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Preface

The purpose of this book is to give a detailed account of some recent develop-
ments in the field of probability and statistics for dependent data. It covers a
wide range of topics from Markov chains theory, weak dependence, dynamical
system to strong dependence and their applications. The title of this book
has been somehow borrowed from the book ”Dependence in Probability and
Statistics: a Survey of Recent Result” edited by Ernst Eberlein and Murad
S. Taqqu, Birkhduser (1986), which could serve as an excellent prerequisite
for reading this book. We hope that the reader will find it as useful and
stimulating as the previous one.

This book was planned during a conference, entitled “STATDEP2005:
Statistics for dependent data”, organized by the Statistical Laboratory of
the CREST (Research Center in Economy and Statistics), in Paris/Malakoft,
under the auspices of the French State Statistical Institute, INSEE.

See http://www.crest.fr/pageperso/statdep2005/home.htm for some ret-
rospective informations. However this book is not a conference proceeding.
This conference has witnessed the rapid growth of contributions on depen-
dent data in the probabilistic and statistical literature and the need for a
book covering recent developments scattered in various probability and sta-
tistical journals. To achieve such a goal, we have solicited some participants
of the conferences as well as other specialists of the field.

The mathematical level of this book is mixed. Some chapters (chapters 1,
3,4,9, 10, part of chapter 12) are general surveys which have been prepared for
a broad audience of readership, with good notions in time-series, probability
and statistics. Specific statistical procedures with dedicated applications are
also presented in the last section and may be of interest to many statisticians.
However, due to the innate nature of the field, the mathematical developments
are important and some chapters of the book are rather intended to researchers
in the field of dependent data.

The book has been organized into three parts: ”Weak dependence and
related concepts”, ”Strong dependence” and Statistical estimation and appli-
cations”.
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The first seven chapters consider some recent development in weak depen-
dence, including some recent results for Markov chains as well as some new
developments around the notion of weak dependence introduced by Doukhan
and Louichi in their seminal paper of 1999. A special emphasis is put on poten-
tial applications and developments of these notions in the field of dynamical
systems. We believe that this part somehow fills a gap between the statistical
literature and the dynamical system literature and that both communities
may find it of interest.

The second part, built around 6 chapters, presents some recent or new
results on strong dependence with a special emphasis on non-linear processes
and random fields currently encountered in applications. Special models ex-
hibiting long range dependence features are also studied in this section. It also
proposes some extensions of the notions of weak dependence to anisotropic
random fields (chapters 9 and 12) which may motivate new researches in the
field.

Finally, the last part considers some general estimation problems ranking
from rate of convergence of maximum likelihood estimators, efficient estima-
tion in parametric or non-parametric times series model with an emphasis
on applications. Although the important problem of non-stationarity is not
specifically addressed (because it covers too large a field), many applications
in this section deal with estimations in a non-stationary framework. We hope
that these applications will also generate some new theoretical developments
in the field of non-stationary time series.

Preparing this book, has been greatly facilitated by the kind cooperation
of the authors, which have done their best to follow our recommandations:
we would like to thank all of them for their contributions. We would also
like to thank the members of the organizing and scientific committees of the
Statdep2005 conference, who have kindly accepted to play the role of “asso-
ciate editors” in the realization of this book. We are in particular grateful to
Jérome Dedecker, Youri Golubev, Sylvie Huet, Gabriel Lang, Jose R. Leon,
Eric Moulines, Michael H. Neumann, Emmanuel Rio, Alexandre Tsybakov
and Jean-Michel Zakoian for their help in the refereing processes of the pa-
pers. We are also grateful to all the anonymous referees for their great work
and all their suggestions.

Malakoff and Nanterre, Patrice Bertail
France Paul Doukhan
December 2005 Philippe Soulier
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Weak dependence and related concepts



Regeneration-based statistics for Harris
recurrent Markov chains
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2 MODAL’X - Université Paris X Nanterre
LPMA - UMR CNRS 7599 - Université s Paris VI et Paris VII
sclemenc@u-parisl0.fr

1 Introduction

1.1 On describing Markov chains via Renewal processes

Renewal theory plays a key role in the analysis of the asymptotic structure
of many kinds of stochastic processes, and especially in the development of
asymptotic properties of general irreducible Markov chains. The underlying
ground consists in the fact that limit theorems proved for sums of independent
random vectors may be easily extended to regenerative random processes, that
is to say random processes that may be decomposed at random times, called
regeneration times, into a sequence of mutually independent blocks of obser-
vations, namely regeneration cycles (see Smith (1955)). The method based
on this principle is traditionally called the regenerative method. Harris chains
that possess an atom, i.e. a Harris set on which the transition probability
kernel is constant, are special cases of regenerative processes and so directly
fall into the range of application of the regenerative method (Markov chains
with discrete state space as well as many markovian models widely used in
operational research for modeling storage or queuing systems are remarkable
examples of atomic chains). The theory developed in Nummelin (1978) (and
in parallel the closely related concepts introduced in Athreya & Ney (1978))
showed that general Markov chains could all be considered as regenerative in
a broader sense (i.e. in the sense of the existence of a theoretical regenerative
extension for the chain, see § 2.3), as soon as the Harris recurrence property
is satisfied. Hence this theory made the regenerative method applicable to
the whole class of Harris Markov chains and allowed to carry over many limit
theorems to Harris chains such as LLN, CLT, LIL or Edgeworth expansions.

In many cases, parameters of interest for a Harris Markov chain may be
thus expressed in terms of regeneration cycles. While, for atomic Markov
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chains, statistical inference procedures may be then based on a random num-
ber of observed regeneration data blocks, in the general Harris recurrent case
the regeneration times are theoretical and their occurrence cannot be deter-
mined by examination of the data only. Although the Nummelin splitting
technique for constructing regeneration times has been introduced as a theo-
retical tool for proving probabilistic results such as limit theorems or proba-
bility and moment inequalities in the markovian framework, this article aims
to show that it is nevertheless possible to make a practical use of the latter
for extending regeneration-based statistical tools. Our proposal consists in an
empirical method for building approximatively a realization drawn from a
Nummelin extension of the chain with a regeneration set and then recover-
ing ”approximate regeneration data blocks”. As will be shown further, though
the implementation of the latter method requires some prior knowledge about
the behaviour of the chain and crucially relies on the computation of a con-
sistent estimate of its transition kernel, this methodology allows for numerous
statistical applications.

We finally point out that, alternatively to regeneration-based statistical
methods, inference techniques based on data (moving) blocks of fixed length
may also be used in our markovian framework. But as will be shown through-
out the article, such blocking techniques, introduced for dealing with general
time series (in the weakly dependent setting) are less powerful, when applied
to Harris Markov chains, than the methods we promote here, which are specif-
ically tailored for (pseudo) regenerative processes.

1.2 Outline

The outline of the paper is as follows. In section 2, notations are set out and
key concepts of the Markov chain theory as well as some basic notions about
the regenerative method and the Nummelin splitting technique are recalled.
Section 3 presents and discusses how to practically construct (approximate)
regeneration data blocks, on which statistical procedures we investigate fur-
ther are based. Sections 4 and 5 mainly survey results established at length
in Bertail & Clémencon (2004a,b,c,d). More precisely, the problem of estima-
ting additive functionals of the stationary distribution in the Harris positive
recurrent case is considered in section 4. Estimators based on the (pseudo)
regenerative blocks, as well as estimates of their asymptotic variance are ex-
hibited, and limit theorems describing the asymptotic behaviour of their bias
and their sampling distribution are also displayed. Section 5 is devoted to the
study of a specific resampling procedure, which crucially relies on the (ap-
proximate) regeneration data blocks. Results proving the asymptotic validity
of this particular bootstrap procedure (and its optimality regarding to second
order properties in the atomic case) are stated. Section 6 shows how to ex-
tend some of the results of sections 4 and 5 to V' and U-statistics. A specific
notion of robustness for statistics based on the (approximate) regenerative
blocks is introduced and investigated in section 7. And asymptotic proper-
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ties of some regeneration-based statistics related to the extremal behaviour
of Markov chains are studied in section 8 in the regenerative case only. Fi-
nally, some concluding remarks are collected in section 9 and further lines of
research are sketched.

2 Theoretical background

2.1 Notation and definitions

We now set out the notations and recall a few definitions concerning the com-
munication structure and the stochastic stability of Markov chains (for further
detail, refer to Revuz (1984) or Meyn & Tweedie (1996)). Let X = (X,),, oy
be an aperiodic irreducible Markov chain on a countably generated state space
(E, &), with transition probability I7, and initial probability distribution v.
For any B € £ and any n € N, we thus have

Xo~vand P(X,41 € B| Xo,..., Xp) =II(X,, B) as.

In what follows, P, (respectively P, for x in F) will denote the probability
measure on the underlying probability space such that Xy ~ v (resp. Xg = z),
E, (.) the P -expectation (resp. E; (.) the P -expectation), I{.A} will denote
the indicator function of the event A and = the convergence in distribution.

For completeness, recall the following notions. The first one formalizes the
idea of communicating structure between specific subsets, while the second
one considers the set of time points at which such communication may occur.

e The chain is irreducible if there exists a o-finite measure 9 such that for
all set B € &, when (B) > 0, the chain visits B with strictly positive
probability, no matter what the starting point.

e Assuming t-irreducibility, there is d’ € N* and disjoints sets Dy, ...., Dy
(Dg 41 = D) weighted by ¢ such that ¢(E\Ui<;<@’ D;) = 0 and Vz € D,
II(x,D;11) = 1. The g.c.d. d of such integers is the period of the chain,
which is said aperiodic if d = 1.

A measurable set B is Harris recurrent for the chain if for any = € B,
P,(>° 02, I{X, € B} = o0) = 1. The chain is said Harris recurrent if it
is ¢-irreducible and every measurable set B such that ¥(B) > 0 is Harris
recurrent. When the chain is Harris recurrent, we have the property that
P,(> 02 I{X, € B} = o00) =1 for any 2 € E and any B € & such that
Y(B) > 0.

A probability measure p on E is said invariant for the chain when pull = p,
where pll(dy) = [, pp(de)II (z,dy). An irreducible chain is said positive
recurrent when it admits an invariant probability (it is then unique).

Now we recall some basics concerning the regenerative method and its
application to the analysis of the behaviour of general Harris chains via the

Nummelin splitting technique (refer to Nummelin (1984) for further detail).
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2.2 Markov chains with an atom

Assume that the chain is v-irreducible and possesses an accessible atom, that
is to say a measurable set A such that ¢(A) > 0 and II(z,.) = II(y,.) for all
x,yin A. Denote by 74 = 74(1) = inf {n > 1, X,, € A} the hitting time on A,
by 74(j) = inf {n > 74(j — 1), X,, € A} for j > 2 the successive return times
to A and by E4 (.) the expectation conditioned on Xy € A. Assume further
that the chain is Harris recurrent, the probability of returning infinitely often
to the atom A is thus equal to one, no matter what the starting point. Then,
it follows from the strong Markov property that, for any initial distribution
v, the sample paths of the chain may be divided into i.i.d. blocks of random
length corresponding to consecutive visits to A:

Bl = (XTA(1)+17"'7 XTA(Q))? ) B] = (XTA(j)-Q—la teey XTA(j-Q—l))y"'

taking their values in the torus T = UjZ,E". The sequence (74(j));, de-
fines successive times at which the chain forgets its past, called regeneration
times. We point out that the class of atomic Markov chains contains not only
chains with a countable state space (for the latter, any recurrent state is an
accessible atom), but also many specific Markov models arising from the field
of operational research (see Asmussen (1987) for regenerative models involved
in queuing theory, as well as the examples given in § 4.3). When an accessible
atom exists, the stochastic stability properties of the chain amount to proper-
ties concerning the speed of return time to the atom only. For instance, in this
framework, the following result, known as Kac’s theorem, holds (¢f Theorem
10.2.2 in Meyn & Tweedie (1996)).

Theorem 1. The chain X is positive recurrent iff Ea(14) < 0o. The (unique)
invariant probability distribution p is then the Pitman’s occupation measure
given by

TA

u(B) =EA(D> X, € B})/Ea(ra), for all BEE .

i=1

For atomic chains, limit theorems can be derived from the application
of the corresponding results to the ii.d. blocks (B,),>1. One may refer for
example to Meyn & Tweedie (1996) for the LLN, CLT, LIL, Bolthausen
(1980) for the Berry-Esseen theorem, Malinovskii (1985, 87, 89) and Bertail
& Clémencon (2004a) for other refinements of the CLT. The same technique
can also be applied to establish moment and probability inequalities, which
are not asymptotic results (see Clémencon (2001)). As mentioned above, these
results are established from hypotheses related to the distribution of the B,,’s.
The following assumptions shall be involved throughout the article. Let x > 0,
f + E — R be a measurable function and v be a probability distribution on
(E,E).
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Regularity conditions:

Ho(k): Ea(rh) < 00,
Ho(k, v): E (15) < oo .

Block-moment conditions:

Ha(k, f): EA((Z [f (X)) < o0,

Halw, v, 1) Eo((OIF(X)D) < o0
i=1

Remark 1. We point out that conditions Ho(x) and H1(k, f) do not depend
on the accessible atom chosen : if they hold for a given accessible atom A,
they are also fulfilled for any other accessible atom (see Chapter 11 in Meyn
& Tweedie (1996)). Besides, the relationship between the ”block moment”
conditions and the rate of decay of mixing coefficients has been investigated
in Bolthausen (1982): for instance, Ho(x) (as well as Hi(k, f) when f is
bounded) is typically fulfilled as soon as the strong mixing coefficients se-
quence decreases at an arithmetic rate n=?, for some p > x — 1.

2.3 General Harris recurrent chains
The Nummelin splitting technique

We now recall the splitting technique introduced in Nummelin (1978) for ex-
tending the probabilistic structure of the chain in order to construct an ar-
tificial regeneration set in the general Harris recurrent case. It relies on the
crucial notion of small set. Recall that, for a Markov chain valued in a state
space (F, &) with transition probability IT, a set S € £ is said to be small if
there exist m € N*, § > 0 and a probability measure I" supported by S such
that, for all z € S, B € &,

nm(z,B) > éI'(B), (1)

denoting by IT™ the m-th iterate of II. When this holds, we say that the
chain satisfies the minorization condition M(m,S,d,I"). We emphasize that
accessible small sets always exist for ¢-irreducible chains: any set B € £ such
that ¢(B) > 0 actually contains such a set (¢f Jain & Jamison (1967)). Now
let us precise how to construct the atomic chain onto which the initial chain X
is embedded, from a set on which an iterate II™ of the transition probability
is uniformly bounded below. Suppose that X satisfies M = M(m, S, 0,I") for
S € & such that ¢(S) > 0. Even if it entails replacing the chain (X,), .y by
the chain ((Xnm, ...,Xn(mﬂ),l))neN, we suppose m = 1. The sample space
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is expanded so as to define a sequence (Y, )nen of independent Bernoulli r.v.’s
with parameter § by defining the joint distribution P, a4 whose construction
relies on the following randomization of the transition probability I each time
the chain hits S (note that it happens a.s. since the chain is Harris recurrent
and ¥(S) > 0). If X,, € S and

e if Y, =1 (which happens with probability § € ]0,1[), then X,, 11 is dis-
tributed according to I,

e if Y, = 0, (which happens with probability 1 — §), then X, is drawn
from (1 —0) Y (II(Xpy1,.) — 6L(.)).

Set Bers(8) = 84+ (1—96)(1—2) for 3 € {0,1}. We now have constructed a
bivariate chain XM = ((X,,,Y,,)),.cy » called the split chain, taking its values
in E x {0,1} with transition kernel IT4 defined by

o foranyz ¢ S, Beé&, fand 3 in {0,1},

(2, 8), B x {'}) = II (x, B) x Bers(5') ,

e foranyxz e S, Beé&, f in{0,1},

Ipm ((2,1), B x {8'}) = I'(B) x Bers(8') ,
IIr ((2,0), B x {8'}) = (1= 6)"(II (w, B) = 6I'(B)) x Bers(8') .

Basic assumptions

The whole point of the construction consists in the fact that Sx {1} is an atom
for the split chain X, which inherits all the communication and stochastic
stability properties from X (irreducibility, Harris recurrence,...), in partic-
ular (for the case m = 1 here) the blocks constructed for the split chain
are independent. Hence the splitting method enables to extend the regener-
ative method, and so to establish all of the results known for atomic chains,
to general Harris chains. It should be noticed that if the chain X satisfies
M(m, S,8,I") for m > 1, the resulting blocks are not independent anymore
but 1-dependent, a form of dependence which may be also easily handled. For
simplicity ’s sake, we suppose in what follows that condition M is fulfilled
with m = 1, we shall also omit the subscript M and abusively denote by
P, the extensions of the underlying probability we consider. The following
assumptions, involving the speed of return to the small set S shall be used
throughout the article. Let k > 0, f : E — R be a measurable function and v
be a probability measure on (E,£).

Regularity conditions:
Ho(k) :supEg(7§) < 00,

zeS
Ho(k, v) E (18§) < o0 .
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Block-moment conditions:

Hi(k, f) @ sup By Zlf :

€S
Hi(k, : Z|f

Remark 2. Tt is noteworthy that assumptions H{(x) and H}(k, f) do not de-
pend on the choice of the small set S (if they are checked for some accessible
small set S, they are fulfilled for all accessible small sets ¢f § 11.1 in Meyn
& Tweedie (1996)). Note also that in the case when H{(x) (resp., H{(k, v))
is satisfied, H} (k, f) (resp., Hi(k, f, v)) is fulfilled for any bounded f. More-
over, recall that positive recurrence, conditions H} (k) and H}(k, f) may be
practically checked by using test functions methods (cf

Kalashnikov (1978), Tjgstheim (1990)). In particular, it is well known
that such block moment assumptions may be replaced by drift criteria of
Lyapounov’s type (refer to Chapter 11 in Meyn & Tweedie (1996) for further
details on such conditions and many illustrating examples, see also Douc et
al. (2004)).

We recall finally that such assumptions on the initial chain classically imply
the desired conditions for the split chain: as soon as X fulfills Hy(k) (resp.,
Hy(k, v), Hy(k, [), Hi(k, f, V), XM satisfies Ho(k) (vesp., Ho(k, v), Hi(k,
f>7 Hl("ﬁ f7 V))

The distribution of (Y7, ...,Y,) conditioned on (X1, ..., Xn+1)-

As will be shown in the next section, the statistical methodology for Har-
ris chains we propose is based on approximating the conditional distribu-
tion of the binary sequence (Vi,...,Y,) given Xt = (X1,..., X,,11). We
thus precise the latter. Let us assume further that the family of the condi-
tional distributions {II(z,dy)}.cr and the initial distribution v are domi-
nated by a o-finite measure A of reference, so that v(dy) = f(y)A(dy) and
II(z,dy) = p(z,y)A(dy), for all © € E. Notice that the minorization condition
entails that I is absolutely continuous with respect to A too, and that

p(x,y) > 0v(y), A(dy) as. (2)

for any 2 € S, with I'(dy) = ~(y)dy. The distribution of Y™ = (v7,...,
Y,,) conditionally to X"+t = (z1,...,2,41) is then the tensor product of
Bernoulli distributions given by: for all 5 = (34, ..., 3,) € {0,1}", z(*+1D) =
(21,0 Tpy1) € B,

n
P, (Y™ = g | x(nt1) = g(ntD)y = HPV(Yz‘ =8| X; =i, Xig1 = Tip1)

=1
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with, for 1 <i < n,

P,(Yi=1|X; =2 Xip1 =xi41) =0, ifa; ¢ 5,

0y(Tiy1)

P,(Y;=1|X; =2, Xip1 =2i41) =
(s, 2i11)

s if xT; € S.

Roughly speaking, conditioned on X ™1 from i = 1 to n, Y; is drawn
from the Bernoulli distribution with parameter 4, unless X has hit the small
set S at time i: in this case Y; is drawn from the Bernoulli distribution with pa-
rameter 0y(X;11)/p(Xi, Xir1). We denote by L) (p, S, 5,7, (1)) this prob-
ability distribution.

3 Dividing the sample path into (approximate)
regeneration cycles

In the preceding section, we recalled the Nummelin approach for the theoret-
ical construction of regeneration times in the Harris framework. Here we now
consider the problem of approximating these random times from data sets
in practice and propose a basic preprocessing technique, on which estimation
methods we shall discuss further are based.

3.1 Regenerative case

Let us suppose we observed a trajectory Xi,..., X,, of length n drawn from
the chain X. In the regenerative case, when an atom A for the chain is a priori
known, regeneration blocks are naturally obtained by simply examining the
data, as follows.

Algorithm 1 (Regeneration blocks construction)

1. Count the number of visits I, = > . I{X; € A} to A up to time n.

2. Divide the observed trajectory X = (X1,....,X,) into 1, + 1 blocks
corresponding to the pieces of the sample path between consecutive visits
to the atom A,

By = (X1,..., Xey))s Bi = (Xey)+15 0 Xra2))s oo
Bi, -1 = (Xey(ty=1)415 - Xra(tn))s Bl(:) = (Xrat)+1 5 Xn)

with the convention Bl(:) = () when T4(l,) = n.

3. Drop the first block By, as well as the last one Bl(:), when non-regenerative
(i.e. when T4(l,) < n).

The regeneration blocks construction is illustrated by Fig. 1 in the case of
a random walk on the half line RT with {0} as an atom.
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Fig. 1. Dividing the trajectory of a random walk on the half line into regeneration
data blocks corresponding to successive visits to A =0

3.2 General Harris case
The principle

Suppose now that observations Xj,..., X,, 41 are drawn from a Harris chain
X satisfying the assumptions of § 2.3.3 (refer to the latter paragraph for
the notations). If we were able to generate binary data Y7,..., Y, so that
XM™) = ((X1,Y7),..., (X, Yy)) be a realization of the split chain X de-
scribed in § 2.3, then we could apply the regeneration blocks construction
procedure to the sample path XM (") In that case the resulting blocks are
still independent since the split chain is atomic. Unfortunately, knowledge of
the transition density p(z,y) for (z,y) € S? is required to draw practically
the Y;’s this way. We propose a method relying on a preliminary estimation of
the "nuisance parameter” p(z,y). More precisely, it consists in approximating
the splitting construction by computing an estimator p, (z,y) of p(z,y) using
data X, ..., X, 41, and to generate a random vector (}A/l, - }Afn) conditionally
to X(»+1) = (X, ..., X,,11), from distribution £™ (p,,, S, d,~v, X *+1), which
approximates in some sense the conditional distribution £() (p,S,0,v, X (”H))
of (Y1, ..., Yy,) for given X+ Our method, which we call approzimate regen-
eration blocks construction (ARB construction in abbreviated form) amounts



12 Patrice Bertail and Stéphan Clémengon

then to apply the regeneration blocks construction procedure to the data
(X1,Y1), ..., (X, Y3,)) as if they were drawn from the atomic chain X*™. In
spite of the necessary consistent transition density estimation step, we shall
show in the sequel that many statistical procedures, that would be consis-
tent in the ideal case when they would be based on the regeneration blocks,
remain asymptotically valid when implemented from the approximate data
blocks. For given parameters (6, S, v) (see § 3.2.2 for a data driven choice
of these parameters), the approximate regeneration blocks are constructed as
follows.

Algorithm 2 (Approzimate regeneration blocks construction)

1. From the data X"tV = (Xy,..., X,,11), compute an estimate p,(x,y)
of the transition density such that p,(x,y) > dv(y), A(dy) a.s., and
pn(Xi,Xi_;'_l) > 0, 1 < 7 <n.

2. Conditioned on X"tV draw a binary vector ()A/l,...,f/n) from the dis-
tribution estimate £ (p,, S,6,~v, XD, It is sufficient in practice to
draw the Y;’s at time points i when the chain visits the set S (i.e. when
X; € S), since at these times and at these times only the split chain may
regenerate. At such a time point i, draw 3//\; according to the Bernoulli
distribution with parameter 6v(X;11)/pn(Xi, Xit1)).

3. Count the number of visits 1, = S X e S.Y; = 1) to the set
Ap =S x {1} up to time n and divide the trajectory XV into 1, + 1
approzimate regeneration blocks corresponding to the successive visits of
(X, Y) to A/\/l7

BO = (X17“‘7 X‘FAM(l))7 Bl = (X?AM(1)+17“’7 X?AM(Q))7“'7

= L X- B™ = (X.

By, Fap(In—1)+17 7 TAM(TH))’ bn =\ Fa @)1 Xn+1)

In
where Ta,, (1) =inf{n > 1, X,, € S, Y, =1} and Tau (i +1) =inf{n >
Tau(j), Xn € 8,Y, =1} forj>1.

4. Drop the first block By and the last one El(:) when T4, (ln) < n.

Such a division of the sample path is illustrated by Fig. 2 below: from a
practical viewpoint the trajectory may only be cut when hitting the small
set. At such a point, drawing a Bernoulli r.v. with the estimated parameter
indicates whether one should cut here the time series trajectory or not. Of
course, due to the dependence induced by the estimated transition density,
the resulting blocks are not i.i.d. but, as will be shown later, are close (in some
sense) to the one of the true regeneration blocks (which are i.i.d.), provided
that the transition estimator is consistent (see assumption Ho in §1.4.2)

Practical choice of the minorization condition parameters

Because the construction above is highly dependent on the minorization con-
dition parameters chosen, we now discuss how to select the latter with a
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Fig. 2. ARB construction for an AR(1) simulated time-series

data-driven technique so as to construct enough blocks for computing mean-
ingful statistics. As a matter of fact, the rates of convergence of the statistics
we shall study in the sequel increase as the mean number of regenerative (or
pseudo-regenerative) blocks, which depends on the size of the small set chosen
(or more exactly, on how often the chain visits the latter in a trajectory of
finite length) and how sharp is the lower bound in the minorization condition:
the larger the size of the small set is, the smaller the uniform lower bound for
the transition density. This leads us to the following trade-off. Roughly speak-
ing, for a given realization of the trajectory, as one increases the size of the
small set S used for the data blocks construction, one naturally increases the
number of points of the trajectory that are candidates for determining a block
(i.e. a cut in the trajectory), but one also decreases the probability of cut-
ting the trajectory (since the uniform lower bound for {p(x,%)},y)es2> then
decreases). This gives an insight into the fact that better numerical results
for statistical procedures based on the ARB construction may be obtained
in practice for some specific choices of the small set, likely for choices corre-
sponding to a maximum expected number of data blocks given the trajectory,
that is

n
Nu(8) =E, (> I{X; € 8,Y; = 1} [ X("+1)) |
i=1
Hence, when no prior information about the structure of the chain is avail-
able, here is a practical data-driven method for selecting the minorization
condition parameters in the case when the chain takes real values. Con-
sider a collection S of borelian sets S (typically compact intervals) and
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denote by Us(dy) = ~vs(y).A(dy) the uniform distribution on S, where
vs(y) = I{y € S}/A(S) and X is the Lebesgue measure on R. Now, for
any S € S, set §(S) = A(S).inf(, yes2 p(z,y). We have for any z, y in S,
p(z,y) > 5(5)7 (y). In the case when 6(S) > 0, the ideal criterion to opti-
mize may be then expressed as

5(8) o= I{(X;, Xiy1) € 5%}
Na(8) ; p(Xi, Xit1) ' ®)
However, as the transition kernel p(z,y) and its minimum over S? are un-
known, a practical empirical criterion is obtained by replacing p(x,y) by
an estimate p,(z,y) and §(S) by a lower bound §,(S) for A(S).p.(x,y)
over S? in expression (3). Once p,(z,y) is computed, calculate 6,(S) =
A(S).inf (; yye g2 Pn(2,y) and maximize thus the empirical criterion over S € S

-~ 5n(5) En: ]I{(XZ,XZ+1) S SQ}

Na(S) = E) o (Ko Xo00) (4)

i=1

More specifically, one may easily check at hand on many examples of real
valued chains (see § 4.3 for instance), that any compact interval V() = [zo—
g, g + €] for some well chosen g € R and € > 0 small enough, is a small set,
choosing v as the density of the uniform distribution on V;,(¢). For practical
purpose, one may fix z¢ and perform the optimization over € > 0 only (see
Bertail & Clémencon (2004c)) but both g and € may be considered as tuning
parameters. A possible numerically feasible selection rule could rely then on
searching for (zg, ) on a given pre-selected grid G = {(zo(k),e(1)),1 <k < K,
1 <1< L} such that nf(z )ev,, ()2 pn(z,y) > 0 for any (zg,¢) € G.

Algorithm 3 (ARB construction with empirical choice of the small set)

1. Compute an estimator p,(z,y) of p(x,y).
2. For any (xo,e) € G, compute the estimated expected number of pseudo-
regenerations:

N (zo,¢) = In (w0, €) zn: I{(Xi, Xit1) € Vi ()} 7
26 Pn(Xi, Xit1)
with (5 (.2707 ) = 2€'inf(z,y)€\/zo (e)2 pn(x, y)
3. Pick (:EO, *) in G mazximizing ﬁn(xo,s) over G, corresponding to the set
S* =[x —e*, x} + €*] and the minorization constant 6}, = 0, (x§, ).
4. Apply Algorzthm 2 for ARB construction using S*, 6% and p,.

Remark 3. Numerous consistent estimators of the transition density of Harris
chains have been proposed in the literature. Refer to Roussas (1969, 91a,
91b), Rosenblatt (1970), Birgé (1983), Doukhan & Ghindes (1983), Prakasa
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Fig. 3. Illustration of Algorithm 3 : ARB construction with empirical choice of the
small set.

Rao (1983), Athreya & Atuncar (1998) or Clémencgon (2000) for instance in
positive recurrent cases, Karlsen & Tjgstheim (2001) in specific null recurrent
cases.

This method is illustrated by Fig. 3 in the case of an AR(1) model: X, ; =
aX;+eir1, 1 €N, with ¢ < N(0,1), « =0.95 and X, = 0, for a trajectory
of length n = 200. Taking xy = 0 and letting ¢ grow, the expected number
regeneration blocks is maximum for €* close to 0.9. The true minimum value of
p(x,y) over the corresponding square is actually ¢ = 0.118. The first graphic

in this panel shows the Nadaraya- Watson estimator

XL K e XKy~ X))
puleny) = S K e K1) ’

computed from the gaussian kernel K (z) = (27) ! exp(—22/2) with an opti-
mal bandwidth % of order n~'/5. The second one plots N, (¢) as a function of
€. The next one indicates the set S* corresponding to our empirical selection
rule, while the last one displays the ”optimal” ARB construction.

Note finally that other approaches may be considered for determining prac-
tically small sets and establishing accurate minorization conditions, which
conditions do not necessarily involve uniform distributions besides. Refer for
instance to Roberts & Rosenthal (1996) for Markov diffusion processes.
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A two-split version of the ARB construction

When carrying out the theoretical study of statistical methods based on the
ARB construction, one must deal with difficult problems arising from the
dependence structure in the set of the resulting data blocks, due to the pre-
liminary estimation step. Such difficulties are somehow similar as the ones
that one traditionally faces in a semiparametric framework, even in the i.i.d.
setting. The first step of semiparametric methodologies usually consists in a
preliminary estimation of some infinite dimensional nuisance parameter (typ-
ically a density function or a nonparametric curve), on which the remaining
(parametric) steps of the procedure are based. For handling theoretical diffi-
culties related to this dependence problem, a well known method, called the
splitting trick, amounts to split the data set into two parts, the first subset
being used for estimating the nuisance parameter, while the parameter of
interest is then estimated from the other subset (using the preliminary esti-
mate). An analogous principle may be implemented in our framework using an
additional split of the data in the "middle of the trajectory”, for ensuring that
a regeneration at least occurs in between with an overwhelming probability
(so as to get two independent data subsets, see step 2 in the algorithm below).
For this reason, we consider the following variant of the ARB construction.
Letl<m<n,1<p<n—m.

Algorithm 4 (two-split ARB construction)

1. From the data X"tV = (X1, ..., X,,41), keep only the first m observations
XM for computing an estimate p,(x,y) of p(z,y) such that py,(z,y) >
v (y), A(dy) a.s. and pm(X;, Xiz1) >0, 1 <i<n-—1.

2. Drop the observations between time m + 1 and time m* = m +p (under
standard assumptions, the split chain regenerates once at least between
these times with large probability).

3. From remaining observations x(m'n) — (Xm++1,... X)) and estimate
Dm, apply steps 2-4 of Algorithm 2 (respectively of Algorithm 3).

This procedure is similar to the 2-split method proposed in Schick (2001),
except that here the number of deleted observations is arbitrary and easier to
interpret in terms of regeneration. Of course, the more often the split chain
regenerates, the smaller p may be chosen. And the main problem consists in
picking m = m,, so that m,, — oo as n — oo for the estimate of the transition
kernel to be accurate enough, while keeping enough observation n—m* for the
block construction step: one typically chooses m = o(n) as n — oo. Further
assumptions are required for investigating precisely how to select m. In Bertail
& Clémengon (2004d), a choice based on the rate of convergence v, of the
estimator p,,(z,y) (for the MSE when error is measured by the sup-norm
over S xS, see assumption Hs in § 4.2) is proposed: when considering smooth
markovian models for instance, estimators with rate a,, = m~!log(m) may
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be exhibited and one shows that m = n?/3 is then an optimal choice (up to
a log(n)). However, one may argue, as in the semiparametric case, that this
methodology is motivated by our limitations in the analysis of asymptotic
properties of the estimators only, whereas from a practical viewpoint it may
deteriorate the finite sample performance of the initial algorithm. To our own
experience, it is actually better to construct the estimate p(z,y) from the
whole trajectory and the interest of Algorithm 4 is mainly theoretical.

4 Mean and variance estimation

In this section, we suppose that the chain X is positive recurrent with un-
known stationary probability ,u and consider the problem of estimating an
additive functional of type u(f) = [ f(z) = E,(f(X1)), where f is a
p-integrable real valued function defined on the state space (E,&). Estima-
tion of additive functionals of type E,, (F (X1, ..., Xi)), for fixed k£ > 1, may
be investigated in a similar fashion. We set f(z) = f(x) — u(f).

4.1 Regenerative case

Here we assume further that X admits an a priori known accessible atom
A. As in the ii.d. setting, a natural estimator of u(f) is the sample mean

statistic,
() =071 f(X) (5)
i=1

When the chain is stationary (i.e. when v = p), the estimator u., (f) is zero-
bias. However, its bias is significant in all other cases, mainly because of
the presence of the first and last (non-regenerative) data blocks By and B("

(see Proposition 4.1 below). Besides, by virtue of Theorem 2.1, u(f) may be
expressed as the mean of the f (X,»)’s over a regeneration cycle (renormahzed
by the mean length of a regeneration cycle)

p#(f) = Ea(ra) 'Ea( Zf

Because the bias due to the first block depends on the unknown initial distri-
bution (see Proposition 1 below) and thus can not be consistently estimated,
we suggest to introduce the following estimators of the mean u(f). Define the
sample mean based on the observations (eventually) collected after the first
regeneration time only by

fin(f) = (n—7a)” Zf

1=1474
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with the convention fi,(f) = 0, when 74 > n, as well as the sample mean
based on the observations collected between the first and last regeneration
times before n by

TA(l

I, (f) = (7alln) —7a)™" > f(X

1=1474

with I, = Y1 | I{X; € A} and the convention f,(f) = 0, when [, < 1
(observe that, by Markov’s inequality, P, (I, < 1) = O(n™!) as n — oo, as
soon as Ho(l, v) and H(2) are fulfilled).

Let us introduce some additional notation for the block sums (resp. the
block lengths), that shall be used here and throughout. For j > 1, n > 1, set

Lo=7a, Lj =74( + 1) = 74(j), L\ =n — 7a(l)
Ta(j+1)

=D X0, fB) = 30 F) B = 3 F(X).

i=1+74(7) i=1+7a(ln)

With these notations, the estimators above may be rewritten as

F(Bo) + X', £(B)) + F(BI™)

S B+ B Y f(B))

Let p,(f) designs any of the three estimators p., (f), fn(f) or @, (f). If X
fulfills conditions Ho(2), Ho(2,v), Hi(f,2,A), H1(f,2,v) then the following
CLT holds under P, (¢f Theorem 17.2.2 in Meyn & Tweedie (1996))

0o () (a(f) = u(f)) = N (0,1), as n — oo,

with a normalizing constant

TA

o*(f) = n(A)Ea((Q_ f(X0) = n(f)ma)’) - (6)

=1

From this expression we propose the following estimator of the asymptotic
variance, adopting the usual convention regarding to empty summation,

ln—1

=n"t Z (f(B;) = Fin(f)L5)*. (7)

Notice that the first and last data blocks are not involved in its construction.
We could have proposed estimators involving different estimates of u(f), but
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as will be seen later, it is preferable to consider an estimator based on regener-
ation blocks only. The following quantities shall be involved in the statistical
analysis below. Define

o =Ea(ra), B=Ea(ra > F(X)) = covalra, > F(X.) ,
=1 i=1

Pu = EV(Z?(XZ-)), V= a_l]EA(Z<TA — i) (X)) -

We also introduce the following technical conditions.

(C1) (Cramer condition)

Jim | Ea(exp(it ) F(X:))) < 1.

i=1

(C2) (Cramer condition)
T | Ealexpliy_ TOG)) 1< 1.

(C3) There exists N > 1 such that the N-fold convoluted density g*™ is
. . TA(2 rd — ;
bounded, denoting by g the density of the (Ziih)u(l) f(X5) —a™1p)?s.
(C4) There exists N > 1 such that the N-fold convoluted density G*VN is
. . T4(2) i ;
bounded, denoting by G the density of the (Z;Hm(l) f(Xz)))2 s.
.. . . . Ta(2 -
These two conditions are automatically satisfied if >7/ %)% (1y f(Xi) has
a bounded density.
The result below is a straightforward extension of Theorem 1 in Mali-
novskii (1985) (see also Proposition 3.1 in Bertail & Clémengon (2004a)).

Proposition 1. Suppose that Ho(4), Ho(2, v), Hi(4, [), H1(2, v, f) and
Cramer condition (C1) are satisfied by the chain. Then, as n — oo, we have

B, (11, (f)) = p(f) + (¢ +7 = Bla)n™ " + O(n~*/?) (8)
E, (i (f)) = ulf) + (v = B/a)n™" + O(n™*?) | (9)
B, (7, (1)) = p(f) = (B/an™" +O(n~*/?) . (10)
If the Cramer condition (C2) is also fulfilled, then
E,(c2(f)) = o*(f) +O(n~ 1), asn — oo, (11)

and we have the following CLT under P,
n'2(an(f) = o*(f)) = N(0,€(f)) , asn = o0, (12)
with €(f) = p(A)vara((C72, F(X:)* = 2078372, F(X0)).
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Proof. The proof of (8)-(11) is given in Bertail & Clémencon (2004a) and the
linearization of o2 (f) follows from their Lemma 6.3

Z )+ (13)

with g(B;) = f(B;)? —2a~18f(B;), for j > 1, and for some n; > 0, P, (nr,, >
1), as n — oo. Wethushave as n — 0o,

In—1

n!2(an(f) = a* () = (u/n)" /21,1 Z 9(B;)) + oe, (1) ,

and (13) is established with the same argument as for Theorem 17.3.6 in Meyn
& Tweedie (1996), as soon as var(g(B;)) < oo, that is ensured by assumption
H1(4, f). O

Remark 4. We emphasize that in a non i.i.d. setting, it is generally difficult to
construct an accurate (positive) estimator of the asymptotic variance. When
no structural assumption, except stationarity and square integrability, is made
on the underlying process X, a possible method, currently used in practice, is
based on so-called blocking techniques. Indeed under some appropriate mixing
conditions (which ensure that the following series converge), it can be shown
that the variance of n=/24! (f) may be written

n

var(n~ 241, (£)) = (0) +2 3 (1 — t/m)I'(1)

t=1

and converges to
Z I'(t) =2ng(0)

where g(w) = (2m)"t 32 I'(t) cos(wt) and (I'(t))s>0 denote respectively
the spectral density and the autocovariance sequence of the discrete-time
stationary process X. Most of the estimators of o(f) that have been pro-
posed in the literature (such as the Bartlett spectral density estimator, the
moving-block jackknife/subsampling variance estimator, the overlapping or
non-overlapping batch means estimator) may be seen as variants of the basic
moving-block bootstrap estimator(see Kiinsch (1989), Liu and Singh(1992))

M Q
Ohtn = g 2 Finre = in(F)* (14)
i=1
where 7i; ps = ZtL(ZL ll)tj\il f(Xy) is the mean of f on the i-th data

block (Xr(i—1)+1,---> Xr@i—1)+nm). Here, the size M of the blocks and the
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amount L of ‘lag’ or overlap between each block are deterministic (eventually
depending on n) and Q = [”*TM} + 1, denoting by [-] the integer part, is the
number of blocks that may be constructed from the sample X3, ..., X,,. In the
case when L = M, there is no overlap between block ¢ and block i + 1 (as
the original solution considered by Hall (1985), Carlstein (1986)), whereas the
case L = 1 corresponds to maximum overlap (see Politis & Romano (1992),
Politis et al. (2000) for a survey). Under suitable regularity conditions (mixing
and moments conditions), it can be shown that if M — oo with M/n — 0
and L/M — a € [0,1] as n — oo, then we have

E(631,n) — 02(f) = O(1/M) + O(y/M/n) , (15)
var(&jz\/[,n) = 2c%04(f) +o(M/n),

as n — oo, where c is a constant depending on a, taking its smallest value
(namely ¢ = 2/3) for a = 0. This result shows that the bias of such esti-
mators may be very large. Indeed, by optimizing in M we find the optimal
choice M ~ n'/3 for which we have E(63,,) — o°(f) = O(n=1/3). Vari-
ous extrapolation and jackknife techniques or kernel smoothing methods have
been suggested to get rid of this large bias (refer to Politis & Romano (1992),
Gotze & Kiinsch (1996), Bertail (1997) and Bertail & Politis (2001)). The
latter somehow amount to make use of Rosenblatt smoothing kernels of or-
der higher than two (taking some negative values) for estimating the spectral
density at 0. However, the main drawback in using these estimators is that
they take negative values for some n, and lead consequently to face problems,
when dealing with studentized statistics.

In our specific Markovian framework, the estimate o2(f) in the atomic
case (or latter o2 (f) in the general case) is much more natural and allows to
avoid these problems. This is particularly important when the matter is to
establish Edgeworth expansions at orders higher than two in such a non i.i.d.
setting. As a matter of fact, the bias of the variance may completely cancel
the accuracy provided by higher order Edgeworth expansions (but also the
one of its Bootstrap approximation) in the studentized case, given its explicit
role in such expansions (see Gotze & Kiinsch (1996)).

From Proposition 1, we immediately derive that
tn =020 (N (f) = () = N (0,1) , asn — oo,

so that asymptotic confidence intervals for u(f) are immediately available in
the atomic case. This result also shows that using estimators f,(f) or &, (f)
instead of u,(f) allows to eliminate the only quantity depending on the initial
distribution v in the first order term of the bias, which may be interesting for
estimation purpose and is crucial when the matter is to deal with an estimator
of which variance or sampling distribution may be approximated by a resam-
pling procedure in a nonstationary setting (given the impossibility to approx-
imate the distribution of the ”first block sum” >"7*, f(X;) from one single
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realization of X starting from v). For these estimators, it is actually possible
to implement specific Bootstrap methodologies, for constructing second or-
der correct confidence intervals for instance (see Bertail & Clémengon (2004Db,
c¢) and section 5). Regarding to this, it should be noticed that Edgeworth
expansions (E.E. in abbreviated form) may be obtained using the regenera-
tive method by partitioning the state space according to all possible values
for the number [,, regeneration times before n and for the sizes of the first
and last block as in Malinovskii (1987). Bertail & Clémengon (2004a) proved
the validity of an E.E. in the studentized case, of which form is recalled be-
low. Notice that actually (C3) corresponding to their v) in Proposition 3.1
in Bertail & Clémencon (2004a) is not needed in the unstudentized case. Let
&(z) denote the distribution function of the standard normal distribution and

set ¢(x) = dP(x)/dx.

Theorem 2. Let b(f) = limy, oo n(pn(f) — p(f)) be the asymptotic bias of
wn(f). Under conditions Ho(4), Ho(2, v) Hi(4, f), H1(2, v, f), (C1), we
have the following E.E.,

sup [P, (n'/20() " (un(f) = () < @) = BD (@) = 0(n™") ,
z€R

as n — 0o, with

B2 (x) = ®(x) —n~ 2= 22 (0% = Dolw) —n”26(f)o(x)

3 ) 4 BT

o(f)” T o(f)?

A similar limit result holds for the studentized statistic under the further hy-

pothesis that (C2), (C3), Ho(s) and H1(s, f) are fulfilled with s = 8 4+ ¢ for
some € > 0:

sup P, (0! 20, () (1n () = u(f)) < @) = B ()] = O(n™ " log(n)) ,

as n — 00, with
(@) = @) + 1722k ()22 + D) — = /20(1)o()

When pin(f) = T, (f), under C4), O(n=tlog(n)) may be replaced by O(n=1).

This theorem may serve for building accurate confidence intervals for u(f)
(by E.E. inversion as in Abramovitz & Singh (1983) or Hall (1983)). It also
paves the way for studying precisely specific bootstrap methods, as in Bertail
& Clémencgon (2004c¢). It should be noted that the skewness k3(f) is the sum
of two terms: the third moment of the recentered block sums and a correlation
term between the block sums and the block lengths. The coefficients involved
in the E.E. may be directly estimated from the regenerative blocks. Once
again by straightforward CLT arguments, we have the following result.
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Proposition 2. For s > 1, under Hi(f, 2s), Hi(f, 2,v), Ho(2s) and Ho(2,
v), then Mg a=Ea((X2, F(X5))®) is well-defined and we have

l,—1
flom =11 (f(B)) — Bu(f)Ly)° = a "My + Op,(n"2) | asn — oo
=1

4.2 Positive recurrent case

We now turn to the general positive recurrent case (refer to § 2.3 for assump-
tions and notation). It is noteworthy that, though they may be expressed
using the parameters of the minorization condition M, the constants involved
in the CLT are independent from these latter. In particular the mean and the
asymptotic variance may be written as

u(f) = Ea (TAM)_lEAM(Z f(Xl)) )

G2(f) = EAM (TAM)ilEAM((Z ?(X’L))z) )

i=1

where 74,, = inf{n > 1, (X,, Y,) € S x {1}} and E4,,(.) denotes the
expectation conditionally to (Xo, Yy) € Aym = S x {1}. However, one cannot
use the estimators of u(f) and o?(f) defined in the atomic setting, applied to
the split chain, since the times when the latter regenerates are unobserved. We

thus consider the following estimators based on the approzimate regeneration
times (i.e. times ¢ when (X;,Y;) € S x {1}), as constructed in § 3.2,

Tn—1 T,—1

() =77 > f(By) and G (f) =7t > AS(By) — a5}
j=1 j=1

with, for j > 1,

Tap (+1)
FBy) = D f(Xi), Ly =Fan G+ 1)~ Fau(i)
i=1474 ., (4)
~ ?"71 ~
ﬁAM =Tap(ln) = Tan (1) = Lj .

By convention, fi,(f) = 0 and 52(f) = 0 (resp. n,,, = 0), when I, <1
(resp., when 1, = 0). Since the ARB construction involves the use of an
estimate p,(x,y) of the transition kernel p(x,y), we consider conditions on
the rate of convergence of this estimator. For a sequence of nonnegative real
numbers (o, )nen converging to 0 as n — oo,
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Ho : p(x, y) is estimated by pp(x, y) at the rate «, for the MSE when
error is measured by the L™ loss over S x S:

E,( sup |pn(z,y) — p(z,9))?) = O(an) , as n — 0o .
(z,y)eSXS
See Remark 3.1 for references concerning the construction and the study of
transition density estimators for positive recurrent chains, estimation rates
are usually established under various smoothness assumptions on the density
of the joint distribution p(dz)II(z,dy) and the one of u(dx). For instance,
under classical Hoélder constraints of order s, the typical rate for the risk in
this setup is a,, ~ (Inn/n)*/ G+ (refer to Clémencon (2000)).

Hs : The "minorizing” density ~ is such that inf,ecgy(x) > 0.
Ha: The transition density p(x,y) and its estimate p,(x,y) are bounded

by a constant R < co over S2.

Some asymptotic properties of these statistics based on the approximate
regeneration data blocks are stated in the following theorem (their proof is
omitted since it immediately follows from the argument of Theorem 3.2 and
Lemma 5.3 in Bertail & Clémencon (2004c)),

Theorem 3. If assumptions Hy (2, v), H,(8), Hi(f, 2, v), Hi(f, 8), Ha, Hs
and Hy are satisfied by X, as well as conditions (C1) and (C2) by the split
chain, we have, as n — o0,

E,(fin(f)) = p(f) — B/an™ +O(n 'al/?)
E,(G2(f)) = o*(f) + O(a, V'),

and if o, = o(n~'?), then
' 2(@(f) = () = N(0,€(f))

where o, B and £2(f) are the quantities related to the split chain defined in
Proposition 4.1 .

Remark 5. The condition a,, = o(n~'/?) as n — oo may be ensured by
smoothness conditions satisfied by the transition kernel p(z,y): under Holder
constraints of order s such rates are achieved as soon as s > 1, that is a rather
weak assumption.

We also define the pseudo-regeneration based standardized (resp., studen-
tized) sample mean by

The following theorem straightforwardly results from Theorem 3.
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Theorem 4. Under the assumptions of Theorem 3, we have as n — oo
S = N(0,1) and t,, = N(0,1) .

This shows that from pseudo-regeneration blocks one may easily construct
a consistent estimator of the asymptotic variance o%(f) and asymptotic confi-
dence intervals for p(f) in the general positive recurrent case (see Section 5 for
more accurate confidence intervals based on a regenerative bootstrap method).
In Bertail & Clémencon (2004a), an E.E. is proved for the studentized statistic
tn. The main problem consists in handling computational difficulties induced
by the dependence structure, that results from the preliminary estimation of
the transition density. For partly solving this problem, one may use Algo-
rithm 4, involving the 2-split trick. Under smoothness assumptions for the
transition kernel (which are often fulfilled in practice), Bertail & Clémengon
(2004d) established the validity of the E.E. up to O(n~%/%log(n)), stated in
the result below.

Theorem 5. Suppose that (C1) is satisfied by the split chain, and that
Hy(k, v), Hi(k, f, v), Hi(k), Hi(K, [) with & > 6, Ha, H3 and H4 are
fulfilled. Let m,, and p, be integer sequences tending to oo as n — 0o, such
that n*/7 < p, < m, and m, = o(n) as n — oo. Then, the following limit
result holds for the pseudo-regeneration based standardized sample mean ob-
tained via Algorithm /

sup P, (S, < x) — EP(z)| = O(n_l/za},{f vnT32m,) , asn — oo,
z€R

and if in addition the preceding assumptions with £ > 8 and C4) are satisfied,
we also have

sup P, (t, < z) — F?(z)| = O(n_l/Qain/f v~ %m,) , asn — oo,
z€R

where E{Y (x) and i (x) are the expansions defined in Theorem 4.2 related
to the split chain. In particular, if o, = mylog(m,), by picking m,, = n?/3,
these E.E. hold up to O(n=5/%log(n)).

The conditions stipulated in this result are weaker than the conditions
ensuring that the Moving Block Bootstrap is second order correct. More pre-
cisely, they are satisfied for a wide range of Markov chains, including nonsta-
tionary cases and chains with polynomial decay of a—mixing coefficients (cf
remark 2.1) that do not fall into the validity framework of the MBB method-
ology. In particular it is worth noticing that these conditions are weaker than
Gotze & Hipp (1983)’s conditions (in a strong mixing setting).

As stated in the following proposition, the coefficients involved in the E.E.’s
above may be estimated from the approximate regeneration blocks.



26 Patrice Bertail and Stéphan Clémengon

Proposition 3. Under H;(2s, v), Hi(2s, v, f), Hy(25 VvV 8), Hi(2s )
with s > 2, Ha, Ha and Ha, the expectation M a,, = Ba, (O ;20 F(X;))*)
is well-defined and we have, as n — oo,

l,—1
fisn =171 (F(B)) = fin(f)L;)* =Eap (tan) My, + O, (al?) .
=1

4.3 Some illustrative examples

Here we give some examples with the aim to illustrate the wide range of
applications of the results previously stated.

Ezxample 1 : countable Markov chains.

Let X be a general irreducible chain with a countable state space E. For such a
chain, any recurrent state a € FE is naturally an accessible atom and conditions
involved in the limit results presented in § 4.1 may be easily checked at hand.
Consider for instance Cramer condition (C1). Denote by IT the transition
matrix and set A = {a}. Assuming that f is u-centered. We have, for any
k e N*:

[EA T8I0 = (SR et Iy = DB (74 = )

=1

< ‘EA(eitE;;l f(Xj)|TA = k)‘IPA(TA = k?) +1 —PA(TA = k‘) .

It follows that showing that (C1) holds may boil down to showing the partial
conditional Cramer condition

t—o0

Tim ’EA(eitELlf(Xj)m —k)| <1,

for some k > 0 such that P4(74 = k) > 0. In particular, similarly to the i.i.d.
case, this condition then holds, as soon as the set {f(z)}.crg is not a point
lattice (i.e. it is not a regular grid). We point out that the expression obtained
in Example 1 of Bertail & Clémengon (2004b) is clearly incorrect (it does not
hold at t = 0): given that Vt € R,

E 4 (e 2521 /(X0))

= Z Z elt Xjm F@) r(a, 21w (21, 22) .7 (21-1, 0) |

=1 z1#a,...,.x1—1#a

(C1) does not hold when f maps the state space to a point lattice.
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Ezample 2 : modulated random walk on R..
Consider the model
Xo=0and X,,41 = (X, + W,)4 forne N, (16)

where 2 = max(z, 0), (X,,) and (W,,) are sequences of r.v.’s such that, for all
n € N, the distribution of W,, conditionally to Xy, ..., X, is given by U(X,, .)
where U(z,w) is a transition kernel from R; to R. Then, X,, is a Markov
chain on R with transition probability kernel IT(x, dy) given by

H(:C, {O}) = U(Z‘, ] -0, — 33]) )
H(m7 ]y7 OOD = U(xv ]y - Z, OOD ,

for all x > 0. Observe that the chain IT is Jp-irreducible when U(x,.) has
infinite left tail for all z > 0 and that {0} is then an accessible atom for X.
The chain is shown to be positive recurrent iff there exists b > 0 and a test
function V' : Ry — [0, oo] such that V(0) < oo and the drift condition below
holds for all x > 0

/ (. dy)V(y) — V() < —1 + bl{z = 0} ,

(see in Meyn & Tweedie (1996). The times at which X reaches the value 0 are
thus regeneration times, and allow to define regeneration blocks dividing the
sample path, as shown in Fig. 1. Such a modulated random walk (for which, at
each step n, the increasing W,, depends on the actual state X,, = z), provides
a model for various systems, such as the popular content-dependent storage
process studied in Harrison & Resnick (1976) (see also Brockwell et al. (1982))
or the work-modulated single server queue in the context of queuing systems
(¢f Browne & Sigman (1992)). For such atomic chains with continuous state
space (refer to Meyn & Tweedie (1996), Feller (1968, 71) and Asmussen (1987)
for other examples of such chains), one may easily check conditions used in
§ 3.1 in many cases. One may show for instance that (C1) is fulfilled as soon
as there exists & > 1 such that 0 < P4(74 = k) < 1 and the distribution of
Zle f(X;) conditioned on Xy € A and 74 = k is absolutely continuous. For
the regenerative model described above, this sufficient condition is fulfilled
with k = 2, f(z) =  and A = {0}, when it is assumed for instance that
U(xz,dy) is absolutely continuous for all z > 0 and () #suppU (0, dy) N R% #
R

FEzxzample 3: nonlinear time series.
Consider the heteroskedastic autoregressive model

Xn+1 = m(Xn) + O'(Xn)gn+17 neN 3
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where m : R =+ R and o : R — R’ are measurable functions, (&, )nen is a
ii.d. sequence of r.v.’s drawn from g(z)dz such that, for all n € N, g,11
is independent from the Xj’s, k& < n with E(e,41) = 0 and E(e2,) = 1.
The transition kernel density of the chain is given by p(z,vy) = o(z) " tg((y —
m(z))/o(z)), (z, y) € R%. Assume further that g, m and o are continuous
functions and there exists ¢ € R such that p(xg, zo) > 0. Then, the transition
density is uniformly bounded from below over some neighborhood V;, (¢)? =

[0 — &, 20 + €]? of (xg, zo) in R? : there exists § = §(¢) €]0, 1] such that,

inf p(e,y) >6(2)"" . (17)
(w,y)EVﬁO

We thus showed that the chain X satisfies the minorization condition
M1,V (g), 6, UVIO(E))~ Furthermore, block-moment conditions for such time
series model may be checked via the practical conditions developed in Douc
et al. (2004) (see their example 3).

5 Regenerative block-bootstrap

Athreya & Fuh (1989) and Datta & McCormick (1993) proposed a specific
bootstrap methodology for atomic Harris positive recurrent Markov chains,
which exploits the renewal properties of the latter. The main idea underly-
ing this method consists in resampling a deterministic number of data blocks
corresponding to regeneration cycles. However, because of some inadequate
standardization, the regeneration-based bootstrap method proposed in Datta
& McCormick (1993) is not second order correct when applied to the sample
mean problem (its rate is Op(n~'/2) in the stationary case). Prolongating this
work, Bertail & Clémengon (2004b) have shown how to modify suitably this
resampling procedure to make it second order correct up to Op(n~"!log(n)) in
the unstudentized case (i.e. when the variance is known) when the chain is
stationary. However this Bootstrap method remains of limited interest from
a practical viewpoint, given the necessary modifications (standardization and
recentering) and the restrictive stationary framework required to obtain the
second order accuracy: it fails to be second order correct in the nonstationary
case, as a careful examination of the second order properties of the sample
mean statistic of a positive recurrent chain based on its E.E. shows (¢f Mali-
novskii (1987), Bertail & Clémengon (2004a)).

A powerful alternative, namely the Regenerative Block-Bootstrap (RBB),
have been thus proposed and studied in Bertail & Clémengon (2004c), that
consists in imitating further the renewal structure of the chain by resampling
regeneration data blocks, until the length of the reconstructed Bootstrap series
is larger than the length n of the original data series, so as to approximate the
distribution of the (random) number of regeneration blocks in a series of length
n and remove some bias terms (see section 4). Here we survey the asymptotic
validity of the RBB for the studentized mean by an adequate estimator of
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the asymptotic variance. This is the useful version for confidence intervals but
also for practical use of the Bootstrap (¢f Hall (1992)) and for a broad class of
Markov chains (including chains with strong mixing coefficients decreasing at
a polynomial rate), the accuracy reached by the RBB is proved to be of order
Op(n~1) both for the standardized and the studentized sample mean. The rate
obtained is thus comparable to the optimal rate of the Bootstrap distribution
in the i.i.d. case, contrary to the Moving Block Bootstrap (c¢f Gotze & Kiinsch
(1996), Lahiri (2003)). The proof relies on the E.E. for the studentized sample
mean stated in § 4.1 (see Theorems 4.2, 4.6). In Bertail & Clémengon (2004c) a
straightforward extension of the RBB procedure to general Harris chains based
on the ARB construction (see § 3.1) is also proposed (it is called Approzimate
Regenerative Block-Bootstrap, ARBB in abbreviated form). Although it is
based on the approximate regenerative blocks, it is shown to be still second
order correct when the estimate p, used in the ARB algorithm is consistent.
We also emphasize that the principles underlying the (A)RBB may be applied
to any (eventually continuous time) regenerative process (and not necessarily
markovian) or with a regenerative extension that may be approximated (see
Thorisson (2000)).

5.1 The (approximate) regenerative block-bootstrap algorithm.

Once true or approximate regeneration blocks By, ..., By _, are obtained

(by implementing Algorithm 1, 2, 8 or 4), the (approximate) regenerative
block-bootstrap algorithm for computing an estimate of the sample distri-
bution of some statistic 7, = T(Bi,...,B; ;) with standardization S, =

S(El, cey gfn—l) is performed in 3 steps as follows.

Algorithm 5 (Approximate) Regenerative Block-Bootstrap

1. Draw sequentially bootstrap data blocks BY,..., Bj independently from
the empirical distribution £, = (Tn -1t Z;":*ll 0. of the initial blocks
gl, e B\lA _,» until the length of the bootstrap data series [*(k) =
25:1 [(B) is larger than n. Let [}, = inf{k > 1, I*(k) > n}.

2. From the bootstrap data blocks generated at step 1, reconstruct a pseudo-
trajectory by binding the blocks together, getting the reconstructed
(A)RBB sample path

X0 = (B}, ... B ) .
Then compute the (A)RBB statistic and its (A)RBB standardization

TF =T(X*™) and S} = S(X*™) .
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3. The (A)RBB distribution is then given by
Hayrpp(x) =P*(S; 1Ty = T,) < ),
where P* denotes the conditional probability given the original data.

Remark 6. A Monte-Carlo approximation to H(4)rpp(z) may be straightfor-
wardly computed by repeating independently N times this algorithm.

5.2 Atomic case: second order accuracy of the RBB

In the case of the sample mean, the bootstrap counterparts of the estimators
7i,,(f) and o2 (f) considered in § 4.1 (using the notation therein) are

-1

-1
wr(f) —nAlsz* ) and o —nAIZ{fB* o ( (B*)}

(18)
with n% = Zz.”:_ll [(B}). Let us consider the RBB distribution estimates of
the unstandardized and studentized sample means

HY (@) = P*(n2on ()" Hus (F) — Bn ()} < @)
Hypp(x) =Py 2o s (F) — Ba ()} < o) .

The following theorem established in Bertail & Clémengon (2004b) shows the
RBB is asymptotically valid for the sample mean. Moreover it ensures that the
RBB attains the optimal rate of the i.i.d. Bootstrap. The proof of this result
crucially relies on the E.E. given in Malinovskii (1987) in the standardized
case and its extension to the studentized case proved in Bertail & Clémengon
(2004a).

Theorem 6. Suppose that (C1) is satisfied. Under H{(2, v), Hi(2, f, v),
Hy(k) and Hi(k, f) with K > 6, the RBB distribution estimate for the un-
standardized sample mean is second order accurate in the sense that

A =sup |Hgpp(r) — H) (2)] = O, (n71) , asn — oo,
z€R

with HY (z) = P, (ni‘mojfl{ﬁn(f) —u(f)} < x). And if in addition (C4),
Hy(k) and Hi(k, f) are checked with k > 8, the RBB distribution estimate
for the standardized sample mean is also 2nd order correct

A7 =sup|Hppp(x) — Hy ()| = Op,(n71) , asn — oo,
z€R

with H (x) = P, (n}{ >0, (F{.(F) — p(f)} < ).
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5.3 Asymptotic validity of the ARBB for general chains

The ARBB counterparts of the statistics 7, (f) and 72 (f) considered in § 4.2
(using the notation therein) may be expressed as

1x -1

() = 23 1B
j=1

and
51

a2(f) = w3 {FBy) — (DB}
j=1

denoting by n:M = 227;11 [(B}) the length of the ARBB data series. De-
fine the ARBB versions of the pseudo-regeneration based unstudentized and
studentized sample means (cf § 4.2) by

o 1/2 pn (f) = Bn (f) _
T () nT o ()

The unstandardized and studentized version of the ARBB distribution esti-
mates are then given by

HYppp(x) =P <o | X)) and Hippp(z) =P (&, <a | X))

This is the same construction as in the atomic case, except that one uses the
approximate regeneration blocks instead of the exact regenerative ones (cf
Theorem 3.3 in Bertail & Clémengon (2004c)).

Theorem 7. Under the hypotheses of Theorem 4.2, we have the following
convergence results in distribution under P,
AV =sup |H pzp(z) — HY (2)] = 0, asn — oo,

n =

z€R

AS =sup |HS ppg(x) — HS ()| =0, asn — oco.
z€R

5.4 Second order properties of the ARBB using the 2-split trick

To bypass the technical difficulties related to the dependence problem induced
by the preliminary step estimation, assume now that the pseudo regenerative
blocks are constructed according to Algorithm 4 (possibly including the selec-
tion rule for the small set of Algorithm 3). It is then easier (at the price of a
small loss in the 2nd order term) to get second order results both in the case
of standardized and studentized statistics, as stated below (refer to Bertail &
Clémencon (2004c) for the technical proof).
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Theorem 8. Suppose that (C1) and (C4) are satisfied by the split chain. Un-
der assumptions Hy(k, v), Hi(k, f, v), Hi(f, &), Hi(f, k) with & > 6, Ha,
Hs and Hy, we have the second order validity of the ARBB distribution both
in the standardized and unstandardized case up to order

AY = O, (n_1/2oz71n/f Va2 myn ) L asn— oo
And if in addition these assumptions hold with k > 8, we have
A% = Op, (n_1/2a71,{3 v Y2p7tm,)  asn— oo .

In particular if a,,, = mlog(m), by choosing m, = n*3 the ARBB is second
order correct up to O(n=5/%log(n)).

It is worth noticing that the rate that can be attained by the 2-split trick
variant of the ARBB for such chains is faster than the optimal rate the MBB
may achieve, which is typically of order O(n~3/%) under very strong assump-
tions (see Gotze & Kiinsch (1996), Lahiri (2003)). Other variants of the boot-
strap (sieve bootstrap) for time-series may also yield (at least practically) very
accurate approximation (see Bithlmann (2002), (1997)). When some specific
non-linear structure is assumed for the chain (see our example 3), nonpara-
metric method estimation and residual based resampling methods may also
be used : see for instance Franke et al. (2002). However to our knowledge, no
rate of convergence is explicitly available for these bootstrap techniques. An
empirical comparison of all these recent methods would be certainly of great
help but is beyond the scope of this paper.

6 Some extensions to U-statistics

We now turn to extend some of the asymptotic results stated in sections 4
and 5 for sample mean statistics to a wider class of functionals and shall con-
sider statistics of the form 2, ;. ., U(X;, X;). For the sake of simplicity, we
confined the study to U-statistics of degree 2, in the real case only. As will be
shown below, asymptotic validity of inference procedures based on such statis-
tics does not straightforwardly follow from results established in the previous
sections, even for atomic chains. Furthermore, whereas asymptotic validity of
the (approximate) regenerative block-bootstrap for these functionals may be
easily obtained, establishing its second order validity and give precise rate
is much more difficult from a technical viewpoint and is left to a further
study. Besides, arguments presented in the sequel may be easily adapted to
V-statistics 3, o; <, U(Xi, Xj).

6.1 Regenerative case

Given a trajectory X (") = (X1,..., X,) of a Harris positive atomic Markov
chain with stationary probability law p (refer to § 2.2 for assumptions and
notation), we shall consider in the following U-statistics of the form
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nn =1 Ze,

where U : E? — R is a kernel of degree 2. Even if it entails introducing
the symmetrized version of T}, it is assumed throughout the section that the
kernel U(z,y) is symmetric. Although such statistics have been mainly used
and studied in the case of i.i.d. observations, in dependent settings such as
ours, these statistics are also of interest, as shown by the following examples.

e In the case when the chain takes real values and is positive recurrent with
stationary distribution p, the variance of the stationary distribution s =
E,((X — E,(X))?), if well defined (note that it differs in general from the
asymptotic variance of the mean statistic studied in § 4.1), may be consistently

estimated under adequate block moment conditions by

» 1 < 1
5, = S (Xi—p)=—m > (Xi-X;)%/2,
=1

n—1 n(n—1) < Ten

where p1, = n~' Y " | X;, which is a U-statistic of degree 2 with symmetric
kernel U(z,y) = (z — y)?/2.

e In the case when the chain takes its values in the multidimensional space
RP, endowed with some norm ||. ||, many statistics of interest may be written
as a U-statistic of the form

wn=1) > HIX - X0

1<iAj<n

U, =

where H : R — R is some measurable function. And in the particular case
when p = 2, for some fixed ¢ in R? and some smooth function h, statistics of

type
1
Up=—— > ht X X))

nn =1, 7,

arise in the study of the correlation dimension for dynamic systems (see
Borovkova et al. (1999)). Depth statistical functions for spatial data are also
particular examples of such statistics (¢f Serfling & Zuo (2000)).

In what follows, the parameter of interest is
W)= [ UGeyuldouldy) (20)
(z,y)EE?

which quantity we assume to be finite. As in the case of i.i.d. observations, a
natural estimator of y(U) in our markovian setting is T},. We shall now study
its consistency properties and exhibit an adequate sequence of renormalizing
constants for the latter, by using the regeneration blocks construction once
again. For later use, define wy : T2 — R by
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E o1
wu(@®,y M) =3 Z (i, y;)
=1 j=1
for any ) = (21,...,21), ¥ = (y1,..., ) in the torus T = U, E" and
observe that wy is symmetric, as U.
” Regeneration-based Hoeffding’s decomposition”

By the representation of p as a Pitman’s occupation measure (¢f Theorem
2.1), we have

T4 (1) Ta(2)
w(U) = o *Ea( Z Z U(Xian))
i1 =74 (L)+

= a_Q]E(wU(Bh Bk>) 5

for any integers k, [ such that k # [. In the case of U-statistics based on de-
pendent data, the classical (orthogonal) Hoeffding decomposition (¢f Serfling
(1981)) does not hold anymore. Nevertheless, we may apply the underlying
projection principle for establishing the asymptotic normality of T, by ap-
proximatively rewriting it as a U-statistic of degree 2 computed on the regen-
erative blocks only, in a fashion very similar to the Bernstein blocks technique
for strongly mixing random fields (¢f Doukhan (1994)), as follows. As a matter
of fact, the estimator T;, may be decomposed as

I, — 1,
Tn = (n(n)<1))Ul —1 + T(O) + T(n) + An ) (21)
where,
2
V=2 Y w(BuB),
L(L-1) 1<k<I<L
2
TTSO) = —F Z wU(BkaBO) )
n(n—1) 1<k<l,—1
2
10— 2 Y (B,
n(n —1) 0<k<l,—1 "
1 In—1 n
Ay = n(T{Z wu (Bi, By) +wo (B, BY) = 3 U(Xi, Xi)} -
k=0 =1

Observe that the ”block diagonal part” of T;,, namely A,, may be straight-
forwardly shown to converge P,- a.s. to 0 as n — oo, as well as T,SO) and TT(Ll)
by using the same arguments as the ones used in § 4.1 for dealing with sam-
ple means, under obvious block moment conditions (see conditions (7i)-(%ii)
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below). And, since I,,/n — a~! P,- a.s. as n — oo, asymptotic properties of
T, may be derived from the ones of U;,_;, which statistic depends on the
regeneration blocks only. The key point relies in the fact that the theory of
U-statistics based on i.i.d. data may be straightforwardly adapted to func-
tionals of the i.i.d. regeneration blocks of the form ), _, wy (B, B;). Hence,
the asymptotic behaviour of the U-statistic U, as L — oo essentially depends
on the properties of the linear and quadratic terms appearing in the following
variant of Hoeffding’s decomposition. For k, [ > 1, define

TA(kJrl) TA(l+1)

suBwB) = >, Y, {UX,X;)—uU)}.

i=ra(k)+1 j=Ta()+1

(notice that E(@y (B, B;)) = 0 when k # 1) and for L > 1 write the expansion

L
) = 25, 2 (2)
U —pu(U) = 7 ;”U (B + £z 15 1<;<LWU (Br.B),  (22)

where, for any by = (z1,...,2;) € T,

I Ta
w[(Jl)(bl) = E(&U(Bl,lggﬂlgl = bl) = EA(ZZ&U(mi,Xj))

i=1 j=1

is the linear term (see also our definition of the influence function of the
parameter E(w(By, Bz2)) in section 7) and for all by, b2 in T,

Wi (b1,b2) = Gy (br, be) — B (b1) — &Y (bo)

is the quadratic degenerate term (gradient of order 2). Notice that by using
the Pitman’s occupation measure representation of u, we have as well, for any
by = (1‘1, ...,J,‘l) €T,

!
(Bara) w0 (b1) = > B, (@u (2, X1)) -

i=1

For resampling purposes, we also introduce the U-statistic based on the data
between the first regeneration time and the last one only:

~ 2
Ty= ——— > U(Xi, X;)
M=) | cici<ratin)

with n = 74(l;,) — 74 and Tn =0 when [,, <1 by convention.
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Asymptotic normality and asymptotic validity of the RBB

Now suppose that the following conditions, which are involved in the next
result, are fulfilled by the chain.

(i) (Non degeneracy of the U-statistic)
0<o0? =Ew(B1)?) < oo .
(i) (Block-moment conditions: linear part) For some s > 2,
E(wl(llf)\ (B1)?) < o0 and Ey(w‘%)l (By)?) < o0 .
(iii) (Block-moment conditions: quadratic part) For some s > 2,

Elwj(Bi, B2)|* < oo and Elwy (B, B1)|* < o0,
E,|wjrr|(Bo, B1)|? < oo and E, |w)rr|(Bo, Bo)|* < o0 .

By construction, under (4 )- (i) we have the crucial orthogonality property:
cov(w P (By), w?(By,B2)) =0. (23)

Now a slight modification of the argument given in Hoeffding (1948) allows to
prove straightforwardly that vL(Uy, — u(U)) is asymptotically normal with
zero mean and variance 4o7. Furthermore, by adapting the classical CLT
argument for sample means of Markov chains (refer to in Meyn & Tweedie
(1996) for instance) and using (23) and l,/n — o~ ! P,-a.s. as n — oo,
one deduces that /n(T,, — p(U)) = N(0,X?) as n — oo under P,, with
X? =4a30%.

Besides, estimating the normalizing constant is important (for constructing
confidence intervals or bootstrap counterparts for instance). So we define the
natural estimator 0[2], 1,1 of 0% based on the (asymptotically i.i.d.) I,, — 1
regeneration data blocks by

L

L
of L =(L=1(L=2 Y (L-1)"" Y wu(BrB)—UL),
k=1 I=1,k#l

for L > 1. The estimate o, ; is a simple transposition of the jackknife esti-
mator considered in Callaert & Veraverbeke (1981) to our setting and may be
easily shown to be strongly consistent (by adapting the SLLN for U-statistics
to this specific functional of the i.i.d regeneration blocks). Furthermore, we
derive that X2 — X2 P,-a.s., as n — 0o, where
X = Aln/n)’0 1,1 -

We also consider the regenerative block-bootstrap counterparts 7 and X2
of T,, and X2 respectively, constructed via Algorithm 5:
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Tr=—— UX;, X7),
n* (’I’L* - 1) lgigj:fn* !
T2 =AY oty
where n* denotes the length of the RBB data series X*(") = (X1,..., X,»)
constructed from the [ — 1 bootstrap data blocks, and

-1 1x-1
off 1= =2)0 =3)2 Y (U =2)7" Y wu(BLB)) -~ Uk ),
k=1 =1,k

(24)

* 2 * £
Ul;q = W Z wu (B, By') -

1<k<I<lz—1
We may then state the following result.

Theorem 9. If conditions (i)-(ii) are fulfilled with s = 4, then we have the
CLT under P,

Vvn(T, — p(U))/2, = N(0,1) , asn — oo .

This limit result also holds for Tn, as well as the asymptotic validity of the
RBB distribution: as n — 0o,

sup [P (Vi (T = )/ %5, < ) = Pu(VlTo = n(0)/ ¥ < )] 5 0.
xr

Whereas proving the asymptotic validity of the RBB for U-statistics un-
der these assumptions is straightforward (its second order accuracy up to
o(n~1/?) seems also quite easy to prove by simply adapting the argument
used by Helmers (1991) under appropriate Cramer condition on wél )(Bl) and
block-moment assumptions), establishing an exact rate, O(n~!) for instance
as in the case of sample mean statistics, is much more difficult. Even if
one tries to reproduce the argument in Bertail & Clémengon (2004a) con-
sisting in partitioning the underlying probability space according to every
possible realization of the regeneration times sequence between 0 and n, the
problem boils down to control the asymptotic behaviour of the distribution

P(leﬁéjémw?(&,@)/o& m <Y, Z;n:le = [) as m — oo, which is a

highly difficult technical task (due to the lattice component).

Remark 7. We point out that the approach developed here to deal with the
statistic Uy, naturally applies to more general functionals of the regeneration
blocks >, w(By, B;), with w : T — R being some measurable function.
For instance, the estimator of the asymptotic variance 72 (f) proposed in §
4.1 could be derived from such a functional, that may be seen as a U-statistic
based on observation blocks with kernel w(By, B;) = (f(Bx) — f(B;))?/2.
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6.2 General case

Suppose now that the observed trajectory X1 = (X1, ..., Xpy1) is drawn
from a general Harris positive chain with stationary probability u (see § 2.2 for
assumptions and notation). Using the split chain, we have the representation
of the parameter pu(U) :

pU) =Eau(Tan) *Ea, (wu(Br,Br)) -

Using the pseudo-blocks g[, 1<I< lAn —1, as constructed in § 3.2, we consider
the sequence of renormalizing constants for T;, :

52 =4l /)52 (25)
with
R Tn—1 N = PN ~
657 = =2 =3 (-2 D> wu(BiB) - T ),

k=1 1=1,k#l

~ 2 )

UT s == Z wU(B’C’Bl) .

" (ln = 1)(ln —2) 0
1<k<i<l,—1

We also introduce the U-statistic computed from the first approximate regen-
eration time and the last one:

- 2
TRZT Z U(XzaX])’
n(n—1) 1474 (1)<i<j<7a(In)

o~

with m = 7a(ln) —7a(1). Let us define the bootstrap counterparts 7, and X7
of T, n and 2’2 constructed from the pseudo-blocks via Algorithm 5. Although
approximate blocks are used here instead of the (unknown) regenerative ones
B, 1 <1< 1, —1, asymptotic normality still holds under appropriate assump-
tions, as shown by the theorem below, which we state in the only case when
the kernel U is bounded (with the aim to make the proof simpler).

Theorem 10. Suppose that the kernel U(x, y) is bounded and that Ha, Hs,
Hy are fulfilled, as well as (i)-(1i) for s = 4. Then we have as n — oo,

52 52 =B A, (1a0) *Ea, (W) (B1)?), in By-pr.
Moreover as n — oo, under P, we have the convergence in distribution
n' 2T, — () = N(0,1),

as well as the asymptotic validity of the ARBB counterpart

~

sup [P*(Vnr (T — T))/ 55 < @) — P (VT — p(U))/ 2, <2)] 2% 0.

zeR n— o0
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Proof. By applying the results of § 6.1 to the split chain, we get that the
variance of the limiting (normal) distribution of /n(T,, — u(U)) is X2 =
4E A, (Tay) Ea,, (w((]l)(Bl)2). The key point of the proof consists in con-
sidering an appropriate coupling between (X;, Y;)1<i<n and (X, ?i)gign
(or equivalently between the sequence of the ”true” regeneration times be-
tween 0 and n and the sequence of approximate ones), so as to control the
deviation between functionals constructed from the regeneration blocks and
their counterparts based on the approximate ones. The coupling considered
here is the same as the one used in the proof of Theorem 3.1 in Bertail &
Clémengon (2004c) (refer to the latter article for a detailed construction). We
shall now evaluate how 62 ~ L differs from 012], 1 —1> its counterpart based

s bn

on the "true” regeneration blocks. Observe first that

7, ="M= Da L 50 Fe 4 A
n n(n — 1) n n n n
where
. 2 PO
TT(LO) = n(n — 1) wU(Bk,Bo) 5
1<k<l,—1
. 2 PO
Tm = 2 wu (B, BM)
n(n—1) 0<k<l,—1 i
N 1 Tn_l . N N n
B = ot 2 (BB + (B BY) = U X))

Now following line by line the proof of lemma 5.2 in Bertail & Clémencon
(2004c), we obtain that, as n — oo, i/n — 1 = Op, (1), A, — Ay, 70— 7™
and T\™ — T are Op, (n~1). Tt follows thus that T, = T}, + op, (n=1/2)
as n — oo, and \/n(T, — p(U)) is asymptotically normal with variance £2.
The same limit results is straightforwardly available then for the Bootstrap
version by standard regenerative arguments. Furthermore, by Lemma 5.3 in
Bertail & Clémencgon (2004c¢) we have | lAn/n —l,/n|=Op, (ozf,l/2) as n — 0o,
and thus lAn/n —Ea, (Ta,) "t in P,-pr. as n — oo. It then follows by simple
(especially when U is bounded) but tedious calculations that 2’721 -2 =
D,, +op, (1) as n — oo, with




40 Patrice Bertail and Stéphan Clémengon

Now set G (B;) = (I, —2) ! Zé":_llﬁél wy (B, gj) forie{1,...0,—1} and
gn(Bi) = (I, —2)71 Z;":fj#i wy (Bs, By) for i € {1, o — 1}. By standard
arguments on U-statistics (see for instance Helmers (1991) and the references
therein) and using once again lemma 5.1 and 5.2 in Bertail & Clémengon
(2004b), we have uniformly in i € {1, ol — 1} (resp. in i € {1, R - 1}),
Gn(By) = wP(B:) + op, (1) (resp. gn(B;) = w{P(B;) + op, (1)) as n — .
Such uniform bounds are facilitated by the boundedness assumption on U,
but one may expect that with refined computations the same results could be
established for unbounded kernels.

It follows that as n — oo,

T,—1

In—1
A = Alln/m)* 1 DA (B =15 D e (B} + 0w, (1)

The first term in the right hand side is also op, (1) by lemma 5.2 in Bertail &
Clémengon (2004c). The proof of the asymptotic validity of the Bootstrap ver-
sion is established by following the preceding lines: it may be easily checked by
first linearizing and following the proof of Theorem 3.3 in Bertail & Clémengon
(2004c¢). As in the i.i.d case, this asymptotic result essentially boils down then
to check that the empirical moments converge to the theoretical ones. This
can be done by adapting standard SLLN arguments for U-statistics. a

7 Robust functional parameter estimation

Extending the notion of influence function and/or robustness to the frame-
work of general time series is a difficult task (see Kiinsch (1984) or Martin
& Yohai (1986)). Such concepts are important not only to detect "outliers”
among the data or influential observations but also to generalize the important
notion of efficient estimation in semiparametric frameworks (see the recent
discussion in Bickel & Kwon (2001) for instance). In the markovian setting, a
recent proposal based on martingale approximation has been made by Miiller
et al. (2001). Here we propose an alternative definition of the influence func-
tion based on the (approximate) regeneration blocks construction, which is
easier to manipulate and immediately leads to central limit and convolution
theorems.

7.1 Defining the influence function on the torus

The leitmotiv of this paper is that most parameters of interest related to Harris
chains are functionals of the distribution £ of the regenerative blocks (observe
that £ is a distribution on the torus T = U,>1E™), namely the distribution
of (Xi,...., Xr,) conditioned on Xy, € A when the chain possesses an atom
A, or the distribution of (X7, ...., XTAM) conditioned on (Xg, Yy) € Ap in
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the general case when one considers the split chain (refer to section 2 for
assumptions and notation, here we shall omit the subscript A and M in what
follows to make the notation simpler). In view of Theorem 2.1, this is obviously
true in the positive recurrent case for any functional of the stationary law pu.
But, more generally, the probability distribution P, of the Markov chain X
starting from v may be decomposed as follows :

Pu((Xn)nzl) :ﬁu((Xlw TA(I) H X1+TA(k’)7""7XTA(k+1))) )
k=1

denoting by £, the distribution of (X1,...., X,) conditioned on Xy ~ v.
Thus any functional of the law of (X,,),,>1 may be seen as a functional of (£,,
L). However, pointing out that the distribution of £, cannot be estimated
in most cases encountered in practice, only functionals of L are of practical
interest. The object of this subsection is to propose the following definition
of the influence function for such functionals. Let Pr denote the set of all
probability measures on the torus T and for any b € T, set L(b) = k if b € E¥,
k > 1. We then have the following natural definition, that straightforwardly
extends the classical notion of influence function in the i.i.d. case, with the
important novelty that distributions on the torus are considered here.

Deﬁnition 1. Let T : Pr — R be a functional on Pr. If for L in Pr,
“HT((1 = )L + o) — (E)) has a finite limit as t — 0 for any b € T,
then the influence function T of the functional T is well defined, and by
definition one has for all b in T,

10, £) =ty T((l—t)ﬁ—;téb)—T(ﬁ) . 26)

7.2 Some examples

The relevance of this definition is illustrated through the following examples,
which aim to show how easy it is to adapt known calculations of influence
function on R to this framework.

a) Suppose that X is positive recurrent with stationary distribution p. Let
f+ E = R be p-integrable and consider the parameter po(f) = E,(f(X)).
Denote by B a r.v. valued in T with distribution £ and observe that uo(f) =
Ec (f(B)/Ez (L(B)) = T(L) (recall the notation f(b) = S5 f(b;) for any
b e T). A classical calculation for the influence function of ratios yields then

(b, L) = jt(T((l — )L+ th)|=0 = W .
Notice that EL(T(I)(B,E)) _

b) Let 6 be the unique solution of the equation: E,(¢(X, 6)) = 0, where
¥ : R? — R is C2. Observing that it may be rewritten as Eg( Y(B, 0)) =0, a
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similar calculation to the one used in the i.i.d. setting (if differentiating inside
the expectation is authorized) gives in this case

¥(b, 0)

(1)
Vb, L) = — :
1!/ ’ T 8 i
EA(Zin w(a)g 0))

By definition of 8, we naturally have E, (Té}l)(B, L)) =0.

¢) Assuming that the chain takes real values and its stationary law p has
zero mean and finite variance, let p be the correlation coefficient between
consecutive observations under the stationary distribution:

_ E#(Xan+1) _ EA(Z:LAzl Xan-H)
EM(X%) EA(Z:LA:1 X727,)
For all b in T, the influence function is

S bi(bigs — pbi)

Ea(2i2, X7)

1
TV (b, L) =

and one may check that Eg(Tp(l)(B, L£)=0

d) Tt is now possible to reinterpret the results obtained for U-statistics in
section 6. With the notation above, the parameter of interest may be rewritten

u(U) = Eg (L(B)) *Ecxc(U(B1, B2)) .
yielding the influence function: Vb € T,
pM (b, L) = 2B, (L(B)) "*E(@y (Bi, Bo)| By = b) .

7.3 Main results

In order to lighten the notation, the study is restricted to the case when
X takes real values, i.e. E C R, but straightforwardly extends to a more
general framework. Given an observed trajectory of length m, natural em-
pirical estimates of parameters T(L) are of course the plug-in estimators
T(L,) based on the empirical distribution of the observed regeneration blocks
Ly, =(l,—1)""t Zé";ll dp; € Pr in the atomic case, which is defined as soon
as I, > 2 (notice that P, (I, <1) = O(n™1) as n — oo, if Ho(1,v) and Ho(2)
are satisfied). For measuring the closeness between £, and L, consider the
bounded Lipschitz type metric on Pr

dpr(C.C) = sup { [ F(B)L(dD) — / Fb)C/(db) (27)

feLipk

for any £, £ in Pr, denoting by Lip;. the set of functions F : T — R of type
F(b) = Zf:(li) f(bi), b € T, where f : E — R is such that sup,cp|f(z)| <1
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and is 1-Lipschitz. Other metrics (of Zolotarev type for instance, ¢f Rachev &
Ruschendorf (1998)) may be considered. In the general Harris case (refer to §
3.2 for notation), the influence function based on the atom of the split chain,
as well as the empirical distribution of the (unobserved) regeneration blocks
have to be approximated to be of practical interest. Once again, we shall use
the approximate regeneration blocks By, ..., Bfnq (using Algorithm 2, 3) in
the general case and consider

Tn—1

Ly=0.—1)) 85 ,

j=1

when Tn > 2. The following theorem provides an asymptotic bound for the
error committed by replacing the empirical distribution £,, of the "true” re-
generation blocks by £,,, when measured by dgy,.

Theorem 11. Under ’H(/)(4),”HEJ(4,1/),H2, Hs and Hy, we have
dBL(L'n,En) = O(oz,l/z) ,asmn — oo .
And if in addition dpp (L, L) = O(n~?) as n — oo, then
dpr(Ln,Ly) = O(a>n=1?) asn — oo .

Proof. With no loss of generality, we assume the X;’s centered. From lemma
5.3 in Bertail & Clémengon (2004c), we have l,,/l,,—1 = Op, (oz}/z) as m — 0o.
Besides, writing

In—1

~ Iy, —1 1
d En,ﬁn < An -1 sup fB
el ) < G 1) s 7 3 65

In—1 T,—1
n

+ = sup [n~" Z FB)=n"" > B, (28)

ln -1 fELip%

and observing that sup ¢ ;1 |(l,—1)71 222*11 f(Bj)| <1, we get that the first

term in the right hand side is Op, (a}/2) asn — 0o. Now as sup,cp | f(z)] <1,
we have

\n_l(z F(Bj)—, FBN €0 (Fap (1) =Tang D+ Fan (ln) =Far 1))

and from lemma 5.1 in by Bertail & Clémencon (2004b), the term in the right
hand side is op, (n™1) as n — oo. We thus get

dBL(En,En) < a,l/QdBL(ﬁn,E) +op, (1), asn — 0.

And this completes the proof. ad
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Given the metric on Pr defined by dgp, we consider now the Fréchet
differentiability for functionals T : Pr — R.

Definition 2. We say that T is Fréchet-differentiable at Ly € Pr, if there
exists a linear operator DTE)) and a function 6(1)(.,£0).‘ R — R, continuous
at 0 with €M (0, L) = 0, such that:

VL € Pr, T(L) — T(Lo) = DWT,, (L — Lo) + RY(L, Lo) ,

with RY(L,Lo) = dpr(L,Lo)eM (dpr(L, Lo), Lo). Moreover, T is said to
have a canonical gradient (or influence function) TM (., Ly), if one has the
following representation for DTE)) :

VL € Pr, DTS (L — Lo) = /TT“)(b, Lo)L(db) .
Now it is easy to see that from this notion of differentiability on the
torus one may directly derive CLT’s, provided the distance d(L,,L) may
be controlled.

Theorem 12. In the regenerative case, if T : Pr — R is Fréchet differentiable
at £ and dgp(Ln, L) = Op, (n"Y?) (or RV(L,, L) = op, (n"'/?)) as n — oo,
and if B4(14) < 00 and 0 < var4(T™M (By, £)) < co then under P,

nMA(T(L,) —T(L)) = N(0,Ex(ra)vara(TV (B, L)), asn — oo .

In the general Harris case, if the split chain satisfies the assumptions above
(with A replaced by An), under the assumptions of Theorem 11, as n — o0
we have under P,

n'"2(T(L,) — T(L)) = N(0,Ea,, (Tay)vara,, (TV (B, L)) .

The proof is straightforward and left to the reader. Observe that if one

renormalizes by l,l/ % instead of renormalizing by n'/2 in the atomic case

(resp., by i}/ % in the general case), the asymptotic distribution would be sim-
ply N(0,var4(T™M (B4, L)) (vesp., vara,, (T (B, £)), which depends on the
atom chosen (resp. on the parameters of condition M).

Then going back to the preceding examples, we straightforwardly deduce

the following results.
a) Noticing that 711/2/1711/2 — Ea(14)Y? Py~ a.s. as n — oo, we immedi-
ately get that under P, as n — oo,

TA

02 (un (f) = p(f)) = N0, Ba(ra)tvara (Y (F(X:) — u(f)) -
i=1
b) In a similar fashion, under smoothness assumptions ensuring Fréchet
differentiability, the M-estimator 8,, being the (unique) solution of the block-
estimating equation
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Ta(ln) I, Ta(j+1)
dSoowXn=>" > w()m)—o
i=7a+1 Jj=li=Ta(j)+

we formally obtain that, if E4(3°/2, M) # 0 and 6 is the true value of
the parameter, then under P,, as n — o0,
TA O i, T
Ea(37 2G5 ) o vara(S74, (X5, 0)
Ea(ra) Ea(ra)

Observe that both factors in the variance are independent from the atom A
chosen. It is worth noticing that, by writing the asymptotic variance in this
way, as a function of the distribution of the blocks, a consistent estimator
for the latter is readily available, from the (approximate) regeneration blocks.
Examples ¢) and d) may be treated similarly.

n'/?(8, - 0) = N(0, | ] ) -

Remark 8. The concepts developed here may also serve as a tool for robust-
ness purpose, for deciding whether a specific data block has an important
influence on the value of some given estimate or not, and/or whether it may
be considered as ”outlier”. The concept of robustness we introduce is related
to blocks of observations, instead of individual observations. Heuristically, one
may consider that, given the regenerative dependency structure of the pro-
cess, a single suspiciously outlying value at some time point n may have a
strong impact on the trajectory, until the (split) chain regenerates again, so
that not only this particular observation but the whole ”contaminated” seg-
ment of observations should be eventually removed. Roughly stated, it turns
out that examining (approximate) regeneration blocks as we propose before,
allows to identify more accurately outlying data in the sample path, as well as
their nature (in the time series context, different type of outliers may occur,
such as additive or innovative outliers). By comparing the data blocks (their
length, as well as the values of the functional of interest on these blocks) this
way, one may detect the ones to remove eventually from further computations.

8 Some extreme values statistics

We now turn to statistics related to the extremal behaviour of functionals
of type f(X,) in the atomic positive Harris recurrent case, where f : (E,
£) — R is a given measurable function. More precisely, we shall focus on
the limiting distribution of the maximum M, (f) = maxi<;<n f(X;) over a
trajectory of length n, in the case when the chain X possesses an accessible
atom A (see Asmussen (1998) and the references therein for various examples
of such processes X in the area of queuing systems and a theoretical study of
the tail properties of M, (f) in this setting).
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8.1 Submaxima over regeneration blocks

For j > 1, we define the "submaximum” over the j-th cycle of the sample
path:

G = L () S4Sra(41) FX) -
The ¢;(f)’s are i.id. r.v.’s with common d.f. Gy(z) = P(¢i(f) < x). The
following result established by Rootzén (1988) shows that the limiting dis-
tribution of the sample maximum of f(X) is entirely determined by the tail
behaviour of the df Gy and relies on the crucial observation that the maxi-
mum value M, (f) = maxi<i<pn f(X;) over a trajectory of length n, may be
expressed in terms of ”submaxima’ over regeneration blocks as follows

G, M)

In

M -

n(f) = max(Go(f), | max
where Go(f) = maxi<i<r, f(Xi) and G(f) = maxi o, 1,)<icn S(X) de-
note the maxima over the non regenerative data blocks, and with the usual
convention that the maximum over an empty set equals —oo.

Proposition 4. (Rootzén, 1988) Let « = EA(T4) be the mean return time to
the atom A. Under the assumption (A1) that the first (non-regenerative) block
does not affect the extremal behaviour, i.e. P, ({o(f) > maxi<p<i Cx(f)) — 0
as | — oo, we have

sup | P, (M, (f) < ) — Gp(x)™* |- 0, asn — oo . (29)
z€R

Hence, as soon as condition (A1) is fulfilled, the asymptotic behaviour of
the sample maximum may be deduced from the tail properties of Gs. In partic-
ular, the limiting distribution of M, (f) (for a suitable normalization) is the ex-
treme df He(z) of shape parameter ¢ € R (with He () = exp(—2~$)I{z > 0}
when ¢ > 0, Hy(x) = exp(— exp(—z)) and He(x) = exp(—(—z)" V) {z < 0}
if € < 0) iff Gy belongs to the maximum domain of attraction MDA(H)
of the latter df (refer to Resnick (1987) for basics in extreme value the-
ory). Thus, when Gy € MDA(H¢), there are sequences of norming constants
a, and b, such that Gy(a,z + b,)" — He(x) as n — oo, we then have
P, (M,(f) < alx +b,) = He(x) as n — oo, with a}, = a,/as.

8.2 Tail estimation based on submaxima over regeneration blocks

In the case when assumption (A1) holds, one may straightforwardly derive
from (29) estimates of Hy ,(z) = P,(M,(f) < z) as n — oo based on the
observation of a random number of submaxima (;(f) over a sample path, as
proposed in Glynn & Zeevi (2000):

Hy o 1(z) = (Gy, n(2))'
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with 1 <[ < [, and denoting by CAv'f, n(T) = L Zl 1! {¢(f) < «} the
empirical df of the (;(f)’s (with (A}f, n(2) = 0 by convention when I, < 1).
We have the following limit result (see also Proposition 3.6 in Glynn & Zeevi
(2000) for a different formulation, stipulating the observation of a determin-
istic number of regeneration cycles).

Proposition 5. Let (uy) be such that n(1 —Gyf(uy))/a —n < 0o asn — oo.
Suppose that assumptions Ho(1, v) and (A1) holds, then Hy, »(un) — exp(—n)
as n — oo. And let N,, € N such that N, /n?> — 0 as n — oo, then we have

Hf 1, (un)/Hy n(uy) = 1 in P, — probability, as n — oo . (30)

s ns

Moreover if N, /n**? — 0o as n — oo for some p > 0, this limit result also
holds P,,- a.s. .

Proof. First, the convergence Hy ,(u,) — exp(—n) as n — oo straight-
forwardly follows from Proposition 8.1. Now we shall show that [,(1 —
éf’ N, (un)) = ninP,- pr. asn — co. As l,,/n — a~! P,- a.s. as n — oo by
the SLLN, it thus suffices to prove that

n(Gy(un) — @f, N, (un)) — 0 in P, — probability as n — oo . (31)

Write

an

n(Gy(un) = G, v, (n) = 7= _1N Z{H{@ ) < tn} = Gy(un)}

and observe that N, /(ly, — 1) — «, P,- a.s. as n — oo by the SLLN again.
Besides, from the argument of Theorem 15 in Clémencon (2001), we easily
derive that there exist constants C'y and Cy such that for all e > 0, n € N

an—l

P, ; {{¢(f) S unt — Gp(un)}| > €

< Crexp(—C2e?/N,) +P, (14 > N,) .

From this bound, one immediately establishes (31 ). And in the case when
N,, = n?*7 for some p > 0, Borel-Cantelli’s lemma, combined with the latter
bound shows that the convergence also takes place P, -almost surely. a

This result indicates that observation of a trajectory of length N,,, with
n? = o(N,) as n — oo, is required for estimating consistently the extremal
behaviour of the chain over a trajectory of length n. As shall be shown below,
it is nevertheless possible to estimate the tail of the sample maximum M, (f)
from the observation of a sample path of length n only, when assuming some
type of behaviour for the latter, namely under maximum domain of attraction



48 Patrice Bertail and Stéphan Clémengon

hypotheses. As a matter of fact, if one assume that Gy € M DA(H) for some
¢ € R, of which sign is a priori known, one may implement classical inference
procedures (refer to § 6.4 in Embrechts et al. (1999) for instance) from the
observed submaxima (i (f), ..., ¢;, —1(f) for estimating the shape parameter £
of the extremal distribution, as well as the norming constants a,, and b,,. We
now illustrate this point in the Fréchet case (i.e. when & > 0), through the
example of the Hill inference method.

8.3 Heavy-tailed stationary distribution

As shown in Rootzén (1988), when the chain takes real values, assumption
(A1) is checked for f(x) = x (for this specific choice, we write M,,(f) = M,,
Gy = G, and (;(f) = ¢; in what follows) in the particular case when the chain
is stationary, i.e. when v = p. Moreover, it is known that when the chain is
positive recurrent there exists some index 6, namely the extremal index of the
sequence X = (X, )nen (see Leadbetter & Rootzén (1988) for instance), such
that

Pu(M, <x) ~ Fu@)™, (32)

denoting by F,(z) = u(] — oo, z]) = aE4 (>[4, I{X; < x}) the stationary
df. In this case, as remarked in Rootzén (1988), if (u,) is such that n(1 —
G(up))/a = n < 0o, we deduce from Proposition 8.1 and (32) that

. Pa(maxi<i<r, Xi > up)
0 = lim T
n—oo Ba(X 2 {X; > un})

We may then propose a natural estimate of the extremal index 6§ based on the
observation of a trajectory of length IV,

T Zéi}l ]I{Cj > un}
N — )
S X > )

which may be shown to be consistent (resp., strongly consistent) under P,
when N = N,, is such that N,,/n? — oo (resp. N,,/n*T* — oo for some p > 0)
as n — oo and Ho(2) is fulfilled by reproducing the argument of Proposition
9.2. And Proposition 8.1 combined with (32) also entails that for all £ in R,

G € MDA(H;) < F, € MDA(H;) .

8.4 Regeneration-based Hill estimator

This crucial equivalence holds in particular in the Fréchet case, i.e. for £ > 0.
Recall that assuming that a df F' belongs to M DA(H,) classically amounts
then to suppose that it satisfies the tail regularity condition

1—F(x) = L(z)x™*,
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where a = ¢! and L is a slowly varying function, i.e. a function L such that
L(tx)/L(z) — 1 as * — oo for any ¢ > 0 (¢f Theorem 8.13.2 in Bingham
et al. (1987)). Since the seminal contribution of Hill (1975), numerous papers
have been devoted to the development and the study of statistical methods in
the i.i.d. setting for estimating the tail index a > 0 of a regularly varying df.
Various inference methods, mainly based on an increasing sequence of upper
order statistics, have been proposed for dealing with this estimation problem,
among which the popular Hill estimator, relying on a conditional maximum
likelihood approach. More precisely, based on i.i.d. observations Xy, ...., X,
drawn from F', the Hill estimator is given by

k
X,
HX = (1S 20 -1 33

fon = ( ; X(k+1)) (33)
where X ;) denotes the i-th largest order statistic of the sample XM = (X, ...,
Xn),1<i<mn,1<k<n.Strong consistency (¢f Deheuvels et al. (1988))
of this estimate has been established when k = k,, — oo at a suitable rate,
namely for k, = o(n) and lnlnn = o(k,) as n — oo, as well as asymp-
totic normality (see Goldie (1991)) under further conditions on F and k,,
VEn(HY | —a) = N(0, a®), as n — co. Now let us define the regeneration-
based Hill estimator from the observation of the l,—1 submaxima (q, ..., {1, —1,
denoting by £;) the j-th largest submaximum,

k —1
. _ Qi
Gn k=Hy, = (k: 3 O .
=1

Ck+1)

Given that [, — oo, P,- a.s. as n — oo, results established in the case of i.i.d.
observations straightforwardly extend to our setting (for comparison purpose,
see Resnick & Starica (1995) for properties of the classical Hill estimate in
dependent settings).

Proposition 6. Suppose that F,, € MDA(H,-1) with a > 0. Let (k) be
an increasing sequence of integers such that k, < n for all n, k, = o(n)
and Inlnn = o(k,) as n — oo. Then the regeneration-based Hill estimator is
strongly consistent

Gn, by, ., — @, Py- a5 asn— o00.

Under the further assumption that F), satisfies the Von Mises condition and
that ky, is chosen accordingly (cf Goldie (1991)), it is moreover asymptotically
normal in the sense that

Vki,—1(@n, 5, ., —a) = N(0, a*) under P, asn — oo .
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9 Concluding remarks

Although we are far from having covered the unifying theme of statistics based
on (pseudo-) regeneration for Harris Markov chains, an exhaustive treatment
of the possible applications of this methodology being naturally beyond the
scope of the present survey article, we endeavour to present here enough mate-
rial to illustrate the power of this method. Most of the results reviewed in this
paper are very recent (or new) and this line of research is still in development.
Now we conclude by making a few remarks raising several open questions
among the topics we focused on, and emphasizing the potential gain that the
regeneration-based statistical method could provide in further applications.

e We point out that establishing sharper rates for the 2nd order accuracy
of the ARBB when applied to sample mean statistics in the general Harris
case presents considerable technical difficulties (at least to us). However, one
might expect that this problem could be successfully addressed by refining
some of the (rather loose) bounds put forward in the proof. Furthermore, as
previously indicated, extending the argument to U-statistics requires to prove
preliminary non-uniform limit theorems for U-statistics of random vectors
with a lattice component.

e In numerous applications it is relevant to consider null recurrent (even-
tually regenerative) chains: such chains frequently arise in queuing/network
systems, related to teletraffic data for instance (see Resnick (1997) or Glynn &
Whitt (1995) for example), with heavy-tailed cycle lengths. Hence, exploring
the theoretical properties of the (A)RBB for these specific time series provides
thus another subject of further research: as shown by Karlsen & Tjgstheim
(1998), consistent estimates of the transition kernel, as well as rates of con-
vergence for the latter, may still be exhibited for §-recurrent null chains (i.e.
chains for which the return time to an atom is in the domain of attraction
of a stable law with 8 €]0,1[ being the stable index), so that extending the
asymptotic validity of the (A)RBB distribution in this case seems conceivable.

e Turning to the statistical study of extremes now (which matters in in-
surance and finance applications for instance), a thorough investigation of the
asymptotic behaviour of extreme value statistics based on the approximate
regeneration blocks remains to be carried out in the general Harris case.

We finally mention ongoing work on empirical likelihood estimation in the
markovian setting, for which methods based on (pseudo-) regeneration blocks
are expected to provide significant results.

References

[AS85] Abramovitz L., Singh K.(1985). Edgeworth Corrected Pivotal Statistics and
the Bootstrap, Ann. Stat., 13 ,116-132.



Regeneration-based statistics for Harris recurrent Markov chains 51

[Asm87] Asmussen, S. (1987). Applied Probabilities and Queues. Wiley.

[Asm98] Asmussen, S. (1998). Extremal Value Theory for Queues Via Cycle Max-
ima. Fatremes, 1, No 2, 137-168.

[AA98] Athreya, K.B., Atuncar, G.S. (1998). Kernel estimation for real-valued
Markov chains. Sankhya, 60, series A, No 1, 1-17.

[AF89] Athreya, K.B., Fuh, C.D. (1989). Bootstrapping Markov chains: countable
case. Tech. Rep. B-89-7, Institute of Statistical Science, Academia Sinica, Taipei,
Taiwan, ROC.

[AN78] Athreya, K.B., Ney, P. (1978). A new approach to the limit theory of recur-
rent Markov chains. Trans. Amer. Math. Soc., 245, 493-501.

[Ber97] Bertail, P. (1997). Second order properties of an extrapolated bootstrap
without replacement: the i.i.d. and the strong mixing cases, Bernoulli, 3, 149-179.

[BCO04a] Bertail, P., Clémencon, S. (2004a). Edgeworth expansions for suitably nor-
malized sample mean statistics of atomic Markov chains. Prob. Th. Rel. Fields,
130, 388-414 .

[BCO4b] Bertail, P., Clémencon, S. (2004b). Note on the regeneration-based boot-
strap for atomic Markov chains. To appear in Test.

[BCO4c] Bertail, P. , Clémencon, S. (2004c). Regenerative Block Bootstrap for
Markov Chains. To appear in Bernoulli.

[BC04d] Bertail, P. , Clémengon, S. (2004d). Approximate Regenerative Block-
Bootstrap for Markov Chains: second-order properties. In Compstat 2004 Proc.
Physica Verlag.

[BP01] Bertail, P., Politis, D. (2001). Extrapolation of subsampling distribution
estimators in the i.i.d. and strong-mixing cases, Can. J. Stat., 29, 667-680.

[BKO1] Bickel, P.J., Kwon, J. (2001). Inference for Semiparametric Models: Some
Current Frontiers. Stat. Sin., 11, No. 4, 863-960.

[BGT89] Bingham N.H., Goldie G.M., Teugels J.L. (1989): Regular Variation, Cam-
bridge University Press.

[Bir83] Birgé, L. (1983). Approximation dans les espaces métriques et théorie de
l'estimation. Z. Wahr. verw. Gebiete, 65, 181-237.

[BoL80] Bolthausen, E. (1980). The Berry-Esseen Theorem for strongly mixing Har-
ris recurrent Markov Chains. Z. Wahr. Verw. Gebiete, 54, 59-73.

[Bol82] Bolthausen, E. (1982). The Berry-Esseen Theorem for strongly mixing Har-
ris recurrent Markov Chains. Z. Wahr. Verw. Gebiete, 60, 283-289.

[BBD99] Borovkova,S., Burton R., Dehling H. (1999). Consistency of the Takens
estimator for the correlation dimension. Ann. Appl. Prob., 9, No. 2, 376-390.

[BRT82] Brockwell, P.J., Resnick, S.J., Tweedie, R.L. (1982). Storage processes with
general release rules and additive inputs. Adv. Appl. Probab., 14, 392-433.

[BS92] Browne, S., Sigman, K. (1992). Work-modulated queues with applications
to storage processes. J. Appl. Probab., 29, 699-712.

[Biil97] Biihlmann, P. (1997). Sieve Bootstrap for time series. Bernoulli, 3, 123-148.

[Biil02] Biihlmann, P. (2002). Bootstrap for time series. Stat. Sci., 17, 52-72.

[CV81] Callaert, H., Veraverbeke, N. (1981). The order of the normal approximation
for a Studentized statistic. Ann. Stat., 9, 194-200.

[Car86] Carlstein, E. (1986). The use of subseries values for estimating the variance
of a general statistic from a stationary sequence. Ann. Statist., 14, 1171-1179.

[C1é00] Clémencon, S. (2000). Adaptive estimation of the transition density of a
regular Markov chain. Math. Meth. Stat., 9, No. 4, 323-357.



52 Patrice Bertail and Stéphan Clémengon

[Clé01] Clémencgon, S. (2001). Moment and probability inequalities for sums of
bounded additive functionals of regular Markov chains via the Nummelin split-
ting technique. Stat. Prob. Letters, 55, 227-238.

[DM93] Datta, S., McCormick W.P. (1993). Regeneration-based bootstrap for
Markov chains. Can. J. Statist., 21, No.2, 181-193.

[DHMS88] Deheuvels, P. Hausler, E., Mason, D.M. (1988). Almost sure convergence
of the Hill estimator. Math. Proc. Camb. Philos. Soc., 104, 371-381.

[DFMS04] Douc, R., Fort, G., Moulines, E., Soulier, P. (2004). Practical drift condi-
tions for subgeometric rates of convergence. Ann. Appl. Prob., 14, No 3, 1353-1377.

[Dou94] Doukhan, P. (1994). Mizing: Properties and Ezamples. Lecture Notes in
Statist., 85. Springer, New York.

[DG83] Doukhan, P., Ghindes, M. (1983). Estimation de la transition de probabilité
d’une chaine de Markov Doeblin récurrente. Stochastic Process. Appl., 15, 271-293.

[EKMO1] Embrechts, P., Klippelberg, C., Mikosch, T. (2001). Modelling Exztremal
Events. Springer-Verlag.

[Fel68] Feller, W. (1968). An Introduction to Probability Theory and its Applications:
vol. I. John Wiley & Sons, NY, 2nd edition.

[Fel71] Feller, W. (1971). An Introduction to Probability Theory and its Applications:
vol. II. John Wiley & Sons, NY, 3rd edition

[FKMO02] Franke, J., Kreiss, J. P., Mammen, E. (2002). Bootstrap of kernel smooth-
ing in nonlinear time series. Bernoulli, 8, 1-37.

[GZ00] Glynn, W.P., Zeevi, A. (2000). Estimating Tail Probabilities in Queues via
Extremal Statistics. In Analysis of Communication Networks: Call Centres, Traf-
fic, and Performance [ D.R. McDonald and S.R. Turner, eds. | AMS, Providence,
Rhode Island, 135-158.

[GW95] Glynn, W.P., Whitt, W. (1995). Heavy-Traffic Extreme-Value Limits for
Queues. Op. Res. Lett. 18, 107-111.

[Gol91] Goldie, C.M. (1991). Implicit renewal theory and tails of solutions of random
equations. Ann. Appl. Prob., 1, 126-166.

[GH83] Gotze, F., Hipp, C. (1983). Asymptotic expansions for sums of weakly de-
pendent random vectors. Zeit. Wahrschein. verw. Geb., 64, 211-239.

[GK96] Géotze, F., Kiinsch, H.R. (1996). Second order correctness of the blockwise
bootstrap for stationary observations. Ann. Statist., 24, 1914-1933.

[Hal83] Hall P. (1983). Inverting an Edgeworth Expansion. Ann. Statist., 11, 569-
576.

[Hal85] Hall, P. (1985). Resampling a coverage pattern. Stoch. Process. Applic., 20,
231-246.

[Hal92] Hall, P. (1992). The Bootstrap and Edgeworth Ezpansion. Springer.

[HR76] Harrison, J.M., Resnick, S.J. (1976). The stationary distribution and first
exit probabilities of a storage process with general release rule. Math. Oper. Res.,
1, 347-358.

[Hel91] Helmers, R (1991). On the Edgeworth expansion and the bootstrap approx-
imation for a studentized statistics. Ann. Statist. ,19, 470-484.

[Hoe48] Hoeffding, W. (1948). A class of statistics with asymptotically normal dis-
tributions. Ann. Math. Stat., 19, 293-325.

[JJ67] Jain, J., Jamison, B. (1967). Contributions to Doeblin’s theory of Markov
processes. Z. Wahrsch. Verw. Geb., 8, 19-40.

[Kal78] Kalashnikov, V.V. (1978). The Qualitative Analysis of the Behavior of Com-
plex Systems by the Method of Test Functions. Nauka, Moscow.



Regeneration-based statistics for Harris recurrent Markov chains 53

[KT01] Karlsen, H.A., Tjgstheim, D. (2001). Nonparametric estimation in null re-
current time series. Ann. Statist., 29 (2), 372-416.

[Kiin84] Kiinsch, H.R. (1984). Infinitesimal robustness for autoregressive processes.
Ann. Statist., 12, 843-863.

[Kiin89] Kiinsch, H.R. (1989). The jackknife and the bootstrap for general station-
ary observations. Ann. Statist., 17, 1217-1241.

[Lah03] Lahiri, S.N. (2003). Resampling methods for dependent Data, Springer.

[LR88] Leadbetter, M.R., Rootzén, H. (1988). Extremal Theory for Stochastic Pro-
cesses. Ann. Prob., 16, No. 2, 431-478.

[LS92] Liu R., Singh K. (1992). Moving blocks jackknife and bootstrap capture
weak dependence. In Exzploring The Limits of The Bootstrap. Ed. Le Page R. and
Billard L., John Wiley, NY.

[Mal85] Malinovskii, V. K. (1985). On some asymptotic relations and identities for
Harris recurrent Markov Chains. In Statistics and Control of Stochastic Processes,
317-336.

[Mal87] Malinovskii, V. K. (1987). Limit theorems for Harris Markov chains I. The-
ory Prob. Appl., 31, 269-285.

[mal89] Malinovskii, V. K. (1989). Limit theorems for Harris Markov chains II.
Theory Prob. Appl., 34, 252-265.

[MY86] Martin, R.D., Yohai, V.J. (1986). Influence functionals for time series. Ann.
Stat., 14, 781-818.

[MT96] Meyn, S.P., Tweedie, R.L., (1996). Markov chains and stochastic stability.
Springer.

[MSWO01] Miiller, U.U., Schick, A., Wefelmeyer, W., (2001). Improved estimators
for constrained Markov chain models. Stat. Prob. Lett., 54, 427-435.

[Num78] Nummelin, E. (1978). A splitting technique for Harris recurrent chains. Z.
Wahrsch. Verw. Gebiete, 43, 309-318.

[nUMB84] Nummelin, E. (1984). General irreducible Markov chains and non negative
operators. Cambridge University Press, Cambridge.

[PP02] Paparoditis, E. and Politis, D.N. (2002). The local bootstrap for Markov
processes. J. Statist. Plan. Infer., 108, 301-328.

[PR92] Politis, D.N. ; Romano, J.P. (1992). A General Resampling Scheme for Tri-
angular Arrays of alpha-mixing Random Variables with Application to the Prob-
lem of Spectral Density Estimation, Ann. Statist., 20, 1985-2007.

[PR94] Politis, D.N., Romano, J.P. (1994). Large sample confidence regions based
on subsamples under minimal assumptions. Ann. Statist., 22, 2031-2050.

[PRWO00] Politis, D.N., Romano, J.P., Wolf, T. (2000). Subsampling. Springer Series
in Statistics, Springer, NY.

[Pol03] Politis, D.N. (2003). The impact of bootstrap methods on time series anal-
ysis. Statistical Science , 18, No. 2, 219-230.

[PR83] Prakasa Rao, B.L.S. (1983). Nonparametric Functional Estimation. Aca-
demic Press, NY.

[RR98] Rachev, S. T., Riischendorf, L. (1998). Mass Transportation Problems. Vol.
I and II. Springer.

[Res87] Resnick, S. (1987). Extreme Values, Regular Variation and Point Processes.
Springer, NY.

[Res97] Resnick, S. (1997). Heavy Tail Modeling And Teletraffic Data. Ann. Stat.,
25, 1805-1869.

[RS95] Resnick, S., Starica, C. (1995). Consistency of Hill estimator for dependent
data. J. Appl. Prob., 32, 139-167.



54 Patrice Bertail and Stéphan Clémengon

[Rev84] Revuz, D (1984). Markov chains. North-Holland, 2nd edition.

[RR96] Roberts, G.O., Rosenthal, J.S. (1996). Quantitative bounds for convergence
rates of continuous time Markov processes. FElectr. Journ. Prob., 9, 1-21.

[Ros70] Rosenblatt, M. (1970). Density estimates and Markov sequences. In Non-
parametric Techniques in Statistical Inference, Ed. M. Puri, 199-210.

[Roo88] Rootzén, H. (1988). Maxima and exceedances of stationary Markov chains.
Adv. Appl. Prob., 20, 371-390.

[Rou69] Roussas, G. (1969). Nonparametric Estimation in Markov Processes. Ann.
Inst. Stat. Math., 73-87.

[Rou9la] Roussas, G. (1991a). Estimation of transition distribution function and
its quantiles in Markov Processes. In Nonparametric Functional Estimation and
Related Topics, Ed. G. Roussas, 443-462.

[Rou91b] Roussas, G. (1991b). Recursive estimation of the transition distribution
function of a Markov Process. Stat. Probab. Letters, 11, 435-447.

[Ser81] Serfling J. (1981). Approzimation Theorems of Mathematical Statistics, Wi-
ley, NY.

[SZ00] Serfling, R., Zuo, Y., (2000). General Notions of Statistical Depth Function
(in Data Depth). Ann. Stat., 28, No. 2., 461-482.

[Smib5] Smith, W. L. (1955). Regenerative stochastic processes. Proc. Royal Stat.
Soc., A, 232, 6-31.

[Tjp90] Tjsstheim, D. (1990). Non Linear Time series, Adv. Appl. Prob., 22, 587-
611.

[ThoO00] Thorisson, H. (2000). Coupling, Stationarity and Regeneration. Springer.



Subgeometric ergodicity of Markov chains

Randal Douc!, Eric Moulines?, and Philippe Soulier3

1 CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex, France

douc@cmap.polytechnique.fr

Département TSI, Ecole nationale supérieure des T'élécommunications, 46 rue

Barrault, 75013 Paris, France moulines@tsi.enst.fr

3 Equipe MODAL’X, Université de Paris X Nanterre, 92000 Nanterre, France
philippe.soulier@u-parisi0.fr

1 Introduction

Let P be a Markov tranition kernel on a state space X equipped with a count-
ably generated o-field X. For a control function f : X — [1,00), the f-total
variation or f-norm of a signed measure p on X is defined as

[ullf == sup |p(g)] -
lg|<f

When f =1, the f-norm is the total variation norm, which is denoted ||u|Tv.
Assume that P is aperiodic positive Harris recurrent with stationary distri-
bution 7. Then the iterated kernels P"(x,-) converge to 7. The rate of con-
vergence of P"(x,.) to m does not depend on the starting state z, but exact
bounds may depend on x. Hence, it is of interest to obtain non uniform or
quantitative bounds of the following form

o0

Z n)|[|P"(z,-) —m||f < g(z), forallzeX (1)

where f is a control function, {r(n)},>¢ is a non-decreasing sequence, and g
is a nonnegative function which can be computed explicitly.

As emphasized in [RR04, section 3.5], quantitative bounds have a sub-
stantial history in Markov chain theory. Applications are numerous including
convergence analysis of Markov Chain Monte Carlo (MCMC) methods, tran-
sient analysis of queueing systems or storage models, etc. With few exception
however, these quantitative bounds were derived under conditions which im-
ply geometric convergence, i.e. r(n) = 4", for some § > 1 (see for instance
[MT94], [Ros95], [RT99], [RR04], and [Bax05]).

Geometric convergence does not hold for many chains of practical inter-
est. Hence it is necessary to derive bounds for chains which converge to the
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stationary distribution at a rate r which grows to infinity slower than a geo-
metric sequence. These sequences are called subgeometric sequences and are
defined in [NT83] as non decreasing sequences r such that logr(n)/n | 0 as
n — o00. These sequences include among other examples the polynomial se-
quences 7(n) = n? with v > 0 and subgeometric sequences r(n)e”™ with
c¢>0andé € (0,1).

The first general results proving subgeometric rates of convergence were
obtained by [NT83] and later extended by [TT94], but do not provide com-
putable expressions for the bound in the rhs of (1). A direct route to quanti-
tative bounds for subgeometric sequences has been opened by [Ver97, Ver99],
based on coupling techniques. Such techniques were later used in specific con-
texts by many authors, among others, [FMO00] [JRO1] [For01] [FMO03b].

The goal of this paper is to give a short and self contained proof of general
bounds for subgeometric rates of convergence, under practical conditions. This
is done in two steps. The first one is Theorem 1 whose proof, based on coupling,
provides an intuitive understanding of the results of [NT83] and [T'T94]. The
second step is the use of a very general drift condition, recently introduced in
[DFMS04]. This condition is recalled in Section 2.1 and the bounds it implied
are stated in Proposition 1.

This paper complements the works [DFMS04] and [DMS05], to which we
refer for applications of the present techniques to practical examples.

2 Explicit bounds for the rate of convergence

The only assumption for our main result is the existence of a small set.

(A1). There exist a set C € X, a constant € > 0 and a probability measure v
such that, for all x € C, P(z,-) > ev(-).

For simplicity, only one-step minorisation is considered in this paper. Adapta-
tions to m-step minorisation can be carried out as in [Ros95] (see also [For01]
and [FMO03b]).

Let P be a Markov transition kernel on X x X such that, for all A € X,

p(a:,m/, A x X) = P(x, A)IL(CXC)c(x,x’) + Q(z, A)loxo(z, ') (2)
P(z,2', X x A) = P(z/, A)Licxoye (z,2)) + Q(2', A)lexe(z, ') (3)

where A° denotes the complementary of the subset A and @ is the so-called
residual kernel defined, for z € C' and A € X by

(1—€) ! (P(z, A) — ev(4)) 0<e<1

v(A) e=1 )

Q(va) = {

One may for example set
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P(z,2'; Ax A") =
Pz, A)P(z', A')l(cxcoye(,2") + Q(z, A)Q(2", A)loxe(z,2") ,  (5)

but this choice is not always the most suitable; cf. Section 2.2. For (z,z’) €
X x X, denote by P, .- and E, ,» the law and the expectation of a Markov
chain with initial distribution d, ® d,/ and transition kernel P.

Theorem 1. Assume (A1).
For any sequence r € A, § >0 and all (x,2") € X X X,

g

> _r(k)

k=0

1—c¢
€

+

Z WP (2, ) = P (') lry < (1+ 0)Eq M, (©)

with M = (1 4 0)sup,,>o {R*r(n —1) —e(1 —€)0R(n)/(1+6)}, and R* =
SUP(y.yeCcxC Ey .y [22:1 (k)]

Let W : X x X = [1,00) and f be a non-negative function f such that f(x) +
f(@") < W(x,a’) for all (x,2") € X x X. Then,

NP () = P )y < B [Z W (X, X1)
n=1

k=0

with W* = SUP(y,y’)erCEy,y’ > k=1 W (X, X7)]-

Remark 1. Integrating these bounds with respect to 7w(da’) yields similar
bounds for ||P™(z,-) — «|rv and ||P™(z,-) — 7||;.

Remark 2. The trade off between the size of the coupling set and the constant e
appears clearly: if the small set is big, then the chain returns more often to
the small set and the moments of the hitting times can expected to be smaller,
but the constant € will be smaller. This trade-off is illustrated numerically in
[DMS05, Section 3].

By interpolation, intermediate rates of convergence can be obtained. Let
a and [ be positive and increasing functions such that, for some 0 < p <1,

a(uw)p) < pu+(1—p)v, forall (u,v) € RT x RT . (8)

Functions satisfying this condition can be obtained from Young’s inequality.
Let 1 be a real valued, continuous, strictly increasing function on R* such
that ¢(0) = 0; then for all a,b > 0,

a b
ab < ¥(a) 4+ &(b) , where LT/(a):/O Y(z)dz and @(b):/O P

where 17! is the inverse function of . If we set a(u) = ¥~!(pu) and B(v) =
@~ 1((1 - p)v), then the pair (a, 3) satisfies (8). A trivial example is obtained
by taking +(x) = 2P~! for some p > 1, which yields a(u) = (ppu)'/? and
B(u) = (p(1 — p)u/(p — 1))P=1/P Other examples are given in Section 2.1.
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Corollary 1. Let a and 3 be two positive functions satisfying (8) for some
0 < p < 1. Then, for any non-negative function f such that f(z) + f(z') <
BoW(x,2') and 6 > 0, for all x,z’ € X andn > 1,

3" a(r(m)I|P" (@, ) — P"(2', Iy < p(1+ 8)Eo s

n=1

+ (1= p)E, o lz W (X, X,)

k=0

2.1 Drift Conditions for subgeometric ergodicity

The bounds obtained in Theorem 1 and Corollary 1 are meaningful only if
they are finite. Sufficient conditions are given in this section in the form of
drift conditions. The most well known drift condition is the so-called Foster-
Lyapounov drift condition which not only implies but is actually equivalent
to geometric convergence to the stationary distribution, cf. [MT93, Chapter
16]. [JRO1], simplifying and generalizing an argument in [FMO00], introduced
a drift condition which implies polynomial rates of convergence. We consider
here the following drift condition, introduced in [DFMS04], which allows to
bridge the gap between polynomial and geometric rates of convergence.
Condition D(¢,V,C): There exist a function V : X — [1,00], a concave
monotone non decreasing differentiable function ¢ : [1,00] — (0, 00], a mea-
surable set C' and a constant b > 0 such that

PV +¢oV <V +blc.

If the function ¢ is concave, non decreasing and differentiable, define

Y dx

#a)’

Then Hy is a non decreasing concave differentiable function on [1, c0). More-
over, since ¢ is concave, ¢’ is non increasing. Hence ¢(v) < ¢(1)+¢'(1)(v—1)
for all v > 1, which implies that Hy increases to infinity. We can thus define
its inverse H(;l : [0,00) — [1,00), which is also an increasing and differen-
tiable function, with derivative (H(b_l)’(a:) =¢o H;l(x) For ke N 2> 0
and v > 1, define

Hy(v) = (10)

r(2) = (H;") () = g0 Hy ' (2) . (11)

It is readily checked that if limy_, . ¢'(t) = 0, then r, € A, cf [DFMS04,
Lemma 2.3].

Proposition 2.2 and Theorem 2.3 in [DMS05] show that the drift condition
D(¢,V,C) implies that the bounds of Theorem 1 are finite. We gather here
these results.



Subgeometric ergodicity of Markov chains 59

Proposition 1. Assume that Condition D(¢,V,C) holds for some small set
C and that infygc ¢ o V(x) > b. Fiz some arbitrary A € (0,1 —b/infgc ¢ o
V(z)) and define W(z,z') = Ap(V(z) + V(z') — 1). Define also V* = (1 —
€)"'sup,cc {PV(y) — ev(V)}. Let o be the hitting time of the set C'xC. Then

Ex@’

Zw(k)] <14 2 V(@) + V) deangonc
k=0

Lo l W(kaX;’c)] < sup . W(yy) +{V(2) + V(@) wygoxe
(y,y)ECXC

R <1+ 7;5((11)) {2v* —1}

wW*<  sup Wi(y,y)+2V*—1.
(y,y")eCxC

Remark 3. The condition inf,¢c ¢oV(y) > b may not be fulfilled. If level sets
{V < d} are small, then the set C' can be enlarged so that this condition holds.
This additional condition may appear rather strong, but can be weakened by
using small sets associated to some iterate P™ of the kernel (see e.g. [Ros95],

[For01] and [FMO03Db]).
We now give examples of rates that can be obtained by (11).
Polynomial rates

Polynomial rates of convergence are obtained when Condition D(¢,V,C)
holds with ¢(v) = cv® for some a € [0,1) and ¢ € (0,1]. The rate of con-
vergence in total variation distance is 74(n) o< n®/=% and the pairs (r, f)
for which (9) holds are of the form (n(!~P)a/(1=a) yap) for p € [0,1], or in
other terms, (n*~1, V1=#(1-%)) for 1 < x < 1/(1 — @), which is Theorem 3.6
of [JRO1].

It is possible to extend this result by using more general interpolation
functions. For instance, choosing for b > 0, a(z) = (1 V log(z))® and B(x) =
(1 V log(z))~? yields the pairs (n(1=P)a/(1=2) Jogb (), VP(1 + log V) ~?), for
p € [0,1].

Logarithmic rates of convergence

Rates of convergence slower than any polynomial can be obtained when con-
dition D(¢, V, C) holds with a function ¢ that increases to infinity slower than
polynomially, for instance ¢(v) = ¢(1+1log(v))® for some o > 0 and ¢ € (0, 1].
A straightforward calculation shows that

re(n) =< log®(n) .

Pairs for which (9) holds are thus of the form ((1 + log(n))=P* (1 +
log(V))7®).
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Subexponential rates of convergence

Subexponential rates of convergence faster than any polynomial are obtained
when the condition D(¢, V, C) holds with ¢ such that v/¢(v) goes to infinity
slower than polynomially. Assume for instance that ¢ is concave and differen-
tiable on [1,400) and that for large v, ¢(v) = cv/log®(v) for some a > 0 and
¢ > 0. A simple calculation yields

rg(n) < n=/ 1+ exp ({c(l + a)n}l/(l'm)) .

Choosing a(z) = 2! 7P(1 V log(x)) ™" and B(z) = 2P(1 V log(z))® for p € (0,1)
and beR;or p=0and b > 0; or p=1 and b < —« yields the pairs

n~(@F0)/(+e) oxp ((1 —p){c(1+ a)n}l/(1+°‘)) , VP(1+1og V)P

2.2 Stochastically monotone chains

Let X be a totally ordered set and let the order relation be denoted by =
and for a € X, let (—o0,a] denote the set of all x € X such that z < a. A
transition kernel on X is said to be stochastically monotone if z < y implies
P(x,(—00,a]) > P(y, (—o0,a]) for all a € X. If Assumption (A1) holds, for a
small set C' = (—00, ag], then instead of defining the kernel P as in (5), it is
convenient to define it, for z,2’ € X and A € X ® X, by

1
P(x,2';A) = ﬂ(z,x/)gcxc/ 14(P (z,u), P (2", u)) du
0

1
+ Loxo(z, o) /O 14(Q° (2,u), Q (2, ) du.,

where, for any transition kernel K on X, K* (z,-) is the quantile function of
the probability measure K(z,-), and Q is the residual kernel defined in (4).
This construction makes the set {(z,2’) € X x X : 2 < 2’} absorbing for P.
This means that if the chain (X, X)) starts at (o, () with zo < (), then
almost surely, X,, < X/, for all n. Let now oc and ooxc denote the hitting
times of the sets C' and C' x C, respectively. Then, we have the following
very simple relations between the moments of the hitting times of the one
dimensional chain and that of the bidimensional chain with transition kernel
P. For any sequence r and any non negative function V all = < 2’

By o lz r(k)V(Xk,X,’c)l <Ex | Y r(k)V(X})
k=0 k=0

A similar bound obviously holds for the return times. Thus, there only re-
main to obtain bounds for this quantities, which is very straightforward if
moreover condition D(¢, V, C) holds. Examples of stochastically monotone
chains with applications to queuing and Monte-Carlo simulation that satisfy
condition D(¢, V, C) are given in [DMS05, section 3].
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3 Proof of Theorem 1

Define a transition kernel P on the space X = X x X x {0,1} endowed with
the product o-field X, for any z,2’ € X and A, A’ € X, by

P((z,2',0),Ax A" x {0}) = {1 — eloxc(z, 2 )} P((z,2'), Ax A"), (12)
ﬁ((m,x/,O),A x A’ x {1}) = eﬂcxc(@x’)uw@/ (AN A/) , (13)
P((z,2',1),Ax A’ x {1}) = P(z, AN A") . (14)

For any probability measure i on ()~(, X ), let I@ﬂ be the probability measure
on the canonical space (XN, XY®V) such that the coordinate process { Xy} is a
Markov chain with transition kernel P and initial distribution [i. The corre-
sponding expectation operator is denoted by ]]:Zﬁ.

The transition kernel P can be described algorithmically. Given X, =
(Xo, X}, do) = (z,2',d), X, = (X1, X},d;) is obtained as follows.
e If d=1 then draw X; from P(x,-) and set X| = X3, dy = 1.

If d =0 and (x,2') € C x C, flip a coin with probability of heads e.

— If the coin comes up heads, draw X; from v, , and set X| = X3 and

dy = 1.

—  If the coin comes up tails, draw (X7, X/) from P(x,2’; ) and set d; = 0.
e Ifd=0and (z,2') € C x C, draw (X1, X}) from P(z,2';-) and set d; = 0.
The variable d,, is called the bell variable; it indicates whether coupling has
occurred by time n (d, = 1) or not (d, = 0). The first index n at which
d, =1 is the coupling time;

=inf{k >1:d, =1}.

If d, = 1 then X = X}, for all £ > n. This coupling construction is carried
out in such a way that under Pegergs,, {Xk} and {X}} are Markov chains
with transition kernel P with initial distributions £ and £ respectively.

_ The main tool of the proof is the following relation between Ey.2r 0 and
E, 4, proved in [DMRO04, Lemma 1]. For any non-negative adapted process
(Xk)k>0 and (z,2") € X x X,

sz,z’,O[Xn]]-{T>n}] = Ea:,z’ [Xn (]— - G)Nnil} ’ (15)

where N, = Y7 loxe(X;, X]) is the number of visits to C' x C before
time n.
We now proceed with the proof of Theorem 1.

Step 1 Lindvall’s inequality [Lin79, Lin92]

Yo r®)IP (@) = PHa’ )y < Esro Z X;) + f(XH} - (16)

k=0 7=0



62 Randal Douc, Eric Moulines, and Philippe Soulier

Proof. For any measurable function ¢ such that |¢| < f, and for any (z,2') €
X x X it holds that

|Pro(a) — Po(a")| = |Eq o0 [{&(Xk) — 6(X}) L (a,=0}]
< Ez,m’,O[{f(Xk) + f(XI/c)}]l{T>k}] :

Hence [|[P*(z,---) = P*(a’, )| ¢ < Ex o o[{F (X&) + f(X})} 1751y Summing
over k yields (16). O

Step 2 Denote W, j(z,2") = By [Yop_or(k)f( Xk, X})] and W*(r, f) =
Sup(a:,:r’)ECXC[Zk 1 7(R) f(Xk, X5)] /r(0). Then

[Z kaXk ]
<Wyp(z, @)+ e A=) Wy o olr(T—1)] . (17)

Proof. Applying (15), we obtain

T—1
]Ez,m/,O [Z (k) Xkan ‘| ZEm z’ O kaXI/c)]]-{T>k}]
k=0
= B [r(k)f(Xk, X3)(1 = )V1]
k=0

=D > (A=) By [r(k)f(Xi, Xi)Lin, =53]

7=0 k=0
= an(a:,ac’) + Z Z(l - €)jEw,m’ [r(k)f(xk?Xlle)]l{Nk—lzj}]

For j > 0, let o; denote the (j 4+ 1)-th visit to C' x C. Then Ni_; = j iff
0j—1 < k < ;. Since r is a subgeometric sequence, r(n+m) < r(n)r(m)/r(0),

thus
oo agj
S r()f(Xe Xp)in =iy = (k) f (X, X})
k=0 k:Uj71+1
10675 —1

= Z r(oj-1 + k) f(Xr, X},)

k=1

k=1

700731
< (T(JO‘)l)< 3 r(k)f(Xk,X,;)>oegj_l_

Applying the strong Markov property yields
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T-1
. lz r(k)f(Xk,X,g)] < Wy (o)
+ (1 =-eW*(f,g Z 1—€jEmac'[ (o5)] -
7=0

By similar calculations, (15) yields

E[r(T =e> (1-¢)E[r(o))],
7=0

which concludes the proof of (17). O
Step 3 Applying (17) with r = 1 yields (7).
Step 4 If r € A, then lim,_,o r(n)/R(k) = 0, with R(0) = 1 and R(n) =

=0 7(k), n > 1. Thus we can define, for r € A and § > 0

Ms = (1+9) sup{e (1-e)W,
n>0

Far(n—1) = 0R(n)/(1+6)}

My is finite for all 6 > 0. This yields

Ey o o[R(T)] < (14 8)Wy1(z,2") + Ms .

Applying this bound with (16) yields (6). O
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1 Introduction

The asymptotic distribution of U-statistics, and of the related von-Mises-
statistics, of independent observations has been investigated for almost 60
years and is rather well understood. All the classical limit theorems for par-
tial sums of independent random variables have a U-statistics counterpart. In
this paper we give a survey of some recent progress for U-statistics of weakly
dependent observations. We will mostly assume that the observations are gen-
erated by functionals of absolutely regular processes. Specifically, we will con-
sider the U-statistic ergodic theorem, the U-statistic central limit theorem
and the invariance principle for U-processes. We motivate our investigations
by a wide range of examples, e.g. from fractal dimension estimation in time
series analysis.

In this paper we will always assume that (X, ),ecz is a stationary ergodic
process of R*-valued random variables. In parts of the paper further restric-
tions have to be made, e.g. in the form of weak dependence assumptions.

Definition 1. Let h: R¥ x R¥ — R be a measurable symmetric function, i.e.
h(z,y) = h(y,z) for all x,y € R*. We then define the U-statistic U,(h) by

Gl =y > MO X)

and the von-Mises-statistic V,,(h) by
1
Va(h) = — > WX X))
1<i,j<n

The function h is called the kernel of the U-statistic, respectively von-Mises-
statistic.
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We can easily extend the definition of U-statistics and von-Mises-statistics
to kernels h : (R¥)™ — R, in which case U, (h) and V,(h) are defined as
averages of h(X;,---,X;,.), 1 < i1 < -+ < iy < mor W(X;,, -, X5,),
1 <4y, - ,im < n, respectively. In this paper we will restrict attention to the
bivariate case, i.e. m = 2. Essentially all results remain valid in the general
case. Moreover we will mainly consider R-valued U-statistics, again noting
that all results also hold for R¥-valued processes.

By symmetry of h, we can rewrite a U-statistics as

Un(h):ﬁ > WX X;) .

1<i#j<n

The essential difference between U-statistics and von-Mises-statistics thus lies
in the fact that the diagonal terms h(X;, X;) are included in the von Mises-
statistics and excluded in the U-statistics. As

n?Vy,(h) —n(n — DU, (h) = z”: h(X;, Xs)
i1

and since the asymptotic behavior of the partial sum Y., h(X;X;) is well
understood, one can fairly easily obtain results for U-statistics from corre-
sponding results for von-Mises-statistics and vice versa.

U-statistics have been introduced independently by Halmos (1946) and
Hoeffding (1948). Von-Mises-statistics were introduced by von Mises (1947).
The motivation in each of these papers was rather different. Halmos was in-
terested in the theory of unbiased estimation, noting that in the case of i.i.d.
observations X1, -+, X,

E(Un(h)) = Eh(X1, X2) .

Hence Uy (h) is an unbiased estimator of the functional § = O(F) :=
Erh(X;, X2), where Ep indicates that the random variables X; have marginal
distribution F. Moreover

Un(h) = E(h(X1, X2)[X1), X))

where X(l) < ... < X(n) denote the order statistics. If the class of possible
marginal distributions specified by a given statistical model is rich enough, the
order statistic is a complete sufficient statistic and thus U, (h) is the minimum
variance unbiased estimator of §(F'). Hoeffding (1948) stressed the fact that
U-statistics are a generalized mean, namely of the terms h(X;, X;),1 <i <
j < n, and that one could still show asymptotic normality as in the case of
ordinary means.

Von-Mises-statistics originated in the theory of differentiable statistical
functionals, initiated by von Mises (1947). Suppose we are given a family P
of possible marginal distributions of X;, where Xi,--- X, is again an i.i.d.
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sample. We want to estimate the parameter § = T(F) when T : P - R is a
given map. A natural estimator for @ is then the plug-in estimator § = T'(F},),

where
1 n
F,=—- Ox,
n /LX:; X’L

denotes the empirical distribution function. Von Mises proposed to investigate
the asymptotic distribution of 6, —0 by a Taylor expansion of the operator T'
in a neighborhood of the true distribution F'. Under suitable differentiability
assumptions this leads to the expansion

1
T(F,)—T(F)=DgT(F,—F)+ iD%T(Fn —F, F,,— F)+higher order terms.

Making use of linearity of the operator DgT, the first order term in this
expansion can be rewritten as

1 1
DpT(F, —F)=DgT | — —F ) =— DpT - F
(5~ = et (13 0x ) = LY perov, )

and is thus an average of i.i.d. variables DpT(dx, — F'). As the 2nd order
derivative DT is a bilinear operator, we obtain

1 — 1 —
D2T(F,-FF,—F)=D>T(= 6x. - F. = 6x. — F
R R Sl PO YIREE oy

1
— > DT (6x, — F.éx, — F)).

1<ij<n

Hence D2T(F, — F,F, — F) is a von-Mises-statistic with kernel h(z,y) =
D2T(5, — F, 8, — F).

Many sample statistics can be expressed at least approximately as U-
statistics or von-Mises-statistics, thus providing a very practical reason for
the study of these classes of statistics. Below we list some examples, ranging
from standard textbook examples to some recent applications in the area of
dimension estimation of distributions with a fractal support.

SAMPLE VARIANCE

The sample variance is defined as

1 _
2 . _ 2
sk .—n_liE:I(XZ X)7,

where X := %2?21 X; is the sample mean. Some small calculations show

that s% is a U-statistic with kernel h(z,y) = 1 (z — y)2.
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CRAMER-VON-MISES STATISTICS

Given a distribution function Fy and a weight function w we define the kernel

h(z,y) = / (Lo (5) — Fo(5)) (Lpyoey (5) — Fo(s)) w(s) ds .

The associated von-Mises-statistic is
Valt) = [ (Fuls) = Folo)*w(s) ds.

This statistic is known as the Cramér-von Mises-statistic that can be used for
testing the hypothesis that Fy is the underlying distribution of the random
variables X;,1 <i <n.

X2—TEST STATISTIC

The y2-statistic for testing goodness-of-fit in models for discrete random vari-
ables Xi,---, X, with possible outcomes a, ... ax is another example of a
von-Mises-statistic, arising from the kernel

K
1
h(w,y) = o Lo=any = 2x) (Ly=ary —Pr) -
k=1

In this case, the associated von-Mises-statistic is

‘/n(h):% Z h(X;, X;)

1<i,j<n
K
1 1 9
L L -,
n = npy
where Nj denotes the number of observations among X, ..., X, with out-

come ay. Thus, up to a norming constant %, V. (h) is the usual x2-test statistic.
GRASSBERGER-PROCACCIA ESTIMATOR OF THE CORRELATION DIMENSION

Our last two examples of U-statistics concern the estimation of fractal dimen-
sions. One such notion is the correlation dimension, associated to distributions
F on RF. We first define the correlation integral

C(r)= /Rk F(By(z))dF(z),

where B, (z) := {y : ||z — y|| < r} denotes the ball of radius r around z. Thus
C(r) is the average mass that the distribution F' gives to a ball of radius r,
averaged with respect to the distribution F'. The scaling behavior of C(r) as
r — 0 gives information about the dimension of the support of F. If
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C(r) ~ const. -1, asr — 0, (1)

we call d the correlation dimension of F.

Often we do not know the distribution F', but we are only given a finite
sample X1,..., X, of observations from a stationary process with marginal
distribution F'. Based on this sample, we want to estimate d. We start by
estimating the correlation integral, noting that by Fubini’s theorem C(r) can
alternatively be expressed as

Clr) =P(X -Y[ <r),

where X,Y are independent random variables with distribution F'. Thus, a
natural estimator for C(r) is the sample analogue

1 o
Cn(r) = (T)#{l <i<j<n:||Xi - Xl <}
2
1
= 6] > Igx-x, <
2/ 1<i<j<n

which is a U —statistic with kernel h(z,y) = Lyjjz—y|<r}- To get an estimator
for d, we take the logarithm on both sides of (1) to obtain

log C(r) =~ const. + dlogr .

This suggests to take linear regression of log C(r) on logr and to estimate d
by the slope of the regression line. This estimator was introduced in 1984 by
Grassberger and Procaccia. As the scaling property (1) only holds asymtoti-
cally as r — 0, the estimation of d should be based on C,,(r)-values in a small
region 0 < r < 7. There is then the usual bias-variance trade-off, as a small
region means few observations and thus a larger variance. The choice of rg
should also depend on n with rg = ro(n) — 0 as n — co.

TAKENS’ ESTIMATOR

An alternative estimator for the correlation dimension was proposed by Tak-
ens (1985). The considerations leading to Takens’ estimator start from the
assumption that exact scaling holds in a neighborhood of 0, i.e. that

C(r)=const-r%, 0<r<rg,

for some ry. Suppose moreover that we are given independent random vari-
ables Rq,..., Rx with distribution

P(Ry <7) =P(|X Y[ <r[|X =Y <o),

where X and Y are independent random variables with distribution F'. The
Maximum Likelihood estimator of d, based on the observations Ry, ..., Rk,
then becomes
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. 1 K -
dyr = <_K Zlog(Rk/To)> :
k=1

If we replace the independent copies Ry,..., Rx by those dependent pair
distances || X; — Xj||,1 < 4,7 < n, that satisfy || X; — X,|| < ro, we obtain the
Takens estimator
d— Zl§i<j§n L{1X: — X5l < ro}
Y 1<icj<n 108" ([ X — X;l/r0)

Here log™ (z) = max(—log(z),0) denotes the negative part of the logarithm.
Thus, the Takens estimator is given by a ratio of two U-statistics, with kernels
Tfjz—yl<ro} and log™ (||x — yl|/ro), respectively.

Dimension estimation is applied in the analysis of time series arising from
a deterministic dynamical system. Let (X, F,u) be a probability space and
T : X — X a measure preserving map, i.e. u(T"tA) = p(A) for any A € F.
Moreover let f: X — R be a measurable map and consider the process

Yn = f(TnXO),n >0,

where X is a randomly chosen initial value with distribution p. Though aris-
ing from an underlying deterministic system, the process (yy)n>0 may exhibit
seemingly random behavior. Information about the underlying dynamical sys-
tem can be gained from a sample of the so-called reconstruction vectors

Xn = (Y Yn—1, Y1)

E.g., estimation of the dimension of the distribution of X, leads to information
about the dimension of the attractor of the dynamical system (X, F,u,T).
A theoretical basis for many of these procedures is given by Takens’ (1981)
reconstruction theorem stating that for generic maps f, the reconstruction
map Recy, : X — R” defined by

Recy(z) = (f(x), f(Tz), -, f(T* 'x))

is an embedding, provided k > 2d 4 1, where d = dim(X).

2 Independent Limit Theory

In this section we want to give a brief survey of limit theorems for U-statistics
when the underlying observations (X,,),>0 form an i.i.d. process of random
variables with marginal distribution F'. Analogues of the well-known classical
limit theorems for partial sums of i.i.d. random variables have been established
for U-statistics in the period between 1948 and 1989.
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The law of large numbers for U-statistics was proved independently by
Hoeffding (1961) and Berk (1966). If h € L1 (F x F'), we have

lim Up(h) = / / h(z,y) dF(z) dF(y) |

n—oo

almost surely. One can prove this result using martingale techniques, observing
that (U,)n>2 is a backwards martingale.

All further limit theorems make essential use of a technical tool, the so-
called Hoeffding decomposition. We define functions hq(z) and hs(x,y) by

hi(z) = Eh(z,Y) — 6 (2)
ha(z,y) = h(z,y) = h(z) = (y) =0, (3)
where § := E(h(X,Y)) and where X, Y are independent random variables with

distribution F'. From (3) we immediately obtain the Hoeffding decomposition
of the kernel h, given by

h(z,y) = 0+ hi(x) + hi(y) + ha(z,y) . (4)

In this way, we have written h(z,y) as a sum of a constant term, of two
functions of the variables z and y separately, and of a function hs of both
variables. The functions h; and hs have special properties, namely

Eho(z,Y) = Eho(X,y) =0, z,y € R*, (6)

as one can easily show. Property (6) is a crucial property of he and is know
as the degeneracy condition. A kernel h satisfying

Eh(z,Y) =Eh(X,y) =0 Va,y € R*,

is called a degenerate kernel. Sometimes, one calls h degenerate if Eh(z,Y) =
Eh(X,y) = 6, in which case h(z,y) — 6 satisfies the above property.

From (4) we obtain via a small computation the Hoeffding decomposition
of the U-statistic U, (h),

Un(h) =6+ % ihl(Xi) + Un(h2) .
i=1

In this way, we have decomposed U, (h) into a sum of three terms, namely
the constant term 6, an average of hi(X;) and a U-statistic with a degenerate
kernel. By (5) and (6), the terms h1(X;),1 < i < n and ho(X;, X;),1 <i <
7 < n are all mutually uncorrelated. Thus we get

var <i Zhl(Xi>> = %Var(hl(Xl)) ;

var (Un(hg)) = iV&I‘ (hQ(X17X2)) .

(5)
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Thus U, (h2) = Op(n~!) and hence we can obtain the U-statistic central limit
theorem from the CLT for partial sums of i.i.d. random variables. The result,
due to Hoeffding (1948), is as follows,

Vi (Un(h) — ) 5 N (0,4 var(hy (X)) | (7)

provided that E(h(X,Y))? < oco. Using similar arguments, a Donsker type
invariance principle and a law of the iterated logarithm for U-statistics have
been established.

An interesting special situation occurs when hq(xz) = 0, i.e. when h is
itself a degenerate kernel. In this case the limit distribution in the CLT is
degenerate, and one can apply a different normalization in order to get a
non-trivial limit distribution. The result, due to Fillipova (1964), is most con-
veniently presented when the underlying observations (X;);>1, are uniformely
distributed on [0, 1]. Invoking the quantile transform technique, one may as-
sume this without loss of generality. Then for any Lo-kernels h : [0,1]2 — R
one has

=Y xS [ hegav@ave. @

1<i<j<n

where W denotes standard Brownian motion and the stochastic double inte-
gral is to be taken in the sense of Itd, i.e. not integrating over the diagonals.
The corresponding Donsker invariance principle was established by Denker,
Grillenberger and Keller (1985) who could show that in the space D([0,1])
equipped with the Skorohod topology

1,
205 i, x) 5 (/ Wz, ) K (¢, da:)K(t,dy)) ,
" <<t 0 /o 0<t<1

(9)
where K (¢, x) denotes the Kiefer-Miiller process. The law of the iterated loga-
rithm as well as an almost sure invariance principle for degenerate U-statistics
was established in a series of papers by Dehling, Denker, Philipp (1983, 1984)
and Dehling (1989a, 1989b), assuming that the kernel h has finite 2nd mo-
ments in the bivariate case and finite (2 + §)th moments in the general case.
The latter assumption was weakened to finite 2nd moments also for m-variate
U-statistics by Dehling, Utev (1993) and independently by Arcones and Giné
(1993). A survey of the limit theory for degenerate U-statistics was given by
Dehling (1986).

0<t<1

3 Functionals of Absolutely Regular Processes

In the remaining part of this paper, we will consider U-statistics with depen-
dent observations (X, )necz. The minimal assumption will be that (X, )nez is
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a stationary ergodic process. For most of our results we will need stronger
assumptions concerning the weak dependence of the underlying process. In
the context of U-statistic limit theorems, the notion of an absolutely regular
process is most suitable.

Definition 2. (i) Let (£2, A,P) be a probability space, and let F,G be sub-o-
fields of A. We define

B(F.G) = sup YD) IP(FNGy) —B(F)-P(Gy)|
Fi,....Fp,,G1,...,Gy, i=1 j=1
where the supremum is taken over all partitions Fy,...,F,, and G1,...,G,

of 2 into elements of F and G, respectively.

(i4) Given a stochastic process (X, )nez and integers a < b, we denote by F°
the o-field generated by the random wvariables Xq41,...,Xp. We define the
mixing coefficients of absolute regularity by

Br = sup B (F"oor Frti) -
nez

The process (Xn)nez 1s called absolutely regular if limy_, oo O = 0.

Absolutely regular processes were introduced by Volkonskii and Rozanov
(1956). Independently they were introduced in ergodic theory by Ornstein
under the name weak Bernoulli processes. Comparing with other well-known
notions of weak dependence, absolute regularity is weaker than uniform mix-
ing and stronger than strong mixing.

In many applications, e.g. in time series analysis, one encounters stochastic
processes that do not satisfy any weak dependence condition but that can be
represented as a functional of a weakly dependent process. If (X,,), >0 is the
orbit of a dynamical system given by the measure preserving map 7 : X — X
and the initial value Xy, i.e. X,, = T(X,,—1), then (X,)n,>0 does not satisfy
any of the weak dependence properties of probability theory. However, in some
cases one can still express (X,,),>0 as a functional of an absolutely regular
process. This was e.g. established by Hofbauer and Keller (1982) for piecewise
monotone expanding maps of [0, 1].

Definition 3. Let (2, F,P) be a probability space and let (Zn)nez be a sta-
tionary stochastic process. We say that the process (X )nez is a functional of
(Zn)nez if there exists a measurable function f : R? — R such that

Xn = f((Znsr)rez) -

Similarly. we say that the process (X,)nen is a one-sided functional of
(Zanen if Xn = f((Zusn)oz0), for some function f : RN — R.
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Ezample 1. Consider the transformation T : [0,1] — [0, 1], defined by T'(z) =
2z [mod1] and the process X,, = T™(Xy), where Xy is a uniformly [0, 1]-
distributed random variable. Let Z,, = lix,>13,m = 0. Then (Z,)n>0 is a
sequence of i.i.d. symmetric Bernoulli random variables and

- 1
Xo =D Zoti i -
k=0

Thus, the deterministic sequence (X,,),>0 can be represented as a functional
of the i.i.d. process (Z,)n>0-

The concept of a functional of a mixing process is one way to treat pro-
cesses that are ‘almost’ weakly dependent, which has been used already by
Billingsley (1968) and by Ibragimov and Linnik (1971). An alternative ap-
proach has recently been developed by Doukhan and Louhichi (1999).

Limit theorems for functionals of absolutely regular processes require some
form of continuity of the functional f : R — R. Below we formulate two con-
tinuity properties, the r-approximation condition and the Lipschitz condition.

Definition 4. (i) Let (X,,)nez be a functional of (Z,,)nez, and let (a;);>0 be a
sequence of non-negative constants satisfying lim;_, o, a; = 0. We say that the
process (Xp)nez is an r-approzimating functional of (Zy,)nez with constants
(a)i>o if

E|Xo—E(Xo|Z 1, , Z)| < a . (10)

(ii) We say that (X,)nez is a Lipschitz functional of (Zp)nez of Xn =
F(Znsk)kez) and if there exists v € [0,1) such that f : RZ — R satisfies

[f((20)iez) — f((z))iez)| < const.a”, (11)

!/ !

for all (z;)iez and (2})icz such that z_, = 2", ..., 20 = 2.

The r-approximation condition is weaker than the Lipschitz condition and is
satisfied by many examples, see e.g. Borovkova, Burton and Dehling (2001).

An important role in the treatment of absolutely regular processes and
their functionals is played by coupling techniques. For a stationary and abso-
lutely regular process (Z,, ), ez with mixing coefficients (8x) x>0, Berbee (1979)
showed that one can find a copy (Z),),cz with the same joint distribution as
the original process (Z,)nez such that

(Z])n<o is independent of (Z,,)nen (12)
P(Zj =27, ¥j>k)>1—f, forall k e N. (13)

Thus one can find a stochastic process (Z),)necz whose development until time
n = 0 is independent of (Z,,)necz and that from time n = 1 on couples to the
development of (Z,,)nez in such a way that the two processes become close
with large probability.
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The following lemma gives a coupling for functionals of absolutely regular
processes. First we introduce some notation. For a stochastic process (X, )nez
and an index set I = {iy < --- < i} C Z we write

Xr=(Xs, ... X5 ).

Lemma 1. Let (Xi)kez be an r-approzimating functional with constants
(ar)1>0 of an absolutely regular process with mizing coefficients (B )k>0. Let
i1 < ..idj < djy1 < ... < iy be integers and define I = (i1,...,i;) and
Iy = (ij41,...,ix). Then there exist copies (X7, X)) and (X7 ,X7) of
(X1, X1,) with the following properties

(X7, X7) is independent of (X1, X1,) (14)
2 T

P(Ix, - Xp 20 <2 (2) an (15)
2 T

PN - Xl 20 <2 (2) ant Byisan (0)

where m € Ny and € > 0 are given.

Proof. By the Berbee coupling method, we can find copies (Z))nez and
(Z") ez of the underlying absolutely regular process (Z,)nez such that

(Z})n<i,+m is independent of (Zy,)n<i,+m

o0

IP U {Z'rl'z # Z’I’L} S 6ij+177§j72m

n:ij+1—m
(Z;zl)nﬁijer = (Zyll)ngi]drm
(Z))),, is independent of (Z,,) .

Let (X])nez and (X!)nez denote the corresponding functionals of (Z))nez
and (Z!)) ez, respectively. Define

I ((ui)iez) == (f((uiy1i)iez), - - F((ui; i)iez))
fm(ufma cee 7um) = E(f(Zz)z€Z|me =U—my--ny Ly = um)
frim((wi)iez) = (fm(ui1—7m e Wim)s fm(uij—vm S 7Uij+m))
and analogously fr, and fr, . Thus we have X, = f1,((Zi)iez), X1, =

J1.((Zi)iez). Observe that f1, m((Zi)icz) is a function of (Z;)i<i;+m only,
and that fr, m((Zi)icz) is a function of (Z;)i>i, ., —m, only. Now we get
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P (X7, — Xnll > €) <P(1f,(Z)icz) — fro.m((Z))icz)|| > €/2)
+P ([ f1,(Zi)iez — fr,m((Zi)iez)|| = €/2)
+P (from((Z)icz) # fro.m(Zi)iez))

<2 (i) Ellfr,((Zi)iez) = fr,m((Zi)iez)||"
+6ij+1—ij—m

9 r
S Qk (€> A +ﬂ7:j+l*i_7‘7m

Similarly, we can prove (15). (14) is a direct consequence of the independence
of (Zi)iGZ and (Z{)lez O

4 U-statistic ergodic theorem

Birkhoff’s (1930) ergodic theorem states that for a stationary ergodic process
(Xi)i>0 with one-dimensional marginal distribution F and an L; (F')-function
g : R — R we have

1 n

LS 0x) = [ @) api)

almost surely. In view of this result and the law of large numbers for U-
statistics, we can ask whether

1
im S A(X;,X;) = / / h(z,y)dF(x)dF(y)  (17)
e (2) 1<i<j<n
holds, almost surely. Aaronson, Burton, Dehling, Gilat, Hill and Weiss (1996)
have shown that this is generally not the case, as the following example shows.

Ezample 2. Let T : [0,1] — [0, 1] be defined by Tz = 2z mod 1, as in Exam-
ple 1, and define again X,, = T" Xy, where X is a uniformly [0, 1]-distributed
random variable. Consider the kernel

h(fﬂ,y) - ]]-G(xvy) + ]]-G(yax) )

where G := U ({(z,T"x) : 0 < z < 1}, i.e. G is the union of graphs of the
iterates of T'. Note that h(X;, X;) =1 for all i < j and that G is a null set in
[0,1]%. Thus we get that the left hand side of (17) equals 1, whereas the right
hand side equals 0, i.e. the U-statistics ergodic theorem fails.

Several more counterexamples to the U-statistic ergodic theorem have been
given by Borovkova, Burton and Dehling (1999). Investigating the above ex-
ample somewhat closer, we can see that poor mixing properties of the process
(Xn)n>0 together with extreme discontinity of h make the ergodic theorem
fail. This motivates the conditions in the following theorem that gives suffi-
cient conditions for the U-statistic ergodic theorem.
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Theorem 1. (Aaronson et al, 1996) Let (X;);>0 be a stationary ergodic pro-
cess and let h : R?2 — R be a symmetric kernel. Assume moreover that one of
the following two conditions is satisfied

(i) h is bounded and F' x F- almost surely continuous
(i1) h is bounded and (X;);>0 is an absolutely regular process.

Then
1

lim —— > (X, X;)= //h(%y) dF(z)dF(y) ,
nree (2) 1<i<j<n

i.e. the U-statistic ergodic theorem holds.

Remark 1. (i) Condition (i) is satisfied by the kernel arising in the sample
correlation integral, h(x,y) = 1yjz—y||<r}, Provided that

FxF({(z,y) : ly—=ll=r})=0.
This holds e.g. for atom-free F', and hence we have

lim C,(r)=0C(r).

n—oo

This special case was proved independently by Serinko (1996).

(ii) Borovkova, Burton and Dehling (1999, 2002) have given sufficient con-
ditions for the law of large numbers for U-statistics with possibly unbonded
kernels.

5 U-statistic CLT

The Central Limit Theorem for U-statistics with absolutely regular observa-
tions was proved first by Yoshihara (1976) and later sharpened by Denker and
Keller (1983). We define

o =E(hi(X1))> +2)  cov(hi(X1), i (X;)) ; (18)
j=1
note that 02 = limy, o 5var(37_; hi(X;)).

Theorem 2. (Denker and Keller, 1983) Let (X;);>1 be an absolutely regular

process with mizing coefficients satisfying Y o, 52/(2+5) < oo and let h :

R? = R be a symmetric kernel satisfying

sup E|h(X;, X;)[*™ < 00 .

1<j

Then v/n (Un(h) — 0) 5 N(0,402).
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The proof of Theorem 2 makes use of the Hoeffding decomposition. As in
the case of i.i.d. observations, we have

it (Un(h) — 6) = jﬁiw@) AU (19)

where hy and hs are defined as in (5) and (6). In order to prove weak conver-
gence of y/n (U, (h) — ), we prove that ﬁ Yo ha(X5) A N(0,02) and that
v/n Uy (hs) — 0 in probability. The first part can be achieved by applying one
of the well-known central limit theorems for partial sums of weakly dependent
random variables, see e.g. Bradley (2005), Doukhan (1994) or Rio (2000). The
second part will follow if we can prove that E(y/n U, (ha))? — 0. Note that

E(\/ﬁUn(hz))Q
- ﬁ Z E(h2(Xi1’Xj1)h2<Xi2>ij)) . (20)

1<i1 <j1<n,1<i2<j2<n

In the case of i.i.d. observations, the terms h(X;, X;), 1 < ¢ < j < n, are mu-

tually uncorrelated and thus the right hand side of (20) equals ﬁ (g) =

O(%) For weakly dependent observations, we have to find upper bounds on
E(ha(Xiy, Xj, )h2(Xi,, X;,)) in terms of the maximal spacing among the in-
dices. We formulate the required result in a more general setting. Let (X, )nez
be a stationary process and let iy < ... < i; < i;41 < ... < i} be integers.
Denote for abbreviation Iy = (i1,...,4;), I = (ij41,...,1) and the random
vectors X7, = (X;,,..., Xy,), X1, = (Xi;,,, ..., Xi, ). Finally, let Ex,, be the
expectation operator with respect to the random variables X7, , keeping the
remaining random variables fixed. I.e., we have for any measurable function
g:RF 5 R

Exllg(Xil7"'7Xik) :/_g(xla---axﬁXijJrl)---aXik)d]P)le(Ilw";xj) .
RI

In the same way we define the expectation operator Ex, .

Lemma 2. (Yoshihara, 1976) Let (X, )nez be an absolutely regular process
with mizing coefficients (Bi)k>o0, let i1 < ... < i < 441 < ... < i} be
integers. Let r,s > 0 satisfy % + % =1 and let g : R* — R be a measurable
function. Then

|]E (g(Xiu cee ’th)) - EX11 (EXI2 (g(Xiu cee ’th)))| (21)
r r r\1/7 s
< 4 max {(]E\g(Xil, e X))l )1/ ,(Ex,lEXIQ l9(Xiys .o, X5, ) / }61/

Yi+17 0

where .[1 = (il,...,ij) and IQ = (ij+1,...,ik).
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With the help of this inequality one can now show that E(y/nU, (h2))? — 0.
Inequalities of the type (21) are natural generalizations of correlation inequal-
ities that give upper bounds on cov(,n) for random variables £ and 7 that
are F" ., respectively ¢, measurable. We thus call (21) a generalized cor-
relation inequality. They form a crucial ingredient in the study of U-statistics
of weakly dependent observations, in the same way as standard correlation
inequalities do for partial sums.

Central limit theorems for U-statistics of functionals of an absolutely reg-
ular process require some form of continuity of the kernel h. Below we formu-
late two different conditions that were introduced in the U-statistic context
by Denker and Keller (1986).

Definition 5. Let h: R? — R be a symmetric kernel.
(a) We say that h satisfies the Lipschitz condition if there exist L,p > 0 and
r >0 such that

|h(z1,22) — h(y1,92)| < L (Jo1 — y1]” + 22 — y2[?)
(LA o "+ 2"+ ya|” + y2]) -

(b) We say that h satisfies the oscillation condition if

/osc(h, €, (21,22)) dF (z1) dF (z2) = O(€")
as € = 0, where

OSC(h,Q (3717.'172)) = sup |h(y17y2) - h(yi,yé)'
Vi Y ER, lys —zi| <e,|yj —zi [ <e,i=1,2

denotes the e-oscillation of h in (z1, z2).

Theorem 3. (Denker and Keller, 1986) Let (X,,)nez be a Lipschitz functional
of the absolutely regular process (Zy,)nez with mizing coefficients satisfying

ﬂg/(2+6) _ O(n7276)

for some €,8 > 0. Moreover let h : R> — R be a symmetric kernel satisfying

the Lipschitz condition or the oscillation condition. Then /n(U,(h) — 0) A
N(0,40?).

In their proof of Theorem 3, Denker and Keller follow the usual pattern
of proof of limit theorems for functionals of absolutely regular processes, or
generally of any kind of mixing processes. Introduce the following finite block
functionals X as approximations to X,, = f((Zn+k)kez),

erln = E(Xn | anma BERE) Zn+m) .

Then (X]")nez is still an absolutely regular process and hence Theorem 2
applies. By the Lipschitz property of the functional f and by the Lipschitz or
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oscillation condition satisfied by the kernel h, one can show that the original
U-statistic U, (h) is closely approximated by
U = Gy - MXPX,
2/ 1<i<j<n
as m — oo. With some technical effort one can then show that the CLT holds
for Up(h).

Borovkova, Burton and Dehling (2001) proposed a different approach to
the study of functionals of an absolutely regular process, treating the pro-
cess (X, )nez directly, without approximation by finite block functionals. In
this way they could derive limit theorems such as U-process invariance prin-
ciples. In what follows we will outline some ingredients of their technique in
connection with the U-statistic CLT. Again, one has to require some form of
continuity of the kernel h.

Definition 6. Let (X,,)nen be a stationary stochastic process and let h : R? —
R be a symmetric kernel. We say that h satisfies the p-continuity condition if
there exists ¢ : [0,00) — [0,00) satisfying ¢p(€) = o(1) as € — 0 such that

E (|h(X,Y) = M(X" V)PP Lyx—x11<e3) < b(e)

for all triples of random variables X, X', Y with marginal distribution F and
such that (X,Y) either has distribution F X F or Px, x, for some k € Ny.

Remark 2. (1) Lipschitz continuous kernels are p-continuous under a moment
assumption on the variables Xj;. We get namely

(X Y) = h(X V)P Lx-xrjze) < €P(L+ X7+ X +2]Y])
and thus p-continuity holds with ¢(e) = O(e”?) provided E|X(|™ < oo.

(ii) p-continuity is close in spirit to the oscillation condition, in that it also
requires continuity in some average sense. The main difference is that in the
oscillation condition only the product measure F' X F' enters whereas for p-
continuity we need to consider averages with respect to the joint distribution
of (X;, X;) for all pairs ¢ < j.

Example 3. We consider the kernel that was used in the definition of the sam-
ple correlation integral, i.e. h(x,y) = L{jz—y|<s}- Observing that
|1 e—yi<ty = Wior—yi<ey|” Lja—ari<ey < Lemeslayi<tie) »
we get
E |Lyixo-xel<ty = Loixg-xel<ty | Tixo-xgi<ey S P(t—€ < [Xo—Xi| < t+e) .

Thus the kernel 1|, _, <4 is p-continuous provided that sup, P(t —e < [Xo —
Xkl <t+e€) =o0(l), as € — 0 and similarly P(t —e < | X = Y| <t +¢) =
o(1), where X and Y are independent with the same distribution F'. These
conditions specify equicontinuity of the family of distribution functions of
| Xo — Xi| at ¢t as well as continuity of the distribution function of | X — Y.
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As shown in the remarks about the proof of Theorem 2 we are often led
to expressions of the type E(h(X;,, X;,)h(X;,, X;,)) with a given kernel h :
R? — R. For the treatment of such expectations we introduce a generalization
of the notion of p-continuity to functions g : R¥ — R.

Definition 7. Let (X,,)nez be a stationary stochastic process. A function g :
R*¥ — R is called p-continuous if there exists a function ¢ : Ry — Ry with
o(e) = o(1) as € = 0 such that for all index sets I = {iy < ...<ip} CZ and
all non-empty disjoint sets Iy, Is with Iy U Is = I we have

Elg(&,n) — g(& )" Lyjn—ni<er < 0(€) (22)

for all random variables & : 2 — R n ' - 2 — Rl such that (€,n) has
distribution Px, x,, or Px, xPx, .

Lemma 3. (Borovkova et al, 2001) Let h : R> — R be a symmetric p-
continuous kernel and define

9(581,I2,2E3,9€4) = h(ﬂﬂl,xz)h(iEsaM) . (23)

(i) If h is bounded, then g is also p-continuous.
(#) If supy, E|h(Xo, X)|P < 0o and Ex,Ex, |h(Xo, Xi)|P < oo, then g is p/2-
continuous.

Lemma 4. (Borovkova et al, 2001) Let h : R?> — R be a symmetric p-
continuous kernel. Then the terms hy and ho of the Hoeffding decomposition
are also p-continuous.

The following proposition gives a generalized correlation inequality for
functionals of absolutely regular processes. Such inequalities were first proved
by Borovkova et al (2001). We improve their Lemma 4.3 by replacing the

constants ay = /2 -, a; by \/ay.

Proposition 1. Let (X,,)nez be an absolutely reqular process with mizing co-
efficients (Bx)k>0, let i1 < ... <i; <ij41 < ... < iy be integers. Let r,s > 0
satisfy % + % =1 and let g : R* — R be a measurable function. Then

’E (g<Xi1" : aXlk)) _]EXII (EXIZ (g<Xi1" - aXlk)))’ (24)
r\1/7 1/
< 4max {(Blg(Xi,, .., X)), (Ex,, Ex, o(Xs,, . Xi )"}

1/s
. (ﬂij+1—ij—2m + a71n/2> + 2¢(a‘71r{2) .

where Il = (i17...,ij), I2 = (ij+1,...,ik).

Proof. Let (X} ,X7 ) and (X7 ,X7)) be copies of (Xr,,Xr,) as defined in
Lemma 1. By independence of (Xy,, Xr,) and (X7, X7)), we get
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|E (g(Xila AR X'Lk)) - EXII (EXIZ (g(Xila AR X'Lk)))’
= ’Eg (X}/13X12) 7Eg (X}pX‘/TQ){
< ’Eg (X}/NXIQ) _Eg (X}INX}z)‘ + ‘Eg (X}/NX}z) _Eg (X}I’X}2)’ (25)

1/2
We now define the events B := {|| X7, — X7 || < ar! }and D = {[| X} —

XJ || < al®}. By (15) and (16) we get P(D°) < 4ay” and P(B®) < day,”

i1 —i;—2m- Now we can bound the two terms on the right hand side of (25)
separately. By the 1-continuity property of g we get

Elg (X7, Xr) =9 (X7, X7,) | 1p < ¢(ay)?) -
Using Hélder’s inequality we find
Elg (X7, X1,) — g (X7, X7,)|1pe < 2M(P(B°))"/*
<M (a},{2 n ﬂim_,-j_m) .

Similarly we obtain the following bounds for the second term on the right
hand side of (25),

[Eg (X7, X7,) —Eg (X7,,X7,)| 1p < é(ay)?)
|Eg (X7,X},) —Eg (X},.X7,)| 1pe < 2Map* .

Putting the last four inequalities together we obtain the statement of the
proposition. a

Theorem 4. Let (X,)nez be a l-approzimating functional with constants
(ar)1>0 of an absolutely regular process with mizing coefficients (By)k>0. Let
h be a bounded 1-continuous kernel and suppose that

STR(B +a)? + 6la)?) < o0 .
k=1

Then, as n — o0
Vi (Un(h) = 6) 5 N(0,0%) ,
where o2 is defined as in (18).

6 Empirical U-processes

Recall that one of the examples motivating the study of dependent U-statistics
was the sample correlation integral

Cn(r)=(nl) > Lgx-x, < -

2/ 1<i<j<n
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For fixed r, this is simply a U-statistic. Considered as a stochastic process
indexed by r € [0, R], however, C,,(r) becomes the empirical distribution
function of the observations || X; — X,||, 1 <i < j <n.
More generally, one can consider the empirical distribution function of
h(Xi, X;), 1 <i<j<mn, given by
1 1
Un(t) = B Z Lin(x,X,)<t} = 7o he(Xi, X5) , (26)

n
27 1<i<j<n (2 1<i<j<n

where we have defined h:(z,y) := 1{j(a,y)<¢}- Moreover, we define the empir-
ical U-process

Vn(Un(t) = U(t), 0<t <to,
where U(t) =P(h(X,Y) <1t).

Weak convergence of the empirical U-process to an appropriate Gaussian
process was established by Silverman (1983) and by Serfling (1984) in the case
of i.i.d. observations and by Borovkova (1995) and Arcones and Yu (1994) for
absolutely regular processes. Borovkova et al (2001) could establish the same
result for functionals of absolutely regular processes.

Theorem 5. Let (X,)nez be a l-approzimating functional with constants
(a)1>0 of an absolutely regqular process with mizing coefficients (Bk)k>0. As-
sume that hy(x,y) are 1-continuous with ¢ = ¢ and that

Zk2(a,1€/2 + B + gﬁ(a,lﬁm))l/?’*E < oo
k=1

for some € > 0. Moreover assume that |U(t) — U(s)| < C|t — s| and that
|Eh:(Xo, Xi) — Ehs(Xo, Xi)| < C|t — s]| for all k. Then

Vi (Un(t) = U(t) = W(t)

where (W (t))o<i<1 s a mean-zero Gaussian process with

E(W (s)W(t)) = 4cov(hs1(X1), heq(X1)) + 4Zcov(h571(X1), hi 1 (X))
k=2

(oo}
+4> " cov(he 1 (Xx), hea(X1)) -
k=2
The proof of this theorem uses again the Hoeffding decomposition. For each

fixed t we get

Vi(Un(t) = U (1)) = % > hea(Xo) + ﬁ S hea(Xi, X -

1<i<j<n
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The first term on the right hand side is an ordinary empirical process indexed
by the class of functions h; 1 and converges to (W (t))o<i<1 by standard empir-
ical process theory for dependent samples. The second term converges to 0 in
probability uniformly in ¢. The proof of this fact uses the chaining technique
in combination with the generalized correlation inequality; details are given
in Borovkova et al (2001).
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1 Introduction

There exists a wide literature on limit theorems under various classical mixing
conditions such as strong mixing condition (a—mixing), absolute regularity
(f—mixing), or $—mixing. For recent and complete results on the properties
of these coefficients, we refer to the monographs by Doukhan [Dou94], Rio
[Rio00a] and Bradley [Bra02]. However, many commonly used models do not
satisfy these mixing conditions. For example, Andrews [AND84] proved that
if (€;)i>1 is i.1.d. with marginal B (1/2), then the stationary solution (X;);>0
of the equation
X, = %(Xn,l +¢5), Xo independent of (&;);>1

is not a—mixing. Many authors have therefore introduced modifications of
these various mixing coefficients. Let (£2,.4,P) be a probability space, X a
real-valued random variable with law Py and M a o—algebra of A. Let us
first recall the definition of the usual mixing coefficients between M and o(X),
introduced respectively by Rosenblatt [Ros56], Volkonskii and Rozanov [RV59)
and Ibragimov [Inr62]:

a(M,o(X)) =+ sup [Pxpc(4) — Px(A)]: .

T2 AEB(R)
BM,o(X)) = sup [Pxjm(A) —Px (A1,
AEB(R)
p(M,0(X)) = sup [[Pxjm(4) —Px(A)[ -
A€B(R)

We refer to the book of Doukhan [Dou94] for the properties of these coef-
ficients. However, to derive limit theorems for random processes modeling
real-world phenomena which do not satisfy classical mixing conditions, it is
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useful to weaken the definitions above. Of course the goal is to catch more
examples without losing too much of the nice properties of classical mixing
processes. Following an idea of Rosenblatt [Ros56], we can look at what hap-
pens when considering coarser sets than M or B(R). Changing M leads to
coeflicients which behave quite differently from the usual mixing coefficients.
Let us cite for instance the work of Doukhan and Louhichi [DL99]. One differ-
ent approach is to consider instead of B(R) the coarser set {] — 0o, t],t € R}.
This has been done by Rio [Rio00a] and later by Peligrad [Pel02] for the strong
mixing coefficient. Dedecker and Prieur [DP05] have broadened and system-
atically developed this approach. The coefficients thus obtained measure the
difference between the conditional distribution function Fx g of Px|a and
the distribution function Fx of Px. We define below the four dependence
coefficients introduced in [DP05].

Definition 1.

(M, X) = [ |[Fxim(t) = Fx (@)1 dt
a(M, X) = sup,cp [|[Fxjm(t) — Fx (@)1,
BM, X) = [ supser [Fxym(t) — Fx @] [l1 .
(M, X) = sup;ep [[Fxjm(t) — Fx (t)|oo -

The coefficient a(M, X) was first introduced by Rio ([Rio00a], equa-
tion 1.10 c). It has then been used by Peligrad [Pel02], while 7(M, X) was
introduced in the current form by Dedecker and Prieur [DP03]. However,
Riischendorf first introduced the coefficient 7, in a “dual” form (equation 10
in [Riis85]). These coefficients are smaller than their corresponding mixing
coefficients, but they are in many situations easier to compute. It is worth
of interest to notice that the coefficients 7(M, X), a(M, X), (M, X) and
d(M, X), as other measures of dependence, can be defined as supremum over
some family of functions. For this, we first need to introduce some definitions
and notations.

Definition 2. A o-finite signed measure is the difference of two positive o-
finite measures, one of them at least being finite. We say that a function h
from R to R is o-BV if there exists a o-finite signed measure dh such that
h(z) = h(0)+dh([0,z]) if £ > 0 and h(z) = h(0) —dh([z,0]) if £ <O (h is left
continuous). The function h is BV if the signed measure dh is finite. Recall
also the Hahn-Jordan decomposition: for any o-finite signed measure u, there
is a set D such that py(A) = p(AND) > 0 and —pu_(A) = p(A\D) < 0.
g and p_ are singular, one of them at least is finite and = py — u—. The
measure |p| = p4 + p— is called the total variation measure for p. Denote by

el = [l (R).

We then get the result written in Lemma 1 below (compare to Theorem
4.4 in Bradley [Bra02] for usual mixing coefficients).
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Lemma 1. [DP05] Let (2, A,P) be a probability space, X a real-valued ran-
dom wvariable and M a o-algebra of A. Let Ay be the space of 1-Lipschitz
functions from R to R, and BV be the space of BV functions h such that
ldh|| < 1. We have

}Hl

= [sunf]| [ £@Pxiaatan) - [ s@Pxclao),
= sup{[|E(f (X)|M) = E(f(X))[lr, f € BV1}.
(43). M. X) = [sup{| [ @Bxalde) = [ f@Px(an)]. 1 < B}
(A4). (M, X) = sup{|[E(f(X)|M) = E(f (X)), f € BV1}.
This paper is a survey of recent results on dependence in the causal frame.
For the non-causal frame, we refer e.g. to Doukhan and al or Ango Nze and
Doukhan [Dou03, ANDO2]. In Section 2 we state useful tools in limit theory
for dependent sequences. In Section 3 we give a way to compare the different
coefficients of dependence. Section 4 is devoted to statistical applications.
In Section 5, we give exponential inequalites. We then see in Section 6 how
to extend some of the coefficients of Definition 1 to the multidimensionnal

case. To conclude, we give in Section 7 some results for particular classes of
dynamical systems on [0, 1].

(A1). T
(A2). a(M

AAAA

X) =
X) =
X) =
X)

2 Main tools for statistical applications

2.1 Covariance inequalities

For statistical applications, it was made clear by Viennet [Vie97] that covari-
ance inequalities in the style of Delyon [Del90] are more efficient than the
usual covariance inequalities. Viennet’s result applies to linear estimators and
provides optimal results for the mean integrated square error.

In Proposition 1 below, we give two covariance inequalities. Inequality (1)
is a weak version of that of Delyon [Del90] in which appear two random vari-
ables b1 (o(Y),0(X)) and by(c(X),o(Y)) each having mean (c(Y),c(X)).
Inequality (2) is a weak version of that of Peligrad [Pel83], where the depen-
dence coefficients are ¢(o(Y),0(X)) and ¢(co(X),o(Y)).

Proposition 1. [Ded04] Let X and Y be two real-valued random variables
on the probability space (2, A,P). Let Fx;y = {t = Pxy(] —oo,t])} be a
distribution function of X given Y and let Fx be the distribution function of
X. Define the random variable b(o(Y'), X) = sup,cg |Fx|y(z) — Fx(x)|. For
any conjugate exponents p and q, we have the inequalities

lcov(Y, X)| < 2{E(IX[Pb(o(X), Y )} {E(Y|“b(o(Y), X))}s (1)
< 20(a(X), V)7 o(a(Y), X) 7 [ XVl (2)
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In order to derive the MISE of the unknown marginal density of a stationary
sequence (Section 4), we need Corollary 1 below.

Corollary 1. [Ded04] Let fi, fa, 91,92 be four increasing functions, and let
f=fi—faand g = g1 — g2. For any random wvariable Z, let A,(Z) =
infoer |Z — all, and A, o(x)y (Z) = inf,er(E(|Z — a|Pb(0(X),Y)))/P. For
any conjugate exponents p and q, we have the inequalities

|COV(9(Y)7 f(X))‘ < 2{A;D,U(X),Y(fl (X)) + Ap,U(X),Y(f2(X))}
{Agoor) x(01(Y)) + Agorvy,x (92(Y))}

lcov(g(Y), F(X))| < 26(0(X),Y)r ¢(a(Y), X)# {Ap(f1(X)) + Ap(f2(X))}
{Aq(gl (Y)) + Aq(QQ(Y))} .

In particular, if p is a signed measure with total variation ||p| and f(z) =
(] — 00, 2]), we have

|cov(Y, f(XN] < IEY [o(o(Y), X)) < ¢(a(Y), X)llul Y]l - (3)

Two different proofs of inequality (3) above can be found in [DP05] and
[Ded04].

2.2 Coupling

Coupling is another popular and useful method to obtain limit theorems for
sequences of dependent random variables. The coupling result stated in this
section just concerns real valued sequences. Thanks to conditional quantile
transformation [Maj78], we get an explicit formula for the coupled variable.
A more general result in higher dimension has been stated by Riischendorf
[Riis85] (Section 6.2).

Lemma 2. [Ris85, DP03] Let (£2, A,P) be a probability space, X an inte-
grable real-valued random wvariable, and M a o-algebra of A. Assume that
there exists a random variable § uniformly distributed over [0,1], independent
of the o-algebra generated by X and M. Then there exists a random vari-
able X*, measurable with respect to MV o(X)V o(4), independent of M and
distributed as X, such that

[X = X"y =7(M, X) . (4

~—

sup, ¢ Fxjam(s). The random variable U is uniformly distributed over [0, 1]

and independent of M. An explicit solution for the coupling is then given by
X*=FHU).
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3 Comparison of coefficients

The four coefficients introduced in Definition 1 can be compared to each other.
It is the purpose of Proposition 2 below. Comparing coefficients to each other
is useful for example when deriving upper bounds for 7(M, X), a(M, X),
B(M, X) and ¢(M, X).
Proposition 2. [DP05] Let (2, A,P) be a probability space, X a real-valued
random variable and M a o-algebra of A.

(A1). We have the inequalities (M, X) < (M, X) < (M, X).

(A2). Let Qx be the generalized inverse of the tail function t — P(|X| > t): if

u €]0,1[, Qx (u)=inf{teR : P(|X| > t) < u}. We have the inequality

a(M,X)
T(M,X)§2/ Qx(u)du .
0

(A3). Assume moreover that X has a continuous distribution function F with
modulus of continuity w. Define the function g by g(x) = zw(x). Then
27(M, X)
g7 (r(M, X)) -

In particular, if F is Holder, that is there exist C > 0 and o €]0,1] such
that for all (z,y) |F(x) — F(y)| < Clx — y|*, then

BM, X) < (5)

BIM, X) < 201 @HD) (7(M, X))/ D
When X has a density bounded by K, we obtain the bound
BM, X) <2y/Kr(M,X). ©)

4 Application to mean integrated square error

We deal in this section with the problem of estimating the unknown marginal
density f from the observations (X1, ..., X,,) of a stationary sequence (X;);>o.
There exist many works on density estimation under various mixing condi-
tions. The results of Proposition 3 are comparable to results of Mokkadem
(Theorem 1.2 in [Rio00a], and also [Mok90]). The ones of Proposition 4 are to
be compared to Theorem 1.3 (a) in [Rio00a]. These results of Mokkadem and
Rio are obtained for the strong mixing coefficients « (o(Xy), 0(X;)). Viennet
[Vie97] proved, under the minimal assumption on the S—mixing coefficients

> Bo(Xo), o(Xy)) < +oo, (7)
k>0

that the mean integrated square error (MISE) is of the same order than in
the i.i.d. case. Let us now state the results we obtain when working with
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our weaker coefficient 3 defined in Definition 1. We first define the coefficients
7(4), a(i), B(7), and ¢(i) related to a sequence of real-valued random variables.

Definition 3. Let (12, A,P) be a probability space. Let (X;);>0 be a sequence
of integrable real-valued random variables and (M,);>o be a sequence of o-
algebras of A. The sequence of coefficients (i) is then defined by

7(1) = sup (M, Xitk) - (8)

k>0
The coefficients a(i), B(i) and ¢(i) are defined in the same way.

According to Definition 3 above and to the stationarity of (X;);>o, we let
B(i) = B(c(Xo), X;). Both Propositions 3 and 4 give upper bounds for the
variance of estimators of the marginal density f.

Proposition 3. [DP05] Let K be any BV function such that [ |K(z)|dz is
finite. Let (X;)i>o0 be a stationary sequence, and define

Yin =h 'K(h Yz — Xp)) and fo(x Z Yien - 9)

The following inequality holds

n—1

nh/var(fn(x))dx < /(K(x))2dx + 2(2 Bk

k=1

K| [ 1K @)lds

Proposition 4. [DP05] Let (pi)1<i<n be an orthonormal system of L?(R, \)
(X is the Lebesgue measure) and assume that each @; is BV. Let (X;)i>0 be a
stationary sequence, and define

m
j,n = Z@J Xk and fn = ZY',n(pj . (10)
=1

The following inequality holds

n [van(ae)s < sup(z P2x)) + z("fﬂ(m) sug(fj ldeslles(@)) -
k=1 TR My

zeR

These upper bounds allow deriving some quite sharp rates of convergence for
some estimators of the unknown density f. We can write indeed f,(z)—f(z) =
(fn(z) —Efn(x)) + (Efn(z) — f(x)). The bias term BZAS,(z) = Ef,(z) —
f(x) does not depend on the dependence properties of the stationary sequence
(Xi)i>0, but only on the regularity of the marginal density f. We refer to
Prieur [Pri01] page 63 for a detailed study of this term.
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For kernel density estimators, optimal results can be obtained for the MISE

under the condition

Z ﬂ Xk < 400

k>0
as far as we assume that the kernel K is BV and Lebesgue integrable. This
condition is weaker than condition (7). For projection estimators, it does not
work in the general case. We have to assume moreover that the basis is well
localized, because the variance inequality of Proposition 4 is less precise than
that of Viennet. It is due to the fact that the covariance inequality (3) of
Corollary 1 is not symetric contrary to Delyon’s covariance inequality [Del90]
used in Viennet [Vie97]. We refer to [DP05] for more detailed results as far as
for the proofs.

5 Exponential inequalities

In this section, we state Hoeffding-type inequalities (Propositions 5 and 6) for
partial sums under ¢—mixing conditions. The coefficients ¢(k) are defined as
in Definition 3.

Proposition 5. [DP05] Let (X;)i>o0 be a sequence of centered and square in-
tegrable random variables and M; = o(X;,1 < j <i). For any BV function
h, define

=S X and b= (30 600) ] IR(X) ~ EGX))], e
i=1 k=0

For any p > 2 we have the inequality

10 (1)~E(Su (B, < (2p2bm)”2 < Janll (20 3 (n=kpo) . 1)

We also have that

B(|S,(h) — E(S,(h))| > z) < e/®exp —? .
(|Sn(h) = E(Sn(h))| > x) < <4e”dh”2 (n_k)¢(k)> (12)

Proposition 6. Let (X;);>0 be a sequence of centered and square integrable
random variables and M; = 0(X;,1 < j <1). For any BV function h, define
Sp(h) =371 h(X;). For any p > 2 we have the inequality

22
P(|Sn(h) — E(S,(h))] > z) < 2exp ( — 2) .
2l|dn]|? 37, (1+230 5" o(k))
(13)
Inequalities (12) and (13) are of the same type as soon as ), ., ¢(k) is finite.
Proposition 5 applies to obtain an empirical central limit theorem for classes

of BV functions. We refer to Dedecker and Prieur [DP05] for statement and
proof of the empirical central limit theorem as far as for applications.
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6 The higher dimension case

6.1 Extension of the coefficients

To get more precise inequalities and limit theorems, it is often necessary to
consider the dependence between a past o—algebra and several points in the
future of the sequence. Therefore we focus in this section on the problems aris-
ing when extending coefficients based on the conditional distribution function
to dimension greater than 2. This is a rather complicated problem. One way
to proceed is to start with the functional definition (Definition 2) of the coef-
ficients. Even by doing so, it remains difficult to extend a(M, X), S(M, X)
and ¢(M, X) because the notion of bounded variation is delicate as soon as
we are in dimension greater or equal to 2. But dealing with 7 is more effi-
cient. We get the following immediate extension, whose “dual” form has been
introduced by Riischendorf [Riis85].

Let (£2,.A,P) be a probability space, M a o-agebra of A and X a random
variable with values in a Polish space (X, d). As in R there exists a conditional
distribution Px ¢ of X given M (Theorem 10.2.2 in [Dud89]). Let A;(X’) be
the space of 1-lipschitz functions from X to R. Assume that [ d(0,z)Px (dz)
is finite and define

(M X) = supf| [ 7P xiuald) - [ f@Px(ao)

Jem@}f a9

If d(0, X) is bounded, we can also define the uniform version of 7, which was
first introduced by Rio [Rio86]:

p(M, X) = sup{[|E(f (X)[M) = E(f(X))lloo; f € Ar(X)} -

Let us just mention here that Rio’s definition of ¢ [Rio86] is slightly different
from the definition above. He defines the class A1 (X) as the set of 1—Lipschitz
functions from X to [0, 1].

Thanks to such definitions in spaces of higher dimension, we now define
the dependence between two sequences (X;);>0 and (M;);>¢ by considering
k—tuples in the future and not only a single variable.

In the following, if (X, d) is some Polish space, we put on X'* the distance

dl(zay) :d(xlayl)+'”+d(xk7yk)' (15)

‘We then define

. 1 o .
T (i) = fglaé’(kjsup{T(Mpv (Xjn cee ,le)),p—l—z <ji <. <gi} (16)

and Too (i) = sup 73 (7).
k>0

The coefficients ¢y and ¢, are defined in the same way.
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6.2 Coupling

A coupling result for the one-dimensional case and for the coefficient 7 has
already been stated in Lemma 2 of Section 2.2. In order to extend this result,
let us first give some definitions.

Definition 4. In the following,
e (X,d) is a Polish space,

(2, A,P) is a given probability space,
o c: X xX =Ry isa cost function satisfying

c(r,y) = sup |u(z)—u(y)l, (17)
uELip(XC)

where Lipgg) is the class of continuous bounded functions u on X such that

u(z) —u(y)] < c(z,y)-
We assume that [ c(z,z0)Px(dz) is finite for some (and therefore any) xo in

X. We then introduce the following generalization of the coefficient T defined
by (14)

(M%) = [sup{| [ F@Bxmdn) - [ f@Bxlao)]. s € Lo} - a8)

Let us notice that if Lip(;) is a separating class, this coefficient measures the
dependence between M and X (7.(M, X) = 0 if and only if X is independent
of M).

We are now in position to state a general coupling result.

Lemma 3. [Ris85, DPR05] Let X be a random variable with values in (X, d).
Assume that there exists a random variable § uniformly distributed over [0, 1],
independent of the o-algebra generated by X and M. Then there exists a

random variable X*, measurable with respect to MV o(X)Vo(9), independent
of M and distributed as X, such that

Te(M, X) = E(c(X, X7)) . (19)

Remark 1.

Lemma 3 above can be extended to the case where X is not a Polish space
[DPRO5].

If c(z,y) = Tuzy, (19) was first written by Berbee [Ber79]. In the case where
c is a distance for which X is a Polish space, the result has been proved by
Riischendorf [Riis85] in the particular case where {2 is Polish. The proof of
Lemma 3 can be found in [Ris85, DPR05]. It mainly relies on a parametrized
version of the Kantorovich-Rubingtein Theorem (Proposition 4 in [Riis85] and,
for the duality, Theorem 2.1 in [DPRO05]).
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6.3 Exponential inequalities and statistical results

Working with the coefficients (16), we obtain further results for 7—dependent
sequences. We sum up these results below.

Proposition 7. [DP03] Let (X;)i>o be a sequence of real-valued random vari-
ables bounded by M, and M; = 0(Xy,1 < k <1i). Let S, = Zle(Xi—IE(X,-))
and S,, = maxi<k<n |Sk|. Let g be some positive integer, v, some nonnegative
number such that

[n/q]
Vg > ||Xq[n/q]+1 + -+ Xn”% =+ Z HX(i—l)q—&-l +-+ Xqu% .
1=1

and h the function defined by h(z) = (1 + z)In(1 + z) — x.

AgM
(A1). For any positive A, P(|S,| > 3X) < 4exp(— Ya h(L)) + ETq(q +

) (¢M)?\ v A
. — v AgM
) > > < S i
(A2) Zor any A > Mq, P(S,, > (Lg>1 +3)A) < 4exp( (qM)Qh( oy )) +
by (g +1).

Proposition 7 above extends Bennett’s inequality for independent sequences.
Starting from the second inequality of Proposition 7 and from the coupling
property of Lemma 2, we can prove a functional law of the iterated logarithm
(Theorem 1 below). We need some preliminary notations. Let (X;);cz be a
stationary sequence of real-valued random variables. Let () = Q) x, be defined
as in Proposition 2 and let G be the inverse of x — fOI Q(u)du. Let S be
the subset of C([0,1]) consisting of all absolutely continuous functions with

respect to the Lebesgue measure such that h(0) = 0 and fol(h’(t))th <1.

Theorem 1. [DP03] Let (X;)icz be a stationary sequence of real-valued zero-
mean square integrable random variables, and M; = o(X;,j < i). Let
Sn = X1+ -+ X, and define the partial sum process Sp(t) = Sppy + (nt —
[nt]) Xy +1- If

e Tm(k)

Z/ Qo G(u)du < 0o (20)
k=170

then var(S,,) converges to o® =Y, ., cov(Xo, Xy,). If furthermore o > 0 then
the process

{o=' (2nInlnn)=28,(t) : t € [0,1]} is almost surely relatively compact in
C(]0,1]) with limit set S.

To conclude with the statistical applications, we would like to mention two
results: the first one is a concentration inequality which is a straightforward
consequence of Theorem 1 in Rio [Rio00b], and the second one is a Berry-
Esseen inequality due to Rio [Rio86].
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The space A1 (X™) is the space of 1-Lipschitz functions from X™ to R with
respect to d; defined by (15).

Theorem 2. [DP05] Let (X1,...X,) be a sequence of random variables with
values in a Polish space (X,d) and M; = 0(X1,...,X;).
Let A; = inf{2||d(X;, %)||co, © € X} and define

B, =A4A, andforl<i<n, B;j=A;+2pM;, (Xit1,...,X5))-
For any [ in A1 (X"™), we have that

—2x?
PO (X, o Xo) =B (X0 X)) 2 0) S e o)
Theorem 3. [Rio86] Let (X;)icz be a stationary sequence of real-valued
bounded and centered random variables and M; = o(X;,j < i). Let S, =
X1+ -+ X, and 0y, = ||Sp||2- If imsup,,_, ., 0y = 00 and

Zmpg(n) <00, (21)

n>0

then o2 converges to 0® =%, ., cov(Xo, Xi). Moreover o > 0 and

1/ C
P(S, < xo,) — — —22/2)dx| < — |
suplP(s <am) — = [ exploa?/a] <

where C' depends only on || Xollso, (w3(k))k>0 and o.

7 Application to dynamical systems on [0, 1]

The mixing conditions studied in this paper are similar to the usual mixing
conditions. However, they are weaker and therefore applicable to substantially
broader classes of processes. In this section, we are interested in classes of
dynamical systems on [0,1]. We refer to [DP03, DP05] for other classes of
examples.

The statistical study of dynamical systems is really important because
even very simple and determinist dynamical systems may behave in an un-
predictable way. Indeed, if we consider two close initial conditions, one can
obtain after some finite time two orbits with quite different behaviours. In the
litterature on dynamical systems, mixing in the ergodic-theoric sense (MES)
is different from mixing in the sense of Rosenblatt [Ros56]. A dynamical sys-
tem (T, u) is said to be MES if for any sets A and B in B(R), the sequence
D, (A, B,u, T) = |p(ANT™(B)) — u(A)u(B)| converges to zero. For such
dynamical systems it is easy to see that strong mixing is a uniform version of
MES. As MES only gives a non uniform control of D,,(4, B, u,T), it is not suf-
ficient in general to obtain functional limit theorems or deviation inequalities
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for large classes of functions. There exist number of works on the statistical
properties of dynamical systems. Of course, we do not pretend to give a com-
plete account of the literature. One way to derive covariance inequalities for
dynamical systems is to study the spectral properties of the associated Perron-
Frobenius operator in some well chosen Banach space ([HK82, LY74, Mor94]
for example). More recently Péne obtained rates of convergence in the central
limit theorem for two-dimensional dispersive billiards [Pen02] and also rate
of convergence in multidimensional limit theorems for the Prokhorov metric
[Pen04]. Chazottes, Collet, Martinez and Schmitt gave exponential inequali-
ties for expanding maps of the interval [CMS02], Devroye inequalities [CCS04]
and statistical applications [CCS05] for a class of non-uniformly hyperbolic
dynamical systems. A first approach to study dynamical systems using tools
of the theory of weak dependence, in the sense of Doukhan and Louhichi
[DL99], can be found in Prieur [Pri01]. Some more recent works of Dedecker
and Prieur [DP05] prove that furhter results can be obtained by working with
the coefficient @ defined in Definition 1 of Section 1 and with the Markov
chain associated to the dynamical system (Section 7.1 for a precise definition
of this Markov chain).

We now introduce the model (Section 7.1), and then apply some of the
results of Sections 4 and 6 (Sections 7.2, 7.3 below) to this model.

7.1 Introduction of the model

Let I =[0,1], T be a map from I to I and define X; = T*. If p is invariant
by T, the sequence (X;);>0 of random variables from (I, p) to I is strictly
stationary.

For any finite measure v on I, we use the notations v(h) = [, h(z)v(dx
For any finite signed measure v on I, let ||v|| = |v|(I) be the total variation
of v. Denote by [|g||1.x the L'-norm with respect to the Lebesgue measure A
on I.

Covariance inequalities. In many interesting cases, one can prove that, for
any BV function h and any k in L*(I, ),

|cov(i(Xo), k(Xn))| < an|[E(Xn)[[1(1Allx + lIdR]) , (22)

for some nonincreasing sequence a,, tending to zero as n tends to infinity. Note
that if (22) holds, then

|cov(h(Xo), k(Xn))| = |cov(h(Xo) — (0 )J?(Xn))l

< an[[K(Xn) I (I = R(0)[[1,x + [IdA]]) -
Since ||h — h(0)|l1,» < ||dh||, we obtain that
(h(Xo), K(Xn))| < 2an[[k(Xn)[|1[|dR]| - (23)

Inequality (23) is similar to the second inequality in Proposition 1 item 2,
with X = Xy and Y = k(X,,), and one can wonder if ¢(c(X,), Xo) < 2ay,.
The answer is positive, due to the following Lemma.



Weak dependence in the causal frame 99

Lemma 4. [DP05] Let (2, A,P) be a probability space, X a real-valued ran-
dom variable and M a o-algebra of A. We have the equality

PM, X) =
sup{|cov(Y, h(X))| : Y is M-measurable, ||[Y|1 <1 and h € BV;}.

Hence, we obtain an easy way to prove that a dynamical system (7%);>¢ is
¢-dependent:
If (22) holds, then ¢(o(X,), Xo) < 2ay. (24)

In many cases, Inequality (22) follows from the spectral properties of the
Markov operator associated to T'. In these cases, due to the underlying Marko-
vian structure, (24) holds with M,, = o(X;, 7 > n) instead of o(Xy).

Proof of Lemma 4. Write first |cov(Y, h(X))| = [E(Y (E(h(X)|M)-E(h(X))))].
For any positive ¢, there exists A; in M such that P(A;) > 0 and for any w
in A,

[E(A(X)|M)(w) = E(h(X))| > [[E(h(X)|M) = E(~(X))]oc — ¢

Define the random variable

19:&XJQMMMMM®—MMXW-

Then Y; is M-measurable, E|Y;| = 1 and |cov(Ye, h(X))| > |E(R(X)|M) —
E(h(X))|lco — €. This being true for any positive €, we infer from Lemma 1
that

M, X) <
sup{|cov(Y, h(X))| :Y is M-measurable, |Y]|; <1 and h € BV} .

The converse inequality follows immediately from Lemma 1 of Section 1.

Spectral gap. Define the operator £ from L' (I, \) to L' (I, \) via the equality

Acwuwwmw=4h@wﬂwmwm,

where h € LY(I,\) and k € L>(I, \).

The operator L is called the Perron-Frobenius operator of 7. In many in-
teresting cases, the spectral analysis of £ in the Banach space of BV -functions
equiped with the norm ||h]|, = ||dh|| 4 ||h||1,» can be done by using the Theo-
rem of Tonescu-Tulcea and Marinescu [LY74, HK82]. Assume that 1 is a simple
eigenvalue of £ and that the rest of the spectrum is contained in a closed disk
of radius strictly smaller than one. Then there exists a unique T-invariant
absolutely continuous probability ;» whose density f, is BV, and
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L(h) = M) fu + @™ (h)  with [[@*(R)[[, < Kp"||Al],- (25)
for some 0 < p < 1 and K > 0. Assume moreover that:

I. = {f, # 0} is an interval, and

there exists v > 0 such that f, > 1

on I,. (26)

Without loss of generality assume that I, = I (otherwise, take the restriction
to I, in what follows). Define now the Markov kernel associated to T' by

L(fuh)(z)
P(h)(z) = i) (27)
fu(@)
It is easy to check (for instance [BGR00]) that (Xo, X1,..., X,) has the same
distribution as (Y5, Y,,—1,...,Yy) where (¥;);>0 is a stationary Markov chain

with invariant distribution p and transition kernel P. Since || fg|loo < || fgllo <
2[1fllvllgllv, we infer that, taking C' = 2K~([|df, | + 1),
P(h) = p(h) + gn with |lgnllec < Cp"[|A]o. (28)
This estimate implies (22) with a,, = Cp". Indeed,
|cov(h(Xo), k(Xn))| = [cov(h(Yn), k(Yo))]

< [[K(Y0)(E(h(Ya)lo (Yo)) — E(A(Ya)))ll2

< RO NIP™ () = p(h)lloo

< Cp"[k(Yo)ll1(lldh]| + lAll1,x) -

(

Collecting the above facts, we infer that ¢(o(X,), Xo) < 2Cp™. Moreover,

using the Markov property we obtain that

d)(o—(Xna s aXm—‘rn)v XO) = (ZS(U(YE% s Ym)v Yn+m)
= ¢(J(Ym)’Yn+m)
= ¢((Xn), Xo) -

This being true for any integer m, it holds for M,, = o(X;,i > n). We
conclude that if (25) and (26) hold then there exists C > 0 and 0 < p < 1
such that

$(o(Xs,i > n), Xo) < 20p" . (29)

Application: Expanding maps. Let ([a;, ai+1[)1<i<n be a finite partition
of [0, 1[. We make the same assumptions on T as in Collet et al [CMS02].

(Al). For each 1 < j < N, the restriction T of T' to ]a;,aj41[ is strictly mono-
tonic and can be extented to a function T; in C*([a;,a;j11]).

(A2). Let I,, be the set where (7T™)" is defined. There exists A > 0 and s > 1
such that inf,e;, [(T™) (x)] > As™.

(A3). The map T is topologically mixing: for any two nonempty open sets U, V',
there exists ng > 1 such that T-"(U) NV # 0 for all n > ny.

If T satisfies 1. 2. and 3. then (25) holds. If furthermore (26) holds ([Mor94]
for sufficient conditions), then (29) holds.
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7.2 MISE

Let us now specify the results concerning the MISE in the particular case of
dynamical systems described in Section 7.1 above. We know via Proposition
2 that S(M, X) < ¢(M, X). Hence, Propositions 3 and 4 apply to dynami-
cal systems satisfying (22) with 2 Z?;ll aj instead of Z?:_ll B(k). For kernel
estimators such a result can also be deduced from a variance estimate [Pri01].

7.3 Exponential inequalities

This section is devoted to exponential inequalities which can be obtained for
dynamical systems. We first need to give the dependence properties of the
Markov chain associated to our dynamical system. Let T be a map from [0, 1]
to [0, 1] satisfying Conditions 1. 2. and 3. of Section 7.1. Assume moreover that
the density f,, of the invariant probability u satisfies (26). Let X; = T% and
define P as in (27). We know from Section 7.1 that on ([0, 1], ), the sequence
(Xn,...,Xo) has the same distribution as (Yp,...,Y},) where (¥;);>0 is the
stationary Markov chain with Markov Kernel P. Consequently

P(0(X;,] 2 i+ k), (Xo,. .., X0) = p(o(Yo), (Viyoo Yirn)) . (30)

To bound ¢(o(Yy), (Yi, ..., Yitk)), the first step is to compute
E(f(Yo,...,Y%)|Yo = z). As for P, define the operator Q. by

1
/0 Qu(F)(@)g() f, (2)dMN(z) =
/0 FT* (), T (@), .. 2)g(T* (@) f, ()N (x)

Clearly E(f(Yo,...,Y%)|Yo = ) = Qx(f)(x) and by definition

P(o(Y0), (Vs Yign)) = suppen, zesny [P 0 Qu(f) — p(@k(f))ll o
= SUPseq, ret+1) [|(PF— 1) 0 (Qk(f) — Qi(£)(0)) lo
(31)
Here, we use a recent result of Collet et al. [CMS02]. Denote by Ar, ... r, the
set of functions f from R™ to R such that

Adapting Lasota-Yorke’s approach to higher dimension Collet et al. prove
(page 312 line 6 [CMS02]) that there exist K > 0 and 0 < ¢ < 1 such that,

for any fin Ap, .. L.,

k

[dQx ()] < KZUiLz‘H : (33)

i=0
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Applying (28), we infer from (31) and (33) that

p(a(Y0), (Yiy- ., Yisr)) < CPIQ(f) = Qu(F)(0)]lw < Cp™2[1dQu(f)ll
k
<Cp2K Y o
j=0
Moreover, according to (30), the same bound holds for ¢(o(X;,j > i+
k), (Xo,...,Xy)). For the Markov chain (Y;);>o and the o-algebras M; =
o(Y;,j < 1) we obtain from (33) that

Poo(i) < (2 CKZaj)pi :
Jj=0
Several exponential inequalities for dynamical systems are derived from depen-
dence properties of the associated Markov chain. Exponential inequalities of
Propositions 5 and 6 in Section 4 can be applied to the sequence (X; —EX;);en.
In this section, we would like to focus on the concentration inequality for Lip-
schitz functions stated in Theorem 2. Starting from (33) and (28) we get that,
for any function f belonging to Ar, . r

sbin )

942
P(f(Yi,. ., V) ~E(f(Yi,..., V) = @) < exp(M) (3

with

M, = L,4y andfor1l<i<n,
M; = AoL; + 4CKp(Lizy + -+ + Lyo™ 1) .
Since (X1, ..., X,) has the same distribution as (Y, ...,Y7), the bound (34)
holds for f(X1,...,X,) with
M, =114y andforl<i<n,
M; = AoLy_it1 +4CKp(Ly_i + -+ + Lio" 1) .

Remark 2. Assume that (34) holds for M; = 6oL; + 6;Liy1 + -+ + Op—iLn
(which is the case in the four examples studied above) and let C, =
6o+ -+ -+ 6p_1. Applying Cauchy-Schwarz’s inequality, we obtain the bound
M7 < Cp 377 05-iL7, and consequently Y77, M7 < C7 37" | L7. Hence,
(34) yields the upper bound

—2z2 )
CR(Li+ -+ L7)
(35)

P(f(X1, .., Xn) — E(f(X1,..., X0)) > 2) < exp(

For expanding maps, (35) has been proved by Collet et al [CMS02].
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1 Introduction and notations

Let p and v be two probability measures on a Polish space (S,d). In 1970
Dobrusin [Dob70, page 472] proved that there exists a probability measure A
on S x S with marginals ¢ and v, such that

M{z # 9, (@,9) €S xS} = o n— vl (1)

where || - ||, is the variation norm. More precisely, Dobrusin gave an explicit
solution to (1) defined by

MAx B) = (p—m4)(ANB) + m+(A)m—(B)
74+(S)

where p — v = my — m_ is the Hahn decomposition of 7 = p — v.

Starting from (2) (see [Ber79, Proposition 4.2.1]), Berbee obtained the fol-
lowing coupling result ([Ber79, Corollary 4.2.5]): let (£2,.4,P) be a probability
space, let M be a o-algebra of A, and let X be a random variable with values
in S. Denote by Py the distribution of X and by Px ¢ a regular conditional
distribution of X given M. If {2 is rich enough, there exists X* distributed
as X and independent of M such that

for A, Bin Bs, (2)

P(X £ X*) = 2E([Pxiai — Pxll) )

To prove (3), Berbee built a couple (X, X*) whose conditional distribution
given M is the random probability A, defined by (2), with random marginals
p="Pxr and v = Px.
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It is by now well known that Dobrusin’s result (1) is a particular case of the
Kantorovich-Rubingtein duality theorem (which we recall at the beginning of
Section 2) applied to the discrete metric c(z,y) = 1,2, (see [RR98, page 93]).
Starting from this simple remark, Berbee’s proof can be described as follows:
one can find a couple (X, X*) whose conditional distribution with respect to
M solves the duality problem with cost function ¢(z,y) = 1,4, and random
marginals p = Py|r and v = Px.

A reasonable question is then: for what class of cost functions can we
obtain the same kind of coupling than Berbee’s? Or, equivalently, given two
random probabilities p,, and v,, on a Polish space (S, d), for what class of cost
functions is there a random probability A, on S X S solution to the duality
problem with marginals (pi,, v,)? Combining Proposition 4 in [Riis85] and the
Kantorovitch-Rubinstein duality Theorem, we shall see in point 1 of Theorem
2.1 that such a A\, exists provided the cost function c satisfies

c(z,y) = sup |u(z) —u(y), (4)
uGLip(SC)

where Lip(Sc) is the class of continuous bounded functions u on S such that
lu(z) — u(y)| < e(x,y). In fact, except for the duality, Riischendorf proved in
[Riis85, Proposition 4] a more general result, which is true for any measurable
cost funcion c. In point 2 of Theorem 2.1 we also prove that the parametrized
Kantorovich-Rubinstein theorem given in [CRV04, Theorem 3.4.1] still holds
for any cost function ¢ satisfying (4).

In Section 3, we give the application of Theorem 2.1 to the coupling of
random variables, as done in Section 2 of [Riis85]. In particular, Corollary 1
extends Berbee’s coupling in the following way: if ({2, .4, P) is rich enough, and
if ¢ is a mapping satisfying (4) such that [ ¢(X,zo)dP is finite for some z in
S, then there exists a random variable X* distributed as X and independent
of M such that

E(c(X, X)) = H sup
f€Lipéc>

[ t@Pxatdo) - [ apx@l] . ©

If ¢(x,y) = Lg%, is the discrete metric, (5) is exactly Berbee’s coupling (3).
If ¢ = d, (5) has been proved in [Riis85, Proposition 6]. For more details on
the coupling property (5) and its applications, see Section 3.2.

In 1979, Goldstein [Gol79] obtained a more precise result than (1) in the
case where S = S{° = II;2 ;M is a product space. This result can be written as
follows: let p and v be two probability measures on S$° and let p(;) and v(;) be
the marginals of 1 and v on S7° = II;° M. There exists a probability measure
A on S§° x S with marginals A¢;y on S§° x §§°, such that A(- x S¥°) = u(-),
A(S§° x ) = v(-), and for any i > 1,

1 o0 o0
5“#(1‘) —villo = Aoy ({z £y, (2, y) € S7° x §7°}) . (6)
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Starting from (6) (see [Ber79, Theorem 4.3.2]), Berbee obtained the follow-
ing coupling result ([Ber79, Theorem 4.4.7]): let X = (X})g>1 be a S3°-valued
random variable and let X ;) = (Xg)g>i. If §2 is rich enough, there exists X*
distributed as X and independant of M such that, for any i > 1,

1 *
SEUPx M = Bxy llo) = P(X@) # X)), (7)

where Py, is the distribution of X ;) and Px ,a Is a regular distribution of
X(iy given M. If (Xy)xez is a strictly stationary sequence of M-valued random
variables and M = o(X;,i < 0), the sequences for which P(X(;) # X(j))
converges to zero as i tends to infinity are called S-mixing or absolutely regular
sequences. The property (7) is very powerful (see [Ri0o98] and [BBDO1] for
recent applications).

In Section 4, we shall see that, contrary to (1), the property (6) is char-
acteristic of the discrete metric. Hence, no analogue of (7) is possible if the
underlying cost function is not proportional to the discrete metric.

Preliminary notations

For any topological space ¥, we denote by Bz the Borel o—algebra of ¥ and
by P(%) the space of probability laws on (T, Bg), endowed with the narrow
topology, that is, for every mapping ¢ : ¥ — [0, 1], the mapping p — f‘: wdu
is L.s.c. if and only if ¢ is Ls.c.

Throughout, S is a given completely regular topological space and ({2, A, P)
a given probability space. Note that in [Riis85], both {2 and S were assumed to
be Polish. However the results are valid in much more general spaces, without
significant changes in the proofs. The reader who is not interested by this level
of generality may assume as well in the sequel that all topological spaces we
consider are Polish. On the other hand, we give in appendix some definitions
and references which might be useful for a complete reading.

2 Parametrized Kantorovich—RubinStein theorem

Most of the ideas of this Section are contained in [Riis85], except for the
duality part of point 2 of Theorem 1, which draws inspiration from [CRV04,
§3.4].

For any p,v € P(S), let D(u,v) be the set of probability laws 7 on (S x
S, Bsxs) with marginals p and v, that is, 7(AxS) = u(A) and 7(Sx A) = v(A)
for every A € Bgs. Let us recall the

Kantorovich—Rubinstein duality theorem [Lev84], [RR98, Theorem
4.6.6] Assume that S is a completely regular pre-Radon space®, that is, ev-

* In [Lev84] and [RR98, Theorem 4.6.6], the space S is assumed to be a universally
measurable subset of some compact space. But this amounts to assume that
it is completely regular and pre-Radon: see [RR98, Lemma 4.5.17] and [GP84,
Corollary 11.8].
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ery finite T—additive Borel measure on S is inner reqular with respect to the
compact subsets of S. Let ¢ : S xS — [0,400] be a universally measurable
mapping. For every (u,v) € P(S) x P(S), let us denote

A () == inf /S clay) dna.g)
X

w€D(p,v)
A (u,v) = sup (u(f) —v(f)) .
feLip®

where Lip(sf) = {ueCy(S);Vr,y €S |u(z) —uly)| <clz,y)}. Then the
equality Agl){(u,l/) = Aic)(/i, v) holds for all (p,v) € P(S) x P(S) if and
only if (4) holds.

Note that, if ¢ satifies (4), it is the supremum of a set of continuous func-
tions, thus it is l.s.c. Every continuous metric ¢ on S satisfies (4) (see [RR9S,
Corollary 4.5.7]), and, if S is compact, every l.s.c. metric ¢ on S satisfies (4)
(see [RR98, Remark 4.5.6]).

Denote

V(2,AP;S) ={neP(R2xS,A2Bs);VAc A p(AxS)=PA)}.

When no confusion can arise, we omit some part of the information, and use
notations such as Y(A) or simply ) (same remark for the set Y <1(£2, A, P;S)
defined below). If S is a Radon space, every u € Y is disintegrable, that is,
there exists a (unique, up to P-a.e. equality) A};-measurable mapping w + i,
2 — P(S), such that

w0 = [ [ flo.w) o) ap)

for every measurable f : 2 x S — [0,+o00] (see [Val73]). If furthermore the
compact subsets of S are metrizable, the mapping w — pu, can be chosen
A-measurable, see the Appendix.

Let ¢ satisfy (4). We denote

YUQAPS) = {neV; | cla,wo) du(w,z) < +oc}
2xS

where xg is some fixed element of S (this definition is independent of the
choice of xg). For any u,v € Y, let D(u,v) be the set of probability laws 7 on
2 xS x S such that 7(. x . xS) = g and (. X S x .) = v. We now define the

parametrized versions of A%f%{ and Aéc). Set, for p,v € Yo,

Al = inf / d :
fKR(May) WGIQH(;L,V) .Q><S><SC($7y) 7-‘-(“ual‘7y)

Let also @(C) denote the set of measurable integrands f : 2 X S — R such
that f(w,.) € Lip(SC) for every w € 2. We denote
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A (pv) = sup (u(f) —v(f)) -

feLip®

Theorem 1 (Parametrized Kantorovich—Rubinstein theorem). As-
sume that S is a completely regular Radon space and that the compact subsets
of S are metrizable (e.g. S is a reqular Suslin space). Let ¢: S x S — [0, +00]
satisfy (4). Let p,v € Y and let w — py, and w — v, be disintegrations of
woand v respectively.

(A1). Let G : w A%‘l){(,uw,uw) = A£C)(uw,yw) and let A* be the universal
completion of A. There exists an A*-measurable mapping w — A, from
2 to P(S x S) such that A, belongs to D(u,,v,) and

G(w) = /S o) Do)

(A2). The following equalities hold:

A = [ el Ny = AL ()
2xXSXS

where X is the element of Y(£2, A,P;S x S) defined by \M(A x B x C) =

J4 M (B x C) dP(w) for any A in A, B and C in Bs. In particular, A

belongs to D(u,v), and the infimum in the definition of AKR(,u7 v) is at-
tained for this .

Remark 1. In the case where both {2 and S are Polish spaces, point 1 and
the first equality in point 2 of Theorem 1 are contained in Proposition 4 of
Riischendorf [Riis85]. The proof we give below follows that of Proposition 4 in
[Riis85] and of Theorem 3.4.1 in [CRV04]. As in [Riis85], the main argument
is a measurable selection lemma given in [CV77].

The set of compact subsets of a topological space ¥ is denoted by K(%).

Lemma 1 (A measurable selection lemma). Assume that S is a Suslin
space. Let ¢ : S xS — [0,+00] be an l.s.c. mapping. Let B* be the universal
completion of the o—algebra Bp(s)xp(s)- For any p,v € P(S), let

) = _inf  f clay) dnla,y) € 0,400

The function r is B* —measurable. Furthermore, the multifunction

K {P(S) x P(S) = K (P(S xS))
(s v) = {m e D(p,v); [e(z,y) dn(z,y) =r(p,v)}
has a B*—measurable selection, that is, there exists a B*—measurable mapping

A (p,v) = Ay, defined on P(S) x P(S) with values in IC(P(S x S)), such
that N\, € K(p,v) for all p,v € P(S).
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Proof. Observe first that the mapping r can be defined as

r: (p,v) —inf {¢(r); 7 € D(u,v)} ,
with
" P(S xS) — [0, +0o0]
‘7 — foS c(z,y) dr(z,y) .
The mapping 9 is l.s.c. because it is the supremum of the l.s.c. mappings
7 = w(cAn),n €N (if ¢ is bounded and continuous, ¥ is continuous).
Furthermore, we have D = &1, where & is the continuous mapping

& {P(S x §) = P(S) x P(S)
A = (A X S),A(S x ) .

(Recall that D(u,v) is the set of probability laws 7 on S x S with marginals
w1 and v.) Therefore, the graph gph (D) of D is a closed subset of the Suslin
space X = (P(S) x P(S)) x P(S x S). Applying Lemma II1.39 of [CV77] as
done in [Riis85], we infer that r is B*—measurable. Now the fact that K has a
B*—measurable selection follows from the application of Lemma II1.39 given
in paragraph 39 of [CVT77]. a

Proof (Proof of Theorem 1). By the Radon property, the probability measures
w(£2x.) and v(§2 x .) are tight, that is, for every integer n > 1, there exists a
compact subset K, of S such that u(2x (S\K,,)) < 1/nand v(2x (S\K,)) <
1/n. Now, we can clearly replace S in the statements of Theorem 1 by the
smaller space Up>1K,. But Up,>1 K, is Suslin (and even Lusin), so we can
assume without loss of generality that S is a regular Suslin space. We easily
have

A9 () = sup /// (@,2) — f(w,9)) dps(w) dvy(y) dP(w)

f€L1p(")

< /Q/S/SC(SC,ZI) dpe (z) du, (y) dP(w) < AE(CI){(:U'N/) . (8)

So, to prove Theorem 1, we only need to prove that Ag{(u, v) < ér(f) (1, )

and that the minimum in the definition of Agﬁ(u, v) is attained.

Using the notations of Lemma 1, we have G(w) = r(uy, V), thus G is
A*—measurable (indeed, the mapping w — (py, V) is measurable for A* and
B* because it is measurable for A and Bps)xp(s)). From Lemma 1, the mul-
tifunction w D(uw, V) has an A*—measurable selection w — A, such that,

for every w € 2, G(w) = [, s c(z,y) dAo(z,y). We thus have
A&wm,/‘ ce.y) Wwoy) = [ G) dPw).  (9)
2xSxS 17

Furthermore, since u,v € Y !, we have G(w) < +00 a.e. Let 2y be the almost
sure set on which G(w) < +oo. Fix an element z( in S. We have, for every
w € £y,
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Gw)= sup (pwl(g) —rwlg) = sup (1w(9) — vu(g)) -

g€Lipy) 9€Lip, g(z0)=0

Let € > 0. Let g and v be the finite measures on S defined by
u(B) = / c(zg,z) dp(w,z) and T(B)= / c(xg,z) dv(w, )
2xB 2xB

for any B € Bs. Let Sg be a compact subset of S containing xy such that
fi(S\ Sp) < € and ¥(S \ Sp) < . For any f € Lip(®), we have

[ =) 5) @) — [ (= )70, 12,) dP(w)]
(%} (%}

[ o =) 1013, dw\ <2. (10)
Set, for all w € (29,

G'(w) = sup (ho — 1) (91s,) -
9€Lip’, g(z0)=0

We thus have

G dP — G d]P" < 2. (11)
QO .Qo

Let Lip(sc) A denote the set of restrictions to Sy of elements of Lip(sc). The set
0

So is metrizable, thus Cy, (Sp) (endowed with the topology of uniform conver-
(@)

5k,
separable. We can thus find a dense countable subset D = {u,; n € N} of

Lip(SC) for the seminorm [|ullc, s,) = SuPges, |u(@)]. Set, for all (w, z) € £ xS,

gence) is metrizable separable, thus its subspace Lip is also metrizable

N(w) = min{n cN; /un(x) d(py — V) (z) > Ar(f) (fte, Vo) — €G' (w) — e} ,
s
and f(w,r) = un()(z). We then have, using (10) and (11),
A (,v) > / fd(u—v) > / F(u—v) -2
20 %S £20 XSo
2/ G dIP’f3eZ/ G dP — 5e .
.Q() QO
Thus, in view of (8) and (9),

A (1, v) = /Q ) dAw.) = A ).
XX
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3 Application: coupling for the minimal distance

In this section S is a completely regular Radon space with metrizable compact
subsets, ¢ : S X S — [0, +0o0] is a mapping satisfying (4) and M is a sub-o-
algebra of A. Let X be a random variable with values in S, let Px be the
distribution of X, and let Px |, be a regular conditional distribution of X
given M (see Section 5 for the existence). We assume that [ ¢(z,zo)Px (dz)
is finite for some (and therefore any) zp in S (which means exactly that the
unique measure of Y(M) with disintegration Px (-, w) belongs to Y “!(M)).
The proof of the following result is comparable to that of Corollary 4.2.5 in
[Ber79] and of Proposition 5 in [Riis85].

Theorem 2 (A general coupling theorem). Assume that {2 is rich enough,
that is, there exists a random variable U from (£2, A) to ([0,1], B([0,1])), in-
dependent of o(X)V M and uniformly distributed over [0,1]. Let Q be any
element of Y1(M). There exists a o(U) V o(X) V M-measurable random
variable Y, such that Q. is a reqular conditional probability of Y given M,
and

E(c¢(X,Y)|M)= sup
f€ELipg ()

/f 2)Px i (de) /f dx P-a.s. (12)

Proof. We apply Theorem 1 to the probability space (£2, M,P) and to the
disintegrated measures p,(-) = Pxpm(,w) and v, = Q.. As in the proof
of Theorem 1, we assume without loss of generality that S is Lusin regular.
From point 1 of Theorem 1 we infer that there exists a mapping w — A,
from £2 to P(S x §), measurable for M* and Bpsxs), such that A, belongs
t0 D(Pxia(+w), Qu) and G(w) = [, ¢ e(w, y) o (dr, dy).

On the measurable space (M T)=(£2xS xS, M"®Bs®Bs) we put the
probability

(A X B x C) :/ Ao (B x C)P(dw).
A

If I = (I1,12,I3) is the identity on M, we see that a regular conditional
distribution of (I3, I3) given I; is given by Pz, 1,y/7,— = Aw- Since Px (-, w)
is the first marginal of \,, a regular conditional probability of I, given Iy
is given by Pr,5,— () = Pxjm(,w). Let Aoz = Prjr,—w,1,—« be a regular
conditional distribution of I5 given (I1, I2), so that (w, z) — A, ; is measurable
for M*® Bs and Bp ). From the uniqueness (up to P-a.s. equality) of regular
conditional probabilities, it follows that

A(BxC) = /B)\W,I(C)]P)MM(dx,w) P-a.s. (13)

Assume that we can find a random variable Y from (2 to S, measurable for
o(U) Vo(X)V M* and Bs, such that Py, )y (@) = Ay x(w) (). Since
w = Pxjam(-,w) is measurable for M* and Bps), one can check that Pxx,
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is a regular conditional probability of X given M*. For A in M*, B and C
in Bs, we thus have

E(1alxeplycr) =E(14E (LxesE (I olo(X) vV M*) |M¥))

= [ ([ Aol aatar))P(0)
:/A)\W(BXC’)IP’(dw).

We infer that ), is a regular conditional probability of (X,Y) given M*. By
definition of A\, we obtain that

E(c(X,f/)M/l* = sup
fGL (C)

/f )Py pm(dz) — /f da: P-a.s.

(14)
Since S is Lusin, it is standard Borel (see Section 5). Applying Lemma 2, there
exists a o(U) V o(X) V M-measurable modification Y of Y, so that (14) still
holds for E(c(X,Y)|M™*). We obtain (12) by noting that E (¢(X,Y)|M*) =
E (¢(X,Y)|M) P-a.s.

It remains to build Y. Since S is standard Borel, there exists a one to one
map f from S to a Borel subset of [0, 1], such that f and f~! are measurable
for B([0, 1]) and Bs. Define F(t,w) = Ay, x(w)(f (] —00,1])). The map F(-,w)
is a distribution function with cadlag inverse F~1(-,w). One can see that the
map (u,w) — F~1(u,w) is B([0,1]) @ M* V o(X)-measurable. We now use the
fact that 2 is rich enough: the existence of the random variable U uniformly
distributed over [0, 1] and independent of o(X)V M allows some independent
randomization. Let T'(w) = F~'(U(w),w) and Y = f~1(T). It remains to see
;hat Py o xyvms (@) = Ay x(w)(+). For any A in M*, B in Bs and ¢ in R, we

ave

E (ﬂ-A]]-XGB:ﬂ-f/effl(]_oo,t])) = /A]lX(w)eB]lU(w)SF(t,w)P(dw) .

Since U is independent of o(X) V M, it is also independent of o(X) v M*.
Hence

E(ﬂAﬂXeB]lf/effl(]foo,t])> :/AILX(w)EBF(taw)P(dw>
- /A L (e hox (o) (1 — 00, 1))P(dw) -

Since {f~1(] — 0o,]),t € [0,1]} is a separating class, the result follows. O
Coupling and dependence coefficients

Define the coefficient
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Te(M, X) = H sup
f€Lipg (e)

/f )Py p(dz) — /f ]P’de‘H (15)

If Lip(sc) is a separating class, this coefficient measures the dependence between
M and X (7.(M,X) =0 if and only if X is independent of M). From point
2 of Theorem 1, we see that an equivalent definition is

wMX) = swp [ fo X)) - [ ([ fenxn)pa).

fGLlp(C)

(e )

where L1p is the set of integrands f from {2 x S — R, measurable for
M ® Bs, such that f(w,.) belongs to Lip(SC) for any w € (2.
Let ¢(z,y) = Ly2y be the discrete metric and let | - ||, be the variation

norm. From the Riesz-Alexandroff representation theorem (see [Whe83, The-
orem 5.1]), we infer that for any (i, v) in P(S) x P(S),

sup () = vl = 3= vl
fGLlp( )

Hence, for the discrete metric 7.(M,X) = B(M,o(X)) is the S-mixing co-
efficient between M and o(X) introduced in [RV59]. If ¢ is a distance for
which S is Polish, 7.(M, X) has been introduced in [Riis85, Inequality (10)]
in its“dual” form, and in [DP04], [DPO05] in its present from (obviously the
reference to [Riis85] is missing in these two papers).

Applying Theorem 2 with @ = P ® Px, we see that this coefficient has
a characteristic property which is often called the coupling or reconstruction

property.

Corollary 1 (reconstruction property). If (2 is rich enough (see Theorem
2), there exists a o(U) V o(X)V M-measurable random variable X*, indepen-
dent of M and distributed as X, such that

Te((M, X) =E (c¢(X, X™)) . (16)

If c(x,y) = Lg2y, (16) is given in [Ber79, Corollary 4.2.5] (note that in Berbee’s
corollary, S is assumed to be standard Borel. For other proofs of Berbee’s
coupling, see [Bry82], [Riis85, Proposition 5 and Remark 2 page 123] and
[Rio00, Section 5.3]). If ¢ is a distance for which S is a Polish space, (16) has
been proved in [Riis85, Proposition 6] (in [Riis85] a more general result for
sequences is given, in the spirit of [BP79]. For an other proof of (16) when
(S, ¢) is Polish, see [DP04]).

Coupling is a very useful property in the area of limit theorems and statis-
tics. Many authors have used Berbee’s coupling to prove various limit theo-
rems (see for instance the review paper [MPO02] and the references therein)
as well as exponential inequalities (see for instance the paper [DMR95] for
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Bernstein-type inequalities and applications to empirical central limit theo-
rems). Unfortunately, these results apply only to S-mixing sequences, but this
property is very hard to check and many simple processes (such as iterates
of maps or many non-irreducible Markov chains) are not S-mixing. In many
cases however, this difficulty may be overcome by considering another distance
¢, more adapted to the problem than the discrete metric (typically ¢ is a norm
for which S is a separable Banach space). The case S = R and ¢(z,y) = | —y],
is studied in the paper [DP04], where many non S-mixing examples are given.
In this paper the authors used the coefficients 7. to prove Bernstein-type in-
equalities and a strong invariance principle for partial sums. In the paper
[DP05, Section 4.4] the same authors show that if T is an uniformly expand-
ing map preserving a probability u on [0, 1], then 7.(c(7T™),T) = O(a™) for
c(z,y) = |z — y| and some a in [0, 1].

The following inequality (which can be deduced from [MP02, page 174])
shows clearly that 8(M, o(X)) is in some sense the more restrictive coefficient
among all the 7.(M, X): for any z in S, we have that

B(M,o(X))
(M, X) <2 / Qetx.my (u)du | (17)
0

where Q.(x ) is the generalized inverse of the function ¢ — P(c(X,z) > t).
In particular, if ¢ is bounded by M, 7.(M, X) < 2MB(M, o(X)).

A simple example

Let (X;)i>o0 be a stationary Markov chain with values in a Polish space S,
satisfying the equation X,,11 = F(X,,&+1), where (&);>0 is a sequence
of independent and identically distributed random variables with values in
some measurable space M and independent of Xy, and F is a measurable
function from S x M to S. Let X be a random variable distributed as X
and independent of (Xo, (&)i>0), and let X | = F(X},&,41). The sequence
(X})i>o0 is independent of X and distributed as (X;);>o. From the definition
(15) of 7., we easily infer that

Te(0(Xo), Xi) < E(c(Xg, Xy)) -

Let u be the distribution of X and (Xff))nzo the chain starting from Xéw) =
x. With these notations, we have that

Ble(Xe X0) = [ B XP)utda)n(ay).
If there exists a sequence (d;);>0 of nonnegative numbers such that
E(c(X(", X)) < dke(a,y) ,

then
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7e(0(Xo), Xx) < 61E(c(Xo, Xg)) -

For instance, in the case where E(c(F(x,&), F(y,&))) < ke(x,y) for some
k < 1, we can take d; = x¥. An important example is the case where S = M
is a separable Banach space and X,,11 = f(X,,) 4+ &n41 for some & lipschitz
function f with respect to c.

Let us consider the well known example 2X, 11 = X,, + £,41, where X
has uniform distribution A over [0,1] and &; is Bernoulli distributed with
parameter 1/2. If ¢(z,y) = |z — y|, it follows from our preceding remarks
that 7.(0(Xo), Xx) < 27%. However, it is well known that this chain is not
mixing. Indeed, it is a stationary Markov chain with invariant distribution A
and transition kernel

1
K(‘T7 ) = 5(5I/2 + 6(7;—{-1)/2) )
so that || K*(z,.) = Al|l, = 2. Consequently 3(c(Xp),o(Xy)) = 1 for any k > 0.
A simple application

Let (X;)iez be a stationary sequence of real-valued random variables with
common distribution function F. Let Mo = o (X, k < 0), and let Fx, |, be
a conditional distribution function of X}, given Mg. Let F,, = n~! Z?:l Ix,<t
be the empirical distribution function. Let i be a finite measure on (R, B(R)).
In [DMO03, Example 2, Section 2.2], it is proved that the process {t —
Vn(F,(t) — F(t))} converges weakly in L?(u) to a mixture of L?(p)-valued

Gaussian random variables as soon as

) 1/2
SE( [ 1Fxm0) - FOPuldn) " <oc. (18)
k>0

Let X} be a random variable distributed as X} and independent of M, and
let F,(x) = p(] — oo, z[). Since F' = Fx:|q,, it follows that

B( [ 1Fxuiaan®) — POPu(an) " < 2(/iF00) = G )

Let dy(z,y) = \/|Fu(x) — Fu(y)|. From (16) it follows that one can choose
X} such that

E(y/1Fu(Xe) = Fu(X0)] ) = 7a, (Mo, X0)

Consequently (18) holds as soon as ), 7a, (Mo, Xi) < oo. This is an exam-
ple where the natural cost function d,, is not the discrete metric c(z,y) = 1,4,
nor the usual norm c¢(z,y) = |z — y|.
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4 A counter example to maximal coupling

In this section we prove that no analogue of Goldstein’s maximal coupling
(see [Gol79]) is possible if the cost function is not proportional to the discrete
metric.

More generally, we consider the following problem. Let M be a Polish
space and S = M x M. Let ¢ be any symmetric measurable function from
M x M to RT, such that c¢(x,y) = 0 if and only if z = y. Let F be the class of
symmetric measurable functions ¢ from Rt x Rt to R, such that z — (0, )
is increasing. For ¢ € F, we define the cost function c,((z1,2), (y1,y2)) =
ole(z1,y1),c(z2,y2)) on S x S.

The question Q is the following. For which couples (¢, ¢) do we have the
property: for any probability measures y, v on S with marginals p(2)(A4) =
u(M x A) and v(9)(A) = v(M x A), there exists a probability measure X in
D(p,v) with marginal A\2)(A x B) = A(M x A x M x B), such that

A () = / o(c(@1,y1), c(x2,y2)) Mdzy, da, dyy,dys) . (19)
Al (1), () = / c(w2, y2)A(2) (dw2, dya) - (20)

From Goldstein’s result we know that the couple (p(z,y) = z V y,c(x,y) =
14+y) is a solution to Q. The following proposition shows that, if ¢ is not
proportional to the discrete metric, no couple (i, ¢) can be a solution to Q.

Proposition 1. Suppose that ¢ is not proportional to the discrete metric.
There exist ay, by, az, by in M such that a1 # by and as # by and two probabil-
ities u and v on {(a1,a2), (a1,bs2), (b1, az2), (b1,b2)} for which, for any ¢ € F,
there is no A in D(u,v) satisfying (19) and (20) simultaneously.

Proof. Since c is not proportional to the discrete metric, there exist at least
two points (a1,b1) and (ag,b2) in M x M such that a; # b1, as # by and
c(a1,b1) > c(az,bz) > 0. Define the probabilities p and v by

,u(alaaQ) = % 9 V(a1>a2) =0 3
,U/(alubZ) =0 9 V(alvbQ) = % )
,U/(blyaQ) =0 9 V(b17a2) =3,
M(b17b2) = % ) V(blva) =0

The set D(u,v) is the set of probabilities A\, such that \,(a1,as,a1,bs) =
)\a(bl,bg,bl,ag) = Q, )\a((ll,ag,bl,ag) = )\a(bl,bg,al,bg) = 1/2 — Q, for «v in
[0,1/2]. Consequently, for any ¢ in F,
/ @(C(xh yl); C($27 y?))Aa(dxla d$27 dy17 dy2)
=20 ¢(0,c(ag, b2)) + (1 — 2a) p(c(ay,b1),0) . (21)
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Since c(a1,b1) > c(az,bs), since ¢ is symmetric, and since z — ¢(0,x) is
increasing, ¢(c(ay,b1),0) > (0, c(az,bs)). Therefore, the unique solution to
(19) is )\1/2. Now

/C($27y2)>\1/2(d$1,dmg,dyl,dyg) = c(az,b2) > 0.

Since w2y = v(2), A&c}){(u(z), V(2)) = 0. Hence A/, does not satisfy (20). O

Remark 2. If now c is the discrete metric ¢(x,y) = 1,,, the right hand term
in equality (21) is ¢(c(a1,b1),0). Consequently, any A, is solution to (19) and
Ao is solution to both (19) and (20). We conjecture that if ¢ is the discrete
metric, then any couple (g, c), p € F, is a solution to Q.

5 Appendix: topological and measure-theoretical
complements

Topological spaces

Let us recall some definitions (see [ScH73, GP84] for complements on Radon
and Suslin spaces). A topological space S is said to be

o reqular if, for any z € S and any closed subset F' of S which does not
contain z, there exist two disjoint open subsets U and V such that x € U
and FFCV,

o completely reqular if, for any x € S and any closed subset F' of S which
does not contain x, there exists a continuous function f : S — [0, 1] such
that f(z) = 0 and f = 1 on F (equivalently, S is uniformizable, that is,
the topology of S can be defined by a set of semidistances),

e pre-Radon if every finite 7—additive Borel measure on S is inner regular
with respect to the compact subsets of S (a Borel measure p on S is
T-additive if, for any family (F,)aca of closed subsets of S such that
Va,0€ A Iye A F, C F,NFg, we have u(NacaFo) = infoca p(Fa)),

e Radon if every finite Borel measure on S is inner regular with respect to
the compact subsets of S,

o Suslin, or analytic, if there exists a continuous mapping from some Polish
space onto S,

e Lusin if there exists a continuous injective mapping from some Polish space
onto S. Equivalently, S is Lusin if there exists a Polish topology on S which
is finer than the given topology of S.

Obviously, every Lusin space is Suslin and every Radon space is pre-Radon.
Much less obviously, every Suslin space is Radon. Every regular Suslin space
is completely regular.

Many usual spaces of Analysis are Lusin: besides all separable Banach
spaces (e.g. LP (1 < p < +00), or the Sobolev spaces W*P(2) (0 < s < 1
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and 1 < p < 400)), the spaces of distributions €', &', D', the space H(C) of
holomorphic functions, or the topological dual of a Banach space, endowed
with its weak*—topology are Lusin. See [ScH73, pages 112-117] for many more
examples.

Standard Borel spaces

A measurable space (M, M) is said to be standard Borel if it is Borel-
isomorphic with some Polish space T, that is, there exists a mapping f :
T — M which is one-one and onto, such that f and f~! are measurable for
Br and M. We say that a topological space S is standard Borel if (S, Bs) is
standard Borel.

If 7 and 75 are two comparable Suslin topologies on S, they share the
same Borel sets. In particular, every Lusin space is standard Borel.

A useful property of standard Borel spaces is that every standard space
S is Borel-isomorphic with a Borel subset of [0,1]. This a consequence of
e.g. [Kec95, Theorem 15.6 and Corollary 6.5], see also [Sko76] or [DMT75,
Théoréme II1.20]. (Actually, we have more: every standard Borel space is
countable or Borel-isomorphic with [0,1]. Thus, for standard Borel spaces,
the Continuum Hypothesis holds true!)

Another useful property of standard Borel spaces is that, if S is a stan-
dard Borel space, if X : {2 — S is a measurable mapping, and if M is a
sub-c-algebra of A, there exists a regular conditional distribution Px 4 (see
e.g. [Dud02, Theorem 10.2.2] for the Polish case, which immediately extends
to standard Borel spaces from their definition). Note that, if S is radon, then
the distribution Px of X is tight, that is, for every integer n > 1, there exists
a compact subset K, of S such that Px(S\ K,,) > 1/n. Hence one can assume
without loss of generality that X takes its values in U,>;K,. If moreover
S has metrizable compact subsets, then Up>1K, is Lusin (and hence stan-
dard Borel), and there exists a regular conditional distribution Px|a. Thus,
if S is Radon with metrizable compact subsets, every element p of ) has
an A-measurable disintegration. Indeed, denoting A’ = A ® {0, S}, one only
needs to consider the conditional distribution Px|4s of the random variable
X ¢ (w,z) — z defined on the probability space (2 x S, A ® Bs, 11).

For any o—algebra M on a set M, the universal completion of M is the
o-algebra M* = N, M, where p runs over all finite nonegative measures on
M and M, is the p—completion of M. A subset of a topological space S is
said to be universally measurable if it belongs to BS. The following lemma can
be deduced from e.g. [VW96, Exercise 10 page 14] and the Borel-isomorphism
theorem.

Lemma 2. Assume that S is a standard Borel space. Let X : 2 — S be A*—
measurable. Then there exists an A-measurable modification Y : 2 — S of
X, that is, Y is A-measurable and satisfies Y = X a.e.
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1 Introduction

This paper deals with the problems of typicality and conditional typical-
ity of “empirical probabilities” for stochastic process and the estimation of
potential functions for Gibbs measures and dynamical systems. The ques-
tions of typicality have been studied in [FKT88] for independent sequences,
in [BRY98, Ris89] for Markov chains. In order to prove the consistency of esti-
mators of transition probability for Markov chains of unknown order, results
on typicality and conditional typicality for some (¥)-mixing process where
obtained in [CsS, Csi02]. Unfortunately, lots of natural mixing process do
not satisfy this ¥-mixing condition (see [DP05]). We consider a class of mix-
ing process inspired from [DPO05]. For this class, we prove strong typicality
and strong conditional typicality. In the particular case of Gibbs measures (or
complete connexions chains) and for certain dynamical systems, from the typ-
icality results we derive an estimation of the potential as well as a procedure
to test the nullity of the asymptotic variance of the process.

More formally, we consider Xy, ...., X,, ... a stochastic process taking values
on an complete set X and a sequence of countable partitions of X, (Pg)ken
such that if P € Py then there exists a unique Pc Pr_1 such that almost
surely, X; € P implies X;_; € P. Our aim is to obtain empirical estimates of
the probabilities:

P(X; € P), P € Py,

the conditional probabilities:
P(X; € P | X; 1 €P), PecP

and the limit when k& — co when it makes sense.

We shall define a notion of mixing with respect to a class of functions. Let C
be a Banach space of real bounded functions endowed with a norm of the
form:
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[flle =C()+II

where C(f) is a semi-norm (i.e. Vf € C, C(f) > 0, C(Af) = |A\C(f) for A € R,
C(f+9) <C(f)+C(g)) and || || is a norm on C. We will denote by C; the
subset of functions in C such that C(f) < 1.

Particular choices of C may be the space BV of functions of bounded variation
on X if it is totally ordered or the space of Holder (or piecewise Holder)
functions. Recall that a function f on X' is of bounded variation if it is bounded
and

V fi=sup ) |f(@i) = flai)| < o0,
=0

where the sup is taken over all finite sequences x; < --- < z,, of elements of
Y. The space BV endowed with the norm ||f|| = V f + |||l is a Banach
space.

Inspired from [DP05], we define the @¢-mixing coefficients.

Definition 1. For i € N, let M; be the sigma algebra generated by Xy, ...,
X;. For ke N,

Be(k) =sup{[E(Y F(Xi1x)) — EOV)E(f (Xisr)] i €N,
Y is M; — measurable with ||[Y|1 <1, f€C}. *)

Our main assumption on the process is the following.

Assumption 1
n—1

> (n—k)de(k) = O(n) .

k=0

Remark 1. Assumption 1 is equivalent to (P¢(k))ren summable. We prefer to
formulate it in the above form because it appears more naturally in our con-
text.

Our definition is inspired from Csiszér’s (which is ¥-mixing for variables tak-
ing values in a finite alphabet) and Dedecker-Prieur. It covers lots of natural
systems (see Section 3 for an example with dynamical systems and [DPO05]
for further examples). Our definition extends Csiszar’s which was for random
variables on a finite alphabet.

We consider a sequence (P )ren of countable partitions of X' such that: almost
surely, for all j, k € N, we have

for any P € Py , there exists Pe Pi_1, X;€P = X;_; € P. (%)

For i, ¢ € N, for P € Py, consider the random variable:

l+i—1

N/(P)= Y 1p(X;).

j=i
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Our aim is to have quantitative informations on how close are the empirical
. i+n

(P) to the expected value Q" (P) :=E (N’T(P)) We are

especially mterebted in “large scale typicality”: k will grow with n. We wonder

also about “conditional typicality”, for P € Py, let

probablhtles

N (P)n—1

Ng~'(P) n
Our main result is that g, (P) is a consistent estimator of the conditional prob-
. n+1 P
abilities @, (P|P) := ibl(ﬁ; This follows from an exponential inequality
0

(see Theorem 1).

If the conditional probabilities Qn(P\f’) converge when k — oo, we may
obtain an estimator of the limit function. This is the case for certain dynamical
systems (see Section 3) and g-measures (see Section 4). In these settings, we
obtain a consistent estimator of the potential function. This may leads to a
way of testing the nullity of the asymptotic variance of the system (see Section
5 for details).

Section 2 contains general results on typicality and conditional typicality
for some weak-dependant sequences. In Section 3, we apply these results to
expanding dynamical systems of the interval. Section 4 is devoted to Gibbs
measures and chains with complete connections. Finally, in Section 5 we sketch
an attempt to test the nullity of the asymptotic variance of the system.

2 Typicality and conditional typicality via exponential
inequalities

Following Csiszar, we wonder about typicality that is: how close are the “em-

pirical probabilities” NP to the expected probability Q"“( ) ? This is
done via a “Hoeffding-type” inequality for partial sums.

The following Proposition has been obtained in [DP05], we sketch here the
proof because our context is a bit different.

Proposition 1. Let (X;) be a sequence a random wvariables. Let the coeffi-
cients Pc (k) be defined by (*). For p € C, p > 2, define

= o(X;
i=1
and
(Z@ )w )~ E(e(X:)3C(¢) -

For any p > 2, we have the inequality:
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1

ISu(9) — E(Su(@)llp < <2p2bm>
n—1 %
¢) <2p2(n—k)¢c(k)> : (1)
k=0

As a consequence, we obtain
—¢2 >
2e(C(9))2 Yopzy (n — k)Pe (k)

Proof (Sketch of proof). There are two ingredients to get (1). Firstly we need
a counterpart to Lemma 4 in [DP05].

P (ISn(p) = E(Su(9)| > 1) < e* exp ( - (2)

Lemma 1.

Pe (k) = sup {|E(e(Xirr)|Mi) = E(@(Xigr))loo » @ €Ci}

We postpone the proof of Lemma 1 to the end of the proof of the proposition.
Secondly, we apply Proposition 4 in [DD03] to get: (let YV; = ¢(X;)—E(p(X;)))

2

150 () ~ E(Sn(@))llp < (%Z ma [Y; ZJE Yil Mol )
< <2p2 vills > ||E<Yk|Mi>||oo> < <2pz b)
=1 k=i =1

We have used that by Lemma 1, [|[E(Yj4i|M;)||co < C(@)Pc(k). To obtain the
(

second part of inequality (2), use [|Y;[z < ||Yi\|oo_§ C(¢)®@c(0)). The second

inequality (2) follows from (1) as in [DP05]. O
Proof (Proof of Lemma 1). We write
E(Y f(Xitk)) = EY)E(f (Xitr)) = E(Y[E(f (Xign) M) = E(f (Xitr))])
S NEf (Xigr) M) = E(f(Xigr)) oo

To prove the converse inequality, for ¢ > 0, consider an event A. such that
for w € A,

[E(f (Xitn) M) () = E(f(Xitr)| = [[E(f (Xitr) M) = E(f (Xitn)) oo — €,

and consider the random variable

Y. - pjéffs S0 (B(h(Xi ) M) () ~ E(f(Xisr)))

Y. is M;-measurable, ||Y:||; <1 and
E(Yef(Xitr)) = E(VO)E(f(Xigr) = [E(f (Xign) M) = E(f (Xitr))lloo — € -

Thus, the lemma is proved. a
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We shall apply inequality (2) to the function ¢ = 1p, P € Py.

Corollary 1. If the process (Xi,...,Xn,...) satisfies Assumption 1, if the
sequence of partitions (Py)ren satisfies (**) and for all P € Py, 1p € C,
then, there exists a constant C' > 0 such that for all k € N, for all P € Py,
for anyt € R, for alli,n € N,

(=

Cct?n )

- Q?“‘(Pﬂ > t) <ctel T (3)

n

Proof. Tt follows directly from (2) applied to ¢ = 1p and Assumption 1. O
A~ . n+i

Let us denote by ]P’?J”( P) = NT(P) The following corollary is a counterpart

to Csiszdr’s result (Theorem 1 in [Csi02]) in our context.

Corollary 2. There exists C > 0 such that for all P € Py for which
(QZ’“(P)

C(1p)

2
) n > In?n, we have:
PP
P

P ,
( Qi (P)
Proof. We apply Corollary 1 with ¢ - Q;’H(P) instead of t. We get:

> t) < e%e(fcﬁ In? n)

By (P) L CR@rtiP)n
P( o) >t> oo (‘ (C(Lp)) > |
The result follows. a

Remark 2. Let us consider the case where C = BYV. If the partition Py is a
partition into interval, then for all P € Py, C(1p) = 2.

We are now in position to prove our theorem on conditional typicality. Recall
that

o (P) = "= 1 NIHH(P)

" nNGTHP)

Theorem 1. Let the process (X,)pen satisfy Assumption 1, let the sequence
of partitions (Px)ken satisfy (**) and assume that if P € Py then 1p € C.
There exists K > 0 such that for all e < 1, for all P € Py, for which

2P QD)
Clip) " Clip)

>n"%

i

we have

& l1—e

+ 2efKn

B

If the sequence is stationary, the result may be rewritten as:

P

Gn(P) = Qu(P|P)| > 1) < de K

gn(P) - P(Xl eP ‘ Xo € ﬁ)‘ > t) < 4e_Kt2n1—e " 2e—Kn1’E .
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Proof. Fix R > 0, let us bound the probability

P

with the sum of the probabilities:

(1) = ]P’(
By (P) - @3 (P)] >W> 7

2)=P
) ( .
Bp=l(P
3)=P <2+1() < R) :
Pr(P)
The terms (1) and (2) are easily bounded using Corollary 1: we get

1 2,,1—¢ N 2 p2 -1 1—¢
(1) < et exp (—Ctz> (2) < et exp (—CtR =l ) |

3.(P) = Qu(PIP)| > ¢)

BIL(P) - QU (P)| > t‘le(P)) ,

It remains to bound the term (3). We have (recall that almost surely, X, €
P= Xj_l S P):

113)711+1(P) < n—1 <1+ ﬂ{XneP}> .

Ppi(p) T on Ny =H(P)
I@)’ﬂri»l P -
So we have that I@ilgﬁ; < 2 unless if NJ~!(P) = 0. Take R = 1, we have:
0

(3) <P(Ny~'(P) =0)
and

P(Ng~H(P)=0) <P (ﬁ»g—l(ﬁ) < 321(13)> '

n—1/p
Apply Corollary 1 with ¢ = w (of course our hypothesis imply that

o=1(P) > 0) to get
1—¢

(3) <ese On

These three bounds give the result (we have bounded e+ by 2). O



Exponential inequalities and conditional probabilities 129

3 Applications to dynamical systems

We turn now to our main motivation: dynamical systems. Consider a dynam-
ical system (X,T,u). X is a complete space, T : ¥ — X is a measurable
map, u is a T-invariant probability measure on Y. As before, C is a Banach
space of bounded functions on X (typically, C will be the space of function of
bounded variations or a space of piecewise Holder functions, see examples in
Section 3.1). It is endowed with a norm of the form:

[flle =C()+II

where C(f) is a semi-norm (i.e. Vf € C, C(f) > 0, C(\f) = |AC(f) for
AeER, C(f+9g) <C(f) +C(g)) and || || is a norm on C. In addition, we

assume that the norm || || on C is such that for any ¢ € C, there exists a real
number R(p) such that ||¢ + R(¢)|| < C(p) (for example, this is the case if
Il =1l lloc and C(p) = V(p) or || || = || ||ec and C(y) is the Holder constant).

We assume that the dynamical system satisfy the following mixing property:
for all ¢ € L'(u), v € C,

/on" du—/wdu/wdu < o(w) ¢l [¥]c (4)
P

P P

with @(n) summable.
Consider a countable partition Aj,..., Ay, ... of X. Denote by Py, the count-
able partition of X' whose atoms are defined by: for ig,...,7r_1, denote

Aio,--qik—l :{IE E/fOI‘jZO7...,k—1, T](.’E) EAij} .

We assume that for all g, ..., ik—1, f =1a, .,  €Candlet C(ij,...,ik-1)
be denoted by C(f). Consider the process taking values into X: X;(z) =
T(x), j € N,z € X¥. Clearly if X; € A then X411 € Aiy gy
That is for any P € Py, there exists a unique P e Pr_1 such that
Xj eP = Xj+1 € ﬁ

Condition (4) may be rewritten as: for all p € L'(u), ¢ € C,

|Cov(¥(Xo), p(Xn))| < @(n)[llh][¢llc -

105yl —1

Moreover, we assume that for ¢ € C, there exists a real number R(¢) such
that ||y + R(v)|| < C(¢). We have:

[Cov(1h(Xo), p(Xn))| = [Cov([1(Xo) + R(¥)], p(Xn))|
< o(n)llelillv+ R(W)le < 2(n)lleliC(¥) . (5)

Using the stationarity of the sequence (X)), we have for all i € N, for ¢ € (4,
p e L [lollh <1,
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Cov((X,), p(Xnri))| < 28(n) (6)

So, our Assumptions 1 and (**) are satisfied for a “time reversed” process: con-
sider a process (Y}, )nen such that (V,,, - - -, Yp) as the same law as (Xq, - - -, X,,),
then Cov(¢¥(X;), o(Xnti)) = Cov(¥(Yign), 9(Y:)) and the process (Y, )nen
satisfies our Assumptions 1. Using the stationarity, it satisfies also(**), see
[BGROO] and [DPO05] for more developments on this “trick”. Applying Theo-
rem 1 to the process (V;,)nen and using that

n n—1
S 1) MY S 1p(X;)
j=1 0

and
n—2 Lawn—Z
Y1) E Y (X)),
=0 j=0

we obtain the following result.

Theorem 2. There exists a constant C > 0, such that for all k,n € N, for
any sequence ig,...,ig_1, for allt € R,

NP (A, . _ Ct?n
P( O( 10,...,%71) _U(Aio,...,ikfl) > t) < e%e Cligrin—1D2

n

Let & _ N (Aig,.vig_1) n-1 ;

et Gn(Aig,. in_1) = A e there exists K > 0 such that for all
0 D] ey Qg1

e<1,if

H(Ailw--»ik—l) and /‘(Ai17---7ik71) > %

C(i()a"'aikfl) C(il,...,ikfl) ’
then we have:
P (|G (Aig, v 1) = P(Xo € Aig| X1 € Aiyooo, X1 € Ay )| > 1)
< 4o KT | go—Kn'TF
Let us end this section with a lemma stating that the elements P € Py are

exponentially small. It indicates that we might not expect to take k of order
greater than Inn in the above theorem.

Lemma 2. Assume that Crax = max C(14,) < o0o. There exists 0 <y <1
=1,
such that for all P € Py, we have

u(P) <~*.

Proof. The proof of Lemma 2 follows from the mixing property. It is inspired
from [Pac00]. Let ng € N to be fixed later. Let P € Py, for some indices
igy...,%k_1, we have that
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P = {.Z' € Aioa R ,Tk_lx S Aik—l} .
Then, let ¢ = [£],

no
M(P):]P)(X()EAZ’O7..~7X]§71eAik—l)
< P(Xo € iy Xng € Aipsev oy Xeng € Aiyy ) -

i,lo )
The random variable

]]'Aino (Xno) T ]]-Aimo (ano)

Y =
P(Xno e A sy Xéno € Aimo)

ino 9.

1a,
is My,,,-measurable with L' norm less than 1 and CA .

mixing property (6), we get: (let s =sup;_; _u(4;) <)

is in C;. From the

P(XO €A Xno € Ainoa AR ano € A’iZnO)

< ]P(Xno e Aino yeeesy ing S Aiéno) . (@C(no)Cmax —+ S) .

10

Choosing ng such that ¢ (ng)Crmax+5 < 1, we obtain the result by induction.
O

3.1 Expanding maps of the interval

In this section, we consider piecewise expanding maps on the interval I = [0, 1].
That is, T is a piecewise expanding map, defined on a finite partition into
intervals Aj,...,Ap. Py is the partition of I with atoms: A;, N T-'4;, N
conT=k=DA, L Ifforall j =1,...,0 T(A;) is a union of the A,’s, T is
said to be a Markov map. For z € I, let Ci(x) be the atom of the partition
P, containing x. Under an assumption of aperiodicity in the Markov case or
covering in general, the map 7" admits a unique invariant measure absolutely
continuous with respect to the Lebesgue measure m. Let h be the invariant

density. The potential of the system is g = ‘T,‘}#, we have also that ¢~ ! is

the Radon-Nikodym derivative of poT with respect to p (if p = hm). We shall
prove that g(z) may be estimated by g, x(z) := §,(Ck(x)) for k = O(lnn).
Formally the assumptions on the system are the following.

Assumption PA1). the restriction of T to each A; is a C? one-to-one map
from A; to T(A;) =: B;.
(A2). T is expanding: there exists 1 < 0% such that for allxz € I, =1 < |T'(x)|.
(A3). If T is a Markov map, we assume that it is aperiodic: there exists N € N
such that for alli, j=1,...,¢, for allm > N,

T "A; ﬂAj #+ 0.

(A4). If T is not Markov, we assume that it satisfies the covering property: for
all k € N, there exists N (k) such that for all P € Py,

TN® P =0,1].
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The above conditions are sufficient to ensure existence and uniqueness of an
absolutely continuous invariant measure as well as an estimation of the speed
of mixing (see for example [Sch96] for the Markov case and [CoL96], [Liv95]
for the general case). Under more technical assumptions, these results on
existence and uniqueness of an absolutely continuous invariant measure as
well as an estimation of the speed of mixing remain valid, with an infinite
countable partition ([Bro96], [L,S,V], [Mau01]).

Theorem 3. ([Sch96], [CoL96], [Liv9d5]) Let C be the space of functions on
[0,1] of bounded variations. Let T satisfy the assumptions 2. Then we have
the following mizing property: there exists C > 0, 0 < £ < 1 such that for all

peL'(p),YeC,

/w o T dy — /Wu/@du < celolh¥lc -
P

X P

Moreover, we have that the invariant density h belongs to BV and 0 < inf h <
sup h < co. If the map is Markov, then h is C' on each Bj;.

In other words, our system satisfy (4) for bounded variation functions. More-
over, for any k € N, the element P of Pj are subintervals, so the indicators
1p belong to BV and C(1p) = \/(1p) = 2. So, we shall apply Theorem 2,
this will lead to the announced estimation of the potential g.

Let us also introduce a very useful tool in dynamical systems: the transfer
operator. For f € BV, let

y/T(y)=z

We have £(1) = 1, for all f; € BV, fy € L*(u),

/E(fl) < fadp = /f1 “faoTdu .
I I
The process (Yy,)nen introduced after Lemma 2 is a Markov process with

kernel £ (see [BGRO0]). The following three lemmas are the last needed bricks
between Theorem 2 and the estimation of the potential g.

Lemma 3. Assume that T satisfies Assumption 2 and is a Markov map, let
v be given by Lemma 2. There exists K > 0 such that for all k € N, for all
rel,
Cr(x))
| = KyFyg(a) < —UCkE)
(=00 = e @)

Proof. Because the map is Markov, for all € I, T(Ck(z)) = Cr—1(Txz). We
have:

< (14 Ky")g(x) . (7)
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W(T(Ci(x)) = / éﬂck(z)du,

L /11 d </11 d ax /1 d
min —— z < - < max —- z
yeCuin) gly) J ~ @MW g B velutn) gy) ) @M

Since the map is Markov, h and h o T are C* on each Ci(z), so g is C* on
Ck(z) and since T is expanding, we conclude that

1 1
max — < (14 K~yF)——
W 3 = T
and 1 1
min —— 1 - K~y%)——.
S 5 = L E
The result follows. O

If the map T is not Markov, we shall prove a result not so strong (but sufficient
for our purpose). To deal with non Markov maps, we have to modify the above
proof at two points: firstly, we have not T(Cx(z)) = Cx—1(Tx) for all z (but
for lots of them) ; secondly, g = IT’I% is not smooth (due to h). The following
lemma shows that we control the irregularity of h.

Lemma 4. Let a = \/ h, for any interval P, let \/ h be the variation of h on

P
P. For all k > 1, for all uy > 0,

k
peel01/ \ hzu}y<—.
Cro(x) Ura

Proof. We have:
eel0,1]/ \/ hzw}= > uP),

Cr(®) \/PZ‘,;kuk
a=\/h> Y \/h>#{PecP/ \/h>uk}uk
PePy P

In other words, #{P € P, / \|ph > ur} < “. Using Lemma 2, we get:
Uk

pl{z €10,1] / \/h>uk}<#{P€Pk/\/h>uk} i

Cr(z) ka

O

Corollary 3. For all k > 7, there exists a constant K > 0 and for all k € N*,
k
a set By, such that u(By) < - and if v & By, y € Ck(z),

(1-Kr) <22 < (14 Krb) . (8)
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Proof. Recall that g = \T'|hoT
satisfies an equation of the type (8) for all z € [0, 1], for K = v. We just have
to prove that h satisfies such an inequality. Fix k > ~, let

By ={xe(0,1]/ \/ h>r"}.

Because T is piecewise C? and expanding, ‘%,‘

Let x € By, and y € Ci(x).
h(z) = h(y)l < \/ h<s

Cr ()
h(z) _ h(z)—h(y)
1\IOW7 y) 1 + W thus
1 h(x) 1
1— k< <1 k
suphﬁ ~ h(y) — + infh"

Of course, the same equation holds for h o T' by replacing k with k — 1,
combining this equations (for h, ho T and |T”|) gives the result. O

Lemma 5. Assume that T satisfies Assumption 2 and is not necessary a
Markov map. There exists K > 0 such that for all k € N, for all k > 7,

k p(Cr(x)) wFValx
pleer /- mgo) < JOED < (14 kiyg(o) |

>1- (267'“ +a (7>k) .
K
Proof. We begin with a simple remark. Let us denote P the union of the
boundaries of the A;’s. For z € [0,1], if Cx(z) NIP = 0 then T(Ci(z)) =
Cr—1(Tx), otherwise, T(Cx(z)) is strictly included into Cy_1(Tz). This ele-
mentary remark is very useful in the study of non Markov maps. The points
x such that T'(Cy(z)) = Cr—1(Tz) will be called k-Markov points. If the map
is Markov then all points are k-Markov for all £ € N. For k-Markov points,
we may rewrite the proof of Lemma 3 to get the inequalities:

. 1
i @M(Ck(m)) < w(Cr—1(T)) < Jhax @M(Ck(w)) :

Now, we use Corollary 3 and we have that if x is a k-Markov point that do
not belong to By then

Cr(x))

1— Kg" x<M7<1+K/<;k x) . 9
(1= Knjgle) < TS < (14 Kb gle) 9
So, we have that the set Dy of points not satisfying 9 for one k is included
into the set of points x such that Cy.(x) NdP # () or in By, (given by Corollary
3). Clearly, there are at most 2¢ elements P of P, such that P NP # 0,
moreover, by Lemma 2, we have for P € Py, u(P) < v*. We have proved that

k
#(Dy) < 209" + e O
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We are now in position to prove that g, x(z) is a consistent estimator of the
potential g(x).

Theorem 4. For all kK > vy, there exists Dy, and E}, finite union of elements
of Py satisfying u(Dy) < 204F +a (%)k, w(Ey) < ~* and there exists L > 0
such that if
o x¢& DpUEy,
In(5%) e In2n
=" =191
In(k) 2 ln(;)

then

P(|gnr(z) — g(a)| > t) < de” ' 49 In'”

Proof. Fix k > ~, let Dy, be given by Lemma 5: if z ¢ Dy, then

(1 - KrF)g(z) < (C(“((T)))) < (1+ KrF)g(z),

let Ej, be the set of points x such that u(Cy(z)) < Z—f Clearly, if z € Dy, then
Ci(z) C Dy and if x € Ej, then Cy(z) C Fg, so Dy and FEj, are finite union

of elements of Py.
k £
Let ¢ Dy U Ey, then pu(Cr(z)) > F. If k < % (2”) then u(Ck(z)) > 2n~ 3.

Since Cj(z) is an interval, we have C(1¢, (z)) = \/(chk(w ) = 2 and then

p(Cer(T2)) _ p(Cir(Te) _ plCale)) s
C(]le(a:)) C(]lck—l(Tz)) N 2 N .
We shall use Theorem 2.
P(|gn,k(2) — g(2)| > 1)
X w(Cx () 1(Cr(x))
< P(|gn.k () — W| >t |m —g(x)])
R (Cg () k
P(|Gn.x(z) — m| >t — Kk") (because x & Dy,)
< go~LOU—KrM)In'= 4 o —Ln!* (where we have used Theorem 2) .

If In(¢/2)/ In(1/k) < k, we conclude

]P)(‘gn,k:(x) — g(x)l > t) S 4e—Lt2n175 n 2e_Ln17

We derive the following corollary. Fix £ > ~.



136 V. Maume-Deschamps

Corollary 4. Let o = ¢/{2(1 + ¢)} with ¢ =In(1/k)/In(l/7) and k(n) be an
increasing sequence such that

n (5757 )
ﬁ <k(n) <

Let gn = Gn(n): then |gn(z) — g(x)| = Op(n™?).
Proof. Tt suffices to prove that:

im limsup P(n%|gn(z) — g(x)] > M) =0.

|
M—o00o nosoo

We chose t = n~% in Theorem 4 and obtain:

P(0°]ga(r) — 9(x)] > M) < P((ga(x) — g(a)| > ) < 4o~ 4 o(1)

The best rate is obtained for o = ¢/{2(1 + ¢)} with ¢ = In(1/x)/In(l/v). O

Remark 3. In [CMS02], an exponential inequality is proven for Lipschitz func-
tions of several variables for expanding dynamical systems of the interval. We
can not use such a result here because characteristic functions of intervals are
not Lipschitz, the result could maybe be improved to take into consideration
piecewise Lipschitz functions. The Lipchitz constant enter in the bound of the
exponential inequality and any kind of piecewise Lipschitz constant would be
exponentially big for 1p, P € Pj. Nevertheless, such a result for functions of
several variables could be interesting to estimate the conditional probabilities
and potential g: we could construct an estimator by replacing Nf(Aimwik_l)
with

N;L(Aio,...,ikfl) = |{p € {J’an+J - k} / Xj c Aioa'-'an-i-k—l S Aik,1}| .

4 Gibbs measures and chains with complete connections

In this section, we state our results in the particular setting of Gibbs measures
or chains with complete connections. Gibbs measures and chains with com-
plete connections are two different point of view of the same thing - consider
a stationary process (X;)ien or z taking values into a finite set A satisfying:
for all ag, ..., ag, ... in A.  P(Xg = ag,..., X = ag) # 0 for all k, then

khm ]P(XO = ao‘Xl = aj, .- .,Xk,1 = ak,l) = ]P(XO = ao‘Xi = a;, ) Z 1) N
—00

exists. Moreover, there exists a summable sequence 7y, > 0 such that if ag = by,

ey A = by,
]P(XO = a0|XZ- = Qy, Z 2 ].)
P(Xo =bo|X; =b;, i > 1)

-1 <. (10)
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Define X ¢ AN be the set of admissible sequences:

Ez{xz(xo,...,xk,...,)EAN ‘
for all k > 0, P(Xo = xo,..., X = zx) # 0} .

X is compact for the product topology and is invariant by the shift map o:
o(xg,x1,...) = (x1,...). We denote by u the image measure of the X;’s. We
assume that the process is mixing: there exists N > 0 such that for all ¢, j € A,
for all n > N,

P(Xg=iand X,, =j) #0.

We shall denote by

ey

As before, Py, is the partition of X' whose atoms are the A;, ;. ,’s and Ci(z)
is the atom of Py, containing x.

We assume also that the process has a Markov structure: for x = (xg,...,) €
Y, ax = (a,x0,...) € X if and only if ay € X for all y € A, .

For x € X, let g(z) = P(Xo = x| X; = x4, ¢ > 1). We shall prove that g, j is
a consistent estimator of g.

It is known (see [KMS97], [Mau98|, [BGF99], [Pol00]) that such a process is
mixing for suitable functions.

Let v = > 4>n Tk, define a distance on X' by d(z,y) = v, if and only if
z; =yj for 5 =0,...,n—1 and z, # y,. Let L be the space of Lipschitz
functions for this distance, endowed with the norm ||¢| = sup |¢)| + L(%)
where L(t)) is the Lipschitz constant of ).

Theorem 5. ([KMS97], [Mau98], [BGF99], [Pol00]) A process satisfying

(10), being mizing and having a Markov structure is mixing for functions

in L in the sense that equation (4) is verified for ¢ € L'(u) and ¢ € L with

®(n) "=370. If 4 is summable, so is B(n).

In what follows, we assume that v} is summable. For any ¢ € L, let R =

—inf ¢ then sup [y + R| < L(v)), then we have (6) for the process (X;);cn and

¥ € L such that L(¢)) <1 and Theorem 2 is satisfied.

We have that 1 )
L(ta,) < o and L (i) < =

Equation (10) gives the following lemma which will be used instead of Corol-

lary 3.

Lemma 6. For allx € X, for allk € N, y € Ci(z),

X
1*’Yk§(7§1+7k~

(y)

S
-

<
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Following the proof of Lemma 3, we get: for all z € X, for k € N,

14(Cy(2))
(L= w)g(@) < 8 — Ty

Let v < 1 be given by Lemma 2, let £ = |A|.

< (1 +k)g(2) - (11)

Theorem 6. Assume that v} is summable, and that the process satisfy (10),
is mizing and has a Markov structure. Then there exists L > 0 such that if:
(A1), u(Ci(@)) = e
?
k
(A2). (%) Y= nT2,
(A3). w < 5.

we have

[CTE

P(|gn i (z) — g(x)| > 1) < 4o~ M7 9o~ In' "

Moreover,

k
(A1). plz € 2 | u(Celw) < B} <F,
k =
(A2). (%) vi>n"2 if k <alnn for suitable a > 0,
(A3). v < % if k> bt—32 for suitable b > 0.

Proof. The proof follows the proof of Theorem 4 using Lemma 6 instead of
Lemma 5. The estimates on k are obtained by noting that since ;; is summable
then ~y, = o(k—lfz) and v = 0(%). Of course, better estimates may be obtained
if v, decreases faster. ad

As in Section 3.1, we derive the following corollary.

Corollary 5. For k = ©(Inn), there exists « > 0 such that g goes to g(x)

in probability at rate n~.

5 Testing if the asymptotic variance is zero: the
complete case

In this section, we study the problem of testing whether the asymptotic vari-
ance of the process is zero. This is motivated by the fact that for the process
studied in the previous sections, we may prove a central limit theorem pro-
vided the asymptotic variance is not zero (see [Bro96], [Val01] for examples).
We are concerned with a process (X;);en satisfying Conditions of Section 3.1
or Section 4. We assume moreover that the system is complete: T'(A;) = T
for all ¢ if we are in the context of Section 3.1 or o(4;) = X if we are in the
context of Section 4. Our arguments should probably be generalized to non
complete situations. In what follows, we shall denote T for T : I — I as well
aso: X — .
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Definition 2. (/Bro96]) Let

Sy = 2(}9 — E(Xy)) and M, = / <j%>2dIP.

The sequence M, converges to V' which we shall call the asymptotic variance.

Proposition 2. ([Bro96], [CM04]) The asymptotic variance V is zero if and
only if the potential log g is a cohomologous to a constant: log g =loga + u —
woTl, witha >0,ue BV orue L.

Because we are in a stationary setting, we have that the asymptotic variance
is zero if and only if g is indeed constant (the fact that the system is complete
is here very important). We deduce a way of testing if the asymptotic variance
is zero. Using Theorem 4 or Theorem 6, we have that if g is constant,

P(|SUp G — inf G k| > 1) < 2+ (de~E T 9o En ) ok

To use such a result, we have to compute sup g, and inf g, ,, so we have
¢k computations to make with k = 2(Inn). A priori, all the constants in the
above inequality, may be specified. In theory, for ¢ > 0, we may find k, n
satisfying the hypothesis of Theorem 4 or Theorem 6 so that P(|sup §nx —
inf §p x| > t) is smaller than a specified value. If the computed values of
sup gn,, and inf g, agree with this estimation this will indicates that g is
probably constant so that the asymptotic variance is probably 0.
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1 Introduction

Let (2, A, 1) be a probability space, T" a measure preserving bijective and
bimeasurable mapping of € onto itself. By Z we denote the o-algebra of A € A
for which T—'A = A; if all elements of T are of measure 0 or 1 we say that
is ergodic. A sequence of X; = foT?, i € Z, where f is a measurable function,
is strictly stationary and any strictly stationary sequence of random variables
X} can be represented in this way. By a filtration we shall mean a sequence
of o-fields (Fi)x where Fr, = T FFy, Fr C Fry1.

One of the tools for proving central limit theorems for stationary se-
quences of random variables has been approximating the partial sums S, (f) =
Z?:_ol o T" by a martingale, thus reducing the original problem to a study
of limit theorems for martingale differences. In most of the known results, the
variances of the partial sums S, (f) grow linearly. The two methods shown
here admit a nonlinear growth. In [WW04], one of the most general condi-
tions for the existence of such a martingale approximation has been given.
In the original version, the result was formulated for additive functionals of
stationary Markov chains but in fact (as the authors remarked) it holds true
for stationary sequences in general. Here we shall show a generalization to the
case when the filtration (Fy)x is not the natural filtration of the process (X}).
The proof is presented in a way avoiding the language of Markov chains.

Another approach giving central limit theorems for processes with non-
linear growth of variances is given by a sequence of martingale-coboundary
representations.

In the last chapter, a few related results concerning the conditional central
limit theorem and the choice of filtration are announced.
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2 On an approximation of Wu and Woodroofe

Let (F)i be a filtration. For X integrable and k € Z let us denote
Qr(X)=E(X|Fy), Rp(X)=X-EX|F).
Remark that

X = Qw(X) + Rp(X),

(X) = Qr—1Qk(X) = Qr—1(X) ,
RiRp—1(X) = Rg—1 R (X) = Ri(X)
Ry—1(X) — Ri(X)

For a sequence (Xj), we denote S, = Y1, X;; if, moreover, X, € L?
and E(X |Z) = 0, we denote 02 = E(S2). We shall abuse the notation by
omitting to write a.s. and by writing L? instead of £2.

In [WW04] Wu and Woodroofe proved

Theorem 1. Let (Xi)x be a stationary and ergodic sequence adapted to the
filtration (Fy,), Xx € L?, E(Xy) = 0. Then there exists a stationary martingale
difference array (D) (adapted to the filtration (Fi) for each n) such that

k
fO’f' Mn,k - Zi:l Dn,i;

max Sk — Ma,kll2 = o(om)

if and only if [[Qo(Sn)ll2 = o(ow).

In such a case
on =Ll(n)\V/n

where £(n) is a slowly varying function.

We shall show an analogue of Theorem 1 as well as analogs of other limit
theorems for noncausal sequences.

Let us suppose that all random variables we work with belong to the
Hilbert space H of X € L? such that E(X|F_,) = 0 and E(X|F) = X.
This assumption implies E(X|Z) = 0 (cf. e.g. [Vol87], Theorem 2). Let us
denote

UX=XoT, XeH.

For every X € H and any k € Z, we have by (1) that X = Qx(X) + Ri(X).
For a process (X} )k, the sequence of Qi (X}) is adapted to the filtration (Fy).
As we shall see the martingale approximations of the sequence (Ry(Xy))r can

be studied in the same way as approximations of adapted processes.
Let H~ be the range of Qq, H~~ the range of Q_;; H™ = HS H~. Define

P X =E(X | F) —E(X | Fr—1)
= Rp1(X) — Ri(X) = Q(X) = Qr—1(X), k€Z.



Martingale approximation 143

Recall that for any o-algebra F C A and for f € L? we have UE(f |F) =
E(Uf|T~1F), hence

UQk(f) = Qer(Uf), URk(f) = RerU(f), UPf=PnUf.
For f € H* define
V=Y U RUf.
i=1

V is an isomorphism of the Hilbert space H™' onto the Hilbert space H~~. To
see this, it is sufficient to realise that for each ¢ > 0 V is an isomorphism of
H; = L?(F;) © L*(F;_1) onto H_;: we have UP; = P; 11U hence for f € H;,
Vf=U"2f. H7 is the direct sum of H;, i > 0, while H~~ is the direct sum
of H_;, i >0 and U is a unitary operator.

Remark that one can easily extend the definition of V' to the whole space
H by defining

Vi=Y UT'RUS.

i€z
Proposition 1. For every k € Z, n > 0 and f € H we have
VU = UMV (2)
VR.(f) = Q-n-1(Vf). (3)
Proof. Because f =Y 2, Pif we have PyU*~'f = 0 for i < k hence
VUEf= > UTRUM =Y UUTRU T f=UVY,
i=k+1 i=1

which proves (2).
For any f € H, R, f =3 ., Pif hence

VR.(f)= Y UT'RUf=Q na(Vf),

1=n+1
which proves (3). O

Corollary 1. Let f € HY, X; = U'f, i € Z. Define Z; = U'Vf, i € Z,
Sp= 01X, Sh=>""1Z;, n>1. Then the process (Z;) is adapted to the
filtration (F;—1) and

i. B(S2) = E(S"2),
i || Rn1(Sn)ll2 = [| Qo (X024 Z4),-
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Proof. By (2) we have [|S), |2 = || X1, U=V f|, = [|[V Xim; X[, = [19nll2-
This proves (i).
By (3) and (2), VR,—1(Sn) = Q—n (i, VU*f) = Q_n (X Z_;) hence

1R—1(Sw)ll2 = IV Ruca(Su)ll2 = [[UmQ-n (>~ Z-3)|, = [|Q0 > Zu—i)|, -
=1 =1

This proves (ii). O

Theorem 2. Let (X, = UFX) be a stationary sequence,
X € L*(Foo) O LA(F_s), 0n = ||Snll2 — 00. The following are equivalent:

a. [|[Qu(Sn)ll2 = o(on), [[Rn(Sn)ll2 = o(on);

b. there exists a stationary martingale difference array (D, ;) (adapted to the
filtration (Fi)k) such that for M, = Zle D, ;,

Dax 1Sk — M kll2 = o(on) ;

c. there exists a stationary adapted sequence (Y, = UKY)y, such that ||S,, (X —
V)2 = olon) and [[Qo(Sn(Y))ll2 = o(on).
If (a) or (b) or (c) holds then o, = £(n)\/n where £(n) is a slowly varying
function.

Proof. Let us suppose (a). Notice that under this assumption

1Q1(Sn)ll2 = o(on) - (4)
To prove this let € > 0. Then there exists NV such that [|Qo(Sk)||2 < eoy, for all
k > N. Note that Q1(S,) = @1(X1)+Q1(S, — X1). By stationarity ||@Q1 (S, —
X1)ll2 = [[Qo(Sn-1)l[2 from which it follows ||Q1(Sn)l2 < [|Qo(Sn-1)l2 +
[ X1ll2- [Qo(Sn)l|2 = o(own) and o, — oo hence [|Q1(Sk)|2 < eor—1+ | X1]l2 <
2e0)—1 for all k sufficiently big. Because o,, — oo and |0y, — 0p—1| < [| X1]|2
we have o, /0,1 — 1. This finishes the proof of (4).
We shall prove that o,, = £(n)/n where £(n) is a slowly varying function.
For positive integers n, m we have

Sn = QO(Sn) + (Qn - QO)(Sn) + Rn(sn) )
Sn+m - Sn = Qn(sn—‘rm - Sn) + (Qn—‘rm - Qn)(5n+m - Sn)
+ Rn+m(Sn+m - Sn) )

hence by orthogonality

E[Sn(sn+m - Sn)} = E[QO(Sn)Qn(Sn+m - Sn)]
+E[(Q@n — Q0)(Sn)Qn(Sntm — Sn)l
+ E[ ( )(Qn—i—m Qn)(sn-i-m - Sn)]
+ E[Rn(sn)Rn+m(Sn+m - Sn)] .
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From the Schwartz inequality and (a) it follows
[E[Sn(Sntm — Su)]l < o(on)o(om) + 010(0m) + 0(04)0m + 0o(0n)o(om) -

By the remark in [IL71], p.330 (cf. [WWO04], proof of Lemma 1) it follows
that 02 = ¢'(n)n where ¢'(n) is a slowly varying function. This proves that
on = £(n)y/n where £(n) is a slowly varying function.

By [Res87], Theorem 06, we have S_,_, k¥/2¢(k) ~ (2/3)n3/2¢(n) hence

1
sup P Z op < 00. (5)
k=1
We define
1 n j—1
Gk = Grp(X) = gz . Qr(Xkti) 5
j=114=0
1 n j—1
Hyjo = Hop(X) = =3 > Ri(Xi—s)
n j=11i=0
Then
1 n
Qr(Xk) = Gnk — Q(Gnk41) + - ZQk(Xk+j) ;
j=1
1 n
Ri(Xy) =Hpp — Rpy(Hnp—1) + - ZRk(kaj) .
i=1
Denote
foi = DS%(X) =Gnk — Qr-1(Gnyi) ,
DY), = DP)(X) = Hyp-1 — Ri(Hnp-1)
Dy = Dui(X) =D\ + DY) .
Then
n j—1 n—1 n i
(1) — )
Dk=22 0 PiXipi =3 ——PiXupi,
j=11i=0 =0
e _liHPX _ _zn:n—i-i-lPX '
n,k_n‘ : k k*l*l_‘ n kNk—i
j=1 =0 =1 (6)
ZQk(Xk:):ZD + G — Qu(Grntr) ZZQk (Xk+s) 5
k=1 k=2 "M==

i ZD + Hy o — Ra(Hp %iiRk(kaj)7

k=1 k=1j=1
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therefore

ZXk = Z Dn,k + Gn,l - Qn(Gn,n+1)

k=1 k=2

+ % Z Z Qr(Xpyj) + Hypm — Ri(Hpp) + % Z ZRk(Xk—j)

k=1 j=1 k=1j=1

It remains to be proved that all the terms D, 1, Gn 1, Gnnt1, Homy Hn oo,
Y e i Qr(Xrg), £ 2oy 2oi—y Ri(Xk—j) are o(o,). Let us show this
for G,,1; the other proofs are similar.

By (4), for each € > 0 there exists N such that ||Q1(Sk)||2 < eoy for all
k> N.Forn>N,

N 1
1Gnall2 < — Z [Q1(Sk)l2 + — Z 1Q1(Sk)ll2 < — Z o Z o -
k=1
We have l
1 n
- < .
~ Y ok <on s%pu/(zal))zak
k=N k=1

By (5), supl(l/(lal))X:L:1 or < oo and for N fixed, n — oo, the term
1 Ziv:zl o}, is going to zero.

We have proved that maxi<p<p ||Sk — Mn.kll2 = o(o,). Notice that we
actually proved

Wy _
max | ZQk Xi) Z;DWHQ — o(om) |
J
(7)

@, —
f;z?;”,ZIR“X'@ ZD Iz = ole)

The proof that (b) implies ||Qo(Sn)|l2 = o(on), ||Rn(Sn)ll2 = o(on) follows
from Qo(Myn) =0= R, (M,).
It remains to prove that (a), (b) are equivalent to (c¢). Let us suppose (a),
(b). We have X = Qo(Xo) + Ro(Xo) = X’ + X"; define
Y =Qo(Xo) +VRy(X0)=Y'+Y", YV =UY=Y/+Y!, keZ.
We shall denote S, (Y) = Y"1, ¥;. Recall that by (1)

QrQr—1(X) = Qr_1Qr(X) = Qr_1(X) ,
RiRy1(X) = Ry Ry (X) = Ry(X)

and notice that
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X;, =Y = U"Qo(X0) = Qu(Xy) -
Therefore Qo(Y-;—, Y/) = Qo(Xo12; Qi(Xi)) = Qo(32;—; Xi) = Qo(Sn) hence
[Qo(Sn(Y"))|l2 = o(on) -

To show
1Qo(Sn(Y))l2 = o(om) (8)
it remains to prove
1Qo(Sk(Y"))ll2 = o(om) - (9)
We have -
Qo(Su(Y")) = QoY) = Qo(¥{) + Qo Y. V')
i=0

and by Corollary 1(ii) [|Qo(3Z5 Y7")ll2 = | Ru-1(Sn(X"))l2 hence
1 Rn-1(Sn(X))ll2 = Qo (Sn(Y"))ll2] < 2/ Xo]l2.
Rp_1(Sn(X")) = Rp_1(U"X") + Rp_1(Sp_1(X")), therefore
111 (Sa (X" D2 = [Rn-1(Sn-1(X"))l2] < [XE 12 < |1 Xo|2-

From X} = U*Ry(X) = Ry(Xy) it follows
|1Rn—1(Sn—1(X" N2 = |Rn=1(Sn—1(X))||2. We thus have

11Qo(Sn(YNl2 = [[Rn-1(Sn—1(X)) 2] < 3[|Xo]l2-

Because |0, — 0y—1] < || X0]|2, using (a), we deduce

[Qo(Sn(Y"))l2 = o(an). (10)
Let us show [|S,(X —Y)|l2 = o(on)-
We denote
il G
Dk (Y') = Gui(Y') = QuaGp(Y) = PeYiitis
i=0
g
Dk (Y") = Gui(Y") = Qro1Grp (YY) = Z P},
i=0

Dn,k(Y) - Dn,k(Y/) + Dn,k(Y”)'

We have Y =% P_;Y. For i > 0, P)Y/ = PyX; and P)Yy' = 0. For i > 1,
P()Y;»” = P()UZ Z_;)il UﬁjpoUin =P Z;)il Pi_jUiisz = PoUiiX. Using
stationarity we deduce
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L A L A

_ ) _
E PyYp,, = E - P X1,
i=0 i=0
it A it G
E TPkYk-H E - Py Xy,
1=0 =1

therefore

1 « 1 " 1 "
Dy —Dpi(Y) = -~ ZPka—i = ERk—1<ZXk—i) - ERk<ZXk—i)7
i1 i—1 i1

1 <k <n. By (a) [[Dnr—Dni(Y)l2 = o(on/n), hence || My, p, — My n (V)2 =
o(oy).
Next we prove
[5n(Y) = Mpn(Y )2 = o(0s).

By (7), ”Sn(Y,) - Mn’n(Y,)HZ = HSn(XI) - Mnn(X/)H2 = o(on) where
M, (X") = Y4_; D). By (6),
| Sn(Y") = My n(Y")]|2 <
1
| Dpa(Y)l2 + [|[Gra (Y72 = 1Qn (G 1 (Y7) |2 + H* ZZQk Vil i)ll2-
k 175=1

We show |G, 1(Y")||2 = o(c,); for the other terms on the right it can be done
in the same manner.

[Gr1(Y7)]l2 < Z 1Q1(Sk(Y"))l2-

From (4) and (8) it follows ||Q1(Sk(Y"))|l2 = o(oy) hence we can prove
|Gr1(Y")||2 = 0(0y,) in the same way as we proved ||G£Ll)1||2 = o(oy,).

Therefore,
150 (Y) = Sn(X)ll2
< HSn(Y) - Mn,n(y)HQ + HMn,n(Y) - Mn’nH2 + ||Mn,n - Sn(X)H2 = O(Un)-
This finishes the proof of (c).
Eventually we prove that (c) implies (a), (b). Suppose (c). We get

1Qo(Sn(Y))ll2 = o(ll(Sn(Y))l|2)

so that (a) is satisfied for Y. By the equivalence of (a) and (b) we get (b) for
Y and from ||S, (X —Y)||2 = o(0y,) it follows (b) for X. Therefore, (a) holds
for X as well. O
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Proposition 2. In Theorem 2, we can take the following martingale approz-
tmation:

k
M’I’L,k}_anj
j=1
where
> n \Jt1 > n o \J
D, . = ( ) P.X ( ) P.X
k Jgon+1 kk+y+; 1 kXk—1—j

We then have

1
(1 i E)Yn_‘,—k = E(Xi | Fr) + Qr(Y, 1)

and
(14 ) ¥ = (X~ E(X | 7] + eV )
hence 1
<1+n)Ynk—Xk+Qk( nk+1)+Rk( k—1)>
Zxk—z = Qu(Y, 1) = Ri(Y, 1) ZYnk-
k=1
‘We have

n

Z[ nk_Qk( nk+1) Rk( nk 1)]

k=1
= Z[Yn+k - Qk(ynfk-',-l)] + Z[ — R(Y,, )]
k=1 k=1
= Z[Yn—t_}g - Qk—l(Y::k)] Qn( n n+1)
k=2

+

[Yn_,k - Rk( n,k— 1)] + Ynin - Ry (Yn_,O)

>
U
N
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Notice that Qy (Ynfk) = Ynfk, Ri(Y, ) =Y, - By (1) we thus get

= 1\ —G+D)
Y = Qe (V) =) (1 + ﬁ) P Xkt j

§=0
and
_ _ = 1\-G+D
Yopo — Bu(Y, py) = z;) (1 + 5) P Xy 15,
J=
hence for
>0 n \Jt+l e n o N+l
Dy = ( ) P : ( ) Pu(Xp 1
K Z 1 ) k+J)+Z ] e (Xk—1-5)
j=0 j=0
it is

n n 3 B 1 n
;Xk — ;Dnyk FY, = Qu(Yhy) + Yo, — Ri(Y) + - ;Yn,k.

In the same way as in the proof of Corollary 1 in [WWO04] we prove that
1Yok ll2 = o(on). O

The optimal approximation was studied in [Ris85]. In [KV05] it is shown
that for o], = || Y-, X,’€H2 andol, = || >0, X,’C’H2 we can have limsup,,_, . o/, /ol =
0o, liminf, o o, /on =0, lim, 00 0 /o), = 0 = limy, 00 00 /0.

The approximation from Theorems 1, 2 alone does not imply the CLT.
For the CLT it is needed also a limit theorem for the triangular array (D, ;)
([WW04]). On the other hand, it is possible to generalize to nonadapted pro-
cesses the CLT of Maxwell and Woodroofe ([MWO00], Theorem 1):

Theorem 3. Let
o0
Zn73/2||Q0 )2 < oo, Zn73/2|\Rn n)|l2 < oo.

Then there exists a martingale (M,,) with strictly stationary increments such
that ||Sp, — My|l2 = o(v/n) as n — oo.

Proof. We use the representation X; = X; + X}/ where X = Qu(Xj) =
UkQO(XO) and X} = Rp(Xx) = U*Ro(Xp), k € Z. We denote S, (X') =
S XL Sn(X”) = >, X/'. The sequence (X)) satisfies the assumption
S 1Tf?’/?\\cz()( W(X))|l2 < oo of [MWO00], Theorem 1 (cf. [P105], Theo-
rem 1, for the nonergodic version), hence there exists a martingale (M) such
that |[M] — S0, X[, = o(/m).

As in Corollary 1(ii) we define Z, = U*V X{/. The process (Z},) is adapted
to the filtration (Fy). By Corollary 1,
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n—1 n
1Qo(>_ Zk)|ly = 1Rn -1 ( ZX’ )z
k=0 =1

= HRn—l( n) E(Xn | ]:n) + E(Xn ‘fn—l)HQ
< [Rn-1(Sn)ll2 + 2[|Xoll2 -

From this, || Ry, (Sn)—Rn-1(Sn)[l2 < [[Rn(Sn) —Ran—1(Sn—1)[l2+[[Bn—1(Sn-1)—
R,—1(Sy) |2 and the assumption > 00 | n=3/2||R,,(Sy)||2 < oo it follows that

o0 n—1
S0 21Qo( Y 2 )l < oo
n=1 k=0

Hence [MWO00], Theorem 1 ([PI05], Theorem 1 in the nonergodic case), can
be applied again and there exist martingale differences Dy, such that Dy4q1 =
UDy, P.D;, = Dj and HZ?=1(Zi — DZ-)H2 = o(y/n). For k > 1 we have
V-1Zz_, = X,'gl (by (2), VX,;/ = VRy(Xy) = VUkXé' = UﬁkVXé/ =7 )
and V1D _, = U*U~*Dy = Dy, (recall that for X = P,X, VX = U%FX)

hence
n n
|2 = pu, = [ X2 = Do, = otvin.
k=1 k=1
M, = M/ + > | D; give the martingale approximation. O

Using different methods, a result similar to that of Maxwell and Woodroofe
was proved by Derriennic and Lin [DLO1]. For adapted sequences, Peligrad and
Utev [PI05] proved under the same assumptions as Maxwell and Woodroofe
the Donsker invariance principle. In [Wu05] the strong laws (strong laws of
large numbers, laws of the iterated logarithm, strong invariance principles)
are studied.

3 Successive martingale-coboundary representations

A classical result ([Gor69], Theorem 1, [HH80]) establishes the CLT for sta-
tionary sequences (f o T*) for which there exists a certain class G of functions
h such that (1/4/n)limsup,, . [|[Sn(f — k)||2 = 0; for each h € G there exist
g,m € L? such that h =m+g—goT and (moT?) is a martingale difference
sequence. All the martingale difference sequences have the same filtration.
In [Vol93] it is shown that Gordin’s condition is equivalent to the existence
of a single square integrable function m such that (m o T%) is a martingale
difference sequence and limsup,, . ||S»(f — m)||2 = 0. The existence of the
decomposition f =m + g —go T with m,g € L? and (m o T%) a martingale
difference sequence implies the Gordin’s condition; the converse, however, is
not true ([Vol93]).

Let us show a more general case. Let M C T~! M be a sub-c-algebra of A,
P f =E(f|T~"IM) —E(f|T~*M). For each n let 0 < k1(n) < ka(n) < oo,
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ko (n) ]CQ n)

fn: Z Plf’ Mp = Z POUl

i=—ki(n) i=—ki(n)

Then,
where
ki(n) ki(n)—1 ka(n) ka(n)—i
S S S S
=1 : =0 =

As an immediate consequence of [Gor69], Theorem 1, we get:
Theorem 4. If
.
1. )
11 ||gn||2
n=00 71|, |3

_07

1
[[1m2n|2v/10

then the distributions of (1/|muy|l2v/n)Sy(f) weakly converge to the law v.

Sp(my) = —v
D

Proof. From (i) and (ii) it follows that

lim [Sn(f —mn)ll2 =0

n=o0 v/nlmn||z ||m 2
hence the weak limit of the distributions of (1/v/n||my||2)S.(f) is the same
as the weak limit of the distributions of (1/v/n||my,||2)Sn(my,). By (iii) this
limit equals v. a

Using the same idea as in Theorem 4 we can prove the central limit theorem
for linear processes with divergent series of a,,.

Let (Z;) be a martingale difference sequence with Z; € L?, (a;) a sequence
of random variables, independent of (Z;), such that >, ., [la;[|3 < oo. We

define
Xk:Zak_iZi, keZ.
1€EZ

Theorem 5. Let (Z;) be a stationary martingale difference sequence with
| Zill2 =1 for all i € Z, 3,4 laill3 < oo and

n—1

Xp =Y ariZi, Yop= Y aiZy, k€Z, n=12...
1E€EL i=—n+1
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n—1 0 n—1
|| Xaly s=]| X af, sm=]| X af,
i=0 i=—n+1 i=—n+1
Let
1.
n—1 n—1
sup max E a < 00, Sup max E a_ill /s_n < o0
n>00<k<n Il &= T a>00<k<n |l 4 ! 2/ " ’

1. for every e > 0,

n—1

S

max

— 0, max
en<k<n

n=0,
en<k<n

n—1
> ai

191. -
n
= > laill3 =0,
5n i=n

If liminf, o s(n) > 0, liminf, . s(n)/s, > 0, liminf,, o s(n)/s—, > 0,
then

ZH“—z”z = 0.
i=n

n .

—1
; Hn
(Xk_Yn,k;)H —0 as n—oo.
s(n)y/n k-Z:o 2

If n=1/2 ZZ;& Zy, converge in distribution to N(0,1) and s(n)~! Z:):_—ln+1 a
converge in distribution to a random variable 1, then s(n)~'n=1/2 Z;S Yok
converge in distribution to a law with the characteristic function ¢(t) =

Elexp(—517°t%)]-
Proof. For | < k, define Zé.:k a; = 0. We have

n—1 n—1

S (Xi - Y Z( Z aweiZi— Y wZ)

k=0 1=—00 i=—n+1

f;m Zak 1+;Z Zak Z—i-;Z(Zak - ;;Haj)
;OO Zak 1+;z Za,“ Zz(_ga_ﬁ_;%).

By mutual orthogonality of Z; we thus get
n—1 2 —1 n—1 2
|y, = 3 X,
k=0 i=—oc0 k=0

0 n—1 2 n—1 n—1 2 n—1 n—1 2
I PILE DM DIES DN DR
2| il 2 )| 2 o], + 2| 2w,

i=n k=0 =0 j=i+1 =0 j=n—1i
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By (i) and (ii) we have

” 2
a_jH 25 H Cle —+0 as n—oo.
ns2 2
] =Nn—

7”1’0 j=i+1 i

It remains to show

—>0 as n—o0o.

)

—ni n

We shall prove the first convergence, the other one follows from the same idea
by symmetry.

—1 n—1
> X e
i=—o0 k=0

By (i) and (ii)

=SSl ZHZ%H S

1 n—1 n-—1 2
725 HE aiHH —+0 as n—oco.
ns; - 2
=1 5=0

By the Cauchy-Schwarz inequality > .2 || Z;:()l At ||; <n?Y°. llaill3 and
using (iii) we deduce

7152ZHZGZ+JH Z||a2|‘2—>0 as n — 00 .

O

A direct calculation shows that the assumptions of Theorem 5 are verified
for the following linear process with nonrandom coefficients a;.

Corollary 2. Let (Z;) be a stationary martingale difference sequence with
||Z¢||2 =1 foralicZ, ZieZ az2 < o0 and

n—1
Xk:Zak,iZi, Yn,k: Z aiZy, k€Z n=12,...
€L i=—n+1

where a,, = log® |n|/|n| for [n| > 1 a<1. Ifﬁ ZZ;& Zy. converge in distribu-
tion to N(0,1) then - f Sor—o Yok, Sn = Z?;Ol a;, converge in distribution
N(0,1) as well.

For a;, = k=% with 1/2 < 8 < 1 the assumptions of Theorem 5 are
not satisfied and as noticed in [WWO04], the approximation in the sense of
Theorem 2 does not exist either; nevertheless, S,, /o, converge to a normal
law. The results for stationary linear processes presented here partially overlap
with those from [WWO04] and [Yok95].
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4 Concluding remarks

The central limit theorems proved by martingale approximation have their
conditional versions. Let (F)x be a given filtration, A a suitable distance
between probability distributions (for example the Lévy distance). Let v be a
probability law and v, be the conditional laws of S,, /o, given Fy. We say
that the sequence (S, /0,) converges to v conditionally given Fy if

lim [ A(v,vp) p(dw) =0.

n—oo
The conditional convergence was studied by Dedecker and Merlevede [DMO02].
It implies the weak convergence but in general, the implication does not hold
vice versa. Dedecker and Merlevede showed, for example ([DMO02], Proposi-
tion 1), that for adapted sequences satisfying the assumptions of [Gor69], The-
orem 1, the convergence is conditional. Wu and Woodroofe proved ([WWO04))
that for a sequence (X}) adapted to the filtration, S, /o, converge condition-
ally to the standard normal law given Fy if and only if the approximation
in the sense of Theorem 2 exists and the approximating array of martingale
differences satisfies conditions of Génssler and Haeusler ([GH79], Theorem 2,
see also conditions (11) and (12) in [WWO04]).

In [OVO05] (cf. also [Vol88]) it is shown that in the case of a nonergodic
measure 4 the conditional convergence can take place while for the ergodic
components the sequence of laws of S, /o, does not weakly converge (has
different limit points). For several central limit theorems this situation cannot
happen, e.g. for [MWO00], Theorem 1.

The existence of the martingale approximation depends on the choice of
the filtration. Even for the stationary linear process X = ZieZ ax_iZ;, k€
Z it can happen that there exists no aproximation by martingales adapted to
the filtration (Fy)x generated by the sequence of Z; but there exists an ap-
proximation with respect to another filtration (F'x)x ([Vol05]). The sequence
(Sn/oy) then can converge conditionally given F’'( but not given Fy.
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1 Introduction

Since their introduction by [Gla6l, Gla63] much attention has been given
to periodically correlated (PC) or almost periodically correlated (APC) pro-
cesses, mainly because of their potential use in modeling of cyclical phenomena
appearing in hydrology, climatology and econometrics. Following the pioneer
work of [Gla63], an important part of the literature has been devoted to APC
continuous time processes. The reader can refer to [DH94] for a review includ-
ing spectral analysis.

In the present paper, we focus on discrete time. A discrete time process is
PC when there exists a non zero integer 1" such that

E(Xipr) =E(Xy) and  cov(Xiyr, Xsi1) = cov(Xy, X) .

Usually, as it is the case throughout the present paper, E(X}) is supposed to be
zero, the attention being focused on the second order periodicity. A review on
PC discrete time processes is proposed in [LB99]. A large part of the literature
on this topic is devoted to the so-called PARMA (periodic ARMA) models,
processes having representation of the form

p(3) q(4)
Xirej = 3 o6 Xerijon =Y Ok(i)errijon, t>0,j=0,....T—1,
k=1 k=0

(1)
where () is a zero-mean white noise with unit variance. See for example
[BLO1, LB00, BLS04] for existence of a solution, statistical developments and
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forecasting methods. [BH94] give invertibility conditions for periodic moving
averages. [HMMO2] provide conditions for the existence of L? bounded solu-
tions of AR(1) models with almost periodic coefficients.

All these models are short-memory ones. Now, it is well known that in the
above mentioned scientific fields many data sets presenting some periodicity
also exhibit long range dependence. Such phenomena can be modeled via
stationary processes: the so called seasonal fractional models presented and
studied among others by [GZW89, VD095, OOV00] belong to this category.
Another idea could be to turn to non stationary models and build PC or
APC processes allowing for some strong dependence. To our knowledge, the
only attempt to mix together in such a way periodicity and long memory is
in [HL95] who propose a 2-PC process consisting in fact in two independent
fractional long memory components based on two independent white noises

X2t == ([ — B)_dlggl) al’ld X2t+1 = (] — B)—szEQ) , (2)

where B denotes the backshift operator.

The aim of this article is to propose models of APC long memory processes
and to investigate their second order properties and the convergence of their
partial sums.

Theoretically, in order to build a long memory PC process (X;) with pe-
riod T', it is enough to adjust a long memory stationary model to the T-variate
process (X7, -+, Xreyr—1). In other words, examples of PC long memory
processes are nothing else than examples of long memory stationary vector
processes (see for example [Arc94, Mar05] for a study of multivariate long
memory). However models of this sort may be not easy to generalize in the
direction of almost periodicity, so we prefer to keep to a few particular con-
structions.

Among the different definitions of almost periodicity we adopt in this paper
the following one : a sequence d = (d,t € Z) € (*°(Z) is almost periodic if it
is the limit in ¢°°(Z) of periodic elements
i.e. for any € > 0 there exists a pe-periodic sequence d(©) such that

sup |d¢ — d§€)| <e.
teEZ

Recall that an almost periodic sequence is bounded and averageable, in the
sense that the following limit exits, uniformly with respect to s

t
(t—s)_lzdu—)E, as t—s— +oo. (3)

The limit d is called the mean value of the sequence d. We define APC
processes as in [Gla63]:

Definition 1. A zero mean second order process is APC if for fixed h, the
sequence (cov(Xz, Xe1n)): is almost periodic.
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In the present paper we focus on APC processes with long memory. Our
starting point are Definitions 2 and 3 suggested by the corresponding defi-
nitions in the theory of stationary processes [Ber94] and the theory of point
processes [DV00, DV97].

Definition 2. A second order APC process (X;) has long memory if
) N
lijgnjipN_ V&T(;Xt> =00.
Definition 3. The Hurst index H of APC process (X;) is defined by
2h .
H= inf{h : h]{fn_fllopN_ var(;Xt) < oo} .

Since the covariance function of an APC process is bounded, the Hurst
index is well-defined and takes values in [0, 1]. For example, when

N
var( Y X;) = L(N)N**
t=1

for some 0 < o < 1 and some positive L(-) slowly varying at infinity, the
Hurst index is H = «.

Remark 1. Definitions 2 and 3 refer to partial sums in the interval ¢t €
[1,2,...,N]. It is not difficult to show that this interval can be replaced by
any interval

[s+1,...,s+ N] and so,

s+N
H =inf {h : 1imsupN_2hvar( Z Xt> < oo, Vse Z} .
N—=o00 t—s+1

In the stationary case, the Hurst index is closely related to the decay rate of
the autocovariance cov(Xy, X¢4 ), roughly meaning that cov(Xy, X;4 ;) decays
as j2H~=2 when the lag j increases. For an APC process (X;), the mean value

of the almost periodic sequence cov(X;, X;4;) denoted by

N
p(4) = lim N™1Y cov(Xy, Xitj) s (4)

N —oc0
t=1

takes the place of the autocovariance, as shall be seen in Proposition 1 below.
In the sequel we call p(j) the averaged autocovariance of the APC process
(Xt).

The paper is organized as follows. Section 2 links the averaged covariance
(4) to the Hurst index of an APC process, and provides the expression and
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the asymptotic behavior of p(j) for most of the models introduced in Section
3, underscoring their long memory characteristics. In Section 3 we present
four families of PC or APC long memory models. The three first ones are
directly deduced from the classical fractional integrated stationary model by
modulating the variance, the time index or the memory exponent, while the
last one is newer and less simple. In Section 4, we study the invertibility and
the covariance structure of the models of this new family. Section 5 provides,
for the processes defined in Section 3, the convergence of the Donsker lines
in the Skorohod space D(][0,1]), showing that, even in the case of modulated
memory, the asymptotic behavior is the same as what is obtained in the case
of stationary long memory. Section 6, is devoted to simulations, illustrating
and completing the theoretical results. Technical proofs are relegated to the
Appendix.

2 Hurst index and the averaged autocovariance

The following result points out the link between decay rate of p(j), the long
memory of the process and the value of its Hurst parameter.

Proposition 1. Let p(j) be the averaged autocovariance of an APC process
(X:). Assume that

p(j) = s(1)i*" L) (5)

where 1/2 < H < 1, L is slowly varying at infinity, and where s(j) is bounded
and Cesaro summable with mean value 5 # 0:

k—o0

k
lim k‘lzs(j) =5#0. (6)

Moreover, assume that the convergence towards the mean value of the sequence
(cov(Xy, Xit4))e ts uniform with respect to j:

1

p(j)N -0 ")

lim sup
N—o00 T/

N
Z COV(Xt, Xt—‘rj) —1
t=1

Then

var( g: Xt) — Li(N)N2H |
t=1

where L1(N) is a slowly varying function such that

p L) s
NS L(N) ~ HQH-1)°

In particular, (X;) has long memory and its Hurst index is H.
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Proof. We have

N N—-1N—j N
var( D X)) =2 EX Xij+ > EX? =251+ 5. (8)
= =1 t=1 t=1
Write
2 — N1-2H Z )s(j 2H 29
L(N)N2H PN
where
N—j .
1 N—j
0, N = EX; X;. ., = —=+86"
PPN & T TN N

iy N=j
N = (NN /) (p(j)(;[ — ; EX,Xp45— 1)

Now, we need the following technical lemma whose proof is in the Appendix.

Lemma 1. Let H > 1/2. Let L() be slowly varying at infinity and s(j),7 > 1
be a bounded sequence summable in the Cesaro sense to 5 # 0. Then

N1-2H N =

i 2H-27 N S ]
Nse L(N) &= DsU) = 3=

j=1

;From this lemma it immediately follows that

)s(j J S
N 2HZ (1 N)N2H(2H—1)'

On the other hand, from (7), for arbitrary small € > 0 there exists K < oo
such that supg<;<n_f |0 x| < € and therefore

N—
N1- 2H‘Z )s(J j2H - 29/ ’<C€N12 Z (N 2H=2 - e | (9)
with C' independent of N. Finally, as N — oo,
N LW
1-2H QH 2 g 2 AT—2H 7 —1
J=N—-K+1

by definition of ¢’  and the boundedness of EX; Xy ;. This proves

o 5
L(N)N2HF ~ HQH-1)°

Finally, ¥, defined in (8) satisfies Xy = O(N) = o( L(N)N?H). O
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For many families of processes the memory and the Hurst parameter can
be deduced from a direct inspection of the covariance, as stated in the next
proposition which shall be used in Section 3.

Proposition 2. Let (X;) be an APC process such that there exists 1/2 < H <
1 and an almost periodic function At € Z with mean value A # 0 such that

cov(Xs, Xi) ~ A At — s> 72 uniformly as t—s— oo . (10)
Then:
(A1). the averaged covariance p(j) has the form
p(j) = (s(j) + o(1))52" 7%,

where s(j) is the mean value of the almost periodic sequence (AiAi+;)
(A2). the process (Xt) has long memory with Hurst parameter H.

Proof. (i) From (10),

N
lim N7y (cov(Xy, Xiy)5” 2 = A Aiy;) =0,

N—o0
t=1

leading to

N
)= lim N~! X, Xiyj) = s(5)7272.
p(7) Ngﬂoo ;COV( ts Xeyj) = 8(5)J

Condition (6), with § = A%, follows from almost periodicity.
(ii) Tt suffices to show that

N AQ
E 2H
Var( 2 Xt) ~ m]\[ s as N —o00. (11)

As condition (7) is not necessarily satisfied, (11) cannot be deduced from
Proposition 1 and has to be proved directly. By condition (10), the proof
reduces to Y7,y A At — 5?72 ~ CN?H | which in turn follows from

> (AA = At — 5P = o(N?H)

1<t#£s<N

Let A; := Ay — A, then

S (AA - A)t—sPH = YT AA - s

1<t#s<N 1<t#s<N

+A DY At — s

1<t#£s<N
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(From (47), we have

S At — s = o(NH)

1<t#£s<N

It remains to show that

Z AJA |t — s)?H 72 = Z + Z =1 Q1N + Qo.n = O(N?H).

1<t#s<N 1<s<t<N 1<t<s<N
Then,
N N-—s
QI,N - ZAS Z j2H_2A5+j
s=1 j=1
N N—s
= ZAS jQH_2(as,s+j - as,SJrj*l) ’
s=1 j=1
where o oqj = 25:1 Agyi and j7'ag e — 0(j — o0) uniformly in s.
Rewrite the sum over j as
N—s5—1
(N —s)*2q, y — Z (jZH_Q -+ 1)2H_2)as,s+j :
j=1
We obtain
N N 1 Nes
ZAS(N — 5220, v = ZAS(N - S)ZH_IN — Asti
s=1 s=1 i=1
N
=o Y (v 3)2H1> = o(N*)
s=1
Also,
N—s5—1 N—s
P 1\2H-2y P
S A= (1)) ) = o 17)
=1 J =1

= o((N — 5?71,
implies a similar result for the remaining sum, yielding Q1 y = o(N?#). The
sums @2,y is treated similarly. This proves part (ii) of the proposition. |
3 Examples

Here and throughout the paper, ¢; is a zero-mean white noise with unit vari-
ance.



166 Philippe, Surgailis, and Viano

The four classes below are more or less directly built from the classical
FARIMA (0,d,0)

YV, =(I-B) ey =e+ Y vj(de;, (12)
j>1
with
o T(d+)) ! 1+d .
Uil = a1 H . Vi#O,

where d € (0,1/2).
Recall that the covariance of (Y;) is

I(h+d)I(1 - 2d)

a(h) := cov(Yo, Yn) Th—d+ O)II(1—d)’ (13)
and behaves as a power of h as h — oc:
I'l1—2d _ _
Fa(h) ~ 20 ppjzact gyt (14)

Ir'(dyr{—-ad
The first two examples are obtained by amplitude modulation and phase

modulation.

3.1 Amplitude modulation

Let Y; be the FARIMA (0,d,0) defined in (12) and S; an almost periodic
deterministic sequence. The process defined by

XM =5y, (15)
is a APC process since its covariance is

cov(XAM XAM) — 6 6, Ty(t — 5) ~ c(d)SsSi|t — 5|71 as |t —s] = 0.
(16)
.From Proposition 2 the process (X*™) has long memory with Hurst param-
eter HAM = d 4 (1/2). Moreover, the averaged covariance is

pMM() = (s(5) +0(1))5277%
where s(j) is the mean value of the sequence (S;Si1;):.

Remark 2. As noticed by [LB99], this model is rather simplistic in so far as,
at least if S; > 0 for every ¢, the correlation cor(XAM, XAM) = cor(V;,Ys) is
stationary.
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3.2 Phase modulation

With the same ingredients as above, assuming that S; takes only integer
values, consider

XfM = }/t+51, . (17)

Being integer valued, the sequence S; is necessarily periodic and the process
is PC with covariance

cov(XPM XPM) = Iy(jt — s 4+ Sy — Sq|) ~ e(d)|s — t]*4 ! as |s—t] = o00.

(18)
;From Proposition 2, the process (Xf™) has long memory and its Hurst
parameter is H'M = d + (1/2) and p"™(j) ~ j2H 2.

Remark 3. Contrary to what happens in amplitude modulation, var(XFM)
does not depend on s. Moreover the proper periodicity of the covariance
disappears as the lag |s — t| tends to infinity, giving rise to an asymptotic
stationarity.

In this model, as in the previous one when S; is periodic, the memory is
the same for the T stationary components (X711 )tez and for the cross corre-
lations, and is characterized by the parameter d of the underlying FARIMA.
It is no more the case in the following example.

3.3 Modulated memory

Here the periodicity is directly obtained by modulating the memory exponent
d. Consider d = (d;,t € Z) an almost periodic sequence such that for all ¢,
d; € (0,1/2) and that d* := sup{d; : t € Z} < 1/2. Let &; be a zero-mean
white noise and XMM defined by

XMM — (1 - B)™%¢, VteZ, (19)

this expression merely meaning that

XN =3 e s with (d) = g )

g (d)I(j+1)° (20)

It is easy to check that, as t — s — o0,

r(—d,—d)

m(t — g)detdi—1

cov( XY™ XMMY = "0 (da )y (di) ~
j=0

(21)
showing that the memory exponent itself is almost periodic.

Proposition JA1). The process (XM™M) is APC. It has long memory and its
Hurst parameter is given by HMM = (1/2) +d* .
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(A2). Assume that d is T-periodic. Then, as j — o0,

PMM(G) = e(dF)(s(j) + (1)
where
s(i)=#{1<t<T:teD ' t+jec D"}, (22)

with
DY ={teZ:d, =d"}.

Proof. (1) Let d®) be a T(“)-periodic sequence such that sup |d; — d§5)| <eg/2.
Since for any t

n(dy) — r(d)] < Cepy(d*) (23)

where C < oo is independent of ¢, it is easy to obtain

by Jcov (XM XMM) =Ny () (df7)] < Ce > 0p(dh)?
S j=0 7=0

implying that (XMM) is APC.

Observe that 0 < cov(XMM XMM) < (|t — s| v 1)2¢" 1 (this is obvious
by (20), (21) and the monotonicity of ;(d) with respect to d), and that one
can find C > 0 and p € {0,...,7 — 1}, such that

cov(XMM YMM) > o g)2d"=1-2¢ Lo (p 4 kT | keZ}.
(24)
Indeed, let D} = {t € Z: d\” = d+}. Then for t € D},

dy>d? —e/2=df —¢/2>d" —¢,
implying, for any ¢t # s € D,
cov( XYM, XPM) > 3" (dF = g s(dt —€) > Ot —5)*" 17,
k=0

whence (24). We thus obtain

N
01N2d++1—26 < Var(ZXg\/[M) < C2N2d++1 ,

t=1

for any € > 0 and N large enough, meaning that the Hurst index of (XMM),
is HMM = g+ 4 (1/2).
(2) Write
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N
pn (i) = N7V cov(Xy, Xipy)
t=1
1 1
= T Z COV(Xt,XH_j) + T Z COV(Xt,XH_j) +O(N71)
1<t<T:te D+ 1<t<T:t¢D+

=:p1(j) + p2(j) + O(N7),
where
pg(j) 0(j2d+71) _ O(j2H72)
p1(4) C(d+)3(j)j2d+_1 , ift+j € D' for somet =1,...,T,
pi1(j) = o(*" 1), ift+jgDMt=1,...T.

2

and where s(j) is defined in (22). This proves part (ii). O

Remark 4. Consider the periodic case. Note that in (22) s is periodic and
that s(j) = 0 is quite possible for a sub-sequence j, (see for example MODEL
(A3) in Section 6 where s5(2) = s(3) = 0). Then pMM(j,) = o(j,%‘ﬁ_l),
implying that the averaged covariance presents abrupt changes of memory.
Nevertheless, the asymptotic behavior of var( Zi\i 1 X%\/IM) is roughly the same
as that of the stationary FARIMA(0,d*,0) process.

3.4 Modulated coefficients

Despite the fact that it allows for some memory variability, a major drawback
of the previous model is that, apart when d is a constant sequence, nothing
is clear concerning its invertibility. At any case, in general, we have

e # (I - B)"X)™.

So, we present another extension of the standard FARIMA model (12)
based on the ideas of [PSV04] about fractional processes with time varying
parameter.

Let d = (d;,t € Z) be an almost periodic sequence. Consider the time-
varying fractionally integrated model (TVFIL, in the sequel)

XM= "a;(t)er-y (25)
=0

where (e¢)tez is a zero-mean L? white noise and where the coefficients a;(t),
directly built from formula (13) of the the FARIMA coefficients, are defined
by ap(t) =1 and

Vi#0. (26)

7 .
k—14dy din  dej+j—1
ay(t) = [t = T T
k=1
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As it is the case for the model (19), the standard fractional process (12)
is recovered when d; = d € (0,1/2).

Under suitable conditions on the sequence d, the next section establishes
that the series in (25) converges in the L? sense. The induced process is APC
and bounded in the L? sense and an explicit expansion of ¢; with respect to
the (X]CM)’S is available. Moreover, the covariance of this process behaves as

cov(XM XM ~ e(dy(s)y (D)t — 87, t—s 00,

for a suitable d € (0,1/2) to be defined, and where 7(t) is almost periodic (see
(33) and Proposition 6).

According to Proposition 2, the process (X “M) exhibits long memory and
its Hurst parameter is equal to H°M = 1/2 + d. Moreover, the averaged
covariance is given by

pM() = (@) (s() +o(1) 771 as oo
5(j) being the mean value of the sequence (y(£)y(£+ 7))e.

Remark 5. This model is richer than the the amplitude modulated one: com-
paring with (16) shows that both covariances have the same asymptotic be-
havior, but it is clear that the correlation of X“M is only asymptotically
stationary.

3.5 Note on stationary seasonal memory

It may be interesting to compare the above models to some particular sta-
tionary ones. Stationary processes presenting seasonal long memory are well
known (see for example [OOV00, LV0O] for references, properties and simula-
tions). As an example, consider the fractional ARMA process

XP=(I-B)"4I - 23005(2%) + B?)) e (27)

where d € (0,1/2) and T a positive period. This process is stationary and,
if the period T is an integer, its covariance has the same kind of asymptotic
behavior as the averaged covariance p(j) for the processes XAM XMM and
XOM: precisely, as j tends to infinity

2m 2d—
COV(XE,X75$+j) = <01 + co cos (Tj> + 0(1)) g1

where ¢; and ¢y are non zero constants (see [LV00]).
Such processes are not properly PC processes, but they have many similar
properties.
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4 Existence, invertibility and covariance structure of the
TVFI APC processes

4.1 Existence and invertibility

For these questions, we only give the results, referring to [PSV04] for the
proofs.
Consider the operators

A(d)z, = Zaj (t)zi—; and  B(d)z, = Z bi(t)ri—; , (28)
7=0 =0

where the coefficients a; are defined in (26), and where the b;’s are defined
by bo(t) =1 and

J
-1 ik
bylt) = doy J[ Sttt sy (29)
k=2

First, B(—d) is the inverse of A(d), since, at least formally,
B(—d)A(d)z; = A(d)B(—d)xy = x4 Vt. (30)
Now, [PSV04] prove that if the sequence d satisfies the condition

[Hgl)} : for all integers s < ¢ such that ¢t — s is larger than some K > 0

d, — D
Z t—u <0,

s<u<t

the coefficients of the time varying operator A(d) are bounded above by the
coefficients 1;(D), i.e. there exists C' > 0 such that

la;(t)| < Cy;(D), VteZ, VjeN. (31)

(see [PSV04] for the proof)
Taking into account the well know properties of the FARIMA(0,d,0) filter,
inequalities (31) immediately imply that

(A1). if [Hgl)} holds with D < 0, then A(d) boundedly operates from £! to £!

(A2). if [H)] holds with D < 1/2, then A(d) boundedly operates from £2 to
L2,
where LP (p = 1,2) denotes the class of all real-valued random processes
{x¢,t € Z} such that sup, E|z;|P < oo and £2 C £? the subclass of all zero
mean orthogonal sequences.
Similar results hold for the second operator B(d) if condition [Hl()a)]
replaced by

is
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[Hg))] : there exists K < oo such that for all integers s < ¢ such that

t—s>K
d, — D
> hloy
u— 8

s<u<t

The following lemma, whose proof is in the Appendix, shows that condi-
tions [Hgl)] and [Hg)] are well adapted to almost periodic sequences.

Lemma 2. Let d be an almost periodic sequence with mean value d defined
in (3). Conditions [Hj(ja)/ and [Hg))] hold with any D > d.

Finally, gathering all these results and remarks allows to specify the con-
vergence of (25) and to obtain an inverse expansion.

Proposition 4. Let d be an almost periodic sequence with mean value d €
(0,1/2). Consider the operators A(d) and B(d) defined in (28), (26) and
(29). Let € be a zero-mean L? white noise. Then the process

[e.e]
XtCM = A(d)&‘t = Zaj(t)et_j , tezZ,
§=0
is bounded in L? and the inversion formula is

ey = B(—d)XtM = Zb XM VteZ.

t—j >

where the by (t)’s denote the coefficient of the linear operator B(—d).

Remark 6. The condition d € (0,1/2) does not imply that the sequence itself
is in this domain. Excursions of the sequence outside the classical stability
interval (0,1/2) of the FARIMA are allowed, producing interesting sample
paths as shall be seen in Section 6.

4.2 Covariance structure

Next propositions state almost periodicity and the slow decay of the covari-
ances.

Proposition 5. Under conditions of Proposition 4, the process (XM) defined
in (25) is almost periodically correlated.

Proof. The proof is in the Appendix. a

As a preliminary towards the asymptotic study of the covariances, we get
the asymptotic behavior of the coefficients of the time varying filter. For this
purpose we need to assume that there exists § > 0 and C' > 0 such that
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t

A 78)‘ <Ot -5, (32)

— S
u=s

sup
s<t

The next lemma points out that the coefficients of the time varying filter
are asymptotically close to v(v)1, . (d) where the (¢ (d))’s are the coefficients
of the FARIMA (0, d,0) and where ~ is the almost periodic sequence (33).

Lemma 3. Under the assumption (32) on the almost periodic sequence d and
if0<d<1/2,
(i) the infinite product

2w) =TT (1+ M) , (33)

u<v d—|—’U—U—1

converges for any v € Z and the sequence y(v) is almost periodic.
(ii) the coefficients defined in (26) can be rewritten

av—u(v) == ’Y(U)qpv—u(a)eu,v 3 (34)

with
|0y, — 1] = O(|v — u|™%) as v —u — 400 .

The proof is postponed in the Appendix.

This result is now used to show that the covariance (35) asymptotically
behaves as the product of the almost periodic sequences «(s)v(¢) and (¢ —
5)24=1, This last term is the asymptotic covariance of a stationary FARIMA
(0,d,0), showing a kind of asymptotic averaging of the memory.

Proposition 6. Let (e):cz is a weak white noise. Under the assumption (32)

on the almost periodic sequence d and if 0 < d < 1/2, the covariance function
of the process XM defined in (25), XFM = A(d)e; satisfies, ast — s — 0o

cov(X M, XM ~ e(d)y(s)y(t)(t — 5)* 7, (35)
uniformly in s < t.

Proof. Let s < t. The covariance is equal to

cov(XM XM = 3 agwar—u = 1()7(1) D dsmu(d)thi—u(d) + Rals.t) .

u<s u<s
Firstly, we have [BD91] (Chap. 13)

= = ra- 28) 2d—1
Zwsfu(d)ll)tfu(d) ~ m(t — )27 (t—s = 00) .

u<s

Secondly, using Lemma 3,
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|RA(S t ‘ Z¢s u wt u )(es,uet,u - ]-)
u<s
<O e a( @t @)(1 45— u) 0 = o((t - 5)* ),
u<s
uniformly in s < ¢. This proves (35). O

5 Convergence of the partial sums

In this section, we turn to the asymptotic behavior of partial sums processes
for each of the four classes of models of Section 3.

First consider the FARIMA (0,d,0) process (12): it is now well known that
its suitably normalized partial sums converge in the Skorohod space towards
a fractional Brownian motion (see for instance [Taq03] or [Dav70]):

~(/2) ZY PO, o(d)Bayaja(7) (36)

where o(d) is a positive constant such that

ody 1 (1 —2d)

= Jad+ 1)~ d@dT D T d)

(37)

We shall see that this result still holds, with an adapted parameter d and
a modified constant factor, for all the models presented in Section 3. Almost
periodicity of the covariance has no effect on the partial sums. This is not very
surprising since a PC process can be viewed as a multivariate stationary one.
Returning to stationary seasonal long memory, it is worth noticing that the
partial sums of the process X* defined in (27) have exactly the same asymp-
totic behavior (see for example [OV03]). Indeed, for a stationary sequence, the
partial sums are asymptotically insensitive to unboundedness of the spectrum
at non zero frequencies.
Consider the case of phase modulation (processes X; ™).

Theorem 1. Let X™™™ be a process defined in (17). Then, as N — oo

[N7]
e D[o,1
N2 5™ xPM PO, o) By (7 (38)
t=1

where Bqyy/2(7) is a fractional Brownian motion with Hurst parameter d +

1/2.

Proof. By definition of X*™ we have
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Zy = XM =Y, =Y, — Vi

oo

=Y Wyrs(d) = i(@erj+ Y s uld)ew =2+ 7.

=0 t<u<t+S,

As S; is bounded, the process (Z;) is finitely dependent and therefore
E( iv':il Z”)2 < CN, with C independent of s and of N. Also, since
[$4p(d) = ¥(d)] < C715(d) < Cj97% for all j > 0,0 < p < K and
some C' = C(K) < 0o, we obtain for any s < ¢

o0
EZ,Z{ =Y ' +t—s){?<Ct—s)"2,

and hence ]E( ivtj_l ) < CN. Therefore

[NT] [NT]
D XM= Vit Op(N')
t=1 t=1

proving the convergence of fidis distributions in (38). From the above bounds,
forany 0 <7<74+h<1,Nh>1

[N (r+h)] N(r+R)] NGB,
3 XPM) < 2]E< 3 Yt) i 2E< 3 Zt)
t=[NT] t=[NT] t=[NT|

< C((Nh)'*2? 1 (Nh)) < C(Nh)+22

implying tightness of the partial sums of (Xf™) in D[0, 1] [Bil68] (Theorem
15.6). 0

Remark 7. Since the process X*M is periodically correlated, the above result
could be viewed as a consequence of functional limit theorems on multivariate
stationary processes. In fact it is a consequence of Theorem 6 in [Arc94].
Indeed this theorem works if the same memory parameter governs all the
cross-covariances of the vector process (X4, ... s X1(t41 — 1)), which is the
case for the process XM. However the expression of the limiting process in
[Arc94] is rather involved, we preferred to give a more direct proof.

Now, we consider the modulated memory processes in the particular case
of a T-periodic sequence d.

Remark 8. Despite the fact that we restrict the study to the periodic case,
Theorem 6 in [Arc94] does not apply to processes X MM since different memory
parameters appear in the 7' components of the associated vector process.

Theorem 2. Consider the process XMM defined in (19) from a T-periodic
sequence d. Denote by d* € (0,1/2) the mazimum of d on a period. Then, as
N — o0
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[NT]
. d™)
N—dT—(1/2) MM Pl Ko (
Z t T

t=1
where k = #{1 <t <T : dy =dt}

lgd++1/2(T).

Proof. Tightness is obvious by |Cov(X,, X3)| < C|t — s|2" 1. To prove the
fidi convergence, let D* = {t € Z : d; = d*}. Without loss of generality
assume for simplicity kT € DT,k € Z,. We have

N [N/T] "
S-S Y Mg
t=1 k=1 (k—1)T<t<kT,tcD+
[N/T] [N/T] N
=K > Zir+ Y Zp+op(N*HY),
k=1 k=1

where
I MM MM
A > XMM _ o x MM
(k—1)T<t<kT,teD+

and Z; = Z;io ¥;(d*)es—; is the FARIMA (0,d ™, 0). Similarly as in the proof
of Theorem 1, we get that E(ZLN/IT] Z,’C)2 = O(N). Then, the remaining

details are standard. O

Hence, at least in the purely periodic case, the partial sums of the model
with modulated memory (17) behave exactly as if the process was governed
only by the strongest memory component. The result still holds (up to a mul-
tiplicative constant) if the maximum d* of the sequence is achieved at several
points of the period. Whether it holds for other almost periodic sequences is
an open question.

The following theorem permits to treat in the same time the cases of am-
plitude modulation (processes X*M) and of modulated coefficients (processes
XOM).

Theorem 3. Let q be an almost periodic sequence and d a real number in
(0,1/2). Consider a zero-mean white noise () and the second order process

X, = Zat_s(t)ss , forallt € Z

s<t
where the time varying coefficients ar—s(t) satisfy

ar—s(t) = q(t)thr—s(d)0y s , (39)
with, for some & > 0,

00 — 1| < Clt—s|7° Vs<t. (40)
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Then, as N — oo,
] D[0,1]
N—4=(1/2) Z Xy — 0(d) @ Bay1/2(7), (41)
t=1

where Byi1/2(T) is a fractional Brownian motion with Hurst parameter equal
to d+1/2. The constant o(d) > 0 is defined in (37) and G is the mean value

of q.

Proof. We follow the scheme of discrete stochastic integrals (see [Sur03,
Sur83]). For simplicity, we only consider the one-dimensional convergence at
T=1

The left hand side of (41) can be expressed as

N
N—d—(1/2) ZXt — /deZN = Iy,
t=1

where

Zivzl a;_s(t), ze((s—1)/N,s/N],xz € (—o0,1] ,
0, otherwise ,

fN (.’1?) = N4 {
and Zy is defined on finite intervals (2, 2”], 2’ < 2’ by

Iy a") =N e,
' <s/N<z"
According to the central limit theorem, for any m < oo and any disjoint

: / 1 y —
intervals («f,z/],i=1,...,m,

(ZN((x/l,xlll]),...,ZN((.%';,L,CL'Z%])) la—w> (Z(($117x/1l])77Z(($/mﬂx;:L])7 (42)

where Z(dx) is a standard Gaussian noise with mean zero and variance dzx.
On the other hand, the limit process in (41) can be written | fdZ with

o(d) [ [}t -2 tat, z<1,
fla) =129 .
0, otherwise .

v(d)

<

See [Taq03] for details on the representation of By as a stochastic integral
and an explicit form of the positive constant v(d) such that

v(d)* = /_1 (/Ol(t - x)iﬁldt)2dx .

oo

As proved in [Sur03, Sur83], the convergence Iy 1o T follows from the
convergence ||fy — fll2 — 0.
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By using (40) and (39), it suffices to show ||fx — f||2 — 0, where

4 {Ziv_lquwts(d), v € (5, 3N (—o0,1]

0, otherwise .

fy(z) =N

Next, split fx = fy + [, where

N
N7G Y s(d), forxe (5, 5N (-00,1]
Fiv(a) = 2 N
0, otherwise
and
]I\ll( dz —q¢t S()7 fOI‘J,‘E(SR]l,%]m(—OO,l],
0, otherwise .

It is easily seen that || fi; — f|l2 — 0, hence it suffices to show that

Ifxll2 =0, (43)
which is equivalent to
N N )
Ryi= 3 (D) — uold)) = o(N2).
s=—o0 t=1
We split the sum Ry = Y0 -+ >N, --- = Riy + R}, and put

t

G(t) == (a(u) - q) .

u=1

Then €(t) := |G(t)/t|] = 0(t — o0) since ¢(-) — § is almost periodic with zero
mean value.
Fix s < 0. Using summation by parts we obtain

N

> (q(t) = Dpr—s(d) = G(N)n— +ZG (Prs1-s(d) = Yi—s(d)) -

t=1

Let us recall that the FARIMA coefficients satisfy
[n-s(d)] S OC(N =) and  |¢ry1-s(d) — vr—s(d))| < Ot — 5|72

we obtain

0o N

Ry < CENN'Y (N + 92+ €Y (D eyt +2)’
s=0

s=0 t=1
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Here, N2 Z(N—i—s)w_2 = O(N'2%) while the second sum on the r.h.s. above

s=0
is dominated by

cnz [T le(t/N)t(tJrs)d*?dt “ds
L

00 1 2
/ (/ t(t + s)d_2dt> ds < o0,
0 0

the above inequalities and the dominated convergence theorem imply

Since

Ry = o(N'T24) .

The relation R} = o(N'*29) follows similarly, with G(t) replaced by
G(t) — G(s). This proves (43) and the finite dimensional convergence in (41).
Tightness in DJ0, 1] is obtained by the criterion given in [Bil68] (Theorem
15.6). Using Lemma 3 and boundedness of g4(t), the proof is standard. O

Returning now to amplitude modulation and to coefficients modulation
processes presented in Subsections 3.1 and 3.4, it is clear that the assumptions
of Theorem 3 are satisfied by processes XﬁM with ¢(t) = S, 054 = 1 and

by processes XoM with ¢(t) = (), d = d, 05 defined in (34), under the
conditions of Lemma 3.

Corollary 1.

(A1). Consider the process X{* defined in (15) from the FARIMA (0,d,0) with
d € (0,1/2) and the almost periodic sequence Sy with mean value S. As

N — o0,
ikl D[0,1] —
N—d=(/2) Z XM —= 0(d) SBas1/2(7) .
t=1

(A2). Consider the process XM defined in (25) and (26) from the almost peri-
odic sequence d submitted to the conditions of Lemma 3. As N — oo,

[NT7]
—d— D[O,l] N —=
N0/ 3™ xem PO oGy gy ().
t=1

6 Simulation

In this section, we provide some numerical examples to illustrate the properties
of models of Section 3. We only consider periodic sequences.
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6.1 Comparison of the models via simulation

The period is T' = 5 for all models, and the memory parameters are chosen in
such a way that they provide the same limiting behaviour of the partial sums.
Namely

1). (XAM) 1 d = 0.35 and S; = 7(t) where v is the infinite product (33)
associated to the sequence d of the model (X M) just below,

2). (XfM):d=0.35and (S4,...,55) = (1,1,5,5,5)

3). (XMM): (dy,...,ds) = (0.25,0.25,0.35,0.35,0.35)

4). (XEM) : (dy,...,ds) = (—0.25,—0.25,0.75,0.75,0.75), this implies that
d = 0.35.

Moreover, the periodic sequence driving X/*M is chosen to be S; = 7(t)
where 7 is the infinite product (33) associated to model XM with the above
preassigned parameters d;. Hence, the theoretical covariances (16) and (35)
have exactly the same asymptotic behavior.

The models are built from a Gaussian zero-mean white noise with unit
variance, and for each one a sample path of length n = 10* is simulated.

Estimation of the averaged autocovariance.

Let

2

Ny 1 = _ _ _ 1 &
pN(]):Nt 1(Xt_X)(Xt+j_X)a X::N;Xtv

be the sample autocovariance and the sample mean. Next proposition proves
that, under rather weak assumptions (for example an assumption on the fourth
cumulants which is trivially satisfied for Gaussian processes), the empirical
autocovariance is an L? convergent estimator of the averaged covariance (4).
Denote by x(t1,t2,t3,t4) the 4th order joint cumulant of X;,, X3,, Xt,, Xz,

Proposition 7. Let (X;) be a zero mean APC process with averaged covari-
ance p such thatsup,c; EX; < co. Moreover, assume

lim sup |E(X¢X+n)| =0, and

h—o0 ¢e7,

lim sup IX( Xty Xto, Xtsy Xtyth)| = 0. (44)
h—=00 ¢ <ty<ts<t1+h

Then for any j > 0

E(pn(5) = p(3))> =0 (N = 00).
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Proof. Write

p(j) — pn(j) =
1 Y R _ _
' *N; X)( Xty — X)JrNt_Nz:jH(XtX)(XtHX)v

where it is clear that the variance of the last term tends to zero as N — oo.

Now,
N 3
Z Xt-i-] X):Z(Sz(])a
t=1 =1
with
N
01(4) = p(j) = N7' DY E(Xi X)) ,

t=1
N
05(j) = =N""> (Xi Xy —B(Xi Xiyy))

53(]) = XQ .
By the definition of p(j), §1(j) — 0. Writing

E(XtXt+szXs+j) = X(tv t+ ja S,S8 + .7)
+ E(X¢ X4 )E(X s Xopj)) + E(X X1 E(X: X))
+ E(Xe X5 E(Xt4; Xotj)

and using assumptions (44) easily leads to the convergence to zero of E(dy(j))?
and E(d3(7))2. O

Figures 1 show the empirical autocovariances of the four sample paths.
From Proposition 7, they should mimic the theoretical sequences p(j) whose
behavior is specified, for each model, in Section 3.

In our situation, given the choice of the parameters, pA*(5) and p©M ()
have exactly the same asymptotic behavior: a 5-periodic sequence damped
by j7%3. In pPM(j), the periodic effect is present for small values of j but
asymptotically disappears, the behavior being then exactly as j~°3. As for
pMM (5), the highest value of this maximum is achieved for h = 5k, so that the
convergence to zero of pMM (5k) is slower than the convergence of the other
subsequences pMM (5k + /). As expected, those remarks are well illustrated by
the shapes of the corresponding empirical autocovariances of Figure 1.

The associated T-variate processes and estimation of the memory

Consider the four 5-variate stationary processes Z; = (Xs¢, -+, Xse44)'
Their correlations are estimated from the corresponding subsequences of the
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Fig. 1. The empirical autocovariances of the simulated sample. The models and
their parameters are precised in Section 6.1

four sample paths and represented in Figures 2-3-4-5. To each model corre-
sponds 25 graphics. The graphic (j, k) represents p;r(h), an estimation of
cor(Xs¢1j, X5(¢+n)+x)- For all the models, long memory is well visible in the
autocorrelations p; ;(h). Comparing what happens for models XAM D X OM
is particularly interesting since for these two models, the empirical autoco-
variances are quite similar, giving the wrong impression that these models are
close to each other. Here, we see that, for the process XM, the graphs p; 1 (h)



APC processes with long memory 183

Series 1 Srs1 & Srs2 Srs1 & Srs3 Srs1 & Srs4 Srs1 & Srs5
o o o o o
w | w_| w | w | w0 |
3 3 3 2 3
N
2
T
o ‘Uumumu‘wm S H\U\umuumwm oo oo oo
S oot EEERREL ER s Wmmmmwwww S memrwwww S N‘mrmmww FRTH
0 0 0 0 0
34 3 EE 3 EE
! T T T T T T T T T T T T ! T T T T T T T T T T T T T T T T T T T T
0 510 20 0 510 20 0 5 10 20 0 510 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs2 & Srs1 Series 2 Srs2 & Srs3 Srs2 & Srs4 Srs2 & Srs5
o o o o o
w0 | w | w | 0 ] w |
3 3 3 3 3
N
2
T
o mmwumumm‘ o H\U\Umuwmmﬂ o koo ____ ob--o-_____ o koo ____
SRS EEEEEEER Seooo oo eEt S mnmwmwvww S Wmmnmr«wﬂmﬂ 5 ”Wmmmw FRTH
0 0 0 0 0
34 34 34 EE 34
! T T T T T T T T T T T T T ! T T T T T T 1 T T T T T T ! T T T T T T
25 15 -5 0 0o 5 10 20 0 5 10 20 0o 5 10 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs3 & Srs1 Srs3 & Srs2 Series 3 Srs3 & Srs4 Srs3 & Srs5
o o o o o
w0 | w0 o | o ] w |
3 3 3 3 3
N
P
T
I P o s o Wy < J‘Uummuuwmm
2 uwﬂmmmmmw 3 wwwwﬂﬁmﬁw e e SrEa e i S plEniHE R ety
34 3 3 EE 3
! T T T T T T ' T T T T T T ! T T T T T T ! T T T T T T ! T T T T T T
25 -15 -5 0 25 -15 -5 0 0 5 10 20 0o 5 10 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs4 & Srs1 Srs4 & Srs2 Srs4 & Srs3 Series 4 Srs4 & Srs5
o o o o o
w0 | 9| w0 | w | w0 |
3 3 3 2 3
.
2
T
ol __ oo o «mmmmwu\ml o lmmuwww o ‘l\umuwwmm
S TFRTATFH Hmmﬂm‘ s ﬂﬂmwmmnmmw S ESEEEEEET ST oot Seooo oot
34 3 3 3 3
! T T T T T T T T T T T T T ! T T T T T T T T T T T T T ' T T T T T T
25 -15 -5 0 25 -15 -5 0 25 -5 -5 0 0 5 10 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs5 & Srs1 Srs5 & Srs2 Srs5 & Srs3 Srs5 & Srs4 Series 5
, o o o o
w | w w w w
3 2 3 3 3
N
Pl
T
odbo oo ° wmwmuumu\u\u o Mk Mmu\umu\l o ‘UUMHMMH»MM
s wwwvwmmmmw ST wrwmmmﬂmw STp EEEEEEEEEE S ERREREEEER e
3 34 34 3 34
! T T T T T T T T T T T T T T T T T T T T ! T T T T T T T T T T T T T
25 -15 -5 0 25 -15 -5 0 25 15 -5 0 25 -15 -5 0 0 510 20
Lag Lag Lag Lag Lag

Fig. 2. The empirical autocorrelation of the 5 variate simulated sample for the
processes X M. The parameters are given in Section 6.1, MODEL (A1).

remain the same (except for the sign) when j — k is kept constant, which is
not surprising since

Ly(5h+k — j)

COI'(X?tI}f/Ij; X&%h)+k) = cor(Ysitj, Ys(uqn)+k) = o0

This is not at all the case for the process X M.

According to the asymptotic behavior of the covariance function, we know
that for XM XAM and XPM_ the sub processes of (Xs¢4¢); £ € {0,...,4}
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Fig. 3. The empirical autocorrelation of the 5 variate simulated sample for the
processes X ™. The parameters are given in Section 6.1, MODEL (A2).

have the same long memory parameter. This is visible in Figures 2-3 but less
evident in the two first columns of Figure 5, surely because for small values of
the lag, cor(XSM, X“M) can be very far from the correlation of the FARIMA

(0,d,0). As seen in Figure 4, the situation for

XMM

is different. For example

the memory coefficient of XM and XMV is d; = 0 whereas it is d3 = 0.35
for the 3 other sub processes. Notice also that, for model XFM, the cross
correlations can take their maximum values for non a zero lag. For instance,



APC processes with long memory
Series 1 Srs1 & Srs2 Srs1 & Srs3 Srs1 & Srsa Srs1 & Srs5
o o o o o
o] w_| o | @ | @
3 3 3 g 3
@ © © © ©
= 39 39 S 39
2= | = | = = | =
3 3 3 3 3
o o~ o o~ o
3 g 3 g 3
= bl Sl v = =3 N ilibe ¥y P Pai it Sk Ql’r””‘\’ﬂw’ O.l’\”\ ””” Eim
S Pt 2 S Sma oo nosT S froianoanns SHeoans s oahs
——T—— — T T — T — T
0 510 20 0 5 10 20 0 510 20 0 5 10 20
La Lag Lag Lag
Srs2 & Srs1 Series 2 Srs2 & Srs3 Srs2 & Srs4 Srs2 & Srs5
o o o o o
o | @ | o @ | o
3 3 3 g 3
© © © © ©
=E 39 31 31 31
%‘(, = < = <~
3 3 3 3 3
o o o o o
3 S cs*J S S
[P el alieatid r=log, S HI - I 0T S Rttt s dF rirbetod e H-a- oo saz Q‘{””ﬁﬂ””
S F-TI--T-_--T P STy Spp-: ey sy g - (= e N S-S o T T (= R e ) e
T T T T T — T
25 15 -5 0 0 5 10 20 0 5 10 20 0 510 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs3 & Srs1 Srs3 & Srs2 Series 3 Srs3 & Srs4 Srs3 & Srs5
o o o o o
@ @ @ @ @
3 R 39 R 39
© ] o o | o o |
3 3 3 3 3
2= | = = = | = |
3 3 3 3 3
o o o M o ‘ o ‘
S S S S S
ob--zz connedl] o hma-mcdr-rall] o WWMMHMH S UH‘HMHHWHW\H o UUMMWHHWHM
R St ol S - S LY S - L
T T T T T
25 15 -5 0 25 15 -5 0 0 5 10 20 0 510 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs4 & srs1 Srsa & Srs2 Srs4 & Srs3 Series 4 Srs4 & Srs5
o o o o o
o] o o w | o
3 3 3 3 3
o o o o | o
3 g 3 g 3
2= | = = = = |
3 3 3 3 3
o o~ o L o~ ‘ [ M
S S S S S
ot-rrc-cntolll olbcarraanzan] o 1\+m\HH\HMumM o “mHMHHWMH\H o MMHWHW\? bt
(= mpppng mppn. qpepumppm——— [= D gy g pmppe—————— [ = g —————— [(= R g ————————— = g ———————
T T — T T T T
25 -5 -5 0 25 15 -5 0 25 -5 -5 0 0 510 20 0 5 10 20
Lag Lag Lag Lag Lag
Srs5 & Srs1 Srs5 & Srs2 Srs5 & Srs3 Srs5 & Srs4 Series 5
o o o o o
o] w | o o] o
3 3 3 3 3
© | o o | © | o |
3 S 3 3 3
2= = | = | = <
3 3 3 3 3
o o o o o
° : : il < il <0y
shazmzaotundl] gbasaca-coanl o Lttt L] S AL S HHIBBIH
— T — T — T —T—T — — T
25 -15 -5 0 25 -15 5 0 25 -5 -5 0 25 -15 5 0 0 510 20
Lag Lag Lag Lag Lag

185

Fig. 4. The empirical autocorrelation of the 5 variate simulated sample for the
processes X MM, The parameters are given in Section 6.1, MODEL (A3).

processes Xsit2 and Xsiy3, have a cross correlation equal to 1 at lag 1, as
easily seen on Figure 3. This is due to the fact that the sequence t + S is not

monotonic.

Table 1 provides estimations of the memory parameters. These estimations
are calculated from each of the five sub samples X540 (¢ = 1,...,5), using the
local Whittle estimate (see for instance [BLO03]). For the models XM and
XPM the estimated parameter is d, with value 0.35. For model XM each
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Fig. 5. The empirical autocorrelation of the 5 variate simulated sample for
processes X “M. The parameters are given in Section 6.1, MODEL (A4).

L

1

2 3

4

5

XAM
XPM
XMM
XCM

0.34 0.35 0.30 0.34 0.34
0.35 0.39 0.39 0.36 0.36
-0.08 0.12 0.28 0.35 0.27
0.30 0.34 0.29 0.35 0.37

the

Table 1. Estimation of long memory parameters calculated on each sub processes.
The sample size is 10%.
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sub sample gives an estimation of its own parameter, namely d; = do = 0
and ds = dy = ds = 0.35. For model XM the estimated parameter is the
mean value d, with value 0.35. It can be noticed that, despite the fact that
the memory is not at all visible on Figure 5 for the two first sub samples, they
nevertheless furnish not so bad estimations of d. This is not surprising, since
the Whittle estimator is only based on low frequencies of the periodogram,
ignoring the small lags in the covariance.

6.2 Other example of XM processes

As noticed before, the sequence d on which is based a X“™ process can
leave the stability domain ]0,1/2[, the only constraint concerning its mean
value (see Remark 6). We present here a model for which this phenomenon is
particularly marked, causing important bursts in the sample paths.

We consider the following sequence d with period T' = 150 and mean value
d=10.3

—4 ifte{l,...,50},
dy=1{.4 ifte{51,...,100} , (45)
9 ifte{101,...,150} .

Figure 6 well illustrates that the values of (d;)iez outside the interval
]0,1/2[ create strong local nonstationarities, suggesting that models XM
could be used to model non linearities.

7 Appendix

7.1 Proof of Lemma 1

Proof. Write

= LG)sG) ama _ Jf ()22 + Jf ( )( L(j) 1) 2H -2
2 LNy S T At LNy~
j=1 j=1 j=1
= R1 + RQ .
Firstly, the term R, is negligible, i.e.
Ry = o(N?H =1y (46)

Indeed,
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Fig. 6. XM process associated to the 150—periodic sequence (d¢)tez defined in

(45). [top] A simulated sample path of length 10*. [Bottom] The empirical autocor-
relations of the simulated sample

N .
Ral £ €3 |~ a2
j=1

_ L(j) oH— L(5) 2H—
=c¢ IS;V/JL(N) - 1’j2H i +N/2SZjSN‘L(N) - 1’32H i
=: C(R21 + R22) .

Then,

—1) Y RGNy

N/2<5<N

Ros < sup z7 "
z€[1/2,00)

where k is any positive number. Consequently,

Z j2H—2(j/N)rc < N—F Z j2H—2+n — O(NQH—l) ,
N/2<j<N 1<j<N
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and Rys = o( N2H~1) follows from the well known property of slowly varying
functions:

i’L(Nx)

(V) —1‘—)0, for all g,k > 0.

z€[z0,00) s
Relation Rg; = o( N2 ~1) follows similarly by

L(Nz)
L(N)

sup ="
z€(0,x0)

—1‘ , for all g, x > 0.

This proves (46).
Let us now show that N1=2# R, converges to ﬁ Clearly, the statement
follows from the fact that

N
lim N'72HN 2020 (5) = 0 (47)

N—oc0

for any bounded sequence U(j) such that T'(j) := j* 21:1 U(k) tends to
zero as j — o0o. To prove (47), first notice that since T'(j) — 0

N
N'ZHHNPHZ2T(j— 1) - 0, as N — o0 .

j=1
Hence,
N N N
N172H Zj2H72U( Nl 2H 2]2 T(] _ 1)) + Zj2H72T(j _
j=1 j=1 j=1
N
= N'2H Z ~T(—1))+o(1) .

A summation by parts leads to

N
NI DGHINT() = T( = 1) =

j=1

N—1
T(N)+ NN (G2 — (412707 ()
j=1

Then, as N — oo, T(N) — 0 and

N—1 N-1
N12HNT R (G )P < NN PTG 0.
= =t

Therefore (47) is proved. O
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7.2 Proof of Lemma 2
For any é > 0, there exists K < oo such that for all s <t,t —s> K

Qgpi= »_ (dy—D')<0 with D' =4+d. (48)

s<u<t

Let D = d + 26. Then, for all s < t,t — s > K we have

dy,—D 1 dy, — D’
D D R D Dl et B AR

s<u<t s<u<t s<u<t

where J{, — 00 as t — s — oco. Therefore, it suffices to prove that J; is
bounded above. Using (48) and summation by parts,

t—s—2 t—s—2

hst 1 1 hi—i—1
J= e S (b L) < ST
R ; e O | ; i(i+1) !

Then, for fixed K,

- he—i1, e I, a hi—i_1,
’L ’L ’L ’L Z Z
; (i+1) Z i(i+1) g (i+1)

=K+

| /\

which is bounded, uniformly in ¢. This proves [Hj(ja)] with any D > d. Similarly,

we obtain that [Hg))] with any D > d.

7.3 Proof of Proposition 5

Let d. be a periodic sequence such that ||d — d.||s < &. Denote
as_j(s)=ds_1...(dj+s—37—1),

) .(s) the corresponding sequence built from d.. The familiar inequality

and

k k
T — ]l <
j=1 j=1

k—1 k—2 k
lax = bl [T las| + lan—1 = bx—a| [T lajllbe] + ..+ lax — 0o T 1051,
j=1 j=1 j=2
leads to
5 £ . s—7—1
A9 (s) == [0 (s) —as_y(s)] < (s — He@ldl|) " . (49)

Let us now compare cov(XSM, XFM) to the periodic sequence
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O ()
5 S j(s)at j(t)
0=

Jj<s
(From (49),
ol ()l (1) — as_j(s)au—; (1)
lcov(X M, XMy (s,t)] < Z oA -
(s — It —5)!

las—i (1AL, ()] + |l ()1 A, (s)]
<2 CETIE]

j<s
2d s+t 25
e Z e
= (s =) t—J)
2(|d|[ 50 ) 2(|d|[s0 )7
<C€<Sup<|| 1| ))Z”' S
1>0 ! =i J!

with some constant C, and the proof is over.

7.4 Proof of Lemma 3

Proof of (i). For fixed n > 1, we define the sequence 4™ by

The sequence (3, is almost periodic for any p > 1, hence so is v" for any
n > 1. It is well-known that uniform limit of almost periodic functions is
almost periodic. The statement of the lemma thus follows from

sup |[y"(v) =™ ()] =0, as m,n —o00.
VEZ
Since d is bounded, there exists ng such that |3,(v)| < 1/2 holds for any
p > ng,v € Z. Now, uniform convergence of v" is equivalent to the uniform
convergence of 4" /4™ and we can suppose in the sequel that ng = 1, or that
|8p(v)| < 1/2 holds for all p > 1.
Then 4" (v) >0 Vn > 1, and

m

7" () =" ) <7 @) | [T @+ Byv) —1 (n<m).

p=n-+1

Using the inequalities e?=%" < 1+ 2 < e® for |z| < 1/2 we obtain
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<exp{i }

exp{ Z Bp(v) — Z ﬁg(v)}g H (14 Bp(v)) < exp{ Z Bp(v
p=n+1 p=n+1 p=n+1 p=n+1

Here, 32" ) B3 (v) < Cn~1, due to 33 (v) < Cp~?
Let Dy, (v) := E;n:nﬂ(dv,p —d). A summation by parts leads to

Z ﬁ nm(v) + mz_:l D (1})( 1 _ 1 ) (50)
p n,p =3 3 .

M d+m71 i1 d+p—1 d+p

By (32),

|Dn,m(v)| <Cln - m|1_6

where the constant C' does not depend on v.
The first term on the r.h.s. of (50) does not exceed

Cln—m[*°m=t < Cn?,

while
m—1 1
S D) Ll<c S pon 2 <ons.
p=n+1 d+p_1 d+p p=n-+1
Therefore, for n sufficiently large,
e < I A+ e (51)

p=n+1
for some constant C' > 0 independent of v, n and m > n. It also follows that
SUP,,>1 pez V4 (v) < 00, and (i) is proved.
Now let us prove (ii). By definition,

o

eu,v = av—u/’Y(’U)qﬁv—u(CZ) = H (1 +ﬁp(v))_l ,

p=v—u

Then from (51), e Clv-u) < O < CO=7" for all v —u sufficiently large,
yielding |0, , — 1| O(jv —ul™ 5) and (ii) is proved.
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1 Introduction

A random field X = (X,,), ez« is usually said to exhibit long memory, or
strong dependence, or long-range dependence, when its covariance function
r(n), n € Z¢, is not absolutely summable : > . |r(n)| = co. An alternative
definition involves spectral properties : a random field is said to be strongly
dependent if its spectral density is unbounded. These two points of view are
closely related but not equivalent.

Generalizing a hypothesis widely used in dimension 1, most studies on
long-range dependent random fields assume that the covariance function be-
haves at infinity as

r(h) ~ |h|TL(|h]) b <h) , O<a<d, (1)
h— o0 ‘h|
where L is slowly varying at infinity and where b is continuous on the unit
sphere of R?, |.| denoting the I*-norm on R<.

Even if the form (1) is not exactly isotropic because of the presence of the
function b defined on the unit sphere, the long memory is due to the term
|h|~® which depends only on the norm. So we will call isotropic this kind of
long-range dependence. Let us focus on the spectral domain to precise this
notion of isotropy.

Definition 1. A stationary random field exhibits isotropic long memory if it
admits a spectral density which is continuous everywhere except at 0 where

(@) ~ |t (1) b (;) . O<a<d, @)

]

where L is slowly varying at infinity and where b is continuous on the unit
sphere in R?.



196 Frédéric Lavancier

Conditions (1) and (2) are linked by a result of [Wai65] who proved that
if the covariance of a random field satisfies (1) and if its spectral density is
continuous outside 0, then this random field exhibits isotropic long memory
according to definition 1.

Conditions (1) and (2) are regular ways for a random field to be strongly
dependent. Now, it is easy to build long memory random fields which fail to
satisfy these conditions, either by filtering white noises through unbounded
filters like some special AR filters or by aggregating random parameters short
memory random fields. Besides, non-isotropic long memory fields naturally
arise in statistical mechanics in relatively simple situations of phase transition.

So, the aim of the paper is to give a presentation as complete as possible
of isotropic or non-isotropic long memory random fields.

In the first section, we present families of models presenting different kinds
of long memory with special glance to Ising model and Gaussian systems in
the more specific domain of statistical mechanics.

In the second section, we present a review of the available limit theorems.
The first part is devoted to the convergence of partial sums and the second part
to the empirical process. We present some well-known results concerning the
isotropic long-memory setting : the asymptotic behaviour of the partial sums
investigated by [DM79] for Gaussian subordinated fields and by [Sur82] for
functionals of linear fields ; the convergence of the empirical process for linear
fields proved in [DLS02]. We also give the asymptotic behaviour of the partial
sums and of the empirical process in some non-isotropic long memory cases.
For these new results, we explain the scheme of proof, based on a spectral
convergence theorem. In both situations of isotropic and non-isotropic strong
dependence, we observe, like in dimension d = 1, a non standard rate of
convergence and a non standard limiting process.

2 Modeling long memory stationary random fields

We present two classes of long-memory stationary random fields. The first
class is a straightforward generalization of models now widely used for random
processes (d = 1). The second one comes from mechanical statistics and is for
that reason specifically adapted to dimensions d > 1.

2.1 Filtering and aggregation

Filtering white noises through unbounded filters or aggregating random coef-
ficients ARMA processes are the two main ways leading to long-memory pro-
cesses. Since the pioneer works of [GJ80], [Gra80] and [Hos81], these methods
have been generalized and improved, providing large families of long-memory
one-dimensional processes. See for instance [BD91] for filtered processes and
[OV04] for aggregation schemes. These methods are easily extended to di-
mensions d > 1. In fact they lead to rather close covariance structures, but
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the aggregation method produces only Gaussian random fields. Both provide
useful simulation methods.

Filtering

Let us consider a zero-mean white noise (€, ),czs With spectral representation

€n = / <A dZ(N)
[77r77r]d

where the control measure of Z has constant density o2/(27)? on [—m, 7%,

and the random field X obtained from e by the filtering operation
Xo= [ @ aazo 3)
[771-’7!-](1

where a € L?([—, «]9).
The spectral density of the induced field is

0.2

fx(A) = @i la(N)* ;YA€ [-m, ! (4)

and long-memory is achieved when a is unbounded at certain frequencies.

Ezample 1 (Long memory ARMA fields). ARMA fields are obtained when
a(N) = %(e”‘) where P and @) are polynomial functions. Denoting by L; the
lag operator for index j , i.e.

Lanh?w---md = Xn1-,--~7nj—17"j—1,nj+17~~-Jld )

we can write an ARMA field in the most popular way

P(Ll, ey Ld)an,...,nd = Q(Ll, ey Ld)enl,...,nd . (5)

If P(e*) # 0 for all A € [—7,7]¢, (5) admits a unique stationary solution (cf.
for instance [Ros85] and [Guy93]).

But contrary to the one dimensional case, this condition is not necessary
when d > 1, and there exist stationary fields having an ARMA representation
(5) with P(e**) = 0 at some frequencies \. In this case, the induced field X
exhibits long memory since its spectral density, given by (4), is unbounded.

The following ARMA representation in dimension d = 5 is a trivial exam-
ple of this phenomena :

1
an,...,ng, - E(an —1,n2,...,n5 +Xn1,n2—1,n3,n4,n5 +-- '+Xn1,.4.,n5—1) = €ny,...,n5 -
This representation admits a stationary solution since the filter a(Aq, ..., A5) =

(1—%(e™ +---+ei’\5))71 is in L%([—m,7)%), and the induced field X is
strongly dependent because its spectral density is unbounded at A = 0.
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Ezample 2 (Fractional integration). Generalizing the FARIMA processes de-
fined by
(I-L)*X, =¢,,

we consider random fields of the form

(P(Lla sy Ld))a an,.“,nd = €ny,....,ng »

where P is a polynomial having roots on the unit circle and where a@ > 0 is
chosen such that a(\) = (P(e")) " € L*([—,w%).
As an example, consider, for a fixed positive integer k, the model

(I- Lng)aan,nz = €ni,na

where 0 < o < 1/2. The spectral density of X is

2 2

o H —Zk
Ix(A1,Ae) = yms 1 — oi(Ai+kAz)

)

where o2 is the variance of the white noise €. The field X exhibits non-isotropic
long memory since fx is unbounded all over the line A; + kA2 = 0 and fails to
satisfy (2). Using well known results on FARIMA processes (cf [BD91]) easily

leads to: )
p(hokh) = Tlocjcn S5 h= 41,42,
p(h,1) =0 if 1 £ kh

where p denotes the correlation function of X. The field X has a non summable
correlation function in the direction [ = kh since p(h, kh) is asymptotically
proportional to h2*~1. Compared to (1), this confirms that X is a non-
isotropic long memory random field.

Aggregation
Let us consider a sequence (X(9),; of independent copies of the field
P(L17""Ld)X7l17m,nd = €ny,...ng s (6)

where P is a polynomial function with random coefficients such that P has
almost surely no roots on the unit sphere and (€,),eze is a zero-mean white
noise with variance o2.

The representation (6) admits almost surely the solution :

Xn = Z Cj€n—j , (7)

jezd

where (¢;);eza are the coefficients of the Laurent expansion of P~!. The field
X given by (7) belongs to L? if and only if
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> E(e) <oo, (8)

jezd
and its spectral density is

0.2

f(A) = (27T)d

B[P ()] (9)

Now, from the central limit theorem, the finite dimensional distributions
of N—1/2 Z(IIVZO Xr(lq) converge as N — oo to the so-called aggregated field Z

Z, = lim —ZX(‘”, nez?.

This process is Gaussian and has the same second order characteristics as the
X (@’s. In particular, its spectral density is (9) and long memory is obtained

when E [P () |2 is unbounded.
Example 3. Let us consider, in dimension d = 2, the AR representation
Xnm —aXpn_1m —bXymo1 +abXy_1m—1=¢€nm , (10)
where a and b are independent and where a (resp. b) has on [0, 1] the density
(1 —2)%®y(x), (resp. (1 —z)’dy()), (11)

where 0 < o, 3 < 1 and where ¢;, j = 1,2 are bounded, continuous at = = 1,

It is easily checked that the above random parameters AR fields satisfy
all the required conditions to lead to an aggregated random field with long
memory (see for instance [OV04]). The spectral density of the aggregated field
Z is a tensorial product and

FOA2) ~ M| Ao/”™h when A =0,
where c is a positive constant. Therefore Z exhibits long memory.
Ezxample 4. Consider the AR representation
Xnm — aXnikm—1 = €nm , (12)

where k € Z is fixed and where a is a random parameter on [0, 1] with density
(11).

The spectral density of the induced aggregated field Z is unbounded on
the line Ay = k)\; since

FOLA) ~clde — kMY, as A — kA — 0

where c is a positive constant. Hence the long-memory is non-isotropic.
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We present two 2-dimensional models produced by aggregating N = 1000
autoregressive fields with random parameters. The first one (figure 1) is con-
structed according to the scheme of example 3, the parameters a and b having
the same density %\/1 —x.

The second model (figure 2) is constructed as in example 4 with £ = —1
and where a has the same density as above. For both models, an image of
size 100 x 100 has been obtained where, at each point, the realization of the
random variable is represented by a level of gray.

Anisotropy clearly appears in figure 2. The strong dependence only occurs
in one direction and the long memory is non-isotropic. Its periodogram is
unbounded all over the line Ay + A; = 0 and fails to follow (2). Moreover,
its covariance function decays slowly in only one direction and is not of the
form (1). In contrast, in the first model, strong dependence occurs along two
directions, with the same intensity. This is the reason why the phenomena of
anysotropy is less visible in figure 1.

2.2 Long memory in statistical mechanics

Statistical mechanics explains the macroscopic behaviour of systems of parti-
cles by their microscopic properties and provides interpretations of thermody-
namic or magnetic phenomena like phase transition. There is phase transition
when a system is unstable. For instance, it is the case during the liquid-vapour
transition of a gas or when a magnetic material is in transition between the
ferromagnetic and the paramagnetic phase. A rigorous mathematical formal-
ism of statistical mechanics can be found for example in [Geo88]. Our aim
is to underline the strong dependence properties of some systems in phase
transition by focusing on the Ising model and on systems based on quadratic
interactions.

Let us consider a system of particles on the lattice Z%. The state of a
particle located on j € Z? is described by the spin z;, a random variable
with values in a polish space X. The pair potential & = (®; ;); jcza gives the
interactions between the pairs of particles.

A system configuration is an element w = (z;);cza of the space 2 = X2
The energy on each finite set A of Z¢ involves not only the energy quantity
inside the set A but also the edges interactions:

Ex(w)= Y ®ij(wnz))+ Y Pij(wi,g) - (13)
{ijtca St
Now, consider on (2 an a priori measure p = ®,czap; (typically p; is the
Lebesgue measure when X = R or a Bernoulli measure when X = {£1}). A
measure p on (2 is called a Gibbs measure associated with the potential &
with respect to p if, for every finite set A, w4 and w,. denoting the restriction
of w to A and to its complementary set,
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Fig. 1. [top] Long memory random field of a product form obtained by aggregating
random parameters AR fields of the form (10) with a = 8 = 0.5 [bottom-left] Its
periodogram [bottom-right] Its covariance function
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1000

Fig. 2. [top] Non-isotropic long memory random field obtained by aggregating ran-
dom parameters AR fields of the form (12) with k = —1 [bottom-left] Its periodogram
[bottom-right] Its covariance function
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_
ZA(wAc)

where Z4(wae) is a normalizing constant.

A Gibbs measure is locally characterized by (14). This formalism, at-
tributed to Dobrushin, Landford and Ruelle, guarantees the coherence of the
conditional distributions.

For a given system, a fundamental question is whether a Gibbs measure
exists or not. Phase transition occurs when there exists several Gibbs mea-
sures. The set of all Gibbs measures is a convex set whose extreme elements
are the pure phases, the other Gibbs measures being mixtures of the pure
phases.

Now, consider the spins’ system equipped with the Gibbs measure as a
random field. When the second order moments exist, we can measure the
memory of the spins’ system via the covariance between two sites ¢ and 7,
r(i,§) = cov(z;, ;). In the following examples the field is stationary (r(h) =
cov(z;, x;i+p)) and presents long-range dependence properties.

i (dwalwoss) = e Pal)p(dw) (14)

The Ising model

The well known Ising model has been introduced to study magnetism and
fluid dynamic. The state space is X = {—1,1}, the a priori measure is the
Bernoulli measure 1/2(6_1 + ¢1) and the potential is restricted to the nearest
neighbors:
Bxix; ifli—j=1
(w0 ;) = {0 ’ otl‘16rvgi|se,
where 3 > 0 is a constant representing the inverse temperature.

In dimension d = 1, there exists a unique Gibbs measure for any (3, there-
fore the system is never in phase transition. In dimension d > 2, Gibbs mea-
sures exist and phase transition takes place if 3 is greater than a critical value
B depending on the dimension d (see [Ons44] in dimension d = 2 and [Dob65)
in any dimension). When d =2, 8. = In(1+ V2) 2 0.441.

Let us consider the covariance function. In their physical approach of the
Ising model, [KO49] and [Fis64] obtain the asymptotic behaviour of r. When
8 # B., the covariance function decays exponentially but when § = . the
rate of decay is slow and the covariance is not summable. We have

L RS
T(h> I oo { |h‘7(d72+u) lfﬂ — ﬁc ,

where k > 0 is the Boltzmann’s constant and p € [0, 2] is a critical parameter
which is 1/4 in case d = 2. The strong dependence at the critical point is
isotropic.

Remark 1. The long-range dependence structure of the Ising model at the
critical point was pointed out in [CJL78] where one can also find others models
exhibiting long memory.
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Remark 2. There exist some models, slightly more complex than the Ising
model, which exhibit long-range dependence without being in phase transi-
tion. This is the case for the XY model and for the Heiseinberg model : they
are never in phase transition when d < 2 but their covariance function in
dimension d = 2 is not summable all over an interval of low temperatures (see
[KTT78]).

Homogeneous Gaussian models

The state space is X = R, the a priori measure p is the Lebesgue measure
and the potential is

o B(EI0)E tex;) ifi=]
Pralonn) = {5J(i — J)wiz, if 1 # J,

where 0 and e are constants representing respectively the inverse temperature
and an external magnetic field and where (J(4));cz« is a positive definite real
sequence with J(i) = J(—i) for every i and ) ;4 J(i) < co. We suppose for
simplicity that e = 0. Contrary to the Ising model, the temperature has no
influence on the appearance of phase transition. The main parameter is the
sequence J, improperly named potential.

This system was studied by [Kiin80] and [Dob80]. All the results can be
found in [Geo88]. The pure phases are Gaussian and their characteristics are
directly linked to the potential J via its Fourier transform

J\) = Z J(n)el<m*> X ¢ [—m, 7]t .

nezd

Theorem 1 (Kiinsch, Dobrushin). Under the above hypotheses on J and
in the case e = 0, the set of Gibbs measures is non empty if and only if

/ JHN)AN < oo .
[_ﬂvﬂ]d

In this case, the pure phases are the Gaussian measures with covariance func-
tion
r(h) = / JE(N)el <A d\ (15)
[77T77T]d

and with mean vector a sequence (uy,),cze such that, for all k € 74,

Z J(n)ugyn, =0 .

Remark 3. In the case e # 0, further hypotheses are needed for the existence
of a Gibbs measure.
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The occurrence of phase transition in the particular case e = 0 can be
deduced from Theorem 1 and is given in the following corollary. Note that,
despite the fact that the pure phases are Gaussian, all Gibbs measures are
not necessarily so. Phase transition can take place with one or several mea-
sures without second moment. Insofar as we are interested in the covariance
function, the corollary is stated in the L? setting:

Corollary 1 (Kiinsch). Under the hypotheses of Theorem 1, there exist sev-
eral Gibbs measures with finite second moments if and only if J has at least
one root in [—, ).

Therefore, when the system is in phase transition, every Gibbs measure
having a finite second moment is strongly dependent. Indeed J~t, which is
the spectral density of the pure phases, according to (15), is unbounded if
there is phase transition.

FEzample 5. In dimension d > 3, the harmonic potential is a simple example of
finite range interaction leading to long-memory random fields. The potential
is defined by:

—5; ifn|=1
Jn)=<1 ifn=0
0 otherwise

and we have

d

JA)=1- Z %el<”’>‘> =1- éZcos()\k)
In|=1 k=1
whose inverse is integrable on [—7, 7] since d > 3. Hence, Theorem 1 guaran-
tees the existence of a Gibbs measure associated with this potential. Moreover
J (0) = 0 and according to Corollary 1, the system is in phase transition and
the second order Gibbs measures exhibit long memory. The long-range depen-
dence is isotropic in the sense of definition 1.

Example 6. In dimension d = 2, consider the potential :
[ocjcr a2 if1=pk, k| >1
Jk,1) =41 ifk=1=0
0 otherwise

where p is a non null fixed integer and « €]0,1/2].
The sequence J(k,pk) corresponds to the autocorrelation function of an
integrated stationary process of order «a, from which (see [BD91] )

F(l —+ Oé) k—Q(x—l

T0hspk) ~ =S 7

when k£ — oo .
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This shows the summability of J. Moreover, using the well known properties
of the FARIMA processes,

2c
> J(k, pk)e a1+ ) ‘QSin <>‘>
ke I'(1+2a) 2
Finally
(A, \2) = Z J(k,1)el(kAstirz) Z](k’pk)eik(/\wp,\z)

k,l€Z2 ez

_P0a) | (Atpre) [
I'(l1+2a) 2

Since o €]0,1/2[, J~! is integrable on [, 7]? and the existence of a Gibbs
measure is guaranteed by Theorem 1. In addition, J vanishes all along the line
A1 + pAe = 0 which shows that the system is in phase transition according to
Corollary 1 and that the Gibbs measures exhibit non-isotropic long memory.

3 Limit theorems under isotropic and non-isotropic
strong dependence

We present some limit theorems for the partial sums process and the doubly
indexed empirical process of long memory random fields.

3.1 Partial sums of long memory random fields

Since the results for isotropic long-memory fields are nearly classical while
those related to non-isotropic long memory are newer and still incomplete,
we split this section in two parts according to the regularity of the strong
dependence. The first one is devoted to isotropic long memory: available re-
sults concern Gaussian subordinated fields and some particular functionals of
linear fields. In the second part, related to non-isotropic long memory, we first
present the spectral convergence theorem on which is based the convergence of
the partial sums. Then we apply it to some non-isotropic long memory fields.

In a third part, we give a tightness criterion for partial sums and we apply
it to situations needed for the doubly-indexed empirical process treated in the
next section.

In the sequel we adopt the notation A, = {1,...,n}? and 24 for the
convergence of the finite dimensional distributions.

Convergence of partial sums under isotropic long memory

The first study of partial sums is due to [DM79] who considered Gaussian
subordinated fields presenting isotropic long memory. Then the same results
for some functional of linear fields are obtained in [Sur82] and [AT87].
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Let us first introduce the so-called Hermite process Z,, of order m which

is the limiting process we shall encounter here.

T (t d eitj(xi'l)*"”i'm)) L (e 7 (dam) 16
m()_/Rde,<(1) (m)) Go(l' ). Go(x ) (16)

where Zg, is the random Gaussian spectral field with control measure Gy. The
spectral measure GGy depends on a parameter « and a function b continuous
on the unit sphere in R% and it is given by

— cos(x; b (\iiﬁ) d
/ o H J gz Colda) :/ 1,1]d |z + t]™ H ~ Iz

[

(17)
When d = 1 (16) simplifies because G admits a density proportional to |z|*~!
and in this case

1t(w(1)+ +w(m) _1

_ —k/2 (k)
Zm(t)_” /]Rm 1( 1) 4 .. er(m H’

where W is the Gaussian white noise spectral field and where k = fR e
Let us now summarize the convergence results.

T awe®),

im|x|a—1.

Theorem 2. [[DM79]] Let (X,),cza be a zero-mean, stationary, Gaussian
random field. Let H be a measurable function such that

—z2 —a2
/ H(z)e 2 dz =0 and / H*(z)e™2 dx < o0 .
R R

Denote by m its Hermite rank.
We suppose that (X,,) admits the following covariance function

rlh) = k- £ip )

with r(0) = 1, where 0 < ma < d and where L is a slowly varying function at
infinity and b is a continuous function on the unit sphere in R<.
Then

1 Fidi
Nd—ma/Z(L(N))m/Q Z H(Xk) = CmZm(t) ’ (18)
keA[Nt]

where Z,, is the Hermite process of order m defined in (16) and where ¢, is
the coefficient of rank m in the Hermite expansion of H.

The following theorem concerns linear fields. The class of functions H is
restricted to the Appell polynomials.
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Theorem 3. [[Sur82] and [AT87]] Let (€,)peze be a sequence of zero-mean
i.i.d random fields with variance 1 and finite moments of any order. Let
(Xn)neza be the linear field

Xn = § Ak€n—k ,

kezd

where L
ar = |k|"PL(|k|)a (|k> , d<28<d(1+1/m) , (19)
where L is a slowly varying function at infinity and a is a continuous function
on the unit sphere in R%.
Let P,, be the m'" Appell polynomial associated with the distribution of

Xo. Then
1

fidi
D | 2 Pl 52 Zn®)

k€Any

where Z,, is the Hermite process of order m defined by (16) and (17) in which
a=203—d and

b(t) = /R a (Q) a (;:’;) 15| ~P|t — 5|~Pds .

Remark 4. Theorem 3 relates to isotropic long memory since condition (19)
implies that the covariance function of X has asymptotically the form (1).

Remark 5. One can find a presentation of the tools for proving Theorems 2
and 3 in [DOTO03].

Convergence of partial sums under non-isotropic long memory

The proofs of Theorem 2 and 3 rely on the convergence of multiple stochastic
integrals. This method fails to work under non-isotropic long memory. So we
turn to a method based on convergence of spectral measures.

Starting from a filter a € L?([—m,7]?) and a zero-mean random field &
having a spectral density f¢, we consider the linear field

Xn = Z a/kgnfk , ne Zd (20)
kezd
where a; are the Fourier coefficients of a:
a(\) = Z ape i<RA>
kezd

The filter a is directly linked to the spectral density fx of X by the relation :
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Fx(N) = feM)laN)* -

First, the partial sums are rewritten using the spectral field W of £. Since
= eTaw, (21)
[_7"7 ﬂ]d

if the random measure W,, on [—nm; nr]? is defined for all Borel set A by

W (A) = n?2W(ntA) ,

we have
/2 d elAs jltin]l/n _ 1
n > Xk:/[_ . ( )H e )de(A), (22)
k€ Ay nm,nmT —1
where [nt] = ([nty], ..., [ntq)).

Hence, in order to investigate the convergence of the partial sums (22),
it suffices to handle stochastic integrals of the form [ &,dW,, where &, €
L?(R%). This is made possible by the spectral convergence theorem.

The spectral convergence theorem

Let (&k)reze be a real stationary random field. We work under the following
assumptions :

H1 : The zero-mean stationary random field (£x),cza has a spectral density
fe bounded above by M > 0. Moreover, the sequence of partial sums of the

noise
Sty =n""* " &, telo1]*, (23)
kEA[,Lt]

converges in the finite dimensional distributions sense to a field B.

Theorem 4. Under H1, there exists a linear application Iy from L*(R?) into
L?(02, A,P) which has the following properties :

(i) Yo eI*RY) E(I(®)” < (2m)"M||P|3
it; A
(ii) To (T <L) = Bltr,. . ta)
(iii) If the sequence ®,, converges in L*(R?) to @, then [ &, (x)dW,(z) con-
verges in law to I (D).
(iv) If € is i.i.d, then VP € L*(R?) Io(®) = [ @AWy, where Wy is the Gaus-
sian white noise spectral field.

Remark 6. When ¢ is i.i.d, B is the Brownian sheet, property (i7) correspond-
ing to its harmonisable representation

oltidy _
50) = [ T] w0

j=1
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and Iy becomes in this case an isometry from L?(R) into L%(§2, A, P) which
can then be considered as the stochastic integral with respect to Wj.

In the general case, point (i) shows that Iy might not be an isometry so
that Iy cannot be always viewed as a stochastic integral.

Remark 7. Although our purpose is only to investigate the convergence of the
partial sums, Theorem 4 appears to be a useful tool to obtain the asymptotic
properties of any linear statistic writable in the form [ @, dW,,.

Proof. The theorem is proved in [LS00] in dimension d = 1. The details of
the generalization to the context of random fields can be found in [Lav05a],
so we only give a sketch of the proof. Let us consider the field

ltj J

d eltiri — 1
Bo(t) = [[ a0y (24)
[-nm, nw]d - 1)‘j
, j=1

Denoting & the Fourier transform of @, we prove after some integrations by
parts that

; (—1)4 / OD(t1,. .., t4)
O (x)dWn(z) = B,(t1,...,tg)dty...dtg.
/[mr’ nwd (I) W, (ZL‘) (27.‘_)(1/2 Rl atl ...6td ( 1 d) 1 d
(25)

Besides, B,, — S& converges to 0 in L?, which leads to the finite dimensional
convergence of B,, to B. Then, extending to d > 1 a theorem of [Gri76] leads
to the convergence in law of (25) to

aP(1)

I5(®) = (-1)¢ [ —~
5(?) = (=1) pa Oty ... 0ty

B(t)dt .

Finally the linear application I of the theorem is defined by

Io(®) = I(®) , (26)

where & is the inverse Fourier transform of @ in L?*(R?) and we have
£\ 2
E (Io(®))* = E (I5(®))
2
<limE ((%)dﬂ/ qﬁde> < (2m)iM||D|% ,
[-nm, nr]d

which is (¢) of Theorem 4.

Theorem 4.2 in [Bil68] implies that [@dW,, converges to Io(®). Hence
[ @,dW,, converges to Io(®P) as soon as @, goes to @ in L?(R). This proves
(iii).

The particular choice & = 110,4,]x.-x[0,¢4] I0 (26) leads to (44).
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Convergence of partial sums

In view of the spectral representation (22) and of Theorem 4, for proving the
convergence of the partial sums it is sufficient to check the L2-convergence of
a(x/mn). This leads to several types of proofs according to the form of a.

The following propositions focus on filters which lead to non-isotropic long
memory random fields. Their proofs can be found in [Lav05a).

The first result concerns the simplest situation of a tensorial product.

Proposition 1. Let (&;)reze be a noise satisfying H1. Let (Xy)peza be the
random field defined by (20), constructed by filtering & through a filter of the
form :

d
a(, ... ) = Haj(Aj) , (27)

where the a;’s satisfy:
Cl,j(/\j) ~ ‘)\jl_aj when )\j —0,

with 0 < a; < 1/2. Then

d eitj)\j -1

1 fidi
e Xk > Io Ny o )
nd/2=(Zi_; o)) ke;] E A4z

(28)

where Iy is the linear application defined in Theorem 4.
Remark 8. When £ is i.i.d, the limiting field (28) is the Fractional Brownian
sheet with parameters (a;, j=1,...,d).

It is well known that, in dimension d = 1, only the spectral behaviour at
0 determines the asymptotic of the partial sums. This result still holds for
d = 2, as stated in the next proposition.

Proposition 2. Let (§k)reze be a stationary random field satisfying H1. Let
(Xk)peze be defined by (20), constructed by filtering & through a.

(i) If the filter a € L*([—7,7|?) is continuous at the origin with a(0) # 0,
then, for d < 2,
1 fidi
yr) Z Xy = a(0)B(t) , (29)
kGA[nt]

where B is the limit of the partial sums of & introduced in hypotheses H 1.
(i) If the filter a is equivalent at 0 to a homogeneous function a, i.e. for all c,
a(cA) = |e| " a(N), with degree o €]0,1[ such that a € L?([—m,w1]?), then,
ford <2,
1 Fidi 4 eitidi — 1
— e Yo xv=1I[aN]] — | (30)
k€A [ny j=1 J

where Iy is the linear application defined in Theorem 4.
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Remark 9. When ¢ is i.i.d, the limiting process can be written as a stochastic
integral with respect to a Gaussian white noise measure (cf Remark 6).

Remark 10. Filtering a white noise through a filter satisfying the hypotheses
in (7) can produce a weakly dependent random field, for instance if a is contin-
uous on [—, 7r]d. It produces non-isotropic long memory when a is unbounded
since the covariance function is then not absolutely summable. This memory
involves only non-zero singularities of the spectral density and, as expected,
does not modify the limit obtained under weak dependence.

Condition (i) of Theorem 2 can be satisfied with isotropic as well as with
non isotropic long-memory. The memory is non-isotropic for instance when

the filter is a(A1, A2) = |A1 + 0X2| ™, where 0 < a < 1/2 and § € R, 6 # 0.

Unfortunately, probably due to the spectral method, these results cannot
be extended in dimension d > 3 without further assumptions. We only give
an example of filters unbounded all over a linear subspace of [—, 7]?.
Proposition 3. Let (§k)reze be a stationary random field satisfying H1. Let
(Xk)reza be the random field defined by (20).

Suppose that a has the following form :

d
>_cid
i=1

where 0 < o < 1/2 and the ¢;’s are real constants.
Then, as long as

—x

a(A) =

1
0<2a< ——7—, 31
“ (d-2)v1 (31)
we have

d eitﬂ)‘ﬂ -1

1 Fidi
—rre 2 Xe=1To [ a) [ —+- )
k€A j=1 J

(32)

where Iy is the linear application defined in Theorem 4.

Remark 11. The condition (31) on « is a restriction only when d > 4.

Tightness criteria for partial sums

So far, only the convergence of the finite-dimensional distributions of the
partial sums has been stated. In dimension d = 1, a convenient criterion for
tightness is given in [Taq75] from which the convergence in D([0,1]) follows
easily.

General conditions for tightness in D([0, 1]%) of a sequence of random fields
are given in [BWT71]. The following lemma, a corollary of Theorems 2 and 3
in [BWT1], is very useful for proving tightness of the partial sums of strongly
dependent fields.
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Lemma 1. Let us consider a stationary random field (Xy)peze and its nor-
malized partial sum process

[nt1]  [ntd]

Su)=d" > 3 Xy ks te[0,1]7

k1=0 kq=0

If the finite-dimensional distributions of S, converge to those of X and if
there exist ¢ > 0 and B > 1 such that for all p1,...,pa € {1,...,n}

p1 Pd 2 d ) B
E (d;1 DD X,m,,,kd> <ec (H il) , (33)
i=1

k1=0 kqa=0

then
D([0,1]%)

Moreover the field X admits a continuous version.

The details of the proof can be found in [Lav05b].

In the next section, we study the doubly-indexed empirical process of long
memory random fields and we investigate its asymptotic behaviour for the long
memory Gaussian subordinated fields of Theorem 2 and for the non-isotropic
long memory situation of Proposition 3. For this, we need the convergence
of the partial sums in D([0,1]¢) in both settings. Since the convergence of
their finite-dimensional distributions has already been stated, only tightness
is missing, which is the subject of the next results. Their proofs, based on the
tightness criterion presented in Lemma 1, can be found in [Lav05b].

Proposition 4. Under the hypothesis of Theorem 2, the partial sums process

1

H(Xk)
d—ma/2 2 Z
Na=mal2(L(N))m/2 L=

is tight and convergence (18) takes place in D([0,1]¢).

Proposition 5. Under the hypothesis of Proposition 3, the partial sums pro-

cess )
Nd/2+a Z X
k?EA[Nf,]

is tight and convergence (32) takes place in D([0,1]¢).

3.2 Empirical Process of long memory random fields

We study the asymptotic behaviour of the empirical process
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> [z —F@)] (34)
JE€AMy

where G is a measurable function and where F' is the cumulative distribution
function of G(X7), (Xk)reze being a long-range dependent stationary random
field.

Our presentation relates to Gaussian subordinated random fields and to
(non necessarily Gaussian) linear random fields.

In the first situation, we prove a uniform weak reduction principle and
apply it to different situations of strong dependence. We present the conver-
gence of (34) in D(R x [0,1]¢) when X is Gaussian with isotropic long-range
dependence, generalizing in dimension d > 1 the result of [DT89]. In the non-
isotropic long memory setting, we give the convergence of (34) in D(R x [0, 1]%)
when the random field X is linear, Gaussian, and when the Hermite rank of
jl{G(Xj)Sz} - F($> is 1.

In the situation of (non necessarily Gaussian) linear random fields a uni-
form weak reduction principle is more difficult to obtain. The only available
results are those proved in [DLS02] where the authors obtain the convergence
of (34) for t = 1, when G is the identity function, and in the situation of
isotropic long-memory.

In each situation described above, the limiting process is degenerated in-
sofar as it has the form f(x)Z(t) where f is a deterministic function and Z
a random field. This asymptotic behaviour of the empirical process is a char-
acteristic property of strong dependence in dimension d = 1. It seems to be
also the case with random fields even if the strong dependence is anisotropic
such as in Corollary 3 below.

Empirical process of Gaussian subordinated fields

The main tool to obtain the convergence of the empirical process is the uni-
form weak reduction principle introduced in [DT89] which allows to replace in
most cases the empirical process by the first term in its expansion on the Her-
mite basis. We present an inequality generalizing this principle to dimension
d > 1. Then we specify the dependence structure of the random field in two
corollaries. The first one refers to the isotropic long-range dependent Gaussian
fields of Theorem 2. The second one relates to non-isotropic long memory. It
focuses on the random field of Proposition 3 which is in addition supposed
here to be Gaussian. The proofs of this section are detailed in [Lav05b].

Let (Xy,)neze be a stationary Gaussian random field with covariance func-
tion r such that r(0) = 1.

Let G be a measurable function. We consider the following expansion on
the Hermite basis :

(oo}

Ligex)<et — Fl@) =)

q=m

Jq(z)
q!

Hq(Xj) )
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where F(z) = P(G(X1) < z). H, is the Hermite polynomial of degree ¢ and
Jq(x) = E [L{g(x,)<ep Ho(X1)]

Let

CHOEDS {ﬂ{cm)sﬂv} —F(z) -

JEAR

Now, we formulate the inequality leading to the uniform weak reduction
principle. Its proof follows the same lines as in [DT89).

Theorem 5. Let

da = var Z H,(X;) ]| =m! Z r(k—7) .

JEAN J.keAZ,

If dy — oo, we have, for alln, § >0 and for alln < N,

] ] N
P (supdt 15,0 > ) < OV 3 Irlh - )" (39
¥ J,k€A2,

where C' is a positive constant depending only on 1.

If the limit of diy' 2,04
asymptotic behaviour of the empirical process (34) if the upper bound in (35)
vanishes when N goes to infinity.

The first corollary below relates to the Gaussian subordinated fields of
Theorem 2.

H,,(X;) is known, inequality (35) provides the

Corollary 2. Under the above notations, we suppose that the Gaussian field
(Xn)neze admits the covariance function

r(K) = [k L(k[)b (;) ) =1, (36)

where 0 < ma < d, where L is slowly varying at infinity and where b is
continuous on the unit sphere in R%.
Then

! D(Rx[0,1])
Nd-ma/2([(N))m/2 Y o< —Fl@)] =
JEANY

where the convergence takes place in D(R x [0,1]?) endowed with the uniform
topology and the o-field generated by the open balls and where Z,,, defined in
(16), is the Hermite process of order m.
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Proof (Sketch of proof). From (36), as N — oo
&, ~ NHm (LN

and

Z ‘T(k 7j)|m+1 _ O(N2d7(m+1)o¢L(N)m+1) + O(Nd) )
j.k€AN

Hence the upper bound in (35) goes to zero for small values of §.
Moreover Theorem 2 gives the convergence of dj}l > J€Ay H,,,(X;) to the

Hermite process, this convergence taking place in D([0,1]¢) from Proposition
4. Now, J,,, is bounded and so :

™ d

In(@)dyt S Hp(X;) P

JEANY

Ton(2) Zon(2) . (37)

The measurability of the empirical process is obtained if D(R x [0, 1]¢), en-
dowed with the uniform topology, is equipped with the o-field generated by
the open balls. Finally (37) and (35) give the convergence claimed in the
corollary.

The next corollary focuses on the non-isotropic random field of Propo-
sition 3 based on Gaussian noise. Since this Proposition only gives the limit
distribution of dj' JeAny X, we restrict ourselves to functions G such that

the Hermite rank of (34) is 1.

Corollary 3. Let (€,,),eza be a stationary Gaussian field with a bounded spec-
tral density. We consider the linear field

Xn = Z AQp€n—L (38)

kezd

where the (ax)’s are, up to a normalisation providing var(X;) = 1, the Fourier
coefficients of

—Q

d
aN) =) N, O<a<1/2, (39)
i=1
where (c1,...,¢q) are real valued parameters.

We suppose that the Hermite rank of 1ia(x, )<z} — F(v) is 1.
If

1
0<2 —_— 40
= a<(d—2)v1’ (40)
then ) ) )
D(Rx[0,1]%)
nd/2Ta Y. ez —Fl@) =" Ji@)R() ,

JEA M
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where Ji(z) = Ell{g(x,)<s1X1], and where the convergence takes place in
D(R x [0,1]¢) endowed with the uniform topology and the o-field generated by
the open balls.

When € is a white noise, the limiting field is defined by

R(t) = /R a(w)

where Wy is the Gaussian white noise spectral field.

d ‘t. .
iy 1
[ dwo(u) .
- IUj
j=1

Remark 12. As in Proposition 3, the condition (40) is not a restriction when
d<3.

Proof (Sketch of proof). From (39), d? ~ n®*2® when n — oo and
if 0<2a<1/2, > r*(k—j)=0@"),
jkeA2
if1/2<2a<1, Z 2(k — j) = O(nd—1+4a)

j,kEAZ

Therefore the upper bound in (35) tends to zero if § is small enough. Since
Proposition 3 and Proposition 5 prove the convergence of the partial sums of
X in D([0,1]%), the convergence of the empirical process follows.

Empirical process of long memory linear fields

Without the Gaussian assumption, a general uniform weak reduction principle
as in Theorem 5 is not yet available. This has been done in [DLS02] in the
particular case of the isotropic long memory linear random fields of Theorem
3. These authors obtain the convergence of the empirical process (34) for ¢t = 1
and when G is the identity function.

Theorem 6 ([DLS02]). Let € be a zero-mean i.i.d random field with variance
1. Assume that there exist positive constants C' and § such that

[Ee| < C(1+1a)™, a€R,

and
Eleo|?* < 00 .
Let X be the linear field defined by
Xn = Z Ak€n—k , NE z¢
kezd

with
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k
ar = |k~ (> , kez?,
k|

where d/2 < a < d and where b is continuous on the unit sphere in R?.
Then, with Z ~ N(0,1) a standard Gaussian variable,

1 D(E)
3o > Mxizay — F@)] = cf(@)Z
keA,

where ¢ is a positive constant, F' denoting the cumulative distribution function
of X1 and f = F'.

Remark 13. In [DLS02], the authors actually studied the convergence of the
weighted empirical process

Z Yk LX<zt i} >
keA,

where sup,, maxiea,, (|$n,x] + |n,k|]) = O(1). They obtain the same result.

4 Conclusion

All the above results confirm some specificities of the long memory compared
with the short one : particularly a non standard normalisation and a degen-
erated limit for the empirical process. However, the study is far from being
complete and should be extended for instance in the direction of seasonal
phenomena, as it is done in dimension d = 1 ([OHO02]), where the correct
approximation of the empirical process might not be based on the first term
of the Hermite expansion.

Finally, all results on the empirical process are a first step towards the
study of U-statistics, Cramer Von Mises or Kolmogorov Smirnov statistics,
and of M and L-statistics. They are the object of a current work.
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1 Introduction

It is generally accepted that many time series of practical interest exhibit
strong dependence, i.e., long memory. For such series, the sample autocor-
relations decay slowly and log-log periodogram plots indicate a straight-line
relationship. This necessitates a class of models for describing such behavior.
A popular class of such models is the autoregressive fractionally integrated
moving average (ARFIMA) (see [Ade74], [GJ80]), [Hos81], which is a linear
process. However, there is also a need for nonlinear long memory models. For
example, series of returns on financial assets typically tend to show zero cor-
relation, whereas their squares or absolute values exhibit long memory. See,
e.g., [DGE93]. Furthermore, the search for a realistic mechanism for generat-
ing long memory has led to the development of other nonlinear long memory
models. In this chapter, we will present several nonlinear long memory mod-
els, and discuss the properties of the models, as well as associated parametric
and semiparametric estimators.

Long memory has no universally accepted definition; nevertheless, the
most commonly accepted definition of long memory for a weakly station-
ary process X = {X;, t € Z} is the regular variation of the autocovariance
function: there exist H € (1/2,1) and a slowly varying function L such that

cov(Xo, X¢) = L(t)[t]*172. (1)
Under this condition, it holds that:
lim n~ 27 L(n)"'var (Z Xt> =1/(2H(2H — 1)). (2)
n—oo
t=1

The condition (2) does not imply (1). Nevertheless, we will take (2) as an
alternate definition of long memory. In both cases, the index H will be referred
to as the Hurst index of the process X. This definition can be expressed in
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terms of the parameter d = H — 1/2, which we will refer to as the memory
parameter. The most famous long memory processes are fractional Gaussian
noise and the ARFIM A(p,d, q) process, whose memory parameter is d and
Hurst index is H = 1/2 + d. See for instance [Taq03] for a definition of these
processes.

The second-order properties of a stationary process are not sufficient to
characterize it, unless it is a Gaussian process. Processes which are linear with
respect to an i.i.d. sequence (strict sense linear processes) are also relatively
well characterized by their second-order structure. In particular, weak con-
vergence of the partial sum process of a Gaussian or strict sense linear long
memory processes {X;} with Hurst index H can be easily derived. Define

Sp(t) = Ln:t]l (Xk — E[Xj]) in discrete time or S, (t) = Ont(Xs — E[X,])ds
in continuous time. Then var(S,(1))~*/25,(t) converges in distribution to a
constant times the fractional Brownian motion with Hurst index H, that is

the Gaussian process By with covariance function
1
cov(Bp(s),Bu(t)) = §{|s|2H — |t — s 2y

In this paper, we will introduce nonlinear long memory processes, whose
second order structure is similar to that of Gaussian or linear processes, but
which may differ greatly from these processes in many other aspects. In Sec-
tion 2, we will present these models and their second-order properties, and
the weak convergence of their partial sum process. These models include con-
ditionally heteroscedastic processes (Section 2.1) and models related to point
processes (Section 2.2). In Section 3, we will consider the problem of estimat-
ing the Hurst index or memory parameter of these processes.

2 Models

2.1 Conditionally heteroscedastic models
These models are defined by
Xt = oy, (3)

where {v;} is an independent identically distributed series with finite variance
and o7 is the so-called volatility. We now give examples.

LMSV and LMSD

The Long Memory Stochastic Volatility (LMSV) and Long Memory Stochas-
tic Duration (LMSD) models are defined by Equation (3), where o7 = exp(h;)
and {h;} is an unobservable Gaussian long memory process with memory pa-
rameter d € (0,1/2), independent of {v;}. The multiplicative innovation series
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{v:} is assumed to have zero mean in the LMSV model, and positive support
with unit mean in the LMSD model. The LMSV model was first introduced by
[BCAL98] and [Har98] to describe returns on financial assets, while the LMSD
model was proposed by [DHHO05] to describe durations between transactions
on stocks.

Using the moment generating function of a Gaussian distribution, it can
be shown (see [Har98]) for the LMSV/LMSD model that for any real s such
that E[|v:|*] < oo,

ps(]) ~ Osjzdil J = 00,

where p4(j) denotes the autocorrelation of {|z;|*} at lag j, with the convention
that s = 0 corresponds to the logarithmic transformation. As shown in [SV02],
the same result holds under more general conditions without the requirement
that {h;} be Gaussian.

In the LMSV model, assuming that {h:} and {v;} are functions of a mul-
tivariate Gaussian process, [Rob01] obtained similar results on the autocor-
relations of {|X;|°} with s > 0 even if {h;} is not independent of {v;}. Sim-
ilar results were obtained in [SV02], allowing for dependence between {h;}
and {v¢}.

The LMSV process is an uncorrelated sequence, but powers of LMSV or
LMSD may exhibit long memory. [SV02] proved the convergence of the cen-
tered and renormalized partial sums of any absolute power of these processes
to fractional Brownian motion with Hurst index 1/2 in the case where they
have short memory.

FIEGARCH

The weakly stationary FIEGARCH model was proposed by [BM96]. The FIE-
GARCH model, which is observation-driven, is a long-memory extension of the
EGARCH (exponential GARCH) model of [Nel91]. The FIEGARCH model
for returns {X;} takes the form 2.1 innovation series {v;} are i.i.d. with zero
mean and a symmetric distribution, and

logo? =w+ Y a;g(vi;) (4)
j=1

with g(z) = 0z + y(Jz| — Elw|), w > 0, 6 € R, v € R, and real constants
a;j such that the process {logo?} has long memory with memory parameter
d € (0,1/2). If 0 is nonzero, the model allows for a so-called leverage effect,
whereby the sign of the current return may have some bearing on the future
volatility. In the original formulation of [BM96], the {a;} are the AR(oc0)
coefficients of an ARFIM A(p,d, q) process.

As was the case for the LMSV model, here we can once again express the
log squared returns as in (18) with u = E[log vZ]+w, u; = log v —E[logv?], and
hy = log 0? — w. Here, however, the processes {h;} and {u;} are not mutually
independent. The results of [SV02] also apply here, and in particular, the
processes {|X;|*}, {log(X?)} and {o;} have the same memory parameter d.
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ARCH(x) and FIGARCH

In ARCH(o0) models, the innovation series {v;} is assumed to have zero mean
and unit variance, and the conditional variance is taken to be a weighted sum
of present and past squared returns:

o0
2 2
o} :w+Zant,j , (5)
k=1
where w,a;,j = 1,2,... are nonnegative constants. The general framework

leading to (3) and (5) was introduced by [Rob91]. [KL03] have shown that
Z;il a; < 1 is a necessary condition for existence of a strictly stationary
solution to equations (3), (5), while [GKL00] showed that > 72 a; < 1 is
a sufficient condition for the existence of a strictly stationary solution. If
Z;il a; = 1, the existence of a strictly stationary solution has been proved
by [KLO3] only in the case where the coefficients a; decay exponentially fast.
In any case, if a stationary solution exists, its variance, if finite, must be equal
to w(l—> po ar)~ !, so that it cannot be finite if ;7 ap = 1 and w > 0. If
w = 0, then the process which is identically equal to zero is a solution, but it
is not known whether a nontrivial solution exists.

In spite of a huge literature on the subject, the existence of a strictly or
weakly stationary solution to (3), (5) such that {02}, {|X¢|*} or {log(X?)}
has long memory is still an open question. If Y_°- | a; < 1, and the coefficients
a; decay sufficiently slowly, [GKLO0O] found that it is possible in such a model
to get hyperbolic decay in the autocorrelations {p,} of the squares, though
the rates of decay they were able to obtain were proportional to r—? with
# > 1. Such autocorrelations are summable, unlike the autocorrelations of a
long-memory process with positive memory parameter. For instance, if the
weights {a;} are proportional to those given by the AR(co) representation of
an ARFIMA(p, d, q) model, then § = —1—d. If Zjoil a; = 1, then the process
has infinite variance so long memory as defined here is irrelevant.

Let us mention for historical interest the FIGARCH (fractionally inte-
grated GARCH) model which appeared first in [BBM96]. In the FIGARCH
model, the weights {a;} are given by the AR(co) representation of an
ARFIMA(p, d,q) model, with d € (0,1/2), which implies that 3 7% a; = 1,
hence the very existence of FIGARCH series is an open question, and in any
case, if it exists, it cannot be weakly stationary. The lack of weak stationarity
of the FIGARCH model was pointed out by [BBM96]. Once again, at the time
of writing this paper, we are not aware of any rigorous result on this process
or on any ARCH(o0) process with long memory.

LARCH

Since the ARCH structure (appearently) fails to produce long memory, an
alternative definition of heteroskedasticity has been considered in which long
memory can be proved rigorously. [GS02] considered models which satisfy the
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equation Xy = (4A: + By, where {(;} is a sequence of i.i.d. centered ran-
dom variables with unit variance and A; and By are linear in {X;} instead of
quadratic as in the ARCH specification. This model nests the LARCH model
introduced by [Rob91], obtained for B; = 0. The advantage of this model is
that it can exhibit long memory in the conditional mean B; and/or in the con-
ditional variance A, possibly with different memory parameters. See [GS02,
Corollary 4.4]. The process {X;} also exhibits long memory with a memory
parameter depending on the memory parameters of the mean and the con-
ditional variance [GS02, Theorem 5.4]. If the conditional mean exhibits long
memory, then the partial sum process converges to the fractional Brownian
motion, and it converges to the standard Brownian motion otherwise. See
[GS02, Theorem 6.2]. The squares {X?} may also exhibit long memory, and
their partial sum process converge either to the fractional Brownian motion
or to a non Gaussian self-similar process. This family of processes is thus very
flexible. An extension to the multivariate case is given in [DTWO05].

We conclude this section by the following remark. Even though these pro-
cesses are very different from Gaussian or linear processes, they share with
weakly dependent processes the Gaussian limit and the fact that weak limits
and L? limits have consistent normalisations, in the sense that, if &, denotes
one of the usual statistics computed on a time series, there exists a sequence
v, such that v,&, converges weakly to a non degenerate distribution and
v2E[¢2] converges to a positive limit (which is the variance of the asymptotic
distribution). In the next subsection, we introduce models for which this is no
longer true.

2.2 Shot noise processes

General forms of the shot-noise process have been considered for a long time;
see for instance [Takb4], [Dal71]. Long memory shot noise processes have been
introduced more recently; an early reference seems to be [GMS93]. We present
some examples of processes related to shot noise which may exhibit long mem-
ory. For simplicity and brevity, we consider only stationary processes.

Let {t;, j € Z} be the points of a stationary point process on the line,
numbered for instance in such a way that t_; < 0 < ¢y, and for ¢t > 0, let
N(t) = >_;50 L, <ty be the number of points between time zero and ¢. Define
then

Xy = Zej]l{tjﬁt<tj+77j}’ t=>0. (6)
JEZ

In this model, the shocks {¢;} are an i.i.d. sequence; they are generated at
birth times {¢;} and have durations {n;}. The observation at time ¢ is the
sum of all surviving present and past shocks. In model (6), we can take time
to be continuous, t € R or discrete, t € Z. This will be made precise later for
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each model considered. We now describe several well known special cases of
model (6).

(Al). Renewal-reward process; [TL86], [Liu00].
The durations are exactly the interarrival times of the renewal process:
no = to, N; = tj+1 — t;, and the shocks are independent of their birth
times. Then there is exactly one surviving shock at time ¢:

Xy = EN(t)- (7)

(A2). ON-OFF model; [TWS97].

This process consists of alternating ON and OFF periods with indepen-
dent durations. Let {nx}>1 and {(x}x>1 be two independent ii.d. se-
quences of positive random variables with finite mean. Let ¢y be indepen-
dent of these sequences and define t; = to + Y 7_; (nx + ¢x). The shocks
¢; are deterministic and equal to 1. Their duration is n;. The 7;s are the
ON periods and the (;s are the OFF periods. The first interval ¢, can also
be split into two successive ON and OFF periods 79 and (y. The process
X can be expressed as

Xy = ]l{tN(t)St<tN(t)+77N(f,)}' (8)

(A3). Error duration process; [Par99].
This process was introduced to model some macroeconomic data. The
birth times are deterministic, namely ¢t; = j, the durations {n;} are i.i.d.
with finite mean and

Xt = Zej]l{t<j+77j}' (9)

J<t

(A4). Infinite Source Poisson model.

If the t; are the points of a homogeneous Poisson process, the dura-
tions {n;} are i.i.d. with finite mean and €; = 1, we obtain the infinite
source Poisson model or M/G /oo input model considered among others
in [MRRS02].

[MRRO2] have considered a variant of this process where the shocks (re-
ferred to as transmission rates in this context) are random, and possibly
contemporaneously dependent with durations.

In the first two models, the durations satisfy n; < t;41 — t;, hence are not
independent of the point process of arrivals (which is here a renewal process).
Nevertheless n; is independent of the past points {tx, k& < j}. The process
can be defined for all ¢ > 0 without considering negative birth times and
shocks. In the last two models, the shocks and durations are independent of
the renewal process, and any past shock may contribute to the value of the
process at time t.
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Stationarity and second order properties

e The renewal-reward process (7) is strictly stationary since the renewal pro-
cess is stationary and the shocks are i.i.d. It is moroever weakly stationary if
the shocks have finite variance. Then E[X;] = E[e;] and

cov(Xo, X¢) = E[e] P(no > t) = AE[e]] E[(m — )] , (10)

where 7 is the delay distribution and A = E[(t; — to)] ™! is intensity of the
stationary renewal process. Note that this relation would be true for a general
stationary point process. Cf. for instance [TL86] or [HHS04].

e The stationary version of the ON-OFF was studied in [HRS98]. The first
On and OFF period 7y and {y can be defined in such a way that the process
X is stationary. Let Fy, and Fog be the distribution functions of the ON and
OFF periods n; and (;. [HRS98, Theorem 4.3] show that if 1— F,, is regularly
varying with index a € (1,2) and 1 — Fog(t) = o(1 — Fon(t)) as t — oo, then

cov(Xo, X¢) ~ cP(no > t) = cAE[(m —t)4], (11)

e Consider now the case when the durations are independent of the birth
times. To be precise, assume that {(n;,¢;)} is an i.i.d. sequence of random
vectors, independent of the stationary point process of points {t;}. Then the
process {X; } is strictly stationary as long as E[;] < oo, and has finite variance
if E[e}m] < co. Then E[X;] = AE[e;m1] and

cov(Xo, X¢) = AE[€ef (m — t)+]
+ {cov(er N(=n1,0], 2 N(t — 12, 1]) — AE[erez (m A (n2 — 1)4]}

where ) is the intensity of the stationary point process, i.e. A=t = E[to]. The
last term has no known general expression for a general point process, but it
vanishes in two particular cases:

- if N is a homogeneous Poisson point process;
- if € is centered and independent of 7;.

In the latter case (10) holds, and in the former case, we obtain a formula
which generalizes (10):

cov(Xo, X1) = NE[€3 (ny — )] (12)

We now see that second order long memory can be obtained if (10) holds and
the durations have regularly varying tails with index « € (1,2) or,

E[E%ﬂ{not}] =t . (13)

Thus, if (13) and either (11) or (12) hold, then X has long memory with Hurst
index H = (3 — «)/2 since
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A 11—
cov(Xo, Xi) ~ —=— LB . (14)
a—

Examples of interest in teletraffic modeling where ¢; and 7; are not indepen-
dent but (13) holds are provided in [MRRO02] and [FRS05].

We conjecture that (14) holds in a more general framework, at least if the
interarrival times of the point process have finite variance.

Weak convergence of partial sums

This class of long memory process exhibits a very distinguishing feature. In-
stead of converging weakly to a process with finite variance, dependent sta-
tionary increments such as the fractional Brownian motion, the partial sums
of some of these processes have been shown to converge to an a-stable Levy
process, that is, an a-stable process with independent and stationary incre-
ment. Here again there is no general result, but such a convergence is easy to
prove under restrictive assumptions. Define

Tt
Sr(t) = {Xs —E[X,]}ds.
0
Then it is known in the particular cases described above that the finite di-
mensional distributions of the process ¢(T)T~/*Sz (for some slowly varying
function ¢) converge weakly to those of an a-stable process. This was proved in
[TL86] for the renewal reward process, in [MRRS02] for the ON-OFF and infi-
nite source Poisson processes when the shocks are constant. A particular case
of dependent shocks and durations is considered in [MRR02]. [HHS04] proved
the result in discrete time for the error duration process; the adaptation to the
continuous time framework is straightforward. It is also probable that such a
convergence holds when the underlying point process is more general.

Thus, these processes are examples of second order long memory process
with Hurst index H € (1/2,1) such that T~ Sz (t) converges in probability to
zero. This behaviour is very surprising and might be problematic in statistical
applications, as illustrated in Section 3.

It must also be noted that convergence does not hold in the space D of
right-continuous, left-limited functions endowed with the J; topology, since a
sequence of processes with continuous path which converge in distribution in
this sense must converge to a process with continuous paths. It was proved
in [RvdB00, Theorem 4.1] that this convergence holds in the M; topology for
the infinite source Poisson process. For a definition and application of the M;
topology in queuing theory, see [Whi02].

Slow growth and fast growth

Another striking feature of these processes is the slow growth versus fast
growth phenomenon, first noticed by [TL86] for the renewal-reward process
and more rigorously investigated by [MRRS02] for the ON-OFF and infinite
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source Poisson process®. Consider M independent copies X (9, 1,< i < M of
these processes and denote

Apr(®) Z/ (X® _E[X,]}ds .

If M depends on T', then, according to the rate growth of M with respect to
T, a stable or Gaussian limit can be obtained. More precisely, the slow growth
and fast growth conditions are, up to slowly varying functions MT1=® — 0
and MT'~® — oo, respectively. In other terms, the slow and fast growth
conditions are characterized by var(Ap, 7 (1)) < b(MT) and var(Au,r(1)) >
b(MT), respectively, where b is the inverse of the quantile function of the
durations.

Under the slow growth condition, the finite dimensional distributions of
L(MT) (MT)_l/“AM,T converge to those of a Levy a-stable process, where L
is a slowly varying function. Under the fast growth condition, the sequence of
processes T~ H¢=V2(T)M~Y/2 A 1 converges, in the space D(R;) endowed
with the J; topology, to the fractional Brownian motion with Hurst index
H = (3 — «)/2. Tt is thus seen that under the fast growth condition, the
behaviour of a Gaussian long memory process with Hurst index H is recovered.

Non stationary versions

If the sum defining the process X in (6) is limited to non negative indices
J, then the sum has always a finite number of terms and there is no restric-
tion on the distribution of the interarrival times ¢;11 — t; and the durations
7;. These models can then be nonstationary in two ways: either because of
initialisation, in which case a suitable choice of the initial distribution can
make the process stationary; or because these processes are non stable and
have no stationary distribution. The latter case arises when the interarrival
times and/or the durations have infinite mean. These models were studied by
[RROO] and [MRO4] in the case where the point process of arrivals is a re-
newal process. Contrary to the stationary case, where heavy tailed durations
imply non Gaussian limits, the limiting process of the partial sums has non
stationary increments and can be Gaussian in some cases.

2.3 Long Memory in Counts

The time series of counts of the number of transactions in a given fixed interval
of time is of interest in financial econometrics. Empirical work suggests that
such series may possess long memory. See [DHHO05]. Since the counts are

3 Actually, in the case of the Infinite Source Poisson process, [MRRS02] consider a
single process but with an increasing rate A depending on T, rather than super-
position of independent copies. The results obtained are nevertheless of the same
nature.
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induced by the durations between transactions, it is of interest to study the
properties of durations, how these properties generate long memory in counts,
and whether there is a connection between potential long memory in durations
and long memory in counts.

The event times determine a counting process N(¢) = Number of events
n (0,t]. Given any fixed clock-time spacing At > 0, we can form the time
series { ANy} = {N(t' At) — N[(t' — 1)At]} for ¢/ =1,2,..., which counts the
number of events in the corresponding clock-time intervals of width At. We
will refer to the { ANy} as the counts. Let 7, > 0 denote the waiting time
(duration) between the k — 1’st and the k’th transaction.

We give some preliminary definitions taken from [DV.J03].

Definition 1. A point process N(t) = N(0,t] is stationary if for every
r =1,2,... and all bounded Borel sets Ay,...,A,, the joint distribution of
{N(A1 +t),...,N(A, +t)} does not depend on t € [0,00).
A second order stationary point process is long-range count dependent
(LRcD) if
N
lim 7\/&&( ®) =00 .
t—o0 t
A second order stationary point process N (t) which is LRcD has Hurst
index H € (1/2,1) given by
var(N(t))

H = sup{h : limsup v =00} .
t—o0 t2h

Thus if the counts {ANy }52 _ on intervals of any fixed width At > 0
are LRD with memory parameter d then the counting process N(t) must
be LRcD with Hurst index H = d + 1/2. Conversely, if N(¢) is an LRcD
process with Hurst index H, then { ANy } cannot have exponentially decaying
autocorrelations, and under the additional assumption of a power law decay of
these autocorrelations, { ANy } is LRD with memory parameter d = H —1/2.

There exists a probability measure P° under which the doubly infinite
sequence of durations {7;}%2 ___ are a stationary time series, i.e., the joint
distribution of any subcollection of the {7} depends only on the lags be-
tween the entries. On the other hand, the point process N on the real line is
stationary under the measure P. A fundamental fact about point processes is
that in general (a notable exception is the Poisson process) there is no single
measure under which both the point process N and the durations {7} are
stationary, i.e., in general P and P° are not the same. Nevertheless, there is a
one-to-one correspondence between the class of measures P° that determine
a stationary duration sequence and the class of measures P that determine
a stationary point process. The measure P° corresponding to P is called the
Palm distribution. The counts are stationary under P, while the durations are
stationary under PY.

We now present an important theoretical result obtained by [Dal99].
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Theorem 1. A stationary renewal point process is LRcD and has Hurst in-
dex H = (1/2)(3—«a) under P if the interarrival time has tail index 1 < o < 2
under PY.

Theorem 1 establishes a connection between the tail index of a duration
process and the persistence of the counting process. According to the theorem,
the counting process will be LRcD if the duration process is #id with infinite
variance. Here, the memory parameter of the counts is completely determined
by the tail index of the durations.

This prompts the question as to whether long memory in the counts can
be generated solely by dependence in finite-variance durations. An answer in
the affirmative was given by [DRV00], who provide an example outside of the
framework of the popular econometric models. We now present a theorem on
the long-memory properties of counts generated by durations following the
LMSD model. The theorem is a special case of a result proved in [DHSWO05],
who give sufficient conditions on durations to imply long memory in counts.

Theorem 2. If the durations {1} are generated by the LMSD process with
memory parameter d, then the induced counting process N(t) has Hurst index
H = 1/2 +d, i.e. satisfies var(N(t)) ~ Ct?**1 under P as t — oo where
C >0.

3 Estimation of the Hurst index or memory parameter

A weakly stationary process with autocovariance function satisfying (1) has
a spectral density f defined by

Fla) = 5= S0 (15)

teZ

This series converges uniformly on the compact subsets of [—m, 7] \ {0} and
in L!([~m, ], dz). Under some strengthening of condition (1), the behaviour
of the function f at zero is related to the rate of decay of v. For instance, if
we assume in addition that L is ultimately monotone, we obtain the following
Tauberian result [Taq03, Proposition 4.1], with d = H — 1/2.

lir% L(z)'2?? f(x) = n 7' '(2d) cos(nd). (16)
r—

Thus, a natural idea is to estimate the spectral density in order to estimate the
memory paramter d. The statistical tools are the discrete Fourier transform
(DFT) and the periodogram, defined for a sample Uy, ..., U,, as

Ty = @) 72N Ut Iy (wy) = |1

n,J
t=1
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where w; = 2jm/n, 1 < j < n/2 are the so-called Fourier frequencies. (Note
that for clarity the index n is omitted from the notation). In the classical
weakly stationary short memory case (when the autocovariance function is
absolutely summable), it is well known that the periodogram is an asymptot-
ically unbiased estimator of the spectral density fi; defined in (15). This is no
longer true for second order long memory processes. [HB93] showed (in the
case where the function L is continuous at zero but the extension is straight-
forward) that for any fixed positive integer j, there exists a positive constant
c(k, H) such that

Jim E(Ty (w;)/ fo(w;)] = (4, H).

The previous results are true for any second order long memory process.
Nevertheless, spectral method of estimation of the Hurst parameter, based
on the heuristic (but incorrect) assumption that the renormalised DFTs

f&l/z(wj)Jgj are i.i.d. standard complex Gaussian have been proposed and
theoretically justifed in some cases. The most well known is the GPH esti-
mator of the Hurst index, introduced by [GPH83] and proved consistent and
asymptotically Gaussian for Gaussian long memory processes by [Rob95b] and
for a restricted class of linear processes by [Vel00]. Another estimator, often
referred to as the local Whittle or GSE estimator was introduced by [Kiin87]
and again proved consistent asymptotically Gaussian by [Rob95a] for linear
long memory processes.

These estimators are built on the m first log-periodogram ordinates, where
m is an intermediate sequence, i.e. 1/m +m/n — 0 as n — oo. The choice
of m is irrelevant to consistency of the estimator but has an influence on the
bias. The rate of convergence of these estimators, when known, is typically
slower than y/n. Trimming of the lowest frequencies, which means taking the
¢ first frequencies out is sometimes used, but there is no theoretical need for
this practice, at least in the Gaussian case. See [HDB98]. For nonlinear series,
we are not sure yet if trimming may be needed in general.

In the following subsections, we review what is known, both theoretically
and empirically, about these and related methods for the different types of
nonlinear processes described previsoulsy.

We start by describing the behaviour of the renormalized DFTs at low
frequencies, that is, when the index j of the frequency w; remains fixed as
n — 0o.

3.1 Low-Frequency DFTs of Counts from Infinite-Variance
Durations

To the best of our knowledge there is no model in the literature for long
memory processes of counts. Hence the question of parametric estimation
has not arisen so far in this context. However, one may still be interested in
semiparametric estimation of long memory in counts. We present the following
result on the behavior of the Discrete Fourier Transforms (DFTs) of processes
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of counts induced by infinite-variance durations that will be of relevance to
us in understanding the behavior of the GPH estimator. Let n denote the
number of observations on the counts, w; = 27j/n, and define

J AN, /elt wi
77 \/ﬁ Z t

t'=1
Assume that the distribution of the durations satisfies

P(ry > x) « b(x)z™ T — 00 (17)

where £(z) is a slowly varying function with lim, ee((kr"z;) =1Vk > 0 and
¢(x) is ultimately monotone at oco.

Theorem 3. Let {71} be i.i.d. random variables which satisfy (17) with o €
(1,2) and mean .. Then for each fized j, E(n)*lnl/z’l/o‘JnAj\] converges in
distm'bution to a complex «a-stable distribution. Moreover, for each fized j,

Wl JAN
widn —>0 where d =1 — a/2.

The theorem implies that when j is fixed, the normalized periodogram of
the counts, wjz-dI An(wj) converges in probability to zero. The degeneracy of
the limiting distribution of the normalized DFTs of the counts suggests that
the inclusion of the very low frequencies may induce negative finite-sample
bias in semiparametric estimators. In addition, the fact that the suitably nor-
malized DFT has an asymptotic stable distribution could further degrade
the finite-sample behavior of semiparametric estimators, more so perhaps for
the Whittle-likelihood-based estimators than for the GPH estimator since the
latter uses the logarithmic transformation.

By contrast, for linear long-memory processes, the normalized periodogram
has a nondegenerate positive limiting distribution. See, for example, [TH94].

3.2 Low-Frequency DFTs of Counts from LMSD Durations

We now study the behavior of the low-frequency DFTs of counts generated
from finite-variance LMSD durations.

Theorem 4. Let the durations {7y} follow an LMSD model with memory
parameter d. Then for each fized j, w converges in distribution to a
zero-mean Gaussian random variable.

This result is identical to what would be obtained if the counts were a
linear long-memory process, and stands in stark contrast to Theorem 3. The
discrepancy between these two theorems suggests that the low frequencies will
contribute far more bias to semiparametric estimates of d based on counts
if the counts are generated by infinite-variance durations than if they were
generated from LMSD durations.
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3.3 Low and High Frequency DFTs of Shot-Noise Processes

Let X be either the renewal-reward process defined in (7) or the error duration
process (9). [HHS04], Theorem 4.1, have proved that Theorem 3 still holds,
ie. n1/2_1/anjj converges in distribution to an a-stable law, where « is the
tail index of the duration. This result can probably be extended to all the
shot-noise process for which convergence in distribution of the partial sum
process can be proved.

The DFTs of these processes have an interesting feature, related to the
slow growth/fast growth phenomenon. The high frequency DFTs, i. e. the
DFT J,fj computed at a frequency w; whose index j increases as n” for some
p > 1—1/a, renormalized by the square root of the spectral density computed
at w;, have a Gaussian weak limit. This is proved in Theorem 4.2 of [HHS04].

3.4 Estimation of the memory parameter of the LMSV and LMSD
models

We now discuss parametric and semiparametric estimation of the memory
parameter for the LMSV/LMSD models. Note that in both the LMSV and
LMSD models, log X? can be expressed as the sum of a long memory signal
and #id noise. Specifically, we have

IOgXtQZM—th*FUt, (18)

where y = F (log vf) and u; = logv? — E (1og vf) is a zero-mean %id series
independent of {h:}. Since all the existant methodology for estimation for
the LMSV model exploits only the above signal plus noise representation, the
methodology continues to hold for the LMSD model.

Assuming that {h;} is Gaussian, [DH01] derived asymptotic theory for the
log-periodogram regression estimator (GPH; [GPHS83]) of d based on {log X?}.
This provides some justification for the use of GPH for estimating long mem-
ory in volatility. Nevertheless, it can also be seen from Theorem 1 of [DHO1]
that the presence of the noise term {u;} induces a negative bias in the GPH
estimator, which in turn limits the number m of Fourier frequencies which
can be used in the estimator while still guaranteeing ./m-consistency and
asymptotic normality. This upper bound, m = 0[n4d/ (4‘“‘1)], where n is the
sample size, becomes increasingly stringent as d approaches zero. The results
in [DHO1] assume that d > 0 and hence rule out valid tests for the presence of
long memory in {h;}. Such a test based on the GPH estimator was provided
and justified theoretically by [HS02].

[SP03] proposed a nonlinear log-periodogram regression estimator dyrp
of d, using Fourier frequencies 1,..., m. They partially account for the noise
term {u;} through a first-order Taylor expansion about zero of the spectral
density of the observations, {log X?}. They establish the asymptotic normality
of m!/? (cZNLp —d) under assumptions including n~4dmAd+1/2 5 Const. Thus,
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a?NLp, with a variance of order n—%4/(44+1/2) " converges faster than the GPH
estimator, but still arbitrarily slowly if d is sufficiently close to zero. [SP03]
also assumed that the noise and signal are Gaussian. This rules out most
LMSV/LMSD models, since {logv?} is typically non-Gaussian.

For the LMSV/LMSD model, results analogous to those of [DHO1] were
obtained by [Art04] for the GSE estimator, based once again on {log X?}. The
use of GSE instead of GPH allows the assumption that {h:} is Gaussian to be
weakened to linearity in a Martingale difference sequence. [Art04] requires the
same restriction on m as in [DHO1]. A test for the presence of long memory
in {h;} based on the GSE estimator was provided by [HMS05].

[HRO3] proposed a local Whittle estimator of d, based on log squared re-
turns in the LMSV model. The local Whittle estimator, which may be viewed
as a generalized version of the GSE estimator, includes an additional term
in the Whittle criterion function to account for the contribution of the noise
term {u;} to the low frequency behavior of the spectral density of {log X?}.
The estimator is obtained from numerical optimization of the criterion func-
tion. It was found in the simulation study of [HRO03] that the local Whittle
estimator can strongly outperform GPH, especially in terms of bias when m
is large.

Asymptotic properties of the local Whittle estimator were obtained by
[HMS05], who allowed {h;} to be a long-memory process, linear in a Martin-
gale difference sequence, with potential nonzero correlation with {u;}. Under
suitable regularity conditions on the spectral density of {h:}, [HMS05] es-
tablished the y/m-consistency and asymptotic normality of the local Whittle
estimator, under certain conditions on m. If we assume that the short memory
component of the spectral density of {h;} is sufficiently smooth, then their
condition on m reduces to

le (m~ =104 4 =4 log®(m)) =0 (19)

for some arbitrarily small § > 0.

The first term in (19) imposes a lower bound on the allowable value of m,
requiring that m tend to oo faster than n4®/(44+1) Tt is interesting that [DHO1],
under similar smoothness assumptions, found that for m!/ 2(JGP g —d) to be
asymptotically normal with mean zero, where CZGP g is the GPH estimator,
the bandwidth m must tend to oo at a rate slower than n*® 44+ Thus for
any given d, the optimal rate of convergence for the local Whittle estimator
is faster than that for the GPH estimator.

Fully parametric estimation in LMSV/LMSD models once again is based
on {log X?} and exploits the signal plus noise representation (18). When {h;}
and {u;} are independent, the spectral density of {log X?} is simply the sum
of the spectral densities of {h;} and {u;}, viz.

flog X2 ()‘) = fh(>‘) + UZ/(QW)7 (20)

where fioq x2 is the spectral density of {log X2}, fn is the spectral density of
{h:} and 02 = var(u;), all determined by the assumed parametric model. This
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representation suggests the possibility of estimating the model parameters in
the frequency domain using the Whittle likelihood. Indeed, [Hos97] claims
that the resulting estimator is y/n-consistent and asymptotically normal. We
believe that though the result provided in [Hos97] is correct, the proof is
flawed. [Deo95] has shown that the quasi-maximum likelihood estimator ob-
tained by maximizing the Gaussian likelihood of {log X?} in the time domain
is y/n-consistent and asymptotically normal.

One drawback of the latent-variable LMSV/LMSD models is that it is dif-
ficult to derive the optimal predictor of |X;|°. In the LMSV model, {|X|*}
for s > 0 serves as a proxy for volatility, while in the LMSD model, {X;}
represents durations. A computationally efficient algorithm for optimal linear
prediction of such series was proposed in [DHLO05], exploiting the Precondi-
tioned Conjugate Gradient (PCG) algorithm. In [CHLO5], it is shown that the
computational cost of this algorithm is O(nlog®?n), in contrast to the much
more expensive Levinson algorithm, which has cost of O(n?).

3.5 Simulations on the GPH Estimator for Counts

We simulated i.i.d. durations from a positive stable distribution with tail index
«a = 1.5, with an implied d for the counts of .25. We also simulated durations
from an LMSD (1,d,0) model with Weibull innovations, AR(1) parameter
of —.42, and d = .3545, as was estimated from actual tick-by-tick durations
in [DHHO5]. The stable durations were multiplied by a constant ¢ = 1.21 so
that the mean duration matches that found in actual data. For the LMSD
durations, we used ¢ = 1. One unit in the rescaled durations is taken to repre-
sent one second. Tables 1 and 2, for the stable and LMSD cases respectively,
present the GPH estimates based on the resulting counts for different values
of At, using n = 10,000, m = n%® and m = n®8®. For the stable case, the
bias was far more strongly negative for the smaller value of m, whereas for
the LMSD case, the bias did not change dramatically with m. This is consis-
tent with the discussion in Section 3.2, and also with the averaged log — log
periodogram plots presented in Figure 1, where the averaging is taken over a
large number of replications, and all positive Fourier frequencies are consid-
ered, j = 1,...,n/2. The plot for the stable durations (upper panel) shows
a flat slope at the low frequencies. For this process, using more frequencies
in the regression seems to mitigate the negative bias induced by the flatness
in the lower frequencies as indicated by the less biased estimates of d when
m = n0-8.

For the LMSD process, by Theorem 2 the counts have the same memory
parameter as the durations, d = .3545. We did not find severe negative bias in
the GPH estimators on the counts, though the estimate of d seems to increase
with At in the case when m = n®?. The averaged log — log periodogram plot
presented in the lower panel of Figure 1 shows a near-perfect straight line
across all frequencies, which is quite different from the pattern we observed
in the case of counts based on stable durations. The straight-line relationship
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here is consistent with the bias results in our LMSD simulations, and with
the discussion in Section 3.2.

Statistical properties of dapr and the choice of m for Gaussian long-
memory time series have been discussed in recent literature. [Rob95b] showed
for Gaussian processes that the GPH estimator is m!/2-consistent and asymp-
totically normal if an increasing number of low frequencies L is trimmed from
the regression of the log periodogram on log frequency. [HDB98] showed that
trimming can be avoided for Gaussian processes. In our simulations, we did
not use any trimming. There is as yet no theoretical justification for the GPH
estimator in the current context since the counts are clearly non-Gaussian,
and presumably constitute a nonlinear process. It is not clear whether trim-
ming would be required for such a theory, but our simulations and theoretical
results suggest that in some situations trimming may be helpful, while in
others it may not be needed.

Table 1. Mean of GPH estimators for counts with different At. Counts generated
from iid stable durations with skewness parameter § = 0.8 and tail index o = 1.5.
The corresponding memory parameter for counts is d = .25. We generated 500
replications each with sample size n = 10,000. The number of frequencies in the log
periodogram regression was m = n’® = 1585 and m = \/n = 100. t-values marked
with * reject the null hypothesis, d = 0.25 in favor of d < 0.25.

N oo =08
c=121 Mean(dng)‘ t-Value Mean(deH)‘t—Value
5 min 0.1059 —17.65" 0.2328 —5.77"
10 min 0.0744 —23.08" 0.2212 —8.31"
20 min 0.0715 —23.23" 0.2186 —7.75"

Table 2. Mean of the GPH estimators for counts with different At. Counts generated
from LMSD durations with Weibull (1, ) shocks. The number of frequencies in the
log periodogram regression was m = /n and m = n°®%. We used d = .3545 and
v = 1.3376 for our simulations. We simulated 200 replications of the counts, each
with sample size n = 10,000. t-values marked with * reject the null hypothesis,
d = 0.3545 in favor of d < 0.3545.

N =00 oo
c=1 Mean(dng)‘t—Value Mean(dng)‘t—Value
5 min 0.3458 —-1.76" 0.3471 —6.49"
30 min 0.3873 3.45" 0.3469 —3.59"
60 min 0.3923 4.05" 0.3478 -3.20"
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Fig. 1. Averaged log —log periodogram plots for the counts generated from iid
Stable and LMSD durations.
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3.6 Estimation of the memory parameter of the Infinite Source
Poisson process

Due to the underlying Poisson point process, the Infinite Poisson Source pro-
cess is a very mathematically tractable model. Computations are very easy
and in particular, convenient formulas for cumulants of integrals along paths
of the process are available. This allows to derive the theoretical properties of
estimators of the Hurst index or memory parameter. [FRS05] have defined an
estimator of the Hurst index of the Infinite Poisson source process (with ran-
dom transmission rate) related to the GSE and proved its consistency and rate
of convergence. Instead of using the DFTs of the process, so-called wavelets
coefficients are defined as follows. Let ¥ be a measurable compactly supported
function on R such that [ (s)ds =0.For j € Nand k =0,...,27 —1, define

wjy, = 29/? /¢(2_js —k)Xsds.

If (13) holds, then E[w;;] = 0 and var(w;;) = L(27)2@2~%)7 = [(27)224
where « is the tail index of the durations, d = 1—«/2 is the memory parameter
and L is a slowly varying function at infinity. This scaling property makes it
natural to define a contrast function

W (d') = log (Zu bea 2—2d’jw;{k> +dd'log(2) ,

where A is the admissible set of coefficients, which depends on the interval
of observation and the support of the function . The estimator of d is then
d = arg ming e (,1/2) W(d'). [FRS05] have proved under some additional tech-
nical assumptions that this estimator is consistent. The rate of convergence
can be obtained, but the asymptotic distribution is not known, though it is
conjectured to be Gaussian, if the set A is properly chosen.

Note in passing that here again, the slow growth/fast growth phenomenon
arises. It can be shown, if the shocks and durations are independent, that for
fixed k, 2(1’0‘)j/2wj,k converges to an a-stable distribution, but if k£ tends to
infinity at a suitable rate, 2=% wj, converges to a complex Gaussian distribu-
tion. This slow growth/fast growth phenomenon is certainly a very important
property of these processes that should be understood more deeply.
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Appendix

Proof ( of Theorem 3). For simplicity, we set the clock-time spacing At = 1.
Define

6]
Srn@)=> m 0<0<1,
k=1

[nd]
Sann(®)=> ANy  0<60<1.

t'=1

Since a@ < 2 and {73} is an i.i.d. sequence, by the fonctional central limit
theorem (FCLT) for random variables in the domain of attraction of a stable
law (see [EKM97, Theorem 2.4.10]), I(n)n='/*{S, () — |nf]u,} converges
weakly in D(0,1) to an a-stable motion, for some slowly varying function .
Now define

Un(8) = (2m) " 2U(n)n = * {Sana(6) — [n6] /nr} -

By the equivalence of FCLT's for the counting process and its associated partial
sums of duration process (see [IWT1]), U,, also converges weakly in D([0, 1])
to an «-stable motion, say S. Summation by parts yields, for any nonzero
Fourier frequency w; (with fixed j > 0)

l(n)n1/2—1/aJ£§V _ (27r)_1/2l(n)n_1/a Z{ANt’ . 1/MT}eit/UJj

t'=1
n

= S UL /1) = Un((# = 1)/m)} ' = /0 o297 417 () .

t'=1

Hence by the continuous mapping theorem
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i " oin
V2m l(n)nl/zfl/aJnAjv —)/ AT 48 ()
0

which is a stochastic integral with respect to a stable motion, hence has a
stable law.

To prove the second statement of the theorem, note that for fixed j and
as n — 00, f(w;) ~ ll(n)w;M for some slowly varying function 1, so

_ AN
l(,n)nl/a 1/2 Jn,j

FP(y) lnnt/e=P

fTH wp) Iy =

AN
~ Cyl(mynt o232 Jing

M;lfl/al(n)nl/a—lﬂ '

Since 1/a+a/2—3/2 < 0, we have [(n)n!/*+/2=3/2 _ 0. Hence by Slutsky’s
Theorem, (21) converges to zero. O

Proof (of Theorem /). Let S, (t) = n=% kal(m —E[m]), t € (0,1). It is

shown in Surgailis and Viano (2002) that S, (t) 4 By (t) in D([0,1]) where
By (t) is fractional Brownian motion with Hurst parameter H = d + 1/2.
Thus, by Iglehart and Whitt (1971), it follows that t ~# N — ABy in D([0, 1]),
where A is a nonzero constant. The result follows as above by the continuous
mapping theorem and summation by parts. a
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1 Introduction

The purpose of this chapter is to propose a unified framework for the study
of ARCH(c0) processes that are commonly used in the financial econometrics
literature. We extend the study, based on Volterra expansions, of univariate
ARCH(o0) processes by Giraitis et al. [GKLO00] and Giraitis and Surgailis
[GS02] to the multi-dimensional case.

Let {&: }+ez be a sequence of real valued random matrices independent and
identically distributed of size d x m, {a;},;en+ be a sequence of real matrices
m x d, and a be a real vector of dimension m. The vector ARCH(c0) process
is defined as the solution to the recurrence equation:

Xt :St a—‘rZ(Ith,j . (1)

Jj=1

The following section 2 displays a chaotic expansion solution to this equa-
tion; we also consider a random fields extension of this model. Some approx-
imations of this solutions are listed in the next section 3, where we consider
approximations by m-dependent sequences, coupling results and approxima-
tions by Markov sequences. Section 4 details the weak dependence properties
of the model and section 5 provides an existence and uniqueness condition
for the solution of the previous equation; in that case, long range dependence
may occur. The end of this section is dedicated to review examples of this
vector valued model.

The vector ARCH(oc0) model nests a large variety of models, the two first
extensions being obvious:

(A1). The univariate linear ARCH(oc0) (LARCH) model, where the X, and a;
are scalar,
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(A2).

(A3).
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The bilinear model, with

Xe=Gla+d aXi ;| +8+> BiXi,

j=1 j=1

where all variables are scalar, and (; are iid centered innovations. We set

e a=(3). - (3)

In that case, the expansion (3) is the same as the one used by Giraitis
and Surgailis [GS02].

With a suitable re-parameterization, this vector ARCH(o00) nests the stan-
dard GARCH-type processes used in the financial econometrics literature
for modeling the non-linear structure of the conditional second moments.

The GARCH(p, ¢) model is defined as
Tt = O0tEt
P q
o} = Zﬂjaf_j Jr’YoJrZ’Yj?”tz_j ;o >0, %20, B;=>0,
j=1 j=1

where the e; are centered and iid. This model is nested in the class of
bilinear models with the following re-parameterization

70 i >zt
) = ———=—> ozt = —SF———

0= 7= S B Z i :
see Giraitis et al. [GLS05]. The covariance function of the sequence {r?}
has an exponential decay, which is implied by the exponential decay of
the sequence of weights «;; see Giraitis et al. [GKLO0O0].

. The ARCH(00) model, where the sequence of weights 3; might have either

a exponential decay or a hyperbolic decay.

oo
_ 2 _ 2
Ty = 0tér, Oy = Bo + E ﬂﬂ"t_j )
Jj=1

with the following parameterization

xomrts = (F220) . am () w=(15)
J

where the ¢ are centered and iid, \; = E(e2), and x? = var(e3). Note that
the first coordinate of &; is thus a centered random variable. Conditions
for stationarity of the unidimensional ARCH(o0) model have been derived
using Volterra expansions by Giraitis et al. [GKL00] and Giraitis and
Surgailis [GS02]. The present paper is a multidimensional generalization
of these previous works.
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(A5). We can consider models with several innovations and variables such as:

Zi="Ca o+ ajZi | +ma B+ BYes | +7+ > % Zi—;,

j=1 j=1 j=1

Y = G OH-ZOéjz-thj + p2e ﬂ-l-Zﬂ?thj +7+Z’V]2'thj~

Jj=1 Jj=1 j=1
This model is straightforwardly described through equation (1) with d = 2

ol a2
J
and m = 3. Here & = (Cl’t H,e 1) is a 2x 3 iid sequence, a; = ﬁjl» 5%

Cop o 1
%
o
is a 3 x 2 matrix and @ = | B | is a vector in IR® and the process
gl

X = <}Z/t> is a vector of dimension 2. Dimensions m = 3 and d = 2 are
t

only set here for simplicity. Replacing m = 3 by m = 6 would allow to
consider different coefficients a, 3 and « for both lines in this system of
two coupled equations.

This generalizes the class of multivariate ARCH(o0) processes, defined in
the p-dimensional case as:

1
— 2
Rt—EtEt,

where R; is a p—dimensional vector, X; is a p X p positive definite matrix,
and &; is a p—dimensional vector. Those models are formally investigated
by Farid Boussama in [Bou98]; published references include [Bou00] and
[EK96].

This model is of interest in financial econometrics as the volatility of asset
prices of linked markets, e.g., major currencies in the Foreign Exchange
(FX) market, are correlated, and in some cases display a common strong
dependence structure; see [Tey97]. This common dependence structure can
be modeled with the assumption that the innovations €1, ..., ¢, are cor-
related. An (empirically) interesting case for the bivariate model (X¢,Y})
is obtained with the assumption that the ({1+,(2 ) are cross-correlated.

2 Existence and Uniqueness in LP

In the sequel, we set A(z) = > 5, [la;[l, A = A(1), where || - || denotes the
matrix norm. a

Theorem 1. Let p > 0, we denote
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o= lla|”"t (Bl|&o)I?) 7T . (2)

Jj=1

If ¢ < 1, then a stationary solution in LP to equation (1) is given by:

Xe=¢& |at Z Z 5y §e—jy Uy &gy — g " O | (3)

k=141, ji>1

Proof. The norm used for the matrices is any multiplicative norm. We have
to show that expression (3) is well defined under the conditions stated above,
converges absolutely in LP, and that it satisfies equation (1).

Step 1. We first show that expression (3) is well defined (after the second line
we omit to precise the norms). For p > 1, we have

Z ||aj1§t_j1 .”ajkgt—jl—”'_jkumx'"l

Jis-dk>1
< Y g llmxa - lag, lmall€—g, lasm -+ 16—y ——je llaxcm -
reein>1

The series thus converges in norm LP because

Z Z (E||aj1€t—j1 R ”p)l/p

k=1j1,..;.jk 21

<3S gl llag I, 7)Y Bl IP)P
k=1j1,....jx>1
o0

o0
<3 gl e ElglP) < <3¢

k=1j1,...,jx>1 k=1

The series Y _p—, ¢" is finite since ¢ < 1, hence the series (3) converges in LP.

For p < 1, the convergence is defined through the metric d,(U,V) =
E||U — V||? between vector valued LP random variables U,V and we start
from

p

> el a bl

drvedi 21
< Y ap&g o agbe g ll”
Jis--dk>1

and we use the same arguments as for p = 1.
Step 2. We now show that equation (3) is solution to equation (1):

oo
=& |a+ Z Z aj1§t—j1 T a’jkgt—jl_'“_jk ta

k=1j1,...5k 21
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=& [a+ D a&j+

j>1
o0
Y a0 gy O
k=2j12>1 J2sesjk>1

=& [a+ ) ajx
j>1

o]
5t—j{a +>D ajz&tfj)sz"'ajk&t—j)fjr---—jk'a}

k=2 ja,...,jx>1
= gt (a, -+ Z ant_]) .
jz1
Remark 1. The uniqueness of this solution is not demonstrated without addi-

tional condition; see Theorem 2 and section 5 below.

Theorem 2. Assume that p > 1 then from (2), ¢ = > |lajl[|€ollp- Assume
v < 1. If a stationary solution (Yi)icz to equation (1) exists (a.s.), if Yy is
independent of the sigma-algebra generated by {&s;s > t}, for each t € Z,
then this solution is also in LP and it is (a.s.) equal to the previous solution
(Xt)iez defined by equation (3).

Proof. Step 1. We first prove that ||Yp]|, < co. From equation (1) and from
{Y:}iez’s stationarity, we derive

oo
1¥ollp < l€olly | llall + > llaj 1 Yoll, | < oo,

Jj=1

hence, the first point in the theorem follows from:

”Yb”p S H&JHPHG’H < 0.
L=
Step 2. As in [GKLO0] we write recursively Y; = & (a—l— EjZI ant_j) =
X7 + S, with

m
Xr=&latY D au&gapgi—pal

k=171, ,jrk21

St =& E Gy §t—j1 " Qg St—jr o —fiom Wi 41 Yo — i

jl [ )jnL+1 21
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We have
157l < 1€y D= llag - lagu e HIEN 1Yol = [Yolle™ -
Jis s dmtr 21

We recall the additive decomposition of the chaotic expansion X; in equation
(3) as a finite expansion plus a negligible remainder that can be controlled
X; = X{" + Ry where

RP=6 (>, Y @&y ap&jigal

k>m ji,- k21

satisfies .
2
IR o < llallliéoll, D ©* < ||a||H§ollpg —0.
k>m

Then, the difference between those two solutions is controlled as a function of
m with X; — Y, = R — S5{", hence

1Xe = Yillp < 17" [l + 1[S¢" ]l
(pm m
<7 (pllaHllfollp +Yollpe™ < 27— Lpllalllléollp ;

and thus Y; = X; a.s.

We also consider the following extension of equation (1) to random fields
{Xi}iezn:

Lemma 1. Assume that a; are m x d-matrices now defined for each j €
ZP\ {0}. Fiz an arbitrary norm || - || on ZP. We extend the previous function
A to A(x) = 32 llajll, A = A(1) and we suppose with p = oo that ¢ =
Alléolleo < 1. Then the random field

Xe=& |a+ Z Z Z aj1€t—j1 o 'ajkgt—jl—“'—jka (4)

k=1j1#0  jx#0

is a solution to the recursive equation:

Xe=&|a+) a; Xy |, tezP. (5)
70
Moreover, each stationary solution to this equation is also bounded and equals

X, a.s.

The proof is the same as before, we first prove that any solution is bounded
and we expand it as the sum of the first terms in this chaotic expansion, up to
a small remainder (wrt to sup norm); the only important modification follows
from the fact that now j; + - - - + jp, may really vanish for nonzero j;’s which
entails that the bound with expectation has to be replaced by upper bounds.
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Remark 2. In the previous lemma, the independence of the £’s does not play
a role. We may have stated it for arbitrary random fields {£;:} such that
ltlloo < M for each t € ZP; such models with dependent inputs are interest-
ing but assumptions on the innovations are indeed very strong. This means
that such models are heteroscedastic but with bounded innovations: according
to [MHO04], this restriction excludes extreme phenomena like crashes and bub-
bles. Mandelbrot school has shown from the seminal paper [Man63] that asset
prices returns do not have a Gaussian distribution as the number of extreme
deviations, the so—called “Noah effects”, of asset returns is far greater than
what is allowed by the Normal distribution, even with ARCH-type effects. It
is the reason why this extension is not pursued in the present paper.

3 Approximations

This section is aimed to approximate a sequence {X;} given by (3), solu-
tion to eqn. (1) by a sequence {X;}. We shall prove that we can control the
approximation error E||X; — X;|| within reasonable small bounds.

3.1 Approximation by Independence

The purpose is to approximate X; by a random variable independent of Xj.
We set

oo
Xe=& |a+ Z Z @y &~ A Et—ju—-—ja @

k=1j1+-+j<t

Proposition 1. Define ¢ from (2). A bound for the error is given by:

t—1
~ _ t t
E|X, - % < Ello] (En&)n >kt (1) + fj@) lall .
k=1

Furthermore, we have as particular results that if b, C > 0 and q € [0, 1), then
for a suitable choice of constants K, K':

K(log(tt# , for Riemannian decays A(z) < Cx~?

E|X, - X <<, Vi :

K'(qgV @)V, for geometric decays A(x) < Cq® .
Remark 3. Note that in the first case this decay is essentially the same Rie-
mannian one while it is sub-geometric (like ¢ — e~°V?) when the decay of the
coefficients is geometric.

Remark 4. In the paper Riemannian or Geometric decays always refer to the
previous relations.
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Idea of the Proof. A careful study of the terms in X;’s expansion which do
not appear in X, entails the following bound with the triangular inequality.
For this, quote that if j; + --- + jx > t for some k > 1 then, at least, one of
the indices ji, ..., or ji is larger than t/k. The additional term corresponds
to those terms with indices k& > t in the expansion (3).

The following extension to the case of the random fields determined in
lemma 1 is immediate by setting

o0
Xe=& |a+ Z Z @y o+ gy €y~ — 1,0
k=

1
HJ1H + -+ HJkH < I£ll

Proposition 2. The random field (X¢)iczp defined in lemma 1 satisfies:

) A\l
B - Xl <l (ool 3 et (B + 22 ) jan.

1
1<k<|lt]

3.2 Coupling

First note that the variable X; which approximates X; does not follow the
same distribution. For dealing with this issue, it is sufficient to construct a
sequence of iid random variables &/ which follow the same distribution as the
one of the &;, each term of the sequence being independent of all the &;. We
then set

e = &ift >0,
ET1gife<0,

oo
X =& “+Z Z WG &gy 0y O

k=1J1,...Jk

Coefficients 7; for the 7—dependence introduced by Dedecker and Prieur
[DP01] are easily computed. In this case, we find the upper bounds from
above, up to a factor 2:

t—1 "
P
~ E|X, - X1 < 2B <E|§0|| > ket (1) + 12 @) ol ;

k=1

see also Rischendorf [RiiS], Prieur [Pri05]. These coefficients 73, are defined
as 7, = 7(0(X;,4 < 0), X)) where for each random variable X and each

o-algebra M one sets
/f 7)Px s (d) — /f dex}

where Py and Px ¢ denotes the distribution and the conditional distribution
of X on the o-algebra M and Lipf = sup,, |f(x) — f(y)|/|lz — .

T(M, X) = { sup

Lipf<1
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3.3 Markovian Approximation

We consider equation (1) truncated at the order N:Y; = ft(a%—z;v:l a;Yi—j).
The solution considered above can be rewritten as

XtN =& |a+ Z Z ajlgt_jl T ajkgt—jl—”'—jka

We can easily find an upper bound of the error: E[| X, — XN|| < >°72 | A(N)*.
As in proposition 1, in the Riemannian case, this bound of the error writes
as C' > po N7%% < C/(N® —1) with b > 1, while in the geometric case, this
writes as C¢™V /(1 —¢™V) < CqV /(1 -¢q),0< q< 1.

4 Weak Dependence

Consider integers u,v > 1. Let i1 < «++ < 4y, j1 < +-- < j, be integers with
J1—iy > 1, weset U and V for the two random vectors U = (X;,, X4, ..., X;,)
and V = (Xj,,Xj,,...,X;,). We fix a norm || - || on R% For a function
h: (Rd)w — R we set

h ... —h o
Lip(h) = sup 71, ﬁw) W1, 3wl
T1,Y15 - Tw,Yw ER? 21:1 ||sz - yz”

Theorem 3. Assume that the coefficient defined by (2) satisfies ¢ < 1. The
solution (3) to the equation (1) is O—weakly dependent, see [DDO03]. This
means that:

|lcov(f(U),9(V))| < 2v]| fllocLip(g)6r ,
for any integers u,v > 1, i1 < -+ <y, J1 < -+ < Jp Such that j1 — iy > 1;

with )
—F E k=14 r LT )
0, ||£o||< Ieoll 3 ke (z)* 125 ) al

Proof. For calculating a weak dependence bound, we approximate the vector
V' by the vector V = (Xj,, Xj,,..., X}, ), where we set

00
Xi = ft a+ § E aj1§t—jl U ajlcgt—jl—“'_jk:a‘
k=1j1++jx<s

Note that for each index j € Z, Xj is independent of (X;_;)s>,. Note that
for 1 <k <w, E|X;, — Xj,|| <6, defined in theorem 3. Then
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cov(F(U), g(V))] < [E (FW)(9(V) = (7)) = E(FW))E(g(V) — 9(V))
< 2|f[1E |9(V) — (V)

< 2||fllooLip(g) Y E[IX;, — X5, |
k=1
< 2v‘|f||ooLip(9)9T .

Remark 5. We obtain explicit expressions for this bound in Proposition 1 for
the Riemannian and geometric decay rates.

Remark 6. In the case of random fields the n-weak dependence condition in
[DL99] or [DL0O2] holds in a similar way with

[r/2]
. = 2E o Y keA(D) 4 2
n = 2El|goll { 6ol Z/ H () 1 | Nl

which means that the 