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Preface

This text is aimed at doctoral students and researchers, who are interested in
Combinatorics and Graph Theory or who would just like to learn about some
active topics and trends. But the book may be also interesting to researchers
in mathematics, physics, chemistry, computer science, etc. who would seek for
an introduction to the tools available for analysis of the properties of discrete
structures, and sparse structures particularly. The dichotomy between sparse
and dense objects is one of the main paradigm of the whole mathematics
which transcends boundaries of particular disciplines. This is also reflected
by our book.

The book is organized in three parts, called Presentation, Theory, and
Applications.

The first part, Presentation, gives a general overview of the covered mate-
rial and of its relationships with other domains of contemporary mathematics
and computer science. In particular, Chap. 2 is devoted to the exposition of
some typical examples illustrating the scope of this book.

The second part, Theory, is the largest part of the book and it is divided
into eleven chapters. Chapter 3 introduces all the relevant notions and results
which will be used in the book: basic notions and standard terminology, as
well as more involved concepts and constructions (such as homomorphisms,
minors, expanders, Ramsey theory, logic, or complexity classes), or more
specific considerations on graph parameters, structures, and homomorphism
counting. Chapter 4 introduces the specific notions used to study the density
properties, shallow minors, shallow topological minors, or shallow im-
mersions of individual graphs, as well as the related fundamental stability
results. These results are applied in Chap. 5, and this leads to the nowhere
dense/somewhere dense classification and to the notion of classes with
bounded expansion (which are sparser than general nowhere dense classes).
This classification is very robust and it can be characterized by virtually
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viii Preface

all main combinatorial invariants. Several first characterizations are included
in Chap. 5, and more characterizations are given in Chaps. 7, 8, 12, and 11.
Chapter 5 ends with a discussion about the connection to model theory and
the various approaches to handle general relational structures. Although the
study of dense graphs frequently relies on the properties of dense homoge-
neous core structures (like complete graphs or even random graphs), it will
be shown that sparse graph properties are intimately related to the proper-
ties of trees, and particularly to the ones of bounded height trees. Funda-
mental results on bounded height trees and, more generally, on graphs with
bounded tree-depth are proved in Chap. 6. They open the way to the main
decomposition theorem, which is the subject of Chap. 7. The decomposition
scheme introduced there, which we call low tree-depth coloring, is a deep
generalization of the concept of proper coloring. The low tree-depth colorings
also lead to an alternative characterization of the nowhere dense/somewhere
dense dichotomy. Yet another characterization of this dichotomy is proved
in Chap. 8, that relies on the notion of independence through the notion of
quasi-wideness (which has been introduced in the context of mathemati-
cal logic). Chapters 9 and 11 deal with homomorphism dualities. Bounded
expansion classes are proved to have the richest spectrum of finite dualities
and, in the oriented case, they are actually characterized by this property.
Meanwhile, Chap. 10 establishes a connection to model theory and deals par-
ticularly with relativizations of the homomorphism preservation theorem of
first-order logic. A last characterization of the somewhere dense/nowhere
dense dichotomy is proved in Chap. 12 by considering the asymptotic loga-
rithmic density of a fixed pattern in the shallow minors of the graph of a
class. In a sense, one can view this last result as a characterization of the di-
chotomy in probabilistic terms. The Theory part ends with Chap. 13 where
the results of the previous chapters are gathered and put to service in the
study of the characteristics of nowhere dense classes, of classes with bounded
expansion, and of classes with bounded tree-depth (which are derived from
trees with bounded height). It is pleasing to see how these characterizations
are nicely related.

The third part, Applications, concerns both theoretical and algorith-
mic applications of the concepts and results introduced in the second part.
This part opens with Chap. 14 which gives several examples of classes with
bounded expansion, such as classical classes defined in the context of ge-
ometric graphs and graph drawing, as well as classes admitting bounded
non-repetitive colorings. It is also the occasion for a connection with the
Erdős-Rényi model of random graphs. Some applications are considered in
Chap. 15, such as the existence of linear matching (and more generally unions
of long disjoint paths), connection with the Burr-Erdős conjecture, with game
coloring, and with spectral graph theory. In Chap. 16, the use of a density
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driven criterion for the existence of sublinear vertex separators links our study
to the sparse model of property testing, via the concept of hyperfiniteness.

We provide in Chap. 17 core algorithms related to our study. In particular,
we detail a fast iterative algorithm to compute a low tree-depth decompo-
sition, the number of colors being controlled by a polynomial dependence
on the densities of the shallow minors of the graph. The fact that this algo-
rithm is nearly linear for sparse classes is one of the main advantages of our
approaches. In Chap. 18 we consider algorithmic applications, which mainly
derive from the fast low tree-depth coloring algorithm. These cover various
well-known algorithmic problems, such as subgraph isomorphism, decidabil-
ity of first-order properties, as well as their counting versions.

The title of the last chapter—Further Directions—is self-explanatory.

This book contains some previously unpublished results of the authors, as
can be expected in a fast developing field. The extensive literature reflects
the multiplicity of connections, applications, and similarities to other parts
of mathematics and theoretical computer science.

We included exercises at the end of nearly every chapter. These exercises
may complement previous material by a small question but often they suggest
further study or extension of the main text. Such exercises may also contain
hints for solutions. Some hints are also included at the end of the book.

This book is the result of the collaboration of the authors for over a decade
in both Paris and Prague (and elsewhere). This was made possible thanks to
the generous support of institutions at both ends: École des Hautes Études
en Sciences Sociales, École Normale Supérieure, and Université Paris VI in
Paris, as well as the Institute of Theoretical Computer Science (ITI) and the
Department of Applied Mathematics (KAM) and most recently by Computer
Science Institute (IUUK) of Charles University in Prague. We thank our
colleagues for friendly working atmosphere. Particularly, we would like to
thank Zdeněk Dvořák, Louis Esperet, Tomáš Gavenčák, Andrew Goodall, Jan
van den Heuvel, Ida Kantor, Jíří Matoušek, Reza Naserasr, Melda Nešetřilová
(née Hope), and Pascal Ochem for comments to parts of the book.

Paris, Prague, Jaroslav Nešetřil
December 2011 Patrice Ossona de Mendez
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Chapter 1
Introduction

Where the reader will learn why we wrote this book.

Combinatorics is a long story. But we believe that we live in the unique
point of scientific history when combinatorics is becoming an essential part
of mathematics and when the rich techniques developed in isolated and spe-
cific contexts are put to service in solving problems which are of general
mathematical and scientific interest.

Combinatorics is already widely regarded as a set theory for computer
science. By now, it is easy to find other specific examples. For instance, who
would have thought just a few years ago that questions related to Ramsey
theory (and combinatorial number theory) could be proposed under the same
umbrella as both asymptotic and convergence properties and structural prop-
erties of homomorphisms, next to the analysis of partition functions of statis-
tical physics and even next to constraint satisfaction problems (CSPs)? Who
would have thought that abstract properties of finite structures would be
tested using limit objects and advanced probabilistic techniques? These are
not mere analogies. They are rooted in deep results of mathematicians from
many fields. They are results of many mathematicians with a growing com-
binatorial expertise. The references here cannot be exhaustive, for a sample
see [78, 293, 453].

Various qualitative questions in mathematics (and in science in general)
are dichotomies: probabilistic versus deterministic, polynomial versus expo-
nential, local versus global, easy versus hard. Such dichotomies are often not
well defined. Rather, they reflect the experience gained by researchers in a
particular area. One such dichotomy is “sparse versus dense”, which is the
main topic of this book.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__1, © Springer-Verlag Berlin Heidelberg 2012
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4 1 Introduction

The notion of sparsity of course depends on the particular field of study
(sparse matrix, sparse graph, sparse set). However, a bit surprisingly, many of
these concepts and problems fit into a grand picture which we introduce. We
aim for generality yet we shall illustrate most of the topics on a very simple
model: undirected graphs. It is a specific feature of combinatorics that it
allows this: Generality, like in a good fairy tale, is illustrated by means of a
key case.

What is a sparse graph? This is a fuzzy notion which has to be understood
in the context. A sparse graph is not defined by itself, it is sparse relative to
other graphs. Sparsity is a robust notion which does not change by a small
change, like the notion of a heap of hay which does not change by a adding or
removing a few straws. Hence this notion should not apply to a single graph,
but rather to a class of graphs.

As opposed to dense situations, the geometry (or rather topology) plays
a key role when one studies sparse structures, as these structures may have
intricate global properties (shape) which we do not want to destroy. Thus our
work evolved from the study of several areas, such as constrained colorings
and homomorphisms of geometrically defined graphs, Ramsey theory, and
constrained orientations of topological graphs.

On the one hand, we consider graph transformations which are related to
topology and geometry, like minors (i.e. contractions), topological minors
(i.e. subdivisions), and even immersions, and we restrict their use with fur-
ther local constraints (bounded radius of contracted parts, bounded number
of subdivision vertices) to ensure the stability of the global shape. On the
other hand, we mention in this book many generalizations of chromatic num-
bers, the homomorphism paradigm, limits and universal structures, struc-
tural Ramsey theory, various tree- and branching- structures as a measure of
approximation, and various notions related to topological graph theory. This
mixture of topology and geometry on one the one hand and of combinatorics
and algebra on the other hand is central to our analysis.

The sparse versus dense dichotomy takes in this book the form of a clas-
sification of arbitrary (infinite) classes of finite graphs (or finite structures)
into somewhere dense and nowhere dense classes (see Fig. 1.1). We study
this dichotomy in great detail.

Several of our general results include celebrated results on computational
complexity, separators of meshes, Ramsey numbers, and homomorphism
preservation as special cases. In spite of its generality our approach is very
effective and in many instances yields very fast algorithms and structural
results. The basic techniques (for example: fraternal augmentation and tran-
sitive fraternal augmentation) lead to very fast algorithms (which became
almost linear in the sparse case) and they can be viewed as master algo-
rithms for many problems considered in the literature for special classes (such
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bounded
expansion

bounded
degree

minor closed

ultra sparse Ω(n2)
edges

density

Ω(n1+ε)
edges

Nowhere dense classes Somewhere dense classes

Fig. 1.1 Infinite classes of graphs are either nowhere dense or somewhere dense

as various algorithms for planar graphs and proper minor closed classes of
graphs). We devote the whole third part of this book to such applications.

The topic of this book developed gradually and we believe that the whole
area is calling for a synthesis and for a proper organization. We also feel that
the time is right because of the relationship (and interest) of this subject with
other parts of combinatorics, and with mathematics and computer science
in general: this topic lies at the crossroads of several disciplines and this, we
believe, leads to new perspectives.

In Chap. 2, we illustrate potential applications by a selection of a few
particular problems. An informed reader may skip this motivating chapter
and proceed to the beginning of Part The Theory , i.e. to Chap. 3.



Chapter 2
A Few Problems

A solution without a problem is an ill-stated solution.

2.1 Breaking a Mesh

Meshes are a standard support for finding approximate solutions to partial
differential equations (PDE) as well as of integral equations. Computational
techniques working with a Divide-and-Conquer scheme need an initial mesh
to be recursively broken into pieces of comparable size by cutting along small
set of points (called a vertex separator).

This leads to the following well known problem, formulated here in graph
theoretical terms.

Vertex Separator Problem

Given a graph G with n vertices, what is the smallest size of a
vertex separator of G, that is a subset of vertices whose deletion
separates G into two parts, each including at least one third of the
vertices?

This problem (illustrated by Fig. 2.1) has been extensively investigated.
By a famous result of Lipton and Tarjan [304, 305] it is known that (yes,
only!) about

√
n vertices suffice for any planar graph with n vertices (i.e. for

graphs on n vertices drawn on the plane without crossings) and this has been
extended to more general situations [24, 25, 218]. A similar problem concerns

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__2, © Springer-Verlag Berlin Heidelberg 2012
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8 2 A Few Problems

Fig. 2.1 How to cut a mesh into two parts, both of approximately equal size, by
removing a few vertices?

geometric meshes: The aspect ratio of a d-dimensional body is the ratio of its
diameter by the d-th root of its volume—for instance, the aspect ratios of a d-
simplex, d-cube, and d-ball are respectively αs = 21/2(d!)1/d(d+1)−1/(2d) ∼√
2d/e, αc =

√
d, and αb = 2π−1/2(d/2)!1/d ∼

√
2d/(eπ). A d-dimensional

mesh of aspect ratio α is a 1-skeleton of a complex in which the aspect ratio
of every d-simplex is at most α. It is of particular importance in finite ele-
ment methods to find small vertex separators for d-dimensional meshes with
bounded aspect ratio. Miller and Thurston first proved that such separators
may be found in dimension 2 or 3 [333]. Then, Plotkin, Rao and Smith, using
a notion of “limited depth minors”, proved that for arbitrary dimension d the
number of vertices needed to break a mesh into two parts of similar size is
bounded by approximately (n logn)1−1/2d [386], and this result was even-
tually improved by Miller and Thurston who proved that vertex separators
meeting the optimal bound O(n1−1/d) can be found in linear time [332].

Can these results be further generalized? There are some limits to do this:
for instance, random regular graphs with n vertices almost surely need a
positive fraction εn of the whole set of vertices to be removed in order to be
split into two parts, each containing at least one third of the vertices. These
graphs, called expanders, present a natural barrier to effective recursion [22,
259, 316, 317, 324, 383].

Where lies the border line for the existence of a small (say sub-linear)
separator? It is related to expansion properties of the graph and we shall add
to this area yet another line by relating this to our study of “class expansion”.
We treat this in detail in Chap. 16, and particularly in Sect. 16.3.
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2.2 Forging Alliances

The traditional peaceful (and definitely politically correct) interpretation of
the Four Color Theorem reads as follows: one can color the regions of any
political map of states by using no more than four colors in such a way that
no two adjacent regions receive the same color (assuming that each state is
connected, i.e. has no colonies). In a more aggressive interpretation we may
consider contiguous countries in a fictious world where countries sharing a
common frontier naturally tend to be in conflict (Fig. 2.2). The Four Color
Theorem would state that the countries may be partitioned into four conflict-
free alliances.

Fig. 2.2 The fictive conflict graph of a fictitious world

Actually, in this fictitious world, things can be even more complicated:
each country is inclined to consider those of its enemies’ enemies which are
not direct enemies as objective allies and, similarly, those enemies of its ob-
jective allies which are neither direct enemies nor objective allies as objective
enemies. From a mathematical point of view, this example highlights a spe-
cific notion of transitivity adapted to the so-called conflict graphs: direct
enemies are at distance 1, objective allies are at distance 2 and objective
enemies are at distance 3 in the conflict graph (see Fig. 2.3). Considering
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similar arguments, one could consider that countries at distance four are
loose allies and those at distance five are loose enemies and one can go on
with the larger distances (of course we should stop as countries would be so
distant that they would not really care one way or the other).

Fig. 2.3 The fictive conflict graph of the fictitious world extended by distance three
fictive conflicts

Let us go back to our alliance problem. Is it possible to partition the
world into a hopefully small number of alliances such that no direct enemies
or objective enemies or even loose enemies would belong to the same alliance?
Although this seems hopeless in view of Fig. 2.3 the answer is actually yes:
for any number of countries in our fictitious world, one can always find a
partition with a bounded number of alliances (presently at most 210

10

), as
we will see in Sect. 11.9.3.

We could also consider yet another notion adapted to “shy” countries. In
our situation with objective enemies and allies, we would not like to position
objective allies against each other. In other words, if two of my objective
allies are in conflict, then they are both my enemies, in the sense that I don’t
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want any alliance with either one of them. From the point of view of a graph
theorist, this means that the existence of an induced path of length 3 (i.e.
a path with 4 vertices) should prevent two end vertices from belonging to a
common alliance. In this case it is still possible to distribute the countries
into a fixed (albeit large) number of alliances. However, a bit surprisingly,
this in no longer the case when we try to go further by considering induced
paths of length 5 (cf Fig. 2.4).

Fig. 2.4 Coloring planar graphs according to odd induced paths. If vertices linked
by an induced path of length 5 are required to get different colors (induced conflicts
shown in the lower left), an unbounded number of colors may be necessary. However,
if vertices linked by an induced path of length 3 are required to get different colors
(induced conflicts shown in the lower right) a bounded number of colors is sufficient
(in the particular example shown here, three colors suffice)
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2.3 Are Symmetries Frequent?

Groups and graphs are closely related: the automorphisms (symmetries) of
a graph form a group and to each group one can associate a Cayley graph.
For instance, a Cayley graph of the group of the rotations of a cube is shown
Fig. 2.5.

Fig. 2.5 A Cayley graph of the group S4

Of course, not every highly symmetric graph is a Cayley graph. This does
not hold, even if we demand that any two vertices are equivalent under some
element of its automorphism group (i.e. if the graph is a vertex transitive
graph), as shown Fig. 2.6.

Does every large graph have many symmetries? Obviously not: there are
arbitrarily large graphs with just one automorphism, namely the identity (a
graph with such a property is called asymmetric, a unity graph or some-
times a rigid graph). Actually almost all graphs have no other symmetries
than the trivial one, see e.g. [253]. This result may look counterintuitive as
most small examples of graphs have a non-trivial automorphism. Could this
counterintuitive feeling be made precise? A result which goes in this direction
is proved in Chap. 8 (Corollary 8.1): every large graph either has a non-trivial
symmetry, or it contains a long induced path, or it contains a shallow sub-
division of a large complete graph (Fig. 2.7). (By a shallow subdivision we
mean a subdivision where each edge is subdivided just a few times.)
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Fig. 2.6 A vertex transitive non Cayley graph, the icosidodecahedral graph

or

or

Fig. 2.7 Every large graph either has a non-trivial automorphism, or includes a long
induced path, or includes a shallow subdivision of a large complete graph

An informed reader may say that this result has a Ramsey-like flavor.
This is correct and Ramsey theory is one of our motivations: to find patterns
appearing in large sparse graphs is one of the topics of this book.
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2.4 Large Matchings on a Torus

A matching is a subset of the edges of a graph such that no two of them have
a common endpoint. The matching number β(G) of a graph is the maximum
size of a matching of the graph. For instance, the matching number of a star
graph is 1 (as any two edges are adjacent). Although many graphs have a
matching number which is linear with respect to the order of the graph, there
are also arbitrarily large graphs for which this is not the case, like stars, or
even asymmetric ones (as shown on Fig. 2.8).

(2p
p

)
2p

Fig. 2.8 Asymmetric graphs exist with order n and matching number ≈ log n: To
an asymmetric graph of order 2p and maximum degree ≤ p − 1 add

(
2p

p

)
vertices

adjacent to p vertices each in all the possible ways

However, consider a graph drawn on a surface, for instance on the torus.
To avoid pathological cases like the stars and double stars (n − 2 vertices
adjacent to the same two vertices), we require that our graph has no vertex
of degree smaller than 3. Then, as we will prove in Sect. 15.1, there exists a
constant α > 0 such that the matching number of such a graph of order n is
at least equal to αn (Fig. 2.9).
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Fig. 2.9 Every graph on the torus with order n and minimum degree at least 3 has
a matching of size at least αn

This result can also be proved as a consequence of known results of match-
ing theory (cf [312]). However, we show that it is also a consequence of much
more general results dealing with the existence of a linear number of dis-
joint short paths in sufficiently sparse large graphs with certain forbidden
automorphisms. Particularly every large asymmetric sparse graph has such
a generalized matching of linear size, see Sect. 15.1.

2.5 Homomorphism Dualities

The Grötzsch’s celebrated theorem (see e.g. [459]) says that every triangle-
free planar graph is 3-colorable. In the language of homomorphisms this says
that for every triangle-free planar graph G there is a homomorphism of G

into K3, that is. Recall that a homomorphism from a graph G to a graph H

is a mapping from the vertices of G to the ones of H such that two vertices
that are adjacent in G have images that are distinct and adjacent in H. Using
the partial order terminology, Grötzsch’s theorem says that K3 is an upper
bound (in the homomorphism order) for the class P3 of all planar triangle-
free graphs. That K3 �∈ P3 suggests a natural question (first formulated in
[341]): Is there yet a smaller bound? The answer, which may be viewed as a
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strengthening of Grötzsch’s theorem, is positive: there exists a triangle free
3-colorable graph H such that G �� H for every graph G ∈ P3. This has
been proved in [349, 352] in a stronger version for minor-closed classes (see
Sect. 11.5). The underlying theory of homomorphism dualities is developed
in Chap. 9.

The case of triangle-free planar graphs is interesting in its own. It seems
to find a proper setting in the context of TT -continuous mappings, [367] and
it has been related to a conjecture by Seymour and to Guenin’s theorem
[237] by Naserasr, who proved that every triangle-free planar graph has a
homomorphism to the Clebsch graph (see Fig. 2.10). (This bound has then
been proved to hold for the class of all triangle free graphs without K5 minor
[338].) This graph is triangle free and (only) 4-colorable.

Fig. 2.10 The Clebsch graph is a bound of triangle-free planar graphs

As every triangle-free planar graph has a homomorphism to both K3 and
the Clebsch graph, every triangle-free planar graph has also a homomor-
phism to the categorical product of K3 and the Clebsch graph (see Sect. 3.7
for basic properties of homomorphisms). This means that every triangle-
free planar graph has a homomorphism to a triangle-free graph that is
3-colorable. More: every properly 3-colored triangle-free planar graphs has a
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color-preserving homomorphism to the triangle-free properly 3-colored graph
depicted Fig. 2.11.

It is noticeable that no triangle free bound of triangle-free planar graphs
is planar and that, more generally [344], for any fixed graph F, no planar
graph exists with no homomorphism of F which is a bound of the planar
graphs that have no homomorphisms from F (except if the bound is trivial,
i.e. K1 or K4).

Fig. 2.11 A 3-colorable bound of triangle-free planar graphs. This graph is the prod-
uct of K3 and the Clebsch graph

The above examples are just samples. But perhaps they illustrate the ver-
satility of the questions considered in this book. A more detailed commented
contents follows in the next brief Chapter.



The Theory



Chapter 3
Prolegomena

Prolegomena to Any Future Metaphysics
That Will Be Able to Present Itself as a Science

(Immanuel Kant)

In this chapter we introduce the relevant concepts and techniques, and
prove some basic results which will be used later on.

3.1 Graphs

We mostly deal with graphs. By a graph G we mean a finite undirected
simple (loopless) graph, i.e. a pair (V, E) where V = {v1, . . . , vn} is a finite set
of vertices and E = {e1, . . . , em} is the set of edges, which is a subset of the
set

(
V
2

)
of all 2-element subsets of V . We denote by Pn (resp. Cn) the path

(resp. the cycle) of order n and by Kn (resp. Kn,m) the complete graph of
order n (resp. the complete bipartite graph with parts of size n and m).

Our terminology is standard (we refer to [60] and [328]) and we denote by
dG(v) the degree of a vertex v in G. We use the concise notation |G| for the
order of G (i.e. the number of vertices of G), and ‖G‖ for the size of G (i.e.
the number of edges of G). As G is a simple graph we have

∑
v∈V dG(v) = 2|E|

(sometimes called the handshaking lemma). This lemma not only establishes
that the number of vertices with odd degree is even (hence the name) and
that the average degree d(G) of a vertex of G is 2|E|/|V |. We denote as usual
by δ(G) and Δ(G) the minimum degree and the maximum degree of the
vertices of G. Of course we have

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__3, © Springer-Verlag Berlin Heidelberg 2012
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δ(G) ≤ d(G) ≤ Δ(G), (3.1)

and

δ(G) ≤ 2‖G‖
|G|

. (3.2)

We shall find it convenient to consider also the ratio ‖G‖/|G| which we call
the edge density of G.

We can obtain more information about the degrees of G when we consider
subgraphs. Recall that a graph G ′ = (V ′, E ′) is a subgraph of a graph G =

(V, E) (this being denoted by G ′ ⊆ G) if V ′ ⊆ V and E ′ ⊆ E. If E ′ is the set of
all the edges of G on the set V ′, i.e. E ′ = E∩ (

V ′

2

)
, then we say that G ′ is an

induced subgraph, or more precisely the subgraph of G induced by V ′. We
usually denote this by G[V ′] or simply G ′ ⊆i G. The following nice notation
originated in Ramsey theory (cf [340]): For graphs G,H let

(
G
H

)
denote the

set of all the induced subgraphs of G which are isomorphic to H.
In terms of subgraphs we give in the next section quantitative refinements

to the basic inequalities (3.1), (3.2).

3.2 Average Degree and Minimum Degree

We denote by G<k (resp. G≤k, etc.) the subgraph of G induced by the vertices
of degree strictly smaller than k (resp. at most k, etc.). An easy result, which
is nothing other than Markov’s inequality, then states that for any positive
integer k and any graph G of average degree d(G) at most (d(G)/k)|G| vertices
of G have degree at least k, that is:

|G<k| ≥
(
1−

d(G)

k

)
|G|. (3.3)

Indeed, we have

k |{v, d(v) ≥ k}| ≤
∑

v

d(v) = d(G) |G|.

Hence

|G|− |G<k| ≤ d(G)

k
|G|.
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Another standard method involves the iterative removal of small vertices
until some condition is fulfilled.

For instance, assume a graph G contains a vertex v with d(v) < ‖G‖
|G|

and
let H = G− v be the induced subgraph of G obtained by deleting v. Clearly
H is not empty. Moreover,

‖H‖
|H|

−
‖G‖
|G|

=
‖G‖− d(v)

|G|− 1
−

‖G‖
|G|

=
‖G‖− |G|d(v)

|G|(|G|− 1)

=

(
1−

d(v)

‖G‖/|G|

) ‖G‖
|G|(|G|− 1)

> 0.

Thus by iteratively repeating this operation we eventually obtain a non-
empty induced subgraph H of G such that

δ(H) ≥ ‖H‖
|H|

≥ ‖G‖
|G|

, (3.4)

Instead of requiring a bound on d(v) which changes after each iteration,
we can consider a fixed constant bound which depends on the original graph.
Consider a graph G and a positive real ε > 1/|G|. Iteratively delete the
vertices v such that d(v) < (1− ε)‖G‖

|G|
until no deletion will be possible any

more, and let H be the obtained induced subgraph of G. Then the number of
deleted edges is at most |G| (1− ε)‖G‖

|G|
≤ (1− ε)‖G‖, hence H is not empty.

Moreover, H is such that

δ(H) ≥ (1− ε)
‖G‖
|G|

and ‖H‖ ≥ ε‖G‖. (3.5)

Together with the trivial bound (3.2) this shows that the minimum degree
is well approximated by the edge density of some subgraph.

3.3 Graph Degeneracy and Orientations

Recall that a graph G is k-degenerate if each nonempty subgraph of G

contains a vertex of degree at most k. For instance, trees are 1-degenerate,
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planar graphs are 5-degenerate. The maximum average degree of G, denoted
mad(G), is the maximum average degrees of the subgraphs of G:

mad(G) = max
H⊆G

d(H) = max
H⊆G

2‖H‖
|H|

These two concepts are related by the following folklore result:

Proposition 3.1. Let G be a graph and let k be an integer. Then we have
the following implications:

k ≥ �mad(G)� ⇒ G is k-degenerate ⇒ mad(G) < 2k.

Thus the maximum average degree relates to graph degeneracy, and it can
be used to give a simple bound for the chromatic number χ(G) of a graph
G (which is the minimum number of colors needed to color the vertices of
G in such a way that no two adjacent vertices get the same color): for every
graph G it holds

χ(G) ≤ �mad(G)� + 1.

From an algorithmic point of view, the computation of the maximum av-
erage degree (and more generally the problems of finding a densest subgraph)
is known to be solvable in polynomial time [210].

It is important to note that there is yet another approach to degeneracy of
graphs by means of graph orientations. Recall that every undirected graph G

can be transformed into a directed graph �G by choosing for each undirected
edge {u, v} one of the two possible arcs: either (u, v) or (v, u). The resulting
directed graph is called an orientation of G (There are 2‖G‖ orientations of
G = (V, E); any of them will be denoted by �G = (V,�E)). An orientation is
acyclic if it does not contain an oriented cycle (also called circuit); alterna-
tively this means that vertices of G can be ordered v1, . . . , vn in such a way
that the arcs (vi, vj) of �G satisfy i < j. For oriented graphs we use only basic
terminology. Recall that the indegree d−(v) of a vertex v is the number of
arcs which terminate in v: d−(v) = |{(u, v) : (u, v) ∈ �E}|, while the outdegree
d+(v) is the number of arcs which start in v: d+(v) = |{(v,w) : (v,w) ∈ �E}|.

One of the properties of k-degenerate graphs is to have an orientation with
small maximum indegree. A basic result of this type is the following:



3.3 Graph Degeneracy and Orientations 25

Proposition 3.2. Let G be a graph and let k be an integer.
Then the following conditions are equivalent:

� G is k-degenerate,
� G has an acyclic orientation such that every vertex has

indegree at most k.

Proof. Assume G is k-degenerate. Order the vertices of G as x1, . . . , xn ac-
cording to the following rule: x1 has minimum degree in G, x2 has minimum
degree in G − x1, etc. and orient each edge {xi, xj} with i < j from xj to xi.
This orientation is clearly acyclic and each vertex xi will have indegree at
most k as G − x1 − x2 − · · · − xi−1 has minimum degree at most k (as G is
k-degenerate).

Conversely, assume G has an acyclic orientation such that the maximum
indegree is at most k and let < be a linear order on the vertex set of G

compatible with the acyclic orientation (that is: (x, y) is an arc implies x < y).
Then, for each subgraph H of G, the maximum vertex of H has at most k

neighbors in H (for otherwise its indegree would be greater than k), hence H

contains a vertex of degree at most k. It follows that G is k-degenerate. 
�

We note that k-degenerate graphs have many useful properties. For exam-
ple they have linearly many cliques (a clique is a complete subgraph):

Lemma 3.1. Let G be a k-degenerate graph. Then G includes at most(
k

t−1

)
|G| cliques of order t, thus at most 2k|G| cliques.

Proof. Consider an acyclic orientation of G with indegree at most k. Then
the vertices of any clique of size t are naturally ordered as x1, x2, . . . , xt

(with all arcs oriented from xi to xj whenever i < j). We have at most |G|

choices for xt. The vertex xt being given, we have at most
(d−(xt)

t−1

)
choices

for {x1, . . . , xt−1}. It follows that the number of cliques of order t is bounded
by

(
Δ−(G)
t−1

)
|G| =

(
k

t−1

)
|G| and by summing we get that G includes at most

2k|G| cliques. 
�

This property has been used from an algorithm point of view to list cliques
in a planar graph [96], and from a more theoretical point of view, to prove
that every proper minor-closed class of graphs includes at most n!cn graphs
with vertex-set {1, 2, . . . , n}, that is are small classes [372].

One may use a similar argument to give an upper bound on the number
of copies of an arbitrary graph H in a graph G (see Exercise 3.2).



26 3 Prolegomena

Proposition 3.2 has a variant when acyclicity is not required. The following
condition gives necessary and sufficient conditions for an orientation to exist
in which each vertex has its indegree bounded by a given function.

Proposition 3.3. Let G be a graph and λ : V(G) → IN be a
mapping. Then, there exists an orientation of G such that
each vertex v has indegree d−(v) smaller than or equal to λ(v)

if and only if, for every induced subgraph H of G,

‖H‖ ≤
∑

v∈V(H)

λ(v) (3.6)

Moreover, if ‖G‖ =
∑

v∈V(G) λ(v) there exists an orientation
of G such that each vertex v has indegree exactly λ(v).

Proof. The proof uses an argument which is standard in the context of net-
work flows and combinatorial optimization (see [188, 376]). Actually, (3.6)
is the Hoffman condition of the trivial max-flow problem associated to the
orientation computation. For completeness, let us give a short proof.

Assume that there exists an orientation of G such that each vertex v has
indegree d−(v) smaller or equal to λ(v). Then, for every induced subgraph H

of G we have

‖H‖ ≤
∑

v∈V(H)

d−(v) ≤
∑

v∈V(H)

λ(v).

Conversely, assume that for every induced subgraph H of G we have

‖H‖ ≤
∑

v∈V(H)

λ(v).

To any orientation O of G we associate the value

S(O) =
∑

v∈V(G),d−(v)>λ(v)

(d−(v) − λ(v)),

where the indegrees are computed according to the orientation O. Let O be
an orientation of G such that S(O) is minimum. If S(O) = 0, we are done.
Let us prove by contradiction that this is indeed the case. So assume that
S(O) > 0. Then there exists a vertex a ∈ V(G) such that d−(a) > λ(a). Let
Ha be the subgraph of G induced by the set of the vertices v such that there
exists in G a (maybe empty) directed path from v to a (with respect to the
orientation O). By construction, the indegree in Ha of a vertex in Ha is the
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same as its indegree in G. Hence we have

‖Ha‖ =
∑

v∈V(Ha)

d−(v).

As ‖Ha‖ ≤ ∑
v∈V(H) λ(v) and as d−(a) > λ(a) there exists in Hb at least

a vertex b such that d−(b) < λ(b). By the definition of Ha there exists a
directed path �P in G from b to a. Consider the orientation O ′ of G obtained
from O by reorienting the edges of �P. The indegrees of all but two vertices
(a and b) are the same in O and O ′; the indegree of a in O ′ is one less than
its indegree in O while the indegree of b in O ′ is one more than its indegree
in O. It follows that the indegree of b in O ′ is at most λ(b). Altogether we
deduce that S(O ′) = S(O) − 1 < S(O), a contradiction.

If G is oriented in such a way that each vertex v has indegree at most λ(v),
it is clear that we have equality for every vertex if and only if the global sum
of the indegrees (that is: ‖G‖) equals the global sum of the λ(v). 
�

We remark that two orientations have the same indegrees if and only if they
differ by the reorientation along a sequence of directed cycles. In the planar
case, the set of these orientations has a distributive lattice structure [190, 374–
376] (see Exercise 3.3).

From an algorithmic point of view, orientations with bounded indegree (or
equivalently, with bounded out-degree) are interesting as they allow check-
ing for the adjacency of two vertices in constant time. This simple remark
seems to have first been used by Chrobak and Eppstein [96]. Orientations
with bounded indegrees play a particular role in topological graph theory,
especially in relation to planarity [187, 188, 192, 193, 195] and contact rep-
resentations of graphs [186, 189, 191, 196–201].

3.4 Girth

The girth of a graph G, denoted girth(G), is the minimum length of a cycle
of G (or ∞ if G is acyclic). In several contexts, it will be useful to find a
dense subgraph with high girth in a dense graph. This is not an easy task,
but it might be always possible:
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Conjecture of Thomassen [457]:
For all integers c, g there exists an integer f(c, g) such that every

graph G of average degree at least f(c, g) contains a subgraph of
average degree at least c and girth at least g.

The case g = 4 of this conjecture is a direct consequence of the simple
fact that every graph can be made bipartite by deleting at most half of
its edges (see Exercise 3.1). The case g = 6 has been proved in [292]. The
conjecture has also been proved for graphs whose average degree is not too
small compared to their maximum degree. Improving an earlier similar result
[390] (with single log), the following has been proved in [114].

Theorem 3.1. For every c ≥ 1, g ≥ 3 there exist α,β > 0 and d0 > c for
which the following holds.

Suppose that G is a graph with average degree

d(G) ≥ max{α(log logΔ(G))β, d0}.

Then G contains a subgraph H with d(H) ≥ c and girth(H) ≥ g.

As already mentioned, average degree and chromatic number are related
notions. Actually, Thomassen’s conjecture has a similar flavor to the following
conjecture formulated earlier:

Conjecture of Erdős and Hajnal [164]:
For all integers c, g there exists an integer f(c, g) such that every

graph G of chromatic number at least f(c, g) contains a subgraph
of chromatic number at least c and girth at least g.

The case g = 4 of this conjecture was proved by Rödl [420], and this is
presently the only non-trivial case known.

It should be noticed that the mere existence of a graph with high chromatic
number and high girth is a well known result of Erdős [163], which was at
the origin of the use of probabilistic methods in graph theory:
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Theorem 3.2. For all integers c, g there exists a graph with
girth at least g and chromatic number at least c.

Erdős showed that a random graph on n vertices and edge-probability
n(1−g)/g has, with high probability, at most n/2 cycles of length at most
g, but no independent set of size n/2c. Removing one vertex in each short
cycle leaves a graph with girth at least g and chromatic number at least c.
Constructive proofs of Theorem 3.2 are known, the simplest beeing perhaps
[364].

Forcing a high girth is actually a way to bound the density of a graph.
In other terms, there exists no small graph with both high girth and high
average degree. For d-regular graphs, a bound is easily derived from the fact
that the ball of radius �g−1

2
� around a vertex or an edge (depending on the

parity of g) is a tree. This bound, denoted by n0(d, g), is called Moore bound
and its value (see for instance [62]) is given by:

n0(d, 2r + 1) = 1+ d

r−1∑

i=0

(d − 1)i

n0(d, 2r) = 2

r−1∑

i=0

(d − 1)i.

The fact that this bound should hold in general has been conjectured by
Bollobás, and proved by Alon et al. [19]:

Theorem 3.3. The order n of a graph of girth g and average
degree at least d ≥ 2 is greater or equal to the Moore bound
n0(d, g):

n ≥ n0(d, g).

On the other hand, for every positive integer n and an “expected degree”
k (where k < n/3), there exists a graph G of order n, size �nk/2�, vertex
degrees in {k− 1, k, k+ 1} and whose girth g is such that g > logk(n) +O(1)

(see for instance [91]).
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3.5 Minors

Geometry and topology are essential to this book; even when we do not speak
about drawings or topology these concepts are present behind the scene. The
notion of a minor is a prime example: A graph H is a minor of a graph G

(denoted H ≤m G) if we can obtain H from G by repeating the following
three operations: G − v (vertex deletion), G \ e (edge deletion) and G/e

(edge contraction). If multiple edges are created when contracting an edge,
we simplify the graph—all our graphs are simple.

This recursive definition can be equivalently expressed as follows: A graph
H with vertex set {v1, . . . , vn} is a minor of a graph G if there are pairwise
vertex disjoint connected subgraphs G1, . . . , Gn of G such that for every
edge {vi, vj} of H there is at least one edge of G joining Gi and Gj in G

(by this we mean that there exists an edge {xi, xj} of G such that xi ∈
V(Gi) and xj ∈ V(Gj)). In other words H arises from a subgraph of G by
contracting connected subgraphs. The requirement that the subgraph should
be connected, highlighting the difference with homomorphisms, is chiefly
responsible for the “geometric flavor” of this concept.

As connected unions of connected graphs are connected we see that the
minor relation ≤m is a quasi-order on Graph, called the minor order. This
quasi-order was intensively studied and maybe the most important properties
of this quasi-order stands in the following important and difficult theorem of
Robertson and Seymour [398]:

Theorem 3.4. Any infinite sequence G1, G2, . . . of finite
graphs contains two members Gi, Gj with i < j and Gi ≤m Gj.

A quasi-ordering ≤ of a set X which satisfies a similar statement is called
a well-quasi-ordering (or wqo). Well-quasi-ordering may be equivalently de-
fined by the following two conditions (this is yet another consequence of
Ramsey’s theorem):

1. (X,≤) does not contain an infinite descending chain (i.e. an infinite se-
quence x1 > x2 > · · · > xi > . . . )

2. (X,≤) does not contain an infinite antichain (i.e. an infinite subset of X
containing no two distinct elements x and y such that x ≤ y)

As for the minor relation (for finite graphs) the condition (3.1) obviously
holds, the contents of the theorem lies in (3.2), i.e. the non-existence of an
infinite antichain. This old problem (known as Wagner’s conjecture) was
then solved by Robertson and Seymour in their landmark series of papers
[397, 399–417].
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This result is important in topological graph theory as it implies that for
each surface Σ, a graph G may be embedded on Σ if and only if it avoids
finitely many minors, the forbidden minors of the surface Σ. (The class of
the graphs which may be embedded is closed under minors. Thus the forbid-
den minors for the surface are the minor minimal graphs which cannot be
embedded on the surface and there are finitely many ones according to the
theorem.) For the plane and the projective plane, an explicit list of forbidden
minors is known. For instance, for the plane these are Kuratowski’s graphs
K3,3 and K5 [296, 467].

Actually, Kuratowski’s theorem is stated in terms of forbidden subdivi-
sions. This leads to the following notion.

A graph H with vertex set {v1, . . . , vn} is said to be a topological minor
of a graph G if there are distinct vertices x1, . . . , xn of G and, for each edge
e = {vi, vj} of H there exists a path Pe in G with endpoints xi and xj where
the Pe’s are pairwise internally vertex disjoints (i.e. may only share a com-
mon end-vertex). Each vertex x1, . . . , xn is a principal vertex and each path
Pe is a branch of the subdivision. In other words, H is a topological minor
of G if a subdivision of H is isomorphic to a subgraph of G. This is denoted
by ≤t. The quasi-order ≤t is called the topological minor order. The topo-
logical order ≤t is contained in the minor order ≤m. It is important to realize
that these orders are very different and that ≤t is generally much more re-
strictive than ≤m, although these quasi-orders may coincide when restricted
to some graph classes (for instance, to graphs with maximum degree 3). For
example the relation G ≤t H implies Δ(G) ≤ Δ(H) which is obviously not
true for the minor order. This difference is exemplified by the fact that the
topological minor order contains an infinite antichain and thus fails to be a
well-quasi-ordering (see Fig. 3.1). However, the property that a graph G may
be embedded on a fixed surface can always be characterized by finitely many
forbidden topological minors.

We introduce yet another quasi-order.
Let G be a graph and let {u, v}, {v,w} ∈ E(G). The operation of deleting the

edges {u, v} and {v,w} and then adding a new edge between u and w is called
a split. We say that a graph G immerses a graph H if a graph isomorphic to
H may be obtained from G by repeatedly making splits and deleting vertices
and edges; we denote this by H ≤i G. It has been conjectured by Nash-
William [339] and recently proved by Robertson and Seymour [418] that this
quasi-order is actually a well-quasi-ordering.

Another difference between minors and topological minors is exemplified
by two classical conjectures. Both are very easy to state:
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Fig. 3.1 Two examples of infinite antichains for the topological minor order

Hadwiger’s conjecture:

Kk ≤m G for every graph G with k ≤ χ(G).

Hajós’ conjecture:

Kk ≤t G for every graph G with k ≤ χ(G).

The present status of these conjectures is very different: Hadwiger’s con-
jecture is true for k ≤ 6 [419] (for both k = 5 and k = 6 this is related
to the Four Color Theorem) and open for k ≥ 7. Hajós’ conjecture is true
for k ≤ 4 and false for all k ≥ 7. Actually, for almost all graphs Hadwiger’s
conjecture is true and Hajós’ conjecture is false (as observed by Erdős and
Fajtlowicz [166]). Thomassen [460] proves that many examples known for a
long time in different areas of graph theory can serve as counterexamples to
Hajós’ conjecture. For immersions we have the following:

Conjecture of Abu-Khzam and Langston [1]:

Kk ≤i G for every graph G with k ≤ χ(G).
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This conjecture has been recently proved for k ≤ 7 [120]. Also on the
positive side let us mention that Hajós’ conjecture has been validated for
graphs with large girth (≥186 [291], recently improved to ≥ 27). In this book
we shall see that, a bit surprisingly, our main results are not sensitive to
whether we consider minors, topological minors, or immersions. In this we
shall make use of the following quantitative results.

The Hadwiger number h(G) of a graph G is the maximum integer k such
that Kk ≤m G. Similarly, by ht(G) (resp. hi(G)) we denote the maximum
integer k such that Kk ≤t G (resp. Kk ≤i G). Then the following extremal
results are known: The first of these results, which concerns minors, was
obtained independently by Kostochka [284] and Thomason [455] (extending
earlier work of Mader [322]; see [456] for a tight value of constant γ).

Theorem 3.5. There exists a constant γ such that every graph G with
minimum degree at least γk

√
log(k) satisfies h(G) ≥ k.

For topological minors (i.e. subdivisions) an analog result was proved
independently by Komlós and Szemerédi [280, 281] and by Bollobás and
Thomason [77].

Theorem 3.6. There exists a constant c such that every graph G with
minimum degree at least ck2 satisfies ht(G) ≥ k.

For immersions, the analog has been recently provided by DeVos et al.
[119].

Theorem 3.7. Every simple graph of minimum degree at least 200 k sat-
isfies hi(G) ≥ k.

3.6 Width, Separators and Expanders

Tree-width [241, 397, 467] is a fundamental graph invariant with many ap-
plications in graph structure theory and graph algorithms. For instance, it
is known that graph isomorphism can be checked in polynomial time when
restricted to a class with bounded tree-width [68]. Also, if the tree-width of
the primal graph of the instance is at most k and if n is the size of the input
then constraint satisfaction problems (CSP) can be solved in time nO(k); no
algorithm can be significantly better than this [326]. The concept is central
to Robertson and Seymour’s analysis of graphs with forbidden minors and
we recall here basics about tree-width. For general properties of tree-width
we refer the reader to [71]. We recall the definition here.
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A tree decomposition represents the vertices of the given graph as subtrees
of a tree, in such a way that vertices are adjacent only when the corresponding
subtrees intersect.

Formally, a tree decomposition of a graph G is a pair (X, T), where X =

X1, . . . , Xn is a family of subsets of V(G), and T is a tree whose nodes are
the subsets Xi such that (see Fig. 3.2):

� V(G) =
⋃n

i=1 Xi;
� E(G) ⊆ ⋃n

i=1

(
Xi

2

)
;

� ∀v ∈ V(G), T [{Xi : v ∈ Xi}] is connected.

a
b

c

d

e

f

g

h

i

j

k

l

m

{d, h, i, k} {j, k, l, m}

{d, g, j, k}

{c, d, g, j}

{a, b, c, d} {c, e, f, j}

Fig. 3.2 Tree decomposition of width 3 of a graph

The tree-width tw(G) is the minimum over all tree decompositions (X, T)
of G of maxi |Xi| − 1. For instance, the tree-width of a n × n grid is equal
to n. Tree-width leads to a variety of tree-like parameters. For instance, if T is
required to be a path, the decomposition is called a path decomposition. The
path-width pw(G) of a graph G is the minimum over all path decompositions
(X, T) of G of maxi |Xi|− 1.

An alternative definition of tree-width may be given in terms of partial
k-trees: A k-tree is a graph which may be obtained from a clique of order k

by a sequence of operations consisting of adding a vertex to the graph and
making it adjacent to the vertices of a clique of size at most k already present
in the graph. A partial k-tree is a subgraph of a k-tree. According to this
definition, the minimum integer k for which a graph G is a partial k-tree is
exactly the tree-width of G [432, 469].

One can characterize minor closed classes C with bounded tree-width [401]:

Theorem 3.8. For every minor closed class C, the following properties
are equivalent:
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� C has bounded tree-width (i.e. supG∈C tw(C) < ∞),
� C does not include all planar graphs,
� C excludes some grid.

A dual approach to tree-width may be achieved through the notion of a
bramble. A bramble in a graph G is a family of connected subgraphs of G such
that any two of these subgraphs have a nonempty intersection or are joined
by an edge. The order of a bramble is the least number of vertices required
to cover (or hit) every subgraph in the bramble (see Fig. 3.3). Seymour and
Thomas proved that the maximum order of a bramble in a graph G equals
tw(G)+1 [55, 434] (see also [394] and [230] for a discussion on brambles’ size).
An extension and common generalization of these “dual characterizations” for
various width parameters may be found in [329].

Fig. 3.3 A bramble of order 4

It has been proved by Robertson and Seymour that belonging to a minor
closed class with bounded tree-width may be checked in linear time [398]. It
is well known that in classes of graphs of bounded tree-width, every monadic
second-order property is decidable in linear time [102, 103] (see also [32, 67]).
Since many important graph properties are easily expressible in this logic,
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Courcelle’s theorem [102, 103] yields a unified framework for showing that
numerous problems on graphs of bounded tree width are solvable in linear
time.

Theorem 3.9. Let K be class of finite graphs G = 〈V, E, R〉 rep-
resented as a structure with two sorts of elements (vertices V

and edges E) and an incidence relation R. Let φ be a monadic
second order sentence. If K has bounded tree width and G ∈ K,
then checking whether G |= φ can be done in linear time.

Courcelle’s theorem has been extended by Arnborg et al. [32], who consid-
ered a counting version, and by Flum et al. [178], who considered enumeration
problems.

However, these algorithms need a tree decomposition of the input graph.
Such a decomposition can be computed in linear time, thanks to the following
result of Bodlaender [70]:

Theorem 3.10. For all k ∈ IN, there exists a linear time algorithm, that
tests whether a given a graph G has tree-width at most k, and if so,
outputs a tree decomposition of G with tree-width at most k.

Note that tw(G) ≤ k (for fixed k) was previously known to be decidable in
linear time [31] but no tree decomposition was computed by the algorithm.
Also note that if k is part of the input, deciding tw(G) ≤ k becomes a NP-
complete problem [30].

Bodlaender’s algorithm uses a linear computation space. However, a recent
result of Elberfeld et al. [146] shows that a similar statement holds for deter-
ministic log-space Turing machines (log-space DTM), making the power of
MSO-definability available for the study of logarithmic space.

As noticed above, if a minor closed class C has unbounded tree-width
then it contains all planar graphs. As 3-colorability is NP-complete for planar
graphs, we get that if P �= NP and if for a class C every existential monadic
second-order property is in P, then C has bounded tree-width.

The tree-width of a graph is closely related to the size of its vertex
separators.

Let G be a graph of order n and let 0 < α < 1. An α-vertex separator
of G is a subset S of vertices such that every connected component of G− S

contains at most αn vertices. For instance, it is easy to observe that every
graph G has a 1/2-vertex separator of size tw(G) + 1 [73, 219, 306, 400].

Vertex separators are a central tool in divide and conquer algorithms,
where searches for balanced vertex separators are frequently repeated recur-
sively on smaller and smaller subgraphs (see also Chap. 16). This justifies
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the introduction of a hereditary measure of balanced vertex separators in
graphs:

Let G be a graph of order n. We define sG : {1, . . . , n} → IN by

sG(i) = max
|A|≤i,

A⊆V(G)

min{|S| : S is a 1
2
-vertex separator of G[A]}

We shall deal with this measure extensively in Chap. 16. Also, the sepa-
ration number s(G) of a graph G is the smallest s such that all subgraphs
of G have an (s, 2/3)-separator.

The band-width of a graph G of order n, denoted by bw(G), is the min-
imum positive integer b, such that there exists a numbering f : V(G) → [n]

of the vertices of G so that the labels of every pair of adjacent vertices differ
by at most b.

Having a vertex of high degree is sufficient to have a large band-width:
bw(G) ≥ �Δ(G)/2�. However, this condition is not necessary. Consider a
random bipartite graph G with bounded maximum degree. With high prob-
ability, G does not have small band-width since in any linear ordering of
its vertices there will be an edge between the first n/3 and the last n/3

vertices [81].

Definition 3.1. Let ε > 0 be a real number and let G be a graph. We say
that G is an ε-expander if all subsets U of vertices of G with |U| ≤ |G|/2

satisfy |NG(U) \U| ≥ ε|U|.

This definition may be compared to two standard definitions of expansions:
For 0 < α < 1, the α-vertex expansion gα(G) of a graph G is defined by

gα(G) = min
1≤|S|≤α|G|

|NG(S)|

|S|

Also, the edge expansion (or isoperimetric number, or Cheeger con-
stant) Iso(G) of G is defined by

Iso(G) = min
1≤|S|≤|G|/2

|δ(S)|

|S|
,

where δ(S) denotes the set of all the edges of G linking S to V(G)\S, i.e. the
cut-set (or cobord) of S (see Fig. 3.4).

It is easily checked that Iso(G) ≥ g1/2(G)−1 and that G is an ε-expander
if and only if 0 < ε ≤ g1/2(G).

It is important that the edge expansion Iso(G) of G is related to its spectral
properties, and particularly to the second largest eigenvalue: if G is d-regular
and if the adjacency matrix A(G) of G has eigenvalues d = λ1 ≥ λ2 ≥ · · · ≥
λn, then [11, 22, 125]:
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Fig. 3.4 The Ramanujan graph C80 has edge expansion one fourth as witnessed by
the shown cut

1

2
(d − λ2) ≤ Iso(G) ≤

√
2d(d − λ2).

This relationship goes back to Cheeger [92] and Fiedler [177]. This inequal-
ity leads to the following important results which found many applications
in various branches of mathematics and computer sciences, see [13, 63] and
the excellent survey article [259]. The first of these results is known as the
Expander Mixing Lemma: Let G be a d-regular graph of order n and let
λ be the maximum of the absolute values of the second largest eigenvalue
and of the minimum eigenvalue of G (i.e. λ = max(|λ2|, |λn|)). Then for all
S, T ⊆ V(G) it holds:

∣
∣∣
∣|ω(S, T)|−

d |S| |T |

n

∣
∣∣
∣ ≤ λ

√
|S| |T |,

where ω(S, T) denotes the set of edges of G with one endpoint in S and the
other in T . The second result shows that this relation between λ and the
expansion properties of G is best possible in the following sense: if

∣
∣∣
∣|ω(S, T)| −

d |S| |T |

n

∣
∣∣
∣ ≤ ρ

√
|S| |T |
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holds for all every two disjoints S, T ⊆ V(G) and for some positive ρ. Then
λ ≤ O(ρ (1 + log(d/ρ))) (and the bound is tight).

Definition 3.2. Let ε > 0 be a real number, b ∈ IN and let G be a graph.
We say that G is (b, ε)-bounded if no subgraph G ′ ⊆ G with |G ′| ≥ b is
an ε-expander. The ε-boundedness bε(G) is the minimum b for which G is
(b+ 1, ε)-bounded.

We shall make use of the following result [81]:

Theorem 3.11. Let ε > 0 be constant and let G be a graph of order n.
Then:

bw(G) ≤ 6n

logmax(Δ(G),2)(n/s(G))
,

tw(G) ≤ 2bε(G) + 2εn,

bε(G) ≤ 2bw(G)/ε.

Thus these parameters are not independent. In particular we have [230]:

Theorem 3.12. Let ε > 0 be constant and let G be a graph has order n.
If G satisfies bε(G) < εn, then tw(G) ≤ 2εn.

Thus the expansion properties of graphs are linked to the tree width. We
shall make use of these connections in Chap. 16.

3.7 Homomorphisms

For graphs G = (V, E) and G ′ = (V ′, E ′), a homomorphism from G to G ′ is
a mapping f : V → V ′ satisfying

{u, v} ∈ E =⇒ {f(u), f(v)} ∈ E ′.

This fact is denoted by f : G → G ′ and the existence (resp. the non-existence)
of a homomorphism is denoted by G −→ G ′ (resp. G −�−→ G ′). Note that no
other condition is imposed (non edges can be mapped to edges, vertices can
be identified). An isomorphism is then a bijective homomorphism whose
inverse is also a homomorphism. The existence of an isomorphism G → G ′ is
denoted by G ∼= G ′ and we say that G and G ′ are isomorphic; this relation
is obviously an equivalence relation. A homomorphism f : G → G ′ may be
one-to-one in which case G is isomorphic to a subgraph of G ′. Thus Kk → G

when G contains a clique of size k. The clique number ω(G) is the maximum
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order of a clique of G, that is the maximum order of a complete subgraph
of G. Hence ω(G) = max{k : Kk −→ G}.

On the other hand every homomorphism f : G → Kk corresponds to a
coloring of the vertices of G by k colors such that no two vertices colored the
same are adjacent. Thus χ(G) = min{k : G → Kk} is the chromatic number
of G.

The class of all finite graphs (up to isomorphism) will be denoted by
Graph. This class together with homomorphisms forms a category (cf e.g.
[253]). This amounts to the following:

� For every graph G the identity mapping V(G) → V(G) is a homomor-
phism;

� Whenever f : G1 → G2 and g : G2 → G3 are homomorphisms then their
composition q ◦ f : G1 → G3 is a homomorphism.

We can consider standard categorical constructions. Particularly we shall
make use of the categorical sum G+H (also called sum or disjoint union of
G and H) and of the categorical product G×G ′ (also called direct product)
which is defined as follows:

V(G×G ′) = V(G)× V(G ′)

E(G ×G ′) = {{(u, u ′), (v, v ′)} : {u, v} ∈ E(G) and {u ′, v ′} ∈ E(G ′)}

An example is given on Fig. 3.5.

Fig. 3.5 The categorical product K3 × C5

The injection iG : V(G) → V(G + H) defined by iG(u) = u is obviously
a homomorphism of G to G + H to G, and similarly from the injection iH :

G → G+H.
The projection πG : V(G × H) → V(G) defined by πG(u, v) = u is

a homomorphism of G × H to G, and similarly from the projection πH :

G×H → H.
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These injections and projections determine the sum and the product
uniquely and thus the above definitions are a particular case of sum and
product and in any category. This can be expressed by the following dia-
grams:

G G
g1

��
iG ���

��
��

��
�

F

f1

��

f �����

f2 ��

G×H

πG

����������

πH

���
��

��
��

��
G+H

g ����� K

H H
g2

		
iH

�����������

In words: For every graph F and homomorphisms f1 : F → G and f2 :

F → H there exists uniquely defined homomorphism f : F → G × H such
that f1 = πG ◦ f and f2 = πH ◦ f; For every graph K and homomorphisms
g1 : G → K and g2 : H → K there exists uniquely defined homomorphism
g : G+H → K such that g1 = g ◦ iG and g2 = g ◦ iH. This implicit definition
of G×H and G+H may be very useful. For example one can prove easily the
following proposition which is the basis of product dimension (see [311]).
See also Exercise 3.7.

Proposition 3.4. Every graph G is an induced subgraph of a power of a
complete graph, i.e. of a graph of the form

Kp
n = Kn × Kn × · · · × Kn︸ ︷︷ ︸

p

.

Proof. Let us prove the first statement: let G be a graph of order n and
denote by Hom(G,Kn) the set of all homomorphisms G −→ Kn. Put ex-
plicitly Hom(G,Kn) = {f1, . . . , ft}. We consider the graph Kt

n and denote
by π1, . . . , πt its projections. By the above property there exists an unique
homomorphism f : G → Kt

n such that πi ◦ f = fi for every i = 1, . . . , t. As at
least one fi is one-to-one so is f. Moreover, if {u, v} is not an edge of G then
{f(u), f(v)} is not an edge of Kt

n, as there exists fi ∈ Hom(G,Kn) which only
identifies u and v. Thus f is actually an isomorphism of G with the subgraph
of Kt

n induced by the set {f(v) : v ∈ V(G)}. 
�

The direct product is a powerful construction and we shall make use of it
below.

Homomorphisms lead us also to homomorphism dualities, which are state-
ments of the following type:
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F −�−→ G ⇐⇒ G −→ D (3.7)

where F and D are finite sets of graphs. Here the undefined symbols are
natural extensions of our earlier notations:

F −�−→ G means F −�−→ G for every F ∈ F

G −→ D means G −→ D for some D ∈ D

If (3.7) holds for sets F and D then we call the pair (F,D) a finite du-
ality. This notion captures the fact that the existence of a homomorphism
into a given set D of graphs (called duals or templates) can be alternatively
expressed dually by the non-existence of homomorphisms from a given set F
of (forbidden) graphs. This notion has not much of a meaning for undirected
graphs but for richer structures (including directed graphs) we have an abun-
dance of examples. Here is one for directed graphs: Denote by �Pn the directed
path of order n (and length n − 1) and by �Tn the transitive tournament of
order n. If we extend the notion of homomorphism to oriented graphs then
we have (for every directed graph �G):

�Pk+1 −�−→ �G ⇐⇒ �G −→ �Tk

This (easy) theorem was discovered several times and it is known as Gallai-
Hasse-Roy-Vitaver theorem [209, 244, 426, 466]. It is usually stated as a result
about orientations:

Theorem 3.13. A graph G has chromatic number at least k if
and only if every orientation �G of G contains a directed path
of length k + 1.

In Chap. 9 we generalize these results to relational structures and we also
consider dualities for graphs restricted to a fixed class, for special classes
having applications to logic.

Existence of homomorphisms induce a quasi-order: for two graphs G,H we
also write G ≤h H if G −→ H. The relation ≤h is obviously a quasi-order on
the class Graph of all finite graphs, which we call the homomorphism order.
The relation ≤h is clearly not a partial order as we may have non isomorphic
graphsG,H such that G ≤h H ≤h G. Such graphs are called hom-equivalent.
For instance, every non-discrete bipartite graph G is hom-equivalent to K2

and thus any two graphs with chromatic number 2 are hom-equivalent. The
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equivalence class of a graph G for hom-equivalence will be denoted by [G].
The homomorphism order defines a partial order ≤h on the set [Graph] of
all these equivalence classes.

As we are discussing finite graphs only, the homomorphism equivalence
takes a particularly simple form.

Proposition 3.5. For any graph G there is (up to isomorphism) a unique
graph G ′ which is hom-equivalent to G and which has the minimal num-
ber of vertices. Such a graph G ′ is called the core of G, and it is isomor-
phic to an induced subgraph of G (see Fig. 3.6).

Proof. Let G ′ be a graph hom-equivalent to G and which has the minimal
number of vertices. Let f : G → G ′ and g : G ′ → G be the corresponding
homomorphisms. Because of the minimality of G ′, the homomorphism g is
injective, f ◦ g is an automorphism of G ′ hence G ′ is actually isomorphic to
the subgraph g(G ′) of G. From this also follows that the graph G ′ is uniquely
determined (up to isomorphism). 
�

This is a categorical argument which can be used for any finite structure.
It is also easy to prove that the core of G can be alternatively defined as the
minimal retract of G, i.e. as the smallest subgraph G ′ of G such that there
exists a homomorphism f : G → G ′ which is the identity on G ′ (i.e. f(v) = v

for every v ∈ V(G ′)).
Actually, any two graphs are hom-equivalent if and only if they have iso-

morphic cores. A graph which is a core (of some graph or, equivalently, of it-
self) is called a core graph. Hence each equivalence class for hom-equivalence
contains exactly one core graph, which we can consider as a standard repre-
sentative for the class.

The homomorphism order ≤h is very complex. Merely testing the relation
G ≤h G ′ is an NP-complete problem as exemplified by the case G ≤h K3

which amounts to testing whether a graph G is 3-colorable.
The complexity of the homomorphism order is demonstrated by its (count-

able) universality and density:

Theorem 3.14 (Universality). The homomorphism order is a countably
universal order, that is: for every countable poset P = (X,≤P) there exists
and injective mapping x �→ Gx of X into Graph satisfying

x ≤P y ⇐⇒ Gx ≤h Gy.

(Such a mapping is called an embedding of P into the homomorphism
order.)

Universality of the homomorphism order has been proved by several different
methods in [250, 264, 389]. Resolving an old conjecture it has been proved
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Fig. 3.6 The core of a graph

in [263] that even the class of all finite oriented paths is a countably univer-
sal partial order. It follows that also the homomorphism order of all finite
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planar graph (and even series-parallel graphs) is universal. The essence (and
difficulty) of these results is that the elements of a countable partial order
are represented by finite objects.

Theorem 3.15 (Density). For every pair of graphs G1, G2

such that G1 → G2, G2 � G1 and G2 � K2 there exists a
graph G such that

G1
��



 � G
��



 � G2. (3.8)

In other words, the homomorphism order (Graph,≤h) is a
dense partial order with the exception of the gap (K1, K2).

The density theorem was proved (in the context of computer science) by
Welzl [468]. A short proof by Nešetřil and Perles [342] was the start of new
investigations and the one-to-one correspondence between exceptional cases
for the density (the gaps) and homomorphism dualities was established [370].

The density theorem has an interesting consequence. First we state a tech-
nical lemma.

Lemma 3.2. Let G1 and G2 be homomorphically incomparable graphs,
where G1 is non bipartite (i.e. G1 � K2).

Then there exist graphs GL and GR such that the following diagram
holds:

G1

���
��

��
��

�

����
��
��
���





	
GL

����������

���
��

��
��

�



GR

����������


����
��
��
���

G2

Proof. As G1 � G2 we have G1×G2
��



 � G1
��



 � G1+G2. Hence by density
there exist GL and GR such that

G1 ×G2
��



 � GL
��



 � G1
��



 � GR
��



 � G1 + G2.

Obviously GL � G2 (for otherwise GL → G1 × G2) and G2 � GR (for
otherwise G1 + G2 → GR). 
�

Here is the promised corollary:

Corollary 3.1. The homomorphism order defines every graph both from
left and right:
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Up to a homomorphism equivalence, every graph G can be recon-
structed from the set {H : H < G} and also from the set {H : H > G}.

Note that for the injective mappings (instead of homomorphisms) a similar
theorem does not hold for oriented graphs (even for tournaments). However
for undirected graphs this is the old and well known Ulam’s conjecture.

For graphs F,G denote by hom(F,G) the number of homomorphisms from
F to G. Let F1, . . . , Fn, . . . be a fixed enumeration of all isomorphism types
of finite graphs. To every graph H we can associate the (infinite) sequence
〈G〉 = (a1, a2, . . . ) by putting ai = hom(Fi, G). The sequence 〈G〉 is called
the profile or Lovász vector of G because of the following fundamental result
proved by (then very young) Lovász [309]:

Theorem 3.16. For any two graphs G,G ′, we have G ∼= G ′ if
and only if 〈G〉 = 〈G ′〉.

This theorem has many consequences and it motivated much of the recent
developments. So, if we can “count” homomorphisms, we can have (admit-
tedly a rather inefficient) graph parameter describing isomorphism.

Counting of homomorphisms led to a very interesting development, partic-
ularly for dense graphs. This is related to the Szemerédi’s regularity lemma
[151, 314, 315], property testing [79], partition functions in statistical physics
[79, 310, 448], limit objects in probability [56, 314], non-standard analysis,
ergodic theory [151], quasi-random structures [313]. We refer the reader to
[78] for a nice survey of this development and return to this topic in Chap. 12.

In this book we are motivated by optimization problems (such as the exis-
tence of homomorphisms and constrained satisfaction problems) and by the
analysis (and classification) of sparse classes of graphs. These questions are
more existential in nature and lead to more deterministic settings. However
the techniques are often similar, problems and their context often resemble
each other. Interestingly, nowhere dense classes may be defined by counting
homomorphisms in a proper scaling [356, 357], see Chap. 12.

3.8 Relational Structures and First-Order Logic

The topic of this book draws from experience with many areas of math-
ematics. The main body of material deals with graphs, graph theory and
combinatorics. But this predominance may be misleading: although most of
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the material belongs to algebraic graph theory and structural combinatorics,
most of the covered material is not special to graphs. The whole setting
generalizes to hypergraphs and relational structures. What do we mean by
these structures and how can these generalizations be achieved? This will be
briefly explained in this section.

Our notation and terminology is standard, see e.g. [141].

3.8.1 Relational Structures

Given a set σ of relation symbols, each with a specified arity, which we
call signature (or vocabulary), we define a σ-structure A as a set A (the
universe, domain, or carrier of A) together with the interpretation of each
symbol R of σ with arity r as a relation RA ⊆ Ar. In this book, we only
consider finite signatures. A relational structure is a σ-structure for some
signature σ. A relational structure is finite if its universe is finite. When we
shall consider infinite structures we shall explicitly precise it; otherwise, the
considered relational structures will implicitly be assumed to be finite. We
shall denote relational structures by boldface letters such as A, B.

A σ-structure B is a substructure of A if B ⊆ A and RB ⊆ RA for every
R ∈ σ. It is an induced substructure if RB = RA∩Br for every R ∈ σ of arity r.
A substructure B of A is proper if A �= B. If B is an induced substructure of
A, we say that A is an extension of B. If B is a proper induced substructure,
then A is a proper extension. If A is the disjoint union of B with another
σ-structure, we say that A is a disjoint extension of B. If S ⊆ A is a subset
of the universe of A, then A∩S denotes the induced substructure generated
by S; in other words, the universe of A ∩ S is S, and the interpretation in
A ∩ S of the r-ary relation symbol R is RA ∩ Sr.

A homomorphism A → B between two σ-structure is defined as a map-
ping f : A → B which satisfies for every relational symbol R ∈ σ the following:

(x1, . . . , xk) ∈ RA =⇒ (f(x1), . . . , f(xk)) ∈ RB.

The class of all finite σ-structures is denoted by Rel(σ). The same symbol will
be used for the category of all σ-structures and all homomorphisms between
them, and also for the corresponding quasi-order defined by the existence
of a homomorphism. The particular meaning will be always clear from the
context. As for graphs we can consider standard categorical constructions:
the categorical sum A+B (also called sum or disjoint union of A and B)
and the categorical product A × B of two σ-structures (also called direct
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product) which is defined as follows: Let A and B be two σ-structures with
respective universes A and B. Then:

� The universe of A× B is A× B,
� For every k-ary relational symbol R ∈ σ, ((x1, y1), . . . , (xk, yk)) ∈ RA×B

if both (x1, . . . , xk) ∈ RA and (y1, . . . , yk) ∈ RB.

The chromatic number of a σ-structure is the minimum number of colors
needed to color its universe in such a way that no tuple in any relation is
monochromatic. (Clearly this requires that arities are at least 2.)

Note that a somewhat different formalism emerged for σ-structures from
the theory of structures and the theory of categories (see e.g. [253, 370,
389]). A finite set of positive integers Δ = (δi : i ∈ I) is called a type. A
relational structure A of type Δ is a pair (X, (Ri : i ∈ I)) where X is a
finite set and Ri ⊆ Xδi . Both approaches are of course equivalent and are
just slightly different formalizations of the same thing. We use alternatively
both approaches depending on the particular context.

A hypergraph (or set system) H is a pair (X,M) where X is a finite set
and M is a family of non-empty subsets of X whose union is X [59]. The
elements of X and M are respectively the vertices (or points) and the edges
(or hyperedges). Given two hypergraphs H = (X,M) and H ′ = (X ′,M ′) a
mapping f : X → X ′ is said to be a homomorphism H → H ′ if for every
M ∈ M f(M) = {f(x), x ∈ M} belongs to M ′.

Many of the results for graphs have analogous form and proofs for general
systems. For instance, the density Theorem 3.15 can be proved for general
σ-structures and in fact this correspondence between gaps and dualities is
the key to the proof, see [370] and Sect. 9.2.

3.8.2 First-Order Logic

Let σ be a relational vocabulary. The atomic formulas of σ are those of the
form R(x1, . . . , xr), where R ∈ σ is a relation symbol of arity r, and x1, . . . , xr

are first-order variables that are not necessarily distinct. Formulas of the form
x = y are also atomic.

The collection of first-order formulas is obtained by closing the atomic
formulas under negation, conjunction, disjunction, universal and existential
first-order quantification. The collection of existential first-order formulas
is obtained by closing the atomic formulas and the negated atomic formulas
under conjunction, disjunction, and existential quantification. The semantics
of first-order logic is standard.
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The quantifier count of a formula φ is the total number of quantifiers
in φ. The quantifier rank of a first-order formula is the maximum nesting
of quantifiers of its sub-formulas. These quantities are denoted by qcount(φ)
and qrank(φ), respectively. Quantifier-rank is obviously at most quantifier-
count and often strictly less.

Let A be a σ-structure, and let a1, . . . , an be points in A. If φ(x1, . . . , xn)
is a formula with free variables x1, . . . , xn, we denote by A |= φ(a1, . . . , an)

the fact that φ is true in A when xi is interpreted by ai. If m is an integer,
the first-order m-type of a1, . . . , an in A is the collection of all first-order
formulasφ(x1, . . . , xn) of quantifier rank at mostm, up to logical equivalence,
for which A |= φ(a1, . . . , an).

3.8.3 Derived Graphs

The Gaifman graph of a σ-structure A, denoted by Gaifman(A), is the
(undirected) graph whose set of nodes is the universe of A, which is denoted
by A, and whose set of edges consists of all pairs (a, a ′) of distinct elements
of A such that a and a ′ appear together in some tuple of a relation in A.
This notion coincides with the combinatorial notion of 2-section in the sense
of Berge, see e.g. [59]. The degree of a structure is the maximum degree of
its Gaifman graph, that is, the maximum number of neighbors of nodes of
the Gaifman graph. Other notions (such as shallow minor or distance) are
defined analogously via Gaifman graphs.

Let us remark that alternatively we may convert any hypergraph H =

(X,M) to a graph by means of incidence graph Inc(H) which may be defined
as the following graph (V, E) where V = X ∪M, E = {(x, e) : x ∈ e ∈ M}.

For relational structures we can proceed analogously: Given a relational
structure A = (A, (Ri : i ∈ I)) the incidence graph Inc(A) is the bipartite
graph (A,B, E) where B is the set of blocks, i.e. pairs (i, (x1, . . . , xδi

)) where
i ∈ I and (x1, . . . , xδi

) ∈ Ri. The edges are then all the incidences “x ∈
(x1, . . . , xδi

)”. (this is interpreted as a multigraph, thus x forms two edges
with (i, (x, x, y))).

This construction allows us to import some basic concepts from graph
theory (see e.g. [297]): the distance dA(a, b) between two elements a and b

of A is defined as half their distance in Inc(A), the diameter of A is defined as
half the diameter of Inc(A), and the girth of A is defined as half the shortest
length of a cycle in Inc(A). In particular, A has girth 1 if and only if Inc(A)

has parallel edges, and infinite girth if and only if Inc(A) is acyclic. Notice in
particular that tuples with repeated entries (such as (a, a, b)) create parallel
edges and hence cycles; this property is not captured in the Gaifman graph.
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A σ-structure T is called a σ-tree (or relational tree, or tree for short)
if Inc(T) is a (graph) tree, i.e. it is acyclic and connected. We denote by
Tree(σ) the set of all σ-trees.

Incidence graphs and Gaifman graphs do not exhaust all the possibilities
to transform general structures to graphs: other possibilities are the use of
star selectors or the replacement of k-tuples by oriented paths. When dealing
with unbounded arities we have to use incidence graphs (or star selectors) as
Gaifman graphs would then have unbounded clique number. On the other
hand, Gaifman graphs seem to be preferred by logicians (see e.g. [42, 321])
and in a way this concept presents the first approximation. As we shall see
the star selectors are often more sensitive approach to problems treated in
this book.

3.8.4 Ehrenfeucht-Fraïssé Games

The Ehrenfeucht-Fraïssé game is a well-known technique for determining
whether two structures are “equivalent”. Suppose that we are given two graphs
G and H and a fixed natural number n. We can then define the Ehrenfeucht-
Fraïssé game �n(G,H) to be a game between two players, Spoiler and Dupli-
cator, played as follows: Start with A0 = B0 = ∅ and let π0 be the (empty)
mapping from A0 to B0. Notice that π0 is an isomorphism from G[A0] to
G[B0]. For each 1 ≤ i ≤ n, Spoiler picks either a vertex a in G or a vertex b

in H. In the first case, the Duplicator choose a vertex b in H; in the second
case he chooses a vertex a in G. Let Ai = Ai−1 ∪ {a} and Bi = Bi−1 ∪ {b}. If
no isomorphism πi : G[Ai] → G[Bi] extending πi−1 exists such that π(a) = b

then Spoiler wins the game. Otherwise, the game continues until i = n (no-
tice that πi is uniquely determined by πi−1 and vertices a and b). If i reaches
n and πn is an isomorphism from G[An] to H[Bn] then Duplicator wins the
game.

If Duplicator has a winning strategy for n then we note G ≡n H and we say
that G and H are n-back-and-forth equivalent (see Fig. 3.7). If G ≡n H for
every n then G and H are elementarily equivalent, what is denoted by G≡H.
Notice that although two finite graphs are clearly elementarily equivalent
if and only if they are isomorphic, elementary equivalence is coarser than
isomorphism for general (i.e. non necessarily finite) graphs.

The meaning of the n-back-and-forth equivalence is clarified by the clas-
sical results of Fraïssé [184, 185] and Ehrenfeucht [145].
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G H

Fig. 3.7 Back-and-Forth Game: G ≡2 H but G �≡3 H

Theorem 3.17. Two graphs (and more generally two struc-
tures) are n-back and forth equivalent if and only if they sat-
isfy the same first order sentences of quantifier rank n.

The quantifier rank plays in this book a prominent role. Not only because
of our use of homomorphism preservation theorems (see Chap. 10) but one
of our principal decomposition techniques involves the notion of tree-depth
which is related to the notion of quantifier rank (see [425] and Sect. 6.9).

3.8.5 Interpretation

Let L and L ′ be two languages and let T be a theory in L. Recall (see, for
instance [299], p. 178–180) that an interpretation I of L ′ in L is defined by:

� An integer n,
� An L-formula U[v1, . . . , vn] with n free variables,
� An L-formula E[w1, w2] with 2n free variables (w1, w2 represent each a

sequence of n variables),
� And an L-formula FR[w1, . . . , wk] with kn free variables for each relational

symbol R with arity k,

which satisfy the following conditions:

1. The theory T entails that E is an equivalence relation;
2. The theory T entails that U is a union of E-classes;
3. For every integer k and every symbol R of arity k in L ′, T entails that Ff

is interpreted by a set which is closed for the relation E.
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Then, if A is a model of T , we can interpret in A the L ′-structure A ′

defined as follows:

� The universe A ′ of A ′ is U[A]/E[A];
� Let R be a symbol of arity k of L ′ and (a1, . . . , ak) ∈ A ′k; then

(a1, . . . , ak) ∈ RA ′
if and only if there exists b1 ∈ a1, . . . , bk ∈ ak such

that A |= FR[b1, . . . , bk].

In such a case, A ′ is an interpretation of A by I, what we denote by A ′ =
I(A). A main interest of such an interpretation lies in the following property
(See, for instance [299], p. 180):

Lemma 3.3. For every formula F[v1, . . . , vk] of L ′ there exists a formula
I(f)[w1, . . . , wk] of L with kn free variables (each wi represents a succes-
sion of n free variables) such that for every model A of T , if A ′ = I(A)

and if (a1, . . . , ak) ∈ A ′k then the three following conditions are equiva-
lent:

1. A ′ |= F[a1, . . . , ak];
2. There exist b1 ∈ a1, . . . , bk ∈ ak such that A |= I(F)[b1, . . . , bk];
3. For all b1 ∈ a1, . . . , bk ∈ ak it holds A |= I(F)[b1, . . . , bk].

3.9 Ramsey Theory

The reader can rightly raise his/her eyebrows: what does a typical area deal-
ing with “dense structures” such as Ramsey theory have to do with sparsity
in the sense of the main theme of this book? We shall apply Ramsey theory
(particularly in Chap. 8) as a tool to obtain shapes of unavoidable configu-
rations for certain special classes of graphs. This is in line with the original
motivation of Ramsey [393] who discovered and applied his theorem in the
context of a problem (Entscheidungsproblem, i.e. decision problem) of logic
and used it to produce canonical (i.e. unavoidable, in todays terms) mod-
els. Thus let us recall the basics of Ramsey theory for graphs which will be
needed in the sequel. The Ramsey theorem [393] we formulate as follows (see
an example on Fig. 3.8):
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Theorem 3.18. For every choice of positive integers n1, . . . ,

nk (k ≥ 1) there exists a number R = R(n1, . . . , nk) (Ramsey
number), which is minimum with the following property:

For every set X of cardinality at least R and every coloring
of the set

(
X
2

)
by k colors there exists i, 1 ≤ i ≤ k, and a subset

Y ⊆ X such that |Y| ≥ ni and
(
Y
2

)
is monochromatic of color i.

Fig. 3.8 The Ramsey number R(3, 3, 3) is 17; the edges of K16 may be colored by
three colors without creating monochromatic triangles

In the important case k = 2 the theorem can be restated by saying that
every sufficiently large graph contains either a large independent set or a
large complete graph. In other words complete graphs or independent sets of
a given size are unavoidable for large graphs.

One can restate the above property in a slightly different way:

Proposition 3.6. Let G be a graph and let c, n be integers. Then either
G contains a subgraph isomorphic to the complete graph Kc or every
subset A of at least R(c, n) vertices of G includes an independent set of
size n. 
�
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Instead of considering independent sets in graphs, one can consider in
bipartite graphs sets of vertices having no common neighbors.

Other related Ramsey-type problems relate to graph Ramsey numbers
(sometimes called generalized Ramsey numbers): for a graph G we denote
by r(G) the minimum integer N such that for every blue–red coloring of
the edges of the complete graph KN there exists a (of course not induced)
subgraph of KN which is isomorphic to G and which has all its edges of the
same color. In many cases the numbers r(G) are known (which is in sharp
contrast with R(n,n) = r(Kn) which is only known for n ≤ 4). A class of
graphs C is a Ramsey linear class if there exists a constant c = c(C) such
that r(G) ≤ cn for every G ∈ C of order n.

Conjecture of Burr and Erdős [87]:
For every integer d there exists a constant cd such that for every

d-degenerate graph G holds:

r(G) ≤ cd|G|.

In other words: degenerated graphs form a linear Ramsey class. Many
partial results toward this conjecture were obtained. In Sect. 15.2 we present
a unified view using our theory.

3.10 Graph Parameters

In mathematics objects of study are often treated indirectly: We do not study
the objects in their entire complexity (leaving this to philosophy) but rather
relate them to particular aspects. These aspects are (in a mild mathematical
form) expressed as parameters. A graph parameter (or graph invariant) �

is a function defined on finite graphs which is invariant under isomorphisms
(actually we only consider here graph parameters defined on simple graphs,
sometimes called simple graph parameters [78]). The value �(G) may be a
number, a collection of numbers, a graph, a set of graphs, a set of numbers
indexed by graphs, etc. One should realize that the actual complexity of �(G)

(in the intuitive sense) may sometimes be much larger than the one of G.
In the first chapter we introduced several graph parameters, for instance:
the order |G| of a graph G (that is: the number of vertices of G), the size
‖G‖ (that is: the number of edges of G), the maximum degree Δ(G), the
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minimum degree δ(G), and the maximum average degree mad(G). Another,
less intuitive example, is the isomorphism type of G. Usual perception of
this graph parameter is quite complicated. The isomorphism type of G is the
class of all graphs which are isomorphic to G, that is {G ′, G ′ ∼= G}. Thus iso-
morphism types are infinite sets, indeed proper classes. But this complexity
is only illusionary as we may select from each isomorphism type a represen-
tative. For example this can be defined as follows: given G, let G ′ be the
isomorphic image of G with vertex set {1, 2, . . . , n} (where n = |G|) by an iso-
morphism φ such that the value

∑
{u,v}∈E(G) 2

φ(i)+φ(j) attains the minimal
possible value (this corresponds to the lexicographically minimal set of edges
E(G ′) = {{φ(u), φ(v)}, {u, v} ∈ E(G)}) So, alternatively, an isomorphism type
may be viewed as a class represented by a single graph.

By definition, every graph parameter p only depends on the isomorphism
type of its argument. Thus the parameter study naturally relates to the
following:

Isomorphism Problem
Given two graphs G,G ′, can one decide polynomially whether

G ∼=G ′?

The isomorphism problem was solved positively for special classes of
graphs (such as planar and bounded degree graphs) but in general, despite
many efforts, it is still an open problem. Part of our research is related to
this problem (see Chap. 18).

We study graphs by means of graph parameters. We compare parameters,
investigate their mutual dependence and relative growth. The choice of graph
parameters is of course principal and leads to very different questions and
answers. For example we may investigate the dependence of ‖G‖ on |G|. This
is easy for all graphs but for special classes (such as classes not containing
a given graph) this leads to the extremal graph theory pioneered by Turán
who solved the case of graphs not containing a complete graph Kk. However
if we investigate the dependence of ‖G‖ and the genus g(G) of G then we
get a very different theory which goes back to Euler formula. Also, the graph
parameter ‖G‖ in combination with |G| and the independence number α(G)

leads to density questions in Ramsey theory. Many such dependencies are
exact and hold for all values of the parameters (such as in Turán theorem),
others are asymptotic where we can determine the growth. In such cases we
use classical Landau notation O(f), o(f). Recall that we write g = O(f) if
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there exists a constant K such that g(x) ≤ Kf(x) for all x in the common
domain of g and f; as usual in computer science, we also write g = Ω(f) if
there exists a constant K such that g(x) ≥ Kf(x) for all x in the common
domain of g and f and we write g = Θ(f) if both g = O(f) and g = Ω(f)

hold. For f : IR → IR and g : IR → IR \ {0} we write g = o(f) if f(x)
g(x)

→ 0 as

x → ∞, and f ∼ g if f(x)
g(x) → 1 as x → ∞.

Here we add yet another (weaker) notion: For real-valued graph parameters
�, ς we write � � ς if there exists polynomials P(X) and Q(X) such that for
every graph G hold �(G) ≤ P(ς(x)) and ς(x) ≤ Q(�(x)). Such a dependence
we call polynomial functional equivalence. Notice that � � ς if and only if
log � = Θ(log ς).

A weaker notion is the one of functional equivalence which is defined
analogously. As an example of this, consider the definition of a topological
parameter: A real-valued graph parameter � is said to be topological [133]
if there exists a function f such that for every graph G, denoting G ′ a 1-
subdivision of G the following holds: �(G ′) ≤ f(�(G)) and �(G) ≤ f(�(G ′)).

Let us take another example: are clique number ω(G) and chromatic num-
ber χ(G) functionally dependent? Clearly ω(G) ≤ χ(G). But the converse
does not hold, because there is no functional dependence here as for every n

there exists a graph G with χ(G) ≥ n and ω(G) = 2 (i.e. a triangle-free high
chromatic graph). But ω(G) and χ(G) are functionally related for perfect
graphs (by the definition) and also for intersection graphs of chords in a cy-
cle. In some parts of this book, polynomial functional dependence will play
the main role. In the complex interplay of our parameters (see Table 13.1 in
Chap. 13), functional dependence will sometimes be the best we can ask for.

3.11 Computational complexity

The complexity of computational problems can be measured by the amount
of time or space a computational model such as the deterministic Turing
machine requires to perform the computation. A complexity class is a set of
problems of related complexity, defined by

� The type of computational problem: decision problems, function problems,
counting problems, optimization problems, etc.

� The model of computation: deterministic Turing machine, non-
deterministic Turing machine, Boolean circuits, etc.

� The measured resource: computation time, memory space, circuit-depth,
etc.
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For an introduction to computational complexity we refer the reader to
[34, 220, 379].

The classes of main interest for us in this book are the following classes of
decision problems:

� P (resp. NP), corresponding to problems solved in polynomial time by a
deterministic (resp. in a non-deterministic) Turing machine;

� PSPACE, corresponding to problems solved in polynomial space (either by
deterministic or a non-deterministic Turing machine, the two possibilities
defining the same class according to Savitch’s theorem [429]);

� L (resp. NL), corresponding to problems solved in logarithmic space by a
deterministic (resp. a non-deterministic) Turing machine;

The following relations are known between these classes:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.

It is also known that NL �= PSPACE. However, it is not known whether
L = NL,NL = P,P = NP or NP = PSPACE.

Apart from time and space complexity, a natural complexity measure of
complexity stands in the circuit complexity of Boolean functions, according
to the size or depth of Boolean circuits that compute them. A Boolean circuit
computes a function of its n inputs, by means of AND, OR, and NOT gates.
The fanin of an AND or OR is the number of its inputs. The depth of a
circuit is maximal length of a path from an input gate to the output gate.
The circuit-depth complexity of a Boolean function f is the minimal depth
of any circuit computing f. Complexity classes defined in terms of Boolean
circuits include

� The classes NCi of binary functions computed by Boolean circuits with
depth O(login) and a polynomial number of constant-fanin AND and OR
gates;

� The classes ACi of binary functions computed by Boolean circuits with
depth O(login) and a polynomial number of unlimited-fanin AND and
OR gates;

� The classes TCi of binary functions computed by Boolean circuits with
depth O(login) and a polynomial number of unlimited-fanin AND, OR
gates, and Majority gates.

It is easily checked that NCi ⊆ ACi ⊆ TCi ⊆ NCi+1, and it is well known
that NC0

� AC0
� TC0.

A connection with time a space complexity is also given by the inclusions

NC1 ⊆ L ⊆ NL ⊆ AC1.
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It will be also useful for us to consider complexity classes from the angle
of finite model theory, by the type of logic needed to express the problems.
In particular:

� First-order logic defines the class FO, which corresponds to AC0;
� First-order logic with a commutative transitive closure operator gives L;
� First-order logic with a transitive closure operator gives NL;
� First-order logic with a least fixed point operator gives P (in the presence

of a linear order);
� Existential second-order logic gives NP [171];
� Second-order logic with a transitive closure gives PSPACE.
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Exercises

3.1. Prove that every graph of minimum degree d contains a bipartite sub-
graph of minimum degree at least �d/2�.
3.2. Let G,H be graphs. If G is k-degenerate then the number of copies of H
in G is at most

α(H)∑

t=1

Acyct(H)k|H|−t |G|t,

where Acyct(H) is the number of acyclic orientations of H with t sinks, and
α(H) is the independence number (or stability number) of H (that is the
maximum size of a subset of vertices of H without adjacent vertices).

3.3. Let G be a plane graph and let f : V(G) → IN. The aim of this exercise
is to prove that the sets of the orientations of G such that d−(v) = f(v) holds
for every v ∈ V(G) has a structure of distributive lattice [376].

� Let �G be a connected acyclically oriented graph. A cut is the set of arcs
linking a subset A of vertices of V(�G) to its complement V(�G) \ A. It
is positive if all the arcs are oriented from A to V(�G) \ A. A positive
cocircuit is a disjoint union of positive cuts. Let x0 be a vertex of �G.
Prove that the positive cocircuits of �G are in bijection with the mappings
F : V(G) → ZZ such that F(x0) = 0 and such that for every (x, y) ∈ E(�G)

it holds F(x) ≤ F(y) ≤ F(x) + 1.
� Prove that the partial order on these mappings defined by F ≤ G if

F(v) ≤ G(v) holds for every v ∈ V(G) is a distributive lattice, where
F ∧ G (resp. F ∨ G) is the mapping x �→ min{F(x), G(x)} (resp. the map-
ping x �→ max{F(x), G(x)}).

� Prove that if �G is a plane digraph (that is: a planar digraph embedded in
the plane) the set of the positive circuits of �G has a structure of distributive
lattice.

� Deduce that if G is a planar graph and f : V(G) → IN is a mapping, the set
of the orientations of G such that d−(v) = f(v) holds for every v ∈ V(G)

may be given a structure of distributive lattice.

3.4. Prove that the edges of any graph G such that χ(G) < R(

p
︷ ︸︸ ︷
3, 3, . . . , 3)

may be covered of at most p triangle-free subgraphs. In particular, every
5-colorable graph is the edge union of two triangle-free graphs.

3.5. Let H be a graph of order n. The Mycielskian of H [336] is the graph
M(H) obtained from H as follows: for each vertex x of H we add a vertex x ′

linked to all the neighbours of x, and eventually we add a vertex z linked to
all the added vertices x ′.
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Prove that the kth Mycielskian of K2 is triangle-free, has order 3.2k − 1 and
chromatic number k+ 2.
One can also start the construction with any fixed graph instead of K2. The
fact that the chromatic number grows has the same proof. However, there is
an interesting variant of this (called cone of a graph), which is less trivial
(see [240]).

3.6. Prove that every proper minor closed class of graphs is characterized by
finitely many forbidden topological minors.

3.7. Prove that every graph G with χ(G) ≤ 3 is an induced subgraph of a

product of sufficiently many copies of the graph P4 ⊕ K1 = .

3.8. The aim of this exercise is to follow the lines Rödl’s proof [420] of the case
g = 4 of the following conjecture of Erdős and Hajnal [164]: For all integers
c, g there exists an integer f(c, g) such that every graph G of chromatic
number at least f(c, g) contains a subgraph of chromatic number at least c

and girth at least g.
Define

h(ω, c) = cc
c..

.c }
ω − 2

.

The proof of the case g = 4 of the conjecture will follow from the property
that each graph G such that χ(G) > h(ω(G), c) has a triangle free subgraph of
chromatic number at least c. This last property will be proved by induction.

� Deduce from Exercise 3.5 that every graph G with ω(G) > 2c contains a
triangle free subgraph with chromatic number at least c.

� Consider a linear order on the vertices of a graph G and the corresponding
natural orientation of G. Prove induction step by considering the two
following cases:

1. There exists a vertex v such that χ(G[N−(v)]) > h(ω(G) − 1, c);
2. For every vertex v, χ(G[N−(v)]) ≤ h(ω(G) − 1, c).

3.9. Prove that for every class of graphs C there exists a interpretation

I : C → Sub2(C)

from the class C to the class of the 2-subdivisions of the graphs in C, which
is such that

G → H =⇒ I(G) → I(H)

(such an interpretation is a functorial interpretation). In fact, a similar
proof hold for general Sub2p(C) (see Lemma 10.6).



Chapter 4
Measuring Sparsity

What does “sparse” mean?
Let me show the ways.

In the introduction we described the big picture of our theory. Here we
begin with a more formal treatment. We define shallow minors, topological
minors, and immersions as the basic local changes in graph classes. We show
that edge densities in the iteration of these local changes are related and
that they are also related to other parameters such as chromatic number and
generalized coloring numbers.

4.1 Basic Definitions

We work with unlabeled finite simple graphs, except when explicitly stated
otherwise. Recall that we denote by Graph the class of all unlabeled finite
simple graphs.

The distance in a graph G between two vertices x and y is the minimum
length of a path linking x and y (or ∞ if x and y do not belong to the same
connected component of G) and is denoted by distG(x, y). Let G = (V, E)

be a graph and let d be an integer. The d-neighborhood NG
d (u) of a vertex

u ∈ V is the subset of vertices of G at distance at most d from u in G:
NG

d (u) = {v ∈ V : distG(u, v) ≤ d}.
A class C of graphs is hereditary if every induced subgraph of a graph in

C belongs to C, and it is monotone if every subgraph of a graph in C belongs
to C. For a class of graphs C, we denote by H(C) the class containing all the

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__4, © Springer-Verlag Berlin Heidelberg 2012
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induced subgraphs of graphs in C, that is the inclusion-minimal hereditary
class of graphs containing C.

4.2 Shallow Minors

For any graphs H and G and any integer d, the graph H is said to be a
shallow minor of G at depth d if there exists a collection P of disjoint
subsets V1 . . . , Vp of V(G) such that:

� Each graph G[Vi] has radius at most d: there exists in each set Vi a vertex
xi (a center) such that every vertex in Vi is at distance at most d from
xi in G[Vi],

� H is a subgraph of the graph G/P: each vertex v of H corresponds (in an
injective way) to a set Vi(v) ∈ P and two adjacent vertices u and v of H
correspond to two sets Vi(u) and Vi(v) linked by at least one edge.

[386] attributes this notion, then called low depth minor, to Leiserson
and Toledo. Notice that the requirement that G[Vi] has radius at most d

and center xi is not equivalent to Vi ⊆ NG
d (xi): the distance between xi and

every vertex in Vi should be at most d in G[Vi], and not only in G.
The set of all shallow minors of G at depth d is denoted by G�d. In

particular, G� 0 is the set of all subgraphs of G. The choice of the notation
G� r is motivated by cases where the depth is a more involved expression
(such as G�

(
(2p+1)q−1

2

)
).

In this book we shall study shallow minors in a great depth and thus we
introduce a more specific terminology.

A ramification of H is any minimal graph Ĥ (with respect to inclusion)
such that H is a minor of Ĥ. It is easily shown that ramifications have a
special structure: Denoting h1, . . . , hp the vertices of H, the graph Ĥ may be
(vertex) covered by a collection of vertex disjoint rooted trees Y1, . . . , Yp in
such a way that the remaining set F of edges of Ĥ is such that:

� No edge in F is adjacent to two vertices in a same Yi,
� At most one edge is incident to a vertex in Yi and a vertex in Yj (for every

i �= j),
� Every leaf of every tree Yi has at least one edge incident to it and to a

vertex not in Yi,
� An edge is incident to a vertex in Yi and a vertex in Yj if and only if

{hi, hj} is an edge of H.

Such a decomposition of Ĥ is called a H-decomposition of Ĥ. In this decom-
position Yi is the bush of hi, the root of Yi being the center of the bush,



4.2 Shallow Minors 63

and F is the set of the external edges of the H-decomposition. The radius of
the H-decomposition is the maximum distance from a vertex v to the cen-
ter of the bush to which it belongs. It is straightforward that Ĥ admits an
H-decomposition of radius d if and only if H ∈ Ĥ�d.

It may happen that a ramification Ĥ of a graph H of radius d has the
additional property that there exists no external edge {x, y} such that the
distance of x to the center of its bush and the distance of y to the center of
its bush are both equal to d. In such a circumstance, the H-decomposition
of Ĥ is said to be asymmetric.

This allows us to extend our definition of G�d to half-integer values: For
a graph G and an integer d ≥ 1, G� (d− 1

2
) is the set of the graphs H having

an asymmetric ramification Ĥ of radius d isomorphic to a subgraph of G (see
Fig. 4.1).

r−1
r

r−1
r

not considered

considered

Fig. 4.1 A shallow minor of depth r − 1/2

For a graph G, a half-integer d and a graph H ∈ G�d, an d-witness of
H in G is a subgraph G′ of G which is a ramification of H of radius �d� and
which is asymmetric if d is not an integer. Equivalently, a d-witness of H in
G is a subgraph G′ of G which is a ramification of H so that H ∈ G′�d (see
Fig. 4.2).

Notice that for every two vertices x, y of H ∈ G�d, the distance in a
witness W of H in G between the centers of the bushes corresponding to x

and y is at most (2d + 1)distH(x, y) (see Fig. 4.3).
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Y1

Y2
Y3

Y4

Y5

v1

v2
v3

v4

v5

Fig. 4.2 A 1-witness of a shallow minor

Fig. 4.3 In an d-witness, centers of bushes corresponding to adjacent vertices are at
distance at most 2d + 1 (here d = 5/2)

Thus for every graph G we have the following non decreasing sequence of
sets:

G ∈ G� 0 ⊆ G� 1

2
⊆ G� 1 ⊆ · · · ⊆ G�d ⊆ . . . G�∞

Here is a little “ � -arithmetic”.

Proposition 4.1. Let a, b be half-integers and let c be the half-integer
defined by

(2c + 1) = (2a+ 1)(2b + 1). (4.1)

Then for every graph G:

G� ((�a�+ 1)b) ⊆ (G�a)�b ⊆ G� c (4.2)

As a corollary, we deduce that for any integers a, b and any graph G we
have:

((. . . (G �a)�a) . . . )�a
︸ ︷︷ ︸

b times

⊆ G�
(
(2a + 1)b − 1

2

)
. (4.3)
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In particular:

G�a ⊆ ((. . . (G � 1)� 1) . . . )� 1
︸ ︷︷ ︸

a times

⊆ G�
(
3a − 1

2

)
. (4.4)

Thus we could have defined shallow minors by means of iterations of the
operation G 	→ G� 1 (i.e. by iterated star forest contractions). But the single
step approach by G�a seems to suit better to our parametrization.

4.3 Shallow Topological Minors

A shallow topological minor of a graph G of depth a (where a is a half-
integer) is a graph H obtained from G by taking a subgraph and then replace
an internally vertex disjoint family of paths of length at most 2a+1 by single
edges (see Fig. 4.4). In other words, H is a shallow topological minor of a G

of depth a if a ≤ 2a-subdivision of H is a subgraph of G.

Fig. 4.4 A Petersen topological minor of depth 1 in a graph

For a graph G and a half-integer a we define G �̃a as the class of the graphs
which are topological minors of G at depth a. As a special case, G �̃ 0 is the
class of the subgraphs of G (no contraction allowed). As G �̃a is obviously
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included in G�a we have:

G� 0 ⊆ G� 1/2 ⊆ . . . G�a ⊆ . . . ⊆ G�∞

= ⊆ ⊆ ⊆

G ∈ G �̃ 0 ⊆ G �̃ 1/2 ⊆ . . . G �̃a ⊆ . . . ⊆ G �̃∞

Not surprisingly, “ �̃ -arithmetic” is similar to “ � -arithmetic”.

Proposition 4.2. Let a, b be half-integers and let c be the half-integer
defined by

(2c + 1) = (2a+ 1)(2b + 1). (4.5)

Then for every graph G:

(G �̃a) �̃b = G �̃ c (4.6)

As a corollary, for any integers a, b and any graph G:

((. . . (G �̃a) �̃a) . . . ) �̃a
︸ ︷︷ ︸

b times

= G �̃
(
(2a + 1)b − 1

2

)
. (4.7)

In Graph Theory, there is a great difference between minors and topolog-
ical minors. In general, topological minors are much more difficult to deal
with (this we also explained in the introduction). It is important that on our
level of generality the basic properties of shallow minors and shallow topo-
logical minors are closely related. This in fact is one of the main advantages
of our theory.

4.4 Grads and Top-Grads

The greatest reduced average density (shortly grad) with rank r of a graph G

[354] is defined by formula

∇r(G) = max
{‖H‖

|H|
: H ∈ G� r

}

(4.8)

Also we denote by ∇(G) = ∇∞(G) = maxr≥0 ∇r(G) the maximum edge-
density of a minor of G. Notice that we have:

mad(G)

2
= ∇0(G) ≤ ∇1(G) ≤ · · · ≤ ∇|G|(G) = ∇(G). (4.9)



4.4 Grads and Top-Grads 67

and that ∇(G) is polynomially equivalent to the order of the largest com-
plete graph which is a minor of G, i.e. to the Hadwiger number h(G) of G.
Symbolically (using notation introduced in Sect. 3.10):

h � ∇ (4.10)

Precisely, we have:

Lemma 4.1. For every graph G it holds

h(G) − 1

2
≤ ∇(G) = O(h(G)

√
log h(G)), (4.11)

Proof. Let h = h(G). As Kh is a (h − 1)-regular minor of G , h−1
2

≤ ∇(G).
Moreover, there exists a constant C such that if ∇(G) > C(h+1)

√
log(h + 1)

then G has a minor with minimum degree at least γ(h+1)
√

log(h+ 1) hence
a minor Kh+1 by Theorem 3.5. 
�

Similarly we define the topological greatest reduced average density (top-
grad) with rank r of a graph G as:

∇̃r(G) = max
{‖H‖

|H|
: H ∈ G �̃ r

}

(4.12)

Also, we denote by ∇̃(G) the limit value ∇̃∞(G).
A simple but useful fact is that if a graph has a shallow topological minor

at depth r which is not too sparse (say of average degree greater than 4) then
it has a subgraph which average degree is bounded away from 2. Precisely:

Lemma 4.2. For every graph G and every integer r, if ∇̃r(G) > 2 then

∇̃0(G) > 1+
1

4r + 1
. (4.13)

Proof. For some H ∈ G �̃ r, we have ∇̃r(G) = ∇̃0(H). Let G′ be a ≤ 2r-
subdivision of H that is a subgraph of G. Let 2r be the average number of
subdivision vertices of G′ per branch. Then |G′| = |H| + 2r‖H‖ and ‖G′‖ =

‖H‖+ 2r‖H‖. Hence

∇̃0(G) ≥ ‖G′‖
|G′|

=
‖H‖+ 2r‖H‖
|H|+ 2r‖H‖ =

1+ 2r

1/∇̃r(H) + 2r
> 1+

1

4r + 1
.


�

This property will be one of the tools used in Chap. 14 to give a charac-
terization of classes with bounded expansion.
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4.5 Polynomial Equivalence of Grads and Top-Grads

It is an unexpected result that grads and top-graphs are not only functionally
equivalent, but even polynomially equivalent. Why is this unexpected? Well,
there are numerous differences of behavior between minors and topological
minors. We mentioned some of them earlier and some others will be high-
lighted later in this book. However, many of these strong divergences seem
to disappear when one considers shallow minors and shallow topological mi-
nors. For example, in his thesis [134], Dvořák proved that every graph with a
sufficiently large grad actually includes a shallow subdivision of a graph with
large minimum degree:

Theorem 4.1. Let r, d ≥ 1 be arbitrary integers and let p = 4(4d)(r+1)2 .
If ∇r(G) ≥ p, then G contains a subgraph F′ that is a ≤ 2r-subdivision
of a graph F with minimum degree d.

As we noticed in Chap. 3, minimum degree and average degree are some-
times close notions, and we easily deduce from Theorem 4.1 the following
functional equivalence of grads and top-grads:

Corollary 4.1. For every graph G and every integer r ≥ 1

holds
∇̃r(G) ≤ ∇r(G) ≤ 4(4∇̃r(G))(r+1)2

Notice that the ranks are preserved and that, for any fixed r, the depen-
dency is polynomial. In other words and signs:

∇r � ∇̃r.

As ∇̃0(G� r) = ∇r(G) and ∇̃0(G �̃ r) = ∇̃r(G), this polynomial depen-
dency could be alternatively written as

∇̃0(G� r) � ∇̃0(G �̃ r).

Instead of proving Theorem 4.1, we shall prove the slightly more general
Theorem 4.2, which explicits a polynomial dependency

∇̃s(G� r) � ∇̃s(G �̃ r)

for every integer r and every half-integer s.
First we take time for a technical lemma which could be called a “tree-to-

spider ramification reduction”. A spider is just a subdivision of a star rooted
at its center, and its height is the maximum length of a path from its center.
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Lemma 4.3. Let G be a graph with a partition V(G) =
⋃

1≤i≤n1
Ai ∪⋃

1≤j≤n2
Bj and special vertices ai ∈ Ai and bj ∈ Bj, and let r1, r2 be

integers. Assume that:

� Each G[Ai], rooted at ai, is a tree of height at most r1;
� Each G[Bj], rooted at bj, is a tree of height at most r2;
� ∀1 ≤ i < i′ ≤ n1, e(Ai, Ai′) = 0;
� ∀1 ≤ j < j′ ≤ n2, e(Bj, Bj′) = 0;
� ∀1 ≤ i ≤ n1 ∀1 ≤ j ≤ n2, e(Ai, Bj) ≤ 1.

(Recall that for X, Y ⊆ V(G), e(X, Y) is the number of edges with one
incidence in X and one incidence in Y.) Let H be the bipartite graph
with vertex set {ai}1≤i≤n1

∪ {bj}1≤j≤n2
and edges {ai, bj} for i, j such that

e(Ai, Bj) > 0. Let

b = �δ(H)1/(r+1)�.
Then there exists a subgraph G′ of G, partitions (Xi,k) of a subset of

Ai and some special vertices xi,k in each X′
i,k such that

� Each G′[Xi,k], when rooted at xi,k, is a spider of height at most r1
and the degree of xi,k in G′ is at least b;

� ∀(i, k) �= (i′, k′), e(Xi,k, Xi′,k′) = 0;
� ∀(i, k), every leaf of the spider G[Xi,k] is adjacent to exactly one vertex

in
⋃
Bj and no other vertex of Xi,k except xi,k is adjacent to a vertex

in
⋃
Bj;

� The bipartite graph with vertex set {xi,k} ∪ {bj} and edges {xi,k, bj} for
i, k, j such that e(Xi,k, Bj) > 0 has density

‖H′‖
|H′|

≥ b

3
.

Proof. Let d = δ(H). First we inductively delete from G the vertices of
degree 1 (this does not change the assumed properties of the graph). For
each value 1 ≤ i ≤ n1, inductively split the rooted tree G[Ai] as follows: Let
Y be the rooted tree G[Ai] and let Ai = ∅. For a vertex x in Y, denote by
Yx the subtree of Y rooted at x and denote by d+(x) the sum of the number
of descendant of x in Y and of the number of edges incident to both x and a
vertex in

⋃
Bj. While there exists a vertex x in Y such that d(x) ≥ b but no

descendant y of x in Y is such that d+(y) ≥ b then add the tree Yx (rooted
at x) to Ai and delete its vertices from Y. Otherwise, Y is either a tree rooted
at ai (with d+(ai) ≤ b) or it is empty. As br+1 ≥ d we have |Ai| ≥ 1. For
Yx ∈ Ai define f(x) as the sum of the number of descendant of x in Yx and
of the number of edges incident to both x and a vertex in

⋃
Bj. Obviously

we have
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∑

Yx∈Ai

f(x)br + br+1 ≥
∑

j

e(Ai, Bj).

It follows that

∑

i

(
∑

Yx∈Ai

f(x)br + br+1

)
≥ ‖H‖

hence, as |Ai| ≥ 1:

br
∑

i

∑

Yx∈Ai

(f(x) + b)br ≥ ‖H‖.

Let n′
1 =

∑

i |Ai|, let α the average value of f(x) for Yx ∈ ⋃
i Ai, and let

β = ‖H‖/n2 (that is: the average degree of the bj’s in H). Then we get:

brn′
1(α + b) ≥ n2β

from which follows

n2 ≤ br(α + b)

β
n1.

Let (Yi,k, xi,k) be defined as the pairs (Yx, x) for Yx ranging in Ai. For
each pair (i, k), select arbitrarily a (maximum number of) disjoint paths in
G[Yi,k] from xi,k to leaves of G[Yi,k]. The selected vertices form Xi,k. Now,
G′ is a subgraph of G obtained from G[

⋃
i,k Xi,k∪

⋃
j Bj] by selecting at each

leaf of each G[Xi,k] exactly one edge incident to a vertex in
⋃

j Bj. Then, to
the partition V(G′) =

⋃
i,k Xi,k ∪

⋃
j Bj correspond a bipartite graph H′ such

that ‖H′‖ =
∑

f(x) and |H′| = n′
1 + n2. Hence

‖H′‖
|H′|

=

∑

f(x)

n′
1 + n2

≥ αn′
1

br(α + b) + β

=
β

br

α

α + b+ β/br
.

As this expression increases with α and as α ≥ b we get:

‖H′‖
|H′|

≥ β

br

α

2b + β/br
.

As this expression increases with β and as β ≥ br+1 we get:
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‖H′‖
|H′|

≥ b

3
.


�

Here is the promised refinement of Theorem 4.1.

Theorem 4.2. Let G be a graph, let r be an integer and let s

be a half-integer. Then

∇̃s(G �̃ r) ≤ ∇̃s(G� r) ≤ 2r+23(r+1)(r+2)∇̃s(G �̃ r)(r+1)2 .

(4.14)
In particular, ∇̃s(G� r) � ∇̃s(G �̃ r). Moreover, notice that
the polynomial dependence is independent of s.

Proof. The inequality ∇̃s(G �̃ r) ≤ ∇̃s(G� r) directly follows from G �̃ r ⊆
G �̃ r. We consider now the second inequality.

Let H ∈ G� r be a 2s-subdivision of a graph Ĥ such that such that
‖Ĥ‖/|Ĥ| = d = ∇̃s(G� r) and let R be a ramification of H in G. Obviously,
the ramification R has the following special structure: denoting ĥ1, . . . , ĥn

the vertices of Ĥ, the ramification R may be decomposed into

� A collection of vertex disjoint rooted treesY1, . . . , Yn (with roots c1, . . . , cn)
of height at most r+ 1,

� For ĥi and ĥj adjacent in Ĥ, some path Pi,j (of length at most 2s(2r+1)+1)
linking a vertex xi,j ∈ Yi to a vertex xj,i ∈ Yj. (all these paths and trees
are vertex disjoints).

It is folklore that there exists a bipartition X̂∪ Ŷ of V(Ĥ) such that at least
half of the edges of Ĥ have one incidence in Â and one incidence in B̂. By
deleting small degree vertices, we obtain a bipartite subgraph Ĥ1 of Ĥ (with
bipartition Â ∪ B̂) such that

δ(Ĥ1) ≥ d/2.

Let H1 be the corresponding subgraph of H and let R1 be the corresponding
ramification of H1 in G.

Let G′
1 be the graph obtained from R1 by contracting each Pi,j into a

single edge ei,j, and let F be the set of all edges ei,j obtained by such path
contractions. Let A1, . . . , An1

(resp. B1, . . . , Bn2
) be the vertex sets of the

trees corresponding to vertices in Â (resp. B̂). By applying Lemma 4.3 we
obtain, as a subgraph of G′

1 a new ramification of a graph Ĥ2 such that the
bushes in the first part are spiders and such that
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‖Ĥ2‖
|Ĥ2|

≥ 1

3
(d/2)1/(r+1).

By deleting small degree vertices, we obtain a subgraph Ĥ3 of Ĥ2 with
minimum degree at least 1

3
(d/2)1/(r+1) and we consider the corresponding

subgraph R3 of R2. Applying again Lemma 4.3 (with exchanged parts), we
eventually obtain a subgraph G′

3 of R3 which is a ≤ (2r)-subdivision of a
graph Ĥ4 with

‖Ĥ4‖
|Ĥ4|

≥ 1

3

(
1

6
(d/2)1/(r+1)

)1/(r+1)

.

Notice that each branch of G′
3 contains exactly one edge in F hence G′

3

corresponds to a ≤ (2r + 1)(2s + 1)-subdivision of Ĥ4 in G. It follows that

∇̃s(2r+1)+r(G) ≥ ‖Ĥ4‖
|Ĥ4|

≥ 1

3

(
1

6
(∇̃s(G� r)/2)1/(r+1)

)1/(r+1)

,

that is:
∇̃s(G� r) ≤ 2r+23(r+1)(r+2)∇̃s(2r+1)+r(G)(r+1)2 .

According to Proposition 4.2, (G �̃ r) �̃ s = G �̃ (2rs + r + s) hence

∇̃s(2r+1)+r(G) = ∇̃s(G �̃ r),

what completes the proof. 
�

It is possible to extend this result for half-integer r by a slight modification
of the proof. In such a case, for integer r and s = 0, we obtain

∇r+1/2(G) ≤ cr∇̃r+1/2(G)�(r+3/2)2�,

and for integer r and for half-integer s > 0:

∇̃s(G� (r+ 1/2)) ≤ dr∇̃s(G �̃ (r + 1/2))(r+2)2

(where cr and dr are suitable constants depending on r). As a result, the
polynomial dependency

∇̃s(G� r) � ∇̃s(G �̃ r)

actually holds for every half-integers r and s (and the polynomial dependency
only depends on r).

We shall need in Sect. 7.3 the special cases where r = 1/2 and s > 0 is a
half integer. We give here a better bound for these cases:

Theorem 4.3. Let G be a graph and let s ≥ 1/2 be a half-integer. Then



4.5 Polynomial Equivalence of Grads and Top-Grads 73

∇̃s(G �̃ (1/2)) ≤ ∇̃s(G� (1/2)) ≤ 8∇̃s(G �̃ (1/2))2, (4.15)

that is:
∇̃2s+ 1

2
(G) ≤ ∇̃s(G� (1/2)) ≤ 8∇̃2s+ 1

2
(G)2 (4.16)

Proof. We have ∇̃s(G� (1/2)) ≥ ∇̃s(G �̃ (1/2)) and, according to Proposi-
tion 4.2, we have ∇̃s(G �̃ (1/2)) = ∇̃2s+ 1

2
(G) hence

∇̃2s+ 1
2
(G) ≤ ∇̃s(G� (1/2)).

Now consider a graph H ∈ (G� 1/2) �̃ s. Let u1, . . . be the vertices of H.
There exists rooted trees Y1, . . . of G and paths Pi,j (for (i, j) ∈ A) linking
the root of Yi to a vertex of Yj in such a way that the following conditions
hold:

� For every i, (i, i) �∈ A,
� For every i �= j, (i, j) ∈ A ⇒ (j, i) �∈ A,
� For every i �= j, ((i, j) ∈ A or (j, i) ∈ A) ⇐⇒ {ui, uj} ∈ E(H),
� For every i there exists j such that ((i, j) ∈ A or (j, i) ∈ A).

The directed graph �H is obtained by orienting H in such a way that (ui, uj) ∈
�E(�G) if (i, j) ∈ A. Let �G′ be the graph induced by the Yi’s and the Pi,j’s, each
arc of Yi being directed to the root of Yi and each path Pi,j being directed
from Yi’s end to Yj’s end (that is: consistently with H). By construction, the
outdegree of the root of Yi in �G′ equals the outdegree of ui in �H.

Delete from �H all the vertices with indegree less than ∇0(H)/2. At most
half of the edges may have been deleted so we get a non empty subgraph
�H′ of �H such that every vertex has indegree at least ∇0(H)/2. We consider
accordingly the subset of the Yi’s and the Pi,j’s. Let n be the order of �H′.

If a vertex of Yi is the target of strictly less than
√

d−
�H′(ui) directed paths,

remove arbitrarily all the incoming paths but one and delete accordingly the
corresponding arcs of �H. As for each vertex of Yi the number of incoming
paths Pj,i has been (at most) divided by

√
d−
�H′(ui), we infer that the indegree

of ui will be at least
√

d−
�H′(ui) after all the path deletions. At the end of this

process, we augment each path Pi,j linking the root of Yi to a vertex of degree
2 of Yj to a path linking the root of Yi to the root of Yj. Consider the graph �G′′

obtained by contracting all the paths into edges. The vertices of �G′′ may be
indexed as r1, . . . , rn, v1,1, . . . , v1,k1

, v2,1, . . . , v2,k2
, . . . vn,1, . . . , vn,kn

as fol-
lows: ri is the root of Yi and vi,1, . . . , vi,ki

are the other (remaining) vertices
of Yi. Notice that if ki = 0 then the root of Yi is the target of at least

√
d−(ui)

incoming paths hence d−
�G′′(ri)+

∑ki

j=1 d−
�G′′(vi,j) ≥ (ki+1)/2

√∇0(H)/2. Thus:
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‖�G′′‖
|�G′′|

=

∑n
i=1

(
d−
�G′′(ri) +

∑ki

j=1 d−
�G′′(vi,j)

)

∑n
i=1(ki + 1)

≥
∑n

i=1(ki + 1)
√∇0(H)/8

∑n
i=1(ki + 1)

=
√
∇0(H)/8

By considering H ∈ (G� (1/2)) �̃ s such that ∇0(H) = ∇̃r(G� 1/2) we con-
clude that

∇̃s(G� (1/2)) ≤ 8∇̃2s+ 1
2
(G)2.


�

As mentioned in Sect. 3.2, average degrees and minimum degrees are closely
related invariants. We shall now prove that minimum degrees are, in some
sense, preserved when considering shallow topological minors. We need to
prove a technical lemma first.

Lemma 4.4. Let G = (X, Y, E) be a bipartite graph and let 1 ≤ r ≤ s ≤ |X|.
Assume that each vertex in Y has degree at least r.

Then there exists a subset X′ ⊆ X and a subset Y′ ⊆ Y such that |X′| = s

and |Y′| = |Y|/2 and every vertex in Y′ has at least r
|X′|
|X|

neighbors in X′.
(see Fig. 4.5)

X

Y

≥ r

X ′

Y ′

≥ r
|X ′|
|X |

| X ′| = s |Y ′ | ≥ | Y |/2

Fig. 4.5 A general regularity property
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Proof. First notice that we may assume, without loss of generality, that every
vertex in Y has exactly r neighbors in X, for otherwise we may safely delete
surplus edges.

Consider a vertex y ∈ Y. The number of subsets of X of size s includ-
ing exactly i neighbors of y is

(
|X|−r
s−i

)(
r
i

)
(choose s − i non-neighbors and i

neighbors). Define

F(i) =
1

|Y|
·
∑

A∈(Xs) |{y ∈ Y : |N(y) ∩A| = i}|
(
|X|
s

) .

Then:

F(i) =
1

|Y|
·
∑

A∈(Xs)
∑

y∈Y I|N(y)∩A|=i(y)
(
|X|
s

)

(where I|N(y)∩A|=i(y) is 1 if |N(y) ∩A| = i and 0 otherwise), thus:

F(i) =
1

|Y|
·
∑

y∈Y

∑

A∈(Xs) I|N(y)∩A|=i(y)
(
|X|
s

)

=
1

|Y|
·
∑

y∈Y

(
n−r
s−i

)(
r
i

)
(
|X|
s

)

=

(
|X|−r
s−i

)(
r
i

)
(
|X|
s

)

It follows that F(i) is exactly the probability mass function of a hypergeomet-
ric distribution with mean rs

|X|
and variance σ2 = |X|

|X|−1

(
1− r

|X|

)(
1− s

|X|

)
rs
|X|

≤
rs
|X|

. 
�

Proposition 4.3. Let G be a graph and let d be such that

δ(G)

2
≥ d > 1.

Then there exists a graph H such that an exact 1-subdivision of H is
a subgraph of G (hence H ∈ G �̃ 1

2
) and

� Either H ∼= Kδ(G)/2d,
� Or H has minimum degree at least d and order

√
d− 1

2d
·
√
|G| ≤ |H| ≤ 1

2d
· |G|.
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Proof. Let n = |G|, δ = δ(G) and ε = 1/d. Consider the bipartite graph
B whose parts, denoted by X and Y, are two copies of V(G) and such that
x ∈ X is adjacent to y ∈ Y if the corresponding vertices x and y of G are
adjacent. Then every vertex in Y has at least δ neighbors in X. According to
Lemma 4.4 there exists a subset X′ of X of size εn/2 and a subset Y′ of Y of
size n/2 such that every vertex in Y′ has at least εδ neighbors in X′.

Consider the subset S of vertices of G corresponding to X′ and the subset T
of V\S corresponding to vertices in Y′. Hence |S| = εn/2 and |T | ≥ (1−ε)n/2.

Consider the graph Γ with vertex set S constructed as follows: start from
the edgeless graph on S and iteratively consider the vertices in T . For each
considered vertex t ∈ T , if all the neighbors of t already induce a clique in Γ

stop; otherwise, add an edge et in Γ between two arbitrary not yet adjacent
neighbors x and y of t, associate with this edge the path x, t, y of length 2

and go to the next vertex of T (cf. Fig. 4.6).

S

x

t

et

y

T

Fig. 4.6 Building Γ

If a clique of size at least δε/2 was created in Γ then the process stopped
and we found a 1-subdivision of Kδε/2 in G. Otherwise, all the vertices of
T have been used and we discovered the 1-subdivision of a graph Γ in G
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with |Γ | = |S| = εn/2 and ‖Γ‖ = |T | ≥ (1 − ε/2)n. Let μ = 1−ε
2−ε

(hence
1
2

< μ < 1). Then Γ includes a subgraph H of minimum degree at least
(1 − μ)‖Γ‖

|Γ |
= 1

2−ε
2−ε
ε

= 1
ε

and size ‖H‖ ≥ μ‖Γ‖ ≥ 1−ε
2−ε

2−ε
2

n = 1−ε
2

n (see
Sect. 3.2). As H ⊆ Γ we have |H| ≤ |Γ | = εn/2. As ‖H‖ ≥ 1−ε

2
n we have

|H| ≥ √
2‖H‖ ≥ √

(1− ε)n/2. 
�

In particular, we infer that every graph G with minimum degree at least
4 includes as a subgraph the exact 1-subdivision of a graph H such that

δ(H) ≥
√
2δ(G) + 1− 1

2
(4.17)

4.6 Relation with Chromatic Number

As well as every graph G being (�2∇0(G)� + 1)-colorable, every graph in
G �̃a is (�2∇̃a(G)�+ 1)-colorable (as ∇̃a(G) = ∇0(G �̃a)).

In the opposite direction, we take time out for the following lemma [134]:

Lemma 4.5. Let c ≥ 4 be an integer and let G be a graph with average
degree d > 56(c−1)2 log(c−1)

log c−log(c−1)
. Then the graph G contains a subgraph

G′ that is the 1-subdivision of a graph with chromatic number c.

Proof. Every graph contains a bipartite subgraph with at least half of the
edges of the original graph, i.e., G contains a bipartite subgraph G1 with
average degree more than d/2. The graph G1 cannot be d/4-degenerate,
since otherwise the average degree of G1 would be at most d/2. Let G2 be
a subgraph of G1 with minimum degree at least d2 = d/4. The graph G2 is
bipartite, let V(G2) = A∪B be a partition of its vertices to two independent
sets such that |A| ≤ |B|. Let a = |A| and b = |B|. Since the minimum degree
of G2 is at least d2, it follows that d2 ≤ a ≤ b.

Let q = 7
log(c−1)

log c−log(c−1)
. Note that d2/q ≥ 10. We construct a subgraph

G3 in the following way: if b ≥ qa, then let G3 = G2, A
′ = A and B′ = B.

Otherwise, we choose sets A′ ⊆ A and B′ ⊆ B as described in the next
paragraph, and let G3 be the subgraph of G2 induced by A′ and B′: Let A′ be
a subset of A obtained by taking each element of A randomly independently
with probability p = b/qa. The expected size of A′ is ap = b/q, and by
Chernoff Inequality, the size of A′ is more than 2b/q with probability less

than e−
3b
8q ≤ e−

3d2
8q ≤ e−15/4 < 0.5. Consider a vertex v of B with degree

s ≥ d2 in G2, and let s′ be the number of neighbors of v in A′ and r(v) = s′/s.
The expected number of neighbors of v in A′ is ps. By Chernoff Inequality,
the probability that s′ < p

2
s is less than e−

3ps
28 ≤ e−

3
28

·b
a
·d2

q ≤ e−
15
14 < 0.35.
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Let B′ be the set of vertices v of B such that r(v) ≥ p/2. The expected value of
|B\B′| is less than 0.35b, and by Markov Inequality, Prob[|B\B′| ≥ 0.7b] ≤ 0.5.
Therefore, the probability that the set A′ has size at most 2b/q while the
set B′ has size at least 0.3b is greater than zero. We let A′ and B′ be a pair
of sets that satisfies these properties.

Let a′ = |A′| and b′ = |B′|. Observe that the degree of every vertex of B′ in
G3 is at least b

2qa
d2 ≥ 1

2q
d2 = (c− 1)2 = d3, and that b′ ≥ 0.3b ≥ 0.15qa′.

Let D1, . . . , Db′ ≥ d3 be the degrees of vertices of B′.
We show that the graph G3 contains as a subgraph the 1-subdivision of a

graph with chromatic number c. Suppose for contradiction that each graph
whose 1-subdivision is a subgraph of G3 has chromatic number at most c−1.
Let S be the set of all partial graphs of G3 such that every vertex in B′ has
degree 2 (these are the 1-subdivisions having their principal vertices in A′

and using all the vertices in B′ as subdivision vertices). Let NH = |S|. Then
NH =

∏b′

i=1

(
Di

2

)
such subgraphs. Let NC be the number of colorings of A′

by c− 1 colors. Then NC = (c− 1)a
′
.

Let ϕ be a coloring of A′ by c − 1 colors. We determine the number of
subgraphs H ∈ S such that ϕ is a proper coloring of the graph obtained
from H by contracting the vertices in B′. Let us consider a vertex v in B′

of degree D. Since ϕ is proper, the two edges incident with v in H lead to
vertices with different colors. Let M be the neighborhood of v, |M| = D.
Let mi be the number of vertices of M colored by ϕ with the color i. The
number s of the pairs of neighbors of v that have different colors satisfies

s =
∑

1≤i<j≤c−1

mimj

=
1

2

∑

1≤i,j≤c−1, i
=j

mimj

=
1

2

c−1
∑

i=1

mi(D −mi)

=
1

2

(
D2 −

c−1
∑

i=1

m2
i

)
≤ 1

2

(
D2 −

D2

c− 1

)
.

Therefore, the number of the subgraphs in S for which ϕ is proper is at
most NP = (1 − 1

c−1
)b

′ ∏b′

i=1
D2

i

2
. For each H ∈ S there exists at least one

proper coloring, hence NCNP ≥ NH, and we obtain

(c− 1)a
′
(
1−

1

c− 1

)b′ b′
∏

i=1

D2
i

2
≥

b′
∏

i=1

(
Di

2

)
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Hence

(c− 1)a
′
(
1−

1

c− 1

)b′

≥
b′
∏

i=1

(
1−

1

Di

)
≥

(
1−

1

(c− 1)2

)b′

As (1− 1
(c−1)2

)(1 − 1
c−1

)−1 = c
c−1

, it follows that

(c− 1)a
′ ≥

(
c

c− 1

)b′

This is a contradiction since from b′ ≥ 0.15qa′ it follows that

(c− 1) ≥
(

c

c− 1

)0.15q

>

(
c

c− 1

) log(c−1)
logc−log(c−1)

= c− 1.


�

We deduce the following connection between the maximum chromatic
number of shallow topological minors and top-grads. By χ(G �̃a) we mean
the maximum of χ(G′) for G′ ∈ G �̃a.

Proposition 4.4. For every graph G and every half-integer a

it holds:

χ(G �̃a) − 1

2
≤ ∇̃a(G) = O(χ(G �̃ (2a+ 1/2))4).

Thus, consequently:

Proposition 4.5. There exists a constant C such that for every graph G

and every half-integer a holds:

χ(G�a) − 1

2
≤ ∇a(G) ≤ C(a+1)2χ(G� (2a+ 1/2))4(a+1)2 .

Proof. According to Theorem 4.1, ∇a(G) = O((4∇̃a(G))(a+1)2). Hence, ac-
cording to Proposition 4.4 there exits a constant C such that

∇a(G) ≤ (C · χ(G �̃ (2a+ 1/2))4)(a+1)2 .

As G �̃ r ⊆ G� r hence χ(G �̃ r) ≤ χ(G� r), which concludes the proof. 
�
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4.7 Stability of Grads by Lexicographic Product

Let G and H be graphs. The lexicographic product G •H is defined by

V(G •H) = V(G)× V(H)

E(G •H) = {{(x, y), (x′, y′)} :

{x, x′} ∈ E(G) or (x = x′ and {y, y′} ∈ E(H))}.

Figure 4.7 perhaps expresses this better.

=•

Fig. 4.7 Lexicographic product of a graph and K2

The lexicographic product G • Kk is also called replication graph: each
vertex is replaced by k mutually adjacent clones of it. Another common name
for this operation is multiplication of vertices.

The fact that ∇̃r(G • Kp) is bounded almost linearly by ∇̃r(G) is a cor-
nerstone of the decomposition results we present in Chap. 7.

Proposition 4.6. Let G be a graph, let p ≥ 2 be a positive
integer and let r be a half-integer. Then

∇̃r(G • Kp) ≤ max(2r(p − 1) + 1, p2)∇̃r(G) + p− 1

Proof. Let {a1, a2, . . . , ap} be the vertices of the Kp. The vertices of G • Kp

are then the pairs (v, ai) for v vertex of G and 1 ≤ i ≤ p. For every vertex
v of G, we say that (v, ai) and (v, aj) are twins in G • Kp and that v is the
projection on G of these twin vertices.

Let H ∈ (G•Kp) �̃ r be such that ‖H‖
|H|

= ∇̃r(G•Kp) and let S(H) ⊆ G•Kp

be the corresponding (≤ 2r)-subdivision of H in G •Kp. Notice that we may
assume that no branch of S(H) contains two twin vertices, except if the
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branch is a single edge path linking two twin vertices (otherwise we shorten
the branch without changing ‖H‖ and |H|, see Fig. 4.8).

Fig. 4.8 If a branch contains twin vertices, we shorten it

We define the graph H1 and its (≤ 2r)-subdivision S(H1) by the following
procedure: Start with H1 = H and S(H1) = S(H). Then, for each subdivision
vertex v ∈ S(H1) having a twin which is a principal vertex of S(H), delete the
branch of S(H1) containing v and the corresponding edge of H1. In this way,
we delete at most (p − 1)|H| edges and thus ‖H1‖

|H1|
≥ ‖H‖

|H|
− (p − 1). S(H1) is

such that no subdivision vertex is a twin of a principal vertex (see Fig. 4.9).
Given H1 we construct the conflict graph C of H1 as follows: the vertex

set of C is the edge set of H1 and the edges of C are the pairs of edges {e1, e2}
such that:

� Either e1 and e2 are not subdivided in S(H1) and their endpoints are
equal or twins,

� Or e1 and e2 are subdivided in S(H1) and one of the subdivision vertices
of the branch corresponding to e1 is a twin of one of the subdivision vertex
of the branch corresponding to e2.
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Fig. 4.9 Each principal vertex of S(H) may be the twin of at most (p−1) subdivision
vertices of S(H)

Note that graph C has maximum degree at most max(p2 − 1, 2r(p− 1)) (see
Fig. 4.10) hence it is max(p2, 2(p − 1)r + 1)-colorable. Fix such a coloring.
Consider a monochromatic set of vertices of C (i.e. of edges of H1) of size at
least ‖H1‖

max(2r(p−1)+1,p2)
. Let H2 be the partial graph of H1 defined by these

edges and let S(H2) be the corresponding subgraph of S(H1).

Fig. 4.10 Each edge of H1 may be in conflict with most max(p2 − 1, 2r(p− 1)) other
edges
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Let v be a principal vertex of S(H2). Then two edges incident to v cannot
have their other endpoints equal or twins (because of the coloration).

Let H3 be the projection of H2 on G. Because of the above coloration,
no two edges of H2 are projected on a same edge of H3 and only the edges
linking twin vertices may have been removed (simultaneously to the removal
of all but one of the twins). As the surplus twins then have degree at most
p− 1 ≤ max(2r(p− 1) + 1, p2)∇̃r(G) + p− 1 they can be removed safely. As
we have ∇̃r(G) ≥ ‖H3‖

|H3|
≥ ‖H2‖

|H2|
the result follows. 
�

We just proved that ∇̃r(G•Kp) and ∇̃r(G) are polynomially equivalent. As
a corollary, of Proposition 4.6 and Corollary 4.1 we have that also ∇r(G•Kp)

and ∇r(G) are polynomially equivalent. This we proved earlier directly by a
more complicated argument [354].

4.8 Shallow Immersions

We now introduce of a shallow version of immersion relation which nicely fits
to our framework.

Recall that an immersion of a graph H in a graph G (see [339]) is a
function ι with domain V(H) ∪ E(H), such that:

� ι(v) ∈ V(G) for all v ∈ V(H), and ι(u) �= ι(v) for all distinct u, v ∈ V(H);
� For each edge e = {u, v} of H, ι(e) is a path of G with ends ι(u), ι(v);
� For all distinct e, f ∈ E(H), E(ι(e)) ∩ E(ι(f)) = ∅.

Alternatively, a graph H is an immersion of the graph G if H can be
obtained from G by a sequence of vertex deletions, edge deletions and edge
lift (An edge lift consists of replacing a pair of adjacent edges {u, v} and {v,w}

by a single edge {u,w}), see Fig. 4.11.
The stretch of an immersion ι is the maximum over the edges e ∈ E(H)

of (‖ι(e)‖ − 1)/2; the complexity of ι is the maximum number of times a
vertex of G appears as a vertex of the paths ι(e) (possibly as an end vertex).
A shallow immersion of depth (p, q) is an immersion of stretch at most q

and complexity at most p.
The main motivations for introducing these two parameters are the fol-

lowing facts:

� Immersions at depth (1, p) are exactly topological minors at depth p,
� Every graph may be immersed into a very sparse graph with a stretch of

3/2 if one does not bound the complexity of the immersion (as shown in
Fig. 4.11).
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Fig. 4.11 A complete graph as an immersion of a very sparse graph

Obviously, if ι has stretch q and complexity p then

H ∈ (G • Kp) �̃q.

We define the set G
∝� (p, q) as the class of all shallow immersions of G with

complexity p and stretch q and we get

G �̃q ⊆ G
∝� (p, q) ⊆ (G • Kp) �̃q. (4.18)

Similarly, one can introduce the imm-grad
∝∇p,q(G) by

∝∇p,q(G) = max
H∈G

∝� (p,q)

‖H‖
|H|

.

Then, according to Proposition 4.6 we have:

Corollary 4.2.

∇̃q(G) ≤ ∝∇p,q(G) ≤ max(2q(p − 1) + 1, p2)∇̃q(G) + p − 1. (4.19)

Thus all of ∇r, ∇̃r and
∝∇P(r),r (for a fixed polynomial P) are polynomially

equivalent:
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∇r � ∇̃r � ∝∇P(r),r.

Actually we can prove a better bound for
∝∇p,q(G) and further connections

between shallow immersions and shallow topological minors:

Proposition 4.7. Let p and q be respectively an integer and
a half-integer and let G be a graph. Then, for every H ∈
G

∝� (p, q) there exists H1, . . . , H2q(p−1)+1 ∈ G �̃q with the
same vertex set such that

H = H1 ∪ · · · ∪H2q(p−1)+1.

Hence we have:

∇̃q(G) ≤ ∝∇p,q(G) ≤ (2q(p − 1) + 1)∇̃q(G) (4.20)

χ(G �̃q) ≤ χ(G
∝� (p, q)) ≤ χ(G �̃q)2q(p−1)+1 (4.21)

ω(G �̃q) ≤ ω(G
∝� (p, q)) < R(

2q(p−1)+1
︷ ︸︸ ︷

ω(G �̃q) + 1, . . . ,ω(G �̃q) + 1)

(4.22)

(Here R(n1, . . . , nk) denotes the Ramsey number introduced in
Sect. 3.9.)

Proof. A branch of the immersion of H in G can cross at most 2q(p − 1)

other branches. Hence one can color the branches into 2q(p − 1) + 1 colors
in such a way that no two branches with the same colors cross. Each color
hence define a shallow topological minor of G at depth q.

The inequalities follow as for every k graphsH1, . . . , Hk on the same vertex
set,

� The average degree of H1 ∪ · · · ∪ Hk is at most the sum of the average
degrees of H1, . . . , Hk;

� The chromatic number of H1 ∪ · · · ∪ Hk is at most the Product of the
chromatic numbers of H1, . . . , Hk;

� If ω(H1 ∪ · · · ∪Hk) = N and K is a clique of order N in H1 ∪ · · · ∪Hk and
N ≥ R(ω1, . . . ,ωk) then there exists an integer i such that ω(Hi) ≥ ωi.

Thus, according to Corollary 4.2, we have one of our highlights: densities aris-
ing from iterated local operations of minor, topological minor and immersion
are all functionally equivalent.
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4.9 Generalized Coloring Numbers

The coloring number col(G) of a graph G (introduced at least as early as
[167]) is the minimum integer k such that there is a linear ordering L of the
vertices of G for which each vertex v has indegree at most k− 1, i.e. v has at
most k − 1 neighbors u with u <L v. According to Proposition 3.2, a graph
G has coloring number at most k if and only if it is (k−1)-degenerate. Hence

�∇0(G) + 1� ≤ col(G) = �2∇0(G) + 1�. (4.23)

Generalizations of the coloring number include the arrangeability [93] (in
the context of Ramsey numbers of graphs), the admissibility [273] and the
rank [272] (in the context of game chromatic numbers of graphs). However, for
our purpose, it seems that a natural generalization is the k-coloring number
of a graph introduced recently by Kierstead and Yang [274]. We proceed as
follows:

For a graph G, let Π(G) be the set of all linear orderings of the vertices
of G. For L ∈ Π(G), denote by GL the graph G with vertices linearly order
by L.

For L ∈ Π(G) and x and y vertices of G, we say that x is k-weakly acces-
sible from y if x <L y and there is an x− y-path P of length at most k (i.e.,
with at most k edges) so that for any z ∈ P, x <L z. If every internal vertex z

of P satisfies the condition y <L z then we say x is k-accessible from y. Let
Qk(GL, y) be the set of vertices that are weakly k-accessible from y and let
Rk(GL, y) be the set of vertices that are k-accessible from y.

Definition 4.1. The k-coloring number colk(G) and the weak k-coloring
number wcolk(G) (illustrated on Fig. 4.12) of G are defined by

colk(G) = 1+ min
L∈Π(G)

max
v∈V(G)

|Rk(GL, v)| (4.24)

and

wcolk(G) = 1+ min
L∈Π(G)

max
v∈V(G)

|Qk(GL, v)|. (4.25)

Observe that
wcol1(G) = col1(G) = col(G).

The invariants coli and wcoli form, for each graph G, two non decreasing
sequences:

col1(G) ≤ · · · ≤ col|G|(G) = col∞(G)

and
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wcol1(G) ≤ · · · ≤ wcol|G|(G) = wcol∞(G) =

1+ min
L∈Π(G)

max
v∈V(G)

|{u �= v : ∃u–v path P ⊆ G,minP = u}.

<

xy

G

P

Fig. 4.12 The weak k-coloring number is one more than the minimum over all the
linear orderings of the vertices of the maximum over x of the number of vertices y
which can be reached from x by a path of length at most k with minimum vertex y

Kierstead and Yang introduced the k-coloring number of a graph for the
purpose of studying coloring games and marking games on graphs.

As noticed in [274], these two invariants are easily shown to be polynomi-
ally equivalent via the monotone path segmentation:

Proposition 4.8.

colk(G) ≤ wcolk(G) ≤ colk(G)k

Proof. Observe that both Qk(GL, v) and Rk(GL, v) are defined by paths and
that any path of length k under consideration in Qk(GL, v) can be broken
into at most k paths under consideration in Rk(GL, v). This easy observation
implies that

max
v∈V(G)

|Qk(GL, v)| ≤ max
v∈V(G)

|Rk(GL, v)|
k.


�

In [476], Zhu proved that these invariants are also polynomially equivalent
to the grads. Precisely, for each integer k there exists a polynomial Fk such
that

∇k−1
2

(G) + 1 ≤ wcolk(G) ≤ colk(G)k ≤ Fk(∇k−1
2

(G)). (4.26)

The proof of [476] of these functional dependencies is included in Sect. 7.5
in the context of decomposition theorems (Theorems 7.10 and 7.11).
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Exercises

4.1. Compute an upper bound for ∇r(G) and ∇̃r(G) when

� G is planar,
� G has maximum degree D,
� G may be drawn in the plane in such a way that every edge is crossed by

at most one other edge.

4.2. Let d be an integer and let G be a graph. Prove that if girth(G) ≥ 8d+3

and δ(G) ≥ 3 then ∇2d(G) > 2d. (Actually, with some efforts one can prove
a slightly better bound, see [121]).

4.3. Does there exist a function f such that for every graph G it holds

χ(G� 1

2
) ≤ f(χ(G �̃ 1

2
))?

4.4. Edges densities ∇r, ∇̃r, and
∝∇P(r),r are related by polynomial func-

tions. We noted that the Hadwiger number h(G) is related to ∇(G) (see
Lemma 4.1).

Deduce a similar relation between ht(G) and ∇̃(G) from Theorem 3.6;
Deduce a similar relation between hi(G) and

∝∇(G) from Theorem 3.7.

4.5. Let G be a graph and let L be a linear ordering of V(G). The k-
backconnectivity bk(v) of a vertex v is the maximum number of paths from
v of length at most k that intersect only at v, such that all the endvertices of
these paths distinct from v are smaller than v; the k-admissibility admk(G)

is the minimum over the linear orders L of the maximum over v ∈ V(G) of
bk(v):

admk(G) = min
L

max
v∈V(G)

bk(v).

Prove the following properties that relate admk to the generalized coloring
numbers colk and wcolk [136]:

Prove that in the definition of bk(v) we can assume that all internal vertices
of the paths are greater than v hence admk(G) < colk(G);
Let Rk(v) be the set of all the vertices that are k-accessible from v. Show that
there exists a tree Y rooted at v, with height at most k, with set of leaves
Rk(v), and all internal vertices of which are greater than v;
Prove that every non-leaf vertex of Y has degree at most admk(G);
Deduce that

colk(G) ≤ admk(G) (admk(G) − 1)k−1 + 1.



Chapter 5
Classes and Their Classification

Do classes matter?
The class struggle within graph theory.

This chapter starts on an abstract level, by dealing with classes and their
properties. As such it belongs to model theory (and general theory of cate-
gories). However our approach is very concrete and we deal with classes of
graphs although many of the concepts and results carry over a more general
setting. This will be made explicit in Sect. 5.8.

We denoted by Graph the class of all finite graphs. In most of our book we
do not distinguish between isomorphic graphs and thus Graph will be consid-
ered as the (countable) class of isomorphism types of all finite graphs (often
and less precisely, this is formulated as the class of all finite non-isomorphic
graphs). In other words, we consider graphs up to an isomorphism.

A class of graphs is a finite or infinite set (isomorphism types) of graphs.
Classes will be denoted by letters like C,F,D. Although isomorphism closed
classes are standard, the following restrictions (although frequent) are not
always assumed:

� A class C is hereditary if for every graph G ∈ C,

G ′ ⊆i G =⇒ G ′ ∈ C;

� A class C is monotone if for every graph G ∈ C,

G ′ ⊆ G =⇒ G ′ ∈ C.

The following restrictions are less frequent:

� A class C is minor closed if for every graph G ∈ C,

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__5, © Springer-Verlag Berlin Heidelberg 2012
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G ′ ≤m G =⇒ G ′ ∈ C.

� A class C is topologically minor closed if for every graph G ∈ C,

G ′ ≤t G =⇒ G ′ ∈ C.

� A class C is homomorphism closed if for every graph G ∈ C,

G ′ ≤h G =⇒ G ′ ∈ C.

Examples of classes which are minor closed, topologically minor closed, or
homomorphism closed are abundant. For example the class Graph itself is
both homomorphism, minor, and topologically minor closed. If a class C is
(minor, topologically minor, or homomorphism) closed and C �= Graph we
say that C is a proper (minor, topologically minor, or homomorphism) closed
class.

The class Forbh(F) of the graphs with no homomorphic image of a graph
in F deserves a specific notation, according to the importance of such classes
in the context of homomorphism dualities studied in Chap. 9. Formally:

Forbh(F) = {G : ∀F ∈ F, F � G}

= {G : ∀F ∈ F, F �≤h G}.

Similarly, we define the class Forbm(F) of all graphs which do not have
any graph F ∈ F as a minor:

Forbm(F) = {G : ∀F ∈ F, F �≤m G}.

In such a situation, the set F is said to be a set of forbidden minors of C.
Clearly a class C is minor closed if and only if there exists a (possibly infinite)
set F such that C = Forbm(F) (for example we can put F = Graph\C). Also, a
class C is homomorphism closed if and only if there exists a (possibly infinite)
set F such that C = Forbh(F). It follows from the well-quasi-ordering of
graphs by the minor order that the following much stronger statement holds
for minor closed classes [397, 399–417]:

Theorem 5.1. For every minor closed class C there exists a finite set F

of graphs such that C = Forbm(F).

For homomorphism closed classes such a result does not hold. In fact, the
opposite is true: most natural homomorphism closed classes of graphs are not
of the form Forbh(F) for some finite set F. For example there are uncountably
many homomorphism closed classes. However the question when a class C is
determined by a finite set F is very interesting and leads to the notion of
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homomorphism duality which is one of the notions studied thoroughly in
this book, see Chap. 9.

One could argue that there is no need to introduce the “class of graphs”
denomination. Indeed classes of graphs are in one-to-one correspondence with
graph properties: the property P corresponds to the class C of all graphs
with property P. Thus perhaps the class terminology is superfluous if not
misleading: instead of saying “consider the class of all triangle-free graphs”
we can say simply “consider all graphs not containing a triangle”. However,
in this book we deal with statements which are far more complex and we
use class-terminology abundantly. This not only reflects our preferences and
taste but we find it necessary. We shall consider classes constructed from
other classes, derived classes and derived classes from derived classes, etc.
Such discussions could soon become cumbersome and would obscure the
dynamics of what we are doing. The resolution of a class, which will be
introduced in Sect. 5.1, is a typical example.

The importance of classes also lies in considering individual properties of
graphs in the context to state results which apply to graphs belonging to
some class or even to graphs belonging to some type of classes. This kind of
study is sometimes called relativization.

Let us take two examples which motivate a large part of our research.
Two examples of relativization will be considered in greater detail: The ho-
momorphism preservation theorems in Chap. 10, and restricted dualities in
Chap. 9.

5.1 Operations on Classes and Resolutions

5.1.1 Class Suprema and Class Limits

If f : Graph → IR is a graph invariant and C is a class, we define the supre-
mum of f on C by

f(C) = sup
G∈C

f(G).

This definition is consistent with standard uses like the “chromatic number
of planar graphs”.

As we are mainly interested in infinite classes of graphs, we will consider
that two classes of graphs C and C ′ are asymptotically equivalent if they
differ by a finite set. For instance, any finite class of graphs is asymptotically
equivalent to the empty class.
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Let C be an infinite class of graphs and let f : C → IR be a graph parameter.
Let Inj(IN,C) be the set of all injective mappings from IN to C. Then we define
the class limit of a graph parameter f on the class C as

lim sup
G∈C

f(G) = sup
φ∈Inj(IN,C)

lim sup
i→∞

f(φ(i))

and we also introduce the concise notation

f(C) = lim sup
G∈C

f(G).

An advantage of this definition (as compared to f(C) = supG∈C f(G))
is that if two infinite classes C and C ′ are asymptotically equivalent then
f(C) = f(C ′).

Notice that lim supG∈C f(G) always exist and is either a real number or
±∞. Of course, Inj(IN,C) corresponds to the set of all sequences of distinct
members of C (and recall that distinct members are non-isomorphic). We
could also define the class limit lim supG∈C f(G) as

lim sup
G∈C

f(G) = lim
i→∞

sup{f(G) : G ∈ C, |G| ≥ i}.

For α ∈ IR = IR∪ {−∞,∞}, the property lim supG∈C f(G) = α holds if and
only if the following two properties hold:

� For every φ ∈ Inj(IN,C), lim supi→∞
f(φ(i)) ≤ α;

� There exists φM ∈ Inj(IN,C), lim supi→∞
f(φ(i)) = α.

Assuming lim supG∈C f(G) = α the existence of φM is easy to prove: consider
a sequence φ1, . . . , φi, . . . such that

lim
i→∞

lim sup
j→∞

f(φi(j)) = α.

For each i, let si(1) < · · · < si(j) < . . . be such that

lim sup
j→∞

f(φi(j)) = lim
j→∞

f(φi(si(j))).

Then iteratively define φM ∈ Inj(IN,C) by φM(1) = φ1(s1(1)) and φM(i) =

φi(si(j)), where j is the minimal integer greater or equal to i such that
φi(si(j)) will be different from φ(1), . . . , φ(i−1). Then lim supj→∞

f(φM(j))

= α.
In other words, lim supG∈C f(G) = α means that for every ε > 0, infinitely

many G ∈ C are such that f(G) ≥ α − ε but only finitely many G ∈ C are
such that f(G) ≥ α+ ε.
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Let now C = (C1, . . . ,Ci, . . . ) be a nested sequence of infinite graph classes:
C1 ⊆ C2 ⊆ · · · ⊆ Ci ⊆ . . . . Let f : Graph → IR be a graph invariant. We
define

f(C) = lim
i→∞

f(Ci) = sup
i→∞

lim sup
G∈Ci

f(G).

The limit is well defined as the values lim supG∈Ci
f(Ci) form a non decreas-

ing sequence.
Again let us note that f(C) = α means that for every ε > 0:

� On the one hand, one can find some i0 such that infinitely many G ∈ Ci0

satisfy f(G) ≥ α− ε;
� On the other hand, for every i, there are only finitely many G ∈ Ci so that

f(G) ≥ α+ ε.

5.1.2 Class Operations

We shall make a recurrent use of the lexicographic product of a class C by a
graph F, which is elementwise defined by

C • F = {G • F : G ∈ C}.

The following notions are principal for this book. They extend the defini-
tion of the shallow minor (Sect. 4.2) to graph classes.

Definition 5.1. Let C be a class of graphs, let a be a half-integer and let b

be an integer. We define

C�a =
⋃

G∈C

G�a,

C �̃a =
⋃

G∈C

G �̃a,

and

C
∝� (b, a) =

⋃

G∈C

G
∝� (b, a).

Remark 5.1. It follows from these definitions that for every class C we have
the following inclusions:
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C� 0 ⊆ C� 1
2

⊆ . . . ⊆ C�a ⊆ . . . ⊆ C�∞

= ⊆ ⊆ ⊆

C ⊆ C �̃ 0 ⊆ C �̃ 1
2

⊆ . . . ⊆ C �̃a ⊆ . . . ⊆ C �̃∞
= ⊇ ⊇ ⊇

C
∝� (1, 0) ⊆ C

∝� (1, 1
2
) ⊆ . . . ⊆ C

∝� (2a+ 1, a) ⊆ . . . ⊆ C
∝� (∞,∞)

Some of these classes have a particular meaning:

� C� 0 is the monotone closure of C (that is: the smallest monotone class
including C),

� C�∞ is the minor closure of C (that is: the smallest minor closed class
including C),

� C �̃∞ is the topological closure of C (that is: the smallest topologically
closed class including C).

For the sake of completeness, recall that the hereditary closure of C (the
smallest hereditary class including C) is denoted by H(C).

5.1.3 Class Resolutions

As the reader surely observed, the time evolving parametrization is the key
to our analysis. This propagates to classes and the following definitions: The
resolution of a class C is the nested sequence of graph classes

C� = (C� 0,C� 1

2
,C� 1, . . . ),

its topological resolution is the nested sequence of graph classes

C
˜� = (C �̃ 0,C �̃ 1

2
,C �̃ 1, . . . ),

and its immersion resolution is the nested sequence of graph classes

C
∝� = (C

∝� (1, 0),C
∝� (2,

1

2
),C

∝� (3, 1), . . . ),

It is convenient to interpret these resolutions as sequences developing in
time (in time scaled by half-integer units). These infinite sequences will be
at the heart of a surprisingly stable classification of general infinite classes of
graphs. The main ingredient of this classification will be the concentration
properties of logarithmic densities of graphs, which we shall now present. We
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find it convenient to start with topological minors, the classes C �̃ i, and with
the corresponding resolution C˜�.

5.1.4 Topological Parameters

Recall that a graph parameter is a function � for which �(G) is a non-negative
real number for every graph G. Examples include minimum degree, average
degree, maximum degree, connectivity, chromatic number, tree-width, etc.

This is a very large concept, which needs to be refined. Particularly, we
say that a graph parameter � is

� Subdivision bounded if for some function f, for every graph G and every
subdivision H of G it holds

�(H) ≤ f(�(G)).

� Weakly topological if for some function f, for every graph G and every
≤ 1-subdivision H of G,

�(G) ≤ f(�(H)) and �(H) ≤ f(�(G)).

Many graph parameters are subdivision bounded but not weakly topological.
This is the case, for instance, of the clique number ω(G), the average degree
d(G), or the chromatic number χ(G) (if H is a subdivision of G then χ(H) ≤
χ(G) + 1).

Recall that the graph parameter � is monotone (respectively, hereditary)
if �(H) ≤ �(G) for every subgraph (respectively, every induced subgraph) H
of G.

The following statement shows that for an infinite class C a subdivision
bounded graph parameter is bounded at each time of a topological resolution
if and only if some related monotone weakly topological graph parameter is
bounded on the class C.

Proposition 5.1. Let � be a subdivision bounded graph parameter and let
C be an infinite class. Then the two following conditions are equivalent:

� For every integer r it holds �(C �̃ r) < ∞,
� There exists a weakly topological monotone graph parameter �̃ func-

tionally bounding � such that �̃(C) < ∞.

Proof. As � is a subdivision bounded parameter, there exists a function g

such that for every graph G and every subdivision H of G it holds �(H) ≤
g(�(G)).
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Assume there exists no positive integer r such that �(C �̃ r) = ∞. Let C+

be the class of all (possibly trivial) subdivisions of graphs in C. Then for
every integer r, �(C+ �̃ r) ≤ g(�(C)) < ∞. Let f(r) = �(C+ �̃ r). Notice that
f is a non-decreasing function.

� If the function f is bounded, then define �̃(G) = �(G �̃∞). This parameter
is clearly monotone and obviously functionally bounds �. If H is a ≤ 1-
subdivision of G then each graph in H �̃∞ is a ≤ 1-subdivision of a graph
in G �̃∞ hence

�̃(H) = �(H �̃∞) ≤ g(�(G �̃∞)) = g(�̃(G))

Also, as G �̃∞ ⊆ H �̃∞ it holds

�̃(H) ≥ �̃(G).

It follows that �̃ is weakly topological.
� Otherwise, as f is unbounded, there exists for each graph G an integer

w(G) such that g(�(G �̃∞)) ≤ f(w(G)). Hence there exists for each graph
G a minimum non-negative real number �̃(G) ≤ w(G) such that for (pos-
sibly trivial) subdivision G ′ of G and every integer r it holds

�(G ′ �̃ r) ≤ f(�̃(G)(r + 1)).

The graph parameter �̃ functionally bounds � as

�(G) ≤ �(G �̃ 0) ≤ f(�̃(G)).

It is also clear that �̃ is monotone: if H is a subgraph of G then �(H �̃ r) ≤
�(G �̃ r), hence �̃(H) ≤ �̃(G).
Let G be a graph and let H be a ≤ 1-subdivision of G. Then every sub-
division of H is also a subdivision of G hence �̃(H) ≤ �̃(G). Conversely, if
G ′ is a subdivision of G, there exists a ≤ 1-subdivision H ′ of G ′ which is
a subdivision of H. Hence

�(G ′ �̃ r) ≤ �(H ′ �̃ (2r + 1)) ≤ f(�̃(H)(2r + 2))

= f(2�̃(H)(r + 1)).

Hence �̃(G) ≤ 2�̃(H) and thus �̃ is a strong topological graph parameter.
Finally, it is directly checked from the definition that �̃(G) ≤ 1 for every
graph G ∈ C.

Now assume that �̃ is a weakly topological and monotone parameter
bounding �. By definition, there exists some function f such that for ev-
ery graph G hold �(G) ≤ f(�(G ′)) and �(G ′) ≤ f(�(G)) where G ′ is the
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1-subdivision of G. Moreover, the function f may obviously be chosen non
decreasing. Let C = {G : �̃(G) ≤ c} for some constant c. Let r be an integer.
Let G ∈ C. For some H ∈ G �̃ r, we have �(H) = �(G �̃ r). Let S be a ≤ r-
subdivision of H isomorphic to a subgraph of G. Let p = 
log2(2r)�. There
is a sequence H = H0, H1, . . . , Hp = S such that Hi+1 is a ≤ 1-subdivision
of Hi, for each i ∈ {0, . . . , p − 1}. By induction, �̃(H) ≤ fp(�̃(S)) where fp is
f iterated p times. Since f is non-decreasing, �̃(H) ≤ fp(c). Since �̃ bounds �
there exists a function g such that �(G) ≤ g(�̃(G)) holds for every graph G.
Hence

�(G �̃ r) = �(H) ≤ g(�̃(H)) ≤ g(fp(c)) = g(f�log2(2r)�(c)).

Thus

�(C �̃ r) ≤ g(f�log2(2r)�(c)) < ∞.

�


5.2 Logarithmic Density and Concentration

A simple and classical distinction between “dense” and “sparse” graphs is that
the former have a quadratic number of edges and the latter have “much fewer
edges”. This intuitive classification suggests a new invariant, the logarithmic
density �dens(G) of a graph G, which we define as

�dens(G) =

⎧

⎨

⎩

−∞, if ‖G‖ = 0

log ‖G‖
log |G|

, otherwise.
(5.1)

Notice that, according to this definition, the logarithmic density of a single
vertex graph or an empty graph is −∞. Also, it is immediate that �dens(G)

is either −∞ (if G is edgeless) or a real value in the interval [0; 2]. This is
clear if we note that �dens(G) = α ≥ 0 if and only if ‖G‖ = |G|α. So the
logarithmic density expresses the size of the graph as a power of its order.

As we have seen in Sect. 3.2, one of the important properties of the min-
imum degree and the average degree is that every graph G has a large sub-
graph whose minimum degree is not significantly smaller than half of the
average degree of G: For every graph G and every ε > 1/|G| there exists a
subgraph H of G of minimum degree at least (1−ε)‖G‖

|G|
and size ‖H‖ at least

ε‖G‖. It follows that for such a graph H it holds
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log δ(H)

log |H|
≥ log ‖G‖− log |G|+ log(1− ε)

log |G|
(5.2)

= �dens(G) − 1+
log(1− ε)

log |G|
. (5.3)

The logarithmic density of such a subgraph H cannot be significantly
smaller than the one of G. Indeed, as δ(H) ≤ 2‖H‖/|H| it holds

�dens(H) ≥ log δ(H) |H|

2

log |H|
=

log δ(H)

|H|
+ 1− 2

log 2
log |H|

≥ �dens(G) +
log(1 − ε)

log |G|
−

2 log 2
log |H|

Hence
�dens(H) ≥ �dens(G) + o(log |H|) (5.4)

The ratio log δ(G)
log |G|

appears to be particularly suitable to prove concentra-
tion results in conjunction with Proposition 4.3. In particular, by a suitable
choice of the constants, we obtain the following result:

Lemma 5.1. Let ρ > 1. There is a positive N(ρ) such that for every
graph G of order |G| ≥ N(ρ) which satisfies

log δ(G)

log |G|
≥ 1

ρ

there exists a graph H such that the 1-subdivision of H is a subgraph of
G and

� Either H ∼= K
|G|1/3ρ2 ,

� or
log δ(H)

log |H|
>

1

ρ− 1/2
and |H| ≥ √

|G|/3.

Proof. Put μ = 1/ρ. We apply Proposition 4.3 with δ = nμ and ε =

2nμ2/3−μ (with the notations of Proposition 4.3). We get that there exists a
graph H such that an exact 1-subdivision of H is a subgraph of G and either
H ∼= K

nμ2/3 or H has minimum degree at least 1
2
nμ−μ2/3 and order

√
(1− 2n−μ+μ2/3)n/2 ≤ |H| ≤ n1−μ+μ2/3.

For sufficiently large n, n−μ+μ2/3 ≤ 1/6 hence |H| ≥ √
n/3. As |H| ≤

n1−μμ2/3 we deduce

δ(H) ≥ 1

2
|H|

μ−μ2/3

1−μ+μ2/3 =
1

2
|H|

μ+μ2

3
· 2−μ

1−μ+μ2/3 ≥ |H|μ+μ2

2

(for sufficiently large n). As
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(
1

ρ
+

1

2ρ2

)−1

= ρ−
1

2
+

1/2

2ρ+ 1
> ρ−

1

2

we conclude the proof. �


This result shows that if the logarithmic density of a large graph is
bounded away from 1 (i.e. at least 1 + ε for some positive real ε) then it
contains a shallow subdivision of a large clique (of depth k(ε)). Precisely, we
have:

Lemma 5.2. Let ρ > 1 and let G be a graph of order n ≥ N ′′(ρ) and min-
imum degree at least n1/ρ. Then the complete graph of order 1

3
(3n)2

−4ρ

belongs to G �̃ (9ρ − 1)/2:

ω

(
G �̃ 9ρ − 1

2

)
≥ 1

3
(3|G|)2

−4ρ

Proof. We construct a sequence of graphs G0, G1, . . . , Gk such that for each
0 ≤ i ≤ k the graph Gi has order ni and minimum degree at least n1/(ρ−i/2)

i

as follows: Put G0 = G. Iteratively, for each i ≥ 0, if Gi is not a com-
plete graph we apply Lemma 5.1 to Gi. Then we get a graph Hi whose
1-subdivision is a subgraph of Gi. If Hi is a 1-subdivision of a complete
graph we stop. Otherwise we let Gi+1 = Gi. Notice that ni+1 ≥ √

ni/3

hence log(3ni+1) ≥ log(3ni)/2. As obviously the process stops after at most
2ρ iterations (because of the increase of log δ(Gi)/ log |Gi|), we will obtain a
complete graph of order at least 1

3
(3n)2

−4ρ

at depth 9ρ−1
2

. �


Hence for every ρ > 1 and every graph G of order at least N ′′(ρ) holds

�dens(G) > 1+
1

ρ
=⇒ ω

(
G �̃ 9ρ − 1

2

)
≥ 1

3
(3|G|)2

−4ρ

. (5.5)

(Actually we have the stronger conclusion that the (9ρ − 1)/2-subdivision of
a clique of size at least (3|G|2

−4ρ

)/3 is a subgraph of G). This result will be
the basis of our trichotomy Theorem 5.4.

The following result is due to Kostochka and Pyber [283]:

Theorem 5.2. Let ε be a positive real such that 0 < ε < 1. Let n, t be
positive integers, and let G be a graph on n vertices and m ≥ 4t

2

n1+ε

edges. Then

Kt ∈ G �̃ 2(1 + 2 log2 t)
ε

.

This result has been improved by Jiang [268]:
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Theorem 5.3. Let t be a positive integer and let 0 < ε < 1/2

be a positive real. There exists n0 = n0(t, ε) such that for all
integer n ≥ n0, if G is a graph on n vertices and m ≥ n1+ε

edges, then G contains a �10/ε�-subdivision of Kt, that is:

ω

(
G �̃ 5

ε

)
≥ t.

This result solves an open problem of Kostochka–Pyber paper. The proof
is an elaboration of earlier results of [172, 283] and is quite technical. We do
not include it here. From the point of view of this book this result gives im-
provements on dependencies between logarithmic density and clique number
of shallow topological minors. However it does not change the classification
of classes we are going to introduce next.

5.3 Classification of Classes by Clique Minors

The resolution of the infinite classes of graphs allows a direct classification
of these classes in two types. This is one of our principal definitions.

Definition:

� Classes C such that there exist a (finite) half-integer a such that C�a =

Graph will be called somewhere dense.
� Classes C such that C�a �= Graph for every half-integer a will be called

nowhere dense.

As C�a is a monotone class for each a, we notice that the statement
“C�a = Graph” is equivalent to the statement “ω(C�a) = ∞”. Recall that
we put ω(C) = sup{ω(G) : G ∈ C}.

Let us remark that we can extend this definition easily to (relational)
structures and hypergraphs by means of their incidence graphs and we shall
state explicitly these results in Sect. 13.6.

We may also consider a classification based on topological minors instead
of minors, i.e. a dichotomy between the classes C such that there exists an in-
teger t0 such that ω(C �̃ t0) = ∞ and those classes C such that ω(C �̃ t) < ∞

for every t. However, it appears that these two approaches (minor resolution
and topological minor resolution) lead to the same classification. This is a
consequence of the following inequalities:
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Proposition 5.2. Let G be a graph and let a be a half-integer.
Then

ω(G �̃a) ≤ ω(G�a) ≤ 2ω(G �̃ (3a+ 1))�a�+1

Proof. As G �̃a ⊆ G�a, the inequality ω(G �̃a) ≤ ω(G�a) is straight-
forward.

Let a be a half-integer and let p = ω(G�a). Let Ωp be an a-witness of Kp

in G and let Y1, . . . , Yp be the bushes of the corresponding Kp-decomposition
of Ωp.

Orient the external edges of the Kp-decomposition of Ωp arbitrarily if a is
an integer and otherwise (if a is not an integer) in such a way that for every
external edge {x, y}, if x is at distance 
a� from the center of its bush then
{x, y} is oriented from x to y (this is consistent as the decomposition is asym-
metric). Note that the orientation of the external edges of the decomposition
naturally induces an orientation of Kp.

Let q = (p/2)1/(r+1). For i = 1, . . . , q we will consider a subset Ai of
vertices of Kp of size at least 2(q − 1)�a�+1 + 1. Initially, we set A1 to be
the vertex set of Kp. At each step, q vertices will be removed from Ai−1 to
form Ai.

Ȳ1,1

Ȳq,q

Fig. 5.1 Finding a subdivision of Kq

Consider Ai for some 1 ≤ i ≤ q. At least one vertex in Ai has at least
(|Ai| − 1)/2 in-neighbors in Ai. An easy counting shows this value is the
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average number of in-neighbors in Ai for the vertices of Ai. Let Y be the
bush associated with such a vertex and let Y ′ be the rooted subtree of Y

(with the same root as Y) which is the union of all the branches of Y from its
root to a leaf having at least one incoming external edge incident to another
bush corresponding to a vertex in Ai. Orient the edges of Y ′ toward its root.
First notice that, by construction, the distance of the leaves of Y ′ to the root
is at most �a�. It follows, by a simple counting argument, that at least one
vertex c of Y ′ has indegree at least ((|Ai|−1)/2)1/(r+1) ≥ q−1. Let Ȳi,i be the
the subtree of Y ′ rooted at c. By construction, the tree Ȳi,i has at least q−1

leaves, each being the terminal endpoint of an edge incident to some bush
corresponding to a vertex in A. Let Ȳi,j (j ∈ {1, . . . , i − 1, i + 1, q}) be these
q− 1 bushes. The corresponding vertices of Ai are removed from Ai to form
the set Ai+1. For i < q, this set has size at least p−(q−1)q ≥ 2(q−1)�a�+1+1

At the end of the process, we have q2 bushes Ȳi,j (1 ≤ i, j ≤ q) which
allow us to exhibit a (6a + 2)-subdivision of Kq (Fig. 5.1). �


Thus the class C is somewhere dense if and only if there exists time t0 such
that the class of all topological minors at depth t0 (i.e. C �̃ t0) is the class of
all graphs. In the latter case we can say that C is topologically somewhere
dense. Thus C is somewhere dense if and only if C is topologically somewhere
dense. We shall see in the next section that C is somewhere dense if and only
if it is “immersion somewhere dense”.

5.4 Classification by Density—Trichotomy of Classes

Recall that according to Sect. 5.1.1

�dens(C˜�) = sup
i→∞

lim sup
G∈C ˜� i

log ‖G‖
log |G|

.

A consequence of the results of Sect. 5.2 is the following concentration
result:

Proposition 5.3. Let C be an infinite class of graphs. Then the following
conditions are equivalent:

(i) �dens(C˜�) > 1,
(ii) �dens(C˜�) = 2

(iii) There exists a half-integer i0 such that C �̃ i0 = Graph.

It follows that infinite classes of graphs follow the following trichotomy
(we do not consider the case of edgeless graphs as distinct from the one of
bounded size graphs):
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Theorem 5.4 (Class trichotomy). Let C be an infinite class
of graphs. Then the limit

�dens(C˜�) = lim
r→∞

lim sup
G∈C ˜� r

log ‖G‖
log |G|

can only take four values, namely −∞, 0, 1 or 2 (see Fig. 5.2).
Thus every infinite class C may be categorized using the

following three types:

� A bounded size class (or asymptotically edgeless class(i.e.
‖G‖ is globally bounded on C) if and only if �dens(C˜�) = 0

or −∞,
� A nowhere dense class if and only if �dens(C˜�) ∈ {−∞, 0, 1},
� A somewhere dense class if and only if �dens(C˜�) = 2.

Proof. According to Proposition 5.3, either C is somewhere dense and
�dens(C˜�) = 2 or C is nowhere dense and �dens(C˜�) ≤ 1.

If C has unbounded size then C �̃ 0 contains arbitrarily large graphs G

without isolated vertices (hence such that �dens(G) ≥ 1 − log 2
log |G|

) thus

�dens(C˜�) ≥ 1. Otherwise, each C �̃ r has bounded size (as topological mi-
nors cannot have more edges than the original graphs) but is infinite (as C is
infinite) hence contains graphs of arbitrarily large orders. It follows that for
each r, �dens(C˜�) = 0 if one can find arbitrarily large graphs with at least
one edge, and �dens(C˜�) = −∞, otherwise. �


At this level of class hierarchies again, topological shallow minors, shallow
minors an immersions play equivalent roles:

Proposition 5.4. For every infinite class of graphs C holds

�dens(C�) = �dens(C
∝�) = �dens(C˜�). (5.6)

Proof. As noticed in Sect. 4.8, we have for every p, q ≥ 1

G �̃q ⊆ G
∝� (p, q) ⊆ (G • Kp) �̃q.

Moreover for every p ≥ 1
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�dens((C • Kp)
˜�
) = lim sup

G∈C•Kp

log ‖G‖
log |G|

= lim sup
G∈C

log ‖G • Kp‖
log |G • Kp|

= lim sup
G∈C

log ‖G‖+ 2 logp
log |G|+ logp

= lim sup
G∈C

log ‖G‖
log |G|

= �dens(C˜�).

Thus �dens(C
∝�) = �dens(C˜�).

Let us now prove that �dens(C�) = �dens(C˜�).
As a consequence of the inclusions displayed in Remark 5.1 we have

�dens(C˜�) ≤ �dens(C�) ≤ 2.
Hence if �dens(C˜�) = 2 then �dens(C�) = 2. Also, it is immediate that if

�dens(C˜�) is either −∞ or 0 then �dens(C�) = �dens(C˜�).
Assume for contradiction that �dens(C˜�) = 1 and that there exists ε > 0

such that �dens(C�) ≥ 1+ ε. Then there exists an integer t such that

lim sup
G∈C� t

log ‖G‖
log |G|

≥ 1+ ε/2.

According to Proposition 5.3, there exists an integer i0 such that (C� t)� i0 ⊇
(C� t) �̃ i0 = Graph. Put c = ((2t+1)(2i0+1)−1)/2. According to Proposi-
tion 4.1, we have C� c = Graph thus C is somewhere dense, what contradicts
our assumption that �dens(C˜�) = 1. It follows that that �dens(C�) = 1. �


It follows that our classification of classes (bounded size versus nowhere
dense versus somewhere dense) is the same if we consider topological minors
or immersions instead of minors in the computation of asymptotic logarithmic
densities of resolutions. This stability of our classification is not singular. We
shall see other examples of this. An interested reader can jump forward to
Chap. 13 to see the stability in the full light. This jump may also provide
him a motivation to return and read the details of the next section.

5.5 Classes with Bounded Expansion

Thus the nowhere dense classes are those classes C such that for every t the
edge density of every graph G in C� t is bounded by |G|o(1). This particularly
includes the case when the edge density of the graphs in C� t is bounded by
a constant c(t). Such classes deserve a name on their own and they were our
original motivation.

A class C of graphs has bounded expansion if for every t there exists c(t)

such that ‖G‖
|G|

≤ c(t) for every graph G ∈ C� t. In other words, for every t,
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we have ∇t(C) ≤ c(t). The function t �→ ∇t(C) is called the expansion
function of the class C. Classes with bounded expansion (also called bounded
expansion classes) may be alternatively defined as those classes C where for
each t the class C� t is a class of degenerate graphs.

Bounded expansion classes are of course nowhere dense. But this special
case allows a finer classification.

The expansion function of a bounded expansion class C is (uniformly)
bounded if and only if C is contained in a proper minor closed class. The
expansion function of the class of all k-regular graphs is exponential. Actually,
any integral non decreasing function greater than 2 is the expansion function
of some bounded expansion class (see Exercise 5.1).

A leitmotiv of this book are various equivalent formulations of our classi-
fication. We shall see that this carry over to bounded expansion classes. We
start with the following:

Proposition 5.5. Let C be a class of graphs. Then the
following conditions are equivalent:

1. C has bounded expansion,
2. For every integer t, supG∈C� t χ(G) < ∞,
3. For every integer t, supG∈C ˜� t χ(G) < ∞,

Proof. This result follows immediately from Propositions 4.4 and 4.5. �


This gives a possibility to compare the notions of “nowhere dense” and the
one of “bounded expansion”:

Nowhere dense classes are characterized by the property ω(C� t) < ∞ for
every t;
Bounded expansion classes are characterized by the stronger assumption that
χ(C� t) < ∞ for every t.

Which nowhere dense classes fail to have bounded expansion? These are
exactly those classes C where for some t0 and every t > t0 the class C� t

has unbounded chromatic number but bounded clique number. Such classes
form a classical part of modern graph theory and we call them Erdős classes
(see [163] for a seminal result in this direction). This notion is also justified
by the following example:

Example 5.1. Let E be the class of graphs G such that Δ(G) ≤ girth(G).
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It is easy to see that the class E is nowhere dense: assume that Kn ∈ E �̃ t.
Then there exists a graph G in E with maximum degree at least n − 1 and
girth at most 3(2t + 1), hence ω(E �̃ t) ≤ 6t + 4.

The class E does not have bounded expansion as graphs in E have un-
bounded average degree (in particular E� 0 is not a class of degenerate
graphs).

We now give yet another characterization of classes with bounded expan-
sion, this time by controlling dense parts which may be useful for classes
that are neither addable (that is, closed under disjoint unions) nor heredi-
tary. This will be used in Sect. 14.1 (Chap. 14) and thus it may be skipped
on first reading.

Proposition 5.6. Let class C be a class of graphs. Then C has bounded
expansion if and only if there exists functions Ford, Fdeg, F∇, Fprop : IR+

→ IR such that the following two conditions hold:

∀ε > 0, ∀G ∈ C, |G| > Ford(ε) =⇒
|{v ∈ G : d(v) ≥ Fdeg(ε)}|

|G|
≤ ε

∀r ∈ IN, ∀H ⊆ G ∈ C, ∇̃r(H) > F∇(r) =⇒ |H| > Fprop(r)|G|

If the above conditions hold then for every r, ∇̃r(C) is finite and
bounded by

2max
(
Ford

(
Fprop(r)

(r + 1)F∇(r)

)
, Fdeg

(
Fprop(r)

(r+ 1)F∇(r)

)
, (r+ 1)F∇(r)

)
.

Proof. Assume C has bounded expansion. Then the average degree of graphs
in C is bounded by 2∇0(C). Hence, for every G ∈ C and every integer k ≥ 1,

2∇0(C) ≥
∑

i≥1 i |{v ∈ G : d(v) = i}|

|G|
=

∑

i≥1|{v ∈ G : d(v) ≥ i}|

|G|

≥ k
|{v ∈ G : d(v) ≥ k}|

|G|
.

Hence |{v∈G:d(v)≥k}|
|G|

≤ 2∇0(C)
k

. Thus Ford(ε) = 0 and Fdeg(ε) =
⌈
2∇0(C)

ε

⌉

suffice. The second property is straightforward: put F∇(r) = ∇̃r(C) and
Fprop(r) = 1.

Now assume that the two conditions of Proposition 5.6 hold. Fix r. Let
G ∈ C and let S be a subset of vertices of G of cardinality t ≤ Fprop(r)

(r+1)F∇(r)n. Let
Fr(S) denote a vertex subset formed by adding paths of length at most r+ 1

with interior vertices in V \ S and endpoints in S (not yet linked by a path),
one by one until no path of length at most r+ 1 has interior vertices in V \S

and endpoints in S. Then |F(S)| ≤ (r + 1)F∇(r)t. Suppose not, and consider
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the set T of the first (r+ 1)F∇(r)t ≤ Fprop(r)n vertices of F(S). By definition
the subgraph of G induced by T contains a ≤ r-subdivision of a graph H of
order t and size at least |T\S|

r
= F∇(r)t. It follows that ∇̃r(G[T ]) ≥ F∇(r)

hence |T | > Fprop(r)n, a contradiction.
Let D0 = Fdeg(

Fprop(r)
(r+1)F∇(r)

). Then for sufficiently big graphs G (of order

greater than N = Ford(
Fprop(r)

(r+1)F∇(r))),
|{v∈G:d(v)≥D0}|

|G|
<

Fprop(r)
(r+1)F∇(r) . Let D =

max(D0, (r+ 1)F∇(r)). Now assume that there exists in G a ≤ r-subdivision
G ′ of a graph H with minimum degree at least D. As |H| is the number of
vertices of G ′ having degree at least D, we infer that |H| ≤ Fprop(r)

(r+1)F∇(r)n. It
follows that |G ′| ≤ (r+ 1)F∇(r)|H| hence D ≤ ‖H‖/|H| < (r+ 1)F∇(r) ≤ D, a
contradiction. It follows that ∇̃r(G) < 2D. Hence, for every graph G ∈ C (in-
cluding those of order at most N) we have ∇̃r(G) < 2max(Ford(

Fprop(r)
(r+1)F∇(r)

),

Fdeg(
Fprop(r)

(r+1)F∇(r)
), (r + 1)F∇(r)). �


5.6 Classes with Locally Bounded Expansion

For particular applications, it may be possible that some structural properties
are needed only locally. For instance, several approximation algorithms have
been developed [47] to solve NP-complete problems for planar graphs, based
on the property that the tree-width of a planar graph is bounded by a function
of its diameter. Such an idea popularized through the notion of local tree-
width and classes with bounded local tree-width. Minor closed classes with
bounded local tree-width have then been characterized by Eppstein [159]: a
minor closed class C of graphs has bounded local tree-width if, and only if,
it does not contain all apex graphs. In their study of first-order definable
decision problems, Dawar et al. [111] generalized the notion of class with
bounded local tree-width to the notion of class locally excluding a minor,
allowing to make use of the rich and deep theory developed by Robertson
and Seymour on graph minors. Similarly, Dvořák et al. [138] introduced the
notion of class with locally bounded expansion to allow a local use of low
tree-depth decompositions in the resolution of first-order definable decision
problems (see Chap. 18). Formally, a class C of graphs is said to have locally
bounded expansion if there exists function f : IN × IN → IR+ such that
∇r(G) ≤ f(d, r) for every graph G that is the d-neighborhood of a vertex in
a graph from C.

The following follows immediately from the definition:

Corollary 5.1. Assume that there exist a function fIN × IN → IR+ such
that for every graph G ∈ C and every integer d, r it holds
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max
v∈V(G)

ω(Bd(G, v)� r) ≤ f(d, r),

where Bd(G, v) is the subgraph of G induced by the vertices at distance at
most d from v (equivalently, we assume that C is locally nowhere dense).

Then C is nowhere dense.

The containment relations between the different kind of classes we dis-
cussed is displayed on Fig. 5.2.

5.7 A Historical Note on Connection to Model Theory

Implicitly, the notion of nowhere dense graphs appears early in a model
theoretic context. This will be briefly explained in this section.

Shelah’s classification theory programme for infinite model theory [435]
makes in particular use of two key dividing lines, corresponding to the notions
of stability and independence. A theory (that is: a set of formulas) is stable
if it does not contain a first-order formula that codes an infinite linear order
on a set of tuples. A theory has the independence property if it contains a
formula that codes every subset of some infinite set, that is if it contains a
formula with infinite Vapnik-Chervonenkis dimension (or VC-dimension),
which is a key notion in computational learning theory [464]. The notions of
stability and independence (or the opposite notion of dependence) can be
translated to infinite classes C of finite graphs by considering the countable
graphs formed as the disjoint union of the graphs in C.

As noticed by Adler and Adler [2], the notion of nowhere dense class is
then essentially the stability theoretic notion of superflateness introduced by
Podewski and Ziegler [387] because of its connection to stability. A class C of
(non-necessarily finite) graphs is superflat if for every r there is an m such
that the r-subdivision of Km is not a subgraph of a graph in C. By an easy
application of Ramsey theorem (Theorem 3.18) it is easily seen that a class
C of finite graphs is superflat if and only if it is nowhere dense.

Adler and Adler [2] formalized this by the following:
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Fig. 5.2 The trichotomy of infinite classes

Theorem 5.5. Let C be a monotone class of finitely colored
digraphs and let C be the class of the underlying undirected
graphs. Then the following eight model theoretical conditions
are equivalent:

1. C is nowhere dense,
2. C is superflat,
3. C is stable,
4. C is dependent,

5. C is nowhere dense,
6. C is superflat,
7. C is stable,
8. C is dependent.
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Note that the equivalence between the model theoretical notions of stabil-
ity and dependence is highly unusual and strongly linked to the assumption
that the considered class C is monotone.

In computational learning theory, Probably approximately correct learn-
ing model (or PAC model) is a model for machine learning introduced by
Valiant [463]. As a corollary of Theorem 5.5, the authors of [2] obtain the
following connection to computational learning theory, by making use of
the standard connection between VC-dimension and sample complexity in
the PAC model (see [232], where an analogous result is obtained, which con-
nects finite VC-dimension of monadic second order formulas on a monotone
class to bounded tree-width):

Corollary 5.2. Let C be a monotone class of graphs. Every
concept class definable in first-order logic on C has bounded
sample complexity in the PAC model if and only if C is
nowhere dense.

However, Theorem 5.5 does not immediately generalize to relational struc-
tures. Actually, the following open problem is posed in [2]:

Problem 5.1. Can Theorem 5.5 be generalized to arbitrary rela-
tional structures with finite signatures?

5.8 Classes of Relational Structures

How to do with relational structures and hypergraphs?
Let C be an infinite class of relational structures, and let Gaifman(C)

denote the class of the Gaifman graphs of the structures in C. We say that
the class C is G-nowhere dense (resp. G-somewhere dense) if Gaifman(C)
is nowhere dense (resp. somewhere dense). Also, we can follow the same
to define the G-bounded expansion classes of structures as the classes of
structures C such that Gaifman(C) has bounded expansion.

This definition leads to a trichotomy for classes of relational structures, as
in Sect. 5.4. Also other characterizations of nowhere dense classes of graphs
can be directly translated to classes of nowhere dense structures.
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However this direct transposition of results about nowhere dense classes
to σ-structures are just results about classes of underlying Gaifman graphs.
Nevertheless such results still have several applications in logic and model
theory (cf. [42]). But of course they do not capture the real complexity of
higher arities (a triple system with only O(n2) triples may lead to a complete
graph of order n). Also the direct computation of edge densities for systems
of k-tuples leads to no trichotomy but rather to k+ 1 possibilities. This will
follow from the results in Chap. 12.

A second approach stands in considering the incidence graphs of relational
structures. It is immediate that two relational structures have the same Gaif-
man graph if they have the same incidence graph, but that the converse does
not hold in general. For a class of relational structures C, denote by Inc(C) the
class of all the incidence graphs Inc(A) of the relational structures A ∈ C. (see
Sect. 3.8.3). We say that a class C is I-nowhere dense (resp. I-somewhere
dense) if Inc(C) is nowhere dense (resp. somewhere dense), and say that C

has I-bounded expansion if Inc(C) has bounded expansion. We have the fol-
lowing result, which shows the equivalence of these encodings in the most
frequent cases:

Proposition 5.7. Assume that the arities of the relational
symbols in σ are bounded, and let C be an infinite class of
σ-structures. Then

� C is G-somewhere dense if and only if C is I-somewhere
dense,

� C is G-nowhere dense if and only if C is I-nowhere dense,
� C has G-bounded expansion if and only if C has I-bounded

expansion.

Proof. First notice that the unary relations have obviously no repercussion
on the classifications hence we can assume without loss of generality that
all the relations will have arity at least 2. Let k be the maximum arity of
a relational symbol in σ. Let A ∈ C.Let F(A) = Inc(A) • K(k2)

. Because of
Proposition 4.6, and using the characterizations of nowhere dense classes and
bounded expansion classes bases on top-grads (Theorem 5.4 and item (6) of
Theorem 13.2) we get that the class F = {F(A)} is nowhere dense (resp. has
bounded expansion) if and only if the class Inc(C) is nowhere dense (resp.
has bounded expansion). Also, Gaifman(A) ∈ F(A) �̃ 1

2
hence if F is nowhere

dense (resp. has bounded expansion) then Gaifman(C) is also nowhere dense
(resp. has also bounded expansion). Last, it is easily checked that for every in-
teger r we have ∇r(Gaifman(A)) ≥ ∇r(Inc(A)) hence Gaifman(C) is nowhere
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dense (resp. has bounded expansion) then Inc(C) is also nowhere dense (resp.
has also bounded expansion). Altogether, we obtain the requested equiva-
lences (the equivalence of G-somewhere dense and I-somewhere dense follow-
ing from the equivalence of G-nowhere dense and I-nowhere dense). �


If one consider hypergraphs instead of relational structures, the assump-
tion that the size of the edges is bounded may become irrelevant, in which
case the classification by Gaifman graphs and incidence graphs do not coin-
cide anymore.
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Exercises

5.1. Prove that for every non-decreasing function f : IN → IN such that
f(0) ≥ 2, there exists a bounded expansion class Cf such that

∀r ∈ IN, ∇r(Cf) = f(r).

5.2. Let f : IN → IR+ be such that limn→∞ f(n) = 0 (i.e. f(n) = o(1)).
Prove that there exists a nowhere dense class Cf such that for every integer

n there exists a graph Gn ∈ Cf such that

|Gn| ≥ n and ‖Gn‖ ≥ |Gn|
1+f(|Gn|).

5.3. The limiting density of a minor closed class C is ∇(C). The set of
possible values of ∇(C) (while considering all possible minor closed classes
of graphs) has been investigated by Eppstein in [161].

� Prove that for every real a ≥ 0 the class Ca = {G,∇(G) ≤ a} is minor
closed;

� Using Robertson-Seymour Theorem 5.1, prove that there are only count-
ably many minor closed classes, hence countably many possible limiting
densities;

� Robertson and Seymour [418] proved that the immersion quasi-order is
also a well-quasi-ordering. Deduce that for every real a ≥ 0 there exists
ε > 0 such that not limiting density belongs to the open interval [a;a+ε];

� Deduce that the set of the possible limiting values is well-ordered.

5.4. Prove that the results of Exercise 5.3 extend, when considering immer-
sions and

∝∇ instead of minors and ∇.

5.5. Galluccio et al. [211] proved that for any fixed graph H, H-minor free
graphs with high enough girth has a circular-chromatic number arbitrarily
close to 2. The aim of this Exercise is to prove a similar results for graphs
with sub-exponential expansion.

A graph G is p-path degenerate if there is a sequence G = G0, G1, . . . , Gt

of subgraphs G where Gt is bipartite and for each 1 ≤ i ≤ t, Gi−1 is obtained
from Gi by attaching a path of length at least p (which is then a handle of
length p in Gi−1).

Let C be a class of graphs such that

lim
r→∞

log∇r(C)

r
= 0.

� Prove that if P is a handle of length p in a graph G and G ′ is the graph
obtained from G by deleting the internal vertices of G then for every
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odd-integer l ≤ p+ 1 it holds

G → Cl ⇐⇒ G ′
→ Cl.

� Deduce that if G is p-path degenerate then G → Cl for every odd integer
l ≤ p + 1 hence

χc(G) ≤ 2+
1

�p/2� .

� Let G ∈ C be a graph of girth at least k =. Assume that G does not
contain a handle of length p − 1. Then there exists H ∈ G� p−2

2
with

minimum degree 3 and girth at least k/(p − 1). Deduce a contradiction
using Exercise 4.2 and Proposition 4.1.



Chapter 6
Bounded Height Trees and Tree-Depth

Where the reader will discover that short branches
can make large trees beautiful.

After treating graph classes and class resolutions we return to the basics:
the structure of finite trees as the true measure of our things.

6.1 Definitions and Basic Properties

Tree-depth is of particular importance to us. The original non-recursive def-
inition [352] reads as follows:

Definition 6.1. The tree-depth td(G) of a graph G is the minimum height
of a rooted forest F such that G ⊆ clos(F) (see Fig. 6.1).

Here, a rooted forest is a disjoint union of rooted trees. The height of a
vertex x in a rooted forest F is the number of vertices of a path from the root
(of the component of F to which x belongs) to x and is noted height(x, F). Thus
height(x, F) is one more than the length of the path from x to the root of F.
The height of F is the maximum height of the vertices of F. Let x, y be vertices
of F. The vertex x is an ancestor of y in F if x belongs to the path of F linking y
to the corresponding root. The closure clos(F) of a rooted forest F is the graph
with vertex set V(F) and edge set {{x, y} : x is an ancestor of y in F, x �= y}

(actually, in model theory a tree usually means a relation which is the closure
of a tree). A rooted forest F defines a partial order on its set of vertices: x ≤F y

if x is an ancestor of y in F. The comparability graph of this partial order is
obviously clos(F).

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__6, © Springer-Verlag Berlin Heidelberg 2012
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= =

clos(F )
⊆

G
F

Fig. 6.1 The tree-depth of the 3× 3 grid is 4

The tree-depth of a graph is an intuitively easy and very useful invariant.
It has been defined in [352], but equivalent or similar notions include the rank
function (used for the analysis of countable graphs, see e.g. [368]), the vertex
ranking number, the minimum height of an elimination tree [72, 117, 431],
etc. (see Sect. 6.3) Recall that an elimination tree for a connected graph
G is a rooted tree Y with vertex set V(G) defined recursively as follows: If
V(G) = {x} then Y is just {x}. Otherwise a vertex r ∈ V(G) is chosen as the
root of Y and the branches of Y at r are the elimination trees of the connected
components of G− r (whose roots are the sons of r in Y). For instance, every
depth-first search tree of a connected graph G is an elimination tree for G.
Thus the minimum height of an elimination tree for a connected graph G is
at most equal to the minimum height of a depth-first search tree of G.

Tree-depth can also be seen as an analog for undirected graphs of the cycle
rank defined by Eggan [144], which will be introduced in Sect. 6.6. The cycle-
rank of a digraph is a parameter relating digraph complexity to other areas
such as regular language complexity and asymmetric matrix factorization.

The equivalence between tree-depth and minimum height of an elimination
tree is not difficult to establish:

Lemma 6.1. Let G be a connected graph. A rooted tree Y is an elimina-
tion tree for G if and only if G ⊆ clos(Y). Hence td(G) is the minimum
height of an elimination tree for G.

Proof. We prove the lemma by induction on the order of G. The statement
is true if V(G) = {x}. Otherwise let r be the root of Y and let G1, . . . , Gp

be the connected components of G − r. Then Y is an elimination tree for G
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if and only if the connected components of Y − r may be labeled Y1, . . . , Yp

in such a way that, for any 1 ≤ i ≤ p, Yi is an elimination tree for Gi. By
induction, this is equivalent to the existence of a labeling Y1, . . . , Yp for each
of the connected components of G− r. It follows that Gi ⊆ clos(Yi), for any
1 ≤ i ≤ p which is equivalent to G ⊆ clos(Y). ��

It follows that the tree-depth could be alternatively defined by the follow-
ing recursive formula:

td(G) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if |G| = 1;

1+ minv∈V(G) td(G− v), if G is connected and |G| > 1;

maxpi=1 td(Gi), otherwise;

(6.1)

(where G1, . . . , Gp are the connected components of G). This recursive defi-
nition can be used to design an easy dynamic algorithm deciding td(G) ≤ k

(for fixed k) in time O(|G|k).

6.2 Tree-Depth, Minors and Paths

One of the fundamental properties of tree-depth is its monotonicity according
to the operation of taking a minor:

Lemma 6.2. If H is a minor of G then td(H) ≤ td(G).

Proof. Let F be a rooted forest of height td(G) such that G ⊆ clos(F) and
let e be an edge of G. Observe that both G − e and G/e are subgraphs of
clos(F). ��

It follows that the class of graphs with tree-depth at most k is minor closed
hence there exists a finite set of minor obstructions for td(G) ≤ k. A study
of these obstructions may be found in [134, 216]. In particular, it is known
that exactly 1

2
22

k−1−k(1+ 22
k−1−k) of these obstructions are trees. However

we shall show more in Sect. 6.8: the class of graphs with tree-depth at most
k can be described by finitely many forbidden subgraphs (not just minors).

The tree-depth of a path Pn of order n is logarithmic in n (see Fig. 6.2).
More precisely: The tree-depth of a path of order n is

td(Pn) = �log2(n + 1)	 (6.2)
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Fig. 6.2 The tree-depth of a path is logarithmic in the order of the path

Indeed, td(P1) = 1 and

td(Pn) = min
1≤i≤n−2

(1+ max(td(Pi), td(Pn−1−i))) by (6.1)

= 1+ td(P�n/2�) (as td is monotone)

hence the result follows from easy induction. The relationship with path
inclusion gives us another characterization of bounded tree-depth:

Proposition 6.1. Assume G includes no path of order greater than n.
Then the tree-depth of G is at most n.

Proof. According to (6.1), we may restrict our attention to the component of
G including a longest path. Hence we may assume without loss of generality
that G is connected. We construct an elimination tree by performing a depth-
first search on G. As G has no path of length greater than n, the height of
a depth-first search tree of G is at most n hence the tree-depth of G is at
most n. ��

Notice that the complete graph shows that this bound is tight. Also, we
see that the relationship between tree-depth and the order of a longest path
of a graph is analogous (but easier) to the relation of the tree-width and the
size of a largest grid in a graph [399].

Also, we relate the tree-depth of a biconnected graph to the length of its
longest cycles.

Proposition 6.2. Let G be a biconnected graph, and let L be the length
of a longest cycle of G. Then

1+ �log2 L	 ≤ td(G) ≤ 1+ (L− 2)2. (6.3)
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Proof. As td(CL) = 1+ td(PL−1) = 1+ �log2 L	, the first inequality follows.
Now consider a DFS traversal of the graph G and the corresponding rooted
DFS-tree Y. Let x1, . . . , xh be a longest tree branch starting from the root x1
of Y. As G ⊆ clos(Y) we have td(G) ≤ height(Y) = h. We construct two de-
creasing sequences h = a1 > a2 > · · · > ak = 1 and b1 > b2 > · · · > bk = 1

as follows: Let a1 = h. As G is biconnected, xh has degree at least two thus
there exists j < h− 1 such that xi is adjacent to xh. Let b1 be the minimum
such j. Assume b1 �= 1. Then, as G is biconnected, there exists i such that
b1 < i < a1 such that xi is adjacent to some xj with j < b1. Choose such a
pair (i, j) with j minimum and then (according to this choice of j) i minimal.
Let a2 = i and b2 = j. Again, if b2 �= 1, there exists i such that b2 < i < a2

such that xi is adjacent to some xj with j < b2. We choose such a pair (i, j)

with j minimum and then i minimal and we let a3 = i and b3 = j. This way
we define iteratively the sequences a1, . . . , ak and b1, . . . , bk and we stop
when bk = 1. Let γ be the cycle (we assume k odd but the construction is
similar for k even) formed by the edge {a1, b1}, the (possibly empty) tree
chain between b1 and a3, the edge {a3, b3}, the (possibly empty) tree chain
between b3 and a5, . . . , the edge {ak, bk}, the (non empty) tree chain be-
tween bk and bk−1, the edge {bk−1, ak−1}, the (possibly empty) tree chain
between ak−1 and bk−3,. . . , the edge {b2, a2} and the (non empty) tree chain
between a2 and a1. The length of γ is at least k+ 2. Hence k+ 2 ≤ L. More-
over, as ai − bi ≤ L − 1 we have (by construction) h ≤ 1 + k(L − 2) thus
h ≤ 1+ (L− 2)2. ��

We view the graphs with bounded tree depth as the building blocks of our
decomposition theorems and thus we investigate the notion of tree-depth in
a greater detail. Particularly we give several characterizations. The first one
is in terms of a separation property.

Proposition 6.3. Let C be a hereditary class of graphs. Then the two
following properties are equivalent:

(i) There is an integer s and a mapping N : IN → IN such that for every
integer p and every graph G ∈ C of order at least N(p) there exists a
subset S of (at most) s vertices of G such that G − S has at least p

connected components.
(ii) C has bounded tree-depth

Proof. Assume C has tree-depth at most t and let N(p) = pt+1. Let p be
an integer and let G ∈ C be a graph of order at least N(p). As td(G) ≤ t

there exists a rooted forest F such that G ⊆ clos(F). If F has at least p

connected components, we are done. Otherwise, some component Y of F has
order |Y| > N(p)/p and thus includes a vertex x of degree at least p+ 1. Let
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S be the set including x and all its ancestors in Y. Then G− s has at least p
connected components thus proving (i).

Conversely, assume that (i) holds and assume for contradiction that C does
not have tree-depth at most N(s+ 2). Let G ∈ C be a graph of tree-depth at
least N(s+2)+1. According to Lemma 6.1 G includes a path of order at least
N(s+2)+1. Let A be the vertex set of this path. Consider the subgraph G[A]

of G induced by A. Then |G[A]| > N(s + 2) hence by (i) there exists S ⊆ A

such that |S| ≤ s and G[A]−S has at least s+2 connected components. Then
this later property has to be true for the Hamiltonian path of G[A], although
a path cannot be cut into s+ 2 connected components by removing at most
s vertices, a contradiction. We infer that td(C) ≤ N(s+ 2). ��

We shall now give a characterization of classes with bounded tree-depth
in terms of induced paths. Particularly, we generalize Proposition 6.1, which
applies to classes of degenerate graphs. We need the following two lemmas
which are interesting in themselves and maybe part of graph theory folklore.

Lemma 6.3. Let G be a graph, let d ∈ IN and let P = (x1, . . . , xL) be
a path of G of order L. Assume that each xi is adjacent to at most d

vertices xj with j < i− 1. Then the graph G[P] includes an induced path
(xi1 , . . . , xil) of order l where 1 ≤ i1 < i2 < · · · < il = L and

l ≥ log(dL+ 1)

log(d + 1)

Proof. We prove the lemma by induction on � log(dL+1)
log(d+1)

	 (see Fig. 6.3). If

L = 1 then � log(dL+1)
log(d+1) 	 = 1 and P is an induced path of G; if 1 < L ≤ d+ 2,

then � log(dL+1)
log(d+1)

	 = 2 and (xL−1, xL) is an induced path of order 2 of G.

Assume the lemma has been proved for all d, L with � log(dL+1)
log(d+1)

	 ≤ c for

some integer c and assume � log(dL+1)
log(d+1) 	 = c+1. By assumption, xL is adjacent

to p ≤ d vertices xj1 , . . . , xjp with 1 ≤ j1 < j2 < · · · < jp < L − 1. Define
j0 = 0 and jp+1 = L − 1. Let 0 ≤ a ≤ p be such that ja+1 − ja is maximal.
Then ja+1−ja ≥ (L−1)/(p+1) ≥ (L−1)/(d+1). Let P ′ be the subpath of P
with vertices (xja+1, xja+2, . . . , xja+1

). By induction, P ′ includes an induced
subpath P ′′ (xji1 , . . . , xjiq ) with
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q ≥
⌈

log(d(L − 1)/(d + 1) + 1)

log(d + 1)

⌉

=

⌈
log((dL+ 1)/(d + 1))

log(d + 1)

⌉

=

⌈
log(dL+ 1)

log(d + 1)

⌉
− 1

= c.

and ji1 < ji2 < · · · < jiq = ja+1. As no vertex of P ′′ but xja+1
is adjacent

to xL we deduce that (xji1 , . . . , xjiq , xL) is an induced path of G of length
c+ 1. ��

P
x1 x2 x3 xL

Fig. 6.3 Illustration for Lemma 6.3

The next lemma gives a more concise information about induced paths in
degenerate graphs containing long (not necessarily induced) paths.

Lemma 6.4. Let G be a graph and let P = (xi1 , . . . , xiL) be a
path of G of order L. Then G[P] includes an induced path of
G of order l where:

l ≥ log log L
log(�∇0(G)	+ 1)

Proof. We first prove the following: let P = (x1, . . . , xL) and let d = �∇0(G)	.
Then G has an orientation with maximum indegree at most d. Consider the
subgraph G1 of G obtained from the subgraph of G induced by the vertex set
of P by deleting all the arcs oriented from xj to xi with 1 ≤ i ≤ j−2 ≤ L−2.
According to Lemma 6.3, there exists 1 ≤ i1 < i2 < · · · < ip ≤ L such
that (xi1 , . . . , xip) is an induced path P ′ of G1 and p = � log(dL+1)

log(d+1)
	. In G1,

all the edges linking non-consecutive vertices of P ′ are oriented from the
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lower index vertex to the higher index vertex. Consider the (reversed) path
P ′ = (v1, . . . , vp) where vj = xip+1−j

. Then we can apply Lemma 6.3 to P ′ to

obtain an induced path P ′′ of G of length
⌈

log(d� log(dL+1)
log(d+1)

�+1)

log(d+1)

⌉
≥ log log L

log(d+1)
.

��

From the last lemma we immediately deduce:

Proposition 6.4. Let C be a class of graphs. Then C has
bounded tree-depth if and only if C is degenerate and graphs
in C exclude some path Pn as an induced subgraph.

Despite its elementary setting the following problem seems be interesting
and seems to be not yet investigated.

Problem 6.1. What is the largest function f : IN × IN → IN such
that every graph G which contains a path of length L also contains
an induced path of length f(L,∇0(G))?

The tree-depth of a graph is a natural invariant which appears in many
situations. We consider a few more equivalences which document this. These
equivalences are not just interesting per se. In fact they present miniatures
of our general results for nowhere dense classes.

6.3 Compact Elimination Trees and Weak-Coloring

As we noticed, the tree-depth of a graph G equals the minimum height of an
elimination tree for G. This property can be strengthened by showing that
one may demand that the elimination tree has some additional property. Say
that an elimination tree F of a connected graph G is compact if for every
non-leaf vertex v and every son w of v, the subgraph Tv→w of G induced
by v and the vertex set of the branch of F rooted at w is connected. The
equality of the tree-depth of a connected graph G and the minimum height
of a compact elimination tree of G follows directly from (6.1). However, an
immediate property of a compact elimination tree F of a connected graph G

is that for every vertex x and every ascendant y of x (i.e. y <F x) there exists
a path P in G with endpoints x and y whose internal vertices are descendants
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of y (consider the son z of y such that x ∈ Ty→z and use the connectivity of
the subgraph induced by V(Ty→z)). This is the property which we will use
to make the connection between tree-depth and weak colorings (see Sect. 4.9
for the definition of weak coloring numbers).

Lemma 6.5. For every non-empty connected graph G we have the
equality

td(G) = wcol∞(G). (6.4)

Proof. Consider a linear extension < of <F for a compact elimination tree F.
Then, for every path P with endpoints x and y such that y = minP (with
respect to the order <) we have that y is also smaller than all the vertices of P
with respect to <F. According to the properties of compact elimination trees,
we deduce that td(G) ≥ 1+min< maxx{y �= x : ∃x–y path P ⊆ G,minP = y}.
In order to prove the reverse inequality, consider a linear order on V(G) for
which the value maxx{y �= x : ∃x–y path P ⊆ G,minP = y} is minimum.
Then build an elimination tree using this linear order as an elimination order.
As G belongs to the closure of this elimination tree we deduce td(G) ≤
1+ maxx{y �= x : ∃x–y path P ⊆ G,minP = y}. Hence td(G) = wcol∞(G).

��

6.4 Tree-Depth, Tree-Width and Vertex Separators

The following inequalities between tree-width, pathwidth and tree-depth are
easy to prove [73]: for any graph G holds

tw(G) ≤ pw(G) ≤ td(G) − 1.

Let G be a graph of order n. Recall that, for 0 < α < 1, an α-vertex
separator of G is a subset S of vertices such that every connected component
of G− S contains at most αn vertices.

Lemma 6.6. Let G be a graph of order n and let sG : {1, . . . , n} → IN be
defined by

sG(i) = max
|A|≤i,

A⊆V(G)

min{|S| : S is a 1
2
-vertex separator of G[A]}

Then:

sG(n) ≤ td(G) ≤
log2 n∑

i=0

sG
( n
2i

)
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Proof. The first inequality is easy: if G is a graph of order n which is a
subgraph of the closure of rooted tree Y of height td(G), it is possible to
separate G into parts of size at most n/2 by deleting the vertices of a path
of Y: consider a traversal of Y and let v1, . . . , vn be the vertices of G ordered
by this traversal (v1 is the root of Y). Let k be the smallest index of a leaf
of Y which is a descendant of x�n/2�. Delete the chain from the root of Y to
xk (thus at most td(G) vertices). In the obtained graph, no vertex of index
smaller than or equal to x/2 is adjacent to a vertex of index greater than
x/2. Hence sG(n) ≤ td(G).

We prove the other inequality of the lemma by induction on n. The lemma
is straightforward if n = 1. Assume the lemma has been proved for graphs of
order at most n − 1.

By definition of sG, G has a 1
2
-vertex separator S of size at most sG(n). Let

G1, . . . , Gp be the connected components of G− S. Then, according to (6.1)
and the fact that the function sGi

corresponding to Gi is obviously bounded
by sG:

td(G) ≤ |S|+ max
i

td(Gi) ≤ sG(n) +

log2(n/2)∑

i=1

sG

(
n/2

2i

)
≤

log2 n∑

i=0

sG

( n

2i

)

��

Corollary 6.1. For any connected graph G of order n, td(G) ≤
(tw(G) + 1) log2 n.

Proof. It is proved in [400] that any graph of tree-width at most k has a
1
2
-vertex separator of size at most k + 1. Hence sG(i) ≤ tw(G) + 1 for all i.

The result follows. ��
Notice that this result is optimal for tree-depth, as shown by the example

of paths of length n: tw(Pn) = 1, but td(Pn) = �log2(n + 1)	.
Proposition 6.5. Every graph G of order n with no minor isomorphic
to Kh has tree-depth at most (2+

√
2)
√
h3n.

Proof. It is proved in [25] that a graph of order i with no Kh minor has a
1
2
-vertex separator of size at most

√
h3i. Hence sG(i) ≤

√
h3i and:

td(G) ≤
log2 n−1∑

i=0

sG

( n

2i

)
≤

√
h3n

log2 n−1∑

i=0

(
1√
2

)i

≤ (2+
√
2)
√
h3n

��
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Generally, we have (as a direct consequence of Lemma 6.6):

Corollary 6.2. Let 0 < α < 1 and let C be an hereditary class of graphs
such that each graph G ∈ C of order n has tree-width at most Cnα.

Then, every graph G ∈ C of order n has tree-depth at most C
1−2−αn

α.

As we have seen, the notion of the tree-depth is closely connected to the
tree-width. Consider the Erdős-Rényi model G(n, p(n)) (see also Sect. 14.1)
for random graph. A random graph G ∈ G(n, p(n)) has n vertices and every
pair of vertices is chosen independently to be an edge with probability p(n).
We say that a property P holds asymptotically almost surely (a.s.s.) for
random graphs G ∈ G(n, p(n)) if limn→∞Pr(G has P) = 1.

Perarnau and Serra proved the following bounds for the tree-depth of
random graphs [381]:

Theorem 6.1. Let G ∈ G(n, p(n)).

� If p(n) = ω(n−1) then a.a.s. td(G) = n− o(n);
� If p(n) = c/n with c > 0:

– if c < 1, then a.a.s. td(G) = Θ(log logn);
– if c = 1, then a.a.s. td(G) = Θ(logn);
– if c > 1, then a.a.s. td(G) = Θ(n).

Note that the last part of this theorem gives an alternative proof of a
conjecture of Kloks [277] on the linear behaviour of tree-width for random
graphs with c > 1 (originally proved by Lee et al. [300]). Related results can
be found in [74].

6.5 Centered Colorings

Definition 6.2. A centered coloring of a graph G is a vertex coloring such
that, for any (induced) connected subgraph H, some color c(H) appears ex-
actly once in H (see Fig. 6.4).

Note that a centered coloring is necessarily proper. We relate the minimum
number of colors in a centered coloring to yet another coloring notion, the
vertex ranking number of a graph which has been investigated in [117, 431]:
The vertex ranking (or ordered coloring) of a graph is a vertex coloring by
a linearly ordered set of colors such that for every path in the graph with
end vertices of the same color there is a vertex on this path with a higher
color. A vertex-coloring c : V(G) → {1, . . . , t} with this property is a vertex
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Fig. 6.4 A centered coloring of the (2n − 1) × (2n − 1) grid using 2n+1 − 1 colors

t-ranking of G. The minimum t such that G has a vertex t-ranking is the
vertex ranking number of G and is noted χrk(G) (see [117, 431]).

Lemma 6.7. Any vertex ranking is a centered coloring and conversely
any centered coloring defines a vertex ranking with the same number
of colors. Thus χrk(G) is the minimum number of colors in a centered
coloring of G.

Proof. Assume c is a vertex ranking of a graph G and let H be a connected
subgraph of G. Let i = maxv∈V(H) c(v). Then H has at most one vertex
colored i for otherwise the path linking them would include a vertex with
color j > i.

Conversely, assume f is a centered coloring of G using t colors. We shall
prove by induction on t that f defines a vertex t-ranking of G. As we may
consider each connected component of G separately, we may assume G is
connected. As f is a centered coloring there exists a color α which appears
exactly once in G, at a vertex v. Hence if t = 1 the graph G has only one
vertex v and we define a 1-ranking c of G by defining c(v) = 1. Assume
t > 1 and that any centered coloring of a graph using t − 1 colors defines a
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(t − 1)-ranking of the graph. As the restriction of f to G − v is a centered
coloring using t− 1 colors, it defines (by induction) a vertex (t− 1)-ranking
c of G− v. We extend c to G by defining c(v) = t. Now any path linking two
vertices with the same c-color i is either a path of G−v (so includes a vertex
of c-color j > i) or includes v which has c-color t. ��
Proposition 6.6. For every graph G, td(G) is the minimum number of
colors in a centered coloring of G.

Proof. Notice that the minimum number of colors in a centered coloring of
G is the maximum of the minima computed on the connected components
of G. As td(G) is the maximum tree-depth of the connected components of
G, we may restrict our proof to the case where G is connected.

First we prove that td(G) is at most equal to the number of colors in any
centered coloring of G. We proceed by induction on the number k of colors
in the centered coloring. If k = 1, G = K1 and thus td(G) = 1. Assume we
have proved td(G) ≤ k if k ≤ k0, and assume k = k0 + 1. There exists a
color c0 which appears only once in G, at a vertex v0. Each of the connected
components G1, . . . , Gp of G− v0 has a centered coloring using k− 1 colors,
and thus has depth at most k−1. Let Y1, . . . , Yp be trees rooted at r1, . . . , rp,
such that Gi ⊆ clos(Y) and height(Yi) = td(Gi). Then the tree Y with root
v0 and subtrees Y1, . . . , Yp is such that G ⊆ clos(Y) and height(Y) ≤ k + 1.
Thus, td(G) ≤ k+ 1.

Now, we prove the opposite inequality: td(G) is at least equal to the num-
ber of colors in some centered coloring of G. Towards this end let Y be a
rooted tree of height td(G), such that G ⊆ clos(Y). Color each vertex by its
height in Y, thus using td(G) colors. According to the structure of clos(Y),
any connected subgraph H of clos(Y) (and thus any connected subgraph of G)
has a vertex which is minimum in Y. The color assigned to this vertex hence
appears exactly once in H, and the constructed coloring is thus a centered
coloring of G. ��

According to the construction used above, if G has a centered k-coloring
and e = {x, y} is an edge of G, then the graph G/e also has a centered k-
coloring. This can be deduced by modifying a centered coloring of G: the
vertex corresponding to x and y has either the color of x or the color of y
and all the other vertices of G/e have the same color they have in G.

In the case G is connected, we obtain:

Corollary 6.3. Let G be a connected graph. Then, td(G),

χrk(G), the minimum height of an elimination tree for G and
the minimum number of colors in a centered coloring of G are
equal.
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We remark that the equality of χrk(G) and of the minimum height of an
elimination tree already appears in [117].

6.6 Cycle Rank

The recursive definition (6.1) of tree-depth is an analog of the definition of
the cycle rank of a digraph, as defined by Eggan [144].

Definition 6.3 (cycle rank). The cycle rank of a digraph �G, denoted
cr(�G) is inductively defined as follows.

cr(�G) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if �G is acyclic;

1+ min
v∈V(�G) cr(

�G − v), if �G is strongly connected;

maxp
i=1 cr(

�Gi), otherwise;

(6.5)

(where �G1, . . . , �Gp are the strongly connected components of G).

As observed by Giannopoulou et al. [215], the tree depth of every graph G is
related by the cycle rank of the digraph �Gd obtained by replacing each edge
by two opposite arcs by td(G) = cr(�Gd) + 1. Actually, if one consider the
full symmetrization �G◦ of G obtained replacing each edge by two opposite
arcs and attaching a loop at each vertex, then the connected subgraphs of G
correspond to the strongly connected sub-digraphs of �G and hence

td(G) = cr(�G◦).

As noticed by Gelade [214], the cycle rank is that it is monotone by minor.
This is a consequence of its monotony under sub-digraphs [98] and of a result
of McNaughton [331] implying its monotony under contractions. (Here, mi-
nors of digraphs are interpreted in the weakest sense as minors of underlying
multigraphs with proper orientation). We do not include the proof here.

Theorem 6.2. If �H is a minor of �G then cr(�H) ≤ cr(�G).

Although computing the cycle rank of a digraph is a NP-complete prob-
lem (NP-hardness follows from the one of the computation of tree-depth),
checking whether a digraph of order n has cycle rank at most t can be done
in time O(nt) (by the recursive definition and the use of any linear-time
algorithm to compute strongly connected components).

Cycle rank has been introduced in the context of language theory, pre-
cisely in the course of investigating the star height of regular languages. This
connection to language theory deserves some short description here, hence



6.6 Cycle Rank 129

we take time for recalling some definitions and facts about formal language
and automata theory. For a thorough treatment, we refer the reader to [260].

Let Σ be a finite alphabet and let Σ� be the set of all words over the
alphabet Σ, including the empty word ε. The length of a word w is denoted
by |w|, where |ε| = 0. A formal language over the alphabet Σ is a subset
of Σ�. The regular expressions over an alphabet Σ are recursively defined as
follows:

� ∅, ε and every a ∈ Σ is a regular expression;
� If r1 and r2 are regular expressions, so are their alternation (r1|r2), their

concatenation c(r1 · r2), and their Kleene closure (r1)
�.

The language defined by a regular expression r, denoted by L(r), is defined
as follows:

L(∅) = ∅
L(ε) = {ε}

L(a) = {a}

L(r1|r2) = L(r1) ∪ L(r2)

L(r1 · r2) = L(r1) · L(r2)
L(r�1) = L(r1)

�.

The star height of a regular expression r over Σ, denoted by h(r), is a
structural complexity measure inductively defined by:

� h(∅) = h(ε) = h(a) = 0,
� h(r1|r2) = h(r1 · r2) = max(h(r1), h(r2)),
� h(r�1) = 1+ h(r1).

The star height (or loop complexity) of a regular language L, denoted by
h(L), is the minimum star height among all regular expressions describing L.

The following relation between cycle rank of automata and star height of
regular languages became known as Eggan’s Theorem [144] (see also [308])

Theorem 6.3. The star height of a regular language L equals
the infimum of the cycle ranks among all nondeterministic
finite automata accepting L.

In the same paper, Eggan asked whether the star height of a rational
language is computable. This problem was considered for a long time as one
of the most difficult problems in the theory of automata. A positive answer
for pure-group languages was given by McNaughton in 1967 [331], and the
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problem was eventually solved (positively) by Hashiguchi in 1988 [243]. The
algorithm given by Hashiguchi had a non-elementary complexity and even
for very small examples the involved computations were by far impossible.
Kirsten [275] drastically improved this complexity and gave an algorithm
which runs, for a given nondeterministic finite automaton as input, within
double-exponential space.

6.7 Games and a Min-Max Formula for Tree-Depth

It is possible to translate the recursive definition of tree depth into a game.
Apart from the several variants of the cops and robber game investigated in
[215], the following simple game derives directly from the form of (6.1).

Definition 6.4. Given an integer k, the k-step selection-deletion game on
a graph G is defined as follows: two players, Alice and Bob, confront one
another. Bob tries to destroy a graph that Alice tries to preserve. Alice plays
first. At each round:

� Alice selects a connected component of the graph, which is kept as the
new graph,
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� Bob deletes a vertex in this graph. If he deletes the last vertex of the
graph, Bob wins.

If Bob wins within k rounds, we say that Bob wins the k-step selection-
deletion games. Otherwise, we say that Alice wins the k-step selection-
deletion games.

Lemma 6.8. Let G be a graph and let Y be a rooted forest of height at
most t such that G ⊆ clos(Y).

Then Y encodes a winning strategy for Bob in the t-step selection-
deletion game.

Proof. Let G be the playground graph. Alice selects a connected component
H of G, corresponding to a component Yi of Y. Then Bob deletes the vertex v

corresponding to the root of Yi. The new playground graph is G ′ = H−v and
the rooted forest obtained from Yi by deleting v and rooting the connected
components of the obtained forest at the former son vertices of v is such that
G ′ ⊆ clos(Y ′) and height(Y ′) ≤ t − 1. By an immediate induction, Bob will
eventually finish the game within at most t steps.

We shall see that a winning strategy for Alice can conversely be defined
by means of the following notion [215].

Definition 6.5. A shelter in a graph G is a family S of non-empty connected
subgraphs of G partially ordered by inclusion such that every subgraph H ∈ S

not minimal in F and for every x ∈ H there exists H ′ ∈ S covered by H such
that x �∈ H ′. (recall that in a poset a covers b if a > b but no c exist with
a > c > b.)

The thickness of a shelter S is the minimal length of a maximal chain of S.

Lemma 6.9. Let G be a graph, let S be a shelter in G, and let t be the
thickness of S.

Then S encodes a winning strategy for Alice in the (t − 1)-step
selection-deletion game.

Proof. If t = 1 the lemma obviously holds. So assume t > 1. Let G be the
playground graph. Let H ∈ S be a maximal element in S. As H is connected,
it is included in some connected component Gi of G, which is the one that
Alice selects. Let x be the vertex deleted by Bob. As t > 1, H is not a minimal
element of S. Hence there exists H ′ ∈ S such that x �∈ H ′ and H covers H ′. It
follows that Gi − x ⊇ H ′. Let S ′ = {X ∈ S, X ⊆ G ′}. The family S ′ is clearly
a shelter in G ′ with thickness at least t− 1 (as these chains can be extended
by adding H into a maximal chain of S). Thus the lemma follows from an
immediate induction.
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From these lemmas we obtain immediately the following min-max charac-
terization [215]:

Theorem 6.4. Let G be a non-empty graph and k be a positive
integer. Then the following are equivalent.

1. G has tree-depth at most k,
2. Every shelter in G has thickness at most k.

Hence the minimum height of a rooted forest Y such that G ⊆
clos(Y) equals the maximum thickness of a shelter in G.

Notice that this min-max relation relating tree-depth and shelters in sim-
ilar to the relation between tree-width and brambles mentioned in Sect. 3.6.

6.8 Reductions and Finiteness

In this section we prove two powerful reduction theorems (and finiteness
results) related to tree-depth. As preparation for the next result we introduce
the following notions:

A c-colored graph is a graph G = (V, E) together with a mapping γ from
V to a finite set (of colors) C of cardinality c. Notice that γ does not need
to be a proper coloring. Two c-colored graphs (G,C, γG) and (H,C, γH) are
isomorphic if there exist an isomorphism f : G → H such that γH ◦ f = γG.

Definition 6.6. Let c, n be positive integers. The value rc(n) is the number
of c-colored unlabeled rooted trees of order n.

Knuth [278] proved that the number r(n) of unlabeled rooted trees of
order n is asymptotically

r(n) ∼ ABnn−3/2

for some constants A and B.
Using an encoding of c-colored unlabeled trees by uncolored unlabeled

trees (increasing the order by a factor depending on c), we get the following
bound on rc(n):

rc(n) � AcB
n
c n

−3/2

for some constants Ac and Bc depending on c.
Define T(c, t) inductively by:
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T(c, t) =

⎧
⎨

⎩

c, if t = 1,
∑T(c,t−1)+1

i=1 rc(i), otherwise.

and also define

�(c, t) = T(c2t−1, t) and �(t) = �(1, t).

Lemma 6.10. Every c-colored rooted forest of height t and of order
strictly greater than T(c, t) has an involutive automorphism exchang-
ing two branches of the same component or two rooted trees forming
two isomorphic components.

Proof. We prove the lemma by induction on t. If t = 1, the result is obvious.
Assume the result has been proved for rooted forests of height t and let F

be a c-colored rooted forest of height t + 1, with order strictly greater than
T(c, t + 1) and with connected components Y1, . . . , Yp. If some connected
component Yi has order greater than T(c, t) + 1, then it follows from the
induction hypothesis that the c-colored forest obtained by deleting the root
of Yi has an involutive automorphism exchanging two branches or two rooted
trees, hence the same holds for Yi and for F. Otherwise, all the connected
components of F have order at most T(c, t) + 1. As the order of F is strictly
greater than

∑T(c,t)+1
i=1 rc(i) we deduce that two connected components are

isomorphic (as colored rooted unlabeled trees). ��

Lemma 6.10 has a number of immediate consequences. In most of our
applications we shall not need T to be optimal. Rather we shall be satisfied
by its existence and thus with the fact that for each integer k there is an
absolute bound on the order of involution free k-colored trees with bounded
heights. This simplifies the discussion. From this, we deduce:

Theorem 6.5. For any integer c, any graph G of order n >

�(c, td(G)) and any coloring g : V(G) → {1, . . . , c}, there exists
a partition X, Y, Z of V(G) and a g-preserving automorphism
μ : G → G such that:

� The parts Y and Z are non-empty;
� There is no edge between vertices of Y and vertices of Z;
� The restriction of μ to X is the identity;
� The restriction of μ to Y is a bijection from Y to Z;
� The automorphism μ is involutive (that is: μ ◦ μ is the

identity).
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Proof. Let t = td(G) and let Y be a rooted forest with vertex set V(G) such
that G ⊆ Clos(G). Define a coloring γ : V(Y) → [c]× [2]t−1 as follows: for a
vertex x at height 1 ≤ h ≤ t in Y let

γ(x) = (g(x), ε1(x), ε2(x), . . . , εh−1(x), 0, . . . , 0),

where

εi(x) =

⎧
⎨

⎩

1, if x is adjacent to its ancestor at height h − i;

0, otherwise.

As n > �(c, td(G)) = T(c2td(G)−1, td(G)) Lemma 6.10 ensures the existence
of a γ-preserving involutive automorphism μ of Y exchanging two branches
of the same components or two rooted trees forming two isomorphic compo-
nents. This automorphism μ exchanges sets of vertices Y and Z while fixing
a set X. By the definition of γ, the mapping μ is actually a g-preserving
involutive automorphism of G. ��

The following two consequences indicate that tree-depth is a good “scale”
for asymmetric graphs and even cores: For each given tree-depth we get
only finitely many cores. (Note that this does not hold for tree-width in a
very strong sense: According to [253] the class of series parallel graphs, that
is the class of graphs with no K4 minor, is even (countably) universal, see
Theorem 3.14 in Sect. 3.7.)

Corollary 6.4. Any asymmetric graph of tree-depth t has or-
der at most �(t).

Corollary 6.5. Let c be an integer. For any graph G and any
c-coloring of the vertices of a graph G of tree depth t, there
exists a subset A of V(G) of cardinality at most �(c, t), such
that G has a color-preserving homomorphism to G[A].

In particular, the core of any graph G has at most
�(td(G)) = �(1, td(G)) vertices.

For an integer t ≥ 1, define Tt as the class of all graphs G with td(G) ≤ t.

Corollary 6.6. Let t ≥ 1 be an integer. Then, the class Dt includes a
finite subset T̂t such that every graph G ∈ Tt has core in Ĝ ∈ T̂t.



6.8 Reductions and Finiteness 135

It should be noted that although the set T̂t is finite it is very large, its car-
dinality being non-elementary (i.e. not bounded by any tower-exponential

function 22
..

.
2n

of fixed height), see [239, 425]. We find it useful to further
refine this finiteness.

Lemma 6.11. Let G be a tree of size m having p leaves and tree-depth t.
Then, m ≤ (2t−1 − 1)p.

Proof. We prove the inequality by induction on t. The inequality is obviously
true for t = 1 and we now assume it is true for t−1. Also, we assume without
loss of generality that G is connected. Let Y be a rooted tree of height t

such that G ⊆ clos(Y) and let v be the root of Y. The graph G − v has
connected components G1, . . . , Gd(v) which are trees of size m1, . . . ,md(v)

having p1, . . . , pd(v) leaves, where m = d(v) +
∑

i mi and p =
∑

i(pi − 1).
By induction, mi ≤ (2t−2 − 1)pi. Hence, m ≤ d(v) + (p+ d(v))(2t−2 − 1) =

(p+ d(v))2t−2 − p. Moreover, p ≥ d(v) as each Gi includes at least one leaf
of G. Thus, m ≤ 2t−1p− p = (2t−1 − 1)p. ��

Theorem 6.6. There exists a function μ : IN → IN, such that any graph
G has a connected subgraph H ⊆ G, so that td(H) = td(G) and |E(H)| ≤
μ(td(G)).

Proof. We define μ by induction. If td(G) = 1 then G is isomorphic to Kn,
thus we can choose any vertex subgraph for H and put μ(1) = 0. Assume
td(G) ≥ 2 and let t = td(G). According to Lemma 6.2, the class Tt−1 =

{G : td(G) ≤ t − 1} is a proper minor closed class of graphs. Thus, (using
Robertson – Seymour minor graph theorem) there exists a finite set Ft−1

of forbidden minors for the class Tt−1. As G �∈ Tt−1, there exists F ∈ Ft−1,
so that F is a minor of G. Moreover, we may assume that G is minimal
in the sense that any edge deletion decreases the tree depth of G. Thus G

is connected and, for any edge e, F is not a minor of G − e. Hence, F is
obtained from G by contracting some connected trees into single vertices,
and deleting at most one edge for any connected components of F but one.
By minimality of G, each vertex v of F is obtained by contracting a tree
Gv of G of tree-depth at most t − 1 having at most d(v) extremal vertices.
According to Lemma 6.11, Gv has size at most (2t−2 − 1)d(v). Altogether,
G has at most 2t−2|E(F)| + c0(F) − 1 edges, where c0(F) is the number of
connected components of F. Putting μ(t) = maxF∈Ft−1

2t−2|E(F)|+ c0(F)− 1

completes the proof. ��
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6.9 Ehrenfeucht-Fraïssé Games

The Ehrenfeucht-Fraïssé game definition has been introduced in Sect. 3.8.4,
as well as the definition of n-back-and-forth equivalence.

In general, a graph is not n-equivalent to one of its proper subgraph. For
instance a cycle is not n-equivalent to one of its subgraphs if n ≥ 3 (as one can
express that every vertex has degree at least 2 by a using at most four nested
quantifiers). However, the situation for graphs with bounded tree-depth is
very different:

Theorem 6.7. For every integers t, n, c there exists an integer
N(t, n, c) such that every graph with tree-depth at most t with
vertices colored using c colors is n-equivalent to one of its
induced subgraphs of order at most N(t, n, c).

Proof. We prove the theorem by induction on the tree-depth t. If t = 1, it
is clear that we only have to keep at most n vertices of each color to get an
induced subgraph n-equivalent to G. Hence we can let N(1, n, c) = cn.

Assume that the theorem holds for graphs with tree-depth at most t ≥ 1

and let G be a graph of tree-depth t + 1. First consider the case where G

is connected. Let r be a vertex of G such that td(G − r) = t. Recolor the
vertices of G−r with the product of the original coloring of G by the coloring
γ : V(G) − r → {0, 1} defined by γ(v) = 1 if v is adjacent to r and γ(v) = 0

otherwise. Let A be a subset of vertices of G − r with minimum cardinality
such that (G − r)[A] is n-equivalent to G (with the new coloring). Then
clearly G[A ∪ {r}] is n-equivalent to G with the old coloring. This induced
subgraph has order at most N(t, n, 2c)+1. Now consider the case where G is
disconnected. Then each connected component is n-equivalent to an induced
subgraph of order N(t, n, 2c)+1. As there are at most F(N(t, n, 2c)+1) graphs
of order at most N(t, n, 2c) + 1 and as we clearly do not need to keep more
than n non-isomorphic ones, we get that N(t+1, n, c) ≤ nF(N(t, n, 2c)+1).

��

6.10 Well Quasi-orders

Classes of graphs with bounded tree-depth have finitely many cores. But
they have further finitary properties. We list some of those related to very
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restrictive well quasi-orders (see Sect. 3.5) defined by means of inclusion and
retracts.

Let (Q,≤) be a well quasi-ordered set and let t be an integer. We denote
by Tt(Q) the class of Q-labeled graphs of tree-depth at most t, i.e. the class
of couples (G,γ) where G is a graph with tree-depth at most t and γ is a
map from the vertex set of G to Q.

On Tt(Q) we consider the naturally defined labels respecting induced sub-
graph relation ⊆i. Explicitly, we put (G,γ) ⊆i (H, η) if there exists an injec-
tive function f : V(G) → V(H) such that {x, y} ∈ E(G) ⇐⇒ {f(x), f(y)} ∈
E(H) and such that η(f(x)) ≥ γ(x) for every vertex x of G.

We start with a result of Ding [123] which we formulate by means of tree-
depth and which we prove by making use of the following result of Erdős and
Rado [168].

Lemma 6.12. Let A be a quasi-ordered set. Let S(A) be the set of finite
subsets of A, and make it into a quasi-ordered set by the rule X ≤ Y if
there is a one-to-one increasing map of X into Y.

If A is well quasi-ordered then so is S(A).

Notice that this result, quoted by Higman in [256], can be deduced as a
corollary of Higman’s further result on well quasi-ordering of finite sequence
of elements of a well quasi-ordered set.

Lemma 6.13. For every integer t, the class Tt(Q) is well quasi
ordered by induced subgraphs (i.e. by the partial order ⊆i).

Proof. We proceed by induction on t. The case t = 1 is a direct consequence
of Lemma 6.12.

Assume the results holds for t = t0 ≥ 1 and let t = t0+1. The set {0, 1}×Q

is well quasi-order by (x, y) ≤ (x ′, y ′) if x = x ′ and y ≤ y ′. Thus the set
Tt−1({0, 1} ×Q),⊆i is well quasi-ordered by the induction hypothesis. So is
also the set Q× Tt−1({0, 1} ×Q), ordered by (x,G) ≤ (x ′, G ′) if x ≤ x ′ and
G ⊆i G

′.
Assume we are given an infinite sequence of graphs (Gi, γi) ∈ Tt(Q). For

each i we consider a vertex ri of Gi such that td(Gi − ri) = td(Gi) − 1. We
define (xi, (Hi, ci)) ∈ Q× Tt−1({0, 1} ×Q) by xi = γi(ri), Hi = Gi − ri and
ci(x) = (AdjGi

(ri, x), γi(x)), where AdjG(x, y) is 1 if x and y are adjacent in
G, and 0 otherwise. By the induction hypothesis, there exist i < j such that
xi ≤ xj and such that there exists a one-to-one increasing map f from V(Hi)

to V(Hj) with Hj[f(V(Hi))] ∼= Hi. According to the definition of the partial
order on {0, 1}×Q, and as xi ≤ xj means γi(ri) ≤ γj(rj), we deduce that the
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extention f̂ of f to V(Gi) defined by f(ri) = rj is a one-to-one increasing map
from V(Gi) to V(Gj) with Gj[f(V(Gi))] ∼= Gi. It follows that (Tt(Q),⊆i) is
a well quasi-ordering. ��

Notice that even if Q is actually finite, the partial order (Tt(Q),⊆i) may
contain arbitrarily large finite antichains.

Also, notice that even the class of 2-colored paths (which have, of course,
unbounded tree-depth) contains an infinite antichain for ⊆i, as shown
Fig. 6.5.

Fig. 6.5 Paths with a coloration of the vertices with two colors are not well quasi
ordered by containment partial order

A direct consequence of Lemma 6.13 is that for every positive integer t

there exists an existential first-order formula τt such that the property “The
graph G has tree-depth at least t” is equivalent to the satisfaction of τt:

td(G) ≥ t ⇐⇒ G |= τt. (6.6)

In other words, there exists for every integer t a finite set of forbidden sub-
graphs characterizing the property td(G) ≤ t (see Fig. 6.6).

From this it follows that for every positive integer t there exists a linear
time algorithm which, for each input graph G, answers either that the tree-
depth of G is at most t (and computes an elimination tree of height at most t)
or that the tree-depth of G is strictly greater than t (and exhibits a certificate
for this). The main idea of the algorithm is to start by computing a DFS-
tree for G. If the DFS tree has height at least 2t a maximal tree-path is a
certificate that td(G) > t. Otherwise, G has tree-depth at most 2t and we
may use this bound to reduce the problem of the satisfiability of τt from
polynomial time to linear time (see Sect. 17.3).

Another proof of the existence of a linear time algorithm has been given
in [72]. This proof relies on the fact that the class of graphs with tree-depth
at most t is minor closed and excludes a planar graph hence belonging to
this class can be determined in linear time according to a well known result
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Fig. 6.6 Forbidden subgraphs for the property td(G) ≤ 3 (From [134])

of Robertson and Seymour [398]. However the direct proof we just sketched
is certainly much easier.

The strongest of our results on well quasi-ordering is the following:

Theorem 6.8. For integers r and t, let T
(r)
t be the class of

graphs of tree-depth at most t whose vertices are colored using
(at most) r colors. For G,H ∈ T

(r)
t define H ⊆�

i G if H is
isomorphic to an induced subgraph of G as a colored graph
and there exists a color preserving homomorphism of G to H

(that is: H is isomorphic to a retract of G). Then T
(r)
t is well

quasi ordered by ⊆�
i .

Proof. Consider a subset S of T(r)
t . Then S contains finitely many classes of

graphs which are homomorphically equivalent (in a color preserving way). In
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each class, there are finitely many graphs which are minimal for ⊆i, according
to Lemma 6.13. The result follows. ��

We note that Theorem 6.8 does not extend if we relax the condition that
the coloring uses a finite set of colors and consider a labeling by well-quasi
ordered poset of bounded width (see Fig. 6.7).

1 1 1 1 1 1

1 1 11 12 2 2 3 123

G1 G2 G3

Fig. 6.7 An infinite antichain for the relation ⊆�
i (in a colored + labeled version)

6.11 The Homomorphism Quasi-order

Recall that the homomorphism quasi-order on graphs corresponds to the
existence of a homomorphism. By taking the quotient of Graph by the hom-
equivalence relation G ���� H (meaning the existence of both a homomor-
phism of G to H and a homomorphism of H to G) we obtain a partial order
of the hom-equivalence classes of Graph.

It is well known that the homomorphism order on hom-equivalence classes
of graphs has a lattice structure: any two classes [G1] and [G2] have infimum
[G1] ∧ [G2] = [G1 × G2] and supremum [G1] ∨ [G2] = [G1 + G2] (where ×
and + respectively denote the categorical product and the disjoint union).

Denote by Tt (resp. Coret) the class of graphs (resp. the class of core
graphs) with tree-depth at most t.

Proposition 6.7. The restriction of the homomorphism order to the
equivalence classes of Tt has a lattice structure with

[G1]∨t [G2] = [G1 +G2]

[G1]∧t [G2] =

[∨
t
{C ∈ Coret : C → G1 ×G2}

]

Proof. As [G1]∨ [G2] = [G1+G2] and td(G1+G2) = max(td(G1), td(G2)) it
follows that [G1]∨t [G2] = [G1 +G2]. By construction,

∨
t{C ∈ Coret : C →

G1×G2} → G1×G2 hence
∨

t{C ∈ Coret : C → G1×G2} → G1 and
∨

t{C ∈
Coret : C → G1 × G2} → G2. Assume H ∈ Tt is such that H → G1 and
H → G2, where G1, G2 ∈ Tt. Then H → G1 × G2 thus Core(H) → G1 × G2



6.11 The Homomorphism Quasi-order 141

and obviously Core(H) ∈ Coret. As H → Core(H) →
∨

t{C ∈ Coret : C →

G1 ×G2} we deduce [G1]∧t [G2] =

[∨
t{C ∈ Coret : C → G1 ×G2}

]
. ��

Of course, the finiteness of the Coret shows that there exists a function
F : IN → IN such that

td(Core(G1 ×G2)) ≤ td(Core(G1))|Core(G2)|

≤ td(Core(G1))F(td(Core(G2))).

Hence if G1, G2 ∈ Tt then

[G1]∧t [G2] −→ [G1]∧t+1 [G2] −→ . . . −→ [G1]∧tF(t) [G2] = [G1 ×G2].

Although highly probable, we have yet no example showing that [G1]∧t

[G2] and [G1 × G2] are different in general. We are naturally led to the
following question:

Problem 6.2. What is the smallest possible function f : IN → IN
such that for every graphs G1, G2 holds

td(Core(G1 ×G2)) ≤ f(max(td(Core(G1)), td(Core(G2))))?

Of course, if f(t) �= t, this means that hom-equivalence classes of Tt do
not form a sub-lattice of the lattice of hom-equivalence classes of Graph.
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Exercises

6.1. Let Tn be the complete binary tree of height n. Prove that td(Tn) = n.

Tn :

n
n − 1

1

...

6.2. Let m, t ∈ IN and let G be a graph with td(G) ≤ t. Prove that if |G| ≥ mt

then there exists a subset S of at most t − 1 vertices of G, such that G − S

has at least m connected components.

6.3. Let G and H be two graphs with at least one edge. Then:

td(G×H) ≥ td(G) + td(H) − 2.

6.4. Define the graph parameter cr+ on undirected graphs by

cr+(G) = max
�G orientation of G

cr(G).

1. Prove that cr+(G) ≤ td(G) − 1.
2. Give an example of arbitrarily large graphs for which the equality holds.
3. Prove that cr+ is a minor monotone parameter and deduce that for each

integer k there exists a finite set of obstructions for cr+ ≤ k.

6.5. Consider a classical cops and robbers game with c cops and r robbers
[373, 391]. Prove that for every integer t there exists an integer N = N(c, r, t)

such that for every graph G with tree-depth at most t:

� Either the cops have no winning strategy,
� Or the maximum length of a game played with an optimal strategy is

bounded by N.

6.6. The aim of this Exercise is to explicit a first-order formula φt such that
G |= φt if and only if td(G) ≤ t.

� Prove that there exists a first-order formula ϑt,k(x1, . . . , xk+2) with quan-
tifier rank t such that for every two vertices k + 2 distinct vertices
r1, . . . , rk, a, b of a graph G it holds G |= ϑt,k(r1, . . . , rk, a, b) if and only
if a and b are at distance at most 2t in G− r1 − · · ·− rk;

� Prove that there exists a formula δt,k(x1, . . . , xk) with quantifier rank at
most min(2t, t+ 3) such that
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td(G− r1 − · · · − rk) ≤ t =⇒ G |= δt,k(r1, . . . , rk)

and such that if G |= δt,k(r1, . . . , rk) then no connected component of
G− r1 − · · ·− rk has diameter greater than 2t.

� Prove that there exists a formula φt of quantifier rank at most 2t such
that G |= φt if and only if td(G) ≤ t.

6.7. Prove that for any two (finite) graphs G and H and any integer n the
following are equivalent:

� For every graph F with tree-depth at most n it holds

F → G ⇐⇒ F → H;

� For every existential first-order formula Φ with quantifier rank at most n
it holds

G |= Φ ⇐⇒ H |= Φ.

The connection between tree-depth and quantifier rank in first-order logic
has been studied and developed by Rossman [425].

6.8. The first-order language we consider includes two relation symbols =

and ∼, respectively representing equality and adjacency of vertices.
We also consider an extension of first-order logic with counting quan-

tifiers, by allowing expressions of the type ∃mΦ to say that there exists at
least m vertices with property Φ. The logical depth D#(G) of a graph G

in this logic is the minimum depth of nested quantifiers (including counting
quantifiers which also contributes 1) in a formula Φ(G) such that H |= Φ(G)

if and only if H is isomorphic to G.
To ease the exposition, we define ∃=mΦ as (∃mΦ)∧¬(∃m+1Φ), to express

that there exist exactly m vertices with property Φ. Notice that the logical
depth of a formula which uses such a counting quantifier is the same as the
derived formula using ∃m.

Also, for a graph G and a vertex r ∈ V(G), we denote by CG(r) the vertex
set of the connected component of G which contains r.

� Define quantifier free formulas Λd[x1, . . . , xl+3] (for d ≥ 1 and l ≥ 0) such
that G |= Λd[w1, . . . , wl, u, v] if and only if the shortest-path distance of
u and v is at most d in G− {w1, . . . , wl};

� Let G be a connected graph and let a1, . . . , al, r be vertices of G.
Prove that there exists a formula Ψ[x1, . . . , xl+1] such that qrank(Ψ) ≤
td(G[CG−{a1,...,al}(r)] − r) + 1 and such that for every graph H and for
every b1, . . . , bl, s in V(H) the following conditions are equivalent:
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1. The mapping f0 : ai �→ bi is an isomorphism from G[a1, . . . , al] to
H[b1, . . . bl] and H |= Ψ[b1, . . . , bl, s];

2. There exists an isomorphism f : G[CG−{a1,...,al}(r) ∪ {a1, . . . , al}] →

H[CH−{b1,...,bl}(s)∪ {b1, . . . , bl}] such that f(r) = s and f(ai) = bi (for
1 ≤ i ≤ l).

� Deduce that for every graph G there exists a formula Ψ̂ such that
qrank(Ψ̂) ≤ td(G) + 1 and such that a graph H satisfies Ψ̂ if and only
if it is isomorphic to G.

Related results on first-order definability of random graphs can be found in
[74].



Chapter 7
Decomposition

Divide et impera: any few among the many will be easy to control.

7.1 Motivation, Low Tree-Width and Low Tree-Depth

The local properties of structures are frequently studied by means of decom-
positions: the large structure is cut into (hopefully simpler)pieces whose prop-
erties are then studied together with the interconnections between pieces.
Several decomposition schemes can be considered. For example, one can stress
the regularity of the interconnections of the pieces as in modular decomposi-
tion of graphs (a recursive partition into modules such that, for each module,
the neighborhoods outside the module of the vertices within the module are
all equal [206, 266, 330]). As another example, one can consider a family
of overlapping simple pieces covering the structure, in the spirit of the co-
herency between charts in topological atlases, such as the gluing axiom of
sheaves [320] or the arrow construction for the category of labeled rooted
forest and the category of labeled Feynman graphs [290].

Also our decompositions are similar: We will be interested in covering a
graph with pieces in such a way that:

� The number of pieces should be small,
� Each piece should be simple,
� Every small subgraph should be fully covered by at least one piece.

This approach can be described from the point of view of graph coloring.
We formulate it by means of the following two (“dual”) questions.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__7, © Springer-Verlag Berlin Heidelberg 2012
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How many “simple and regular” induced subgraph are needed to
cover a graph G in such a way that every subset of p vertices of
G belong to at least one of them?

How many colors are needed to color the vertices of a graph G such
that every p color classes induce a “simple and regular” induced
subgraph?

The second question is obviously related to known and intensively studied
graph coloring issues. A proper coloring of a graph G, which is vertex color-
ing such that each color class induce a stable set, correspond to the extreme
case where p = 1 (and “simpler and regular” means here edgeless). A possible
next case (p = 2) relates to the notion of acyclic chromatic number intro-
duced by Grünbaum introduced in [233]: the acyclic chromatic number of
a graph is the least number of colors of a proper vertex coloring in which
every 2-chromatic subgraph is acyclic. The number of required colors seemed
to be small at least for sufficiently sparse graphs, and Grünbaum conjectured
[233] that this variant of the chromatic number was bounded by 5 for pla-
nar graphs. This was proved by Borodin [80] and it was also proved that
the acyclic chromatic number is bounded for classes with bounded genus or
bounded degree [21, 23]. The “simple” structure considered here is a forest.
For p > 2 we need a more general notion of “simple” graphs. Graphs with
bounded tree-width seem to be a natural candidate. Tree-width of graphs (see
Sect. 3.6) presents a powerful generalization of forests. This concept is central
to Robertson and Seymour’s analysis of graphs with forbidden minors, and
gained much algorithmic attention, also thanks to the general complexity
result of Courcelle about monadic second-order logic graph properties be-
ing decidable in linear time for graphs with bounded tree-width [102, 103].
Among the possible equivalent definitions of tree-width we recall here one
based on k-trees: A k-tree is a graph which is either a clique of size at most
k or is obtained from a smaller k-tree by adding a vertex adjacent to at most
k vertices which are pairwise adjacent. The tree-width tw(G) of a graph G

is the smallest integer k such that G is a subgraph of a k-tree, that is such
that G is a partial k-tree.

Using tree-width, we can generalize: A p-tree-width coloring of a graph
G is a vertex coloring of G such that any p ′ ≤ p colors induce a subgraph of
tree-width at most p − 1. The acyclic chromatic number corresponds in our
setting to the case p = 2.
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Using the Structural Theorem of Robertson and Seymour for graphs with-
out a particular graph as a minor [414], DeVos et al. [118] proved the following:

Theorem 7.1. For every graph K and integer j ≥ 1, there are integers
iV = iV (K, j) and iE = iE(K, j), such that every graph with no K-minor
has a vertex partition into iV graphs such that any j ′ ≤ j parts form a
graph with tree-width at most j ′−1, and an edge partition into iE graphs
such that any j ′ ≤ j parts form a graph with tree-width at most j ′.

The same paper [118] also contains a kind of dual result:

Theorem 7.2. For every graph K and integer j ≥ 1, there are integers
kV = kV(K, j) and kE = kE(K, j), such that every graph with no K-minor
has a vertex partition into j+1 graphs such that any j parts form a graph
with tree-width at most kV , and an edge partition into j+ 1 graphs such
that any j parts form a graph with tree-width at most kE.

A more precise and algorithmically efficient form of Theorem 7.2 has then
been proved by Demaine et al. [116]:

Theorem 7.3. For a fixed graph H, there is a constant cH such
that, for any integer k ≥ 1 and for every H-minor free graph
G, the vertices of G (or the edges of G) can be partitioned
into k + 1 sets such that any k of the sets induce a graph of
tree-width at most cHk. Furthermore, such a partition can be
found in a polynomial time.

Searching for the simplest possible type of pieces, one can consider (for
the case p = 2) a stronger variant of the acyclic chromatic number. The star
chromatic number [233] χs(G) of a graph G is the least number of colors of
a proper vertex coloring of G in which every 2-chromatic subgraph is a star
forest (see Fig. 7.1). It is folklore that the star chromatic number is bounded
on a class of finite graphs if and only if the acyclic chromatic number is
bounded on the class (see for instance [176]).

For which other classes of graphs does this hold? While both the acyclic
chromatic number and the star chromatic number are unbounded even for
bipartite graphs, we proved in [345] that every proper minor closed class of
graphs has a bounded star chromatic number (and thus a bounded acyclic
chromatic number). Precisely, we proved (Theorem 2.1 of [345]) that the star-
chromatic number of every graph is bounded by a function of the maximum
density of its minors:
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Fig. 7.1 A star-coloring of a graph; each pair of colors induces a star forest

Theorem 7.4. For every graph G,

χs(G) ≤ �∇0(G)� (2�∇(G)� + �∇0(G)�− 1
)
+ �2∇0(G)�+ 1.
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The augmentation technique, introduced in [345], has been successfully
used to improve the known upper bounds of the star chromatic number of
planar graphs. For instance, every planar graph has star chromatic at most
20 [9] (which is presently the best known bound). Techniques combining our
approach and discharging have been used to improve this bound for planar
graphs of high girth [9, 86, 295] and sub-cubic planar graphs of high girth
[94]. For instance, if G is a planar graph of girth g then the following values
of χs(G) are known:

χs(G) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

18, if g ≥ 4 [345]

16, if g ≥ 5 [9]

8, if g ≥ 6 [295]

7, if g ≥ 7 [295]

6, if g ≥ 8 [86, 295]

5, if g ≥ 9 [86]

4, if g ≥ 13 [86]

As we have seen in Chap. 6 a natural generalization of the notion of star
forests which is a strengthening of bounded tree-width is bounded tree-depth.
This leads to the following notion:

Definition 7.1. A p-tree-depth coloring of a graph G is a vertex coloring
of G each p ′ ≤ p parts induce a subgraph with tree-depth at most p ′.

As the tree-depth of a graph is at least one more than its tree-width,
the low tree-depth coloring is a stronger requirement than low tree-width
coloring.

Using Theorem 7.1 (hence also relying on the Structural Theorem) we
proved in [352] the following strengthening:

Theorem 7.5 (Low tree-depth coloring for proper minor closed
classes). For every graph K and integer j ≥ 1, there is an integers
N = N(K, j), such that every graph with no K-minor has a vertex parti-
tion into N graphs such that any j ′ ≤ j parts form a graph with tree-depth
at most j ′.

A change of one word from Theorem 7.1–7.5 has profound consequences
and motivated much of the material covered by this book. It also appeared
that the tree-depth is the largest invariant for which an analog of Theorem 7.5
holds (see Exercise 7.5).

Motivated by Theorem 7.5 we introduce the sequence
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χ1, χ2, . . . , χp, . . .

of chromatic numbers, where χ1 is the usual chromatic number, χ2 is the
star chromatic number and, more generally, χp is the minimum number of
colors such that each i ≤ p parts induce a graph with tree-depth at most i.
Obviously

χ(G) = χ1(G) ≤ χ2(G) ≤ · · · ≤ χp(G) ≤ · · ·
The sequence stabilizes and for p = td(G) one has χp(G) = td(G). Hence we
could put χ∞(G) = td(G).

Theorem 7.5 may be restated concisely:

Theorem 7.6. For every proper minor closed class of graphs K and for
every fixed integer p ≥ 1, χp(G) is bounded on K.

Let us add a remark concerning dual Theorem 7.2. It should be noticed
that a stronger form Theorem 7.2 in which we would ask that each piece
would have bounded tree-depth would be false even if we restrict ourselves to
planar graphs with maximum degree 6. For an interesting example, consider
the n× n hex-game graph (see Fig. 7.2). In any two coloring of the vertices,
some color joins two opposite sides (this is why hex game has no draw).
As the graph will include a monochromatic path of length n, one of the two
monochromatic parts will have tree-depth at least log2 n. A similar statement

Fig. 7.2 The n × n hex game graph cannot be partitioned into two pieces of small
tree-depth
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would also fail to be true when restricted to graphs with tree-width 2 (i.e.,
to outerplanar graphs), see Exercise 7.1.

Ding, Oporowski, and Vertigan suggested to study the minimum number
of parts needed to partition a graph in such a way that every monochromatic
connected component has bounded size (see for instance [14, 245]). For in-
stance, it is possible to partition every planar graphs into four parts, each of
them consisting of isolated vertices (by the Four Color Theorem). However,
Alon, Ding, Oporowski, and Vertigan constructed for every integer n a planar
graph Gn with the property that in any coloring of the vertices with three
colors, some monochromatic connected component will have order at least n.
On the other hand, they conjectured that for every positive integer d there
exists f(d) such that one can color the vertices of every planar graph with
maximum degree d with three colors in such a way that no monochromatic
connected component will have order greater than f(d). Interestingly, the
counter-example given for planar graphs with unbounded degrees admits a
coloring of the vertices with 2 colors such that no monochromatic connected
component has tree-depth greater than 3. As graphs with bounded degree
and bounded tree-depth also have bounded order, we are led to the following
natural conjecture:

Conjecture 7.1. There exists a constant t such that one can color the ver-
tices of every planar G by three colors in such a way that no monochromatic
connected component will have tree-depth greater than t.

It is well known that χ1 is bounded on a class of graphs if the maximum
average degree of graphs in the class is bounded. In [345] we proved that χ2

is bounded if all graphs obtained by contracting star forests have bounded
maximum average degree. Also, if χ2 is bounded then so is the maximum
average degree. Here is a short proof: Assume χ2(G) ≤ N. Then for every
two colors i 	= j, i, j ≤ N, orient the edges of G such that every vertex has
indegree at most one in the star forest induced by colors i and j. Then the
indegree of any vertex is at most

(
N
2

)
and thus the graph has maximum

average degree at most 2
(
N
2

)
.

This indicates that the minor closed classes are perhaps not the most
natural restriction in the context of graph partitions. One is naturally led to
the study of shallow minors and their edge densities. And this is also how we
arrived to this notion.

Very schematically the relationship between the χp’s and the shallow mi-
nors naturally leads to the following two questions:

Do there exist integral functions f1 and f2 such that, for every integer p:
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(1) If the minors of depth at most f1(p) of the graphs of a class C have
bounded maximum average degree then the graphs in C have bounded
χp?

(2) If the graphs in C have bounded χf2(p) then do all the minors of depth
at most p of the graphs of a class C have bounded maximum average
degree?

Both questions have a positive answer, showing that proper minor closed
classes are unnecessarily restrictive for the validity of Theorem 7.6. Perhaps
more interestingly our proof does not rely on the Structural Theorem and
yields an efficient algorithm (in fact a linear algorithm, see [346, 348, 350,
351, 353, 355] and Chap. 18).

Question (2) is quite easy to answer:

Proposition 7.1. For every graph G and any integer r:

∇r(G) ≤ (2r + 1)

(
χ2r+2(G)

2r + 2

)
(7.1)

Proof. Consider a vertex coloring c of G with N = χ2r+2(G) colors such
that any i ≤ 2r + 2 colors induce a subgraph of tree-depth at most i. For
every J ∈ (

[N]
2r+2

)
, let GJ = G[c−1(J)] and let YJ be a rooted forest of height

td(GJ) ≤ 2r+ 2 such that GJ ⊆ clos(YJ).
Let H ∈ G� r be such that ∇0(H) = ∇r(G), and let Ĥ be a ramification of

H included in G (as a subgraph). Let (X1, . . . , Xk) be a H-decomposition of Ĥ
and let x1, . . . , xk be the centers of X1, . . . , Xk (corresponding to the vertices
h1, . . . , hp of H), see Sect. 4.2 for terminology. If hi and hj are adjacent in H

then there exists a path Pi,j of length at most 2r + 1 linking xi and xj. Let
Ii,j ∈ (

[N]
2r+2

)
be such that Ii,j ⊇ c(V(Pi,j)). Then the path Pi,j is included

in some connected component of GIi,j . It follows that there exists in Pi,j a
vertex vi,j which is minimum with respect to the partial order defined by
YIi,j . As {xi, xj} ⊆ V(Pi,j) ⊆ Xi ∪Xj and as Xi ∩Xj = ∅, vi,j either belongs to
Xi or to Xj. Depending on the case, vi,j is a vertex of Xi which is an ancestor
of xj in YIi,j ∩ Xi or a vertex of Xj which is an ancestor of xi in YIi,j ∩ Xj.
Thus:
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p∇r(G) ≤
∑

I∈( [N]
2r+2)

∑

1≤i≤p

∑

1≤j≤p
j�=i

|{v : v ancestor of xi in YI ∩ Xj}|

≤
∑

I∈( [N]
2r+2)

p∑

i=1

|{v : v ancestor of xi in YI}|

≤
(

N

2r + 2

)
× p× (2r + 1)

Hence

∇r(G) ≤ (2r + 1)

(
N

2r + 1

)

��
Problem (1) is much harder and it is the subject of this chapter. It will be

obtained by use of special orientations, fraternal orientations and transitive
fraternal orientations studied in Sect. 7.3.

Definition 7.2. A digraph �G is fraternally oriented if (x, z) ∈ E(�G) and
(y, z) ∈ E(�G) implies (x, y) ∈ E(�G) or (y, x) ∈ E(�G).

This concept was introduced by Skrien [438] and a characterization of
fraternally oriented digraphs having no symmetrical arcs has been obtained
by Gavril and Urrutia [213], who also proved that triangulated graphs and
circular arc graphs are all fraternally orientable graphs. An orientation is
transitive if (x, y) ∈ E(�G) and (y, z) ∈ E(�G) implies (x, z) ∈ E(�G). It is
obvious that a graph has an acyclic transitive fraternal orientation in which
every vertex has indegree at most k − 1 if and only if it is the closure of a
rooted forest of height k. It follows that tree-depth and transitive fraternal
orientation are closely related.

Also, a local version of a transitive and fraternal orientation is formalized
by transitive fraternal augmentations (each augmentation step consists in
adding the missing arcs while applying the fraternity and transitivity rules
on the initial arcs) which will be the key concept defined in Sect. 7.3. Towards
this end, we define in the next section a local version of tree-depth by means
of centered colorings.

7.2 Low Tree-Depth Coloring and p-Centered Colorings

We introduce p-centered colorings, as a local approximation of centered-
colorings:



154 7 Decomposition

Definition 7.3. A p-centered coloring of a graph G is a vertex coloring
such that, for any (induced) connected subgraph H, either some color c(H)

appears exactly once in H, or H gets at least p colors.

Immediately from the definition we get that any p-centered coloring of
a graph G uses at least td(G) colors when p is sufficiently large. This we
formulate as follows.

Lemma 7.1. Let G,G0 be graphs, let p = td(G0), let c be a q-centered
coloring of G where q ≥ p. Then every subgraph G isomorphic to G0

gets at least p colors in the coloring of G. ��

This lemma implies that p-centered colorings induce low tree-depth col-
orings:

Corollary 7.1. Let p be an integer, let G be a graph and let c be a p-
centered coloring of G.

Then i < p parts induce a subgraph of tree-depth at most i.

Proof. Let G ′ be any subgraph of G induced by i <p parts. Assume
td(G ′)> i. According to (6.1) of Sect. 6.1, the deletion of one vertex decreases
the tree-depth by at most one. Hence there exists an induced subgraph H of
G ′ such that td(H) = i+1 ≤ p. According to Lemma 7.1 (choosing G0 = H),
H gets at least p colors, a contradiction. ��

7.3 Transitive Fraternal Augmentation

We start this Section with the main definitions related to transitive fraternal
augmentation.

Definition 7.4. Let �G be a directed graph. A 1-transitive fraternal aug-
mentation of �G is a directed graph �H with the same vertex set, including all
the arcs of �G and such that, for all vertices x, y, z,

� If (x, z) and (z, y) are arcs of �G then (x, y) is an arc of �H (transitivity),
� If (x, z) and (y, z) are arcs of �G then (x, y) or (y, x) is an arc of �H (frater-

nity).

A 1-transitive fraternal augmentation �H of �G is tight if for each arc (x, y) in
�H which is not in �G there exists a vertex z so that (x, z) and at least one of
(z, y), (y, z) are arcs of �G.

A transitive fraternal augmentation of a directed graph �G is a sequence
�G = �G1 ⊆ �G2 ⊆ · · · ⊆ �Gi ⊆ �Gi+1 ⊆ · · · , such that �Gi+1 is a 1-transitive
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fraternal augmentation of �Gi for every i ≥ 1. The transitive fraternal augmen-
tation is tight if all the 1-transitive fraternal augmentations of the sequence
are tight.

The relationship between transitive fraternal augmentation and low tree-
depth coloring can be suggested by the simple example of the relation
between 1-transitive fraternal augmentations and star coloring (i.e., χ2-
coloring): The star chromatic number of a graph G is the minimum over
all the orientations �G of G of the chromatic number of a tight 1-transitive
fraternal augmentation of �G (see Exercise 7.2).

The key lemma to generalize our approach to general ∇r states that grads
are relatively stable under tight 1-fraternal augmentations. More precisely:

Lemma 7.2. Let �G be a directed graph and let �H be a tight 1-transitive
fraternal augmentation of �G. Then

∇̃r(H) ≤ (
16rΔ−(�G)2∇̃2r+1/2(G)

)2 (7.2)

Proof. As schematically pictured on Fig. 7.3, the graph H is a subgraph of
the graph obtained from G by first multiply the vertices by Δ−(�G) + 1 (i.e.,
take the lexicographic product of G by K

Δ−(�G)+1
) an then contract a star

forest.

Fig. 7.3 Illustration for the proof of Lemma 7.2. Here, /� schematically denotes the
contraction of a star forest

Hence we have
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∇̃r(H) ≤ ∇̃r((G • K
Δ−(�G)+1

)� 1/2)

Thus, according to Proposition 4.6 and Theorem 4.3:

∇̃r(H) ≤ 8
(
max((4r + 1)Δ−(�G) + 1, (Δ−(�G) + 1)2)∇̃2r+1/2(G) + Δ−(�G)

)2

≤ 32(2r + 1)2(Δ−(�G) + 1)4(∇̃2r+1/2(G) + 1)2

≤ (
16rΔ−(�G)2∇̃2r+1/2(G)

)2

��
By induction, and using the monotonicity of ∇r, we get the following

consequence:

Corollary 7.2. There exist polynomials Ri(X, Y) (i ≥ 1), such
that every directed graph �G has a transitive fraternal augmen-
tation �G = �G1 ⊆ �G2 ⊆ · · · ⊆ �Gi ⊆ · · · where

Δ−(�Gi) ≤ Ri(Δ
−(�G),∇2i+1−1(G)) (7.3)

The transitive fraternal augmentation changes a given graph by locally
creating many complete bipartite subgraphs. This will allow us to control
the tree-depth of subgraphs. A transitive fraternal augmentation of a graph
naturally induce a transitive fraternal augmentation of its subgraphs. This
will allow us, by applying the following lemma to the subgraphs of a given
graph G, to control the tree-depth of the subgraphs of G induced by p colors.

Lemma 7.3. Let N(p, t) = 1 + (t − 1)(2 + �log2 p�), let �G be a directed
graph and let �G = �G1 ⊆ �G2 ⊆ · · · ⊆ �Gi ⊆ · · · be a transitive fraternal
augmentation of �G.

Then �GN(p,td(G)) either includes an acyclically oriented clique of size
p or it includes a rooted directed tree �Y such that G ⊆ clos(�Y) and
clos(�Y) ⊆ �GN(p,td(G)).

Proof. We fix the integer p and prove the lemma by induction on t = td(�G).
The base case t = 1 corresponds to a graph without edges, for which the
property is obvious. Assume the lemma has been proved for directed graphs
with tree-depth at most t and let �G be a directed graph with tree-depth
t + 1. As we may consider each connected component of �G independently,
we may assume that �G is connected. Then there exists a vertex s ∈ V(�G)

such that the connected components �H1, . . . , �Hk of G − s have tree-depth
at most t. As �Hi = �G1[V(�Hi)] ⊆ · · · ⊆ �Gj[V(�Hi)] ⊆ · · · is a transitive
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fraternal augmentation of �Hi we have, according to the induction hypothesis,
that, for each 1 ≤ i ≤ k, there exists in �Hi either an acyclically oriented
clique of size p or a rooted tree �Yi rooted at ri such that Hi ⊆ clos(Yi)
and clos(�Yi) ⊆ �GN(p,td(G))[V(�Hi)]. If the first case occurs for some i, then
�G includes an acyclically oriented clique of size p. Hence assume it does not
and that for every i we have a rooted tree �Yi with the above properties. As
�G is connected, the vertex s has at least one neighbor xi in �Hi (for each
1 ≤ i ≤ k). Let x be any neighbor of s in �Hi. If y is an ancestor of x in �Yi,
(y, x) is an arc of �GN(p,t) hence s and y are adjacent in �GN(p,t)+1. Moreover,
if (x, s) is an arc of �GN(p,t) then (y, s) is an arc of �GN(p,t)+1. Let Di be the
subset of V(�Hi) of the vertices x such that (x, s) belongs to �GN(p,t) and
of their ancestors in �Yi and let D =

⋃k
i=1 Di. Then D induces a clique in

�GN(p,t)+2. Thus there exists a directed Hamiltonian path �P in �GN(p,t)+2[D],
i.e., a directed path containing all the vertices of �GN(p,t)+2[D].

Let r be the start vertex of �P. Define π : V(G) − r → V(G) as follows:

� If x ∈ D, the π(x) is the predecessor y of x in �P (the arc (y, x) belongs to
�GN(p,t)+2);

� Otherwise, if x = s, π(x) is the end vertex y of �P (the arc (y, x) belongs
to �GN(p,t)+1);

� Otherwise, if x = ri then π(x) = s (the arc (s, ri) belongs to �GN(p,t)+2);
� Otherwise, if the father of x ∈ V(�Hi) \D does not belong to D, then π(x)

is the father of x in �Yi;
� Otherwise, if no descendant of x in �Yi has an arc coming from s in

�GN(p,t)+1, π(x) is the father of x in �Yi;
� Otherwise, π(x) = s (the arc (s, x) belongs to �GN(p,t)+2).

It is easily checked that this father mapping π actually defines a directed
rooted tree �Y in �GN(p,t)+2 with root r and that G ⊆ clos(�Y). Moreover,
either �Y has height at least p and �GN(p,t)+2+�log2 p� includes an acyclically
oriented clique of size p or clos(�Y) ⊆ �GN(p,t)+2+�log2 p�. As N(p, t + 1) =

N(p, t) + 2+ �log2 p�, the induction follows. ��

Lemma 7.4. Let p be an integer, let �G be a directed graph and let �G =
�G1 ⊆ �G2 ⊆ · · · ⊆ �Gi ⊆ · · · be a transitive fraternal augmentation of �G.
Then either �GN(p,p) includes an acyclically oriented clique of size p or
td(G) ≤ p− 1 and there exists in �GN(p,p) a rooted directed tree Y so that
G ⊆ clos(Y) and clos(�Y) ⊆ �GN(p,p).

Proof. If td(G) > p we may consider a connected subgraph of H of tree-depth
p. According to Lemma 7.3, there will exists in �GN(p,p)[V(H)] an acyclically
oriented clique of size p or a rooted directed tree �Y so that H ⊆ clos(Y) and
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clos(�Y) ⊆ �GN(p,p)[V(H)]. In the later case, if td(G) = p then the height of
�Y is at least td(H) = p and clos(�Y) includes an acyclically oriented clique of
size p. ��

The previous two results translate immediately to low tree-depth colorings:

Corollary 7.3. Let S(p) = 1+ (p − 1)(2 + �log2 p�) = O(p log2 p).
For every graph G, for every transitive fraternal augmentation �G =

�G1 ⊆ �G2 ⊆ · · · ⊆ �Gi ⊆ · · · of G and for every integer p:

χp(G) ≤ 2Δ−(�GS(p)) + 1 (7.4)

Hence we have (which completes the item (1) above):

Theorem 7.7 (Low tree-depth coloring). For every integer
p ≥ 1, there exist a polynomial Rp, (different from the one of
Corollary 7.2), such that for every graph G holds

χp(G) ≤ Rp(∇0(G),∇(8p)p−1(G)).

Proof. This is a direct consequence of Corollary 7.3 and 7.2. ��

But this is not the end of the augmentation story. In Sect. 7.5 we shall
introduce a related probabilistic proof of [476] and in the next section we
introduce a different strategy of computing augmentations. This strategy will
give us the best dependence (χp(G) is bounded by a polynomial function
of the top-grad of rank 2p−2 + 1

2
). In this approach we compute fraternal

augmentations first and then consider the coloring induced by an implicit
transitive augmentation. The advantage of this approach is that the degrees
of the vertices cannot augment more than a ratio bounded by a polynomial
of the top-grads.

7.4 Fraternal Augmentations of Graphs

We present the core of our coloring algorithm as a relabelling procedure. This
is of course a technical part of the algorithm.

Let V be a finite set and let k be an integer. A k-fraternity function is a
function w : V × V → IN ∪ {∞} such that for every x, y ∈ V one of w(x, y)

and w(y, x) (at least) is ∞ and such that for every x 	= y ∈ V :
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� Either min(w(x, y), w(y, x)) = 1,
� Or min(w(x, y), w(y, x)) = minz∈V\{x,y}w(x, z) +w(y, z),
� Or min(w(x, y), w(y, x)) > k

and minz∈V\{x,y}w(x, z) +w(y, z) > k.

Notice that a k-fraternity function is a k ′ fraternity function for k ′ ≤ k.
A fraternity function (or ∞-fraternity function) is a function which is a
k-fraternity function for every k.

Corresponding to a fraternity function w, we define

� The directed graph �Gw
i (for i ≥ 1), whose vertex set is �Gw is V and whose

arcs are all the pairs (x, y) such that w(x, y) = i;
� The directed graph �Gw

≤i (for i ≥ 1), whose vertex set is V and whose arcs
are all the pairs (x, y) such that w(x, y) ≤ i;

� The directed graph �Gw whose vertex set is V and whose arcs are all the
pairs (x, y) such that w(x, y) ≤ i (see Fig. 7.4).

Obviously
�Gw
1 = �Gw

≤1 ⊆ · · · ⊆ �Gw
≤k ⊆ �Gw.

We define the values Δ−
i (w) by

Δ−
i (w) = Δ−(�Gw

i ) = max
y∈V

|{x ∈ V : w(x, y) = i}|.

Let Γwi be the graph whose vertex set is the disjoint union of V and a of
set of cardinality at most (i − 1)|w−1(i)|, which is obtained from the empty
graph by adding, for each pair (x, y) ∈ V2 such that w(x, y) = i an induced
path of length i linking x and y (with no interior vertex in V), see Fig. 7.5.
In other words, Γwi is the (i−1)-subdivision of the graph Gw

i underlying �Gw
i .

Hence
Gw

i ∈ Γwi �̃ (i− 1)/2.

Let w be a k-fraternity function. We shall prove that for every integer
a ≤ k, the graph Γwi may be injectively embedded into a blowing ΓW1 •KN(a)

of ΓW1 (see Fig. 7.6).
Toward this end, we introduce the following notations:

� For a finite set X, the empty graph with vertex set X is denoted by EX.
� For each integer 1 ≤ a ≤ k, define the sets Ωa and Za by

Ωa = {(i, α) : 1 ≤ i < a and 1 ≤ α ≤ Δ−
a−i(w)}

(ordered according to lexicographic order), and

Za = {((i, α), (j, β)) ∈ Ω2
a : (i, α) < (j, β) and i+ j = a}.
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Fig. 7.4 The directed graph �Gw defined by a fraternity function w. The value on
arc (x, y) is w(x, y); a pair (x, y) is an arc if w(x, y) < ∞

� We define inductively the sets Ri (1 ≤ i ≤ k) by:

Ri =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅, if i = 1;

Z2, if i = 2;
(⋃i−1

j=2 Rj × [Δ−
i−j(w)]

)
∪ Zi, otherwise.

(All the unions above are disjoint unions, and [N] denotes the set
{1, . . . , N}.)

We take time out for a lemma:
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Fig. 7.5 The graphs Γw1 and Γw4 defined by the fraternity function shown Fig. 7.4

Fig. 7.6 Injective embedding of Γw4 into a blowing of Γw1

Lemma 7.5. For every integer 1 ≤ a ≤ k there exists an injective ho-
momorphism fa : Γwa → Γw1 • E{ε}∪Ra

such that for every v ∈ V holds
fa(v) = (v, ε).

Proof. The proof is by induction on a. If a = 1 the proof is straightforward.
Assume that the properties holds for all a ≤ n (for some 1 ≤ n < k) and let
a = n + 1.

Consider a coloring λ of the pairs (x, y) such that w(x, y) < a such that

� If w(x, z) = w(y, z) and w(x, z) < a then λ(x, z) 	= λ(y, z),
� If w(x, y) < a then 1 ≤ λ(x, y) ≤ Δ−

w(x,y).

For (i, α) ∈ Ωa, let φi,α be an injective homomorphism of Γwi to Γw1 •
E{ε}∪Ri×{α} such that φi,α(v) = (v, ε) for every v ∈ V (such a homomorphism
exists by induction hypothesis).
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We now construct the injective homomorphism fa: for every v ∈ V , define
fa(v) = (v, ε); for every pair (x, y) ∈ w−1(a), there exists z ∈ V such that
w(x, y) = w(x, z) + w(y, z). Let i = w(x, z), j = w(y, z), α = w(x, z) and
β = λ(y, z). Because the involved graphs are not oriented, we may assume
without loss of generality that (i, β) < (j, α) (the pairs cannot be equal
according to the definition of λ). Let Px,y = (x, v1, . . . , va−1, y) be the path
of Γwa linking x and y, let P ′

x,z = (x, s1, . . . , si−1, z) be the path of Γwi linking
x and z, and let P ′′

z,y = (z, t1, . . . , tj−1, y) be the path of Γwj linking z and y.
Then we define

fa(vl) =

⎧
⎪⎪⎨

⎪⎪⎩

φi,β(si), if 1 ≤ l < i,

(z, ((i, β), (j, α))), if l = i,

φj,α(tl+j−a), otherwise.

Then it is easily checked that fa meets the requirements of the lemma. ��

We shall now prove that it is possible to extend a k-fraternity function
w into a (k + 1)-fraternity function w ′ while bounding Δ−

k+1(w
′) by some

polynomial function of Δ−
k (w) and ∇̃k/2(G

w
1 ). For this purpose, we associate

to every k-fraternity function w the function Nw : [k + 1] → IR inductively
defined by as follows:

Nw(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if i = 1;
(
Δ−

1 (w)
2

)
, if i = 2;

∑i−1
j=2 Nw(j)Δ−

i−j(w)

+
∑(i−1)/2

j=1 Δ−
j (w)Δ−

i−j(w), if i ≡ 1 (mod 2);
∑i−1

j=2 Nw(j)Δ−
i−j(w)

+
∑i/2−1

j=1 Δ−
j (w)Δ−

i−j(w) +
(Δ−

i/2
(w)

2

)
, if i ≡ 0 (mod 2).

Notice that Nw(i) is a polynomial in Δ−
1 (w), . . . , Δ−

i−1(w) of degree i. Pre-
cisely, for each monomial Δ−

1 (w)a1Δ−
2 (w)a2 . . . Δ−

i−1(w)ai−1 appearing in
Nw(i) we have

∑i−1
j=1 j aj ≤ i.

The function Nw is governing the blowing procedure:

Lemma 7.6. Let V be a finite set, let k ≥ 1 be an integer, let w be a
k-fraternity function and let G = Gw

1 .
There exists a (k + 1)-fraternity function w ′ such that
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∀(x, y) ∈ V2, w(x, y) ≤ k =⇒ w ′(x, y) = w(x, y)

Δ−
k+1(w

′) ≤ ∇̃k/2(G • K1+Nw(k+1))

Proof. Consider any linear order on V . Let w1 be the (k + 1)-fraternity
function defined from the truncation of w:

� w1(x, y) = w(x, y) if w(x, y) ≤ k (i.e., w1 extends w);
� w1(x, y) = k+1 if x < y, min(w(x, y), w(y, x)) > k, and there exists z ∈ V

such that w(x, z) +w(y, z) = k + 1;
� w1(x, y) = ∞, otherwise.

The function w1 is clearly a (k + 1)-fraternity function.
According to Lemma 7.5, Γw1

k+1 ∈ G • K1+Nw(k+1). As Gw1

k+1 ∈ Γw1

k+1 �̃k/2

we deduce that

∇0(G
w1

k+1) = ∇̃k/2(Γ
w1

k+1) ≤ ∇̃k/2(G • K1+Nw(k+1)).

Hence there exists an orientation �H of Gw1

k+1 such that Δ−(�H) ≤ ∇̃k/2(G •
K1+Nw(k+1)).

Let w ′ be the (k + 1)-fraternity function defined by w1(x, y) = w(x, y)

if w(x, y) ≤ k, w1(x, y) = k + 1 if (x, y) is an arc of �H, and such that
w1(x, y) = ∞ otherwise. Then the conclusion of the lemma holds. ��

We shall now see that fraternity functions are related to p-centered color-
ings.

Let p be an integer, let k = 2p−1+2, let w be a k-fraternity function on a
set V , and let G = Gw

1 . Let c : V → IN be a coloring such that c(x) 	= c(y) if
there exists in �Gw

≤k a directed path from x to y of length at most p. Intuitively,
the coloring c will handle the transitivity part of the augmentation.

Lemma 7.7. Let P be a p-colored path in G and let VP be the vertex set
of P.

Then the length of P is at most 2p−2, and there exists a vertex s ∈ VP

such that every other vertex v ∈ VP may be reached from s by a directed
path of �Gw

≤k[VP].

Proof. Let P be a p-colored path in G. By considering a subpath, we may
assume that the length of P is at most 2p − 1 (as there exists a p-colored
path of length L > 2p−2 if and only if there exists a p-colored path of length
exactly 2p − 1).

Let φ : IN → IN be defined by φ(i) = �log2(i)�.
Let L be the length of P. We defined inductively oriented paths �Pi =

(xi,1, . . . , xi,Li
) in �Gw

≤k[VP] (i.e., in the subgraph of �Gw
≤k induced by the

vertex set of P) of length Li = L+ 1− i such that
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� Every vertex of VP out of �Pi can be reached from a vertex of �Pi by a
directed path of �Gw

≤k[VP];
� For every adjacent vertices u, v of �Pi such that w(u, v) < ∞ there exists

in �Gw
≤k[VP] a directed path of length φ(w(u, v)) starting from v which

intersects �Pi only at v.

Let �P1 = (x1,1, . . . , x1,L1
) be the oriented path corresponding to P and

assume �Pi has been constructed, for some i ≥ 1.
If there exists an internal vertex xi,t of Pi which is a sink and w(xi,t−1, xi,t)

+w(xi,t+1, xi,t) ≤ k then we define

�Pi+1 = (xi+1,1, . . . , xi+1,Li+1
),

where Li+1 = Li − 1, xi+1,j = xi,j if j < t, and xi+1,j = xi,j+1 if j ≥ t (see
Fig. 7.7).

1 1

1

1

2

1 1

2

2

1 1

4

1 1 1

1

1

1

1

5
�P1

�P2 �P3 �P4

�P5

Fig. 7.7 Construction of the sequence of paths �P1,�P2, . . .

To check that this directed path has the required properties we only need
to consider vertices u = xi+1,t−1 = xi,t−1 and v = xi+1,t = xi,t+1. Up to
a relabeling, we may assume that w(u, v) < ∞. By induction, there exists
a directed path �P ′ in �Gw

≤k[VP] starting from xi,t and intersecting �Pi only at
xi,t, whose length is at least
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‖�P ′‖ = max(φ(w(xi,t−1, xi,t)), φ(w(xi,t+1, xi,t)))

≥ φ(w(xi,t−1, xi,t) +w(xi,t+1, xi,t)) − 1

≥ φ(w(u, v)) − 1.

We deduce that there exists a directed path in �Gw
≤k[VP] starting from v and

intersecting �Pi+1 only at v whose length is φ(w(u, v)) (this is (v, xi,t) followed
by �P ′).

By iterating this process as long as possible, we end with an directed path
�Pn = (xn,1, . . . , xn,Ln

) which will make evident that the property of the
lemma holds.

Assume for contradiction that �Pn has an internal vertex xn,t which
is a sink. Then w(xn,t−1, xn,t) + w(xn,t+1, xn,t) > 2p − 2 thus one of
w(xn,t−1, xn,t) and w(xn,t+1, xn,t) (say w(xn,t−1, xn,t)) is at least 2p−2+1.
Thus there exists a directed path in �Gw

≤k[VP] starting from xn,t and intersect-
ing �Pn only at xn,t, whose length is φ(w(xn,t−1, xn,t)) ≥ φ(2p−2+1) = p−1.
Hence there exists a directed path in �Gw

≤k[VP] starting from xn,t−1 whose
length is p. This path cannot be p-colored according to our assumption on
the coloring, hence a contradiction.

It follows that there exists in �Pn a vertex s which is linked to all the other
vertices of �Pn by a directed path in �Pn hence to all the other vertices of VP

by a directed path of �Gw
≤k[VP] (of length at most p − 1, according to the

coloration assumption).
The removal of s splits the path P into two (p− 1)-colored sub-paths, one

of them having length at least �L/2�. By induction, it follows that L ≤ 2p−1.
��

Lemma 7.8. The coloring c is a (p + 1)-centered coloring of G. Hence
χp(G) ≤ |c(V)|.

Proof. Consider any induced subgraphG[A] of G and assume that A contains
at most p colors.

We define a function s which maps paths of G[A] to A in such a way that
for every path P, the vertex s(P) is linked to all the other vertices of P by a
directed path in �Gw

k [A].
Define a relation ≺A on A by u ≺A v if there exists v ′ with the same

color as v and a path Pv,v ′ linking v to v ′ such that there exists a directed
path in �Gq from u to s(Pv,v ′). This relation is antisymmetric: otherwise, we
would find in �Gq a directed path from u to s(Pv,v ′), one from s(Pv,v ′) to v,
one from v to s(Pu,u ′) and one from s(Pu,u ′) to u ′ thus there would exist in
�Gq a directed path from u to u ′, contradicting the hypothesis that u and u ′

are colored the same. Also, the relation is transitive (similar proof) hence it
defines a partial order. As u ≺A v implies that there exists in �Gq a directed



166 7 Decomposition

path from u to v, we deduce that the partial order ≺A has no chain of length
strictly greater than p.

Let r be a minimal element of ≺A. Then no other vertex in A has the
same color as r for otherwise there would exist a vertex r ′ colored the same
as r and a path P linking r and r ′ (as G[A]) is connected hence we would get
s(P) ≺A r, contradicting the minimality of r.

It follows that the coloring if (p + 1)-centered. ��

After all these preliminaries (and admittedly technical) results we arrive
to the following main result of this section:

Theorem 7.8 (Low tree-depth coloring). Let �G be a directed
graph. Define recursively

A1 = 0

B1 = Δ−(�G)

and inductively, for i > 1:

Ai =

i−1∑

j=2

AjBi−j +
1

2

i−1∑

j=1

BjBi−j

Bi = max((i − 1)Ai + 1, (Ai + 1)2)∇̃(i−1)/2(G) +Ai

Then, for every integer p ≥ 2:

χp(G) ≤ 1+ 2

2p−1+2∑

i=1

Bi.

Hence χp(G) is bounded by a polynomial Pp(∇̃2p−2+1/2(G)),
where Pp has degree about 22

p

.

Actually, ∇̃(p−1)/2(G) and min{Δ−
≤p(w) : Gw

1
∼= G} are polynomially

equivalent for each fixed p. The proof of Theorem 7.8 follows from the com-
putation formulated in the following two lemmas.

For a path P in Gw
≤k we define the w-length of P = (x1, . . . , xq) by

‖P‖w =

q−1∑

i=1

min(w(xi, xi+1), w(xi+1, xi))
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Lemma 7.9. Let w be a k-fraternity function and let P be a path of
w-length at most k of Gw

≤k linking vertices x and y. Then there exists
z ∈ V(P) such that either z 	= x and w(z, x) ≤ k or z 	= y and w(z, y) ≤ k.

Proof. We prove the lemma by induction on the length of P. If ‖P‖ = 1, then
one of w(x, y) and w(y, x) is at most k hence we let z = x or z = y. Assume
that the lemma holds if ‖P‖ = i where 1 ≤ i < k and assume ‖P‖ = i + 1.
Let P = (x = v1, v2, . . . , vi, vi+1 = y). If w(v2, v1) ≤ k then let z = v2.
Otherwise, if w(vi, vi+1) ≤ k then let z = vi. Otherwise, let j be the smallest
integer such that w(vj+1, vj) ≤ k (hence 1 < j ≤ i). By minimality we have
w(vj−1, vj) ≤ k hence

min(w(vj−1, vj+1), w(vj+1, vj−1)) ≤ w(vj−1, vj) +w(vj+1, vj) ≤ ‖P‖w ≤ k.

It follows that {vj−1, vj+1} is an edge of Gw
≤k. Consider the path

P ′ = (v1, . . . , vj−1, vj+1, . . . , vi+1).

Then ‖P ′‖ = i and ‖P ′‖w ≤ ‖P‖w ≤ k. By induction there exists z ∈ V(P ′) ⊂
V(P) such that either z 	= x and w(z, x) ≤ k or z 	= y and w(z, y) ≤ k. ��

Lemma 7.10. For every k-fraternity function w we have:

Δ−
≤k(w) ≥ ∇̃(k−1)/2(G

w
1 ).

Proof. Consider a ≤ k-subdivision S of a graph H in Gw
1 such that ∇0(H) =

∇̃(k−1)/2(H). Let �H1 be an orientation of H computed as follows: Each edge
{u, v} of H corresponds to a path Puv of length at most k linking u to v in
S hence in G. As ‖Puv‖w = ‖P‖ ≤ k, there exists, according to Lemma 7.9
a vertex z V(Puv) such that either z 	= u and w(z, u) ≤ k or z 	= v and
w(z, v) ≤ k. In the first case we orient {u, v} from v to u in �H and from u to
v otherwise. As the branches are internally vertex disjoints the indegree of
a vertex u in �H will be at most equal to the number of vertices z such that
w(z, u) ≤ k. Hence

Δ−
≤k(w) ≥ Δ−(�H) ≥ ∇0(H) = ∇̃(k−1)/2(G).

��

Theorem 7.8 gives us yet another characterization of nowhere dense classes:
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Theorem 7.9. Let C be an infinite class of graphs. Define

f(C) = lim
p→∞

lim sup
G∈C

log χp(G)

log |G|
.

Then, the class C is

� A nowhere dense class if and only if f(C) = 0,
� A somewhere dense class if and only if f(C) ≥ 1/2.

Proof. For p − 2 subdivisions of large complete graphs, we have χp(G) ≈√
|G|/p hence f(C) ≥ 1/2 if C is somewhere dense.
According to Theorem 7.8, χp(G) ≤ Pp(∇̃2p−2+1/2(G)) (for some polyno-

mial Pp independent of G) Hence if G is not edgeless we have:

logχp(G) = O(log ∇̃2p−2+1/2(G)),

Thus

lim
p→∞

lim sup
G∈C

logχp(G)

log |G|
≤ �dens(C˜�) − 1.

As for every graph G (of order at least 1) and every positive integer p we
have χp(G) ≥ 1, it follows that f(C) = 0 if C is nowhere dense. ��

The transitive fraternal augmentation and the fraternal augmentation pro-
cesses have many advantages. Particularly, as we shall see in Chap. 18, tran-
sitive fraternal augmentation leads to low complexity algorithms for very
diverse problems. On the one hand these augmentations have the advantage
of allowing any initial indegree bounded orientation; on the other hand, they
have the disadvantage that they cannot preserve in the augmentation the
acyclicity of an initial orientation while keeping the indegrees bounded (see
Exercise 7.4).

7.5 The Weak-Coloring Approach

In [476], Xuding Zhu proposed an alternate approach to proving existence
of low tree-depth colorings, by using generalized coloring numbers. He then
showed that these are polynomially equivalent to grads. In this section we
review Zhu’s approach [476]. The notations are those introduced in Sect. 4.9.
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Theorem 7.10. If G is a graph with wcol2p−2(G) ≤ m, then G

has a p-centered coloring using at most m colors.

Proof. Let L = v1v2 . . . vn be an ordering of the vertices of G with

max
v∈V(G)

|Q2p−2(GL, v)| ≤ m − 1.

Color the vertices of G greedily, using the order L, so that the color as-
signed to v is distinct from colors assigned to vertices in Q2p−2(GL, v). As
|Q2p−2(GL, v)| ≤ m − 1, m colors suffice. We claim that such a coloring is
a p-centered coloring. Let H be a connected subgraph of G. Let v be the
minimum vertex of H with respect to L. If the color c(v) of v appears exactly
once in H, then we are done.

Assume c(v) is used more than once in H. We shall prove that H uses
at least p colors. Let u 	= v be a vertex of H with c(u) = c(v), and let
P0 = (v = v0, v1, v2, . . . , v=u) be a path in H connecting v and u. We must
have q > 2p−2, for otherwise v is weakly 2p−2-accessible from u, i.e., v ∈,
Q2p−2(GL, v) and we should have c(u) 	= c(v).

Let u0 = v, and let P1 = (v1, . . . , v2p−2) be the subpath of P0. Observe
that no vertex of P1 uses color c(u0) and P1 contains 2p−2 vertices. Assume
0 ≤ j ≤ p − 2, and a vertex uj of Pj, and a subpath Pj+1 of Pj are chosen
such that the following hold:

� No vertex of Pj+1 uses the color of c(uj).
� Pj+1 contains at least 2p−j−2 vertices.

Let uj+1 be the minimum vertex of Pj+1 with respect to L. If j ≤ p− 3, then
let Pj+2 be the largest component of Pj+1−uj+1. Then uj+1 is weakly 2p−2-
accessible from each vertex of Pj+1, and hence no vertex of Pj+2 uses the color
c(uj+1). Moreover Pj+2 is a path containing at least 2p−j−3 vertices. So we
can repeat the process until j = p−2, and we obtain vertices u0, u1, . . . , up−1.
By the choices of these vertices, their colors are distinct. So H uses at least
p colors. ��

It follows that χp(G) is bounded by wcol2p−1(G) (as a (p + 1)-centered
coloring is a χp-coloring, see Corollary 7.1). Next we prove (without rely-
ing on the previous two sections) that wcolp is polynomially equivalent to
∇(p−1)/2. This will follow from the following two lemmas:
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Lemma 7.11. For any graph G, for any integer k,

∇(k−1)/2(G) + 1 ≤ wcolk(G). (7.5)

Proof. Consider a linear order L on the vertex set of G such that

max
v∈V(G)

|Qk(GL, v)| = wcolk(G) − 1.

Let P = {V1, V2, . . . , Vn} be a witness of ∇(k−1)/2. Let H be the subgraph
obtained from G by replacing each G[Vi] by a tree Ti such that for each
x ∈ Vi, distTi

(vi, x) = distG[Vi](vi, x), and that there is between Vi and Vj

one edge {x, y} with distTi
(vi, x)+distTj

(vj, y) ≤ k−1, if such an edge exists.
Then we have

|E(H/P)|

|P|
= ∇(k−1)/2(H) = ∇(k−1)/2(G).

For Vi, Vj adjacent in H/P, orient the edge {Vi, Vj} from Vi to Vj (in H/P)
if the minimum vertex mi,j of the (unique) vivj-path in H[Vi ∪ Vj] (with
respect to the linear order L) belongs to Vi. In such a case, mi,j is weakly
k-accessible from vj. Moreover, as Vi and Vi ′ are disjoint sets, if i 	= i ′ then
mi,j 	= mi ′,j. It follows that Vj has indegree at most |Qk(GL, vj)| in H/P,
and hence ∇(k−1)/2(G) + 1 ≤ wcolk(G). ��

Theorem 7.11. Suppose G is a graph and k is a positive in-
teger. Let p = (k − 1)/2 and ∇p(G) ≤ m. Then

colk(G) ≤ 1+ qk, (7.6)

where qk is defined as q1 = 2m and for i ≥ 1, qi+1 = q1q
2i2

i .

Proof. The proof of this result of [476] is similar to the proof of Theorem
4 in [274]. Suppose G is a graph, k is a positive integer, put p = (k − 1)/2

and ∇p(G) ≤ m. We shall construct a linear ordering L on the vertices of
G so that for each vertex u, |Rk(GL), u)| ≤ qk (where qk is defined in the
statement of the lemma).

The linear ordering L = x1x2 . . . xn is defined recursively. Suppose that
we have constructed the subsequence xi+1xi+2 . . . xn of L. (If i = n, then
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the sequence is empty.) Let M = {xi+1, xi+2, . . . , xn} and let U = V(G) \M.
Let Ω be the probability space of all graphs of the form H = (U, F), where
F is defined as follows: For each pair {u, v} of vertices in U for which there is
a uv-path P of length at most k with all interior vertices in M, choose one
such path Puv. For z ∈ M, let

Sz = {uv : {u, v} ⊆ U, z ∈ V(Puv)}.

Label each z ∈ M with a random element chosen from Sz. If Sz = ∅, then z

is unlabeled. Let F be the set of pairs uv such that either uv ∈ E(G) or for
all z ∈ V(Puv), z is labeled uv. So if uv is an edge of G, then uv ∈ F with
probability 1. Otherwise,

Pr(uv ∈ F) =
∏

z∈M∩V(Puv)

1

|Sz|
.

Let E[dH(x)] be the expected value of the degree of vertex x in H. Choose
xi ∈ U so that E[dH(xi)] is minimum.

Next, we prove that the expected minimal degree of H is at most 2m.
Toward this end, let H be a random graph defined as above. For each {u, v} ∈
F \ E(G), partition the vertices in Puv into two parts A(uv, u), A(uv, v) by
puting z ∈ A(uv, u) if distPuv

(u, z) < distPuv
(v, z), and z ∈ A(uv, v) if

distPuv
(v, z) < distPuv

(u, z). If z is in the middle of Puv, then arbitrarily
put z in A(uv, u) and A(uv, v). Put Vu =

⋃
v∈NH(u)A(uv, u). Then all

sets Vu, u ∈ U are disjoint subsets of V(G), and each induces a connected
subgraph of radius at most k/2. Let P = {Vu : u ∈ U}. Then ρ(P) ≤ k/2 and
H is a subgraph of G/P. Thus the minimum degree of H satisfies

δ(H) ≤ 2|E(G/P)|/|P| ≤ 2m.

Therefore E[dH(xi)] ≤ q1.
We now prove by induction on i ≤ k that |Ri(GL, y)| ≤ qi for all vertices

y ∈ U. Fix the time when y was added to the final sequence of L. For i = 1,
this is true as if x ∈ R1(GL, y), then x ∈ U and {x, y} ∈ F with probability
1, and thus E[dH(y)] ≤ q1. Assume now that |Ri(GL, y)| ≤ qi holds for all
vertices y ∈ U and all i ≤ t and consider the case that i = t + 1. For each
z ∈ M,x ∈ Rt+1(GL, y) and xy ∈ Sz, both x, y are in Qt(GL, z). According
to Proposition 4.8, we have:

max
v∈V(G)

|Qk(GL, v)| ≤ max
v∈V(G)

|Rk(GL, v)|
k,

and by the induction hypothesis,
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|Sz| ≤ |Qt(GL, z)| ≤ (qt)
2t.

Therefore,

q1 ≥ E[dH(y)] ≥
∑

x∈Rt+1(GL,y)

Pr(xy ∈ F)

=
∑

x∈Rt+1(GL,y)

∏

z∈M∩V(Pxy)

1

|Sz|
≥ |Rt+1(GL, y)|(qt)

−2t2 .

So finally

|Rt+1(GL, y)| ≤ q1(qt)
2t2 = qt+1.

��

One important advantage of this approach (apart from its elegance and
shortness) is that it allows to construct an acyclic transitive fraternal aug-
mentations for each value of p. One disadvantage is that the proof is non
constructive and that it does not allow to extend a partially defined the linear
order (in a way similar to the use of an arbitrary initial indegree bounded ori-
entation for transitive fraternal augmentations or transitive augmentations),
see Exercise 7.4.
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Exercises

7.1. Let l(G) be the minimum length of a monochromatic path in a 2-coloring
of the vertices of G. Prove that the maximum of l(G) over all outerplanar
graphs G of order n is at least c log(n− 1) for some positive constant c.

Deduce that there is no constant C such that every outerplanar graph
admits a vertex partition into two parts, each of them inducing a subgraph
of tree-depth at most C.

7.2. (1) Consider any star coloring of a graph G and let N be the number
of colors used by the coloring. Prove that there exists an orientation �G

of G such that every tight 1-transitive fraternal augmentation of �G has
chromatic number at most N;

(2) Deduce that there exist planar subcubic graphs of arbitrary high girth
and star chromatic number 4;

(3) Consider any orientation �G of a graph G and a tight 1-transitive fraternal
augmentation H of G. Prove that χs(G) ≤ χ(H).

(4) Deduce that the star chromatic number of a graph G is the minimum over
all the orientations �G of G of the chromatic number of a tight 1-transitive
fraternal augmentation of �G.

7.3. Define the tree-depth of a countable graph G has the minimum height
of a rooted forest Y such that G ⊆ Clos(Y).

Prove that for every countable graph G it holds

td(G) = sup
A⊆V(G) finite

td(G[A]).

For integer p, define χp(G) (for countable G) as the minimum N such that
V(G) can be N-colored in such a way that every subset of i ≤ p colors induce
a subgraph with tree-depth at most i. Prove that

χp(G) = sup
A⊆V(G) finite

χp(G[A]).

7.4. Show that acyclicity and bounded indegrees cannot be both preserved
by a (transitive) fraternal augmentation and hence that the acyclicity en-
sured by the weak-coloring approach of Sect. 7.5 cannot be combined with
the flexibility of the augmentation processes used in Sects. 7.3 and 7.4.

7.5. Consider the closure of a highly branching tree of height 3. Let φ be an
integral graph function (i.e., φ(G) is an integer for every graph G). Assume
that for any integer k and for any proper minor closed class K there exists an
integer N(K, k) such that every graph G ∈ K has a partition into ≤ N(K, k)
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parts with the property that any subgraph H ⊆ G gets at least min(k,φ(H))

colors.
Prove that φ(H) ≤ td(H).



Chapter 8
Independence

Eyes wide open at independence.

We know that the dichotomy nowhere dense vs. somewhere dense can be
expressed by means of decompositions, maximal cliques, and coloring num-
bers. We now give in a certain sense a dual characterization by independence
(or stability).

8.1 How Wide is a Class?

Recall that the distance distG(x, y) in a graph G between two vertices x and
y is the minimum length of a path linking x and y (or ∞ if x and y do not
belong to the same connected component of G). Let G = (V, E) be a graph
and let d be an integer. Recall that the d-neighborhood NG

d (u) of a vertex
u ∈ V (sometimes called d-ball) is the subset of vertices of G at distance at
most d from u in G: NG

d (u) = {v ∈ V : distG(u, v) ≤ d}.
Let r ≥ 1 be an integer. A subset A of vertices of a graph G is

r-independent if the distance between any two distinct elements of A

is strictly greater than r. We denote by αr(G) the maximum size of an
r-independent set of G. Thus α1(G) is the usual independence number α(G)

of G. The notion of r-independence is closely related to the notion of an
r-scattered set which originated in mathematical logic: a subset A of vertices
of G is d-scattered if NG

d (u) ∩ NG
d (v) = ∅ for every two distinct vertices

u, v ∈ A. Thus A is d-scattered if and only if it is 2d-independent. It is
possible to say that this whole chapter is motivated by mathematical logic.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__8, © Springer-Verlag Berlin Heidelberg 2012
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The notion of r-independence leads to the notion of wide, almost wide
and quasi wide classes. We find it useful to study these classes by means of
the following function ΦC defined for any class of graphs. It is essential for
our approach that we also define the uniform version ΦC of this function.

Function ΦC

This function has domain IN and range IN ∪ {∞} and ΦC(d) is defined for
d ≥ 1 as the minimum s such that the class C satisfies the following property:

There exists a function f : IN → IN such that for every integer m, every
graph G ∈ C with order at least f(m) contains a subset S of size at most s

so that G− S has a d-independent set of size m (see Fig. 8.1).

x1

x2

xm

xi

xj

xk

> d

S

≤ d

Fig. 8.1 If |G| ≥ f(m) then there exists S (with |S| ≤ ΦC(d)) and x1, . . . , xm such
that distG−S(xi, xj) ≥ d (i.e. every xi–xj path of G with length < d intersects S)

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.
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Function ΦC

This function has domain IN and range IN ∪ {∞} and ΦC(d) is defined for
d ≥ 1 as the minimum s such that C satisfies the following property:

There exists a function f : IN → IN such that for every integer m, every
graph G ∈ C and every subset A of vertices of G of size at least f(m),
the graph G contains a subset S of size at most s so that A includes a d-
independent set of size m of G− S (see Fig. 8.2).

x1

x2

xm

xi

xj

xk

> d

A

S

≤ d

Fig. 8.2 If |A| ≥ f(m) then there exists S (with |S| ≤ ΦC(d)) and x1, . . . , xm ∈ A such
that distG−S(xi, xj) ≥ d (i.e. every xi–xj path of G with length < d intersects S)

We put ΦC(d) = ∞ if C does not satisfy the above property for any value
of s. Moreover, we define ΦC(0) = 0.

Notice that obviously ΦC(d) ≥ ΦC(d) for every class C and for every
integer d. We view ΦC(d) as a uniform version of ΦC(d). Obviously it is
possible for a class C that ΦC(d) is finite while its uniform version ΦC(d) is
infinite.

Definition 8.1. A class of graphs C is wide (resp. almost wide, resp. quasi-
wide) if ΦC is identically 0 (resp. bounded, resp. finite) [42, 109]:
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C is wide ⇐⇒ ∀d ∈ IN : ΦC(d) = 0

C is almost wide ⇐⇒ sup
d∈IN

ΦC(d) < ∞

C is quasi-wide ⇐⇒ ∀d ∈ IN : ΦC(d) < ∞

What do these definitions mean? For a better understanding, let us refor-
mulate them.

� ΦC(d) = 0 means that for every m, every sufficiently large graph in C

contains a d-independent set of size at least m;
� supd∈IN ΦC(d) = 0 means that there exists a constant s such that for every

d and m, every sufficiently large graph in C contains a subset of size at
most s whose deletion results in a graph containing a d-independent set
of size at least m.

� ΦC(d) < ∞ means that there exists a constant s = s(d) (depending on
d) such that for every m, every sufficiently large graph in C contains a
subset of size at most s whose deletion results in a graph containing a
d-independent set of size at least m;

Notice that a hereditary class C is wide (resp. almost wide, resp. quasi-
wide) if and only if C� 0 is wide (resp. almost wide, resp. quasi-wide) as
deleting edges cannot make it more difficult to find independent sets.

We introduce the following (uniform) variation of Definition 8.1.

Definition 8.2. A class of graphs C is uniformly wide (resp. uniformly al-
most wide, resp. uniformly quasi-wide) if ΦC is identically 0 (resp. bounded,
resp. finite):

C is uniformly wide ⇐⇒ ∀d ∈ IN : ΦC(d) = 0

C is uniformly almost wide ⇐⇒ sup
d∈IN

ΦC(d) < ∞

C is uniformly quasi-wide ⇐⇒ ∀d ∈ IN : ΦC(d) < ∞

Notice that a class C is uniformly wide (resp. uniformly almost wide, resp.
uniformly quasi-wide) if and only if C� 0 is uniformly wide (resp. uniformly
almost wide, resp. uniformly quasi-wide): the uniform properties are mono-
tone as deleting edges or vertices cannot make it more difficult to find inde-
pendent sets.

Based on a construction of Kreidler and Seese [289], Atserias et al. [42]
proved that if a class excludes a graph minor then it is almost wide. Classes
locally excluding a minor have been shown to be quasi-wide by Dawar
et al. [111]. In Sects. 8.4 and 8.5 we explicitly characterize these classes in
graph theoretic terms. Particularly we show that a hereditary class is quasi
wide if and only if it is nowhere dense (Theorem 8.2).
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8.2 Wide Classes

Recall that Δ(G) denotes the maximal degree of a graph G and that Δ(C)

denotes the supremum of all Δ(G) for G ∈ C. Thus Δ(C) = ∞ just means
that the graphs in C have arbitrary large degrees.

Characterizing wide classes is not difficult. Advancing this, we take time
for two easy lemmas.

Lemma 8.1. Let C be a hereditary class of graphs. If Δ(C) = ∞ then
ΦC(2) > 0.

Proof. Assume for contradiction that C satisfies ΦC(2) = 0. Then there exists
a function f : IN → IN such that every graph G ∈ C with order at least f(2)

has a 2-independent set of size 2. As Δ(C) = ∞, the class C contains a graph
G with maximum degree at least f(m). As C is hereditary it contains a graph
of order at least f(m) + 1 with a universal vertex (that is: a vertex adjacent
to all the other vertices). Although this graph has order greater than f(m),
it contains no 2-independent set of size 2. 	


Lemma 8.2. Let G = (V, E) be a graph and let d,m be integers. If A ⊆ V

has size at least (Δ(G)d + 1)m then A includes a d-independent set of
size at least m.

Proof. Notice that Gd (the graph with vertex set V(G) in which two vertices
are adjacent if their distance in G is at most d) has maximum degree at most
Δ(G)

∑d−1
i=0 (Δ(G)−1)i ≤ Δ(G)d (hence chromatic number at most Δ(G)d+1)

and that any independent set of Gd is a d-independent set of G. As at least
one color class of Gd intersects A on a subset of size at least |A|/χ(Gd) the
lemma follows. 	


As a consequence of previous lemmas we deduce our first characterization
theorem:

Theorem 8.1. Let C be a hereditary class of graphs. Then the following
are equivalent:

� ΦC(2) = 0,
� ΦC(2) = 0,
� Δ(C) < ∞,
� C is wide,
� C is uniformly wide.

Proof. The theorem follows from the following implications (where the non-
obvious implications follow from the two above Lemmas).
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C uniformly wide ��

��

ΦC(2) = 0

��

Δ(C) < ∞

(Lemma 8.2)
�� ������������

������������

C wide �� ΦC(2) = 0

(Lemma 8.1)

�� ����������

����������

	

Although the hypothesis that C is hereditary is not necessary to prove that

C is uniformly wide if and only if Δ(C) is finite (because the property of being
uniformly wide is hereditary in nature), this assumption is necessary in order
to prove that a wide class has bounded maximum degree (see Exercise 8.1).

8.3 Finding d-Independent Sets in Graphs

The characterization of almost wide and quasi wide classes is not as sim-
ple as for wide classes. What we are looking for are obstructions to these
two properties. This problem has a Ramsey theory flavor. In this section we
(elaborately) prove the possible types of such obstruction sets. This is then
combined in Sect. 8.4 to obtain a characterization of quasi wide classes (The-
orem 8.2) and in Sect. 8.5 to obtain a characterization of almost wide classes
(Theorem 8.4).

8.3.1 Finding 1-Independent Sets in Graphs

The following is a restatement of the Ramsey theorem for graphs. It implies
the existence of 1-independent sets in large graphs without large cliques:

Lemma 8.3. Let G be a graph and let c, n be integers. Let A be a subset of
at least R(c, n) vertices of G. Then either G contains a Kc or A includes
an independent set of size n. 	


8.3.2 Finding a 2-Independent Set in a 1-Independent
Set

Define the following variant of Ramsey numbers:
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R�(p, q, n) = R(

(n−1
2 ) times

︷ ︸︸ ︷

q, q, . . . , q, p).

Then we have the following:

Lemma 8.4. Let G = (A ∪ B, E) be a bipartite graph and let p, q, n be
integers. If |A| ≥ R�(p, q, n) then at least one of the following properties
holds:

� A includes a set A ′ of size p such that no two vertices in A ′ have a
common neighbor;

� A includes the principal (i.e. branching) vertices of a 1-subdivision
of the complete graph Kq (1-subdivision means that all the edges are
subdivided by exactly one vertex);

� B includes a vertex of degree at least n.

Proof. Assume that B includes no vertex of degree at least n. Let k = |B| and
let b1, b2, . . . , bk be the vertices in B in some arbitrary order. Let Γ be the
complete graph with vertex set A, whose edges are colored using

(
n−1
2

)
+ 1

colors and defined as follows: To begin, let Γ be the empty graph with vertex
set A. Then we add the edges in k+1 steps. At step i ≤ k we add to Γ all the
edges (which have not been previously added) between the neighbors of bi,
coloring them with integers between 1 and

(
n−1
2

)
in such a way that no two

edges added at this step get the same color. This is possible as the degree of
bi is at most n − 1. At step k + 1, we add all the missing edges and assign
to them the color

(
n−1
2

)
+ 1.

As |A| ≥ R�(p, q, n), there exists in Γ a monochromatic clique of size q

with color in {1, . . . ,
(
n−1
2

)
} or a monochromatic clique of size p with color(

n−1
2

)
+ 1. If the edges of the clique have color

(
n−1
2

)
+ 1, its vertices define a

subset A ′ of size p, such that no two vertices in A ′ have a common neighbor.
Otherwise, all the edges of the monochromatic clique of size q have been
added at different

(
q
2

)
steps (as they got the same color), hence G includes a

1-subdivision of Kq having its principal vertices in A. 	

We shall need a stronger statement by refining the third possibility,

namely: “B includes a vertex of degree at least n”. Define inductively the
number Θ(m,a, b, s) by:

Θ(m,a, b, s) =

⎧

⎨

⎩

R�(m,a, b), if s = 0;

R�(m,a,Θ(m,a, b, s− 1)), otherwise.

Lemma 8.5. Let m,a, b, s be integers. Let G = (A ∪ B, E) be a bipartite
graph such that |A| ≥ Θ(m,a, b, s). Then at least one of the following
properties holds (cf. Fig. 8.3):
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� There exist subsets A ′ ⊆ A and B ′ ⊆ B with |A ′| = m and |B ′| = s such
that only the vertices in B ′ can have more than one neighbor in A ′;

� A includes all principal vertices of a 1-subdivision of Ka;
� B includes the s+ 1 vertices of the complete bipartite graph Ks+1,b.

B

A′ = m A

B′ = s

B

A

B

Aa

a
2

)

B

A

s + 1

b

Fig. 8.3 Unavoidable structures of Lemma 8.5

Proof. We proceed by induction on s.
Assume s = 0. Let p = m,q = a and n = b. According to Lemma 8.4,

either A includes a subset A ′ of size m such that no two vertices of A ′ have a
common neighbor or G includes a 1-subdivision of Ka with principal vertices
in A or B includes a vertex of degree at least b hence G includes a star K1,b

with the center of the star in B.
Assume that s > 0 and that the result has been proved for s − 1. Let

p = m,q = a, n = Θ(m,a, b, s − 1). According to Lemma 8.4, either A
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includes a subset A ′ of size m such that no two vertices of A ′ have a common
neighbor or G includes a 1-subdivision of Ka with principal vertices in A or
B includes a vertex of degree at least Θ(m,a, b, s− 1).

In the two first cases we are done. Thus assume that G contains a vertex
v ∈ B of degree at least Θ(m,a, b, s−1). Let H be the subgraph of G induced
by the neighborhood X of v and the set Y of the vertices in B− v having at
least a neighbor in common with v. Then |X| ≥ Θ(m,a, b, s−1). By induction,
either there exist A ′ ⊆ X ⊆ A and Y ′ ⊆ Y with |A ′| = m, |Y ′| = s−1 and only
the vertices in Y ′ can have in H more than one neighbor in A ′ (hence only
the vertices of B ′ = Y ′ ∪ {v} can have in G more than one neighbor in A ′) or
H includes a complete bipartite graph Ks,b with the s vertices in Y (thus G

includes a complete bipartite graph Ks+1,b with the s+ 1 vertices in B as v

is adjacent to all the vertices in X) or H (hence G) contains a 1-subdivision
of the complete graph Ka with principal vertices in X ⊆ A. 	


Lemma 8.6. Let G be a graph and let A be an independent set of G of
order at least Θ(m,a, b, s). Then at least one of the following properties
holds:

� There exists in G a subset of size at most s whose removal leaves in
A a 2-independent set of size m;

� G includes a K̇a or a Ks+1,b.

Proof. Consider the bipartite graph G ′ = (A ∪ B, E ′) where B is the set of
all the vertices of G adjacent to a least a vertex in A and E ′ is the subset of
the edges of G linking a vertex in A to a vertex in B. The result is then a
direct consequence of Lemma 8.5. 	


8.3.3 Finding a (2r + 1)-independent Set
in a 2r-independent Set

Lemma 8.7. Let G be a graph and let c, n be integers. Let A be a 2r-
independent subset of G of size at least R(c, n). Then either Kc ∈ G� r

or A includes a (2r + 1)-independent set of size n.

Proof. Consider the graph H ∈ G� r obtained from G by contracting the
r-neighborhoods of the vertices in A into a set A ′ identified to A (see Fig. 8.4).
According to Lemma 8.3, either H contains a Kc (thus Kc ∈ G� r) or A ′

includes an independent set of size n of H, which corresponds to a (2r + 1)-
independent set of G included in A. 	
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G

H

r

Fig. 8.4 The reduced graph H is obtained by contracting the r-neighborhoods of the
vertices in A

8.3.4 Finding a (2r + 2)-Independent Set
in a (2r+ 1)-Independent Set

Lemma 8.8. Let G be a graph and let A be a (2r + 1)-independent set
of G of order at least Θ(m,a, b, s). Then at least one of the following
properties holds:

� There exists in G a subset of size at most s whose removal leaves in
A a (2r + 2)-independent set of size m;

� G� r includes a K̇a or a Ks+1,b.

Proof. Consider the graph H ∈ G� r obtained from G by contracting the
r-neighborhoods of the vertices in A into a set A ′ identified to A (again see
Fig. 8.4). According to Lemma 8.6, either H contains a K̇a or a Ks+1,b (thus
K̇a ∈ G� r or Ks+1,b ∈ G� r) or A ′ includes a 2-independent set of size n of
H, which corresponds to a (2r + 2)-independent set of G included in A. 	
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8.4 Quasi-Wide Classes

We are now ready to decide finiteness of ΦC(r) for a general monotone class C.

Lemma 8.9. Let C be a monotone class of graphs and let r ≥ 0 be a
half-integer. Assume ω(C �̃ r) = ∞. Then ΦC(6r + 1) = ∞.

Proof. Let c = ω(C �̃ r). Assume for contradiction that s = ΦC(6r+ 1) < ∞

and put m = rs(s − 1) +
√
2s + 2. Then there exists an integer N such that

every graph G of order at least N has a subset S of at most s vertices, such
that G− S contains a (6r + 1)-independent set I of size m.

Let G be a ≤ 2r-subdivision of KN in C (such a graph has to exist in
C as C is monotone and ω(C �̃ r) = ∞). Put S0 = {v ∈ S : d(v) = 2} and
S1 = S \ S0. The deletion of S in G leaves one big connected component and
several small ones. Each small connected component is included in a branch
of G and does not included any non-subdivision vertex of G. Hence the sum
of the orders of the small component is bounded by 2r

(
s
2

)
= rs(s − 1). As

|I| ≥ rs(s − 1) +
√
s + 1, there exists I0 ⊆ I of cardinality at least

√
2s + 2

which contains only vertices of the big connected component. For each x ∈ I0
there exists a principal vertex τ(x) of G− S such that distG−S(x, τ(x)) ≤ 2r.
Put J0 = {τ(x) : x ∈ I0. Obviously, no two distinct vertices x, y ∈ I0 may
be such that τ(x) = τ(y) for otherwise distG−S(x, y) ≤ distG−S(x, τ(x)) +

distG−s(y, τ(y) ≤ 4r. Hence |J0| = |I0|. As at most s branches of G have an
internal vertex in S, it is possible to color the principal vertices in G − S

by 
√2s� colors in such a way that if two principal vertices x and y are
colored the same then the branch of G linking them does not meet S. As
|J0| = |I0| ≥

√
2s + 2, there exists in J0 two vertices τ(x) and τ(y) with the

same color, hence such that the branch linking them does not meet S. Thus
distG−S(x, y) ≤ distG−S(x, τ(x)) + distG−S(τ(x), τ(y)) + distG−S(τ(y), y) ≤
6r + 1. Hence a contradiction (see schematic Fig. 8.5 on page 192). 	


The following characterization theorem follows:

Theorem 8.2. Let C be a hereditary class of graphs. The fol-
lowing conditions are equivalent:

� C is quasi-wide;
� C is uniformly quasi-wide;
� For every integer d, ω(C�d) < ∞;
� For every integer d, ω(C �̃d) < ∞;
� C is a class of nowhere dense graphs.
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Proof. First remark that a hereditary class is quasi-wide if and only if its
monotone closure is quasi-wide (as noticed after Definition 8.1), and that a
class C is nowhere dense if and only if its monotone closure C� 0 is nowhere
dense (direct from definition). Also note that the equivalence of the three
last items has already been established.

Assume C� 0 is a class of nowhere dense graphs. According to Lem-
mas 8.3, 8.6, 8.7 and 8.8 then C� 0 (hence C) is uniformly quasi-wide hence
quasi-wide. Conversely, if C (hence C� 0) is not a class of nowhere dense
graphs, then C� 0 (hence C) is not quasi-wide according to Lemma 8.9 thus
C is also not uniformly quasi-wide. 	


We can be more precise about the function ΦC. Toward this end, we
introduce the following class parameter: For a class C we define

ω ′(C) = sup{s : ∀n ∈ IN, Ks,n ∈ C� 0}.

We show that ΦC and ω ′ are closely related (Proposition 8.1).

Lemma 8.10. Let C be a monotone class of graphs and let r ≥ 0 be a
half-integer. Then ΦC(8r + 6) ≥ ω ′(C� r).

Proof. Assume for contradiction that s = ΦC(8r + 6) < ω ′(C� r). Put
m = 2(r + 1)s(s + 1) + 2. There exists an integer N such that for every graph
G ∈ C and every subset A of at least N vertices of G, the graph G has a sub-
set S of cardinality at most s and A includes a subset I of cardinality m such
that I is (8r + 6)-independent in G− S. Put d = �r�+ 1 and N0 = Nds+1

.
As C is monotone and as ω ′(C� r) > s there exists in C a ramification G0

of Ks+1,N0
witnessing Ks+1,N0

∈ C� r. Let {a1, . . . , as+1} and {b1, . . . , bN0
}

be the two parts of Ks+1,N0
and let {Y1, . . . , Ys+1, Y

′
1, . . . , Y

′
N0

} be a corre-
sponding Ks+1,N0

-decomposition of G0. Orient every Yi from its root, every
Y ′
j to its root and the edge between Yi and Y ′

j from Yi to Y ′
j . Each tree Yi

has radius at most d = �r�. Hence Y1 contains a vertex y1 of out-degree at
least N1 = N

1/d
0 thus the vertex y1 can reach by internally vertex disjoint

directed paths a subset F1 of {Y ′
1, . . . , Y

′
N0

} of cardinality N1. Similarly, Y2
has a vertex y2 which can reach by internally vertex disjoint directed paths
a subset F2 of F1 of cardinality N2 = N

1/d
1 . Inductively, we obtain vertices

y1 ∈ Y1, y2 ∈ Y2, . . . ys+1 ∈ Ys+1 and a subset F of {Y ′
1, . . . , Y

′
N0

} of cardi-

nality at least N = N
1/ds+1

0 such that each vertex yi can reach the Y ′
j in

F by internally vertex-disjoint directed paths. Without loss of generality, we
assume that F = {Y ′

1, . . . , Y
′
N} and we consider the subgraph of G induced by

y1, . . . , ys+1, Y ′
1, . . . , Y

′
N and the directed paths linking each yi to each Y ′

j .
This graph G has order at least N hence there exists a subset S of car-

dinality at most s such that G − S contains a (8r + 6)-independent set I of
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cardinality m. Each Y ′
j has order at most �r�(s + 1). The deletion of the

vertices in S leaves some small connected components and a unique big con-
nected component. The total order of the small components is bounded by
rs2. Hence there exists a subset I0 ⊆ I of cardinality at least m − rs2 of
vertices belonging in the big connected component which forms a (8r + 6)-
independent set in G− S. There exist a vertex yi (say y1) whose bush does
not intersect S (as |S| < s + 1). Moreover, this vertex obviously belongs to
the big connected component. For each x ∈ I0, there exists a vertex τ(x) in
one of the Y ′

j such that distG−S(x, τ(x)) ≤ d. Of course, two distinct ver-
tices of I0 have different τ-values for otherwise their distance in G− S would
be at most 2d. Moreover, at most s trees Y ′

j may intersect S hence at most
�r�(s + 1)s vertices in I0 may have their τ-value in some Y ′

j intersecting S.
Thus there exists I1 ⊆ I0 of cardinality at least m− 2(r+ 1)s(s+ 1) ≥ 2 such
that τ(x) does not belong to a Y ′

j intersecting S for every x ∈ I1. Let x, y be
two distinct elements of I1. Then:

distG−S(x, y) ≤ distG−S(x, τ(x)) + distG−S(τ(x), y1)

+ distG−S(y1, τ(y)) + distG−S(τ(y), y)

≤ d+ (2r + d) + (2r + d) + d

≤ 8r + 6.

Hence we are led to a contradiction (see schematic Fig. 8.6 on page 193). 	


Lemma 8.11. Let G = (V, E) be a graph, let d ≥ 1,m, s be integers and
let A be a subset of V.

Assume there is S ⊆ V and A ′ ⊆ A such that A ′ is 2d-independent in
G− S and |A ′| ≥ m2s.

Then there exists C ⊆ S and A ′′ ⊆ A ′ such that A ′′ is 2d-independent
in G− C, |A ′′| = m and K|C|,m ∈ G� (d− 1).

Proof. For v ∈ A ′, let Lv be a minimal subset of S such that NG−Lv

d (v)∩ (S\

Lv) = ∅. Such a set obviously exists (it can be S). As S has only 2s distinct
subsets, there exists a subset A ′′ ⊂ A ′ of size m such that Lx = Ly for every
x, y ∈ A ′′ (call this set C). Let x, y be any two distinct elements of A ′′. We
have NG−C

d (x) ∩NG−C
d (y) = ∅ for otherwise there would exist an x–y path

of length at most 2d avoiding C but not S because A ′′ is 2d-independent
in G − S thus some element of S \ C would belong to Lx or Ly. Thus A ′′ is
2d-independent in G − C. Moreover, by the minimality of Lx, every vertex
v ∈ Lx is such that N

G−(C−v)
d (x) ∩ (S \ (C − v)) �= ∅ and more precisely

v ∈ N
G−(C−v)
d (x). It follows that for every x ∈ A ′′ there exists a tree Yx of

depth at most d, whose leaves are exactly the vertices in C and such that
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the Yx’s are pairwise internally vertex disjoint. By contracting the Yx’s we
obtain the desired K|C|,m in G� (d− 1). 	


We deduce the following inequalities:

Proposition 8.1. Let C be a class of graphs and let r ≥ 0 be an integer.
Then

ΦC(8r + 6) ≥ ω ′(C� r) ≥ ΦC(2r + 1)

8.5 Almost Wide Classes

The following characterizations follow from Theorem 8.2.

Theorem 8.3. Let C be a class with bounded expansion. Then Φd(C) ≤
∇�d/2�−1(C).

Proof. According to Theorem 8.2, C is uniformly quasi-wide, hence ΦC(d) <

∞ for every d. According to Lemma 8.11,

ΦC(d) ≤ ω ′(C� (
d/2� − 1))

Then the result follows as

∇�d/2�−1(C) = ∇0(C� (
d/2� − 1))

≥ sup
n∈IN

∇0(Kω ′(C� (�d/2�−1)),n)

= ω ′(C� (
d/2�− 1)).

	


We have the following characterization of hereditary almost wide classes
of graphs:

Theorem 8.4. Let C be a hereditary class of graphs. Then the
following are equivalent:

� C is almost wide;
� C is uniformly almost wide;
� There are s ∈ IN and t : IN → IN such that Ks,t(r) /∈ C� r

(for all r ∈ IN).
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Proof. If C is almost wide then the two next items follow from Proposi-
tion 8.1. If C is such that each C� r excludes some Ks,t(r), then it is uniformly
quasi-wide according to Theorem 8.2 and the bounding of ΦC(d) then follows
from Proposition 8.1. 	

Remark 8.1. Uniformly almost wide classes do not need to be topologically
closed and may not even have bounded local expansion: Consider the class
C of all graphs G satisfying Δ(G) ≤ girth(G) (not necessarily 2-connected).
Then C is uniformly almost wide although it does not have a bounded average
degree: As the class is hereditary, it is sufficient to prove that C is almost
wide. Let d and m be integers. If a graph G ∈ C has diameter at least D = dm

then G includes a d-independent set of size m. Otherwise, if G includes a
cycle, then this cycle has length girth(G) ≤ 2D, hence Δ(G) ≤ 2D and G has
at most about (2D)D vertices. Otherwise, if G is acyclic, it is a forest, and
the deletion of one vertex is sufficient to get a big d-independent set. Hence
C is almost wide. Also, let D = {G + K1 : G ∈ C} (G + K1 is graph obtained
from G by adding a vertex adjacent to all the other vertices). Obviously, D
is also uniformly almost wide but does not have a bounded local expansion.

We may be more precise when C is actually minor closed:

Theorem 8.5. Let C be a minor closed class of graphs and let s be an
integer. Then the following are equivalent:

� C is almost wide and ΦC(d) < s for every integer d ≥ 2;
� C is uniformly almost wide and ΦC(d) < s for every integer d ≥ 2;
� C excludes some graph Ks,t (for a t ≥ 1).

Proof. If Ks,t belongs to C for every t∈ IN then ΦC(d) ≥ ΦC(d) ≥ ΦC(2) ≥ s.
Otherwise, according to Proposition 8.1 we have s > ΦC(d) ≥ ΦC(d). 	

Example 8.1. For a surface Σ, let CΣ be the class of the graphs which embed
on Σ. It has been proved in [42] that CΣ is almost wide for every surface Σ and
that ΦCΣ

(d) is at most equal to the order of the smallest clique which does
not embed on Σ. Again, according to Theorem 8.2, the class CΣ is uniformly
quasi wide. Hence by Proposition 8.1, we deduce that ΦCΣ

(d) = ΦCΣ
(d) = 2

for every integer d, as every K2,n embed on any surface but not every K3,n

does.

8.6 A Nice (Asymmetric) Application

In Chap. 6, we have proved that a class of graphs C has bounded tree-depth
if and only if it is degenerate and graphs in C exclude some path Pn as
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an induced subgraph (Proposition 6.4). A natural question is whether the
requirement that C is degenerate could be replaced by another one. The
uniformly quasi-wide property seems to be unrelated to degeneracy (see Ex-
ercise 8.2). However, it appears that the uniformly quasi-wide property is
sufficient to characterize bounded tree-depth classes by the existence of a
forbidden induced path:

Proposition 8.2. Let C be a class of graphs. Then C has
bounded tree-depth if and only if C is uniformly quasi-wide
and graphs in C exclude some path Pk as an induced subgraph.

Proof. One way is obvious as the class of graphs with tree-depth at most t

is minor closed (hence is uniformly quasi-wide) and actually excludes P2t−1

as a subgraph. So assume C is a quasi-wide class so that graphs in C exclude
some path Pk as an induced subgraph. Without loss of generality, we may
assume that C is infinite (for otherwise the result is straightforward). There
exists some s(k) such that for every m there exists N(k,m), so that if G ∈ C

and A is a subset of vertices of G of size at least N(k,m) then there exists a
subset S of vertices of size at most s(k) such that A includes a subset A ′ of
size at least m which is k-independent in G−S. Let us prove by contradiction
that the tree-depths of the graphs in C are at most N(k − 1, s(k − 1) + 2).
Otherwise, there exists G ∈ C including PN(k−1,s(k−1)+2) as a subgraph.
Let A be the vertex set of this subgraph. Deleting s(k − 1) vertices cannot
disconnect the path into more than s(k−1)+1 connected components hence
A ′ has to include at least two vertices x and y belonging to a same connected
component of G− S. As the distance from x to y is at least k in G− S, there
exists in G − S (hence in G) an induced path from x to y having length at
least k, a contradiction. 	


As consequence of this Proposition and Corollary 6.4 we get:

Corollary 8.1. Every large graph either has a non-trivial symmetry or
it contains a long induced path or it contains a shallow subdivision of a
large complete graph.

More precisely:
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Theorem 8.6. For every choice of positive integers k, c there
exists N = N(k, c) such that for every graph G of order at least
N one of the following holds:

(1) G includes Pk+1 as an induced subgraph;
(2) G includes Kc as a minor at depth (k − 1)/2;
(3) G has a non trivial involutive automorphism.

Proof. Assume Pk+1 is not an induced subgraph of G and Kc �∈ G� (k−1)/2.
As Kc �∈ G� (k− 1)/2 there exist s = s(k− 1, c) and N0 = N0(k− 1, c) such
that if A is a subset of at least N0 vertices of G then there exists a subset S
of at most s vertices of G such that A includes a (k − 1)-independent set of
G− S of cardinality at least s+ 2. Assume for contradiction that G includes
a path P of length PN0

and let A be the vertex set of P. After the deletion
of some s vertices in G, the set A would include a (k − 1) independent set
I of G − S of cardinality s + 2 hence at least two vertices of I would belong
to the same connected component (a path cannot be cut in more than s+ 1

connected components by deleting s vertices), thus G− S would include two
vertices at distance at least k, contradicting the hypothesis that G includes
no induced path of length k. As G includes no path of length N0, the graph
G has tree-depth at most N0. According to Theorem 6.5, if the order of G is
greater than �(N0) then G has a non-trivial involutive automorphism. 	


Recall that a graph is asymmetric if the identity is its unique automor-
phism. A graph G is strongly minimal asymmetric if it is asymmetric while
none of its proper subgraphs with at least one edge is asymmetric. Corol-
lary 8.1 implies that the number of strongly minimal asymmetric graphs is
finite. Nešetřil conjectured that the number of minimal asymmetric graphs
(i.e. those asymmetric graphs not containing an induced subgraph of order
at least two which is asymmetric) is finite. It has been proved that there are
only finitely many minimal asymmetric graphs containing an induced sub-
graph isomorphic to Pl for l > 4 [366] and the case where l = 4 was solved
in [204].
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Fig. 8.5 Illustration of the proof of Lemma 8.9
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Fig. 8.6 Illustration of the proof of Lemma 8.10 (symbols have the same meaning as
in Fig. 8.5)
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Exercises

8.1. Give an example of a non-hereditary class of graphs which is wide but
does not have bounded maximum degree.

8.2. (1) Prove that there exist classes of graphs which are degenerate but not
uniformly quasi wide;

(2) Prove that there exist classes of graphs which are uniformly quasi-wide
but not degenerate.

8.3. Prove that there exists a unique minimal asymmetric tree.



Chapter 9
First-Order Constraint Satisfaction
Problems, Limits and Homomorphism
Dualities

If you are not what you should not be,
you might well be as you should be.

9.1 Introduction

An important part of the classical model theory studies properties of ab-
stract mathematical structures (finite or not) expressible in first-order logic
[257]. In the setting of finite model theory, which developed more recently,
one studies first-order logic (and its various extensions) just on finite struc-
tures [141, 303]. Both theories share many similarities but also display im-
portant and profound differences. This will be illustrated in this chapter by
means of several examples. We start with a generalization of the coloring
problem.

Suppose we want to check whether a graph has a particular property, for
example admitting a decomposition (interpreted as a coloring) of a certain
kind, satisfying certain local properties (such as containing no monochro-
matic edge, demanding that every path of length three gets at least three
colors etc.). Such a task appears in the theory of scheduling and other ap-
plied areas. Typical examples are Constraint Satisfaction Problems (CSPs),
which are formulated here as H-coloring problems.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__9, © Springer-Verlag Berlin Heidelberg 2012
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Given a fixed relational structure H, the H-coloring problem is
the decision problem to determine whether an input relational
structure G admits a homomorphism to H (does G → H?).

Coloring problems tend to be very difficult problems to solve exactly,
but also to enumerate and even to approximate. In this direction, it has
been proved by Hell and Nešetřil [252] that in the context of finite undi-
rected graphs the H-coloring problem is NP-complete unless H is bipartite,
in which case the H-coloring problem trivially belongs to P. So no non-trivial
H-coloring problem is easy. Another early result by Schaefer [430] charac-
terized complexities of Boolean constraint satisfaction problems. These re-
sults led Feder and Vardi [174, 175] to formulate the celebrated Dichotomy
Conjecture which asserts that, for every constraint language over an arbi-
trary finite domain, either the constraint satisfaction problem is in P or it
is NP-complete. It was soon noticed that this conjecture is equivalent to
the existence of a dichotomy for H-coloring problems (for general relational
structures H). This is one of the reasons why in this chapter we mainly con-
sider the general case of relational structures. (To make this change more
visible we denote the structures by bold face capital letters. The Dichotomy
Conjecture is presently an open problem. It is even open for the class oriented
graphs (and it suffices to establish dichotomy for this special case.) There are
many results and suggested methods but the problem is hard, see e.g. [254].

On the other side of complexity spectrum are H-coloring problems that
may be expressed in first-order logic, thus allowing fast checking (at most
polynomial time). By this we mean the following:

Let H be a structure. The H-coloring is said to be first-order definable (on
the finite) if there exists a first-order formula φ such that for every structure
G it holds

G → H ⇐⇒ G |= φ.

The H-coloring problems which are first-order definable are related (in
fact equivalent) to finite dualities. They are treated in the next section using
logical tools which we introduce now and which are interesting in their own.

This is related to so-called preservation theorems, which form a classical
area of mathematical logic. Results of this type are closely related to results
in this chapter. Actually, we devote the whole Chap. 10 to preservation theo-
rems. Here we state only one of the deepest results in this area, which is the
following [425].

Theorem 9.1. Let φ be a first order formula of quantifier rank n. Then,
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G → H and G |= φ =⇒ H |= φ

holds for all finite G,H ∈ Rel(σ) if and only if φ is equivalent for finite
structures in Rel(σ) to an existential-positive first-order formula ψ of
quantifier rank ρ(n) (for some explicit function ρ : IN → IN).

It follows from Theorem 9.1 (and this is its combinatorial meaning) that
for finite structures, the only H-coloring problems which are expressible in
first-order logic are those for which there exists a finite family F of finite
structures with the property that for every G:

∃F ∈ F F → G ⇐⇒ G � H. (9.1)

This found nice interpretation in the context of homomorphism dualities
which will be introduced in the next section (see also Sect. 3.7 where we
handled some special cases).

9.2 Homomorphism Dualities and the Functor U

9.2.1 Finite Dualities

Let us introduce finite dualities in the context of σ-structures.
Let (F,D) be two finite families of finite σ-structures. Assume that the

following statement holds for every finite σ-structure G:

∃F ∈ F F → G ⇐⇒ ∀D ∈ D G � D. (9.2)

This statement is called a finite homomorphism duality. The pair (F,D) is
called a dual pair. We also say that D has finite duality.

The notion of finite duality captures the fact that the existence of a homo-
morphism into a given set D of structures (called duals or templates) can be
alternatively expressed dually by the non-existence of homomorphisms from
a given set F of (forbidden) structures. In other words, the finite set F is a
complete set of obstructions for one of the D-coloring, for D ∈ D. Here is
one example for directed graphs:

−�−→ G ⇐⇒ G −→

Recall that in Theorem 3.13 we stated that for every directed graph �G it
holds:
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�Pk+1 �
�G ⇐⇒

�G→
�Tk.

Singleton dualities are finite dualities where F and D are one element
sets (i.e. singletons). Another example of a singleton duality is

−�−→ G ⇐⇒ G −→

Singleton dualities have been characterized by Nešetřil and Pultr [362] for
undirected graphs, by Komárek [279] for directed graphs and by Nešetřil and
Tardif [370] for general finite structures:

Theorem 9.2. For any signature σ and any finite set F of σ-structures
the following two statements are equivalent:

1. There exists D such that F and D form a finite duality,
2. F is homomorphically equivalent to a set of finite (relational) trees.

(A relational tree may be defined via its incidence graph, see
Sect. 3.8.3.)

A direct consequence of Theorem 9.1 is:

Corollary 9.1. Let H be a structure. Then, the H-coloring is first-order
definable if and only if there is a family F of structures such that (F,H)

is a finite homomorphism duality.

Notice that Atserias [38, 39] derived this theorem independently of Theo-
rem 9.1. Combining the above results yields the following.

Theorem 9.3. Let D be a σ-structure. Then the following are
equivalent.

1. D-coloring is first-order definable;
2. D has finite duality;
3. D has a complete set of obstructions consisting of a finite

set of trees.

By passing let us note that the seemingly more general setting when the
set D consists from more graphs can be treated similarly: the obstruction set
F is consisting from relational forests, see [180]. We do not include elegant
proofs of these results, see e.g. [253, 369]. Larose et al. [297] proved that it
is decidable (and even just NP-complete) to determine whether a constraint
satisfaction problem is first-order definable. We can do better if we restrict
input structures to cores: the problem of deciding, for a core A, whether
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A-coloring is first-order decidable may be done in polynomial time (without
requiring an actual certificate that the input A is a core).

9.2.2 Tree Dualities and the Functor U

Let us take a more general view. Finite homomorphism duality finds for a A-
coloring a complete finite set of obstructions F. (These sections of this chapter
have algebraic flavour and thus we use A,B,C for relational structures.) In
the other words A-coloring is defined by a (very) simple set of obstructions.
What happens if we allow other (possibly infinite) sets of simple obstructions
such as trees, cycles, graphs with bounded tree depth or graphs with bounded
tree width? In the case of a set of obstructions with tree-width bounded by
an integer k, we speak about k-tree-width duality or, if the actual value of
k is not important, bounded tree-width duality. Examples of such dualities
are abundant (think for example of two-coloring of undirected graphs, which
is an example of a two-tree-width duality) and they were studied in many
papers. Particularly the bounded tree width duality was studied in [255] and
it coincides with problems which have a Datalog description [175] (see [89] for
more informations on Datalog). Such problems have a polynomial algorithm
for A-coloring (see also [371]). Recently it has been proved [53] that it is
decidable whether a CSP has a bounded tree width duality.

A particular case is when for A-coloring there exists a complete set of ob-
structions consisting from trees only (i.e. in case of a one-tree-width duality).
Then the characterization is particularly elegant using the following construc-
tion (defined in [175]): Given a structure A (with universe A and relations
R1, . . . , Rm) we define the structure U(A) with same signature, whose uni-
verseU is the set of all nonempty subsets ofA, and for i = 1, . . . ,m, Ri(U(A))

is the set of all ri-tuples (X1, . . . , Xri) such that for all j ∈ {1, . . . , ri} and for
every choice xj ∈ Xj there exist xk ∈ Xk for all k ∈ {1, . . . , ri} \ {j} such that
(x1, . . . , xri) ∈ Ri(A).

The mapping A �→ U(A) has nice algebraic properties, which are ex-
pressed by the following.

Proposition 9.1. The mapping U has the following properties:

(a) The mapping U is functorial.
Precisely, for every homomorphism f : A → B define U(f) : U(A) →

U(B) by
U(f)(X) = {f(x) : x ∈ X}.

Then U(f) is a homomorphism of U(A) to U(B).
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(b) Every A is homomorphic to U(A).
Precisely, the mapping ηA which maps the element x of A to the
element {x} of U(A) is a homomorphism of A to U(A). Actually, we
have the following commutative diagram (which expresses that η is
a natural transformation from the identical functor Id to U):

A f ��

ηA

��

B

ηB

��
U(A)

U(f) �� U(B)

(c) The functor U is idempotent.
Precisely, for every structure A it holds

U(U(A)) ���� U(A).

Proof. (a) Let (X1, . . . , Xri) ∈ Ri(U(A)). Then (by definition)

∀j ∈ [ri] ∀xj ∈ Xj ∀k ∈ [ri] \ {j} ∃xk ∈ Xk : (x1, . . . , xri) ∈ Ri(A).

Hence

∀j ∈ [ri] ∀xj ∈ Xj ∀k ∈ [ri] \ {j} ∃xk ∈ Xk : (f(x1), . . . , f(xri)) ∈ Ri(B),

that is:

∀j ∈ [ri] ∀uj ∈ f(Xj) ∀k ∈ [ri] \ {j} ∃uk ∈ f(Xk) : (u1, . . . , uri) ∈ Ri(B).

It follows that U(f) is a homomorphism of U(A) to U(B). Moreover,
U(IdA) = IdU(A) and if f : A → B and g : B → C are homomorphisms,
then U(g ◦ f) = U(g) ◦ U(f) hence U is a functor.

(b) Let (u1, . . . , uri) ∈ Ri(A). Then obviously

({u1}, . . . , {uri }) ∈ Ri(U(A)).

(c) According to (b), A → U(A) hence, according to (a), U(A) → U(U(A)).
Consider the mapping F from the universe of U(U(A)) (nonempty fami-
lies of nonempty subsets of elements of A) to the one of U(A) (nonempty
subsets of elements of A) defined by F(X) =

⋃
X.

Let (X1, . . . ,Xri) ∈ Ri(U(U(A))). Let xj ∈ F(Xj). Then there exists
Xj ∈ Xj such that xj ∈ Xj. As (X1, . . . ,Xri) ∈ Ri(U(U(A))), there exists
for each k ∈ [ri] \ {j} some Xk ∈ Xk such that (X1, . . . , Xri) ∈ Ri(U(A)).
Hence, as xj ∈ Xj, there exists for each k ∈ [ri]\{j} some xk ∈ Xk ⊆ F(Xk)

such that (x1, . . . , xri) ∈ Ri(A). As this holds for every xj ∈ F(Xj), it
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follows that F(X1, . . . ,Xri) ∈ Ri(U(A)) hence F is a homomorphism of
U(U(A)) to U(A).

	


One of the main aspect of this mapping is indeed that it captures the
property of two structures to be distinguishable by testing existence of ho-
momorphisms from finite trees:

Lemma 9.1. Let T be a tree. Assume φ is a homomorphism of T to
U(A), x0 ∈ T and a0 ∈ φ(x0).

Then there exist a homomorphism φ̃ of T to A such that φ̃(x) ∈ φ(x)
for every x ∈ T.

Proof. We proceed by induction over the order of F. If |T| = 1, the result is
straightforward. Assume that the statement holds for every tree T of order
at most n0 for some n0 ≥ 1, and let T be a tree of order n0 + 1.

Let x0 ∈ T and let x1, . . . , xk be the elements of T adjacent to x0 (that is
the elements belonging to a common relation with x0). As T is a relational
tree, the relational forest T−x0 obtained by deleting x0 (and all the relations
including x0) is a union of relational trees, each of those include exactly one
of the xi’s (for 1 ≤ i ≤ k). Denote by Ti the component which contains xi.
According to the definition of U(A), (and because T is a tree) it is possible
to choose in each φ(xi) and element ai such that for every i1, . . . , ip ∈
{0, 1, . . . , k}, if (xi1 , . . . , xip) ∈ Rj in T then (ai1 , . . . , aip) ∈ Rj in A. By
induction, there exist for every 1 ≤ i ≤ k a homomorphism φ̃i : Ti → A
such that φ̃(xi) = ai and φ̃(x) ∈ φ(x) for every x ∈ Ti. We define φ̃ by
φ̃(x0) = a0 and φ̃(v) = φ̃i(v) whenever v ∈ Ti. Then φ̃ meets the conditions
of the lemma. 	

Corollary 9.2. Let T be a tree. Then T admits a homomorphism to A
if and only if T admits a homomorphism to U(A).

Proof. If T → A then T → U(A), as A → U(A) (by Proposition 9.1–(b)).
Conversely, if T → U(A) then T → A by Lemma 9.1.
It is then not surprising that the functor U characterizes tree dualities

(Feder and Vardi [175]): 	


Theorem 9.4. A σ-structure A has tree duality if and only if
there exists a homomorphism of U(A) to A.

It is easy to see that the existence of a homomorphism U(A) → A is
equivalent to the fact that a particular algorithm—the so-called consistency
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check algorithm—succeeds. The existence of a tree duality can be expressed
in terms of consistency check [255] (see Exercise 9.10 where we sketch the
proof in the case of graphs).

Consequently, determining whether a given structure A has tree duality
is decidable. Tree dualities were studied in several papers. Let us mention at
least the recent paper by Foniok and Tardif [181].

We conclude this section with the following alternate characterization of
structures which cannot be distinguished by existence of homomorphisms
from finite trees:

Lemma 9.2. Let A,B be structures. The following conditions
are equivalent:

1. A and B cannot be distinguished by existence of homo-
morphisms from finite trees:

∀ tree T : (T → A) ⇐⇒ (T → B);

2. U(A) is homomorphically equivalent to U(B):

U(A) ���� U(B).

Proof. Assume that (1) holds. According to Proposition 9.1–(c) we have
U(U(A)) → U(A) hence, by Theorem 9.4, U(A) has a tree duality. It follows
that for every B we have B → U(A) if and only if for every tree T it holds

T → B =⇒ T → U(A).

According to Corollary 9.2, we have

T → U(A) ⇐⇒ T → A.

Hence we deduce B → U(A) thus, by Proposition 9.1–(a) and (c), U(B) →

U(U(A)) → U(A). Similarly, we have U(A) → U(B) hence (2) holds.
Conversely, assume that (2) holds. For every tree T we have:

T → A ⇐⇒ T → U(A) (by Corollary 9.2)

⇐⇒ T → U(B) (by (2))

⇐⇒ T → B (by Corollary 9.2).

Hence (1) holds. 	
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9.3 Metrics on the Homomorphism Order

We would like to characterize more general setting of dualities than above:
the restricted dualities (i.e. dualities restricted to a class) will be treated in
the next chapter. Towards this end we introduce in this chapter metric theory
for the homomorphism order and related limits.

9.3.1 Partially Ordered Sets

We review here standard notions and notations defined on partially ordered
sets which are relevant to this chapter. Let (X,≤) be a (finite or infinite)
partially ordered set (or poset).

� A lower set (downset, or initial segment) is a subset D with the property
that

∀x ∈ D and y ≤ x ⇒ y ∈ D;

� An ideal is a lower set I with the additional property

∀x, y ∈ I, ∃z ∈ I : x ≤ z and y ≤ z;

� The principal ideal ↓p of an element p is the smallest ideal that contains p:

↓p = {x : x ≤ p}.

Dual to these notions are the one of

� Upper set (or upset),
� Filter,
� Principal filter p↑ = {x : x ≥ p}.

The poset (X,≤) is a lattice if any two elements x and y have a unique
supremum x∨y (their join) and an infimum x∧y (their meet). A lattice is

� Distributive if
a∧ (b∨ c) = (a∧ b)∨ (a ∧ c)

holds for every a, b, c ∈ X;
� Complete if all its subsets (finite or not) have both a join and a meet.

(An example of distributive lattice has been introduced in Exercise 3.3.)
Of particular interest are ideals whose complements are filters. An ideal

with this property is a prime ideal. If (X,≤) is a lattice, then an ideal I is
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prime if and only if

∀x, y ∈ X : (x ∧ y ∈ I) ⇒ (x ∈ I) or (y ∈ I).

The notion dual to prime ideal is prime filter.
For a subset A of X, one defines

� The set of upper bounds Au of A by

Au = {x : ∀y ∈ A x ≥ y};

� The set of lower bounds A� of A by

A� = {x : ∀y ∈ A x ≤ y}.

These constructions are of particular importance. For instance, the Dedekind-
MacNeille completion of (X,≤), which is the smallest complete lattice that
contains (X,≤) is defined by means of the inclusion order on the subsets A
of X such that (Au)� = A. An element x ∈ X then embeds in the completion
of (X,≤) as its principal ideal, as

((↓x)
u)� = ↓x.

Notice that for every subset A, the set Au is a filter and the set A� is an
ideal.

Another classical completion of (X,≤) is the set of its downsets ordered
by inclusion. The poset (X,≤) is also embedded in this lattice by sending
each element x to ↓x. This completion is a distributive lattice, which is used
in Birkhoff’s representation theorem. However, it may be much bigger than
Dedekind-MacNeille completion.

9.3.2 The Homomorphism Order of σ-Structures

At several places of this book (starting with the Prolegomena) we dealt with
the notion of homomorphism order. We now (and in the next sections) re-
view the algebraical and metrical side of it in a greater detail (for general
structures).

The existence of a homomorphism of a σ-structure A to a σ-structure B
naturally defines a quasi-order on Rel(σ). The derived equivalence relation
is the homomorphism equivalence A ���� B. The quotient of Rel(σ) by
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homomorphism equivalence is denoted by [Rel(σ)]. We also denote by [A]

the equivalence class of the structure A (a natural representative of which is
the core of A, see Sect. 3.7) and by [C] the set {[A],A ∈ C}. The set [Rel(σ)]
is ordered by the homomorphism order ≤h defined by

[A] ≤h [B] ⇐⇒ A→ B.

In previous parts of this book we already considered the homomorphism
order of graphs. Notice that ([Rel(σ)],≤h) has a structure of distributive
lattice, with meet [A]∨ [B] = [A +B] and join [A]∧ [B] = [A × B].

We denote by (→ A) the set of all F ∈ Rel(σ) having a homomorphism
to A and we denote by (A →) the class of all F ∈ Rel(σ) that admit a
homomorphism of A.

We have the following correspondences between Rel(σ) and
[Rel(σ)]:

A → B
[ ]

−−−−−→ [A] ≤h [B]

(→ A) → ↓[A]

(A →) → [A]
↑

A+B → [A]∨ [B]

A× B → [A]∧ [B]

Also we have:

[(→ A)] = ↓[A] [(A →)] = [A]↑

(→ A) ∩ (A →) = [A] ↓[A] ∩ [A]
↑
= {[A]}

For an ideal I and a filter F we define

I� = Iu = {[A], ∀[B] ∈ I : [A] ≥h [B]} =
⋂

[B]∈I

[B]
↑

F� = F� = {[A], ∀[B] ∈ F : [A] ≤h [B]} =
⋂

[B]∈F

↓[B]

Notice that I� is a filter and that F� is an ideal and that for every A:
(↓[A])� = [A]

↑ and ([A]
↑
)� = ↓[A].
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9.3.3 Connectivity and Multiplicativity

A structure A ∈ Rel(σ) is connected if its Gaifman graph (or equivalently, its
incidence graph) is connected. We denote by Relcon(σ) the set of all connected
σ-structures. A connected component of a structure A is each substructure
induced by all the vertices of A in a connected component of the Gaifman
graph of A. Remark that if A is connected, then A → B + C if and only if
A → B or A → C. By extension, we say that [A] is connected if [A] contains
a connected structure. Similarly, a structure A is multiplicative if, for every
B,C, we have B × C → A if and only if B → A or C → A. Also, [A] is
multiplicative if [A] contains a multiplicative structure.

The following properties are straightforward:

Lemma 9.3. A class [A] ∈ [Rel(σ)] is:

(a) Connected if and only if

[A] ≤h [B]∨ [C] ⇐⇒ [A] ≤h [B] or [A] ≤h [C]

holds for every [B], [C] ∈ [Rel(σ)].
(b) Not connected if and only if there exist B and C such that B ����� � C

(i.e. B � C � B) and A�B +C.
(c) Multiplicative if and only if

[B]∧ [C] ≤h [A] ⇐⇒ [B] ≤h [A] or [C] ≤h [A]

holds for every [B], [C] ∈ [Rel(σ)].
(d) Non multiplicative if and only if there exist B and C such that B ����� � C

and A�B× C.

For every σ-structures A and B the following implications hold:

(e) If A and B are not connected, then A +B is not connected;
(f) If A and B are not multiplicative, then A × B is not multiplicative.

Proof. Items (a) to (c) are straightforward.

(d) Assume B ����� � C and A�B × C. Then B × C → A although B � A
and C � A.
Conversely, assume that A is non multiplicative. Then there exist F,D
such that F � A, D � A and F × D → A. Assume F1, . . . ,Fp are
the connected components of F. Then there exists 1 ≤ i ≤ p such that
Fi � A (for otherwise F → A). Moreover, Fi × D → F × D → A.
Hence we may request that both F and D are connected. Notice that
F � D for otherwise F → F × D → A. As F is connected and F �

A we deduce F � D + A thus F + A � D + A. Similarly we have
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D + A � F + A. Let B = F + A and C = D + A. Then B ����� � C and
B × C = (F+ D)× (F+ A)�F× D +A�A.

(e) Is straightforward.
(f) Assume C1 and C2 are non-multiplicative and let A1

����� � B1 and
A2

����� � B2 be such that C1 �A1 × B1 and C2 �A2 × B2.

� Notice that A1 � A2×B1×B2 for otherwise A1 → B1. If A2×B1×
B2 � A1 then C1×C2 = A1× (A2×B1×B2) is non-multiplicative
according to (d).

� Otherwise, A2×B1×B2 → A1 thus C1×C2 �A2×B1×B2. Notice
that A2 � B1 × B2 for otherwise A2 → B2. If B1 × B2 � A2 then
C1 × C2 �A2 × (B1 × B2) is non-multiplicative according to (d).

� Otherwise, B1×B2 → A2 thus C1×C2 �B1×B2. We have B1 � B2

for otherwise B1 → B1 × B2 �C1 × C2 → C1. Similarly, B2 � B1.
Hence C1 × C2 �B1 × B2 is non-multiplicative according to (d).

	

Hedetniemi conjecture [88, 249] (sometimes called product conjecture)

asks whether every complete graphs is multiplicative (as undirected graphs).
It is usually formulated as follows:

Conjecture 9.1 (Hedetniemi conjecture). For every graphs G
and H it holds

χ(G×H) = min(χ(G), χ(H)).

This conjecture can be reformulated [298] by means of retracts:

If Kn is a retract of G×H then Kn is a retract of G or H.

Surprisingly, this later statement is known to hold for connected graphs
G and H, see [297].

The product conjecture seem to be very hard and not much is known even
for its weaker forms. It is still possible that there exists a constant k0 such
that for every n there is a pair Gn, Hn of graphs each with the chromatic
number n such that the product Gn×Hn has the chromatic number at most
K0. (In fact k0 may be as low as 9 (see [388]). Quite surprisingly, recently
Zhu verified the analog of the product conjecture for fractional chromatic
numbers, see [477]. For further reading about Hedetniemi conjecture, see
surveys [454, 475].
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9.3.4 Left and Right Distances for the Homomorphism
Order

For a finite or infinite subset A ⊆ Rel(σ), we define the weight w(A) of A by:

w(A) =

⎧

⎨

⎩

0, if A = ∅,
2−min{|A|, A∈A}, otherwise.

(9.3)

This naturally defines an ultrametric d on the powerset 2Rel(σ) of Rel(σ) by:

d(A,B) = w
(
(A \ B) ∪ (B \ A)

)
(9.4)

The correspondences [A] �→ (→ A) and [A] �→ (A →) are injective map-
pings from [Rel(σ)] to 2Rel(σ). They naturally define two distances, the left
distance distL and the right distance distR on [Rel(σ)] by

distL([A1], [A2]) = d((→ A1), (→ A2)) (9.5)

and

distR([A1], [A2]) = d((A1 →), (A2 →)). (9.6)

Also, one defines the full distance dist on [Rel(σ)] by

dist([A1], [A2]) = max(distL([A1], [A2]), distR([A1], [A2])). (9.7)

We remark that the left distance can be computed by considering con-
nected test structures only:

Lemma 9.4. For every [A], [B] in [Rel(σ)]:

distL([A], [B]) = d((→ A) ∩ Relcon(σ), (→ B) ∩ Relcon(σ)) (9.8)

Proof. Obviously, distL([A], [B]) ≥ d((→ A)∩Relcon(σ), (→ B)∩Relcon(σ)).
Let d = distL([A], [B]), let F ∈ Rel(σ) be such that 2−|F| > d and let
F1, . . . ,Fp be the connected components of F. Then

F → A ⇐⇒ ∀1 ≤ i ≤ p, Fi → A

⇐⇒ ∀1 ≤ i ≤ p, Fi → B (as 2−|Fi| ≥ 2−|F| > d)

⇐⇒ F → B.

Hence distL([A], [B]) ≤ d((→ A) ∩ Relcon(σ), (→ B) ∩ Relcon(σ)). 	
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Denote by [Rel(σ)]L, [Rel(σ)]R and [Rel(σ)] the completions of the metric
spaces ([Rel(σ)], distL), ([Rel(σ)], distR) and ([Rel(σ)], dist). Notice that these
completions are compact (as they are totally bounded). We shall come back
to these spaces and investigate these completions in more detail later on. In
the next section we deal with the approximation of complex structures by
simple ones.

9.3.5 Density

9.3.5.1 Density and Ambivalence of the Homomorphism Order

The homomorphism order has several spectacular properties already men-
tioned in Sect. 3.7: it is universal (for all countable posets), and it is dense
(with a few exceptions). The later property is the subject of this section.

We make use of the following result which is often called sparse incom-
parability lemma [253, 365]. In the setting of this book we call such results
ambivalence theorems. First we deal with graphs as a typical case.

Theorem 9.5. For every ε > 0 and for every non-discrete graph G there
exists a graph G′ with the following properties:

(a) distL(K2, G
′) < ε,

(b) distR(G′, G) < ε.

Proof. Let us start by rewriting the above metrical conditions: The meaning
of (a) is simply that G has odd-girth greater than log2 ε−1, as F � K2 if
and only if F contains an odd cycle. On the other hand, distR(G′, G) < ε if
for every graph F of order |F| < log2 ε−1 holds (G′

→ F ⇐⇒ G → F).
Particularly, if distR(G′, G) < 2−χ(G) then χ(G′) = χ(G) and this in turn can
be used to define G′. Put n = |G| and l = �log2 ε−1�. Let H be a graph with
the following properties:

(i) The graph H has chromatic number χ(H) > ln,
(ii) The graph H contains no odd cycle of length smaller than l.

The existence of a graph H with these properties is not trivial, but follows
from Theorem 3.2. However, the condition which we need here is weaker
than the girth condition of Theorem 3.2, as we only need the graph H to
have high chromatic number and odd-girth, and the result is easier to prove.
This can be achieved, for example, by iterating l times the construction of
the so-called shift graphs, see [253] and Exercise 9.8 for a detailed account.

Now put G′ = G×H. Obviously the odd-girth of G′ is greater than l and
thus distL(K2, G

′) < ε. Let F be a graph of order |F| < l. By composition
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of homomorphisms, G → F implies G′
→ F. Now assume that f is a homo-

morphism of G′ = G × H to F. For each x ∈ V(H) consider the fiber map
fx : V(G) → V(F) defined by fx(y) = f(x, y). As the chromatic number of H
is very large, there exist an edge {x, y} of H such that fx = fy. It is easily
seen that then fx is a homomorphism of G to F. 	


This result generalizes to relational structures (with a nearly identical
proof). This mainly needs a proper generalization of the notion of odd-girth:
Given a σ-structure A = (A, (Ri, i ∈ I)) we consider its incidence multigraph
Inc(A) (see Sect. 3.8.3). The odd-girth is the smallest odd integer l > 1 such
that Inc(A) contains a cycle of length 2l. (Note that the cycles of length 2 in
Inc(A)—which correspond to relations with a same element appearing more
than once—are ruled out by the condition l > 1.) The product of σ-structures
was already defined in Sect. 3.8.1.

Although in the undirected case the girth bound was sufficient to deduce
that every small graph having a homomorphism to G would have a homo-
morphism to any graph G′ such that K2 → G′, things are more complex in
the general case of σ-structures and the functor U will be invoked again.

According to Theorem 9.2, each tree has a dual, that is: for every tree T
there exists D(T), the dual of T, such that for every A it holds

T � A ⇐⇒ A → D(T). (9.9)

Consequently, if A1 → A2 and if A1 and A2 are distinguished by a tree
T (without loss of generality T � A1 and T → A2, that is A1 → D(T)

and A2 � D(T)) then for every B such that A1 → B → A2 holds either
distL(A1,B) ≥ 2−|T| or distR(B,A2) ≥ 2−|D(T)|. However, the separability
by trees is the only obstacle.

Using these notions we can state and prove the generalization of Theo-
rem 9.5 for σ-structures:

Theorem 9.6. For every ε > 0 and for every σ-structure A
there exists a σ-structure A′ with the following properties:

(a) A′ has odd-girth at least �log2 ε−1�,
(b) distR(A,A′) < ε.

Proof. Denote by A be the universe of A. Put l = �log2 ε−1� and t = l|A|.
It is easy to check if A × B has odd-girth at most l then both A and B

have odd-girth at most l. So, analogously with the proof of Theorem 9.5 we
will put A′ = A × H, where H is a σ-structure with both large odd-girth
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and a property which will be slightly stronger than having a high chromatic
number. Precisely, the properties we shall request for H are the following:

1. H has odd-girth at least l,
2. For every partition X1 ∪ · · · ∪Xt of the universe H of H, one of the classes

contains a tuple of every relation in σ.

Let r =
∑

ri be the sum of the arities of the relations in σ. Let σ′ be a
signature with a single relation of arity r. We first construct a σ′-structure
H0 with odd-girth greater than l and chromatic number at least t. Then we
split each tuple (x1, . . . , xr) into tuples of all the arities of relations in σ:
(x1, . . . , xr1), (xr1+1, . . . , xr1+r2), . . . The σ-structure H obtained this way
has properties 1. and 2.

The remaining of the proof of the theorem follows the same lines as the
proof of Theorem 9.5. 	


Theorem 9.7 (Local ambivalence theorem). Let A1 → A2

and let k be a positive integer. Assume there exists no tree T
with max(|T|, |D(T)|) ≤ k such that T → A2 but T � A1.

Then there exists C such that:

� A1 → C → A2,
� distL([A1], [C]) < 2−k,
� distR([A2], [C]) < 2−k.

Proof. According to Theorem 9.6 there exists B such that B → A2, the
odd-girth of B is greater than k, and distR([A2], [B]) < 2−k.

Let C = A1 + B. Then A1 → C → A2 and distR([A2], [C]) < 2−k (as
A1 → A2).

Assume for contradiction that distL([C], [A1]) ≥ 2−k. Then, according to
Lemma 9.4, there exists a connected Z of order at most k such that Z � A1

but Z → C (hence Z → B). As the odd-girth of B is greater than |Z| we infer
that the homomorphic image of Z in B is a tree T and thus Z → T → B.
However, T � A1 as for otherwise Z → T → A1. But T → B implies
B � D(T) hence A2 � D(T) (as |D(T)| ≤ k) hence T → A2 . As T � A1

and T → A2 we are led to a contradiction. 	


Recall the definition of the functor U(A) given in Sect. 9.2.2 and define
U([A]) = [U(A)] (this makes sense as A ���� B implies U(A) ���� U(B)).
Then U is a closure operator of the poset ([Rel(σ)],≤h). (Note that this
closure operator arises as the lower adjoint of a Galois connection between
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the poset of the subposet of the classes [A] with tree dualities and the whole
poset [Rel(σ)].)

As a corollary of Lemmas 9.2 and 9.7 we get:

Theorem 9.8 (Ambivalence theorem). Let [A1] ≤h [A2].
The following conditions are equivalent:

1. U([A1])] = U([A2]).
2. for every ε > 0 there exists Cε such that:

� [A1] ≤h [Cε] ≤h [A2],
� distL([A1], [Cε]) < ε,
� distR([A2], [Cε]) < ε.

9.4 Left Limits and Countable Structures

9.4.1 Left Limits

A sequence ([Gi]) is a Left Cauchy Sequence if it is a Cauchy sequence
according to the left distance distL. Recall that the completion [Rel(σ)]L of
([Rel(σ)], distL) is a compact space. If ([Gi]) is a Left Cauchy Sequence we
will denote its limit by left limi→∞[Gi]. For limits we reserve blackboard
fonts letters L,A,B.

Sometimes, a sequence of graph may converge, with respect to distL to a
graph which does not belong to the sequence. For instance, the sequence of
odd cycles converges to [K2], that is:

left lim
i→∞

[C2i+1] = [K2].

However we shall see below that in many cases the left limit corresponds
to an infinite graph. We extend the homomorphism order relation to left
limits by

left lim
i

[Gi] ≤h left lim
i

[Hi] ⇐⇒ lim
i→∞

w((→ Gi) \ (→ Hi)) = 0

⇐⇒ lim
i→∞

2−min{|A|, A→Gi and A�Hi} = 0
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Notice that also this relation does not depend of the converging sequences
and that it extends the homomorphism order (identified with constant se-
quences). We extend the operators ↓[A] and [A]↑ to left limits by:

↓LL = {[A] ∈ [Rel(σ)] : [A] ≤h LL}

LL
↑ = {[A] ∈ [Rel(σ)] : [A] ≥h LL}

Notice that ↓LL and LL
↑ are subsets of [Rel(σ)] and are not the lower sets

and upper sets defined by LL in the poset ([Rel(σ)]L,≤h).
We shall now prove that the two basic operations ∨ and ∧ (meet and

join of the homomorphism order) are continuous for the topology induced by
distL. Precisely, we have:

Lemma 9.5. Let [G1], [G2], [H1], [H2] be elements of [Rel(σ)]. Then

distL([G1]∨ [H1], [G2]∨ [H2]) ≤ max(distL([G1], [G2]), distL([H1], [H2]))

distL([G1]∧ [H1], [G2]∧ [H2]) ≤ max(distL([G1], [G2]), distL([H1], [H2])).

Proof. Let T ∈ [Relcon(σ)] be such that t = |T | satisfies

2−t > max(distL(G1, G2), distL(H1, H2)).

Then

T → G1 +H1 ⇐⇒ T → G1 or T → H1

⇐⇒ T → G2 or T → H2

⇐⇒ T → G2 +H2

According to Lemma 9.4 we deduce that distL([G1]∨ [H1], [G2]∨ [H2) < 2
−t.

Also, for any T ∈ [Rel(σ)] we have

T → G1 ×H1 ⇐⇒ T → G1 and T → H1

⇐⇒ T → G2 and T → H2

⇐⇒ T → G2 ×H2

Thus distL([G1]∧ [H1], [G2]∧ [H2]) < 2
−t. 	


Lemma 9.6. Every ideal I of [Rel(σ)] has a supremum in [Rel(σ)]L which
is the limit of an increasing sequence [G1] ≤h [G2] ≤h · · · ≤h [Gt] ≤h . . .

of elements of I.

Proof. For an integer t, denote by I(t) the subset of I with structures of
order at most t. Let Gt =

∑

I(t). By construction, ([Gt]) is a Left Cauchy
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Sequence. Let IL be its left limit. As (→ G1) ⊆ (→ G2) ⊆ · · · ⊆ (→ Gt) ⊆
. . . we have H ≤h IL for every H ∈ I.

Now assume that [H] ≤h left limt[G′
t] for every H ∈ I and some Left

Cauchy Sequence ([G′
t]). Then for every t we have [Gt] ≤h left limt[G′

t]

hence left limt[Gt] ≤h left limt[G′
t]. 	


As a corollary, we obtain that the metric completion [Rel(σ)]L of [Rel(σ)]
coincides with the ideal completion of [Rel(σ)]:

Corollary 9.3. The mapping LL �→ ↓LL is a bijection between
[Rel(σ)]L and ideals of [Rel(σ)].

Proof. Assume ([Gt]) is a Left Cauchy Sequence and let I = ↓(left limi[Gi]).
According to Lemma 9.6, I has a supremum which is a left limit of some se-
quence ([Ht]). Obviously, limt→∞ distL([Gt], [Ht]) = 0 hence the two limits
are equal. The special case of the empty structure corresponds to the empty
ideal. 	


It follows that every left limit L is represented by a countable structure,
the disjoint union

∑

I of all the members of the ideal I corresponding to L.
There is more to this than meets the eye and this relates to both classical
and contemporary model theory. We can only be brief here:

The age of a countable σ-structure A is the set of all finite σ-structures
that (isomorphically) embed in A. An important property of the age of count-
able structures is the following (which has been proved by Fraïssé, see [257]):
a non-empty countable class C ⊆ Rel(σ) is the age of some countable σ-
structure if and only if C is hereditary (i.e. closed by taking induced sub-
structures) and has the following joint embedding property: if A,B ∈ C

then there is C ∈ C such that A and B are embeddable in C. Notice that the
countable structure is generally not unique.

Let I be an ideal of [Rel(σ)]. Put I+ = {A ∈ Rel(σ) : [A] ∈ I}. If I+ is
non-empty, it is the age of some countable σ-structure.

Conversely, if C ⊆ Rel(σ) is the age of a countable structure then the set
(the core age of C)

↓C = {[A] ∈ [Rel(σ)] : ∃B ∈ C, A → B}

is clearly an ideal (thanks to the joint embedding property) hence it defines
a left limit L, which can be represented by the sum

∑

↓C.
Homomorphism equivalence is easy for finite structures: every finite struc-

ture contains, up to isomorphism, a unique core (i.e. a unique minimal
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retract). For infinite structures this is usually not the case. In turn the rep-
resentation of limits in [Rel(σ)]L is not unique: As above we can represent it
by the disjoint union of the cores in the corresponding ideal I. Sometimes,
the ideal I gives rise to an ultra-homogeneous structure. This is character-
ized by another Fraïssé theorem (see [257]) (The ideal has to be a so-called
amalgamation class.) Yet another possiblity is that the ideal I is induced
as the age of an ω-categorical structure. In our setting, as our classes are
homomorphism monotone, this happens if and only if the ideal I is given by
a set of forbidden homomorphisms, i.e. I = F �, where F is a set of finite
connected structures. This follows from a result of Cherlin et al. [95]. A more
combinatorial approach can be found in [343]. This paper also generalizes the
duality to limits: For I = F � where F is a finite set of trees, the limit is
represented by a finite graph.

Recall that we have, according to the extension of the partial order ≤h to
[Rel(σ)]L (see Sect. 9.3.1 for definitions):

AL ≤h BL ⇐⇒ ↓AL ⊆ ↓BL

⇐⇒ AL
↑ ⊇ BL

↑

and even
LL

↑ = (↓LL)
�.

It is now not difficult to prove that ([Rel(σ)]L,≤h) is a complete lattice
and that meet and joins are “compatible” with the topology of [Rel(σ)]L.

Lemma 9.7. The poset ([Rel(σ)]L,≤h) is a complete lattice.

Proof. Let F ⊆ [Rel(σ)]L. According to the compactness of [Rel(σ)]L (see
Exercise 9.4), there exists a function f : F × IN → Rel(σ) such that for every
L ∈ F we have

distL(L, [f(L, t)]) < 2−t and |f(L, t)| ≤ 
(t).
For integer t, let Ft = {[f(L, t)], L ∈ F}. Obviously, Ft is a finite set (for

each t). Define

It =
∏

L∈F′

f(L, t), and St =
∑

L∈F′

f(L, t)

(where F′ is any minimal subset of F with f(F′, t) = f(F, t)).
By construction, for every F ∈ Rel(σ) and every t ≥ |F|, we have

F → It ⇐⇒ F → I|F|,

F → St ⇐⇒ F → S|F|.
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Hence both (It) and (St) converge. Let

I = left lim
t→∞

It and S = left lim
t→∞

St.

It is easily checked that

I =
∧

F and S =
∨

F.

	

It is not difficult to see that the functor U can be extended by continuity

to [Rel(σ)]L.

Lemma 9.8. For every A,B ∈ Rel(σ) we have

distL([U(A)], [U(B)]) ≤ distL([A], [B]).

Proof. Let k be an integer and let A,B ∈ Rel(σ) be such that distL([A], [B])

< 2−k.
Let F ∈ Rel(σ) be such that |F| ≤ k and let X be the set of all homomor-

phic images of trees contained in F. Of course, every structure X ∈ X is such
that |X| ≤ |F| ≤ k.

Then we have the equivalences:

F → U(A) ⇐⇒ ∀T ∈ Tree(σ), (T → F) =⇒ (T → A)

⇐⇒ ∀X ∈ X, X → A

⇐⇒ ∀X ∈ X, X → A (as distL(A,B) < 2−k)

⇐⇒ ∀T ∈ Tree(σ), (T → F) =⇒ (T → B)

⇐⇒ F → U(B)

Thus distL([U(A)], [U(B)]) < 2−k. 	

As a consequence, we have the following dual limit formulation of the

functor U:

Corollary 9.4. Let A ∈ Rel(σ). Then

[U(A)] = left lim
t→∞

∧
{[D(T)] : T ∈ Tree(σ), |T| ≤ t, and T � A}.

Thanks to the continuity of U we define the mapping U : [Rel(σ)]L →

[Rel(σ)]L by

U(left lim
t→∞

[At]) = left lim
t→∞

[U(At)].

As U is a functor, we easily deduce:
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L1 ≤h L2 ⇒ U(L1) ≤h U(L2).

The limit structure leads to some interesting structural results, for exam-
ple about the set of multiplicative (resp. of non-multiplicative) elements of
[Rel(σ)]. We know that for finite models these sets are very difficult to de-
scribe, even in the simple case of undirected graphs. However from the point
of view of graph limits we get at least some global information.

As noticed earlier, connected and multiplicative elements are of special im-
portance. We now give some properties of these subsets of elements (actually,
of their complements) in the space [Rel(σ)]L.

Lemma 9.9. The set of non-multiplicative elements of [Rel(σ)] is open
and dense in [Rel(σ)]L.

Proof. To prove that the set of non-multiplicative elements of [Rel(σ)] is
open, we prove that if [G] is non-multiplicative then [G] has a neighborhood
which contains no multiplicative element.

If [G] is non multiplicative then there exist A and B such that A � G,
B � G and A×B → G. Assume distL([G], [H]) < 2−|A|.|B|. Then A×B →

H, A � H and B � H. It follows that H is non-multiplicative.
To prove that the set of non-multiplicative elements of [Rel(σ)] is dense, we
prove that for every multiplicative [M] and every ε > 0 there exists non-
multiplicative [N] such that M→ N and distL([M], [N]) < ε.

Let [M] be multiplicative and let ε > 0 be a positive real. There exist
G and H such that G � H � G, M ��

�� � G and M ��
�� � H. According to

Theorem 9.8 there exist G′ such that M ��
�� � G′ ��

�� � G, distL(M,G′) < ε and
distR(G′,G) < 2−|H|. Then H � G′ for otherwise H → G′

→ G and G′
�

H as G � H and distR(G′,G) < 2−|H|. According to Lemma 9.3–(d), N =

G′×H is non-multiplicative and, according to Lemma 9.5, distL([M], [N]) ≤
distL([M], [G′]) < ε.

	

On the other hand, one can also prove that the set of non-connected ele-

ments of [Rel(σ)] is dense (see Exercise 9.5).

9.5 Right Limits and Full Limits

9.5.1 The Right Distance

A sequence ([Gi]) is a Right Cauchy Sequence if it is a Cauchy sequence
according to the distance distR (introduced in Sect. 9.3.4). The completion
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[Rel(σ)]R of ([Rel(σ)], distR) is again a compact space, according to Heine-
Borel theorem. If ([Gi]) is a Right Cauchy Sequence we will denote its limit
by right limi→∞[Gi].

For instance, the sequence of odd cycles converges, but this time (as op-
posed to left limits) we cannot associate a graph to this limit.

We extend the homomorphism order to right limits by

right lim
i

[Gi] ≤h left lim
i

[Hi] ⇐⇒ lim
i→∞

w((Hi →)\(Gi →)) = 0 (9.10)

Notice that this relation does not depend of the converging sequences and
that it extends the homomorphismorder (identified with constant sequences).

Lemma 9.10. Every filter F of [Rel(σ)] has an infimum in [Rel(σ)]R
which is the limit of a decreasing sequence [G1] ≥h [G2] ≥h · · · ≥h

[Gt] ≥h . . . of elements of F.

Proof. For an integer t, denote by F(t) the subset of F with structures of
order at most t. Let Gt =

∏

F(t). By construction, ([Gt]) is a Right Cauchy
Sequence. Let FL be its right limit. As ([G1] →) ⊆ ([G2] →) ⊆ · · · ⊆ ([Gt] →

) ⊆ . . . we have IR ≤h [H] for every [H] ∈ F.
Now assume that right limt[G′

t] ≤h [H] for every [H] ∈ F and some Right
Cauchy Sequence ([G′

t]). Then for every t we have right limt[G′
t] ≤ [Gt]

hence right limt[G′
t] ≤h right limt[Gt]. 	


Corollary 9.5. The mapping LR �→ LR
↑ is a bijection between

[Rel(σ)]R and filters of [Rel(σ)].

Proof. Assume ([Gt]) is a Right Cauchy Sequence and let F =

(right limi[Gi])
↑. According to Lemma 9.10, F has an infimum which is a

right limit of some sequence ([Ht]). Obviously, limt→∞ distR([Gt], [Ht]) = 0

hence the two limits are equal. The special case of the empty structure cor-
responds to the empty filter. 	


AR ≤h BR ⇐⇒ AR
↑ ⊇ BR

↑.

9.5.2 Full Distance

Let dist be the distance between homomorphism equivalence classes de-
fined by:
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dist([G], [H]) = max(distL([G], [H]), distR([G], [H]))

Notice that

dist([G1], [G3]) ≤ max(dist([G1], [G2]), dist([G2], [G3]))

hence ([Rel(σ)], dist) is an ultrametric space. The completion [Rel(σ)] of
([Rel(σ)], dist) is a compact space. If ([Gi]) is a Cauchy sequence for dist,
we will denote by its limit by limi→∞[Gi]. Limits will be denoted as A,B,L,
etc. For a sequence ([Gi]) to convergence it is necessary and sufficient that
the sequence converges for both the distances distL and distR.

We extend the homomorphism order to limits by defining limi[Gi] ≤h

limi[Hi] if

lim
i→∞

max(w((→ Gi) \ (→ Hi)), w((Hi →) \ (Gi →))) = 0.

Hence we have, for limit objects A and B:

A ≤h B ⇐⇒ (↓A ⊆ ↓B)∧ (A↑ ⊇ B
↑).

Notice that this relation does not depend of the converging sequences and
that it extends the homomorphism order on [Rel(σ)] (identified with constant
sequences).

We deduce the following characterization of limits.

Theorem 9.9. The mapping L �→ (↓L,L
↑) is a bijection from

[Rel(σ)] to the set of pairs (I,F) such that:

1. The set I is an ideal of [Rel(σ)],
2. The set F is a filter of [Rel(σ)],
3. Every element of I is smaller than every element of F,

that is: I ⊆ F�,
4. Every tree smaller than every element of F belongs to I,

that is: F� ∩ [Tree(σ)] ⊆ I.

Proof. Assume (1) to (4) hold. For integer t define

It =
∑

{A : |A| ≤ t and [A] ∈ I}

Ft =
∏

{A : |A| ≤ t and [A] ∈ F}.

Let T be a tree with max(|T|, |D(T)|) ≤ t. If T → Ft then T → Ft′ for every
t′ ≥ t (by the definition of Ft) hence [T] ∈ F�. Then, by (4), [T] ∈ I thus
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T → It. It follows, according to Theorem 9.7, that there exists [Mt] such
that

� [It] ≤h [Mt] ≤h [Ft],
� distL([It], [Mt]) < 2

−t,
� distR([Ft], [Mt]) < 2

−t.

By compactness, one extracts a converging subsequence of [Mj] with limit
L. By construction, I = ↓L and F = L

↑ (hence L is unique).
Conversely, let L be a limit of a sequence [Lt]. Let I = ↓L and F = L

↑.
Then I is an ideal, F is a filter and conditions (1) to (3) obviously hold. Let
[T] ∈ F�∩[Tree(σ)]. Assume for contradiction that [T] �∈ I. Then, there exists
t0 such that for every t ≥ t0 we have Lt � A. According to Lemma 9.2, T
has a dual D(T). Thus Lt → D(T) holds for every t ≥ t0. Hence [D(T)] ∈ F

thus T → D(T), a contradiction. 	

Let I be an ideal and let F be a filter, such that

F� ∩ [Tree(σ)] ⊆ I ⊆ F�.

Then we denote the unique limit defined by I and F by

L = [ I , F ].

Proposition 9.2. There is a natural identification

� Of ([Rel(σ)]R,≤h) with the sub-poset of ([Rel(σ)],≤h) with
elements of the form [F� , F ],

� Of ([Rel(σ)]L,≤h) with the sub-poset of ([Rel(σ)],≤h) with
elements of the form [ I , I� ].

Proof. According to Corollary 9.5, there is a natural identification between
right limits and filters of [Rel(σ)]. For any filter F of [Rel(σ)], F� is an ideal
and we have F� ∩Tree(σ) ⊆ F� hence, according to Theorem 9.9 there exists
[F� , F ] in [Rel(σ)]. The mapping

LR �→ PR(LR) = [ (LR
↑)� , LR

↑ ]

is clearly a bijection from [Rel(σ)]R to the subset of limits of the form [F� , F ].
According to the definitions of the extensions of ≤h on [Rel(σ)]R and [Rel(σ)],
it is clear than PR induces an homomorphism of ([Rel(σ)]R,≤h) to the sub-
poset of ([Rel(σ)],≤h) induced by the limits of the form [F� , F ].
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According to Corollary 9.3, there is a natural identification between left
limits and ideals of [Rel(σ)]. For any ideal I of [Rel(σ)], I� is a filter and we
have I ⊆ I��. Assume for contradiction that I�� ∩ Tree(σ) �⊆ I. Let T0 ∈
I�� ∩Tree(σ) \ I. According to Theorem 9.2, T0 has a dual D(T0). For every
[A] ∈ Rel(σ) we have T0 � A hence A → D(T0). Thus D(T0) ∈ I�. As
T0 � D(T0) we get T0 /∈ I��, a contradiction. Thus I�� ∩ Tree(σ) ⊆ I and,
according to Theorem 9.9, there exists [ I , I� ] in [Rel(σ)]. The mapping

LL �→ PL(LL) = [ ↓LL , (↓LL)
� ]

is clearly a bijection from [Rel(σ)]L to the subset of limits of the form [ I , I� ].
According to the definitions of the extensions of ≤h on [Rel(σ)]L and [Rel(σ)],
it is clear than PL induces an homomorphism of ([Rel(σ)]L,≤h) to the sub-
poset of ([Rel(σ)],≤h) induced by the limits of the form [ I , I� ]. 	


Also, the Ambivalence theorem (Theorem 9.8) has the following conse-
quence (with the possibility to define a chimera):

Lemma 9.11. Let [A1] ≤h [A2]. The following conditions are
equivalent:

1. U([A1])] = U([A2]).
2. [ ↓[A1] , [A2]

↑
] ∈ [Rel(σ)]. This limit is called a chimera.

Example of chimeras are given in Exercise 9.7.

9.5.3 Full Dualities

Recall that singleton homomorphism duality is captured by the following
scheme:

F −�−→ G ⇐⇒ G −→ H

Unfortunately there exists only one duality in Graph, namely the pair
(K2, K1) and although there are countably many dualities in general in Rel(σ),
only tree-like structures have duals. However, if we consider limits, the set of
dualities drastically increases:

A full duality is a pair (F,D) such that

∀L ∈ Rel(σ) : F �≤h L ⇐⇒ L ≤h D.
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We have the following easy result which has, as we shall see below, an inter-
esting context.

Lemma 9.12. Let (F,D) be a full duality. Then

� Either F ∈ [Rel(σ)] and D ∈ [Rel(σ)]L,
� Or F ∈ [Rel(σ)]R and D ∈ [Rel(σ)].

Proof. Let us prove first that either F ∈ [Rel(σ)] or D ∈ [Rel(σ)]: As D → D

we have F � D. This means that there exists a graph T such that either
T → F and T � D—hence F → T according to duality thus T �F, or D → T

and F � T—hence T → D by duality thus T �D.
Assume F = [F] ∈ [Rel(σ)]. Let L = [ ↓D , (↓D)

� ] ∈ [Rel(σ)]L. Thus
D ≤h L. As [F] /∈ ↓D we have [F] �≤h L. By duality, L ≤h D hence L = D.

Assume D = [D] ∈ [Rel(σ)]. Let L = [ (F↑)� , F↑ ] ∈ [Rel(σ)]R. Thus
L ≤h F. As [D] /∈ F

↑ we have [D] �≥h L. By duality, L ≥h F hence L = F. 	


Nešetřil and Shelah conjectured in [368] that every finite maximal an-
tichain in the homomorphism order of countable graphs contains a finite
graph. Finite maximal antichains in Graph are in a correspondence with fi-
nite dualities. Thus the lemma settles the characterization of dualities for the
completion [Rel(σ)] of [Rel(σ)].

Theorem 9.10. Every connected structure has a full dual, ev-
ery multiplicative structure is a full dual, and these are the
only full dualities.

Proof. We already have proved that every duality pair contains a graph.
Moreover, it is easily checked that if one of F,D is a graph and if duality
holds for graphs, then it also holds for limits:

� Let (F,D) be a duality which holds for graphs. Let L be the limit of a
Cauchy sequence (Li). Then F� L is equivalent to ∃i0∀i ≥ i0 F� Li, i.e.
∃i0∀i ≥ i0 Li → D, what is equivalent to L → D;

� Similarly, let (F, D) be a duality which holds for graphs. Let L be the limit
of a Cauchy sequence (Li). Then L � D is equivalent to ∃i0∀i ≥ i0 Li �
D, i.e. ∃i0∀i ≥ i0 F → Li, what is equivalent to D → L.

We have already proved that every graph has a dual hence we only have
to characterize those full duality pairs (F, D) such that D is a graph. If D is
multiplicative, let S = {G : G� D} and let I be the class of all graphs having
a homomorphism to every graph in S. The set I is an ideal by construction
and, as D is multiplicative, S is a filter hence the pair (I, S) defines a limit
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object F. For every graph G, we have F → G if and only if G ∈ S, i.e.: if
and only if G � D. It follows that every multiplicative graph is a full dual.
Conversely, let (F, D) be a full duality. Let I = I(F) and S = S(F). According
to the duality, F → G if and only if G� D thus S = {G : G� D} is a filter,
what means that D is multiplicative. 	
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Exercises

9.1. Prove that for every digraph �G the following conditions are equivalent:

1. �G is acyclically oriented,
2. U(�G) is loopless,
3. U(�G) is acyclically oriented.

Hence, if a loopless digraph has tree duality then it is acyclically oriented.
Also, the following conditions are equivalent:

1. �G is homomorphically equivalent to some dipath,
2. �G is balanced,
3. U(�G) is balanced.

9.2. Let (F,D) and (F′,D′) be finite dualities. Prove that F → F′ if and
only if D → D′.

9.3. As a further comparison of connectedness and multiplicativity, let us
consider now the problem of the decomposition. Although it is well known
that every structure is the sum of finitely many connected structures (namely
its connected components), things get more complex with the product.

� Prove that for every A there exists a unique decomposition

[A] = [C1]∨ [C2]∨ · · ·∨ [Cp]

where [Ci]’s are connected and distinct.
� Assume [A] = [M1]∧[M2]∧· · ·∧[Mp], where the [Mi]’s are multiplicative

and distinct. Prove that this decomposition is unique.

9.4. Prove that there is a function 
 : IN → IN such that for every integer t
and for every L ∈ [Rel(σ)]L there exists A ∈ [Rel(σ)] such that

distL(L,A) < 2−t and |A| ≤ 
(t).

9.5. Prove that the set of non-connected elements of [Rel(σ)] is dense in
[Rel(σ)]L.

9.6. The aim of this exercise is to prove that existence of homomorphisms
from every finite substructures of a countable structure A to anω-categorical
structure B implies the existence of a homomorphism from A to B.

� Number the vertices of A as v1, . . . , vn, . . . For n ≥ 1, say that two ho-
momorphisms f, g : A[v1, . . . , vn] → B are equivalent if there exits an
automorphism h of B such that f = g ◦ h;
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� Prove that for every homomorphism f : A[v1, . . . , vn] → B there exists
finitely many non-equivalent f′ : A[v1, . . . , vn+1] → B extending f;

� Organize all the equivalence classes of these homomorphisms (for arbi-
trary n) as a tree and conclude using König’s lemma that there exists a
homomorphism from A to B.

9.7. Let G = K2 and H = Kn. There exists a chimera E = [ ↓[K2] , [Kn]
↑
].

Construct a sequence (Gi) of graphs with limits E;
Let �G = �C3 and �H = �C6 be the circuits of order 3 and 6. Prove that there
exists a chimera L = [ ↓[�G] , [�H]

↑
]. Construct a sequence (�Fi) of directed

graphs which limits is L.
Prove that the chimera L = [ ↓[�G] , [�H]

↑
] exists for

�G = and �H = .

9.8. Let G be a graph with vertex set V = {v1, . . . , vn} and edge set E. Denote
by ∂G the graph with vertex set E and edge set F, where {{vi, vj}, {vk, vl}} ∈
E× E forms an edge of ∂G if i < j = k < l. The graph ∂G is the shift graph
of G.

Prove that χ(∂G) ≥ logχ(G);
Prove that the odd-girth of ∂G is at least odd-girth(G) + 2.

9.9. Modify the construction in Exercise 9.8 for hypergraphs.

9.10. Let �G, �H be oriented graphs.

Prove that �H has (oriented) tree duality if and only if U(�H) → �H.
Hint: Use the procedure known as the consistency check algorithm, which
in case of graphs takes the following form: To find a homomorphism G→ H

enumerate all the edges of G as e1, . . . , em. To every vertex x ∈ V(G) we
assign a set 
i(x) ⊂ V(H), where i = 0, 1, . . .. We put 
0(x) = V(H). In the
i−th step we consider the arc ej = (x, y), where j ∼= i modm and we modify
the labeling 
i−1 by removing from 
i−1(y) those labels s for which there is
no r ∈ 
i−1(x) with (r, s) ∈ E(�H), and removing from 
i−1(x) those labels r
for which there is no s ∈ 
i−1(y) with (r, s) ∈ E(�H). The resulting labeling is
then consistent with ej; it could however have become inconsistent with some
previously treated edges. Nevertheless, after a sequence of at most |�G| |�H| steps
the procedure stabilizes with a labelling 
∗. If all sets 
∗(x) are non-empty
then using U(H) → H we get a homomorphism G → H. It follows that the
consistency check succeeds if and only if U(H) −→ H. Finish the proof by
proving an analogue of Lemma 9.1 for the consistency check: r �∈ 
∗(x) if
there is a rooted oriented tree (�T, t) which is homomorphic to (�G, x) but not
to (�H, r).
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9.11. A connected gap in the homomorphism order (Rel(σ), <h) is a pair
(A,B), where B is connected, A <h B but no C satisfies A <h C <h B.

Prove that connected gaps and duality pairs are in 1–1 correspondence [370].
Hint: If (F,D) is a singleton duality pair then (F×D,F) is a gap. If A,B is a
connected gap then B,AB is a singleton duality. See [370] for a the definition
of the power AB. (This can be defined by the validity of (A × B) → C if
and only if A → BC; this fact is sufficient for this exercise.)



Chapter 10
Preservation Theorems

Preserve: to prepare so as to resist to decomposition.

10.1 Introduction

We start with the following observation: If a formulaΦ expresses a H-coloring
problem (i.e. G |= Φ if and only if G → H) the negated formula ¬Φ is
preserved by homomorphisms:

G |= ¬Φ and G → G ′ =⇒ G ′ |= ¬Φ. (10.1)

(This is easy to see: otherwise G → G ′
→ H, a contradiction.)

The complementary class (� H) seems to have a very special form. (For
example, note that every graph is a homomorphic image of a matching.)
Examples of classes closed under homomorphisms are classes of the form
(A →) (introduced in Sect. 9.3.2) and this suggests that they can be described
by a sentence with a specific syntactic form. Indeed classical preservation
theorems are statements of the form [224]: “A class C of structures, defined by
a first-order sentence, is preserved under some specified algebraic operation
if and only if it is definable by a first-order sentence of a certain syntactic
form”. Several such theorems have been proved. They connect syntactic and
semantic properties of first-order formulas. We list the following (see e.g.
[257]):

� The Łoś-Tarski theorem, which asserts that a first-order formula is pre-
served under extensions on all structures if, and only if, it is logically
equivalent to an existential formula;

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__10, © Springer-Verlag Berlin Heidelberg 2012
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� Lyndon’s theorem, which asserts that a first-order formula is preserved
under surjective homomorphisms on all structures if, and only if, it is
logically equivalent to a positive formula [319];

� The Homomorphism Preservation Theorem, which asserts that a first-
order formula is preserved under homomorphisms on all structures if, and
only if, it is logically equivalent to an existential-positive formula.

The terms “all structures”, which means finite and infinite structures, is cru-
cial in the statement of these theorems. It has been proved that the two first
theorems fail when relativized to the finite: there exists a first-order formula
that is preserved under extensions on finite structures, but is not equiva-
lent in the finite to an existential formula [10, 238, 452] (see Problem 10.1)
and there exists a first-order formula that is preserved under surjective ho-
momorphisms on finite structures, but is not equivalent in the finite to a
positive formula [5, 445]. The case of the homomorphism preservation the-
orem remained open for a long time until Rossman showed [425] that the
homomorphism preservation theorem actually holds when relativized to the
finite. Rossman’s result was stated in Chap. 9 as Theorem 9.1.

In this chapter we investigate preservation theorems in greater details and
particularly we are interested in determining for which class of structures
the homomorphism preservation holds. We proceed in two main directions:
infinite and finite.

The homomorphism preservation holds when unrestricted (so for the class
of all finite and infinite structures) and we shall show that it also holds for
special classes of (at most) countable structures. This is related to left limits
and to a study of approximations and homomorphisms, which leads to a new
setting of Theorem 9.1.

In the second direction, we deal with special classes of finite structures and
we shall see that the homomorphism preservation theorem holds for nearly
all naturally defined sparse classes of finite structures.

10.2 Primitive Positive Theories and Left Limits

We shall now consider an alternative view of left limits in the context of
first-order logic.

In the following, we consider first-order logic and a fixed finite signature σ
of relations. Within the first-order language defined by σ, we shall sometimes
consider formulas φ(x1, . . . , xn) with free variables x1, . . . , xn, but most of
the time we will consider sentence, that is formulas without free variables.



10.2 Primitive Positive Theories and Left Limits 229

The structures we consider here are finite or infinite; if they are finite, it will
be specified.

For n ∈ IN we denote by FOn the set of all sentences with quantifier rank
at most n and we define FO =

⋃
n FO

n.
A formula (or a sentence) is primitive positive if it is constructed using

conjunction ∧ and existential quantification ∃ only. For n ∈ IN we denote by
Pn the subset of FOn of primitive positive sentences with quantifier rank at
most n. We also define P =

⋃
n P

n.
As noted by Chandra and Merlin [90], the study of primitive positive

formulas is intimately connected to homomorphisms. This is in particular
due to the following correspondence between P and Rel(σ): to each sentence
φ ∈ P corresponds a finite structure Aφ ∈ Rel(σ) in such a way that for
every structure M (finite or not) it holds:

M |= φ ⇐⇒ Aφ → M.

Such Aφ is easy to construct as conjunction of tuples of A preceded by
existential quantifications of all the variables. Converse correspondence also
holds. This is made more precise by the following construction:

Let A be a connected structure with tree-depth t. First assume that A is
connected. We consider a canonical rooted plane tree Y such that the Gaifman
graph of A is included in the closure of Y (see Exercise 17.1 for hints on how
such a canonical tree can be computed). By construction, every relation of A
is included in a chain of Y. The sentence ϑ(A) is constructed from a traversal
of Y as follows: The first time we reach a vertex vi we write down “∃xa(”
where a is the height of vi and the conjunction of all relations involving vi
and its ancestors in Y (replacing each vi by the corresponding xa); when we
backtrack from one element vi to its father we close the parenthesis opened
when reaching vi; and when we move from one element to its next brother
in Y we write ∧ (see Fig. 10.1).

If A is not connected the ϑ(A) is defined as the conjunction of the sen-
tences ϑ(Ai) where the Ai’s are the connected components of A. By con-
struction, the quantifier rank of ϑ(A) is exactly t.

Conversely, for a primitive positive sentence φ with quantifier rank t, we
build a rooted forest Y and construct in a natural way the set of relations
between these elements from the atoms present in φ. The so-obtained struc-
ture M(φ) has tree-depth at most t, as its Gaifman graph is included in the
closure of Y. Hence we have:
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F

v1

v2v3

v4 v5

v6

v1

v2

v3

v5

v6

v4

F ⊆ Clos(Y )

ϑ(F) : ∃x1 ( ∃x2 ( ∃x3 ( R(x3; x1)
∧∃x4 ( R(x4; x1) ∧ R(x4; x2))
∧∃x4 ( R(x4; x2) ∧ R(x4; x3)))

∧∃x3 ( R(x3; x1) ∧ R(x3; x2))))

x1

x2

x3

x4

Fig. 10.1 computation of ϑ(F) for an undirected graph F

qrank(ϑ(A)) = td(A)

qcount(ϑ(A)) = |A|

td(M(φ)) ≤ qrank(φ)

|M(φ)| ≤ qcount(φ)

ϑ(A1 +A2) = ϑ(A1)∧ ϑ(A2)

M(ϑ(A)) ∼= A.

This also leads to the following:

Proposition 10.1. There two mappings ϑ : Rel(σ) → P and
M : P → Rel(σ) are such that for every A,B ∈ Rel(σ) and
every φ,ψ ∈ P it holds:

A → B ⇐⇒ B |= ϑ(A)

φ � ψ ⇐⇒ M(φ) |= ψ

B |= φ ⇐⇒ M(φ) → B

⇐⇒ ϑ(B) � φ
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This somewhat dual approach to homomorphism problems will be fur-
ther extended to theories. Recall that a (first-order) theory T is a set of
(first-order) sentences. A theory T is consistent if it does not contain a con-
tradiction, in the sense that there is no sentence φ such that both φ and its
negation are provable from the sentences in T . If T is a theory and φ,ψ are
sentences we say that T (resp. φ) entails ψ if T ∪ {¬ψ} (resp. {φ,¬ψ}) is not
consistent, and we denote this by T � ψ (resp. φ � ψ).

It follows that Proposition 10.1 establishes an order-reversing isomorphism
between the homomorphism quasi-orders (Rel(σ),≤h) and (P,�). It follows
that two finite structures A and B are homomorphically equivalent if and
only if ϑ(A) and ϑ(B) are logically equivalent. Also note that for a finite
structure A the minimum tree-depth of a finite structure A ′ ���� A equals the
minimum quantifier rank of a primitive positive sentence logically equivalent
to ϑ(A).

The above connection extends when considering sets of primitive positive
sentences. A PP-theory is a subset of P. Every PP-theory may be naturally
identified with a subset of Rel(σ) by the mapping φ �→ M(φ). Note that
every PP-theory is consistent. An PP-theory T is closed if for every primitive
positive sentence φ, if T � φ then φ ∈ T . The class of all closed PP-theories is
denoted by P. Then, for a primitive positive sentence φ, the closed PP-theory
consisting of all primitive positive sentences which are logical consequences
of φ corresponds to the set of structures having a homomorphism to M(φ),
that is to (→ M). Closed PP-theories are easy to characterize:

Proposition 10.2. A PP-theory T is closed if and only if the two follow-
ing conditions holds:

1. ∀φ ∈ T, ∀ψ ∈ P, φ � ψ ⇒ ψ ∈ T ,
2. ∀φ1, φ2 ∈ T, φ1 ∧φ2 ∈ T .

Proof. If T is a closed PP-theory, the two conditions obviously hold. Con-
versely, assume that the two conditions hold. If ψ ∈ P and T � ψ then there
exists a finite subset T ′ ⊆ T such that T ′ � ψ (proofs are finite). By applying
the second condition iteratively,

∧
φ∈T ′ φ ∈ T . As

∧
φ∈T ′ φ ∈ T � ψ, the first

condition implies ψ ∈ T . It follows that T is a closed PP-theory. 
�

The identification of PP-theories and classes of finite structures extends
further.
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Proposition 10.3. The mapping

T ∈ P �→ I(T) = {M(φ) : φ ∈ T }

is a bijection of P and the class of ideals of [Rel(σ)], whose
inverse is defined by

ϑ(I) =
⋃

A∈I

{φ ∈ P : ϑ(A) � φ}.

Proof. Indeed, if A → M(φ) ∈ I(T) and A is finite then φ � ϑ(A), thus
A ∈ I(T). If M(φ1),M(φ2) ∈ I(T) then φ1, φ2 ∈ T hence T � φ1 ∧ φ2. As
M(φ1 ∧ φ2)

���� M(φ1) +M(φ2) we deduce that I(T) is an ideal.
Conversely, assume I is an ideal of [Rel(σ)]. Assume φ ∈ ϑ(I) and φ � ψ.
Then obviouslyψ ∈ T(I). Assume φ1, φ2 ∈ ϑ(I). Then there exist A1,A2 ∈ I

such that for i = 1, 2 it holds ϑ(Ai) � φi hence M(φi) → Ai. As I is an
ideal we have A1 + A2 ∈ I. As ϑ(A1 + A2) = ϑ(A1) ∧ ϑ(A2) we have
ϑ(A1 +A2) � φ1 ∧ φ2 thus φ1 ∧ φ2 ∈ ϑ(I). According to Proposition 10.2,
it follows that ϑ(I) is closed.

As obviously I(ϑ(I)) = I we deduce that T �→ I(T) is a bijection of P and
the class of ideals of [Rel(σ)]. 
�

Thus the class P of closed PP-theories is in bijection with the completion
[Rel(σ)]L (given by all left limits of [Rel(σ)] introduced in Sect 9.4).

Let PF be the image of [Rel(σ)] by ϑ.

Proposition 10.4. Let T ∈ P. Then the following conditions are equiva-
lent:

(i) T ∈ PF,
(ii) ∃A ∈ Rel(σ), T = ϑ([A]) (such A is uniquely determined up to

homomorphism equivalence),
(iii) ∃φ0 ∈ T ∀φ ∈ T φ0 � φ (such φ0 is uniquely determined up to

logical equivalence),
(iv) I(T) is a principal ideal of [Rel(σ)].

Proof. From (i) it follows that there exists A ∈ Rel(σ) such that T = ϑ([A]).
Assume T = ϑ([B]). Then ϑ(A) � B and ϑ(B) � B, that is: A ���� B hence
(ii) holds.
(ii) and (iii) are equivalent, by putting φ0 = ϑ(A) or A = M(φ0).
From (ii) follows that I(T) = (→ A) hence (iv).
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From (iv) follows (i) as T = ϑ((→ A)) = ϑ([A]).


�

10.3 Theories and Countable Structures

A theory T is satisfiable if it has a model, that is a structure M which satisfies
all the sentences in T (this is denoted by M |= T). We denote by Mod(T) the
class of the models of the theory T . Conversely, for any structure A we de-
note by Th(A) the theory of A, that is the class of all the sentences satisfied
by A. A theory is complete if it is a maximal consistent set of sentences. By
Gödel completeness theorem, every consistent theory is satisfiable, thus has
at least a model. A class C of structures is an elementary class if there is a
theory T such that C = Mod(T). It is known that the homomorphism preser-
vation theorem holds for every elementary class (see Exercise 2 in Sect. 5.5 in
[258]). According to downward Löwenheim-Skolem theorem, every infinite
first-order structure has a countable elementary substructure. Recall that a
substructure A of a structure B is an elementary substructure of B if for
every first-order formula φ(x1, . . . , xn) with free variables x1, . . . , xn, and for
every tuple (a1, . . . , an) of elements of A it holds

A |= φ(a1, . . . , an) ⇐⇒ B |= φ(a1, . . . , an).

It follows that every consistent theory has at least a model that is at most
countable.

Here, as in the whole chapter, we refer to [257, 299, 303, 325] for a back-
ground on logic and model theory information.

We denote by T the class of all consistent theories. For T ∈ T, the deduc-
tive closure of T is the theory T� = {φ : T � φ} of all the sentences which
are logical consequences of those in T . We denote by TC the subclass of all
complete theories. Recall that a theory T is complete if it is consistent and
maximal for this property; this means that for every sentence φ ∈ FO, either
φ ∈ T or ¬φ ∈ T . Every theory T ∈ TC has a model but all the countable
models of T do not need to be isomorphic. However, all the models of T are
elementarily equivalent. Hence TC can be viewed has the quotient Rel(σ)/ ≡
of the class Rel(σ) of all σ-structures by the elementary equivalence rela-
tion ≡. Although elementary equivalence reduces to isomorphism on finite
structures, this relation is quite a complicated equivalence for infinite struc-
tures and the language of theories provides a convenient setting.

Of particular interest will be the following two subclasses of TC:

� The class TF of all complete theories that have a finite model.
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� The class TFMP of all complete theories T with the finite model property,
i.e. such that every sentence φ ∈ T has a finite model. (Notice that this is
equivalent to the statement that every finite T ′ ⊆ T has a finite model.)

Obviously we have
TF ⊆ TFMP ⊆ TC ⊆ T.

For an example of a sentence φ of quantifier rank 5 with no finite model see
Exercise 10.2. For an example of a consistent theory T without a finite model,
but such that every finite subset T ′ of T has a finite model, see Exercise 10.3.

The mapping Th from the class Rel(σ) of finite structures to the class TF

is clearly a bijection, as a complete theory T with a finite model has no other
model.

In the complete analogy to left distances of finite σ-structures we define
a distance on T. A natural ultrametric can be defined on T, which expresses
that two theories are close if they contain the same sentences of small quan-
tifier rank. Formally, for two theories T1, T2 ∈ T, the first-order distance
distFO(T1, T2) is 0 if T1 = T2, and otherwise it is 2−t, where t is the min-
imum quantifier rank of a formula belonging to exactly one of T1 and T2.

Proposition 10.5. With the metric distFO:

� T is compact,
� TC is compact,
� TFMP is compact,
� TF is dense in TFMP.

Proof. The first two items are direct consequences of the compactness the-
orem. The two next items will follow from the proof that TFMP is the set of
all limits of sequences of elements of TF which converge in TC.

Assume (Ti) is a sequence of elements of TF converging to some T ∈ TC \TF.
Let φ ∈ T . For every i such that distFO(Ti, T) < 2

−qrank(φ), the finite model
of Ti is a model of φ.
Conversely, assume T ∈ TFMP. Then for every n ∈ IN, T ∩ FOn has a finite
model An. As both Th(An) and T are complete theories, we have Th(An)∩
FOn = T ∩ FOn hence T is the limit of the (possibly constant) sequence
(Th(An)).


�
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10.4 Primitive Positive Theories Again

It follows that PF is the trace of TF on P:

PF = {T ∩ P : T ∈ TF}.

However, note that PF is not the class of all closed PP-theories with a
finite model (see Exercise 10.4).

We shall prove that the metric space (P, distFO), which is constructed
from ideals similarly as [Rel(σ)]L is constructed from [Rel(σ)], is the com-
pletion of the metric space (PF, distFO). The proof is based on the following
approximation result.

Proposition 10.6. Let T ∈ P and let n ∈ IN. Then there exists φn ∈ T
such that

1. qrank(φn) ≤ n,
2. ∀ψ ∈ T, (qrank(ψ) ≤ n) ⇒ (φn � ψ).

Proof. Let Cn = {M(φ) : φ ∈ T and qrank(φ) ≤ n}. According to Proposi-
tion 10.1, the class Cn is the union of homomorphism classes of structures
with tree-depth at most n. According to Corollary 6.6 there exists N such
that Cn is the union of the homomorphism equivalence classes of N struc-
tures C1, . . . ,CN. As T is complete, ϑ(Ci) ∈ T for every 1 ≤ i ≤ N. Define
φn =

∧N
i=1 ϑ(Ci). Then, by construction, for every ψ ∈ T with quantifier

rank at most n it holds φn � ψ. 
�

Corollary 10.1. The metric space (P, distFO) is the comple-
tion of the space (PF, distFO).

Proof. If (Tn) is a Cauchy sequence of elements of TF then for every integer
n there exists f(n) such that Ti ∩ Pn = Tf(n) ∩ Pn for every i > f(n). Define
T =

⋃
n Tf(n) ∩ Pn. Then T is clearly the limit of (Tn).

Let T ∈ P. For every integer n there exists, according to Proposition 10.6, a
sentence φ0 such that every sentence ψ ∈ T ∩ Pn is such that φ0 � ψ. Let
Tn = {ψ : φ0 � ψ} = Th(M(φ0)) ∩ P. Then (Tn) converges to T .


�
The mapping ϑ can be used to define an alternative distance on [Rel(σ)],

by making use of the equality of the minimum tree-depth of structures in [A]

and the minimum quantifier rank of the primitive positive sentences logically
equivalent to ϑ(A). Define
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disttd([A], [B]) = distFO(ϑ([A]), ϑ([B])).

We call this metric the tree-depth distance, as it can be alternatively be
defined using tree-depth as we shall prove now.

Proposition 10.7. For every A,B ∈ Rel(σ), disttd([A], [B]) is 0 if [A] =

[B] and (otherwise) it is 2−t, where t is the minimum tree-depth of a
F ∈ Rel(σ) such that (F → A) � (F → B)}.

Proof. If [A] = [B] then disttd([A], [B]) is obviously 0. Assume [A] �= [B]

hence ϑ([A]) �= ϑ([B]). Let 2−n = distFO(ϑ([A]), ϑ([B])). Without loss of
generality, we can assume that there exists φ ∈ ϑ([A]) \ ϑ([B]) such that
qrank(φ) = n. By the definition of ϑ we have ϑ(A) � φ and ϑ(B) �� φ hence,
according to Proposition 10.1, M(φ) → A, M(φ) � B and td(M(φ)) ≤ n.
Conversely, assume F → A and F � B. Then ϑ(F) ∈ ϑ([A]) \ ϑ([B]) and
qrank(ϑ(F)) ≤ td(F).
Assume F → A and F � B. Then the same property holds for Core(F)

instead of F. As Core(F) is a substructure of F, its order and tree-depth are
not greater than those of F. Moreover, according to Corollary 6.5 we have

td(Core(F)) ≤ |Core(F)| ≤ �(td(Core(F))).

disttd([A], [B]) ≤ distL([A], [B]) ≤ 2−�(− log2 disttd([A],[B])).


�

Corollary 10.2. (1) ([Rel(σ)], disttd) and ([Rel(σ)], distL) are
homeomorphic;

(2) (PF, distFO) and ([Rel(σ)], distL) are homeomorphic;
(3) (P, distFO) and ([Rel(σ)], distL) are homeomorphic;

Proof. (1) It follows directly from Proposition 10.7 that the metric spaces
([Rel(σ)], disttd) and ([Rel(σ)], distL) are homeomorphic.

(2) As ϑ is an isometry by the construction of distFO) on [Rel(σ)], the metric
spaces (PF, distFO) and ([Rel(σ)], distL) are homeomorphic.

(3) By considering the completions of the above spaces, the metric spaces
(P, distFO) and ([Rel(σ)], distL) are homeomorphic.


�

The class P itself can be viewed even as the trace of T on P:
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Proposition 10.8. The class P is the trace of TC on P:

P = {T ∩ P : T ∈ TC}.

Proof. If T ∈ P then for every φ ∈ P \ T we have T � ¬φ (as T is complete).
It follows that T ′ = P ∪ {¬φ, φ ∈ P \ T } is consistent hence has a model A.
As Th(A) ∩ P = T we deduce T ∈ {T ∩ P : T ∈ TC}.
Conversely, if T = Th(A)∩P then T∩P is a closed PP-theory as T is complete.


�

It follows that P = TC/ ∼P, where ∼P is the equivalence classes defined by

T1 ∼P T2 ⇐⇒ T1 ∩ P = T2 ∩ P.
A global picture of the metric subspaces of (T, distFO) is sketched in

Fig. 10.2.

Fig. 10.2 Compact subspaces of the compact space T: P and TFMP ⊂ TC. Density
of TF in TFMP and of PF in P. The ∼P equivalence classes

10.5 Quotient Metric Spaces

It follows from Proposition 10.8 that yet another metric can be defined on
P, by considering the quotient of the metric space (TC, distFO) by ∼P. Let
us denote the quotient metric by dFO. Then, for every T1, T2 ∈ P, it holds:
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dFO(T1, T2) = inf{distFO(T
′
1, T

′
2) : T

′
1 ∩ P = T1, T

′
2 ∩ P = T2, T

′
1, T

′
2 ∈ TC}.

Notice that obviously, for every T1, T2 ∈ P, it holds:

dFO(T1, T2) ≥ distFO(T1, T2).

Indeed, dFO(T1, T2) < 2
−n means that there exist T ′

1, T
′
2 ∈ TC such that

T ′
1 ∩P = T1, T

′
2 = T2 and for every φ ∈ FOn it holds (φ ∈ T ′

1) ⇐⇒ (φ ∈ T ′
2).

Hence, for every φ ∈ Pn it holds (φ ∈ T1) ⇐⇒ (φ ∈ T2) thus
distFO(T1, T2) < 2

−n.
The remaining of this section will be devoted to the proof that the equality

holds. This is not obvious and its proof will use one of the main theorems
of [425].

Lemma 10.1. Every closed PP-theory is the trace on P of a complete
theory in TFMP:

For every T ∈ P there exists T ′ ∈ TFMP such that T = T ′ ∩ P.

Proof. Let T ∈ TC \TFMP. Let A be a countable model of T . Let An be the
disjoint union of all the substructures of A induced by n elements. Let A+ =
⋃

n An and let T+ = Th(A+). As a direct consequence of Proposition 10.1,
we have T+ ∩ P = T ∩ P. Let us prove that T+ ∈ TFMP:

Let φ ∈ Th(A+). According to Gaifman’s locality theorem [205], there
exists a first-order sentence φ ′ equivalent to φ which is a Boolean combina-
tion of basic local sentences, that is of sentences φ ′

a of the form

∃x1 . . . ∃xka

( ∧

1≤i<j≤ka

dist(xi, xj) > 2r∧
∧

1≤i≤ka

ψ(xi)

)

,

where ψ(x) is r-local (i.e. such that B |= ψ(b) if and only if B[Nr(b)] |=

ψ(b)). Let k = maxka. For each φ ′
a, we have A+ |= φ ′

a if and only if there
exists a union of at most k connected components of A+ which satisfies φ ′

a,
that is if and only if there exists some na such that

⋃
i≤n Ai |= φ ′

a for all
n ≥ na. Let N be the maximum of the na such that A+ |= φ ′

a. Then for
every a and every N ≥ n we have (A+ |= φ ′

a) ⇐⇒ (
⋃

i≤n Ai |= φ ′
a)

hence
⋃

i≤n Ai |= φ. We deduce that (Th(
⋃

i≤n Ai)) converges to T+. Hence
T+ ∈ TFMP, as T+ has obviously an infinite model. 
�

Corollary 10.3. PF is dense in (P, dFO).

Proof. Let T ∈ P. According to Lemma 10.1 there exists T ′ ∈ TFMP such
that T = T ′∩P. According to Proposition 10.5, TFMP is the closure of TF for
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the topology induced by distFO on TC. Hence there exists a sequence (Ti) of
elements of TF such that distFO(Ti, T

′) → 0. As (P, dFO) = (TC, distFO)/ ∼P
we deduce that dFO(Ti ∩ P, T) = dFO(Ti ∩ P, T ′ ∩ P) → 0. As Ti ∩ P ∈ PF we
deduce that every T ∈ P is a limit point of PF. 
�

We recall Rossman’s equirank homomorphism preservation theorem [425].

Theorem 10.1. If (F → A) ⇐⇒ (F → B) holds for every
(finite) structure F with tree-depth at most n, then there exist
A ′ ���� A and B ′ ���� B such that A ′ ≡n B ′.

We define the pseudo-metric dist≡ on structures by

dist≡(A,B) = distFO(Th(A),Th(B)).

In other words, dist≡(A,B) = 0 if A ≡ B. Otherwise, t is the minimum
t such that A �≡t B.

From Proposition 10.7 and Theorem 10.1 we get immediately:

Corollary 10.4. For every structures A,B it holds

disttd([A], [B]) = inf{dist≡(A ′,B ′), A ′ ∈ [A],B ′ ∈ [B]}.

The next fact is also immediate.

Lemma 10.2. For every finite structure A and every (possibly non fi-
nite) structure B, it holds

(A ���� B) if and only if (∀F ∈ Rel(σ), (F → A) ⇐⇒ (F → B)).

Theorem 10.2. The metric spaces (P, distFO) and (P, dFO)

are isometric.

Proof. Let T1, T2 ∈ PF, let A1 = ϑ
−1

(T1) and A2 = ϑ
−1

(T2).
By definition of disttd, Corollary 10.4 and Lemma 10.2 we get:

distFO(T1, T2) = disttd(A1,A2)

= inf{dist≡(A ′,B ′), A ′ ∈ [A1],B ′ ∈ [A2]}

= inf{distFO(T
′
1, T

′
2), T

′
1 ∩ P = T1, T2 ∩ P = T2, T

′
1, T

′
2 ∈ TC}

= dFO(T1, T2)
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As PF is dense in both (P, distFO) (by Corollary 10.1) and (P, dFO) (by
Corollary 10.3) we deduce that (P, distFO) and (P, dFO) are isometric. 
�

10.6 The Topological Preservation Theorem

In this section, we prove the following general preservation theorem which
relates metric properties to preservation theorems.

Theorem 10.3 (Topological Preservation Theorem). Let
T0 ⊆ TC and let X0 = {T ∩ X : T ∈ T0}. Assume that the
two following condition hold:

1. Uniform approximation property for X0: there exists C :

IN → IN such that for every T ∈ X0 and every n ∈ IN
there exists T ′ ∈ X0 such that

T ∩ Xn ⊆ T ′ ⊆ T and qrank(T ′) ≤ C(n);
2. The quotient space (T0, distFO)/ ∼X is uniformly homeo-

morphic to the metric space (X0, distFO).

Then, for every sentence φ ∈ FO, the following conditions are
equivalent:

1. ∀T1, T2 ∈ T0 it holds

(φ ∈ T1)∧ (T1 ∩ X ⊆ T2 ∩ X) =⇒ φ ∈ T2;
2. There exist a sentence ψ, which is a conjunction of dis-

junction of sentences in X, such that for every T ∈ T0 it
holds

φ ∈ T ⇐⇒ ψ ∈ T.

In the next section we will make use of this general theorem to prove spe-
cific homomorphism preservation theorems. Before proceeding to its proof,
we introduce some definitions and notations.

The quantifier rank qrank(T) of a consistent theory T ∈ T is the minimum
over all theories T0 with T0 ⊆ T ⊆ T�0 of the maximum quantifier rank of a
formula in T0. In particular, if T is closed under conjunctions then qrank(T) =
min{qrank(φ) : φ ∈ T, φ � T }.
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Let X ⊆ FO by a fragment of first-order logic. For integer n we define
Xn = X ∩ FOn. We denote by ∼X the equivalence relation on TC defined by

T1 ∼X T2 ⇐⇒ T1 ∩ X = T2 ∩ X.

Also, we define by X = {T ∩ X : T ∈ TC}.

Proof. Let φ be a first-order sentence with quantifier rank n.
It is clear that if there exist a sentence ψ, which is a conjunction of dis-

junction of sentences in X, such that for every T ∈ T0 it holds φ ∈ T ⇐⇒

ψ ∈ T , then ∀T1, T2 ∈ X0 it holds

(φ ∈ T1)∧ (T1 ∩ X ⊆ T2 ∩ X) =⇒ φ ∈ T2.
We shall thus restrict our attention to the converse implication.
As the quotient space (T0, distFO)/ ∼X is uniformly homeomorphic to the

metric space (X0, distFO), there exists g(n) such that for every T1, T2 ∈ T0

such that distFO(T1 ∩ X, T2 ∩ X) < 2−g(n) there exist T ′
1, T

′
2 ∈ T0 such that

T ′
1 ∼X T1, T ′

2 ∼X T2, and distFO(T
′
1, T

′
2) < 2

−n.
Let T ∈ T0. According to the uniform approximation property for X0 there

exists T ′ ∈ T0 such that

T ∩ Xg(n) ⊆ T ′ ∩ X ⊆ T ∩ X and qrank(T ′ ∩ X) ≤ C(g(n)).
According to the definition of qrank(T ′ ∩X), there exists T0 such that the

maximum quantifier rank of a sentence in T0 is C(g(n)) and T0 ⊆ T ′∩X ⊆ T�0 ,
thus T ′ ∩ X = T�0 ∩ X as T ′ is complete. By choosing inclusion minimal
theory T0 with this property, we can assume that T0 is finite and has order
bounded by some function N(g(n)) of g(n). As there are only finitely many
non-equivalent choices of theories of order at most N(g(n)) and maximum
quantifier rank at most C(g(n)) there exists a finite set T of pairs (T̂ , T̃ ) of
theories such that for every T ∈ T0 there exists a pair (T̂ , T̃) ∈ T with the
following properties:

� T̃ ⊆ XC(g(n)), T̂ ∈ T0;
� |T̃ | ≤ N(g(n));
� T̂ ∩ X = T̃� ∩ X;
� T ∩ Xg(n) ⊆ T̂ ∩ X ⊆ T ∩ X.

It follows that T ∩ Xg(n) = T̂ ∩ Xg(n), that is: distFO(T ∩ X, T̂ ∩ X) < 2−g(n).
By the uniform homeomorphism of (T0, distFO)/ ∼X and (X0, distFO), we

deduce from distFO(T ∩X, T̂ ∩X) < 2−g(n) that there exists T ′, T̂ ′ ∈ T0 such
that T ′ ∼X T , T̂ ′ ∼X T̂ , and T ′ ∩ FOn = T̂ ′ ∩ FOn. It follows that if φ ∈ T
then φ ∈ T ′ (as T ′ ∼X T), φ ∈ T̂ ′ (as T̂ ′ ∩ FOn = T̂ ∩ FOn, and φ ∈ T̂ (as
T̂ ∼X T̂

′). Conversely, if φ ∈ T̂ then φ ∈ T .
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Define
ψ =

∨

(T̂ ,T̃)∈F:φ∈T̂

∧
T̃ .

Assume T0 ∈ T0 and ψ ∈ T0. Then there exists (T̂ , T̃) ∈ F such that φ ∈ T̂
and

∧
T̃ ∈ T0. By the completeness of T0, it follows that T̂ ∩ X ⊆ T0 ∩ X.

Hence, as also φ ∈ T̂ , we deduce φ ∈ T0.
Conversely, assume φ ∈ T0. By construction, there exists (T̂ , T̃) ∈ F such
that T ∩ Xg(n) ⊆ T̂ ∩ X ⊆ T0 ∩ X hence distFO(T0 ∩ X, T̂ ∩ X) < 2−g(n). Thus
(as shown above) we deduce from φ ∈ T0 that φ ∈ T̂ . It follows that T̃ � ψ
hence (as T̃ ⊆ T̂ ∩ X ⊆ T0) it holds ψ ∈ T0.


�

10.7 Homomorphism Preservation Theorems

We now consider the case where X = P, that is the case of primitive positive
sentences, and where T0 = {Th(A),A ∈ C} and P0 = {Th(A) ∩ P,A ∈ C},
where C is a class of σ-structures. In this setting, the natural relativization
of the homomorphism preservation theorem for the class C is the following:

Homomorphism Preservation Theorem for a class C:
A first order formula φ is preserved under homomorphisms on
C, that is such that:

∀A,B ∈ C : (A |= φ) ∧ (A → B) =⇒ B |= φ,

if and only if it is equivalent on C to an existential-positive first-
order formula.

Notice that one direction clearly holds for every class C: if φ is an
existential-positive first-order formula, it is preserved under homomorphisms.
We shall now consider some contexts in which relativized homormophism
theorems could derive from Topological Preservation Theorem 10.3.

A connection with concepts used in Sect. 10.6 follows from the following
observation.

Lemma 10.3. If the class C is hereditary then the uniform approxima-
tion property (introduced in Theorem 10.3) holds for P0.

Proof. For every A ∈ T0 and every n ∈ IN consider the finite family F of the
core structures C with tree-depth at most n such that C → A. Then there
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exists a homomorphism f :
∑

F → A. Let A ′ be the substructure induced
by the image of

∑

F by f. Then |A ′| is bounded by a function C(n) of n and
A ′ ∈ C. Moreover

Th(A) ∩ Pn ⊆ Th(A ′) ∩ P ⊆ Th(A) ∩ P

and
qrank(Th(A ′)) ≤ qrank(ϑ(A ′)) ≤ td(A ′) ≤ |A ′| ≤ C(n).


�

We now consider hereditary classes structures without infinite connected
components and show that the Topological Preservation Theorem gives a
sufficient condition for the relativized homomorphism to hold.

Lemma 10.4. Let A,B be countable σ-structures without infinite con-
nected components. Then it holds

Th(A) ∩ P ⊆ Th(B) ∩ P ⇐⇒ A → B.

Proof. Let A1, . . . ,An, . . . (resp. B1, . . . ,Bn, . . . ) be the connected compo-
nents of A (resp. B). If Th(A) ∩ P ⊆ Th(B) then for every integer i we
deduce from ϑ(Ai) ∈ Th(A) that ϑ(Ai) ∈ Th(B) hence there exists a homo-
morphism fi : Ai → B. Define f : A → B by f|Ai = fi. Then f is clearly a
homomorphism.

Conversely, if A → B then for every φ ∈ P it holds (M(φ) → A) =⇒

(M(φ) → B), that is (φ ∈ Th(A)) =⇒ (φ ∈ Th(B)). 
�

Theorem 10.4. Let C by a hereditary class of countable
σ-structures without infinite connected components. If the
quotient space (C, dist≡)/ ���� is uniformly homeomorphic to
([C], disttd) (or ([C], distL)) then the homomorphism preserva-
tion theorem holds for C.

Proof. Let T0 = {Th(A), A ∈ C}, X = P and X0 = {Th(A) ∩ P, A ∈ C}.
According to Lemma 10.3, the uniform approximation property holds for X0.

According to Lemma 10.4, for every A,B ∈ C it holds

Th(A) ∼X Th(B) ⇐⇒ A ���� B

Th(A) ∩ X ⊆ Th(B) ∩ X ⇐⇒ A → B

Moreover, for every A,B ∈ C it holds
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distFO(Th(A),Th(B)) = dist≡(A,B)

distFO(Th(A) ∩ X,Th(B) ∩ X) = disttd([A], [B]).

According to Theorem 10.3, it follows that for every first-order sentence
φ, the following conditions are equivalent:

1. ∀T1, T2 ∈ T0 it holds

(φ ∈ T1)∧ (T1 ∩ X ⊆ T2 ∩ X) =⇒ φ ∈ T2,

that is: ∀A,B ∈ C it holds

(A |= φ) ∧ (A → B) =⇒ B |= φ;

2. There exist a sentence ψ, which is a conjunction of disjunction of sen-
tences in X, such that for every T ∈ T0 it holds

φ ∈ T ⇐⇒ ψ ∈ T,

that is: there exists an existential-positive first-order sentence ψ such
that for every A ∈ C it holds

A |= φ ⇐⇒ A |= ψ.

In other words, the homomorphism preservation theorem holds for C.
Notice that one can consider distL instead of disttd as (P, distL) is uni-

formly homeomorphic to (P, disttd) (see Corollary 10.2). 
�

The existence of a uniform homeomorphism between the metric spaces
(Rel(σ), dist≡) and ([Rel(σ)], disttd) follows from one of the main results of
[425]:

Theorem 10.5. For all finite structures A and B, if (F →

A) ⇐⇒ (F → B) holds for every structure F with tree-depth
at most ρ(n), then there there exist finite structures A ′ ���� A
and B ′ ���� B such that A ′ ≡n B ′.

From this, we deduce not only that the homomorphism preservation the-
orem holds when relativized to finite structures, but also that it holds when
relativised to countable structures without infinite connected components.
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Theorem 10.6. The homormorphism preservation theorem
holds for the following classes of σ-structures:

� The class Rel(σ) of all finite σ-structures,
� The class A of all countable σ-structures without infinite

connected components.

Proof. According to Theorem 10.5, for every two finite σ-structures A,B
such that disttd(A,B) < 2−ρ(n) there exist two finite σ-structures A ′,B ′

such that A ���� A ′ ≡n B ′ ���� A, that is:

inf{dist≡(A ′,B ′) : A ′ ���� A,B ′ ���� B, A ′,B ′ ∈ Rel(σ)} < 2−n.

In other words, (Rel(σ), dist≡)/ ���� and ([Rel(σ)], disttd) are uniformly
homeomorphic. Thus Theorem 10.4 applies.
The distance dist≡ extends by continuity on A (see proof of Lemma 10.1) and
the distance disttd extends by continuity on [A]. It follows that (A, dist≡)/ ����
is uniformly homeomorphic to ([A], disttd). Thus Theorem 10.4 applies.


�

We now consider more complex countable structures. A complete theory
T ∈ TC is ω-categorical if it has an infinite model and any two models of
size ℵ0 are isomorphic. An ω-categorical structure is a structure M of size
ℵ0 whose theory is ω-categorical.

A central result on ω-categoricity is the Ryll-Nardzewski Theorem [428],
(which includes parts due to Svenonius [447] and Engeler [154])

Theorem 10.7. Let M be a countably infinite first order structure in a
countable language. Then the following are equivalent.

(i) M is ω-categorical;
(ii) Aut(M) acts oligomorphically on M (meaning that every cartesian

product Mn of M has finitely many orbits under the action of
Aut(M));

(iii) For each n > 0, there are finitely many formulas φ(x1, . . . , xn) up
to Th(M)-provable equivalence.

For a hereditary class C of structures which are either finite or ω-
categorical we can derive from the Topological Preservation Theorem a suf-
ficient condition for the homomorphism preservation theorem to hold when
relativized to C.
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Theorem 10.8. Let C by a hereditary class of σ-structures
which are either finite or ω-categorical. If the quotient space
(C, dist≡)/ ���� is uniformly homeomorphic to ([C], disttd)
(or ([C], distL)) then the homomorphism preservation theorem
holds for C.

Proof. Let T0 = {Th(A), A ∈ C}, X = P and X0 = {Th(A) ∩ P, A ∈ C}.
According to Lemma 10.3, the uniform approximation property holds for X0.

It is a folklore result that a countable structure A is homomorphic to
an ω-categorical structure B if and only if every finite substructure of A is
homomorphic to B (see Exercise 9.6). Thus it holds

Th(A) ∼X Th(B) ⇐⇒ A ���� B

Th(A) ∩ X ⊆ Th(B) ∩ X ⇐⇒ A → B

Moreover, for every A,B ∈ C it holds

distFO(Th(A),Th(B)) = dist≡(A,B)

distFO(Th(A) ∩ X,Th(B) ∩ X) = disttd([A], [B]).

According to Theorem 10.3, as in the proof of Theorem 10.4 we deduce
that the homomorphism preservation theorem holds for C. 
�

Perhaps these last results are a convincing argument for a study of com-
pletions of the homomorphism order. Of course, by now there are multiple
evidences for the importance of the study of “limits” and of convergence in
combinatorial setting, see for example [358].

10.8 Homomorphism Preservation Theorems for Finite
Structures

We now consider classes of finite structures. In this context Atserias, Dawar
and Kolaitis defined classes of graphs called wide, almost wide and quasi-
wide (cf. [109] for instance). It has been proved in [40] that the extension
preservation theorem holds in any class C that is wide, hereditary (i.e. closed
under taking substructures) and closed under disjoint unions, that is hered-
itary classes with bounded degree which are closed under disjoint unions.
Also, it has been proved in [41, 42] that the homomorphism preservation
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theorem holds in any class C that is almost wide, hereditary and closed un-
der disjoint unions. Almost wide classes of graphs include classes of graphs
which exclude a minor [289].

Dawar and Malod announced that the homomorphism preservation the-
orem holds in any hereditary quasi-wide class that is closed under disjoint
unions, see [110].

Theorem 10.9. Let C be a class of structures such that
Gaifman(C) is a hereditary addable quasi-wide class of graphs.
Then the homomorphism preservation theorem holds for C.

The proof of this result is a strengthening of the result in [41] for minor
closed classes and proceeds via Gaifman locality theorem (which we already
encountered in Sect. 10.5), and it is very different from the previous proofs
of this chapter.

Recall that we proved in Chap. 8 (Theorem 8.2) that a hereditary class of
graphs is quasi-wide if and only if it is nowhere dense.

As a corollary we get:

Corollary 10.5. Let C be a class of structures such that Gaifman(C) is a
hereditary addable nowhere dense class of graphs.

Let H be a structure. Then, the H-coloring is first-order definable on
C if and only if there is a finite family F of structures such that (F,H)

is a restricted homomorphism duality for C.

We can also use interpretation to transport relativizations of the homomor-
phism preservation theorem. We refer the reader to Sect. 3.8.5 for definition
and basic properties of interpretations. This will cover the relativization to
somewhere dense classes.

Let L and L ′ be two languages and let T be a theory in L. Let I be an
interpretation of L ′ in L. The interpretation I is a functorial interpretation
if, for every models A and B of T such that A → B it holds I(A) → I(B).

Lemma 10.5. Let C be a hereditary class of σ-structures on which the
homomorphism preservation theorem holds and let I be a functorial in-
terpretation mapping C to a class C ′ of σ ′-structures.

Then the homomorphism preservation theorem holds for C ′.

Proof. Let Φ be a first-order formula of the language L(σ ′) preserved under
homomorphisms on C ′, that is such that:

∀A ′,B ′ ∈ C ′ : (A ′ |= Φ)∧ (A ′
→ B ′) =⇒ (B ′ |= Φ).
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According to Lemma 3.3, there exists a closed first order formula Ψ of
L(σ) such that for every A ∈ C we have

A |= Ψ ⇐⇒ I(A) |= Φ.

Let A,B ∈ C. Assume A |= B and A |= Ψ. Then I(A) → I(B) (as I is a
functorial interpretation) and I(A) |= Φ. It follows that Ψ is preserved under
homomorphism on C.

As the homomorphism preservation theorem holds for C, there exists an
existential first-order property which is equivalent to Ψ for structures in C.
In other words, there is a finite family F of σ-structures such that

∀A ∈ C : (A |= Ψ) ⇐⇒ (∃F ∈ F : F → A).

Moreover, as C is hereditary, we can assume F ⊆ C (by considering all the
possible images of the structures in F). Hence every F ∈ C is such that F |= Ψ

thus I(F) |= Φ.
Let A ′ in C ′. If there exists F ∈ F such that I(F) → A ′ then A ′ |= Φ

(as I(F) |= Φ and Φ is preserved under homomorphisms on C). Conversely,
assume A ′ |= Φ. By assumption, there exists a structure A ∈ C such that
A ′ = I(A). Then I(A) |= Φ thus A |= Ψ. It follows that there exists F ∈ F

such that F → A hence I(F) → A ′.
Altogether, Φ is equivalent on C ′ with an existential first order property.

Precisely:

∀A ′ ∈ C ′ : (A ′ |= Φ) ⇐⇒ (∃F ∈ F : I(F) → A ′).


�

For instance, for a class of graphs C and an integer p, denote by Subp(C)

the class of the exact p-subdivisions of the graphs in C.

Lemma 10.6. For every class of graphs C and every integer p there exists
a functorial interpretation

I : C → Sub2p(C).

Proof. Let τ be the signature with a unique binary relation symbol R (mean-
ing adjacency) and let T be the first order theory of undirected graphs.

Define the L(τ)-formulas (1 ≤ i ≤ p):
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ζ0(x0, . . . , xp) =

p∧

j=1

(x0 � xi)

ζi(x0, . . . , xp) = R(x0, xp)∧

p−i∧

j=1

(x0 � xj)∧
p−1∧

j=p−i+1

(xj � xp)

The following tuple (p,U, E, FR) defines the requested functorial interpreta-
tion I.

U[v0, . . . , vp] =

p∨

i=0

ζi(v0, . . . , vp);

E[u0, . . . , up, v0, . . . , vp] =

p∨

i=0

(ui � vi);

FR[u0, . . . , up, v0, . . . , vp] = ζ0(u0, . . . , up)∧ ζ1(v0, . . . , vp)∧ (u0 � v0)

∨

p−1∨

i=1

ζi(u0, . . . , up)∧ ζi+1(v0, . . . , vp)∧ (u0 � v0)∧ (up � vp)

∨ ζp(u0, . . . , up)∧ ζp(v0, . . . , vp)∧ (u0 � vp)∧ (up � v0)

∨

p−1∨

i=1

ζi+1(u0, . . . , up)∧ ζi(v0, . . . , vp)∧ (u0 � v0)∧ (up � vp)

∨ ζ1(u0, . . . , up)∧ ζ0(v0, . . . , vp)∧ (u0 � v0)


�

For a positive integer p and a graph G denote by Sub2p(G) the graph
obtained from G by subdividing every edge 2p times.

Corollary 10.6. If the homomorphism preservation theorem holds for a
hereditary class of graphs C, it also holds for the class Subp(C) of all
p-subdivisions of the graphs in C.

We deduce this extension of Theorem 9.1 to the class of p-subdivided
graphs:

Corollary 10.7. For every integer p, the homomorphism
preservation theorem holds for Subp(Graph).

We will make use of this relativization later on.
Combining the above results wee see that the homomorphism preservation

theorem holds for all (hereditray addable) nowhere dense classes and that
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every monotone somewhere dense class contains a class Subp(Graph), for
which the homomorphism preservation holds.
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Exercises

10.1. Prove that Łoś-Tarski theorem—which asserts that a first-order for-
mula is preserved under extensions on all structures if, and only if, it is log-
ically equivalent to an existential formula—does not holds when relativized
to finite structures.

We follow the proof of Gurevich [239]: We consider a relational structure
with two binary relations < and S (plus “equality” which we always assume)
and with two unary relations Min and Max.

� Prove that there exists a universal first-order formula α such that A |= φ

if

1. A contains a unique element m such that A |= Min(m);
2. A contains a unique element M such that A |= Max(M);
3. < is a linear order on A with minimum m and maximum M;
4. S is compatible with the successor relation of <, that is: if xSy then y

is the successor of x in <.

� Let β be a sentence expressing that for each x < M there exists y with
xSy, and let φ be the sentence α → β. Prove that if A is a substructure
of a finite structure B, A |= φ, and B |= α then A = B;

� Deduce that φ is preserved under finite extensions;
� Suppose for contradiction that φ is equivalent to an existential sentence

ψ = ∃x1 . . . ∃xk Ψ(x1, . . . , xk)

where Ψ is quantifier free. Let A be a model of φ formed from the set of
the first k+3 integers with natural linear order and successor relation. Fix
witnesses a1, . . . , ak for Ψ and choose a non-initial and non-final element
b different from all ai. Prove that the structure A ′ obtained from A by
discarding the relation bS(b+ 1) satisfies Ψ but fails to satisfy φ.

10.2. The aim of this exercise is to give an example of a sentence φ with no
finite model.

Define a first order sentence φ with quantifier rank 5 expressing that a graph
has all its vertices of degree 2, but one which is of degree 1;
Check that the ray, which is the countable graph with vertex set IN and edge
set {{i, i + 1}, i ∈ IN}, is a model for φ and show that φ has other infinite
models (and find infinitely many countable ones);
Prove that φ has no finite model.

10.3. Give an example of a consistent theory T without a finite model, but
such that every finite subset T ′ of T has a finite model. Let F be the class
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of all triangle free 3-colorable graphs. Define the theory T = {ϑ(G), G ∈
F} ∪ {¬ϑK3}.

Prove that T has no finite model (hint: use Theorem 9.6);
Prove that every finite subset of T has a model and deduce that T is consistent
and thus has a model;
Find two countable models of T , including an ω-categorical one.

10.4. Show that PF (which is the trace on P of complete theories with a
finite model) is different from the class of all closed PP-theories with a finite
model. (Of course, every theory in PF is a closed PP-theory and has a finite
model. But we show that the converse inclusion does not hold.)

Let T0 = {ϑ(F) : F
��

�� � K3} and let T be the trace on P of the deductive closure
of T0, that is: T = T�0 ∩ P. Prove that T has a finite model.
Using Exercise 10.3 prove that T has a triangle free infinite model hence
ϑ(K3) /∈ T .
Prove that every finite model of T contains a triangle hence satisfies ϑ(K3).
Deduce that T /∈ PF.



Chapter 11
Restricted Homomorphism Dualities

From a restricted point of view, we gain in generality.

11.1 Introduction

In the case where the input structures are restricted to some class C, some
more “restricted” homomorphism dualities may appear. For instance, for ev-
ery planar graphs we have [337] (where the graph on the right side is the
Clebsch graph):

−�−→ G ⇐⇒ G −→

(and actually the same duality holds for K5 minor-free graphs [338]).
This and other examples motivate the following: A finite restricted ho-

momorphism duality for a class C (or a C-restricted duality) is a pair (F,D)

such that:

∀G ∈ C : (∃F ∈ F F → G) ⇐⇒ (∀D ∈ D G � D) (11.1)

and we also add the requirement

∀F ∈ F, ∀D ∈ D F � D. (11.2)

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__11, © Springer-Verlag Berlin Heidelberg 2012
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In the case of finite restricted homomorphism dualities where both F and
D are singletons, we will speak about restricted dualities for the sake of
simplicity.

We say that a D-coloring problem is first-order definable on C if there
exists a first-order formula φ such that

∀G ∈ C : G → D ⇐⇒ G |= φ.

Obviously, if (F,D) is a finite restricted duality for a class C, then D-coloring
is first-order definable on C. It is a natural question whether the equivalence
stated in Corollary 9.1 for finite structures could also apply in the restricted
case. To address this question, we consider relativizations of the homomor-
phism preservation theorems to classes of structures.

11.2 Classes with All Restricted Dualities

We have seen that restricted dualities are abundant. As the extremal case we
define the concept of “all restricted dualities”: A class of σ-structures A has
all restricted dualities if every connected σ-structure has a restricted dual
for C, that is: for every connected σ-structure F there exists a σ-structure D
such that

∀A ∈ C : (F → A) ⇐⇒ (A � D)

11.3 Characterization of Classes with All Restricted
Dualities by Distances

The aim of this section is to give several characterizations of classes of
structures having all restricted dualities. A bit surprisingly, the answer can
be given in terms of distances: For a structure A and a real ε > 0, de-
fine φε

L(A) as a structure of minimum order such that A → φε
L(A) and

distL([A], [φε
L(A)]) ≤ ε (we arbitrarily choose between those structures

which have these properties, by using, for instance, some arbitrary linear
order on Rel(σ)).

Lemma 11.1. Let C be a bounded class of σ-structures. Then C has all re-
stricted dualities if and only if for every ε > 0 we have supA∈C |φε

L(A)| <

∞.

Proof. Assume C has all restricted dualities, let ε > 0 be a positive real and
let t ≥ − log2 ε be an integer. For a structure A ∈ C, let Ft(A) be the set
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of all connected cores T of order at most t such that T � A. If t is greater
than the order of a bound of C then this set is not empty. For T ∈ Ft(A),
let DT be the dual of T relative to C and let A ′ be the product of all the
DT for T ∈ Ft(A). First notice that for every T ∈ Ft(A) we have T � A
hence A → DT. It follows that A → A ′. Let T ′ be a connected structure of
order at most t. Then T ′

→ A implies T ′
→ A ′ (as A → A ′) and T ′

� A
implies Core(T ′) ∈ Ft(A) hence A ′

→ DT ′ thus T ′
� A ′ (as for otherwise

T ′
→ DT ′). Thus distL([A], [A ′]) ≤ ε and |φε

L(A)| ≤ |A ′| ≤ Cε for some
suitable finite constant C independent of A (for instance, one can choose Cε

to be the product of the orders of all the duals relative to C of connected
cores of order at most t).

Conversely, assume that we have supA∈C |φε
L(A)| < ∞ for every ε > 0

and let F be a connected σ-structure. Let t ≥ |F|, let ε = 2−t, let D be the
set of all the φε

L(A) for A ∈ C and F � A. As all the structures φε
L(A)

have an order bounded by some constant Cε, the set D is finite. Let Dt(F)

be the disjoint union of all the graphs in D. First notice that F � Dt(F)

as for otherwise F would have a homomorphism to some structure in D (as
F is connected), that is to some φε

L(B) for a structure B such that F � B,
what would contradict distL([φε

L(B)], [B]) ≤ 2−|F|. Also, if F → A then
A � Dt(F) (for otherwise F → Dt(F)) and if F � A then φε

L(A) ∈ D thus
A → Dt(F). Altogether, Dt(F) is a dual of F relative to C. �	

To refine this result to the full distance, we make use of the following:

Lemma 11.2. Assume distL([A], [B]) < 2−t and A → B. Let

B ′ = B×
∏

{T : |T| ≤ t, T is a core and A → T}.

Then dist([A], [B ′]) < 2−t,A → B ′ and |B ′| ≤ F(t)|B|.

Proof. First notice that A → B ′ has A has a homomorphism to each struc-
ture of the product defining B ′. Let T be a structure such that |T| ≤ t.
Then

B ′
→ T =⇒ A → T (as A → B ′)

B → T =⇒ B ′
→ T (by construction)

T → B ′ =⇒ T → B =⇒ T → A

T → A =⇒ T → B ′ (as A → B ′)

�	
For a graph A and a real ε > 0, define φε(A) as a minimum order graph

such that A → φε(A) and dist([A], [φε(A)]) ≤ ε (we arbitrarily choose
between those graphs which have these properties, by using, for instance,
some arbitrary linear order on Rel(σ)).
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Lemma 11.3. There exists a function F : IR → IR such that for every ε

and every structure A,

|φε
L(A)| ≤ |φε(A)| ≤ F(ε)|φε

L(A)|.

Proof. Obviously |φε(A)| ≥ |φε
L(A)|. Let

B(A, ε) = φε
L(A)×

∏

{T : |T| ≤ t, T is a core and A → T}.

According to Lemma 11.2, there exists a function F such that
|B(A, ε)| ≤ F(ε)|φε

L(A)|, A → B(A, ε) and dist([A], [B(A, ε)]) ≤ ε hence
we conclude |φε(A)| ≤ F(ε)|φε

L(A)|. �	

Theorem 11.1. Let C be a bounded class of σ-structures. Then
the following conditions are equivalent:

1. The C has all restricted dualities;
2. For every ε > 0 we have supA∈C |φε

L(A)| < ∞.
3. For every ε > 0 we have supA∈C |φε(A)| < ∞.

Proof. The proof follows from Lemma 11.1 and 11.3. �	
Note that this Theorem (and even Lemma 11.1 alone) allows to prove that

bounded expansion classes have all restricted dualities (see Exercise 11.3).

11.4 Characterization of Classes with All Restricted
Dualities by Local Homomorphisms

Definition 11.1. Let A,B be structures and let P be a system of subsets
of the universe A of A. We say that A is P-locally homomorphic to B and

denoted by A P �� B if for every subset X ∈ P:

A[X] �� B.

We shall deal mostly with systems of subsets of the following type: For a
set of colors Γ , a coloring function γ : A −→ Γ and a positive integer p, let
P be the system {X ⊂ A : |γ(X)| ≤ p} (here we put γ(X) = {γ(x) : x ∈ X}).
This system will be denoted by P(γ,p). In this case we also say that A is
(γ, p)-locally homomorphic to B (instead of P(γ,p)-locally homomorphic).

This will be denoted by A
(γ,p) �� B. Of course,

(γ,p) �� is not indicating the
existence of a homomorphism.
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Example 11.1. For H = K2, a graph G and an injective coloring γ of the
vertices of G, the graph G is (γ, p)-locally homomorphic to H if and only if
the odd-girth of G is > p.

The following “truncated power construction” is a modification of a con-
struction introduced in [349]:

Definition 11.2. Let A,B be σ-structures with universes A and B and re-
lations Ri of arity ri (i = 1, . . . ,m). Let 1 ≤ p < |B| be an integer. For v ∈ B,
define Iv = {I : I ∈ (

B
p

)
and v ∈ I}, where

(
B
p

)
stands for the subsets of B

with cardinality p. For v ∈ B denote by Vv the set of all mappings Iv −→ A.
We can write Vv = AIv and define the sets W =

⋃
v∈B Vv and the mapping

α : W → B by α(z) = v if z ∈ Vv.
The p-truncated B-power A⇑B

p of A is the σ-structure whose universe
is W and for i = 1, . . . ,m, Ri(A⇑B

p ) is the set of all ri-tuples (z1, . . . , zri)

such that (α(z1), . . . , α(zri)) ∈ Ri(B) and for every I ∈ ⋂m
j=1 Iα(z) holds

(z1(I), . . . , zri(I)) ∈ Ri(A). The mapping α is called the color projection of
A⇑B

p .

Remark 11.1. Note that the universe of A⇑B

p has cardinality |B| · |A|(
|B|−1
p−1 ).

The use of the name “color projection” for the mapping α is justified by
the following:

Lemma 11.4. The color projection α of A⇑B

p is a homomorphism from
A⇑B

p to B:
α : A⇑B

p �� B.

Proof. By definition we have

(z1, . . . , zri) ∈ Ri(A⇑B

p ) =⇒ (α(z1), . . . , α(zri)) ∈ Ri(B).

�	

Thus A⇑B

p is homomorphic to B but it is also locally homomorphic to A:

Lemma 11.5. Let α be the color projection of A⇑B

p . Then the graph A⇑B

p

is (α, p)-locally homomorphic to A:

A⇑B

p
(α,p) �� A.

Proof. Let X be a subset of the universe W of A⇑B

p such that |α(X)| ≤ p.
Let I be some subset of B of cardinality p such that α(X) ⊆ I. According to
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the definition of A⇑B

p , for i = 1, . . . ,m we have (z1(I), . . . , zri(I)) ∈ Ri(A)

for every (z1, . . . , zri) ∈ Ri(A⇑B

p [X]). It follows that the mapping z �→ z(I) is
a homomorphism of A⇑B

p [X] to A. �	

The following two propositions summarize the universality properties of A⇑B

p

which will be needed in the sequel:

Lemma 11.6. Let A,B,M be σ-structures with universes A,B,M and
relations Ri of arity ri (i = 1, . . . ,m). Let p ≥ maxi ri be an integer.
Let γ : A �� B be a homomorphism and let A be (γ, p)-locally homo-
morphic to M. Let W be the universe of M⇑B

p . For I ∈ (
B
p

)
, let gI be a

homomorphism of A[γ−1(I)] to M and define hI : W → M by hI(z) = z(I).
Then there exists a homomorphism f : A �� M⇑B

p such that γ = α◦f
and such that gI = hI ◦ f|γ−1(I), for any I ∈ (

B
p

)
(see Fig. 11.1). It follows

that M⇑B

p is (α, p)-locally homomorphic to M (α is the color projection).

A
γ ��

(γ,p)

��

B A
γ ��

(γ,p)

��

f

���
��

��
��

��
� B

=⇒

M M M⇑B

p

α

��

(α,p)
��

Proof. For I ∈ (
B
p

)
put AI = A[γ−1(I)]. Then gI is a homomorphism of AI

to M. Define f as follows: Given x ∈ A we define f(x) ∈ Vγ(x) by the following
formula f(x)(I) = gI(x) (see the above definition of M⇑B

p ). Obviously α◦f = γ

and gI = hI ◦ f|γ−1(I). We prove that f is a homomorphism.
Let 1 ≤ i ≤ m and let (x1, . . . , xri) ∈ Ri(A). Then {γ(x1), . . . , γ(xri)} ∈

Ri(B) as γ : A �� B. For every I that includes {γ(x1) . . . , γ(xri)} holds
(f(x1)(I), . . . , f(xri)(I)) = (gI(x1), . . . , gI(xri)) ∈ Ri(M). It follows that
(f(x1), . . . , f(xri)) ∈ Ri(M⇑B

p ) and thus f is a homomorphism. �	

This lemma highlights a fundamental property of A⇑B

p which we will state
as follows:

Lemma 11.7. Let A,B,M be σ-structures with universes A,B,M and
relations Ri of arity ri (i = 1, . . . ,m). Let p ≥ maxi ri be an integer.

Then there is a homomorphism A �� M⇑B

p if and only if there
exists a homomorphism γ : A �� B such that A is (γ, p)-locally ho-
momorphic to M. Schematically, this may be depicted as follows:
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A �� M⇑
B

p ⇐⇒ A
γ ��

(γ,p)

��

B

M

Proof. First, suppose that there is a homomorphism f : A �� M⇑B

p . Let α
be the color projection of M⇑B

p to B. Put γ = α◦f. We have γ : A ��B. Let
X ⊆ A. The condition |γ(X)| ≤ p is equivalent to the condition |α(f(X))| ≤ p.
Hence the homomorphism f : A �� M⇑B

p together with the (α, p)-local
homomorphism of M⇑B

p to M implies (γ, p)-local homomorphism from A to
M. The reverse implications follows from Lemma 11.6. �	

Fig. 11.1 Homorphisms composition

It is interesting to note that if we consider M = A we get:

Corollary 11.1. A �� A⇑B

p ⇐⇒ A �� B. In particular, A is
homomorphism-equivalent to A⇑A

p .
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We now arrive to the following (implicit) characterization of classes with
all restricted dualities.

Theorem 11.2. A class of σ-structures C has all restricted
dualities if and only if for every finite set F of connected
σ-structures there exist σ-structures B and M ∈ Forbh(F) such
that for every A ∈ C∩Forbh(F) there exists a homomorphism
γ : A �� B for which A is (γ, p)-locally homomorphic to
M, where p = max{ri, 1 ≤ i ≤ m}∪ {|F|;F ∈ F}, where r1, . . . , rm
are the arities of the relations R1, . . . , Rm in σ.

Proof. Let F be a finite set of connected σ-structures.
Assume C has all restricted dualities. Then F has a dual DC

F. Put M =

B = DC
F.

Conversely, assume that there exist σ-structures B and M ∈ Forbh(F)

such that for every A ∈ C ∩ Forbh(F) there exists a homomorphism γ :

A �� B for which A is (γ, p)-locally homomorphic to M, where p =

max{|F|;F ∈ F}.
In this situation we prove that M⇑B

p is a dual of F.
First we prove by contradiction that for every F ∈ F holds F ��� M⇑B

p .

Suppose contrary, let F
g �� M⇑B

p . By Lemma 11.6 M⇑B

p is (p, p)-locally
homomorphic to M and this together with |g(F)| ≤ |F| ≤ p would imply
F �� M. If F ��� A for every F ∈ F then A �� M⇑B

p according to
Lemma 11.7. If A �� M⇑B

p then F ��� A as F �� A would imply
F �� M⇑B

p . �	

11.5 Restricted Dualities in Bounded Expansion Classes

Low tree-depth decompositions are suitable for the restricted dualities as they
give us (a rather precise) control over subgraphs (of graphs in a bounded ex-
pansion class). Classes with bounded expansion are a priori good candidates
if we look for classes with all restricted dualities. We have chosen to consider
dualities from the point of view of relational structures. In the sequel of this
chapter we say that a class of structures C has bounded expansion if the
class Gaifman(C) of the Gaifman graphs of the structures in C has bounded
expansion (i.e. if C has G-bounded expansion, see Sect. 5.8). We could have
considered the class Inc(C) of the incidence graphs of the structures in C as
well (hence I-bounded expansion classes). These two choices are equivalent as,
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according to Proposition 5.7, a class of relational structures has G-bounded
expansion if and only if it has I-bounded expansion.

In Sect. 6.8, we proved that there is a function � such that every graph G

is homomorphism-equivalent to an induced subgraph of G with order at most
�(1, td(G)) (Corollary 6.5), and we know that the function � is extremely
fast growing (of order the tower function). In order to use the decomposition
techniques introduced in Chap. 7 for graphs on relational structures, we first
prove a generalization of Corollary 6.5 to relational structures.

Let us first recall the inductive definition of the function T(c, t) given in
Sect. 6.8:

T(c, t) =

⎧

⎨

⎩

c, if t = 1,
∑T(c,t−1)+1

i=1 rc(i), otherwise.

Then we have the following reduction result for relational structures:

Lemma 11.8. Let σ be a signature and let r1, . . . , rm be the signatures
of the relational symbols R1, . . . , Rm of σ.

Then, for any A ∈ Rel(σ), there exists X ⊆ A such that

� |A| ≤ T(21+
∑m

i=1 tri , td(Gaifman(A))),
� A ���� A[X].

Proof. Let A ∈ Rel(σ), let G = Gaifman(A), and let t = td(G). Let Y be a
rooted forest such that G ⊆ Clos(Y). Define π : V(Y) → V(Y) ∪ {ε} by

π(x) =

⎧

⎨

⎩

the father of x in Y if x is not a root of Y,

ε otherwise.

Let Fi be the set of all mappings from [ri] to {0, . . . , t−1}. Define c : V(Y) →

{0, 1}×2F1×· · ·×2Fm as follows: for v ∈ V(Y), c(v) = (i(v),R1(v), . . . ,Rm(v))

where

� i(v) = 1 if v ∈ V(G) and i(v) = 0 otherwise;
� For i = 1, . . . ,m, Ri(v) is the set of the functions f : [ri] → {0, . . . , t − 1}

such that (πf(1)(v), . . . , πf(ri)(v)) ∈ Ri(A).

Let z = 21+
∑m

i=1 tri . According to Lemma 6.10 there exists a subset X0 ⊆
V(Y) of cardinality at most T(z, t) such that Y has a color preserving ho-
momorphism to Y[X0]. It follows clearly that A has a homomorphism to
A[X0 ∩A]. We conclude the proof by putting X = X0 ∩A. �	
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Theorem 11.3. Let F be a finite set of connected σ-structures.
Then, for every class of σ-structures K with bounded expan-
sion there exists a σ-structure DK

F ∈ Forbh(F) such that every
σ-structure of K ∩ Forbh(F) has a homomorphism to DK

F .
In other words, every class of structures with bounded ex-

pansion has all restricted dualities.

Proof. Let r1, . . . , rm be the arities of the relational symbols R1, . . . , Rm of
σ. Let p = max{ri; 1 ≤ i ≤ m} ∪ {|F|, F ∈ F}.

There exists an integer N, such that every graph G ∈ Gaifman(K) has
a proper N-coloring in which every p colors induce a graph of tree depth
at most p. Color the universe of each A ∈ K accordingly and call γA the
coloring for A. Let B be the σ-structure with universe [N] such that all ri-
tuples of distinct integers in [N] belong to Ri(B). Then, γA clearly defines a
homomorphism from A to B.

Let I ∈ (
[N]
p

)
and let AI = A[γ−1

A (I)]. Then td(Gaifman(AI)) ≤ p.
Consequently to Lemma 11.8, there exists a finite set D̂σ

p of σ-structures
with Gaifman graphs of tree depth at most p, so that every σ-structures
with Gaifman graph of tree-depth at most p is hom-equivalent to one
structure in this set. Let M(D̂σ

p,F) be the disjoint union of the struc-
tures in D̂σ

p ∩ Forbh(F). In this situation we can use Theorem 11.2 and put
DK

F = M(D̂σ
p,F)

⇑B

p . �	
An alternative proof of this result (for graphs) using the characterization

stated in Lemma 11.1 maybe found in Exercise 11.3.

11.6 Characterization of Classes with All Restricted
Dualities by Reorientations

Let A,B ∈ Rel(σ). The structure B is a weak reorientation of A is

� ∀(x1, . . . , xri) ∈ Ri(A) ∃σ ∈ Sri : (xσ(1), . . . , xσ(ri)) ∈ Ri(B);
� ∀(y1, . . . , yri) ∈ Ri(B) ∃ρ ∈ Sri : (yρ(1), . . . , yρ(ri)) ∈ Ri(A).

Notice that this obviously defines an equivalence relation of Rel(σ), and that
Ri(A) and Ri(B) can have different cardinality (see Fig. 11.2).

Let A be the universe of A and let < be a linear order on A. Then B is
the linear <-reorientation of A if

∀(y1, . . . , yri) ∈ Ri(B) y1 < y2 < · · · < yri .

(Notice that A has a unique linear <-reorientation for each linear order <.)
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�G �H

σ = Id
ρ = Id

ρ = (2 1)

Fig. 11.2 Two directed graphs with different size, which are weak reorientations of
each other

For a structure A, a circuit of length p is a cycle (x1, b1, x2, b2, . . . , xp, bp)

of Inc(A) (where x1, . . . , xp ∈ A and b1, . . . , bp are blocks of A) such that
(putting xp+1 = x1 for the sake of simplicity) for i = 1, . . . , p, xi appears
before xi+1 in the tuple of the block bi. If A has no circuits, it is acyclic.
It is easily checked that a structure A is acyclic if and only if there exists a
linear order < on A such that A is its own linear <-reorientation.

For a class C ⊆ Rel(σ) we define

� The class Cwor has the class of all weak reorientations of structures in C;
� The class Cacyc has the class of all acyclic weak reorientations of structures

in C.

Theorem 11.4. Let C ⊆ Rel(σ). The following properties are
equivalent:

1. The class C has bounded expansion;
2. There class Cwor has all restricted dualities;
3. For every integer p, there is Dp ∈ Rel(σ) with no circuits

of length at most p such that

∀A ∈ Cacyc, A → Dp.

Proof. We prove the equivalence by means of three implications:

(1) ⇒ (2) is a direct consequence of Theorem 11.3.
(2) ⇒ (3) is straightforward (consider the product of the duals of all the
minimal structures with a circuit of length at most p).
(3) ⇒ (1) is proved by contradiction: Assume that (3) holds and that C does
not have bounded expansion. According to Proposition 5.7 the class Inc(C)
does not have bounded expansion. According to Proposition 5.5 there exists
an integer p such that Inc(C) �̃ p has unbounded chromatic number. Let N be
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the order of Dp+1. There exists in Inc(C) a graph G which contains the ≤ p-
subdivision S of a graph H having chromatic number strictly greater than
N. We may further assume that the minimum degree of H is strictly greater
than the maximum arity of a relational symbol in σ. Let A ∈ C be such
that G is isomorphic to the incidence graph of A. By the assumptions on the
minimal degree of H, the branching vertices of G correspond to vertices of A.
Consider a linear order < on the universe A of A such that every branch of S
will correspond to a monotone sequence. Consider the linear <-reorientation
B of A. According to (3), there exists a homomorphism f : B → Dp+1.
Moreover, the two endpoints of a branch of S cannot have the same image by
f as then a circuit of length at most p would exist in Dp+1. It follows that
any two adjacent vertices in H are mapped by f to distinct vertices of Dp+1

hence χ(H) ≤ |Dp+1|, a contradiction.
�	

For the sake of completeness, let us note a quite similar characterization
of classes with bounded tree-depth:

Theorem 11.5. Let C ⊆ Rel(σ). The following properties are equivalent:

1. The class C has bounded tree-depth;
2. The class Cacyc has an acyclic bound D, that is: there exists an acyclic

structure D ∈ Rel(σ) such that A → D holds for every A ∈ Cacyc.

Proof. By definition, the class C has bounded tree-depth if and only if the
class Gaifman(C) has bounded tree-depth.

Assume that Gaifman graphs of structures in C have tree-depth at most
t. Let D be the structure with universe {1, . . . , t}, such that (x1, . . . , xri) ∈
Ri(D) if x1 ≤ x2 ≤ · · · ≤ xri . Obviously, D is an acyclic bound for Cacyc.

Conversely, assume that there is an acyclic D ∈ Rel(σ) such that every
A ∈ Cacyc has a homomorphism to D. Assume for contradiction that C

has unbounded tree-depth. Then there exists in C a structure A such that
Gaifman(A) contains a path of length strictly greater than N = |�D|. Let <

be a linear order on the universe A of A. Let B be the linear <-reorientation
of A. As it is clear that B has no homomorphism to an acyclic structure of
order at most N, we get a contradiction. �	

11.7 Characterization of Classes with All Restricted
Dualities by Subdivisions

In the case of graphs, we can consider subdivisions instead of considering
orientations.
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Theorem 11.6. Let C be a class of undirected graphs closed
under subdivisions.1

Then the following properties are equivalent:

1. The class C has bounded expansion;
2. The class C has all restricted dualities;
3. For every odd integer g there exists a non-bipartite graph

Hg with odd-girth at least g such that every graph G ∈ C

with odd-girth at least g has a homomorphism to Hg

Proof. The proof follows from the next three implications:

(1) ⇒ (2) is a direct consequence of Theorem 11.3.
(2) ⇒ (3) is straightforward (consider for Hg a dual of Cg for C).
(3) ⇒ (1) is proved by contradiction: assume that (3) holds and that C

does not have bounded expansion. According to Proposition 5.5 there exists
an integer p such that C �̃p has unbounded chromatic number. As C is
topologically closed there exists an odd integer g ≥ p and a graph G0 ∈ C

such that G0 is the (g−1)-subdivision of a graph H0 with chromatic number
χ(H0) > |Hg|. According to (3), there exists a homomorphism f : G0 → Hg.
As Cg � Hg, the ends of a path of length g cannot have the same image by
f. It follows that any two adjacent vertices in H0 correspond to branching
vertices of G0 which are mapped by f to distinct vertices of Hg. It follows
that χ(H0) ≤ |Hg|, a contradiction.

�	

11.8 First-Order Definable H-Colorings

Let us go back to our original motivation: which H-coloring problems are
equivalent (when restricted to some class C) to a first-order property?

According to Theorem 11.6, if C is a class of undirected graphs closed by
subdivisions, then the following conditions are equivalent:

1. C has bounded expansion;
2. C has all restricted dualities;
3. for every odd integer g there exists a non-bipartite graph Hg with odd-

girth at least g such that Hg coloring is equivalent, on C, with the satis-
faction of an existential positive first-order property.

1 This should not be confused with “closed under topological minors”: if a class C is
closed under subdivision and contains a graph G, it contains all its subdivisions; if
a class C is closed under topological minors and contains a subdivision of a graph G
then it contains G.
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Could it be possible that we could get rid of this “existential positive”? It
is likely to be true if we add few technical conditions on C:

Conjecture 11.1. Let C be a hereditary addable topologically closed class
of graphs. The following conditions are equivalent:

1. The class C has bounded expansion;
2. The class C has all restricted dualities;
3. For every odd integer g there exists a non-bipartite graph Hg with odd-

girth at least g such that Hg-coloring is first-order definable on C, that
is: there exists first-order formulas Φg such that

∀g ∈ IN ∀G ∈ C (G |= Φg) ⇐⇒ (G → Hg).

In view of the results proved in this chapter, we gather the evidences for
the validity of Conjecture 11.1. First, we prove:

Lemma 11.9. Let C be a hereditary class of graphs closed under subdi-
visions and disjoint unions.

Assume that for every odd integer g there exists a non-bipartite graph
Hg with odd-girth at least g and a first-order formula Φg such that

∀g ∈ IN ∀G ∈ C (G |= Φg) ⇐⇒ (G → Hg).

Then:

1. Either the class C has bounded expansion,
2. Or the class C is nowhere dense, does not have bounded expansion,

and for every integer s there exists an integer l such that

sup{χ(G) : G ∈ C �̃ s, girth(G) ≥ l} < ∞.

Proof. If C is somewhere dense, then there exists an integer s such that
C �̃ s = Graph. As C �̃ s ⊆ C �̃ (s + 1). According to Corollary 10.6, the
homomorphism preservation theorem holds for the class Sub2s(Graph) which
is a subclass of C (as C is closed by subdivisions).

Assume for contradiction that H2s+1 and Φ2s+1 exist. As ¬Φ2s+1 is pre-
served by homomorphisms on C (hence on Sub2s(Graph)) it is equivalent on
Sub2s(Graph) with an existential first-order formula, that is: there exists a
finite family F such that for every graph G it holds:

∀F ∈ F F � Sub2s(G) ⇐⇒ Sub2s(G) → H2s+1.
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Clearly, the graphs in F are non-bipartite. Let g be the maximum of girth
of graphs in F and let G be a graph with chromatic number greater than
|H| and odd-girth greater than g. (see Sect. 3.4.) Then for every F ∈ F we
have F � Sub2s(G) hence Sub2s(G) → H. However, has the odd-girth of H is
strictly greater than 2s+1 two branching vertices of Sub2s(G) corresponding
to adjacent vertices of G cannot be mapped to a same vertex. It follows that
|H| ≥ χ(G), a contradiction.

It follows that C is nowhere dense, ¬Φ2s+3 is equivalent on C with an
existential positive first-order formula, that is: there exists a finite family F

such that

∀G ∈ C (∀F ∈ F F � G) ⇐⇒ (G → H2s+3).

If C includes only discrete graphs, then C has bounded expansion. Otherwise,
as C is hereditary, K2 ∈ C. As K2 → H2s+3 we deduce that the family F in-
cludes no bipartite graph. Let g be the maximum odd-girth of the graphs
in F. Assume for contradiction that the class C does not have bounded ex-
pansion and that (2) does not hold. Then there exists an integer s such that
C �̃ 2s contains graphs with both arbitrarily large girth and arbitrarily large
chromatic number. Hence there exists a graph S ∈ C �̃ 2s with odd-girth at
least g + 2 and chromatic number at least |H2s+3| + 1 and (as C is both
hereditary and closed by subdivisions) the 2s-subdivision G of S belongs to
C. Clearly, no F ∈ F maps to G because the odd-girth of G is strictly greater
than g. Hence G → H2s+3. However, the endpoints of any 2s-subdivided
branch cannot be mapped by a homomorphism to a same vertex of H2s+3

as the odd-girth of H2s+3 is strictly greater than 2s + 1. It follows that
|H2s+3| ≥ χ(S), a contradiction with χ(S) ≥ |H2s+3| + 1. �	

It follows that Conjecture 11.1 would follow from the following conjecture:

Conjecture 11.2. For every monotone nowhere dense class without
bounded expansion there exists an integer s such that the class includes
s-subdivisions of graphs with arbitrarily large chromatic number and girth.

Observe that these two possibilities are clearly mutually exclusive. Con-
jecture 11.2 is related to an old conjecture already mentioned in Sect. 3.4:
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Conjecture 11.3 (Erdős and Hajnal [164]). For all integers c, g
there exists an integer f(c, g) such that every graph G of chromatic
number at least f(c, g) contains a subgraph of chromatic number
at least c and girth at least g..

Remark that the existence of graphs of both arbitrarily high chromatic
number and high girth is a well known result of Erdős [163].

The following weakening of this difficult problem would actually easily
imply Conjecture 11.2:

Conjecture 11.4. For all integers c, g there exist integers f(c, g) and s(g)

such that every graph G of chromatic number at least f(c, g) contains a
subgraph H such that

� Either χ(H) ≥ c and girth(H) ≥ g,
� Or Kc ∈ H �̃ s(g).

Notice that if we do not ask the subdivision to be shallow (i.e. if we demand
only that Kc ∈ H �̃∞) then the conjecture of course holds.

As mentioned in Sect. 3.4, a conjecture with a similar flavor as Conjec-
ture 11.3 has been proposed:

Conjecture 11.5 (Thomassen [457]). For all integers c, g there
exists an integer f(c, g) such that every graph G of average degree
at least f(c, g) contains a subgraph of average degree at least c and
girth at least g.

Let us prove now that this conjecture also would imply Conjecture 11.2
(and hence Conjecture 11.1):

Proposition 11.1. A positive answer to Conjecture 11.5 would imply a
positive answer to Conjecture 11.2.

Proof. Assume a positive answer to Conjecture 11.5.
Let C be a monotone nowhere dense class without bounded expansion.

There exists an integer p such that C �̃p has unbounded average degree.
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Let c, g be positive integers. There exists in C the 2p-subdivisions of a
graph G with average degree at least 56(c−1)2 log(c−1)

log c−log(c−1) and girth at least
2g. According to Lemma 4.5, G contains as a subgraph the 1-subdivision of
a graph H with girth at least g and chromatic number at least c.

Put s = 4p + 2. Then the class C includes s-subdivisions of graphs with
arbitrarily large chromatic number and girth. �	

11.9 Consequences and Related Problems

The fact that bounded expansion classes have all restricted dualities has
many concrete consequences.

11.9.1 On Hadwiger Conjecture

We have the following corollary of Theorem 11.3:

Corollary 11.2. Let K be a proper minor closed class of graphs. Let F

be a finite set of connected graphs. Then there exists a finite graph DK
F ∈

Forbh(F) such that every graph of K ∩ Forbh(F) has a homomorphism
to DK

F .

The celebrated Hadwiger Conjecture asserts that Kk is a minor of every
graphs with chromatic number at least k. The largest k for which Kk is a
minor of a graph G is the Hadwiger number of G and is denoted by h(G).
One can formulate the Hadwiger Conjecture as the existence of a maximum
(in the homomorphism order) for every proper minor closed class [253, 347].
Let h = max{h(G) : G ∈ K} be the Hadwiger number of the class K. Then
Kh+1 �∈ K and Corollary 11.2 gives at least a Kh+1-free bound of the class
K.

11.9.2 On Bounded Expansion Classes

Let K be the class of all graphs G which have bounded expansion with the
expansion function f. Formally, K = {G : ∇r(G) ≤ f(r), r = 1, 2, . . .}. Assume
that p is minimal with Kp+1 �∈ K. Then ∇0(G) ≤ p − 1 for every G ∈ K.
Thus every G ∈ K is (p − 1)-degenerate. If the function f is monotone then
also Kp ∈ K and thus K has a maximum. Thus Hadwiger conjecture holds
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for those bounded expansion classes which are determined by a monotone
expansion function.

Note also that for every constant expansion function the bounded expan-
sion class is a proper minor closed class, while of course every proper minor
closed class is contained in a bounded expansion class, [355].

11.9.3 On Distance Colorings – Powers and Exact
Powers

We now explain a particular consequence of our main result in greater detail.
Let G be a graph, p a positive integer. Denote by G�p the graph (V(G), E�p)

where {x, y} is an edge of E�p if and only if there exists a path in G from x to
y of length p. The graph G�p is called exact p-power of G. Clearly graphs
G�2 and all graphs G�p, p even, may have unbounded chromatic number
even for the case of trees (consider subdivided stars), and the only (obvious)
bound is χ(G�p) ≤ Δ(G)p+1. Similarly, for every odd p there are 3-colorable
graphs G for which the chromatic number χ(G�p) may be arbitrarily large
(simply consider a large complete graph and subdivide every edge by p − 1

vertices). However for p odd and arbitrary proper minor closed class (and
even for every class with bounded expansion) we have the following (perhaps
surprising) result. Recall that odd-girth of a graph G is the length of the
shortest odd cycle in G.

Theorem 11.7. For every class K with bounded expansion and for every
odd integer p ≥ 1, there exists an integer N = N(K, p) such that all the
graphs G�p, G ∈ K and odd−girth(G) > p have chromatic number ≤ N:
For every G ∈ K,

odd−girth(G) > p =⇒ χ(G�p) ≤ N

Proof. Theorem 11.7 follows immediately from Theorem 11.3. It suffices to
consider F = {Cp}. In this case every graph DK

F ∈ Forbh(F) and every
homomorphism c : G �� DK

F gives a desired coloring by N = |V(DK
F )|

colors. �	

With a little more care one can prove the following result about distance
graphs: Let G be a graph, p a positive integer. Denote by G[�p] the graph
(V, E[�p]) where {x, y} is an edge of E[�p] if and only if the distance of x and
y in G is exactly p. The graph G[�p] is called exact distance graph.
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Theorem 11.8. For every class K with bounded expansion and
for every odd integer p ≥ 1, there exists an integer N ′ =

N(K, p) such that all the graphs G[�p], G ∈ K have chromatic
number at most N.

Proof. According to Theorem 7.6 there exists an integer X(p) such that every
graph G ∈ K has a p-centered coloring ρ using a set X of a most X(p) colors.
Let N0 = X(p) and let N = N02

N02
N0 and let G ∈ K. For every subset I ⊆ X

of size at most p, let YI be a star forest of height at most p derived from the
p-centered coloring, which is such that the subgraph GI of G induced by the
colors in I is a subgraph of the closure of YI. For every vertex v with ρ(v) ∈ I,
denote by G

(v)
I the connected component of GI including v. For every color

c ∈ I, notice that v has either 0 or 1 ancestor (with respect to YI) in G
(v)
I

with color c. We denote by dGI
the distance in GI and define the mapping

πv : 2X × X → {0, 1} by:

πv(I, c) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

1, if c ∈ I, ρ(v) ∈ I, |I| ≤ p,

v has an ancestor w of color c in G
(v)
I ,

and dGI
(v,w) ≡ 1 mod 2;

0, otherwise.

Define the coloring φ of G by φ(v) = (ρ(v), πv). This coloring uses at most
N colors.

Assume there exists two vertices u, v at distance p in G, such that φ(u) =
φ(v). Let P = (u = x0, x1, . . . , xq = v) be a minimum distance path linking
u and v (hence q ≤ p). As φ(u) = φ(v) we have ρ(u) = ρ(v) hence P gets
at most p colors in coloring ρ. Let I = ρ({x0, . . . , xq}). According to the
definition of a p-centered coloring, the path P includes a uniquely colored
vertex z, which is a common ancestor of u and v in YI. As P is a minimum
distance path, we have dGI

(u, v) = dGI
(u, z) + dGI

(z, v). As πu = πv we
deduce πu(I, ρ(z)) = πv(I, ρ(z)) hence dGI

(u, z) ≡ dGI
(z, v) mod 2. From

this follows that p = dGI
(u, v) is even, a contradiction. �	

Note that in Theorem 11.8 we cannot replace the condition in the def-
inition of exact distance powers G[�p] by the existence of a path (or even
induced path) of length p(see Figs. 11.3 and 11.4).

Theorem 11.8 implies, in particular, that for every odd integer p, there
exists N(p) such that for every planar graph G, the graph G[�p] has chromatic
number at most N(p). The value N(p) seems to be difficult to estimate. Of
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Fig. 11.3 For such graphs G, G�3 include arbitrarily large cliques

Fig. 11.4 For such graphs G, an arbitrarily large set of vertices exist, whose elements
are pairwise connected by an induced path of length 5

course N(1) = 4,but for p = 3 we already only get huge upper bound! On
the other side, we have N(3) ≥ 6 (see Exercise 11.4).

More: although our upper bound for N(p) grows very fast, we do not know
if this function is actually unbounded. This motivates the following recent
problem:
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Problem 11.1 (van den Heuvel and Naserasr). Does there
exist a constant C such that for every odd-integer p and any planar
graph G it holds

χ(G[�p]) ≤ C?

Problem 11.2 (Thomassé). For a graph G, denote by Godd the
graph with vertex set V(G) where two vertices are adjacent if they
are at odd distance in G.

Does there exist a function f such that for every planar graph G

it holds
χ(Godd) ≤ f(ω(Godd))?

Note that for outerplanar graphs G, the graphs Godd can have arbitrarily
large clique number (see Exercise 11.5).
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Exercises

11.1. Prove that if a class of graphs C has a restricted duality F, D then there
exists another dual D ′ such that

χ(D ′) = max{χ(G) : G ∈ C ∩ Forbh(F)}.

11.2. Thomassen proved [458] that a graph in the torus is 5-colorable if and
only if it has no subgraph isomorphic to K6, C3 ⊕C5, K2⊕H7 or C3

11, where
G ⊕ H denotes the complete join of G and H, that is the graph obtained
from the disjoint union of G and H by making every vertex of G adjacent to
every vertex of H.

K6 C3 ⊕ C5 K2 ⊕ H7 C3
11

Deduce the following restricted duality for toroidal graphs G:

−�−→ G ⇐⇒ G −→

Other examples of such dualities are treated in [344].

11.3. Let G be a graph and let p be an integer. We consider a p-tree-depth
coloring c of G by N = χp(G) colors.

Prove that for each I ∈ (
[I]
p

)
there exists a homomorphism fI : GI → GI such

that |fI(GI)| ≤ �(p).
Let x ∼ y if c(x) = c(y) and if fI(x) = fI(y) holds for every I ∈ (

[I]
p

)
. We

define the graph Ĝ whose vertices are the equivalence classes [x] ∈ V(G)/ ∼,
whose edges are the pairs {[x], [y]} such that for every I ∈ (

[I]
p

)
{fI(x), fI(y)}

is an edge of G. We also define a N-coloration of Ĝ by ĉ([x]) = c(x). Check
that Ĝ and ĉ are well defined.
Prove that x �→ [x] is a homomorphism G → Ĝ.
Prove that for every I ∈ (

[N]
p

)
the mapping [x] �→ fI(x) is a homomorphism

ĜI → GI (where ĜI is the subgraph of Ĝ induced by colors in I).
Deduce that |Ĝ| ≤ �(p)N

p

and thus |Φ2−p

L (G)| ≤ �(p)N
p

.
Conclude that bounded expansion classes have all restricted dualities (Hint:
use Lemma 11.1). Thus the duals for dualities restricted to a bounded ex-
pansion class may be chosen in a “canonical” way.
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11.4. Prove that the following planar graph G is such that χ(G[�3]) ≥ 6.

11.5. Prove that ω(G[�2p+1]) ≤ 4 for G planar,
Prove that the clique number of the odd-distance graph of outerplanar graphs
is unbounded.



Chapter 12
Counting

- How many leaves are there in a forest?
- Including the falling ones?

12.1 Introduction

In the previous chapters of this book we investigated the problem of the
existence of particular structures with special properties such as the existence
of special partitions, the value of special parameters (for example ∇r(G)) or
the existence of special subsets.

The counting versions of our problems were not considered so far. However
some counting was hidden. Indeed, computing the edge density of a graph of
order n amounts to counting the number of K2 in this graph (and dividing
it by n) or, equivalently, counting the number of homomorphisms from K2

to the graph and dividing this number by 2n.
When considering a series of larger and larger graphs, counting the num-

ber of homomorphisms from small test graphs or counting the number of
induced copies of a small pattern is the main tool in the study of a possible
limit of the sequence. This is the case when one considers, on the one hand,
the convergence criteria for dense graphs (as defined by Lovász et al. [78],
linked to Szemerédi partitions) and, on the other hand, convergence of hyper-
finite graphs (as defined by Elek and Lippner [151] linked to a finitarization
of Farell-Varadarajan ergodic decomposition theorem). A main difference be-
tween these two approaches stands in the normalization needed to transform
the number of induced copies of a fixed pattern into a “density”, more pre-
cisely in the exponent of the order of the graph which is used to divide the

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
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number of copies. This exponent intuitively measures how independent the
assignments of the vertices of the pattern graph may be, that is the “degree of
freedom” of the pattern in the graphs of the class. The determination of this
degree of freedom is the subject of this chapter. In this chapter we consider
only graphs (although many results hold for finite relational structures).

Let us be more precise: in the dense case, it is natural to consider that
each vertex of the pattern could be considered independently and thus to
consider, for a small test graph F and a large graph G, the probability that a
random map from V(F) to V(G) will be a homomorphism. (Notice that the
number of induced copies of F in G may be easily derived from the number
of homomorphisms from F to G). The considered density is thus

t(F,G) =
hom(F,G)

|G||F|
, (12.1)

(Recall that hom(F,G) stands for the number of homomorphisms from
F to G).

Now consider the ultra-sparse case—for instance the case of bounded de-
gree graphs excluding a minor [56]. A random map from a test graph F to
a large ultra-sparse graph G is unlikely to be a homomorphism (except if
F is edgeless). There are obviously only finitely many (rooted) isomorphism
types of the balls Br(v) for v ∈ V(G) (where we consider Br(v) as a graph
rooted at v). It easily follows that the number of copies of F in G will be at
most linear in the order of G and that the considered density should be

dens(F,G) =
(#F ⊆ G)

|G|
, (12.2)

where (#F ⊆ G) stands for the number of induced copies of F in G.
When studying large graphs belonging to an infinite class of graphs C and

fixing a small test graph F, the question arises to determine whether for a
given infinite class C of finite graphs and a (small) test graph F there exists a
“natural” exponent f(F,C) such that the number of copies of F in any G ∈ C is
bounded by |G|f(F,C), or even by |G|f(F,C)+o(1) (as |G| → ∞). This motivates
our study of the asymptotic upper logarithmic density of F in C defined as
the limit

lim sup
G∈C

log(#F ⊆ G)

log |G|
.

Recall that, for any graph parameter f, we defined in Sect. 5.1.1

lim sup
G∈C

f(G) = lim
i→∞

sup{f(G) : G ∈ C and |G| ≥ i}.
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In general, the asymptotic upper logarithmic density of F in C is not an
integer. For instance, consider the class C0 of graphs of girth at least 5 (i.e.
the class of C3- and C4-free graphs) and the class C1 consisting of subgraphs
of the Cartesian product of a graph in C0 and the complete graph K2 (see
Fig. 12.1). Recall that the Cartesian product G�H of two graphs G and H is
the graph with vertex set V(G)×V(H) in which two vertices (u, x) and (v, y)

are adjacent if u = v and {x, y} ∈ E(H) or x = y and {u, v} ∈ E(G). Obviously,
both C0 and C1 are addable (i.e. closed by disjoint union) and monotone (i.e.
closed under subgraphs). According to a classical graph theory result of Erdős
we have (see [162] and most books on Graph Theory [328]):

lim sup
G∈C0

log(#K2 ⊆ G)

log |G|
=

3

2
. (12.3)

From which we deduce, for the class C1, that

lim sup
G∈C1

log(#C4 ⊆ G)

log |G|
=

3

2
. (12.4)

Fig. 12.1 Construction of a graph, all subgraphs of which have O(n3/2) edges and
O(n3/2) C4’s

Of course, we suspect that the density of graphs in C will play an important
role but the relation might be not obvious as if one considers the class P of
planar graphs we have

lim sup
G∈P

log(#C4 ⊆ G)

log |G|
= 2 >

3

2
= lim sup

G∈C1

log(#C4 ⊆ G)

log |G|
, (12.5)
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although

lim sup
G∈P

log ‖G‖
log |G|

= 1 <
3

2
= lim sup

G∈C1

log ‖G‖
log |G|

. (12.6)

This effect is actually related to the existence of shallow subdivisions of
large dense graphs C1 and this is of course close to our setting.

In this setting, the trichotomy theorem may be expressed as follows:

Theorem (5.4). Let C be an infinite class of graphs. Then the limit

free(K2,C) = sup
r

lim sup
G∈C ˜� r

log ‖G‖
log |G|

is 2 if and only if C is somewhere dense and belongs to {−∞, 0, 1} other-
wise (i.e. if C is nowhere dense).

In this chapter we generalize this theorem to a new characterization of
nowhere dense classes via counting.

Theorem 12.1. Let C be an infinite class of graphs, and let F

be a fixed graph with at least one edge and stability number
α(F). Then the limit

free(F,C) = sup
r

lim sup
G∈C ˜� r

log(#F ⊆ G)

log |G|
(12.7)

is |F| if and only if C is somewhere dense, and otherwise (i.e.
if C is nowhere dense) the limit belongs to {−∞, 0, 1, . . . , α(F)}.

By analogy with similar situations we call free(F,C) the degree of freedom
of F in C. We will have a more precise result when restricting to nowhere dense
classes. In this case, we don’t have to consider shallow topological minors:

Theorem 12.2. Let C be an infinite nowhere dense hereditary
class of graphs, and let F be a fixed graph with at least one
edge and stability number α(F). Then the limit

lim sup
G∈C

log(#F ⊆ G)

log |G|
(12.8)

belongs to {−∞, 0, 1, . . . , α(F)}.

Note that the degree of freedom of F in C is the supremum of the
asymptotic logarithmic densities of F in the classes C ˜� r, and that generally
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free(F,C) can be greater than the asymptotic logarithmic density of F

in C.
We shall actually prove a rigidity result: every sufficiently large graph G

with many copies of F actually contains a large “regular” substructure with
at least the same logarithmic density of copies of F. In order to state this
structural result, we shall introduce in Sect. 12.2 the notion of a generalized
sunflower. We will then proceed by a reduction from general graphs to graphs
with bounded tree-depth and from graphs with bounded tree-depth to col-
ored forests. Section 12.3 is devoted to the study of colored forests, Sect. 12.4
deals with graphs with bounded tree-depth, while Sect. 12.5 considers general
graphs. Consequences for classes of graphs are stated in Sect. 12.6.

12.2 Generalized Sunflowers

One of the basic combinatorial results of Set Theory is the sunflower (or
delta-system) lemma of Erdös and Rado [169]. Many extensions are known.
Our result is yet another reincarnation of the original idea.

12.2.1 Generalized Sunflowers

Let F,G be graphs. A (k, F)-sunflower in G is a (k+1)-tuple (C,F1, . . . ,Fk),
such that C ⊆ V(G),Fi ⊆ P(V(G)), C and all the sets in the Fi’s are pair-
wise disjoints and there exists a partition (K, Y1, . . . , Yk) of V(F) so that (see
Fig. 12.2)

� There is no edge (of F) between vertices in Yi and vertices in Yj for i �= j,
� There exists an isomorphism ι0 : G[C] → F[K] from the subgraph of G

induced by C to the subgraph of F induced by K,
� For each 1 ≤ i ≤ k and each Xi ∈ Fi there exists an isomorphism ιXi

:

G[Xi] → F[Yi],
� For any choice of X1 ∈ F1, . . . , Xk ∈ Fk the mapping ιX1,...,Xk

from C ∪
⋃

i Xi to V(F) whose restriction to C is ι0 and whose restriction to Xi is
ιXi

(for 1 ≤ i ≤ k) is an isomorphism from G[C ∪⋃

i Xi] to F.

For a better understanding we illustrate this construction for k = 3 and
the Petersen graph on Fig. 12.2.

Some easy facts should be noticed about (k, F)-sunflowers:

Fact 1. If a graph G includes a (k, F)-sunflower, then k ≤ α(F).
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G F

Y1

Yk

Y2

KC

F1

F2

Xk

X2

X1

Fig. 12.2 A generalized (3, Petersen)-sunflower

Proof. Consider the partition (K, Y1, . . . , Yk) of V(F) of the definition. As
there is no edge between vertices in Yi and vertices in Yj for i �= j, we can
find in F an independent set of cardinality k, hence k ≤ α(F). 
�

Fact 2. A (k, F)-sunflower (C,F1, . . . ,Fk) includes at least
∏k

i=1 |Fi|

copies of F.

Proof. By definition of a (k, F)-sunflower, each choice of X1 ∈F1, . . . , Xk ∈Fk

defines a copy of F. 
�

Fact 3. If a graph G includes a (k, F)-sunflower (C,F1, . . . ,Fk), then G

has an induced subgraph G ′ such that

|G ′| ≥ k min
i

|Fi|

(#F ⊆ G) ≥
(

|G ′|− |F|

k

)k

.

Proof. This is a direct consequence of Fact 2. 
�
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12.3 Counting Patterns of Bounded Height
in a Colored Forest

Although colored forests with bounded height are very special and simple
structures, their counting is not easy. In this section, we will not count copies
of some fixed forest but rather the number of occurrences of more general
patterns. This generalization will appear to be for free here and will ease the
proofs in the subsequent sections. Still, this section is one of the technical
parts of this book.

12.3.1 Patterns

Patterns will be colored forests. For the benefit of the reader we first recall
some basic definitions. The considered color set will be IN. Let us recall some
basic definitions given in Sect. 6.1: The height (or the level) of a vertex x

in a rooted forest Y is the number of vertices of a path from the root (of
the component of Y to which x belongs) to x and is noted height(x, Y). The
height h(Y) of a forest Y is the maximum height of the vertices of Y, that is
one more than the maximum length of a path from a root. We denote by <Y

the partial order on V(Y) defined by putting x <Y y if there exists a tree path
from a root of Y to y which includes x. A subset A ⊆ V(Y) is an antichain
if the elements of A are pairwise non-comparable.

The color of a vertex a will be denoted by γ(a). For a vertex a linked to
a root r of Y by a path P = (r = x1, x2, . . . , xk = a), we call the sequence
ΓY(a) = (γ(x1), . . . , γ(xk)) the color sequence of a.

A pattern is formed by a rooted colored forest F and a mapping ζ :
⋃

∞

s=0(IN
s × INs) → {0, 1}. A mapping f : F → Y is ζ-consistent if

� f is an injective level preserving homomorphism,
� For every a ∈ F, ζ(ΓF(a), ΓY(f(a))) = 1.

Denote by σζ(F, Y) the number of ζ-consistent mappings from F to Y.
Notice that obviously σζ(F, Y) ≤ |Y||F|.

When F is a tree, we denote by root(F) the root of F and by πF : V(F) \

{root(F)} → V(F) the function mapping each vertex to its father in F. If F and
Y are trees of height at least 2, with roots rF and rY we denote by ζ/(rF → rY)

the mapping ζ ′ defined by

ζ ′((a1, . . . , ak), (b1, . . . , bk)) = ζ((γ(rF), a1, . . . , ak), (γ(rY), b1, . . . , bk)).

From this definition it follows:
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σζ(F, Y) = σζ ′(F− rF, Y − rY).

Example 12.1. Consider the rooted tree F formed by a directed chain (a, b, c)

with all vertices colored 0 and ζ((0), (x)) = 1 for every x, ζ((0, 0), (x, y)) = 1

if x < y and ζ((0, 0, 0), (x, y, z)) = 1 if (x, y, z) is an arithmetic progression.

Our functions correspond to the intuition of “color preserving mapping
with a joker”.

Example 12.2. The mapping ζ0 defined by

ζ0((a1, . . . , as), (b1, . . . , bs)) = 1

if for every 1 ≤ i ≤ s either ai = 0 or ai = bi. This function allows us
to consider mappings where non-zero colors are preserved and zero-colored
vertices may be mapped to vertices of any color.

12.3.2 Blowing Patterns

Let F be a rooted forest, let A = {a1, . . . , ak} be an antichain of F and let
ρ : A → IN. We define the rooted forest F �(A,ρ) as follows: The vertex set
of F �(A,ρ) is the set V ′ ⊂ V × IN defined as the union of V ′

0 = {(x, 0) : ∀a ∈
A x �≥F a} and the sets V ′

a = {(x, i) : x ≥F a, 1 ≤ i ≤ ρ(a)} for a ∈ A; the
father relation of F �(A,ρ) is defined by letting (x, i) be the father of (y, j) if
x is the father of y in F and either i = j or i = 0 (Fig. 12.3).

The similarity between blowing patterns and generalized sunflowers is
clear and we shall see that the extraction of a generalized sunflower will
be actually related to the matching of a blown pattern.

12.3.3 Warm Up: Counting Patterns of Height 1

To start our inductive procedure, we first consider the case of patterns of
height 1, which are nothing but sets of colored isolated vertices:

Lemma 12.1. Let 0 < ε < 1, let F be colored rooted forest of height
1, and let k be an integer. For every rooted colored forest Y of order
n ≥ |F|2|F|/ε including at least nk+ε ζ-consistent images of F, there exists
an antichain A of F and a mapping ρ : A → IN such that:

� The graph F �(A,ρ) has (at least) a ζ-consistent image in Y,
� For every a ∈ A, we have ρ(a) ≥ nε/2|F|,
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Fig. 12.3 Blowing a tree

� The cardinality of A is at least k + 1.

Proof. Let the forest F consists of fi roots of color ci, i = 1, . . . , k (of course
∑

fi = |F|). Put μ = ε/(2|F|) and N0 = |F|3|F|/ε.
Let R1, . . . , Rk be the sets of roots of Y such that for every 1 ≤ i ≤ k and

for every x ∈ Ri we have ζ(ci, γ(x)) = 1. Then obviously

σζ(F, Y) ≤
∏

i

|Ri|
fi .

Let us partition [k] into two sets X1 and X2 as follows: i ∈ [k] belongs to
X1 if |Ri| < |F|nμ; otherwise, i belongs to X2. Then

k + ε ≤ logσζ(F, Y)

logn

≤
∑

i∈X2

fi + μ
∑

i∈X1

(

fi +
log|F|
μ logn

)

≤
∑

i∈X2

fi + μ|F|

(

1+
log|F|
μ logn

)

<
∑

i∈X2

fi + ε.

Hence
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k + 1 ≤
∑

i∈X2

fi.

Now let A be the set of the roots with color fi for i ∈ X2, and for i ∈ X2

let ρ(r) = |Ri|/|F| for all roots r of F having color i. Then obviously ρ(a) ≥ nμ

for every a ∈ A, F �(A,ρ) has a ζ-consistent image in Y, and |A| ≥ k+ 1. 
�

As a corollary, we get:

Corollary 12.1. Let 0 < ε < 1 and let F be a colored rooted forest of
height 1. Every rooted colored forest Y of order n ≥ |F|3|F|/ε includes a
sub-forest Y ′ of order at least nε/2|F| such that

logσζ(F, Y
′)

log|Y ′|
≥

⌈

logσζ(F, Y)

log|Y|
− ε

⌉

− ε. (12.9)

In other words, the logarithmic density of ζ-consistent images can be
shifted (in a non decreasing way) to the ε-neighborhood of an integer by
consider a proper large sub-forest.

We shall now prove that this result generalizes to all patterns of any fixed
height.

12.3.4 Counting Patterns of Height h

The remaining of this section will be devoted to the proof the following result:

Theorem 12.3. Let 0 < ε < 1 and let (F, ζ) be a pattern, where F has
height h. For positive integer t define the function

μt(x) =
3

2
(3|F|)−

t(t+1)
2 xt. (12.10)

There exists N = Nh(ε) such that for every rooted colored forest Y of
order n ≥ N there exists an antichain A of F and a mapping ρ : A → IN
such that:

� The graph F �(A,ρ) has (at least) a ζ-consistent image in Y,
� For every a ∈ A, we have ρ(a) ≥ nμt(ε) where t = height(a, F),
� The cardinality of A is at least

⌈

logσζ(F, Y)

log|Y|
− ε

⌉

.

Proof. First notice that if σζ(F, Y) ≤ nε then we can put A = ∅. So let us
assume in the following that σζ(F, Y) > nε.
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We shall proceed by induction on h, following steps analogous to those of
Sect. 12.3.3:

1. We determine where the components of F have to be mapped to get a pos-
itive fraction of the ζ-consistent images while ensuring some regularity,

2. We partition the components of F depending on the type of images we
get, and compute an upper bound on σζ(F, Y) by looking independently
to ζ-consistent images of the the components of F,

3. Using induction, we construct F �(A,ρ) and a ζ-consistent image of it
in Y.

According to Lemma 12.1, the property holds for patterns of height 1, thus
assume the theorem has been proved for colored rooted forests of height at
most h−1 ≥ 1 and let F be a colored rooted forest of height h. Let F1, . . . , Fp
be the connected components of F and let Y1, . . . , Yq be the connected com-
ponents of Y.

Step 1. Define Z = {0, 1, . . . , |F|} ∪ {�}. Let ε1 = ε/(3|F|) and μ = μ0(ε) =

ε/(2|F|). Define η : [p]× [q] → Z ∪ {∅} by:

η(i, j) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∅ if σζ(Fi, Yj) = 0,

� otherwise if |Yj| < nε1 ,
⌈

log σζ(Fi,Yj)
log|Yj|

− ε1

⌉

otherwise.

Let I be the set of all the injective mappings φ : [p] → [q] such that
σζ(Fi, Yφ(i)) > 0 for every i ∈ [p].
The profile Pφ of φ ∈ I is the mapping from [p] to Z defined by
Pφ(i) = η(i, φ(i)).
For a mapping c : [p] → Z we denote by Ic the subset of I of the mappings
with profile c, i.e. the mappings φ ∈ I such that Pφ(i) = c(i) for every
i ∈ [p].
A simple computation shows that

σζ(F, Y) =
∑

φ∈I

p
∏

i=1

σζ(Fi, Yφ(i)) =
∑

c:[p]→Z

∑

φ∈Ic

p
∏

i=1

σζ(Fi, Yφ(i)).

As there are at most (|F|+2)|F| different mapping c : [p] → Z, we conclude
that there exists a mapping c : [p] → Z such that

∑

φ∈Ic

p
∏

i=1

σζ(Fi, Yφ(i)) ≥ 1

(|F|+ 2)|F|
σζ(F, Y). (12.11)
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Step 2. For i ∈ [p], let Tc(i) = {j : η(i, j) = φ(i)}.
Then obviously

∑

φ∈Ic

p
∏

i=1

σζ(Fi, Yφ(i)) ≤
p
∏

i=1

∑

j∈Tc(i)

σζ(Fi, Yj).

Consider the following partition of [p] into five parts:

� The part W1 contains the i ∈ [p] such that c(i) = � and |Tc(i)| < |F|nμ,
� The part W2 contains the i ∈ [p] such that c(i) = � and |Tc(i)| ≥ |F|nμ,
� The part W3 contains the i ∈ [p] such that c(i) = 0 and |Tc(i)| < |F|nμ,
� The part W4 contains the i ∈ [p] such that c(i) = 0 and |Tc(i)| ≥ |F|nμ,
� The part W5 contains the i ∈ [p] such that c(i) /∈ {�, 0}.

Let ε3 = μ+ log|F|/ logn. We thus have the following bounds:

If i ∈ W1 then
∑

j∈Tc(i)

σζ(Fi, Yj) ≤ nε3nε1 = nε1+ε3 , (12.12)

if i ∈ W2 then
∑

j∈Tc(i)

σζ(Fi, Yj) ≤ n.nε1 = n1+ε1 , (12.13)

if i ∈ W3 then
∑

j∈Tc(i)

σζ(Fi, Yj) ≤ nε3nε1 = nε1+ε3 (12.14)

if i ∈ W4 then
∑

j∈Tc(i)

σζ(Fi, Yj) ≤ n.nε1 = n1+ε1 (12.15)

if i ∈ W5 then
∑

j∈Tc(i)

σζ(Fi, Yj) ≤ nc(i)+ε1 . (12.16)

Let g(c) = |W2|+ |W4| +
∑

i∈W5
c(i). Then

p
∏

i=1

∑

j∈Tc(i)

σζ(Fi, Yj) ≤ ng(c)+pε1+(|W1|+|W3|)ε3 .

Hence we have
⌈

logσζ(F, Y)

log |Y|
− ε

⌉

≤ g(c)

if

ε≥pε1 + (|W1|+ |W3|)ε3 +
|F| log(|F| + 2)

logn
.

what is the case in particular if

log(|F|+ 2)

logn
≤ ε

12
.
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Step 3. We denote by ri the root of Fi and by sj the root of Yj. For
each pair (Fi, Yj) such that Yj contains a ζ-consistent image of Fi we de-
fine ζi,j = ζ/(root(Fi) → root(Yj)). Hence for any such pair we have
ζ((γ(ri)), (γ(sj))) = 1 and

σζi,j
(Fi − ri, Yj − sj) = σζ(Fi, Yj)

Let φ0 ∈ Ic. For i ∈ W1 ∪ W3 let Y ′
i be a ζ-consistent image of Fi in

Yφ0(i). For i ∈ W5, Yφ0(i) includes a ζ-consistent image of Fi. Hence
⌈

logσζi,φ0(i)
(Fi − ri, Yφ0(i) − sφ0(i))

log|Yφ0(i) − sφ0(i)|
− ε1

⌉

≥
⌈

logσζ(Fi, Yφ0(i))

log|Yφ0(i)|
− ε1

⌉

≥ c(i).

As |Yφ0(i) − sφ0(i)| ≥ nε1 ≥ Nh−1(ε1) the induction holds and there
exists an antichain Ai of Fi − ri and a mapping ρi : Ai → IN such that

� The graph (Fi − ri) �(Ai,ρi) has (at least) a ζi,φ0(i)-consistent image
in Yφ0(i) − sφ0(i) (hence Fi �(Ai,ρi) has (at least) a ζ-consistent image
in Yφ0(i)),

� For every a ∈ Ai, we have ρi(a) ≥ nε1μt(ε1) where t = height(a, Fi−ri)

(hence ρi(a) ≥ nμt ′(ε) where t ′ = t+ 1 = height(a, Fi)),
� The cardinality of Ai is at least

⌈

logσζi,φ0(i)
(Fi − ri, Yφ0(i) − sφ0(i))

log|Yφ0(i) − sφ0(i)|
− ε1

⌉

≥ c(i).

For i in W2 ∪ W4 we can choose disjoint subsets Xi of Tc(i) of size
n ′ ≥ nε3/|F| = nμ. In each of the Yj (for j ∈ Xi) we extract a ζi,j-consistent
image of Fi. 
�

12.4 Counting Subgraphs in Graphs with Bounded
Tree Depth

For the benefit of the reader let us recall some basics of tree-depth definition
(see Chap. 6). Let Y be a rooted forest. The vertex x is an ancestor of y in
Y if x belongs to the path linking y and the root of the tree of Y to which y

belongs. The closure clos(Y) of a rooted forest Y is the graph with vertex set
V(Y) and edge set {{x, y} : x is an ancestor of y in Y, x �= y}. The tree-depth
td(G) of a graph G is the minimum height of a rooted forest Y such that
G ⊆ clos(Y). We shall need the following refinement.

Let G be a graph. A td-representation of G is a triple (Y, ν, γ) where:
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� ν : V(G) → V(Y) is an injective homomorphism of G to the closure of Y,
� Each vertex of Y is an ancestor of an image ν(x) of a vertex x ∈ V(G),
� γ : V(G) → {0, 1}� is a bit string defined as follows (see Fig. 12.4):

– γ(x) = ε (i.e. γ(x) is empty) if x is not in the image of ν;
– Otherwise, γ(x) = (0) if x is a root;
– Otherwise, γ(x) is a bit string of length height(x, Y) − 1, whose ith

bit is 1 if there exists adjacent u, v in G such that ν(u) = πi
Y(x) and

ν(v) = x (where πY maps each non-root vertex of Y to its father in Y).

We assume that the vertex set of Y is {1, 2, . . . , |Y|} (without loss of generality).
Some easy fact should be noticed about td-representations:

Fact 4. Let Ξ(G, p) denote the number of different td-representations
(Y, ν, γ) of a graph G such that the height of Y is at most p. Then
Ξ(G, p) ≤ (|G|p)|G|p .

Proof. Assume that (Y, ν, γ) is a td-representation of G. As the height of Y
is at most p and as all the leaves of Y belongs to the image of ν, the forest
Y has order at most |G|p. Thus there are at most (|G|p)|G|p choices for the
pair (Y, ν) hence for the choice of a td-representation. 
�

Lemma 12.2. Let F be a graph, let G be a graph, and let (Y, νY , γY) be a
td-representation of G. Then the number of copies of F in G is the sum
over all td-representations (T, νT , γT ) of F such that height(T) ≤ height(Y)
of the ζ-consistent images of the pattern (T, (νT , γT )) in (Y, (νY , γY)),
where ζ is defined by

ζ(((. . . , (νs, γs)), ((. . . , (ν
′
s, γ

′
s))) =

⎧

⎨

⎩

1, if νs = 0 or ν ′
s = 1 and ∀i (γs)i ≤ (γ ′

s)i

0, otherwise.

Proof. Copies of T are fully determined by the mapping of the leaves of F
into Y. 
�

Lemma 12.2 allows us to reduce the counting in bounded tree-depth graphs
to counting of a given pattern in trees. The following result is the main result
of the section.

Theorem 12.4. Let F be a graph, let 0 < ε < 1, and let t be a positive
integer.

Then there exists Nt(ε) such that every graph G of tree-depth at most t
and order at least Nt(ε) contains a (k, F)-sunflower (C,F1, . . . ,Fk) where



12.4 Counting in Graphs with Bounded Tree Depth 291

00100

0101001

1000

000

00

1

0

ε

110010 001110 010101

Fig. 12.4 A td-representation of the Petersen graph
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min |Fi| ≥ |G|
(3|F|t)

−
t(t+1)

2 εt

(12.17)

k ≥
⌈

log(#F ⊆ G) − p2|F| log(p2|F|)

log |G|
− ε

⌉

. (12.18)

Proof. As td(G) ≤ t, there exists a td-representation (Y, νY , γY) of G such
that height(Y) ≤ t. According to Lemma 12.2, there exists a td-representation
(T, νT , γT ) such that σζ(T, Y) ≥ (#F ⊆ G)/Ξ(T, t) ≥ (#F ⊆ G)/(p2|F|)p

2|F| (as
|T | ≤ p|F|). The result then follows from Theorem 12.3. 
�

Corollary 12.2. Let F be a graph and let 0 < ε < 1. Then there exist
a positive integer N and a positive real τ (depending on both F and ε)
such that every graph G of order at least N and tree-depth at most |F|

contains a (k, F)-sunflower (C,F1, . . . ,Fk) where

min |Fi| ≥ |G|
τ and k ≥

⌈

log(#F ⊆ G)

log |G|
− ε

⌉

.

12.5 Counting Subgraphs in Graphs

Recall that for integer p and a graph G, a p-tree-depth coloring of a graph
G by N colors is a coloration of the vertices of G by N colors, such that each
p ′ ≤ p color classes induce a subgraph of tree-depth at most p ′. Accordingly,
a sequence of chromatic numbers χ1(G) ≤ χ2(G) ≤ · · · ≤ td(G) is associated
to a graph G, where χ1(G) is the usual chromatic number χ(G) of G and
where for every integer p the value χp(G) is the minimum number of colors
of a p-tree-depth coloring of G (see Chap. 7).

As a consequence of previous sections we shall now prove that every large
graph with a small χp contains a large (k, F)-sunflower:

Theorem 12.5 (Clearing and Stepping up). Let F be a graph
of order p and let 0 < ε < 1. Then there exist positive re-
als c and τ (depending on both F and ε) such that every
graph G which contains more than |G|k+ε copies of F and
for which χp(G) < c|G|ε/p contains a (k + 1, F)-sunflower
(C,F1, . . . ,Fk+1) where

min |Fi| ≥
(

|G|

χp(G)p/ε

)τ

.
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Proof. If (#F ⊆ G) < |G|ε then the statement is straightforward, so we can
assume (#F ⊆ G) ≥ |G|ε. Consider a p-tree-depth coloring of G using χp(G)

colors. Obviously any copy of F in G belongs to some subgraph of G induced
by p colors (maybe even several such ones). Hence there exists a subset of p
colors inducing a subgraph G ′ such that

(#F ⊆ G ′) ≥ (#F ⊆ G)/

(

χp(G)

p

)

and

|G| ≥ |G ′| ≥
(

(#F ⊆ G)/

(

χp(G)

p

))1/p

≥ (#F ⊆ G)(1/p)/χp(G)

≥ |G|ε/p/χp(G).

By adapting the constants of Corollary 12.2 we conclude the proof. 
�

12.6 Counting Subgraphs in Graphs in a Class

We now apply the characterization of nowhere dense classes based on χp of
Theorem 7.9.

Theorem 12.6. For every hereditary nowhere dense class of graphs C

and every fixed graph F:

lim sup
G∈C

log(#F ⊆ G)

log |G|
∈ {−∞, 0, 1, . . . , α(F)}. (12.19)

Proof. Let

α = lim sup
G∈C

log(#F ⊆ G)

log |G|
.

If α = −∞, we are done. Otherwise, consider an infinite sequence (Gn)n∈IN

of graphs with strictly increasing orders such that

lim
n→∞

log(#F ⊆ Gn)

log |Gn|
= α.

For every ε > 0, let c and τ be the positive reals appearing in Theorem 12.5.
According to Theorem 7.9, as C is nowhere dense, we have log χ|F|(G) =

o(log |G|). Hence there exists N(ε) such that every graph Gn with n > N(ε)

is such that χp(Gn) < max(c, 1)|G|ε/2p and Gn contains at least |Gn|
α−ε
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copies of F. Then, according to Theorem 12.5, Gn contains a (k, F)-sunflower
(C,F1, . . . ,Fk) where

min |Fi| ≥
(

|Gn|

χp(Gn)p/ε

)τ

≥ |Gn|
τ/2

and k ≥
⌈

log(#F ⊆ G)

log |G|
− ε

⌉

≥ �α− 2ε�.

Let Hn be the subgraph of Gn induced by this sunflower. As limn→∞ |Hn|

= ∞, we have

lim sup
n→∞

log(#F ⊆ Hn)

log |Hn|
≥ k.

Due to the maximality of α we have α ≥ �α − 2ε� hence α is an integer
(as the inequality holds for every ε > 0). Moreover, k ≤ α(F) (as noticed in
Fact 1) hence α ∈ {0, 1, . . . α(F)}. 
�

Finally, we get a new characterization of nowhere dense classes by count-
ing. This is stated as Theorem 12.1 and (for the benefit of the reader) again
in the following form:

Theorem 12.7. For every infinite class of graphs C and every fixed graph
F with at least one edge:

free(F,C) = sup
r

lim sup
G∈C ˜� r

log(#F ⊆ G)

log |G|
∈ {−∞, 0, 1, . . . , α(F), |F|}. (12.20)

Moreover, free(F,C) = |F| if and only if C is somewhere dense.

Proof. If the class C is nowhere dense then, according to Theorem 12.6, we
have for every integer r:

lim sup
G∈C ˜� r

log(#F ⊆ G)

log |G|
∈ {−∞, 0, 1, . . . , α(F)}.

Hence the same holds for the supremum.
If C is somewhere dense then there exists a time τ̃(C) such that C� t

contains every complete graph, hence for every r ≥ τ̃(C) we have

lim sup
G∈C ˜� r

log(#F ⊆ G)

log |G|
= |F|.


�

And we have a similar result when we consider the resolution C� instead
of the topological resolution C˜�:
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Theorem 12.8. For every infinite class of graphs C and every fixed graph
F with at least one edge:

sup
r→∞

lim sup
G∈C� r

log(#F ⊆ G)

log |G|
∈ {−∞, 0, 1, . . . , α(F), |F|}. (12.21)

Moreover, limr→∞ lim supG∈C� r
log(#F⊆G)

log |G|
= |F| if and only if C is some-

where dense.

Proof. This is essentially the same proof as Theorem 12.7. 
�
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Exercises

12.1. Let C be a class of k-degenerate graphs and let F be a connected graph.
Then for every ε > 0 there exists C = C(F, k, ε) such that every graph G ∈ C

has a subset of vertices A with

|A| ≤ ε |G|

(#F ⊆ G− A) ≤ C |G|

12.2. The homomorphism domination exponent HDE(F,G) of graphs F and
H is defined as the supremum of all real numbers c such that for every graph
T it holds

hom(F, T) ≥ hom(G, T)c.

This parameter has been introduced and studied in [282]. (The exercise
follows this paper.)

Prove the following dual expression for HDE(F,G):

HDE(F,G) = inf
T : hom(G,T)≥2

log hom(F, T)

log hom(G, T)
.

Prove that the supremum is always attained, but the infimum is not always
attained.
Prove that the relation F � G defined by HDE(F,G) ≥ 1 is a partial order
that extends the order induced by existence of a surjective homomorphism.

12.3. Prove that Theorem 12.1 holds when the number of copies of F is
replaced by the number of homomorphisms from F, that is:

Let C be an infinite class of graphs and let F be a fixed graph with at least
one edge and stability number α(F). Then the limit

sup
r

lim sup
G∈C ˜� r

log hom(F,G)

log |G|

is |F| if and only if C is somewhere dense and otherwise (i.e. if C is nowhere
dense) the limit belongs to {−∞, 0, 1, . . . , α(F)}.

12.4. The aim of this Exercise is to extend Theorem 12.5 to k-rooted graphs.
Let F be a graph and let f = (f1, . . . , fp) be a p-tuple of distinct vertices

of F. We say that a p-tuple v = (v1, . . . , vp) of vertices G extends to F if
there exists a subset A of vertices of G which contains v1, . . . , vp and an
isomorphism g : F → G[A] with g(fi) = vi. We denote by (#(F, f) ⊆ G) the
number of p-tuples of vertices of G that extend to F.
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Following the proofs of this chapter, prove that the following extension of
Theorem 12.5 holds for k-rooted graphs.

For every 0 < ε < 1, there exist positive reals c and τ (depending on p,
F and ε) such that every graph G which contains more than |G|k+ε p-tuple
that extend to F and which is such that χ|F|(G) < c|G|ε/|F| there exists a
partition A1, . . . , Ak+1 of {f1, . . . , fp}, a partition F0, . . . , Fk+1 of the vertex
set of F (here F0 is allowed to be empty), and a k+2 families F0,F1, . . . ,Fk+1

of subset of vertices of G such that:

� For every 1 ≤ i ≤ k + 1, Ai ⊆ Fi,
� There is no edge between Fi and Fj if 0 < i < j ≤ k+ 1,
� F0 contains a single (possibly empty) set V0,
� The sets in

⋃

Fi are pairwise disjoint,
� For every choice of k + 1 sets Vi ∈ Fi, there exists an isomorphism g :

F → G[V0 ∪ · · · ∪ Vk+1] such that g(Fi) = Vi,

� For i > 0, the family Fi contains at least
(

|G|

χ|F|(G)|F|/ε

)τ

sets.

12.5. Deduce from Exercise 12.4 that the following extension of Theorem 12.6
holds:

For every hereditary nowhere dense class of graphs C and every fixed exis-
tential formula φ(x1, . . . , xp):

lim sup
G∈C

log |{(v1, . . . , vp) ∈ V(G)p : G |= φ(v1, . . . , vp)}|

log |G|
∈ {−∞, 0, 1, . . . , p}.



Chapter 13
Back to Classes

When the class is sparse, the teacher is far away. . .

In this chapter we summarize the results on sparsity of classes with all their
characterizations. The multiplicity of the equivalent characterizations that
can be given for the nowhere dense–somewhere dense dichotomy is mainly a
consequence of several related aspects:

� The relationships between the different type of resolutions, namely of mi-
nor resolution, topological resolution, and immersion resolution;

� The relationships between shallow minors, shallow topological minors, lex-
icographic products and shallow immersions;

� The polynomial dependence (and weak polynomial dependence) of key
graph invariants, like ∇r, ˜∇r, χp, colp, wcolp, etc.

� The characterization of uniformly quasi-wide classes.

This will be elaborated in detail in this chapter.

13.1 Resolutions

Our main classification, the nowhere dense–somewhere dense dichotomy, is
based on resolutions. We defined several types of resolutions: the minor
resolution

C� = (C� 0,C� 1/2,C� 1, . . . ),

the topological resolution

C
˜� = (C ˜� 0,C ˜� 1/2,C ˜� 1, . . . ),

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__13, © Springer-Verlag Berlin Heidelberg 2012
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and the immersion resolution

C
∝� = (C

∝� (1, 0),C
∝� (2, 1/2),C

∝� (3, 1), . . . ).

As expected, these resolutions may behave differently. For instance, consider
the minor resolution C� of a class C and its limit C�∞ (i.e. its minor closure):

The first possibility is that the class C�∞ is strictly included in Graph:

This is the case when C is included in a proper minor closed class. The
minor resolution may then be used to get a finer information about sub-
classes with smaller density. For instance, if Planar is the class of all planar
graphs and C1 is the subclass of Planar with graphs of girth at least g, then
C1 � 1

2
�log2(g/3)� = C1 �∞ = Planar. However, if C2 is the subclass of

Planar with graphs of maximum degree 3, then C2 � t is the class of planar
graphs with maximum degree 3.2t and thus the class Planar is only reached
at the limit.

The second possibility is that the class C�∞ is equal to Graph, although
C� t is strictly included in Graph for each t:

This is the case when C is nowhere dense but is not included in a proper
minor closed class. Such a situation allows us to parametrize graphs by the
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minor resolution of C, by associating to each graph G the minimum integer
t (interpreted as “time”) such that G ∈ C� t. The interest of this scaling
stands in its universality (it applies to every graph) and its extension (its set
of values is not finite). In this book, we have seen that many hard problems
become tractable in this parametrization.

The third possibility is that there exists a time tc such that C� tc =

C�∞ = Graph:

This is the case when C is somewhere dense. An extremal case is, of course,
when C is the class Graph itself. Such a situation suggests that properties
of the class C could be obtained by transporting general properties of dense
graphs backward. We have seen in Chap. 5 that the classes for which the
third case applies, that is somewhere dense classes, are those which have
the property that there exists a critical value tc at which the resolution
stabilizes to Graph, whatever resolution we consider (the minor resolution,
the topological resolution, or the immersion resolution). However, the value
tc depends on the considered resolution. Not only that, but also for nowhere
dense classes the asymptotic behavior of our resolutions varies. For instance:

� The class T3 of graphs with tree-depth at most 3 is such that (see Chap. 4,
Fig. 4.11)

T3
∝�∞ = Graph, but T3 �∞ = T3 ˜�∞ = T3;

� The class D3 of graphs with maximum degree at most 3 is such that

D3 �∞ = Graph but both D3
∝�∞ = D3 and D3 ˜�∞ = D3.

Looking at these examples (and similar other ones) it is perhaps surprising
how stable the nowhere dense–somewhere dense dichotomy is.
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13.2 Parameters

The equivalence between minor resolution and topological resolution in the
definition of the nowhere dense–somewhere dense dichotomy is based on the
relations linking the clique numbers in both resolution. These relations have
been stated in Proposition 5.2. The equivalence between the shallow minor
approach and the topological minor approach (from the point of view of
our classification of classes) is confirmed by the polynomial equivalence of
grads and top-grads (see Sect. 4.5). Altogether, the dependencies of graph
parameters shown Fig. 13.1 summarize the deep connection of shallow minors
and shallow topological minors.
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���

���
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		�����
������

��

ω(G)

Fig. 13.1 Dominance of some graph parameters (up to polynomial parameters)

In Fig. 13.1, arrows mean polynomial dependencies. For instance, tw(G) →

∇(G) means that there exists a polynomial P such that ∇(G) ≤ P(tw(G)). In
this particular case, P(X) = X as ‖H‖/|H| ≤ tw(H) ≤ tw(G) holds for every
minor H of G.

We summarize in Table 13.1 the relationship of the graph parameters.
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Table 13.1 Dependencies between several parameters (p is any positive integer)

˜∇r(G) ≤ ˜∇r(G • Kp) (obvious) (13.1)
˜∇r(G) ≤ ∇r(G) (Corollary 4.1) (13.2)

˜∇r(G) ≤ ∝∇p,r(G) (obvious) (13.3)
˜∇r(G • Kp) ≤ p(p + 2r)˜∇r(G) (by Proposition 4.6) (13.4)

˜∇r(G) = O(χ(G ˜� (2r + 1
2
))4) (Proposition 4.4) (13.5)

∇r(G) ≤ 4(4˜∇r(G))(r+1)2

(Corollary 4.1) (13.6)
∇r(G) ≤ wcol2r+1(G) − 1 (Lemma 7.11) (13.7)

∇r(G) ≤ (2r + 1)
(χ2r+2(G)

2r + 2

)

(Proposition 7.1) (13.8)
∝∇p,r(G) ≤ (2r(p − 1) + 1)˜∇r(G) Eq. 4.20 (13.9)

χ(G ˜� r) ≤ χ(G� r) (obvious) (13.10)

χ(G ˜� r) ≤ χ(G
∝� (p, r)) (obvious) (13.11)

χ(G
∝� (p, r)) ≤ χ(G ˜� r)2r(p−1)+1 Eq. 4.21 (13.12)

χ(G ˜� r) ≤ 2˜∇r(G) + 1 (Proposition 4.4) (13.13)
χ(G� r) ≤ 2∇r(G) + 1 (Proposition 4.5) (13.14)
colr(G) ≤ wcolr(G) (Proposition 4.8) (13.15)
colr(G) ≤ Ar(∇ r−1

2
(G)) (Theorem 7.11) (13.16)

wcolr(G) ≤ colr(G)r (Proposition 4.8) (13.17)
χr(G) ≤ wcol2r−1 (G) (Theorem 7.10) (13.18)

χr(G) ≤ Br(˜∇2r−2+1/2(G)) (Theorem 7.8) (13.19)

ω(G ˜� r) ≤ ω(G� r) (obvious) (13.20)

ω(G ˜� r) ≤ ω(G
∝� (p, r)) (obvious) (13.21)

ω(G� r) ≤ 2ω(G ˜� (3r + 1))�r�+1 (Proposition 5.2) (13.22)

ω(G
∝� (p, r)) < R(

2r(p−1)+1
︷ ︸︸ ︷

ω(G ˜� r) + 1, . . .) Eq. 4.22 (13.23)

To facilitate a uniform treatment of these bounds and several other depen-
dencies between graph parameters (which will allow us to give a multiplicity
of characterizations for nowhere dense classes or for classes with bounded
expansion) we find it convenient to introduce the family F as the following
graph parameters (parametrized by integral parameter r):
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� G �→ ∇r(G),
� G �→ ˜∇r(G),
� G �→ χr(G),
� G �→ χ(G ˜� r),
� G �→ χ(G� r),
� G �→ colr(G),
� G �→ wcolr(G).

We also add to the family F all the parametrized graph parameters defined
from an arbitrary integral polynomial P(X) taking only strictly positive values
for X ≥ 0 by:

� G �→ ∇r(G • KP(r)),
� G �→ ˜∇r(G • KP(r)),
� G �→ ∝∇P(r),r(G).

In a sense F is the family of all the nice parameters we have considered in
this book.

13.3 Nowhere Dense Classes

Figure 13.2 schematically depicts the variety of important hereditary classes
covered by our approach. It summarizes examples of nowhere dense classes
scattered through the earlier chapters. Similarly, we shall now gather almost
all of our characterizations of nowhere dense classes obtained in Chaps. 5–12
in a single theorem:

Theorem 13.1. Let C be an infinite class of graphs.
Let F be a graph with at least one edge, let fr be a parametrized graph

parameter in F, and let C be either C�,C˜� or C
∝�. Then the following

conditions are equivalent:

1. C is a class of nowhere dense graphs,
2. No class in the resolution C has unbounded clique number,
3. There exists a weakly topological monotone graph parameter � bound-

ing the clique number parameter ω such that �(C) < ∞,
4. �dens(C) ≤ 1,

5. For every integer r, lim sup
G∈Cr

log(#F ⊆ G)

log|G|
< |F|,

6. For every integer r, lim sup
G∈C

log fr(G)

log|G|
= 0,

7. For every integer r, lim sup
G∈Cr

log χ(G)

log|G|
= 0,
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8. For every integer r, lim inf
G∈Cr

logα(G)

log|G|
= 1,

9. C is a uniformly quasi-wide class,
10. H(C) is a quasi-wide class.

Proof. The equivalence (1) ⇐⇒ (2) follows from the definition for C = C�;
it follows from Proposition 5.2 for C = C˜�. The equivalence of (2) for C

∝� and
C˜� follows from (4.22).
The equivalence (2) ⇐⇒ (3) follows from Proposition 5.1.
The equivalence (1) ⇐⇒ (4) follows from Theorem 5.4 and Proposition 5.4.
The equivalence (1) ⇐⇒ (5) follows from Theorem 12.7 and Theorem 12.8.
Let us prove the equivalence (4) ⇐⇒ (6): First notice that in (6) the choice
of fr ∈ F and C among C�,C˜� and C

∝� does not matter according to the
dependencies recalled on Table 13.1. Thus assume that for some integer r0
we have

lim sup
G∈C

log ˜∇r0(G)

log|G|
= ε > 0.

Then for every integer N there exists G ∈ C ˜� r0 such that |G| > N and ‖G‖
|G|

>

|G|ε/2 hence log ‖G‖
log |G|

> 1+ε/2, a contradiction. The opposite direction follows

from the easy inequality lim supG∈C
log ˜∇r(G)

log|G|
≤ lim supG∈C� r

log ‖G‖
log|G|

− 1.

Let us consider the equivalence (6) ⇐⇒ (7): For C = C˜�, it follows from
Proposition 4.4 while for C = C�, it follows from Proposition 4.5. The case
where C = C

∝� reduces to the case where C = C˜� thanks to (4.18).

Let us consider the equivalence (7) ⇐⇒ (8): If lim sup
G∈Cr

logχ(G)

log|G|
= 0 then,

as α(G)χ(G) ≥ |G| we have lim inf
G∈Cr

logα(G)

log|G|
= 1. Now if lim sup

G∈Cr

logχ(G)

log|G|
> 0

then C is somewhere dense thus there exists r0 such that every complete

graph belongs to Cr0 . It follows that lim inf
G∈Cr0

logα(G)

log|G|
= 0.

Finally, the equivalence (1) ⇐⇒ (9) ⇐⇒ (10) follows from Theorem 8.2.
��

13.4 Bounded Expansion Classes

The parameter equivalences proved in the first part of this book imply the
following characterizations of classes with bounded expansions, much in the
same style as Theorem 13.1.
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Theorem 13.2. Let C be a class of graphs. Let fr be a parametrized graph
parameter in F, and let C be either C�,C˜� or C

∝�. Then the following
conditions are equivalent:

1. C has bounded expansion,
2. No class in C has unbounded average degree,
3. No class in C has unbounded chromatic number,
4. There exists a weakly topological monotone parameter � bounding

the average degree parameter, such that �(C) < ∞,
5. There exists a weakly topological monotone parameter � bounding

the chromatic number, such that �(C) < ∞,
6. For every integer r, supG∈C fr(G) < ∞,
7. For every integer r, lim supG∈C fr(G) < ∞,
8. C has low tree-width colorings,

The proof is similar to the one of Theorem 13.1, using results related to
bounded expansion classes (see Table 13.1).

13.5 Bounded Tree-Depth Classes

It is a bit surprising that the classes with bounded tree depth have a char-
acterization much in the same style as bounded expansion classes (Theorem
13.2) and nowhere dense classes (Theorem 13.1). This we believe shows a
coherence of our theory.

Theorem 13.3. Let C be a class of graphs. The following conditions are
equivalent:

1. C has bounded tree-depth,
2. There exists an integer l(C) such that no graph G ∈ C includes a path

of length greater than l(C),
3. C is degenerate (i.e. ∇0(C) < ∞) and there exists an integer L(C)

such that no graph G ∈ C includes an induced path of length greater
than L(C),

4. C is nowhere dense and there exists an integer L(C) such that no
graph G ∈ C includes an induced path of length greater than L(C),

5. lim
p→∞

χp(C) < ∞ (which means that the χp(G) for G ∈ C are uniformly

bounded by a constant independent of p).
6. lim

p→∞

colp(C) < ∞,

7. lim
p→∞

wcolp(C) < ∞.
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Fig. 13.2 Inclusion map of some hereditary classes
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At this stage of the book, the proof of this theorem can be left as an
exercise.

13.6 Remarks on Structures

As mentioned in Sects. 3.8 and 5.8, there are several possibilities to de-
fine a classification of classes of structures by means of our classification of
classes of graphs: Gaifman graphs of the structures or Incidence graphs of
the structures.

If we define classes of structures that are nowhere dense, bounded exansion
classes, quasiwide, etc. by the corresponding properties of their Gaifman
graphs, then , of course, the characterization theorems 13.1, 13.2, and 13.3
remain valid. We do not have to state this explicitely. However this should
be regarded as a first (and often good) approximation of the properties of an
infinite class of structures. However this is perhaps the beginning only and
one should aim for more fitting notions. Consider for example the notion of
quasi-wideness: a class of structures C is said to be quasi-wide if there exist
functions f and g such that for every integers d,m and every structure A ∈ C

of order at least f(d,m) there exists in the ground set of A a subset S of at
most g(d) elements and a subset I of at least m elements such that in A−S,
any two elements of I are at distance at least m. Also, a class of structures
is almost wide if it is quasi-wide and one can require that the function g is
constant. Notice that deleting an element in a relational structure implies to
deletion of all the relations to which it belongs hence Gaifman(A − S) is a
subgraph of Gaifman(A) − S. Thus, as the distance in A and Gaifman(A)

are the same, we have:

Proposition 13.1. Let C be a class of relational structures.

� If Gaifman(C) is almost wide then C is almost wide;
� If Gaifman(C) is quasi wide then C is quasi wide.

However the converse implications are not true in general, see Fig. 13.3.
It follows that G-nowhere dense structures are quasi-wide. This property

can be used to prove that every G-nowhere dense class of relational structures
admit a relativized version of the homomorphism preservation theorem.
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Fig. 13.3 The class of triple systems An with triples {vi, vj, u} (1 ≤ i < j < n, n ≥ 3)
is almost wide (deleting vertex u fully disconnects the structure) although the class of
the Gaifman graphs of the An is the (somewhere dense) class of all complete graphs
of order at least 3
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Chapter 14
Classes with Bounded Expansion –
Examples

Bound to be free. . .

Bounded expansion classes are the focus of this chapter and one of the
leitmotivs of the whole book. In this chapter, we shall give many examples of
classes with bounded expansion. The examples which we cover are schemat-
ically depicted on Fig. 14.1. These classes cover most classes considered in
structural graph theory and the relevant parts of logic and discrete geome-
try. This will be explained for several of these classes in a greater detail in
this chapter.

In Sect. 14.1, we show that the notion of bounded expansion is compati-
ble with Erdős-Rényi model of random graphs with constant average degree
(that is, for random graphs of order n with edge probability d/n). Then, we
provide a number of examples of classes with bounded expansion that appear
naturally in the context of graph drawing or graph coloring. In particular,
we prove that each of the following classes have bounded expansion, even
though they are not contained in a (proper) topologically-closed class:

� Graphs that can be drawn with a bounded number of crossings per edge
(Sect. 14.2),

� Graphs with bounded queue-number (Sect. 14.4),
� Graphs with bounded stack-number (Sect. 14.5),
� Graphs with bounded non-repetitive chromatic number (Sect. 14.6).

We also prove that graphs with “linear” crossing number are contained in
a topologically-closed class, and graphs with bounded crossing number are
contained in a minor-closed class (Sect. 14.2). Many of these results were
obtained in collaboration with David Wood, see [359].

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__14, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 14.1 Classes with bounded expansion. The results about classes with bounded
crossings, bounded queue-number, bounded stack-number, and bounded non-
repetitive chromatic number are proved in this chapter. Arrows represent class inclu-
sion

14.1 Random Graphs (Erdős-Rényi Model)

The G(n, p) model of random graphs was introduced by Gilbert [217]
and Erdős and Rényi [170]. It is the most common random graph model,
see e.g. [76]. In this model, a graph with n vertices is built, with each edge
appearing independently with probability p. It is frequently considered that
p may be a function of n, hence the notation G(n, p(n)) (see Fig. 14.2).

Let us review some basic facts about G(n, d/n) and G(n, p(n)). The order
of the largest complete (topological) minor in G(n, p/n) was studied inten-
sively. It is known since the work of [318] that random graphs G(n, p(n)) with
p(n) − 1/n � n−4/3 are asymptotically almost surely planar, whereas those
with p(n) − 1/n � n−4/3 asymptotically almost surely contain unbounded
clique minors. Recall that a property of random graphs holds asymptotically
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almost surely (a.a.s.) if, over a sequence of draws, its probability converges
to 1. Fountoulakis et al. [182] proved that for every c > 1 there exists a
constant δ(c) such that asymptotically almost surely the maximum order
h(G(n, c/n)) of a complete minor of a graph in G(n, c/n) satisfies the in-
equality δ(c)

√
n ≤ h(G(n, c/n)) ≤ 2

√
cn. Also, Ajtai et al. [6] proved that,

as long as the expected degree (n − 1)p is at least 1 + ε and is o(
√
n),

then asymptotically almost surely the order of the largest complete topolog-
ical minor of G(n, p) is almost as large as the maximum degree, which is
Θ(logn/ log logn).

On the other hand, it is known that the number of short cycles of
G(n, d/n) is bounded. More precisely, the expected number of cycles of
length t in G(n, d/n) is at most (e2d/2)t. It follows that the expected value
E(ω(G ˜� r)) of the clique size of a shallow topological minor of G at depth r

is bounded by approximately (Cd)2r.

Fig. 14.2 A random graph with edge probability 6/n (here n = 100)
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Fox and Sudakov [183] proved that G(n, d/n) is asymptotically almost
surely (16d, 16d)-degenerate. Here this undefined notion has the following
meaning: a graph H is said to be (d,Δ)-degenerate if there exists an ordering
v1, . . . , vn of its vertices such that for each vi, there are at most d vertices vj
adjacent to vi with j < i, and there are at most Δ subsets of the form N(vj)∩
{v1, . . . , vi} for some neighbor vj of vi with j > i (recall that the neighborhood
N(vj) is the set of vertices that are adjacent to vj). We refine [183] in order
to prove that for each integer d there exists a bounded expansion class Rd

such that G(n, d/n) almost surely belongs to Rd (Theorem 14.1).
We shall proceed as follows: Using the characterization of bounded ex-

pansion given in Proposition 5.6 we first prove that graphs in G(n, d/n)

asymptotically almost surely have the property that only a small proportion
of vertices have sufficiently large degree. We then prove that asymptotically
almost surely subgraphs having sufficiently dense sparse topological minors
must span some positive fraction of the vertex set of the whole graph. Thanks
to Lemma 4.2, this last property will follow from the following two facts:

� As the random graph with edge probability d/n has a bounded number
of short cycles, it follows that if one of its subgraphs is a ≤ r-subdivision
of a sufficiently dense graph it should asymptotically almost surely span
at least some positive fraction Fprop(r) of the vertices (Lemma 14.2);

� For every ε > 0, the proportion of the vertices of the random graph with
edge probability d/n which have sufficiently large degree (> Fdeg(ε)) is
asymptotically almost surely less than ε (Lemma 14.3).

Let us give details.

Lemma 14.1. Let ε > 0. Asymptotically almost surely every subgraph G ′

of G(n, d/n) with at most (4d)−(1+1/ε)n vertices satisfies ˜∇0(G
′) ≤ 1+ε.

Proof. It is sufficient to prove that almost surely every subgraph G ′ of
G(n, d/n) with at most 4−(1+1/ε)n vertices satisfies ‖G ′‖/|G ′| ≤ 1+ ε. Let
G ′ be an induced subgraph of G of order t with t ≤ 4−(1+1/ε)n. The proba-
bility that G ′ has size at least m = (1+ε)t is at most

((t2)
m

)

(d/n)m. Therefore,
by the union bound, the probability that G has an induced subgraph of order
t with size at least m = (1+ ε)t is
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(

n

t

)(
(

t
2

)

m

)

(d/n)m ≤
(

en

t

)t(
et2

2m

)m(

d

n

)m

= et
(

e

2(1 + ε)

)(1+ε)t(
n

t

)t(
dt

n

)(1+ε)t

=

(

e2+ε

(2+ 2ε)1+ε

)t(
d1+1/ε t

n

)εt

< 4t
(

d1+1/ε t

n

)εt

.

Summing over all t ≤ (4d)−(1+1/ε)n, one easily checks that the probability
that G has an induced subgraph G ′ of order at most (4d)−(1+1/ε)n such that
‖G‖/|G ′| ≥ 1+ ε is o(1), completing the proof. 
�

Lemmas 4.2 and 14.1 imply:

Lemma 14.2. Let r ∈ IN. Asymptotically almost surely every subgraph G ′

of G(n, d/n) with at most (4d)−(1+1/(4r+1))n vertices satisfies ˜∇r(G
′)≤ 2.

That is, for every positive integer r every subgraph H of G(n, d/n)

asymptotically almost surely satisfies:

˜∇r(H) > 2 =⇒ |H| > (4d)−(1+ 1
4r+1

)|G| .

Lemma 14.3. Let α > 1 and let cα = 4eα−4αd. Asymptotically almost
surely there are at most cαn vertices of G(n, d/n) with degree greater
than 8αd.

Proof. Put s = cαn (rounded to an even integer) and let A be the subset of
the s vertices of largest degree in G = G(n, d/n), and let D be the minimum
degree of vertices in A. Thus there are at least sD/2 edges that have at least
one endpoint in A. Consider a random subset A ′ of A with size |A|/2. Every
edge that has an endpoint in A has probability at least 1

2
of having exactly

one endpoint in A ′. So there is a subset A ′ ⊂ A of size |A|/2 such that the
number m of edges between A ′ and V(G)\A ′ satisfies m ≥ sD/4 = |A ′|D/2.

We now give an upper bound on the probability that D ≥ 8αd. Each set
A ′ of s

2
vertices in G = G(n, d/n) has probability at most

(

s
2
(n − s

2
)

m

)

(d/n)m ≤
(

esn

2m

)m

(d/n)m ≤
(

2sd

m

)m

≤
(

8d

D

)m

≤ α−2αds

of having at least m ≥ (s/2)(8αd)/2 = 2αds edges between A ′ and V(G)\A ′.
Therefore the probability that there is a set A ′ of s/2 vertices in G that has
at least 2αsd edges between A ′ and V(G) \A ′ is at most
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(

n

s/2

)

α−2αds <

(

2en

s

)s/2

α−2αds ≤
(

(2eα−4αd)n

s

)s/2

= o(1),

completing the proof. 
�
The following is then the main result of this section.

Theorem 14.1. For each integer d there exists a bounded ex-
pansion class Rd such that G(n, d/n) almost surely belongs to
Rd.

Proof. We first prove that for each integer r G = G(n, d/n) asymptotically
almost surely satisfy ˜∇r(G) < fd(r) for some suitable function fd. For a fixed
positive integer d define the functions Ford, Fdeg, F∇, Fprop : IR+

→ IR by

Ford(x) = 0,

Fdeg(x) = 8dg(x),

F∇(x) = 2,

and Fprop(x) = (4d)−1+ 1
4x+1 ,

where g(x) is implicitly defined by

4eg(x)−4dg(x) = x,

or in the other way:

g(x) logg(x) =
log 4e − log x

4d
.

Then, according to Lemma 14.2, Lemma 14.3 and Proposition 5.6 we have
that for every r the graphs in G(n, d/n) asymptotically almost surely satisfy

˜∇r(G) < fd(r)

where

f(r) = 2max

(

8dg

(

(4d)−1+ 1
4r+1

4r+ 2

)

, 4r + 2

)

.

It follows that for each integer r there exists Nd(r) such that graphs in
G(n, d/n) with n > Nd(r) almost surely satisfy ˜∇r(G) ≤ 2f(r). Therefore
we can define our class Rd as follows:



14.2 Crossing Number 319

Rd = {G ∈ Graph : ∀r ∈ IN, ˜∇r(G) ≤ max(Nd(r), 2f(r))}.


�

14.2 Crossing Number

For a graph G, let cr(G) denote the crossing number of G, defined as the
minimum number of crossings in a drawing of G in the plane; this is one
of the frequently studied parameters in geometric graph theory, see the sur-
veys [378, 450]. Note the beautiful applications of this parameter to additive
combinatorics and discrete geometry [82, 152, 449]. It is easily seen that
cr(H) = cr(G) for every subdivision H of G. Thus crossing number is weakly
topological. The following “crossing lemma”, independently due to [301] and
[4], implies that crossing number bounds the average degree parameter (i.e.
is degree-bound). We include it together with its book proof [3].

Lemma 14.4. If ‖G‖ ≥ 4 |G| then cr(G) ≥ ‖G‖3

64 |G|2
.

Proof. Consider a minimal drawing of G and a positive real 0 < p ≤ 1. Let
Gp be a random induced subgraph of G obtained by selected each vertex of
G with probability p.

Let np,mp, Xp be the random variables counting the number of vertices,
edges and crossings in Gp. By Euler formula, the inequality cr(G) − ‖G‖ +
3|G| ≥ 0 holds for any graph G hence

E(Xp −mp + 3np) ≥ 0.

Clearly, E(np) = p|G| and E(mp) = p2‖G‖, since an edge appears in Gp

if and only if both end-vertices do. And finally, E(Xp) = p4cr(G), since a
crossing is present in Gp if and only if all four involved vertices are there.

By linearity of expectation, we get

0 ≤ E(Xp) − E(mp) + 3E(np) = p4cr(G) − p2‖G‖+ 3p|G|,

that is:

cr(G) ≥ p2‖G‖− 3p|G|

p4
=

‖G‖
p2

−
3|G|

p3
.

Let p = 4|G|

‖G‖ (hence p ≤ 1). We get

cr(G) ≥ 1

64

(

4‖G‖
(|G|/‖G‖)2 −

3|G|

(|G|/‖G‖)3
)

=
1

64

‖G‖3
|G|2

.


�
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As the crossing number is a weakly topological parameter, Theorem 13.2
(4) and Lemma 14.4 imply that a class of graphs with bounded crossing
number has bounded expansion. In fact, the following theorem implies that
any class with bounded crossing number is included in a minor-closed class:

Theorem 14.2. For every graph G,

∇(G) ∈ O(
√

cr(G) log cr(G)) .

Proof. If G is planar then ∇(G) < 3. Thus we may assume that cr(G) ≥ 1.
Let Kn be a minor of G. Bokal et al. [75] proved that if H is a minor of G
then

cr(H) ≤ ⌊

1
2
Δ(H)

⌋2
cr(G) .

Now apply this result with H = Kn. We claim that n(n − 1) ≤ 128 · cr(G).
This is immediate if n ≤ 8. Now assume that n ≥ 9. Thus Lemma 14.4
implies that cr(Kn) ≥ 1

512
n(n − 1)3. (In fact, [276] proved that cr(Kn) ≥

1
80
n(n − 1)(n − 2)(n − 3) for sufficiently large n.) Thus

1
512

n(n − 1)3 ≤ cr(Kn) ≤
⌊

1
2
(n − 1)

⌋2
cr(G) ≤ 1

4
(n− 1)2cr(G) .

Thus n(n − 1) ≤ 128 · cr(G). Hence ∇(G) ≤ O(
√

cr(G) log cr(G)) by (4.11).

�

The following result establishes that graphs with linear crossing number
(in a sense made precise below) are contained in a topologically-closed class,
and thus also have bounded expansion. Let G≥3 denote the subgraph of G
induced by the vertices of G that have degree at least 3.

Theorem 14.3. For a constant c ≥ 1, let Cc be the class of graphs G such
that cr(H) ≤ c|H≥3| for every subgraph H of G. Then Cc is contained in
a topologically-closed class of graphs C ′

c with ˜∇(C ′
c) ≤ 4c1/3.

Proof. Let G ∈ Cc and let H be a topological minor of G such that
‖H‖/|H| = ˜∇(G). Let S ⊆ G be a witness subdivision of H in G. We prove
that ‖H‖ ≤ 4c1/3 |H| by contradiction. Were it false, then ‖H‖ > 4c1/3 |H|

and by Lemma 14.4,
‖H‖3
64|H|2

≤ cr(H) = cr(S) ≤ cr(S≥3) = c|H| .

Thus ‖H‖3 < 64c|H|3, a contradiction. Hence ˜∇(G) ≤ 4c1/3 for every G ∈ Cc.

�

The assumption involving Cc is necessary. To see this, consider the class
of graphs that admit drawings with at most one crossing per edge. Obviously
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this includes large subdivisions of arbitrarily large complete graphs. Thus this
class is not contained in a proper topologically-closed class. Note however that
this class has bounded expansion. This holds generally: bounded number of
crossings per edges is sufficient for bounded expansion.

Theorem 14.4. Let c ≥ 1 be a constant. The class of graphs
G that admit a drawing with at most c crossings per edge has
bounded expansion. Precisely, for every integer d we have

˜∇d(G) ∈ O(
√
cd).

Proof. Assume G admits a drawing with at most c crossings per edge. Con-
sider a subgraph H of G that is a (≤ 2d)-subdivision of a graph X. So X has
a drawing with at most c(2d + 1) crossings per edge. Pach and Tóth [377]
proved that if an n-vertex graph has a drawing with at most k crossings per
edge, then it has at most 4.108

√
kn edges. Thus ‖X‖ ≤ 4.108

√

c(2d + 1) |X|

hence ˜∇d(G) ≤ 4.108
√

c(2d + 1). 
�
Thus all these classes are also covered by our theory.

14.3 Queue and Stack Layouts

A graph G is ordered if V(G) = {1, 2, . . . , |G|}. Let G be an ordered graph.
Let �(e) and r(e) denote the endpoints of each edge e ∈ E(G) such that
�(e) < r(e). Two edges e and f are nested and f is nested inside e if �(e) < �(f)

and r(f) < r(e). Two edges e and f cross if �(e) < �(f) < r(e) < r(f).
An ordered graph is a queue if no two edges are nested. An ordered graph

is a stack if no two edges cross. Observe that the left and right endpoints of
the edges in a queue are in first-in-first-out order, and are in last-in-first-out
order in a stack—hence the names ‘queue’ and ‘stack’.

An ordered graph G is a k-queue if there is a partition {E1, E2, . . . , Ek}

of E(G) such that each G[Ei] is a queue. An ordered graph G is a k-stack if
there is a partition {E1, E2, . . . , Ek} of E(G) such that each G[Ei] is a stack.

Let G be an (unordered) graph. A k-queue layout of G is a k-queue that
is isomorphic to G. A k-stack layout of G is a k-stack that is isomorphic
to G. A k-stack layout is often called a k-page book embedding. The queue-
number qn(G) of G is the minimum integer k such that G has a k-queue
layout. The stack-number sn(G) of G is the minimum integer k such that G
has a k-queue layout.
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Stack layouts are more commonly called book embeddings, and stack-
number has been called book-thickness, fixed outer-thickness, and page-
number. See [131] for references and applications of queue and stack layouts.
In theoretical computer science, these are frequently studied notions.

It is known (see [61]) that a graph has stack number 1 if and only if it is
outerplanar, and it has stack number at most 2 if and only if it is a subgraph
of a Hamiltonian planar graph (see Fig. 14.3). Thus every 4-connected planar
graph has stack number at most 2. Yannakakis [473, 474] proved that every
planar graph has stack number at most 4. In fact, every proper minor-closed
class has bounded stack-number [64]. On the other hand, even though stack
and queue layouts appear to be somewhat “dual”, it is unknown whether
planar graphs have bounded queue-number [246, 248], and more generally,
it is unkown whether queue-number is bounded by stack-number [133]. It
is known [133] that planar graphs have bounded queue-number if and only
if 2-stack graphs have bounded queue-number, and that queue-number is
bounded by stack-number if and only if 3-stack graphs have bounded queue-
number. The largest class of graphs for which queue-number is known to
be bounded is the class of graphs with bounded tree-width [129]. We greatly
generalize these results: In the following two sections, we prove that graphs of
bounded queue-number or bounded stack-number have bounded expansion.
The closest previous result in this direction is that graphs of bounded queue-
number or bounded stack-number have bounded acyclic chromatic number.
In particular, [130] proved that every k-queue graph has acyclic chromatic
number at most 4k · 4k(2k−1)(4k−1), and every k-stack graph has acyclic
chromatic number at most 80k(2k−1).

14.4 Queue Number

Every 1-queue graph is planar [130, 248]. However, the class of 2-queue graphs
is not contained in a proper topologically-closed class since every graph has
a 2-queue subdivision, as proved by [133]. The same authors proved the
following connection between subdivisions and queue layouts:

Theorem 14.5. (a) For all k ≥ 2, every graph G has a k-queue subdi-
vision with at most c logk qn(G) division vertices per edge, for some
absolute constant c.

(b) If some (≤ t)-subdivision of a graph G has a k-queue layout, then
qn(G) ≤ 1

2
(2k + 2)2t − 1, and if t = 1 then qn(G) ≤ 2k(k + 1).

Also, queue-number bounds the average degree parameter [131, 248, 380]:

Lemma 14.5. Every k-queue graph has average degree less than 4k.
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Fig. 14.3 Every 4-connected planar graph has stack number at most 2 (since it is
Hamiltonian)

According to Theorem 13.2–4, it now follows that:

Theorem 14.6. Graphs of bounded queue-number have
bounded expansion. In particular

˜∇d(G) < (2k + 2)4d

for every k-queue graph G.
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Fig. 14.4 A 3-queue layout of a given planar graph

Proof. Consider a subgraph H of G that is a (≤ 2d)-subdivision of a graph
X. Thus qn(H) ≤ k, and qn(X) < 1

2
(2k + 2)4d by Theorem 14.5(b). Thus

the average degree of X is less than δ := 2(2k + 2)4d by Lemma 14.5. Thus
˜∇d(G) ≤ (2k + 2)4d. 
�

From Theorem 14.6 not only follows that graphs with bounded queue-
number form a class with bounded expansion, but also that graphs G with
queue-number of order |G|o(1) form a nowhere dense class. For an application
to posets, see Exercise 14.2. Note that an alternate (in a sense local) proof is
given below in Theorem 14.7.

Note that there is also an exponential lower bound on ˜∇d for graphs
of bounded queue-number. Fix integers k ≥ 2 and d ≥ 1. Let G be the
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graph obtained from Kn by subdividing each edge 2d times, where n = kd.
Dujmović and Wood [133] constructed a k-queue layout of G. Observe that
˜∇d(G) ∼ n = kd. We now set out to give a direct proof of an exponential
bound for the grad ˜∇d(G) (instead as for the top-grad ˜∇r(G)) for graphs
with bounded queue-number.

Consider a k-queue layout of a graph G. For each edge vw of G, let
q(vw) ∈ {1, 2, . . . , k} be the queue containing vw. For each ordered pair
(v,w) of adjacent vertices in G, let

Q(v,w) :=

⎧

⎨

⎩

q(vw) if v < w,

−q(wv) if w < v.

Note that Q(v,w) has at most 2k possible values.

Lemma 14.6. Let G be a graph with a k-queue layout.

(a) Let vw and xy be disjoint edges of G such that Q(v,w) = Q(x, y).
Then v < x if and only if w < y.

(b) Let (v1, v2, . . . , vr) and (w1, w2, . . . , wr) be disjoint paths in G, such
that Q(vi, vi+1) = Q(wi, wi+1) for each i ∈ [1, r− 1]. Then v1 < w1 if
and only if vr < wr.

Proof. (a) Without loss of generality, v < w and x < y since |Q(v,w)| =

|Q(x, y)|.
Say v < x. If y < w then v < x < y < w. Thus xy is nested inside vw,
which is a contradiction since q(vw) = q(xy). Hence w < y.
Say w < y. If x < v then x < v < w < y. Thus vw is nested inside xy,
which is a contradiction since q(xy) = q(vw). Hence v < x.

(b) (b) is proved by induction using (a).

�

The following result provides an alternative proof of the fact (established
by Theorem 14.6) that graphs with bounded queue-number form a bounded
expansion class:

Theorem 14.7. Let G be a graph with a k-queue layout. Let F be a sub-
graph of G such that each component of F has radius at most r. Let H

be obtained from G by contracting each component of F. Then H has a
fr(k)-queue layout, where

fr(k) := 2k

(

(2k)r+1 − 1

2k − 1

)2

.

Proof. We can assume that F is spanning by allowing 1-vertex components
in F. For each component X of F fix a centre vertex v of X at distance at
most r from every vertex in X. Call X the v-component.
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Consider a vertex v ′ of G in the v-component of F. Fix a shortest path
P(v ′) = (v = v0, v1, . . . , vs = v ′) between v and v ′ in F. Thus s ∈ [0, r]. Let

Q(v ′) :=
(

Q(v0, v1), Q(v1, v2), . . . , Q(vs−1, vs)
)

.

Consider an edge v ′w ′ of G, where v ′ is in the v-component of F, w ′ is in
the w-component of F, and v �= w. Such an edge survives in H. Say v < w.
Color v ′w ′ by the triple

(

Q(v ′), Q(v ′, w ′), Q(w ′)
)

.

Observe that the number of colors is at most

2k

(

r∑

s=0

(2k)s

)2

= 2k

(

(2k)r+1 − 1

2k − 1

)2

.

From the linear order of G, contract each component of F into its centre.
That is, the linear order of H is determined by the linear order of the centre
vertices in G. After contracting there might be parallel edges with different
edge colors. Replace parallel edges by a single edge and keep one of the colors.

Consider disjoint monochromatic edges vw and xy of H, where v < w and
x < y. By construction, there are edges v ′w ′ and x ′y ′ of G such that v ′ is
in the v-component, w ′ is in the w-component, x ′ is in the x-component, y ′

is in the y-component, and
(

Q(v ′), Q(v ′, w ′), Q(w ′)) =
(

Q(x ′), Q(x ′, y ′), Q(y ′)).

Thus |P(v ′)| = |P(x ′)| and |P(w ′)| = |P(y ′)|. Consider the paths

(v = v0, v1, . . . , vs = v ′, w ′ = wt, wt−1, . . . , w0 = w) and

(x = x0, x1, . . . , xs = x ′, y ′ = yt, yt−1, . . . , y0 = y),

Since Q(v ′) = Q(x ′), we have Q(vi, vi+1) = Q(xi, xi+1) for each i ∈ [0, s−1].
Similarly, since Q(w ′) = Q(y ′), we have Q(wi, wi+1) = Q(yi, yi+1) for each
i ∈ [0, t − 1]. Since Q(v ′, w ′) = Q(x ′, y ′), Lemma 14.6(b) is applicable to
these two paths. Thus v < x if and only if x < y. Hence vw and xy are not
nested. Thus the edge coloring of H defines a queue layout. 
�

Theorem 14.7 implies Theorem 14.6 (with a better bound on the expansion
function) since by Lemma 14.5, the graph H in the statement of Theorem 14.7
has bounded density. In particular, if G has a k-queue layout then

∇d(G) ≤ 8k

(

(2k)d+1 − 1

2k − 1

)2

.
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Theorem 14.7 basically says that minors and queue layouts are compatible,
in the same way that queue layouts are compatible with subdivisions; see
Theorem 14.5(b). This motivated us to give two proofs.

14.5 Stack Number

The class of 3-stack graph (see Sect. 14.3 for the definiion) is not contained in
a proper topologically-closed class since every graph has a 3-stack subdivision
[37, 65, 155, 334, 335] (the first proof was by [37], similar ideas were present
in the earlier work of [261, 262] on knot projections). Many authors studied
bounds on the number of divisions vertices per edge in 3-stack subdivisions,
especially of Kn. The most general bounds on the number of division vertices
are by the following [133]:

Theorem 14.8. For all s ≥ 3, every graph G has an s-stack subdivi-
sion with at most c logs−1 min{sn(G), qn(G)} division vertices per edge,
for some absolute constant c.

Blankenship and Oporowski [65] conjectured that a result like Theo-
rem 14.5(b) holds for stack layouts:

Conjecture 14.1. There is a function f such that sn(G) ≤
f(sn(H)) for every graph G and (≤ 1)-subdivision H of G.

The validity of this conjecture implies that stack-number is topological.
This conjecture holds for G = Kn as proved by [65], [155], and [160]. The
proofs by [65] and [160] use essentially the same Ramsey-theoretic argument.

Enomoto et al. [156] proved the following bound for the density of graphs
having a ≤ t-subdivision with a k-stack layout:

Theorem 14.9. Let G be a graph such that some (≤ t)-subdivision of G
has a k-stack layout for some k ≥ 3. Then

‖G‖ ≤ 4k(5k − 5)t+1

5k − 6
|G| .

It follows that graphs with bounded stack number form a class with
bounded expansion:



328 14 Classes with Bounded Expansion – Examples

Theorem 14.10. Graphs of bounded stack number have
bounded expansion. In particular:

˜∇r(G) ≤ 4k(5k − 5)2r+1

5k − 6

for every k-stack graph G.

Proof. (≤ 2)-stack graphs have bounded expansion since they are planar.
Let G be a graph with stack-number sn(G) ≤ k for some k ≥ 3. Consider a
subgraph H of G that is a (≤ 2r)-subdivision of a graph X. Thus sn(H) ≤ k,
and by Theorem 14.9,

‖X‖ ≤ 4k(5k − 5)2r+1

5k − 6
|X| .

It follows that ˜∇r(G) = ‖H‖
|H|

≤ 4k(5k−5)2r+1

5k−6
. 
�

It is not known whether the exponential bound for ˜∇r is necessary. This
is related to the following problem, which is equivalent to some problems in
computational complexity [207, 208, 270].

Problem 14.1. Do 3-stack n-vertex graphs have o(n) separators?

(See Chap. 16 for results relating expansion and separators).

14.6 Non-repetitive Colorings

Let f be a coloring of a graph G. Then f is called repetitive on a path
(v1, . . . , v2s) in G if f(vi) = f(vi+s) for each i ∈ [1, s]. If f is not repeti-
tive on every path in G, then f is called non-repetitive. Let π(G) be the
minimum number of colors in a non-repetitive coloring of G. Nonrepetitive
colorings are recently intensively studied [16, 17, 49, 50, 83, 84, 106, 234–
236, 294, 323, 327]. This study started with the classical result of Thue [461]
which, in the above terminology, states that π(Pn) ≤ 3; see [105] for a survey
of related results. Note that a non-repetitive coloring is a proper coloring



14.6 Non-repetitive Colorings 329

(consider s= 1). Moreover, a non-repetitive coloring contains no bichromatic
P4 (s = 2), and thus it is a star coloring. Hence π(G) ≥ χst(G) ≥ χ(G).

The main result in this section (formulated as Theorems 14.11 and 14.12
at the end of this section) is that the parameter π is weakly topological, and
that every class of graphs with bounded π has bounded expansion. We shall
establish these results in a sequence of several lemmas. The closest previous
result is by [470] who proved that if G ′ is the 1-subdivision of a graph G then
χst(G

′) ≥ √

χ(G), and thus π(G ′) ≥ √

χ(G).

Lemma 14.7. (1) For every (≤ 1)-subdivision H of a graph G,

π(H) ≤ π(G) + 1.

(2) For every (≤ 3)-subdivision H of a graph G,

π(H) ≤ π(G) + 2.

(3) For every subdivision H of a graph G,

π(H) ≤ π(G) + 3.

Proof. First we prove (a). Given a non-repetitive k-coloring of G, introduce
a new color for each division vertex of H. Since this color does not appear
elsewhere, a repetitively colored path in H defines a repetitively colored path
in G. Thus H contains no repetitvely colored path. Part (b) follows by ap-
plying (a) twice.

Now we prove (c). Let n be the maximum number of division vertices on
some edge of G. Thue [461] proved that Pn has a non-repetitive 3-coloring
(c1, c2, . . . , cn). Arbitrarily orient the edges of G. Given a non-repetitive k-
coloring of G, choose each ci to be one of three new colors for each arc vw

of G that is subdivided d times, color the division vertices from v to w by
(c1, c2, . . . , cd). Suppose H has a repetitively colored path P. Since H−V(G)

is a collection of disjoint paths, each of which is non-repetitively colored, P
includes some principal vertices of G. Let P ′ be the path in G obtained from
P as follows. If P includes the entire subdivision of some edge vw of G then
replace that subpath by vw in P ′. If P includes a subpath of the subdivision
of some edge vw of G, then without loss of generality, it includes v, in which
case replace that subpath by v in P ′. Since the colors assigned to division
vertices are distinct from the colors assigned to principal vertices, a t-vertex
path of division vertices in the first half of P corresponds to a t-vertex path
of division vertices in the second half of P. Hence P ′ is a repetitively colored
path in G. This contradiction proves that H is non-repetitively colored. Hence
π(H) ≤ k+ 3. 
�
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Note that Lemma 14.7(a) is best possible in the weak sense that π(C5) = 4

and π(C4) = 3; see [105].
Loosely speaking, Lemma 14.7 says that non-repetitive colorings of sub-

divisions are not much harder than non-repetitive colorings of the original
graph. This intuition is made more precise if we subdivide each edge many
times. Then non-repetitive colorings of subdivisions are much easier than
non-repetitive coloringings of the original graph. In particular, [234] proved
that every graph has a non-repetitively 5-colorable subdivision. This bound
was improved to 4 by [51, 327], and very recently to 3 by [382]; see [83, 105]
for related results. This implies that the class of nonrepetively 3-colorable
graphs is not contained in a proper topologically-closed class.

We now set out to prove a converse of Lemma 14.7; that is, π(G) is bounded
by a function of π(H). The following easy tool [363] will be useful.

Lemma 14.8. For every k-coloring of the arcs of an oriented forest T ,
there is a (2k + 1)-coloring of the vertices of T , such that between each
pair of (vertex) color classes, all arcs go in the same direction and have
the same color.

Proof. The colors assigned to the vertices will be 0, . . . , 2k with the property
that, at a vertex colored i, outgoing edges colored j reach vertices colored
i + j mod 2k + 1 and incoming edges colored j come from vertices colored
i− j mod 2k + 1.

Without loss of generality, we may assume that T is a tree. Existence of
a coloring of the vertices of T with the prescribed properties is proved by
induction. If T has a single vertex, we color it any color. Assume that the
coloring exists for every oriented tree T of order n < n0 and let T be an
oriented tree of order n. Let x be a leaf of T . By induction, there exists
a prescribed coloring for T − x. If x has an incoming (resp. outgoing) arc
of color j incident to a vertex of color i we color x i + j mod 2k + 1 (resp.
i− j mod 2k+ 1). The obtained coloring of T matches our requirements. 
�

A rooting of a forest F is obtained by selecting one vertex in each compo-
nent tree of F as a root vertex.

Lemma 14.9. Let T ′ be the 1-subdivision of a forest T , such that
π(T ′) ≤ k. Then

π(T) ≤ k(k + 1)(2k + 1).

Moreover, for every non-repetitive k-coloring c of T ′, and for every root-
ing of T , there is a non-repetitive k(k + 1)(2k + 1)-coloring q of T , such
that:

(1) For all edges vw and xy of T with q(v) = q(x) and q(w) = q(y), the
division vertices corresponding to vw and xy have the same color
in c.
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(2) For all non-root vertices v and x with q(v) = q(x), the division ver-
tices corresponding to the parent edges of v and x have the same
color in c.

(3) For every root vertex r and every non-root vertex v, we have q(r) �=
q(v).

(4) For all vertices v and w of T , if q(v) = q(w) then c(v) = c(w).

Proof. Let c be a non-repetitive k-coloring of T ′, with colors [1, k]. Color
each edge of T by the color assigned by c to the corresponding division
vertex. Orient each edge of T towards the root vertex in its component.
By Lemma 14.8, there is a (2k + 1)-coloring f of the vertices of T , such
that between each pair of (vertex) color classes in f, all arcs go in the same
direction and have the same color in c. Consider a vertex v of T . If v is a
root, let g(r) := 0; otherwise let g(v) := c(vw) where w is the parent of v. Let
q(v) := (c(v), f(v), g(v)). The number of colors in q is at most k(k+1)(2k+1).
Observe that claims (c) and (d) hold by definition.

We claim that q is non-repetitive. Suppose on the contrary that there
is a path P = (v1, . . . , v2s) in T that is repetitively colored by q. That is,
q(vi) = q(vi+s) for each i ∈ [1, k]. Thus c(vi) = c(vi+s) and f(vi) = f(vi+s)

and g(vi) = g(vi+s). Since no two root vertices are in a common path, (c)
implies that every vertex in P is a non-root vertex.

Consider the edge vivi+1 of P for some i ∈ [1, s − 1]. We have f(vi) =

f(vi+s) and f(vi+1) = f(vi+s+1). Between these two color classes in f, all
arcs go in the same direction and have the same color. Thus the edge vivi+1

is oriented from vi to vi+1 if and only if the edge vi+svi+s+1 is oriented from
vi+s to vi+s+1. And c(vivi+1) = c(vi+svi+s+1).

If at least two vertices vi and vj in P have indegree 2 in P, then some
vertex between vi and vj in P has outdegree 2 in P, which is a contradiction.
Thus at most one vertex has indegree 2 in P. Suppose that vi has indegree
2 in P. Then each edge vjvj+1 in P is oriented from vj to vj+1 if j ≤ i − 1,
and from vj+1 to vj if j ≥ i (otherwise two vertices have indegree 2 in P).
In particular, v1v2 is oriented from v1 to v2 and vs+1vs+2 is oriented from
vs+2 to vs+1. This is a contradiction since the edge v1v2 is oriented from v1

to v2 if and only if the edge vs+1vs+2 is oriented from vs+1 to vs+2. Hence
no vertex in P has indegree 2. Thus P is a directed path.

Without loss of generality, P is oriented from v1 to v2s. Let x be the parent
of v2s. Now g(v2s) = c(vsx) and g(vs) = c(vsvs+1) and g(vs) = g(v2s). Thus
c(vsvs+1) = c(v2sx).

Summarizing, the path
(

v1, v1v2, v2, . . . , vs, vsvs+1
︸ ︷︷ ︸

, vs+1, vs+1vs+2, vs+2, . . . , v2s, v2sx
︸ ︷︷ ︸

)
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in T ′ is repetitively colored by c. (Here division vertices in T ′ are described by
the corresponding edge.) Since c is non-repetitive in T ′, we have the desired
contradiction. Hence q is a non-repetitive coloring of T .

It remains to prove claims (a) and (b). Consider two edges vw and xy of
T , such that q(v) = q(x) and q(w) = q(y). Thus f(v) = f(x) and f(w) =

f(y). Thus vw and xy have the same color in c. Thus the division vertices
corresponding to vw and xy have the same color in c. This proves claim (a).
Finally consider non-root vertices v and x with q(v) = q(x). Thus g(v) =

g(x). Say w and y are the respective parents of v and x. By construction,
c(vw) = c(xy). Thus the division vertices of vw and xy have the same color
in c. This proves claim (b). 
�

We now extend Lemma 14.9 to apply to graphs with bounded acyclic
chromatic number; see [21, 363] for similar methods.

Lemma 14.10. Let G ′ be the 1-subdivision of a graph G, such that
π(G ′) ≤ k and χa(G) ≤ �. Then

π(G) ≤ �
(

k(k + 1)(2k + 1)
)�−1

.

Proof. Let p be an acyclic �-coloring of G, with colors [1, �]. Let c be a non-
repetitive k-coloring of G ′. For distinct i, j ∈ [1, �], let Gi,j be the subgraph
of G induced by the vertices colored i or j by p. Thus each Gi,j is a forest,
and c restricted to G ′

i,j is non-repetitive.
Apply Lemma 14.9 to each Gi,j. Thus π(Gi,j) ≤ k(k + 1)(2k + 1), and

there is a non-repetitive k(k + 1)(2k + 1)-coloring qi,j of Gi,j satisfying
Lemma 14.9(a)–(d).

Consider a vertex v of G. For each color j ∈ [1, �] with j �= p(v), let
qj(v) := qp(v),j(v). Define

q(v) :=
(

p(v),
{
(j, qj(v)) : j ∈ [1, �], j �= p(v)

})

.

Note that the number of colors in q is at most �
(

k(k + 1)(2k + 1)
)�−1

. We
claim that q is a non-repetitive coloring of G.

Suppose on the contrary that some path P = (v1, . . . , v2s) in G is repet-
itively colored by q. That is, q(va) = q(va+s) for each a ∈ [1, s]. Thus
p(va) = p(va+s) and for each a ∈ [1, s]. Let i := p(va). Choose any j ∈ [1, �]

with j �= i. Thus (j, qj(va)) = (j, qj(va+s)) and qj(va) = qj(va+s). Hence
c(va) = c(va+s) by Lemma 14.9(d).

Consider an edge vava+1 for some i ∈ [1, s − 1]. Let i := p(va) and
j := p(va+1). Now q(va) = q(va+s) and q(va+1) = q(va+s+1). Thus
p(va+s) = i and p(va+s+1) = j. Moreover, (j, qj(va)) = (j, qj(va+s)) and
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(i, qi(va+1)) = (i, qi(va+s+1)). That is, qi,j(va) = qi,j(va+s) and qi,j(va+1)

= qi,j(va+s+1). Thus c(vava+1) = c(va+sva+s+1) by Lemma 14.9(a).
Consider the edge vsvs+1. Let i := p(vs) and j := p(vs+1). Without loss

of generality, vs+1 is the parent of vs in the forest Gi,j. In particular, vs is
not a root of Gi,j. Since qi,j(vs) = qi,j(v2s) and by Lemma 14.9(c), v2s also
is not a root of Gi,j. Let y be the parent of v2s in Gi,j. By Lemma 14.9(b)
applied to vs and v2s, we have c(vsvs+1) = c(v2sy).

Summarizing, the path
(

v1, v1v2, v2, . . . , vs, vsvs+1
︸ ︷︷ ︸

, vs+1, vs+1vs+2, vs+2, . . . , v2s, v2sy
︸ ︷︷ ︸

)

is repetitively colored in G ′. This contradiction proves that G is repetitively
colored by q. 
�

Lemmas 14.10 and 14.7(a) imply:

Lemma 14.11. Let H be a (≤ 1)-subdivision of a graph G, such that
π(H) ≤ k and χa(G) ≤ �. Then

π(G) ≤ �
(

(k + 1)(k + 2)(2k + 3)
)�−1

.

We get the following interesting dependence of acyclic coloring and non-
repetitive coloring.

Proposition 14.1. Assume that the 1-subdivision G ′ of a
graph G has a non-repetitive k-coloring. Then

χa(G) ≤ k · 22k2

.

Proof. Let c be a non-repetitive k-coloring of the 1-subdivision G ′ of a
graph G. Orient the edges of G arbitrarily. Let A(G) be the set of oriented
arcs of G. So c induces a k-coloring of V(G) and of A(G). For each vertex v

of G, let

q(v) =
{
c(v)

} ∪ {
(+, c(vw), c(w)) : vw ∈ A(G)

}

∪ {
(−, c(wv), c(w)) : wv ∈ A(G)

}
.

The number of possible values for q(v) is at most k · 22k2

. We claim that q

is an acyclic coloring of G.
Suppose on the contrary that q(v) = q(w) for some arc vw of G. Thus

c(v) = c(w) and (+, c(vw), c(w)) ∈ q(v), implying (+, c(vw), c(w)) ∈ q(w).
That is, for some arc wx, we have c(wx) = c(vw) and c(x) = c(w). Thus the
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path (v, vw,w,wx) in G ′ is repetitively colored. This contradiction shows
that q properly colors G.

It remains to prove that G contains no bichromatic cycle (with respect to
q). First consider a bichromatic path P = (u, v,w) in G with q(u) = q(w).
Thus c(u) = c(w).

Suppose on the contrary that P is oriented (u, v,w), as illustrated in
Fig. 14.5(a). By construction, (+, c(uv), c(v))∈ q(u), which implies (+, c(uv),

c(v)) ∈ q(w). That is, c(uv) = c(wx) and c(v) = c(x) for some arc wx (and
thus x �= v). Similarly, (−, c(vw), c(v)) ∈ q(w), implying (−, c(vw), c(v)) ∈
q(u). Thus c(vw) = c(tu) and c(v) = c(t) for some arc tu (and thus t �= v).
Hence the 8-vertex path (tu, u, uv, v, vw,w,wx, x) in G ′ is repetitively col-
ored by c, as illustrated in Fig. 14.5(b). This contradiction shows that both
edges in P are oriented toward v or both are oriented away from v.

Consider the case in which both edges in P are oriented toward v. Suppose
on the contrary that c(uv) �= c(wv). By construction, (+, c(uv), c(v)) ∈ q(u),
implying (+, c(uv), c(v)) ∈ q(w). That is, c(uv) = c(wx) and c(v) =

c(x) for some arc wx (implying x �= v since c(uv) �= c(wv)). Similarly,
(+, c(wv), c(v)) ∈ q(w), implying (+, c(wv), c(v)) ∈ q(u). That is, c(wv) =

c(ut) and c(t) = c(v) for some arc ut (implying t �= v since c(ut) =

c(wv) �= c(uv)). Hence the path (ut, u, uv, v,wv,w,wx, x) in G ′ is repet-
itively colored in c, as illustrated in Fig. 14.5(c). This contradiction shows
that c(uv) = c(wv). By symmetry, c(uv) = c(wv) when both edges in P are
oriented away from v.

Hence in each component of G ′, all the division vertices have the same
color in c. Every bichromatic cycle contains a 4-cycle or a 5-path. If G con-
tains a bichromatic 5-path (u, v,w, x, y), then all the division vertices in
(u, v,w, x, y) have the same color in c, and (u, uv, v, vw,w,wx, x, xy) is a
repetitively colored path in G ′, as illustrated in Fig. 14.5(d). Similarly, if
G contains a bichromatic 4-cycle (u, v,w, x), then all the division vertices
in (u, v,w, x) have the same color in c, and (u, uv, v, vw,w,wx, x, xu) is a
repetitively colored path in G ′, as illustrated in Fig. 14.5(e).

Thus G contains no bichromatic cycle, and q is an acyclic coloring of G.

�

Note that the above proof establishes the following stronger statement:
If the 1-subdivision of a graph G has a k-coloring that is non-repetitive on
paths with at most 8 vertices, then G has an acyclic k ·22k2

-coloring in which
each component of each 2-colored subgraph is a star or a 4-path.

Lemma 14.12. (a) If some (≤ 1)-subdivision of a graph G has a non-
repetitive k-coloring, then χa(G) ≤ (k + 1) · 22(k+1)2 .
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v w x

t u v w x

t u v w x

u v w x y
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wx
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b
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d

e

Fig. 14.5 Illustration for Proposition 14.1

(b) If π(H) ≤ k for some (≤ 1)-subdivision of a graph G, then

π(G) ≤ (k + 1) · 22(k+1)2
(

(k + 1)(k + 2)(2k + 3)
)(k+1)·22(k+1)2−1

.

(c) There is a function f such that π(G) ≤ f(π(H), d) for every (≤ d)-
subdivision H of a graph G.

Proof. (a) follows from Proposition 14.1 and Lemma 14.7(a). By (a) we have
χa(G) ≤ (k + 1) · 22(k+1)2 , thus (b) follows from Lemma 14.11 with � =

(k + 1) · 22(k+1)2 . (c) is then a direct corollary. 
�
One of the most interesting open problems regarding non-repetitive color-

ings is whether planar graphs have bounded π (as mentioned in most papers
regarding non-repetitive colorings). Lemma 14.12(c) implies that to prove
that planar graphs have bounded π it suffices to show that every planar
graph has a subdivision with bounded π and a bounded number of divi-
sion vertices per edge. This shows that Conjectures 4.1 and 5.2 in [234] are
equivalent.
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We now get to the main results of this section. Lemmas 14.12(b) and
14.7(a) imply:

Theorem 14.11. The parameter π is weakly topological.

π is degree-bound since every graph G has a vertex of degree at most
2π(G) − 2 (see [51], Proposition 5.1). Since π is hereditary, Theorems 13.2
and 14.11 imply:

Theorem 14.12. For every k, the class of all graphs G with
π(G) ≤ k has bounded expansion.

Actually, we obtained this result as a corollary of the fact that π is weakly
topological, which is an interesting result by itself. It is possible to give a
direct proof that the class of all graphs G with π(G) ≤ k has bounded
expansion and to give an explicit bound for ˜∇r(G) in terms of π(G) (see
Exercise 14.3).

Note that perhaps the most important in this area asks whether the class of
planar graphs has bounded non-repetitive coloring number. Theorems 14.11
and 14.12 may be viewed as contributions to this problem.
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Exercises

14.1. Prove that for every integer D and every positive real d > 0 there exists
a class Rd,D with bounded expansion such that if G is a graph of order n

whose edge set is the union of the edge set of a D-regular graph and the one
of a random graph in G(n, d/n) then G ∈ Rd,a asymptotically almost surely.

Such graphs are called liquid graphs.

14.2. This exercise relates our study of classes with bounded queue number
with classes of posets with bounded jump-number, showing that the Hasse
diagrams of these posets form a class with bounded expansion [359].

Let P be a poset. The Hasse diagram H(P) of P is the graph whose vertices
are the elements of P and whose edges correspond to the cover relation of
P. Here x covers y in P if x >P y and there is no element z of P such that
x >P z >P y.

A linear extension of P is a total order ≺ of P such that x <P y implies
x ≺ y for every x, y ∈ P. The jump number jn(P) of P is the minimum num-
ber of consecutive elements of a linear extension of P that are not comparable
in P, where the minimum is taken over all possible linear extensions of P.

Assume that P has jump number k and let ≺ by an optimal total order of P.
Then the linear order can be split into k+1 consecutive sequences S0, . . . , Sk
without jumps. Consider a linear embedding of P corresponding to ≺.
Prove that if (u1, v1) and (u2, v2) are arcs of H(P), u1, u2 ∈ Si, v1, v2 ∈ Sj,
and i < j then (u1, v1) and (u2, v2) cross. (Hint: otherwise, one of the two
arcs is a transitivity edge)
Deduce that if arcs between Si and Sj are assigned to queue |i − j| then no
two arcs in a same queue nest, hence for every poset P it holds [247]:

qn(H(P)) ≤ jn(P) + 1.

Deduce from Theorem 14.6 that if P is a class of posets with bounded jump
number then the class H(P) of the Hasse diagrams of the posets in P has
bounded expansion.

14.3. Let G be a graph. Assume that for some integer r it holds ˜∇r(G) ≥
π(G)2r+2 and let H ∈ G ˜� r be such that ‖H‖/|H| = ˜∇r(G) and let G ′ be
the ≤ 2r-subdivision of H in G. Consider a non-repetitive coloring c of G by
π(G) colors.

Fix an orientation �H of H. As every non-repetitive coloring is proper, show
that the arcs of �H can be colored by

∑2r
i=0 π(G)(π(G) − 1)i+1 ≤ π(G)2r+2

colors in such a way that two arcs (u, v) and (x, y) of �H get the same color if
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the color of the vertices of the branches (in G ′) from u to v and from x to y

are the same;
Deduce that (in this edge coloring) �H contains a monochromatic subgraph
�H0 which underlying undirected graph is a cycle;
Prove that �H0 cannot contain a directed path of length 2, and that the under-
lying undirected graph H0 of �H0 both cannot include a path of length 4 and
cannot be a cycle of length 4. (Hint: only here we really use the assumption
that the coloration of G is non-repetitive.)
Deduce that for every graph G and every integer r it holds

˜∇r(G) < π(G)2r+2.

Hence any class of graphs with bounded Thue number π has bounded ex-
pansion. This provides a more direct proof of Theorem 14.12.



Chapter 15
Some Applications

And now for something completely different.

15.1 Finding Matching and Paths

15.1.1 Introduction

A matching of a graph G is a set of pairwise non-intersecting edges. An
induced matching of a graph G is a matching of G which is an induced
subgraph of G, that is a matching with the property that no endpoint of
an edge in the matching is adjacent to an endpoint of another edge in the
matching.

The problem of finding a maximum matching (that is: a matching with
maximum cardinality) is known as the “marriage problem”. Its variant, which
consists in finding a maximum induced matching has been introduced by
Stockmeyer and Vazirani [444] as the “risk-free marriage problem” and it was
studied extensively [128, 165, 173, 223, 441]. As a particular nice result let us
mention [395] which provides an asymptotic solution of an extremal problem
(due to Erdős and Nešetřil) on graphs without induced matchings of size 2.

A vertex v of a graph G is a clone if G has a vertex u �= v with the same
neighborhood as v. In that say we say that v is a clone of u. The size of a
maximum induced matching (resp. of a maximum induced matching) will be
denoted by β(G) (resp. β∗(G))

There are two simple conditions which may prevent the existence of a
large induced matching in a graph:

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__15, © Springer-Verlag Berlin Heidelberg 2012
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� If a graph G contains “many” clones, adding a new clone vertex will in-
crease neither β(G) nor β∗(G); for instance, a star graph has a maximum
(induced) matching of size 1, whatever its order is.

� If a graph is sufficiently dense, it may have no large induced matchings
even if it is rigid (that is: if it has no non-trivial automorphisms);

We shall actually prove that every sufficiently sparse clone-free graph G has
a linear size matching (of size Ω(|G|)) (Theorem 15.1) and consequently an
induced matching of size Ω(|G|) as well (Theorem 15.2). As a consequence,
for every fixed surface S, every graph G with minimum degree at least 3

embedded on S has a linear size induced matching (Theorem 15.1). Also,
we will show that the stronger the assumption on the sparsity and on the
forbidden automorphisms will be, the bigger will be the integer k such that
G will necessarily contain a subset of Ω(|G|) vertices inducing a forest formed
by paths of length k (Theorem 15.4).

It is this second application which justifies our somewhat cumbersome
proof. For matchings, we have a min-max theorem (Tutte [462], Berge [58]).
This can be used for a simpler proof for the existence of linear size matchings
in clone-free graphs with bounded ∇1

2

. However we claim a much more gen-

eral result and thus have to take a more complicated way. Our approach is
based on the analysis of graphs with bounded tree-depth and low tree-depth
decompositions. It is also related to analysis of rigidity and symmetries (see
also Corollary 8.1, Sect. 8.6).

15.1.2 Finding a Big Subgraph with Low Degrees

We start with the following.

Lemma 15.1. Let G be a clone-free graph of order n and let 0 < ε < 1.
Let d0 be the average degree of G (hence d0 ≤ 2∇0(G)), let d1 =

2˜∇1/2(G) and let d = d0(1+ d1/2+ 2d1)/ε.
Then the sum of the orders of the non-trivial (i.e. those having order

at least 2) connected components of the graph G<d is at least (1− ε)n.

Proof. Let X be the subset of the vertices of G having degree at least d.
Then (see (3.3) in Sect. 3.2) |X| ≤ (d0/d)n. Let Y be the set of the vertices
of G<d having at least a neighbor in G<.

Assume for contradiction that |Y| < (1 − ε)n. Let Z = V(G) − X − Y.
Notice that the vertices in Z have all their neighbors in X. Let Z ′ be a
maximal subset of Z such that there exists a mapping φ : Z ′

→

(

X
2

)

with the
following properties:



15.1 Finding Matching and Paths 341

∀z1 �= z2 ∈ Z ′ : φ(z1) �= φ(z2),

∀z ∈ Z ′ : φ(z) ⊆ NG(z),

where NG(z) denotes the set of the neighbors of z in the graph G.
Then, consider the graph H with vertex set

⋃

z∈Z ′ φ(z) and edges {φ(z) :

z ∈ Z ′}. By construction, H is a simple graph and G contains a 1-subdivision
of H. Moreover, the vertex set of H is included in X. Hence, the size of H

is at most (d1/2)|X|. As φ is a bijection from Z ′ to the edges set of H, we
conclude that |Z ′| ≤ (d1/2)|X|.

Let z ∈ Z−Z ′. Then NG(z) induces a clique in H. By definition of d1, we
have ∇0(H) ≤ (d1/2). Hence, according to Lemma 3.1, H includes at most
2d1 |X| cliques. As G is clone-free, no two vertices of Z − Z ′ have the same
neighborhood. Hence |Z− Z ′| ≤ 2d1 |X|.

Altogether, we get:

n = |X|+ |Y|+ |Z− Z ′|+ |Z ′|

< |X|+ (1− ε)n + 2d1 |X|+ (d1/2)|X|

Thus:

εn < (1+ d1/2+ 2d1)(d0/d)n = εn,

which is a contradiction. �	

We can continue in this line and prove a stronger version (for paths on
length 3):

Lemma 15.2. Let G be a graph of order n with no automorphisms ex-
changing exactly two cliques of order at most 2 and let 0 < ε < 1.

Let d0 be the average degree of G, let d2 = 2˜∇1(G)), and let d =

d0(1 + d2/2+ 2d2 + 6 · 4d2)/ε.
Then the sum of the orders of those connected components of G<d

which include a path of length at least 3 is at least (1− ε)n.

Proof. We proceed similarly as for the proof of Lemma 15.1. Let X be the
subset of the vertices of G having degree at least d (|X| ≤ (d0/d)n) and let
Y be the set of the vertices of G<d belonging to a path of length at least 3

of G<d.
Assume for contradiction that |Y| < (1 − ε)n. Let Z = V(G) − X − Y.

Notice that the vertices in Z have all their neighbors in X ∪ Z and that all
the connected components of G[Z] have order at most 2. Let Z be the family
of the connected components of G[Z] and let Z ′ be a maximal subset of Z
such that there exists a mapping φ : Z ′

→

(

X
2

)

with the following properties:
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∀B1 �= B2 ∈ Z ′ : φ(B1) �= φ(B2),

∀B ∈ Z ′ : φ(B) ⊆ NG(B),

where NG(B) denotes the set of the neighbors of the vertices of B in the
graph G (i.e. NG(B) =

⋃

z∈B NG(z) \ B).
Then, consider the graph H with vertex set

⋃

B∈Z ′ φ(B) and edges
{φ(B) : B ∈ Z ′}. By construction, H is a simple graph and G contains a
≤ 2-subdivision of H. Moreover, the vertex set of H is included in X. Hence,
the size of H is at most (d2/2)|X|. As φ is a bijection from Z ′ to the edges
set of H, we conclude that |Z ′| ≤ (d2/2)|X|.

Let B ∈ Z−Z ′. Then NG(B) induces a clique in H. By definition of d2, we
have ∇0(H) ≤ (d2/2). Hence, according to Lemma 3.1, H includes at most
(

d2

t−1

)

|X| cliques of size t for 1 ≤ t ≤ d2 + 1.
As G has no automorphism exchanging exactly two cliques of order at

most 2, at most 3t + 1 connected components in Z − Z ′ may be adjacent to
a same clique of size t: 1 single vertex and 3t K2’s being linked differently to
the t vertices of the clique. Thus

∑

B∈Z−Z ′ |V(B)| ≤ (2d2 + 6 · 4d2)|X|.
Altogether, we get:

n = |X|+ |Y|+
∑

B∈Z−Z ′
|V(B)|+

∑

B∈Z ′
|V(B)|

< |X|+ (1− ε)n + (2d2 + 6 · 4d2)|X| + (d2/2)|X|.

Thus we get:

εn < (1 + d2/2+ 2d2 + 6 · 4d2)(d0/d)n = εn.

This is a contradiction. �	

Now, we are ready for the general case (paths of length l). The proof is
similar but the bounds we get are less explicit:

Lemma 15.3. Let �(x, y) be the function introduced in Theorem 6.5,
which evaluates the maximum order a graph G may have if the vertices
of G are colored by x colors, the tree-depth of G is y and G has no
non-trivial color preserving automorphism.

Let � be a positive integer, let G be a graph of order n and average
degree d0 and let 0 < ε < 1. Let

C = 1+ ˜∇ �
2
(G) +

2˜∇ �
2
(G)

∑

t=0

(

2˜∇ �
2
(G)

t

)

�(2t, �)
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Let d = Cd0/ε. Then, either G has a non-trivial automorphism, or
the sum of the orders of the connected components of the subgraph of
G<d induced by the vertices included (in G<d) in at least one path of
length at least � is at least (1 − ε)n.

Proof. Let X be the subset of the vertices of G having degree at least d

(|X| ≤ (d0/d)n) and let Y be the set of the vertices of G<d which belong to
some path of length � of G<d.

Assume for contradiction that |Y| < (1−ε)n. Let Z = V(G)−X−Y. Notice
that the vertices in Z have all their neighbors in X∪Z and that no connected
components of G[Z] includes a path of length �. Let Z be the family of the
connected components of G[Z] and let Z ′ be a maximal subset of Z such that
there exists a mapping φ : Z ′

→

(

X
2

)

with the following properties:

∀B1 �= B2 ∈ Z ′ : φ(B1) �= φ(B2),

∀B ∈ Z ′ : φ(B) ⊆ NG(B),

where NG(B) denotes the set of the neighbors of the vertices of B in the
graph G (i.e. NG(B) =

⋃

z∈B NG(z) \ B).
Then, consider the graph H with vertex set

⋃

B∈Z ′ φ(B) and edges
{φ(B) : B ∈ Z ′}. By construction, H is a simple graph and G contains a
≤ �-subdivision of H. Moreover, the vertex set of H is included in X. Hence,
the size of H is at most ˜∇ �

2
(G)|X|. As φ is a bijection from Z ′ to the edges

set of H, we conclude that |Z ′| ≤ ˜∇ �
2
(G)|X|.

Let B ∈ Z−Z ′. Then NG(B) induces a clique in H. By definition of ˜∇ �
2
(G),

we have ∇0(H) ≤ ˜∇ �
2
(G). Hence, according to Lemma 3.1, H includes at most

(2˜∇ �
2
(G)

t−1

)

|X| cliques of size t for 1 ≤ t ≤ 2˜∇ �
2
(G) + 1. Let K be a set of t

vertices of X inducing a clique in H and let Q be the disjoint union of all
the graphs in Z − Z ′ having K as their neighbor set. Color the vertices of
Q by 2t colors, according to the subset of K to which they are adjacent.
According to Theorem 6.5, every 2t-colored graph with no P� (hence tree-
depth at most �, according to Lemma 6.1) and order greater than �(2t, �)

has a non-trivial color-preserving automorphism. Hence Q has order at most
�(2t, �). It follows that the sum of the orders of the graphs in Z − Z ′ is at

most
∑2˜∇ �

2
(G)

t=0

(2˜∇ �
2
(G)

t

)

�(2t, �) ≤ 2
2˜∇ �

2
(G)

�(2
2˜∇ �

2
(G)

, �).
Altogether, we get:
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n = |X|+ |Y|+
∑

B∈Z−Z ′
|V(B)|+

∑

B∈Z ′
|V(B)|

< |X|+ (1 − ε)n+ (

2˜∇ �
2
(G)

∑

t=0

(

2˜∇ �
2
(G)

t

)

�(2t, �))|X| + ˜∇ �
2
(G)|X|

Thus:

εn < (1+ ˜∇ �
2
(G) +

2˜∇ �
2
(G)

∑

t=0

(

2˜∇ �
2
(G)

t

)

�(2t, �))(d0/d)n = εn,

which is a contradiction. �	

15.1.3 Finding Matchings

Theorem 15.1. Let G be a clone free-graph of order n. Then G has a
matching of size

β(G) ≥ n

2(d + 1)

where

d = 2∇0(G)

(

1+ ˜∇1
2
(G) + 2

2˜∇ 1
2
(G)

)

.

Proof. Let ε = 1/2. According to Lemma 15.1, G has a subset S of size at
least n/2 such that every vertex in S has degree at most d and is adjacent
to at least one vertex of degree at most d. �	

From this bound we will deduce a linear lower bound on the induced
matching number of G, tanks to the following (probably folkloric) simple
lemma.

Lemma 15.4. Let G be a graph. Then the maximum size β∗(G) of an
induced matching of G and the maximum size β(G) of a matching of G
are related by

β(G)

�4∇0(G)
− 1
≤ β∗(G) ≤ β(G)

In other words this means that β and β∗ are related by a simple function
of degeneracy.
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Proof. Let M be a matching of G of size β(G) and let H be the graph
obtained from G/M by simplifying it (i.e. removing parallel edges). Let A be
a subset of vertices of H and let B be the corresponding subset of vertices of
G: each vertex of A arising from the contraction of an edge in M is replaced
in B by the two endpoints of the edge and each other vertex of A is kept
in B. Then ‖H[A]‖ ≤ ‖G[B]‖−(|B|− |A|) (as one edge is contracted each time
a vertex of A corresponds to two vertices in B). Thus

‖H[A]‖
|A|

≤ ‖G[B]‖− (|B|− |A|)

|A|

=
‖G[B]‖
|B|

+
|B|− |A|

|A|

(‖G[B]‖
|B|

− 1

)

≤ 2∇0(G) − 1

Hence ∇0(H) ≤ 2∇0(G)−1. Moreover, as H is also obviously (�2∇0(H)
+1)-
colorable and as any subset of M corresponding to a monochromatic subset
of vertices of H will form an induced matching of G, we conclude. �	

Theorem 15.2. Let G be a clone free-graph of order n. Then G has an
induced matching of size

β∗(G) ≥ n

2(�4∇0(G)
− 1)(d + 1)

where

d = 2∇0(G)

(

1+ ˜∇1
2
(G) + 2

2˜∇ 1
2
(G)

)

.

Proof. This is a direct consequence of Theorem 15.1 and Lemma 15.4. �	

The induced matching number provides a lower bound for the product
dimension of a graph (see [311]); this dimension is mentioned in Sect. 3.7.
It follows that clone-free graphs with bounded ∇1

2

have a large dimension

(≥ logβ∗(G)).
Denote by ∼ be the equivalence relation defined by x ∼ y if x and y have the

same neighbors (i.e. are clones). Let G/∼ be the graph obtained by keeping
exactly one vertex per equivalence class of ∼; the vertex kept in a class is
identified with the class it belongs to, so that for a vertex x of G belonging
to a class represented by a vertex ŷ of G/∼ we shortly write x ∈ ŷ. We take
time out for another simple lemma which we apply to topological graphs.

Lemma 15.5. Let G be a graph. Then G/∼ has no clones and the sizes
of maximum induced matchings in G and G/∼ are related by
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β∗(G) = β∗(G/∼).

Proof. The fact that ∼ is an equivalence relation is obvious. Moreover, it is
straightforward that G/∼ has no clones: Assume x̂ and ŷ are vertices of G/∼
corresponding to the class of the vertices x and y of G. The neighbors of x̂
(resp. ŷ) are the classes of the neighbors of x (resp. y in G). If x̂ and ŷ have the
same neighbors in G then x and y have the same neighbors in G hence belong
to a same equivalence class of ∼. Thus the inequality β∗(G) ≥ β∗(G/∼) is
obvious as G/∼ is isomorphic to an induced subgraph of G.

For the second inequality, consider any maximum induced matching M

of G. Let F be the set of edges of G/∼ defined by x̂ŷ ∈ F if there exists x ∈ x̂

and y ∈ ŷ such that xy ∈ M. Assume two edges of F are adjacent, namely
x̂ŷ1 and x̂ŷ2. Then there exists x1, x2 ∈ x̂, y1 ∈ ŷ1, y2 ∈ ŷ2 such that x1y1

and x2y2 belong to M. But y1 is also a neighbor of x2 (as it is a neighbor of
x1) hence M is not an induced matching, contradiction. It follows that F is
an induced matching of G/∼ and β∗(G) ≤ β∗(G/∼). �	
Corollary 15.1. Define

d(g) =

⎧

⎨

⎩

3, if g = 0,

5+
√
48g+1
4

, otherwise.

Then every graph G with minimum degree 3 and genus g has a matching
of order

β(G) ≥ n

4(g + 1)(2d(G)22d(G) + 2d(G)2 + 2d(G) + 1)

and an induced matching of order

β∗(G) ≥ n

4(g + 1)�4d(g) + 1�(2d(G)22d(G) + 2d(G)2 + 2d(G) + 1)

= n2−
√
12g(1+o(1))

(where o(1) refers to an error term which only depends on g and goes
to 0 when g tends to infinity).

Proof. Every vertex of G has at most 4g+ 1 clones, as the minimum degree
of G is at least 3 and the genus of K3,s is � s−2

4
�. Hence |G/∼| ≥ |G|/(4g+ 2).

Then every connected graph G with genus g has average degree at most 2d(g):
According to Euler formula, if G has order n and size m then m ≤ 3n−6+6g.
If g = 0 then the average degree of G is obviously at most 6. Otherwise,
assume for contradiction that m > d(g)n. Then m− 3n− 6g+ 6 > (d(g)− 3)

(2d(g) + 1) − 6g + 6 > 0 (as G has a vertex of degree at least 2d(g) hence
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n ≥ 2d(g) + 1) which contradicts Euler formula. As every topological minor
of a graph with genus g has genus at most g we deduce that ˜∇r(G) ≤ d(g)

for every integer r (and in particular ˜∇0(G) = ∇0(G) ≤ d(g)). The result
then follows from Theorem 15.2 and Lemma 15.5. �	

15.1.4 Finding Paths

For the general case of packing length l paths we have to consider higher
order grads, yet in all instances we get a linear number of disjoint l-paths.

Theorem 15.3. There exists a function fpath : N × R
+
→]0; 1]

such that every rigid graph G of order n includes at least

fpath(L, ˜∇L/2(G))|G|

vertex disjoints paths of length L.

Proof. Let α > 0. According to Lemma 15.3 (with ε = L/(L+1)), there exists
φ(L, α) > 0 such that every graph G of order n with ˜∇L/2(G) ≤ α is such that
for d = (1+1/L)φ(K,α), the sum of the orders of the connected components
of the subgraph H of G<d induced by vertices belonging (in G<d) to a path
of length L is at least n/(L + 1). As the maximum degree of H is at most
d − 1, each connected component of Hi contains at least �|Hi|/d

L� vertices
pairwise at distance at least L in Hi. As each of these vertices belong to some
path of length L of H we deduce that H contains at least fpath(L, α)n vertex
disjoint paths of length L, where fpath(L, α) =

LL

(L+1)(L+1)/φ(L, α). �	

Theorem 15.4. There exists a function finduced : N×R
+
→]0; 1]

such that every rigid graph G of order n includes at least

finduced(�, ˜∇�/2(G)) |G|

vertex disjoints induced paths of length �.

Proof. Let d = ˜∇�/2(G) + 1 ≥ ∇0(G) + 1. By a minor variation of the proof
of Theorem 15.3, G includes at least f ′(dd�

, ˜∇�/2(G))|G| vertex disjoint paths
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of length dd�

such that no vertex in one path is adjacent to a vertex of a
different path. According to Lemma 6.4, the graphs induced by the vertex set
of each such path includes the vertex set of an induced path of length �. �	

15.1.5 A Particular Application: Strong Star
Chromatic Number

In this book we contributed to the explosion of coloring variations defined
in recent years. It is a strong sign of the vitality of graph theory that most
of these definitions are based on problems steming from outside of graph
theory. Actually, many of these were motivated by applied problem such as
the Chanel Assignment Problem and problems arising from biology (to
name just two such cases).

Dujmović and Wood introduced in [132] the following concept: a vertex
coloring is a strong star coloring if between every pair of color classes,
all edges (if any) are incident to a single vertex. That is, each bichromatic
subgraph consists of a star and possibly some isolated vertices. The strong
star chromatic number of a graph G, denoted by χsst(G), is the minimum
number of colors in a strong star coloring of G. The following result is proved
in [132]:

Lemma 15.6. Every graph G with m edges and maximum degree Δ ≥ 1

has strong chromatic number χsst(G) ≤ 14
√
Δm.

If the maximum degree is not bounded, the following upper bound is also
proved in [132]:

Lemma 15.7. Every graph G with m edges has strong star chromatic
number χsst(G) ≤ 15m2/3.

An asymptotically stronger result was known for graphs with bounded
maximum degree in another context: a harmonious coloring of a simple
graph G is a proper vertex coloring such that each pair of colors appears to-
gether on at most one edge. The harmonious chromatic number harm(G) is
the least number of colors in such a coloring. Obviously, χsst(G) ≤ harm(G).
The following bounds are proved in [143]:

Theorem 15.5. Let Δ be a fixed integer, and ε > 0. There is a natural
number M such that if G is any graph with m ≥ M edges and maximum
degree at most Δ, then the harmonious chromatic number harm(G) sat-
isfies √

2m ≤ harm(G) ≤ (1 + ε)
√
2m
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The upper bound also applies to χsst(G), but the derived lower bound for

χsst(G) is
√

2m
Δ

. Notice that in the most general case, we cannot expect any
good lower bound for χsst(G) as the strong chromatic number of a star graph
is 2. However, if we forbid clones we are able to prove a Θ(

√
n) lower bound

for graphs with bounded ˜∇1
2
:

Theorem 15.6. Let G be a connected clone-free graph of order
n and let

C(G) = 4∇0(G)

(

1+ ˜∇1
2
(G) + 2

2˜∇ 1
2
(G)

)

+ 2.

Then the strong star chromatic number of G is bounded by

χsst(G) ≥
√

n

C(G)
.

Proof. According to Theorem 15.1, G has a matching of size n
C(G)

. No two
edges of the matching may have its endpoints colored by the same pair of
colors. The result follows. �	

Remark 15.1. The condition that two color classes induce at most a star may
be weakened to the condition that any two color classes induce a 2K2-free
bipartite graph. The 2K2-free graphs got alternative names and definitions:

� Bipartite chain graphs [472]: A graph is a bipartite chain graph if and
only if it is bipartite and for each color class the neighborhoods of the
nodes in that color class can be ordered linearly with respect to inclusion
(subset or equal);

� Difference graphs [242]: A graph is a difference graph if every vertex vi

can be assigned a real number ai and there exists a positive real number
T such that (a) |ai| < T for all i and (b) (vi, vj) ∈ E ⇐⇒ |ai − aj| ≥ T ;

� Non-separable bipartite graph [122]: A bipartite graph is non-separable
if each pair of edges either share an end vertex or are connected by an
edge.

Also, these graphs may be defined by the property that they are bipartite
with at most one non-trivial connected component which is P5-free.
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15.2 Burr–Erdős Conjecture

Ramsey theory is a domain of (very) large numbers, see e.g. [227], [340].
However there are exceptions from this seemingly universal rule. One such
exception concerns game versions of Ramsey problems, see [54], and the
another is detailed analysis of (generalized) Ramsey numbers. Generalized
Ramsey number is defined for an arbitrary graph G as the least integer r(G),
the Ramsey number of G, so that for every graph H of order at least r(G)

either H or its complement contains G as a subgraph (of course, not nec-
essarily induced). When the graph G is sparse then we can expect small
Ramsey numbers (and in many cases exact results). Such results often be-
long more to graph theory than to Ramsey theory. But this is not the case
with the linear Ramsey numbers where the analysis involves techniques from
the very heart of Ramsey theory. A family of graphs F is a Ramsey linear
family if there exists a constant c = c(F) such that r(G) ≤ cn for every
G ∈ F of order n. In 1973, Burr and Erdős formulated the following conjec-
ture.

Conjecture 15.1 (Burr–Erdős conjecture, [87]). For each pos-
itive integer p, there exists a constant cp so that if G is a p-
degenerate graph on n vertices then r(G) < cpn.

Conjecture 15.1 may be restated as:

Conjecture 15.2. (Alternate form of Burr–Erdős conjecture).
There exists a function f : IR → IR such that for any graph G of order n:

r(G)

n
< f(∇0(G))

In 1983 Chvátal et al. [97] proved that the conjecture holds for graphs with
bounded maximum degree (improved in [225], tight bounds for bipartite case
in [226]). This result has been extended to p-arrangeable graphs by Chen and
Schelp [93].

Recall that a graph G is p-arrangeable (concept introduced in [93] if its
vertices can be ordered as v1, v2, . . . , vn in such a way that |NLi

(NRi
(vi))| ≤ q

for each 1 ≤ i ≤ b1, where Li = {v1, v2, . . . , vi}, Ri = {vi+1, vi+2, . . . , vn}, and
NA(B) denotes the neighbors of B which lie in A.
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Thus, according to the definition of generalized coloring numbers (see
Sect. 4.9), for every graph G we have:

G is p-arrangeable ⇐⇒ col2(G) ≤ p + 1. (15.1)

Up to now, the better bounds are given by the following result of Graham
et al. [225] (extending earlier results of Eaton [140]):

Theorem 15.7. For some positive constant c and all integers p ≥ 2 and
all n ≥ p+ 1, if H is a p-arrangeable graph with n vertices then

log2
r(G)

n
≤ cp(log2 p)

2 (15.2)

It is proved in [93] that planar graphs are p-arrangeable for some p. In
[424], Rödl and Thomas prove that graphs included no subdivision of Kq

are p-arrangeable for some p depending on q. The Burr – Erdős conjecture
is further known to hold for subdivided graphs [12] (improved in [302]).
Moreover, some further progress toward the conjecture may also be found in
[286–288]. A general survey of what is known on Ramsey numbers may be
found in [392].

The arrangeability of a graph is polynomially related to the grad of rank
1
2

as follows from (15.1) and the results of Sect. 7.5 on generalized coloring
numbers. Precisely, it follows from Lemma 7.11 and Proposition 4.8 that if G
is p-arrangeable then ˜∇1

2

(G) ≤ (p + 1)2 − 1 and, conversely, it follows from

Theorem 7.11 that every graph G is 8∇1
2

(G)3-arrangeable.

Combining with [225] we obtain:

Theorem 15.8. For the positive constant c of Theorem 15.7, all integers
p ≥ 2, all n ≥ p + 1, and all graphs G of order n:

log2

(

r(G)

n

)

≤ 72c∇1
2

(G)3(log2 ∇1
2

(G) + 3)2)

Also, combining our results with those of [436, 437] we get:

Corollary 15.2. There exists a function g : IR2
→ IR such that

for any graphs G1, G2:

r(G1, G2)

max(|V(G1)|, |V(G2)|)
≤ g(∇0(G1),∇1

2

(G2))

Presently this is as close as we may get to the Conjecture 15.1.
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15.3 The Game Chromatic Number

Let G be a graph and let Γ be a set of colors. Alice and Bob play the following
coloring game on G. Alice and Bob alternately color the vertices of G. At each
turn, the player choose an uncolored vertex x and color it with a color from
Γ which is not used by any of the colored neighbors of x. Alice has the first
move. Alice wins if all the vertices of G are eventually colored. Bob wins if at
some point there is an uncolored vertex such that each of the k colors appears
at least once in its neighborhood, i.e. if the current partial coloring cannot be
extended to a complete coloring of G. The game chromatic number χg(G)

is the least integer k for which Alice has a winning strategy.
In this context, Kierstead and Trotter [273] introduced the concept of ad-

missibility, which is closely related to the one of arrangeability we considered
in the previous section:

Definition 15.1. Let G be a graph, let M ⊆ V(G), and let v ∈ M. A set
A ⊆ V(G) is called an M-blade with center v if either

1. A = {a} and a ∈ M is adjacent to v, or
2. A = {a, b}, a ∈ M− {v}, b ∈ V(G)−M, and b is adjacent to both v and a.

An M-fan with center v is a set of pairwise disjoint M-blades with center v.
Let k be an integer. A graph G is k-admissible if the vertices of G can be
numbered v1, v2, . . . , vn in such a way that for every i = 1, 2, . . . , n, G has
no {v1, v2, . . . , vi}-fan with center vi of size k + 1.

One of the interest of the notion of admissibility is its relation with game
chromatic number, as shown by Kierstead and Trotter [273]:

Theorem 15.9. Let k and t be positive integers. If a k-
admissible graph has chromatic number t, then its game chro-
matic number is at most kt+ 1.

The concepts of arrangeability (introduced in the previous section) and of
admissibility are almost equivalent, as shown in the same paper [273]:

Lemma 15.8. Let k be an integer. Any k-arrangeable graph is 2k-
admissible; any k-admissible graph is (k2 − k + 1)-arrangeable.

This property is central to the proof that graphs with no Kp subdivisions
is (1

2
p2(p2 + 1))-admissible [424]. We give here some new characterization

of admissibility in terms of transitive fraternal augmentations (for details on
transitive fraternal augmentations see Sect. 7.3).
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Lemma 15.9. Let p be an integer, let G be a graph, let �G be an orien-
tation of G and let �H be a 1-transitive fraternal augmentation of G.

Then G is (Δ−(�G) + 2∇0(H))-admissible.

Proof. Let p = Δ−(�G) + 2∇0(H). Let i ∈ {0, 1, . . . , n} be the least integer
such that there exists (distinct) vertices vi+1, vi+2, . . . , vn with the following
property: for all j = i, i+ 1, . . . , n, G has no (V(G) − {vj+1, vj+2, . . . , vn}-fan
with center vj of size p + 1. If i �= 0, let M = V(G) − {vi+1, vi+2, . . . , vn}.
This set is non-empty and such that for every v ∈ M there is an M-fan in G

with center v of size p+ 1.
For v ∈ M, let F(v) be an M-fan with center v with cardinality at least

p+ 1. Associate a type with M-blades B in F(v) as follows:

� Type = 1 if B = {a} is a singleton and (a, v) ∈ E(�G),
� Type = 2 if B = {a} is a singleton and (v, a) ∈ E(�G),
� Type = 3 if B = {a, b}, b �∈ M, (b, v) ∈ E(�G), (b, a) ∈ E(�G),
� Type = 4 if B = {a, b}, b �∈ M, (b, v) ∈ E(�G), (a, b) ∈ E(�G),
� Type = 5 if B = {a, b}, b �∈ M, (v, b) ∈ E(�G), (b, a) ∈ E(�G),
� Type = 6 if B = {a, b}, b �∈ M, (v, b) ∈ E(�G), (a, b) ∈ E(�G).

Then if B has type 1, 2, 4, 5, 6 the vertices a and v are adjacent in H.
Thus

∑

v∈M|{B ∈ F(v), type(v) �= 3}| ≤ ∑

v∈M dH(v) ≤ 2∇0(H)|M|. Now
remark that two distinct M-blades of type 3 with center v use two dif-
ferent arcs entering v. As the maximum indegree of �G is Δ−(G), we get
∑

v∈M|{B ∈ F(v), type(v) = 3}| ≤ ∑

v∈M d−(v) ≤ Δ−(G)|M|. Altogether, as
|F(v)| ≥ p for any v ∈ M:

p+ 1 ≤ 2∇0(H) + Δ−(G) (15.3)

what contradicts the definition of p.
Hence i = 0, and v1, v2, . . . , vn is an enumeration of the vertices of G

showing that G is p-admissible. �	
As we are only interested in a single 1-transitive fraternal augmentation,

it is possible to improve the general bound of Lemma 7.2.

Lemma 15.10. Let �G be an acyclically oriented simple directed graph.
Then there exists an edge coloring Υ using at most 2Δ−(�G) colors

such that any color induce a star forest oriented outward.

Proof. Let v be a sink. ColorG−v by inductionwith colors in {1, . . . , 2Δ−(�G)}.
For each arc (x, v) entering v, at least Δ−(G) colors among {1, . . . , 2Δ−(�G)} are
not present in an arc entering x. As there are at most Δ−(�G) arcs entering v,
one can choose a suitable color for each arc entering v such that all these arcs
get a different color. �	
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Lemma 15.11. Let �G be an acyclically directed graph with maximum
indegree Δ−(�G). Then �G has a 1-fraternal augmentation �H such that
Δ−(�H) ≤ Δ−(G)(1+ 2∇1

2

(G)).

Proof. Let Υ be the edge coloring defined in Lemma 15.10.
For any color α in 1, . . . , Υ(E(�G)), let Gα be the graph whose vertices are

those vertices of G which have at least one outgoing edge colored α, and such
that two vertices x, y are adjacent in �Gα if there exists a path of length at
most two linking x and y which contains an arc colored α going out of x or
y. Notice that Gα ∈ G� 1

2
.

Let (x, z), (y, z) be arcs of �G (x, y, z being distinct vertices) so that
Υ((x, z)) = α. Then x and y are distinct and adjacent in Gα. As Gα

may be oriented with indegree at most ∇0(Gα) ≤ ∇1
2

(G) we get that

�G has a 1-fraternal augmentation �H with indegree bounded by Δ−(�H) ≤
Δ−(G) + |Υ(E(�G))|∇1

2

(G). �	

Theorem 15.10. Every graph G is p-admissible for

p = 4∇0(G)(∇1
2

(G) +∇0(G) + 1).

Proof. This is a direct consequence of Lemma 15.11, Lemma 15.9 and the
fact that G has an acyclic orientation with indegree at most 2∇0(G) (Propo-
sition 3.2). �	

Corollary 15.3. Every graph G with ∇0(G) ≥ 1 has game
chromatic number bounded by:

χg(G) ≤ 4∇0(G)(2∇0(G) + 1)(∇1
2

(G) +∇0(G) + 1) + 1

= O(∇0(G)2∇1
2

(G)).

Notice that Dinsky and Zhu proved [124] that the game chromatic number
of a graph G is bounded by χa(G)(χa(G) + 1) (where χa(G) is the acyclic
chromatic number of G) , which is also bounded by a polynomial in ∇1

2

(G)).

They conjectured that, conversely, the acyclic chromatic number may be
bounded by a function of the game chromatic number of a graph.



15.4 Fiedler Value of Classes with Sublinear Separators 355

15.4 Fiedler Value of Classes with Sublinear Separators

The Laplacian L(G) of a graph G of order n is the n×n matrix with degrees
on the diagonal and −1 for adjacent pairs of vertices (i.e. L(G) = D(G) −

A(G)). This matrix is real and symmetric hence has all of its n eigenvalues
real. As Laplacian matrices are positive semi-definite, all the eigenavalues are
non-negative. The all-one vector is clearly an eigenvector of this matrix, with
associated eigenvalue 0. The second smallest eigenvalue λ2 of L(G) is called
the algebraic connectivity of G [177], or the Fiedler value of G [439, 440]
(see also Sect. 3.6).

Let C be a class of graphs. The Fiedler value of the class is

λ2max(C, n) = max
G∈C

λ2(G).

The Fiedler value of a graph G is related to embeddings of G is Euclidean
space by the following lemma of Spielman and Teng [439, 440].

Lemma 15.12.

λ2(G) = min

∑

ij∈E(G) ‖�vi −�vj‖2
∑

i∈V(G) ‖�vi‖2
,

where the minimum is taken over all possible choices of �v1, . . . , �vn ∈ IRm

such that
∑

i �vi =
�0.

In particular, if φ : V(G) → C and
∑

u∈V(G)φ(u) = 0 we have

λ2(G) ≤
∑

uv∈E(G) |φ(u) − φ(v)|2
∑

u∈V(G) |φ(u)|
2

.

Barrière et al. [52] obtained the following bound for Kh minor free graphs:

λ2max(Kh minor free, n) ≤
⎧

⎨

⎩

h− 2+O( 1√
n
) if 4 ≤ h ≤ 9

γh
√

logh+O( 1√
n
) otherwise

We extend here their results in the context of ω-expansion. Following the
proof of Barrière et al., we state two lemmas allowing to bound λ2(G) by the
density of edges incident to a small subset of vertices of G.

Lemma 15.13. Let n1,1, n1,2, n2,1, n2,2 be positive integers such that

n1,1 ≤ n1,2 ≤ 2n1,1

n2,1 ≤ n2,2 ≤ 2n2,1

n1,1 + n1,2 ≤ n2,1 + n2,2 ≤ 2(n1,1 + n1,2)
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Then there exist z1,1, z1,2, z2,1, z2,2 ∈ S
2 (where S

2 = {z ∈ C : |z| = 1})

such that
n1,1z1,1 + n1,2z1,2 + n2,1z2,1 + n2,2z2,2 = 0

Proof. Let n1 = n1,1 + n1,2, n2 = n2,1 + n2,2 and n = n1 + n2. Define
the real numbers x1 = 2/3 and x2 = −n2

n1
z1, so that n1x1 + n2x2 = 0 and

−2/3 ≤ x2 ≤ −1/3.
For 0 < x < 1 define the function fx : S

2
→ S

2 such that fx(z) is
the intersection of the unit circle and of the line through z and x. Let
g :]0, 1[×S

2
→ R be defined by g(x, z) = fx(z)−x

x−z
. Notice that g is con-

tinuous. As g(x1, 1) = 5 and g(x1,−1) = 1/5 there exists z1,1 such that
g(x1, z1,1) = n1,2/n1,1. Also, as g(x2, 1) = 1/2 and g(x2,−1) = 2 there
exists z2,1 such that g(x2, z2,1) = n2,2/n2,1. Let z1,2 = fx1

(z1,1) and
z2,2 = fx2

(z2,1). Then x1 = n1,1z1,1+n1,2z1,2

n1
and x2 = n2,1z2,1+n2,2z2,2

n2
.

Thus n1,1z1,1 + n1,2z1,2 + n2,1z2,1 + n2,2z2,2 = 0. �	

Lemma 15.14. Let C be a monotone class of graphs and let s(n) denote
the maximum size of a vertex separator of a graph G ∈ C with order at
most n.

Then, for every graph G ∈ C with order n there exists a subset S ⊂
V(G) of cardinality at most s(n) + 2s(2n/3) such that:

λ2(G) ≤ e(S, V − S)

n − |S|
.

Proof. Let S0 be a vertex separator of G of size at most s(n) and let (Z1, Z2)

be a partition of V − S0 such that |Z1| ≤ |Z2| ≤ 2|Z1 | and no edge exists
between Z1 and Z2. Let S1 (resp. S2) be separators of size at most s(2n/3)

of G[Z1] (resp. G[S2]), let (Z1,1, Z1,2) (resp. (Z2,1, Z2,2)) be a partition of Z1

(resp. Z2) such that |Zi,1| ≤ |Zi,2| ≤ 2|Zi,1| and no edge exists between Zi,1

and Zi,2 in G[Zi] −Si. According to Lemma 15.13, there exists four complex
numbers z1,1, z1,2, z2,1 and z2,2 with |zi,j| = 1 and

∑2
i=1

∑2
j=1 |Zi,j| zi,j = 0.

Define φ : V(G) → C as follows

φ(v) =

⎧

⎨

⎩

zi,j if v ∈ Zi,j

0 otherwise

Then we have

λ2(G) ≤
∑

uv∈E(G) |φ(u) − φ(v)|2
∑

u∈V(G) |φ(u)|
2

=
e(S, V − S)

n − |S|
,

where S = S0 ∪ S1 ∪ S2 has cardinality at most s(n) + 2s(2n/3). �	
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Remark 15.2. If G has maximum average degree d then λ2(G) ≤ d(d+ 1)n.
Indeed, G has a proper coloration with d + 1 colors. If S is the union of the
d smallest color classes, then V(G) − S is disconnected hence may be easily
split into four parts having approximately the same size.

We now give a general bound for the size of a bipartite subgraph of a
graph G in terms of the maximum average degree and maximum clique size
of shallow topological minors of G.

Lemma 15.15. Let A,B be disjoint vertices of a graph G, with |A| ≥ |B|

and n = |A|+ |B|. Then

e(A,B) ≤ (ω(G ˜� 1/2) − 1)n + (∇0(G) −ω(G ˜� 1/2) + 1)(˜∇1/2(G) + 1) |B|.

In particular, if G ∈ C and C is a minor closed class with maximum
average degree d = 2∇0(C) and clique number ω = ω(C), we get:

e(A,B) ≤ (ω− 1)n + (d/2+ 1)(d/2 + 1−ω) |B|.

Proof. Let ω = ω(G ˜� 1
2
). Partition A into A1 and A2 such that A1 contains

the vertices with degree at most ω − 1 and A2 contains the vertices with
degree at least ω.

Consider any linear ordering x1, . . . , xp of A2. We construct H ∈ G ˜� 1
2

as
follows. At the beginning, H is the empty graph with vertex set B. For each
vertex xi in A2, if xi has two neighbours u, v in B that are not adjacent in
H we (choose one such pair of vertices and) make them adjacent in H and
we continue with the next vertex of A2. If we cannot continue, this means
that all the neighbours of xi are adjacent in H. Then by construction we
have H ⊕ K1 ∈ G ˜� 1

2
although ω(H ⊕ K1) > ω, a contradiction. Hence we

can continue until A2 is exhausted. Then we obtain H ∈ G ˜� 1
2

such that
‖H‖ = |A2| and |H| = |B|. Hence we have |A2| ≤ ˜∇1/2(G)|B| and

e(A2, B) ≤ ‖G[A2 ∪ B]‖ ≤ ∇0(G)(|A2|+ |B|).

As the maximum degree of vertices in A1 is ω − 1 we have e(A1, B) ≤
(ω− 1)(n − |A2| − |B|). Altogether, we get

e(A,B) = e(A1, B)+e(A2, B) ≤ (ω−1)n+(∇0(G)−ω+1)(˜∇1/2(G)+1)|B|.

�	
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Theorem 15.11. Let C be a monotone class with sub-linear
separators and bounded ˜∇1/2. Let s(n) denote the maximum
size of a vertex separator of graphs G ∈ C of order at most n.
Then

λ2max(C, n) ≤ ω

(

C ˜� 1

2

)

− 1+O

(

s(n)

n

)

.

Proof. According to Lemma 15.14 there exists, for every graph G ∈ C with
order n, a subset S ⊂ V(G) of cardinality at most s(n) + 2s(2n/3) such that
λ2(G) ≤ e(S,V−S)

n−|S|
. According to Lemma 15.15, we have

e(V−S, S) ≤ (ω(G ˜� 1/2)−1)n+(∇0(G)−ω(G ˜�1/2)+1)(˜∇1/2(G)+1) |S|.

As s(n) = o(n), it follows that

λ2max(C, n) ≤ ω

(

C ˜� 1

2

)

− 1+O

(

s(n)

n

)

.

�	

This result is nearly optimal as we shall show now. We take time out for
a lemma.

Lemma 15.16. Let H1, H2 be graphs and let H1⊕H2 denote the complete
join of H1 and H2. Then

λ2(H1 ⊕H2) = min(λ2(H1) + |H2|, λ2(H2) + |H1|).

Proof. Let G = H1 ⊕H2 be the complete join of H1 and H2. Then

L(G) =

(

L(H1) + |H2|I −J

−J L(H2) + |H1|I

)

Hence if x1 is an eigenvector of L(H1) with eigenvalue α1 and if x2 is an
eigenvector of L(H2) with eigenvalue α2, both being orthogonal to the all-
one vectors, we have:

L(G)

(

x1

0

)

=

(

L(H1) + |H2|I −J

−J L(H2) + |H1|I

)(

x1

0

)

= (α1 + |H2|)

(

x1

0

)

and
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L(G)

(

0

x2

)

=

(

L(H1) + |H2|I −J

−J L(H2) + |H1|I

)(

0

x2

)

= (α2 + |H1|)

(

0

x2

)

Moreover, if x is the vector with |H1| first entries equal to |H2| and the
remaining |H2| entries equal to −|H1| we have

L(G)x = nx

With the all-one vector, which is an eigenvector of L(G) with associated
eigenvalue 0, we have determined the full spectrum of G. It follows that the
second smallest eigenvalue of G is

λ2(G) = min(λ2(H1) + |H2|, λ2(H2) + |H1|).

�	

Hence we have, for n > h (as G⊕K1 is Kh+1-minor free if G is Kh-minor
free):

λ2max(Kh+1 minor free, n+ 1) ≥ λ2max(Kh minor free, n) + 1

In particular, we get the following corollary of Theorem 15.11.

Corollary 15.4. For every integer h ≥ 2 we have

h − 2 ≤ λ2max(Kh minor free, n) ≤ h− 2+O

(

1√
n

)

Proof. The upper bound comes from Theorem 15.11. According to Lemma
15.16 we have, for n ≥ h:

λ2max(Kh minor free, n) ≥ λ2(Kh−2 ⊕ (n − h+ 2)K1) = h− 2.

�	

For graphs on surfaces, one can improve the bounds using the following:

Lemma 15.17. Let A,B be disjoint vertices of a graph G, with |A| ≥ |B|

and n = |A| + |B|. Let p ∈ IN be such that K3,p is not a subgraph of G.
Then

e(A,B) ≤ 2n + (∇0(G) − 2)((p − 1)˜∇1/2(G)2 + ˜∇1/2(G) + 1)|B|.
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Proof. Partition A into A1 and A2 such that A1 contains the vertices with
degree at most 2 and A2 contains the vertices with degree at least 3.

Consider any linear ordering x1, . . . , xp of A2. We construct a partition
Z0, Z1, . . . , Zp−1 of A2, p− 1 sets T1, . . . , Tp−1 of triples of vertices in B and
a graph H ∈ G ˜� 1

2
as follows. At the beginning, H is the empty graph with

vertex set B. For each vertex xi in A2, if xi has two neighbours u, v in B that
are not adjacent in H we (choose one such pair of vertices and) make them
adjacent in H, put xi in Z0 and continue with the next vertex of A2. If xi
has three neighbours u, v,w such that {u, v,w} is not in Z1, we put {u, v,w}

in Zi and continue with the next vertex in A2. Otherwise, we try to find a
triples of neighbours of xi not in Z2, Z3, . . . , Zp−1. With this construction,
all the vertices of A2 are exhausted for otherwise we would exhibit a K3,p

subgraph of G.
Then we obtain H ∈ G ˜� 1

2
such that ‖H‖ = |Z0| and |H| = |B|. Hence

we have |Z0| ≤ ˜∇1/2(G)|B| and the number of triangles in H is at most
2∇0(H)2 |H| ≤ 2˜∇1/2(G)2 |B|. Each of the sets Z1, . . . , Zp−1 contains only
triples corresponding to triangles of H. Hence for 1 ≤ i ≤ p − 1 we have
|Zi| ≤ 2˜∇1/2(G)2 |B|. Altogether, we get

|A2| ≤ ˜∇1/2(G)(1 + (p− 1)˜∇1/2(G))|B|.

Moreover

e(A2, B) ≤ ‖G[A2 ∪ B]‖ ≤ ∇0(G)(|A2|+ |B|).

As the maximum degree of vertices in A1 is 2 we have e(A1, B) ≤ 2(n −

|A2|− |B|). As e(A,B) = e(A1, B) + e(A2, B), we get

e(A,B) ≤ 2n + (∇0(G) − 2)((p − 1)˜∇1/2(G)2 + ˜∇1/2(G) + 1)|B|.

�	
We deduce the following extension of the inequalities obtained by Barrière
et al. [52] for planar graphs.

Corollary 15.5. Let g ∈ IN. Then

2+Ω

(

1

n2

)

≤ λ2max(genus g, n) ≤ 2+O

(

1√
n

)

Proof. According to Lemma 15.14 there exists, for every graph G of
genus g with order n, a subset S ⊂ V(G) of cardinality at most s(n) + 2s
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(2n/3) = O(
√
n) such that λ2(G) ≤ e(S,V−S)

n−|S|
. As G has genus g, it does not

contain K3,4g+3 as a subgraph [396]. Hence, according to Lemma 15.17, we
have e(V − S, S) ≤ 2n +O(

√
n). It follows that

λ2max(genus g, n) ≤ 2+O

(

1√
n

)

.

For the lower bound, consider the planar graph K2 ⊕ Pn−2, for which
λ2 = 4− 2 cos

(

π
n−1

)

= 2+Θ
(

1
n2 ). �	

Remark 15.3. The same kind of argument could be applied to prove that
graphs that do not contain Kp,q for some p ≤ q but have bounded ˜∇1/2 and
sub-linear separators actually have λ2 bounded by p− 1+ o(1) (as n → ∞).

This chapter contains applications of our theory from the first part of this
book, particularly exercising its generality and effectivity. Thus no exercises
are given.



Chapter 16
Property Testing, Hyperfiniteness
and Separators

More finite than finite,
but asymptotically. . .

16.1 Property Testing

Since the introduction by Alhazen and Avicenna of the experimental method
and of the combination of observations, experiments and rational arguments
in the early eleventh century, the scientific method gained in significance and
became, after the works of Bacon, Descartes, Boyle and Newton, the standard
methodology to come close to the Truth.

The fundamental idea of the experimental approach is that a limited num-
ber of experiments should be sufficient to determine whether some property
is “close to be true” or not with a “good likelihood”. These aspects took a
particular importance with statistical likelihood-ratio tests (like χ2-test), for
testing whether there is evidence of the need for a move from a simple model
to a more complicated one. In the nineteenth century, Pierce introduced a
core principle of modern statistical theory, the randomization.

In Computer Science, such an approach naturally leads to the notion of
property testing. A property testing algorithm for a decision problem is
an algorithm whose query complexity to its input is much smaller than the
instance size of the problem. Typically property testing algorithms are used to
decide if some mathematical object (such as a graph) has a “global” property,
or is “far” from having this property, using only a small number of “local”
queries to the object. This is indeed a privileged tool to study large networks.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__16, © Springer-Verlag Berlin Heidelberg 2012
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However, different models are usually considered when dealing with dense
and sparse structures.

Property testing has been introduced (surprisingly only recently) by Blum
et al. [66] and Rubinfeld and Sudan [427] (in relation to program testing),
and by Arora et al. [35] and Arora and Safra [36] (in relation to probabilis-
tically checkable proofs). Testing graph properties was first investigated by
Goldreich et al. [221]. Also, property testing was studied in the context of
computational geometry by Czumaj et al. [107] and in the context of language
theory by Alon et al. [20].

From a “mathematical” point of view, the main ingredients of property
testing are:

� A random sampling of a large structure,
� A suitable notion of distance between objects.

Let P be a class of graphs (called graph property in this context). A graph
G is said to have property P if G ∈ P. The graph G is said to be ε-far from
satisfying P if no graph at distance at most ε from G satisfies P. A testing
algorithm (or tester ) for graph property P and accuracy ε is an algorithm
that distinguishes with probability at least 2/3 between graphs satisfying P

from graphs that are ε-far from satisfying it. More precisely, the property
testing algorithm

� Should acceptwith probability at least 2/3 every input graph that belongs
to P,

� Should reject with probability at least 2/3 every input graph that has
distance more than ε from any graph in P, i.e. if its ε-far from satisfying P.

Here, the probabilities are taken over the coin tosses of the tester.
Of course, from the “computational” point of view, the notion of property

testing is a bit trickier: We first have to define an encoding of the objects,
and then define the distance of two objects as the ratio of the edit distance
between the encodings by the “length” of the encoding. Also, one has to
precise which “local” queries are allowed to the tester. But these technicalities
are not considered here.

A graph property P is testable if for any ε > 0, there is a constant time
randomized algorithm that can distinguish with high probability between
graphs satisfying P from those that are ε-far from satisfying it.

One should notice that the introduction of the parameter ε will make some
properties impossible to distinguish. Precisely, two properties P and Q are
indistinguishable if for every ε > 0 there exists N = N(ε) such that:
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� For every graph G ∈ P with order at least N there exists H ∈ Q with the
same order such that dist(G,H) < ε,

� For every graph H ∈ Q with order at least N there exists G ∈ P with the
same order such that dist(G,H) < ε.

As proved in [15] (in the context of dense graphs, but easily extended to
the general case), if two properties are indistinguishable then either they are
both testable or none of them is testable.

16.1.1 The Dense Model

For comparison, we briefly mention the dense case. In the context of dense
graphs, the standard encoding is given by the adjacency matrix of the graph.
The local queries correspond to checking the adjacency of two sample vertices.
The encoding of a graph of order n is then of length

(
n
2

)
, and two graphs G

and G ′ of order n are ε-far if one has to change at least ε
(
n
2

)
adjacencies in

G to get a graph isomorphic to G ′.
Despite the apparent symmetry of the definition, it should be noticed that

the fact that a property P is testable is not related to the fact that ¬P is
testable. For instance, Alon et al. [15] proved that any first-order property of
the form “∃∀” is testable while there exist some first-order properties of the
form “∀∃” which are not testable.

The key observation here is that any first-order properties of the form

∃x1 . . . ∃xs∀y1 . . . ∀yt A(x1, . . . , xs, y1, . . . , yt)

(where A is a first-order quantifier-free formula) is indistinguishable from
properties of the form

∃γ : V(G)→ [c] ∀(F, γF) ∈ F ∀A ⊆ V(G) (G[A], γ|A) �� (F, γF)

Notice that, as a special case, this includes the properties defined by homo-
morphism F→ G, F � G and G→ F (for fixed F).

The study of property testing in the context of dense graphs is usually
based on Szemerédi’s regularity lemma [451]. Using this structural lemma,
Alon and Shapira proved that every monotone property is testable [27] and
then extended this result to hereditary properties [26, 28]. The generalization
of Szemerédi’s regularity lemma and of the removal lemma to hypergraphs
[422, 423] allowed Rödl and Schacht and Avart to prove that every monotone
3-graph property is testable [44]. Rodl and Schacht then proved that every



366 16 Property Testing, Hyperfiniteness and Separators

hereditary hypergraph property is testable [421]. The testability of heredi-
tary properties has been further extended to partite hypergraph properties
by Ishigami [265] and to multiple directed polychromatic graphs and hyper-
graphs by Austin and Tao [43]. So (thanks to this spectacular activity in one
of the star area of contemporary combinatorics) the dense case seems to be
well understood!

16.1.2 The Bounded Degree Model

The bounded degree model for graph property testing has been introduced
by Goldreich and Ron [222]. In this model, we fix a degree bound d and
represent graphs using adjacency lists.

Let P be a graph property. A graph G with maximum degree at most
d is said to be ε-far for satisfying P if one needs to modify at least εdn

adjacencies to make it satisfy P.
In such a model, the tester is given the order of the graph as input and

is provided with access to the adjacency tables, and the query complexity
qT(n) of the tester T is defined as the maximal number of access to the
adjacency tables that the tester can execute on any graph G with n vertices.

In [57], Benjamini, Schramm and Shapira showed that every minor-closed
graph property can be tested with a constant number of queries in the
bounded degree model (see also [107]). For instance, planarity is testable
in the bounded degree model.

Actually, they prove a much stronger theorem. To formulate this we first
introduce the concept of hyperfiniteness.

A class C of (finite) graphs is hyperfinite if for every positive real ε > 0

there exists a positive integer K(ε) such that every graph G ∈ C has a subset
of at most ε |G| edges whose deletion leaves no connected component of order
greater than K(ε). Although this notion appeared implicitly in the literature
(i.e., [305]), Elek [148–150] was the first to give it a name and propose its
systematic study. This notion may be parameterized as follows: C is (ε, k)-
hyperfinite if every graph G ∈ C has a subset F of at most ε|G| edges such
that no connected component of G− F has order greater than k.

Example 16.1. Assume classes A and B are respectively (ε1, k1)-hyperfinite
and (ε2, k2)-hyperfinite. Then C = {G×H : G ∈ A, H ∈ B} is (ε1+ε2, k1k2)-
hyperfinite.

Proof. Let G ∈ A and H ∈ B. Then there exist a subset F1 of at most ε1|G|

edges of G such that no connected component of G − F1 has order greater
than k1, and a subset F2 of at most ε2|H| edges of H such that no connected
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component of H − F2 has order greater than k2. Let F be the subset of the
edges {(x, y), (x ′, y ′)} of G × H such that {x, x ′} ∈ F1 or {y, y ′} ∈ F2. Then
|F| ≤ |F1| |H|+|F2| |G| hence |F| ≤ (ε1+ε2)|G×H|. It is easily checked that if two
vertices (a, b) and (a ′, b ′) of G×H belong to the same connected component
of G×H−F then a and a ′ belong to the same connected component of G−F1

and b and b ′ belong to the same connected component of H − F2. Thus the
connected components of G×H − F have order at most k1k2. 	


If a class C has bounded degree d, then C is hyperfinite if, and only if,
for every positive real ε > 0, there exists a finite class Fε (of finite graphs)
such that every graph in C is ε-close to a disjoint union of some graphs
belonging to Fε. Loosely speaking, while graphs in C are not finite, they
are not far from being so. An important example of hyperfinite classes are
bounded degree proper minor closed classes of graphs (as a combination of a
theorem of Lipton and Tarjan [305] with a result of Alon et al. [24], regarding
separators in minor-free graphs). In this setting, Benjamini et al. [57] proved
the following:

Theorem 16.1. Every monotone hyperfinite graph property is
testable.

Proof (Rough sketch of the proof). Fix an integer d and consider graphs
with maximum degree at most d. For graphs G,G ′ (with maximum degree
at most d) and for integer r define the pseudometric

ρr(G,G ′) =
∑

H

∣
∣∣
∣
|{v, BG(v, r) ∼= H}|

|G|
−

|{v ′, BG ′(v ′, r) ∼= H}|

|G ′|

∣
∣∣
∣ .

The first main step is to prove that this pseudometric allows to distinguish
hyperfinite properties from those which are not hyperfinite. More formally,
∀k and ε > 0. Define

� A: set of (ε, k)-hyperfinite graphs G with maximum degree at most d;
� B: set of non (4ε log(4d/ε), k)-hyperfinite graphs with maximum degree

at most d.

Then there exists R = R(d, k, ε) such that ρR(A,B) > 0.
The second main step of the proof is to show that if P and ε-far(P) are

distinguishable for every ε > 0 then P is testable, where two graph properties
P,Q are distinguishable if there is an integer r such that

inf
G∈P,G ′∈Q

ρr(G,G ′) > 0.
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Using a detailed analysis of bounded expansion classes with an sub-
exponential growth we can extend the range of applications of this result.
Towards this end we define in the next section the notion of weakly hyperfi-
nite classes.

16.2 Weakly Hyperfinite Classes

A class C of graphs is weakly hyperfinite if for any ε > 0 there exists K(ε)

such that every G ∈ C has a subset of at most ε|G| vertices whose deletion
leaves no connected component of order greater than K.

Although it is obvious that in order to be hyperfinite a monotone class of
graphs needs to bound the maximum degrees of its elements. However, weakly
hyperfinite classes may contain graphs with unbounded maximum degrees.
Moreover, it is clear that any hyperfinite class is also weakly hyperfinite and
that these two notions coincide for classes of graphs with bounded maximum
degrees.

The relation between the two notions is made precise by the following easy
result:

Theorem 16.2. For a positive integer D, denote by ΔD the class of the
graphs having maximum degree at most D. Let C be a monotone class
of graphs with bounded average degree.

The class C is weakly hyperfinite if and only if for every integer D the
class C ∩ ΔD is hyperfinite.

Proof. It is straightforward that if C is weakly hyperfinite then for every in-
teger D the class C ∩ΔD is hyperfinite (the deletion of a vertex corresponds
to the deletion of at most D edges). Conversely, assume that for each integer
D the class C∩ΔD is hyperfinite and let ε > 0 be a positive integer. Let C be
the supremum of the average degrees of the graphs in C and let D = 2C/ε.
As C∩ΔD is hyperfinite there exists an integer K such that every H ∈ C∩ΔD

has a subset of at most (ε/2)|H| vertices whose deletion leaves no connected
component of order greater than K. Consider a graph G ∈ C. As the average
degree of graphs in C is bounded by C we get:

C ≥
∑

i≥1 i |{v ∈ G : d(v) = i}|

|G|
=

∑

i≥1|{v ∈ G : d(v) ≥ i}|

|G|

≥ D
|{v ∈ G : d(v) ≥ D}|

|G|
.
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Hence |{v ∈ G : d(v) ≥ D}| ≤ (ε/2)|G|. Let G<D be the subgraph of G induced
by the vertices of degree smaller than D of G. As C is monotone, G<D ∈ C∩
ΔD hence there exists a subset X of at most (ε/2)|G<D| ≤ (ε/2)|G| vertices of
G≤D whose deletion leaves no connected component of order greater than K.
It follows that the set S = {v ∈ V(G) : d(v) ≥ D} ∪ X has cardinality at most
ε|G| and that its deletion leaves no connected component of order greater
than K. 	


16.3 Vertex Separators

A key advantage of the notion of weak hyperfinite class is its connection with
the existence of sublinear vertex separators. Let G be a graph of order n.
Recall that an α-vertex separator of G is a subset S of vertices such that
every connected component of G−S contains at most αn vertices (we assume,
of course, 0 < α < 1). In Sect. 6.4, we introduced, for each graph G of order
n, the function sG : {1, . . . , n}→ IN by

sG(i) = max
|A|≤i,

A⊆V(G)

min{|S| : S is a 1
2
-vertex separator of G[A]}.

We established there some connections between sG, the tree-width and the
tree-depth of G. Here, we are interested in the relative sizes of vertex separa-
tors for graphs in a class C. This may be studied using the function σ : IN→ IN
defined by:

σ(n) = sup
G∈C,|G|≤n

min{|S| : S is a 1
2
-vertex separator of G}.

Hence, if C is hereditary we have

σ(n) = sup
G∈C

sG(n).

Instead of σ, it will be convenient to consider a real valued concave sub-
linear approximation of σ. This will be achieved by the following standard
construction from convex analysis (see e.g. [85]): The convex conjugate (or
Legendre–Fenchel transform) of a lower semi-continuous function φ : X →

IR∪ {∞} is the function φ� : X�
→ IR∪ {∞} (where X is a real normed vector

space and X∗ is its dual space) defined by

φ�(x�) = sup{〈x�, x〉− φ(x) : x ∈ X}.



370 16 Property Testing, Hyperfiniteness and Separators

The convex biconjugate φ�� of φ (i.e. the convex conjugate of the convex
conjugate of φ) is also the closed convex hull of φ, i.e. the largest lower
semi-continuous convex function smaller than φ. Hence if φ is convex and
lower semi-continuous then φ�� = φ.

For a non-decreasing function f : IN → IR+ we define
�

f(x) = −g��(−x),
where

g(x) = f(�x�) + (x− �x�)(f(�x�) − f(�x�)).
The function

�

f is then the smallest upper continuous concave function greater
or equal to f. It is non-decreasing if f is non-decreasing. Hence, according to
Lemma 6.6, we have for a hereditary class C:

σ(n) = sup
G∈C

sG(n) ≤ sup
G∈C,|G|≤n

td(G)

≤ sup
G∈C

log2 n
∑

i=0

sG
( n
2i

) ≤
log2 n
∑

i=0

σ
( n
2i

) ≤
log2 n
∑

i=0

�
σ
( n
2i

)

≤ 2
�
σ(n).

Moreover, as σ and �
σ are bounded by the same linear functions, �

σ is
sublinear if and only if σ is sublinear. This is the basis of the following:

Theorem 16.3. Let C be a monotone class of graphs. The fol-
lowing properties are equivalent:

1. The graphs in C have sublinear vertex separators:

lim sup
G∈C

min{|S| : S is a 1
2
-vertex separator of G}

|G|
= 0;

2. The graphs in C have sublinear sG:
limn→∞ supG∈C

sG(n)
n

= 0;

3. The function σ defined by C is sublinear:
lim supn→∞

σ(n)
n

= 0;

4. The graphs in C have sublinear tree-width:
lim supG∈C

tw(G)
|G|

= 0;

5. The graphs in C have sublinear tree-depth:
lim supG∈C

td(G)
|G|

= 0.

Proof. Items (1) and (2) are clearly equivalent thanks to the monotony of C.
Items (1), (3), and (5) are equivalent as

σ(n) = sup
G∈C

sG(n) ≤ sup
G∈C,|G|≤n

td(G) ≤ 2
�
σ(n)
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and as �
σ is sublinear if and only if σ is sublinear. Item (4) implies item (1)

as every graph G has a 1
2
-vertex separator of size tw(G)+ 1. Item (5) implies

item (4) as td(G) ≥ tw(G) for every graph G. 	

Let C be a monotone class of graphs, such that each G ∈ C has a 1

2
-vertex

separator of size at most σ(|G|) = o(|G|). We shall state a consequence of
the existence of sublinear vertex-separators. Our result will follow from an
extension of an optimization result of Lipton and Tarjan [304], which is stated
as Theorem 16.4 and which is based on the property of �

σ expressed by the
following lemma.

Lemma 16.1. Let G ∈ C have order n and let μ : V(G) → [0, 1] be a
probability measure. Then V(G) can be split into parts A,B,C such that
|C| ≤ �

σ(2n), max(|A|, |B|) ≤ 2n/3 and max(μ(A), μ(B)) ≤ 2/3μ(G) and no
vertex in A has a neighbor in B.

Proof. Find a 1
2
-vertex separator C0 and let A0, B0 be a partition of

V(G) − C0 including each at most n/2 vertices. If max(μ(A0), μ(B0) ≤
2/3μ(G) let A = A0, B = B0 and C = C0. Otherwise, we recurse on the
part having the largest measure until the biggest part. The total number of
vertices which will be in the separator will be �

σ(n) +
�
σ(n/2) + · · · ≤ �

σ(2n)

(by concavity). 	

Theorem 16.4. Let G ∈ C have order n, let μ : V(G)→ [0, 1] be a proba-
bility measure. and let 0 < ε < 1 be a positive real.

Then there exists a set C of cardinality at most 3�
σ(2εn/3)/ε such that

no connected component of G− C has a measure greater than ε.

Proof. We apply the following algorithm to G:

� Initialization: Let C = ∅.
� General Step: Find some connected component K in G−C with μ(K) > ε.

Apply Lemma 16.1 to K, producing a partition Al, Bl, Cl of its vertices.
Let C ← C ∪ C1. If one of A1 and Bl (say Al) has measure exceeding
two-thirds the measure of K, apply Lemma 16.1 to G[Al], producing a
partition A2, B2, C2 of Al . Let C← C ∪ C2.

� We repeat the general step until G − C has no component with measure
exceeding ε.

The effect of one execution of the general step is to divide the component K
into smaller components, each with no more than two-thirds the measure of K
and each with no more than two-thirds as many vertices as K. We consider all
components which arise during the course of the algorithm. We assign a level
to each component as follows: If the component exists when the algorithm
halts, the component has level zero. Otherwise the level of the component
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is one greater than the maximum level of the components formed when it
is split by the general step. With this definition, any two components on
the same level are vertex-disjoint. Each level one component has cost greater
than ε, since it is eventually split by the general step. It follows that, for
i > 1, each level i component has measure at least (3/2)i−1ε and contains at
least (3/2)i vertices. Since the total measure of G is at most one, the total
number of components of level i is at most (2/3)i−1/ε. Since a component
of level i contains at least (3/2)i vertices, the maximum level k must satisfy
(3/2)k < n, or k < log3/2 n. The total size of the set C produced by the
algorithm is then bounded by:

|C| ≤
∑

{
�
σ(2|K|) : K is a component split by the general step}

≤
�log3/2 n	
∑

i=1

max

⎧

⎨

⎩

�(2/3)i−1/ε	
∑

j=1

�
σ(2nj) :

�(2/3)i−1/ε	
∑

j=1

nj ≤ n and nj ≥ 0

⎫

⎬

⎭

≤
�log3/2 n	
∑

i=1

(2/3)i−1

ε
f

(
2nε

(2/3)i−1

)

≤ 3

ε
f

(
2εn

3

)

	


Theorem 16.5. Every monotone class C of graphs with sublinear vertex
separators is weakly hyperfinite.

Explicitly, for every positive real ε > 0 there exists an integer K

such that every graph G ∈ C has a subset of vertices S of cardinality
at most ε|G| whose deletion leaves no connected component of order
greater than K.

Proof. For G ∈ C, let μ : V(G) → [0, 1] be defined by μ(v) = 1/|G| for ev-
ery v ∈ V(G). As limx→∞

�
σ(x)/x = 0 there exists an integer K such that

�
σ(2K/3)/(2K/3) < ε/2. As any graph G has a 1

2
-vertex separator of cardinal-

ity σ(n) ≤ �
σ(n), we deduce from Theorem 16.4 that V(G) has a subset S of

cardinality at most (3n/K)�σ(2K/3) ≤ εn such that no connected component
of G − S has a measure greater than K/n, that is such that no connected
component of G− S has an order greater than K. 	


As a direct consequence of Theorems 16.2 and 16.5 we get
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Corollary 16.1. Let C be a monotone class of graphs with sub-
linear vertex-separators and bounded average degree and let D
be a positive integer.

Then the subclass of C including those graphs in C which
have maximum degree at most D is hyperfinite.

16.4 Sub-exponential ω-Expansion

Another celebrated theorem of Lipton and Tarjan [304] states that any planar
graph has a separator of size O(

√
n). Alon et al. [24] showed that graphs

excluding Kh as a minor have a separator of size at most O(h3/2
√
n). Gilbert

et al. [218] further proved that graphs with genus g have a separator of size
O(

√
gn) (this result is optimal). Eventually, Kawarabayashi and Reed [271]

proved that excluding Kh as a minor ensures the existence of a separator
of size at most O(h

√
n). This is again best possible as 3-regular expander

graphs with n vertices have no Kt-minor for t = cn1/2 and no separator of
size dn (for appropriately chosen positive constants c, d). Plotkin et al. [386]
introduced the concept of limited-depth minor exclusion and have shown
that exclusion of small limited-depth minors implies the existence of a small
separator: they prove that any graph excluding Kh as a depth l minor has a
separator of size O(lh2 logn+n/l) hence proving that excluding a Kh minor
ensures the existence of a separator of size O(h

√
n logn). More precisely,

Plotkin et al. [386] proved the following:

Theorem 16.6. Given a graph with m edges and n nodes, and
integers l and h, there is an O(mn/l) time algorithm that
either produces a Kh-minor of depth at most l logn or finds a
separator of size at most O(n/l+ 4lh2 logn).

We sketch the proof of Theorem 16.6. Following [386], we begin with the
following lemma. We use N(S) to denote the set of vertices that are adjacent
to the vertices in S. Roughly speaking, the lemma states that either a shallow
tree containing at least one representative from each of several given subsets
can be found, or that there exists a subset R of vertices that can be separated
from the rest by removing a relatively small (with respect to |R|) number of
vertices.
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Lemma 16.2. Let G be a graph with n vertices, let A1, . . . , Ak be k sub-
sets of the vertex set V(G) and let l ≥ 1 be an integer. Then either

1. there is a rooted tree T in G such that the depth of T is at most
4l logn and such that V(T) ∩Ai �= ∅ for i = 1, . . . , k,

2. or there exists a S ⊆ V(G) where

a. |N(S) ∩ V − S| ≤ min(|S|, |V − S|)/l, and
b. |N(V − S) ∩ S| < min(|S|, |V − S|)/l.

Proof (Sketch of the proof).
Initialize subset R to be some vertex v ∈ V . Each step we will augment

R by including vertices that are within distance 2 of the vertices in R. We
repeat this augmentation step as long as it either causes |R| to grow by a
factor of (1+ 1/l), or causes |V − R| to shrink by a factor (1+ 1/l).

Consider the set R after the execution of the last step. If R contains at
least one vertex from each of the sets Ai, then we output a tree consisting of
shortest paths from these to v. Otherwise, we output R ∩N(R).

It is easy to see that after 2l logn iterations, either S would contain more
than n vertices, or V−S would be empty, and hence the augmentation process
has to stop after at most 2l logn iterations. Thus, the length of a path from
v to each of the representative vertices of the sets {Ai} is bounded by 4l logn
as required by condition 1.

The termination condition implies that if a tree is not produced, then the
size of the sets N(R) and N(N(R)) is bounded by min(|R|, |V − R|)/l, which
implies conditions 2a and 2b. 	

Proof (Theorem 16.6). We are given a graph G, a weight function w on its
vertices and edges, and integers l, h. The algorithm maintains a three-way
partition (Vr,M, V−Vr−M). We will prove by induction that this partition
conforms to the following conditions:

1. The set M can be partitioned into k < h subsets A1,A2, . . . ,Ak, where
the size of each subset is bounded by 4lh logn. The radius of each one of
the subsets is bounded by 4l logn. For every two of these subsets there
is an edge that connects a vertex in one to a vertex in the other; In other
words, M has Kk as a minor at depth 4l logn.

2. |N(Vr)∩ (V −Vr−M)| ≤ |Vr|/l, i.e. Vr can be separated from the rest of
the graph by removing at most |Vr|/l vertices.

3. w(Gr) ≤ 2w(G)/3, where Gr is the graph induced by Vr in G.

The algorithm proceeds in phases, where at each phase it either augments M
so that it contains a larger minor, or adds vertices from M and/or vertices
from V−Vr−M to Vr. The algorithm terminates when the graph induced by
V−Vr−M contains less than 2/3-fraction of the total weight. The separator
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returned by the algorithm consists of M ∪ (N(Vr) − Vr). Observe that if the
above invariants are satisfied, the size of the returned separator is bounded
by |M|+ |Vr|/l ≤ O(lh2 logn + n/l), as required by Theorem 16.6.

Clearly, the invariants are satisfied initially. Assume that at the beginning
of some phase, M contains a Kk minor whose vertices come from the contrac-
tion of the subgraphs induced by A1, . . . ,Ak (which we further call supern-
odes. For all i, define Ai to be the neighbors of Ai that lie in V−Vr−M, i.e.,
Ai = N(Ai)−Vr−M. If some Ai is empty then we remove the corresponding
supernode from M and add it to Vr. Observe that this operation maintains
the invariants.

If all of Ai’s are nonempty, we apply Lemma 16.2 on the graph induced
by V − Vr − M in G to produce either the minimal tree T that contains a
node in each Ai or a subset of nodes S.

Case 1. Tree T produced: By Lemma 16.2, the depth of the tree is limited by
4l logn. Notice that a minimal tree contains at most 4kl logn vertices since
a minimal tree consists of at most k paths of length l logn. By construction,
every set Ai has a vertex adjacent to some vertex in the tree. Hence, if we
define Ak+1 as the vertices of the tree, the fact that Invariant 1 was satisfied
at the start of the phase implies that it will be satisfied in the end of the
phase. The only possible problem can occur if k + 1 = h. In this case the
algorithm terminates and outputs the sets A1, . . . ,Ah as a proof hat G has
a small-depth Kh minor.

The set Vr is not changed and hence Invariant 3 is maintained.
Case 2. Set S returned: The algorithm adds the set S or the set V−Vr−M−S

to Vr, depending on which set contains the least weight. Let S ′ denote the
set that was added to Vr. Part 2 of Lemma 16.2 implies that at most |S ′|/l
vertices are added to N(Vr)∩V−Vr−M. Since at least |S’| vertices are added
to Vr, Invariant 2 is maintained. Invariant 3 is maintained since, at the end of
the phase, the weight of Vr is bounded by w(Vr)+ (w(V) −w(Vr))/2, which
is at most 2w(V)/3 as long as w(Vr) was previously less than w(V)/3. (If
it was not, the algorithm would have terminated in the previous iteration.)
Invariant 1 is trivially maintained since the set M remains unchanged in this
case.

	

The ω-expansion of a class C is the mapping

i �→ sup
G∈C� i

ω(G),

where ω(G) stands for the clique number of G, i.e. the order of the largest
complete subgraph of G. Notice that a class has bounded ω-expansion if and
only if it is nowhere dense.
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A class C has sub-exponential ω-expansion if

lim sup
i→∞

sup
G∈C� i

logω(G)

i
= 0.

The following results extend the result of [355]:

Lemma 16.3. There exists a constant C such that any graph G of order
n has a separator of size at most Cn log n

z
whenever z is a multiple of

logn such that
2z(ω(G� z) + 1) ≤

√
n logn. (16.1)

Proof. Let l = z/ logn and let h = �ω(G� z) + 1�. As l is an inte-
ger and ω(G� z) ≤ f(z) < h, G has no Kh minor of depth at most
z = l logn. According to Theorem 16.6, G has a separator of size at most
(C/2)(n/l + 4lh2 logn) for some fixed constant C, i.e. a separator of size at
most (C/2)(n log n

z
+ 4z(ω(G� z) + 1)2) ≤ Cn log n

z
. 	


We shall also need a construction similar to the one introduced in Sect. 16.3:

Lemma 16.4. Let f : IN → IR+ be a non-decreasing function such that
f(n) = o(n). Then there exists a continuous concave function f̂ : IR+

→

IR+ such that f̂(n) ≥ f(n) holds for every n ∈ IN and f̂(x) = o(x).

Proof. If f is bounded, put f̂(x) = supn f(n).
Otherwise, let a0 = 0. We define recursively real numbers a1 ≤ a2 ≤ · · · ≤

ai ≤ . . . and the non-negative real numbers b1, b2, . . . , bi, . . . in such a way
that

∀n, f(n) ≤ f(ai−1) + bi +
n − ai−1

i
.

We put b1 = maxn∈IN f(n) − f(0) −n and define a1 as the maximum integer
such that f(a1) = a1 + b1 + f(0) (both a1 and b1 are finite as f(n) = o(n)).
If ai and bi have been defined, we put

bi+1 = max
n≥ai

(f(n) − f(ai)) − (n − ai)/i

and define ai+1 as the maximum integer such that

f(ai+1) = f(ai) + (ai+1 − ai)/i

(again, both ai+1 and bi+1 are finite as f(n) = o(n); moreover, ai+1 ≥ ai

as (f(n) − f(ai)) − (n− ai)/i) < 0 if n < ai).
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As f is not bounded, we have limi→∞ ai = ∞. We define f̂ as the lower
envelope of the affine functions

Li(x) = f(ai) + (x − ai)/i.

This function is clearly continuous and concave.

Theorem 16.7. Let C be a class of graphs with sub-exponential
ω-expansion.

Then the graphs of order n in C have separators of size
s(n) = o(n) which may be computed in time O(ns(n)) = o(n2).

Proof. Let f(x) = ω(C� x) and let φ(x) = log f(x). By assumption, we have
φ(x) = o(x). According to Lemma 16.4 there exists a continuous concave
function φ ′ ≥ φ such that φ ′(x) = o(x).

Without loss of generality, we can hence assume that the function f bound-
ing the ω-expansion of the class C is continuous, positive, defined on IR, such
that log f(x) is concave and such that log f(x) = o(x). It follows that for every
integer n it holds log f(n)+log f(n+2)

2
≤ log f(n + 1) thus

log f(n+ 2)

log f(n+ 1)
= 1+

log f(n + 2) − log f(n + 1)

log f(n + 1)

≤ 1+
log f(n+ 1) − log f(n)

log f(n)

=
log f(n + 1)

log f(n)

Hence

sup
n∈IN

log f(n+ 1)

log f(n)
=

log f(1)
log f(0)

.

Let A = log f(1)
log f(0) and let g(x) = log f(x)

x
. By assumption, g(x) = o(1). Define

ζ(n) as the greatest integer such that

log f(ζ(n)) <
logn
3

As log f(ζ(n) + 1) ≥ logn
3

and log f(ζ(n)+1)
log f(ζ(n)) ≤ A we deduce

log f(ζ(n)) ≥ logn
3A

.
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Notice that ζ is increasing and limn→∞ ζ(n) = ∞. From the definition of
g(x), we deduce

ζ(n) =
log f(ζ(n))
g(ζ(n))

≥ logn
3Ag(ζ(n))

� logn.

Let l(n) = � ζ(n)
log n

�. We have l(n) logn = ζ(n)(1 + o(1)) and

log(2l(n) logn(f(l(n) logn) + 2)) <
logn
3

(1+ o(1)).

It follows that if n is sufficiently large (say n > N), we have

log(2l(n) logn(f(l(n) logn) + 2)) <
logn+ log logn

2
,

that is: 2l(n) logn(f(l(n) logn) + 2) <
√
n logn. Thus if n > N, a graph

G ∈ C with order n has a separator of size at most

C
n logn

l(n) logn
= 3g(ζ(n)(1 + o(1)))n = o(n).

	


As random cubic graphs almost surely have bisection width at least 0.101n
(see e.g. [285]), they have almost surely no separator of size smaller than n/20.
It follows that if log f(x) = (log 2)x, the graphs have no sublinear separators
any more. This shows the optimality of Theorem 16.7.

As a consequence, we obtain the main result of this section:

Theorem 16.8. Let P be a monotone class of graphs with sub-
exponential ω-expansion.

Then the property G ∈ P is testable in the bounded degree
model.

Proof. This is a direct consequence of Theorem 16.1, Theorem 16.7 and
Corollary 16.1. 	


This generalizes all known instances of property testing for sparse graphs.



Exercises 379

Exercises

16.1. A class of graphs is small if it contains at most n!αn different labeled
graphs on n vertices, for some constant α. Answering a question of Welsh
et al. [372] showed that every proper minor-closed classes of graphs is small.
This result has been extended by Dvořak and Norine [139]. They proved that
every class C closed under taking induced subgraphs such that every graph
G ∈ C with n ≥ 3 vertices has a separator of size at most

s(n) = O

(
n

(logn log logn)2

)

is small.
They deduce from both this result and a theorem of [355] bounding s(n)

in terms of grads that every class C such that for some k > 0 and every
integer r

∇r(C) ≤ f(r) =
k

r
e

1
2

3
√

9r

log2(r+e) − 2

is small, which is the case if ∇r(C) ≤ er
1/3−ε

for some ε > 0.
Deduce from Lemma 16.3 that a stronger result holds for classes with

ω-expansion bounded by f(r) + 1.

16.2. On the opposite side from graphs with sublinear vertex separators are
expanders. It is important in both combinatorics, combinatorial number the-
ory, and computer science that expanders with bounded degree exist.

Let Δd be the class of all graphs with maximum degree at most d. Determine
the ω-expansion of Δd. This class, for every d ≥ 3, contains expanders (see
e.g. [259]).
It is an open problem whether (under some mild conditions) the existence of
sublinear vertex separators is equivalent to a sub-exponential ω-expansion.



Chapter 17
Core Algorithms

Fast, robust, strong. . . youthful modern times.

An essential part of this book deals with estimates of complexity of algo-
rithms. The aim of this chapter is to describe core algorithms, like the com-
putation of a p-tree-depth decomposition. We shall describe this particular
algorithm in a sufficiently precise way to allow an actual implementation of
the described algorithms. In order to base our complexity results, we specify
our computational model in this chapter.

17.1 Data Structures and Algorithmic Aspects

Our algorithms are often fast (linear and nearly linear) and thus we have
to specify the way we encode and handle (often sparse) graphs. This will be
done in this section. A reader interested in structural results only may decide
to skip this chapter.

In computer science, several data structures have been used to represent
the concept of graph. For instance, a graph may be represented by means of:

� An adjacency list, usually implemented as an array or a linked list of pairs
of vertices,

� An incidence list, allowing loops and multiple edges,
� An adjacency matrix more suitable for dense graphs, usually implemented

by means of uninitialized arrays,
� An incidence matrix particularly adapted to dense multigraphs and to

algebraic computations.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__17, © Springer-Verlag Berlin Heidelberg 2012
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Whatever implementation is chosen, three kind of operations will be of
importance:

� Traversal operations, on which will be based standard algorithms like the
breadth-first search and the depth-first search;

� Proximity tests, which allow to test whether two vertices are adjacent
or not, whether two edges intersect, whether the distance between two
vertices is smaller than some constant, etc.;

� Modifications of the graph, like the addition or the deletion of vertices and
edges, the extraction of a subgraph or the copy of a graph.

Depending on the context, the importance of the time complexity of these
operations and of the space required by the data structure will lead to dif-
ferent choices. In this book, we are concerned with the structural analysis
of sparse graphs. This suggests the use of a data structure which could ben-
efit from the low density of the considered graphs and could optimize the
traversal operations and the proximity tests. Also, as we will consider orien-
tations of graphs, operations of reorientation (i.e. the operation consisting
of reversing the orientation of an arc) should be fast. The modification oper-
ations which are of interest in our setting will usually be local and rare. For
all these reasons, we singled out a data structure used in topological graph
theory, namely the representation of graphs by means of combinatorial maps.
This choice, which is surprisingly unusual, is the one of the graph library Pi-
gale [194] (developed by a team including the second author of this book)
and we believe it is particularly effective.

Combinatorial maps will be used as a “working data structure”. The input
graphs are given in a very simple way: An input graph G will be a pair
(n, L) where n is the order of G and L is a linked list of pairs of integers (i, j)
corresponding to an edge {i, j} (or an arc (i, j) if the input graph is assumed to
be directed). The main point here is that the vertex set is implicitly defined
as {1, . . . , n} and the edge set is also implicitly ordered by the list L, see
Fig. 17.1.

A combinatorial map (or rotation scheme) is intuitively a graph with a
circular order of the edges around the vertices [142, 251]. This concept has
been introduced in topological graph theory to study graphs embedded on
surfaces, and more particularly planar maps [100, 101]. Formally, a combina-
torial map is a triple (D,σ, α) where D is an even finite set of darts (which
intuitively correspond to “half-edges”), σ is a permutation on D encoding the
circular order of the darts around the vertices and α is a fixed-point free invo-
lution exchanging the two darts composing an edge. In order to simplify the
computations, the set D for a graph of size m will be {−m, . . . ,−1, 1, . . . ,m}

and we will fix the involution α as the involution exchanging i and −i. Hence
the only information we will have to encode is the permutation σ.
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Fig. 17.1 An input graph encoded as a pair (n, L) where n is the order of the graph
(here 8) and L is the list of the graph edges

To get an efficient encoding of the map, we will actually encode σ as two
arrays indexed by {−m, . . . ,m} which we call Cir (for circular order) and
Acir (for anti-circular order) such that Cir[i] = σ(i) and Acir[i] = σ−1(i).
The vertices of a combinatorial map are implicitly defined as the orbits of σ.
So, we introduce two other arrays: FirstDart, indexed by {1, . . . , n} associate
to each vertex number the number of a first dart incident to it, and Vin,
indexed by {−m, . . . ,m} which associates to each dart number the number
of the vertex to which it is incident. See Fig. 17.1.

The construction of a combinatorial map from an input graph and, con-
versely, the enumeration of the edges of a combinatorial map, present no
particular difficulty and may be achieved in O(m + n)-time, where n and
m are respectively the order and the size of the graph. This we formalize as
Procedure 1:
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Fig. 17.2 A combinatorial map and the corresponding arrays Cir,Acir and Vin

Procedure 1 Computation of a combinatorial map from an input graph
Require: input graph G is given by a pair (n, L).
Ensure: the created arrays encode a combinatorial map of G.

Create the arrays for the combinatorial map.
Initialize FirstDart to 0.
Let d = 0.
for all e = (i, j) in L do

Let d← d + 1. {number the dart}
{Insertion of dart d at vertex i}
Let f = FirstDart[i].
if f = 0 then

Put FirstDart[i] = Cir[d] = Acir[d] = d.
else

Put Acir[d] = Acir[f] and Cir[Acir[f]] = d.
Put Cir[d] = f and ACir[f] = d.

end if
Put Vin[d] = i.
{Insertion of dart −d at vertex j}
Let f = FirstDart[j].
if f = 0 then

Put FirstDart[j] = Cir[−d] = Acir[−d] = −d.
else

Put Acir[−d] = Acir[f] and Cir[Acir[f]] = −d.
Put Cir[−d] = f and ACir[f] = −d.

end if
Put Vin[−d] = j.

end for
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In this book we will be interested in ordering the vertices of a k-degenerate
graph G so that every vertex has back degree at most k. Procedure 2 achieves
such a task.

Procedure 2 Computation of a vertex-ordering of a k-degenerate graph G

so that each vertex has back degree at most k.
Require: The input graph G is given as a pair (n, L).
Ensure: Rank is the rank associated to the linear order and Order is the ordered

array of the vertices.

Construct a combinatorial map (Procedure 1).
Create an array Degree initialized with 0
for all d ∈ {−m, . . . ,−1, 1,m} do

Increase Degree[Vin[i]] by one.
end for
{Initial sort}
Create SCir,SAcir and SFirst (initialized with 0) implementing a partition of
{1, . . . , n} into n doubly-linked circular lists (SFirst[i] gives first element in list
#i, SCir and SAcir link each element to the previous and the next in the same
list).
for all 1 ≤ i ≤ n do

Add i to the list #Degree[i].
end for
{Construction of the elimination order}
a = 0.
for k = 1 to n do

while SFirst[a] = 0 do
a← a + 1

end while
Pop i from list #a, let Rank[i] = k and Order[k] = i.
for all dart d incident to vertex i do

Let j = Vin[−d] and x = Degree[j].
if x > a then

Move j from the list #x to list #(x − 1).
Put Degree[j] = x − 1.

end if
Delete vertex i (and its incident edges).

end for
end for

We shall see that Procedure 2 follows almost the same lines of a classical
topological sort procedure for directed graphs. Its running time is obviously
O(n + m) (where n and m denote respectively the order and the size of
the input graph). Notice that the procedure does not get as an input the
degeneracy of the graph, but actually computes it. Indeed, the variable a

maintains the maximum of the minimum degrees met in the iterative deletion
of vertices of low degrees. At the end of the procedure, the value of a is hence
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at least k. As the procedure computes an ordering of the vertices with back-
degree bounded by a, we also get a ≤ k hence a = k.

Such an algorithm can be used to color a k-degenerate graph using at most
k+1 colors. The corresponding Procedure 3 obviously runs in time O(m+n).
In the pseudo code describing this procedure we don’t go into unnecessary
details, as the algorithm presents no real difficulty.

Procedure 3 Computation of a vertex coloring
Require: The input graph G is given by a pair (n, L).
Ensure: the computed coloring c using at most k + 1 colors if G is k-degenerated.

Order the vertices of the graph (n, L) using Procedure 2.
Initialize an array Dep of lists with ( ).
for all edge (i, j) ∈ L do

if Rank[i] < Rank[j] then
Add i to Dep[j].

else
Add j to Dep[i].

end if
end for
for r = 1 to n do

Let i = Order[r].
Let c[i] be the smallest integer different not in {c[i], j ∈ Dep[i]}.

end for

17.2 p-Tree-Depth Coloring

It is established in Theorem 7.8 that for every integer p there exists a poly-
nomial Pp such that every graph G has a p-tree-depth coloring requiring at
most Pp(˜∇2p−2+1/2(G)) colors.Recall that a p-tree-depth coloring is a col-
oring such that every p ′ ≤ p color classes induce a subgraph of tree-depth at
most p ′ (see Chap. 7). (For properties of tree-depth, see Chap. 6.) The strong
benefit of the proof of Theorem 7.8 is that it actually leads to a simple lin-
ear time algorithm, and that it not only produces a p-tree-depth coloring,
but actually a (p + 1)-centered coloring, that is a vertex coloring such that,
for any (induced) connected subgraph H, either some color appears exactly
once in H, or H gets at least p + 1 colors (see Sect. 7.2). Also, the proof of
Theorem 7.8 will actually imply that for every positive integer p there exists
a polynomial Fp such that we can compute for every graph G a p tree-depth
coloring of G using Np(G) ≤ Fp(∇

2p−2+
1
2

(G)) colors in time O(Np(G)|G|).

This result, which should be seen as an algorithmic version of Theorem 7.8,
will be stated as Theorem 17.1.
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Input graphs will be given as a pair (n, L), where n will be the order of
the graph and L will be the list of the edges, each edge being a pair (i, j) with
1 ≤ i �= j ≤ n (the vertex set of the graph is implicitly {1, . . . , n}). This type
of encoding allows to represent a graph G using 2‖G‖+ 1 integers. However,
it assumes that the vertices of the graph have been numbered. For details on
the chosen data structure and basic procedures, see above Sect. 17.1.

17.2.1 Fraternal Augmentation

We follow the lines of Sect. 7.4 to design an efficient algorithm to compute p

tree-depth colorings of graphs. See Sect. 7.4 for here undefined notions and
notations. In the detail description of our algorithms this part is distinguished
from the rest of the book.

For an integer k, a fraternity function w on a {1, . . . , n} will be encoded
by means of a function w̃ such that w̃(j) is the list of the pairs (i,w(i, j)) for
1 ≤ i ≤ n such that w(i, j) ≤ k.

We shall define three procedures, Procedures 4–6. They form together an
algorithm for p-tree-depth coloring of graphs.

Our first step is to construct a function w̃1 corresponding to a 1-fraternity
function w such that Gw

1 = G and Δ−
1 (w1) ≤ 2∇0(G). This is done by

Procedure 4 in linear time.

Procedure 4 Computation of w̃1

Require: The input graph G is given by a pair (n, L).
Ensure: the function w1 associated to w̃1 is such that Gw

1 = G and Δ−
1 (w1) ≤

2∇0(G).

Compute the rank Rank of a vertex ordering of G so that the maximum back-degree
will be at most 2∇0(G) (Procedure 2, page 385).
for all (i, j) in L do

if Rank[i] < Rank[j] then
Add (i, 1) to w̃1(j).

else
Add (j, 1) to w̃1(i).

end if
end for

Lemma 17.1. Let k be an integer and let wk be a k-fraternity function
encoded by w̃k. Then an encoding w̃k+1 of a (k + 1)-fraternity function
wk+1 can be computed in time O((Δ−

k (wk)
2 + Δ−

k+1(wk+1))n), which is
such that:
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∀(x, y) ∈ V2, wk(x, y) ≤ k =⇒ wk+1(x, y) = wk(x, y)

Δ−
k+1(wk+1) ≤ 2˜∇k/2(G • K1+Nwk+1

(k+1))

Proof. Consider Procedure 5 below. This algorithm first computes all pairs
(i, j) such that min(wk+1(i, j), wk+1(j, i)) = k + 1 (in time O(Δ−

k (wk)
2n))

and then orients the fraternity edges (in time O(Δ−
k (wk+1)n)). �	

Procedure 5 Augmentation of a k-fraternity function into a (k+1)-fraternity
function
Require: w̃k is a k-fraternity function on {1, . . . , n}.
Ensure: w̃k+1 is the augmented (k + 1)-fraternity function.

{Computation of the list of edges of Gwk+1

k+1 .}
Initialize L = ().
for all i ∈ {1, . . . , n} do

for all (a, la) ∈ w̃k(i) do
for all (b, lb) ∈ w̃k(i) after (a, la) do

if la + lb = k + 1 then
add (a, b) to L

end if
end for

end for
end for
{Computation of the orientation of �G

wk+1

k+1 .}
Compute the rank Rank of a vertex ordering of the graph with edge list L mini-
mizing the maximum back degree (Procedure 2, page 385).
Initialize w̃k+1 with w̃k.
for all (i, j) ∈ L do

if Rank[i] < Rank[j] then
add (i, k + 1) to w̃k+1(j)

else
add (j, k + 1) to w̃k+1(i)

end if
end for

Notice that our augmentation is such that Δ−
k+1(wk+1) is at most the

double of the bound computed in Lemma 7.6. This factor of 2 comes from
the choice of a simple orientation algorithm based on the recursive elimination
of the vertices of minimal degrees.



17.2 p-Tree-Depth Coloring 389

Procedure 6 Computation of a (p+ 1)-centered coloring
Require: The input graph G is given by a pair (n, L); the integer p is part of the

input.
Ensure: the computed coloring c is (p + 1)-centered and uses Np(G) ≤

Pp(˜∇2p−2+1
2
(G)) colors.

Compute w̃1 such that associated 1-fraternity function w1 is such that Gw
1 = G

and Δ−
1 (w1) ≤ 2∇0(G) (by Procedure 4).

Let q = 2p−1 + 1.
for k = 1 to q do

Compute the function w̃k+1 from the function w̃k using the augmentation
Procedure 5.

end for
{Computation of depth p transitivity}
for all vertex i ∈ {1, . . . , n} do

Compute the list S[i] of the vertices j such that there exists a sequence x0 =
j, . . . , xl = i such that l ≤ p and w(xa−1, xa) <∞ for every 1 ≤ a ≤ p.

end for
{Computation and coloring of the conflict graph}
Compute the list L ′ of the (i, j) such that 1 ≤ i ≤ n and j ∈ S[i].
Compute a coloring c of (n, L ′) using Procedure 3, page 386.

Next we can apply Procedure 6 which yields straightforwardly

Theorem 17.1. For every integer p there exists a polyno-
mial Pp (of degree about 22

p

) such that for every graph G

Procedure 6 computes a (p + 1)-centered coloring of G with
Np(G) ≤ Pp(˜∇2p−2+ 1

2
(G)) colors in time O(Np(G)n)-time.

17.2.2 Computing the Forest

We now construct a rooted forest of height p including G in its closure using
Procedure 7.

Procedure 7 runs in O(pm) time. If G is connected, it returns a rooted
tree Y of height at most p such that G ⊆ clos(Y) (thus proving that tree
depth of G is at most p).
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Procedure 7 Computation of a tree of height p including in its closure a
given graph with a centered coloring using p colors
Require: c is a centered-coloring of the graph G using colors 1, . . . , p.
Ensure: F is a rooted forest of height p such that G ⊂ clos(F).

Set F = ∅.
Let Big be an array of size p.
for all Connected component Gi of G do

Initialize Big to false.
Set root_color ← 0.
for all v ∈ V(Gi) do

if Big[c[v]] = false then
if c[v] = root_color then

root_color ← 0,Big[c[v]]← true.
else

root ← v; root_color ← c[v].
end if

end if
end for
Recurse on G − root thus getting some rooted forest F ′ = {Y ′

1, . . . , Y
′
j}.

Add to F the tree with root root and subtrees Y1, . . . , Yj, where the sons of root
are the roots of Y1, . . . , Yj.

end for

17.3 Computing and Approximating Tree-Depth

There is an (easy) polynomial algorithm to decide whether td(G) ≤ k for
any fixed k. However, assuming P�=NP, there is no polynomial time approx-
imation algorithm for the tree-depth can guarantee an error bounded by nε,
where ε is a constant with 0 < ε < 1 and n is the order of the graph [73].

Nevertheless, there is a simple linear time algorithm which allows to ap-
proximate tree-depth, up to an exponentiation:

Lemma 17.2. The Depth-First Search algorithm computes in
linear time, for each input graph G, a rooted forest Y such
that:

Y ⊆ G ⊆ clos(Y),

td(G) ≤ height(Y) ≤ 2td(G).

Proof. Perform a depth-first search on G and let h be the height of the
obtained DFS rooted forest F. As G ⊆ clos(F) we have h ≥ td(G). As G

includes a path of length h, we have td(G) ≥ log2 h. �	
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As noticed in Sect. 6.10, the property to have tree-depth at most t is
expressible in first-order logic, as a consequence of Lemma 6.13. Actually, a
sentence τt of reasonable size such that for every graph G holds G |= τt if
and only if td(G) ≤ t can be constructed, as shown in Exercise 6.6. This
property allows to check efficiently if a graph has tree-depth at most t, for
some fixed integer t:

Theorem 17.2. For every fixed t, there exists a linear time
algorithm that test whether a graph G has tree-depth at most t.

Proof. Compute a depth-first search tree Y on G. If the height of Y is greater
than 2t then td(G) > t.

Otherwise, we construct a tree-decomposition (T, λ) of G having width
at most (2t − 1): Set T = Y and define λ(x) = {v ≤Y x}. Then for any
v, {x ∈ V(T) : v ∈ λ(x)} = {x ≥Y v} induces the subtree of Y rooted at
v (hence a subtree of T). Moreover, as G ⊆ clos(Y), any edge {x, y} with
x <Y y is a subset of λ(y). Hence (T, λ) is a tree-decomposition of G. As
maxv∈V(G)|λ(v)| = height(Y) ≤ p, this tree-decomposition has width at most
(p−1). This tree-decomposition may be obviously constructed in linear time.

Then, we can apply Courcelle’s theorem (Theorem 3.9) and test in linear
time whether a graph has tree-depth at most t or not. �	

Theorem 17.3. For a fixed integer t, there is a linear time al-
gorithm which computes, for an input graph G with tree-depth
at most t, a rooted forest of height t whose closure includes G.

Proof. Without loss of generality, we can assume that G is connected. For
fixed t, there exists a first-order formula φt(x) such that G |= Φt(v) if
td(G−v) < t. Making use of an extension of Courcelle’s Theorem 3.9 (see for
instance [178]), we can compute in linear time a vertex v with this property,
which will be the root of our tree. Then we recursively construct a rooted
tree for each connected component of G− v (in global linear time). �	

The preceding two theorems make use of Courcelle’s theorem or its deriva-
tives. It is a natural problem to find a simpler methods.
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Problem 17.1. Is there a simple linear time algorithm to check
td(G) ≤ t for fixed t?
Is there a simple linear time algorithm to compute a rooted forest
Y of height t such that G ⊆ Clos(Y) (provided that such a rooted
forest exist)?

The decision problem “tw(G) ≤ k” (for fixed k) belongs to the class L. This
problem is actually complete for L [146]. Recall that the complexity class L
contains decision problems which can be solved by a deterministic Turing
machine using a logarithmic amount of memory space (see Sect. 3.11).

In terms of space complexity, it appears that deciding td(G) ≤ k is more
easy than deciding tw(G) ≤ k, as shown in [147]

Theorem 17.4. For every k ≥ 1, the decision problem “td(G) ≤ k” be-
longs to the class AC0.

In [147] is also proved an analog of Theorem 3.9 for graphs with bounded
tree-depth:

Theorem 17.5. For every MSO-sentence φ over some signature σ and
every d ∈ IN, there is a DLOGTIME-uniform AC0-circuit family that,
on input of an arbitrary σ-structure S, outputs 1 if, and only if, the tree
depth of S is at most d and S |= φ holds.

Note that in contrast, it is known that the same problem for graphs of
bounded tree width is L-complete [108, 146].

17.4 Counting Homomorphisms to Graphs
with Bounded Tree-Depth

We first introduce a list variant of the graph homomorphism counting
problem:

Let F,G be graphs and let L : V(G) → 2V(F) be a list assignment which
associates to each vertex x ∈ G a list L(x) of admissible pre-images of x. The
corresponding to-list homomorphism counting problem is to determine the
number of homomorphisms f : F → G such that u ∈ L(f(u)) for every u ∈ F.
Notice that lists restricts pre-images and not images, like in the standard list
coloring problem. However, if L(v) = V(F) for every v ∈ V(H), we have the
problem of counting homomorphisms.
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Lemma 17.3. Let L : V(G) → 2V(F) be a list assignment. The number of
homomorphisms f : F → G such that u ∈ L(f(u)) for every u ∈ F can be
computed in time O(|F|td(G)2|F|td(G)|G|).

Proof. We prove the proposition by induction over the tree-depth of G. If
td(G) = 1 then we check whether F is edgeless. Then the number of homo-
morphisms f : F → G such that u ∈ L(f(u)) for every u ∈ F is simply the
product of |{v ∈ G,u ∈ L(v)}| for u ∈ F. This product may be computed in
O(|G|+ |F|) time.

Now assume that the proposition has been proved for graphs G of tree-
depth at most t ≥ 1 and consider graphs G with tree depth t + 1.

� If both F and G are connected and if r is a vertex of G such that td(G−r) ≤
t, we consider all the possible stable sets S of L(r) (there are obviously
at most 2|F|−1 such sets). Then we modify the list assignment of G as
follows: for every x ∈ F adjacent to some y ∈ S, remove x from all the
lists of vertices of G which are not adjacent to r. This can be done in time
O(|F||G|);

� If F is connected but G is not and if G1, . . . , Gp are the connected com-
ponents of G, we compute the sum of the number of homomorphisms
f : F → Gi such that u ∈ L(f(u)) for every u ∈ F. Thus we reduce the
computation to the case where G is connected;

� If F is not connected and F1, . . . , Fp are the connected components of F,
we compute the product of the number of homomorphisms f : Fi → G

such that u ∈ Li(f(u)) for every u ∈ Fi, where Li(x) = L(x) ∩ V(Fi). The
computation of the lists Li is easily performed in O(|F||G|)-time, and we
reduce the computation to the case where F is connected.

�	

17.5 First-Order Cores of Graphs with Bounded
Tree-Depth

We shall now prove a result which is specific to graphs with bounded tree-
depth: every “large” graph with bounded tree-depth may be approximated
by a “small” induced subgraph. Here, the notion of approximation will be
based on the p-back-and-forth equivalence ≡p (see Sect. 3.8.4).
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Theorem 17.6. For every integers p, t there is a linear time
algorithm which, given a graph G:

� Either outputs a subgraph of G which is a path of order 2t

(hence a certificate that td(G) > t),
� Or outputs a subset of vertices A of cardinality at most

C(p, t) such that G[A] ≡p G and G −→ G[A].

Proof. As noticed in Lemma 17.2, a depth-first search on G computes in
linear time a rooted forest F such that G ⊆ clos(F). If the height of F is at
least 2t then outputs a tree path of order 2t. Otherwise, Theorem 17.6 will
follow from the following stronger statement we formulate now.

Claim. For every integers p, c, h there is a linear time algorithm which, given
a triple (G, F, γ) formed by a graph G, a rooted forest F of height h such that
G ⊆ clos(F) and a coloring γ : G → [c] of the vertices of G, computes a subset
A of vertices of G such that the graphs G and G[A] are hom-equivalent in a
way which preserves both the coloring γ and the ancestor relation, and also
such that G ≡p G[A].

Proof of the claim: To each vertex x of G assign a 0−1 vector γ0(x) of length
heightF(x)−1 encoding the adjacency of x with its ancestors in F. Inductively
define γ1(x) by γ1(x) = (γ(x), γ0(x)) for every x such that heightF(x) =

h and γ1(x) = (γ(x), γ0(x), S(x)) for the other vertices, where S(x) is the
multiset of the values γ1(y) for y son of x, where each value is kept only at
most p times. Then γ2(x) is defined as the couple (γ1(r), γ1(x)) where r is
the root of the connected component of F which contains x.

The set A is built as follows: as long as there exists a connected component
Y of F[A] with root r such that the value γ2(r) is shared by at least p other
vertices in A, delete r. Then, inductively consider higher and higher level: as
long as there exists a subtree Y of F[A] rooted at a soon y of a vertex x ∈ A

whose γ-value is shared by at least p others sons of x, delete y.
Now, let us describe the strategy of Duplicator in a p-back and forth

game between G and G[A]. Assume that the strategy successfully found a
local isomorphism πi from G[Ai] to G[Bi] where Ai ⊆ A and Bi are closed
under the ancestor relation and assume i < p.

� Assume Spoiler chooses a vertex ai+1 ∈ A \ Ai. If ai+1 is a root of F[A]

then let bi+1 be a root of F with the same γ2-value as ai+1 which does
not yet belong to B and define Ai+1 = Ai ∪ {ai+1}, Bi+1 = Bi ∪ {bi+1}

and πi+1 is the extension of πi on Ai+1 such that πi+1(ai+1) = bi+1;
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otherwise, let aj be the highest ancestor of ai+1 in Ai and let bj = πi(aj).
Let a1

i+1, . . . , a
k
i+1 = ai+1 be the chain of Y[A] from a son of aj to ai+1.

According to the construction of γ2, there exists a chain of Y b1
j+1, . . . , b

k
j+1

starting from a son of bj such that b1
j+1 �∈ Bj and γ2(b

l
i+1) = γ2(a

l
i+1)

for every 1 ≤ l ≤ k. Define Ai+1 = Ai ∪ {a1
j+1, . . . , a

k
j+1}, Bi+1 = Bi ∪

{b1
j+1, . . . , b

k
j+1} and let πi+1 be the extension of πi to Ai+1 such that

πi+1(a
l
i+1) = bl

i+1 for every 1 ≤ l ≤ k.
� The case where Spoiler chooses a vertex bi+1 is handled in a similar way,

the construction of the set A ensuring that the vertices a1
i+1, . . . , a

k
i+1 can

be chosen in A \Ai.

That G −→ G[A] is clear from the construction of the coloring γ2.
�	

Note that the property stated in Theorem 17.6 for graphs with bounded
tree-depth is not true for graphs with tree-width at most 2. As a direct
consequence of Theorem 17.6 we have:

Corollary 17.1. There is a computable function F such that for every
graph G and every First-Order sentence φ, it is possible to check whether
G satisfies φ or not in time

F(td(G), qrank(φ)) |G|.

(See Sect. 3.8 for a definition of the quantifier rank qrank of a formula.) As a
corollary we obtain an alternative proof of Theorem 17.2:

Corollary 17.2. For every fixed t there is a linear time algorithm to
decide whether td(G) ≤ t.

Proof. We can use Corollary 17.1 to decide td(G) ≤ t in linear time, as this
property is First-Order definable. �	



396 17 Core Algorithms

Exercises

17.1. It has been proved by Bodlaender [68, 69] that graph isomorphism can
be decided in time O(nt+4.5) for graph with tree-width at most t.

Prove that there exists an algorithm A running in time O(nt logn) that
computes, for an input graph G of tree depth at most t and order n, a
colored plane lexicographic monotone forest Canon(G) of height t such that
G ′ is isomorphic to G if and only if Canon(G ′) = Canon(G).

Deduce that there exists an O(nt logn)-time isomorphism testing algo-
rithm for the class of graphs with tree-depth at most t.

17.2. � Prove that for each integer t there exists an algorithm deciding
whether two input graphs G and H with tree-depth at most t are ho-
momorphically equivalent or not, which runs in time O(|G|+ |H|);

� Show that the multiplicative constant hidden in the big O reflects the
size of the minimal graphs with tree-depth t hence is not an elementary
function of t.
Note that examples combinatorial problems with even more paradoxical

almost linear algorithms were given in [307].



Chapter 18
Algorithmic Applications

Check the model without a serial number.

18.1 Introduction

In 1928, Hilbert posed the following challenge, known as the Entschei-
dungsproblem:

Does there exist an algorithm which takes as input a description of a
formal language and a mathematical statement in the language and
outputs either “true” or “false” according to whether the statement
is true or false?

As a particular interpretation, this problem contains the decision prob-
lem for first-order logic (that is, the problem of algorithmically deciding
whether a first-order formula is universally valid). A negative answer to the
Entscheidungsproblem was given by Church and Turing, who proved that it
is impossible to decide algorithmically whether statements in arithmetic are
true or false.

We consider here the following related model-checking problem.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__18, © Springer-Verlag Berlin Heidelberg 2012
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Model-checking problem

Given a sentence φ of some logic L and a structure A, decide
whether φ holds in A, that is:

Is it true that A |= φ?

This is a typical problem studied by model theory and theoretical com-
puter science. Of particular interest for computer science is the case where
the input structure is restricted to be finite. The techniques from finite model
theory are especially applied in databases, artificial intelligence, formal lan-
guages, and complexity theory. The study of the relations between the ex-
pressiveness of a logic and the complexity of the decision problems that can
be expressed with this logic is the aim of descriptive complexity. The first
main result of descriptive complexity was Fagin’s theorem [171], which estab-
lished that the complexity class NP coincides with the class of the decision
problems expressible in existential second-order logic.

It is known that model-checking for first-order logic, that is checking
whether A |= Φ where φ is a first-order formula and both A and φ are
parts of the input is a PSPACE-complete problem (this is even the case if
A is fixed and equal to a graph with two vertices) and thus most likely not
solvable in polynomial time, see [443, 465] for a vast literature related to this
subject.

If Φ is a fixed first-order formula of quantifier rank k it is clear that de-
ciding whether A |= Φ, where A has size n, may be done in time O(nk).
However, it is not known whether there exists a universal constant c such
that for every first-order formula, deciding whether A |= Φ may be done in
time O(nc) [446]. Such a statement would hold, for instance, if PSPACE=P,
but is strongly believed to be false as it would imply a collapse of the full
parametrized complexity hierarchy. Therefore, a particular attention has been
paid to consider the typical case where one has to check whether a rela-
tively “small” sentence holds in a “large” structure under the light of the
recently very active parametrized complexity theory. Recall that a problem
with parameter k is called fixed-parameter tractable if it can be solved in
time f(k)P(n) for an arbitrary computable function f and some polynomial
function P (here n denotes the size of the input structure). The class of fixed-
parameter tractable decision problems is denoted by FPT. Actually, there is
a hierarchy of intractable classes
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FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[∗] ⊆ AW[∗].

For instance, deciding if a graph G contains an independent set of size k

is W[1]-complete and deciding if G has a dominating set of size k is W[2]-
complete. Also, for input formed by a graph G and a first-order formula Φ,
deciding G |= Φ, parametrized by the length of Φ, is AW[∗]-complete.

One way to reduce the complexity of model-checking is to restrict the
input graph (or structure) to a fixed class C. An example is provided by
Theorem 3.9. However, even for first-order logic, there are some limits to this
approach: Under the complexity theory assumption FPT �= AW[∗], Dawar
and Kreutzer proved [113] that if a monotone class C is somewhere dense
and satisfies some effectivity conditions then first-order model checking is
not fixed-parameter tractable. It follows that the best we shall expect is
fixed-parameter tractability for nowhere dense classes. Also, despite restrict-
ing model-checking to a class of very sparse graphs, the dependence to the
parameter in the running time may be greater than a single exponential.
For instance, Frick and Grohe proved [203] that there is no model-checking
algorithm for first-order logic on the class of binary trees (still under the

assumption FPT �= AW[∗]) whose running time is bounded by 22
2o(k)

P(n)

where P is a polynomial, k denotes the size of the input sentence and n the
size of the input structure.

Much work has gone into establishing so-called meta-theorems for variants
of monadic second-order logic [104] and for first-order logic. For first-order
logic, Seese [433] proved that first-order model-checking is fixed-parameter
tractable on graph classes with bounded degree. This has been generalized
by Frick and Grohe [202] to graph classes of bounded local tree-width, by
Flum and Grohe [179] to graph classes excluding a fixed minor, and by Dawar
et al. [111] to graph classes locally excluding a fixed minor. (See for instance
[442] for examples of applications of such generic results for proving fixed-
parameter tractability to restricted classes of problems.) This chapter will
be concerned with generalizations of all these results to bounded expansion
and nowhere dense classes. Actually, these classes seem to provide a natural
setting for meta-theorems.

18.2 Truncated Distances

The fixed parameter linear time algorithm for p-tree depth coloring has a
number of algorithmic consequences. Let us start our tour of algorithmic
applications of our theory with the following result. It is just a weighted
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extension of the basic observation that bounded orientations allow O(1)-
time checking of adjacency [96] and is a basic example of First-Order Boolean
query.

Theorem 18.1. For any class C with bounded expansion and for any
integer k, there exists a linear time preprocessing algorithm so that for
any preprocessed G ∈ C and any pair {x, y} of vertices of G the value
min(k, dist(x, y)) may be computed in O(1)-time.

Proof. The proof goes by a variation of our augmentation algorithm so that
each arc e gets a weight w(e) and each added arc gets weight min(w(e1) +

w(e2)) over all the pairs (e1, e2) of arcs which may imply the addition of e
and simplification should keep the minimum weighted arc.

Then, after k augmentation steps, two vertices at distance at most k have
distance at most 2 in the augmented graph. The value min(k, dist(x, y)) then
equals

min(k,w((x, y)), w((y, x)), min
(z,x),(z,y)∈�G

(w(z, x) +w(z, y))).

��

This problem is an easy example of an algorithm checking the existence of
a given subgraph in G with some of its vertices prescribed: checking whether
dist(x, y) ≤ k amounts in testing whether G includes as a subgraph a path
of length at most k with prescribed end-vertices x and y). Theorem 18.1
naturally extends to nowhere dense classes, see Exercise 18.1.

18.3 The Subgraph Isomorphism Problem and Boolean
Queries

The technique of p-tree-depth coloring is locally sensitive and it facilitates
the detection of most local graph properties. Particularly it can be used to
check existential first-order properties. A standard example is provided by
the subgraph isomorphism problem. For a fixed pattern H, the problem is to
check whether an input graph G has an induced subgraph isomorphic to H.
This problem is known to have complexity at most O(nωl/3) where l is the
order of H and where ω is the exponent of square matrix fast multiplication
algorithm [361] (hence O(n0.792 l) using the fast matrix algorithm of [99]).
The particular case of subgraph isomorphism in planar graphs have been
studied by Plehn and Voigt [385], Alon [29] with super-linear bounds and
then by Eppstein [157, 158] who gave the first linear time algorithm for fixed
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pattern H and G planar. This was extended to graphs with bounded genus
in [159].

Table 18.1 Subgraph isomorphism problem: complexity for a fixed pattern H and
for an input graph restricted to some class of graphs

Subgraph isomorphism problem

Context Complexity Reference(s)

General O(n0.792 |V(H)|) [361] using [99]

Bounded tree-width O(n) [158] (also [102, 103])

Planar O(n) [157, 158]

Bounded genus O(n) [159]

Bounded expansion O(n) [355]
(includes the three
previous classes)

Nowhere dense n1+o(1)

The model-checking problem of an existential first-order sentence is easily
solved by combining Theorem 17.1 with Courcelle’s theorem (Theorem 3.9).
This way, we get:

Theorem 18.2. Let p be a fixed integer. Let φ be a FOL(τ2) sentence.
Then there exists a polynomial Pp(X) and an algorithm which checks
∃X : (|X| ≤ p)∧ (G[X] |= φ) and runs in time O(Pp(˜∇2p−2+ 1

2
(G) |G|)).

In particular, the algorithm runs in O(n) time if G is bound to a class
with bounded ˜∇2p−2+ 1

2
(G) (such as a bounded expansion class), and in

n1+o(1) time if G is bound to a class where ˜∇2p−2+ 1
2
(G) = |G|o(1) (such

as a nowhere dense class).

For instance:

Corollary 18.1. Let K be a class with bounded expansion and let H be
a fixed graph. Then, for each of the next properties there exists a linear
time algorithm to decide whether a graph G ∈ K satisfies them:

� H has a homomorphism to G,
� H is a subgraph of G,
� H is an induced subgraph of G.
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18.4 The Distance-d Dominating Set Problem

We shall now consider a problem which is not expressible by an existential
first-order sentence, but by a more complicated first-order sentences (such as
∃∀ first-order sentences). The Dominating Set problem (DSP) is defined as
follows.

Input A graph G = (V, E) and an integer parameter k.
Question Does there exist a dominating set of size k or less for G, i.e., a

set V ′ ⊆ V with |V ′| ≤ k and such that for all u ∈ V − V ′ there is a v in
V ′ for which uv ∈ E?

This is a classic NP-complete problem [212] which is also apparently not fixed
parameter tractable (with respect to the parameter k) because it is known to
be W[2]-complete in the W-hierarchy of fixed parameter complexity theory
[127].

DSP is fixed parameter tractable with respect to, for example, tree-width
[33] and tree decompositions are computable in linear time, for fixed tree-
width [70]. DSP is similar in definition to the vertex cover problem (VCP),
but they seem to differ considerably in their fixed-parameter tractability
properties. The Robertson-Seymour theory of graph minors [406] can be used
to show that VCP is a fixed parameter tractable problem because vertex
cover is closed with respect to taking minors, and fixed-parameter tractable
algorithms have been described [127] for VCP. But DSP is not closed with
respect to taking minors.

DSP remains NP-complete when restricted to planar graphs [212]. Fellows
and Downey [126, 127] gave a search tree algorithm for this problem which
has time complexity O(11kn), when the input is restricted to planar graphs,
improved to O(8kn) in [8], to O(4

6
√
34kn) in [7], and to O(227

√
kn) in [269].

In [153] it is shown, using the search tree approach, that the dominating set
problem is fixed parameter tractable for graphs of bounded genus, with time
complexity of O((4g+ 40)kn2) for graphs of genus g ≥ 1. Our results imply
that a time complexity of O(f(g, k)n) can be achieved, for some computable
function f.

More recently, Alon and Gutner [18] gave a linear time parametrized algo-
rithm for dominating sets on d-degenerate graphs running in time kO(dk)n.
Although the result proved in Theorem 18.3 is weaker than this last result,
it is a nice illustration on how reduction to subgraphs of bounded tree-depth
may be used.

Let G = (V, E) be a graph. A subset X ⊆ V of G is a dominating set of
G if every vertex of G not in X is adjacent to some vertex in X. We note
D(G) the family of all dominating sets of G and by Dk(G) the family of the
dominating sets of G having cardinality at most k.
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For subsets X,W ⊆ V , we say that X dominates W if every vertex in
W \ X has a neighbor in X. We denote Dk(G,W) the family of the subsets
dominating W and having cardinality at most k.

Lemma 18.1. For every integers k, l ≥ 1 for every graph G = (V, E)

with tree-depth at most l and for every subset W ⊆ V of vertices, there
exists a blocker A = A(G,W) ⊆ V of at most kl vertices meeting every
X ∈ Dk(G,W). Moreover, if a rooted forest Y of height l is given such
that G ⊆ clos(Y) then we can find the blocker set A in O(kl)-time.

From this Lemma, using a p tree-depth coloring, we deduce:

Lemma 18.2. Let C be a class with bounded expansion. Then there exists
a function f : IN → IN such that for every integer k, for every G = (V, E) ∈
C and for every W ⊆ V a set A(G,W) of cardinality at most f(k) may be
computed in O(n)-time (where n is the order of G) which meets every
set in Dk(G,W).

Hence, by an easy induction on k:

Theorem 18.3. Let C be a class with bounded expansion. Then there
exists a function g : IN → IN such that for every integer k, every G =

(V, E) ∈ C and every W ⊆ V one may compute in time O(g(k)n) a set X

which is either minimal set cardinality at most k dominating W or the
empty set if G has no dominating set of cardinality at most k.

Actually, we also deduce that any graph G has at most F(k,∇kk(G)) dom-
inating sets of size at most k and that they may be all enumerated in time
O(φ(k,∇kk(G))n). Notice that the result does not extend to the problem of
finding a set X of cardinality at most k such that every vertex not in X is
at distance at most 2 from X (consider k disjoint stars of order n/k, giving
(n/k)k possible solutions to the problem.

The distance-d dominating set problem (or (k, d)-center problem) is a
generalization of the dominating-set problem where we are given a graph G

and integer parameters d and k and where we have to determine whether
G contains a subset X of at most k vertices such that every vertex of G has
distance at most d to a vertex of X (see [48] and references in [115]). Dawar
and Kreutzer [112] proved that this problem is fixed-parameter tractable on
any effectively nowhere dense class, that is on any nowhere dense class C

if there is a computable function f : IN → IN such that f(r) > ω(C� r).

Theorem 18.4. The following is fixed-parameter tractable for any effec-
tively nowhere dense class of graphs.
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Distance-d-dominating set

Input: A graph G ∈ C,W ⊆ V(G), k, d ≥ 0

Parameter: k+ d

Problem: Determine whether there is a set X ⊆ V(G) of k
vertices which d-dominates G.

Notice that this result does not use p tree-depth coloring but instead relies
on the equivalence of nowhere dense classes with uniformly quasi-wide classes
proved in Chap. 8.

To the opposite, Dvořák [136] (again!) proved the following intrigu-
ing connection between generalized weak coloring numbers (see Sect. 4.9
and 7.5), generalized independence numbers (see Chap. 8), and the distance
d-domination numbers:

Theorem 18.5. Let 1 ≤ m ≤ 2k + 1, and let G be a graph of order n

such that wcolm(G) ≤ c. Then domk(G) ≤ c2 αm(G). Furthermore, if an
ordering of V(G) witnessing wcolk(G) ≤ c, then a distance-k dominating
set D and an m-independent set A such that |D| ≤ c2|A| can be found in
O(c2 max(k,m)n) time.

By making use of the general algorithm for first-order model checking
described in the next section, the author deduce [136]:

Theorem 18.6. Let C be a class with bounded expansion, and
let d ≥ 1 be a constant. There exists a linear time algorithm
which computes, for each input graph G ∈ C, a distance-d
dominating set D and a (2d+ 1)-independent set A such that
|D| = O(|A|).

18.5 General First-Order Model Checking

We now consider the general problem of First-Order model-checking, exam-
ples of which are the subgraph isomorphism problem (with fixed pattern)
and the distance-d dominating set problem we considered above.

Recently, Dvořák et al. [138] have given a linear-time algorithm for de-
ciding first-order properties in classes with bounded expansion, as well as
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an almost linear time algorithm for deciding first-order properties in classes
with locally bounded expansion. Here, a class C of σ-structures Rel(σ) has
locally bounded expansion if Gaifman(C) has locally bounded expansion.

Precisely, the following is proved in [138]:

Theorem 18.7. Let C ⊆ Rel(σ) be a class of σ-structures with
bounded expansion (resp. locally bounded expansion), and φ

be a First-Order sentence (on the natural language of Rel(σ)).
There exists a linear time (resp. an almost linear time) algo-
rithm that decides whether a structure A ∈ C satisfies φ.

More generally, they design a dynamic data structure for finitely colored
graphs belonging to a fixed class of graphs of bounded expansion with the fol-
lowing properties (for a fixed first-order formula φ(x) with one free variable):

� The data structure is initialized in linear time;
� The color of a vertex or an edge can be changed in constant time;
� We can find in constant time a vertex v ∈ V(G) such that φ(v) holds

All this extends to relational structures. This is based on the existence of
low tree-depth colorings and on a procedure of quantifier elimination [138].
Recently, Grohe and Kreutzer [229], instead of eliminating all the quantifiers
by means of the introduction of new functional symbols and the augmen-
tation of the original structure in a complicated way, proposed a procedure
allowing to eliminate universal quantifications by means of the additions of
new relations while preserving the Gaifman graph of the structure.

Lemma 18.3. Let C be a class of σ-structures with bounded expansion,
and let Φ(�x) = ∀�y Ψ(�x,�y) be a universal formula (where Ψ is quantifier-
free).

Then there exists an existential formula Φ′(�x) such that for every
A ∈ C there exists a σ′-structure A′ with the same universe such that:

(1) A′ may be constructed in linear time from A,
(2) Gaifman(A) = Gaifman(A′);
(3) for every �x, we have

A |= Φ(�x) ⇐⇒ A′ |= Φ′(�x).

We give a high-level sketch of this lemma, based on [229]:
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Proof (Very rough sketch of the proof). Let A ∈ C be a structure. Two
q-tuples �a and �b of elements of A have the same full type if they satisfy
the same formulas of quantifier rank at most q. The interest of full types is
that it allows to check formulas on the full types representatives instead of
checking it on all tuples, leading to a constant time evaluation algorithm.
Computation of the full types proceeds in stages.

(1) Compute a tree-depth decomposition;
(2) For each k-tuple C of colors is defined the local type of quantifier-rank

q of a tuple �a of elements in the substructure AC induced by the colors
in C, corresponding to equivalence classes in AC of tuples satisfying the
same formulas of quantifier rank at most q.

(3) The global type of a tuple �a is defined as the collection of all local types
of �a in the individual substructures AC, for all C of length at most k.
It is shown that global types can be defined by existential first-order
formulas.

(4) The global types then serve as the basis for the definition of full types. It
is shown that each full type can be described by an existential first-order
formula. The existential formulas describing full types in a structure A
is not be over the structure A itself, but over an expansion of A by the
edges of tree-depth decompositions.

��

From this lemma and Theorem 18.2 we deduce

Theorem 18.8. Let C ⊆ Rel(σ) be a class of σ-structures with bounded
expansion, and φ(�x) be a First-Order formula. There exists a linear
time algorithm that counts, for an input σ-structure A ∈ C the number
of vectors �x such that A satisfies φ(�x).

This may not be the end of the story and we are naturally led to the
following question:

Conjecture 18.1. Is it true that first-order model-checking is fixed-
parameter tractable on nowhere dense classes of graphs (or structures)?
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18.6 Counting Versions of Model Checking

18.6.1 Enumerating Isomorphs

It appears that one of the main lemmas of [158] (Lemma 2) actually induces
a linear time algorithm to solve the problem of counting all the isomorphs
of H in a graph G as soon as we have a linear time algorithm allowing to
compute a low-tree width partition of G:

Lemma 18.4. Assume we are given graph G with n vertices along with
a tree-decomposition T of G with width w. Let S be a subset of vertices
of G, and let H be a fixed graph with at most w vertices. Then in time
2O(w logw)n we can count all isomorphs of H in G that include some
vertex in S. We can list all such isomorphs in time 2O(w log w)n+O(kw),
where k denotes the number of isomorphs and the term kw represents
the total output size.

We deduce from this lemma and Theorem 17.1 an extension of Eppstein’s
result of [158, 159] to all classes with bounded expansion:

Corollary 18.2. Let C be a class with bounded expansion and let H be a
fixed graph. Then there exists a linear time algorithm which computes,
from a pair (G, S) formed by a graph G ∈ C and a subset S of vertices
of G, the number of isomorphs of H in G that include some vertex in S.
There also exists an algorithm running in time O(n) + O(k) listing all
such isomorphism where k denotes the number of isomorphs (thus rep-
resents the output size).

18.6.2 Counting Versions

Actually, such an improvement holds for a quite general class of count-
ing problems, namely to the problems having the following form: Let φ

be a quantifier free first-order sentence (i.e. a Boolean query) with free
variables x1, . . . , xp built using two binary relations Adj (“is adjacent to”)
and= (equality).

How many assignments of the free variables x1, . . . , xp of φ to vertices of G are
such that G |= φ(v)?

We deal with this in Sect. 18.6.3. This includes for instance, for a fixed graph
H and for input graphs G the problems
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� “How many homomorphisms does H have to G?”,
� “How many subgraphs of G are isomorphic to H?”,
� “How many induced subgraphs of G are isomorphic to H?”,

The counting version of Courcelle’s theorem by Arnborg et al. [32] states
that for each monadic second order property Φ(X1, . . . , Xl), and for each
class of graphs C with tree-width at most k, computing

|{(A1, . . . , Al) : G |= Φ[A1, . . . , Al]}|

may be done in linear time (if a tree-decomposition of width at most k of
G is given). Of course, this theorem allows to prove, using low-tree-depth
decompositions and using inclusion/exclusion, that counting the satisfying
assignments of a Boolean query for a graph in a class with bounded expansion
(resp. a nowhere dense class) may be done in linear time (resp. in time
n1+o(1)). However, this can be proved directly without the help of the above
theorem by means of an efficient linear time counting algorithm for classes
of graphs with bounded tree-depth.

18.6.3 Counting the Number of Solutions of a Boolean
Query

A Boolean query is a quantifier free first-order formula. Given a graph G and
a Boolean query φ with free variables x1, . . . , xp, we would like to count the
number of vectors v of p vertices of G such that G |= φ(v). Notice that this
number may be as large as |G|p. Of course, it follows from Corollary 17.1 that
if φ is fixed and input graphs G have bounded tree-depth, then it may be
decided in linear time whether the number of vectors v such that G |= φ(v)
is zero or not. However counting may also be performed in linear time:

Theorem 18.9. Let p be a fixed integer. Let φ be a Boolean query with
free variables x1, . . . , xp. Then there exists a polynomial Qp(X) and an
algorithm which count the number of vectors v of p vertices of G such
that G |= φ(v) and runs in time O(Qp(˜∇2p−2+ 1

2
(G) |G|)).

In particular, the algorithm runs in O(n) time if G is bound to a class
with bounded ˜∇2p−2+ 1

2
(G) (such as a bounded expansion class), and in

n1+o(1) time if G is bound to a class where ˜∇2p−2+ 1
2
(G) = |G|o(1) (such

as a nowhere dense class).

Proof. According to Theorem 17.1, a p tree-depth coloring of a graph G

of order n with Np(G) ≤ Pp(˜∇2p−2+ 1
2
(G) |G|) colors may be computed in



18.6 Counting Versions of Model Checking 409

O(Np(G)n) time. For each subset I of p′ ≤ p colors, counting the number
of isomorphisms from a graph F of order at most p to the subgraph GI of
G induced by vertices with color in I may be computed in time O(p22pn),
according to Lemma 17.3. By inclusion/exclusion we easily derive the number
of vectors v of p vertices of G such that G |= φ(v). ��

Notice that for graphs bound in a bounded expansion class, the running
time of the algorithm counting the number of vectors v of p vertices of G such
that G |= φ(v) is linear although this number may be as large as Θ(np). The
point here is that the algorithm count solution vectors but do not enumerate
them. Note that algorithms of this part can be generalized straightforwardly
to relational structures.
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Exercises

18.1. Prove that for every nowhere dense class C and for any integer k, there
exists an O(n1+o(1)) time preprocessing algorithm so that for any prepro-
cessed G ∈ C and any pair {x, y} of vertices of G the value min(k, dist(x, y))
may be computed in no(1)-time.

18.2. Deduce from Exercise 12.4 and Lemma 18.3 that for every class of
graphs C with bounded expansion, every first-order formula φ(x1, . . . , xp),
and every 0 < ε < 1 there exist positive reals C,N0, τ such that the following
holds for every G ∈ C of order at least N0:

If |{x ∈ V(G)p : G |= φ(x)}| > |G|k+ε then (up to relabelling of the free
variables of φ) there exist a p0-tuple t0 of vertices of G (with p0 ≥ 0) and,
for each i (1 ≤ i ≤ k + 1) a family Fi of pi-tuples of vertices of G (with
pi ≥ 1) such that

∑k+1
i=0 pi = p and such that:

� The tuples in {t0} ∪
⋃k+1

i=1 Fi are pairwise disjoint;
� For each 1 ≤ i ≤ k + 1 it holds |Fi| ≥ (|G|/C)τ;
� For every choice ti ∈ Fi, it holds

G |= φ(t0, t1, . . . , tk+1).



Chapter 19
Further Directions

“Frankly speaking, my friends,

Things could not be better!”
(John Gordon Gimbel)

Like every active area of mathematics our book leaves some intriguing and
challenging problems open. They relate for example to better computations
and improvements of provided bounds. In a way most of our results on log-
arithmic density are just the first order approximations which certainly can
be improved on many places.

In this chapter we collect some particular problems from areas, which seem
promising and challenging to us.

Low tree-depth (vertex) decomposition is one of our main tools. It is nat-
ural to ask whether such decompositions generalize to edge partitions. This
question has a very different flavour and a matroidal character. Some results
in this direction were recently obtained in [360].

As stated above in several areas our results may be seen as a first order
approximation results. In some cases, improvements may lead to interesting
structural theorems. For example, the extremal result for subgraph counting
in nowhere dense classes gives the existence of a sunflower of size nε in graphs
containing at least nk copies of a fixed subgraph. Can this be improved? Is
it possible, by refining the sunflower structure to bigger depth branching
regular structures, to capture almost all the copies of the fixed subgraph (up
to, say, a polylog factor)?

Another challenging problem is a refinement of random analysis. Is it
possible to generate general bounded expansion classes exactly (not just as
the liquid graphs introduced in Exercise 14.1). Perhaps this is too ambitious

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__19, © Springer-Verlag Berlin Heidelberg 2012
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and one should first consider the key “building blocks”, that is graphs with
tree-depth at most t. The probabilistic properties of random star forest is
already involved [384], and what we need are general bounded height finitely
colored rooted forests. In a way, the probabilistic analysis of random colored
star forests is a key step for a general analysis. Generally, the random aspects
of sparse graphs present a very challenging problem (as it is also known in
other contexts [76, 267, 471]).

Model theory and mathematical logic is an important aspect of many
parts of this book. In many cases, extension of graph results to structures are
routine (and expected) but we listed several areas (such as homomorphism
preservation theorems or dualities) where the connection seems to be more
profound. And there are problems too. One of them is to find a proper setting
for a notion of nowhere dense class of relational structures in the context of
first-order logic (see for instance Problem 5.1 in Sect. 5.7).

Let us mention three specific problems in a greater detail.
We believe that the results of this book give to an interested reader an

impression that Nowhere Dense classes are somewhat well understood and
they multiple characterizations lead to interesting results and applications.
But the somewhere dense classes we did not analyze in a greater detail and
mostly we considered them like one large bag.

Problem 19.1. Is there a good parametrization of somewhere
dense classes?

For example, one can consider the smallest time τ(C) such that C� τ(C)

is the class of all graphs, or the smallest time τ̃(C) such that C ˜� τ̃(C) is
the class of all graphs. We could regard them as (minor and topological
minor) phase transition times of the class C. Are phase transition times
good parametrizations?

The difference between the two versions of the phase transition time may
be arbitrarily large. An example is depicted on Fig. 19.1. However, according
to Proposition 5.2, the minor and topological minor phase transition times
are related by:

τ̃(C) − 1

3
≤ τ(C) ≤ τ̃(C).

The topological phase transition time τ̃ naturally defines a sub-classification
of somewhere dense graphs. It follows from a standard Ramsey argument
that, for a somewhere dense class of graphs C, the value τ̃(C) is the mini-
mum half-integer such that the class Kα of the exact (2α + 1)-subdivisions
of the complete graphs is included in C ˜� 0 (an exact (2α + 1)-subdivision
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p1

p2

p3

p4

p5

p6

Fig. 19.1 By subdividing the graphs whose construction is shown above we can build
a sequence of classes Ci such that τ̃(Ci) ∼ 4

3
τ(Ci) and τ(Ci) → ∞ as i → ∞ thus

proving that τ̃(C) − τ(C) may be arbitrarily large

subdivides every edge by exactly (2α+1) points). As a consequence, we have
the following stability result:

The collection of the nowhere dense classes with topological phase
transition time τ̃0 is closed under any intersections and under
finite unions.

Let us approach this yet from another side: Assume a class C has a phase
transition at time τ̃(C). Then all the classes C ˜� t for t < τ̃(C) are different
from Graph (thus all of them have a bounded clique number). According to
Theorems 5.3 and 7.8, for every positive integer p � τ̃(C) and G ∈ C, we
have

χp(G) = O
(

n
10p22p

τ̃(C)
)

.

Thus we may think of C as a truncated nowhere dense class in the
following sense:

Recall the local versions of Theorem 17.1 (Lemma 17.3 and Theorem 12.5).
We see that many of the properties of nowhere dense classes are preserved
far from the transition time. Consider the following example: Let ε > 0 be a
small positive real. Assume

|F| ≤ log2 log2(ετ̃(C)).
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Then:

� There exists an algorithm of time complexity O(n1+ε(|F|+1)) to count the
number of copies of F in G ∈ C;

� The upper logarithmic density of F in a monotone class C

� = lim sup
G∈C

log(#F ⊆ G)

log |G|

is either −∞ or belongs to one of the intervals

[0, ε], [1, 1+ ε], . . . , [α(F), α(F) + ε].

(see Fig. 19.2).

úFú

α(F )

1

0

lim sup
G∈C

log(#F ⊆ G)
logúGú

(C)22úFú

Fig. 19.2 Possible values of the logarithmic densities of a small graph F in a monotone
class C depending on the transition time τ̃(C) (if not −∞)

This (and other similar examples) shows that the somewhere dense classes
share some properties with nowhere dense classes at the beginning of their
resolution. In fact this is one of our motivations for formulating and studying
local versions. These properties are then lost if we move closer to the phase
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transition (and of course beyond it). Our world seems to be then suddenly
governed by statistics of dense graphs. Can one formulate the statistics in
terms of the original class C? Can we then develop a version of statistics
for dense graphs by means of frequencies of paths or powers of incidence
matrices or yet something else? Perhaps more concretely: is there a version
of Szemerédi Regularity Lemma for somewhere dense classes?

We know that nowhere dense classes are very broad and cover many in-
teresting instances.

But is there a nowhere dense class C which is algebraically universal?
More concretely: a mapping Φ which assigns to every graph G a graph

Φ(G) belonging to C and to every homomorphism f : G −→ H a homo-
morphism Φ(f) : Φ(G) −→ Φ(H) is called an embedding if the following
holds:

1. Φ(idG) = idΦ(G) (id denotes the identity);
2. Φ(f) ◦Φ(g) = Φ(f ◦ g) whenever the right hand side makes sense;
3. Φ is injective;
4. For every g : Φ(G) −→ Φ(H) there exists f : G −→ H such that Φ(f) = g.

Our problem then takes the following form:

Problem 19.2. Is there an embedding of the category of all finite
graphs into a nowhere dense class C?

This question is interesting already at the beginning even for just one
graph (where it amounts to representing groups and monoids by graphs in a
bounded expansion class). In these classes papers [45, 46] provide a negative
answer for every proper minor closed classes (for groups) and every proper
topological minor closed classes (for monoids). Nevertheless the answer is
positive for a nowhere dense class in both cases (and even for any finite set of
graphs; i.e. any finite category). It is also positive for infinite partial orders
by means of Theorem 3.14. But perhaps in general one should expect that
the answer is negative.

Let us finish this book on a more speculative note.

Problem 19.3. What are the building blocks of nowhere dense
classes?
What are the building blocks of bounded expansion classes?
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What we are looking for here are structure theorems for these class, in the
line of the following known results of structural graph theory:

Robertson and Seymour proved a structure theorem [398] for the class of
H-minor free graphs: every H-minor free graph can be decomposed in a way
such that each part is “almost embeddable” into a fixed surface;
Recently, Grohe et al. [228] gave an extension of this structure theorem to
classes excluding a topological minor. The latest version of this structure
theorem by Grohe and Marx [231] states that graphs excluding a fixed graph
H as a topological minor have a tree decomposition where each part is ei-
ther “almost embeddable” to a fixed surface or has bounded degree with the
exception of a bounded number of vertices.

Can we go further? Can all (typical) bounded expansion classes be generated
by a finite list of such building blocks?

What are the nowhere dense classes which fail to have bounded expansion?
By Theorems 13.1 and 13.2 we know that these are exactly classes for which
at some time of a resolution χ (or d) becomes infinite while ω stays bounded.
Hence these classes should contain shallow subdivisions of graphs with ar-
bitrarily large girth and chromatic number (or minimum degree), assuming
that Erdős-Hajnal Conjecture 11.3 or Thomassen Conjecture 11.5 holds.

At this fine landscape we decided to end.



Chapter 20
Solutions and Hints for some of the
Exercises

Thy Holly Thread of Ariadne
Shalt thou follow as far as the Minotaur.

Exercises of Chapter 3

3.1 For A ⊆ V(G) let f(A) be the number of edges between A and V(G)\A.
Let A be such that f(A) is maximal. No vertex v ∈ A has more neighbors in
A than in V(G)\A as we would have f(A−v) > A. Also, no vertex v �∈ A has
more neighbors in V(G)\A than in A as we would have f(A+v) > A. Hence
the minimum degree of the bipartite subgraph of G obtained by deleting the
edges within A and V(G) \A is at least �d/2�.
3.2 The argument is similar to the one of the proof of Lemma 3.1. Consider
an acyclic orientation �G of G with indegree at most k. The orientation of G
naturally defines an acyclic orientation of each copy of H in G. Let �H be some
acyclic orientation of H and let h1, . . . , ht be the sinks of �H. Notice that no
two sinks of �H are adjacent hence t ≤ α(H). Let x1, . . . , xt be t vertices of
G. If we require that hi is mapped to xi when looking for a copy of �H in
�G, then there are at most k possible choices for each in-neighbors of these
vertices and, then, at most k possible choices for each of the in-neighbors of
the in-neighbors, and so on.

J. Nešetřil and P.O. de Mendez, Sparsity, Algorithms and Combinatorics 28,
DOI 10.1007/978-3-642-27875-4__20, © Springer-Verlag Berlin Heidelberg 2012
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h1

ht

x1
xt

�H

�G

It follows that the number of copies of �H where hi is mapped to xi is at
most k|H|−t. As there are at most |G|t choices for x1, . . . , xt we obtain, by
summing up over all possible acyclic orientations of H, that the number of
copies of H in G is at most

α(H)∑

t=1

Acyct(H)k|H|−t |G|t

3.8

� Let H be a graph of order n and let M(H) be its Mycielskian. It is clear
that |M(H)| = 2|H| + 1 and that M(H) is triangle-free if H is. Assume
M(H) is k-chromatic. Consider a proper k-coloring of M(H) with k-colors,
in which that vertex z is colored k. If a vertex x (in the copy of H in M(H))
has color k, then we can safely recolor it with the color of x ′ (which has
color different from k) as these vertices have the same neighbors. It follows
that H has chromatic number at most k−1. Conversely, any proper k−1-
coloring of H obviously defines a proper k-coloring of M(H).

� Consider a linear order on the vertices of a graph G and the corresponding
natural orientation of G.

1. If there exists a vertex v such that χ(G[N−(v)]) > h(ω(G)− 1, c), then
by induction G[N−(v)] (hence G) has a triangle-free subgraph with
chromatic number at least c;

2. If every vertex v is such that χ(G[N−(v)]) ≤ h(ω(G)−1, c), color all the
edges with maximum endpoint v by the colors of their lower endpoints
in a proper coloring of G[N−(v)] with at most h(ω(G) − 1, c) colors.
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v

Then one of the monochromatic subgraphs Gi (1 ≤ i ≤ h(ω(G)−1, c))
of G has chromatic number

χ(Gi) ≥ χ(G)
1

h(ω(G)−1,c) ≥ c.

Moreover, this monochromatic subgraph is triangle-free by construc-
tion.

3.7 The proof of the statement follows along the same lines as the proof of
Proposition 3.4 (and a similar statement holds for every graph G satisfying
χ(G) ≤ k, for any fixed k).

3.9 Let R(x, y) denote the adjacency relation. Define

� U[v1, v2] as (v1 	 v2)∨ R(v1, v2);
� E[u1, u2, v1, v2] as (u1 	 u2)∧ (v1 	 v2);
� FR[u1, u2, v1, v2] as

(u1 	 u2)∧ (u1 	 v1)∨ (u1 	 v2)∧ (u2 	 v1)∨ (v1 	 v2)∧ (v1 	 u1).

Exercises of Chapter 4

4.1 If G is planar, then every minor of G is also planar (thus has average
degree less than 6) hence

˜∇r(G) ≤ ∇r(G) < 3.

If G has maximum degree D, so has every topological minor of G hence
˜∇r(G) ≤ D. Shallow minors of G at depth r have maximum degree at most
D(D− 1)r−1 hence ∇r(G) ≤ D(D− 1)r−1.

If G may be drawn in the plane in such a way that every edge is crossed
by at most one other edge, then G is a ≤ 1-subdivision of H • K2, for some
planar graph H. Thus, by monotony and by Proposition 4.2 we have

˜∇r(G) ≤ ˜∇2r+1/2(H • K2).

According to Proposition 4.6:
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˜∇2r+1/2(H • K2) ≤ max(4r + 1, 4)˜∇2r+1/2(H) + 1 ≤ max(12r + 4, 13).

Thus:
˜∇r(G) ≤ max(12r + 4, 13).

(A better bound for ˜∇r(G) is given by Theorem 14.4 in Chap. 14.) According
to Corollary 4.1 we have

∇r(G) ≤ 4(4˜∇r(G))(r+1)2 ≤ 4(max(48r + 16, 52)(r+1)2 .

4.2
Let Z = {z1, . . . , zp} be a maximal subset of vertices of G pairwise at

distance at least 2d + 1. Define the mapping π : V(G) → Z as follows: for
x ∈ V(G), π(x) is, among the vertices zi ∈ Z such that dist(x, z) is minimum,
the one with minimum index i. Let Ti be the subgraph induced by π−1(zi).
Notice that dist(x, π(x)) ≤ 2d. The graph Ti is connected and, as the girth
of G is at least 8d + 3, each Ti is a tree. Moreover, for 1 < i < j ≤ p there
is at most one edge linking a vertex of Ti and a vertex of Tj (as the girth of
G is at least 8d + 3). As δ(G) ≥ 3, every leaf of Ti is adjacent to at least
two vertices out of Ti. Moreover, the number of leaves of Ti is at least equal
to the number of vertices of Ti at distance d from zi. As these vertices are
closer to zi than to any other zj (as dist(zi, zj) > 2d) and as δ(G) ≥ 3,
Ti contains at least 3.2d−1 such vertices. By contracting each Ti (which has
radius at most 2d) we therefore get a graph with minimum degree 3.2d. Hence
∇2d(G) ≥ 3.2d−1 > 2d.

Exercises of Chapter 5

5.2 Let f+ : IN → IR+ be defined as f+(n) = supi≥n f(i) + 1/ log2 n. Then
we have f+(n) ≥ f(n), f+ is decreasing, and limn→∞ f+(n) = 0. Let h :

IN → IN be a non decreasing function such that for every integer g it holds
f+(h(g)) < 1/g. Then define the class Cf as the class of the graphs G such
that Δ(G) ≤ h(girth(G)). This class is nowhere dense: assume Kt ∈ Cf ˜�p.
Because the corresponding shallow subdivision of Kt is a subgraph of a graph
G ∈ Cf with Δ(G) ≥ t− 1 and girth(G) ≤ 6p + 3 we have t ≤ h(6p + 3) + 1

thus ω(C ˜�p) < ∞. Let n ∈ IN. Fix d = nf+(n). There exists a graph Gn of
order n, girth g ≥ log n

log d
= 1

f+(n)
and minimum degree between d. Thus:

Δ(Gn) ≤ n ≤ h(g) ≤ h(girth(Gn)).

Moreover, we have |Gn| ≥ n and
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‖Gn‖ ≥ d|Gn|/2 = |Gn|
1+f+(n)− 1

log2 n ≥ |Gn|
1+f(|Gn|).

Exercises of Chapter 6

6.1 The inequality td(Tn) ≥ n follows from an easy induction:

� td(T1) = 1,
� Let r be a vertex of Tn such that td(Tn − r) = td(Tn) − 1. One of the

connected components of Tn − r contains a copy of td(Tn−1). As td is
monotone we deduce (using the induction hypothesis)

td(Tn) = td(Tn − r) + 1 ≥ td(Tn−1) + 1 = n.

6.2 We prove the result by induction on t. Either G already contains at
least m connected components (and we are done) or one of the connected
components G0 has order at least mt−1

m−1
≥ mt−1 + 1. Let r0 be a vertex of

G0 such that td(G0 − r0) < td(G0). By induction, there exists a subset S0

of at most t − 2 vertices of G0 − r0 such that G0 − r0 − S0 has at least m

connected components. Put S = S0 ∪ {r0}.

6.3 We consider three cases:

� G and H are both bipartite. Then prove a stronger result by replacing the
product by a “semi-product” where only the white–white and black–black
vertices are kept in the product;

� The case where H ≈ K2. Use a centered coloring in the product, find a
minimum vertex (r, i) and then conclude as

td(G × K2) ≥ td((G− r)× K2) + 1 ≥ td(G− r) + 1 ≥ td(G).

� The case where td(H) > 2. Use a centered coloring in the product, find a
minimum vertex (u, v) and then conclude as

td(G×H) ≥ td(G×(H−v))+1 ≥ td(G)+td(H−v)−2+1 ≥ td(G)+td(H)−2.

6.4

1. Follow an elimination order of G on every orientation �G. At depth
td(G) − 1, only oriented stars remain (hence no strongly connected com-
ponents). Thus cr+(G) ≤ td(G) − 1.

2. Fix an integer n ≥ 2. Let G = (A,B) be the complete bipartite graph
with |A| = |B| = n, let M be a perfect matching of G and let �G be the
orientation of G such that every edge e = {a, b} with a ∈ A and b ∈ B is
oriented from a to b if e �∈ M and from b to a if e ∈ M.
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� td(G) = n+ 1: If the removal of a subset S of vertices disconnects the
graph then S fully contains either A or B.

� cr+(G) = n: Let S be a minimal set of vertices such that �G− S is not
strongly connected. Let X and Y be a partition of V(G) − S into two
non-empty subsets such that no arc is oriented from Y to X. If none
of X and Y has cardinality at least 2, we are done. Otherwise, at least
one element of X is not matched with all elements of Y thus X∩A �= ∅
and Y ∩ B �= ∅. It follows that X ⊆ A and Y ⊆ B and that no edge in
M is incident to a vertex in X and a vertex in Y. Thus |X∪Y| ≤ n and
|S| ≥ n.

� Let H be a minor of G. Let �H be an orientation of H such that cr(�H) =

cr+(H). There exists an orientation �G of G such that �H is a minor of
�G. According to Theorem 6.2, we have cr(�H) ≤ cr(�G). Hence

cr+(H) = cr(�H) ≤ cr(�G) ≤ cr+(G).

6.6

� Define inductively ϑ0,k(r1, . . . , rk, x, y) as ((x = y)∨ (x ∼ y)) ∧
∧

i ¬(x =

ri)∧ �= (y = ri), . . . , and ϑt+1,k(r1, . . . , rk, x, y) as ∃z ϑt,k(r1, . . . ,

rk, x, z)∧ θt,k(r1, . . . , rk, z, y);
� Cases where t = 1 or t = 2 are handled directly. For t ≥ 3 define

δt,k(r1, . . . , rk) as ∀x∀y ϑt+1,k(r1, . . . , rk, x, y) → ϑt,k(r1, . . . , rk, x, y).

6.8 Define inductively

Λ1(w1, . . . , wl, x, y)
def
= (x ∼ y)∨ (x = y)

Λd(w1, . . . , wl, x, y)
def
= Λd−1(w1, . . . , wl, x, y)∨

∃z
( l
∧

i=1

¬(z = wi)∧Λ�d/2�(w1, . . . , wl, x, z)∧Λ�d/2�(w1, . . . , wl, x, z))

)

The second item is proved by induction on t = td(G[CG−{a1,...,al}(r)]−r).
Let C = CG−{a1,...,al}(r). Assume that t = 0. Then C = {r}. Define

Ψ(z1, . . . , zl, w)
def
=

l
∧

i=1

¬(w = zi)∧

(

∀x
(

(x ∼ w) ↔
∨

i:ai∼r

(x = zi)

))

.

Then qrank(Ψ) = 1 and conditions (1) and (2) are clearly equivalent.
Now assume that the property has been proved for all the situations where

0 ≤ td(G[CG−{x1,...,xk}(y)]) < t and assume td(G[CG−{a1,...,al}(r)] − r) =

t ≥ 1. Let C = CG−{a1,...,al}(r) and let C1, . . . , Cm be the vertex sets of the
connected components of G− {a1, . . . , al, r}. Say that Ci is equivalent to Cj
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if there exists an isomorphism g : G[{a1, . . . , al, r} ∪ Ci] → [{a1, . . . , al, r} ∪
Cj] that fixes a1, . . . , al and r. Let n be the number of non-equivalent sets
among C1, . . . , Cm. Without loss of generality, we can assume that these non-
equivalent sets are C1, . . . , Cn. We denote by Ni (for 1 ≤ i ≤ n) the number
of sets among C1, . . . , Cm which are equivalent to Ci. In each Ci we choose
a vertex ri such that td(G[Ci − ri]) < td(G[Ci]). Finally, we denote by σi

the number of vertices x in Ci such that there exists an automorphism of
G[{a1, . . . , al, r}∪Ci] which fixes a1, . . . , al, r and sends x to ri. By induction
there exists, for each 1 ≤ p ≤ n a formula Ψp(z1, . . . , zl+1, w) such that

� qrank(Ψp) = td(G[Cp] − rp) + 1 ≤ td(G[C] − r) = t;
� For every graph H and for every b1, . . . , bl, s, sp in V(H) the following

conditions are equivalent:

1. The mapping g0 :ai �→bi, r �→ s is an isomorphism from G[a1, . . . , al, r]

to H[b1, . . . bl, s] and H |= Ψp(b1, . . . , bl, s, sp);
2. There exists an isomorphism

gp : G[Cp ∪ {a1, . . . , al, r}] → H[CH−{b1,...,bl,s}(sp) ∪ {b1, . . . , bl, s}]

such that gp(rp) = sp, gp(r) = s and gp(ai) = bi (for 1 ≤ i ≤ l).

We define Ψ(z1, . . . , zl, w) as the conjunction of the Φi(z1, . . . , zl, w) (for
1 ≤ i ≤ 4+ n), where

Φ1(z1, . . . , zl, w)
def
=

l
∧

i=1

¬(w = zi)

Φ2(z1, . . . , zl, w)
def
=

∧

i:ai∼r

(w ∼ zi) ∧
∧

i:¬(ai∼r)

¬(w ∼ zi)

Φ3(z1, . . . , zl, w)
def
= ∀v (Λ(2t, z1, . . . , zl, w, v)

→ Λ(2t − 1, z1, . . . , zl, w, v))

Φ4(z1, . . . , zl, w)
def
= ∃=|C|v Λ(2t − 1, z1, . . . , zl, w, v)

Φ4+p(z1, . . . , zl, w)
def
= ∃Npσpy Ψp(z1, . . . , zl, w, y)

First notice that qrank(Ψ) = t+ 1. Let H be a graph and let b1, . . . , bl, s be
vertices of H. Then:

� H |= Φ1(b1, . . . , bl, s) if s is different from b1, . . . , bl;
� If f0 : ai �→ bi is an isomorphism from G[a1, . . . , al] to H[b1, . . . , bl] and

s /∈ {b1, . . . , bl} then H |= Φ2(b1, . . . , bl, s) if g0 : ai �→ bi, r �→ s is an
isomorphism from G[a1, . . . , al, r] to H[b1, . . . bl, s];

� H |= Φ3(b1, . . . , bl, s) if no vertex in the connected component of H −

{b1, . . . , bl} which contains s is at distance greater than 2t − 1 from s
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(in this component), what is the case in particular if td(H[CH−{b1,...,bl}(s)]

− s) ≤ t;
� Assuming H |= Φ3(b1, . . . , bl, s), then we have H |= Φ4(b1, . . . , bl, s) if

|CH−{b1,...,bl}(s)| = |C|.
� Assuming H |= Φ1(b1, . . . , bl, s) and H |= Φ2(b1, . . . , bl, s), then H |=

Φ4+p(b1, . . . , bl, s) implies (according to induction hypothesis) that there
exists Npσp vertices sp such that there exists an isomorphism from G[Cp∪
{a1, . . . , al, r}] to H[CH−{b1,...,bl,s}(sp) ∪ {b1, . . . , bl, s}] which send ai to
bi, r to s and rp to sp.

The last item follows by defining

Ψ̂
def
= (∃=|G|x)∧

∧

p

∃Npσpv Ψp(v).

Exercises of Chapter 7

7.1 Consider the countable directed graph �G with vertex set {v1, . . . , vn, . . . }
constructed as follows: (v1, v2), (v1, v3) and (v2, v3) are arcs of �G; for each
i ≥ 3, if the two in-neighbors of vi are va and vb (with a < b) then v2i−2 has
in-neighbors va and vi and v2i−1 has in-neighbors vb and vi. Consider any
2-coloring of the vertices of G. For n ∈ IN define l(n) as the maximum for
2n−1 + 2 ≤ i ≤ 2n + 1 of |�P1| + |�P2| where �P1 (resp. �P2) is a monochromatic
directed path with color 1 (resp. with color 2) ending at an in-neighbor of
vi. By easy induction, l(n) ≥ n− 1. Hence, denoting by Gn the subgraph of
G induced by the vertices v1, . . . , v2n+1, no 2-coloring of the vertices of Gn

can avoid the existence of a monochromatic path of length n/2− 1.

v10

v6

v4

v1

v3

v2

v5

v8

v15

v14v13

v9
v17

v16
v11

v12

v7
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7.2

1. For each pair {i, j} of colors, the subgraph of G induced by colors i and j is
(by definition of a star coloring) a star forest. Orient each star of the forest
from its center (or arbitrarily when stars are reduced to single edges). It
is easily checked that if H is a tight 1-transitive fraternal augmentation of
G (with respect to the just defined orientation) then χ(H) ≤ N = χs(G).

2. We deduce a construction of planar subcubic graphs of arbitrary high
girth and star chromatic number 4:

3. Color the vertices of G in such a way that two vertices get different colors
(in G) if they are adjacent in the augmented graph H. It is easily checked
that whatever orientation a path of length 3 of G may have, its vertex
set will induce in H a subgraph with at least one triangle.

in G�

in H

It follows that the vertices of every path of length 4 of G get at least
three colors, hence the coloration is a star coloring of G.

7.4 Consider the following example:
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Exercises of Chapter 8

8.1 Recall that the girth of a graph G is the minimal length of its cycles,
and that it is denoted by girth(G). Consider the class C of all 2-connected
graphs G satisfying Δ(G) ≤ girth(G) (see some examples of this elusive class
on the figure below).

Then the class C does not have a bounded average degree. However, it is
easy to see that C is a wide class:

Assume that a graph G ∈ C has diameter at most D. As G is 2-connected,
it includes a cycle of length girth(G) ≤ 2D + 1. It follows that Δ(G) is at
most 2D+ 1 thus G has at most about (2D+ 1)D vertices (because diameter
is at most D). Hence for every integer d and m, every graph in the class with
at least (about) (2dm + 1)dm vertices has a d-independent set of size m.
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8.2

1. The class of all the 2-degenerate graphs (which include 1-subdivisions of
arbitrarily large cliques) is degenerate but not uniformly quasi wide;

2. The class of all graphs whose girth is larger than their maximum degree
is uniformly quasi-wide but not degenerate (graphs in this class do not
even have a bounded average degree).

Exercises of Chapter 9

9.1

� �γ circuit of �G =⇒ loop at V(�γ) in U(�G)

� (A1, . . . , Ak) circuit of U(�G) =⇒ �G contains a circuit whose length is a
multiple of k.

More generally, if U(�G) contains a cycle γU then �G contains a cycle γ such
that for some k ∈ IN it holds:

|γ+| = k |γ+
U| and |γ−| = k |γ−

U|.

9.3

� Assume that [A] = [N1×N2×· · ·×Nq] where the Nj’s are multiplicative
and pairwise non comparable. For each 1 ≤ a ≤ p we have

q∏

j=1

Nj
����

p∏

i=1

Mi → Ma.

As Ma is multiplicative we deduce that there exists 1 ≤ f(a) ≤ q such
that Nf(a) → Ma. Similarly, for each 1 ≤ b ≤ q there exists 1 ≤ g(b) ≤ p

such that Mg(b) → Nb. Thus, for every 1 ≤ a ≤ p we have Mg◦f(a) →
Nf(a) → Ma hence g◦f(a) = a (as the Mi’s are pairwise non-comparable).
Similarly, for every 1 ≤ b ≤ q we have f ◦ g(b) = b hence p = q, f is a
bijection, g = f−1 and Nf(i)

���� Mi for every 1 ≤ i ≤ p. That is: the
decomposition of [A] is unique.

9.5 To prove that the set of non-connected elements of [Rel(σ)] is dense in
[Rel(σ)]L, we prove that for every connected G and every ε > 0 there exists
non-connected H such that G → H and distL([G], [H]) < ε.

According to the Lemmas 9.9 and 9.3-(d), there exist A and B such that
A ����� � B, G → A×B and distL([G], [A×B]) < ε. Notice that A×B ��

�� � A+B.
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According to ambivalence lemma there exists a graph H such that
A × B ��

�� � H ��
�� � A + B such that distL([A] × [B], [H]) < ε and distR([H],

[A + B]) < 2−|A|+|B|. We deduce that distL([G], [H]) < ε (as distL is an
ultrametric), G → H and H → A+B although H � A and H � B (which
means that H is not connected).

Exercises of Chapter 11

11.2 The property is a direct consequence of the existence of the following
homomorphisms:

C3 ⊕ C5

����
���

��

C3
11

��������

����
���

� K6

K2 ⊕H7

��������

11.5 Assume that G is planar and that G[�2p+1] contains a K5. As K5 is not
planar, two minimum distance paths linking disjoint pairs {a, b} and {a ′, b ′}
of main vertices of the K5 intersect. However, this implies that two vertices
among a, b, a ′, b ′ are linked by a path of length strictly smaller that 2p+ 1.

An evidence that the clique number of the odd-distance graphs of outer-
planar graphs is not bounded follows from the following construction:
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Exercises of Chapter 12

12.1 Let A be the set of the vertices of G with degree greater than 2k
1−ε

. As
G is k-degenerate, its average degree is at most 2k. Moreover, according to
(3.3) (Sect. 3.2), we have |A| ≤ ε |G|.

As G − A has maximum degree at most 2k
1−ε

, it contains at most
( 2k
1−ε

)|F|−1 |G| copies of F.

Exercises of Chapter 16

16.1 Consider a graph G of order n. Apply Lemma 16.3 with

z =

⌊

1

2k
log2 n log2 logn

⌋

logn ≈ 1

2k
log3 n log2 logn.

The assumptions are satisfied, as

2z(ω(G� z) + 1) ≤ 2z(f(z) + 2)

≤ 2z(f(log3 n log2 logn) + 2)

≤ e
1
2

log n

≤
√

n logn.

Hence G has a separator of order Cn log n
z

. Apply the lemma of Dvořak and
Norine [139] and conclude that C is small.
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Full type, 412
Functional equivalence, 56
Functorial interpretation, 60, 249

G-bounded expansion, 112
Gaifman graph, 49, 112
Gaifman’s locality theorem, 240
Gallai-Hasse-Roy-Vitaver theorem, 42,

199
Game chromatic number, 86, 358
Gap, 45
Generalized Ramsey number, 54
Genus, 55
Girth, 27–29, 270, 432

of a structure, 49
Global type, 412
G-nowhere dense, 112
Gödel completeness theorem, 235
Grad, 66
Graph distance, 177
Graph invariant, 54
Graph isomorphism, 33
Graph parameter, 54, 97

hereditary, 97
monotone, 97
subdivision bounded, 97
weakly topological, 97

Graph Ramsey number, 54
Greatest reduced average density, 66
Grid, 35
G-somewhere dense, 112

Hadwiger number, 33, 67, 271
Handle, 115
Handshaking lemma, 21
Hasse diagram, 342
Hedetniemi conjecture, 209
Height

of a rooted forest, 117, 285
of a vertex in a rooted forest, 117,

285
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Hereditary, 91, 216
class, 61
closure, 96

Hom-equivalent, 42, 142
Homomorphism, 15, 39, 47, 48

closed, 92
domination exponent, 298
duality, 41, 45, 93
equivalence, 206
order, 42, 206, 207
quasi-order, 142

Homomorphism Preservation Theorem,
230

Hyperedge, of a hypergraph, 48
Hyperfinite, 372
(ε, k)-Hyperfinite, 372
Hypergraph, 47, 48, 112

I-bounded expansion, 113
Ideal, 205
imm-grad, 84
Immersion, 31, 32, 83
Immersion resolution, 96, 302
Incidence graph, 49, 113
Incidence list, 387
Incidence matrix, 387
Indegree, 24
Independence number, 59
Independence property, model theory,

110
r-Independent, 177
Induced matching, 345
Induced subgraph, 22
Induced substructure, 47
Induced substructure generated by,

47
Initial segment, 205
Injection, from a categorical sum,

40
I-nowhere dense, 113
Input graph, 388
Internally vertex disjoint paths,

31
Interpretation, 51
I-somewhere dense, 113
Isomorphism, 39
Isomorphism problem, 55
Isomorphism type, 55
Isoperimetric number, 37

Join, 205
Joint embedding property, 216
Jump number, 342

Kuratowski’s graphs, 31

Laplacian, 361
Lattice, 205
Legendre–Fenchel transform, 375
w-Length, 168
Length of a word, 131
Level, of a vertex in a rooted forest,

285
Lexicographic product, 80

of a class by a graph, 95
Limiting density, 115
Linear <-reorientation, 264
Linear extension, 342
Liquid graph, 342
List assignment, 398
r-Local sentence, 240
Local tree-width, 109
Local type, 412
Locally bounded expansion, 109
Locally excluding a minor, 109
p-Locally homomorphic, 258
Logarithmic density, 99
Logical depth, 145
Log-space DTM, 36
Loop complexity, 131
Loś-Tarski theorem, 229
Lovász vector, 46
Low depth minor, 62
Lowenheim-Skolem theorem, 235
Lower set, 205
Lyndon’s theorem, 230

Mad, 24
Matching, 345
Matching number, 14
Maximum average degree, 24
Maximum degree, 21
Maximum induced matching,

345
Maximum matching, 345
Meet, 205
Minimal asymmetric, 193
Minimum degree, 21
Minor, 32

closed, 91
closure, 96
of a graph, 30
order, 30
resolution, 301

Model, 235
Model-checking problem, 403
Modular decomposition, 147
Monadic second order logic, 35
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Monotone, 91
class, 61
closure, 96

Moore bound, 29
Multiplication of vertices, 80
Multiplicative

Hom-equivalence class of structure,
208

structure, 208
Mycielskian, 59

Neighborhood, 320
d-Neighborhood, 61, 177
Nested edges, 325
Nested inside, 325
Non-elementary function, 137
Non-repetitive coloring, 333
Nowhere dense, 102, 105
Nowhere dense class, 270
NP-complete, 36, 43

Odd-girth, 272
of a σ-structure, 212
of a class, 361
of a spider, 68

Oligomorphic automorphism group,
247

Omega-categorical theory, 247
Order

of a bramble, 35
of a graph, 21

Ordered coloring, 127
Ordered graph, 325
Orientation, 24, 42

transitive, 155
Outdegree, 24

PAC, 112
k-Page book embedding, 326
Page-number, 326
Partial k-tree, 34, 148
Partially ordered set, 205
Path decomposition, 34
p-Path degenerate, 115
Path-width, 34, 125
Pattern, 285
Point, of a hypergraph, 48
Polynomial functional equivalence, 56
Poset, 43, 205
PP-theory, 233
Preserved under homomorphisms, 244
Prime filter, 206
Prime ideal, 205
Primitive positive, 231

Principal filter, 205
Principal ideal, 205
Principal vertex, of a subdivision, 31
Probably approximately correct, 112
Product conjecture, 209
Product dimension, 41, 351
Profile, 46
Projection, of a categorical product, 40
Proper, 47, 92
Proper coloring, 148
Proper extension, 47

Qrank, 145
Quantifier count, 49
Quantifier rank, 49

of a theory, 242
Quasi-wide, 177, 179, 313
Queue, 325
k-Queue, 325
k-Queue layout, 325
Queue-number, 326

Radius, 62
of a H-decomposition, 63

Ramification, 62
Ramsey linear class, 54
Ramsey linear family, 356
Ramsey number, 53, 356
Random graph, 29, 37
Rank, 86
Rank function, 118
Ray, 253
Regular expressions, 131
Regular graph, 37
Relational forests, 200
Relational structure, 47, 48, 112
Relational tree, 50, 200
Relativization, 93
Reorientation, 388
Repetitive coloring, 333
Replication graph, 80
Resolution, 96
Restricted duality, 256
C-Restricted duality, 255
Retract, 43, 217
Rigid graph, 12
Rooted forest, 117
Rooting, 335
Rotation scheme, 388

Satisfiable, 235
d-Scattered, 177
2-Section, 49
k-Step selection-deletion game, 132
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Sentence, 230
Separation number, 37
Series-parallel graph, 45
Set of lower bounds, 206
Set of upper bounds, 206
Set system, 48
Shallow immersion, 83
Shallow minor, 62
Shallow subdivision, 270
Shallow topological minor, 65
Shelter, 133
Shift graph, 227
Signature, 47
Simple graph parameters, 54
Singleton duality, 200
Size, of a graph, 21
Small, class of graph, 25
Somewhere dense, 102, 105
Sparse incomparability lemma, 211
Spider, 68
Split, 31
Stability number, 59
Stable, model theory, 110
Stack, 325
k-Stack, 325
k-Stack layout, 325
Stack-number, 326
Star chromatic number, 149, 157
Star coloring, 157
Star height

of a regular expression, 131
of a regular language, 131

Star selectors, 50
Stretch, 83
Strong star chromatic number, 354
Strong star coloring, 354
Strongly connected, 130
Strongly connected component, 130
Strongly minimal asymmetric, 193
σ-Structure, 47
Subgraph, 22
Subgraph isomorphism problem, 406
Substructure, 47
Sum

of σ-structures, 47
of two graphs, 40

Superflat, 110
Supremum, of an invaraint on a class,

93

td-Representation, 291
Templates, 42,199
Theory, 233

of a structure, 235

Thickness, 133
Top-grad, 67
Topological closure, 96
Topological graph parameter, 56
Topological greatest reduced average

density, 67
Topological minor, 32

of a graph, 31
Topologically minor closed, 92
Topological minor order, 31
Topological resolution, 96, 301
Transitive fraternal augmentation, 155,

156, 358
tight, 157

1-Transitive fraternal augmentation,
156, 359

tight, 156
Tree, (structure), 50
σ-Tree, 50
k-Tree, 34, 148
Tree decomposition, 34, 36
Tree-depth, 117, 118
p-Tree-depth coloring, 151, 294, 392
Tree-depth distance, 238
Tree-width, 33, 34, 36, 148
p-Tree-width coloring, 148
k-Tree-width duality, 201
p-Truncated B -power, 259
Truncated nowhere dense class, 419
Type, 48
m-Type, 49

Unavoidable configurations, 52
Uniform approximation property, 242
Uniformly almost wide, 180
Uniformly quasi-wide, 180
Uniformly wide, 180
Unity graph, 12
Universe, 47
Upper set, 205
Upset, 205

Vapnik-Chervonenkis (VC) dimension,
110

Vertex (vertices), 21
deletion, 30
of a hypergraph, 48
ranking, 127
ranking number, 118, 128
separator, 7, 125, 375
separator problem, 7
t-ranking, 128
transitive graph, 12

α-vertex expansion, 37
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α-vertex separator, 36
Vocabulary, 47

Weak k-coloring number, 86
k-Weakly accessible, 86
Weak reorientation, 264

Weakly hyperfinite, 374
Well-quasi-ordering, 30, 92
Wide, 177, 179
d-Witness, 63
Word, 131
Wqo, 30
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