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Preface

Statistical distributions and models play a vital role in many
different applied fields in science, engineering, humanities,
health and social sciences. Data obtained from real-life sit-
uations are often modeled by appropriate statistical distribu-
tions and then inferential procedures are developed under the
assumption of that particular distribution. For this reason, it
becomes very important that properties of statistical distribu-
tions are studied so that they can be utilized to develop optimal
inferential methods for analyzing the data under the consid-
ered statistical model, and also to check the validity of that
model assumption for the data at hand.

Many authoritative and encyclopedic volumes on stati-
stical distribution theory exist in the literature. This list
includes:

= Johnson, Kotz and Kemp (1992), describing discrete
univariate distributions

®»  Stuart and Ord (1993), discussing general distribution
theory

»  Johnson, Kotz and Balakrishnan (1994, 1995), describ-
ing continuous univariate distributions

vii
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viii Preface

= Johnson, Kotz and Balakrishnan (1997), describing di-
screte multivariate distributions

. Wimmer and Altmann (1999), presenting a thesaurus
on discrete univariate distributions

» Evans, Peacock and Hastings (2000), describing dis-
crete and continuous distributions

m  Kotz, Balakrishnan and Johnson (2000), discussing
continuous multivariate distributions

»  Balakrishnan and Nevzorov (2003), providing an in-
troductory exposition to distribution theory

m  Zelterman (2004), discussing discrete distributions
and their applications in health sciences

All these books/volumes provide ample evidence of the
importance of this area of research.

In this volume, we present 14 chapters written by interna-
tionally renowned experts. These chapters discuss character-
izations and other important properties of several statistical
distributions and models, inferential procedures for these dis-
tributions and models, and finally some applications to real-life
problems. Each chapter has been written in a self-contained
expository manner with a comprehensive list of pertinent ref-
erences. These chapters are based on some selected papers that
were presented at the International Conference on Advances on
Models, Characterizations and Applications that was held in
Antalya, Turkey, in December 2001.

It is our sincere hope that readers of this volume will get
up-to-date information on some recent developments on char-
acterizations and other important properties of several distri-
butions, on some inferential issues relating to these models,
and finally on some applications of these models to real-life
problems.

We thank all the authors for presenting their work in this
volume and also for their support and cooperation. We grate-
fully acknowledge the help of the referees. Our final special
thanks go to Ms. Maria Allegra and Mr. Kevin Sequeira of
Marcel Dekker for their support and encouragement,
Ms. Preethi Cholmondeley of CRC Press — Taylor & Francis for
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helping us with the production of the volume, and Mrs. Debbie
Iscoe for her fine work in typesetting the entire volume.

N. Balakrishnan
HAMILTON, CANADA

I. Bairamov

IZMIR, TURKEY

0. Gebizlioglu

ANKARA, TURKEY October 2004
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The Shapes of the Probability
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Takachiho University, Tokyo
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2 Sibuya
ABSTRACT

The shapes of a probability density function, its hazard func-
tion, and its reverse hazard function restrict each other. Here,
“shape” means six types of the graphs of a continuous univari-
ate function: increasing (i, for short), decreasing (d), unimodal
(id), anti-unimodal (di), increasing—decreasing—increasing
(idi), and decreasing—increasing—decreasing (did). It is proved
that among 216 combinations of the shapes of the three func-
tions, 44 cases are possible.

This result is a nonparametric characterization of a tri-
plet, the probability density, hazard and reverse hazard func-
tions, by their shapes.

KEYWORDS AND PHRASES: Characterization, dual failure fun-
ction, failure rate, hazard rate, logistic distribution, Pareto dis-
tribution, reversed hazard rate, Weibull distribution

1.1 INTRODUCTION

The reverse hazard function (r.h.f), or the reversed hazard rate
function, is the ratio of a probability density function (p.d.f.) to
its distribution function (d.f.); it is used for the retrospective
analysis of survival data. It was introduced by Keilson and
Sumita (1982) and called the dual failure function. It has the
properties dual to the hazard function (h.f.); see Shaked and
Shanthikumar (1994).

Lagakos et al. (1988) used the r.h.f. for a retrospective
analysis of epidemiological data on individuals in a group, who
are identified by some event and the random time of an initi-
ating event is recorded. Kalbfleisch and Lawless (1989) stud-
ied the same kind of data and suggested using the r.h.f. Block
et al. (1998) proved, among others, that if a r.h.f. is increasing,
its h.f. is also increasing, and its distribution range is limited
to (—o0, w), w < co. Hence, the lifetime never has an increasing
r.h.f. Based on this fact, they cautioned misuses of the r.h.f.

The shapes of a triplet of a probability density, its haz-
ard, and its reverse hazard functions restrict each other. A
“shape” means here a class of piecewise monotone continuous
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positive functions. In this paper six shapes, on at most three
consecutive common intervals (see Subsection 1.3.3), are ex-
amined: increasing (i, for short), decreasing (d), unimodal (id),
antiunimodal (di), increasing—decreasing—increasing (idi), and
decreasing—increasing—decreasing (did). The main result is
that among 6 x 6 x 6 = 216 combinations of the shapes of the
triplet, 44 cases in Tables 1.3.3 and 1.3.4, Section 1.3, are possi-
ble. This result is a nonparametric characterization of a triplet,
the probability density, hazard and reverse hazard functions,
by their shapes, and can be used as a reference for the modeling
based on hazard and reverse hazard functions.

Figure 1.1.1 shows two examples of triplets with different
combinations of shapes.

This paper extends a previous one on the relation between
the shapes of a probability density and its hazard functions
(Sibuya, 1996) and completely solves the problem raised by
Block et al. (1998).

The shapes of a h.f. were studied by Aalen and Gjessing
(2001) from a different point of view. Monotone h.f. and r.h.f.

pdf by x pdf by x

0.20
121

0.05
0.1 1

hi by x hi by x
50 1.00

2.0 1 0.50 1

hf by x thf by x

12.0 1 12.00 1

101 1.00 1

0.6 11 16 21 -2 0 2 4
X X

Figure 1.1.1 Examples A and B (from top: p.d.f., h.f. and r.h.f).
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were discussed in Sengupta and Nanda (1999) and Chandra
and Roy (2001). An ordering of lifetime distributions by the in-
creasing ratio of a pair of h.f’s, or a pair of r.h.f’s, was discussed
by Sibuya and Suzuki (2001).

1.2 MONOTONE SHAPES

The h.f. is used mainly in the lifetime analysis and for positive
random variables. Here, random variables are not restricted
to be positive. The distribution limits of a d.f. F' are defined by
a = inf{x; F(x) > 0}, and w := sup{x; F(x) <1}, —co < <
w <o00. Itis assumed that the p.d.f. satisfies f(x)>0,0 < x <w.
The shapes are invariant with respect to the piecewise change
of location and scale. Hence, whether the limits are finite or in-
finite is the concern. The symbols o and w are overused within
tables to mean finite limits.

1.2.1 Definitions and duality

Let F(x) =1 — F(x) be a survival function (s.f); the h.f. is
defined by

h(x) = ;—x(—log(F(x))) =f(x)/F(x)>0, o<x<o.
(1.2.1)
Conversely, the cumulative h.f. determines its d.f.:
Fw=exp(-H@), H = [ ho)de.

H (x) is increasing, H(x) = 0, and H (w) = oo.
The r.h.f. is a dual of h.f.:

hx) = L log F(x) = F)/F(x) 20, a<x<o,
dx . (1.2.2)
Fx)—exp(—H(x) Hx) = / h(t) dt.

H is decreasing, H(«) = oo, and H(w) = 0. Note that if « >
—o0 it is possible that H(« +0) > 0, and if w < oo it is possible
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that H(w — 0) > 0. The cumulative h.f. and r.h.f are directly
related:

H(x) = Q(H(x)) and H(x) = Q(H(x)), where
Q(t) = —log(1 —exp(—t)), 0 <t < oo.

PROPOSITION 1.2.1 (reflection or duality) If the p.d.f., d.f, s.f.,
h.f., r.h.f, cumulative h.f., and cumulative r-h.f. of a rv. X are
f(x), F(x), F(x), h(x), h(x), H(x), and H(x), respectively, those
of the negated —X are f(—x), F(—x), F(—x), h(—x), h(—x),
H(—x), and H(—x), respectively. (Note the change of order.)

This simple fact will be repeatedly used in this paper.

1.2.2 Monotone h.f. and r.h.f.

Before discussing monotone shapes, note that, for a constant
A >0,

Ifh(x) =A, F(x) =e™/F(a) and hx) |, x> a.

Ifi(x) =A, F(x) =e’/F(b) and h(x)1, x <b.

If f(x) =1, F(x)=F(a)+Mx—a), F(x)=F(b)+Mb—x)
and h(x) 1, h(x) |, a <x < b.

Throughout the paper the terms increasing and decreasing are
used in a weak sense.
From the definitions and Proposition 1.2.1,

h 1t (}) & H :convex(concave), and
h | (1) & H : convex(concave).

H : concave = H : convex, and
H : concave = H : convex.

PROPOSITION 1.2.2

(i) If a h.f is decreasing, its p.d.f. is decreasing, which
implies its r.h.f. is decreasing.

(ii) Similarly, if a r.h.f is increasing, its p.d.f is increas-
ing, which implies its h.f is increasing.
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PROOF. From the definition of & and %, a pair of fundamental
inequalities are obtained:

(log ) = (logh) — h < (logh),
(log ) = (logh) +h > (logh)'.
The first one implies f = h tandh | = [ |, and the sec-

ond implies f | = A |and A 1 = f 4. Combine these to
show the proposition. =

(1.2.3)

REMARK 1.2.1

1. Theinequalities hold at any x € («, w); that is, the pro-
position states local properties.
2. The second half (ii) of the proposition is dual to (i).

PROPOSITION 1.2.3 (restriction of distribution range) Let ¢ be
any number such that a <t < w.

(i) Ifah.f isdecreasingin (a,t), a > —oo. If a h.f. is dec-
reasing in (t, w), w = oo.

(it) Ifarh.f isincreasing in (a,t), a = —oo. If a r.h.f is
increasing in (t, w), @ < 0.

PROOF. If a p.d.f. is decreasing in the lower tail, a fortiori if a
h.f. is decreasing in the lower tail, its lower distribution limit
is finite, because that f(¢) | on (—o0,¢) is impossible. Since
H(w) = oo, a decreasing h.f. cannot end at a finite point. The
second half (ii) is dual to (i). =

REMARK 1.2.2 The facts of (i) can be confirmed by observing
the cumulative h.f., H. If & is decreasing in («, ¢), H is concave
and increasing, hence o > —oco. If H is concave in (¢, ), H(w)
cannot be infinite unless w = co.

1.2.3 Truncation

PROPOSITION 1.2.4 (truncation)

(i) Ifa p.d.f isleft-truncated at a, o < a < w, its h.f. does
not change in (a, ). Further, if the original r.h.f. is
decreasing, the new r.h.f. is also decreasing in (a, w).
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(ii) If a p.d.f is right-truncated at b, a < b < w, its r.h.f
does not change in (a, b). Further, if the original h.f. is
increasing, the new h.f. is also increasing in («, b).

PROOF. For the original f, F, F', h, and A, let the left-truncated
be denoted with an asterisk:
f (x) = f(x)/F(a), F*(x) = F(x)/F (a),
F*(x)=(F(x)— F(a)/(1 - F(a), x> a.

Hence,

wroN cvr v 1-F(a)
R (x) = h(x), A (x) = . F(a)/F(x)h(x)’ x> a,

and the latter is decreasing. The second half (ii)isdual to (i). =

1.3 NECESSITY OF RESTRICTIONS

1.3.1 The shapes of a doublet of p.d.f.
and h.f. (or r.h.f.)

Before discussing the shapes of a triplet, combinations of the
shapes of a doublet of p.d.f. and h.f,, or a doublet of p.d.f. and
r.h.f, are examined. Propositions 1.2.2 and 1.2.3 restrict pos-
sible combinations and the range.

Impossible combinations of the shapes of p.d.f. and h.f.
are shown in Table 1.3.1. For other combinations, the neces-
sary restrictions on the distribution range are shown. Simi-
larly, impossible combinations of the shapes of p.d.f. and r.h.f.,
as well as restrictions on the range, are shown in Table 1.3.2.
Table 1.3.1 is a modification of a previous table for the lifetime
distributions (Sibuya, 1996).

Table 1.3.1 is constructed along the following rules be-
cause of Theorems 1.3.3 and 1.3.4.:

(i) If his decreasing in some interval (symbol d) and f
is increasing (symbol 1) in this interval, the doublet is
impossible (symbol 7).

(i) If his decreasing in the upper tail (f is also decreas-
ing), w = oo (symbol +).
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TABLE 1.3.1 Possible combinations of the shapes of h.f.
and its p.d.f.

h\f i d id di idi did
i w o . aw w o
d T o+ T T T T
id T o+ + T T o+
di i o T oaw T o
idi ! o idd o ® ™

did T o+ T T T o+

t: impossible, *: see Section 1.3.3, : any, —: o = —00,

+o=00,0:0 > —00,w: ®w < 0.

(i11) If f is decreasing in the lower tail, « is finite (symbol
a), and if f is increasing in the upper tail, w is finite
(symbol w).

Take, for example, a row (h: id) of Table 1.3.1. Since A | in
(¢,w) and f | in (¢, w), the shapes i, di, and idi of f are impos-
sible (symbol t), and in the other entries d, id, and did, w = oo,
the symbol +. Further, f is decreasing in the lower tail in the
entry f:d and did, « > —o0, the symbol «, independently of
the shape of A.

For another example, take the case (h: idi). As the shape
of A changes in three consecutive intervals, the corresponding
shape (f: id) can be iid or idd. The first, (f: iid), is impossible,
since f should be d in the middle part. For the second, (f:idd),

TABLE 1.3.2 Possible combinations of the shapes of r.h.f.

and its p.d.f.

A\ f i d id di idi did
1 - T T T T T
d 1) o . aw w o
id —w T — T —w T
di 1) T T aw w T

idi —w i i T —w T

did © t iid b7 ™ «

t: impossible, *: see Section 1.3.3, : any, —: o = —00,

+owo=00,0:0 > —00,w:®w < Q.
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there is no restriction of the range in both lower and upper
ranges. Another shape (f: di) can be dii or ddi, and the first is
impossible; the second shape (f: ddi) has restrictions in both
tails, and the limits are finite.

Table 1.3.2 is constructed similarly along the following
rules:

(i) Ifhisincreasingin someinterval, and f is decreasing
in this interval, the doublet is impossible.
(ii) Ifhisincreasingin thelower tail,« = —oo (symbol —).
(i1i) The conditions on the distribution range based on f
are the same as Table 1.3.1.

Table 1.3.2 is also constructed from Table 1.3.1 according
to the following rules based on Proposition 1.2.1.

Change f(x) to f(—x) and, accordingly, exchange (f: 1)
and (f:d), the conditions (f:id, di, idi, and did) are not changed;
and change (4: i (or d)) to (A: d (or i)).

In the entries, change «(or «+) to w(or —w), and exchange
+ and —.

1.3.2 The shapes of a triplet

Specify a pair of shapes of h.f. and r.h.f., for each shape restrict
possible shapes of the p.d.f. and the range, and the triplet is
impossible if the intersection of two possible ranges is empty.
If the intersection is not empty, the intersection is a necessary
condition of the distribution range. The results are summa-
rized in Tables 1.3.3 and 1.3.4.

TABLE 1.3.3 Possible combinations of the

shapes of h.f. and its r.h.f.

h\h i d id di idi did
i (1) (3) (4) (6) (10) (12)

1
d T (2) T T T T
id t 5) (8 t t (14)
di t (7) i 9) t (16)
idi t1’  as an a8 tx

did i 11 T T T (19)

T: impossible, *: see Section 1.3.3.
(number): possible cases shown in Table 1.3.4.
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TABLE 1.3.4 Possible combinations of the shapes of a triplet
(h, h, f) and its range.

f
No. h h i d id di idi did
1) i i ) T T T T T
(2) d d T a+ T T T i
3) i d w o [ 10) w o
(4) i id —w 1 - T —-w T
(5) id d T o+ + T i a+
(6) i di 1) 1 il aw 1) 1
@))] di d T a T aw T o
(8) id id T T —+ T } }
9 di di T T T aw T T
(10) i idi —w T T T —w T
(11) did d T a+ T T 1 a+
(12) i did w T . aw T* o
(13) idi d T o . oaw w T
(14) id did T T + T T a+
(15) idi id T T — T —w T
(16) di did T T T aw T a
amn idi di T } i aw 1) T
(18) idi idi T T T T —w 1
(19) did did T T T T T a+
: impossible, *: see Section 1.3.3, -: any, —: & = —00,

+:w=00,a:a>—00, w: w < 00. (44 possible cases)

TABLE 1.3.5 Comparison of Tables 1.3.1 and 1.3.2 (first example).

No. 5 f i d id di idi did

h id T a+ + T T a+ : From Table 1.3.1
h d 1) o . aw 1) o : From Table 1.3.2
join i a+ + } 1 a+

TABLE 1.3.6 Comparison of Tables 1.3.1 and 1.3.2 (second example).

f i d id di idi  did
h: idi | 7 « idd gz% 10 T : From Table 1.3.1
h: did | o iid &12) T a : From Table 1.3.2
join T T T T*  tx  *:See Section 1.3.3
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The way to construct Tables 1.3.3 and 1.3.4 from Table 1
is explained by an example, an entry of (h: id, h: d). Take
the row of (h: id) from Table 1.3.1 and the row of (A: d) from
Table 1.3.2 and compare them as follows.

For each shape of p.d.f., take the more restrictive range to
get the possible shape of the p.d.f. and the necessary condition
of the range. The procedure is shown in Table 1.3.5.

Another example is entry(h: idi, 4: did). In this case (f:id)
and (f:di) are possible for both (4:idi) and (4: did). However,
more precisely, (f:iid) is possible for (h:idi) and (f:iid) for
(h: did); hence, (f:id) is impossible. By a similar reason, (f: di)
isimpossible. Hence, (h:idi, A: did) is impossible. The procedure
is shown in Table 1.3.6.

Results of the pairing are summarized in Tables 1.3.3 and
1.3.4. The column (%: i) of Table 1.3.3, combined with the row
(1) of Table 1.3.4 (its dual is the row (h: d) of Table 1.3.3 and the
row (2) of Table 1.3.4), shows the result by Block et al. (1998):
If & is increasing, h should be so, and vice versa, and more-
over the range is restricted to (—oo, w). Example distributions
of some entries are shown in Table 1.5.1 of Section 1.5. If the
distribution is limited to lifetime, the entries with symbol — in
Table 1.3.4 are impossible, the number of possible cases is re-
duced to 31, and 12 cases among them are restricted to w < oco.

1.3.3 Four-interval description

In Table 1.3.1 the case (k: idi, f: did) is regarded impossible,
and in Table 1.3.2 the case (h: did, f: idi) is regarded impos-
sible, because the combinations of middle term are impossi-
ble. However, the cases are made possible if four intervals are
used to describe the shapes idi or did. The following are exten-
sions of Table 1a and Table 1b. The impossible combinations in

Table 1.3.1 (extension). Table 1.3.2 (extension).
did idi
h\f | didd ddid R\ f iudi idii
1di o T didd 1) T
idi did
idii T o ddid T ®
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the middle term are avoided by lagged patterns with an extra
interval.

If the trick is included, the entry (h: idi, A: did) in
Table 1.3.3 is possible: The discussion of the previous sub-
section on this pattern should be changed. This means, in
Table 1.3.4, to add a new line (20). Moreover, two entries, the
row (12) column idi and the row (13) column did, are made
possible. The extension of Table 1.3.4 is as follows:

Table 1.3.4 (extension).

f idi did
No. h h iidi idii  didd ddid
didd o T o T
(12) 1 did
ddid T o T o
iidi o T o T
(13) idi d
idii T o T o
iidi didd o T o T
(20)
idii ddid T o T o

These cases are not included in Tables 1.3.1-1.3.4, mainly
because they become messy. Talking only on shapes, one could
say “there are 44 + 4 possible cases,” disregarding four-interval
details. They are possible within lifetime distributions.

1.4 SUFFICIENCY OF RESTRICTIONS

In the previous section, it is shown that the conditions in
Tables 1.3.3 and 1.3.4 are necessary for a triplet. In this sec-
tion, it is shown that for every condition a triplet really exists.
That is, given a possible pair of shapes of the h.f. and r.h.f., a set
of possible shapes of p.d.f. is constructed explicitly depending
on the distribution range.
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1.4.1 Cut and paste of a triplet

PROPOSITION 1.4.1 (cut and paste) Let f;,1 = 1,2, be p.d.f’s;
F; their d.f’s; (a;,b;) quantiles such that F;(a;) = p1 and
F;(b;)) = ps, 0 < p1 < pg < 1. It is possible to construct a new
p.d.f. 5 with d.f. Fy such that Fy(as) = p1, F5(bg) = pa, and
fs(x) has the similar shape as fa(x) in (bs, w) and in («, ag),
and the similar shape as f1(x), in (ag, bs).

PROOF. Cut the p.d.f. f1(x) in the range a; < x < b1, rescale
and shift it, and replace f5(x) in the range (ag, b2):

by —ay
bl—al

by —ag

f3(x) = fi(a+

(x—al)), ag < x < by.
bl—al

The gaps between f5(x) and fo(x) at x = ap and by are
adjusted:

fo (D) fo (b—l— f2(b)(x _ b)), x > b,

F5(x) = fa(b) f5(b) (1.4.1)
2 ’ fo(a) f fz(a)( ) o
o 12 (a ~ fwla—x ), x <a.

REMARK 1.4.1 The new h.f. and r.h.f. are also similar to those
of f5in (by, w) and («, ag) and to those of f1 in (as, bs). Hence,
in any interval a triplet can be replaced by that part of another
triplet, keeping its shapes.

1.4.2 Examples of monotone shapes

In this subsection, cases where all the shapes of the triplet
are monotone, i.e., the entries (1), (2), and a part of (3) of
Tables 1.3.3 and 1.3.4, are discussed. Further, the discussion
is extended to the remaining part of (3).

The first case to be considered is (h: d, z: d) with the range
(a, 00). Typical distributions of this type are the Pareto,

Fx)=x77, hix) =y/x, h(x) = h(x)/(x¥ — 1);
x>1y>0, (1.4.2)
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and the Weibull (with the power parameter less than one),

F(x) = exp(—x?), h(x) = y/x" 1,

h(x) = h(x)/(exp(x”) = 1); x> 0,y < 1. (1.4.3)

The second case (A: i, A:i) with the range (—oo, ») is dual
to (h: d, h: d), and the negative Pareto and the negative Weibull
are typical examples because of Proposition 1.2.1.

Since (h: d, A: i) is impossible, the last monotone case is
(h: i, h: d). A typical distribution of this property is the lo-
gistic distribution. Its density is unimodal and the range is
(—00, 00),

F(x) =1/(1+expx)), F(x)=1/(1—exp(—x)),
f(x)=F(x)F (x), x) = F(x) and (1.4.4)
hx) =F(x); —00 <x < 00.

Because of Proposition 1.2.4, any truncation keeps the shape
(h: 1, h: d), and the following shapes and ranges of p.d.f. can be
constructed:

(f:d) on (a, 00), (ar, w),
(f:1) on (—o0, w), (o, w),
(f :id) on (—00, 00), (—00, w), (a, 00), (e, ).

The first two, with the previous two of this subsection, show
the construction of the triplets of all monotone shapes and are
summarized in Table 1.4.1, including the following shapes.

The starting distribution (1.4.4) of the case (h: i, h: d)
has (f: id), and its range has no restriction as shown above.
The other shapes of f are constructed by the “cut and paste”
method of Proposition 1.4.1. From the logistic distribution
(1.4.4), let

filx) = f(x)/F (a), 0<a<x; and folx)= f(x)/F(b),

x<b<0O.
Replace an upper tail of F'; by the corresponding upper tail of
fo2 to obtain (f: di). Further replacing an upper tail of (f: 1)

(or a lower tail of (f: d) by a suitable part of (f: di), (f:idi), or
(f:did)) is constructed. For (f: idi) (or (f: did)) only the upper
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TABLE 1.4.1 Monotone triplets (1), (2), (3) in Table 1.3.3.

h i d ii i i i i
h i d dd d d d d
f i d id id di idi did
range — a+ w o . aw w o

(or lower) tail restricts the range, and the range is the same as
(f:1) (or (f:d)).

Thus, sufficiency of the entries (1), (2), and (3) of
Table 1.3.4 is proved.

1.4.3 General shapes

The triplets of monotone shapes are summarized in Table 1.4.1.
How to paste them to construct a general triplet was shown in
the previous subsection, by studying the case of (A: i, A: d) for
(f: di, idi, did). This cut and paste method can be used for
general shapes.

Take, for example, the case of (h: i, a: di), the entry (6), for
(f:1,di, idi) with the necessary range (v, aw, w), respectively.
The distribution range is divided into two or three parts corre-
sponding to the shapes of & or f. Corresponding to (f: idi), 2
is divided into (A: iid) or (A: iid), but the former is impossible.
The restrictions shown in the table are relevant in both ends
and are consistent with those at the bottom. Now, for each of
(f:1, di, idi), two or three intervals of Table 1.4.1 are pasted
to form the triplets of the given shapes. This confirms that the
row of (h: i, h: di) of Table 1.3.4 can be constructed. The method
of construction is illustrated in Table 1.4.2.

PROPOSITION 1.4.2 All the “not impossible” cases in Table
1.3.4 are actually possible.

TABLE 1.4.2 Construction example, (h: i, A: di).

interval h h f f f
lower i d i o d « i o
middle i d

upper i i i —w 1 —w i —w
pasted i di i o di aw idi o
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PROOF. The conditions on the shapes of & and % are divided
into at most three intervals. In each interval the combination
of h and h is (i,1),(d,d), or (i,d) and the possible shapes of
f are listed in Table 1.4.1. Since the conditions of Table 1.4.1
are consistent with those in Table 1.3.3, the set of new pasted
p.d.f’s is the same as in Table 1.3.4. =

1.5 ADDITIONAL NOTES

The logic and technique in this paper can be automated and
applied to more complex shapes: bimodal, anti-bimodal, and
S0 on.

To determine the shapes of the triplet of a given distribu-
tion is beyond the scope of this paper, but shapes of the triplet
of some “textbook distributions” are listed in Table 1.5.1. If the
shapes of a triplet are limited to four, i, d, id, and di, there are
4 x 4 x 4 = 64 combinations, and 16 cases are possible among
them and 10 cases are covered by Table 1.5.1 and the dual
distributions (the negation of random variables) of those in
Table 1.5.1.

A tool for preparing Table 1.5.1 is the following fact.

TABLE 1.5.1 Some example distributions.

L h f range distribution

2 d d d (0, 00) gamma (gamma p. < 1),
Weibull (power p. < 1),
beta2 (1, 8) = Pareto

3 i d id (—o0,00) logistic, normal,
Gumbel (double exponential),
Laplace (bilateral exponential)

3 i d id (0, 00) gamma (gamma p. > 1),
Weibull (power p. > 1)

b) id d id (0, 00) lognormal, Fréchet,
beta2 (¢ > 1,8=1)

(M di d d 0,1 beta(x <1,8=1)

(8 id id id (—o0,00) Cauchy

9 di di di (0,1) beta (¢ < 1,8 < 1)
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TABLE 1.5.2 Transformation of random
variables and the shapes of the doublet.

v X Y
4 convex (h: i, h: 1) (h: i, h: 1)
1 concave (h:d, h: d) (h:d, h: d)
| convex (h: 1, h: i) (h:d, h: d)
J concave (h: d, h: d) (h: 1, h: 1)

PROPOSITION 1.5.1 If a p.d.f. is logconcave on (a, B), —00 <
a < B < oo, its h.f is increasing and r.h.f is decreasing. If a
p.d.f is logconvex on (—o0, w), w < 00, its h.f. and r.h.f. are both
increasing, and if a p.d.f. is logconvex on (o, 00), a > —00, its h.f.
and r.h.f. are both decreasing.

Another tool for preparing Table 1.5.1 is the transforma-
tion of distributions, including Proposition 1.2.1 as a special
case.

PROPOSITION 1.5.2 Let a r.v. X be a transformation of another
rv. Y : X = Y(Y). Depending on i, the shapes of the h.f. and
r.h.f. of Y are determined by those of X, as follows.

For example, distributions of the shape (h: d, A: d) or (h: i, A: 1)
are constructed by transforms starting from one of the shapes.
See Table 1.5.2, which illustrates the proposition.
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ABSTRACT

In this paper we review and extend some key results on the
stochastic ordering of risks and on bounding the influence of
stochastic dependence on risk functionals. The first part of the
paper is concerned with a.s. constructions of random vectors
and with diffusion kernel type comparisons which are of im-
portance for various comparison results. In the second part
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we consider generalizations of the classical Fréchet-bounds, in
particular for the distribution of sums and maxima and for
more general monotonic functionals of the risk vector. In the
final part we discuss three important orderings of risks which
arise from A-monotone, supermodular, and directionally con-
vex functions. We give some new criteria for these orderings.
For the basic results we also take care to give references to
“original sources” of these results.

KEYWORDS AND PHRASES: Ordering of risk, supermodular,
directionally convex, comonotone, Fréchet-bounds

2.1 INTRODUCTION

It has been recognized in recent years that the methods and
tools of stochastic ordering and construction of probabilities
with given marginals are of essential relevance for the prob-
lem of modeling multivariate portfolios and bounding func-
tions of dependent risks like the value at risk, the expected
excess of loss, and other financial derivatives and risk mea-
sures. Even if many results on stochastic ordering and depen-
dent risks have been developed in early years, a new impetus
on reconsidering this field came recently from financial model-
ing and risk management, and many papers in economics and
insurance journals are devoted to this subject [see, e.g., the re-
cent article of Embrechts, Hoing, and Juri (2003) and the ref-
erences therein]. Stochastic ordering and marginal modeling
have a long history and several books and conference proceed-
ings on this subject have appeared, in particular, proceedings
of conferences on marginal modeling and stochastic ordering
[Dall’Aglio (1972), Mosler and Scarsini (1991a), Rischendorf,
Schweizer, and Taylor, (1996), Benes and Stépan (1997), and
Cuadras, Fortiana, and Rodriguez-Lallena (2002)] as well as
the comprehensive volumes of Stoyan (1977), Marshall and
Olkin (1979), Tong (1980), Mosler (1982), Shaked and
Shantikumar (1994), Joe (1997), Nelsen (1999), and Muller
and Stoyan (2002).

The main purpose of this paper is to point out and par-
tially extend some of the orderings and results on orderings

© 2005 by Taylor & Francis Group, LLC
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which seem to be of particular importance for bounding risks
and the influence of dependence on functionals. For several of
the key results, we also want to give some of the early and origi-
nal references. The field of stochastic orders is very diversified,
but some of the recent work and results have already been
stated and established in early papers on stochastic ordering.

We essentially restrict to “integral orders <" on the prob-
ability measures induced by some function class 7 and defined
by

P<;Q if /fdpg/fdQ for all fe;f(,Qll)

such that f isintegrable w.r.t. P and Q. Some natural questions
for the analysis of a stochastic order < are to find simple and
maximal generators F of < such that < and < are equivalent
orderings (or to find at least large classes F such that P < @
implies P <7 @). This aspect is discussed in most of the books
mentioned above. Additional particular references on the sub-
ject of integral stochastic orders are Ruschendorf(1979), Reuter
and Riedrich (1981), Mosler and Scarsini (1991b), Marshall
(1991), Muller (1997), and Denuit and Miller (2001).

The plan of this paper is to discuss at first a.s. construc-
tion of random vectors which lie at the core of several ordering
results. Related are kernel representation results which give
“pointwise” characterization of stochastic orders by diffusion
kernels. Each ordering generates a notion of positive resp. neg-
ative dependence by comparing a probability measure

PeM(Py,...,P) (2.1.2)

—the class of all probability measures with marginals Py, ...,
P,—to the product ®?_; P; of its marginals. If ®” ,P; < P,
then we speak of positive dependence of P;if P < ®_; P;, then
we speak of negative dependence. Related is the problem to
describe the maximal influence of dependence on a function f
(or class of functionals F),

M(f)zsup{/fdP; P eM(Pl,...,Pn)}

(2.1.3)
resp. m(f):inf{/fdP; P eM(Pl,...,Pn)}

© 2005 by Taylor & Francis Group, LLC
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which we call the problem of (generalized) Fréchet-bounds.
One of the most prominent results in stochastic ordering com-
prises the classical Fréchet-bounds due to Hoeffding (1940)
and Fréchet (1951):

a) Forann-dimensionaldf F holds: F € F(F4, ..., F,)—
the Fréchet class of n-dimensional d f’s with marginals
F,..., F,—if and only if

F_<F<F, (2.1.4)

where F(x) = minj<j<,{F;(x;)} and F_(x) :=
max{0, >" ; Fi(x;) — (n — 1)} are the upper and lower
Fréchet-bounds.

b) Moreover, F', € F,is ann-dimensionaldf,while F_ €
Fnifand only if n = 2 or for n > 2

either 7' ; Fi(x;) <1 for all x with
F j (x j) <1, Vj
(2.1.5)
or St Fi(x)) >n—1 for all x with
Fi(x;)>0, V.
The important characterization in (b) of the cases where F_ €
Fn is due to Dall’Aglio (1972). For a review on various aspects
of Fréchet-bounds, see Ruschendorf (1991b) (in the following
abbreviated by Ru (1991b)). The most important general tech-
nique to determine generalized Fréchet-bounds is duality the-
ory. A comprehensive survey of this theory and its applications
is given in Rachev and Ru (1998, Vol. I/1I). We will describe
some interesting aspects of the problem of Fréchet-bounds on
the influence of dependence in Chapter 3.
For the application to the comparison of risks it has turned
out [see the interesting recent book of Muller and Stoyan (2002)]
that of particular importance are the classes of supermodular
(quasi-monotone), directionally convex, and A-monotone func-
tions F5™ Fder FA together with the induced orderings and
some variants like F'9°* the increasing directionally convex
functions. In Section 4 we describe and extend some of the
basic comparison criteria for these functions.
We use some standard notation throughout. X ~ P means
that the random variable X has distribution P. We write for
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some ordering <, X < Y synonymously for P < @ or F < G,
where F, G are the df’s of X, Y and P, @ are the distribu-
tions. <4 denotes the usual stochastic order w.r.t. nondecreas-
ing functions.

2.2 STOCHASTIC ORDERING AND A.S.
CONSTRUCTION OF RANDOM
VARIABLES

For the comparison of distributions P, @ w.r.t. some stochastic
order is in some cases useful to compare explicit a.s. construc-
tions of rv’'s X, Y where X ~ P and Y ~ Q. A general useful
construction for P, @ € M'(IR"), the set of probability mea-
sures on IR" is the following “standard construction”:

Let F € F, be an n-dimensional df and let V4, ..., V, be
independent rv’s uniformly distributed on [0, 1], independent
of X ~F.LetV = (Vl, ey Vn) and let Fi|1,‘_.,i,1(xi|x1, ey
x;_1) denote the conditional df’s of X; given X; = x;,j <i—1.
We define 77 : IR" x [0, 1]* — IR" by

tr(x, 1) = (F1(x1, A1), Fai(xg, Aalx1), ...,
n_l(xn, An|x1, ey xn_l)) (221)

where Fy1,_i—1(x]x1, ..., x-1)=P(X; <x;| X, =x;, j <i— 1+
LMP(X; =x1X; =xj, j <i—1). We define the “inverse” trans-
formation t; ! recursively as

.....

rI,Tl(u) =z=0(21,...,2n), (2.2.2)
with 21 = F{'(u1), 22 = inf {y : Fon(yley) > us} = Fyf
(uslz1), ..., 2, = Frall,._.,n_l(uﬂzl, ey Zn-1).

THEOREM 2.2.1 (Regression construction) Let X be an n-
dimensional random vector with df F; then:

a) U:=1tr(X,V)hasindependent components, uniform-
ly distributed on [0, 1].

b) Z=1:YV)isarvwithdf F; Z is called the “regres-
sion construction” of F.

¢ X =1:'(tr(X,U)) as. (2.2.3)
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REMARK 2.2.1

1) Part(a)of2.2.1is due in the case of absolutely contin-
uous conditional d f’s to Rosenblatt (1952). (a) and (b)
were stated in this form in Ru (1981b). (b) had been
given before in an equivalent form in O’Brien (1975),
and (c) is from Ru and de Valk (1993). The one-dimen-
sional case was used for a long time for the simulation

of ruv’s.
2) By the recursive definition in 2.2.2, one obtains Z also
as a function of (Vy, ..., V,) which we denote by
Z=1(V)~F (2.2.4)

where t5(V)=(h1(V1), ha(V1,V9a), ..., by(V 1, ..., V).
In this functional form the construction is called the
“standard representation” of F'. It gives a construction
of arandom vector withdf F' as a function of indepen-
dent uniforms. The functions 4; represent conditional
df’s.

3) A “copula” of X (resp. F') is any df C with uniform
marginals such that

C(Fi,...,F))=F (2.2.5)

where F; are the marginal df’s. If U is a random
vector with U ~ C, then

(F7YU,...,F,;{U,)) ~F. (2.2.6)

U represents some aspects of the dependence struc-
ture of F' (resp. X). To obtain a copula, one can apply
Theorem 2.2.1 in the one-dimensional case and con-
sider U := (t5,(X1,V1),...,tF,(X,, Vo). Then the
df C of U is a copula and X = (F; X(U,)) a.s.

We next give some applications of the standard resp. regression
construction.

COROLLARY 2.2.1 (Stochastic ordering) If F,G € F,and V =
(V1,..., V) is an iid uniform sequence, then

7 (U) < 15 (V) implies F <y G, (2.2.7)
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where <4 denotes the usual stochastic ordering w.r.t. F™ the
class of monotonically nondecreasing functions.

REMARK 2.2.2 Condition (2.2.7) is stated in Ru (1981b). It im-
plies various sufficient conditions for stochastic ordering going
back to classical results of Veinott (1965), Kalmykov (1962),
and Stoyan (1972) in the context of Markov chains. The regres-
sion and standard construction are used essentially in various
papers on stochastic ordering. The positive dependence order-
ing “conditional increasing in sequence CIS” just says that the
components A; of v are monotonically nondecreasing. This is
used essentially in many papers, e.g., in Miller and Scarsini
(2001), to state sufficient conditions for the supermodular or-
dering of positive dependent sequences (see also Section 2.4).
An application of the standard construction to convex order-
ing analogously to (2.2.7) is given in Shaked and Shantikumar
(1994). An alternative application to positive regression depen-
dence ordering of rank statistics as well as to further statistical
ordering results is given in Ru (1986).

As a second application we consider the following optimal cou-
pling problem: Determine for some P, @ € M'(IR") and with
S,(X)=3"1X;:

inf{E|S,(X)-S,Y)?: X~P,Y ~Q) (2.2.8)
i.e., the problem is to construct two n-dimensional random vec-
tors X, Y with distributions P, @ such that the sums S,(X) =
Y1 Xi, Sp(Y)=3",Y;areas close as possible in L2-distance.
The answer to this problem is:

COROLLARY 2.2.2 (Optimal coupling of sums; Ru (1986)) For
P, Q e M(IR") let P;, Ps denote the distributions of the sums
> X, >°Y;, vespectively; then

n n 2
> X~
i=1

i=1

inf{ E Y ~P,Y ~@Q} =(3Py, Py)

(2.2.9)

where E%(Pl, Py) = fol(Fl_l(u) — Fz_l(u))2 du is the squared
minimal Lo9-metric.
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For the proof one applies the regression construction to the
extended random vectors (3" ; X;, X) resp. (31 ;Y;,Y) and
obtains directly (2.2.9). Of course, similar results hold for the
coupling of other functionals, such as (}_ ; X;, max; -, X;) si-
multaneously to (37" ; Y;, max; -, Y;), etc.

The standard construction does not in general give a point-
wise a.s. construction of random vectors X ~ P, Y ~ @ such
that X <Y a.s. if P <y . But Strassen’s comparison theo-
rem implies the existence of such a.s. representations. This
result was extended to closed partial orders < on a polish
space S. The order < on S induces the stochastic order <
on M(S) the set of probability measures on S for the corre-
sponding class 7™ of monotonically nondecreasing functions
w.r.t. <.

THEOREM 2.2.2 (Strassen’s theorem) Let < be a closed partial
order on a polish space S and P, @ probability measures on S.
Then: P <4 Q if and only if there existrvs X ~ P,Y ~ @ (on
some space (2, A, R)) such that

X <Y as (2.2.10)

REMARK 2.2.3 (2.2.10) was introduced in Strassen (1965) and
extended in various ways in Kamae, Krengel, and O’Brien
(1978), Kellerer (1984), and Ramachandran and Ru (1995).
A proof by means of Strassen’s abstract set representation
theorem is given in Ru (1980b, Theorem 1) in the case of the
Schur-ordering <g on IR" defined by:

k k
a<g b if Zambem, i<k<n-1
=1 =1

(2.2.11)
n n
and Zai = Zbi’
i=1 i=1
where a(;) > ... > a(, are the components arranged in de-

creasing order. The monotone functions w.r.t. <g are the Schur-
convex functions and (2.2.10) implies:
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COROLLARY 2.2.3 (Schur-convex ordering) Let P, Q € M(IR™);
then:
P <5 Q & Thereexist X ~P,Y ~QuwithX <sY
(2.2.12)
&= There exist X ~ P and a random doubly
stochastic matrix I1, such that 11X ~ Q.

A more general comparison result for integral stochastic orders
<7 1s based on < z-diffusions.

DEFINITION 2.2.1 (< #-diffusions) Let F be a class of functions
on some space (E, A). A Markov kernel K on E is called an
F-diffusion if

€x <5 K(x,.) forallx e E. (2.2.13)

A < r-diffusion kernel K “diffuses” locally in any point x mass
w.r.t. <z. The composition K P is defined by K P(A) = [ K(x, A)

P(dx).
PROPOSITION 2.2.1 Let K be a <z-diffusion; then
P < KP forall P e M\E). (2.2.14)

PROOF. The proof is obvious from the idea of diffusions. For
f € F holds

[raxp = ( [ K(x,dy>> dP(x)

z/f@MP@)-

From a general kernel representation result in Strassen
(1965), one can obtain a converse of (2.2.14) and characterize
several stochastic integral orders by corresponding F-diffu-
sions. A result of this type was stated in Ru (1980b) for several
examples including the stochastic order, the convex, and con-
vex increasing order, which were well established before and
are related to famous results of Blackwell, Stein, Sherman,
Cartier, Meyer, and Strassen. It also included the class of
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symmetric convex functions and the class of norm increas-
ing functions. The list of examples was further extended in
Mosler and Scarsini (1991b). The proof in Ru (1980b) uses an
idea from the theory of balagage [Meyer (1966, Theorem 53)]
and Strassen’s kernel representation theorem [Strassen (1965,
Theorem 3)]. For a general formulation of this result we define

hs(x) = sup {/fdP; . <fP} (2.2.15)

for f € Cp(E) and assume that 7 C Cy(E) is some order gener-
ating class. Let 7° denote the convex maximal generator of the
order dual to <7 such that P <r @ is equivalent to @ <z P.
Let F°P-Q be the set of all pointwise limits of sequences in F°
which are uniformly integrable w.r.t. P, Q.

THEOREM 2.2.3 (F-diffusions) Let E be a polish space, F C
Cy(E) with dual convex cone F°, and P, Q € M (E). Assume
that for [ €eCp(E), hy e F°P.Q Then P <7 Q if and only if there
exists a F-diffusion K such that

Q=KP. (2.2.16)

PROOF. Define I, := {P e MY E) : €, <z P}. Then I, is con-
vex, weakly closed and Ay(x) = sup{/ fdP; P e Il.}. For
f € Co(E) holds f(x) < hy(x) and, thus, since hy € F°F-Q

/fng/hfde/h,ch. (2.2.17)

This implies by Strassen’s kernel representation theorem
[Strassen (1965, Theorem 3)] the existence of a kernel K on
E with @ = KP and K(x,.) e II, for all x € E;ie., K is an
F-diffusion. w

REMARK 2.2.4

a) The first general formulation of the diffusion char-
acterization theorem 2.2.16 is due to Meyer (1966,
Theorem 53). It is formulated in the context of inte-
gral stochastic orders <+ in Miller and Stoyan (2002,
Theorem 2.6.1): Suppose that for any f,g € Rr—the
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maximal generator of <r—holds
max(f,g) € Rr, (2.2.18)

then the equivalence in (2.2.16) holds true.
b) We consider the following examples of applications of
(2.2.16):

1) If F = F9™ is the set of symmetric convex
functions on IR", then & is symmetric and con-
cave, so it lies in the closure of the dual cone F°.
From (2.2.16) we obtain: P <y, c» @ if and only
if

31X ~P,Y ~ @ suchthat X <g E(Y()|X),
(2.2.19)

where <g is the Schur order, Y ) is the ordered
vector [see Ru (1981)]. It is interesting that there
is a difference to the condition for stochastic
Schur-ordering in (2.2.12).

2) If FIl'l is the class of norm increasing functions
f(x) = g(||x|) in Cp(IR"), then ¢, <5 P iff P
has support in {y : ||y|| = ||x]||}. Further, for any
f € Cpholds hy(x) =sup{[ fdP : e <z P}
is norm decreasing, ||x|| < ||y|| implies Af(y) <
hy(x). Thus, hs € F°F@ and we obtain:

P <5 Q iffthereexist X ~ P, Y ~ @
(2.2.20)
such that || X]|| < ||Y || a.s. [see Ru (1980b)].

2.3 FRECHET BOUNDS—EXTREMAL RISK

As mentioned in the introduction, Fréchet-bounds deal with
the basic problem in risk theory to describe the maximal
influence of stochastic dependence on the expectation of a func-
tional ¢(xq, ..., x,). Examples of interest are, e.g., convex func-
tionals of the joint position x; + - -- + x5, where x; are risks
with distributions P;. A typical case is p(x) = (" x;, — k)7,
the excess of loss function. A nonconvex function of interest
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is ¢ (x) = 1,00 (37" 1 x;) which yields just the inverse of the
value at risk functional. Of interest is also the maximal risk of
the components max; -, x; and variants hereof. For a detailed
introduction to these kinds of questions, we refer to Embrechts
et al. (2003). An extension of the classical Fréchet-bounds in
(2.1.4) is the following result that in particular implies sharp-
ness of the classical Fréchet-bounds.

THEOREM 2.3.1 (Sharpness of Fréchet-bounds; Ru (1981a)) Let
(E;, A;) be polish spaces, P; € MY(E;, A;)) and A; € A;, 1 <i <
n; then for any P € M(P4, ..., P,) holds

=1

(Z P;(A;) — (n— 1)) <P (A; x---x Ay <min{P;(4;))
+

(2.3.1)
and the upper and lower bounds in (2.3.1) are attained.

As a consequence we get sharp bounds for the influence of de-
pendence. As a first example, we consider the maximal risk of
the components. Let X = (X4, ..., X,) bearandom vector, with
X; ~ P; being real rv’s with df’s F;. Then with A; = (—o0, t],
(2.3.1)implies sharp bounds for the maxima M,, = max;; <, X;.

COROLLARY 2.3.1 (Maximally dependent rv’s)

H ()= (ZFi(t) —(n— 1)) <P (maxXi < t)
i=1 n

i<n

< min F;(t) = H*(¢) (2.3.2)

1<i<n

REMARK 2.3.1

a) Corollary 2.3.1 is due for F; = --- = F, to Lai and
Robbins (1976). The general case is from Lai and
Robbins (1978) and by different methods from
Meilijson and Nadas (1979), Tchen (1980), and Ru
(1980a). Also, a random vector X = (X3,...,X,) is
constructed with X; ~ F; and

My(X)=maxX; ~ H". (2.3.3)

i<n
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X yields the lower bound in (2.3.2). It is called the
maximally dependent random vector in Lai and
Robbins (1976). The upper bound H *(¢) is attained by
the comonotonic vector X* = (Fl_l(U), e, Fn_l(U)),
where U is uniform on [0, 1]. In stochastic ordering
terms (2.3.2) is equivalent to

My(X™) <st Mn(X) = nilglxXi <st Mp(X)  (2.3.4)
Strongly positive dependent ruv’s have in stochastic
order small maxima; i.e., they have small maximal
risks of the components.

b) The simplest way to explain the upper bound in (2.3.4)
is the following argument from Lai and Robbins (1976).
In fact, this is a typical argument for the duality ap-
proach to problems of this kind [see Rachev and Ru
(1998)]. Note that for any real v € IR :

M, (X)=maxX; <v+ Z(Xi —0)y. (2.3.5)

i<n ‘
- i=1

Equality holds in (2.3.5) iff for some “splitting point”
v* the sets {X; > v*} are pairwise disjoint and | ;
{X; > v*} = Q. The maximally dependent random
vector X is constructed such that there is a splitting
point v* as above. In the case F; = -.- = F,, Lai and
Robbins (1976) proved the extremely interesting re-
sult that the maximally dependent case is close to the
independent case in the following asymptotic sense
under the usual domain of attraction conditions for
maxima (~ denote here asymptotic equivalence).

EM, (X)) ~EM(X)~F1 (1 — %) , (2.3.6)

where X+ is an iid sequence with df F and a, =
F-1(1 - %) is the usual normalization for the maxi-
mum law.

There are many alternative applications of (2.3.1), e.g., to get
sharp bounds for the concentration probabilities or to get sharp
multivariate Fréchet-bounds [see Ru (2004)].
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COROLLARY 2.3.2

a) Maximal concentration

(Z(Fi(bi) — Fi(q)) — (n— 1)) <P (X;€la,bl,1<i<n)
i=1 N
< min (F;(4;) — Fi(q;))

1<i<n
(2.3.7)

The bounds in (2.3.7) are sharp.

b) (Sharp) multivariate Fréchet-bounds. If X; are k;-
dimensional random vectors with df’s F;, 1 <i < n,
and F is the df of X = (X4,...,X},), then for any
X; EIRki, 1<i<n:

=i=n

Y Filx)—(n—1| =<F(xy,...,%,) < min(F;(x;))
i=1 N !

(2.3.8)
and the multivariate Fréchet-bounds are sharp.

Of particular interest in risk theory are the distribution and
risk of the combined portfolio given by the sum S,X)=>"7" ; X.
The following basic ordering result for the ordering of sums
has been stated first in Meilijson and Nadas (1979) for the con-
vex increasing order and in Ru (1983) for the convex order.

THEOREM 2.3.2 (Maximal sums w.r.t. convex order) Let X be a
random vector with marginal df’s F1, ..., F,; then:

a) Convex increasing order

E (ZXL — t) <
i=1 N

Vo(t) = inf {(Zvi—t>++ZE(Xi—vi)+}

v=(v1,...,Un) Par)

(2.3.9)
The bound in (2.3.9) is sharp.
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b) Convex order
ZXi <ex ZFL'_I(U) (2.3.10)
i=1 i=1

and E (L0, F;HU) - t)+ )
REMARK 2.3.2

1) The proof of a) was given by Meilijson and Nadas
(1979) by a duality argument similar to that in (2.3.5).
Also, a construction of a r v attaining the upper bound
is given there (for an even more general situation).
The result of Meilijson and Nadas (1979) describes a
sharp upper bound for the ordering <;., w.r.t. increas-
ing convex functions which is also called stop-loss
ordering, <y (in particular in the economics and in-
surance literature). That the comonotone case yields
the maximum w.r.t. the convex order in (2.3.10) was
stated in Ru (1983) as a consequence of a more gen-
eral result for supermodular functions and based on
the rearrangement method which in the discrete case
goes back to inequalities of Lorentz (1953). Implicitly,
this result is also contained in the “Lorentz Theorem”
of Tchen (1980, Theorem 5), observing that for ¢ con-
vex, p(x1 + - - - + x,,) is quasimonotone (in Tchen’s ter-
minology) or supermodular in the now more common
terminology. This convex ordering result for sums of
random variables and also the simple duality proof
have been detected and rederived several times in the
literature.

2) The sharpness of the bound in (2.3.9) resp. in (2.3.10)
also implies that

E (ZF[I(U) —t)
+

i=1
= ‘gb‘+(t) = lnf{ZE(Xl — Ui)+; Zvi = t} .
i=1 i=1
(2.3.11)
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If X*, v* attain the upper bound in (2.3.9), then

(ZX;‘—t> =Y (X;-v), as (2312)

=1

This equality has a simple geometric meaning and is
fulfilled only for the comonotonic vector (Fi’l( U)i<i<n
[see Meilijson and Nadas (1979) or the recent paper
by Kaas et al. (2001)].

3) Meilijson and Nadas (1979), in fact, gave sharp bounds
for more general functionals. Let I; C {1,...,n}, 1 <
J < k be subsets with UI;=1 I, ={1,...,n} and con-
sider M = maxj<;< ) e, X j- Then for all x:

EM—x); <

(2.3.13)

and the upper bound in (2.3.13) is pointwise sharp.
Furthermore, for cyclic directed networks the bound
is attained stochastically for some P € M (P4, ..., P,).

4) Comonotonic vectors, multivariate marginals.
While for one-dimensional marginals comonotonic ve-
ctors maximize the risk for many convex functionals
[like in (2.3.9), (2.3.10) for ¢(3>"7_; x;), ¢ convex] thisis
no longer the case for multivariate marginals, where
they can even minimize the risk. For some illustra-
tive examples, see Ru (2003). The reason for this is
the possible negative dependence in the components
of the marginals.

In the recent paper of Denuit, Dhaene, and Ribas (2001), the
following interesting result related to (2.3.9), (2.3.10) was
proved by a simple induction argument:
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THEOREM 2.3.3 (Positive dependence increases risk) If X is as-
sociated, then

n n
Y X =a) X (2.3.14)
i=1 i=1

Here X+ = (X1,...,X;)) has independent components and
X\~ X..

Thus, positive dependence (association) leads to riskier port-
folios. In Christofides and Vaggelatou (2004) and Ru (2004),
a general version of this result has been given stating that
positive dependence leads to higher risk for a general class of
proper risk functions f(Xq,..., X,).

Of particular interest in risk theory is to describe the in-
fluence of dependence on the value at risk functional of the
combined portfolio VaR, (X1 +- - - + X,,) which is defined as the
a-quantile of the combined portfolio X1 + - - - + X,,. For the de-
scription of the maximal influence, the following functionals
are of interest: Given ndf’s F, ..., F, consider:

n
Mn(t)=sup{P (ZXift); X, ~F;, 1§i§n}
=1

n
mn(t):inf{P<ZXi<t); X, ~F;, lfiin}.
=1

(2.3.15)
Then
1-—m,() = sup{P(ZXi >t); Xi~F;, 1<i<n}
(2.3.16)

and one obtains the sharp upper bound
VaRy (X1 + -+ X,) < (1 —mp) Ha). (2.3.17)

For the case n = 2, the following bounds were first established
in Sklar (1973) and in more general form in Moynihan,
Schweizer, and Sklar (1978). The bounds and also their sharp-
ness were independently established in Makarov (1981) and
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Ru (1982). [For the history of this result, see also Schweizer
(1991).]

THEOREM 2.3.4 (Maximal sum risks, n = 2; Makarov
(1981), Ru (1982), SKklar (1973)) Let X be a random vector
with marginal df’s F1, ..., F,; then for n = 2 holds:

P(X1+4+ X9 <t) <My(#) =F1 AFy)
P(X1 + X5 <t)2m2(t)=F1\/F2(t)—1, (2.3.18)

where F1 A Fo(t) = infy(Fi(x_) + Fo(t — x)) is the infimal
convolution function and F1Vv Fo(t) = sup,(F1(x_)+ Fo(t —x))
is the supremal convolution function.

(2.3.18) is derived in Ru (1982) as a consequence of the fol-
lowing general representation of the upper Fréchet-bounds for
@ = 14, P1, Py € M1(IR"®) and A c IR*" closed:

M(A) =sup{P(A); P € M(Pq, Py)}
=1-sup{P2(0) — P1(71(AN(IR"x 0))); O CIR" open},
(2.3.19)

where 71 is the projection on the first component. (2.3.19) is
a consequence of Strassen (1965, Theorem 11) [see Ru (1982,
1986)].

The type of bounds in (2.3.18) extends easily to n > 3 [see
Frank, Nelsen, and Schweizer (1987) and Denuit, Genest, and
Marceau (1999)].

PROPOSITION 2.3.1 Let X be a random vector with marginal
df’s Fy, ..., Fy. Then for any t € IR holds:

i=1 =1

(\/ Fi(t) — (n— 1)) <P (ZXl St)
+

S

< min ( F;(®), 1) (2.3.20)

i=1
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where /\ F;(t) := inf{z F;(u;); Zui = t}
i=1 i=1 i=1

=1 =1 i=1

and \/ F;(t) :=sup {ZFi(ui); Zui = t} .

PROOF. The proofof (2.3.20) follows by induction from the case
n = 2 and, alternatively, by the following simple argument. For
any uy,...,u, with > ; u; = ¢ holds:

P (ZX‘ St) <P (U {X; < ui})
i=1 i=1

<> Fi(uy), (2.3.21)

which gives the upper bound. Similarly, using the Fréchet
lower bound in (2.1.4), we obtain

n
P (ZXiSt) >P (X1 =<uy,...,Xn <uy)

=1

> (ZFi(ui)—(n— 1)) : (2.3.22)
=1

+
]

REMARK 2.3.3 The bounds in (2.3.20) are, however, in contrast
to the case n = 2 not sharp. If n =3, F'; = Fy = F3 are the df
of the uniform distribution on [0, 1]; then

t,0<¢t<?2 2t _1,0<t<3
Ms(t) = 2, t)=<3 A
3(6) {Lt : ms(t) {1’ .
(2.3.23)

[see Ru (1982)]. The bounds in (2.3.20) and crude (2.3.21) are
in this case.

3
min( /\F(t))_mln (1,¢) and (\/F(t)— )
+

i=1
=(t—-2),. (2.3.24)
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For some examples sharp bounds for n > 3 have been given in
Ru (1982) and Rachev and Ru (1998).

The simple method of bounding the risk probability in
(2.3.20) has been given and extended in Frank, Nelsen, and
Schweizer (1987) to general monotonically nondecreasing func-
tions ¥ (xq,...,x,). The resulting bounds are of interest and
markable relevance if further information on the underlying
df’s can be used. The following is essentially a reformulation
of corresponding results in Moynihan, Schweizer, and Sklar
(1978); Frank, Nelsen, and Schweizer (1987); Denuit, Genest,
and Marceau (1999); and Embrechts, Hoing, and Juri (2003).
For adf H,let H denote the corresponding multivariate sur-
vival function H(x) = Py ([x, 00)). Fort € IR, let Ai(t) ={u=
(u1,...,u,) : u amaximal point in IR" with y(u) < ¢}.

THEOREM 2.3.5 (Bounds for monotonic functionals) Let X =
(X1,...,Xy) be a random vector with df F € F(Fq,...,Fy)
and let ¥(x) be monotonically nondecreasing and lower semi-
continuous. Then

a) General bounds

( sup > Fi(u;) —(n— 1)) <P (yX)<t)
+

ueAjﬂ'(t) i=1

< inf Y Fi(w). (2.3.25)

- +

b) Improved bounds. If G, H are df’s, then
1) F > Gimplies

P(y(X)<t)> sup Gu). (2.3.26)

weA ()
2) IfF > H, then

PW(X)<t)<1— sup Hw), (2.3.27)
ued,(t)

where A (t) :={u e R" : y(u) > t}.
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PROOF.

a) Foranyu e A;;(t) holds, using maximality of u,

PW(X)<t)<P (U{Xi < ui}) <> Fiwy).

i=1 i=1
This implies the upper bound in (a). Further,
P(y(X)<t)>P (X1 =<u1,...,Xn<un

> (Z Fi(u;) — (n— 1)) (2.3.28)
+

=1

by the lower Fréchet-bound.
b) If F > G, then in (2.3.28) we get

P(WX)SﬂZ(Sm)Gwr4n—D).
+

weA; ()

If F > H then for u eA@(t)
PWX)<t)y=1—P (y(X)>1)
<1-PX1>u1,...,Xn>un

=1-F(w <1-H@),
which implies (2). .

REMARK 2.3.4

a) For the case n = 2 one gets sharp upper and lower
bounds for P(y(X) > t) by applying (2.3.20) to the set
A = {x = (x1, x9) : ¥(x1, x9) > ¢t} for any function ¢, in
particular, for monotonically nondecreasing functions.
b) Theorem 3.2 in Embrechts, Hoing, and Juri (2003)
states sharpness of the bounds in (2.3.26) and (2.3.27).
In comparison to Embrechts, Hoing, and Juri (2003),
we omit some continuity assumption on v and omit
the language of copulas which is not necessary here.
The corresponding bound for the value at risk func-
tionals are in consequence of the monotonicity of
easy to achieve [see Embrechts et al. (2003, Theorem
4.1)]. There are still many open problems in this area,
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in particular how to obtain applicable and good bounds
under additional information on the model.

¢) An extension of the bounds in (2.3.14), (2.3.25) to in-
creasing functions ¥(X, Y ) of k-dimensional vectors
has been given in Li, Scarsini, and Shaked (1996). For
n = 2 one gets sharpness by Strassen’s theorem as in
(2.3.17). Also, the partial integration argument from
Ru (1980a) can be applied to obtain bounds for Eg(X +
Y') for increasing differentiable functions g [see Li,
Scarsini, and Shaked (1996, Theorem 4.2)] and more
general to any A-monotone functions f(Xq,...,X,)
for k;-dimensional random vectors X; [see Ru (2004)].
Several further bounds and techniques for obtaining
bounds are discussed in Ru (1991a). One rich source of
such bounds comprises Bonferroni inequalities which
in many cases can be proved by a general reduction
principle to be sharp. Let, e.g., Ay, ..., A, € A where
(E, A) is any measure space and P; € M(E, A). Let
X = (Xjy,...,X,) be arandom vector with X; ~ P;
1 < j < n and define the set that at least £ of the
events {X; € A;} hold true,

Ly, := U {XjeAj, jed}. (2.3.29)
JC(l,.n), | |=k

Then

. 1 n—r
P (L) <bp:= ,nin (1, - Zp(i))
== i—1

(2.3.30)
> po—(k—-1)
o i=r+1
P(Lk) >ap :=max | 0, n_r —(k_1

where p; = P(X; € A;) and p1) < --- < p( [see Ru
(1991a)]. The bounds in 2.3.30 are sharp. They are
consequences of a Bonferroni type result in Ruger
(1979) and a general reduction principle [see Ru
(1991a)]. In particular, for real random variables and

© 2005 by Taylor & Francis Group, LLC



Stochastic Ordering of Risks 41

A; = [t, 00), one gets sharp upper and lower bounds
for the tail of the kth-order statistic

P (X(k) > t) { = bk, with Di = P(Xl = t)>

> a. (2.3.31)

Also extensions to higher-order Bonferroni bounds are
given in Ru (1991) and to improved bounds in the
case that one can use some of the higher-order joint
marginal distributions.

2.4 A-MONOTONE, SUPERMODULAR, AND
DIRECTIONALLY CONVEX FUNCTION
CLASSES

In various applications of comparing risks, it has turned out
that A-monotone, supermodular, and directionally convex func-
tions and variants of them play an eminent role [see Muller and
Stoyan (2002)]. For the definition we introduce for f:IR" — IR,
€ > 0, the difference operator A{ f by

Aif(x)=f(x+ee)— flx), 1<i<n (2.4.1)
where e; is the ith unit vector.
DEFINITION 2.4.1 Let f : IR" — IR.

1) [ is A-monotone if for every subset I = {i1,...,ip} C
{1,...,n}and €1, ..., €; > 0 holds
Afll .. Af}f f(x)>0 forall x. (2.4.2)
2) fissupermodularifforalll <i < j <n,¢,8 > 0and
all x
ASAY f(x) = 0. (2.4.3)

3) [ is directionally convex if (2.4.3) holds for all; < ;.

Denote by F2, F, Facx the set of all A-monotone resp. super-
modular resp. directionally convex functions; then F2 c F*™
and Fde*r c Fom,

REMARK 2.4.1 The classes of supermodular and directionally
convex functions were investigated in early papers of
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Lorentz (1953) and Fan and Lorentz (1954) in the context
of functional inequalities [see also the extensive chapter in
Marshall and Olkin (1979)]. In Cambanis, Simons, and Stout
(1976) and Tchen (1980), supermodular functions are called
quasimonotone. A-monotone functions were introduced in
Ru (1980). Twice-differentiable functions f are supermodular
(directionally convex) if

82
0x;0x

f(x)>0 forallxandi < j (resp. fori < j).

(2.4.4)

Differentiable functions f are A-monotone if for all i; < iy
<--o<ip,1<k<n
ak
axil . 3xik

DEFINITION 2.4.2 For P, @ € M'(IR") define
a) P <y, @ “upper orthant ordering” if

P([x,o0]) < Q([x,00]), VuxelR" (2.4.6)

f(x)>0. (2.4.5)

b) <sm, <dcx denote the supermodular ordering resp. di-
rectionally convex ordering generated by 7™ resp.
]:dcx.

There are corresponding positive/negative dependence notions.
DEFINITION 2.4.3

1) P is positive (negative) upper orthant dependent—
Pe PUOD (resp. P € NUOD)—if

n n
Q) P; <uo P (resp. P <uo ®P,~) ) (2.4.7)
i=1

i=1
2) P isweaklyassociatedif E [[; fi(X;)>11"1 E fi(X;)
for all nondecreasing f; > 0.

REMARK 2.4.2 A similar notion also exists for lower orthants
and is denoted by <, resp. PLOD and NLOD. This notion
was introduced in Lehmann (1966). The following equivalence
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holds:
P ¢ PUOD if and only if P is weakly associated (2.4.8)

[for n = 2 due to Lehmann (1966), for n > 2 to Ru (1981¢)].
In fact, more generally it was shown in Bergmann (1978) that:
P <,, Qifand onlyiffor X ~ P,Y ~ @

EJ] Xy < E][ f(Yo, (2.4.9)

i=1 i=1
for f; nondecreasing, f; > 0.

The maximal generator of the upper orthant order is the set of
A-monotone functions.

THEOREM 2.4.1 (A-monotone functions; Ru (1980a)) If P, Q <
MI(IR"), then: P <,, Q if and only if

/fdP f/fdQ forall f e F> (2.4.10)

which are integrable w.rt. P and @, i.e., <y, is equivalent to
<Fa.

A similar result, of course, also holds for the lower orthant
order and can be combined to characterize the “concordance or-
dering”; P <.on Q if P <., @ and P <;, Q. Arandom vector X
is called WA (weakly associated) if Cov( f(X ), g(X)) > 0 for
any disjoint subsets </, I of {1, ..., n} and monotonically non-
decreasing functions f, g of these components. Concerning the
supermodular ordering the analogous result is the following.

THEOREM 2.4.2 (Supermodular functions) Let P, @ € M (IR"),

a) n=2;Cambanis, Simons, and Stout (1976). For P, @ €
M(Pq, Py) holds:

P <, Q@< P <, Q. (2.4.11)

b) n> 2, “The Lorentz Theorem”; Tchen (1980), Ru (1983).
For P € M(P, ..., P,) holds

P <4 Py, (2.4.12)

where P, is the measure corresponding to the upper
Fréchet-bound (the comonotonic measure).
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c)

Christofides and Vaggelatou (2003).
If X is a weakly associated random vector, then X has
positive supermodular dependence , i.e.,

n
Q P¥i <gn PX. (2.4.13)
=1

REMARK 2.4.3

a)

b)

c)

d)

e)

g)

The interesting result in (2.4.13) can be stated in the
form: Positive dependence implies increasing of the
risk. This is of essential interest in risk theory.
(2.4.12) was proved in Tchen (1980) by discrete ap-
proximation and reduction to the Lorentz (1953)
inequalities. In Ru (1979, 1983), the problem of gen-
eralized Fréchet-bounds was identified with a rear-
rangement problem for functions and then reduced to
the Lorentz inequality.

For P and @ with identical (n-1)-dimensions marginal
distributions, one obtains

P<, Q=P <, Q (2.4.14)

[Tchen (1980), Ru (1980a, Theorem 3b)].

There are some useful composition rules which al-
low the use of <, for several models of interest [see
Muiller and Stoyan (2002) for results and references].
From Tchen’s proof of (b), it is clear that P_ <, P if
the lower Fréchet-bound P_ is a df [see also Miller
and Stoyan (2002, p. 120)].

Since for any ¢ convex the function ¥(x) = ¢(x1+-- -+
x,) is supermodular, one obtains as a consequence of
(2.4.12) the statement of (2.3.9) that

Y Xi < Y F7NU) (2.4.15)
i=1 i=1

i.e., the sums are maximal in convex order for the
comonotone case; in other words, the comonotone pos-
itively dependent portfolio is the riskiest possible.

Comparison of P ¢ M(Py,...,P,) and € M
(Q1, ..., @y wr.t. the supermodular ordering <, is
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only possible if the marginals are identical:
P <, @ implies P, =Q;, 1<i<n (2.4.16)

Thus, in comparison to <ra = <,, the <y, ordering is
restricted to one marginal class while <., allows com-
parisons between P and @ if the marginals increase
stochastically:

P <,, Q implies P; <4 Q;, 1<i<n. (24.17)

The comparison by F2 is, however, for a smaller class
of functions 72 C F*". On the other hand, criteria
for <4, are not as simple as those for <,,. The di-
rectionally convex order <g4., is a “typical” risk order.
It allows comparisons in cases where the marginals
increase convexly:

P <4, Q implies P; <., Q;, 1<i<n. (2.4.18)

From the copula representation (2.2.7) of distributions
with given marginals, the following is immediate: If P €¢ M
(P1,...,Py), Q e M(Q, ..., ], have the same copula C and
P; <4 Q;,1 <i <n,then

P <4 Q. (2.4.19)

(=<4 1s the multivariate stochastic order w.r.t. increasing func-
tion; see Ru (1981b, Proposition 7).)

The situation is more complicated if the marginals in-
crease in convex order. Here the analog of (2.4.19) is wrong;
see Miiller and Scarsini (2001). The reason is that negative
dependence can destroy this conclusion, as the following sim-
ple example of that paper shows.

EXAMPLE 2.4.1 Consider n = 2 and rv's X = (W,-W), Y =
(W,— EW) for some integrable random variable W. Then
Y <ex X;,i=1,2,but X1+ Xo =W —-W =0while Y1+ Y, =
W —-—EW,ie., X1 +Xo <, Y1+7Yo5.

However, in the positive direction Muller and Scarsini (2001)
proved the interesting result that under a strong positive de-

pendence assumption the analog of (2.4.19) is true. Let F,
denote as usual the upper Fréchet-bound of F(F'y, ..., F,).
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THEOREM 2.4.3 (Directionally convex ordering) Let F;, G; be
one-dimensional df’s, 1 <i <n.

a) “The Ky-Fan-Lorentz Theorem”; Ru (1983). If F'; <.
G;, 1 <i <n, then

F+ Sdcx G+. (2420)

b) Miiller and Scarsini (2001). If F € F(F4, ..., F,) and
G € F(Gy, ..., Gy havethe same conditionally increa-
sing (CI) copula C and if F; <.x Gi, 1 <1 <n, then

F <4ex G. (2.4.21)

REMARK 2.4.4 Miller and Scarsini (2001) give a proof of (a)
using mean preserving spread (see Theorem 3.12.13 of their
paper), whereas the proof in Ru (1983) is based on the Ky
Fan and Lorentz Theorem. The second main ingredient of the
proof of (b) is the a.s. standard construction of random vec-
torsin (2.2.4): X =13 (V)=(h1(V1), ..., hy(V1, ..., V})), where
the functions A; are monotonically nondecreasing for CI dis-
tribution functions. (2.4.21) is not valid anymore under the
weaker dependence assumption of association or of conditional
increasing in sequence CI S [see Miiller and Scasini (2001)].

The following weakening of the WA-notion was introduced in
Ru (2003):

X is smaller than Y in the weakly conditional in sequence
order—X <wcs Y—if, forall¢,1 <i <n—1and f monotoni-
cally nondecreasing:

Cov(1(X; > t), f(X(i+1)
< Cov(1(Y; > 1), F(Yiirn)) (2.4.22)

where X ;1) = (X411, ..., Xp). X is called weakly associated in
sequence (WAS) if X* <wcs X, where X* is the corresponding
version of X with independent components; equivalently, for
all ¢,

PXalXi>t 5 - pXity (2.4.23)

The following result extends and unifies Theorems 2.4.2 and
2.4.3.
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THEOREM 2.4.4 (WCS-Theorem; Ru (2004)) Let X,Y be ran-
dom vectors with marginals P;, Q;.

a) IfP,=Q;,1<i<nand X <wcs Y, then X <, Y.
b) If P, <cx Qi;1 <i<nand X <wcs Y, then X <gex
Y.

The ordering <wc¢s combines an increase in positive depen-
dence with a convex increase of the marginals. Some exam-
ples for this ordering are given in Ru (2004). In particular, one
obtains as a corollary:

COROLLARY 2.4.1 IfF € F(F1,...,Fpand F; <., G;,1 <i <
n, then

) F <gex G+ (2.4.24)
b) IfX ~F, then

Y X < Y GHU, (2.4.25)
=1 i=1

where U is uniformly distributed on (0, 1).

Finally, we state some new criteria for the <, and <j., or-
dering in functional dependence models which are related to
Bauerle (1997, Theorem 3.1) and Bauerle and Miller (1998).
For the proofs see Ru (2004). Let (U;) be independent rv’s and
(V;), V any random variables independent of (U;). Further,
let

Xi=gU;, V), Y =g(U;, V),
(2.4.26)
Z;=gU;, V), W;=g,U,;, V)

where V; ~ V and g;(u, -), g;(u, -) are monotonically nondecre-
asing. Let X = (X1,...,X,),Y =(Yq,...,Y,), Z,and W denote
the corresponding vectors and let <.., denote the component-
wise convex order. X, Y, Z, and W describe functional models
where the dependence is obtained in functional form from some
inner and outer factors U; resp. V;. These types of models are of
particular relevance in various applications in insurance and
in economics.
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THEOREM 2.4.5 Forthe X, Y, Z, and W specified as in (2.4.26)
holds:
a) Bduerle (1997). X <, Y, Z <gu W.
b) Iffor all v, gi(Ui, v) =ecx gi(Ui> U); then Z <cex X,
W <eex Y,and Z <ge, Y.
c) Ifgi(Ui, V) <cx gri(Ui; v),then X <cex Z,Y <cex W and
X <dcx w.

For the proofs of (b) and (c) see Ru (2004).

REMARK 2.4.5 The random vectors Z, Y and X, W which are
compared w.r.t. <g., in Theorem 2.4.5 do not have the same de-
pendence structure (copula), which was a basic assumption for
the proof of the <4, ordering result in Theorem 2.4.3 (b). Also,
the X and W vectors are not necessarily positive dependent.
Since we do not postulate any independence for the (V;), we can
describe any multivariate df F by a random vector of the form
as for X. Thus, this comparison result applies to many models.
Similarly, as in Bauerle (1997), one could add in Theorem 2.4.5
a further random influence component W and consider models
of the form X; = g;(U;, V;, W), Y, = g;(U;, V;, W), etc.
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ABSTRACT

The classical discrete distributions binomial, geometric, and
negative binomial are defined on the stochastic model of a
sequence of independent and identical Bernoulli trials.
The Poisson distribution may be defined as an approxima-
tion of the binomial (or negative binomial) distribution.
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The corresponding q-distributions are defined on the more gen-
eral stochastic model of a sequence of Bernoulli trials with
probability of success at any trial depending on the number of
trials. In this paper targeting the problem of calculating the
moments of g-distributions, we introduce and study g-factorial
moments, the calculation of which is as easy as the calcula-
tion of the factorial moments of the classical distributions. The
usual factorial moments are connected with the g-factorial mo-
ments through the g-Stirling numbers of the first kind. Several
examples, illustrating the method, are presented. Further, the
Euler distribution is characterized through its g-factorial
moments.

KEYWORDS AND PHRASES: g-distributions, ¢-moments,
g-Stirling numbers

3.1 INTRODUCTION

Consider a sequence of independent Bernoulli trials with prob-
ability of success at the ith trial p;,i = 1,2, ... . The study of
the distribution of the number X, of successes up to the nth
trial, as well as the closely related distribution of the num-
ber Y}, of trials until the occurrence of the £th success, has at-
tracted special attention. In the particular case p; = 0¢*~1/(1+
0¢ D, i =1,2,...,0 < q < 1,0 > 0, the distribution of
the random variable X, called the g-binomial distribution,
has been studied by Kemp and Newton (1990) and Kemp and
Kemp (1991). The g-binomial distribution, for n — oo, con-
verges to a g-analog of the Poisson distribution, called the
Heine distribution. This distribution was introduced and ex-
amined by Benkherouf and Bather (1988). Kemp (1992a,b) fur-
ther studied the Heine distribution. In the case p; = 1 —6q‘~ 1,
1=1,2,...,0<qg <1, 0<6 <1, the distribution of the random
variable Y}, is called the g-Pascal distribution. A stochastic
model described by Dunkl (1981) led to the particular case
6 = g™ *+1 of this distribution. This distribution, also stud-
ied by Kemp (1998), is called the absorption distribution. For
k — oo, the distribution of the number of failures until the
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occurrence of the kth success W, = Y, — k converges to an-
other g-analog of the Poisson distribution, called Euler the
distribution. This distribution was studied by Benkherouf and
Bather (1988) and Kemp (1992a,b). Kemp (2001) characterized
the absorption distribution as the conditional distribution of
a g-binomial distribution given the sum of a g-binomial and a
Heine distribution with the same argument parameter.

In the present paper, we propose the introduction of g-
factorial moments for g-distributions. These moments, apart
from the interest in their own, may be used as an intermediate
step in the evaluation of the usual moments of the g-
distributions. In this respect, an expression of the usual facto-
rial moments in terms of the g-factorial moments is derived.
Several examples illustrating the method are presented and
a characterization of the Euler distribution through its
g-factorial moments is derived.

3.2 q-NUMBERS, g-FACTORIALS, AND
q-STIRLING NUMBERS

Let 0 < g < 1, x be a real number and % be a positive integer.
The number [x], = (1 —q¢*)/(1 — q) is called a g-real number.
In particular, [k], is called a g-positive integer. The factorial of
the g-number [x], of order %, which is defined by

[x]k,q = [x]q[x - 1]q tee [x —k+ l]q
_ (1— qx)(]_ _ qx—l) (1= qx—k+1)

(1—g)* ’
is called a g-factorial of x of order k. In particular, [k],! = [1],
[2]4 - - - [k]q is called a g-factorial of k. The g-binomial coefficient
is defined by
{x] Cxlrg  (1—gHA—g* (1 —g"F
kl, [kl (1-g)(1—g?---(1-gk)
Note that

tm[7] - (7).
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The g-binomial and the negative q-binomial expansions are
expressed as

n n
T[(1+tg =3 ghtr m i, (3.2.1)
=1 k=0 q

and
[[a-t¢H =Y [”“]z - 1] <1, (322
=1 k=0 q

respectively. In general, the transition of an expression to a g-
analogis not unique. Other q-binomial and negative q-binomial
expansions useful in the sequel are the following:

(1-1-ltl)" = (g

= S (—DhghED2(1 — gy [Z] {1 (3.2.3)
k=0 q

and
A-A-gltl)™= (gH™
n+k—-1

q_”k(l—q)k[ . ][t]k,q.
q

M8

k=0

(3.2.4)
Also useful are the following two g-exponential functions:
eq(t) =[1 -1 —q)g" )"

i=1
o 4k

=> gy Mt<l1-a), (3.2.5)
k=0 "9°

Et)=][1+1-qq''t)
i=1

tk
k(k—1)/2
[kl,!”

)

q —00 < t < 00, (3.2.6)

e
Il

0
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withe,(¢)E4(—t) = 1. The nth-order g-factorial [¢], 4 is expand-
ed into powers of the g-number [t], and inversely as follows:

[tlng =q " V2N sy, B)IE)E, n=0,1,..., (3.2.7)
k=0
(12 =" ¢"* V28 (n, B)ltleg, n=0,1,.... (3.2.8)
k=0

The coefficients s,(n,k) and Sy(n, k) are called g-Stirling
numbers of the first and second kind, respectively. Closed ex-
pressions, recurrence relations, and other properties of these
numbers are examined by Carlitz (1933, 1948) and Gould
(1961).

3.3 q-FACTORIAL MOMENTS

The calculation of the mean and the variance and generally the
calculation of the moments of a discrete g-distribution are quite
difficult. Several techniques have been used for the calculation
of the mean and the variance of particular g-distributions.
The general method of evaluation of moments by differen-
tiating the probability generating function, used by Kemp
(1992a, 1998), is bounded to the calculation of the first two
moments. This limited applicability is due to the inherent dif-
ficulties in the differentiation of the hypergeometric series.
We propose the introduction of the g-factorial moments of g-
distributions, the calculation of which is as easy as that of the
usual factorial moments of the classical discrete distributions.

DEFINITION 3.3.1 Let X be a nonnegative integer valued ran-
dom variable with probability mass function f(x) = P(X = x),
x=0,1,....

(a) The mean of the rth-order g-factorial [X], 4,

o0

E([X]r,q) = Z[X]r,q f(x), (331)

X=r
provided it exists, is called the rth-order (descending) g-
factorial moment of the random variable X.
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(b) The mean of the rth-order ascending g-factorial [X +
r—1l.4,

E(X+r—-1l,4) = Z[x +r —1l,4f(x), (3.3.2)

provided it exists, is called the r th-order ascending g-factorial
moment of the random variable X.

The usual factorial moments are expressed in terms of the q-
factorial moments, through the ¢-Stirling number of the first
kind, in the following theorem.

THEOREM 3.3.1 Let E([X],4) and E([X +r — 1],4) be the
rth-order descending and ascending q-factorial moments,

r=1,2,..., respectively, of a nonnegative integer valued ran-
dom variable X. Then

E[(X)ml =m! > (=1) "sy(r,m)

r=m

(1 _ q)rfm

L E([X]4), (3.3.3)
q!

and
=m!)_ q_(g)sq(r, m)

(1 _ q)r—m
1!

provided the series are convergent. The coefficient sy(r, k) is the
q-Stirling number of the first kind.

E(@ XX +7r —1l.,), (3.3.4)

PROOF. According to Newton’s binomial formula, for x non-
negative integer, we have

(1—(1—q)ltly) Z( 1>k< )(1—q)k[t]’;
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while, from (3.2.3) and (3.2.7) we get

(1-(1—gll)* =Y {2(—1)’(1 — @) sy, b) mq} (11

k=0
SO

(-t

Multiplying both members of this expression by the probability
mass function f(x) of the random variable X and summing for
allx =0,1,..., we deduce, according to (3.3.1), the required
expression (3.3.3).

Similarly, expanding both members of (3.2.4) into powers
of [t], with the aid of Newton’s negative binomial formula and
expression (3.2.7) and taking expectations in the resulting ex-
pression, (3.3.4) is deduced. =

q

Note that Dunkl (1981), starting from Newton’s polyno-
mial expression of a function in terms of divided differences at
certain points and letting the function be the binomial coeffi-
cient (;) and the points be the g-numbers [r],,r =0, 1, ..., x,
first derived expression (3.3.3).

In the following examples the g-factorial moments and
the usual factorial moments of several discrete g-distributions
are evaluated.

EXAMPLE 3.3.1 g-binomial distribution. Consider a sequence
of independent Bernoulli trials with probability of success at
the ith trial p; = 6¢ 1/(1 +6¢" 1), i =1,2,...,0 < q < 1,
® > 0. The probability mass function of the number X, of
successes up to the nth trial is given by

n
_|n x(x—1)/2 px i-1y-1 _
an(x)_[x} q 0 H(l—l—@q )Y, x=0,1,...,n,
q i=1
with 0 < g < 1,0 > 0. The rth-order q-factorial moment of the
random variable X, according to Definition 3.3.1, is given by
the sum
n
1 n

E([Xn]r,q) = H;l:l(l +9qi_1) J;[x]r,q [x

:| qx(xfl)/29x
q
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and since

n

[x]r,q [x] = [n]r,q [Z::] >
q q

)= (707 ) e

it is written as

[nl, q qr(r—l)/29r

[T (1 +6g"~1)

I il {” - } 0g" )

X —r
x=r q

E( [X]n]r,q) =

and, by the g-binomial formula (3.2.1), reduces to

[n]r 4 qr(r—l)/29r

[T_1(1+6g1)"
The kth-order factorial moment of the random variable X,,,
according to Theorem 3.3.1, is given by

n B (1— q)rfqu(rfl)/Zer n
E[(X)r] =B (=17 Fs,(r, k : [ }
Y e e M)

EXAMPLE 3.3.2 Heine distribution. The probability mass func-
tion of the g-binomial distribution for » — oo converges to the
probability mass function of the Heine distribution

E([Xn]r,q) =

x(x—l)/Z)Lx

fX(x)=eq(—k)q , x=0,1,...,

[x]g!

with 0 < ¢ <1, 4 > 0, where A = 6/(1 — q) and e;(—1) = [[2;
(1 + A(1 —q)g*~1)~1 is the g-exponential function (3.2.5). The
rth-order g-factorial moment of the random variable X is given
by

00 qx(xfl)/Z)\‘x
E( [X]r,q) = eq(—)») Z [x]r,q T
x=r q-

— —r—1)/2 —
— T2y, (—/\)iq(x A v
- q

xX=r

[x —7]g!
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and since
0 (x—r)(x—r—1)/2 ryx—r
q (Aq")
[x —rl,! = Eq(0q")
x=r q*
OO .
— H (1 + (1 _q)qrﬂfl)
i=1
it reduces to
qr(r—l)/Z)hr

E([X]r,q) ==

14+ A1 —q)gib)’
Further, by Theorem 3.3.1,

EIX)p] = k> (1) Fsy(r, k)
r=~k

(1-— q)r—qu(r—l)/2 AT
VARG TR R

EXAMPLE 3.3.3 g-Pascal distribution. Consider a sequence of
independent Bernoulli trials with probability of success at the
ithtrial p; =1—-6¢"1,i=1,2,...,0<qg <1,0 <6 < 1. The
probability mass function of the number Y}, of trials until the
occurrence of the kth success is given by

k
fr,(y) = {%:H e [1 -0, y=kk+1,...,
q i=1

with 0 < ¢ < 1,0 < 6 < 1. The rth-order ascending g-factorial
moment of the random variable Y}, according to Definition
3.3.1, is given by the sum

1
Héezl(l — fgi-1)-1

> -1 _
XZ[y+r—1]r,q {‘]}3}—1} 67 k
y=k q

E([Y, +r — l]r,q) =

and since
1

ly+r — 1, [,3:: 1} T [,ﬂ: :ﬂ :
q q
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it is written as
e+r —1]4
H 1(1 ng 1) 1

XZ y+r-

k+r— 1
Thus, by the g-negative binomial formula (3.2.2),

[k +r — l]r,q
::1(1 _ qu+i—1)‘

E([Yy +r — 1]r,q) =

9y k.

E([Yk +r — l]r,q) =

Similarly,

[k +r — l]r,qq*kr
Hle(l _ gq—r+i—1)

E(q " Y +r — 19 =
and by Theorem 3.3.1,

E(X +m—Dyl=m!Y g% Bsr,m)
y (1—qy {k +r—1]
lezl(l _ Qq—r-i-i—l) r . .

EXAMPLE 3.3.4 Euler distribution. The probability mass func-
tion of the number of failures until the occurrence of the kth
success W, =Y}, — & is given by
k
E4+w-—1 w i—1 .
[ w L@ 1_[1(1—<9q ), w=0,1,....
1=

fw,(w) =

This distribution, which may be called the g-negative binomial
distribution, for £ — oo, converges to the Euler distribution
with probability mass function

X

fx(x) = Eq(~ m[A] o ox=01,

with0 < g < 1,0 < A < 1/(1 —q), where » = 0/(1 —q) and
E,(—2) = T[2,(1 — A1 — @)¢*~1) is the g-exponential func-
tion (3.2.6). The rth-order g-factorial moment of the random
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variable X is given by

00 X . 00 AxXT

E([X]r,q) = Eq(—)u)xz:;[x]r,qwq! =X Eq(—)n)xz:; m
and since, by (3.2.5),

0 AxT 1

_— = )\‘ _

xz:; [x — 71! ¢g(%) E (—0)
it follows that

E([X],q) = 7"
Further, by Theorem 3.3.1,

o0 1— r—k)Lr
Bl =213 (-1 syr, ) =9
= [r]g!

3.4 A CHARACTERIZATION OF THE EULER
DISTRIBUTION

Consider a family of nonnegative integer valued random vari-
ables {X;,0 < A < p < oo} having a power series distribution
with probability mass function

alx)\*
A = —— =0,1,... 0<Ax 3.4.1
f(x’ ) g()\‘) ’ X s s ’ < <p ( )
and series function
gr) = Za(x)kx, 0<i<op.
x=0

It is well known that the mean-variance equality
E(X;)=Var(X,) forall A e(0,p)

characterizes the Poisson family of distributions [see Kosambi
(1949) and Patil (1962)]. Note that the requirement that this
equality holds for all A € (0, p) has been overlooked by some
authors [see Sapatinas (1994) for details]. This requirement
may be relaxed by weaker ones; e.g., it suffices to verify it for
all A € I, where I is any nondegenerate subinterval of (0, p).
A g-analogue to the Kosambi—Patil characterization for the
Euler distribution is derived in the following theorem.
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THEOREM 3.4.1 Assume that a family of nonnegative integer
valued random variables {X,;,0 < A < p < oo} obeys a power
series distribution with probability mass function (3.4.1). Then,
X, has an Euler distribution if and only if

E([X,]lo4) = [E([Xk]q)]z (3.4.2)
for all » € (0, p).
PROOF. Assume first that (3.4.2) holds for all A € (0, p). Then

(}\) Z x + 1glx + 2]4 alx + 2)A"

2

[Z [x + 1]4 alx + 1)A"

[g(k)]2
which, using the series g(1) = 77 ; a(x)A*, may be written as
{Z a(x)A” [Z [x + 1lg[x + 2] alx + 2)A"
x=0 x=0
o 2
= [Z [x + 1l a(x + DA*
x=0

or equivalently as

Z{Z[k—l— k+2]qa(k+2)a(x—k)}

x=0 ( £=0

=Y {Z[k + 1lglx — & +1]; a(k 4+ Da(x — k + 1)}Ax

x=0 ( £=0
Hence,
S [k + [k + 214 alk + 2)alx — k)
k=0

= Z[k +1lylx —k + 1]y alk + Dalx —k +1), (3.4.3)
k=0
forx =0,1,.... Setting x = 0, it follows that

[2],! a(2)a(0) = [a(1)]*.
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Itis easy toseethatifa(0) = 0, thena(1l) = 0 and, using (3.4.3),
it follows that a(x) = 0 for all x = 0, 1, ... , which is a contra-
diction to the assumption that X, obeys a power series distri-
bution. Thus, a(0) # 0, and without any loss of generality we
may assume that a(0) = 1. Therefore,

a(2) = a?/[2],!,

where a = a(1) > 0. Further, setting x = 1 it follows that
[2]4! a(2)a(1) + [3],! a(3)a(0) = 2[2],! a(2)a(1)

and
a(3) = a®/[3],!

Suppose that
ak) =d"/Ik],!, k=0,1,...,x41.
Then
[x + 14 [x + 214 alx + 2)a(0)
x—1
+ > [k + 14k + 2], alk + 2)a(x — k)
k=0
= [x + 1l4[1]l4 a(x + Da(1)
x—1
+ ) [k +1glx —k + 1], atk + Dalx —k + 1)
k=0
and since

Z[k-l— [k + 2], alk + 2)a(x — k)
x+2
Z o [klq!lx —k]q”
x—1
Z[k + Uglx —k + 1lgalk + Da(x —k + 1)

x+2
Z kgl — qu"
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it follows that

[x +2];a(x +2) =a-alx+1)
S0

a(x +2) = a*"2/[x + 21,.
Thus,

a(x) =a*/lxly!, x=0,1,....

Further, the series function, by (3.2.5), is given by

> N (70 _ 1
g = xzz%a(x)k = 3;) Tl = eqar) = E.an)

for0 <g <1,0 <ar < 1/(1 — q), so the random variable X
has an Euler distribution with probability mass function

)L X
Flx; ) = Eq(—ax)ﬂ, x=0,1,...,
[x]g!
with 0 < g < 1,0 < ar < 1/(1 — ¢g). Finally, according to
Example 3.3.4, the g-factorial moments of the Euler distribu-
tion satisfy relation (3.4.2). =
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4.1 INTRODUCTION

Characterization of distributions through the properties of
conditional expectations of order statistics and record values
aroused interest of many authors. Let X1, Xo,..., X, ... be
a sequence of iid random variables with cdf F'. Denote X1.,,
Xou, ..., Xnn the order statistics of X1, Xo, ..., X,. Ferguson
(1967) considered the problem to determine all df’s for which
E{Xpimn| Xpnt=aXp,,+b (a.s.) when F is a continuous dis-
tribution function. This problem was developed by Nagaraja
(1988a,b) (who considered the discrete distributions also)
and by many authors including Beg and Kirmani (1974),
Dallas (1973), Wang and Srivastava (1980), and Beg and
Balasubramanian (1990). In more general form, the problem of
characterizing of distribution by the regression of order statis-
tics and record values has been considered by Wesolowski and
Ahsanullah (1997, 1998), Blazquez and Rebollo (1997), and
Dembinska and Wesolowski (2000). Beg and Balasubramanian
(1990) characterize the distributions for which the explicit form
of the distribution function is known, continuous, and strictly
increasing in its support (ax, bx) through the property,

1
E {ﬁ Zg(XLn) | Xs:n = x}

_ g +glax+)

9 , Vx € (ax, bx)

by a suitable choice of nonconstant continuous function g.
Balasubramanian and Dey (1997) have proved that if X is a
random variable with absolutely continuous cdf F, then

s—1 .
s { SN X} _ 28X, )e(Xen)

i1 ST 1 B 8( X, ) + 8(Xsn)
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if and only if g(x) = \/ #7574 x) +o- An application of this theorem,
for example, gives the following interesting characterization.
Distributions with cdf of the form F(x) = Ax* + B, which
include power function distributions, Pareto distribution, and
Rectangular distribution, are characterized by any one of the
following two conditions:

1 Rt | 2
E{ Z Xk/z |Xr:n, Xs:n} =

_ _ k/2 k2
s—r—1.47, X + X

B 1 i 1y x. |_ 1
rins sn - ~vbr , vh -
§—r _11 =r+1 Xlziel Xr}‘en+X§n

Recently Bairamov and Apaydin (2000) have prove that
if h(x) is a differentiable real valued function, such that for all

x €(0,1)
h(1) — h

R (x )7&7( )=o),
then X has the distribution function F if and only if the
representation

1 - h(1) — h(F (y))
E Xi:n) Xr:n= =
{n_ri:rzig( | y} 1-F(y)

holds for all ax < y < bx, where g(x) = h/(F (x)).

In this paper we extend this result and give characteri-
zations for continuous distributions using expectations of left
and right censored samples.

4.2 CHARACTERIZATION USING LEFT
AND RIGHT TRUNCATION

Let X be a continuous random variable with the distribu-
tion function F. We denote by F ~X(y) = inf{x : F(x) >y},
0 < y < 1, the inverse distribution function and by ax =
inf{x: F(x) > 0} and by = inf{x : F (x) < 1} the endpoints of
support of X.
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THEOREM 4.2.1 Let h(x) be a continuous real valued function
such that h(x) < oo and the condition

H(y) + h(y) — it(x)

is valid for all 0 < x < y < 1. Then a continuous random
variable X has distribution function G if and only if the repre-
sentation

MG(y)) — h(G(x))

E{R(GX) | v <X sy}=""r00— 5

(4.2.1)

isvalid for all ax < x <y < byx.

PROOF. It is clear that (4.2.1) is equivalent to

E{H(GX)) |x < GX) <y} = w

for all 0 < x < y < 1. To prove necessity, let X have df G(x).
Denote G'(x) = g(x). Then

E{R(GX) |x<X <y)= / H(G(2))g(2) dz

G(y) — G( )

_ WG(y)) — h(G(x))
Gy -Gl

Sufficiency. Let (4.2.1) hold. Denote by F(x) and f(x) the df
and pdf of X, respectively. Then one has from (4.2.1)

_ MG(y)) = h(G(x)
G(y) — G(x)

or

MG(y)) — h(G(x))
G(y) — G(x)

/ "HG@) @) dz = [F(y) — Fx)].

(4.2.2)
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Differentiating (4.2.2) with respect to y, we have

H(Gy) f(y)

{FWIG(y) — G)] —g(y) [F(y) — F(x)]}
[R(G(y)) — h(G(x))]

[G(y) — G(x)]?
F(y)— F(x)
[G(y) — G(x)]
 FO) G — G (G()) — H(G(x))]
- [G(y) — G(x)]2
g [F(y) — F(0)] [MG(y) — H(G(x))]
- [G(y) — G2

H(G(y))g(y)

Fy) - F),,
Gly) — Gy M (GD8W).
Hence,
H(Gy) f () = TG ~ HG0)]

G(y) — G(x)

8 [F(y) — F )] [MG() — G&))]

[G(y) — G(x)]?
F@)-F
G(y) — G(x)

Dividing (4.2.3) by F (y) — F' (x), we have

K (G(y))

() f(y) MG(y)) — h(G(x))

Fy)—F&x) Fy-Fx G —Gx)
8 [MG() — HG(x))]
[G(y) — G(x)]?

R (G(y))g(y)
G(y) - G(x)
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From (4.2.4),
' () g(y)
R (G) {F(y) “Fx Gy -G
= [(G(y)) — MG(x))]
y [ fy) &y 1
[F(y) — F][G(y) —Gx)]  [G(y) — G|
(4.2.5)

From (4.2.5) we have
, 1
MG ) ZF @ 160 = Gl
x {f(y) [G(y) — G(x)] — g(y) [F (y) — F (x)]}
B hG(y)) — h(G(x))
 [F(y) - F@)]IG(y) — Gx)1?
x [ [Gy) — Gx)] — gy [F(y) — F(@)]]

and

{(f(»[G(y) — G(x)] — g(y) [F (y) — F (x)]}

/ B MG(y)) — h(G(x))} _
y {h(G(y)) G =
Therefore,
f(y) g(y)

= V .
Fiy)—Fx) Gy -G ~ Y

Taking x = bx, we have % = % for all ax < y < bx. The
theorem is thus proved. =

LEMMA 4.2.1 Let X1, Xo, ..., X, be a sample of size n from a
population with distribution function F. Then for1 <r <s <
n, the conditional joint pdf of X, (1., Xr 12, - - - » Xs:n With the
condition that X,., = x and X,., = y coincide with the joint
pdfoforder statistics Yl:sfrfl = Y2:sfr71 =...= strfl:sfrfl
constructed from the sample Y1,Yo,...,Ys_ . _10fsizes—r —1
obtained from restricted random variableY =X |x < X <y.
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THEOREM 4.2.2 Under conditions of Theorem 4.2.1, X has dis-
tribution function G(x) if and only if the representation

1 s—1
E{m ; Z 8(Xin) | Xrin =%, Xsn :y}

i=r+1
_ WG()) — h(G(x))
-~ G -G

holds for all ax < x <y < bx, where g(x) = h'(G(x)).

PROOF. In fact, using Lemma 4.2.1 we have

1 s—1
E{m . Z g(in) | Xr:n =X, Xs:n :y}

i=r+1
1 s—1
- 71 Z E {g(XLn) | Xr:n =X, Xs:n = y}
S—r — imr 1
1 s—r—1
= E Y —r—
s—r—1 ; {g( s 1)}
1 s—r—1
o ; {g(Y))

=E{g¥Y)}=E{gX)|x <X <y}.
The proof is completed by using Theorem 4.2.1. =

4.3 CHARACTERIZATIONS FOR SOME
IMPORTANT DISTRIBUTIONS

1. Uniform distribution

(a) The continuous random variable X has uniform dis-
tribution over (0, 1) if and only if the representation

YL ket

(B + Dy —x)
holds for all 0 < x < y < 1 and some integer k.

EXF|x<X<y}=
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(b) The continuous random variable X has uniform dis-
tribution over (0, 1) if and only if the representation

1
E{S—r—ll;rlX IXr:nzx,Xs:n=y}

k+1 k+1

_ Yy X
T (E+D(y—x)
holds forall 0 < x <y < 1.

These results are obtained frogn Theorems 4.2.1 and 4.2.2
by using target function A(x) = k>1.

- k+1 ’
2. Weibull distribution
(a) The continuous random variable X has Weibull dis-

tribution F(x) = 1 — exp(—ax?), x >0, ¢ > 0, 8 > 0,
if and only if the representation

B _ 4B
EXflx<X<y) = S

exp(—ax?) — exp(ax?)
holds forall 0 < x <y < o0.

(b) The continuous random variable X has Weibull dis-
tribution F(x) = 1 — exp(—ax?), x >0, « > 0, g > 0,
if and only if the representation

1 s—1
El Y N XX —x X =
{s_r_lz;q Pl Xrm =2, X y}

¥ — b

- exp(—ax?f) — exp(—ax?)
holds for all 0 < x < ¥ < oo, where X;., is the order
statistic of the sample of size n from X.

These results are obtained from Theorems 4.2.1 and 4.2.2
by using the target function A(x) = (1 — x) (In(1 —x) — 1 + x)
which has derivative A'(x) = — In(1 — x).
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5.1 INTRODUCTION

Characterizations of the exponential distributions based on
order statistics and record values have been considered ex-
tensively in the literature. For surveys we refer to Azlarov
and Volodin (1986), Arnold and Balakrishnan (1989), Arnold
and Huang (1995), and Chapters 8 to 10 in Balakrishnan and
Rao (1998). Here, we present a characterization based on con-
ditional expectations of generalized order statistics. Namely, a
constant conditional expectation

E (Xir—i-l—&-v) i Xir+v)|X>(kv)) -b pF ae.

for generalized order statistics XV, ..., X\ based on an ab-
solutely continuous F' implies that F' is exponential.

Uniform generalized order statistics U, ..., U™ based
on parameters y1, ..., ¥, > 0 are introduced via the joint den-
sity function

PO )
n n—1
= IIv | | [TA=wp™ | A -uym?t,
j=1 j=1

O<ur<---<u,<1

withneN,n>2andm; =y; —yjq1—-1,1<j <n-1
[cf. Kamps (1995a,b)]. Using the quantile function F ~! of a dis-

tribution function F, generalized order statistics X(V, ..., X
based on F and parameters yq,...,y, > 0 are defined via

XV) = F-Y(UVY)), 1 < j < n. In the following, particular
generalized order statistics withm; =m e R, 1 <j <n-1,
ie,yj=k+(n—-j)m+1)>0,1<j <n,(y, =k) are called
m-generalized order statistics.
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Choosing particular values for the parameters, well-
known models result, e.g., order statistics, record values, and
progressively type II censored order statistics [cf. Cramer
and Kamps (2001)]. It has been shown in Cramer (2002) and
Cramer and Kamps (2003) that the set-up of generalized or-
der statistics leads to a unified distribution theory for all these
models. Characterizations of distributions based on general-
ized order statistics are presented in, e.g., Ahsanullah (1995),
Kamps (1995a, 1996), Kamps and Gather (1997), Ahsanullah
and Nevzorov (2001), Kamps and Keseling (2002), and Cramer
et al. (2003a,b). In particular, Cramer et al. (2003a) establish
a general result that characterizes generalized Pareto distri-
butions by the linearity of regression. In particular, this type
of characterization has been considered for order statistics
by, e.g., Ferguson (1967), Pudeg (1991), Franco and Ruiz
(1995, 1996), Lopez Blazquez and Moreno Rebollo (1997), and
Dembinska and Wesolowski (1998); for record values by
Nagaraja (1977, 1988), Grudzien and Szynal (1985), and
Dembinska and Wesolowski (2000), and for m-generalized or-
der statistics by Keseling (1999a,b). Many of these results can
be seen as a particular case of the following theorem [cf. Cramer
et al. (2003a)].

THEOREM 5.1.1 Let 1<r <n—1,1<l<n-r,and X'V, ...,
X"V be generalized order statistics based on a continuous dis-
tribution function F and parameters y1, ..., yn.

If constants a > 0 and b € R exist such that

EXU)XD =x)=ax+b PF ae.

then F is the distribution function of a generalized Pareto dis-
tribution. Thus, up to an affine transformation of the argument,
it is given by one of the following distribution functions.

1. Ifa=1,then
F(x)=1-exp(—x), x>0.

2. If0<a <1, then
F(x)=1-(—x)?, xel[-1,0].
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3. If1 <a, then
F(x) = 1—x9, x € [1, 00).

The parameter 0 is given by 6 = —% where n is the unique
solution of the polynomial equation
r+l r—+l
a [[ wi—-m= I v, ne(—oco,min{y,i1,..., 1}
j=r+1 j=r+1

For a = 1, Theorem 5.1.1 yields a characterization of the
exponential distribution which can be reformulated as

EXUH _xMxW =y=p PF ae. (5.1.1)

Hence, the conditional expectation of the spacing X"+ — X
given X is constant. In this paper, we extend this result in
Theorem 5.3.1 to the conditional expectation of X7 +) — x()
given X® with s < r.

5.2 PRELIMINARIES

The proof of the main result in Theorem 5.3.1 is based on the
distribution theory for generalized order statistics presented
in Cramer (2002) and Cramer and Kamps (2003). In particular,

generalized order statistics X(V, ..., X" are distributed as
n
F'1-By,....,F'|1-][B;],
j=1
where B, ..., B, are independent, power-function-distributed

random variables with distribution function FBi(¢) = ¢%i, ¢t €
[0,1], 1 < j < n. This expression yields, for instance, that the
distribution function of a generalized order statistic X\ has
the integral representation

r 1-F(t) .0
F*,r(t)zl_ HVJ /0 Gr,r [x|J/1,~--,Vr]dX,
j=1
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where

G lklys,..., 1= G2 {x o 7 eeo,
denotes a particular Meijer’s G-function [for details on Meijer’s
G-functions see Mathai (1993)]. Given that F' is continuous, it
is shown in Lemma 3.1.9 of Cramer (2002) that P¥ and P X
are equivalent measures such that PX " hasa Radon-Nikodym
derivative w.r.t. PF | i.e.,

dPX(r) ro
ae,teR (5.2.1)

[cf. Keseling (1999a) for m-generalized order statistics]. In par-
ticular, a conditional PF-density function of X' *) given
X" =x,1 > 1, can be written as

r+l
X+ x® . 1
f (t]x) = ( 11 )/u) 1Fw

v=r+1

1,0
11 (1 =Fe@®) |vrs1, - Vet Law(my(t),

x,t € R,
where w(F) = F ~1(1) and
F(t)—F (x)
F.(t) = {041_17@ ’ i z’; . x<aw(F). (5.2.2)
These expressions show that the measure pXITIXT=x can be

seen as the distribution of a generalized order statistic based
on the left truncated distribution function F', and parameters
Yri1, .-, Yra see Cramer et al. (2003a) for generalized order
statistics and Arnold et al. (1992, Theorem 2.4.1, p. 23) for
ordinary order statistics].

Meijer’s G-functions satisfy many important relations
[see Cramer (2002), Cramer and Kamps (2003), and Mathai
(1993)]. In the proof of Theorem 5.3.1, we make use of the fol-
lowing two identities.
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LEMMA 5.2.1 Letr > 2and z € (0, 1].
Then,

. d
(i) d—GrS zly1, .., ]
z

1 ,0
= (=D Gy, ]
z

-1,0
- :—1,r—1 [Zb/l, R ),

. ,0 ,O
(i) 2¢ G:,r Zly, ...l = G:,r zlyi+a,...,v +al,
acR

5.3 CHARACTERIZATION RESULT

As mentioned above, the characterization of the exponential
distribution given in Theorem 5.1.1 can be rewritten as in
(5.1.1) with some constant b > 0. This observation leads us
to a characterization of the exponential distribution in terms
of more general regressions. Namely, the exponential distribu-
tion is characterized by the equation

E (Xir+l+v) _ Xir+v)|XiU) - ) =) PF a.e.

for some r,, v. The following characterization result extends
Theorem 3.8 of Keseling (1999a) which is restricted to the case
of different parameters of the generalized order statistics. A
similar result for record values was given by Huang and Li
(1993).

THEOREM 5.3.1 Let XV, ..., X' be generalized order statis-
tics based on an absolutely continuous distribution function
F with density function f and parameters y1, ..., vy Suppose

that for numbers r,l,v € Nwith r +1 + v < n the expectation
E| X'+ s finite.
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If a constant b > 0 exists such that
(r+l+v) r+v) ) _ ) _ F
E (XU - xr X0 =) =b P ae.

then
(1) forany j €{1,...,r}, the following relation holds:

E (Xir+l+v) _ Xir+v)|XiV+j) — ) =b PF qe.

(it) F is the distribution function of a two-parameter ex-
ponential distribution.

PROOF. In the case j = r in (i), we can apply Theorem 5.1.1

yielding (ii).
In order to prove (i), we establish the result first for
Jj =1

Let o(F) = F1(0+), o(F) = F~1(1). For x € (a(F),
w(F)), let ZU+) Z") be generalized order statistics based on
F. and parameters y,.1, ..., ¥r+14v and y,11, ..., ¥r+v, FE€SpEC-
tively [cf. (5.2.2)]. The density function of F, is denoted by
fr = f/(1 — F(x)). Using the random variables ZU'+) Z(")
the conditional expectation can be written as [cf. Cramer et al.
(2003a)]

b= E(X(r+l+v) _ X(r+v)|X(v) — x)
* £ *
=EZUt - z0) PF ae. (5.3.1)

Since the joint P¥ ® P-density of X) and X"+ is given by

r+l
X xr+D 1
kL% t — v
f (x,¢) (U|:|1 Y ) 1-F

« GL° [1—F(t) |
1l 71—F(x) Vr+ls o5 Vr+l

xG L 1-F@h,...,w], (532
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where a(F) < x <t < w(F), the joint density (w.r.t. A2) of Zg(c’")
and ZU* is given by

fZ,(c”,Za(f”) (2,1)
r+i+v 1
= ) fx(2) () ————
j:1:[+1yJ R 1 - F.(2)
< 1,0 l:l_Fx(t)’
L1 _F.(2) F.(2) Vrtvtls -5 Vr+v+l

r,0
x Gr,r [1 - FX(Z) |yl+w SR yr+v]
r-ﬁH) 1
= Vi | (@ falt) "=
1= F.G)
1,0
X 3y [1_Fz(t)|Vr+v+1a---,yr+v+l}

,0
X G:r [1— Fy(2) [Vigvs - o> Vrtv]-
Hence, a A!-density of W, = ZJ([”) - Z;C’) is specified by

a P " Jisoor 1= Fal2)
1,0
X Ll [1_F2(Z+t)|Vr+v+1,--->)/r+v+l]
r,0
X Gr,r [1_Fx(z){yl+w--->yr+v]

x felz+t) fe(z)drMz), t=>0.

Considering the expectation EW, = [¢f"=(¢)dA(¢), and the
definition of f,, and applying Fubini’s theorem, we obtain the
equation

r+l+v 1
Il %)%

Jj=v+1
,0
x/( )G:,r (1= F(2) Y140 o Vet ]
x,00

x f(2)g(2)d ' (z)=b PF ae, (5.3.3)
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where

1,0
gz) = / t Gy (1= F(z+8) [Vrivits - Vrtvi]
(0,00)

s

x fo(z +t) dAre).

Let N be the set of values such that (5.3.3) does not hold. Thus,
PF(N) = 0. Since both sides of the equation are continuous in
x, the equality can be extended to any limit point of N. If N N
(a(F'), w(F)) has an inner point xy, then ¢ > 0 and a constant
¢ € R exist with

EW,=c¢ forallx ec(xyg—e¢,x90+5) CN.

Choosing ¢ maximal in the sense that x; = xg — ¢ € N€ or
X9 = %o +¢ € N¢ and (x1,x9) € N, we find EW,, = b or
EW,, = b, respectively. Since the integral on the left-hand
side of (5.3.3) is continuous in x, this yields ¢ = 6. Hence, the
equation holds for any x € (a(F'), o(F)).

Now, we multiply both sides of (5.3.3) by (1 — F (x))"+ and
differentiate them w.r.t. x. The result on the right-hand side is
given by by, 1 f(x)(1—F (x))+171 A1 a.e. The derivative of the
left-hand side equals

r+l+v
I v ) |a-Feoy
Jj=v+1
x G::S [1 - Fx(x) ’VlJrv» ey yr—i-v} f(X)g(.')C)
_/ i{(l — F(x)r1

(

x,00) dx
%G (1= Fo@ |yins - o]} (220NN
Since 1 — Fy(x) =1 and G:f [1]%+1, -5 ¥r4v] = 0, the first

term cancels out. The derivative of the term {. ..} is calculated
as follows. The factor (1 — F (x))"+1~1 can be written as

(1— F(@)"17" = (1= Fo(2) (1 = F ()71,
(56.3.4)
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Using Lemma 5.2.1 (ii), this leads to
_ r,0
(1 - Fo@) G (1= Fe(@) [Vigus - Vrao ]
r,0
= Gr,r [1 - Fx(z) |1, Y24y — Vit + 1, s Vet — Vi 1] .

Differentiating this expression w.r.t x and applying Lemma
5.2.1 (ii) in the reverse direction, this yields by Lemma 5.2.1 (i)
the expression

d r,0
a Gryr [1 - Fx(z) |1, Y24+v — Vi4v + 1, s Vr4v — Vit + 1]

_ 1 fx)(1—F(2)
1-Fu(2) (1-F(x))?

~1,0
11 1= Fx(@ |y240 — v1v + 1,

s Vet — Vi 1]

fx)

— _ 1-y41
= 1—F(x)(1 F.(2)

-1,0
x Gy 1 (1= Fa@ |yagus oo v ] -

Hence, we obtain the equation

by,i1f(x)(1 — F(x))r1

r+l+v
= . & — 1=y
_ ( 11 yj) [ )

J=v+1

-1,0
x Gy 1 [1=Fu@ |yors - Vet

x (1= F )7 f(2)g(z)dA N z)
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valid A1 a.e. on (a(F), w(F)). Simplifying the right-hand side
according to (5.3.4) leads to

r+i+v
I v | F@ = F (x))re12

Jj=v+1

-1,0
X [ ) :_1’,-_1 [1—Fx(2)|)/2+v7~--,)’r+V}
x,00

x f(2)g(z)dA1(z).

Dividing both sides of the resulting equation by y, 1 f(x)(1 —
F (x))7+171 yields the equation

r+l+v 1
=1L ) i Fw

J=v+2
r—1,0
X /( ) r—1,r-1 [1_Fx(2)|y2+v;---,)/r+v}
x,00

x f(2)g(2)dr l(z) PF ae.

However, this is equation (5.3.3) with v + 1 and r — 1 in-
stead of v and r, respectively. The parameters of the respective
generalized order statistics are y,,9, ..., ¥»4/1,. Repeating the
calculations to obtain (5.3.3) backwards, we arrive at (5.3.1):

b— E(Xir+l+v) _ kar+v)|X>(kv+1) — x) PF a.e.,

where the generalized order statistics are based on F' and pa-
rameters y,.9,..., ¥111. Note that the conditional expecta-
tion is independent of the first v+1 parameters. This proves (i),
for j = 1. Using an induction argument, we obtain the result
for any j € {1,...,r} and, hence, the assertion. =
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ABSTRACT

We consider some characterizations of the exponential dis-
tribution via the independence property of spacings of Type-II
progressively censored order statistics. We also give charac-
terizations of the class via regression properties of these order
statistics.

KEYWORDS AND PHRASES: Characterizations, exponential
distribution, order statistics, Type-II progressively censored
order statistics

6.1 INTRODUCTION

Let X4, ..., X, beindependent and identically distributed ran-
dom variables having a distribution function F'; let X(1)<...<
X(n be the corresponding order statistics and Aq,..., A, be
the spacings. Suppose also that Rq,..., R, are some fixed
non-negative integers such that >°;" ; R; =n—m. Consider the
Type-II progressively censored order statistics X}, <...<Xf,,
generated in the following manner. Let X}, =X(3). After that,
we remove randomly R; elements from X (9), ..., X(,. Denote

the order statistics among those left by X g)), X 2 and

(n—ay)

let X5 =X (%) . Now we remove R3 elements from Xg)) e

X glal) randomly and continue the process by taking X ;) =X Ell))
for i =2,3,...,m and removing R; elements from those left
at X(;), where o; =i+ R1+---+R; (with ap = 0). As was ob-
served by Balakrishnan and Aggarwala (2000) and Kamps
(1995), the distribution of X7,), ..., X{;,, has some remarkable
properties which are similar to the properties of the usual
order statistics. It is easy to see that X{;) = X;) for all i =
1,...,k+1 under the condition R1=...= R, =0,k <m<n,
and under the condition 2 = m = n we obtain the usual or-
der statistics. On the other hand, in the case when R;=...=
Rp, =R, k <l and Rl = n, there exists the following repre-
sentation of the distribution of the vector Xf,),..., X7;,. Let

Y = min{X;,j=G-1(R+D+1,...,i(R+D}, i =1,...,1,
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and Y(y), ..., Y be the corresponding order statistics. Then
by the exchangeability of the initial random variables, we can
conclude that

d * *
Y, Ya) = (X X))

Introduce also the corresponding spacings A7 = X7, and
Af =X —X(_1),1=2,...,m. We consider here generaliza-
tions of some characterizations of exponential distribution via
independence and linear regression properties of spacings and
order statistics. The characterization of exponential distribu-
tion when n=2 by independence property of spacing As and the
minimum X 1) was given by Fisz (1958). Rogers (1959) proved
that if X4, ..., X, are i.i.d. random variables, then the inde-
pendence of the order statistic X(;) on some random variable
o Xy, .-, X)), h<k,implies the independence X ;) with this
random variable. Rossberg (1972) proved that, under some ad-
ditional restrictions on the distribution function F, an analo-
gous property holds if one changes X ) by A(z). Rossberg (1972)
also gave the characterization of the exponential distribution
via independence property of X(z) and some linear combination
of spacings cp 1A 1+ +cnAn =8 X))+ - -+ 82X (), where
s; + -+ -+ 8, =0. Some characterizations of the exponential dis-
tribution via conditional expectation of spacing (conditioned
on the nearest order statistic) were given by Rogers (1963),
Beg and Kirmani (1989), and Rao and Shanbhag (1994).

6.2 THE CHARACTERIZATIONS

To begin with, we formulate some results which we will use to
modify the above-mentioned characterization theorems. The
central part of this process is the Markovian property of the
sequence X9, ..., X{;,) and the following representations [see,
for example, Balakrishnan and Aggarwala (2000)].

REPRESENTATION 6.2.1 Let (X(y), ..., X{,,)) be Type-II progres-
sively censored order statistics, and k <m. Then the conditional
distribution of Type-II progressively censored order statistics
szkjtl)’ ooy Xy, Slven X(*'l), - » X{y), coincides wi‘th 'the dz:sz?ri-
bution of Type-II progressively censored order statistics arising
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100 Balakrishnan and Malov

from a sample of size B, =n—op with Ri(k) =Ry, 1=1,...,

m—k, from the left-truncated distribution with cdf G)(x) =
F(x)

lfF(X(*k)) I[{sz(*k)}'

R.EPRESENTATION 6.2.2 Ifet.(X(*l), cey szm)) be Type-1I progres-

sively censored order statistics from a sample from the standard

exponential distribution. Then the corresponding spacings

A}, ..., A}, are independent random variables having distri-
bution functions FA;«(x) ={1—exp(—Bi_12)} Lj5-0).

To improve the results of Rogers (1959) and Rossberg
(1972), we use the following simple lemma, which is, in fact, a
version of the well-known theorem of Basu (1955).

LEMMA 6.2.1 Let &4, ..., &, be random variables satisfying the
Markovian property. Suppose for 1 <h <k <l <n and for any
real-valued function g €N, the condition

Elg(&)|o(&1, ..., E)=s]=0 forany s a.s. implies that
8(&)=0 a.s. (6.2.1)

Then for any function f such that g(&,) =E[f (&, ..., E)|EL] —
Ef(&,...,&) isin RN a.s and E[f(&,...,&)|pE, ..., )] is

non-random, the random variable E[f (&, . .., &,)|&,] must also
be non-random.

PROOF. By the Markovian property, under the assumptions of
the lemma, we have

Elf(&, ..., e)l¢G, ..., )] —ELf (&, ..., &)
= [Elf . ele =2 01, .., 0]
xFg 0(dx)—E f(&,...,&)
= [Elf &, ... 6016 =x1-Elf (&, ..., &)
x Fe, 5(dx) =O0.
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Therefore, by Condition (6.2.1), we obtain
E[f(é,-:b ) 5n)|§k] = E[f(%—l’ ey gn)] a.s.

Hence, the lemma is proved. =

The following lemma is an improvement of the result of
Rogers (1959).

LEMMA 6.2.2 Let X4, ...,X,, be i.i.d. random variables and
Ry,...,R, > 0 be some non-negative integers such that
n—m = Y"1 R;. Then for any 1 < h < k < m, the condi-
tion E[f(Z)|X{;)] =c=constant, where Z = ¢(X7,, ..., X(,),
implies that E[f(2)|X(,) 1= Elf(2)| X, ..., Xl =c.

PROOF. Rogers (1959) has proved that Condition (6.2.1) holds
for the usual order statistics, where % is a class of bounded
measurable functions. We use similar arguments for the case
of Type-II progressively censored order statistics and all mea-
surable d F #t-integrable functions g, where F(x) = 1— F(x).
The case h==F is trivial. For A <k using the Markovian prop-
erty of order statistics, we can write for any g that

—1 00 _
E[g(XEkh+1))|th>=x]=FTm/x g(w)F P (du)=0.

Introduce the sets B,.1)={x : g(x) >0} and B_={x : g(x) <0}.
Represent the integral as the difference of two singular mea-
sures

/ " g F P (dx) = s ((x, 00))— 1 ((x, 00)),

where 11+(A) = [,~p, gw)F P (du) for any Borel set A. Hence,
the measures p, and u_ coincide on any semi-interval (x, co).
Therefore, 1, (A) = u_(A) for any Borel set A. Now the con-
dition that they are singular leads to u,(A) = u_(A) =0 for
any Borel set A. Taking account of the equivalence of the mea-
sure generated by X7, ;) and the measure under the integral
yields that g(X{;, ;) =0 a.s. Using the same operation for A=
h+1, ..., k-1, one obtains Condition (6.2.1) for any measurable
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integrable function g. Now we choose
gX4) =E[f(D1X{))-E[f(2)].

The statement follows directly from Lemma 6.2.1. =

REMARK 6.2.1 The property that the independence of Z and
X () implies the independence of Z and X}, and also with the
vector X, ..., X(},) follows immediately from the lemma. For
this situation, a similar result was given independently for
generalized order statistics by Keseling and Kamps (2002).

To obtain a similar result with the corresponding spac-
ings instead of the usual order statistics, Rossberg (1972) used
integrated-type properties that if g(x) = P(Z < y| X =x) —
P(Z <y), then the condition

/OO /j>o g(u)FX(h)‘A(h)(duls) dFAh(S)

- / / g(W)F 5,x,, (ds|u)Fx,, (du) =0,

or (equivalently)

/_ " g()P(Ay > x| Xy =5) dFx,, (s)=0, 6.2.2)

for dF 5,-almost all x, implies that g(X)) =0 a.s. In general,
this is not true. For example, under the condition F' (x) =exp
()M <o+, >0), therandom variables X ) and Ay, are indepen-
dent. Thus, we can take any function g such that E[ g (X 1))] =0.
Rossberg used the condition that xy = inf{x : F (x) > 0} >—00
and the Laplace transform is non-zero for allze E =E_ UD,
where E, ={xcC : Re(x) >0}, D={xeC : Re(x)=0}.

LEMMA 6.2.3 Let F be a distribution function such that xo =
inf{x : F(x)>0}=0 and the Laplace transform is non-zero for
allze E=E UD, and R be some function of bounded variation
such that R(x)=0 for all x <0. Then the condition

/OOF(x—t)dR(x)zo, forany t>0
0

implies that R(x)=0 for almost all x> 0.
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We now formulate the following lemma in the case of
Type-II progressively censored order statistics.

LEMMA 6.2.4 Let X1, ..., X, bei.i.d. random variables having
a distribution function F and xy = inf{x : F'(x) > 0} > —oc.
Further, suppose the Laplace transform

FH(z)=— / e = dF 1(x + xo)
0

has no zeroes in E, where

Fh<t>_2“‘z L(1-F @)y,
i=1

and y;,1 =n—m—Br_1+ Bi—1+1. Suppose also Xfl)(h), el
X{m(h) are generalized Type-II progressively censored order
statistics from the sample X, 11, ..., Xy, with Rpyq, ..., Ryand

Then for any k and h such that 1 < h < k < m, the condi-
tion E[f(Z)|X{;)] = ¢ =constant implies that E[f(Z)|X{,)] =
E[f(Z)lX(D,... Xiol=c.

PROOF. Without loss of any generality, let us assume that
x9=0. Note that

P(A} > vlX{,) =x)
ﬁh_]_ {1 _F(x)}ﬂh,l—l Z}Vl—l ai,h—].

=1 yih-1
h —
(n—m+By-1) Zi:l ai,h{l—F(x)}n_m'*‘ﬂzq 1

{1-(1-F(x—v))"1}

for all v>0, and

P(X{) <x)=1-Ch- 1Z—+5{1 F ()t
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where Cj_1 :Hf:ol(n—m—l— Bi); see Balakrishnan, Cramer, and
Kamps (2001). Then, after substituting in (6.2.2), we obtain

i=1 Yi,h—1

for all v > 0, where R(x) =Cj_o {1—(1—F (x))P»1} is the con-
tinuous non-decreasing function such that the finite measure

generated by R on line is equivalent to the measure generated
by F. We choose

gx) = El[f(2)| X, =x]-E[f(2)].
Then the condition

’/w /OO Elf(2)\X},=ulF s; x5, (ds|u)Fx: (du)

)
= [E[f(Z2)T{a;-n]]
<E|f(Z)| <00

for all x > 0 and the condition (6.2.3)
Ell f(2)]1X{,=0l
=E |f(¢>(XE“k_ah)(h), el XE“n_ah)(h)))| <00

leads to the bounded variation condition for [y g(u) R(du).
Therefore, by Lemma 6.2.3 we can conclude that g(X{;) =0
a.s. Then the result follows readily from Lemma 6.2.2. u

The next lemma is a modification of the characterization
theorem of Rossberg (1972). A similar characterization has
been given independently for any generalized order statistics
in the Ph.D. thesis of Claudia Keseling (1999).

LEMMA 6.2.5 Let X1, ..., X, bei.i.d. random variables having
a continuous distribution function F. Then F (x)=F *(ax+b),
x € R, for some a,b € R, where F* is the standard exponen-
tial distribution function, iff X{;,, is independent of some linear
combination le:k sjX{j), such that le:k sj =0, s #0 and
520, k<l<m.
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SKETCH OF PROOF. Using Representation 6.2.2 and continu-
ity of the distribution function F', we can write [following
Rossberg (1972)] that

E explz{s; G(y) + s 41G(y + 8p41) + - -
+5G(y+8p41... + )}

=c,,k/0 /O explz{sy G(9) + sp1G(y+up) + - - -
+5G(y+uy...+uj_p)}l

-k
X exp (—Z ﬁk+j_1uj) dui...duj_p

j=1
= K(z) = constant.

Let us introduce the following notations

ai(z,v) = exp{zsp+;G(v) —(rp4; + v},

0b;(z,
bi(z,y) = Bitr-1y +2d; G(y), bg(z,y)=4;§ y),
Pi(y,z) = bi(z,y), and

0
Pi(y,Z) = @Pi—l(yyz)_bg(za y)Pi—l(Z, y),

where d; = Z;zlskﬂ,l. By setting v; = y+u1+---+u;, the
previous equality can be rewritten in the form

o0

exp {b1(z, y)}/ dviai(z, Ul)---/ dvi_p-10--1(2, V_p_1)
y v

1—k—2

X /Oo duvi_p exp{—b_1(z,v1_1)} = K(2).

1-k—-1

Under the condition /—% =1, we can write it as

0
o

= CypelrteG0) [ gmaGo)-fiogy — K (),
y
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which leads to the equality
Cy 10~ AY — (B, 1 2G (y)}e 2+ GV AYK (2),
Taking account of the condition s; 1 =—s;, we obtain
{Br+2G'(y)}K(2)=P1(z,y) K(2)=Cy

for all y € R. Therefore, G'(y) =a =constant and G(y) =ay+b
for some a, b € R. Let us mention that the difference equation
used by Rossberg (1972)

a;(z, y) exp{b;(z, y)} =exp{b;j;+1(z, y)},

for i €N, is also valid. Thus, we can also use here the process
used by Rossberg (1972). =

We can also modify the characterization theorem for the
exponential distribution via some regression properties of or-
der statistics; see Rao and Shanbhag (1994).

LEMMA 6.2.6 Let X1, ..., X, bei.i.d. random variables having
a continuous distribution function F. Then F (x)=F *(ax+b),
x € R, for some a € R and some fixed b € R, iff for some non-

arithmetic (non-lattice) monotonic real function f, E[f(A})]
Xl =c for some fixed c # f(0+).

SKETCH OF PROOF. We can use the same arguments as in Rao
and Shanbhag (1994), changing i by «;. =

Using Lemmas 6.2.2 and 6.2.4-6.2.6, we obtain the fol-
lowing characterization theorems.

THEOREM 6.2.1 Let X4, ..., X, bei.i.d. random variables hav-
ing a continuous distribution function F, 1 <h<k <m. Then
the following conditions are equivalent:

(1) F(x)=F*(ax+b), xR, for some a,beR;
(ii) Xy, is independent of some non-trivial linear com-

bination
m—Fk m—k
. * _ . *
D cifi =2 8i X
Jj=1 Jj=0

with Z;”:_é” s;=0;
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(iii) The conditions of Lemma 6.2.4 hold and Af, is in-
dependent of some non-trivial linear combination

m—~k m—*k

. * _ . *
DI TED PEI. (S
i j=0

with 37 s; =0.

THEOREM 6.2.2 Let X4, ..., X, bei.i.d. random variables hav-
ing a continuous distribution function F and let f be a non-
arithmetic monotone real function; let ¢ be a constant such that
c # f(0), 1 <h <k <m. Then the following conditions are
equivalent:
(i) F(x)=F*ax+b), x R, for some a € R and a fixed
beR;
i) E[f(ADIX{l=c;
(iii) The conditions of Lemma 6.2.4 hold and E(f(A})|
Af)=c.

In the dependent case, the situation is more complicated.
As an example, we give the following characterization in the
class of mixed i.i.d. exponential distributions. Let (X1, X5)
have an exchangeable absolutely continuous distribution with
a density function

pla, y)= / 2(@)e O Q(dw) = Glx+y),
Q

where @ is some probability measure on (22, §). In this case
by the exchangeability property, the joint density of maximum
and minimum have the form

pX<2>,X<1)(x’ ¥)=2p(x, y) Ljx>y),

from which we obtain the following:
pAz,X(n(t’ y) =2p(t+y, y)]I{tEO},
Da,(x) = /Qa(w)e_“(w)xQ(dw)=H(x),

Pxy,(x) = /Q 20(w)e 24 Q(dp).
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The independence of X(9) — X (1) and X(;) then leads to the
equality

2/ aZ(w)eﬂx(w)(t+2y)Q(dw):2/ a(a))eia(w)tQ(da))
Q Q

x/a(w)e‘“(‘“)(zy)Q(dw),
Q
or

G(t+s)=H(t)H(s)

for all ¢, s > 0. This equality characterizes the exponential func-
tion with a constant, i.e., H(x) =ae®*. For continuous H we can
write G(¢)=H (t)H(0). This leads to the well-known equality

R(t+s)=R(t)R(s),

where R(t)=H (t)/H(0), which characterizes the exponential
function. In our situation, H(#) must be a density function.
Therefore, H(t) =ae™* for all ¢ > 0, which yields the following
characterization result.

THEOREM 6.2.3 Let (X1, X2) have an exchangeable absolutely
continuous distribution with a joint density function

p(x,y)=/ a?(w)e ) Q(dw),
Q

where @ is some probability measure on (2, §). Then X (1) and
X9)—X (1) are independent iff p(x, y)=aze*“(x+y)]I{x20, y=oy for
some a >0, i.e., X1 and X9 are independent random variables.
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ABSTRACT

Let X1, X5, ..., X, be independent and identically distributed
random variables with a common distribution function F'. Let
X1, < X9, <...< X,,denote the order statistics constructed
from X1, Xo,...,X,. The regression of order statistics, i.e.,
EXpymn | Xpn = %) = Y (), B > 2, m + k < n, is con-
sidered. An inverse formula expressing F' through Wy ,,.,(x)

111
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and ¥}, ,,_1.,—1(x) is given. Specifically, it is shown that knowl-
edge of W, .,(x) and W, _1 ;p:p—1(x), for somen>m+k, k> 1,
m > 1, amounts to knowing the distribution F'. Similarly, the
regression of record values is also considered, and a parallel
result is established.

KEYWORDS AND PHRASES: Order statistics, record values, re-
gression, characterization of distributions

7.1 INTRODUCTION

Let X1, X9, ..., X, be independent and identically distributed
(i.i.d.) random variables with a common distribution function
(df) F.Let X1, < X9, <... < X,., denote the order statistics
constructed from X1, X, ..., X,,. With respect to the squared-
error loss, the best unbiased predictor for X,, .., given X3,
is E(Xikn | Xp). Ferguson (1967) was the first author to
consider the problem of determining all d.f’s. F' for which

E(Xk+m:n | an) = C'Xk;n +d a.s.

and provided a complete solution for m = 1. In general, the
problem can be stated as follows. Let

E(G(Xlzn, XZ:na ey Xnn) | an) = H(an) a.s., (7.1.1)

where G : R® — R and H : R — R are known functions and
k € {1,2,...,n} is fixed. The objective then is to find all d.f’s
F for which (7.1.1) holds.

Wesolowski and Ahsanullah (1997) noted that the gen-
eral solution of this problem is not known and listed several
papers which have dealt with special cases. In the paper of
Wesolowski and Ahsanullah (1997), the solution for the case of
absolutely continuous distributions withm = 2, H(x) = cx+d,
G(x1,x9, ...,%,) = xp191s given. The main result of their paper
may be expressed as follows. Let E (| X} 19.,|) < 0o. Ifthe regres-
sionof X3, 9., on X, islinear, i.e., E(Xp 9.4 | Xpn) = c Xpn+d,
then X has a Pareto distribution if ¢ > 1, a Power distribution
if ¢ < 1, and an exponential distribution if ¢ = 1.
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Blazquez and Rebollo (1997) obtained a solution for re-
gression X mpon Xz, 1 <k <k+m <n.LetDp ={x:0<
F(x) < 1}. Their result is as follows:

Let X be a r.v. with d.f. F' which is k& times differentiable
in Dp, such that

E(Xk-i-m:n | Xpn) = ,BXk:n + a.

Then, except for location and scale parameters,

F(x)=1-|x|°, forx e [-1,0], iif0<pB<1
=1—exp(—x), forxe[0,00], ifp=1
=1-—2x, forx e [1,00], ifp>1,

where § = (r —(n—m))~! and r is the unique real root greater
than m — 1 of the polynomial equation

Po(z) = %Pm(n b,

Pr(2)=2(z—-1)...(z—k +1).

Another interesting result is due to Dembinska and
Wesolowski (1998), who consider the linearity of regression
EXppn | Xpirm) = cXpyrm +d for some & < n—r and some
real ¢ and d in the case of continuous underlying distribu-
tion function. They prove that only three cases are possible:
the negative exponential distribution, negative Pareto distri-
bution, and negative Power distribution.

In this paper, however, we consider the general case for
kE>1m+k <n,and

E(Xpimn | Xpm =x) = \Ijk,m:n(x)- (7.1.2)

Assuming that X has an absolutely continuous d.f. F, we
obtain an inverse formula. Specifically, we show that knowl-
edge of W, ,.,(x) and ¥}, ,,_1.,—1(x), for some n, m, k such that
n>m+k,k>2m>1, whereV;, ,,_1.,-1(x) = E(Xp1m—1:n-1 |
X}p.n—1 = x) amounts to knowing the distribution F'.

Let [a, b] be the support of the X, —o0 < a < b < o0.
Then Theorem 7.2.1 shows that if X is an absolutely con-
tinuous r.v. with d.f. F, under an integrability assumption,
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for any x € (a, b)

P =F@expl—— [ Yimn) dt
o= @ exp n—k Ja Wk,m:n(t)_‘l’k,m—lzn—l(t) ’

where ¥ . (t) = %\Dk,m;n(t) and F(x) =1— F(x).
Theorem 7.2.2, a special case of Theorem 7.2.1, shows that
with ¢,(x) = E(X,., | X1., = x), we have

@ (t) }
dt ;.
o) — oma @) @

Fx) = F_'(a)eXp{_ni : /x

For a sequence ofi.i.d. r.v.s X1, Xo, ..., X,, with a common
continuous d.f. F, we define the record times of the sequence
as follows:

Uu =1,

Un)=min{i:i>Un-1,X;,>Xyn-n}, n=2,3,...

Let Xy, Xu@),--->, XU, - - - be corresponding record values.
For detailed reviews on record values and their applications,
one may refer to Nevzorov (1987); Nagaraja (1988); Arnold,
Balakrishnan, and Nagaraja (1992, 1998); Ahsanullah (1995);
and Nevzorov and Balakrishnan (1998).

Recently, Dembinska and Wesolowski (2000) considered
the problem of identifying all the distributions allowing lin-
earity of regressions either E(Xym+r) | Xum)) or E(Xum) |
XU(n+k))- Their result for E(Xyonir) | Xum)) is similar to
the result of Blazquez and Rebollo (1997) possessing exponen-
tial, Pareto, and Power distributions (up to location and scale
parameters) but obtained without some stringent smoothness
assumptions on the d.f. F. Note that all previous results cited
above were obtained by solving differential equations.
Dembinska and Wesolowski used an extended version of in-
tegrated Cauchy functional equations [see Rao and Shanbag
(1994)].

We consider the general case when E(Xym+r) | Xum)) 18
not necessarily linear. Let

Pn k(%) = E(Xvymir) | Xum = x).
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Then Theorem 7.3.1 establishes that

— 5 1 x (p;z,k(t)
F(x) = F(a)exp {_n— 7 /a or @ = o1 @ dt} .

7.2 REGRESSING ORDER STATISTICS

For the i.i.d. r.v’s X1, Xo, ..., X, with absolutely continuous
common d.f. F, consider (7.1.2)form +k <n

\Ijk,m:n(x) = E(Xk+m:n | Xk:n = x).
The probability density function of X}, is
fkn(x) =

n!
(B —DNn—-"Fk)
where f(x) = F'(x). The joint density function of X;., and

Xrim:n 1s [see Arnold, Balakrishnan, and Nagaraja (1992,
p. 16)]

P01 = F@y ™ f2), (7.2.1)

fk,k+m:n(x7 y)
n!
T k-Dim—Din—k—m)
X (F(y) = F)™ Ix (1= F@)" ™ fx) f(y), ifx<y
=0 otherwise. (7.2.2)
Using (7.2.1) and (7.2.2), we obtain

1 b
fk' (x)/x yfk,k+m:n(x,y) dy

(k= Dl —h)! 1
B n! FE=1(x){1 — F (x)}" % f(x)

n! b
x(k—l)!(m—l)!(n—k—m)!/x yF* (%)
x{F (y) — F(x)}y" {1 - F(y)}nfkfm £) £ () dy
b
J— m - _ me1
=mCy',, (F (o)t /x y{F (y) — F (x)}

x{1—F ) ™ f(y) dy, (7.2.3)

’Fk_l(x)

\I’k,m:n(x) =
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where, C]' = Similarly, we have

n!
m!l(n—m)!"
\pk,m—l'n—l(x)

— (m— 1L IW / YIF (y) — F ()2

x{1—F(y)Y"* ™ f(y)dy forallx e (a,b). (7.2.4)

THEOREM 7.2.1 Let X1, X5, ..., X, be i.i.d. rv.’s with an ab-
solutely continuous d.f. F. Let [a, b] be the support of the X,
—00 < a < b < 0. Then, under an integrability assumption,
forn>k+m,k >2,m>1,itistrue that for any x < (a, b)

F(x):F(a)exp{ 1 X lIJkrnn( ) }’

n—=k a II’kmn(t)_qjkm 1:n— l(t)
andform=1,n>k +1,

_ _ 1 oy (t)
F —F _ k:n
@ = F@exp{——— [" Xl ar},
where Wi, () = Wy, 1.,(2).
PROOF. Rewriting (7.2.3) as

b
Wp () (F ()" = mC™ / YIF (y) — F(x))m!

x{L—=F)y"*™f(y)dy (1.2.5)
and differentiating (7.2.5) with respect to x, we obtain
Wy menCOLF Y — (n = R)F ()71 £ () W pin(x)
= —m(m —1C™, f(x) / Y{F (y) — F ()2
{1 —F()Y""™ " f(y) dy — mC™ ,y{F (y) — F(x)}"
< (1= F V"™ F(9) lemy
= —m(m — DC™ , f(x) / YF (y) — F(x))™2

x{1 = F) ™" f(y) dy. (7.2.6)
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Consider now the right-hand side of (7.2.6). Noting first that

m(m — DC™, = (n—k)(m - 1DC™,
and then using (7.2.4) in (7.2.6), we get

W i COLF )} — (n — k)
U OY ™ F () W (0 F ()}
= —(n =RV m-1n 1(O{F @)Y f(x)

so that

fle) 1 W men(X)

F(x) n—kYepmn(x) — W m1m-1(x)

Integrating (7.2.7) in [a,t], we obtain the assertions of the
theorem. =u

(7.2.7)

The following theorem is a special case of Theorem 7.2.1.
THEOREM 7.2.2 Let

¢n(x) = E(Xyn | X1 = %),
Then, under the assumptions of Theorem 7.2.1, we have

N 1 x @, (t)
F(x)—F(a)exp{—n_l/a s dt}.

EXAMPLE 7.2.1 Let Vj, p.n(x) = art+ p1 and ‘yk,m—lzn—l(t) =
ast+ PBao, where o, B; (i = 1,2) are some constants. Let a =
a1 —ag and B = B1— Bo. Then by Theorem 7.2.1, we have

F(x):l—exp{—nik/xataj_ﬂdt}

RS

otx—}—ﬂ a(n—F)

=1- , a<x <09,
aa+ B

which is a translated Pareto distribution.

7.3 REGRESSING RECORD VALUES

Let X1, Xo,...,X,, ... be a sequence of i.i.d. r.vs with an ab-
solutely continuous d.f. F' and density function f. Consider
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the record values of this sequence Xy (1), Xv2), ---» XUy - - - -
Denote
k(%) = E(Xvuminr) | Xum = x). (7.3.1)

The joint density of X () and Xy () (for m > n) is [see Arnold,
Balakrishnan, and Nagaraja (1998, p.11)]

_ Ryt {R(y) — Ryt
frmn(x, T r(x) Eop—— f (),
forx <y, (7.3.2)
where R(x) = —In{l — F(x)} and r(x) = R(x) = f(x()x).
From Equations (7.3. 1) and (7.3.2), we have
1 k-1
b = T / YnF(x) —InF () £ () dy.

(7.3.3)
It can be seen from (7.3.3) that
EXvumr) | Xum =x) = EXyaqr) | X1 =x%)
for any n. Then

Onk-1x) = E(Xy@g) | X1 =x)

1 b B )
& -2!Fx) / yInF(x) —InF ()} 2 f(y) dy.

(7.3.4)
Then we have the following result.

THEOREM 7.3.1 Under integrability assumptions, it is true that
for any x € (a, b)

- 5 1 X (D;L’k(t)
F(x) = F(a)exp {_n— 1 /a or @ = o2 @ dt} )

PROOF. From (7.3.3), we have

Pn k(0 F (x) =

/ yinF(x) — In F)FL £(y) dy.
(7.3.5)

1)'
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Differentiating (7.3.5) with respect to x and then using
(7.3.4), we obtain

(P;Z,k(x)F'(X) — [(X)@nr(x)

_ (:‘1)‘/ ynF(x) —In F ()12 £() f((x))
( i G DY F @) = PO G) =
_(k—lz)!pf((z)) [ yInF @) ~InF ()" * £ () dy
= — [ (@) gnr-1(x),
Hence,
f) _ @1 (%)

(7.3.6)

F(x)  ¢onp®) —gpp_1(x)

Integrating (7.3.6) in [a, ], we obtain the result stated in the
theorem. =

REFERENCES

Ahsanullah, M. (1995). Record Statistics. Nova Science Publishers,
Commack, New York.

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1992). A First
Course in Order Statistics. John Wiley & Sons, New York.

Arnold, B. C., Balakrishnan, N. and Nagaraja, H. N. (1998). Records.
John Wiley & Sons, New York.

Blazquez, F. L. and Rebollo, J. L. M. (1997). A characterization of
distributions based on linear regression of order statistics and
record values. Sankhya, Series A, 59, 311-323.

Dembinska, A. and Wesolowski, J. (1998). Linearity of regression for
non-adjacent order statistics. Metrika, 48, 215-278.

Dembinska, A. and Wesolowski, J. (2000). Linearity of regression for
non-adjacent record values. Journal of Statistical Planning and
Inference, 90, 195-205.

© 2005 by Taylor & Francis Group, LLC



120 Bairamov and Balakrishnan

Ferguson, T. S. (1967). On characterizing distributions by properties
of order statistics. Sankhya, Series A, 29, 265-278.

Nagaraja, H. N. (1988). Record values and related statistics—A re-
view. Communications in Statistics—Theory and Methods, 17,
2223-2238.

Nevzorov, V. B. (1987). Records. Theory of Probability and Its Appli-
cations, 32, 201-228 (English translation).

Nevzorov, V. B. and Balakrishnan, N. (1998). A record of records,
In Handbook of Statistics—16: Order Statistics: Theory and Meth-
ods(Eds., N. Balakrishnan and C. R. Rao), pp. 515-570, North-
Holland, Amsterdam, The Netherlands.

Rao, C. R. and Shanbag, D. N. (1994). Choquet-Deny Type Functional
Equations with Applications to Stochastic Models. John Wiley &
Sons, Chichester, U.K.

Wesolowski, J. and Ahsanullah, M. (1997). On characterizing distri-
butions via linearity of regression for order statistics. Australian
Journal of Statistics, 39, 69-78.

© 2005 by Taylor & Francis Group, LLC



Chapter 8

Generalized Pareto
Distributions and Their
Characterizations

MAJID ASADI
Department of Statistics,
University of Isfahan, Isfahan, Iran

CONTENTS
8.1 Introduction ........... ..ottt 122
8.2 Characterizations Based on Truncated
Expectations .......... ... .. 125
8.2.1 An extended version of the
Oakes—Dasuresult ........................... 128
8.3 Characterization Results on Order Statistics and
Record Values...........cooiii . 129
8.3.1 Characterization based on equality
of distribution ............. ... .. .. ... ... 129
8.3.2 Characterization based on expectation
of functions of order statistics ................ 135
8.3.3 Further characterization results based
on ordered random variables ................. 140
8.4 Characterization of GPDs Based on Relevation
Type Equation ............. ..., 142

121

© 2005 by Taylor & Francis Group, LLC



122 Asadi

8.5 Characterization of GPDs Based on Residual

Uncertainty .........coiiiiiii i 145
References ... 146
ABSTRACT

In reliability, extreme value theory, and other branches of ap-
plied probability and statistics, there are many situations in
which one would expect to have models involving generalized
Pareto distributions (GPDs) to provide a useful description of
the observed data. Due to the importance of this family of dis-
tributions, attempts have been made by several authors to
obtain its characteristic properties. The aim of the present
chapter is to review and extend many characterization results
on GPDs and their discrete versions in the context of reliability
and ordered random variables.

KEYWORDS AND PHRASES: Mean residual life function, char-
acterization, truncated expectation, order statistics, record
values, Lau-Rao theorem, generalized Pareto distributions, rel-
evation type equation, residual entropy

8.1 INTRODUCTION

Recently in reliability studies and other areas of statistics, a
more general model than that of exponential distribution has
been introduced and widely used. The model is referred to as
that of the generalized Pareto distributions (GPDs) and is de-
fined as follows: Let X be a lifetime (non-negative) random
variable with distribution function F and survival function

F =1—F .Then F is said to be a member of the class of GPDs
if its survival function satisfies

i b1
F(x) = ( > , x>0, (8.1.1)

ax+b

wherea >—1and b > 0. This model has been introduced by Hall
and Wellner (1981), and for ¢a>0 and —-1<a<O0 is,
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respectively, a Pareto (Lomax) distribution and a Power dis-
tribution. Moreover, by (8.1.1) with ¢ = 0, we really mean its
limit as a tends to the zero; in this case, the model reduces to
the exponential distribution. (Note that if —1 <a <0, then the
distribution is bounded above.)

In reliability theory and elsewhere, in studies of the life-
time of a component or a system, this model is frequently ap-
plied due to its appealing properties such as that it has a linear
mean residual life function (MRL), the corresponding coeffi-
cient of variation of the residual life is constant, and its hazard
rate is the reciprocal of a linear function. On the other hand,
in the reliability studies, when robustness is required against
heavier-tailed distributions, the GPDs are taken to be reason-
able alternatives to an exponential distribution. This model
has also been extensively used in areas such as “extreme value
theory.” In his paper, Dargahi-Noubari (1989) recommends the
GPDs for use as the distribution of excess of observed values
over an arbitrarily chosen “threshold.” He points out that the
GPDs arise as a limit distribution for the excess over a thresh-
old, as the threshold increases toward the right-hand tail of the
distribution. An interesting connection between the GPDs and
extreme value distributions is as follows: If N has a Poisson
distribution with mean A and {Y; : i = 1,2, ...} is a sequence
of i.i.d. random variables that are independent of N and are
distributed with GPD of the form (8.1.1), then

b %+1

Pmax(Y1,Yo,...,YnN) <x) =exp —k( ) , x>0.
ax +b

If X has a GPD, then the conditional distribution of X — x
given X > x has a GPD, when P{X > x} > 0. This property
is referred to in the extreme value theory as the “threshold
stability” property of GPDs. Recently, Asadi et al. (2001) have
given an extended definition of the GPDs as follows:

DEFINITION 8.1.1 Suppose X is a non-negative random vari-
able. We say that it has an adapted generalized Pareto distri-
bution, AGPD for short, with parameter vector (c, .), if there
exists a constant ¢ such that 1 + ¢X > 0 almost surely and
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% log(1+c¢X), where this latter random variable is interpreted
as X when ¢ = 0, is exponential or geometric.

Note that if X is continuous, then its distribution is a member
of the class of GPDs.

Most of the characterization results on exponential and
geometric distributions involving order statistics, record val-
ues, moments of residual life function, strong memoryless prop-
erties, or relevation type equations have natural generaliza-
tions to the AGPDs. Ferguson (1967), Nagaraja (1977), Hall
and Wellner (1981), and Roy and Mukherjee (1986) are among
the earlier authors characterizing GPDs, or their location
variations, based on various properties. Ferguson considers
(essentially) the linearity of the conditional expectation of the
difference of two successive order statistics given the larger of
the two order statistics; Nagaraja (1977) considers the analo-
gous property for record values; Hall and Wellner consider the
linearity of the mean residual life; and Roy and Mukherjee con-
sider the constancy of the product of the hazard function and
the mean residual life function. Ahsanullah and Wesolowski
(1997) [see also Dembiska and Wesolowski (1998)] extend
Ferguson’s result for non-adjacent order statistics. In their
monograph, Rao and Shanbhag (1994) pointed out that many
characterization results of the exponential and geometric dis-
tributions are linked with the results of Choquet and Deny
(1960), Deny (1961) and Lau and Rao (1982). Recently, Oakes
and Dasu (1990) have obtained a characterization result of
generalized Pareto distributions of the type of “lack of memory
property” of the exponential distribution. Motivated by this,
Asadi et al. (2001) extend and unify many characterization
results of the exponential and geometric distributions, espe-
cially those that are linked with aforementioned contributions
of Deny and Lau-Rao, to achieve some major results on AGPDs.

In this chapter an attempt is made to summarize many of
the known results on characteristic properties of AGPD (in par-
ticular of GPD). Section 8.2 is a discussion on characterizations
based on conditional expectations; we prove, in this section,
a general result characterizing AGPDs based on truncated
expectation. In Section 8.3 we review the characterizations
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based on order statistics and record values. In Section 8.4 we
characterize the GPD based on the relevation type equation. In
Section 8.5 we give some characterizations of the GPDs using
the residual uncertainty introduced by Ebrahimi (1996).

8.2 CHARACTERIZATIONS BASED
ON TRUNCATED EXPECTATIONS

Among numerous characterizations of the probability distri-
bution of a random variable or a random vector, those based
on the corresponding MRL function or, in general, on the con-
ditional expectations

E[WX) - h(x)| X > x] = g(x) (8.2.1)
or on
E[WX —x)|X > x] =E[WX)), (8.2.2)

with A and g meeting some conditions, have proved to be of
increasing interest. Gupta (1975) proved that if 2 is an in-
creasing and differentiable function, then the distribution of a
non-negative continuous random variable X can be character-
ized by Equation (8.2.1). He also arrived at a similar result for
the case when X is a discrete non-negative integer-valued ran-
dom variable. Hamdan (1972) had already obtained a special
case of this result of Gupta (1975). Kotz and Shanbhag (1980)
generalized the Gupta (1975) result and proved that when X
is an arbitrary random variable, then under some conditions,
the conditional expectations E[A(X)|X > x] determine the
distribution of X uniquely.

Although the result of Kotz and Shanbhag (1980) shows
that under some mild conditions, the conditional expectations
E[hX)|X > x| determine the underlying distribution uniquely,
Rao and Shanbhag (1994) gave an example showing that the
situation is not the same for the conditional expectations of
the form E [A(X —x) | X > x|. In the literature, partial charac-
terizations based on the latter case have been considered by
several authors. Shanbhag (1970) proved that for a general
non-negative random variable X, Equation (8.2.2) with h(x) = x
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is valid (i.e., the MRL of a random variable X is constant) if
and only if the underlying distribution is exponential and also
gave a related characterization of the geometric distribution.
Azlarov et al. (1972) showed that a non-negative continuous
random variable X is exponential if and only if

E[(X—x)2|X2x]=c for all x > 0,

where ¢ is a positive constant. Sahobov and Geshev (1974)
extended this result to arrive at a characterization of the ex-
ponential distribution based on Equation (8.2.2) with A as a
polynomial function. Dallas (1979) showed that if X is non-
negative continuous and for some positive integer r, E[X"] is
finite, then

E[(X—x)|X>x]=c forallx>0

if and only if X is exponentially distributed, where c is positive
constant.

Azlarov et al. (1972) also characterized the exponential
distribution using the truncated variance of a positive random
variable. They showed that a positive random variable X is
exponentially distributed if and only if

Var(X|X >x)=c¢ forallx >0,

where Var (.|.) denotes the variance of conditional distribution
of X. Nagaraja (1975) proved that a positive continuous ran-
dom variable X is exponential if and only if

(EIX —x|X >x])’=Var(X|X >x) forallx > 0.

Rao and Shanbhag (1994, 1998), using the Lau—Rao theorem,
proved that a non-negative random variable X has an exponen-
tial (geometric) distribution if and only if E [W(X —x) | X > x] =
E[h(X)], where h satisfies some conditions. Asadi et al. (2001)
have extended this result as follows:

THEOREM 8.2.1 Let c be a real number and X be a non-negative
non-degenerate continuous random variable such that cX +
1> 0 almost surely. Let h be a monotonic right continuous func-
tion on R, such that E(JWX)|) <oo, E(JWX)|) # WO0), and
h(ecxc—_l), x € Ry (where we take ecxc—_l =x if ¢ =0) satisfies the
condition that whenever it is arithmetic, the distribution of
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%log(l + ¢X) is also arithmetic with the same span as that
of the function in question. Then

E[h(X_x> X zx}:E[h(X)], xeR. with P{X >x)>0
cx +1

(8.2.3)
if and only if X is distributed with AGPD(Z,.).

PROOF. The result for ¢ = 0 is essentially the result of Rao and
Shanbhag (1998). Note that, in this case, (8.2.3) is equivalent
to

/R F(y +0)u(dy) = F (), (8.2.4)

where F(x) = P{X > x}, x € Ry, and p; is the measure
determined on R, by % given by

h(x)—h(0)
Ax) = {OE—(thX))—h(O) z i 8 (8.2.5)

The “if” part of the result in this special case is trivial and the
“only if” part follows from the Lau—Rao theorem [see Rao and
Shanbhag (1994)]. In the case of ¢ # 0, on taking

1
X = Elog(l +cX),

1
x* = —log(1 + cx),
c

and
e —1

h*(z):h( ), zeR,,

we have (8.2.3) to be equivalent to
E{R(X*—x*) | X* > x%}
=EMh(X"), x*eR, with P{X*>x"}>0. (8.2.6)

Obviously, (8.2.6) meets the requirements of (8.2.3) for ¢ =
0 with (x*, X*, h*) in place of (x, X, h). Hence, we have the
result. =
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This theorem gives the following corollaries. The first one
is an extension of the characterization of the exponential dis-
tribution based on a strong memoryless property.

COROLLARY 8.2.1 Suppose X and Y are independent non-
negative random variables with P{X >Y}>P{Y =0} and ¢
is a real number such that 1+¢X >0,1+cY >0, a.s. and we
have the distribution of log(1 +c¢X) to be arithmetic with the
same span as that of dzstrlbutzon of log(1 + ¢Y') whenever
the latter is arithmetic. Then

X-Y
P{ Y+12x|X>Y}=P{X2x}, xe R,

if and only if for some a > 0, « X is distributed with AGPD(Z,.).

PROOF. To get the result, apply Theorem 8.2.1 with A(x) =
P{Y <x},x€R,. =

COROLLARY 8.2.2 A non-negative continuous random variable
X has a GPD with parameters a and b if and only if for some
k>0

E[(X —x)*|X > x] = (ax + b)*, x>0.

Note that this corollary subsumes the results of Dallas (1979)
and Hall and Wellner (1981).

REMARK 8.2.1 It should be pointed out here that in the case
when X has GPD, the quantlty 1+cx in Theorem 8.2.1 and
otherwise is equal to 24%:, where m denotes the MRL of X.

(0)’

8.2.1 An extended version of the
Oakes—Dasu result

Oakes and Dasu (1990) gave a characterization of the GPDs
using a property of the type of “lack of memory.” They showed
that the survival function of the residual life distribution of an
absolutely continuous random variable X, given by

F(x+y)

F(y;x):P{X>x+y|X>x}=W, F(x)>0,
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satisfies, for some non-negative function 6 on R, in the
following

FOx)y,x)=F(y), x,yeR,, (8.2.7)

if and only if 6 is linear and F' is a GPD. Asadi et al. (2001)
gave the following theorem, which proves an extended version
of the result of Oakes and Dasu (1990), relaxing, in particular,
the assumption of absolute continuity of F':

THEOREM 8.2.2 Let F be a survival function on R, (where we
define it here as F(x)=1 — F(x), with F as the distribution
function concentrated on R.) such that the corresponding dis-
tribution has a finite mean. Let 0 : R, —> R . Then there exists
a point xg € Ry with F (xg) > 0 and a sequence {x, :n=1,2,...}
of points lying in (xy, 00) such that it converges to xy and

F(,+0(n)y) =F x,)F(y), n=0,1,...; y>0 (8.2.8)

if and only if the distribution corresponding to F is GPD(c,.)
(i.e., continuous AGPD(c,.)) and 6(x,) = 1+cx,, n=0,1,... for
some c.

8.3 CHARACTERIZATION RESULTS ON ORDER
STATISTICS AND RECORD VALUES

Since the emergence of Ferguson (1967), many attempts have
been made on characterizing distributions based on properties
of order statistics. Galambos and Kotz (1978), David (1981),
Azlarov and Volodin (1986), Arnold et al. (1992), Rao and
Shanbhag (1994), and Kamps (1995), among others, have re-
viewed the existing literature on important characteristic prop-
erties of the order statistics and record values.

8.3.1 Characterization based on equality
of distribution

Let X1, X9, ..., X, be a random sample of size n from the dis-
tribution function F. Let also X1., < X9, < ... < X},., denote
the corresponding order statistics. Because of the importance
of the exponential distribution (and geometric distribution in
the discrete case) in reliability and other areas of statistics, in
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the last three decades or so, researchers have obtained many
characterization results on these distributions based on the
order statistics. Most of these characterization results involve
the spacings of the order statistics (i.e., Z; =X; 1., — X, L =
0,1,...,n— 1, with Xy, = 0). Among the numerous results
based on the spacings, we mention a few here.

Epstein and Sobel (1953) and Renyi (1953) showed that
for an exponential distribution the sequence of the normalized
spacings D; ,=(n—1)(X; 1., — Xin), 1=0,1,...,n—1is inde-
pendent and identically distributed. Puri and Rubin (1970)
proved that in the case when F is absolutely continuous the
converse of the latter result is true for n = 2. Basu (1965) proved
that the independence of the random variables

Zl = Xl:na Z2 = X2:n - Xl:m ey Zn = Xn:n - Xn—l:n

characterizes the exponential distribution. Seshadri et al.
(1969) showed that the distribution F' is exponential if and
only if the normalized spacings D; ,, 1 <i < n, are exponen-
tially distributed. Tanis (1964) showed that a continuous dis-
tribution function F is exponential if and only if

n
Z(Xi:n - Xl:n) and Xl:n
i=1
are independent. Rossberg (1972) generalized the Tanis result

as follows. A continuous distribution function F' is exponential
if and only if for fixed / < &, X;; and

Wem = cr Xpn + Ck+1Xk+1:n +--+ Cme:n, k<m<n

with >, ¢; =0, ¢ # 0, ¢, # 0, are independent. Ahsanullah
and Rahman (1972) showed that a continuous distribution F
is exponential if and only if the order statistics X3., can be
expressed as
n
d Y;
X, £S5 T¢
kin Z n—i+1
i=1
whereY/s(j =1,2,...,k) areindependent and identically dis-
tributed random variables with distribution function F', where
d stands for the distribution.
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Ahsanullah (1977) proved that under some conditions on
F,we have it to be exponential if and only if the spacing D,,_1 ,,
is exponential for some n € N . Rossberg (1972) proved that a
continuous distribution function F' is exponential if and only if

Xi+1:n - Xi:n i min{le ey Xn—i}-

The problem of characterizations of the geometric distri-
bution based on order statistics has also been considered in
the literature. Srivastava (1974) proved that a discrete distri-
bution F' is geometric with probability function given by

PX=)=pQ-p) 9P i=aa+B,a+28,...,
if and only if its order statistics satisfy
PXy,=a+i8,Z=0)

=PXip,=a+iB)P(Z=0), 1=0,1...,
where

n
Z = Z(in - Xl:n)~
=2
Arnold and Ghosh (1976) showed that in a sample size n = 2,
the random variable Xo.0—X 1.0 given Xo.9 > X1.9 is distributed
as X ifand only if X has a geometric distribution. Arnold (1980)
extended this result to show that a conditional distribution of
X110 — Xjn given X 1., > X, for 1 < i < n, is distributed
as X1.,_; if and only if X has a geometric distribution. Zijlstra
(1983) gave a different proof of the latter result.

Rao and Shanbhag (1994) [see also Rao and Shanbhag
(1998)] pointed out that many characterization results based on
order statistics and record values have implicit links with the
integrated Cauchy functional equation or its variants, such as
the Lau—Rao theorem. These latter authors, essentially based
on the Lau—Rao theorem, proved that for some 1 <i <n

Xi+1:n - Xi:n i min{Xla ceey Xn—i} (831)
if and only if one of the following holds:

(i) F is exponential.

(1) F is concentrated on some semi-lattice of the form
{0,1,2x,...}with F(0) =aand F(jA)—F((j —1)A) =
(1-)(1-pp/forj=1,2,...forsomea € (0, (*) "]
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and B € [0, 1) such that P{X; 1, > X} = (1 — @)™
(which holds with « = (™" or g = 0 if and
only if

—1/i
F(0) — F(0—) = <”>

l

and
~1/i
FO)—FO—)=1- (’Z)

for some A > 0).

Characterizations of the probability distributions based
on record values have also been extensively studied in the lit-
erature. Let {R;;i > 1} be a sequence of record values from a
distribution function F. Tata (1969) showed that the spacings
Ri,1—R;,i =1,2,... form a sequence of independent random
variables, and she also proved that the independence of R and
Ry — R characterizes the exponential distribution. Srivastava
(1980) gave an extension of Tata’s result, showing that the
spacing R; 1 — R; is independent of R; if and only if F' is expo-
nential. Dallas (1981) proved a generalization of Srivastava’s
result, giving that R; and R; — R;, 1 < i < j (with i and
J fixed), are independent if and only if F' is exponential. Rao
and Shanbhag (1994), using essentially the Lau—Rao theorem,
extended and unified the earlier results on characteristic prop-
erties of exponential distributions based on the independence
of functions of record values. These latter authors showed that
for somek > 1, Rp,.1— R}, 4 X1 where X is arandom variable
with distribution function F', if and only if X; is exponential
or, for some a > 1, X is geometricon {a, 2a, ...} G.e.,a 1 X1 —1
is geometric in the usual sense). They have also proved that
when ko > k1 > 1 are fixed integers, then on some interval of
type (—o0, al, with ¢ > 0 the left extremity of the distribution
of Ry, the conditional distribution of R, — Ry, given Rj, =x
is independent of x for almost all x if and only if F' is exponen-
tial, within a shift. Asadi et al. (2001) have extended many of
the above-mentioned results on characterization of exponen-
tial and geometric distributions to arrive at the new results for
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AGPDs. In the process of doing so, they introduced the concept
of extended neighboring order statistics as follows:

DEFINITION 8.3.1 Suppose F'is a probability distribution func-
tion on the real line. Then, if X7 and X3 are real random vari-
ables (defined on a probability space) such that X] < X almost
surely and

P (X7 <x1,X5 > x9) = p((—o0,21])(1 — F(x9))*,
—00 < X1 <Xg <00 (8.3.2)

for some A >0 and o —finite measure u (on R) with supp(ul
equal to supp[F] or to [xy, co)N supp[F ] for some xy € R, we
call these random variables extended neighboring order statis-
tics related to F'. (In (8.3.2), we take 00.0 = 0 as is usually done.)

For n>2, if X4.,, ..., X,., are order statistics based on n
independent random variables with distribution function F,
we have X;., and X; 1., foreachi=1,2,...,n—1 to be such
that

(Xiomy Xis1m) E (X3, X3)

where X7 and X3 are as in the definition above with A =n —i
and u as the measure determined by (7)Fi(x), x € R. Fur-
thermore, let F' be a distribution function with its right ex-
tremity not as one of its discontinuity points. If we assume
{R; :i=1,2,...} is the sequence of record values relative to
F | then we can observe that for anyi > 1

(Ri, Rii1) £ (X7, X3)

where X7 and X3 meet the requirements of the definition with
A =1 and u as the measure satisfying

W(B) = /B (1— F(x) 'dP(R; < x)

for each Borel set B; in this latter case, we have also P(X] =
X3) = 0. The following result is given by Asadi et al. (2001).

THEOREM 8.3.1 Let X7 and X be extended neighboring order
statistics relative to a distribution function F suchthat P (X7 =
X3) < land c be a real number such that cXj+1and cX35+1be
positive random variables almost surely. Then the conditional
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distribution of }2( 1 gwen that X5 — X5 > 01is, in the notation
of the deﬁmtzon f —(1-F(x), xeR, Lfand only if either F
is continuous AGPDs(c,.) or, for some o >0, F (xe®x + ew_l),
x € R is a discrete AGPD(ca, .). (Here, as well as in what
“=1 —wife=0.)

In view of our observations immediately after Definition
8.3.1 on order statistics and record values, the following corol-
laries can be obtained from Theorem 8.3.1.

COROLLARY 8.3.1 Let n > 2 and X4,...X, be non-negative
non-degenerate i.i.d. random variables with distribution func-
tion F. Let X1.,, ..., Xnn be the order statistics relative to X's
and ¢ be a real number such that cX; +1 > 0 almost surely
Then, for some 1 <i < n, the conditional distribution of #ﬁ’l"
given that X; 1., — X > 0 is the same as the distribution of
X1, where X1.,_; = min{Xq, ..., X,_;}, if and only if either
F is a continuous AGPD(c,.) or, for some o > 0, F(ae“x +
em’l) x € R, is a discrete AGPD(ca, .).

COROLLARY 8.3.2 Let {R; :i =1, 2, ...} be a sequence of record
values relative to a distribution function F (where the right ex-
tremity of F is not one of its discontinuity points) and c be
a real value number such that cR; + 1> 0 almost surely and

CR1+]R+ 1> 0 almost surely for each i > 1. Then, for some i >1,

531 +i- = R1ifand only if either F is a continuous AGPD(c, .)

or, for some a > 0, F(ae®x + & _1) x € R, is a discrete
AGPD(ca, .).

COROLLARY 8.3.3 Let n > 2 and X4,...,X, be i.i.d. random
variables with a distribution function F that is not concen-
trated on {0}. Further, let X1.,, ..., Xun be the corresponding
order statistics and c be a real number such that cX1 + 1 is
positive almost surely. Then, for some 1 <1 < n,

Xii1.—X
S S minlX, LX) (8.3.3)

if and only if one of the following holds:

(i) F isa continuous AGPD(c, .).
(it) F is such that F(0) — F(0—-) = (7)” Y and, for some
>0, FO)-F(O—)=1— ("""
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(iit) F is of the form
F(x) =pFi(x) +(1-p)Fs(x), x€R,

where F1 is the distribution function of the degenerate distri-
bution at the origin, Fq is the distribution function on R such
that Fo(ce®x + emc—*l) , X € R is a discrete AGPD(ca, .) for
some a > 0, and B is a real number lying in (0, (7) 7 | so that
P(Xi+1:n = Xi:n) =(1- ,B)n_L-

Corollaries 8.3.1 and 8.3.2 given above follow trivially from
Theorem 8.3.1, while Corollary 8.3.3 is a slight generalization
of Corollary 8.3.1 and it easily follows from Theorem 8.3.1 on
noting, among other things, that (in view of the fact that F is
not concentrated on {0}) (8.3.3) is equivalent to the condition
that F' is non-degenerate and concentrated on R,

X 1.,—X;.
P{M>y|Xi+1:n>Xi:n}

CXi:n+1
_(1-F()\""
_(m) . yeR,, (8.3.4)

and P(X; 1., > Xin) = P(X1,_; > 0). (Note that in the case
with P(X; 1., > Xj.n > 0) > 0, the condition, in turn, is equiva-
lent to that with “X; 1., > X;.,” in (8.3.4) replaced by “X; 1., >
X;., > 07; on the other hand, when P(X;,1., > X;, > 0) =0,
the condition is equivalent to that F is as in (ii) above.)

8.3.2 Characterization based on expectation
of functions of order statistics

Characterizations of the exponential and geometric distribu-
tions based on conditional expectations of the functions of or-
der statistics have also been considered in the literature. Let
F' be a continuous distribution function with finite mean and
X140, Xom, ..., Xunn be the corresponding ordered observations
based on a random sample of size n(> 2). Ferguson (1967)
showed that if for some 1 <i <n

E(X;,| X;s1m=x) =ax + b, foralmostall [Flx € R,
(8.3.5)
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where a > 0 and b is real-valued, then F has one of the follow-
ing forms to within a shift and change of scale:

1) F(x)=¢€" forx <0ifa =1.
(i) F(x) =« for x € [0, 1] ifa € (0, 1).
(i) F(x) =(—x)! forx <-1lifa>1,
where 0 = a/[i(1 — a)l.

Wang and Srivastava (1979) proved a generalized version of
Ferguson’s (1967) result to arrive at the cited distributions as
follows. A continuous distribution function F' with finite mean
is of the form of Ferguson’s (1967) result if and only if its order
statistics satisfy

ElZ)| Xin=x]l=ax+8, a>-1,8€R, as.

where
1 n
Zy = nz {Xin — Xkonls k= 1,2...,n—-1
i=k+1
Wesolowski and Ahsanullah (1997) showed that under some

conditions, Ferguson’s result can be extended as follows. If
EXiion|Xim=x)=ax+b, a>-1,b>0, as.

then the parent distribution is a GPD.

Beg and Kirmani (1978) obtained, under some conditions,
that a continuous distribution function F', with F(0) = 0 and
finite second moment, is exponential if and only if

Var(Xii1n| Xim=x) =c forallx > 0, a.s.

where c is a positive constant and Var(.|.) denotes the condi-
tional variance. Beg and Kirmani (1979) gave another charac-
terization of the exponential distribution: they showed that a
distribution function F is exponential if and only if its order
statistics satisfy

E[Wi:n(c) |Xi:n = x] = k, X > 0, a.s.
where
Wine) = min{X; 1., — Xip, ¢},

c is a positive constant, and £ € (0,c). Rao and Shanbhag
(1994), via the Lau—Rao theorem, proved, under some mild
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conditions, that for some constant ¢ # A(0+)
ENXi 10— Xin) | Xinl =c  as. (8.3.6)

if and only if F is an exponential.
Kirmani and Alam (1980), based on a sample of size 2,
proved that a discrete distribution F' is geometric if and only if

EXoo| X1o=x)=a+x, x=1,2,..., as.

for some constant «. Rao and Shanbhag (1986) generalized the
result of Kirmani and Alam (1980). The latter authors showed
that a non-negative integer-valued random variable X has a
geometric distribution if and only if

EhXoo—X19) | X190=xl=un, x=12,..., as.

where A is a monotone function satisfying some conditions.
Nagaraja (1988) gave the discrete analogue of Ferguson’s re-
sult to arrive at a characterization of the geometric distribu-
tion. In the literature there are many characterization results
of the exponential distribution based on expectations of the
functions of record values. Srivastava (1978) proved that a
distribution function F' is exponential if and only if

E[Ri+1 — Ri | Ri] =, a.s.

where c is a positive constant. Aly (1988) showed that the dis-
tribution function F' is uniquely determined by the following
conditional expectation,

EMR; )| R; =x] =nx), as.

where A and n are functions satisfying some mild conditions.
Nagaraja (1977) had earlier dealt with Aly’s result for i = 1.
Gupta (1984) showed that for some real constant c,

E(R; 41— R) |R;,=y) =c, as.

if and only if F' is exponential where i and r,r > 1 are fixed.
Rao and Shanbhag (1994) proved

E[WRy.1 — Rp) | Rl = as. (8.3.7)
where A is a monotone function, if and only if F' is exponential
within a shift.
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The following general theorem gives us a power tool to
extend most of the characterization results on exponential
distribution based on conditional expectation of functions of
spacings of order statistics and record values to arrive at GPDs.
The proof can be found in Asadi et al. (2001).

THEOREM 8.3.2 Let Y and Z be independent random variables
such that the support of the distribution of Y equals that of
the distribution of Z, and let Y be continuous. Further, let
¢ be a real constant such that 1 +c¢Y >0, 1 + c¢Z >0 almost
surely, and let h be a real monotonic function on R, such that
E(WYZZ" )< 00 and h(<°7L), x € Ry(with “= defined to
be equal to x if ¢ =0), is non-arithmetic (or non- lattzce) Then,

for some constant o # h(0+),

_ +
E [h <%) Y > Z, Z] —a, as. (8.3.8)

if and only if, for some real B such that 1+cp > 0, 1+C —(Y —p)
has a GPD(c). (By the conditional expectation in (8 3.8), we
mean the one with Iy > zyinplace of Y > Z, restricted to {Y > Z};
the assertion of the theorem also holds if “Y > Z” is replaced
by “Y > Z.7)

REMARK 8.3.1 In Theorem 8.3.2 it is assumed that Y is contin-
uous. A natural question to ask is what would be the conclusion
result if the continuity condition were dropped. We refer the
reader to Asadi et al. (2001) or Rao and Shanbhag (1998) for
a discussion on this.

Now the following corollary can be obtained from Theo-
rem 8.3.2.

COROLLARY 8.3.4 Let X7 and X3 be extended neighboring or-
der statistics defined in the present section with F continu-
ous and supplu] = supplF']. Further, let ¢ be a real constant
such that 1 +¢X7>0, 1+ cX3> 0 almost surely, and let h be
a real monotomc functwn on R+ such that E(|h(=2"+ ey )|)< 00
and h(e -1), x € R, (with =L defined to be x if ¢ = 0), i
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non-arithmetic (or non-lattice). Then, for some o # h(0+),

X — X*
E|h %)LX’» *,X*]=a a.s. (8.3.9)
l (ch—i-l 2 121

if and only if; for some real B such that 1+cB >0, F (x(1+cB)+
B), x € R, is a GPD(c,.).

We can get from Corollary (8.3.4) the following corollaries.
These corollaries subsume the results of Rao and Shanbhag
(1998).

COROLLARY 8.3.5 Let X1, X0, ..., Xnn be order statistics
from a continuous distribution function F. Let conditions of
Corollary 8.3.4 hold; then, for some o # h(0.),

Xit1n — X
E [h (lC_S(ln——i-]_Ln) |Xi+1:n > Xin, Xim| =a as.
in

(8.3.10)

if and only if for some B such that 1+c¢B > 0, F(x(1+cB) + B),
x € R, is a GPD(c,.).

COROLLARY 8.3.6 Let R, Ro, ... be record values from a con-
tinuous distribution function F. Let conditions of Corollary
8.3.4 hold; then, for some o # h(0.),

R; 1 —R; _
E |:h (W) |Rz+1 > Rl> Rl = a.s. (8311)
if and only if for some B such that 1+cB > 0, F(x(1+c¢B) + B),
x € R, is a GPD(c,.).

REMARK 8.3.2 In view of our observation that (in obvious no-
tation) the generalized order statistics introduced by Kamps
(1995) are certain specialized versions of the extended neigh-
boring order statistics, we can immediately get from Theorem
8.3.1 and Corollary 8.3.4 as further corollaries the correspond-
ing results for models such as sequential order statistics and
order statistics with non-integer sample size.

Corollary 8.3.5 gives a further Corollary, extending among
other things a result of Ferguson (1967); the specialized ver-
sions of these results have appeared in Rao and Shanbhag
(1994).
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COROLLARY 8.3.7 Let X1.,,Xo2.ny ..., Xn:n, n(>2), be order
statistics from a continuous distribution function F. Then, for
some 1l <1i < n,

EXii1n| Xim=x)=ax+b foralmostall [F]lx € R
(8.3.12)

with a and b as constants if and only if the distribution F is a
GPD(c, .).

REMARK 8.3.3 One could mention two further characteriza-
tions of GPD: Suppose ¢ is a real number and F is a continuous
df such that 1+c¢X >0 a.s., where X ~F, and X1, ..., Xna
are order statistics based on a random sample of size n from
F and %k, and %, are fixed integers such that n> ko >k > 1.
Then, for a fixed a > oo the left extremity of F, we have
% and Xp,:nlix; ,<a) to be independent if and only if
for some B with 1 + ¢ > 0, in obvious notation, ﬁ(X —B)
has GPD (c,.). An analogous result for record values (with ob-
viously “co > kg > k1 > 17 in place of n > kg > k1 > 1, Ry,
in place of X;,., and Ry, in place of Xp,.,) also holds. These
results follow from their specialized versions for ¢ = 0 given in
Rao and Shanbhag (1994, Chapter 8; 1998).

8.3.3 Further characterization results based
on ordered random variables

In view of the arguments that we have already met in this
section, it is obvious that several of the other characterizations
of exponential and geometric distributions, discussed in Rao
and Shanbhag (1986, 1994, 1998) and Fosam and Shanbhag
(1994, 1997) and other places, could be translated into those
corresponding AGPDs. The following theorems provide us with
some illustrations of this. For the details of the proofs, we refer
to Asadi et al. (2001).

THEOREM 8.3.3 Let n > 2and 1 < k < n — 1 be integers and
Y1,Yso,...,Y, be independent positive random variables such
that P{Y; >t} > Oforeacht > 0andi =2, ...,n. Further, let c
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be a real number such that 1+ cY; > 0 almost surely, for each
i=1,...,n Then

Yi-Yin

—_ Yi>Yy>...>Y

<ch+1+1>y| 1>Ye> ... > n)

=PY;>y|Y1>Ys>...>Y;), y>0,1=1,2,...,k
(8.3.13)

(where the right-hand side of the identity is to be read as P(Y; >
y)fori =1)ifandonlyifY;,i =1,2,...,k, aredistributed with
GPD(c,.) (i.e., with continuous AGPD(c,.) possibly with different
parameter vectors (c,.) for different Y;). (The result also holds
if “>"1in (8.3.13) is replaced by “>".

THEOREM 8.3.4 Let X1, Xo, ..., X, n> 2, beindependent iden-
tically distributed positive random variables, and let aq, . . ., a,
be positive real numbers such that Y 7 a; 1 = 1. Further, let ¢
be a real number such that 1 + cX; > 0 almost surely for each
i. Assume that the smallest closed subgroup of R containing
loga;, i =1,2...,n, equals R itself. Then

miny<i<n{(1+ X)) £ (1 4 cX1)Ve, (8.3.14)

where (1 + cX;)/¢ is defined to be equal to eXi if ¢ = 0, if and
only if X1 is distributed according to GPD(c,.).

The following theorem is an extension of Theorem 4 of
Rao and Shanbhag (1998). Note that the theorem of Rao and
Shanbhag referred to follows from the specialized version of
our theorem for ¢=0 and it, in turn, extends a result of
Ferguson (1964, 1965) and Crawford (1966). The Ferguson—
Crawford result mentioned here is that if X and Y are in-
dependent non-degenerate random variables, then min{X, Y }
and X — Y are independent if and only if, for some « > 0
and 8 € R, we have a(X — B) and (Y — B) to be either both
exponential or both geometric.

THEOREM 8.3.5 Let ¢ be a real number, X and Y be inde-
pendent non-degenerate random variables, and yy be a real
number such that P{min{X,Y} < vy} > 0 and both cX + 1
and cY + 1 are positive almost surely. Let ¢ be a real-valued
Borel measurable function on R such that its restriction to
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(=00, yol is non-vanishing and strictly monotonic. Then Y;fl

and d)(mm{X Y DIninix,v)<y,) @re independent if and only if
for some a € (0, 00) and some 8 € R with 1+¢B > 0, a(X — B)
and a(Y — B) have both continuous AGPDs, or both discrete
AGPDs, with parameter vector ( .) in which case g,jryl
and min{X,Y } are independent.

COROLLARY 8.3.8 If, in Theorem 8.3.5, X and Y are addition-
ally assumed to be identically distributed, then the assertion of
the theorem holds with
| X -Y |
min{cX +1,cY + 1}

__c
a(l4+cp)?’

in place of X cY+1

8.4 CHARACTERIZATION OF GPDs BASED
ON RELEVATION TYPE EQUATION

Let X and Y denote the lifetimes of two components with dis-
tribution functions F' and G, respectively. The relevation of the
survival functions F(¢t) = 1— F(¢) and G(¢) = 1 — G(¢), which
we denote by (F G)(¢), is given by

t G(t)

(FG)(@)=F(t) — molF( uw), t=>0. (8.4.1)

The concept of relevatlon isintroduced by Krakowski (1973). In
fact, (8.4.1) is the survival function of the time to failure of two
components where the first component on failure is replaced
by the second one of the same age. On the other hand, the
convolution of F' and G is given by

(F «G)t) = /0°° Gt — u) dF ()

=F‘(t)—/0t(§(t—u)dF'(u), £>0 (842

Note that (F' % G)(.) is the survival function of the time to fail-
ure of two components where the first component on failure
is replaced by a new one. The equality of (8.4.1) and (8.4.2)
has been used for characterization of the exponential distri-
bution by many authors. Grossward et al. (1980) used the
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equality of (8.4.1) and (8.4.2) and characterized the exponen-
tial distribution under the conditions that G(0) =1 and that
G(t) is continuous and is expressible as a power series. Westcott
(1981) used a probabilistic argument to show that Grossward
et al’s result holds under weaker conditions. Kakosyan et al.
(1984) provided an improved version of Westcott (1981). Rao
and Shanbhag (1986), without assuming the continuity of F'(¢)
and G(t), established a different improved version of the
Westcott result. Recently Lau and Prakasa Rao (1990, 1992)
obtained a result which is close to that of Kakosyan et al.
(1984). The result of Lau and Prakasa Rao (1990, 1992) is
based on the version of the Choquet—Deny functional equation.
Fosam and Shanbhag (1997) have considered the multivariate
extension of the result of Lau and Prakasa Rao (1990) to arrive
at a multivariate distribution with marginals as independent
exponential distributions.

In this section, we intend to obtain a characterization re-
sult for GPD by an equality of relevation of F and G with a
modified version of the convolution of F' and G.

First note that the equality of the right-hand sides of
(8.4.1) and (8.4.2) gives

t(G(t) - _
/O(G(u)—G(t—u)> dF (1) =0, (8.4.3)

for each t with G(¢) > 0. If G is assumed to be continuous and
F such that its support has 0 as a cluster point, then (8.4.3)
implies trivially that given a ¢ € (0, co) such that G(¢) > 0,
there exists a point u; € (0, ¢) such that

M) = huy) + h(t —uy)
(note that unless % = G(t — u) for some u € (0,¢), we have
a contradiction to (8.4.3)) or, equivalently, such that

(&) ue huy) (@ —uy) A& —uy)

t ot w t (t—up’

(8.4.4)
where A(x) = log G(x). If we assume further that lim,_, ¢+ @
exists, then (8.4.4) yields, as seen by Lau and Prakasa Rao
(1990, 1992) or more generally by Fosam and Shanbhag (1997),
that @ is constant, or equivalently G(¢) is of the form e
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with A > 0 on (0, b) where b is the right extremity of G; in view
of the continuity of G, we then get that G is indeed exponen-
tial, i.e., we have here b =00. As (8.4.3) holds trivially when
G is exponential, we have then under the assumptions that G
is continuous satisfying that lim;_, lgGlt) exists and zero is
a cluster point of supp[F'], that (8.4.3) holds for each ¢ with
G(t) > 0 if and only if G is exponential.

A natural question to ask is whether the result of Lau—
Prakasa Rao can be extended to GPDs. In the following, we
show that the answer is positive.

Let X and Y denote the lifetimes of two components with
distribution functions F and G, respectively. Let F % G be the
survival function of Z = X +(c X +1)Y = X +Y +¢cXY where
¢ € R. Then, it can be easily shown that

F*Gkx) = F(x) - /Ox G (%) dF(y) x>0. (8.45)

Note that in the case when ¢ = 0, (8.4.5) is the survival function
of the convolution of X and Y, i.e., (8.4.2).

In the following we show that the equalities (8.4.5) and
(8.4.1) characterize the GPD.

THEOREM 8.4.1 Let G and F be two survival functions on

. log G(x) ~
[0, o0) and suppose that lexﬁoi% loglexs1)’ € eR,cx+1>0,ex

ists. Further suppose that G is continuous and zero is a cluster
point of supp(F'). Then the equalities (8.4.1) and (8.4.5) imply
that G is GPD(c,.).

PROOF. Note that the equalities (8.4.1) and (8.4.5) imply

* (Gx) ~[/x—y B

for each x with G(x) > 0. Under the assumptions of the the-
orem, given a t € (0,00) such that G(¢) > 0, there exists a
u; € (0,t) such that we have

h(t) = h(w,) + h( Lo ) , (8.4.7)
cur+1
where h(x) = logG(x). Essentially, using the approach

used to prove Theorem 8.2.1, on taking ¢* = %log(ct + 1),

© 2005 by Taylor & Francis Group, LLC



Generalized Pareto Distributions and Their Characterizations 145

u; = %log(cut + 1) and A* () = h(&<=L _1) (where £=1 is to be
understood as ¢ if ¢ = 0), we can 1mmedlately see that

R*(t*) = h(?)
and
R (t*) = h*(u;) + K*(t* — u;

The result now follows from the assumptions of the the-
orem and our observations on the proof of the case of ¢ = 0.
That is G is GPD and the proofis complete. =

8.5 CHARACTERIZATION OF GPDs BASED
ON RESIDUAL UNCERTAINTY

If X is a random variable having an absolutely continuous
distribution function F with probability density function f,
then the entropy of the random variable X is defined as

HX) = H(f) = — /0 " (log £(x) f(x) da. (8.5.1)

The entropy measures the “uniformity” of a distribution. As
H(f) increases, f(x) approaches a uniform. Consequently, the
concentration of probabilities decreases and it becomes more
difficult to predict an outcome of a draw from f(x). In fact,
a very sharply peaked distribution has a very low entropy,
whereas if the probability is spread out the entropy is much
higher. In this sense H(X) is a measure of uncertainty associ-
ated with f.

If we think of X as the lifetime of a new unit, then H(f)
can be useful for measuring the associated uncertainty. How-
ever, as argued by Ebrahimi (1996), if a unit is known to have
survived to age ¢, then H(f) is no longer useful for measuring
the uncertainty about the remaining lifetime of the unit. In
such situations, one should instead consider

oo —[*(55) ()

~1- 55 / (loghr @) fx)dx, (8.5.2)
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where F(x) = 1 - F(x) and Ar(x) = 5 is the hazard func-
tion of X. After the unit has survived %or time ¢, H(f; t) ba-
sically measures the expected uncertainty contained in the
conditional density of X —¢ given X > ¢ about the predictability
of the remaining lifetime of the unit. That is, H(f; t) measures
concentration of conditional probabilities. Asadi and Ebrahimi
(2001) gave two characterizations of the GPD based on H(f'; t)

as follows:

THEOREM 8.5.1 Let X be a non-negative absolutely continu-
ous random variable with survival function F(x), hazard rate

Ar(x), and residual uncertainty H(f; x), where [ is a density
function of X. Then

H(f;x)=c—logip(x) (8.5.3)

if and only if F is GPD with survival function of the form
(8.1.1), where c is a real valued constant.

Itis generally known that the mean residual life function 6z (¢),

Sp(t) = E(X—t|X > t),is not the same as ﬁ The following

theorem gives another characterization of GPD.

THEOREM 8.5.2 Let X be a non-negative absolutely continuous
random variable with survival function F (x), the mean resid-
ual life function 8 (x), and residual uncertainty H(f; x). Then

H(f;x)=c+1logdp(x) (8.5.4)

if and only if F' is GPD of the form (8.1.1), where c is a real
valued constant.
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and identically distributed random variables with distribution
function Fy,(x) = x'. Denote by X7, the nth lower record
value of the sequence {X;, j =1, 2,...} and by X ,, the first-
order statistics of {X1, X9, ..., X,}. It will be shown that the
relations

d d
Xin=X1,-1Vn and Xpm =Xrn-nV1

are characteristic properties of the uniform distribution.

KEYWORDS AND PHRASES: Order statistics, record values,
characterization, uniform distribution

9.1 INTRODUCTION

Let Xq,Xo,...,X, be independent and identically (iid)
distributed random variables with a continuous distribution
function F'; then the probability density function of the ith
order statistics X; ,,i =1,2,...,nis given by

. _ n! i1
x [1—F(x)]"" f(x), —00 < x < o. (9.1.1)

For various properties of order statistics see Ahsanullah and
Nevzorov (2002), Arnold pe et al. (1992), and David (1981).
Let X1, X5, ... be a sequence of random variables. The lower
record values of this sequence can be defined in the following
way. Let Y1 = X7 and Y, = min{X4, ..., X,,} for n > 1. Then
X;,J > liscalled alower record value of the sequence {X;, i =
1,2,..}if Y; < Y;_1. The lower record times are defined as
L(n) =min{j |j > Lin—1), X; < Xp(,—1)} with L(1) = 1 and
n > 1. If the random variables are iid with a continuous dis-
tribution function F', then the probability density function of
the nth lower record value Xy, is given by

[H (x)]" 1
(n—1)!
where H(x) = —In F (x).

fLn(x) = f(x), —o0<x <o0, 9.1.2)
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There are many interesting papers on characterizations
involving order statistics and record values. See, for exam-
ple, Ahsanullah (1977, 1995), Bairamov (2000), Bairamov and
Apaydin (2000), Dembinska and Wesolowski (1998, 2000), and
the references in these papers.

Let g fori =1,...,m and X1, Xo, ..., X,, ... be iid uni-
formly distributed random variables on (0, 1). Then it is known
that [see Ahsanullah (1995)]

Xiom L 61 em. (9.1.3)
Similarly, if X1, X9, ..., X, are iid uniform random variables
on (0,1) and V4,...,V, are independent random variables

with distribution function

Fy,(x) = xi, O0<x <1, (9.1.4)
then it can be shown that

X1, L ViVy V. (9.1.5)

Bairamov and Arslan (2000) have shown that relation
(9.1.3) holds as well if it is only known that X, Xo, ..., X,, ...
are non-negative iid random variables. In a similar way, it can
be shown that if X, X, ..., X, are non-negative iid random
variables, then relation (9.1.5) is also true.

In this paper we will present some characterizations of the
uniform distribution using order statistics and record values
with relations similar to (9.1.5).

9.2 RESULTS

The first result gives a characterization using lower record
values, while in the second result order statistics are used. We
will write X € U(0,1) if X is a random variable uniformly
distributed on (0, 1).

THEOREM 9.2.1 Let X1, Xo,. be a sequence of iid non-negative
absolutely continuous bounded random variables and let V4
be uniformly distributed on (0, 1) and independent of the X;’s.
Without loss of generality, assume that F(0) = 0and F (1) = 1.
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Then the relation

Xim £ X10-1V1 9.2.1)
holds for some fixed n > 1 if and only if X; € U(0, 1).

PROOF. It is well known [see Ahsanullah (1995)] that if X; €
U(0,1), then X1 < X101 V1.
Suppose that X, 4x Lin—-1) V1. Then

1
Frm(x) = P(Xrm < x) =/0 Frm-n(x/u) du
X 1
=/ du + / Frpn-1(x/u) du

—x+ x/l Fro () t2 dt. (9.2.2)

Differentiating both siées of (9.2.2) with respect to x, we obtain

fLm(x) =1— %FL(n—l)(x) + /xl Fron @)t~ 2dt. (9.2.3)
Thus,

xfLimn (%) = x — Frm-1)(x) +x/ Fro @) t2dt
=X —Frun-y(®) + Frpx) —x
= Frn(x) — Fro-1n(x). (9.2.4)

Now,
Fro(x) — Fra-1)(x)

* (H(u)* 1 * (H(u))"2
=/o T(n) f(u)du_/o T W du
(H(u)" ! /x (H(u)"2
I'(n) o Nn—-1)
- / (H(u)y?
o I'rh—1
(H(x))" !
['(n)

fL (). (9.2.5)

X

=F(u) fw) du

0

f(u) du

= F(x)

_ F(x)
T
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Combining (9.2.4) and (9.2.5), we have

1]:((3;)) = %x =0. (9.2.6)

The solution of (9.2.6) is

F(x) = cx, (9.2.7)
where c is a constant. Since F(0) = 0 and F (1) = 1, we must
have

Fx)=x,0<x<1. (9.2.8)

Before stating the second result, we note that Nevzorov
(2001) gave the following relation of the uniform distribution.

Let X; G =1,2,...,n)and W; i = 1,2,...,n) be inde-
pendent and identically distributed uniform, U (0, 1), random
variablesandlet W; (i =1, 2, ..., n) beindependent of the X;’s.
Then the following relation holds:

Xk,n i Xk,me+1,n- (9.2.9)

Wesolowski and Ahsanullah (2004) have obtained a gen-
eral characterization result of the power function distribution
based on % order statistics using this property. We present here
a characterization of the uniform distribution based on the first
order statistics.

THEOREM 9.2.2 Let X1, Xo, ..., X, be iid non-negative abso-
lutely continuous bounded random variables and let V, be
independent of the X;’s with distribution function Fy (x) =

x", 0 < x < 1. Without any loss of generality, assume that
F(0) =0and F (1) = 1. Then the condition

X10E X101V 9.2.10)
holds for some fixed n > 1 if and only if X; € U(0, 1).

PROOF. It is easy to show that if X; € U(0, 1), then X, is
identically distributed as X1 ,_1V.
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If (9.2.10) holds for some positive integer n, then

1
Fl,n(x):/ Fl,n,l(x/u)nu”_ldu
0

X 1
= n/ u du + n/ Fin1(x/u) u" du
o X

— ¥ 4 " / B ) e e, 9.2.11)
x
Differentiating (9.2.11) with respect to x, we obtain
fin(x) = ' na 1Fy,q(x)
+n2x 1 /x Fin 1t tdt. (9.2.12)
Using (9.2.11), we obtain
fin(x) = ' na 'Fy o q(x)
+nx:%FLAx)—x ), (9.2.13)

where f7 ;(x) is the pdf of X; ;. On simplification, we have
xf1,..(x) = n{F1,(x) —F1,_1(x)}. (9.2.14)
Now
nlF1p(x) — F1p_1(x)]
=nlF 1, 1(x) — F 1 ,(x)]
=n [(F @)™ = (F@)" (1 - F(x)

= nl[F (x)]" 1F (x)

F(x)
f(x) f1,n00)> (9.2.15)

where F =1 — F. Combining (9.2.14) and (9.2.15), we obtain
flx) 1

==,x=0 9.2.16

F(x) 2 ’ ( )

which is the same as Equation (9.2.6). Hence, F'(x) = x, 0 <
x<1. =
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9.3 CONCLUSIONS AND REMARKS

As can be seen from the theorems obtained in this paper, in-
vestigating relations similar to

Xiom Le1-em 9.3.1)
or
X1, EViVy -V, (9.3.2)

may lead to interesting characterization results. In this re-
spect, the authors have studied another relation involving
products of random variables.

Let &1, ..., & be iid random variables such that
B! ;
Fo=( 7%, x=1 if p>0 (9.3.3)
x P, 0<x<1 if B<O.
If X1,X,,...,X,,... are non-negative iid random variables,
then
a1
XUm) = 5oL Ems B #0, (9.3.4)

if and only if
Fx)=1-(1+Bx)F",

x>0 if B>0
{0>x<—1 if B<O. (9.3.5)

It is also interesting to note that relation (9.3.4) includes
relation (9.3.1) as a special case (8 = —1).
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ABSTRACT

Conditionally specified distributions are ones which have the
property that their conditional densities belong to specified
parametric families. Hidden truncation models introduce skew-
ness into classical models by conditioning on events involving
an unobserved threshhold variable. Both kinds of models in-
clude classical models as special cases. We discuss the nature of
additional assumptions needed to characterize classical mod-
els among their more flexible counterpart models.

KEYWORDS AND PHRASES: Conditionally specified models,
hidden truncation, skewness, skewed normal distribution,
multivariate normal distribution, Cauchy distribution, Pareto
distribution

10.1 INTRODUCTION

The catalogue of available parametric families of distributions
for modeling multivariate data is expanding considerably.
Classical multivariate models include ones with normal, expo-
nential, Pareto, and other marginals. Some, but not all, of these
distributions have conditional distributions that are members
of well-known parametric families. The classical models are
often special cases of augmented families developed using a
variety of techniques. The present paper focuses on two model-
generating mechanisms (to be described in more detail be-
low): conditional specification and hidden truncation. Condi-
tional specification adds to classical models an increment of
flexibility with regard to the acceptable conditional distribu-
tions in the model. Hidden truncation permits introduction of
additional parameters which control skewness (or, if you wish,
which introduce asymmetries into the models). Typically, the
classical models are simpler but involve more distributional
assumptions than do the more flexible models. We discuss the
nature of the additional assumptions needed to characterize
the classical models among their more flexible counterparts.
Particular attention will be paid to the classical normal model
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and its related extensions. The nature of the assumptions nec-
essary to characterize a distribution will, of course, be of great
interest to any researcher seeking to use that distribution to
model some real-world data configuration. To avoid illogical
assumptions and, perhaps potentially more embarrassingly,
to avoid impossible models it is necessary to ask whether the
required distributional assumptions are indeed plausibly true
for the data set at hand. We begin with a brief review of the
classical multivariate normal distribution. Its curious restric-
tive properties will be used to suggest related, more flexible
models for modeling multivariate data.

10.2 THE CURIOUS CLASSICAL MULTIVARIATE
NORMAL MODEL

A k-dimensional random vector X = (X1, ..., X}) is said to
have a classical multivariate normal distribution if it admits
the representation:

X=p+ 127 (10.2.1)

where pu € R*, X is positive definite, and the coordinates of
Z =(Zq,...,7Z;) are independent identically distributed stan-
dard normal random variables. In such a case, we write X ~
N®(u, ¥). A random vector X constructed in this fashion has
remarkable properties. A partial list will include the following:

1. All one-dimensional marginal distributions are
normal.

2. All k;-dimensional marginal distributions (k1 <k) are
themselves k;-variate normal distributions.

3. All linear combinations of the X;’s are normally dis-
tributed and, more generally, for an ¢ x 2 matrix
B(¢ < k) we have

BX ~N“Y (Bu,BxB).

4. All conditional distributions are normal. Thus, if we
partition X as (X, X)’ where X is of dimension %, then
for every X € R**

XX = &~ NP(ax), $X).
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5. The regression functions are linear; i.e., the coordi-
nates of fi(X) in condition 4 are linear functions of x.

6. Conditional variances and covariances are constants;
i.e., the elements of £(x) in condition 4 do not depend
on X.

7. The density of X is elliptically contoured; i.e., X =
b + AZ where Z is spherically symmetric.

8. Xhas linear structure;i.e., X = b+ AZ where the Z;’s
are independent.

Individually, these properties will usually fail to characterize
the classical normal model. In fact, only conditions 3 and 4 will
do so (3 does so trivially, since it includes the assumption that
X is k-variate normal). The list of conditions is important be-
cause it behooves the investigator to ask whether he believes
all eight conditions are appropriate for his data configuration
before he adopts a classical multivariate model. It may be re-
marked that condition 3, “all linear combinations of the X;’s
are normal”, is a particularly strong assumption and may not
be at all obviously true in any particular situation. (A cynic,
after viewing this property, might conclude that it is unlikely
that we will encounter any classical multivariate normal data
in the real world!)

In Section 10.3, we will consider the implications of vari-
ations of condition 4 (normal conditionals), what they imply,
and what additional assumptions, if any, are needed to char-
acterize the classical normal model.

10.3 NORMAL CONDITIONAL
DISTRIBUTIONS

In addition to the (X, X)' notation for partitioning X introduced
earlier, we will also need:

Xi) =X with X; deleted, :=1,2,...,k
and

X(i,j) = X with Xi and Xj deleted.
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Bhattacharyya (1943) discussed distributions for X such that
for every i and every x(;) € R*~1 the conditional distribution
of X; given X(;) = X(;) is normal with parameters which may
depend on x(;). Arguments involving a well-known functional
equation [see Arnold, Castillo and Sarabia (1999) for details]
may be used to conclude that the density of such a random
vector with univariate normal conditionals is of the form

fx(x) = exp —%G(X)] (10.3.1)

where

2 2 2 k
G DD > Visinin [H x}f] : (10.3.2)
i1=0 is=0  i,=0 j=1
This family of densities includes many densities which are not
of the classical normal form. The classical multivariate nor-
mal density is associated with a choice of G(x) in (10.3.2) that
is a quadratic form in x. Thus all of the coefficients y;,;, i
for which Z’;Zli i > 2 must be zero. There are a variety of
additional assumptions that suffice to characterize the classi-
cal multivariate model within the class of Bhattacharyya nor-
mal conditionals models [i.e., models defined by (10.3.1) and
(10.3.2)]. For example, it is enough to insist that X; |X;) =
x() ~ N(u(x@)t?), i.e., to insist on constant conditional vari-
ances. This guarantees that G(x) is quadratic [essentially this
may be found in Bhattacharyya’s (1943) paper]. Another way
to guarantee that the unwanted y’s in (10.3.2) are all zero was
suggested by Arnold, Castillo and Sarabia (1994). They assume
that the conditional distribution of (X;, X ;) given X; j) =x(; ;)
is classical bivariate normal for every x; ;) € R*~2, for every
i, j. This guarantees that X;|X(;) = x(;) is univariate normal
for each x(;) and each i, so that (10.3.1)—(10.3.2) will hold, but
in addition the unwanted y’s are also forced to be zero by the
assumption that bivariate conditionals are classical bivariate
normal. A related result involving only univariate conditional
distributions takes the following form.
If for every i and for every x(;) e R~ 1,

X;|X ) =x%x() ~ Normal (Mi(X(i)), Giz(Xu)))
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and for every i, j and every x(; ;) € R—2
X | X, j) = X,j) ~ Normal (11;; (X, j), 07 (X))

then X has a classical k-variate normal distribution. The sec-
ond hypothesized condition forces the unwanted y’s to be zero
here.

These results which involve restrictions on the conditional
distributions can be viewed as corollaries of a marginal speci-
fication characterization.

If a k-dimensional vector X has a joint density of the
form (10.3.1)—(10.3.2), we will write X ~ NC® ie. X has a
k-dimensional normal conditionals distribution.

THEOREM 10.3.1 If X ~ NC™® and for every i X ;) ~ NC*-D
then X has a classical k-variate normal distribution (written
X~ N®)

The proof of this result relies on the fact that to have
the (£ —1) dimensional marginals of the NC*~V form, the
unwanted y’s in (10.3.2) must all be zeros.

Properties 5 and 6 of the classical multivariate normal
model appear to be quite restrictive. Specifically they say that
for any x the conditional expectation of X given X = X is a
linear function of X (i.e., we have linear regression functions)
and they give the very curious condition that the conditional
variance of X given X = X is a constant (i.e., does not depend
on x). Following Wesolowski (1991) we will say that a ran-
dom vector with these two properties has Gaussian conditional
structure. Do there exist random vectors which do not have a
classical multivariate normal distribution but which do have
Gaussian conditional structure? The answer is yes. However,
it is a nontrivial exercise to characterize all such distributions.
Even in two dimensions, Gaussian conditional structure can
be encountered in perhaps surprising settings.

The first such bivariate example exhibiting Gaussian con-
ditional structure (i.e., linear regressions with constant condi-
tional variances) is due to Kwapien [see Bryc and Plucinska
(1985)]. In this example the joint probability density function
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of the discrete random vector (X, Y ) is given by

|
'—l
0
'S
(e

fx,y(x,y):

=
T
iS]

where p € (0, 1).

Linear regression functions are automatic here, and con-
stant conditional variances follow since p(1 — p) = (1 — p)p.

A higher dimensional version of the Kwapien example
awaits discovery. However, Nguyen, Rempala and Wesolowski
(1996) provided a simple description of k2-dimensional abso-
lutely continuous densities with Gaussian conditional struc-
ture which are not classical multivariate normal. They begin
by taking fo(x) to be a k-dimensional classical normal density
with mean vector ¢ and variance covariance matrix Xy. Next,
pick g1 and g5 to be two different densities on the interval (0, 1)
each with mean 0 and variance 1. Consider the joint density

k
F*(x) = fo(x) +c [[(g1(x;) — ga(x)) (10.3.3)
i=1

where c is chosen small enough to ensure that f*(x) > 0, Vx.
Evidently f* is not a classical normal density but all of its
marginals are Gaussian and all of its first and second con-
ditional moments match those of fy. So f* does indeed have
Gaussian conditional structure.

It is possible to characterize classical k-variate normal
densities among those with Gaussian conditional structure by
imposing additional conditions: for example, if we add a requi-
rement of infinite divisibility or a requirement of elliptical sym-
metry. See Arnold and Wesolowski (1996) for details on this.

10.4 NON-NORMAL CONDITIONALS

Arnold, Castillo and Sarabia (1999) provide a catalog of con-
ditionally specified models analogous to the Bhattacharyya
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family (10.3.1)—(10.3.2). They begin with % specific parametric
families of densities on the real line. They then seek to identify
all joint densities for X with, for each j # 1,2,..., &, all the
conditional densities of X; given X(j) = X(;) being members
of the jth parametric family of densities. If each of the para-
metric families is an exponential family of densities, then the
class of all joint densities with the specific conditionals is itself
an exponential family of densities. If the £ specified families
of univariate densities are not exponential families, it is some-
times quite difficult to determine whether any joint densities
exist with the given conditional structure. However, some ex-
amples are tractable. To illustrate the nature of the results
that are obtainable, we will describe two such conditionally
specified families.

Suppose that we insist that for each j and for each x; €
R*~! the conditional density of X; given X(;) = x(;) be a
Cauchy distribution with location parameter u;(x(;)) and
scale parameter o;(X(;)), for some functions ; and o;. It may
be verified that the joint density of X must then be of the
form:

P17t
Z m; H x;’] (10.4.1)
j=1

iETk

fx(x) =

where Tk is the set of all vectors of 0’s, 1’s and 2’s of dimen-
sion k.

An analogous joint density with all conditionals of the
Pareto («, o) form can be readily constructed. Recall that X
has a Pareto («, o) density if

fx(x) = gu + §>—<“+1> 1(x > 0) (10.4.2)

(a convenient minor variant of the classical Pareto model). The
only joint densities with all conditionals (of X ; given X(;) j =
1,2,...,k)in the family (10.4.2) are of the form:

k —(a+1)
> 8 (H xlsl)] I(x>0), (10.4.3)

seSy, i=1

fx(x) =

where S}, is the set of all vectors of 0’s and 1’s of dimension .
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The “classical” k-variate Cauchy distribution is included
as a special case of (10.4.1). Its density takes the form

fx(x) = [Q(x)]7! (10.4.4)

where Q(x) is a quadratic form in x. This model corresponds
to the subclass of (10.4.1) in which m; = 0 for every i with
Z?ﬂ i; > 2. There is an intimate relation between the normal
conditionals model (10.3.1)—(10.3.2) and the Cauchy condition-
als model (10.4.3). The latter can be viewed as a scale mixture
of the former. Analogously, the classical k£-variate Cauchy den-
sity (10.4.4) is a scale mixture of classical k-variate normal
densities.

Parallel to the discussion in Section 10.3, it is possible
to characterize the classical k-variate Cauchy density (10.4.2)
and the classical Mardia (1962) multivariate Pareto model
within the models (10.4.1) and (10.4.2) by adding additional
distributional assumptions. For example, if X; given X;) = x;)
has a univariate Cauchy distribution for every i and every x;)
and if, in addition, (X;, X;) given X; j) = X(; ;) has a bivari-
ate classical Cauchy distribution (i.e., of the form (10.4.4) with
k = 2), for every i, j and every x(; ;), then the joint density of
X must be of the classical k-variate Cauchy form [i.e., of the
form (10.4.4)]. The parallel results for the Mardia k-variate
Pareto distribution are discussed in Arnold, Castillo, and
Sarabia (1993).

REMARK 10.4.1 The models (10.3.1)—(10.3.2), (10.4.1), and
(10.4.3), are constructed to have conditional distributions in
specific families. It is generally not true that their marginal
densities also have conditionals in the specified families. This
is true for the classical submodels but not for the general con-
ditionally specified models. Indeed, this is another avenue to
follow in characterizing the classical models.

10.5 HIDDEN TRUNCATION MODELS
The conditional specification route led us to more flexible fam-

ilies of densities than are available in classical models. An-
other fruitful strategy to invoke in the construction of flexible
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multivariate models involves what we may call hidden trun-
cation. Here, too, we will begin by considering a basic normal
model, recognizing that extensive generalization to other dis-
tributional bases will be feasible.

Let ¢ and ® denote, respectively, the standard normal
density function and distribution function. Azzalini (1985)
notes that for any A € R the following function is a well-defined
density:

flx; L) =2¢p(x)P(Ax), xeR. (10.5.1)

Typically (when A # 0) such densities will be asymmetric
(skewed). Azzalini calls (10.5.1) the skew-normal density and
if X has such a density we will write

X~SNM. (10.5.2)

Densities such as this can arise by truncation on unobserved
variables (hidden truncation). For example, if in a population
we believe that height and weight have a classical bivariate
normal distribution, then the weights of individuals who are
above average in height will have a location and scale changed
version of (10.5.1) as their density function. Generalizing this
model to truncation at arbitrary percentiles (instead of the
median) of the unobserved variable leads to a two parameter
extension of (10.5.1) that we will also call skew-normal. The
density takes the form

Ao

V1422

f(x; Ao, )»1) = gl)(x)q)()\,o =+ )le)/CI) ( ) . (1053)

If X has density (10.5.2) we write
X ~ SN (xo, A1) .

A Ek-variate extension of this model was discussed by Arnold
and Beaver (2000a). For it we have

@(A0+Ax)/ ( )
1+XA1

(10.5.4)

k
f (X520, A1) = [H o(x;)

=1
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Introduction of location and scale parameters via the formula
Y=p+ V23X, (10.5.5)

where X has density (10.5.4), u € R*, and ¥ is a k£ x k positive
definite matrix, leads to the full £-variate skew normal model
and we write

Y ~ SN®(pu, =, 2, A) . (10.5.6)

The study of distributional properties of this model is aided
by the fact that such a random variable Y has a tractable mo-
ment generating function [see Arnold and Beaver (2000a) for
details]. Of course, the classical k-variate normal density is
included as a special case in (10.5.6). For it we merely set
A1 = 0. The hidden truncation genesis of the model (10.5.5)
may be reaffirmed by considering the following plausible sce-
nario. Consider a random vector (Vy, V1, ..., V) which has a
joint density of the classical (£ + 1)-variate normal form. Now
suppose that for some vy only observations with Vy < vy are
observed (hidden truncation on (V1, ..., V};)). Then the condi-
tioned distribution of (V1, ..., V}) given Vy < vg is of the form
(10.5.5).

This hidden truncation genesis for the model (10.5.5)
makes transparent the following remarkable properties of the
k-variate skew-normal distribution. [Detailed derivations may
be found in Arnold and Beaver (2000a).]

THEOREM 10.5.1 If X ~ SN® [i.e, is of the form (10.5.5)-
(10.5.6)], then:

(i) Forany j <k, if X* is a j-dimensional sub-vector of
X, then X* ~ SN ),

(ir) If we partition X as X, X) where X is of dimension k
and X of dimension k — E, then the conditional density
of X given X =xis of the SN (k) form.

In brief, all marginals and all conditionals of multivariate
skew-normal distributions are again multivariate skew-
normal. This is a sharp contrast to the Bhattacharyya nor-
mal conditionals distribution (10.3.1)—(10.3.2) which had all
conditionals of the same form as the joint density but did not
have all marginal densities of the same form (except in the
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special classical normal sub-case). The development of suit-
able techniques for estimation and inference for the k-variate
skew-normal model is only in the early stages. Some discus-
sion of estimation in the bivariate case may be found in Arnold
and Beaver (2000a) and Azzalini and Capitanio (1999).

10.6 NON-NORMAL VARIANTS

Inspection of the density (10.5.4) suggests immediate gener-
alizations. The functions ¢ and ® in the numerator could be
replaced by any non-normal density and any non-normal dis-
tribution. It would then only remain to determine an appro-
priate normalization to arrive at a related non-normal variant
distribution. We can actually go further in our quest for gen-
erality, still using the hidden truncation theme as a guide.

Begin with (¢ + 1) independent random variables V7,
Vo, ..., Vi and U with corresponding densities and distribu-
tions given by:

Y1, Yo, ... Y, Yo
and
Wi, Wy, ..., ¥, ¥y .

Consider the conditional density of V given that Ao +A]V > U.
It is readily determined that this is of the form:

k
(v do, A1) [H Vi(vy) | Wolko + Ajv). (10.6.1)

=1

To make this integrate to 1, we must divide by P (1o + A|V >
U). Evaluation of this quantity is easy in some cases while in
other settings it will remain an awkward normalizing constant
that must be numerically evaluated. It is easy to evaluate if all
the V;’s and U are normal (as we have seen earlier). It is also
easy ifall V;’s and U are stable with the same index « (so that
Lo+ A]V —U has a known distribution). For example, they all
could be Cauchy variables. It is particularly easy to evaluate
P(ho+ A}V > U) if 19 = 0 and if all densities of V¢,...,V,,
and U are symmetric (though possibly all different). In this
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case P(A'V > U) =1/2. Some discussion of the correspond-
ing skew-Cauchy density may be found in Arnold and Beaver
(2000Db).

In the development of the model (10.6.1) we conditioned
on the event 19 + A1V > U . Instead we could condition on the
complementary event 1g+A]V <U . The resulting joint density
is only slightly changed. It is given by

[Ty (0] [1 = Wolao + Aw)

*(v; Ag, A1) =
F7(v: 30, A) Plo+ N,V <U)

(10.6.2)

If ¥y is symmetric this does not lead to new models not al-
ready subsumed by (10.6.1). Such would be the case in the
normal and Cauchy cases. If ¥y is asymmetric, then (10.6.1)
and (10.6.2) define different classes of densities. Such will be
the case if we focus on random variables V and U which are
constrained to be positive. To this we turn in the next section.

10.7 SURVIVAL MODELS INVOLVING
HIDDEN TRUNCATION

Consider £ + 1 independent positive random variables V1,

Vo, ..., Vi, U with corresponding densities and distributions
denoted by

Wl, w27 ceey Wk; WO
and

lpl: \'1127 ) q’k: \DO'

In this setting, the conditional density of V given X'V < U is
of the form:

[T i) [1 = wo(A'w)]
PNV <U) '
Models of the form (10.7.1) will be called hidden truncation sur-

vival models. Consider the special case in which V; ~ expone-
ntial (§;), i =1,2,...,k and U ~ exponential (§p). Our hidden

fv) = (10.7.1)
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truncation density is then given by
k
F(V) (H aie&'vi) e A I(v > 0). (10.7.2)
i=1

The density (10.7.2) factors into k£ functions of vy, ve, ..., vp
respectively, and we see that in fact it has independent expo-
nential (§; + §pA;) marginals. To get independent marginals, it
did not matter what the densities vy, ¥, ..., Y3 looked like;
all that mattered is that U had an exponential (§y) density.
In fact it is not difficult to verify that the hidden truncation
model (10.7.1) will have independent marginals if and only if
Yy is an exponential distribution function.

In some special cases, the hidden truncation survival
model (10.7.1) can reduce to a joint density that just involves
scale changes on the original joint density of (V 4, ..., V}) (with
its independent marginals). Such would be the case if the V;’s
had independent gamma distributions and U had an expo-
nential distribution. In general, however, the model (10.7.1) is
more flexible than the original joint density of v.

10.8 EVEN MORE FLEXIBILITY

In the models (10.6.1) and (10.6.2) [which subsumes (10.7.1)]
we could begin with an arbitrary joint density for v instead of
one with independent marginals. Equation (10.6.2) would be
replaced by

(V)W (Ao + AyV)

P+ V<U)
where y/(v) denotes the joint density of (V4,..., V) which is
assumed to be independent of U with distribution function
Wy. If the joint distribution of V admits the representation
V = A + BV where V has independent marginals, then the
model (10.8.1) will not lead to a genuine extension of the mod-
els obtained by location and scale transformations of variables
with distributions given by (10.6.1). Otherwise, (10.8.1) will
lead to new distributions. Complete generality in the hidden
truncation theme would be associated with a situation in which

f(v; 20, A1) = (10.8.1)
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(V,U) has an arbitrary (£ + 1) dimensional distribution and
again we condition on {Ag + A}V > U} or {Ag + A|V<U}.

10.9 COMBINING HIDDEN TRUNCATION
AND CONDITIONAL SPECIFICATION

We close by mentioning the possibility of building models which
will combine the concepts of hidden truncation and conditional
specification. We might consider joint densities whose condi-
tionals belong to some hidden truncation family of densities
[see, e.g., Arnold, Castillo and Sarabia (2002) for the case of
skew-normal conditionals]. Alternatively we could apply hid-
den truncation to some conditionally specified joint density
[as in (10.8.1)]. It doesn’t have to stop there (though it proba-
bly should). What about a joint density obtained by applying
hidden truncation to a joint density with skew-normal con-
ditionals? Eschewing such excesses of modeling fervor, it is
reasonable to argue that both hidden truncation and condi-
tional specification provide valuable augmentations to our
stock of multivariate densities to be used in modeling data
configurations.
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11.1 INTRODUCTION

Considering functionals of the geometric Brownian motion,
Matsumoto and Yor (2001) have recently observed that the
map ¥ : (0, 00)2 — (0, 00)?, defined by ¥ (x, y) = (x+y) 1, x~1—
(x+y)~1), preserves a probability measure which is a product of
the generalized inverse Gaussian (GIG) and the gamma distri-
butions. Recall that the GIG distribution p_p 4 is defined by

t—pap(dx) = Kix P Lexp(—a lx — (bx) )19 00) (%) dx,

where p e R, a, b (0, 00), are the parameters. The gamma dis-
tribution y, . is defined by

Va.c(dy) = Kay?™  exp (—¢ '9)1(0,00)(y) dy,

where g, ¢ € (0, c0) are parameters and K; and Ky are normal-
izing constants. Matsumoto and Yor (2001) observed that if
random variables X and Y are independent, X has the GIG
distribution pu_p ¢ (p >0), and Y has the gamma distribution
Yp,ari€, (X, Y) ~ u_p aa® Vp,a, then the random vector

1 1 1

(U V)=yX¥)= (X+Y’X X+Y>
has the same distribution as (X, Y ); hence, in particular, U
and V are independent. As observed in Letac and Wesolowski
(2000), the following extension of the Matsumoto—Yor property
holds: if (X, Y') has the distribution p_p 4.6 ® ¥p,a, then (U, V')
is distributed according to u_p pq ® ¥p,b-

Matsumoto and Yor (2001) asked about a converse of their
observation: Assume that X and Y are independent and that
the random vector (U, V)=v(X, Y ) has independent compo-
nents. Does (X,Y) have the distribution pu_p 45 ® yp,« (and
consequently (U, V) is distributed according to p—_p 4.4 ® vp,5)?
This question has been answered in the affirmative by Letac
and Wesolowski (2000) [a related problem involving constancy
of regression of V or V ~! on U has been considered also in Se-
shadri and Wesolowski (2001) and solved finally in Wesolowski
(2002)]. Also in that paper, the authors considered the
Matsumoto—Yor property for distributions on the cone of pos-
itive definite symmetric matrices. The characterization given
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there was restricted to distributions having strictly positive,
twice continuously differentiable densities. An extension as-
suming differentiable densities has been given in Wesolowski
(2002). The problem for random matrices of different dimen-
sions has been studied recently in Massam and Wesolowski
(2004).

The Matsumoto—Yor property has never been treated up
to now for random vectors. This paper is intended to partially
fill this gap by considering the bivariate situation. It is in-
teresting to note that the development of studies here is par-
allel to investigations concerning the Lukacs (1955) charac-
terization of the gamma law: if X, Y are independent posi-
tive non-degenerate random variablesand X +Y , X/(X +Y)
are also independent, then X, Y have gamma distributions.
It was followed by the solution of the problem in the ma-
trix variate case first—see Olkin and Rubin (1962), Casalis
and Letac (1996), Letac and Massam (1998), and Bobecka and
Wesolowski (2002). The case of random vectors was treated
only recently, first, bivariate in Bobecka (2002), and then, n-
variate in Bobecka and Wesolowski (2004).

11.2 CHARACTERIZATION

Below we present the characterization related to the Matsumoto—
Yor property for bivariate random vectors. It appears that in
this case the independence property (similarly as in the Lukacs
characterization) imposes special structures of the bivariate
gamma and GIG distributions. This is the main result of the
paper presented in the theorem below.

THEOREM 11.2.1 Let X = (X1, X3) and Y = (Y1, Y>) be indep-
endent random vectors with positive components. Assume that
X or'Y is not degenerate to the point. Let

_ 1 1
U=WUU, = )
(U1, U (X1+Y1 X2+Y2)

and

v:(vl,vz)=<——— ———>.
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The random vectors U and V are independent if and only
if there exist positive constants pj, Aj, kj, such that X has a
GIG distribution: u_p, 5, «; and Y j has a gamma distribution:
Ypji;» J = 1,2, and either

1. the components of X and Y are independent

or

2. the components of X and Y are linearly dependent:
X1=aXo, Y1 =aYs with a=A1/A9, and then p1= ps.

PROOF. Observe that if any one of X and Y is not degenerate
to a point, then all four random vectors X,Y , U, and V are not
degenerate.

Necessity. The independence property and the identity

Y; V; .
Y~ = 77 J = ]-, 2’
X; U

imply

E (Y{YfenV1toe¥2) B (X1“X,” Aloy, 03, 61, 65))
= E (V{'V{e"V1*2V2) E (U*U; " Bloy, 05, 61,69)),
(11.2.1)
where

-1 -1
A(Gl, o9, 91’ 02) — eo‘1X1+U2X2+91X1 +92X2

and
B(O_l o9 91 92) — edlU;1+02U£1+91U1+92U2
b b b
for any negative o1, 09, 01, 0 and fixed non-negative « and B.

Taking the logarithm of both sides of (11.2.1) and applying
9%/301361, we obtain

E (X7 X, Aoy, 0, 61, 09) B (X771 X7 Ao, 03, 61, 62))

[E (XX, Ao, 00, 61, 6)) |

E(U“"'U,” Bloy, 05, 61,69)) E(Ur*7'U; " B(oy, 03, 61, 09)

E (U;“Uy?Bloy, 00, 61,60) |
(11.2.2)
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Now applying (11.2.1) for o, @ — 1, and o + 1 to (11.2.2), we
arrive at

E (Yla—leﬂealYl—i-JzYz) E (Yix+1Y§eU1Y1+UzY2>

[E (nyzpealymyz)r
E (Vla—lvzﬂeelVl—i-Gng) E (V106+1V2/3e91V1+92V2)
B {E (VlavzﬁeelVﬁeQVz))r

(11.2.3)
Similarly, we obtain a dual relation
E (YiXYQﬂ_le(Ilyl-‘t-UzYZ) E (Y%Y28+1601Y1+02Y2>

[E (Yixyésealymyz)f

E (V{xvzﬁ—leelVﬁ-@sz) E (VIC(V2IB+1691V1+92V2)

2
[E (V{"V2’3691V1+92v2)}
(11.2.4)
Writing (11.2.3) fora = 1, 8 = 0 and writing (11.2.4) for« = 0,
B =1, we have
E (Y;861Y1+02Y2) E (eU1Y1+0-2Y2)
B (¥jentiinta)?

E (V .2e91V1+92V2) E(e1V1+6:V2)
=—7 - (11.2.5)
[E (Vje91V1+92V2)]
for j = 1, 2. Then by the principle of separation of variables,
(11.2.5) implies

*f 9%g
80]2 f 2028

J
— = C; _—
af \2 7 9g \ 2
do;j 00;

where f and g are the Laplace transforms of Y and V, respec-
tively, and c¢q, co are some constants greater than one. Then
as in Bobecka (2003), we conclude that only the following two
cases are possible: either

:Cj’ J = 1, 2, (11.2.6)

© 2005 by Taylor & Francis Group, LLC



182 Bobecka and Wesotowski

1. c¢1 #c9 and then
f(o1,02) = (1 = A101) " PU(1 — Ago9) P2,
(01, 09) € (—00, AT1) X (—00, A5 1)
and
g(01,09) = (1 — k101)7PU1 — k909) P2,

(61, 62) € (—00, k7 1) x (=00, 15,

where p; = 1/(c; —1) > 0,and A; > 0,«; >0, j
1,2, i.e., the random vectors Y = (Y,Y5) and V
(V1, V2) have independent gamma components: Y;

Vpinits Vi~ Vputsd =12
or

2. ¢1 =c9 =c and then

2

i

f(o1,02) = (1 — X101 — Agog + Azo102) P,
A101 + A909 — A30109 < 1, (1127)
and
8(61,02) = (1 — k101 — k202 + k36162) 7,
k101 + k909 — k30109 < 1, (11.2.8)
where p = 1/(C —1) > 0and AM,Ag > 0, Aihg > Ag >
0_, k1, kg > 0,k1k9 > k3 > 0, i.e., the random vectors
Y, V have bivariate gamma distributions.

In the next step of the proof, it will be shown that in the
above case 2 we have either A3 = A1A9 and x3 = kK9, which
implies that the components of Y and V are independent, or
A3 = 0 and k3 = 0, which implies that the components of Y
and V are linearly dependent gamma variables.

Again, we apply the principle of separation of variables to
(11.2.3) with « = 8 = 1 and o9 = 0, arriving at

2
E (Y2e01Y1) E <Y12Y2e"1Y1> —d [E (Ylee‘lelﬂ . (11.2.9)
where d > 1 is a constant. Now introduce a new random vari-
able Z with the distribution defined by

Io” y2oF (dy1, dys)

Pz(dy) = E(Yy) ,
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where F is the df of Y and the integral in the numerator is
with respect to yo. Then after dividing both sides of (11.2.9) by
[E(Y3)]?, we have

E (e"%)E (2%"%) =d [E (Ze”lz>r,

which means that Z is a gamma random variable, y, 1/,. Then
in particular
1
E (%)= —— . 11.2.10
(e ) (]_ — OlO']_)q ( )
Now observe that
E (Yoe""1) = E (e"%) E (Y).

Using the fact that Y has the bivariate gamma distribution
(with the Laplace transform (11.2.7)) and (11.2.10), we obtain
the equation

(g — A301)(1 — @01)? = Ag(1 — Ay09)P T (11.2.11)

for any oq < Al_l. Letting o7 4 AII, it follows that the right-hand
side of (11.2.11) tends to zero. Consequently, either A3 = A1Ag
or o = A1. Thus, in the first case we have

(1—-a01)? =(1— 21017,

which implies « = 11 and ¢ = p. In the second case, it follows
that

()xz — )»30’1) = )\2(1 — Xlal)p+1_q

and, thus, either A3 = 0 and then p +1 = q or A3 # 0 and then
q =D, Alhg = Ag.

Summing up, only the following cases are possible: either
A3 = A1Ag or A3 = 0. Similarly, we can show that either k3 =
K1K9 OT K3 = 0.

If A3 = A1Ag and k3 = kik2, then Y and V have indepen-
dent gamma components: Y; ~ Yp it V;~ Vpits j=12

If A3 = 0 and vs = 0, then the components of Y and V are
linearly dependent, i.e., Yo = aYy, Vo = bV, where Y; ~
yp,kil’ Vi~ J/p,,;l, a = hia/A1, b= K2/K1.

Observe that other cases are impossible. If A3 = A1A9 and
kg = 0, then (Y1, Y3) has a density and (V1, V) doesn’t have a
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density. However, if (Y1, Y9) has a density, then also (X; + Y71,
Xo+ Y9 =U1, Uy has a density. Hence, U1+ V1, Ug+ Vg =

(Xil, X%) has a density. Thus,

O (S S S
X1 X1+Y:r Xo Xo+Yo
has also a density since it is a smooth function of the random
vector (X,Y) with independent bivariate absolutely continu-
ous components X and Y . Consequently, k3 # 0. Similarly, the
case A3 = 0 and k3 = kK9 is impossible.
Summing up, we have the following two cases:

either

1. Y and V haveindependent gamma components: Y; ~
ij,)\;_% VJ ~ ij’,{;l, J =12,
or

2. Y andV havelinearly dependent gamma components:
Y2 = aYl, Vz = bVl, where Y1 ~ )/p )\171, V1 ~ )/p Kfl’
a = Ag/A1, b =K2/K1.
Case 1 o
In this case all the random vectors X, Y, U, V have den-

sities. Since X, Y are independent and U, V are independent,
we have the following identity for the densities:

fo(u1,u2) fy(v1,v2)

f_ 1 1 f_ 1 1 1 _ 1
_ X u1+v1’ ug+uvg Y Ui u14v1’ usg ug+vg
(w1 + vl)zu%(uz + v2)2u§

), (11.2.12)

which holds a.e. with respect to the Lebesgue measure L4 in R*

foru;,v; € (0,00), j =1, 2. Using the fact that Y and V have

independent gamma components, we obtain the following:

foluy, u2)ui’l"‘lu§2+1exf1ulexgluzekfluflekglugl

=cfx ((ul +up)L, (ug + 02)_1> (u1+v1)_(p1+1)(u2 +vz)_(p2+1)
w1 W1ty (Watvp)ghy waton) ™ gy (uaon) (11.2.13)

foru;,v; € (0,00), j = 1,2, Ly a.e., where ¢ = const.
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Denoting u1 + vy = mq, us + vg = mgy, the above equation
can be written as

fo(uy, ug) = c(my, mo)g1(ui)ge(usg), (11.2.14)
where c is the right-hand side of (11.2.13) and

1 _ _k—l -1
gj(uj)_ujp’ e i uj i

J =1, 2. We can always choose m1, mo such that (11.2.14) holds
for (w1, ug) € (0, mq) x (0, mg) Ly a.e. Moreover, m; and my can
be chosen arbitrarily large. This implies that U has indepen-
dent GIG components U; ~ p_p;«;1;> J = 1,2. Dually, by
(11.2.13), it follows that X has also independent GIG compo-
nents X; ~ pu_p.oix;s J =12

Case 2
Since Yo = aYy, Vo =0V P-as.and V; = X — ﬁ,
J = 1,2, we obtain
bYl _ aYl P —_as
Xl(X1+Y1) XQ(X2 +aY1) o
Since Y is P-a.s. positive, we obtain
Y1(X; —bX) = X2 - gxg P —as. (11.2.15)

Assume now that X; # bX5 on a set A of positive probability
P. Then on A we have

b
X1 - X3
X -bXy’
which contradicts the independence of X and Y. Thus, X; =

bX, P-a.s. and by (11.2.15) b = 1/a. Thus, the components of
X are linearly dependent: X9 = aX;. Since U; = = X7 +Y ,J =

Y, =

1, 2, we obtain immediately that the components of U are also
linearly dependent: Uy = bU ;.

Thus, the problem is reduced to the univariate case. Hence,
by the result of Letac and Wesolowski (2000), we get that X,
and U1 have GIG distributions: X1 ~ p_p 5.1, U1 ~ U—p icy,0q-

Sufficiency. Now we assume that the random vectors X and Y
have the GIG and gamma distributions as given in the state-
ment of the theorem. We will show that the random vectors U
and V are independent.
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First consider the case of independent components of X
and Y . Since, by the assumption of the theorem, X and Y are
independent, it follows that the random vectors (X7, Y1) and
(X9, Ys) are independent. It implies that the random vectors
(U4, V1) and (Usg, Vo) are independent. However, by the uni-
variate Matsumoto—Yor property (recall that the components
of X are GIGs and the components of Y are gammas), it fol-
lows that U, V1 are independent and Usy, V5 are independent.
Again, using the independence of (U1, V1) and (Us, Vs), we
conclude that U = (Uq, Usy) and V =(Vy, V) are independent.

Finally, consider the case of linearly dependent compo-
nents of U and V ,ie., U = (U;,U;q/a) and V = (V1,V1/a),
with U being a GIG random variable and V; being a gamma
random variable. Then, by the univariate Matsumoto—Yor prop-
erty, it follows that U7 and V1 are independent. Consequently,
U and V are also independent. =
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ABSTRACT

A random variable with continuous distribution is expanded
as a series of principal components. Some properties of the
first principal component, which may characterize the vari-
able, and an inequality concerning a function and its derivative
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are obtained. The logistic distributions have special interest,
as the first principal component is the cumulative distribution
function. Dependence between variables is also studied.

KEYWORDS AND PHRASES: Orthogonal expansions, principal
components, Karhunen—Loéve expansion, logistic distribution,
stochastic dependence

12.1 INTRODUCTION

Let X be a continuous random variable with range I = [a, 8],
cdf F, and density f with respect to the Lebesgue measure. We
can relate X to the stochastic process X = {X;,t € I}, where
X; is the indicator of [X > ¢]. Then X? = X; and it can be
proved that the expansion is

X - X'| = /1 (X; — X2 dt = S {FuX) — Fu XD,
n>1
where X' is distributed as X, and if ¢ is finite

X:a+/IXt dt =a+ 3" fuld) fulX),

n>1

X=a+/IXt2dt=a+an(X)2.

n>1

The sequence {f,(X)} is a countable set of uncorrelated ran-
dom variables, principal components of X, with variances
Var( f, (X)) = A, such that

tr(K) = /I Fll-F@hde =i,

n>1

An being an eigenvalue with eigenfunction v, of the integral
operator defined by the symmetric kernel K(s, ¢) = min{F (s),
F@)} - F(s)F(2).

The set {y,} of eigenfunctions constitutes a basis of
L?([a, b]) and each function f, is obtained by

fu () :/IXth(t)dt - / U (5)ds.
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As a consequence of Mercer’s theorem, the above expan-
sions exist provided that tr(K) is finite. These expansions can
be obtained from the Karhunen—Loéve expansion of X

X =) va®)X,. (12.1.1)

n>1

The convergence is in the mean square sense. See Cuadras and
Fortiana (1995, 2000) and Cuadras and Lahlou (2000).

It is worth noting that zero correlation between princi-
pal components can result from the generalized Hoeffding’s
formula

Cov (a(X), B(Y))

b pd
=/ / (H(x,y) — F(x)G(y)} dB(y) da(x), (12.1.2)

where H is abivariate cdf with univariate marginals F', G, and
ranges [a, b], [c,d], by taking H — FG = K, = [, 8 = [n
(Cuadras, 2002a).

The orthogonal expansion of a random variable in prin-
cipal components is of interest in formulating a continuous
extension of multidimensional scaling (Cuadras and Fortiana,
1995), in obtaining a graphical test to distinguish between lo-
gistic and normal distributions (Cuadras and Lahlou, 2000 and
Cuadras and Cuadras, 2002), and in improving some tests
of independence by relating principal components (Cuadras,
2002b), and the eigenvalues of K contribute to the study of
the asymptotic distribution of some statistics related to Rao’s
quadratic entropy (Liu and Rao, 1995). For tests of fit, Durbin
and Knott (1972) used a similar principal components expan-
sion for \/n(F, — F), where F, is the empirical cdf based on a
sample of size n obtained from X.

This paper aims to characterize the distribution of X via
the first principal component of X.

12.2 THE DIFFERENTIAL EQUATION

Lety, = frand u, = E(f,(X)).It canbe proved that the means
n, variances A,, and functions y, satisfy the second-order

© 2005 by Taylor & Francis Group, LLC



192 Cuadras

differential equation
W Hy—wf=0,  ya=yl)=0. (12.2.1)

The solution of this equation is well known when X is [0, 1]
uniform. The solutions for X exponential, logistic and Pareto
were obtained by Cuadras and Fortiana (1995) and Cuadras
and Lahlou (2000, 2002), respectively.

Examples of principal components f,(X) and the corre-
sponding variances A, are:

1. (V2/(nm))(1 = cosnaX), A, = 1/(nx)?, if X is [0, 1]
uniform.

2. [20(&nexp (—X/2)) — 2J0(&0)] /Eadoln), An = 4/E2,
if X is exponential with unit mean, where &, is the n-th
positive root of /1 and </, J; are the Bessel functions
of the first order.

3. (n(n+ V) 2[L(F (X)) + (-1)"2n+1], o, = 1/
{n(n+ 1)}, if X is standard logistic, where (L,) are the
Legendre polynomials on [0, 1].

4. cplX sin(&,/X) — sin(&y], A, = 3/5,%, if X is Pareto
with F(x) =1 —x73, x > 1, where ¢, = 25, 1/2(2¢, —
sin{2¢,)}"1/2 and &, = tan(&,).

12.3 SOME PROPERTIES OF THE
EIGENFUNCTIONS

In this section we study some properties of the eigenfunctions
Y, and their integrals f;,.

PROPOSITION 12.3.1 The first eigenfunction v is strictly pos-
itive and satisfies

V1(x) > ypla) = Yu(b) =0, xe(a,b), n>1.
PROOF. K is positive, so ¥ is also positive (Perron-Frobenius

theorem). On the other hand K(¢,¢) = F(£)(1 — F (¢)) = >_,-1
An¥n(t)2, which satisfies K(a,a) = K(b,b) =0. =

Clearly f7 is increasing and positive. Moreover, tr(K)
is finite if Var (X) exists and any f,(b) is bounded even for
b = o0.
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PROPOSITION 12.3.2 Let 02 = Var(X). Then f,(b) satisfies

| FB)] < % n>1. (12.3.1)

PROOF. v, = f, is an eigenfunction and from (12.1.2)

/I ( /I K(x, y) () dx> dy =, /I Un(y) dy
= hnfulB)
= Cov (fn(X), X).

Hence )\?Lfn(b)2 < Ao02 m

PROPOSITION 12.3.3 The principal components {fn(X)} of X
constitutes a complete orthogonal system of L?>(F).

PROOF. The orthogonality can be proved as a consequence of
(12.1.2). Let ¢ € L2(F). The proof that {f,(X)} is complete
is easy if we assume that ¢’ exists. Suppose that Cov (¢(X),
fn(X)) =0,n> 1. As {,} is a complete system ¢’ = >, 1 ch¥n
and integrating, we have ¢ = co + 3_,,~1 ¢ fn. But Cov (¢(X),
fiX)) = cpry, = 0,n > 1, which shows that ¢ must be constant. =

12.4 THE FIRST PRINCIPAL COMPONENT

In this section we prove two interesting properties of the first
principal component f1(X).

PROPOSITION 12.4.1 The increasing function f1 characterizes
the distribution of X.

PROOF. Write y = f1. Then y satisfies the differential equa-
tion (12.2.1), where u = E(y(X)), A = Var (y(X)). When the
function y is given, u and A may be obtained by solving the
equations

/ —hy dx =1, / —hy ydx = .
1 (y—m) 1 (y—n)
Then the density of X is given by f = —Ay"/(y — ). =

© 2005 by Taylor & Francis Group, LLC



194 Cuadras

PROPOSITION 12.4.2 Let p%(X,, ¢(X)) denote the squared cor-
relation between X, and a function ¢(X). The average of p*(X;,
¢(X)) weighted by K(t,t) = F ()1 — F(¢)) is maximum for
¢ = f1,lLe,

sup / 02X, $(XNK(L, t) dt = / P2(X,, LXK, t) dt.
¢ JI I

PROOF. Let us write (see Proposition 12.3.3) ¢ = .1 anfn.
Then Var (¢(X)) = 3, a2k, and we can suppose Y .1 a2 = 1.
From (12.1.1)

/ Cov (X, p(X))2dt = " a2i2.
1

n>1

As Var (X;) = K(¢,t), we have

SUP/IPQ(Xt,(ﬁ(X))K(t,t)dt = (Za,%x,%) /(Za,%/\n)
¢

n>1 n>1
<A Zar%)‘n / Zaikn
n>1 n>1
= )\‘1' u

12.5 AN INEQUALITY

The following inequality holds for X with the normal N (0, 1)
distribution [Chernoff (1981) and Cacoullos (1982)]

[E(¢/(X)]? < Var [¢(X)] < E([¢p/(X)]?),

where ¢ is an absolutely continuous function and ¢(X) has
finite variance. This inequality was extended to any distribu-
tion by Klaassen (1985). Let us prove a related inequality con-
cerning the function of a random variable and its derivative.

If f1(X) is the first principal dimension, then y; = f] and
f1(0) = [; ¥1(x) dx. Noting that f1(b) is bounded, let us define
the probability density with support I = [a, b]

o(y) = V1(y)
f1(b)”
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THEOREM 12.5.1 Let Y be a r.v. with pdf ¢. If ¢ is an abso-
lutely continuous function and ¢(X) has finite variance then
the following inequality holds

Var [¢(X)] > f1(5)? Var [ f1(X)]E(¢'(Y))]?, (12.5.1)
with equality if ¢ is f1.

PROOF. From Proposition 12.3.3, we can write ¢’ = 3.1 an¥,
where a; = [} ¥1(x)¢'(x)dx = f1(b)E(¢'(Y)). Then ¢ = 3,4

a, f» and
Var [¢(X)] = aZ Var (fu(X)) > af Var (f1(X)).

n>1

If ¢ = f1 we have f1(D)?[E(¢'(Y)N]I?=1. u

12.6 THE LOGISTIC DISTRIBUTION

Suppose that X follows the standard logistic distribution. The
cdf'is

F(x)=Q+exp(—x)7!, —oo<x <+ o0,

and the density is f = F (1 — F). This distribution has special
interest, as the first and the second principal components are
directly related to ¥ and f.

The two first principal components are f; = V6F, fo =
V307, i.e., proportional to the cdf and the density, respectively
[Cuadras and Lahlou (2000)]. Note that f; can be obtained
directly, as if we write f; = c¢F, then u = ¢/2, A = ¢2/12 and
(12.2.1) reduces to

c? 1
E(l—2F)+<F—§)=O,

so ¢ = /6. Besides
sup / p2 (X, d(X)) F () dt = / P2 X, F (X)) f() dt,
¢ JI I

i.e., the expectation of p?(X;, (X)) with respect to f(¢) is
maximum for F (X).
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As now the above density ¢ = ¥1/h1(b) is f and f1(b) =
V6, inequality (12.5.1) for the logistic distribution reduces to

Var [¢(X)] > 3[E(¢'(X))]2.

In general, if Z is logistic with variance o2 then Z = «X with
a = (v/3/7)o. Noting that the functions fn,n > 2, are orthog-
onal to f] = V6 f and using (12.1.2), we obtain

Cov (F(X), p(aX)) = /1 (VB F(x))? dx /I o F)9/@y) dy

o !/
= §E(¢ (aX)).

As Var (F' (X)) = 1/12, the Cauchy-Schwarz inequality proves

that
2

Var [¢(2)] > (%) Var (Z)[E(¢'(Z))]?.

12.7 DEGREE OF INDEPENDENCE

The principal components can be used to measure the degree
of independence between two random variables X,Y, with
ranges la, b, [c, d] joint density » and marginal densities f, g,
respectively.

In an early paper, Cuadras (1972) defined independence
of degree k between X,Y as

EX'Y))=EX)E(Y/') for i+j <k+1,

provided that the moments exist, where i, j, £ are positive in-
tegers. Clearly X and Y are uncorrelated if 2 = 1 and stochas-
tically independent if £ = co.

An extension is as follows. Let {f,,(X)} and {g,(Y )} be
the principal components for X and Y, respectively, ordered
according to the corresponding eigenvalues. Independence of
degree k is now defined as

E{fi(X)g;(Y)} = E{fi(X)E(g;(Y)} for i+j <k+1

If . =1 then X,Y are uncorrelated in an extended sense. For
example, if the marginal distributions are logistic, the first
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principal components f7,g; are the cumulative distribution
functions F', G and Spearman’s rho is

ps = Corr (F(X),G(Y)) =0.

On the other hand, as a consequence of the following theorem,
X,Y are stochastically independent if £ = cc.

THEOREM 12.7.1 Let X,Y be rv.’s with supports la, bl, [c, d],
joint cdf H, and marginals F, G, respectively. If { fn(X)}, {g.(Y )}
are the principal components, then X,Y are stochastically
independent if and only if all the correlations between com-
ponents are zero:

Corr (fn(X),gn(Y)) =0 for m,n>1.

PROOF. We have fn,(x) = [ yn(t) dt,g(y) = [ ¢u(¢) dt,
where {V,,}, {¢,} are complete orthonormal sets. Then {y,, x ¢,,}
is a complete orthonormal set on L2([a, b] x[c,d]). As H—F G €
L?%([a, b] x [c,d]) we may expand
H(x,y) = F()Gy) = > tmn¥m(2)¢n(y).
m,n>1

The Fourier coefficients are

b pd
= / / (H(x,y) — F ()G Wm(x)$n(y) dxdy

b ,d
_ / / {H(x,y) — F(x)G(¥)} dhm(x) dgn(y)

= Cov {h,(X), gn(Y)} (from (12.1.2)).
Hence, H(x,y) = F (x)G(y)ifand onlyifa,,, = 0form,n > 1.

An example of independence of order 1 < £ < oo is as
follows. Let F; = (f; — i) /+/Ai, i.e., F;(X) is the standardized
principal component and, likewise, consider G;. Let us define
the bivariate probability density A with marginals f, g :

m
hx,y) = f(x)gy) |1+ > pFi(x)Gi(y)|, 1<k =<m,
i=k
where |p;| < 1,i =k, ..., m, play the role of canonical correla-
tions (Cuadras, 2002b). It is readily proved that independence
of order % exists for this distribution. =
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ABSTRACT

In this paper, using the asymmetric LINEX loss function we
derive the risk function of the operational ridge regression esti-
mator (RRE) for individual regression coefficients. We also ex-
amine the risk performance of this estimator when the LINEX
loss function is used.
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13.1 INTRODUCTION

In regression analysis, researchers often encounter the prob-
lem of multicollinearity. The ridge regression estimators
proposed by Hoerl and Kennard (1970) are one of the solu-
tions to solve the problem of multicollinearity. This estimator,
however, is non-operational since it depends upon a biasing pa-
rameter, k£, which is unknown. A particular operational
version of the estimator, where % is estimated from the data
and is, therefore, stochastic, has been proposed by Lawless
and Wang (1976). However, as the expressions for the first two
moments of the ridge regression estimator are complicated,
it is not easy to carry out numerical evaluations. Since the
work of Hoerl and Kennard (1970), many studies on small
sample properties of the ridge regression estimators have
been made. Firinguetti (1987) derived the exact bias and ma-
trix of second-order moments of the Lawless and Wang
operational ridge regression estimator. Firinguetti (1991) de-
rived the exact properties of the Lawless and Wang opera-
tional ridge regression estimator. Kozumi and Ohtani (1994)
derived the general expressions for the moments of the or-
dinary ridge regression coefficients in a different way from
Firinguetti (1987). It is interesting to note that almost all stud-
ies on the ridge regression and biased estimators use the mean
square error or, equivalently, the (symmetric) quadratic loss as
the basis of measuring estimators’ performance. Being sym-
metric, the quadratic loss imposes equal penalty on over- and
underestimation of the same magnitude. Symmetric losses,
such as squared error loss, are widely employed in decision
theory, but their application is often justified by their nice
mathematical properties, not their appropriateness in repre-
senting a true loss structure. It is well known that the use of
symmetric loss functions may be inappropriate in many cir-
cumstances, particularly when positive and negative errors
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have different consequences. Why should the ordinary least
squares estimator be used to measure the performance of an-
other estimator when the loss function is not the squared error
loss function? The nature of many decision problems, such as
reliability analysis, requires the use of asymmetric losses. For
example, when estimating the average life of the components
of a spaceship, overestimation is usually more serious than
underestimation. In fact, the space shuttle disaster of 1986
was partly the result of the management’s overestimation of
the mean life or reliability of the solid-fuel rocket booster [see
Feynman (1987)]. In some estimation problems it may be ap-
propriate to use asymmetric loss function. Varian (1975) intro-
duced a very useful asymmetric loss function called a LINEX
loss function. Zellner (1986) extensively discussed the proper-
ties of the LINEX loss function. Zellner (1986) also suggests
that in dam construction, underestimation of the peak water
level is often more serious than overestimation.

When estimating the parameter 6, by 8, the loss function
is given by:

L(9) = b [exp(aA) —aA — 1] (13.1.1)

where a # 0 is a shape parameter, b > 0 is a factor of propor-
tionality, and A = (6 — 0)/6 is the relative estimation error in
using § to 6 estimate.

Since the relative estimation error does not depend on a
unit, it is often used. In our investigation we assume (with-
out loss of generality) that 56=1. The sign of shape parameter
a reflects the direction of asymmetry and the magnitude of a
reflects the degree of asymmetry. There are numerous practi-
cal applications where we use a loss function such as (13.1.1).
When a > 0, the convex loss (13.1.1) increases almost linearly
for negative error A and almost exponentially for positive error.
Therefore, overestimation is a more serious mistake than un-
derestimation. When a < 0, the linear—exponential increases
are interchanged, where underestimation is more serious than
overestimation. For small values of |a|, L(0) = ba?(6 —0)? /262,
which is proportional to a squared loss. Thus, the LINEX loss
function can be regarded as a generalization of the squared
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error loss function allowing for asymmetry and we employ an
asymmetric LINEX loss function as an error criterion.

LINEX has been extensively explored in the literature
and found to be quite useful. Numerous authors have consid-
ered the LINEX loss function in various problems of interest.
Examples are Rojo (1987), Giles and Giles (1996), Zou (1997),
Pandey (1997), Ohtani (1999), Wan and Kurumai (1999),
Takada (2000), Xiao (2000), Wen and Levy (2001), and Sarabia
and Pascual (2002). In particular, Ohtani (1995) considered
the risk of the feasible generalized ridge regression (FGRR)
estimator under the LINEX loss function. Wan (1999) exam-
ined the properties of the feasible, almost unbiased generalized
ridge regression estimator under the asymmetric LINEX loss
function.

This article examines the properties of Lawless—Wang’s
operational ridge regression estimator under the asymmetric
LINEX loss function. In Section 13.2, the model and estima-
tors are presented. In Section 13.3, the risk function and risk
performance of Lawless—Wang’s operational ridge regression
estimator have been given.

13.2 THE MODEL AND ESTIMATORS

Consider the classical linear regression model (CLRM)
y=Zy+u (13.2.1)

where y is a vector of observations in the dependent variable,
Z is an n x [ full rank matrix of non-stochastic observations
in the explanatory variables, y is an/ x 1 vector of unknown
coefficients, and u is an n x 1 vector of unobserved random
disturbances such that u ~ N (0, 02I). Let us define A as the
diagonal matrix of eigenvalues and @ as the corresponding ma-
trix of orthonormal eigenvectors of Z'Z. Then we can rewrite
(13.2.1) as follows:

y=2QQ'y +u=XB+u, (18.2.2)
with
X =2Q, X'X=A, and B=Qy. (13.2.3)
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Equation (13.2.2) is the canonical version of the CLRM. Thus,
the least squares estimator of 8 is

b=A"1X"y, (13.2.4)
whose ith element is simply
bi=x)\i—y, i=1,2,...,1 (13.2.5)
i

where x; is the ith column of X and A; is the ith diagonal
element of A. It is well known that for this estimator, we have

E(b) =8, Var(b)=o02A"Y, Var(y) =02/x. (13.2.6)

It is obvious that b; becomes inefficient as the value of A;
gets small. However, for ill-conditioned Z matrices, Hoerl and
Kennard (1970) proposed the ordinary ridge regression (ORR)
estimator defined in the orthogonal model (13.2.2) to be

B=(A+EI)'Ab, k>0. (13.2.7)
Denoting the ith element of 8 as 8;, ; is written as
b= i p,
T A+ R "

Generally, £ is a function of the data and the properties of
the estimator will depend on the choice of 2. As for the ORR
estimator, Lawless and Wang (1976) proposed, as the biasing
parameter, to use

162

b'Ab

where 62 = (y— Xb)'(y — Xb)/(n—1). Thus, the ORR estimator
proposed by Lawless and Wang is written as

k= (13.2.8)

) 162 \ "
A= (A + b,AbI> Ab (13.2.9)

162 -
=1 N
( " oAb ) ’

and the ith element of § is given by

Bi = 1—L b; (13.2.10)
T MOAb+162) 7" -
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From the simulation results of Lawless and Wang (1976), it can
be found that the ORR estimator (13.2.9) has the best mean
square error (MSE) properties among other ridge regression
estimators. Therefore, we confine ourselves to the ORR esti-
mator proposed by Lawless and Wang (1976) hereafter.

13.3  RISK PERFORMANCE OF 3; UNDER
THE LINEX LOSS FUNCTION

The asymmetric LINEX loss function of b; is defined as

L(b;)) = exp(aA) —aA —1

oo rAr
=y (13.3.1)
r=2 r
where A; = (b; — B;)/B;. The risk function of §; is
a?
R(b;) = E(L(b;)) = exp (272> -1 (13.3.2)

where 6; :Ail /2 Bi/o. The risk of Lawless—Wang’s estimator can
be written as

R(B) = E(L(B))) = E(exp(al;) —al; — 1)

where A; = (B; — B;)/B;. Using (13.2.10), we have

B MO Ab+162 ) 6;

162 J zi\/ .
1- — il —1)y—J
( A0 Ab + 162> ] (9i> =D

j .
= Z +Cj ij(—l)r+J_p

l&z P Zi J
I\ oAb +162 (97)

~9 ) r
[(B: — B)/Bi]) = Kl L) G 1] (13.3.3)
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where z; = kl/z bi/o, mCr = r,(#lr),, and % = Z—l The risk
function of §; is
— _ IBL ,Bi '
R(B) = E(L(B) = Z E % (13.3.4)
r= 2 l
r (=1)r+i-p

IIPH18

LB

Bl _ ’ (ﬁ>J.
MO Ab 4162 6;

Define the functions H(p,q) and J (p, g) as

H E Z52 P Z; 2
(p,q) = l(m) (6_L> ] (13.3.5)

162 P g\ 2t

where p and q are nonnegative integers. The explicit formulas
for H(p,q) and J (p, q) are

r —DIplj — p)!

X

r-1 v_
1 pq+s+i+= (1—2)P* 1

Hp,g) =3 iK;t/ T (1) Z]pz dz (13.3.7)

s=0 t=0 0

if j = 2q where

i

2

1
Két :Wﬁs(wl)m(wz)

y I(qg+s+t+n/2)T(q+s+1/2)
I'(v/2)T'(s +1/2)I'(q +s +t +(*+1)/2)

e~ 12(w/2)* e2/2(wy/2)t

ﬁs(a)1) = Sl y T]t(a)g) = 71
or
X X 1 Q+s+t+%(1 _ )p—&—%—l
J(p, q) == Z ZKst/ i " ? D dZ (13.3.8)
s=0 t=0 0 [1 + (;‘ — 1) Z]
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if j = 2g + 1 where

N 1
K = w’?s(wl)nt(a&)

®

5 INg+s+t+(n+1)/2)I'(qg+s+1)
F(v/2)I' (s +1/2)I'(q +s+t +1*/2)°
In comparing the risks, we consider relative efficiency of

Lawless—Wang’s operational ridge regression estimator to the
OLS estimator, defined by

R(b;)
R(B)’
Note that 8; has smaller risk than &; if the relative risk £ (2 ;

and vice versa. See the Appendix for the derivations of H(p, q)
and J (p, q).

APPENDIX

Since

16 B 162/c
(kib/Ab + 162) 220 + Yy (02 [02) + 162 )02
cVs
T MVi+ Ve tcVs

we have

cVs EAN
H =E o;
(p,q) [(AiV1+)¥iV2 —|—CV3) <9i) ]

1 CV3 >p
_ 1y Vp]
9i2q [(Kivl + )»in +cV3 1

wherec=1/v,b~N(B;, 02/1;),22=V1, V1 =X b2/a ~ Xz(a)l)
and Xl(wl) is the non-central ch1 square distribution with 1
degree of freedom and non-centrality parameter oy = 1;82/02.
Also, we see that Vo = Y, , (b2 /02) ~ Xlz*(wg) IF=1-1
and wg = Zluzl,u#i()\uﬂu/a ), Vs = v62/02% ~ x2, where x?2 is
the central chi-square distribution with v = n — [ degrees of
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freedom, and V1, Vg, V3 are mutually independent. Using V;,
Vo,Vsande =1/v, H(p,q) is

1 CV3 p
Lz P}
el.zq KM‘V1 +1Va+ CV3) Vi

o0
Z St/ / / vate <1/2>Vt+<l /2)— 1V(u/2> 1

s=0 ¢t=0
X< )pex (_V1+V2+V3>
V1t ks V2 Yevy) P 2
xdVs3dVadVy, (A.1)

where

1
Ky = ans(a)l)nt(wZ)

1
" QVRr (1/2) 25121 (s + 1/2)20 2T (¢ + [+/2)’

e—wl/Z(wl/Z)s

ns(wy) = 1 s
S:
—w2/2 t
news) = etﬂ (A.2)

Making use of the change of variablest; = V1/ V3, to = Vo / V3,
and 3 = V3, (A.1) reduces to

_ZZKt/ / / 95 (1/2), t+(l*/2) 1 q+s+t+(l*+v—1)/2
S

s=0¢=0

( c >p [ (t1+t2 + Dt3
X|[—————) exp|———"F—""2

dtsdtodt
Ait1 + Aitg + ¢ 2 38t

(A.3)
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where the Jacobian is t??. Making use of the change of variable,
uy = (t1 +to + 1)t3/2, and recognizing that

o0 x4y t t 1)¢
/ tg+s+t+(l D2 [_( 1+ 22+ ) 3] dts
0

00 2uq q+s+t+*+v-1)/2
N /0 (tl +to + 1)

2
x exp (—u1) (m) dus

296
— / ux—l
(ti+ta+1*Jo 1
296
xexp(—ui)duy = ————T
D = G 1
where x =q +s+t + (I* + v+ 1)/2. Hence, (A.3) reduces to

g [ gs—(1/2), 14+ /2)-1
Y S [T [Ty

=0 t=0

(x)

©

c p
B — t1 +to + 1) *dtodt A4
X(Ait1+xit2+c> (t1+t2+1) odty (A.4)

where K, = Ku2*T'(x). Again, making use of the change of
variables ug = t1 + t9 and ug = t9/(#1 + t2), (A.4) reduces to

o0 o0 o *
Z ZKQt/ / 1 - u3)Q+s_1/2ug+s+t+(l -1)/2
s=0 ¢=0 0 J0
- 1*/2—1 c p
(1 4 ue) *ul" (7> Juedun,
( 2" Aiug +c 3tz
Recognizing that

1 - ‘19 Lt +17/2)T(q +s+1/2)
1— q+s+1/2—1, t+1*/2 ld _ ,
/0 (1—-us3) Us T Tlqrs+t+ @ +1)/2)

we have

o 0 o0 p

s=0 t=0
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where
y=q+s+t+0" —1)/2
and
K =K Lt +1*/2)T(q +5+1/2)

ST(q+s+t+I*+1)/2)°
Finally, making use of the change of variable z = us/(1 + us),
(A.5) reduces to

ZZK;;/( 1i2)_x(1iz)y (A.6)

s=0 t=0

c P 1
X dz
(Ailzz‘f‘C) (1—2)2
1 Zq+s+t+(l*—1)/2(1 _ Z)p+u/2—1

:ZZK”/ [14—(%—1)2}1) dz.

s=0¢=0

Using (A.7), we obtain H(p, q) given in (13.3.7). Then we ob-
tain the risk function of §; given in (13.3.4). The corresponding
expression for J (p,g) given in (13.3.8) can be obtained in a
parallel way and is left to the readers to verify.
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ABSTRACT

Humans are constantly exposed to a multitude of chemicals
through inhalation, food, drugs, and other routes. One of the
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challenges of the regulatory agencies is to determine a safe
exposure level for various chemical substances. Accurate hu-
man data are seldom available, and to assess toxicity of chemi-
cals, animal bioassay experiments are frequently conducted in
controlled environments. One approach in determining safe ex-
posure levels is to first establish a no-observed-adverse-effect-
level (NOAEL) and divide it by a series of uncertainty factors
to obtain a Reference Dose (RfD) for humans. The NOAEL,
therefore, can be viewed as a discrete random variable with
a finite support, which is the set of all experimental doses.
Although a default value of 10 has traditionally been used
for each uncertainty factor, recently it has been shown that
uncertainty factors behave as random variables and that
their distributions may be approximated by the lognormal
distribution.

Using the distributional properties of the NOAEL and
also the product of uncertainty factors, here we consider the
distribution of the RfD. It is shown that this distribution can be
expressed as a mixture of lognormal distributions. The prop-
erties of the distribution are discussed and it is demonstrated
that the approach can depend on the experimental design and
also the number of animals per dose level. These instabili-
ties stem from problems associated with the NOAEL deter-
mination. A model approach, based on Benchmark Doses, is
recommended.

KEYWORDS AND PHRASES: Distribution, lognormal, risk as-
sessment, reference dose, uncertainty factors

14.1 INTRODUCTION

During the last few decades, recent advances in technologi-
cal development have resulted in a high rate of production of
chemicals. Because of the potential health hazards and possi-
ble adverse environmental impacts of these chemicals, there
has been a growing interest in the scientific evaluation for the
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potential risk of these agents. Risk is generally defined as the
probability of an adverse effect as the result of exposure to a
chemical agent, and risk assessment is a systematic process for
describing and quantifying the risk associated with hazardous
substances. The process of risk assessment was formally de-
fined in a publication by the National Research Council (NRC,
1983) commonly referred to as the “Red Book.” Accordingly,
the process of risk assessment is divided into four stages: haz-
ard identification, exposure assessment, dose-response assess-
ment, and quantitative risk characterization. A critical step in
the final stage of this process is to determine safe exposure
levels for humans. The most conservative approach would be
to ban any agent that produces an adverse effect at a certain
dose. This approach, however, is unacceptable since any chemi-
cal agent could produce toxic effects at high levels. Even many
of the essential minerals and metals known to have several
curative and preventive effects become toxic at high doses. As
pointed out by Flaten (1997), if the dose is high enough, all
essential elements are toxic.

Because of unavailability and shortcomings of human
data, animal bioassays are frequently conducted to establish
the relationship between the incidence of disease and exposure
(dose) to a toxicant. Typically, a few dose levels, including un-
exposed controls, are selected for study in an animal bioassay.
To assess the toxicity of a carcinogenic compound, regulatory
agencies, such as the Environmental Protection Agency (EPA),
have traditionally fit a dose-response model to the bioassay
data. The model is then used to obtain an estimate of a Vir-
tually Safe Dose (VSD) which is defined as the dose corre-
sponding to a small negligible increase in risk over that of
unexposed animals. For noncancer endpoints, on the other
hand, the current approach relies on the determination of a
No-Observed-Adverse-Effect-Level (NOAEL), defined as the
highest experimental dose level which produces no significant
statistical or biological evidence of health effects over the back-
ground in a population. In order to obtain a Reference Dose
(RfD) for humans, the NOAEL is generally divided by a se-
ries of uncertainty factors to account for uncertainties due to
using animal data for human effects, sensitivities in a human
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population, and uncertainty of predicting chronic effects from
subchronic studies and others. The RfD for noncancer chemi-
cals can, therefore, be defined as

NOAEL
fD = 14.1.1
R U1XU2X---XUk’ ( )

where U1, ..., U represent the uncertainty factors. Recently,
however, there has been much criticism for using NOAEL for
risk assessment. As discussed by Gaylor (1994), the NOAEL-
based method is ill defined, is somewhat subjective, is highly
dependent on the dosel spacing, and does not reward better
experimentation. Leisenring and Ryan (1992) considered the
statistical properties of the NOAEL. Using a Weibull dose-
response model, they show that the NOAEL will often occur at
dose levels associated with substantially increased risks over
the controls. Since in practice it is always the RfD that is used
for risk assessment, it may be argued that division of NOAEL
by the uncertainty factors should remove concerns about in-
stabilities associated with the NOAEL. Here, we consider the
distribution of RfD and investigate its statistical properties.
In the next section we derive the exact distribution of RfD and
discuss its properties in Section 14.3. In Section 14.4, we con-
sider some special cases of dosing regimen, and in Section 14.5,
statistical properties of the RfD distribution are investigated
through a numerical example.

14.2 DISTRIBUTION OF RfD

In the absence of information to select a specific value for an
uncertainty factor, default values of 10 are traditionally used.
Dourson, Felter, and Robinson (1996) and Hattis (1998) show,
by examining several databases, that uncertainty factors can
be considered as random variables and that their distribution
can be approximated by the lognormal distribution. Utilizing
this result, Kodell and Gaylor (1999) and Gaylor and Kodell
(2000) consider the joint distribution of the uncertainty factors
and derive upper confidence limits for their combined range.
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Suppose that an experiment consists of a control and g — 1

non-zero dose levels, 0 = dy < ds < --- < dg. Let D denote
the experimental dose level at which the NOAEL occurs and
suppose that

P(D =d;) = p;, i=1,..., g,

g

Zpi =1 (14.2.1)

i=1

defines the distribution of D. Then, if R is the random variable
designating the value of RfD, we have R = D/U, where U =
Uy x Ug x --- x Uy is the product of the uncertainty factors.
Now, suppose that each U; ¢ = 1,2,..., g) is a lognormally
distributed random variable with

ni = E(logUy),

o2 = Var(logU;), (14.2.2)

Then, assuming the independence of U1, Uo, ..., Uy, clearly U
has a lognormal distribution with

k
w=EU)=> pu;
j=1
and
k
o2 =Var(U) = ZO’JZ.
j=1

Furthermore, we have [see Johnson, Kotz, and Balakrishnan
(1994)]

1
n = E(U) = exp (Q _ g) (14.2.3)
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and

1 2u 2
2
“ =Var(U) = exp (ﬁ — ﬁ) {exp (;) — 1}

(14.2.4)

as the mean and variance of U. Moreover, the distribution of
R can be derived as

Gr(r)=P(R <r)=P (g §r)

_ zg:pi {1 7 (@)} , (14.2.5)

where F' denotes the cumulative distribution function of a log-
normal distribution with mean and variance given by (14.2.3)
and (14.2.4), respectively. Also, from (14.2.5), the density of R
can be obtained as

1 & d;
gR(T‘) = r_g;pidi f <7)
S 1 2 2
= Zpi <m exp {—(logr —logd; + n)*/20 })
(14.2.6)

Equation (14.2.6) shows that the distribution of RfD can be
expressed as a finite mixture of g lognormal distributions with
the mean and variance of the ith component being logd; — 1
and o2, respectively, and the mixing proportions being
P1,P2,..., Dg-
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14.3 PROPERTIES OF THE RfD DISTRIBUTION

From (14.2.6), it is readily seen that the £th moment of R is
given by
0o plt-1

g
=E®RY=Ypi [
e ;p 0 o+2m
x exp {—(logr —logd; + n)?/202}dr

8
=" piexp{(logd; — w)t + c?¢*/2}
i=1

8
=exp(—ul+02?/2) pidf, €=0,1,2,...

i=1
(14.3.1)
In particular, the mean and variance of R are, respectively,
given by
, .8
E(R) =e """ /23" pd; (14.3.2)
i=1
and

2
8 8
Var(R) = ele“r"2 ea2 Zpidi2 — (Z pidi) . (14.3.3)
i=1 =1

Also, closed-form expressions can be derived for the coefficients
of skewness, kurtosis, and variation as [see Johnson, Kotz, and

Balakrishnan (1994)]
e3UZV3 — 3e"2v1v2 + Zv%
1= )
g [eo®vg — vF]3/2
e6“2v4 — 4e37° vivs + 6e02v%v2 - Svi1
y2 = 2 2 2 - 3,
le?"vg — vi]
[e"2v2 _ v%]l/z
cv.=—-—+

V1
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where vy, £ = 1,2, 3, ..., is the £th moment of D given by

8
Vy = Zpid;.
=1

Note that although (14.3.1) provides all moments of R, simpler
approximate expressions can directly be obtained [see Rohatgi
(1984, p. 268)] in terms of moments of D and U as

2

mi=ER)~ >+, (14.3.4)
n n
me=E(RY ~ ;—E + g {(z - 1)%152 + (¢ + 1))7';—;#} ,
€=2,3,..., (14.3.5)
where
v=uv=ED), § =vy—1I=Var(D). (14.3.6)

Using (14.3.4) and (14.3.5), an approximate expression for vari-
ance of R is obtained as

2 52 2 ‘|

Vv
Var(R) ~ —
= 2|2 g

14.4 SOME SPECIAL CASES

In practice, often the doses for the study are selected according
to some criteria. In this section, we consider two such special
cases.

14.4.1 Equal spacing

Many bioassay experiments are designed to have equi-spaced
doses over the desired range. For example, in toxicological
studies, often a maximum tolerated dose (MTD), defined by the
National Cancer Institute [see, e.g., Sontag, Page, and Safiotti
(1976)] as the “highest dose of a test agent during the chronic
study that can be predicted not to alter the animals’ normal
longevity from effects other than carcinogenicity,” is identified
and three or four equi-distant dose levels are selected between
controls and the MTD.
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Suppose, therefore, d; =( — 1)d fori=1, ..., g, where d
is an appropriately chosen constant. Then, from (14.3.1), we
have

g
me =dle M2 pii— 1, £=10,1,2,....
i=1
Specifically, the mean and variance of R are, in this case, given
by

E(R) =d(v — 1) erto"/2
and
Var (R) = d2e~2n+o” {e02(52 +12—2041) —(v— 1)2} :

respectively, where v and § are as given in (14.3.6).

14.4.2 Geometric dosing

Another common method of dose selection is to first choose
the lowest non-zero dose level, which is generally selected at a
value associated with no or little toxicity, such as LD (1, defined
as a dose level expected to cause toxicity in 1% of animals. This
value is then multiplied by a constant £ > 1 to obtain the next
and the subsequent dose levels. Suppose, therefore, d; = ki~1d
fori =1,2,..., g. Then, from (14.3.1), we have

¢ g
my = @) e HHIERN B £=0,1,2,... (14.4.1)
k i=1
which shows that in this case the moments of R are defined
in terms of the probability generating function of D. More
specifically, the summation in (14.4.1) is the generating func-
tion of the convolution of £ independent observations from the
NOAEL distribution. If we further assume that the probabil-
ity distribution of D can be expressed as a truncated geometric

distribution,
l1-p 1 .
i—l_pgp ) l—1927"-7g7

then (14.4.1) reduces to

1-p 1—(pk"s o022

=d*
=T e 11— pht

£=0,1,2,....
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14.5 NUMERICAL ILLUSTRATION

In order to investigate the properties and behavior of the dis-
tribution of RfD, we use the results of a small simulation. In
their analysis of the distribution of NOAEL, Leisenring and
Ryan (1992) consider a typical safety assessment experiment
with a control and three exposure levels scaled to the interval
[0, 1], assumed to be 0,0.01, 0.10, and 1. For any exposure level
d, a Weibull model

JT(d) =1- exp(—yo — ylda), d > 0

14.5.1
=0, otherwise ( )

is used to express the probability of an adverse effect. Because
of its flexibility and diversity, the Weibull distribution is very
often used as a dose-response model in risk assessment. As «
changes, a wide range of models is obtained. Leisenring and
Ryan (1992) select the parameter values in (14.5.1) by ini-
tially assuming a 0% background response rate and sample
sizes of 50. They then find the values that force the probabil-
ity that the NOAEL takes on the highest experimental dose
level to be very small. This leads to y; = 0.35. Now, by keep-
ing y; fixed, the background dose is changed from 0 to 3 and
10%, which, in turn, results in highest response rates of 32
and 36%, respectively. The probability that NOAEL is equal to
each experimental exposure level is then derived for different
dose-response shapes by choosing o = 1, 2, 6 and for varying
sample sizes (n = 10, 20, 50).

Here, we utilize the results of Leisenring and Ryan (1992)
and compute the distribution of RfD using (14.2.5). For com-
putational purposes, in order to select reasonable values for u
and «, we used the results of published studies on various un-
certainty factors. Typically, four to five uncertainty factors are
used to determine the RfD. Gaylor and Kodell (2000) provide
a table of median values and standard deviations of the loga-
rithms of these uncertainty factors. Their values are based on
several independent studies on different databases by various
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TABLE 14.5.1 Percentiles (x102) of the RfD distribution G(r)

Parameters n=10 n=20 n=>50

o y1 o« bth 10th 20th 5th 10th 20th 5th 10th 20th

0.0 032 1 .0017 .026 .18 .0011 .014 .09 .0002 .004 .03
0.0 0.32 2 .0060 .042 .24 .0039 .025 .13 .00029 .015 .04
0.0 032 6 .0132 .063 .31 .0080 .035 .16 .0061 .025 .11
0.03 0.32 1 .0069 .046 .27 .0042 .027 .15 .0024 .015 .07
0.03 0.32 2 .0087 .058 .32 .0051 .033 .17 .0024 .015 .11

0.03 0.32 6 .0153 .073 .37 .0091 .041 .19 .0062 .026 .12

0.10 0.32 1 0.100 .071 .41 .0058 .039 .022 .0034 .010 .10
0.10 0.32 2 .0111 .095 .42 .0069 .044 .24 .0041 .024 .12
0.10 0.32 6 .0196 .095 .48 .0120 .056 .27 .0069 .028 .13

authors. Using these values, we have approximately
n=1log3.5+1logl.7=1.7834

and

o = /(1.64)% + (1.66)% + (0.60)% + (1.72)2 = 2.96

which are used in the computation of G(.). Table 14.5.1 provides
selected percentiles of G(.) for different parameter values and
varying sample sizes. Figures 14.5.1 to 14.5.3 depict compar-
ative graphs of G(r) for different dose-response shapes and
varying sample sizes. The graphs clearly demonstrate that
larger sample sizes lead to higher probability of lower RfD val-
ues. This in turn means that there is potentially much higher
risk in smaller sample sizes. Also, as the shape of the true
dose-response relation changes, i.e., when « changes from 1
to 6, we see that RfD can vary quite significantly. This fact
also emphasizes the dependence of RfD on the assumed dose-
response model in the study.
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Figure 14.5.1 RfD distribution function y; = 0, y» = 0.35.
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Figure 14.5.2 RfD distribution function y; = 0.03, y» = 0.35.
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Figure 14.5.3 RfD distribution function y; = 0.10, y» = 0.35.

© 2005 by Taylor & Francis Group, LLC



Reference Dose in Health Risk Assessment 229
14.6 DISCUSSION

Human health risk assessment is a complicated process that
requires the contribution and collaboration of experts in many
different disciplines. Because of the high sensitivity of the hu-
man body to exogenous agents, the subject of risk assessment
has been the focus of many investigations. Regulatory agencies
have developed risk assessment guidelines to obtain safe expo-
sure levels for the use of chemical compounds for industrial and
commercial purposes. Although these guidelines have brought
about major achievements in the regulation and use of toxic
substances, at the same time they have raised many interest-
ing and challenging research problems. For example, the risk
assessment procedure for all noncancer chemicals relies on the
default NOAEL/UF approach. Generally, four to five uncer-
tainty factors are most commonly used. These factors account
for uncertainty with respect to sensitivities within the hu-
man population, a dose reduction due to using animal data for
human effects, uncertainty of extrapolation from sub-chronic
studies to chronic effects, uncertainty of extrapolation from a
low-risk level to a negligible risk level, and sometimes an addi-
tional factor to account for other uncertainties. Recent studies
have suggested the use of the lognormal distribution to express
the behavior of each uncertainty factor. Using this fact, we have
shown, by deriving the distribution of the RfD, that unfortu-
nately risk assessment procedures based on the RfD are not
stable and depend much on the experimental conditions. More
specifically, we have seen how the properties of the RfD distri-
bution are directly linked to those of the NOAEL. Also, the RfD
distribution depends on the sample size, i.e., number of ani-
mals used per experimental dose group. Moreover, the RfD dis-
tribution changes as the shape of the assumed dose-response
model is altered. It is believed that the instability of the RfD
distribution stems from the high sensitivity of the NOAEL to
the experimental design. Properties of the NOAEL have been
investigated by several authors and its usage has been crit-
icized because of its subjectivity and its dependence on the
sample size, variability from experiment to experiment, and
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the dose-response curve. Often, the ratio of NOAELS is used to
measure relative toxicity of chemicals. Brand, Rhomberg, and
Evans (1999) show that because of the poor statistical proper-
ties of the NOAEL, their ratios can contain systematic errors
and hence be misleading.

Alternatively, studies have suggested the use of a bench-
mark dose as an alternative method for risk assessment. The
Benchmark Dose (BD) is defined as the effective dose of a
substance that corresponds to a small negligible risk. In this
approach, the dose effect is described by a mathematical dose-
response relationship and a lower confidence limit is calculated
for a fixed small negligible value of risk. The BD methodology is
finding a widespread popularity because of its stability and its
statistical properties. Gaylor (1991) compares the properties
of the RfD based on the NOAELs and the BDs using bioassay
data from three different sources. His conclusion is that RfDs
derived from NOAELSs are inconsistent and unreliable. The
most important problem in using the BD approach, however,
is in developing and utilizing the most adequate model in any
specific setting. As pointed out by Williams and Ryan (1997),
one of the major scientific challenges for risk assessors is de-
velopment of appropriate dose-response models. Such models
should consider the complex biological processes that cause
toxicity in humans. The process of toxicity represents the cul-
mination of several pharmacokinetic, biochemical, and physi-
ological events once the chemical substance enters the human
body. To reduce these uncertainties, one approach would be
to consider mathematical models that are based on biological
principles and incorporate biological and mechanistic informa-
tion into the dose-response characterization [Andersen et al.
(1992)]. As pointed out by Shuey et al. (1994), the goal of biolog-
ically based dose-response (BBDR) modeling is a mechanistic
description in mathematical form of the sequence of casual
events that intervene between administered dose and adverse
outcome. Although some attempts have been made to describe
the process of building BBDR in certain cases [see, e.g., Gaylor
and Razzaghi (1992)], an enormous amount of basic research is
still needed in the derivation of quantitative biologically based
models.
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