimensionless quantities for the dissipation measure rates

_Sgen ; _WlðaÞ and _WlðbÞ, and for the time integrated quantities Sgen ;WlðaÞ and WlðbÞ are
defined in Table 11.1, by using the notation Eqs. (11.2.5) and (11.2.6).

11.2.3.2 Minimization of Dissipation Measures

Three different objective functions are considered. They are the dimensionless
dissipation measures eSgen ; eWlðaÞ and eWlðbÞ defined in Table 11.1b. Details of the

Table 11.1 Dimensionless dissipation measure rates and dissipation measures

a. Dimensionless dissipation measure rate Equations used

1 e_Sgen � _Sgen
UA ¼ _l2ðz�1Þ2

z 1þ _lð Þ zþ _lð Þ
(11.2.1,2), (11.2.23)

2 f_WlðaÞ �
_WlðaÞ
UAT0

¼ _l2ðz�1Þ2
ð1þ _lÞðzþ _lÞ

(11.2.1,2), (11.2.23), (11.2.25)

3 f_WlðbÞ �
_WlðbÞ
UAT0

¼ _l2ðz�1Þ2
ð1þ _lÞz2

(11.2.1,2), (11.2.23), (11.2.26)

b. Dimensionless dissipation measure Equations used

1 eSgen � Sgen
MC ¼ sc

R1
0

_l2ðz�1Þ2
zð1þ _lÞðzþ _lÞdx

(11.2.1,2), (11.2.23), (11.2.24)

2 eWlðaÞ � WlðaÞ
MCT0

¼ sc
R1
0

_l2ðz�1Þ2
1þ _lð Þ zþ _lð Þ dx

(11.2.1,2), (11.2.23), (11.2.27)

3 eWlðbÞ � WlðbÞ
MCT0

¼ sc
R1
0

_l2 z�1ð Þ2
1þ _lð Þz2 dx

(11.2.1,2), (11.2.23), (11.2.28)

Notations Eqs. (11.2.5)–(11.2.6) were used
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optimization procedure are given for the only case which allows analytical
solutions.

The optimization problem consists in the minimization of the objective functioneWlðbÞ given by Eq. Table 11.1b3, taking into account the constraint Eq. (11.2.8)
and the boundary conditions Eqs. (11.2.10). The dimensionless mass flow rate _l is
the control function while w0ðxÞ and w1ðxÞ are the adjoint functions. The
Hamiltonian H is defined as follows:

H � w0
sc _l2ðz� 1Þ2
ð1þ _lÞ2z

" #
þw1 � sc _l

1þ _l
ðz� 1Þ

� �
ð11:2:29Þ

One can choose w0 ¼ �1 and the adjunct function w1 obeys the equation
dw1=dx ¼ �@H=dz i.e.:

dw1

dx
¼ � sc

4
w2
1 ð11:2:30Þ

Usage of Eqs. (11.2.8) and (11.2.30) yields:

w1 ¼ � C00ffiffi
z

p ð11:2:31Þ

where C00 [ 0 is an integration constant. The optimal control function loptðxÞ is
obtained by solving the equation @H=@ _l ¼ 0. Taking into account Eq. (11.2.29),
one finds after some algebra:

_lopt ¼ � w1z
2ðz� 1Þþw1z

¼ C00 ffiffi
z

p
2ðz� 1Þ � C00 ffiffizp ð11:2:32Þ

Here Eq. (11.2.31) was also used. The differential Eq. (11.2.8) is solved by
using Eq. (11.2.32) and the boundary conditions (11.2.10). One finds:

z xð Þ ¼ ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

p� �
x

� 	2
C00 ¼

4
ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

p� �
sc

ð11:2:33; 34Þ

The dependence of the optimum dimensionless mass flow rate _lopt and adjoint
function w1 on the dimensionless time x can be easily found from Eqs. (11.2.31)–
(11.2.34) and is not given explicitly here. However, _lopt must be a positive finite
quantity. Consequently, from Eqs. (11.2.32) and (11.2.34) one finds after some
algebra the minimum duration s00c:min of the optimized cooling process:
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s00c:min ¼
2

ffiffiffiffiffiffiffi
zinit

p � ffiffiffiffiffiffi
zfin

p� �
zfin � 1

ð11:2:35Þ

Here it was also taken into account that the minimum value allowed for zðxÞ is
zfin. Figure 11.2 shows the ratio s00c;min=s

0
c;min. Generally, the minimum duration for

the cooling process with minimum lost available work considerably exceeds the
minimum duration for the cooling processes with minimum mass of cooling fluid.
However, for low values of the ratio zinit=zfin and high values of zfin the reverse is
true.

The difference between the two optimal control strategies (i.e. minimum cooling
fluid mass and minimum lost available work), from the point of view of the time
variation of the dissipation rates, is obvious (Fig. 11.3.). Both the entropy gener-
ation rate and the lost available work rate decrease in time in case of the mini-
mization of cooling fluid mass. The strategy of minimizing the lost available work
implies a slightly time-increasing entropy generation rate and an almost constant
lost work rate.

The minimum dimensionless lost available work eWlðbÞ is obtained by using Eqs.
Table 11.1b3 and Eqs. (11.2.32)–(11.2.34). After integration one finds the simple
relationship:

eWlðbÞ;min ¼ 4
sc

ð11:2:36Þ

Note that eWlðbÞ;min does not depend on zinit or zfin, but the minimum mass of
cooling fluid Eq. (11.2.19) does. Also, in the limit of an infinitely long cooling

Fig. 11.2 The ratio
s00c;min=s

0
c;min between the

minimum duration of a
cooling process minimizing
the dimensionless lost
available work eWlðbÞ and the
minimum duration of a
cooling process minimizing
the dimensionless cooling
fluid mass l, respectively. See
Eqs. (11.2.22) and (11.2.35)
for definitions
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process (i.e. sc ! 1), eWlðbÞ;min given by Eq. (11.2.36) vanishes, in agreement with
well-known results of classical thermodynamics.

The above optimization procedure can be repeated in case of the other dissi-
pation measures, namely eSgen and eWlðaÞ (see Eqs. Table 11.1b1 and Table 11.1b2).
These two cases do no allow analytical solutions.

Table 11.2 summarizes the equations involved. These equations should be
solved numerically, together with Eq. (11.2.8) and the boundary conditions for
z (i.e. Eq. (11.2.10)). Note that no boundary condition is known for the adjoint
function w1. This is a rather common situation when optimal control problems are

solved. The following procedure was adopted. A trial value (say w
_

1;init) for the
boundary value w1ðx ¼ 0Þ is chosen. For that trial boundary value, Eq. (11.2.8)
and the appropriate equation in Table 11.2 for the time variation of w1 are solved
numerically, starting from x ¼ 0, where the boundary value for z is known (i.e.
z ¼ zinit). The result obtained for z at x ¼ 1 (say z_fin) is compared with the expected
boundary value zfin of Eq. (11.2.10) and the following quantity is computed:

Fig. 11.3 Dependence of the
dimensionless entropy

generation rate e_Sgen
(Eq. Table 11.1a1) and
dimensionless lost

available work f_WlðbÞ
(Eq. Table 11.1a3) on the
dimensionless time x for two
optimal control strategies (i.e.
minimization of cooling fluid
mass and minimization of lost
available work WlðbÞ,
respectively). The following
values were used:
zinit ¼ 3; zfin ¼ 1:2; sc ¼ 10

Table 11.2 Minimization of two dissipation measures

a. Minimization of dimensionless entropy generation eSgen (see Eq. Table 11.1b1)

1 dw1
dx ¼ � sc _l

1þ _l
_l z _lþ _lþ 2zð Þ z�1ð Þ

zþ _lð Þ2z2 þw1

h i
2

_lopt ¼ �z R�1ð Þþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R Rþ z�1ð Þ

p
R zþ 1ð Þ�1 with R � � z�1

zw1

b. Minimization of dimensionless lost available work eWlðaÞ(see Eq. Table 11.1b2)

1 dw1
dx ¼ � sc _l

1þ _l
_l zþ 2 _lþ 1ð Þ z�1ð Þ

zþ _lð Þ2 þw1

h i
2

_lopt ¼ �z R0�1ð Þþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 R0 þ z�1ð Þ

p
R0 zþ 1ð Þ�1 with R0 � � z�1

w1

Equations to be solved together with Eq. (11.2.8)

11.2 Optimal Control of Forced Cool-Down Processes 243



F w
_

init

� �
� zfin � z_fin

� �2
ð11:2:37Þ

F w
_

1;init

� �
vanishes for the right choice of w

_

1;init. In case of a significantly large

value of F w
_

1;init

� �
, another value of w

_

1;init is chosen and the procedure is repeated.

In practice, F w
_

1;init

� �
was minimized by using the routine FMIN from Kahaner

et al. (1989). Once the appropriate value of w
_

1;init is determined, Eqs. (11.2.8) and
the appropriate differential equation in Table 11.2 are solved for the optimal paths
of z and w1.

Figure 11.4 shows the time dependence of the dimensionless temperature z for
the four optimal control strategies envisaged in this section. The associated optimal
cooling fluid mass flow rates _lopt are presented in Fig. 11.5. The minimum cooling
fluid mass strategy and the minimum entropy generation strategy show a rather
non-linear time dependence of z. Interestingly, the associated optimum mass flow
rate is constant in time for the first strategy and nearly constant for the second
strategy. In the latter case a minimum value of _lopt is however obvious. The two
strategies of lost available work minimization imply a slightly nonlinear or even a
linear time dependence of z (Fig. 11.4). This is a consequence of the rather strong
non-linear increase in the optimum mass flow rate at the end of the cooling process
(Fig. 11.5).

Fig. 11.4 Dependence of dimensionless temperature z on dimensionless time x in case of four
optimal control strategies (1) minimum dimensionless cooling fluid mass l (objective function
defined in Eq. (11.2.11)); (2) minimum dimensionless entropy generation eSgen (objective function
defined in Eq. Table 11.1b1); (3) minimum dimensionless lost available work eWlðaÞ (objective

function defined in Eq. Table 11.1b2); (4) minimum dimensionless lost available work eWlðbÞ
(objective function defined in Eq. Table 11.1b3). The following values were used:
zinit ¼ 3; zfin ¼ 1:2; sc ¼ 10
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11.3 Conclusion

The main conclusions of this section are as follows. The minimum cooling fluid
mass is obtained for a constant mass flow rate. The consummated fluid mass
increases by increasing the cooling process duration tc. This increasing is not linear
in tc, as one might expect from a cooling process with constant mass flow rate. For
an infinitely long cooling process the mass flow rate vanishes but the cooling fluid
mass is still finite.

There is a minimum time interval needed by the optimum cooling process. It
depends on the objective function. The minimum duration for the cooling process
with minimum lost available work normally exceeds the minimum duration for the
cooling processes with minimum mass of cooling fluid, as one might expect.
However, the reverse is true for some particular cases.

The minimum lost available work eWlðbÞ;min (see Eq. (11.2.36)) does not depend
on the initial and final temperatures of the cooled body but just on the duration of
the cooling process.
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Chapter 12
Optimization of Thermal Insulation
of Seasonal Water Storage Tanks

Many solar energy conversion systems incorporate thermal energy accumulators,
usually designed to store energy for a short period of one to three days. Still, at
large geographical latitudes, the seasonal accumulation of solar thermal energy (i.e.
the storage in summer for consumption during winter) shows great advantages.
Such seasonal storage systems are characterized mainly by the solar collector type,
its surface orientation and its efficiency, the heating requirements of the user, the
storage capacity, the soil properties and the thermal insulation of the storage tank.
The optimization of the entire system depends clearly on the location of the system.

However, the geographical features have less importance when considering the
optimization of the thermal insulation distribution. To get an idea of the importance
of the thermal insulation and waterproofing inside the system, it can be said that
they accounted for about a quarter of the total cost of a thermal storage tank of
0.9 million liters built in the ground to serve a building with 30 apartments. This
ratio is slightly higher in the case of smaller tanks, and vice versa, because of the
relationship between the capacity of the tank and heat loss. This chapter provides
general ideas about the optimization of thermal insulation distribution (Williams
et al. 1980).

12.1 Optimization of the Distribution of Thermal
Insulation

Figure 12.1 shows the geometry of a cross section through the thermal field
distribution in a storage tank. The steady-state heat transfer by conduction is done
from the inside of the tank to the air (at soil surface), to the water table (vertical
downward) and to a hypothetical vertical isothermal situated in a position where
more than 90% of the heat flux is dissipated horizontally (the flux lines become
almost horizontal in this case). The soil surrounding the tank is considered
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homogeneous and isotropic. The latent heat of melting of the soil water (in freezing
conditions) and the latent heat of vaporization at soil surface (in periods of drought)
are factors with a certain influence, but they are not taken into account here.

Several simplifying assumptions follow. The heat transfer coefficient at soil
surface and the air temperature are constant. The walls of the tank have thermal
properties similar with the soil; therefore they are included in the space field that
designates the soil. The liquid in the tank is well mixed.

The temperatures of soil, tank walls and water may be determined by numerical
methods, by dividing the thermal field into smaller regions and solving the finite
difference equations attached to the grid.

The thermal resistance of a surface area element dAi on the surface of the tank
can be considered as the sum of the thermal insulation resistance, RVi and that of
the soil, RSi, on the direction of the heat flux from the tank to the environment (of
temperature Tlim it). These terms can be decomposed into products of unit thermal
resistances (of the thermal insulation and the soil, RI and RS0, respectively) and
their actual thicknesses (ti and tsi, respectively). The total thermal resistance of the
surface area element dAi (which can be seen as a tank node i) is given by:

RTi ¼ RVi þRSi ¼ RI � tið Þþ RS0 � tsið Þ ð12:1:1Þ

The heat flow passing through the surface area dAi is:

dQi ¼ DTidAi

RVi þRSi
ð12:1:2Þ

Typical heat flux lines are shown in Fig. 12.1.
The objective is to minimize the heat loss from the tank (through an optimized

sizing of thermal insulation thickness), for a given cost of the tank. This is actually a
problem of constrained optimization, which is solved by using the method of
Lagrange multipliers. One denotes by k such a multiplier. The necessary minimum

Fig. 12.1 The geometry of
the storage tank
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condition is obtained as usual by canceling the first derivative of the Lagrangian
L ¼ �QT þ kCT . Here QT and CT represent the total heat flux and the total cost,
respectively. The first of them is affected by the minus sign because it corresponds
to the heat lost from the tank (which, according to the convention adopted here, is
negative). In this way, both terms of the Lagrangian are positive. Note that the
steady-state regime is studied here. The Lagrangian differentiation is made in
respect to spatial quantities (i.e. the thermal insulation thickness, in different zones
of the tank: the vertical wall, the base cover and the top cover, respectively). The
necessary condition for the existence of the minimum is:

rL ¼ �rQT þ krCT ¼ 0 ð12:1:3Þ

where r is the gradient vector, given by

r ¼ @

@tw
iw þ @

@tf
if þ @

@tt
it ð12:1:3iÞ

Here t and i are the thickness of the insulation layer and the unit vector of a
direction, respectively, and w; f ; t are indicators denoting the wall (vertical), the
base cover and the top cover, respectively. Similarly, the total heat flux lost and the
total cost of the thermal insulation can be decomposed into three components, as
follows:

QT ¼ Qw þQf þQt CT ¼ Cw þCf þCt ð12:1:3ii; 3iiiÞ

Note that the cost of the thermal insulation of the lower cover (or top cover) is
not dependent on the thickness of the thermal insulation of the tank wall. Thus

@Cf

@tw
¼ @Ct

@tw
¼ 0 ð12:1:3ivÞ

Similar relationships are valid for other “cross” derivatives, i.e.
@Ci=@tj ¼ 0 i; j ¼ f ;w; t; i 6¼ jð Þ. Finally, the gradients of the total cost and total
heat flux are given by, respectively:

rCT ¼ @Cw

@tw
iw þ @Cf

@tf
if þ @Ct

@tt
it rQT ¼ @Qw

@tw
iw þ @Qf

@tf
if þ @Qt

@tt
it ð12:1:4Þ

Substituting Eq. (12.1.4) in Eq. (12.1.3) one finds:

rQT � krCT ¼ dQw

dtw
� k

dCw

dtw

� �
iw þ dQf

dtf
� k

dCf

dtf

� �
if

þ dQt

dtt
� k

dCt

dtt

� �
it ¼ 0 ð12:1:5Þ
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Since the unit vectors ik k ¼ w; f ; tð Þ are independent, it follows that the can-
cellation of Eq. (12.1.5) asks for canceling each of the three brackets. Of the three
equations obtained, it follows, after dividing by dtk k ¼ w; f ; tð Þ:

dQw

dCw
¼ dQf

dCf
¼ dQt

dCt
¼ k ð12:1:6Þ

This relationship means that, in fact, the marginal cost per unit of energy lost
must be the same in any point of the tank, for a total minimum heat loss and a given
total investment in thermal insulation.

Assume that the cost of insulation is a linear function of thickness:

dCw ¼ vwtwdA dCf ¼ vf tf dA dCt ¼ vtttdA ð12:1:6iÞ

where vk k ¼ w; f ; tð Þ is the unit cost, corresponding to the three types of thermal
insulation. Therefore, using Eqs. (12.1.2) and (12.1.6i), it follows:

dQw

dCw
¼ �RIw � DT

vw
� RIw � tw þRSwð Þ2

dQf

dCf
¼ �RIf � DTvf

� RIf � tf þRSf
� �2

dQt

dCt
¼ �RIt � DTvt

� RIt � ttð Þ2

ð12:1:6ii; 6iii; 6ivÞ

Note that the component due to the soil is not included in Eq. (12.1.6iv), cor-
responding to the top cover of the tank (which is in contact with the atmosphere).
From Eqs. (12.1.6) and (12.1.6ii; 12.1.6iii; 12.1.6iv), it is obtained:

RIw
vw

� RIw � tw þRSwð Þ2¼ RIf
vf

� RIf � tf þRSf
� �2¼ RIt

vt
� RIt � ttð Þ2 ð12:1:7Þ

The following definitions are used:

w � RIw � tw þRSw U � RIf � tf þRSf C � RIt � tt ð12:1:7iÞ

Using Eqs. (12.1.7) and (12.1.7i), it follows that, to minimize the cost of the
thermal insulation under the concomitant constraint of the total cost, the following
relationships between the thermal insulation characteristics in different areas of the
tank should be fulfilled:

w ¼ vf �
RIw
vw

� RIf
� �1

2

U ¼ vt � RItð Þ12C ð12:1:8Þ
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If the thermal insulation properties and the cost are the same for all surfaces of
the tank, it follows that vw ¼ vf ¼ vt and RIw ¼ RIf ¼ RIt. Using Eq. (12.1.8) one
can see that w ¼ U ¼ C. In this case, to obtain an optimal distribution of the
thermal insulation, the total thermal resistance must be the same for all surfaces.
w;U and C define the optimal spatial distribution of thermal insulation, not the
optimal amount of insulation, as long as the total cost of the thermal insulation, CT ,
is not yet specified. An optimal total cost can be determined by taking into con-
sideration the storage system and the other components of the solar energy con-
version system. Equation (12.1.6) points to the existence of a constant k that
depends on the total amount of insulation. Therefore, k is a function of the total
volume of the thermal insulation VI or, what is equivalent, a function of CT . This
issue is addressed in the next Sect. 12.2.

The optimum distribution of the thermal insulation was studied by Williams et al.
(1980) for different geometries of the storage system. Here some results are pre-
sented by using dimensionless parameters. Dimensionless “lengths” are defined by
using the vertical size of the storage tank, D, as a reference. A useful parameter is the
quantity SINKV, which is the ratio between the depth of the groundwater and D.

Figure 12.2 shows the optimal distribution of the thermal insulation, when the
insulation has uniform physical, thermal and cost properties over the entire surface
of the tank. The distribution was determined for several values of the ratio R=D
(where R is the radius of the tank, assumed cylindrical). Figure 12.2 corresponds to
the ratio R=D ¼ 1. The left end of Fig. 12.2 refers to the upper end of the wall. For
the three values of the parameter SINKV considered in the figure, the parameter
denoted TI, which represents the sum of the equivalent dimensionless thicknesses,
of soil and thermal insulation, is 0.05.

As expected, the maximum thickness of the thermal insulation corresponds to
the upper extremity of the cylindrical wall. A relative thickening is necessary in the
lower part of the wall. With increasing the parameter SINKV, the weighting of the
thermal insulation attributed to soil increases. This is obvious especially at
the extremities of the tank. Further calculations show that for higher values of the

Fig. 12.2 Optimum
distribution of thermal
insulation along the wall
length and the inferior cover
of the tank (R/D = 1)
(adapted from Williams et al.
1980)
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ratio R=D (corresponding to storage tanks of disk shape) the bending degree of the
thermal insulation distribution reduces.

A performance indicator specific to the thermal energy storage tanks buried in
the ground is the effective thermal resistance, ETR. For a given value DT of the
difference between the temperature of the stored liquid (which is usually water) and
ambient air temperature, by increasing the parameter ETR, one obtains a decrease of
the tank heat loss. The effect of the insulation distribution on the effective thermal
resistance ETR has been studied for several storage systems having the same total
volume of thermal insulation (this corresponds to equal investment in insulation).
The case of the optimal distribution was compared with the usual case, of a uniform
distribution of thermal insulation (Williams et al. 1980).

The corresponding increase of the storage system performance is shown in
Fig. 12.3 for different values of the parameter SINKV. This clearly shows that the
effect of optimizing the distribution of thermal insulation is negligible for large
values of the parameter TI, when the weighting of the thermal insulation inside the
value of the parameter TI is dominating the weighting of the soil. The variation of
ETR is defined as follows:

%DETR ¼ 100 � ðETRdistr � ETRunif Þ
ETRdistr

ð12:1:8iÞ

where the subscripts ‘distr’ and ‘unif’ correspond to the optimal distribution and
uniform distribution, respectively.

At low values of the parameter TI, when the thermal resistance of the insulation
in certain points is approximately equal to the thermal resistance of the soil, the
effect is much stronger. For R=D ¼ 1 and a given value TI, the variation of the
indicator ETR reaches its greatest value when SINKV = 2.0. In this case, corre-
sponding to a relatively large depth of the groundwater, the thermal insulation
required for the inferior cover is low compared with other areas of the tank.
However, when the groundwater is at a smaller depth, the thickness of thermal
insulation of the inferior cover must grow. The variation of ETR is greater for

Fig. 12.3 Storage system
performance as a function of
the parameters TI and SINKV
(adapted from Williams et al.
1980)
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SINKV ¼ 1:2 than for SINK ¼ 1:5 at small thicknesses of thermal insulation, as
part of the insulation at the mid tank wall is transferred to the inferior cover.

If the seasonal variations of the soil thermal conductivity are included in the
analysis of the heat transfer, it is possible that the uneven distribution of the
insulation does not allow to obtain an increase in storage system performance. For
example, during Spring the soil around the tank can be soaked in cold water. This
can lead to a rapid cooling of the tank, especially if the thickness of the thermal
insulation in the middle of the tank wall is smaller, as suggested by Fig. 12.2. In
practice this effect can be minimized if additional measures are taken. Thus, placing
a waterproof plastic sheet around the tank can protect it against the associated
cooling effect during the Spring and Autumn rains.

The effective thermal resistance ETR corresponding to a tank with uniformly
distributed thermal insulation does not increase linearly with the values of TI, at
least for smaller thicknesses of insulation (Fig. 12.4).

In general, reductions in annual losses of a heat storage tank, obtained by
optimizing the distribution of the thermal insulation, seem to be 2–5%. Other
geometries than those analyzed here, where a cylindrical tank was considered, will
probably lead to results of the same order of magnitude. Although these perfor-
mance improvements are not spectacular, they should be taken into consideration
during the design, especially for large systems.

12.2 Optimization of the Total Volume of Thermal
Insulation

A unique determination of the optimal total volume of thermal insulation of a
storage system can be performed only when the components of this system are
known in detail. Here it is assumed that the system is composed of three elements,
which can be used as primary variables: the area of the solar energy collectors Ac,
the volume of the storage tank Vs, and the volume of the thermal insulation, VI.

Fig. 12.4 Comparison
between the values of the
indicator ETR corresponding
to an optimal and a uniform
distribution thermal
insulation, respectively
(adapted from Williams et al.
1980). The subscripts ‘distr’
and ‘unif’ correspond to the
optimal distribution and
uniform distribution,
respectively
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Then, there is an infinite set of possible values, both for the cost and the perfor-
mance of the system, corresponding to specified values of the fluid temperature in
the storage tank and various possible values of the surface collection area, thermal
insulation thickness and volume of the storage tank. An example of a diagram that
captures a part of this set of values (for a given total volume of thermal insulation)
is shown in Fig. 12.5.

The optimal configuration of the system can be determined in a manner similar
to that previously used to determine the optimum distribution of the thermal
insulation. Again, the method of Lagrange multipliers is used, applied to the new
Lagrangian L ¼ �PT þ lCT (l is a multiplier):

DPT � lrCT ¼ 0 ð12:2:1Þ

where the objective function (to be extremized), PT ¼ PA þPS þPIð Þ, is the heat
supplied (or saved) by each of the subsystems, assumed as being independent, and
the restriction (or the constraint function), CT ¼ CA þCS þCIð Þ, is the total system
cost. Here A, S and I designate the solar energy surface collection area, the storage
tank volume and the total volume of thermal insulation, respectively.

The unit vectors iA; iS and iI are introduced and the gradient of the total cost is
obtained:

rCT ¼ dCA

dA
iA þ dCS

dS
iS þ dCI

dI
iI ð12:2:2Þ

where, similarly as in Sect. 12.1, the “cross” derivatives are canceled, due to the
assumed independence of the three subsystems: @Cj=@k ¼ 0 j; k ¼ A; S; I; j 6¼ kð Þ.
Similarly:

rPT ¼ @

@A
iA

�
þ @

@S
iS þ @

@I
iI

�
� PA þPS þPIgf ð12:2:3Þ

Fig. 12.5 The performance
of a storage system for a
given total volume of thermal
insulation (adapted from
Williams et al. 1980)
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Note that here the “cross” derivatives @Pj=@k j; k ¼ A; S; I; j 6¼ kð Þ do not cancel
in general, due to mutual influences of heat fluxes corresponding to the three
subsystems. Substituting Eqs. (12.2.2) and (12.2.3) in Eq. (12.2.1) one finds, after
using the procedure previously presented, based on the independence of the three
unit vectors [see the discussion before Eq. (12.1.6)]:

l ¼ dA
dCA

� @PT

@A
¼ dS

dCS
� @PT

@S
¼ dI

dCI
� @PT

@I
ð12:2:4Þ

This equation defines the optimal configuration of the entire system of solar
energy collection and conversion. Its practical usage requires knowledge of the
value of l. This situation is similar to the previous one, in which the knowledge of
the constant k was necessary for determining the values of w;U and C. Clearly, the
two parameters are interdependent, i.e. k ¼ kðlÞ. The general constraint imposed to
the system is represented by the energy cost, l, starting from which the system can
be optimized, under the assumption that both the cost function and the performance
criteria are given. Knowledge of l allows the determination of the parameter k, by
using Eq. (12.2.4), which constitutes the constraint attached to the optimal distri-
bution of the thermal insulation.

Reference

Williams, G.T., Attwater, R.C., Hooper, F.C.: A design method to determine the optimal
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475 (1980)
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Chapter 13
Optimization of Pin Fin Profiles

Pin fins are devices used to enhance the heat transfer. In aerospace, air conditioning
and refrigeration applications, pin fins have usually lower temperature than the
ambient and they are employed for cooling the surrounding air (Kundu and Lee
2012a). Pin fins arrays are used for cooling of electronic components (Shuja 2002)
and to intensify the heat transfer between gas turbine blades and the coolant
(Lawson et al. 2011).

Most of the theoretical methods used for pin optimization involve differential
calculus (Natarajan and Shenoy 1990). Conduction heat transfer equations are taken
into consideration. Mass transfer equations are considered in some cases related to
air cooling fins (Natarajan and Shenoy 1990; Kundu and Lee 2012a). Variational
calculus is used by many researchers (Natarajan and Shenoy 1990); Kundu and Lee
2012b, 2013). In recent years genetic algorithms have been used to determine the
optimum fin profile (Rong-Hua 1997; Azarkish et al. 2010; Hajabdollahi et al.
2012). Differential transformation methods have been used for longitudinal fins by
Kundu and Lee (2012c) and Totabi et al. (2013). Homotopy analysis and inverse
solution methods have been used by Panda et al. (2014) for rectangular wet fins.

Different objective functions have been considered for straight fins and pin fins
optimization. They include the minimum amount of material (Tiris et al. 1995;
Hollands and Stedman 1992), the minimum cost per unit useful heat or the mini-
mum material cost per unit fin length (Kovarik 1975), the exergy minimization
(Nwosu 2010) and the exergoeconomic cost minimization (Shuja 2002).

Different simplifying hypotheses have been adopted in pin fin optimization
works. They include the one-dimensional approximation, the Schmidt criterion
(Schmidt 1926), the “length-of-arc assumption” (Natarajan and Shenoy 1990),
usage of constant properties (including the constant heat transfer coefficient) along
the pin length (Sonn and Bar-Cohen 1981), and the assumption of zero heat flux at
pin tip (Natarajan and Shenoy 1990). Taking into account the large number of
possible combinations among these simplifying assumptions and the large number
of objective functions and constraints, it is obvious that the number of optimum
design solutions reported in literature is large. In some particular cases they seem to
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contradict each other. For instance, the classical, optimum parabolic pin profile is
found by using the Schmidt’s criterion and the “length-of-arc assumption” (Schmidt
1926). However, when the “length-of-arc assumption” is relaxed, the optimum
profile is a circular arc (Hanin 2008). Careful examination of the basic assumptions
should be made before results are interpreted.

This chapter shows how optimal control methods can be used for the opti-
mization of pin fin profiles (Badescu 2015).

13.1 Optimal Control Methods

This section presents the optimal control procedures used by Badescu (2015) for the
optimization of pin fin shape.

The fin diameter has been used as a control in previous optimal control
approaches (see e.g. Natarajan and Shenoy 1990). This does not allow including the
arc length in calculation since it involves the space derivative of the control, a case
not covered by standard optimal control theory. Here the pin fin profile slope is
used as a control. This allows including the pin diameter (or other cross section
characteristic length) among the state variables. Two objective functions are con-
sidered, i.e. the maximum heat flux transferred and the minimum material volume,
respectively. Details about the assumptions adopted here are given in Sect. 13.1.1.

Optimal control techniques have been used since the early work of Maday
(1974). Most of these techniques are indirect methods based on Pontryagin
Maximum Principle (see e.g. Razelos and Imre 1983; Natarajan and Shenoy 1990),
which have the advantage of the elegant theoretical formulation (see (Pontryagin
et al. 1962) and Chap. 5 of this book). The main difficulties arise in case of
problems with many constraints, where switching between singular arcs is neces-
sary. Direct methods based on non-linear programming are used here, which makes
easier solving constrained optimization problems.

Usual constraints considered in previous studies refer to fin length and fin volume
(Natarajan and Shenoy 1990). These constraints are used here, too. In addition,
technological constraints are taken into account, including design as well as oper-
ational constraints, such as specified maximum shape slopes, heat fluxes and tem-
peratures. They are rather easily implemented within direct optimal control methods.

13.1.1 Methodology

13.1.1.1 Geometry

Longitudinal fins of trapezoidal, rectangular, triangular, concave parabolic and
exponential geometric profiles have been studied (Kundu and Lee 2012c; Torabi
et al. 2013). Pin fins of trapezoidal profile are mostly used in industrial applications
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(Das and Razelos 1997). A general case of circularly symmetric pin fin is con-
sidered here (Fig. 13.1). A cross section through the pin basis (z = 0) and at
arbitrary coordinate z is delimitated by contour curves C and C′, respectively. Thus,
the pin basis is fixed, as assumed by Hanin and Campo (2003).

The curve C′ is described by (see Fig. 13.2):

x0ðzÞ ¼ uðz; tÞ
y0ðzÞ ¼ wðz; tÞ ð13:1:1a; bÞ

where u and w are functions of coordinate z and parameter t. The transverse surface
area delimitated by the curve C′ is denoted AðzÞ while the perimeter of that curve is
denoted PðzÞ. The area AðzÞ is given by Piskunov (1969, p. 444):

AðzÞ ¼
Z2p

0

wðz; tÞutðz; tÞdt ð13:1:2Þ

where the subscript denotes derivative in respect with parameter t. The perimeter
PðzÞ is given by Piskunov (1969, p. 451):

PðzÞ ¼
Z2p

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02
t ðz; tÞþw2

t ðz; tÞ
q

dt ð13:1:3Þ

The functions u and w in Eq. (13.1.1a, b) are contractions of the form:

Fig. 13.1 Geometry of the
pin fin

Fig. 13.2 Cross section at
level z through the pin fin of
Fig. 13.1
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uðz; tÞ ¼ uðzÞUðtÞ
wðz; tÞ ¼ vðzÞWðtÞ ð13:1:4a; bÞ

where 0\u� 1, 0\v� 1 while U and W are parametric functions.
Equation (13.1.4a, b) preserve the contour shapes for all values of z and this agrees
with usual technology constraints. A particular case often encountered in practice
is:

vðzÞ ¼ kuðzÞ ð13:1:5Þ

where k is a real number. Examples are presented for a particular contour, i.e. the
ellipse. Then, the parametric functions U and W in Eq. (13.1.4a, b) are given by
Piskunov (1969, p. 452):

UðtÞ ¼ a cost

WðtÞ ¼ b sint
ð13:1:6a; bÞ

where a and b are the ellipse semi-axes lengths.

13.1.1.2 Heat Transfer Model

Several usual hypotheses are adopted. The pin fin material is homogeneous and
isotropic. The one-dimensional approximation is adopted. It implies small values of
the transverse Biot number (Natarajan and Shenoy 1990; Rong-Hua 1996). Some
studies assume the fin length is a constraint factor (see Georgiou 1998). In other
cases, the fin length is free to vary (Natarajan and Shenoy 1990; Kundu and Lee
2013). Here, the fin length is specified. The pin fin of length L consists of homo-
geneous material thin enough to allow the hypothesis that its temperature T does not
depend (significantly) on x and y but only on z. In real situations pin fins do not
have zero tip surface area (Das and Razelos 1997). However, most studies do not
include a convective boundary condition at pin fin tip (Rong-Hua 1996) or assume
that the heat transferred through the tip of the fin is negligible compared to the heat
flux leaving the fin through the lateral surface (see(Natarajan and Shenoy 1990) and
this is the hypothesis adopted here.

The pin is surrounded by a fluid at constant and uniform temperature T1. The
pin temperature at the basis is Tðz ¼ 0Þ ¼ T0ð[ T1Þ. Thus, conduction heat
transfer takes place inside the pin in the direction of increasing z. Convection heat
transfer occurs from pin surface towards the fluid. Several authors included radi-
ation transfer in their pin finned surface or longitudinal fin optimization (Sertkaya
et al. 2011; Torabi et al. 2013). Heat dissipation by radiation is neglected here. Heat
conduction along the pin and heat convection from the pin to the fluid are
steady-state. The convection heat transfer coefficient is denoted h.
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Many authors considered constant h values (Sonn and Bar-Cohen 1981;
Georgiou 1998; Hanin 2008). Some authors stated that the convective heat transfer
coefficient is dependent on cylindrical fin diameter, D, and reformulated the above
problem by using empirical correlations found in the archival literature (Kobus and
Cavanaugh 2006). There are few papers dealing with the dependence of the con-
vection heat transfer coefficient on the shape of the body. Experimental criterial
relationships have been proposed for horizontal or vertical cylinders of different
diameters, but for each cylinder the diameter being constant along its length (see,
e.g. Yovanovich (1987) and references therein). All these relationships involve
isothermal bodies and they are of reduced help for the case treated here. Thus,
values for h(D) are indeed obtained, but they refer to the average value of h over the
cylinder length (Natarajan and Shenoy 1990). Consequently, Li (1983) refers to a
fin with optimal constant cross-sectional area (Kobus and Cavanaugh 2006). The
material utilization improvement using the averaged value of h was found between
4 and 13.4%, depending upon the Reynolds number domain (Kobus and
Cavanaugh 2006). Some researchers assume values of h changing along fin length,
for pins with shapes other than cylinders (Razelos and Imre 1983; Li 1983). Using
the existing criterial relationships h(D) for pins with variable thickness along the pin
length is not appropriate. Since general experimental criterial relationships for
shapes other than cylinders are not available, constant values are considered here
for the average heat transfer coefficient h along the pin length.

The steady-state energy balance for a slide of thickness dz around the cross
section at coordinate z gives:

d
dz

kAðzÞ dT
dz

� �
� hPðzÞ T � T1ð Þ ¼ 0 ð13:1:7Þ

where k is the constant thermal conductivity of pin material. The first term in the
l.h.s. member of Eq. (13.1.7) describes the heat conduction within the pin while the
second term describes the convection heat transfer from the pin towards the fluid.

The heat flux transferred from the pin towards the fluid is given by an integral
over the pin surface. Since the lateral surface of a slide of thickness Dz is well
approximated by PðzÞdz, then the heat flux Q is given by:

Q ¼
ZL

0

hPðzÞ T � T1ð Þdz ð13:1:8Þ

Since no heat source exists inside the pine, the heat flux Q equals the heat flux
Q0 transferred by conduction through pin basis:

Q0 ¼ �kAðz ¼ 0ÞdT
dz

����
z¼0

ð¼ QÞ ð13:1:9Þ
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13.1.1.3 Optimal Control Problem

Two objective functions are considered. The optimization of pin fin shape for heat
flux maximization is the first example. Its solution is shortly described in
Appendix 13.A.

The cost of the material is proportional with the material volume. Thus, the
second example, treated in this section, is the optimal pin fin shape which mini-
mizes the pin material volume V for given value of the transferred heat flux Q0. The
pin volume V is given by:

V ¼
ZL

0

AðzÞdz ¼ A0

ZL

0

uðzÞvðzÞdz ð13:1:10Þ

Here A0 ¼ Aðz ¼ 0Þ is the surface area of pin fin basis. Also, Eqs. (13.1.2) and
(13.1.4a, b) have been used. The objective is:

V ! min ð13:1:11Þ

The optimal control problem defined by the objective function Eq. (13.1.11) and
the constraints Eqs. (13.1.7) and (13.1.9) constitutes a Bolza problem. This problem
is transformed into a Mayer problem in two steps, as follows (Bonnans et al. 2014).
First, a new dependent variable f is defined by:

df
dz

� A0uðzÞvðzÞ ð13:1:12Þ

with the boundary condition:

f ðz ¼ 0Þ ¼ 0 ð13:1:13Þ

Equation (13.1.12) comes from Eq. (13.1.10). Second, a new form of the
objective function, associated with the Mayer problem, is defined:

f ðz ¼ LÞ ! max ð13:1:14Þ

The following dimensionless notation is adopted:
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n � z
L

ð0� n� 1Þ

hðnÞ � TðnÞ
Tref

h1 � T1
Tref

~VðnÞ � f ðnÞ
A0L

ð0� ~V � 1Þ

ð13:1:15a–dÞ

where Tref is an arbitrary constant reference temperature. Usage of notation
Eq. (13.1.15a–d) and Eqs. (13.1.7) and (13.1.8) yields:

dh
dn

¼ ~h

d~h
dn

¼ 1
uv

L2

kA0
hP h� h1ð Þ � ~h u~vþ v~uð Þ

� �

du
dn

¼ ~u

dv
dn

¼ ~v

d~V
dn

¼ uv

ð13:1:16a–eÞ

Equation (13.1.16a, b) come from Eq. (13.1.7) where notations Eq. (13.1.16c, d)
have been used. Equation (13.1.16e) comes from Eq. (13.1.12). The controls are ~u
and ~v and the objective is:

~Vðn ¼ 1Þ ! max ð13:1:17Þ

The following boundary conditions are associated with Eq. (13.1.16b–e),
respectively:

~hðn ¼ 0Þ ¼ � LQ0

kA0Tref
uðn ¼ 0Þ ¼ 1

vðn ¼ 0Þ ¼ 1
~Vðn ¼ 1Þ ¼ 0

ð13:1:18a–dÞ

Equation (13.1.18a) comes from Eq. (13.1.9) while Eq. (13.1.18d) comes from
Eqs. (13.1.13) and (13.1.15d). Equation. (13.1.18b, c) show that Aðn ¼ 0Þ ¼ A0.
Onemore boundary condition should be attached to the equation system (13.1.16a–e)
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to make it solvable. This additional condition depends on case, as shown in
Sects. 13.1.1.6 and 13.1.2.2.

13.1.1.4 Optimal Control Method

Equation (13.1.16a–e) and the Hamiltonian of the optimal control problem are
linear in the controls ~u and ~v. Thus, the optimal control solution is not regular. It is
associated with a bang-bang control or a singular control, depending on constraints
(see (Tolle 1975) and Chap. 5 of this book). The switching structure may be found
by using an indirect method, such as the Pontryagin Maximum Principle.
This implies defining the adjoint equations and solving them, as well as
Eq. (13.1.16a–e), by using appropriate boundary conditions (see Chap. 5 of this
book). Here a direct optimal control method is used (i.e. the BOCOP programming
package; see (Bonnans et al. 2014)). The direct methods are usually less precise
than indirect methods based on Pontryagin’s Maximum Principle, but more robust
with respect to the initialization. Also, they are more straightforward to apply,
hence their wide use in industrial applications.

Details about the direct optimal control method follow. The infinite dimensional
optimal control problem (OCP) consists of an objective function which has to be
extremized under the constraints of several ordinary differential equations
describing the dynamics of the state variables and controls. The direct optimal
control approach transforms the OCP into a finite dimensional non-linear problem
(NLP). This is done by a discretization in the space of the independent variable,
applied to the state and control variables, as well as the dynamics equations. More
details on direct transcription methods and NLP optimization algorithms can be
found in Nocedal and Wright (1999) and Betts (2001).

A few details about the implementation of the BOCOP programming package
follow (Bonnans et al. 2014). BOCOP does not need defining the adjoint equations
or the Hamiltonian of the problem, which are necessary steps when indirect
methods such as the Pontryagin Maximum Principle are used. BOCOP allows a
convenient constraints implementation. In BOCOP the discretized nonlinear opti-
mization problem is solved by the IPOPT solver (Wachter and Biegler 2006) that
implements a primal-dual interior point algorithm. The derivatives required for the
optimization are computed by the automatic differentiation tool ADOL-C (Walther
et al. 2012). BOCOP is designed for objective function minimization. Here,
Eq. (13.1.17) asks for maximization of ~Vðn ¼ 1Þ. Under the framework of BOCOP
this requires defining the new objective as �~Vðn ¼ 1Þ ! min. BOCOP has ten
discretization method options. In most cases the option Lobatto IIIC (implicit—6th
order) is used here. The number of discretization steps for the independent variable
is 500. This corresponds to a space step of 0.002. The maximum allowed number of
iteration is 10,000 while the tolerance is 10−10. Convergence of the optimization
algorithm depends on the initial guess distributions of the state variables and
control. These solutions depend on case and have been found by trial procedures.
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13.1.1.5 Implementation

Geometry

A case of practical interest is implemented: the contour of curve C′ in Fig. 13.2 is
an ellipse under the assumption of Eq. (13.1.5) and k ¼ 1.

Reference Parameters

Table 13.1 shows the values used in calculations for the main model parameters.
These values are kept unchanged (except when other values are explicitly stated).
Note that the reference temperature in Table 13.1 equals the bulk fluid temperature.

Technological Constraints

In practice, the state variables and controls should obey several constraints coming
from technology limitations due to manufacturing procedures or material properties.
For instance, an uniform cross sectional fin with a step reduction in local cross
section is considered by Kundu (2007) since it not only increases the effective
utilization of fin material near the tip but it also promotes the ease of fabrication.
Note that in (Kundu 2007) the step reduction does not come from computation but
it is imposed. Also, a simple method has been proposed by Kundu and Lee (Kundu
and Lee 2012b) to produce a new fin profile; the authors used a constraint tip
temperature to improve the shape near the tip in order to make easier the manu-
facturing process. Optimal control computations performed by Maday (1974) under
the “length-of-arc assumption” yield a waviness profile which prompted some
researchers to state that simpler analysis should be of more practical utility
(Natarajan and Shenoy 1990). A solution might be to look for a class of “good
enough” smooth fin profiles distinguished by a plausible physical principle as done
by Hanin (2008). The following solution is adopted here: in order to avoid waviness

Table 13.1 Values used for model parameters

Parameter Symbol Unit Value

Pin fin length L m 0.1

Length of ellipse semi-major axis a m 0.01

Length of ellipse semi-minor axis b m 0.004

Given heat flux at z ¼ 0 Q0 W 3

Heat transfer coefficient h W/(m2 K) 10

Bulk fluid temperature T1 K 300

Reference temperature Tref K 300

13.1 Optimal Control Methods 265



profiles difficult to implement in practice only pins with negative or zero profile
slopes are considered. Therefore, the constraint adopted here is ~u� 0.

Table 13.2 shows the constraints adopted in this section. These constraints are
relaxed in cases explicitly stated. Note that a value of ~umin ¼ �3 is associated with
a profile slope angle of about 80° while a value h ¼ 3 is associated with 900 K.

13.1.1.6 Particular Cases

Temperature Imposed at z = 0 (or n ¼ 0)

The temperature at z = 0 (or n ¼ 0) is denoted T0. A similar case has been studied
by Hanin (2008). The following boundary condition applies:

hðn ¼ 0Þ ¼ T0
Tref

ð13:1:19Þ

Equations (13.1.18a–d) and (13.1.19) constitute five boundary conditions for the
equation system (13.1.16a–e).

Temperature Imposed at z = L (or n ¼ 1)

The temperature at z = L (or n ¼ 1) is denoted TL. This case is not very often
considered in literature and corresponds to those applications where the minimum
pin fin temperature is not allowed to decrease below a given threshold. A constraint
tip temperature is sometimes assumed to improve the pin fin shape near the tip
(Kundu and Lee 2012b). Note that assuming a temperature excess at the fin tip is
not compatible with Schmidt criterion (see Hanin 2008). The following boundary
condition applies:

hðn ¼ 1Þ ¼ T1
Tref

ð13:1:20Þ

Equations (13.1.18a–d) and (13.1.20) constitute five boundary conditions for the
Eq. (13.1.16a–e).

Table 13.2 Constraints for
state variables and controls

Quantity Minimum value Maximum value

~uð¼ ~vÞ ~umin ¼ �3 ~umax ¼ 0

h hmin ¼ 1 hmax ¼ 2
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13.1.2 Results

13.1.2.1 Expected Accuracy

A few comments about the expected results accuracy follow. The transverse Biot
number Bi ¼ hRequiv=k is an indicator of the accurateness of the 1D approximation.
The accuracy increases by decreasing the Biot number. Most calculations in this
section are performed by using data of Table 13.1. Therefore a = 0.01 m and
b = 0.004 m. An equivalent diameter may be defined for the basis of the elliptic

profile as Dequiv � ðab=pÞ1=2 ¼ 0:00356 m. Therefore, the equivalent radius is
Requiv � 0:00178 m. The Biot number associated with the value of h in Table 13.1 is
Bi = 0.00041. For longitudinal pin and annular fins it has been shown by Razelos
and Georgiou (1992) that the 1D approximation results in errors in the heat dissi-
pation of 0.002–0.005% for Biot number of the order 0.01 (Das and Razelos 1997).
Thus, most results reported here constitute very good approximations. Results
obtained for cylindrical fins show that the error of the 1D treatment is less than 10%
for Bi = 1 and below 2% for Bi = 0.1 (Rong-Hua 1996). Therefore, the error
associated with the extreme case considered in this section (associated with
h ¼ 1000 W=ðm2 KÞ, which corresponds to Bi = 0.041) ranges between 2 and 10%.

The arc idealization adopted here is shortly discussed now. Note that the arc length
involves multiplication of the first term in the r.h.s of Eq. (13.1.16a–e) by a factor

g ¼ ½1þðds=dxÞ2�1=2 (Kobus and Cavanaugh 2006). This factor is often simplified
to unity for cases where Dequiv=L\0:1 (Chung et al. 1988; Kobus and Cavanaugh
2006). This condition is checked here since Dequiv=L ¼ 0:0356. Further details

follow. The multiplication factor comes to g ¼ ½1þðDech=LÞ2~u2�1=2. Using Dequiv ¼
0:00356m and L = 0.1 m (see Table 13.1) one finds g ¼ ½1þ 0:00127~u2�1=2. Most
cases here have ~umin ¼ �3. Thus, the maximum correction factor is g = 1.00571.
Therefore, the arc idealization adopted here is a good approximation. For ~umin ¼ �10
the multiplication factor is g = 1.061 which is still reasonably close to unity.

13.1.2.2 Particular Cases

Temperature Imposed at z = 0 (or n ¼ 0)

Two simple pin fin profiles are often reported in literature: parabolic and circular,
respectively. The classical optimum shape fin is considered to be the concave
parabolic profile. It has been first obtained by Schmidt under the hypothesis of
linear temperature distribution and is defined as the shape having a minimum
amount of material for a given heat transfer rate (Kobus and Cavanaugh 2006).
Hanin (2008) adopted the linear temperature distribution and have taken into
account the arc-length in a straight fin volume minimization. The profile of the
optimum fin was a circular arc and the fin volume was 6.21–8.0 times smaller than
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that corresponding to Schmidt’s parabolic fin (Kundu and Lee 2013). Optimum
circular pin fins whose volume is at least 5.26 times smaller than that corresponding
to Schmidt’s parabolic pin fin have been obtained by Kundu and Lee (2013), Hanin
and Campo (2003). Difficulties may arise when the linearity of temperature is
adopted (e.g. Kobus and Cavanaugh 2006). This prompted some researchers to
question the range of validity of Schmidt’s criterion (Hanin 2008). Semi-empirical
relationships connecting the temperature and the profile have been proposed
(Kundu and Lee 2012a).

The assumption of a linear temperature distribution is not adopted here. The
temperature distribution is obtained during the computation of optimum pin fin
profile. Figure 13.3a shows the pin longitudinal profile for different values of the
heat flux Q0. The optimum pin fin profile is neither parabolic nor circular. It
consists of two regions. First, the function u decreases linearly. Second, u becomes
a constant. The length of the first region increases by decreasing Q0. The constant u
value increases by increasing Q0. For very large values of Q0 the first region
disappears and the distribution of u is a constant on the whole pin length. This
agrees with the result obtained in Appendix 13A, i.e. the optimal pin is a cylinder
whose basis is the ellipse of surface area A0. For very small values of Q0(=0.1 W)

Fig. 13.3 Dependence on z of several quantities for different values of the heat flux Q0.
a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced objective
function ~Vðz=LÞ [see Eq. (13.1.15d)]. Pin fin basis temperature T0 ¼ 400 K. Other design and
operation parameters are shown in Table 13.1 while constraints are shown in Table 13.2
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the constant pin fin thickness is about one tenth of its basis thickness. At first sight
the optimal solution may be identified with a bang-bang control (Fig. 13.3c). In the
first region the control ~u is a constant (which equals ~umin) while in the second region
~u ¼ ~umax. However, a closer look shows that for larger values of Q0 two very short
regions exist, where the control values range between ~umin and ~umax. This is
associated with a singular solution. Regions of constant value of ~u do not exist for
very small values of Q0ð¼ 0:1 WÞ. Generally, the fin concave parabolic profile is
associated with an uniform convective heat transfer coefficient along the fin length
(Kobus and Cavanaugh 2006). The present results show that an uniform heat
transfer coefficient is associated with a non-parabolic pin fin profile provided
appropriate constraints are considered.

The distribution of pin temperature depends on the value of the heat flux Q0

(Fig. 13.3b). It is obviously non-linear for smaller Q0 values and becomes almost
linear at larger values of the heat flux Q0(>3 W). Thus, the Schmidt criterion (linear
temperature distribution) works better at larger heat fluxes. However, parabolic pin
fin profiles are not a necessary consequence, as seen here.

The reduced objective function is shown in Fig. 13.3d. For large values of Q0

(=5 W), ~Vðz ¼ LÞ is close to unity. This means that V ffi A0L [see Eq. (13.1.15d)],
where A0L is the volume of a cylinder. For small values of Q0 (=0.1 W), the
optimum pin fin volume is about one tenth of the cylinder volume A0L. Note that

Fig. 13.4 Basis and top cross sections through the pin fin for several values of the heat flux Q0.
Basis temperature T0 ¼ 400 K. Other design and operation parameters are shown in Table 13.1
while constraints are shown in Table 13.2. The unit for the left side scale is meter
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the reduced objective function ~Vðz ¼ LÞ equals the ratio between the minimum pin
fin volume (obtained in case of the optimal control problem treated in this section,
when the pin fin volume is minimized) and the volume of the pin fin (obtained in
case of the optimal control problem treated in Appendix 13A, when the heat flux is
maximized and the optimal pin fin profile is a cylinder). Thus, ~Vðz ¼ LÞ provides a
simple comparison between the optimization results obtained by using the two
objective functions.

The cross section at pin tip (z ¼ L) changes when the heat flux Q0 changes
(Fig. 13.4). The top cross section decreases by decreasing Q0. In case of large
values of Q0 (=5 W) the top cross section is very close to the basis cross section.
Thus, the pin shape is that of a quasi-cylinder.

The pin longitudinal profile for different values of the basis temperature T0 is
shown in Fig. 13.5a. Two regions are identified, i.e. a region of linearly decreasing
u and a region of constant value of u. The first region length increases by increasing
T0 while the constant u value increases by decreasing T0. These tendencies are
opposite to those shown in Fig. 13.3a, showing the influence of Q0. The contraction
function u at the tip ranges between about 0.40 and 0.73 for values of T0 ranging
between 600 and 400 K. Thus, the dependence of u on T0 is smaller than that on Q0

Fig. 13.5 Dependence on z of several quantities for different values of the basis temperature T0.
a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced objective
function ~Vðz=LÞ [see Eq. (13.1.15d)]. Design and operation parameters are shown in Table 13.1
while constraints are shown in Table 13.2
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(compare Figs. 13.5a and 13.3a, respectively). The distribution of temperature is
linear for small value of T0 (=400 K) but becomes non-linear near the pin basis for
large values of T0 (=600 K) (Fig. 13.5b). Thus, the Schmidt criterion (linear tem-
perature distribution) works better at smaller values of the pin basis temperature T0.

Figure 13.5c shows that the solution is of bang-bang type, with the control ~u
jumping from ~umin to ~umax. Short regions of constant ~u-values ranging between ~umin

and ~umax exist, however, for all values of T0. Two regions with almost linear
dependence of the kerner objective function on z may be identified for each T0
value (Fig. 13.5d). The reduced objective function takes larger values for smaller
values of T0. The reduced minimum pin fin volume ~Vðz=L ¼ 1Þ ranges between
about 0.2 and 0.55 of the cylinder volume A0L, for T0 ranging between 600 and
400 K.

The cross section at pin tip (z ¼ L) increases when the basis temperature T0
decreases (Fig. 13.6). Indeed, a larger external surface area is necessary at lower
basis temperature T0 to ensure the transfer of the given heat flux Q0 towards the
fluid.

Previous research showed that the optimum fin thickness is strongly dependent
on material properties and on the value adopted for the heat transfer coefficient
h. Figure 13.7a shows the pin longitudinal profile for different values of the heat
convection coefficient h. The profile consists of two regions. In the first region the

Fig. 13.6 Basis and top cross sections through the pin fin for several values of the basis
temperature T0. Design and operation parameters are shown in Table 13.1 while constraints are
shown in Table 13.2. The unit for the left side scale is meter
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function u decreases linearly. This is a consequence of the constant control value
~u ¼ ~umin (see Fig. 13.7c). In the second region, u slightly decreases, linearly or
non-linearly, depending on the value of h. Higher values of h (=1000 W/(m2 K))
correspond to stronger decrease of u. The control is of bang-bang type when lower
values of h are considered. For larger values of h (� 500 W=ðm2 KÞ) the control is
singular (see Fig. 13.7c). The distribution of pin temperature does not depend
significantly on the value of h (Fig. 13.7b). It is slightly non-linear for small values
of z but linear for most of its range of variation (see discussion associated with
Fig. 13.10 for more details). The reduced objective function depends on h mainly at
large values of z (Fig. 13.7d). The reduced minimum pin fin volume ~Vðz=L ¼ 1Þ
ranges between about 0.45 and 0.55 of the cylinder volume A0L, for h ranging
between 5 and 1000 W/(m2 K). Thus, the dependence of the minimum pin volume
on h is smaller than the dependence on Q0 and T0 (compare Fig. 13.7d with
Fig. 13.3d and Fig. 13.5d, respectively).

Fig. 13.7 Dependence on z of several quantities for different values of the convection heat flux
coefficient h. a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced
objective function ~Vðz=LÞ [see Eq. (13.1.15d)]. Pin basis temperature T0 ¼ 400 K. Other design
and operation parameters are shown in Table 13.1 while constraints are shown in Table 13.2
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Temperature Imposed at z = L (or n ¼ 1).

The dependence on z of several quantities for different values of the heat flux Q0 is
shown in Fig. 13.8. There is obvious similarity with Fig. 13.3. The longitudinal pin
profile consists of two regions, one of linear decrease of u and the other with
constant u value (Fig. 13.8a). The pin temperature depends almost linearly on z at
higher values of Q0 (� 3 W) (Fig. 13.8b). For very small values of Q0ð¼ 0:1 WÞ
the temperature is almost constant on that region where the value of u is constant.
The optimal control is singular but it can be well approximated by a bang-bang
control, with jumps of ~u from ~umin to ~umax (Fig. 13.8c). Control switching occurs at
the interface of the two regions with different behavior of u. However, a finer
control involves short regions at small z values where the control ranges between
the extremes values ~umin and ~umax. The reduced objective function is shown in
Fig. 13.8d. Small values of Q0 (� 1 W) are associated with small values of the
objective function, i.e. smaller amount of material, as expected.

Figure 13.9a shows the pin longitudinal profile for different values of the tip
temperature TL while Fig. 13.9c shows the optimal control strategy. There is
similarity with Fig. 13.3 where the influence of pin basis temperature T0 has been

Fig. 13.8 Dependence on z of several quantities for different values of the heat flux Q0.
a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced objective
function ~Vðz=LÞ [see Eq. (13.1.15a–d)]. Pin tip temperature TL ¼ 350 K. Other design and
operation parameters are shown in Table 13.1 while constraints are shown in Table 13.2
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studied. The pin profile consists of two regions: a shorter region (z/L < 0.2) near the
pin basis, where u decreases linearly and a longer region where u is constant. The
control jumps from ~umin to ~umax at the interface between the two regions with
different behavior of u. For all values of TL, short regions exist at small values of
z where ~u ranges between ~umin and ~umax. The constant value of u in the second
variation region increases from about 0.47 to 0.6 by increasing TL from 350 to
450 K. Larger values of TL are associated with higher pin temperature (Fig. 13.9b).
Notice, however, that the temperature Tðz ¼ 0Þ is the same, for all values of TL.
This comes from the upper bound hmax ¼ 2 imposed to the pin temperature in
Table 13.2. The reduced objective function takes larger values for larger values TL
(Fig. 13.9d). The reduced minimum pin fin volume ~Vðz=L ¼ 1Þ ranges between
about 0.25 and 0.40 of the cylinder volume A0L, for TL ranging between 350 and
450 K.

The dependence on z of several quantities for different values of the convection
heat flux coefficient h is shown in Fig. 13.10. The pin fin shape is optimized to
minimize the material volume for given value of the heat flux transferred. The
optimum shape is different for different values of h (Fig. 13.10a). The pin shape
becomes thinner and non-linear at large values of z, where h takes larger values. It is

Fig. 13.9 Dependence on z of several quantities for different values of the pin tip temperature TL.
a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced objective
function ~Vðz=LÞ [see Eq. (13.15d)]. Design and operation parameters are shown in Table 13.1
while constraints are shown in Table 13.2
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interesting to note that these significantly different optimum pin fin profiles are
associated with rather similar distributions of temperature (see Fig. 13.10b).
Moreover, all temperature distributions are almost linear, except for a short region
near the fin basis. This is an a posteriori proof that using the Schmidt criterion
provides reasonably accurate first approximation results. The control is singular for
larger h values but of bang-bang type for lower values of h (see Fig. 13.10c). Less
pin material is needed for larger values of h since the reduced minimum pin fin
volume ~Vðz=L ¼ 1Þ decreases from about 0.32 to 0.18 of the cylinder volume A0L,
by increasing h from 5 to 1000 W/(m2K) (Fig. 13.10d).

The technology or design constraints are now shortly examined. First, assume
that restrictions exist on pin manufacturing technology in terms of its longitudinal
profile. One such constraint might be the variation Du=Dz, which is precisely the
control ~u. Several minimum values ~umin are considered in Fig. 13.11.

The pin longitudinal profile obviously depends on the control minimum allowed
value ~umin (Fig. 13.11a). However, for all values of ~umin the pin profile consists of a
shorter region near pin basis, where u decreases, followed by a region where u is
constant. A larger negative ~umin value determines a more abrupt decrease of u in its

Fig. 13.10 Dependence on z of several quantities for different values of the convection heat flux
coefficient h. a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced
objective function ~Vðz=LÞ [see Eq. (13.1.15d)]. Tip pin temperature TL ¼ 350 K. Other design
and operation parameters are shown in Table 13.1 while constraints are shown in Table 13.2
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first variation region. This is associated with a larger constant value of u in the second
variation region. Note that the results associated with ~umin\� 10 should be con-
sidered with caution (see the discussion in Sect. 13.1.3.1 about the results accuracy).
The optimal control is singular (Fig. 13.11c) but may be well approximated by a
bang-bang solution. The switching points in Fig. 13.11c correspond to the transitions
between the two regions of Fig. 13.11a. The pin temperature variation is nearly linear
for larger negative ~umin values (Fig. 13.11b). When lower values of ~uminj j (< 3) are
considered, the temperature has a more significant variation on that pin region where
u is a constant. Less pin material is needed for larger values of ~uminj j since the reduced
objective function decreases by increasing ~uminj j (Fig. 13.11d). The reduced mini-
mum pin fin volume ~Vðz=L ¼ 1Þ decreases from about 0.30 to 0.20 of the cylinder
volume A0L, for ~uminj j increasing from 1 to 100.

The pin material properties may yield different optimal pin shapes. The maxi-
mum allowable temperature is considered here through the parameter
hmax � ðT=Tref Þmax. Figure 13.12 shows results for different values of hmax.

The longitudinal pin profile consists of two regions, one of decreasing u and
another one of constant u, as expected (Fig. 13.12a). The rate of u variation in the
first region does not depend on hmax but the length of that first region does. The first

Fig. 13.11 Dependence on z of several quantities for different values of the minimum control
value ~umin. a contraction function u; b reduced pin temperature T=Tref ; c control ~u; d reduced
objective function ~Vðz=LÞ [see Eq. (13.1.15d)]. Tip pin temperature TL ¼ 350 K. Other design and
operation parameters are shown in Table 13.1 while constraints are shown in Table 13.2
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region is shorter for lower values of hmax. The length of the first region does not
depend monotonously on hmax, since the length associated with hmax ¼ 3 (i.e.
z/L = 0.22) is between the lengths associated with hmax ¼ 2 (z/L = 0.19) and
hmax ¼ 2:5 (z/L = 0.29), respectively. Also, the pin thickness in the region of
constant u values does not depend monotonously on hmax. The constant u values are
0.72, 0.43, 0.12 and 0.30 for hmax = 1.5, 2, 2.5 and 3, respectively. When larger
values of hmax are considered, the temperature variation on pin length have a higher
degree of non-linearity (Fig. 13.12b). Note that larger hmax values are associated
with larger pin temperatures, whatever the value of z is. This is a monotonous
property. The optimal control is singular, but very similar to a bang-bang control for
all hmax values (Fig. 13.12c). More pin material is needed for lower values of hmax

(Fig. 13.12d) since the value of the reduced objective function at z ¼ 1 is larger.
However, the reduced objective function is higher for hmax ¼ 3 than for hmax ¼ 2:5.
The reduced minimum pin fin volume ~Vðz=L ¼ 1Þ is about 0.56, 0.22, 0.12 and
0.16 of the cylinder volume A0L, for hmax = 1.5, 2, 2.5 and 3, respectively.
Therefore, there is an optimum maximum reduced temperature hmax;opt, somewhere
between 2 and 3, for which a minimum minimorum pin fin volume exists.

Fig. 13.12 Dependence on z of several quantities for different values of the maximum value of
hmax ¼ ðT=Tref Þmax. a contraction function u; b reduced pin temperature T=Tref ; c control ~u;
d reduced objective function ~Vðz=LÞ[see Eq. (13.1.15d)]. Tip pin temperature TL ¼ 350 K.
Other design and operation parameters are shown in Table 13.1 while constraints are shown in
Table 13.2
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13.1.3 Conclusions

Two different objective functions are used as examples. In the first case the
transferred heat flux is maximized while the minimization of pin volume for given
heat transfer flux is the second example. The Pontryagin optimal control theory is
used as a basic tool in case of the heat flux maximization. The Hamiltonian in case
of the heat flux maximization is linear in the control. Then, the optimal pin shape is
a cylinder whose basis is delimitated by the elliptical contour (see Appendix 13A).
The Hamiltonian for pin fin volume minimization under given heat flux is linear in
controls and the optimal control solution is generally non-regular. Computations are
performed by using a direct optimal control method.

Two particular situations have been considered in case of pin fin volume min-
imization, i.e. with imposed temperature at the basis and tip of the pin, respectively.
The optimum pin fin longitudinal profile is neither parabolic nor circular. It consists
of two regions. In the first region, close to the pin basis, the pin thickness decreases
linearly. In the second region, the pin thickness is constant or may decrease,
depending on the thermal loads and operation. The optimal solution is usually
singular but may be very well approximated by a bang-bang solution. At large
values of the heat transfer coefficient, the control is singular and the pin thickness
decreases in the second region (close to the pin tip). The Schmidt criterion works
better at larger heat flux values.

The technology and design constraints have important effects. A constraint on
pin manufacturing technology is ~u, i.e. the variation Du=Dz. The reduced minimum
pin fin volume ~Vðz=L ¼ 1Þ decreases from about 0.30 to 0.20, for ~uminj j increasing
from 1 to 100. The maximum allowable temperature is an operational constraint
which is quantified by hmax � ðT=Tref Þmax. The reduced minimum pin fin volume
~Vðz=L ¼ 1Þ is about 0.56, 0.22, 0.12 and 0.16, for hmax = 1.5, 2, 2.5 and 3,
respectively. A minimum minimorum pin fin volume exists for an optimum maxi-
mum reduced temperature hmax;opt located between 2 and 3. Further details are
found in Badescu (2015).

Appendix 13A

The objective is to optimize the pin shape for the maximization of the heat flux Q.
For simplicity Eq. (13.1.5) with k ¼ 1 is adopted. The following notation is used:

A0 � Aðz ¼ 0Þ
P0 � Pðz ¼ 0Þ ð13:A:1a; bÞ

Usage of Eqs. (13.1.2)–(13.1.5) and (13.A.1a, b) gives the dependence of the
cross section area and perimeter, respectively, on z:
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AðzÞ ¼ u2ðzÞA0

PðzÞ ¼ uðzÞP0
ð13:A:2a; bÞ

From Eq. (13.A.2a, b) one finds:

PðzÞ ¼ P0
AðzÞ
A0

� �1=2
ð13:A:3Þ

The procedure adopted here is based on Pontryagin’s principle. The same pro-
cedure has been used by Maday (1974), Razelos and Imre (1983) and Natarajan and
Shenoy (1990). The quoted authors used two state functions and the control was the
pin diameter. Thus, the Hamiltonian was non-linear in the control and the solution
did not contain singular arcs (Natarajan and Shenoy 1990). Here the heat flux Q
given by Eq. (13.1.8) is maximized by using Eq. (13.1.7) as a constraint. The
derivative:

~A � dA
dz

ð13:A:4Þ

is the control while a new variable, ~Q, is introduced in order to transform the Bolza
optimal control problem into a standard Mayer problem. Then, the following
equations system is to be solved:

dT
dz

¼ ~T

d~T
dz

¼ �
~A
A
~T þ h

k
P0

A1=2
0

1
A1=2

ðT � T1Þ

d~Q
dz

¼ hP0

A1=2
0

A1=2ðT � T1Þ

ð13:A:5a–cÞ

Equation (13.A.5a, b) comes from Eq. (13.A.7) by using Eqs. (13.A.3) and
(13.A.4) while Eq. (13A.5c) comes from Eqs. (13.1.8) and 13.A.3). The objective
is to maximize ~Qðz ¼ LÞ.

The ordinary differential Eq. (13.A.5a–c) can be solved by using appropriate
boundary conditions. However, there is no need to do this here. The Hamiltonian H
of the system is built as described by Tolle (1975) and Chap. 5 of this book:

H � fT
dT
dz

þ f~T
d~T
dz

þ f~Q
d~Q
dz

¼

fT ~T þ f~T �
~A
A
~T þ h

k
P0

A1=2
0

1
A1=2

ðT � T1Þ
" #

þ f~Q
hP0

A1=2
0

A1=2ðT - T1Þ
" # ð13:1:26Þ
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where fT ; f~T ; f~Q are adjoint functions. The Hamiltonian is linear in the control ~A.
Therefore, the solution is non-regular and the control is not uniquely determined for
all values of state and adjoint functions [Oberle and Grimm (2001, p. 22)]. In some
common cases depending on constraints, the non-regular solution is of bang-bang
type, i.e. the control jumps from the minimum to the maximum allowed value. The
maximum value of ~A is zero and this means that AðzÞ is a constant (= A0). From
Eq. 13.A.3) one sees that PðzÞ is also constant. Thus, the optimal pin shape which
maximizes the heat flux transferred to the fluid is a cylinder whose basis is
delimitated by the contour curve C.
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Part IV
Applications: Solar Energy Conversion

into Thermal Energy Part

Part IV refers to the optimization of thermal solar collectors. Both design and
operation are considered. Methods of optimizing the structure of solar energy
collection systems are presented in Chap. 14. The optimization of the geometry of
solar collectors is treated in Chap. 15, while the time-dependent optimal operation
of solar heaters is described in Chap. 16. Chapter 17 deals with the optimization of
fluid flow, while optimal controllers are theorized in Chap. 18.
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Chapter 14
Optimization of Solar Energy
Collection Systems

Several design methods for solar thermal systems were developed in the last dec-
ades, ranging from the simple f-chart correlation method to simulation packages,
such as SOLCOST (Win 1980), TRNSYS (1990), WATSUN (1994) or EUROSOL
(Lund 1995). Also, the “guaranteed performance” approach was developed, based
on performance prediction modeling (Tsilingiris 1996). Expert systems were pro-
posed for the selection and design of solar domestic hot water systems (Panteliou
et al. 1996). Standards exist that describe how to determine the thermal behavior of
domestic hot water systems (see, e.g., ISO 9459-5 (2003); Andres and Lopez
(2002)).

Most of these design methods analyze and compare integrated systems with
given structure. Generally, few methods are dealing with the structural optimization
of thermal systems. For example, the optimum distribution of a finite amount of
thermal insulation on the walls that minimizes the total heat loss has been inves-
tigated by Bejan (1993), Lim and Bejan (1994). An interesting early approach of
how to optimize the structure of a solar energy collection surface is that of Kovarik
(1975), who used a simple flat-plate collector model and focused on the spatial
distribution of the thermal insulation thickness over the collection surface.
Knowledge of the inlet and outlet working fluid temperatures allowed for analyzing
the collection surface separately from the rest of the system. Details about
Kovarik’s approach are presented in Sect. 14.1. A more involved treatment is
described in Sect. 14.2.

14.1 General Approach

The number of parameters involved in the operation of a solar heating installation is
great, some of them varying heavily and randomly over time. Because of this, a
proper design requires prior performing of computer simulations, based on the
usage of site-specific meteorological data records at the location of the installation.
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This approach may lead to useful results for the designer, but can not reveal the
intimate link between the system performance and the system-specific parameters,
which does not allow a proper choice between different possible alternatives.

Besides the difficulties arising from random input of meteorological data,
determination of optimal technological solutions of solar installations is hampered
by some specific economic issues. It is mainly the fact that when increasing
investments, the investment profit per unit decreases. For example, assume that the
optimal collection surface area is computed, with the purpose to obtain a maximum
profit, for given investment capital and heat transfer fluid flow rate. The conclusion
is that any increase of the surface area will result in an increase in the operating
temperature, which leads to additional heat losses and, consequently, to a decrease
of the profit associated with further investment. Following such reasoning would
paradoxically deduce that the rate of return of the invested capital reaches the
highest value when the investment is zero.

It is still possible to change the formulation of the problem, leading to a
non-trivial optimal solution. Such a change does not rule out, of course, that the
benefits are relatively decreasing by increasing the investment, but the change of the
point of view is advantageous in addressing the mathematical problem. Variational
methods are used in the following, allowing to explain some issues which can not
be distinguished using other methods (Kovarik 1975).

14.1.1 Determination of the Optimal Solution

The problem of the optimal designing of a solar energy conversion system can be
formulated as follows. It is necessary that, in unit time, an amount of energy Qnec is
to be supplied, by using a high temperature working fluid, flowing at fixed rate. The
energy is supplied by one or more solar collectors (hereinafter called collection
system) and by an auxiliary heater (which uses classic fuel). The cost of heater
operation is c1, per unit energy transferred to the fluid. The cost of buying and
operating a collection system per time unit is c2A, where A is the collection surface
area. Then, the total cost cT per unit time is:

cTðAÞ ¼ c1ðQnec � QuÞþ c2A ð14:1:1Þ

where Qu is the flux of useful thermal energy supplied by solar collectors. The
problem lies in finding the value A of the surface collection area so that the total
cost per time unit, cTðAÞ, achieves the lowest value.

The collected amount of solar energy Qu increases when the collection surface
area A increases. Therefore, for A increasing from the initial value A ¼ 0, the value
of the first term of the right hand side of Eq. (14.1.1) decreases monotonically,
starting from c1Qnec, but remains positive. In the same conditions, the second term
in Eq. (14.1.1) increases starting from zero. One concludes that the indicator cT
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reaches the lowest value either for A ¼ 0 or for positive values of A. Figure 14.1
shows how cT depends on A.

For the existence of an optimal (positive) collection surface area, denoted A�, it
is enough that the total cost has a negative slope in point A ¼ 0, that is the fol-
lowing relations have to take place:

dcT
dA

¼ �c1
dQu

dA
þ c2

dcT
dA

� �
A¼0

\0 ð14:1:2a; bÞ

Equation (14.1.2a), which was obtained using Eq. (14.1.1), involves a series of
economic parameters and properties of the solar collector. They are examined in
further detail.

Assume an element dA of collection surface area in thermal contact with a fluid
flow rate _m with specific heat at constant pressure cp. It is assumed that the fluid
temperature changes from the value T� to the value T� þ dT�, due to the heat
received from the element dA. Then, at any time, the energy balance requires that:

_mcp
� �

dT� ¼ G�g0 � U� T � T�
amb

� �� dEint

dt

� ��� �
dA ð14:1:3Þ

Here the instantaneous values are denoted with an asterisk and the other nota-
tions are: G� is the solar irradiance incident on the surface of the collector, g0 is the
optical efficiency the collector, which is given by the product between the absor-
bance of the absorbing plate and the transmittance of the transparent cover, U� is
the global coefficient of thermal losses, based on the temperature of the working
fluid, T�

amb is the temperature at which the collector would be in thermal equilibrium
with the environment, if its surface would not receive solar radiation (usually T�

amb

is the ambient temperature) and dEint=dtð Þ� is the thermal flux stored as internal
energy in the collector material, per unit area.

Equation (14.1.3) shows that from the thermal energy generated in unit time by
converting solar energy (the first term in the right parenthesis), part is lost to the

Fig. 14.1 Total cost of the
energy provided yearly (in
arbitrary units) as a function
of the collection surface area
(adapted from Kovarik 1975)
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environment (the second term in the right parenthesis), part serves to increase the
temperature of the collector (last term in the right parenthesis) and part is transferred
to the working fluid (the term on the left hand side).

To assess the heat transferred to the fluid in a period of time Dt (e.g. one year),
Eq. (14.1.3) must be integrated throughout that period. The result is:

ZDt

0

_mcpdT
�� �
dt ¼ dA

ZDt

0

G�g0 � U� T� � T�
amb

� �� dEint

dt

� ��� �
dt ð14:1:4Þ

It is convenient to introduce new variables, defined as follows:

T � 1
Dt

ZDt

0

T� � T�
amb

� �
dt G � 1

Dt

ZDt

0

G� dt

U � 1
DtT

ZDt

0

U� T� � T�
amb

� �
dt

cF � 1
DtdT

ZDt

0

_mcpdT
�� �
dt

dEint

dt

� �
� 1

Dt

ZDt

0

dEint

dt

� ��
dt ð14:1:5–9Þ

These quantities are, in order, the average excess of the operating temperature
(Eq. 14.1.5), the average solar irradiance incident on the collector surface
(Eq. 14.1.6), the average thermal energy flux stored in the collector material
(Eq. 14.1.7), the average coefficient of thermal losses of the collector (Eq. 14.1.8)
and the average heat transfer flux transferred to the fluid (Eq. 14.1.9). In
Eq. (14.1.9) dT represents the growth of T (which is defined in Eq. (14.1.5)),
corresponding to the growth dA of the collection surface.

The flux of thermal energy stored in material collector fluctuates around zero,
following the collector temperature variations, due to the weather fluctuations. It
may be assumed that, for a long enough period of integration Dt, the quantity
dEint=dt defined by Eq. (14.1.7) becomes negligible. The same conclusion is
reached if one assumes that the integration takes place only during periods of steady
state operation. In the following relationships dEint=dt are assumed null.

Using the new variables Eqs. (14.1.5)–(14.1.9), the following form of the
Eq. (14.1.4) is obtained:

cFdT ¼ ðGg0�UT)dA ð14:1:10Þ

The efficiency of an element of collection surface area dA, operating at a tem-
perature T of the fluid, is defined as the ratio of the flux of solar energy incident on
the element, GdA, and the flux of energy transferred to the fluid cFdT . Using
Eq. (14.1.10) one obtains:
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g � cFdT
GdA

¼ g0 �
UT
G

ð14:1:11Þ

The area required to transfer the heat flux cFdT to the fluid is resulting from
Eq. (14.1.11):

dA ¼ cFdT
Gg

ð14:1:12Þ

The economic value of the flux of heat produced by the area element dA is equal
to the cost of fuel saved, which is the unit cost c1. Using Eq. (14.1.10), it follows
that this value is:

c1cFdT ¼ c1Gg dA ð14:1:13Þ

It is assumed that the investment necessary to increase the collection surface area
by and amount dA is directly proportional with dA (i.e. it is c2dA, where c2 is the
coefficient of proportionality). The benefit obtained as a result of this additional
collection area corresponds to the additional heat provided (that is, c1cFdT). The
ratio between this benefit and the required investment is denoted by R and is given
by:

R � c1cFdT
c2dA

¼ c1Gg
c2

ð14:1:14Þ

Here Eq. (14.1.13) was used. Equation (14.1.14) applies only to an element dA
operating at a uniform temperature T. The annual equivalent cost CA of the entire
collection area, of unit cost c2 (in monetary units per unit of surface and year) is
obtained by integration:

CA ¼
ZA

0

c2dA ð14:1:15Þ

After replacing Eqs. (14.1.12) and (14.1.15) becomes:

CA ¼
ZT1

T2

c2cF
Gg

dT ð14:1:16Þ

where T1 and T2 are the inlet and outlet temperatures of the working fluid, as
defined in Eq. (14.1.5). Using definition Eq. (14.1.14), the equivalent cost of the
entire collection area, given by Eq. (14.1.16) can be expressed as:
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CA ¼
ZT1

T2

c1cF
R

dT ð14:1:17Þ

Based on Eq. (14.1.17), two types of solar collectors are analyzed, namely a
common collector type, whose coefficient of thermal losses U is uniformly dis-
tributed over the entire collection area, and a hypothetical collector, with the
coefficient U being unevenly distributed on the surface. The other properties remain
uniform on the surface of both types of collectors.

14.1.2 Collectors with Uniform Properties

In a collector with uniformly distributed values of the optical efficiency g0 and
thermal loss coefficient U, the factor R varies on the surface in direct proportion
with η, as shown in Eq. (14.1.14), and with linear dependence on the temperature T,
according to Eq. (14.1.11). The relationship between R and T is shown in Fig. 14.2.

In Fig. 14.3, the lines R1, R2 and R3 (representing the ratio benefit/cost for three
different types of collectors), determine the R-polygon 1–2–3–4–5–1.

On the segment 2–3, R1 is the biggest benefit/cost ratio of all collectors. On the
segments 3–4 and 4–5 there is one type of collector with higher ratio R than the
other types. For any finite set of collectors with uniform properties, there is, for any
operating temperature, a dominant type of collector, whose benefit/cost ratio RD

Fig. 14.2 The ratio
benefit/cost, R, for a collector
with uniform properties
(adapted from Kovarik 1975)

Fig. 14.3 The polygon of the
factors R (benefit/cost ratio)
for three different solar
collectors (adapted from
Kovarik 1975)
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exceeds the other types everywhere, except for a finite number of points (the
vertices of their R-polygon). The set of the dominant types is called the dominant
subset of the given set of collector types. The cost of a system of collectors is
minimal if the value of R is maximal, as it results from the examination of
Eq. (14.1.17).

The following theorem applies (Kovarik 1975):

Theorem 1 An optimal discrete solar energy collection system is given by the
dominant subset of the available collectors, each element operating in a temper-
ature range given by the vertices of the R-polygon.

The significance of the line R ¼ 1, that closes the polygon and determines the
greatest value of the average excess of the operating temperature TMAX (measured
above the ambient temperature), is a consequence of the criterion of the extreme
value of the total cost cT . Taking into consideration Eq. (14.1.2), this last statement
may be expressed as follows:

�c1
dQu

dA
þ c2 ¼ 0 ð14:1:18Þ

The flux of useful heat supplied by the collection surface is given by:

Qu ¼
ZA

0

Gg dA ð14:1:19Þ

The derivative of Qu with respect to A is the integrand of Eq. (14.1.19):

dQu

dA
¼ Gg ð14:1:20Þ

Using Eqs. (14.1.14) and (14.1.20) one sees that the Eq. (14.1.18) is equivalent
to

R TMAXð Þ ¼ 1 ð14:1:21Þ

Thus, the optimal solar energy collection system is limited by the operating
temperature at which the benefit obtained as a result of additional collection area
equals the value of the necessary additional investment.

The surface area of each of the dominant types of collectors was defined only by
the abscissa of the temperature of the vertices of the R-polygon. In the case of an
uniform heat loss coefficient, Eq. (14.1.12) can be integrated easily, resulting in:

A ¼ cF
U

ln
g T1ð Þ
g T2ð Þ

� �
ð14:1:22Þ
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which, after replacing Eq. (14.1.11) gives:

A ¼ cF
U

ln
Gg0 � UT1

Gg0 � UT2

� �
ð14:1:23Þ

The value of A obtained by using Eq. (14.1.23) is the required collection surface
area corresponding to the operation in the temperature range T1; T2ð Þ. Any peak,
denoted generically by Ti, satisfies the equations of the dominant R—straight lines
of the adjacent sectors; therefore, a certain peak, denoted Tj, situated between two
neighboring sectors, denoted k and m, respectively, is obtained as a solution of the
equation:

Rk Tj
� � ¼ Rm Tj

� � ð14:1:24Þ

This is a linear equation in the unknown Tj, easy to solve after replacing the right
hand side members of the Eqs. (14.1.11) and (14.1.14).

An additional conclusion concerning the optimal way to arrange the different
types of collectors constitutes a corollary of Theorem 1: collectors with different
characteristics are arranged in an optimum combination if there are two interior
points which operate at equal average temperature. The corollary is always true for
the collectors with different characteristics which are connected in series.

14.1.3 Collectors with Non-uniform Properties

In the previous Sect. 14.1.2 it has been concluded that a composite solar energy
collection system consisting of a combination of collectors with different charac-
teristics, can perform better economically than a system with uniform properties.
From a technical point of view it is possible to manufacture collectors with con-
tinuously varying properties in space (for example, by continuously varying the
thickness of the thermal insulation). Therefore, it is interesting to establish an
optimality criterion for this case. It is assumed that both the efficiency and the unit
cost are functions of the coefficient of thermal losses U, i.e. g ¼ g Uð Þ and
c2 ¼ c2 Uð Þ. In this situation, U is assumed to be the independent variable. For a
specified range of operating temperatures, the optimality condition corresponds to
the cancellation of the first variation of the integral in Eq. (14.1.16), i.e.

dCA ¼ d
ZT1

T2

c2cF
Gg

dT ¼ 0 ð14:1:25Þ

In Eq. (14.1.25), c2 and η are functions of U. Therefore the problem is to find the
variation of U Tð Þ that cancels the first variation of the integral in Eq. (14.1.25).
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Note that the integrand in Eq. (14.1.25) does not depend on the derivative dU=dT .
Consequently, the Euler-Lagrange equation attached to Eq. (14.1.25) has the fol-
lowing simple form:

@

@U
c2cF
Gg

� �
¼ cF

Gg2
g
@c2
@U

� c2
@g
@U

� �
¼ 0 ð14:1:26Þ

which can be rewritten as

@c2
c2@U

¼ @g
g@U

ð14:1:27Þ

This equation constitutes (Kovarik 1975):

Theorem 2 In an optimal collector, the overall coefficient of thermal losses U is so
distributed that the partial logarithmic derivatives of the unit cost and efficiency are
equal.

For any constructive solution, the partial derivatives of Eq. (14.1.27) can be
evaluated as algebraic expressions. Therefore, Eq. (14.1.27) becomes an algebraic
equation in the variables U, T and unit cost, given as a function c2 ¼ c2 Uð Þ. After
determining the form of the dependence of U on T, the differential Eq. (14.1.10)
will contain only A and functions of T, and can be integrated by the method of
separation of variables. This leads to finding the optimal dependence of U on the
position in the collector, thus solving the most important design problem.

The size of the collection surface area can be determined by using Eq. (14.1.21),
as in case of systems composed of collectors with uniform properties.

The lower limit of the operation temperature, T1, will depend on the maximum
value of U, corresponding to the minimum unit cost. Below this temperature value,
the proposed design solution cannot satisfy Eq. (14.1.27). A possible technical
solution for the case T\T1 is a system based on several types of collectors with
uniform properties, as presented in Sect. 14.1.2.

14.1.4 Example and Discussion

The application of Eq. (14.1.27) is exemplified in the case of a plane solar collector
of rectangular shape. Assume that the insulation cost is proportional to its volume,
with a minimum cost c20 per unit of collector area. Then the cost of the collector per
unit area is:

c2 Uð Þ ¼ c20 þ ayizol ð14:1:28Þ

where yizol is the insulation thickness and a is the cost of the unit volume of
insulation. The partial derivative of c2 is:
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@c2
@U

¼ @c2
@yizol

� @yizol
@U

ð14:1:29Þ

The overall coefficient of thermal losses U is the sum of the thermal conduc-
tances from the lower part ðUinfÞ and the upper part ðUsupÞ of the collector:

U ¼ Usup þ 1
Uinf 0

þ yizol
kizol

� ��1

ð14:1:30Þ

Here Uinf 0 is the conductance of the lower part of the collector, in the absence of
insulation, and kizol is the thermal conductivity of the insulation. The derivative of
Eq. (14.1.30) with respect to yizol is replaced in Eq. (14.1.29), so that the left hand
side of Eq. (14.1.27) becomes:

@c2
c2@U

¼ � akizol
c20 þ ayizol

1
Uinf 0

þ yizol
kizol

� �2

ð14:1:31Þ

Similarly, the efficiency given by Eq. (14.1.11), has the derivative:

@g
@U

¼ � T
G

ð14:1:32Þ

After replacement of U from Eq. (14.1.30) into the right hand side of
Eq. (14.1.27), the whole Eq. (14.1.27) becomes:

akizol
c20 þ ayizol

1
Uinf 0

þ yizol
kizol

� �2

¼ T

Gg0 � T Usup þ 1
Uinf 0

þ yizol
kizol

� 	�1
� � ð14:1:33Þ

This is a quadratic equation for the optimal insulation thickness yizol as a function
of the average operating temperature. In the point yizol ¼ 0, the average operating
temperature is

T1 ¼ Gg0

Usup þUinf0 þ U2
inf 0c20
akizol

ð14:1:34Þ

For temperatures lower than T1, Eq. (14.1.27) can not be used, but the optimum
solution can be obtained by using several types of collectors with uniform prop-
erties (see Sect. 14.1.2). For T [ T1, the thermal conductance at the bottom of the
collector, corresponding to the second term of the right hand side of Eq. (14.1.30),
can be calculated from:
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Uinf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þB1B2

p � 1
B2

ð14:1:35Þ

where the following notations have been used:

Uinf � 1
Uinf 0

þ yizol
kizol

� ��1

B1 � Gg0
T

� Usup B2 � c20
akizol

� 1
Uinf 0

ð14:1:36–38Þ

These expressions come from Eq. (14.1.33). By using these notations, U is
determined as a function of the average temperature of the working fluid. To obtain
U and yizol as a function of position, a rectangular collector of unit width is con-
sidered: then, the element dA has the length dA and the value of A corresponds to
the position on the collector. Equation (14.1.10) can be written as:

cFdT ¼ Gg U;Tð ÞdA ð14:1:39Þ

and, since the values of U and η can be determined for any value of T, the
corresponding position A is obtained by integration:

AðTÞ ¼ cF
G

ZT

T1

g�1ðTÞdT ð14:1:40Þ

The above procedure is applied to the following values of parameters: average
irradiance G ¼ 400 (Wm−2), optical efficiency of the collector g0 ¼ 0:76, the
coefficients of thermal losses Usup ¼ 3:38 (Wm−2 K−1) and
Uinf 0 ¼ 2:98 (Wm−2 K−1), the thermal conductivity of insulation
kizol ¼ 0:035 (Wm−1 K−1), the cost of unit volume of insulation a ¼ 69:7 ($ m−3)
and the cost per unit collector surface area in the absence of thermal insulation
c20 ¼ 50 ($ m−2). Results are shown in Table 14.1.

The procedures discussed in this section allow the designer of solar energy
conversion systems to determine the most economical distribution of thermal
insulation and other design parameters that influence the global coefficient of
thermal losses. As expected, the effect of these parameters on the cost is of major

Table 14.1 Results obtained for T1 = 1.61 °C above the ambient temperature. The units are:
T (°C), η (dimensionless), A/cF (m2/(WK−1)), yizol (m) (adapted from Kovarik 1975)

T 10 30 50 70

U 4.49 3.91 3.70 3.55

η 0.648 0.467 0.298 0.138

A=cF 0.036 0.127 0.260 0.502

yizol 0.020 0.054 0.098 0.189

14.1 General Approach 295



importance; the left hand side of Eq. (14.1.27) contains only the cost and
U. However, the dimension of Eq. (14.1.27) is that of a thermal resistance and does
not imply at all the cost; therefore, any system of monetary units is allowed for the
cost. During the development of the theory which led to Eq. (14.1.27), the cost was
introduced in monetary units per unit of time, but, as the time unit simplifies, this
choice is not essential. Accordingly, the whole capital can be used in calculations
(i.e., the cost for the entire life of the equipment).

The cost of the classical fuel influences the optimal design solution only through
Eq. (14.1.21), which involves both cost factors, in virtue of Eq. (14.1.14). It applies
only to determine the expansion of the investment beyond which the costs outweigh
the expected benefits. In this approach, it is necessary to use consistent units of
time, both in defining the cost and the time-averaged values of the solar irradiance
and working fluid temperature.

Computation of the annual profit by using Eq. (14.1.14) implicitly assumes that
all the heat produced during the operation of the collector results in savings of fuel
with a constant unit cost. If this assumption is not valid, it is necessary either to
exclude from the definition of the duration of the operating time those periods were
unused amount of heat have been produced, or to properly decrease the unit cost of
fuel. The last of these possible adaptations suggests that the hypothesis of a constant
cost does not influence the distribution of U, but influences the total value of the
investment.

14.2 More Involved Treatment

14.2.1 Introduction

The model proposed by Kovarik (1975) (see Sect. 14.1) is based on a collector
energy balance equation that can be accepted as a rough approximation only. Also,
in the past decades the number of solar thermal applications increased and diver-
sified significantly. Now it is clear that the optimization depends on the way the
investor uses the thermal energy obtained from solar energy conversion. These
aspects were treated by Badescu (2006) and the main results are presented in this
section.

Two are the main objectives. First, a sizing procedure for the collection surface
area is developed. Second, a procedure to find the best local design solution is
proposed. In practice, this procedure may be implemented by using various
objective functions, such as the revenue factor, the cost of the collection area, the
net present value and the internal return rate. The theoretical approach of Sect. 14.1
is generalized as follows. First, additional information about the end-user appli-
cation is included in the analysis in terms of the costs of the saved primary energy.
Three different solar energy applications are considered as examples. Second, a
more appropriate collector energy balance equation than that used in Sect. 14.1 is
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adopted and some approximations are relaxed. Third, a much more involved
flat-plate solar collector model is proposed and measured meteorological data are
used in calculations.

14.2.2 Theory

14.2.2.1 The Optimization Problem

Denote by Fnec the energy rate necessary to be received or removed in a given user
application. It could be a heat rate, a mechanical power or a rate of any other form
of transferred energy. Examples are given below. The model developed in
Sect. 14.1 referred to a heat rate and is a particular case of the general approach
proposed here. The energy rate Fnec is transferred by using a (primary) conventional
energy transfer system and a (secondary) system based on solar energy conversion.
The need for the primary system comes from the fluctuating time distribution of
solar radiation and possibly from other reasons. The cost of one energy unit
received or removed by using the primary system is denoted by c1 ðMU=JÞ (here
MU is a shorthand for “monetary unit”). This includes the primary system operation
cost, considered first by Kovarik (1975). One denotes by Fu the energy rate
transferred by using the solar energy conversion system. Both the investment and
the operation costs of the secondary system, per unit time, are proportional to the
solar energy collection surface area A. They are written together as

c2A � c#2 þ c!2
� 	

A, with c2 MU m�2s�1
� �

a constant. Here c#2 and c!2 are the

investment and operation costs per unit area and unit time, respectively. The total
energy transfer cost per unit time, cT , is given by cT Að Þ ¼ c1 Fnec � Fuð Þþ c2A.
There is a value of A that makes the total cost cT a minimum. The optimization
problem consists in finding that value of the surface area and the optimal structure
of the collection system. More details about defining this problem are given in
Sect. 14.1 and Kovarik (1975). Only necessary new expressions are presented here.
Other objective functions than the total cost may also be envisaged. Examples are
given below.

14.2.2.2 Time Averaged Energy Balance Equation

Let Dttot and Dt be the maximum daylight duration during a year and the yearly
operation time of the collection system, respectively. The increase of working fluid
enthalpy associated to the increase dA of solar energy collection surface area may
be found by integration during Dttot of the usual Hottel-Whillier-Bliss equation.
Only contributions during Dt are relevant and this yields:
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ZDt

0

_mcpdT
�� �
dt ¼

ZDt

0

G�F�
Rg

�
0 � U�

LF
�
R T�

fi � T�
a

� 	h i
dA

n o
dt ð14:2:1Þ

The symbols in Eq. (14.2.1) have the usual meaning. Equation (14.2.1) is a
more appropriate energy balance equation than Eq. (14.1.3). It includes the heat
removal factor F�

R and the inlet fluid temperature T�
fi . Averaged quantities over the

time interval Dttot are now defined:

G � 1
Dttot

ZDt

0

G�dt; Ta � 1
Dttot

ZDt

0

T�
a

� �þ
dt; T � 1

Dttot

ZDt

0

T�
fi � T�

a

� 	þ
dt

cF � 1
DttotdT

ZDt

0

_mcpdT�� �þ
dt; ~g0 �

1
DttotG

ZDt

0

G�F�
Rg

�
0

� �þ
dt;

~U � 1
DttotT

ZDt

0

U�
LF

�
R T�

fi � T�
a

� 	þ
dt:

ð14:2:2a–fÞ

Here G and Ta are the averaged solar global irradiance and ambient temperature,
respectively, while T is the average level of working fluid temperature (with the
ambient temperature as a reference) at the inlet of the collection surface area A. cF
defined by Eq. (14.2.2d) is a factor related to the fluid mass flow rate. Also, dT is
the increase in average working fluid inlet temperature associated to the increase dA
of the collection surface area. The other two quantities, ~g0 and ~U, are the average
modified optical efficiency and overall heat loss coefficient, respectively (they are
“modified” because they are affected by the heat removal factor). The “+” super-
script in Eqs. (14.2.2c–f) shows that only those moments associated to useful heat
provided by the collection system (i.e. positive values of the integrand in the r.h.s.
of Eq. (14.2.1)) contribute to the integrals. This is an important improvement of the
theory proposed in Sect. 14.1, where all moments during Dttot were assumed to
contribute in the integrals defining time averaged quantities. Note the definition of
~g0 in Eq. (14.2.2e), where the solar global irradiance G averaged over the whole
Dttot interval (and not only on those moments with positive useful heat) is used in
the denominator. This makes possible to compare the averaged efficiency of dif-
ferent solar collectors.

The time averaged form of Eq. (14.2.1) is cFdT ¼ G~g0 � ~UT
� �

dA and the
averaged solar energy conversion efficiency η of the elemental surface area dA is
defined as g � cFdT= GdAð Þ ¼ ~g0 � ~UT=G.
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If the time variation of T�
fi is known (or assumed known), T may be obtained by

using Eq. (14.2.2c). Therefore, instead of averaged values of T�
fi one refers to input

values of T.

14.2.3 Solar Energy Applications

The costs associated with the thermal energy rate cFdT depend on the energy
transfer application. Three cases denoted (a), (b) and (c) are considered here as
examples. Note that only the case (a) was considered in Sect. 14.1.

(a) The energy transferred is a heat rate received by a body and the primary
energy transfer system is a conventional heater. Thus, both energy rates Fa

nec and F
a
u

are heat rates. The increase of the heat rate supplied by the solar energy conversion
system, dFa

u , associated to the increase dA of collection area is:

dFa
u ¼ cFdT ð14:2:3aÞ

Let ca1 be the unitary cost of transferred heat. Then, the economical benefit d$a of
dFa

u is:

d$a ¼ ca1dF
a
u ¼ ca1cFdT ¼ ca1GgdA ð14:2:4aÞ

Here Eq. (14.2.3a) and the efficiency definition were also used.
(b) The energy transferred is a heat rate received by a body at temperature Ta þ T

and the primary energy transfer system is a vapor compression heat pump. The
energy rate Fb

nec is the mechanical power necessary to drive the heat pump com-
pressor. Part of this power (i.e. Fb

u ) is saved by using the heat supplied by the solar
energy conversion system. A Carnot heat pump transferring thermal energy from
temperature Ta to temperature Ta þ T is considered first. Its coefficient of perfor-
mance is COP ¼ Ta þ Tð Þ= Ta þ Tð Þ � Ta½ � ¼ Ta þ Tð Þ=T . One could improve the
results accuracy at the level of actual heat pumps operation, by reducing the saved
power for the reversible devices typically by 50%, to take this way into account the
effect of thermodynamic irreversibilities. Therefore the mechanical power dFb

u
saved by using the heat rate cFdT is:

dFb
u ¼ 1

2
cFdT
COP

¼ 1
2

T
Ta þ T

cFdT ð14:2:3bÞ

Let cb1 be the unitary cost of work at user application. Then, the economical
benefit d$b of dFb

u is:
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d$b ¼ cb1dF
b
u ¼ cb1cF

1
2

T
Ta þ T

dT ¼ cb1
1
2

T
Ta þ T

GgdA ð14:2:4bÞ

Here Eq. (14.2.3b) and the efficiency definition were used.
(c) The energy transferred is a heat rate extracted from a body at temperature

Tvap � Ta � DT DT [ 0ð Þ and the primary energy transfer system is an absorption
refrigerator. The energy rate Fc

nec is a heat rate extracted from the body. Part of this
rate (i.e. Fc

u) is saved by using the heat supplied by the solar energy conversion
system. An ideal absorption refrigerator operating between temperatures Tvap and
Ta is considered first. Similarly to case (b), the saved heat rate is reduced by 50% to
take account of thermodynamic irreversibilities. Therefore, the saved heat rate dFc

u
associated to the heat rate cFdT provided by the solar collectors is given by:

dFc
u ¼ cFdT

1
2

T
Ta þ T

Ta � DT
Ta � Ta � DTð Þ ¼ cFdTeref

1
2

T
Ta þ T

eref � Ta � DT
DT

� �

ð14:2:3cÞ

Let cc1 be the unitary cost of heat rate extracted at user application. Then, the
economical benefit d$c of dFc

u is:

d$c ¼ cc1dF
c
u ¼ cb1cFeref

1
2

T
Ta þ T

dT ¼ cc1eref
1
2

T
Ta þ T

GgdA ð14:2:4cÞ

Here Eq. (14.2.3c) and the efficiency definition were used.

14.2.4 Economical Indices

Optimization tools may be based on different objective functions, such as life-cycle
savings, pay-back period and internal rate of return. The life cycle cost savings
method has proved to be a simple and practical method to derive the optimization
function in terms of the basic costs of the system, the load, and design parameters
(Colle and Vidal 2004). Usually, the cost function is expressed in terms of the solar
collector area, the solar fraction f, the capital cost and the auxiliary energy cost. As
an example, the Relative Areas method is based on correlation to results obtained
by f-chart and it offers a quick and reasonably accurate calculation of the optimum
collector area based on life cycle cost analysis (for further comments see Tsilingiris
(1996)). Graphical methods to obtain the optimal area and overall annual thermal
return were also proposed (Lunde 1982). A good coverage of optimization studies
in the field of solar collectors may be found in Al-Nimr et al. (1998) and references
therein.

Various performance indicators may be associated to a given solar energy
application. Four economical indices are used in this section as examples. The so
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called “revenue” factor R and the cost CA per unit time of the solar energy col-
lection surface area A are the two economical indices defined and used in
Sect. 14.1. R is defined as the ratio between the economical benefit d$ and the
investment cost c2dA, both of them associated to the increase dA of collection area.
For the three solar energy applications described above the factor R becomes,
respectively:

Ra ¼ ca1gG
c2

ð14:2:5aÞ

Rb ¼ cb1gG
c2

T
Ta þ T

ð14:2:5bÞ

Rc ¼ ca1gG
c2

eref
T

Ta þ T
ð14:2:5cÞ

Equations (14.2.4a, b, c) were used to derive Eqs. (14.2.5a, b, c). Only
over-unitary R-values are of interest in practice.

The collection area cost is obtained by integration:

CA ¼
ZA

0

c2dA ¼
ZT2

T1

c2cF
gG

dT ð14:2:6Þ

Here the efficiency definition was used while T1 and T2 are the time-averaged
working fluid temperature at the inlet and exit of the collection area, respectively,
defined by using Eq. (14.2.2c). Equation (14.2.6) may be used for all particular
applications (a), (b) and (c) as the integrand only depends on the details of solar
energy conversion system. However, when the “revenue” factors Ri i ¼ a; b; cð Þ are
used, CA takes three different equivalent forms, namely:

CA ¼
ZT2

T1

c1cF
Ra

dT ¼
ZT2

T1

c1cF
Rb

T
Ta þ T

dT ¼
ZT2

T1

c1cF
Rc

eref
T

Ta þ T
dT ð14:2:7Þ

Here Eqs. (14.2.5) and (14.2.6) were used.
Other two economical indices are used in this section: the net present value

(NPV) and the internal rate of return (IRR).
The NPV-based approach is used in capital budgeting where the present value of

cash inflows is subtracted by the present value of cash outflows. NPV is used to
analyze the profitability of an investment or project. If the NPV of a prospective
project is positive, then it should be accepted. However, if it is negative, then the
project probably should be rejected because cash flows are negative. One denotes

14.2 More Involved Treatment 301



Y! �
XY
t¼1

1
1þ rð Þt ð14:2:8Þ

where Y is application lifetime (years) and r is the interest rate. One sees that
Y! � Y , which means that a positive interest rate yields an effective decrease of the
application lifetime. Then, the “reduced” net present values NPVred for the three
solar energy applications is defined by, respectively:

NPVa
red T1; T2ð Þ � NPVa T1; T2ð Þ

cFDttot
¼

ZT2

T1

ca1
Dt
Dttot

� c!2
Gg

� �
Y! � c#2

Gg
Y

( )
dT

ð14:2:9aÞ

NPVb
red T1; T2ð Þ � NPVb T1; T2ð Þ

cFDttot
¼

ZT2

T1

cb1
1
2

T
T þ Ta

Dt
Dttot

� c!2
Gg

� �
Y! � c#2

Gg
Y

( )
dT

ð14:2:9bÞ

NPVc
red T1; T2ð Þ � NPVc T1; T2ð Þ

cFDttot

¼
ZT2

T1

cc1evap
1
2

T
T þ Ta

Dt
Dttot

� c!2
Gg

� �
Y! � c#2

Gg
Y

( )
dT ð14:2:9cÞ

IRR is the interest rate that makes net present value of all cash flow equal to zero.
Essentially, this is the return that a company would earn if they expanded or
invested in themselves, rather than investing that money abroad.
IRRi T1; T2ð Þ i ¼ a; b; cð Þ may be found by solving numerically the associated
equations NPVi T1; T2ð Þ ¼ 0 i ¼ a; b; cð Þ.

These and other economical indices were already used to quantify the perfor-
mance of solar energy applications. For example, the effect of changing collector
area on life-cycle savings, pay-back period and internal rate of return of a solar
water heating system was studied by Schroder and Reddemann (1982). These
authors found that unlike life-cycle savings, the pay-back period and internal rate of
return are not suitable for optimizing the collector-system design. The net present
value was used by Al-Nimr et al. (1998) to calculate the optimum collector length.
There are, however, some problems when using NPV and IRR for energy related
studies. Indeed, the (saved) energy cost is expected to increase at a higher speed
than inflation. These prompted some researchers to use just present day costs (not
affected by inflation) in their profitability studies (Lund 1995; Tsilingiris 1996).
Particularly, the effect of increasing the collector area on the marginal collector
output is studied by Lund (1995) by using an ad hoc economic factor similar to the
revenue factor of Kovarik (1975) (see Sect. 14.1).

302 14 Optimization of Solar Energy Collection Systems



14.2.5 Meteorological and Actinometric Data

Meteorological data measured in Bucharest (latitude 45.5°N, longitude 26.2°E,
altitude 131 m above sea level) by the Romanian Meteorological and Hydrological
Institute are used in this section (INMH 1961). The climate of Bucharest is tem-
perate—continental with a climatic index of continentality (Ivanov) of 131.9%.
The METEORAR database consists of values measured at 1.00, 7.00, 13.00 and
19.00 local standard time (LST) for ambient temperature, air relative humidity and
point cloudiness. Also, the database contains daily average values for the atmo-
spheric pressure.

Computations are performed on an hourly basis and the following procedure is
adopted. The temperature is interpolated linearly between neighboring measured
data for the whole year or shorter time periods, depending on application, by using
the METEORAR database. Other details may be found in Badescu (2000).

The global solar irradiance is first evaluated on a horizontal surface by using the
model proposed by Badescu (2002). This model uses as entries the point cloudi-
ness, the ambient temperature, the atmospheric pressure and the air relative
humidity. A simple isotropic model is subsequently used to evaluate the direct,
diffuse and ground-reflected solar irradiance on a tilted surface by using as input the
flux of solar energy incident on a horizontal surface (see, e.g., Oancea et al. (1981)).
The ground albedo is always assumed to be 0.2 (Badescu 1987). Computations are
performed on an hourly basis for the whole year or for shorter time periods
depending on application.

14.2.6 Model Implementation

14.2.6.1 Computing Procedure

A flat-plate solar collector system is considered. A collector model was developed
based on standard relationships (Duffie and Beckman 1975). It allows the evalua-
tion of the optical efficiency in case of a transparent cover consisting of N identical
layers as a function of radiation incidence angle, by taking into account both
reflection and absorption. Also, the overall heat loss coefficient U�

L and the collector
heat removal factor F�

R are computed as a function of the mean plate temperature T�
p

and the structure of the transparent cover and bottom insulation. Iterative proce-
dures are necessary because the quantities U�

L;F
�
R and the temperature T�

p should be
evaluated simultaneously.

The computing procedure is as follows. A time interval (i.e. a season or the
whole year) is selected. The associated average values G and Ta are computed by
using Eqs. (14.2.2a, b). The subsequent computations are performed for a given
(constant) value of inlet fluid temperature T�

fi . Usage of Eqs. (14.2.2b) and (14.2.2c)
allows to obtain the average temperature difference T. When the collector design is
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known, the following procedure applies. The remaining average values defined by
Eqs. (14.2.2d–f) are evaluated. Note that the averaging procedure should be repe-
ated a number of times because the overall heat loss coefficient is a function of the
(yet unknown) plate temperature T�

p . First, a guess value for T
�
p is adopted. Next, U�

L

and F�
R are evaluated. Finally, a new value for T�

p is obtained. It is compared with
the guessed T�

p value and if they differ significantly the procedure is repeated by
using the new T�

p value as entry. This completes the procedure in case of known
collector design. When one of the design parameters (for example, the thickness of
the bottom insulation Lb) is free to vary, the above procedure is repeated with
different values of this free parameter used as inputs until a certain economical
factor used as the objective function is extremized.

14.2.6.2 Model Validation

One of the most popular and tested renewable energy software packages in the
public domain is Retscreen International. Many experts have contributed to the
development, testing and validation of the RETScreen Solar Water Heating Project
Model (RSWHM) (Retscreen 2001–2004).

Results obtained by using the present model were compared with results pre-
dicted by RSWHM. The same input data were used for both models, when possible.
Mean monthly average values were computed for global solar irradiance and
ambient air temperature in Bucharest by using the METEORAR database. The
RETScreen database was used to provide the input data for the monthly averaged
values of wind speed.

A South-oriented collector was considered. The collector slope angle was 45°
which is close to the optimum angle for a yearly operation. The RETScreen
application type was Service Hot Water and system configuration was: No Storage.
The hot water use was 400 L/day. This entry is needed by RETScreen software for
proper operation.

RSWHM uses constant (i.e. time and temperature-independent) entries for F�
Rg

�
0

and F�
RU

�
L. The following values were used in computations: F�

Rg
�
0 ¼ 0:7 and

F�
RU

�
L ¼ 3:85 Wm�2 K�1. The present method was slightly changed to use the

same temperature-independent entries. The yearly average air temperature com-
puted by the RETScreen package is Ta ¼ 11:2 �C and this value was adopted to
evaluated the quantity T ¼ T�

fi � Ta.
Input (constant) values for RETScreen software are cold water temperature (i.e.

T�
fi ) and desired water temperature (i.e. T�

f ;out). Computations were performed for six

set of values T�
fi ¼ T þ Ta; T�

f ;out ¼ T�
fi þ 10 ¼ T þ Ta þ 10

� 	
(in degrees Celsius).

Results are given for the ratio Ac T ; T þ 10ð Þ=cF in Fig. 14.4 where the bars
indicating the ±2.5% deviation are also included. There is good concordance
between the two models, with slight overestimation by the present model. Also,
both methods predict that the solar fraction f decreases from 0.52 to 0.42 when
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T increases from 10 to 60 °C. This is in agreement with the current practice of
sizing the solar collector area in such a way that overproduction of solar heat in the
warm season is avoided (Lund 2005).

14.2.6.3 Input Values

The cost c1 UM=Jð Þ adopted in computation for the three solar energy applications
is as follows: ca1 ¼ 0:916 � 10�3 (Diesel fuel), cb1 ¼ 0:712 � 10�3 (electricity) and
cc1 ¼ 0:650 � 10�3 (natural gas), respectively. All cost values in this paper corre-
spond to a particular Romanian market and UM in this case is Romanian Leu.
A Y ¼ 10 years life-time was assumed for all solar energy applications.

Table 14.2 shows the values adopted for the flat-plate solar collector treated in
this section. Four design solutions denoted I, II, III and IV are considered. They are
characterized by different numbers N of transparent layers and thickness Lb of the
bottom thermal insulation. The costs c2 UM m�2s�1

� �
associated to these col-

lectors are: c2;I ¼ 2:78 � 10�6, c2;II ¼ 2:93 � 10�6, c2;III ¼ 3:03 � 10�6 and
c2;IV ¼ 3:25 � 10�6, respectively. In all cases the cost c2 was divided into its

components as follows: investment cost c#2 ¼ 0:95c2 and operation cost
c!2 ¼ 0:05c2.

South oriented collectors are considered but their (near) optimum tilt angle
depends on application (and period of operation) as follows. For the heating
application (a) the solar collectors are tilted 45° and operate all over the year; for the
heat pump application (b) the collectors are tilted 55° and operate during the cold
season (i.e. November–March); for the refrigeration application (c) the collectors
are tilted 20° and operate during the warm season (i.e. April–October).

Fig. 14.4 Ratio
AðT ;T þ 10Þ=cF [Ks3/kg]
predicted by the present
model and Retscreen
International Software
(Retscreen 2001–2004),
respectively. ±2.5% deviation
bars are also shown
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The typical meteorological year assumption is adopted (see e.g. Gazela and
Mathioulakis (2001)). This allows meteorological data from a single year (i.e. 1961)
to be used in computations (Badescu 2002). The averaged wind speed for the three
time periods is as follows: (a) wwind ¼ 2:1 m=s, (b) wwind ¼ 2:48 m=s and
(c) wwind ¼ 1:8 m=s.

Solar collectors with uniformly and non-uniformly distributed parameters are
studied in Sects. 14.2.7 and 14.2.8, respectively, by using the theoretical approach
of Sect. 14.2.2. Computations are performed by using the meteorological database
presented in Sect. 14.2.5.

14.2.7 Solar Collectors with Optimal Uniformly Distributed
Parameters

From Eqs. (14.2.5) one learns that the “revenue” factors Riði ¼ a; b; cÞ depend on:
(1) the meteorological features of the site (through G and Ta), (2) the application
(through the costs ci1ði ¼ a; b; cÞ and the factor eref in case (c)), (3) the solar

Table 14.2 Flat-plate solar
collector system

Quantity Value

Transparent cover
Thickness of one transparent layer 0.004 (m)

Relative refraction index 1.526

Absorption coefficient (water white
glass)

4 (m−1)

Emittance 0.88

Number of transparent layers N
Collectors I and III 1

Collectors II and IV 2

Absorber plate
Thickness 0.0015 (m)

Absorptance 0.9

Emittance 0.1

Thermal conductivity (aluminum) 211 (Wm−1 K−1)

Distance between tubes 0.1 (m)

Tube external diameter 0.013 (m)

Tube internal diameter 0.01 (m)

Bond conductance 0.03 (mK W−1)

Bottom thermal insulation
Thermal conductivity (polyurethane) 0.034 (Wm−1 K−1)

Thickness Lb
Collectors I and II 0.05 (m)

Collectors III and IV 0.1 (m)
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collector design and economics (through ~g0, ~U and c2) and (4) the operation regime
(through the average temperature difference T). Among these four factor categories
the average temperature difference T only may be at user’s choice. The influence of
T on various economical indices is shortly analyzed in case of the four solar
collectors of Table 14.2.

The dependence of the revenue factor R, reduced net present value
NPVred T; T þ 1ð Þ and internal interest rate IRR T; T þ 1ð Þ on the average tempera-
ture difference T is shown in Fig. 14.5 for the warm season application (c). The
revenue factor R exceeds unity in case the inlet working fluid temperature exceeds a
certain “threshold value”, depending on solar collector design (Fig. 14.5c). All the
four threshold temperatures are lower than 50°. When NPV and IRR are considered,
other threshold temperature values are defined. They are associated to NPV ¼ 0 and
IRR ¼ r � 0:025, respectively. The temperature threshold values in case of NPV
are around 60° for collectors I and II. The other two collectors have poor eco-
nomical performance as the associated NPV is negative for all operation tempera-
tures (Fig. 14.5a). The IRR values of Fig. 14.5b show that the collector I may be
used economically for T between 55 and 70° while collector II is recommended for
operation at T [ 65�. Collectors III and IV are not recommended as the associated
IRR values do not exceed the interest rate for all T values.

Fig. 14.5 Absorption refrigeration system operating in the warm season. a Reduced net present
value NPVred UM � KJ�1

� �
, b internal return rate IRR and c revenue factor R
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None of the four collectors makes profitable the cold season solar energy
application (b). This means that R\1, NPV\0 and IRR\r � 0:025 for the whole
range of T considered here.

Figure 14.6 shows the revenue factor RðTÞ and the reduced net present value
NPVredðT; T þ 1Þ in case of the solar energy application (a). The temperature
interval where NPVredðT ; T þ 1Þ is positive depends on collector design
(Fig. 14.6a). Generally, the “threshold value” of T is less than 50 °C. However,
when the larger interval of operation temperature ð0; TÞ is considered, NPVred 0; Tð Þ
is always positive (Fig. 14.6b). Similarly, the revenue factor R is over-unitary
whatever the operation temperature T (Fig. 14.6c).

It is interesting to see that using different economical indices induces different
hierarchies over the set of solar collectors. For example, NPVredðT ; T þ 1Þ suggests
that collector I as the best design solution for small temperatures T and collector IV
as the best candidate for larger values of T (without exceeding however 50°)
(Fig. 14.6a). The revenue factor R suggests another hierarchy, with collector I being
the best candidate for almost all temperatures T (Fig. 14.6c). NPVred 0; Tð Þ rec-
ommends the collector IV as the best design solution on large temperature intervals
(Fig. 14.6b).

Using solar energy in case of the heating application (a) based on a classical
heater (Fig. 14.6c) has a considerably larger revenue factor than in case of the
absorption refrigeration application (c) (Fig. 14.5c). This is in agreement with
current practice. Note the different shape of the function R Tð Þ in the two cases. The
decreasing function R Tð Þ of the application (a) is in concordance with the common
sense stating that solar collectors perform better at lower temperatures. In case of
the application (c) however, the revenue factor R is under-unitary at low values of

Fig. 14.6 Heating system
operating all over the year. a,
b Reduced net present value
NPVred UM � KJ�1

� �
and

c revenue factor R
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T despite the collector efficiency on this range of temperatures is very high.
R increases by further increasing T and shows a maximum for a certain optimum
average temperature difference. Both the maximum of R and the optimum tem-
perature difference depends on collector design.

Generally speaking, the dependence of Ri i ¼ b; cð Þ on T is quadratic in case of
both applications (b) and (c). The maximum value of Ri i ¼ b; cð Þ and the range of
average temperature differences associated to over-unitary R-values are easy to
derive and are not given explicitly here.

The interesting theorem 1 of Kovarik (1975) (see Sect. 14.1), showing how the
best solar collector should be selected according to the operation temperature, is
valid just in case of a constant value of ~U. Here a more general approach is adopted.
Any economical factor may be used and the revenue factor is adopted here just as
an example. Consider for instance the solar collectors I and II. The revenue factors
associated to these collectors are denoted Ri

I Tð Þ and Ri
IIðTÞði ¼ a; b; cÞ, respec-

tively. They equal each other (i.e. Ri
I ¼ Ri

II) for a particular temperature difference
(say TI;II) given by:

TI;II ¼ G
~g0c1=c2ð ÞI� ~g0c1=c2ð ÞII
~Uc1=c2

� �
I� ~Uc1=c2

� �
II

ð14:2:10Þ

Here the Eqs. (14.2.5) were used. Note that TI;II does not depend on the par-
ticular solar energy application but just on solar collector design and meteorological
data. This is not easy to see by visual inspection of Figs. 14.5c and 14.6c but it is
obvious from Eq. (14.2.10). Also, note that solving Eq. (14.2.10) requires in fact an
iterative procedure since both ~UI and ~UII depend on TI;II . For temperatures T lower
than TI;II , Ri

I is higher than Ri
II . This means that collector I should be preferred from

an economic point of view for that range of temperatures. The other collector gives
better performance for T [ TI;II .

Assume a solar thermal application and its solar collection area with the inlet and
outlet of the working fluid at average temperature differences T1 and T2, respec-
tively. Also, assume that the investor must choose between more than two solar
collectors. Equation (14.2.10) may be used to divide the range ½T1; T2� into two or
more temperature intervals and to associate to each interval a best solar collector
(from an economic point of view).

Note that the efficiencies of collectors I and II equal each other (i.e.
giI ¼ giII i ¼ a; b; cð Þ) for a particular temperature difference (say T 0

I;II) given by:

T 0
I;II ¼ G

~g0ð ÞI� ~g0ð ÞII
~U

� �
I� ~U

� �
II

ð14:2:11Þ

Here the efficiency definition was used. Equation (14.2.11) may be used to
divide the range T1; T2½ � into two or more temperature intervals and to associate to
each interval a best solar collector (from a thermodynamic point of view). It is
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obvious that generally T 0
I;II is different from TI;II and ranking the solar collectors

from the point of view of their efficiency and revenue factor, respectively, will give
different results.

Consider a part of the collection surface consisting of a single type of collector.
By integration of the efficiency definition one obtains the necessary surface area
A T1; T2ð Þ which allows the average temperature difference to rise from T1 to T2:

A T1; T2ð Þ=cF ¼
ZT2

T1

dT
gG

ð14:2:12Þ

Figure 14.7 shows the ratio A 0; Tð Þ=cF ¼ c�1
F

PT�1
T 0¼0;1;... A T 0; T 0 þ 1ð Þ as a

function of T for the solar collectors I and II of Table 14.2. The necessary collection
area is slightly smaller in case of collector I than in case of collector II. Therefore, if
a single type of collector must be used, collector I should be selected. In case both
types of collectors are available, a better solution exists. The numerical example
below may be relevant.

Assume T1 ¼ 0 and T2 ¼ 80 �C. From Fig. 14.7 one finds that when collector I
is used, the necessary collection area is AI 0; 80ð Þ=cF ¼ 0:4892 and its cost pre-
dicted by Eq. (14.2.6) is CI=cF ¼ c2;IAI 0; 80ð Þ=cF ¼ 215:25. Similarly,
AII 0; 80ð Þ=cF ¼ 0:4887 and CII=cF ¼ c2;IIAII 0; 80ð Þ=cF ¼ 227:25. From Fig. 14.6c
one learns that TI;II ¼ 63 �C. Therefore, the best choice is to use collector I for
T\TI;II and collector II at higher values of T. Figure 14.7 gives: AI 0; 63ð Þ=cF ¼
0:3698 and AII 0; 65ð Þ=cF ¼ 0:3806. Consequently, the optimized total collection
area consists of collectors of type I (area AI 0; 65ð Þ ¼ 0:3698cF) operating below

Fig. 14.7 Ratio A 0;Tð Þ=cF [Ks3/kg]. Results predicted by the approximate theory of Sect. 14.1
and the present “exact” model Eq. (14.2.12)
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TI;II ¼ 63 �C and collectors of type II (area AII 0; 80ð Þ � AII 0; 63ð Þ ¼ 0:1081cF)
operating above TI;II ¼ 63 �C. The cost of the complex collection system is
c2;IAI 0; 63ð Þ=cF þ c2;II AII 0; 80ð Þ � AII 0; 63ð Þ½ �=cF ¼ 212:97, which is lower than
the cost of a collection system consisting only of collectors of type I, as expected.
Note, however, that combining different collectors in the same solar thermal field
may be not an easy task in real operation.

The particular case when ~U does not depend on T is briefly considered now. This
approximation is often used in practice. Then, the collector efficiency η is linear in
T and this makes Ra a decreasing function of T (see Eq. (14.2.5a)). The maximum
value of Ra (that occurs at T ¼ 0) and the range of operating temperatures asso-
ciated to over-unitary R-values may be easily found and are not shown explicitly
here. Equation (14.2.12) may be worked out and the result is:

A T1; T2ð Þ ¼ cF
~U
ln
G~g0 � ~UT1
G~g0 � ~UT2

ð14:2:13Þ

Results obtained by using the approximate Eq. (14.2.13) are shown in Fig. 14.7
in case of collector I of Table 14.2. However, time dependent values of ~U and ~g0
were used as entries. There are differences as reported to the results predicted by the
“exact” Eq. (14.2.12). The approximate results are 8% larger than the exact results.
This makes sometimes the assumption of a constant ~U reasonable, especially at
smaller operation temperatures.

14.2.8 Solar Collectors with Optimal Non-uniformly
Distributed Parameters

In Sect. 14.2.7 it was proved that systems consisting in combinations of different
collector types may be a better solution than systems consisting of a single collector
type. One could imagine the extreme case of a collection system with continuously
space variable parameters. Such a system may be optimized from the point of view
of a given economical indicator. The cost CA of the collection area per unit time is
used as an example now. The collector efficiency η is function of the modified
optical efficiency ~g0 and the modified heat loss coefficient ~U. Generally, the cost c2
is function of the same two parameters. Then, Eq. (14.2.6) yields:

CA ~g0; ~U
� � ¼

ZT2

T1

c2 ~g0; ~U
� �

cF
g ~g0; ~U
� �

G
dT ð14:2:14Þ

Therefore, CA is a function of two variables. The minimum value of CA is
obtained by using the usual conditions: @CA=@~g0 ¼ @CA=@ ~U ¼ 0. After some
algebra the following two equations are obtained:
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1
~g
@~g
@~g0

¼ 1
c2

@c2
@~g0

ð14:2:15aÞ

1
~g
@~g

@ ~U
¼ 1

c2

@c2
@ ~U

ð14:2:15bÞ

Equations (14.2.15) allow to find the optimal distribution of ~g0 and ~U.
Equation (14.2.15b) was first reported by Kovarik (1975), under the assumption
that both ~g and c2 are functions of a single parameter, namely ~U. The equation
system (14.2.15) gives the complete solution. A more elegant formulation of the
optimum parameters distribution is derived next (Badescu 2006). The unit vectors
�i~g0 and �i~U are defined now in the bi-dimensional parametric space ~g0; ~U

� �
. The

gradient r~g0;~U
in this space is defined by

r~g0;~U
� �i~g0

@

@~g0
þ�i~U

@

@ ~U
ð14:2:16Þ

One multiplies Eqs. (14.2.15a) and (14.2.15b) by �i~g0 and �i~U , respectively, and
one adds the two resulting relations. After some algebra one finds the following
condition to be fulfilled by the optimum parameters distribution:

r~g0;~U
ln

~g
c2

� �� �
¼ 0 ð14:2:17Þ

Equation (14.2.17) may be stated in the following form (Badescu 2006):

Theorem The modified optical efficiency ~g0 and the modified overall heat loss
coefficient ~U in an optimal collection system are distributed in such a way that the
gradient of ln ~g=c2ð Þ in the bi-dimensional parametric space ~g0; ~U

� �
vanishes.

This generalizes Theorem 2 presented by Kovarik (1975) (see Sect. 14.1), in
case of a one-dimensional parametric space.

The above theory is used in the following example. The model of flat-plate
collector system presented in Table 14.2 is used. Two design parameters are
however free to change, namely the number of transparent layers N and the
thickness of the bottom thermal insulation Lb. The cost c2 depends on N and Lb
according to the following model. Three contributions to c2 are taken into account:
(i) costs c2;indep not related to the transparent cover and bottom thermal insulation,
(ii) costs c2;cover related to the transparent cover and (iii) costs c2;insulation related to
the bottom thermal insulation. The following assumptions are adopted:

c2;indep ¼ 1:79 � 10�6 ð14:2:18aÞ

c2;cover ¼ 0:378þ 0:252Nð Þ � 10�6 N[ 0ð Þ
0 ðN ¼ 0Þ

�
ð14:2:18bÞ
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c2;insulation ¼ 0:252þ 4:838Lbð Þ � 10�6 Lb [ 0ð Þ
0 Lb ¼ 0ð Þ

�
ð14:2:18cÞ

Here Lb enters in meters and the units for all contributions to c2 are
UM m�2s�1. The expression of c2;cover for N[ 0 in Eq. (14.2.18b) takes account
that part of the transparent cover cost does not depend (or slightly depends) on
N (for example the cover frame cost). A similar explanation applies in case of
c2;insulation for Lb [ 0 in Eq. (14.2.18c).

Equation (14.2.17) was solved for different average temperature differences T in
case of both cold season application (b) and warm season application (c).
Figure 14.8 shows the optimum number of transparent layers N and the optimum
bottom thermal insulation thickness Lb. For very small values of T the unglazed
solar collector is the best economical solution for both applications (Fig. 14.8a).
When T increases a single transparent layer collector should be used. The threshold
temperature for which N jumps from 0 to 1 is smaller for the cold season appli-
cation, as expected. Double transparent layer collectors become the optimal solution
at rather high temperatures, exceeding 70 and 76 °C for the cold season and warm
season application, respectively. A collector without bottom thermal insulation is
the best solution at very small temperatures T (Fig. 14.8b). The thermal insulation
becomes necessary in the cold season application when T exceeds 6 °C. This
temperature equals the threshold temperature shown in Fig. 14.8a. When the warm
season application is considered, the use of a thermal insulation is recommended for
T exceeding 7 °C, which is the same value as the threshold temperature in
Fig. 14.8a. The optimum thickness Lb increases by increasing T in a rather similar
manner for both applications. The smaller thickness of the bottom thermal insu-
lation for T values between 17 and 51 °C in case of the cold season application is
unexpected at first sight. Indeed, when efficiency maximization is performed, Lb
results to be larger during the cold season. However, the objective function here is
the cost CA given by the integral in Eq. (14.2.14) which contains the efficiency η (in
its denominator) but also the cost c2.

Integration of Eq. (14.2.7) gives the cost CA of the necessary surface area
A 0; Tð Þ that allows the average temperature difference to rise from 0 to T. The area
A 0; Tð Þ is obtained by using Eq. (14.2.12). Results are given in Fig. 14.9a for both
applications (b) and (c). CA increases with increasing T, as expected. Two changes
in the slope of the curves CA Tð Þ may be observed at very low and high values of T,
respectively. They are associated to the change from N ¼ 0 to N ¼ 1 and from
N ¼ 1 to N ¼ 2 in the optimal solution, respectively. The change is more important
in case of (cold season) application (b). The dependence of A 0; Tð Þ on T is similar
in shape for both the warm and cold season applications (c) and (b), respectively,
with larger values corresponding to the cold season application, as expected
(Fig. 14.9b). An approximate estimation for A 0; Tð Þ may be obtained by using
Eq. (14.2.13), first proposed by Kovarik (1975). Results are shown in Fig. 14.9b.
There are rather important differences between the “exact” and the “approximate”
estimations. For the cold season application (b) the approximate Eq. (14.2.13) tends
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to underestimate the necessary collection area with as much as 17% at high tem-
peratures. More important underestimations occur for the warm season application
(c). The approximate results may be about 45% of the “exact” estimations at large
values of T.

Fig. 14.8 Solar collector system with non-uniform optimally distributed parameters. a Number of
transparent layers N and b thickness of the bottom thermal insulation Lb

Fig. 14.9 Solar collector system with non-uniform optimally distributed parameters. a The ratio
CA=cF [MU KJ−1]; b The ratio A 0; Tð Þ=cF [Ks3/kg]—results predicted by the approximate theory
of Sect. 14.1 and the “exact” Eq. (14.2.12)
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14.2.9 Conclusions

The optimization procedure based on the minimization of economical indices was
used in case of common solar collectors (i.e. with uniformly distributed parame-
ters). For given working fluid temperature required by the user the procedure allows
to select the best devices from a given set of solar collectors and to determine the
optimum temperature range of operation for any selected device. An optimization
procedure based on the maximum efficiency as objective function may also be
envisaged. The results predicted by the two procedures are different.

The necessary collection area estimated by using the rather common assumption
of a constant heat loss coefficient is slightly underestimated, especially at larger
operation temperatures.

Better results are obtained in case of systems with optimal non-uniformly dis-
tributed parameters. The theorem associated to Eq. (14.2.17) shows how the
modified optical efficiency and heat losses coefficient should be distributed for cost
minimization. Results show that unglazed, single-glazed and double-glazed col-
lectors should be used on the same collection area in order to obtain the best
performance. Also, the bottom insulation thickness should be changed accordingly.

The optimal design solutions obtained in this section may be seen as unrealistic
and not competitive as far as the present-day technology and market characteristics
are concerned. They may be used however as “ultimate” solutions, giving therefore
a measure for the potential of improvement of existing systems.
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Chapter 15
Flat-Plate Solar Collectors. Optimization
of Absorber Geometry

A large number of design methods for solar thermal systems were developed in the
last decades. However, the number of optimization tools is rather small and they are
based on different objective functions like life-cycle savings, pay-back period and
interval rate of return. Most of the design and optimization methods analyze sys-
tems with given structure and do not address the more difficult problem of opti-
mizing the solar collector geometry. However, several methods dealing with the
structural optimization for the whole or for a part of a solar thermal system have
been proposed (see e.g. Kovarik 1975; Bames 1981; Vaishya et al. 1981; Hollands
and Stedman 1992; Tiris et al. 1995; Al-Nimr et al. 1998).

An early procedure for the optimization of the fins geometry in common
flat-plate solar collector of registry type has been proposed by Kovarik (1978).
Kovarik studied fins with both constant and variable thickness and used two dif-
ferent objective functions. Vaishya et al. (1981) studied fins of constant thickness
while Hollands and Stedman (1992) studied fins with variable thickness. They
rightly observed that the current rectangular fins contain excess material. However,
these authors didn’t study the optimum fin shape but optimized the geometry of a
fin having a step-change in local thickness by using as objective function the
minimum amount of material. The same objective function was used by Tiris et al.
(1995) in their comparative study of four different fin shapes.

The optimization approach by Kovarik (1978) is presented in Sect. 15.1 while a
more realistic procedure is described in Sect. 15.2.

15.1 Optimization of Absorber Geometry by Using
Economic Considerations

Economic analysis is often used in the design of solar collectors. The significance
of the economic studies is however diminished by the subsequent changes in
technology and execution costs. Therefore, the tendency is to reduce the number of
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the design parameters which are directly influenced by costs. In this section the
geometry and size of the absorber plate of a solar collector of registry-type is
studied. The collector is designed to provide a maximum heat flux per unit of
investment, in normal operating conditions. The problem is addressed for absorber
plates of both uniform thickness and variable thickness and follows the approach by
Kovarik (1978).

15.1.1 Absorber Plate of Uniform Thickness

The most common solar water collector is based on parallel pipes. It contains a
number of parallel and equidistant pipes through which the fluid circulates. The
pipes are welded or glued on a uniform thickness metal plate called absorber plate.
At the top it has an area of high absorbance for solar radiation and at the bottom it
has a layer of thermal insulation. Similarly with the finned heat exchangers, the
assembly of the absorber plate and pipes can be considered as a set of pipes with
fins. The tube width, w, is equal to half of the shortest distance between two
adjacent pipes. The absorber plate receives solar radiation at intensity evenly dis-
tributed on the surface and it loses heat to the environment. The overall coefficient
of the thermal losses is denoted U. The heat flux goes from the fins (which are
heated by absorbing incident solar radiation) towards the pipes, through which the
colder working fluid is circulating. Thus, the temperature is not evenly distributed
over the fins.

The uneven temperature distribution between the pipes leads to a diminishing of
the heat flux, usually gauged by the efficiency of the fin, F, (sometimes called
Hottel factor) defined by the expression:

F ¼ p�1 tanh p p � w

ffiffiffiffiffi
U
ky

s !
ð15:1:1; 2Þ

Here tanh is the hyperbolic tangent, y is the plate thickness, k is thermal con-
ductivity of the plate material and w is the width of the fin.

The cost per unit length of pipe with fins has three components. The first
component is related to the material of the fin, being given by cvwy, where cv is the
cost per unit volume of material. Secondly, there is the cost of the transparent cover
(which, covering the absorber plate, protects it from the weather, while reducing the
thermal losses), and the cost of the bottom thermal insulation. This second com-
ponent is considered proportional to the surface area exposed to solar radiation, the
cost per unit area being cA. The third component is the cost per unit pipe length, cF ,
which should be divided between its two fins, each of width w. Consequently, the
cost per unit pipe length, J, including the contribution of the transparent cover and
bottom thermal insulation is:
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J ¼ cF
2

þ cAwþ cvwy ð15:1:3Þ

The heat flux provided per unit fin length, qb, including the Hottel factor is:

qb ¼ Fhbw ð15:1:4Þ

where hb is the heat flux density that would be obtained at a uniform temperature of
the plate, equal to the temperature at the base of the fin, given by:

hb ¼ h0 � U Tb � Tambð Þ h0 ¼ G sað Þ½ � ð15:1:40; 400Þ

Here Tb and Tamb are the temperature of the material at the base of the fin and the
equilibrium temperature of the material in the absence of solar radiation (typically
this temperature is equal to ambient temperature). Also, h0 is the flux density of
solar energy absorbed by the plate, G is the global solar irradiance incident on the
collector and sað Þ is the effective product between the transmittance of the trans-
parent cover and the absorbance of the absorber plate.

Given the Eqs. (15.1.1)–(15.1.4), the supplied heat flow per unit cost, ~Q, is given
by:

~Q ¼ qb
J
¼ hbw � tanh p

cvp
a2
2 þw a1 þwð Þ� � a1 � cA

cv
a2 � cF

cv

� �
ð15:1:5; 6; 7Þ

where a1 and a2 represent reduced cost parameters.
The parameters cF ; cA; cv may be considered as the mass of material per unit of

length, of area and of volume, respectively. In this case, the solution of the problem
is a collector of minimum weight per unit of heat produced. The dimensions of a1
and a2 are [m] and [m2].

According to the objective set previously, a fin with optimal geometry leads to
getting to the largest heat flux ~Q. The magnitude of ~Q varies, depending on the
values of w and y. The necessary condition for the achievement of the maximum
value of ~Q consists of the following two equations:

@ ~Q
@w

¼ 0
@ ~Q
@y

¼ 0 ð15:1:70; 700Þ

By differentiation of Eq. (15.1.5), the following system of equations is obtained:

a3p cosh�2 p � @p
@y

� tanh p � a3
@p
@y

þ pw

� �
¼ 0

tanh pþw cosh�2 p � @p
@w

� �
a3p� w � tanh p a3

@p
@w

þ p a1 þwð Þ
� �

¼ 0

ð15:1:8; 9Þ
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where the following notation was used:

a3 � a2
2

þw a1 þ yð Þ ð15:1:10Þ

The derivatives of p can be obtained by differentiation of Eq. (15.1.2). After
removal of the hyperbolic functions from Eqs. (15.1.8) and (15.1.9), a simple
relationship for the cross-sectional area of the fin is obtained:

wy ¼ a2
4

ð15:1:11Þ

This result shows that the cross-sectional area through an optimized fin does not
depend on the physical properties of the material, neither on the heat loss coeffi-
cient, on the ambient temperature, on the medium temperature, on the solar irra-
diance, on the cost of the transparent cover or thermal insulation, but only upon the
reduced cost parameter a2. This parameter reflects the material cost per unit volume
and unit length of pipe. Since for each pipe there are two fins, from Eq. (15.1.11) it
is inferred that the investment associated with a fin is half the investment associated
with a pipe.

The equation from which the width of the fin, w, can be calculated is obtained by
replacing y from Eq. (15.1.11) in Eq. (15.1.8). After calculation it is found:

4a1wþ 3a2
4a1wþ a2

¼ sinh s
s

s � 4

ffiffiffiffiffiffiffiffiffi
Uw3

a2k

s !" #
ð15:1:12Þ

The transcendental Eq. (15.1.12) can be solved by using numerical methods.
Figure 15.1 shows in graphical form the particular solutions of this equation.

Fig. 15.1 The width w of an
optimized steel fin, of uniform
thickness. Dimensions:
a1 [m], a2 [m

2], w [mm].
U = 4 W/(m2K)
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15.1.1.1 Example

Assume an absorber plate made of steel, of uniform thickness. The fin is designed
for minimal cost. Assume the following parameter values. The cost per unit length
of pipe, cF ¼ 1:5 $/m, the cost of the transparent cover and thermal insulation, per
unit area of the collector, cA = 30 $/m, the cost per unit volume of metal (corre-
sponding to $ 200/ton) cv = 1560 $/m3, the overall heat losses coefficient U = 4
Wm−2K−1. Thus, the reduced cost factors are: a1 ¼ cA=cv ¼ 0:01923,
a2 ¼ cF=cv ¼ 9:615� 10�4. The cross-sectional area through the fin is, according
to Eq. (15.1.11), wy ¼ 2:4� 10�4 m�2. The optimal width of the fin, obtained
using Fig. 15.1, is 97 mm. The fin thickness is 2:4� 10�4=0:097 ¼ 2:5mm.

15.1.2 Absorber Plate of Variable Thickness

Most types of flat plate solar collectors are based on uniform thickness metal
absorber plates. The pipes containing the working fluid are placed on these plates.
Since the heat flux in the plane of the absorbing plate increases in the proximity of
the pipe, the metal of the plate would be better used if the thickness of the plate
would increase with increasing the heat flux. These comments lead to the problem
of the most advantageous fins profile.

The solution to this problem consists of a collector which, for any given tem-
perature Tb at the base of the fin, provides heat at the lowest cost. This issue is
analyzed in two stages. In the first stage, a profile y xð Þ is determined (where x is a
coordinate perpendicular to the pipe, see Fig. 15.2.), that minimizes the functional
of the cost, for given fin width w. In the second stage, the optimal value of the width
w is determined.

Using the same unit cost parameters as in the case of uniform thickness fin, the
cost J 0 per unit length is:

J 0 ¼ cF
2

þ
Zw
0

cA þ cvyð Þdx ð15:1:13Þ

By using the reduced cost factors defined by Eqs. (15.1.6) and (15.1.7), from
Eq. (15.1.13) a new functional (called reduced cost) is obtained:

Fig. 15.2 Fin of variable
thickness y, through which the
heat flux q is transferred by
conduction. The fin is
undergoing a net energy flux
of density h
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J ¼ a2
2

þ
Zw
0

Ldx � a2
2

þ
Zw
0

a1 þ yð Þdx ð15:1:14Þ

This functional is to be extremized. The local temperature of the fin material is
denoted T xð Þ and the local heat flux, whose direction is towards the pipe, it denoted
q xð Þ. The problem lies in finding the profile function y xð Þ and the width w so that
J is a minimum, for a given fin base temperature T 0ð Þ ¼ Tb and a density of net
energy absorbed by the plate, h, which is given as a function of the local tem-
perature of the fin (that is h ¼ h Tð Þ). It requires, in addition, that the solution
satisfies the heat transfer differential equations:

dT
dx

¼ q
ky

dq
dx

¼ �h Tð Þ ð15:1:15; 16Þ

Equation (15.1.15) is the unidirectional conduction heat transfer equation in the
fin material (Fourier’s equation) and Eq. (15.1.16) represents the energy balance for
a volume element of the fin, of unit length, width dx and thickness y. In this element
enters both the net flux of energy hdx (having the direction perpendicular on the fin)
and the heat flux q xð Þþ dq xð Þ and exits the heat flux q xð Þ (the last two fluxes
correspond to the conduction through the fin, on the direction x, but in the opposite
sense). Figure 15.2 facilitates the understanding of the quantities that appear in
Eqs. (15.1.15) and (15.1.16).

The solution needs to satisfy the following boundary conditions:

q wð Þ ¼ 0 T 0ð Þ ¼ Tb ð15:1:17; 18Þ

Equation (15.1.17) shows that, due to the symmetry, the heat flux cancels in the
middle of the fin, where x ¼ w. Equation (15.1.18) states that the temperature is
imposed at the base of the fin, where x ¼ 0.

The variational problem thus presented is formally equivalent with an optimal
control problem, assuming q and T as state variables and y xð Þ as a control function,
to be optimized. The solution is built up by applying the Pontryagin theory.

The Hamiltonian attached to this problem is found by using Eqs. (15.1.14)–
(15.1.16):

H ¼ �Lþw1
dT
dx

þw2
dq
dx

¼ �a1 � yþw1
q
ky

� w2h Tð Þ ð15:1:19Þ

The minus sign affects L in (15.1.19) by tradition, the original formulation by
Pontryagin asking for the maximization of the Hamiltonian, while the functional in
Eq. (15.1.14) is required to be minimized. The adjoint variables wi i ¼ 1; 2ð Þ
introduced in (15.1.19) are defined by:
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dw1

dx
¼ � @H

@T
dw2

dx
¼ � @H

@q
ð15:1:20; 21Þ

and the boundary conditions:

w1 x ¼ wð Þ ¼ w2 wð Þ ¼ 0 ð15:1:22Þ

The Hamiltonian reaches its maximum value

H ¼ 0 ð15:1:23Þ

when the control function y is optimal, i.e. when

@H
@y

¼ 0 ð15:1:24Þ

The flux density h has, in the case of an arbitrary value of the coordinate x, the
following expression:

h xð Þ ¼ h0 � U T xð Þ � Tamb½ � ð15:1:25Þ

Equation (15.1.25) reduces to Eq. (15.1.4′) if x ¼ 0 (when T x ¼ 0ð Þ ¼ Tb). In
case of a linear heat transfer, the adjoint variables w1 and w2 can be removed from
Eqs. (15.1.19)–(15.1.25), resulting the equation:

2
_y
y
� a1 þ 2y

y

_h
h
¼ _q

q
ð15:1:26Þ

where the dot above a variable denotes differentiation of that variable with respect
to x. Equation (15.1.26), together with Eqs. (15.1.15) and (15.1.16) are solved to
find T; q and y as functions of the distance x to the pipe.

The form of Eq. (15.1.26) suggests a solution of the form of a second order
polynomial. Using the generic notation Z for any of the quantities T; q or y, one
writes:

Z ¼ Zb þ Z1xþ Z2x
2 ð15:1:27Þ

where Zb; Z1 and Z2 are the coefficients to be determined. Replacing Eq. (15.1.27)
in Eqs. (15.1.15), (15.1.16) and (15.1.26) allows obtaining the unknown coeffi-
cients and leads to the following solution:

y ¼ 1
2

a1=21 þ b w� xð Þ
h i1=2

�a1

	 

q ¼ hby

x
T ¼ Tb þ hbx

kx
ð15:1:28–30Þ

where the following notations have been used:
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x � b bwþ a1=21

� �
b � U=kð Þ1=2 ð15:1:31; 32Þ

The subscript b denotes as usual the values associated with x ¼ 0, i.e. referring
to the fin base. Equations (15.1.28)–(15.1.30) represent optimized expressions of
the profile y, of the heat flux q and of the temperature T, respectively. They are
expressed in terms of the optimal width w of the fin (still unknown), the prescribed
temperature at the base of the fin, the reduced cost parameter a1, and two pairs of
given parameters. The first of these pairs consist of the two constants U and k,
included in the Eq. (15.1.32) of the parameter b; the second pair characterizes the
environment, by the ambient temperature Tamb and the absorbed solar irradiance h0,
contained in the flux density hb (Eq. 15.1.4′). The fin profile depends only on a1
and b.

The solution of Eqs. (15.1.28)–(15.1.30) is optimal in the sense that it reduces
the functional of the cost Eq. (15.1.14) [and, therefore, J 0 in Eq. (15.1.13)] to a
minimum, for any value of the width w of the fin. The cost of the heat flux supplied
by the fin depends on w. In Sect. 15.1.3, the optimal width of the fin is determined,
which, in turn, determines the lowest cost per unit of produced heat flux.

15.1.3 The Optimal Fin Width

The cost of an optimal fin is obtained by using Eq. (15.1.13), using the expression
of y given by Eq. (15.1.28). The reduced cost J is deducted in the same way from
Eq. (15.1.14):

J ¼ 1
2

1
3
b2w3 þ a1=21 bw2 þ 2a1wþ a2

� �
ð15:1:33Þ

The fin is judged by the amount of heat flux q at its base (i.e. at x ¼ 0). This flux
is given by Eq. (15.1.29):

qb ¼ 1
2
hb

bwþ 2a1=21

bwþ a1=21

ð15:1:34Þ

The cost per unit of produced flow, ~P, is a function of the width w, defined as
follows:

~P � J wð Þ
qb wð Þ ð15:1:35Þ

Its extreme value is obtained for a width w that satisfies the necessary condition
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d~P
dw

¼ 0 ð15:1:36Þ

By replacing Eqs. (15.1.33) and (15.1.34) into Eq. (15.1.35), it is seen that hb
appears in the expression of ~P only as a common factor. Therefore, any value of
w that minimizes ~P is doing this for any nonzero value of hb. Of course, ~P is not
defined if qb is zero. Since hb is the only parameter that contains the weather
conditions (ambient temperature and solar irradiance), it follows that the optimal
width of the fin is independent of these conditions.

After the differentiation indicated by Eq. (15.1.36), one finds the following
condition which must be verified by the optimum width w:

w3 þ 3w2a1=21

b
� 3a2
2b2

¼ 0 ð15:1:37Þ

The solution is represented by any real positive root of the cubic equation above.
The left side is negative for w ¼ 0 and positive for sufficiently large values of
w. Therefore, Eq. (15.1.37) has at least one real positive root. According to
Descartes’ rule, there is at most one positive real root. Thus, the problem has a
unique solution.

Results obtained for a particular case are shown graphically in Fig. 15.3.

15.1.3.1 Example

Assume an aluminum absorber plate, of uneven thickness. The fin is designed for a
minimum weight.

Assume the following values of the parameters. The mass per unit length of pipe,
cF ¼ 0:0911 kg=m, the mass of the transparent cover and of the thermal heat
insulation, per unit area of the collector, cA ¼ 4:5 kg=m, the density of the metal
mass cv ¼ 2690 kg=m3, material conductivity k ¼ 205 W/(mK), the overall heat
loss coefficient U = 4 Wm−2 K−1. The reduced cost factors are:

Fig. 15.3 The optimized
width w of a fin made of
aluminum, of non-uniform
thickness. Dimensions:
a1 [m], a2 [m

2], w [mm].
U = 4 W/(m2K)
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a1 ¼ cA=cv ¼ 0:00167, a2 ¼ cF=cv ¼ 3:39� 10�5. From Fig. 15.3 one may
approximate an optimal fin width of about 50 mm = 0.05 m. Using this value as a
starting point, Eq. (15.1.37) is solved by an iterative method, resulting w ¼ 0:0459
m, i.e. 46.9 mm. The thickness of the base of the fin is obtained from Eq. (15.1.28):
yb ¼ 0:329mm.

15.1.4 Discussion and Conclusions

The optimized cross-sectional area through the fin, Strans, is obtained by integrating
Eq. (15.1.28) between 0 and w. The result is

Strans ¼ 1
2
bw2 a1=21 þ 1

3
bw

� �
ð15:1:38Þ

Equation (15.1.37) can be solved in the unknown a2, resulting in:

a2 ¼ 2bw2 a1=21 þ 1
3
bw

� �
ð15:1:39Þ

By comparing Eqs. (15.1.37) and (15.1.38) one obtains the relationship between
the cross-section area and reduced cost factor:

Strans ¼ a2
4

ð15:1:40Þ

This relationship is similar to that achieved in the case of the optimum fin of
uniform thickness (see Eq. 15.1.11).

The optimization procedure presented in this section showed that:

1. The most important factor in obtaining the optimized cross-sectional area
through the fin is the ratio of the unit costs of the fin and the pipe associated with
it, respectively.

2. There is a simple relationship between the cross-sectional area through the fin
and the costs ratio (Eq. 15.1.40).

15.2 More Realistic Approach

15.2.1 Introduction

Badescu (2006) generalized the model of Sect. 15.1 by using a more involved
flat-plate solar collector model and a more appropriate energy balance equation.

326 15 Flat-Plate Solar Collectors. Optimization of Absorber …



Also, several approximations were relaxed and measured meteorological data were
used in calculations. The main results of Badescu (2006) are presented next.

15.2.2 Meteorological Data

Meteorological data measured in Bucharest (latitude 44.5°N, longitude 25.2°E,
altitude 131 m above sea level) by the Romanian Meteorological and Hydrological
Institute are used in this section (INMH 1961). The climate of Bucharest is tem-
perate—continental. The METEORAR database consists of values measured at
1.00, 7.00, 13.00 and 19.00 local standard time (LST) for ambient temperature, air
relative humidity and point cloudiness. Also, the database contains daily average
values for the atmospheric pressure.

Computations are performed on a hourly basis. The temperature is interpolated
linearly between neighboring measured data for the whole year by using the
METEORAR database. Figure 15.4a shows the number of hours during the year for
given values of the ambient temperature T�

a .
The global solar irradiance on a horizontal surface is evaluated by using the

model of Badescu (2002). A simple isotropic model is used to evaluate the direct,
diffuse and ground-reflected solar irradiance on a tilted surface by using as input the
flux of solar energy incident on a horizontal surface (see, e.g., Oancea et al. 1981).
The ground albedo is 0.2 (Badescu 1987). Computations are performed on a hourly

Fig. 15.4 Number of hours for given values of a ambient temperature T�
a and b global solar

irradiance G� on a South oriented surface tilted 45°. Meteorological hourly data for the year 1961
in Bucharest were used
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basis for the whole year. Figure 15.4b shows the number of hours during the year
for given values of global solar irradiance G� on a South oriented surface tilted 45°.

15.2.3 Model Implementation

Solar collectors with uniform and variable fin thickness are studied in Sects. 15.2.4
and 15.2.5, respectively. Computations are performed by using the meteorological
database presented in Sect. 15.2.2. The particular case of a flat-plate solar collector
system is considered. Appendix 15A shows details of the collector model and
Appendix 15B gives the values adopted for various quantities.

South oriented collectors are considered but their (near) optimum tilt angle
depends on season as follows. For yearly operation the solar collectors are tilted
45°; for cold season operation (i.e. November to March) the collectors are tilted 55°
and for the warm season operation (i.e. April–October) the collectors are tilted 20°.

The typical meteorological year assumption is adopted here (see e.g. Gazela and
Mathioulakis 2001). This allows meteorological data from a single year (i.e. 1961)
to be used in computations (Badescu 2002). The averaged wind speed wwind is as
follows: 2:1m/s (yearly operation), 2:48m/s (cold season) and 1:8 m/s (warm
season).

15.2.4 Uniform Fin Thickness

The steady-state energy balance for a unit collector surface area is given by the
standard Bliss-Hottel-Whillier relationship (see e.g. Duffie and Beckman 1974):

q�u ¼ G00F�
Rg

�
0 � U�

LF
�
R T�

fi � T�
a

� �
ð15:2:1Þ

Here q�u is the useful heat flux density while F�
R; g

�
0 and U�

L are the heat removal
factor, the optical efficiency and the overall heat loss coefficient, respectively. Also,
T�
f ;i is working fluid inlet temperature. The heat flux stored as internal energy per

unit surface area and unit time should also be added to the r.h.s. of Eq. (15.2.1).
However, this term vanishes when long time periods are considered and is not
included here (see Sect. 15.1).

Let Dttot and Dt be the estimated lifetime of the solar energy application and the
maximum daylight length during Dttot, respectively. Averaged quantities over the
time interval Dttot are defined by using Eq. (15.2.1). Only contributions during Dt
are relevant in this case. Therefore:
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0

q�u

 �þ
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 �þ
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�
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a

� �þ
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ð15:2:2a–gÞ

Here qu;G; Ta and Tf ;i are the average useful heat flux density, solar global
irradiance, inlet fluid temperature and ambient temperature over the time interval
Dt, respectively, while T 0 is the average level of inlet fluid temperature (with the
ambient temperature as a reference). The other two quantities, g00 and U0, are the
average modified optical efficiency and overall heat loss coefficient, respectively
(they are “modified” because they are affected by the heat removal factor).

The “+” superscript in Eqs. (15.2.2) shows that only those moments associated
to useful heat provided by the collection system [i.e. a positive value of the r.h.s.
member of Eq. (15.2.1)] contribute to the integrals. Also, note the definition used in
Eq. (15.2.2f) for g00, where the solar global irradiance G averaged over the whole Dt
interval (and not only on those moments with positive useful heat) is used in the
denominator. This makes finally possible to compare the averaged efficiency of
solar collection systems with different operation time.

Time integration of Eq. (15.2.1) and usage of Eqs. (15.2.2a–g) yield the time
averaged useful heat flux provided by unit collection area:

qu ¼ Gg00 � U0T 0 ð15:2:3Þ

The averaged solar energy conversion efficiency g is defined as the ratio between
the time averaged useful heat flux qu provided per unit collection area and the time
averaged solar energy flux G incident on the same unit area:

g � qu
G

¼ g00 �
U0T 0

G
ð15:2:4Þ

Here Eq. (15.2.3) was also used.
The collector cost associated to a single finned tube consists of three components

(see Sect. 15.1). First, there is the cost of the two adjacent metallic fins, taken as
cv W � dð Þd where cv is the cost per unit volume of metal, W is the distance
between the centers of two adjacent tubes of external diameter d and d is fin
thickness. Second, there is the cost of transparent cover and insulation, taken as
proportional to the irradiated area at a unit cost cA. Third, there is the cost of a unit
length of tube, cF . Therefore, the collector cost C per unit length for a single tube is
given by:
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C � cF þ cAW þ 2 W � dð Þdcv ð15:2:5Þ

The useful heat flux provided per unit length of a single tube is Wqu and the cost
per unit useful heat flux is given by

J � C
Wqu

ð15:2:6Þ

Two reduced cost parameters are defined now:

a1 � cA
cv

; a2 � cF
cv

ð15:2:7Þ

Alternatively, the parameters cF ; cA and cv may be interpreted as the mass of
material per unit length, area or volume. For that case, the solution of the opti-
mization problem represents a collector of minimum mass per unit of useful heat
flux. For both cases the units of a1 and a2 are [m] and [m2], respectively. A new
cost function may be defined as:

J 0 � J
cv

¼ a1W þ a2 þ 2 W � dð Þd
Wqu

ð15:2:8Þ

The cost function J 0 may be seen as depending on W and d, both directly and
indirectly (i.e. through the time averaged modified heat loss coefficient U0—see
Appendix 15A). As usual, the minimum value of J 0 may be found by solving the
equations @J 0=@W ¼ @J 0=@d ¼ 0. This is done numerically here.

Kovarik (1978) used a rather similar relationship for the cost C but a simplified
expression for the useful heat flux density qu (see Sect. 15.1) and a short discussion
follows. Kovarik adopted for the useful heat flux per unit tube length the following
relationship: qu ¼ Fhbw [see Eq. (15.1.4)—note a small difference in notation as w
there is fin’s width]. Also, F is fin’s efficiency [depending on w and d but also on
the heat loss coefficient U (see Appendix 15A)] and hb is the so called “net heat
influx density”, which would obtain at a uniform plate temperature equal to the
temperature at the root of the fin. A constant value was adopted by Kovarik for the
heat loss coefficient U. This allowed significant simplifications in calculations and
the optimum fin width and thickness fin are finally obtained by solving the rather
simple transcendental Eqs. (15.1.12) and (15.1.11), respectively. The advantage is,
however, that the results obtained in Sect. 15.1 are independent of the thermal
regime and meteorological factors.

From Eqs. (15.2.2)–(15.2.6) one learns that the cost function J 0 depends on:
(1) the meteorological features of the site (through G and Ta), (2) the solar collector
design (through g00 and U0), (3) the solar collector economics (through the reduced
cost parameters a1 and a2) and (4) the operation regime (through the average
temperature difference T 0). Among these four factor categories the average tem-
perature difference T 0 only may be at user’s choice. The influence of T 0 on various
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parameters is shortly analyzed. Calculations for a steel sheet, thermally coupled to
steel tubes are reported as example. The fin is designed to minimize the cost and the
following reduced cost parameters are adopted: a1 ¼ 0:01923m,
a2 ¼ 9:615� 10�4 m2. These are precisely the input values of Sect. 15.1.1.1 where
the optimum fin thickness and width are 2.5 and 97 mm, respectively.

The modified optical efficiency g00 shows a strong dependence on T 0, as expected
(Fig. 15.5a). Indeed, the optical efficiency g�0 does not depend on temperature (see
Sect. 15.A.1 of Appendix 15A) but the heat removal factor F�

R entering the integral
of Eq. (15.2.2f) does depend on T 0 (Sect. 15.A.3 of Appendix 15A). Increasing T 0

makes the overall heat coefficient U�
L to increase and, as a result, it determines a

decrease of the heat removal factor F�
R (see Eq. 15.A.20). This finally yields the

decrease of the modified optical efficiency g00. At even larger values of T 0, both the
increasing rate of U�

L and the decreasing rate of F
�
R diminish and this explains in part

the slightly decreasing value of g00 for T 0 exceeding 40°. This feature requires
however a bit more attention. One should remind that the averaging procedure in
Eqs. (15.2.2) uses only those meteorological recordings associated to useful posi-
tive heat provided by the solar collectors. Increasing the operation temperature T 0

makes the overall heat loss coefficient U�
L to increase and keeping a positive r.h.s.

member of Eq. (15.2.1) requires recordings with larger values of the global solar
irradiance G� to be selected. But solar irradiance is usually larger when radiation
direction is close to the normal at collector surface. Then the incidence angle is
small and this yields large values of the optical efficiency g�0 (see Sect. 15.A.1 of
Appendix 15A). The consequence is that the averaged value g00 may become rather
constant at large values of T 0. The dependence of g00 on T 0 is quite similar in the
warm and cold season.

All the three factors entering the integral of Eq. (15.2.2g) contribute to the
dependence of the modified heat loss coefficient U0 on the average temperature
difference T 0. However, at low values of T 0 the contribution of the heat removal
factor F�

R is small and U0 strongly increases by increasing T 0 (Fig. 15.5b). This is
mainly due to the increase of U�

L but also to the linear increase of the temperature
difference T�

f ;i � T�
a . By further increasing T 0 the value of F�

R decreases and com-
pensates the increase of U�

L yielding a maximum of U0 for T 0 between 10 and 20°,
depending on season. At even larger values of T 0 the decrease of F�

R induces a
similar decrease of the modified heat loss coefficient U0. For large values of T 0

(exceeding 30° in the warm season) both the increasing rate of U�
L and the

decreasing rate of F�
R diminish and U0 is almost constant. U0 is obviously higher in

the cold season than in the warm season.
The average efficiency g depends on the operation regime. The efficiency

decreases slightly non-linearly by increasing the average temperature difference T 0

(Fig. 15.5c). This should be compared with the linear dependence gðTÞ predicted
by Eq. (15.2.4) in case the usual assumption of a constant U0 is adopted. For given
T 0 the efficiency is almost the same for both cold and warm seasons.

The optimum values of W and d were evaluated numerically and results are
shown in Fig. 15.6 together with results obtained by using the simplified approach
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of Sect. 15.1. The optimum distance W between tube centers decreases by
increasing the difference of temperature T 0 (Fig. 15.6a). This is reasonable as higher
operating temperatures, associated to a rather constant heat transfer rate in the tubes,
require a smaller collection surface per tube. The constant optimum value of W at
high T 0 is obviously related to the rather constant value of U0 in Fig. 15.5b. Nearly
similar results are obtained for both the cold and warm seasons. This proves that W
is more related to the thermal operation regime than to the meteorological factors, as
expected. The results predicted by the simplified approach of Sect. 15.1 are in good
agreement with the present theory at higher values of T 0 during the cold season,
and, to a lesser extent, during the warm season. At lower values of T 0 the simplified
approach predicts significantly lower values of W than the present theory. This is
obviously related to the high values of U0 at those temperatures (Fig. 15.5b).

The results of Sect. 15.1 and other researches show that the optimum fin
thickness is strongly dependent on material but also on country (through the cost
factors). For example, the optimum thickness of copper fins obtained for cost values
in India is very small, i.e. less that 0.11 mm (Vaishya et al. 1981). Present results
show that the optimum fin thickness d is relatively the same, whatever the operation
temperature and meteorological factors (Fig. 15.6b). The simplified approach of
Sect. 15.1 predicts obviously larger values of d than the present theory. Again, a
constant value of the heat loss coefficient would lead probably to better results at
lower values of T 0. However, this is not enough to make the results of the simplified
approach to be in good concordance with the improved theory proposed here.

A remarkable result of Kovarik (1978) is that 4Wd ¼ a2 (see Eq. 15.1.11) for an
optimum fin. This means that the optimal fin cross section does not depend on the
physical properties of the material, heat transfer parameters, meteorological factors,
operation temperature, but only on the reduced cost parameter a2. Financially, this

Fig. 15.5 a Modified optical
efficiency g00, b Modified heat
loss coefficient U0 and
c collector efficiency g as
functions of the average
temperature difference T 0. For
definitions see Eqs. (15.2.2).
Cold and warm season
operation was considered.
Meteorological data for the
whole year 1961 in Bucharest
were used
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means that the cost of the fins is half of the cost of the attached tube. This elegant
result is no longer valid within the improved theory presented here. The fact that the
quoted result applies just under the assumptions adopted by Kovarik (1978) was
observed previously by Vaishya et al. (1981). However, the present results show
that the product Wd is rather constant, especially at higher operation temperatures
(Fig. 15.6).

The optimized shape of the collection surface area may be determined as fol-
lows. Assume that a solar energy collection system of surface area Ac uses a
working fluid of mass flow rate _m and constant pressure specific heat cp. The time
averaged energy balance for that collection system yields:

_mcp Tf ;out � Tf ;i

 � ¼ Acqu ð15:2:9Þ

where Tf ;out is the time averaged outlet fluid temperature. Note that T 0 ¼ Tf ;i � Ta
from Eq. (15.2.2e). Therefore, instead of input values of Tf ;i refer in the following
to input values of T 0. For given T 0, qu may be obtained by using Eq. (15.2.3). Once
Tf ;out is known, Eq. (15.2.9) may be subsequently used to compute the ratio
_m0 � Ac= _m. In practice, however, an iterative procedure is needed (see Sect. 15.A.3
of Appendix 15A). The mass flow rate _mtube in a single tube is usually restricted to a
rather narrow range of values to keep the heat transfer coefficient reasonably high
(see Sect. 15.A.3 of Appendix 15A). If _mtube acts as a design parameter, the number
of tubes is given by ntube ¼ _m= _mtube and the width l of the collection surface area is
given by l ¼ ntubeW . The tube length L is easily computed from L ¼ Ac=l ¼ _m _m0=l.

To conclude, the collection surface design procedure requires as inputs the mass
flow rate _m and the input and output fluid temperatures Tf ;i and Tf ;out, respectively.
Results are shown here for _m ¼ 0:5 kg=s, different values of Tf ;i and Tf ;out ¼
Tf ;i þ 1 (Fig. 15.7). The working fluid enters the collection area at x ¼ 0 with a

Fig. 15.6 a Optimum
distance W between two
adjacent tubes centers and
b Optimum fin thickness d as
a function of the average
temperature difference T 0. For
definitions see Eqs. (15.2.2).
Results obtained by using the
simplified theory of Sect. 15.1
are also shown. Cold and
warm season operation was
considered. Meteorological
data for the whole year 1961
in Bucharest were used
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temperature Tf ;i ¼ Ta and leaves it at x ¼ xmax with a temperature higher than
Ta þ 80 (°C). The tube length xmaxð Þ necessary to ensure this temperature increase is
about 95 and 120 m during the warm season and cold season, respectively
(Fig. 15.7a).

The width l of the collection area decreases while x increases, as expected.
Indeed, the operation temperature increases in this case and the optimum value of
W decreases (Fig. 15.6a). Corroborated with a constant number of tubes this leads
to the expected result. Figure 15.7b shows the tube length L necessary to increase
by 1 °C the working fluid temperature. L increases by increasing T 0 and it is higher
during the cold season than during the warm season, as expected.

15.2.5 Variable Fin Thickness

Another form of the steady-state energy balance equation per unit collection surface
area is useful when systems with variable fin thickness are considered (Fig. 15.8).
In this case both the optical efficiency g�0 and the overall heat loss coefficient U�

L
may be considered constant on the x0 direction. This approximation works well for
g�0 and it is reasonably good for U�

L, due to the convection processes between
absorber plate and transparent cover. Therefore, the only variable dependent on x0 is
the plate temperature T� x0ð Þ. The useful heat flux dq�u x0ð Þ provided by an elemental
collector area of unit length and width dx0 is given by:

Fig. 15.7 a Width l of the
collection surface area as a
function of the distance x
from fluid inlet and b the
distance L necessary to
increase by 1 °C the working
fluid temperature as a function
of the temperature difference
T 0. Cold and warm season
operation was considered.
Meteorological data for the
whole year 1961 in Bucharest
were used. Results shown
correspond to _m ¼ 0:5 kg=s
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dq� x0ð Þ ¼ � G00g�0 � U�
L T� x0ð Þ � T�

a

� �� �
dx0 ð15:2:10Þ

Here the minus sign takes account that q� decreases when x0 increases.
The useful heat flux q�u provided per unit collection surface area is obtained by

integrating Eq. (15.2.10):

q�u ¼
Z

dq�
����

���� ¼ 2
W

ZW=2

0

G00g�0 � U�
L T� x0ð Þ � T�

a

� �� �
dx0 ð15:2:11Þ

The following time averaged quantities are now defined:

T � 1
Dt

ZDt
0

T�ð Þþ dt; g0 �
1

DtG

ZDt
0

G�g�0

 �þ

dt;

U � 1
Dt T � Tað Þ

ZDt
0

U�
L T�

f ;i � T�
a

� �þ
dt:

ð15:2:12a–cÞ

Equations (15.2.10) and (15.2.11) are integrated over time and the definitions
Eqs. (15.2.2) and (15.2.12) are used, yielding:

dq ¼ � Gg0 � U T x0ð Þ � Ta½ �f gdx0 ð15:2:13Þ

qu ¼ 2
W

ZW=2

0

Gg0 � U T x0ð Þ � Ta½ �f gdx0 ð15:2:14Þ

The solar energy conversion efficiency g is defined again by using Eq. (15.2.3).
A different solar energy conversion efficiency (say gþ ) may be defined as follows.

Fig. 15.8 Fin of variable
thickness

15.2 More Realistic Approach 335



First, a new time averaged solar global irradiance Gþ and a new optical efficiency
gþ
0 are defined:

Gþ � 1
Dt

ZDt
0

G�ð Þþ dt gþ
0 � 1

Dt
1

Gþ

ZDt
0

g�0G
�
 �þ

dt ð15:2:15a; bÞ

where “+” denotes contributions during those moments when q�u given by
Eq. (15.2.5) is positive. With these new notations, the Eqs. (15.2.10) and (15.2.11)
are integrated over time, yielding

dq ¼ � Gþ gþ
0 � U T x0ð Þ � Ta½ �� �

dx0 ð15:2:16Þ

qu ¼ 2
W

ZW=2

0

Gþ gþ
0 � U T x0ð Þ � Ta½ �� �

dx0 ð15:2:17Þ

The new efficiency is defined now as:

gþ � qu
Gþ ð15:2:18Þ

It is obvious that gþ [ g. The indicator g allows to compare different solar
collection systems but gþ provides a more accurate information for a given col-
lection system.

The cost per unit collection area is given by:

C ¼ 1
W

cF þ cAW þ 2cv

ZW=2

d=2

d x0ð Þdx0
0
B@

1
CA ð15:2:19Þ

A constant temperature of the tube on x direction is assumed here. Therefore,

T x0ð Þ ¼ Tbð¼ constantÞ for 0� x0 � d=2
variable for d=2� x0 �W=2

	
ð15:2:20Þ

The following change of variable is useful:

x ¼ x0 � d
2

ð15:2:21Þ

The cost function is defined as:
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J 0 � 1
cv

C
qu

¼
2
W

RW�dð Þ=2

0

a2 þ a1W
W�d þ d xð Þ
 �

dx

d
W Gg0 � U Tb � Tað Þ½ � þ 2

W

RW�dð Þ=2

0
Gg0 � U T xð Þ � Ta½ �f gdx

ð15:2:22Þ

The optimization problem is to find the function d xð Þ and the size of W that
makes J 0 be a minimum. It is further required that the solution satisfies the heat flow
equations, i.e.

dT
dx

¼ q
kpd xð Þ ð15:2:23Þ

dq
dx

¼ � Gg0 � T xð Þ � Ta½ �f g ð15:2:24Þ

Equation (15.2.23) is Fourier law with kp being is the conductivity of fin material
while Eq. (15.2.24) is a different form of Eq. (15.2.16) with x0 replaced by the new
space variable x. The solution must satisfy the boundary conditions

T x ¼ 0ð Þ ¼ Tb ð15:2:25Þ

q x ¼ W � d
2

� �
¼ 0 ð15:2:26Þ

Equation (15.2.25) means a prescribed temperature at fin root and Eq. (15.2.26)
means no heat flux at the tip.

This is an optimal control problem, with q xð Þ and T xð Þ being the state variables
and d xð Þ being the control to be optimized. Pontryagin theory is used to solve the
problem [see Pontryagin et al. (1962) and Chap. 5 in this book]. First, the
Hamiltonian is defined as:

H � �
2
W

a2 þ a1W
W�d þ d xð Þ
 �

d
W Gg0 � U Tb � Tað Þ½ � þ 2

W

RW�dð Þ=2

0
Gg0 � U T xð Þ � Ta½ �f gdx

þw1
q

kbd xð Þ

þw2 � Gg0 � T xð Þ � Ta½ �f gf g
ð15:2:27Þ

The adjoint variables w1 and w2 in Eq. (15.2.27) satisfy the differential
equations:
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dw1

dx
¼ � @H

@T

¼ �w2Uþ
2
W

W�d
W U a2 þ a1W

W�d þ d xð Þ
 �
d
W Gg0 � U Tb � Tað Þ½ � þ 2

W

RW�dð Þ=2

0
Gg0 � U T xð Þ � Ta½ �f gdx

( )2

ð15:2:28Þ

dw2

dx
¼ � @H

@q
¼ � w1

kpd xð Þ ð15:2:29Þ

The following boundary conditions are used for Eqs. (15.2.28) and (15.2.29):

w1 x ¼ W � d
2

� �
¼ 0 ð15:2:30Þ

w2 x ¼ 0ð Þ ¼ 0 ð15:2:31Þ

Equations (15.2.30) and (15.2.31) take account that T and q are free to vary at
x ¼ W � dð Þ=2 and x ¼ 0, respectively.

The Hamiltonian reaches its maximum value H ¼ 0 if the control d xð Þ is opti-
mal, i.e. if @H=@d ¼ 0. Then, usage of Eq. (15.2.27) gives the optimum control as:

dopt xð Þ ¼
(
�Wq xð Þw1 xð Þ

2kp

(
d
W

Gg0 � U Tb � Tað Þ½ �

þ 2
W

ZW�dð Þ=2

0

Gg0 � U T xð Þ � Ta½ �f gdx
))1

2
ð15:2:32Þ

Solving this optimal control problem requires knowledge of the boundary value
Tb entering Eq. (15.2.25). This quantity enters the following energy balance
equation:

quW ¼ phfidi Tb � Tf ;m

 � ð15:2:33Þ

where di is the inner diameter of the tube and Tf ;m is the mean fluid temperature
inside the tube, given by:

Tf ;m ¼ Tf ;i þ Tf ;out
2

ð15:2:34Þ

Also, hfi in Eq. (15.2.33) is the convection heat transfer coefficient inside the
tube, which depends on Tf ;m [see Eq. (15.A.16) in Appendix 15A]. Calculations are
performed for given values of Tf ;i and Tf ;out ¼ Tf ;i þ 1. In this case Tb may be easily
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found from Eq. (15.2.33). However, an iterative procedure is needed since the
distribution T xð Þ entering Eq. (15.2.14) is not known when qu is first computed. One
starts with a guessed value of Tb, one solves the optimal control problem for d xð Þ and
T xð Þ and a new value of Tb is evaluated from Eq. (15.2.33). The old and new values
of Tb are compared and the procedure is repeated with the new Tb value as an entry,

if necessary. Note that the average plate temperature Th i � ð2=WÞ RW=2

0
T x0ð Þdx0 is

needed in calculations when the heat loss coefficientU�
L is evaluated (see Sect. A2 of

Appendix A).
To find the optimum value of W , the following equation should be solved:

@J 0=@W ¼ 0. This is done numerically here taking of course into account that
different optimal distributions d xð Þ are associated to different values of W .

Fins of variable thickness were also studied by Hollands and Stedman (1992) by
using the minimum amount of material as an objective function. They adopted a
constant value for the heat loss coefficient and didn’t take account of operation
temperature and meteorological factors. They concluded that a circular shape
requires the least amount of material but a triangular shape requires almost the same
amount of material. In practice they adopted an absorber fin having a step-change in
local thickness for compatibility with existing manufacturing methods.

Tiris et al. (1995) studied four different shapes of fins: (a) straight rectangular
fins, (b) fins with a step-change in local thickness; (c) straight triangular fins and
(d) straight fins of inverse parabolic profile. Their model does not take account of
the thermal operation regime and the minimum amount of material was the
objective function. Fins with given geometry were studied and the results showed
that the inverse parabolic profile save the larger amount of material but when the
ratio of material amount reduction to reduction in collector efficiency is calculated,
design (b) has the highest value.

Calculations for an aluminum sheet, thermally coupled to aluminum tubes are
reported now as examples of the present improved theory. The fin is designed to
minimize weight and the following reduced cost parameters are adopted:
a1 ¼ 0:00167m, a2 ¼ 3:39� 10�5 m2. These are precisely the input values of the
Example of Sect. 15.1.3.1, where the optimal fin width [i.e. ðW � dÞ=2 in present
notation] was of 45.9 mm. The optimal profile of the fin is an isosceles triangle of
base 0.33 mm.

The optimum shape of the fin is shown in Fig. 15.9 for different seasons in case
of two values of the temperature difference Th i � Ta. The averaged ambient tem-
perature Ta is about 279 and 294 K in the cold season and warm season, respec-
tively. Therefore, the plate temperature Th i in Fig. 15.9a is about 299 K in the cold
season and 314 K in the warm season. The optimum shape is very close to an
isosceles triangle but its base is larger and its width is shorter than in case of
Kovarik (1978) reported (see Sect. 15.1). The fin width is shorter and the seasonal
influence is weaker at lower values of Th i � Ta shown in Fig. 15.9a, as compared
to the case of the larger Th i � Ta value of Fig. 15.9b. The fin is longer for the cold
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season as compared to the warm season (Fig. 15.9a). This allows a larger quantity
of solar energy to be collected and transferred when the insolation is smaller. At
larger operating temperatures the fin is much shorter and thicker for the warm
season as compared to the cold season (Fig. 15.9b). This way the amount of solar
energy collected and transformed in thermal energy is easier transferred to the fluid
in the tube.

Fig. 15.9 The optimum
variable fin thickness d as
function of the distance x
from fin root (see Fig. 15.8
for geometry) for two values
of the difference between the
time averages of mean
absorber temperature
and ambient temperature,
respectively.
a Th i � Ta ¼ 20 	C and
b Th i � Ta ¼ 40 	C.
Meteorological data for the
whole year 1961 in Bucharest
were used. Operation during
the cold and warm season as
well as during the whole year
was considered

Fig. 15.10 Optimum
distance W between two
adjacent tubes centers for a fin
of variable thickness as a
function of fluid inlet
temperature Tf ;i.
Meteorological data for the
whole year 1961 in Bucharest
were used. Operation during
the cold and warm seasons as
well as during the whole year
was considered
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The optimum distance W between the tubes increases by increasing the inlet
fluid temperature Tf ;i (Fig. 15.10). Also, for given value of Tf ;i, W is larger in the
cold season than in the warm season, in good agreement with Fig. 15.8. The
maximum fin width (i.e. W � dð Þ=2) in Fig. 15.10 is about 21 mm, which is less
than half the value obtained by the simplified approach of Kovarik (1978) (see
Sect. 15.1). The influence of the operation regime and of the meteorological factors
as well as the much more accurate solar collector model used in the present work
proved to have significant influence on the results.

The optimized shape of the collection surface (i.e. the width l and the length L
per unit degree of fluid temperature increase) may be determined by using the same
procedure shown in Sect. 15.2.4. Results are shown for _m ¼ 0:5 kg/s, different
values of Tf ;i and Tf ;out ¼ Tf ;i þ 1 (Fig. 15.11). The width l of the collection area
increases when the inlet fluid temperature Tf ;i increases, as expected (Fig. 15.11a).
Indeed, the optimum distance W between the tubes increases by increasing Tf ;i (see
Fig. 15.10) and the number of tubes is a constant on the collection surface. This
yields the expected result. For given Tf ;i the width l is larger for the cold season.

Figure 15.11b shows the tube length L necessary to increase by 1° the working
fluid temperature. L decreases by increasing Tf ;i and it is higher during the warm
season than during the cold season. These features are opposite to those shown by
the uniform thickness fin studied in Sect. 15.2.5 (compare Fig. 15.11b and
Fig. 15.7b, respectively). In the present case the decrease of L is a consequence of
the increase of l.

Fig. 15.11 Fin of variable
thickness. a Width l of the
collection surface area and
b the distance L necessary to
increase by 1 °C the working
fluid temperature, as functions
of fluid inlet temperature Tf ;i.
Meteorological data for the
whole year 1961 in Bucharest
were used. Operation during
the cold and warm seasons as
well as during the whole year
was considered. Results are
shown for a fluid mass flow
rate _m ¼ 0:5 kg/s
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15.2.6 Conclusions

The optimization of thermal solar energy systems normally takes into account
design as well as operational parameters. These issues were addressed in this
section in case of flat-plate finned tube solar collectors. Both fins of uniform and
variable thickness were considered. The optimization procedure is based on the
minimum cost per unit of useful heat flux and uses a rather involved solar collector
model. The collector cost associated to a single finned tube consists of three
components, associated to the fins, to the transparent cover and bottom insulation
and to the pipe, respectively. However, the objective function finally depends on
just two “reduced” cost parameters, a1 and a2, with dimension of length and area,
respectively.

The optimum distance W between tubes decreases by increasing the operation
temperature and nearly similar results are obtained for both the cold and warm
season. The optimum fin thickness d is relatively the same, whatever the operation
temperature and meteorological factors. The product Wd is rather constant, espe-
cially at higher operation temperatures but the elegant result by Kovarik (1978)
(stating that 4Wd ¼ a2 for an optimized fin, see Sect. 15.1) is no longer valid under
the framework of the present improved theory.

The best economical performance is obtained in case of fins with optimal
variable thickness. The optimum shape of a section through the fin is very close to
an isosceles triangle. The fin width is shorter and the seasonal influence is weaker at
lower than at higher operation temperatures. Fin width and thickness at base depend
on season. The optimum distance W between the tubes increases by increasing the
inlet fluid temperature and it is larger in the cold season than in the warm season.

The optimum width of the collection area increases when the inlet fluid tem-
perature Tf ;i increases. For given Tf ;i the width l is larger for the cold season.

Appendix 15A

Details are shown about the flat-plate solar collector model used in calculations.
The reference is Duffie and Beckman (1974).

15.A.1 Optical Efficiency

A transparent cover consisting of N identical layers is considered. Radiation is
incident on the transparent cover at incidence angle h1. The relative refractive
indexes of transparent layer material and of the medium from where radiation is
coming are denoted n2 and n1 
 1ð Þ, respectively. Then, the refraction angle h2 of
the radiation inside the transparent layer is computed by using the refraction law:
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sin h2
sin h1

¼ n1
n2

ð15:A:1Þ

The reflectance q of the transparent layer is given (for unpolarized radiation) by
the following Fresnel formula:

q ¼ 1
2

sin2 h2 � h1ð Þ
sin2 h2 þ h1ð Þ þ tan2 h2 � h1ð Þ

tan2 h2 þ h1ð Þ
� �

ð15:A:2Þ

The transparent cover transmittance due to reflection, sr;N , is computed by

sr;N ¼ 1� q
1þ 2N � 1ð Þq ð15:A:3Þ

Denote kabs and a the absorption factor and the thickness of one transparent
layer, respectively. The actual path of radiation L1 through a single transparent layer
is given by

L1 ¼ a
cos h2

ð15:A:4Þ

The transparent cover transmittance due to absorption,sa;N , is computed by
Beer-Bouguer-Lambert law:

sa;N ¼ exp �kabsNL1ð Þ ð15:A:5Þ

and the total cover transmittance s is given by

s ¼ sr;Nsa;N ð15:A:6Þ

Let a be the absorptance of the absorber plate. The transmittance-absorptance
product sað ÞN of the collector takes account of multiple scattering of radiation
between the transparent layers and the absorber plate:

sað ÞN¼
sa

1� 1� að Þqd;N
ð15:A:7Þ

where qd;N is the diffuse reflectance taking the values 0.16, 0.24, 0.29 and 0.32 for
1, 2, 3 and 4 transparent layers, respectively.

All of the solar radiation that is absorbed by a cover system is not lost, since this
absorbed energy tends to increase layers temperature and consequently reduce the
losses from the plate. Let ep be the emittance of the absorber plate. A general
analysis for a cover system yields the following expression for the optical efficiency
g0 of the collector

Appendix 15A 343



g0 Nð Þ ¼ sað ÞN þ 1� sa;1

 �XN

i¼1

ai N; ep

 �

si�1 ð15:A:8Þ

Here ai is the ratio of the overall loss coefficient to the loss coefficient from
the i layer to the surroundings, tabulated in Duffie and Beckman (1974, p. 156,
Table 7.9.1). The optical efficiency is sometime referred to as the effective
transmittance-absorptance product.

15.A.2 Overall Heat Loss Coefficient

The overall heat loss coefficient UL is given by

UL ¼ Ut þUb ð15:A:9Þ

where Ub is the bottom heat loss coefficient, given by

Ub ¼ kb
Lb

ð15:A:10Þ

where kb and Lb are the thermal conductivity and the thickness of the bottom
insulation, respectively. For a glazed solar collector, the top heat loss coefficient Ut

in Eq. (15.A.9) is given by

Ut ¼ Ût 1� s� 45ð Þ 0:00259� 0:00144ep

 �� � ð15:A:11Þ

where Ût is the top heat loss coefficient for a collector tilted 45° while s is collector
actual tilt in degrees. The empirical relation proposed in Duffie and Beckman
(1974) is used here for Ût:

Ût ¼ N

244
Tp

Tp�Ta
Nþ f

� �0:31 þ 1
hw

2
64

3
75
�1

þ
r Tp þ Ta

 �

T2
p þ T2

a

� �
ep þ 0:0425N 1� ep


 �� ��1 þ 2N þ f�1
eg

� n

ð15:A:12Þ

Here Tp and Ta are the space averaged absorber temperature and ambient tem-
perature, respectively, eg is glass emittance, hw [W/(m2K)] is the convection heat
loss coefficient due to the wind speed wwind [m/s]. In practice we used.
hw ¼ 5:7þ 3:8wwind . Also, r is Stefan-Boltzmann constant and
f ¼ 1� 0:04hw þ 5� 10�4h2w


 �
1þ 0:058Nð Þ.

Note that in case of collectors with straight fins with rectangular profile UL and
Tp are computed together by using an iterative procedure shown later in
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Sect. 15A.4 of this Appendix 15A. When fins of variable thickness are considered a
simpler iterative procedure was used (see Sect. 15.2.5 of the paper). This is possible
because the heat removal factor does not enter the calculations in this second case.

15.A.3 Collector Heat Removal Factor

A register-type collector is considered here. Then, d is tube external diameter and
W is the distance between the centers of two neighbor tubes. Let dp and kp be plate
thickness and its material thermal conductivity, respectively. The standard fin
efficiency F for straight fins with rectangular profile is given by:

F ¼ m W � dð Þ
2

� ��1

tan
m W � dð Þ

2

� �
; m �

ffiffiffiffiffiffiffiffiffi
UL

kpdp

s !
ð15:A:13; 14Þ

The collector efficiency factor F0 is given by:

F0 ¼ 1
WUL

� �
1

UL dþ W � dð ÞFf g þ 1
Cb

þ 1
pdihfi

	 
�1=2

ð15:A:15Þ

Here Cb is bond conductance, di is the inside tube diameter and hfi is the heat
transfer coefficient between the working fluid and the tube wall. Here di ¼ d � 2dp
is used. The working fluid is formally equivalent to water and the following
empirical formula was used to evaluate hfi (Carabogdan et al. 1978, p. 54)

hfi ¼ 1430þ 23:3t � 0:048t2

 �

w0:8
waterd

�0:2
i ð15:A:16Þ

where t � Tf ;m � 273:15 (with Tf ;m [K]—the average working fluid temperature
inside the tube) and wwater [m/s] is water speed in the tube. In Eq. (15.A.16) the unit
for di is [m]. The following common value was adopted during calculations

wwater ¼ 0:1m/s ð15:A:17Þ

In Eq. (15.A.16), Tf ;m was evaluated as a function of the working fluid tem-
peratures at collector inlet and outlet, Tf ;i and Tf ;out, respectively, by:

Tf ;m ¼ Tf ;i þ Tf ;out

 �

=2 ð15:A:18Þ

The energy balance of the fluid of mass flow rate _m yields:

Tf ;out � Tf ;i ¼ Qu

_mcp
¼ Qu=A

_m=Að Þcp ¼
qu
_m0cp

ð15:A:19Þ
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Here Qu is the useful heat provided by the collection area Ac and qu � Qu=Að Þ is
the useful heat per unit area given by the following formula (15.A.21).

The collector removal factor FR is given by

FR ¼ _m0cp
UL

1� exp �ULF0

_m0cp

� �� �
ð15:A:20Þ

One reminds that UL entering Eq. (15.A.20) is a function of the unknown space
averaged collector temperature Tp that may be evaluated from two equivalent
expressions of collector energy balance:

qu ¼ g0 � UL Tp � Ta

 �� � ¼ FR g0 � UL Tf ;i � Ta


 �� � ð15:A:21Þ

One easily finds:

Tp ¼ Ta þ g0 1� FRð Þ
UL

þFR Tf ;i � Ta

 � ð15:A:22Þ

Note that when Tf ;out � Tf ;i is given, an iterative procedure is needed to evaluate
the quantity _m0 � _m=A. In practice one starts with a guessed value for _m0. This is
used as an entry in Eqs. (15.A.20) and (15.A.21) to evaluate FR and qu, respec-
tively. Next, from Eq. (15.A.19) a new value of _m0 is obtained. This last value is
compared with the guessed value and if significantly different a new iteration is
performed with the new value of _m0 as an entry. Finally, note that once _m0 is known
the shape of the collection area may be obtained provided the mass flow rate _m is
also given (Sect. 15.A.5 in this Appendix 15A).

15.A.4 Iterative Procedure

The quantities UL;F;F0;FR and the temperature Tp are evaluated all together
through the following iterative procedure with Ta and Tf ;i as input (given)
parameters. A guessed value for Tp is first adopted. Next, UL;F;F0 and FR are
evaluated from Eqs. (15.A.12), (15.A.13), (15.A.15) and (15.A.20), respectively.
Finally, a new value for Tp is obtained from Eq. (15.A.22). It is compared with the
guessed Tp value and if they differ significantly the procedure is repeated by using
the new Tp value as entry. Note that Ta and Tf ;i in this Appendix A correspond to
T�
a and T�

f ;i, respectively, in Sect. 15.2.
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15.A.5 Shape of Collection Area

A simple rectangular form of width l and length L may be adopted for the collection
surface area A ¼ lLð Þ. The number of parallel tubes on that surface is l=W . Note that
the mass flow rate in a tube is _mtube ¼ qwaterwwater pD2

i =4

 �

, where qwater is the mass
density of water. The total mass flow rate on the collection area is _m ¼ _mtubel=W .
With known values for _m0 and _m, these relationships allow to find A; l and L ¼ A=l.

Appendix 15B

Table 15.B.1 gives the values adopted for the flat-plate solar collector system
treated in this paper. Quantities not included in this table, such as the distance W
between the tubes and the thickness d of the absorber plate, are subjected to change
and their values are explicitly given in the text.

Table 15.B.1 Values adopted for the flat-plate solar collector

Quantity Symbol Value

Transparent cover

Thickness of one transparent layer a 0.004 (m)

Absorption coefficient kabs 4 (m−1) (water white glass)

Emittance eg 0.88

Relative refraction index n2 1.526

Number of transparent layers N 1

Absorber plate

Thermal conductivity kp 211 (Wm−1 K−1) (aluminum)
57 (Wm−1 K−1) (steel)

Absorptance a 0.9

Emittance ep 0.1

Tube external diameter d 0.013 (m)

Tube internal diameter di 0.01 (m)

Bond conductance Cb 0.03 (m KW−1)

Bottom thermal insulation

Thermal conductivity kb 0.034 (Wm−1 K−1) (polyurethane)

Thickness of bottom thermal insulation Lb 0.05 (m)
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Chapter 16
Optimal Time-Dependent Operation
of Open Loop Solar Collector Systems

Solar energy conversion strategies are different from the point of view of their costs
and feasibility. Optimization of these conversion processes can yield a variety of
answers, depending not only on the objective of the optimization but also on the
constraints that define the problem. More specifically, the optimal paths are dif-
ferent when maximization of exergy gain rather than energy gain is of interest.

Solar radiation is an important source of exergy. Fully concentrated direct solar
radiation is very rich in exergy (more than 90%) (Badescu 2014, 2015). The exergy
content of fully concentrated diffuse solar radiation is smaller but still high, ranging
from 72.6% for single scattering to 9.6% in case of four scatterings (Badescu 1991).
Part of the incident exergy flux is lost inside the solar energy conversion equipment
due to various irreversible processes (see Izquierdo et al. 2002). Maximizing the
exergy gain finally means minimizing the effects of these irreversible processes. It is
known that thermal energy storage is associated with exergy destruction (Bejan
1982b; Badescu 2002a, b; Gunnewiek et al. 1993). Therefore, thermal energy
storage should be avoided, when possible. From this point of view, open loop
should be preferred to closed loop configurations.

Early approaches on energy gain maximization through mass flow rate control are
reported by Kovarik and Lesse (1976), Horel and DeWinter (1978) and Bejan and
Schultz (1982). Holland and Brunger (1992) dealt with the water flow rate opti-
mization for a closed loop system. Additional comments may be found in De Winter
(1992). Different objective functions (all of them related to the energy gain) were
considered by these authors. For instance, the minimum cost per unit of energy
transferred was considered by Horel and De Winter (1978) while in Hollands and
Brunger (1992) the amount of collected energy was maximized. Different optimal
strategies were found when the exergy gain was analyzed (see Bejan 1982a).

This chapter refers to optimal operation strategies for exergy gain maximization
by using open loop flat plate solar collector systems. The water mass flow rate in the
collectors is the control parameter. A simple variational approach is presented in
Sect. 16.1 based on Bejan (1982a). A more involved treatment is described in
Sect. 16.2 (see Badescu 2007).
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16.1 Simple Variational Approach for Maximum Exergy
Extraction

The purpose of this section is to present the characteristics of non-steady state
operation strategies taking place in solar installations, which maximizes the exergy
collected (Bejan 1982a).

16.1.1 Model of Flat Plate Solar Collector Operation

A solar collector having the collection surface area A is considered. The mass of
fluid that can be stored in the collector is M and the specific heat at constant
pressure of the fluid is cp. The collector is exposed to the global solar irradiance G,
variable in time. The radiation is incident on the collector in separated sequences of
one day each. Figure 16.1 shows the idealized profile of the time variation of G, in
which the irradiance achieves the same maximum value, Gmax, in all days.

The collector provides thermal energy by two independent mechanisms. First, it
is a heat flux Qamb transferred to the environment, given by

Qamb ¼ UA Tc � Tambð Þ ð16:1:1Þ

where Tc is the collector plate temperature, considered uniform, Tamb is the ambient
temperature and U is the global coefficient of thermal losses. It is assumed that the
value of U is constant in time and known. The second mechanism is due to the user,
which circulates through the collector a mass flow rate of fluid, _m. It is assumed that
the fluid inlet temperature in the collector is equal to the ambient temperature (this
hypothesis characterizes the systems operating in open loops). In addition, it is
assumed that the mass of fluid entering the collector is perfectly mixing the mass M
of existing fluid. Then, the collector transfers to the working fluid (and, therefore, to
the user) a net useful heat flux Qu, given by:

Fig. 16.1 Ideal time
variation of solar irradiance
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Qu ¼ _mcpðTc � TambÞ ð16:1:2Þ

By applying the first law of thermodynamics to the plate of the collector, it is
obtained:

Mcp
dTc
dt

¼ GA� UA Tc � Tambð Þ � _mcp Tc � Tambð Þ ð16:1:3Þ

Here it has been assumed that the transparent cover does not absorb and reflect
radiation and that the whole solar energy flux incident on the collector surface is
absorbed by the absorber plate, being equal with GA. In Eq. (16.1.3), Tc;G and _m
are functions of time. The following dimensionless notation is used:

h � Tc
Tamb

t� � t
GmaxA
McpTamb

K0 � UTamb
Gmax

_m� � _mcpTamb
GmaxA

G� ¼ G
Gmax

ð16:1:4–8Þ

Equation (16.1.3) is written in dimensionless form, by using notation
Eqs. (16.1.4)–(16.1.8), as follows:

dh
dt�

¼ G� � h� 1ð Þ K0 þ _m�ð Þ ð16:1:9Þ

From Fig. 16.1 it is deducted that the dimensionless irradianceG� ranges between
0 and 1. The dimensionless collector temperature, h, can be obtained by solving
Eq. (16.1.9), if one knows the time variation of the dimensionless irradiance G� and
of the dimensionless flow rate _m�, as well as the heat loss parameter K0.

From the engineering standpoint, the mass flow rate _m� should be adjusted,
depending on the collector temperature h. To extract a larger flux of exergy, the
flow rate should be increased, when the collector temperature increases. Next, the
optimal time variation of _m� is determined, so that the exergy collected in a certain
time interval is a maximum.

16.1.2 Optimal Strategy for Maximizing the Collected
Exergy

It is assumed that the working fluid is either incompressible (that is, a liquid) or a
perfect gas at constant pressure. Then, the exergy flux, _Ex, which is transferred to
the fluid flow, is:
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_Ex ¼ _mcp Tc � Tamb � ln
Tc
Tamb

� �
ð16:1:10Þ

Integrating Eq. (16.1.10) on a finite interval of time 0\t\tc, one obtains the
total amount of exergy, Ex, transferred to the fluid:

Ex ¼
Ztc
0

_mcpTambðh� 1� ln hÞdt ð16:1:11Þ

The dimensionless form of Eq. (16.1.11) is written as follows (using the
parameter NEx, called exergetic number):

NEx ¼
Zt�c
0

_m� h� 1� ln hð Þdt� NEx � Ex

McpTamb

� �
ð16:1:12; 13Þ

To determine the optimum variation of the fluid flow, _m� t�ð Þ½ �opt, which maxi-
mizes the integral in Eq. (16.1.12), one takes into account that _m� t�ð Þ and the
dimensionless collector temperature h are linked through the energy conservation
Eq. (16.1.9). Eliminating _m� between Eqs. (16.1.9) and (16.1.12) one obtains:

NEx ¼
Zt�c
0

Fdt� �
Zt�c
0

G� � dh=dt�ð Þ
h� 1

� K0

� �
h� 1� ln hð Þdt� ð16:1:14Þ

The integrand F in Eq. (16.1.14) depends on h and dh=dt�, but is not explicit
function of t�. Since _m� and h are interdependent, due to Eq. (16.1.9), the problem
of finding the optimal time variation of the fluid flow is reduced to finding the
optimal time variation of the collector temperature, hopt t�ð Þ, which maximizes the
functional in Eq. (16.1.14). The solution to this problem of variational calculus is
obtained by solving the Euler-Lagrange equation:

dF
dh

� d
dt�

dF

d dh
dt�
� �

 !
¼ 0 ð16:1:15Þ

Solving Eq. (16.1.15), it is found, after some algebra, the following relationship
between hopt and G� t�ð Þ:

G� t�ð Þ
K0

¼ hopt � 1
� �3

hopt ln hopt � hopt þ 1
ð16:1:16Þ
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This result is general, since the time variation of the solar irradiance, G�, has not
yet been specified. The optimum temperature of the collector increases monoton-
ically when the solar irradiance increases and the heat loss factor K0 decreases.

Using this result, some important conclusions may be drawn. First, to collect a
maximum amount of exergy, the collector temperature must be changed in the same
sense that the solar irradiance changes (Fig. 16.2). Also, after sunset, the exergy
storage by using the thermal capacity of the collector is not recommended. Indeed,
as shown in Fig. 16.2, the optimum collector temperature is minimal (that is, equal
to the ambient temperature) when the irradiance is zero.

The time variation of the optimal flow can be determined by using Eqs. (16.1.9)
and (16.1.16):

_m�
opt ¼ K0

hopt hopt � 1� ln hopt
� �

hopt ln hopt � 1
� �þ 1

� 1
hopt � 1

dhopt
dt�

ð16:1:17Þ

in which both the location of the solar installation (which actually determines the
value G�) and the features of the collector (K0) are assumed known. The impli-
cations of this result, which are important for the applications, are obtained in the
limit hopt ! 1, when the flow given by Eq. (16.1.17) reduces to:

_m�
opt ffi

K0

2
� 1
hopt � 1

dhopt
dt�

ð16:1:18Þ

In the same limit case, from Eq. (16.1.16) one obtains:

G� t�ð Þ
K0

ffi hopt � 1 ð16:1:19Þ

If, during a day, the variation of the solar irradiance is modeled in the simple
form:

Fig. 16.2 Time variation of
the optimal collector
temperature must follow the
time variation of the solar
irradiance
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G t�ð Þ ¼ sin p
t
tc

� �
0\t\tcð Þ ð16:1:20Þ

(where tc is the duration of the interval between sunrise and sunset), the optimal
flow rate (Eq. 16.1.18) becomes:

_m�
opt ffi

K0

2
� ctg p

t
tc

� �� �
ð16:1:21Þ

From the examination of Eq. (16.1.21) it is seen that the optimal flow rate increases
monotonically from �1 at sunrise (t� ¼ 0) to þ1 at sunset (t� ¼ t�c ). Since in the
limit hopt ! 1, the parameter K0 is much larger than unity (see Eq. 16.1.19), it is
concluded that _m�

opt changes the sign shortly after dawn, after a time interval of the
order pt=tc � 2=K0 � 1. Thismeans that during the early period of sunshine, the fluid
flow is used to warm the collector. The exergy extraction phase, corresponding to
positive values of _m�

opt, is lasting almost the entire period of sunlight.
Another conclusion obtained from Eq. (16.1.21) is that the optimal flow rate is

higher in collectors characterized by higher values of heat loss parameter K0.
The maximum amount of exergy collected in the limit hopt ! 1 is obtained by

replacing Eqs. (16.1.20) and (16.1.21) in the integral in Eq. (16.1.14) and then
using notations Eqs. (16.1.5), (16.1.6) and (16.1.13):

Ex ¼ tcAG2
max

8UTc
ð16:1:22Þ

The exergy gained during the sunshine period is proportional with the collection
surface area and the square of themaximum solar irradiance. As expected,Ex is higher
in case of better insulated thermal collectors (characterized by lower values of U).

16.2 Optimal Control of Flow for Maximum Exergy
Extraction

16.2.1 Introduction

A realistic solar collector model is used in this section, following the work byBadescu
(2007). This should be compared with the very simple collector models used by
Kovarik and Lesse (1976), Bejan and Schultz (1982), Bejan (1982a) (see also
Sect. 16.1). Numerical optimization techniques are used here. They allow developing
a more involved mathematical model. The model is implemented by using a large
meteorological database. This makes the results more credible than the implemen-
tations performed without using measured series of meteorological parameters.
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16.2.2 Meteorological Database

The meteorological database has been described in Sect. 15.2.2. It is shortly pre-
sented here, for the self-consistency of this chapter. The typical meteorological year
assumption is adopted (see e.g. Gazela and Mathioulakis (2001)). This allows
meteorological data from a single year to be used in computations (Badescu 2002b).
The meteorological METEORAR database consisting of hourly measurements of
ambient temperature, air relative humidity and point cloudiness performed at
Bucharest in 1961 is used here (INMH 1961). Global solar irradiance on a hori-
zontal surface is evaluated by using the model of Badescu (2002c). Direct, diffuse
and ground-reflected solar irradiance on a tilted surface is computed by using a
simple isotropic model (Oancea et al. 1981). The ground albedo is 0.2 (Badescu
1987). Computations are performed on a hourly basis for the whole year. Further
details are found in Sect. 15.2.2.

16.2.3 Transient Solar Energy Collection Model

A registry-type flat plate solar collector is considered. The effective
transmittance-absorptance product and the overall heat loss coefficient are denoted
sað Þ and UL, respectively. Both quantities depend on temperature or on the
time-dependent working conditions. The material of the collector plate has a surface
mass density M0 and specific heat cm. The surface collection area is denoted Ac. The
specific heat and mass flow rate of the working fluid is cp and _m, respectively. The
fluid enters and leaves the collection area at temperature Tf ;i and Tf ;out, respectively.
The incident solar irradiance and the ambient temperature are denoted G and Tamb,
respectively.

The temperature of the collector plate depends on space and time. The present
model uses an absorber plate temperature (denoted T) averaged at the level of the
whole surface area. All (space averaged) collector properties are evaluated as a
function of this space averaged temperature (see Duffie and Beckman (1974) and
Badescu (2006) for details). Table 16.1 gives the values adopted for various
parameters describing the flat-plate solar collector treated in this section.

The energy balance at the level of the absorber plate yields:

M0Accm
dT
dt

¼ sað ÞGAc � ULAc T � Tambð Þ � _m0Accp Tf ;out � Tf ;i
� � ð16:2:1Þ

Here _m0 � _m=Acð Þ is the mass flow rate per unit collection surface area. One
denotes by hf and A0

t the convection heat transfer coefficient between collector pipes
and fluid and the heat transfer surface area per unit collection area, respectively. The
next assumption is that the (space averaged) pipe wall temperature equals the plate
temperature T . Then, the following steady-state energy balance equation applies:
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hf A
0
tAc T � Tf ;m
� � ¼ _m0Accp Tf ;out � Tf ;i

� � ð16:2:2Þ

In Eq. (16.2.2) Tf ;m is a (space averaged) fluid temperature defined in first
approximation by:

Tf ;m � Tf ;i þ Tf ;out
2

ð16:2:3Þ

Figure 16.3 (associated to Fig. 16.7) shows the time dependence of various
collector parameters during July. The effective transmittance-absorptance product
sað Þ is rather constant during the day, with some decrease near sunrise and sunset
(Fig. 16.3e). The overall heat loss coefficient UL depends strongly on the time of
the day (Fig. 16.3b, d). It is larger near the noon, when the plate temperature is
usually larger. The coefficient UL decreases by decreasing the inlet fluid tempera-
ture Tf ;i but this is not very obvious. The heat transfer coefficient hf has an

Table 16.1 Values adopted for the flat-plate solar collector treated in this section

Quantity Value

Working fluid (water)

Specific heat 4185 (J kg−1 K−1)

Mass density 1000 (kg m−3)

Transparent cover

Thickness of one transparent layer 0.004 (m)

Relative refraction index 1.526

Absorption coefficient (water white glass) 4 (m−1)

Emittance 0.88

Number of transparent layers 1

Absorber plate (aluminium)

Thermal conductivity 211 (W m−1 K−1)

Thickness 0.0015 (m)

Mass density 2700 (kg m−3)

Specific heat 896 (J kg−1 K−1)

Absorptance 0.9

Emittance 0.1

Distance between tubes 0.1 (m)

Tube external diameter 0.013 (m)

Tube internal diameter 0.01 (m)

Bond conductance 0.03 (mK W−1)

Bottom thermal insulation (polyurethane)

Thermal conductivity 0.034 (W m−1 K−1)

Thickness 0.05 (m)
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important time-variation (Fig. 16.3a, c). Its hourly dependence is a function of the
inlet fluid temperature Tf ;i. When Tf ;i is high, the mass flow rate is high near sunrise
and sunset (when the inlet fluid temperature exceeds the ambient temperature). In
this situation hf is high in the beginning and end of the day (Fig. 16.3a). When
lower values of Tf ;i are considered, the mass flow rate is usually higher in the
middle of the day, when the available amount of solar energy is also higher. In this
case hf has a maximum around the noon (Fig. 16.3c).

South oriented collectors are considered in this study. The (near) optimum tilt
angle depends on the period of operation as follows. For warm season operation the
collectors are tilted 20° while for cold season operation the collectors are tilted 55°.

16.2.4 Optimum Operation

The mechanical energy necessary to move the fluid is not considered here.
Therefore, the exergy fluxes entering and leaving the collection area with the
working fluid, _Ex;i and _Ex;out, respectively, are given by

Fig. 16.3 Dependence of the heat transfer coefficient hf (a and c) and overall heat loss coefficient
UL (b and d) on hour number in July, for two values of the inlet fluid temperature (i.e. Tfi ¼ 285 K
and 320 K). The effective transmittance—absorptance product sað Þ is also shown in (e). Only
hours during the daylight time are represented. This figure is associated to Fig. 16.7
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_Ex;iðoutÞ ¼ _mcpTamb
Tf ;iðoutÞ � Tamb

Tamb
� ln

Tf ;iðoutÞ
Tamb

� �
ð16:2:4Þ

The gained exergy flux _Ex � _Ex;out � _Ex;i may be evaluated by using
Eq. (16.2.4). It is

_Ex ¼ _mcpTamb
Tf ;out � Tf ;i

Tamb
� ln

Tf ;out
Tf ;i

� �
ð16:2:5Þ

The exergy Ex collected during the time period t1�t2 is obtained by integration
of Eq. (16.2.5):

Ex ¼ Ac

Zt2
t1

_m0cpTamb
Tf ;out � Tf ;i

Tamb
� ln

Tf ;out
Tf ;i

� �� �
dt ð16:2:6Þ

Here the definition of _m0 was also used.
The optimization problem consists of finding the optimum function _m0

opt tð Þ that
makes Ex given by Eq. (16.2.6) a maximum, taking account of the constraint
Eq. (16.2.1). The time period t1�t2 entering Eq. (16.2.6) normally refers to the
interval between sunrise (t1) and sunset (t2). The usual assumption is that collector
plate temperature at time t1 equals the ambient temperature:

T t ¼ t1ð Þ ¼ Tamb t ¼ t1ð Þ ð16:2:7Þ

Equation (16.2.7) may be used as a boundary value when solving the ordinary
differential Eq. (16.2.1). The following dimensionless quantities are defined:

s � t
tref

g � G
Gref

h � T
Tref

hi � Tf ;in
Tref

hamb � Tamb
Tref

ð16:2:8a–eÞ

The subscript “ref” in Eqs. (16.2.8a–16.2.8e) defines a constant quantity. Also,
the following dimensionless quantities related to solar collector operation are
defined:

ðsaÞ
�

� sað Þ
M0cm

Gref tref
Tref

~U � ULtref
M0cm

~h � hf tref
M0cm

l � 1
2
þ _mcp

hf A0
t

� ��1

ð16:2:9a–eÞ

The quantity l in Eq. (16.2.9d) is the dimensionless mass flow rate factor, which

is the new control function. Note that sað Þ
�

, ~U and ~h are time-dependent quantities.
With notation Eq. (16.2.8), the objective function Eq. (16.2.6) becomes
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~Ex � Ex

M0AccmTref
¼
Zs2
s1

hamb~h
1
l
� 1
2

� �
l

h� hi
hamb

� �
� ln 1þ l

h
hi
� 1

� �� �� 	
ds

ð16:2:10Þ

while the constraint Eq. (16.2.1) (sometimes referred to as the state equation)
becomes:

dh
ds

¼ sað Þ
�

g� ~U h� hambð Þ � ~h 1� l
2


 �
h� hið Þ ð16:2:11Þ

Generally, the objective function ~Ex given by Eq. (16.2.10) may be seen as a
function of h, dh=ds and l and procedures of variational calculus may be used to
find the optimum function lopt sð Þ. Bejan (1982a) used such techniques to find the
optimum mass flow rate in a very specific case with additional simplifying
assumptions (see Sect. 16.1). This case is shown for convenience in Sect. 16.2.4.1
by using the notation of this section. However, the variational approach has no
solution in the general case under similar simplifying assumptions (see
Sect. 16.2.4.2). Thus, a direct optimal control technique is used to solve the
problem in Sect. 16.2.4.3.

16.2.4.1 Variational Approach for a Simple Case

The case studied by Bejan (1982a) is a particular case of the present more general
approach (Badescu 2007). The following simplifying assumptions are adopted:
(i) Tf ;out ¼ T , (ii) Tf ;i ¼ Tamb, (iii) the characteristics of the solar collector do not
depend on T and l and (iv) the ambient temperature Tamb is constant in time and
equals the reference temperature Tref in Eqs. (16.2.8c–16.2.8e).

Use of hypothesis (i) means l ¼ 1. However, this simplification is used only in
the parentheses of Eq. (16.2.10), which becomes:

~Ex ¼
Zs2
s1

hamb~h 1� l
2


 � h� hi
hamb

� �
� ln

h
hi

� �� �
ds ð16:2:12Þ

Now, ~h 1� l=2ð Þ is extracted from Eq. (16.2.11)

~h 1� l
2


 �
¼ sað Þ

�
g� ~U h� hambð Þ � dh

ds

h� hamb
ð16:2:13Þ

and is replaced in Eq. (16.2.12), leading to
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~Ex ¼
Zs2
s1

F h;
dh
ds

� �
�
Zs2
s1

hamb
sað Þ
�

g� ~U h� hambð Þ � dh
ds

h� hamb

8<
:

9=
; h� hi

hamb

� �
� ln

h
hi

� �� �
ds

ð16:2:14Þ

The objective function given by Eq. (16.2.14) may be maximized by using the
variational approach. A solution is found by solving the Euler-Lagrange equation:

@F
@h

� d
ds

@F
@ dh=dsð Þ
� �

¼ 0 ð16:2:15Þ

Use of Eqs. (16.2.14) and (16.2.15) as well as the hypotheses (ii)–(iv) yield the
following equation whose solution is the optimum temperature hopt:

sað Þg
�

~Uhamb
¼ hopt � 1

� �3
hopt ln hopt � hopt þ 1

ð16:2:16Þ

This equation was first derived in Bejan (1982a) (see Eq. 16.1.16). Note that in
Eq. (16.2.16) the parameter g (i.e. the solar global irradiance G) is allowed to vary.
The previous relationships may be used in principle to build a flow rate “instan-
taneous” controller. Indeed, measuring the solar global irradiance G (or, in other
words, knowing the function g sð Þ) allows to find hopt sð Þ from Eq. (16.2.16) and,
finally, the optimum mass flow rate parameter lopt sð Þ from Eq. (16.2.13). However,
the four simplifying assumptions make this result of rather limited practical interest.

16.2.4.2 Variational Approaches for the General Case

From Eq. (16.2.11) one extracts ~h 1� l=2ð Þ and one replaces it in the dimen-
sionless objective function Eq. (16.2.10), which becomes:

~Ex ¼
Zs2
s1

F0 h;
dh
ds

; l

� �
ds �

Zs2
s1

hamb
sað Þ
�

g� ~U h� hambð Þ � dh
ds

h� hi

8<
:

9=
;

	 h� hi
hamb

� �
� 1
l
ln 1þ l

h
hi
� 1

� �� �� 	
ds

ð16:2:17Þ

One sees that in the general case the objective function depends on both h sð Þ and
l sð Þ, as well as on dh=ds. The maximum of ~Ex is given by specific functions hopt sð Þ
and l sð Þ which obey the Euler-Lagrange equations:
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dF 0

dh
� d
ds

@F0

@ dh=dsð Þ
� �

¼ 0
dF0

dl
¼ 0 ð16:2:18; 19Þ

The solar collector characteristic ~U depends in a complicated manner on the
parameters h and l. A way of making the problem tractable is to use the method of
“frozen” parameters, which assumes the collectors parameters, as well as the
dimensionless ambient temperature hamb, have a weaker time-dependence than the
variables h and l. Therefore, all these parameters are assumed to be constant for
short intervals of time. Then, the derivatives in Eqs. (16.2.18) and (16.2.19) may be
easily performed by using Eq. (16.2.17) and the results are, respectively:

sað Þ
�

g� ~U h� hambð Þ
sað Þ
�

g� ~U hi � hambð Þ
hi � hamb þ l h� hið Þ

hi þ l h� hið Þ
l

hamb

¼
l h�hi

hamb


 �
� ln 1þ l h

hi
� 1


 �h i
h� hi

ð16:2:20Þ

1þ l
h
hi
� 1

� �� �
ln 1þ l

h
hi
� 1

� �� �
� l

h
hi
� 1

� �
¼ 0 ð16:2:21Þ

Solving Eqs. (16.2.20) and (16.2.21) for the unknown functions l and h would
give the solution. Equation (16.2.21) has the solution l h=hi � 1ð Þ ¼ 0, which
corresponds to lopt ¼ 0 or hopt ¼ hi. In fact, the strategy lopt ¼ 0 (i.e. an infinitely

large mass flow rate) covers the case hopt ¼ hi, too. But this strategy yields ~Ex ¼ 0
for the extreme of the objective function, which is useless from the point of view of
practical applications.

Another approach is to try to eliminate l from the parentheses in the integral of
the r.h.s. member of Eq. (16.2.17). Figure 16.4 (which refers to optimum operation

Fig. 16.4 Values of
l h=hið Þ � 1 as function of
solar global irradiance G.
Hourly values for optimum
operation during the warm
season were considered. Inlet
fluid temperature
Tf ;i ¼ 285 K
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during the warm season and Tf ;i ¼ 285 K) shows that x � l h=hi � 1ð Þ is generally
smaller than 0.35. The x values are even smaller in case of higher inlet fluid
temperature Tf ;i and/or optimum operation during the cold season. Therefore, in
first approximation x is a small parameter. Consequently, ln 1þ xð Þ ffi x. This lin-
earization procedure introduces relative errors smaller than 0.5, 2.5, 5, 10, 15 and
19% for x equals to 0.001, 0.005, 0.1, 0.2, 0.3 and 0.4, respectively. The lin-
earization yields the following objective function:

~Ex ¼
Zs2
s1

1� hamb
hi

� �
~h 1� l

2


 �
h� hið Þds ð16:2:22Þ

Use of Eqs. (16.2.13) and (16.2.22) finally yields

~Ex ¼
Zs2
s1

F00 h;
dh
ds

� �
ds �

Zs2
s1

1� hamb
hi

� �
sað Þ
�

g� ~U h� hambð Þ � dh
ds

� �
ds

ð16:2:23Þ

The Euler-Lagrange equation associated to Eq. (16.2.23) is similar to
Eq. (16.2.15). To make the solution tractable, the method of the “frozen” param-
eters is adopted. In this case, however, one can easily see that the Euler-Lagrange
equation has no solution. One concludes that the variational approach yields no
useful result in the general case, at least when the method of frozen parameters is
adopted.

16.2.4.3 Direct Optimal Control Approach

The optimization problem may be solved by using optimal control techniques. One
may choose between indirect methods (such as those based on Pontryagin principle)
and direct methods. Indirect methods were already used in treating various heating
and cooling processes (see e.g. Badescu 2004a, b, 2005). They need preparing an
adjoined (or co-state) differential equation. This task is difficult to implement in the
present case, mainly because of the implicit dependence of the Hamiltonian on the
state variable h. Indeed, the overall heat loss coefficient depends on the plate
temperature. Accurate modeling should take account this dependence (see e.g.
Chaabene and Annabi 1997), which creates difficulties in computing the derivatives
of the Hamiltonian over h.

Here a direct shooting approach is used, i.e. Trajectory Optimization by
Mathematical Programming (TOMP) (Kraft 1994). This avoids the need for the
co-state equation by transforming the original optimal control problem into a
nonlinear programming problem (NPP). The basic ideas of the numerical TOMP
algorithm are presented next. The state Eqs. (16.2.11) and (16.2.7) represent an
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initial value problem (IVP) as a sub-problem. The integration time interval in
Eq. (16.2.10) is divided into sub-intervals separated by nodes. The values of the
control parameter (i.e. l) in these nodes constitute the so called parameter vector.
Initially, this parameter vector is unknown and a guess is necessary. The IVP is
solved on the above integration interval by using common Runge-Kutta techniques.
The resulted values of the state variable in the nodes of the integration interval
depend of course on the parameter vector. Consequently, the objective function
Eq. (16.2.10) is dependent on this parameter vector. The NPP consists in maxi-
mizing the objective function in terms of the parameter vector. The resulted opti-
mized parameter vector is returned as an entry to the IVP and a new set of values of
the state variables in the nodes of the integration interval is obtained. Then, the
objective function is maximized again and a new optimized parameter vector is
obtained. This process continues until a given convergence condition for the
parameter vector is satisfied. The software package TOMP is split into two mod-
ules, the simulator d_TOMP and the optimizer SLSQP which exchange their
information by reverse communication. In d_TOMP the IVP is integrated.
In SLSQP the NPP is solved by sequential linear least squares. More details may be
found in Kraft (1994).

All optimal control calculations reported next are done on a day by day basis,
between sunrise and sunset. During the night, the temperature of the flat plate
collector decreases towards the ambient temperature. Therefore, each day the plate
temperature at sunrise equals the ambient temperature (see Eq. 16.2.7). To increase
the integration accuracy, the day-light interval is divided into a number of hourly
sub-intervals. Integration is effectively performed on these hourly intervals. The
following values are used in Eq. (16.2.8): tref ¼ 3600 s, Tref ¼ 300 K and
Gref ¼ 1000 W m�2.

16.2.5 Optimum Operation

Several indicators of performance are defined for the solar energy collection system
as follows. The instantaneous and averaged energy efficiency, gen and �gen,
respectively, are given by:

gen �
_m0cp Tf ;out � Tf ;i

� �
G

�gen �

Rt2
t1

_m0cp Tf ;out � Tf ;i
� �

dt

Gðt2 � t1Þ ð16:2:24; 25Þ

Also, the instantaneous and averaged exergy efficiency, gex and �gex, respectively,
are given by:
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gex �
_Ex

AcG
�gex �

Ex

AcGðt2 � t1Þ ð16:2:26; 27Þ

A brief presentation of some experimental results reported in literature provides
perspective for findings. The upper limit of unconcentrated solar radiation energy
conversion into work on Earth surface is about 5.3% (for an ambient temperature of
300 K) (Badescu 1991). Experimentally derived values may be found from two
studies of combined systems consisting in heat pumps and flat-plate solar collectors
(Kaygusuz and Ayhan 1993; Torres Reyes et al. 1998). The results by Kaygusuz
and Ayhan (1993) were obtained in Trabzon, Turkey (41°N latitude). The eighteen
solar collectors are oriented south and tilted 40°. Each collector has 1:66 m2 surface
area and eight 1.25 cm outside diameter copper tubes spaced 10 cm apart. The
aluminum flat plate sheet is 0.55 mm thick and its absorptance is 0.8. The single
glazing is 3.5 mm thick glass with 0.85 transmittance. The mass-flow rate through
the collectors is 1300 kg/h ( _m0 ¼ 0:012 kg m�2 s�1). The exergy efficiency of solar
collectors is defined by Kaygusuz and Ayhan (1993) as the ratio between the exergy
gain and the maximum theoretically possible exergy gain. Figures 5–7 in Kaygusuz
and Ayhan (1993) show this exergy efficiency ranges between 25 and 50%. In order
to convert these values into exergy efficiency values defined by Eqs. (16.2.26) and
(16.2.27) they should be multiplied by 0.053. The resulting values range between
1.32 and 2.65%. An uncovered solar collector with 4:5 m2 surface area was studied
by Torres Reyes et al. (1998). No details about the mass flow rate are given. The
authors defined the exergy efficiency of the whole combination solar collectors—

Fig. 16.5 Dependence of some meteorological and operational parameters on hour number in
January. a Energy efficiency gen; b optimum mass flow rate _m0 per unit collector surface area;
c global solar irradiance G incident on the collector; d ambient temperature Tamb. Only hours
during daylight time are represented. The inlet fluid temperature is Tfi ¼ 285 K
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Fig. 16.6 Dependence of the optimum mass flow rate _m0 per unit collector surface area on
ambient temperature Tamb during the warm season for two values of the inlet fluid temperature;
a Tfi ¼ 320 K; b Tfi ¼ 285 K

Fig. 16.7 Dependence of the optimum mass flow rate _m0 per unit collector surface area on hour
number in July for different values of the inlet fluid temperature. a Tfi ¼ 285 K; b Tfi ¼ 300 K;
c Tfi ¼ 320 K. The dependence of the incident solar global irradiance on the hour number is also
shown in (d). Only hours during the daylight time are represented. This figure is associated to
Fig. 16.3
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heat pump. The experimental results are shown in their Fig. 2. The exergy effi-
ciency ranges between 1 and 4%. Another experimental study refers to a solar
power plant based on low-temperature technology (Chaabene and Annabi 1997).
This plant is located in Borj Cedria, a small sea-side town 20 km south of Tunis.
The unit has a 720 m2 array of flat-plate collectors (of the water-heater type) linked
to a 45 m3 water storage tank. The stored thermal energy is transformed into
electricity by using a 10-kW turbo-alternator station connected to the electrical grid.
The efficiency of the plant is low. During the hot season, it is in the order of 2%.
When the weather is bad, the plant does not operate. Two different periods were
distinguished. The first extends from April to October, when the turbine is able to
work eight hours per day. The second period characterizes the cold season, when
the turbine can not operate more than two hours a day.

Results obtained by Badescu (2007) are presented now. They are obtained by
using the direct optimal control technique described in Sect. 16.2.4.3. Figure 16.5a
shows that in January the exergy efficiency gex is low (less than 3%), as expected.
The time variation of gex is rather well correlated to the time variation of solar
global irradiance G (Fig. 16.5c). This is in good concordance with early results by
Bejan (1982a). There is no obvious correlation between the time evolution of gex
and ambient temperature Tamb (Fig. 16.5d). It is not easy to find by visual
inspection a correlation between the time dependence of the optimum mass flow
rate _m0 (Fig. 16.5b) and G or Tamb. However, a closer inspection shows that the
highest values of _m0 occur near sunrise and sunset. Note that high values of gex
corresponds to low values of _m0 (compare Fig. 16.5a, b).

In case the objective function is the collected solar energy, the early work by
Kovarik and Lesse (1976) proved that the optimal operation strategy requires using
the maximum possible mass flow rate. This applies to open loop systems but only
during those time periods when the collector provides a non-null flux of useful
thermal energy. Additional constraints should be fulfilled in case of solar energy
systems with stratified storage.

Figure 16.6 shows that the optimum mass flow rate _m0 increases significantly
when increasing the fluid inlet temperature Tf ;i. At high values of Tf ;i (Fig. 16.6a)
the average of the cloud of _m0 data is about 0:01 kg m�2 s�1, which is of the order
of values used in practice. For example, values between 0:0042 and
0:0236 kg m�2 s�1 were adopted in a study dealing with modeling variable mass
flow rate collectors (Hilmer et al. 1999).

The data cloud in Fig. 16.6a has a rather high dispersion. When lower values of
Tf ;i are considered (Fig. 16.6b) the average mass flow rate per unit surface area is
about ten times lower than the values used in practice. Both data clouds in Fig. 16.6
are vertically distributed and this means that _m0 is weakly correlated with ambient
temperature, whatever the value of the inlet fluid temperature is.

Figure 16.7 shows that in July the mass flow rate per unit surface area _m0 is
rather well correlated with global solar irradiance G, no matter the value of Tf ;i is.
Increasing Tf ;i makes _m0 to increase. Generally, _m0 reaches its maximum near
sunrise and sunset. This is more obvious in Fig. 16.7b, c, associated to higher
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values of Tf ;i. In the middle of the day _m0 is rather constant. This is again more
obvious in Fig. 16.7b, c.

16.2.6 Aspects of Controller Design

Flow rate control is an important factor to increase the performance of solar thermal
systems. Controllers are differentiated upon objective, complexity and way of
operation. In general, the controller must be able to vary the manipulated variable
(i.e. the flow rate) in accordance with two types of fluctuations in the controlled
variable (which is a temperature usually). One type of fluctuation is attributed to
disturbances while another is caused by occurrences of overshoots and undershoots
in the manipulated variables that are caused by a lack of knowledge of future
events. Controllers for objective functions others than the solar energy gain are less
studied in literature. A few aspects concerning controller design in case the
objective function is the exergy gain are presented here.

In case of closed loop solar thermal systems the typical control system has one
sensor mounted on the collector absorber plate near the fluid outlet and another one
mounted in the bottom of the storage tank. With no flow through the collector, the
collector sensor essentially measures the mean plate temperature. With flow, the
collector sensor measures the outlet fluid temperature. The optimal condition for the
controller is simply to turn on the pumps when the value of the solar energy that is
delivered to the load just exceeds the value of the energy needed to operate the
pump (Beckman et al. 1994).

In case of solar space heating applications the usual classification of controllers
is as follows. Controllers of first kind (also called distribution controllers) allow
optimal heat distribution in a building. This means that a certain objective function
related to the thermal energy provided or living discomfort is minimized.
Controllers of second kind () maximize the difference between the useful collected
energy and the energy required to transport the working fluid. The controllers of
third kind combine collection and distribution functions (Byron Winn and
Ellsworth Hull III 1979). The second kind controllers are responsible for the
optimum operation of the pumps. Two sorts of second kind controllers are often
used in applications. One is the bang-bang controller (the mass flow rate has two
allowable values: maximum and zero). The other is the proportional controller (the
mass flow rate is a linear function of the difference between the outlet working fluid
temperature and the temperature inside the storage tank). Variants of proportional
controllers exist such as PID (proportional integral plus derivative mode) and PSD
(proportional sum derivative) controllers.

In case of systems for work generation a different control strategy is usually
adopted. The purpose of the control is to regulate the outlet temperature of the
collector field by suitable adjusting the working fluid flow (Meaburn and Hughes
1994, 1996; Zunft 1995; Kohne et al. 1996).
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Designing a mass flow rate controller based on optimal control theory
encounters a major difficulty: one needs a priori knowledge of meteorological data
time series. An “instantaneous” controller, able to optimally adjust the mass flow
rate by using as input just the last (in time) measured value of the meteorological
parameters, would be highly desirable. This would avoid modeling the future
history of irradiance and ambient temperature. In Sect. 16.2.4.1 it has been shown
that Bejan (1982a) used variational methods and obtained a relationship that allows
such an “instantaneous” controller to be built. However, the case studied by Bejan
(1982a) is very simple and the additional simplifications make the results of little
practical interest.

Results of Fig. 16.7 suggest that a constant mass flow rate may be a good strategy
during the warm season. Figure 16.8a shows the difference between the values of the
daily averaged exergy efficiency �gex obtained by using the optimal control strategy
_m0
opt and three strategies based on a constant mass flow rate, respectively. The

strategy using the constant value _m0 ¼ 0:0001 kg m�2 s�1 yields results very close
to the optimum. The other two constant mass flow rate strategies give worse results.
One of them (i.e. _m0 ¼ 0:001 kg m�2 s�1) is sometime associated to negative values
of �gex. Figure 16.8b shows results for the daily averaged energy efficiency �gen
associated to the four strategies of Fig. 16.8a. The energy efficiency increases by
increasing the mass flow rate, as expected. Obviously, the strategy of maximum
exergy collection is different from that of maximum energy collection.

Fig. 16.8 Difference between values of daily average exergy efficiency �gex (a) and daily average
energy efficiency �gen (b) for four strategies of solar energy collection, i.e. optimum mass flow rate
(opt) and three different constant mass flow rates ( _m ¼ ct). All the days of the warm season were
considered. The inlet fluid temperature is Tfi ¼ 285 K
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Figure 16.9 shows the daily averaged values of the energy and exergy effi-
ciencies, �gen and �gex, respectively, during the cold and warm season, for two values
of the inlet fluid temperature Tf ;i. All these values are associated to the mass flow
rate _m0

opt that maximizes exergy collection. The energy efficiency �gen is generally
smaller than 0.35 whatever the season is (Fig. 16.9a, b). Note that energy efficiency
values higher than 0.5 are usual for actual flat plate collector technology. The lower
performance reported here is a result of using a different objective function (i.e.
exergy gain instead of energy gain). Generally, �gen decreases when Tf ;i increases, in
agreement with current practice. The daily averaged exergy efficiency �gex is gen-
erally lower than 0.03 and obviously increases when Tf ;i increases (Fig. 16.9c, d).
A more constant in time performance is observed during the warm season.

16.2.7 Conclusions

This section refers to optimal operation strategies for exergy gain maximization in
open loop thermal solar energy collection systems. Indirect optimal control methods
are rather difficult to implement because explicit adjoined equations cannot be
easily built for the realistic flat-plate solar collector model adopted here. A direct
method (the TOMP algorithm) was used to find the optimal paths.

Fig. 16.9 Dependence of the daily average energy efficiency �gen (a and b) and daily average
exergy efficiency �gex (c and d) on day number during the cold and warm seasons. Two values of
the inlet fluid temperature were considered, i.e. Tfi ¼ 285 K and 320 K, respectively
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Simulations were performed for both warm and cold season operation. The
maximum exergy efficiency is low (usually less than 3%), in rather good concor-
dance with experimental measurement reported in literature. No obvious correlation
was found during the cold season between the optimum mass flow rate _m0 and the
ambient temperature. The highest values of _m0 occur near sunrise and sunset. Also,
the optimum mass flow rate increases significantly when increasing the fluid inlet
temperature. During the warm season the optimum mass flow rate is well correlated
with the global solar irradiance. Also, _m0 is rather constant in the middle of the day.

The controller purpose in present-day solar thermal power plants is to regulate
the outlet temperature of the collector field by suitable adjusting the working fluid
flow (Meaburn and Hughes 1996). This may ensure a smooth operation but is not
necessarily associated with maximum exergy extraction. The method proposed here
allows finding the optimal paths but it has the obvious disadvantage that requires a
priori knowledge of meteorological data time series. An “instantaneous” controller,
able to optimally adjust the mass flow rate by using as inputs just the last (in time)
measured values of the meteorological parameters is difficult to build. Instead,
operation at constant mass flow rate may be useful, at least during the warm season.
The particular value of the mass flow rate to be used may be found by comparing
results obtained by using the optimal control theory and constant mass flow rate
operation, respectively, both of them using as input time series of measured
meteorological data from previous years.
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Chapter 17
Optimal Time-Dependent Operation
of Closed Loop Solar Collector Systems

Storage units are usually included in solar energy conversion systems designed for
direct thermal energy utilization. Closed loop should be preferred to open loop
configurations in this case.

This chapter refers to optimal operation strategies for enerdgy gain maximization
by using closed loop flat plate solar collector systems. Both stratified and fully mixed
water storage tanks are considered. The fluid mass flow rate in the collectors is the
control parameter. Section 17.1 presents a simplified approach by Kovarik and Lesse
(1976), covering uniform and stratified water storage tanks. Section 17.2 describes a
more involved approach by Badescu (2008) which refers to fully mixed storage tanks.

17.1 Classification and Simple Approach

The useful thermal flux Qu provided by a solar collector with a collection surface
area A, under the incidence of the global solar irradiance G, can be expressed as

Qu ¼ A � G � g ð17:1:1Þ

where g is the conversion efficiency. In case of flat plate collectors uniformly
irradiated, and wherein the working fluid is uniformly distributed on the collection
surface, the expression of the efficiency has the form:

g ¼ g0 � FR � 1� Tfi � Tamb
� � � U

g0 � G
� �

ð17:1:2Þ

where g0 is the optical efficiency, Tamb is the steady-state collector temperature for
zero solar irradiation, Tfi is the temperature of the fluid at collector inlet, U is the
global thermal losses coefficient (sometimes called thermal conductance between
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working fluid and environment) and FR is the heat removal factor by the working
fluid, defined by Duffie and Beckman (1974, p. 147):

FR � 1� exp �F0Ntuð Þ
Ntu

Ntu � AU
_m � cp

� �
ð17:1:3; 4Þ

where Ntu is the number of heat transfer units, which depends on the fluid mass flow
rate _m and on the specific heat at constant pressure of the fluid, cp. The factor F0 in
Eq. (17.1.3) is the collector efficiency factor; here the following value is adopted:
F0 ¼ 1.

Replacing g given by Eq. (17.1.2) in Eq. (17.1.1), another form of the useful
heat flux is found:

Qu ¼ A � qu0 � FR qu0 � g0 � G� U � Tfi � Tamb
� �� 	 ð17:1:5; 6Þ

Of the three terms in the right hand side member of Eq. (17.1.5), only FR contains the
mass flow rate _m. The analysis of Eq. (17.1.3) reveals that FR is a monotonically
increasing function of _m. The only variable that can be easily controlled during the
operation of a solar collector is _m. Therefore,finding an optimal control strategy for the
fluidflow, leading to amore profitable operation of the solar power plant, is of interest.

Given this purpose, the solar energy systems are divided into two classes
(Kovarik and Lesse 1976): those in which the fluid temperature at the entrance of
the collector depends on the mass flow rate _m (Class A), and those for which Tfi
does not depend on _m (Class B).

Class B includes systems in which the fluid is not returned to the collector after
utilization, and systems in which the fluid returns to the collector, but at a tem-
perature that does not depend on the flow rate.

A representative system for the class A is the classic system with forced cir-
culation, where the fluid is sent from the collector to a storage tank, and then it is
returned to the collector. The storage tanks can keep the working fluid at a uniform
temperature (if they are well mixed) or at a temperature that decreases in the
direction of the gravitational force (by using the phenomenon of thermal expan-
sion). This latter system is called stratified storage system.

In the following, the supply of thermal energy is controlled by optimizing the
mass fluid flow rate _m, so that a given performance criterion, J _mð Þ, reaches its
extreme value J� ¼ J� _m�ð Þ.

17.1.1 Performance Criteria

The type of the dependence of the performance criterion (or indicator) J on the mass
flow rate _m enables the introduction of a new classification. A performance criterion of
practical interest must take into consideration the amount of thermal energy collected
during the operation, Qu, which depends on _m through the heat removal factor FR.
This dependence of the performance criterion on _m is called “implicit”. In other
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systems, however, J depends explicitly on _m. For example, the cost of moving the
fluid flow through the collector can constitute a separate term in the performance
criterion. It may be concluded that any solar collection system fall into one of the two
classes, with implicit or explicit dependence of flow performance criterion.

It is shown that for some subclasses, the problem of the optimal control of the
flow has a simple solution. For the remaining subclasses (which are the majority), to
determine the optimal strategy requires using simulations and numerical methods.

It is assumed that the quantity which is used as a measure of the performance of
a solar collection system takes into consideration both the value of the collected
energy and the cost of the effort to collect it (if there is such an effort). Denote
dEpump _mð Þ=dt the thermal equivalent of the mechanical power consumed to cir-
culate fluid through the system. On the other hand, Qu is, as has been said, the
useful heat flux provided by the solar system. Then, the simplest performance
criterion is the integral of the net gain, for the period of operation, tc:

J _mð Þ � �
Ztc

0

L Tfi; _m
� �

dt ¼ �
Ztc

0

Qu Tfi; _m
� �� dEpump _mð Þ

dt

� �
dt ð17:1:7Þ

The minus sign before the integral is needed by usual conventions, since, by
tradition, one tries to find the minimization of a functional [while here actually one
tries to find the maximization of the integral in Eq. (17.1.7)].

The criterion Eq. (17.1.7) refers to explicit systems. For implicit systems,
dEpump _mð Þ=dt is zero by definition, for all values of _m.

The useful heat flux Qu depends on the temperature of the fluid entering the
collector, Tfi, and on the mass flow rate _m. The optimal value of _m, if any, results in
the lowest possible value of J. The value of Tfi can be determined by analyzing the
heat transfer processes within the system.

For Class A systems, the value of Tfi depends on the flow _m and usually is found
by solving a system of differential equations for the temperatures in the storage tank
layers. This way, the optimal control problem consists in minimizing J under the
constraints of several differential equations, which can then be brought to a con-
venient form for the maximum principle of Pontryagin to be applied.

The Class B systems, for which the fluid temperature at collector inlet does not
depend on _m, may or may not be of Pontryagin type, depending on the relationships
which determine the value of Tfi. If Tfi does not appear in first-order differential
equations, the maximum principle can not be applied. This subclass will not be
treated further.

17.1.2 Systems with Storage at Uniform Temperature

Systems with storage at uniform temperature consist of a surface area of solar energy
collection, a pump and a storage unit in which the fluid has uniformly distributed
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temperature (say, Tstoc). The fluid entering the collector has the temperature Tstoc.
Therefore, in this case Tfi ¼ Tstoc. The differential equation for Tstoc results from the
application of the first law of thermodynamics to the fluid inside the storage unit:

Cstoc
dTstoc

dt
� Cstoc _Tstoc ¼ Qu ð17:1:8Þ

where Cstoc is the thermal capacity of the storage unit. The right hand side member
of Eq. (17.1.8) is the heat flux transferred from the collector to the storage unit and
the left hand side member corresponds to the increase of the internal energy of the
fluid in this unit. For simplicity, it is assumed that the intervals of solar energy
collection and heat usage, respectively, do not overlap. Also, other thermal losses
outside the solar collector are not taken into account. Substituting Qu from
Eq. (17.1.5) in Eq. (17.1.8) gives

_Tstoc ¼ A � qu0 � FR
Cstoc

ð17:1:9Þ

The principle of Pontryagin is now used. First, the Hamiltonian H of the system
is built. To do so, Eqs. (17.1.7) and (17.1.9) are used in the common way. After Qu

is replaced, by using Eq. (17.1.5), one finds:

H � Qu � dEpompare

dt
þw

Aqu0FR

Cstoc
¼ A � qu0 � FR

w
Cstoc

þ 1
� �

� dEpompare

dt

ð17:1:10Þ

The adjoint variable (or covariable) w, introduced in Eq. (17.1.10), satisfies the
equation

w ¼ � @H
@Tstoc

ð17:1:11Þ

and, at the end of the integration interval of Eq. (17.1.7) it obeys:

w tcð Þ ¼ 0 ð17:1:12Þ

Performing the partial derivative of H given by Eq. (17.1.10) and replacing it in
Eq. (17.1.11), allows to express the time derivative of the adjoint variable as
follows

_w ¼ �A � FR @qu0
@Tstoc

w
Cstoc

þ 1
� �

ð17:1:13Þ

After the replacement of qu0 from Eq. (17.1.6) into Eq. (17.1.13), one finds:

376 17 Optimal Time-Dependent Operation of Closed Loop Solar …



_w ¼ A � FR � U w
Cstoc

þ 1
� �

ð17:1:14Þ

The solution of the problem is found by numerical integration of the system of
Eqs. (17.1.9) and (17.1.14), using as a boundary conditions the initial value of Tstoc
and the value at the end of the process of the adjoint variable (who, according to
Eq. (17.1.12), is w tcð Þ ¼ 0). The optimal fluid flow rate, _m�, if any, must satisfy the
following condition, which comes from the fundamental theorem of the Pontryagin
theory:

@H
@ _m

¼ 0 ð17:1:15Þ

Using Eq. (17.1.10) leads to a new form of Eq. (17.1.15):

A � qu0 �
w

Cstoc
þ 1

� �
@FR

@ _m
� @

@ _m
dEpump

dt

� �
¼ 0 ð17:1:16Þ

The problem of the existence of an optimal flow rate can be solved in this case
by analyzing Eq. (17.1.16). First, it is necessary to determine whether wj j\Cstoc on
the whole range 0; tcð Þ. The necessity of this condition is proved by Leitmann
(1966). From Eqs. (17.1.3) and (17.1.4) one sees that @FR=@ _m is always positive,
for any positive value of the flow. It is concluded that the first term of Eq. (17.1.16)
is positive for any positive value of qu0, i.e. for all conditions in which a gain of
energy is possible. Therefore, an optimal control _m� can exist only if
@ dEpump=dt
� �

=@ _m is positive, i.e. only for explicit systems.
In case of implicit systems with uniform storage temperature, by increasing the

flow rate, the performance criterion Eq. (17.1.7) increases in absolute value,
because FR increases with increasing _m [see Eqs. (17.1.3) and (17.1.4)] and Qu, that
occurs in Eq. (17.1.7), increases if FR increases (if qu0 remains positive). On the
other hand, from Eqs. (17.1.3) and (17.1.4) it can be seen that in the limit of very
high flow rates:

lim
m!1Ntu ¼ 0 lim

Ntu!0
FR Nuð Þ ¼ 1 ð17:1:17Þ

The optimal control strategy corresponding to this case is called trivial strategy,
by extending the standard terminology. From Eq. (17.1.17) one sees that the
number of transfer units is approaching zero, as the flow increases. In practice, due
to the restrictions of technological nature, there are finite upper limits for the
working fluid flow rate. Then the optimal control strategy for the implicit system
with uniform storage is to switch between the maximum flow possible (as long as
qu0 from Eq. (17.1.6) is positive) and a null rate (in all other time intervals). Note
that the trivial optimal control strategy (also called bang-bang strategy or strategy
“all or nothing”) can be deduced directly, by analyzing Eq. (17.1.9).
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For example, the numerical solution of an optimal control problem is presented
below, for a typical case from the class of explicit systems with uniform temper-
ature storage. The system is defined by Eqs. (17.1.6)–(17.1.17) and the following
parameter values: collection surface area A = 8 m2, specific heat of the working
fluid cp = 4187 J/(kg K). thermal capacity of the storage tank Cstoc ¼ 8:37 � 105 J/K
(corresponding to a tank volume of 200 L), optical efficiency of the solar collector
g0 ¼ 0:7, equilibrium temperature for zero solar irradiance, Tamb = 10 °C, the
thermal conductance between the working fluid and environment U = 4 W/(K m2)
and the initial temperature of the working fluid of 10 °C.

The mechanical power required for moving the mass flow rate _m, dEpump=dt, has
been defined by the expression

dEpump _mð Þ
dt

¼ k _m3 ð17:1:aÞ

where k = 1000 W/(kg s). It has been assumed that the global solar irradiance
G varies in time in a sinusoidal way, with half-period of 12 h and a maximum value
of 800 W/m2.

The way to solve numerically this problem is similar with the procedure briefly
described in Sect. 17.1.3, after Eq. (17.1.30). The results are shown in Table 17.1.

17.1.3 Systems with Stratified Storage Tanks

In this subsection, the main features of a subclass of class A of collectors are
discussed. The performance criterion is the same as in Eq. (17.1.7), but the tem-
perature of the fluid entering the collector, Tfi, is determined by the heat transfer
processes in a system with stratified thermal storage. Before the formal presentation
of the problem, it worth to state that an implicit system with layered storage may

Table 17.1 Optimal mass flow rate strategy for an explicit solar energy collection system with
uniform storage temperature

Time from sunrise (h) Mass flow
rate (kg/s)

Storage
temperature (°C)

Temperature increase
in the collector (°C)

Total fluid
mass (kg)

0 0 10 0 0

2 0.170 18.89 2.68 972

4 0.202 40.42 3.38 2330

6 0.212 65.23 3.00 3830

8 0.197 83.89 1.81 5320

10 0.000 89.53 0 6320

12 0.000 89.53 0 6320

Adapted from Kovarik and Lesse (1976)
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have a non-trivial optimal solution, unlike in the case of implicit systems with the
uniform storage.

The approach, which will eventually lead to a numerical solution, corresponds to
a simplified model of the stratified storage system. Therefore, a system with perfect
stratified storage is considered, defined by the following property. The fluid tem-
perature at the output of the storage tank is constant in time, until the total amount
of fluid extracted from the tank is equal to the total storage capacity of the tank. This
property could be ensured by measures to prevent the heat transfer between the
output from the solar collector and the initial content of the tank. It corresponds
roughly to storage systems that use water as the working fluid, with low flow rate
and high Rayleigh numbers.

So, while the fluid exiting the tank (and entering the collector) remains at the
initial temperature, Tstoc, the efficiency of the collection system that uses the
stratified tank, denoted gstoc, is given by a relationship similar with Eq. (17.1.2):

gstoc ¼ g0 � FR � 1� Tstoc � Tambð Þ � U
g0 � G

� �
ð17:1:18Þ

This relationship is true for Ntu 6¼ 0. In the trivial case, when Ntu ¼ 0, that is at very
high flow rates, the temperatures at the entry and exit of the collector have
approximately the same value Tfi, while the useful thermal flux supplied by the
collector, Qu ¼ _mcpDT , remains finite (DT is the temperature difference between
the exit and entry of fluid in the collector). Then FR becomes equal to unity [cf.
Equation (17.1.17)] and the efficiency corresponding to Eq. (17.1.18) is

gtrivial ¼ g0 � 1� Tfi � Tamb
� � � U

g0 � G
� �

ð17:1:19Þ

The fluid temperature, Tfi, which is practically the same throughout the system,
is correlated with the total energy gain Etot of the system until that time, by the
energy balance equation

Cstoc Tfi � Tstocð Þ ¼ Etot ð17:1:20Þ

Using Eqs. (17.1.19) and (17.1.20), the efficiency of the trivial solution becomes

gtrivial ¼ g0 � 1� Etot

Cstoc
þ Tstoc � Tamb

� �
U

g0 � G
� �

ð17:1:21Þ

The non-trivial optimal control results in an efficiency which is equal to, or
greater, than the trivial solution:
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gstoc [ gtrivial ð17:1:22Þ

If the difference between the initial temperature of the fluid and the equivalent
temperature of the environment, Tfi � Tamb

� �
, is small enough to be neglected, then

Eq. (17.1.22) leads, using Eqs. (17.1.18) and (17.1.21), to the following inequality:

FR [ 1� Etot � U
Cstoc � g0 � G

ð17:1:23Þ

Since FR belongs to the interval 0; 1f g, this inequality can be satisfied for all
non-zero energy gains Etot, through a choice of the thermal capacity Cstoc able to
meet the following condition, derived from Eq. (17.1.23):

Cstoc\
Etot � U

g0 � G 1� FRð Þ ð17:1:24Þ

Thus, in case of systems with stratified storage systems and implicit performance
criterion, a non-trivial optimal control strategy of the fluid flow can lead to useful
thermal flux provided by the collector which is greater than in the trivial case, but
only when the thermal capacity of the tank is small enough to satisfy condition
(17.1.24).

Next, the formulation of the problem in case of the stratified storage and explicit
performance criteria is presented. All heat transfer processes in the storage tank,
except for the forced convection resulting from the existence of controlled flow _m,
are neglected. The performance criterion is given by Eq. (17.1.7). The solar energy
collection system with stratified storage is represented in Fig. 17.1.

Assume the case of three isothermal layers, each with thermal capacity Cstoc=3,
where Cstoc is the total capacity of the storage tank. The equation of temperature
increase in the upper layer (number 3 in Fig. 17.1) is given by the energy balance of
the heat flux brought by the fluid that comes at the temperature of the lowest layer
(number 1 in Fig. 17.1), plus the useful heat flux Qu received by this fluid when
passes through the collector and minus the heat flux of the fluid which, passing in
the layer immediately below, leaves the upper layer, which has the temperature T3:

Fig. 17.1 Solar energy
collection system with
stratified storage
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Cstoc

3
_T3 ¼ _m � cp T1 � T3ð ÞþQu ð17:1:25Þ

The temperature increase of the interlayer (number 2 in Fig. 17.1) is due to the
balance of the entering heat flux, brought by the fluid that comes from the top layer
(number 3) with the one that exits with the fluid passing in the lower layer (number 1):

Cstc

3
_T2 ¼ � _m � cp T2 � T2ð Þ ð17:1:26Þ

The temperature increase in the lowest layer is given by a similar equation:

Cstoc

3
_T1 ¼ _m � cp T2 � T1ð Þ ð17:1:27Þ

The number of isothermal layers can be increased, resulting in a better
approximation of the real stratified system. A more realistic modeling can include
the thermal conduction inside the tank and towards the environment.

The Hamiltonian of the system, H, is defined in the specific way of the
Pontryagin theory, by considering the performance criterion Eq. (17.1.7) and the
introduction of the adjoint variables (or covariables) wi i ¼ 1; 3ð Þ for each of the
three differential Eqs. (17.1.25)–(17.1.27):

H ¼ �Lþ
X3
i¼1

wi � _Ti ð17:1:28Þ

Using Eqs. (17.1.7) and (17.1.25)–(17.1.28) one finds

H ¼ 3w1

Cstoc
þ 1

� �
Qu þ

3 _mcp
Cstoc

w3 T1 � T3ð Þþw2 T3 � T2ð Þþw1 T2 � T1ð Þ½ �

� dEpump _mð Þ
dt

ð17:1:29Þ

According with Pontryagin theory, the three adjoint variables in the
Eq. (17.1.28) must obey the equations

_wi ¼ � @H
@Ti

i ¼ 1; 3ð Þ ð17:1:30Þ

Numerical solution starts by using the given initial temperatures Ti i ¼ 1; 3ð Þ
and a set of accepted values for the variables wi i ¼ 1; 3ð Þ at the initial time t ¼ 0.
Then, the system of Eqs. (17.1.25)–(17.1.30) is solved, the optimal flow rate path
being determined by using the condition of the Pontryagin theory:
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@H
@ _m

¼ 0 ð17:1:31Þ

The initial values of the variables wi i ¼ 1; 3ð Þ are then modified through an iter-
ative process until the final values wi tcð Þ i ¼ 1; 3ð Þ are zero simultaneously, as
required by Pontryagin theory.

17.1.4 Comparison and Discussions

For comparison, the performance are evaluated for two control strategies, applied to
identical systems of solar energy collection, with the same characteristics as those
used in the case of the results shown in Table 17.1.

The system with uniform storage temperature and explicit criterion of perfor-
mance is denoted by A. The system B is identical with system A, except for the
performance criterion which is of implicit type, meaning that it does not take into
consideration the cost of the pumping power when determining the optimal strat-
egy. It is therefore accepted the possibility of a flow of infinite value, as long as the
useful heat flux supplied by the collector is not null. The system C is identical to the
system A, except that the storage tank is divided into six equal volume isothermal
layers and the control strategy consists of a flow rate of 0.2 kg/s, operating only
when the heat flux is nonzero.

Two performance indicators are defined and calculated for 12 h of operation.
First, the three systems are compared only from a thermal point of view, intro-
ducing the efficiency g1, defined as:

η1 = (thermal energy stored)/(received solar energy).
Second, the comparison is extended by taking into account the energy consumed

for pumping, by introducing efficiency g2, given by:
η2 = (thermal energy stored)/(received solar energy +

R
k _m3dt).

The results in Table 17.2 show that the performance of the three systems does
not depend significantly on the control strategy, as long as the strategy is close to
the optimal strategy. In the specific case analyzed here the system with stratified
storage is more advantageous, but not to a very significant extent.

Table 17.2 Comparison of three systems

System Total
operation time (s)

Total mass
offluid (kg)

The average of the final
storage temperature (°C)

g1 g2

A 34,959 6320 89.53 0.378 0.377

B 34,858 ∞ 89.82 0.390 0

C 34,874 6975 89.71 0.379 0.378

Adapted from Kovarik and Lesse (1976)
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The analysis of the optimal control of fluid flow in solar energy collection
systems has shown that, when the amount of energy collected is the sole perfor-
mance criterion, the optimal strategy is to use the maximum flow, as long as the
collector provides a nonzero flux of useful energy. Exceptions are the stratified
storage systems that must meet, in addition, the condition (17.1.24) concerning the
thermal capacity of the storage tanks.

However, if the energy required to move the working fluid is included in the
performance criterion, and the energy balance are expressed by differential equa-
tions, such as Eqs. (17.1.25)–(17.1.27), then the optimal strategy can be determined
by using the Pontryagin’s optimal control theory.

Numerical methods are more difficult to use when addressing specific technical
applications. This has two main reasons. First, the solution requires a priori
knowledge of the solar irradiance as a function of the time within a day. Second, the
optimal strategy is obtained as a function of time and not as a function of the values
of a measured parameter (e.g. ambient temperature or solar irradiance) and therefore
can not be used to design a controller. These criticisms may be overcome by using a
method which is presented in Chap. 18.

17.2 More Realistic Approach for Systems with Fully
Mixed Water Storage Tanks

17.2.1 Introduction

This section follows the treatment by Badescu (2008). Two configurations of closed
loop solar energy collection system are treated. Results obtained by using a realistic
solar collector model and a large meteorological database are presented.

17.2.2 Closed Loop System

The system considered here is shown in Fig. 17.2. It consists of a solar collection
system of surface area A and a storage tank containing a mass Ms of water (specific
heat cs). In the primary circuit, the working fluid of mass flow rate _m1 and specific
heat c1 enters the solar collectors at temperature Tf ;in and leaves the collectors at
temperature Tf ;out. The collected solar energy is accumulated as thermal energy in
the storage tank placed in a room with indoor temperature Tint. The secondary
circuit is used to extract heat from the tank by mean of a serpentine of heat transfer
area S0, overall heat transfer coefficient h0 and heat transfer efficiency g0. The water
mass flow rate in the secondary circuit is _m0 and the temperature of the fresh
incoming (cold) water (specific heat c0) and warm water is T 0

0 and T 0
0, respectively.

Two configurations of transferring the energy to the storage tank are found in

17.1 Classification and Simple Approach 383

http://dx.doi.org/10.1007/978-3-319-52968-4_18


practice. In Fig. 17.2a the working fluid in the primary circuit is water and enters
directly the storage tank. At high geographical latitudes this configuration is
appropriate only for warm season operation. Figure 17.2b shows a system operable
all the year-long. The fluid in the primary circuit is an anti-freezing mixture and the
heat transfer in the storage tank is performed by mean of a serpentine of heat
transfer area S1, overall heat transfer coefficient h1 and heat transfer efficiency g1.

Two strategies of water storage tank operation are often encountered. The first
one is stratified water temperature operation. The second strategy is fully mixed
operation. This last strategy is very popular in the Nordic European countries (Bales
and Persson 2003) and is used in the analysis here. The uniform temperature of the
water in the tank is denoted Ts.

17.2.3 Flow Controllers

In case of closed loop solar thermal systems the typical control system has one
sensor mounted on the collector absorber plate near the fluid outlet and another
mounted in the bottom of the storage tank. The condition for the controller is simply
to turn on the pumps when the value of the solar energy that is delivered to the load
just exceeds the value of the energy needed to operate the pump (Beckman et al.
1994).

Two sorts of controllers are often used in applications. One is the bang-bang
controller (the mass flow rate has two allowable values: maximum and zero). The
other is the proportional controller (the mass flow rate is a linear function of the
difference between the outlet working fluid temperature and the temperature inside
the storage tank).

Fig. 17.2 Solar energy collection systems with closed loop primary circuit. a Primary circuit
without serpentine in the water storage tank. b Primary circuit with serpentine in the water storage
tank
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17.2.4 Operation Model

The first law of thermodynamics applied to the water in the storage tank is:

Cs
dTs
dt

¼ Qin � Qloss � Qout ð17:2:1Þ

where Cs ¼ Mscs is the heat capacity of the water in the storage tank. Also, Qin is
the net thermal energy flux transferred to the tank from the primary circuit, Qout is
the net heat flux transferred to the secondary circuit while Qloss is the heat flux lost
through the storage tank walls.

The heat flux Qin transferred from the solar collector field to the storage tank is
given by:

Qin ¼ 0 pump P does not operateð Þ
_m1c1 Tf ;out � Tf ;in

� �
pump P operatesð Þ



ð17:2:2Þ

The heat losses on the duct connecting the solar collectors and the storage tank are
neglected in Eq. (17.2.2).

The heat flux lost through the storage tank walls is given by:

Qloss ¼ UsAs Ts � Tintð Þ ð17:2:3Þ

where As and Us are, respectively, the total surface area of the tank and the heat
transfer coefficient between the water in the tank and the air in the room.

To keep the problem tractable, a simple standard model is used here to evaluate
the heat flux Qout provided to the user in the secondary circuit. One assumes that,
for a short time interval, the temperature Ts in the storage tank is a constant. This
assumption is reasonable, taking into account the large mass of water Ms and the
rather small mass flow rate _m0 used in practice. The assumption may be improved
by decreasing the (short) time interval. Then, the following relations apply for the
serpentine in the secondary circuit (Carabogdan et al. 1978, p. 147):

Qout ¼ _m0c1 1� exp � h0S0
g0 _m0c0

� �� �
Ts � T 0

0

� � ð17:2:4Þ

T 00
0 ¼ Ts þ T 0

0 � Ts
� �

exp � h0S0
g0 _m0c0

� �
ð17:2:5Þ

Here the mass flow rate _m0 and the inlet fresh cold water temperature T 0
0 act as

given (input) data.
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The fluid temperature Tf ;out at solar collectors exit and the useful heat flux Qu

provided by the collectors are obtained by the following steady state energy
balance:

Qu ¼ AFR sað ÞG� UL Tf ;in � Ta
� �� 	 ¼ _m1c1 Tf ;out � Tf ;in

� � ð17:2:6; 7Þ

Equation (17.2.6) is the well known Bliss-Hottel-Whillier relationship (Duffie
and Beckman 1974), where FR is the heat removal factor, sað Þ and UL are the
effective transmittance-absorptance product and the overall heat loss coefficient of
the solar collector, respectively, and G and Ta are solar global irradiance incident on
the collectors and ambient temperature, respectively. A simple but accurate model
is used to evaluate the parameters FR, sað Þ and UL as a function of collector design
parameters (see Appendices 15A and 17A).

The above relationships apply to both configurations in Fig. 17.2. Differences
exist however between the two configurations concerning the assumption adopted
to evaluate the inlet fluid temperature Tf ;in in the solar collectors, as shown below.

17.2.4.1 Configuration of Fig. 17.2a

In case of configuration Fig. 17.2a the inlet temperature Tf ;in in the solar collectors
equates the temperature in the storage tank:

Tf ;in ¼ Ts ð17:2:8Þ

The outlet temperature Tf ;out may be obtained from the energy balance in the solar
collection area, i.e. from Eq. ( 17.2.7).

When the pump P is operating, the heat flux Qin transferred to the storage tank
equals the useful heat flux Qu provided by the solar collectors (thermal losses in the
connecting pipes are neglected). Therefore, Eq. (17.2.2) becomes:

Qin ¼ 0 pump P does not operateð Þ
AFR sað ÞG� UL Ts � Tað Þ½ � pump P operatesð Þ



ð17:2:9Þ

With pump P in operation, Qin may become negative for some particular values
of Ts, G and Ta.

Equation (17.2.1) may be re-written by using Eqs. (17.2.3), (17.2.4), (17.2.7),
(17.2.8) and (17.2.9) as follows:

dTs
dt

¼ �C2 Ts � Tintð Þ � C3 Ts � T 0
0

� �
pump P does not operateð Þ

C0 � C1 Ts � Tað Þ � C2 Ts � Tintð Þ � C3 Ts � T 0
0

� �
pump P operatesð Þ




ð17:2:10Þ

where the coefficients Cs are defined in Table 17.3.
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17.2.4.2 Configuration of Fig. 17.2b

The simple serpentine model already used in case of the secondary circuit applies in
case of the serpentine in the primary circuit, too. Taking into account that the fluid
temperature at the exit of the serpentine equates the fluid temperature at solar
collection inlet, one finds the following relation to replace Eq. (17.2.8):

Tf ;in ¼ Ts þ Tf ;out � Ts
� �

exp � h1S1
g1 _m1c1

� �
ð17:2:11Þ

The procedure to evaluate the heat transfer coefficients h0 and h1 as functions of
serpentine design parameters is shown in Appendix 17B.

Usage of Eqs. (17.2.7) and (17.2.11) allow to obtain Tf ;in and Tf ;out as functions
of the water storage tank temperature Ts. Equation (17.2.1) is re-written by using
Eqs. (17.2.3), (17.2.4), (17.2.7) and (17.2.11) as follows:

dTs
dt

¼ �C2 Ts � Tintð Þ � C3 Ts � T 0
0

� �
pump P does not operateð Þ

C6 þC7Ts � C2 Ts � Tintð Þ � C3 Ts � T 0
0

� �
pump P operatesð Þ




ð17:2:12Þ

where the coefficients Cs are defined in Table 17.3.

Table 17.3 Coefficients
entering Eqs. (17.2.10) and
(17.2.12)

C0 ¼ AFR sað ÞG
Cs

C1 ¼ AFRUL
Cs

C2 ¼ UsAs
Cs

C3 ¼
0 _m ¼ 0ð Þ
_m0c0
Cs

1� exp � h0S0
g0 _m0c0

� �h i
_m 6¼ 0ð Þ

(

C4 ¼
0 _m ¼ 0ð Þ

sað ÞGþULTa
_m1c1
AFR

� _m1c1
AFR

�UL

� �
exp � h1S1

g1 _m1c1

� � _m1 6¼ 0ð Þ
8<
:

C5 ¼
1 _m1 ¼ 0ð Þ

_m1c1
AFR

�UL

� �
1�exp � h1S1

g1 _m1c1

� �h i
_m1c1
AFR

� _m1c1
AFR

�UL

� �
exp � h1S1

g1 _m1c1

� � _m1 6¼ 0ð Þ

8>><
>>:

C6 ¼
0 _m1 ¼ 0ð Þ
_m1c1
Cs

1� exp � h1S1
g1 _m1c1

� �h i
C4 _m1 6¼ 0ð Þ

(

C7 ¼
0 _m1 ¼ 0ð Þ
_m1c1
Cs

1� exp � h1S1
g1 _m1c1

� �h i
C5 � 1
� �

_m1 6¼ 0ð Þ

(
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17.2.4.3 Model Validation

A popular and tested renewable energy software packages in the public domain is
Retscreen International (Retscreen 2001–2004). Results obtained by using the solar
water heating system model were compared by Badescu (2006) with results
obtained by using the RETScreen Solar Water Heating Project Model (RSWHM).
A maximum ±2.5% deviation was found between the two approaches, with slight
overestimation by the present model (Badescu 2006).

17.2.5 Optimal Control

Several indicators may be used to describe the performance of the system in
Fig. 17.2. Here the net gained energy during a given time period is used, which is
the difference between the thermal energy accumulated by the water storage tank
and the mechanical energy necessary to move the working fluid in the primary
circuit. The first quantity results by time integration of Qin while the second is
obtained by time integration of the consumed mechanical power Epump. The net
gained energy has to be maximized. To follow optimal control tradition the next
objective function J _m1ð Þ (subjected to minimization) is used in computations:

J _m1 tð Þ½ � � �
Zt2

t1

Qin _m1 tð Þ½ � � Epump _m1 tð Þ½ �
 �
dt � �

Zt2

t1

fJdt ð17:2:13a; bÞ

The optimal control problem consists of finding the optimum function _m1;opt tð Þ
that makes J given by Eq. (17.2.13a) a minimum, taking account of the constraint
Eq. (17.2.10) or (17.2.12). The time period t1 to t2 entering Eq. (17.2.13a, b)
normally refers to the interval between the moments when the system starts (t1) and
stops (t2) controlled operation. In practice, t1 and t2 correspond to sunrise and
sunset, respectively. Appendix 17C shows that the pumping power Epump may be
put under the form:

Epump ¼ Kpump _m
3
1 ð17:2:14Þ

where Kpump is a constant defined by Eq. (17C.15).
Minimization of the objective function Eq. (17.2.13a) may be performed by

using direct or indirect optimal control techniques. The indirect method based on
Pontryagin principle was already used in treating various heating and cooling
processes (see e.g. Badescu 2004a, b, 2005). It is a reliable technique with solid
theoretical background and is used here, too.
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In the present case there is a single state variable (i.e. Ts) and, consequently, a
single co-state variable is needed (say w). The Hamiltonian H of the system is
defined as usually by:

H � �fJ þwfT ð17:2:15Þ

where fT � dTs=dt. The co-state variable obeys the following differential equation:

dw
dt

¼ � @H
@Ts

ð17:2:16Þ

The Hamiltonian in Eq. (17.2.16) depends on the state variable Ts both explicitly
and implicitly (through the solar collector parameters UL and FR; see
Appendices 15A and 17A). This makes difficult to compute the derivative of the
Hamiltonian over Ts in Eq. (17.2.16). To avoid this difficulty the method of “frozen
parameters” is adopted here. This means that integration of Eq. (17.2.16) is per-
formed for time intervals short enough to allow considering a constant solar col-
lector parameter UL.

The optimal control is found by using the condition that the Hamiltonian is a
maximum in respect to the control variable (i.e. _m1). This means:

@H
@ _m1

¼ 0 ð17:2:17Þ

Different expressions for fT in Eq. (17.2.15) are available for the two configurations
of Fig. 17.2 as shown below.

17.2.5.1 Configuration of Fig. 17.2a

Equations (17.2.10) and (17.2.13b) provide the expressions for fT and fJ , respec-
tively. Then, the Hamiltonian Eq. (17.2.15) becomes:

H ¼ Cs C0 � C1 Ts � Tað Þ� 	� Kpump _m
3
1


 �
þw C0 � C1 Ts � Tað Þ � C2 Ts � Tintð Þ � C3 Ts � T 0

0

� �� 	 ð17:2:18Þ

The coefficients Cs are implicit functions of Ts (through the solar collector
parameters UL and FR; see Appendices 15A and 17A). The method of frozen
parameters is adopted. Then, the Hamiltonian Eq. (17.2.18) depends only explicitly
on Ts and the co-state variable Eq. (17.2.16) is:

dw
dt

¼ CsC
1 þw C1 þC2 þC3� � ð17:2:19Þ

Note that the coefficients Cs are allowed to depend implicitly on the control _m1.
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The ordinary differential Eqs. (17.2.10) and (17.2.19) have to be solved in the
unknown functions Ts and w. The two boundary conditions are as follows:

Ts t1ð Þ ¼ Ts;ini w t2ð Þ ¼ 0 ð17:2:20; 21Þ

Here Ts;ini is a known quantity (see Sect. 17.2.6.5) while the condition Eq. (17.2.21)
is a consequence of Pontryagin’s theory and means that Ts t2ð Þ is free to vary.

17.2.5.2 Configuration of Fig. 17.2b

Equations (17.2.12) and (17.2.13b) provide the expressions for fT and fJ , respec-
tively. Then, the Hamiltonian Eq. (17.2.15) becomes:

H ¼ Cs C6 þC7T
� �� Kpump _m3

1

� 	þw C6 þC7Ts � C2 Ts � Tintð Þ � C3 Ts � T 0
0

� �� 	
ð17:2:22Þ

The method of frozen parameters is adopted. Then, by using the Hamiltonian
Eq. (17.2.22) one can re-write the co-state variable Eq. (17.2.16) as:

dw
dt

¼ �CsC
7 � w C7 � C2 � C3� � ð17:2:23Þ

The ordinary differential Eqs. (17.2.12) and (17.2.23) have to be solved in the
unknown functions Ts and w by using the boundary conditions Eqs. (17.2.20) and
(17.2.21).

17.2.6 Model Implementation

Several assumptions are adopted during the analysis. They are briefly presented
below.

17.2.6.1 Primary Circuit

The solar energy collection system consists of six flat plate solar collectors of
surface area Acoll ¼ 1:5 m2. Hence, the total collection surface area is A ¼ 9 m2.
Table 17.4 gives details about solar collector design. The pipe connecting the solar
energy collection system and the water storage tank has a diameter dduct ¼ 0:05 m
and a total length lduct ¼ 25 m.
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17.2.6.2 Water Storage Tank

In most calculations the following values are adopted for the height and diameter of
the water storage tank, respectively: Htank ¼ 1:6 m, Dtank ¼ 0:69 m. They are in
agreement with the 600 L water storage tank associated to a solar energy collection
system of 8 m2 surface area in Pirmasens Passive House (Badescu and Sicre 2003).
A value Us ¼ 0:33 W/(m2K) is adopted in Eq. (17.2.3) for the overall heat transfer
coefficient between the water in the tank and the air in the room, in agreement with
some experimental studies (Mather et al. 2002).

The serpentines in Fig. 17.2a, b are identical. The following values are adopted
for the length and inner diameter of serpentine pipe, respectively: Lserp ¼ 10 m,
dserp ¼ 0:025 m. The thickness of pipe wall is wserp ¼ 0:002 m. These values are
rather close to values used by Mather et al. (2002) and Knudsen (2002). The heat
transfer efficiencies are g0 ¼ g1 ¼ 1:

Table 17.4 Values adopted for the registry-type flat-plate solar collector

Quantity Symbol Value

Transparent cover
Number of transparent layers N 1

Thickness of one transparent layer a 0.004 (m)

Relative refraction index n2 1.526

Absorption coefficient (water white glass) kabs 4 (m−1)

Emittance eg 0.88

Absorber plate (aluminium)
Thickness dp 0.0015 (m)

Absorptance a 0.9

Emittance ep 0.1

Thermal conductivity kp 211 (W m−1 K−1)

Mass density qm 2700 (kg m−3)

Specific heat cm 896 (J kg−1 K−1)

Distance between tubes W 0.1 (m)

Tube external diameter D 0.013 (m)

Tube internal diameter Di,dpipe 0.01 (m)

Tube length lpipe 1.5 (m)

Drum diameter dcoll 0.035 (m)

Bond conductance Cb 0.03 (mK W−1)

Bottom thermal insulation (polyurethane)
Thickness of bottom thermal insulation Lb 0.05 (m)

Thermal conductivity kb 0.034 (W m−1 K−1)

Working fluid (assimilated to water)
Specific heat c1 4185 (J kg−1 K−1)

Mass density q1 1000(kg m−3)
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In most calculations the maximum mass flow rate delivered by the pump P is
_m1;max ¼ 0:2 kg/s. It is the same size with the mass flow rates used in experiments
reported by Bales and Persson (2003) for a water-to-water heat exchanger (unit 5 in
the quoted work). In case of configuration Fig. 17.2a this rate makes the whole
mass of water in the tank to be replaced (roughly) once at 5/6 h and ensures the
fully-mixed operation regime.

17.2.6.3 Secondary Circuit

For simulation purposes the hot water mass flow rate _m0 required by the user is
usually obtained from statistical studies. Various time-schedule of domestic hot
water consumption were proposed for several countries and type of users (see e.g.
Knudsen 2002; Csordas et al. 1992; Prapas et al. 1995). Here the daily time-schedule
of _m0 for the family of user 2 in Prapas et al. (1995) is used (Fig. 17.3).

The level of the fresh water temperature T 0
0 entering the serpentine in the sec-

ondary circuit differs by country, by water source, by month and in a smaller extent
by the time of the day. For simulation purposes values between 9 °C in Germany
(Adincu et al. 2003), 10 °C in Denmark (Knudsen 2002), 10.4 °C in Canada
(Csordas et al. 1992), 17.8 °C in Greece (Csordas et al. 1992) and 22 °C in USA
(Kleinbach et al. 1993) were used previously. In this section the constant value
T 0
0 = 12 °C is adopted in agreement with Romanian practice (Luta 1978).

17.2.6.4 Meteorological and Actinometric Data

The meteorological database has been described in Sect. 15.2.2. It is shortly pre-
sented here, for the self-consistency of this chapter. The typical meteorological year
assumption is adopted [see e.g. Gazela and Mathioulakis (2001)]. This allows
meteorological data from a single year to be used in computations (Badescu 2000).

Fig. 17.3 Daily time
schedule for hot water
consumption by the user
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The meteorological METEORAR database consisting of hourly measurements of
ambient temperature, air relative humidity and point cloudiness performed at
Bucharest in 1961 is used here (INMH 1961). Global solar irradiance on a hori-
zontal surface is evaluated by using the model of Badescu (2000). Direct, diffuse
and ground-reflected solar irradiance on a tilted surface is computed by using a
simple isotropic model (Oancea et al. 1981). The ground albedo is 0.2 (Badescu
1987). Computations are performed on a hourly basis for the whole year. Further
details are found in Sect. 15.2.2.

17.2.6.5 Computational Procedures

South oriented collectors are considered but their optimum tilt angle depends on the
period of operation as follows. For warm season operation (i.e. April to October in
the Northern hemisphere) the collectors are tilted 20° while for cold season oper-
ation (i.e. November to March) the collectors are tilted 55°.

Finding the time evolution of water temperature Ts in the storage tank was
performed as follows. The time interval under consideration (for instance, the warm
or cold season) starts and ends at midnight. It was divided into “day-time” and
“night-time” sub-intervals, with sunrise and sunset moments as boundaries. During
the “night-time” the ordinary differential Eq. (17.2.10) or (17.2.12) was solved in
the unknown Ts. During the “day-time” the optimal control problem described in
Sect. 17.2.5 was solved as follows. Two boundary value problems were associated
to the optimal control problem, depending on system configuration in Fig. 17.2. In
case of configuration Fig. 17.2a the problem consists of solving Eqs. (17.2.10) and
(17.2.19) while in case of configuration Fig. 17.2b the Eqs. (17.2.12) and (17.2.23)
must be solved. In both cases the boundary conditions Eqs. (17.2.20) and (17.2.21)
were used.

The SLATEC routine SDRIV3 (Fong et al. 1990) was used to solve the initial
value problem Eq. (17.2.10) or (17.2.12). The package MIRKDC (Enright et al.
1996) was used to solve the two boundary value problems.

When the “day-time” begins, the initial value Ts;ini in Eq. (17.2.20) equals the
value of Ts at the end of previous “night-time”. Similarly, the initial value to solve
Eq. (17.2.10) or (17.2.12) during the “night-time” equals the value of Ts at the end
of the previous “day-time”. The initial temperature Ts at the beginning of the first
“night-time” was set equal to the (constant in time) temperature in the room where
the tank is placed, Tint = 18 °C. To achieve the expected integration accuracy, the
“day-time” or “night-time” interval was divided into five minute sub-intervals.
Integration was effectively performed on these intervals. This ensures the validity of
“frozen parameters” method.
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17.2.7 Results and Discussions

In present day practice the pump P in Fig. 17.2 is single speed. Its control strategy
and operation is as follows. Pump P starts when the exit temperature from the solar
collectors, Tf ;out, exceeds by DTP;ON the temperature Ts in the water storage tank.
The pump P stops if Tf ;out � Ts\DTP;OFF . Usual values of DTP;ON and DTP;OFF
range from 3 to 10 °C and from 0.2 to 1.5 °C, respectively (Csordas et al. 1992;
Prapas et al. 1995; Knudsen 2002).

When optimal control strategies are considered, the results depend on the
objective function. In case the objective function is the collected solar energy, the
early work by Kovarik and Lesse (1976) proved that the optimal operation strategy
requires using the maximum possible mass flow rate. This applies to open loop

Fig. 17.4 Dependence of incident solar global irradiance G and optimum mass flow rate _m1 on
the hour of the day. a day with overcast sky (23 April); b day with cloudy sky (21 June); c day
with clear sky (4 July). Panels d, e and f correspond to _m1;max ¼ 0:01 kg/s. Panels g, h and
i correspond to _m1;max ¼ 0:2 kg/s. System configuration of Fig. 17.2b was considered
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systems but only during those time periods when the collector provides a non-null
flux of useful thermal energy.

The optimal strategy in case of the closed loop circuit (configuration of
Fig. 17.2b) is shown in Fig. 17.4 for three days with different radiative character-
istics: a day with overcast sky (23 April; see Fig. 17.4a), a day with cloudy sky (21
June; Fig. 17.4b) and a day with clear sky (4 July; Fig. 17.4c). Two values of the
maximum fluid mass flow rate were considered, namely _m1;max ¼ 0:01 and
0.2 kg/s, respectively. This is the order of values used in practice. For example,
values between 0:0042 and 0:0236 kgm�2s�1 were adopted in a study dealing with
modeling variable mass flow rate collectors (Hilmer et al. 1999).

One sees that the optimal control strategy is almost similar to the common
bang-bang strategy. However, the present optimal strategy involves two-step up and
down jumps which is different from the one step jump of the bang-bang strategy.

Note that during the clear sky day the mass flow rate is not constant in time, as
one might expect according to the common belief that all available solar energy
must be collected, in order to maximize the thermal energy accumulated in the
storage tank. In fact, if the fluid mass flow rate in the primary circuit would be a
constant during the clear sky day, the water temperature in the storage tank would
increase strongly and the inlet temperature in the solar collector would also
increase. This would increase the thermal losses in the solar collector and, after a
while, would make the thermal energy supply to the storage tank to decrease.

The optimal strategy requires the fluid flow rate be a non-null constant for a
period of time. This makes the temperature in the storage tank and at collector inlet,
respectively, to increase. When the thermal losses in the solar collector become too
large, the pump in the primary circuit stops. The pump starts again when conditions
for a net energy gain are fulfilled. For example, the solar irradiance may increase
(during the morning), the ambient temperature may decrease (during the afternoon)
or the water temperature in the storage tank may decrease since thermal energy is
provided to the user in the secondary circuit.

Computations show that (for the range of the mass flow rate envisaged in this
paper) the pumping power Epump is at least three order of magnitude smaller than
the heat flux Qin. Therefore, all the results reported below refer to thermal
quantities.

The time dependence of various quantities associated to the optimal control
strategy is shown in Fig. 17.5 for a day with clear sky (4 July) and a pump
characterized by _m1;max ¼ 0:2 kg/s (system configuration of Fig. 17.2b). The effi-
ciency gsol of the solar collectors is defined as usual:

gsol ¼
Qu

GA
ð17:2:24Þ

The time dependence of gsol is well correlated with the time dependence of the
optimal mass flow rate (compare Fig. 17.5a and Fig. 17.4c, respectively). The
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efficiency of the solar collectors in operation does not exceed 0.3. This is a rather
low value which is explained by the high values of the fluid temperature Tf ;in at
solar collector inlet (Fig. 17.5c). For non-null mass flow rates, gsol is rather constant
during the day. This is explained by the fact that both quantities entering
Eq. (17.2.24) (i.e. the useful heat flux provided by the collectors Qu and the inci-
dent solar global irradiance G) decrease in the beginning and end of the day.

The heat flux Qin accumulated in the storage tank is well correlated with the solar
collector efficiency, as expected (compare Fig. 17.5b, a, respectively). However,
Qin is obviously higher near the noon. This is a consequence of the higher incoming
solar irradiance G during that part of the day.

The time history of the inlet and outlet temperature in the solar collectors, Tf ;in
and Tf ;out, respectively, depend on the time variation of _m1 (Fig. 17.5c). Generally,
the outlet temperature exceeds with less than ten degrees the inlet temperature. The
inlet temperature is higher during the afternoon, as a result of the increase in the
storage tank temperature Ts (see Fig. 17.5d).

The temperature T 00
0 of the warmed water provided to the user in the secondary

circuit is slightly smaller than the storage temperature Ts (Fig. 17.5d). The heat flux
Qout delivered to the user has a time dependence which follows the time depen-
dence of _m0. Obviously, when _m0 is higher, the difference between the temperature
in the tank, Ts, and the temperature of the warmed water, T 00

0 , is higher and the heat
flux Qout transferred from the tank to the water in the secondary circuit is higher, too
(Fig. 17.5d).

Fig. 17.5 Dependence of various quantities associated to optimal control strategy on the hour of a
clear sky day (4 July). a Solar collector efficiency gsol; b Thermal energy flux Qin accumulated in
the water storage tank; c Inlet and outlet fluid temperature in the solar collector field, Tf ;in and
Tf ;out , respectively; d Fresh and warm water temperature in the secondary circuit, T 0

0 and T 00
0 ,

respectively. System configuration of Fig. 17.2b was considered
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To give perspective for the results obtained by using the optimal control strategy,
they are compared with results obtained in case of a simple operation strategy,
namely keeping a constant mass flow rate in the primary circuit. In the last case, the
value _m1 ¼ 0:2 kg/s is used in calculations. Information about the global perfor-
mance of a given operation strategy may be obtained by using indicators defined at
daily level. First, the daily averaged solar collector efficiency, �gsol, and the thermal
energy accumulated in the storage tank during a day-time, Q̂in, are defined as:

�gsol �
1

t2 � t1

Zt2

t1

gsoldt; Q̂in ¼
Zt2

t1

Qindt ð17:2:25; 26Þ

Here t1 and t2 denote the time of sunrise and sunset, respectively. Figure 17.6
shows the dependence of these two indicators on day during the warm season
(system configuration of Fig. 17.2b).

The daily averaged solar collector efficiency is higher for the optimal control
strategy than for the constant mass flow rate strategy, as expected (Fig. 17.6a). The
average solar energy conversion efficiency does not exceed 10%. At first sight this
values seems to be very low as compared to the values of the collector efficiency
during the day (which may be as high as 30%—see Fig. 17.5a). The explanation is
as follows. The averaged daily efficiency is defined in Eq. (17.2.25) by including
those periods of time when the collection system does not operate and the efficiency
vanishes.

Fig. 17.6 Dependence on
day during warm season of
a daily averaged solar
collector efficiency �gsol and
b thermal energy Q̂in (kWh)
accumulated during a day in
the water storage tank. Two
strategies were envisaged for
the fluid flow in the primary
circuit: optimal control and
constant mass flow rate,
respectively. System
configuration of Fig. 17.2b
was considered
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The daily accumulated thermal energy in the water tank, Q̂in, is higher for the
optimal control strategy than for the constant mass flow rate strategy, as expected
(Fig. 17.6b).

The daily averaged efficiency �gsol in case of the constant mass flow rate strategy is
negative for most of the days (Fig. 17.6a) but the accumulated thermal energy Q̂in

during the day is generally positive, for the same strategy (Fig. 17.6b). This requires
a short explanation. The solar collection efficiency is defined in Eq. (17.2.24) as an
instantaneous quantity. This means that for every moment a different G value enters
the denominator of Eq. (17.2.24). Near sunrise and sunset the incident solar irra-
diance is low and the inlet temperature Tf ;in is usually higher than the environment
temperature. This yields negative values for the thermal flux Qu provided by the
solar collector during those periods of time [see Eq. (17.2.6)]. When divided by the
(low) values of the solar irradiance, rather high negative values of collectors effi-
ciency are obtained. When integrated in time (Eq. (17.2.25)), the contribution of
these values may exceed the contribution of the positive efficiency values in the
middle of the day and the daily averaged efficiency may result negative. When the
heat flux Qin is integrated in time (Eq. (17.2.26)), the contribution of the negative
values near sunrise and sunset is counterbalanced by the larger positive values of Qin

around the noon and the daily accumulated thermal energy in the tank, Qin, is
(usually) positive.

The daily thermal energy Q̂out supplied to the user and the daily integrated
thermal energy lost through the walls of the water storage tank, Q̂loss, are defined as
follows:

Q̂out �
Zt2

t1

Qoutdt; Q̂loss ¼
Zt2

t1

Qlossdt ð17:2:27; 28Þ

Both strategies considered here provide a reasonable amount of thermal energy Q̂out

to the user, during both day-time and night-time (Fig. 17.7a, b). Q̂out is higher in
case of the optimal control strategy, as expected. Also, Q̂out is higher during the
day-time because the warm water demand by the user is higher during that period of
time (Fig. 17.5d).

The heat losses through the walls of the water storage tank are higher in case of
the optimal control strategy (Fig. 17.7c, d). This is due to the higher water tem-
perature in the storage tank for this strategy. The losses are higher during the
day-time, because the whole amount of thermal energy is accumulated in the tank
during this period of time.

Results concerning the performance of the optimal control strategy during the
cold season are shown in Fig. 17.8. The thermal energy accumulated in the tank,
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Fig. 17.7 Dependence on day during warm season of: a and b thermal energy Q̂out (kWh)
supplied to the user and c and d thermal energy lost through the walls of the water storage tank,
Q̂loss (kWh). Two strategies were envisaged for the fluid flow in the primary circuit: optimal
(opt) and constant mass flow rate (ct), respectively. Results for day-time and night-time are
presented separately. System configuration of Fig. 17.2b was considered

Fig. 17.8 Dependence on day during cold season of: a thermal energy Q̂in (kWh) accumulated
during a day in the water storage tank, b thermal energy lost through the walls of the water storage
tank, Q̂loss (kWh) and c thermal energy Q̂out (kWh) supplied to the user. Results for day-time and
night-time are presented separately in cases (b) and (c). System configuration of Fig. 17.2b and the
optimal control strategy were considered
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Q̂in, is smaller during the cold season as compared to the warm season (compare
Fig. 17.8a and Fig. 17.6b, respectively).

With a few exceptions, the heat losses through the walls of the storage tank, Q̂loss,
are higher during the night-time than during the day-time (Fig. 17.8b). This feature
differs from that of the optimal control operation during the warm season
(Fig. 17.7c, d). A brief explanation follows. During the cold season, the average
duration of night-time period is larger than during the warm season. It overlaps up to
six hours on the time interval with heat demand from the user, which does not
depend on season (see Fig. 17.5d). Because the heat consumption by the user during
the (remaining) day-time interval decreases accordingly, one concludes that during
the cold season the temperature in the storage tank is larger (in average) during the
night-time than during the day-time. Therefore, the heat losses are larger during the
night-time. The daily total thermal losses are obviously smaller than during the warm
season operation (compare Figs. 17.8b and 17.7c, d respectively). This is due to the
larger temperature in the storage tank during the warm season. The thermal energy
supply to the user, Q̂out, is generally higher during the night-time rather than during
the day-time (Fig. 17.8c).

Our results in Fig. 17.5 suggest that the optimal control strategy is rather similar
to the common bang-bang strategy. An interesting problem that still remains is that
of performance dependence on the maximum mass flow rate _m1;max. Both system
configurations in Fig. 17.2 were considered and two operational strategies (i.e.
constant mass flow rate and optimal control) were tested during the warm season.
Results are shown in Fig. 17.9.

The thermal energy Q̂in accumulated in the water tank is higher when the ser-
pentine is missing (i.e. in case of configuration Fig. 17.2a). The optimal control
strategy practically doubles the value of Q̂in, as compared to the constant mass flow
rate strategy. Q̂in increases by increasing _m1;max(in case of the optimal control
strategy) and by increasing _m1 (in case of the constant mass flow rate strategy).

The thermal losses are higher in case of configuration Fig. 17.2a as compared to
configuration Fig. 17.2b (compare Fig. 17.9e, f with Fig. 17.9g, h, respectively).
This is due to the fact that the water temperature in the tank is higher in case of
configuration Fig. 17.2a than in case of configuration Fig. 17.2b. Indeed, in the last
case the existence of the serpentine makes the heat transfer rate to be smaller than in
case of configuration Fig. 17.2a. Also, the thermal losses are higher in case of the
optimal control strategy than in case of the constant mass flow rate strategy
(compare Figs. 17.29e and 17.9f, respectively, and Fig. 17.9g, h, respectively).
This is due to the fact that the optimal control makes a higher amount of thermal
energy to be stored and, as a consequence, it leads to an increase in the water
storage tank temperature.

The losses are always smaller during the night-time, for both strategies. This is a
consequence of the higher water storage tank temperature during the day-time.
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Configuration Fig. 17.2a provides the user a higher amount of thermal energy
Q̂out as compared to configuration Fig. 17.2b. Also, the optimal control strategy
gives better performance than using a constant mass flow rate, as expected. The
optimal control is a more profitable strategy in case of configuration Fig. 17.2a as
compared to configuration Fig. 17.2b.

Fig. 17.9 Dependence of: a, b, c, d thermal energy Q̂in accumulated during a day in the water
storage tank, e, f, g, h thermal energy Q̂loss lost through the walls of the water storage tank and i, j,
k, l thermal energy Q̂out supplied to the user, on two parameters related to fluid mass flow rate:
_m1;max is associated to the optimal control strategy and _m1 is associated to the constant mass flow
rate strategy. Configuration a and b correspond to Fig. 17.2a, b, respectively. Operation during
warm season was considered
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The two configurations show an increase of Q̂out by increasing the mass flow
rate, for both the constant flow rate strategy and the optimal control strategy. In case
of configuration Fig. 17.2b it is obvious that the performance becomes rather
constant at higher mass flow rates, whatever the strategy is. Most part of the heat
supply is consumed during the day-time. This is a result of the consumption time
schedule and of the higher water tank temperature during the day-time.

The ratio between the volume Vs of the water storage tank and the area A of the
solar energy collection surface is a key factor for an appropriate closed loop system
design. Empirical wisdom shows that the best performance is achieved in case this
ratio is about 50 L/m2(Cabirol et al. 1974, p. 23) or 61:1 L/m2 (Winn 1977, p. 89).

Fig. 17.10 Dependence of: a, b thermal energy Q̂in accumulated during a day in the water storage
tank, c, d thermal energy Q̂loss lost through the walls of the water storage tank and e, f thermal
energy Q̂out supplied to the user, on the height of the cylindrical water storage tank Hs.
Configuration b corresponds to Fig. 17.2b. Two operation strategies during the warm season were
considered: optimal control ( _m1;max ¼ 0:2 kg/s) and constant mass flow rate ( _m1 ¼ 0:2 kg/s)
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The influence of the ratio Vs=A on various thermal quantities is briefly analyzed
here for configuration in Fig. 17.2b. Two operational strategies were tested again
(i.e. constant mass flow rate and optimal control) during the warm season. Results
are shown in Fig. 17.10 with the height Hs of the storage tank as a variable
parameter.

The thermal energy Q̂in accumulated in the water tank is obviously higher in
case of the optimal control strategy, as expected (compare Fig. 17.10a, b, respec-
tively). For both strategies, Q̂in increases by increasing Hs (or, in other words, by
increasing the volume of the storage tank).

The thermal energy Q̂loss lost through the walls of the storage tank is higher in
case of the optimal control strategy due to the higher temperature in the storage tank
in this case (Fig. 17.10c, d). The losses increase when the tank height Hs increases,
due to the increase in the heat loss transfer area. Q̂loss is higher during day-time,
when the water temperature Ts inside the tank is higher than during night-time.

The thermal energy Q̂out provided to the user is higher in case of the optimal
control strategy (Fig. 17.10e, f). This result is not trivial, because the objective
function to be maximized (i.e. Eq. (17.2.13a)) involves the accumulated energy in
the tank Qin and not the heat delivered to the user (i.e. Qout). Q̂out is higher during
the day-time.

In case of the constant flow rate strategy (Fig. 17.10e), there is an optimum
height of the storage tank (which is about 0.8 m, which correspond to a storage tank
volume of about 300 L and a ratio Vs=A � 33:3 L/m2). This value is smaller than
the empirically derived values used in practice. Note, however, that all storage tank
heights in Fig. 17.10e give rather similar results. This suggests that the ratio Vs=A
might be changed in the range 16:5 to 67 L/m2 with no significant influence on
performance.

Interestingly, the optimal control strategy (Fig. 17.10f) does not exhibit such an
optimum: Q̂out (slightly) decreases by increasing the tank height.

17.2.8 Conclusions

Two design configurations were considered (Fig. 17.2). The system design con-
figuration Fig. 17.2a gives better performance during the warm season than con-
figuration Fig. 17.2b. However, at higher latitudes this configuration Fig. 17.2a
cannot be used during the cold season because of fluid freezing in the primary
circuit. Most of the results refer to configuration Fig. 17.2b.

The optimal control strategy is rather simple: most of the time the pump is
stopped or works at maximum speed. However, the present optimal strategy
involves two-step up and down jumps which is different from the one step jump of
the common bang-bang strategy. During the days with overcast sky the pump
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operates almost continuously. During the days with cloudy or clear sky the pump
often stops.

The efficiency of solar collectors is rather constant during the day but not very
high. For a clear sky day it does not exceed 30%. Generally, the outlet fluid
temperature from the solar collectors exceeds with less than ten degrees Celsius the
inlet temperature. Also, the temperature of the warmed water provided to the user in
the secondary circuit is slightly lower than the water storage temperature.

Both the solar conversion efficiency and the daily accumulated thermal energy in
the water tank are significantly higher for the optimal control strategy than for a
strategy which consists in keeping a constant mass flow rate in the primary circuit.

During the warm season both the tank thermal losses and the thermal energy
supply to the user are higher in the day-time. During the cold season, they are
higher in the night-time.

In case of the constant flow rate strategy, there is an optimum ratio between the
volume of the storage tank and the area of the solar energy collection surface:
Vs=A � 33:3 L/m2. This value is smaller than the empirically derived values used in
practice. The optimal control strategy does not exhibit such an optimum: the
thermal energy supply to the user (slightly) decreases by increasing the ratio Vs=A.

Appendix 17A

The flat-plate solar collector model is presented in Appendix 15A of Chap. 15. The
only difference is that the water speed wwater [m/s] is evaluated as a function of the
mass fluid flow rate _m1 in the primary circuit by

wwater ¼ _m1

AW
4

q1pD
2
i

� �
ð17A:1Þ

where q1 is fluid mass density.

Appendix 17B

The same procedure applies for serpentines in the primary and secondary circuits.
Computation of the forced convection heat transfer coefficient hfp between fluid in
the serpentine and serpentine pipe wall was based on the following usual rela-
tionship (Carabogdan et al. 1978, p. 55):

Nu ¼ 0:021Re0:8Pr0:43 ð17B:1Þ

where the Nusselt, Reynolds and Prandtl numbers are evaluated by, respectively:
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Nu � hfpdserp
k

Re � wdserp
m

Pr � cpqm
k

ð17B:2; 3; 4Þ

Here k; m; cp and q are fluid’s thermal conductivity, cinematic viscosity, specific
heat and mass density, respectively. All fluid properties are evaluated at the average
fluid temperature Tf in the serpentine and hfp is the single unknown of Eq. (17B.1).
The average fluid temperature was evaluated by Tf ¼ Tf ;in þ Tf ;out

� �
=2 and Tf ¼

T 0
0 þ T 00

0

� �
=2 in case of the primary and secondary circuit, respectively.

Computation of the natural convection heat transfer coefficient hpw between wall
pipe and water in the storage tank was based on the relationship (Carabogdan et al.
1978, p. 52):

Nu ¼ 0:5 Grf � Prf
� �0:25 Prf

Prp

� �0:25

103\Grf � Prf\108 ð17B:5Þ

Here the Prandtl number is defined by Eq. (17B.4) while the Nusselt and Grashoff
number, Nu and Gr, respectively, are given by:

Nu � hpw dserp þ 2wserp
� �

k
Gr � g dserp þwserp

� �3
b ~T � Ts
� �

m2
ð17B:6; 7Þ

In Eq. (17B.7), g and b are gravitational acceleration and thermal expansion
coefficient, respectively. The subscripts f and p in Eq. (17B.5) mean that the water
properties are evaluated at water tank temperature Ts and pipe temperature ~T ,
respectively.

Once ~T is known, hpw can be found from Eq. (17B.5). In practice this requires an
iterative procedure since hpw and ~T should be evaluated together.

The average linear heat transfer coefficient hlin (units: W/(mK)) between the fluid
in the serpentine and the water in the storage tank is given by the usual relationship
specific to cylindrical pipes:

1
hlin

¼ 1
pdserphfp

þ 1
2pkserp

ln
dserp þ 2wserp

dserp
þ 1

p dserp þ 2wserp
� �

hpw
ð17B:8Þ

where kserp is thermal conductivity of serpentine’s material (steel). The average
overall heat transfer coefficient h (units: W/(m2K)) between fluid in the serpentine
and water in the tank can be computed with:

h ¼ hlin
pdserp

ð17B:9Þ

Equation (17B.9) was used to evaluate the heat transfer coefficients h0 and h1 for
the serpentines in the secondary and primary circuit, respectively.
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Appendix 17C

The mechanical power Epump needed to move the fluid in the primary circuit is
given by:

Epump ¼ Epump;A þEpump;duct ð17C:1Þ

where Epump;A and Epump;duct is the power necessary to cover the pressure losses on
the solar energy collection system and in the duct connecting the collection system
and the water storage tank, respectively.

17C.1 Computation of Pump Power

One denotes Acoll and _mcoll the surface area and the mass flow rate in a solar
collector, respectively. For a well equilibrated mass flow rate distribution over the
collection area the following relation applies:

Epump;A ¼ A
Acoll

Epump;coll ð17C:2Þ

where Epump;coll is the energy necessary to cover the pressure losses Dpcoll in a single
collector, given by:

Epump;coll ¼ _mcoll

q1
Dpcoll ð17C:3Þ

where q1 is working fluid mass density. A registry type solar collector is considered
here. Then, Dpcoll may be computed by using the following relation:

Dpcoll ¼ 1coll
q1wcoll

2
ð17C:4Þ

where 1coll is a pressure loss coefficient whose details of calculations are shown in
Sect. 17C.2 below while wcoll is the fluid speed at the inlet of the collector
(Fig. 17.11), which can be evaluated by using mass conservation as follows:

wcoll ¼ _mcoll

q1acoll
ð17C:5Þ

In Eq. (17C.5) acoll is the cross-sectional surface area at collector inlet
(Fig. 17.11) and _mcoll is computed by
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_mcoll ¼ Acoll

A
_m1 ð17C:6Þ

Using the Eqs. (17C.2)–(17C.6) one finally finds:

Epump;A ¼ Kpump;A _m
3
1 ð17C:7Þ

where the coefficient Kpump;A is defined as:

Kpump;A � 1

2q21

Acoll

acollA

� �2

ð17C:8Þ

The energy necessary to cover the pressure losses Dpduct in the duct between the
solar collection area and the storage tank is given by:

Epump;duct ¼ _m1

q1
Dpduct ð17C:9Þ

Only linear pressure losses are considered and

Dpduct ¼ kduct
lduct
dduct

q1w
2
duct

2
ð17C:10Þ

where kduct is the friction factor of the duct, whose details of computation are given
in Sect. 17C.2 below. Also, lduct and dduct in Eq. (17C.10) are the duct length and
inner diameter, respectively, and wduct is the fluid speed in the duct, which may be
computed from mass conservation as:

Fig. 17.11 Computation of pressure losses in the solar collector
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wduct ¼ 4
p

_m1

q1d
2
duct

ð17C:11Þ

Use of Eqs. (17C.9)–(17C.11) yields:

Epump;duct ¼ Kpump;duct _m
3
1 ð17C:12Þ

where

Kpump;duct � 8
p2

kductlduct
q21d

5
duct

ð17C:13Þ

Use of Eqs. (17C.1), (17C.7) and (17C.13) yields:

Epump ¼ Kpump _m3
1 ð17C:14Þ

where

Kpump � Kpump;A þKpump;duct ð17C:15Þ

17C.2 Computation of Pressure Loss Coefficients

Computation of the pressure loss coefficient 1coll in the registry type solar collector
entering Eq. (17C.4) is made by using a more general formula given by Idelcik
(1984, p. 357):

1coll ¼
1

0:788B3 þ 0:029Kþ 0:115acoll=a�coll � 0:130B3K � 0:353B3acoll=a�coll � 0:090

ð17C:16Þ

where acoll and a�coll are the inlet and outlet cross-sectional surface area in the solar
collector drums (Fig. 17.11) and K ¼ 1� af =acoll, with af - cross sectional area at
drum’s end. For a common registry-type solar collector af ¼ acoll and, as a con-
sequence, K ¼ 0. B3 in Eq. (17C.16) is given by:

B3 � �a

0:6þ ap=a�p
� �2

þ 1dev þ 1p

� �1=2 ð17C:17Þ

where ap and a�p are the cross sectional surface areas of the pipes, at inlet and outlet
in the solar collector, respectively. For a common registry-type solar collector
ap ¼ a�p. Also,
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�a � nap
acoll

ð17C:18Þ

where n is the number of pipes in the collector. The other parameters in
Eq. (17C.17) are 1dec, which refers the pressure losses in devices placed along the
pipe (here 1dev ¼ 0, because no such device exists), and the linear pressure loss
coefficient 1p given by:

1p � kp
lpipe
dpipe

ð17C:19Þ

where lpipe and dpipe are pipe length and diameter, respectively, while kp is friction
factor of the pipe.

The friction factors kduct in the duct connecting the solar collection system and
the water tank (entering Eq. (17C.10)) and kp in the pipe of the registry-type
collector (entering Eq. (17C.19)) are computed with the same formula (Danescu
et al. 1985, p. 225):

k ¼
0:3164Re�0:25 3000\Re\105

0:0054þ 0:3964Re�0:3 105\Re\2 � 106
0:0032þ 0:221Re0:237 Re[ 2 � 106

8<
: ð17C:20Þ

Here the Reynolds number Re is defined as a function of fluid speed in the duct or
pipe (say w), pipe or duct inner diameter (say d), and fluid’s cinematic viscosity (m):

Re � wd
m

ð17C:21Þ

During implementation, the first Eq. (17C.20) was extended for Re values between
0 and 3000.
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Chapter 18
Optimal Flow Controllers

A classification of the devices designed to ensure the optimal operation of solar
installations (hereinafter briefly called optimal controllers) has been proposed in
Sect. 16.2.6 (see Winn and Byron Ellsworth Hull 1979). A theory that may underlie
the implementation of the second kind optimal controller has been presented and
studied in Chap. 17. There, a numerical solution was presented to the problem of
determining the optimal mass flow rate in the collector, which leads to maximizing
the difference between the useful thermal energy collected and the energy required
to pump the working fluid. It was stated that the main difficulty that arises during
the practical implementation of the solution is that, on one hand, the optimal control
is not expressed as a function of the measurable state variables of the system and,
on the other hand, it is necessary to know in advance the temporal variation of the
ambient temperature and solar irradiance. It has been shown, however, that the
gradual change of the fluid flow in the collector may improve the performance,
when compared to the situation in which a controller of the type “all or nothing” is
used.

In this chapter, a practical way of implementing the strategy of optimal flow
control is discussed (see Winn and Byron Ellsworth Hull 1979).

18.1 Optimal Control

The problem is to determine the fluid flow resulting from maximizing the functional

J ¼
Ztc

t0

Quð _mÞ � dEpump _mð Þ
dt

� �
dt ð18:1:1Þ
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where t0; tcð Þ is the time of operation of the solar system, Qu is the useful flux of
collected solar energy, dEpump=dt is the power needed to pump the working fluid,
and _m is the mass flow rate. It is known that, in some cases, the collected solar
energy is maximized by maximizing the mass flow rate. On the other hand, a high
mass flow rate leads to increasing the required pumping energy. Therefore, the issue
is to determine the fluid flow rate that maximizes the difference between the col-
lected solar energy and the energy pumping.

The useful heat flux can be modeled by using the Bliss-Hottel-Whillier equation:

Qu ¼ FRA G sað Þ � U Tfi � Tamb
� �� � ð18:1:2Þ

where FR is the heat removal factor, which is rewritten here for convenience:

FR ¼ _mcp
UA

� 	
1� exp �F0UA

_mcp

� 	� �
ð18:1:3Þ

The other terms of Eq. (18.1.2) have the usual meaning: cp is the specific heat at
constant pressure of the fluid, U is the global coefficient of thermal losses, A is the
collection surface area, F0 is the collector efficiency factor, G is global solar irra-
diance incident on the collector surface, sað Þ is the product between the transmit-
tance of the transparent cover and the absorbance of the absorbent plate, Tfi is fluid
temperature at collector inlet and Tamb is ambient temperature.

The power consumption for circulating the fluid is proportional to the cube of the
mass flow rate [similar to Eq. (17.1.a)], i.e.

dEpump

dt
¼ C1 _m

3 ð18:1:4Þ

where C1 is a constant of proportionality. For simplicity, assume that there is no
linear pressure loss. In this case the temperature Tfi is equal to the temperature of the
storage tank, Tstoc, which, in turn, can be determined from

dTstoc
dt

¼ Qu

Cstoc
ð18:1:5Þ

where Cstoc is the thermal capacity of the storage tank.
The optimal control strategy that is presented below corresponds to a storage

tank at uniform temperature. The results can be applied, however, both to uniform
storage tanks and tanks with stratified storage.

To formulate the optimal control problem in a manner allowing the usage of the
maximum principle of Pontryagin, the state variables are identified. Thus:

u1 ¼ Tstoc

_u2 ¼ Qu � C1 _m
3 u2 t0ð Þ ¼ 0 u2 tcð Þ ¼ U

ð18:1:6Þ
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The necessary conditions for the optimal control are as follows (Pontryagin et al.
1962; Tolle 1975; see Chap. 5 of this book).

(1) The optimal control must maximize the Hamilton function, defined as

H ¼ w1 _u1 þw2 _u2 ¼ w1
Qu

Cstoc
þw2 Qu � C1 _m

3� � ð18:1:7Þ

where w1;w2 are adjoint variables defined by

_w1 ¼ � @H
@u1

_w2 ¼ � @H
@u2

ð18:1:8Þ

(2) The adjoint variables must be determined at the end of the interval of col-
lecting solar radiation, by using the transversality condition

wTðtcÞ ¼ @U
@u






t¼tc

ð18:1:9Þ

where wT is the transposed vector of the vector w � w1;w2ð Þ.
(3) Both the differential equations and the boundary conditions for the states u1

and u2 must be satisfied.

By using these conditions one obtains

H ¼ w1

Cstoc
þw2

� 	
G sað Þ � U u1 � Tambð Þ½ � 1� exp �F0UA

_mcp

� 	� �
_mcp
U

� w2C1 _m3

ð18:1:10Þ

The Hamiltonian is maximized by solving the equation

@H
@ _m

¼ 0 ð18:1:11Þ

It is clear that Eq. (18.1.11) leads to a transcendental equation for the optimum
mass flow rate _m�. Solving this equation for the unknown _m�, and introducing it in
the state equations and in the adjoint equations, respectively, leads to a nonlinear
differential problem with boundary conditions given in two points. However, this
nonlinear problem can be avoided by using the following transformations.

Instead of using the fluid mass flow rate as a control variable, one can use in this
posture the heat removal factor. The optimum mass flow is obtained after knowing
the optimal heat removal factor. To make this transformation, one must establish a
relationship between the pumping power consumption and the heat removal factor.
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By expanding the exponential function from the equation of FR in a Taylor series
and keeping only terms up to the second order, one obtains the following result:

_m ¼ F02UA
2cp F0 � FRð Þ ð18:1:12Þ

The functional to be maximized can now be expressed as

J ¼
Ztc

t0

C4Qu � C5 F0 � FRð Þ�3
h i

dt ð18:1:13Þ

where C4 and C5 are weighting coefficients. The state equations are

_u1 ¼
FRf
Cstoc

_u2 ¼ C4FRf � C5 F0 � FRð Þ�3 ð18:1:14Þ

where the term of the available energy, f , is given by

f � A G sað Þ � U u1 � Tambð Þ½ � ð18:1:15Þ

One identifies the control function, traditionally denoted by u, with FR. Then, the
Hamiltonian can be written as

H ¼ w1fu
Cstoc

þw2 C4fu� C5 F0 � uð Þ�3
h i

ð18:1:16Þ

The optimal control u� can be determined from

w1f
C3

þw2C4f � 3w2C5 F0 � u�ð Þ�4¼ 0 ð18:1:17Þ

The adjoint variables must satisfy the equations

_w1 ¼ � @H
@u1

_w2 ¼ � @H
@u2

ð18:1:18Þ

obeying the conditions of transversality

w1ðtcÞ ¼
@U
@u1






t¼tc

¼ 0 w2ðtcÞ ¼
@U
@u2






t¼tc

¼ 1 ð18:1:19Þ
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The Hamiltonian function does not depend explicitly on u2; it follows that

w2 � 1 ð18:1:aÞ

The situation is more complicated with respect to w1. The differential equation
for w1 can be written as

_w1 ¼
w1UAu
Cstoc

þUAC4u ð18:1:bÞ

This is a typical situation in terms of determining the optimal control strategies,
meaning that there is an optimal coupling between the control and the adjoint
variables. The control Eq. (18.1.17) can be solved for u�, and the result can be
substituted in the differential equation for w1. The resulting equation could be
solved in the unknown w1, which then would allow the determination of the optimal
control as a function of time. This would primarily require the a priori knowledge of
the time evolution of the meteorological quantities (solar irradiance and ambient
temperature) and would not be an easy solution to implement in practice.
A significant simplification occurs if the adjoint variables are interpreted as func-
tions of influence. For this, w1 represents the sensitivity of J to the changes of u1 tð Þ.
Now, it is reasonable to assume that both the term of the available energy and the
heat removal factor remain constant over short time intervals t1; t2½ �. Then

w1 t2ð Þ ¼ dJ
du1






t¼t1

¼ �C4FRAU t2 � t1ð Þ ð18:1:20Þ

Note that an increase of u1 involves a decrease in the efficiency of the collector,
which further will cause a decrease of the functional J. Consequently, the sign of w1
in Eq. (18.1.20) is right (i.e. it is negative). Equation (18.1.20) is the result of the
interpretation of the adjoint variable w1 as a function of influence on J and it is
compatible with the transversality condition mentioned before. Thus, for t2 ¼ tc,
w1 t2ð Þ approaches zero when t1 tends towards tc. This equation is also consistent
with Eq. (18.1.b). It is clear from this equation that _w1 is directly proportional to the
control u, and therefore, w1 will increase to zero with a speed proportional with the
control.

The control Eq. (18.1.17) can be solved for finding the optimal control, u�, by
considering that w1 is constant on finite intervals of time Dt ¼ t2 � t1. The result is

u� ¼ F0 � 3C5 f
w1

Cstoc
þC4

� 	� ��1
( )1=4

ð18:1:21Þ

The scale analysis indicates that the ratio w1=Cstoc is usually lower than the
weighting coefficient C4 and, consequently, this ratio can be neglected during the
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calculation of u�. The optimal mass flow rate is obtained from the heat removal
factor, by using the relationship

_m� ¼ F02UA
2cp F0 � FRð Þ ð18:1:22Þ

18.2 Implementation

The optimal control solution developed in Chap. 17 can be implemented with
difficulty in practice because, as said, it is required prior knowledge of the time
evolution of the temperature and solar irradiance. In addition, the numerical solu-
tion proposed there can hardly be included in the operating procedure of a
controller.

The optimal control strategy presented here can be easily implemented as a
controller with state feedback. The three quantities to be measured are the tem-
perature of the storage tank, Tstoc, the ambient temperature, Tamb, and the solar
irradiance on the collector surface G (or the output temperature of the fluid from the
collector, Tf ;out). Assume that the solar irradiance, the ambient temperature and the
storage tank temperature are known by measurements. Then, it is easy to calculate
the available energy by using the relationship

f ¼ A G sað Þ � U Tstoc � Tambð Þ½ � ð18:2:1Þ

However, it is easier to measure the temperature of the fluid at collector output,
Tf ;out, rather than the solar irradiance G, and then to estimate the available energy
term, as follows:

Case 1 The circulation pump is started

f ¼ _mcp Tf ;out � Tstoc
� �

FR
ð18:2:2Þ

Case 2 The circulation pump is stopped

f ¼ AU Tf ;out � Tstoc
� � ð18:2:3Þ

Figure 18.1 shows a diagram of the calculation procedure.
The number of arithmetic operations is reduced and, consequently, this optimal

control strategy can be easily implemented in practice.
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18.3 Comparison and Discussions

Table 18.1 shows results obtained by using the numerical methodology proposed in
Chap. 17 and the methodology presented here, respectively.

The following two objective functions were considered:

J1 ¼
Z

Qu � C5 F0 � FRð Þ�3
h i

dt J2 ¼
Z

QU � C3 _m
3� �
dt ð18:3:1Þ

The results obtained by using a feedback controller are almost identical to those
obtained by using the numerical solution proposed in Chap. 17. The differences
may eventually be assigned to the numerical and computational procedures. Also,
Table 18.1 shows results obtained by using a controller of the type “all or nothing”.

The objective function J2 assumes the energy losses associated with the circu-
lation of the fluid as being proportional to the cube of the fluid mass flow rate, while
the function J1 was based on the expression of the mass flow rate in the form given
by Eq. (18.1.12). The reason of using two objective functions was to allow
examination of the effect that the approximate relationship of the mass flow rate
would have on the cost function. As shown in Table 18.1, this effect is negligible.

Table 18.1 Comparison of the two objective functions given by Eq. (18.3.1)

Hour Strategy “all or
nothing”

Optimal numerical
strategy

Optimal analytical
strategy

J1 J2 J2 J1 J2

08.00 3704 3704 7045 7056 7060

10.00 21,550 21,550 24,779 24,797 24,800

12.00 42,840 42,840 45,432 45,432 45,468

14.00 47,168 57,168 61,200 61,164 61,164

16.00 60,120 60,120 66,168 66,096 66,132

C5 = 5.58 � 10−5, C3 = 1000
Adapted from Byron Winn and Ellsworth Hull (1979)

Fig. 18.1 Optimal control
strategy implementation
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Table 18.2 shows the values of the useful collected energy, when using different
types of controllers. One sees again the closeness between the results obtained by
using a feedback optimal controller and those obtained by using the numerical
methodology. The “all or nothing” controller leads to the collection of a smaller
amount of energy. It should be noted however that the performance of this con-
troller is strongly influenced by the values DTstart and DTstop of starting and stop-
ping the circulation pump, respectively (here DT � Tstoc � Tf ;out and the values
DTstart ¼ 10 �C and DTstop ¼ 2:8 �C were used). In fact, if the energy required to
circulate the fluid is not taken into consideration, it can be shown analytically that
the optimal control strategy is of the type “all or nothing”. This result, however, is
not true for stratified storage tanks, where the optimum control requires interme-
diate values for the mass flow rate.

The results of Tables 18.1 and 18.2 were obtained for a surface collector area of
8 m2 and simulated values of solar irradiance and ambient temperature. The con-
clusion is that the analytic solution leads to similar results with the numerical
solutions.

Next, results are presented for the case of using values of meteorological
parameters measured over a longer period of time. Input data are displayed in
Table 18.3 and the results are shown in Table 18.4.

Table 18.2 Useful collected energy (kJ)

Hour Strategy “all or nothing” Optimal numerical strategy Optimal analytical strategy

08.00 3712 7063 7103

10.00 21,517 24,847 24,941

12.00 42,876 45,576 45,684

14.00 57,204 61,380 61,488

16.00 60,156 66,384 66,492

Adapted from Byron Winn and Ellsworth Hull (1979)

Table 18.3 Input data

Parameter Symbol Units Water collector Air collector

Collector area A m2 55.76 55.76

Heat loss coefficient U kJ/(h-°C-m2) 14.4 14.4

Collector efficiency factor F′ – 0.98 0.98

Product transmittance absorbance (sa) – 0.7 0.7

Thermal storage capacity Cstoc kJ/°C 19,000 19,000

Specific heat of the fluid Cp kJ/(kg-°C) 4.187 1.0

Pumping energy W-s3/kg3 1000 1000

Fluid mass flow ratea _m kg/h 2722 2636
aused only for the strategy “all or nothing”
Adapted from Byron Winn and Ellsworth Hull (1979)
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Table 18.4 shows results obtained, on one hand, by measuring the temperature
of the fluid at the collector output and, on the other hand, by measuring the solar
irradiance. The difference between the results is small. However, it is much easier
and cheaper to measure the temperature of the fluid at the collector output.
Therefore, this procedure may be recommended for the practical implementation of
the controller.
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Table 18.4 Comparison of flow control strategies

Control strategy Useful collected energy (kJ) Objective function (kJ)

“All or nothing” 370,100 360,100

Optimal (1) 387,700 382,100

Optimal (2) 387,300 381,900

(1)—based on measurements of solar irradiance on inclined surface; (2)—based on measurements
of the fluid temperature at collector outlet (adapted from Byron Winn and Ellsworth Hull 1979)
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Part V
Applications: Heat Engines

Part V deals with several applications of optimal control in the field of heat engines.
Endoreversibile engines, diesel engines and cam engines are treated in Chaps. 19–21,
respectively. A method of optimizing a heat engine driven by the photochemical
conversion of solar energy is presented in Chap. 22.
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Chapter 19
Endoreversible Heat Engines

A heat machine is called endoreversible if all processes associated with its oper-
ation occur at the interface with the environment. Endoreversible heat engines are
endoreversible heat machines that convert heat into work. In this chapter an optimal
control model is presented for a class of endoreversible heat engines (Rubin 1979).
The model is classical in the literature and is presented explicitly, with the purpose
of better understanding of how the optimal control techniques are implemented.

19.1 Endoreversible Heat Engine Model

The thermal machine considered here is a classic heat engine, with cylinder and
piston. The engine operates cyclically, obeying the following conditions:

(i) The heat engine is endoreversible.
(ii) The walls have a thermal conductivity q constant in space. They are designed

so that q can take any value in the range 0� q� q0.
(iii) When the engine is in thermal contact with the heat reservoir of temperature

TR, the heat flux _q changed with the working fluid is given by a linear
relationship of the type

_q ¼ q TR � Tð Þ ð19:1:1Þ

where T is the temperature of the working fluid.
(iv) The heat reservoir has a constant temperature TR, located in the following

range: TL � TR � TH .
(v) The work W generated by the engine in a cycle is given by
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W ¼
Zs

0

P _Vdt; ð19:1:2Þ

where P and V are the pressure and volume of the working fluid,
respectively, the derivative of V with respect to time is denoted by _V , and s is
the cycle duration.

(vi) The working fluid is perfect gas with constant heat capacity.

Subsequently, a seventh hypothesis is added.
To put Eqs. (19.1.1) and (19.1.2) in a form useful for optimal control techniques,

the first law of thermodynamics is used, applied to the perfect gas inside the
cylinder:

CV _T þCV c� 1ð ÞT
_V
V
¼ _q ð19:1:3Þ

where CV is the heat capacity at constant volume of the gas, c is the adiabatic
exponent (i.e. the ratio of the thermal capacity at constant pressure and CV ).
Substituting Eq. (19.1.1) in Eq. (19.1.3) and defining some new variables, one
obtains:

_T ¼ �cT þ q̂ TR � Tð Þ b � c� 1ð Þ ln V
V0

� �
_b ¼ c ð19:1:4–6Þ

where, by definition, q̂ � q=CV and V0 is a constant reference volume. Given these
variables, Eq. (19.1.2) becomes

W ¼ CV

Zs

0

cTdt ð19:1:7Þ

The reason for which the variables b and c have been introduced will become
clearer in the next subsection, where the method of solving the problem is pre-
sented. Finally, notice that the energy that enters the system is given by:

Q1 ¼ CC

Zs

0

q̂ TR � Tð Þ# TR � Tð Þdt ð19:1:8Þ

where h xð Þ is Heaviside step function, which is defined in the usual way: h xð Þ ¼ 1
if x� 0 and h xð Þ ¼ 0 if x\0.

The problem is to determine the best time variation of the functions q̂ tð Þ, TR tð Þ
and c tð Þ, assumed to be controllable, in order to meet one of the following two
requirements:
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(A) the average power provided by the engine is a maximum, or
(B) the engine thermal efficiency is a maximum for a given value of Q1.

To obtain physically reasonable results, the variable c must be limited to a finite
domain. For this purpose the following hypothesis is adopted:

(vii) Assume cm and cM are two arbitrary positive constants. Then, it is required
that the variable c tð Þ is limited as follows:

�cm � c� cM ð19:1:9Þ

This last requirement completes the heat engine model.

19.2 Implementation of the Optimal Control Theory

The main notions and concepts of the optimal control theory are gradually intro-
duced, taking into account the specificities of the problem (see Tolle 1975 and
Chap. 5 in this book).

19.2.1 Definitions

A system is an entity whose state is characterized at all times by a set of n real
numbers, x1; . . .; xn, which can be interpreted as the components of a vector~x in a n-
dimensional Euclidean vector space. It is assumed that the system is subjected to
some controls, described by m real numbers, u1; . . .; um, whose values influence the
evolution of the system state in a manner to be specified. The controls can be
interpreted as vectors~u in a m-dimensional Euclidean vector space. In particular, it
is of interest the case when the admissible controls are limited to a bounded domain
of that space.

The following systems are dynamic systems; this means that the system state,
~x tð Þ, at time t[ t0 is univocally determined by a system of first order differential
equations:

_~x tð Þ ¼ ~F~x tð Þ;~u tð Þ½ � ð19:1:10Þ

and the initial conditions, ~x t0ð Þ, where ~F ~x;~uð Þ and @~F ~x;~uð Þ=@x are continuous
vector functions of ~x and ~u, and ~u tð Þ is a piecewise continuous vector function
whose values are the admissible controls.

Customizing the problem formulated in the previous subsection, T and b are
state variables and TR; q̂ and c are control variables. The equations of motion
(19.1.4) and (19.1.6) with
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F1 � �cT þ q̂ TR � Tð Þ F2 � c ð19:1:11; 12Þ

generate a vector function ~F satisfying the conditions of a dynamic system.
This system is a special case in many respects. For example, ~F does not

explicitly depend on time; as mentioned, this type of system is called autonomous
system. Also, the system has no memory, which means that its evolution for
t[ t1 [ t0ð Þ depends only on~x t1ð Þ and~u tð Þ for t[ t1. No constraints exist for the
state variables. In general, the existence of the constraints, that can take the form of

equalities, of the type~S ~xð Þ ¼ 0
*
, or inequalities, of the type~S ~xð Þ� 0

*
, significantly

complicate the problem of finding an optimal solution. Of course, the state variable
T is mandatory positive (note that b must not be positive, though V � 0) but this
does not present major difficulties, as long as the optimal solution must meet the
condition T [ TL. Another feature of the problem is the non-inertial character of the
controls, which may change their values in a discontinuous way. For example, the
variable c that controls the rate of expansion of the volume of the cylinder can be
changed instantly from its maximum value to the minimum value. In real systems,
there is always some delay, due to the inertia of the moving components. This can
be considered making from c a continuous variable, but this assumption is not
adopted here.

It is appropriate to define the performance indicator I (sometimes called
objective function or cost function) that specifies the scope of the system
operation:

I ¼ G ~x1; t1ð Þþ
Zt1

t0

L~x tð Þ;~u tð Þ½ �dt ð19:1:13Þ

where ~x1 ¼~x t1ð Þ is the final state of the system. In the situation analyzed here,
G ¼ 0 and I ¼ W or I ¼ W � lQ1, as one speaks about the maximization of the
average power or of the thermal efficiency, respectively. In the latter case, l is a
Lagrange multiplier and the constant value of Q1 is acting as a constraint.

19.2.2 Formulation of the Optimal Control Problem

The optimal control problem requires finding an admissible control~u� tð Þ to lead the
system from the initial state to the final state in a way that maximizes the perfor-
mance indicator. Such a control is called optimal control, and the trajectory~x� tð Þ in
the phase space is called optimal trajectory (or optimal path). In the case discussed
in this section, the initial and final states are the same and the duration of the cycle
is established.
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19.2.3 Application of the Maximum Pontryagin Principle

As it is known, the principle of Pontryagin states the necessary conditions for
solving the optimal control problem (Pontryagin et al. 1962; see Chap. 5 of this
book). Note that the theory is sometimes used under the form of a minimum
principle. First, the Hamiltonian is defined by:

H ~x;~u; ~W
� �

� L ~x;~uð Þþ ~W �~F ~x;~uð Þ ð19:2:1Þ

whereL is given byEq. (19.1.13) and F
*
is given byEq. (19.1.10). The vector function

W
*

tð Þ is called the conjugate variable (or adjoint variable, or covariable) and plays a
role similar to that played by the Lagrangemultipliers in classical variational calculus,
meaning that it ensures verification of the restrictions Eq. (19.1.10), which, in this
case, are ordinary differential equations. The conjugated variable differs fromordinary
Lagrange multipliers in that it verify the equation of motion

W
*
�
tð Þ ¼ � @H

@~x
~x tð Þ;~u tð Þ; ~W tð Þ
h i

ð19:2:2Þ

where @H=@~xð Þj� @H=@xj. The name Hamiltonian given to H becomes clear when
it is noted that Eq. (19.1.10) can be written under the form

_~x tð Þ ¼ @H

@~w
~x tð Þ;~u tð Þ; ~W tð Þ
h i

ð19:2:3Þ

Pontryagin maximum principle states that if ~u� tð Þ is an admissible optimal
control and ~x� tð Þ is the trajectory corresponding to ~u� which meet the boundary

conditions ~x� t0ð Þ ¼~x0 and ~x� t1ð Þ ¼~x1, then, it is necessary that ~x� tð Þ and W
* � tð Þ

satisfy the canonical system of equations

_~x� tð Þ ¼ @H

@~w
~x� tð Þ;~u� tð Þ; ~W� tð Þ
h i

; W
*
�
� tð Þ ¼ � @H

@~x
~x� tð Þ;~u� tð Þ; ~W� tð Þ
h i

ð19:2:4; 5Þ

with ~x� t0ð Þ ¼~x0 and ~x� t1ð Þ ¼~x1. In addition, the function H ~x� tð Þ;~u� tð Þ; ~W� tð Þ
h i

has an absolute maximum in the set of the admissible controls defined over the
values of t in the range t0; t1½ �, i.e.

H ~x� tð Þ;~u� tð Þ; ~W� tð Þ
h i

�H ~x� tð Þ;~u; ~W� tð Þ
h i

ð19:2:6Þ
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for any admissible ~u. Finally:

H� � H ~x� tð Þ;~u� tð Þ; ~W� tð Þ
h i

ð19:2:7Þ

is a constant (for autonomous systems).
Equations (19.2.4–19.2.7) constitute the optimal control problem. There are

cases where Eq. (19.2.6) does not create constraints on certain control variables;
this leads to what is called a singular control problem. In this particular situation,
the singular control problems that arise are solved easily; but, in general, singu-
larities are difficult to solve. Note that Eq. (19.2.7) is in fact the law of energy
conservation for dynamic systems which are invariant with respect to temporal
translation. In fact, the generalization of Eq. (19.2.7) for non-autonomous systems
is dH=dt ¼ @H=@t.

19.2.4 Properties of the Solutions of Optimal Control
Problems

When solving optimal control problems, some properties of the optimal solutions
are used, which are reviewed in this subsection. First, according to the theory of
ordinary differential equations, since ~u tð Þ is a continuous piecewise function, then
~W tð Þ and ~x tð Þ are continuous functions, due to the fact that they are solutions of
Eqs. (19.2.4) and (19.2.5).

Secondly, the principle of the optimality of the parts of the optimal trajectory
may be used. This principle states that any portion of an optimal trajectory is itself
an optimal trajectory. To remind what this means, assume that~x� tð Þ is an optimal
trajectory that begins at~x� t0ð Þ ¼~x0 and ends at~x� t1ð Þ ¼~x1 and~u� tð Þ is the optimal
control in the domain t0; t1ð Þ, corresponding to this trajectory. The optimal trajec-
tory ~̂x� tð Þ is searched in the domain t̂0; t1ð Þ, where t0\t̂0\t1, so that ~̂x� t̂0ð Þ ¼~x t̂0ð Þ
and ~̂x� t̂1ð Þ ¼~x t̂1ð Þ. The principle of optimality states that ~̂x� tð Þ ¼~x� tð Þ is an optimal
trajectory and ~̂u� tð Þ ¼~u� tð Þ is an optimal control.

This concludes the brief recapitulation of that part of the theory of optimal
control to be used further. The only exception is the singular control problem
already mentioned. This issue is discussed at the appropriate time.

19.3 Optimal Performances

The results of the previous subsection are applied here to study the thermal engine
model described in Sect. 19.1. Two cases are considered, specified by the perfor-
mance indicators mentioned above, namely:
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• case 1, when the average power produced by the engine is maximum and
• case 2, when the thermal efficiency of the engine is maximum.

19.3.1 Maximum Power

Since the duration s of the cycle is constant, to maximize the average power
produced by the engine is the same as maximizing W of Eq. (19.1.7). The proce-
dure begins by building the Hamiltonian, using Eqs. (19.1.7), (19.1.4) and (19.1.5):

H ¼ cT þw1
_F1 þw2F2 ð19:3:1Þ

where F1 and F2 are defined by Eqs. (19.1.11) and (19.1.12). As a performance
criterion the ratioW=CV has been used. It is advantageous to rewrite Eq. (19.3.1) so

H ¼ 1� w1ð ÞT þw2½ �cþw1q̂ TR � Tð Þ ð19:3:2Þ

The equations of the adjoint variables are:

_w1 ¼ � @H
@T

¼ �c 1� w1ð Þþ q̂w1
_w2 ¼ � @H

@b
¼ 0 ð19:3:3; 4Þ

The canonical Eqs. (19.1.4), (19.1.4), (19.3.3) and (19.3.3) are linear in both
state variables and covariables and, therefore, can be readily solved once the control
variables are specified as functions of time. In general, however, the control vari-
ables are functions of the state variables and covariables, which make nonlinear the
canonical equations. In the present case, the canonical equations are either linear or,
when not linear, they are easy to solve.

19.3.1.1 Application of the Maximum Principle

Equation (19.2.6) is used. For this, ones defines

DH � H ~x� tð Þ;~u� tð Þ;~w� tð Þ
h i

� H ~x� tð Þ;~u;w� tð Þb c ð19:3:5Þ

where ~u is an admissible control. To achieve the maximum, it is necessary that
DH� 0, i.e.
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DH ¼ 1� w�
1

� �
T� þw�

2

� 	
c� � cð Þþw�

1 q̂ T�
R � T�� �� q̂ TR � T�� �� 	� 0

ð19:3:6Þ

where the following constraints must be met:

0� q̂� q0=CV � q̂0 TL � TR � TH � cm � c� cM ð19:3:7–9Þ

Next, all possible cases are treated separately. Different optimal solutions are
achieved, from which the optimum cycle is built by synthesis.

First, assume that q̂ ¼ q̂� and TR ¼ T�
R. In this case, the second term in

Eq. (19.3.6) is canceled and the condition DH� 0 requires that

c ¼
cM if 1�W�

1

� �
T� þW�

2 [ 0
�cm if 1�W�

1

� �
T� þW�

2\0
non-determinate if 1�W�

1

� �
T� þW�

2 ¼ 0

8<
: ð19:3:10Þ

The last possibility corresponds to the case of a singular control mentioned
above. As it is seen, it is not difficult to demonstrate that, along the singular portion
of the trajectory, c� is constant.

Next, assume that c ¼ c� and TR ¼ T�
R. Equation (19.3.6) reduces to

DH ¼ w�
1 T�

R � T�� �
q̂� � q̂ð Þ� 0 ð19:3:60Þ

which implies

q̂� ¼
q̂0 if w�

1 T�
R � T�� �

[ 0
0 if w�

1 T�
R � T�� �

\0
non-determinate if w�

1 T�
R � T�� � ¼ 0

8<
: ð19:3:11Þ

The last case corresponds to a singular control problem. This case, however, can be
easily removed, as shown next. First, if w�

1 equals zero on a finite interval of time,
then in this interval w�

1 ¼ 0. From Eq. (19.3.3) arises that c� ¼ 0, and this implies
that H� ¼ 0. However, it is seen that there is an optimal solution with H� [ 0, so,
since H� is constant, it is not possible that w�

1 ¼ 0 on a finite interval of time. Next
it is assumed that T�

R ¼ T� ¼ 0 on a finite time interval. Then it follows that c ¼ cM
or c ¼ �cm; otherwise H� ¼ 0 would be reached again. It may be shown that in this
time interval q̂w�

1T
� ¼ 0, by the differentiation of H� in respect to time, keeping in

mind that _H� ¼ 0, and using the canonical equations to eliminate _T and _w1. It was
already seen that w�

1 can not cancel on a finite interval of time, and, since
T� ¼ T�

R � TL, the only possibility is q̂� ¼ 0, so this case can be included in
Eq. (19.3.11).
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Finally, assume that c ¼ c� and q̂ ¼ q̂�. Then Eq. (19.3.6) becomes

DH ¼ w�
1q̂

� T�
R � T�� �

[ 0 ð19:3:600Þ

such that

T�
R ¼ TH if w�

1 [ 0
TL if w�

1\0



ð19:3:12Þ

since q̂� is non-negative. It has been already shown that the case w�
1 ¼ 0 is

excluded. If q̂� ¼ 0, then DH ¼ 0. In this case the temperature of the heat source is
no longer relevant, because the source is decoupled from the engine.

19.3.1.2 Optimal Solutions

Now one can systematize all optimal controls and optimum trajectories. The tra-
jectories are obtained by solving the canonical equations, after replacing the
expressions found for the control functions. To simplify writing, the mark * is
removed, since all functions are assumed optimal.

Case 1 q̂ ¼ 0,c ¼ cM or c ¼ �cm. The results are:

T tð Þ ¼ T t0ð Þe�c t�t0ð Þ b tð Þ ¼ b t0ð Þþ c t � t0ð Þ
w1 tð Þ ¼ 1� 1� w1 t0ð Þ½ �e�c t�t0ð Þ w2ðtÞ ¼ const:

ð19:3:13Þ

The Hamiltonian is given by:

H ¼ 1� w1 tð ÞÞ½ �T þw2f gc ¼ 1� w1 t0ð Þ½ �T t0ð Þþw2f gc ð19:3:14Þ

It has a constant value, as required, and the value of c is determined from
Eq. (19.3.10).

Case 2 q̂ ¼ q̂0; TR ¼ TH or TR ¼ TL, c ¼ cM or c ¼ �cm. In this case the results
are:

T tð Þ ¼ q̂0
a
TR þ T t0ð Þ � q̂0

a
TR

� �
e�a t�t0ð Þ b tð Þ ¼ c t0ð Þþ c t � t0ð Þ

w1 tð Þ ¼ c
a
þ w1ðt0Þ �

c
a

h i
e�a t�t0ð Þ w2 tð Þ ¼ const:

ð19:3:15Þ

where a ¼ cþ q̂0. The value of c is determined from Eq. (19.3.10) and the value of
TR is obtained from Eq. (19.3.12).
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Case 3 q̂ ¼ q̂0, TR ¼ TH or TR ¼ TL, 1� w1ð ÞT þw2 ¼ 0. The results are:

T tð Þ ¼ Tr b tð Þ ¼ b t0ð Þþ cr t � t0ð Þ cr tð Þ ¼ q̂0
TR
Tr

� 1
� �

w1 tð Þ ¼ 1� Tr
TR

w2 tð Þ ¼ � T2
r

TR
\0

ð19:3:16Þ

where Tr is a constant. This case corresponds to a singular control, which has not
yet been analyzed. By differentiating the expression 1� w1ð ÞT þw2 ¼ 0 and using
the canonical equations to eliminate the derivatives in respect to time, it is easy to
show that T , w1 and c must all be constant.

The subscript r has been used to correspond to the subscript R of TR, i.e. if,
TR ¼ TH , then r ¼ h and if TR ¼ TL, then r ¼ l. Equation (19.3.12) determines the
value of TR and observe from Eq. (19.3.16) that if TR ¼ TH and w1 h [ 0, then
TH [ Th and if TR ¼ TL and w1 l\0, then TL\Tl. These involve, in turn, that
ch [ 0 and cl\0. It is easily shown that:

H ¼ q̂0 TR � Trð Þ2
Tr

ð19:3:17Þ

which is a positive amount. Finally one sees that w2 (which is a constant function
throughout the cycle) is negative if the case 3 is considered.

As one sees later, the isothermal branches (or arcs of trajectory) are parts of the
optimal trajectory. From this observation, and from the constancy of w2 and H, one
obtains

Th ¼ 1
2

ffiffiffiffiffiffi
TH

p ffiffiffiffiffiffi
TH

p þ ffiffiffiffiffi
TL

p� �
Tl ¼ 1

2

ffiffiffiffiffi
TL

p ffiffiffiffiffiffi
TH

p þ ffiffiffiffiffi
TL

p� � ð19:3:18; 19Þ

There are actually eight different optimal solutions, which are denoted, 1	, 2	H ,
2	L , 3H and 3L, where the plus sign refers to the case c ¼ cM and the minus sign
refers to the case c ¼ �cm. Also, H and L refer to the subscript of the temperature
of the heat source, TR.

To determine the effective optimal trajectory, it is necessary to study the
implications that the constancy of H and the continuity of the state variables and
covariables, respectively, have on the switchings between different pairs of optimal
solutions.

19.3.1.3 Switchings

In optimal control theory, the areas of the phase space of the state variables, where
the optimal control variables changes in a discontinuous way, are called switching
surfaces (or jump surfaces). The switchings characterizing the present problem are
shown in Table 19.1.
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First it is seen that a switching between case 1 and case 3 is not allowed. This is
because the expression 1� w1ð ÞT þw2 is continuous and it is canceled in case 3,
but Eq. (19.3.14) would require H to approach zero when t is approaching the
switching time from the side where the case (a) occurs.

A switching between case 1 and case 2 is allowed at the time when w1 cancels.
This can be highlighted by comparing Eqs. (19.3.14) and (19.3.2). Note that w1 can
cancel at a specific time, but it can not be null during a finite time interval, as seen
above. During such a switching, c should not be changed, since H 6¼ 0.

A switching between cases 2 and 3 is allowed at a time when 1� w1ð ÞT þw2 is
canceled. TR must remain constant during the transition because the change of TR
requires that w1 ¼ 0 at the time of switching. But for the case 2, w1 6¼ 0; so, by
continuity, the existence of such switching should be eliminated.

Further, it is seen that there can be no switching between 1þ and 1�, as in the
case of such transition Eq. (19.3.10) would require that 1� w1ð ÞT þw2 cancels,
and then Eq. (19.3.14) would lead to H ¼ 0. Also, there can be no switching
between 3H and 3L because of the continuity of w1. It is still possible a switching in
case 2, between TR ¼ TH and TR ¼ TL, the function c remaining constant, provided
that w1 passes through zero at switching time. It is also possible to switch between
�cm and cM , with the temperature TR remaining unchanged, provided that
1� w1ð ÞT þw2 cancels at switching time. However, both TR and c can not be
changed simultaneously, as this would require H ¼ 0.

An interesting observation is that along an optimal path it is not allowed the
switching between an isothermal and an adiabatic. In fact, the optimal trajectory has
no adiabatic branch.

19.3.1.4 Optimal Controls and Trajectories

After determining the optimal possible sub-trajectories, one can proceed to build,
by synthesis, the optimal cycle. From the principle of optimality of the
sub-trajectories, it comes that these sub-trajectories can be connected to each other
in the final global optimal path. Furthermore, because the system is autonomous,
i.e. it is invariant to translations with respect to time, any state of the optimal
trajectory can be selected as a starting point.

Figures 19.1, 19.2 and 19.3 shows the layout of the control functions, the state
variables and covariables, along the optimal path. The beginning consists of the

Table 19.1 Switchings Case 1 2 3

1 a b a

2 b b or c c

3 a c a

a—forbidden switchings; b—admissible switchings (Dc ¼ 0 and
w1 ¼ 0); c—admissible switchings (DTR ¼ 0 and 1� w1ð Þ

T þw2 ¼ 0)
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assumption that the start of the process coincides with the beginning of the branch
3H , i.e. where TR ¼ TH ; T ¼ Th, etc, on the interval 0� t� t1. The only admissible
switching is towards a branch 2þ

H , i.e. where TR ¼ TH ; c ¼ cM , etc. For t between t1
and t2, w1 decreases and 1� w1ð ÞT þw2 increases from zero—as it should be when
c ¼ cM . So, the only possible switching occurs at t2, when w1 cancels, yielding a
2þ
L branch. It would be possible a switching to the adiabatic 1þ , but this transition

Fig. 19.1 State variables for
maximum power. T-
temperature; the variable b is
proportional to the volume of
the cylinder

Fig. 19.2 Optimal controls
for maximum power. qT is
the source temperature
multiplied by the thermal
conductance, and c is
proportional to the derivative
with respect to time of the
logarithm of the cylinder
volume
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actually does not take place. To prove this, it is necessary to include such a branch,
showing that the optimal solution in this case leads to the branch that started at time
zero. It is seen later that an adiabatic branch actually occurs when the efficiency is
maximized, the adiabatic branch being eliminated from the optimal trajectory when
the output power is maximized.

From t2 to t3, w1 continues to fall, like 1� w1ð ÞT þw2, until canceled, at which
time another change is possible. At t3 an isotherm 3L starts, which lasts up to t4,
enough to move to a branch 2�L . During this branch, 1� w1ð ÞT þw2 drops to zero,
while w1 increases until it reaches zero at time t5. At that moment, one switches to a
branch 2�H until 1� w1ð ÞT þw2 returns to zero at the end of the cycle, when t6 ¼ s.
Again, it is possible to introduce an adiabatic between branches 2�L and 2�H , but this
adiabatic would not be part of an optimal trajectory.

So far has not been explained yet how the values of the switching moments, t1 to
t6, are calculated. t2 � t1 and t5 � t4 are determined by the cancellation of w1, while
t3 � t4 and t5 � t6 are determined by the cancellation of 1� w1ð ÞT þw2. t1 and
t4 � t3 are then fixed by knowing the cycle duration, meaning t6 ¼ s, and from the
boundary conditions for b, i.e. b 0ð Þ ¼ b sð Þ ¼ 0, taking V0 as the lowest value of
the volume. Once the durations t3 � t2 and t5 � t4 are determined, it comes that the
temperatures T t2ð Þ and T t3ð Þ are determined, too.

Now, the complete solution can be written. The following notation is used:

x � TL
TH

� �1=2

aþ � cM þ q̂0 a� � cm � q̂0 eM � q̂0
cM

em � q̂0
cm

ð19:3:20Þ

Since the function w2 is constant throughout the cycle, its value is mentioned
only once. From Eqs. (19.3.16) and (19.3.19), the following results are obtained:

Fig. 19.3 Covariables for
maximum power. w1 is the
temperature covariable and w2

is the covariable of b
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1. For 0� t� t1.

T ¼ 1
2
TH 1þ xð Þ b ¼ cht TR ¼ TH c ¼ ch ¼ q̂0

1� x
1þ x

w1 ¼
1
2

1� xð Þ w2 ¼
1
4
TH 1þ xð Þ2

2. For t1 � t� t2.

T ¼ TH
eM

1þ eM

1þ x
2

� eM
1þ eM

� �
eaþ t�t1ð Þ

� �
b ¼ cM t � t1ð Þþ cht1 TR ¼ TH

c ¼ cM w1 ¼
1

1þ eM
� 1þ x

2
� eM
1þ eM

� �
eaþ t�t1ð Þ

3. For t2 � t� t3.

T ¼ TL
eM

1þ eM
þ T2

TL
� eM
1þ eM

� �
e�aþ t�t1ð Þ

� �
b ¼ cM t � t1ð Þþ cht1 TR ¼ TL

c ¼ cM w1 ¼
1

1þ eM

� �
1� eaþ t�t2ð Þ
h i

T2 ¼ 1
4
TH 1þ xð Þ2 þ eM 1� xð Þ2

h i

4. For t3 � t� t4

T ¼ 1
2
TL

1
x
þ 1

� �
b ¼ cl t � t3ð Þþ cm t3 � t1ð Þþ cht1 TR ¼ TL

c ¼ cl ¼ �ch w1 ¼ � 1
2

1
x
� 1

� �

5. For t4 � t� t5

T ¼ TL � em
1� em

þ 1
2

1
x
þ 1

� �
þ em

1� em

� �
ea� t�t4ð Þ


 �
TR ¼ TL c ¼ �cm

b ¼ cm t � t4ð Þþ cl t4 � t3ð Þþ cM t3 � t1ð Þþ cht1 w1 ¼
1

1� em

1
2

1
x
þ 1

� �
þ em

1� em

� �
ea� t�t4ð Þ

6. For t5 � t� t6 ¼ s.

T ¼ TH
em

1� em
þ T5

TH
þ em

1� em

� �
ea� t�t5ð Þ

� �
c ¼ �cmT5 ¼ 1

4
TH 1þ xð Þ2�em 1� xð Þ2

h i

b ¼ �cm t � t4ð Þþ cl t4 � t5ð Þþ cM t3 � t1ð Þþ cht1 TR ¼ TL w1 ¼
1

1� em
1� e�a� t�t5ð Þ
h i

436 19 Endoreversible Heat Engines



As it has been said, t2 � t1 and t5 � t4 are determined by w1 ¼ 0, finding that:

t2 � t1 ¼ � 1
aþ

ln
1þ x
2

� eM
1� x
2

� �

t5 � t4 ¼ 1
a�

ln
1
2

1
x
þ 1

� �
� em

1
2

1
x
� 1

� �� �

To determine t3 � t2 and t6 � t5, the fact that the expression T 1� w1ð Þþw2
cancels at times t3 and t6 is used, finding:

t3 � t2 ¼ � 1
aþ

ln
1
2

1
x
þ 1

� �
þ eM

1
2

1
x
� 1

� �� �

t6 � t5 ¼ � 1
a�

ln
1þ x
2

þ em
1� x
2

� �

These values are positive, provided that both em and eM are smaller than 1. For
“reasonable” physical systems, these quantities are, generally, much smaller than 1,
because they are ratios between the adiabatic relaxation time (1=cm or 1=cM) and
the constant of the thermal conduction (1=q̂0).

Finallly, t1 and t4 � t3 are determined from the relationship

t1 þ t4 � t3ð Þ ¼ s� t3 � t1ð Þ � t6 � t5ð Þ

and from the fact that b t6ð Þ ¼ 0:

ch t1 � t4 � t3ð Þ½ � ¼ �cM t3 � t1ð Þþ cm t6 � t4ð Þ

One obtains

t1 ¼ s
2
� 1þ cM

ch

� �
t3 � t1ð Þ � 1� cm

ch

� �
t6 � t4ð Þ

t4 � t3 ¼ s
2
� 1� cM

ch

� �
t3 � t4ð Þ � 1þ cm

ch

� �
t6 � t4ð Þ

These values must be positive. This means that, if a too low value is considered
for s, the problem has no solution.

W and Q1 are now easily calculated by using Eqs. (19.1.7) and (19.1.8):

W ¼ CV q̂0
1
2

ffiffiffiffiffiffi
TH

p � ffiffiffiffiffi
TL

p� � ffiffiffiffiffiffi
TH

p
t1 �

ffiffiffiffiffi
TL

p
t4 � t3ð Þ� 	


þ cM
aþ

TH t2 � t1ð Þþ TL t3 � t2ð Þ½ �

þ cm
a�

TL t5 � t4ð Þþ TH t6 � t5ð Þ½ �� 1
aþ

þ 1
a�

� �
TH � TL

2

� ��
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Q1 ¼ CV q̂0
1
2

ffiffiffiffiffiffi
TH

p ffiffiffiffiffiffi
TH

p � ffiffiffiffiffi
TL

p� �
t1 þ TH

cm
aþ

t2 � t1ð Þþ cm
a�

t6 � t5ð Þ
� �


� 1
aþ

1
4

TH � TLð Þ � 1
4
eM

ffiffiffiffiffiffi
TH

p � ffiffiffiffiffi
TL

p� �2� �
� 1
a�

1
4

TH � TLð Þþ 1
4
eM

ffiffiffiffiffiffi
TH

p � ffiffiffiffiffi
TL

p� �2� ��

Here the optimization of the endoreversible heat engine ends, in case of the first
performance indicator (i.e. the output power).

19.3.2 Maximum Efficiency

The second performance indicator is treated now. In this case the problem is to
maximize the thermal efficiency for a fixed duration of the cycle and for a fixed
amount of input heat, Q1. This will maximize W � lQ1, where W and Q1 are given
by Eqs. (19.1.7) and (19.1.8) and l is an usual Lagrange multiplier, which is
determined so as Q1 is equal to the given amount of input heat.

The procedure for determining the optimal solution is the same as in
Sect. 19.3.1. The Hamiltonian can be written as

H ¼ 1� w1ð ÞT þw2½ �cþ w1 � lh TR � Tð Þ½ �q̂ TR � Tð Þ ð19:3:21Þ

It is reduced to the Hamiltonian of Eq. (19.3.2), when l ¼ 0. The equations for
the covariables are easily obtained.

Obtaining the optimal solution is complicated by the term l. It may be shown
that l ¼ @Wmax=@Q1 (i.e. l is a measure of the sensitivity of the maximum power
Wmax for small changes of the constraint Q1 ¼ const). l can be both positive and
negative and cancels when maximum power is delivered. To simplify presentation,
the case l� 0 is considered; results corresponding to the case l\0 are presented
later.

The following discussion is limited to the presentation of the changes that occur
due to the existence of an additional constraint. It is seen that the optimal trajectory
now contains adiabatic branches, placed between the branches 2	H and 2	L .

19.3.2.1 Application of the Maximum Principle

As in the case of the maximizing output power, one starts with Eqs. (19.3.5) and
(19.3.6). The second term in Eq. (19.3.6) is different in the present case, because of
the term containing l in Eq. (19.3.21); however, this does not affect the analysis
which leads to the result Eq. (19.3.10).
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Equation (19.3.11) changes in the present case. Now one finds that, if one
assumes c ¼ c� and TR ¼ T�

R, from the condition DH� 0 one finds:

q̂� ¼
q̂0 if w�

1 � l�h T�
R � T�� �� 	

T�
R � T�� �

[ 0
0 if w�

1 � l�h T�
R � T�� �� 	

T�
R � T�� �

\0
non-determinate if w�

1 � l�h T�
R � T�� �� 	

T�
R � T�� � ¼ 0

8<
: ð19:3:22Þ

The last variant of Eq. (19.3.22) is the singular case. The possibility of its
achievement can be eliminated, as it would be followed by the requirement that
w1 ¼ l ¼ 1, which, in turn, would lead to the need that H� ¼ 0. However, it is seen
further that H� [ 0.

Finally, assume c ¼ c� and q̂ ¼ q̂�. Then

DH ¼
q̂� w�

1 T�
R � TR

� ��
�l� T�

R � T� � h TR � T�ð Þ TR � T�ð Þ� 	� if T�
R [ T�

q̂� w�
1 T�

R � TR
� �þ l�h TR � T�ð Þ TR � T�ð Þ� �

if T�
R � T�

8<
: ð19:3:23Þ

From the analysis of Eq. (19.3.22) it is seen that the equality q̂� ¼ q̂0 requires
that w�

1 [ l� if T�
R [ T�, and w�

1\0 if T�
R\T�. Consider first that T�

R is found in the
range T�; TH½ �. For the case when T�

H [ T�, it is found as a necessary consequence
that T�

R ¼ TH , in order to meet the inequality DH� 0. Then, one sees that DH� 0 in
case when T�

R lies in the interval TL; T�½ �, since l� 0. In a similar way, when
T�
R\T� it is deduced that DH� 0, provided T�

R ¼ TL. Thus, instead of
Eq. (19.3.12) one must use:

T�
R ¼ TH; w�

1 [ l�

TL; w�
1\0



ð19:3:24Þ

and for q̂� 6¼ 0, TH [ T� [ TL.
This result is different from the similar outcome in Sect. 19.3.1, because when

l[ 0 one can not switch directly from the source of high temperature to the low
temperature source. It is seen that this introduces an adiabatic branch in the optimal
solution. If l �\0, one can give up the adiabatic branch, as seen in the case
l� ¼ 0. In case that l\0, the result Eq. (19.3.24) is replaced by a more compli-
cated result.

19.3.2.2 Optimal Solutions

Now, it is presented, in summary, the possible controls and optimal trajectories. As
it was did in Sect. 19.3.1, the superscript * is removed, since all next expressions
are optimal.

Case 1 is the same as the one given in Eq. (19.3.13).
Case 2 q̂ ¼ q̂0,TR ¼ TH or TR ¼ TL, c ¼ cM or c ¼ �cm:
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T tð Þ ¼ q̂0
a
TR þ T t0ð Þ � q̂0

a
TR

� �
e�a t�t0ð Þ b tð Þ ¼ b t0ð Þþ c t � t0ð Þ

w1 tð Þ ¼ c
a
þ q̂0

a
lh TR � Tð Þþ w1 t0ð Þ � c

a
� q̂0

a
lh TR � Tð Þ

� �
ea t�t0ð Þ

w2 tð Þ ¼ const

ð19:3:25Þ

where a ¼ cþ q̂0 and the values of c and TR are determined by using Eqs. (19.3.10)
and (19.3.24), respectively.

Case 3 q̂ ¼ q̂0, TR ¼ TH or TR ¼ TL, 1� w1ð ÞT þw2 ¼ 0:

T tð Þ ¼ Tr b tð Þ ¼ b t0ð Þþ cr t � t0ð Þ cr tð Þ ¼ q̂0
TR
Tr

� 1
� �

w1 tð Þ ¼ 1� Tr
TR

AR w2 tð Þ ¼ � T2
r

TR

� �
AR

ð19:3:26Þ

where Tr is a constant and the same notation are used as in Sect. 19.3.1, where
r ¼ h when R ¼ H and r ¼ l when R ¼ L.

The only difference between these solutions and those of Eq. (19.3.16) consists
in the presence of AR, given by:

AR ¼ 1� l R ¼ H
1; R ¼ L



ð19:3:27Þ

One can see that ch is a positive constant and cl is a negative constant. From
w1 h [ l one finds that l\1 and, finally, it is easily shown that:

H ¼ q̂0Ar
TR � Trð Þ2

TR
ð19:3:28Þ

which can be compared with Eq. (19.3.17).
Because both branches appear in the optimum cycle, the constancy of H and w2

leads to

TH ¼ 1
2

TH
1� l

� �1=2

TH 1� lð Þ½ �1=2 þ ffiffiffiffiffi
TL

pn o

T1 ¼ 1
2

ffiffiffiffiffi
TL

p
TH 1� lð Þ½ �1=2 þ ffiffiffiffiffi

TL
pn o ð19:3:29Þ

Equation (19.3.29) reduces to Eq. (19.3.19) when l ¼ 0.
Notice, as in the previous subsection, that there are eight possibilities, from

which one can choose the sub-trajectories of the optimum cycle.
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19.3.2.3 Switchings

Switchings are presented in Table 19.2. They differ from the switchings of
Table 19.1.

For example, the selection of R in a switching from 1þ to 2þ
R was determined in

Sect. 19.3.1 by the fact that w1 either increases or decreases to zero. In the case
studied in this subsection, a switching from 1þ to 2þ

H requires that w1 grows
toward l, while a switching from 1þ to 2þ

L requires that w1 might decrease toward
zero.

In Sect. 19.3.1 it was allowed a switching between 2þ
H and 2þ

L , under the
condition that Dc ¼ 0 and w1 ¼ 0 at switching time. Here such switching is not
allowed when l[ 0, because w1 has to vary continuously. If, however, l� 0, then
a switching is allowed.

19.3.2.4 Optimal Controls and Trajectories

Figures 19.4, 19.5 and 19.6 shows the optimal solution. As before, one can start
with branch 3H for 0� t� t1. The cycle differs from that of Sect. 19.3.1, since two
adiabatic branches exist. The first occurs between branches 2þ

H and 2þ
H , while the

second occurs between branches 2�L and 2�H .
The shape of the optimal solution is similar to the form of the solution of

Sect. 19.3.1. If x of Eq. (19.3.20) is replaced by

y ¼ 1
1� l

TL
TH

� �1=2

ð19:3:30Þ

then, beginning with branch 3H, from Eq. (19.3.26) one finds:
1. For 0� t� t1.

T ¼ 1
2
TH 1þ yð Þ bðtÞ ¼ cht TR ¼ TH c ¼ ch ¼ q̂0

1� y
1þ y

w1 ¼ 1� 1
2

1� lð Þ 1þ yð Þ w2 ¼ � 1
4
TH 1þ yð Þ2 1� lð Þ

Table 19.2 Switchings Case 1 2 3

1 a b or c a

2 b or c d d

3 a d a

a—forbidden switchings; b—admissible switchings (Dc ¼ 0 and
w1 ¼ 0); c—admissible switchings (Dc = 0 and w1 = l); d—
admissible switchings (DTR = 0, (1 − w1)T + w2 = 0)
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Note that the adjoint variables (or covariables) 1� w1 and w2 are multiplied by
1� l, besides the fact that x is replaced by y. Also, it is observed that when l
becomes zero, one obtains again the result of Sect. 19.3.1.

For t1\t� t2 and t5 � t� t6 the solution can be obtained from the one presented
in Sect. 19.3.1, replacing x by y and 1� w1 by 1� lð Þ 1� w1ð Þ. Similarly, for
t20\t� t3, t3\t� t4 and t4\t� t50 the solution in this subsection follows from that
obtained in Sect. 19.3.1, replacing x by y, but without further multiplication of
1� w1 by 1� l. The emergence of the time moments labeled “prime” is due to the

Fig. 19.4 State variables for
maximum efficiency

Fig. 19.5 Optimal controls
for maximum efficiency
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existence of the two adiabatic branches for t2\t� t20 and t5\t� t50 . The expres-
sions given in Sect. 19.3.1 for T2 and T5 become here T 0

2 and T
0
5, respectively, when

x is replaced with y.
For the adiabatic branches the following relationships exist.
2. For t2\t� t20 :

T tð Þ ¼ T2e
�cM t�t2ð Þ b tð Þ ¼ cM t � t1ð Þþ cht1

q̂0 ¼ 0 c ¼ cM w1 tð Þ ¼ 1� ecMðt�t2Þ T2 ¼ T 0
2

1� l

3. For t50\t� t5:

T tð Þ ¼ T 0
5e

cm t�t50ð Þb tð Þ ¼ �cm t � t4ð Þþ c1 t4 � t5ð Þþ cM t5 � t1ð Þþ cht1

q̂0 ¼ 0 c ¼ �cm w1 tð Þ ¼ 1� e�cm t�t50ð Þ

The duration of all branches, except the isotherms, is again determined by the
switching conditions. For example, t20 is determined by the relation w1 t20ð Þ ¼ 0, that
leads to

t20 � t2 ¼ � 1
cM

ln 1� lð Þ

Fig. 19.6 Covariables for
maximum efficiency
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and t5 is determined from w1 t5ð Þ ¼ l, resulting in

t5 � t50 ¼ � 1
cm

ln 1� lð Þ

For these two time moments to be finite and positive, one must have 1[ l[ 0.
The other time moments may be obtained from those presented in Sect. 19.3.1 by
simply replacing x by y, t2 by t20 and t5 by t50 , in the right places. Expressions for t1
and t4 � t5 depending on s, t3 � t1 and t6 � t4, are similar to the corresponding
expressions in Sect. 19.3.1.

The expressions for Q1 may be obtained by using the results presented in
Sect. 19.3.1 by simply replacing TL by TL= 1� lð Þ and using the expressions for
the time moments, with x replaced by y. The expression of W is more complicated

W ¼ CV q̂0
1
2

ffiffiffiffiffiffi
TH

p �
ffiffiffiffiffi
TL

p
1� l

� �1=2
" # ffiffiffiffiffiffi

TH
p

t1 � TL 1� lð Þ½ �1=2 t4 � t3ð Þ
n o(

þ cM
aþ

TH t2 � t1ð Þþ TL t3 � t20ð Þ½ � þ cm
a�

TL t50 � t4ð Þþ TH t6 � t5ð Þ½ � þ 1
aþ

þ 1
a�

� �
1
2
ðTH � TLÞ

þ l
1� l

1
aþ

þ 1
a�

� �
1
4

TH þ TL
1� l

þ 2l
THTL
1� l

� �1=2
" #

þ 1
4

1
aþ

em � 1
a�

em

� � ffiffiffiffiffiffi
TH

p � TL
1� l

� �1=2
" #2

8<
:

9=
;
9=
;

To finish the calculations, it is necessary to find l, depending on Q1. This can
only be done numerically. At the limit l ¼ 0, the optimal controls and trajectory are
reduced to the results shown in Sect. 19.3.1. For l\0, adiabatic branches do not
appear. This case is not discussed, however.

19.3.3 Conclusion

In this section, it has been showed in detail the implementation of the Pontryagin
theory to find the optimal controls and optimal trajectory for the operation of an
endoreversible heat engine (Rubin 1979). For this category of engines it has been
possible to obtain analytical solutions. In the following sections the optimal control
theory is applied to other models of thermal engines, for which a fully analytical
solution is not possible.
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Chapter 20
Diesel Engines

In this chapter, an engine Diesel is considered. However, the degree of idealization
is less high than in traditional approaches, since the forces of friction, the heat losses
and the fuel burning at finite speed are taken into consideration. The paths of piston
movement that lead to maximum power supply are determined. Also, the upper
limits imposed to piston acceleration are considered, and their influence on the
optimal trajectory and engine performance are studied. This allows to include the
cases in which the piston mass is finite. The chapter follows the work by Hoffmann
et al. (1985).

20.1 Engine Model

The model is a simplified description of a Diesel engine, or, what is the same, a
description of a standard compression ignition cycle with air as working fluid.
Mechanical power dissipation mechanisms are thought to be dependent on time.
The movement of the piston corresponds to a four-stroke cycle, i.e. consisting of
intake, compression, expansion and exhaust. The cycle duration, the amount of fuel
consumed per cycle, the air-fuel mixture composition and the compression ratio are
given input data. To maximize the output power, the time variation of the piston
speed is optimized.

In this subsection the following issues are presented: the model of the fuel
combustion, the main terms describing the losses and the conventional piston
movement in actual Diesel engines.

20.1.1 Fuel Combustion at Finite Speed

In Diesel engines the fuel is injected into the cylinder at the end of the compression
process. After injection, a certain time interval must pass before the temperature and
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pressure have a significant increase, because the fuel evaporation and combustion
take place at finite speed. Part of fuel burns fast at the beginning of the expansion
process. The remaining fuel burns relatively slowly, to the extent that it evaporates
and diffuses into regions rich in oxygen in the combustion chamber, where the
combustion can be maintained. In moderate and heavy loaded engines, the com-
bustion continues most of the expansion process.

The present model assumes that the injection is designed so that the time interval
of temperature increase starts at minimum volume. The burning rate is approxi-
mated by a function of time describing the advancement degree of the reaction,
Rn tð Þ:

Rn tð Þ ¼ Fþ 1� Fð Þ 1� exp � t
tb

� �� �
ð20:1:1Þ

Here F is the explosive fraction (i.e. the fraction of fuel consumed during the
“instantaneous” combustion) and tb is the burning time (also called relaxation
time), in which most of the combustion takes place. The thermal function, h tð Þ, is
given by:

h tð Þ ¼ Qc
d
dt

Rn tð Þ½ � ¼ Qc _Rn tð Þ ð20:1:2Þ

where Qc is the combustion heat per mole of mixture fuel—air. It is assumed that
Qc does not depend on temperature. The dot above a quantity denotes, as usual, the
time derivative of that quantity.

It is assumed that the number of moles N and the thermal capacity C depend on
the degree of advancement of the reaction in the combustion chamber:

N ¼ N tð Þ ¼ Ni þ Nf � Ni
� �

Rn tð Þ C ¼ C tð Þ ¼ Ci þ Cf � Ci
� �

Rn tð Þ ð20:1:3a; bÞ

Here the subscript “i” means Rn ¼ 0 and “f” means Rn ¼ 1. It is also assumed that
the thermal capacity of both reactants and reaction products does not depend on
temperature.

20.1.2 Modeling of Losses

The main losses traditionally considered for Diesel engine cycles are: (1) friction
losses, (2) pressure losses, (3) thermal losses, (4) losses at fuel injection, (5) in-
complete combustion and (6) exhaust pressure losses. These losses are included in a
simplified functional form in the model presented below.
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20.1.2.1 Friction Losses

Friction forces are assumed to be proportional to the speed of the piston, v. The
work of the friction forces, Wf , during the time t, is:

Wf ¼
Z t

0

av2dt0 ð20:1:4Þ

This expression corresponds to the movement of the piston in a cylinder well
lubricated. The proportionality factor a is usually about twice as high during
expansion, compared with its value during the other three processes. During each of
the four processes it is assumed that a has a constant value.

The heat generated by friction is removed by the cooling system of the engine.
Energy recovery is not considered.

20.1.2.2 Pressure Drops

Fresh air is provided as a result of the intake valve opening at the beginning of the
admission time. The return of the piston creates a vacuum in the chamber, which
causes air to be “sucked”. Viscous flow through the valve generates a force
dependent on speed, opposed to piston movement. Here, this force is equivalent to a
friction force, assumed to be two times higher than the friction force of the previous
subsection. During admission, the combined effect of friction and viscosity forces is
represented by fixing the friction coefficient in Eq. (20.1.4) at value 3a.

During the exhaust process, pressure losses do not occur.

20.1.2.3 Thermal Losses

The assumption adopted here is that the thermal losses are of Newton type, i.e. they
are proportional to the inner area of the cylinder and the difference between cooling
agent temperature and the temperature of the cylinder walls. If x denotes the piston
position, the flux of heat losses is:

_Q ¼ kpb
b
2
þ x

� �
Tw � Tð Þ ð20:1:5Þ

where k is the heat transfer coefficient of the cylinder, b is the inner diameter of the
cylinder and Tw is the cylinder wall temperature. All these parameters are assumed
to be independent of time. The mean of the values of the difference Tw � T is
significantly large only during expansion. During the other three processes, it is
approximately zero and, therefore, during those processes the heat losses are
neglected.
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20.1.2.4 Losses at Fuel Injection

The work consumed by injecting fuel inside the cylinder is neglected. Also, the
changes in the values of the pressure and temperature immediately following the
injection of fuel are neglected.

20.1.2.5 Incomplete Combustion

If the exhaust valve opens before the mixture in the combustion chamber reaches
chemical equilibrium, some loss of power occurs, even in well-designed engines,
operating at normal loads. These losses have already been taken into account by
including the exponential function in the term describing the chemical reaction of
combustion (Eq. (20.1.1)).

20.1.2.6 Exhaust Pressure Losses

To avoid the loss of pressure during the exhaust process, the exhaust valve usually
opens before the expansion process is finished. Then, the relatively high pressure
removes the cylinder gases. The power losses that accompany this procedure often
used in practice are estimated at about 2%. These losses are not considered here.

20.1.3 Conventional Piston Path

In order to determine further improvements that result by optimizing the piston
movement, both the output power and thermal efficiency are first calculated for the
standard configuration of the engine. The movement of the piston is usually
described by:

_x ¼ 2pDx
sin h
s

1þ r
l
cos h 1� r

l

� 	2
sin2 h

� �1=2( )
ð20:1:6Þ

Here x is the position of the piston, Dx ¼ 2r and h ¼ 4pt=s (Fig. 20.1).
The assumption is that x ¼ x0 at t ¼ 0. The total duration of the four-stroke cycle

is s. A pure sine wave movement of the piston is obtained in the limit lim
l!1

r=lð Þ ¼ 0:

Here the value r=l ¼ 0:25 is adopted.
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20.2 Optimization Procedure

The goal of the optimization procedure is to maximize engine output power. The
piston speed (which is dependent on time) is used as control function. At least
theoretically, a variable speed of the piston can be achieved using a cam whose
profile is designed in a convenient way. Since both the duration of the complete
cycle and the fuel flow are fixed, by maximizing the output power one also max-
imizes both the thermal efficiency and the engine work generated per cycle.

Optimization is done in six steps. In steps (1)–(3), it is determined the speed of
the piston that minimizes the frictional losses during the processes of compression,
admission and exhaust. In step (4), a fixed time interval is divided between the three
previously mentioned steps, in such a way that the frictional losses are minimized.
It should be noted that during these three processes, when work is not generated,
minimizing the friction losses is equivalent to maximizing the generated work. In
step (5), the velocity of the piston that maximizes the work produced during the
expansion process is determined. In step (6), the fixed duration of a cycle is divided
between the length of time when useful power is produced (i.e., during expansion)
and the total length of the other three processes, when power is not generated.

The optimal control theory is used in the steps (1)–(3) and (5), to finding the
optimal trajectory of the piston in the space of the control and state variables. The
relationships that are used during the treatment of the processes when power is not
generated are simple, leading to analytical solutions for the steps (1)–(3).
Determining the optimal path in step (5) is, however, less transparent.

The optimal trajectory should take into account some natural limitations, such as
the fact that the piston acceleration must not exceed a certain value. It is therefore
convenient to separate the approach for the cases in which the piston acceleration is
unbounded and bounded, respectively (Tolle 1975).

Fig. 20.1 Standard
configuration of cylinder and
piston
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20.2.1 Steps (1)–(3). Processes When Power Is
not Generated

The aim is to minimize the power losses through friction during compression,
admission and exhaust. For brevity, i denotes any of these three processes, the
theory presented being general. From Eq. (20.1.4), the power loss through friction
during the process i, whose duration is ti, is:

Wfi ¼
Zti
0

aiv
2
i dt ð20:2:1Þ

20.2.1.1 Unbounded Acceleration

If the acceleration is not bounded, the only constraint on the piston movement is:

_xi ¼ vi ð20:2:2Þ

For this simple system, the Hamiltonian is:

H ¼ �aiv2i þ kvi ð20:2:3Þ

where k is the conjugate variable (or covariable) of the state variable xi. It obeys the
differential equation:

_k ¼ � @H
@xi

¼ 0 ð20:2:4Þ

The maximum principle of Pontryagin requires that H is maximized in relation to
the control variable vi (Pontryagin et al. 1962; see Chap. 5 in this book). Solving the
necessary extreme condition, represented by the equation @H=@vi ¼ 0, one obtains:

vi ¼ k
2ai

¼ const ð20:2:5Þ

This is the path of the piston (in the space of the control variable) that maximizes
the Hamiltonian, provided the extreme of H is not found on the border of the
definition domain.

The boundary conditions for the piston movement are:

xi 0ð Þ ¼ xi0 xi tið Þ ¼ xif ð20:2:6a; bÞ

Considering the Eqs. (20.2.6a, b), Eq. (20.2.5) can be written as:
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vi ¼ xif�xi0
ti

¼ Dxi
ti

ð20:2:7Þ

which is indeed an interior extreme for H.

20.2.1.2 Bounded Acceleration

If the piston acceleration is bounded, a new constraint is added, which is the
following differential equation:

_vi ¼ �ai ð20:2:8Þ

The acceleration ai must satisfy the inequality �amax � ai � amax. The initial and
final values of the piston speed are chosen to be zero.

From Eqs. (20.2.1), (20.2.2) and (20.2.8), the following form of the Hamiltonian
is obtained:

H ¼ �aiv
2
i þ k1vi þ k2ai ð20:2:9Þ

where k2 is the adjoint variable (conjugated variable) of ai.
Note that the Hamiltonian is linear in the new control function (i.e. in ai). It was

already mentioned, when the basics of the optimal control theory were presented
(see Chap. 5 in this book), that in this case the Hamiltonian is maximized by an
optimal control of the type “all or nothing” (or “bang–bang”), which will take the
form:

ai ¼
�amax if k2\0
amax if k2 [ 0

non-determinate if k2 ¼ 0

8<
: ð20:2:10Þ

When k2 ¼ 0, the equations that give the optimal path are identical to those
achieved if the acceleration was not subject to restrictions.

The optimal trajectory in the case of a bounded acceleration is composed of three
branches: (a) from the initial zero speed, the piston is accelerated with the maxi-
mum acceleration amax; (b) at time moment t0, the movement commute to the
branch characterized by a constant speed, described by the Eq. (20.2.5). The piston
moves on this branch with the speed amaxt0, until the time moment ti � t0; (c) then,
the piston movement carries on with the acceleration ai ¼ �amax. The piston moves
on this branch until its speed is zero.

Since the piston travels a distance Dxi in the time interval ti, the time duration t0

spent on each branch with bounded acceleration is found by solving the equation:
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Dxi ¼ amaxt
02 þ amax ti � 2t0ð Þ ð20:2:11Þ

The solution is:

t0 ¼ ti 1� yið Þ
2

yi � 1� 4Dxi
amaxt2i

� �1
2

 !
ð20:2:12; 13Þ

20.2.2 Stage (4). Allocation of Time Durations for Processes
When Power Is not Generated

The loss of power due to friction during process i, determined at steps (1)–(3), is:

Wif ¼ 1
12

aia
2
maxt

3
i 1þ 2yið Þ 1� yið Þ2 ð20:2:14Þ

Denote by tNP, the total duration of the three processes during which no power is
produced. The duration tNP is distributed among the three processes, so that the total
loss of power due to friction is a minimum.

The coefficients of friction during the three processes are: for compression: a, for
admission: 3a, and for exhaust: a. Since the power loss through friction during
compression and exhaust are equal, the time t1 allowed for each of these processes
is the same. Denote by t2 the duration of time of the admission. The power losses by
friction during the three processes are:

Wf ¼
X
i

Wif ¼ 1
6
aa2max t31 1� y1ð Þ2 1þ y1ð Þþ 3

2
t32 1� y2ð Þ2 1þ 2y2ð Þ

� �

ð20:2:15Þ

Now, the following constraint is taken into account:

tNP ¼ 2t1 þ t2 ð20:2:aÞ

Minimizing Wf with this constraint is equivalent, using the method of Lagrange
multipliers, to the minimization of:

L � Wf þ k 2t1 þ t2ð Þ ð20:2:bÞ

which leads to the relationship:
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t21 1� y1ð Þ2¼ 3t22 1� y2ð Þ2 ð20:2:16Þ

It is found that there is a system of two equations (Eqs. (20.2.a) and (20.2.16)) with
two unknowns, t1 and t2, that can be solved when the value of tNP is known.

20.2.3 (5) Expansion

The expansion is the only active process of the cycle, since the engine delivers work
during the expansion only. It is considered that the gas inside the cylinder satisfies
the equation of state of perfect gas:

pV ¼ NRT ð20:2:cÞ

where p and V are the pressure and volume of gas, N is the number of moles of gas
and R is the universal constant of ideal gases. The volume of gas can be expressed
based on the coordinate x of the piston and the cross-sectional area of the cylinder,
Sb:

V ¼ xSb ð20:2:dÞ

From Eqs. (20.2.c) and (20.2.d) one finds:

p ¼ NRT
Sbx

ð20:2:eÞ

The elemental work produced by the gas during the expansion is given by:

dWprod ¼ Fdestdx ¼ pSbdx ð20:2:fÞ

From Eqs. (20.2.e) and (20.2.f) one finds:

dWprod ¼ NRT
x

dx ð20:2:gÞ

The power produced, Pprod , is given, according with the usual definition, by:

Pprod ¼ dWprod

dt
¼ NRT

x
dx
dt

¼ NRTv
x

ð20:2:hÞ

The work produced in a time interval t is obtained by the integration of Eq. (20.2.h):
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W ¼
Z t

0

dWprod

dt
dt ¼

Z t

0

NRTv
x

dt ð20:2:iÞ

If one takes into account the existence of power losses through friction, which
are proportional to the square of the piston speed, the actual power produced during
the expansion process, of duration tP, is:

WP ¼
ZtP
0

NRTv
x

� av2
� �

dt ð20:2:17Þ

20.2.3.1 Unbound Acceleration

If the acceleration is not constrained, the only control variable is the piston speed.
The state variables are the gas temperature, T , and the piston position, x. The
constraints faced by these variables are the following differential equations:

_T ¼ �
NRTv
x þ kpb b

2 þ x
� �

T � Twð Þ � h tð Þ
NC

_x ¼ v ð20:2:18; 19Þ

Equation (20.2.19) is the usual definition of the speed of a body and Eq. (20.2.18)
comes from the following energy balance for the gas inside the cylinder:

NC _T ¼ �Pprod � _Qþ hðtÞ ð20:2:jÞ

where Pprod is the produced mechanical power and _Q is the flux of heat losses
through the cylinder walls, given by Eq. (20.1.5). In Eqs. (20.2.18) and (20.2.j) the
heat released by fuel combustion, h tð Þ, is dependent on the combustion heat Qc and
the duration of combustion, tb. The relationship between these three quantities is:

hðtÞ ¼ Qcð1� FÞ
tb

exp � t
tb

� �
ð20:2:20Þ

as shown in Eq. (20.1.2).
The number of moles N and the thermal capacity C are functions of the reaction

coordinate Rn tð Þ, as shown in Eqs. (20.1.3a) and (20.1.3b). The Hamiltonian of the
problem is:

H ¼ NRTv
x

� av2 � k1
NRTv
x þ kpb b

2 þ x
� �

T � Twð Þ � h tð Þ
NC

þ k2v ð20:2:21Þ
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The adjoint variables k1 and k2 are solutions of the equations:

_k1 ¼ � @H
@T

¼ NRv
x

k1
NC

� 1
� �

þ k1
NC

kpb
b
2
þ x

� �
_k2 ¼ � @H

@x
¼ NRTv

x2
1� k1

NC

� �
þ k1

NC
kpb T � Twð Þ

ð20:2:22; 23Þ

For the Hamiltonian to be a maximum, the first derivative with respect to the
control variable should cancel: @H=@v ¼ 0. Solving this equation, one finds that the
optimal piston speed is:

v ¼ 1
2a

k2 þ NRT
x

1� k1
NC

� �� �
ð20:2:24Þ

The boundary conditions of the system of Eqs. (20.2.18), (20.2.19), (20.2.22)
and (20.2.23) are:

T 0ð Þ ¼ T0 x 0ð Þ ¼ x0 x tPð Þ ¼ xf k1 tPð Þ ¼ 0 ð20:2:25a–dÞ

Equation (20.2.25d) comes from the fact that the temperature at the end of the
expansion process is allowed to have an arbitrary value.

The four coupled ordinary differential equations are solved numerically, by
using the following procedure. First, initial values are assumed for k1 t ¼ 0ð Þ and
k2 t ¼ 0ð Þ. Next, the system is solved, to obtain values for x tPð Þ and k1 tPð Þ. These
values are compared with desired values, given the boundary conditions
Eqs. (20.2.25c) and (20.2.25d). Next, the initial values k1 0ð Þ and k2 0ð Þ are chan-
ged, in such a way that the squared deviation between the calculated and desired
values is minimized.

The constraint that the minimum volume corresponds to a given position, x0,
leads in the case of the variable x, to a branch of bounded solution, x� x0. Without
imposing this restriction, the path may lead to values of x lower than x0. Taking into
consideration this restriction on the position of the piston, anticipates a trajectory
with two branches. The control along of this trajectory is:

v tð Þ ¼ 0 if 0� t� td
1
2a k2 þ NRT

x 1� k1
NC

� �
 �
if td � t� tP

�
ð20:2:26Þ

Computation of the time duration td (the time delay) is as follows. For those
iterations when the independent variable t changes, the speed v tð Þ is made zero, if
the condition x tð Þ� x0 is not fulfilled. This procedure determines the time interval
from t ¼ 0 to t ¼ td .
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20.2.3.2 Bounded Acceleration

When constraints for the acceleration values are taken into account, the problem is
formulated in a different way. The aim is to maximize the objective function given
by Eq. (20.2.17) but the control is the acceleration a. The constraints are the dif-
ferential Eqs. (20.2.18) and (20.2.19) for the state variables T and x. In addition, the
following constraint, introducing the explicit dependence on acceleration, is
considered:

_v ¼ a ð20:2:27Þ

Acceleration is subject to the inequalities:

�amax � ai � amax ð20:2:28Þ

The Hamiltonian has the form:

H ¼ NRTv
x

� av2 � k1
NRTv
x þ kpb b

2 þ x
� �

T � Twð Þ � h tð Þ
NC

þ k2vþ k3a ð20:2:29Þ

The conjugated canonical equations for T and x, respectively, are given by
Eqs. (20.2.22) and (20.2.23). The adjoint variable for the Eq. (20.2.27) is:

_k3 ¼ � @H
@v

¼ 2av� k2 � NRT
x

1� k1
NC

� �
ð20:2:30; 31Þ

The boundary conditions for the system of coupled differential equations are
given by Eq. (20.2.25) and by the requirement that the piston speed is zero at the
start and end of the trajectory, respectively.

The Hamiltonian is linear in control variable a. Therefore, maximizing of
H leads to a solution of the type “all or nothing” for the control variable:

a tð Þ ¼ amax if k3 [ 0
�amax if k3\0

�
ð20:2:32Þ

When k3 ¼ 0, the Hamiltonian reduces to Eq. (20.2.21) and the value of a does
not appear explicitly in the process of maximizing H. If k3 ¼ 0 in the range td; t0½ �,
which belongs to the range 0� td � t0\tP, then, obviously:

_k3 ¼ 0 ð20:2:33Þ

on this interval. The piston speed is obtained as a function of the remaining state
and adjunct variables by solving Eqs. (20.2.31) and (20.2.33). This function is
given by an expression identical to Eq. (20.2.24).
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The optimal trajectory with bounded acceleration has three branches: (a) from
the initial time t ¼ 0 to the end of the interval of duration t ¼ td , the piston remains
in its original position x0, with zero speed; (b) from t ¼ td , the piston moves at the
speed given by Eq. (20.2.24), corresponding to an unbounded acceleration; (c) at
t ¼ t0, the trajectory commutes to the acceleration value a ¼ �amax. The piston
moves on this final branch until the time t ¼ tP, when its speed is again zero.

20.2.4 (6) Maximizing the Net Mechanical Work

The net mechanical work, given by:

W sð Þ ¼ WP tPð Þ �Wf tNPð Þ ð20:2:34Þ

is maximized for the given duration s of the cycle. The total duration s is a design
parameter (that is fixed) but it can be decomposed into two components, tN and tNP,
of arbitrary duration (obeying, of course, the constraint tN þ tNP ¼ s).

Maximizing Eq. (20.2.34) may be performed only by numerical methods,
changing monotonously the value of tP and inter-comparing the values of W sð Þ
resulting from the calculation.

20.3 Optimal Trajectories and Controls

One of the problems faced by the designer who wants to implement in practice the
results of the optimization process described above is that of finding a procedure to
control in a desired manner the time variation of piston speed. One possible solution
is the cam-tappet mechanism of Fig. 20.2.

The implementation of the optimization procedure requires choosing a set of
values to characterize the thermal engine. Next, such a set of values is proposed and
the results of the optimization of engine operation are presented. During the
analysis, comparisons are made with the performance indices obtained by using the
conventional operation of the heat engine.

20.3.1 Heat Engine Configuration

The optimum speed of the piston, which maximizes the net mechanical work, is
determined for thermal engines characterized by the parameters presented in
Tables 20.1 and 20.2. The reference (standard) engine is denoted by the abbrevi-
ation “Case std” and corresponds to the parameter values in Table 20.1. Variants of
the standard case are given in Table 20.2.
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The results presented below refer to the optimized operation of the engine, in
two cases: when the acceleration is unbounded and when there are limits on the
acceleration values. For the variant I of the engine configuration, the optimization is

Fig. 20.2 Cam-tappet
mechanism used to drive the
piston

Table 20.1 Characteristics
of the standard engine (variant
“std”)

Mechanical parameters

Compression ratio: 16
x0 = 0.5 cm; xf = 8 cm; inner cylinder diameter b = 7.98 cm
Cylinder volume V = 400 cm3; cycle duration s = 33.33 ms

Thermodynamic parameters

Initial temperature, compression process: 329 K
Number of moles of gas, Ni = 0.0144, Nf = 0.0157
Thermal capacity at constant volume Ci = 2.5 R, Cf = 3.35 R
Cylinder wall temperature Tw = 600 K

Loss coefficients

Friction coefficient a = 12.9 kg/s
Heat loss coefficient k = 1305 kg/K/s

Parameters for the thermal function h

Explosion fraction F = 0.5
Burning time tb = 2.5 ms
Caloric heat Qc = 57.5 kJ per mole of air-fuel mixture

Universal perfect gas constant R = 8.3144 J/K/mol
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done only for unbounded acceleration. If an upper bound is imposed to the
acceleration, it is 3 cm/ms2. This limit is accessible to the current technology, being
approximately equal to the maximum acceleration seen in conventional
Diesel-powered cars.

20.3.2 Optimized Engine Operation

An example of the time variation of the optimal speed of the piston is shown in
Fig. 20.3. The curves presented correspond to: (i) optimized piston movement for
bounded acceleration and (ii) the motion of a conventional piston. The parameter
values in this figure correspond to the standard version (Std).

The optimized cycle begins with a branch in which the piston speed is zero. This
seems surprising, as this means that the heat losses increase as a consequence of the
fact that in the time interval td the maximum temperature of the working fluid
increases. Delaying the start of the piston movement increases the friction losses,
because the piston must travel the distance Dx in a time smaller than the duration tP,
that was originally available. However, these losses are compensated by the
increasing of the thermal efficiency: the delayed start of the piston movement makes
the working fluid temperature to increase, which, in turn, is accompanied by an
increase in the system exergy. The duration of the arc trajectories of zero speed, the
fluid temperature at the end of these arcs, the burning durations, and the duration of
each process of the cycle, are shown in Table 20.3. The values corresponding to the
cases with bounded and unbounded acceleration, respectively, differs very little.

The trajectory arcs of null speed are consequences of the fixed compression
ratio. Without adopting this hypothesis, the optimized operation would begin by
movement of the piston at a distance x\x0, making the fluid reaching temperatures
even higher than the values shown in Table 20.3. Thus, the thermal function first
compresses the gas, the heat provided to the gas being even higher than the initial
internal energy (Band et al. 1980).

Table 20.4a, b show different quantities with energy dimension, which charac-
terize the operation of the optimized and conventional engines, respectively.

Table 20.2 Values of the
parameters for different
variants of the standard
engine

Variant Changes with respect to Table 20.1

Std None

I tb = 0.1 ms

II tb = 1 ms

III tb = 5 ms

IV s = 66.66 ms

V K = 2610 kg/K/s

VI a = 25.8 kg/s
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One can see a behavior which is qualitatively similar to the case of the bounded
and unbounded acceleration, respectively. The power losses through friction in the
active and passive processes are denoted WfP and WfNP, respectively. The net loss
through friction, WfP þWfNP, are denoted, briefly, Wf . Heat losses are denoted LQ.
Exergy losses due to the combustion gases exhausted in the environment are
denoted Lex1 and those due to incomplete combustion are denoted Lex2.

The work performed during active process, by gas expansion, which drives the
piston, is denoted WP;expan. The total work supplied to the user during the active
process is WP;expan �WfP and is denoted WP. The work of compression to be
received from the environment during the optimized compression process is

Fig. 20.3 Time dependence
of the piston speed in a
conventional and optimized
engine, respectively
(amax| = 3 cm/ms2) in the Std
version. The conventional
curve shape is approximated
by two line segments

Table 20.3 Durations and temperatures corresponding to several cases (Hoffmann et al. 1985)

Variant amax (cm/ms2) td (ms) T
(td) (K)

Tb (ms) tP (ms) t1 (ms) t2 (ms)

Std 2.55 2742 2.5 9.67 6.33 10.97

Std 3 2.56 2745 2.5 9.66 6.46 10.72

I 0.20 3173 0.1 5.81 7.37 12.77

II 1.49 2967 1.0 7.68 6.87 11.90

II 3 1.50 2951 1.0 7.71 6.98 11.65

III 2.85 2526 5.0 11.33 5.89 10.20

III 3 2.95 2527 5.0 11.28 6.04 9.95

IV 2.62 2750 2.5 11.08 14.89 25.79

IV 3 2.65 2752 2.5 12.00 14.69 25.25

V 1.30 2516 2.5 8.04 6.77 11.73

V 3 1.30 2516 2.5 8.06 6.88 11.48

VI 2.10 2711 2.5 10.07 6.23 10.79

VI 3 2.10 2713 2.5 10.01 6.37 10.56

460 20 Diesel Engines



Table 20.4 Results (in Joule) for conventional and optimized cycles (Hoffmann et al. 1985)

(a)
Variant amax (cm/ms2) WfP WfNP Wf LQ Lex1 Lex2

Std 21.5 42.7 64.2 240.9 332.0 8.6

Std 3 21.8 44.0 65.8 240.7 332.1 8.6

Std Conv 21.5 53.7 75.2 203.1 362.4 14.0

I 29.1 36.7 65.8 155.8 357.2 0.0

I Conv 21.8 54.6 76.4 214.6 319.2 0.0

II 25.1 39.4 64.5 203.5 344.8 1.9

II 3 25.3 40.5 65.8 204.0 344.0 0.2

II Conv 21.8 54.6 76.4 212.9 337.2 0.1

III 18.6 46.0 64.6 256.1 310.9 42.6

III 3 19.0 47.5 66.4 254.7 311.3 42.9

III Conv 21.8 54.6 76.4 179.6 347.2 77.8

IV 18.5 18.2 36.6 268.0 332.1 8.5

IV 3 17.3 18.6 35.8 284.1 298.6 3.4

IV Conv 10.9 27.3 38.2 346.5 245.4 0.5

V 23.0 40.0 63.0 334.2 268.1 15.9

V 3 23.3 41.1 64.3 334.5 267.6 16.4

V Conv 21.8 54.6 76.4 332.2 265.9 14.6

VI 38.3 86.9 125.2 246.7 327.8 7.1

VI 3 39.0 89.4 128.4 245.2 328.5 7.5

VI Conv 43.7 109.2 152.8 203.2 363.8 14.6

(b)
Variant amax (cm/ms2) WPexpan WP Wcom Wciclu Wnet

Std 672.5 651.0 199.6 608.3 408.7

Std 3 672.6 650.8 199.6 606.8 407.1

Std Conv 645.8 624.3 199.6 570.6 370.9

I 775.6 746.5 199.6 709.8 510.2

I Conv 775.4 733.6 199.6 709.8 510.2

II 725.4 733.6 199.6 661.1 461.5

II 3 725.8 700.5 199.6 660.0 460.4

II Conv 707.6 685.7 199.6 631.2 531.5

III 616.0 597.4 199.6 551.4 351.8

III 3 616.0 597.0 199.6 549.6 349.9

III Conv 584.9 563.1 199.6 508.5 308.9

IV 671.1 652.6 199.6 634.5 434.8

IV 3 670.4 653.1 199.6 634.6 435.0

IV Conv 653.4 642.5 199.6 615.2 415.6

V 612.4 589.4 199.6 549.4 349.8

V 3 612.5 589.2 199.6 548.2 348.5

V Conv 604.0 582.1 199.6 527.6 327.9
(continued)
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denoted Wcom. If one assumes that an external source of work (e.g. a flywheel),
provides the work Wcom, then the total work provided during a cycle, Wcycle, is:

Wcycle ¼ WP �WfNP ð20:3:1Þ

This quantity is actually the objective function that was previously optimized. The
engine must provide the work Wcom. Therefore, the net mechanical work provided
by the engine during an optimized cycle is

Wnet ¼ Wciclu �Wcom ð20:3:2Þ

The connection between all these quantities is easier to see if the energy balance
of the engine is made. Then:

Ui þ Qc � Lex2ð ÞþWcom ¼ Uf þWf þ LQ þWciclu ð20:3:3Þ

where Ui and Uf are the initial and final internal energies of gas and Qc is the heat
generated by burning the fuel injected during a single cycle. Equation (20.3.3) can
be written under the form:

CiNiT0 þ Qc � Lex2ð ÞþWcom ¼ CfNf T0 þ Lex1 þ LQ þWciclu þWf ð20:3:30Þ

The indices i and f refer to the beginning and end of active process, respectively,
and T0 is the temperature of the environment.

The comparison of the results obtained in the case of standard and optimized
engines, respectively, starts with the variant I, for which the combustion duration is
very short compared to the duration of the entire cycle. This variant is quite similar
to the Otto cycle (spark ignition engines), where it is assumed that the combustion
is complete and instantaneous. By optimizing the cycle, a large increase in the
engine output power is obtained. Heat losses are 22.7% lower during the optimized
active process than during the standard version. The high speeds required to
decrease the heat losses lead to greater losses due to friction in the optimized cycle,
compared to conventional cycle. However, these high speeds of the piston during
the active process determine the allocation of a larger duration for the passive
processes. Therefore, if an average values is computed, the piston speed during
these passive processes is smaller, so the friction losses fall below those found in
the conventional cycle. Similar results were also obtained by optimization studies of
Otto engine operation (Mozurkewich and Berry 1982).

Table 20.4 (continued)

(b)
Variant amax (cm/ms2) WPexpan WP Wcom Wciclu Wnet

VI 670.2 632.0 199.6 545.0 345.4

VI 3 670.4 631.4 199.6 541.9 342.3

VI Conv 641.3 597.6 199.6 488.4 288.8
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This behavior changes when the burning duration increases. A slow burning
does not cause higher temperatures during the active process. The heat losses
during the first part of the active process do not constitute, in this case, the most
important part of the losses. The relative improvement of the performances,
achieved by reducing the heat loss, enters into competition with the trend of per-
formance decrease, due to increased friction losses. This change in behavior can be
observed by comparing variants II, Std and III.

The variant II, which has a burning time of 1 ms, shows relatively small per-
formance improvements compared to the conventional variant, both in terms of heat
loss losses and friction losses. Heat losses decrease by only 4.4% during the
optimized active process, compared with the same time of the conventional variant;
instead, the friction losses are 15.1% higher in the variant of optimized active
process. The total losses through friction in the optimized cycle of the variant II are
15.6% lower than in the conventional variant.

The Std variant with a burning time of 2.5 ms, is characterized by greater heat
losses along the optimized path than along the conventional path. Heat losses are
18.8% higher in the optimized trajectory compared to the conventional trajectory.
Friction losses for the entire optimized cycle are by 13.6% lower than those cor-
responding to the conventional engine. Frictional losses during active process are
higher in this case in the optimized variant by about 1.3%. This situation occurs due
to the distribution of the fixed duration of the entire cycle between the four strokes
of the cycle. As the burning time increases, a larger fraction of the cycle duration is
allocated to the active process. The heat losses increase and the power losses due to
friction occurring during the active process, as well as Lex1 and Lex2, diminish, by
increasing the duration of the active process. The reduction of Lex1 is a consequence
of the decrease of the temperature of the working fluid at the end of active process,
which involves a higher degree of internal energy conversion into work.

The results characterizing the variants I, II, and III Std are summarized as
follows: by increasing the burn duration, the main mechanism of power losses is
changing from the heat losses through the cylinder walls towards the energy losses
due to the evacuated hot gases of combustion. The relative increase of the engine
output power by increasing the burn duration is due to the extraction of a larger
quantity of internal energy from the exhaust gas.

Doubling the cycle duration, as in variant IV, reduces the ratio between the
combustion duration and the cycle duration. Given the above, it is concluded that
the heat losses are those that limit the amount of mechanical work provided along the
optimized path. Heat losses are 22.7% lower on the optimized path, compared to the
conventional path. Frictional losses during the active process are 69.7% higher along
the optimal path. The time allocated to the optimized active process, although
growing, is not the double of the duration of the optimized active process corre-
sponding to the Std variant.

The Variant V shows the relative importance of the heat losses. Over the optimal
path such losses are only 0.6% higher than over the conventional trajectory.
Frictional losses during the active process are 6.9% higher on the optimal path than
on the conventional path. This situation contrasts with the Std variant, where the
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same losses are 18.6 and 1.3%, respectively, higher in the optimized active process
compared to conventional active process. The terms Lex1 and Lex2 show the growing
importance of the heat loss in variant V. These terms have higher values on the
optimized path in relation to the conventional path. The situation is reversed in the
Std variant.

Variant VI refers to an engine characterized by greater friction than in Std
variant. When the friction coefficient doubles, the duration of the active process on
the optimized trajectory increases, in order to reduce the average speed of the
piston. Frictional losses during passive processes and during the active process,
respectively, reduce by 20.4 and 12.6%, compared to the conventional piston path.
These improvements exceed those of the Std variant, where the optimized trajec-
tories lead to a relative reduction in the friction losses by 18.1% during passive
processes and −1.3% during the active process. Heat losses are 21.4% higher in
optimized active process in respect to the active process associated with a con-
ventional movement of the piston.

For a more suggestive presentation of the improvement of engine performance
due to the changes in the conventional piston trajectory, two new indicators are
introduced. They are the net efficiency g1 and the thermal efficiency g2, defined as
follows:

Table 20.5 Efficiency values
of different conventional and
optimized cycles (Hoffmann
et al. 1985)

Variant amax (cm/ms2) η1 η2
Std 0.493 0.571

Std 3 0.492 0.571

Std Conv 0.448 0.539

I 0.616 0.696

I Conv 0.579 0.671

II 0.557 0.635

II 3 0.556 0.635

II Conv 0.521 0.613

III 0.425 0.503

III 3 0.423 0.503

III Conv 0.373 0.465

IV 0.525 0.569

IV 3 0.525 0.569

IV Conv 0.502 0.548

V 0.422 0.499

V 3 0.421 0.499

V Conv 0.396 0.488

VI 0.417 0.568

VI 3 0.413 0.569

VI Conv 0.349 0.533
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g1 ¼
Wnet

Qc
g2 ¼

WP;exp an �Wcom

Qc
ð20:3:4Þ

The results are shown in Tables 20.5 and 20.6.
Table 20.5 shows the values of the two efficiencies, for all variants discussed

above.
The net efficiency is a measure of the useful work provided by the combustion

engine and the heat efficiency is a measure of the work done by the working fluid in
the expansion. Table 20.6 centralizes the relative improvements in performance due
to the optimization of piston displacement, with the objective to maximize the
mechanical work provided on a cycle.
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Table 20.6 Relative performance improvement in case of optimized cycles (Hoffmann et al.
1985)

Variant amax (cm/ms2) % DWcycle % DWnet % Dη1 % Dη2
Std 6.5 10.0 10.0 6.0

Std 3 6.3 9.8 9.8 6.0

I 4.5 6.4 6.4 3.6

II 4.7 6.9 6.9 3.5

II 3 4.6 6.7 6.7 3.6

III 8.4 13.9 13.9 8.1

III 3 8.1 13.3 13.3 8.1

IV 3.1 4.6 4.6 3.9

IV 3 3.1 4.7 4.7 3.7

V 4.1 6.7 6.7 2.1

V 3 3.9 6.3 6.3 2.1

VI 11.6 19.6 19.6 6.6

VI 3 11.0 18.5 18.5 6.6
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Chapter 21
Optimization of Daniel Cam Engines

21.1 Introduction

Compression ignition engines (CIE) are used now in rail, road and sea trans-
portation and for a large number of stationary applications. Optimal motion of CIE
pistons has been studied in many papers (Chen et al. 2010, 2011; Xia et al. 2009,
2012; Ma et al. 2011). Different laws for the heat transfer between the working fluid
and the cylinder wall have been considered; most authors adopted the Newton’s law
(Xia et al. 2009) but Dulong-Petit law (Ma et al. 2011), radiative and
convective-radiative laws have been also investigated (Chen et al. 2011; Song et al.
2007). The optimization has been performed by using several objective functions
such as maximum efficiency (Chen et al. 2010), maximum work output (Ma et al.
2011) and entropy generation minimization (Ge et al. 2011). Both unconstrained
and constrained optimization has been treated (Burzler et al. 2000). The constraints
include: fixed total cycle time and fuel consumed per cycle (Song et al. 2007), fixed
compression ratio and fixed power output (Xia et al. 2012), among others.
Generally, the results show that that optimizing the piston motion could improve
engine efficiency by nearly 10%. Further details may be found in Li et al. (2007)
and references therein.

In most reciprocating engines the piston is moved by means of a rod-crank
system. Other ways of piston operation are also possible, such as in the free piston
engines (Karabulut 2011; Jia et al. 2015) or in the unconventional engine described
by Doric and Klinar (2012). Previous optimization studies (Ge et al. 2011; Chen
et al. 2010, 2011; Xia et al. 2009; Ma et al. 2011) found that the classical rod-crank
systems cannot provide optimal piston motion. Cams are more appropriate for this
purpose (Burzler et al. 2000; Ge et al. 2011). The Daniel cam engine has the
simplest design and its optimal piston motion has been studied by Badescu (2015).
Results are presented in this chapter.

© Springer International Publishing AG 2017
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21.2 Model

21.2.1 Daniel Cam Engine Representation

Cam engines do not have conventional connecting rods and cranks, but instead
rollers bearing upon cams to convert the piston thrust into rotation. Well designed
cams may accommodate in practice a much larger class of velocity and acceleration
profiles for piston motion than rod-crank systems can do. In cam engines,
the pistons deliver their force to a cam that is then caused to rotate. The output
work of the engine is driven by this cam. Advantages of the cam engines are lower
internal friction and more power per unit mass among others (Cam engine 2016;
NACA Memorandum 1928). Hydraulic cam motors, particularly the swash-plate
form, are widely and successfully used but internal combustion cam engines such as
Daniel engine (US Patent 1906), Michel engine (German Engineers 1925),
Fairchild-Caminez engine (Taylor 1985) or Marchetti engine (US Patent 1927) are
almost unknown (further comments may be found in Douglas 2016).

The Daniel engine is a water-cooled four-stroke, the cam system allowing it to
complete one cycle for each revolution of the output shaft. The patent (US Patent
1906) shows a four-cylinder engine with two groups of cylinders and cams, and
air-spring cylinders to take up the backlash in the cam system (Douglas 2016).

An ideal representation of a Daniel cam engine is shown in Fig. 21.1. Another
representation can be found in Fig. 1 of Burzler et al. (2000) where a cam with an
engraved curve is caused to rotate due to the alternate vertical motion of the piston.
The top-down movement of the piston is due to the burning gases expansion during
the fuel combustion. It forces the cam to rotate. The down-top piston movement is
ensured by the lever in contact with the cam, which is now rotating by inertial effect.

Fig. 21.1 Ideal
representation of a Daniel
cam engine. A piston with
alternate vertical motion
causes the rotation of the cam

468 21 Optimization of Daniel Cam Engines



21.2.2 Mechanical and Thermal Model

21.2.2.1 Movement and Energy Laws. Work Production

One single cylinder of bore d and the associated piston are considered here. The
distance between the head of the piston and the fire deck is denoted x. Then, the
active volume V of the cylinder and the cylinder’s wall surface area A are given by,
respectively:

V ¼ pd2

4
x

A ¼ pd
d
2
þ x

� � ð21:2:1; 2Þ

The volume changes cyclically, depending on piston movement, which is
described by its position, velocity and acceleration, x; v; a, respectively. The piston
movement laws are:

_x ¼ v

€x ¼ _v ¼ a
ð21:2:3; 4Þ

The heat released in the cylinders of the thermal engine during fuel combustion
is partially used to increase the internal energy of the charge. The remaining part is
lost to the cooling fluid through the cylinder head and walls. The internal energy of
the charge is partially transformed into external work.

The rate of change in the internal energy U of the charge is given by:

_U ¼ @ðTNCÞ
@t

¼ h� NRTv
x

� qlost ð21:2:5Þ

It is related to the charge temperature T, number of moles N and heat capacity C,
heating function h, mechanical work NRTx=v and heat losses flux qlost. Details are
given in Appendix 21A.

The net output of mechanical work W during the compression and power stroke
(duration ttot) is defined by:

WðttotÞ ¼
Zttot
0

NRT
x

v� wf

� �
dt ð21:2:6Þ

where the frictional loss rate of mechanical energy, wf , is also included. Details are
given in Appendix 21A.
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21.2.2.2 Heat Loss Model

Charge temperature inside the CIE cylinder is of the order of 2500 K. The tem-
perature of all components in contact with the charge, such as the piston, cylinder
head and valves, depend on charge temperature and other parameters such as the
heat convection coefficient. Melting points of advanced materials are still far below
the combustion temperature. For instance, the melting point of nickel-based super
alloys and coated carbon–carbon composites is 1500 and 1800 K, respectively (Teh
et al. 2008). Material constraints necessitate active CIE cooling. Notice that over-
cooling is to be avoided since it causes high emission pollution. Proper operation of
CIEs requires a well designed cooling system (Wang 2009).

About 19–22% of the energy supplied is lost in CIEs through the coolant (Azadi
et al. 2013). The second law of thermodynamics states that decreasing heat rejection
may improve the engine’s thermal efficiency. A major research effort has been
allocated in the last two decades for the development of low heat rejection
(LHR) engines, in which thermal insulation is provided in the path of heat flow to
the coolant. These engines are sometimes classified as low grade, medium grade
and high grade, depending on the degree of thermal insulation (Ratna Reddy et al.
2012). Increasing thermal insulation is associated with an increase of charge tem-
perature inside the cylinder and an increase of the exhaust gas energy (Jafarmadar
et al. 2014). Also, a reduction of combustion noise and hydrocarbons and partic-
ulate matter emissions is observed (Rakopoulos et al. 2008). Several solutions have
been adopted to decrease heat rejection such as creating air gaps in the piston and
other components as well as using ceramic coatings (better wear characteristics than
conventional materials) on cylinder head, piston and liner (Sivakumar et al. 2012).
However, increasing the charge temperature inside the cylinder may adversely
affects the power output and this prompted some researchers to propose thin
coatings rather than thick thermal barrier coatings (Rakopoulos et al. 2008). Here a
simple heat rejection model appropriate for LHR engines is proposed. It is then
used to study the optimal piston motion for the maximum net output work of a
Daniel cam engine.

Two categories of temperature and heat flux variations in the cylinder walls may
be identified:

(a) long-term response variations (of the order of seconds) due to non-periodic
variations of engine load and

(b) short-term variations (of the order of milliseconds) during the engine cycle.

The long-term response has been studied in a few papers by using finite-element
methods (Rakopoulos and Mavropoulos 1996; Rakopoulos et al. 2004, 2008). Here
the focus is on short-term variations where simple models provide reasonably good
description (Divis et al. 2003; Rakopoulos et al. 2008; Ngayihi et al. 2015).

The heat transfer mechanism includes convection from charge to the internal
cylinder wall surface and from the external wall surface to the coolant, and con-
duction across the insulated cylinder wall. Although the thermal loadings of engine
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components have significant time variation during the cyclical operation, compu-
tations are performed here by assuming steady-state heat fluxes based on
time-averaged values. Due to the thermal inertia of the walls and the high speed of
the periodical changes, the temperature variations are damped out within a small
distance from the wall surface (*1 mm), making this assumption acceptable (Diviš
et al. 2003; Rakopoulos et al. 2008). The following assumptions are adopted
(Rakopoulos et al. 2008): (i) all cylinder surfaces are at a constant temperature for
given engine operation regime; (ii) conduction heat transfer through the walls is one
dimensional; (iii) properties of cylinder wall and insulation materials do not depend
on temperature and time; (iv) the coolant temperature is known and constant.

The cylinder has a thermal insulation as shown in Fig. 21.2. The cylinder inner
radius is r. The thickness of thermal insulation and metal layer is denoted Sins and
Sw, respectively, while their thermal conductivities are kins and kw, respectively.
Heat is transferred from the charge at temperature T inside the cylinder towards the
cooling fluid at temperature Tc. The convection heat transfer coefficient between
metal wall and cooling fluid is hc.

The temperature of the cylinder material has different values, depending on
position (see Fig. 21.2). Of interest here is temperature Twg on the inner surface of
the cylinder. This temperature is a quantity entering the thermal model. Some
authors assumed a constant value for Twg. A value often adopted in computation is
600 K (Burzler et al. 2000; Ge et al. 2011). In fact, Twg depends on the thermal
insulation and metal wall properties (thickness and thermal conductivity) as well as
on the cooling fluid temperature Tc and convection heat transfer coefficient hc.
A simple model is used here to compute the temperature Twg.

Fig. 21.2 Longitudinal
cross-section through the
cylinder
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The (space averaged) heat flux lost per unit length of cylinder from the charge
towards the cooling fluid, qlost;l [units: W/m] is:

qlost;l ¼ qlost
xf

ð21:2:7Þ

The following simple relationship also applies:

qlost;l ¼ Twg � Tc
Rl

ð21:2:8Þ

where the overall thermal resistance per unit length Rl is given by Shrets et al.
(1980):

Rl ¼ 1
2pkins

ln
dþ 2Sins

d
þ 1

2pkw
ln
dþ 2ðSins þ SwÞ

dþ 2Sins
þ 1

p dþ 2ðSins þ SwÞ½ �hc
ð21:2:9Þ

Equation (21.2.8) yields:

Twg ¼ Tc þRlqlost;l ð21:2:10Þ

An iterative procedure similar with that proposed by Rakopoulos et al. (2008) is
used here to find the value of the temperature Twg. The thermal resistance Rl is first

computed. An initial guess value T ð1Þ
wg is then adopted. Here the guess start tem-

perature is 600 K. This value has been used in previous studies (Hoffmann and
Berry 1985; Burzler et al. 2000) where thermal insulation and cooling systems have
not been considered. Next, qlost is evaluated by using the thermal model presented
in Appendix 21A (see Eq. 21.A.9). Then, qlost;l is computed by Eq. (21.2.7) and a

new value T ð2Þ
wg is obtained from Eq. (21.2.10). Next, Tð2Þ

wg is compared with the

initial guess value T ð1Þ
wg . If they differ significantly, a new iteration is performed, by

using T ð2Þ
wg as a starting temperature value.

Two comments denoted (a) and (b) follow.

(a) The heat loss model is steady state from the point of view of the temperature of
cylinder wall and insulation materials. A comparison between a steady-state
model and a transient model has been reported by Rakopoulos et al. (2008) who
showed that the accuracy of the steady state model is reasonable. Further
comments may be found in Badescu (2015).

(b) The charge temperature, which acts as a boundary condition for the heat loss
model based on a constant wall temperature, has a strong intra-cycle time
variation. Consequently, the heat loss flux varies during the cycle.
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21.2.3 Dimensionless Formulation

The piston movement is obtained by using Eqs. (21.2.3–21.2.5). The following
dimensionless notations are used:

s � t
ttot

ð0� s� 1Þ

h � T
T0

n � x
xf

ð0� n� 1Þ

v � ttot
xf

v

x � t2tot
xf

a

ð21:2:11a–eÞ

Here T0 is a constant reference temperature. Usage of Eqs. (21.2.3–21.2.5) and
notation Eqs. (21.2.11a–e) yields:

dh
ds

¼ ttot
T0

h� NRT0
ttot

hv
n � qlost � _n CðNf � NiÞþNðCf � CiÞ

� �
T0h

NC

" #

dn
ds

¼ v

dv
ds

¼ x

ð21:2:12a–cÞ

When Eq. (21.2.12a) is to be used, the time-dependent Eqs. (21.A.3, 21.A.4)
have to be considered.

Equations (21.2.12a–c) are solved by using appropriate boundary conditions.
The piston operates cyclically. Thus, xðt ¼ 0Þ ¼ xðt ¼ ttotÞ ¼ xf . Using
Eqs. (21.2.11a) and (21.2.11c), the following boundary conditions are obtained:

nðs ¼ 0Þ ¼ 1

nðs ¼ 1Þ ¼ 1
ð21:2:13; 14Þ

Also, the initial charge temperature is fixed, i.e. Tðt ¼ 0Þ ¼ T0. Using
Eqs. (21.2.11a) and (21.2.11b), this yields:

hðs ¼ 0Þ ¼ 1 ð21:2:15Þ

In Eqs. (21.2.12a–c) the dimensionless piston acceleration x acts as a parameter.
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21.2.4 Optimization

Different objective functions may be used for the optimization of thermal engines
operation. Previous works considered the maximum output power, maximum
efficiency, minimum entropy production, minimum loss of availability, maximum
net revenue (see Ge et al. 2011 and references therein). Here, the objective is to
maximize the net output mechanical work given by Eq. (21.2.6). Since the cycle
time is fixed, this objective is equivalent with the maximization of the average
output power and thermal efficiency of the engine.

The objective function is extremized for an optimal piston path, say xoptðtÞ.
A cam of appropriate profile may be designed to obtain that path xoptðtÞ. Some
previous attempts used the piston speed as a control (Burzler et al. 2000). This
allowed studying the effect of the maximum speed limitation on the results. Here,
the control is the piston dimensionless acceleration x.

The optimal control problem defined by the objective function Eq. (21.2.6) and
the constraints Eq. (21.2.12a–c) constitutes a Bolza problem. It may be transformed
into a Mayer problem in two steps (a) and (b), as follows.

(a) An associate state variable Z [units: J] is introduced and a new associate
dimensionless state variable f is defined by:

f � Z
M

ð21:2:16Þ

where M is a constant [units: J]. A new ordinary differential equation is defined
by using Eqs. (21.2.6) and (21.2.16):

df
ds

¼ ttot
M

NRT0
ttot

hv
n
� a

xf
ttot

� �2

v2
 !

ð21:2:17Þ

The following initial condition applies:

fðs ¼ 0Þ ¼ 0 ð21:2:18Þ

(b) A new form of the objective function, associated with the Mayer problem, is
defined:

fðs ¼ 1Þ ! max ð21:2:19Þ

Thus, the optimal control problem is defined here in terms of the following
quantities: the independent variable is the dimensionless time s; the four state
variables are the dimensionless temperature, position, speed h; n; v, respectively,
and the dimensionless associate state variable f; the control is the dimensionless
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acceleration x; the objective is fðs ¼ 1Þ ! max. The optimization consists in the
maximization of the objective function Eq. (21.2.19) under the constraints of the
four Eqs. (21.2.12a–c) and (21.2.17), for which the boundary conditions
Eqs. (21.2.13–21.2.15) and (21.2.18) apply.

Several constraints apply to the state variables and control. First, x0 � x� xf ,
T � T0 and Z� 0. By using Eqs. (21.2.11b, c) and (21.2.16), these constraints are:

h� 1
x0
xf
� n� 1

f� 0

ð21:2:20; 21; 22Þ

Second, restrictions apply in practice for the maximum module of piston speed
and position, i.e. vj j � vmax and aj j � amax, respectively. By using Eqs. (21.2.11d, e)
these restrictions become:

vj j � ttot
xf

vmax

xj j � t2tot
xf

amax

ð21:2:23; 24Þ

21.2.5 Numerical Procedure

Most previous studies used indirect optimal control methods based on the
Pontryagin Maximum Principle (Burzler et al. 2000; Song et al. 2007; Li et al.
2007). A direct optimal control method [i.e. OCCIPID-DAE (Gerdts 2013)] is used
here. The infinite dimensional optimal control problem (OCP) consists of an
objective function which has to be extremized under the constraints of several
ordinary differential equations describing the dynamics of the state variables and
controls. The OCP is first discretized. OCCIPID-DAE uses two discretization grids.
The first consists of control grid points. The control is approximated on this grid by
using de Boor splines of order k� 1. The second grid consists of state grid points.
Within each state grid interval the differential equations are solved by using a
suitable integration scheme, e.g. Runge-Kutta methods. This yields an approxi-
mation of the state on that grid interval. Introducing the control approximation and
the state approximation into OCP yields a finite dimensional nonlinear program-
ming problem (NLP). The NLP is solved by the sequential quadratic programming
(SQP) method. More details on NLP optimization algorithms can be found in Betts
(2001), Nocedal and Wright (1999). Further details about OCCIPID-DAE com-
puting package are given by Gerdts (2013).

Direct optimal control methods do not need defining the Hamiltonian of the
problem and the associated adjoint equations, which are necessary when indirect
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methods are used. The direct methods are usually less precise than indirect methods
based on Pontryagin’s Maximum Principle, but more robust with respect to the
initialization. Also, they are more straightforward to apply, hence their wide use in
industrial applications. Another advantage of the direct methods is their easy usage
in case of non-regular optimal solutions associated with rather complicated
switching structures coming from constraints for controls and state variables (see
for example Song et al. 2007; Li et al. 2007; Chen et al. 2010).

The convergence and speed of the optimization algorithm depend significantly
on problem scaling. After several trials the value M ¼ 1000 has been used in
Eq. (21.2.16). Convergence of the optimization algorithm depends on the initial
guess distributions of the state variables and control. These solutions have been
found by trial procedures. They are shown in Table 21.1.

The number of control grid steps was 500. De Boor splines of order k ¼ 2 have
been used. Step size used in the finite difference solution of the differential equa-
tions for the state variables was 10−3. During the NLP optimization the maximum
number of iterations was 1000 while the tolerance was 10−8.

21.2.6 Model Implementation

Table 21.2 shows values of different parameters used in computations, except other
values are explicitly mentioned. Most design values correspond to a CIE with
stroke volume 375 cm3 and 3530 rpm (Burzler et al. 2000). They have been also
used by Hoffmann and Berry (1985), Ge et al. (2011).

Table 21.1 Initial guess distributions (Tm = 2000 K; vm = 2 m/s)

Quantity Distribution

State variables

Dimensionless position
n ¼ 1� 2sð1� x0

xf
Þ for 0� s\ 1

2
x0
xf
þ 2ðs� 1

2Þð1� x0
xf
Þ for 1

2 � s� 1

(

Dimensionless temperature h ¼ 1þðTmT0 � 1Þs 0� s� 1

Dimensionless speed v ¼ 2vmðs� 1
2Þ ttotxf

Dimensionless associated state variable f ¼ s

Control

Dimensionless acceleration
x ¼ � 2vmttot

xf
for 0� s\ 1

2
2vmttot
xf

for 1
2 � s� 1

(
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Table 21.2 Parameter values used in computations

Quantity Symbol Units Value

Design

Bore (inner cylinder diameter) d m 7:98� 10�2

Minimum (bottom) piston position x0 m 0:5� 10�2

Maximum (top) piston position xf m 8:0� 10�2

Time for compression and power stroke ttot s 17� 10�3

Combustion

Initial number of moles Ni mol 0.0144

Final number of moles Nf mol 0.0157

Ideal gas constant R J/(K mol) 8.3144

Initial constant volume heat capacity Ci ¼ 2:5R J/(K mol) 20.7860

Final constant volume heat capacity Cf ¼ 3:35R J/(K mol) 27.8532

Heat and work transfer

Heat transfer coefficient entering Eq. (21.A.5) kN W/(m2K) 1305

Convective coefficient entering Eq. (21.A.7) a Dimensionless 0.540

Exponent entering Eq. (21.A.7) b Dimensionless 0.7

Coefficient entering Eq. (21.A.8) c Dimensionless 0.1

Coefficient entering relationship line 1 in Table 21.8 of
Appendix 21A

l1 Fractional units
not given

3:17� 10�4

Coefficient entering relationship line 1 in Table 21.8 of
Appendix 21A

l2 Fractional units
not given

0.772

Charge molar mass entering relationship line 3 in
Table 21.8 of Appendix 21A

Mfluid kg/mol 29� 10�3

Coefficient entering relationship line 5 in Table 21.8 of
Appendix 21A

m1 Fractional units
not given

4:5� 10�7

Coefficient entering relationship line 5 in Table 21.8 of
Appendix 21A

m2 Fractional units
not given

0.645

Heat of combustion Qc J/mol 5:57� 104

Friction coefficient used in Eq. (21.A.10) a N s/m 12.9

Reference temperature used in Eqs. (21.2.11a–e) T0 K 300

Constant used in Eq. (21.2.16) M J 1000

Heat loss model

Thickness of metal wall Sw m 3� 10�3

Thermal conductivity of metal wall (iron) kw W/(mK) 54

Thickness of thermal insulation Sins m 0

Thermal conductivity of thermal insulation (SN) kins W/(mK) 10

Temperature of coolant (water) Tc K 350

Convection heat transfer coefficient hc W/(m2 K) 3000

Engine operation

Auto-ignition moment tz s 8:25� 10�3

Burn time (combustion duration) tb s 1:0� 10�3

Maximum piston speed module vmax m/s 60

Maximum piston acceleration module amax m/s2 6000

The engine speed is 3530 rpm
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21.3 Results and Discussions

21.3.1 Present Model Versus Simpler Approaches

Several simplifications have been used in previous studies. They are briefly com-
pared with the present, more accurate, model.

21.3.1.1 Comparison with Classical Rod-Crank System

A simple model of a classical rod-crank system is presented in Appendix 21B. It is
used here as a reference. Several works used as a reference results obtained for a
rod-crank system under the approximation of sinusoidal piston movement (i.e.
Eq. 21.B.10) (Burzler et al. 2000; Ge et al. 2011). This approximation works very
well when the rod is very long (i.e. r=l ! 0). For typical engines r=l ranges
between 0.16 and 0.40 (Ge et al. 2011). Systems with different values of the ratio
r=l have been previously studied. For instance, a value r=l ¼ 0:25 has been adopted
by Ge et al. (2011). Here, Eqs. (21.B.6), (21.B.7) and (21.B.10) give r=l ¼
ðxf � x0Þ=ðxf þ x0Þ and using Table 21.2 one finds r=l ¼ 0:88. This is a large value
and the appropriateness of the pure sinusoidal approximation is examined next. One
uses the same rod-crank system as a reference, but the piston movement is not
approximated; it is given by the “exact” Eqs. (21.B.12)–(21.B.14). Table 21.3
shows results obtained by using the optimized cam-lever system as well as the
classical rod-crank system. The piston movement for the rod-crank system has been
treated both “exactly” and with the sinusoidal approximation.

The sinusoidal approximation overestimates the work generated and the thermal
efficiency of the engine (by up to 10%), when compared with the “exact” treatment.
Also, the time integrated lost heat is underestimated, by up to 35%. Thus, at large
values of the ratio r=l (=0.88) the sinusoidal approximation is not recommended.
Note that this approximation works well for low values of the ratio r=l (=0.25)
(Ge et al. 2011).

Table 21.3 Results obtained by using the optimized cam-lever system and the classical rod-crank
system treated by the “exact” approach and by the sinusoidal approximation, respectively

System Model Work
W (J)

Heating
function
h (J)

Time
integrated lost
heat fluxR ttot
0 qlostdt (J)

Time integrated
lost heat flux per
unit cylinder
lengthR ttot
0 qlost;ldt (J/m)

Thermal
efficiency
g

Optimal 371.5 783.0 132.1 0.168 0.472

Classical Exact 264.2 783.0 282.3 0.360 0.337

Sinusoidal 338.6 783.0 186.3 0.237 0.432
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The time evolution of piston position and piston speed is shown in Fig. 21.3a, b,
respectively. The optimally controlled cam-lever system and the rod-crank system
have been considered. Both the “exact” approach and the sinusoidal approximation
have been used in the latter case. The difference between the two ways of modeling
the rod-crank system is obvious. Note the larger maximum and minimum values of
the piston speed in the “exact” case. They are comparable in magnitude with the
extreme values of the piston speed for the optimal system. These results should be
compared with those of Fig. 5 of Xia et al. (2009) where the difference between the
piston speed predicted by the sinusoidal approximation and the “exact” case is
small in case of r=l ¼ 0:25.

The peak of the charge temperature is larger (by up to 4%) and delayed (about
15°) in case of the “exact” model, as compared with the sinusoidal approximation
(Fig. 21.3c). During all the cycle duration, the “exact” model estimates larger
consumed work and smaller generated work than the sinusoidal approximation
(Fig. 21.3d). Note that the work values in Fig. 21.3d represent the integral
Eq. (21.2.6) computed from t ¼ 0 until the current time t ¼ ttotA=360�.

The acceleration profile is obviously different in case of the optimally controlled
cam-lever system and classical rod-crank system (Fig. 21.4a, c, respectively). The

Fig. 21.3 Several quantities for the optimally controlled cam-lever system and for the rod-crank
system (treated by the “exact” approach and by the sinusoidal approximation, respectively) as a
function of the crank angle A′ (set to zero at the top-dead-center, i.e. the position when the piston is
closest to the fire deck). a Piston position; b piston speed; c Charge temperature; dWork generated
until time t ¼ ttotðA0 þ 180�Þ=360�, i.e. WðtÞ ¼ R t0 NRTðsÞvðsÞ=xðsÞ � av2ðsÞ½ �ds
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acceleration profile is smooth for the rod-crank system but shows abrupt episodes
for the optimal system. The peaks of the optimum acceleration are to be connected
with the abrupt changes in the speed profile near crank angle A′ = 0° in Fig. 21.4b.
The “exact” approach and the sinusoidal approximation have different acceleration
profiles (Fig. 21.4c). This is to be connected with the difference in the speed
profiles (Fig. 21.4b) and finally comes from the fact that the sinusoidal approxi-
mation does not work well for the large value of the r=l ratio used here (i.e. 0.88).
The piston acceleration for the optimally controlled cam-lever system ranges
between about −200 and 700 m/s2 (Fig. 21.4a). This excursion is significantly
smaller than the range of variation for the acceleration of the classical rod-crank
system (which is −5000 m/s2 to 5000 m/s2 in the sinusoidal approximation and
−10,000 m/s2 to 10,000 m/s2 in the “exact” approach (Fig. 21.4c). The jerk profile
is smooth for the rod-crank system (Fig. 21.4d). The peaks of the jerk profile for the
optimized system (Fig. 21.4b) come from the acceleration peaks (Fig. 21.4a). In
case of the rod-crank system, the jerk ranges between −2 � 105 m/s3 and
2 � 105 m/s3 and between −8 � 105 m/s3 and 8 � 105 m/s3 for the sinusoidal
approximation and the “exact” approach, respectively. The range of jerk variation
for the optimized system is obviously larger (between −1.2 � 106 m/s3 and
1.2 � 108 m/s3). The optimized cam-lever system operates with shocks around
crank angle A′ = 0°.

Fig. 21.4 Acceleration and jerk for a, b optimally controlled cam-lever system and c, d classical
rod-crank system (treated by the “exact” approach and by the sinusoidal approximation,
respectively) as a function of the crank angle A′ (set to zero at the top-dead-center, i.e. the position
when the piston is closest to the fire deck). a, c Acceleration; b, d Jerk
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The pressure-volume diagrams in Fig. 21.5 show the nature of the optimized
cam-lever system versus the baseline case of a classical rod-crank system. All
diagrams are similar in shape and have in common very large values (>100) of the
ratio between the maximum pressure and the reference pressure. The diagrams are
close each other during the compression stroke for both the optimized system and
the classical system (in the “exact” approach and the sinusoidal approximation).
The peak pressure has the highest value for the “exact” classical system while the
optimized system has the second largest pressure peak. During the power stroke the
highest pressure is associated with the optimized system, followed by the classical
system described in the sinusoidal approximation. This is consistent with the largest
net output work provided by the optimized system (see Table 21.3).

The turbulence predicted by the “exact” model is larger than that of the sinu-
soidal approximation, (see the time variation of the Reynolds number, Fig. 21.6a).
Also, the heat losses are larger in the “exact” model, especially during the power
stroke (Fig. 21.6b). Thus, the sinusoidal approximation, despite of its popularity
and easiness of usage, is not appropriate for the particular configuration considered
here. The “exact” approach of the rod-crank system is used in the following.

21.3.1.2 Comparison with Simplified Treatment of Convection Heat
Loss Process

A simple approach for the heat loss mechanism is that using the Newton model,
Eq. (21.A.5). It has been used in many works (Burzler et al. 2000; Chen et al. 2011;
Xia et al. 2012). A more accurate model is that of Annand (1963), Eq. (21.A.7).

Table 21.4 shows results obtained by using the optimized cam-lever system and
the classical rod-crank system. Newton and Annand models are used in both cases.
When a classical rod-crank system is considered, the Annand approach yields a
lower (by up to 8%) net output work Wand efficiency g and a higher (by up to 37%)
time integrated lost heat flux qlost than the Newton approach. When the optimized

Fig. 21.5 Pressure–volume
diagram for optimally
controlled cam-lever system
and classical rod-crank
system (treated by the “exact”
approach and by the
sinusoidal approximation,
respectively)

21.3 Results and Discussions 481



cam-lever system is considered, all three quantities, W, g and time integrated qlost,
are lower for the Annand approach (by about 5, 5 and 6%, respectively). Thus, the
dependence of these quantities on the heat loss mechanism is weaker for the
optimized cam-lever system than for the classical rod-crank system. These results
agree with those reported in Table 4 of Chen et al. (2011) where the efficiency for
the optimal piston motion with Newtonian heat transfer law is 8.54% larger than
that for the conventional piston motion. Also, an increase of 12% has been reported
by Xia et al. (2012) for the thermal efficiency of the optimal piston motion.

Fig. 21.6 Several quantities for the optimally controlled cam-lever system and for the rod-crank
system (treated by the “exact” approach and by the sinusoidal approximation, respectively) as a
function of the crank angle A′ (set to zero at the top-dead-center, i.e. the position when the piston is
closest to the fire deck). a Reynolds number Re; b Lost heat flux qlost

Table 21.4 Results obtained by using the optimized cam-lever system and the classical rod-crank
system. Newton and Annand models are considered

System Model Work
W (J)

Heating
function
h (J)

Time
integrated
lost heat fluxR ttot
0 qlostdt (J)

Time integrated lost
heat flux per unit
cylinder lengthR ttot
0 qlost;ldt (J/m)

Thermal
efficiency
g

Optimal Newton 390.9 783.1 144.0783 0.183994 0.4992

Optimal Annand 371.5 783.1 132.1332 0.168739 0.4744

classic Newton 327.5 783.1 180.9276 0.231052 0.4182

classic Annand 264.2 783.1 282.3944 0.360629 0.3374
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Figure 21.7 shows the time evolution of several quantities for the optimally
controlled cam-lever system and for the rod-crank system, by using both Newton
and Annand models. The piston position and speed associated with the two heat
loss mechanisms are close each other (Fig. 21.7a, b). In case of the classical
rod-crank system, the piston position and speed coincide for both heat loss
mechanisms, as expected. In case of Newton models, the speed reaches its maxi-
mum at different crank angles for the optimal and classical system, respectively.
The speed peak for the classical system is delayed by about 95°.

The charge temperature has a higher peak and the output work is higher during
the power stroke for Newton model than for Annand model (Fig. 21.7c, d,
respectively). This applies for both the optimally controlled cam-lever system and
the rod-crank system. When the Annand model is considered, the peak charge
temperature is about 3% lower for the optimal system than for the classical system.
In case of the Newton model, the peak charge temperature is quite similar (about
2500 K) for both classical and optimal systems.

The acceleration profile is continuous but has abrupt changes around the middle
of the cycle (Fig. 21.8a, c). The acceleration peaks are higher in case of the Annand
model than for the Newton model (compare Fig. 21.8a, c, respectively. The

Fig. 21.7 Several quantities for the optimally controlled cam-lever system and for the rod-crank
system as a function of the crank angle A′ (set to zero at the top-dead-center, i.e. the position when
the piston is closest to the fire deck). Newton and Annand models are considered. a Piston
position; b Piston speed; c Charge temperature; d Work generated until time
t ¼ ttotðA0 þ 180

� Þ=360�
, i.e. WðtÞ ¼ R t0 NRTðsÞvðsÞ=xðsÞ � av2ðsÞ½ �ds
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maximum peak is about 1200 m/s2 in the former case and 750 m/s2 in the latter.
The jerk profile is similar in the two cases (compare Fig. 21.8c, d, respectively) but
the positive and negative peaks are significantly larger in case of the Annand model.
The optimum profile of acceleration and jerk, showing abrupt changes and high
peak values, suggests that implementation in practice of optimal cams requires
caution. Deviation from the optimal cam profile might be needed as a compromise
between looking for higher output work and smoother operation.

Figure 21.20 in the Appendix 21C shows the pressure–volume diagram for the
optimally controlled cam-lever system and classical rod-crank system, respectively.
Newton and Annand heat transfer models are shown. At small volume values
during the compression stroke, the pressure is slightly higher for the Newton model
than for the Annand model, for both optimally controlled cam-lever system and
classical rod-crank system. More significant differences occur during the power
stroke. The highest pressure corresponds to the optimized system based on Newton
model, as expected. The lowest pressure corresponds to the classical system using
Annand model. This is in agreement with Fig. 21.7d.

When the classical rod-crank system is considered, the turbulence is larger for
the Annand model than for the Newton model (see the time variation of the
Reynolds number in Fig. 21.9a). In case of the optimally controlled cam-lever
system, the effect of the two heat loss processes on turbulence is rather similar. The
heat loss is obviously larger for the Annand model than for the Newton model in

Fig. 21.8 Acceleration and jerk for a, b Newton model and c, d Annand model as a function of
the crank angle A′ (set to zero at the top-dead-center, i.e. the position when the piston is closest to
the fire deck). a, c Acceleration; b, d Jerk
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case of both the classical rod-crank system and optimally controlled cam-lever
system (Fig. 21.9b). In the following analysis the Annand model is used.

21.3.1.3 Comparison with Simplified Treatment of the Overall Heat
Loss Process

Heat losses from the charge to the cylinder walls are associated with convection and
radiation mechanisms. Table 21.9 in Appendix 21C shows results obtained for the
net output work, heating function, lost heat flux and thermal efficiency, by using the
optimized cam-lever system and the classical rod-crank system, respectively. Two
approaches have been considered. One approach considers both the convection and
radiation process while the other one neglects the radiation process. There is no
practical difference between the two approaches, for both systems considered.
Therefore, the radiation process has negligible effects. However, in the following
analysis the radiation process is always included in calculations.

21.3.1.4 Comparison with Unconstrained Piston Acceleration

There are some limits imposed to the acceleration, which are mainly associated with
requirements for the dynamic balance of the thermal engine. Constrained optimal
control is associated with rather complicated control switching structures. Using
indirect methods is particularly complicated in case of singular solutions (see, e.g.

Fig. 21.9 Several quantities for the optimally controlled cam-lever system and for the rod-crank
system as a function of the crank angle A′ (set to zero at the top-dead-center, i.e. the position when
the piston is closest to the fire deck). Newton and Annand models are considered. a Reynolds
number Re; b Lost heat flux q
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Chen et al. (2010) for the specific case of CIE piston path optimization). Direct
methods such as OCCIPID-DAE (Gerdts 2013) are easier to use for constrained
problems.

Table 21.10 in Appendix 21C shows the dependence of the net output work
W of the optimized cam-lever system, for different values of the module of the
maximum acceleration amaxj j. Increasing amaxj j from 50 to 100 m/s2 increases W by
0.9% while changing amaxj j from 500 to 6000 m/s2 increases W by 0.03%. Thus,
the approach with no constraint on amaxj j is a reasonable approximation. Here, the
value of amaxj j shown in Table 21.2 is used in calculations.

The acceleration profiles as well as the acceleration maximum values depend on
the upper bound amax, as expected (Fig. 21.10a, c, e). In case of amax ¼ 50 m=s2,
both the positive and negative peak values are affected (Fig. 21.10a). When the
values amax ¼ 100 m=s2 and amax ¼ 500 m=s2 are considered, only the positive
peak values are bounded by amax (Fig. 21.10c, e). The jerk profile depends on amax

(Fig. 21.10b, d, f). The cases amax ¼ 50 m=s2 and amax ¼ 100 m=s2 have rather
similar profile (two positive peaks and two negative peaks; see Fig. 21.10b, d)
while amax ¼ 500 m=s2 is associated with a different profile (single negative peak,
Fig. 21.10f). These results suggest that the constraint amax may be used as a
parameter in order to design optimized cams whose acceleration and jerk profiles
are easier to implement in practice.

Fig. 21.10 Acceleration and jerk for a, b amax ¼ 50m=s2, c, d amax ¼ 100m=s2 and
e, f amax ¼ 500m=s2 as a function of the crank angle A′ (set to zero at the top-dead-center, i.e.
the position when the piston is closest to the fire deck). a, c, e Acceleration; b, d, f Jerk
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21.3.2 Optimal Solution. Dependence on Design
and Operation Parameters

The main objective of the optimization is to find that optimum cam profile which
provides the maximum net output work. The optimization depends on several
parameters, which are considered next.

21.3.2.1 Cylinder Wall and Thermal Insulation. Materials
and Thickness

Conventional cylinder walls are usually made of cast iron (thermal conductivity
jiron ¼ 54W=ðmKÞ) (Dawson 2009). Compact graphite iron, lamellar iron and
vermicular graphite iron are sometime used for passenger cars applications (Junk
and Lenz 2006; Rakopoulos et al. 2008; Dawson 2009). Also, aluminum (thermal
conductivity jAl ¼ 180W=ðmKÞ) is used (Rakopoulos et al. 2008). The cylinder
walls considered here are made of cast iron or aluminum.

A major breakthrough in CIE technology constituted the first utilization in 1978
of thermally insulating materials such as silicon nitride for insulating different
surfaces of the combustion chamber (Kamo and Bryzik 1978). That was the first
type of low heat rejection engine (Azadi et al. 2013). Presently, LHR engines are
mainly based on ceramic coatings and air gap insulations. Common ceramic
materials are zirconia, aluminum titanate and mullite ceramics (Sivakumar et al.
2012). Mostly used thermal insulation materials are silicon nitride
(SN) (jSN ¼ 10W=ðmKÞ and plasma spray zirconia (PSZ) (jPSZ ¼ 1W=ðmKÞ
(Rakopoulos et al. 2008; Ciniviz et al. 2012; Lara-Curzio and Readey 2008; Marr
2009). Both materials are considered in this section. The insulation schemes used
here correspond to Table 2 of Rakopouloos et al. (2008).

Table 21.5 shows the dependence of several quantities on the thickness of wall
cylinder and thermal insulation. Both the optimized cam-lever system and the
classical rod-crank system have been considered. The heat transfer from cylinder
wall to the cooling fluid was taken into consideration. The iron cast wall temper-
ature Twg is lower than the temperature of aluminum walls (by about 3%), for
similar thickness. The wall temperature increases in case of thermally insulated
walls as compared with walls without thermal insulation (with about 100°–300°,
depending on the design solution). This agrees with previous results showing that
increasing the degree of insulation results in increased wall temperatures throughout
each cycle (see Rakopoulos et al. (2008) and references therein).

Next, the classical rod-crank system is considered. The net output work W and
the thermal efficiency g slightly increase (by about 0.3%) by increasing the
thickness of the un-insulated cast iron walls from 3 to 5 mm. More significant
increase of the two quantities (by about 1–2.5%) occurs by increasing the thickness
of the PSZ insulation layers from 1 to 1.5 mm.
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These results are in good agreement with many investigators who analyzed the
effects of in-cylinder thermal insulation and found increased efficiency (Azadi et al.
2013). For instance, Fig. 4a of Rakopoulos et al. (2008) shows that the efficiency
increases of up to 3.65% for the 1.5 mm PSZ case at cycle 20 of the transient event.
Almost similar values of W and g are obtained in Table 21.5 for rather different cast
iron or aluminum walls but similar value of the thermal insulation material thick-
ness. Compare these results with those reported by Rakopoulos et al. (2008) where
the difference between aluminum and cast iron wall (when both were coated with
1 mm thick PSZ layer) was found to be modest. The quoted authors rightly
observed that it is the insulator’s thermal properties that are primarily responsible
for the increase of engine’s performance. This makes the thermal insulation a key
component of classical LHR engines.

Second, the optimized cam-lever system is considered. The net output work
W and the efficiency g are much larger than in case of the rod-crank system (by 12–
13%), for similar thickness of cylinder walls and thermal insulation. The qualitative
features outlined for the classical rod-crank system maintain. However, the
dependence of W and g on the thickness of the insulation material is obviously
weaker in case of the cam-lever system than in case of the rod-crank system.
Increasing the PSZ insulation layer thickness from 1–1.5 mm increases the effi-
ciency by about 0.4%. The small difference between the performance of optimal
design solutions based on different insulation layer thicknesses may be explained as
follows. The optimization changes the piston motion for each optimal design
solution. Thus, different values of the insulation thickness are associated with
different optimal piston motions. Classical rod-crank systems are limited from this
point of view: different values of insulation thickness are always associated with the
same piston motion. The main conclusion is that the thermal insulation is a less
important component in case of optimized cam-lever systems than for the classical
rod-crank systems.

Table 21.11 in Appendix 21C is similar to Table 21.5 but the heat transfer from
cylinder wall to the cooling fluid is not taken into consideration. Thus, the tem-
perature of the inner cylinder wall is constant and independent of the wall and
thermal insulation thickness (i.e. Twg ¼ 600K). Most qualitative comments asso-
ciated with the classical rod-crank system in Table 21.5 maintain in case of
Table 21.11. The corresponding values in the two tables are, however, different,
since the value of Twg in the two tables is different, for similar thickness values. The
net output work W and the thermal efficiency g for the optimized cam-lever system
do not change when the thickness of the cylinder wall and thermal insulation
change. Indeed, these quantities depends on Twg, which in this case is a constant.

Figure 21.21 in Appendix 21C shows the pressure–volume diagram for an
optimally controlled cam-lever system. Two cases have been considered: no ther-
mal insulation and a PSZ layer of 1.5 mm thickness. The two cycles are similar, as
expected. The pressure associated with the insulated system is higher during the
compression stroke and (to a lesser extent) during the power stroke. Also, the peak
pressure is higher in case of the insulated system.
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More details about the influence of thermal insulation on several quantities are
shown in Fig. 21.11. The piston speed during the power stroke shows little
dependence on the insulation thickness (Fig. 21.11a). The dependence is more
obvious during the compression stroke. The charge temperature is higher when the
piston has better insulation (Fig. 21.11b). However, the influence of insulation
thickness on the peak charge temperature as well as on the temperature swing is
weak. This is in good agreement with results reported by Rakopoulos et al. (2008).
Higher charge temperature is associated with lower heat losses (Fig. 21.11c). The
work generated during the power stroke is not dependent on the thermal insulation
thickness but the work consumed in the compression stroke is smaller at better
thermal insulation (Fig. 21.11d).

Figure 21.12 shows the optimal cam profile as a function of the thermal insu-
lation for a cylinder wall made of cast iron of thickness 3 mm. When the cylinder
has no thermal insulation, the cam is smaller than in case of an insulated cylinder
(by up to 8%, depending on the local polar radius). The difference of the two
profiles is more obvious during the compression stroke (crank angle A′ between
−180° and 0°). The two profiles overlap for values of the crank angle A′ around 0°.

Fig. 21.11 Several quantities for the optimally controlled cam-lever system as a function of the
crank angle A′ (set to zero at the top-dead-center, i.e. the position when the piston is closest to the
fire deck). Different thermal insulation solutions are considered. a Piston speed; b Charge
temperature; c Heat loss flux; d Work generated until time t ¼ ttotðA0 þ 180

� Þ=360�
, i.e.

WðtÞ ¼ R t0 NRTðsÞvðsÞ=xðsÞ � av2ðsÞ½ �ds
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Obviously, the charge temperature T is higher for the classical rod-crank system
than for the optimally controlled cam-lever system (Fig. 21.13a). In case of the
rod-crank system, T is higher when the cooling model is not included in calcula-
tions. When the optimally controlled cam-lever system is considered, T is higher
when the cooling model is included. A few comments follow. In case of the
classical rod-crank system, the piston motion does not change when the cooling
model is included. The optimized cam-lever system with cooling model included
has a different optimal piston motion than in case the cooling model is not included.
Both piston motions are optimized to maximize the net output work, which is
practically the same in the two cases (see Fig. 21.13b). Each of the two optimal
piston motions is associated with a different optimal time variation of the charge
temperature T, which proves to be higher when the cooling model operates. The net
output work W of the optimally controlled system is higher than that of the classical
system, as expected (Fig. 21.13b). The influence of the cooling system on W is
more important during the compression stroke.

Figure 21.14 shows the optimal cam profiles for a cylinder wall made of cast
iron of thickness 3 mm and PSZ thermal insulation of 1.5 mm thickness. Two cases
are considered, i.e. the cooling model is, or is not, taken into consideration,
respectively. The cam is larger in size when the cooling model is taken into account
(by up to 5%, depending on the local polar radius, during the compression stroke).

Fig. 21.12 Optimal cam profiles as a function of the thermal insulation of a cylinder wall made of
cast iron of thickness 3 mm. The unit for the left side scale is meter. The angular coordinate
corresponds to crank angle A (=180° at the top-dead-center, i.e. the position when the piston is
closest to the fire deck)
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During the power stroke (crank angle A′ ranging between −180° and 0°) the
difference between the two profiles is less obvious than during the compression
stroke.

21.3.2.2 Auto-ignition Moment

The injection timing may be used for controlling the combustion phasing of CIEs
(Das et al. 2015). The auto-ignition moment tz depends on many design factors,
such as the geometry of the combustion space and injectors position as well as on
operation factors, such as the engine load and speed (Burzler et al. 2000).

Table 21.6 shows the dependence of several quantities on the auto-ignition
moment tz in case of the optimized cam-lever system. Different materials for the
cylinder walls and thermal insulation have been considered. The net output workW,
the time integrated lost heat flux qlost and the thermal efficiency g depend on the
auto-ignition moment and the thermal resistance of the cylinder in different ways.
For given cylinder wall and insulation materials there is an optimum auto-ignition
moment, tz;opt, which maximized both the work W and the efficiency g. A few
comments follow. The duration of the zero-velocity phase (associated with zero
work rate) almost remains the same when the auto-ignition moment tz changes (see
Fig. 21.16b). Changing tz has two opposite effects on the output work. First, the

Fig. 21.13 Several quantities for the optimally controlled cam-lever system and classical
rod-crank system as a function of the crank angle A′ (set to zero at the top-dead-center, i.e. the
position when the piston is closest to the fire deck). Computations performed with the cooling
model included and not included, respectively. a Charge temperature; b Work generated until time
t ¼ ttotðA0 þ 180�Þ=360�, i.e. WðtÞ ¼ R t0 NRTðsÞvðsÞ=xðsÞ � av2ðsÞ½ �ds
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duration of the power stroke changes when tz is changed. The lower tz is, the longer
the power stroke is (see Fig. 21.16b). Thus, the output work has a tendency to
increase. Second, the total heat losses are enhanced by lowering tz because the
switching points, where temperature of the charge rises beyond the temperature of
wall, are reached earlier. Thus, the output work has a tendency to decrease. The
interplay between these two opposite effects determines the optimum value of tz, for
which the output work is a maximum. These results are in agreement with existing
knowledge (see Sect. 4.2 of Burzler et al. (2000) for additional comments about the
optimum auto-ignition moment).

The optimum auto-ignition moment does not depend on the wall and insulation
material and thickness (Table 21.6). Its value is tz;opt ¼ 7:75� 10�3 s. Note that
this value is different from the value used in most simulation performed in this
chapter (i.e. 8:25� 10�3 s, see Table 21.2). The time integrated lost heat flux qlost
reaches a minimum for a specific value of tz which generally depends on the wall
and insulation thickness and is different for tz;opt.

Table 21.12 in Appendix 21C is similar to Table 21.6 but the classical rod-crank
system is considered. For given wall and thermal insulation materials, the output
work W and thermal efficiency g increase, while the time integrated lost heat flux

Fig. 21.14 Optimal cam profiles as a function of the existence of a cooling system. A cylinder
wall made of cast iron of thickness 3 mm and PSZ thermal insulation of 1.5 mm thickness have
been considered. The unit for the left side scale is meter. The angular coordinate corresponds to
crank angle A (=180° at the top-dead-center, i.e. the position when the piston is closest to the fire
deck)
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qlost decreases, by increasing the auto-ignition moment tz. No local optimum value
of tz is found.

Figure 21.22 in Appendix 21C shows the pressure–volume diagram for the
optimally controlled cam-lever system. Two values of the auto-ignition moment have
been considered. The two diagrams are almost superposed and the slightly higher
pressure associated with the optimum auto-ignition moment tz,opt = 7:75� 10�3 s is
hard to observe.

Changing the auto-ignition moment tz yields different optimal paths of the pis-
ton, which in turn, requires changing the optimal profile of the cam. Figure 21.15
shows several optimal cam profiles for a cylinder wall made of aluminum of

Table 21.6 Dependence of net output work W, time integrated lost heat flux qlost and thermal
efficiency g on the auto-ignition moment tz

Thickness of
wall material
(mm)

Thickness of
thermal insulation
material (mm)

Auto-ignition
moment tz
ð�10�3 sÞ

Work
W (J)

Time integrated
lost heat fluxR ttot
0 qlostdt (J)

Thermal
efficiency
g

Cast iron 3 Without 7 377.5 139.6 0.482

3 Without 7.75 378.4 136.9 0.483

3 Without 8.25 371.5 132.1 0.474

3 Without 9 372.2 129.3 0.475

3 SN 4 7 379.5 120.6 0.485

3 4 7.75 380.3 119.4 0.486

3 4 8.25 373.3 114.8 0.477

3 4 9 373.8 112.4 0.477

3 PSZ 1 7 382.5 97.3 0.488

3 1 7.75 383.4 98.1 0.490

3 1 8.25 376.3 94.9 0.481

3 1 9 376.6 91.4 0.481

Aluminum
4.5

Without 7 377.2 141.9 0.482

4.5 Without 7.75 378.1 139.1 0.483

4.5 Without 8.25 370.8 134.2 0.474

4.5 Without 9 372.0 131.3 0.475

4.5 SN 4 7 379.3 122.6 0.484

4.5 4 7.75 380.1 120.3 0.485

4.5 4 8.25 373.3 117.2 0.477

4.5 4 9 373.8 115.1 0.477

4.5 PSZ 1 7 382.5 100.5 0.488

4.5 1 7.75 383.2 98.9 0.489

4.5 1 8.25 376.0 94.1 0.480

4.5 1 9 376.6 94.8 0.481

Results obtained by using the optimized cam-lever system are shown. SN Silicon nitride; PSZ
Plasma spray zirconia
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thickness 3 mm and PSZ thermal insulation of 1.5 mm thickness. Three different
values of the auto-ignition moment tz are considered. The difference in the cam
profiles is larger during the power stroke (crank angle A′ ranging between 0° and
180°). The cam size increases by up to 32% on the local polar radius when the
auto-ignition moment tz increases from 7 to 9 ms. Note that the maximum polar
radius for different cams occurs at different values of the crank angle. These par-
ticular crank angle values increase by increasing tz. The optimum auto-ignition
moment tz;opt ¼ 7:75� 10�3 s is associated with a middle size cam.

For given auto-ignition moment tz, the charge temperature T is higher for the
classical rod-crank system than for the optimally controlled cam-lever system
(Fig. 21.16a). The peak charge temperature of the optimized system does not
depend significantly on tz. However, the moment when the maximum temperature
occurs increases by increasing tz. This is in good concordance with the comments
on Fig. 21.15 concerning the dependence of cam’s maximum polar radius on tz.
Note that the maximum polar radius of the cam is associated with minimum charge
volume, when high charge temperatures are obtained.

The net output work W of the optimally controlled system is higher than that of
the classical system, as expected (Fig. 21.16b). The optimization of the cam profile

Fig. 21.15 Optimal cam profiles as a function of the auto-ignition moment tz for a cylinder wall
made of aluminum of thickness 4.5 mm and a PSZ thermal insulation of thickness 1 mm. The
optimum auto-ignition moment is tz;opt ¼ 7:75� 10�3 s. The unit for the left side scale is meter.
The angular coordinate corresponds to crank angle A (=180° at the top-dead-center, i.e. the
position when the piston is closest to the fire deck)
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makes the net output work at the end of the cycle to be weakly dependent on tz.
Changing tz from 7 to 9 ms is associated with an output work variation of about
1.5%. When the classical rod-crank system is considered, the net output work at the
end of the cycle has a stronger dependence on tz (of about 25%).

21.3.2.3 Cooling Convection Coefficient

The effectiveness of the cooling process may be quantified through the value of the
convection heat transfer coefficient hc. Different values have been used in literature.
For two different fixed heat flux boundary conditions, the surface averaged value of
hc in Wang (2009) is 836 and 1287 W/(m2 K), respectively. When fixed temper-
ature boundary conditions are used, the surface averaged value of hc is
2142 W/(m2 K) (Wang 2009). In Table 3 of Divis et al. (2003) the convection heat
transfer hc is about 3000 W/(m2 K) in cooling passages for bulk cooling fluid
temperature 350 K. However, when local boiling occurs at surface the heat transfer
coefficient is significantly (even three times) higher (see Fig. 5 of Divis et al.
(2003)).

Table 21.7 shows the dependence of the wall temperature Twg, net output work
W, time integrated lost heat flux qlost and thermal efficiency g on the value of the
convection heat transfer coefficient hc. Optimized cam-lever systems have been
considered.

Fig. 21.16 Several quantities for the optimally controlled cam-lever system and the classical
rod-crank system as a function of the crank angle A′ (set to zero at the top-dead-center, i.e. the
position when the piston is closest to the fire deck). Different values of the auto-ignition moment tz
have been considered. a Charge temperature; b Work generated until time
t ¼ ttotðA0 þ 180

� Þ=360�
, i.e. WðtÞ ¼ R t0 NRTðsÞvðsÞ=xðsÞ � av2ðsÞ½ �ds
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The temperature Twg decreases significantly by increasing hc (up to 200°,
depending on the design solution). Similarly, the lost heat flux qlost decreases by
increasing hc. No local optimum value of hc is found. The net output work and the
efficiency slightly decrease (by about 1%) when hc increases from 1000 W/(m2K)
to 5000 W/(m2 K). Each value of hc is associated with a different optimal cam
profile and this explains the small range of variation for W and g.

For given cylinder wall material and given value of hc, W and g increase by
decreasing the thermal conductivity of the insulation material or by increasing the
thickness of thermal insulation. However, the dependence of W and g on the
thermal insulation properties is weak (less than 1%).

Table 21.13 in Appendix 21C is similar to Table 21.7 but the classical rod-crank
system is considered. Most qualitative comments associated with Table 21.7 apply
in case of Table 21.13, too. Figure 21.23 in Appendix 21C shows the pressure–
volume diagram for optimally controlled cam-lever systems. Two values of the heat
convection coefficient hc have been considered. The higher value of hc is associated
with a slightly lower pressure during the compression stroke.

Table 21.7 Dependence of wall temperature Twg, net output work W, time integrated lost heat
flux qlost and thermal efficiency g on the value of the convection heat transfer coefficient hc

Thickness
of wall
material
(mm)

Thickness of
thermal
insulation
material
(mm)

Convection heat
transfer
coefficient hc
[W/(m2 K)]

Wall
temperature
Twg (K)

Work
W (J)

Time
integrated lost
heat fluxR ttot
0 qlostdt (J)

Thermal
efficiency
g

Cast iron 3 Without 1000 654.9 374.7 104.6 0.479

3 Without 3000 489.9 371.5 132.1 0.474

3 Without 5000 447.1 370.8 138.8 0.474

3 SN 4 1000 711.6 375.9 95.0 0.480

3 4 3000 592.5 373.3 114.8 0.477

3 4 5000 560.7 372.9 120.8 0.476

3 PSZ 1 2000 746.9 376.8 88.7 0.481

3 1 3000 718.1 376.1 94.9 0.480

3 1 5000 698 375.8 98.2 0.480

Aluminum
4.5

Without 1000 638.9 374.4 108.2 0.478

4.5 Without 3000 476.4 371.3 134.2 0.474

4.5 Without 5000 433.7 370.5 140.8 0.473

4.5 SN 4 1000 698.6 375.9 98.1 0.480

4.5 4 3000 581.7 373.3 117.2 0.477

4.5 4 5000 551.8 372.7 122.3 0.476

4.5 PSZ 1 1000 801.2 378.2 79.3 0.483

4.5 1 3000 716 376.0 94.1 0.480

4.5 1 5000 695.5 375.5 97.6 0.480

Results obtained by using the optimized cam-lever system. SN Silicon nitride; PSZ Plasma spray zirconia
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Figure 21.17 shows the dependence of the charge temperature T on the heat lost
flux qlost for the classical rod-crank system (Fig. 21.17a) and optimally controlled
cam-lever system (Fig. 21.17b). Two cases have been considered, i.e. the cylinder
is, and is not, thermally insulated, respectively. The geometrical shape of the
function TðqlostÞ is similar for both systems and cases. The function is a closed
curve for the insulated cylinder and an almost closed curve for the cylinder without
insulation. Explanations follow. The inferior branch of these curves corresponds to
the compression stroke. The curve is closed or almost closed depending on the
charge temperature at the end of the power stroke. For given value of the charge
temperature, the cylinder without insulation allows a higher heat loss flux than the
insulated cylinder. Therefore, the curve for the insulated cylinder is always placed
higher than the curve of the cylinder without insulation. The surface area delimi-
tated by the curves is higher for the optimally controlled system than for the
classical system, for both insulated and not-insulated cylinders. Also, the extension
on the abscissa is smaller for the optimally controlled system than for the classical
system, for both insulated and not-insulated cylinders. For both systems, the surface
area delimitated by the function TðqlostÞ is larger for the cylinder without insulation
than for the insulated cylinder.

Figure 21.18 shows optimal cam profiles as a function of the thermal insulation
for a cylinder wall made of aluminum of thickness 4.5 mm. The value of the
convection heat transfer coefficient is hc ¼ 1000W=ðm2 KÞ. The cam is smaller for
a cylinder without insulation than for an insulated cylinder. The difference between
the two profiles is higher (but still lower that 3.5% on the local polar radius) during

Fig. 21.17 Dependence of charge temperature on the heat lost flux for an aluminum wall cylinder
of thickness 4.5 mm and PSZ thermal insulation of thickness 1 mm. A convection heat transfer
coefficient hc ¼ 1000W=ðm2 KÞ has been considered. a Classical rod-crank system; b Optimally
controlled cam-lever system
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the compression stroke (crank angle A′ between −180° and 0°). The two profiles
almost superpose during the power stroke (crank angle A′ between 0° and 180°).
Figure 21.18 should be compared with Fig. 21.12 where the case of a cylinder
made of iron cast and a convection heat transfer coefficient hc ¼ 3000W=ðm2 KÞ
has been considered. The two optimal cam profiles during the power stroke are
more differentiated in Fig. 21.12 than in Fig. 21.18. The optimal profiles in
Fig. 21.12 overlap only for values of the crank angle A′ around 0°.

21.4 Conclusions

This chapter showed that there is enough potential for the cam engines, which have
been a success in the beginning of the 20th century, to be reconsidered by the
industry. The optimal piston motion in Daniel cam engines with low heat rejection
has been studied as a specific example. The objective was the maximization of the
net output work. Direct optimal control methods were used. They are useful in case
of complicated switching structures associated with non-regular optimal control
solutions.

Fig. 21.18 Optimal cam profiles for a cylinder wall made of aluminum of thickness 4.5 mm for a
convection heat transfer coefficient hc ¼ 1000W=ðm2 KÞ. Two cases have been considered, i.e.
with and without a PSZ thermal insulation of thickness 1 mm. The unit for the left side scale is
meter. The angular coordinate corresponds to crank angle A (=180° at the top-dead-center, i.e. the
position when the piston is closest to the fire deck)
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The sinusoidal approximation of the piston motion in rod-crank systems over-
estimates (by up to 10%) the net output work and the thermal efficiency, when
compared with the “exact” approach. The radiation process has negligible effects
during the optimization. The approach with no constraint on piston acceleration is a
reasonable approximation.

The main results concerning the optimally controlled Daniel cam engine are as
follows.

1. The net output work W and the thermal efficiency g are larger for the optimized
system than for the rod-crank system (by 12–13%), for similar thickness of
cylinder walls and thermal insulation.

2. Low heat rejection measures are not of significant importance for optimized cam
engines.

3. The optimized cam is smaller in case of a cylinder without insulation than in
case of an insulated cylinder (by up to 8%, depending on the local polar radius).
The difference between the two cam profiles is more obvious during the com-
pression stroke.

4. For given cylinder wall and insulation materials there is an optimum
auto-ignition moment which maximized the work and the thermal efficiency.
The optimum auto-ignition moment does not depend on the wall and insulation
material, neither on the wall and insulation thickness.

5. The optimized cam size increases by up to 32% on the local polar radius, when
the auto-ignition moment increases from 7 to 9 ms. The maximum polar radius
of the cam occurs at different optimum crank angles, for different values of the
auto-ignition moment.

Appendix 21A

21.A.1 Combustion

The combustion process in CIE is described in details in many papers. Reasonably
accurate results may be obtained by using simpler fixed (frozen) composition
analysis in the range of pressure 1–100 bar, temperature 800–2500 K and relative
air-fuel ratio 0.7–3.35 (Ghojel and Honnery 2005). Also, single-zone models are
much simpler and easier to run as compared with multi-zone models.

The simple single-zone combustion model proposed by Burzler et al. (2000) has
been used by other authors (Xia et al. 2012) and is used here. The fuel is usually
injected during the final stage of the compression stroke. It evaporates in the hot air
and after a short delay ignites and starts to burn rapidly. The moment when the fuel
ignites, measured from the start of the compression stroke is called auto-ignition
moment and denoted tz. The reaction coordinate nðtÞ describes the extent of the
combustion. Burzler et al. (2000) used the heat production curves of real CIEs
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investigated by Kleinschmidt (1993) and the following approximation has been
obtained:

nðtÞ ¼
0 for 0� t� tz
1þ t�tz

tb
� 1

� �
exp tz�t

tb

� �
for tz\t� tz þ tb

1 for tz þ tb\t� ttot

8<
: ð21:A:1Þ

with a characteristic combustion duration tb. Before the auto-ignition moment tz the
reaction coordinate is nðt� tzÞ ¼ 0 while nðtÞ ¼ 1 means total combustion. Since
ttot denotes the time for compression and power stroke, the position of the crank
angle A associated with the auto-ignition moment tz is simply approximated by
A ¼ ðtz=ttotÞ 	 360�. Note that A = 180° when the piston is closest to the fire deck.

The charge consists of combustion gases and is treated as an ideal gas whose
time variation of the mole number N and heat capacity C depend on the reaction
coordinate:

NðtÞ ¼ Ni þðNf � NiÞnðtÞ
CðtÞ ¼ Ci þðCf � CiÞnðtÞ

ð21:A:2;A:3Þ

where the subscript i and f denote the initial and final combustion moments,
respectively. The heating function hðtÞ describes the rate of heat generated during
combustion:

hðtÞ ¼ QcNi
_nðtÞ ð21:A:4Þ

Here Qc is the molar heat of the air-fuel mixture.

21.A.2 Heat Losses

During the compression and power strokes, heat losses occur through the cylinder
walls. One denotes by T and Twg the working fluid temperature and the temperature
at the inner surface of the cylinder wall, respectively. Both quantities are space
averages. Two different approaches are considered to calculate the heat flux qc
transferred from the charge towards the cylinder walls. The first approach is called
Newton-type heat transfer and is based on the relationship:

qNc ¼ AkN T � Twg
� 	 ð21:A:5Þ

where kN is an appropriate constant quasi-static heat transfer coefficient.
Equation (21.A.5) is widely used in literature primarily due to its simplicity (Ge
et al. 2011) and is used here as a reference.
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In the absence of an universally applicable heat transfer model for CIEs most
authors prefer simple methods. For instance, the Wiebe method was adopted by
Ghojel and Honnery (2005) while the Whitehouse and Way method was adopted by
Rakopoulos et al. (2008). However, many authors are using the model of Annand
(1963) [see e.g. Burzler et al. (2000); Murthy et al. (2010)]. The Annand model
takes account on both conduction and convection and is based on the relationship:

qAc ¼ AkAðT ; xÞðT � TwgÞ ð21:A:6Þ

where kA is a time-variable heat transfer coefficient given by:

kAðT ; xÞ ¼ a
jðTÞ
d

RebðT; xÞ ð21:A:7Þ

where jðTÞ is charge’s thermal conductivity, Re is Reynolds number while a and
b are empirical coefficients. Relationships used to compute jðTÞ and ReðT; xÞ are
shown in Table 21.8.

During the power stroke solid incandescent carbon particles appear as inter-
mediate combustion products and radiate heat towards the cylinder’s walls. The
following relationship is used to estimate the heat flux qr lost by radiative transfer
(Annand 1963):

qr ¼ AcrðT4 � T4
wgÞ ð21:A:8Þ

Here r is Stefan-Boltzmann constant while c is an empirical coefficient. During
the compression stroke c ¼ 0 while during the power stroke c ranges between 0.04
and 0.32 for CIEs (Annand 1963).

The total heat flux qlost lost by the charge may be obtained simply by summing
the losses by conduction and convection and by radiation, respectively:

qlost ¼ qc þ qr ð21:A:9Þ

where qc is a shorthand for qNc or qAc , depending on the approximation adopted.

Table 21.8 Relationships used to compute kðTÞ and ReðT ; xÞ in Eq. (21.A.7)

Quantity Symbol Units Relationship

1 Charge thermal conductivity jðTÞ J/(K m s) l1Tl2

2 Reynolds number ReðT; xÞ dimensionless q�vd
l

3 Charge density entering relationship line 2 q kg/m3 Mfluid
N
V

4 Average piston speed entering relationship line 2 �v m/s 2ðxf�x0Þ
ttot

5 Charge viscosity entering relationship line 2 l kg/(ms) m1Tm2

All quantities are in SI units. Values used during computations are shown in Table 21.2
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21.A.3 Frictional Losses

The frictional loss rate of mechanical energy wf is proportional to the square of
piston velocity v (Burzler et al. 2000):

wf ¼ av2 ð21:A:10Þ

where a is a coefficient of constant value during the compression and power stroke.
The assumption that the heat generated by friction does not contribute to the engine
heat production as a low-grade heat source is adopted.

Appendix 21B

21.B.1 Classical Rod-Crank System

In case of the classical rod-crank system the piston movement is obtained by using
Eqs. (21.2.3, 21.2.4). Equation (21.2.5) is not needed. In the following, the specific
form of Eqs. (21.2.3, 21.2.4) is derived. The movement of the rod-crank system is
ideally described in Fig. 21.19 where r and l are the length of the crank and rod,
respectively. O and P denote crank and piston position, respectively, while M is the
fire deck position. Also, A is crank angle while x0 and xf denote the minimum and
maximum distance between piston and fire deck. Note that A = 180° when the
piston is closest to the fire deck.

Fig. 21.19 Movement of the
rod-crank system. P denotes
the piston while r and l are the
lengths of the crank and rod,
respectively. A is crank angle
(=180° at the top-dead-center,
i.e. the position when the
piston is closest to the fire
deck)
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Piston position is described in terms of r and l by the following equation:

y ¼ �r cosAþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 A

p
ð21:B:1Þ

where:

A � 2pt
ttot

ð21:B:2Þ

Here t denotes the time while ttot denotes the duration of the compression and
power stroke together. Equation (21.B.1) is now used to derive the piston motion in
x coordinate. One easily sees that:

ymax � y cosA ¼ �1ð Þ ¼ lþ r

ymin � yðcosA ¼ 1Þ ¼ l� r
ð21:B:3a; bÞ

Geometry constraints yield:

xþ y ¼ x0 þ ymax ¼ xf þ ymin � D ð21:B:4a–dÞ

where the constant D is still to be prescribed. Usage of Eqs. (21.B.3a, b) and
(21.B.4a, b) yields

x0 þ rþ l ¼ xf þ l� r ¼ D ð21:B:5a; bÞ

From Eq. (21.B.5a) one finds:

r ¼ xf � x0
2

ð21:B:6Þ

Equations (21.B.5b) and (21.B.6) yield:

l ¼ D� xf þ x0
2

ð21:B:7Þ

Equations (21.B.4a–c) shows that xþ y ¼ D and usage of Eq. (21.B.1) gives:

x ¼ Dþ r cosA�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 A

p
ð21:B:8Þ

From Eqs. (21.B.6), (21.B.7) and (21.B.8) one finds after some algebra:

xðtÞ ¼ xf � x0
2

cosAþD� D� xf þ x0
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xf � x0

2D� ðxf þ x0Þ
� �2

sin2 A

s

ð21:B:9Þ
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This is the piston movement law in xðtÞ coordinates.
In case the distance between the crank shaft and the cylinder is large, the

approximation often used is D ! 1. Then, Eq. (21.B.9) yields:

x ¼ xf � x0
2

cosAþ xf þ x0
2

ð21:B:10Þ

The sinusoidal piston law Eq. (21.B.1) is an approximation often used in
practice. Here the more realistic Eq. (21.B.9) is implemented for the particular case:

D ¼ xf þ x0 ð21:B:11Þ

Equations (21.B.9) and (21.B.11) give:

xðtÞ ¼ xf � x0
2

cosAþ xf þ x0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xf � x0

xf þ x0

� �2

sin2 A

s
ð21:B:12Þ

The speed and acceleration laws _xðtÞ and €xðtÞ, respectively, are given by:

_xðtÞ ¼ 2p
ttot

�r sinA� r2 sinA cosAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 A

p
� �

ð21:B:13Þ

€xðtÞ ¼ 2p
ttot

� �2

�r cosA� r2 cos2 A� sin2 A
� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 A

p � r4 sin2 A cos2 Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � r2 sin2 A

p� �3
2
64

3
75

ð21:B:14Þ

where r and l are given by Eqs. (21.B.6) and (21.B.11), respectively.
Note that in some works the classical rod-crank system under the approximation

of a sinusoidal piston movement has been used as a reference (Hoffmann and Berry
1985; Burzler et al. 2000). In this chapter the “exact” solution Eq. (21.B.12) is used
as a reference. The approximate sinusoidal solution Eq. (21.B.10) is considered
only in Sect. 21.3.1.1.

Appendix 21C

See Figures 21.20, 21.21, 21.22 and 21.23; Tables 21.9, 21.10, 21.11, 21.12 and
21.13.
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Fig. 21.20 Pressure–volume
diagram for optimally
controlled cam-lever system
and classical rod-crank
system. Newton and Annand
heat transfer models are
shown

Fig. 21.21 Pressure–volume
diagram for optimally
controlled cam-lever system.
Two cases have been
considered: no thermal
insulation and a PSZ layer of
1.5 mm thickness,
respectively

Fig. 21.22 Pressure–volume
diagram for optimally
controlled cam-lever system,
for two values of the
auto-ignition moment tz

506 21 Optimization of Daniel Cam Engines



Fig. 21.23 Pressure–volume
diagram for optimally
controlled cam-lever system.
Two values of the heat
convection coefficient hc have
been considered

Table 21.9 Results obtained by using the optimized cam-lever system and the classical rod-crank
system

System Model Work
W (J)

Heating
function
h (J)

Time
integrated lost
heat fluxR ttot
0 qlostdt (J)

Time integrated lost heat
flux per unit cylinder
length

R ttot
0 qlost;ldt (J/m)

Thermal
efficiency
g

Optimal With
radiation

371.5 783.06 132.13 0.1687 0.4744

Optimal Without
radiation

371.5 783.06 132.13 0.1687 0.4744

Classical With
radiation

264.2 783.06 282.39 0.3606 0.3374

Classical Without
radiation

264.2 783.06 282.39 0.3606 0.3374

Two heat loss models are considered, i.e. with radiation and without radiation included, respectively

Table 21.10 The dependence of the net output work W on the module of the maximum
acceleration

Maximum acceleration amaxj j (m/s2) 6000 3000 1000 500 100 50

Work W (J) 371.5 371.5 371.5 371.4 370.5 367.2

Results obtained by using the optimized cam-lever system
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Table 21.12 The same as Table 21.6 but results for the classical rod-crank system are shown

Thickness of
wall material
(mm)

Thickness of
thermal insulation
material (mm)

Auto-ignition
moment
tz ( �10�3 s)

Work
W (J)

Time integrated
lost heat fluxR ttot
0 qlostdt (J)

Thermal
efficiency
g

Cast iron 3 Without 7 208.5 349.6 0.266

3 Without 7.75 244.1 308.2 0.312

3 Without 8.25 264.2 282.4 0.337

3 Without 9 289.2 244.2 0.369

3 SN 4 7 289.2 244.2 0.269

3 4 7.75 251.1 285.9 0.321

3 4 8.25 270.8 260.9 0.346

3 4 9 295.3 223.5 0.377

3 PSZ 1 7 225.8 296.3 0.288

3 1 7.75 248.5 272.5 0.317

3 1 8.25 279.0 234.2 0.356

3 1 9 303.2 196.9 0.387

Aluminum
4.5

Without 7 207.5 352.7 0.265

4.5 Without 7.75 243.2 311.2 0.311

4.5 Without 8.25 263.3 285.2 0.336

4.5 Without 9 288.4 246.9 0.368

4.5 SN 4 7 215.4 328.4 0.275

4.5 4 7.75 250.5 287.7 0.320

4.5 4 8.25 260.4 276.1 0.333

4.5 4 9 294.6 225.8 0.376

4.5 PSZ 1 7 225.0 298.8 0.287

4.5 1 7.75 259.5 259.2 0.331

4.5 1 8.25 278.5 234.6 0.356

4.5 1 9 302.5 199.3 0.386

SN Silicon nitride; PSZ Plasma spray zirconia
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Chapter 22
Photochemical Engines

Photochemical engines are based on the existence of a working fluid in which
photochemical reactions take place. Such engines have been studied by
Mozurkewich and Berry (J Appl Phys 54:3651, 1983) and Watowich et al. (J Appl
Phys 58:2893, 1985) in case of mono-molecular chemical reactions. In this chapter,
an engine model based on a bi-molecular photochemical reaction is presented
(Watowich et al. in Il Nuovo Cimento 104 B: 131–147, 1989). The engine runs due
to the oscillations of a piston located in a cylinder. These oscillations are generated
by oscillations of thermodynamic parameters inside the working fluid, resulting
from the nonlinear interaction between the fluid, the external radiation source and
the environment. In order to transfer the mechanical work to the user, the piston is
connected to a cam-tappet system, to which a high mechanical inertia flywheel is
attached. The purpose of the analysis is to determine the optimal movement of the
piston, resulting either in (1) the maximization of the mechanical work provided in
a finite interval of time, or (2) the minimization of the entropy production in the
same time interval.

22.1 Engine Model

The engine powered by radiation (light) energy is shown in Fig. 22.1.
A cylinder of cross-section area Ax contains a piston of mass m. At one end of

the cylinder there is a window transparent to radiation. The environment is regarded
as a heat source of temperature T0.

The engine operates in endoreversible way, i.e. the working fluid is balanced fast
enough from the point of view of mechanical and thermal interactions to assume
that only reversible processes occur inside it. In other words, the irreversible pro-
cesses can only occur at the contact between the working fluid and the environment.
This means that the time scale for the processes inside the working fluid is much

© Springer International Publishing AG 2017
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shorter than the time scale of processes occurring at the border of the system.
A consequence of this hypothesis is that the fluid is spatially homogeneous and the
system is in internal balance.

The most important irreversible processes are the friction between the piston and
the cylinder wall and the heat conduction through the cylinder walls.

The working fluid consists of an inert gas, where the following exothermic
reaction occurs:

2 SO3F $ S2O6F2 ð22:1:1Þ

Assume that the inert gas is present in large amount. This allows treating the
working fluid as having the properties of a perfect gas of heat capacity CV and
number of moles N. Also, the large amount of inert gas allows to neglect the
contribution that the enthalpy change of the reaction system has to the heat transfer.

The fluorosulphate free radical selectively absorbs the light and participates in
the following chemical reaction:

SO3Fþ photons ! SO3F� þ thermal energy ð22:1:2Þ

The excited fluorosulphate free radical, SO3F�, passes quickly in the stable
condition SO3F, resulting thermal energy that increases the temperature of the
system. The temperature rise, in turn, shifts the equilibrium reaction (22.1.1) in the
sense of producing more SO3F. Therefore, a positive feedback effect occurs.

The differential equation that describes the evolution of the (uncontrolled)
piston is

dx
dt

¼ v ð22:1:3Þ

where x and v are the position and velocity of the piston, respectively. The pressure
p in the cylinder is given by

p ¼ NRT
Axx

ð22:1:4Þ

Fig. 22.1 Engine powered
by radiation (light) energy
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where R is the universal constant of ideal gases. The net force Fpiston of the fluid,
which acts on the piston, is

Fpiston ¼ Ax p� p0ð Þ ð22:1:5Þ

where p0 is the pressure behind the piston (assumed to have a constant value). The
friction force Ffriction between piston and cylinder is

Ffriction ¼ �av ð22:1:6Þ

where a is a coefficient of friction. The total force Ftotal acting on the piston is
given by

Ftotal ¼ Fpiston þFfriction ð22:1:7Þ

Newton’s equation of piston motion is

m
dv
dt

¼ Ftotal ð22:1:8Þ

Using Eqs. (22.1.4)–(22.1.18) one finds

dv
dt

¼ 1
m

Ax
NRT
Axx

� p0

� �
� av

� �
ð22:1:9Þ

First law of thermodynamics applied to the gas inside the cylinder states that

NCV
dT
dt

¼ � _W þ h ð22:1:10Þ

where _W is the mechanical power produced by the gas and h is the released heat
flux (sometimes called thermal function). The calculation of these two quantities is
shown below. The elemental work produced by the gas is:

dW ¼ Fpressuredx � pAxdx ð22:1:11Þ

Using Eqs. (22.1.4) and (22.1.11), it is found that

dW ¼ NRT
x

dx ð22:1:12Þ

The mechanical power produced by the gas is:

_W � dW
dt

¼ NRT
x

dx
dt

¼ NRTv
x

ð22:1:13Þ
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To calculate the thermal function h, two contributions must be taken into
account: (i) a heat source which corresponds to absorption of light inside the
cylinder and (ii) a flux of heat lost by conduction through the lateral surface and the
heads of the cylinder.

To determine the source of heat due to light absorption, one denotes by / the
radiation energy flux incident on the transparent end of the cylinder. The flux of
energy, /remaining, carried by the beam after some photons are absorbed by the
working fluid is given, according to Beer-Bouguer-Lambert law, by:

/remaining ¼ / expð�a0N
0Þ ð22:1:14Þ

where a0 is the coefficient of light absorption by SO3F and N 0 is the number of
moles of SO3F at time t. The flux of energy of the beam that was converted into
heat, /converted , is

/converted ¼ /� /remaining ¼ /� / expð�a0N
0Þ ð22:1:15Þ

Next, the number of moles N 0 of SO3F is determined. For this, assume that the
chemical reaction (22.1.1) is in equilibrium. First, the general case is considered,
according to the chemical reaction:

X
Nici !

X
N 0
i c

0
i ð22:1:16Þ

where Ni;N 0
i represent the number of moles of reactants and reaction products,

respectively, and ci; c0i are their concentrations. The equilibrium constant of this
reaction, Kp, is given by the classical relationship (Vilcu 1975, p. 214; Eq. 9.2.17):

Kp ¼ cN1
1 cN2

2 . . .

c
0N 0

1
1 c

0N 0
2

2 . . .
ðRTÞDN ð22:1:17Þ

where DN represents the variation of the number of moles per reaction. The
chemical reaction inside the cylinder is given by Eq. (22.1.1). It follows that for
each two moles of reactant one mole of the reaction product is obtained. The
variation of the number of moles per reaction is, therefore:

DN ¼ 1� 2 ¼ �1 ð22:1:18Þ

Using Eq. (22.1.17) in the particular case of the reaction (22.1.1), the following
expression of the equilibrium reaction constant is obtained

Kp ¼ cS2O6F2

cSO3F
ðRTÞDN ð22:1:19Þ

If the number of moles of SO3F at a particular moment is N 0, then the number of
moles of S2O6F2 is N0 � N 0=2. This is because it is thought that in the beginning of
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the reaction there were N0 molecules of S2O6F2, and as a result of the reaction, for
N 0 molecules of SO3F produced, one consumes N 0=2 molecules of S2O6F2.

Using the common way of defining the concentration, one can write:

cSO3F ¼ N 0

V
cS2O6F2 ¼

N0 � 1
2N

0

V
¼ 2N0 � N 0

2V
ð22:1:20; 21Þ

Substituting Eqs. (22.1.18), (22.1.20) and (22.1.21) into Eq. (22.1.19), one finds

Kp ¼ 2N0 � N 0

2N 02
V
RT

ð22:1:22Þ

The volume occupied by gas is given by V ¼ Axx. Substituting this expression in
Eq. (22.1.22) and solving in the unknown N 0, one finds:

N 0 ¼ �xþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 16N0KpRTx=Ax

p
4KpRT=Ax

ð22:1:23Þ

Using Eqs. (22.1.15) and (22.1.23), the flux of light energy transformed into
internal energy of the working fluid is found:

/converted ¼ / 1� exp � a0
4KpRT=Ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 16N0KpRTx=Ax

q� �� �
ð22:1:24Þ

To determine the heat flux lost through the cylinder walls, one denotes by j1 and
j2 the heat transfer coefficients through the cylinder heads and lateral surface,
respectively. These coefficients are further considered constant. The flux of heat lost
through the walls is given by a Newton-like relationship, i.e.

qlost ¼ 2Axj1 þ 2xj2
ffiffiffiffiffiffiffiffi
pAx

p� �
T0 � Tð Þ ð22:1:25Þ

Note that this flux of heat has a negative sign, because T0\T .
The thermal function h is determined by taking into consideration the flux of

energy that enters the cylinder and that which leaves the cylinder, respectively:

h ¼ /converted þ qlost ð22:1:26Þ

The dependence of the reaction constant on the thermodynamic parameters of
the fluid can be modeled by using the common relationship:

Kp ¼ K0 exp
�DHþ TDS

RT

� �
ð22:1:27Þ

where DH and DS represent the variation of enthalpy and entropy, respectively,
during the reaction (22.1.1). These two values are considered constant for the entire
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range of values of temperatures and pressures at which the engine operates. K0 in
Eq. (22.1.27) is a constant (which is assumed to have the value 1 atm−1).

The following dimensionless variables are defined

n ¼ x
x0

h ¼ T
T0

c ¼ vNCV

2x0Axj1
s ¼ 2tAxj1

NCV
ð22:1:28Þ

These dimensionless variables correspond to the displacement, temperature,
speed and time, respectively. They allow rewriting Eqs. (22.1.3), (22.1.9) and
(22.1.10) in the form:

_n ¼ c _c ¼ b7
h
n
� p0

b4b5
� b6c

� �
_h ¼ � b1hc

n
þx ð22:1:29–31Þ

The dimensionless heat function x has the form:

x ¼ b3 1� exp
�a0
b4hd

�nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b4b5hnd

q� �� �� �
þ 1þ b2nð Þ 1� hð Þ

ð22:1:32Þ

where

d ¼ exp
�h0 þ s0h

h

� �
ð22:1:33Þ

The dimensionless parameters used in Eqs. (22.1.29)–(22.1.33) are defined as
follows:

h0 ¼ DH
RT0

s0 ¼ DS
R

p0 ¼ 16p0N0

Z
b1 ¼

R
CV

b2 ¼
x0j2

ffiffiffi
p

p
j1

ffiffiffiffiffi
Ax

p b3 ¼
/

2Axj1T0

b4 ¼
4RT0K0

x0
b5 ¼

4N0

Ax
b6 ¼

2aAxj1x20
RT0CVN2 b7 ¼

N3C2
VRT0

4mA2
xj

2
1x

2
0

ð22:1:34Þ

Here Z represents the number of moles of inert gas in the cylinder, which has the
property that

N ¼ NSO3F þNS2O6F2 þ Z � Z ð22:1:35Þ

where N is the total number of moles inside the cylinder. The final approximation in
Eq. (22.1.35) is a consequence of the fact that the number of moles of inert gas in
the cylinder is much higher than the number of moles of reactant and than the
number of moles of reaction product.
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22.2 Engine Operation Mode

The state parameters in dimensionless form are n; c; hð Þ. There are several sta-
tionary states of the equations system (22.1.29)–(22.1.33), i.e. more set of values of
n; c; hð Þ to which all temporal derivatives of Eqs. (22.1.29)–(22.1.31) cancel. For
example, consider an engine described by the thermochemical, thermodynamics
and mechanical parameters of Table 22.1.

Given Table 22.1, one can shows that the stationary states can occur for the
following values of the parameters n; c; hð Þ: s1 (0.8947; 0.0000; 1.0033), s2 (1.2569;
0.0000; 1.4096), s3 (1.5741; 0.0000; 1.7653) (Watowich et al. 1989). Through an
analysis of stability it can be shown that the states s1 and s3 are stable stationary
states and s2 is unstable stationary state.

Table 22.1 Parameters of an engine driven by radiation (light) energy

Thermochemical parameters

h’ −36.884

s’ −18.378

a0 2.0 � 106 cm2 mol−1 SO3F

K0 1 atm−1

Thermodynamic parameters

Reference temperature, T0 300 K

Reference length, x0 1.0 cm

External pressure, p0 200 torr

Caloric capacity at constant volume, CV 2.5 R

Excess of inert gas, Z/N0 1.0 � 103

Parameters bs

b1 4.0000 � 10−1

b2 1.0000

b3 5.2632 � 101

b4 9.8468 � 104

b5 3.8643 � 10−3

b6 1.0211 � 10−2

b7 3.2092 � 101

Time duration

Expansion time (s1 − s0) 0.5

Compression time (s2 − s1) 0.5

Boundary conditions

nI 1.0000

nf 2.0000

hI 1.6280

hf 1.2464
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It may be shown that the system parameters tend to oscillate around the unstable
state values. These oscillations can be used to extract mechanical work from the
system, by coupling the system with a flywheel, through the cam-tappet mechanism
mentioned at the beginning of this section. The flywheel is a source of work for the
system, during time intervals in which it must receive work to continue the oscil-
lating movement. The cam-tappet mechanism can be designed in such a way that
the piston moves at the desired speed. Next, those ways of piston displacement
which extremize certain performance criteria (or objective functions) are
determined.

22.3 Optimal Trajectories of the System

The optimal trajectories of the system (in the space of the state parameters) are
determined separately for: (i) maximizing the work generated and (ii) minimizing
the entropy generation. The piston is no longer free, but connected via a tappet to a
cam through which its speed can be controlled.

The optimal control theory is used to determine the time evolution of the piston
speed, c sð Þ, which extremizes the performance criterion, taking into account,
simultaneously, the constraints imposed by the dynamic equations. The dimen-
sionless variables previously defined are as follows: n sð Þ and h sð Þ are state vari-
ables and c sð Þ is the control variable. The performance criterion is expressed as a
functional dependent on these state variables and control.

One assumes that each cycle is composed of an expansion process and a com-
pression process. The duration of each process is assumed to be fixed. Maximizing
the work produced during any of the two processes automatically maximizes the
average power generated during that process. Also, the boundary conditions are set
(i.e. at the beginning and end of each process) for the piston position and for the
temperature of the working fluid.

In the fixed interval of time, tf � ti, the net work Wnet provided by the engine is:

Wnet ¼
Ztf

ti

NRTv
x

� av2
� �

dt ð22:3:1Þ

The production of entropy Sir due to irreversible processes occurring during the
same time interval is

Sir ¼
Ztf

ti

�2Axj1 þ 2xj2
ffiffiffiffiffiffiffiffi
pAx

p� �
T � T0ð Þ 1

T
� 1
T0

� �
þ av2

T0

� �
dt ð22:3:2Þ
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Here it has been assumed that entropy is generated due to heat transfer through
the cylinder walls and due to friction of the piston on the inner surface of the
cylinder. It was also assumed that the heat produced by friction is entirely trans-
ferred to the environment.

Rewriting Eqs. (22.3.1) and (22.3.2) in dimensionless form, one finds:

Cnet ¼
Zsf

si

hc
n
� b6c

2
� �

ds
X

ir

Zsf

si

� 1þ b2nð Þ h� 1ð Þð1
h
� 1Þþ b1b6c

2
� �

ds

ð22:3:3; 4Þ

In Eqs. (22.3.3) and (22.3.4) the following notations have been used:

Cnet � Wnet

b0
Rir � b1T0Sir

b0
b0 � NRT0ð Þ ð22:3:5Þ

The state variables n and h are subject to restrictions of the differential
Eqs. (22.1.29) and (22.1.31). The boundary conditions during the expansion pro-
cess are:

n s0ð Þ ¼ ni n s1ð Þ ¼ nf h s0ð Þ ¼ hi h s1ð Þ ¼ hf ð22:3:6a–dÞ

The boundary conditions for the compression process are:

n s1ð Þ ¼ nf n s2ð Þ ¼ ni h s1ð Þ ¼ hf h s2ð Þ ¼ hi ð22:3:7a–dÞ

For example, the extreme positions of the piston, ni and nf , are fixed at values 1.0
and 2.0, respectively. The temperatures at the ends of the piston stroke should be
between the temperatures of the stable stationary states of the system and are chosen
so that the maximum heating to occur at ni and the minimum heating to take place
at nf . The temperature corresponding to maximum heating is hi ¼ 1:6280 and that
corresponding to minimum heating is hf ¼ 1:2464.

The Hamiltonian function is built for each objective function given by
Eqs. (22.3.3) and (22.3.4), taking into account the restrictions imposed on the state
variables by the differential equations. The control variable c sð Þ that maximizes the
Hamiltonian, maximizes the appropriate objective function, too. The control vari-
able is a function of the state variables h sð Þ and n sð Þ and their conjugate (or
adjunct) variables, k1 sð Þ and k2 sð Þ (the Lagrange multipliers). The state and adjoint
variables are determined by solving the system of nonlinear differential equations,
built for every Hamiltonian in hand. Some details are presented in the following.
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22.3.1 Maximizing the Work Produced

In this particular case, the Hamiltonian is given by:

HC ¼ hc
n
� b6c

2 þ k1 � b1hc
n

þx

� �
þ k2c ð22:3:8Þ

where the expression of x is specified by Eqs. (22.1.32) and (22.1.33). The optimal
trajectory of the piston is determined by solving the system of differential
Eqs. (22.1.29) and (22.1.31) and the following two equations for the adjoint
variables:

_k1 ¼ � @HC

@h
_k2 ¼ � @HC

@n
ð22:3:9; 10Þ

According to the maximum principle of Pontryagin, the control variable c must
lead to the extremization of the Hamiltonian. From the condition @HC=@c ¼ 0, one
obtains:

c ¼ � 1
2b6n

ðb1k1h� k2n� hÞ ð22:3:11Þ

Using Eq. (22.3.11) makes the equations of the adjoint variables, (22.3.9) and
(22.3.9), and the dynamic Eqs. (22.1.29) and (22.1.29), to be independent on the
control variable.

22.3.2 Minimizing the Entropy Production

In this case, the Hamiltonian is given by:

HR ¼ 1þ b2nð Þ h� 1ð Þ 1
h
� 1

� �
� b1b6c

2 þ k1 � b1hc
n

þx

� �
þ k2c ð22:3:12Þ

where x is specified by Eqs. (22.1.32) and (22.1.33). The piston trajectory that
minimizes the production of entropy is obtained by solving the system consisting of
the differential Eqs. (22.1.29) and (22.1.31) and of the following equations of the
covariables:

_k1 ¼ � @HR

@h
_k2 ¼ � @HR

@n
ð22:3:13; 14Þ
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The control variable c satisfies the extreme condition, @HR=@c ¼ 0, giving:

c ¼ � 1
2b1b6n

ðb1k1h� k2nÞ ð22:3:15Þ

The comments of Sect. 22.3.1 concerning the maximization of the mechanical
work apply here, too.

22.4 Results and Discussions

The two systems of equations that arise when the objective functions listed above
are used, can be solved by numerical methods. The algorithm is as follows. First,
initial values are chosen for k1 s0ð Þ and k s0ð Þ. Using these initial values, one
integrates the differential equations, and the results obtained for h sf

	 

and n sf

	 

are

compared with the expected values of these variables at the end of the time interval.
Then, the values of k1 s0ð Þ and k s0ð Þ are repeatedly changed, so as to minimize the
difference between the expected and calculated values of h sf

	 

and n sf

	 

.

For a more complete description of the engine operation, several new quantities
are defined. Thus, the work lost by friction between the piston and the cylinder
during a process is characterized by the quantity:

LF ¼
Zsf

si

b6c
2ds ð22:4:1Þ

The increasing of the internal energy due to radiative heating is described by the
quantity:

QR ¼ 1
b1

Zsf

si

b3 1� exp � a0
b4hd

�nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b4b5hnd

q� �� �� �
ds ð22:4:2Þ

where d is given by Eq. (22.1.33). The flux of heat lost through the walls of the
cylinder to the environment is proportional to the quantity:

Lh ¼ 1
b1

Zsf

si

1þ b2nð Þ 1� hð Þds ð22:4:3Þ

By multiplication with b0, the quantities LF ;QR and Lh can be converted into
quantities with energy dimension.
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The thermal efficiency can now be defined by the ratio of the net mechanical
work and the increase of internal energy due to radiative heating:

g ¼ Cnet

QR
ð22:4:4Þ

The results presented in Fig. 22.2 and Table 22.2 correspond to the input data of
Table 22.1.

Figure 22.2 shows the time variation of the optimized piston speed, corre-
sponding to the two objective functions. The discontinuity that occurs at s ¼ 0:5
marks the time moment when the boundary conditions change from the expansion
process to the compression process.

Fig. 22.2 Optimal profiles of the dimensionless piston speed, for cycles that provide maximum
mechanical work and generate minimum entropy, respectively (adapted from Watowich et al.
1989)

Table 22.2 Quantities characterizing the optimized engine operation (adapted from Watowich
et al. 1989)

Performance criterion Process Rir Cnet QR Lh LF η

Maximum work Expansion 0.1918 1.0099 1.479 −1.392 0.031 0.682

Compression 0.1583 −0.9648 1.188 −1.157 0.041 −0.812

Total 0.3501 0.0451 2.667 −2.549 0.073 0.102

Minimum entropy
generation

Expansion 0.1735 0.9844 1.395 −1.338 0.025 0.706

Compression 0.1465 −0.9789 1.160 −1.157 0.027 −0.843

Total 0.3200 0.0056 2.555 −2.496 0.052 0.002
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Table 22.2 shows some results obtained during the expansion and the com-
pression processes. Both performance criteria were considered.

The upper limits of the performance predicted by traditional (equilibrium)
thermodynamics are usually very optimistic. An engine powered by light energy
can not work reversibly and, therefore, it can not be rigorously characterized by a
Carnot efficiency. However, as often used in practice, the cycle of this engine may
be ‘carnotized’. For this, a reversible heat engine is assumed that would run
between the extreme temperatures reached during the operation of the engine driven
by light energy. The reversible heat engine thus defined can be associated with a
Carnot efficiency. Doing so, in case of cycle that maximizes the work, a Carnot
efficiency of 0.260 is obtained. If the entropy production is minimized, the Carnot
efficiency is 0.234. By comparing these two values with the values shown in
Table 22.2, it is seen that the analysis using the optimal control method provides
more realistic upper limit of the performance than traditional thermodynamic
analysis. In the specific case previously analyzed, the maximum performance
predicted by the analysis that takes into consideration that the development process
lasts a finite interval of time are, even after optimizing engine operation, with one or
two orders of magnitude lower than those assessed using the methods of traditional
thermodynamics.

Besides the fact that it enables more realistic assessment of the performance
limits, the optimal control method has the advantage that provides information
about the optimal movement of the piston. This allows, in turn, to determine the
relative importance of various mechanisms of mechanical power losses. As shown
in Table 22.2, the power losses due to heat losses are three to five times higher than
the losses due to friction. It can be concluded that when the funds allocated to
improve such an engine are fixed, a larger fraction of the costs should be used to
improve the thermal insulation of the cylinder.
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Part VI
Applications: Lubrication

Part VI consists of Chap. 23 which shows how optimal control methods may be
used to solve lubrication problems.
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Chapter 23
Optimization of One Dimensional
Slider Bearings

23.1 Introduction

Bearings reduce the frictional losses between two rotating or sliding mechanical
parts. In practice, slider bearings are designed for supporting transverse load, the
lubricating pressure being generated by the lateral motion of two surfaces which are
not quite parallel (Lin and Hung 2004; Farmer and Shepherd 2006). Slider bearings
are widely used in the transmission systems of many engineering applications like
mechanical seals, machine tool ways, piston rings, plain collar thrust bearings and
computer hard disks for their load-carrying capacity, excellent stability, and dura-
bility (Garcia et al. 1994; Ozalp and Ozel 2003; Farmer and Sphepherd 2006;
Cupillard 2009).

Finding the optimal bearing profile started with the seminal work of Rayleigh
(1918). He showed that there exists a profile with a simple jump discontinuity
which supports more weight than do profiles of the form 1þmxn or ebx with m,
n and b positive (Mcallister et al. 1979). This geometry eventually became known
as the Rayleigh step bearing; it consists of two parallel surfaces—one having a
rectangular cross-sectional dam. Rayleigh tried to find the profile which supports
the greatest weight but he only found a profile which caused the first variation of the
weight functional to vanish. The problem has been fully solved by Mcallister et al.
(1979). Using the calculus of variations, one can verify that the stepped bearing is
the optimum unconstrained solution for a one-dimensional slider (Brewe 2001). An
algorithm to optimize the shape of a 3D square slider bearing has been derived by
Li and Braun (2007). The optimum shape was found to be close to trapezoidal
pocket geometry (Li and Braun 2007; Cupillard 2009). A variational technique has
been used by Rohde (1972) to obtain the bearing profile which maximizes the load
carrying capacity of an infinite length journal bearing. The solution is a concentric
step bearing.

The step bearing has been first applied in practice in 1950 to sector-shaped thrust
bearings and later to journal bearings. However, the marketplace has been captured
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by the Kingsbury and Michell tilting-pad bearing, despite they are more difficult to
fabricate and they have 20% lower load capacity than the infinitely wide step
bearing (Brewe 2001). Continuous demand from industry requires lighter compo-
nents with longer lifetimes, less power loss and lower lubricant consumption. An
alternative that can improve bearing performance without changing the operating
conditions or lubricant properties is to introduce changes in the geometry of the
contact. This can be done via new surface shapes [such as a step or a texture
(Cupillard 2009) or innovative design solutions (Ozalp and Umur 2006)]. Rapid
developments in computer capabilities have enabled numerical research. Designs
tend to be more and more aggressive with lower margin for error (Cupillard 2009).

The profile optimization of one-dimensional sliding bearings presented in this
chapter is based on Badescu (2015).

23.2 Model

A great deal of emphasis was placed on the effectiveness of the bearing geometry to
generate pressure (self-acting bearings) and thus increase load capacity (Brewe
2001). The geometry of the contacting elements determines the shape of the
lubricant film. Various researchers have considered different configurations of the
lubricating film in the clearance zone in their analysis (Oladeinde and Akpobi
2010). Eight typical geometries can be seen in Fig. 27.6 of Brewe (2001). They
include partial arc bearings and the wedge-shaped configurations used in the
classical Kingsbury and Michell thrust bearings. Other geometries are the parabolic
and the exponential profiles (Lin and Hung 2004; Lin and Lu 2004; Oladeinde and
Akpobi 2010). The inclined shaped slider has been analyzed in most studies (Garcia
et al. 1994; Miller and Green 1998; Yurusoy 2003; Lin and Lu 2004; Bayrakceken
and Yurusoy 2006; McCarthy 2008). A few studies have concentrated on waviness
profiles (see Ozalp and Umur (2006) and references therein).

One dimensional (1D) bearings are considered here. 2D modeling is to be
preferred instead of 1D modeling, when possible. This is not the case with optimal
control modeling. 1D optimal control has a solid background provided by
Bellman-Jacoby theory and the powerful Pontryagin Maximum Principle. On the
other hand, 2D optimization is much more involved. Several artificial
intelligence-inspired techniques (such as genetic algorithms (Buscaglia et al. 2005)
and parametric studies (Dobrica and Fillon 2006) have been used but they optimize
in fact pre-defined classes of bearing profiles. 2D optimal control belongs to the
category of optimal control with distributed parameters. This branch made signif-
icant progress in the recent years but a mature theory is still missing.

Several hypotheses are usually adopted during bearing optimization. For
instance, infinitely wide bearings (i.e., no side leakage) are considered in many
papers (e.g. Brewe 2001; San Andres 2014) and this is the assumption adopted
here. A Newtonian, incompressible, isoviscous, lubricant under steady state oper-
ation with fluid inertia effects neglected is studied by San Andres (2014). The same
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hypotheses are adopted here but the lubricant viscosity depends on temperature.
Several simplifications have been adopted by Chang (2010) to study centrally
pivoted plane-pad bearings so that simple analytical solutions can be obtained for
the particular case of an inclined sliding bearing: (i) conduction heat transfer is
assumed to be secondary to the convection heat transfer for the lubricant film;
(ii) convection heat transfer occurs at the cross-film average velocity of the lubri-
cant; (iii) the shear strain rate in the lubricant is uniform, approximated by the
bearing-average velocity-induced strain rate. Some of these assumptions are relaxed
here.

The geometry of plane slider bearings can be described by three parameters: the
bearing length (l) and the bearing inlet and exit heights (hin, hout) (Fig. 23.1). The
bearing profile, which defines the way of height variation throughout the flow strip,
may be described by few parameters (Ozalp and Ozel 2003) when simple
geometries are considered (such as the inclined and the Rayleigh-step bearings) but
in the general case involves many or even an infinity of parameters.

In hybrid bearings the lubricant film action comes both from the external
pumping pressure and from the relative movement of two lubricated surfaces. In
most cases the thin film hypothesis holds. Then, the Reynolds equation, which
neglects inertial forces but concentrates on pressure forces and viscous shear,
provides a convenient approach for steady-state flows of Newtonian incompressible
lubricants (Ozalp and Ozel 2003; Cupillard 2009). As long as the film thickness is
small (below 120 µm), comparison between solutions based on Reynolds and
Navier-Stokes equations, respectively, shows good agreement, with less than 3%
difference in load performance (Dobrica and Fillon 2006). In practice, the Reynolds
equation takes a diversity of forms (Garcia et al. 1994; Yurusoy 2003; Miller and
Green 1998; Lin and Hung 2004). The Reynolds equation used here is:

d
dx

h3

g
dp
dx

� �
¼ 6U

dh
dx

ð23:2:1Þ

Fig. 23.1 Geometrical
configuration considered here
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where x is bearing coordinate along the sliding direction (see Fig. 23.1), h is
bearing film thickness, p and g are lubricant pressure and dynamic viscosity while
U is bearing sliding velocity. Equation (23.2.1) is similar with Eq. (2) of Ozalp and
Umur (2006) and Eq. (1c) of Ozalp and Ozel (2003).

Slider bearing optimization studies are performed in some cases under isother-
mal assumption or by using simple thermal analysis (San Andres 2014). However,
the results suggest that the load capacity generated by the viscosity-temperature
effect alone is about 42% of the maximum-load capacity obtainable by an optimally
pivoted pad bearing under isothermal condition (Chang 2010). Therefore, thermal
effects are important and should be taken into consideration. The energy equation
is:

k
d2T
dx2

þ @T
@z2

� �
� qcu

dT
dx

þ g_r2 ¼ 0 ð23:2:2Þ

where T is the temperature of the lubricant, z is bearing coordinate across the film
direction (see Fig. 23.1), k; q and c are lubricant thermal conductivity, density and
specific heat, respectively, u is x-direction velocity of the lubricant in the bearing
and _r is shear strain rate in the lubricant. The first term in the l.h.s. member of
Eq. (23.2.2) is usually neglected for bearings with any reasonable sliding velocity,
where conduction is secondary to convection heat transfer. Also, the dependence of
u on z is given by Eq. (A1) of Chang (2010):

u ¼ 1� z
h

� �
Uþ 1

2g
dp
dx

z� hð Þz ð23:2:3Þ

where the following boundary conditions are used:

u ¼ U for z ¼ 0

u ¼ 0 for z ¼ h
ð23:2:4a; bÞ

The dependence of _r on z is given by Eq. (A2) of Chang (2010):

_r ¼ du
dz

¼ �U
h
þ 1

2g
dp
dx

2z� hð Þ ð23:2:5Þ

The approach used by Chang (2010) to solve Eq. (23.2.2) is based on two main
assumptions. First, the convection heat transfer is carried at cross-film average
velocity of the lubricant. Second, the shear strain rate in the lubricant is taken to be
uniform, approximated by the bearing-average velocity-induced strain rate. Thus,
the second term in the r.h.s. member of Eq. (23.2.5) vanishes and _r ¼ �U=h. Next,
an average value of hð¼ðhi þ h0Þ=2Þ is considered and the simplified form of
Eq. (23.2.5) is _r ¼ �2U=ðhi þ hoÞ:

Badescu (2015) used an accurate procedure, which takes into account that _r is
not constant but function of both h and dp=dx: The average value of _r2 over z is:
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_r2ðh; dp=dxÞ � 1
h

Zh

0

du
dz

� �2

dz ð23:2:6Þ

Equation (23.2.6) is similar with that used by Bruckner (2004, p. 45). Usage of
Eqs. (23.2.6) and (23.2.5) yields:

_r2ðh; dp=dxÞ ¼ U2

h2
þ h2

12g2
dp
dx

� �2

ð23:2:7Þ

The following form of Eq. (23.2.2) is obtained under the assumptions that (i) the
first term in the l.h.s. member is neglected, (ii) the convection heat transfer takes
place at cross-film average velocity of the lubricant, and (iii) Eq. (23.2.7) applies:

qc
U
2
dT
dx

� g
U2

h2
þ h2

12g
dp
dx

� �2
" #

¼ 0 ð23:2:8Þ

Equation (23.2.8) is non-linear in the pressure gradient, in good agreement with
other approaches [see, e.g. Eq. (2a) of Ozalp and Ozel (2003)].

Equations (23.2.1) and (23.2.8) are used in the following. There are two
dependent variables (p and TÞ since appropriate models for the dependence of
lubricant dynamic viscosity g, density q and specific heat c on lubricant temperature
T are used.

The thermodynamic system analyzed here is the fluid film. The usual assumption
of adiabaticity is adopted for the fluid-solid interface (Cupillard 2009). Other
boundary conditions are as follows:

p x ¼ 0ð Þ ¼ pin
p x ¼ lð Þ ¼ pout
Tðx ¼ 0Þ ¼ Tin

ð23:2:9–11Þ

where pin; pout; Tin are known quantities. Equation (23.2.11) is needed to solve
Eq. (23.2.8). Equations (23.2.9 and 23.2.10) are used when Eq. (23.2.1) is solved
and cover the general case of hybrid sliding bearings. When pin ¼ pout, the par-
ticular case of pure sliding treated in previous studies (Shyu et al. 2004; Oladeinde
and Akpobi 2010) is found.

23.3 Optimal Control

The optimum slope of an inclined bearing that provides a maximum load-carrying
capacity has been studied in many papers (see e.g. Chang 2010; Brewe 2001). The
optimum performance has been studied for other bearing shapes (see Lin and Hung
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(2004), San Andres (2014) and references therein). Advanced optimization tools
such as sensitivity analysis and genetic algorithms are used in connection with more
complex bearing shapes (Buscaglia et al. 2005; Ozalp and Umur 2006; Rahmani
et al. 2010). Various profiles and texture types are adopted and the optimum
geometrical parameters have been obtained considering different performance cri-
teria (Rahmani et al. 2010).

Optimization of the general geometrical configuration of Fig. 23.1 is more
involved and is performed here by using optimal control methods. They require
defining the objective function and the control(s). This is done next. The bearing
load P is defined as:

P �
Z l

0

p� poutð Þdx ð23:3:1Þ

The objective is to maximize the bearing load P. A direct optimal control method
based on BOCOP computing programming package is used here (Bonnans et al.
2014). The optimal control problem defined by the objective function Eq. (23.3.1)
and the constraints Eqs. (23.2.1) and (23.2.8) constitutes a Bolza problem. The
method of Bonnans et al. (2014) requires transformation of the Bolza problem into
a Mayer problem. This is done in two steps, as follows. First, a new dependent
variable f is defined by using the following equation:

df
dx

¼ p� pout ð23:3:2Þ

with the boundary (initial) condition:

f ðx ¼ 0Þ ¼ 0 ð23:3:3Þ

Second, a new form of the objective, associated with the Mayer problem, is
defined:

f ðx ¼ lÞ ! max ð23:3:4Þ

The control (denoted g) is taken to be the gradient of the lubricant film thickness
h, i.e.

g � dh
dx

ð23:3:5Þ

The dimensionless notation of Table 23.1 is used, where f0 is an arbitrary
positive constant quantity. A consistent notation style has been adopted. First, “hat”
quantities denote dimensionless state variables. Second, Greek letters denote
dimensionless gradients. Third, t (Greek u) is used for the control, to follow the
traditional notation.
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Use of Eqs. (23.2.8), (23.2.11) and (23.3.2) and the notation of Table 23.1
yields:

dp̂
dx̂

¼ p

dp
dx̂

¼ A
t

ĥ3
� 3

pt

ĥ
þB

p

ĥ2
þCĥ2p3

dT̂
dx̂

¼ D
1

ĥ2
þEĥ2p2

dĥ
dx̂

¼ t

df̂
dx̂

¼ F p̂� 1ð Þ

ð23:3:6a–eÞ

where A to E are notations defined in Table 23.2.
The coefficients C1;C2;C3 entering Table 23.2 are used to define several cases

often used in literature, which are particular cases of the present more general
theory (see Table 23.3). Equations (23.3.6a) and (23.3.6b) come from Reynolds
Eq. (23.2.1) while Eq. (23.3.6c) comes from the energy Eq. (23.2.8).
Equation (23.3.6d) comes from Eq. (23.3.5) while Eq. (23.3.6e) comes from
Eq. (23.3.2).

Both pure sliding bearings and hybrid bearings have been considered in litera-
ture. They are associated with different pressure boundary conditions (Mcallister

Table 23.1 Dimensionless notation and constraints

Meaning of dimensionless
quantity

Notation Design and operation
constraints

Physical
constraints

Independent
variable

Space x̂ � x
l None 0� x̂� 1

State variables

Lubricant film thickness ĥ � h
hin

ĥmin � hmin
hin

� ĥ� 1 0� ĥ�1
Lubricant pressure p̂ � p

pout
1� p̂� pmax

pout
� p̂max p̂� 1

Lubricant temperature T̂ � T
Tin

1� T̂ � Tmax
Tin

� T̂max T̂ � 1

Gradient of lubricant
pressure

p � dp̂
dx̂

None �1� p�1

Control

Gradient of lubricant film
thickness

t � dĥ
dx̂

t� 0 �1\t\1

Objective
function

Pressure integral f̂ � f
f0

0\f̂ � fmax
f0

� f̂max f̂ [ 0
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et al. 1979; Rahmani et al. 2010). Here the more general case of hybrid bearings is
analyzed and Eqs. (23.3.6a–e) are solved by using the following boundary
conditions:

p̂ðx̂ ¼ 0Þ � p̂inð¼ pin
pout

Þ
pðx̂ ¼ 1Þ ¼ 1

T̂ðx̂ ¼ 0Þ ¼ 1

f̂ ðx̂ ¼ 0Þ ¼ 0

hðx̂ ¼ 0Þ ¼ 1

ð23:3:7a–eÞ

where the notation of Table 23.1 has been used. Equations (23.3.7a–c) have been
obtained from Eqs. (23.2.9)–(23.2.11) while Eqs. (23.3.7d) and (23.3.7e) come
from Eq. (23.3.3) and Table 23.1, respectively.

Improvements in the static performance of a hydrodynamic contact can be
achieved by increasing the load carrying capacity, reducing the friction force, and
decreasing the global temperature or the maximum temperature of the contact
(Cupillard 2009). However, design and operation restrictions may apply in practice.
They might be connected with a minimum value of the lubricant film thickness
hmin, maximum lubricant temperature Tmax, maximum lubricant pressure pmax and
maximum value of the arbitrary constant entering f0max. Therefore, several algebraic
constraints apply to the state variables and the control (see Table 23.1).

To conclude, the optimal control problem is defined in terms of the following
quantities: the independent variable is the dimensionless space x̂; the state variables
are the dimensionless film thickness ĥ, pressure and temperature p̂ and T̂ , respec-
tively, and pressure gradient p, the control is the dimensionless gradient of lubricant
film thickness t and the objective function is f̂ . The optimization consists in the
maximization of the objective function Eq. (23.3.4) under the constraints of the
ordinary differential Eqs. (23.3.6a–e) (for which the boundary conditions
Eqs. (23.3.7a–e) apply) and the algebraic and design and operation constraints of
Table 23.1.

Table 23.2 Notation used in
Eqs. (23.3.6a–e)

Expression Function
6Ugl
p2outh

2
in

A

C1C2
@g
@T

2Ul
qch2in

B

C1C3
@g
@T

p2outh
2
in

6qcUlg2
C

C1
2lgU

qcTinh2in
D

C3
h2inp

2
out

6qcUTingl
E

pout l
f0

F
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The Hamiltonian associated with the present optimal control problem is linear in
the control t. Therefore, the solution is non-regular and in particular cases is of
bang-bang type, having the Rayleigh step bearing an even more particular case. In
practice constraints exist and control switching structure makes the non-regular
solution much more complex that the simple Rayleigh step.

23.4 Optimum Design and Operation

Choosing bearing lubricants is an important technological problem. Much work has
been done on Newtonian-type lubricants. Additives are frequently used, which
makes the flow non-Newtonian (Yusuroy 2003). Lubricants such as gases (Garcia
et al. 1994, 1997) or ferrofluids (Oladeinde and Akpobi 2010) are used for special
purposes. Mineral oils are used in the vast majority of mechanical applications
(McCarty 2008). Properties of mineral oils may be found in many papers (see
Knežević and Savić (2006) and references therein).

The most important physical property of lubricants is viscosity. The optimal
viscosity of lubricants is a compromise between lubrication requirements and
mechanical and volumetric efficiency (Knežević and Savić 2006). Lower viscosity
leads to lower film temperature, lower friction force and less power loss but it also
results in a lower load carrying capacity and minimum film thickness (Cupillard
2009). The change of kinematic viscosity with temperature is usually determined by
the viscosity non-dimensional index (VI). Lubricants of faster viscosity alteration
are classified as HM lubricants, and those of slower alteration as HV lubricants
(Savic et al. 2009). Several HM and HV lubricants are considered in Table 23.4.

Table 23.3 Values of the coefficients C1;C2;C3 entering Table 23.2 for different cases

Case Coefficient
@g
@T 6¼ 0 C1 = 1

@g
@T ¼ 0 ¼ 0

Strain due to lubricant velocity is included in calculation C2 = 1

Strain due to lubricant velocity is not included in calculation ¼ 0

Strain due to pressure gradient is included in calculation C3 = 1

Strain due to pressure gradient is not included in calculation ¼ 0

Table 23.4 Constants to be used with Eqs. (23.4.1) and (23.4.2) for several lubricants (Knežević
and Savić 2006)

Lubricant type HVL46 HM32 HM46 HM68

a (Ns/m2) 116:19� 10�6 73:63� 10�6 63:33� 10�6 38:96� 10�6

b (°C) 799.7 797.7 879.7 1083.9

c (°C) 176.7 177.3 177.7 166.2

q15 (g/cm3) 0.879 0.879 0.883 0.887
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The dependence of viscosity on temperature makes the bearing design more
complicated, especially when the stream-wise decay of lubricant viscosity comes
out to be significant on the overall performance (Ozalp and Ozel 2003). The
viscosity-temperature effects are not very sensitive to the width dimension of the
pad (Chang 2010).

Several formulae for the dependence of viscosity on temperature have been
reported in literature. Vogel formula is the most accurate but Walther’s relationship
is more frequently used (Knežević and Savić 2006; Savic et al. 2009) In this chapter
the dependence of the lubricant dynamic viscosity g (units: Ns/m2) on temperature
T(units: K) is approximated by Vogel equation (Knežević and Savić 2006):

gðTÞ ¼ a exp
b

T � c

� �
ð23:4:1Þ

where a; b; c are constants dependent on lubricant. Table 23.4 shows the values of
these constants for the lubricants considered in this chapter.

The lubricant density q (units: g/cm3) depends on temperature (units: °C) as
follows (Knežević and Savić 2006)

qðTÞ ¼ q15 1� 0:0007 T � 15ð Þ½ � ð23:4:2Þ

where the density q15 at 15 °C for several lubricants is shown in Table 23.4.

Table 23.5 Parameters used during computations

Quantity Symbol Value Units

Design and operation

Bearing length l 0.01 m

Lubricant film thickness at inlet h 50� 10�6 m

Sliding velocity U 10 m/s

Lubricant pressure at inlet pin 1� 105 Pa

Lubricant pressure at outlet pout 1� 105 Pa

Lubricant temperature at inlet Tin 293 K

Constraints

Maximum dimensionless pressure p̂max 300 –

Maximum dimensionless temperature T̂max 1.35 or 1.5 –

Maximum dimensionless objective function f̂max 1� 108 –

Minimum dimensionless thickness ĥmin 0.01 –

Lubricant

Lubricant type HM32

Approximation level

Coefficient defined in Table 23.3 C1 1 –

Coefficient defined in Table 23.3 C2 1 –

Coefficient defined in Table 23.3 C3 1 –
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A constant value has been used for the specific heat of all lubricants
(c ¼ 1670 J=ðkgKÞ). The specific heat dependence on temperature is sometimes
considered [see Fig. 4.4 of Cupillard (2009)].

The following analysis uses as basic input data the values listed in Table 23.5. In
the next sections specific parameters are allowed to vary.

23.4.1 Direct Optimal Control Method

23.4.1.1 Numerical Procedures and Implementation

The infinite dimensional optimal control problem (OCP) consists of an objective
function which has to be extremized under the constraints of several ordinary
differential equations describing the dynamics of the state variables and controls.
A direct optimal control approach [i.e. BOCOP programming package (Bonnans
et al. 2014)] is used here. It transforms the OCP into a finite dimensional non-linear
problem (NLP). This is done by a discretization in the space of the independent
variable, applied to the state and control variables, as well as the dynamics equa-
tions. More details on direct transcription methods and NLP optimization algo-
rithms can be found in Betts (2001) and Nocedal and Wright (1999).

BOCOP is designed for objective function minimization. Here, Eq. (23.3.4) asks
for bearing load maximization. Under the framework of BOCOP this requires
defining the new objective as �f ðx ¼ lÞ ! min. In BOCOP the discretized non-
linear optimization problem is solved by the IPOPT solver (Wachter and Biegler
2006) that implements a primal-dual interior point algorithm. The derivatives
required for the optimization are computed by the automatic differentiation tool
ADOL-C (Walther and Griewank 2012).

BOCOP has ten discretization method options. The option Euler (explicit—1st
order) has been used in most cases. The number of discretization steps for the
independent variable was 500. This corresponds to a space step of 0.002. The
maximum allowed number of iteration was 10,000 while the tolerance was 10−10.

The convergence and speed of the optimization algorithm depends significantly
on the bounds imposed to the state variables and control. Table 23.6 shows the
lower and upper used for most cases. Convergence of the optimization algorithm

Table 23.6 Lower and upper
bounds used for most cases

Quantity Lower and upper bound

p̂ 1–300

T̂ 1–1.34

ĥ 0.01–1

f̂ 0–108

p −104–104

t �5� 104–0
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depends on the initial guess distributions of the state variables and control. These
solutions depend on case and have been found by trial procedures.

23.4.1.2 Testing the Direct Optimal Control Method

The method has been tested by using a case with known solution, i.e. the isothermal
Rayleigh step bearing (Fig. 23.2). The lubricant film in the 1D Rayleigh step
bearing consists of two flow regions [see, e.g. Fig. 1 of San Andres (2014)]: the
ridge or step and the film land. In standard terminology, lstep is the step length and
l� lstep is land length. The film thickness is a constant over each region. The
bearing optimization consists of finding the step length and inlet (or outlet) bearing
height. Next the analytic solution and the optimal control solution are shown and
compared.

23.4.1.3 Analytic Approach

In the isothermal case the coefficients C1;C2;C3 vanish. Integration of Reynolds
Eq. (23.2.1) for the bearing profile of Fig. 23.2a shows that the pressure varies
linearly over step and land regions. The pressure at the step-land interface is
denoted pstep (San Andres 2014).

The following notation is used:

a � lstep
l

\1ð Þ

c � hout
hin

\1ð Þ
ð23:4:3a; bÞ

Fig. 23.2 Rayleigh step
bearing. a Bearing profile;
b pressure distribution
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Simple algebra gives the bearing load P and the step pressure pstep as a function
of a and c (San Andres 2014). Table 23.7 shows the results. Two cases, denoted A
and B, have been considered, depending on which of the two quantities hin or hout is
known.

Optimization of Rayleigh step bearing implies finding the optimum values of c
(or, in other words, the step position) making the bearing load P a maximum.

A few comments follow. Computations are performed by using input data
from Table 23.5, with C1 ¼ C2 ¼ C3 ¼ 0. First, case A is considered, when the
value of hin is given (50 � 10�6 m, say) while hin is free to vary. The function
F1ða; cÞ in Table 23.5 monotonously decreases by increasing a ¼ lstep=l, from
F1 ¼ c for a ¼ 0 to F1 ¼ 0 for a ¼ 1. For given value of a, an optimum value
copt exists (see Fig. 23.3a), making the function F1ða; cÞ a maximum. The max-
imum value F1;maxða; coptÞ is shown in Fig. 23.3b. Figure 23.3c shows the step
pressure p1;step and maximum bearing load P1;max associated with the values
F1;maxða; coptÞ:

Next, case B is considered, when the value of hout is given (50� 10�6 m, say)
while hin is free to vary. Again, for given value of a, an optimum value copt exists
(see Fig. 23.3d), making the function F2ða; cÞ a maximum. The values of copt in
Fig. 23.3a and Fig. 23.3d are identical. However, the behavior of F2;maxða; coptÞ in
Table 23.5 is different from that of F1;maxða; coptÞ (compare Fig. 23.3e, b).
F2;maxða; coptÞ has a maximum for a specific optimum value of a. Simple
calculations shows that aopt ¼ 0:5357 and copt ¼ 0:7182 and
F2;max;maxðaopt; coptÞ ¼ 0:0687. This is already known (Mcallister et al. 1979).
Figure 23.3f shows the step pressure p2;step and maximum bearing load P2;max

associated with the values F1;maxða; coptÞ. Both quantities exhibit a maximum at aopt
and copt.

It is important to emphasize that the classical approach of Rayliegh step opti-
mization has been made under the assumption of case B (see San Andres 2014).

Table 23.7 Bearing load P and step pressure pstep for Rayleigh step bearing of Fig. 23.2a

Case Constants Functions Relationship

A (the value of hin is
given)

Cin � 3gUl2B
h2in

F1 a; cð Þ ¼ ð1�aÞð1�cÞc
1�cþ a3c

P1 ¼ CinF1 a; cð Þ

Din � 6gUl
h2in

p1;step ¼ DinF1 a; cð Þ
B (the value of hout is
given)

Cout � 3gUl2B
h2out

F2 a; cð Þ ¼ ð1�aÞð1�cÞa2c
1�cþ a3c

P2 ¼ CoutF2 a; cð Þ

Dout � 6gUl
h2out

p2;step ¼ DoutF2 a; cð Þ
Two cases are considered
Bð[[ lÞ is the bearing width
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23.4.1.4 Optimal Control Approach

The optimal control procedure is designed to use hin as a known quantity [see
Eq. (23.3.7e)]. This is associated with case A of Table 23.5 and Fig. 23.3a, b, c.
The analytical treatment for case A shows that no local optimum value of a exist.
An optimum value copt does exist, for given value of a. The optimal control pro-
cedure has been applied for given value of a (or, in other words, fixed values of hin
and hout). Input values of Table 23.5 have been used, with C1 ¼ C2 ¼ C3 ¼ 0 and
f0 ¼ 1 N. Figure 23.4 shows results obtained with BOCOP programming package
in the case a ¼ hout=hin ¼ 0:55.

A Rayleigh step bearing is obtained, with copt ¼ ðlstep=lÞopt ffi 0:71 (see
Fig. 23.4d). This agrees with the value copt for a ¼ 0:55 in Fig. 23.3a. The
dimensionless step pressure p̂step in Fig. 23.4a is 39.7, in good agreement with the
value p1;max for a ¼ 0:55 in Fig. 23.3c. Also, the dimensionless maximum load f̂ in
Fig. 23.4e is 19,363, in good agreement with the value P1;max for a ¼ 0:55 in
Fig. 23.3c.

Similar computations have been performed for other values of a ¼ hout=hin. The
optimum step position parameter copt ¼ ðlstep=lÞopt and the maximum load P1;max

Fig. 23.3 Several quantities associated with Rayleigh step bearing as a function of a � lstep=l.
a, b, c—case A in Table 23.7 (hin is given (50 � 10�6 mÞ); d, e, f—case B of Table 23.7 (hout is
given (50 � 10�6 mÞ). a, d—optimum ratio copt � ðhout=hinÞopt; b maximum value of function F1;
c step pressure p1;step and maximum bearing load P1;max; e maximum value of function F2; f step
pressure p2;step and maximum bearing load P2;max. For other details see Table 23.7. Values of
Table 23.5 are used with C1 ¼ C2 ¼ C3 ¼ 0
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are shown in Fig. 23.5a, b, respectively. There is very good concordance with the
results obtained by using the analytic relationships of Table 23.7.

23.4.1.5 Sensibility Analysis

Several tests have been performed in order to check the accuracy and consistency of
the optimal control method. The case analyzed in Sect. 23.4.2.1 has been con-
sidered. Three series of tests have been performed by using the Euler (explicit—1st
order) discretization method with 500 steps. The lower and upper bounds for state
variable and control listed in Table 23.8 are used.

The first set of tests refers to the dependence of results on the tolerance value.
Results are shown in Table 23.11 of Appendix 23A. Figures 23.18, 23.19, 23.20,
23.21 23.22 and 23.23 (in Appendix 23A) show the optimal space distribution of
the state variables and control. The influence of the tolerance value on the results is
not significant, for this particular case.

The second set of tests refers to the lower bound used for the control. Results are
shown in Table 23.12. Figures 23.24, 23.25, 23.26 and 23.27 show the optimal
space distribution of the state variables and control. The third set of tests refers to

Fig. 23.4 Dependence of optimal quantities on the dimensionless space variable x̂. a dimension-
less pressure p̂; b dimensionless pressure gradient p; c dimensionless temperature T̂ ; d dimen-
sionless film thickness ĥ; e dimensionless objective function f̂ ; f dimensionless control t. The case
a ¼ hout=hin ¼ 0:55 has been considered
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the higher bound used for the variable f̂ . Results are shown in Table 23.13.
Figures 23.28, 23.29, 23.30 and 23.31 show the optimal space distribution of the
state variables and control. See further comments in Appendix 23A.

23.4.2 Constraints and Approximations

23.4.2.1 Maximum Pressure

The maximum film pressure may be as high as 2–5 bar (Cupillard 2009), 5–20 bar
(McCarthy 2008), 50 bar (Chang 2010), 80 bar (Valkonen 2009) or 100 bar

Fig. 23.5 a Optimum step position parameter copt ¼ ðlstep=lÞopt and b maximum load P1;max, as
functions of a ¼ hout=hin. Results obtained by using the analytic relationships of Table 23.7 and
the optimal control procedure are shown

Table 23.8 Lower and upper
bounds used when testing the
direct optimal control method

Quantity Lower and upper bounds

p̂ 1–5

T̂ 1–1.5

ĥ 0–1

f̂ 0–106

p −104–104

t �5� 104–0
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(Brewe 2001). A literature survey shows maximum pressure values ranging
between 70 and 500 bar, depending on the bearing size (Valkonen 2009). The
maximum allowed pressure pmax (or p̂max; see notation in Table 23.1) is sometimes
connected with materials strength. Figure 23.6 shows the optimum space profile of
the dimensionless bearing height ĥ, for several values of p̂max.

Generally, the bearing length consists of four space regions. First, there is an
abrupt decrease of bearing height inside the first discretization step (i.e. ĥ� 0:002)
(Fig. 23.6a). There, the dependence of ĥ on p̂max is rather weak. Next, there is a
region of less abrupt height variation which ends at x̂ 
 0:006: The third region
corresponds to an almost constant bearing height. This region ends at x̂ values
ranging between 0.992 and 0.996, depending on the value of p̂max (Fig. 23.6b).
Generally, the constant height does not depend monotonously on p̂max. For instance,
the constant height associated with p̂max ¼ 5 is placed between the constant heights
associated with p̂max ¼ 30 and 100, respectively. The fourth region consists of an
abrupt height decrease until a minimum value of ĥ (depending on p̂max) is reached.

The optimum space distributions of dimensionless lubricant pressure and tem-
perature are shown in Fig. 23.7. The pressure is lower at bearing inlet and outlet, to
accommodate with the boundary conditions (Fig. 23.7a). The pressure distribution
exhibits a constant maximum, covering most of the interior of the bearing. The
value of that maximum pressure equates pmax (or, in other words, p̂max). When
constraints do not exist, the usual pressure distribution shows a peak maximum

Fig. 23.6 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂. a bearing inlet; b bearing outlet. Different values of the maximum allowed dimensionless
pressure p̂max have been considered
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value [see. e.g. Figs. 2 and 3 of Bayrakceken and Yurusoy (2006)]. The lubricant
temperature increases from the inlet towards the outlet of the bearing (Fig. 23.7b).
The minimum temperature (i.e. Tin, or T̂ ¼ 1Þ occurs at x̂ ¼ 0 while the maximum
temperature occurs at n ¼ 1 and equates the value Tmax(or T̂max), independent on
the value pmax (or p̂max). However, the space temperature distribution is obviously
function of pmax. The distributions for p̂max ¼ 5 and 10 are similar in shape while
the shape of the distributions for p̂max ¼ 30 and 100 is different. Note that the
lubricant temperature for p̂max ¼ 5 ranges between the temperature for p̂max ¼ 30
and 100, respectively.

23.4.2.2 Maximum Temperature

The temperature during sliding bearing operation may be as high as 93 °C (Brewe
2001), 125 °C (Valkonen 2009) or 160 °C (Glavatskih and De Camillo 2004). The
nature of the lubricant may impose constraints on the maximum allowable tem-
perature Tmax (or, in other words, T̂max). Figure 23.8 shows the space variation of
the optimum bearing dimensionless thickness ĥ for several values of T̂max. The
bearing profile consists of three main regions. The first space region is associated
with an abrupt variation of the bearing profile while the second region is a less
abrupt transition towards the third region, which is a very thin lubricant film

Fig. 23.7 Optimum space distribution of dimensionless pressure p̂ (a) and temperature T̂
(b) associated with bearing profiles of Fig. 23.6. Different values of the maximum allowed
dimensionless pressure p̂max have been considered
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(Fig. 23.8a). The bearing profile for the first two regions does not depend signifi-
cantly on T̂max. The film thickness in the third region depends on T̂max but not
monotonously (Fig. 23.8b). Indeed, the film thickness for T̂max ¼ 1:5 is smaller
than that for T̂max ¼ 1:4 but larger than that for T̂max ¼ 1:2.

Figure 23.32 shows the optimum space distribution of dimensionless pressure
and temperature in the lubricant film. See further comments in Appendix 23A.

23.4.2.3 Maximum Bearing Load

The load P is an important parameter for sliding bearing design. The resultant force
generated from the lubricant pressure must counterbalance the external load while
maintaining separation between the bearing and moving surfaces (Shyu et al. 2004).
Here, the bearing load is the objective function, which is to be maximized. Practical
bearing usage is associated with different operation regimes. In some cases infor-
mation is known about the maximum value of the bearing load, covering all these
possible operation regimes. This maximum value is related to the maxim value fmax

entering the definition of the dimensionless objective function f̂ in Table 23.1. The
influence of the maximum dimensionless objective f̂max on the optimum bearing
profile is shown in Fig. 23.9.

Fig. 23.8 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂. a bearing inlet; b bearing outlet. Different values of the maximum allowed dimensionless
temperature T̂max have been considered
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The bearing inlet region depends significantly on f̂max (Fig. 23.9a). For larger
values of f̂max the bearing inlet is large on about 3% of bearing length, followed by
an abrupt decrease, which may be associated with a singular solution, similar in
shape with a Rayleigh step bearing. When smaller values of f̂max (= 500) are
considered, the bearing profile decreases rather abruptly, starting from x̂ ¼ 0.
However, a singular solution occurs at about 1.5% of bearing length. The bearing
outlet profile shows ĥ decreasing by increasing x̂ in a way dependent on f̂max

(Fig. 23.9b). Larger values of f̂max show a bearing profile with a simpler depen-
dence on x̂ than that for f̂max ¼ 500.

For larger f̂max values the dimensionless pressure p̂ shows a peak, which is higher
for higher f̂max (Fig. 23.33a). See further comments in Appendix 23A.

23.4.2.4 Minimum Bearing Height

For safety reasons the bearing should operate above a certain minimum lubricant
film thickness. The film should be thick enough to prevent contact between the two
surfaces, avoiding wear and possible component failure (Cupillard 2009). The
minimum film thickness depends on load, lubricant and operation regime. For

Fig. 23.9 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂. a bearing inlet; b bearing outlet. Different values of the maximum dimensionless objective
function f̂max have been considered
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instance, in extreme cases it might be as small as 25 nm for gas films or 2–3 nm for
liquid films (Brewe 2001). However, in common cases the minimum liquid film
thickness is of the order of tens of micron [e.g. 30–75 lm in McCarthy (2008)].

The optimal control of the bearing profile should take into account the tech-
nology and operational restrictions on the minimum value of bearing height hmin

(or, in other words, on the minimum dimensionless thickness ĥmin). It is important
to see how these constraints influence the distribution of pressure and temperature
along the bearing. This is shown in Fig. 23.10. Generally the pressure distribution
has a maximum, which is placed in the second half of the bearing (Fig. 23.10a, b).
The maximum is larger for smaller values of ĥmin. When no constraints exist on the
minimum value of ĥ, the maximum is very large. Larger values of ĥmin are asso-
ciated with a very smooth maximum pressure. The pressure distribution in
Fig. 23.10a, b is quite similar with the standard triangular pressure distribution in
Rayleigh step bearings (see Fig. 23.2b). Notice that the maximum pressure value in
Rayleigh step bearings occurs at step position. Figure 23.10a, b show that the
maximum pressure in the optimal bearing increases by decreasing ĥmin while in
Rayleigh step bearings the pressure is a maximum for a specific minimum film

Fig. 23.10 Optimum dimensionless pressure (a and b) and temperature (c and d) as function of
the dimensionless distance x̂. Different values of the minimum dimensionless bearing thickness
ĥmin have been considered
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thickness, depending on the step to land length ratio (see Sect. 23.4.1.2). The
temperature increases along the bearing, as expected (Fig. 23.10c, d). No con-
straints on ĥmin or vary small values of ĥminð¼0:001Þ makes the dimensionless
temperature to reach its maximum allowed value T̂maxð¼1:5Þ (see Table 23.2). That
maximum value T̂max is not reach when larger ĥmin values are considered.

23.4.2.5 Levels of Approximation

The model developed here allows the identification of several simplifying
assumptions often used in literature. Four approximation levels defined by using the
coefficients Cs of Table 23.3 are shown in Table 23.9. Approximation level 4 is
always used in this chapter, except present section.

The optimum distribution of the dimensionless thickness ĥ is shown in
Fig. 23.11 for two values of the minimum allowed thickness ĥmin. Note that
approximation level 1 (C1 ¼ C2 ¼ C3 ¼ 0Þ is similar with the case treated in
Sect. 23.4.1.2. In that section dealing with Rayleigh step bearing the values ĥin and
ĥout are kept fixed for given ĥout=ĥin ratio. All approximation levels yield the same
bearing profile in case a larger value of ĥminð¼0:01Þ is considered (Fig. 23.11a). In
this case, using the level 1 of approximation seems to be justified in term of
modeling simplification and shortage of computing time. In case of smaller value of
ĥminð¼0:001Þ the bearing profile depends on the approximation level (Fig. 23.11b).

All approximation levels yield a singular arc. When approximation level 1 is
considered, the profile is rather similar with the Rayleigh step bearing shown in
Fig. 23.4d. However, the step is located in the mid of the bearing in Fig. 23.4d
while in Fig. 23.11b the step is located near the bearing outlet. This is due to the

Table 23.9 Four approximation levels

Approximation
level

Simplifying assumptions C1 C2 C3

1 – lubricant viscosity does not depend on temperature
– Strain due to lubricant velocity not included in
calculation

– Strain due to pressure gradient not included in
calculation

0 0 0

2 – Strain due to lubricant velocity not included in
calculation

– Strain due to pressure gradient not included in
calculation

1 0 0

3 – Strain due to pressure gradient not included in
calculation

1 1 0

4 – No simplifying assumption 1 1 1

The coefficients Cs are defined in Table 23.3
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difference in the values of the ratio ĥout=ĥin (0.55 in Fig. 23.4d and 0.001 in
Fig. 23.11b). For approximation levels 2–4 the singular arc is placed near the
bearing inlet. Adding more details to the model means going from level 1 to level 4
of approximation. This is associated with moving the position of the singular arc
towards the bearing inlet. The most important model improvement is to take into
account the temperature dependence of the lubricant viscosity (i.e., passing from
approximation level 1 to level 2).

In case of ĥmin ¼ 0:01 the optimum pressure space distribution does not depend
on the approximation level (Fig. 23.34a). The lubricant temperature distribution is
shown in Fig. 23.35 for different approximation levels. Further comments may be
found in Appendix 23A.

23.4.3 Design Parameters

23.4.3.1 Lubricant Type

The most important lubricant property is viscosity, whose temperature dependence
has significant consequences. Other lubricant properties entering the present model

Fig. 23.11 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin; a ĥmin ¼ 0:01; b ĥmin ¼ 0:001. Different approximation levels defined in
Table 23.9 have been considered

23.4 Optimum Design and Operation 551



are mass density and specific heat. Figure 23.12 shows the space distribution of the
optimum dimensionless bearing thickness ĥ for two values of the minimum
thickness ĥmin.

Four lubricants, whose properties are described by Eqs. (23.4.1) and (23.4.2)
and Table 23.4, have been considered. Generally, for given value of ĥmin the
bearing profile is similar for all lubricants. In case of ĥmin ¼ 0:01; the bearing inlet
is a region of constant height for 0.5–1.0% of bearing length, depending on
lubricant type, followed by a singular arc (step-like) and another region of constant
height (Fig. 23.12a). The length of the first region of constant height depends on
lubricant. The constant height in the second region has the same value for all
lubricants (Fig. 23.12b). The bearing outlet consists of a region of height ĥmin on
about 20% of bearing length (Fig. 23.12c). All lubricants yield the same outlet
bearing profile. When the value ĥmin ¼ 0:001 is considered, the very short abrupt
inlet is almost similar for all lubricants but the constant height of the adjacent region
depends on lubricant (Fig. 23.12d). This first constant height region ends by a
singular arc (step-like) (Fig. 23.12e) and is followed by a second constant height

Fig. 23.12 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin; a, b, c ĥmin ¼ 0:01; d, e, f ĥmin ¼ 0:001. Different lubricants have been
considered
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region. The height of this second region is the same for all lubricants (ĥ 
 0:002Þ
but its length is different for different lubricants. All lubricants yield the same outlet
bearing profile with ĥ ¼ ĥmin (Fig. 23.12f).

Figure 23.36 shows the optimum space distribution of the dimensionless pres-
sure p for different lubricants and two values of ĥmin. The space distribution of the
dimensionless temperature T̂ is shown in Fig. 23.37. See further comments in
Appendix 23A.

23.4.3.2 Bearing Length

Bearing lengths may be of the order of millimeters (Cupillard 2009) or may range
between 1 and 18 cm (Ozalp and Ozel 2003; Ozalp and Umur 2006; Sharma and
Pandey 2016). The dimensionless quantity l̂ � l=lref is now defined, where the
reference value lref ¼ 0:01 m is the bearing length in Table 23.5. Optimum bearing
profiles are shown in Fig. 23.13 for different values of the bearing lengths l (or l̂Þ
and ĥmin.

Fig. 23.13 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin. Different values of the dimensionless bearing length l̂ have been
considered. a, b, c ĥmin ¼ 0:01; d, e, f ĥmin ¼ 0:001
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In case of ĥmin ¼ 0:01, the bearing inlet consists of a region of constant value of
ĥ (Fig. 23.13a). The relative length of this region is a non-monotonous function of
bearing length. In some particular cases (e.g., l ¼ 1 dm, or, in other words, l̂ ¼ 10Þ
there is no such region of constant value of ĥ. In other cases (the very long bearing
with l ¼ 1 m, l̂ ¼ 100; Fig. 23.13b) that region is almost as long as the whole
bearing. A singular arc (step-like) follows after the constant ĥ region, for all values
of l̂ considered (Fig. 23.13a, b). The profile at bearing outlet depends on the bearing
length (Fig. 23.13c).

In case of ĥmin ¼ 0:001, the constant ĥ inlet region does not exist (Fig. 23.13d).
In some cases a singular arc (step-like) exists but in other cases there is a very short
region of less abrupt decrease of ĥ. In all cases a long region of constant thickness is
seen in Fig. 23.13e. The profile at bearing outlet depends on l̂ (Fig. 23.13f). In
some cases a second region of abrupt variation of ĥ exists.

Figure 23.38 shows the pressure variation along the bearing for different values
of l̂. The lubricant dimensionless temperature T̂ increases along the bearing
(Fig. 23.39). See further comments in Appendix 23A.

23.4.3.3 Bearing Inlet Height

Many film thicknesses range between 20 and 100 lm (Glavatskih and De Camillo
2004; Sharma and Pandey 2016) or slightly higher (Dobrica and Fillon 2006;
Valkonen 2009) but films thicker than 1 mm are often considered (Ozalp and Ozel
2003; Ozalp and Umur 2006). Lubricant films are sometimes classified as thin films
(thickness 1–10 lm) and thick films (larger than 10 lm).

The bearing profile depends on the inlet bearing thickness hin, or, in other words,
on the dimensionless parameter ĥin. Figure 23.30 shows bearing profiles for dif-
ferent values of ĥin and ĥmin. The profiles belong to a common template but the
details are different. In case of ĥmin ¼ 0:01, bearings with large values of hin (100
and 1000 lm, or, in other words, ĥin ¼ 2 and 20) show a first region of constant
thickness ĥ at inlet followed by an abrupt thickness decrease (Fig. 23.14a).
A second region of constant ĥ appears for hin ¼ 100 lm (ĥin ¼ 2). Further thick-
ness decreasing is seen until the bearing outlet at ĥmin is reached. The length of the
first constant ĥ region depends on the value of ĥin. In case of ĥmin ¼ 0:001, bearings
with smaller ĥin values start by an abrupt decrease of ĥ followed by a constant ĥ
region (Fig. 23.14b). Next, several episodes of thickness abrupt decrease follow,
depending on the value of ĥin.

The pressure distribution is shown in Fig. 23.40 while the temperature distri-
bution along the bearing is shown in Fig. 23.41. Further comments may be found in
Appendix 23A.
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23.4.3.4 Sliding Velocity

Sliding velocity usually ranges between 2 and 15 m/s (Ozalp and Ozel 2003; Ozalp
and Umur 2006; Valkonen 2009) but velocities ranging between 10 and 40 m/s
(Sharma and Pandey 2016; Cupillard 2009) 40–115 m/s (Glavatskih and De
Camillo 2004) are also found in practice. Sliding bearings operating at higher speed
have higher load carrying capacity but also a higher temperature of the lubricant
film. These aspects depend on the operating conditions and the lubricant properties
(Cupillard 2009). The dimensionless quantity Û � U=Uref is now defined, where
the reference value Uref ¼ 10 m/s is the bearing length in Table 23.5.

Figure 23.15 shows the optimum bearing profile for different values of dimen-
sionless sliding velocity Û and ĥmin. In case of ĥmin ¼ 0:01, the bearing inlet
consists of a first region of constant value of ĥ followed by an abrupt decrease of ĥ
(Fig. 23.15a) and a second region of constant ĥ (Fig. 23.15b). The relative length of
the first constant ĥ region increases when Û decreases. The second constant ĥ
region ends at about the same relative distance x̂ for all values of Û considered
(Fig. 23.15c). Also, the outlet bearing profile ending at thickness ĥmin is similar for
all Û values. In case of ĥmin ¼ 0:001, the constant ĥ inlet region does not exist
(Fig. 23.15d). A step exists for all values of Û; followed by a very short region of

Fig. 23.14 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin. Different values of the dimensionless inlet thickness ĥin have been
considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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less abrupt decrease of ĥ and a long region of constant thickness. A second region
of constant ĥ follows (Fig. 23.15e) and a final decrease of ĥ until the value ĥmin is
reached (Fig. 23.15f).

Figure 23.42 shows the pressure variation along the bearing for different values
of the dimensionless sliding velocity Û. The lubricant dimensionless temperature T̂
increases along the bearing (Fig. 23.43). See further comments in Appendix 23A.

23.4.3.5 Inlet Lubricant Pressure

The usual inlet pressure is between 1 and 5 bar (Ozalp and Ozel 2003; Ozalp and
Umur 2006) or between 3 and 6 bar (Valkonen 2009).

The distribution of optimum dimensionless bearing thickness ĥ is shown in
Fig. 23.16 for different values of the dimensionless inlet pressure p̂in. The bearing
profile depends on ĥmin. In case of ĥmin ¼ 0:01; the small inlet p̂in value (i.e. 2) is

Fig. 23.15 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin. Different values of the dimensionless velocity Û have been considered.
a, b, c ĥmin ¼ 0:01; d, e, f ĥmin ¼ 0:001
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associated with an abrupt decrease of ĥ at bearing inlet (Fig. 23.16a) and a rela-
tively long region of constant value ĥmin at bearing outlet (Fig. 23.16b). Larger p̂in
values (5 and 10) yield a longer region of constant ĥ value at bearing inlet and a
smooth decrease of ĥ starting from x̂ around 0.8 (Fig. 23.16a). The bearing outlet
profile depends to some extent on the p̂in value (Fig. 23.16b). In case of
ĥmin ¼ 0:001, there is an abrupt decrease of ĥ at bearing inlet, for all values of p̂in
(Fig. 23.16c).

For low value of p̂in (2), the abrupt decrease of ĥ stops at about 0.3 and the
profile continues with a long region of constant ĥ value. Near the bearing outlet
another abrupt decrease of ĥ occurs. For large values of p̂in (5 and 10), the abrupt
decrease of ĥ stops at very low values of ĥ. The outlet bearing profile is similar for
all values of p̂in (Fig. 23.16d).

Figures 23.44 and 23.45 show the pressure variation and the temperature vari-
ation, respectively, along the bearing. See further comments in Appendix 23A.

Fig. 23.16 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin. Different values of the dimensionless inlet pressure p̂in have been
considered. a, b ĥmin ¼ 0:01; c, d ĥmin ¼ 0:001
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23.4.3.6 Inlet Lubricant Temperature2

The usual inlet lubricant temperature ranges between 20 and 75 °C (Ozalp and Ozel
2003; Ozalp and Umur 2006; Valkonen 2009).

The distribution of optimum dimensionless bearing thickness ĥ is shown in
Fig. 23.17 for different values of the dimensionless inlet temperature T̂in. The
bearing profile depends on ĥmin. In case of ĥmin ¼ 0:01 and inlet dimensionless
temperature less than 1.10, there is an abrupt decrease of ĥ at bearing inlet
(Fig. 23.17a) and a relatively long region of constant ĥ value follows. Larger T̂in
values (1.17) yield a short region of constant ĥ value at bearing inlet followed by an
abrupt decrease and a second, longer, region of constant ĥ.

In case of ĥmin ¼ 0:001 optimal control solutions were found only for in T̂in less
than 1.03. There is an abrupt decrease of ĥ at bearing inlet, for all values of T̂in
considered (Fig. 23.17b). The abrupt decrease of ĥ stops at values depending on T̂in
and the profile continues with a long region of constant ĥ value.

Fig. 23.17 Optimum dimensionless bearing thickness ĥ as function of the dimensionless distance
x̂ for two values of ĥmin. Different values of the dimensionless inlet temperature T̂in have been
considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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23.5 Conclusions

Early results about the optimum profile of one-dimensional sliding bearings
(Rayleigh 1918; Rohde 1972; Mcallister et al. 1979) have been obtained under
unconstrained optimization. Present-day technology requires lighter bearings with
higher load carrying capacity and lower lubricant consumption. This means oper-
ation at higher speeds, pressures and temperatures, close to the physical material
limits. Constrained optimization is to be used in these competitive environments.

This chapter deals with the profile optimization for one dimensional sliding
bearings under various technological limitations. The objective is the bearing load
which is to be maximized. Direct constrained optimal control methods are used.
The Hamiltonian of the optimal control problem is linear in the control and this is
associated with non-regular solutions. In ordinary cases, the solution of uncon-
strained problems is of bang-bang type, which is compatible with the Rayleigh step
profile. However, the more realistic problems treated here face many constraints
and the optimal solutions are much more complex than the simple Rayleigh step
bearings.

Conclusions concerning the details and the constraints taken into account by the
present model are as follow. The optimal bearing profile consists of an alternation
of regions of constant height and singular arcs associated with more or less abrupt
height variations. The number of constant height regions depends on the type of the
constraint and in many cases is larger than three. The minimum value of bearing
height is one of the most important constraints during optimal control approaches.
Four levels of approximation have been tested during modeling. The most
important model improvement is to take into account the temperature dependence
of the lubricant viscosity.

The bearing design and operation parameters have influence on the optimal
solutions. The most important property is viscosity, whose temperature dependence
has important consequences on the optimum bearing profile. The optimum bearing
profile depends in a complex way on the bearing length l. Generally, the peak
pressure increases by increasing l. The bearing profiles associated with different
inlet thickness hin belong to a common template. The details are different,
depending on the hin value.

Appendix 23A

23.A1 Sensibility Analysis

The convergence of direct and indirect optimal control methods is dependent on the
lower and upper bounds adopted for state variables and controls. Note that using
larger upper bounds is not always the best solution. Indeed, sometimes the finite
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computing resources make local optimal solutions to be lost in case too large upper
bounds are adopted. Finding appropriate bounds is a matter of experience and trial.

The case analyzed in Sect. 23.4.2.1 of the chapter has been considered. Three
series of tests have been performed by using the Euler (explicit—1st order) dis-
cretization method with 500 steps. In most cases the tolerance value used during the
optimization stage has been 10−10. The lower and upper bounds listed in
Table 23.10 are used.

The first set of tests refers to the dependence on results on the tolerance value.
The values of Table 23.10 have been used as input. Results are shown in
Table 23.11.

Figures 23.18, 23.19, 23.20, 23.21, 23.22 and 23.23 show the optimal space
distribution of the state variables and control. Results show that the influence of the
tolerance value on the results is not significant, for this particular case. In all tests,
very short inlet regions have been obtained.

The second set of tests refers to the lower bound used for the control. The values
of Table 23.10 have been used as input (except for the lower bound of the control t)
while the tolerance used in the optimization stage was 10−10. Results are shown in
Table 23.12.

Figures 23.23, 23.24, 23.25, 23.26 and 23.27 show the optimal space distribu-
tion of the state variables and control. Very short inlet regions have been obtained
for all values of the lower bound of the control. The influence of the lower bound of
the control on the results may be significant (compare Fig. 23.27, on one hand, with
Figs. 23.24, 23.25 and 23.26, on the other hand). Higher values of the objective

Table 23.10 Lower and upper bounds used during testing

Quantity Lower bound Upper bound

p̂ 1 5

T̂ 1 1.5

ĥ 0 1

f̂ 0 106

p −104 104

t �5� 104 0

Table 23.11 Dependence of results on the tolerance value used during the optimization stage

Test
number

Tolerance Number of
iterations

Maximum objective function
(final value of variable f̂ Þ

Figure where
solution is shown

P1 10−12 227 3963 Figure 23.18

P2 10−10 227 3963 Figure 23.19

P3 10−8 213 3963 Figure 23.20

P4 10−6 213 3963 Figure 23.21

P5 10−4 211 3963 Figure 23.22

P6 10−2 211 3963 Figure 23.23
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Fig. 23.18 Optimal space distribution of the state variables and the optimal control for
tol = 10−12

Fig. 23.19 As Fig. 23.18 for tol = 10−10
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Fig. 23.20 As Fig. 23.18 for tol = 10−8

Fig. 23.21 As Fig. 23.18 for tol = 10−6

562 23 Optimization of One Dimensional Slider Bearings



Fig. 23.22 As Fig. 23.18 for tol = 10−4

Fig. 23.23 As Fig. 23.18 for tol = 10−2
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functions (final value of variable f̂ Þ are associated with more abrupt variation of
bearing height in the inlet region (compare, for instance, the graphs of ĥ and f̂ in
Figs. 23.21 and 23.24).

The third set of tests refers to the higher bound used for the variable f̂ . The
values of Table 23.10 have been used as input (except for the higher bound used for
the variable f̂ Þ while the tolerance value used in the optimization stage was 10−10.
Results are shown in Table 23.13.

Figures 23.28, 23.29, 23.30 and 23.31 show the optimal space distribution of the
state variables and control. Very short inlet regions have been obtained for all
values of the higher bound of the variable f̂ . The influence of the higher bound of
the variable f̂ on the results may be significant (compare Figs. 23.30 and 23.31, on
one hand, with Figs. 23.28 and 23.29, on the other hand). Higher values of the
objective functions (final value of variable f̂ ) are associated with more abrupt
variation of bearing height in the inlet region (compare, for instance, the graphs of ĥ
and f̂ in Figs. 23.28 and 23.29, on one hand, and Figs. 23.30 and 23.31, on the
other hand).

To conclude, all three sets of tests show that higher values of the objective
functions are associated with abrupt variation of bearing height in the inlet region.

23.A2 Constraints and Approximation

23.A2.1 Maximum Temperature Constraint

Figure 23.32 shows the optimum space distribution of dimensionless pressure and
temperature in the lubricant film. Neither the optimum pressure distribution nor the
optimum temperature distribution is similar in shape with the bearing profile shown
in Fig. 23.8 (see the main body of this chapter). The optimum pressure has a
maximum peak, which is larger for larger values of T̂max (Fig. 23.32a). By
decreasing T̂max, the position of the peak temperature moves towards the bearing
outlet. The optimum temperature increases monotonously from bearing inlet to
bearing outlet (Fig. 23.32b). The temperature is larger for larger T̂max values. The

Table 23.12 Dependence of results on the lower bound of the control

Test
number

Lower bound
of the control t

Number
of
iterations

Maximum objective function
(final value of variable f̂ Þ

Figure where
solution is
shown

R1 −5 � 104 227 3963 Figure 23.24

R2 −105 428 3963 Figure 23.25

R3 −106 369 3938 Figure 23.26

R4 −107 299 2678 Figure 23.27
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Fig. 23.24 Optimal space distribution of the state variables and the optimal control for lower
bound of the control = −5 � 104

Fig. 23.25 As Fig. 23.24 for lower bound of the control = −105
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Fig. 23.26 As Fig. 23.24 for lower bound of the control = −106

Fig. 23.27 As Fig. 23.24 for lower bound of the control = −107
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dimensionless temperature T̂ has an abrupt increase at bearing outlet, where it
equals the value T̂max. The abrupt temperature increase is to be connected with the
very thin lubricant film (Fig. 23.8b).

23.A2.2 Maximum Bearing Load

For larger f̂max values the dimensionless pressure p̂ shows a peak, which is higher
for higher f̂max values (Fig. 23.33a). Lower values of f̂max (= 500) are associated
with a weak space dependence of p̂: However, a shallow maximum still exist.

Table 23.13 Dependence of results on the higher bound used for the state variable f̂

Test
number

Higher bound
of the variable
f̂

Number
of
iterations

Maximum objective
function (final value of
variable f̂ Þ

Figure where
solution is
shown

Q1 105 250 3913 Figure 23.28

Q2 106 227 3963 Figure 23.29

Q3 108 938 2626 Figure 23.30

Q4 109 1102 2624 Figure 23.31

Fig. 23.28 Optimal space distribution of the state variables and the optimal control for higher
bound of the variable f̂ ¼ 105
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Fig. 23.29 As Fig. 23.28 for f̂ ¼ 106

Fig. 23.30 As Fig. 23.28 f̂ ¼ 108
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Fig. 23.31 As Fig. 23.28 for f̂ ¼ 109

Fig. 23.32 Optimum space distribution of dimensionless pressure p̂ (a) and temperature T̂
(b) associated with bearing profiles of Fig. 23.8. Different values of the maximum allowed
dimensionless temperature T̂max have been considered

Appendix 23A 569



The lubricant temperature is generally weakly dependent on f̂max , with a maximum
T̂ value around 1.020 (see Fig. 23.33b). The shape of the temperature distribution
depends significantly on f̂max. Lower values of f̂max yield low space variation of T̂:

23.A2.3 Levels of Approximation

In case of ĥmin ¼ 0:01 the optimum pressure space distribution does not depend on
the approximation level (Fig. 23.34a). This is consistent with comments made for
Fig. 23.11a in the main body of this chapter. For smaller value of ĥmin ¼ 0:001 the
level 1 of approximation yields a space distribution of pressure increasing almost
linearly (Fig. 23.34b). When level 2 and higher levels of approximation are con-
sidered, the pressure distribution is peaked. Thus, the peak pressure is mainly a
result of taking into account the temperature dependence of lubricant viscosity. The
pressure peak position is almost the same for level 2 to level 4 but the value of the
peak increases by increasing the approximation level.

The lubricant temperature distribution is shown in Fig. 23.35 for different
approximation levels. Level 1 of approximation is associated with constant tem-
perature, for ĥmin ¼ 0:01 and ĥmin ¼ 0:001, as expected. Levels 2 and 3 of
approximation yield a space increasing temperature for both ĥmin ¼ 0:01 and
ĥmin ¼ 0:001. In case of the approximation level 4 the temperature distribution is
similar in shape for both values of ĥmin but the temperature values are different in
the two cases.

23.A3 Design Parameters

23.A3.1 Lubricant Type

Figure 23.36 shows the optimum space distribution of the dimensionless pressure
for different lubricants and two values of ĥmin. Pressure is higher for lower values of
ĥmin and depends on lubricant type. For given lubricant and given value of ĥmin the
distribution of p̂ has a maximum for x̂ around 0.7. The maximum value is function
of lubricant and ĥmin.

The space distribution of the dimensionless temperature T̂ is shown in
Fig. 23.37 for two values of ĥmin and different lubricants. The temperature is higher
for higher ĥmin and depends on lubricant type. The temperature increases rapidly in
a short region at bearing inlet and increases less rapidly or becomes almost constant
in the remaining part of the bearing.
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Fig. 23.33 Optimum space distribution of dimensionless pressure p̂ (a) and temperature T̂
(b) associated with bearing profiles of Fig. 23.9. Different values of the maximum dimensionless
objective function f̂max have been considered

Fig. 23.34 Optimum space distribution of dimensionless pressure p̂ for two values of ĥmin;
a ĥmin ¼ 0:01; b ĥmin ¼ 0:001. Several approximation levels defined in Table 23.9 in the main
body of this chapter have been considered

Appendix 23A 571



Fig. 23.35 Optimum space distribution of dimensionless temperature T̂ for two values of ĥmin;
a ĥmin ¼ 0:01; b ĥmin ¼ 0:001. Several approximation levels defined in Table 23.9 in the main
body of this chapter have been considered

Fig. 23.36 Optimum space distribution of dimensionless pressure p̂ for ĥmin ¼ 0:01 and
ĥmin ¼ 0:001. Different lubricants have been considered
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23.A3.2 Bearing Length

Figure 23.38 shows the pressure variation along the bearing for different values of
dimensionless bearing length l̂. That variation is similar in shape for both ĥmin ¼
0:01 and ĥmin ¼ 0:001 (Fig. 23.38a, b). The pressure has a (more or less obvious)
peak located in the second half of the bearing. Generally, the peak pressure
increases by increasing l̂. For given value of l̂ the peak pressure values are sig-
nificantly different in the two cases.

The lubricant dimensionless temperature T̂ increases along the bearing, for all
values of l̂ and ĥmin considered (Fig. 23.39). However, the shape of temperature
distribution depends of l̂ and ĥmin. For ĥmin ¼ 0:01, the temperature increases
almost linearly for small values of l̂ and non-linearly for large l̂ values
(Fig. 23.39a). For ĥmin ¼ 0:001, the distribution of T̂ has a more complicated shape
(Fig. 23.39b). For l̂ ¼ 0:1, T̂ increases abruptly at bearing inlet and next has a weak
linear increase. For l̂ ¼ 1, the initial abrupt increase still exists but T̂ reaches the
maxim allowed value T̂max at bearing outlet. Larger values of l̂ are associated with a
less abrupt initial variation of T̂ but the maximum value T̂max is found again at
bearing outlet.

Fig. 23.37 Optimum space distribution of dimensionless temperature T̂ for ĥmin ¼ 0:01 and
ĥmin ¼ 0:001. Different lubricants have been considered
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Fig. 23.38 Optimum space distribution of dimensionless pressure p̂. Different values of the
dimensionless bearing length l̂ have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001

Fig. 23.39 Optimum space distribution of dimensionless temperature T̂ . Different values of the
dimensionless bearing length l̂ have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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23.A3.3 Bearing Inlet Height

The pressure distribution is shown in Fig. 23.40 for different values of ĥin and ĥmin.
The shape of this distribution depends significantly on ĥin and, on lesser extent, on
ĥmin. For smallest values of ĥin (i.e. 0.02) the pressure has a region of constant level
for both values of ĥin. The region of constant level does not exist for ĥin ¼ 0:2.

For larger inlet thickness (ĥin ¼ 2Þ the pressure distribution has a weak variation
along the bearing for ĥmin ¼ 0:01 (Fig. 23.40a) but has a maximum near the bearing
outlet for ĥmin ¼ 0:001 (Fig. 23.40b). The largest value of ĥin (i.e. 20) is associated
with a weak pressure variation along the bearing for both values of ĥin.

The temperature distribution along the bearing does not depend significantly on
ĥmin for ĥin ¼ 0:02 (compare Fig. 23.41a, b). The temperature increases by
increasing ĥ and reaches the maximum allowed value T̂max at bearing outlet. The
shape of temperature distribution for ĥin ¼ 0:02 is similar for both values of ĥmin.
However, the temperature distribution along the bearing depends significantly on
ĥmin in case of ĥin ¼ 2 and ĥin ¼ 20, when T̂ generally increases by decreasing ĥmin.

Fig. 23.40 Optimum space distribution of dimensionless pressure p̂. Different values of the
dimensionless inlet thickness ĥin have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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23.A3.4 Sliding Velocity

Figure 23.42 shows the pressure variation along the bearing for different values of
the sliding velocity Û. For small values of Û that variation is similar in shape for
both ĥmin ¼ 0:01 and ĥmin ¼ 0:001 (Fig. 23.42a, b). The pressure has a (more or
less obvious) peak located in the second half of the bearing. Generally, the peak
pressure increases by increasing Û. For given value of Û, the peak pressure values
are significantly different in the two cases. For large values of Û (i.e. 15) the
pressure variation is different in shape for ĥmin ¼ 0:01 and ĥmin ¼ 0:001, respec-
tively (Fig. 23.42a, b). In the second case, a region of constant level of p̂ exists
since the pressure reached the maximum allowed value p̂max.

The lubricant dimensionless temperature T̂ increases along the bearing, for all
values of Û and ĥmin considered (Fig. 23.43). For ĥmin ¼ 0:01, the temperature
increases almost linearly for small values of Û and non-linearly at large Û values
(Fig. 23.43a). For ĥmin ¼ 0:001 and smaller values of Û (i.e. 0.1 and 1), T̂ increases
abruptly at bearing inlet and next has a weak linear (or slightly non-linear) increase
(Fig. 23.43b). Larger values of Û (=15) have a less abrupt initial variation of T̂ but
the maximum value T̂maxð¼1:35Þ is reached at bearing outlet.

Fig. 23.41 Optimum space distribution of dimensionless temperature T̂ . Different values of the
dimensionless inlet thickness ĥin have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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Fig. 23.42 Optimum space distribution of dimensionless pressure p̂. Different values of the
dimensionless velocity Û have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001

Fig. 23.43 Optimum space distribution of dimensionless temperature T̂ . Different values of the
dimensionless velocity Û have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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23.A3.5 Inlet Lubricant Pressure

Figure 23.44 shows the pressure variation along the bearing for two values of the
dimensionless inlet pressure p̂in. The pressure distribution is significantly dependent
on both parameters. For ĥmin ¼ 0:01 and small value of p̂in (2), the pressure has a
maximum located in the second half of the bearing (Fig. 23.44a). When a larger p̂in
value is considered (10), the pressure is kept constant at value p̂in along the bearing,
and abruptly decreases at the outlet. For ĥmin ¼ 0:001; the pressure distribution has
a peak whose magnitude and position depend on p̂in (Fig. 23.44b).

In case of ĥmin ¼ 0:01; the temperature is rather constant along the bearing
(Fig. 23.45a). However, at large value of p̂in an abrupt increase of temperature
arises at bearing outlet, where the thickness ĥ decreases significantly (see
Fig. 23.43b). For ĥmin ¼ 0:001 and small value p̂in (2), the temperature increases
constantly along the bearing towards the maximum allowed value T̂max

(Fig. 23.45b). At larger value of p̂in (10), the increase of temperature along the
bearing is smaller.

Fig. 23.44 Optimum space distribution of dimensionless pressure p̂. Two values of the
dimensionless inlet pressure p̂in have been considered. a ĥmin ¼ 0:01; b ĥmin ¼ 0:001
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Index

A
Abnormal arcs, 81
Absolute maximum, 11
Absolute minimum, 11
Absorber plate, 318
Absorption refrigerator, 300
Adjoint equations, 93
Adjoint functions, 93
Adjoint variable, 427
Admissible controls, 425
Admissible function, 3, 58
“all or nothing” controller, 418
Aluminum, 489
Aluminum titanate, 487
Annand approach, 482
Annand model, 483, 502
Arcs of trajectory, 432
Argument function, 24
Associated equations, 93
Auto-ignition moment, 492, 494
Autonomous system, 96, 426
Auxiliary conditions, 77
Auxiliary energy cost, 300
Auxiliary heater, 286
Availability, 184
Availability loss, 185
Available work, 239

B
Backwards integration, 135
Bang-bang control, 264, 273
Bang-bang controller, 367, 384
Bang-bang strategy, 377, 395
Bath, 169
Bearing length, 531, 545, 553
Bearing load, 534
Beer-Bouguer-Lambert law, 343, 516
Bellman equation, 148, 150
Bellman method, 4, 86, 137

Benefit/cost ratio, 290
Best local design solution, 296
Best strategy, 105
Bliss-Hottel-Whillier equation, 412
Bliss-Hottel-Whillier relationship, 328, 386
BOCOP computing programming package,

534
Bolza problem, 83, 119, 262, 534
Bottom heat loss coefficient, 344
Bottom thermal insulation, 312
Boundary conditions, 4, 88
Bounded acceleration, 451
Brachistochrone problem, 23
Burning, 446
Burning time, 446, 463

C
Calculus of variations, 24
Cam, 468
Cam engines, 6, 468
Cam-lever system, 478
Cam-tappet mechanism, 457
Cam-tappet system, 513
Canonical system of equations, 427
Capital cost, 300
Carnot efficiency, 525
Carnot heat pump, 299
Cast iron, 489
Characteristic equations, 28
Charging-discharging cycle, 209
Chart, 3
Chemical plants, 189
Circulation pump, 416
Climatic index of continentality, 303
Closed loop solar thermal systems, 367, 384
Closed systems, 184
Codomain, 80
Coefficient of performance, 171, 299
Cogeneration technologies, 5
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Cold season, 313, 328, 339, 362, 398
Collection controllers, 367
Collection surface area, 287
Combustion duration, 501
Compression, 445, 501
Compression ignition engines, 467
Conditions of transversality, 414
Conjugate variable, 427
Constant flow rate strategy, 403
Constrained optimization, 18, 29
Constraints, 4, 18
Control function, 4, 85, 88, 89, 120, 449
Control grid points, 475
Controller design, 367
Controllers, 367
Controllers of first kind, 367
Controllers of second kind, 367
Controllers of third kind, 367
Controller with state feedback, 416
Control parameters, 85
Controls, 4, 89, 425
Control signal, 3
Control theory, 1
Convection heat transfer, 164
Conventional heater, 299
Convergence speed, 115
“cool-down” problem, 231
Cooling process, 232
Cost function, 93, 330, 336, 426
Cost of fuel, 289
Counter flow heat exchangers, 189, 191
Covariable, 427
Crank angle, 480
Crank shaft, 505
Criterial relationships, 261
Critical point, 11
Curves space, 24
Cycloid, 23

D
Daniel cam engine, 467
De Boor splines, 476
Degree of advancement of the reaction, 446
Dependent variables, 88
Design constraints, 275
Dido problem, 64
Diesel engine, 6, 445
Diesel fuel, 305
Diffuse solar radiation, 349
Direct methods, 88
Direct numerical methods, 86
Direct optimal control method, 264
Direct optimal control technique, 366
Direct optimization methods, 111

Discrete solar energy collection system, 291
Discretization method, 543
Dissipation measures, 193, 235, 240
Distribution controllers, 367
3D square slider bearing, 529
Dynamic equations, 91
Dynamic programming method, 4, 86, 137
Dynamic systems, 425
Dynamic variables, 1

E
Effective thermal resistance, 252
Effective transmittance-absorptance product,

344
Efficiency of the fin, 318
Electricity, 305
Endoreversibile engines, 6
Endoreversible heat engine, 423
Entropy generation, 162, 520
Entropy generation minimization, 161, 189
Entropy generation number, 189
Entropy generation rate, 239
Entropy production, 513
Environment, 184
Equations of motion, 88, 91
“equilibrated” operation, 200
Equilibrium constant, 516
Erdmann-Weierstrass corner conditions, 57
Error signal, 2
Euclidean space, 91
Euler conditions, 95
Euler-Lagrange equation, 27, 119, 352
Euler-Lagrange equation with partial

derivatives, 41
Exergetic method, 6
Exergetic number, 352
Exergoeconomic cost minimization, 257
Exergy, 208, 349
Exergy destruction, 215, 349
Exergy fluxes, 357
Exergy gain, 349
Exergy minimization, 257
Exhaust, 445
Existence of the solution, 84
Exothermic reaction, 514
Expansion, 445, 453
Extremal, 24
Extremal curve, 24
Extremal function, 29

F
Fairchild-Caminez engine, 468
Feedback control, 2
Ferrofluids, 537
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Fin efficiency, 345
Finite time thermodynamics, 6
Fins of constant thickness, 317
Fins with variable thickness, 317
Fire deck, 503
First law of thermodynamics, 162
Fixed right end, 92
Flat-plate collector, 285, 373
Flat-plate solar collector, 355
Flywheel, 520
Forced convection heat transfer, 227
Forced convection heat transfer coefficient, 404
Four-stroke cycle, The, 448
Free piston engines, 467
Free right end, 92
Fresnel formula, 343
Friction factor, 227, 409
Friction force, 447, 515
Fuel evaporation, 446
Fuel injection, 448
Fully mixed operation, 384
Fully mixed water storage tank, 221
Functional, 3, 24
Functions of influence, 415
Functions space, 24
Fundamental equation, 124
Fundamental theorem, 92, 377

G
Generic function, 121
Genetic algorithms, 257, 530
Geodesical distance, 49
Glazed solar collector, 344
Gouy-Stodola theorem, 189, 223
Gradient method, 4, 86, 111
Grid method, 87, 137

H
Hamilton function, 92, 413
Hamiltonian, 27, 79, 92, 264, 322, 376, 427,

450, 522
Hamilton-Jacobi equation, 28
Heat engines, 6
Heat exchange, 5
Heat exchanger, 189, 206
Heat exchanger with phase change, 191
Heating function, 501
Heat removal factor, 298, 331, 373, 413
Heat reservoir, 193, 423
Heat transfer coefficient, 170
Heat transfer surface area, 211
Heaviside step function, 130
Homotopy analysis, 257
Hottel factor, 318

Hybrid bearings, 536
Hypersurface, 90

I
Identification, 3
Inclined sliding bearing, 531
Indirect methods, 88
Indirect optimal control methods, 475
Infinitesimal movement, 113
Inflation, 302
Influence functions, 123
Initial value problem, 363
Injection, 446
Insulated cylinder, 498
Insulated tank, 210
Insulation cost, 293
Insulation thickness, 293
Intake, 445
Integral conditions, 77
Internal balance, 514
Internal rate of return, 300, 301
Inverse solution methods, 257
Irreversible processes, 513
Isoextreme curves, 49
Isolines, 112
Isoperimetric problems, 64
Isothermal branches, 432

J
Jerk profile, 486
Jump, 104
Jump surfaces, 432

K
Kingsbury and Michell tilting-pad bearing, 530

L
Lagrange multiplier, 71, 140, 163, 194, 248,

521
Lagrange multipliers method, 21
Lagrange problem, 82, 119
Lagrangian, 163, 249
Lebesque measure theory, 89
Legendre condition, 26, 95, 78
Legendre transform, 29
Length-of-arc assumption, 257
Lever, 468
Life cycle cost, 300
Linear pressure drop, 226
Linear system, 102
Lobatto, 264
Local air pressure loss, 226
Local optimum values, 86
Local overall heat transfer coefficient, 228
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Lost available work, 168
Low heat rejection engine, 487
Lubrication problems, 6

M
Manifold, 90
Map, 3
Marchetti engine, 468
Matrix of the quadratic form, 15
Maximum bearing load, 547
Maximum efficiency, 474
Maximum heat flux, 258
Maximum net revenue, 474
Maximum output power, 474
Maximum principle, 86, 92
Mayer problem, 83, 119, 262, 474, 534
Mechanical power, 405
Method of “frozen parameters”, 361, 389
Method of Lagrange multipliers, 78, 95, 113
Michel engine, 468
Mineral oils, 537
Minimization of lost available work, 168
Minimizing the entropy generation, 5
Minimum amount of material, 257
Minimum bearing height, 548
Minimum cooling fluid mass, 242
Minimum cost, 257
Minimum entropy generation, 194
Minimum entropy generation number, 209
Minimum entropy production, 474
Minimum exergy destruction, 215
Minimum loss of availability, 474
Minimum lost available work, 194, 242
Minimum material volume, 258
Minimum speed of entropy generation, 192
Mobile right end, 92
Modified optical efficiency, 298, 329

N
Natural boundary conditions, 47
Natural convection heat transfer coefficient,

404
Natural gas, 305
Navier-Stokes equations, 531
Necessary condition, 33, 84
Negative define, 15
Net present value, 301
Net work, 520
Newtonian convection, 169
Newtonian-type lubricants, 537
Newton model, 481
Newton’s law, 232
Non-autonomous function, 90
Non-autonomous systems, 96

Non-linear problem, 264
Non-regular solution, 280
Non-trivial optimal control strategy, 380
Normal solution, 81
Number of exergy destruction, 218
Number of exergy loss, 208
Number of switchings, 104
Number of thermal units, 208

O
Objective, 93
Objective function, 93, 241, 426
Open loop systems, 366, 394
Optical efficiency, 290
Optimal bearing profile, 529
Optimal cam profile, 490
Optimal control, 426
Optimal controllers, 411
Optimal control parameters, 2
Optimal control problem, 4, 539
Optimal fin width, 339
Optimal flow rate, 354
Optimal fluid flow rate, 377
Optimal fluid mass flow rate, 192
Optimal geometry, 319
Optimal heating strategy, 164
Optimal insulation thickness, 294
Optimal path, 105, 426
Optimal pin fin shape, 262
Optimal piston path, 474
Optimal rapid response, 93
Optimal solar energy collection system, 291
Optimal strategy, 163
Optimal trajectory, 426, 449
Optimal viscosity of lubricants, 537
Optimal width, 324
Optimization criterion, 172
Optimization problems, 3
Optimized cross-sectional area, 326
Optimized fin, 320
Optimum charging time, 218
Optimum fin shape, 317
Optimum fin thickness, 331
Optimum mass flow rate, 413
Optimum tilt angle, 357
Ordinary differential equations, 2, 77
Ordinary equations, 77
Orthogonality, 49
Otto cycle, 462
Overall heat transfer coefficient, 209

P
Parallel flow heat exchangers, 191
Pay-back period, 300
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Performance criterion, 374
Performance indicator, 218, 426
Photochemical reaction, 513
Pin fins, 257
Piston movement, 448
Piston movement laws, 469
Piston path optimization, 486
Positive definite, 15
Positive feedback effect, 514
Power plants, 205
Power stroke, 499
Pressure loss coefficient, 408
Pressure losses, 447
Pressure-volume diagrams, 481
Principle of optimality for the parts of the

optimal trajectory, 85, 428
Principle of Pontryagin, 4, 86
Problem of Dido, 23
Production of entropy, 162
Profitability, 302
Proportional controller, 367, 384

Q
Quadratic form, 14

R
Radiative heat transfer, 167
Rapid optimal process, 102
Rate of return, 286
Rayleigh step bearing, 529, 548
Reaction coordinate, 501
Real eigenvalues, 104
Reduced cost, 321
Reduced cost parameters, 319
Reductio ad absurdum, 25
Register-type collector, 345
Registry type solar collector, 406
Regular field, 24
Relative extremum, 12
Relative maximum, 12
Relative minimum, 12
Relaxation time, 446
Residual availability, 185
Restrictions, 18
Retscreen International, 304
Reversible heat pump, 171, 239
Reversible processes, 162
Reversible refrigeration engine, 194
R-polygon, 291

S
Saddle point, 14
Sample function, 40
Scalar product, 112

Schmidt criterion, 266
Seasonal storage systems, 247
Second law of thermodynamics, 162
Second order surface, 115
Sensor, 367
Single-zone combustion model, 500
Singular arcs, 279
Singular case, 85, 439
Singular control, 264
Singular control problem, 428
Singular point, 19
Sinusoidal piston law, 505
Sliding velocity, 555
Small variations, 32
Soil thermal conductivity, 253
Solar fraction, 300, 304
Solar space heating applications, 367
Sources of irreversibility, 207
Space of admissible functions, 24
Spark ignition engines, 462
Speed and acceleration laws, 505
Stability domain, 2
Stability of operation, 2
Stable stationary states, 519
State grid points, 475
State variables, 4, 85, 89, 120
Stationary point, 11
Stationary states, 519
Stationary values, 3, 11
Stop condition, 120
Storage element, 208
Storage medium, 212
Storage of thermal energy, 5, 205
Storage tank, 247, 374
Storage unit, 207, 215, 376
Strategy, 418
Strategy “all or nothing”, 377
Stratified storage system, 374
Stratified storage tanks, 222, 418
Stratified thermal storage, 378
Structural optimization, 285
Sufficient conditions, 33, 84
Switching, 104, 432
Switching surfaces, 432
Sylvester theorem, 17
Symmetric matrix, 15
Synthesis phase, 105
System, 425
System dynamics, 1

T
Tanks with stratified storage, 412
Tapper-crank system, 467
Thermal conductance, 170, 191, 294
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Thermal efficiency, 425
Thermal energy accumulators, 247
Thermal energy storage, 209
Thermal expansion, 374
Thermal function, 515
Thermal inertia, 209
Thermal insulation, 248
Thermal loss coefficient, 290
Thermal losses, 447
Thermal power plants, 189
Thermodynamic bath, 184
Thermo-economic analysis, 209
Transmittance-absorptance product, 343
Transversality condition, 48, 93
Transverse Biot number, 267
Trapezoidal pocket geometry, 529
Trial curves, 86
Trivial strategy, 377
Turbulence, 481

U
Unbounded acceleration, 450
Uniform storage tanks, 412
Uniform thickness fin, 321
Uniqueness of the solution, 84
Unstable stationary state, 519

V
Vapor compression heat pump, 299
Variable fin thickness, 334
Variation, 57
Variational calculus, 4, 143
Viscosity forces, 447
Volume of the storage tank, 402

W
Warm season, 314, 328, 339, 362, 398
Waviness profiles, 266
Weak variations, 32
Weierstrass condition, 26, 78, 95
Weierstrass-Erdmann conditions, 95
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Wiebe method, 502
Work deficiency, 185
Work reservoir, 183, 239

Z
Zirconia, 487

588 Index


	Preface
	Contents
	1 Introduction
	1.1 Control of Systems
	1.2 Optimization Classes
	References

	Introductory Elements
	2 Functions Optimization
	2.1 Weierstrass Theorem
	2.2 Conditions of Extreme
	2.2.1 Real Functions of One Variable
	2.2.2 Functions of Several Variables
	2.2.2.1 Functions of Two Variables
	2.2.2.2 Functions with Arbitrary Finite Number of Variables
	2.2.2.3 Examples


	2.3 Constrained Optimization
	2.3.1 Functions of Two Variables
	2.3.2 Functions with Arbitrary Finite Number of Variables

	Reference

	3 Elements of Variational Calculus
	3.1 Short History
	3.2 Preliminary Issues
	3.2.1 Necessary Conditions for Extremization of Functionals
	3.2.2 Dual Methods in Variational Calculus

	3.3 Euler Extremization Procedure
	3.4 The Basic Lemma
	3.4.1 The Statement and Proof of the Fundamental Lemma

	3.5 The Euler-Lagrange Equation for Other Cases of Practical Interest
	3.5.1 Integrands Depending on Several Functions
	3.5.2 Integrands Containing Higher Order Derivatives
	3.5.3 Integrands Depending on Several Independent Variables

	3.6 Analytical Solutions of Euler-Lagrange Equations
	3.6.1 The Case When F = F\left( {x,u^{{\prime }} } \right) 
	3.6.2 The Case When F = F\left( {u,u^{{\prime }} } \right) 
	3.6.3 The Case When F\left( {x,y,y^{{\prime }} } \right) Is Total Derivative

	3.7 Boundary Conditions
	3.7.1 Natural Boundary Conditions
	3.7.2 Transversality Conditions

	3.8 Extremals and Isoextreme Curves
	3.8.1 Another Interpretation of the Transversality Condition
	3.8.2 The Regularity Assumption
	3.8.3 Obtaining Extremals from Isoextreme and Vice Versa
	3.8.4 Example
	3.8.4.1 Euler-Lagrange Approach
	3.8.4.2 Hamilton-Jacobi Approach

	3.8.5 Corner Conditions (Erdmann-Weierstrass)

	3.9 Variational Notation
	3.10 Constrained Extremization
	3.11 Isoperimetric Problems
	3.11.1 Extreme with More Constraints
	3.11.2 The Case of Multiple Dependent Variables

	References

	Theory
	4 Generalities Concerning the Optimal Control Problems
	4.1 Variational Problems with Differential Equations as Constraints
	4.1.1 Generalization of Some Notions of Variational Calculus
	4.1.2 Differential Equations Acting as Constraints. Consequences
	4.1.3 Problems of Type Lagrange, Mayer and Bolza

	4.2 Solving Optimal Control Problems
	4.2.1 Constraints on the Solutions
	4.2.2 The Principle of Optimality for Parts of the Optimal Trajectory
	4.2.3 Direct and Indirect Methods

	References

	5 The Maximum Principle (Pontryagin)
	5.1 Preliminaries
	5.2 The Fundamental Theorem
	5.3 Comments on the Fundamental Theorem
	5.3.1 Strategies of Using the Necessary Conditions
	5.3.2 The Case of Non-autonomous Systems
	5.3.3 Functionals Depending on Parameters

	5.4 Other Useful Theorems
	5.4.1 Non-autonomous Systems: Processes with Unspecified Duration
	5.4.2 Non-autonomous Systems: Optimal Rapid Reaction
	5.4.3 Processes with Specified Duration

	5.5 Linear Rapid Reaction Systems
	5.6 The Synthesis Problem
	5.7 Example
	References

	6 The Gradient Method
	6.1 Common Extreme Problems
	6.1.1 Unconstrained Optimization
	6.1.2 Constrained Optimization

	6.2 Simple Variational Problems
	6.3 Optimal Control Problems
	6.3.1 The Fundamental Equation
	6.3.2 Process with Specified Duration but Without Final Conditions
	6.3.3 Process with Specified Duration and One Final Condition
	6.3.4 Process with Unspecified Duration and Without Final Conditions

	6.4 Constraints for the Control Functions and State Variables
	6.4.1 Constraints for the Control Functions
	6.4.2 Constraints for the State Variables

	6.5 General Approach
	References

	7 Dynamic Programming (Bellman Method)
	7.1 Common Optimization Problems
	7.1.1 The Grid Method
	7.1.2 The Bellman Method
	7.1.3 Example

	7.2 Problems of Variational Calculus
	7.3 Optimal Control Problems
	7.3.1 Extension of the Variational Calculus Method
	7.3.2 Bellman Equation
	7.3.3 Example

	7.4 Linear Processes and Quadratic Objective Functions
	7.5 Comments
	References

	Applications: Heat Transfer and Storage
	8 Heat Transfer Processes
	8.1 Optimal Strategies for Common Heat Transfer Processes
	8.1.1 Determination of Optimal Strategies
	8.1.2 The Case When the Value of n Is Arbitrary
	8.1.3 The Case When n = 1
	8.1.3.1 Source Temperature Constant in Time
	8.1.3.2 Thermal Flux Constant in Time
	8.1.3.3 Comparison

	8.1.4 The Case When n = −1
	8.1.5 The Case When n = 4
	8.1.6 The Case of Entropy Generation at Constant Speed

	8.2 Optimal Paths for Minimizing Lost Available Work
	8.2.1 Introduction
	8.2.2 Theory
	8.2.2.1 Model
	8.2.2.2 Measures of Dissipation
	8.2.2.3 Optimization Problem
	8.2.2.4 Dimensionless Formulation

	8.2.3 Results
	8.2.3.1 Newtonian Heat Convection ( n = 1 )
	8.2.3.2 Special Conduction Case ( n = - 1 )
	8.2.3.3 Radiative Heat Transfer ( n = 4 )

	8.2.4 Conclusions

	Appendix 8A
	Appendix 8B
	References

	9 Heat Exchangers
	9.1 Simple Approach
	9.1.1 Usual and Optimized Operation Strategies

	9.2 Optimal Strategies for Steady State Heat Exchanger Operation
	9.2.1 Introduction
	9.2.2 Optimal Heating/Cooling Strategies
	9.2.3 Optimization of Heat Exchanger Operation Based on Minimum Entropy Generation
	9.2.4 Optimization of Steady-State Heat Exchanger Operation for Arbitrary Criteria

	9.3 Conclusions
	References

	10 Storage of Thermal Energy and Exergy
	10.1 Unsteady Operation of Storage Elements
	10.2 The Exergy Loss During the Storage Process
	10.3 Thermal Energy Storage in Stratified and Fully Mixed Water Tanks
	10.3.1 Introduction
	10.3.2 Stratified Liquid Storage Tanks
	10.3.2.1 Model
	10.3.2.2 Performance Indicator
	10.3.2.3 Results and Discussion

	10.3.3 Fully Mixed Liquid Storage Tanks
	10.3.3.1 Model
	10.3.3.2 Indicator of Performance
	10.3.3.3 Results

	10.3.4 Conclusions

	Appendix 10A
	Appendix 10B
	References

	11 Heating and Cooling Processes
	11.1 Optimization of Heating and Cooling Processes by Variational Calculus
	11.1.1 Cooling Process Without Time Limitation
	11.1.2 Cooling Process in Limited Time

	11.2 Optimal Control of Forced Cool-Down Processes
	11.2.1 Introduction
	11.2.2 Forced Cooling Processes with Minimization of Cooling Fluid Mass
	11.2.3 Forced Cooling Processes with Minimization of Dissipation Measures
	11.2.3.1 Dissipation Measures
	11.2.3.2 Minimization of Dissipation Measures


	11.3 Conclusion
	References

	12 Optimization of Thermal Insulation of Seasonal Water Storage Tanks
	12.1 Optimization of the Distribution of Thermal Insulation
	12.2 Optimization of the Total Volume of Thermal Insulation
	Reference

	13 Optimization of Pin Fin Profiles
	13.1 Optimal Control Methods
	13.1.1 Methodology
	13.1.1.1 Geometry
	13.1.1.2 Heat Transfer Model
	13.1.1.3 Optimal Control Problem
	13.1.1.4 Optimal Control Method
	13.1.1.5 Implementation
	Geometry
	Reference Parameters
	Technological Constraints

	13.1.1.6 Particular Cases
	Temperature Imposed at z = 0 (or \xi = 0 )
	Temperature Imposed at z = L (or \xi = 1 )


	13.1.2 Results
	13.1.2.1 Expected Accuracy
	13.1.2.2 Particular Cases
	Temperature Imposed at z = 0 (or \xi = 0 )
	Temperature Imposed at z = L (or \xi = 1 ).


	13.1.3 Conclusions

	Appendix 13A
	References

	Applications: Solar Energy Conversion into Thermal Energy Part
	14 Optimization of Solar Energy Collection Systems
	14.1 General Approach
	14.1.1 Determination of the Optimal Solution
	14.1.2 Collectors with Uniform Properties
	14.1.3 Collectors with Non-uniform Properties
	14.1.4 Example and Discussion

	14.2 More Involved Treatment
	14.2.1 Introduction
	14.2.2 Theory
	14.2.2.1 The Optimization Problem
	14.2.2.2 Time Averaged Energy Balance Equation

	14.2.3 Solar Energy Applications
	14.2.4 Economical Indices
	14.2.5 Meteorological and Actinometric Data
	14.2.6 Model Implementation
	14.2.6.1 Computing Procedure
	14.2.6.2 Model Validation
	14.2.6.3 Input Values

	14.2.7 Solar Collectors with Optimal Uniformly Distributed Parameters
	14.2.8 Solar Collectors with Optimal Non-uniformly Distributed Parameters
	14.2.9 Conclusions

	References

	15 Flat-Plate Solar Collectors. Optimization of Absorber Geometry
	15.1 Optimization of Absorber Geometry by Using Economic Considerations
	15.1.1 Absorber Plate of Uniform Thickness
	15.1.1.1 Example

	15.1.2 Absorber Plate of Variable Thickness
	15.1.3 The Optimal Fin Width
	15.1.3.1 Example

	15.1.4 Discussion and Conclusions

	15.2 More Realistic Approach
	15.2.1 Introduction
	15.2.2 Meteorological Data
	15.2.3 Model Implementation
	15.2.4 Uniform Fin Thickness
	15.2.5 Variable Fin Thickness
	15.2.6 Conclusions

	Appendix 15A
	15.A.1 Optical Efficiency
	15.A.2 Overall Heat Loss Coefficient
	15.A.3 Collector Heat Removal Factor
	15.A.4 Iterative Procedure
	15.A.5 Shape of Collection Area

	Appendix 15B
	References

	16 Optimal Time-Dependent Operation of Open Loop Solar Collector Systems
	16.1 Simple Variational Approach for Maximum Exergy Extraction
	16.1.1 Model of Flat Plate Solar Collector Operation
	16.1.2 Optimal Strategy for Maximizing the Collected Exergy

	16.2 Optimal Control of Flow for Maximum Exergy Extraction
	16.2.1 Introduction
	16.2.2 Meteorological Database
	16.2.3 Transient Solar Energy Collection Model
	16.2.4 Optimum Operation
	16.2.4.1 Variational Approach for a Simple Case
	16.2.4.2 Variational Approaches for the General Case
	16.2.4.3 Direct Optimal Control Approach

	16.2.5 Optimum Operation
	16.2.6 Aspects of Controller Design
	16.2.7 Conclusions

	References

	17 Optimal Time-Dependent Operation of Closed Loop Solar Collector Systems
	17.1 Classification and Simple Approach
	17.1.1 Performance Criteria
	17.1.2 Systems with Storage at Uniform Temperature
	17.1.3 Systems with Stratified Storage Tanks
	17.1.4 Comparison and Discussions

	17.2 More Realistic Approach for Systems with Fully Mixed Water Storage Tanks
	17.2.1 Introduction
	17.2.2 Closed Loop System
	17.2.3 Flow Controllers
	17.2.4 Operation Model
	17.2.4.1 Configuration of Fig. 17.2a
	17.2.4.2 Configuration of Fig. 17.2b
	17.2.4.3 Model Validation

	17.2.5 Optimal Control
	17.2.5.1 Configuration of Fig. 17.2a
	17.2.5.2 Configuration of Fig. 17.2b

	17.2.6 Model Implementation
	17.2.6.1 Primary Circuit
	17.2.6.2 Water Storage Tank
	17.2.6.3 Secondary Circuit
	17.2.6.4 Meteorological and Actinometric Data
	17.2.6.5 Computational Procedures

	17.2.7 Results and Discussions
	17.2.8 Conclusions

	Appendix 17A
	Appendix 17B
	Appendix 17C
	17C.1 Computation of Pump Power
	17C.2 Computation of Pressure Loss Coefficients

	References

	18 Optimal Flow Controllers
	18.1 Optimal Control
	18.2 Implementation
	18.3 Comparison and Discussions
	References

	Applications: Heat Engines
	19 Endoreversible Heat Engines
	19.1 Endoreversible Heat Engine Model
	19.2 Implementation of the Optimal Control Theory
	19.2.1 Definitions
	19.2.2 Formulation of the Optimal Control Problem
	19.2.3 Application of the Maximum Pontryagin Principle
	19.2.4 Properties of the Solutions of Optimal Control Problems

	19.3 Optimal Performances
	19.3.1 Maximum Power
	19.3.1.1 Application of the Maximum Principle
	19.3.1.2 Optimal Solutions
	19.3.1.3 Switchings
	19.3.1.4 Optimal Controls and Trajectories

	19.3.2 Maximum Efficiency
	19.3.2.1 Application of the Maximum Principle
	19.3.2.2 Optimal Solutions
	19.3.2.3 Switchings
	19.3.2.4 Optimal Controls and Trajectories

	19.3.3 Conclusion

	References

	20 Diesel Engines
	20.1 Engine Model
	20.1.1 Fuel Combustion at Finite Speed
	20.1.2 Modeling of Losses
	20.1.2.1 Friction Losses
	20.1.2.2 Pressure Drops
	20.1.2.3 Thermal Losses
	20.1.2.4 Losses at Fuel Injection
	20.1.2.5 Incomplete Combustion
	20.1.2.6 Exhaust Pressure Losses

	20.1.3 Conventional Piston Path

	20.2 Optimization Procedure
	20.2.1 Steps (1)–(3). Processes When Power Is not Generated
	20.2.1.1 Unbounded Acceleration
	20.2.1.2 Bounded Acceleration

	20.2.2 Stage (4). Allocation of Time Durations for Processes When Power Is not Generated
	20.2.3 (5) Expansion
	20.2.3.1 Unbound Acceleration
	20.2.3.2 Bounded Acceleration

	20.2.4 (6) Maximizing the Net Mechanical Work

	20.3 Optimal Trajectories and Controls
	20.3.1 Heat Engine Configuration
	20.3.2 Optimized Engine Operation

	References

	21 Optimization of Daniel Cam Engines
	21.1 Introduction
	21.2 Model
	21.2.1 Daniel Cam Engine Representation
	21.2.2 Mechanical and Thermal Model
	21.2.2.1 Movement and Energy Laws. Work Production
	21.2.2.2 Heat Loss Model

	21.2.3 Dimensionless Formulation
	21.2.4 Optimization
	21.2.5 Numerical Procedure
	21.2.6 Model Implementation

	21.3 Results and Discussions
	21.3.1 Present Model Versus Simpler Approaches
	21.3.1.1 Comparison with Classical Rod-Crank System
	21.3.1.2 Comparison with Simplified Treatment of Convection Heat Loss Process
	21.3.1.3 Comparison with Simplified Treatment of the Overall Heat Loss Process
	21.3.1.4 Comparison with Unconstrained Piston Acceleration

	21.3.2 Optimal Solution. Dependence on Design and Operation Parameters
	21.3.2.1 Cylinder Wall and Thermal Insulation. Materials and Thickness
	21.3.2.2 Auto-ignition Moment
	21.3.2.3 Cooling Convection Coefficient


	21.4 Conclusions
	Appendix 21A
	21.A.1 Combustion
	21.A.2 Heat Losses
	21.A.3 Frictional Losses

	Appendix 21B
	21.B.1 Classical Rod-Crank System

	Appendix 21C
	References

	22 Photochemical Engines
	22.1 Engine Model
	22.2 Engine Operation Mode
	22.3 Optimal Trajectories of the System
	22.3.1 Maximizing the Work Produced
	22.3.2 Minimizing the Entropy Production

	22.4 Results and Discussions
	References

	Applications: Lubrication
	23 Optimization of One Dimensional Slider Bearings
	23.1 Introduction
	23.2 Model
	23.3 Optimal Control
	23.4 Optimum Design and Operation
	23.4.1 Direct Optimal Control Method
	23.4.1.1 Numerical Procedures and Implementation
	23.4.1.2 Testing the Direct Optimal Control Method
	23.4.1.3 Analytic Approach
	23.4.1.4 Optimal Control Approach
	23.4.1.5 Sensibility Analysis

	23.4.2 Constraints and Approximations
	23.4.2.1 Maximum Pressure
	23.4.2.2 Maximum Temperature
	23.4.2.3 Maximum Bearing Load
	23.4.2.4 Minimum Bearing Height
	23.4.2.5 Levels of Approximation

	23.4.3 Design Parameters
	23.4.3.1 Lubricant Type
	23.4.3.2 Bearing Length
	23.4.3.3 Bearing Inlet Height
	23.4.3.4 Sliding Velocity
	23.4.3.5 Inlet Lubricant Pressure
	23.4.3.6 Inlet Lubricant Temperature2


	23.5 Conclusions
	Appendix 23A
	23.A1 Sensibility Analysis
	23.A2 Constraints and Approximation
	23.A2.1 Maximum Temperature Constraint
	23.A2.2 Maximum Bearing Load
	23.A2.3 Levels of Approximation

	23.A3 Design Parameters
	23.A3.1 Lubricant Type
	23.A3.2 Bearing Length
	23.A3.3 Bearing Inlet Height
	23.A3.4 Sliding Velocity
	23.A3.5 Inlet Lubricant Pressure


	References

	Index



