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Preface

These Lecture Notes were prepared from notes taken by M. Ratliff
and K. Spackman of lectures given at the University of Colorado.
I have tried to present a proof as simple as possible of Weil's

"simple" or

theorem on curves over finite fields. The notions of
"elementary" have different interpretations, but I believe that

for a reader who is unfamiliar with algebraic geometry, perhaps

even with algebraic functions in one variable, the simplest method

is the one which originated with Stepanov. Hence it is this method
which I follow.

The length of these Notes is perhaps shocking. However, it should
be noted that only Chapters I and III deal with Weil's theorem.
Furthermore, the style is (I believe) leisurely, and several results
are proved in more than one way. I start in Chapter I with the
simplest case, i.e., with curves yd = f(x) . At first I do the
simplest subcase, i.e., the case when the field is the prime field and
when d 1is coprime to the degree of f . This special case is now so
easy that it could be presented to undergraduates. The general equation
f(x,y) = 0 1is taken up only in Chgpter III, but a reader in a hurry
could start there. The second chapter, on character sums and expo-
nential sums, is included at such an early stage because of the
many applications in number theory. Chapters IV, V and VI deal with

equations in an arbitrary number of variables.

Possible sequences are chapters
I by itself, or

I, I1I for Weil's theorem, or



v

I.1,II11 for a reader who is in a hurry, or

I, II for character sums and exponential sums, or
I, 11, 1V, or

I, III, IV.3 and V .

Originally I had planned to include Bombieri's version of the
Stepanov method. I did include it in my lectures at the University of
Colorado, but I first had to prove the Riemann—-Roch Theorem and basic
pProperties of the zeta function of a curve. A proof of these basic
Properties in the Lecture Notes would have made these unduly long,
while their omission would have made the Bombieri version not self com-

plete. Hence I decided after some hesitation to exclude this version

from the Notes.

Recently Deligne proved far reaching generalizations of Weil's
theorem to non-singular equations in several variables, thereby con-
firming conjectures of Weil. It is to be noted, however, that Deligne's
proof rests on an assertion of Grothendieck concerning a certain fixed
point theorem. To the best of my knowledge, a proof of this fixed
point theorem has not appeared in print yet. It is perhaps needless
to say that at present there is no elementary approach to such a
generalization of Weil's theorem. But it is to be hoped that some day
such an approach will become available, at least for those cases which

are used most often in analytic number theory.

November, 1975 W. M. Schmidt



Notation

%
F is the multiplicative group of a field F .

=i

is the algebraic closure of a field F .
F° is the product F X ... X F , i.e., the set of n-tuples (xl,...,xn)
with xi €EF (id=1,...,n) .
[Fl :Fz] denotes the degree of a field extension Fl 2 F2 .
¥ denotes the trace and €} the norm.
Fq will denote the finite field with ¢ elements.
p will be the characteristic.
Q@ is the field of rational numbers,
R the field of reals,

€C the field of complex numbers,

Z the ring of (rational) integers.

=~ denotes isomorphism of fields or groups.
Quite often, x,y,z... will be elements which lie in a ground
field or are algebraic over a ground field, X,Y,z,... will be

variables, i.e., will be algebraically independent over a ground field,
and % y Paees will be algebraic functions, i.e., they will be
algebraically dependent on some of X,Y,... . Thus f(Xl,..., n
is a polynomial, and f(xl,...,xn) is the ‘value of this polynomial at
(xl,...,xn) .

F(x) or F(X) or F(X,Y) or F(X,@), or similar, will be the
field obtained by adjoining x or X or X,Y or X,m to a ground
field F . Thus F(X) is the field of rational functions in a variable

X with coefficients in F . R[X] denotes the ring of polynomials in X

with coefficients in the ring R .



Vi

1f a,b are in Z , we write alb (or a+b) if a does (or does
not) divide b . Occasionally we shall write dlq-l instead of the
more proper notation dl(q-l) . Again, we shall write f(X)Ig(X) if
the polynomial f£(X) divides g(X) . Further (£(X)) (or (£(X),g(X)) )
will be the ideal generated by f£(X) (or by £(X) and g(X)) .

]wl denotes the number of elements of a finite set ® . Given

sets A ¢ B , the set theoretic difference is denoted by B ~ A .
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Introduction
Gauss (1801) made an extensive study of quadratic congruences
modulo a prime p . He also obtained the number of solutions of the
cubic congruence
ax3 - by3 =1 (mod p )
for primes p =3n+1 , and of the quartic congruence
ax - by4 =1 (mod p )
for primes p =4n+1 . He studied the congruence
ax4 - by2 =1 (mod p )
for arbitrary primes p .
Artin (1924) considered the congruence y2 = f(x) (mod p ) s
where f(X) 1is a polynomial whose leading coefficient is not divisible

by p and which has no multiple factors modulo p , and made the

following conjecture: The number N of solutions satisfies

!N—p|§2ﬁ if deg f =3 ,

4 .

[N+1 - p|

1A

2,/p if deg f
This conjecture was proved by Hasse (1936 b,c.). In fact, let Fq
be the finite field with gq elements, and let N be the number of

. 2 . 2 .
solutions (x,y) ¢ Fq of the equation y = f(x) , where f(X) 1is

a polynomial with coefficients in Fq and with distinct roots. Then

1A

2,/d if deg f

Iv - al 3

IIA

IN+1 ~ q] 2,/d if deg f =4 .

Suppose f(X,Y) is a polynomial of total degree d , with
coefficients in F and with N zeros (x,y) with coordinates in
F . Suppose f(X,Y) is absolutely irreducible, i.e., irreducible

q

not only over Fq , but also over every algebraic extension thereof.



Weil (1940,19483.)f proved the famous theorem (the "Riemann Hypothesis

for Curves over Finite Fields") that

(1) IN - a| =2e/q + c (@
where g is the ''genus" of the curve f(x,y) = 0 and where cl(d) is a
1
constant depending on d . It can be shown that g = E(d—l)(d-z) , hence that

[N - af = (d-1)(d-2)/a + e (D)

Weil's proof depends on algebraic geometry, in particular on Castelnuovo's
inequality. A somewhat simpler proof was given by Roquette (1953); see
also Lang (1961), Eichler (1963).

More recently, Stepanov (1969, 1970, 1971, 1972a, 1972b, 1974)
gave a new proof of special cases of Weil's result which does not
depend on algebraic geometry, but which is related to Thue's (1908)
method in diophantine approximation. This method consists in the
construction of a polynomial in one variable with rather many zeros.
The construction is by the method of undetermined coefficients.

In particular, Stepanov proved that
(2) N -al| = cz(d)ﬁ
if f(X,Y) 1is of some special type, for instance if

f(X,Y) = Yd - £(X)

where d and the degree of f are coprime. Later Bombieri (1973)
and Schmidt proved (2) for absolutely irreducible f(X,Y) by the
Thue ~ Stepanov method. It follows from the theory of the zeta function
that (2) implies (1).

In these Lectures we shall prove (2) by the Stepanov method.

tThe 1940 paper is only an announcement.
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d
. Equations y = f(x) and yq-y = f(x)

References: Stepanov (1969, 1970, 1971, 1972a), Mitkin (1972),

§1.

Stark (1973).

Finite Fields (Galois fields).

Let F be any field. There is a smallest subfield k € F (the
intersection of all subfields of F), called the prime subfield

of F , and either k =® or k = Fp, the integers modulo a prime
In the first case F 1is of characteristic 0, in the second

case of characteristic p . 1In the case when F is finite,

k=F , and [F: Fp] is finite. If, say, [F: Fp] =K,

then |F| = p* . Hence if F, is a field with q elements,

, p prime.

*
let Fq be a finite field and let Fq be the multipli-

* *

cative group of Fq .  Then \Fq\ =q=-1. If x € Fq , then

q-1 . q
X = 1; hence, for x & Fq , we have x° = x = 0. There-

ore, X =X = (X ~x) . So F is the splitting field

xXEF 4
q
of Xq

- X over Fp , and Fq is a normal extension of Fp .
Moreover, as a splitting field, Fq is unique up to

isomorphisms.

Conversely, let F be the splitting field of Xq - X

K
over Fp , Where q=p . Let x xq be the roots of

preees

this polynomial in F . These roots are distinct since the

derivative D(Xq - X) =~ 14#0. Now xi + Xj is a root of

q

X* - X, since,

p.



(x,+X.)q— (x_+x.)=xg+xq—X.—X.=0,
i 3 i J i J i J

and similarly for x, - xj . Also xixj is a root, since

ox )% = x3x% - x x,
iJ i J i ]

and similarly xi/xj is a root if xj #0. These roots clearly
form a field, so, in fact, F = {xl,xz,...,xq} . Thus a field
with q elements does exist.

Considering the above, we have:

THEOREM 1lA. If Fq is a finite field of order g, then

q = pK , p bprime. For every such g, there exists exactly

one field Fq . This field is the splitting field of Xq‘-x

over Fp, and all of its elements are roots of Xq—}(.

*
THEQREM 1B. The multiplicative group Fq is cyclic.

Yor the proof of this theorem we need

LEMMA 1C. Let G be a finite group of order d. Suppose

for every divisor e of d, there are at most e elements

x € ¢ with x° =1. Then G is cyclic.

e
The theorem follows immediately, since X =~ 1 has at most

*
e roots in Fq . It only remains to give a

Proof of Lemma 1C. Every element of G 1is of some order

e, where e\d . Let Y (e) be the number of elements of G
whose order is e . Either {(e) =0 or V¢(e) # 0. Suppose
y(e) #0, and let y € G have order e. Then the elements
2 e . . X e .
Y, ,0+.,¥ =1 are distinct and all satisfy x = 1. Since

there are e of these elements, by hypothesis there can be

no other elements x € G satisfying x=1.



Now let z€ G be any element of order e ; then z = y1

(1 =i <e). Notice that =z = y1 has order e precisely if
(i,e) = 1. Hence {(e) = ¢p(e) , where ¢ is the Euler ©-

function. So, in general, ¢ (e) = ©(e), taking into account

the possibility that ¢ (e) = 0. But
d= ) ¥(@ < ) o =d .
e\d e\d

Hence, for every divisor e of d, {(e) = Q(e) ; in particular,
$(d) =@(d #0 . That is, there exists an element of order d ;

hence, G is cyclic.

K
COROLLARY 1D. Let gq = p . Then Fq = Fp(x) for some x.

*
Proof. Let x be a generator of Fq .

u

Let F ¢ Fr be finite fields; then r = q°. Consider the mapping

q
Ww:F 2 F such that wx) = x1 . This mapping is one-one.
r r

For suppose x% = yq , then

0=Xq—yq=(x—y)q,

whence x -~y =0 and x =y. The mapping ® is then one-one
of a finite set to itself, hence is onto. Moreover, ® is an

automorphism of F , since
r

a q

W+ = G+ vy 0 + 0

and wxy) = =y 9 x4 yq = wx) wy) .

]

In fact, ®w is an automorphism of g over F " (leaving F
r q q

fixed), since if x €EF , wkx = x3 = x . 1In other words,
q



W is a member of the Galois group of Fr over Fq . The map
W is called the "Frobenius automorphism’.

K- .
If r= qK , then l,w,wz,...,w 1 are automorphisms

of Fr over Fq’ and they are distinct because if

ol = ©O=i, j<K -1,
i J
then W) = w(x) for all x € Fr ,
i J
x'q .—.Xq for all XEFr s
i J
so x3 - xq =0 for all x € F.
qi qj
But the degree of the polynomial X - X is less than
qK = r, so the above cannot hold identically for all x € Fr,
qi qj
unless X - X is identically zero and i = j. Since

the order of the Galois group is K , these are the only auto-

morphisms of Fr over Fq . We have shown:

THEOREM 1lE. Every automorphism of Fr over Fa is of

the form o (0O=i=<K-=-1), where wx) = xq . That is,

the Galois group of Fr over Fq is cyclic with generator w .

Recall that the trace of an element is the sum of its
conjugates. For the case F & F} , the trace of an element

x €F is
r

F(X) = X + X° 4+ X 4+ ... + X .



LEMMA 1F. Let x € Fr’ with Fq < Fr . Then the follow~

ing three conditions are equivalent:

@ T -o.
a

(ii) There exists y € F, with x =y =~y .

(iii) There exist precisely ¢q elements y € Fr with

X=y =V o

Proof: Exercise.
Now let K be any field of characteristic p. Then the
mapping w:x - xp is an endomorphism of K. However, in this

case, ®w need not be onto.

Example: JLet K = Fp(X) , p prime. Then
wa, + a.X + .00 + @ Xt) =a_ + a Xp + . + a ti .
0 1 ‘ t -0 1 . t
Here W(F X)) = F_ &P .
P b

It is clear, however, that w is onto whenever K is
algebraically closed.

Let k[X] denote the ring of polynomials over k . Let
D be the differentiation operator defined as usual:

t t-1
D(a0+a1X+...+atX)=a1+2a2X+...+tatX .

THEOREM 1G. Let k be a field of characteristic p, and

let M be an integer, M < p. Suppose a(X) € k[X] and for
some x € k|,

0 =a(x) =Dax) = Dza(x) = .ee = DM la(x) .



g2 .

M
Then a(X) has a zero at x of order M; i.e., (X - %) divides

a(X), or in symbols) X - x)M\ a(X) .

Proof: Write

aX) = <, + cl(X-x) + cz(X-x)z + ee. + ct(X--x)t o

£ ' £+1 t t—f,]
Then, D a(X) =Z'[}!&+< ‘ )CZ+1(X—X)+...+(Z)Ct(X—X) .

Substituting x, for 0 </ < M - 1, we have

0:2:02 .
But £ =M-1<p, so L. #£0 in k. Hence c, =0,

0 sM~-1. It now follows that (X = x)M divides a(X) .

Remark: The condition M < p is essential in the above

theorem. For example, consider a(X) = Xp . All derivatives

vanish at x = 0, yet a(X) has a zero only of order p at

x =0.
. d
Equations y = f(x).

Special cases of these equations are equations

2
y = fx) ,

where f(X) has distinct roots and is of degree 3 or 4.

Such equations are called elliptic equations. Equations of the

type

y2 = f(X) ,

with an arbitrary polynomial f(X) are called hyperelliptic

equations. We now are going to make some heuristic arguments

on hyperelliptic equations.



K
If q =2, the mapping y — y2 is the Frobenius auto-~

morphism of Fq

2
y , and conversely. It is then clear that the number of solu-

, 8o as y takes on all values in Fq, so does

tions of y2 = f(x) 1is equal to the number of solutions of

y = £(x) , which is q. On the other hand if q is odd, the

q-1
2 2

%
number of squares in Fq is because

. * 2 3 -1
if Fq = {g,g 8 ;"';gq = 1},
*, 2 2 4 -1 *, 2 -1
then (F)” = {g",g",.--,g" ) and | @) = 5= .

One might, therefore, expect that for about half of the elements

*
x € Fq , f&) will be in (Fq)z . For such an x, there

are two values, namely y and -y, with y2 =fx) . So
again we might expect roughly 2 -%—q = q solutions (x,y)

of our equation.

Let us now refine our intuitions by way of two examples.

Example 1. Consider the solutions (x,y) € Fq X Fq of

the equation

2
y = X4 + 2x2 + 1,
2 2
or G- + D)+ & +1) =0.
. 2
Then either y=x +1
or y = —(x2 + 1) .

So there are approximately 2q solutions to this equation.
The problem appears to arise because Y2 - fX) is reducible

over F .
q
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Example 2. Consider y2 = 2x4 + 4x2 + 2 over F3 . Then

2 2
(y - Nﬁf &+ ))G o+ Vﬁ? " + 1)) =0 .

This factorization, of course, cannot occur in Fé , since 2

is not a square in Fé . However, after adjoining a root of

2

X -2 to F3 (extending to Fb) , the above factorization can

. - 2 4 2 .
be made. That is, the polynomial Y - 2X - 4X = 2 is

irreducible over Fé , but not absolutely irreducible. Now if

either

v - /2 G2 4 D)

1
o

(x,y € Fp)

— 2
or y+a2 "+ 1) =0,

then since {1, JE} is linearly independent over Fé , we have

and X + 1

1]
o

Thus there are no solutions at all. The same conclusicon holds over

Fp , where p 1is a prime =3(mod 8).

These examples should give an indication of why it seems
reasonable that we should impose the condition that Yd - £ (X)
be absolutely irreducible, i.e. irreducible over Fq and every
algebraic extension of Fq, in order to draw the conclusion that

the number of solutions be approximately equal to q

THEOREM 2A. Suppose that Yd - f(X) is absolutely irreducible

2 .
and that g > 100 dm where m = degf. If N is the number

of zeros of the polynomial, then

IN-dq 48 nJq .



Note. No particular importance is attached to the specific values 100 dm2
and 4d3/2m. This theorem was proved but with different values of the con-
stants) in an elementary way b Stepanov in (1969) for d =2 , m odd and ¢
a prime, then in (1970) for (m,d) =1 and gq a prime, finally in (1972a) for
d=2, m odd and q an arbitrary prime power.

A somewhat sharper estimate will be derived in §11 of Ch. II. The elliptic
case of the theorem was first proved by Hasse (1936b,c). The theorem is a special
case of Weil's famous theorem (1940, 1948c90n equations f(x,y) =0 , which will
be proved in Chapter III.

The proof of Theorem 2A will be carried out in the next sectiong,

LEMMA 2B. Suppose

X" = aX + bY + ¢

Y =dX + ey + £
. . . . a b .
is a non~singular linear substitution; i.e., d e £Z0, with

coefficients, a, b, ¢, d, e, £ in some field k. Let f(X,Y)

be a polynomial with coefficients in k . Then f(X,Y) is

irreducible over k if and only if f(aX + bY + c, dX + eY + )

is irreducible over k .

Proof: Exercise.

LEMMA 2C. Suppose the polynomial Yd -~ f(X) has coefficients

in a field k . Then the following three conditions are equiva-

lent:

i) Yd - f(X) is absolutely irreducible.

(ii) Yd - ¢f(X) 1is absolutely irreducible for every

c£0, c€k .

d d
(iii) If fX) =aX - xl) 1 cee (X = xs)  is the factori-

zation of f in k , with X, # X, G # j), then

(d,d},dy,eeeyd) =1
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Proof: Each part of the proof will be by contraposition.
(i) = (ii), Suppose (ii) is not true. Then Yd - cfX) is

reducible over k for some c¢ ¥ O, whence

c(( 7_"?71 - f(x))

is reducible over k . By Lemma 2B, Yd - f(X) is reducible

over k , contradicting (i).

(ii) = (iii), Suppose (iii) is not true. Let t = (d’dl""’ds)> 1.

d,/t d /st
put £ = (X = x)) oo (X = %)) s,

d 1 d
Then ¥ -2 £(0) =Y - gx)t

d d
- F(t-2)

art g (X)) (Y +Y gX) + ...4»g(X)t-1).

= (Y

1 -
So with ¢ = 3 £0, Yd - cf(X) 1is reducible in x , con-

tradicting (ii).

(iii) = (i). Consider Yd ~ f(X) as a polynomial in the ring
L[ Y], with coefficients in the field L =k (X) . We then have

a factorization over L :
d
Y - 1) = (¥ -9) ... ¢=9) ,

where @1,...,md are "algebraic functions''; i.e., elements of

L. In fact, we may set

ml = glmy"'ymd = Qdm 1)
where ¥ 1is any root of Yd - f(X) in i, and where Ql,...,Qd

are elements of k defined by
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Yd-lz(y-gl) ce (=G

Suppose that Yd - f(X) 1is reducible over k . Then there

exists a product

-0, oo @-C0,. D € kx[x,vY]
1 h

where h < d . The constant term of this product,

0,0, ... C. mh € k[x], whence @h € k[x]. 1Let £ be
172 '

A -
the smallest positive integer with m € k[X] . Then any
integer m with mm € k[x] is a multiple of & . Since
d - N . h =
97 € x[x], it follows that £|d, and since 9 € k[X],

L <d . Say mﬂ = h(X) . We have gF = f(X), so

ne? - rx .

=l

Take t = — ; then t\di 1i4=1,...,8), t>1. So

t| (d,d d), t>1, and the lemma is established.

17000

COROLILARY. Suppose degf = m . Then Yd - £(X) ii

absolutely irreducible if (m,d) = 1.

Note: Rather than the more general condition of absolute

irreducibility adopted here, Stepanov always assumed (m,d) =1 .

ILEMMA 2D. Let C be a cyclic group of order h. For

th
any integer d > 0, let E? be the subgroup of d
; d d’
powers of elements of c. let d° = (h,d). Then jl =C ,

and consists precisely of those x € C with




(2-1) X =1 .

For any x € Ef, there are exactly d’ elements y € C with

d
y =X .

Proof: Write C = {g,gz,...,gh =1} . Suppose x € Cd ,
hence is of the form x = gld, for some i . Then since d'\d,

, id.h
d 37
Xh/ = <gd ) =1.
h/d’
Conversely, suppose X =1. We mustiﬁhow there is a

. d i a7 .
y€C with y =x. Let x=g . Then g =1 ; it

follows that ai is an integer, say, i = d’io LIt y=g),
we need
Jd _ . glod/
J
or Jjd = iod/ (mod h) .,
This congruence has a solution j since (d,h) = d’ divides iod’

Moreover, the number of solutions j (mod h) equals (d,h) = d’.

’

Since (2.1) depends only on d/, we have _gf =C , and the

lemma is proved.

Given an equation yd = f(x) in Fq , we are interested
in the number N = N(d) of solutions (x,y) with components
in Fq . Let N0 be the number of solutions with y = 0; then
N0 is the number of x € Fq with f&) =0C .

Now consider the number of solutions with y # 0. For

*
such a solution, f(x) € (Fq)d, so by Lemma 2D,
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q-1
d '
f (x) = 1) where d" = (g - 1,d) .
q-1
d
Let N1 be the number of x € Fq with f(x) =1 . For

such an x, there are d’ elements y with yd = f(x) .

Hence,

'
N = NO +d N1 .

This expression depends only upon d', so N = N(d') . With-
out loss of generality, we may therefore assume that d\(q- 1),

then

N = NO + le ,
q~1

where N1 is the number of x such that f(x) =1 .

Finally, let N_ be the number of x € Fq with

2

q-1\d=-1 q~1\d-2 q-1

d d
@.2) (£ PR EZeS) R IS
But we have

a1 a1l g-1y L -2 a1
z°‘-2=z(z“l -1)(2Gl vz @ A +1>.

Now, since every =z € Fq satisfies z3 - z = 0, and
zq - Z is a separable polynomial, every element of Fq is a
root of one and only one of the factors of z% -2 , whence

q = NO + N1 + N2 .

For future reference, we summarize:

LEMMA 2E: Let N be the number of solutions (x,y) € FqX Fq

of yd = f(x), where d|(g-1) . Then N = N, + dN;, where
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N0 is the number of x € Fq with f(x) =0, and N is

1 =
q=1
the number of x € Fq with f(x) d =1 . Further,
N0 + N1 + N2 = q, where N is the number of x satisfying
2.2).

Construction of certain polynomials.

In order to prove Theorem 2A, we may clearly suppose
@.1D m>1l, d>1.

We assume d|(q-1), and, for the moment, that (d,m) = 1,

2
where m = degf. Also assume temporarily that q =p or p

p prime. For convenience let

q-1

(3.2) e() = £x) ¢

LEMMA 3A: Suppose hO(X)’hl(X)""’hd 1(X) are poly-

nomials of the type

- q aK
hi(X) = kiO(X) + X kil(X) + eee + X kiK(X)

for 0<is<d- 1, and where degkijs%—m. If

d-1
hO(X) + g(X)hl(X) + .. + £X) hd—l(X) =0,

then each polynomial kij(x) =0 (0£i<d-1, 0= j<K.

Proof: A typical summand is of the form

i.4q]
- = X o
ziJ(x) g(X)" X kij( )
It suffices to show that the degrees of the non-zero summands

are all distinct. We have
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-1
def/_:- ; 4 k
g ij qj + i i m + deg i3
_a . . _ 1
=3 (dJ + im) + deg kij i
whence
% (dj + im) - m < deg Zij = % (dj + im) + % -m .

Hence we need only show that for pairs (i,Jj) # (i',j'), we
have dj + im £ dj’ + i'm .

So suppose dj + im dj' +i'm .

i‘m (mod d) ,

Then im

’

i’ (modd) .

-
L}

so since (m,d): 1)

But 0<i, i'’<d-1, so i =i’ and j =3’ .

LEMMA 3B: (Fundamental lemma). Let ¢ be an integer,

1<¢<d-1, and let a(Z) be a polynomial of degree ¢ -

Let © be the set of x € Fq with either a(g(x)) =0 or

f(x) =0 . let M= m+ 1 be an integer with

(M+3)2S-2?q .

Then there exists a polynomial r(X) # O, which has a zero

of order > M for every x € © and has

deg r < % qM + 4mq .

Proof: Let us try
d-1 K
" .
reo = 0" ), ), k,® e xY,
=0 j=0

i



where the kij(X) are polynomials with coefficients to be
determined and deg k,j < % - m, and where
1
€
3.3) K:[E M+m+ 1],

"[ ]" denoting the integer part. If D is the differentiation

operator, then one finds by induction on £ for 0 <4 < M-1,

that
d-1 K
oo = z0™ ) T kB o0 g0tk
i=0j=0
where
4+1) ) .g=1. ()
kij X) = £X) (Dkij X)) + OfE)M -4 + i T) kij x) .
Hence k;@+1) is a polynomial and
(L+1) «@)
deg kij (X) = deg kij X)) +m-1 .
In particular,
deg k(z)(x) <deg k,  X) + £(m - 1)
ij g %y
a
Sg-m+ L(m - 1)
a
< i f(m -1) =1,

by (3.1).

2 2
Now, by hypothesis, we have M + 3) = 7? , so M< VQ;,

and since we are dealing with the special case where q = p
2
or p , we have M < p . Theorem 15is now applicable and for

x €6, we want that

Dlr(x) =0 (0=4=sM~-1) .
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For any z € Fq satisfying a(z) = 0, we have
Z =Cy+ CiZ 4 we. O z ,

since a(Z) 1is of degree ¢ . Hence for i = 0,

i (i) (1) (1) 5—1
Z =cp +c izt el be (7 .

In particular, for x € Fq satisfying a(g(x)) = 0, we have

xq = x and
e-1
gx) ' = Z (1) (X) .
t=0
Then for such an x,
e-1
Dzr(x) = f(x)M-z Z (y’)( )g(x) )
t=0
where
d- K
(z) ® = 2 z (1)k(lé) ) 3 .
i=0j=0

So certainly Dﬂr(x) =0 for x € Fq , a(gx)) =0,
provided the polynomials

s Cstse -1

are all identically zero.

Notice that

@)
¢ < 5 +4(m~1) -1+ K.

deg s
«£)

Now, if we denote by B the number of coefficients of Sy



20
for 0st<e-1, 0=, =<M-~1, then

2
q M
< eM{= — -1
B M(d+K>+2(m Ye

A
(8

2{m- 1 3
M + €M ( 5— + a) + eM(m + 1) .

£q 2 m+1

L-agauacy
3 M+ eM 5=+ eM(m + 1)

by (3.3).
If we denote by A the number of possible coefficients

of all the k_ ., , then
iJ

Az(%- >d(K+1)

> (g - md) %(M + m + 1)
€
>3+ 8 m+r ) - mee@w ,
d d
since Mz m + 1. If it is the case that B < A, then the

number of conditions on the coefficients of kij is less than
the number of available coefficients of kij' Since the condi-
tions are homogeneous linear equations, we can then obtain a

non-trivial solution for these coefficients. In order that

B <A, if suffices that

2 1
Vel s +3M(m+1)<g(m+1),
2 d
or that
2 2q
< - .
M + 6M rl
S . 2 _ 2¢q
This is guaranteed by our hypothesis that M + 3) < X

We constructed r(X) such that it has a zero of order

z M for x € Fq with a(g(x)) = 0. Since r(X) has a
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M
factor f(X) , it is clear that r(X) has a zero of order
at least M for each x €& . By Lemma 3A, rX) #0 .
Finally,

(q - 1)

deg r(X) < mM + % -m+ (d~-1)m 3

1
aM + q(a +m+m+ 1) +mM

ol m

A
i

; qM + 4mq ,

and the lemma is proved.

Froof of the Main Theorem.

In Lemma 3B, the polynomial r(X) was constructed with a
zero of order at least M for every x €8 . But obviously
the number of zeros of r(X) , counted with multiplicities,

cannot exceed its degree; hence,

\6\ + MSdeg r < % M + 4qgm ,
or
€ m
\6\ < Fa+ 4q A

Now choose

2q
M = T]"'S.

2
By the assumption of Theorem 2A that q > 100dm ,

/ 2q /a
M= i 4 > 3 zm+ 1 .

Therefore

-

1
ac .

|

\6\ < % q + 4md
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First choose a(Z) =7 -~ 1; here € = 1. Observe that

S is the set of x & Fq with either g(x) =1 or f£(x) = 0.

Thus
9, neb
8l = N, + Ny €5+ 4md® g,
whence
1/2
(4.1 N = dN; + N, = d|g]| < q+ %%,

-1
Secondly, choose a(Z) _—_Zd 4+ see+Z+1, Here € =d=-1.

6 ={x € Fq: g(x)d—1 ¥ oees 48X +1 =0 or f(x) =0},

Therefore,
d -1 iz
= < 4 2 qR .
\6\ N2+N0 q + 4md® q
But
q : %
- - - a _ B
N1 =q NO N2 = 3 4 md® g ,
whence
3/2
(4.2) Nz dN, 2 q - 4 md / ql/2 .

Finally, combining (4.1) and (4.2),

|N - q| = 4md3/2q1/2

This does not, however, complete the proof of Theorem 2A
in its generality. It has only been proved under the two
assumptions that (m,d) =1 and q = p or p2 . We shall

proceed to remove these conditions.

i
-

Removal of the condition (m,d)

The condition that (m,d) = 1 was only required in the
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proof of Lemma 3A. The task before us is to prove this lemma
under the condition that Y'd - f(X) 1is absolutely irreducible.
Remark: Recall that hi(X) was a polynomial of the type
q q
= k v e 0
By ) =k (0 4 x4 + X KkiK(X) ,

where

=
deg kij

ala
1
=

It is easy to see that for c € Fq , hi(X - ¢) 1is a polynomial
of the same type. Hence, we may make a substitution X 2> X - c,
and replace the polynomial f(X) by f&X -c¢) . If q>m,
we may choose c¢ € Fq such that f(-c¢) #£ 0. Therefore
without loss of generality, we assume f(0) #£ 0 .

First, we consider the case d = 2. Assume that Yz-f(X)

is absolutely irreducible and suppose

5.1) hO(X) + hl(x) gx) =0 ,
q-1
2

or hO(X) =-h X) £ (X) .

Squaring, we obtain
2 2 q
By X = by EE) " .
Then, for some polynomial £(X) ,
0t = k2 009+ xU® =2 10 +« x%w .
00 - l0 - 1o

Here

1A

2
deg kOO(X)f(X) g-2m+m=q-m<gq ,

A

2
deg klO(X)f(O) £ q-2m<q
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It follows that
K2 () £(X) = K2 (X)£(0)
00 - 710 )

If k() #£0,
2

kIO(X)
£ %) =<~/f(0) ——) :

kOO(X)

2
which is impossible, since Y - f(X) 1is absolutely irreducible.
Therefore, kOO(X) = 0 and klO(X) =0, since f(0) #£0 .

a

Then dividing (5.1) by X and repeating the argument, we

conclude that ko1 = k11 =0 . Continuing in this way we see
that all the kij are O .

For consideration of the general case d > 2, we state,

without proof, the fundamental theorem on symmetric polynomials.

LEMMA 5A: Suppose a(Xl,...,Xd) is a symmetric polynomial

(i.e., invariant under any permutation of the variables) with

coefficients in any field. Then there exists a polynomial

b(Ul"""Ud) , with coefficients in the same field, such that
a(Xl,...,Xd) = b(sl(xl"°°’xd)""’Sd(xl’""Xd)) ,
where s, == (X1 + Xy eee + Xd) ,
Sy = XXy + een 4 X X0,
d
Sd = (-1) X1X2 - Xd .

Moreover,

(a) If a(Xl,...,Xd) is of degree & in each X, ,

then b 1is of total degree § .
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(b) If a(X1’°"’Xd) is of total degree ¢, then each

i i
monomial Ull SN Ud of b with non-zero coefficients has

the property that

i, + 212 + eee + d{ =€ .

Form a polynomial

d-1
a(y ’HO’°°"Hd—1) = H0 + H1Y + eoo + Hd—IY .
Let gl,...,gd be elements of Fq with
P -1-x-g) & -C)
= AR &
and put
d
b (Y ;HO,...,Hd_l) = i{!l a(QiY; HO,...,Hd_l)

Then b is a polynomial symmetric in le,...,QdY . By Lemma

5A, b must be a polynomial in the elementary symmetric

functions S1svevsSy of le,...,QdY . But in our case,
d
= see = = = - s that
Sq sd_1 0 and S4 Y so tha
b(Y; H H, ) =c(¥; H, )
e (L Y M (A ¢ L ' T R

Here cW;H. ,...,

" Hd 1) is a polynomial of degree d - 1 in

W, and of degree d in H ,..., . Now set

0 Hd—l

d-1
d(U’Vj‘HO"'H ) =V C(U/V;HO,...,Hd_l) o

Hd-l
Then d is a form of degree d - 1 in U, V; and of degree

d in Hg, ..., Hy o
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We now assume Yd - f(X) to be absolutely irreducible.

Suppose

d-1
5.2) hO(X) + hl(X)g(X) + oees + hd_l(X)g(X) =0 .

With the above notation,
a(g(X) ;ho(X),...,hd_l(X)) =0,
and we obtain

C(g(X)d ; hO(X),...,hd_l(X)) =0 .
a1

Recalling that g(X) = £(X) we obtain g% = r Y

and

dE®L, £ ;h ®,...,h ) =0 .

q

Collecting all terms with no factor of X7,

(5.3) d(£(0), 2 (X ko (), .00, @) +xM® =0 ,

k41,0

for some polynomial £ . Now,

5.4) d(£00) £ (X 5k (0 eee iy g o ()

is of degree d -1 in f(0) , f(X), and of degree d 1in

q X
. < = - th 1 (5.4
kOO’ ’kd—l,o But deg kij 3 m, So e polynomial ( )

is of degree = (d-l)m+d(-g-—m> < q . Hence by (5.3),

d(f(o),f(x);koo(x),..., X)) =0 .

k41,0

Let ) be the algebraic function with

gd - 10
“TO
— 1
) is of degree d over Fq(X) , Since Yd - O f(X) is

absolutely irreducible. Retracing our steps, we must have
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£ (0) ,
c(f—(x—), OO(X)""’kd-l,O(X)> =0 ,
1
or c(—a ;kOO(X),...,kd_1 O(X)) =0 ,
m 1
and bl x) k X)) =0
n P’ o0 1,0 = .

Therefore, some factor

g, -
a(g ’kOO(X)""’kd—l,O(X)) =0 ,

C C d-1
or kOO(X) + @ klO(X) + e + (g) kd—l,O(X) =0 .

But ) is algebraic of degree d over F;(X) , so that

kOO(X) = ee. = kd—l,O(X) =0 .

Now divide (5.2) by Xq and proceed similarly to conclude that

k(X)) = ...

o1 xX) =0 .

=k
Continuing in this way we see that all the kij(x) are zero.
We have shown that Lemma 3A holds under the condition that

Yd - f(X) is absolutely irreducible,

Hyperderivatives.

Let k be a field. The polynomial ring k[X] is a vector
W)

space over k . Let E (4 =0,1,...) be the linear operator

on k[x] with

t -
E“Nf):()f‘ (t =0,1,..) .
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t
t t-4
If D 1is the differentiation operator, then DE(X ) = E!( >X ,

2
e v o (2) . . ot
and hence D = L. E . Thus if k 1is of characteristic O,
then
L
We call the operators E(E) hyperderivatives. They are also

called Hasse derivatives. See the papers Hasse (1936a),

Teichmiiller (1936).

LEMMA 6A.

G;) G
1 t
00 v £,(0) = Y E (£ 00) .. B (£, (0) .

20,...,i, 20

E(f/)
i

11+°..+1t=,€

since

Proof. It will suffice to prove the case t =2,

the general case follows by an obvious induction on t. Thus

we have to show that

g @ -1

2
®.1 cwe = ), eV e P e .
i:o

By the linearity of E(J) , we may suppose that f(X), gX)
are monomials; say f(X) = Xa , g(X) = Xb . Then (6.1) is

equivalent to

WADIE
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But this identity is an immediate consequence of the definition

a+b
of ( ) as the number of subsets with {£ elements contained
£

in a set of a + b elements.

t -
COROLLARY 6B. E“) X - c)t = (j&)(x - c)‘C L .

G G
proot, EY x-o)t - Y @ Y@-on ... V-,
1,20,...,1,20
il+...+it=,€
Now E(l)(X -¢c) =1 and E(i)(X ~c) =0 if i=z2.

Hence in the above sum, we need only consider summands with

each ij either 0 or 1. The number of such summands is

(f> , and each summand is (X - c)t_z .
2
COROLLARY 6C. Suppose 0 =4 =t . Then
t-4
(6.2) P emrm® - b@e®

s

where b(X) 1is a polynomial with

deg b =deg a + £((deg £) - 1) .
Proof. 1In
i) i) i)

P emrm® - 5 @ Qaen@® @) ... @ ©EE)
1020,.0,1,20

s

io+ooa+1t=f,

t~
every summand is divisible by f(X) 4 . Hence a formula such

as (6.2) holds. Furthermore,
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@)

deg b = deg(E (aft)) - (t - ) degf

=deg a + t degf - L - (t-1) degf

deg a + 4(deg £ - 1) .

g®

THEOREM 6D. Suppose (f(x)) =0 for £ =0,1,...,M-1.

M
Then & - x) divides fX) .

d
Proof. We may write f(X) = ag + al(X = X) 4+ oao + ad(X—x) o

By Corollary 6B,

£ +1 d

P = az*( >a2+1(x-x)+...+( >ad(X-x)d-l )

£ £

The hypothesis of the lemma implies that a, =0 for £=0,1,...,M-1,

4

and the conclusion follows.

LEMMA 6E. Suppose k is of characteristic p> 0 . Let

"
r = h@x,x°)

for some polynomial h(X,Y) . Then for 4 < ;f" R

EPrm - E)EZ)h(X,XpM) ,
@ . " L oam . .
where EX is the 'partial hyperderivative with respect to

X of h(,Y) .

Proof. By linearity, it suffices to take the case when

h(X,Y) = X°¥’ . Then by Lemma 6A it suffices to show that for

O<I,<pp'

?



§7.

31

p" P -1
This in turn follows from the fact that ( = (pp/%) -1
) -

is O 1in a field of characteristic p .

Removal of the condition that q =p or p .

We just have to prove Lemma 3B in general. We set up
q
r(X) = hX,X")

with

d-1 K
X, v = tN Y Y kij(X)g(X)iY‘j .
i=0 j=0

We now simply have to use Theorem 6D instead of Theorem 1G,

g®

hence have to compute r(X) instead of Dzr(x) . By

Corollary 6C, and since g(X) is a power of f(X),

2P oM wewh = 0™ wew®
where
£
deg ki(j) = deg kij + 4L(m ~ 1) .
Iin view of Lemma B6E we have, for 0 = 4 < M2 q = pK s
d-1 K
(¢)) M-£ ) i aJ
Er e = £ Y, L &y emx¥ .
i=0 j=0

The rest of the argument is as in §3 .
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§8. The Work of Stark.

Now suppose d = 2 and consider again the hyperelliptic equation

¥ o=t

where f(X) 1is a polynomial of degree m, and where Yz - f(X) is
absolutely irreducible. We proved that the number N of solutions

satisfies

N - a] < md®Z ¢,

if q > dm2 .
H. M. Stark (1973) obtained the sharper bounds

IN - q] = m-1q"?,

if g =p and if f(X) has m distinct roots. Set

if m is odd,

5 if m is even .

The number g is called the "genus' of the equation. Thus Stark obtains

2gq1/2, if m is odd ,

HiA

|N - qf
(8.1)

1
2g+1)q /2, if m is even .

1A

1
In fact it follows from Weil's theorem that \N-q\ =2g q° if m
1
is odd, and \N-q+1\ £2gq® if m is even. Moreover, the constant

2g cannot be replaced by a smaller constant independent of q .

However, Stark in his paper did in some cases improve on (8.1) if
m is odd. For example, he showed that if m =5 (so that g = 2) and

if q is a prime p of the type p = 4r2-+1 (rz2), then
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IN - p| =2g[Jp] -1 .

He achieved this improvement by permitting polynomials kij(X) in Lemma 3B

whose degree is larger than % - m . In fact their degrees may exceed

q

. But then it is much more difficult to prove that the polynomial

r(X) of lemma 3B is not O .
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§9. Equations yg -y=f&) .
The first elementary treatment of such equations is due to Stepanov

(1971), with a less complicated treatment provided by Mitkin (1972).

K
THEOREM 9A: Suppose rp =q . Let f(X) € F [X], with €q, degf) = 1

2
and deg f< gq. If N is the number of solutions (x,y) € F of
—_— — r —

v9 -y = f(x) , then

|N = o < q_]+4

Note: This inequality is only significant when K is large. For
example, the theorem yields no information when K = 2: we get
2 5
N -g <gq ,
but obviously
2\ 4

0=Ns=|F| =a .

Recall that if x € Fr , then the trace
K1
FEE)) = &) + @Y+ oo+ )9 € Foo

For w € Fq , let Nw be the number of x € F  with
T

TEE)) =w .

LEMMA 9B.

wEF

Proof: The first statement is obvious. The fact that N = gN

follows from Lemma 1F,
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Now let Vv = [% ] . We may assume K > 3; hence v = 1

. Let

v+l K=-1

Vv
gX) =t + rd $oeee + (09

s

V-1

W) = £ + £+ oo+ £0Y .

]

LEMMA 9C: Let w € Fq be fixed. let M be divisible by g,

K-v=-1
and 0< M= g . Then there is a polynomial y(X) # O , which has

a zero of order = M for every x € Fr with

I(EE)) =w ,

and deg w(X) < ML + qK+1 .
q

Proof: We try

q -1 K
i ri
= k X
u@ = ), ) K 00 g ,
i=0 j=0
M . r K=-1
where K = — , and the polynomials k, _ (X) have degk,. <= =¢q ,
q ij ij ¢
. R Kmv=1 v
and coefficients to be determined. Since K <2v + 1, M< g £q -

v

Y
Thus for £ < M< q and 4(X) = aX,Xx?) , Lemma 6E @with , = yg if q = p%)
yields v
£
P - E)E“a(x,xq) .
K

Therefore, since xt = x¢ and since

M K=1
g = f&x%) + oo+ £xY )

it follows that

P = Y Y kP e’

X = E(z)k.A(X) .
1]

with kFg)
1]
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We proceed just as in the proof of Lemma 3B. Let A be the total
number of available coefficients of the polynomials kij (X) . Then

K-1 K~1 K
A=d9 q(K+1) =9 M+aqg .

For x € F,, with ZE(f(x)) = w, we have x' =x and w = h(x) + g(x) .

So, E(“u(x) = s(“ (x), where
q-1 K
) _ ¢ _ i,J
sV o= ) ) ry@e - ety .
i=0 j=0

In view of Theorem 6D, in order that u(X) has a zero of order M for

our elements x € Fr with ¥ (f(x)) =w, it is certainly sufficient that
. ) . ; . . v=1
the polynomials s (X) vanish identically. Since K < ¢ ,
A K=1 2 v-1
degs()(X)Sq + (a- 1) q + K
K-1 v+1
<q + q - 2.

Let B denote the total number of conditions (clearly in the form of

linear homogeneous equations) on the coefficients of the k . . 1If, for

1]
each £, 0< 4 <M-1, we try to make s(“ (X) = 0, then the number
s o _ ) L k-1
of conditions for this fixed £ is at most degs X) +1=¢q +
1
"t - 1. Hence
-1 1 -1 —-y—-1 y+1 -1
B < M(qK + qv+ ) = MqK + qK v q\) = MqK + qK .

Thus B < A, and we may choose the coefficients of kij (X), not all
zero, so that u(X) as a zero of order at least M for the elements x

in question. Moreover,

2 K-1 K-1
deg u(X) = ak + (g- 1) ¢ + q

1
SME-'}-QK-'- .

q
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Finally, u(X) does not vanish identically, because the non-zero

summands
i_rj
zij(x) = kij(X) g(X) X
have degrees

. . K=-1
degﬂij(X) =Trj +iq deg £ + degkij

1]

which are distinct by the same argument as in Lemma 3A.

observe that g and .deg f are coprime,

Proof of Theorem 9A: For fixed w € F

q b4
K+1
LM< <L
Nﬁ M degr Mq +q ,
K+1
s = .
or Nw q + W
K=v-1 .
Choose M =4¢q ; then for K = 3, q\M . We obtain
v+2
<L
Nw q + q ,
and by Lemma 9B,
A T v+3
= - > = - .
Nw r EJ NV a q
VAW
r V43
- =l <
So \NW q\ q ’
and, in particular,
r v+3
- = <
\NO q\ q B
By Lemma 9B again, K
v+4 [5 ]+4

K-1
q (qj + 1 deg f) + deg kij

We only have to



II. Character Sums and Exponential Sums.

literature: Weil (1948b), Carlitz and Uchiyama (1957), Perelmuter

(1963) , Postnikov (1967, Carlitz (1969).

§1. Ccharacters of Finite Abelian &roups.

We now interrupt our investigation of equations over finite fields
to deal with character sums and exponential sums. These sums have many
applications in analytic number theory.

Given an abelian (multiplicative) group G , a character on
G is a map X from G to the complex numbers with \X(x)t =1 for

all x and with
X(xy) = X)X )

for x,y € G . Since X(1) =X@M)x (@) , we have x (1) =1 .

If Xl , X2 are characters on G , then so is the map X1X2
defined by (X1X2Xx) = Xl(x)xz(x) . If X 1is a character, then
so is the map X_l defined by X—l(x) = I1MX(x) = X(x) (i.e., the
complex conjugate of % (x)) . It is now clear that the characters on
G form a group G’ wunder multiplication, whose identity element is
the character X, having X, ,(x) =1 for x € G . The group G’

is called the dual group to G .

Write

e(x) = elM1X

LEMMA 1A. Let C be the cyclic group of order n , and let

g be a fixed generator. Given a residue class a (modulo n ) , the

map Xa with
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t
1.1) X,@®) = e(at/n) t =0,+1, ...)

is a character of Cn . Every character of Cn is of this type.

The dual group to Cn is again cyclic of order n

E:ggﬁ. It is readily verified that Xa , as given by (1.1), is
well defined and is a character. It clearly depends only on the
residue class of a (modulo n ) . For distinct residue classes, one
gets distinct characters Xa . Since Xaxb =% , the characters

a+b

Xa form a group which is isomorphic to the integers modulo n and

,

hence it is cyclic of order n . It remains to be shown that every character
n n

X is a xa for some a . Now x(g8) =x() =XxQ) =1, so that

th
X(g) is an n root of unity, or x(g) = e(a/n) for some a

But then x(gt) = e(at/n) , and ¥y = Xa

LEMMA 1B. lLet G = Gl'% Gz be the direct product of the abelian

groups G, , G, . Then the dual groups G, Gi , Gé satisfy

Proof. G consists of pairs (Xl’xz) with X, € G1 - € Gz

With every x, € Gi and g € Gé we associate. the map X: G = €

i = . t i i that i
with % (x,,x ) Xl(Xl)Xz(Xz) It is easily seen that X is a

2

character of G , and in fact that the map

Otl,xz) - X

I

, into G’ . In fact, it is an

is an isomorphism of Gi'% G,

isomorphism onto, for if ¥ € G’ then

H

X(Xl,X)

5 x(xl,l)x(l,xz) = Xl(xl)xz (Xz)
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. . ’
with Xl(xl) = X(xl,l) and X2(x2) = X(l,x2) ; clearly Xl € G1

'
and X2 € G2

THEOREM 1C. Given a finite abelian group G , its group G’

of characters is isomorphic to G .

Proof. It is well known that every finite abelian group G is

ft t = R . i ‘e
o he type G gnl gn2 R R gmk for cyclic groups gnl, ’gn

The theorem now follows from Lemma 1A and repeated application of

Lemma 1B.

THEOREM 1D. ILet G be a finite abelian group of order ]G

(a) Given a character ¥ ,

ol if x =x,

Z X(x) =

XeG (0] _Ef X # Xo

(b) Given an x € G ,

Proof. The assertion (a) is obvious if ¥ =%, . If X # X, »
there exists an X, € G with X(xl) £Z£1 . As x runs through G ,
so does xx1 ; therefore

S = Z X(x) = Z X(xxl) =X(X1)S
XEG XEG

The desired conclusion S = 0 follows from X(xl) A1 .,
Part (b) may be proved in an entirely analogous manner. Or,

one may observe that for given x , the map ¥ - X(x) is a map
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from G’ into the complex numbers, which is in fact a character

on G’ . 1In conjunction with Theorem 1C, one sees that every character
of G’ is obtained in this way, and that G is therefore the group

of characters of G’ . The relation between G , G’ 1is thus completely
symmetric. Hence (b) follows from (a) if we interchange the roles

of G, G

§2. Characters and Character Sums associated with Finite Fields.

The non-zero elements of the finite field F form a cyclic group
q
* *
Fq of g-1 elements. Hence the characters X of F also form
q

a cyclic group of q-1 elements. Thus every character y will

q-1

have ¥ =X, ,» where X is the character with Xo(x) =1 for

]

all x . We call X, the principal character. We say that ¥

d
is of order d if ¥ =%, , and if d is the smallest positive

integer with this property. It is easily seen that djgq-1 . We say
that X 1is of exponent e if xe = X, ; clearly this is equivalent
to dje , where d is the order of ¥
Suppose d\q— 1l . For every X of exponent d and every
* d d d .
X € Fq , we have X(x ) =x&) =% ) =1 . Thus X(y) =1 if
* d th .
y € (Fq) , the group of non-zero d powers. Conversely, if
*.d d . .
X{y) =1 for every y € (Fq) , then X~ =X, . Thus if X 1is
a character of exponent d , then y(x) depends only on the coset
* d
of x modulo the subgroup (Fq) . Thus a character of exponent
*  _*.d
d may be interpreted as a character on the factor group Fq/(Fq)
There are precisely d such characters.
It will be convenient to extend the definition of characters

*
X on Fq by putting
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1 if ¥ :Xo,
X (@) =
0 if X # X,

*
We still write ¥ = Xlxz if X&) = Xl(x)xz(x) for x € F ,

q

but not necessarily for x = 0 . For instance, Xq—l =X, , @lthough
X (@) =0 for X # X, and ¥X,(0) =1.

LEMMA 2A. Suppose d\q-l. Then

d if x ¢ (F*)d ,
- q
*d
Z Xx) =0 if xg(Fq) , X #£0,

X of exponent d

* k. d
Proof. The characters of exponent d are characters of Fq/(Fq)
Hence the first two cases of the lemma follow from Theorem 1D.

If x =0, then ) &) =x,(0 + ) 5@ =1+0=1
' X X #Xo

The characters X studied so far will henceforth be called the

multiplicative characters of F

In §3 we shall take the "1ow road”, and we shall easily prove

THEOREM 2B. Suppose d‘q— 1 and suppose X #¥ X, is a character

of exponent d . Suppose f(X) is a polynomial of degree m with

d
coefficients in F and with Y - f(X) absolutely irreducible.

2
Then if q > 100 dm , we have

3
@.1) 1Y x@e) < smd? ¢

XEF
q

This result will turn out to be a consequence of Theorem 2A of

Ch. I. We shall also prove
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THEOREM 2B Suppose ¥ is a character of order d > 1 .

Suppose f(X) € Fq[X] is of degree m and is not a dth power,

i.e. not of the type f(X) = c@ ) with c ¢ F, end LX) € Fq[X]

2
Then EE q> 100 d m , we have again (2.1) .

Later on we shall take the "high road" and prove the following

sharper results.

THEOREM 2C. Suppose ¥y # X, 1is a multiplicative character of

exponent d . Suppose f(X) € Fq[X] has precisely m distinct ones

d
among its zeros, and suppose that Y -~ f(X) is absolutely irreducible.

Then

@.2) | Y xEe)) < m-1e? .

XEF
q

THEOREM 2C’. let X be of order d > 1 . Suppose f(X) has

th
m distinet ones among its zeros, and it is not a d power.

Then again (2.2) holds. k

We now turn to additive characters of Fq . Such an additive
character is simply a character of the additive group of Fq .
v
If q =p where p is the characteristic, then this additive group

is the direct sum of y copies of Cp . Write % for the trace

from F to F .
q P

LEMMA 2D. For every a € Fq , the function ¢a with

Y, () = e ® (ax) /p)

is an additive character of Fq . Every additive character of F

is of this type.
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Il

Proof. We have 1(a(x1-+x2)) S(axl) + z(axz) , whence

il

Y, (%) lya(xl)lya(xz)

Thus wa is an additive character. By Theorem 1C, the number of

additive characters is q ; but so is the number of elements a ¢ Fq

Since, as is easily seen, ¢a # ¢a,, if a # a’ , it follows that

as a runs through Fq , then ¢a runs through all additive characters.
Additive characters will always be denoted by the letter

The character ¢, with {§,(x) =1 for all x is the identity

element of the group of additive characters.

THEOREM 2E. Suppose 1§ # §, 1is an additive character. Let

g(X) be a polynomial in F [X] of degree n . Suppose that either
— DT g Datitid b

(i) n< q and g.c.d. (n,q) = 1 , or, more generally, that

(i) Zq - Z - gX) is absolutely irreducible.
Then #
1/2
| Y yE@e)| « @-1a"
X € Fq

It will be proved in Theorem 1B of Ch. III that hypothesis (i)
implies hypothesis (ii). Strictly speaking, only the case (i) will
be proved in this chapter. It will follow from Theorem 9A of Ch. I.
The case (ii) depends on results which will be proved in Ch. III.
The case (i) is used most often in analytic number theory. In view

of Lemma 2D,m¢ chst i’? may be reformulated as follows.
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n
COROLLARY 2F, Suppose p is a prime. Suppose gX) = anX +...+a0

is a polynomial with integer coefficients having O < n< p and

p,{ a - Then

=1 1
| ), e@®/M| s m~Dp

x=0

/2

Next, we study "hybrid sums "' involving a multiplicative character

X and additive character

THEOREM 2G. Let X , § be, respectively, a multiplicative

character %y, of order d with d\q-—l , and an additive character

£ o 5 of Fq . Let f(X) ¢ Fq[X] have precisely m distinct ones

among this roots, and let gX) € Fq[X] have degree n . Suppose

that either

(i) (d, deg f) = (n,q) =1 , or, more generally, that

q

d
(ii) the polynomials Y - f(X) and Z -~ Z - g(X) are

absolutely irreducible.

Then

| Y Xy EE)| < min-nq 72,

xX€F
q

Again, strictly speaking, the proof of the theorem in this
chapter will be not quite complete. We shall need certain results
proved only in Ch. VI. It will follow from Theorem 1B in Ch. III that
hypothesis (i) implies (ii).

The polynomials f(X),g(X) of our theorems may sometimes be
replaced by rational functions. (Perelmuter (1963)) Here we will

prove only the following result of this kind.
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THEOREM 2H. Suppose | # {, 1is an additive character of Fq

Suppose a,b € Fq are not both zero. Then

2.3) ) RICE: bx" 1| s 2472

XEF
q

Sums of the type of this theorem are called Kloosterman sums.

All the results enunciated in this section are due to A. Weil
(1948b). The proofs of the authors listed at the beginning all follow
more or less the same method, but they are given in a more elementary
style. In particular, the reference to class field theory is avoided.
We shall also present this same method.

Very easy special cases will be given in §3 . In §4 we will
follow the "low road” to prove Theorems 2B, 2B’. 1In §5 we will give
an application of Theorem 2B’. Finally, in {6-12, we shall deal with
the main theorems. In §13 we shall show that Theorem 2E is in a

1)

sense best possible.

§3. Gaussian Sums.

Before embarking on the more complicated proofs of the theorems
announced in the last section, we now pause to prove results of a very
simple nature.

The simplest of the hybrid sums introduced in the last section
are when f(X) = g(X) =X . They are thus of the type

GO = ), XY,
X € Fq

where ¥ , § are a multiplicative and an additive character. These
sums are called Gaussian sums. In view of Theorem 1D, it is clear

that

f)We shall not treat exponential sums along curves (Bombieri (1966) or
Chalk and Smith(1971)) or multiple exponential sums (Bombieri(1966)
and Deligne(1973)).
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(3.1) G&o ) =0 if § #4¢, ,
(3.2) GOLYo) =0 1f X # X, »
3.3) GMyibe) = a .

THEOREM 3A. If X #7%, and § #4y, , then
1/2
16, -4,

Compare with the case m = n = 1 of Theorem 2G.

Proof.
leo,d]? = Y Y x@y@ X&) ¥
Xy

Since X(0) =0 , we may restrict ourselves to summsnds with

Then XGY = XN > =x(1/y) and §G) = GO T =4

i}

Putting x = ty , we obtain

loo,p

Y Y X ey EnX A/ -y
y£#0 t

YoX@ Y -1y
t vy #£0

Z X)) Y(t-Dy) - () X))
y t

Yox@® ) 4 -y,
t y

by Theorem 1D. Again by Theorem 1D, the inner sum here is q

t =1, and it is 0 if t #Z 1 . Thus

loo,1|? = xWa = q

y#0

if
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LEMMA 3B. Suppose | £ ¥, is an additive character. Suppose

dlg-1 , and suppose a # 0 1lies in Fq . Then
d -
Y @y = ). X (@) G, ¥)
yE Fq x of exponent d
. d
Proof. For given x € F , the number of y € Fq with y = x
e q
*_d *.d
equals d if x € (Fq) , it equals 0 if x ¢ (Fq) , X #A0,
and it is 1 if x = 0 . Hence by Lemma 2A,
d
Yov@yH =) V@ ), X ()
y X ¥ of exp. d

Replacing x by x/a and noting that ¥ (x/a) = x(x);(a) , we get

PRI Y XX @
x X of exp. d

X@ ) XY
X of exp. d x

X(a) Ge,|)

I

x of exp. d

THEOREM 3C. Suppose q is odd, # VY, 1is an additive character,

and a #0 , b, ¢ 1lie in Fq . Then

\ z} \U(ax2 + bx + c)‘ = ql/2

XEF
€ q

Compare with the case n = 2 of Theorem 2E!
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Proof.
2 b, 2 b2
2 y(ax + bx + ¢) =Zx: \Lr(a(x+§-;) +C_E)
3.4)

Sy - 004 Y y@yd)
y

By the case d = 2 of Lemma 3B (2\q - 1 since q 1is odd), we have

2 -
3.5) Y ¥y = R TOR IR ))
y x of exp. 2
There are two characters ¥ of exponent 2 . One of them is X, i then

G&,¥) = GKys¥) =0 by (3.1) . The other is # X, 5 then

/2 1/2

1
|G&, 9] =a by Theorem 3A. Thus the sum (3.5) is ¢ in

absolute value, and the theorem is an immediate consequence of (3.4).

THEOREM 3D. For an additive character t #l, » 8 #0 in Fq

and for d=> 1 ,

| Z \v(axd)\ < (d-l)ql/2

X€F
q

Our theorem is a special case of Theorem 2E.

Proof.
d d’
Z\p(ax)zz y(ax ) ,
X X
where d’ = g.c.d. (d,q-1) . Hence we may suppose that dlgq-1 .

Now from Lemma 3B,

X(a) G&,¢) -

Y g ax%
X X of exp. d
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There are precisely d characters of exponent d . One of them is
X, @and has G(XO,W) =0 . The other d-1 characters have
1/2
GX,y) of modulus q . The theorem follows.
§4. The low road.

2B/,

As promised in §2, we shall give an easy proof of Theorems 2B,

using Theorem 2A of Ch. 1I.

LEMMA 4A. Suppose g is a generator of (the cyclic group)

*
F
q

Then

and X # X, is a multiplicative character of exponent d

d-1

k
), @9 =0
k=0

Proof. X 1is a character (but not the principal character) of

the f

run t

from

* * 1 -
actor group Fq/(Fq)d . On the other hand, go,g s ...,gd 1

hrough the cosets of this factor group. The lemma thus follows

Theorem 1D.

Let

Then

(4.1

Now 1

(4.2)

Since

of Ch

*
Proof of Theorem 2B. Again let g be a generator of Fq .

kK _*
Zk be the number of x with f(x) in the coset g (Fq)d .

d-1 K
Y XE@®) = ) 7 X(@)
XEF k=0

q

et Nk be the number of (x,y) € Fi with

d -k
y =fx g

d -k
Y - £fX) g is again absolutely irreducible by Lemma 2C

. I, it follows that Theorem 2A of Ch. I is applicable and that
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3/2 172
| / a /

k q\ < 4md

Let Né be the number of solutions of (4.2)

3,2 172
with y # 0 . Then \Né - N| £m, so that N; - q| < 5md / q /

If we write Zk = (q/d) + Rk and observe that Zk = Né/d , we obtain

| R | < Smdl/qu/z

Now (4.1) in conjunction with Lemma 4A yields

d-1 K d-1 K
Yoxa@Ee) | = ) (§+ Rk) x@Y | =| ) R xE)
XEFq k=0 k=0

d-1
< Z \Rk\ < 5md
k=0

3,2 172
q

LEMMA 4B. let £(X) be a polynomial in Fq[X] , and let d

be a divisor of gq-1 . The following three conditions are equivalent.

i3 £

k@ with c e Foo kOO € Fq[X]

G £® = b with h(xX) € %q[x]

(=]
(1) £0) = c®-x) ... (X-x) ° with x. € F_ and
1 s — 1 q

d\e_ Ga=1,...,s)
1

1/d
Proof. If (i) holds, then (ii) is true with hX) =c¢ / k X)

Clearly (ii) implies (iii). If (iii) holds, set k&) =

ei/d e /d d
(X-—xl) ...(X-—xs) s Then f&X) = ck(X) , and we have
u u-1
to show that k() € Fq[X] . Write k) =X + c1X + ...+cu .
du-
We know that k(X)d € Fq[X] . The coefficient of X u-1 in k(X)d

is dc1 . Since d £ 0 in Fq , it follows that c1 € Fq . Suppose

du-i
. ,C € Fq . The coefficient of X 1

d
i-1 in k(X)

we know that cl,..
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is dc, plus a polynomial in cl, RPN 1 with coefficients in Fq
i i-
Hence ¢, also is in F
i q
el e
Proof of Theorem 2B’. Write f(X) = c(X-—xl) ...(X-—xs) 8
where X1 ...,xS are distinct elements of Fq . By our hypothesis,
e = g.c.d.(el, ...,es,d) is a proper divisor of d . We have

1K) = ck®)° ,

el/e e /e
where k(X)) = (X-—xl) ...(X-—xs) 8 By Lemma 4B, applied
with e in place of d , we see that k) € Fq[X] . Since g.c.d.
(el/e, ...,es/e,d/e) =1, it follows from Lemma 2C of Ch. I that
d
v° _ k)

is absolutely irreducible. The character Xe is of exponent d/e

and is not the principal character since e £ d . By Theorem 2B ,

3 1/2 3/2 172
/zq / < 5Smd / q /

Y XEE) | = %@ ), xC0@) | < 5m/e) [d/e)
X X

d d
1 n
5. tems uati = . =
& Systems of equations Y1 fl(x), Yy fn(x)
Throughout, fl(X), ...,fn(X) will be polynomials with coefficients
in Fq and of degree £ m . Put
(5.1) 5 = 1.c.m.(d1, ...,dn) and d = d1d2 ...dn
THEOREM 5A. Let X be a variable and let ), ... ,5) be
————ees e —_—— — —— —— 71 . In —
algebraic quantities with
d d

(5.2) 9, = £, ...,mnn =t
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Suppose
(5.3 [Fq(X,FDl, TR RE Fq(X)] =d .

: 322 .
Then if g > 100 § m n , the number N of solutions (X’yl’ ...,yn) €
n+1 . . . .
Fq of the equations in the title satisfies

5,2 1/2
‘N-—q] < 5mnd § / q / .
Proof. Write d{ =g.c.d.(d,,q-1) . By an argument used in
—— 1

Ch. I, §2 , the number of solutions of the equations in the title is

the same as the number of solutions of

a! a’
1 n
5.4 = e = .
(5.4) v, £, (), Yo fn(X)
dl
: l ' ' . i
Moreover, write di = di e, and let ml’ ...,mn satisfy mi = fi(X)
e.
. 1 ’ .
(i =1, ...,n), and let %1’ ...,mn have mi = mi (i=1,...,n
Then (5.2) and hence (5.3) holds. We have
T 1 / o I !
P : F ceedl
[F oomis g B 0] s af 4
o - ’ ’
[Fq(x,sj)l, RN WX Fq(X,S))l, ,snn)] S e ...
Hence in view of (5.3) ,
o 7 / = / ! /
“ .. : = v d = y
[F ey, - B 0] = a] L-a

say. Therefore the system of equations (5.4) also satisfies the
hypothesis of the theorem. We may therefore suppose without loss of

generality that

(5.5) ai| (a-1 G=1,...,n
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let X be a character of order § , and let . be the character
i

6/di
Xi:X (i=1,...,n)
Then Xi is of order di . The characters of exponent di are
-1
XO = X2 di
i—Xoyxiy iy"'rxi €
d,
By Lemma 2A, the number of y € Fq with y Y ow equals
-1
di 5
X = ) X
X of exp. d. j=0 1
1
Hence
d -1 d -1 . .
1 n Jl Jn
N:X%F .Z/O ....Z_O X, (£, 60) Lo TeE G0)
qu— In=
(5.¢)
d -1 d -1 .
n Jlf)/ci1 J'né/dn
=) )3 2 X (£ ) N )
31=O j. =0 xEFq
The main term is for j1=... =jn =0, and it equals q . The
other summands are character sums
Y, X @)
XEF
€ q
with
J,6/d J. 6sd J,0 J_6
1 1 n n 1 n
g =1, & ...fn(X) =9, -9,

. . - th X
having Jyroeee 0y £0, ...,0 . If g(X) werea § power in
- Jqp Jp -

Fq[X] , then @1 ...mn € Fq[X] . But in view of (5.3), the
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J J
1 n . . .
elements @1 ...mn with 0 < Ji < di i=1,...,n) area
field basis of F (X,m ) ) over F (X) , and hence
q 91 'n q

J1 jn -
H .9 ¢ Fq[X] if some j, is not 0 . Thus g(X) is not a

1 n 1

h
o) power, i.e., it is not of the type of Lemma 4B with § in place

2

2 2
of d . By Theorem 2B’ , and since gq > 100 63 m n = 100 § (mn) ,

we get

Z X(gx)) | < 5(mnd) 63/2q1/2

X€EF
q

In view of (5.6), we obtain

| N- q| < 5mn 65/2 dql/2

Recall that the "big 0" notation o0(g(n)) always stands for

a function f(n) with \f(n)\ < ¢ g(n) for some fixed ¢ > 0

COROLLARY 5B. Let t be a fixed positive integer. For a

prime p , let L = Lt(p) be the number of x (mod p) such that

X+1,x+2, ... x+t
are (non-zero) quadratic residues mod p . Then for large p ,
1/2
L= 0%
2t

Deduction of the Corollary. 1In the field Fp , consider the

system of equations

.7) v. = x+1, ...y, = x+t
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In the notation of Theorem 5A, m = 1 and, since di =2 for

t
lg i<t , we have d =2 . Let ml, cee My be quantities with
2 2 t
@1 = X+1, ""mt = X+
In order to apply Theorem 5A to this case, we need that
[F & )i F] =2t
. My o0 D) By = .

This is true if p=>t , p # 2 , as may be shown as an exercise.

In fact, the reader might want to do the following

Exercise. Let D be a unique factorization domain of characteristic
# 2 with quotient field K . Let Py, ser s Py be distinct primes

in D . Then

RV VERER Y 2"

(See also Besicovitch (1940)).

If N is the number of solutions of the system (5.7), then by

Theorem 5A,
1/2
{N-p| =06 .
if N’ is the number of solutions with x+1, ... ,x+t all non-zero
then |N- N'\ = 0(1) , so that

1/2

|N"-p| =00 .

t
Since N’ =2L , the Corollary follows.
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v
2

Given a complex valued function f(v) and a real valued function

6. Auxiliary lemmas on wv+ ve e HD
8 y 1

g(v) > 0 , the Vinogradov notation

fv) << g®)

means that \f(v)\ < ¢ g(v) for some positive constant ¢ and

for v =1,2, ... . Thus it means that f() = 0(g(®))

LEMMA 6A. Let w1 .,wz be complex numbers, and let B > 0
If
\ v Y
(6.1) Wy + et mﬂ << B for v = 1,2, ... ,
then \‘”j\ <B (G =1, ...,)
Proof. For small values of \zl , we have
1 2 2 1 3
-log(l-wz) = wz + FWZ +30 2
Thus
S 1.y V.V
6.2 -1 l1-w.2z) ... (1- Z = - + ...+ Z
6.2) og((1~w 2) ... 1-w2) Zl S, w,)
u=

Iin view of (6.1), the sum on the right is convergent for \z] < B'-1
Hence the function (6.2) is analytic for \zl < B—1 . Thus
1- w2 #0 if |2zl < B!, and therefore \‘”j\ £B (G=1,...,4)

In our proof we used facts about analytic functions. We now shall

prove a stronger result without using analytic functions. Write

Rz for the real part of =z

LEMMA 6B. Let wl' e be complex numbers, and let B > 0 ,

’wﬂ,
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c>0 EE
(6.3) m(m\{+...+mz)<B\) & =12, ...,
then \mj\ £B (G =1, ...,0

This is an immediate consequence of the even stronger

LEMMA 6C. Let w W be non-zero complex numbers. There

1w, ke

are infinitely many positive integers v with

-1/%
v

6.4) Ry +...+0) > Q-2 ) (|

Y
1\V+...+tm£l ),

hence with
R () “)s a-odu,” v
w,+ ...+w£ > € \mll + ---+|m£\ ),
for given ¢ > 0

For the proof we shall need Dirichlet's Theorem on Simultaneous

Approximations:

LEMMA 6D. Let 8 .. ,0 be real. There exist ({+1)~tuples

= 1’ il
of integers v,ml, ...,m‘6 with arbitrarily large v > 0 and with
m
i -1-(1
6.5) \ei——v—l\<v 22 G=1,...,0

Proof. Write o = [o] + {«} , where [a] is the integer part
of o , i.e. the integer with o - 1< [a] < o , and where {a} is

the fractional part of « , i.e., the number with 0 g {a} <1

such that o - ﬂy} is an integer.
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Now suppose N> 0 is an integer. The points

6.6 , e,

(6.6) ({ue {ws, b

with u = 0,1, ... ,Nﬁ are N£ + 1 points in the half open unit cube

0 < %, <1l,...,0¢< Xz < 1 . This unit cube may be decomposed in an
. Nz . -1

obvious way onto half open small cubes of side N . Two of

the points (6.6) will lie in the same small cube. If these points

belong to the parameters u’ , u with u’ < u, then
’ -1 .
[{we } - {us .} <N G=1, ..., ,
J J
or
' -1 i
@, -us, -m] <N G=1,...,0
J J J
for certain integers m ...,m’e . Putting v =u - u’ , we have
6.7) jve, - m | < vt G=1,...,8) ,
J J

whence (6.5) in view of v g Nz .

If at least one of the ej is irrational, then as N = « the

inequalities (6.7) cannot be satisfied with bounded values of v

Hence there will be (f+l)-tuples with (6.5) and with arbitrarily

large values of v . If all the ej are rational, say if ej = aj/b
(G =1, ...,8) with b > 0 , we may set
v = th | m1 = ta_, .,mz = ta

with t =1,2

’



60

Proof of Lemma 6C. Observe that for real g , T

le®@) -~ em| < 2m|e - 1| .

Write wj = lm_le(ej) with real © . . There will be infinitely
J J

many Vv , and integers ml""

,m_, havin
y] g

\vej - mj\ < v—l/z G=1, ...,
For such v ,
-1
[e(vej) -1 = ‘e(vej) - e(mj)l < 2n\vej -m < 2y /4
whence
-1
Re) = oV neoe ) > a-m e Y G100,

whence (6.4).

§7. Further auxiliary lemmas.

LEMMA 7A.. Let v , m be positive integers. Writing (v,m) =

g.c.d.(v,m) , we have the polynomial identity

v
7.1) TW- (1 - e(mu/y
u=1

Proof. 1In the case (v,

\
TT (L -emumnx) =1-X

u=1
It is correct in this case,

degree v with constant term

\
)X) = 1 - x(vrms)(\),m)

m) =1 , the identity reduces to

since both sides are polynomials of

1 and with roots e(-muwn) (@ =1, ...

In general, put = Vl(v,m) , m = ml(v,m) . As u runs

through a residue system modu

residue system modulo Vi1

lo v , it runs (v,m) times through a

Thus (7.1) is obtained by raising

, V)
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\%
(7.2) 111 a - e(mlu/vl)X) =1-X

th
to the (v,m) power. But (7.2) is correct by the special case

already considered, since (vl,ml) =1
d d-1 . .
LEMMA 7B. Let h®&X) =X + alx + ...+ad be an irreducible
polynomial in Fq[x] . Then in F v[x] it splits into r = (v,d)
q

irreducible polynomials of degree d/r

(7.3) h(X) = h. X) ...h (X)
1 r

If we normalize hi(X) such that its leading coefficient is 1 ,

then h (X) € F JAX] G =1, ...,r) . The elements g of the
. d 1) .
Galois group of F r/Fq permute the polynomials hl' ...,hr
q

Given hi , hj , there is a ¢ 1in the Galois group with chi = hj

Proof. Consider the fields

F v F d
q\/q
F

r
q
F
q

The roots of h(X) are algebraic of degree d over Fq , hence

lie in F qa " They are algebraic of degree d/r over F r " Hence
q q
in F r the polynomial h(X) has the factorization (7.3) , where
q
each hi is of degree d/r and is irreducible over F r " Since
q

T)we let g operate on the coefficients of the polynomials.
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(d/r,v/r) =1 , the roots are still of degree d/r over F v
q

and hence the polynomials hi(X) are still irreducible over

F v The elements g of the Galois group G = G(F r/F ) 1leave
q q 4
h invariant; hence they permute hl’ ...,hr . Given i in
1< i< r , the polynomial
T on,
cea
is invariant under G , hence lies in Fq[X] . It has roots in

common with the irreducible polynomial h , hence equals h = hl...

So as ¢ runs through G , then ¢h, runs through hl’ ""hr
1

§8. 7Zeta Function and I-~Functions.

Throughout, h = h(X) will denote a monic (i.e. with leading
coefficient 1) polynomial with coefficients in F . If h({X) is
q

of degree d , put

For complex
s =g + it ,

put

1
Q(S) = Z
B ogm)®

Here the sum is over monic polynomials h € F [X]
q
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THEOREM 8A. (i) The sum for ((s) 1is absolutely convergent

for g > 1, in fact uniformly convergent for ¢ >o, > 1

(ii) For o > 1,

(e = T a-am™»H™,

h irred.

where the product is over irreducible monic polynomials in Fq[X]

(iii) £(s) = s
l-q
Proof. (i)
) © d
N(d) q
(8.1) g(s) = = ,
gzo qu ggo ;HE

where ©N(d) is the number of monic polynomials of degree d
The sum on the right is clearly absolutely convergent if ¢ > 1 , and
uni formly so if ¢ > o, > 1

(ii) Since every polynomial may uniquely be written as a product

of powers of irreducible polynomials, we have, for g > 1 ,

1 1
{(s) = | a + s+_25+"')
h irred. T (h) R(h)
- T a-am™H™

h irred.

(iii) follows immediately from (8.1).

Remark. We call ([(s) a Zeta Function. It is almost (but not
quite) the Zeta Function of the "function field" Fq(X) . TFor a

reader familiar with Zeta Functions of function fields, we remark the
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following. The prime divisors of the rational function field Fq(X)
consist of prime divisors which correspond to irreducible monic
polynomials, plus the "infinite" prime divisor. Our Zeta Function

differs from the Zeta Function of the field Fq(X) in that in the product
(ii) the factor corresponding to the infinite prime divisor is missing.

l1-s_-1 .
This is why we have [(s) = (1-g ) , while the Zeta Function of

-s -1 l1-s -1
the function field is (l-q ) (@A-da )

Let G be the group of rational functions hl(X)/hz(X) , where

hl’ h2 are monic in Fq[X] . Let G be a subgroup of G such that
(8.2) if h1h2 € G, then h1 s h2 € G
for polynomials h1 , h2 . Let )( be a character on G . We

extend the definition of X by setting X(h) =0 if h is a
polynomial not in G . Then still X(hlhz) = X(hl) X(hz)

for monic polynomials h1 , h2 . For s =g + it , put

A ST AOE IO

h

where the sum is over monic polynomials h € Fq[X]

THEOREM 8B. (i) The sum for L(s,)() is absolutely convergent

for g > 1, in fact uniformly convergent for g > g, > 1

(ii) For o> 1,

L, Xy = T (1—X(h)i)=2(h),_s)_l

h irred.

Proof. Everything works almost the same as in parts (i), (ii)

of Theorem 8A. The details are left as an exercise.

Remark. The experts will see that our functions L(SJ() are

I~Functions associated with the function field Fq(X)
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$9. Special L-~Functions.

Let f(X) be a fixed monic polynomial in Fq[X] . In F [Xx]
a a
. . 1 m -
it factors into & + yl) e X+ ym) , say. Let G be the

subgroup of G consisting of rational functions

rX) = hl(X)/hz(X) having hICYi)hZQYi) A0 i=1,...,m
Then G satisfies (8.2). For r(X) € G, put“
a1 am
©.1) {r}=re) vty
-1 -1
If rX) = (X + al) cee X+ au)(X + Bl) e X+ Bv) , then

1 1

{r} =t - £@IEI@D ™ ... 16D

Always {r} € Fq and {rlrz} = {rl}{rz} . Thus if X is a multiplicative

character of Fq , then

x{rr, b = xdr, hxdr, b

Therefore X({r}) is a character on the group G .
Let H be the subgroup of G consisting of r(X) = hl(X)/hz(X)

with h y) =h ) 40 G =1,...,m

o

LEMMA 9A. X ({r}) =1 for r €

Proof. Obvious.

Let g(X) be a fixed polynomial in Fq[X] , of degree n and
with constant term zero. Given r =r(X) € G , put [r] =0 if

rX) =1, and

D put {r} =1 if fX =1

*
)We allow n =0, gX) =0
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(9.2) [r] = g@p+ ... +eg@) - g@)---.-gB)

i -1 -1

if rX) = X + al) Lo X+ au)(X + Bl) e X+ Bv) with

Qps o0 s By eee B in Fq . Then [r] € Fq and [rlrz] =
[rl] + [r2] . Thus if { 1is an additive character of Fq , then

¢ e =yl Dy dx, D

Thus w([r]) is a character on the group G .
Let H be the subset of G consisting of rational functions

r(X) = hl(X)/hz(X) having

u u-1 v v-1
-3 = ) = -
(9.3) hl(X) X+ alx + +a o, h2(X) X o+ le +

with
9.4) a_ =b_, a_ =b

u
For example, polynomials X lie in H , and so do polynomials

u u-n-1
X o+ an+1X +...+au with u>n . It is easily seen that H is a

subgroup of G .

LEmvA 98. ¢([r]) =1 if reH.

Proof. In (9.2), g(al)+ ...+g( ) 1is a symmetric polynomial
_— u
of degree n in al’ ...,au . Hence it is a polynomial in the
first n elementary symmetric polynomials in Qg cee @y i.e.,
in the coefficients al, ...,an in (9.3):
gla+ .. +el) =4 (), -.oa)

with a polynomial 11 . Similarly,
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g(51)+ ...+g(5v) = zz(bl, ...,bn)

Since the two symmetric functions g(xl)+ ...+g(au) and g(81)+ ...+g(Bv)
have constant term zero, and since they are "the same", except perhaps

for the number of variables, the two polynomials g and 22

1
are the same. Thus (9.4) implies that [r] = 0 , whence ¢([r]) =1

Now put
X =xdrhyded
Then 2( will be a character on the group G . Let H be the
intersection H = H N H. Then H is a subgroup of G , and we
have the

COROLLARY 9C. )C(r) =1 if r€®.

LEMMA 9D. Suppose g > 0O . Then every coset of H in G

contains precisely q’e polynomials of degree n + m + f

Proof. Tt will suffice to show that if r(X) is in G ,

-1
then there are precisely qﬂ polynomials k(X) = Xn+m+2 + bIXn+m+'e
s it H. i
+ +bn+m+z with kX)/rX) € H If r(X) has the expansion
u ~1 -2
rX) =X + aIXu + a2Xu + ... , then this condition means that
(9.5) bl = al, ’bn = an
and that
(9-6) k(\{l) = I‘(\{i) (i = 1, P ,m)

The coefficients b_, ... ,b are determined by (9.5). Pick
1 n
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b , +2.,b arbitrary. Then the relations (9.6) are m (non-
n+1 n+g

homogeneous) linear equations in the m remaining coefficients

. . . . J
P The matr of this syst of equations is
bn+2+1, P higen m ix i ystem q ions i (yi)
(l<i<m, O0<g j< m-1) . The determinant is a Van der Monde determinant.
Since Y10 oot oYy are distinct, the determinant is non-zero. Thus

we can solve the system (9.6) uniquely.
Hence our freedom consists precisely in picking bn+1’ ...,bn+£

£
This gives ( possibilities.

LEMMA 9E. Suppose that

d
either X #X, 1is of exponent d and Y - f(X) is absolutely

.7 irreducible,
or { #1y{, and either (i) (n,q) =1 or, more generally, (ii)
q

Z° - Z - g(X) 1is absolutely irreducible.

Then the character ;( is not principal, i.e., )((k) #Z 1 for some

ke G

Proof. Suppose )((k) =1 . Then X{k)y(k]) =1 . Since
x{x} is a dth root of unity and ¢([k]) is a pth root of

unity with (d,p) =1, it is easily seen that
x{xh =k =1

Hence in the first case of the lemma it will suffice to find a k
with X({k}) #1 , and in the second case it will suffice to find
a k with {([k]) #£1

If X #X, , suppose it to be of order e with e/d . Since

d
Y - f(X) 1is absolutely irreducible, not all the exponents in
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a a
f(X) = X + yl) 1...(X + Ym) n are multiples of e . (See Lemma 2C
*
of Ch. I). Say e T’al . Given CoyrvesCph in Fq , we can therefore
« a, a ‘o a, a
m .
i i t e 1.
pick ¢y € Fq with ¢y ...cm Z (Fq) , whence with X(cl e, ) #

By the argument of Lemma 9D, there is a polynomial k(X) € G with

kly)) = ¢, G =1,...,m

a a
Then {k} = cl1 ...cmm and X({k} #1 .

If § # o , suppose first (i) that (n,q) =1 and £(X)=1. say,
. n

gX) = ax" + gl(X) where g, 1is of degree < n . If kX)) =X + v =
X + al) vee X+ an) , then gl(a1)+ ...+g1Qyn) =0 , since it is
a polynomial with constant term zero in the first n-1 elementary

n

n
symmetric polynomials in Oysevesd - On the other hand, ¢ +...+an =
n

1
1 1
(-1)n+ nv , so that [k] = (—1)n+ anv and

n

1t

9.8) gAxD =y (x" + vD = ¢((—1)n+1anv)

For a proper choice of v , W([k]) #1 , since n 1is not divisible

by the characteristic.

q

More generally, (ii), let § # y, , and let Z° - Z - g(X) be

*
absolutely irreducible. TFor every b € F , bzd

q
¥
(bZ)q - (b2Z) - g(X) 1is absolutely irreducible. So for a € Fq y

- bz - gX) =

also z1 -7 - ag(X) 1is absolutely irreducible, and hence
p
9.9) Z° - Z - ag(X)
)

is absolutely irreducible, where p is the characteristic.

write ¥ , ¥ , ', respectively, for the trace F = Fp y
v v q

F v - Fq , F v - Fp . The character § 1is of the type w(z)z
q q
) . a P .
For if q = pPY | then Z°' - Z = u(Z) - u@) with u() =
v—-1
p
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*
¢a(z) = e®(az)/p) for some a € Fq . If N is the number of
v
zeros (x,z) of (9.9) in F v’ then by Theorem 1A of Ch. III,
q
v v/2 v
Nv =q + 0(q / ) . Hence if v is large, Np < pg . Now

for given x € qu , either zé(ag(x)) = 0 , in which case by

Lemma 1F of Ch. I there are p values of z € F N with

z - z - ag(x) =0 . Or I;(ag(x)) #0 , in whi:h case there is no
such z . Since Np < pqv , there will be an x € F v with
I\')(ag(x)) A0 . Put k() = X +x) ... (X+x) € gq[x] , where
X, =X, ...,xv are the conjugates of x over Fq . Then
[x] = g+ .. +E(x ) =% (€(0) and

P (kD = e@EE g@))/p) = eGT (ag @) /)

ecz\') (ag(x)) /p) # 1
By the freedom in the choice of x we may ensure that k € G.

LEMMA 9F. Suppose the hypothesis (9.7) of Lemma 9E holds.

Suppose 4 > 0 . Then

> Xy - o
h€G
h monic pol.
deg h = n+m+y

Ezggz. By Corollary 9C and by Lemma 9E |, )( induces a non-principal
character on the finite factor group E/ﬁ . On the other hand, as
h runs through polynomials of G of degree n+m+ g , then by
Lemma 9D, it will lie precisely qz times in every given coset of
E/E . The lemma is therefore a consequence of Theorem 1D.
As in §8, extend the definition of 2( by putting ](kh) =0

if h 1is a polynomial € G . As in §8, form the I~Function

L(s,X)
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-5
THEOREM 9G. Again suppose (9.7). Putting U = q , we have

n+m-1
9.9 S =1+ c U+...+cC U

If X #% orif X

]

Xo » £(X) =1, then

c = ), XEEYEEN
XEFq

Proof. L(S,X) =1 + clU + c2U2+... with

heG
pol. of deg.

c, = Z X(h)
t

Here c, = 0 if t=n+ m , by Lemma 9F. Hence L(S,X) is a

polynomial in U of degree < n + m . Now

0
1l

L 2 X(h) S Xxsn
heg x
deg h=1 x+V.1;£0

Z x{x+xphyx+x)D

X

x-P\(.l;éO

a a
PO (VS MO VI L WY YO
X
X+'\(i# 0

Y X E ) € ))
X

fFX)#£O0

Y X E @)Y )

Il

wl
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§10. Field extensions. The Hasse~Davenport relations,.

Given an overfield F v of F , write O for the norm from
q v
q

F to F and ¥ for the trace from F to F . If x is
qv q \Y qv q

a multiplicative character of Fq , then ¥y defined by
\Y

Xv &) = xa, =))

is a multiplicative character of F v If { 1is an additive character

q
of Fq , then ¢v defined by

b, = &, )

is an additive character of F
q

As in §9, let f(X) ¢ Fq[X] be monic, with a factorization
a

a
1 _
K+ yp) T Ko y) T n Fq[X] . Let G be the group

of rational functions r(X) = hl(X)/hZ(X) with monic hi(X) € F v[X]
q

i =1,2) , and let av be the subgroup consisting of rational
functions having hl(yi)hztyi) £0 (1 =1,...,m) . For r(X) € av ,
define {r} by (9.1). Then )g)({r}) will be a character on Ev
The definition of Ev is now obvious, and the obvious analog of
Lemma 9A holds.

Again, let g(X) € Fq[X] be of degree n and with constant term
zero. For r =r(X) € Gv , define [r] by (9.2). Then ¢v([r]) will
be a character on Gv ; the analog of Lemma 9B holds, if Hv is

defined in the obvious way.

It is now clear that

(10.1) X’v (r) = xv({r})\bv([r])
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is a character on av , which is 1 for r(X) € ﬁb =H N ﬁ;

The sum we are interested in is

(10.2) S

Y XEE)YEE@)
X € Fq

we now put

(10.3) S = ) X (EG)Y (@)
v v v
XEF
)
q
We put
L, = Y X p m,
Y heF \)[X] v =
q
where @M(h) = qu if d = deg h . The main result of this section is

THEOREM 10A.

L 6.5 = T L6 - SAELER 6

u=1 log q

Before proving this theorem, we note the following supplement

to lLemma 7B:

LEMMA 10B. Make the same assumptions as in Lemma 7B, and let

(7.3) be the factorization of h(X) in F V[x] . Then
q

mV*

’

@) E)=l,\)(hi) =2

(1) Xv R (ON4
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Proof. () M () =q

(ii) We have ¢{n} = {hl} ...{hr} . Here by Lemma 7B , {h_}, ...

1

are in F r and are conjugates over F . Hence if mr is the
q q
norm from qu to Fq , then {h} = mr({hi}) A4 =1, ...,v).
ThusT)
v/r v/T .
(10.49) 2 dn b = @ o 7" = {n} G=1,...,1)
v o1 roti
on the other hand, [h] = [n ]+...+[n ] . Theretore [n] =% ([n,]
Gi=1,...,r), where Ir is the trace from F r to F . Thus
a q
v v .

(10.5) Iv([hi]) = ;Ir([hi]) = ;[h] G =1,...,r)

In view of the definition of )C as given in (10.1), the desired
v

conclusion follows from (10.4), (10.5).

Proof of Theorem 10A. By the product formula of Theorem 8B,

L, X) = Y a-X wr o5
v yA irreéﬁ monic v =v
in 7 _[X]
v
q

An irreducible monic polynomial h({X) € Fq[X] of degree d splits

over F v according to Lemmas 7B, 10C into h(X) = zl(X) ...zr(X)
q

with r = g.c.d.(d,v) and with Xv(zi)gv (;zi)'S = (X(h)ﬂl(h)_s)\)/r

On the other hand, every monic irreducible g (X) € F V[X] is the
q

1)

Observe that N is defined on polynomials with coefficients

in F , and is quite distinct from % , the norm from F v to F
v
q q

q

n)
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factor of a unique monic irreducible h(X) € Fq[X] . Therefore

-s v/(v,ldeg h) -(v, deg h)

1, X = m a- Awzm™
h irred, monic, =
in Fq[X]

)

Applying Lemma 7A with m = deg h and X:‘X:(h)m(h)_s , we obtain

v
i, (S,X_) = T T @ - e(u deg h/\))X(h)m(h)—s)_l
v h irred, mon. u=1 =
in Fq[X]
v X
- TT T a -X(h)@(h)—(s_ (2miu/(v log q))))
u=l h irred, mon. -
in Fq[x]

v
2miu
= .ﬂ- L(S—m 1X)

Recall that under the condition (9.7), L(s,X) was a polynomial
-8
in U =gq with constant term 1 (see Theorem 9G). Thus it is of
the form (1 - wlU) cew (1 - mkU) with complex Wpy e W We

now have the
COROLLARY 10C. 1If L(S,X) is given by
L(S,X) =1 - u)lU) B ¢ ‘”kU)

with U=gq ° , then

v \V
LV(S,X.) = (1 - wlU\)) e (1 - wkUV)
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-vs
with U = q
iduiv A

Proof.
q—(S— (@2riu/(v log q))) — e,
so that
L(s- @riu/G log @), ) = (1 - we@M® ... A =~ w e
Thus by Theorem 104,
v v
L (S,X) = ﬂ_ (1 - u)le(u/\))U) ﬂ_ (1 - wke(u/\))U)
v u=1 u=1
- Q- w‘l’u") . a- w;U\))
\"] N
= (1 - ‘”1Uv) e (1 - wkU\))~

COROLLARY 10D. Suppose that (9.7) holds. Suppose that

X #X, Or X =%, with £(X) =1 . Then the sum S8 given by (10.3)
— _— Ve L

is of the form

v Y
v R
Proof. By Theorem 9G, applied to F instead of Fq , and
——— v
q
by Corollary 10C,

n4m-1
L s = 1 U « o
v( ’X) + C\;,1 vt +C\),n+m—1 v
v \
= (1-w.U) ... 1q-uw u) ,
1w n+m=1 "y

with
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v
On the other hand, it is clear that ¢ = -Qn1+ ce e HD

and the corollary follows.

COROLLARY 10E. (Davenport-Hasse Relation). Let X , § be

a multiplicative and an additive character of Fq . Recall that the

Gaussian sum G(X,§) was E: XXy (x) , over x € Fq . Now put
x

G &4 = X%F X, @y
v
q
Then unless X =X, , § =4¢, and v is even,

-G, 0, 9) = 6o, 4"
See Davenport - Hasse (1935).

Proof. Suppose X # X, - We have G(X,y) =S and Gv(X,w) = Sv

where §S , Sv are given by (10.2), (10.3) with fX) = gX) =X .

Thus n =m =1 . By Corollary 10D, Sv = —wz for v = 1,2

1Sy 20y

It

whence Sv = —(—Sl)v . The case when ¥ X, follows from (3.1), (3.3).

§11. Proof of the Principal Theorems.

(a) Theorems 2C, 2C’ . We deal with multiplicative character sums.
So let X # X, be a multiplicative character, and let § =4, . Let
f(X) be as in Theorem 2C and monic, and put g&) = 0 , so that
n =deg g =0 . In this case
(11.1) S= ) XE®) and S5 = ) X (£G))
v v
X € Fq XE€F y

q
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In view of Corollary 10D ,
(11.2) S =W, -..,-q

Now suppose that X 1is of exponent d where d > 1 and
diq-1 . There are d characters X of exponent d . For each

such character X , we may define the sums S = S and Sv = SXV

We then have for X #y, ,

v \%
.3 = ~ - .. - .
a1 S =y T T g

Taking the sum over X # X, of exponent d , we obtain

m-1
v
(11.4) > Syy = - Y Z oy
X # X X #Xo  i=1
of exp. d of exp. d

On the other hand, for X =X, , (11.1) yields

(11.5) s, . =4

LEMMA 1lA. For given w € F v’ the number of y € F N with

q q
d
y = Ww equals
Yooxm =Y X&)
v v
X X,
of exp. d of exp. d
Proof. We first note that the map w - (W) is a group homomorphism
* * * *
F v -»> Fq . For each =z ¢ Fq , the number of w € F with
v
q q

lyq+ + vt
Rew) =w It =z
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-1 * *
is € l+q+ ...+ qV = (qV_l)/(q—l) = \FVI /\Fq\ ; hence the number
q

of these w is exactly this number, and our homomorphism is onto.
* * kod

The restriction of the map to (F v)d is a map (F V)d - (Fq) , and
q q

comparing cardinalities we see that it is onto again.
According to Lemma 2A, the sum in Lemma 11A is d or O or 1 ,

* *
respectively, if Mw) € (Fq)d or ¢ (Fq)d , #0, or =0 . 1In

the first case, by what we just said, w ¢ (F* )d , and there are d
qv
elements y with yd =w . In the second case, w ¢ (F* )d , #0
qv
and there are no solutions y with yd =w . In the third case,
w = 0 , and there is the single golution y =0
writing N§ for the number of solutions x,y in F N of
q
yd = f(x) , we immediately obtain

LEMMA 11B.

N = Y, Y X @) = Y s -
v ¥ of exp. d ‘; v X of exp. d XV

d
Now we know from Theorem 2A of Ch. I that if Y - fX) is
absolutely irreducible, then
2
(11.6) Nv - qv << qv/
Combining this with (11.4), (11.5) and Lemma 11B, we obtain

X #Xo i1 Xt
X of exp. d

Lemma 6A yields
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1/2
11.7m \wxi\ < q

for all X , i under consideration. Thus from (11.2) or (11.3),

/2 , and lSl < (m--l)c[l/2

v

\s\)l < (m-1gq

We assumed that f(X) was monic. But since X(af(x)) = X(@X (X)),
our character sum estimate clearly holds in general. Therefore the
proof of Theorem 2C is complete. Theorem 2C’ can be deduced from
Theorem 2C in the same way in which Theorem 2B’ was deduced from
Theorem 2B.

We remark that Lemma 11B, together with (11.4), (11.5), (11.7)
and the fact that there are d-1 characters ¥ # X, of exponent

d , gives

/2

] \
N-a'| s @-Hm-1gqg '

and

|N-q| < (d-1) (m- g/

This improves upon Theorem 2A of Ch. I.
(b) Theorem 2E. We next consider additive character sums.
So let { # 4, be an additive character, and let X =X, . Let

g(X) be as in Theorem 2E, and put f(X) = 1 , so that in the notation

of §9, 10, m = deg f =0 . 1In this case
(11.8) S=) Y@G@) and 5 = ) § @6
XEF v XEF v
q qV

By Corollary 10D,
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There are q additive characters § of F . For each such
q
y we may define S = %VV , and for each § # {, , we have
Y
1.9 S
) v Yy1 ®y,n-1
Taking the sum over characters Vv #£Y, , we get
n-1 N
(11.10) ) S‘kv:_z Zl 91
‘b#‘ho W#‘bo 1=

On the other hand, for § =¢, , (11.8) yields

(11.11) S = Cl\J
Yov
LEMMA 11C. For given w € F v’ the number of =z € F N with
q q
q
Zz -« z = w equals
(11.12) v, =) Y )
] ]
Proof. We shall use Theorem 1F of Ch. I. If I (w) = O , then
on the one hand, we have q solutions z € F N of zq— z =w , and
q

on the other hand, our sum (11.12) is q by Theorem 1D. If

IW) £ 0 , then there is no z € F N with zq - z =w , and the sum
q
(11.12) is zero, by Theorem 1D again.
Writing N\J for the number of solutions x,z in F N of
q . q
z - z = g(x) , we obtain

LEMMA 11D.

N =% z v, @0 :% 5

Now suppose we know somehow that (11.6) holds. Then very much

as in (a), we may conclude that
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1/2

(11.13) |w¢i| < q W £y, 3 1 =1, ...,0-1) ,

1/2
and hence that H‘g(n-nq/

Now if condition (i) of Theorem 2E holds, then (11.6) is true by

9_z - g(X) 1is absolutely

Theorem 9A of Ch. 1. Or if (ii), 2
irreducible, then (11.6) is true by Theorem 1A of Ch. III.

We assumed that g(X) had constant term zero. Now since
y(e() + a) = y(a)y(g(x)), it is clear that the modulus of the character
sum S does not change if we replace gX) by g®&) + a . On the
other hand, the hypotheses of Theorem 2E are not affected by this change.
This is obvious for (i). As for (ii), we note that every a is

q

of the type a =b" - b for some b € ?q , and hence Zq -7 - gX) - a

= (Z - b)q - (Z -b) -g(X) 1is absolutely irreducible if and only if

Zq - 7Z - gX) 1is. Thus Theorem 2E is completely proved.
We remark that in view of (11.10), (11.11), (11.13) and Lemma 11D,
we have
v V/2
(11.14) Nv—q( < (q—l)(n—l)q/ ,

which is an improvement upon Theorem 9A of Ch. 1I.
(c) Theorem 2G. Suppose f(X) , g®X) satisfy the hypotheses
of Theorem 2G. Assume initially that f(X) is monic and that g(X)
has constant term zero. For every multiplicative character X of
exponent d and every additive character { , we put
Sepy = L %, (G @6

Xgv
XEF
q

By Corollary 10D,
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v v
(11.15) SXW\) = —(wx\h1+ P qu;,m+n—l) X £X, of exp. d, § #X,)

On the other hand, by (11.3),

S = Spy 0" —(u);: +n “:,m-l) K #Xo) -
Also, by (11.9),
S‘l'\’ = SXo‘l'\) = —(w;l+ Mry),n—l) W& #¥) -
Finally,
= q”

S
Xo‘#‘ oV

LEMMA 11E. For Wy aW € F , the number of y,z € F N with
et L e gy — = = S

is
) ; Xy (wy )8, (i)
X
of exp d
Proof. Combine Lemmas 11A, 11C .
We obtain
LEMMA 11F. The number NQ of x,y,z in F N with yd = f® ,
q
zq -z =g(x) is given by

N, = ;L % S

of exp d
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Now suppose we know from some source that (11.6) holds. Then

(11.16) \wwii < ql/z for y of exp. d, X,§) # (K,:¥,), and
i=1, ... ,mn~1
v/2

In view of (11.15), we obtain \S \ < (m+n-1)q and
v

|s] s (m+n—1)q1/2

Now under the conditions of Theorem 2G, the equations yd = f(x) ,
zq - z = g(x) define an absolute curve. (See Example 3 in §2 of
Ch. VI). So (11.6) holds by Theorem 7A of Ch. VI.

Theorem 2G is proved, since the restrictions that f(X) be

monic and g(X) be of constant term zero, can be easily removed.

§12. Kloosterman Sums.

It is easily seen that the sum (2.3) is -1 if a #£ 0 ,

b=0, or if a =0, b #£ 0 ; hence we may suppose that ab # 0

LEMMA 12A. Let gq be odd and let X(x) be the quadratic character

of Fq , i.e., X&) =1 or x(x) =-1 if x # 0 is a square or
a non-square in Fq , respectively; and X(0) = O . Then if

¥ £ 4o end if ab £ 0,

(12.1) Y, wax e Y 2 § GOX (x> - 4ab)

XxXeF XEF
€ q € 4

Proof. The sum on the left hand side is

(12.2) Y A@ZE

F
yE q
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- -1 X
where Z(y) is the number of x ¢ Fq with y = ax + bx . Solving

-1 N .
this equation for x we obtain x = (2a) (yvx.Jy -4ab ) , which

may or may not lie in F . We obtain
q
2
Z(y) =X(y -4ab) + 1

2
For if y -4ab # 0 is a square (or a non-square), then
2
Z(y) =2 (or 0); and if y - 4ab =0 , then Z(y) =1 . Thus

(12.2) becomes

Z \v(y)x(yz— 4ab) + Z V() = Z \l;(X)X(x2 - 4ab)
y y x

q

2 2
The polynomials Y - (X - 4ak) and Z ' - Z - X are absolutely

irreducible. Hence by Theorem 2G, the sum on the right hand side

/2 1/2

2 1
@2+ 1- 1q = 2q

1
of (12.1) has modulus < (mn + n - 1l)q /

This completes the proof of Theorem 2H if ¢q is odd, but it
depends on Theorem 2G, which in turn depends on Ch. VI. But we needed
/2

Ch. VI only to show (11.6), i.e., NQ - qv << qv But in our case

the number NQ is the number of solutions x,y,z in Fv of
q

2
y =X - 4ab , z -z =X

This number Nv is also the number of solutions y,z of

2 q

y = (z - z)2 - 4ab

A 2 2
Since Y - (Zq - 7Z) 4 4ab is absolutely irreducible, the number

Nv satisfies (11.6) by Theorem 2A of Ch. 1I.



86

We now will sketch another proof of Theorem 2H, which works for ¢
even as well. Let G again be the group of rational functions
hq(X)/hz(X) whose numerators and denominators are monic polynomials. Let

é be the subgroup of functions whose numerators and denominators have

non-zero constant term. Given r(X) € é » put [r] =1 if rX) =1, and
1 1 1 1
[r] =ala,;+ ...+ - B, - e =B)Y + (= 4.+ S - -l -2 )
1 1
“ v oy @ B By
. -1 -
f = . i
if rx) X + al) X + au)(X + Bl) s X+ Bv) with
@y ey Bl’ ...,Bv in Fq . Then [r] e Fq and [rlrz] =
[r,] + [x,]

The function

Loy =y dr]

~

will be a character on G . Let H be the subset of G consisting

of r{X) = hl(X)/hz(X) having

u u-1 \ v-1
h. X = X a - a h = b
16 ) +a Xt Tt +a _(X+a, Z(X) X" +b X0 T +h X +Dby
with
a b
a =b u-1 = v~-1
1 717 Ta b ‘
u \
u -
For example, monomials X lie in H , and so do polynomials
u u-2 2 .
of degree u > 2 of the type X + a X" T ...4a KT 48 It is
easily seen that H is a subgroup of G . As an analog of Lemma 9B,

we now observe
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LEMMA 12B. X(r) =1 if r € H .

A

Proof. If r € H , then

+ a.e - - - = a - b =0
oy tay = By Py 1 1 '

a
1 1 1 1 u-1 v-1 0
S d.eat = = - ..-= =% -5 =0,
RS a, By By Tu v

so that [r] =0

The analog of Lemma 9D is

LEMMA 12C. Suppose £{ > 0 . Then every coset of ﬁ in G

contains precisely qﬂ (q-1) polynomials of degree f + 3 .

The proof of this is left as an exercise. Carrying out the

obvious analog to the argument in §9, one sees that the I~Function

L(s,)() is a polynomial in U = q—s of the type

L(s,U0) =1 +c U+ 02U2 = (1 - mlU)(l - sz)

1

with

1/2

Thus it suffices to show that ‘wi\ < q (i = 1,2) . This is

accomplished by showing that the number N of solutions x,z in
v
-1
F N of x #0 , 23 -z = ax + bx , satisfies (11.6). Since
q

clearly aX2 - (Zq -~ Z)X+b is absolutely irreducible, this follows

from Theorem 1A of Ch. III.
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§13. Further Results.
let § ={, be an additive charac
of degree n with (n,q) =1 and with

know from Theorem 9G that if ;{(r)

ter. Let g(X) be a polynomial

constant term zero. We

W([r]) , where [r] is defined

as in §9 , then with U = q—s ,
n-1
L(S,X) =1 + clU+ ... 4C 1,U
We now prove
n-1
THEOREM 134. |c_ | = "D/
—_——— n-1
Proof. We have
c 1= ) Ko |
h monic
deg h=n-1
so that
le, .12 ), > Xam)
n-1 1" 2
h h
1 2
deg n-1 deg n-1
Now :Kkk) depends only on the coset C of k modulo the subgroup
H of G Thus
2
13.1) le |7 =), Xoz@© |
[¢}
where the sum is over cosets C of H in G , and where Z(C) is
the number of pairs of monic polynomials h1 y h2 of degree n-1

with hl/h2 €cC
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We write 1 9

in the same coset C

89

(mod H) if rl/rz €H, i.e., if Tty

If we expand the rational functions as

u u, -1 u, -2

r X) =X
1

then r, = r2 (mod H)

= a . a =
11 21’ '#1n = %2n
. . . . u u-1
Thus if C(vl, ...,vn) consists of rational functions rX) =X + a1X +o..
with a; = vl, ...,an = vn , then the sets C(vl, ...,vn) are just
the cosets of H in G .
n-1 n-2
it = e h, =
Now hl/h2 with h1 X + a1X + +an_1 y Y
-~ -2
Xn 1 + blx“ + ...+bn_1 lies in C(vl, ...,vn) precisely if
=b
a1 1+ vy
a2 = b2 + blv1 + v2 ,
(13.2)
=b e +
®h-1 n-1 7 bn—2v1+ +b1vn—2 Va1’
. b_v
O =b aY1" " Vn1
Thus Z(C(vl, ...,vn)) is simply the number of solutions in
a b . ,b in of (13.2
2y "n-1" 1’ S Fq ( )
LEMMA 13B.
n-2
q if vl, ,vn__1 are not O, ,0
n-1
= = = = =0
z(c(vl, ,v.)) q if vy Vo1="n ,
0 if v, = =v =0, Vv_#0

B + a, X t + a. X 1 + o (i =1,2) ,
il i2

if and only if
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Proof. The number of solutions al, ""an—l , bl’ . ’bn—l
in Fq of (13.2) is just the number of solutions bl,... ,bn 1 in
Fq of the last equation (13.2).
In view of (9.8), we have
n+1l .
LEMMA 13cC. X(C(O, ce.,0,v)) = § (-1 ney ) , where a is the

leading coefficient of g(X)

The proof of Theorem 13A is now completed as follows.
By (13.1), Lemmas 13B, 13C, and since )((C(O, e.5,0)) =1 =4 ,

we obtain

v

2
le 17 = Z VZ X(C(vl, Y NTEC )
1 n

Y1

qn_z Z Z .I(C(vl, ,vn))
v
n

f @t - M X(c(o,... ,0))

n-2
- q z: )((C(O, .. ,0,v))
v#£0
Here the first summand is zero, since C(vl, ...,vn) ranges through

all the cosets of H in G . Combining the second and third

summand, we obtain

n-1 n-2 \ n+l n-1
q -q Z:w((—l) na.v).-.q/ .
v
The proof of Theorem 13A is complete. Now we know that in
172
L(s,)() = 1 - wILD .. Q- w 1U) , the absolute values ]wj\ <q /

(=1, ... ,n=1) . But in view of Theorem 13A, we now have
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(13.3) lo.l =a? G =1,...,0-D .

J

COROLIARY 13D. Let g(X) be of degree n with (n,q) =1 , and

let | #{, be an additive character of Fq . Then

S = X
y x%« ¥, &6
Y
q
is of the form
\ \
Sv = wl— "'_wn—l
where w_, ... ,® have (13.3).
1 n-1 —

1
In particular, neither the exponent o) nor the constant factor

n-1 in Theorem 2E may be improved. In fact, by Lemma 6C, we have

COROLLARY 13E. Let S be as above. There are infinitely many
Sl T =Yy =2 kil

positive integers with

v-l/(n—l)

\sv\ > @-ng” Qa - 2v )

1
Similarly, neither the exponent 3 nor the factor (gq-1)(n-1)
in (11.14) may be improved.
The arguments of this section may be carried over, with

suitable changes, to multiplicative character sums and hybrid sums.



III. Absolutely Irreducible Equations f(x,y) = 0

References: Stepanov (1972b, 1974), Schmidt (1973).
$§1. Introduction. This chapter is devoted to a proof of

THEOREM 1A. Suppose f(X,Y) € Fq[X,Y] is absolutely

irreducible and of total degree d >0 . Let N be the number
. 2 5
of zeros of f in Fq . If q > 250d , then
= 5/2 1/2
(1.1) \N-ql<A/2d/ q/

As is well known, this estimate follows from the Riemann
Hypothesis for curves over finite fields, which was first proved
by Weil (1940, 1948a). In fact, the Riemann Hypothesis gives the

stronger estimate

(N-q = @-1DE-2907"7 +c@

for some constant c(d) . Special cases of Theorem 1A (but with
= 2
JEa®/

proved by Stepanov by elementary methods; his most general result

replaced by some other constant depending on d) were

was in (1972b, 1974). Stepanov's method was extended by Schmidt
(1973) to yield Theorem 1A, and also by Bombieri (1973).
In order to provide easy examples of absolutely irreducible

polynomials f(X,Y) , we now state

THEOREM 1B. Let

d d-1
f@ﬂ):g& +gﬁmY 4w“ﬁdm),
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where go is a non-zero constant, be a polynomial with coefficients

in a field k . Put
1
W(f) = mnax - deggi ,
l<ic<d
and suppose that ¢ (f) = m/d with (m,d) =1 . Then f(X,Y) is

irreducible, in fact absolutely irreducible.

Remark. The polynomials considered by Stepanov(1972b, 1974)
were all of the type of this theorem.

To prove Theorem 1B, we need

LEMMA 1c: 1If

(1.2) f(X,79) = uXx,V) v,V

’

then { (f) = max{W(u),v(v)} .

d and

Proof: Suppose a + b

1

u(x,v) EREER N I
a

11
o
]
+

b-1
v, = vy o+ v, (0¥ e 4 V(0

Then

g, ® = 2 u @) v (0=i=<d .

J+k=1

Since each summand uj(X) Vk(X) has degree at most Jj§ (u) + ky (v) =

G + k) max (y () ,¥ (v)) = imax@ (u),y (v)) , we have

—i—deggi(x) Smax{\l;(u),\j,r(v)} (1<i<d) ,
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whence
(1.3) V() smax (Y W,y )} .
Now make the substitution Y - Yw , where ¢ = V¢ (f) . Then
(1.2) becomes
gond + gl(X) Yw(d-l) + ses + gd(X) = (uwaa + ul(X) YW(a—l) + ...+~ua(X))
(on‘”b + v, X) YO +v, X))

S0, VE,Y) |,

say. Examining the total degrees of both sides of this equationT),

we notice that the L.H.S. has degree V¥d, while

deg U{X,Y) = ¥a and degV(X,Y) = {b

so that the R.H.S, has degree = {Ya + ¥b = ¢yd . Hence in fact
deg u(X,Y) = Ya and degV(X,Y) = {b .

It follows that

deguj(X) < J¥ (l2j=2a) and degvk(X) < ki (1=k=h) ,

whence

Y <¢ and Y(v) ¢ .

This, in conjunction with (1.3), proves the lemma.

T)It clearly does not matter that our exponents and degrees are
not necessarily integers.
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Proof of Theorem 1B. Suppose

fX,Y) =uX,Y) v{X,Y)
is a proper factorization of f(X,Y) . Then

dngu(X,Y) < d and dngV(X,Y) <d .

We have
1 r .
Y = max —- degu.(X) ==, with 1=s<d,
l<i<deg_u 1 s
Y
1 w .
and ¥ (v) = max = deng.(X) ==, with 1<z<d .

l=j=d
J ngV

Hence ¢ (f) # max {{ (u),¥(v)} , and the contradiction is obtained
by applying Lemma 1C.
The remainder of this section will be used to obtain a very

modest reduction of Theorem 1A to a special case.

K
Suppose f(X,Y) = g(X,Yp) where, as usual, gq =p . Since

y yp is an automorphism of Fq , as (x,y) ranges over all pairs
in Fi , so does (x,yp) . Therefore the number of zeros of g(X,Y)
is equal to the number of zeros of f(X,Y), and we may replace f by
g . This process decreases the degree in Y of the polynomial under
consideration., After a finite number of such steps, we obtain a
polynomial which is not a polynomial in Yp, i.e., a polynomial

which is '"separable in Y.

If

L
£, = ), 2, X v

is separable in Y, then there is some coefficient
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a. . # 0, where pj jo B

Set
h(X,Y) = f(X + cY,V) = Z aij(c)Xin .

Then the coefficients aij(c) are polynomials in ¢ of degree at

most d, with the properties that

(i) the polynomial a.1 j (c) 1is not identically zero,
0°0

(ii) the coefficient of Yd is aod(c) = fd(c,l) ,
where fd(X,Y) consists of the terms of f(X,¥Y) which are of total

degree d. In particular, (c) is not identically zero. 1If

%04
g > 2d, (which is the case in Theorem 1lA), we can choose ¢ € Fq

so that

a, ., (c) #0 and a_(c) £0 .
1599 od

Then in the polynomial h(X,Y) , Yd occurs with a non-zero coefficient;

moreover, h is separable in Y . Dividing by an appropriate constant,

we achieve the following

Reduction: Without loss of generality, we may assume that

d-1
f(&,Y) = Yd + gl(X)Y + eee + gd(X), deggi(X) <1i,

and that f(X,Y) is separable in Y .
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§2. Independence results.

We begin with a simple remark. Suppose f(X,Y) is a polynomial
with coefficients in a field K and of degree d > 0 in Y .
Suppose f(X,Y) is irreducible over K . Then if we regard f(X,Y)
as a polynomial in Y with coefficients in the field K(X), it is

1)

still irreducible . Hence if %) satisfies £(X,J) = 0, then

[k, : kx)] =d .

LEMMA 2A. Suppose f(X,Y) and g(Z,U) are polynomials with

coefficients in a field K, both absolutely irreducible over K .

Suppose f is of degree d > 0 in Y and g is of degree d >0

in U. Let M,U be quantities with

f&,)) =0, g@z,W) =0.
(So that [K&,]) :K®)] =d and [K(Ez,W) :K@)] =4’ .) Then

/

[kx,z,9,W) : Kx,2)] = dd

Remark: The absolute irreducibility of f and g is essential .

By way of example, take K = @ and

T)For suppose to the contrary that £f(X,Y) = g1 (X,Y)g2 x,V,

where the g, are polynomials of positive degree in Y with

coefficients in K(X). Given any polynomial g(X,Y) in Y with
coefficients in K(X), we may uniquely write g(X,Y) = (uX)/v()) gx,Y,
where u(X), v(X) are coprime polynomials with leading coefficient 1,
and where %(X,Y) =c, X) +cl(X)Y+ cestCy X) Yt with coprime poly-

nomials CO(X)""’Ct(X)' Write r(g) =u®)/v(X). Since K[X] has
unique factorization, it can be shown that r(glgz) =r(g1) r(gz) .

(This is similar to Gauss' Lemma.) Now if the polynomial f(X,Y)
above is irreducible over K, we have r(f) =1, whence r(gl) r(gz) =1.

Thus £(&X,V) =r(g)rE)e &, Vg, &,V =85, &, VD, X,V with poly-
1 2’81 2 1 2

nomials &, , ?gz , contradicting the irreduciblity of f .



2
f£X,Y) =Y - 2X ,

I
(e
i
[\
~N

gz,

If ) and U are as above, then we have the following diagram:

@ (x,z,7,W)

deg/ \deg 2

0,2, Qx,z,W)

deg;\\\\ ‘////;:;2

Q(X,Z A7)

deg 2

QX,2)
Hence

lex,z,9,W) : @(X,2)] = 8 # 16 .

Proof of the lemma: We need to show that

2.1 [kx,2,9,W : kx,z,P] = d
and
(2.2) [kx,2,9 : kx,2)] =d .

To show (2.1) it will suffice to show that g(Z,U) remains

irreducible over K(X,]) . Otherwise,
g(Z,u) = gl(ZyU) gz(ZrU) »

where gi(Z,U) (i = 1,2) has coefficients in K(X,J)) and is of

degree less than d’ in U. Wwrite

g, (Z,0) = Z ciJkZJUk 1 =1,2) ,
J,k
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where

_ O (1)
ijk = rijk(x) + rijk(X)m +oeee 4 L

(a-1)

d-1
P ceb

with rational functions rf?i(x) .

Pick x € X such that the denominators of the rFF)

b e
1Jk(x) ar

non-zero and such that if

1(X,Y) = ao(x)yd + al(X)Yd_l R W

then aO(x) A0 . Pick y € K such that f(x,y) = 0 . Then the
pair (x,y) satisfies any equation over X which is satisfied by

&»p" Pt

- _ O (d-1) d-1
cijk = rijk(x) + e + rijk x)y

and

g @, 0 = ) AR G1=1,2)

g(Z1U) = él(Z,U)éz(Z,U) 1

contradicting the absolute irreducibility of g(z,1)
This completes the proof of (2.1). The proof of (2.2) is similar

but simpler.

LEMMA 2B: Suppose f(X,Y) € K[X,Y] is of degree d > 0 in

Y, irreducible over X and separable in Y. Let f(X,]) =0 and

f(Z,U) =0 . Then f 1is absolutely irreducible if and only if

[kx,z,9,% : K&x,2) ] = a° .

.1-
)For if ,e(X,Y) is a polynomial with Z(X,ED) =0, then [(X,Y)
is divisible by f(X,V) .
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" "

Proof: The "only if" part follows from Lemma 2A. The if

part will be given latef”in these lectures; we do not need it now.

Let K be a field of characteristic p; let q =p . If

f(X,Y) = Z} a_‘XiYj (a, . €K ,
1J

i,J

define

i,J
q

is an automorphism of R, it follows

cla]

Since the mapping x = x

that if f is absolutely irreducible, then so is

[q]

COROLLARY 2C: Suppose f(X,Y), T (X,Y) are as above.

Suppose f is of degree d > 0 in Y . Let X ,Z be variables,

and let ¥ ,U be such that
- [a] _
£, =0, ©*HeE,m =0 .
Then

[k(x,2,9,H) : Kx,2)] = d° .

LEMMA 2D: Let K be a field of characteristic p. Suppose

1

£(X,7) = Yd + gl(X)Yd_ + eee + gd(X)

is a polynomial in K[X,Y], absolutely irreducible and with

deggi(X) < i (1l<isd .

Let f(X,)) =0 . If

%n. v, 3.
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a(X,Y,Z,W) #£0

is a polynomial with

(i) degya = (q/d) - d
(ii) degya <d-1,

(1ii) deg a =d -1,

then

a(Xys.DvXqu.Dq) 7£ 0 *

Before commencing with the proof, we give some heuristic argu-

ments. Since f is irreducible, the elements
i .
)] (0O<is<d-~-1)

are linearly independent over K(X) . On the other hand, since there

2
are d of them, the elements

EDiS))qk (O=i,ks<sd-1)

are linearly dependent over K(X) . Hence the lemma is not trivial,
However, the powers of X in a(X,Y,X%Yq) are restricted. We have
only the powers

XU o svs(qa) - d; j=0,1,...) .

th
So roughly only one d of all possible exponents in X can occur.

That is why the lemma has a chance of working.

Proof of the lemma: The method is similar to that of Chapter

I, §5. Put
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d
aX,Y,Z;W,,...,W) = a(X,vY,Z2,w.,) .
1 d i-1 i

w. .

This is a polynomial in d+3 variables, symmetric in Wl,..., d

By Lemma 5A of Chapter I,

a(X,Y,Z;W,...,W) = b(X,Y,2;8, (W WdveeesSq@y, e, WD),

1 1

where s_,...,s are the elementary symmetric polynomials in
1 d y sy

WireeesW, o By the same lemma, the total degree of b(X,Y,Z;V

d Vo)

LAY

1,...,Vd is at most d - 1 .

in V
Now since

d-1
D ==Y - - g ),

we have for any positive integer t,

-1+t -
2.3) gd-1+t _ gft)(X)md b s gét)(x) ,

where it is easily verified by induction that

deggi(t)(x)s(t-1+i) (1<si=<d) .

Since

dngb <£d@~-1) = (d-1) + d - 1)2,

we apply (2.3) with t < (d- 1)2 , to obtain

b(X,9,z ;V ,...,vd) = c(x,g),z;vl,...,vd) ,

1

where dngc =d - 1. Furthermore,
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2
dech < degXb + (d-1) -1+ 4
= degXb + d(d - 1)
< ddeg o a + dd- 1
2
£q- d +d@d-1)
< q .
Suppose, indirectly, that
ax,9,x4,9% = o

Let 9; =9 and £, ¥ = (¥-PP =~ ... (¥-9) . Then

ax,9,x7597,...9 =0

and since

si(‘l)l,...,‘_l)d) =gi(X) , (1=i=<d)
whence

s, @70, 0P =g£qhx%, 1si<a)
we have

b&,9,x% ; g§q1<xq),...,ggq]<x%> =0
Therefore

[q](xq)) =0 .

e x,9,x7; ggq](xq),---,gd

But since dngc £d-1, and Y 1is algebraic of degree d, we

must have the following identity in two variables:

c(x,v,x%: ggq](xq),...,gdq](xq)) -0 .
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Now make the substitutiom X = X. + X. . Note that x%-x% 4+ x4

1 2 1 g 1 59

that for some polynomial £,

a. _[da],a [a] a q _
c(X1+X2,Y,X1,g1 (Xl),...,gd (Xl)) +X2£(X1,X2,Y)_O .

Since dech < q, the first summand has a degree strictly smaller

than q in X2 , and we obtain the identity

a _[q]

4 q la] .ay, _
c(X1+X2,Y,X1,g1 (Xl),..o,gd (Xl)) =0

Since X

1t X2,Y,Xg are algebraically independent, we may replace

them by variables X,Y,Z, to obtain

¥
(o]

c(X,Y,Z ; ggq](Z),...,gEq](Z))

Substituting ) for Y, we obtain

¥
(o]

2.4 b (x,9),Z ;g5q1<z>,...,ggq]<z>>

Now let ul,...,u be quantities with

d

[q]
2@, = (U-ul) (U-ud) ,

whence-

1reeeby =gi[q](z) a<i<d .

s, U
i
By the construction of the polynomial b, and by (2.4),

a(x,),z ;ul,..., d

Hence for some i, 1< i <d, the quantity U = ui satisfies
a(X,{)),Z,u) =0
2
But by Corollary 2C, and since f£(X,M™) =0, f[q](Z,U) =0, thed

j K
elements @J U (0 < j,k<d-1) are linearly independent over
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K(X,z) . Therefore a(X,Y,Z,W) must be identically zero. This is

a contradiction, and the lemma is established.
§3. Derivatives.

Let f(X,Y) be the polynomial of Theorem 1lA. It is of total
degree d, and we may assume it to be separable in Y. Let
fX(X,Y), fy(X,Y) denote partial derivatives with respect to
X, Y, respectively. As before, let ¥ satisfy f(X,9)) =0.

Let D be the operator of differentiation with respect to X
in Fq(X) . Since % is separable over this field, D may uniquely
be extended to a derivation in Fq(X,@) . In fact, D(EE,M) =

fX(X,m) + fy(X,ﬁ)Dw = 0 , whence

3E.1) DY = - fX(X,‘}))/fy(X,fD) .

LEMMA 3A: Suppose 0 =<4 <M. If a(X,Y) is a polynomial,

then
2
P e paca - P apa®Pam
where a(z)(X,Y) is a polynomial with

dega(z) < dega + (2d - 3)4 .

Proof: The proof is by induction on £ . If £ = 0, there is

nothing to prove. Suppose the lemma holds for £, 0<L< M.

Then
D“l(ff{M(x,m)a &, =D(fiM-2'e &, ma® x,m)
= (2M- 24) ff{M—zz—l(X,ﬁ)) (g O,D) + fYY(x,SI))D{I))a(“ &,
22 am @ @, + P oy
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Substituting (3.1), we get

2M-2 (£+1) £
5 (X,@)(?2M-2£)fYX(X,®)fY(X,%)-fYY(X,w)fX(X,ﬁ))a &,
) 2 )
+ag GDEEMD -l DL EDEE,D)
_ fiM—Z(ﬁ&l)(X’m)a(£+1)(x’q)) ,

say. It is then clear that

deg a D < dega® 4 (2d - 3) < dega s (2d -3 + 1) .

LEMMA 3B: Let

d -
fX,9) =Y + gl(X)Yd 1 + oaee + gd(x) ’

where
3.2) deg gi(X) < i (1 <1< d)
Suppose

6,0 = (0= 9PPE - D) ... (¥ -9

l{ a(X,Yl,...,Yd) is a polynomial symmetric in Y. ,...,Y

then
1 ~aen

d b

a(X)S.Dl"")S.Dd) = b(X) y

where b(X) 1is a polynomial with

degb < total dega(X,Yl,...,Yd)

Proof: Let & denote the total degree of a(X,Yl,...,Yd)

Then

)
a(X,Yl,...,Y ) = }: X cv(Y yeeos, Y ),
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where c_(Y °"Yd) is a polynomial of degree = § - v, symmetric

v( 1’

in Yl"“"Yd

. By Lemma 5A, Chapter I,
Cv(Yl,aaa,Yd) = hv(sl(Yl""’Yd)’°"’Sd(Y1""’Yd)) .
il i id
Moreover, by the same lemma, any monomial s_"s <o Sy occurring

in hv(sl""’sd) has i) + 2i, + ...+ di <§ ~ v . Hence in

cv@l’..ﬂ’g)d) = hv(gl(x)y"'sgd(x)) H

oo 1 i
every summand g, (X)g2 X) ... 84 (X) has degree at most

i, + 2i, + ... + did <6 - v

v
by (3.2). Therefore every summand X CVQDI,...,%d) of a(X,@l,...,md)

is a polynomial of degree = v + 06 - v =5§

§4. Construction of two algebraic functions.

d d-1
Let f(Y) = ag Y + a; + e A= aO(Y - yl) e (Y - yd) ;

thus Yyreeer¥q are the roots of £f(Y) . The discriminant A of

2d-2 2
A = - .
a, l vy yj)
12i<j=sd4
It is well known (and may be deduced from Lemma 5A of Chapter I),

that A is a polynomial of degree 2d - 2 in the coefficients
i i i

a a Moreover, every monomial a 0a 1 a d occuring in
0 g y y i o1 " 8y g
this polynomial has

(4.1) is +2i, + ..o +di, =d(d - 1)
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Now let
f(X,Y) = S gl(X)Yd_l + e+ g (D,
with
(4.2) degg, (X) < i 1 =1i<d)

Let AX) be the discriminant of f(X,Y) as a polynomial in Y .

Clearly A(X) is a polynomial in X . Moreover, by (4.1), (4.2),

(4.3) deghA(X) £ d(d - 1) .
In what follows, we shall assume that
(4.4) dz 2 .,
We may do so, since Theorem 1A is trivial if d =1
Let © be the set of x € Fq with A(X) # 0 . Then
(4.5) g-dd~-1) |6 <gq .

1f x € &, the polynomial f(x,Y) has d distinct roots
Yyreeea¥y € f; . We are, of course, interested in those y's
which in fact lie in Fq . Let Il(x) be the set of those y's

among  yy,e.s,¥y which lie in Fq . Let Iz(x) consist of those

y's which are not in F_ . Then for every x € §,

T, @] + [T, =a.

i
-
o
=]
o))

Define gO(X)

el(X,Y,Y') Yy~-Y,

d
EENCT Yo e yTh
j:l

n

e, x,Y,Y")
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Then

X,V - £X,Y) = el(X,Y,Y')ez(X,Y,Y')
If x €8 and y € il(x) U Ez(x) , then

0= £,y = £,y = £ex,3H
whence
0= £0,y) - £0,59 = &7 - yHe, Gx,y,vh .
If y € El(x) , themn y € Fq , SO y - yq = 0; and because y is

a simple root of f(x,Y), ez(x,y,yq) £#0 . If y£¢€ Iz(x) , then

yq #y, hence ez(x,y,yq) =0 . Hence for A =1 or 2, EX(X)

is the set of y with

f(x,y) =0 and with ex(x,y,yq) =0 .

Notation: Set El =1, €, =d- 1. Then ex has total degree

EX O =1,2) .

LEMMA 4A: Suppose A =1 or 2 . Let M be a positive

integer with
2
dilM, M=zd", 2d-DM+ 8 =q .

Then there exists a polynomial a(X,Y) such that

G) a, ) #£o0,

@)
a

(ii) if (X,Y) is defined as in Lemma 3A, then

aw)(x,y) =0 (O=4L< M

for x €6 and y € EX(X) ,

(iii) dega(X,V) < (Ek/d) qM + q(d - 3/2) .
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Proof: The idea of the proof is similar to the ideas used to

prove Lemmas 3B and 9C in Chapter I. We try

K d-~1
1 qJj _ak
a(X,y) = Z Z b DX Y
j=0 k=0
j+k<K
with
d-1
i
b (Y = Y 8 Y
i=0
where
X) < d) - -i-j-k
degaijk() (q/d) d i J ,
and

K = (Ek/d)M +d -2 .

By Lemma 2D, if not all a, . (X) are zero, then

ijk
axX,p #£0 .
Since the derivatives of X" and mq vanish, it is clear that
K d-1
“) ) aj. 9k
a P @,n = ), Z b DX
j=0 k=0
j+k=K

where, by Lemma 3A,

degb;i) < degbjk + (2d - 3)4 € (q/d) -~ d - j -k + (2d - 3)4 .

we want a(z)(x,y) =0 for 0<4<M x€8& and y € Ix(x)l
. q q
Case 1: X\ =1, Here x,y €F , so x =x and y =y

q

We need to have the polynomial



"

K d-1
) ) 3k
= ), ), by & Xy
j=0k=0
J+ k<K

vanish for the pairs (x,y) under consideration. Notice that

)

dege < (g/d) + (2d - 3L - 2.

Case 2: )\ = 2. Here xEFﬁ, f(x,y) =0 and egLyJ% = 0.

So x% - x and

d-1) (d-2) d=-1
0=ez(x,y,yq) =yQ( _— Y+ e + ¥
q(d-2) d-2
+ gl(x)(y Foeee Y )+ eee + gd_l(x) .
Hence we may e€xpress yq(d—l) in terms of l,yq,...,yq(d_z), with

coefficients which are polynomials in x,y of degree at most d-1.

That is, we need that a certain polynomial c(z)(X,Y,Y') vanishes

)

for (x,y,yq) , where ¢ (X,Y,Y') 1is of degree at most d - 2

in Y’ , and of total degree at most (q/d) + (2d - 3)4 - 2 in X,Y.

4
In both cases, we need that a certain polynomial c( )(X,Y,Y')

vanishes at (x,y,yq), where

degc(e) in X,Y together is < (gq/d) + (2d - 3)4 - 2,

degc(“ in Y is e -1.

We know that for a pair (x,y) with f(x,y) =0,

d d-1
y =-gl(X)y - ...—gd(X) ,

and for positive integers t,
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=1+t t -
L e Py s s P

where

t

deggi()(X) <=t+i-1.
(See (2.3)). We may express yd,yd+1,... in terms of l,y,...,yd—l.
) q . . . .
Hence c¢ (x,y,y ) = 0 precisely if a certain polynomial
£

d( )(x,y,yq) = 0, where

degxd(m < (q/d) + (2d - 3)4 - 2,

dngd(z) <d-1,

dng/d(E) < e)\ - 1.

)

Condition (ii) of the lemma is certainly satisfied if d (X,Y,Yl)

is identically zero for 0 < £ < M .

The number of coefficients of d® (x,v,Y') is at most

Exd((q/d) + (2d - 3)4 - 1) < Elq + (2d2 - 3d)sxl .

The number B of coefficients of all polynomials d(z) (X,Y,Yl) ,

0<4< M, satisfies

B< & .qM + E)\—%Mz(2d2 - 3d) .

I

These coefficients are linear combinations of the coefficients of

We obtain a system of linear homogeneous equations

the a X) .
ijk( )
in the as yet undetermined coefficients of the polynomials a.jk(X) .
i
The number of coefficients available for a'jk is at least
i

(g/d) - d -1i-j=-k=z (q/d) - d -2(-1) - j> (q/d) - 3d -] .
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Summing over j, 0 £ j < K=k, the number of available coefficients

is at least

(q/d) (K= k + 1)=3d(K+ 1) -%(K—k) (K~k+1) =((q/d)=3d) (K+ 1) -—%(K—k) (K-k+1) ~ (q/d) k.

Summing over k, 0 < k £ d = 1, the number of available coefficients

is
2 2
Z (@-3d)(K+ 1) -3 Kd=- (q/d)3d@d - 1) .

Summing over i, 0 =i < d - 1, we obtain the total number A of

available coefficients. This number satisfies
2 2
A> (g - 3d°)(Kd + d) - 2qd(d - 1) -%sz

> (q = 3d2) (E)\M+ dz—d) -% qd(d ~ 1) ——%(E)\M+ d2)2

2 22 2 2
> e\aM+qGd -Fd) - el ~6e Md"-2¢ M,
since MZ d2 by hypothesis. 1In order that the polynomials

d(J?;)

(X,Y,Y') vanish, we have to solve a homogeneous system of B linear
equations in A variables. In order to get a non-zero solution, it

is sufficient that B < A . We need that

% E)\MZ(2d2 - 3d+ ) + 8 e)\Md2 <% qd(d - 1) .

Since ex =1 or d- 1, this inequality certainly holds if

Mz(d - 1)(2d2 - 2d~-1) + 8 Mdz(d - 1) <4 qdd=-1) .

ol

Hence it holds if M2(d - 1) + 8Md< % q . But this is true by
(4.4) and by our hypothesis that 2(d - (M + 8)% = q .
Finally,

deg a(X,Y) < Kq + (q/d)

(E)\/d) aM + q(d -2+ (1/d))

A

(E)\/d)qM+ q(d - (3/2)) .

This concludes the proof of Lemma 4A.
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Remark: Set

cX,V) = ff{M(x,v) ax,v) .

Then @) cX,)) #0,
(ii) 1if we take derivatives for 0 = 4 < M, then

e, = f?{M—% a,ma® &, .

Hence for x €&, y € I)\(x) , we have ch(x,y) =0 .
(iii) dege < (E)\/d)qM + q(d - (3/2)) + 2Md .

5 2d
But if g > 250d" , then 2Md £ 2dy/q =— g< %q, so that
a

dege < (E)\/d)qM + q(d=-1) .

5. Construction of two polynomials.

LEMMA 5A: Suppose M satisfies the conditions of Lemma 4A.

Let A =1 or 2 be fixed. Then there exists a polynomial r(X) #0

with

) Dzr(x) =0 for x €& and OS£<M\3)\(X)\;

(ii) degrX) = squ + qd(d-1) .

Proof: We have constructed c(X,7) in §4. Set rX) =R(c &, M),

where N denotes the norm from the field F (X,) to Fq(X) . So
q

1f f(X,Y) = (Y-{I)l)(v—fjjz) (Y—‘Dd) , then

d

rex) = |1 c(x,sj)j) .
j=1
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Now

1 u u
6.0 plre - Y (a—rz'—ur)(D lex,9) -0 @ G, ).
IR

The R.H.S. of (5.1) is a symmetric polynomial in ml""’md H
hence, a polynomial in the elementary symmetric functions of
%1,...,%d:

Dzr(X)

]

k(X,gl(X),---.gd(X)) .

so for x € F_,
q

2
D I‘(X) —k(xlgl(x)l"'!gd(x)) .
If x€8&, f(x,Y) has d distinct roots Yyreeer¥y € F; , and

Si(yl""’yd) = gi(X) . Therefore

u

. u
(5.2) Dﬂr(x) = }3 (....&L__.) ) lc(x,yl)) ... (D dc(x,yd)).
u

[A sophisticated reader might say that (5.2) is obtained from (5.1)
by the specialization X,%) ,-..,By 2 X,V seee,¥y .]
We have
{ygreeeygb =5, UL, .
Suppose, without loss of generality, that

Vyreeory, € T, @,

so that t = |¥, | . Each summand of the R.H.S. of (5.2) has

= .
Up + Uy + e+ U 2

Therefore for some integer s, lss<t,
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M|Z, (%)
usséz L < \ A \ =M.
Ll |5 )

By part (ii) of the remark at the end of §4,

Yg
D c(x,ys) =0,

and each summand of (5.2) has a zero factor. Therefore for every
x €6 ,
pre =0 (0 <4< M]z)\(x)l) .

Now
d

rx) = || e&,9)
j=1 J

is a polynomial in X,@l,...,%d , which is symmetric in %1,...,md
and is of total degree at most
d((ex/d)qM + q@d - 1)) = Equ + qd(d - 1) .
Hence by Lemma 3B,
degr(x) < Equ +qd(d - 1) .

The proof of Lemma 5A is complete.

§6. Proof of the Main Theorem.

For the moment, we consider only the case q = p . For then
for every x € €,
MIE, )| = dM< g =P,
and we need this in order to use Theorem 1G of Chapter I and to
conclude that the polynomials rx(x) constructed in Lemma 5A have
zeros of the desired multiplicity. The general case will be treated

in §9.
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Set

N, = Z lI)\(x)\ =1,2) .
x€8

Observe that by (4.5),

d(q-d(d—l))SN1+N2=d\6\qu.

Clearly the number of zeros of rk(x) , counted with multiplicities,

cannot exceed its degree; hence by Lemma 5A, and by Theorem 1G of
Chapter I,
< de X
MN)\ gr)\( ),

and

degr. (X)

X qd(d - 1)
L — ——
N M 47 M

Now N1 is the number of zeros (x,y) € Fz with AX) #£#Z0 of

f(X,Y) . In view of (4.3), we have

N< N, + d(d-1)d < q + d(d~1) (g/MW + d3 .

1
Also,
N2 N, > qd - d3 - N
1 2
2 qd -~ d° - (d-1)g - d(d- 1) (q/M
3
=q=-d@d-1)(gM - d° .
Therefore
6.1) |N-q| <d@-1) (@m + .

This inequality holds for all integers M satisfying the conditions

of Lemma 4A. Choose M to be the multiple of d with

Y i
2 ]

(q/2d)® - 5d < M < (q/2d)% - 4d .
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Then since d Z 2
1
M < (q/2d)% - 8
. 2
or M+ 8)" = q/2d ,
so certainly

2-1) M+ 8)2 < q .

Also,

y

1 1
s 3/2 1
2 N2 2 2
M><_q_) (1..5___,_‘1_.)>(_2%> $3>d
o2
. 5 5
since q > 250d . The assumption that q > 250d also guarantees

that

syEa’? 1
_— < E .
qﬁ

1
By making the simple observation that if 0 < x < 3 then

1 3
< -
T - 1 + 5 X
we obtain
1 —
1 2d\? 3 5.2 /2
e \q)\'\*z" 3% /-
q

Finally by (6.1),

3/2

131 8/2 d 3

|¥-q| <42 d(d-l)d’éqf<1 + —%—_)+ d
q

— 5 32 172
< JET 22 L g P s eat 4+ &P

<7 d5/2(11/2

But this is the assertion of Theorem 1lA.
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We still have the restriction that q = p . In the
next sections we shall define hyperderivatives in function fields in

order to remove this restriction.
§7. vVvaluationms.

*
Let K be any field. As usual, K is the multiplicative

group of K.

* .
Definition: A valuation is a mapping v from K onto the ring

Z , of integers such that

G) v(ab) =v(@) + v() ,

Gi) v(+b) = min{v(a) ,vd)} ,

with the additional convention that v(0) = + »

Let L be the set of a2 € K with v(a) = 0 . It is easy to

see that K is a subring of K, and that the units of KO are

precisely the elements a € K with v(@) =0 .

0
Let K1 be the set of a€K with v(a) = 1. It is clear that
K1 < KO , and that K1 is closed under addition and subtraction.
In fact, K, is an ideal in K., since if a € Kys b € Lo then

v(ab) = v(a) + v(b) =2 0 + 1 =1,

so that ab € K1 . Moreover, any proper ideal in K0 must not con-
tain a unit, so must not contain any element a with y(a) =0,

hence must be contained in K, . That is, K is a maximal ideal
in KO; in fact, K1 is the unique maximal ideal in K0 . We

summarize in
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LEMMA 7A: Xet v be a valuation of a field K . Let KO

be the set of a € K with v(a) =2 0, and K the set of a € K

1

with v() =2 1 . Then KO is a subring of K, and K1 is the

unique maximal ideal in KO . Hence KO/K1 is a field.

Example: Let K =@, and p any prime. Any non-zero rational
v
number can be written in the form (a/b)p , pj‘ab , where Vv is

unique. Put
v((a/b)p’) = v .

Then it is easy to check that v 1is a valuation. Now QO is the
ring consisting of zero and of elements (a/b)pv with v =2 0, and
Ql is the unique maximal ideal in QO, consisting of zero and of
elements (a/b)pv with v =1 . A complete set of representatives

of @, modulo @ is {0,1,2,...,p-1} . For if (a/b)vaQo,

0
pick theinteger x in {O,l,...,p-—l} with

v
ap = bx (modp) .

v
Then % p’ - x = 22—1;—25 € @ , so that x lies in the same coset

modulo Ql as (a/b)pv . It follows that QO/Ql is a field with

p elements, whence

QO/Ql = Fp .

LEMMA 7B: Suppose K is a field with a valuation v, and ¢

is a homomorphism from KO onto a field F with kernel K1 . Let

X be a variable. Then there exists an extension v’ of v to
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K(X) with v (X) =0 and an extension " of where
wita s @ @

9 (K(x)), > F(), such that ®'(X) =X, @ is onto, and the

kernel of @' is (K(X))1 .
Proof: TFirst define ¢’ on Kb[X] by

t t
<p'(a0 + a1X + oeee 4 atX Y = Q(ao) + w(al)X + eee + Q(at)X .

It is clear that @l is a homomorphism and that @' extends @ .

Next, define v’ on K[X] by

t
1
v (a0 + a1X + oee. + atX Y = min(v(ao),...,v(at)) .

Clearly,
v EE + 2®) = minv &) ,v @®)) .
We claim that

(7.1) v E®gE) = v E®) + v (g®) .

]

There exists an element p € K with v(p) =1, since v is onto.
Put

T = Pr

-v (g)g(

gX) =01 X) .

~

Then v'(%) =v'(g) =0, and it suffices to show that v'(fg) =0,
since then
7 I I AP 1; I
vitgg) =v@ +vi@ +v () =v () + v () .

We may therefore assume without loss of generality that v/ ()

vi(g) =0 . We wish to show v'(fg) =0 . But since vi() =0,

fX) € KO[X], and similarly g(X) € KO[X] ; therefore f(X)g(X)fiKb[X],
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and v/(fg) > 0 . Suppose we had v’ (fg) = 1 Then f((X)gX) & Kl[X]
and
' ' '
o (o (8 =9 (fg) =0
So either m/(f) =0 or @/(g) =0, hence either vi(f) = 1 or
v/(g) >z 1, which is a contradiction. Therefore v/(fg) =0 . The
proof of (7.1) is complete.
Hence if in genmeral v’ is defined by
' f(X) ' '
= f -
V(m v (£ (X)) v (gX)) ,
then v’ becomes a valuation of K(X) .
To further extend  , notice that every element of (K(X))0
is of the form (f(X)/g(X)), where v'(f) = 0 and v'(g) =0 .
(If necessary, multiply both f and g by a suitable power of
p € K, where v(p) = 1) . Define o’ on (K(X))0 by
m/(f(X)) o' (F(0)
e®/ ' g0
It is easy to check that w' is a well-defined homomorphism from
(K(X))0 onto F(X) with kernel (K(X))1
a v
Example: Let K = @ Write every non-zero rational as 5 3

where 3V ab, and define

Then, for example,

5X + 6

'
vi[= T =

2 )
(X + 4

0 0

1l
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LEMMA 7C: Let v be a valuation of a field K . Let o be

1

a _homomorphism of K, onto F, with kernel K, . Let T be

»
algebraic over F. Then there exists an element T which is

algebraic over K, such that T 1is separable over K if TN is

separable over F. There exists a valuation v” of K()), with

v”(ﬂ) =0 , extending v; and there is a homomorphism qf of

K(ﬂb onto F(]) extending ¢, such that the kernel of qf ii

k@), .
1
ke k() K. < KM
v l l o o 0 1 0 qf
ZU {=} =720 {=} F$ F()

Proof: Let f(X) be the irreducible defining polynomial of T

over F. We may choose f(X) to have heading coefficient 1 . Let
%(X) be a polynomial in KO[X] with the same degree as f, leading
coefficient 1, and with o' (£(X)) = £(X) , where o' is the
epimorphism constructed in Lemma 7B.

We claim that %(X) is irreducible over K. Suppose, by way

of contradiction, that %(X) = %I(X)%Z(X) is a proper factorization.
We may assume that v'(fl) = 0 and v’(%z) >0 . (Otherwise,
multiply by appropriate powers of an element p of K with v(p) =1.)

Then 1, f, € KO[X] , and
f = B =0 (FPy' (F) = 1)1,

provides a proper factorization of f, which gives a contradiction.

Pick a root, say T , of %(X) . It is clear that if T is

A

separable over F, then 1 is separable over K .
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Now define w” on K ﬁ] by

ol

" 2

at
o (ay +all+ .00 +all) = w@) + o@D + ... + cp(at)Tlt .

w” is a homomorphism onto F[ﬂ] = F(M) . Also define v/ on

KM by

" - d-1 .
v (a0 + alTl * oeee oAy o ) = mln{v(ao),v(al),,..,v(ad_l)} ,
where

d = degree of T over ¥ = degree of T over K .

It is easily verified that v'  is a valuation of K(‘ﬁ) , extending

v . The proof that for a,f € K(ﬁ) ,
Vi) =v'@ + v @ ,

goes as the proof of (7.1) in Lemma 7B. The rest of Lemma 7C now

follows after noting that K(ﬁ)o = Ko[ﬁ] .

Example: Let K =@, and p a prime. We define as before,

v if pYlab .

<
ol ®
e
\_/
1

We have seen that there is a homomorphism ¢ from QO onto Fp

K
with kernel Ql . The field Fq where q = p , is of the type

Fq = Fp(ﬂ), with T separable algebraic of degree K . Let ﬂ

be chosen as in the lemma and write N = Q(ﬂ) . Then there is a
valuation v’ of the field N = Q(M) extending v . Also there

is a homomorphism qﬂ from N0 onto Fq with kernel N1 .

n
=

n
&
3
A
)
in
=

@ 0
R R L ¢
ZU {=} =7y {=} F, S F

n
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Remark. It is clear that N is a number field of degree K .
Also, experts in algebraic number theory will say that p is
"inertial" in N .

The assertions of the following exercises will not be needed

in the sequel.

Exercise 1. Show that every field of characteristic p # 0
is the homomorphic image of an integral domain of characteristic 0.
(For general fields, an appeal to Zorn's Lemma is necessary. It is
not necessary for fields which are finitely generated over Fp).

Exercise 2. Let v be a valuation of a field K. Given a
monic polynomial f(Y) = Yd + ale-l + veo + ad with coefficients
in XK, put {(f) =  min (1/i)v(a.) . Show that for monic poly-

12isd B

nomials f, g, we have Y (fg) = min( (f),¥(g)). Deduce that if
degf =d and Y(f) =m/d with (m,d) =1, then f is irreducible.
(If K =FEX) and if v(@E)/HEX)) = degbX) - dega(X) , these
results reduce to Theorem 1B, Lemma 1C. If K =@ and if
v((a/b)pY) = v , our irreducibility criterion yields Eisenstein's
criterion.)

§8. Hyperderivatives again.

in §6 of Chapter I we defined hyperderivatives for polynomials.
In the present section we shall more generally define hyperderivatives
for algebraic functions. For another approach to hyperderivatives
(Hasse derivatives) see Hasse (1936 a) , Teichmiiller (1936).

Let Fq be a finite field of characteristic p. We have a

valuation of @ given by

v(-;- pv> =V if plab
Associated with this valuation v of @ is a homomorphism ¢ from
QO onto Fp with kernel Ql . We can then by Lemma 7C find a field
N= @ such that v can be extended to a valuation v/ of N, and

by Lemma 7B further extended to a valuation v of NX). Moreover,
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@ can be extended to a homomorphism w' from N0 onto Fq with

kernel N, , and ¢' can be extended to a homomorphism @” from
N(X), onto Fq(X) with kernel N(X), . Suppose f(X,Y) € Fq[X,Y]
is an irreducible polynomial which is separable in Y . Let % be
an algebraic function with f(X,J) = 0 . Then there is by Lemma 7C
an element % which is separable algebraic over N(X) , such that

we may extend v' to a valuation v” of N(,J), and ¢” to a

homomorphi sm ¢m from N(X,{D)0 onto Fq(X,@) having kernel N(X,%)l-

QO—‘; Ny € (N(x))og (N(x,§)))0

R

c c c
F Fq Fq x) < Fq &,

Hereafter, v

v/, v', V" are all denoted by v, and @, ©', ¢,
¢m are all denoted by ¢ . Elements in fields of characteristic

zero will be written as @, U, a) , etc.

Let D be the differentiation operstor on N(X). D may be

extended to a derivation on N(X,@) , since the extension N(X,@)
over N(X) is separable. We introduce an operator E(L) on
N, by
) 5 1 4
P - 20D .
L.
One verifies immediately that
(u,) (u)

@) g o 1~ n
8. u ... = een .
@D e A LU Y @ dy...e " d»
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LEMMA 8A: For any U € N(X,)]) ,

@y =vdh . ¢=0,1,2,..0

Proof: The proof is by induction on £ . The case £ =0 is

trivial. To go from £ - 1 to £, we consider three cases.

(i) The lemma is obvious if 0e N[X] .

(ii) Suppose U € N(X) . Let U = f(X)/g(X), so that

~

T =gl . By 8.1,

£
®.2) EP Gy = ), @ PreorePi

i=o0

Since f(X),g(®X) € N[X] and by induction on 4, the left hand side

of (8.2) and every summand on the right hand side of (8.2), except

(ﬂ)ﬁ

possibly the summand é(X)E has a valuation = v(%(x)) = v(g(X))

+ v(a) . Hence also v(é(X)E(z)

v(E(l)ﬁ) z v(a) .

u) = v(g(X)) + v(u) which yields

(iii) Any 0e N(X,%) may be written as

4 - r X) + 1 (X)@ + oeee + r (X)@

with r x),r (x),..., 1 € N(X) . Since

v(a) = min{v(%o(X)),---,V(%d_l(X))} ,

it suffices to show that for 0 =i =d - 1,

@)

ve® ¢ @) 2 v ©fh = vE ) .

~ ~

Applying (8.1) to the product }i(X)®1 = ?i(X)% .e0 P, it becomes

clear that we need only show that

ve®P @) = o .
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Let

d-1
£, = Y g OV Ly g, (0 .

~

Now 9} was constructed as the root of a polynomial

%(X,Y) = Yd + 'él(X)Yd—1 4 oee. + éd(x) ,
where (g, (X)) =g () (15iZd) . We have
d
S - ol
(8.3) 0 = £(X,) = TJ gd_i(X)® ,
i=0
and by (8.1),
@& - &1 W) ~ o &
E (gd-i(X)® ) = E (gd_i(X)% )]
(uo) n (ul) n (ui) "
= )3 E @ ,00E T @ ...E T
Ug+eee Uy =4
= Z é (uo,...,ui) )
Ug +oeen Uy =4
say. Collecting the terms where one of ul,...,ui equals £ , we obtain
7 aim1_ () & =
g, O TET @ + ) Stugoup,eeu) -
Ug + oot Uy =4
ul,uz,...,ui<,ﬂ
Hence by (8.3), .
d
) - & &
o= Mt o H + D » Seugy---up) -
i=0u +...4u, =4
0 i

ul,...,ui< 2
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But by induction hypothesis, every summand, except possibly the

first one, has a valuation Z 0 . Hence also the first one has, i.e.,

va® @) + v (G, M) = 0 .

Since Tt has coefficients in N,

v("fy(x,sj))) =0 .
But @(%Y(X,ﬁ)) = fy(X,m) # 0, and hence

8.4) v(fY(X,m)) =0,
since otherwise }Y(X,%) S N(X,Q)l(z kernel of o), a contradiction.

It follows that

e @ = o0,

v(

and the proof of the lemma is complete.

@)

We are going to define operators E on Fq(X,ﬁ) . Suppose

U€F (3 . Then there exist ue€ N(x,@)0 with o) =u . By

Lemma 84,

ve® @y = v = o,

€3]

whence E(z)(ﬁ) € N(X,§))0 . Define E on Fq(X,m) by

D wy - o@® dy

)

The new operators E

then ¢(ﬁ1 - U.) =0, whence

)

va®Pdp - 2Py -ve®Pd, -y vd -ip=,

so that cp(EUC) ({11) - E(z) (132)) =0,

are well-defined, because if cp(ﬁ«l) = CP(a ) =W,
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whence

= @(E(R) 1

W) 5
PE™ MU)) VDI

An immediate consequence of our definition and the formula (8.1)

E(!Z)

for in N(X,%) is

(u)) (ut)

(8.5) E(“(ul...u) = Z E L@y ... 'CI DI

t

@)

Remark: In the definition of the operators E on Fq(X,@),

we constructed the field N(X,@) , which is not uniquely determined

O

by Fq(X,@) . Conceivably, the operators could depend on

this construction. 1In fact, the operators E(z) are independent
of the construction.

A sketch of the proof is as follows. We proceed by induction on
£ . In the step from £-1 to £ we consider three cases, which
are analogous to those in the proof of Lemma 8A.

(1) U ¢ Fq[X] . In this case it is easily seen that our
hyperderivatives coincide with those defined in §6 of Chapter 1I.
Incidentally, we note for later that Theorem 6D of Chapter I is
valid.

(ii) U ¢ Fq(X) . Say U = f(X)/g(X). By (8.5) and in complete

analogy with (8.2),

£
E(z)f(x) - Z (E(z-j)g(x))E(‘j)u .

Jj=0

Since f(X),g(X) € Fq[X], and by induction on £ , the left hand

side and every summand on the right hand side, except possibly the

@)y ,

summand g(X)E is independent of our construction. Hence also

Wy

this summand, whence also E is independent of our construction.
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(iii) U ¢ Fq(X,ﬁ) . The argument is analogous to that in

part (iii) of Lemma 8A.
LEMMA 8B: Let U e Fq(X,ﬁ) . Suppose 0< f < pu . Then
E (upu) =0 .
Proof: Pick U € N, with @) =U . Then

E(/&) (ﬁpu) - L D“) (C‘tpp) = ﬁ (—_—1 D(’C_l) (&p“—lnfl)>
2! L Vg -1t

We have

v(—————l p¥-1 (ﬁ"“'lnﬁ)) C @D @1y g,

@=-1"
2 v(ﬁpp'lnu) 20,
~p
Since 0< f§ < ﬁh , v(éi) > 0 . Therefore v(Eu’)up ) > 0, so that
2

EUL) (upp) :cp(E(mﬁpH) =0 .

§9. Removal of the condition that Q=D .

We prove the analogue to Lemma 3A:

LEMMA 9A: Let f(X,Y) and ¥ be given as usual. Let M

be a positive integer and a(X,Y) a polynomial. Then for 0 < { £ M,

©.1) P (fiM(X,‘_I))a(X,‘D)) = 'fiM'% &, M a“) &, ,
) . . .
where a (X,Y) is a polynomial with

dega(ﬁ)(x,Y) < dega(X,Y) + (2d - )4 .
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Proof: Find a polynomial &(X,Y) in NO[X,Y], of the same

degree as a(X,Y) , with oQ@E,V) = a(X,Y)T). Lemma 3A did not

depend on the ground field Fq . If we apply this lemma to

L a2M, = A
D (fY &,Pa,))) and divide by L., we obtain

) _ %ZM— 24

9.2) E ¥

~2 Aa s ~ a
EMe M aE, ) «9HaP P

where

deg'é(z) X,Y) = dega(X,Y) + (2d - 3)4 .

We may suppose that 5(2)(X,Y) is of degree at most d-~1 in Y,

because we may use the relation %(X,@) = 0 to express @d,@d+1,...,

2 ~d=-1
etc., as linear combinations of 1,%),...,9) . This process does
not increase the total degree of the polynomial.

We have

~2M = ~n ~
vET P @i P i = o,

but v(%Y(X,@)) =0 by (8.4), whence v(ﬁ(z)(x,@)) 2 0 . Let

P = b, + b @ + el + B 0FT

then by our definition of v on N(X,@) s

v(ﬂi(x)) > 0 (O=<i=<d-1 .

~ (L
Thus a( )(X,Y) lies in NO[X’Y] . We may therefore apply ¢ to

3@ &,V ; 1let

@)

a?® &,V =9k &) .

Applying ¢ to (9.2), we obtain (9.1).

We wish to prove the analogue of Lemma 4A, where the higher

E(Jl)

£
derivatives D are replaced by the operators . We set

T
)Clearly ¢ may be extended not only to NO[X]' but also in
an obvious way to NO[X,Y] .



133

K d~1
Al J k
h(X,Y,Z,W) = Z Z b &zl
j=0 k=0

J+kEK
and put a(X,") = h(X,7,X%,YY) . we are interested in

@) 2M~24

Y

E (fiM(X,{I))a(X,SI))) = f (x,sz))a(!]’) &M

But

K d=-1
w €3] ajpak
a &M = ) ) b XY
j=0 k=0
J+k=K
this follows from (8.5) and the fact that if m< M < q = pK ,

by Lemma 8B,
™ Uy _ o, 5@ g _,

The remainder of the proof is exactly the same as the proof of
Lemma 4A. 1In this way we obtain an analogue to Lemma 4A.

The rest of the proof of Theorem 1A in the general case is
carried out exactly as in the special case q =p . No further
difficulties arise. But of course we have to use Theorem 6D of

Chapter I instead of Theorem 1G of Chapter 1.

then



IV. Equations in Many Variables

References: Chevalley (1935), Warning (1935), weil (1949),
Borevich & Shafarevich (1966), Ax (1964), Joly (1973).

§1 . Theorems of Chevalley and Warning.

We adopt the notation X = (Xl’Xz""’Xn) for an n- tuple of

. . n =n
variables, and z = (xl,xz,...,xn) for an n - tuple in Fq or Fq ,
i.e. a point of Fo or F° .

q q

LEMMA 1A: Suppose u ig an integer with 0 € u <q-1 . Then

S‘ xu =0

]
X¢cF
€ q
Proof: If u =0,
0
Y, x = ) 1l=a-1=0.
X¢eF X¢cF
€ q € q

*
If 0 <cu<q~-1, let a be a generator of the cyclic group Fq .
Since a has order q-1, it follows that au #1 . But as x runs
through Fq , then so does ax, so that

E xu = 2 (ax)u = au
X EFq X EFq X

u
X .

%
S

The result follows immediately.

LEMMA 1B: Suppose f(X) = f(X Xn) is of total degree

R

d <n(q-1) . Then

Z f(>:<) =0

X EFn
=" q

Proof: By linearity, it is clear that we may restrict our attention

u u u
to the case where f(X) = Xll X22 e Xnn . Then
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Z H(x = W E xii .
€¥y

i=1 xiqu

But since u1+u2+...+un:d<n(q—1), there is a u\j with

nu\j < d <« n(q-1), whence with u\j <q=-1 ., By Lemma 1A,

and the desired conclusion follows.

THEOREM 1C: (Warning's Theorem). Let Fq be of characteristic p .

Let fl()_(),...,ft()_() be polynomials in Fq[§] of total degrees

dl""’dt , respectively, and suppose that
1.1 d=d1+...+dt<n.

Then the number N of common zeros of fl""’ft satisfies
N =0 (mod p) .
Proof: Introduce the polynomial

g(X) = (1-f‘11"1():<)) (1—f2—1():())

Then g has total degree d(q-1) <n(q-1), so that by Lemma 1B,

Y s@ =0 .
¢F.
X
= q
n q-1
On the other hand, for any x ¢ Fq , we have fi (x) =1, unless
fi(}_{) =0 . Hence g(x) =0, unless x is a common zero of fl""’ft’
in which case g(x) =1 . Therefore
0 = Z g(x) =N .
Fn B
X
:E q

It follows that N = 0 (mod p) .
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Theorem 1C was proved by Warning in (1935). The next theorem was
conjectured by E. Artin in 1934, and was proved prior to Warning's

Theorem.

THEOREM 1D: (Chevalley (1935)). Let f(X) be a form of degree

n
d <n . Then f has a non-trivial zero in Fq

n
Proof: Since f has no constant term, 0 ¢ Fq is a zero of f .
n
If N is the number of zeros of f in Fq , then N =21 . But since

d <« n, Theorem 1C says that p divides N, so that in fact N =z p .

Therefore the number of non~trivial zeros of f in Fq is

N-1=zp-1=21

Remark: Theorems 1C and 1D are no longer true when d = n . For

any positive integer n and any prime power q, let wl,...,w be a

n
basis of F over F . Let
n q
q
n-1 . .
QJ QJ
g(é) = _ (w1 X1 oot Xn)
j=0

Observe that g(X) is a polynomial in n variables of total degree n .
- J
By Theorem 1lE of Chapter I, the elements wg (0 <j<£n=-1) are the

conjugates of w; . Since g(X) 1is evidently invariant under the
Galois group of F n over Fq , it has coefficients in Fq . Moreover,

q

n -
if x = (x1,~...,xn) qu and § = w X + ...t X then g(x) is

n
the norm R(E) of £ . Hence if x ¢ Fq and

X

% 2 , then g #£0,

whence

g(x) = m(wlxl oo +uhxn) =NE) £0 .

Therefore g(X) has only the trivial zero, So N =1 and N # 0 (mod p)
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THEOREM 1lE: (Warning's Second Theorem) (Warning (19353)). Under the

hypothesis of Theorem 1C, if N > 0, then

N>g¥ 9,

Given a subspace S of FZ and an element ¢t ¢ FZ , let

W=2_S8+t

be the set of points s+t with s € S . Such a set W will be

called a linear manifold. The subspace S (but not E ) is determined
by W, and we may say that W 1is obtained from S by a translation.
The dimension of W 1is by definition the dimension of § . Two linear
manifolds of the same dimension are said to be parallel if they are
obtained from the same subspace S

n
In what follows, V will be the set of x ¢ Fq with

fl(z) = cae = £ (X) =0 .

LEMMA 1F: I W1 and W2 are two parallel linear manifolds, then

]

[wl nv| |w2 Nv| (mod p)

Proof: Since the case where Wl = W2 is obvious, we may assume

that W1 % W2 . Moreover, after a linear change of coordinates, we

may suppose that

w

il

1 {(xl,...,xn): 0 =X =X = ... =X d}

and
W, = {(xl,...,xn): 1 = x

Now write

rx) = x¥tq T|' (X-a) ,

and
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n~d ey
g(X = DXy Lorx 9 || X -a)
a#0,1

a qu

-d

It may be seen that g(X) is a polynomial of total degree (n-d)(q- 1)-1,
with the property that

-1 if x ¢ W1 ,
g(x) = 1 if x ¢ W2 ,

0 otherwise .

Put

-1 -1
RO = (- 1] (D) ... (-] (X)g® .
h(X) is a polynomial in n variables of total degree

(n-d)(q-1)-1 +d(g=-1) =n(g-1)~-1 <n(q-1) .

Furthermore,
-1 it xeW nNv,
h(x) = 1 if x € W2 nv,
0 otherwise .
Hence
Y, ho = Wy n V|- |w nv|.
n
xeF,

But Lemma 1B is applicable to h(X) , and yields

|w1 n V[ = |w2 n V| (mod p)

Proof of Theorem 1E: There are two cases.

Case 1: There exists a linear manifold W of dimension d such
that

Wnv|#o (modp) .

By Lemma 1F, if W’ is any linear manifold of dimension d parallel

to W, then
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(1.2) |w' n v| £ 0 (mod p)

There are exactly qn"d parallel linear manifolds (including W itself),
and they form a partition of FZ . Since by (l1.2) each contains at
least one point of V, we have

N=|v]=q" 9.

Case 2: For all linear manifolds W of dimension d,
|WﬂV‘EO (mod p) .

Since by hypothesig’ V contains at least one point, there exists an
integer m, 1 <m g d, with two properties:

(i) For every linear manifold M of dimension m,
Mnv|=0 (mod p)

(ii) There is a linear manifold L of dimension m-1 such that
|L n v} £Z0 (mod p) .

Fix one such linear manifold L

Given a set A and a subset B, write A ~B for the complement
of B in A ., Consider the linear manifolds M of dimension m
containing L ; of these there are exactly

n-m+l
-1 n-m +1
q—-l =49 + e +4

We have [M N V| =0 (mod p) but [Lnv] #£0 (moa p), whence

[t ~1) V] £0 (mod p) and
[t~ nv]=1.
But the sets M ~ L form a partition of FZ ~ L; thus

N = |Vl >Sat "t 1q+l > qn_d .
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*
THEOREM 1G : (J. Ax (1964)) Make the same hypotheses as in

Theorem 1C. Let b be an integer, b < n/d . Then
N =0 {(mod qb) .

This is a great improvement over Theorem 1C. The proof of this
theorem will not be included in these lectures. See Ax's original

paper or Joly (1973), Chapter 7.

§2. Quadratic forms.

Let K be a field whose characteristic is not 2. A quadratic

form f over K is a polynomial over K of the type

f = v = X

® = £, %) YA, XX
1<i,k<n

where aik = aki' The determinant of f , abbreviated det f, is

the determinant of the (n X n)-matrix of coefficients of f: det f =
det (aik). We say that f(X) is nondegenerate if det f # O.

Let M denote the transpose of a matrix M. 1If we take

11 %12 1n 1
891 X "

A= : : , X= o VX = (XK, e X))
a1l c veens ann Xn

t t
then A = A and f()_() =X A)_( .

Now let f(X) and g(X) be two quadratic forms over K. We say
that f(X) 1is equivalent tuo g(X) , written f(X) ~ g(X), if there

is a non~singular matrix T such that g(X) = £(TX) .
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It is clear that '~" is an equivalence relation. If f has

t
the matrix A, and if g(X) = £(TX) , then g has the matrix T AT

and
2
det g = det £ . (det T) .

1f f(}=()~ g(z) and f(i) is nondegenerate, then g(z) is also
nondegenerate and det f/det g € (K*)z ; that is, det f/det g 1is
a non~zero square in K.

Suppose a € K, a £0 . We say that a quadratic form f(z)

represents a if there are xl,...,xn in K so that f(xl,...,xn) =a .,

We say f(g) represents zero if there are xl,...,xn in K , with
(xl,...,xn) # (0,...,0), such that f(xl,...,xn) =0 . Clearly,

equivalent forms represent the same elements of K.

LEMMA 2A: Suppose that a quadratic form f(g) represents a

non-zero element a € K . Then for some quadratic form g in n-1 variables,

2
f(Xl,...,Xn) ~ aX1 + g(Xz,...,Xn) .

Proof: Let A be the matrix of coefficients of f(g) . By

t
hypothesis, there exists an x € k' with f(x) =x Ax =a .

"X

Since x # 0 , it is clearly possible to select a non-singular matrix

1 12 1n
C = . .
xn 2ttt cnn
. R . t t s
with entries in K. Now f(Cg) =X C ACX , and it is easy to see

t

t
that the entry in the upper left corner of CAC is x Ax = a

1™
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b

Therefore for certain b_,...,
2 n 7

2
f(Xl,...,Xn) ~ aX1 + 2b2X1X2 + oees + anxlxn + h(X

2
= a X14—(b2/a)X2 + e +(bn/a)Xn + g(Xz,,..,

After making the non~singular transformation X' =X+ (bz/a) X2 +

1

=X, ,..0, X! =X we see that

’
ces + (bn/a) Xn , X2 2 n n?

2
f e ~ ceo .
@1, ,XQ aX1+ g@z, ,XJ
. . - 2
A quadratic form f(X) is called diagonal if X = alxl R

2
a X
nn

LEMMA 2B: Every quadratic form is equivalent to a diagonal form.

Proof: The proof is by induction on n . If n =1, then

2
f(&) = a11X1 is always in diagonal form. Suppose the lemma holds
for forms in n - 1 variables. Let f(é) = f(Xl,...,Xn) be a

form in n variables, The lemma is true if f(X) = 0 . Otherwise

either some aii # 0 , in which case f represents a.i £0 . Or
i

all a_ ., are zero, but some a, = a, #£0 . Then f represents
ii ij Jji
2ai‘j , 8ince f(0,...,1,...,1,...,0) = 2ai. . Hence f represents
e

some non-zero element a and

’

X))
n

2
f~ aX1 + g(Xz,...,

. . 2 2
by Lemma 2A . By induction, g ~ a2X2 + oeee + aan , and

f aX2 + a X2 a X2
1 255 + ... + nn
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LEMMA 2C: If a nondegenerate quadratic form represents zero,

then it represents every element of the field K.

Proof: Let f(§) be a nondegenerate quadratic form over K
which represents zero. By using equivalence, we may suppose that

f(§) is diagonal:

2 2
fX) =X X)) =aX + ...+ aX .
= n nn

17 171

Since f(§) is nondegenerate, a1 A0 ,..., an # 0 . Since f(§)

represents zero, there exist n > 2 elements xl,..,.,xn in K,

not all zero, with

2 2
f = f cee = e == .
(§) (Xl, ,xn) B)X) He..t 8 X 0

Without loss of generality, we may assume x) #0 . Put v, = x1(1-+t) ,

y2 = xz(l— ) ,..., yn = xn(l— t) , with t € K to be determined.

Then

2 2 2
f(yl,...,yn) = 2t(a1x1 - AyX, —.e.e= anxn)

2
= 4ta_x .

Now if a € K* and if we set t = a/(4a1xi) , we obtain f(yl,...,yn) = a
Thus f represents a .

We now return to our general theme by focusing attention on
quadratic forms over a finite field. Since it was necessary that we
require char K # 2 in this section, we consider finite fields Fq

*
with q odd. Suppose d € Fq . We introduce the notation:
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1 it de @H?
d q
‘q) -1 it 1k (F::)2 .

Suppose fl(g) and fz(g) are equivalent nondegenerate quadratic

forms over F with respective determinants d1 and d_ . Then
d d
d,/d_ € (F*)2 whence | —| = |2 That is, the symbol 4} s
1772 q “la ’ q

invariant under equivalence.

LEMMA 2D: Let f(X Xn) , n>3 , be a nondegenerate

1,...,

quadratic form over Fq , where q 1is odd. Then

1o X) ~ XX+ B(Kg, .., X))

Proof: By Chevalley's Theorem (Theorem 1D), f(&) has a non-
trivial zero in Fq ; i.e., f(X) represents zero. By Lemma 2C ,

+ g X

2
f(&) represents 1 € Fq . By Lemma 2A , f(g)'v X SYRRRY

1 Xn)

2
for some form g. Hence X, + g(X

1 "’Xn) represents zero, so

27"

there exist Kpoewor X € F , not all zero, with
q

2
X, + g(x ..,xn) =0 .

27"

If x. #0 , then g represents —x2

1 10 hence g represents -1 .

If x1 =0 , then g represents zero, and therefore, by Lemma 2C ,

g again represents ~1. By Lemma 2A ,

2
g(Xz,...,Xn) ~'—X2 + h(X3’°"’Xn) ,
whence
2 2
PN ~ - vee, X
f(Xl, ,xn) X - X, + h(XS’ , n)

~ X Xy + WXy, el X))
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Now let Nn be the number of zeros in FZ of f(Xl,...,Xn) ,

-2
and let N be the number of zeros in Fn of h{X_,...,X) .
. n-2 q 3 n

In order to find the relation between Nn and Nn we observe

2 b
that f(Xl,...,Xn) and X1X2 + h(X3,...,Xn) must have the same

number of zeros, since they are equivalent.

We first count solutions of

X, X 4 h(xs,...,xn) =0

12
with h(X3,...,Xn) = 0 , hence with X1X2 = 0 . The number of
possibilities for x3,...,x is Nh 9 the number of possibilities
n -
for X5%, is 2q - 1 , so that altogether we obtain
(2q - 1) Nn—2 .

wWe next count solutions with h(xs,...,x ) # 0. The number of
n

1 g . n-2 .
possibilities for X3,...,Xn is q - Nn—2 , and for given X3,...Xn ,
the number of possibilities for Xl’xz is gq - 1 , so that we get
n-2
(a - D {(q -N_.)

n-2
such solutions. Adding these two numbers, we obtain

n~1 n-2
2.1 N =g¢q -q + qN

THEOREM 2E: Let f£(X) = f(Xl,...,Xn) be a nondegenerate quadratic

form of determinant d over qu, q odd. Then the number N of

zeros of f(X) in Fq is given by
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< if n is odd,
2.2) N = -
n/2
- -2 -1
qn 1 + (q - l)éh Z <¥—_la__2 , if n is even.

2
Proof: Suppose n is odd. If n =1, f(X) =aX , and

N=1. If n Z 3 , we may suppose that f = X X  + h(X3,...,Xn) .

12
ne-
If the theorem holds for n - 2 | then Nn g =4 3 and by (2.1) ,
n-1 n-2
N =g¢q - q + qN
-2
n-1 n-2 n-3
= q - q + q.q
n-1
=q

Now suppose n 1is even. If n=2 f(Xl’Xz) is equivalent to

a nondegenerate diagonal form

2 2 2 2
a1X1 + a2X2 = al(X1 + (az/al)Xz) ,
-a_a -a_a
and Ay L2, 1 iy B , then 12V . , whence
q q q

[-(@,/ap)
\-———7;——- =-1, If (xl,xz) were a non-trivial zero of f(Xl’Xz)’
then x2 = (a_ /a.) x2 hich is i ssibl Therefore f(X.,X.)

1= 5/2)) X, , whi is impossible. erefor 1'%

has only the trivial zero; i.e. N = 1 , which agrees with (2.2)

-d —(az/al)
If —E =+ 1, then in a similar way | ————— =+ 1 , and we see
q
that x2 = ~=(a_ /a_) x2 h 2 1 trivial lutions (x.,x.)
1= 2/ 1 2 as (q ~ non-trivi so io 1°%9) -

Therefore. N =1 + 2(q -~ 1) = 2q - 1 , again agreeing with (2.2)

= = o B
If nZz 4, we may suppose that f X1X2 + h(X3, ’Xn)

Observe that the determinant of h is minus that of f. Now suppose
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the theorem holds for n - 2 . Then
N n-1 n-2
n =9 - d * qNﬁ-2
wm-2) /2
n-1 n-2 n-3 -4 -1 ~d
LR I . R o )/2(() d (=d)
n/2
n-1 n-2) -1 d
S A, (- @D (.<_>___ .

$3, Elementary upper bounds. Projective zeros.

LEMMA 3A: Let f(Xl,...,Xn) be a non-zero polynomial over Fq

of total degree d.. Then the number N of zeros of f(Xl,...,Xn)

n
in Fq satisfies

N = dqn"1 .

If f(Xl,...,Xn) is homogeneous, then the number of its non-trivial

-1
zeros is at most d(qn -1

Proof: If d =0 , f is a non-zero constant and has no zeros.

If d =1, then

f(Xl,...,Xn) = alxl + ooe. + aan +c ,
n-1 X
and N =g . If f 1is homogeneous of degree d =1 , then ¢ =0
n-1
and the number of non-trivial zeros of f is ¢ -1. If n=1

then clearly N<d . If n=1 and f is homogeneous, then f
can have no non-trivial zeros.

We have shown that the lemma holds if d <1 or if n=1. We
proceed by "double induction”. Suppose n > 1, d> 1, and the

lemma is true for polynomials in at most n variables of degree less
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than d , and the lemma is true for polynomials in less than n
variables of degree at most d . We must prove the lemma for a
polynomial f(Xl,...,Xn) in n variables of degree d . There are

two cases.
Case 1: f(Xl,...,Xn) is not divisible by X1 ~ x for any

x € Fq . Then for any x € Fq , f(x,Xz,...,X ) 1is a non-zero
n

polynomial of degree at most d in n - 1 variables. By the

n-1

inductive hypothesis, the number of zeros (XZ""’Xn) € Fq of
-2

f(x,Xz,...,Xn) is at most dqn . But we have q choices for

X € Fq , so that N < qdqn—2 = dqn—l .

By the same reasoning, the number of zeros of f(X”XZ""’Xn)
A
-2
with x #0 is at most (q - Ddgd" " . 1f £(X),..0,X ) is

homogeneous, then so is f(0,X Xn) , and the number of non-trivial

SRR

-2
zeros of f(O’XZ""’Xn) is at most d(qn - 1) by induction.

Therefore the total number of non-trivial zeros of f(Xl,...,Xn) is

n-2 n-2
<d(q - g + d{q - 1)

—d@™ - .

Case 2: f(Xl,...,Xn) is divisible by X1 - x for some x € Fq .
Then f(é) = (X1 - x)g(ﬁ) , where g 1is a non-zero polynomial in
at most n variables of degree at most d - 1. We immediately see
that

-1 -1 ~1
N<g T+ @~ Dq" =dq .

If f 1is homogeneous, then necessarily x = 0 and f(g) = Xlg(§) .

The number of non-~trivial zeros of f is
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s @r'-D+@-DE™t -

—d@™ - .

k: f f = e - cewn -
Remar I (é) [6:¢ cl)(X1 c) (X1 cd) where

1 2

n~1

c,,C are distinct elements of Fq , then N = dq .

1’ 2,...,cd
However, for homogeneous polynomials, our estimate is in general not

best possible

n
K , where K is a field, is called n-dimensional space over

K , or more precisely, n-dimensional affine space over K. On the
other hand, n-dimensional projective space over K by definition

consists of non-zero (n + 1) - tuples Cxo,x ,...,xn) with components

1
in K , and with proportional (n + 1) - tuples considered equal.
A point in projective space is called "finite" if it is represented

by & xn) with xO # 0 . Every finite point of projective

O,xl,...,
space may be uniquely represented by some (l,yl,...,yn) . Hence
there is a 1-1 correspondence between finite points of projective
space and points of affine space. Points of projective space
represented by (O’xi""’xn) are called "infinite points", or

"points at infinity".

Now suppose f(&) is a polynomial of degree d > 0 , say

i i i
1 "2 n
=f oo = . . LR ) .
f(é) (Xl’ ’Xn) 2: ail,lz,...,l X1 X2 Xn
i +4...+1i_sd
1 n
Associate with f(X) the form
i i i
* 0.1 n

&g XyyeeenX)) = 7‘_, ail,iz,...,i X X1 oo Xy -
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We may say that the equation f(z) = 0 defines a "hypersurface in
n-space''. The zeros of f(X) are the "points" of this hypersurface.
The equation f*(xo,xl,...,xn) = 0 defines a "hypersurface in
n-dimensional projective space'. In this case, we consider only non-
trivial zeros (xo,xl,...,xn) # (0,0,...,0) , and two zeros are
considered identical if their coordinates are proportional. These are

called "points on the projective hypersurface", or "projective zeros'.

%
Suppose (xo,xl,...,xn) represents a zero of f ., There are two
possibilities:
(a) XO # 0 . The zero may then be represented uniquely by

an (n + 1) - tuple (l,yl,...,yn) . Since f*(l,yl,...,yn) =0,
we have f(yl,...,yn) = 0 . Conversely, if (yl,...,yn) is a zero
of f , then (l,yl,.,.,yn) is a zero of f* . These points of the
projective hypersurface are called "finite". There is thus a 1-1
correspondence between finite points on the projective hypersurface
f* = 0 and points on the affine hypersurface f =0 .

() X, =0 . These points are called "points at infinity" of
the hypersurface.

2

2
Example: Let f(Xl,Xz) =X, - X =1 . The equation f(xl,xz) =0

1 2
defines a hyperbola. This hyperbola has the two asymptotes

) * 2 2 2
X, = X and X, = —X) . In this example, f (XO’Xl’XZ) X1 - X2 - X0

*
The points at infinity are the zeros of f with Xy = 0 . There are,

if

char K # 2 , two points at infinity, represented by (0,1,1) and (0,1,-1)

They may be interpreted as "points infinitely far out on the two
asymptotes".
Whether or not there exist points at infinity may depend on the

underlying field.
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2 2
: t = - . i =
Example: Le f(Xl’Xz) X1 + X, 1 The equation f(xl,xz) 0

defines a circle of radius 1 . Since here f*(XO’Xl’Xz) = Xi + Xg - Xi ,
the points at infinity are those elements (O,xl,xz) satisfying

xi + xz =0 . 1If the field under consideration is the field R

of reals, there is no point at infinity. If our field is the field

€ of complex numbers, there are two points at infinity represented

by (0,1,i) and (0,1,-1i) .

LEMMA 3B: Let f(g) be a polynomial of degree d with coefficients

*
in Fq . Let N be the number of zeros of f in F: . Let N be

the number of projective zeros as defined above. Then

* n-2 -
N<N <N+ d(g +qn3+...+q+1).

*
Proof: Since N is the sum of N and the number of points at
*
infinity, we have N < N , and we simply have to estimate the number
of points at infinity. The number of non-trivial zeros of
* . n-1
f (O,Xl,...,Xn) is at most d(gq - 1) by Lemma 3A. But two such

zeros are considered identical when they are proportional, so that

the number of points at infinity is at most

d(qn-1 - 1/(@-~-1 = d(qn—2 + qn'-3 + ... + g+ 1 .

The lemma follows.

*
Exercise. Show that o (XO,X ""Xn) is irreducible precisely

17

if £ is.
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LEMMA 3C: Suppose n= 2 ., Let ul(Xl,...,Xn) and

uz(Xl,...,Xn) be polynomials over F of respective total
q

degrees e1 and e2 , without common factor of positive degree.

n
Then the number of their common zeros in Fq is at most

n-2 .
q elezlnln {el,ez} .

Remark: The estimate of Lemma 3C is not best possible.

Proof of Lemma 3C: Without loss of generality, suppose e1 < e2 R
so that e, = min {el,ez} . If e = 0 , then ul, is constant. If
ul(g) =c # 0 , there are no common zeros, and the lemma holds. If

ul(g) = 0 , then uz(g) is a non-zero constant (otherwise ul(g)

and uz(g) would have a common factor), and again there are no

common zeros. If e1 =1, then ul(X) is linear. After an
appropriate linear transformation, we may suppose ul(g) = X1 . If
X = (xl,...,xn) is a common zero; i.e., u1(§) = u2(§) =0 , then

x. = 0 and u2(0,x

1 Xn) =0 . But u2(O,X2,...,Xn) #0 , so

PERRET

n-2
that by Lemma 3A the number of common zeros is at most €,4

agreeing with the estimate of the lemma when e1 =1.

Now suppose e1 > 2 . Every common zero of ul(g) and uz(g)

is a zero of ul(X) , 80 the number of common zeros is certainly

< n-1
e,d

< qn-2 ee, min {el,ez}

if gq < e.e

159 * We may then suppose that q > e e > e + e, . Let
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ey X = ces
vj(Xl, , n) uj(Xl,Xz + cle, ,Xn + cnxl)
e r
= J
= pj(cz,...,cn)X1 + oo o
©1
We wish to choose Cprees cn €EF so that the coefficient of X1
q
eZ
in vl(g) and of X1 in vz(g) are not zero. Now pj is a

polynomial of degree at most ej , and is not identically zero . By

Lemma 3A, the total number of zeros of pj in Fz-l is at most

n-2
ejq . Therefore the total number of zeros of both pl and pz

is

n-2 n-1
< < .
(e1 + ez)q q

n-1
It is therefore possible to choose (c cn) € Fq with

2,.:.,

pl(c cn) #Z 0 and pz(cz,...,cn) # 0 . Hence after a non-

g1y

singular linear transformation, and after division by pl(cz,...,cn)

and pz(cz,...,cn) , respectively, we may assume without loss of

generality that

e e_~1
1 1
ul(é) = X"+ X gl(Xz,. n,Xn) + oees + gel(Xz,...,Xn) ,
e2 ez—l
= e a0 h ceeyX .
uz(é) X7+ X7 h (X, X))+ +h, Xy, ee, X))

2
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1)

Considering ul(g) and u2(§) as polynomials in X1 , their
resultant is a polynomial R(XZ""’Xn) . It is not hard to see
that the total degree of R 1is at most ele2 . But by the
basic property of resultants, for any common zero (xl,xz,...,xn)
of ul(g) and u2(§) y R(xz,...,xn) =0 . The number of such
-2
(n-1)-tuples (x2,...,xn) is at most elezqn by Lemma 3A,
and for such x_,...,X the number of possibilities for x is
2 m 1
clearly not more than e1 . So the total number of common zeros
of ul(i) and uz(z) is
n-2 e
4 1%%
n-2 .
=q elezmln{el,ez}

LEMMA 3D: Let ul(g),...,ut(g) be polynomials in n variables
over Fq , each of total degree at most e , and without common
factor. Then the number of their common zeros is at most

n-2 3
q e .

Proof. The proof is by induction on t . The case t =2 1is

Lemma 3C. Suppose t = 3 , and the lemma holds for t - 1 . Let
V(i) = g.c.d.(ul(é),...,ut_l(i)) ,

and d = deg v(X) . Then

)

We are implicitly using the fact that polynomials in n variables
over a field form a Unique Factorization Domain.



155

w @ = v@w, & i=1,2,...,t-1) ,
where degwi X) =e~-d , and where WiseoosWe o have no common
factor.

Any common zero of u1 , u2 ,...,ut is either a common zero
of v and u, o, or of WiseeooWe g The number of common zeros
. 2 n-2 .
of v and u,  is at most d eq by Lemma 3C, since g.c.d.(v,ut) =1
n-2
The number of common zeros of wl""’wt 1 is at most (e - d)3q

by the induction hypothesis. Therefore the total number of common zeros

is at most

2 n-2 3 n-2 -2
d eq + (e - d) q e3n

q

1A

Lemma 3C is not best possible. We can do better if there are

only two variables:

LEMMA 3E. Suppose ul(X,Y) and u2(X,Y) are polynomials

with coefficients in a field K , and with no common factor of

positive degree. lLet e be the total degree of ul(X Y |, e,
the total degree of u2(X,Y) . Then the number of common zeros of
2
uy and u o i.e., (x,y) € K with ul(x,y) = u2(x,y) =0, is at

most ele2 .

Proof: 1If u1 y u2 have no common factor in X , then they
have no common factor in K . Therefore we may assume that \K‘ =® .
Set

vj(X,Y) = uj(X + cY,V) Gg=112 |,
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€.
where c¢c € K is to be determined. In VJ(X,Y) , the term Y J has
a coefficient which is a non-zero polynomial pj(c) in ¢ , with

deg p, < e, . Suppose (xX.,,¥.),...,(x ,y ) are distinct common
J 1'71 vy

zeros of u_,u . Then (x, - ¢y.,¥.),...,(x =~ cy ,y ) are
1 1'71 v vy

1’72

v . Since K 1is infinite, we may choose

common zeros of Vi1 Vg

c € K such that

(i) if i #£J , then X - ey, #£ xj - cyj y

(ii) py;() # 0 and p,(c) £ 0

Then v and v have common zeros (z_,y.),...,(z ,y) ,
1 2 1’71 v ooy

where Zj = X, - ¢y, and where =z

. R/ are distinct. After
J J 1 v

dividing by suitable constants (namely pl(c) and pz(c)) , we
may suppose that

el el—l
v. X, Y) =Y + h. (X)Y +...+4h X) ,
1 1 e
1
e2 e2—l
Y + k. X)Y +...4k X))
1 e2

il

vy X, 1)

Let R(X) be the resultant of vy and v, when considered as
polynomials in Y . R(X) 1is a polynomial in X of degree at most

. i = ... = = i =
ele2 Since R(zl) R(zv) 0 , we obtain y = ee,

Remark: Our Lemma 3E is related to a special case of Bezout's

Theorem. See Van der Waerden (1955), Ch. 11.

LEMMA 3F. Suppose ul(X,Y),...,ut(X,Y) are t > 2 polynomials

over a field K without a common factor of positive degree. Suppose

each polynomial has total degree at most e . Then the number of
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. 2
common zeros is at most e

Proof. Exercise.

§4. The average number of zeros of a polynomial.

Let d be a positive integer. Let Qd be the set of all
polynomials in n variables over Fq of total degree at most d .
Let wd be the set of all n-~tuples of non-negative integers

Gysigyeei ) with i, + 4, + ...+ i <d . It is easily seen that

1 2
ol = (™4
d d )

1f £(X) € Qd , we may write

i1 i 1n

2
= eee X
f()é) N E il’iz" ..,i Xl XZ n
(il"'°’in)ewd
\wd\ i Q let N(©)
Therefore \Qd\ =q . For any polynomial f(é) € q’ e

n
denote the number of zeros of f(g) in Fq

THEOREM 4A:
-1
2 Y=t
\QJ £€Q



Proof:
E N = Z an
fEQd fEOd }:(EFq
f()zc) =0
= E E L
n
)=(EFq fend
f()__(_) =0
lw -1
= E q
xEFn
= q
w
o Ll -1
=qq
-1
= leI qn
THEOREM 4B:
1 = -
o Y, @ n-12 _ m-1
d fEQd
Proof: First,
7‘ N2(f) = E 7\ Z
/ud = Y
fEQd fEQd }=( Z

1f

158

f()_() =0 f(}_,)=0

) !
£€Q,
T =£(p) =0
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The conditions f(§) = f(z) = 0 are two linear equations for the

coefficients of f . These two equations have rank 2 and hence
low | -2
have q solutions if x #Zy , and they have rank 1 and
]wdl— 1 = =
q solutions if x =y . Hence

Y, ¥ () >
#

f Eﬁld

-2 -1
lada + ) a,ld
X

1%
<

qn(qn _ 1)‘Qd‘q_2 + qn\Qd\q_l

\Od‘(qzn—z _ qn—2 + qn—l) .

Using this formula and Theorem 4A ,

Yoa® - H2 o Y WP - 2™t Y N o+ 2 Y
fEQd fEQd fEQd fEQd
- \Qd‘(qzn-z - qn—2 + qn—l) - 2qn—1\0d‘qn—1
2n-2
T ayl

-1 -
Sl @ -

Theorem 4B tells us that the "average value" of (N(f) - qn—

A n-1 n-2 n-1 .
is q - q = 0(q ) . One might expect that it be often

by

2
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the case that

1 q(n—l)/2)

N(E) - g = 0

In fact, we have shown (Theorem 1A, Chapter III) that when n = 2

and f 1is absolutely irreducible, then

1/2

N(f) - q =0(q ")
P. Deligne (to appear) proved that
NE - =0T
if f is "non—singular." In fact, Deligne proved more. He proved

Weil's (1949) famous conjecture on the zZeta function of varieties.
In the present lectures we shall not be able to prove Deligne's deep

result.

§5. Additive Equations: A Chebychev Argument.

Consider a polynomial equation of the type

d1 d2 dn
- LY = 1
(5.1) alx1 + azxz + + anxn
sk
where a ¢ F and d. >0 ({1 =1,2,...,n)
i q 1

n
THEOREM 5A. The number N of solutions of (5.1) EB Fq

satisfies

n-1 q(n—l)/2 -n/2

- Le.o d
N q < d.d n

1
1% (1—21-)

Remark: The error term here and in Theorem 5C below can be
slightly improved by using exponential sums, as will be explained

in §6.
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Proof of the theorem: By the argument used in §2 , Chapter I,

the number of solutions is not changed if we replace d. by

i
d; = g.c.d.(di,q -1 for i =1,2,...,n . We therefore assume,
without loss of generality, that di\(q -1 for i =1,2,...,n .

Now consider the equation
n
5.2 a_x a_x o a x =
(5.2) + + tax -a

1
admitting, for the moment, any coefficients (ao,al,...,an) € F2+ .

Let N(ao,a ,...,an) denote the number of solutions of (5.2) in

1

n
Fq . Then, interchanging sums again, we have

Y N@@gseera) = ), 5 1

0 L
n+1l n
(ao,...,an)EFq §€Fq (ao,...,an)
(5.3) satisfying (5.2)
S\ n 2n
= /g q =4q .
x EF
= q

Thus the mean value of N(ao,...,an) is q

LEMMA 5B:

n~1 2 2n~-1
Z N@g,...,a) -q ) =4q (@ -1)d

n+1
...,an)EFq

ceod .
1d2 n

(ao,
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Proof:
2
23 . 1N (ao,...,an)
@ ,...,a ) EFT
0
- ) % ) 1
n+1 . .
(d.,...,8 )EF x with (5.2) y with (5.4)
0 n q = =
:E Z 11,
n+
X,y (ao,..,,an)EFq
with (5.2) and (5.4)
where (5.4) 1is the equation
d
(5.4) a .y 1 + a d2 + + a ydn = a
: 171 2Y2 ’n T %

Now for fixed x and fixed y , the system of the two equations

(5.2) and (5.4) is a system of two linear homogeneous equations in

a ,8 ,...,2 . This system can have rank 1 or 2 . If the rank is
0’1 ’“n
1 , the number of solutions in (ao,...,an) is qn . If the rank is
-1
2 , the number of solutions is qn . Therefore
2 n~-1 n n-1
Z N (ao,...,an) = z q + Z @ -a ) .
(a a )EFIH'1 X b
0:"': n q =’Z =’}=’
of rank 1
If the matrix
d d
(5.5) b ox®
1 n
d d
1 n
.o 1
y1 yn
d, d,
has rank 1 , then =T =y." @G = 1,2,...,n) . Since for given x
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there are at most di possibilities for y, £ , hence at most
i

dl...dn possibilities for y ,the number of pairs Xy such that

(5.5) has rank 1 1is at most qndldz"'dn . Hence
3n-1 n n n-1
> Nz(ao,...,an)Sq s qfd, ced @ - gD

12
n+1l
(ao,...,an)E Fq

Using this estimate together with (5.3), we obtain

-1.2
Z (N(aov"'van) - qn )
n+1
(ao,...,an)E Fq
2 2n-2
= 23 N (ao,...,an) -q )
n+1

(ao,...,an)EFq

3n-1 2n-1 3n-1
= q + q (@ - Ddyd,...d =g

2n-1
=q (@ - Ddydy..d

thereby proving Lemma 5B.
To conclude the proof of Theorem 5A , we consider the specific
equation (5.1) where a A0 ,..., a #0 , a, = 1 . Observe that

if t,b,,b,,...,b are non-zero elements of F_ , then
1’72 n q

d d
1 n
N(L,a ,...,2 ) = N(t,a;b,” t,...,ab " t) .
d
s 1 n
The number of distinct (n + l)-tuples (t,bl t,...,bn t)
is
n+l
(q_l)q—l qg-11 (g -1)
- d_...d ’
dl dn dl 2 n
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n+1
Therefore in the sum of Lemma 5B , there are (q - 1 + /(dldz...dn)
n-1 2

summands which equal (N - g )" . So certainly

n+l
(q - 1) n~-1 2 2n-1
- < - d ...
Ta o V-a D) q (@- 1) dydy..ed
12 n

and Theorem 5A follows.

THEOREM 5C: Let N be the number of solutions in FZ of the

equation

d1 d2 dn
(5.6) a X"+ agXy 4 ... ¥ ax = = o,
n
where, as above, (al,...,an)é Fq N £0 , a, A0, ...,a #0,
. )
and d, >0 (i=1,2,...,m) . Let 6 =l.c.m. [dl,dz,...,dn] .
Then
dd_...d
- - (n-1) /2
.7 N - qn L _ 12 n qn/z 1 - 1 (n-1) /2 |
Jo a

Proof: It is clear that N remains unchanged and that the
right hand side of (5.7) cannot increase if we replace di by

/ 7 / 7
di = (di’ g- 1) and § by g = l.c.m. [dl,...,dn] . Hence we

may assume without loss of generality that di\( q- 1) for 1 £2iZn
In the notation used in the proof of Theorem 5A, our

N = N(0,a an) . It is clear that

11

d d

1
= . b
an) N(o,alb1 t, 2, n

nt),

if t,bl,...,bn are all non-zero. We need to count the number of

) The least common multiple.
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a d a d
distinct n-tuples (b, t,...,b > t) . If (b, ty,eeo,b D t) =
1 n 1 n
d d
® “t',...,p) ®t’y , then
q , 4
t/ st = miﬂﬁ)" eah)l A =1,2,...,0) .

] . For given

*
Hence t'/t E(Fq)6 , where § = l.c.m. [dl,...,dn

t , there are (g -~ 1)/8 possibilities for t’ in Fq ; and for

’

given t,t', bi , there are di possibilities for bi (i=1,2,...,n) .

* *

So as (t’bl’""’bn) ranges over F X ,,, X F | the number of equal
q q

n~tuples is ((q - 1)/’6)d1d2...dn . Thus the number of distinct

n-tuples is

(q - 1)n+1
((q - 1)/6)d1d2...dn

s

d_... ’
12 ’dn

n

= (-1 5
. n-1

and at least that many summands in Lemma 5B are equal to N - g .

We obtain

8 n-1 2 2n-1
d.d ...J; N-q ) =gq @ - Ddjd,...d

12

(@a-D»"

and the theorem follows.

Exercise. Suppose that some exponent di in (5.6) 1is prime

to all the others. Then N = qn—1 .
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§6. Additive Equations: Character Sums.

As in Chapter II, we shall write ¥ for multiplicative

characters and § for additive characters of F

THEOREM 6A. Let f(X

1,...,Xn) be a polynomial with coeffi-

cients in Fq . The number N of zeros of f with coefficients

in F is given by

1 .

6.1) N =2 ) b GO, x))
¥ xlqu xnqu
where the sum is over additive characters y of Fq . This is also
given by
1

(6.2) N =2 Y ) ) > §afx, . ..,x))

acF X F X F

€ q 1€ q n € q

where  # §, is a given additive character of F

Proof. The first equation is a consequence of Theorem 1D of

Chapter II. Now if ¢ #{, 1is fixed, then by Lemma 2D of Chapter

II, as a runs through Fq , then w(a) with

i@ =y @o

runs through all the additive characters. Therefore (6.1) implies

(6.2).

THEOREM 6B. Let N be the number of zeros with components
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Suppose a,l;éo and diq—l i =1,...,n) . Then if § # {,

is any additive character,

» RS o i
Nned"lea-y )LL) X (ap) e X (8 DGO ) « 0 GBOX,9)
X1%%Xe  XpFXo
of exp d1 of exp dn

Here the sum, as indicated, is over certain n-tuples of multiplica-

tive characters, and G(y,y) denotes Gaussian sums.

Proof. By (6.2) ,

d d
1 n
qN = Z Z Z q;(aalxl +...+aanxn)
acF X cF X. F
€ q S € q n € q
n d
= Z Z q;(aaixil)
acF i=l x, &F
< q 16 q
n 2 di
= q + Z ylaa, x.™)
=1
a0 i xiqu
By Lemma 3B of Chapter II, we have
di
XZ\u(a a x.7) = Z y(aa y,) Zof X; @)
i Vi X
d
exp i

11? a #0 , we may make the change of variables yi ~» yi/(a ai) y

to obtain
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Yo% @a) N GV = ) X (aa)e0 )
f f
Xi o yi X5 ©
exp d, exp d,
i i
Thus
n - -
av-q"= )Y .Y X, @) X (@)
Xl Xn
exp d exp d
1 n
(Z Xy @ .. Xn(a)) GOy 1) -G,
a#0
Now if Xl fe Xn # Xo s then by Theorem 1D of Chapter II,
Z X @ X @ = le ce X @ =0
aZ0 a
But if X, ... X_ =%, , then

z; il(a) Ce ;n(a) = 2} Xo(a) =q -1
a#0 az0

Moreover, G<X1’W) =0 if Xi =¥, by (3.1) of Chapter II. We

therefore may restrict ourselves to Xl""’X with Xi # Xo
n
(i =1,...,n) and with Xl A Xn = Xo
n - -
N =-q = @=D ) ) X @D @G ) G
XX o X A "
d
exp 1 exp dn

Theorem 6B follows.

*
Let g be a fixed generator of the cyclic group Fq . A
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t
character Xi of exponent di is of the form Xi(g ) = e(tai /di)

(t =0,1,2,...) , where ai is an integer with 0 = a, < di' In fact,
0 <a, <d, if X4 £ %o + We have Xp *°* Xp = Xo Precisely if
a a
1
(6.4) .
d d
1 n
is an integer. Thus if A(dl""’dn) is the number of n-tuples
of integers al,...,an with 0 <« ai < di (i =1,...,n) and with

(6.4) integral, then A(d dn) is also the number of summands

170
in the sum of Theorem 6B. Since the Gaussian sums G(Xi,w) of

Theorem 6B have absolute value ql/z by Theorem 3A of Chapter II,

we have

THEOREM 6C. Make the same hypotheses as in Theorem 6B. Then

n-1, _ _ L ng2
[N~ q \:A(dl,...,dn)(l q)q

In particular, A(d ""dn) = (d, - 1) ... (dn - 1) , so that

1’ 1

Theorem 6C is an improvement over Theorem 5C. Theorem 5A could

be similarly improved.

Write An(d) = A(d,...,d)
«n -
d-1 -1 -1
LEMVA 6D. A (@) == (@ - D™ - D™D
Proof. An(d) is the number of integers al,...,an with
0 < a, < d (i =1,...,n) and a, + ... +a = 0 (modd) . Thus

Al(d) =0 and Az(d) =d -~ 1 , and the formula is correct for

n=1 or n=2 , For ngz?2

= ’

an n-tuple al,...,an will be
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counted by An precisely if 0 <« a1 <d,...,0< a4 <d , 0« an
and
—an = a1+...+an__1 Z 0 (mod d)

iy s . n-1
The number of possibilities for al,...,an_1 is (d - 1) - An—l(d)
so that

n-1
An(d) =(d - 1) - An_l(d)
The lemma now follows by induction on n
COROLLARY 6E. Suppose dlq - 1 and suppose al,...,an are

non-zero in F .  The number of N of solutions with components
in F of

a d a d_ o]

1¥p F e nxn =
satisfies
n-1 n-1 n-1 -1 n/2
N-gq ] =(d-1D/d@-1 - 1" HA-4q g

Following Weil (1949) , we now study the dependence of the

number of solutions on the field of coordinates. Again, let

a a be non-zero in F and let di]q -1 (G =1,...,n)

’

170

We write N for the number of solutions of (6.3) with coordinates
v

in F

v

q

If Xi is a character of Fq of exponent di , then

Xvi given by

Xy @ =X, @)
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where % 1is the norm F - F , is a character of F of

qv q q”
z
exponent d, . Since % 1is onto F , it follows that x . #X .
1 q Vi vi
if Xi # X; . Therefore as ¥, runs through all the characters
i
of Fq of exponent di , then X ; Tuns through all the charac-
Y
ters of F of exponent 'di . Moreover, we may replace the
v
q
character y in Theorem 6B by LN with
P =1E)
Y
where ¥ 1is the trace F N Fq . In the formula of Theorem 6B,

q

we have to replace q by qv

v vt _ o v
, Xi(ai) by Xvi(ai) = Cxi(ai)) )
and G = G&,,§) by G = G, ¥ ) , which by the Davenport-
i v Vitty

Hasse Relation (Corollary 1CE of Chapter II) has

-6 = -6V
v
Thus
N = @hHY n(v-1)a - L)
= {(q + (1) = L
v q lex‘o
v’ i v
Y (X @D X @G ) GO L))
X Ao

exp dl exp dn

Thus N is of the form
v

6.5 = @Y YooY oo -V
(6.5) Nv R | M - My
where Wy Wy ﬂl,...,ﬂv are complex algebraic numbers, with

absolute values
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(6.6) | w

where the ¢, and d, are integers.
i
Weil (1949) made the famous conjecture that a formula like

(6.5) with (6.6) is true in general for the number N of solutions
v

n

in F of f(Xl,...,Xn) =0 , where f 1is a polynomial with
q

coefficients in Fq . In fact, the conjecture said much more

than this.

For curves, i.e. for n = 2 the truth of this follows from

,
the Riemann Hypothesis for curves, which had been proved by Weil
(1940, 19489; It may be deduced from Theorem 1A of Chapter 1II
and the theory of the Zeta Function of a curve (Artin(1924), F.K.
Schmidt (1931). A very readable text is Deuring (1958)). For

general n

, the part (6.5) of the conjecture was first proved

by Dwork (1960). The general conjecture was proved by Deligne

gt) 73)1,')

+)But see the remark in the Preface.
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d d
1 n
7. E ti X e X =
3 quations fl(y) 1t + fn(Y) n 0

THEOREM 7A. Let fl(Y)""’fn(Y) be non-zero polynomials of

degree = m over F .- Suppose they are coprime in pairs. Further
—_—2 et q = -

suppose that if al,...an are integers with

a a
. 1
(7.1) O<a, «d, (J=1,...,n) and — + ... + 2 integral |
J J — d d —_—_—
1 n
and if § = l.c.m. (dl,...,dn) , then the polynomial
a_§/d a §/d
1 1 n n
7. e
(7.2) £,M £, M
is not a § th power. Then the number N of solutions x_,...,x ,y
—_ = _ —_——————— 1 n

with components in Fq of the equation in the title satisfies

N-q| = cl(n,m,ﬁ)q(n+1)/2

A special case is when the polynomials fj are coprime and

if n is odd and d1 = ee. = dn =2 . For then there exist no
integers al,...,an with (7.1), and the hypothesis is satisfied.

Another special case is when the f_  are coprime and there is
an i in 1 =i = n such that fi(Y) - de is absolutely

irreducible. For then the polynomials (7.2) are not § th powers:

To see this, it will suffice, because of the coprime condition,

a_ §/d,
that fi(Y) : . is not a § th power, which is the same as

a C

i is not a di th power. Now if fi(Y) =c(Y - al) 1

that fi(Y)
c

cee (Y- @) ® , them (d, , ¢ ,...,c) =1 by Lemma 2C of
s i 1 s a
Ch. I, so that (d.,a.c. ,...,a.c ) = a, < d, , and indeed £, (Y) B
i’ il is i i i

is not a d " power.
i



Proof. We shall write

Thus the assertion of the theorem is that

As before (see, e.g., §5 of Ch.

to the case when djlq -1 G

Suppose Y € Fq has flcn

The number of X_,...,X with
2 n

-2 -1) /2
n q(n )/

q + 0(
bilities for xl , we obtain

this particular value of y

equation of the title with

(7.3) fl(y) ‘e
is therefore
N, =z}
where 7 is the number of y
For given y with
7.9 fIW)

the number of solutions of our equation in x_,...

by Theorem 6B.

equation with (7.4) is

where

g{(q)

) by Theorem 5C or 6C.

in F
q

Therefore the number N2
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= o(h(@)) if |g(@| = c(@,m,5) h(q)

n n+l) /2
11), we may reduce the proof

1,...,n)

il

0 . Then

I

fz(y)...fn(y) #0
d2 dn
£, 0%, + + I G)x

=0 1is

Since there are

q(n+1)/2

q possi~
~1 . .
+ 0( ) solutions with

The number N1 of solutions of the

£.G) =0

+ O(q(n+1)/2)

with (7.3).

£.@) #0

1 ,xn is given

of solutions of our
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- - n/2
M= Y ) Y X A e en
Xq# %o Xp# %o | ¥ with
exp d exp d 7.9
1 n
Xl"'xn=X°
since |G, ,y)| = q1/2 .
1
a.§/d.
Let y be a character of order § . Then xj =¥ J I for
some aj in 0 < aj < dj (j =1,...,n) . Since xl...xn =%o s

the conditions (7.1) hold, and (7.2) is not a § th power. The

inner sum in our estimate of \R\ is$)
a_§/d a §/d
= 1 1 n n
), X o) RS )
y
1) /2
and by Theorem 2B’of Ch. II, it is O(ql/z) . Thus R = O(q(n+ )/ y o,
and
+1)/2
n ey _ o )
N=N1+N2:q +R+O(% —?{'O(? .
THEOREM 7B. Let N be the number of solutions of
d d
(7.5) fxtrr t  Ox 2 et ) =0
1 1 n-1 n~-1 n
i e i . t = 1l.c.m. ce d
in x, X 0¥ in Fq Put d = l.c.m (dl, ,dn_l) , an

suppose that f

1,...,fn satisfy the conditions of Theorem 7A. Then

N-q | = cz(1'1,m,dn)cl(n_1)/2

f)The condition (7.4) in the sum is immaterial.
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This generalizes a result of Perelmuter and Postnikov (1972).

Proof. Let N be the number of solutions in ?1,.,,,§n,? of
dl dn 1 d
~ ~ D= ~ n

7. ces 3 = .
(7.6) fl(ff)xl + + fn-IG)xn—l + fn@’)xn 0
If xl""’xn l,y is a solution of (7.5), then for x ¥ 0 |,

X, =X xd o £ =X xdn/dn_l'i =x5 =y

11 7 %pe1l T Tn-Y S TR
is a solution of (7.6) with X #0 . Every solution of (7.6) with
n

ih # 0 1is obtained in this way. The solutions of (7.6) with i; =0

n-1 n+l) /2
number g + O(q( +/ ) , as is seen as follows:
1f fl(y) =0 , then ngﬁ A 1(}‘) # 0 , and the number
d d
of X, ,...,% with £,P%2 +...+ £ X 1o s
2’ " Tn-1 2 2 ' n-1 n-1
n-3 (n-2) /2 i
q + 0(q ) by Theorem 5C or 6C. Thus the number of solutions
~ -2 2
of (7.6) with X =0 with £ @ ... £ () =0 1is 2”2 + 0@™?
where Z is the number of ¥ with fl(yb...fn l(§§ =0 . On the
other hand, the number of solutions of (7.6) with %; = 0 and
~. . n-2 n-1) /2 )
L@ e B A0 is @-2@E" + 0@® V%) | again by
-2 ~2 1) /2
Theorem 5C or 6C. Together we get an + (g - Z)qn + 0(q (+1) / ) =
n-1 n+l1l) /2
q + o(q( )/ )
Thus

~

N= (@~ 1)N+ qn"l + O(q(n+l)/2

) .

(n+1) /2

~ n
Now N =4q + 0(q ) by Theorem 7A, and therefore

q(n+1) /2

@- DN = (- Dq" + o )



V. Absolutely Irreducible Equations f(xl,...,xn) = 0.

References: Ostrowski (1919), Noether (1922), Lang & Weil (1954),
Nisnevich (1954).

§1. Elimination theory.

Our goal is to derive an estimate for the number of zeros of an
absolutely irreducible polynomial in n variables. This will be
achieved in §5 . But in order to reach this goal we need
'Bertini's Theorem”, and for that in turn we need elimination theory.
For more information on elimination theory see Van der Waerden (1955) ,
Chapter 11 . Elimination theory is now considered old fashioned,
since most of its applications can be derived in a more elegant way from
algebraic geometry. On the other hand, in these lectures we do not presume
any knowledge of algebraic geometry. Moreover, elimination theory is
constructive and easily permits one to estimate the degrees and the

size of the coefficients of the constructed polynomials.

The reader will recall that given two polynomials over g field K ,

a a-1
cOX + clx + o.. + ca ,

£

-1
d Xb + d o + ... +d_,

eX =d, 1 b

the resultant R = R(co,cl,...,ca,do,dl,...,db) of f(X) and g(X)

is a certain polynomial in the coefficients of f and g . The
polynomial R vanishes precisely if either f and g have a common
root or if both leading coefficients are zero (c0 = d0 =0) . If

c 0 d d

o # an 0 #0 , then

a b
b .a
R=c. d II TT (y, - z.)
0 0 . . ’
i=1 J:l
where yl,...,ya and z_,...,z are the roots of f and of g ,respectively.

1’ b

R 1is homogeneous of degree b in c¢_,...,c , and homogeneous of
a

0’
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i i i J_o 3
. 0 1 a 0.1 b
d d ,...,d P ces
egree a in o’ 14y and each term cO c1 ca dO d1 db
has
i+ 2i tee i j j aee j = .
(11 12 + + ala) + (J1 + 232 + + be) ab
Let
* a a-1 a
f = cee
(XO’Xl) cOX1 + c1XOX1 + + caXO
and
* b b-1 b
X =d X X “so d
g XprXp) of1 t %% * %%

be the two forms associated with f£(X) and g(X) . We say that a

* *
pair (xo,xl) is a common zero of f and g if (xo,xl) # (0,0)

* * . -
and f (xo,xl) =g (xo,xl) =0, and if Xy Xy € K.

* *
Claim: f (XO’Xl) and g (XO’Xl) have a common zero if and only

if R=0.

* *
Proof: First suppose that f and g have the common zero
(xo,xl) . If X, # 0 then they have a common zero of the form (1,z) .

Here =z 1is a common root of f and g , and therefore R =0 . If

a b
= 0 then ¢ = = . i also be
XO , e Oxl 0 and de1 0 Since X cannot b
zero, it follows that ¢, . =d_ =0, and R =0 .

0 0

Now suppose R =0 . Either f and g have a common root =z ,

* *
in which case f and g have the common root (1,z) . Or

* *
¢c =d,. =0 in which case (1,0) is a common root of f and g .

0 0 '
This verifies the claim. It follows that the vanishing of the resultant

* *
has a more elegant interpretation in terms of £ and g than of

f and g .
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Let fl(XO,Xl,...,Xk) s eee fr(XO,X ,...,Xk) be forms with

1

coefficients in a field K . A common zero of fl,...,fr is an
(n + 1)-tuple (xo,xl,...,xk) #0 with components in K such that

fi(g) =0 for i=1,2,...,r . Suppose each of these forms is of

degree d , and that for j =1,2,...,r ,

(1.1) £ (XX, ,ee.,X) = Y 2@ x 0yl K
jro’m k I D §
i +i + +1i, =d 01 k
otipte ¥l =

We extend the concept of a resultant of two polynomials to a resultant

system for r forms in k + 1 variables by giving the following

Definition: A resultant system for the forms (1.1) is a finite

set of forms gl,...,gS in variables

&)}
A . A=j<r ;i +i, + 400 +1i, =4d)
1011...1k 0 1 k

with the property that g_{aFJ? R
1011'°'1k

=0 for each i =1,...,s

if and only if the forms fl,...,fr have a common zero.

Example 1l: Take k =1 and r =2 ., The resultant system for
the forms f. X i just = -
e fo 1( 0,Xl) , fz(XO’Xl) consists of just one form (s 1)

the resultant of the two polynomials fl(l,Xl) and fz(l,Xl) .

Example 2: Take

>
~
]
]
o]

11°1 + eoe + alan

-

fn(Xl,...,Xn) = an1X1+-... + anan ,
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i.e. a set of n linear forms in n variables. Again there is a
resultant system for these forms consisting of a single form g ,

namely the determinant

All A12 o Aln

b3
P> osee e
b=

More generally, we can describe a resultant system for the forms

fl(xl,...,xn)

I
w
4
+
+
o

fm(Xl,...,Xn) =a X, + ... +a X .

If m< n, a resultant system for the forms fl,...,f is the

identically zero form, since fl,...,f always have a common zero.

If m > n , a resultant system is the set of all (n X n)~- subdeterminants
of the associated m X n matrix.

LreeoX) be

forms of degree d as in (1.1) . There exists a resultant system

THEOREM 1A: Let £, (X ,X,,-++,X) , «ov , £ (X)X

gl,...,gs , Wwhere each gi is a form in the variables AFJ?

1011...1k

of degree

k
k 2 -1
2 d .

LEMMA 1B: Let §(Xl,...,Xm) be a form of degree e , and let

I
hl(Yl"'°’YZ)""’hm(Y1’""Yz) be forms of degree e’ . Then the

polynomial



g(Yl,...,Yz) = lé
is a form of degree ee’.
Proof: Obvious.

We begin the

Proof of Theorem 1A:
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CHCAPINN ATITUIL WS AREP A)

Let the forms fl(XO,...,Xk),...,fr(XO,...,Xk)

be given by (1.1) The proof is by induction on k . If k =0 ,
then (1.1) becomes
(34 .
. = < < .
(1.2) fj(xo) 2y Xo , 1 j r
Clearly the forms
1 (r) ) .
gj(Ad ,...,Ad ) = Ad , 1< j<r,

) (r)
form a resultant system for (1.2) . Moreover, deg gj(Ad ,...,Ad )y =1
for 1 £ j <r , which agrees with Theorem 1A .

Suppose that the theorem holds for forms in k variables
XO,Xl,...,Xk_1 . We introduce new variables Ul""’Ur , Vl,...,Vr ,

and form two polynomials

b
U, 1(X

0"

f
Vl l(XO

ol

where

f .o
J.(XO. ,Xk)

Xk) + oee. + Urfr(XO,...,Xk) ,

XD e VE X))

i i
0 k
XO . e.X

6]
i k

1 .-.lk

%

10+...+1k=d

A
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If we view f and g as polynomials in the variable Xk , they have

a resultant

+)

7
R = RXgseeey Xy 1, Upseee, UVyyees,V ,all A s) .

If we write

and

then each Zi and  each Bi is a form of degree i in XO,...,Xk 1 is

linear in the variables U ,...,U,V,,-..,V , and linear in the As

1
o Jate e
In the resultant, a term a. ...a, b .. b has
0 d d
.+ 23 + dj L+ 24 + + df = d2
Iy 3, cee #dj g+ Ly 9 oo qa = .

The resultant is of degree d in a and also of degree d

oty
in EO""’Bd . Therefore

(i) R is a form of degree d in XO,...,Xk_1 ;

s
(ii) R is a form of degree 2d in the A s ;

(iii) R is a form of degree 2d in Ul,...,U )
r

Vl,...,Vr together .

) 3
Collecting terms involving like powers in the U s and V 8 , we

may certainly write

S )

sev,u V,jyees,, V
y 1’ 'V

) uy u vr
AS)U ... U V,...V
1 r r

R
(0:¢ 1

er ey X
ul,...,ur,vl,...,vr 0’ ' k=17

+) That is, all variables A.
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Abbreviating the above coefficients by R v ? Ve observe that
,_.
(i) R is a form of degree d2 in X X H
u, v g i 07" X
i
(ii) R is a form of degree 2d in the A s .

e
<

LEMMA 1C: Suppose the variables A;J) i are replaced by
o iy

coefficients a;J) i in the field K . Then fl,...,fr have a
o iy
?
common zero if and only if all of the polynomials R v(XO,...,Xk l,a s)
L

ne

have a common zero.

Proof: Suppose fl,...,fr have a common zero (xo,xl,...,xk) .

if (Xo’xl""’xk-l) # (0,0,...,0) and the values xo,xl,...,xk_1
are substituted in f and é , then Xy is a common zero of

f and g , whence R = 0 . But since

, u .oV, V.
0=R= ) ) Ry y@or o X ® DU 0V T
uy
!
th 1 ial eve t evo
e polynomials RE:Y (XO, ’Xk—l’a s) must have (xo, ’Xk—l)

as a common zero. If, on the other hand, (XO"°" ) = (0,...,0) ,

Fk-1
then fl,...,fr have the common zero (0,...,0,1) . It follows that

the coefficient of Xi is zero for each f , hence also for f and
1

g . Again R = R(XO,..., U'S,V/s,a's) =0 , so all of the forms

Xk-l’

J
R (XO,...,X a s) are identically zero, and therefore have a

k-1’

IIF
n<

non-trivial common zero.

Conversely, suppose that (xo,xl,...,xk 1) is a common zero of
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)

the forms RE’Y (XO,...,Xk_l,a s). In particular, XO""’Xk—l lie in
X . Then
) ] )
R(Xo’xl"°°’xk-1’U‘S’V'S’a's) =0,

so that either 50 = 50 =0 or f and é have a common zero xk B
If 50 = 50 =0 , then f1’°"’fr clearly have the common zero
(0,0,...,0,1) . If T and g have the common root X then X,
as a root of f is algebraic over K(Ul"°°’Ur) , and as a root
of é is algebraic over K(Vl,o..,Vr) . It follows that X is
algebraic over K . But since

f=0Uf o cos f oo =

= Ut Gpyeen,x) + + U G X)) =0,
and since each fj(xo,...,xk)éﬁ , we conclude that

fj(xo,...,xk) =0 1l<js<sr).
We now return to the proof of Theorem 1A . By the inductive

hypothesis, there is a resultant system @1,...,§S for the forms

. ith
Ry &greenX ) 5 wi

IIF
<

k- k
deg &, = 251 ¢%)? 1 - okmlg? -2 L<ic<s) .
¥
Each coefficient of RE,Y was a form of degree 2d in the A s .
Let g),...,8, be obtained from él""’és by substituting for each
coefficient of R its expression in terms of the A)s . By

3

[§=)
<

Lemma 1C , it is obvious that gl,...,gs form a resultant system for

i
fl,...,fr . Finally, by Lemma 1B , each g, is a form in the A s

of degree
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k k
k-1 - -
24 9 d2 2 Jk2-1

]
N
o

This concludes the proof of Theorem ]A . We remark that the
forms gl,...,gS have rational integer coefficients and are
independent of the field K if char XK = 0 . 1In a field of
characteristic p , the coefficients of the forms gl,...,gS are
replaced by the residue classes modulo p of the corresponding
coefficients in characteristic zero.

If a 1is a polynomial with rational integer coefficients in any
number of variables, we define ”a“ as the sum of the absolute values

of the coefficients. For
n
Example: If a(X,Y) = (X-Y) , then “a” =2t

Theorem ] D: In a field of characteristic zero, the forms

gl,...,gS of Theorem 1A have rational integer coefficients and

satisfy

k

4k 2
.d

”gi” < 22 1<i<s) .

For the remainder of this section, all polynomials are assumed
to have rational integer coefficients. We first prove an analog to

Lemma 1B

LEMMA 1E: Let é(xl,...,x ) be a polynomial of total degree
-_ m

e . Let bl(Yl""’Y ),...,bm(Yl,...,Yt) be polynomials with

t

“bi" <y (@ <14i<m)., Then

g (Y, eee, YD) =“g(bl(Yl,...,Yt),...,bm(Yl,...,Yt))
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has the property that

el < Nallv®

Proof: For any two polynomials a and b in any number of

variables, observe that

lavll < Yall . IIoll

4

For if a’, b’ and (ab)’ are obtained from a , b and ab , respectively,

by replacing each coefficient by its absolute value, then

bl = Ilcan) Il < la"s"ll = fla’ll Tio/ll = flall f16l]

i i
1
Now a typical term in the polynomial g 1is b1 ...bmm where

i+ i+ ... +1 <e,
m

so that

The lemma follows.
In order to prove Theorem 1D , we examine more closely the

polynomials introduced in the proof of Theorem 1A .

LEMMA 1F:
i 6dk
e : < (2 .
R W LI
3
Proof: We saw that R(XO,...,Xk_l,Ul,...,Ur,Vl,...,Vr,A g)

had total degree 2d in Ul,...,Ur,Vl,...,Vr . Therefore in each

u u v

1
monomial U, ...U "V
1 r

1

r
N A
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1 r 1

U, + seed+ U 4+ V. + .0. + vr < 2d .

Hence for any R which is not identically zero, at most 2d of
»

e
1<

the numbers u ,...,ur,v

1 vr can be non-zero. Let

17
c = min {2d,r} . Suppose, without loss of generality,that

* i
u, = Vi =0 if i >¢ . Let R (XO,..., ,...,VC,A s)

s Upyeees U,V

X
k-1’"1 1
be obtained from R by omitting all terms where some Ui or V,1

with i > ¢ occurs. Then

IR, &poeenox, Aol = IR

13

Xk-l'

e
<

*
R is clearly the resultant of the two polynomials

H
]

Ulfl(xo, ,xk) + + Uc c(XO’ ,xk)

= f . f cee
g v 1(X Xk) + + Vc c(Xo’ ’Xk)

0

when considered as polynomials in Xk . 1f we write, for 1< jsr,

i .

F (X .ye0e,X. ) = z: A(J) X 0...X1k

ico’ 'Ok i ...ik 0 k ?
10+...+1k=d

k
the number of summands in f  is not more than (d + 1) . So the
J

-k -k
number of summands in f or g is bounded by

k k k+1
d+ ¢ g2d@d + D= @ "
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- *
Therefore the number of summands in each ai or b, is also
k+1 . ] =% —-% .
bounded by (2d) . But each coefficient in a,£ or b, is either
i i

0 or 1 , so that

HE:H < et HE:H < @aFtt (G 20,...,d) .

—% —%
The resultant of and g is of degree 2d in

-k =k =X

=%
ao,...,ad,bo,...,bd . This resultant is a (2d X 2d) - determinant,

so the resultant r satisfies Hr“ < (2d)! . By Lemma 1E ,
* * * * *
R = r(ao,...,ad ,bo,...,bd) has

1R < ea! (eohHe

Hence

IR

I

Ir CIPRPR ,a-s) |

k-1

ne
n<

2d 2dk+2d
< @d) ey ™t

2dk+4d
)

k
< (2d)6d .

Proof of Theorem 1D: We proceed by induction on k . If

k = 0, then HgiH =1 and the theorem holds trivially. Suppose it has

been established that for k-1 one obtains the estimate

k-1
o4 (k-1) a2
< = d = 2 * "
HgJ\ €1 ck_l()
~ ~ i
Let gl,--.,gs be a resultant system for the Ru v s . By induction,
=1
H% H sec (dz) since each R is of degree d2 in X ,e.6,X .
i k-1 ’ o’ ? g1

e
<
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On the other hand, gi is obtained from g, by substituting for the
i

i
coefficients of each R their expressions in terms of the A s .
’

e
<

By applying Lemmas 1E , 1F and observing that gi has degree

we obtain

k
k-1 2 -2
2 6kd | 2 d
< d .
HgiH ck_l( ) ((2d)
But by the inductive hypothesis,
k
. (dz) . 224k~4 d2
k-1 - :
Hence
k k
4k~4 2 ~1 27-2
2 . . .
HEH < 9 d ) 22d 6kd . 2 d
i
k k
4k-4 2 k 2
_ 22 d 26k2 d
k
4k-4 k
_, 6k2") a”
k
24k 2
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§2. The absolute irreducibility of polynomials (I) .

Given a polynomial f(Xl,...,Xn) in n variables with

coefficients in a field X , we wish to investigate the absolute

irreducibility of f ; i.e., the irreducibility of f over X .

Suppose f has total degree at most d > 0 and is given

by
i i

2.1 f(Xl,...,Xn) = Z) ai X 1... B

i 4+...+1i Sd

i, +i

THEOREM 2 A: (E. Noether (1922)) There exist forms gl,...,gs

in variables A, . ({H. + ... +1 < d) such that the above
—— 11...1n 1 n

polynomial f(Xl,...,Xn) is reducible over X or of degree < d if

and only if

= l13j= .
gj{ai i =0 ( js s
1
Moreover, if k = (n +d- 1) , then
—_— n
2k
(i) deg gj <k (1 <jss) .

These forms depend only on n and d , and are independent of the

field X in the sense that if char K = 0 , they are fixed forms with

rational integer coefficients; while if char X =p (# 0) , they are

obtained by reducing the integral coefficients modulo p . 1In the

case when char X =0 ,
k2k
(i) ”gj“ < 4 a<j=<s .

Proof: We first dispose of the trivial cases. If d =1 , the
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forms may be taken to be just the variables corresponding to the
coefficients of f . If d=22 and n =1, then f is always

reducible over K , SO we may take s =1 and g, identically

’
zero. We may therefore assume that both d= 2 and n > 2 , from
which it follows that k = 2 .

Observe that f is reducible or deg f < d if and only if

f = gh with deg g< d , deg h< d . Now suppose f = gh where

J J
1 n
gXyy--ohX ) = Z LR SHERES S
Job...+) Sd-1 L1 B
1 n
1 kn
RO - X ) = Y, ckl"'knxl X

Then the coefficients of f must have the form

U ) by %k .k
1 n 4k =i ik =i 1 n 1 n
917%™ Inn™"n

.T-
for any 1 ...,in with il+...+ins 2d - 2 ). Let g be fixed, not

1!

identically zero, and consider the system of linear equations

= i 4...+i S2d=-2
2.2) c.a, ;= DI b5 Ck....k SORERERE )
! j.+k =i j_ +k_ =i n n
J17%1™ In"n"'n
in ¢ and the elements ck Kk - If g divides f , then (2.2)
RERL

has a solution with ¢ = 1 , hence has a non-trivial, solution. Conversely,
if (2.2) has a non-trivial solution, then if ¢ = 0 , we would obtain
the contradictory result that gh = 0 while both g #0 and h #0

So in fact ¢ # 0 , and there is a solution of (2.2) with ¢ =1,

)  Wwe set a; . =0 fori+...+in>d.
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and hence g divides f.

We have shown that g divides f if and only if (2.2) has a

non~trivial solution in the variables c,{ck K } .  The number of
1k
. : . n+d-1 ‘s
variables is k + 1 with k = n . Therefore the condition

that g divide f is that all the (k + 1) X (k + 1) determinants,
say Al;...,Ar , of the system of linear equations (2.2) vanish.

But each A. is a form in the coefficients b, 3 of degree k ,
i .

Jl RN
and the number of these coefficients is also k . We know from

elimination theory, specifically Theorem 1A , that there exist forms

hl""hs in the coefficients of Al,...,A , such that the equations
r

A, = ... =A =0 have a non-trivial solution (in the b _ ! s)

1 r Jl...Jn

if and only if h1 = . = hS = 0 . Also by Theorem 1A ,

k-1 k
k-1 2 -
@.3) deg h, = 2571 i Lo y? Ls<is<s) .
i

If char K =0 , it follows from Theorem 1D that

54k-4 kzk'l kzk
Q.9 Hhi” <2 <2 1<is<s) .

Now let g; be obtained from h by substituting for the coefficients
i

of the forms A ""’Ar their expressions in terms of the original

1
coefficients a, i of f . Each such coefficient is linear in the
igeeeiy
a. i with norm at most k! Combining (2.3) , (2.4) with Lemmas 1B ,
1 “ o
1 n

IE , we obtain

1A
-
1A

deg g = deg h, =k (1 s)



193

and

k-1 2 -
K 1

A

el = In lf oty

k k-1
K k2 2k—1 k2 -1

COROLLARY 2B: (Ostrowski (1919)) Let f(Xl,...,Xn) be a

polynomial of degree d > 0 with rational integral coefficients.

Suppose f 1is absolutely irreducible (i.e, irreducible over 6 ) .

Let p be a prime with

k
2
p> (4Hfll)k

n+d-~1

n Then the reduced polynomial modulo p is

where k :(

again of degree d and absolutely irreducible (i.e. irreducible over Fp).

Proof: Let f be given by (2.1) , where the coefficients

{a

i i } are now integers. Since f is of degree d and absolutely
1_ eee
1 n

irreducible, in the notation of Theorem 2A not all the numbers

gi({ail...in}) are zero. Let us say gl({ail---in}) #0 . We have

the estimate
k k

2 2
o<lg,{fa, , bl= Hgl”-”f“k < @ 4dh*
1 n

k

2
So if p> (4Hf”)k , then the number gl({ai i }) is still non~- zero
17
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modulo p . It follows, again by Theorem 2A , that the reduced

polynomial modulo P is of degree d and absolutely irreducible.

COROLIARY 2C: Let f(X,Y) be a polynomial with rational integer

coefficients which is absolutely irreducible. If N() denotes the

number of solutions of the congruence

f(x,y) = 0 (mod p) ,

then for large primes p ,

NG@) =p + 06D

Proof: Combine Corollary 2B with Theorem 1A of Chapter III .

$3. The absolute irreducibility of polynomials (II) .

Let XK and L be two fields with K< L . The algebraic

closure of K in L , denoted by K° is defined as the set of

B, b4

elements of L which are algebraic over K . Clearly K is a field

o
and KE€ K € L .

THEOREM 3 A: Suppose f(Xl,...,X ,Y) is a polynomial with
m

coefficients in a field K , irreducible over K , and of degree

d>0 in Y . Further suppose that f 1is not a polynomial in only

Xf,...,xi,Yp if X has characteristic p #£0 . Let ) be a

quantity satisfying f(Xl,“..,Xm,Q) =0, and let L = K(Xl,---,Xm,ﬂp-

o . o .
Let K  be the algebraic closure of K in L . Then [K : K] is a

divisor of d and X° is separable over K . Moreover, the

polynomial f(Xl,...,Xm,Y) is absolutely irreducible if and only if
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Theorems of this type are well known to algebraic geometers.

See, e.g., Zariski (1944) . See also Corollary 6C in Ch, VI.

2
Example: Consider the polynomial f(X,Y) = 2X - Y4 over the
field K = @ of rational numbers. Clearly f(X,Y) is irreducible
4
over @ . Choose J) so that ¥ = 2x° and let L = X, . If we

2 2
put o =% /X, then & =2, so A2 & ©° . This means that § is

not algebraically closed in L , or Qo #€@ . By Theorem3A , f(X,Y)
is not absolutely irreducible; in fact, we see directly that
FK,) = W2 X - Y)WEZ X + V)
is a factorization of f(X,Y) over Q(N/Z) .
o

Proof of Theorem3 A. We begin with the following remark: If K

is algebraic over K of degree d , then Ko(Xl,...,Xm) is algebraic

over K(Xl,...,Xm) of degree d , and vice versa. If K0 is separable

(or inseparable) over K , then Ko(Xl,...,Xm) is separable (or inseparable)
over K(Xl,...,Xm) , and conversely. This follows from the argument

used in Lemma 2A of Chapter III .,

Now observe that

(B.1) K(Xp,eee,X) € K ,00,X) € K°(x1,...,xm,g)) = K, X D)

Since K(Xl,...,Xm,m) is an extension of K(Xl,...,Xm) of degree d ,
it follows that [Ko(Xl,...,Xm) : K(Xl,...,Xm)] divides d , whence
[KO: K] divides d by the above remark.

If f is absolutely irreducible, then f is irreducible over £ .

Hence f) is algebraic of degree d over Ko(Xl,...,Xm) ; that is ,

o o
[k Eppeenn X ) 0 K (xl,...,xm)] =d .
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From (3.1) it follows that K(Xl,...,Xm) = Ko(Xl,...,X ) , so that
m

For the remainder of the proof, we shall tacitly assume that
char K = p # 0 . Actually the case when char K = 0 is simpler, and
several steps may be omitted.

Let £ (Xl""’Xm’Y) be an irreducible factor of fX

1 cenX )

1)

over K such that

(3-2) fl(le"'meyiD) =0 .

We normalize fl by requiring that the leading coefficient (in some
lexicographic ordering of the monomials) is 1 . Then every power of
fl also has this property. Let K1 be the field obtained from K

by adjoining the coefficients of f., . Let a be the smallest positive
integer such that every coefficient of f: is separable over K . If

b is a positive integer such that f? has coefficients which are
separable over K , then a‘b . For if b =at +r with 0=r< a,

5 r
then f has separable coefficients, and by the minimal choice of a ,

1
4
we have r =0 . Now f? has separable coefficients for some ¢ ,
fo* ;
hence ajp , and a itself must be a power of p . We have

s
where K1 is the separable extension of K obtained from K by

a
adjoining the coefficients of fl .

a s
The polynomial g = fl has coefficients in K1 and is irreducible

S
over K1 , since its proper divisors (which would necessarily be

powers of fl) have coefficients which are not all separable over K ,
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s a a
hence do not all lie in K, . Now g = fl divides f , and since

1

g 1is irreducible, g divides f . Write ¢ = [Ki K] and let
1 2 i
g( ) R g( ),...,g(é) be the distinct conjugates of g . ZEach g(l)

divides f , so the product

1 @) ®)
g 'g ... 8

But this product has coefficients which are separable over K , and

which are invariant under conjugation. Hence this product has

coefficients in K . Since f 1is irreducible over K , there exists

a constant ¢ € K such that

f = cg(l) g(z)... g(é) .

If a were a positive power of p , then g would be a polynomial in

XE,...,Xi,Yp , hence each conjugate would be such a polynomial, and

therefore f would be a polynomial in Xp ...,XE,Yp . But this is

1,

impossible by hypothesis. Hence a =1 . It follows immediately that

s
K1 = K1 , Wwhence that Kl is a separable extension of K .
1
Now f =¢ f{ )... f{é) has degree d in Y , so each factor
f{l) has degree d/8 in Y . Hence by (3.2) , ) has degree d/8

over Kl(Xl,...,Xm) . Since [Kl:K] =08 , it follows that [Kl(Xl,...,Xm,
™M - K(Xl,-.-,Xm)] =d . Since KE& Kl, and since also [K(Xl,...,Xm,@):
K(Xl,...,Xm)] =d , we have

Kl(xl,...,xm,m) = K(xl,...,xm,m) =L .

Thus K1 is contained in L and is algebraic over K , whence

o
S .
K1 K
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Now f was irreducible over Kl, in fact absolutely irreducible.

1
o o o
By the part of the theorem already proved, (Kl) = K . But (Kl) =K ,
[} o . . o
s0 K1 =K , and K is separable over X . Finally, if K = K ,
then K1 = K and f 1is absolutely irreducible. This completes the
proof.

We are now able to finish the

Proof of Lemma 2B of Chapter III: In the notation of that lemma,

we need to show that if

[kex,z,9,0): KE,2)] = d

then f(X,Y) is absolutely irreducible. Suppose f(X,Y) is not

absolutely irreducible. By Theorem 3A , K° # K . Let [KO(X): K(X)] =

u>1 and let [xkE,D: KO(X)] =v , so that uv =d . In the chain K(X,2Z) €
o} o o 2 . .

K(X,2) € K X,2,) € K X200 = kE,z,9,1) , the field extensions

are of respective degrees u,v,v , s0 that

[kx,2,9,0: KEX,2)] = uv? < (uv)2 - d2 ,

which completes the proof.

In 82 of Chapter IV we introduced an equivalence relation for quad-
ratic forms. We make a slight adjustment of that definition to define an
equivalence for polynomials in n variables over a field K, We say that
f(ﬁ),w ggg if there is a non-singular (n x n) matrix T and a vector t,

both having components in K , such that

&) = g(TX + 1=:) .

This is clearly an equivalence relati on.



199

LEMMA 3B: Suppose f(X) ~g®) . If f is irreducible over K

(or absolutely irreducible), then so is g . Moreover, the total

degrees of f(X) and g(X) are equal.

Proof: Exercise., Notice that the first part of the lemma is
a generalization of ILemma 2B of Chapter I .
Let f(Xl,...,Xn) be a polynomial over K ., For 1</ <n,

we will write

—_—
N RRIIIEIT

when the polynomial is to be interpreted as a polynomial in the

variables Xl Xn , with coefficients in the field K(Xl,...,Xz) .

AR

LEMMA 8C: If f(Xl,...,X ) is irreducible {over K) , then
ool T 2o n —

f(Xl""’Xz 'X£+l""’xn) is irreducible (over K(Xl,...,Xz)) .

Proof: This follows from the unique factorization in

K[Xl,...,X ] . The details are left as an exercise.

4
We remark that if f(Xl,...,Xn) is absolutely irreducible

i ——

(i.e. irreducible over K) , it does not follow that f(Xl""’Xz’

X ...,X)is absolutely irreducible (i.e. irreducible over KX, --,%,)).
L+1’ '“n 1 L

In fact if £ =n -1, the new polynomial is a polynomial in one
variable, which cannot be absolutely irreducible unless its degree is

one. As another example, the polynomial

2 2
fX X3) =X, ~ X,X

X
1’72’ 2 13

—~
is absolutely irreducible, while f(Xl’Xz’XS) has the factorization
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TR,X,,X) = X, = WX X)X, + /X X3)
over K(Xl) .

THEOREM 3D: Suppose f(X

1,...,Xn) is a polynomial over an
infinite field K . Suppose f is absolutely irreducible and of
degree d >0 . Let 1< f <n -2 ., Then there is a polynomial

g ~ £ such that

—

g see e, X, X) 1y ,X)

is absolutely irreducible and of degree d (in X

_— Z+1""’Xn)

We shall need

LEMMA 3E: Let J< L be fields such that L is a finite

separable algebraic extension of J . Then there are only finitely many

1

fields J with

Ezggi: Let N be a finite separable algebraic normal extension of
J with L& N. Let G be the Galois group of N over J , and let
H be the Galois group of N over L . Then HS G . From Galois
theory, we know that there is a one-one correspondence between fields
’

J’ with Jc J' ¢ L and groups H' with HC H'S ¢ . The number of

such groups i is finite, so the number of fields J' is finite.

Remark: Separability is essential in Lemma 3E. For let F be an

algebraically closed (hence infinite) field of characteristic p . Tzke
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J=F(X,Y) €L = J(Xl/p,Yl/p)

’
, let

1/p) /p + cl/le/p

J =J (X + cY) = J(X1 )

Clearly J< J <€ L

. , but for different choices of ¢ € F we get

different fields Jé , So that the collection of intermediate fields

is infinite.

We begin the

Proof of Theorem 3D: We shall tacitly assume that char K = p #0 ,

the proof for the case char K = 0 being easier. First observe that

f(Xl,...,Xn) is not a polynomial in XE,...,XE , for if it were then
p1 p1
n
f e = .
SSTRRREE % A it X
i,eee,i T n
1’ ""n
p

1 1

1

= Y al/? Xll. . Xnn
igeeed ;

i cee,d
1’ ""n

contradicting the assumption that f(Xl,.n.,X ) 1is absolutely
n

irreducible. We change notation and write
f = f(xl,...,xm,Y)

where m =n - 1 ., After a linear transformation of variables

¥
(Xi = Xi + ciY ;1 =1,2,...,m) we may suppose that f is of degree

d in Y and separable in Y . Let § be a quantity satisfying
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f(Xlr"'yxmrs.D) =0 y

()
and let L = K(Xl,...,meD) . For c¢ € K, put X = X1 + oX .

Construct the fields K& %)) and (K(xl(C)))o , the latter being

1
. () .
the algebraic closure of K(X1 ) in L .

LEMMA 3 F: For some c¢ € K ,

- () }o (c)
(K(X1 )) =K(X1 ) .

Proof: For every ¢ € K we have

(c)

[o]
1 )) (xz,...,xm) c L.

KX, ,...,X) < (K(X
1 m

Note that 1. is a separable extension of K(Xl,...,Xm) of degree d .

By Lemma 3E , there are only finitely many subfields of L containing

7

KX ,...,Xm) . Hence there exist two distinct elements c¢,c’ € K

1
such that

). \o (e, \o
(K(x1 )) (Kysene X ) =(K(X1 )) (xz,...,xm) ,
or

(c)
(K(X1

) .

o (c') o
)) (Xm) (xz,....,xm_ ) = (K(x1 )) (xm) (Xz,...,xm_1

1

But since X X are algebraically independent over K(Xl,Xm) ,

grer X
it follows that

©\o ") )o
(x(xl )) &) - (x(xl ) @)

() <

For brevity we shall write X = X1 and Z = X1 . By Theorem 3A ,
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(]
1

)

K(X ) is a finite separable extension of K(X1

) , and hence

there exists an element ¥ such that

(K(X( ))" = (K(x))° = K(X,%)

Similarly, there is a § with

(K(X(c ))> - (K(Z))o = K@,

Let X have the defining equation hl(X,I) = 0 , where h1 is

irreducible over K ; let 3 have the defining equation h2(Z,8) =0,

where h2 is irreducible over K . Now by Theorem 3A and the absolute

o
, K=K , so that K 1is algebraically closed in

irreducibility of f
L . It follows that K is algebraically closed in K(X,X) and in
K(Z,8) . Then by Theorem 3A again, h1 and h2 are absolutely

irreducible, Hence if ¥ 1is of degree d1 over K(X) and if 8§

is of degree d over K(Z) then

2

[kx,2,%,8: k&x,2)] = dd,

by Lemma 2A of Chapter III . But we have

K(X,Z,%) = (K(X(c))) &) = (K(X(c ))) ) = K&,2,9 ,

so that

K(X,z,%) = KX,Z,8 = K&X,2,X,8) .

These three fields are extension of K(X,Z) of respective degrees

= = = =1 .
dl’d2 and d1d2 , so that d1 d 2 , and therefore d1 d2

Hence (K(X(c))> = K(X;c)) and (K(X » = K(X )) , which proves

the lemma.
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We now conclude the proof of Theorem 3D . We may write

(c)

f(xl,...,me) = g(x1

s XgroeorX oD

where ¢ € K is obtained from Lemma 3F and where

g, Xy, 000, X, 1) :fm-cﬁmg,uuamw.
c
Clearly g(X; ),Xz,...,Xm,m) =0 and g is irreducible. But
(c) . ; . ; . .
yoeesX o e., i i
g(X1 ,X2 Xm Y) is absolutely irreducible (i.e., irreducible over

K(Xf:)) ) because (K(Xfc)))o = K(X;c)) . By a change of notation,

”~~
g(Xl,Xz,...,X ,Y) 1is absolutely irreducible. This new polynomial is
m

clearly equivalent to f and is of degree d in Y . This process

()

must now be repeated by setting X2 = X2 + cXm with ¢ € K , etc.,
to obtain the result. Note that in the last step XEC)z XZ + cXm ,

hence that we certainly do need the condition £ £m - 1= n ~ 2 .

$§ 4. The absolute irreducibility of polynomials (III) .

n

Let K be a field. We have denoted by K the n-dimensional
vector space over K consisting of n~tuples (xl,...,xn) with
components in K . Suppose M is an m~dimensional linear manifold

in K, where 1 <m<n. Then M has a parameter representation

§ =y, + U1 Zl + oo + U ,

0 m Zm

n . .
where seees Yo € K , with Yyse++Y, linearly independent,

' 4
and where Ul,...,Un are parameters. We write z = L(E). Suppose

M has another parameter representation
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m =m

Then U = TU + , where T is a non-singular (m X m)-matrix over

|

K and t €K , hence L(TU' +t) =L'(U). If f(,...,X) isa

1
polynomial with coefficients in X and M is a linear manifold with

parameter representation L(U) , put

fL(g) = f(L([zI)).

If L'’ is another parameter representation of M , then

£, =£@ @) = £@T + D) = £ @0 + 1) .

Hence the polynomial fL is determined by M up to equivalence in

the sense of §3 . One can therefore speak of the "degree of £ on

M" and of the irreducibility or absolute irreducibility of f on M.

LEMMA 4A: Suppose f(Xl,...,Xn) has coefficients in an infinite

field K , is of degree d > 0 and is absolutely irreducible. Let

n > 3 and suppose that m is such that 2 < m< n . Then there exists

a linear manifold M of dimension m such that f is of degree d

and absolutely irreducible on M .

Proof: We may replace f by an equivalent polynomial. We may
therefore assume by Theorem 3D that

/_\\
B e esX WX eee X))

is of degree d (in X ,e0+,X ) and is absolutely irreducible.
n n

~m+1

By Theorem 2A , for polynomials in m variables of degree at most
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d , there is a system of forms gl,...,gs in the coefficients so

that the polynomial is reducible or of degree < d precisely if

g1 = ... =8 =0 . In our case, the coefficients are polynomials in
s

XiyeeeyX m ' S° that we may write

g, =8, X ,---,X_ ) (L<is<s) .
i i 1 n-m

T
Since f(Xl,...,X ,...,Xn) is of degree d and is

X
n-m’ " n-m+1
absolutely dirreducible, we must have some g_(Xl,...,Xn m) £ 0,
i -
say for simplicity gl(Xl,...,Xn m) #0 . Since K is infinite there
i e P . Th
exist elements tl, ’tn-m € K such that gl(tl, , n-m) #£0 en

the polynomial

cee,t cee
f(tl’ ’ n—m’Xn—m+1’ ’Xn)

in variables Xn ...,Xn is of degree d and absolutely irreducible.

-m+1’
This means simply that the polynomial f on the manifold M given

by

is of degree d and absolutely irreducible, which proves the lemma.
Let M be a linear manifold of dimension m Z 2 with parameter

representation

4.1

11>

=L(g)= + U

Yy 14 o m Im

The polynomial f is absolutely irreducible and of degree d precisely

L

if not all of certain froms Bpreei By in the coefficients of fL

Zm) are

vanish. We have gi = gi(ZO""’Zm) , where gi(zo,...,
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polynomials in n{(m + 1) variables. Since there exists a manifold M
on which f is of degree d and absolutely irreducible, not all

1 ial cee i ti .
these polynomials gi(ZO'Zl' 'zn) are identically zero

Let F be a subfield of K . We shall say that a linear manifold
M in Kn is generic if it has a parameter representation (4,1)
where the n(m + 1) components of ZO'ZI""'zn are algebraically
independent over F . (That is, they satisfy no non-trivial polynomial
equation in n(m + 1) variables with coefficients in F). More
precisely, one should say that M is generic over F . Suppose

f(Xl,...,Xn) has coefficients in F and is absolutely irreducible.

Then some gi(ZO,...,Zn) # 0 , whence gi(ZO""'Zn) #0 if the

components of y are algebraically independent over F .

IR A LAY

Thus f is absolutely irreducible on M . We thus have

THEOREM 4B: Let f(X) € F[&] be absolutely irreducible and of

degree d . Then on a generic linear manifold M of dimension m

(2 <m < n) , the restriction of f is again absolutely irreducible

and of degree d .

This theorem, or rather a generalization of it, is sometimes
called Bertini's Theorem. It is connected with work of the Italian

geometer Bertini (1892) .

Example: Take n =3 and m = 2 . The polynomial

P L,KL,K) =X + X - X0 =1
1'%20%3) TR Y A T A
defines a hyperboloid of one shell in 3-space. The intersection of

this hypersurface with a plane (a 2-dimensional linear manifold) can )
be an ellipse, a hyperbola, a parabola, or if the plane is tangent

*) this includes the case when the plgne is "tangent to a point at
infinity".

) Note that the parameter representation is not unique.
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to the surface, two lines. The restriction of f to a plane is
reducible precisely if the intersection consists of two lines; that is,
precisely if the plane is tangent to the surface. It can be shown
that the tangent planes are the planes

alx1 + a2x2 + a3x3 + ao =0
with a2 a2 a2 - a2 0 Th lane ith a 0 are t ent
1t 9 3 0= . e planes wi 0= r ang

to an infinite point of the hyperboloid, and the intersection of the
hyperboloid with such a plane consists of two parallel lines

(i.e., two lines which intersect at an infinite point). The other
tangent planes have an intersection with the hyperboloid which consists
of two intersecting lines (i.e., lines whose intersection is a finite
point).

THEOREM 4C: Let f(Xl,...,Xn) be a polynomial over Fq of

degree d > 0 which is absolutely irreducible. Let n > 3 and let A

)

be the number of 2-dimensional linear manifolds M . Let B denote

e

the number of manifolds on which f 1is not of degree d or

¥
2 d+ 1
is not absolutely irreducible. Let W = 2dk where k =( + ) .

2
Then
B/A < \W¥/q .
Proof: Every linear manifold M(2) has a parameter representation
R AT ST SO
where go, Zl’ 22 € F: , and Zl and Zz are linearly independent.

If A is the number of such parameter representations, then

n,n n 1 3n
A'=q@ -D@ -9 =59 .

@)

But each linear manifold M has

2
D=012(012 - 1@ -q
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different parameter representations, whence A = A//D . Now on a

)

manifold M ,

X) = f
£, ® Qo + U Iy + 0y %)

is a polynomial in Ul’U2 . By Theorem 2A , there are forms
IR in the coefficients of this polynomial such that

gl = .. gs = 0 is equivalent to the polynomial being of degree < d

or irreducible. The degree of each g, was at most
i

¥ =¥,

d +

1
say, where Kk =( 2 ) .  (Note that fL is a polynomial in 2 variables).

The coefficients of f(z0 + Uy, + U2 y.) are polynomials in the

1 =1 =2

coordinates of Yo Yys of degree at most d . Substituting these

L2

coefficients into gl,...,gs , we obtain polynomials hl,...hS in the

coordinates of y each of degree at most d\II/ , and having

Yo' L

1’ Y

=2 ’

the property that f(g0 + U1 Zl + U2 Zz) is of degree < d or

reducible if and only if hi(ZO’ Yo

)

Since the restriction of f to a generic manifold M is absolutely

irreducibl s h, = Y Y sa h is not identicall
irreducible, some h, hi(=o’ Y Y), say h,, 1 y

zero. By Lemma 3A of Chapter IV, the number of Yor Yp» ¥y with

- )
hl(XO’,él’ XQ) =0 1s at most d Q,an 1 . But since each M has D
representations,
-1
B<sdVy an /D .
Hence

n

B/A < d U/ q3 '1/A's 2d V' /q =¥/q .
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§ 5. The number of zeros of absolutely irreducible polynomials in

n variables.
In this section we shall allow the symbols w(q,d) and ¥x(d)

to take on either one of the following interpretations:

i

G) w(gq,d) =2 a®7? ql/2 ¥ (d) = 250 & ,

E

172 2

(11) w(g,d) = d - 1) ~ 2)q , X(@ =1 .

So if f£(X,Y) is a polynomial with coefficients in Fq , absolutely

irreducible and of degree d > 0 , then

(5.1) IN - o <w@,d

whenever ¢ > X (d) , where N is the number of zeros of f(X,Y)

With interpretation (i) , this statement has been proved as Theorem 1A

of Chapter III, However the statement also holds under interpretation

(ii), as follows from the study of the zeta function of the curve f(x,y)
(Weil (19484, Bombieri (1973)), and as may be known. to a more sophisticated

reader,

THEOREM 5A; Suppose f(Xl,...,Xn) is a polynomial over Fq

of total degree d > 0 and absolutely irreducible. Let N be the

number of zeros of f in Fz . Then
n-1 n~2
(5.2) N-gq £q W(g,d +24¥) ,

where W was defined in Theorem 4C.

If interpretation (i) is used, we obtain

n~-1 n-2 5/2 1/2
N-q | Sgq Wz % L 2aw
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If we use interpretation (ii) , then

P q“'2<(d-1)(d-2)q1/2 +d® 4 2d w)

2

O VR S

£ d-1(d-~-2)

This theorem is due to Lang and Weil (1954) , and also Nisnevich (1954) .

However, no value of the constant 2d ¥ was given . We now begin the
Proof: For a 2-dimensional linear manifold M(z)

(2) (2)

) be the number of zeros of f on M . Every point

, n

in F ,
9

let N(M
n

of Fq lies on exactly

IR CHEE VR CHER)
(q2 -D@ -

E

manifolds M . Thus
1 2)
.3) N=g ), N@

Observe that by the property of w(q,d) discussed above and by

Lemma 3A of Chapter IV, we have for q > %(d) ,

2
w(q,d) if f is absol. irred. on M( ),
) . . . . 2)
(5.4) ‘N(M )- Q\ < ( dg if f is not identically zero on M
2
q2 if f = O identically on M( ) .

LEMMA 5B: Let f(X Xn) be a polynomial over Fq , of degree

177

d> 0 and irreducible. Suppose f is not equivalent to a polynomial

g(Xl,...,Xn_z) , where only n - 2 variables appear. As in Theorem 4C ,

2
let A be the number of 2~dimensional linear manifolds M( ). Let C
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2
be the number of manifolds M( ) where f is identically zero. Then
3, 2
C/Asd /q .
2
Proof: Consider the planes M( ) parallel to the plane
* n-2 *
X, = ... =X = 0 ; these number A = q . Let C be the number

1 n-2

of those parallel planes on which f is identically zero. A typical

plane of this type is

The polynomial f can, of course, be written as

(CIPPPR D

n-2""n=1"mn

f(le"'an) = E pij

i,J

(2)

If f is identically zero on M , then

pij(cl,...,cn_z) =0
for all i and j . 1If these polynomials pij have a common factor
g(Xl,...,Xn 2) of positive degree, then g divides f and, since

f is irreducible , f = cg . But by hypothesis f is not a polynomial

in only n - 2 variables, hence the pij have no proper common factor.

By Lemma 3D of Chapter IV, the number of common zeros (cl""’cn—Z)

3 n-4

of the polynomials is at most dq . It follows that

c* < d3qn_4 and

pij

x % 3 2
c/A =d /g .

The same argument holds for planes parallel to any given plane, and

the result follows.

We now continue the
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Proof of Theorem 5A: The proof is by induction on n. The case

n =1 is completely trivial, and the case n = 2 holds by what we

said above., If f~ g where g 1is a polynomial in n - 2 variables,
2

then the number of zeros of f is ¢ times the number N’ of zeros

n-2
of g in F . So by induction

N - qn_s = qn_4(w(q,d) + 2d \I/) ,

whence (5,2) . We may therefore suppose that f is not equivalent
to a polynomial in n - 2 variables. Assume at first that q > x(d)

From (5.,3) and (5.4) we find that

IN_lqus%((w(q,d)71+dq Y14 }; 1)
@) 2) '

E -
M u® e M .
f not absol. f=0onM
irred.

In our established notation, it follows that

n-1 1 2
N-gq ] = I (w(q,d)A + dgB + g C)

(A/E) (w(q,d> + dq(B/A) + o (C/A>)

n-2

q (w(q,d) + d ¥+ d3>

A

I

2 (w(q,d) + 2d \I/) .

A

On the other hand if q< x(d) , then q2 < 2d ¥ , whence

In- ™Y < "< 72 (w(q,d) + 2d \I/)

COROLLARY 5C: Suppose f(Xl,...,Xn) is a polynomial with

rational integer coefficients which is of degree d and absolutely

irreducible. For primes p , let N(p) be the number of solutions of

the congruence
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f(x .,xn) =0 (mod p)

177"
Then as p > ® |

- ' n- \
N ="+ o [p" (3/2)‘,’.

\

Proof: The proof is a combination of Theorem 5A and Corollary
2B ,

The error terms of Theorem 5a in the two possible interpretations

are
e GI5/2qn-(3/2) ‘o (qn-2)
and
~ (3/2 -2
(5.5) (d-l)(d-2)qn(/)+0(qn )
it may be shown (MVQL (19H8a)) tiat when n = 2 , the
exponent % in the error term (d - 1)(d - 2)q2 + 0(l) 1is best

possible. Also the constant (d - 1)(d - 2) is best possible.
If g(X,Y) is a polynomial in 2 variables with N’ zeros , then the
polynomial f(Xl,...,Xn) = g(Xl,Xz) in n variables has N = N'qn“2
zeros. Hence the exponent n - (3/2) and the constant (d - 1)(d - 2)
in (5.5) are best possible for every n .

On the other hand the constant 2d ¥ in (5.2) is certainly
too large. This is especially bad if one wants to estimate how large q
must be in order that N > 0. With (5.2) one needs that q is

certainly larger than 2d ¥ , hence that q 1is very large as a function

of d .
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Schmidt (1973) applied the method of Stepanov directly to

equations in n variables and obtained

n-1 3qn—(3/2)

3.6
N>q - 3d provided q > con d y

if (5.1) is used with ((q,d) given by (i), and

N> " o @) @2 ¢ P 6272 rovided

3.5
q > co(g)n d e

if (6.1) is used with (q,d) given by (i)
Much more is true for "non—singular" hypersurfaces by

+
the deep work of Deligne (|ﬂ73)_)

+)But see the remark in the Preface,



VI. Rudiments of Algebraic Geometry. The Number of

Points in Varieties over Finite Fields.

General References: Artin (1955), Lang (1958), Shafarevich (197%),
Mumford ( )

§1. Varieties.

THEOREM 1A. Let k be a field. Let X X be variables.

100X, be

(i) In the ring k[Xl,Xz,...,XnL every ideal has a finite basis.

(ii) In this ring the ascending chain condition holds,i.e., if

ﬂl & mz S ... 1is an ascending sequence of ideals, then for some

(iii) Every non-empty set of ideals in this ring which is partially

ordered by set inclusion, has at least one maximal element.

Statement (i) is the Hilbert Basis Theorem {(Hilbert 1888). It is

well known that the three conditions (i), (ii), (iii) for a ring R

are equivalent. A ring satisfying these conditions is called Noetherian.
A proof of this Theorem may be found in books on algebra, e.g. Van

der Waerden (1955), Kap. 12 or Zariski-Samuel (1958), Ch. IV, and will
not be given here.

If k , K are fields such that k & K , the transcendence degree

of K over k , written tr. deg. K/k is the maximum number of elements

’
in K which are algebraically independent over k

In what follows, k , (] will be fields such that k € (Q , the
tr. deg 0/k = , and () is algebraically closed. We call k the

ground field, and () the universal domain. For example, we may take
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k = § (the rationals), 3 = € (the complex numbers). Or k = F

, the
q
finite field of a q elements, Q = Fq(Xl'XZ"") , i.e. the algebraic
closure of Fq(Xl,Xz,...) .
n
Consider () , the space of n-tuples of elements in {} . Suppose

% is an ideal in k[Xl,...,Xn] = k[x] . Let AQ) be the set of

x = (Xl""rxn)6§flhaving £(x) =0 for every f(X) € Y . Every set

A®Q) so obtained is called an algebraic set, More precisely, it is a

k - algebraic set. If we have such an ideal & , then by Theorem 1A ,
there exists a basis of { consisting of a finite number of poly-
nomials, say fl(i)""’fm(i)' Therefore A(}) can also be characterized

as the set of x € On with fl(g) = .. = fm(x) =0 . Note that if

oY

o
3; 53, 5 then AQ) 2 AQ,).

Examples: (1) Let =® ,0 =€, n=2, and § the ideal

2
generated by f(X1'X2) =X, + X2 - 1. Then A() is the umit circle,.

(2) Againlet k =@ ,(Q =€, n =2, and take § to be the
2 2
ideal generated by f(Xl,Xz) =X, - X, Then A@) consists of the
two intersecting lines X, =X, X, =~ X

THEOREM 1B. (i) The empty set ¢ and Q" are algebraic sets.

(ii) A finite union of algebraic sets is an algebraic set.

(iii) An intersection of an arbitrary number of algebraic sets is

an algebraic set.

Proof: (1) If J =k[x,...,x ], then AQ) =9 . If I = (O, Lé,

n

Q

the principal ideal generated by the zero polynomial, then A()
(ii) It is sufficient to show that the union of two algebraic sets

is again an algebraic set. Suppose A is the algebraic set given by
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the equations f1(§) = ... = fl(z) =0 , B is the algebraic set given
by the equations gl(g) = ... = gm(g) =0 ., Then AU B is the set
n
f it = = .. = =
of x €Q  with fl(g) gfﬁ) fl(g) gz(z) fl(z) gm(z) 0

(iii) Let A, € 1, where 1 is any indexing set, be a
collection of algebraic sets. Suppose that Ad = ACSU) , where Sd

is an ideal in k[X]. We claim that

a.n aﬂ AGQ) :A( 2301)’
€1 o €1
& . . g
where Z} 3y 18 the ideal consisting of sums fl(é) + .+ fﬂ(é)
o€l

with each f, (X) in Sd for some o € I . To prove (1.1) , suppose

that x € [ A(ﬁ‘;d). Then for each o € I , x € Aﬁd) , whence
a1 -
fx) =0 if f ¢ Sd . Therefore f(x)

]

. &
0 if f € Z 3y + Hence
ae1

x €a( ),3,) . conversely, it x € A( st), then fG) =0 if
o€l o€l
f € Z} Sd . So for any o € 1 , if f € Sd , then f(» =0 . Thus,
ael
x € A(Sd) for all o , or x € [) A(Sd) . This proves (1.1) . It
o€l

follows that ﬂAd =lWA(3d) is an algebraic set.

n
In Q we can now introduce a topology by defining the closed sets

as the algebraic sets. This topology is called the Zariski Topology-

As usual, the closure of a set M is the intersection of the closed
sets containing M ., It is the smallest closed set containing M and
is denoted by M .

et M be a subset of Qn . We write J(M) for the ideal of all

polynomials f(X) which vanish on M, i.e., all polynomials f(X)
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such that f(x) =0 for every x € M . It is clear that if M, & M2 ,

[o) 2 x
then _x(Ml) x(Mz) .
THEOREM 1C. M = AG QD).

Proof: Clearly A((M)) 1is a closed set containing M . Therefore

it is sufficient to show that AQ(M)) is the smallest closed set

containing M . Let T be a closed set containing M ; say T = A @)
Since T=2 M, it follows that & S §(T) € Y(M) , so that
T = A 2 AQM) .

Remark: If S is an algebraic set, then it follows from

Theorem 1C that S = A (S)).

If 9 is an ideal, define the radical of U , written & , to
consist of all £(X) such that for some positive integer m , fm(X)E 9
The radical of U is again an ideal. For if 1X), sX) Cﬁ , then
there exist positive integer m,/ such that fm()_(), gf' (X) €4 . Thus
by the Binomial Theorem, (f(X) + g()_())m+£ €U , so that X)) 28X ¢ ﬂ .

. m
Also, for amy h(X) in k[X] , (W(X) £(X)) €% , so that h(X) LX) €. .
If P is a prime ideal, then B =P , since if £(X) €3 ,

then f'(Xx) €D , which implies that £(x) € %

THEOREM 1D. Let % be an ideal in k[X] . Then

Jaa) =4 .

Example: Let k=@ ,Q =¢ , n =2, and ¥ the principal ideal

2 2 3

generated by f(Xl,Xz) = (X1 + X2 - 1)" . Then A@®) is the unit circle,

A
2 2 2. . -
and J@AED) = (x] +X, - 1) . Thus = ] + X, - 1)’ﬁ¢.Jcal generated by X4+Xz 1.
Before proving Theorem 1D we need two lemmas.

n .
LiMiA 18, Given o prime ideal @ # K{_}i] , there exists an x €0} with

x) =B .
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Proof, Form the natural homomorphism from k[ﬁ] to the
quotient rhs k[z]/m. Since B 0k = {0} , the natural homomorphism
is an isomorphism on k . Thus we may consider k[ﬁ]/? as an extension
of k , and the natural homomorphism restricted to k becomes the
identity map. Thus our homomorphism is a k- homomorphism. Let the
image of X, be §i(i =1,...,n). The natural homomorphism is then o
homomorphism from k[Xl,...;Xn] onto k[il,...,gn] with kernel P .
Since P was a prime ideal, k[il,...,in] is an integral domain.

Try to replace gi by Xy €0 . If, say, §1y--',§d are

algebraically independent over k with ¢E ...,§n algebraically

d+1’

dependent on them, choose Xl""’xd € 0 algebraically independent
over k . Then k(§1,...,§d) is k-isomorphic to k(xl,...,xd) .
Also, §d+1 is algebraic over k(il,...,gd), and so satisfies a certain

irreducible equation with coefficients in k(il,...,gd). Choose xd+1

in Q such that it satisfies the corresponding equation as §d+1 but

with coefficients in k(xl,...,x ). Then k(gl,... ) 1is k-isomorphic

d ’§d+1

to k(xl,.. ). There is a k-isomorphism with §i - X, (i =1,...,d+1)

¥4

Continuing in this manner, we can find Xpsrooa X € (Q such that
k(gl,...,gn) is k~isomorphic to k(xl,...,xn). There is an isomorphism
@ with 0@€) =x, (i =1,...,0.

1

Composing the natural homomorphism with the isomorphism o we

obtain a homomorphism
®: k[Xl,;..,Xn] - k[xl,...,xn]

with kernel P . Write

b
It
~~
"

Now J( =P, for f(x)=0 precisely if @ (X))=0 , which

is true if f(X) €D .

LEMMA 1F, Let € be a non-empty subset of k[&] which is closed

under multiplication and doesn't contain zero. Let B be an ideal
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which is maximal with respect to the property that P N&® =¢ . Then

B is a prime ideal.

E{gg{: Suppose f(é)g(i) € R but that f(i) and g(é) are
not in B . Let U = CB,f(é)f*, so that U properly contains P
Since B is maximal with respect to the property that P NE€ =¢ ,
it follows that U NG Z@ . So there exists a cX) =pX + h& £,
where c(X) €8 , p(X) € T, h(x) € k[i] . Similarly, there exists a
/@ =P ® +h'® g® , where ¢’ €6, p’® €D, n® €k[x] .

Then

'@ e® = @ ® +h® g@EE +h® X)) € .

However, since § is closed under multiplication, c'(g) c(X) €€,

contradicting the hypothesis that P N&€ =¢

Proof of Theorem 1p: Suppose f € Jﬁ , 8o that there exists a

positive integer m with f* €9 . Thus for every X €AQ) ,
fm(ﬁ) =0 . Hence f(ﬁ) =0 for every X € AQ) . Therefore
£(x) € J@a@)) , and SIS s5@aen)y .

Suppose f ¢ JU . If & is the set of all positive integer
powers of f , then € N WU =¢ ; also € does not contain zero. Let
B be an ideal containing % which is maximalJr with respect to the property
that € N B=¢ . By Lemma 1F, B is a prime ideal. By Lemma 1E, there
exists a point x € Q" such that T = J(x) . Since f ¢ D, f(x) £0 .
Also, (E:) =AQ®) =AM € AQ) , so that x € A@) . It follows

that £ £ §AED). Thus JAA)) < LA .

1)

The existence of such an ideal is guaranteed by Theorem 1A.

* the ideal %enerqtd ‘0‘3 /P and ;S()é)



222

Suppose S 1is an algebraic set. We call S reducible if
S =8, U S, , where 8,,S, are algebraic sets, and § # S84

Otherwise, we call S irreducible.

Example: Let k=@ , K=¢€ , n =2, and let J be the ideal

. . 2 2
generated in k[Xl’Xz] by the polynomial f(Xl’Xz) = X1 - X2 . Then
. 2 2 2
S = AQ) 1is the set of all x € C° such that X, =X, =0 . If 8§
2
is the set of all x € € with x. + x, =0 , and S is the set of

1 2 2

2
all c€c with x. - x, =0 , then S =8_ U SZ , and S1 # S # SZ

1

1k

Hence S 1is reducible.

THEOREM 1G. Let S be a non-empty algebraic set. The following

four conditions are equivalent:

(i) S = (g), i.e. S 1is the closure of a single point x ,

(ii) S is irreducible,

(iii) J(S) is_a prime ideal in k[X] ,

(iv) S = A(), where B is a prime ideal in k[X]

Proof: (i) ® (ii)¢ Suppose S =AU B , where A and B are

algebraic sets, and A #S 2B . We have x € S =AUB . we may

suppose that, say, x € A . Then 8 = x) A = A, whence S = A ,

which is a contradiction.

(ii) ® (iii), Suppose that S(8) 1is not prime. Then we would

have f(X) g € J(8) with neither f(X) mor g(X) in J(S). Let

U

B

Q}(S),f(é)) (i.e. the ideal generated by S(S) and f(X)). Let

Q) ,eX). Let A =A@) , B=A®). In view of S = AG(S))

and U2 Y(S) , we have AS S . But A #£S since f € 3@ and
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f Z£3() . Thus A € S . Similarly, B g S . But we claim that

S =AUB. Clearly AUBES S . On the other hand, if x € 5§, then
f(i) g(ﬁ) =0 . Without loss of generality, let us assume that

f(z) =0 . Then x is a zero of every polynomial of 9 , s@ that

X €A . Therefore SCAUB. Thus S =AUB , with A £ZS £B

This contradicts the irreducibility of §S .

(iii) = (@{v), set P =3J(S) . Then § = A(S)) = ACR).

(iv) = (i). Choose x according to Lemma 1E with J(x) = .

Then S = A(R) = A(S(E)) = (X) . The proof of Theorem 1G 1is complete.

A set S satisfying any one of the four equivalent properties of

Theorem 1G is called a variety. (More precisely, it is a k-variety.)
If Vv is a variety, x € V is called a generic point of V if V = (g).

COROLLARY H. There is a one to one correspondence between the

collection of all k- varieties V in Qn and the collection of all

prime ideals P # k[x] in k[g] , given by

o B
V"‘B:S(V)Lﬂ(ﬂ‘l\,e\/:Aq}).

. . n o B
Proof: Let V be a variety in Q  ; then V=>J(V) » AGQW)) =V .

B o
Also, if P is a prime ideal in k[)é] , then B~ AM > XAM®) =P =D

Examples: (1) Let S = Q" . Now S(Qn) = (0) , a prime ideal.

Suppose x = (x ..,xn) is of transcendence degree n , i.e. the n

1’



224

coordinates are algebraically independent over k . Then J(x) = (0) ,

AQE)) = A(0)) = a" . so any point of a™ of transcendence

so (X
degree n over k is a generic point of a®

@) et k=@ ,Q=0C, =2 . Let P be the principal ideal

- 1. P is a prime ideal since £

n
2
1 2

generated by f(Xl’Xz) = X2 + X
is irreducible. Thus A@®) , i.e. the unit circle, is a variety. Choose

X € 0 and transcendental over § . Pick X, €0 with x; =1 - xi

Then the point x = (xl,xz) belongs to A(P) . 1In fact, x 1is a generic
point of A(D) !

2
To see this, it will suffice to show that S(§) = (X1 + Xi -1) , i.e.

the principal ideal generated by Xi + XE -1 . 1If g(Xl,Xz) €I ,

. . . . 2 2
that is, if g(xl,xz) =0 , then g(xl,Xz) is a multiple of X2 -1 + X

2 2
since x2 is a root of X2 -1 + x1 , which is irreducible over Q(xl)

More precisely,
(x,,X,) = (X = 1+ %) h(x X))
EiXys8y) = Ay + X 1°%27 ¢
where h(Xl’Xz) is a polynomial in X and is rational in X, . Since

2 1

x, was transcendental, we get

2

2
g(X,X,) = (K] + X, = 1) h(X,X,)

In view of the unique factorization in Q[Xl] , it follows that h(Xl’Xz)

2
is in fact a polynomial in Xl,X2 . Thus J(x) = (Xi + X2 -1) .
(3) Let k=@ ,Q =€, n=2. Let D be the principal ideal
generated by f(Xl’Xz) = Xi - X2 . Then A(P) 1is irreducible and is

a parabola. Choose x, € Q0 and transcendental over @ , and put

2
Xy = X - Then x = (xl,xz) lies in A(M) . An argument similar to
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the one given in (2) shows that X is a generic point of A(P) . For
example, Lindemann's Theorem says that e is transcental over @ y
and therefore (e,ez) is a generic point of A(D)

(4) Let k=9 ,Q =€ . Let Y be the principal ideal

1" Xz) . Then as we have seen above, AQ@) is reducible and

is therefore not a variety.

(5) Consider a linear manifold MCl given by a parameter

representation

X, =b, +a,,t. + ... +a,, t (1 £2i=n)

Here the bi and the aij as given elements of k/ with the (d X n) -

matrix (aij) of rank d . As tl""’td run through QO , X = (xl, .
d
runs through M . It follows from linear algebra that MCl is an
algebraic set. (It is a "d-dimensional linear manifold”. See also
§2 about the notion of dimension). In fact MCl is a variety:
Choose ﬂl,...,ﬂd algebraically independent over k , Put
= 1<i<
By =by v ay Ty s taly A=is=n
and § = €_ Eyea. W e so ® <
= 1590098, ( . ow§: , o g:
Conversely, if f(§)= 0 , then
f(b1 + a11T1 + e + alde,
b, + a_.T ce T.,... T PP T =
2 P81t * AT by v ATt ety =0

where Tl,.,.,TCl are variables. Thus if x € Md , then f(x) =0

So every x [« MCl lies in A@QE)) = &) . Therefore we have shown

d

that M = ( , or that MCl is a variety.

o
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(6) Take k=@ ,Q =¢ , n =2, and ¥ the principal ideal
2 02 . . .
1 X . Over Kk =@ , this polynomial is

generated by f(Xl,Xz) =X 5

irreducible. Thus 9 is a prime ideal, and AQ®) 1is a variety.
' .
However, if we take k' = QQ/E) , then f(Xl,Xz) is no longer
irreducible over k' , so that 9 is no longer a prime ideal in
k/[Xl,Xz] , and AQ®) is no longer a variety.
This prompts the definition: A variety is called an absolute

variety if it remains a variety over every algebraic extension of k

THEOREM 1I. Every non-empty algebraic set is a finite union of

varieties.

Proof: We first show that every non-empty collection € of
algebraic sets has a minimal element. For if we form all ideals S(S) ,
where S € € , there is by Theorem 1A a maximal element of this non-
empty collection of ideals. Say S(SO) is maximal. We claim that
So €& is minimal. For if 8, € 8, where S, € €, then S(Sl) 2 S(SO);
but since S(SO) is maximal, S(Sl) = S(SO) . Thus S1 = A(S(Sl))

= AQG6y) =8,

Suppose that Theorem 1I is false. Let & be the collection of
algebraic sets for which Theorem 1I is false, There is a minimal

element SO of € . If SO were a variety, then the theorem would be

true for S, . Hence S, is reducible. Let Sp = A U B , where

A,B are algebraic sets, with A #£ SO # B . Since SO is minimal and
A g,so , BZ SO , the theorem is true for A,B . Hence, we can write

A=V

1LJ...UV ,and B =W, U ... UwWw
Hl

1 5 where Vi(l < i< m) and

wj (1 < j< 4) are varieties. Thus



227

s0 =AUB = v, u... U v U W, u... U W,

contradicting our hypothesis that S0 cg .
It is clear that there exists a representation of S as

s =V, U...u v, where V. 4 Vj if i £

THEOREM 1J. Let S be a non-empty algebraic set. The representation

where V

1”’°’Vt are varieties with Vi 4 Vj i{ i A3, 15 unique.

Proof: Exercise.

The Vi in the unique representation of S given in Theorem 1J

are called the components of §

2 2
Example: Let k = ,Q =€ , n =2, and S = Al - X)) -

Let V., = A((X1 - XZ)) and V,

1 = A((X1 + XZ)) ; them s =V, UV

2 1

2
Here Vl’VZ are two intersecting lines.

Finally we introduce the following terminology and notation.

We say y 1is a specialization of x and write

114
12

Y

if y € (X . This holds precisely if f(y) = 0 for every f(X) € k[X]
with f(x) =0 . It is immediately seen that - is transitive, i.e.

that

]
3
I

and y - z implies that x - z .

If both x - and

- x , then we write x & y . This is equivalent

1<
liss
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with the equation (X) = @ .

2
Example: Let x = (e,e) and y = (1,1) . Then X >y . For

as we saw in example (3) below Theorem 1G , the point X 1s a generic

2
point of the parabola x2 - Xl =0, and y 1lies on this parabola.
§2. Dimension.
Let x € Qn . The transcendence degree of x over k is the

maximum number of algebraically independent components of x over k

This clearly is equal to the transcendence degree of k(x) over k

We have

THEOREM 2A. Suppose x - y . Then

(1) tr. deg. y < tr. deg. x

(ii) Equality hold in (i) if and omnly if xe y

Proof: (i) 1Inductionon n.If n =1, and if trans. deg. x =1

then tr. deg. y < n =1 = trans. deg x ; if tr. deg. x =0 , then x

is algebraic over k . In this case, since x>y, the components of

y satisfy the algebraic equations satisfied by the components of X, and

tr. deg. y =0

To show the induction step, let d be the transcendence degree

of x . We may assume that d < n . We may also assume that tr., deg.
y=d Without loss of generality, we assume that Yyse--s¥y are
algebraically independent over k . Since X = (Xl,...,xn) - (yl,...,yn): vy,

it follows that (Xl,...,xd) > (yl,...,yd) By induction, and since



229

d < n , the elements

xl,...,x are also algebraically independent over

d

k. Let d<i<n . Then xi is algebraically dependent on x

X

1’ d

So X, satisfies some non-trivial equation

<2 (x x.) xa'-1 (x ) ( X ) 0
i ga 17 ¥y P Ba1FyrreonX)) + oer + 8 (Xya,X ) =
Since x -y , it follows that
a a-1
Vi Ba(yreees¥g) + ¥ 8 (ypyeeu¥d) F e + 8 ee,Y) =0
Thus ¥y is algebraically dependent on yl""’yd . This is true for
any i in d<is<n. Sotr. deg. y<d
(ii) If §€+ y , then it follows from part (i) that tr. deg.
X = tr. deg. y
Suppose Xy and tr. deg. X = tr. deg. y . Let the common
transcendence degree be d . We may assume without loss of generality

that the first d coordinates Yyre-ea¥y are algebraically independent

over k . Then by part (i) and by (xl,...,xd) -> (yl,...,yd) , also

170Xy are algebraically independent over k . We have to show that

y > x , i.e. that if f(y) =0 for f € k[X] , then f(x) =0 . Pput
differently, we have to show that if f(x) #0 , then f(y) #0 . So
let f(x) #0 . Then f£(x) is a non-zero element of k(x) and

1/f(x) € k(x) . DNow since x ~are algebraic over k(xl,...,x

Y,

a4 d

it is well known that

k(i) = k(xl,...,xd)[xd+1,...,xn] ,

i.e. k(x) is obtained from k(xl,...,xd) by forming the polynomial ring

in x el 4 X
d+1’ "“n
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Thus

1/£(x) = V(xl,...,xn)/u(xl,...,xd) s

where v (X .,Xn) and u(X ...,Xd) are polynomials. We have

1’ 1’
u(xl, .,xd) = 1(x v
which implies that
lyy,--yy = £ v,
in view of X e y - Now yl,...,yd are independent over k , whence

u(yl,...,yd) #0 , whence f(y) #0 . Our proof is complete.

The dimension of a variety V is defined as the transcendence degree
of any of its generic points. In view of Theorem 2A , there is no
ambiguity. A variety of dimension 1 is called a curve, one of dimension

n -1 1is called a hypersurface.

Example: Let us consider again the example of the linear manifold

d
M . We constructed a generic point @]j...,gn) with k(ﬂl,...,ﬂd)
= k(§1,...,§n), where ﬂl,...,ﬂd were algebraically independent. Thus
d

tr. deg. k(§1,...,§n) =d . Hence in the sense of our definition, M
has dimension d . This agrees with the dimension d assigned to Md
in linear algebra.

THEOREM 2B. (i) Let V be a variety and let x € V with
tr. deg. x =dim V. Then x 1is a generic point of V .

(ii) If WS V are two varieties, and if dim W = dim V , then

w=yV.
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Proof: (1) Let y be a generic point of V . Then y -

1>
o
=]
[°%

tr. deg. x = tr. deg. y . By Theorem 2A , x® y , so that (g)

I
~

<l
NS
1
<

(ii) Let x be a generic point of W . Now x €V, and tr. deg.

x = dim V , so that by part (i) , x is a generic point of V . Thus

THEOREM 2C. (i) If f£(X) € k[)i] is a non-constant irreducible

a variety of dimension n - 1

(ii) If S is a hypersurface, then %(S) 1is a principal ideal

(f) , generated by some non-constant irreducible polynomial f(X) € k[)ﬁ].

Proof: (i) The principal ideal (f) 1is a prime ideal in k[X], so AC(£))

is a variety. Without loss of generality, suppose Xn occurs in f(z) ,

a

say f(z) = Xn ga(Xl, ""Xn—l) +oees +gO(X1, ""Xn—l) . Choose ESERRETE S €Q
algebraically independent over k . Choose X € with f(xl, ...,xn) =0 . Then
X = (xl,...,xn) € A((f)). Also, tr. deg. x =n -1 . Thus dim A((f)) 2 n-1.

On the other hand, dim A((f)) # n , by Theorem 2B and since A((f)) #£Q".

Hence dim A((f)) =n - 1 . In other words, A((f)) is a hypersurface.

(ii) If S is a hypersurface, then (S) is a prime ideal.
Let g(XxX) € 3() , g £#0 . Since J(S8) is prime, there exists some
irreducible factor f of g such that f():() €36). So (f € 5B,
whence A((f)) 2 AG()) =8 . But dim A((f)) = n -1 by part (i) ,

and dim S = n - 1 . Therefore by Theorem 2B , A(f) =S . Hence

) =JAM) =4/ =@ ,

since (f) is prime,
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Examples: (1) Let k=Q ,Q0 =€, n=2 and f(X,Y) =Y- X

Now f 1is irreducible. 5o by Theorem 2C , the set of zeros of f is

a hypersurface of dimension 1 . Since n -1 =1, it is also a curve.
: 2 . :

The point (e,e’) has transcendence degree 1 and lies on our curve.

Hence we see again that it is a generic point of our curve.

(2) Same as above, but with f(X,Y) = x2 + Y2 - 1 . Again the

set of zeros of f (namely the unit circle) is a hypersurface and also
a curve.

let t be transcendental and consider the point

X o (k%) ( 2t t2—1)
X = , = = ,
= 1’72 t2+1 t2+1
X1
Here t = = ° whence k(g) = k(t) , so that X has transcendence
9 = =
degree 1 . Since x 1lies on our curve, it follows that x 1is a

generic point of the unit circle. 1In particular,
2
( 2e e —1)
2 ’ 2
e +1 e +1

is a generic point of the unit circle.

THEOREM 2D. Let n =1+t , let f (X,¥) ,

fz(X’Yl’Yz)""’ft(X’Yl’Y ""’Yt) be polynomials of the type

fi(X,Yl,...,Yi) = Yi - gi(X,Yl, . ,Yi) ,
where di >0 and g, 1is of degree < di in v, . Let ml""’@f
be algebraic functions with fl(X,ﬁl) = ... = ft(X,ﬁl,...,@t) =0,

and suppose that
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[k(x,ml,”.,mt): k] = dydy -ve d

Then the equations

define a curve; that is, a variety of dimemsion 1 .

Examples: (1) Let k be a field whose characteristic does not
equal 2 or 3 . Take t =2 , so that n =3 . Consider
2 2 2 2 2 2
fl(X,Yl) =Y, +X -1, f, X, YY) = Y, + X - 4 . Then Dl =1-X ,
2 2 2
and ﬁz =4~-X , or ml =41 =~ x? and mz =44 - X . Also,
2 2 +
2.1) [k(x,vﬁ - X, v@ -xX): kX] =4 . )
By Theorem 2D , the equations fl = f2 = 0 define a curve. This

curve is the intersection of two circular cylinders with radii 1,2 ,

whose axes intersect at right angles.

2 2
(2) Same as above, but with f2(X,Y1,Y2) =Y, + X - 1 . In this
case [k(X,ﬁl,mz): k(X)] =2 . So Theorem 2D does not apply. In fact,

+

The proof of (2.1) is as follows. Since the characteristic is not
2 or 3 , the four polynomials 1 -X , 1 +X , 2 ~-X, 2 + X_ are
distinct and are irreducible. Hence none of 1 - X2 , 4 = X2 and
(1= x2)/(4 - X2) is a square in k(X) , and each of /1 - x2
4 - x2 , /(O - x2)/(4 - X2) is of degree 2 over k(X) . It will
suffice to show that ,/4 - %2 ¢ k(X1 - XE) Suppose to the contrary

that
N x2 =r(X) + s(X) 41 - X2

with rational functions r(X) ; s(X) . We now square and observe that
the factor in front of 1 -X must be zero. Thus 2r(X) s(X) =0
I1If r(X) =0, them (1 - X2)/(1 - X% would be a square in k(X)) ,
which was ruled out. If s(X) =0 , then 4 - x2 would be a square,
which was also ruled out.

The situation is similar to the one in Corollary 5B of Chapter II,
§5, and the exercise below it.
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A((fl,fz)) =V Vv,

where V1 = A((fl,Yl— Yz)) , V2 = A(fl,Y14-Y2)) ’

Thus we do not obtain a variety. This algebraic set is the intersection
of two circular cylinders of radius 1 whose axes intersect at right
angles. Both V1 and V2 are the intersection of a plane with a

circular cylinder; they are ellipses.

H
N

3) L =
(3) et k = Fq , the finite field of q elements. Take t

1§

n=3 _d_
and fl(X,Yl) = Y1 f(X) where d‘(q—l) , and fz(X,Yz)

q
Y2 - Y2 - g(X) . Suppose fl,fz

. d
with g = £(0 , g)g - 9, = g(X) have

to be irreducible, Then ml,q&

k-

o)

(kX)) k(] =a , [ k&) k] =

Since (d,q) =1 , we have [k(X,g)l,%) :k(X)}] = dg . Thus £ =1, =0

defines a curve. In the same way one sees that if fl,f both are
2
absolutely irre i = =
y irreducible, then fl = f2 = 0 is an absolute curve, i.e.,

a curve which is an absolute variety.

Proof of Theorem 2D: Pick X = (x,yl,...,yt) € " , such that

the mapping X = x , @i >y, (1 <i<t) yields an isomorphism of
k(X,ml,.n.,@t) to k(x,yl,...,yt) . We claim that the set of zeros

of £ =f, = ... = f, =0 1is the variety (X). It suffices to show

that S(;;) = (f .,f,) ; for then (§:) = A(3E) :A((fl,...,ft)) .

1’°° t

Clearly, every f € (fl,...,ft) vanishes on X ; SO (fl,...,ft) < S(z).

Conversely, we are going to show that

(2.2) if f(x) =0 , then f € (£, -« f)
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We'll show (2.2) by induction on s , for functions

f = f(X,Yl,...,YS) where 0= s =t . If s =0, then f(x) =0 ;

but x 1is transcendental over k so f(X) = 0 , whence f € (fl,...,f

y

t)'

Next, we show that if (2.2) is true for s~-1, it is true for s

d
. s .
In f(X,Yl,...,YS) , if Ys occurs, replace it by gs(X,Yl,...,Ys) .
Do this repeatedly, until you get a polynomial %(X,Yl,...,Ys) of
degree <d_ in Y . We observe that f - t € (f)) , and that

T(g): 0 . Suppose

d -1
s
2.3 = .o e PR -
(2.3) ¥ Y hds_l(X,Yl, Y )+ + h (X, Y, Yy
our hypothesis implies that [k(x,yl,...,yt): k()] = d1d2 - dt ,
and we have
k(x) € k(x,yl) c k(x,yl,yl) S ... < k(x,yl,...,yt) ,

y

where for each i in 1< i< t the field k(x,yl,...,yi) is an
extension of degree < cli over k(x,yl,...,yi 1) . Hence it is
actually an extension of degree cli . In particular,
[k(x,yl,...,ys): k(x,yl,-..,ys_l)] = ds . Since %(ﬁ) =0 , we see

from (2.3) that each hj(§) =0 . So by induction, each hj € (fl,...,f ),

t

hence also T € (f f)

et and f € (fl,...,f ) . The proof of (2.2)

t

and therefore the proof of the 5heorem is complete.

§3. Rational Maps.

A rational function ¢ on 0" is an element of k(Xl""’Xn) ,
i.e. of the form o = a(xl,...,xn)/b(xl,...,xn) , where a(xl,...,xn) ,
b(Xl""’Xn) are polynomials over k . We may assume that a,b have

no common factor.
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We say a rational function ¢ is defined (or regular) at a point

€ Qn if bx) #0 . If ¢ is defined at X, put @(Z) = a(é)/b(z).

1]

n
The rational functions ¢ which are defined at X €Q form a
ring consisting of all a(X)/b(X) with b(x) # 0 . This ring is denoted
(3

as 9 and is called the local ring of x . Let Sy consist of all
X —_— =

® € D_ with w(g) =0 .( Thus S consists of all a(i)/b(é) with

1™

X
b (x) ; 0,a® =0 .) Then &  is an ideal in DX

LEMMA 3A. (i) If x-y , then D S 9O

(ii) I1f x&y , then O =9  and J =9

Proof: Obvious.

THEOREM 3B. (i) Sx is a maximal ideal in £ |, hence E;/S
—_— _— = x = b

is a field (called the function field of x).

is k- isomorphic to k(x) .

(i) D}E/S

I

Proof: (i) ©Let ¢ EDX , @ JE SX . Then ¢ = a(X)/b(X) , where
b(x) #0 and a(x) £0 , an; therefo;e % = b(X)/a(X) lies in S;

Thus every ¢ € DX which does not lie in Sx is a unit. It follows

that Sx is a maximal ideal.

(ii) The map w: S& - k(x) given by

w@E) /DK = a@) /bE)

X

has image k(x) and kernel Sx . Therefore k(x) = Qx/ﬁ

We now come to the definition of a rational function defined on

a variety V . The simplest definition to try would be that a rational
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function on V is the restriction to V of a rational function ¢(X)
n

on ( . However, we want this rational function to be defined for at

least some point of V . Hence by Lemma 3A it must be defined for

every generic point x of V , i.e. it must lie in Qx . Moreover,
given two functions a(X)/b(X) and c(X)/d(X) in S& , we should regard

them as equal functions on V if their restrictions to V are equal.

Clearly this is true precisely if their difference lies in Sx .

Thus we come to define a rational function on V as an element

of 9 /Sx , where x 1is a generic point. Clearly this is independent
of the choice of the generic point. ;& = DV (say) consists of
a(X)/b(X) with b(X) £ (V) = 3(§) , and Sx = SV (say) consists of
a(X)/b(X) with a(X) € V) , b(X) £ (V) . We say a function

r(X) ¢ k(X) represents a rational function ¢ of V 1if r(X) €9

and if r(X) 1lies in the class ¢ of 9/%.

Example: Let n=2 , k=@ ,Q =¢, and V the circle

2 2
X + x2 -1=0. Let ¢ be the rational function represented by
. 2
Xl/X2 . Then ¢ 1is also represented by (X1 + X1 + Xz - 1)/X2 and

2 2
by X/, + X, + X, - 1) , for example.

The rational functions defined on V form a field, called the
function field of V . This field is denoted k(V) . In view of
Theorem 3B, the function field is k-isomorphic to k(x) where x
is any generic point of V

\' \' .
Let wl""’vn be the elements of k(V) represented, respectively,

by the polynomials X ...,Xn . Then it is clear that

1’

k(V) = k(w‘lf, .. "WX)
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\i
It is easily seen that a polynomial f(X Xn) has f(wl,...

1,...,

if and only if f ¢ (V) . Hence if X = (x .,Xn) is a

100

point, then there is a k-isomorphism k(x) - k(V) with X,

\J
,¢n) =0
generic

lV
-2 wi

Example: Let n =2 , k= ,{ =¢, and V the circle

xl + x2 - 1 =0 . We have seen in previous examples that if

T is

" 2 2
trancendental over @ , then the point ( zﬂ/mz +1) ,O] - iVm +l))

is a generic point for V . Clearly k(x) = k() = k(X) . Thus the

function field of the circle is isomorphic to k(X)

A curve is called rational if its function field is = k(X)

Thus the circle is a rational curve. It can be shown that x; + x, -1

is not a rational curve if n > 2 and is not divisible by the

characteristic. See Shafarevich (1969), p. 8

Let © be a rational function on a variety V = (X) and let y be

a point of V . We say that ¢ is defined at y 1if there exists

a representative r(X) = a(X)/b(X) with b(y) #£0 . If this

case, set
© ():') = a(yp) /b )

We have to show that this independent of the representative.

is the

Suppose

that ¢ is represented by both a(X)/b(X) and by Q(&)/ﬁ(g), and

that b(y) #0 , B(X) A0 . The difference (ab - ab)/(bb) represents
the zero rational function on V . Hence a(z)%(z) - %(é)b(z) =0,
and since x =y , we have a(z)ﬁ(z) - Q(X)b(z) =0 . We conclude that

~

aly)/b(y) = 3 Ay



Examples: (1) Let n = 3

2 2 2
Xl + x2 + x3 - 1=0. Let o® be the rational function represented

, k=9 ,Q =¢, and V the sphere

by 1=1/1 . Put y = (1,0,0). Now ¢ is defined at y and

2 2 .
+ X_). Again the

2
©o(y)=1 . Now ¢ is also represented by 1/(X1 + X2 3

denominator does not vanish at y . If we use this representation, we

again find, as expected, that (399 =1 . Finall is also represented
’ g ey y @

2 2 2
by (X1 - X1 - X, - X3)/(X1- 1) . This representative cannot be used

to compute m(z), since its denominator vanishes at ¥

(2) Let n, k, 3 and V be as above. Let ¢ be the rational

function represented by 1/X This function ¢ 1is certainly defined

3

if y€ VvV and Va #0 . We ask if there is representative of ¢

which allows us to define ©(y) for some y with Yy = 0 . Let

a(XYb(X) be a representative. Then

a®) b -X2®
b X5 (D

1—
X3

2 2 2
vanishes on V . Thus b(X) -~ a(X) X3 € (X1 + X2 + X3 - 1) . So

b(X) € (X3,Xi + XZ + Xi - 1) , and therefore b(y) =0 , if Ev

11

and yg = 0 . It follows that o is defined precisely for those

points y on the sphere which are not on the circle

= y3:0y

Yyt ¥, -1 =0

THEOREM 3C. Let ¢ be a rational function on a variety V .

The set of points y € Vv for which @ is not defined is a proper
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algebraic subset of V .

Proof: The set of points where ¢ is not defined is

s=vN N AG®)
b (X) B
where the intersection is taken over all b(é) which occur as a
denominator of a representative of @ . Since the intersection of an
arbitrary number of algebraic sets is an algebraic set, S is an
algebraic set. In addition, S is a proper subset of V , since a
generic point of V is not in S

Let ¢ be a rational function of a variety V , and let W be a

’
subvariety of V . We say ¢ is defined on W if @ 1is defined at

a generic point of W .

m
A rational map ¢ from a variety V to is defined simply

as an m- tuple of rational functions (wl,...,wm). We say 2 is
defined at y € Vv, if each wi(z) is defined at y . If this is the
case, put @(y) = (¢1(Z),...,mn(z)). The set of points y € V for which

¢ 1is not defined is the union of the sets of points for which 9, 1is

not defined (i = 1,...,m). In view of Theorem 3C , and since a finite
union of proper algebraic subsets of a variety is still a proper algebraic
subset, the points where ® is not defined are a proper algebraic subset
of V

The image of ¢ 1is defined as the closure of the set of points

o(y) , y €V, for which ¢ is defined.

is a variety W . If x 1is a generic

THEOREM 3D. The image of ©



241

ir_o_of_: Let V = (g) . If ’é_) y and if 2(3;) is defined, we
have to show that c_g(:é) - cg(};) . Let o = (col, ...,r,pm) , and suppose
that o, is represented by ai Oé)/bi (}é) with bi (3=1) £0 . Let

f(g(?;)) = 0 , and suppose that f(g) = f(Ul"”’Um) is of degree di

in U, . Put
i

d d U U
1 m 1 m
g(Ul,...,Um,V,...,Vm) =V. ... V f(-v—-,'“j/—m)

Since f(al(:é)/bl(:é),...,am(:é)/bm(:_(__)) =0, it follows that

g(al(:é), ...,am(:é),bl(:é), ...,bm(:é)) =0 . But x - Y, s0
g(al(g),...,am(l),bl(g),...,bm(g)) =0 , and
d d a_ (y) a_(y)
1 m 1= m =
bl(z) bm(Z_‘) f(bl(l) "..,bm(¥)> =0

d d
since b (y) .. ) ™0, it follows that

31(3;) am(g)
ey = f(bl(z),...,bm(¥)> =0

So every polynomial f vanishing on ¢(x) also vanishes on 9(31) y

and 2(:;) - E_Q(}zl) .

Example: Let V be the sphere xi + xz + x‘;‘ =1, and let
2 . 2 2. .2 2
Q: V= Q have a representation as ¢ =((X1 + Xz)/X3 y -1/X3) . Let
£ = @1,52,53) be a generic point of V . We have

2
€1+ 5, 1 1
2("%’:(—2'— ’ ‘—5)= (1—2' L ‘7)'

53 €3 3 €3

va
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Thus 20;) = (Cl,Cz) satisfies Cl + Qz +1 =0 . Since g(g) has

transcendence degree 1 , it is in fact a generic point of the line

Z, + Z, + 1 =0 . Thus this line is the image of ¢ . But not every

point on this line is of the type ¢(y) . If (

. t .
Py zl,zz) is on the line

and is # (-1,0) , then if we pick y,,y,,¥, in Q with y, = 1/&2‘2‘,

2 2 2

Y+ ¥yt Vg - 1 =0, we obtain 2(;) = ( ) . But ( ) = (-1,0)

Zl,Z2 Zl,Z2

is not of the type ¢(y) . For if Y3 #0 , then ¢@(y) # (-1,0) , and

if y3 =0 , then 9(2) is not defined.

THEOREM 3E. Let ¢ be a rational map from V with image W .

Let T be a proper algebraic subset of W . Then the set L& V

consisting of points y where either ¢ is not defined or where

o (y) €T, iﬁ a proper algebraic subset of V .

Proof: Suppose W and T 1lie in Q" . Suppose T is defined
by equations gl(z) = ... = gt(z) = 0 , where y = (yl""'ym)
i =3 = = 3=
Let gi(Yl""’Ym) have degree dij in Yj (1=i2t, 12 j=2m.
Put
d Y Y
il im 1 m
hy (Yp,een, Yy Zyyeee,2) =2 el Z gi(-z-,...,z—-)
1 m
Let

rerl= @M @, e @/ K)

represent ¢ and put

r
!&i‘ @ =b,®...b X h(a,@,...,a @,b,@,...,b X)) A=is=t),

Let Lr consist of points y of V with

=
e
~~
<
N
I
I
=
o W=
~~
1<
N
i
o
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We claim that

3.1) L=NL
r

with the intersection taken over all representations
r
fact if y ¢ Lr for some r , then some ﬂf(y) # 0 , and hence
= = 1=

of ¢ - In

=

by (g ). b () £0 and g, (8, /@), .., /b () £0 . So
2(2) is defined and gi(g(g)) #Z0 , so that g(g) ¢ T and Y t L.
On the other hand if Y ¢ , then 2(;) is defined, and for some
representation r we have bl(g)... bm(z) #Z 0 . Moreover, 2(2) ¢ T ,
whence some gi(g(g)) #0 , and ﬂ%(z) #Z0 . Thus Y k Lr , and (3.1)

is established.
In view of (3.1) , L is an algebraic subset of V . Since a

generic point of V 1lies outside each I, , the set L 1is a proper
T

algebraic subset.

Example. Let V& 03 be the sphere xi + xz + xg -1 =0 and

let w & 02 be the line Zy + Zy ¥ 1 =0 . We have seen above that

2
the map ¢ represented by ((X1 + Xz)/Xi , —l/Xi) has image W .
et TS W consist of the single point (0,-1). It is easily seen that
the set L of points y where g(z) is not defined or where g(z) ET

2
consists of Y €V with y3(y3 -1) =0
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4, Birational Maps.

We define a rational map from a variety V +to a variety W as a

rational map ¢ of V whose image is contained in W . We express

this in symbols by ««: V-=>W .

Let ¢@: V> W and {: W-> U be rational meps such that § is

defined on the image of V under ¢ . Thus if x 1is a generic point

of v, then § is defined on ©(x). Suppose V ¢ Q‘V , Wc Qw

U

N

u
3 , and suppose [9) is represented by

(4.1) (a1(§)/b1(§),...,aw()é)/bw(g)) )

and | 1is represented by

(4.2) ©, D/ ®,..,c D/ D),

where dl""’du are non-zero at cg()é) . Let \)Lc_g be the rational

map V =2 represented by

4.3 ;@ D/ ®,..)/d @ © /b ), .0, e () /d (.))

Since dl""’du are not zero at c&(};) , each of the u components

X and \)ig (’é) is defined and equals \L(cg()é))

in (4.3) lies in O
i

It is clear that ¢ is independent of the special representations

(4.1) , (4.2) of ¢ , § , respectively. We call Yy ¢ the composite
of \lL and o If v is a point of V such that ¢ is defined
at v and {§ is defined at ¢(v), then Vo 1is defined at v and

<

Q@ = YQE)

But if(z) may be defined although perhaps either f(g) is not defined,
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or ?(z) is defined and ¢ (p(v)) is not defined.

Examples. (1) lLet V = Ql , W = 02 , U=V = Ql . Further let

@: V> W be represented by (XZ,X) , and let @: W= V be represented

by Xl/X2 . Then y¢ is the identity map on V . Thus Yy ¢ is

1}

defined on O and { o (0) 0 . However ©(0) = (0,0) , and ¢ is

not defined at (0,0)

€. Let V = Ql, W the unit circle

(2) Let k=@ and

2 2 1
X+ Xy - 1=0,and U=V =Q". Further let ¢@: V> W be

2 2 2
represented by @X/X +1), X -1)/X +1)) , and let {: wW->V be

represented by Xl/(l-XZ) . Then Y ¢ 1is the identity map on V and
¢¥ is the identity map on W . In particular, ¢ is defined at
i and Yo (i) =i , but ¢ 1is not defined at i

Exercise. Show that in Example (2) , ¢ 1is defined for every

point of V except for i -i , and that { is defined for every

»

point of W except for (0,1) . Further show that every point of V

with the exception of 1i,-i 1is of the type {(y) with y € w , and

every point of W with the exception of (0,1) is of the type ¢ (x)

with x € V . Hence if V' is obtained from V by deleting i, =i

and W' is obtained from W by deleting (0,1) , then ¢ and

e

provide a 1-1 correspondence between points of v/ and of W’

A rational map ¢: V> W is called a bi-rational map (or a

bi-rational correspondence) if there exists a rational map {: W= V

such that ¢ ¢ is the identity on V and ¢@¥ is the identity on W .

Two varieties are bi-rationally equivalent if there exists a bi-rational

correspondence between them. We denote this by V=W . This is an



246

equivalence relation of varieties. (Note that this relation is defined

in terms of the ground field K).

THEOREM 4A. Let ¢ be a bi-rational map from V to W with

inverse { . Then there exist proper algebraic subsets L of V and

M of W, such that on the set theoretic differences Ve L and

WM, the maps ¢ and { are defined everywhere and are inverses of

each other.

Proof: Let S Dbe the subset of V where ¢ is not defined.

Let T be the subset of W where | is not defined. Let L be the
subset of V where either ¢ is not defined or where Q(g) ET .

Similarly, let M be the subset of W where either g is not defined
or where g(g) €S . In view of Theorem 3E , the sets L,M are proper
algebraic subsets of V,W, respectively. Now © is defined on V~L .
Clearly, if x € V~L , then g(x) ¢ T. so § (@) is defined; but
then &(2(2)) =X . From this it follows that g(i) € WM, since

X t S . So the restriction of Q to Vel maps V-~L into WwW=M .

The restriction of § to W—M maps W~M into V~L . These maps

are inverses of each other.

THEOREM 4B. Let V and W be varieties. Then V=W if and

only if their function fields are k- isomorphic.

Proof: If x 1is a generic point of V and y is a generic

point of W , then the function fields are isomorphic to k(g) and
k(X) , respectively. So we need to show that v =W if and only if

k(g) is isomorphic to k(z)
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Suppose that V=W . Let ¢: V->W and {: W= V be bi-rational

maps, such that and

e
1<
re=

¢ are the identity maps on W and V ,
respectively.

It is clear from Theorem 4A that the "image" of V under is

ns

W . Thus if x 1is a generic point of V , then by Theorem 3D the

point y = @(x) is a generic point of W . We have Yy = o(x) and

k]

=4y () , whence k(y) S k(y) and k(x) € k(Z) , whence k(x) = k(y)

Thus the function fields are certainly k - isomorphic.

Conversely, let k(x) be isomorphic to k(y), wherex::(xl...,xn),zzz(yP..

are generic points of Vv, W respectively. Let & be a k- isomorphism

from k(x) to k() . Let o(x) :x; i =1,...,n) and put
§I = (xi,...,xé) .  Then k(g') = k(Z) and §' is again a generic point
of V . Thus we may suppose that k(x) = k(y) . Suppose that

vy = ri(i) i =1,...,m)
and

Xj =SJ(¥) (J :1,...,n)
for certain rational functions r_,...,r and s_,...,s_ . Then

1’ ’"m 1 ’“n

@: V- W represented by (rl(g),...,rm(g)) and i: W - V represented
by (SI(Z),-..,Sn(Z)) are rational maps which are inverses of each other.
In 33 we defined a rational curve as one whose function field

is isomorphic to k(X) . In view of Theorem 4B , we may also define

1
a rational curve as a curve which is birationally equivalent to Q

LEMMA 4C. The following two conditions on a field k are

equivalent.

(i), Either char k =0 , or char k = p > 0 and for every a € k

there is a b € k with b° = a
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(ii), Every algebraic extension of k is separable.

Proof. We clearly may suppose that char kK = p > 0

(i) » (ii). A polynomial of k[X] of the type

P tp
4.4 ‘e
( ) a0 + a1X + + atX

tp p .
1 b . = = ...,t). Thus
equals (b0 + 1X + + th ) where bi ai (i 0, ,t)
an irreducible polynomial over k is not of the type (4.4), hence is

separable.

(ii) » (i). Suppose thereis an a € k not of the type =a = bP

with b € k . Then there is a b which is not in Xk but in an
algebraic extension of k, with a = bP . since p is a prime, it is
easily seen that i = p is the smallest positive exponent with
bi € k . The polynomial L - a = (X-—b)p has proper factors (X-—b)i
with 1 =1 = p-1, but none of these factors lies in k[X] since
bi € x . Thus Xp - a 1is irreducible over k , and b is inseparable
over k

A field with the properties of the lemma is called perfect. A

Galols field is perfect. For if a 1lies in the finite field F with

» v=1\p
q =D elements, then a = a% - (a

THEOREM 4D. Suppose V is a variety defined over a perfect ground

field k . Then V 1is birationally ecuivalent to a hypersurface.
Proof. Suppose dim V =d and X = (xl,...,xn) is a generic
point of V. Then nZd . In view of Theorem 4B it will suffice

to show that there is a y = (yl,... ) with

Yas
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(4.5) k(x) = k(y)
We shall show this by induction on n-d . If n-d =0 , set
y1 = xl,...,yd = xd , yd+1 =0 . If n~d =1, set Z = § Suppose

now that n-d > 1 and that our claim is true for smaller values of

n~d . We may suppose without loss of generality that xl,...,xd+1

have transcendence degree d over k . Then (xl,.. ) 1is the

Xa41

generic point of a hypersurface in Qd+1 . This hypersurface is defined

by an equation f(zl,..., ) =0 where f(Z ) is irreducible

Zd41 1 24

over k . Since k is perfect, it is clear that f 1is not a polynomial

P

1""’Z2+1 if char k = p > 0 . We may then suppose without loss

of generality that f is not a polynomial in Z ...,Zd ,Z§+1 . Thus

1!

and x is separable algebraic

f is ble in th
is separable in e variable Zd+1 , d+1

over k(xl,...,xd) . By the theorem of the primitive element (see

Van der Waerden, $43), there is an x' with

K(X,,..

) :k@lﬂ.”xwxﬂ.

1707 %q By 0 Faee

!

Thus x° = (x !

1P g X s Ky areees

€a® with k') = k(y), hence with (4.5).

xn) has k(§') = k(x) . By induction

hypothesis there is a

1<
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5, Linear Disjointness of Fields

LEMMA 5A: Suppose that (O , K, L , k are fields with

kS KESQ, kS LEQ

0
'
S~

The following two properties are equivalent:

i) If elements xl,...,xm of K are linearly independent

over k , then they are also linearly independent over L .

(ii) If elements yl,...,yn of L are linearly independent

over k , then they are also linearly independent over K .

Proof: By symmetry it is sufficient to show that (i) implies
(ii). Let Yyreees¥y of L be linearly independent over k . Let

Kysoee,X of K be not all zero. We want to show that

5.1 oo °
(5.1) XY, + +xy #0

Let d be the maximum number of Kppeeer ¥y which are linearly inde-
pendent over k . Without loss of generality, we may assume that

Kisene,X are linearly independent over k ., Thus for d < i < n

d d
we have x. = ) c.. X, , where c ., € k . We obtain
i I T s ij
j=1
n
EpYp*t oeee * Xg¥q S (yl ) i1 i) F1toeee
i=d+1
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Here Xl"°"Xd € K are linearly independent over k , whence linearly
independent over K . Their coefficients are not zero since Yyreoes

y, are linearly independent over k . Thus (5.1) follows.

We say that field extensions KX , L. of k are linearly disjoint

over k , if properties (i) and (ii) hold.

Examples: (i) Consider the fields

€ (X)

Q(/2) QX .

Here Q(A/§) and @(X) are linearly disjoint over @ . For if
(a+by2) and ¢ +d 2 ) are linearly independent over € , then

clearly they are linearly independent over Q(X) .

(ii) Let X,Y,Z,W be variables, and consider the fields

€(X,Y,Z,W)
/ AN
€(X,Y) C(Z,W,XZ + YW)
c

In this case €(X,Y) and C€(Z,W,XZ + YW) are not linearly disjoint
over € . For Z,W,XZ + YW are linearly dependent over C€(X,Y)

»

but are linearly independent over € .
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LEMMA 5B: Let us consider fields

Q
/7 N\
K L,
\k/

where L is the quotient field of a ring R . For linear disjointness

it is sufficient to show that if zl,...,zn € R are linearly independent

over Kk , then they are also linearly independent over K .

££ggfz Let ASERERIN N € L be linearly independent over k .
We can find a z # 0, =z € R, such that 2y s eeer2Y € R . Now
ZYqyeee,2y,  are linearly independent over Kk, hence also linearly
independent over K . Therefore Yyreees¥, are linearly independent

over K .

LEMMA 5C: Suppose we have fields

0
K// Ny
N7

where K is algebraic over k . Let KL be the set of expressions

coo i i< ith n
Xt BRI S with % € K, v, €L Eg{ 1< i n , and with

arbitrary.

(i) The set KL is a field, it contains K and L , and is

the smallest such field.

(ii) Suppose that [K : k] is finite. Then [KL : L]

A

[K : k] , with equality precisely if K , L are linearly

disjoint over k .
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(iii) Now suppose that K , L. are linearly disjoint over k .

let o be a k-isomorphism from K to a field H containing

k . Let 8 be a k-isomorphism from L to H . Then
eose g oo

X ¥, + +x ¥y oak) By + +ax) Bly)

is a well-defined map from KL to H . It is a k=

isomorphism into H .

Proof: Exercise.

LEMMA 5D. Suppose we have a diagram of fields and subfields

E/O\K
N,

where k is perfect and k is the algebraic closure of k . Then

K , k are linearly disjoint over k if and only if k is algebraically

closed in K.

Proof: If k is not algebraically closed in K , then there

exists a proper algebraic extension k1 of k with k1 < K ;

E’/Q\K
N

l

k

It is now clear that k and K cannot be linearly disjoint over k .
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Conversely, suppose that k is algebraically closed in XK . It
suffices to show that k2 , K are linearly disjoint over k , where
k2 is any finite algebraic extension of k . S8ince k 1is perfect,
k2 = k(%) , and we have the following diagram of fields:

K K
~
=k
kz \(X) /
k
If f(X) is the defining polynomial of x over k , then it

remains irreducible over K, since every proper factor of f(X) has
coefficients which are algebraic over k , with some coefficients not
in k , and hence not in K

So for the fields

K(x) = K - k(x)

\K
2\k/

we have [K'k(x) :K] = [k(x) :k] ; hence k(x),K are linearly

k(x) =k

disjoint over k by Lemma 5C.

6. Constant Field Extensions

Consider fields k, K, {, such that k< K€ Q , and Q is
algebraically closed and has infinite transcendence degree over K .

T
If x € Qn , then Sk(§) is the ideal of all polynomials f(X) €

k[x] with £(x) =0 . We have seen in §1 that @ =y is a

Given a subset Mc QF , we write Sk(M) or SK(ND for the set of

polynomials f£(X) in k[§] or K[z] , respectively, which vanish
on M . -
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prime ideal in k[X] . Similarly, Jg® =P is a prime ideal in
K[x] . Let g K[X] be the ideal in K[X] generated by y - The

ideal L{SK[)=(] consists of all linear combinations ¢y fl + te I

where c, € K, f, €4 G =1,...,m . Clearly ’%’-K[)S] S P . Denote
i =
the closure of a point X with respect to k , K by (7_() , (7=<) ,

respectively. We have (E)k = A('K) = A(gK[)é]) 2 AM = (E)K . So

(g)K c (E)k .

Example: Let k=@, K=Q(42), 0 =¢C, and n=2 .

-k
Consider the point (e ﬁ, e) = X . Then (75) is the set of zeros

2 2 ~ K .
of the polynomial X -~ 2Y , But ()_() is the set of zeros of

X =2 Y.

THEOREM 6A. Let k< K< (1 be fields, where () is algebraically

n
1

closed and has infinite transcendence degree over K . Let x €Q

Sk(g) =4g s SK()E) =M . Consider the following four properties:

(i) The fields K , k(x) are linearly disjoint extensions of

k

i) ® =,(3K[)_(] ,
i @ = @,
(iv) B =A/‘{g KIX] .

The properties (i), (ii) are equivalent. Property (ii)

implies property (iii), which in turn implies property (iv).

Proof: To show that (i) implies (ii), let fX) €™ . write

)
f()é) = izl ai fi()é) , where a; €K, fi()é) € k[)é] s andn TRRETL
are linearly independent over k . Now f(x) =0, so Z aifi (x) =0 .

i=1
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By the linear disjointness of K and k(§) , the ai's are linearly
independent over k(ﬁ) . It follows that each fi(z) =0 , and each
£, €y . Thus () €4 k[x] .

To show that (ii) implies (i), let ul(é),...,uﬁ(é) be elements
of k[é] , such that ul(i),...,u (§) are linearly independent over
k . By Lemma 5B, it will suffice to show that ul(z),...,uz(z)
remain linearly independent over K . Suppose a_u (§) + eeo +

1 =

= it o = s °
alul(z) 0, with ai € K Let f(é) alul(é) + + azuz(é)
Since f(x) = 0 , the polynomial f£(X) lies in M =,¢§K[§] . We have

a relation

(6.1) alul(é) + ceo + aﬁuz(é) = blfl(é) + ees + bmfm(é) ,

where bi € K, fi(g) E.ﬁf (i=1,...,m), We may assume that
f,ee0,f are linearly independent over k . We claim that
1 ’Tm =

u1(§),.e.,uz(§) , fl(g),..a,fm(g) are linearly independent over k .

Suppose that

(6.2) c,u_(g) +

d.f . (X) =0,
11 =

JJ

=

18

J

where e, dj € k . Substituting x for X , we obtain

£

z} c_u_(§) = 0 . However, the u_(§) are linearly independent over
o ti= i'=
k , so that cl,...,cz are all zero. Thus (6.2) reduces to

m

E} df (X) =0 . But the f_(X) are linearly independent over k ,
g 3= J'=
and hence d1 = see = dm =0 . We have established the linear

independence of u1(§),.,o,up(§), fl(g),...,fm(g) over k . These
¢ + m polynomials have coefficients in k and are linearly inde-

pendent over k , and hence they are also linearly independent over
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K . Hence in (6.1), all the coefficients are zero, and in particular

— Kk
We next want to show that (ii) implies (iii). Let y € (z) .
Then f(y) =0 if f£(X) €4 . Since P = 4 k[X] , we have g(y) =0
— K — k — K
for every g(g) € ﬁ . Thus y S ACp) = (§) . Hence (z) c (z) ,

and since the reversed relation is always true, we obtain (iii).

Finally, we are going to show that (iii) implies (iv). Suppose
£() €M . Then f vanishes on ®: = M , and £ €3,@ =

Sg ((E)k) =SK(A(45K[§])) =/yX[X] . so mc . /yk[x] . conversely,

we have i K[X] € B, whence «/45 K[x]cyB =% .
Example: We give an example where E%)K = fg)k , but ™A %iK[§] .

Thus (iii) does not imply (ii). Let ko be a field of characteristic

p, and let k = ko(z) , where =z 1is transcendental over ko . Put x

(t,tE/Z) , where t 1is transcendental over k . Then .% = Sk(§) =

o)

b b b
(ZX1 - X2

, since ZX1 - X2 is an irreducible polynomial over k .
Now take K =k(°f) . Then M =3 (0 = Nz X, - X)) , and B #
=k (P p = K D
Y K[é] . We have (§) = A((ZX1 - X2» and (ﬁ) = A Vz X) - X2» .
—. kK ~— K . , P p
We observe that (x)° = (X)  , since if (u,v) € A((ZX1 - X2)), then

zup - vp =( Z Uu - v)p =0, so that (u,v) € A@?E X1 - Xz» .

THEOREM 6B. Let k , X ,

1>

s Y B be as in Theorem 6A.

Suppose, moreover, that K 1is a separable algebraic extension of k .

Then /4 K[X] = ¢ k[x] .

Linearly independent vectors in a vector space kt over k remain
linearly independent in the vector space Kt , where K 1is an over-
field of k .
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Proof: Let f € JS K[X] . There is a field K, with k€ K <K
which is finitely generated over k , such that f ¢ Ko[§] and
S n -
f o t = o
€ Jy K [x] . Let 1 iz; c,f. , where £ (0 €k[x], c €K , nd
CpseeesC, are linearly independent over k . In fact, by allowing
some fi to be zero, we may suppose that cl,...,cn are a basis for

kK, over k , where n = [ k] . There are n distinct k=

0

isomorphisms o of KO into 0 ; write @ for the image of ¢

under ¢ . We put

n
Z@ =) ¢ r® .
- i=1 -

Here the (nXn)-~determinant \c?\ is not zero, and hence there are
i

Jfo such that

£ =Y P G=1,...,m.
1 = UJ i =

Now for some m , e E“jKO[&] , whence (fc)m EgK%[X] , whence
o,m o)
(f7) (¥ =0, and therefore f (x) =0 for each ¢ . Thus each
= [ent .
fi(>=() =0 , and fi 643 . We have shown that f ESKO[;(] -%aK[)__E]
it follows from Fheorems 6A, 6B, that the four properties listed
in Theorem 6A are equivalent if K 1is a separable algebraic extension

of k. Now if k 1is perfect, then every algebraic extension K of

k is separable. Thus we obtain

COROLLARY 6C. If k is perfect and if V is a variety over Kk

with generic point X, then V is an absolute variety if and only




259

only if k 1is algebraically closed in k{(x) )

THEOREM 22. Let k 23 a perfect ground field.

1) It f(é) € k[g] is not constant and is absolutely irre-

hypersurface.

(ii) If S 1is an absolute hypersurface, then ﬁk(s) = (f);,

where f ii absolutely irreducible and nonconstant.

Ezggzz (i) This follows directly from Theorem 2C, and the fact
that f is absolutely irreducible.

(ii) From Theorem 2C it follows that Sk(s) = (f)h’ where f
is nonconstant and irreducible over k . Let K be an algebraic

extension of k . Then SK(S) =IP =,¥K[§] = (f%?[é] = (f)K *  Thus

the principal ideal generated by f in K[g] is a prime ideal, and

f is irreducible over K .

REMARKS (1) . Let k be perfect and let V be a variety over k .
In Theorem 4D we constructed a hypersurface S which was biration—
ally equivalent to Vv . 1In fact, the construction was such that
k(ﬁ) = k(g) , where X,y were certain generic points of V , S,

respectively. Now if V is an absolute variety, then k is algebraically

+ .
We write (f) resp. (f)K for the principal ideal generated by f

k
in k[x] and in K[x] .
*)Compare with Theorem 3A of Ch. V.
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closed in k(X) = k(y) , and S is also an absolute variety.

(2) Another approach to Corollary 6C is this: It may be shown
directly that if two k-varieties are k-birationally equivalent, and
if one is absolute, then so is the other. Thus the proof may be
reduced to the case of a hypersurface. But this case is essentially

Theorem 3A of Ch. V.

7. Counting Points in Varieties Over Fin;Ee Fie;ds

The goal of this section is a proof of

THEOREM 7A. Let V be an absolute variety of dimension d

defined over k = Fq . Let Nv = N (V) be the number 25 points

) —_— —

vy = (yl,--.,yn) in V with each coordinate in qu . Then as v »®
vd v(d - 1/2)
7.1 N = N
(7.1) L, =a 4 0<q

The proof will depend on a result we derived in Chapter v.

Namely, if f(Xl,...,Xn) S Fq[X Xn] is nonconstant and absolutely

g7

irreducible and if N is the number of zeros of f in Fq , then

(7.2) R

where ¢ is a constant which depends on n and the total degree of
f . For n =2, this result is Theorem 1A of Chapter I1I, and for
general n it is Theorem 5A of Chapter V. Only the case n = 2 is

needed if V is a curve,
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LEMMA 7B: Theorem 7A is true for hypersurfaces.

Proof: Let S be an absolute hypersurface of dimension d .
By Theorem 6D, S is given by f(§) =0 , where f(X) is not con-

stant and is absolutely irreducible. Thus by (7.2),

- - d-1
qn 1 < an (3/2) - cq /2 .

N - o] =|¥ -

Now applying this result to qu instead of Fq , we see that

vd v(d - 1/2
N, - q BRICIER V)

°

Theorem 7A for the general variety is done by induction on d
iIf d =0 and V = (x) , then every z € Fq(§) is algebraic over
F_, and so satisfies an equation 1 - z -~ ¢ ¢ 1 =0 where o € Fq .
a

Thus z , 1 are linearly dependent over fq . Since Fq(g) and fq

are linearly disjoint over Fq , it follows that =z , 1 are linearly

dependent over Fq . So z € F , and Fq(g) = Fq . Thus x has

Xl o

coordinates in Fq ,and V = (x) = X . It follows that Nv =1 for
every Vv .

In order to do the induction step from d - 1 to d , we shall

need
LEMMA 7C. Suppose Theorem 7A is true for absolute varieties of
dimension <d. Let W be a variety of dimension < d , not neces-=

sarily an absolute variety. Then as VvV - ® ,

N, =0 (qV (d'l)) .

Proof: It is clear that W is still an algebraic set over
K = fq , but not necessarily a K-variety. So W 1is a finite union

t 2 where the wi are K-varieties., Each wi is
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defined by finitely many equations. The coefficients of all these

equations for Wl,..,.,wt generate a finite extension Fqu of Fq .

So each Wi is a Fqu—variety and is as such an absolute variety,

and cli = dim Wi <d-1. Let NN$(W') be the number of points in
i

Wi with coordinates in F P By our induction hypothesis, applied
q

to F instead of Fq , we see that as the integer A\ tends to =« ,

_ qm (d;-1) +O(qm ; - 3/2))

o (qxu (d- 1)) .

A
with (A -y <v £ 3\p . Then as v > @ |

d-1
Thus N, W) = O(qxu( )> as A > ® , Given v , pick an integer A

_ A (d-1)
N\) w) < NM.L(W) = 0<q )

=0

o (qv (a_1)> _

The proof of Theorem 7A is now completed as follows. According

(q\) (d-1) + p (d—l))

to Theorem 4D, the variety V is birationally equivalent to a hyper-
surface S , and this hypersurface is an absolute variety by the
remark at the end of §6. By Theorem 4A, there exist proper algebraic
subsets L& VvV, MS S , such that the birational correspondence

o) between V and S becomes a 1 - 1 correspondence between points
of V~ L and of S~ M . Now @ as well as its inverse is defined
over k = Fq , 1.e. i8 defined in terms of rational functions with

coefficients in Fq . Thus in this correspondence, points with

components in Fq correspond to points with components in Fq .
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More generally, points with components in qu correspond to points

with components in qu . Hence
(7.3) N, W - N, ®| < X @ + N0 .

However, L and M are composed of varieties of dimension < d

v (d-1)
So by Lemma 7C, NQ(L) + NQ(M) =0\{q . On the other hand, by
Lemma 7B, Ny(S) = qu + O<qv(d - 1/2)) . These relations in conjunc-

tion with (7.3) yield (7.1).

REMARKS. (i) Theorem 7A together with Theorem 2D shows that the
t+1
number NQ of solutions (x, yl,.ou,yt) € qu of certain systems of

equations

d d d
1 2 t
vy, =g, ® , Yy =8y ,eee, ¥ o= 8., Yyseeer V)

v v /2
satisfies NQ =q + O(q / ) as V - ® ., In particular this holds
for certain systems of equations
. e
Y1 =81 seee, y, =8, .
But a better result for such systems was already derived in Theorem 5A
of Chapter II. Under suitable conditions on gl(X),.,.,gt(X) it was

v/2
q / , where c¢ was a constant explicitly

v
shown that Nv - q i c
determined in terms of t and the degrees of the polynomials
EyreoerBy o
(ii) More generally, if V is an absolute variety defined over

Fq determined by equations fl(g) = cee = fz(x) = 0 , then our

Theorem 7A could be strengthened to

vd v(d - 1/2
N, - @ e @ 1D
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where c¢ 1is a constant depending only on the number n of variables,
on £ , and on the total degrees of the polynomials fl"'"’ft .

(iii) Corollary 2B of Chapter V can be generalized as follows.
Suppose V is an absolute variety of dimension d over @ defined
by equations fl(z) = ces = fz(x) = 0 , where fl(é)’°"’f (é) have

rational integer coefficients. Let ?i(g) be obtained from fi(g)

by reduction modulo P and let Vp be the algebraic set defined over

] N = =T = i > the set V_ is an
Fp by fl(z) = ceo = fp(:) =0 . Then if p P, s e se b

absolute variety of dimension d . Here p, depends only on n , &

and the degrees of the polynomials f1"°°’fz . Hence if p ~ P,

then the number N{p) of solutions of the system of congruences

fl(z) = L., = fz(i) = 0 (mod p)

d - 1,2

. d
satisfies lN(p)-p \ cp o

A

(iv) The Weil (1949) conjectures (see also Ch. 1V, §6) imply
much better estimates than Theorem 7A if V is a "non-singular" variety
of dimension d >1 . These conjectures were recently proved by

Deligne

*)put see the remark in the Preface.
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